-
Notifications
You must be signed in to change notification settings - Fork 3
/
pcae.py
120 lines (98 loc) · 3.54 KB
/
pcae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import matplotlib
matplotlib.use('Agg')
from natsort import natsorted, ns
import glob
import pickle
import numpy as np
import pandas as pd
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(color_codes=True)
#!pip install ipyvolume
from mpl_toolkits.mplot3d import Axes3D
#import ipyvolume.pylab as p3
def report_mean_var(data):
for i in range(data.shape[1]):
column = data[:,i]
print("Dimension %d has mean %.2g and variance %.3g" % \
(i+1,column.mean(),column.var()))
def variance_explained(df,pca):
#pca.fit(df.values)
n_components = min(*df.shape)
if pca.n_components:
n_components = min(n_components,pca.n_components)
for i in range(n_components):
print("PC %d explains %.3g%% of the variance" % (i+1,100*pca.explained_variance_ratio_[i]))
def iter_pca(md):
index, mdf1 = md
ass = mdf1.analogsignals[0]
lens = np.shape(ass.as_array()[:,1])[0]
end_floor = np.floor(float(mdf1.t_stop))
dt = float(mdf1.t_stop) % end_floor
t_axis = np.arange(float(mdf1.t_start), float(mdf1.t_stop), dt)
#t_axis = t_axis[0:-2]
the_last_trace = mdf1.analogsignals[0].as_array()[:,121]
plt.figure()
plt.clf()
cleaned = []
data = np.array(mdf1.analogsignals[0].as_array().T)
print(data)
for i,vm in enumerate(data):
if i<43:
if np.max(vm) > 900.0 or np.min(vm) < - 900.0:
pass
else:
plt.plot(ass.times,vm)#,label='neuron identifier '+str(i)))
cleaned.append(vm)
print(len(cleaned))
plt.title('All Neurons $V_{m}$ versus Time')
plt.xlabel('Time $(ms)$')
plt.ylabel('Voltage $(mV)$')
plt.savefig(str('excitatory_weight_')+str(index)+'_analogsignals'+'.png');
plt.close()
lens = len(cleaned)
if lens >10:
pca = PCA()
data = np.array(cleaned)#np.array(mdf1.analogsignals[0].as_array().T)
pca = PCA(n_components=lens).fit(data)
#print(pca.components_.shape_)
data_projected = np.dot(pca.components_,data.T).T
#import pdb
#pdb.set_trace()
#print(pca.components_.shape_,'components_')
#plt.plot([i for i in pca.components_.shape_[0]],pca.components_.shape_[0])
#plt.title('PCA features to extract')
#plt.xlabel('Dimension directions')
#plt.ylabel('Weights for dimension after rotation')
#plt.savefig(str('excitatory_weight_')+str(index)+'_analogsignals'+'.png');
#plt.close()
signals = np.dot(data.T,data_projected)
signals = signals.T
plt.figure()
plt.clf()
for i,s in enumerate(signals):
vm = s
if i < 3:
plt.plot(ass.times,vm,label='PCA component: '+str(i))
else:
pass
plt.title('$V_{m}$ Projections from PCA')
plt.xlabel('$ms$')
plt.ylabel('$mV$')
plt.legend(loc="upper left")
plt.savefig(str('projections_weight_value_')+str(index)+'excitatory_analogsignals'+'.png');
plt.close()
print(data_projected,'data')
print(pca.components_,'component direction vectors')
print(pca.components_,'components_')
iter_distances = natsorted(glob.glob('pickles/qi*.p'))
mdfloop = {}
for k,i in enumerate(iter_distances):
with open(i, 'rb') as f:
from neo.core import analogsignal
mdfloop[k] = pickle.load(f)
for k,mdf1 in mdfloop.items():
print(mdf1,k)
titems = [ (k,mdf1) for k,mdf1 in mdfloop.items() ]
_ = list(map(iter_pca,titems));