diff --git a/pm4py/conformance.py b/pm4py/conformance.py index cffbfcd8d..0e654a735 100644 --- a/pm4py/conformance.py +++ b/pm4py/conformance.py @@ -106,7 +106,7 @@ def conformance_diagnostics_token_based_replay(log: Union[EventLog, pd.DataFrame return result -def conformance_diagnostics_alignments(log: Union[EventLog, pd.DataFrame], *args, multi_processing: bool = constants.ENABLE_MULTIPROCESSING_DEFAULT, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name", variant_str : Optional[str] = None, return_diagnostics_dataframe: bool = constants.DEFAULT_RETURN_DIAGNOSTICS_DATAFRAME) -> List[Dict[str, Any]]: +def conformance_diagnostics_alignments(log: Union[EventLog, pd.DataFrame], *args, multi_processing: bool = constants.ENABLE_MULTIPROCESSING_DEFAULT, activity_key: str = "concept:name", timestamp_key: str = "time:timestamp", case_id_key: str = "case:concept:name", variant_str : Optional[str] = None, return_diagnostics_dataframe: bool = constants.DEFAULT_RETURN_DIAGNOSTICS_DATAFRAME, **kwargs) -> List[Dict[str, Any]]: """ Apply the alignments algorithm between a log and a process model. The methods return the full alignment diagnostics. @@ -152,6 +152,9 @@ def conformance_diagnostics_alignments(log: Union[EventLog, pd.DataFrame], *args case_id_key = None properties = get_properties(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_key=case_id_key) + if kwargs is not None: + for k, v in kwargs.items(): + properties[k] = v if len(args) == 3: if type(args[0]) is PetriNet: