forked from dropbox/avrecode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
arithmetic_code.h
320 lines (292 loc) · 12.8 KB
/
arithmetic_code.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
//
// Generic arithmetic coding. Used both for recoded encoding/decoding and for
// CABAC re-encoding.
//
// Some notes on the data representations used by the encoder and decoder.
// Uncompressed data:
// Symbols: b_1 ... b_n \in {0,1} .
// Probabilities: p_1 ... p_n \in [0,1], where p_i estimates the probability that b_i=1.
// Compressed data:
// Arithmetic coding represents a compressed stream of symbols as an
// arbitrary-precision number C \in [0,1] .
// If the compressed digits in base M are c_k \in {0..M-1}, then
// C = \sum_{k=1}^K c_k M^{-k} .
// Arithmetic coding uses the probabilities p_i to link the symbols b_i with
// the compressed digits c_k:
// C_i = (1-p_i) b_i + p_i C_{i+1} (1-b_i)
// C_i \in [0,1]
// C_1 = C = \sum_{k=1}^K c_k M^{-k}
// C_n is an arbitrary value in [0,1] (normally used to encode a stop bit).
//
#pragma once
#include <cassert>
#include <cstdint>
#include <functional>
#include <iterator>
#include <limits>
template <typename FixedPoint = uint64_t, typename CompressedDigit = uint16_t, int MinRange = 0>
struct arithmetic_code {
private:
static_assert(std::numeric_limits<FixedPoint>::is_exact, "integer types only");
static_assert(!std::numeric_limits<FixedPoint>::is_signed, "unsigned integer types only");
template <typename T>
static constexpr bool is_power_of_2(T x) {
static_assert(std::numeric_limits<T>::is_exact, "expected integer type");
return (x != 0) && (x & (x-1)) == 0;
}
template <typename Digit>
static constexpr FixedPoint digit_base_for() {
static_assert(std::numeric_limits<Digit>::is_exact, "integer types only");
static_assert(!std::numeric_limits<Digit>::is_signed, "unsigned integer types only");
static_assert(sizeof(FixedPoint) > sizeof(Digit), "digit must be smaller than fixed point");
static_assert(sizeof(FixedPoint) % sizeof(Digit) == 0, "digit must divide fixed point evenly");
static_assert(is_power_of_2(FixedPoint(std::numeric_limits<Digit>::max()) + 1), "expected power of 2");
return FixedPoint(std::numeric_limits<Digit>::max()) + 1;
}
public:
// The representation of 1.0 in fixed-point, e.g. 0x80000000 for uint32_t.
static constexpr FixedPoint fixed_one =
std::numeric_limits<FixedPoint>::max()/2 + 1;
// The base for compressed digit outputs, e.g. 0x10000 for uint16_t.
static constexpr FixedPoint digit_base = digit_base_for<CompressedDigit>();
// The minimum precision for probability estimates, e.g. 0x100 for 8-bit
// probabilities as in CABAC. There is a space-time tradeoff: less precision
// means poorer compression, but more precision causes overflow digits more often.
static constexpr FixedPoint min_range =
MinRange > 0 ? MinRange : (fixed_one/digit_base) / 16;
// The maximum range to reach when normalizing.
static constexpr FixedPoint max_range = fixed_one;
static_assert(is_power_of_2(fixed_one), "expected power of 2");
static_assert(is_power_of_2(min_range), "expected power of 2");
static_assert((fixed_one/digit_base)*digit_base == fixed_one,
"expected digit_base to divide fixed_one");
static_assert(min_range > 1, "min_range too small");
static_assert(min_range < fixed_one/digit_base, "min_range too large");
// The encoder object takes an output iterator (e.g. to vector or ostream) to
// emit compressed digits.
// In addition to uncompressed data and compressed digits, the intermediate state is:
// Maximum R (any positive number, typically 2^k)
// Lower and upper bounds x,y \in [0,R)
// Range r = y-x \in [0,R)
// Representation invariant:
// C = \sum_{k=1}^{K_i} c_k M^{-k} + (x_i + r_i C_i) M^{-K_i}/R_i
// Base case: K_1 = 0, x_1 = 0, r_1 = R_1
// In the base case i=1, K_1=0: C=C_1 is represented as a series of future decisions b_i.
// In the final case i=n, K_n=K: C is represented as a string of compressed digits.
// The various encoding methods modify K, x, r, R while keeping C fixed.
template <typename OutputIterator,
typename OutputDigit = typename std::iterator_traits<OutputIterator>::value_type>
class encoder {
static_assert(std::numeric_limits<OutputDigit>::is_exact,
"integer types only");
static_assert(!std::numeric_limits<OutputDigit>::is_signed,
"unsigned integer types only");
static_assert(sizeof(CompressedDigit) % sizeof(OutputDigit) == 0,
"size of compressed digit must be a multiple of size of output digit");
public:
explicit encoder(OutputIterator out)
: encoder(out, fixed_one) {}
encoder(OutputIterator out, FixedPoint initial_range)
: bytes_emitted(0), out(out), low(0), range(initial_range) {}
~encoder() { finish(); }
size_t get_bytes_emitted()const {
return bytes_emitted;
}
// Symbol is int instead of bool because additional versions of `put()` could
// accept more than two symbols, e.g. one could call `put(2, p1, p2, p3)`.
size_t put(int symbol, std::function<FixedPoint(FixedPoint)> probability_of_1) {
FixedPoint range_of_1 = probability_of_1(range);
FixedPoint range_of_0 = range - range_of_1;
if (symbol != 0) {
low += range_of_0;
range = range_of_1;
} else {
range = range_of_0;
}
if (range < min_range) {
if (range == 0) {
throw std::runtime_error("Encoder error: emitted a zero-probability symbol.");
}
size_t emitted_before = get_bytes_emitted();
while (range < max_range/digit_base) {
renormalize_and_emit_digit<CompressedDigit>();
}
return get_bytes_emitted() - emitted_before;
}
return 0;
}
void finish() {
// Find largest stop bit 2^k < range, and x such that 2^k divides x,
// 2^{k+1} doesn't divide x, and x is in [low, low+range).
for (FixedPoint stop_bit = (fixed_one >> 1); stop_bit > 0; stop_bit >>= 1) {
FixedPoint x = (low | stop_bit) & ~(stop_bit - 1);
if (stop_bit < range && low <= x && x < low + range) {
low = x;
break;
}
}
while (low != 0) {
range = 1;
renormalize_and_emit_digit<OutputDigit>();
}
range = 0; // mark complete
}
private:
template <typename Digit>
void renormalize_and_emit_digit() {
static constexpr FixedPoint base = digit_base_for<Digit>();
static constexpr FixedPoint most_significant_digit = fixed_one / base;
static_assert(is_power_of_2(most_significant_digit), "expected power of 2");
// Check for a carry bit, and cascade from lowest overflow digit to highest.
if (low >= fixed_one) {
for (int i = overflow.size()-1; i >= 0; i--) {
if (++overflow[i] != 0) break;
}
low -= fixed_one;
}
assert(low < fixed_one);
// Compare the minimum and maximum possible values of the top digit.
// If different, defer emitting the digit until we're sure we won't have to carry.
Digit digit = Digit(low / most_significant_digit);
if (digit != Digit((low + range - 1) / most_significant_digit)) {
assert(range < most_significant_digit);
overflow.push_back(digit);
} else {
for (CompressedDigit overflow_digit : overflow) {
emit_digit(overflow_digit);
}
overflow.clear();
emit_digit(digit);
}
// Subtract away the emitted/overflowed digit and renormalize.
low -= digit * most_significant_digit;
low *= base;
range *= base;
}
// Emit a CompressedDigit as one or more OutputDigits. Loop should be
// unrolled by the compiler.
template <typename Digit>
void emit_digit(Digit digit) {
for (int i = sizeof(Digit)-sizeof(OutputDigit); i >= 0; i -= sizeof(OutputDigit)) {
*out++ = OutputDigit(digit >> (8*i));
}
bytes_emitted += sizeof(digit);
}
size_t bytes_emitted;
// Output digits are emitted to this iterator as they are produced.
OutputIterator out;
// The lower bound x, initialized to 0. (When overflow.size() > 0, low is
// the fractional digits of x/R_0.)
FixedPoint low;
// The range r, which starts as fixed-point 1.0.
FixedPoint range;
// High digits of x. If overflow.size() = s, then R = R_0 M^s (where R_0 = fixed_one).
std::vector<CompressedDigit> overflow;
};
// The decoder object takes an input iterator (e.g. from vector or istream)
// to read compressed digits.
// In addition to uncompressed data and compressed digits, the intermediate state is:
// TODO(ctl) document the state, representation invariant, and decoding transitions.
template <typename InputIterator,
typename InputDigit = typename std::iterator_traits<InputIterator>::value_type>
class decoder {
static_assert(std::numeric_limits<InputDigit>::is_exact,
"integer types only");
static_assert(!std::numeric_limits<InputDigit>::is_signed,
"unsigned integer types only");
static_assert(sizeof(CompressedDigit) % sizeof(InputDigit) == 0,
"size of compressed digit must be a multiple of size of input digit");
public:
explicit decoder(InputIterator in, InputIterator end = InputIterator())
: decoder(in, end, fixed_one) {}
decoder(InputIterator in, InputIterator end, FixedPoint initial_range)
: in(in), end(end) {
// Initialize the decoder state by reading in bits until range ~ initial_range.
next_digit = consume_digit_aligned();
low = next_digit / digit_alignment;
range = digit_base / digit_alignment;
while (range < initial_range) {
renormalize_and_consume_digit();
}
assert(range == initial_range); // Should be true if we set digit_alignment correctly.
}
int get(std::function<FixedPoint(FixedPoint)> probability_of_1) {
FixedPoint range_of_1 = probability_of_1(range);
FixedPoint range_of_0 = range - range_of_1;
int symbol = (low >= range_of_0);
if (symbol != 0) {
low -= range_of_0;
range = range_of_1;
} else {
range = range_of_0;
}
if (range < min_range) {
while (range < max_range/digit_base) {
renormalize_and_consume_digit();
}
}
return symbol;
}
private:
static constexpr CompressedDigit digit_alignment =
std::numeric_limits<FixedPoint>::max()/fixed_one + 1;
static_assert(is_power_of_2(digit_alignment), "");
static_assert((fixed_one/digit_base)*digit_alignment == (std::numeric_limits<FixedPoint>::max()/digit_base) + 1,
"expected fixed_one > max/digit_base");
static_assert(is_power_of_2(digit_base/digit_alignment),
"expected digit_base > digit_alignment");
void renormalize_and_consume_digit() {
assert(low < fixed_one/digit_base);
CompressedDigit digit = consume_digit();
low = low * digit_base + digit;
range *= digit_base;
}
// Consume a CompressedDigit. Because our initialization is not
// digit-aligned, we have to bit-align the reads here.
CompressedDigit consume_digit() {
CompressedDigit in_digit = consume_digit_aligned();
CompressedDigit digit = ((next_digit * (digit_base/digit_alignment)) |
(in_digit / digit_alignment));
next_digit = in_digit;
return digit;
}
// Consume a CompressedDigit as one or more InputDigits. Loop should be
// unrolled by the compiler.
CompressedDigit consume_digit_aligned() {
CompressedDigit digit = 0;
for (int i = sizeof(CompressedDigit)-sizeof(InputDigit); i >= 0; i -= sizeof(InputDigit)) {
digit *= digit_base_for<InputDigit>();
if (in != end) {
digit |= CompressedDigit(InputDigit(*in++));
}
}
return digit;
}
// Input digits are read from this iterator.
InputIterator in, end;
// The last digit read from the input - the lower bits are still to be used.
CompressedDigit next_digit;
// The offset z from the lower bound.
FixedPoint low;
// The range r, which is initialized to fixed-point 1.0.
FixedPoint range;
};
};
template <typename Coder = arithmetic_code<>,
typename OutputContainer>
typename Coder::template encoder<std::back_insert_iterator<OutputContainer>,
typename OutputContainer::value_type>
make_encoder(OutputContainer* container) {
auto it = std::back_inserter(*container);
typedef typename OutputContainer::value_type OutputDigit;
return typename Coder::template encoder<decltype(it), OutputDigit>(it);
}
template <typename Coder = arithmetic_code<>,
typename InputContainer>
typename Coder::template decoder<typename InputContainer::const_iterator,
typename InputContainer::value_type>
make_decoder(const InputContainer& container) {
auto begin = std::begin(container), end = std::end(container);
typedef typename InputContainer::value_type InputDigit;
return typename Coder::template decoder<decltype(begin), InputDigit>(begin, end);
}