-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
225 lines (195 loc) · 10.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
""" Training routine for GraspNet baseline model. """
import os
import sys
import numpy as np
from datetime import datetime
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
# ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
# sys.path.append(os.path.join(ROOT_DIR, 'utils'))
# sys.path.append(os.path.join(ROOT_DIR, 'pointnet2'))
# sys.path.append(os.path.join(ROOT_DIR, 'models'))
# sys.path.append(os.path.join(ROOT_DIR, 'dataset'))
from models.graspnet import GraspNet, get_loss
from pointnet2.pytorch_utils import BNMomentumScheduler
from dataset.graspnet_dataset import GraspNetDataset, collate_fn, load_grasp_labels
from utils.label_generation import process_grasp_labels
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_root', required=True, help='Dataset root')
parser.add_argument('--camera', required=True, help='Camera split [realsense/kinect]')
parser.add_argument('--checkpoint_path', default=None, help='Model checkpoint path [default: None]')
parser.add_argument('--log_dir', default='log', help='Dump dir to save model checkpoint [default: log]')
parser.add_argument('--num_point', type=int, default=20000, help='Point Number [default: 20000]')
parser.add_argument('--num_view', type=int, default=300, help='View Number [default: 300]')
parser.add_argument('--max_epoch', type=int, default=18, help='Epoch to run [default: 18]')
parser.add_argument('--batch_size', type=int, default=2, help='Batch Size during training [default: 2]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--weight_decay', type=float, default=0, help='Optimization L2 weight decay [default: 0]')
parser.add_argument('--bn_decay_step', type=int, default=2, help='Period of BN decay (in epochs) [default: 2]')
parser.add_argument('--bn_decay_rate', type=float, default=0.5, help='Decay rate for BN decay [default: 0.5]')
parser.add_argument('--lr_decay_steps', default='8,12,16', help='When to decay the learning rate (in epochs) [default: 8,12,16]')
parser.add_argument('--lr_decay_rates', default='0.1,0.1,0.1', help='Decay rates for lr decay [default: 0.1,0.1,0.1]')
cfgs = parser.parse_args()
# ------------------------------------------------------------------------- GLOBAL CONFIG BEG
EPOCH_CNT = 0
LR_DECAY_STEPS = [int(x) for x in cfgs.lr_decay_steps.split(',')]
LR_DECAY_RATES = [float(x) for x in cfgs.lr_decay_rates.split(',')]
assert(len(LR_DECAY_STEPS)==len(LR_DECAY_RATES))
DEFAULT_CHECKPOINT_PATH = os.path.join(cfgs.log_dir, 'checkpoint.tar')
CHECKPOINT_PATH = cfgs.checkpoint_path if cfgs.checkpoint_path is not None \
else DEFAULT_CHECKPOINT_PATH
if not os.path.exists(cfgs.log_dir):
os.makedirs(cfgs.log_dir)
LOG_FOUT = open(os.path.join(cfgs.log_dir, 'log_train.txt'), 'a')
LOG_FOUT.write(str(cfgs)+'\n')
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
# Init datasets and dataloaders
def my_worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
pass
# Create Dataset and Dataloader
valid_obj_idxs, grasp_labels = load_grasp_labels(cfgs.dataset_root)
TRAIN_DATASET = GraspNetDataset(cfgs.dataset_root, valid_obj_idxs, grasp_labels, camera=cfgs.camera, split='train', num_points=cfgs.num_point, remove_outlier=True, augment=True)
TEST_DATASET = GraspNetDataset(cfgs.dataset_root, valid_obj_idxs, grasp_labels, camera=cfgs.camera, split='test_seen', num_points=cfgs.num_point, remove_outlier=True, augment=False)
print(len(TRAIN_DATASET), len(TEST_DATASET))
TRAIN_DATALOADER = DataLoader(TRAIN_DATASET, batch_size=cfgs.batch_size, shuffle=True,
num_workers=4, worker_init_fn=my_worker_init_fn, collate_fn=collate_fn)
TEST_DATALOADER = DataLoader(TEST_DATASET, batch_size=cfgs.batch_size, shuffle=False,
num_workers=4, worker_init_fn=my_worker_init_fn, collate_fn=collate_fn)
print(len(TRAIN_DATALOADER), len(TEST_DATALOADER))
# Init the model and optimzier
net = GraspNet(input_feature_dim=3, num_view=cfgs.num_view, num_angle=12, num_depth=4,
cylinder_radius=0.05, hmin=-0.02, hmax_list=[0.01,0.02,0.03,0.04])
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)
# Load the Adam optimizer
optimizer = optim.Adam(net.parameters(), lr=cfgs.learning_rate, weight_decay=cfgs.weight_decay)
# Load checkpoint if there is any
it = -1 # for the initialize value of `LambdaLR` and `BNMomentumScheduler`
start_epoch = 0
if CHECKPOINT_PATH is not None and os.path.isfile(CHECKPOINT_PATH):
checkpoint = torch.load(CHECKPOINT_PATH)
net.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_epoch = checkpoint['epoch']
log_string("-> loaded checkpoint %s (epoch: %d)"%(CHECKPOINT_PATH, start_epoch))
# Decay Batchnorm momentum from 0.5 to 0.999
# note: pytorch's BN momentum (default 0.1)= 1 - tensorflow's BN momentum
BN_MOMENTUM_INIT = 0.5
BN_MOMENTUM_MAX = 0.001
bn_lbmd = lambda it: max(BN_MOMENTUM_INIT * cfgs.bn_decay_rate**(int(it / cfgs.bn_decay_step)), BN_MOMENTUM_MAX)
bnm_scheduler = BNMomentumScheduler(net, bn_lambda=bn_lbmd, last_epoch=start_epoch-1)
def get_current_lr(epoch):
lr = cfgs.learning_rate
for i,lr_decay_epoch in enumerate(LR_DECAY_STEPS):
if epoch >= lr_decay_epoch:
lr *= LR_DECAY_RATES[i]
return lr
def adjust_learning_rate(optimizer, epoch):
lr = get_current_lr(epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# TensorBoard Visualizers
TRAIN_WRITER = SummaryWriter(os.path.join(cfgs.log_dir, 'train'))
TEST_WRITER = SummaryWriter(os.path.join(cfgs.log_dir, 'test'))
# ------------------------------------------------------------------------- GLOBAL CONFIG END
def train_one_epoch():
stat_dict = {} # collect statistics
adjust_learning_rate(optimizer, EPOCH_CNT)
bnm_scheduler.step() # decay BN momentum
# set model to training mode
net.train()
for batch_idx, batch_data_label in enumerate(TRAIN_DATALOADER):
for key in batch_data_label:
if 'list' in key:
for i in range(len(batch_data_label[key])):
for j in range(len(batch_data_label[key][i])):
batch_data_label[key][i][j] = batch_data_label[key][i][j].to(device)
else:
batch_data_label[key] = batch_data_label[key].to(device)
# Forward pass
end_points = net(batch_data_label)
# Compute loss and gradients, update parameters.
loss, end_points = get_loss(end_points)
loss.backward()
if (batch_idx+1) % 1 == 0:
optimizer.step()
optimizer.zero_grad()
# Accumulate statistics and print out
for key in end_points:
if 'loss' in key or 'acc' in key or 'prec' in key or 'recall' in key or 'count' in key:
if key not in stat_dict: stat_dict[key] = 0
stat_dict[key] += end_points[key].item()
batch_interval = 10
if (batch_idx+1) % batch_interval == 0:
# log_string(' --epoch: %d/%d--- batch: %03d ----' % (EPOCH_CNT,cfg.max_epoch,batch_idx+1))
log_string(f' --epoch: {EPOCH_CNT}/{cfgs.max_epoch} -- batch: {batch_idx+1:03d} ----')
for key in sorted(stat_dict.keys()):
TRAIN_WRITER.add_scalar(key, stat_dict[key]/batch_interval, (EPOCH_CNT*len(TRAIN_DATALOADER)+batch_idx)*cfgs.batch_size)
log_string('mean %s: %f'%(key, stat_dict[key]/batch_interval))
stat_dict[key] = 0
def evaluate_one_epoch():
stat_dict = {} # collect statistics
# set model to eval mode (for bn and dp)
net.eval()
for batch_idx, batch_data_label in enumerate(TEST_DATALOADER):
if batch_idx % 10 == 0:
print(f'--epoch:{EPOCH_CNT}/{cfgs.max_epoch} --Eval batch: %d'%(batch_idx))
for key in batch_data_label:
if 'list' in key:
for i in range(len(batch_data_label[key])):
for j in range(len(batch_data_label[key][i])):
batch_data_label[key][i][j] = batch_data_label[key][i][j].to(device)
else:
batch_data_label[key] = batch_data_label[key].to(device)
# Forward pass
with torch.no_grad():
end_points = net(batch_data_label)
# Compute loss
loss, end_points = get_loss(end_points)
# Accumulate statistics and print out
for key in end_points:
if 'loss' in key or 'acc' in key or 'prec' in key or 'recall' in key or 'count' in key:
if key not in stat_dict: stat_dict[key] = 0
stat_dict[key] += end_points[key].item()
for key in sorted(stat_dict.keys()):
TEST_WRITER.add_scalar(key, stat_dict[key]/float(batch_idx+1), (EPOCH_CNT+1)*len(TRAIN_DATALOADER)*cfgs.batch_size)
log_string('eval mean %s: %f'%(key, stat_dict[key]/(float(batch_idx+1))))
mean_loss = stat_dict['loss/overall_loss']/float(batch_idx+1)
return mean_loss
def train(start_epoch):
global EPOCH_CNT
min_loss = 1e10
loss = 0
for epoch in range(start_epoch, cfgs.max_epoch):
EPOCH_CNT = epoch
log_string('**** EPOCH %03d ****' % (epoch))
log_string('Current learning rate: %f'%(get_current_lr(epoch)))
log_string('Current BN decay momentum: %f'%(bnm_scheduler.lmbd(bnm_scheduler.last_epoch)))
log_string(str(datetime.now()))
# Reset numpy seed.
# REF: https://github.com/pytorch/pytorch/issues/5059
np.random.seed()
train_one_epoch()
if (epoch+1) % 5 == 0:
loss = evaluate_one_epoch()
# Save checkpoint
save_dict = {'epoch': epoch+1, # after training one epoch, the start_epoch should be epoch+1
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss if (epoch+1) % 5 == 0 else -1,
}
try: # with nn.DataParallel() the net is added as a submodule of DataParallel
save_dict['model_state_dict'] = net.module.state_dict()
except:
save_dict['model_state_dict'] = net.state_dict()
torch.save(save_dict, os.path.join(cfgs.log_dir, 'checkpoint.tar'))
if __name__=='__main__':
train(start_epoch)