This example shows how to directly run 4-bit AWQ models using IPEX-LLM on Intel GPU.
- Llama-2-7B-Chat-AWQ
- CodeLlama-7B-AWQ
- Mistral-7B-Instruct-v0.1-AWQ
- Mistral-7B-v0.1-AWQ
- vicuna-7B-v1.5-AWQ
- vicuna-13B-v1.5-AWQ
- llava-v1.5-13B-AWQ
- Yi-6B-AWQ
- Yi-34B-AWQ
- Mixtral-8x7B-Instruct-v0.1-AWQ
To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to here for more information.
In the example generate.py, we show a basic use case for a AWQ model to predict the next N tokens using generate()
API, with IPEX-LLM INT4 optimizations.
We suggest using conda to manage environment:
conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install transformers==4.35.0
pip install autoawq==0.1.8 --no-deps
pip install accelerate==0.25.0
pip install einops
Note: For Mixtral model, please use transformers 4.36.0:
pip install transformers==4.36.0
source /opt/intel/oneapi/setvars.sh
For optimal performance on Arc, it is recommended to set several environment variables.
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
Arguments info:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH
: argument defining the huggingface repo id for the AWQ model (e.g.TheBloke/Llama-2-7B-Chat-AWQ
,TheBloke/Mistral-7B-Instruct-v0.1-AWQ
,TheBloke/Mistral-7B-v0.1-AWQ
) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be'TheBloke/Llama-2-7B-Chat-AWQ'
.--prompt PROMPT
: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be'What is AI?'
.--n-predict N_PREDICT
: argument defining the max number of tokens to predict. It is default to be32
.
Note: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a XB model saved in 16-bit will requires approximately 2X GB of memory for loading, and ~0.5X GB memory for further inference.
Please select the appropriate size of the Llama2 model based on the capabilities of your machine.
Inference time: xxxx s
-------------------- Prompt --------------------
### HUMAN:
What is AI?
### RESPONSE:
-------------------- Output --------------------
### HUMAN:
What is AI?
### RESPONSE:
Artificial intelligence (AI) is the ability of machines to perform tasks that typically require human intelligence, such as learning, problem-solving, decision