-
Notifications
You must be signed in to change notification settings - Fork 6
/
train_net_wandb.py
182 lines (153 loc) · 5.5 KB
/
train_net_wandb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Detection Training Script.
This scripts reads a given config file and runs the training or evaluation.
It is an entry point that is made to train standard models in detectron2.
In order to let one script support training of many models,
this script contains logic that are specific to these built-in models and therefore
may not be suitable for your own project.
For example, your research project perhaps only needs a single "evaluator".
Therefore, we recommend you to use detectron2 as an library and take
this file as an example of how to use the library.
You may want to write your own script with your datasets and other customizations.
"""
import logging
import os
from collections import OrderedDict
from pathlib import Path
from typing import Any, Dict
import detectron2.utils.comm as comm
import yaml
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import build_detection_train_loader
from detectron2.engine import (
DefaultTrainer,
default_argument_parser,
default_setup,
hooks,
launch,
)
from detectron2.evaluation import COCOEvaluator, verify_results
from detectron2.modeling import GeneralizedRCNNWithTTA
import wandb
from detectron2_1.datasets import BenignMapper
from detectron2_1.viz import viz_data, viz_preds
# Implement evaluation here
class Trainer(DefaultTrainer):
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
"""
Create evaluator(s) for a given dataset.
This uses the special metadata "evaluator_type" associated with each builtin dataset.
For your own dataset, you can simply create an evaluator manually in your
script and do not have to worry about the hacky if-else logic here.
"""
return COCOEvaluator(dataset_name, cfg, False, cfg.OUTPUT_DIR)
# TODO: Implement TTA
@classmethod
def test_with_TTA(cls, cfg, model):
logger = logging.getLogger("detectron2.trainer")
# In the end of training, run an evaluation with TTA
# Only support some R-CNN models.
logger.info("Running inference with test-time augmentation ...")
model = GeneralizedRCNNWithTTA(cfg, model)
evaluators = [
cls.build_evaluator(
cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA")
)
for name in cfg.DATASETS.TEST
]
res = cls.test(cfg, model, evaluators)
res = OrderedDict({k + "_TTA": v for k, v in res.items()})
return res
# Insert custom data loading logic
@classmethod
def build_train_loader(cls, cfg):
return build_detection_train_loader(
cfg, mapper=BenignMapper(cfg, is_train=True)
)
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
cfg.merge_from_file(args.config_file)
# Can create custom configs fields here too
cfg.merge_from_list(args.opts)
Path(cfg.OUTPUT_DIR).mkdir(exist_ok=True)
cfg.freeze()
default_setup(cfg, args)
return cfg
def load_yaml(yaml_path: Path) -> Dict[str, Any]:
with open(yaml_path, "r") as file:
try:
config = yaml.safe_load(file)
except yaml.YAMLError as exc:
print(exc)
return config
def main(args):
cfg = setup(args)
# Load cfg as python dict
config = load_yaml(args.config_file)
# Setup wandb
wandb.init(
# Use exp name to resume run later on
id=args.exp_name,
project="website-od",
name=args.exp_name,
sync_tensorboard=True,
config=config,
# Resume making use of the same exp name
resume=args.exp_name if args.resume else False,
# dir=cfg.OUTPUT_DIR,
)
# TODO: Visualize and log training examples and annotations
training_imgs = viz_data(cfg)
wandb.log({"training_examples": training_imgs})
# If evaluation
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
# FIXME: TTA
if cfg.TEST.AUG.ENABLED:
res.update(Trainer.test_with_TTA(cfg, model))
if comm.is_main_process():
verify_results(cfg, res)
# If training
else:
trainer = Trainer(cfg)
# Load model weights (if specified)
trainer.resume_or_load(resume=args.resume)
# FIXME: TTA
if cfg.TEST.AUG.ENABLED:
trainer.register_hooks(
[hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model))]
)
# Will evaluation be done at end of training?
res = trainer.train()
# TODO: Visualize and log predictions and groundtruth annotations
pred_imgs = viz_preds(cfg)
wandb.log({"prediction_examples": pred_imgs})
return res
if __name__ == "__main__":
# Create a parser with some common arguments
parser = default_argument_parser()
# Allow user to specify experiment name
parser.add_argument(
"--exp-name", help="name of experiment (for output dir and logging)"
)
args = parser.parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)