-
Notifications
You must be signed in to change notification settings - Fork 69
/
layers.py
761 lines (630 loc) · 29.5 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
"""
EfficientPose (c) by Steinbeis GmbH & Co. KG für Technologietransfer
Haus der Wirtschaft, Willi-Bleicher-Straße 19, 70174 Stuttgart, Germany
Yannick Bukschat: [email protected]
Marcus Vetter: [email protected]
EfficientPose is licensed under a
Creative Commons Attribution-NonCommercial 4.0 International License.
The license can be found in the LICENSE file in the root directory of this source tree
or at http://creativecommons.org/licenses/by-nc/4.0/.
---------------------------------------------------------------------------------------------------------------------------------
---------------------------------------------------------------------------------------------------------------------------------
Based on:
Keras EfficientDet implementation (https://github.com/xuannianz/EfficientDet) licensed under the Apache License, Version 2.0
---------------------------------------------------------------------------------------------------------------------------------
The official EfficientDet implementation (https://github.com/google/automl) licensed under the Apache License, Version 2.0
---------------------------------------------------------------------------------------------------------------------------------
EfficientNet Keras implementation (https://github.com/qubvel/efficientnet) licensed under the Apache License, Version 2.0
---------------------------------------------------------------------------------------------------------------------------------
Keras RetinaNet implementation (https://github.com/fizyr/keras-retinanet) licensed under the Apache License, Version 2.0
"""
# import keras
from tensorflow import keras
import tensorflow as tf
from typeguard import typechecked
from typing import Union, Callable
class BatchNormalization(keras.layers.BatchNormalization):
"""
Identical to keras.layers.BatchNormalization, but adds the option to freeze parameters.
"""
def __init__(self, freeze, *args, **kwargs):
self.freeze = freeze
super(BatchNormalization, self).__init__(*args, **kwargs)
# set to non-trainable if freeze is true
self.trainable = not self.freeze
def call(self, inputs, training=None, **kwargs):
# return super.call, but set training
if not training:
return super(BatchNormalization, self).call(inputs, training=False)
else:
return super(BatchNormalization, self).call(inputs, training=(not self.freeze))
def get_config(self):
config = super(BatchNormalization, self).get_config()
config.update({'freeze': self.freeze})
return config
class wBiFPNAdd(keras.layers.Layer):
"""
Layer that computes a weighted sum of BiFPN feature maps
"""
def __init__(self, epsilon=1e-4, **kwargs):
super(wBiFPNAdd, self).__init__(**kwargs)
self.epsilon = epsilon
def build(self, input_shape):
num_in = len(input_shape)
self.w = self.add_weight(name=self.name,
shape=(num_in,),
initializer=keras.initializers.constant(1 / num_in),
trainable=True,
dtype=tf.float32)
def call(self, inputs, **kwargs):
w = keras.activations.relu(self.w)
x = tf.reduce_sum([w[i] * inputs[i] for i in range(len(inputs))], axis=0)
x = x / (tf.reduce_sum(w) + self.epsilon)
return x
def compute_output_shape(self, input_shape):
return input_shape[0]
def get_config(self):
config = super(wBiFPNAdd, self).get_config()
config.update({
'epsilon': self.epsilon
})
return config
def bbox_transform_inv(boxes, deltas, scale_factors = None):
"""
Reconstructs the 2D bounding boxes using the anchor boxes and the predicted deltas of the anchor boxes to the bounding boxes
Args:
boxes: Tensor containing the anchor boxes with shape (..., 4)
deltas: Tensor containing the offsets of the anchor boxes to the bounding boxes with shape (..., 4)
scale_factors: optional scaling factor for the deltas
Returns:
Tensor containing the reconstructed 2D bounding boxes with shape (..., 4)
"""
cxa = (boxes[..., 0] + boxes[..., 2]) / 2
cya = (boxes[..., 1] + boxes[..., 3]) / 2
wa = boxes[..., 2] - boxes[..., 0]
ha = boxes[..., 3] - boxes[..., 1]
ty, tx, th, tw = deltas[..., 0], deltas[..., 1], deltas[..., 2], deltas[..., 3]
if scale_factors:
ty *= scale_factors[0]
tx *= scale_factors[1]
th *= scale_factors[2]
tw *= scale_factors[3]
w = tf.exp(tw) * wa
h = tf.exp(th) * ha
cy = ty * ha + cya
cx = tx * wa + cxa
ymin = cy - h / 2.
xmin = cx - w / 2.
ymax = cy + h / 2.
xmax = cx + w / 2.
return tf.stack([xmin, ymin, xmax, ymax], axis=-1)
def translation_transform_inv(translation_anchors, deltas, scale_factors = None):
""" Applies the predicted 2D translation center point offsets (deltas) to the translation_anchors
Args
translation_anchors : Tensor of shape (B, N, 3), where B is the batch size, N the number of boxes and 2 values for (x, y) +1 value with the stride.
deltas: Tensor of shape (B, N, 3). The first 2 deltas (d_x, d_y) are a factor of the stride +1 with Tz.
Returns
A tensor of the same shape as translation_anchors, but with deltas applied to each translation_anchors and the last coordinate is the concatenated (untouched) Tz value from deltas.
"""
stride = translation_anchors[:, :, -1]
if scale_factors:
x = translation_anchors[:, :, 0] + (deltas[:, :, 0] * scale_factors[0] * stride)
y = translation_anchors[:, :, 1] + (deltas[:, :, 1] * scale_factors[1] * stride)
else:
x = translation_anchors[:, :, 0] + (deltas[:, :, 0] * stride)
y = translation_anchors[:, :, 1] + (deltas[:, :, 1] * stride)
Tz = deltas[:, :, 2]
pred_translations = tf.stack([x, y, Tz], axis = 2) #x,y 2D Image coordinates and Tz
return pred_translations
class ClipBoxes(keras.layers.Layer):
"""
Layer that clips 2D bounding boxes so that they are inside the image
"""
def call(self, inputs, **kwargs):
image, boxes = inputs
shape = keras.backend.cast(keras.backend.shape(image), keras.backend.floatx())
height = shape[1]
width = shape[2]
x1 = tf.clip_by_value(boxes[:, :, 0], 0, width - 1)
y1 = tf.clip_by_value(boxes[:, :, 1], 0, height - 1)
x2 = tf.clip_by_value(boxes[:, :, 2], 0, width - 1)
y2 = tf.clip_by_value(boxes[:, :, 3], 0, height - 1)
return keras.backend.stack([x1, y1, x2, y2], axis=2)
def compute_output_shape(self, input_shape):
return input_shape[1]
class RegressBoxes(keras.layers.Layer):
"""
Keras layer for applying regression offset values to anchor boxes to get the 2D bounding boxes.
"""
def __init__(self, *args, **kwargs):
super(RegressBoxes, self).__init__(*args, **kwargs)
def call(self, inputs, **kwargs):
anchors, regression = inputs
return bbox_transform_inv(anchors, regression)
def compute_output_shape(self, input_shape):
return input_shape[0]
def get_config(self):
config = super(RegressBoxes, self).get_config()
return config
class RegressTranslation(keras.layers.Layer):
"""
Keras layer for applying regression offset values to translation anchors to get the 2D translation centerpoint and Tz.
"""
def __init__(self, *args, **kwargs):
"""Initializer for the RegressTranslation layer.
"""
super(RegressTranslation, self).__init__(*args, **kwargs)
def call(self, inputs, **kwargs):
translation_anchors, regression_offsets = inputs
return translation_transform_inv(translation_anchors, regression_offsets)
def compute_output_shape(self, input_shape):
# return input_shape[0]
return input_shape[1]
def get_config(self):
config = super(RegressTranslation, self).get_config()
return config
class CalculateTxTy(keras.layers.Layer):
""" Keras layer for calculating the Tx- and Ty-Components of the Translationvector with a given 2D-point and the intrinsic camera parameters.
"""
def __init__(self, *args, **kwargs):
""" Initializer for an CalculateTxTy layer.
"""
super(CalculateTxTy, self).__init__(*args, **kwargs)
def call(self, inputs, fx = 572.4114, fy = 573.57043, px = 325.2611, py = 242.04899, tz_scale = 1000.0, image_scale = 1.6666666666666667, **kwargs):
# Tx = (cx - px) * Tz / fx
# Ty = (cy - py) * Tz / fy
fx = tf.expand_dims(fx, axis = -1)
fy = tf.expand_dims(fy, axis = -1)
px = tf.expand_dims(px, axis = -1)
py = tf.expand_dims(py, axis = -1)
tz_scale = tf.expand_dims(tz_scale, axis = -1)
image_scale = tf.expand_dims(image_scale, axis = -1)
x = inputs[:, :, 0] / image_scale
y = inputs[:, :, 1] / image_scale
tz = inputs[:, :, 2] * tz_scale
x = x - px
y = y - py
tx = tf.math.multiply(x, tz) / fx
ty = tf.math.multiply(y, tz) / fy
output = tf.stack([tx, ty, tz], axis = -1)
return output
def compute_output_shape(self, input_shape):
return input_shape
def get_config(self):
config = super(CalculateTxTy, self).get_config()
return config
def filter_detections(
boxes,
classification,
rotation,
translation,
num_rotation_parameters,
num_translation_parameters = 3,
class_specific_filter = True,
nms = True,
score_threshold = 0.01,
max_detections = 100,
nms_threshold = 0.5,
):
"""
Filter detections using the boxes and classification values.
Args
boxes: Tensor of shape (num_boxes, 4) containing the boxes in (x1, y1, x2, y2) format.
classification: Tensor of shape (num_boxes, num_classes) containing the classification scores.
rotation: Tensor of shape (num_boxes, num_rotation_parameters) containing the rotations.
translation: Tensor of shape (num_boxes, 3) containing the translation vectors.
num_rotation_parameters: Number of rotation parameters, usually 3 for axis angle representation
num_translation_parameters: Number of translation parameters, usually 3
class_specific_filter: Whether to perform filtering per class, or take the best scoring class and filter those.
nms: Flag to enable/disable non maximum suppression.
score_threshold: Threshold used to prefilter the boxes with.
max_detections: Maximum number of detections to keep.
nms_threshold: Threshold for the IoU value to determine when a box should be suppressed.
Returns
A list of [boxes, scores, labels, rotation, translation].
boxes is shaped (max_detections, 4) and contains the (x1, y1, x2, y2) of the non-suppressed boxes.
scores is shaped (max_detections,) and contains the scores of the predicted class.
labels is shaped (max_detections,) and contains the predicted label.
rotation is shaped (max_detections, num_rotation_parameters) and contains the rotations of the non-suppressed predictions.
translation is shaped (max_detections, num_translation_parameters) and contains the translations of the non-suppressed predictions.
In case there are less than max_detections detections, the tensors are padded with -1's.
"""
def _filter_detections(scores_, labels_):
# threshold based on score
# (num_score_keeps, 1)
indices_ = tf.where(keras.backend.greater(scores_, score_threshold))
if nms:
# (num_score_keeps, 4)
filtered_boxes = tf.gather_nd(boxes, indices_)
# In [4]: scores = np.array([0.1, 0.5, 0.4, 0.2, 0.7, 0.2])
# In [5]: tf.greater(scores, 0.4)
# Out[5]: <tf.Tensor: id=2, shape=(6,), dtype=bool, numpy=array([False, True, False, False, True, False])>
# In [6]: tf.where(tf.greater(scores, 0.4))
# Out[6]:
# <tf.Tensor: id=7, shape=(2, 1), dtype=int64, numpy=
# array([[1],
# [4]])>
#
# In [7]: tf.gather(scores, tf.where(tf.greater(scores, 0.4)))
# Out[7]:
# <tf.Tensor: id=15, shape=(2, 1), dtype=float64, numpy=
# array([[0.5],
# [0.7]])>
filtered_scores = keras.backend.gather(scores_, indices_)[:, 0]
# perform NMS
# filtered_boxes = tf.concat([filtered_boxes[..., 1:2], filtered_boxes[..., 0:1],
# filtered_boxes[..., 3:4], filtered_boxes[..., 2:3]], axis=-1)
nms_indices = tf.image.non_max_suppression(filtered_boxes, filtered_scores, max_output_size=max_detections,
iou_threshold=nms_threshold)
# filter indices based on NMS
# (num_score_nms_keeps, 1)
indices_ = keras.backend.gather(indices_, nms_indices)
# add indices to list of all indices
# (num_score_nms_keeps, )
labels_ = tf.gather_nd(labels_, indices_)
# (num_score_nms_keeps, 2)
indices_ = keras.backend.stack([indices_[:, 0], labels_], axis=1)
return indices_
if class_specific_filter:
all_indices = []
# perform per class filtering
for c in range(int(classification.shape[1])):
scores = classification[:, c]
labels = c * tf.ones((keras.backend.shape(scores)[0],), dtype='int64')
all_indices.append(_filter_detections(scores, labels))
# concatenate indices to single tensor
# (concatenated_num_score_nms_keeps, 2)
indices = keras.backend.concatenate(all_indices, axis=0)
else:
scores = keras.backend.max(classification, axis=1)
labels = keras.backend.argmax(classification, axis=1)
indices = _filter_detections(scores, labels)
# select top k
scores = tf.gather_nd(classification, indices)
labels = indices[:, 1]
scores, top_indices = tf.nn.top_k(scores, k=keras.backend.minimum(max_detections, keras.backend.shape(scores)[0]))
# filter input using the final set of indices
indices = keras.backend.gather(indices[:, 0], top_indices)
boxes = keras.backend.gather(boxes, indices)
labels = keras.backend.gather(labels, top_indices)
rotation = keras.backend.gather(rotation, indices)
translation = keras.backend.gather(translation, indices)
# zero pad the outputs
pad_size = keras.backend.maximum(0, max_detections - keras.backend.shape(scores)[0])
boxes = tf.pad(boxes, [[0, pad_size], [0, 0]], constant_values=-1)
scores = tf.pad(scores, [[0, pad_size]], constant_values=-1)
labels = tf.pad(labels, [[0, pad_size]], constant_values=-1)
labels = keras.backend.cast(labels, 'int32')
rotation = tf.pad(rotation, [[0, pad_size], [0, 0]], constant_values=-1)
translation = tf.pad(translation, [[0, pad_size], [0, 0]], constant_values=-1)
# set shapes, since we know what they are
boxes.set_shape([max_detections, 4])
scores.set_shape([max_detections])
labels.set_shape([max_detections])
rotation.set_shape([max_detections, num_rotation_parameters])
translation.set_shape([max_detections, num_translation_parameters])
return [boxes, scores, labels, rotation, translation]
class FilterDetections(keras.layers.Layer):
"""
Keras layer for filtering detections using score threshold and NMS.
"""
def __init__(
self,
num_rotation_parameters,
num_translation_parameters = 3,
nms = True,
class_specific_filter = True,
nms_threshold = 0.5,
score_threshold = 0.01,
max_detections = 100,
parallel_iterations = 32,
**kwargs
):
"""
Filters detections using score threshold, NMS and selecting the top-k detections.
Args
num_rotation_parameters: Number of rotation parameters, usually 3 for axis angle representation
num_translation_parameters: Number of translation parameters, usually 3
nms: Flag to enable/disable NMS.
class_specific_filter: Whether to perform filtering per class, or take the best scoring class and filter those.
nms_threshold: Threshold for the IoU value to determine when a box should be suppressed.
score_threshold: Threshold used to prefilter the boxes with.
max_detections: Maximum number of detections to keep.
parallel_iterations: Number of batch items to process in parallel.
"""
self.nms = nms
self.class_specific_filter = class_specific_filter
self.nms_threshold = nms_threshold
self.score_threshold = score_threshold
self.max_detections = max_detections
self.parallel_iterations = parallel_iterations
self.num_rotation_parameters = num_rotation_parameters
self.num_translation_parameters = num_translation_parameters
super(FilterDetections, self).__init__(**kwargs)
def call(self, inputs, **kwargs):
"""
Constructs the NMS graph.
Args
inputs : List of [boxes, classification, rotation, translation] tensors.
"""
boxes = inputs[0]
classification = inputs[1]
rotation = inputs[2]
translation = inputs[3]
# wrap nms with our parameters
def _filter_detections(args):
boxes_ = args[0]
classification_ = args[1]
rotation_ = args[2]
translation_ = args[3]
return filter_detections(
boxes_,
classification_,
rotation_,
translation_,
self.num_rotation_parameters,
self.num_translation_parameters,
nms = self.nms,
class_specific_filter = self.class_specific_filter,
score_threshold = self.score_threshold,
max_detections = self.max_detections,
nms_threshold = self.nms_threshold,
)
# call filter_detections on each batch item
outputs = tf.map_fn(
_filter_detections,
elems=[boxes, classification, rotation, translation],
dtype=['float32', 'float32', 'int32', 'float32', 'float32'],
parallel_iterations=self.parallel_iterations
)
return outputs
def compute_output_shape(self, input_shape):
"""
Computes the output shapes given the input shapes.
Args
input_shape : List of input shapes [boxes, classification, rotation, translation].
Returns
List of tuples representing the output shapes:
[filtered_boxes.shape, filtered_scores.shape, filtered_labels.shape, filtered_rotation.shape, filtered_translation.shape]
"""
return [
(input_shape[0][0], self.max_detections, 4),
(input_shape[1][0], self.max_detections),
(input_shape[1][0], self.max_detections),
(input_shape[2][0], self.max_detections, self.num_rotation_parameters),
(input_shape[3][0], self.max_detections, self.num_translation_parameters),
]
def compute_mask(self, inputs, mask = None):
"""
This is required in Keras when there is more than 1 output.
"""
return (len(inputs) + 1) * [None]
def get_config(self):
"""
Gets the configuration of this layer.
Returns
Dictionary containing the parameters of this layer.
"""
config = super(FilterDetections, self).get_config()
config.update({
'nms': self.nms,
'class_specific_filter': self.class_specific_filter,
'nms_threshold': self.nms_threshold,
'score_threshold': self.score_threshold,
'max_detections': self.max_detections,
'parallel_iterations': self.parallel_iterations,
'num_rotation_parameters': self.num_rotation_parameters,
'num_translation_parameters': self.num_translation_parameters,
})
return config
#copied from tensorflow addons source because tensorflow addons needs tf 2.x https://github.com/tensorflow/addons/blob/v0.11.2/tensorflow_addons/layers/normalizations.py#L26-L279
class GroupNormalization(tf.keras.layers.Layer):
"""Group normalization layer.
Group Normalization divides the channels into groups and computes
within each group the mean and variance for normalization.
Empirically, its accuracy is more stable than batch norm in a wide
range of small batch sizes, if learning rate is adjusted linearly
with batch sizes.
Relation to Layer Normalization:
If the number of groups is set to 1, then this operation becomes identical
to Layer Normalization.
Relation to Instance Normalization:
If the number of groups is set to the
input dimension (number of groups is equal
to number of channels), then this operation becomes
identical to Instance Normalization.
Arguments
groups: Integer, the number of groups for Group Normalization.
Can be in the range [1, N] where N is the input dimension.
The input dimension must be divisible by the number of groups.
axis: Integer, the axis that should be normalized.
epsilon: Small float added to variance to avoid dividing by zero.
center: If True, add offset of `beta` to normalized tensor.
If False, `beta` is ignored.
scale: If True, multiply by `gamma`.
If False, `gamma` is not used.
beta_initializer: Initializer for the beta weight.
gamma_initializer: Initializer for the gamma weight.
beta_regularizer: Optional regularizer for the beta weight.
gamma_regularizer: Optional regularizer for the gamma weight.
beta_constraint: Optional constraint for the beta weight.
gamma_constraint: Optional constraint for the gamma weight.
Input shape
Arbitrary. Use the keyword argument `input_shape`
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.
Output shape
Same shape as input.
References
- [Group Normalization](https://arxiv.org/abs/1803.08494)
"""
@typechecked
def __init__(
self,
groups: int = 2,
axis: int = -1,
epsilon: float = 1e-3,
center: bool = True,
scale: bool = True,
beta_initializer: Union[None, dict, str, Callable] = "zeros",
gamma_initializer: Union[None, dict, str, Callable] = "ones",
beta_regularizer: Union[None, dict, str, Callable] = None,
gamma_regularizer: Union[None, dict, str, Callable] = None,
beta_constraint: Union[None, dict, str, Callable] = None,
gamma_constraint: Union[None, dict, str, Callable] = None,
**kwargs
):
super().__init__(**kwargs)
self.supports_masking = True
self.groups = groups
self.axis = axis
self.epsilon = epsilon
self.center = center
self.scale = scale
self.beta_initializer = tf.keras.initializers.get(beta_initializer)
self.gamma_initializer = tf.keras.initializers.get(gamma_initializer)
self.beta_regularizer = tf.keras.regularizers.get(beta_regularizer)
self.gamma_regularizer = tf.keras.regularizers.get(gamma_regularizer)
self.beta_constraint = tf.keras.constraints.get(beta_constraint)
self.gamma_constraint = tf.keras.constraints.get(gamma_constraint)
self._check_axis()
def build(self, input_shape):
self._check_if_input_shape_is_none(input_shape)
self._set_number_of_groups_for_instance_norm(input_shape)
self._check_size_of_dimensions(input_shape)
self._create_input_spec(input_shape)
self._add_gamma_weight(input_shape)
self._add_beta_weight(input_shape)
self.built = True
super().build(input_shape)
def call(self, inputs):
input_shape = tf.keras.backend.int_shape(inputs)
tensor_input_shape = tf.shape(inputs)
reshaped_inputs, group_shape = self._reshape_into_groups(
inputs, input_shape, tensor_input_shape
)
normalized_inputs = self._apply_normalization(reshaped_inputs, input_shape)
outputs = tf.reshape(normalized_inputs, tensor_input_shape)
return outputs
def get_config(self):
config = {
"groups": self.groups,
"axis": self.axis,
"epsilon": self.epsilon,
"center": self.center,
"scale": self.scale,
"beta_initializer": tf.keras.initializers.serialize(self.beta_initializer),
"gamma_initializer": tf.keras.initializers.serialize(
self.gamma_initializer
),
"beta_regularizer": tf.keras.regularizers.serialize(self.beta_regularizer),
"gamma_regularizer": tf.keras.regularizers.serialize(
self.gamma_regularizer
),
"beta_constraint": tf.keras.constraints.serialize(self.beta_constraint),
"gamma_constraint": tf.keras.constraints.serialize(self.gamma_constraint),
}
base_config = super().get_config()
return {**base_config, **config}
def compute_output_shape(self, input_shape):
return input_shape
def _reshape_into_groups(self, inputs, input_shape, tensor_input_shape):
group_shape = [tensor_input_shape[i] for i in range(len(input_shape))]
group_shape[self.axis] = input_shape[self.axis] // self.groups
group_shape.insert(self.axis, self.groups)
group_shape = tf.stack(group_shape)
reshaped_inputs = tf.reshape(inputs, group_shape)
return reshaped_inputs, group_shape
def _apply_normalization(self, reshaped_inputs, input_shape):
group_shape = tf.keras.backend.int_shape(reshaped_inputs)
group_reduction_axes = list(range(1, len(group_shape)))
axis = -2 if self.axis == -1 else self.axis - 1
group_reduction_axes.pop(axis)
mean, variance = tf.nn.moments(
reshaped_inputs, group_reduction_axes, keepdims=True
)
gamma, beta = self._get_reshaped_weights(input_shape)
normalized_inputs = tf.nn.batch_normalization(
reshaped_inputs,
mean=mean,
variance=variance,
scale=gamma,
offset=beta,
variance_epsilon=self.epsilon,
)
return normalized_inputs
def _get_reshaped_weights(self, input_shape):
broadcast_shape = self._create_broadcast_shape(input_shape)
gamma = None
beta = None
if self.scale:
gamma = tf.reshape(self.gamma, broadcast_shape)
if self.center:
beta = tf.reshape(self.beta, broadcast_shape)
return gamma, beta
def _check_if_input_shape_is_none(self, input_shape):
dim = input_shape[self.axis]
if dim is None:
raise ValueError(
"Axis " + str(self.axis) + " of "
"input tensor should have a defined dimension "
"but the layer received an input with shape " + str(input_shape) + "."
)
def _set_number_of_groups_for_instance_norm(self, input_shape):
dim = input_shape[self.axis]
if self.groups == -1:
self.groups = dim
def _check_size_of_dimensions(self, input_shape):
dim = input_shape[self.axis]
if dim < self.groups:
raise ValueError(
"Number of groups (" + str(self.groups) + ") cannot be "
"more than the number of channels (" + str(dim) + ")."
)
if dim % self.groups != 0:
raise ValueError(
"Number of groups (" + str(self.groups) + ") must be a "
"multiple of the number of channels (" + str(dim) + ")."
)
def _check_axis(self):
if self.axis == 0:
raise ValueError(
"You are trying to normalize your batch axis. Do you want to "
"use tf.layer.batch_normalization instead"
)
def _create_input_spec(self, input_shape):
dim = input_shape[self.axis]
self.input_spec = tf.keras.layers.InputSpec(
ndim=len(input_shape), axes={self.axis: dim}
)
def _add_gamma_weight(self, input_shape):
dim = input_shape[self.axis]
shape = (dim,)
if self.scale:
self.gamma = self.add_weight(
shape=shape,
name="gamma",
initializer=self.gamma_initializer,
regularizer=self.gamma_regularizer,
constraint=self.gamma_constraint,
)
else:
self.gamma = None
def _add_beta_weight(self, input_shape):
dim = input_shape[self.axis]
shape = (dim,)
if self.center:
self.beta = self.add_weight(
shape=shape,
name="beta",
initializer=self.beta_initializer,
regularizer=self.beta_regularizer,
constraint=self.beta_constraint,
)
else:
self.beta = None
def _create_broadcast_shape(self, input_shape):
broadcast_shape = [1] * len(input_shape)
broadcast_shape[self.axis] = input_shape[self.axis] // self.groups
broadcast_shape.insert(self.axis, self.groups)
return broadcast_shape