forked from pytorch/ao
-
Notifications
You must be signed in to change notification settings - Fork 0
/
roofline_utils.py
220 lines (188 loc) · 7.87 KB
/
roofline_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD 3-Clause license found in the
# LICENSE file in the root directory of this source tree.
import torch
BYTES_PER_EL_FLOAT8 = 1
BYTES_PER_EL_BF16 = 2
# https://www.nvidia.com/en-us/data-center/h100/, divide by 2 because no sparsity
H100_BF16_PEAK_TOPS = 989e12
H100_FP8_PEAK_TOPS = 1979e12
# 2.4 TB per second, custom to Meta's H100 variant
H100_PEAK_MEM_BW_BYTES_SEC = 2.4e12
# based on quick experimental observation with sample large inputs
H100_PCT_ACHIEVABLE_GEMM_TOPS = 0.6
# based on previous experience looking at pointwise triton kernels with large inputs,
# which would hit about 2.2k GBPS on Meta's H100 variant
H100_PCT_ACHIEVABLE_MEM_BW = 0.92
# Source: run a triton kernel with a single element read/write on an H100 and
# measure GPU time from the trace
TRITON_KERNEL_1_ELEMENT_TIME_SEC = 0.002 * 0.001
def get_tensor_memory_traffic_bytes(
dim0,
dim1,
scaling_type: str,
fuse_with_prev=False,
model_torch_compile_limitations=False,
):
# assumes input bf16, output f8
numel = dim0 * dim1
if scaling_type == "dynamic":
# x_bf16 = ...
# kernel 1: x_bf16 -> max_abs_stage_1 -> tmp
# kernel 2 (not modeled): tmp -> max_abs_stage_2 -> max_abs
# kernel 3: x_bf16, max_abs -> to_float8 -> x_fp8
if fuse_with_prev:
kernel_1_rw = 0
else:
# kernel 1: read numel, write 0 (assume size(tmp) ~ 0)
kernel_1_rw = BYTES_PER_EL_BF16 * numel
# kernel 3: read in bf16, write twice in float8 (row-major and col-major)
kernel_3_rw = BYTES_PER_EL_BF16 * numel + 2 * BYTES_PER_EL_FLOAT8 * numel
if model_torch_compile_limitations:
# today, the kernel to do cast_to_fp8_row_major_and_col_major(input_bf16, ...)
# has an extra memory read of the input in fp8
# context: https://github.com/pytorch/pytorch/issues/130015
tc_adjustment = numel * BYTES_PER_EL_FLOAT8
else:
tc_adjustment = 0
return kernel_1_rw + kernel_3_rw + tc_adjustment
else:
assert scaling_type == "delayed", "unsupported"
# x_bf16 = ...
# kernel 1: x_bf16 -> max_abs_stage_1_and_to_float8 -> x_float8, tmp
# kernel 2 (not modeled): tmp -> max_abs_stage_2 -> max_abs
# kernel 3 (not modeled): scale -> reciprocal -> inv_scale
if fuse_with_prev:
kernel_1_r = 0
else:
kernel_1_r = numel * BYTES_PER_EL_BF16
# write twice: once in row major, once in col-major
kernel_1_w = numel * BYTES_PER_EL_FLOAT8 * 2
if model_torch_compile_limitations:
# today, the kernel to do cast_to_fp8_row_major_and_col_major(input_bf16, ...)
# has an extra memory read of the input in fp8
# context: https://github.com/pytorch/pytorch/issues/130015
tc_adjustment = numel * BYTES_PER_EL_FLOAT8
# https://github.com/pytorch/pytorch/issues/128063
# instead of
# kernel 1: x_bf16 -> max(abs(x)), x_fp8
# kernel 2: not modeled
# kernel 3: not modeled
# we get
# kernel 1: x_bf16 -> max(abs(x))
# reads: same as before
# writes: 0
# ...
# kernel 4: x_bf16, scale -> x_fp8
# reads: numel * BYTES_PER_EL_BF16
# writes: 2 * numel * BYTES_PER_EL_FLOAT8
# Note that assuming worst case, this issue brings the memory
# traffic for delayed scaling to be equal to that of dynamic scaling.
tc_adjustment += (
# subtract writes from kernel 1
-1 * 2 * numel * BYTES_PER_EL_FLOAT8
# add reads for kernel 4
+ numel * BYTES_PER_EL_BF16
# add writes for kernel 4
+ 2 * numel * BYTES_PER_EL_FLOAT8
)
else:
tc_adjustment = 0
return kernel_1_r + kernel_1_w + tc_adjustment
def get_gemm_time_sympy(M, K, N, dtype):
gemm_ops = 2 * M * K * N + 2 * M * N * K + 2 * K * M * N
if dtype is torch.bfloat16:
peak_tops = H100_BF16_PEAK_TOPS
elif dtype in (torch.float8_e4m3fn, torch.float8_e5m2):
peak_tops = H100_FP8_PEAK_TOPS
gemm_time_s = gemm_ops / peak_tops / H100_PCT_ACHIEVABLE_GEMM_TOPS
return gemm_time_s
def get_float8_mem_sympy(
M,
K,
N,
model_torch_compile_limitations: bool = False,
scaling_type_input: str = "dynamic",
scaling_type_weight: str = "dynamic",
scaling_type_grad_output: str = "dynamic",
):
assert scaling_type_input in ("dynamic", "delayed"), "unsupported"
assert scaling_type_weight in ("dynamic", "delayed"), "unsupported"
assert scaling_type_grad_output in ("dynamic", "delayed"), "unsupported"
# there are three gemms in the fwd/bwd of a linear:
#
# input @ weight_t = output
# MxK @ KxN => MxN
#
# grad_output @ weight = grad_input
# MxN @ NxK => MxK
#
# input_t @ grad_output = grad_weight
# KxM @ MxN => KxN
#
# forward - output
#
fwd_fp8_input_mem = get_tensor_memory_traffic_bytes(
M, K, scaling_type_input, fuse_with_prev=True,
model_torch_compile_limitations=model_torch_compile_limitations)
fwd_fp8_weight_mem = get_tensor_memory_traffic_bytes(
K, N, scaling_type_weight, fuse_with_prev=False,
model_torch_compile_limitations=model_torch_compile_limitations)
fwd_fp8_total_mem = fwd_fp8_input_mem + fwd_fp8_weight_mem
#
# backward - grad_input
#
gi_fp8_grad_output_mem = get_tensor_memory_traffic_bytes(
M, N, scaling_type_grad_output, fuse_with_prev=True,
model_torch_compile_limitations=model_torch_compile_limitations)
# already casted, assuming that we save weight from fw to bw
# TODO: model this if FSDP float8 all-gather is on
# TODO: model this if we don't save weight from fw to bw, and recompute instead
gi_fp8_weight_mem = 0
#
# backward - grad_weight
#
# TODO: model this if we don't save fp8 input from fw to bw
gw_fp8_input_t_mem = 0 # already casted
# this should be always 0
gw_fp8_grad_output_mem = 0 # already casted
bwd_fp8_total_mem = \
gi_fp8_grad_output_mem + gi_fp8_weight_mem + \
gw_fp8_input_t_mem + gw_fp8_grad_output_mem
fp8_total_mem = fwd_fp8_total_mem + bwd_fp8_total_mem
fp8_mem_time_s = (
fp8_total_mem / H100_PEAK_MEM_BW_BYTES_SEC / H100_PCT_ACHIEVABLE_MEM_BW
)
# Adjust final estimate for small kernel launches
# note that we do this adjustment here because we are assuming a minimal
# kernel overhead in the units of seconds, and the per-gemm-input memory
# estimations are in the units of bytes.
num_extra_kernels = 0
if scaling_type_input == "dynamic":
# second stage of max-abs reduction
num_extra_kernels += 1
elif scaling_type_input == "delayed":
# second stage of max-abs reduction
num_extra_kernels += 1
# reciprocal of scale
num_extra_kernels += 1
if scaling_type_weight == "dynamic":
# second stage of max-abs reduction
num_extra_kernels += 1
elif scaling_type_weight == "delayed":
# second stage of max-abs reduction
num_extra_kernels += 1
# reciprocal of scale
num_extra_kernels += 1
if scaling_type_grad_output == "dynamic":
# second stage of max-abs reduction
num_extra_kernels += 1
elif scaling_type_grad_output == "delayed":
# second stage of max-abs reduction
num_extra_kernels += 1
# reciprocal of scale
num_extra_kernels += 1
extra_kernel_overhead_s = num_extra_kernels * TRITON_KERNEL_1_ELEMENT_TIME_SEC
return fp8_mem_time_s + extra_kernel_overhead_s