generated from softwaresaved/rf4
-
Notifications
You must be signed in to change notification settings - Fork 0
/
research_fish_analysis.py
executable file
·288 lines (205 loc) · 9.79 KB
/
research_fish_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#!/usr/bin/env python
# encoding: utf-8
import pandas as pd
from pandas import ExcelWriter
import numpy as np
import csv
import matplotlib.pyplot as plt
from urllib.parse import urlparse
from collections import Counter
import math
import requests
import httplib2
import logging
def import_xls_to_df(filename, name_of_sheet):
# Set up logging
logger = logging.getLogger(__name__)
logger.info('Importing data...')
return pd.read_excel(filename,sheetname=name_of_sheet)
def add_column5(dataframe,newcol):
"""
Adds a new column of NaNs called newcol
:params: a dataframe and column name
:return: a dataframe with a new column
"""
# Set up logging
logger = logging.getLogger(__name__)
logger.info('Adding a column...')
dataframe[newcol] = np.nan
return dataframe
#def add_column2(dataframe,newcol):
# """
# Adds a new column of NaNs called newcol
# :params: a dataframe and column name
# :return: a dataframe with a new column
# """
# # Set up logging
# logger = logging.getLogger(__name__)
# logger.info('Adding a column...')
# dataframe[newcol] = np.nan
# return dataframe
def clean_data2(dataframe,colname):
logger = logging.getLogger(__name__)
logger.info('Cleaning data...')
l = len(dataframe)
dataframe = dataframe[(dataframe['Type of Tech Product'] == 'Software') | (dataframe['Type of Tech Product'] == 'Grid Application') | (dataframe['Type of Tech Product'] == 'e-Business Platform') | (dataframe['Type of Tech Product'] == 'Webtool/Application')]
t = len(dataframe)
dataframe.drop_duplicates(subset = ['Tech Product'], keep = 'first', inplace = True)
length_dupes = len(dataframe)
lost_years = ['2006', '2007', '2008', '2009', '2010', '2011']
for year in lost_years:
dataframe.drop(dataframe[dataframe[colname] == year].index, inplace = True)
y = len(dataframe)
for i, row in dataframe.iterrows():
try:
int(dataframe[colname][i])
except:
dataframe[colname][i] = np.nan
dataframe.dropna(subset=[colname], inplace=True)
length_final = len(dataframe)
logger.info("Records dropped during tech product cleaning: " + repr(l - t))
logger.info("Records dropped during duplicate cleaning: " + repr(t - length_dupes))
logger.info("Records dropped when cleaning years outside 2012-2016: " + repr(length_dupes - y))
logger.info("Records dropped during non-valid-year cleaning: " + repr(y - length_final))
logger.info("Records left in cleaned data set: " + repr(length_final))
return dataframe
def produce_count(dataframe, colname):
# Set up logging
logger = logging.getLogger(__name__)
logger.info('Producing a count...')
dataframe = pd.DataFrame(dataframe[colname].value_counts())
# Add a column for percentages
dataframe['percentage'] = dataframe[colname]/dataframe[colname].sum()
return dataframe
def produce_count_and_na(dataframe, colname):
# Set up logging
logger = logging.getLogger(__name__)
logger.info('Producing a count and including na...')
# Employ special measures as discussed above for 'Open Source?' field
if colname == 'Open Source?':
temp_dataframe = dataframe[dataframe['Type of Tech Product'] == 'Software']
dataframe = pd.DataFrame(temp_dataframe[colname].value_counts(dropna = False))
# pd.DataFrame(dataframe[(dataframe['Tech Product'] == 'Software') & (dataframe[colname])].value_counts(dropna = False))
else:
dataframe = pd.DataFrame(dataframe[colname].value_counts(dropna = False))
# Add a column for percentages
dataframe['percentage'] = dataframe[colname]/dataframe[colname].sum()
return dataframe
def get_root_domains(dataframe,colname):
# Set up logging
logger = logging.getLogger(__name__)
logger.info('Getting root domains...')
# initialise list
list_of_rootdomains = list()
# Take the colname column of df, strip out the nans (which break urlparser) and add it to urls
urls = dataframe[colname].dropna()
logger.info('This many URLs found: ' + str(len(urls)))
# User urlparse() to strip out the rootdomain (i.e, netloc) and write it to a list
for i in urls:
current_url = urlparse(i)
list_of_rootdomains.append(current_url.netloc)
# Convert the list into a df so we can use the same functions as are being used to summarise other data
dataframeurl = pd.DataFrame({'rootdomains': list_of_rootdomains})
logger.info('This many rootdomains found: ' + str(len(dataframeurl)))
logger.info('This many unique rootdomains found: ' + str(len(dataframeurl.rootdomains.unique())))
return dataframeurl
def plot_bar_charts(dataframe,filename,title,xaxis,yaxis,truncate):
"""
Takes a two-column dataframe and plots it
:params: a dataframe with two columns (one labels, the other a count), a filename for the resulting chart, a title, and titles for the
two axes (if title is None, then nothing is plotted), and a truncate variable which cuts down the number of
rows plotted (unless it's 0 at which point all rows are plotted)
:return: Nothing, just prints a chart
"""
# Set up logging
logger = logging.getLogger(__name__)
logger.info('Plotting charts...')
if truncate > 0:
# This cuts the dataframe down to the number of rows given in truncate
dataframe = dataframe.ix[:truncate]
dataframe.plot(kind='bar', legend=None)
plt.title(title)
if xaxis != None:
plt.xlabel(xaxis)
if yaxis != None:
plt.ylabel(yaxis)
# This provides more space around the chart to make it prettier
plt.tight_layout(True)
plt.savefig("./charts/" + filename + '.png', format = 'png', dpi = 150)
plt.show()
return
def impact_to_txt(dataframe,colname):
# Set up logging
logger = logging.getLogger(__name__)
logger.info('Creating impact text file...')
# Don't want any of the NaNs, so drop them
impact_dataframe = dataframe.dropna(subset=[colname])
# Open file for writing
file_for_impacts = open("./data/impact.txt", 'w')
# Go through dataframe row by row and write the text from the colname column to as a separate line to the text file
for i, row in impact_dataframe.iterrows():
file_for_impacts.write("%s\n" % impact_dataframe[colname][i])
return
def check_url_status(dataframe, colname, statuscol):
logger = logging.getLogger(__name__)
logger.info('Checking URLs...')
# Don't want any of the NaNs, so drop the rows in which NaN was entered for the URL
dataframe.dropna(subset=[colname], inplace=True)
h = httplib2.Http()
for i, row in dataframe.iterrows():
try:
print("Checking " + dataframe[colname][i])
response, content = h.request(dataframe[colname][i])
if response.status < 400:
dataframe[statuscol][i] = response['date']
except:
dataframe[statuscol][i] = 'No response'
#When the URL checker times out without an error, it skips to the next URL and leave a blank in the statuscol
# which I want replaced with a 'No response' to making counting easier
dataframe[statuscol] = dataframe[statuscol].fillna('No response')
#Record no. of dead sites
dead_sites = len(dataframe[dataframe[statuscol] == 'No response'])
#Log how many dead URLs were found
logger.info('This many dead URLs found: ' + str(dead_sites))
return dataframe
def main():
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
handler = logging.FileHandler("./log/ResearchFishLog.log")
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.info('Starting...')
pd.options.mode.chained_assignment = None
df = import_xls_to_df("./data/Software&TechnicalProducts - ResearchFish.xlsx", "Software_TechnicalProducts")
print(len(df))
logger.info('Raw dataframe length before any processing: ' + repr(len(df)))
add_column5(df,'URL status')
df47 = clean_data2(df,'Year First Provided')
rootdomainsdf = get_root_domains(df,'URL')
url_check = check_url_status(df,'URL','URL status')
url_df = pd.concat([url_check['URL'], url_check['URL status']], axis=1, keys=['URL', 'URL status'])
open_source_licence = produce_count_and_na(df,'Open Source?')
open_source_licence.index = open_source_licence.index.fillna('No response')
universities = produce_count_and_na(df,'RO')
unique_rootdomains = produce_count_and_na(rootdomainsdf,'rootdomains')
year_of_return = produce_count(df,'Year First Provided')
url_status = produce_count(df,'URL status')
year_of_return.sort_index(inplace = True)
impact_to_txt(df,'Impact')
plot_bar_charts(open_source_licence,'opensource','Is the output under an open-source licence?',None,'No. of outputs',0)
plot_bar_charts(universities,'universities','Top 30 universities that register the most outputs',None,'No. of outputs',30)
plot_bar_charts(unique_rootdomains,'rootdomain','30 most popular domains for storing outputs',None,'No. of outputs',30)
plot_bar_charts(year_of_return,'returnyear','When was output first registered?',None,'No. of outputs',0)
writer = ExcelWriter("./data/researchfish_results.xlsx")
open_source_licence.to_excel(writer,'opensource')
universities.to_excel(writer,'universities')
unique_rootdomains.to_excel(writer,'rootdomain')
year_of_return.to_excel(writer,'returnyear')
url_df.to_excel(writer,'urlstatus')
url_status.to_excel(writer,'urlstatus_summ')
df.to_excel(writer,'Resulting_df')
writer.save()
if __name__ == '__main__':
main()