-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
1379 lines (925 loc) · 62 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=2">
<meta name="theme-color" content="#222">
<meta name="generator" content="Hexo 5.4.0">
<link rel="apple-touch-icon" sizes="180x180" href="/images/apple-touch-icon-next.png">
<link rel="icon" type="image/png" sizes="32x32" href="/images/favicon-32x32-next.png">
<link rel="icon" type="image/png" sizes="16x16" href="/images/favicon-16x16-next.png">
<link rel="mask-icon" href="/images/logo.svg" color="#222">
<link rel="stylesheet" href="/css/main.css">
<link rel="stylesheet" href="/lib/font-awesome/css/all.min.css">
<script id="hexo-configurations">
var NexT = window.NexT || {};
var CONFIG = {"hostname":"shuoxux.github.io","root":"/","scheme":"Pisces","version":"7.8.0","exturl":false,"sidebar":{"position":"left","display":"post","padding":18,"offset":12,"onmobile":false},"copycode":{"enable":false,"show_result":false,"style":null},"back2top":{"enable":true,"sidebar":false,"scrollpercent":false},"bookmark":{"enable":false,"color":"#222","save":"auto"},"fancybox":false,"mediumzoom":false,"lazyload":false,"pangu":false,"comments":{"style":"tabs","active":null,"storage":true,"lazyload":false,"nav":null},"algolia":{"hits":{"per_page":10},"labels":{"input_placeholder":"Search for Posts","hits_empty":"We didn't find any results for the search: ${query}","hits_stats":"${hits} results found in ${time} ms"}},"localsearch":{"enable":true,"trigger":"auto","top_n_per_article":1,"unescape":false,"preload":false},"motion":{"enable":true,"async":false,"transition":{"post_block":"fadeIn","post_header":"slideDownIn","post_body":"slideDownIn","coll_header":"slideLeftIn","sidebar":"slideUpIn"}},"path":"search.xml"};
</script>
<meta property="og:type" content="website">
<meta property="og:title" content="Shuoxu's Blog">
<meta property="og:url" content="https://shuoxux.github.io/index.html">
<meta property="og:site_name" content="Shuoxu's Blog">
<meta property="og:locale" content="en_US">
<meta property="article:author" content="shuoxu">
<meta name="twitter:card" content="summary">
<link rel="canonical" href="https://shuoxux.github.io/">
<script id="page-configurations">
// https://hexo.io/docs/variables.html
CONFIG.page = {
sidebar: "",
isHome : true,
isPost : false,
lang : 'en'
};
</script>
<title>Shuoxu's Blog</title>
<noscript>
<style>
.use-motion .brand,
.use-motion .menu-item,
.sidebar-inner,
.use-motion .post-block,
.use-motion .pagination,
.use-motion .comments,
.use-motion .post-header,
.use-motion .post-body,
.use-motion .collection-header { opacity: initial; }
.use-motion .site-title,
.use-motion .site-subtitle {
opacity: initial;
top: initial;
}
.use-motion .logo-line-before i { left: initial; }
.use-motion .logo-line-after i { right: initial; }
</style>
</noscript>
<!-- hexo injector head_end start -->
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css">
<!-- hexo injector head_end end --></head>
<body itemscope itemtype="http://schema.org/WebPage">
<div class="container use-motion">
<div class="headband"></div>
<header class="header" itemscope itemtype="http://schema.org/WPHeader">
<div class="header-inner"><div class="site-brand-container">
<div class="site-nav-toggle">
<div class="toggle" aria-label="Toggle navigation bar">
<span class="toggle-line toggle-line-first"></span>
<span class="toggle-line toggle-line-middle"></span>
<span class="toggle-line toggle-line-last"></span>
</div>
</div>
<div class="site-meta">
<a href="/" class="brand" rel="start">
<span class="logo-line-before"><i></i></span>
<h1 class="site-title">Shuoxu's Blog</h1>
<span class="logo-line-after"><i></i></span>
</a>
</div>
<div class="site-nav-right">
<div class="toggle popup-trigger">
<i class="fa fa-search fa-fw fa-lg"></i>
</div>
</div>
</div>
<nav class="site-nav">
<ul id="menu" class="main-menu menu">
<li class="menu-item menu-item-home">
<a href="/" rel="section"><i class="fa fa-home fa-fw"></i>Home</a>
</li>
<li class="menu-item menu-item-tags">
<a href="/tags/" rel="section"><i class="fa fa-tags fa-fw"></i>Tags<span class="badge">9</span></a>
</li>
<li class="menu-item menu-item-categories">
<a href="/categories/" rel="section"><i class="fa fa-th fa-fw"></i>Categories<span class="badge">3</span></a>
</li>
<li class="menu-item menu-item-archives">
<a href="/archives/" rel="section"><i class="fa fa-archive fa-fw"></i>Archives<span class="badge">18</span></a>
</li>
<li class="menu-item menu-item-search">
<a role="button" class="popup-trigger"><i class="fa fa-search fa-fw"></i>Search
</a>
</li>
</ul>
</nav>
<div class="search-pop-overlay">
<div class="popup search-popup">
<div class="search-header">
<span class="search-icon">
<i class="fa fa-search"></i>
</span>
<div class="search-input-container">
<input autocomplete="off" autocapitalize="off"
placeholder="Searching..." spellcheck="false"
type="search" class="search-input">
</div>
<span class="popup-btn-close">
<i class="fa fa-times-circle"></i>
</span>
</div>
<div id="search-result">
<div id="no-result">
<i class="fa fa-spinner fa-pulse fa-5x fa-fw"></i>
</div>
</div>
</div>
</div>
</div>
</header>
<div class="back-to-top">
<i class="fa fa-arrow-up"></i>
<span>0%</span>
</div>
<main class="main">
<div class="main-inner">
<div class="content-wrap">
<div class="content index posts-expand">
<article itemscope itemtype="http://schema.org/Article" class="post-block" lang="en">
<link itemprop="mainEntityOfPage" href="https://shuoxux.github.io/2021/08/03/hello-world/">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="image" content="/images/avatar.gif">
<meta itemprop="name" content="shuoxu">
<meta itemprop="description" content="">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="Shuoxu's Blog">
</span>
<header class="post-header">
<h2 class="post-title" itemprop="name headline">
<a href="/2021/08/03/hello-world/" class="post-title-link" itemprop="url">Hello World</a>
</h2>
<div class="post-meta">
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-calendar"></i>
</span>
<span class="post-meta-item-text">Posted on</span>
<time title="Created: 2021-08-03 21:07:37" itemprop="dateCreated datePublished" datetime="2021-08-03T21:07:37+08:00">2021-08-03</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-comment"></i>
</span>
<span class="post-meta-item-text">Valine: </span>
<a title="valine" href="/2021/08/03/hello-world/#valine-comments" itemprop="discussionUrl">
<span class="post-comments-count valine-comment-count" data-xid="/2021/08/03/hello-world/" itemprop="commentCount"></span>
</a>
</span>
</div>
</header>
<div class="post-body" itemprop="articleBody">
<p>Welcome to <a target="_blank" rel="noopener" href="https://hexo.io/">Hexo</a>! This is your very first post. Check <a target="_blank" rel="noopener" href="https://hexo.io/docs/">documentation</a> for more info. If you get any problems when using Hexo, you can find the answer in <a target="_blank" rel="noopener" href="https://hexo.io/docs/troubleshooting.html">troubleshooting</a> or you can ask me on <a target="_blank" rel="noopener" href="https://github.com/hexojs/hexo/issues">GitHub</a>.</p>
<h2 id="Quick-Start"><a href="#Quick-Start" class="headerlink" title="Quick Start"></a>Quick Start</h2><h3 id="Create-a-new-post"><a href="#Create-a-new-post" class="headerlink" title="Create a new post"></a>Create a new post</h3><figure class="highlight bash"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line">$ hexo new <span class="string">"My New Post"</span></span><br></pre></td></tr></table></figure>
<p>More info: <a target="_blank" rel="noopener" href="https://hexo.io/docs/writing.html">Writing</a></p>
<h3 id="Run-server"><a href="#Run-server" class="headerlink" title="Run server"></a>Run server</h3><figure class="highlight bash"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line">$ hexo server</span><br></pre></td></tr></table></figure>
<p>More info: <a target="_blank" rel="noopener" href="https://hexo.io/docs/server.html">Server</a></p>
<h3 id="Generate-static-files"><a href="#Generate-static-files" class="headerlink" title="Generate static files"></a>Generate static files</h3><figure class="highlight bash"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line">$ hexo generate</span><br></pre></td></tr></table></figure>
<p>More info: <a target="_blank" rel="noopener" href="https://hexo.io/docs/generating.html">Generating</a></p>
<h3 id="Deploy-to-remote-sites"><a href="#Deploy-to-remote-sites" class="headerlink" title="Deploy to remote sites"></a>Deploy to remote sites</h3><figure class="highlight bash"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line">$ hexo deploy</span><br></pre></td></tr></table></figure>
<p>More info: <a target="_blank" rel="noopener" href="https://hexo.io/docs/one-command-deployment.html">Deployment</a></p>
</div>
<footer class="post-footer">
<div class="post-eof"></div>
</footer>
</article>
<article itemscope itemtype="http://schema.org/Article" class="post-block" lang="en">
<link itemprop="mainEntityOfPage" href="https://shuoxux.github.io/2021/07/29/test2021/">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="image" content="/images/avatar.gif">
<meta itemprop="name" content="shuoxu">
<meta itemprop="description" content="">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="Shuoxu's Blog">
</span>
<header class="post-header">
<h2 class="post-title" itemprop="name headline">
<a href="/2021/07/29/test2021/" class="post-title-link" itemprop="url">test2021</a>
</h2>
<div class="post-meta">
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-calendar"></i>
</span>
<span class="post-meta-item-text">Posted on</span>
<time title="Created: 2021-07-29 22:05:41" itemprop="dateCreated datePublished" datetime="2021-07-29T22:05:41+08:00">2021-07-29</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-comment"></i>
</span>
<span class="post-meta-item-text">Valine: </span>
<a title="valine" href="/2021/07/29/test2021/#valine-comments" itemprop="discussionUrl">
<span class="post-comments-count valine-comment-count" data-xid="/2021/07/29/test2021/" itemprop="commentCount"></span>
</a>
</span>
</div>
</header>
<div class="post-body" itemprop="articleBody">
</div>
<footer class="post-footer">
<div class="post-eof"></div>
</footer>
</article>
<article itemscope itemtype="http://schema.org/Article" class="post-block" lang="en">
<link itemprop="mainEntityOfPage" href="https://shuoxux.github.io/2021/07/29/test/">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="image" content="/images/avatar.gif">
<meta itemprop="name" content="shuoxu">
<meta itemprop="description" content="">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="Shuoxu's Blog">
</span>
<header class="post-header">
<h2 class="post-title" itemprop="name headline">
<a href="/2021/07/29/test/" class="post-title-link" itemprop="url">test</a>
</h2>
<div class="post-meta">
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-calendar"></i>
</span>
<span class="post-meta-item-text">Posted on</span>
<time title="Created: 2021-07-29 21:41:49" itemprop="dateCreated datePublished" datetime="2021-07-29T21:41:49+08:00">2021-07-29</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-comment"></i>
</span>
<span class="post-meta-item-text">Valine: </span>
<a title="valine" href="/2021/07/29/test/#valine-comments" itemprop="discussionUrl">
<span class="post-comments-count valine-comment-count" data-xid="/2021/07/29/test/" itemprop="commentCount"></span>
</a>
</span>
</div>
</header>
<div class="post-body" itemprop="articleBody">
<p><img src="https://latex.codecogs.com/gif.latex?%5Csum_%7Bi=0%7D%5En"></p>
<p>输入:<img src="https://latex.codecogs.com/svg.image?\inline&space;\left\{&space;a,b,c\right\}" title="\inline \left\{ a,b,c\right\}" /></p>
<p>输出 :<img src="https://latex.codecogs.com/svg.image?\inline&space;\left\{&space;a,b,c\right\}" title="\inline \left\{ a,b,c\right\}" /></p>
<p>对于<img src="https://latex.codecogs.com/svg.image?\inline&space;\left\{&space;a,b,c\right\}" title="\inline \left\{ a,b,c\right\}" />有<img src="https://latex.codecogs.com/svg.image?\inline&space;\left\{&space;a,b,c\right\}" title="\inline \left\{ a,b,c\right\}" />这是可以的<img src="https://latex.codecogs.com/svg.image?\inline&space;\left\{&space;a,b,c\right\}" title="\inline \left\{ a,b,c\right\}" /></p>
</div>
<footer class="post-footer">
<div class="post-eof"></div>
</footer>
</article>
<article itemscope itemtype="http://schema.org/Article" class="post-block" lang="en">
<link itemprop="mainEntityOfPage" href="https://shuoxux.github.io/2020/11/02/BP/">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="image" content="/images/avatar.gif">
<meta itemprop="name" content="shuoxu">
<meta itemprop="description" content="">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="Shuoxu's Blog">
</span>
<header class="post-header">
<h2 class="post-title" itemprop="name headline">
<a href="/2020/11/02/BP/" class="post-title-link" itemprop="url">BP</a>
</h2>
<div class="post-meta">
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-calendar"></i>
</span>
<span class="post-meta-item-text">Posted on</span>
<time title="Created: 2020-11-02 14:28:33" itemprop="dateCreated datePublished" datetime="2020-11-02T14:28:33+08:00">2020-11-02</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-comment"></i>
</span>
<span class="post-meta-item-text">Valine: </span>
<a title="valine" href="/2020/11/02/BP/#valine-comments" itemprop="discussionUrl">
<span class="post-comments-count valine-comment-count" data-xid="/2020/11/02/BP/" itemprop="commentCount"></span>
</a>
</span>
</div>
</header>
<div class="post-body" itemprop="articleBody">
<h2 id="This-doc-shows-the-easy-understanding-of-BP"><a href="#This-doc-shows-the-easy-understanding-of-BP" class="headerlink" title="This doc shows the easy understanding of BP"></a>This doc shows the easy understanding of BP</h2><h2 id="Reference"><a href="#Reference" class="headerlink" title="Reference"></a>Reference</h2><p><a target="_blank" rel="noopener" href="https://blog.csdn.net/weixin_38347387/article/details/82936585">反向传播——通俗易懂</a></p>
</div>
<footer class="post-footer">
<div class="post-eof"></div>
</footer>
</article>
<article itemscope itemtype="http://schema.org/Article" class="post-block" lang="en">
<link itemprop="mainEntityOfPage" href="https://shuoxux.github.io/2020/10/06/%E7%89%B9%E5%BE%81%E9%80%89%E6%8B%A9%E4%B8%8E%E7%A8%80%E7%96%8F%E5%AD%A6%E4%B9%A0/">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="image" content="/images/avatar.gif">
<meta itemprop="name" content="shuoxu">
<meta itemprop="description" content="">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="Shuoxu's Blog">
</span>
<header class="post-header">
<h2 class="post-title" itemprop="name headline">
<a href="/2020/10/06/%E7%89%B9%E5%BE%81%E9%80%89%E6%8B%A9%E4%B8%8E%E7%A8%80%E7%96%8F%E5%AD%A6%E4%B9%A0/" class="post-title-link" itemprop="url">机器学习 第十一章 特征选择与稀疏学习</a>
</h2>
<div class="post-meta">
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-calendar"></i>
</span>
<span class="post-meta-item-text">Posted on</span>
<time title="Created: 2020-10-06 13:40:46" itemprop="dateCreated datePublished" datetime="2020-10-06T13:40:46+08:00">2020-10-06</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-folder"></i>
</span>
<span class="post-meta-item-text">In</span>
<span itemprop="about" itemscope itemtype="http://schema.org/Thing">
<a href="/categories/Machine-Learning/" itemprop="url" rel="index"><span itemprop="name">Machine Learning</span></a>
</span>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-comment"></i>
</span>
<span class="post-meta-item-text">Valine: </span>
<a title="valine" href="/2020/10/06/%E7%89%B9%E5%BE%81%E9%80%89%E6%8B%A9%E4%B8%8E%E7%A8%80%E7%96%8F%E5%AD%A6%E4%B9%A0/#valine-comments" itemprop="discussionUrl">
<span class="post-comments-count valine-comment-count" data-xid="/2020/10/06/%E7%89%B9%E5%BE%81%E9%80%89%E6%8B%A9%E4%B8%8E%E7%A8%80%E7%96%8F%E5%AD%A6%E4%B9%A0/" itemprop="commentCount"></span>
</a>
</span>
</div>
</header>
<div class="post-body" itemprop="articleBody">
<h2 id="Introduction"><a href="#Introduction" class="headerlink" title="Introduction"></a>Introduction</h2><p>  本篇是周志华西瓜书机器学习笔记,第十一章特征选择与稀疏学习。</p>
<h2 id="子集搜索与评价"><a href="#子集搜索与评价" class="headerlink" title="子集搜索与评价"></a>子集搜索与评价</h2><p>  特征选择的过程必须确保不丢失重要特征。“相关特征”,“无关特征”,“冗余特征”。<br><br/>  子集搜索:前向搜索,后向搜索,双向搜索,且都是“贪心”的。<br><br/>  子集评价:可用信息熵评价。</p>
<h2 id="过滤式选择"><a href="#过滤式选择" class="headerlink" title="过滤式选择"></a>过滤式选择</h2><p>  先对数据集进行特征选择,然后再训练学习器,特征选择过程与后续学习器无关.Relief(Relevant Features)是一种著名的过滤式选择方法.该方法设计了一个“相关统计量”来度量特征的重要性,适用于二分类问题,Relief-F适用于多分类问题。</p>
<h2 id="包裹式选择"><a href="#包裹式选择" class="headerlink" title="包裹式选择"></a>包裹式选择</h2><p>  直接把最终将要使用的学习器的性能作为特征子集的评价标准.因此产生的最终学习器的性能比过滤式特征选择更好,但训练时的计算开销大得多.LVW(Las Vegas Wrapper)是一个典型的包裹式特征选择方法,它在拉斯维加斯方法框架下使用随机策略来进行子集搜索,并以最终分类器的误差为特征子集评价准则.</p>
<h2 id="嵌入式选择与-L-1-正则化"><a href="#嵌入式选择与-L-1-正则化" class="headerlink" title="嵌入式选择与$L_1$正则化"></a>嵌入式选择与$L_1$正则化</h2><p>  特征选择过程与学习器训练过程融为一体,两者在同一个优化过程中完成.<br><br/>  $L_1$范数和$L_2$范数正则化都有助于降低过拟合的风险,且点着更容易获得”稀疏”(sparse)解。$L_1$正则化问题的求解可使用近端梯度下降(Proximal Gradient Descent, PGD)</p>
<h2 id="稀疏表示与字典学习"><a href="#稀疏表示与字典学习" class="headerlink" title="稀疏表示与字典学习"></a>稀疏表示与字典学习</h2><p>  为普通稠密表达的样本找到合适的字典,将样本转化为合适的稀疏表示形式,从而使学习任务得以简化,模型复杂度得以降低,通常称为“字典学习”(dictionary learning),亦称“稀疏编码”(sparse coding).</p>
<h2 id="压缩感知-compressed-sensing"><a href="#压缩感知-compressed-sensing" class="headerlink" title="压缩感知(compressed sensing)"></a>压缩感知(compressed sensing)</h2><p>  图像或声音的数字信号通常在时域上不具有稀疏性,但经过傅里叶变换,余弦变换,小波变换等处理后会转化为频域上的稀疏信号。压缩感知分为“感知测量”和“重构恢复”两个阶段。可利用矩阵补全(matrix completion)等方法来解决推荐系统之类的协同过滤(collaborative filtering)任务.</p>
<h2 id="References"><a href="#References" class="headerlink" title="References"></a>References</h2><p>周志华,机器学习<br><br/><a target="_blank" rel="noopener" href="https://datawhalechina.github.io/pumpkin-book/#/">南瓜书PumpkinBook</a><br><br/><a target="_blank" rel="noopener" href="https://www.cnblogs.com/limitlessun/p/8505647.html#_label5">《机器学习》(周志华)西瓜书读书笔记(完结)</a></p>
</div>
<footer class="post-footer">
<div class="post-eof"></div>
</footer>
</article>
<article itemscope itemtype="http://schema.org/Article" class="post-block" lang="en">
<link itemprop="mainEntityOfPage" href="https://shuoxux.github.io/2020/10/06/%E9%99%8D%E7%BB%B4%E5%92%8C%E5%BA%A6%E9%87%8F%E5%AD%A6%E4%B9%A0/">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="image" content="/images/avatar.gif">
<meta itemprop="name" content="shuoxu">
<meta itemprop="description" content="">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="Shuoxu's Blog">
</span>
<header class="post-header">
<h2 class="post-title" itemprop="name headline">
<a href="/2020/10/06/%E9%99%8D%E7%BB%B4%E5%92%8C%E5%BA%A6%E9%87%8F%E5%AD%A6%E4%B9%A0/" class="post-title-link" itemprop="url">机器学习 第十章 降维和度量学习</a>
</h2>
<div class="post-meta">
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-calendar"></i>
</span>
<span class="post-meta-item-text">Posted on</span>
<time title="Created: 2020-10-06 10:37:38" itemprop="dateCreated datePublished" datetime="2020-10-06T10:37:38+08:00">2020-10-06</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-folder"></i>
</span>
<span class="post-meta-item-text">In</span>
<span itemprop="about" itemscope itemtype="http://schema.org/Thing">
<a href="/categories/Machine-Learning/" itemprop="url" rel="index"><span itemprop="name">Machine Learning</span></a>
</span>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-comment"></i>
</span>
<span class="post-meta-item-text">Valine: </span>
<a title="valine" href="/2020/10/06/%E9%99%8D%E7%BB%B4%E5%92%8C%E5%BA%A6%E9%87%8F%E5%AD%A6%E4%B9%A0/#valine-comments" itemprop="discussionUrl">
<span class="post-comments-count valine-comment-count" data-xid="/2020/10/06/%E9%99%8D%E7%BB%B4%E5%92%8C%E5%BA%A6%E9%87%8F%E5%AD%A6%E4%B9%A0/" itemprop="commentCount"></span>
</a>
</span>
</div>
</header>
<div class="post-body" itemprop="articleBody">
<h2 id="Introduction"><a href="#Introduction" class="headerlink" title="Introduction"></a>Introduction</h2><p>  本篇是周志华西瓜书机器学习笔记,第十章降维与度量学习。</p>
<h2 id="k近邻学习"><a href="#k近邻学习" class="headerlink" title="k近邻学习"></a>k近邻学习</h2><p>  k近邻(k-Nearest Neighbor, KNN)学习是一种常用的监督学习算法,工作机制为:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后基于这k个”邻居”的信息来预测.在分类任务中使用投票法,在回归任务中使用平均法.k近邻是”懒惰学习”(lazy learning)的代表,此类学习技术在训练阶段仅仅是把样本保存起来,训练时间开销为零,待收到测试样本后再进行处理;相应地,在训练阶段就对样本进行学习的处理的方法,称为”急切学习”(eager learning).</p>
<h2 id="低维嵌入"><a href="#低维嵌入" class="headerlink" title="低维嵌入"></a>低维嵌入</h2><p>  在高维情形下出现的数据样本稀疏,距离计算困难等问题,是所有机器学习算法共同面临的严重障碍,被称为”维数灾难”(curse of dimensionality),缓解维数灾难的一个重要的途径是降维(dimention reduction),即通过某种数学变换将原始高维属性空间转变为一个低维”子空间”(subspace).<br><br/>  ”多维缩放”(Mulitiple Dimensional Scaling, MDS)是一种经典的降维方法,可以将原始空间中样本之间的距离在低维空间得以保持.</p>
<blockquote>
<hr>
<p>输入:距离矩阵$\boldsymbol{D}\in \mathbb{R}^{m\times m}$,其元素$dist_{ij}$为样本$\boldsymbol{x}<em>i$到$\boldsymbol{x}<em>j$的距离;<br><br/>  低维空间维数$d’$.<br><br/>过程:<br><br/>1:根据式(10.7)~(10.9)计算$dist</em>{i\cdot}^2$,$dist</em>{\cdot j}^2$,$dist_{\cdot \cdot}^2$;<br><br/>2:根据式(10.10)计算矩阵$\boldsymbol{B}$<br><br/>3:对矩阵$\boldsymbol{B}$做特征值分解;<br><br/>4:取$\boldsymbol{\hat{\Lambda}}$为第$d’$个最大特征值所构成的对角矩阵,$\boldsymbol{\tilde{V}}$为相应的特征向量矩阵.<br><br/>输出:矩阵$\boldsymbol{\tilde{V}}$$\boldsymbol{\hat{\Lambda}}^{1/2}\in\mathbb{R}^{m\times d’}$,每行是一个样本的低维坐标.</p>
<hr>
</blockquote>
<p>$$MDS算法$$</p>
<h2 id="主成分分析"><a href="#主成分分析" class="headerlink" title="主成分分析"></a>主成分分析</h2><p>  主成分分析(Principal Component Analysis, PCA)是常用的一种降维方法</p>
<blockquote>
<hr>
<p>输入:样本集$D=\left{\boldsymbol{x}_1,\boldsymbol{x}_2,…,\boldsymbol{x}_m\right}$;<br><br/>  低维空间维数$d’$.<br><br/>过程:<br><br/>1:对所有样本进行中心化:$\boldsymbol{x_i}\leftarrow\boldsymbol{x}<em>i-\frac{1}{m}\sum</em>{i=1}^m\boldsymbol{x}_i$;<br><br/>2:计算样本的协方差矩阵$\boldsymbol{X}\boldsymbol{X}^T$;<br><br/>3:对协方差矩阵$\boldsymbol{X}\boldsymbol{X}^T$做特征值分解;<br><br/>4:取最大的$d’$个特征值所对应的特征向量$\boldsymbol{w}_1$,$\boldsymbol{w}_2$,…,$\boldsymbol{w}_d’$<br><br/>输出:投影矩阵$\boldsymbol{W}^*=$$(\boldsymbol{w}_1$,$\boldsymbol{w}_2$,…,$\boldsymbol{w}_d’)$.</p>
<hr>
</blockquote>
<p>$$PCA算法$$</p>
<p>  低维空间和高维空间不同,因为对应于最小的$d-d’$个特征值的特征向量被舍弃了;舍弃这部分信息之后能使样本的采样密度增大,同时能够起到降噪的效果.</p>
<h2 id="核化线性降维"><a href="#核化线性降维" class="headerlink" title="核化线性降维"></a>核化线性降维</h2><p>  非线性降维的一种常用方法,是基于核技巧对线性降维方法进行”核化”(kernelized).如核主成分分析(kernelized PCA, KPCA)</p>
<h2 id="流行学习-manifold-learning"><a href="#流行学习-manifold-learning" class="headerlink" title="流行学习(manifold learning)"></a>流行学习(manifold learning)</h2><p>  等度量映射<br><br/>  局部线性嵌入</p>
<h2 id="度量学习"><a href="#度量学习" class="headerlink" title="度量学习"></a>度量学习</h2><p>  度量学习直接尝试”学习”出一个合适的距离度量,方法有近邻成分分析(Neighbourhood Compnent Analysis, NCA).</p>
<h2 id="References"><a href="#References" class="headerlink" title="References"></a>References</h2><p>周志华,机器学习<br><br/><a target="_blank" rel="noopener" href="https://datawhalechina.github.io/pumpkin-book/#/">南瓜书PumpkinBook</a><br><br/><a target="_blank" rel="noopener" href="https://www.cnblogs.com/limitlessun/p/8505647.html#_label5">《机器学习》(周志华)西瓜书读书笔记(完结)</a></p>
</div>
<footer class="post-footer">
<div class="post-eof"></div>
</footer>
</article>
<article itemscope itemtype="http://schema.org/Article" class="post-block" lang="en">
<link itemprop="mainEntityOfPage" href="https://shuoxux.github.io/2020/10/05/DecisionTree/">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="image" content="/images/avatar.gif">
<meta itemprop="name" content="shuoxu">
<meta itemprop="description" content="">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="Shuoxu's Blog">
</span>
<header class="post-header">
<h2 class="post-title" itemprop="name headline">
<a href="/2020/10/05/DecisionTree/" class="post-title-link" itemprop="url">机器学习 第四章 决策树(Decision Tree)</a>
</h2>
<div class="post-meta">
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-calendar"></i>
</span>
<span class="post-meta-item-text">Posted on</span>
<time title="Created: 2020-10-05 15:53:02" itemprop="dateCreated datePublished" datetime="2020-10-05T15:53:02+08:00">2020-10-05</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-folder"></i>
</span>
<span class="post-meta-item-text">In</span>
<span itemprop="about" itemscope itemtype="http://schema.org/Thing">
<a href="/categories/Machine-Learning/" itemprop="url" rel="index"><span itemprop="name">Machine Learning</span></a>
</span>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-comment"></i>
</span>
<span class="post-meta-item-text">Valine: </span>
<a title="valine" href="/2020/10/05/DecisionTree/#valine-comments" itemprop="discussionUrl">
<span class="post-comments-count valine-comment-count" data-xid="/2020/10/05/DecisionTree/" itemprop="commentCount"></span>
</a>
</span>
</div>
</header>
<div class="post-body" itemprop="articleBody">
<h2 id="Introduction"><a href="#Introduction" class="headerlink" title="Introduction"></a>Introduction</h2><p>  本篇是周志华西瓜书机器学习笔记,第四章决策树。</p>
<h2 id="基本流程"><a href="#基本流程" class="headerlink" title="基本流程"></a>基本流程</h2><p>  决策树是基于树结构来进行决策的。</p>
<blockquote>
<hr>
<p>输入:训练集<img src="https://latex.codecogs.com/svg.image?\inline&space;\left\{&space;(x_1,y_1),(x_2,y_2),...,(x_m,y_m)\right\}"/></p>
</blockquote>
<blockquote>
<p><br/>   属性集<img src="https://latex.codecogs.com/svg.image?\inline&space;A=\left\{a_1,a_2,...,a_d\right\}" title="\inline A=\left\{a_1,a_2,...,a_d\right\}" /><br>$A=\{a_1,a_2,…,a_d\}$<br><br/>过程:函数$TreeGenerate(D,A)$<br><br/>1:生成节点node;<br><br/>2:$\boldsymbol{if}D$样本全属于同一类别$C$ $\boldsymbol{then}$<br><br/>3:  将node标记为$C$类叶节点;$\boldsymbol{return}$<br><br/>4:$\boldsymbol{end\ if}$<br><br/>5:$\boldsymbol{if}$ $A=\varnothing$ $\boldsymbol{OR}$ $D$中样本在$A$上取值相同 $\boldsymbol{then}$<br><br/>6:  将node表计为叶节点,其类别标记为$D$中样本数最多的类;$\boldsymbol{return}$<br><br/>7:$\boldsymbol{end\ if}$<br><br/>8:从$A$中选择最优划分属性$a_*$;<br><br/>9:$\boldsymbol{for}\ a_*$的每一个值$a_<em>^v\ \boldsymbol{do}$<br><br/>10:  为node生成一个分支;令$D_v$表示$D$在$a_</em>$上取值为$a_*^v$的样本子集;<br><br/>11:  $\boldsymbol{if}\ D_v为空\boldsymbol{then}$<br><br/>12:    将分支结点标记为叶结点,其类别标记为$D$中样本最多的类;$\boldsymbol{return}$<br><br/>13:  $\boldsymbol{else}$<br><br/>14:    以$TreeGenerate(D_v,A \backslash\left{a_*\right})$为分支结点<br><br/>15:  $\boldsymbol{end\ if}$<br><br/>16:$\boldsymbol{end\ for}$<br><br/>输出:以node为根节点的一棵决策树</p>
<hr>
</blockquote>
<p><br/>$$决策树学习基本算法$$</p>
<h2 id="划分选择"><a href="#划分选择" class="headerlink" title="划分选择"></a>划分选择</h2><p>  信息增益:一般而言,信息增益越大,则意味着使用属性a来划分所获得的”纯度提升”越大。ID3决策树学习算法使用信息增益为准则来划分属性。<br><br/>  增益率:信息增益准则对可取数值较多的属性有所偏好,增益率可减少这种偏好带来的不利影响。C4.5使用”增益率”来选择最优划分属性,增益率准则可对取值数目较少的属性有所偏好,C4.5先从候选划分属性中找出信息增益高于平均水平的属性,再从中选择增益率最高的。<br><br/>  基尼系数:CART决策树使用“基尼系数”(Gini index)来选择划分属性。基尼系数反应了数据集随机抽取的两个样本不一致的概率,基尼系数越小,数据集的纯度越高。</p>
<h2 id="剪枝处理"><a href="#剪枝处理" class="headerlink" title="剪枝处理"></a>剪枝处理</h2><p>  剪枝是决策树学习算法对付“过拟合”的主要手段。决策树剪枝的基本策略有“预剪枝”和“后剪枝”。<br><br/>  预剪枝是指在决策树生成的过程中,对每个结点在划分前先进行估计,若当前结点的划分不能带来决策树泛化性能提升,则停止划分并将当前结点标记为叶结点;可以降低过拟合地风险,减少训练时间开销和测试时间开销;基于“贪心”,有欠拟合地风险。<br><br/>  后剪枝则是先从训练集生成一棵完整的决策树,然后自底向上地对非叶结点进行考察,若将该结点对应地子树替换为叶结点能带来决策树泛化性能提升,则将该子树替换为叶结点。后剪枝决策树地欠拟合风险小,泛化性能优于剪枝决策树;训练开销比较大。</p>
<h2 id="连续与缺失值"><a href="#连续与缺失值" class="headerlink" title="连续与缺失值"></a>连续与缺失值</h2><p>  连续属性离散化技术;采用二分法(bi-partition)对连续属性进行处理。<br><br/>  缺失值处理</p>
<h2 id="多变量决策树"><a href="#多变量决策树" class="headerlink" title="多变量决策树"></a>多变量决策树</h2><h2 id="References"><a href="#References" class="headerlink" title="References"></a>References</h2><p>周志华,机器学习<br><br/><a target="_blank" rel="noopener" href="https://datawhalechina.github.io/pumpkin-book/#/">南瓜书PumpkinBook</a><br><br/><a target="_blank" rel="noopener" href="https://www.cnblogs.com/limitlessun/p/8505647.html#_label5">《机器学习》(周志华)西瓜书读书笔记(完结)</a></p>
</div>
<footer class="post-footer">
<div class="post-eof"></div>
</footer>
</article>
<article itemscope itemtype="http://schema.org/Article" class="post-block" lang="en">
<link itemprop="mainEntityOfPage" href="https://shuoxux.github.io/2020/10/05/SVM/">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="image" content="/images/avatar.gif">
<meta itemprop="name" content="shuoxu">
<meta itemprop="description" content="">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="Shuoxu's Blog">
</span>
<header class="post-header">
<h2 class="post-title" itemprop="name headline">
<a href="/2020/10/05/SVM/" class="post-title-link" itemprop="url">机器学习 第六章 支持向量机(Support Vector Machine, SVM)</a>
</h2>
<div class="post-meta">
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-calendar"></i>
</span>
<span class="post-meta-item-text">Posted on</span>
<time title="Created: 2020-10-05 09:31:37" itemprop="dateCreated datePublished" datetime="2020-10-05T09:31:37+08:00">2020-10-05</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-folder"></i>
</span>
<span class="post-meta-item-text">In</span>
<span itemprop="about" itemscope itemtype="http://schema.org/Thing">
<a href="/categories/Machine-Learning/" itemprop="url" rel="index"><span itemprop="name">Machine Learning</span></a>
</span>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-comment"></i>
</span>
<span class="post-meta-item-text">Valine: </span>
<a title="valine" href="/2020/10/05/SVM/#valine-comments" itemprop="discussionUrl">
<span class="post-comments-count valine-comment-count" data-xid="/2020/10/05/SVM/" itemprop="commentCount"></span>
</a>
</span>
</div>
</header>
<div class="post-body" itemprop="articleBody">
<h2 id="前言"><a href="#前言" class="headerlink" title="前言"></a>前言</h2><p>  本篇是周志华西瓜书机器学习笔记,第六章支持向量机。</p>
<h2 id="间隔与支持向量"><a href="#间隔与支持向量" class="headerlink" title="间隔与支持向量"></a>间隔与支持向量</h2><p>  距离超平面最近的几个训练样本点使得式(6.3)(原书)等号成立,被称为“支持向量”(support vector),两个异类支持向量到超平面的距离之和被称为间隔。</p>
<h2 id="对偶问题"><a href="#对偶问题" class="headerlink" title="对偶问题"></a>对偶问题</h2><p>通过拉个朗日乘子法求得支持向量机基本型的对偶问题(dual problem).</p>
<h2 id="核函数"><a href="#核函数" class="headerlink" title="核函数"></a>核函数</h2><p>  原始样本空间可能不存在一个能正确划分两类样本的超平面,可将样本从原始空间映射到一个更高维的特征空间,使得样本在这个特征空间内线性可分。如果原始空间是有限维的,即属性数有限,那么一定存在一个高维特征空间使样本可分。</p>
<p>  令$\phi(\boldsymbol{x})$表示将$\boldsymbol{x}$映射后的特征向量,则在特征空间中划分超平面所对应的模型可表示为<br>$$f(\boldsymbol{x})=\boldsymbol{w}^T\phi(\boldsymbol{x})+b$$<br><br/>  核函数是用来简化计算高维特征中内积的一种方法。“核函数选择”成为支持向量机的最大变数。<br><br/>  常用的核函数有:线性核、多项式核、高斯核、拉普拉斯核、Sigmoid核。此外还可以通过函数组合得到核函数。</p>
<h2 id="软间隔与正则化"><a href="#软间隔与正则化" class="headerlink" title="软间隔与正则化"></a>软间隔与正则化</h2><p><br/>  软间隔允许某些样本不满足约束,是缓解支持向量机过拟合的主要手段。常用的替代损失函数:hinge损失、指数损失(exponential loss)、对率损失(logistic loss)。</p>
<h2 id="支持向量回归"><a href="#支持向量回归" class="headerlink" title="支持向量回归"></a>支持向量回归</h2><p><br/>  支持向量回归容忍$f(\boldsymbol{x})$与$y$之间最多有$\epsilon$的偏差,即仅当$f(\boldsymbol{x})$与$y$之间的差别绝对值大于$\epsilon$时才计算损失。</p>
<h2 id="核方法"><a href="#核方法" class="headerlink" title="核方法"></a>核方法</h2><p><br/>  表示定理</p>
<h2 id="References"><a href="#References" class="headerlink" title="References"></a>References</h2><p>周志华,机器学习<br><br/><a target="_blank" rel="noopener" href="https://datawhalechina.github.io/pumpkin-book/#/">南瓜书PumpkinBook</a><br><br/><a target="_blank" rel="noopener" href="https://www.cnblogs.com/limitlessun/p/8505647.html#_label5">《机器学习》(周志华)西瓜书读书笔记(完结)</a></p>
</div>
<footer class="post-footer">
<div class="post-eof"></div>
</footer>
</article>
<article itemscope itemtype="http://schema.org/Article" class="post-block" lang="en">
<link itemprop="mainEntityOfPage" href="https://shuoxux.github.io/2020/10/04/LatexMath/">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="image" content="/images/avatar.gif">
<meta itemprop="name" content="shuoxu">
<meta itemprop="description" content="">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="Shuoxu's Blog">
</span>
<header class="post-header">
<h2 class="post-title" itemprop="name headline">
<a href="/2020/10/04/LatexMath/" class="post-title-link" itemprop="url">Latex Math</a>
</h2>
<div class="post-meta">
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-calendar"></i>
</span>
<span class="post-meta-item-text">Posted on</span>
<time title="Created: 2020-10-04 14:00:17" itemprop="dateCreated datePublished" datetime="2020-10-04T14:00:17+08:00">2020-10-04</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-folder"></i>
</span>
<span class="post-meta-item-text">In</span>
<span itemprop="about" itemscope itemtype="http://schema.org/Thing">
<a href="/categories/Tools/" itemprop="url" rel="index"><span itemprop="name">Tools</span></a>
</span>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-comment"></i>
</span>
<span class="post-meta-item-text">Valine: </span>
<a title="valine" href="/2020/10/04/LatexMath/#valine-comments" itemprop="discussionUrl">
<span class="post-comments-count valine-comment-count" data-xid="/2020/10/04/LatexMath/" itemprop="commentCount"></span>
</a>
</span>
</div>
</header>
<div class="post-body" itemprop="articleBody">
<h2 id="Introduction"><a href="#Introduction" class="headerlink" title="Introduction"></a>Introduction</h2><p>This article shows how to use latex to write math functions.</p>
<h2 id="References"><a href="#References" class="headerlink" title="References"></a>References</h2><p><a target="_blank" rel="noopener" href="https://www.latex-project.org/">latex-project.org</a></p>
<p><a target="_blank" rel="noopener" href="https://www.latex-project.org/help/documentation/amsldoc.pdf">User’s Guide for the amsmath Package (Version 2.1)</a></p>
<p><a target="_blank" rel="noopener" href="https://www.caam.rice.edu/~heinken/latex/symbols.pdf">LATEX Mathematical Symbols</a></p>
<p><a target="_blank" rel="noopener" href="https://en.wikibooks.org/wiki/LaTeX/Mathematics">LaTeX/Mathematics</a></p>
</div>
<footer class="post-footer">
<div class="post-eof"></div>
</footer>
</article>
<article itemscope itemtype="http://schema.org/Article" class="post-block" lang="en">
<link itemprop="mainEntityOfPage" href="https://shuoxux.github.io/2020/10/04/EnsembleLearning/">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="image" content="/images/avatar.gif">
<meta itemprop="name" content="shuoxu">
<meta itemprop="description" content="">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="Shuoxu's Blog">
</span>
<header class="post-header">
<h2 class="post-title" itemprop="name headline">
<a href="/2020/10/04/EnsembleLearning/" class="post-title-link" itemprop="url">机器学习 第八章 集成学习(Ensemble Learning)</a>
</h2>
<div class="post-meta">
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-calendar"></i>
</span>
<span class="post-meta-item-text">Posted on</span>
<time title="Created: 2020-10-04 11:13:02" itemprop="dateCreated datePublished" datetime="2020-10-04T11:13:02+08:00">2020-10-04</time>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-folder"></i>
</span>
<span class="post-meta-item-text">In</span>
<span itemprop="about" itemscope itemtype="http://schema.org/Thing">
<a href="/categories/Machine-Learning/" itemprop="url" rel="index"><span itemprop="name">Machine Learning</span></a>
</span>
</span>
<span class="post-meta-item">
<span class="post-meta-item-icon">
<i class="far fa-comment"></i>
</span>
<span class="post-meta-item-text">Valine: </span>
<a title="valine" href="/2020/10/04/EnsembleLearning/#valine-comments" itemprop="discussionUrl">
<span class="post-comments-count valine-comment-count" data-xid="/2020/10/04/EnsembleLearning/" itemprop="commentCount"></span>
</a>
</span>
</div>