-
Notifications
You must be signed in to change notification settings - Fork 0
/
speech2text_app.py
28 lines (24 loc) · 995 Bytes
/
speech2text_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import torch
from transformers import pipeline
import gradio as gr
# Function to transcribe audio using the OpenAI Whisper model
def transcript_audio(audio_file):
# Initialize the speech recognition pipeline
pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-tiny.en",
chunk_length_s=30,
)
# Transcribe the audio file and return the result
result = pipe(audio_file, batch_size=8)["text"]
return result
# Set up Gradio interface
audio_input = gr.Audio(sources="upload", type="filepath") # Audio input
output_text = gr.Textbox() # Text output
# Create the Gradio interface with the function, inputs, and outputs
iface = gr.Interface(fn=transcript_audio,
inputs=audio_input, outputs=output_text,
title="Audio Transcription App",
description="Upload the audio file")
# Launch the Gradio app
iface.launch(server_name="0.0.0.0", server_port=7860)