-
Notifications
You must be signed in to change notification settings - Fork 36
/
inference_timesformer.py
418 lines (368 loc) · 15.2 KB
/
inference_timesformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import os
import subprocess
from tap import Tap
import glob
class InferenceArgumentParser(Tap):
segment_id: list[str] =[] # Leave empty to process all segments in the segment_path
segment_path:str='./eval_scrolls'
model_path:str= 'outputs/vesuvius/pretraining_all/vesuvius-models/valid_20230827161847_0_fr_i3depoch=7.ckpt'
out_path:str=""
stride: int = 2
start_idx:int=15
workers: int = 4
batch_size: int = 64
size:int=64
reverse:int=0
device:str='cuda'
gpus:int=1
args = InferenceArgumentParser().parse_args()
# Generate a string "0,1,2,...,args.gpus-1"
gpu_ids = ",".join(str(i) for i in range(args.gpus))
# Set the CUDA_VISIBLE_DEVICES environment variable
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_ids
print(f"CUDA_VISIBLE_DEVICES set to: {os.environ['CUDA_VISIBLE_DEVICES']}")
import torch.nn as nn
from torch.nn import DataParallel
import torch.nn.functional as F
from timesformer_pytorch import TimeSformer
import torch
from warmup_scheduler import GradualWarmupScheduler
import wandb
import random
import gc
import pytorch_lightning as pl
import scipy.stats as st
from torch.utils.data import DataLoader
import numpy as np
import segmentation_models_pytorch as smp
from tqdm.auto import tqdm
from torch.optim import AdamW
from torch.utils.data import DataLoader, Dataset
import cv2
import os
import albumentations as A
from albumentations.pytorch import ToTensorV2
import PIL.Image
PIL.Image.MAX_IMAGE_PIXELS = 933120000
print(f"Using {torch.cuda.device_count()} GPUs")
def gkern(kernlen=21, nsig=3):
"""Returns a 2D Gaussian kernel."""
x = np.linspace(-nsig, nsig, kernlen+1)
kern1d = np.diff(st.norm.cdf(x))
kern2d = np.outer(kern1d, kern1d)
return kern2d/kern2d.sum()
class CFG:
# ============== comp exp name =============
comp_name = 'vesuvius'
# comp_dir_path = './'
comp_dir_path = './'
comp_folder_name = './'
comp_dataset_path = f'./'
exp_name = 'pretraining_all'
# ============== model cfg =============
in_chans = 26 # 65
encoder_depth=5
# ============== training cfg =============
size = 64
tile_size = 64
stride = tile_size // 3
train_batch_size = 256 # 32
valid_batch_size = 256
use_amp = True
scheduler = 'GradualWarmupSchedulerV2'
epochs = 50 # 30
# adamW warmupあり
warmup_factor = 10
# lr = 1e-4 / warmup_factor
lr = 1e-4 / warmup_factor
min_lr = 1e-6
num_workers = 16 * args.gpus
seed = 42
# ============== augmentation =============
valid_aug_list = [
A.Resize(size, size),
A.Normalize(
mean= [0] * in_chans,
std= [1] * in_chans
),
ToTensorV2(transpose_mask=True),
]
def set_seed(seed=None, cudnn_deterministic=True):
if seed is None:
seed = 42
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = cudnn_deterministic
torch.backends.cudnn.benchmark = False
def cfg_init(cfg, mode='val'):
set_seed(cfg.seed)
cfg_init(CFG)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def read_image_mask(fragment_id,start_idx=18,end_idx=38,rotation=0):
images = []
idxs = range(start_idx, end_idx)
for i in idxs:
fragment_path = f"{args.segment_path}/{fragment_id}/layers/{i:02}"
if os.path.exists(f"{fragment_path}.tif"):
image = cv2.imread(f"{fragment_path}.tif", 0)
else:
image = cv2.imread(f"{fragment_path}.jpg", 0)
pad0 = (256 - image.shape[0] % 256)
pad1 = (256 - image.shape[1] % 256)
image = np.pad(image, [(0, pad0), (0, pad1)], constant_values=0)
image=np.clip(image,0,200)
images.append(image)
images = np.stack(images, axis=2)
if any(id_ in fragment_id for id_ in ['20230701020044','verso','20230901184804','20230901234823','20230531193658','20231007101615','20231005123333','20231011144857','20230522215721', '20230919113918', '20230625171244','20231022170900','20231012173610','20231016151000']):
print("Reverse Segment")
images=images[:,:,::-1]
fragment_mask=None
wildcard_path_mask = f'{args.segment_path}/{fragment_id}/*_mask.png'
if os.path.exists(f'{args.segment_path}/{fragment_id}/{fragment_id}_mask.png'):
fragment_mask=cv2.imread(f"{args.segment_path}/{fragment_id}/{fragment_id}_mask.png", 0)
fragment_mask = np.pad(fragment_mask, [(0, pad0), (0, pad1)], constant_values=0)
elif len(glob.glob(wildcard_path_mask)) > 0:
# any *mask.png exists
mask_path = glob.glob(wildcard_path_mask)[0]
fragment_mask = cv2.imread(mask_path, 0)
fragment_mask = np.pad(fragment_mask, [(0, pad0), (0, pad1)], constant_values=0)
else:
# White mask
fragment_mask = np.ones_like(images[:,:,0]) * 255
return images, fragment_mask
def get_img_splits(fragment_id,s,e,rotation=0):
images = []
xyxys = []
if not os.path.exists(f"{args.segment_path}/{fragment_id}"):
fragment_id = fragment_id + "_superseded"
print('reading ',fragment_id)
# check for superseded fragment
try:
image,fragment_mask = read_image_mask(fragment_id, s,e,rotation)
except Exception as e:
print("aborted reading fragment", fragment_id, e)
return None
x1_list = list(range(0, image.shape[1]-CFG.tile_size+1, CFG.stride))
y1_list = list(range(0, image.shape[0]-CFG.tile_size+1, CFG.stride))
for y1 in y1_list:
for x1 in x1_list:
y2 = y1 + CFG.tile_size
x2 = x1 + CFG.tile_size
if not np.any(fragment_mask[y1:y2, x1:x2]==0):
images.append(image[y1:y2, x1:x2])
xyxys.append([x1, y1, x2, y2])
test_dataset = CustomDatasetTest(images,np.stack(xyxys), CFG,transform=A.Compose([
A.Resize(CFG.size, CFG.size),
A.Normalize(
mean= [0] * CFG.in_chans,
std= [1] * CFG.in_chans
),
ToTensorV2(transpose_mask=True),
]))
test_loader = DataLoader(test_dataset,
batch_size=CFG.valid_batch_size,
shuffle=False,
num_workers=CFG.num_workers, pin_memory=(args.gpus==1), drop_last=False,
)
return test_loader, np.stack(xyxys),(image.shape[0],image.shape[1]),fragment_mask
def get_transforms(data, cfg):
if data == 'valid':
aug = A.Compose(cfg.valid_aug_list)
return aug
class CustomDatasetTest(Dataset):
def __init__(self, images,xyxys, cfg, transform=None):
self.images = images
self.xyxys=xyxys
self.cfg = cfg
self.transform = transform
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
image = self.images[idx]
xy=self.xyxys[idx]
if self.transform:
data = self.transform(image=image)
image = data['image'].unsqueeze(0)
return image,xy
class RegressionPLModel(pl.LightningModule):
def __init__(self,pred_shape,size=64,enc='',with_norm=False):
super(RegressionPLModel, self).__init__()
self.save_hyperparameters()
self.mask_pred = np.zeros(self.hparams.pred_shape)
self.mask_count = np.zeros(self.hparams.pred_shape)
self.loss_func1 = smp.losses.DiceLoss(mode='binary')
self.loss_func2= smp.losses.SoftBCEWithLogitsLoss(smooth_factor=0.25)
self.loss_func= lambda x,y:0.5 * self.loss_func1(x,y)+0.5*self.loss_func2(x,y)
self.backbone=TimeSformer(
dim = 512,
image_size = 64,
patch_size = 16,
num_frames = 30,
num_classes = 16,
channels=1,
depth = 8,
heads = 6,
dim_head = 64,
attn_dropout = 0.1,
ff_dropout = 0.1
)
if self.hparams.with_norm:
self.normalization=nn.BatchNorm3d(num_features=1)
def forward(self, x):
if x.ndim==4:
x=x[:,None]
if self.hparams.with_norm:
x=self.normalization(x)
x = self.backbone(torch.permute(x, (0, 2, 1,3,4)))
x=x.view(-1,1,4,4)
return x
def training_step(self, batch, batch_idx):
x, y = batch
outputs = self(x)
loss1 = self.loss_func(outputs, y)
if torch.isnan(loss1):
print("Loss nan encountered")
self.log("train/Arcface_loss", loss1.item(),on_step=True, on_epoch=True, prog_bar=True)
return {"loss": loss1}
def validation_step(self, batch, batch_idx):
x,y,xyxys= batch
batch_size = x.size(0)
outputs = self(x)
loss1 = self.loss_func(outputs, y)
y_preds = torch.sigmoid(outputs).to('cpu')
for i, (x1, y1, x2, y2) in enumerate(xyxys):
self.mask_pred[y1:y2, x1:x2] += F.interpolate(y_preds[i].unsqueeze(0).float(),scale_factor=16,mode='bilinear').squeeze(0).squeeze(0).numpy()
self.mask_count[y1:y2, x1:x2] += np.ones((self.hparams.size, self.hparams.size))
self.log("val/MSE_loss", loss1.item(),on_step=True, on_epoch=True, prog_bar=True)
return {"loss": loss1}
def configure_optimizers(self):
optimizer = AdamW(filter(lambda p: p.requires_grad, self.parameters()), lr=CFG.lr)
scheduler = get_scheduler(CFG, optimizer)
return [optimizer],[scheduler]
class GradualWarmupSchedulerV2(GradualWarmupScheduler):
"""
https://www.kaggle.com/code/underwearfitting/single-fold-training-of-resnet200d-lb0-965
"""
def __init__(self, optimizer, multiplier, total_epoch, after_scheduler=None):
super(GradualWarmupSchedulerV2, self).__init__(
optimizer, multiplier, total_epoch, after_scheduler)
def get_lr(self):
if self.last_epoch > self.total_epoch:
if self.after_scheduler:
if not self.finished:
self.after_scheduler.base_lrs = [
base_lr * self.multiplier for base_lr in self.base_lrs]
self.finished = True
return self.after_scheduler.get_lr()
return [base_lr * self.multiplier for base_lr in self.base_lrs]
if self.multiplier == 1.0:
return [base_lr * (float(self.last_epoch) / self.total_epoch) for base_lr in self.base_lrs]
else:
return [base_lr * ((self.multiplier - 1.) * self.last_epoch / self.total_epoch + 1.) for base_lr in self.base_lrs]
def get_scheduler(cfg, optimizer):
scheduler_cosine = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, 10, eta_min=1e-6)
scheduler = GradualWarmupSchedulerV2(
optimizer, multiplier=1.0, total_epoch=1, after_scheduler=scheduler_cosine)
return scheduler
def scheduler_step(scheduler, avg_val_loss, epoch):
scheduler.step(epoch)
def predict_fn(test_loader, model, device, test_xyxys, pred_shape):
mask_pred = np.zeros(pred_shape)
mask_count = np.zeros(pred_shape)
mask_count_kernel = np.ones((CFG.size, CFG.size))
kernel = gkern(CFG.size, 1)
kernel = kernel / kernel.max()
model.eval()
kernel_tensor = torch.tensor(kernel, device=device) # Move the kernel to the GPU
for step, (images, xys) in tqdm(enumerate(test_loader), total=len(test_loader)):
images = images.to(device)
batch_size = images.size(0)
with torch.no_grad():
with torch.autocast(device_type="cuda"):
y_preds = model(images)
y_preds = torch.sigmoid(y_preds) # Keep predictions on GPU
# Resize all predictions at once
y_preds_resized = F.interpolate(y_preds.float(), scale_factor=16, mode='bilinear') # Shape (batch_size, 1, 64, 64)
# Multiply by the kernel tensor
y_preds_multiplied = y_preds_resized * kernel_tensor # Broadcasting kernel to all images in the batch
y_preds_multiplied = y_preds_multiplied.squeeze(1)
# Move results to CPU as a NumPy array
y_preds_multiplied_cpu = y_preds_multiplied.cpu().numpy() # Shape: (batch_size, 64, 64)
# Update mask_pred and mask_count in a batch manner
for i, (x1, y1, x2, y2) in enumerate(xys):
mask_pred[y1:y2, x1:x2] += y_preds_multiplied_cpu[i]
mask_count[y1:y2, x1:x2] += mask_count_kernel
mask_pred /= np.clip(mask_count, a_min=1, a_max=None)
return mask_pred
import gc
if __name__ == "__main__":
# Loading the model
model = RegressionPLModel.load_from_checkpoint(args.model_path, strict=False)
if args.gpus > 1:
model = DataParallel(model) # Wrap model with DataParallel for multi-GPU
model.to(device)
model.eval()
wandb.init(
project="Vesuvius",
name=f"ALL_scrolls_tta",
)
# Set up segments
if len(args.segment_id) == 0:
args.segment_id = [os.path.basename(x) for x in glob.glob(f"{args.segment_path}/*") if os.path.isdir(x)]
# Sort the segment IDs
args.segment_id.sort()
print(f"Found {len(args.segment_id)} segments: {args.segment_id}")
try:
for fragment_id in args.segment_id:
preds=[]
try:
for r in [0]:
for i in [17]:
start_f=i
end_f=start_f+CFG.in_chans
img_split = get_img_splits(fragment_id,start_f,end_f,r)
if img_split is None:
continue
test_loader,test_xyxz,test_shape,fragment_mask = img_split
mask_pred = predict_fn(test_loader, model, device, test_xyxz,test_shape)
mask_pred = np.clip(np.nan_to_num(mask_pred),a_min=0,a_max=1)
mask_pred /= mask_pred.max()
preds.append(mask_pred)
if len(args.out_path) > 0:
# CV2 image
image_cv = (mask_pred * 255).astype(np.uint8)
try:
os.makedirs(args.out_path,exist_ok=True)
except:
pass
cv2.imwrite(os.path.join(args.out_path, f"{fragment_id}_prediction_rotated_{r}_layer_{i}.png"), image_cv)
del mask_pred
if len(preds) > 0:
img=wandb.Image(
preds[0],
caption=f"{fragment_id}"
)
wandb.log({'predictions':img})
gc.collect()
except Exception as e:
print(f"Failed to process {fragment_id}: {e}")
except Exception as e:
print(f"Final Exception: {e}")
finally:
try:
del test_loader
except:
pass
torch.cuda.empty_cache()
gc.collect()
wandb.finish()
# Explicitly shut down the DataParallel model
if isinstance(model, DataParallel):
model = model.module # Extract the original model
model.cpu() # Move the model to CPU
del model # Delete the model to free up GPU memory
torch.cuda.empty_cache() # Clean up GPU memory again