-
Notifications
You must be signed in to change notification settings - Fork 1
/
sample.py
36 lines (25 loc) · 824 Bytes
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# -*- coding: utf-8 -*-
import data_helpers
import keras
from keras.models import Model
from keras.layers import *
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
input = sys.argv[1][0:270]
x = data_helpers.filterinput(input)
model = keras.models.load_model('save_GRU_80_2.h5')
layer1 = Flatten()(model.layers[9].output)
model2 = Model(input=[model.input], output=[layer1])
model2.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model2.predict(x))
print(len(model2.predict(x)[0]))
y = model.predict(x)
res = model.predict_proba(x)[0][0]
resultstr = input + "\n"
if round(y) == 1.0:
resultstr += "Not Spam"
else:
resultstr += "Spam"
resultstr = resultstr + "\nWith confidence of: " + str(res * 100.0) + "%"
print "---RESULT---" + resultstr + "---RESULT---"