forked from lppllppl920/DenseDescriptorLearning-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
238 lines (216 loc) · 12.8 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
'''
Author: Xingtong Liu, Yiping Zheng, Benjamin Killeen, Masaru Ishii, Gregory D. Hager, Russell H. Taylor, and Mathias Unberath
Copyright (C) 2020 Johns Hopkins University - All Rights Reserved
You may use, distribute and modify this code under the
terms of the GNU GENERAL PUBLIC LICENSE Version 3 license for non-commercial usage.
You should have received a copy of the GNU GENERAL PUBLIC LICENSE Version 3 license with
this file. If not, please write to: [email protected] or [email protected]
'''
import tqdm
import numpy as np
from pathlib import Path
import torchsummary
import torch
import random
from tensorboardX import SummaryWriter
import argparse
import datetime
import multiprocessing
# Local
import models
import losses
import utils
import dataset
if __name__ == '__main__':
multiprocessing.set_start_method('spawn', force=True)
parser = argparse.ArgumentParser(
description='Dense Descriptor Learning -- pair-wise feature matching evaluation',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--adjacent_range', nargs='+', type=int, required=True,
help='interval range for a pair of video frames')
parser.add_argument('--image_downsampling', type=float, default=4.0,
help='input image downsampling rate')
parser.add_argument('--network_downsampling', type=int, default=64,
help='network downsampling rate')
parser.add_argument('--input_size', nargs='+', type=int, required=True,
help='input size')
parser.add_argument('--num_workers', type=int, default=8, help='number of workers for data loader')
parser.add_argument('--num_pre_workers', type=int, default=8,
help='number of pre-processing workers for data loader')
parser.add_argument('--inlier_percentage', type=float, default=0.998,
help='percentage of inliers of SfM point clouds (for pruning extreme outliers)')
parser.add_argument('--testing_patient_id', nargs='+', type=int, required=True, help='id of the testing patient')
parser.add_argument('--load_intermediate_data', action='store_true',
help='whether or not to load intermediate data')
parser.add_argument('--visibility_overlap', type=int, default=20, help='overlap of point visibility information')
parser.add_argument('--display_architecture', action='store_true', help='display the network architecture')
parser.add_argument('--trained_model_path', type=str, required=True, help='path to the trained model')
parser.add_argument('--testing_data_root', type=str, required=True, help='path to the sfm testing data')
parser.add_argument('--log_root', type=str, required=True, help='root of logging')
parser.add_argument('--feature_length', type=int, default=256, help='output channel dimension of network')
parser.add_argument('--filter_growth_rate', type=int, default=10, help='filter growth rate of network')
parser.add_argument('--keypoints_per_iter', type=int, default=200, help='number of keypoints per iteration')
parser.add_argument('--gpu_id', type=int, default=0, help='id of selected GPU')
args = parser.parse_args()
trained_model_path = Path(args.trained_model_path)
log_root = Path(args.log_root)
adjacent_range = args.adjacent_range
image_downsampling = args.image_downsampling
height, width = args.input_size
num_workers = args.num_workers
num_pre_workers = args.num_pre_workers
inlier_percentage = args.inlier_percentage
testing_patient_id = args.testing_patient_id
load_intermediate_data = args.load_intermediate_data
display_architecture = args.display_architecture
testing_data_root = Path(args.testing_data_root)
feature_length = args.feature_length
filter_growth_rate = args.filter_growth_rate
network_downsampling = args.network_downsampling
visibility_overlap = args.visibility_overlap
keypoints_per_iter = args.keypoints_per_iter
gpu_id = args.gpu_id
current_date = datetime.datetime.now()
if not log_root.exists():
log_root.mkdir()
log_root = log_root / "dense_descriptor_test_{}_{}_{}_{}".format(current_date.month, current_date.day,
current_date.hour,
current_date.minute)
writer = SummaryWriter(logdir=str(log_root))
print("Created tensorboard visualization at {}".format(str(log_root)))
# Fix randomness for reproducibility
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
torch.manual_seed(10086)
np.random.seed(10086)
random.seed(10086)
precompute_root = testing_data_root / "precompute"
try:
precompute_root.mkdir(mode=0o777, parents=True)
except OSError:
pass
feature_descriptor_model = models.FCDenseNet(
in_channels=3, down_blocks=(3, 3, 3, 3, 3),
up_blocks=(3, 3, 3, 3, 3), bottleneck_layers=4,
growth_rate=filter_growth_rate, out_chans_first_conv=16, feature_length=feature_length)
# Initialize the network with Kaiming He initialization
utils.init_net(feature_descriptor_model, type="kaiming", mode="fan_in", activation_mode="relu",
distribution="normal")
# Multi-GPU running
feature_descriptor_model = torch.nn.DataParallel(feature_descriptor_model)
# Custom layer
response_map_generator = models.FeatureResponseGeneratorNoSoftThresholding()
# Evaluation metric
matching_accuracy_metric = losses.MatchingAccuracyMetric(threshold=3)
if trained_model_path.exists():
print("Loading {:s} ...".format(str(trained_model_path)))
pre_trained_state = torch.load(str(trained_model_path))
step = pre_trained_state['step']
epoch = pre_trained_state['epoch']
model_state = feature_descriptor_model.state_dict()
trained_model_state = {k: v for k, v in pre_trained_state["model"].items() if k in model_state}
model_state.update(trained_model_state)
feature_descriptor_model.load_state_dict(model_state)
print('Restored model, epoch {}, step {}'.format(epoch, step))
else:
print("No trained model detected")
raise OSError
# Validation
feature_descriptor_model.eval()
feature_descriptor_model = feature_descriptor_model.module
feature_descriptor_model = feature_descriptor_model.cuda(gpu_id)
# Summary network architecture
if display_architecture:
torchsummary.summary(feature_descriptor_model, input_size=(3, height, width))
total_query = 0
folder_list = utils.get_parent_folder_names(testing_data_root, id_range=testing_patient_id)
mean_accuracy_1 = None
mean_accuracy_2 = None
mean_accuracy_3 = None
for patient_id in testing_patient_id:
data_root = Path(testing_data_root) / "{:d}".format(patient_id)
sub_folders = list(data_root.glob("*/"))
sub_folders.sort()
for folder in sub_folders:
# Get color image filenames
test_filenames = utils.get_file_names_in_sequence(sequence_root=folder)
if len(test_filenames) == 0:
print("Sequence {} does not have relevant files".format(str(folder)))
continue
test_dataset = dataset.SfMDataset(image_file_names=test_filenames,
folder_list=folder_list,
adjacent_range=adjacent_range,
image_downsampling=image_downsampling,
inlier_percentage=inlier_percentage,
network_downsampling=network_downsampling,
load_intermediate_data=load_intermediate_data,
intermediate_data_root=precompute_root,
phase="test",
pre_workers=num_pre_workers,
visible_interval=visibility_overlap)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=1, shuffle=False,
num_workers=num_workers)
# Update progress bar
tq = tqdm.tqdm(total=len(test_loader), dynamic_ncols=True, ncols=40)
tq.set_description('Test')
with torch.no_grad():
for batch, (colors, feature_matches, boundaries) in enumerate(test_loader):
colors = colors[0]
_, _, height, width = boundaries.shape
boundaries = boundaries.cuda(gpu_id)
feature_maps_1 = feature_descriptor_model(colors[0].cuda(gpu_id).unsqueeze(dim=0))
for i in range(1, colors.shape[0]):
feature_maps_2 = feature_descriptor_model(colors[i].cuda(gpu_id).unsqueeze(dim=0))
feature_1D_locations_1 = torch.round(feature_matches[i - 1][0, :, 0]) + \
torch.round(feature_matches[i - 1][0, :, 1]) * width
feature_1D_locations_1 = feature_1D_locations_1.cuda(gpu_id).view(1, -1, 1)
feature_2D_locations_2 = feature_matches[i - 1][0, :, 2:4].cuda(gpu_id).view(1, -1, 2)
query_size = feature_1D_locations_1.shape[1]
if query_size == 0:
continue
batch_num = (query_size - 1) // keypoints_per_iter + 1
accuracy_1 = 0
accuracy_2 = 0
accuracy_3 = 0
for k in range(batch_num):
sub_1D_locations_1 = feature_1D_locations_1[:,
keypoints_per_iter * k: min(query_size,
keypoints_per_iter * (
k + 1))]
sub_2D_locations_2 = feature_2D_locations_2[:,
keypoints_per_iter * k: min(query_size,
keypoints_per_iter * (
k + 1))]
response_map_2 = response_map_generator(
[feature_maps_1, feature_maps_2, sub_1D_locations_1, boundaries])
ratio_1, ratio_2, ratio_3 = matching_accuracy_metric(
[response_map_2, sub_2D_locations_2, boundaries])
accuracy_1 += ratio_1 * sub_1D_locations_1.shape[1]
accuracy_2 += ratio_2 * sub_1D_locations_1.shape[1]
accuracy_3 += ratio_3 * sub_1D_locations_1.shape[1]
accuracy_1 /= query_size
accuracy_2 /= query_size
accuracy_3 /= query_size
if mean_accuracy_1 is None:
mean_accuracy_1 = np.mean(accuracy_1.item())
mean_accuracy_2 = np.mean(accuracy_2.item())
mean_accuracy_3 = np.mean(accuracy_3.item())
else:
mean_accuracy_1 = mean_accuracy_1 * (total_query / (total_query + query_size)) + \
accuracy_1 * (query_size / (total_query + query_size))
mean_accuracy_2 = mean_accuracy_2 * (total_query / (total_query + query_size)) + \
accuracy_2 * (query_size / (total_query + query_size))
mean_accuracy_3 = mean_accuracy_3 * (total_query / (total_query + query_size)) + \
accuracy_3 * (query_size / (total_query + query_size))
total_query += query_size
step += 1
tq.set_postfix(
accuracy_1='average: {:.5f}, current: {:.5f}'.format(mean_accuracy_1, accuracy_1.item()),
accuracy_2='average: {:.5f}, current: {:.5f}'.format(mean_accuracy_2, accuracy_2.item()),
accuracy_3='average: {:.5f}, current: {:.5f}'.format(mean_accuracy_3, accuracy_3.item())
)
writer.add_scalars('Test', {'accuracy_1': mean_accuracy_1, 'accuracy_2': mean_accuracy_2,
'accuracy_3': mean_accuracy_3}, step)
tq.update(1)
tq.close()
writer.close()