forked from haoel/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MinimumOperationsToMakeArrayEqual.cpp
56 lines (51 loc) · 1.81 KB
/
MinimumOperationsToMakeArrayEqual.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
// Source : https://leetcode.com/problems/minimum-operations-to-make-array-equal/
// Author : Hao Chen
// Date : 2020-10-03
/*****************************************************************************************************
*
* You have an array arr of length n where arr[i] = (2 * i) + 1 for all valid values of i (i.e. 0 <= i
* < n).
*
* In one operation, you can select two indices x and y where 0 <= x, y < n and subtract 1 from arr[x]
* and add 1 to arr[y] (i.e. perform arr[x] -=1 and arr[y] += 1). The goal is to make all the elements
* of the array equal. It is guaranteed that all the elements of the array can be made equal using
* some operations.
*
* Given an integer n, the length of the array. Return the minimum number of operations needed to make
* all the elements of arr equal.
*
* Example 1:
*
* Input: n = 3
* Output: 2
* Explanation: arr = [1, 3, 5]
* First operation choose x = 2 and y = 0, this leads arr to be [2, 3, 4]
* In the second operation choose x = 2 and y = 0 again, thus arr = [3, 3, 3].
*
* Example 2:
*
* Input: n = 6
* Output: 9
*
* Constraints:
*
* 1 <= n <= 10^4
******************************************************************************************************/
class Solution {
public:
int minOperations(int n) {
// the sum of odd number is : n*n
// the sum of even number is: n*n+n
/* int sum = n*n; */
//calculate the average
/* int average = sum / n; //actually it is n */
//calculate the different between n and all of the odd number which less than `average`
// (n - 1) + (n - 3) + (n - 5) + (n - 7) ...
// = m*n - (1+3+5+7+...m) where m = n/2
// = m*n - m*m
// = (n/2)*n - (n/2)*(n/2)
// = n*n/2 - n*n/4
// = n*n/4
return n*n/4;
}
};