forked from JesseLu/objective-first
-
Notifications
You must be signed in to change notification settings - Fork 0
/
paper_results.m
381 lines (364 loc) · 13.1 KB
/
paper_results.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
function [] = paper_results()
% PAPER_RESULTS()
%
% This is a script which generates the results found in the following paper
% (in submission):
% Jesse Lu, and Jelena Vuckovic, "Objective-first design of nanophotonic
% waveguide couplers," (2011)
%
% A preprint can be found at:
% https://github.com/JesseLu/misc/blob/master/presentations/ob1_wg_paper/paper.pdf
%
% Running the script in its original form does not actually calculate the
% results, it simply pulls the pre-computed results from precomp_results.mat.
% In order to recalculate the results, the first section of this script must
% be uncommented.
% %
% % Generate the five designs found in the paper.
% % This section must be uncommented if you want to re-generate the results
% % yourself.
% %
%
% dims = [40 80]; % Dimensions of all the couplers.
% eps_uniform = 9.0; % Uniform value of epsilon within design area.
% eps_lims = [1 12.25]; % Limited range of epsilon.
% num_iters = 400; % Number of iterations to run the design optimization for.
%
% % Create the specifications for the various design problems.
% specs = create_specs(dims, eps_lims, eps_uniform);
%
% for k = 1 : length(specs)
% eps{k} = solve(specs{k}, num_iters, 1e-6);
% end
%
% save('precomp_results.mat', 'eps', 'specs');
%
%
% Load data and generate figures.
%
% Load the data.
results = load('precomp_results.mat', 'eps', 'specs');
specs = results.specs;
eps = results.eps;
% Generate the figures.
for k = 1 : length(specs)
basename = ['fig/res', num2str(k), '/'];
try
system(['mkdir ', basename]);
end
fprintf('\n\nGenerating plots used for result #%d...\n===\n', k);
fprintf('Simulation results:\n'); % Simulate.
[eff(k), eps_sim, Ex, Ey, Hz] = simulate(specs{k}, eps{k}, [160 100]);
% fprintf('\nInput/output mode profiles (figure 1)...\n');
figure(1); subplot 111; % Generate image files.
my_area_plot(specs{k}.in.Hz, [basename, 'a']);
my_area_plot(specs{k}.out.Hz, [basename, 'b']);
figure(1); % Plot images for user.
my_plot_images({[basename, 'a.png'], 'Input mode (Hz)'}, ...
{[basename, 'b.png'], 'Output mode (Hz)'});
% fprintf('\nDesign results (figure 2)...\n');
figure(2); subplot 111; % Generate image files.
if (min(eps{k}(:)) < 0) % Custom colormap if we have metallic devices.
cmap = flipud([colormap('bone'); flipud(fliplr(colormap('bone')))]);
r = (abs(min(eps{k}(:))) + 1) / (max(eps{k}(:)) - 1); % Ratio.
n = size(cmap, 1);
ind = round(n/2 * (1 - r))+2;
cmap = interp1(cmap, ind:(n-ind)/64:n);
else
cmap = flipud(colormap('bone'));
end
my_imagesc(eps_sim, cmap, ...
[min(eps{k}(:)), max(eps{k}(:))], [basename, 'c']);
my_imagesc(abs(Hz), colormap('hot'), ...
mean(max(max(abs(Hz(1:20,:))))) * [0 1], [basename, 'd']);
my_imagesc(real(Hz), colormap('jet'), ...
mean(max(max(abs(real(Hz(1:20,:)))))) * [-1 1], [basename, 'e']);
figure(2); % Plot images for user.
my_plot_images({[basename, 'c.png'], 'Relative permittivity'}, ...
{[basename, 'd.png'], '|Hz| (simulation)'}, ...
{[basename, 'e.png'], 'Re(Hz) (simulation)'});
fprintf('\nPress enter to continue...\n'); pause; % Wait for user.
end
function my_plot_images(varargin)
% Plot the images for the user to see.
N = length(varargin);
for k = 1 : N
subplot(1, N, k);
[im, map] = imread(varargin{k}{1});
if ~isempty(map) % Try to convert to RGB values if needed (mapped data).
try
im = idx2rgb(im, map );
catch
colormap('jet');
end
end
image(im);
title(varargin{k}{2});
axis equal tight;
end
function my_imagesc(z, map, lims, filename)
% Write out a mapped image.
z = (((z)-lims(1)) / diff(lims) * 63) + 1;
z = 1 * (z < 1) + 64 * (z > 64) + z .* ((z >= 1) & (z <= 64));
imwrite(z', map, [filename, '.png']);
imwrite([64:-1:1]', map, [filename, '_cbar.png']); % Colorbar.
function my_area_plot(z, filename)
% Normalized area plot.
h = area(1:length(z), z./max(abs(z)));
% set(h, 'FaceColor', [255 194 0]./256); % Tangerine.
axis([1 length(z) -3 3]);
set(gca, 'ytick', []); % No ticks wanted.
print(gcf, '-dpng', '-r150', [filename]); % Save image.
[im] = imread([filename, '.png']); % Reload image.
im = my_add_border(im(300:569,160:1059,:), 0); % Crop and add border.
imwrite(uint8(im), [filename, '.png'], 'png'); % Save.
function [A1] = my_add_border(A0, val)
% Add a one pixel border around image.
A1 = val * ones(size(A0));
A1(2:end-1,2:end-1,:) = A0(2:end-1,2:end-1,:);
function [spec] = create_specs(dims, eps_lims, eps_uniform)
% % Create the specifications for all five results.
%
% %
% % Coupler to fundamental mode of wide, low-index waveguide.
% %
%
% w = [10 0.6*dims(2)]; % Widths of the waveguides
% eps = ones(dims);
% eps(1:2, (dims(2)-w(1))/2:(dims(2)+w(1))/2) = 12.25; % Input wg.
% eps(end-1:end, (dims(2)-w(2))/2:(dims(2)+w(2))/2) = 2.25; % Output wg.
% eps(3:end-2, 3:end-2) = eps_uniform; % Fill the design area with uniform eps.
%
% spec{1} = setup(0.15, eps, eps_lims, [1 1]);
%
%
% %
% % Coupler from fundamental to second-order mode of silicon waveguide.
% %
%
% w = 16; % Width of the waveguide. Wider, so as to allow for second-order mode.
% eps = ones(dims);
% eps(:,(dims(2)-w)/2:(dims(2)+w)/2) = 12.25;
% eps(3:end-2, 3:end-2) = eps_uniform; % Fill the design area with uniform eps.
%
% spec{2} = setup(0.15, eps, eps_lims, [1 2]);
%
%
% %
% % Coupler to an "air-core" fiber mode.
% %
%
% w = 10; % Width of input waveguide
% eps = ones(dims);
% eps(:,(dims(2)-w)/2:(dims(2)+w)/2) = 12.25; % Input waveguide.
%
% % Create output waveguide.
% l = 30; % An effective wavelength.
% qw_air = round(l/4); % Quarter wavelength in air.
% qw_si = round(qw_air/3.5); % Quarter wavelength in silicon.
% eps_temp = [ones(1, qw_air), 12.25*ones(1, qw_si)]; % One period.
%
% % Create quarter-wavelength stack.
% epsilon1 = repmat(eps_temp, 1, ceil(dims(2)/2/(qw_air + qw_si)));
% epsilon1 = epsilon1(1:dims(2)/2); % Trim.
% epsilon1 = [epsilon1(end:-1:1), epsilon1]; % Mirror, to create cavity.
%
% eps(end-1:end,:) = repmat(epsilon1, 2, 1); % Stretch out to fill space.
% eps(3:end-2, 3:end-2) = eps_uniform; % Fill the design area with uniform eps.
%
% spec{3} = setup(0.25, eps, eps_lims, [1 9]);
%
%
% %
% % Coupler to a metal-insulator-metal plasmonic waveguide.
% %
%
% w = [10 2]; % Widths of input and output waveguides.
% eps = ones(dims);
% eps(1:2, (dims(2)-w(1))/2:(dims(2)+w(1))/2) = 12.25; % Input wg.
% eps(end-1:end, :) = -2; % Output plasmonic wg.
% eps(end-1:end, (dims(2)-w(2))/2:(dims(2)+w(2))/2) = 1;
% eps(3:end-2, 3:end-2) = eps_uniform; % Fill the design area with uniform eps.
%
% spec{4} = setup(0.25, eps, eps_lims, [1 1]);
%
%
% %
% % Coupler to a plasmonic wire.
% %
%
% w = [10 2]; % Widths of input and output waveguides.
% eps = ones(dims);
% eps(1:2, (dims(2)-w(1))/2:(dims(2)+w(1))/2) = 12.25; % Input wg.
% eps(end-1:end, (dims(2)-w(2))/2:(dims(2)+w(2))/2) = -2; % Output wg.
% eps(3:end-2, 3:end-2) = eps_uniform; % Fill the design area with uniform eps.
%
% spec{5} = setup(0.25, eps, eps_lims, [1 1]);
%
%
% %
% %
% % APPENDIX FIGURES
% %
% %
%
%
%
% Couplers between the four propagating modes of a wide waveguide.
%
w = 30; % Width of the waveguide. Wider, so as to allow for four modes.
eps = ones(dims);
eps(:,(dims(2)-w)/2:(dims(2)+w)/2) = 12.25;
eps(3:end-2, 3:end-2) = eps_uniform; % Fill the design area with uniform eps.
spec{6} = setup(0.15, eps, eps_lims, [1 2]);
spec{7} = setup(0.15, eps, eps_lims, [1 3]);
spec{8} = setup(0.15, eps, eps_lims, [1 4]);
spec{9} = setup(0.15, eps, eps_lims, [2 3]);
spec{10} = setup(0.15, eps, eps_lims, [2 4]);
spec{11} = setup(0.15, eps, eps_lims, [3 4]);
%
% %
% % Couplers from fiber input waveguide.
% %
%
% w = [48 16]; % Widths of the waveguides
% eps = ones(dims);
% eps(1:2, (dims(2)-w(1))/2:(dims(2)+w(1))/2) = 2.25; % Input wg.
% eps(end-1:end,(dims(2)-w(2))/2:(dims(2)+w(2))/2) = 12.25; % Output wg.
% eps(3:end-2, 3:end-2) = eps_uniform; % Fill the design area with uniform eps.
%
% spec{12} = setup(0.15, eps, eps_lims, [1 2]);
%
% % To air-core.
% eps = ones(dims);
% eps(1:2, (dims(2)-w(1))/2:(dims(2)+w(1))/2) = 2.25; % Input wg.
%
% % Create output waveguide.
% l = 30; % An effective wavelength.
% qw_air = round(l/4); % Quarter wavelength in air.
% qw_si = round(qw_air/3.5); % Quarter wavelength in silicon.
% eps_temp = [ones(1, qw_air), 12.25*ones(1, qw_si)]; % One period.
%
% % Create quarter-wavelength stack.
% epsilon1 = repmat(eps_temp, 1, ceil(dims(2)/2/(qw_air + qw_si)));
% epsilon1 = epsilon1(1:dims(2)/2); % Trim.
% epsilon1 = [epsilon1(end:-1:1), epsilon1]; % Mirror, to create cavity.
%
% eps(end-1:end,:) = repmat(epsilon1, 2, 1); % Stretch out to fill space.
% eps(3:end-2, 3:end-2) = eps_uniform; % Fill the design area with uniform eps.
%
% spec{13} = setup(0.25, eps, eps_lims, [1 9]);
%
%
% % Coupler to a metal-insulator-metal plasmonic waveguide.
% w = [48 2]; % Widths of input and output waveguides.
% eps = ones(dims);
% eps(1:2, (dims(2)-w(1))/2:(dims(2)+w(1))/2) = 2.25; % Input wg.
% eps(end-1:end, :) = -2; % Output plasmonic wg.
% eps(end-1:end, (dims(2)-w(2))/2:(dims(2)+w(2))/2) = 1;
% eps(3:end-2, 3:end-2) = eps_uniform; % Fill the design area with uniform eps.
%
% spec{14} = setup(0.25, eps, eps_lims, [1 1]);
%
% % Coupler to a plasmonic wire.
% w = [48 2]; % Widths of input and output waveguides.
% eps = ones(dims);
% eps(1:2, (dims(2)-w(1))/2:(dims(2)+w(1))/2) = 2.25; % Input wg.
% eps(end-1:end, (dims(2)-w(2))/2:(dims(2)+w(2))/2) = -2; % Output wg.
% eps(3:end-2, 3:end-2) = eps_uniform; % Fill the design area with uniform eps.
%
% spec{15} = setup(0.25, eps, eps_lims, [1 1]);
%
%
% % Coupler to a metal-insulator-metal plasmonic waveguide.
% w = [10 2]; % Widths of input and output waveguides.
% eps = ones(dims);
% eps(1:2, (dims(2)-w(1))/2:(dims(2)+w(1))/2) = 12.25; % Input wg.
% for shift = 13 * [-2:2]
% if shift == 26
% e_val = -1.6;
% else
% e_val = -2.0;
% end
% eps(end-1:end, (dims(2)-w(2))/2+shift:(dims(2)+w(2))/2+shift) = e_val;
% end
% eps(3:end-2, 3:end-2) = eps_uniform; % Fill the design area with uniform eps.
% spec{16} = setup(0.25, eps, eps_lims, [1 1]);
%
% % Coupler to a metal-insulator-metal plasmonic waveguide.
% w = [10 2]; % Widths of input and output waveguides.
% eps = ones(dims);
% eps(1:2, (dims(2)-w(1))/2:(dims(2)+w(1))/2) = 12.25; % Input wg.
% for shift = 13 * [-2:2]
% if shift == 13
% e_val = -1.6;
% else
% e_val = -2.0;
% end
% eps(end-1:end, (dims(2)-w(2))/2+shift:(dims(2)+w(2))/2+shift) = e_val;
% end
% eps(3:end-2, 3:end-2) = eps_uniform; % Fill the design area with uniform eps.
% spec{17} = setup(0.25, eps, eps_lims, [1 1]);
%
% % Coupler to a metal-insulator-metal plasmonic waveguide.
% w = [10 2]; % Widths of input and output waveguides.
% eps = ones(dims);
% eps(1:2, (dims(2)-w(1))/2:(dims(2)+w(1))/2) = 12.25; % Input wg.
% for shift = 13 * [-2:2]
% if shift == 0
% e_val = -1.6;
% else
% e_val = -2.0;
% end
% eps(end-1:end, (dims(2)-w(2))/2+shift:(dims(2)+w(2))/2+shift) = e_val;
% end
% eps(3:end-2, 3:end-2) = eps_uniform; % Fill the design area with uniform eps.
% spec{18} = setup(0.25, eps, eps_lims, [1 1]);
%
% % Coupler to a metal-insulator-metal plasmonic waveguide.
% w = [10 2]; % Widths of input and output waveguides.
% eps = ones(dims);
% eps(1:2, (dims(2)-w(1))/2:(dims(2)+w(1))/2) = 12.25; % Input wg.
% eps(end-1:end,:) = -2;
% for shift = 13 * [-2:2]
% if shift == 0
% e_val = 1.1;
% else
% e_val = 1;
% end
% eps(end-1:end, (dims(2)-w(2))/2+shift:(dims(2)+w(2))/2+shift) = e_val;
% end
% eps(3:end-2, 3:end-2) = eps_uniform; % Fill the design area with uniform eps.
% spec{19} = setup(0.25, eps, eps_lims, [1 1]);
%
% % Coupler to a metal-insulator-metal plasmonic waveguide.
% w = [10 2]; % Widths of input and output waveguides.
% eps = ones(dims);
% eps(1:2, (dims(2)-w(1))/2:(dims(2)+w(1))/2) = 12.25; % Input wg.
% eps(end-1:end,:) = -2;
% for shift = 13 * [-2:2]
% if shift == -13
% e_val = 1.1;
% else
% e_val = 1;
% end
% eps(end-1:end, (dims(2)-w(2))/2+shift:(dims(2)+w(2))/2+shift) = e_val;
% end
% eps(3:end-2, 3:end-2) = eps_uniform; % Fill the design area with uniform eps.
% spec{20} = setup(0.25, eps, eps_lims, [1 1]);
%
% % Coupler to a metal-insulator-metal plasmonic waveguide.
% w = [10 2]; % Widths of input and output waveguides.
% eps = ones(dims);
% eps(1:2, (dims(2)-w(1))/2:(dims(2)+w(1))/2) = 12.25; % Input wg.
% eps(end-1:end,:) = -2;
% for shift = 13 * [-2:2]
% if shift == -26
% e_val = 1.1;
% else
% e_val = 1;
% end
% eps(end-1:end, (dims(2)-w(2))/2+shift:(dims(2)+w(2))/2+shift) = e_val;
% end
% eps(3:end-2, 3:end-2) = eps_uniform; % Fill the design area with uniform eps.
% spec{21} = setup(0.25, eps, eps_lims, [1 1]);