forked from apachecn/numpy-doc-zh
-
Notifications
You must be signed in to change notification settings - Fork 1
/
routines.linalg.html
169 lines (167 loc) · 15.1 KB
/
routines.linalg.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
<span id="routines-linalg"></span><h1><span class="yiyi-st" id="yiyi-20">线性代数(<code class="xref py py-mod docutils literal"><span class="pre">numpy.linalg</span></code>)</span></h1>
<blockquote>
<p>原文:<a href="https://docs.scipy.org/doc/numpy/reference/routines.linalg.html">https://docs.scipy.org/doc/numpy/reference/routines.linalg.html</a></p>
<p>译者:<a href="https://github.com/wizardforcel">飞龙</a> <a href="http://usyiyi.cn/">UsyiyiCN</a></p>
<p>校对:(虚位以待)</p>
</blockquote>
<div class="section" id="matrix-and-vector-products">
<h2><span class="yiyi-st" id="yiyi-21">矩阵和向量积</span></h2>
<table border="1" class="longtable docutils">
<colgroup>
<col width="10%">
<col width="90%">
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-22"><a class="reference internal" href="generated/numpy.dot.html#numpy.dot" title="numpy.dot"><code class="xref py py-obj docutils literal"><span class="pre">dot</span></code></a>(a,b [,out])</span></td>
<td><span class="yiyi-st" id="yiyi-23">两个数组的点积。</span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-24"><a class="reference internal" href="generated/numpy.vdot.html#numpy.vdot" title="numpy.vdot"><code class="xref py py-obj docutils literal"><span class="pre">vdot</span></code></a>(a,b)</span></td>
<td><span class="yiyi-st" id="yiyi-25">返回两个向量的点积。</span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-26"><a class="reference internal" href="generated/numpy.inner.html#numpy.inner" title="numpy.inner"><code class="xref py py-obj docutils literal"><span class="pre">inner</span></code></a>(a,b)</span></td>
<td><span class="yiyi-st" id="yiyi-27">两个数组的内积。</span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-28"><a class="reference internal" href="generated/numpy.outer.html#numpy.outer" title="numpy.outer"><code class="xref py py-obj docutils literal"><span class="pre">outer</span></code></a>(a,b [,out])</span></td>
<td><span class="yiyi-st" id="yiyi-29">计算两个向量的外积。</span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-30"><a class="reference internal" href="generated/numpy.matmul.html#numpy.matmul" title="numpy.matmul"><code class="xref py py-obj docutils literal"><span class="pre">matmul</span></code></a>(a,b [,out])</span></td>
<td><span class="yiyi-st" id="yiyi-31">两个数组的矩阵乘积。</span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-32"><a class="reference internal" href="generated/numpy.tensordot.html#numpy.tensordot" title="numpy.tensordot"><code class="xref py py-obj docutils literal"><span class="pre">tensordot</span></code></a>(a,b [,axes])</span></td>
<td><span class="yiyi-st" id="yiyi-33">对于数组> = 1-D,沿指定轴计算张量点积。</span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-34"><a class="reference internal" href="generated/numpy.einsum.html#numpy.einsum" title="numpy.einsum"><code class="xref py py-obj docutils literal"><span class="pre">einsum</span></code></a>(下标,\ * operands [,out,dtype,...])</span></td>
<td><span class="yiyi-st" id="yiyi-35">评估操作数上的爱因斯坦求和约定。</span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-36"><a class="reference internal" href="generated/numpy.linalg.matrix_power.html#numpy.linalg.matrix_power" title="numpy.linalg.matrix_power"><code class="xref py py-obj docutils literal"><span class="pre">linalg.matrix_power</span></code></a>(M,n)</span></td>
<td><span class="yiyi-st" id="yiyi-37">将方阵转化为(整数)幂<em class="xref py py-obj">n</em>。</span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-38"><a class="reference internal" href="generated/numpy.kron.html#numpy.kron" title="numpy.kron"><code class="xref py py-obj docutils literal"><span class="pre">kron</span></code></a>(a,b)</span></td>
<td><span class="yiyi-st" id="yiyi-39">克罗内克两个数组的乘积。</span></td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="decompositions">
<h2><span class="yiyi-st" id="yiyi-40">Decompositions</span></h2>
<table border="1" class="longtable docutils">
<colgroup>
<col width="10%">
<col width="90%">
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-41"><a class="reference internal" href="generated/numpy.linalg.cholesky.html#numpy.linalg.cholesky" title="numpy.linalg.cholesky"><code class="xref py py-obj docutils literal"><span class="pre">linalg.cholesky</span></code></a>(a)</span></td>
<td><span class="yiyi-st" id="yiyi-42">Cholesky分解。</span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-43"><a class="reference internal" href="generated/numpy.linalg.qr.html#numpy.linalg.qr" title="numpy.linalg.qr"><code class="xref py py-obj docutils literal"><span class="pre">linalg.qr</span></code></a>(a [,mode])</span></td>
<td><span class="yiyi-st" id="yiyi-44">计算矩阵的qr因式分解。</span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-45"><a class="reference internal" href="generated/numpy.linalg.svd.html#numpy.linalg.svd" title="numpy.linalg.svd"><code class="xref py py-obj docutils literal"><span class="pre">linalg.svd</span></code></a>(a [,full_matrices,compute_uv])</span></td>
<td><span class="yiyi-st" id="yiyi-46">奇异值分解。</span></td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="matrix-eigenvalues">
<h2><span class="yiyi-st" id="yiyi-47">矩阵特征值</span></h2>
<table border="1" class="longtable docutils">
<colgroup>
<col width="10%">
<col width="90%">
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-48"><a class="reference internal" href="generated/numpy.linalg.eig.html#numpy.linalg.eig" title="numpy.linalg.eig"><code class="xref py py-obj docutils literal"><span class="pre">linalg.eig</span></code></a>(a)</span></td>
<td><span class="yiyi-st" id="yiyi-49">计算正方形数组的特征值和右特征向量。</span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-50"><a class="reference internal" href="generated/numpy.linalg.eigh.html#numpy.linalg.eigh" title="numpy.linalg.eigh"><code class="xref py py-obj docutils literal"><span class="pre">linalg.eigh</span></code></a>(a[, UPLO])</span></td>
<td><span class="yiyi-st" id="yiyi-51">返回Hermitian或对称矩阵的特征值和特征向量。</span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-52"><a class="reference internal" href="generated/numpy.linalg.eigvals.html#numpy.linalg.eigvals" title="numpy.linalg.eigvals"><code class="xref py py-obj docutils literal"><span class="pre">linalg.eigvals</span></code></a>(a)</span></td>
<td><span class="yiyi-st" id="yiyi-53">计算一般矩阵的特征值。</span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-54"><a class="reference internal" href="generated/numpy.linalg.eigvalsh.html#numpy.linalg.eigvalsh" title="numpy.linalg.eigvalsh"><code class="xref py py-obj docutils literal"><span class="pre">linalg.eigvalsh</span></code></a>(a[, UPLO])</span></td>
<td><span class="yiyi-st" id="yiyi-55">计算Hermitian或真实对称矩阵的特征值。</span></td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="norms-and-other-numbers">
<h2><span class="yiyi-st" id="yiyi-56">Norms and other numbers</span></h2>
<table border="1" class="longtable docutils">
<colgroup>
<col width="10%">
<col width="90%">
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-57"><a class="reference internal" href="generated/numpy.linalg.norm.html#numpy.linalg.norm" title="numpy.linalg.norm"><code class="xref py py-obj docutils literal"><span class="pre">linalg.norm</span></code></a>(x [,ord,axis,keepdims])</span></td>
<td><span class="yiyi-st" id="yiyi-58">矩阵或向量范数。</span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-59"><a class="reference internal" href="generated/numpy.linalg.cond.html#numpy.linalg.cond" title="numpy.linalg.cond"><code class="xref py py-obj docutils literal"><span class="pre">linalg.cond</span></code></a>(x [,p])</span></td>
<td><span class="yiyi-st" id="yiyi-60">计算矩阵的条件数。</span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-61"><a class="reference internal" href="generated/numpy.linalg.det.html#numpy.linalg.det" title="numpy.linalg.det"><code class="xref py py-obj docutils literal"><span class="pre">linalg.det</span></code></a>(a)</span></td>
<td><span class="yiyi-st" id="yiyi-62">计算数组的行列式。</span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-63"><a class="reference internal" href="generated/numpy.linalg.matrix_rank.html#numpy.linalg.matrix_rank" title="numpy.linalg.matrix_rank"><code class="xref py py-obj docutils literal"><span class="pre">linalg.matrix_rank</span></code></a>(M [,tol])</span></td>
<td><span class="yiyi-st" id="yiyi-64">使用SVD方法返回数组的矩阵秩</span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-65"><a class="reference internal" href="generated/numpy.linalg.slogdet.html#numpy.linalg.slogdet" title="numpy.linalg.slogdet"><code class="xref py py-obj docutils literal"><span class="pre">linalg.slogdet</span></code></a>(a)</span></td>
<td><span class="yiyi-st" id="yiyi-66">计算数组的行列式的符号和(自然)对数。</span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-67"><a class="reference internal" href="generated/numpy.trace.html#numpy.trace" title="numpy.trace"><code class="xref py py-obj docutils literal"><span class="pre">trace</span></code></a>(a [,offset,axis1,axis2,dtype,out])</span></td>
<td><span class="yiyi-st" id="yiyi-68">沿数组的对角线返回总和。</span></td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="solving-equations-and-inverting-matrices">
<h2><span class="yiyi-st" id="yiyi-69">Solving equations and inverting matrices</span></h2>
<table border="1" class="longtable docutils">
<colgroup>
<col width="10%">
<col width="90%">
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-70"><a class="reference internal" href="generated/numpy.linalg.solve.html#numpy.linalg.solve" title="numpy.linalg.solve"><code class="xref py py-obj docutils literal"><span class="pre">linalg.solve</span></code></a>(a,b)</span></td>
<td><span class="yiyi-st" id="yiyi-71">求解线性矩阵方程或线性标量方程组。</span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-72"><a class="reference internal" href="generated/numpy.linalg.tensorsolve.html#numpy.linalg.tensorsolve" title="numpy.linalg.tensorsolve"><code class="xref py py-obj docutils literal"><span class="pre">linalg.tensorsolve</span></code></a>(a,b [,axes])</span></td>
<td><span class="yiyi-st" id="yiyi-73">为x解出张量方程<code class="docutils literal"><span class="pre">a</span> <span class="pre">x</span> <span class="pre">=</span> <span class="pre">b</span></code></span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-74"><a class="reference internal" href="generated/numpy.linalg.lstsq.html#numpy.linalg.lstsq" title="numpy.linalg.lstsq"><code class="xref py py-obj docutils literal"><span class="pre">linalg.lstsq</span></code></a>(a,b [,rcond])</span></td>
<td><span class="yiyi-st" id="yiyi-75">将最小二乘解返回到线性矩阵方程。</span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-76"><a class="reference internal" href="generated/numpy.linalg.inv.html#numpy.linalg.inv" title="numpy.linalg.inv"><code class="xref py py-obj docutils literal"><span class="pre">linalg.inv</span></code></a>(a)</span></td>
<td><span class="yiyi-st" id="yiyi-77">计算矩阵的(乘法)逆。</span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-78"><a class="reference internal" href="generated/numpy.linalg.pinv.html#numpy.linalg.pinv" title="numpy.linalg.pinv"><code class="xref py py-obj docutils literal"><span class="pre">linalg.pinv</span></code></a>(a [,rcond])</span></td>
<td><span class="yiyi-st" id="yiyi-79">计算矩阵的(Moore-Penrose)伪逆。</span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-80"><a class="reference internal" href="generated/numpy.linalg.tensorinv.html#numpy.linalg.tensorinv" title="numpy.linalg.tensorinv"><code class="xref py py-obj docutils literal"><span class="pre">linalg.tensorinv</span></code></a>(a [,ind])</span></td>
<td><span class="yiyi-st" id="yiyi-81">计算N维数组的“逆”。</span></td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="exceptions">
<h2><span class="yiyi-st" id="yiyi-82">Exceptions</span></h2>
<table border="1" class="longtable docutils">
<colgroup>
<col width="10%">
<col width="90%">
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-83"><a class="reference internal" href="generated/numpy.linalg.LinAlgError.html#numpy.linalg.LinAlgError" title="numpy.linalg.LinAlgError"><code class="xref py py-obj docutils literal"><span class="pre">linalg.LinAlgError</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-84">linalg函数引发的通用Python异常派生对象。</span></td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="linear-algebra-on-several-matrices-at-once">
<h2><span class="yiyi-st" id="yiyi-85">Linear algebra on several matrices at once</span></h2>
<div class="versionadded">
<p><span class="yiyi-st" id="yiyi-86"><span class="versionmodified">版本1.8.0中的新功能。</span></span></p>
</div>
<p><span class="yiyi-st" id="yiyi-87">上面列出的几个线性代数例程能够一次计算多个矩阵的结果,如果它们被堆叠到相同的数组中。</span></p>
<p><span class="yiyi-st" id="yiyi-88">这在文档中通过输入参数规范如<code class="docutils literal"><span class="pre">a</span> <span class="pre">:</span> <span class="pre">(...,</span> <span class="pre">M, t4> <span class="pre">M)</span> <span class="pre">array_like</span></span></code>。</span><span class="yiyi-st" id="yiyi-89">这意味着如果例如给定输入数组<code class="docutils literal"><span class="pre">a.shape</span> <span class="pre">==</span> <span class="pre">(N,</span> <span class="pre">M, t4 > <span class="pre">M)</span></span></code>,它被解释为N个矩阵的“堆栈”,每个矩阵的大小为M乘M。</span><span class="yiyi-st" id="yiyi-90">类似的规范适用于返回值,例如行列式具有<code class="docutils literal"><span class="pre">det</span> <span class="pre">:</span> <span class="pre">(...)</span></code>这种情况下返回形状<code class="docutils literal"><span class="pre">det(a).shape</span> <span class="pre">==</span> <span class="pre">(N,)</span></code>的数组。</span><span class="yiyi-st" id="yiyi-91">这推广到对更高维数组的线性代数运算:多维数组的最后1或2维被解释为向量或矩阵,适合于每个操作。</span></p>
</div>