-
Notifications
You must be signed in to change notification settings - Fork 8
/
check_gpuecm.sage
435 lines (349 loc) · 15.1 KB
/
check_gpuecm.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# script to spot check ecm -gpu stage 1 implementation.
#
# Computes order of a elliptic curve mod a prime to determine if that prime
# will be found at a specified B1 level, then runs ecm -gpu to verify that
# those primes are indeed found.
#
# to perform a quick test: 5 iterations of 32 curves at B1=10000 and B1=100000
# $ sage check_gpuecm.sage ./ecm
# for even faster check
# $ sage check_gpuecm.sage --iterations 1 ./ecm
#
# to test with 512 bit kernal and extra verbose output
# $ sage check_gpuecm.sage --nbits 512 -v -v ./ecm
#
# to test more iterations (~12 minutes) or more curves per iteration
# $ sage check_gpuecm.sage --iterations 20 ./ecm
# $ sage check_gpuecm.sage --gpucurves 128 ./ecm
#
# to see all options
# $ sage check_gpuecm.sage -h
#
# On error, will exit with return code 1 and stdout
# 'Wrong result for seed=<X>'
# after checking with a clean build please email Seth Troisi or ecm-discuss
# with seed (and any non standard options you may have used).
# To suppress '*** Warning: increasing stack size to 2000000.' from pari.
pari.allocatemem(4000000, silent=True)
import argparse
import random
import re
import subprocess
import sys
parser = argparse.ArgumentParser(description='Spot check for ecm -gpu stage1')
parser.add_argument('ecm_cmd', type=str,
help='which ecm (e.g. ecm, ./ecm) to run')
parser.add_argument('--iterations', type=int, default=5,
help='Number of tests (small + large) to perform')
parser.add_argument('-c', '--gpucurves', type=int, default=32,
help='number of curves to test in a batch [default: 32]')
parser.add_argument('--B1', type=int, default=10000,
help='B1 to test at [default: 10,000]')
parser.add_argument('--seed', type=int, default=None,
help='Random seed')
parser.add_argument('--nbits', '-n', type=int, default=1024,
help='Only needed if ECM_GPU_NB_DIGITS was adjusted')
parser.add_argument('--timing', action='store_true',
help='Producing timing information')
parser.add_argument('--verbose', '-v', action='count', default=1,
help='Print more output (pass -v -v for even more)')
parser.add_argument('--quiet', '-q',
action='store_const', const=0, dest='verbose',
help='Suppress most output')
# Currently GPU can only do param=3
GPU_PARAM = 3
FACTOR_FOUND_RE = re.compile(
'factor ([0-9]*) found in Step 1.*-sigma [0-4]:([0-9]*)\)')
def CurveParam0(p, sigma):
K = GF(p)
v = K(4*sigma)
u = K(sigma^2 - 5)
x = u^3
b = 4*x*v
a = (v-u)^3*(3*u+v)
A = a/b-2
x = x/v^3
b = x^3 + A*x^2 + x
return EllipticCurve(K,[0,A/b,0,1/b^2,0])
def PointOrderS(p, s):
K = GF(p)
A = K(4 *s - 2)
b = K(16*s + 2)
E = EllipticCurve(K,[0,A/b,0,1/b^2,0])
return E(2/b,1/b) # x0=2, y0=1
# From parametrizations.c
def CurveParam2(p, sigma):
K = GF(p)
E = EllipticCurve(K,[0,36])
P = sigma*E(-3,3)
x,y = P.xy()
x3 = (3*x+y+6)/(2*(y-3))
A = -(3*x3^4+6*x3^2-1)/(4*x3^3)
d = K((A+2)/4)
return PointOrderS(p, d)
def CurveParam1(p, sigma):
K = GF(p)
return PointOrderS(p, K(sigma^2 / 2^64))
def CurveParam3(p, sigma):
K = GF(p)
return PointOrderS(p, K(sigma / 2^32))
def GroupOrder(param, prime, sigma):
if param == 0:
ec = CurveParam0(prime, sigma)
elif param == 1:
ec = CurveParam1(prime, sigma)
elif param == 2:
ec = CurveParam2(prime, sigma)
elif param == 3:
ec = CurveParam3(prime, sigma)
else:
raise ValueError('Unknown param: ' + str(param))
return ec.order()
def testInternal():
# Verify code is working.
# echo '78257675131877111603' | ecm -sigma '0:4528' 3100 8000-9000
assert GroupOrder(0, 78257675131877111603, 4528) == \
2^3 * 3 * 71 * 563 * 1531 * 2153 * 3011 * 8219
# echo '78257675131877111603' | ecm -sigma '1:3396' 4800 8000-9000
assert GroupOrder(1, 78257675131877111603, 3396) == \
2 * 3 * 223 * 271 * 811 * 821 * 4799 * 8443
# echo '78257675131877111603' | ecm -sigma '2:1801' 2100 9000-9300
assert GroupOrder(2, 78257675131877111603, 1801) == \
2^8 * 3^3 * 23 * 41 * 47 * 67 * 101 * 2039 * 9257
# echo '78257675131877111603' | ecm -sigma '3:2012' 6000 8000-9000
assert GroupOrder(3, 78257675131877111603, 2012) == \
2^2 * 5^3 * 43^2 * 71 * 83 * 139 * 5779 * 8941
# echo '1082500099132634560519' | ecm -sigma '0:6677' 1200 5000-6000
assert GroupOrder(0, 1082500099132634560519, 6677) == \
2^2 * 3 * 5^2 * 7 * 139 * 677 * 887 * 947 * 1123 * 5807
# echo '1082500099132634560519' | ecm -sigma '1:1800' 4000 6000-7000
assert GroupOrder(1, 1082500099132634560519, 1800) == \
2^5 * 13 * 17 * 79 * 701 * 2647 * 3347 * 6367
# echo '1082500099132634560519' | ecm -sigma '2:2966' 2000 7000-8000
assert GroupOrder(2, 1082500099132634560519, 2966) == \
2^3 * 3 * 29 * 31^2 * 61 * 109 * 487 * 1709 * 7499
# echo '1082500099132634560519' | ecm -sigma '3:1600' 2000 3000-3100
assert GroupOrder(3, 1082500099132634560519, 1600) == \
3^3 * 7 * 23^2 * 37 * 67 * 71 * 1297 * 1933 * 3067
# From Zimmermann, https://homepages.cwi.nl/~herman/Zimmermann.pdf
assert GroupOrder(0, 322410908070969630339041359359164154612901586904078700184707, 20041348) == \
2^4 * 3^2 * 391063 * 1197631 * 82011967 * 126033329 * 1926338723 * 4654300159 * 51585518429
# From David Broadhurst, https://sympa.inria.fr/sympa/arc/ecm-discuss/2005-09/msg00022.html
assert GroupOrder(0, 2580118483169716809210552261225054520765090617558895237, 161957884569085) == \
2^2 * 3 * 1483 * 91381 * 103231 * 239587 * 1151317 * 1186033 * 1611697 * 4199071 * 6941601157
# From David Broadhurst, https://sympa.inria.fr/sympa/arc/ecm-discuss/2005-09/msg00020.html
assert GroupOrder(0, 73372650975767950626979890709193208431269141871367229612025497, 175923) == \
2^2 * 3^2 * 13 * 41 * 3389 * 3989 * 1662013 * 2782993 * 5013037 * 94921033 * 1144363489 * 112303943380877
# From David Broadhurst, https://sympa.inria.fr/sympa/arc/ecm-discuss/2005-09/msg00032.html
assert GroupOrder(0, 6314722182591714308391592266483806595696758378370807102207443753223500809, 2481305347) == \
2^3 * 3^6 * 11 * 13^2 * 17^4 * 31^2 * 53^2 * 163 * 449 * 853^2 * 3923^2 * 7489 * 11113 * \
23459^2 * 116531 * 1016891 * 580801721
if args.verbose:
print('Implementation successfully tested\n')
def smallestGroupOrder(prime, param, sigma_0, num_curves):
'''
Print smallest B1 (and B2) needed to find a curve from sigma_0 ... sigma_0 + curves
At the end return the smallest sigma
'''
# This is not used directly in check_gpuecm.sage, but is very useful for building tests
found_at = None
smallest = 10 ^ 100
for sigma in range(sigma_0, sigma_0 + num_curves):
order = GroupOrder(param, prime, sigma)
assert 1 <= order < 2 * prime, (prime, param, sigma, order)
f = factor(order)
# Largest prime
exp = sorted(p ** k for p, k in f)
# B1 to find this factor is 2nd smallest if B2 = 500 * B1 finds large factor
min_b1 = exp[-2] if len(exp) >= 2 and exp[-1] < exp[-2] * 500 else exp[-1]
if min_b1 <= smallest:
print ("\tFound by sigma: %d with B1=%d, B2=%d" % (sigma, min_b1, exp[-1]))
smallest = min_b1
found_at = sigma
return found_at
def smallGroupOrders(prime, param, sigma_0, test_B1, num_curves):
'''Find list of sigmas that will find prime with B1 >= test_B1'''
for sigma in range(sigma_0, sigma_0 + num_curves):
order = GroupOrder(param, prime, sigma)
assert 1 <= order < 2 * prime, (prime, param, sigma, order)
f = factor(order)
assert len(f) >= 1, (order, f)
for p, k in f:
if p ^ k > test_B1:
break
else:
yield sigma
def findPrimesOfSize(count, prime_size):
'''Find count primes with prime_size bits'''
primes = set()
for pi in range(count):
for test in range(100):
r = ZZ(random.randint(2 ^ (prime_size-1), 2 ^ prime_size))
prime = Primes().next(r)
if prime not in primes:
primes.add(prime)
break
else:
raise ValueError("Can't find enought primes at prime_size=%d" %
prime_size)
return sorted(primes)
def expectedFactorsBySigma(args, primes, param, sigma_0, B1):
'''Calculate which primes will be found by which curves'''
factor_by_sigma = {}
for i, prime in enumerate(primes):
# This can be slower than the actual ECM!
sigmas = smallGroupOrders(prime, param, sigma_0, B1, args.gpucurves)
if args.verbose > 2:
print('\t%2d: %20d found @ B1=%d by %s' % (i, prime, B1, sigmas))
for sigma in sigmas:
if sigma not in factor_by_sigma:
factor_by_sigma[sigma] = 1
factor_by_sigma[sigma] *= prime
return factor_by_sigma
def verifyFactorsFoundBySigma(
args, primes, param, sigma_0, B1, factor_by_sigma):
'''Verify the expected factors where found by ECM'''
if not any(found for found in factor_by_sigma.values() if found > 1):
raise ValueError(
'No primes would be found in stage 1, '
'lower prime_size or increase B1(%d)' % B1)
N_log2 = log(prod(primes), 2).n()
assert N_log2 < args.nbits, (args.nbits, N_log2)
N_str = '*'.join(map(str, primes))
if args.verbose > 1:
sigma_str = ', '.join(map(str, sorted(factor_by_sigma)))
print('\tSigmas with factors: %s' % sigma_str)
echo_cmd = 'echo %s | ' % N_str
ecm_cmd = '%s -gpu -gpucurves %d -sigma %d:%d %d 0' % (
args.ecm_cmd, args.gpucurves, param, sigma_0, B1)
if args.verbose > 2:
print('\t' + echo_cmd + ecm_cmd)
elif args.verbose:
print('\t' + ecm_cmd)
try:
output = subprocess.check_output(
echo_cmd + ecm_cmd, shell=True, universal_newlines=True)
assert False, 'Should have factors and had non-zero return'
except subprocess.CalledProcessError as e:
assert e.returncode in (2, 6, 8, 10, 14), e.returncode
lines = e.output.split('\n')
found_factors = {}
for line in lines:
match = FACTOR_FOUND_RE.search(line)
if match:
f, sigma = map(int, match.groups())
assert sigma not in found_factors
found_factors[sigma] = f
all_sigmas = set(factor_by_sigma.keys()) | set(found_factors.keys())
for sigma in sorted(all_sigmas):
theory = factor_by_sigma.get(sigma, 1)
practice = found_factors.get(sigma, 1)
if theory != practice:
if theory % practice == 0:
print('sigma=%d Expected to find %d, found %d' %
(sigma, theory, practice))
elif practice % theory == 0:
extra = practice / theory
f = factor(GroupOrder(param, extra, sigma))
print('\tExtra factor (%d) found by sigma=%d '
'expected order=%s' % (extra, sigma, f))
else:
print('MAJOR MISMATCH: %d vs %d' % (
factor(theory), factor(practice)))
expected_curves = len(factor_by_sigma)
perfect_match = factor_by_sigma == found_factors
if perfect_match:
if args.verbose:
print('Results matched exactly (%d curves found factors)' %
expected_curves)
else:
print('Wrong results for seed=%d' % args.seed)
print('\t' + echo_cmd + ecm_cmd)
sys.exit(1)
if args.verbose:
print('')
return len(found_factors)
def stage1Tests(args, prime_size, B1, param):
'''
Generate N such that many sigmas (sigma_0:sigma_0+args.gpucurves) have factors
Verify sigmas found factor in stage 1.
'''
assert param == GPU_PARAM, ('GPU only supports param=%d' % GPU_PARAM)
assert prime_size < args.nbits
assert args.nbits <= 1020
assert prime_size > 20
prime_count = args.nbits // prime_size
if args.verbose:
print('Testing GPU stage1: N = %d x %d bits primes @ B1=%d ' % (
prime_count, prime_size, B1))
if args.verbose > 1:
print('\tusing seed: %s' % args.seed)
random.seed(args.seed)
sigma_0 = random.randrange(1000, 2^31)
primes = findPrimesOfSize(prime_count, prime_size)
factor_by_sigma = expectedFactorsBySigma(args, primes, param, sigma_0, B1)
return verifyFactorsFoundBySigma(
args, primes, param, sigma_0, B1, factor_by_sigma)
def overflowTest(args, param):
'''
Generate N such that N is VERY close to nbits
Verify small factors found
'''
random.seed(args.seed)
sigma_0 = random.randrange(1000, 2^31)
# Multiply a handful of small primes that "should" be found by each sigma
# Then pad out N with a giant prime
primes = findPrimesOfSize(count=256//12, prime_size=12)
expected = prod(primes)
pad_limit = 2 ** args.nbits// expected
large_prime = Primes().next(ZZ(random.randint(pad_limit // 2, pad_limit)))
N_log2 = log(expected * large_prime, 2).n()
# within 1 bits of the limit
assert 0 < args.nbits - N_log2 < 1, (args.nbits, N_log2)
if args.verbose:
print ("Checking overflow with log2(N) = %.2f" % N_log2)
# Expect all the small primes to be found by all sigmas
factor_by_sigma = {}
for sigma in range(sigma_0, sigma_0 + args.gpucurves):
factor_by_sigma[sigma] = expected
return verifyFactorsFoundBySigma(
args, primes + [large_prime], param, sigma_0, args.B1, factor_by_sigma)
def timingTest(args, N_sizes):
'''Produce some timing information on ecm'''
primes = [Primes().next(ZZ(int(2 ** (n - 0.5)))) for n in N_sizes]
# Doesn't matter
sigma = "%d:%d" % (GPU_PARAM, 12)
for size, prime in zip(N_sizes, primes):
cmd = 'echo %s | %s -gpu -gpucurves %d -sigma %s %d 0' % (
prime, args.ecm_cmd, args.gpucurves, sigma, args.B1)
try:
output = subprocess.check_output(cmd, shell=True, universal_newlines=True)
timing = min(line for line in output.split('\n') if line.startswith("Computing "))
timing = timing[timing.index("took") + 4:].strip()
except subprocess.CalledProcessError as e:
timing = "error"
debug = 'N=%d bits, B1=%d, curves=%d, ' % (size, args.B1, args.gpucurves)
print (debug, timing)
if __name__ == '__main__':
args = parser.parse_args()
testInternal()
seed = args.seed
if seed is None:
args.seed = random.randrange(2 ^ 32)
if args.timing:
timingTest(args, [250, 500, 1000, 1500, 2000])
exit()
# GPU needs 6 bits for carry / temp results
args.nbits -= 6
overflowTest(args, GPU_PARAM)
if args.iterations:
found = 0
for i in range(args.iterations):
# Test smallish primes (40 bits = 12 digit) at B1 (default: 10^4)
found += stage1Tests(args, 40, args.B1, GPU_PARAM)
args.seed += 1
# Test larger primes at 10xB1
found += stage1Tests(args, 60, 10*args.B1, GPU_PARAM)
args.seed += 1
print('Results matched in %d tests (%d curves found factors)' %
(2*args.iterations, found))