-
Notifications
You must be signed in to change notification settings - Fork 11
/
zcash-issue-dag.py
executable file
·277 lines (229 loc) · 9.98 KB
/
zcash-issue-dag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
#!/usr/bin/env python3
# ZenHub issue dependency graph generator for the ECC core team.
# Author: [email protected]
# Last updated: 2021-05-07
import networkx as nx
from str2bool import str2bool as strtobool
import os
from textwrap import wrap
from urllib.parse import urlparse
from helpers import github, zenhub
GITHUB_TOKEN = os.environ.get('GITHUB_TOKEN')
ZENHUB_TOKEN = os.environ.get('ZENHUB_TOKEN')
DAG_VIEW = os.environ.get('DAG_VIEW', 'core')
REPOS = github.REPO_SETS[DAG_VIEW]
WORKSPACES = {
workspace_id: repos
for (workspace_id, repos) in {
workspace_id: [repo_id for repo_id in repos if repo_id in REPOS]
for (workspace_id, repos) in zenhub.WORKSPACE_SETS.items()
}.items()
if len(repos) > 0
}
SUPPORTED_CATEGORIES = set(['releases', 'targets'])
def cats(s):
return set([x.strip() for x in s.split(',')]) - set([''])
# If set, removes all issues and PRs that are not ancestors of the given issues.
# This can be used to render a sub-graph focused on one area.
#
# Format is ORG/REPO#ISSUE[,ORG/REPO#ISSUE[, ..]]
TERMINATE_AT = cats(os.environ.get('TERMINATE_AT', ''))
# Whether to remove issues and PRs that are not target or release issues.
ONLY_INCLUDE = cats(os.environ.get('ONLY_INCLUDE', ''))
# Whether to include subgraphs where all issues and PRs are closed.
INCLUDE_FINISHED = strtobool(os.environ.get('INCLUDE_FINISHED', 'false'))
# Whether to remove closed issues and PRs that are not downstream of open ones.
# When set to 'targets' or 'releases', only issues upstream of a closed target
# or release issue will be removed.
PRUNE_FINISHED = os.environ.get('PRUNE_FINISHED', 'true')
# Whether to group issues and PRs by milestone.
SHOW_MILESTONES = strtobool(os.environ.get('SHOW_MILESTONES', 'false'))
# Whether to group issues and PRs by ZenHub epics.
SHOW_EPICS = strtobool(os.environ.get('SHOW_EPICS', 'false'))
def main():
gapi = github.api(GITHUB_TOKEN)
zapi = zenhub.api(ZENHUB_TOKEN)
if len(WORKSPACES) == 0:
print('Error: DAG_VIEW="{}" has no matching ZenHub workspaces'.format(DAG_VIEW))
return
# Build the full dependency graph from ZenHub's per-workspace API.
print('Fetching graph')
dg = nx.compose_all([
zenhub.get_dependency_graph(zapi, workspace_id, repos)
for (workspace_id, repos) in WORKSPACES.items()
])
print('Rendering DAG')
if SHOW_EPICS:
epics_issues = []
for (workspace_id, repos) in WORKSPACES.items():
epics_issues += zenhub.get_epics(zapi, workspace_id, repos)
epics_issues = set(epics_issues)
epics_mapping = github.download_issues(gapi, [gh_ref for (_, gh_ref) in epics_issues], REPOS)
epics_mapping = {k: v for (k, v) in epics_mapping.items() if v.state != 'closed'}
issues_by_epic = {}
for (i, ((repo_id, epic_id), epic)) in enumerate(epics_mapping.items()):
workspace_id = [
workspace_id
for (workspace_id, repos) in WORKSPACES.items()
if repo_id in repos
][0]
epic_id = [
id for (id, gh_ref) in epics_issues
if gh_ref == (repo_id, epic_id)
][0]
issues = set(zenhub.get_epic_issues(zapi, workspace_id, epic_id))
issues_by_epic[epic] = issues
for i in issues:
# zapi.dependencies only returns nodes that have some connection,
# but we'd like to show all issues from epics even if they are
# disconnected.
dg.add_node(i)
if len(TERMINATE_AT) > 0:
# Look up the repo IDs for the given terminating issues.
reverse_repos = {v:k for k,v in REPOS.items()}
terminate_at = [x.split('#') for x in TERMINATE_AT]
terminate_at = set([(reverse_repos[tuple(r.split('/', 1))], int(i)) for (r, i) in terminate_at])
# Replace the graph with the subgraph that only includes the terminating
# issues and their ancestors.
ancestors = [nx.ancestors(dg, n) for n in terminate_at]
dg = nx.subgraph(dg, terminate_at.union(*ancestors))
# Fetch the issues within the graph.
mapping = github.download_issues(gapi, dg.nodes, REPOS)
# Relabel the graph
dg = nx.relabel_nodes(dg, mapping)
# Filter out unknown issues
unknown = [n for n in dg if n.repo_id not in REPOS]
if len(unknown) > 0:
dg.remove_nodes_from(unknown)
# Apply property annotations
for (source, sink) in dg.edges:
attrs = dg.edges[source, sink]
attrs['is_open'] = 0 if source.state == 'closed' else 1
if len(ONLY_INCLUDE) > 0 and ONLY_INCLUDE.issubset(SUPPORTED_CATEGORIES):
# Insert direct edges for all transitive paths in the graph. This creates edges
# between target issues that were not previously directly connected, but were
# "reachable".
tc = nx.transitive_closure_dag(dg)
# Remove non-target issues. This also removes their involved edges, leaving behind
# the transitive closure of the target issues.
tc.remove_nodes_from([n for n in dg.nodes if not n.any_cat(ONLY_INCLUDE)])
# Reduce to the minimum number of edges representing the same transitive paths.
# This is unique for a DAG.
dg = nx.transitive_reduction(tc)
if not INCLUDE_FINISHED:
# Identify the disconnected subgraphs.
subgraphs = [dg.subgraph(c) for c in nx.connected_components(dg.to_undirected())]
# Identify subgraphs comprised entirely of closed issues.
ignore = [g for g in subgraphs if all([n.state == 'closed' for n in g])]
# Remove fully-closed subgraphs.
if len(ignore) > 0:
dg.remove_nodes_from(nx.compose_all(ignore))
# Prune nodes that are not downstream of any open issues.
if cats(PRUNE_FINISHED).issubset(SUPPORTED_CATEGORIES):
closed_targets = [n for n in dg.nodes if n.any_cat(cats(PRUNE_FINISHED)) and n.state == 'closed']
for target in closed_targets:
# Check that the target (and by extension its ancestors) wasn't already
# removed for being the ancestor of another closed target.
if target in dg:
ancestors = nx.ancestors(dg, target)
if all(n.state == 'closed' for n in ancestors):
# Only prune ancestors, not the closed target node, so that
# we see the most recently-closed target nodes in the DAG.
dg.remove_nodes_from(ancestors)
elif PRUNE_FINISHED in ['true', 'all']:
# - It would be nice to keep the most recently-closed issues on the DAG, but
# dg.out_degree seems to be broken...
to_prune = [n for (n, degree) in dg.in_degree() if degree == 0 and n.state == 'closed']
while len(to_prune) > 0:
dg.remove_nodes_from(to_prune)
to_prune = [n for (n, degree) in dg.in_degree() if degree == 0 and n.state == 'closed']
do_next = [n for (n, degree) in dg.in_degree(weight='is_open') if degree == 0 and n.state != 'closed']
# Apply style annotations.
for n in dg:
attrs = dg.nodes[n]
if n.title:
attrs['label'] = '\n'.join(['%s' % n] + wrap(n.title, 25))
if n.state == 'closed':
attrs['class'] = 'closed'
attrs['fillcolor'] = '#fad8c7'
elif n.waiting_on_review:
attrs['class'] = 'needs-review'
attrs['fillcolor'] = '#dfc150'
elif n.is_committed or n.is_in_progress:
attrs['class'] = 'committed'
attrs['fillcolor'] = '#a6cfff'
else:
attrs['class'] = 'open'
attrs['fillcolor'] = '#c2e0c6'
attrs['penwidth'] = 2 if n in do_next else 1
if n.is_target:
attrs['shape'] = 'folder'
elif n.is_pr:
attrs['shape'] = 'component'
else:
attrs['shape'] = 'box'
attrs['style'] = 'filled'
if n.url:
attrs['URL'] = n.url
attrs['target'] = '_blank'
ag = nx.nx_agraph.to_agraph(dg)
clusters = 0
if SHOW_MILESTONES:
# Identify milestone nbunches
milestones = {n.milestone: [] for n in dg}
for m in milestones:
milestones[m] = [n for n in dg if n.milestone == m]
if None in milestones:
del milestones[None]
for (milestone, nodes) in milestones.items():
ag.add_subgraph(nodes, 'cluster_%d' % clusters, label=milestone, color='blue')
clusters += 1
if SHOW_EPICS:
for (epic, issues) in issues_by_epic.items():
issues = [n for n in dg if (n.repo_id, n.issue_number) in issues]
if issues:
ag.add_subgraph(issues, 'cluster_%d' % clusters, label=epic.title, color='blue')
clusters += 1
# Draw the result!
ag.graph_attr['rankdir'] = 'LR'
ag.graph_attr['stylesheet'] = 'zcash-dag.css'
ag.layout(prog='dot')
os.makedirs('public', exist_ok=True)
ag.draw('public/zcash-%s-dag.svg' % DAG_VIEW)
# Render the HTML version!
with open('public/zcash-%s-dag.svg' % DAG_VIEW) as f:
svg_data = f.read()
svg_start = svg_data.find('<svg')
html_data = '''<!DOCTYPE html>
<html>
<head>
<title>Zcash %s DAG</title>
<!-- Pan/zoom SVGs -->
<script src="https://bumbu.me/svg-pan-zoom/dist/svg-pan-zoom.min.js"></script>
<link rel="stylesheet" href="zcash-dag.css">
<style>
@media (prefers-color-scheme: dark) {
body {
/* Material dark theme surface colour */
background-color: #121212;
}
}
</style>
</head>
<body>
<div id="dag">%s</div>
<script>
svgPanZoom('#dag > svg', {
zoomScaleSensitivity: 0.4
});
</script>
</body>
</html>
''' % (DAG_VIEW, svg_data[svg_start:])
with open('public/zcash-%s-dag.html' % DAG_VIEW, 'w') as f:
f.write(html_data)
if __name__ == '__main__':
if GITHUB_TOKEN and ZENHUB_TOKEN:
main()
else:
print('Please set the GITHUB_TOKEN and ZENHUB_TOKEN environment variables.')