-
Notifications
You must be signed in to change notification settings - Fork 78
/
train_rc.py
593 lines (500 loc) · 24.2 KB
/
train_rc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet)."""
import argparse
import logging
import os
import timeit
import copy
import h5py
import torch
import wandb
from time import time
from tqdm import tqdm, trange
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from transformers import (
MODEL_MAPPING,
AdamW,
AutoConfig,
AutoModel,
AutoModelForQuestionAnswering,
AutoTokenizer,
get_linear_schedule_with_warmup,
)
from densephrases.utils.squad_utils import SquadResult, load_and_cache_examples
from densephrases.utils.single_utils import set_seed, to_list, to_numpy, backward_compat, load_encoder
from densephrases.utils.squad_metrics import compute_predictions_log_probs, compute_predictions_logits, squad_evaluate
from densephrases import Options
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
logger.info(f"Possible model types: {MODEL_TYPES}")
def train(args, train_dataset, model, tokenizer):
""" Train the model """
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) # don't use DistributedSampler due to OOM. Will manually split dataset later.
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
def is_train_param(name, verbose=False):
if name.endswith(".embeddings.word_embeddings.weight"):
if verbose:
logger.info(f'freezing {name}')
return False
if name.startswith("cross_encoder"):
return False
return True
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) and is_train_param(n)
],
"weight_decay": args.weight_decay,
},
{
"params": [
p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) and is_train_param(n)
],
"weight_decay": 0.0
},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
logger.info('Number of trainable params: {:,}'.format(
sum(p.numel() for n, p in model.named_parameters() if is_train_param(n, verbose=False)))
)
# Check if saved optimizer or scheduler states exist
if args.load_dir:
if os.path.isfile(os.path.join(args.load_dir, "optimizer.pt")) and os.path.isfile(
os.path.join(args.load_dir, "scheduler.pt")
):
# Load in optimizer and scheduler states
optimizer.load_state_dict(
torch.load(os.path.join(args.load_dir, "optimizer.pt"), map_location=torch.device('cpu'))
)
scheduler.load_state_dict(
torch.load(os.path.join(args.load_dir, "scheduler.pt"), map_location=torch.device('cpu'))
)
logger.info(f'optimizer and scheduler loaded from {args.load_dir}')
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 1
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if args.load_dir:
try:
# set global_step to global_step of last saved checkpoint from model path
checkpoint_suffix = args.load_dir.split("-")[-1].split("/")[0]
global_step = int(checkpoint_suffix)
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
except ValueError:
logger.info(" Starting fine-tuning.")
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
)
# Added here for reproductibility
set_seed(args)
for ep_idx, _ in enumerate(train_iterator):
logger.info(f"\n[Epoch {ep_idx+1}]")
if args.pbn_size > 0 and ep_idx + 1 > args.pbn_tolerance:
if hasattr(model, 'module'):
model.module.init_pre_batch(args.pbn_size)
else:
model.init_pre_batch(args.pbn_size)
logger.info(f"Initialize pre-batch of size {args.pbn_size} for Epoch {ep_idx+1}")
# Skip batch
train_iterator = iter(train_dataloader)
initial_step = steps_trained_in_current_epoch
if steps_trained_in_current_epoch > 0:
train_dataloader.dataset.skip = True # used for LazyDataloader
while steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
next(train_iterator)
train_dataloader.dataset.skip = False
assert steps_trained_in_current_epoch == 0
epoch_iterator = tqdm(
train_iterator, initial=initial_step, desc="Iteration", disable=args.local_rank not in [-1, 0]
)
# logger.setLevel(logging.DEBUG)
start_time = time()
for step, batch in enumerate(epoch_iterator):
logger.debug(f'1) {time()-start_time:.3f}s: on-the-fly pre-processing')
start_time = time()
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
model.train()
batch = tuple(t.to(args.device) for t in batch)
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2],
"start_positions": batch[3],
"end_positions": batch[4],
"input_ids_": batch[8],
"attention_mask_": batch[9],
"token_type_ids_": batch[10],
# "neg_input_ids": batch[12], # should be commented out if none
# "neg_attention_mask": batch[13],
# "neg_token_type_ids": batch[14],
}
outputs = model(**inputs)
# model outputs are always tuple in transformers (see doc)
loss = outputs[0]
epoch_iterator.set_description(f"Loss={loss.item():.3f}, lr={scheduler.get_lr()[0]:.6f}")
logger.debug(f'2) {time()-start_time:.3f}s: forward')
start_time = time()
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
logger.debug(f'3) {time()-start_time:.3f}s: backward')
start_time = time()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
logger.debug(f'4) {time()-start_time:.3f}s: optimize')
start_time = time()
# Log metrics
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Only evaluate when single GPU otherwise metrics may not average well
if args.local_rank == -1 and args.evaluate_during_training:
# Validation acc
logger.setLevel(logging.WARNING)
results, _ = evaluate(args, model, tokenizer, prefix=global_step)
wandb.log(
{"Eval EM": results['exact'], "Eval F1": results['f1']}, step=global_step,
)
logger.setLevel(logging.INFO)
wandb.log(
{"lr": scheduler.get_lr()[0], "loss": (tr_loss - logging_loss) / args.logging_steps},
step=global_step
)
logging_loss = tr_loss
# Save model checkpoint
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Take care of distributed/parallel training
model_to_save = model.module if hasattr(model, "module") else model
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
logger.info("Saving optimizer and scheduler states to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix=""):
dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(dataset)
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# multi-gpu evaluate
if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
start_time = timeit.default_timer()
def get_results():
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2],
"input_ids_": batch[6],
"attention_mask_": batch[7],
"token_type_ids_": batch[8],
}
feature_indices = batch[3]
outputs = model(**inputs)
for i, feature_index in enumerate(feature_indices):
# TODO: i and feature_index are the same number! Simplify by removing enumerate?
eval_feature = features[feature_index.item()]
unique_id = int(eval_feature.unique_id)
output = [to_list(output[i]) for output in outputs]
if len(output) != 4:
raise NotImplementedError
else:
start_logits, end_logits, sft_logits, eft_logits = output
result = SquadResult(
unique_id,
start_logits=start_logits,
end_logits=end_logits,
sft_logits=sft_logits,
eft_logits=eft_logits,
)
yield result
# Compute predictions
output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
output_candidates_file = os.path.join(args.output_dir, "candidates_predictions_{}.json".format(prefix))
if args.version_2_with_negative:
output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
else:
output_null_log_odds_file = None
# XLNet and XLM use a more complex post-processing procedure
if args.model_type in ["xlnet", "xlm"]:
raise NotImplementedError
else:
predictions, stat = compute_predictions_logits(
examples,
features,
get_results(),
args.n_best_size,
args.max_answer_length,
args.do_lower_case,
output_prediction_file,
output_nbest_file,
output_null_log_odds_file,
args.verbose_logging,
args.version_2_with_negative,
args.null_score_diff_threshold,
tokenizer,
args.filter_threshold,
output_candidates_file,
)
# Compute the F1 and exact scores.
results = squad_evaluate(examples, predictions, null_log_odds_file=output_null_log_odds_file)
# Log stat locally
with open('eval_logger.txt', 'a') as f:
f.write(f'{args.output_dir}\t{results["exact"]:.3f}\t{results["f1"]:.3f}\n')
evalTime = timeit.default_timer() - start_time
logger.info("Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))
return results, stat
def filter_test(args, model, tokenizer):
original_filter_threshold = args.filter_threshold
thresholds = [float(th) for th in args.filter_threshold_list.split(',')]
logger.info(f'Testing following filters: {thresholds}')
results = {}
for idx, threshold in enumerate(thresholds):
logger.info(f"Filter={threshold:.2f}")
args.filter_threshold = threshold
result, stat = evaluate(args, model, tokenizer, prefix=str(threshold))
result = dict(
(k + ("_{:.2f}".format(threshold)), v) for k, v in result.items() if k.startswith('exact') or k.startswith('f1')
)
result[f'save_rate_{threshold:.2f}'] = stat["save_rate"]
results.update(result)
logger.info("Results: {}".format(results))
results = list(results.items())
print('threshold\texact\tf1\tsave_rate')
for idx in range(0, len(results), 3):
print(f"{thresholds[idx//3]:.1f}, {results[idx][1]:.2f}, {results[idx+1][1]:.2f}, {results[idx+2][1]:.3f}")
args.filter_threshold = original_filter_threshold
def main():
# See options in densephrases.options
options = Options()
options.add_model_options()
options.add_data_options()
options.add_rc_options()
args = options.parse()
if args.local_rank != -1:
if args.local_rank > 0:
logger.setLevel(logging.WARN)
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
)
# Set seed
set_seed(args)
# Set wandb
if args.do_train or args.do_eval:
wandb.init(project="DensePhrases (single)", mode="online" if args.wandb else "disabled")
wandb.config.update(args)
# Load config, tokenizer
if args.local_rank not in [-1, 0]:
# Make sure only the first process in distributed training will download model & vocab
torch.distributed.barrier()
# Initialize or load encoder
model, tokenizer, config = load_encoder(device, args)
if args.local_rank == 0:
# Make sure only the first process in distributed training will download model & vocab
torch.distributed.barrier()
logger.info("Training/evaluation parameters %s", args)
# Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
# Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"`
# will remove the need for this code, but it is still valid.
if args.fp16:
try:
import apex
apex.amp.register_half_function(torch, "einsum")
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
# Training
global_step = 1
tr_loss = 99999
if args.do_train:
# Load pre-trained cross encoder
if args.lambda_kl > 0 and args.do_train:
cross_encoder = torch.load(
os.path.join(args.teacher_dir, "pytorch_model.bin"), map_location=torch.device('cpu')
)
new_qd = {n[len('bert')+1:]: p for n, p in cross_encoder.items() if 'bert' in n}
new_linear = {n[len('qa_outputs')+1:]: p for n, p in cross_encoder.items() if 'qa_outputs' in n}
qd_config, unused_kwargs = AutoConfig.from_pretrained(
args.pretrained_name_or_path,
cache_dir=args.cache_dir if args.cache_dir else None,
return_unused_kwargs=True
)
qd_pretrained = AutoModel.from_pretrained(
args.pretrained_name_or_path,
config=qd_config,
cache_dir=args.cache_dir if args.cache_dir else None,
)
model.cross_encoder = qd_pretrained
model.cross_encoder.load_state_dict(new_qd)
model.qa_outputs = torch.nn.Linear(config.hidden_size, 2)
model.qa_outputs.load_state_dict(new_linear)
logger.info(f'Distill with teacher model {args.teacher_dir}')
# Train model
model.to(args.device)
train_dataset = load_and_cache_examples(
args, tokenizer, evaluate=False, output_examples=False, skip_no_answer=False
)
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Save the trained model and the tokenizer
if (args.do_train) and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
# Remove teacher before saving
if args.lambda_kl > 0:
del model.cross_encoder
del model.qa_outputs
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
# Take care of distributed/parallel training
model_to_save = model.module if hasattr(model, "module") else model
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
# Load a trained model and vocabulary that you have fine-tuned
model.load_state_dict(backward_compat(
torch.load(os.path.join(args.output_dir, "pytorch_model.bin"), map_location=torch.device('cpu'))
))
tokenizer = AutoTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
model.to(args.device)
# Set load_dir to trained model
args.load_dir = args.output_dir
logger.info(f'Will load {args.load_dir} that was trained.')
# Test filter
if args.do_filter_test:
assert args.load_dir
model, tokenizer, _ = load_encoder(device, args)
filter_test(args, model, tokenizer)
# Evaluation
if args.do_eval and args.local_rank in [-1, 0]:
assert args.load_dir
model, tokenizer, _ = load_encoder(device, args)
result, _ = evaluate(args, model, tokenizer, prefix='final')
result = dict((k + "_final", v) for k, v in result.items())
wandb.log(
{"Eval EM": result['exact_final'], "Eval F1": result['f1_final'], "loss": tr_loss}, step=global_step,
)
logger.info("Results: {}".format(result))
if __name__ == "__main__":
main()