- Benchmark results using the weights from Detectron model zoo are basically the same. Hence, I won't list them here.
- All the testing results below are on COCO2017 val-set, using the models trained from scratch on COCO2017 train-set.
- Evaluation scores are rounded to 3 decimal places and presented in the format of percentage.
- Multiple evaluation on using pytorch may be listed. Each represents different training trial with same settings.
Average Precision | |
---|---|
AP50:95 | AP at IoU=0.50:0.05:0.95 |
AP50 | AP at IoU=0.50 |
AP75 | AP at IoU=0.75 |
APs | AP for small objects: area < 322 |
APm | AP for medium objects: 322 < area < 962 |
APl | AP for large objects: area > 962 |
Average Recall | |
---|---|
AR1 | AR given 1 detection per image |
AR10 | AR given 10 detection per image |
AR100 | AR given 100 detection per image |
ARs | AR for small objects: area < 322 |
ARm | AR for medium objects: 322 < area < 962 |
ARl | AR for large objects: area > 962 |
-
Training command:
python tools/train_net_step.py \ --dataset coco2017 --cfg configs/e2e_faster_rcnn_R-50-FPN_1x.yaml \ --bs 8 --iter_size 2 --use_tfboard
on two 1080ti GPUs.
Box | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
source | AP50:95 | AP50 | AP75 | APs | APm | APl | AR1 | AR10 | AR100 | ARs | ARm | ARl |
PyTorch | 37.1 | 59.1 | 40.0 | 21.5 | 39.8 | 48.3 | 30.8 | 48.0 | 50.3 | 31.4 | 53.9 | 63.6 |
Detectron | 36.7 | 58.4 | 39.6 | 21.1 | 39.8 | 48.1 | 30.6 | 48.0 | 50.4 | 31.8 | 54.1 | 63.4 |
-
Training command:
python train_net_step.py \ --dataset coco2017 --cfg configs/e2e_mask_rcnn_R-50-FPN_1x.yml --use_tfboard
on four M40 GPUs.
Box | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
source | AP50:95 | AP50 | AP75 | APs | APm | APl | AR1 | AR10 | AR100 | ARs | ARm | ARl |
PyTorch | 37.7 | 59.1 | 41.0 | 21.5 | 40.7 | 49.6 | 31.3 | 48.7 | 51.1 | 32.7 | 54.4 | 64.9 |
PyTorch | 37.6 | 59.1 | 40.9 | 21.6 | 40.7 | 49.0 | 31.2 | 49.0 | 51.4 | 32.3 | 55.0 | 64.7 |
Detectron | 37.7 | 59.2 | 40.9 | 21.4 | 40.8 | 49.7 | 31.3 | 48.9 | 51.2 | 32.3 | 54.8 | 64.8 |
Mask | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
source | AP50:95 | AP50 | AP75 | APs | APm | APl | AR1 | AR10 | AR100 | ARs | ARm | ARl |
PyTorch | 33.7 | 55.5 | 35.8 | 14.9 | 36.3 | 50.4 | 29.1 | 44.2 | 46.1 | 26.7 | 49.7 | 62.2 |
PyTorch | 33.8 | 55.7 | 35.5 | 15.3 | 36.3 | 50.5 | 29.2 | 44.5 | 46.4 | 26.2 | 50.0 | 62.5 |
Detectron | 33.9 | 55.8 | 35.8 | 14.9 | 36.3 | 50.9 | 29.2 | 44.4 | 46.2 | 26.2 | 50.1 | 62.0 |
-
Training command:
python tools/train_net_step.py \ --dataset keypoints_coco2017 --cfg configs/e2e_keypoint_rcnn_R-50-FPN_1x.yaml \ --bs 8 --iter_size 2 --use_tfboard
on four 1080 GPUs
Box | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
source | AP50:95 | AP50 | AP75 | APs | APm | APl | AR1 | AR10 | AR100 | ARs | ARm | ARl |
PyTorch | 52.2 | 81.9 | 56.4 | 35.3 | 59.6 | 68.4 | 18.3 | 53.1 | 61.2 | 47.0 | 66.9 | 75.9 |
PyTorch | 53.5 | 82.8 | 58.4 | 36.7 | 61.2 | 69.5 | 18.6 | 54.2 | 62.2 | 47.8 | 68.3 | 76.7 |
Detectron | 53.6 | 82.8 | 58.3 | 36.5 | 61.2 | 69.7 | 18.7 | 54.3 | 62.2 | 47.6 | 68.3 | 76.8 |
Keypoint | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
source | AP50:95 | AP50 | AP75 | APm | APl | AR1 | AR10 | AR100 | ARm | ARl | ||
PyTorch | 62.8 | 85.5 | 68.3 | 57.0 | 71.9 | 69.7 | 90.1 | 74.9 | 63.7 | 78.1 | ||
PyTorch | 63.9 | 86.0 | 69.2 | 58.5 | 72.7 | 70.6 | 90.7 | 75.8 | 65.0 | 78.6 | ||
Detectron | 64.2 | 86.4 | 69.9 | 58.5 | 73.4 | 70.7 | 90.9 | 75.9 | 64.9 | 79.0 |