-
Notifications
You must be signed in to change notification settings - Fork 5
/
SPBasic.ml
819 lines (687 loc) · 29.4 KB
/
SPBasic.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
(***********************************************************************)
(* *)
(* Compcert Extensions *)
(* *)
(* Jean-Baptiste Tristan *)
(* *)
(* All rights reserved. This file is distributed under the terms *)
(* described in file ../../LICENSE. *)
(* *)
(***********************************************************************)
open RTL
open Camlcoq
open Graph.Pack.Digraph
open Op
open Registers
open Memory
open Mem
open AST
open SPBase_types
open SPSymbolic_evaluation
type node = instruction * int
module G = Graph.Persistent.Digraph.AbstractLabeled
(struct type t = node end)
(struct type t = int let compare = compare let default = 0 end)
module Topo = Graph.Topological.Make (G)
module Dom = Graph.Dominator.Make (G)
module Index = Map.Make (struct type t = int let compare = compare end)
let string_of_instruction node =
match G.V.label node with
| (Inop,n) -> Printf.sprintf "%i nop" n
| (Iop (op, args, dst),n) -> Printf.sprintf "%i r%i := %s %s" n (to_int dst) (string_of_op op) (string_of_args args)
| (Iload (chunk, mode, args, dst),n) -> Printf.sprintf "%i r%i := load %s" n (to_int dst) (string_of_args args)
| (Istore (chunk, mode, args, src),n) -> Printf.sprintf "%i store %i %s" n (to_int src) (string_of_args args)
| (Icall (sign, id, args, dst),n) -> Printf.sprintf "%i call" n
| (Itailcall (sign, id, args),n) -> Printf.sprintf "%i tailcall" n
(* | (Ialloc (dst, size),n) -> Printf.sprintf "%i %i := alloc" n (to_int dst) *)
| (Icond (cond, args),n) -> Printf.sprintf "%i cond %s %s" n (string_of_cond cond) (string_of_args args)
| (Ireturn (res),n) -> Printf.sprintf "%i return" n
let string_of_node = string_of_instruction
module Display = struct
include G
let vertex_name v = print_inst (V.label v)
let graph_attributes _ = []
let default_vertex_attributes _ = []
let vertex_attributes v = [`Label (string_of_instruction v)]
let default_edge_attributes _ = []
let edge_attributes e = [`Label (string_of_int (G.E.label e))]
let get_subgraph _ = None
end
module Dot_ = Graph.Graphviz.Dot(Display)
let dot_output g f =
let oc = open_out f in
Dot_.output_graph oc g;
close_out oc
let display g name =
let addr = SPDebug.name ^ name in
dot_output g addr ;
ignore (Sys.command ("(dot -Tpng " ^ addr ^ " -o " ^ addr ^ ".png ; rm -f " ^ addr ^ ") & "))
(******************************************)
type cfg = {graph : G.t; start : G.V.t}
(* convert traduit un graphe RTL compcert en un graphe RTL ocamlgraph*)
let convert f =
let make_node inst key =
let inst = inst_coq_to_caml inst in
G.V.create (inst, to_int key)
in
let (graph, index) = Maps.PTree.fold (fun (g,m) key inst ->
let node = make_node inst key in
(G.add_vertex g node, Index.add (to_int key) node m)
) f.fn_code (G.empty,Index.empty)
in
let succ = RTL.successors_map f in
let rec link n succs g =
match succs with
| [] -> g
| pos::[] ->
G.add_edge g (Index.find (to_int n) index) (Index.find (to_int pos) index)
| pos1::pos2::[] ->
let g = G.add_edge_e g (G.E.create (Index.find (to_int n) index) 1 (Index.find (to_int pos1) index)) in
G.add_edge_e g (G.E.create (Index.find (to_int n) index) 2 (Index.find (to_int pos2) index))
| _ -> failwith "convert : trop de successeurs"
in
let graph = Maps.PTree.fold ( fun g key inst ->
link key (match Maps.PTree.get key succ with
Some x -> x | _ -> failwith "Could not index") g
) f.fn_code graph
in
{graph = graph; start = Index.find (to_int (f.fn_entrypoint)) index}
let convert_back g =
G.fold_vertex (fun node m ->
let v = G.V.label node in
match (fst v) with
| Icond (_,_) ->
begin
let l =
match G.succ_e g node with
| [e1;e2] ->
if G.E.label e1 > G.E.label e2
then [G.E.dst e2;G.E.dst e1]
else [G.E.dst e1;G.E.dst e2]
| _ -> failwith "convert_back: nombre de successeurs incoherent"
in
let succs = List.map (fun s -> to_binpos (snd (G.V.label s))) l in
Maps.PTree.set (to_binpos (snd v)) (inst_caml_to_coq (fst v) succs) m
end
| _ ->
let succs = List.map (fun s -> to_binpos (snd (G.V.label s))) (G.succ g node) in
Maps.PTree.set (to_binpos (snd v)) (inst_caml_to_coq (fst v) succs) m
) g Maps.PTree.empty
(* dominator_tree calcule l'arbre de domination grace au code de FP *)
let dominator_tree f =
Dom.compute_idom f.graph f.start
(* detect_loops, find the loops in the graph and returns the list of nodes in it,
in dominating order !!! This is of great importance, we suppose that it is ordered
when we build the dependency graph *)
let detect_loops graph dom_tree =
let rec is_dominating v1 v2 l = (* does v1 dominate v2 *)
match dom_tree v2 with
| v -> if v1 = v then Some (v :: l)
else is_dominating v1 v (v :: l)
| exception (Not_found) -> None
in
G.fold_edges (fun v1 v2 loops ->
match is_dominating v2 v1 [v1] with
| None -> loops
| Some loop -> (v2,loop) :: loops
) graph []
let print_index node =
Printf.printf "%i " (snd (G.V.label node))
let print_instruction node =
match G.V.label node with
| (Inop,n) -> Printf.printf "%i : Inop \n" n
| (Iop (op, args, dst),n) -> Printf.printf "%i : Iop \n" n
| (Iload (chunk, mode, args, dst),n) -> Printf.printf "%i : Iload \n" n
| (Istore (chunk, mode, args, src),n) -> Printf.printf "%i : Istore \n" n
| (Icall (sign, id, args, dst),n) -> Printf.printf "%i : Icall \n" n
| (Itailcall (sign, id, args),n) -> Printf.printf "%i : Itailcall \n" n
(*| (Ialloc (dst, size),n) -> Printf.printf "%i : Ialloc \n" n *)
| (Icond (cond, args),n) -> Printf.printf "%i : Icond \n" n
| (Ireturn (res),n) -> Printf.printf "%i : Ireturn \n" n
let is_rewritten node r =
match fst (G.V.label node) with
| Inop -> false
| Iop (op, args, dst) -> if dst = r then true else false
| Iload (chunk, mode, args, dst) -> if dst = r then failwith "J'ai degote une boucle ZARBI !!!" else false
| Istore (chunk, mode, args, src) -> false
| Icall (sign, id, args, dst) -> failwith "call in a loop"
| Itailcall (sign, id, args) -> failwith "tailcall in a loop"
(* | Ialloc (dst, size) -> if dst = r then failwith "J'ai degote une boucle ZARBI !!!" else false *)
| Icond (cond, args) -> false
| Ireturn (res) -> failwith "return in a loop"
let is_variant r loop =
List.fold_right (fun node b ->
is_rewritten node r || b
) loop false
let is_pipelinable loop = (* true if loop is innermost and without control *)
let is_acceptable node =
match fst (G.V.label node) with
| Icall _ | Itailcall _ | Ireturn _ | Icond _ (*| Ialloc _*) | Iop ((Ocmp _),_,_)-> false
| _ -> true
in
let is_branching node =
match fst (G.V.label node) with
| Icond _ -> true
| _ -> false
in
let is_nop node =
match fst (G.V.label node) with
| Inop -> true
| _ -> false
in
let is_OK_aux l =
List.fold_right (fun n b -> is_acceptable n && b) l true
in
let is_bounded node loop =
match G.V.label node with
| (Icond (cond, args),n) ->
let args = to_caml_list args in
begin
match args with
| [] -> false
| r :: [] -> is_variant r loop (* used to be not *)
| r1 :: r2 :: [] ->
begin
match is_variant r1 loop, is_variant r2 loop with
| true, true -> false
| false, true -> true
| true, false -> true
| false, false -> false
end
| _ -> false
end
| _ -> false
in
match List.rev loop with
| v2 :: v1 :: l -> ((*Printf.printf "is_nop: %s | " (is_nop v1 |> string_of_bool);*)
Printf.printf "is_branching: %s | " (is_branching v2 |> string_of_bool);
Printf.printf "is_OK_aux: %s | " (is_OK_aux l |> string_of_bool);
Printf.printf "is_bounded: %s\n" (is_bounded v2 loop |> string_of_bool);
(*is_nop v1 && *)is_branching v2 && is_OK_aux l && is_bounded v2 loop)
| _ -> false
let print_loops loops =
List.iter (fun loop -> print_index (fst(loop));
print_newline ();
List.iter print_index (snd(loop));
print_newline ();
if is_pipelinable (snd(loop)) then print_string "PIPELINABLE !" else print_string "WASTE";
print_newline ();
List.iter print_instruction (snd(loop));
print_newline ()
) loops
(* type resource = Reg of reg | Mem *)
module Sim = Map.Make (struct type t = resource let compare = compare end)
let map_get key map =
try Some (Sim.find key map)
with
| Not_found -> None
let rec to_res l =
match l with
| [] -> []
| e :: l -> Reg e :: to_res l
let resources_reads_of node =
match fst (G.V.label node) with
| Inop -> []
| Iop (op, args, dst) -> to_res args
| Iload (chunk, mode, args, dst) -> Mem :: (to_res args)
| Istore (chunk, mode, args, src) -> Mem :: Reg src :: (to_res args)
| Icall (sign, id, args, dst) -> failwith "Resource read of call"
| Itailcall (sign, id, args) -> failwith "Resource read of tailcall"
(*| Ialloc (dst, size) -> [Mem] *)
| Icond (cond, args) -> to_res args
| Ireturn (res) -> failwith "Resource read of return"
let resources_writes_of node =
match fst (G.V.label node) with
| Inop -> []
| Iop (op, args, dst) -> [Reg dst]
| Iload (chunk, mode, args, dst) -> [Reg dst]
| Istore (chunk, mode, args, src) -> [Mem]
| Icall (sign, id, args, dst) -> failwith "Resource read of call"
| Itailcall (sign, id, args) -> failwith "Resource read of tailcall"
(*| Ialloc (dst, size) -> (Reg dst) :: [Mem]*)
| Icond (cond, args) -> []
| Ireturn (res) -> failwith "Resource read of return"
let build_intra_dependency_graph loop =
let rec build_aux graph read write l =
match l with
| [] -> (graph,(read,write))
| v :: l->
let g = G.add_vertex graph v in
let reads = resources_reads_of v in
let writes = resources_writes_of v in
(* dependances RAW *)
let g = List.fold_right (fun r g ->
match map_get r write with
| Some n -> G.add_edge_e g (G.E.create n 1 v)
| None -> g
) reads g in
(* dependances WAR *)
let g = List.fold_right (fun r g ->
match map_get r read with
| Some l -> List.fold_right (fun n g -> G.add_edge_e g (G.E.create n 2 v)) l g
| None -> g
) writes g in
(* dependances WAW *)
let g = List.fold_right (fun r g ->
match map_get r write with
| Some n -> G.add_edge_e g (G.E.create n 3 v)
| None -> g
) writes g in
let write = List.fold_right (fun r m -> Sim.add r v m) writes write in
let read_tmp = List.fold_right (fun r m ->
match map_get r read with
| Some al -> Sim.add r (v :: al) m
| None -> Sim.add r (v :: []) m
) reads read
in
let read = List.fold_right (fun r m -> Sim.add r [] m) writes read_tmp in
build_aux g read write l
in
build_aux G.empty Sim.empty Sim.empty (List.tl loop)
let build_inter_dependency_graph loop =
let rec build_aux2 graph read write l =
match l with
| [] -> graph
| v :: l->
let g = graph in
let reads = resources_reads_of v in
let writes = resources_writes_of v in
(* dependances RAW *)
let g = List.fold_right (fun r g ->
match map_get r write with
| Some n -> (* if n = v then g else *) G.add_edge_e g (G.E.create n 4 v)
| None -> g
) reads g in
(* dependances WAR *)
let g = List.fold_right (fun r g ->
match map_get r read with
| Some l -> List.fold_right
(fun n g -> (* if n = v then g else *) G.add_edge_e g (G.E.create n 5 v)) l g
| None -> g
) writes g in
(* dependances WAW *)
let g = List.fold_right (fun r g ->
match map_get r write with
| Some n -> (* if n = v then g else *) G.add_edge_e g (G.E.create n 6 v)
| None -> g
) writes g in
let write = List.fold_right (fun r m -> Sim.remove r m) writes write in
let read = List.fold_right (fun r m -> Sim.remove r m) writes read in
build_aux2 g read write l
in
let (g,(r,w)) = build_intra_dependency_graph loop in
build_aux2 g r w (List.tl loop)
(* patch_graph prepare le graphe pour la boucle commencant au noeud entry
qui a une borne de boucle bound et pour un software pipelining
de au minimum min tours et de deroulement ur *)
(* this is rather technical so we give many comments *)
(* let n1 = G.V.create (Iop ((Ointconst ur),to_coq_list [],r1),next_pc) in *)
(* let next_pc = next_pc + 1 in *)
(* let n2 = G.V.create (Iop (Odiv,to_coq_list [bound;r1],r2),next_pc) in *)
(* let next_pc = next_pc + 1 in *)
(* let n3 = G.V.create (Iop ((Omulimm ur),to_coq_list [r2],r3),next_pc) in *)
(* let next_pc = next_pc + 1 in *)
(* let n4 = G.V.create (Iop (Osub,to_coq_list [bound;r3],r4),next_pc) in *)
(* let next_pc = next_pc + 1 in *)
(* let n5 = G.V.create (Iop (Omove,to_coq_list [r3],bound),next_pc) in (\* retouchee, [r3],bound *\) *)
let patch_graph graph entry lastone loop bound min ur r1 r2 r3 r4 next_pc prolog epilog ramp_up ramp_down =
(* 1. Break the edge that enters the loop, except for the backedge *)
let preds_e = G.pred_e graph entry in
let wannabes = List.map G.E.src preds_e in
let wannabes = List.filter (fun e -> not (e = lastone)) wannabes in
let graph = List.fold_right (fun e g -> G.remove_edge_e g e) preds_e graph in
let graph = G.add_edge graph lastone entry in
(* 2. Add the test for minimal iterations and link it*)
let cond = G.V.create (Icond ((Ccompimm (Integers.Cle,min)),to_coq_list [bound]), next_pc) in
let graph = G.add_vertex graph cond in
let next_pc = next_pc + 1 in
(* 3. Link its predecessors and successors *)
(* It is false in case there is a condition that points to the entry:
inthis case, the edge should not be labeled with 0 !*)
let graph = List.fold_right (fun n g -> G.add_edge g n cond) wannabes graph in
let graph = G.add_edge_e graph (G.E.create cond 1 entry) in
(* 4. Add the div and modulo code, link it *)
let n1 = G.V.create (Iop ((Ointconst ur),to_coq_list [],r1),next_pc) in
let next_pc = next_pc + 1 in
let n2 = G.V.create (Iop (Odiv,to_coq_list [bound;r1],r2),next_pc) in
let next_pc = next_pc + 1 in
let n3 = G.V.create (Iop (Omove,to_coq_list [bound],r4),next_pc) in
let next_pc = next_pc + 1 in
let n4 = G.V.create (Iop ((Omulimm ur ),to_coq_list [r2],r3),next_pc) in
let next_pc = next_pc + 1 in
let n5 = G.V.create (Iop ((Olea (Aindexed (Z.of_sint (-1)))),to_coq_list [r3],bound),next_pc) in (* retouchee, [r3],bound *)
let next_pc = next_pc + 1 in
let graph = G.add_vertex graph n1 in
let graph = G.add_vertex graph n2 in
let graph = G.add_vertex graph n3 in
let graph = G.add_vertex graph n4 in
let graph = G.add_vertex graph n5 in
let graph = G.add_edge_e graph (G.E.create cond 2 n1) in
let graph = G.add_edge graph n1 n2 in
let graph = G.add_edge graph n2 n3 in
let graph = G.add_edge graph n3 n4 in
let graph = G.add_edge graph n4 n5 in
(* 5. Fabriquer la pipelined loop et la linker, sans la condition d entree *)
let (graph,next_pc,l) = List.fold_right (fun e (g,npc,l) ->
let n = G.V.create (e,npc) in
(G.add_vertex g n, npc+1, n :: l)
) loop (graph,next_pc,[]) in
let pipe_cond = List.hd l in
let pipeline = List.tl l in
let rec link l graph node =
match l with
| n1 :: n2 :: l -> link (n2 :: l) (G.add_edge graph n1 n2) node
| n1 :: [] -> G.add_edge graph n1 node
| _ -> graph
in
let graph = link pipeline graph pipe_cond in
(* link de l entree de la boucle *)
let (graph,next_pc,prolog) = List.fold_right (fun e (g,npc,l) ->
let n = G.V.create (e,npc) in
(G.add_vertex g n, npc+1, n :: l)
) prolog (graph,next_pc,[]) in
let (graph,next_pc,epilog) = List.fold_right (fun e (g,npc,l) ->
let n = G.V.create (e,npc) in
(G.add_vertex g n, npc+1, n :: l)
) epilog (graph,next_pc,[]) in
(* 6. Creation du reste et branchement et la condition *)
let n6 = G.V.create (Iop (Omove,to_coq_list [r4],bound),next_pc) in (* Iop (Omove,to_coq_list [r4],bound) *)
let next_pc = next_pc + 1 in
(* 7. Creation du ramp up *)
let ramp_up = List.map (fun (a,b) -> Iop (Omove, [b], a)) ramp_up in
let (graph,next_pc,ramp_up) = List.fold_right (fun e (g,npc,l) ->
let n = G.V.create (e,npc) in
(G.add_vertex g n, npc+1, n :: l)
) ramp_up (graph,next_pc,[]) in
let next_pc = next_pc + 1 in
let ramp_down = List.map (fun (a,b) -> Iop (Omove,[b],a)) ramp_down in
let (graph,next_pc,ramp_down) = List.fold_right (fun e (g,npc,l) ->
let n = G.V.create (e,npc) in
(G.add_vertex g n, npc+1, n :: l)
) ramp_down (graph,next_pc,[]) in
(* let next_pc = next_pc + 1 in *)
(* Creation des proloque et epilogue *)
let graph = link prolog graph pipe_cond in
let graph = link ramp_up graph (List.hd prolog) in
let graph = link epilog graph (List.hd ramp_down) in
let graph = link ramp_down graph n6 in
let graph = G.add_edge graph n5 (List.hd ramp_up) in
let graph = G.add_edge_e graph (G.E.create pipe_cond 1 (List.hd epilog)) in
let graph = G.add_edge_e graph (G.E.create pipe_cond 2 (List.hd pipeline)) in
(* 8. Retour sur la boucle classique *)
let graph = G.add_edge graph n6 entry in
graph
let regs_of_node node =
match G.V.label node with
| (Inop,n) -> []
| (Iop (op, args, dst),n) -> dst :: (to_caml_list args)
| (Iload (chunk, mode, args, dst),n) -> dst :: (to_caml_list args)
| (Istore (chunk, mode, args, src),n) -> src :: (to_caml_list args)
| (Icall (sign, id, args, dst),n) -> dst :: (to_caml_list args)
| (Itailcall (sign, id, args),n) -> (to_caml_list args)
(*| (Ialloc (dst, size),n) -> [dst]*)
| (Icond (cond, args),n) -> (to_caml_list args)
| (Ireturn (res),n) -> match res with Some res -> [res] | _ -> []
let max_reg_of_graph graph params =
Printf.fprintf SPDebug.dc "Calcul du registre de depart.\n";
let regs = G.fold_vertex (fun node regs ->
(regs_of_node node) @ regs
) graph [] in
let regs = regs @ params in
let max_reg = List.fold_right (fun reg max ->
Printf.fprintf SPDebug.dc "%i " (P.to_int reg);
if Int32.compare (P.to_int32 reg) max > 0
then (P.to_int32 reg)
else max
) regs Int32.zero in
Printf.fprintf SPDebug.dc "MAX REG = %i\n" (Int32.to_int max_reg);
BinPos.Pos.succ (P.of_int32 max_reg)
let get_bound node loop =
match G.V.label node with
| (Icond (cond, args),n) ->
let args = to_caml_list args in
begin
match args with
| [] -> failwith "get_bound: condition sans variables"
| r :: [] -> if is_variant r loop then failwith "Pas de borne dans la boucle" else r (* Modified false to true condition. *)
| r1 :: r2 :: [] ->
begin
match is_variant r1 loop, is_variant r2 loop with
| true, true -> failwith "Pas de borne dans la boucle "
| false, true -> r1
| true, false -> r2
| false, false -> failwith "deux bornes possibles dans la boucle"
end
| _ -> failwith "get_bound: condition avec nombre de variables superieur a 2"
end
| _ -> failwith "get_bound: the node I was given is not a condition\n"
let get_nextpc graph =
(G.fold_vertex (fun node max ->
if (snd (G.V.label node)) > max
then (snd (G.V.label node))
else max
) graph 0) + 1
let substitute_pipeline graph loop steady_state prolog epilog min unrolling ru rd params =
let n1 = max_reg_of_graph graph params in
let n2 = (BinPos.Pos.succ n1) in
let n3 = (BinPos.Pos.succ n2) in
let n4 = (BinPos.Pos.succ n3) in
let way_in = (List.hd loop) in
let way_out = (List.hd (List.rev loop)) in
let bound = (get_bound way_out loop) in
let min = Z.of_sint min in
let unrolling = Z.of_sint unrolling in
let next_pc = get_nextpc graph in
patch_graph graph way_in way_out steady_state bound min unrolling n1 n2 n3 n4 next_pc prolog epilog ru rd
let get_loops cfg =
let domi = dominator_tree cfg in
let loops = detect_loops cfg.graph domi in
print_loops loops;
let loops = List.filter (fun loop -> is_pipelinable (snd (loop))) loops in
loops
type pipeline = {steady_state : G.V.t list; prolog : G.V.t list; epilog : G.V.t list;
min : int; unrolling : int; ramp_up : (reg * reg) list; ramp_down : (reg * reg) list}
let delete_indexes l = List.map (fun e -> fst (G.V.label e) ) l
type reg = Registers.reg
let fresh = ref BinNums.Coq_xH
let distance e =
match G.E.label e with
| 1 | 2 | 3 -> 0
| _ -> 1
type et = IntraRAW | IntraWAW | IntraWAR | InterRAW | InterWAW | InterWAR
let edge_type e =
match G.E.label e with
| 1 -> IntraRAW
| 2 -> IntraWAR
| 3 -> IntraWAW
| 4 -> InterRAW
| 5 -> InterWAR
| 6 -> InterWAW
| _ -> failwith "Unknown edge type"
let latency n = (* A raffiner *)
match fst (G.V.label n) with
| Iop (op,args, dst) ->
begin
match op with
| Omove -> 1
(*| Oaddimm _ -> 1*)
(*| Oadd -> 2*)
| Omul -> 4
| Odiv -> 30
| Omulimm _ -> 4
| _ -> 2
end
| Iload _ -> 1
(* | Ialloc _ -> 20*)
| _ -> 1
let reforge_writes inst r =
G.V.create ((match fst (G.V.label inst) with
| Inop -> Inop
| Iop (op, args, dst) -> Iop (op, args, r)
| Iload (chunk, mode, args, dst) -> Iload (chunk, mode, args, r)
| Istore (chunk, mode, args, src) -> Istore (chunk, mode, args, src)
| Icall (sign, id, args, dst) -> failwith "reforge_writes: call"
| Itailcall (sign, id, args) -> failwith "reforge_writes: tailcall"
(* | Ialloc (dst, size) -> Ialloc (r, size)*)
| Icond (cond, args) -> Icond (cond, args)
| Ireturn (res) -> failwith "reforge_writes: return")
, snd (G.V.label inst))
let rec reforge_args args oldr newr =
match args with
| [] -> []
| e :: l -> (if e = oldr then newr else e) :: (reforge_args l oldr newr)
let rec mem_args args r =
match args with
| [] -> false
| e :: l -> if e = r then true else mem_args l r
let check_read_exists inst r =
match fst (G.V.label inst) with
| Inop -> false
| Iop (op, args, dst) -> mem_args args r
| Iload (chunk, mode, args, dst) -> mem_args args r
| Istore (chunk, mode, args, src) -> src = r || mem_args args r
| Icall (sign, id, args, dst) -> mem_args args r
| Itailcall (sign, id, args) -> false
(*| Ialloc (dst, size) -> false*)
| Icond (cond, args) -> mem_args args r
| Ireturn (res) -> false
let reforge_reads inst oldr newr =
assert (check_read_exists inst oldr);
G.V.create ((match fst (G.V.label inst) with
| Inop -> Inop
| Iop (op, args, dst) -> Iop (op, reforge_args args oldr newr, dst)
| Iload (chunk, mode, args, dst) -> Iload (chunk, mode, reforge_args args oldr newr, dst)
| Istore (chunk, mode, args, src) -> Istore (chunk, mode, reforge_args args oldr newr , if src = oldr then newr else src)
| Icall (sign, id, args, dst) -> failwith "reforge_reads: call"
| Itailcall (sign, id, args) -> failwith "reforge_reads: tailcall"
(*| Ialloc (dst, size) -> Ialloc (dst, size)*)
| Icond (cond, args) -> Icond (cond, reforge_args args oldr newr)
| Ireturn (res) -> failwith "reforge_reads: return")
, snd (G.V.label inst))
let get_succs_raw ddg node =
let succs = G.succ_e ddg node in
let succs = List.filter (fun succ ->
match G.E.label succ with
| 1 | 4 -> true
| _ -> false
) succs in
List.map (fun e -> G.E.dst e) succs
let written inst =
match fst (G.V.label inst) with
| Inop -> None
| Iop (op, args, dst) -> Some dst
| Iload (chunk, mode, args, dst) -> Some dst
| Istore (chunk, mode, args, src) -> None
| Icall (sign, id, args, dst) -> failwith "written: call"
| Itailcall (sign, id, args) -> failwith "written: tailcall"
(*| Ialloc (dst, size) -> Some dst*)
| Icond (cond, args) -> None
| Ireturn (res) -> failwith "written: return"
let fresh_regs n =
let t = Array.make n (BinNums.Coq_xH) in
for i = 0 to (n - 1) do
Array.set t i (!fresh);
fresh := BinPos.Pos.succ !fresh
done;
t
let print_reg r = Printf.fprintf SPDebug.dc "%i " (P.to_int r)
let is_cond node =
match fst (G.V.label node) with
| Icond _ -> true
| _ -> false
(*******************************************)
let watch_regs l = List.fold_right (fun (a,b) l ->
if List.mem a l then l else a :: l
) l []
let make_moves = List.map (fun (a,b) -> Iop (Omove,[b],a))
let rec repeat l n =
match n with
| 0 -> []
| n -> l @ repeat l (n-1)
let fv = ref 0
let apply_pipeliner f p ?(debug=false) =
Printf.fprintf SPDebug.dc "******************** NEW FUNCTION ***********************\n";
let cfg = convert f in
incr fv;
if debug then display cfg.graph ("input" ^ (string_of_int !fv));
let loops = get_loops cfg in
Printf.fprintf SPDebug.dc "Loops: %d\n" (List.length loops);
let ddgs = List.map (fun (qqch,loop) -> (loop,build_inter_dependency_graph loop)) loops in
let lv = ref 0 in
let graph = List.fold_right (fun (loop,ddg) graph ->
Printf.fprintf SPDebug.dc "__________________ NEW LOOP ____________________\n";
Printf.printf "Pipelinable loop: ";
incr lv;
fresh := (BinPos.Pos.succ
(BinPos.Pos.succ
(BinPos.Pos.succ
(BinPos.Pos.succ
(BinPos.Pos.succ
(max_reg_of_graph graph (to_caml_list f.fn_params)
))))));
Printf.fprintf SPDebug.dc "FRESH = %i \n"
(P.to_int !fresh);
match p ddg with
| Some pipe ->
Printf.printf "Rock On ! Min = %i - Unroll = %i\n" pipe.min pipe.unrolling;
let p = (make_moves pipe.ramp_up) @ (delete_indexes pipe.prolog) in
let e = (delete_indexes pipe.epilog) @ (make_moves pipe.ramp_down) in
let b = delete_indexes (List.tl (List.rev loop)) in
let bt = (List.tl (delete_indexes pipe.steady_state)) in
let cond1 = fst (G.V.label (List.hd (List.rev loop))) in
let cond2 = (List.hd (delete_indexes pipe.steady_state)) in
let bu = symbolic_evaluation (repeat b (pipe.min + 1)) in
let pe = symbolic_evaluation (p @ e) in
let bte = symbolic_evaluation (bt @ e) in
let ebu = symbolic_evaluation (e @ repeat b pipe.unrolling) in
let regs = watch_regs pipe.ramp_down in
let c1 = symbolic_condition cond1 (repeat b pipe.unrolling) in
let d1 = symbolic_condition cond1 (repeat b (pipe.min + 1)) in
(*let c2 = symbolic_condition cond2 p in
let d2 = symbolic_condition cond2 ((make_moves pipe.ramp_up) @ bt) in*)
let sbt = symbolic_evaluation (bt) in
let sep = symbolic_evaluation (e @ repeat b (pipe.unrolling - (pipe.min + 1)) @ p) in (* er @ pr *)
Printf.printf "Initialisation : %s \n"
(if symbolic_equivalence bu pe regs then "OK" else "FAIL");
Printf.printf "Etat stable : %s \n"
(if symbolic_equivalence bte ebu regs then "OK" else "FAIL");
Printf.printf "Egalite fondamentale : %s \n"
(if symbolic_equivalence sbt sep (watch_regs pipe.ramp_up) then "OK" else "FAIL");
(* Printf.printf "Condition initiale : %s \n"
(if c1 = c2 then "OK" else "FAIL");
Printf.printf "Condition stable : %s \n"
(if d1 = d2 then "OK" else "FAIL");
Printf.fprintf SPDebug.dc "pbte\n";*)
List.iter (fun e ->
Printf.fprintf SPDebug.dc "%s\n"
(string_of_node (G.V.create (e,0)))
) (p @ bt @ e);
Printf.fprintf SPDebug.dc "bu\n";
List.iter (fun e -> Printf.fprintf SPDebug.dc "%s\n"
(string_of_node (G.V.create (e,0)))
) (repeat b (pipe.unrolling + pipe.min));
if debug then
display_st ("pbte"^ (string_of_int !fv) ^ (string_of_int !lv)) (p @ bt @ e) (watch_regs pipe.ramp_down);
if debug then
display_st ("bu"^ (string_of_int !fv) ^ (string_of_int !lv)) (repeat b (pipe.min + pipe.unrolling)) (watch_regs pipe.ramp_down);
if debug then display_st ("bt"^ (string_of_int !fv) ^ (string_of_int !lv)) (bt) (watch_regs pipe.ramp_up);
if debug then display_st ("ep"^ (string_of_int !fv) ^ (string_of_int !lv)) (e @ repeat b (pipe.unrolling - (pipe.min + 1)) @ p) (watch_regs pipe.ramp_up);
substitute_pipeline graph loop
(delete_indexes pipe.steady_state) (delete_indexes pipe.prolog)
(delete_indexes pipe.epilog) (pipe.min + pipe.unrolling)
pipe.unrolling pipe.ramp_up
pipe.ramp_down
(to_caml_list f.fn_params)
| None -> Printf.printf "Damn It ! \n"; graph
) ddgs cfg.graph in
if debug then display graph ("output"^ (string_of_int !fv));
let tg = convert_back graph in
let tg_to_type = {fn_sig = f.fn_sig;
fn_params = f.fn_params;
fn_stacksize = f.fn_stacksize;
fn_code = tg;
fn_entrypoint = f.fn_entrypoint;
(*fn_nextpc = P.of_int ((get_nextpc (graph)))*)
} in
(*SPTyping.type_function tg_to_type;*)
tg_to_type