These benchmarks measure the FPS of image capture and observation data in TDW. Image capture is unavoidably slow.
See the Benchmark document for the test machine's system info.
Performance benchmark for Images
output data using different render settings:
100 objects | Pass masks | Render quality | Post-processing | Screen size | .png | FPS |
---|---|---|---|---|---|---|
False | ['_img'] |
0 | False | 256 | False | 312 |
True | ['_id'] |
0 | False | 256 | False | 400 |
False | ['_img'] |
5 | True | 256 | False | 234 |
False | ['_img'] |
5 | True | 1024 | False | 44 |
True | ['_id'] |
0 | False | 1024 | False | 69 |
False | ['_img'] |
5 | True | 1024 | True | 41 |
True | ['_img', '_id'] |
5 | True | 1024 | False | 33 |
True | ['_img', '_id'] |
5 | True | 1024 | True | 30 |
Performance benchmark to compare Images
data to alternative observation data.
- Render quality is 0
- Post processing is disabled
- Screen size is 256x256
- Images are .jpg
- There are 100 objects in the scene
- Note that
Occlusion
is slow because it renders two images; it would normally require 2 frames to get the same data asOcclusion
's 1 frame.
_img pass | _id pass | IdPassSegmentationColors | Occlusion | FPS |
---|---|---|---|---|
True | False | False | False | 292 |
False | True | False | False | 350 |
False | False | True | False | 288 |
False | False | False | True | 196 |
This is a simple benchmark of all image passes.
- Render quality is 5
- Post processing is enabled
- Screen size is 256x256
- The
_img
pass is a .png - There are 15 objects in the scene
Result: 45 FPS
- Follow instructions in the Benchmark document for cloning the repo, downloading the build, etc.
cd path/to/tdw/Python/benchmarking
(replacepath/to
with the actual path)python3 image_capture.py
orpython3 observation_data.py
orpython3 image_capture_all.py
- Run the build
- Wait for the performance benchmark to complete (this might take up to five minutes).
- Compare your results to those listed above
Next: Object data