You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi ,
I face a problem when complete the training with UNET + efficientnetb0 and convert the trained model to tflite format, I can convert it to tflite format, but after I call the invoke function, it raise an error as the title.
My envs like:
OS Platform and Distribution (e.g., Linux Ubuntu 20.04):
TensorFlow installation (2.9.1+nv22.9):
Error code in tflite as below:
``import numpy as np
import tensorflow as tf
Hi ,
I face a problem when complete the training with UNET + efficientnetb0 and convert the trained model to tflite format, I can convert it to tflite format, but after I call the invoke function, it raise an error as the title.
My envs like:
OS Platform and Distribution (e.g., Linux Ubuntu 20.04):
TensorFlow installation (2.9.1+nv22.9):
Error code in tflite as below:
``import numpy as np
import tensorflow as tf
def main():
interpreter = tf.lite.Interpreter(model_path="model.tflite")
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
input_shape = input_details[0]['shape']
input_data = np.array(np.random.random_sample(input_shape), dtype=np.float32)
interpreter.set_tensor(input_details[0]['index'], input_data)
signatures = interpreter.get_signature_list()
print(signatures)
interpreter.invoke()
return
output_data = interpreter.get_tensor(output_details[0]['index'])
print(output_data)
if name == 'main':
main()
My model code is as below:
`
''' BACKBONE = 'efficientnetb0'
BATCH_SIZE = 1
CLASSES = ["background", "target", "others"]
LR = 0.0001
EPOCHS = 10
preprocess_input = sm.get_preprocessing(BACKBONE)
n_classes = 1 if len(CLASSES) == 1 else (len(CLASSES) + 1) # case for binary and multiclass segmentation
activation = 'sigmoid' if n_classes == 1 else 'softmax'
model = sm.Unet(BACKBONE, classes=n_classes, activation=activation)
'''
`
The text was updated successfully, but these errors were encountered: