diff --git a/extras/baseline/rbd_distance_baseline_predictor.ipynb b/extras/baseline/rbd_distance_baseline_predictor.ipynb
index 3b89e8c6..2cfd338f 100644
--- a/extras/baseline/rbd_distance_baseline_predictor.ipynb
+++ b/extras/baseline/rbd_distance_baseline_predictor.ipynb
@@ -2,18 +2,20 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 28,
"id": "4c34e438",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
- "import numpy as np"
+ "import numpy as np\n",
+ "import warnings\n",
+ "warnings.filterwarnings(\"ignore\")"
]
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 29,
"id": "c92f77bd",
"metadata": {},
"outputs": [
@@ -155,57 +157,57 @@
""
],
"text/plain": [
- " subtype ha_accession na_accession \\\n",
+ " subtype ha_accession na_accession \n",
"id \n",
- "A/swine/Shandong/1207/2016 H1N1 EPI1751427 EPI1751500 \n",
+ "A/swine/Shandong/1207/2016 H1N1 EPI1751427 EPI1751500 \\\n",
"A/Ohio/13/2017 H3N2 EPI1056653 EPI1056652 \n",
"A/Hong Kong/125/2017 H7N9 EPI977395 EPI977394 \n",
"A/Shanghai/02/2013 H7N9 EPI448936 EPI448938 \n",
"A/Anhui-Lujiang/39/2018 H9N2 EPI1315830 EPI1315828 \n",
"\n",
- " ha \\\n",
+ " ha \n",
"id \n",
- "A/swine/Shandong/1207/2016 MEARLFVLFCAFTTLKADTICVGYHANNSTDTVDTILEKNVTVTHS... \n",
+ "A/swine/Shandong/1207/2016 MEARLFVLFCAFTTLKADTICVGYHANNSTDTVDTILEKNVTVTHS... \\\n",
"A/Ohio/13/2017 MKTIIALSHILCLVFAQKLPGNDNNMATLCLGHHAVPNGTIVKTIT... \n",
"A/Hong Kong/125/2017 MNTQILVFALIAIIPTNADKICLGHHAVSNGTKVNTLTERGVEVVN... \n",
"A/Shanghai/02/2013 MNTQILVFALIAIIPTNADKICLGHHAVSNGTKVNTLTERGVEVVN... \n",
"A/Anhui-Lujiang/39/2018 METVSLITILLVATASNADKICIGYQSTNSTETVDTLTENNVPVTH... \n",
"\n",
- " na \\\n",
+ " na \n",
"id \n",
- "A/swine/Shandong/1207/2016 MNPNQKIITIGSICMTIGIASLILQIGNIISIWISHSIQIENQNQS... \n",
+ "A/swine/Shandong/1207/2016 MNPNQKIITIGSICMTIGIASLILQIGNIISIWISHSIQIENQNQS... \\\n",
"A/Ohio/13/2017 MNPNQKIITIGSVSLIIATICFLMQIAILVTTITLHFKQHNCDSSP... \n",
"A/Hong Kong/125/2017 MNPNQKILCTSATAITIGAIAVLIGIANLGLNIGLHLKPGCNCSHS... \n",
"A/Shanghai/02/2013 MNPNQKILCTSATAIIIGAIAVLIGMANLGLNIGLHLKPGCNCSHS... \n",
"A/Anhui-Lujiang/39/2018 MNPNQKITAIGSVSLIIAIICLLMQIAILTTTMTLHFGQKECSNPS... \n",
"\n",
- " ha_risk \\\n",
+ " ha_risk \n",
"id \n",
- "A/swine/Shandong/1207/2016 [0.059268942695459764, 0.059207549599012387, 0... \n",
+ "A/swine/Shandong/1207/2016 [0.059268942695459764, 0.059207549599012387, 0... \\\n",
"A/Ohio/13/2017 [0.007443436845452373, 0.007528108280118501, 0... \n",
"A/Hong Kong/125/2017 [0.008053012400112526, 0.011702039255706398, 0... \n",
"A/Shanghai/02/2013 [0.0029756019607934496, 0.003893470493957003, ... \n",
"A/Anhui-Lujiang/39/2018 [0.013913606506215747, 0.014682700295856159, 0... \n",
"\n",
- " na_risk \\\n",
+ " na_risk \n",
"id \n",
- "A/swine/Shandong/1207/2016 [0.04153677158036683, 0.04121188550974603, 0.0... \n",
+ "A/swine/Shandong/1207/2016 [0.04153677158036683, 0.04121188550974603, 0.0... \\\n",
"A/Ohio/13/2017 [0.0684551151913223, 0.06848866622907772, 0.06... \n",
"A/Hong Kong/125/2017 [0.001702640937331002, 0.0015986998079791897, ... \n",
"A/Shanghai/02/2013 [0.0014946170772583095, 0.0014623661892494138,... \n",
"A/Anhui-Lujiang/39/2018 [0.025868069685588593, 0.04350993746295142, 0.... \n",
"\n",
- " geometric_mean_risk \\\n",
+ " geometric_mean_risk \n",
"id \n",
- "A/swine/Shandong/1207/2016 [0.04961693798040306, 0.04939691038300986, 0.0... \n",
+ "A/swine/Shandong/1207/2016 [0.04961693798040306, 0.04939691038300986, 0.0... \\\n",
"A/Ohio/13/2017 [0.02257302209884124, 0.0227066090672604, 0.02... \n",
"A/Hong Kong/125/2017 [0.0037028892207661, 0.004325280096255358, 0.0... \n",
"A/Shanghai/02/2013 [0.00210888252534967, 0.002386143249933443, 0.... \n",
"A/Anhui-Lujiang/39/2018 [0.018971508708604274, 0.025275351068975476, 0... \n",
"\n",
- " emergence_risk emergence_risk_var impact_risk \\\n",
+ " emergence_risk emergence_risk_var impact_risk \n",
"id \n",
- "A/swine/Shandong/1207/2016 7.5 0.001861 6.9 \n",
+ "A/swine/Shandong/1207/2016 7.5 0.001861 6.9 \\\n",
"A/Ohio/13/2017 6.6 0.071931 5.8 \n",
"A/Hong Kong/125/2017 6.5 0.057740 7.5 \n",
"A/Shanghai/02/2013 6.4 0.025769 7.2 \n",
@@ -220,7 +222,7 @@
"A/Anhui-Lujiang/39/2018 0.013857 1.0 "
]
},
- "execution_count": 2,
+ "execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
@@ -233,390 +235,15 @@
},
{
"cell_type": "code",
- "execution_count": 95,
+ "execution_count": null,
"id": "cf9b9f93",
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " emergence_risk | \n",
- " impact_risk | \n",
- " is_irat | \n",
- " ha_risk | \n",
- " geometric_mean_risk | \n",
- "
\n",
- " \n",
- " id | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " A/swine/Shandong/1207/2016 | \n",
- " 7.5 | \n",
- " 6.9 | \n",
- " 1.0 | \n",
- " [0.059268942695459764, 0.059207549599012387, 0... | \n",
- " [0.04961693798040306, 0.04939691038300986, 0.0... | \n",
- "
\n",
- " \n",
- " A/Ohio/13/2017 | \n",
- " 6.6 | \n",
- " 5.8 | \n",
- " 1.0 | \n",
- " [0.007443436845452373, 0.007528108280118501, 0... | \n",
- " [0.02257302209884124, 0.0227066090672604, 0.02... | \n",
- "
\n",
- " \n",
- " A/Hong Kong/125/2017 | \n",
- " 6.5 | \n",
- " 7.5 | \n",
- " 1.0 | \n",
- " [0.008053012400112526, 0.011702039255706398, 0... | \n",
- " [0.0037028892207661, 0.004325280096255358, 0.0... | \n",
- "
\n",
- " \n",
- " A/Shanghai/02/2013 | \n",
- " 6.4 | \n",
- " 7.2 | \n",
- " 1.0 | \n",
- " [0.0029756019607934496, 0.003893470493957003, ... | \n",
- " [0.00210888252534967, 0.002386143249933443, 0.... | \n",
- "
\n",
- " \n",
- " A/Anhui-Lujiang/39/2018 | \n",
- " 6.2 | \n",
- " 5.9 | \n",
- " 1.0 | \n",
- " [0.013913606506215747, 0.014682700295856159, 0... | \n",
- " [0.018971508708604274, 0.025275351068975476, 0... | \n",
- "
\n",
- " \n",
- " A/Indiana/08/2011 | \n",
- " 6.0 | \n",
- " 4.5 | \n",
- " 1.0 | \n",
- " [0.015833187603574352, 0.01579698562348106, 0.... | \n",
- " [0.016902504332314258, 0.01683599355230769, 0.... | \n",
- "
\n",
- " \n",
- " A/California/62/2018 | \n",
- " 5.8 | \n",
- " 5.7 | \n",
- " 1.0 | \n",
- " [0.25421003694129446, 0.17137241238504203, 0.1... | \n",
- " [0.11064301441040252, 0.08010185536798671, 0.0... | \n",
- "
\n",
- " \n",
- " A/Bangladesh/0994/2011 | \n",
- " 5.6 | \n",
- " 5.4 | \n",
- " 1.0 | \n",
- " [0.047962278609110426, 0.047376021553330504, 0... | \n",
- " [0.1509708016952567, 0.14755990149418968, 0.15... | \n",
- "
\n",
- " \n",
- " A/Sichuan/06681/2021 | \n",
- " 5.3 | \n",
- " 6.3 | \n",
- " 1.0 | \n",
- " [0.3401659563640977, 0.4372884849313668, 0.335... | \n",
- " [0.14098323610429828, 0.16479919492131653, 0.1... | \n",
- "
\n",
- " \n",
- " A/Vietnam/1203/2004 | \n",
- " 5.2 | \n",
- " 6.6 | \n",
- " 1.0 | \n",
- " [0.12775494527491757, 0.11190370497308454, 0.1... | \n",
- " [0.07357578392227798, 0.06512340773617227, 0.0... | \n",
- "
\n",
- " \n",
- " A/Yunnan/14564/2015 | \n",
- " 5.0 | \n",
- " 6.6 | \n",
- " 1.0 | \n",
- " [0.20080863109685176, 0.10301992847449411, 0.2... | \n",
- " [0.08744456695565636, 0.05634300538887098, 0.0... | \n",
- "
\n",
- " \n",
- " A/Astrakhan/3212/2020 | \n",
- " 4.6 | \n",
- " 5.2 | \n",
- " 1.0 | \n",
- " [0.2452941610025089, 0.2335184366024988, 0.221... | \n",
- " [0.3660547134708487, 0.352999397804964, 0.3433... | \n",
- "
\n",
- " \n",
- " A/Netherlands/219/2003 | \n",
- " 4.6 | \n",
- " 5.8 | \n",
- " 1.0 | \n",
- " [0.16431983904493178, 0.16426481855673325, 0.1... | \n",
- " [0.2735882731677115, 0.27353672735391277, 0.27... | \n",
- "
\n",
- " \n",
- " A/American wigeon/South Carolina/AH0195145/2021 | \n",
- " 4.4 | \n",
- " 5.1 | \n",
- " 1.0 | \n",
- " [0.22507345650411203, 0.253385372610634, 0.250... | \n",
- " [0.2618009640888491, 0.28041946959711944, 0.27... | \n",
- "
\n",
- " \n",
- " A/Jiangxi-Donghu/346/2013 | \n",
- " 4.3 | \n",
- " 6.0 | \n",
- " 1.0 | \n",
- " [0.03929273071556801, 0.3559593557688923, 0.15... | \n",
- " [0.027090727115239115, 0.1774459269887038, 0.0... | \n",
- "
\n",
- " \n",
- " A/gyrfalcon/Washington/41088/2014 | \n",
- " 4.2 | \n",
- " 4.6 | \n",
- " 1.0 | \n",
- " [0.24718594726896237, 0.2361702553946631, 0.22... | \n",
- " [0.36678073190475535, 0.35436513753260845, 0.3... | \n",
- "
\n",
- " \n",
- " A/Northern pintail/Washington/40964/2014 | \n",
- " 3.8 | \n",
- " 4.1 | \n",
- " 1.0 | \n",
- " [0.2410948922603147, 0.22971447028474637, 0.21... | \n",
- " [0.349366042786461, 0.34039602323151935, 0.331... | \n",
- "
\n",
- " \n",
- " A/canine/Illinois/12191/2015 | \n",
- " 3.7 | \n",
- " 3.7 | \n",
- " 1.0 | \n",
- " [0.01616230298118454, 0.016067588755834316, 0.... | \n",
- " [0.024453287740176615, 0.024374121053616235, 0... | \n",
- "
\n",
- " \n",
- " A/American green-winged teal/Washington/1957050/2014 | \n",
- " 3.6 | \n",
- " 4.1 | \n",
- " 1.0 | \n",
- " [0.22532859992890514, 0.2523992705219045, 0.24... | \n",
- " [0.2592089036823605, 0.2766319981079351, 0.273... | \n",
- "
\n",
- " \n",
- " A/turkey/Indiana/1573-2/2016 | \n",
- " 3.4 | \n",
- " 3.9 | \n",
- " 1.0 | \n",
- " [0.042531258378212616, 0.046850178126532895, 0... | \n",
- " [0.13246011857462825, 0.13903537495472926, 0.1... | \n",
- "
\n",
- " \n",
- " A/chicken/Tennessee/17-007431-3/2017 | \n",
- " 3.1 | \n",
- " 3.5 | \n",
- " 1.0 | \n",
- " [0.032175814200484966, 0.03682965073244792, 0.... | \n",
- " [0.12816247069024164, 0.1371356157354049, 0.12... | \n",
- "
\n",
- " \n",
- " A/chicken/Tennessee/17-007147-2/2017 | \n",
- " 2.8 | \n",
- " 3.5 | \n",
- " 1.0 | \n",
- " [0.082518541655176, 0.08595812903880762, 0.083... | \n",
- " [0.20524466180722442, 0.20950526315825033, 0.2... | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " emergence_risk \\\n",
- "id \n",
- "A/swine/Shandong/1207/2016 7.5 \n",
- "A/Ohio/13/2017 6.6 \n",
- "A/Hong Kong/125/2017 6.5 \n",
- "A/Shanghai/02/2013 6.4 \n",
- "A/Anhui-Lujiang/39/2018 6.2 \n",
- "A/Indiana/08/2011 6.0 \n",
- "A/California/62/2018 5.8 \n",
- "A/Bangladesh/0994/2011 5.6 \n",
- "A/Sichuan/06681/2021 5.3 \n",
- "A/Vietnam/1203/2004 5.2 \n",
- "A/Yunnan/14564/2015 5.0 \n",
- "A/Astrakhan/3212/2020 4.6 \n",
- "A/Netherlands/219/2003 4.6 \n",
- "A/American wigeon/South Carolina/AH0195145/2021 4.4 \n",
- "A/Jiangxi-Donghu/346/2013 4.3 \n",
- "A/gyrfalcon/Washington/41088/2014 4.2 \n",
- "A/Northern pintail/Washington/40964/2014 3.8 \n",
- "A/canine/Illinois/12191/2015 3.7 \n",
- "A/American green-winged teal/Washington/1957050... 3.6 \n",
- "A/turkey/Indiana/1573-2/2016 3.4 \n",
- "A/chicken/Tennessee/17-007431-3/2017 3.1 \n",
- "A/chicken/Tennessee/17-007147-2/2017 2.8 \n",
- "\n",
- " impact_risk is_irat \\\n",
- "id \n",
- "A/swine/Shandong/1207/2016 6.9 1.0 \n",
- "A/Ohio/13/2017 5.8 1.0 \n",
- "A/Hong Kong/125/2017 7.5 1.0 \n",
- "A/Shanghai/02/2013 7.2 1.0 \n",
- "A/Anhui-Lujiang/39/2018 5.9 1.0 \n",
- "A/Indiana/08/2011 4.5 1.0 \n",
- "A/California/62/2018 5.7 1.0 \n",
- "A/Bangladesh/0994/2011 5.4 1.0 \n",
- "A/Sichuan/06681/2021 6.3 1.0 \n",
- "A/Vietnam/1203/2004 6.6 1.0 \n",
- "A/Yunnan/14564/2015 6.6 1.0 \n",
- "A/Astrakhan/3212/2020 5.2 1.0 \n",
- "A/Netherlands/219/2003 5.8 1.0 \n",
- "A/American wigeon/South Carolina/AH0195145/2021 5.1 1.0 \n",
- "A/Jiangxi-Donghu/346/2013 6.0 1.0 \n",
- "A/gyrfalcon/Washington/41088/2014 4.6 1.0 \n",
- "A/Northern pintail/Washington/40964/2014 4.1 1.0 \n",
- "A/canine/Illinois/12191/2015 3.7 1.0 \n",
- "A/American green-winged teal/Washington/1957050... 4.1 1.0 \n",
- "A/turkey/Indiana/1573-2/2016 3.9 1.0 \n",
- "A/chicken/Tennessee/17-007431-3/2017 3.5 1.0 \n",
- "A/chicken/Tennessee/17-007147-2/2017 3.5 1.0 \n",
- "\n",
- " ha_risk \\\n",
- "id \n",
- "A/swine/Shandong/1207/2016 [0.059268942695459764, 0.059207549599012387, 0... \n",
- "A/Ohio/13/2017 [0.007443436845452373, 0.007528108280118501, 0... \n",
- "A/Hong Kong/125/2017 [0.008053012400112526, 0.011702039255706398, 0... \n",
- "A/Shanghai/02/2013 [0.0029756019607934496, 0.003893470493957003, ... \n",
- "A/Anhui-Lujiang/39/2018 [0.013913606506215747, 0.014682700295856159, 0... \n",
- "A/Indiana/08/2011 [0.015833187603574352, 0.01579698562348106, 0.... \n",
- "A/California/62/2018 [0.25421003694129446, 0.17137241238504203, 0.1... \n",
- "A/Bangladesh/0994/2011 [0.047962278609110426, 0.047376021553330504, 0... \n",
- "A/Sichuan/06681/2021 [0.3401659563640977, 0.4372884849313668, 0.335... \n",
- "A/Vietnam/1203/2004 [0.12775494527491757, 0.11190370497308454, 0.1... \n",
- "A/Yunnan/14564/2015 [0.20080863109685176, 0.10301992847449411, 0.2... \n",
- "A/Astrakhan/3212/2020 [0.2452941610025089, 0.2335184366024988, 0.221... \n",
- "A/Netherlands/219/2003 [0.16431983904493178, 0.16426481855673325, 0.1... \n",
- "A/American wigeon/South Carolina/AH0195145/2021 [0.22507345650411203, 0.253385372610634, 0.250... \n",
- "A/Jiangxi-Donghu/346/2013 [0.03929273071556801, 0.3559593557688923, 0.15... \n",
- "A/gyrfalcon/Washington/41088/2014 [0.24718594726896237, 0.2361702553946631, 0.22... \n",
- "A/Northern pintail/Washington/40964/2014 [0.2410948922603147, 0.22971447028474637, 0.21... \n",
- "A/canine/Illinois/12191/2015 [0.01616230298118454, 0.016067588755834316, 0.... \n",
- "A/American green-winged teal/Washington/1957050... [0.22532859992890514, 0.2523992705219045, 0.24... \n",
- "A/turkey/Indiana/1573-2/2016 [0.042531258378212616, 0.046850178126532895, 0... \n",
- "A/chicken/Tennessee/17-007431-3/2017 [0.032175814200484966, 0.03682965073244792, 0.... \n",
- "A/chicken/Tennessee/17-007147-2/2017 [0.082518541655176, 0.08595812903880762, 0.083... \n",
- "\n",
- " geometric_mean_risk \n",
- "id \n",
- "A/swine/Shandong/1207/2016 [0.04961693798040306, 0.04939691038300986, 0.0... \n",
- "A/Ohio/13/2017 [0.02257302209884124, 0.0227066090672604, 0.02... \n",
- "A/Hong Kong/125/2017 [0.0037028892207661, 0.004325280096255358, 0.0... \n",
- "A/Shanghai/02/2013 [0.00210888252534967, 0.002386143249933443, 0.... \n",
- "A/Anhui-Lujiang/39/2018 [0.018971508708604274, 0.025275351068975476, 0... \n",
- "A/Indiana/08/2011 [0.016902504332314258, 0.01683599355230769, 0.... \n",
- "A/California/62/2018 [0.11064301441040252, 0.08010185536798671, 0.0... \n",
- "A/Bangladesh/0994/2011 [0.1509708016952567, 0.14755990149418968, 0.15... \n",
- "A/Sichuan/06681/2021 [0.14098323610429828, 0.16479919492131653, 0.1... \n",
- "A/Vietnam/1203/2004 [0.07357578392227798, 0.06512340773617227, 0.0... \n",
- "A/Yunnan/14564/2015 [0.08744456695565636, 0.05634300538887098, 0.0... \n",
- "A/Astrakhan/3212/2020 [0.3660547134708487, 0.352999397804964, 0.3433... \n",
- "A/Netherlands/219/2003 [0.2735882731677115, 0.27353672735391277, 0.27... \n",
- "A/American wigeon/South Carolina/AH0195145/2021 [0.2618009640888491, 0.28041946959711944, 0.27... \n",
- "A/Jiangxi-Donghu/346/2013 [0.027090727115239115, 0.1774459269887038, 0.0... \n",
- "A/gyrfalcon/Washington/41088/2014 [0.36678073190475535, 0.35436513753260845, 0.3... \n",
- "A/Northern pintail/Washington/40964/2014 [0.349366042786461, 0.34039602323151935, 0.331... \n",
- "A/canine/Illinois/12191/2015 [0.024453287740176615, 0.024374121053616235, 0... \n",
- "A/American green-winged teal/Washington/1957050... [0.2592089036823605, 0.2766319981079351, 0.273... \n",
- "A/turkey/Indiana/1573-2/2016 [0.13246011857462825, 0.13903537495472926, 0.1... \n",
- "A/chicken/Tennessee/17-007431-3/2017 [0.12816247069024164, 0.1371356157354049, 0.12... \n",
- "A/chicken/Tennessee/17-007147-2/2017 [0.20524466180722442, 0.20950526315825033, 0.2... "
- ]
- },
- "execution_count": 95,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df_h1n1=df#[df.subtype=='H1N1']\n",
- "df_=df_h1n1[['emergence_risk','impact_risk','is_irat','ha_risk','geometric_mean_risk']]\n",
- "df_[df_.is_irat==1]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 94,
- "id": "523e82f7",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Index(['subtype', 'ha_accession', 'na_accession', 'ha', 'na', 'ha_risk',\n",
- " 'na_risk', 'geometric_mean_risk', 'emergence_risk',\n",
- " 'emergence_risk_var', 'impact_risk', 'impact_risk_var', 'is_irat'],\n",
- " dtype='object')"
- ]
- },
- "execution_count": 94,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df.columns"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 107,
- "id": "be2e6e33",
- "metadata": {},
"outputs": [],
- "source": [
- "RBD=range(63,286)\n",
- "R=range(150,236)\n",
- "R=range(50,336)\n",
- "RBD=range(90,240)\n",
- "binding_pocket=range(190,200)\n",
- "\n",
- "R=[90, 91,92,93,94,155,156,157,158,159,160,190,191,192,193,194,195,220,221,222,223,224,225,226]\n",
- "df_['frag_rbd']=[''.join(np.array(list(x))[RBD]) for x in df_h1n1.ha.values]\n",
- "df_['frag_sel']=[''.join(np.array(list(x))[R]) for x in df_h1n1.ha.values]\n",
- "df_['frag_pocket']=[''.join(np.array(list(x))[binding_pocket]) for x in df_h1n1.ha.values]\n",
- "df_['mean_geom_risk'] = [np.array(eval(x)).mean() for x in df_.geometric_mean_risk]\n",
- "df_['mean_ha_risk'] = [np.array(eval(x)).mean() for x in df_.ha_risk]\n",
- "df_['max_ha_risk'] = [np.array(eval(x)).max() for x in df_.ha_risk]\n",
- "df_['min_ha_risk'] = [np.array(eval(x)).min() for x in df_.ha_risk]"
- ]
+ "source": []
},
{
"cell_type": "code",
- "execution_count": 108,
+ "execution_count": 30,
"id": "f424b5a0",
"metadata": {},
"outputs": [],
@@ -666,7 +293,59 @@
},
{
"cell_type": "code",
- "execution_count": 109,
+ "execution_count": 31,
+ "id": "523e82f7",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Index(['subtype', 'ha_accession', 'na_accession', 'ha', 'na', 'ha_risk',\n",
+ " 'na_risk', 'geometric_mean_risk', 'emergence_risk',\n",
+ " 'emergence_risk_var', 'impact_risk', 'impact_risk_var', 'is_irat'],\n",
+ " dtype='object')"
+ ]
+ },
+ "execution_count": 31,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.columns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 210,
+ "id": "be2e6e33",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "RBD=range(63,286)\n",
+ "#R=range(150,236)\n",
+ "#R=range(50,336)\n",
+ "#RBD=range(90,240)\n",
+ "binding_pocket=range(210,240)\n",
+ "df_h1n1=df#[df.subtype=='H3N2']\n",
+ "df_=df_h1n1[['emergence_risk','impact_risk','is_irat','ha_risk','geometric_mean_risk']]\n",
+ "R=[130,131,132,133,134,135,150,151,152,153,154,155,156,157,158,159,160,190,191,192,193,194,195,220,221,222,223,224,225,226]\n",
+ "df_['frag_rbd']=[''.join(np.array(list(x))[RBD]) for x in df_h1n1.ha.values]\n",
+ "df_['frag_sel']=[''.join(np.array(list(x))[R]) for x in df_h1n1.ha.values]\n",
+ "df_['frag_pocket']=[''.join(np.array(list(x))[binding_pocket]) for x in df_h1n1.ha.values]\n",
+ "df_['mean_geom_risk'] = [np.array(eval(x)).mean() for x in df_.geometric_mean_risk]\n",
+ "df_['mean_ha_risk'] = [np.array(eval(x)).mean() for x in df_.ha_risk]\n",
+ "df_['max_ha_risk'] = [np.array(eval(x)).max() for x in df_.ha_risk]\n",
+ "df_['min_ha_risk'] = [np.array(eval(x)).min() for x in df_.ha_risk]\n",
+ "df_['max_geom_risk'] = [np.array(eval(x)).max() for x in df_.geometric_mean_risk]\n",
+ "df_['min_geom_risk'] = [np.array(eval(x)).min() for x in df_.geometric_mean_risk]\n",
+ "df_=df_.drop(['ha_risk',\n",
+ " 'geometric_mean_risk'],axis=1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 211,
"id": "33d74ba3",
"metadata": {},
"outputs": [],
@@ -678,24 +357,58 @@
},
{
"cell_type": "code",
- "execution_count": 115,
+ "execution_count": 212,
"id": "65b0cf9d",
"metadata": {},
"outputs": [],
"source": [
- "high_risk_rbd = [getLav(x,seq0) for x in df_.frag_rbd.values]\n",
+ "high_risk_rbd = [getLav(x,seq0[:6]) for x in df_.frag_rbd.values]\n",
"df_['hr_rbd'] = high_risk_rbd\n",
- "high_risk_rbd = [getLav(x,seq0) for x in df_.frag_sel.values]\n",
+ "high_risk_rbd = [getLav(x,seq0[:6]) for x in df_.frag_sel.values]\n",
"df_['hr_sel'] = high_risk_rbd\n",
- "high_risk_rbd = [getLav(x,seq0) for x in df_.frag_pocket.values]\n",
+ "high_risk_rbd = [getLav(x,seq0[:6]) for x in df_.frag_pocket.values]\n",
"df_['hr_pocket'] = high_risk_rbd"
]
},
{
"cell_type": "code",
- "execution_count": 117,
+ "execution_count": 213,
"id": "096ff036",
"metadata": {},
+ "outputs": [],
+ "source": [
+ "tf=df_[df_.is_irat==1].drop('is_irat',axis=1).corr(numeric_only=True).loc[['hr_rbd','hr_sel','hr_pocket'],:]\n",
+ "tf.index=['On RBD (63-286)','On seleted residues on RBD$^\\\\star$',\"Encompassing 220 loop (210-240)\"]\n",
+ "tf.index.name='edit distance from high fitness human strains'\n",
+ "tf=tf.drop(['hr_rbd','hr_sel'],axis=1).round(3)\n",
+ "#tf=tf[['mean_ha_risk','mean_geom_risk']]\n",
+ "tf['HA \\\\qdist (IRAT sequences)']=['$'+(str(x)+'\\pm'+str(abs(y-x)))[:13]+'$' for x,y in zip(tf.mean_ha_risk.values,tf.min_ha_risk.values)]\n",
+ "tf['geometric mean of HA and NA \\\\qdist (IRAT sequences)']=['$'+(str(x)+'\\pm'+str(abs(y-x)))[:13]+'$' for x,y in zip(tf.mean_geom_risk.values,tf.min_geom_risk.values)]\n",
+ "tf0=tf[['HA \\\\qdist (IRAT sequences)', 'geometric mean of HA and NA \\\\qdist (IRAT sequences)']]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 214,
+ "id": "c67f743a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "tf=df_[df_.is_irat==0].drop('is_irat',axis=1).corr(numeric_only=True).loc[['hr_rbd','hr_sel','hr_pocket'],:]\n",
+ "tf.index=['On RBD (63-286)','On seleted residues on RBD$^\\\\star$',\"Encompassing 220 loop (210-240)\"]\n",
+ "tf.index.name='edit distance from high fitness human strains'\n",
+ "tf=tf.drop(['hr_rbd','hr_sel'],axis=1).round(3)\n",
+ "tf['HA \\\\qdist (2020-2022 sequences)']=['$'+(str(x)+'\\pm'+str(abs(y-x)))[:13]+'$' for x,y in zip(tf.mean_ha_risk.values,tf.min_ha_risk.values)]\n",
+ "tf['geometric mean of HA and NA \\\\qdist (2020-2022 sequences)']=['$'+(str(x)+'\\pm'+str(abs(y-x)))[:13]+'$' for x,y in zip(tf.mean_geom_risk.values,tf.min_geom_risk.values)]\n",
+ "tf=tf[['HA \\\\qdist (2020-2022 sequences)', 'geometric mean of HA and NA \\\\qdist (2020-2022 sequences)']]\n",
+ "tf=tf.join(tf0)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 215,
+ "id": "81387c94",
+ "metadata": {},
"outputs": [
{
"data": {
@@ -718,19 +431,13 @@
" \n",
" \n",
" | \n",
- " emergence_risk | \n",
- " impact_risk | \n",
- " mean_geom_risk | \n",
- " mean_ha_risk | \n",
- " max_ha_risk | \n",
- " min_ha_risk | \n",
- " hr_pocket | \n",
+ " HA \\qdist (2020-2022 sequences) | \n",
+ " geometric mean of HA and NA \\qdist (2020-2022 sequences) | \n",
+ " HA \\qdist (IRAT sequences) | \n",
+ " geometric mean of HA and NA \\qdist (IRAT sequences) | \n",
"
\n",
" \n",
- " edit distance | \n",
- " | \n",
- " | \n",
- " | \n",
+ " edit distance from high fitness human strains | \n",
" | \n",
" | \n",
" | \n",
@@ -739,833 +446,138 @@
"
\n",
" \n",
" \n",
- " RBD | \n",
- " -0.379037 | \n",
- " 0.045975 | \n",
- " 0.325985 | \n",
- " 0.169715 | \n",
- " 0.161580 | \n",
- " 0.114448 | \n",
- " NaN | \n",
+ " On RBD (63-286) | \n",
+ " $0.671\\pm0.005$ | \n",
+ " $0.773\\pm0.007$ | \n",
+ " $0.214\\pm0.061$ | \n",
+ " $0.376\\pm0.071$ | \n",
"
\n",
" \n",
- " On seleted residues | \n",
- " -0.112898 | \n",
- " 0.035949 | \n",
- " -0.148383 | \n",
- " -0.461506 | \n",
- " -0.399043 | \n",
- " -0.509472 | \n",
- " NaN | \n",
+ " On seleted residues on RBD$^\\star$ | \n",
+ " $-0.21\\pm0.007$ | \n",
+ " $-0.203\\pm0.01$ | \n",
+ " $-0.545\\pm0.02$ | \n",
+ " $-0.234\\pm0.03$ | \n",
"
\n",
" \n",
- " pocket | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
+ " Encompassing 220 loop (210-240) | \n",
+ " $-0.383\\pm0.00$ | \n",
+ " $-0.368\\pm0.00$ | \n",
+ " $-0.432\\pm0.03$ | \n",
+ " $-0.426\\pm0.04$ | \n",
"
\n",
" \n",
"\n",
""
],
"text/plain": [
- " emergence_risk impact_risk mean_geom_risk \\\n",
- "edit distance \n",
- "RBD -0.379037 0.045975 0.325985 \n",
- "On seleted residues -0.112898 0.035949 -0.148383 \n",
- "pocket NaN NaN NaN \n",
+ " HA \\qdist (2020-2022 sequences) \n",
+ "edit distance from high fitness human strains \n",
+ "On RBD (63-286) $0.671\\pm0.005$ \\\n",
+ "On seleted residues on RBD$^\\star$ $-0.21\\pm0.007$ \n",
+ "Encompassing 220 loop (210-240) $-0.383\\pm0.00$ \n",
+ "\n",
+ " geometric mean of HA and NA \\qdist (2020-2022 sequences) \n",
+ "edit distance from high fitness human strains \n",
+ "On RBD (63-286) $0.773\\pm0.007$ \\\n",
+ "On seleted residues on RBD$^\\star$ $-0.203\\pm0.01$ \n",
+ "Encompassing 220 loop (210-240) $-0.368\\pm0.00$ \n",
+ "\n",
+ " HA \\qdist (IRAT sequences) \n",
+ "edit distance from high fitness human strains \n",
+ "On RBD (63-286) $0.214\\pm0.061$ \\\n",
+ "On seleted residues on RBD$^\\star$ $-0.545\\pm0.02$ \n",
+ "Encompassing 220 loop (210-240) $-0.432\\pm0.03$ \n",
"\n",
- " mean_ha_risk max_ha_risk min_ha_risk hr_pocket \n",
- "edit distance \n",
- "RBD 0.169715 0.161580 0.114448 NaN \n",
- "On seleted residues -0.461506 -0.399043 -0.509472 NaN \n",
- "pocket NaN NaN NaN NaN "
+ " geometric mean of HA and NA \\qdist (IRAT sequences) \n",
+ "edit distance from high fitness human strains \n",
+ "On RBD (63-286) $0.376\\pm0.071$ \n",
+ "On seleted residues on RBD$^\\star$ $-0.234\\pm0.03$ \n",
+ "Encompassing 220 loop (210-240) $-0.426\\pm0.04$ "
]
},
- "execution_count": 117,
+ "execution_count": 215,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "tf=df_[df_.is_irat==1].drop('is_irat',axis=1).corr().loc[['hr_rbd','hr_sel','hr_pocket'],:]\n",
- "tf.index=['RBD','On seleted residues',\"pocket\"]\n",
- "tf.index.name='edit distance'\n",
- "tf.drop(['hr_rbd','hr_sel'],axis=1)"
+ "tf"
]
},
{
"cell_type": "code",
- "execution_count": 112,
- "id": "b685a5a6",
+ "execution_count": 216,
+ "id": "a805cdf6",
"metadata": {},
+ "outputs": [],
+ "source": [
+ "from zedstat.textable import textable\n",
+ "textable(tf,tabname='../../tex/overleaf/Figures/tabdata/baselinetab.tex',\n",
+ " INDEX=True,LNTERM='\\\\\\\\\\\\hline\\n',TABFORMAT='L{1.2in}|L{1.2in}|L{1.2in}|L{1.2in}|L{1.2in}') \n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 166,
+ "metadata": {
+ "scrolled": false
+ },
"outputs": [
{
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " emergence_risk | \n",
- " impact_risk | \n",
- " ha_risk | \n",
- " geometric_mean_risk | \n",
- " frag_rbd | \n",
- " frag_sel | \n",
- " mean_geom_risk | \n",
- " mean_ha_risk | \n",
- " max_ha_risk | \n",
- " min_ha_risk | \n",
- " hr_rbd | \n",
- " hr_sel | \n",
- " frag_pocket | \n",
- "
\n",
- " \n",
- " id | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " A/swine/Shandong/1207/2016 | \n",
- " 7.5 | \n",
- " 6.9 | \n",
- " [0.059268942695459764, 0.059207549599012387, 0... | \n",
- " [0.04961693798040306, 0.04939691038300986, 0.0... | \n",
- " NSWSYIIETSNSKNGACYPGEFADYEELKEQLSTVSSFERFEIFPK... | \n",
- " NSWSYSGANSFLVIWGVSKYYKRF | \n",
- " 0.049531 | \n",
- " 0.059325 | \n",
- " 0.059809 | \n",
- " 0.059069 | \n",
- " 450 | \n",
- " 541 | \n",
- " LVIWGVHHPP | \n",
- "
\n",
- " \n",
- " A/Ohio/13/2017 | \n",
- " 6.6 | \n",
- " 5.8 | \n",
- " [0.007443436845452373, 0.007528108280118501, 0... | \n",
- " [0.02257302209884124, 0.0227066090672604, 0.02... | \n",
- " QCDGFQNNKWDLFVERSKAHSNCYPYDVPDYASLRSLVASSGTLEF... | \n",
- " QCDGFKRRSSNDKLYIWSTKRNQQ | \n",
- " 0.023780 | \n",
- " 0.008455 | \n",
- " 0.017483 | \n",
- " 0.007363 | \n",
- " 435 | \n",
- " 541 | \n",
- " DKLYIWGVHH | \n",
- "
\n",
- " \n",
- " A/Hong Kong/125/2017 | \n",
- " 6.5 | \n",
- " 7.5 | \n",
- " [0.008053012400112526, 0.011702039255706398, 0... | \n",
- " [0.0037028892207661, 0.004325280096255358, 0.0... | \n",
- " SADLIIERREGSDVCYPGKFVNEEALRQILRESGGIDKETMGFTYN... | \n",
- " SADLIAEMKWLIHHSVSSFVPSPG | \n",
- " 0.005481 | \n",
- " 0.009787 | \n",
- " 0.012453 | \n",
- " 0.005927 | \n",
- " 466 | \n",
- " 542 | \n",
- " IHHSVSTAEQ | \n",
- "
\n",
- " \n",
- " A/Shanghai/02/2013 | \n",
- " 6.4 | \n",
- " 7.2 | \n",
- " [0.0029756019607934496, 0.003893470493957003, ... | \n",
- " [0.00210888252534967, 0.002386143249933443, 0.... | \n",
- " SADLIIERREGSDVCYPGKFVNEEALRQILRESGGIDKEAMGFTYS... | \n",
- " SADLIAEMKWLIHHSVSSFVPSPG | \n",
- " 0.002846 | \n",
- " 0.003131 | \n",
- " 0.003893 | \n",
- " 0.002597 | \n",
- " 468 | \n",
- " 542 | \n",
- " IHHSVSTAEQ | \n",
- "
\n",
- " \n",
- " A/Anhui-Lujiang/39/2018 | \n",
- " 6.2 | \n",
- " 5.9 | \n",
- " [0.013913606506215747, 0.014682700295856159, 0... | \n",
- " [0.018971508708604274, 0.025275351068975476, 0... | \n",
- " GREWSYIVERPSAVNGLCYPGNVENLEELRSLFSSARSYQRIQIFP... | \n",
- " GREWSYRSMRWNHPPTDFKPLIGP | \n",
- " 0.022034 | \n",
- " 0.014639 | \n",
- " 0.017685 | \n",
- " 0.012083 | \n",
- " 467 | \n",
- " 542 | \n",
- " NHPPTDDTQR | \n",
- "
\n",
- " \n",
- " A/Indiana/08/2011 | \n",
- " 6.0 | \n",
- " 4.5 | \n",
- " [0.015833187603574352, 0.01579698562348106, 0.... | \n",
- " [0.016902504332314258, 0.01683599355230769, 0.... | \n",
- " HCDDFQNKEWDLFVERSTAYSNCYPYYVPDYATLRSLVASSGNLEF... | \n",
- " HCDDFRRGSVNDKLYIWSTKRSQQ | \n",
- " 0.017326 | \n",
- " 0.016789 | \n",
- " 0.025631 | \n",
- " 0.015772 | \n",
- " 443 | \n",
- " 541 | \n",
- " DKLYIWGVHH | \n",
- "
\n",
- " \n",
- " A/California/62/2018 | \n",
- " 5.8 | \n",
- " 5.7 | \n",
- " [0.25421003694129446, 0.17137241238504203, 0.1... | \n",
- " [0.11064301441040252, 0.08010185536798671, 0.0... | \n",
- " ESWSYIVETSNPENGTCYPGYFEDYEELREQLSSVSSFKKFEIFPK... | \n",
- " ESWSYGNSSFYVLWGVHHYSRRFT | \n",
- " 0.094064 | \n",
- " 0.196100 | \n",
- " 0.254210 | \n",
- " 0.153140 | \n",
- " 452 | \n",
- " 541 | \n",
- " VLWGVHHPSN | \n",
- "
\n",
- " \n",
- " A/Bangladesh/0994/2011 | \n",
- " 5.6 | \n",
- " 5.4 | \n",
- " [0.047962278609110426, 0.047376021553330504, 0... | \n",
- " [0.1509708016952567, 0.14755990149418968, 0.15... | \n",
- " GREWSYIVERPSAVNGTCYPGNVENLEELRTLFSSSSSYQRIQIFP... | \n",
- " GREWSYRNMRWHHPPTDFKPLIGP | \n",
- " 0.148334 | \n",
- " 0.047122 | \n",
- " 0.048792 | \n",
- " 0.044856 | \n",
- " 468 | \n",
- " 542 | \n",
- " HHPPTDTAQT | \n",
- "
\n",
- " \n",
- " A/Sichuan/06681/2021 | \n",
- " 5.3 | \n",
- " 6.3 | \n",
- " [0.3401659563640977, 0.4372884849313668, 0.335... | \n",
- " [0.14098323610429828, 0.16479919492131653, 0.1... | \n",
- " EWSYIVERANPANDLCYPGSLNDYEELKHLLSRINHFEKILIIPKG... | \n",
- " EWSYIAPSFFRLWGIHHLNQRLVP | \n",
- " 0.144336 | \n",
- " 0.340975 | \n",
- " 0.437288 | \n",
- " 0.293157 | \n",
- " 460 | \n",
- " 541 | \n",
- " LWGIHHSNNA | \n",
- "
\n",
- " \n",
- " A/Vietnam/1203/2004 | \n",
- " 5.2 | \n",
- " 6.6 | \n",
- " [0.12775494527491757, 0.11190370497308454, 0.1... | \n",
- " [0.07357578392227798, 0.06512340773617227, 0.0... | \n",
- " EWSYIVEKANPVNDLCYPGDFNDYEELKHLLSRINHFEKIQIIPKS... | \n",
- " EWSYIKSSFFRLWGIHHLNQRLVP | \n",
- " 0.070949 | \n",
- " 0.128744 | \n",
- " 0.157039 | \n",
- " 0.107543 | \n",
- " 465 | \n",
- " 541 | \n",
- " LWGIHHPNDA | \n",
- "
\n",
- " \n",
- " A/Yunnan/14564/2015 | \n",
- " 5.0 | \n",
- " 6.6 | \n",
- " [0.20080863109685176, 0.10301992847449411, 0.2... | \n",
- " [0.08744456695565636, 0.05634300538887098, 0.0... | \n",
- " EWSYIVERANPANDLCYPGNLNDYEELKHLLSRINHFEKTLIIPKS... | \n",
- " EWSYIPSFFRNWGIHHSNQRLEPK | \n",
- " 0.090433 | \n",
- " 0.206227 | \n",
- " 0.250267 | \n",
- " 0.103020 | \n",
- " 462 | \n",
- " 541 | \n",
- " WGIHHSNNAA | \n",
- "
\n",
- " \n",
- " A/Astrakhan/3212/2020 | \n",
- " 4.6 | \n",
- " 5.2 | \n",
- " [0.2452941610025089, 0.2335184366024988, 0.221... | \n",
- " [0.3660547134708487, 0.352999397804964, 0.3433... | \n",
- " EWSYIVERANPANDLCYPGSLNDYEELKHLLSRINHFEKILIIPKS... | \n",
- " EWSYIAPSFFRLWGIHHLNQRLVP | \n",
- " 0.349913 | \n",
- " 0.226728 | \n",
- " 0.245294 | \n",
- " 0.196373 | \n",
- " 460 | \n",
- " 541 | \n",
- " LWGIHHSNNA | \n",
- "
\n",
- " \n",
- " A/Netherlands/219/2003 | \n",
- " 4.6 | \n",
- " 5.8 | \n",
- " [0.16431983904493178, 0.16426481855673325, 0.1... | \n",
- " [0.2735882731677115, 0.27353672735391277, 0.27... | \n",
- " SADLIIERREGSDVCYPGKFVNEEALRQILRESGGIDKETMGFTYS... | \n",
- " SADLIAEMKWLIHHSGSSFVPSPG | \n",
- " 0.273539 | \n",
- " 0.164336 | \n",
- " 0.164575 | \n",
- " 0.163875 | \n",
- " 466 | \n",
- " 542 | \n",
- " IHHSGSTTEQ | \n",
- "
\n",
- " \n",
- " A/American wigeon/South Carolina/AH0195145/2021 | \n",
- " 4.4 | \n",
- " 5.1 | \n",
- " [0.22507345650411203, 0.253385372610634, 0.250... | \n",
- " [0.2618009640888491, 0.28041946959711944, 0.27... | \n",
- " EWSYIVERANPANDLCYPGSLNDYEELKHMLSRINHFEKILIIPKS... | \n",
- " EWSYIAPSFFRLWGIHHLNQRLAP | \n",
- " 0.266584 | \n",
- " 0.231073 | \n",
- " 0.254159 | \n",
- " 0.212808 | \n",
- " 460 | \n",
- " 541 | \n",
- " LWGIHHSNNA | \n",
- "
\n",
- " \n",
- " A/Jiangxi-Donghu/346/2013 | \n",
- " 4.3 | \n",
- " 6.0 | \n",
- " [0.03929273071556801, 0.3559593557688923, 0.15... | \n",
- " [0.027090727115239115, 0.1774459269887038, 0.0... | \n",
- " WDTLIERENAIAYCYPGATVNVEALRQKIMESGGINKISTGFTYGS... | \n",
- " WDTLIYAELKWGIHHPSNNFVPVV | \n",
- " 0.202198 | \n",
- " 0.209716 | \n",
- " 0.368374 | \n",
- " 0.039293 | \n",
- " 468 | \n",
- " 542 | \n",
- " GIHHPSSTQE | \n",
- "
\n",
- " \n",
- " A/gyrfalcon/Washington/41088/2014 | \n",
- " 4.2 | \n",
- " 4.6 | \n",
- " [0.24718594726896237, 0.2361702553946631, 0.22... | \n",
- " [0.36678073190475535, 0.35436513753260845, 0.3... | \n",
- " EWSYIVERANPANDLCYPGTLNDYEELKHLLSRINHFEKTLIIPRS... | \n",
- " EWSYIASSFFRLWGIHHLNQRLVP | \n",
- " 0.351117 | \n",
- " 0.228941 | \n",
- " 0.247186 | \n",
- " 0.198971 | \n",
- " 462 | \n",
- " 541 | \n",
- " LWGIHHSNNA | \n",
- "
\n",
- " \n",
- " A/Northern pintail/Washington/40964/2014 | \n",
- " 3.8 | \n",
- " 4.1 | \n",
- " [0.2410948922603147, 0.22971447028474637, 0.21... | \n",
- " [0.349366042786461, 0.34039602323151935, 0.331... | \n",
- " EWSYIVERANPANDLCYPGTLNDYEELKHLLSRINHFEKNLIIPRS... | \n",
- " EWSYIASSFFRLWGIHHLNQRLVP | \n",
- " 0.335484 | \n",
- " 0.223269 | \n",
- " 0.241095 | \n",
- " 0.195036 | \n",
- " 462 | \n",
- " 541 | \n",
- " LWGIHHSNNA | \n",
- "
\n",
- " \n",
- " A/canine/Illinois/12191/2015 | \n",
- " 3.7 | \n",
- " 3.7 | \n",
- " [0.01616230298118454, 0.016067588755834316, 0.... | \n",
- " [0.024453287740176615, 0.024374121053616235, 0... | \n",
- " HCDVFQNETWDLFVERSNAFSNCYPYDVPDYASLRSIVASSGTLEF... | \n",
- " HCDVFKRGPANDKLYIWSTRRSQQ | \n",
- " 0.025045 | \n",
- " 0.017088 | \n",
- " 0.025981 | \n",
- " 0.016030 | \n",
- " 447 | \n",
- " 541 | \n",
- " DKLYIWGVHH | \n",
- "
\n",
- " \n",
- " A/American green-winged teal/Washington/1957050/2014 | \n",
- " 3.6 | \n",
- " 4.1 | \n",
- " [0.22532859992890514, 0.2523992705219045, 0.24... | \n",
- " [0.2592089036823605, 0.2766319981079351, 0.273... | \n",
- " EWSYIVERANPANDLCYPGTLNDYEELKHLLSRINHFEKTLIIPRS... | \n",
- " EWSYIASSFFRLWGIHHLNQRLVP | \n",
- " 0.263359 | \n",
- " 0.230741 | \n",
- " 0.253098 | \n",
- " 0.213461 | \n",
- " 462 | \n",
- " 541 | \n",
- " LWGIHHSNNA | \n",
- "
\n",
- " \n",
- " A/turkey/Indiana/1573-2/2016 | \n",
- " 3.4 | \n",
- " 3.9 | \n",
- " [0.042531258378212616, 0.046850178126532895, 0... | \n",
- " [0.13246011857462825, 0.13903537495472926, 0.1... | \n",
- " DADLIIERREGTDVCYPGKFTNKESLRQILRGSGGIDKESMGFTYS... | \n",
- " DADLIAEMKWLVHHSGSSFTPSPG | \n",
- " 0.135001 | \n",
- " 0.044194 | \n",
- " 0.046850 | \n",
- " 0.041007 | \n",
- " 468 | \n",
- " 542 | \n",
- " VHHSGSVTEQ | \n",
- "
\n",
- " \n",
- " A/chicken/Tennessee/17-007431-3/2017 | \n",
- " 3.1 | \n",
- " 3.5 | \n",
- " [0.032175814200484966, 0.03682965073244792, 0.... | \n",
- " [0.12816247069024164, 0.1371356157354049, 0.12... | \n",
- " DADLIIERREGTDVCYPGKFTNEESLRQILRGSGGIDKESMGFTYS... | \n",
- " DADLIAEMKWLVHHSGSSFTPSPG | \n",
- " 0.131420 | \n",
- " 0.033937 | \n",
- " 0.036830 | \n",
- " 0.030574 | \n",
- " 466 | \n",
- " 542 | \n",
- " VHHSGSADEQ | \n",
- "
\n",
- " \n",
- " A/chicken/Tennessee/17-007147-2/2017 | \n",
- " 2.8 | \n",
- " 3.5 | \n",
- " [0.082518541655176, 0.08595812903880762, 0.083... | \n",
- " [0.20524466180722442, 0.20950526315825033, 0.2... | \n",
- " DADLIIERREGTDVCYPGKFTNEESLRQILRGSGGIDKESMGFTYS... | \n",
- " DADLIAEMKWLVHHSGSSFTPSPG | \n",
- " 0.206611 | \n",
- " 0.083817 | \n",
- " 0.085958 | \n",
- " 0.081610 | \n",
- " 468 | \n",
- " 542 | \n",
- " VHHSGSAAEQ | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " emergence_risk \\\n",
- "id \n",
- "A/swine/Shandong/1207/2016 7.5 \n",
- "A/Ohio/13/2017 6.6 \n",
- "A/Hong Kong/125/2017 6.5 \n",
- "A/Shanghai/02/2013 6.4 \n",
- "A/Anhui-Lujiang/39/2018 6.2 \n",
- "A/Indiana/08/2011 6.0 \n",
- "A/California/62/2018 5.8 \n",
- "A/Bangladesh/0994/2011 5.6 \n",
- "A/Sichuan/06681/2021 5.3 \n",
- "A/Vietnam/1203/2004 5.2 \n",
- "A/Yunnan/14564/2015 5.0 \n",
- "A/Astrakhan/3212/2020 4.6 \n",
- "A/Netherlands/219/2003 4.6 \n",
- "A/American wigeon/South Carolina/AH0195145/2021 4.4 \n",
- "A/Jiangxi-Donghu/346/2013 4.3 \n",
- "A/gyrfalcon/Washington/41088/2014 4.2 \n",
- "A/Northern pintail/Washington/40964/2014 3.8 \n",
- "A/canine/Illinois/12191/2015 3.7 \n",
- "A/American green-winged teal/Washington/1957050... 3.6 \n",
- "A/turkey/Indiana/1573-2/2016 3.4 \n",
- "A/chicken/Tennessee/17-007431-3/2017 3.1 \n",
- "A/chicken/Tennessee/17-007147-2/2017 2.8 \n",
- "\n",
- " impact_risk \\\n",
- "id \n",
- "A/swine/Shandong/1207/2016 6.9 \n",
- "A/Ohio/13/2017 5.8 \n",
- "A/Hong Kong/125/2017 7.5 \n",
- "A/Shanghai/02/2013 7.2 \n",
- "A/Anhui-Lujiang/39/2018 5.9 \n",
- "A/Indiana/08/2011 4.5 \n",
- "A/California/62/2018 5.7 \n",
- "A/Bangladesh/0994/2011 5.4 \n",
- "A/Sichuan/06681/2021 6.3 \n",
- "A/Vietnam/1203/2004 6.6 \n",
- "A/Yunnan/14564/2015 6.6 \n",
- "A/Astrakhan/3212/2020 5.2 \n",
- "A/Netherlands/219/2003 5.8 \n",
- "A/American wigeon/South Carolina/AH0195145/2021 5.1 \n",
- "A/Jiangxi-Donghu/346/2013 6.0 \n",
- "A/gyrfalcon/Washington/41088/2014 4.6 \n",
- "A/Northern pintail/Washington/40964/2014 4.1 \n",
- "A/canine/Illinois/12191/2015 3.7 \n",
- "A/American green-winged teal/Washington/1957050... 4.1 \n",
- "A/turkey/Indiana/1573-2/2016 3.9 \n",
- "A/chicken/Tennessee/17-007431-3/2017 3.5 \n",
- "A/chicken/Tennessee/17-007147-2/2017 3.5 \n",
- "\n",
- " ha_risk \\\n",
- "id \n",
- "A/swine/Shandong/1207/2016 [0.059268942695459764, 0.059207549599012387, 0... \n",
- "A/Ohio/13/2017 [0.007443436845452373, 0.007528108280118501, 0... \n",
- "A/Hong Kong/125/2017 [0.008053012400112526, 0.011702039255706398, 0... \n",
- "A/Shanghai/02/2013 [0.0029756019607934496, 0.003893470493957003, ... \n",
- "A/Anhui-Lujiang/39/2018 [0.013913606506215747, 0.014682700295856159, 0... \n",
- "A/Indiana/08/2011 [0.015833187603574352, 0.01579698562348106, 0.... \n",
- "A/California/62/2018 [0.25421003694129446, 0.17137241238504203, 0.1... \n",
- "A/Bangladesh/0994/2011 [0.047962278609110426, 0.047376021553330504, 0... \n",
- "A/Sichuan/06681/2021 [0.3401659563640977, 0.4372884849313668, 0.335... \n",
- "A/Vietnam/1203/2004 [0.12775494527491757, 0.11190370497308454, 0.1... \n",
- "A/Yunnan/14564/2015 [0.20080863109685176, 0.10301992847449411, 0.2... \n",
- "A/Astrakhan/3212/2020 [0.2452941610025089, 0.2335184366024988, 0.221... \n",
- "A/Netherlands/219/2003 [0.16431983904493178, 0.16426481855673325, 0.1... \n",
- "A/American wigeon/South Carolina/AH0195145/2021 [0.22507345650411203, 0.253385372610634, 0.250... \n",
- "A/Jiangxi-Donghu/346/2013 [0.03929273071556801, 0.3559593557688923, 0.15... \n",
- "A/gyrfalcon/Washington/41088/2014 [0.24718594726896237, 0.2361702553946631, 0.22... \n",
- "A/Northern pintail/Washington/40964/2014 [0.2410948922603147, 0.22971447028474637, 0.21... \n",
- "A/canine/Illinois/12191/2015 [0.01616230298118454, 0.016067588755834316, 0.... \n",
- "A/American green-winged teal/Washington/1957050... [0.22532859992890514, 0.2523992705219045, 0.24... \n",
- "A/turkey/Indiana/1573-2/2016 [0.042531258378212616, 0.046850178126532895, 0... \n",
- "A/chicken/Tennessee/17-007431-3/2017 [0.032175814200484966, 0.03682965073244792, 0.... \n",
- "A/chicken/Tennessee/17-007147-2/2017 [0.082518541655176, 0.08595812903880762, 0.083... \n",
- "\n",
- " geometric_mean_risk \\\n",
- "id \n",
- "A/swine/Shandong/1207/2016 [0.04961693798040306, 0.04939691038300986, 0.0... \n",
- "A/Ohio/13/2017 [0.02257302209884124, 0.0227066090672604, 0.02... \n",
- "A/Hong Kong/125/2017 [0.0037028892207661, 0.004325280096255358, 0.0... \n",
- "A/Shanghai/02/2013 [0.00210888252534967, 0.002386143249933443, 0.... \n",
- "A/Anhui-Lujiang/39/2018 [0.018971508708604274, 0.025275351068975476, 0... \n",
- "A/Indiana/08/2011 [0.016902504332314258, 0.01683599355230769, 0.... \n",
- "A/California/62/2018 [0.11064301441040252, 0.08010185536798671, 0.0... \n",
- "A/Bangladesh/0994/2011 [0.1509708016952567, 0.14755990149418968, 0.15... \n",
- "A/Sichuan/06681/2021 [0.14098323610429828, 0.16479919492131653, 0.1... \n",
- "A/Vietnam/1203/2004 [0.07357578392227798, 0.06512340773617227, 0.0... \n",
- "A/Yunnan/14564/2015 [0.08744456695565636, 0.05634300538887098, 0.0... \n",
- "A/Astrakhan/3212/2020 [0.3660547134708487, 0.352999397804964, 0.3433... \n",
- "A/Netherlands/219/2003 [0.2735882731677115, 0.27353672735391277, 0.27... \n",
- "A/American wigeon/South Carolina/AH0195145/2021 [0.2618009640888491, 0.28041946959711944, 0.27... \n",
- "A/Jiangxi-Donghu/346/2013 [0.027090727115239115, 0.1774459269887038, 0.0... \n",
- "A/gyrfalcon/Washington/41088/2014 [0.36678073190475535, 0.35436513753260845, 0.3... \n",
- "A/Northern pintail/Washington/40964/2014 [0.349366042786461, 0.34039602323151935, 0.331... \n",
- "A/canine/Illinois/12191/2015 [0.024453287740176615, 0.024374121053616235, 0... \n",
- "A/American green-winged teal/Washington/1957050... [0.2592089036823605, 0.2766319981079351, 0.273... \n",
- "A/turkey/Indiana/1573-2/2016 [0.13246011857462825, 0.13903537495472926, 0.1... \n",
- "A/chicken/Tennessee/17-007431-3/2017 [0.12816247069024164, 0.1371356157354049, 0.12... \n",
- "A/chicken/Tennessee/17-007147-2/2017 [0.20524466180722442, 0.20950526315825033, 0.2... \n",
- "\n",
- " frag_rbd \\\n",
- "id \n",
- "A/swine/Shandong/1207/2016 NSWSYIIETSNSKNGACYPGEFADYEELKEQLSTVSSFERFEIFPK... \n",
- "A/Ohio/13/2017 QCDGFQNNKWDLFVERSKAHSNCYPYDVPDYASLRSLVASSGTLEF... \n",
- "A/Hong Kong/125/2017 SADLIIERREGSDVCYPGKFVNEEALRQILRESGGIDKETMGFTYN... \n",
- "A/Shanghai/02/2013 SADLIIERREGSDVCYPGKFVNEEALRQILRESGGIDKEAMGFTYS... \n",
- "A/Anhui-Lujiang/39/2018 GREWSYIVERPSAVNGLCYPGNVENLEELRSLFSSARSYQRIQIFP... \n",
- "A/Indiana/08/2011 HCDDFQNKEWDLFVERSTAYSNCYPYYVPDYATLRSLVASSGNLEF... \n",
- "A/California/62/2018 ESWSYIVETSNPENGTCYPGYFEDYEELREQLSSVSSFKKFEIFPK... \n",
- "A/Bangladesh/0994/2011 GREWSYIVERPSAVNGTCYPGNVENLEELRTLFSSSSSYQRIQIFP... \n",
- "A/Sichuan/06681/2021 EWSYIVERANPANDLCYPGSLNDYEELKHLLSRINHFEKILIIPKG... \n",
- "A/Vietnam/1203/2004 EWSYIVEKANPVNDLCYPGDFNDYEELKHLLSRINHFEKIQIIPKS... \n",
- "A/Yunnan/14564/2015 EWSYIVERANPANDLCYPGNLNDYEELKHLLSRINHFEKTLIIPKS... \n",
- "A/Astrakhan/3212/2020 EWSYIVERANPANDLCYPGSLNDYEELKHLLSRINHFEKILIIPKS... \n",
- "A/Netherlands/219/2003 SADLIIERREGSDVCYPGKFVNEEALRQILRESGGIDKETMGFTYS... \n",
- "A/American wigeon/South Carolina/AH0195145/2021 EWSYIVERANPANDLCYPGSLNDYEELKHMLSRINHFEKILIIPKS... \n",
- "A/Jiangxi-Donghu/346/2013 WDTLIERENAIAYCYPGATVNVEALRQKIMESGGINKISTGFTYGS... \n",
- "A/gyrfalcon/Washington/41088/2014 EWSYIVERANPANDLCYPGTLNDYEELKHLLSRINHFEKTLIIPRS... \n",
- "A/Northern pintail/Washington/40964/2014 EWSYIVERANPANDLCYPGTLNDYEELKHLLSRINHFEKNLIIPRS... \n",
- "A/canine/Illinois/12191/2015 HCDVFQNETWDLFVERSNAFSNCYPYDVPDYASLRSIVASSGTLEF... \n",
- "A/American green-winged teal/Washington/1957050... EWSYIVERANPANDLCYPGTLNDYEELKHLLSRINHFEKTLIIPRS... \n",
- "A/turkey/Indiana/1573-2/2016 DADLIIERREGTDVCYPGKFTNKESLRQILRGSGGIDKESMGFTYS... \n",
- "A/chicken/Tennessee/17-007431-3/2017 DADLIIERREGTDVCYPGKFTNEESLRQILRGSGGIDKESMGFTYS... \n",
- "A/chicken/Tennessee/17-007147-2/2017 DADLIIERREGTDVCYPGKFTNEESLRQILRGSGGIDKESMGFTYS... \n",
- "\n",
- " frag_sel \\\n",
- "id \n",
- "A/swine/Shandong/1207/2016 NSWSYSGANSFLVIWGVSKYYKRF \n",
- "A/Ohio/13/2017 QCDGFKRRSSNDKLYIWSTKRNQQ \n",
- "A/Hong Kong/125/2017 SADLIAEMKWLIHHSVSSFVPSPG \n",
- "A/Shanghai/02/2013 SADLIAEMKWLIHHSVSSFVPSPG \n",
- "A/Anhui-Lujiang/39/2018 GREWSYRSMRWNHPPTDFKPLIGP \n",
- "A/Indiana/08/2011 HCDDFRRGSVNDKLYIWSTKRSQQ \n",
- "A/California/62/2018 ESWSYGNSSFYVLWGVHHYSRRFT \n",
- "A/Bangladesh/0994/2011 GREWSYRNMRWHHPPTDFKPLIGP \n",
- "A/Sichuan/06681/2021 EWSYIAPSFFRLWGIHHLNQRLVP \n",
- "A/Vietnam/1203/2004 EWSYIKSSFFRLWGIHHLNQRLVP \n",
- "A/Yunnan/14564/2015 EWSYIPSFFRNWGIHHSNQRLEPK \n",
- "A/Astrakhan/3212/2020 EWSYIAPSFFRLWGIHHLNQRLVP \n",
- "A/Netherlands/219/2003 SADLIAEMKWLIHHSGSSFVPSPG \n",
- "A/American wigeon/South Carolina/AH0195145/2021 EWSYIAPSFFRLWGIHHLNQRLAP \n",
- "A/Jiangxi-Donghu/346/2013 WDTLIYAELKWGIHHPSNNFVPVV \n",
- "A/gyrfalcon/Washington/41088/2014 EWSYIASSFFRLWGIHHLNQRLVP \n",
- "A/Northern pintail/Washington/40964/2014 EWSYIASSFFRLWGIHHLNQRLVP \n",
- "A/canine/Illinois/12191/2015 HCDVFKRGPANDKLYIWSTRRSQQ \n",
- "A/American green-winged teal/Washington/1957050... EWSYIASSFFRLWGIHHLNQRLVP \n",
- "A/turkey/Indiana/1573-2/2016 DADLIAEMKWLVHHSGSSFTPSPG \n",
- "A/chicken/Tennessee/17-007431-3/2017 DADLIAEMKWLVHHSGSSFTPSPG \n",
- "A/chicken/Tennessee/17-007147-2/2017 DADLIAEMKWLVHHSGSSFTPSPG \n",
- "\n",
- " mean_geom_risk \\\n",
- "id \n",
- "A/swine/Shandong/1207/2016 0.049531 \n",
- "A/Ohio/13/2017 0.023780 \n",
- "A/Hong Kong/125/2017 0.005481 \n",
- "A/Shanghai/02/2013 0.002846 \n",
- "A/Anhui-Lujiang/39/2018 0.022034 \n",
- "A/Indiana/08/2011 0.017326 \n",
- "A/California/62/2018 0.094064 \n",
- "A/Bangladesh/0994/2011 0.148334 \n",
- "A/Sichuan/06681/2021 0.144336 \n",
- "A/Vietnam/1203/2004 0.070949 \n",
- "A/Yunnan/14564/2015 0.090433 \n",
- "A/Astrakhan/3212/2020 0.349913 \n",
- "A/Netherlands/219/2003 0.273539 \n",
- "A/American wigeon/South Carolina/AH0195145/2021 0.266584 \n",
- "A/Jiangxi-Donghu/346/2013 0.202198 \n",
- "A/gyrfalcon/Washington/41088/2014 0.351117 \n",
- "A/Northern pintail/Washington/40964/2014 0.335484 \n",
- "A/canine/Illinois/12191/2015 0.025045 \n",
- "A/American green-winged teal/Washington/1957050... 0.263359 \n",
- "A/turkey/Indiana/1573-2/2016 0.135001 \n",
- "A/chicken/Tennessee/17-007431-3/2017 0.131420 \n",
- "A/chicken/Tennessee/17-007147-2/2017 0.206611 \n",
- "\n",
- " mean_ha_risk max_ha_risk \\\n",
- "id \n",
- "A/swine/Shandong/1207/2016 0.059325 0.059809 \n",
- "A/Ohio/13/2017 0.008455 0.017483 \n",
- "A/Hong Kong/125/2017 0.009787 0.012453 \n",
- "A/Shanghai/02/2013 0.003131 0.003893 \n",
- "A/Anhui-Lujiang/39/2018 0.014639 0.017685 \n",
- "A/Indiana/08/2011 0.016789 0.025631 \n",
- "A/California/62/2018 0.196100 0.254210 \n",
- "A/Bangladesh/0994/2011 0.047122 0.048792 \n",
- "A/Sichuan/06681/2021 0.340975 0.437288 \n",
- "A/Vietnam/1203/2004 0.128744 0.157039 \n",
- "A/Yunnan/14564/2015 0.206227 0.250267 \n",
- "A/Astrakhan/3212/2020 0.226728 0.245294 \n",
- "A/Netherlands/219/2003 0.164336 0.164575 \n",
- "A/American wigeon/South Carolina/AH0195145/2021 0.231073 0.254159 \n",
- "A/Jiangxi-Donghu/346/2013 0.209716 0.368374 \n",
- "A/gyrfalcon/Washington/41088/2014 0.228941 0.247186 \n",
- "A/Northern pintail/Washington/40964/2014 0.223269 0.241095 \n",
- "A/canine/Illinois/12191/2015 0.017088 0.025981 \n",
- "A/American green-winged teal/Washington/1957050... 0.230741 0.253098 \n",
- "A/turkey/Indiana/1573-2/2016 0.044194 0.046850 \n",
- "A/chicken/Tennessee/17-007431-3/2017 0.033937 0.036830 \n",
- "A/chicken/Tennessee/17-007147-2/2017 0.083817 0.085958 \n",
- "\n",
- " min_ha_risk hr_rbd \\\n",
- "id \n",
- "A/swine/Shandong/1207/2016 0.059069 450 \n",
- "A/Ohio/13/2017 0.007363 435 \n",
- "A/Hong Kong/125/2017 0.005927 466 \n",
- "A/Shanghai/02/2013 0.002597 468 \n",
- "A/Anhui-Lujiang/39/2018 0.012083 467 \n",
- "A/Indiana/08/2011 0.015772 443 \n",
- "A/California/62/2018 0.153140 452 \n",
- "A/Bangladesh/0994/2011 0.044856 468 \n",
- "A/Sichuan/06681/2021 0.293157 460 \n",
- "A/Vietnam/1203/2004 0.107543 465 \n",
- "A/Yunnan/14564/2015 0.103020 462 \n",
- "A/Astrakhan/3212/2020 0.196373 460 \n",
- "A/Netherlands/219/2003 0.163875 466 \n",
- "A/American wigeon/South Carolina/AH0195145/2021 0.212808 460 \n",
- "A/Jiangxi-Donghu/346/2013 0.039293 468 \n",
- "A/gyrfalcon/Washington/41088/2014 0.198971 462 \n",
- "A/Northern pintail/Washington/40964/2014 0.195036 462 \n",
- "A/canine/Illinois/12191/2015 0.016030 447 \n",
- "A/American green-winged teal/Washington/1957050... 0.213461 462 \n",
- "A/turkey/Indiana/1573-2/2016 0.041007 468 \n",
- "A/chicken/Tennessee/17-007431-3/2017 0.030574 466 \n",
- "A/chicken/Tennessee/17-007147-2/2017 0.081610 468 \n",
- "\n",
- " hr_sel frag_pocket \n",
- "id \n",
- "A/swine/Shandong/1207/2016 541 LVIWGVHHPP \n",
- "A/Ohio/13/2017 541 DKLYIWGVHH \n",
- "A/Hong Kong/125/2017 542 IHHSVSTAEQ \n",
- "A/Shanghai/02/2013 542 IHHSVSTAEQ \n",
- "A/Anhui-Lujiang/39/2018 542 NHPPTDDTQR \n",
- "A/Indiana/08/2011 541 DKLYIWGVHH \n",
- "A/California/62/2018 541 VLWGVHHPSN \n",
- "A/Bangladesh/0994/2011 542 HHPPTDTAQT \n",
- "A/Sichuan/06681/2021 541 LWGIHHSNNA \n",
- "A/Vietnam/1203/2004 541 LWGIHHPNDA \n",
- "A/Yunnan/14564/2015 541 WGIHHSNNAA \n",
- "A/Astrakhan/3212/2020 541 LWGIHHSNNA \n",
- "A/Netherlands/219/2003 542 IHHSGSTTEQ \n",
- "A/American wigeon/South Carolina/AH0195145/2021 541 LWGIHHSNNA \n",
- "A/Jiangxi-Donghu/346/2013 542 GIHHPSSTQE \n",
- "A/gyrfalcon/Washington/41088/2014 541 LWGIHHSNNA \n",
- "A/Northern pintail/Washington/40964/2014 541 LWGIHHSNNA \n",
- "A/canine/Illinois/12191/2015 541 DKLYIWGVHH \n",
- "A/American green-winged teal/Washington/1957050... 541 LWGIHHSNNA \n",
- "A/turkey/Indiana/1573-2/2016 542 VHHSGSVTEQ \n",
- "A/chicken/Tennessee/17-007431-3/2017 542 VHHSGSADEQ \n",
- "A/chicken/Tennessee/17-007147-2/2017 542 VHHSGSAAEQ "
- ]
- },
- "execution_count": 112,
- "metadata": {},
- "output_type": "execute_result"
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\\begin{tabular}{L{1in}|L{1in}|L{1in}|L{1in}|L{1in}}\\hline\r\n",
+ " edit distance & HA risk (2020-2022 sequences) & geometric risk (2020-2022 sequences) & HA risk (IRAT sequences) & geometric risk (IRAT sequences) \\\\\\hline\r\n",
+ "RBD&$0.62\\pm0.0$&$0.68\\pm0.0$&$0.17\\pm0.060$&$0.33\\pm0.07$\\\\\\hline\r\n",
+ " On seleted residues &$-0.24\\pm0.01$&$-0.13\\pm0.01$&$-0.46\\pm0.04$&$-0.15\\pm0.05$\\\\\\hline\r\n",
+ "pocket&$-0.03\\pm0.0$&$-0.02\\pm0.0$&$-0.17\\pm0.02$&$-0.02\\pm0.02$\\\\\\hline\r\n",
+ "\\hline\\end{tabular}\r\n"
+ ]
}
],
"source": [
- "df_[df_.is_irat==1].drop('is_irat',axis=1)"
+ "! cat tmp.tex"
]
},
{
"cell_type": "code",
- "execution_count": 113,
- "id": "c67f743a",
+ "execution_count": 221,
"metadata": {},
"outputs": [
{
"data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " emergence_risk | \n",
- " impact_risk | \n",
- " mean_geom_risk | \n",
- " mean_ha_risk | \n",
- " max_ha_risk | \n",
- " min_ha_risk | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " hr_rbd | \n",
- " -0.781912 | \n",
- " -0.791562 | \n",
- " 0.680207 | \n",
- " 0.621345 | \n",
- " 0.625980 | \n",
- " 0.616085 | \n",
- "
\n",
- " \n",
- " hr_sel | \n",
- " 0.048072 | \n",
- " 0.028948 | \n",
- " -0.129186 | \n",
- " -0.244412 | \n",
- " -0.240427 | \n",
- " -0.252039 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
"text/plain": [
- " emergence_risk impact_risk mean_geom_risk mean_ha_risk \\\n",
- "hr_rbd -0.781912 -0.791562 0.680207 0.621345 \n",
- "hr_sel 0.048072 0.028948 -0.129186 -0.244412 \n",
- "\n",
- " max_ha_risk min_ha_risk \n",
- "hr_rbd 0.625980 0.616085 \n",
- "hr_sel -0.240427 -0.252039 "
+ "'210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239'"
]
},
- "execution_count": 113,
+ "execution_count": 221,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "df_.drop('is_irat',axis=1).corr().loc[['hr_rbd','hr_sel'],:].drop(['hr_rbd','hr_sel'],axis=1)"
+ "#R=[130,131,132,133,134,135,150,151,152,153,154,155,156,157,158,159,160,190,191,192,193,194,195,220,221,222,223,224,225,226]\n",
+ "' '.join(np.array(range(210,240)).astype(str))"
]
},
{
- "cell_type": "code",
- "execution_count": null,
- "id": "81387c94",
+ "cell_type": "raw",
"metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "a805cdf6",
- "metadata": {},
- "outputs": [],
- "source": []
+ "source": [
+ "selected residues\n",
+ "@article{wu2020influenza,\n",
+ " title={Influenza hemagglutinin structures and antibody recognition},\n",
+ " author={Wu, Nicholas C and Wilson, Ian A},\n",
+ " journal={Cold Spring Harbor perspectives in medicine},\n",
+ " volume={10},\n",
+ " number={8},\n",
+ " pages={a038778},\n",
+ " year={2020},\n",
+ " publisher={Cold Spring Harbor Laboratory Press}\n",
+ "}"
+ ]
}
],
"metadata": {
@@ -1584,7 +596,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.7.5"
+ "version": "3.10.8"
}
},
"nbformat": 4,
diff --git a/extras/baseline/tmp.tex b/extras/baseline/tmp.tex
new file mode 100644
index 00000000..40c8e52b
--- /dev/null
+++ b/extras/baseline/tmp.tex
@@ -0,0 +1,6 @@
+\begin{tabular}{L{1in}|L{1in}|L{1in}|L{1in}|L{1in}}\hline
+ edit distance & HA risk (2020-2022 sequences) & geometric risk (2020-2022 sequences) & HA risk (IRAT sequences) & geometric risk (IRAT sequences) \\\hline
+RBD&$0.62\pm0.0$&$0.68\pm0.0$&$0.17\pm0.060$&$0.33\pm0.07$\\\hline
+ On seleted residues &$-0.24\pm0.01$&$-0.13\pm0.01$&$-0.46\pm0.04$&$-0.15\pm0.05$\\\hline
+pocket&$-0.03\pm0.0$&$-0.02\pm0.0$&$-0.17\pm0.02$&$-0.02\pm0.02$\\\hline
+\hline\end{tabular}
diff --git a/extras/ntb/IRAT_RBD_feature_distance.ipynb b/extras/ntb/IRAT_RBD_feature_distance.ipynb
index ada3047e..66268756 100644
--- a/extras/ntb/IRAT_RBD_feature_distance.ipynb
+++ b/extras/ntb/IRAT_RBD_feature_distance.ipynb
@@ -309,7 +309,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.7.5"
+ "version": "3.10.8"
}
},
"nbformat": 4,
diff --git a/extras/ntb/RBD_shap_figures.ipynb b/extras/ntb/RBD_shap_figures.ipynb
index f3c2c30e..49a9cfb8 100644
--- a/extras/ntb/RBD_shap_figures.ipynb
+++ b/extras/ntb/RBD_shap_figures.ipynb
@@ -882,7 +882,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.7.5"
+ "version": "3.10.8"
}
},
"nbformat": 4,
diff --git a/extras/ntb/shap_analysis_features_driving_theta_importance.ipynb b/extras/ntb/shap_analysis_features_driving_theta_importance.ipynb
index 45c26320..39645c5b 100644
--- a/extras/ntb/shap_analysis_features_driving_theta_importance.ipynb
+++ b/extras/ntb/shap_analysis_features_driving_theta_importance.ipynb
@@ -274,7 +274,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.10.6"
+ "version": "3.10.8"
}
},
"nbformat": 4,
diff --git a/extras/ntb/shap_analysis_features_low_risk_vs_high_risk.ipynb b/extras/ntb/shap_analysis_features_low_risk_vs_high_risk.ipynb
index 27786074..905a58ca 100644
--- a/extras/ntb/shap_analysis_features_low_risk_vs_high_risk.ipynb
+++ b/extras/ntb/shap_analysis_features_low_risk_vs_high_risk.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
@@ -247,12 +247,22 @@
],
"source": [
"ax=shp2.sort_index().ewm(alpha=.95).mean().plot(logy=False)\n",
- "shp1.sort_index().ewm(alpha=.95).mean().plot(logy=False,ax=ax)"
+ "shp1.sort_index().ewm(alpha=.95).mean().plot(logy=False,ax=ax)\n"
]
},
{
"cell_type": "code",
- "execution_count": 38,
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "shp1=pd.read_csv('lowhighrisk_H1N1.csv',index_col=0)\n",
+ "shp2=pd.read_csv('lowhighrisk_H3N2.csv',index_col=0)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
"metadata": {},
"outputs": [
{
@@ -276,135 +286,123 @@
" \n",
" \n",
" | \n",
- " shp_h3n2 | \n",
+ " shp_h1n1 | \n",
"
\n",
" \n",
- " H3N2_features | \n",
+ " H1N1_features | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
- " 65 | \n",
- " 0.023221 | \n",
- "
\n",
- " \n",
- " 155 | \n",
- " 0.004798 | \n",
+ " 145 | \n",
+ " 0.004103 | \n",
"
\n",
" \n",
- " 234 | \n",
- " 0.004545 | \n",
+ " 292 | \n",
+ " 0.004045 | \n",
"
\n",
" \n",
- " 484 | \n",
- " 0.004392 | \n",
+ " 123 | \n",
+ " 0.003762 | \n",
"
\n",
" \n",
- " 216 | \n",
- " 0.004280 | \n",
+ " 227 | \n",
+ " 0.003003 | \n",
"
\n",
" \n",
- " ... | \n",
- " ... | \n",
+ " 275 | \n",
+ " 0.002602 | \n",
"
\n",
" \n",
- " 23 | \n",
- " 0.000000 | \n",
+ " 70 | \n",
+ " 0.002059 | \n",
"
\n",
" \n",
- " 20 | \n",
- " 0.000000 | \n",
+ " 408 | \n",
+ " 0.002023 | \n",
"
\n",
" \n",
- " 16 | \n",
- " 0.000000 | \n",
+ " 10 | \n",
+ " 0.001941 | \n",
"
\n",
" \n",
- " 15 | \n",
- " 0.000000 | \n",
+ " 278 | \n",
+ " 0.001920 | \n",
"
\n",
" \n",
- " 0 | \n",
- " 0.000000 | \n",
+ " 276 | \n",
+ " 0.001676 | \n",
"
\n",
" \n",
"\n",
- "550 rows × 1 columns
\n",
""
],
"text/plain": [
- " shp_h3n2\n",
- "H3N2_features \n",
- "65 0.023221\n",
- "155 0.004798\n",
- "234 0.004545\n",
- "484 0.004392\n",
- "216 0.004280\n",
- "... ...\n",
- "23 0.000000\n",
- "20 0.000000\n",
- "16 0.000000\n",
- "15 0.000000\n",
- "0 0.000000\n",
- "\n",
- "[550 rows x 1 columns]"
+ " shp_h1n1\n",
+ "H1N1_features \n",
+ "145 0.004103\n",
+ "292 0.004045\n",
+ "123 0.003762\n",
+ "227 0.003003\n",
+ "275 0.002602\n",
+ "70 0.002059\n",
+ "408 0.002023\n",
+ "10 0.001941\n",
+ "278 0.001920\n",
+ "276 0.001676"
]
},
- "execution_count": 38,
+ "execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "shp2"
+ "shp1.head(10)"
]
},
{
"cell_type": "code",
- "execution_count": 59,
+ "execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "'MKTIIALSYIFCLAFSQDLSGSNNNNTATLCLGHHAVPNGTLVKTITDDQIEVTNATELVQSSSTGKICNNPHRILDGRDCTLIDALLGDPHCDVFQDVTWDLFVERSNALSNCYPYDVPDYASLRSLVASSGTLEFITEGFTWTGVTQNGGSGACKRGPANGFFSRLNWLTKSGSAYPVLNVTMPNNDNFDKLYIWGVHHPSTNQEQTNLYVQASGRVTVSTRRSQQTIIPNIGSRPWVRGQSGRISIYWTVVKPGDVLVINSNGNLIAPRGYFKMRAGKSSIMRSDAPIDTCISECITPNGSIPNDKPFQNVNKITYGACPKYVKQNTLKLATGMRNVPEKQARGLFGAIAGFIENGWEGMIDGWYGFRHQNSEGTGQAADLKSTQAAIDQINGKLNRVIEKTNEKFHQIEKEFSEVEGRIQDLEKYVEDTKIDLWSYNAELLVALENQHTIDLTDSEMNKLFEKTRRQLRENAEDMGNGCFKIYHKCDNACIDSIRNGTYDHDIYRDEALNNRFQIKGVELKSGYKDWILWISFAISCFLLCVVLLG'"
+ ""
]
},
- "execution_count": 59,
+ "execution_count": 34,
"metadata": {},
"output_type": "execute_result"
- }
- ],
- "source": [
- "df_=df[df.subtype=='H3N2'][['ha_accession','ha','emergence_risk']].set_index('ha_accession').sort_values('emergence_risk')\n",
- "lf=df_[df_.emergence_risk<6]\n",
- "lf.head(1).ha.values[0]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 57,
- "metadata": {},
- "outputs": [
+ },
{
"data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEHCAYAAAC+1b08AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABSRElEQVR4nO2deZwcRfn/3zUzu7O72c19ZxOSAIEEcgAhgByCIrfcIIgKyCH+FEVExK/yBVRAEQSUW+RQvoAgKCAhQJD7yn1fhCQkm3Nz7H3MVb8/qrunu6dndnZ3dueq9+u1r53p6eOp7upPPf3UU9VCSolGo9Fo8h9ftg3QaDQaTWbQgq7RaDQFghZ0jUajKRC0oGs0Gk2BoAVdo9FoCoRAtg48ePBgOXbs2GwdXqPRaPKS+fPn75RSDvH6LWuCPnbsWObNm5etw2s0Gk1eIoT4ItlvOuSi0Wg0BYIWdI1GoykQtKBrNBpNgZC1GLpGoyk8wuEwNTU1tLW1ZduUvKesrIzq6mpKSkrS3kYLukajyRg1NTVUVVUxduxYhBDZNidvkVKya9cuampqGDduXNrbdRhyEUI8JoTYIYRYluR3IYT4kxBirRBiiRDi4E7YrdFoCoi2tjYGDRqkxbybCCEYNGhQp5900omhPwGclOL3k4F9jb8rgQc7ZYFGoykotJhnhq6cxw4FXUr5HrA7xSpnAH+Tik+A/kKIEZ22JE+JxiRvr95BXk1DvHk+NNVm2wqNRpNhMpHlMgrYZPteYyxLQAhxpRBinhBiXm1tYQjKI++t49LH5zJ75Y5sm5I+f/kKPHxMtq3QaDQZJhOC7vVc4OmuSikfkVJOl1JOHzLEc+Rq3rFxdwsAOxrzrFe/cUu2LdBoeoWxY8eyc+fObu3jnXfe4bTTTvP87bLLLmPq1KlMmTKFc889l6amppT72rRpE8cddxwTJ07kgAMO4N577+2WbXYyIeg1wGjb92pAq4VGoykK7r77bhYvXsySJUsYM2YM9913X8r1A4EAd911FytXruSTTz7h/vvvZ8WKFRmxJRNpiy8DPxRCPAscBtRLKbdmYL95RT6F0DWa3uCWV5azYktDRvc5aWRfbvr6AUl/b25u5vzzz6empoZoNMqNN94IwJ///GdeeeUVwuEwzz//PPvvvz8333wzn3/+OZs3b2bTpk1cf/31XHHFFUn33dTUxLnnnsuyZcs45JBDeOqppxBC0LdvX0ClGra2tlqdmTfffDMbN25k3bp1bNy4kWuuuYYf/ehHjBgxghEjVDdjVVUVEydOZPPmzUyaNKnb5yedtMVngI+B/YQQNUKIy4QQVwkhrjJWmQmsA9YCfwH+X7etyiN0h75GkzvMmjWLkSNHsnjxYpYtW8ZJJ6kEvcGDB7NgwQK+//3vc+edd1rrL1myhFdffZWPP/6YX//612zZkjy4sHDhQu655x5WrFjBunXr+PDDD63fLr30UoYPH86qVau4+uqrreWrVq3i9ddfZ86cOdxyyy2Ew2HHPjds2MDChQs57LDDMlL+Dj10KeWFHfwugR9kxBqNRlMwpPKke4rJkydz3XXX8fOf/5zTTjuNo48+GoCzzz4bgEMOOYQXX3zRWv+MM86gvLyc8vJyjjvuOObMmcOZZ57pue8ZM2ZQXV0NwLRp09iwYQNHHXUUAI8//jjRaJSrr76af/zjH1x66aUAnHrqqQSDQYLBIEOHDmX79u3WPpqamjjnnHO45557LC+/u+i5XDQaTcEwYcIE5s+fz+TJk/nFL37Br3/9awCCwSAAfr+fSCRire/O9U6V+23uw2s/5rJvfOMbvPDCCx1uEw6HOeecc7jooousxiYTaEHXaDQFw5YtW6ioqOBb3/oW1113HQsWLEi5/ksvvURbWxu7du3inXfe4dBDD+3U8aSUrF271vr8yiuvsP/++3e4zWWXXcbEiRO59tprO3W8jtBzuWg0moJh6dKl/OxnP8Pn81FSUsKDDz7Iueeem3T9GTNmcOqpp7Jx40ZuvPFGRo4c2anjSSm5+OKLaWhoQErJ1KlTefDB1IPlP/zwQ/7+978zefJkpk2bBsBtt93GKaec0qlje6EFXaPRFAwnnngiJ554omPZhg0brM/Tp0/nnXfesb5PmDCBRx55pMP9HnvssRx77LHWd3tqor1z1M7NN9/s+L5smZoOa+zYsT02slyHXDSartC6Bz57M9tWaDQOtIeeIXQaepHx7Lfgiw/g+vVQMTDb1mi6gNuDBhWy+fa3v+1YFgwG+fTTT3vJqu6hBb2b6DT0ImXXZ+p/NJRdOzQZZfLkySxatCjbZnQZHXLRaDSaAkELerGh5yjILPp8anIILejFhhagDKGDbZrcQwt6psgbocwXOzUaTWfRgl5s5E3Do9Fkhp6eD/2+++5jn332QQiR9nG++93vMnToUA488MBu2eVGC3qmyJtpF7WgazSZ5Mgjj2T27NnstddeaW9zySWXMGvWrIzbotMWiw3toWt6i9dugG1LM7vP4ZPh5N8l/Tkb86EfdNBBnusnmw8d4JhjjnGMYM0U2kPPFHkjlPlip0bTebI1H3oyOpoPPdNoD72b5E2kxSRvGh5N3pPCk+4psjUfejJSzYfeE2hBLzq0oGcWfT5zCXM+9JkzZ/KLX/yCE044Aeid+dAztU130CGXQuCLjyCa5qOc9tAzQ949mhUHvT0feq6hBT1DZE0mtyyEx0+G2TenuYEWdE3hsnTpUmbMmMG0adO49dZb+dWvfpVyfXM+9MMPP7xL86ED/OlPf6K6upqamhqmTJnC5Zdf3uE2F154IUcccQSrV6+murqav/71r50+rhc65NJNRLZHDDYbea+1q9JbX3vomgImG/Oh/+hHP7KyV+wkmw8d4JlnnunwmF1Be+hFhxb0jKIbSE0OoT30biJzRSDTFRYtQBoNoOdD16Qge4GXzh5ZC7qmZ5FSpswWyWVyaT70rrymTodcMkTeyKT20DOMPp92ysrK2LVrV4+9M7NYkFKya9cuysrKOrWd9tC7SdY7RTuNvtEyihYuB2a2R21tbbZNyXvKyso6PQhJC3qxoQUow+jzaaekpIRx48Zl24yiRYdcNJouYTyZ6QZSk0NoQc8Q2b+vdZZLdtDnU5M7aEHvJlnvzO/08bUAZRTdQGpyCC3oxYYWoAyjz6cmd9CCXnRoAcoIQsfQNblHWoIuhDhJCLFaCLFWCHGDx+/9hBCvCCEWCyGWCyEuzbypmoygBSgz6POoyUE6FHQhhB+4HzgZmARcKISY5FrtB8AKKeVU4FjgLiFEaYZt1aQibYHRQqTRFCrpeOgzgLVSynVSyhDwLHCGax0JVAk13rcS2A307EzuGoNO9opqzzKz6POpySHSEfRRwCbb9xpjmZ37gInAFmAp8GMpZcy9IyHElUKIeUKIeXokWaborKBoAcoIVnqTPp+a3CEdQfdyAd21+ERgETASmAbcJ4Tom7CRlI9IKadLKacPGTKkk6ZqMoL2KDOLPp+aHCIdQa8BRtu+V6M8cTuXAi9KxVpgPbB/ZkzMD7I+GVHaCfFagDKLPp+a3CEdQZ8L7CuEGGd0dF4AvOxaZyPwVQAhxDBgP2BdJg3NVbI9rqjTZLvhKTT0+dTkEB1OziWljAghfgi8DviBx6SUy4UQVxm/PwT8BnhCCLEUpXE/l1Lu7EG7NW50lksvo2PomtwjrdkWpZQzgZmuZQ/ZPm8BTsisaZr00FkuWUWfT00OoUeKZoj8ua3zx9LcRp9HTe6hBb3Y0B5lhtHnU5M7aEHPEPnTOaoFKDPouVw0uYcW9IJBz4eeHfT51OQOWtAzRNZu66xPyF7k6AZSk0NoQe8mIt8EVQtQhtHnU5M7aEEvOrQAZQQ9H7omB9GCXmxoAcow+nxqcgct6EWHFqCMohtITQ6hBT1DZP2+TteArBtaaOjzqckdtKDnPZ3tlNUCpNEUKlrQiw3toWcWfTo1OYQW9KIjTxWorQE2L8i2FR7k6fnUFCRa0IuNfPXQn7kQ/nIcRMPZtsRJvp5PTUGiBb1gKPD50GvmqP+Jr6rNMnl6PjUFiRb0fKezI1Xz3aPMGfv1wCJN7qEFPd/ptKDkqwDl6hQL+Xo+NYWIFvQMkb3bupNHznuPMsfsz/vzqSkktKB3k6zPzVU0HrpBzglortmjKWa0oOc92kPXaDQKLeiFQtpCneeCmGsNUq7ZoylqtKBnCJmtG7tYIi7WdLU6bVGjSYYW9LzHEJS0g/n5LkA5Zr/20DU5hBb0fKezgpLvApQr9lvtZ47Yo9GgBT1jZE9niiXmYpJj9udKA6PRoAU9Y8hsC03Bz4eeqyMzc80eTTGjBT1DZE1ndB56dsk1ezRFjRb0biIMz1GPFO1ppOt/tjGD6Llij0ajBT1jaA+9l+iNE/3o12D2zemtm7cNpKYQ0YKeIbIXQy8WD92kF+yvmQMf3J19OzSaTpKWoAshThJCrBZCrBVC3JBknWOFEIuEEMuFEO9m1szcR3voPY0eWKTRdESgoxWEEH7gfuBrQA0wVwjxspRyhW2d/sADwElSyo1CiKE9ZG/OkfXJuTpLvnvouWZ/jpmjKW7S8dBnAGullOuklCHgWeAM1zrfBF6UUm4EkFLuyKyZuUv29aVYPHSTXLFfd4pqco90BH0UsMn2vcZYZmcCMEAI8Y4QYr4Q4jteOxJCXCmEmCeEmFdbW9s1i3OU7M3lUmQx9FyzP9fs0RQ16Qi6V1DBXYsDwCHAqcCJwI1CiAkJG0n5iJRyupRy+pAhQzptbC6jR4r2Frlmf67ZoylmOoyhozzy0bbv1cAWj3V2SimbgWYhxHvAVGBNRqzMYaxJALNlQLF46Lk622K+nk9NQZKOhz4X2FcIMU4IUQpcALzsWucl4GghREAIUQEcBqzMrKm5Tdbvaz0feu8idAxdk3t06KFLKSNCiB8CrwN+4DEp5XIhxFXG7w9JKVcKIWYBS4AY8KiUcllPGp5r6Dz03iLH7M/786kpJNIJuSClnAnMdC17yPX9D8AfMmdafqHz0HuJXBHQXLFDo7GhR4pmiPyZy6VnrOg9cq0AuWaPppjRgt5NLEctX9IW81aAcmz6XJFj9mg0aEHvNmbsPG9u63wXoJyzP9fs0RQzWtC7Se7oS5FkueSa/blTATQaLeiZIm86RfNdgHLO/lyzR1PMaEHPEHmTtpj3ApQr9usYuib30ILeTcw5XLSH3sPk6kjRnGlgNBot6N0m+y9GKzIPPdcapFyzR1PUaEHPEHlzX+eNocnoRfvTOlf5fj41hYQW9G5i3vNZi6EXTR66QW82SNFw7x1Lo8kAWtC7iSXk+TJ9rvbQ0yca6nidvD+fmkJCC3o3kVnX82Lx0LPQKRrTHromv9CC3k3iI//zJG0x3z3KXg25RDpeJ9/Pp6ag0IKe7xSNh27Sw/bbz2cqD13Ph67JQbSgdxMr5JLt+zpdA7JuaDfpafvt+0+nUzTfz6emoNCC3m2yPTmX9tB7bP+xNEIueX8+NYWEFvRuknUPvehGiva0h27rdP3zwbBlUQfr5+n51BQkWtAzhETC+vdg5s96/chFRW+GXAAW/V9HG/SYKRpNZ9GC3k0cHvqTX4c5j2THgJ5aP+foRQ8dQOhbRJM/6NraTbI3y6KbIpkPvccbJPf+heda8dXz/Hx2lfoauLkfLHom25ZobGhB7yZxD13nofcOvRxy6dBDz/fz2UVqV6n/S5/Lrh0aB1rQM4Tjtu5N0SyaPPReGimaEHLRHnpKir38OUbhCPrnb8PGT3r9sJ7viO7VSl5kHnpvh1ySCroeWKTJPQLZNiBj/P1M9f/m+l49rPdsi9pD7zl6uVNUx9A1eUTheOhZwrNTNOfeqmMj3wWot9MWOwq55H0D2VU6Oi+abKAFvbt4DSzKhqCnLXR5LkA9fm51lkvnKPby5xZa0DOEs1O0FwW9WPLQLV3NkSyXYp+cq8MnF0020ILeTfKuUzRfBcjzRPfEcToZcsnXBlJTkGhB7ybx/HPbja099B6kt7NcktwieX8eNYWIFvRu4u2h92YMvUg8dJPenJwL9MCijtANW06hBT1DZL1TNF1hydcb0ApZ93LIJVmnaG/N/piz6Bh6LpKWoAshThJCrBZCrBVC3JBivUOFEFEhxLmZMzG30XnovU1ve+hauFKT7/WpsOhQ0IUQfuB+4GRgEnChEGJSkvV+D7yeaSNzmbzrFM13j1JPzqXRJCUdD30GsFZKuU5KGQKeBc7wWO9q4AVgRwbty3nMTtG8SVvMe48qR9IW4xv0mCkaTWdJR9BHAZts32uMZRZCiFHAWcBDqXYkhLhSCDFPCDGvtra2s7bmD7ncKZrvHmWvd4omW7HIY+g6FJWTpCPoXlfOXYvvAX4upYym2pGU8hEp5XQp5fQhQ4akaWJuk/WQS9EISi/NttjZkEuxe+hFU//yg3Qm56oBRtu+VwNbXOtMB54VqtUeDJwihIhIKf+dCSNzGq9OUT2XSw+SY2mLeX8+u4r20HORdAR9LrCvEGIcsBm4APimfQUp5TjzsxDiCeA/RSHm2IQ8H/PQpcy/R+deHymaTNCLVcg1uUyHgi6ljAghfojKXvEDj0kplwshrjJ+Txk3L3Skh57ndKeozHNB7/WRojrkoskf0poPXUo5E5jpWuYp5FLKS7pvVv7hfAVdDqctZitfPlPkysCiYu8U1eQkeqRoN8l7Dz1fEL3UKVp0aaBdpVjLndtoQe8mZgw960P/uzQfej7elL39xqIOjpdPjWImyeWO/yJGC3o38fbQcyjk8u4dsP592+oZ9NB3r4Oa+d3bR2fp7ZGiHR5PC7omdyicd4pmGUcMPZdCLm/fqv5b71rNoIf+p4Nc++4NejmGnuxaFvvkXEVa7FxHe+jdxLNe55KHnrB6nsbQTXp7pGiHjbNhT8MW+OLjHjEpJzHPSz7WoQJGe+jdJPudot3ZIJ9uxt7yiN37TzOGfv/h0F7fy08r2SSf6k7xoD30bpNnA4vy3UPv9ZBLmjH09mIRcgMdQ89JtKBniOwP/S+SLJecC7kUKXnpDBQ+WtC7iRVyccZcet+Anlo/5+jtLJcOBD3vz2cXsc5LkZY/R9GC3k28Z1vM4ZCLey6XfKPXPXSdtuhNsZY7t9GC3k3iL7jI0bTFlOvn0U2ZrZGiHXroPWdKTqOzXHISLejdJGc8dK8by/Nmy3MPPWdCLtZbq3vSmNwlL+tO4aMFPUNkK4Se8qBeYpR9Q7tHb0/O1dkYerEIne4szkm0oHcTz07RbIRcPD10Lzu0h556953MQ+9sJ2rBkI91p/DRgt5NvEeKZqNTNF0PPU9j6Ca5lrbYWY++UJAp6l1vseZ1+OMkiLRnz4YcQwt6N5FeFVt76D1Alt4p2tksl1jK1+oWDrlQd167Hho2Q31Nti3JGQpD0HOgcmUtD71bHno+kisx9CR2FI2HngvlzLe3bfU8WtAzZYLji/bQe4xcyUNPdt5lkXjo+RiuKwIKRNCz5y3E7+scHPrv6aHbl2Xopszl2SW7u/90Z1tMe/0CQeeh5ySFIehZ9BasNxY5FmYjD93rJw877DHeTN2MvRk3zpm0xSQeuo6ha7JIYQh6DnhFzuSRbMzlkubAoh7x0Hvh/PfWCyXSzXJJdt6LRehyYS4XoWPobrSgd/fQXg5yrszl4hly6QEPvVfjxr0cckl6PB1DzxmKpRFNgwIR9CyGXDxj6Fnw0NPtFO2JPPT2pszsJx1y3kPP/tNir5AT5eytVNb8oUAE3XZBe1ncZbqdkT1Omnb0RAz9zn0ys5+0yPD1nfc4rHvHtntj/999HSqHd3wtdQw9+xTNU1HHFMgr6FzecS/G1rzrdRayPrwM8RIXR+XPoZsyXTLdWP7nGvXf/RJt4VN/SYVLe+hZx7zPi6URTYP89NBXvQprZ8e/Ozz07FS0rM/l0qW0xQyy5Lme2a9Fb3WKmvsXqQW92PPQc0HQTYrlnKdBfgr6s9+Ep86Jf8+ioMflNMt56OnG0O3eTCY9mxevgPrNmdtfAr00d4h0e+h6pGjuoj10N/kp6G6yOajHy1HLFw89055NLJzZ/XnRW52iwvjr7MCiWJEIei4NLHr+EvjX97NtRU6gBb27hzYHFmUrDz3lCy46SFvMS8+mt9IWjZBLUk/c/F+sMfQcEHKTui9g8dPZtiInKAxBz3a4gxwIuaQ9sMi2LK8EvZdfQadDLqnRA4tykrQEXQhxkhBitRBirRDiBo/fLxJCLDH+PhJCTM28qSnIZgw9V0IuXYqhR6yPH32+kyN/919aQ90Q+d7w2not5CJSC3qxd4rmY4ZUEdChoAsh/MD9wMnAJOBCIcQk12rrgS9LKacAvwEeybShKemJ4ezpHtrrqDn9gouo5+dbX13J5rpWPq/txiChXil3L4ZcEJ2PoRedh55NtIfuJh0PfQawVkq5TkoZAp4FzrCvIKX8SEq5x/j6CVCdWTM7IJsxdK+x/zk9UtS2zOahm3TrKTYD5/715dv4zX9WpDiGKmdtYzurtzV2+3iJ+zc99DTz0PXAIk0OkY6gjwI22b7XGMuScRnwmtcPQogrhRDzhBDzamtr07eyI7I4UlTIGIIYkVi2nhI66aE7Qi7x3zNy2jwaiM7yvb/P568frE+xhjL0K3e9w4n3vNft4yXu3oyhpxlyKXYPPZvCrmPoCaQj6F5nzfMqCiGOQwn6z71+l1I+IqWcLqWcPmTIkPSt7JDseegv1J7GP0p/QygaI6tzS3TTQ48HGtK8SdIdmZopXLMtNrZ1v/HwppOdosWa5ZJHMfTHP1zfvVBiHpGOoNcAo23fq4Et7pWEEFOAR4EzpJS7MmNemmR5pOgM32rCkSw1KhnOQ0/b6fES79Y9icsAdn2e5k7jRGMdjNDsKazzI9TJ6Ow7RYtF0POknJFojFteWcHZD3yUPSNq18BdE6FxW48fKh1BnwvsK4QYJ4QoBS4AXravIIQYA7wIfFtKuSbzZnZADgz9D0ezZYNHDD+VHck8dEO4YukKplc2x5OnwfblzmVrZ8OfD4al/0y+rzVvwM39oHG7tag9kszbz6Cgew0CcoRchPN4dZugYatzvYR96hh6LhExHIOGtl4Y9JaMTx+Exi2w8pUeP1SHgi6ljAA/BF4HVgLPSSmXCyGuEkJcZaz2v8Ag4AEhxCIhxLwes9jbSNvn7Ah6eyRLcfzOvuAiSdqitch9+ub+1Tlvjtd+7OxY6f198wLv9QHmPKz+b11sLWoLdxS7ViT15AH2bIDd65L/nirF0B5y+fBe1eDccyD8cX9zY0978sVz7Tap6l2v0fHjpFk/stv+9F6sP63ZFqWUM4GZrmUP2T5fDlyeWdM6gf0mWvEy1K6Er9/bqyaEo7H4I3pWPPSuxNATf4+4l716rfpvzUaYYt+epFOZzXXiZWgLu8Q2iYCEIjHKS/3eu73XGA7htt3EczZKW8jFTFuc8xeP9ZJ1ihaJh54nMfRING7n7BXbKSvxc9S+g7NoUc9SGCNF7WI26+cw/4leNyHUjZDLnuZQ1w/c6Rh6FIQhgI6Qi/qf0uN17ycdRKJYJ11HphB0q+FylikU6Ubj6VUGzyyXFI1SJzz0ZZvrmbN+d+ftzEXyJMvF7qBc/rd5fOuvn/akRd701usTKRRBzwFvIRzpmqDP3bCbg37zJrOWdbPDpDMjRf2lxu9xQTNj55F0BT2jseLEGzMh5GLY1x6JctNLy6zF7dFu2JHKQ7cEvYM89ITJuZLbc9qfP+D8hz/utJk5SZ7F0LNLGk5NhigMQe/wVWs9TzhqP176x162WYUDPv58ZxeP3IUsF1PQPWLo6XvonQy5mNcj3KbCYt47tT61JXSKqt8WfrGbJz/+wlqacQ/dPTmXjCVJ3E0WQ88FAekFcmEulzTCeTkh6L2YL18ggu5x0SLtvWpCKBpDduElDAGf2qbLFa8rI0X9JeqzzZs0t+5xD332zfDct2HDB/Fl6YRcpNm5lRhD7zIps1x8Rp9IspCLjqGrf93rL3rkvc9ZtKku5To1e1qIRD2O04FQfuPhjznyd//thnVdY9aybbyyOCGzu1coEEH3uNjR3hV0B52o5H6fugSRaAohXT1LZVk0eFWS7njoieJTuX0ubPgwtdHQ9Rh63Ub135GzbjZqcXvbE7JcpLGmS9C9bvR08Yyhu0IuSG/hSOqhF0uWS8z5v4vcNnMVZ96fvL7VNrZz1O/f5vbXVnV635/2Yn/Fc/M2cdTvVeNx1VPzufqZhbZfdQw9Oel6ohHvjsb5X+xm5daGnrMlmT1JCPjT8NDnP67+b1mU3IZOxdAND90maKbne8hbF8ITp3Rkdic8dFdltrzxRNvsuefJPPQEQe+Wh54i5NLhXC6u9VPuswBJVe/SJJxGY1zXou7jt1fvYEtdK999Yi5N7T01SrjrXP/PJdTsafV+krDQgp6Ip1h6nKgkHvo5D37Myfe+34O20KWQSzTlm27S6VTpXgy9Q4vXvOHaTxeFy0vQjWVhu6AniaFnVNBTeeh0lOVi2OG+bkXnoXddpFrSmKpZWPUF7nxjNf9dtYPXlm7t8jF7Gs8nRp3lkgKvyaU8PfReCLm4OxVTeJ/J8Ik0PPSUFSKVh+61LJqyUzQpT5/n/J7ME3UfMyFtMXlZQmG7h+4WSvXPXWEz7qGn8SThWC/qehIsFkF3xdDbwlH+/NZnKUb4JpLO3PtmGC4mJTHjHvFZdcrV0ObA6/+866PuFE2O13zeXsLlvtF6gmSC2Imb2hTy1NklhhcvY9wxaxU7GttsxzL/O2+OcDTGd5/4JHFXsSgEPGLoXodPdYMkHfrewRBrYVY5+/ZG+WxhsqR56C5D2zMdQ/cKuXh2vnkLejQaYcHGPR7r27bMkKf28ee7+HBtV7Ojuokrhv7XD9Zz15tr+LstA6kjmkMdOxRmX0pMqj8Avy+JQOZAh7SnoKczFiND5J+ge721Plc8dIO731zt6hRJjhlzS8dD/3x7Iw+88zk//+cS24/Gdq4+g+b2CMJ2XurNwUtSIj06RT2PnsqDT3bzRJ2Cbj1W27NHzGN/+jC07LbK5xR07zz0zIZcUoWpOpg+1yQaZu2O+Lzss5Zu4ewHPmJpTZLRqbhTXLvOhX/5hIsezcJAGbDF0NX5aTHEObEhTk5HHvr6nc3WnPcxKYkax/SZgu7W9Rzov2jvTn3MAPkn6I6XHBuCk620xSQVqD0cSTttyewYSjv/G2hut3vW3p5iOCrx2cRv5dY6Y/0oWxvV9g2tbaQklaAnu3lc29wxyzW3i+mtrH8XXrs+PrUAEIvEt03moScT9M486scP2LWRojIWi7eA0RD1rfFGbMueZgC2NyQ/t93KzAGa2iO8uWJ7xysarN7WyNgbXmXsDa8yM1PxZ5egd+Wh45H34vPseD21HHfnO1z/whJr//GQS5IdZmA+/u7iLeg6hp6cWGLI5TuPeYQWeiNt0SUIZh66rxOPVqa3lk7+t9+4WuFYjHdW72D9zmbinXNhR4UJRWMOO6SMP81sa1aVrrGlzfa7x/G74qG7tvHjHoBiVO4WI6WstS7uodsapYROUctDdxKKxHh3TS37/WpW8nzmpNlIHU3OZeShu0Iu/5y7AXvIxUw9BfAZ5U11Ne1PFbua2hn3i1f5+PP0Z5z++T+XcMXfks9/t6SmznE956yP7/vWV1d6bdJ5DCGv2dPCq0s630jsbGrnZZvT0+pqwGOu+0FK6TETqDuGnp6gZyrk5UWqJ8Z3V211NP49Qf4JumNyKVUJmlo94uVJ0hYzSpIK5PYiUxH30BMrgpSSq59ZyK6WsPVdrSu55PG5HHfnO84NbIIYisQcdkhz/7EoEWNONtFROCEDHrqfJCGXkPJk8QUwb0wZjlf2ZHnoCXO5RGO8t0a9/WpusrzjZOWIeTzpuEMuHtdy2aadtiejsOPa+YT3ACiHzbabftmWBqSE+99em3R9N6oh9+bDtTs5/b4PeeKjDfGFtgZpd3fmDXJg1MVolGVb6hEyypm+D5LW/Xtnf8bYG161hNo97mJPi1PoNu5uSTia+WCTVDTT7Lvq7hNSp/dtnP85n+/gztdX99ixIR8FvYPpXy264aE/N3dTernqSY7vI/0KE0lSwUHFkV9ZvIW5G1QnWzSsbkZHDNYuHDZBD0djDjsiRjgjJmPUG/eO7ChtMVVMMs0YesDlobeYQm0JenymxKht26SzLbpsUg2XeYQkIhoN0x6JJnh9zvBd1Pnf50saconZnYVoyNH4+KS3hz5rWdyLtedfVxgzRXYmtzrVAElTCJPVX7cn3GWMcvqQ1LeGOWj7C9xT+gAHbP2X5+oPvKMaLNNDdYfIttW3Or67G62YzUNPmr+epoeeqT4ML+yNjbu+BYh2LTTYCfJP0D1uQk8B9Yihpxunvv6FJenlqicRtc4kKZmV8/PaZl5ZvIWttoptipq0skDaHdsYRsQ/Rpweuj3k0m54vzsbWmiN+o39xQXU06FMdYMkewJyZblY18Y4wOvLDWELGa8E8wUshZKpBN2Mocec17U9ErUELunljYXZ71ez+PkLS1zLPTKmTEfAH7TN5eK8opFwyLKHaMgRHjLL6xadq55aYLM5/ps5qVtLGhkf6eA97UwPCJgZAhOS+pYwfUIqrFMe8g4d9Qmqp8JdxhOCu9N7S52zz8HdwKksF3XMuGi6ypWmoH+2vQdeLm5gF3TLWzcav4CI2lIue4b8E3SXhy6l9I5Ze6QtpjMyLcGLA574cD1b6lo9VvYWdJ9I30M3bdrZ1M7VzyzkGw/H+wNMoTBNihkC3GKr7GHbbIPhcPymcMfQW9vVtqFwmDAegp4wJ4nkvytTdOwmewJynZOAML9LQpEYJRi2t9ap/z4/pgzFHILuneXic13XxraINfjEoVu2L+0hZevz82tc+7SH7wy7zIYqEFR2SYlbJt9eXkOrKcDRsNNDN85j0hd04LzpzWvs6Oh2sXZHE1+6/a2UHa0mXkMW3Pv2CllsqWvlp88tthqW/yzZwqG3zrbqp5SS6/+5mHkbjLCW5aHHqGsNIY0DJ5Mr80lkV5O6Fm5PdavLQ3c/SUgpLYfMahDdt2qaWS5nZeB1dFv+diW1cxLfwhWy3Y+WoBt1K0A0PlCqh8g/QXfloUdj0rsSeXjo6Qi6uzOutrGdm19ZwQWPeOV0x4VVCIk0KrkZR0zneO5Qiz12aIqC5aEbIZdGm6B/ui7uEc1cuNH6rEIRNuEwblQ/kpj0EZE+oraskgQnLhblqQ9d7wKV3k8DDlwhF7NTVEYj1Da1E7QE3cjV9sXfsSKj6rfKYCDpSFG/qyGpawnbPHR7KCpe9sbmuFhcae9M9EqBjbYjhZ+P1u2hJRLzfHQpEZG41xsNOTxus7yp0vfscdbWkPqcKuTy6Pvr2FLfZmW2uDXB7oGbL/m2W93U7rwm5nB6O49/uJ4XFtTw9KeqDt300nJqG9vZY6zbHIry3LwaLnr0U2r2tFjCL1BhFLOOxpKMXbAE3fDQ7eesT6k/wUN3nz9p89CtkIn7CdnjlYo9xch1/2DIzMsSltsb8tP+9IHDrgDR5Bk6GSL/BN11E4aiMW+P2FPQO77I7uHIu5rVftydNOr48Qp02Ji+cS/SuJ2ajDfTr93RmPSGTdVB487TNWO39n3tbIqXc2d9/FHSHXJpa1fb+kWMKD71F00h6NEQ5YEUj7RJPHQZi/DAO2utwU8Bo1M0Fg2zrb6NUsLO7YWfmUZ8ee1WJfJVZYGkMXS/K+RS1xq2HmMdN7HN1qaWuKC/YU/380iBlZF2WmMBvvnop7yzZhd1Le1EXKehFPt5CDtsNetiKkG3N/SmJ9qcQtCbjXrQJ+j9Ziavem0/FWY9NHF3QAIM71cOwBJX/rzp3beb4T8JR/3+bf69YBNgeOgtYavDMtkUFuWl8ZBLQ1uY8x5S88Lfce4UhvUro7bReV0T6r7NQ7eeMFydoLOWbrY+Z2x6Dw9iKe5Z+3W0NMMm6EkHRWWI/BN0V5ZLOCK9e9Y9BCdVh4WJuyLtanJ2NDqwNS4Hj65CGHdRiXHRmtqVJ3f8H9/ju4/P9TxeJCoZ2KfUseyjz3dyxO1vsWqb6tgyLY0Z4Qb7zWqvHu3tcS8n7Aq5mB66D0kMH1H88ZBLJET/2B4cfl00RLnfWd4Vm2p5+F3Da0+S57+roZk7Zq3mp88tJhqTlscajYTZ3tAWD7mY+AJWts3GnUpMlKB7Z7n4Yk7vsr41bJ0PRyjBJuh2D92BI4autm1uaSFkZAFJoLah1fIqTQJE43Uu2u7wNn3SDLnE9+0OLzhCLsZ6qdJWzRCbqZXC9Uxa1xKyGjPTQbCH0JpcIRevTBdzgFvNnhZje0WD0YnZFjFHbJq/xJ2X+pYwEZugSykTwjplASU1SzbV8a8FceGdOLwvlcFAwqhRd8glEpVWwzV/4x5VXleI5c5Zy3lxQQ2/e20Vq7aljpPf8MIS5n+RJCvK4N8LN/PDpxc4lrVHokz4ZfKXPbsdwrvfXENtvergVfWmZ8k/QXfF0EPRmLegdxBycXvGtY3tHHjT646h1FJKhwe8eU8rT360IT6jmk00xvYPWilr4weVAepN42bFnLNhN099kjgsOhyNWRN0mXzvb/PZWt/Gwo116jDGZZLhxBvRXvaQTdBDEeeTS5uxrZ8YMQQRfETNeN+/ruTV0HctbxqAaBi3Q/iTp+dw+2urWLm1gYgRl44N2te5khFy2dkUIhSJWfuMRkJsb2ijVDhvXCljViaMKf5VZSVJPfSAy0OvbwlZgukQAbuH3ppE0D062Osamwgbgh7Dh48YQjhvkxIi1nmPRULc9HL8DUoxYz/2BilVDNteTvsThj1f2RSJxrYwn9c2sXSz04uecdtb/OX9dQn7M3GHXPZ4hFzMpwD3ndRoePemoxNzPYX6iNHYHmHdLtUQRGMx7vvvWib86jXLltkrtltT2T4/v4abXl5u7b+sxEd5iT9BCFtDUcd90RKOWja8t6aW//t0Y4KH7ifGtc8t5iHT6UjBs3M38a1H56Rc55p/LOI/S7Y6Oqz3NIcJ4jyf9uvmfhK/963PeG/NdsO+aPKO+wyRf4LuiqG7O/8swok3cSiFoL//WS1N7RHufyeeD3zSPe/z42cXWd9P/dP73PTycj5ZtzvBQxg7oMT6PKBULa9vDTsu8K/+Hb/xLTOjkhK/8zKYMXL3jSc9Onrtgh5uj5fZ3dC1mx66kETxEcPH7kbjkXC5SjXrgy2OGQ1R5nOe190NKjPlppeWc+OL8wF4qvoWxzoRw+uPxmKEIjErDz0aCdPYFomHXAy+2LHHWqfE+F9VFkgYcWd6nG5Br2sNW+LpEAXbtWlOMiI2auvAqtndwMKNe2hpaaUddS1bZZBy0Z4Q9ywlYnlakXC7o/6ZI0XtwuoOp1z6xFxragD7eqb962qbmHrLG1z6+BzOf/hjy3ttao9w/B/f9SzLc/NUh69Xh6FbZLw8dPMpoC0c498LN1s2N7aFHXaagmSW33ziqm81nyJivGQMGFpsDPS6PMUgqGDAT59gICHLpzUcpaos3r8SjUnHHEZrdzQlxNADnUgXhvjU1R3x2fYm63NTeyRB0O111StbybQrQIy2cDRleK275J+guzz0cCSJhx5KHHxh99D/vXBzPHxA3BMJ2Eb9rXalN5lezLf++imH3vqWwwsc3T8eNhlQoi54fUs4ZfaCaVNJkoplxhUDxk0jo4mxT/uWoVBc7Nwx9JVbVHzaR4wYPiL42biz0fFE0lfYzlksTJkr5BI0vOs5G3ZbN3KrKHOsEzGeBCJRSXs0alXmWCRMSyiaEHJZvXmX5cWb5UzlodtDLn6foK4lbMV3k3noLUkEvcE2UvYbD37IWQ98RDTcRkgqIWkhSAXtCV5Vie1Jxh8LO9Jm20LhBFu8JqF6c8W2hPVMr3zTHtUwv726ljnrd1ux2Ia2SNJBr6WGU2Cei6htxca2CBOGVfLyD48EvF9K3mJst3JrA9f8Y5ElUg0uQTcxy6ycAOnoFN1/eBVAwguxR/UvTzhusMRHeanTQ//Xwhr+9vEXCX0DO23hz4BPeHjoncvxLvH7UmYOmfaaoU9QDZxb0Hc0xO87r/vdtCsgorRFYhx+21vcPjNDI3Zd5J+gux6T3bFii1BTwqKwrXfrf19a7ngLyjbjwiYOL/ZmZ1O7ldsNMKwiLq19fari7WkJJ3RIuYnEYgT83peh1gj3mAJS35R8hCBANGSPoTvTOddv283iTXVWDD2GDz9RNtk6e/th2380TNDlodvF2OwYlAGXoBseeiQmaQ/HPfRYNEJrKOLsUARKCVuhloAVcknsFDUbbZ8tlDaoTykNbWFLMB39H7bGrymJoO9pii/3C7PhaSdkeOgtlFFBW0LGREBEsLJuZNg2vYF32qKXR7a7JTEf2xRP90sS6oxOzFT506aFZqy7zdVQTBzRlynV/akMBrjrzTX87PnFju1bkniNVsjFfT2M6u4XkiBhSozGPhaNWk+cd725hjtmxe+x8UP6cNZBoxz7KQv46VPqp8UmhPe/rRytVJk/JQFfwmyg/k566LubQxx221sJ57U9EuXyJ+ey2UhVXr6lgUfe+xwpJQ1tEUqFU9Dn2WLxXjbHPfQoX+xqprE9wqgBiY1bJsg/QbdfxFiU9mQeejgxK8Uro8S8WdfXKjHbWp948yfrmN6yO14RfLYBNZU+JTp1rSHPC7xqW4OVHhaKJIZcTHZaHrqq7Jt3eo3+i5e9ubWVWcu2GZ1SUYfnWEkra7Y34pPxGHqAmMP77Cts5ywaShioUUqYJ787w/oMsKPNGWiPe+gxQtEYAUMoP9u6hyc//sJD0COWmJrl7FPqpy0co6k9kiDs9iyXwZVBpITXl6sYZTIP/YsddXhRb/PQTTEItbdZnaItMkipiCZk1lTQ7qhz9obOPOf2tEt7p+SNp01i/JA+zNuwhx88vcCR3dFghC3qPLJQQA0+S8bmPS3EYtI6X622hqK+NUy/ctVIDeij/rtz8puTzHzY0Bbhk3W7HB2ZgCMltoI2Kx3VF3XW+ZcW2eZrCUUtO0yCJT4qSp0hF7tT9f71x/H7cyYn2NVVD/3iI/ZKWLZ2h9P5+3Tdbmav3GF9/9vHX3DbzFV8un53gocei0kWbqyjKhhACO/G2/LQiVovhd9nSGWHtnaF/BN0V6pZOFmnqCvkIqX0jG+1hWNsrW/lv6vUBfQadDG8b9wLveDQ0ZwxbSQAf7fnads8wmCsjWDAZ4RcnMcMRWKcdf9H/M+/ltIeiRKJJQ+5NJhhICvG7NzX9SftRz9bnLG+qYWrnprPmyu2J8TQ+4pWNu1uwUeMYf0qlIcuYuxqakcanX59cQq6feARwHnThnH4+IGqjIZHtq3FaXvYnJ4gJh0xdHPQUJnPuc9SEbY9kqp9lpX4aYtEOfCm1zn/4Y8daT32GLw7n9oZQ4+fqxWbE7MZ1tU2OT10w4Zwe6vloU+fUK3KGnXe8FW0IICIVOfNfoP3EWqfNXtarUE0zY6BYDEGVJSyalsjry7Z6pigyswoSTaBk2fqrLltW4RP1++2GoN1tU3MXrGdWEzS0Bqmb5kqU1kgMfVxV1N70mM2tIa54JFPeHGhW9Dj9BHt1nXxxdpoaoswfa8BnDltJLYIJi2hKH1dgl7q91FR6nc0xvYHotEDKzh2v6EJdrVHYo60W8ByHlLhPr65L5OlNfV85zHvztL61jANrc4YenMoQm1jOyP6l1Fe4reeaOz4bR666UDtM0wLusI1XNsdK7ZwCfrdsz/j239NvFBrdzTx0qIthKIxqm2PQQeO6mt9HlIVtD4fPn4Qd5w7BYD1tTaP2dZh6Ys007+ihN3NIW57zRkrO+VP71uVd+OuFiIenaJuArYW3s45B1dT3b+MsFQ3qXlTzVq2jT+9tdZxXsZURvlidwuCGH3Kg0SkHz9RI4tHHb+fLYa+sbbeMbcKwMAySdAQhOF9BCECzFxR61jHjFfvbGpn0aa6BNsrcXZWlxJxdBqBGlhk3tRLauodd3iQMIcPk3xlVIz/d9w+jn3ZY8Pz1tvscpVjV1M7X7nrXZ6fG886sh7XoyGCwTIuP2ocR00aC0C5S9AvnNofn8ASfvsNbjaKizfVcchvZ7N+Z7NDLIMBHwMqnGmqZoNuhlzM9SeP6kc67DO0ktKAj1/+e6nVQNTsaeXyv82jrjVMTGJ5xu6QYnskyiG/nZ0Q7zZxp2ya+FweuiXo0RDNoQh9ggGG9yt3DBhqDUfpa3NAQM1tXlHqJxxV6Y+7mtoTpuhwny9QjWRjm9M206ZzD6n2tBlU3XJjz2T7+n0fJN1WHTNMkPhxl21uoK41RP/yUsYMrOADjxeOmHW/r1GMshIfQyqDCetlgvwT9AQPPUkeuhFDbwlFuPzJefzprc88d/f1+z7gd6+tYszACg4eM8BaPrQq7pX3t1WofuUlBAN+bjn9AGfMziYaItRM//JS5m7YzTrXY/LaHU2UBnxU0MYv73mY+tZwQtqiG3P4fImIOB5ZywJ+ggGfFSIwUwJfXLiZpvaI46bbq4963PMRw+/3MXpwJZUl8OHnu6xh231tMfTrnp3nmJ8coMywY/6vjufsKUOI+UpxD/ZubWunvMRPZTDAn9/6zOGdBIhQjjN8oWLozk7Rg2zXQWEX9BDP1l/EY7u+xWHjBjrW2lLXSjgaY+KNs/ifFxbFzx9RBtly/c1HbPv1M2+6UsJERCm/Om0SgbJKx28mhw4PIMA672UifoP3Fc1MGhF3Bu6dvYZ1tep4PztxPy46bC8G9nF6iWZdM73rTXta6FsWsDoxAfYdGvfofnL8BMf2h4wZwIh+ZQl1DWCVMUmXWW/ser6tvo3Pd6Tul9la1+oZcnR46LTFQ2mRdpraI1QGA4zoV+YQ572HVCaEXAAqjEFHx9/9Lof8dnbCU21pIFGm1AtcnNdlVJXa99H7Dmb1b0/i0iPHWr/NMOpK1KOP7PXlKkzZ0cs5ahvbeXPFdoK2GPpv/rOCPc1h+lWUsPdQb6/brGd9g+qsDawo7bEpAPJP0O0eelt9ik5R5Sm9vnwbs1cmvgygT6nz0fOofQczdnAf67s9ZWr0wLjnbj6y9a8occbs7CmFoRYG9Clhw674I/KNp02K/xyJcWfJQzwX/A1bN2+kvNTPUfsMTlJgGFimLn4pEcpKfIwdVIHfJ6gI+gkGhJVm545P28/LjJGlfF7bjE9K/L4A/rJ+VMkW1u5owkwmGOCL21siIo4sEIDBxmkYVBmkRIYpDZZzwqRhfK39Dp4MXgiokMuYgRWcOW0UW+rbHB666Z1H+gy39unloU8b3d/6XQgIGw1LmyzBL+JlGmzzcoZUBWkORfnJPxbRGo46RLiECFccM55fnjIRgG8Y0zjYG7yBopHDxg0kSIQ95qUsjdcHB211gPT00PvRzPe+PJ7FN50AwL8XbeEv769nSFWQHxy3D6UBX0K8evKofgypCvLkxxuYtWwrLy7YTINtjhqAkyePUCb5ffz4+H05YKRqNI6fOIybTp/EsL7OzmmTxUZ6pFlv7YJ2+O1v8cc313iXEUMYtzd65k47PHTRZoXgIqFWdjeH6BP0O2w675Bq7v7G1CSCru5Fsz/BfCoY2S+xTGY2z78XbYlPCW3Q1KTKOqW6P8GAn5u+foD127cOV7FzMwPHztwNe/jn/BpeWFCT8Jud219bxbwv9jiu94qt9aze3siAihJG2Mpr1jWwOWRGnezn8cSRKfJP0O2tcn0N/Te8ysOldyesFmlrpL41zKbdifnop08dyX3fPNix7LBxAzl+oorV7T+8ygqD7D+8iv85ZaL1qGYK/YCKUmfea7utpzzUxMh+zl7si4/Yi1+fEa9gB/lUvvtgUc9ZB43i0Yuns+DGr3HhjNH87ux4J9BFh41hn0FKuEoJM7SqjLd+eixzf3k8JX6V8mUKizvGbn9ymTLUx9TqfviEynKhagST+qpzE5NKOMZXxrcvIcLOBmfM9tBRthss2o4vEOTUKSP4TFbzdNk3mRebQBlhhvcr48pjxgPxG7+MEFVGp2ugKh4T7VcSj7Obgl8a8PHyD4/k2q9NQEqoNfKP23DeCPb+g1tOV+f2P8bLFuzed3/RxIh+ZZS5GnH7OkOo45krDqcyEGP/UUOMk1CBJ+0NCCTBMnWN//ekva2f+ooWjt1vaIJwjbCJ0+lTRzJ+cB/rHA3rG+T4iUP5YleLY1ZGwApRnDBpGHecO4VnrjzM2Ebt7/zp1VSUBpIK+u+NLBPTHrdfaHd2ql2ZF1Oq+3nGhN37+cVXx3D8fuqpqlSGqGsJUxkssRodgEuOHEtVmdOLNZ9kKjzCIL87ezKzfnKM9d0MSz1/1RGWM+aeZfWUcWr5XgPj1+2Oc6dw9sGjOH3qSNbffgoThilBH1zprEs/++cSfvmvxHEibvYfXsVX9+1vfR8/QO2nf0UpPzo+PsiurCQurWY9qzCe5PqVJ5Y3U+SfoNtb5bpNTFx0q+dqTY31nH7fB57zQv/PKRMZ2jfu3c0YN5Cv7D+UyaP68bMT9+PBbx1ihUG+c8RYKkoD3HneFCqDASs3dUBFqdNDr1dzW+AvhVCzIy3p24fvRcDv41TDywKoKlWnfqjYw2lTRlJW4mdgn1JuP3sKF8wYw8s/PJInvzuDW8+aDEbnzwn++fzxhIH4fcKaLqCixM+AKnWTnDJxoCMMYa/wgXATVx+lPOOdLRGoGk5lqJZSv4+oIehjKuJPGWWELS/3xehRAIjGbfHyRkIQKLVuym0NbewJDGG42MXI/mWMHljBXoMqrEZvmNhDXzN+Xhq/qQeVwdgB6lqMFPH445Tq/lYM+ZuGR92KM+7oizRz7bGjefW0CCNdOc52D32U2MXI/uWUl7gE3daJtm+fFnw+wei+PkYO6pdgp4M2Jej9qlTZj6iOi/fUwXHxtD9B7LRls5x4wHD+e92x1nD4yrIA135tP+v30QPLeekHKtxihgoqgwHOnz6aQ/ZS34/bTzU6A4x6YHqup00ZwVs//TJrfnuyw+QhVWq9By46hPOSxJgPGzcIUGK05rcnUxlM9KZNr3m/YX2QPvX7gYP99PGp822GIyqDfkbbhHXicHWuxtuegmf++Ggg8WkZ4JgJQ6yOXMD6XFUWsJ5w3E/mp40TrP7tSfF3jgLnTx/NH8+fBoAQguoBFcy+9su8fs0xxn5Ti+uXJwyxPv/pwoOYdc0xXHTIsPjv41V5qoIB+paV8D2jkbbn0Jt1sV9E1W/31A2ZJP8E3eWhR3yJnoksqaCCNr7Y1eIIe4C6yYb3K6PKVlmf+94RVJWVIITgB8ftw7jBfaxJdMzJhk46cATLbjnRmtdZhVxsjUut8SaS0kqIhanuq9bbZ2glvznzQADHnC1mnbvmsL6eE/ZMqe4fr0yxsOUt7tvsGnUnJcGKKvAHOWxohK/sH/d+raH7JRWwZSHH//sQw/YgVI1AtO5mZGX8tpi06w1r271LdlkN1lk/ulvND770eXjr12qFaDv4g4wzbtDzp1fTEBzJKLGTUUbvz7NXHm4NuKoUbVQLIxXMFsoQoUbrcX2k2O1IhzvA6JjeWq+uYat0Pao21/Kj6N84YPZ3GB/b4PjJ7xD0ncpDt3lNT19xGCdNit+s35lsNAiREPiNulHq4aH7SqDdcBIGGClwu9fFy9MWH5b/4ve/xP3fPJibA0/wi71W4eaiw/fi8PEDufiIsQypCvKlvZWg/uDYfZhqhJ3u/sY07r1gmiMcCCqE8MZPjuHQsUrgzSp08ZfGsvcQ1Uk6+9pjqB5QzjEThrC3kSY3aWRf/nDeVOb/6nhrX2YCwLQx6pgTR/SlNODjzINGcsmXxrL8lhOtxnCQ0UgN7lOCCBrhi1CTNXfSaKMNrB6gzt1jl0zn/m8ebImsEIJzJlVxweR46MOdk11lxN/tmPW60ibAfUqd8iWatlud9qnYZ2glgyqD3HXeVJ6+4nBr+Y2nTeL/HRt/2trwu1O5+Et7Gcfyc/pUld1GJB6KHFOlbDDHFfz0hP343dmTOXe6ajTPPmhUfBBWey0BIj36kou0fH8hxEnAvYAfeFRK+TvX78L4/RSgBbhESrkgYUeZwIyhVw6DPeuJ+uI3eYsMUiHa2R0tZ5BoIUiINbZBAydMGsbd35gGxGeuS9YhaYZcItEovP5LmHYRDIvHwQf0KbXN9Q3MeVj9D1ZB6276G/HoMTYvRZ0mCQjMfp6DB6bxZqVYBPY7GVbNhB3uEWYShB8GT4Adq4iMUvJ85THj+WnlPvBfoKwfrH/P2uKY/YdDlRKzCZXNBNoS070ml9WyLaxERARKoV811MxRfzOutDz0gN/Hqt+cRKnfx782j6G0NUplZBcAI/qVKxfcuAQTfcb0vqagl/VX8eg6lW0SFGGG+eLXy94xDbBejmA8tqeEplrYpl5a0bdpPUHg/0pvo/agH/O3uTZBZyfD+pY5wiBHjB+E2DMYPgMCZdYLGoiGjLnQSRJDl/D5f9XHgcbNv8tIXy0fAC07oWEr9B3BmEEVjKmSEHgD1rwB/MCxp2F9y3j2yiOs7z/52gQ21y3mhAOMPoZVM6ma/zhnXPhsghVCCCt8AHDDyftz6LiBTN8r3qG8z9Aq3vrplwn4fKrubfwURk6DQNASZoDHL5nBxi1b6bfqGfxM4viJygMd0a+cm41Q1tvXHUvNnhbW7Wzm+n8uUU8XRl2nvcGaTnlkbAsLfjKFAfUrgNF8Zf+4N2ty144roLkWUJk1YwfFz/ObPzmGUQPKEzoNbz1rMpccOZahVWU8e+Xh1OxpRcx0CWPTDjrDOa4nlcuOGgfAKZNHUG48NYw2GiZHv4dtcNuXB+wCBFOq1VNdacDHBTPGALDutlNoCkWoWa7uL0GMYeyhPeLszM8kHXroQgg/cD9wMjAJuFAIMcm12snAvsbflcCDGbYzjumhjz4MdqygX1M8F3xuTD22fh5RHYy/CTzOiXxspRkdPn6Q5WH3Ky+hf0UJt9vi1XbMR93pgQ3w8X3wxKnxHz+6jz5Pn87hPo/hu6PVwJtjIh9z7H5DrNguAJvm8H7pNXzNN4+SsOHl1RsdMVLGUxDevwvm/CW+XTSiPOSh+8NW4607dZugvUltI4Ah+8GOldbj68h+ZfGBF/33cgzCKAkEoN9oAM6MziYowkRxejYHx5ZynH+R+uILQP/R8R/f+4PloYPKG/f5BEceop4AThq4XXmtTTugZq4VupgoDEE/6ho44Cw459H4PvsoD+zDi43O4c3zYfbNvP21bfyhSgnaGukKFdRtVI0ZwPOXcL7/Hab71nDS8ut45rLpAGyUw9jXV0NJSy1TRtieDISI16X+Y2DzPNWR3lZvlYuqkcTKldfM5PPggLPhoG/Hj1/WDyoGw87P4vsBeOCweMNrb4D/cy3Yw1ag0mu3LoYtCzl0TH/e/dlx8Se5Zy+Ez96AmuRzoZgMqgxy/vTRCUIYDPjVE+Dq1+CxE2DmzxK2HVIV5JDP72efhbfzynE7+P6X94Y1rztsHd6vjOljB3L+pD6sPW8P5bQpQe83Bj5+ABpUPRZt9Qz8+1cRT58PO9cmHItoBJq2qXNvzIlfZguF7Tusysp6QUrYNAeiYUoDPg4YqUTz8PGDVGqifWBRoDx+L6WitQ4anUkSr/34aP5zwVBY8TIAB47qx94Dy2DB36kuVVlAQ9gDy/8Nq151eOjjd77D3J8fzZmm927D5xP0LfWxl9hGg1RPIdViZ9pvTusKoqOJ4IUQRwA3SylPNL7/AkBKebttnYeBd6SUzxjfVwPHSimTvg58+vTpct68jiuqmzVv/50J7/6QBwdcx/f33AlArexL3VnPcsdzs/lL6R95MPJ1vh+IT3EZ9gWprdiXYYMGOMMbUsL2ZerGrBqp3p5j3hCtdYQjYUpkGHYZFXPYgcoL2+Caa/mIHyrRBzj5DljynLqRR0xxvMBBVU6bR14+QInI8AOVUA8crx7ztyxUvwfKYfA+Kpwz9QLoOwreuR1GTINtS5Xdrbth+GSYeiG8/j/IoQewq10wsH9/fNuWqDIefxPMvC5+3ONvVjbfMd4KHyyZ+FOmrLxL/T5quhI4k5+uhk8fhg/+6Cz3XkfCpTPj31vr4E/T4i+vMBl7NGxdggw1qqlyf7YO+gxSZf/D3mpU74HnwKa5UL9RNQAeUzfMrjiZ6ZGF9A8ZQlNapZ5eIh6zKQb7QnsDjUf8nKqPf6+W9R3F4rogpUSYOH4vde3b6uHcx+D5S9W1ioXh6OvgqzeqbV7+ESx4Er56Exx9rTqfr/xYLfvS1bBjFax7W9lx2t2qoXzxSnVdhh6gRKfWJuqVw9TTlMm2pUbWDDBgLFSNiNcZs55VDFLbCJ86joypBr2kDCqHqxCR/VVFu9dDyy4VEqoYrM7l1kXxY445AsKt7G6HkuatVA0cAXvWq3NRUhEfZR0oh1FG8oCMGcfdCI3GbV0xWF038+m0/17W0xagGumB4x2vGSTSrp7yQDUG/UeDz8+ODSsIEGFg9X6qH0oI9QRWu1LdJ/6gKo/PKGssAhs/hhNvV8fYuQbevBFGHpSi76NeORqxiLqXyvvHXzW48SNVvhFT1fbtDeralFayODSCA8U6/O4Xaux/Gqz6j/o8ZH91nVwzc9KwGXavY2fFPgwKbaaeSkqH7E3FIRfA9Eu97ewAIcR8KeV0r9/SCbmMAjbZvtcAh6WxzijAIehCiCtRHjxjxoxJ49CJhEr7s7LkAJb5D+D3A25hemgOi0ecy0+mfolz/OOZ/Vk122MH8njjUVxY8i6r90gmDYSR0VZVmdzhq2EHqkfsSLtzqHvFIEoCZaoSTDgJSsqVpxRpVwI1YKy6aQ76Nux/Chx6OXz0Z9j3a7DfKfD2baqj1J5mufdxMPHrsGWRqkyHXgFv36oq2ZjDlR3REBx8sdqudbfyBsr6w36nqu3DLUr8h01SFSgaVuGYQ9VjrNi6mMFVQLhNVc4jfwzjjlG2lA9Q4YAJJysR+OZzsOgpQg07OPDoM+Ho01Wc/OifEnv3D6xfs5QBQ0YysM8QOPYGVVknnAhrZqlGZ8oFznNZ3h/Oe0I9XTRug4HjYP9TYeTB0LAF8ckDSmjLjbBAaQVc+Ax88hBM+yZ85UZ1Dhu3GtuPh7K+yGiEz5rLmPblq+hfVaEEUMbgvTtViOOg70CgFLngKWKVw/AL1I2015eoOvIaqAjChg9BCPbrF0L6gxBrhqGTYMo31NOClKohHjoRDrk4Xqav/Romng5jjzQrMZz8e1WGyedCnyGqX6Fph6oXg/eFK/4Ly19Uxwy3qsZ25MGwfalq7Jp3xfdfPV1dP1BhmXCLIZ5S7W/0YarhCTWr5YEy5XiMmApIVT+i8bllAOUgBMpUXW2rV3V33xNUHatdo85Nn8EMLAvD4OGqDgWrVNnrNqk6GA0ZDkOdKrPPr67/sAOUA1E+EMZ/Wd0b/UbB9uWqHFKqsvcbrZ5cou2qLptPoL4A7PM11VBsnq/qaTTMkDH7qQZERozwjVT1afB+6snH51fnMhYxEiMEHHIpzLhC1eV9vqrqxeYFSebql1A1XIm1jEHFQHWuTdvGHq1CbOZ5DvZV91xJGVNbdkFbpWrAgpXQsls1LqfeDZ8+CBs/UceMtCW+Bq9yOFQMYvAxPwOfn/7zHlfbJ3uheTdJx0M/DzhRSnm58f3bwAwp5dW2dV4FbpdSfmB8fwu4Xko5P9l+u+qhazQaTTGTykNPJ8ulBrAFUKkG3G8PTmcdjUaj0fQg6Qj6XGBfIcQ4IUQpcAHwsmudl4HvCMXhQH2q+LlGo9FoMk+HMXQpZUQI8UPgdVTa4mNSyuVCiKuM3x8CZqJSFtei0ha7Fu3XaDQaTZdJKw9dSjkTJdr2ZQ/ZPkvcSbYajUaj6VXyb6SoRqPRaDzRgq7RaDQFghZ0jUajKRC0oGs0Gk2B0OHAoh47sBC1wBcdrujNYCDxXU+FQyGXr5DLBoVdvkIuG+RP+faSUg7x+iFrgt4dhBDzko2UKgQKuXyFXDYo7PIVctmgMMqnQy4ajUZTIGhB12g0mgIhXwX9kWwb0MMUcvkKuWxQ2OUr5LJBAZQvL2PoGo1Go0kkXz10jUaj0bjQgq7RaDQFQt4JuhDiJCHEaiHEWiHEDdm2p7MIIR4TQuwQQiyzLRsohHhTCPGZ8X+A7bdfGGVdLYQ4MTtWp4cQYrQQ4m0hxEohxHIhxI+N5YVSvjIhxBwhxGKjfLcYywuifKDeISyEWCiE+I/xvZDKtkEIsVQIsUgIMc9YVjDlA0BKmTd/qOl7PwfGA6XAYmBStu3qZBmOAQ4GltmW3QHcYHy+Afi98XmSUcYgMM4ouz/bZUhRthHAwcbnKmCNUYZCKZ8AKo3PJcCnwOGFUj7D5muBp4H/FFLdNGzeAAx2LSuY8kkp885DnwGslVKuk1KGgGeBM7JsU6eQUr4H7HYtPgN40vj8JHCmbfmzUsp2KeV61HzzM3rDzq4gpdwqpVxgfG4EVqLeLVso5ZNSSvPt1SXGn6RAyieEqAZOBR61LS6IsqWgoMqXb4Ke7GXU+c4wabzhyfg/1Fiet+UVQowFDkJ5sQVTPiMksQjYAbwppSyk8t0DXA/EbMsKpWygGt83hBDzjRfWQ2GVL70XXOQQwmNZIedd5mV5hRCVwAvANVLKBiG8iqFW9ViW0+WTUkaBaUKI/sC/hBAHplg9b8onhDgN2CGlnC+EODadTTyW5WTZbBwppdwihBgKvCmEWJVi3XwsX9556IX6MurtQogRAMb/HcbyvCuvEKIEJeb/J6V80VhcMOUzkVLWAe8AJ1EY5TsSOF0IsQEVyvyKEOIpCqNsAEgptxj/dwD/QoVQCqZ8kH+Cns4Lq/ORl4GLjc8XAy/Zll8ghAgKIcYB+wJzsmBfWgjliv8VWCml/KPtp0Ip3xDDM0cIUQ4cD6yiAMonpfyFlLJaSjkWdV/9V0r5LQqgbABCiD5CiCrzM3ACsIwCKZ9FtntlO/uHehn1GlSv8y+zbU8X7H8G2AqEUV7AZcAg4C3gM+P/QNv6vzTKuho4Odv2d1C2o1CPpUuARcbfKQVUvinAQqN8y4D/NZYXRPlsNh9LPMulIMqGyoxbbPwtN7WjUMpn/umh/xqNRlMg5FvIRaPRaDRJ0IKu0Wg0BYIWdI1GoykQtKBrNBpNgaAFXaPRaAoELegajUZTIGhB1+QEQogm1/dLhBD3GZ+PEUIsEEJEhBDn2tYZK4SQQoirbcvuE0JcYnw+z5jmNiaE6PBt7kKIZ4QQS4QQP+mC/ccKIb7U2e00mkyiBV2TD2wELkFN6+pmB/BjY+Swm2XA2cB7HR1ACDEc+JKUcoqU8u4u2Hgs0ClBF0L4u3AcjSYpWtA1OY+UcoOUcgnOWQBNalEj/C52/yClXCmlXJ3mYd4AhhovPzhaCLG3EGKWMTPf+0KI/QGEEF8XQnxqvARithBimDGz5FXAT2zbP+F6mmgy/h8r1EtAngaWGrM3/kEIMdd4Oviesd4IIcR7xv6WCSGOTv+MaYqVfJttUVO4lBvT0poMJP15en4HvCaEeKwbxz8dNdx9GoAQ4i3gKinlZ0KIw4AHgK8AHwCHSymlEOJy4Hop5U+FEA8BTVLKO43tL0txrBnAgVLK9cY0rvVSykOFEEHgQyHEG6gni9ellLcannxFN8qmKRK0oGtyhVZTTEHF0IEO494AhjDOAb6ZCUOM6X+/BDxvm/o3aPyvBv5hzMxXCqzvwiHmSPXSBFCTRE2xefP9UBNBzQUeM2av/LeUclEXjqMpMrSgawqF24B/kka8PA18QJ29gbHxZ+CPUsqXjXnDb06yj4ixH3MWSnuMv9n2WQBXSylfd+9ACHEM6g1CfxdC/EFK+bfOFUNTbOgYuqYgkFKuAlYAp2VgXw3AeiHEeaAEWQgx1fi5H7DZ+GyP2zei3qNqsgE4xPh8Bup1dV68Dnzf8MQRQkwwpnrdC/XCib+gpiQ+uHul0hQDWtA1OY8Q4lAhRA1wHvCwEGJ5klVvRYVEzO3OMrY7AnhVCJHgBafgIuAyIYQ53ar57tqbUaGY94GdtvVfAc4yO0WBvwBfNkJBh+H0yu08imqIFgghlgEPo56cjwUWCSEWAucA93bCdk2RoqfP1Wg0mgJBe+gajUZTIOhOUU1RIYQ4Efi9a/F6KeVZ2bBHo8kkOuSi0Wg0BYIOuWg0Gk2BoAVdo9FoCgQt6BqNRlMgaEHXaDSaAuH/A2HSDJSjy5yvAAAAAElFTkSuQmCC\n",
"text/plain": [
- "'SSSTGRICNS'"
+ "