The examples in this folder shows how to use LangChain with ipex-llm
on Intel GPU.
Follow the instructions in GPU Install Guide to install ipex-llm
Note
Skip this step if you are running on Windows.
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
source /opt/intel/oneapi/setvars.sh
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
For Intel Data Center GPU Max Series
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
Note: Please note that
libtcmalloc.so
can be installed byconda install -c conda-forge -y gperftools=2.10
.
For Intel iGPU
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1
For Intel iGPU
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
For Intel Arc™ A-Series Graphics
set SYCL_CACHE_PERSISTENT=1
Note
For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
Install dependencies:
pip install langchain==0.0.184
pip install -U pandas==2.0.3
Then execute:
python chat.py -m MODEL_PATH -q QUESTION
arguments info:
-m MODEL_PATH
: required, path to the model-q QUESTION
: question to ask. Default isWhat is AI?
.
Install dependencies:
pip install langchain==0.0.184
pip install -U chromadb==0.3.25
pip install -U pandas==2.0.3
Then execute:
python rag.py -m <path_to_model> [-q QUESTION] [-i INPUT_PATH]
arguments info:
-m MODEL_PATH
: required, path to the model.-q QUESTION
: question to ask. Default isWhat is IPEX?
.-i INPUT_PATH
: path to the input doc.
The low_bit example (low_bit.py) showcases how to use use langchain with low_bit optimized model.
By save_low_bit
we save the weights of low_bit model into the target folder.
Note:
save_low_bit
only saves the weights of the model. Users could copy the tokenizer model into the target folder or specifytokenizer_id
during initialization.
Install dependencies:
pip install langchain==0.0.184
pip install -U pandas==2.0.3
Then execute:
python low_bit.py -m <path_to_model> -t <path_to_target> [-q <your question>]
Runtime Arguments Explained:
-m MODEL_PATH
: Required, the path to the model-t TARGET_PATH
: Required, the path to save the low_bit model-q QUESTION
: the question
The vLLM example (vllm.py) showcases how to use langchain with ipex-llm integrated vLLM engine.
Install dependencies:
pip install "langchain<0.2"
Besides, you should also install IPEX-LLM integrated vLLM according instructions listed here
Runtime Arguments Explained:
-m MODEL_PATH
: Required, the path to the model-q QUESTION
: the question-t MAX_TOKENS
: max tokens to generate, default 128-p TENSOR_PARALLEL_SIZE
: Use multiple cards for generation-l LOAD_IN_LOW_BIT
: Low bit format for quantization
The following command shows an example on how to execute the example using one card:
python ./vllm.py -m YOUR_MODEL_PATH -q "What is AI?" -t 128 -p 1 -l sym_int4
To use -p TENSOR_PARALLEL_SIZE
option, you will need to use our docker image: intelanalytics/ipex-llm-serving-xpu:latest
. For how to use the image, try check this guide.
The following command shows an example on how to execute the example using two cards:
export CCL_WORKER_COUNT=2
export FI_PROVIDER=shm
export CCL_ATL_TRANSPORT=ofi
export CCL_ZE_IPC_EXCHANGE=sockets
export CCL_ATL_SHM=1
python ./vllm.py -m YOUR_MODEL_PATH -q "What is AI?" -t 128 -p 2 -l sym_int4