-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
133 lines (116 loc) · 4.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import argparse
import logging
import os
import random
import warnings
from pydoc import locate
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from networks.msa2net import Msa2Net
from trainer import trainer_synapse
from fvcore.nn import FlopCountAnalysis
import sys
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser()
parser.add_argument(
"--root_path",
type=str,
default="data/Synapse/train_npz",
help="root dir for train data",
)
parser.add_argument(
"--test_path",
type=str,
default="data/Synapse/test_vol_h5",
help="root dir for test data",
)
parser.add_argument("--dataset", type=str, default="Synapse", help="experiment_name")
parser.add_argument("--list_dir", type=str, default="./lists/lists_Synapse", help="list dir")
parser.add_argument("--num_classes", type=int, default=9, help="output channel of network")
parser.add_argument("--output_dir", type=str, default="./model_out/MSA2Net", help="output dir")
parser.add_argument("--max_iterations", type=int, default=90000, help="maximum epoch number to train")
parser.add_argument("--max_epochs", type=int, default=400, help="maximum epoch number to train")
parser.add_argument("--batch_size", type=int, default=24, help="batch_size per gpu")
parser.add_argument("--num_workers", type=int, default=8, help="num_workers")
parser.add_argument("--eval_interval", type=int, default=20, help="eval_interval")
parser.add_argument("--model_name", type=str, default="msa2net", help="model_name")
parser.add_argument("--n_gpu", type=int, default=1, help="total gpu")
parser.add_argument("--deterministic", type=int, default=1, help="whether to use deterministic training")
parser.add_argument("--base_lr", type=float, default=0.05, help="segmentation network base learning rate")
parser.add_argument("--img_size", type=int, default=224, help="input patch size of network input")
parser.add_argument("--z_spacing", type=int, default=1, help="z_spacing")
parser.add_argument("--seed", type=int, default=1234, help="random seed")
parser.add_argument("--zip", action="store_true", help="use zipped dataset instead of folder dataset")
parser.add_argument(
"--cache-mode",
type=str,
default="part",
choices=["no", "full", "part"],
help="no: no cache, "
"full: cache all data, "
"part: sharding the dataset into nonoverlapping pieces and only cache one piece",
)
parser.add_argument("--resume", help="resume from checkpoint")
parser.add_argument("--accumulation-steps", type=int, help="gradient accumulation steps")
parser.add_argument(
"--use-checkpoint", action="store_true", help="whether to use gradient checkpointing to save memory"
)
parser.add_argument(
"--amp-opt-level",
type=str,
default="O1",
choices=["O0", "O1", "O2"],
help="mixed precision opt level, if O0, no amp is used",
)
parser.add_argument("--tag", help="tag of experiment")
parser.add_argument("--eval", action="store_true", help="Perform evaluation only")
parser.add_argument("--throughput", action="store_true", help="Test throughput only")
args = parser.parse_args()
if __name__ == "__main__":
# setting device on GPU if available, else CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Using device:", device)
print()
# Additional Info when using cuda
if device.type == "cuda":
print(torch.cuda.get_device_name(0))
print("Memory Usage:")
print("Allocated:", round(torch.cuda.memory_allocated(0) / 1024**3, 1), "GB")
print("Cached: ", round(torch.cuda.memory_reserved(0) / 1024**3, 1), "GB")
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
if not args.deterministic:
cudnn.benchmark = True
cudnn.deterministic = False
else:
cudnn.benchmark = False
cudnn.deterministic = True
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
dataset_name = args.dataset
dataset_config = {
"Synapse": {
"root_path": args.root_path,
"list_dir": args.list_dir,
"num_classes": 9,
},
}
if args.batch_size != 24 and args.batch_size % 5 == 0:
args.base_lr *= args.batch_size / 24
args.num_classes = dataset_config[dataset_name]["num_classes"]
args.root_path = dataset_config[dataset_name]["root_path"]
args.list_dir = dataset_config[dataset_name]["list_dir"]
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
net = Msa2Net().cuda(0) # Msa2net + masag
input = torch.rand((1,3,224,224)).cuda(0)
flops = FlopCountAnalysis(net, input)
model_flops = flops.total()
print(f"MAdds: {round(model_flops * 1e-9, 2)} G")
#sys.exit()
trainer = {
"Synapse": trainer_synapse,
}
trainer[dataset_name](args, net, args.output_dir)