-
Notifications
You must be signed in to change notification settings - Fork 0
/
limit04.tex
47 lines (46 loc) · 2.1 KB
/
limit04.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
\documentclass[aspectratio=169,12pt,t,green]{beamer}
\usetheme{ChalkBoard}
\begin{document}
\begin{frame}{លីមីតត្រៀមបាក់ឌុប}
\setcounter{theorem}{3}
\begin{example}
គណនាលីមីតខាងក្រោម៖
\begin{enumerate}[a]
\item $ \lim\limits_{x\to 1}\dfrac{-2x^3-2x^2+5x-1}{x^2+2x-3} $
\item $ \lim\limits_{x\to 0}\dfrac{\sin 2x}{-3x} $
\item $ \lim\limits_{x\to 1}\dfrac{\sin(\pi x)}{x^2-1} $
\end{enumerate}
\end{example}
\end{frame}
%
\begin{frame}[allowframebreaks]{ដំណោះស្រាយ}
\begin{enumerate}[a]
\item $ \lim\limits_{x\to 1}\dfrac{-2x^3-2x^2+5x-1}{x^2+2x-3} $ រាងមិនកំណត់ $ \frac{0}{0} $
\begin{align*}
\lim\limits_{x\to 1}\dfrac{-2x^3-2x^2+5x-1}{x^2+2x-3}
&=\lim\limits_{x\to 1}\dfrac{-2x^3+2x^2-4x^2+4x+x-1}{x^2-x+3x-3}\\
&=\lim\limits_{x\to 1}\frac{-2x^2(x-1)-4x(x-1)+(x-1)}{x(x-1)+3(x-1)}\\
&=\lim\limits_{x\to 1}\frac{\cancel{(x-1)}(-2x^2-4x+1)}{\cancel{(x-1)}(x+3)}\\
&=\lim\limits_{x\to 1}\frac{-2x^2-4x+1}{x+3}
=\frac{-2-4+1}{1+3}=-\frac{5}{4}
\end{align*}
\item $ \lim\limits_{x\to 0}\dfrac{\sin 2x}{-3x} $ រាងមិនកំណត់ $ \frac{0}{0} $
\begin{align*}
\lim\limits_{x\to 0}\dfrac{\sin 2x}{-3x}
&=\lim\limits_{x\to 0}\left (\dfrac{\sin 2x}{2x}\times\frac{2}{-3}\right )
=(1)\left(-\frac{2}{3}\right)=-\frac{2}{3}\\
&\text{ ព្រោះ }\lim\limits_{u\to 0}\frac{\sin u}{u}=1\text{ ដែល }u=2x
\end{align*}
\item $ \lim\limits_{x\to 1}\dfrac{\sin(\pi x)}{x^2-1} $ រាងមិនកំណត់ $ \frac{0}{0} $
\vskip-\baselineskip
\begin{align*}
\lim\limits_{x\to 1}\dfrac{\sin(\pi x)}{x^2-1}
&=\lim\limits_{x\to 1}\dfrac{\sin(\pi-\pi x)}{(x-1)(x+1)} && \text{ ព្រោះ }\sin(\pi-\alpha)=\sin\alpha\\
&=\lim\limits_{x\to 1}\left [\dfrac{\sin(\pi-\pi x)}{\pi(x-1)}\times\frac{\pi}{x+1}\right ]\\
&=\lim\limits_{x\to 1}\left [\dfrac{\sin(\pi-\pi x)}{\pi-\pi x}\times\frac{-\pi}{x+1}\right ]\\
&=(1)\left(-\frac{\pi}{1+1}\right)
=-\frac{\pi}{2} && \text{ ព្រោះ }\lim\limits_{u\to 0}\frac{\sin u}{u}=1
\end{align*}
\end{enumerate}
\end{frame}
\end{document}