-
Notifications
You must be signed in to change notification settings - Fork 0
/
merge-appositives.r
432 lines (416 loc) · 7.5 KB
/
merge-appositives.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# Usage:
# Rscript merge-appositive.r INPUT.CSV...
#
# Merges words with adjacent appositives in CSV files as output by SEDES
# tei2csv. The `word` and `lemma` columns in merged rows are joined by spaces.
# The `metrical_shape` columns are concatenated.
library("stringi")
library("tidyverse")
library("optparse")
ALWAYS_PREPOSITIVE_WORDS <- c(
"ἀμ",
"ἀμφ᾽",
"ἀμφί",
"ἀμφὶ",
"ἀντί",
"ἀντὶ",
"ἀν’",
"ἀνά",
"ἀνὰ",
"ἄνευ",
"ἀπό",
"ἀπὸ",
"ἀπ’",
"ἀφ’",
"δί’",
"διά",
"διὰ",
"εἰν",
"εἰς",
"ἐκ",
"ἐν",
"ἐνί",
"ἐνὶ",
"ἐξ",
"ἐπ’",
"ἐπί",
"ἐπὶ",
"ἐς",
"ἐφ’",
"κάγ",
"κὰγ",
"κάδ",
"κὰδ",
"κάθ’",
"κάκ",
"κὰκ",
"κάπ",
"κὰπ",
"κάρ",
"κὰρ",
"κάτ",
"κὰτ",
"κατ’",
"κατά",
"κατὰ",
"μά",
"μὰ",
"μήδ’",
"μηδέ",
"μηδὲ",
"μηθ’",
"μητ’",
"μήτε",
"οὐ",
"οὐδέ",
"οὐδὲ",
"οὐθ’",
"οὐκ",
"οὐτ’",
"οὔτε",
"οὐχ",
"αἰ",
"ἀλλ’",
"ἀλλά",
"ἀλλὰ",
"αὐτάρ",
"αὐτὰρ",
"εἰ",
"ἐπεί",
"ἐπεὶ",
"ἐπήν",
"ἐπὴν",
"ἠ",
"ἠδ’",
"ἠδέ",
"ἠδὲ",
"ἠέ",
"ἠὲ",
"ἦε",
"ἠθ’",
"ἠμέν",
"ἠμὲν",
"ἤν",
"ἠτ’",
"ἰδ’",
"ἰδέ",
"ἰδὲ",
"ἵν’",
"ἵνα",
"καί",
"καὶ",
"ὁθ’",
"ὅθι",
"ὅπερ",
"ὁτ’",
"ὅτε",
"ὅτι",
"ὅταν",
"ὄφρ’",
"ὄφρα",
"τόφρ’",
"τόφρα",
"τῶ",
"ὤ",
"ὢ",
"ὦ",
"ὡς",
"ὥς",
"ὣς",
"ὁ",
"ἡ",
"τό",
"τὸ",
"οἱ",
"τοί",
"τοὶ",
"αἱ",
"ταί",
"ταὶ",
"τά",
"τὰ",
"τώ",
"τὼ",
"τόν",
"τὸν",
"τήν",
"τὴν",
"τούς",
"τοὺς",
"τώς",
"τὼς",
"τάς",
"τὰς",
"τοῖο",
"τοῦ",
"τῆς",
"τοῖιν",
"τῶν",
"τάων",
"τῷ",
"τῇ",
"τοῖς",
"τοῖσι",
"τοῖσιν",
"τῇς",
"τῇσι",
"τῇσιν",
"ὅς",
"ὃς",
"ἥν",
"ἣν",
"ὥ",
"ὣ",
"ἅ",
"ἃ",
"οὕς",
"οὓς",
"ἅς",
"ἃς",
"οὗ",
"ἧς",
"ὧν",
"ᾧ",
"ᾗ",
"οἷς",
"οἷσι",
"οἷσιν",
"ᾗς",
"ᾗσι",
"ᾗσιν",
"εὖ",
"χὠ",
"ἕνεκα",
"ἕνεκ’",
"ἕνεκεν",
"εἵνεκα"
)
ALWAYS_POSTPOSITIVE_WORDS <- c(
"ἄν",
"ἂν",
"ἄρ",
"ἂρ",
"ἄρ’",
"ἄρα",
"γε",
"γέ",
"γάρ",
"γὰρ",
"δέ",
"δὲ",
"δή",
"δὴ",
"θην",
"θήν",
"κε",
"κέ",
"κεν",
"κέν",
"μέν",
"μὲν",
"νυ",
"νύ",
"νυν",
"νύν",
"περ",
"πέρ",
"ῥ’",
"ῥα",
"ῥά",
"τε",
"τέ",
"πῃ",
"ποι",
"ποθ’",
"ποθε",
"ποθεν",
"ποθι",
"ποτ’",
"ποτε",
"που",
"πω",
"πως",
"με",
"μέ",
"σε",
"σέ",
"ἑ",
"ἕ",
"μιν",
"μίν",
"ἥμιν",
"ἦμιν",
"ὕμιν",
"ὗμιν",
"μευ",
"σεθεν",
"σεο",
"σευ",
"τευ",
"ἑθεν",
"ἑο",
"εὑ",
"σφε",
"σφας",
"σφεας",
"σφι",
"σφιν",
"σφω",
"σφωε",
"σφεων",
"σφωιν",
"σφωι",
"μοι",
"μοί",
"τοι",
"τοί",
"σοι",
"σοί",
"οἱ",
"σφισι",
"σφισιν",
"τις",
"τι",
"τινες",
"τιν’",
"τινα",
"τινας",
"τεο",
"τινος",
"του",
"τινων",
"τινι",
"τισι",
"τισιν",
"εἰμι",
"εἰμ’",
"ἐσσι",
"ἐσθ’",
"ἐστ’",
"ἐστι",
"ἐστιν",
"εἰμεν",
"ἐσμεν",
"ἐστον",
"ἐστε",
"εἰσ’",
"εἰσι",
"εἰσιν",
"ἐών",
"ἐὼν",
"φημ’",
"φημι",
"φησι",
"φησιν",
"φαμεν",
"φατ’",
"φατε",
"φασ’",
"φασι",
"φασιν",
"ἔνι",
"εἵνεκα"
)
always_prepositive <- function(word) {
word %in% stri_trans_nfd(ALWAYS_PREPOSITIVE_WORDS)
}
always_postpositive <- function(word) {
word %in% stri_trans_nfd(ALWAYS_POSTPOSITIVE_WORDS)
}
# Load the manual list of appositive instances.
exceptional <- read_csv("exceptional-appositives.csv", na = c(""), col_types = cols(
work = col_factor(),
book_n = col_character(),
line_n = col_character(),
word_n = col_integer(),
appositive = col_factor()
))
opts <- parse_args2(OptionParser())
data <- lapply(opts$args, read_csv, na = c(""), col_types = cols(
work = col_factor(),
book_n = col_character(),
line_n = col_character(),
word_n = col_integer()
)) |>
bind_rows() |>
mutate(metrical_shape = replace_na(metrical_shape, ""))
# Sanity check: every row in the list of hardcoded exceptional appositives
# actually matches something in the data (at least among the works present in
# the data).
unmatched <- anti_join(
exceptional |> filter(work %in% unique(data$work)),
data,
by = c("work", "book_n", "line_n", "word_n", "word", "lemma")
)
if (nrow(unmatched) != 0) {
sink(stderr())
print(unmatched)
stop("Unmatched exceptional appositives.")
}
# Sanity check: only expected appositive types in the hardcoded exceptional
# appositives.
weird <- filter(exceptional, !(appositive %in% c("no", "prepositive", "postpositive", "bidirectional")))
if (nrow(weird) != 0) {
print(weird)
cat("Unknown appositive notations.\n")
stop()
}
data <- data |>
group_by(work, book_n) |>
mutate(unique_line_n = cumsum(
replace_na(line_n, "") != replace_na(coalesce(lag(line_n), line_n), "") |
word_n <= coalesce(lag(word_n), word_n))
) |>
ungroup() |>
left_join(
exceptional,
by = c("work", "book_n", "line_n", "word_n", "word", "lemma")
) |>
mutate(
is_prepositive = ifelse(!is.na(appositive), appositive %in% c("prepositive", "bidirectional"), always_prepositive(word)),
is_postpositive = ifelse(!is.na(appositive), appositive %in% c("postpositive", "bidirectional"), always_postpositive(word)),
) |>
select(!appositive) |>
group_by(work, book_n, unique_line_n) |>
mutate(word_n = word_n
# Merge each prepositive word with the next word by
# decrementing the word_n of all the words that follow it in
# the line.
- cumsum(lag(is_prepositive, default = FALSE))
# Merge each postpositive word with the previous word by
# decrementing the word_n of the postpositive word (and that of
# all words that follow it in the line). But if the previous
# word is prepositive, the words are already going to be
# joined, so for the moment pretend this word is not
# postpositive.
- cumsum(word_n > 1 & is_postpositive & !lag(is_prepositive, default = FALSE))
) |>
ungroup()
# Examine data here to debug appositive classifications.
# data
# Now synthesize new "words" (appositive groups) according to the word_n that
# have been made identical in a line in the previous step.
data <- data |>
select(!c(is_prepositive, is_postpositive)) |>
group_by(work, book_n, unique_line_n, word_n) |>
summarize(
word = paste0(word, collapse = " "),
lemma = paste0(lemma, collapse = " "),
sedes = first(sedes),
metrical_shape = paste0(metrical_shape, collapse = ""),
across(everything(), first),
.groups = "drop"
) |>
# Sort in a sensible order.
arrange(
work,
# Deal with numeric and non-numeric book names.
replace_na(as.integer(str_extract(book_n, "^\\d+")), 0),
replace_na(str_extract(book_n, "[^\\d]*$"), ""),
unique_line_n,
replace_na(str_extract(line_n, "[^\\d]*$"), ""),
word_n
) |>
select(!unique_line_n) |>
relocate(work, book_n, line_n, word_n)
write_csv(data, stdout(), na = "")