Skip to content
#

multiclass-image-classification

Here are 80 public repositories matching this topic...

This is a project focused on identifying the presence of pneumonia in chest X-ray images. Each image can be classified into one of three categories: Bacterial Pneumonia, Viral Pneumonia, or Normal.

  • Updated Jun 19, 2024
  • Jupyter Notebook

Apple disease detection using CNN is a GitHub repository that contains code for detecting diseases in apples using convolutional neural networks (CNNs). The repository uses a dataset of images of healthy and diseased apples to train the CNN model. The model is then used to classify new images of apples as healthy or diseased

  • Updated Sep 11, 2023
  • Jupyter Notebook

This repository contains Python code for rice type detection using multiclass classification. The project leverages the MobileNetV2 architecture to classify six different types of rice: Arborio, Basmati, Ipsala, Jasmine, and Karacadag. The dataset used for training and evaluation can be found on Kaggle and consists of categorized rice images.

  • Updated May 28, 2023
  • Python

This repository contains Python code for handwritten recognition using OpenCV, Keras, TensorFlow, and the ResNet architecture. The project utilizes two datasets: the standard MNIST 0-9 dataset and the Kaggle A-Z dataset. The OCR model is trained using Keras and TensorFlow, while OpenCV is used for image pre-processing.

  • Updated Apr 1, 2023
  • Python

Improve this page

Add a description, image, and links to the multiclass-image-classification topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the multiclass-image-classification topic, visit your repo's landing page and select "manage topics."

Learn more