Skip to content

Latest commit

 

History

History

quantization_w4a16

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

int4 Weight Quantization

llm-compressor supports quantizing weights to int4 for memory savings and inference acceleration with vLLM

int4 mixed precision computation is supported on Nvidia GPUs with compute capability > 8.0 (Ampere, Ada Lovelace, Hopper).

Installation

To get started, install:

git clone https://github.com/vllm-project/llm-compressor.git
cd llm-compressor
pip install -e .

Quickstart

The example includes an end-to-end script for applying the quantization algorithm.

python3 llama3_example.py

The resulting model Meta-Llama-3-8B-Instruct-W4A16-G128 is ready to be loaded into vLLM.

Code Walkthough

Now, we will step though the code in the example. There are four steps:

  1. Load model
  2. Prepare calibration data
  3. Apply quantization
  4. Evaluate accuracy in vLLM

1) Load Model

Load the model using SparseAutoModelForCausalLM, which is a wrapper around AutoModel for handling quantized saving and loading. Note that SparseAutoModel is compatible with accelerate so you can load your model onto multiple GPUs if needed.

from llmcompressor.transformers import SparseAutoModelForCausalLM
from transformers import AutoTokenizer

MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct"
model = SparseAutoModelForCausalLM.from_pretrained(
    MODEL_ID, device_map="auto", torch_dtype="auto",
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)

2) Prepare Calibration Data

Prepare the calibration data. When quantizing weigths of a model to int4 using GPTQ, we need some sample data to run the GPTQ algorithms. As a result, it is very useful to use calibration data that closely matches the type of data used in deployment. If you have fine-tuned a model, using a sample of your training data is a good idea.

In our case, we are quantizing an Instruction tuned generic model, so we will use the ultrachat dataset. Some best practices include:

  • 512 samples is a good place to start (increase if accuracy drops)
  • 2048 sequence length is a good place to start
  • Use the chat template or instrucion template that the model is trained with
from datasets import load_dataset

NUM_CALIBRATION_SAMPLES=512
MAX_SEQUENCE_LENGTH=2048

# Load dataset.
ds = load_dataset("HuggingFaceH4/ultrachat_200k", split="train_sft")
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))

# Preprocess the data into the format the model is trained with.
def preprocess(example):
    return {"text": tokenizer.apply_chat_template(example["messages"], tokenize=False,)}
ds = ds.map(preprocess)

# Tokenize the data (be careful with bos tokens - we need add_special_tokens=False since the chat_template already added it).
def tokenize(sample):
    return tokenizer(sample["text"], padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, add_special_tokens=False)
ds = ds.map(tokenize, remove_columns=ds.column_names)

3) Apply Quantization

With the dataset ready, we will now apply quantization.

We first select the quantization algorithm.

In our case, we will apply the default GPTQ recipe for int4 (which uses static group size 128 scales) to all linear layers.

See the Recipes documentation for more information on making complex recipes

from llmcompressor.transformers import oneshot
from llmcompressor.modifiers.quantization import GPTQModifier

# Configure the quantization algorithm to run.
recipe = GPTQModifier(targets="Linear", scheme="W4A16", ignore=["lm_head"])

# Apply quantization.
oneshot(
    model=model, dataset=ds,
    recipe=recipe,
    max_seq_length=MAX_SEQUENCE_LENGTH,
    num_calibration_samples=NUM_CALIBRATION_SAMPLES,
)

# Save to disk compressed.
SAVE_DIR = MODEL_ID.split("/")[1] + "-W4A16-G128"
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)

We have successfully created an int4 model!

4) Evaluate Accuracy

With the model created, we can now load and run in vLLM (after installing).

from vllm import LLM
model = LLM("./Meta-Llama-3-8B-Instruct-W4A16-G128")

We can evaluate accuracy with lm_eval (pip install lm_eval==v0.4.3):

Note: quantized models can be sensitive to the presence of the bos token. lm_eval does not add a bos token by default, so make sure to include the add_bos_token=True argument when running your evaluations.

Run the following to test accuracy on GSM-8K:

lm_eval --model vllm \
  --model_args pretrained="./Meta-Llama-3-8B-Instruct-W4A16-G128",add_bos_token=true \
  --tasks gsm8k \
  --num_fewshot 5 \
  --limit 250 \
  --batch_size 'auto'

We can see the resulting scores look good!

|Tasks|Version|     Filter     |n-shot|  Metric   |   |Value|   |Stderr|
|-----|------:|----------------|-----:|-----------|---|----:|---|-----:|
|gsm8k|      3|flexible-extract|     5|exact_match||0.728|±  |0.0282|
|     |       |strict-match    |     5|exact_match||0.720|±  |0.0285|

Questions or Feature Request?

Please open up an issue on vllm-project/llm-compressor