From d39c6ef77faa0d13c63a4798823d679201c1692f Mon Sep 17 00:00:00 2001 From: Raphael Hagen Date: Fri, 4 Aug 2023 12:03:32 -0700 Subject: [PATCH 01/15] Start of Issue#554 --- pangeo_forge_recipes/rechunking.py | 38 ++++++++++++++++++++++++++++++ pangeo_forge_recipes/transforms.py | 31 ++++++++++++++++++++++-- 2 files changed, 67 insertions(+), 2 deletions(-) diff --git a/pangeo_forge_recipes/rechunking.py b/pangeo_forge_recipes/rechunking.py index 57bbd542..e89e881d 100644 --- a/pangeo_forge_recipes/rechunking.py +++ b/pangeo_forge_recipes/rechunking.py @@ -6,6 +6,7 @@ import numpy as np import xarray as xr +import zarr from .aggregation import XarraySchema, determine_target_chunks from .chunk_grid import ChunkGrid @@ -238,3 +239,40 @@ def _sort_by_speed_of_varying(item): ds_combined = xr.combine_nested(dsets_to_concat, concat_dim=concat_dims_sorted) return first_index, ds_combined + + +def _gather_coordinate_dimensions(group: zarr.Group) -> List[str]: + return list( + set(itertools.chain(*(group[var].attrs.get("_ARRAY_DIMENSIONS", []) for var in group))) + ) + + +def consolidate_dimension_coordinates( + item: Tuple[Index, xr.Dataset], target_store: zarr.storage.FSStore +) -> None: + """Consolidate dimension coordinates chunking + + :param target_store: Input target store + :type target_store: zarr.storage.FSStore + """ + + group = zarr.open_group(target_store) + + dims = (dim for dim in _gather_coordinate_dimensions(group) if dim in group) + for dim in dims: + arr = group[dim] + attrs = dict(arr.attrs) + data = arr[:] + new = group.array( + dim, + data, + chunks=arr.shape, + dtype=arr.dtype, + compressor=arr.compressor, + fill_value=arr.fill_value, + order=arr.order, + filters=arr.filters, + overwrite=True, + ) + + new.attrs.update(attrs) diff --git a/pangeo_forge_recipes/transforms.py b/pangeo_forge_recipes/transforms.py index bd23db66..f0f7d8ca 100644 --- a/pangeo_forge_recipes/transforms.py +++ b/pangeo_forge_recipes/transforms.py @@ -12,7 +12,7 @@ from .combiners import CombineMultiZarrToZarr, CombineXarraySchemas from .openers import open_url, open_with_kerchunk, open_with_xarray from .patterns import CombineOp, Dimension, FileType, Index, augment_index_with_start_stop -from .rechunking import combine_fragments, split_fragment +from .rechunking import combine_fragments, consolidate_dimension_coordinates, split_fragment from .storage import CacheFSSpecTarget, FSSpecTarget from .writers import ZarrWriterMixin, store_dataset_fragment, write_combined_reference @@ -325,6 +325,23 @@ def expand(self, pcoll: beam.PCollection) -> beam.PCollection: return new_fragments +@dataclass +class ConsolidateDimensionCoordinates(beam.PTransform): + """ + :param target_store: The destination to store in + + + """ + + target_store: beam.PCollection # side input + + def expand(self, pcoll: beam.PCollection) -> beam.PCollection: + return pcoll | beam.Map( + consolidate_dimension_coordinates, + target_store=beam.pvalue.AsSingleton(self.target_store), + ) + + @dataclass class CombineReferences(beam.PTransform): """Combines Kerchunk references into a single reference dataset. @@ -383,12 +400,16 @@ class StoreToZarr(beam.PTransform, ZarrWriterMixin): :param combine_dims: The dimensions to combine :param target_chunks: Dictionary mapping dimension names to chunks sizes. If a dimension is a not named, the chunks will be inferred from the data. + :param consolidate_dimension_coordinates: Whether to rewrite coordinate variables as a + single chunk. We recommend consolidating coordinate variables to avoid + many small read requests to get the coordinates in xarray. """ # TODO: make it so we don't have to explicitly specify combine_dims # Could be inferred from the pattern instead combine_dims: List[Dimension] target_chunks: Dict[str, int] = field(default_factory=dict) + consolidate_coords: bool = True def expand(self, datasets: beam.PCollection) -> beam.PCollection: schema = datasets | DetermineSchema(combine_dims=self.combine_dims) @@ -399,4 +420,10 @@ def expand(self, datasets: beam.PCollection) -> beam.PCollection: target_store = schema | PrepareZarrTarget( target=self.get_full_target(), target_chunks=self.target_chunks ) - return rechunked_datasets | StoreDatasetFragments(target_store=target_store) + + stored_fragments = rechunked_datasets | StoreDatasetFragments(target_store=target_store) + return ( + stored_fragments + if not self.consolidate_coords + else stored_fragments | ConsolidateDimensionCoordinates(target_store=target_store) + ) From 83aa4fb2070ac7683cc19e34d7c7c3bde48d2419 Mon Sep 17 00:00:00 2001 From: Raphael Hagen Date: Thu, 10 Aug 2023 12:33:55 -0700 Subject: [PATCH 02/15] Update pangeo_forge_recipes/transforms.py Co-authored-by: Charles Stern <62192187+cisaacstern@users.noreply.github.com> --- pangeo_forge_recipes/transforms.py | 11 ++++------- 1 file changed, 4 insertions(+), 7 deletions(-) diff --git a/pangeo_forge_recipes/transforms.py b/pangeo_forge_recipes/transforms.py index f0f7d8ca..d044e0e8 100644 --- a/pangeo_forge_recipes/transforms.py +++ b/pangeo_forge_recipes/transforms.py @@ -420,10 +420,7 @@ def expand(self, datasets: beam.PCollection) -> beam.PCollection: target_store = schema | PrepareZarrTarget( target=self.get_full_target(), target_chunks=self.target_chunks ) - - stored_fragments = rechunked_datasets | StoreDatasetFragments(target_store=target_store) - return ( - stored_fragments - if not self.consolidate_coords - else stored_fragments | ConsolidateDimensionCoordinates(target_store=target_store) - ) + rechunked_datasets | StoreDatasetFragments(target_store=target_store) + if self.consolidate_coords: + ConsolidateDimensionCoordinates(target_store=target_store) + return target_store From eddcfb71debe27d7056bf83ad74e2ec1f078aefa Mon Sep 17 00:00:00 2001 From: Raphael Hagen Date: Fri, 11 Aug 2023 13:48:10 -0700 Subject: [PATCH 03/15] WIP on ConsolidateDimensionCoordinates --- .../intro_tutorial_part1.ipynb | 1042 +-- .../intro_tutorial_part2.ipynb | 1404 +-- .../intro_tutorial_part3.ipynb | 874 +- .../grib_reference/reference_HRRR.ipynb | 3116 +++---- .../hdf_reference/reference_cmip6.ipynb | 3288 +++---- .../tutorials/xarray_zarr/cmip6-recipe.ipynb | 3596 ++++---- .../xarray_zarr/multi_variable_recipe.ipynb | 7604 ++++++++--------- .../xarray_zarr/netcdf_zarr_sequential.ipynb | 3878 ++++----- .../xarray_zarr/opendap_subset_recipe.ipynb | 552 +- .../tutorials/xarray_zarr/terraclimate.ipynb | 1998 ++--- pangeo_forge_recipes/rechunking.py | 4 +- pangeo_forge_recipes/transforms.py | 10 +- pangeo_forge_recipes/writers.py | 1 + tests/test_end_to_end.py | 8 +- 14 files changed, 13692 insertions(+), 13683 deletions(-) diff --git a/docs/introduction_tutorial/intro_tutorial_part1.ipynb b/docs/introduction_tutorial/intro_tutorial_part1.ipynb index ea0244b0..bdb7fdf4 100644 --- a/docs/introduction_tutorial/intro_tutorial_part1.ipynb +++ b/docs/introduction_tutorial/intro_tutorial_part1.ipynb @@ -1,526 +1,526 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Defining a `FilePattern`\n", - "\n", - "Welcome to the Pangeo Forge introduction tutorial! This is the 1st part in a sequence, the flow of which is described {doc}`here `." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Part 1 Outline\n", - "\n", - "The main goal of the first two parts of this tutorial are to create and run a **recipe**, the object that defines our data transformation. \n", - "\n", - "In part 1 we create a `FilePattern` object. A `FilePattern` contains everything Pangeo Forge needs to know about where the input data are coming from and how the individual files should be organized into the output. They are a huge step toward creating a recipe.\n", - "\n", - "The steps to creating a `FilePattern` are:\n", - "\n", - "1. Understand the URL Pattern for OISST & Create a Template String\n", - "1. Define the **Combine Dimension** object\n", - "1. Create a Format Function\n", - "1. Define a `FilePattern`\n", - "\n", - "We will talk about each of these one at a time." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Where should I write this code?\n", - "Eventually, all of the code defining the recipe will go in a file called `recipe.py`, so one option for development is to develop your recipe directly in that file. Alternately, if you prefer the interactivity of a notebook you can work on your recipe code in a Jupyter Notebook and then copy the final code to a single `.py` file later. The choice between the two is personal preference." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Understand the URL Pattern for OISST & Create a Template String\n", - "\n", - "\n", - "### Explore the structure\n", - "\n", - "In order to create our Recipe, we have to understand how the data are organized on the server.\n", - "Like many datasets, OISST is available over the internet via the HTTP protocol.\n", - "We can browse the the files at this URL:\n", - "\n", - "\n", - "\n", - "By clicking the link, we can explore the organization of the dataset, which we need to do in order to build our Recipe." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The link above shows folders grouped by month. Within each month there is data for individual days. We could represent the file structure like this:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![OISST file structure](../images/OISST_URL_structure.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The important takeaways from this structure exploration are:\n", - "- 1 file = 1 day\n", - "- Folders separate months" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### A single URL\n", - "\n", - "By putting together the full URL for a single file we can see that the OISST dataset for December 9th, 1981 would be accessed using the URL:\n", - "\n", - "[https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198112/oisst-avhrr-v02r01.19811209.nc](https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198112/oisst-avhrr-v02r01.19811209.nc)\n", - "\n", - "Copying and pasting that url into a web browser will download that single file to your computer.\n", - "\n", - "If we just have a few files, we can just manually type out the URLs for each of them.\n", - "But that isn't practical when we have thousands of files.\n", - "We need to understand the _pattern_." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Create a URL Template String\n", - "We can generalize the URL to say that OISST datasets are accessed using a URL of the format:\n", - "\n", - "`https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/{time:%Y%m}/oisst-avhrr-v02r01.{time:%Y%m%d}.nc`\n", - "\n", - "where `{time:%Y%m}` (representing a year and a month) and `{time:%Y%m%d}` (representing a year, month, and day) change for each file. (We're using direct string interpolation of `datetime` objects here, anything that [strftime](https://strftime.org/) supports can be put in). Of the three dimensions of this dataset - latitude, longitude and time - the individual files are split up by time.\n", - "Our goal is to combine, or _concatenate_, these files along the time dimension into a single Zarr dataset." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![OISST file structure conversion](../images/OISST_structure_conversion.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Why does this matter so much?\n", - "\n", - "A Pangeo Forge {class}`FilePattern ` is built on the premise that\n", - "\n", - "1. We want to combine many individual small files into a larger dataset along one or more dimensions using either \"concatenate\" or \"merge\" style operations.\n", - "1. The individual files are accessible by URL and organized in a predictable way.\n", - "2. There is a some kind of correspondance, or mapping, between the dimensions of the combination process and the actual URLs.\n", - "\n", - "Knowing the generalized structure of the OISST URL leads us to start building the pieces of a `FilePattern`." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## About the `FilePattern` object\n", - "\n", - "```{note}\n", - "`FilePattern`s are probably the most abstract part of Pangeo Forge.\n", - "It may take some time and experience to become comfortable with the `FilePattern` concept.\n", - "```\n", - "\n", - "The goal of the `FilePattern` is to describe how the files in the generalized URL template string should be organized when they get combined together into a single zarr datastore.\n", - "\n", - "In order to define a `FilePattern` we need to:\n", - "1. Know the dimension of data that will be used to combine the files. In the case of OISST the dimension is time.\n", - "2. Define the values of the dimension that correspond to each file, called the `key`s\n", - "3. Create a function that converts the `key`s to the specific URL for each file. We call this the Format Function.\n", - "\n", - "The first two pieces together are called the **Combine Dimension**. Let's start by defining that.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Define the **Combine Dimension**\n", - "\n", - "The {class}`Combine Dimenion ` describes the relationship between files. In this dataset we only have one combine dimension: time. There is one file per day, and we want to concatenate the files in time. We will use the Pangeo Forge object `ConcatDim()`.\n", - "\n", - "We also want to define the values of time that correspond to each file. These are called the `key`s. For OISST this means creating a list of every day covered by the dataset. The easiest way to do this is with the Pandas `date_range` function." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "DatetimeIndex(['1981-09-01', '1981-09-02', '1981-09-03', '1981-09-04'], dtype='datetime64[ns]', freq='D')" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import pandas as pd\n", - "\n", - "dates = pd.date_range('1981-09-01', '2022-02-01', freq='D')\n", - "# print the first 4 dates\n", - "dates[:4]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "These will be the `key`s for our **Combine Dimension**.\n", - "We now define a {class}`ConcatDim ` object as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "ConcatDim(name='time', nitems_per_file=1)" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from pangeo_forge_recipes.patterns import ConcatDim\n", - "\n", - "time_concat_dim = ConcatDim(\"time\", dates, nitems_per_file=1)\n", - "time_concat_dim" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `nitems_per_file=1` option is a hint we can give to Pangeo Forge. It means, \"we know there is only one timestep in each file\".\n", - "Providing this hint is not necessary, but it makes some things more efficient down the line." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "tags": [] - }, - "source": [ - "## Define a Format Function\n", - "\n", - "Next we we need to write a function that takes a single key (here representing one day) and translates it into a URL to a data file.\n", - "This is just a standard Python function.\n", - "\n", - "```{caution}\n", - "If you're not comfortable with writing Python functions, this may be a good time to review\n", - "the [official Python tutorial](https://docs.python.org/3/tutorial/controlflow.html#defining-functions)\n", - "on this topic.\n", - "```\n", - "\n", - "So we need to write a function that takes a date as its argument and returns the correct URL for the OISST file with that date." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![Format Function Flow](../images/Format_function.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Because python's string interpolation directly supports formatting datetime objects, all we need to do is call `.format(time=...)` with a datetime object (the supported arguments as the same as the python [strftime](https://strftime.org/) function).\n", - "For example" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'1981-09-01'" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\"{time:%Y-%m-%d}\".format(time=dates[0])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Armed with this, we can now write our function calling `.format(...)` on the URL_FORMAT string we created earlier" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "URL_FORMAT = (\n", - " \"https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/\"\n", - " \"v2.1/access/avhrr/{time:%Y%m}/oisst-avhrr-v02r01.{time:%Y%m%d}.nc\"\n", - ")\n", - "\n", - "def make_url(time):\n", - " return URL_FORMAT.format(time=time)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's test it out:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc'" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "make_url(dates[0])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It looks good! 🤩 \n", - "\n", - "Before we move on, there are a couple of important things to note about this function:\n", - "\n", - "- It must have the _same number of arguments as the number of Combine Dimensions_. In our case, this is just one.\n", - "- The name of the argument must match the `name` of the the Combine Dimension. In our case, this is `time`.\n", - "\n", - "These are ideas that will become increasingly relevant as you approach more complex datasets. For now, keep them in mind and we can move on to make our `FilePattern`." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Define the `FilePattern`" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now have the two ingredients we need for our {class}`FilePattern `.\n", - "1. the Format Function\n", - "2. the **Combine Dimension** (`ConcatDim`, in this case)\n", - "\n", - "At this point, it's pretty quick:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Defining a `FilePattern`\n", + "\n", + "Welcome to the Pangeo Forge introduction tutorial! This is the 1st part in a sequence, the flow of which is described {doc}`here `." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Part 1 Outline\n", + "\n", + "The main goal of the first two parts of this tutorial are to create and run a **recipe**, the object that defines our data transformation. \n", + "\n", + "In part 1 we create a `FilePattern` object. A `FilePattern` contains everything Pangeo Forge needs to know about where the input data are coming from and how the individual files should be organized into the output. They are a huge step toward creating a recipe.\n", + "\n", + "The steps to creating a `FilePattern` are:\n", + "\n", + "1. Understand the URL Pattern for OISST & Create a Template String\n", + "1. Define the **Combine Dimension** object\n", + "1. Create a Format Function\n", + "1. Define a `FilePattern`\n", + "\n", + "We will talk about each of these one at a time." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Where should I write this code?\n", + "Eventually, all of the code defining the recipe will go in a file called `recipe.py`, so one option for development is to develop your recipe directly in that file. Alternately, if you prefer the interactivity of a notebook you can work on your recipe code in a Jupyter Notebook and then copy the final code to a single `.py` file later. The choice between the two is personal preference." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Understand the URL Pattern for OISST & Create a Template String\n", + "\n", + "\n", + "### Explore the structure\n", + "\n", + "In order to create our Recipe, we have to understand how the data are organized on the server.\n", + "Like many datasets, OISST is available over the internet via the HTTP protocol.\n", + "We can browse the the files at this URL:\n", + "\n", + "\n", + "\n", + "By clicking the link, we can explore the organization of the dataset, which we need to do in order to build our Recipe." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The link above shows folders grouped by month. Within each month there is data for individual days. We could represent the file structure like this:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![OISST file structure](../images/OISST_URL_structure.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The important takeaways from this structure exploration are:\n", + "- 1 file = 1 day\n", + "- Folders separate months" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### A single URL\n", + "\n", + "By putting together the full URL for a single file we can see that the OISST dataset for December 9th, 1981 would be accessed using the URL:\n", + "\n", + "[https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198112/oisst-avhrr-v02r01.19811209.nc](https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198112/oisst-avhrr-v02r01.19811209.nc)\n", + "\n", + "Copying and pasting that url into a web browser will download that single file to your computer.\n", + "\n", + "If we just have a few files, we can just manually type out the URLs for each of them.\n", + "But that isn't practical when we have thousands of files.\n", + "We need to understand the _pattern_." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a URL Template String\n", + "We can generalize the URL to say that OISST datasets are accessed using a URL of the format:\n", + "\n", + "`https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/{time:%Y%m}/oisst-avhrr-v02r01.{time:%Y%m%d}.nc`\n", + "\n", + "where `{time:%Y%m}` (representing a year and a month) and `{time:%Y%m%d}` (representing a year, month, and day) change for each file. (We're using direct string interpolation of `datetime` objects here, anything that [strftime](https://strftime.org/) supports can be put in). Of the three dimensions of this dataset - latitude, longitude and time - the individual files are split up by time.\n", + "Our goal is to combine, or _concatenate_, these files along the time dimension into a single Zarr dataset." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![OISST file structure conversion](../images/OISST_structure_conversion.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Why does this matter so much?\n", + "\n", + "A Pangeo Forge {class}`FilePattern ` is built on the premise that\n", + "\n", + "1. We want to combine many individual small files into a larger dataset along one or more dimensions using either \"concatenate\" or \"merge\" style operations.\n", + "1. The individual files are accessible by URL and organized in a predictable way.\n", + "2. There is a some kind of correspondance, or mapping, between the dimensions of the combination process and the actual URLs.\n", + "\n", + "Knowing the generalized structure of the OISST URL leads us to start building the pieces of a `FilePattern`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## About the `FilePattern` object\n", + "\n", + "```{note}\n", + "`FilePattern`s are probably the most abstract part of Pangeo Forge.\n", + "It may take some time and experience to become comfortable with the `FilePattern` concept.\n", + "```\n", + "\n", + "The goal of the `FilePattern` is to describe how the files in the generalized URL template string should be organized when they get combined together into a single zarr datastore.\n", + "\n", + "In order to define a `FilePattern` we need to:\n", + "1. Know the dimension of data that will be used to combine the files. In the case of OISST the dimension is time.\n", + "2. Define the values of the dimension that correspond to each file, called the `key`s\n", + "3. Create a function that converts the `key`s to the specific URL for each file. We call this the Format Function.\n", + "\n", + "The first two pieces together are called the **Combine Dimension**. Let's start by defining that.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Define the **Combine Dimension**\n", + "\n", + "The {class}`Combine Dimenion ` describes the relationship between files. In this dataset we only have one combine dimension: time. There is one file per day, and we want to concatenate the files in time. We will use the Pangeo Forge object `ConcatDim()`.\n", + "\n", + "We also want to define the values of time that correspond to each file. These are called the `key`s. For OISST this means creating a list of every day covered by the dataset. The easiest way to do this is with the Pandas `date_range` function." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['1981-09-01', '1981-09-02', '1981-09-03', '1981-09-04'], dtype='datetime64[ns]', freq='D')" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "dates = pd.date_range('1981-09-01', '2022-02-01', freq='D')\n", + "# print the first 4 dates\n", + "dates[:4]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These will be the `key`s for our **Combine Dimension**.\n", + "We now define a {class}`ConcatDim ` object as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "ConcatDim(name='time', nitems_per_file=1)" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pangeo_forge_recipes.patterns import ConcatDim\n", + "\n", + "time_concat_dim = ConcatDim(\"time\", dates, nitems_per_file=1)\n", + "time_concat_dim" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `nitems_per_file=1` option is a hint we can give to Pangeo Forge. It means, \"we know there is only one timestep in each file\".\n", + "Providing this hint is not necessary, but it makes some things more efficient down the line." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "## Define a Format Function\n", + "\n", + "Next we we need to write a function that takes a single key (here representing one day) and translates it into a URL to a data file.\n", + "This is just a standard Python function.\n", + "\n", + "```{caution}\n", + "If you're not comfortable with writing Python functions, this may be a good time to review\n", + "the [official Python tutorial](https://docs.python.org/3/tutorial/controlflow.html#defining-functions)\n", + "on this topic.\n", + "```\n", + "\n", + "So we need to write a function that takes a date as its argument and returns the correct URL for the OISST file with that date." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![Format Function Flow](../images/Format_function.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Because python's string interpolation directly supports formatting datetime objects, all we need to do is call `.format(time=...)` with a datetime object (the supported arguments as the same as the python [strftime](https://strftime.org/) function).\n", + "For example" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'1981-09-01'" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\"{time:%Y-%m-%d}\".format(time=dates[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Armed with this, we can now write our function calling `.format(...)` on the URL_FORMAT string we created earlier" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "URL_FORMAT = (\n", + " \"https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/\"\n", + " \"v2.1/access/avhrr/{time:%Y%m}/oisst-avhrr-v02r01.{time:%Y%m%d}.nc\"\n", + ")\n", + "\n", + "def make_url(time):\n", + " return URL_FORMAT.format(time=time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's test it out:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc'" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "make_url(dates[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It looks good! \ud83e\udd29 \n", + "\n", + "Before we move on, there are a couple of important things to note about this function:\n", + "\n", + "- It must have the _same number of arguments as the number of Combine Dimensions_. In our case, this is just one.\n", + "- The name of the argument must match the `name` of the the Combine Dimension. In our case, this is `time`.\n", + "\n", + "These are ideas that will become increasingly relevant as you approach more complex datasets. For now, keep them in mind and we can move on to make our `FilePattern`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Define the `FilePattern`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now have the two ingredients we need for our {class}`FilePattern `.\n", + "1. the Format Function\n", + "2. the **Combine Dimension** (`ConcatDim`, in this case)\n", + "\n", + "At this point, it's pretty quick:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pangeo_forge_recipes.patterns import FilePattern\n", + "\n", + "pattern = FilePattern(make_url, time_concat_dim)\n", + "pattern" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```{note}\n", + "You'll notice that we are using a function as an argument to another function here. If that pattern is new to you that's alright. It is a very powerful technique, so it is used semi-frequently in Pangeo Forge.\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `FilePattern` object contains everything Pangeo Forge needs to know about where the data are coming from and how the individual files should be combined. This is huge progress toward making a recipe!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To summarize our process, we made a `ConcatDim` object, our **combine dimension**, which specifies `\"time\"` as the axis of concatenation and lists the dates. The Format function converts the dates to URLs and the `FilePattern` object keeps track of the URLs and how they relate to each other." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "### Iterating through a `FilePattern`\n", + "\n", + "While not necessary for the recipe, if you want to interact with the `FilePattern` object a bit (for example, for debugging) more you can iterate through it using `.items()`.\n", + "To keep the output concise, we use an if statement to stop the iteration after a few filepaths." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index({DimIndex(name='time', index=0, sequence_len=14764, operation=)})\n", + "https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc\n", + "Index({DimIndex(name='time', index=1, sequence_len=14764, operation=)})\n", + "https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810902.nc\n", + "Index({DimIndex(name='time', index=2, sequence_len=14764, operation=)})\n", + "https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810903.nc\n" + ] + } + ], + "source": [ + "for index, url in pattern.items():\n", + " print(index)\n", + " print(url)\n", + " # Stop after the 3rd filepath (September 3rd, 1981)\n", + " if '19810903' in url:\n", + " break" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `index` is an object used internally by Pangeo Forge. The url corresponds to the actual file we want to download." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## End of Part 1\n", + "And there you have it - your first `FilePattern` object! That object describes 1) all of the URLs to the files that we are planning to convert as well as 2) how we want each of the files to be organized in the output object. Pretty compact!\n", + "\n", + "In part 2 of the tutorial, we will move on to creating a recipe object, and then use it to convert some data locally.\n", + "\n", + "### Code Summary\n", + "The code written in part 1 could all be written together as:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "\n", + "from pangeo_forge_recipes.patterns import ConcatDim, FilePattern\n", + "from pangeo_forge_recipes.recipes import XarrayZarrRecipe\n", + "\n", + "dates = pd.date_range('1981-09-01', '2022-02-01', freq='D')\n", + "\n", + "URL_FORMAT = (\n", + " \"https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/\"\n", + " \"v2.1/access/avhrr/{time:%Y%m}/oisst-avhrr-v02r01.{time:%Y%m%d}.nc\"\n", + ")\n", + "\n", + "def make_url(time):\n", + " return URL_FORMAT.format(time=time)\n", + "\n", + "time_concat_dim = ConcatDim(\"time\", dates, nitems_per_file=1)\n", + "pattern = FilePattern(make_url, time_concat_dim)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } - ], - "source": [ - "from pangeo_forge_recipes.patterns import FilePattern\n", - "\n", - "pattern = FilePattern(make_url, time_concat_dim)\n", - "pattern" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```{note}\n", - "You'll notice that we are using a function as an argument to another function here. If that pattern is new to you that's alright. It is a very powerful technique, so it is used semi-frequently in Pangeo Forge.\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `FilePattern` object contains everything Pangeo Forge needs to know about where the data are coming from and how the individual files should be combined. This is huge progress toward making a recipe!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To summarize our process, we made a `ConcatDim` object, our **combine dimension**, which specifies `\"time\"` as the axis of concatenation and lists the dates. The Format function converts the dates to URLs and the `FilePattern` object keeps track of the URLs and how they relate to each other." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "tags": [] - }, - "source": [ - "### Iterating through a `FilePattern`\n", - "\n", - "While not necessary for the recipe, if you want to interact with the `FilePattern` object a bit (for example, for debugging) more you can iterate through it using `.items()`.\n", - "To keep the output concise, we use an if statement to stop the iteration after a few filepaths." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Index({DimIndex(name='time', index=0, sequence_len=14764, operation=)})\n", - "https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc\n", - "Index({DimIndex(name='time', index=1, sequence_len=14764, operation=)})\n", - "https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810902.nc\n", - "Index({DimIndex(name='time', index=2, sequence_len=14764, operation=)})\n", - "https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810903.nc\n" - ] + ], + "metadata": { + "interpreter": { + "hash": "872ea42c32c3f63d8f4b36be21cfb5d37e4f64dbfc719d9980b5e00daca69998" + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.13" } - ], - "source": [ - "for index, url in pattern.items():\n", - " print(index)\n", - " print(url)\n", - " # Stop after the 3rd filepath (September 3rd, 1981)\n", - " if '19810903' in url:\n", - " break" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `index` is an object used internally by Pangeo Forge. The url corresponds to the actual file we want to download." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## End of Part 1\n", - "And there you have it - your first `FilePattern` object! That object describes 1) all of the URLs to the files that we are planning to convert as well as 2) how we want each of the files to be organized in the output object. Pretty compact!\n", - "\n", - "In part 2 of the tutorial, we will move on to creating a recipe object, and then use it to convert some data locally.\n", - "\n", - "### Code Summary\n", - "The code written in part 1 could all be written together as:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "\n", - "from pangeo_forge_recipes.patterns import ConcatDim, FilePattern\n", - "from pangeo_forge_recipes.recipes import XarrayZarrRecipe\n", - "\n", - "dates = pd.date_range('1981-09-01', '2022-02-01', freq='D')\n", - "\n", - "URL_FORMAT = (\n", - " \"https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/\"\n", - " \"v2.1/access/avhrr/{time:%Y%m}/oisst-avhrr-v02r01.{time:%Y%m%d}.nc\"\n", - ")\n", - "\n", - "def make_url(time):\n", - " return URL_FORMAT.format(time=time)\n", - "\n", - "time_concat_dim = ConcatDim(\"time\", dates, nitems_per_file=1)\n", - "pattern = FilePattern(make_url, time_concat_dim)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "interpreter": { - "hash": "872ea42c32c3f63d8f4b36be21cfb5d37e4f64dbfc719d9980b5e00daca69998" - }, - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.13" - } - }, - "nbformat": 4, - "nbformat_minor": 4 + "nbformat": 4, + "nbformat_minor": 4 } diff --git a/docs/introduction_tutorial/intro_tutorial_part2.ipynb b/docs/introduction_tutorial/intro_tutorial_part2.ipynb index c31aa892..1017ed56 100644 --- a/docs/introduction_tutorial/intro_tutorial_part2.ipynb +++ b/docs/introduction_tutorial/intro_tutorial_part2.ipynb @@ -1,723 +1,723 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Running a Recipe Locally\n", - "Welcome to the Pangeo Forge introduction tutorial! This is the 2nd part in a sequence, the flow of which is described {doc}`here `.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Code from Part 1\n", - "You'll need the `FilePattern` that was created in Part 1 to work on Part 2. The Part 1 code is copied here." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "\n", - "from pangeo_forge_recipes.patterns import ConcatDim, FilePattern, prune_pattern\n", - "\n", - "dates = pd.date_range('1981-09-01', '2022-02-01', freq='D')\n", - "\n", - "URL_FORMAT = (\n", - " \"https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/\"\n", - " \"v2.1/access/avhrr/{time:%Y%m}/oisst-avhrr-v02r01.{time:%Y%m%d}.nc\"\n", - ")\n", - "\n", - "def make_url(time):\n", - " return URL_FORMAT.format(time=time)\n", - "\n", - "time_concat_dim = ConcatDim(\"time\", dates, nitems_per_file=1)\n", - "pattern = FilePattern(make_url, time_concat_dim)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Part 2 Outline\n", - "\n", - "The main goal of the first two parts of this tutorial are to create and run a **recipe**, the object that defines our data transformation.\n", - "A recipe is an Apache Beam [Composite Transform](https://beam.apache.org/documentation/programming-guide/#composite-transforms).\n", - "\n", - "In part 2 of this tutorial we wil be using the `FilePattern` we defined in Part 1 to create a recipe and use it to create some cloud optimized data on our own computer!\n", - "\n", - "The steps to doing this are:\n", - "1. Prune the FilePattern\n", - "1. Chain together the necessary beam transforms into a recipe\n", - "1. Run the recipe as a Beam Pipeline\n", - "1. Check output data\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Prune the File Pattern\n", - "\n", - "\n", - "Currently our recipe is set up to convert over 3 decades worth of data. That is much more data than we need to run a test (and probably more data than fits on our computer). What we want instead is to run a subset of the data, just to make sure the recipe is working. \n", - "\n", - "Pangeo Forge has a built in function for getting a smaller test-appropriate file pattern:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Running a Recipe Locally\n", + "Welcome to the Pangeo Forge introduction tutorial! This is the 2nd part in a sequence, the flow of which is described {doc}`here `.\n" ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pattern_pruned = prune_pattern(pattern)\n", - "pattern_pruned" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Create the Recipe object (Beam Composite Transform)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import apache_beam as beam\n", - "from pangeo_forge_recipes.transforms import OpenURLWithFSSpec, OpenWithXarray, StoreToZarr" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A place for our data to go" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "'/var/folders/kl/7rfdrpx96bb0rhbnl5l2dnkw0000gn/T/tmpy6h7cm84/output.zarr'" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Code from Part 1\n", + "You'll need the `FilePattern` that was created in Part 1 to work on Part 2. The Part 1 code is copied here." ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from tempfile import TemporaryDirectory\n", - "td = TemporaryDirectory()\n", - "target_path = td.name + \"/output.zarr\"\n", - "target_path" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "<_ChainedPTransform(PTransform) label=[Create|OpenURLWithFSSpec|OpenWithXarray|StoreToZarr] at 0x14ee0f070>" + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "\n", + "from pangeo_forge_recipes.patterns import ConcatDim, FilePattern, prune_pattern\n", + "\n", + "dates = pd.date_range('1981-09-01', '2022-02-01', freq='D')\n", + "\n", + "URL_FORMAT = (\n", + " \"https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/\"\n", + " \"v2.1/access/avhrr/{time:%Y%m}/oisst-avhrr-v02r01.{time:%Y%m%d}.nc\"\n", + ")\n", + "\n", + "def make_url(time):\n", + " return URL_FORMAT.format(time=time)\n", + "\n", + "time_concat_dim = ConcatDim(\"time\", dates, nitems_per_file=1)\n", + "pattern = FilePattern(make_url, time_concat_dim)" ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "transforms = (\n", - " beam.Create(pattern_pruned.items())\n", - " | OpenURLWithFSSpec()\n", - " | OpenWithXarray(file_type=pattern_pruned.file_type)\n", - " | StoreToZarr(\n", - " target_url=target_path,\n", - " combine_dims=pattern.combine_dim_keys,\n", - " )\n", - ")\n", - "transforms" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Run the Recipe" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ + }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" - ] + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Part 2 Outline\n", + "\n", + "The main goal of the first two parts of this tutorial are to create and run a **recipe**, the object that defines our data transformation.\n", + "A recipe is an Apache Beam [Composite Transform](https://beam.apache.org/documentation/programming-guide/#composite-transforms).\n", + "\n", + "In part 2 of this tutorial we wil be using the `FilePattern` we defined in Part 1 to create a recipe and use it to create some cloud optimized data on our own computer!\n", + "\n", + "The steps to doing this are:\n", + "1. Prune the FilePattern\n", + "1. Chain together the necessary beam transforms into a recipe\n", + "1. Run the recipe as a Beam Pipeline\n", + "1. Check output data\n" + ] }, { - "data": { - "application/javascript": "\n if (typeof window.interactive_beam_jquery == 'undefined') {\n var jqueryScript = document.createElement('script');\n jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n jqueryScript.type = 'text/javascript';\n jqueryScript.onload = function() {\n var datatableScript = document.createElement('script');\n datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n datatableScript.type = 'text/javascript';\n datatableScript.onload = function() {\n window.interactive_beam_jquery = jQuery.noConflict(true);\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }\n document.head.appendChild(datatableScript);\n };\n document.head.appendChild(jqueryScript);\n } else {\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "with beam.Pipeline() as p:\n", - " p | transforms" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Check output\n", - "\n", - "Now that the process has run we can use `xarray` to inspect the output data." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "import xarray as xr" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prune the File Pattern\n", + "\n", + "\n", + "Currently our recipe is set up to convert over 3 decades worth of data. That is much more data than we need to run a test (and probably more data than fits on our computer). What we want instead is to run a subset of the data, just to make sure the recipe is working. \n", + "\n", + "Pangeo Forge has a built in function for getting a smaller test-appropriate file pattern:" + ] + }, { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.Dataset>\n",
-       "Dimensions:  (time: 2, zlev: 1, lat: 720, lon: 1440)\n",
-       "Coordinates:\n",
-       "  * lat      (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n",
-       "  * lon      (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n",
-       "  * time     (time) datetime64[ns] 1981-09-01 1981-09-02\n",
-       "  * zlev     (zlev) float32 0.0\n",
-       "Data variables:\n",
-       "    anom     (time, zlev, lat, lon) float32 ...\n",
-       "    err      (time, zlev, lat, lon) float32 ...\n",
-       "    ice      (time, zlev, lat, lon) float32 ...\n",
-       "    sst      (time, zlev, lat, lon) float32 ...\n",
-       "Attributes: (12/34)\n",
-       "    Conventions:                CF-1.6, ACDD-1.3\n",
-       "    cdm_data_type:              Grid\n",
-       "    comment:                    Data was converted from NetCDF-3 to NetCDF-4 ...\n",
-       "    creator_email:              oisst-help@noaa.gov\n",
-       "    creator_url:                https://www.ncei.noaa.gov/\n",
-       "    date_created:               2020-05-08T19:05:13Z\n",
-       "    ...                         ...\n",
-       "    references:                 Reynolds, et al.(2007) Daily High-Resolution-...\n",
-       "    sensor:                     Thermometer, AVHRR\n",
-       "    source:                     ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pathfin...\n",
-       "    standard_name_vocabulary:   CF Standard Name Table (v40, 25 January 2017)\n",
-       "    summary:                    NOAAs 1/4-degree Daily Optimum Interpolation ...\n",
-       "    title:                      NOAA/NCEI 1/4 Degree Daily Optimum Interpolat...
" + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "\n", - "Dimensions: (time: 2, zlev: 1, lat: 720, lon: 1440)\n", - "Coordinates:\n", - " * lat (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n", - " * lon (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n", - " * time (time) datetime64[ns] 1981-09-01 1981-09-02\n", - " * zlev (zlev) float32 0.0\n", - "Data variables:\n", - " anom (time, zlev, lat, lon) float32 ...\n", - " err (time, zlev, lat, lon) float32 ...\n", - " ice (time, zlev, lat, lon) float32 ...\n", - " sst (time, zlev, lat, lon) float32 ...\n", - "Attributes: (12/34)\n", - " Conventions: CF-1.6, ACDD-1.3\n", - " cdm_data_type: Grid\n", - " comment: Data was converted from NetCDF-3 to NetCDF-4 ...\n", - " creator_email: oisst-help@noaa.gov\n", - " creator_url: https://www.ncei.noaa.gov/\n", - " date_created: 2020-05-08T19:05:13Z\n", - " ... ...\n", - " references: Reynolds, et al.(2007) Daily High-Resolution-...\n", - " sensor: Thermometer, AVHRR\n", - " source: ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pathfin...\n", - " standard_name_vocabulary: CF Standard Name Table (v40, 25 January 2017)\n", - " summary: NOAAs 1/4-degree Daily Optimum Interpolation ...\n", - " title: NOAA/NCEI 1/4 Degree Daily Optimum Interpolat..." + "source": [ + "pattern_pruned = prune_pattern(pattern)\n", + "pattern_pruned" ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "oisst_zarr = xr.open_dataset(target_path, engine=\"zarr\")\n", - "oisst_zarr" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create the Recipe object (Beam Composite Transform)" ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHFCAYAAAC+Zf4TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9eZgcVdn9ubeqt5nMTBbISkgim0BYlF3BhCQzSVgVV6IsBiN+IIiCKMIPA2LA4IICIm6AYERFxeUjK0s+FRCQTRZRJMQQEkJCMktPd1fVvff3x13qVnX3TM8+CXWeZ56Zqa6uravrnvu+5z0vEUIIJEiQIEGCBAkSJBgS0KE+gAQJEiRIkCBBgrczEjKWIEGCBAkSJEgwhEjIWIIECRIkSJAgwRAiIWMJEiRIkCBBggRDiISMJUiQIEGCBAkSDCESMpYgQYIECRIkSDCESMhYggQJEiRIkCDBECIhYwkSJEiQIEGCBEOIhIwlSJAgQYIECRIMIRIyNkzx8MMPY/HixdixY0fZazNnzsTMmTMH/ZgGCzfccANOO+00TJs2DYSQLs915cqVeO9734tcLoempiacfPLJeP7558vWK5VKuP766zF9+nTU19dj3LhxmD9/Ph5++OGyda+44gqcdNJJmDRpEgghOPvss3t8Dlu2bMHZZ5+N3XbbDXV1dTjmmGNw//33l63neR6uvPJKTJs2Del0GlOmTMFll12GQqHQo/3deOONeOc734lMJoNp06bhqquugu/7kXV++9vf4vTTT8fee++NXC6HqVOn4uMf/zj+/e9/9/j8eoLbb78dhBC8+uqrA7qfwUAt17kafN/HVVddhalTpyKTyeCd73wnbrzxxpree/bZZ4MQAkIIpk+f3pdT6DW6eiYNFg499FBzHU466aQhO44ECfodIsGwxPXXXy8AiHXr1pW99vzzz4vnn39+8A9qkLDffvuJd7/73WLhwoVi9913FzNmzKi43r333isIIeL973+/+N///V+xbNkysd9++4lRo0aJl19+ObLuGWecISil4vLLLxf333+/+PWvfy0OO+ww4bqu+Nvf/hZZt66uThx99NHiM5/5jEin0+Kss87q0fEXi0Uxffp0sccee4i77rpLrFq1Spx66qnCdV3x0EMPRdY97bTTRDabFUuWLBGrV68WV199tUin0+Lkk0+ueX/XXHONIISIyy67TDz44INi6dKlIp1Oi0WLFkXWO/LII8Upp5wifvrTn4qHHnpI3HnnnWL//fcXI0aMEM8991yPzrEnuO2226reyzsTar3O1fCpT31KZDIZsXTpUvHggw+KL3/5y4IQIr7+9a93+96zzjpLjB8/XjzyyCPimWee6eup9ApdPZMGC88++6x45JFHxPjx48WJJ544ZMeRIEF/IyFjwxTD4cE3VGCMmb8PPPDAqmRsv/32EwcffLDgnJtlr776qkin02LBggVmWbFYFI7jiE984hOR97/++usCgLjwwgur7r++vr7HZOzmm28WAMTDDz9slvm+Lw444ABx5JFHmmWPPPKIACC+9a1vRd6/ZMkSAUCsWrWq231t3bpVZLNZ8elPfzqy/Otf/7oghERI+xtvvFH2/o0bN4pUKiXOOeecms+vp9gVyFhPrnMlPPfcc4IQIpYsWRJZvmjRIpHL5cS2bdu6fP9ZZ50lpkyZ0qtj7y8M1DMpn8/3+D1TpkxJyFiCXQpJmnIYYvHixfjiF78IACZVRwjBQw89BKA8Tfnqq6+CEILrr78e3/jGNzB16lTkcjnMnDkT//rXv+D7Pr785S9j4sSJaGpqwgc+8AFs2bKlbL+//OUvccwxx6C+vh4jRozA3Llz8dRTTw3GKUdAafe35bZt2/DSSy9h/vz5IISY5VOmTMH06dNx7733gjFmtkcpRVNTU2QbjY2NoJQim832eP9d4Xe/+x32228/HHPMMWaZ67r4xCc+gcceewwbN24EAPz1r38FAJxwwgmR9+v0y29+85tu97VixQoUi0V88pOfjCz/5Cc/CSEE7r33XrNs7NixZe+fOHEi9thjD2zYsKG2k4th6tSp5v6M/+j7tRrWrFmD2bNno7GxEXV1dXjve98bSeXee++9IIRUTO/ecsstIITg2Wef7dVx9xQ9uc6VcO+990IIUfH9hUIBK1as6PWxEULw2c9+Frfddhv2228/5HI5HH744Xj00UchhMD111+PadOmYcSIEZg1axZefvnlsm1091l090wCant+nH322RgxYgT+8Y9/oKWlBQ0NDZg9ezYA4KmnnsJJJ52EsWPHIpPJYOLEiTjxxBPx2muv9fraJEiwsyAhY8MQn/rUp3DBBRcAkDqfRx55BI888gje/e53d/m+m2++GX/9619x880348c//jH++c9/4uSTT8Y555yDN998Ez/96U+xdOlSrFmzBp/61Kci712yZAlOP/10HHDAAfjVr36FO++8E+3t7TjuuOPwwgsvdHvMQRDU9COE6P2FseB5HgAgk8mUvZbJZNDZ2Yn//Oc/AIBUKoXzzjsPd9xxB+699160tbXh1VdfxaJFi9DU1IRFixb1yzFpPPfcczj44IPLlutlWtNW7Rz0/7UQjeeeew4AcNBBB0WWT5gwAbvttpt5vRpeeeUVrF+/HgceeGC3+6qE3/3ud+b+fOSRR/DXv/4VBx10EOrr67HnnntWfd9dd92FlpYWNDY24o477sCvfvUrjB49GnPnzjUkQA/Mt912W9n7b7/9drz73e+ueJ1t9Nd92dfr/Nxzz2H33XfH+PHjI8v18Xf3/u7wpz/9CT/+8Y9x3XXX4Re/+AXa29tx4okn4uKLL8Zf//pX3HTTTfjhD3+IF154AR/84Acj51vLZ9HdM6knzw/P83DKKadg1qxZ+P3vf4+rrroK+Xwezc3NeOONN3DzzTdj9erVuOGGG7Dnnnuivb29T9cmQYKdAkMYlUvQBbpKCcyYMSOSulu3bp0AIA455JBIiu2GG24QAMQpp5wSef9FF10kAIjW1lYhhBD//e9/heu64oILLois197eLsaPHy8+8pGPdHmsev+1/Dz44IM9ug7V0pSMMTF69Ggxe/bsyPLt27eLhoaGsjQh51xceeWVglJqjmXPPfcUTz31VJf7702aMpVKiXPPPbds+cMPPywAiGXLlgkhpOYNgLjzzjsj6/3kJz8RAMS+++7b7b4WLVokMplMxdf23Xdf0dLSUvW9vu+LmTNnisbGRvHf//63233Vgs9+9rPCdV1x3333mWXxNGU+nxejR48u08UxxsQhhxwSSeV+4QtfELlcTuzYscMse+GFFwQAceONN3Z5LP15X/blOgshRHNzs9hvv/0qvpZOp8vSn3F0laYEIMaPHy86OjrMMn1vHXrooZE0vn4mPPvss0KInn0W1Z5JPXl+nHXWWQKA+OlPfxpZ94knnhAAxL333tvlddBI0pQJdjW4A0n0EgwuTjjhhEiKbf/99wcAnHjiiZH19PL//ve/mD59OlauXIkgCHDmmWciCAKzXjabxYwZM/Dggw92ud+JEyfi8ccfr+kY99tvv5rW6w6UUpx//vn42te+hq997Ws499xz0dbWhosuugidnZ1mHY2vf/3r+OY3v4nFixfjuOOOQ1tbG2666SY0Nzdj1apVeNe73tWj/QshTBpUw3XDr5OdOo1DvzZ//nzsvffe+NKXvoRx48bhiCOOwKOPPoqvfOUrcBwncvz25wIAjuOY7dSyr0rHf8455+DPf/4zfvOb32Dy5MlVt1ErrrvuOtx000348Y9/jPnz51dd7+GHH8Zbb72Fs846q+y85s2bh6VLlyKfz6O+vh4LFy7Et7/9bfzyl7/Epz/9aQDAbbfdhkwmgwULFnR5PP19X/bmOvfn+7vC8ccfj/r6evO//o7H0/h6+fr163HQQQf16LOoht48Pz74wQ9G/t97770xatQofOlLX8KmTZvwvve9DwcccEAPrkCCBDs3EjK2C2H06NGR/9PpdJfLi8UiAOCNN94AABxxxBEVt9udhiqdTuPQQw+t6Rgdx6lpvVpw5ZVXoqOjA9dccw2uvPJKAJJ4fvKTn8SPf/xjTJo0CQDw4osv4sorr8TSpUtxySWXmPfPnz8fBxxwAL7whS90SzjjuOOOO8r0P0KlfsaMGYNt27aVveett94CEH4e6XQay5cvxxlnnIGWlhYAQH19PZYsWYKvfe1r5vgBmWq1cdttt+Hss8/GmDFjUCwW0dnZibq6urL9HXbYYWXHIYTApz71Kdx111244447cOqpp/bo3Cvhrrvuwle+8hVceeWVOOecc7pcV99vH/rQh6qu89Zbb6G+vh4HHnggjjjiCNx222349Kc/DcYY7rrrLpx66qll93Uc/Xlf9uY6x9//9NNPly3P5/PwPK/bc+kOff3u1/JZVENPnx91dXVobGyMLGtqasLatWvx9a9/HV/5ylewfft2TJgwAYsWLcIVV1xRdv8nSLCrISFjCbDbbrsBAO655x5MmTKlx+9/9dVXMW3atJrWffDBB/vNI811XXz729/G1VdfjXXr1mG33XbDhAkTMHfuXEybNg177LEHAOCZZ56BEKJssEilUjjkkEOwdu3aHu/75JNPrhp1Oeigg/CPf/yjbLleZvtE7b333njkkUewceNGvPXWW9hrr73Q2tqKz33uc3jf+95n1ovvS19vrWH6xz/+gaOOOsq8vnnzZmzdurXMk0oTsdtuuw0/+clP8IlPfKInp10Rq1evxsKFC3H22Wfjqquu6nZ9fb/deOONOProoyuuM27cOPP3Jz/5SZx33nl48cUX8corr2DTpk1lRLgS+vO+7Ol1rvT+u+++G5s3b47oxirdE4OJnn4WXW2j1udHtSigvkZCCDz77LO4/fbbcfXVVyOXy+HLX/5yt9tNkGBnRkLGhim0iLun5p+9wdy5c+G6Lv7zn/+UpQ9qwVCkKW2MGDHCDJZPPvkk7r//fnzrW9+KHB8APProo5gxY4ZZXiqV8OSTTxrS1hOMGTMGY8aMqfjaBz7wAZx33nn429/+ZgbuIAhw11134aijjjLHY2PSpEkmEnbFFVegvr4+EmE6/PDDK+5r3rx5yGazuP322yMkQRutvv/97zfLhBBYtGgRbrvtNtx66601EZru8PTTT+ODH/wgZs2ahR/+8Ic1vee9730vRo4ciRdeeAGf/exnu13/9NNPxxe+8AXcfvvteOWVVzBp0iQTSewK/Xlf9uQ6V8Kpp56KK664AnfccQe+9KUvRd6fy+Uwb968mo6zv9GTz6LaM6mvz484CCE45JBD8J3vfAe33347nnzyyT5vM0GC4Y6EjA1TaHLx3e9+F2eddRZSqRT2228/NDQ09Pu+pk6diquvvhqXX345XnnlFcybNw+jRo3CG2+8gcceewz19fVdRjzS6XRVstAbPPHEE8atva2tDUII3HPPPQBkKkTPvh966CE8/vjjOPjggyGEwGOPPYZvfOMbmDdvXmRgOfbYY3HEEUdg8eLF6OzsxPve9z60trbixhtvxLp163DnnXdG9r927Vq8+eabAADGGNavX2/2P2PGDOy+++5dHv/ChQtx880348Mf/jCuu+46jB07Ft///vfx0ksvYc2aNZF1ly5divHjx2PPPffEG2+8gV/96le49957ceedd0bSlNUwevRoXHHFFfh//+//YfTo0WhpacHjjz+OxYsX41Of+lREd3PhhRfiJz/5CRYuXIiDDjoIjz76qHktk8lEdHOLFy/GVVdd1WXEqK2tDSeccAJyuRwuueQSPPHEE5HXDzjggLJ0FCDJ84033oizzjoLb731Fj70oQ9h7NixePPNN/HMM8/gzTffxC233GLWHzlyJD7wgQ/g9ttvx44dO3DJJZfUZD/Sn/dlT67zz372MyxcuBA//elPceaZZwIADjzwQJxzzjn46le/CsdxcMQRR2DVqlX44Q9/iGuuuabPacreoiefRbVnUl+fH4CsBv3+97+P97///XjHO94BIQR++9vfYseOHWhubh7w65AgwZBjiAoHEtSAyy67TEycONFUAOqKr2rVlNdff33k/Q8++KAAIH79619Hluvqtscffzyy/N577xXHH3+8aGxsFJlMRkyZMkV86EMfEmvWrBmQ86sGXXFV6ee2224z6/31r38VRx11lDne6dOni29+85vC87yybe7YsUNcfvnlYv/99xd1dXVi7NixYubMmZGqP40ZM2b0uRp08+bN4swzzxSjR48W2WxWHH300WL16tVl61111VVir732EplMRowcOVLMmzdP/N///V/N10rju9/9rth3331FOp0We+65p/jqV79adh2mTJlS9bzilXoXX3yxIISIF198seo+u6tW1Neqmunr2rVrxYknnihGjx4tUqmUmDRpkjjxxBPL7lchhFi1apXZ7r/+9a8eX5/+Qi3XWZ+vfa8KIYTneeKrX/2q2HPPPUU6nRb77ruv+N73vlfTfrurpjz//PMjy3r6TKj1s6j2TBKitufHWWedJerr68vO4Z///Kc4/fTTxV577SVyuZxoamoSRx55pLj99tsrnnNSTZlgVwMRop+MnxIkSLDL4Mgjj8SUKVPw61//eqgPJQGkWepDDz2El19+GYSQfi2E2ZnAGIMQAnvvvTemT5+OP/3pT0N9SAkS9AsS09cECRJE0NbWhmeeeQZXX331UB9KAgvr1683RSdvVxx22GFIpVJYv379UB9KggT9iiQyliBBggTDHK+++iq2bt0KAMjlcr3umLCz44UXXjA+giNHjsTee+89xEeUIEH/ICFjCRIkSJAgQYIEQ4gkTZkgQYIECRIkSDCESMhYggQJEiRIkCDBECIhYwkSJEiQIEGCBEOIxPQ1Bs45Xn/9dTQ0NPS5eW+CBAkSJNi1IYRAe3s7Jk6cWJMZcW9QLBbheV6/bCudTiObzfbLthL0HxIyFsPrr7+OyZMnD/VhJEiQIEGCnQgbNmzoVWu17lAsFjEmNwKdYP2yvfHjx2PdunUJIRtmSMhYDLrd0PMv/XtAWg8lSJAgQYJdB+3t7Thwv30GbLzwPA+dYDgTk5Duo7LIA8fPNm+E53kJGRtmSMhYDDo12dDQEOmrR7vIWPLEHCRBggQJBhVdPZN7i748ywda1pIGRZr0MQ2ajFXDFgkZqwJKav+yV1svIWkJdhbUcq8Ph/tZH+dwOJYEg4+BIGB93f5AH5OGQwicPhI+ByQhZMMUCRkbQOwsA1yCty96MpAMBRGqdnzx5UPxPUqIYYLBBCWA00fiR4GEjA1TJGRsiEFJ8jBPMDTo7Yx+ON6z9rkM9LHFr9tg7vvtjGr3a09v4+QjSjAckZCxGlDLl70vX/DhOLglSDDUGI5ksbtjSojZ4KDSx0CrpPB4rOPfQD/PBwr9lqZMMCyRkLEqIOjZjEuv29sv8a5MyHrb/jTxeesaXV3Xgb52w/1+HYjj6yk5HO7XqCvY99Zw+x7aR1ONgKGLdeLkrLt92BjKj9PphzSl0z+HkmAAkJCxGtHVl97+cveVlPUnhnKw7m7/PXn/cBsMakVfz7+/9l3p+lUiFl1d5eFwP/cUw4EM9eUYqt0//fV9qPX+rHYvDeb3s9L9qp/JPdm9ELU/yyuh0jt3zqdTguGGhIx1gVpmXfZ63ZEye2uVvvL9NXjU8pCttE5fHqoDSTyEEGXHVuv+dgbSOdCodP3i6O4qEfSMkPXmmvT0GAfzqg9WxRzQ/bXrbdSqP+7TStvoKSnryyRRv0oJiZAwUsszL/aeSm+p9MyvJZI2GEjSlLs2EjJWBfaXspb7355xVSJlcfR0cKsVfXng1jJo93Zf3ZHM7ga73p5X/H39Tc6GOxHT6Oqz7Up/E7+XaznbvnxW+hjj90NXEYmu9razRcd6eu26i1oNJvqT7HX1PbWJmCFhgne7bWIZpsaJWflxRPdnY6jIWZKm3LWRNAofBOwcw7VEVw9U+7WdhYTY2FnTnUOBWgacwYoWJZ9abRBCmJ+dHd1HBwd2/109KmrNmCRI0BMkkbF+QFcPBhH73V10oS/VWP31EO4qLThQD3p9rgM1wPeGiNVi5tvVdofboGh/rlyE5ydQmfBUImTx+7c/vLb6SpIHKsqs0ZWlQi37HerI3M6KavdrZB1CakpRxqHfI7q49wip/my3CdlgkbMkTblrIyFj3aCn9749gFX6HvfksdFVemOgB/qhIhLVHrp9QXeDfS37s1NitRKQoU4bVUJXhAyoLQpVKT3Y03RgrQQsvlal9KlebyCucHeFDt3ttyfXZLjcI8MJf/5vW4/WnzNlhPxDtw3S6csqbYSqETlN0mpNZQ4GCPqeykqo2PBFQsaqgJCeE7GybWDnSlEOFqpF/wZTJF3rPu2XbSJgk7KuoM+PEDJsBtuuIg7VCk4qoZwoye11d67VdGFdb5uU/T+Q2p1aNGv2a8Pjk62Mv2xox7GTG8zfNo6d3FC2LA79Xhu9LaiJH1d/Y836DgDA7GlNkmgpEsZRQWfWA1R8Ty+qOfuCJDK2ayMhY/2M+CDR1wd1tYhDfzwMe4PuIho9PQ59fkNBxHqCeFpCf8bdna39+Q00IdOfTb+lq+1tW39Xqzgj6J6QxYlYtY+9N6mfat81+zPozX3W3Vv6WkBQ6+dln0OlbT78Wjves0eD+dtGNeJTCyGqtM5xezZG/u/u3tbbqEYK+xv3r2s1fx87uQEOBYgusuoitdlV2jIOvY3ekLsECeLYachYEARYvHgxfv7zn2Pz5s2YMGECzj77bFxxxRWgVM5+hBC46qqr8MMf/hDbt2/HUUcdhZtvvhkHHnjggB6b/v4K87Dsv+qbahGY+MO4EknSEZCeDM591u9UIQSDSbZ6cg69HaQ1IauFbPemoq/S+l2RCvuca41M9SdsgmoTssrrquNAddLVnQVBz4+vd+/r6m21HlZXOtBKn1O1z97eTpxsdbe8PzB7WhOECCPDa9f3LIUIREnYzCmS0D3Ui+10BzviRwgxEz4uhIkurXm1TaY1VfRMEFLxXhsuev2kmnLXxk5TTfmNb3wDP/jBD3DTTTfhxRdfxNKlS3H99dfjxhtvNOssXboU3/72t3HTTTfh8ccfx/jx49Hc3Iz29p4/oIgQPf6hqPzjUNLtDyVVlqkfAjkw6L8dEj6gqwqMTRidRH4cWvnvv2xoN81oq22/q/31J+LHHP/p6n0DAS5E2Q8QHZC5qP7Ts331fB27iq4rs9BK16erY9T3XeVjqCzwB6rfJ9UiYloWYH7s71b8NaK3FYsOVzn27n4qnUNX511pX71B/HOq9jnY17G7+3+gMHtak3U8pFdELI6H1rcNCBEDoqSPEqk9W6v2d/+6Vqx5Ve53zfoOrHm1DWtebYPHBFjs+63Rk4jZQEE+l0kff3q2z1tuuQUHH3wwGhsb0djYiGOOOQbLly83rwshsHjxYkycOBG5XA4zZ87E888/H9lGqVTCBRdcgN122w319fU45ZRT8Nprr0XW2b59O8444ww0NTWhqakJZ5xxBnbs2NHbS7VTYqeJjD3yyCM49dRTceKJJwIApk6dil/84hd44oknAMib4oYbbsDll1+O0047DQBwxx13YNy4cVi2bBnOPffcnu1QcCP+JOq3qCAC1a9FfG6EiEynCKEV3xvZDgCARrZjtkCo9UAWoCScxcX1S/FUBiXlg4pDdfRKHqYd0net17gQeGh9G2ZPazLrzJraBC5Er/2bbP2KRldRHvv1SgNAPF3SW1St1urBNmq5JrWkEqttp5br3ZcUZfwa1ELCuqu4rKXYQZMvA/u7RGhZGkh7RAkRjcjZx1s5XRmuUYsXYDX09grb16ASEauESpGuGVMaMWtqEx54NfzeNu9Zh9X/7ezlkVWG/q4D0WfEzoauiKNO68Z1k0NPvYYH9thjD1x33XXYe++9Acgx9dRTT8VTTz2FAw880ARAbr/9duy777645ppr0NzcjJdeegkNDfLaXnTRRfjjH/+Iu+++G2PGjMHFF1+Mk046CX//+9/hODJWt2DBArz22mtYsWIFAODTn/40zjjjDPzxj38cmhMfAhAxXFTF3eC6667DD37wA6xatQr77rsvnnnmGbS0tOCGG27A6aefjldeeQV77bUXnnzySbzrXe8y7zv11FMxcuRI3HHHHTXtp62tDU1NTXhj0+tobJQDPdHETJEqQ8A4A+FBSNzsCh5C5Y/gEE5ajTix1y1UJXpxM0MdUqduGSGLrAZJuogQZhbYPDlbcVvhQXCs3lCU6+5ZFzk2fSzCSYODmH0ORLVYJTJW7YF63J6NNaWB+hpNqEVsrnfdFysDESE6vT+m3sC+RrWQskqo5dTD6FkN5p3dTGKEIbfhMpto1do8ust91LheX8hytfRzV9qqOVNGYM36DvldrWB6qr/LPYGOgFWaqO1qmDGlEYxLKYfMBMiLX+n+6Ur839bWhnHjx6O1tdWMGf0JPSZ9vf4dyJK+JRqLguHy/Ct9OtbRo0fj+uuvx8KFCzFx4kRcdNFF+NKXvgRARsHGjRuHb3zjGzj33HPR2tqK3XffHXfeeSc++tGPAgBef/11TJ48Gffddx/mzp2LF198EQcccAAeffRRHHXUUQCARx99FMcccwz++c9/Yr/99uvTOe8s2GkiY1/60pfQ2tqKd77znXAcB4wxfP3rX8fpp58OANi8eTMAYNy4cZH3jRs3DuvXr6+63VKphFKpZP5va6s+i4oQJk3E/GJIVKgLUApwDjiuIWmrN0W/wM2Ts2WzWFu7IHfGLRIkwocthSF5BFQ+JUQYjag09JhybzuKx5lUtCqSKAjFmv92Ys7UxkhUUO5HoZuB0UYlgjQQAvY//7cNM5T2hKA8EmPvs6cdBmzYUaNqW7AjQrWiKyI52O7xNnGtxYdMv4YuXkeV16sK9AmtSCwAy27A+j5oV3VivU67OJpaSVhPL3tXn1N393zVFHEP7tU48WreI1PzeyvvW15n/ezQVYq7CmZPawLjwmQJ9MRVP+2Go7Frf1ZTxse5TCaDTKbre4Yxhl//+tfI5/M45phjsG7dOmzevBktLS2R7cyYMQMPP/wwzj33XPz973+H7/uRdSZOnIjp06fj4Ycfxty5c/HII4+gqanJEDEAOProo9HU1ISHH344IWPDDb/85S9x1113YdmyZTjwwAPx9NNP46KLLsLEiRNx1llnmfUqVRl29VC79tprcdVVV5W/YBEPoaJcnDjgQiDFfZCgCBJ4oMVWLO8Ya9ad17AVcNJY8aYkCC3jgOZJKQDA6o2+/B17cM6ZMgJEcDkAECpJnn0odvSNq4gbdQHqANSFQ0PhafxUBSEQWrZJHFDBYqlVCkHlNpv3rAPMvhRREwKAigpS10TFNGzyY6dEI+2kEEbueIWBsrvPiIswHVnJd0hHzWZNDXUtep/xyr5aCVlXRp+VYI+n9jWJ7y8ecSq7TooI6WPt6li6qkLtqjCh24ibOhsmKkfLurp6lV7TETAiRCSSFRHpk7DCTVB5v+r1I7ciABASaW1j9m2lK+33AQDj5dHjrtCddqsr9Kai2EatJEwTpNX/7TSTOR0FX/1aqau3RqC/N/F0MeEBBKHm89gVcNyejUY35dqXmTP57CVKl2sRMyB271VLqe9EmDx5cuT/r371q1i8eHHFdf/xj3/gmGOOQbFYxIgRI/C73/0OBxxwAB5++GEAXQdANm/ejHQ6jVGjRpWtowMomzdvxtixYxHH2LFjzTpvB+w0ZOyLX/wivvzlL+NjH/sYAOCggw7C+vXrce211+Kss87C+PHjAcBUWmps2bKl7Gaxcdlll+ELX/iC+b+trU3eqDHdCgA4QREu8wAegDBJmISbxfzcJiwvyH2uaN8NADB3TAErt+Ww6g0HgI/mPTJonpSSpEunMKkD7qTkg0DtRyiBvo5eER5AUFcSMrVPUBUx4xRwOIQrZzQUAhBAIMKZHiDTncSOtBEqI2wqwkCYH452gpeRQeFm5ENZReHsSkKNSkTMCK0RJRxmu+p3JYJWCZTI1EKllOXMKY1G4wbI9boyzO1NhEyTp0pv1YN9me6qyn70tqh1PUhMrwdCwGLETEOfWzWftr4440eiYnba1Pqc4sRMR8/073hv1zgRs3/rVTUhi6eCTIrIImS2oLqatYDZbiSFWXHVsvOKXz8hRBk5rYRaqljtCcVxezZWTaXr+10v7UrsLqhjIlm1RrFmTW2KEDABAkEImDppQeTwsHYXSlUydXMLLqsq5TPTmpyqNKB+Dse/1w4IRMSzDINGyHRxVZ+2oX5v2LAhkqbsKiq233774emnn8aOHTvwm9/8BmeddRbWrl1rXu9pAKTSOl25AbxdsNOQsc7OTmNhoeE4DjiXX4Rp06Zh/PjxWL16tdGMeZ6HtWvX4hvf+EbV7VYLz5KgJImQk5b/Mw/E7ww1W65cLhwXhLpAIfr+ldtykf/1TLVlopplCg5w9eVQkSgiuIx4AfJ/ixSJVA4EBZDAA1gYRdPrEwJJEDlDOijKSF6mIap101EvLqNjQkfX1P7Ck49q3YSTDgdKyAdVPBVUKf0jRPlrdlpLb8Eh0eXVtFf6/7hOTG/XJmn23zOnNEYiTl2h1oiYTQBsYlCJEFXaliZ1mtLaJIRY7w2LLSQBZiraVimF2RviVanwoxoqpTHtXQrrN7PPBcQcd5TAV46S2dDXRBNBLoSZEFR7T9yiIK5v7IowVSNcNXcMsAo0KhWrADBp9bXr2yLE7NjJDSCEmGVhsUzXBrdzpjZiTS8IExcCVJELLgQYFz12vN9ZUOlzADTpClPjetJAVKRMR88ElSSVCQGXElDmm0k09XuuzesN+jNNqasja0E6nTYC/sMPPxyPP/44vvvd7xqdWFcBkPHjx8PzPGzfvj0SHduyZQve8573mHXeeOONsv2++eabXQZSdjXsNGTs5JNPxte//nXsueeeOPDAA/HUU0/h29/+NhYuXAhAPgQvuugiLFmyBPvssw/22WcfLFmyBHV1dViwYEGP90c4A/ELIF4exC/JiJGOagHRCBchmLubJFsrt1aeYcwdUwAIxcrXMwCYSV3K8DgBqGPSgCAOnHjBAFMVnY4LwmRkTriSLBFFrnQqU7hZEOaBltol4XJSUvCvRP+EM6NxC0QYzXDBQf2C2k8awpHHGOn/JriSmkWJsa7wBKzIjoI9jNQy6GtCVk1PVckoVpOvOVOrP2CEegPjlY+tK+j1mBCheaQ+NisFZkcHKz03QxInL7y5ZpX0UJZeT1BXRs64AEPvtHfxlHJX3Q+60vfp5V1FivT2mAiJmb08/i5ze2lyakXTKhWpaFLmWAdeTcwfJ2I9McetRbdXLQpZqdLXPv+ZUxojROuh9VL/OHNKIx5a32aqJWdPawIFwaypTaCChRuzCoLmTG00KcpaEImKCY4HdjFNWBxOhQdO5B6DlKAIATkRBoWj7j2mJkr6O039opGpiFR2p01V9hZCCJRKpZoCIIcddhhSqRRWr16Nj3zkIwCATZs24bnnnsPSpUsBAMcccwxaW1vx2GOP4cgjjwQA/O1vf0Nra6shbG8H7DRk7MYbb8T/+3//D+eddx62bNmCiRMn4txzz8WVV15p1rn00ktRKBRw3nnnGdPXVatWmRLbnoIEHkhQkjoqRWZgHuSW0FgIQEhS1bK7j1VvpiLbmTumEArmFVZv9E3Fol0YQJVuSEalKMB8Fc1SBCyVla9ZUS5QV26DuoCjNGYMJhWqo2IkKBkCKdwMAivCQJkf7ksRT8I862Ioew5FGk1FaMSKg3aZctQaKgAm/QZUHtC7ErbbKTq9nhnYrPUeeLU1bIuiSCQAuJbJIxAd9FmNJCc0OCWRAVUTWx11iAyeFUAq7C6i6bNSzXDSoITIwSGW4qzVm8z2/6olCtYTxCNnGl0S72qENbb7SpVudio+PIZwu0KEKXUTfbV3GDtO+5y704fFU4sEYYTXjspqQqbT+JQQPPBqqyFDgIwcciGMCSoQ6rgeeLXVVDSWTTTUfaLTks2Ts91WUOrvCRUMxC9JUsECzN1Nbi8e0d9VsFZZ9Nj3h33vSH8xOVFLO/I7bT8PHB0NE1w+A1M5iJS8VsIZrMjY4Ju+fuUrX8H8+fMxefJktLe34+6778ZDDz2EFStW1BQAaWpqwjnnnIOLL74YY8aMwejRo3HJJZfgoIMOwpw5cwAA+++/P+bNm4dFixbh1ltvBSCtLU466aS3jXgfwM5jbTFY0GXEb776LzQ21IN4BUlKlIDdVDLauio9uDspOVMiFKtUBWXL7r4kQsyXkalsgyQ1KupU5k+mlhFNwAIPwlGcmXPATYcaMu1/5qQB6oA5GVCI6GvqmE2akQdhNE6TQOab/Znj4bp6kwKO3CcApR8jCNQoVqa7sK6HJmwcxDzs5Gn2TERfaWC3I1AadoTBxswpjRGxrp1WZF2wmEqpU3vf8f3bxwBIwpmiauBjvrXh6Ew6bp1SBr2MEHA3g4CLCLEN9131VKzj1ZuqrNGohlorYbsi1vGoqJ1yib/N1phV+l8vM8deISpmo5IVix31ss+NEFI2GYiTs7I0eGzdSpWxBBaB1N9xIGJTY5+i/p/wGKG3JhO2dU1X0FWRti0P9ISLBWZ5tcj+rgRNaitF8gWUgF+RNa3ZLbMjssaAth3bMXbytAG3trhx5N7I9dHaoiAYLtjxcs3Hes455+D+++/Hpk2b0NTUhIMPPhhf+tKX0NzcDACm682tt94a6Xozffp0s41isYgvfvGLWLZsGQqFAmbPno3vf//7kSKCt956CxdeeCH+8Ic/AABOOeUU3HTTTRg5cmSfzndnQkLGYtA3/tZ/P4Om+hygo0OEGv0YgPBLSrS9hHxyCuoCblp+WUv5iFeYcDOSrKntRUiL7VVGKBB44QBOHUnItJ5MR6QElxoyyPSlSNWZYxFOymyfqNQj4QGIX1SpzHS4PXNSMSKgI4JuRhYaACgFHA6NOnDPmTJCEUBhInHmmilBsD1YVUMt1Wp6FTsqYj9UbSNMG1oIHSdqs6Y2RfRN+mEsjzWMftmI63fiflmG8AJR+xOgMtkyG6ImAhtZnzqGqHHiwOeh235PdGK1Vu31po1WfJtd+bvZUaKIgLwGgl7mR6YLSxCNioXnIn93pxuLEzCgQioVURKmU4NaA1aJgEG9R+sc9XkDYdUqBMea9R3G48volmJES4vzeyLSt9G8Z11EZgFATsQCFdnh3NyDqzbtOsOCsetR90pXt7X9PeYgcFhJPk/dTGQbgMwmEL+Ath3bsfu0dw44Gfv+qH36hYydt/3fA3asCXqPnSZNOdigXh4ko/U8kvxQv1M+sDiTA6SbhnDSSsPlAZyDZ0ZU1xBwJskQYCJNhAcREiQH3zASIiNqluhfVVSSeHQl8EALrdCaMZGplwJ+lZIkdgqS+XK7NjGwy9etp9XKt+oAVHb2NmaTetv2g17rnggFsWb+OsxeTVMGlA+C9jr2gKgHr1qMKauZxmryZrzYCJUpZwDEslgwx1FBRCtElIQRXXEbeGGxhCLHRHCs3JpBy+6SaK96M4W5u5XC6KeecVuE1kTMTOk9IlVvtaAn9gl98YPTRK6rCFklIgZESZkdJYosNwvLP5tK0TUY4mOlkqtEZu3InU2aCAnvMd2NYva0JkCISHcKG8ft2Vg1VauP44HYPWlvR9+P0m5GRbKttKQmGERLFWzYURxCjG0DOAMhlrzA3LM89EqECxJ0AsihZaKUJKx+rRQSOf0d50G/O/4PFCKEdmojEPvuxKu/AZjKcXm+Ud9FyoLw2gWemewmSNAXJGSsGjgPZ4pAmJ4MStB+X5IolQBH6agozECsIZdbl1kNEBF3fV3ZCIRifTuapio3TTqB+eGArQmW0n+AMynY9ztB/KKMxBm9m0q1imilJhEcCALzEF/ROrLscrSMFxBu1kT/OHHgCwFK5exRVnIqoqiqOiE4RKYehFCpsbC1cbGIRiXXax3NYFxUdCLvT3dwWmpXehB1nXTxAnVCI0gIUywRGZg0wVW+THJhlGCv3JbD3NGditwioisUhCoLFGXWqUcFHeFU29MkRV8ToHI0MZ5Ws0lBV2XodnqtK7LWVe/LaqjYakogYhOgl3F9bohZf8RIcWjdUjmyFr+/7KPuKlVuN5XW92KoPQwJWFfFIn/+b5up4Dtuz6gdi66S1NuxtaM64sWJoyqkOSKSAgXT5FrwCIuoav5qSR/k88uSIVAqHzdqIijgygmCT0EoRcs4AH4htNwBABZg7mh5z6/YsfNEWPQ94dCQkJlJgQjXIUKA8iCUcKjvoswuFIx8RVA3KkEYQDjoB83YrhPw3OWQkLEqEOk6SWRsbRhXs8fAB3FTIRkKOAhh5qFoUor6AUodMxOVKwgZfbFSLZFIl57tqlmZTC0KSfQUYRD29s12ZCQNPADat8HxSyGpcHRKNXyo64cr8YtY3jm+4nWYu5sS/TOAEE9GAgUHoU44WJqZt6rGtEgmKXLwTL18qOmUrj5nfbqEgiptmX55MNuwtIxjAFODlalSVSlDEQ7K8iENU/Vq60pIUAxnzercJfG2q20rpxgiBR/WwLt6QycAWaXbvGediYK4mgw6KXAnBY/JtKWuGCOWniwu9I9ro3QUzCZkGpUCb7USsUrky14USfWKaCrYTvsKRCt55YbK+1WGxxeNcMTNXilBTb52Jp2JcJB2woOyUl/yM505pRFMSBKmqyG7amX00Po2zJraJIlZhXvejsZpmOitQi2pyoiljv2M0Z1C9ITTsXRRDoWwtKNysuZFIuZGb0Yo5o7qwMrt0WMbjpDkVaZ+50yVOlJD4K1rQ3n4t9Hu8gDE75QTTeabZ3Hck3EgQStE5XuzjQTDEwkZqwbmASIbEi5AzhqdtNQWqWpH/WXUc3ndPkgAgCIuosrMyXh9AeHgrR5ytJQPNVs6OkJVuop5MvWn9FwAIDL1Zju0lAelrXJd7SytQuvSN0yRRVMAUH4bzBvZJo9NZzVU4YDxR9OpWq05IRRIZcHVQ52wQNqCeJ2gzJOp03TOEA1ddCAtN5wu9V4DhZbd/XBQAsxgFB6bE7XBEIBQEQvGpcWFKQxQ+j0SlKKFHrb2i1C5Tx3pVCkiAEarA50+JhTNk7Ph/aGqYfV7iHqPQ11k3Qy4mzHH6liDjO5A0BXssv+urEeq2UJUInJA5XRzvCqyUoqobL86bamMTauuJ6K/4+iqY0H5cZa/NzxmecAUAOEMzXvWgVOCIJCf5UNWRwj7vGxbE7sHpF4ctZsQ0cibGvh15HT1hmJN1ZOAjI4J614saznFOQAuCVnkpHkkamZ0oTqFZ6q4nYpV5MMNa9Z3oHlyVqZcEX5Hyu4p/RygLuDwyERZOK4sqKCukSIQv/ZuBwkSVENCxqqAegUQL6U0Vymj/wFg0nUQIhwsATWiyPSlDPdbL8UjX3oWaqJIch1aaIXobJVyhWy90ZDFI2HGsNUSfQMACYoQTgo8Ux85ZnncqTBlahUL6K4BGvMa3wKgiJcW5ItQVxJ/f6VCAJ5rAupGhSlV9R7auV2lLxsg0nXqmEsggqNlAhkU4XDzpJQ08Q1UetYuONBRMX0qgHHKLzKBtEMhBKTxo/Yb8gogPADP1EO46VArplNClj6QMA8iKAGEYuVbdZjX2Bo++C2xPlSLKqIGPKntscibBRKUQDkDcTOG2Gq4VnYrrjHT9iKVImB2taaxb7CrG6uwp1rn3WEUT6UYK7bJ0scSpgsrDaBmWaX9WAUktVh66O3o/VWbIBy3ZyP+/F8lulcfiUtJxJ4iss14wYAS6WsrG8AikxWu7f2vdkRsWuZMGQHwQBILfX8xS6No6zd1RJ1FoziVnknCuveQSqvvOTeTMLkezLNATjwdEMFN15HhiOZJqbAQRvstWhFXu6K5YlWzJcHQ32tDTgcJ/WJtkQTGhi0SMlYFegCUmoAAdmsiuUIsZK/C2SLwwygH8aIpSKM7swTvKqIlo1iWJQVjkTSeGbA1qBMSBx5YLZSs6I7gIJrIxQZ1wgIZEbMqRAFFxPSMV52n1rEJfQ5WVA3MM62hzHVTBISn60Pxuiay6XoZPXLTWPU6gzREGxzMmNIow/zcx6qNPoCwjL9lnDyOVZsJmicTFQlg0pNMCfodSkEFM+mhlnFMzoyVdkRGMVXENPBC0s08UEunQ5QOcf6IDixvkz3Z5jVslQdC1WfCdbrSi+qF7Eiehh4YAphUsCF3PLz37B6m1RzdK6UhK1VG2u2vAESaiVeyG9HLCYEyHY7uo2KvScB0e6gcYYqtX4GgaSlQpYifXpaixC6IVoRHfubVBPraqV6/Nmtqk4ySWuJ5QULSpY8n7hnGIaNMcdKni2PsyJd9HLOnNVWMKGsdmRbXN++RkQL8SWms3kzQMiFMywl1T5oWaeo5JuACjiWBsKwvzLkh/LxJICNDIj4pG0ZYvdFH8+Sw0psYGYiCPclESFSN7ENdJxKUwupTyAmucAcnItgvDvxJmnLYYvh+e4YYZuanRdma4KinNgmKUjuWypgHmQh8qa1ISwf80P5CvUeRLeGX5IBMHZPiMw8yK6UpAl8OzLYonOreaXqg1Q8NK12hw+xuNhzz9CBNqBTUE4oVbaMj5zyvYStA3PJZoTXAmChPKR+awirRf8vuvhGyg7NweGWescgQ6TrwzAjTNH2wUK2npYYW0ANREXTz5KwZpVPUBfXysffk1A/QMlEJ/4k07aXMB9UpDELCYhCrMGT+iC0hgQXkACk4AFXFpV4zEQs7ramh7s9IFaYQJg1sQ5MN03tSLa+lMDMuetcDciUdir2fan0k7QhOtQpk3XjLjpx15zemW0vJFlii7NxC0qh+QwCcg4ECOvWsCia60y7OmNIIxoUhRDOmNIZGvpaOL16NGT+HWVObooRM60YroHlyFmB+WTXjrKlNWBMjdVozpr9vqzYJGRk2Widedu1NRFcUzXlogh9GkBz5y4ooxSu8hwNMNSoQfpf0i5pw2REuXX2qV1HaVmLpxMLewpbVUIIEfURCxrqAFqvbwnyiIxzUBeBDFNoNQSJuCkhnwQt50Fy9NHYVHEQL/wvtEExFiOxKTXuf6jdxHFk27aaAwAkrKpW2jOiIkraksNNiGna43TqOSFGCwvwRWyBoOkx/xmeN5ryl4N9259fVl1IzksK8ph0gzMPK1xnmju6UkSNFKoWTAnczAAZXH9YVEesKtWhyDJgHolpPgboQ6RyEIuXydatoQw1w8cKJeQ1bw/Xtz8BJyYiFTiFpWGlQER8cdJssvcwm9TEYY1ZdOVoh8hWHTcQqTbjtIoewEpSA6smLPiY9eSAkFp0KiUJZ5MyeIECSMI8JUCIiQvu4eF+fC0EsrUkoAqaIm3Jg510w1Gq2KvZ9NmNKI+5f12qE+rabPgBFGnlFIf7qDUU0T0qhZaKDVa8zYy1hyE+MqDXvWYfVVVKqc6Y2mu/gmlfbovcEpSr9aJER/dyIa8iIFPYTFoQdP4KSisYOL0KiiyhW/7czUq1KYjpOXSkZkjBrYmOiY9Zz1ZZ5KM0YLeXjux8QJGnKXRsJGasGaxA1pct2VZdJAToAZxC+D96+A0Kn44qdAKUgbtos07D/J9Qpe41QRw4inAPIqxSkiD7w9N/Mi/xNWBDRmIWzXCsVoa0n7P3qCByhgJWmiYjQ3bSqqrIGwgoPYZ6uBy2qgUHNqEW2waQlm/ek5mG5K0GWuwcRY1+RrodQRQ4EDLafW6UK1rh+T2New1bAzcoODpXMem37g1hKCUDE5T1EuVLLIVY60b7fTeot7BWptXRqU1EIDqo6T2iNo3Az0fvGmjjYvmkUBCDRBs6R8wJMhIMIDu6kpC5MyEbqhCKSkq1oMhvZrjwelxJp+ktl/9Zq/RqlIL5753tNzHT7Ixu2q75OWZZtz0ymmCTWXaX0u7BXCLcrJxbyeyjtagCEHT00jBZMyy2i5N+k+rSZ8TCMiD2k2h8RIUzxQqTNGBQZt5+DelJtRb+NRMWQ4CCUZVSYTA8kkjTlro2EjHUF5puKQVBHph11hWSpE6KQj0SmhHLDB+fgKm1IUqnwSx4jXrJSyXoYcC4jYdQBSaXlNhkDvKJMV1pREEMItahbV1pSa0DWaavYIC0cFytiRMBExOwZstaLKUJHi+X7XN4xNrKdOVMbwQU3lVU8N1KmSraH57mzmEX2FERwcDvaoweuTD1ErkleO7+IlVszmNe0o8fblppED8ThFUmN7X0mX0O4HIj4uememjbpMpGsmKaLWOdCIImfQ8IG9ZEIl14/1mKLECq/R1rPpo9d/dYie9Nei4fbEipqRhC29eJKL6W/U5QQOFQWKVBCQIMShJOGr87DIWE6MiLWFtzoK121P1IqAX4RLbvLFFZclE6LbepcaxerxzVhdnRGE1w7lT57WlM0Fan1XEqqEI/Yrt7oo3lSqkfp/1WbCQAHLbtHo4wR6OPU8gQAWqeqyWKlyFjLRAcdtA4Pv1bd3mOgoaOQOjIWgT0ZsGUkKuJP/FIY/befebAm54Mnd03wNkDSDikG3Xpi+9MPonFEHXjHDtARI+WXNyhBcA5RKgCBb8T6ekDgXlEuZyyccVEnQsg0bGJG3JQhZbS+ESRTZx54oihnaSTXICsUNdQDgngFOcjp9JgZ4EiUWGmSFvgRS43lhQlmk/NGqhm0jqYRKh9K1v+AHECWFydVvYbVRM9vBzRPSsF3cwMW9TOWI3Y6yZ6h6/S3SiNp5/8yoqYRS9sAiJB3/VqcQM+ZMiJKaoBIlIEERVm9p6t9tV1IpeiuTeKsfelKQVtfJQSiRrAxo12jGWO6TVjarKcjdHpSZS83ZszMByl1hN55gsuopohWKMo0XrrXhqdGi0gdcCcFIQCfCxOZpEISXfu6G0NgTYJUulLrwvoK7SkYuR8sf8JomjQw6TtNTmxSLtI5wEmbKNxgQnvA2enf5snZiuuaziSBF4nyGeE+EH4PtF7TTv8DaGttxah3zxnwdki/HLc/6uIT+h6ikzN89I0Xk3ZIwxBJZKwaOJN6sMCHKHWCZEdIQhX4EJ4U7wNypsjV3wh8CN+LbAMAhA8ZzQDU4OSYv1eOOArzOp8AAKwccRROcF4OBwqjU9DRN8s1X/uGMR+CcxAnTN2EqUb9wKBmkC6zp7CwYkejrKYUquKTkMjsEHrb3aArL6hdHas3+pgxZeDK+1fsaJSEjFCs3F6+n7mjS4BwrIFRIDSLi0VA4voZVXBil/3rAXjOlBGmLZdJsemBWG/XjsSaaAIAoqIopr1UjMRpMiR4JLIjiDICBiKCfEIJqJEOhBauMm1pXQzOQEQp3AcQpmXNAMvMseoIWSSXa5+P5dUnF/Xe8HP1hqJxxydCRBLGMjrJu40g93eE2W7TJRwX2uQ6Ul0NADYx0YviJFvpSwfLriZ6MDWmTW1rC3UfG6LNPPO3IWK6qth+hg6iVo44BKRWo7xq20jSlMMWSWQsBj0Leevx5WggDNwrgmbrQXL1IKkMRKEdbPubEL4Hksmah1IkGmZFxUyK0gkJGHHTWNl4TLfHcoLzMoRXBElnlZWF8jdT+zBpIG5pkQiNVj3BSkHGYPerlFYUcjartWfmdathubG1EBz3+dMqHvecKSPAiTPoJq4JJOaOKcj7QPVOBRC9P0h55VtZdElFhmwRvlwx9FcipQ5TXRpJPSodZQTUgUhlZZ/UoCS1h5RGqlh7gtnTmkyaNDIwxgdJW0sVIQwkLHrRVi+prEkl21FlHSWp5rbOs03gmRGq5Ve0erIW6DQaV+bOOrJXqXjETrnZ7ZO6Q1m1ZnfHNEkdi9Kk2jrFiA4VkKnfmGZNt/0abJiILdREQqXGy/SUsKJfLJCdQxQBAwDTgxgIybj9TNUV8U4Kbe0dGPWu2QMeGbtn8oH9Ehn70Ibnk8jYMEQSGauGwINwVAox8ICSStExJqNfnMmHUDorU4ysfPABdUAcB6t2Ox4A0PLWWqwaPaOm3c/zngFXqVBSKsptZbJyf7rKUxExGaXzLW2aHxkQ5UPEqrgzBpphqsOUfSsitrxzPE5Ir5cph0Bp5pxUxEesKghNiNgQQvZMjXrShc7pclBZvaFoBnYdYbEd300UC2FUSqYIIUmM1ykHMBUN04M2SJhEtM1+wdT7/CLA/D63z+mK7MgUIA+JYRxCRNJTq95MYV6T1Dat3JoBkJPtqziDMXambuhir3Vw6nuCDgBQ38FeYPV/O9EygYBq+YC6jpUc9nUXDC1I1xFLrbnTcQ+XwHhikcCDKLWZSFwtaU3py5WFQFrKISxtoJnsAZKkCssEFWF1dU/211+Ik1NJKimMM6/5Hohw0qm9w1S1cyQiBqj7REpUTLajkIegDkiuPhpJTZCgl0jIWBUIxkAyOZWSVKJOR6YpwZn8YpYKkphRaUMhYqaeAAwRA1AzEQOAFelDAMuPdW7H30yK07iyEwrBY6lRIFrYpo5pRfZdOMF5GUhRANEqS+mPJrVketsnZDbgvtIUuQ2iNuoBJ2Q2yH2kMmhprNICpdY0QYIBQVTHVJkk6IHSJm1dVQfOmdooo0Scq+4FpTCSoNN3gkOkMoCTCtM+zJODnEp5h+msgetlGPGJ0zorJdAu1zDJ+1cTCA1JylCx76IpvqBUVrn2QTumo5jwIUleur7c545QQ5j1Z6T7VArqIODSkkMb0Zr3quiWbYtDBMfc3Urm/LqCtteIEHv7u230Y1aEUXDMa9iKFe27wd36CniuCc17jh30oh27Qbr8bT0V1fESPySr5nU3BZTyIPoZb73HFFRZy0UhD94xONYWcGhkbOkVSEIchyuGlznMMILwShEiBs4hfBUhykitjuCSyAivCOEVZeol8LB60gmVZ+R9wMoRR2FF+hAsF/vivtJkuX/qgrgpkwIljozEgXN5PABIKiULCCwQ5kEo4b8o5uUDpX0H2LbNEMUOKc4XHCek1pUdx32lybjPmyLTX6lstH+ehTlTG01rmBlVWsQkGDqsfq2E1f/trKlpNiBJgDQrVebHjnVPaX2ZTnMLoVJ/niT52uKCMaxo362qfcdAYPVrJazeUMTq10ogXs8JQaUI3orWkVjRNlpWElPXELGuKmRnTmnErKlNaN6zDi0THdU4Hli5LSfTyW5aSQDiDrWSiMWtMThxsGZ9B5giYkIIHDu5IXruGy09n31OljasK7RMjBUdWRE58ECK3m0PLqtQRHeUIEFx8InYJO3vGFj6xJhRsF+Ujb/9UqivdRxVaOKqSa9VmKKJGCAzFJmsmhwPomaMEqkb68tPHzVnCQYOiWYsBp2f33r/z9GQy0iy46al1iuTUzOhHeDt2yPvE1z6joE6WDPl1EE51vnZjSB+QRIvrU8LZKRuOdlfriNeNHYZWvtwnz8N87xnsCJ9COZ1PoEVdYeXbfsE52Xcx/bu9hiq+YX1VKOSYOfBrKlNcLgPUmiVKZ5Itwkp5NdVuMKX6T59P+7qmDNlBAjzpf0F8yEy9eCZBpM+06nHubuVwipoXRHrpMFTOUOedKVod/pLPdmJGxvrFl+Ipxd1ZWksClcJLRPtFkKWGbExMlZpPjslrdaPRxsHEi3jRRnp1Mdiey7qQhVSyoN6HaEw3yKUuruKBqFUTrpLRRlVy2TDCBmlaOvIY8yxpw24Zuw37zgY9U7fJvl5xvDBV55NNGPDEEmasgpIKgOarZcPSZWaZB07IHzfRJ20hoC4KfmF5eVVRgMJbS8xjz0DMGYVCTgmV0myI8yD5j5vinnvivQh8ncFIgagJiIGYJczbk3QPTQxaJ7cAMHrZKrHtkABwsGf+uClAuYFT4AX8z1K1e9saN6zDpw6JkW7cvsIQxKMI7wiPzJNmMG8xrdkbJK64BkA6fpuzWRtzJ7WFPGPi0DrywKZHiaOjBLJogkH2gS2K2ij5pbxIlpZmcpFKmkjRUODIFPQpFenR+MmwgAMCSVep1lXOCkzgbB1vmXdSyyYdCWlpliKAGEf4kECdQhoHy30aY2R8ASDj4SMVYMKQYtiJ0TgSRJWzJdXiXEGwRUJCrzy7QwCVqQPQcuOv8gIGOdY2XgMWnb8BU7TGEDUAcyvmVz1B7pqzZJg18HqDUWZpnZSEG42FPUDEG7KWK1QJwVR6gS8Yo+KWHY2RNNxUsogjVWrk6t4f9j4ut11qrh/XSvmTG3EAxXWWbVJoHmPbBit1N0zkEPzHpmQyBiCVh2rNhPM3S0IiwTsykKtEbQIzUCmolsmEMDLR4lf3HpD/+8X4eS3hUVKVu/JiEDf7glsV1LqSnVlxD2UaSRC+64ZezvbDg13JJqxKhBeyaQjRSFvvMXKRJ2AMoGVROz+/RYMxeHKqk+vCMEZ5qz/PVaNPBasdRtEqXNQidicKSPKG40n2GWx5tU2MCqd31e9mTIDIWHSkFg3LyeuEpP7Ppo33jfER73zoJbIc7VIWssEVTXtZmREK5WFSGXRMl4oY1uZWqzVXmTl1gxWveFI3zBNZKgLuGljLqxJkNaM9TdaJpCwmtUvyntMaXWh9WvaZDjwzOQAgIoSqrS6X4DwChDFDtkzWD/fAx+iVJDPfNVhhaSzIOmc/O04oSSESn0ugt77zSVIoJGMmlXAO9shSsWoQN+C0FWVuvE3YwNKxOZ1PoETUuswP7ep7LUTUuvgjBqLVaNngKazoA0jAQCrRh476FqdNes7avY+SrBrwNYzrWgdqTQ5HeAdO2TbMK8Atv1NrBp5LFaPmwMACSHrZ8ye1mSKaVomEElabO84NyN/tKG0SjHKyF1lVGwjpKGJl50eHGAj1OY9MibtSkp5k3o06UoapiXdt/4LZ/NLsrgiv10SMOaZ6nHhFbFc7AvevgO8kDeWRVIXJtfhXlFFxlyLfOpexJ7MmHhF8EFqFK7TlH39STA8kaQpq4A40tcLgDReVctNBWXMTqInWrHZ//4l7t/noz06nhV1h2Ne6xOgDSOlGaz2/krnALimwnJF3eHA0PgtJtjFMZ/8CwCwXOzb5XrLO8ZiPtsiJzCcY0X2XYClFV496YSBPMy3JZxSBwR10TwphVUbfbRMIGGEWqfttEkuoTKS1R2Yj5aJTpkdSMs4BnAhSYry6oLWj2n0AyHTvTabJ6WMAJ8EXtTwWtv8BLI6lZbaIbZuBCvmsWrksQCA5WR/zGt/St6HGioYuLLxGGkbxDlIKiXTsClZsAVdGBUzvhaFvCRixU6lIxscnbCuiOzTNhLN2LBFEhmrAuH70srCXhbREvDIzwPTz+rR9uds+JP5qRW8mI9E6GT6tGCIWIIEAwlNwuaTf5mfOE7IbMD83CaQuiZpUBx4aNn64GAf6tsPzJP2HTyQZEnbUOgOHYoorXo9fK279OTqjT7gF8OetZBEjASeJEV+URIxoKx4A+ja6qM7tEx0QIRsp0SYB1psMz1Dqd8pi0Z4AJrfBrr1VYgNLwLrnwXfvM48I1u2PojmN9YAQJSIxbByxFHyGrlpkEwOxE2B5upBc/Wy+4k6H8GlSbDOlAjfA8+3gxcG17ojwa6JJDJWDZzJL55uCK6XxQX8QI+I2OyXloFk1Zdce5LVCqVTuI/tDRBgHn1G6hoq98BNkKBfMZ/8S2q/7PRUPECczkkxf1AEadwNaNsqIwgJBgzzGraCYxQAqD6QTqgX010ILOG2TE12b/oKAKveTGHuqBJadvchsg1AsT203rBMXyOpSm1x0ks0T0rJiJsuONCRL+aBFtsRvLnR6vvrKx2X2p/VecQ23O4OJFcvI25plQ1RmQcpR1ETYM6UDjf8X1fTDwZkZKyPAn4MThQvQc+RkLEqEJxHxfpAuQMzZ3jg4IU92i6pa5RC0FRKtlHqAVaNPBbzvGdwQk6mKZcre4oECQYK87MbzWBOeM4M7sKRVgbz6UbTPkakMrJ/qpMCAmU6rAbKOet+K7U52oxYTSx6GlFOUA7il0C8AuyuBqs2CbRM4KaiNW790DKBgHidWLmt+6b2K7ePkJ0CgpJlXyHC9mtMMXIdQbK0ar06H+WKT/yCOWZayoPveBOBVwQCPzRg1URMm2yrNnWCMTS/sSbSjq4a5osXI/pf7dcoW91ZLZBKRZkxUZNzQlVhChscAX9ibbFrIyFj1WATpZgDc6XoWE+3S9x0r0r8V6QPkX3+ku9UgkGA9rKbn90Y6WsKIGzJFYuUCMGls3lJCqNJOgvaMAqgDjgAlu8AcTgI7cP36G2OEzIbpLcX8yDgRjoFtIxjICzAyk0y+tUyPuwbaiwtAFlZOY7VVE25clsOc3dTESHVWkoA0apKwLRE0vdEpXZS3cF41qlt0EKrFNprQT0QeioCynzVMTYUwvfDvxlD86aVWD1hbtl+5nb8DcRNQ1BqqimJmzJVkxFtcBAlYfLA1D6D7rsZ9AcI6buDPuHJwDFckZCxKhB+CQhUTzfOovqxXszoZ//nHrldAGtURVmCBDsLiF+ASOUAUKU5Ug2XCTFRMgQ+qF8CghLuY3tjPntOvtdNgzRmQbJ1xoLlwUMXDe0J7cQ4IbPB6vvpA24G80dswfKOsZg3sg3Ck8RLtzwiAYdwXKx6w0HLBC3mV9Ec6qJlovxMZYpTolIHDS2U16SbqOinMYIFQDQp05Eq2rMUXsvuPkipqCJ9MurG23eAF1XFoop6AVZUTEevqANCHZlxsHzCBOeY2/YISLYO4DzclpuSrwdyHwBAGkYaoid8L9ToqhZzxHEAJ2fSoqJULM+gJEjQCyRkrBo4MzMhM9NS6GlqctazPwXqZTnZ/Xt9qP+OMUGCQYLwioBXhGAMtL7RpL0kQZMwFW6Q7bTgZI1TOUlnITI5KZaeNEQnsYtAUBfEy4eRGteHEK60vSnKbqPLi5OkgJ4HICyASGUxd5QLUuCyklKlGU0rJkJhh9sfeFWayRLmYfWGomqtREH9zrBxuKUTM+2Q9P/aENbNoGUCiRC9rkC9PEj7Vss+wjc2QloeQhwnmlK0G3d7Visj3SFF68CKnZKoKed8EQBw5f0pinnATZttCcakyau9PZUOJdSRPYvV9oXffSeD/gB1KGgfNWNUJDV7wxUJGesG0mtMhqp7M5s//ukfgeiqnAQJhgCzXrgTDxxwRo/fd4LzMkSuUQ7YbDeQUgdEvl1FIVDmZC4IlZER7cukPZ1KRYhCvmrrrQS1Y/6ILUDAVTWfD5JKSS0XDUwq8r7SZJnGLFHLZV6AEILlneMByEpHQTJYpZuGO1TaYagm2as3FI2ZrGwY7oAUWqUFBIKwlZDjAH7RONwDCPuUOrIfruABjJdEF2jZ3Qdpz0Pk2yA4kz2B41CRMBO9KhWNESuhDjgLxfVSm1sPWtcgK9Ft4b2bBkkBwmOyCEotF14RIlsnJx+BH4m6aehKSh1126msLUSSphyu2Klo8saNG/GJT3wCY8aMQV1dHQ499FD8/e9/N68LIbB48WJMnDgRuVwOM2fOxPPPP9/7HVr6rt6mVYibltWTlCaELMGAYvZ/7sGc9b/HnPW/N8tmvXBnVF9TA1p2/AXzOp8AXFVxR6h0b8+MABk51jSdFxmlBdLRhFQGPFMvB2IWrUIWg6Sr2ZUxv24zSCkPFNoMsRCMRSu+odKYPDAmp/eVJpf1XVzROtKI91e9qVKJ6j2E+WjeI4PmyVk075GRZNwvgiprCVkwkA97kgZWX1IVHZWWGtyI8U3T8i5gtuOmZIEHZ2GRE7WE+jpFqPvxUhpGqwCj+9IEine2g+fbQ6NubVGhXfYBkGx9qAvWJExti9Y1gqrtiVJRdlzRon5Lx5YgQV+w05Cx7du3473vfS9SqRSWL1+OF154Ad/61rcwcuRIs87SpUvx7W9/GzfddBMef/xxjB8/Hs3NzWhvb+/bzvvaDFa3zugBZj13B2b/+5d922+Ctw3mbPiTrOyiDtZMOdUslwaWtd97LVsfBE1njeExEHpICUdZFtjWBUIAQsgB2/yQsNJODaA9rRxOEMX87EZ5nb1iGOEBwlQcpSEZipmvzs9t6raycdVmIrelU83GM4wYw1XE+xpyFlmXCG6IOgD53GQskmLsCiRmrmpgC+YVwjSlur902hDRe54X8uCF8p7Cxrw7iO0vPnGwSaA+Z72NwB/UfsQ6MtbXnwTDEzsNGfvGN76ByZMn47bbbsORRx6JqVOnYvbs2dhrr70AyKjYDTfcgMsvvxynnXYapk+fjjvuuAOdnZ1YtmxZz3eoBjZQKr/cvYVu7qpC4LWCpORs9finf9T7fSd4W6B5430yJaMisBotWx8ESWdr7vYwr/MJ0MbRoKPGgeQaZIRD2SYQv2QMPgV1ZfRLi/gBYzBqbA6AMLKcyYLWNWCe90yfznPWc3f06f07OwgPQvd3S6QeiY5pJ3xFjE26sJbtxzRghPlhqyFNsiE/f7gZ2TIo3xYlLzZhY8wI/YngmLtbqeq+W8YxgHmKOIWth4jShBH1N4lPbHVFoxL2k1QqtA7SUasYYTJ9Ui0vMVHMhwSNszD6pp327aIA6ph1QR05VgwCtGasrz8Jhid2mk/mD3/4Aw4//HB8+MMfxtixY/Gud70LP/pRSFTWrVuHzZs3o6WlxSzLZDKYMWMGHn744Z7vUM84HSc6E+0FdINxoat4agAdMRKikAcrDt7MK8HOh+aN90nXcMeRA1GuHnPbHpHEqq4hEiWzEXfFn9f5BEgmK0XLWpwf+GGVnN0DELCiMGrw5VxWwLVvAwptRoCtoxIkkwNtGN3r85z55K2RCuYZj9+CmU/e2uvt7Uw4IbUOxC+At7+lSJhKC8ftd2xYTbthpYu7gm4Ebno/ljqkHswvYuXWDES6DiJTD5HOySIArbEqFSQJDGT60qQqlUs+8UtyXVXhOW9km9S+xY6XWOlBGY2y0pL6R6+eSskJq1XpThxJ3OwombxOsb/1JCGdBdG2FsW8TF0W86qzSVGRzXbpj6f2o/taAiqFOWIkaH1Tl9c1QYJasNMI+F955RXccsst+MIXvoCvfOUreOyxx3DhhRcik8ngzDPPxObNmwEA48aNi7xv3LhxWL9+fdXtlkollErhjK2tTYpWeb4NIjUS4BysD+0uHjjgDMz+9y+lhoEzHP/0jyA4x0PvPhcA8L5Hb4bgHEGhBFb0QByK7JgmrD7if3Dc+hvx5/dc0Ot9J9i1MWfDn4B0VplTan2jmvVzJisXLcz+zz0mlSncFFp2/AWrRh6Llh1/AQfg1DfKwakkoy86AiGotK4QxQ75/rR8bBhDUQAAlToxPXFJpYywejnZHxDACdiAE5yXcR/bu8dFBSQmFVh7xP9g5pO3YuaTt4Kqc37g4IWY9exPe1ztPNxhUpMWmTIRIkqjmkCt56OuJEIWeRbKLqJb6P0ISKG7iojyTL38mzMIJw2n1AEozVVY2ZmCcNLSCkX1diRuCrQTksjphuWEYl7jW1jRJgk68QqSyKVSoRYMkjwRNx36hunsgpU2JJmsvC95WNgQOQ/OAB7eP8IiY9pLjKTS4QSisx3EK0odmb4k+XYZYVPtkOCmQw3wYOkh+yPNmAj4hy12GjLGOcfhhx+OJUuWAADe9a534fnnn8ctt9yCM88806xHSPRmE6qKqBquvfZaXHXVVZVf1CFryHRhr72RrPA2USHuY//8XQjGIdIuuKf6uzkUf5v3ZfO2hIglAIA5634LuGmIYj6SciTprOyf56YAro0rAQR+xHVce9xpQkOUvxI4Q8uOv4QEKvAg3DREvk3eqylFuKgrtUGcgRc8kFTO2FgQnQ7TO1PVbsKX9gE0W48TyHqIUif4dmnHMGfbszU3ZZn90jI5OCtrGE2+eOAbEqZTVTOfvBUcykpG6Yh2BT+zOBEz0BIKdf5Sn+eG1hNl2ykANSguSFCESNXJtCTnWLlVFXJQN3Sbpw7g6JRgeAwADBETjCmzjJRMX5ck6RJuCnDSEG4Wc3crQTguaHubSfuRiJs+U5IRdV9xFnqJBT7gpkA1qVJVjnbaNGLcSivcddwifsrCSACmFZ5uWxfRllFHXuvAA/eK4Pm28u0OACghoH00faVdjIUJhhY7DRmbMGECDjjggMiy/fffH7/5zW8AAOPHy5LtzZs3Y8KECWadLVu2lEXLbFx22WX4whe+YP5va2vD5Mmy8TYrlUwvMO5Xbnlx5P8uwWMnfqXrgze6hrA6iKZc/N9x53f9vgRvG8z+9y9N1MoWv+u2XIQzM1Of1/iWTOtk94do2yrX5Y4ZMOLtXwil0kNJQw8objqsQHMcOfuHFD3TXL0c7IMSwAtywHFltCuiC9P6JABwUqD1jUbYLBgDb90mt9nZLqPNSsfTowpPzsHzbZjx+C0gKVceh/ouEYsECMbND0254H6AmU/eaqLQOy30c6OSCN6uNnRShohFWhRpYXyNFgzSQZ/IalnLP2zVJoF5I2UWQagInG6sbSoVvVDHZkhO4IO4ACFq0unlpeZM+52pZZrQ6+guL3hRHzH9eevzdlNy33a6FOp7o8lTENMwapsKZfaqvwuSxKnvQqDSmaZykkcjkGpCHUnFJ0jQR+w0mrH3vve9eOmllyLL/vWvf2HKlCkAgGnTpmH8+PFYvXq1ed3zPKxduxbvec97qm43k8mgsbEx8gMArOSbBzv3g4raraNXL+22casWHQvVT437AQTjfW74mmDXwez/3BOt1qogOHZGjYU7ZjzmixdBi+1Sn0UdqVlRxAlAOFjpbf/7l5HJgNm+NTHQxSKm8iyQAxNxlFC5kFetaJRWSQ+8Wj9j9ywkFCSdk8UEGWmdIJTnE62XfVnhykjKrBfuxJx1v5WRPwDzik9VvkDKusDJZMoE3Xr7gjPzndLfWeJQCMYx4/Fb+vLxDDlW1B2OlSOOMucJqGvqxMTsingZZ37t/6YE9yuy76ppf8s7xhqSJJuKW+CBKuywUp52hWEpTBMK3w+jTYEvu5ooyxNR7ADy24GObUDnjvKqRiC837xiWLSAMM1Is/XK0sKXui4tqNfHYvWwLGtpp49PeeAJTzrp66gb94ryd7FTylQCv8z8W7dC4sHgVAoTh/bLT4LhiZ3mk/n85z+PRx99FEuWLMHLL7+MZcuW4Yc//CHOP19GlwghuOiii7BkyRL87ne/w3PPPYezzz4bdXV1WLBgQY/3pyNh+jdxKI65/5vm9aNXL+12G7NeuDMUmZbCwSzIF8GKHo7983d7fFwJdi3MWfdbM6M3FVo2tFZGz+I5A+/YAdG6RUattJ1A4GPVyGOxsvEY81YTbdPbAaIl/LpyzWoxA0BGO5QWTb5HphtBKXghD7ZtE9j2N8Fbt8lWNfl2k8YMvabC6jOaq4czancldm4EzdYZsqYH0tkvLQPbHhV1a5JKG0ZJXVDGstwwmilLW0QpnGw6Qsr0z/sevblPn9NwAE3LqlRNTm0vLW1tEbGH0J8HAOGkcEK6unY2jpVv1WHV6+Ukw2i8/KLcn4pCiVJBkhtD+H1JoFSE1J5kELv6UEWl9N8aJvJkKkf1RMALo1taR6h7Sur0u742kBFf7dhf1ls4pkMklILrriuK0HNPTsRZqQTuFXH/fgvk91Wdl+Csatakv6Ebhff1J8HwxE5Dxo444gj87ne/wy9+8QtMnz4dX/va13DDDTfg4x//uFnn0ksvxUUXXYTzzjsPhx9+ODZu3IhVq1ahoaGhV/uM9xxz0ikcc/83I6QMAI5acV3lDVitNfSDCQD+OvPzECzpZ/Z2x+z/3GPuMW1/Ikvl09EBy5B5Bl7IS7KUyYUVj16xorv9/ft8NKweU0JqDTPYxQYo4qhoW8MoqQlyU6C5elDVs0876vN8G3j7dvB8G1jrNpOOBABRaAfb/qZc3qk8/twMSE66oZNMTpog66bMmRwEYxEyNmfdb4HAw/37fBRrJp9komlmYOfhd4pQR3qjuWn5d8qNRAB0qndnJ2QkV6/Sgmkr1Wzp5qx2VDaxIZocCy7bVPURK9pGy+tPXdkOyxbTW9FKTfQBFYViLHym2pFafY+aiC2X90ZORr7CCYXano6KWjYUJJUGydWbbcuIrReSMC57p+oIl5kc21E9U6UaZkQEl1mMtUf8j0l3P3DAGbh/vwWSBPbQP7IvSHzGdm3sNGQMAE466ST84x//QLFYxIsvvohFi6LiXEIIFi9ejE2bNqFYLGLt2rWYPn16r/YlGAf3gjBVqf6mltbl0eZLzeuVwFUVlA6BA7IKDABo2gVN7TSSvQT9jDkb/gRAkjCaqzfVWZqkAFakjDqgDSMBNyVL7du3y0iEHRGoAlOFyK1eqybq4BvdSySNowdGwaVo25EVchpGLB3olFMevLM93D5TGp5CHqJUUKlPqTUiGV39WU4SdXXlnA1/Aty0HPAgRfyGkJpzYNbgaQ3skKnaSt9J4tCd2rdvOdkfCDyZbqQUwklHyZBtZ6FTeumc7IqQyvTvweiopJtSJCp2vSvq27ipRhSMRdOYijQJ3zOkDAhJnT2ZJUrQL3T6s6SE+yXrnvSKYEoDqX0ieeDLH68oI2Aq7SssEgkA3AuMnETrD6vZqPDATybWCfoFCRuogqCzAJ9z0LQLJ5UCt9I4gCRiGoLzikJ+wTgErRzGTiol375o3rRSWlIogT6AMCWoSvVhpSyJlY4BZzIt2L5DkrRcfSQ1GceaaadJcmMNcJFUpbIfAMI20dwrglIHJGdZJPgF8x0glueTIXalgrQIcFNy8HNTANO2A2nTgkYXEhivJrVPTcSaN62U23bTmLPhT+b47B6xtl5Mg1vXqqtoBaEO5hWfqlk/Ndyw3JGTyxXpQ4CibH0U8cUnNNQIavG7o7omUDeqeeoDhBMOHcRNm6pJUSqWd1uw9GCmjZNdkEApCNdif09Wyur2REqrqCcJ5n7SOjJN5qyIm9Y5CiYjacRNmYpHTbCIQyGoPE7uB+B+0XzPDMln4e9qqcggXxw0MtYfmi/Cd6r4y9sKCRmrAvum14OQrR/TMIOptWzG47dIz7B6OcCaL38yg3rbw3iDOQ7g5ECgWrsoTZg92GhvOqH8k6DaFIlS0TiGrx43p+q+mjetjLZsiTuXA9HB2SJ9QkXGCA8gih1gOg0Z+DKKp3Q40J5LSqxvNpXOgqvfJJVSOhsf8H1DqjS0Ma0+XuKmJCENvAjRiKTALOi0kg39fTP6MS4HVJpyy/a/M+O+0mTZ0D3wQXT0S0c9KQchFMJNY0XrSMwXG+Xr/ZGpsqNwuUYQ5ocpUl9FTmMRJyBKwkxE0yLXpqLXfo/9/VCeY9qEFUBoQaGF974PVipBMOkRKQLPeDjK/fKIBEVrw4hDy7IVnDGg6MHJRj1BZj3700GPislgZB+tLZIhaNgiocndQDAe+fLqlKUGoRSPn3wFsmOaIu/Rg4HWHBCHIsj3zck/wc6N5k0rLY0PLW+jYguLVSm9IWS64quQl0SsBqPJSBPjiK6HhgJ9S3+kXzeCagAQ0laCK12YKBUkkXSlAzrN1cNpGgOSrTP71OkiQ558X7aU0eeofJqIm8KaySeheeN9mLP+92GaM97Q2fdgehAqwXR8QNXfMTuKoQdfLQnQkUj25kZTwbkr4D62N5aLfWW1oi7oACSBUV0T5pN/gbVuk6nOfsCKttEyTeoqZ34r6qZT0Vrvxb2iJEna1V7dy0YvplOLgW8E9zoKDFhRVOWpZ6oqi+F3QQQ+eLFTFpgUOk31u2Acfnunin6F6UcAUphf9BAUSpHMh5GmWBo3fS9pvfADBy80GjJew3cxQYLukETGqoC6Lmi6/PIQh0ZC1o+d+BVp4JpyTXUkU2SMI4AoSs2B/nIneHtC6qBSWD1hrmxFpA2AIQcggbQiHr5Jy8gWR+lY9EqlFN1UWYFJGaz3RdZ30yryZJEezsIolCW8lu9Nm/eTTE5W9LkpKc7XRpxQREy9x0SvODWBGD0QE8fBmmmnAZBFDBzRAgYR+OB6e7rVTSpVNjBqUmmInj5ehxpj2Mjl0CRu6xtywTRZKKCPZWfHcrEvoHk0AebjOfmZlaRliSjkgZH9t7+Vb0kCPm+kL41iOQ+LT7SXl9YiltS9QR15n3N1b1MqP2NFuHRBCXGc0Eoi8EAaRsFpGAnh++DtOyC02aryAEPggeXbo7YmnMPJpiP6L86Y0f0GReWZFotu6fX0c/6vzZ8HIDMea2dfElmXMzZ4aUpKQPpo+trX9ycYOCSRsRphC/W59eU7asV1Mhxe9PCX4z4n//Z9MM8H9wL85bjPmRnYI7EvcoK3EVTfuzkb/hQpqZf2BKGhpChaXl/MimpZPyai1QV0U+6IaB+SlMkefswUARjSptq9aOj30oaRoE1jZEWlioAh8JUux65stIT9WmzPufFsEpzJtCqlaH5jjekMIAdnHqZjdcsZLdqO+UPRbJ0pfCCptEyFWtdUMF6WQjLRMkqNKHv2S8sgvKL0YtsFoT8bnm/Diuy7sHrC3AHZz4odjRBuVvrLpXPy71QmTD/G/Oki4n9N2nTVoxb4K/sIae4qi1sEY+DFvLR26WwL72MVjTUdJig1f7OiZ8gV8/2K2q+I7MSKiAnGIx1R1h7xPzj2z9/Fkf+7JFy/Qop8oEBpPzQKpz0b8q+99locccQRaGhowNixY/H+97+/zO9TCIHFixdj4sSJyOVymDlzJp5//vnIOqVSCRdccAF222031NfX45RTTsFrr70WWWf79u0444wz0NTUhKamJpxxxhnYsWNHr67VzoiEjFWBEOGXTBMxpsLcAHDYvVcDAP4278tgvo+/zpSzJ+bLQeCR2ZeYZX+d+Xnzd4K3J9ZMO01GYFT0a9XIYw1B4fl2QzYiA5ZFQgzBgfQBo/UNIG4qJDQW5rPnZKl/XWO4TYRO/ML3JJHSWhud1nLTcuCzKjDNb23+mm+Xbvqq6T1JRbsGhOszU0kp8m3K04yheeN9iqh5ISFkIRkUhXzYW9CG0rERNy29yuobDSHVaTGze2XSbPuMRaQFTijyF4xF3pugdxDpHHg6Z5rMAwgrHq0KXdPyyIkZEXOLiHlFWZ3r6XS33A7vbJetumIaSMEl+Y4banMvgJ8vyGcytyfTzETFIufAeWTdeEHWcQ/faKQn+vn/aPOlcDI19JjaSbF27Vqcf/75ePTRR7F69WoEQYCWlhbk82HXgaVLl+Lb3/42brrpJjz++OMYP348mpub0d7ebta56KKL8Lvf/Q533303/vKXv6CjowMnnXQSmDXJWrBgAZ5++mmsWLECK1aswNNPP40zzjhjUM93KJGkKauAEKlB0Q9x/QVljOPJDy6OrGtXVtp/J0gQhwh8iI4dwDhg1chjMWf978HzbXCaxoR2D5xGiRDCikqaq5eRM8bCNjQx8Hy78l4KTTCNGD7mUm4aJAdeJJUpVESFArLlS74Nopg3EQ1JCBth9wykVsNyUciDFztBqBT40/pG0HQWQb4domNHSAI5l2SKUpPG0h0B5Hk7hpia1kecRdOutvEpAMJCoTah1KStABUh8yUhe+jghZj55K1lxQe7CkgmZ+6fAa8gVYJ+Iri0MdE+YCrCyYud0GawgNR/abE+gDBlru9nzmSfVcpNGzBRUBYqpbA4wDZpBcLCDVb0wBkz94QdEbP/jhsEd1VoFRRKcNIpEErx95OvMMsfm3khgBt7f+1qRH/4hPX0/StWrIj8f9ttt2Hs2LH4+9//jve9730QQuCGG27A5ZdfjtNOk+n+O+64A+PGjcOyZctw7rnnorW1FT/5yU9w5513Ys4cWXB01113YfLkyVizZg3mzp2LF198EStWrMCjjz6Ko446CgDwox/9CMcccwxeeukl7Lfffn06750BSWSsCoSQs2nmBwiKHpgX4MkPLi4jYgkS9AT37/NR3L/Xh8z//pbX8cABZ2D1pBMi68X1YKEvF5XkxZHmsHGrgjnrfgvevh1s+5uS6GTrTeRHRx2A0EpDMKXTMmaaNGxjVOxUvk9RAicjaMrrqdhpiBygbCdUdaWdOpTpppRJN2miRHL1crBVqSjaNAa0cUzooJ7JRtK6xlsq8GXEzfcg8m3gxU5zzWytp60zMxFuzzcdMLgXQBTyu5SgX2O52BeAJNw2wR0IrNjRKEX9XsF8PgDC6FWpEJkYcF2IUsyHkVSLiGn/OaIKRcJoa2idIV3xyyvcuR+Aqeiq1ofZUVKtK/PzRfj5orwHOA+f9eq1ONxcBsSh3fciHiD0Zzuktra2yE+pVB4prITW1lYAwOjRshPDunXrsHnzZrS0tJh1MpkMZsyYgYcffhgA8Pe//x2+70fWmThxIqZPn27WeeSRR9DU1GSIGAAcffTRaGpqMuvs6kjIWBU8fvxF5kHO/SAhYQkGBHaFbdznCECF9J/0TTLl/haa31gj05Ccy0EOSu/VMDKsnqSWzsa2vYClERsxErSuQQr1IQmQ6YNo7DekAS1TLZGENtNU+zV6IO0rVpKpp3hRAq1rMClX+xiJqp4k6awkE5msJHP6epiIGTc2BpUMmE1k29IN6eWCcfzf0ecj6OjYJZs9N++RAepG1qQx7Dfo+0n9lm20wqpa/bmaqttCWA0ZMR4GQn2k5byvEamk1RFRVVzFvHK9oO2uHxQ9cCt9zfwAzAuiJt/VfMUKtZGW4Y7JkycbbVZTUxOuvfbabt8jhMAXvvAFHHvsscZMffPmzQCAcePGRdYdN26ceW3z5s1Ip9MYNWpUl+uMHTu2bJ9jx4416+zqSNKUVXDon74Bnk136bCfIEFfUbXCVkWSAER8mIR2O1fCZk2YNHSvQNO7j3MZjXJlKxiit63TiYEPcKXhohTQBQWpNKAr2iAjadRNGd0aICNtduUccdMQarko5GUrpYZR0sgz3w4o4027wwCx7BCMb1Rnm4nU0YZRUlfmFWXFphWlI6kUeCEvq5U5N15R8cHUOKk7DhgPdUPUcXDcwzeCMw5e7NylKisBYPVrJczPAaAuCGXAIBRzC8YA1X5IcAaayRqNWFity0w/VmNQq0gYSaXDdLSl6zN6M3W/6GiWsQ+itGw5R2D85Vjs3qBwDXmLFGcpL7pnPh6K9I9evRRuNoPAq1wAMFiwCxP6sg0A2LBhAxobG83yTKb7Dg2f/exn8eyzz+Ivf/lL+XZJNP0phChbFkd8nUrr17KdXQVJZKwKbPG+/cVMkKA/YbfXUgtM9ED/L3VUqjej70une516irvNW6lL2YOvUNEktex/lao0FY163+a4aCxlxKPHaVVrCluo7aakUSfKzTbDlkw8JJh6WbxjQDyyoyvwOFeO/NGKONu807aViQ9mhIapG92wfFeDILT8Phlo2LYqTvnnJyOtqpODJuQ6+ooYAbMqdXngm/soKJTAPF/+LnrSRyzmF8a9wFS/x9OU8WhqnJiZU/FktI37QaS6crDR50pK9QMAjY2NkZ/uyNgFF1yAP/zhD3jwwQexxx57mOXjx48HgLLo1ZYtW0y0bPz48fA8D9u3b+9ynTfeeKNsv2+++WZZ1G1XRULGqoAHgbGkSJBgoEDTLo57OBT/6pSSSdNpE0zAVJzp9XTLGACYs/73ssl3zkoLdbaBd+yQZq2dbREtj2nGnM5GolsmhVnIGzG9bj8k3c85ePsOsO1bpChbkSZt5CmKnbI6VKUrdcVo/PjlyTvGykPbbIiYPo3rqk8d8dPb0BWeLEw/VXJY54xFzDuNhqhCmqtMG7cLYHlhAgDgPn/agO5H91qNeNRxLtO/+j5LpcO+pGqCoTs5hM27mdEp6j6svLMdvHUbWPsOBPmiaUGkq2al/qsAPy+jbXblLIuZvPqdRVkV7wXwO4sIiqGtil5XcI53/epKHPyzL+PQu6+A196Jwps74OeLOPJ/l2D67ZfikJ8PgW6sP/RiPWynJITAZz/7Wfz2t7/FAw88gGnTovfRtGnTMH78eKxevdos8zwPa9euxXve8x4AwGGHHYZUKhVZZ9OmTXjuuefMOscccwxaW1vx2GOPmXX+9re/obW11ayzqyNJU3aBpz92zVAfQoK3E3SPP936xXFCN3w7UgbAOPhTB3M2/MkI4yPRBE3KPNlImdhROIt8AYj4P4lSEZxzOCp1qEXzhMrjMQ75pSKEHWlSREtYUS7oyJWbgvBCg1kdAZTtZsIBW0f2hHbe18eVzqr/uTSAtSMgnEVSlGbw9fxo25tYStiIvNOusv2QgvHmTSsHzJNrKLC8OGlAtz/rhTsh7AmDTkN7qlF3Ogta3wDhpiL3nLm3A3mPBZ1FOIFvyBRNu5FIlqmU9H04qiCB+QFS6Wyk44ngHJxxUKsyUjCpFSMOhaOjporAm1ZIlIJzDqIjZZwD6rWg6MFJuXDSLp47e+mAXs/hhPPPPx/Lli3D73//ezQ0NJgIWFNTE3K5HAghuOiii7BkyRLss88+2GeffbBkyRLU1dVhwYIFZt1zzjkHF198McaMGYPRo0fjkksuwUEHHWSqK/fff3/MmzcPixYtwq23yqbsn/70p3HSSSe9LSopgYSMVcU/Pvj/UDfUB5HgbYGwLF/aRgigzNrCJmMmWuUoMX2uXkYS2rdD6JSg0u4YPycgTBXZejG9bUWYZGQsrGwj2ToZ7VICd2PICYDWNwDUCZsw66bjmtRxLjVu1vbNPgMPyNbLys3AA5AK/afcFAR1pEbMl5o2U9UJADQLAoBr1/ZYY2cgJGK6BZK5xlZzdsE4OGWAB/BUAMeVzdnX7EJEbKAx67k7AM5w/wFnoHnjfeC5ellNq8kzYLSLgHXPxaA1f5oYMc8H8lY1LKUmqhnPWLCiZ9LSzBLnB17UzkJ2tQh7lmryxfwAhIfEjSEAVfYonHNQAG42DZpy8biytDjs3qsR5IsgDkWxj827a4WdUu/LNnqCW265BQAwc+bMyPLbbrsNZ599NgDg0ksvRaFQwHnnnYft27fjqKOOwqpVq9DQEOpZv/Od78B1XXzkIx9BoVDA7Nmzcfvtt8OxJog///nPceGFF5qqy1NOOQU33XRTL86ye9x55534wQ9+gHXr1uGRRx7BlClTcMMNN2DatGk49dRTB2Sf3SEhYwkSDBOs2u14tOz4ixSm56N9JaVWywlNSt2UFPBn61VzZM+0otEpQnAOAWVtoPZh/Lx0OkgVAgCxCBp1wAMPFCpV2NkmiZEeWCmVlhR2pWUcXKafiMPDfpqBZ3yjJEGD3Jaqoox0HVBWHgAk2Qx8UB1dUWlTR/Wr1GJs48fmOIDjVGxXowlZ3Hk96OgAKXTi+Kd/hAcPXdSXj3KXQfOmleBt20zhhlCFGtyTqUKRcsMm353tIMpIWBdmCK8o9Y4K0QIMeb/KNHVYpaitR5gllqcOBWccrmrYzSxLC+bJz12nH82+LNKtt8U9X0bxfMBJufJ/zo03nUybSj9J3ZIMNEzzHfHHayTxy6bhqMKR4iBJWfpTwF8rhBDdrkMIweLFi7F48eKq62SzWdx444248cbqfmyjR4/GXXfd1aPj6w1uueUWXHnllbjooovw9a9/3RjPjhw5EjfccMOQkbFEM5YgwRBC+14ZqNSegd3IW7cyghrI0jljrgnqyEgVYLUiYqElgLa0sCwEdA9MBJ7UbNmVkqWibLrcuk1G3OKu+Mo+Q3jFSMrQnIP6LbxiqCfLt8l9UEf6n+miAMtyQ6dZtY7NdBvIZEE1CQVM83CSyYZVdSxWIKBAU25ZGsu2EdF9DFnRQ5AvRirmjl69NNL+5u2EOet+GxHiA8CDhy5C0NFhtFpBZxEPHLwQgPTQWzPlVKyeMFc65QOmclIXndBsnfzMI9ffQZAvmrRxnIjJzYTpSqrShdwP5PuKnvQHi/0AYXoyEjUtluSPH4RtyKr0eeW+b/zHHN1w3qRLAwQFD157Z8X3JhieuPHGG/GjH/0Il19+eSQyd/jhh+Mf//jHkB1XEhlLkGCIcMz93wQD8MjsSzDj8VvkQ37SXjL96FppO8BUJQqrFYwgFLyYN+kgUWKqebeKSmjXerV+mY8ToCwItOBavy9W2WjD2jZr3WYc8vUxGF2aTolaBQdmHauCzkAfn96HTm3qqBlUyjLwo50EUukwfaMOVUe8NMmljgMORAxC7cGXeb5cx2oiPWfdb0HqGrG6+VIcc/83K318wwLvfeg7oGkXf37PBf263Tkb/lRm8zHruTtw7J+/C0+1EnJSqarWLJJQQ0ZYi53mMzdN6S3fMMEYijukvoynpOGq4Byp+ixoykVQ1PeWjIJpPZgmWcShofheRbOIQ0EB+PmCIXDmu6TT17rVmEXUjBmxNUhz3wd8SeozIxvgteclEcsX8czHl6Czox345sBHdGR0rm8FJsQZBH+TYY5169bhXe8q70aRyWQibZ4GGwkZS5BgiKAf/Mfc/00443YPX7AsI4zuxk2pSkkq/cIoBfyCiYDpdjO2Q7lBXDCt0oywKh2JbT1gV0BCuurbxE7wsDpRcA5qPUWETmFSZgTx8vjTMgxv+UfJc3XkwK3Jn7bZ0EUIah1N7njgy9Rp4Jv9ErVtuzehHmA1yYr7Q9nr2REXne7khTwoZJUq9n1ntY9wSHHsn78LqHM49s/fxV+O+1y/bHd+bhOWTz4psmzWsz8FD3xp8WAZ6VbzYFwz5VRZYcnDlkQipvGThq6S1GvzY55yZdSNczjZNICgTNAPAIEXgHs+aDpV9Rh8FTXTHRl4hZ6nZTYvln5T/wjG4OeL8No6kRnZMGQt72wH/b5s4+2OadOm4emnn8aUKVMiy5cvX44DDjhgiI4qIWMJEgwJ3vvQd8AQmkySlErXBZ4kQhbhAWdGd0Nz9cZzibXvMNWNopBXvmNhL0aqiZCOhkU8vmRz5Ygnl05l8rBdUdwbjNDozLysqbiCscbQthlayK+PR/uQqdfCik2qKiqLYWrU9UNtGaXmuPXTi6SUt5ntGRWptgz7DtpELT6I2+lOf8cOOMVOPPTuc2v5OAcd7/7NYogxTZEB+t2/6Z92bdoOQ+PI/12CYEyTIbT2/VCtNdD7Hr0ZvLERpveo3UsUMClsQN5DTjaN0o4OOJa+ixU9CKXLAmDE/VylDeUy3xAmDS3O95TVhT7moOCBapuHWGGHWc+6h2gqZaovBefK4iLqlZVg58MXv/hFnH/++SgWixBC4LHHHsMvfvELXHvttfjxj388ZMeVkLEECYYAxoTUoXhk9iXGbNQ44iOMnAEwmi6SawhTdIEfCuMtmAFGfbvj0bI4obKd8DURi6RuWKirsglLOKiFxFGKjJ2we4A6J9HZFlZZaud+AIAapAPlM5VKyb9tWwvVHUAXCsQH9fh5B0WrZY2V1omfk7keVrNoBkn0iC/NRPsz4tRfOOKP1yBgHEGxBOJQpOplH9BUfXZA9vfYiV/Bex/6TiTCqFPDOoWrNVrMD/D391+J/zv6fBz/9I/kZCPwpKjfNnUtFRF0dMCty4Hm6pEZOcJURerPT1dXAmFvUfjhZ8es9KVNtgFlS6Fes0X9Grp6U68T6W3JpL0FY/L6IpsBTaXAfR+dW3Zg+u2XIjem0VRWDhYolSSzr9t4u+OTn/wkgiDApZdeis7OTixYsACTJk3Cd7/7XXzsYx8bsuNKyNhOislfPRtOiuLVK37ao/eNOOP9AADqELTd/rsBOLIE3eHo1UvBVNsWTbZYvh2OMlWN+H9Zxq4AIEqdYK3bQNNZ8EI+7KlopYLKIhCcmWgZYKcdrRYyJhog00R2vz+brJRXJsptRSNsstm4iYYEniRaJlLHIXxPRvm80OjT6OEQtr2RryFSZUnTYQQPimhqkqCrJwXjoGkXzPeNcJ8zDsq7rkgz0RedGuujRqe/8a5fXQlNLf4278t4928WA5D6rYFMQWniBygxvRcYQbsW0DsqjXjk/y4BTbvgIxvC1LGOACtSJgIpsicOhb7Cbn02cn8FxZJMg6dScB3Zmo7bNiU2ifYDuE4aNJUCVZWVpv1RleiXXu5Y0VJ7HXtdAHCyGXDfhyhyFDD4SNKUfUcQBPj5z3+Ok08+GYsWLcLWrVvBOa/YF3OwkZCxYYy9li7Cfy79kfl/jyvOhGACzGPAiHSPidiY8z+CEtSDZpgNMm8n6Fm8ny8aPUuQL8Kpj5XIq0bJodaGQbTvAAIfrFQMLSwQCuftyFXQWZCDXSaDIN8Bt16aY3LtIabSfvoBHeSLcOuzhpA4jtJpWYaqACLEzo6kCSfUaRHL4FOoPoUkgEmFao8wovpfikA6oWsLDn2M9qCor5UNXdVnone6l6YTEs2y629F8YQVQYkLuYFyo9ihxlMfuTryfzwteeBPLsHz5/R/wYHX1mn2fcjPv4JnPr4Eh/z8K0Zn56RdONmwmEIK5KMRLM4Y0o0BnFydIWKCcfgdeQSd0irDa+8s84cTNIwiUwBBmZmvNvkNI122PowqgT8AMGvbAMxxRvzH1DapRVwE4/Da8nDSrpxIsTz2/8Hn8OJnvtvv17oaEjLWd7iui//5n//Biy++CADYbbfdhviIQiRkbJhi0mVnIMi5mHrNQggusP7K28A8DuYzCCZACj1vWKsfLsxLGp8PNQTjZpA69s/fDYmEcjDXGrGIMasiNdp0ldiasFIRrFRCkC/CzxfA/EDqYyhFdkwTgmIJjjKuDDqLRqcDRFM5Jg0Ve/DbbYeY58NJp+RATKukAbUAX1e3qUpQncIk2vbC0gPJbXRG+kqaiJeKJNr70Q3CTdVk/Fgtqws9YNtREntYqmSLwRkvE/4PV7zz5gvkPUQppt9+Kfy2PFKN9XCz6X7pJPLUR67G/j+Q6doglcI7b74AQTYDP19EurEOVA0lkXSfIu2cMUO+aMqFCDzTuqiwrRWCcaPFiqcOiUONSD/S7sr6jI07P+eqIXgpQsLt3pQ2BLNkALHX9LNSH0NQ9MA9BlaU9xp3SDJ47qQ46qij8NRTT5UJ+Icayf3UT5h02RngTGDT0v4pcWaenA3a29S/d7/wYz3az+4Xfsxsk3s6kkG6eVeCgcDRq5dKc0o1uHjtnagbO8oMUkSTLm1X4XvKa6sRoBSikJfmmtl62QNSRZS4F8iS+6Iny//9AL5u85J24WYzshrNGsh0REn/bYNQWQDASqUISbFJi5PJgGSyKlUYEhcn5wOlohHaE4dKf6l01tq+E9GxRSIdCEx0xUZQKIE6Dpjvm4iGjlwJzhH4gWoWzaODNytPbTlWlM0mbNQa1PV7hzv2WroIpFH2C3nh09/B9NsvVQTbR8nWz/USzZtWgm3bjAesKNABP/y8FLbHdHhuVjac5srt3i4CSdXnAMhImZNOobCtFdtf/C9o2kGprQQnReGkQ3KvSXn8s4s0/7YIOnFkI2wzsWA8cr/bx1kJlaJGzAtMWyXOOIKi+k45g//8JKQfTF/J2zsyBgDnnXceLr74Yrz22ms47LDDUF9fH3n94IMPHpLjSshYP2HjtXdi/MULMPWahT1OH8Yx/uIF4FyAMAHBOMZfvACbv7UMu1/4MTlb78U2mccQFAMwn6H02/v6dHwJeoejVlwnPz/GEeSL8NrzCAoe/jrz83jfozfLlaw0np71u3VFqbVhLHTOB8AKnZJ8eAE4Y/DaOo0ImqbccFDyArjZTEQLJtM/PGxDo0gNL8jf6WzakKm4MW1o2MnA8+2yebM16NOODvU6N6SJur7UjClNHI8VHdiDDPcDEBZG5vS5sKIHrgZGmnbBKpi9csbLUpOVBt9IhEzvR7m8U4vE6aq94Qz5eadMevK5s5finTdfUNE8taeY/Z97QJrG4IHpZ5ll7/rVlWCKdLGiB6+tE8ShcLNpFUUKBfh6HT35KLy5HdwL4GTTKG5rg5f3kHEySNcrM18mHd/tz8eeKISEjIFUIET2+Zo0qcesSFf4nrhoP05T9DH4+ZIidgJO2gHzGBgDnNTgSj2SNGX/4KMf/SgA4MILLzTLCCEQQoAQYhz5BxsJGesldr/wY3jze3eb/8ec/xEg64L5fZtJT7j0ExAAKCWgDgGHHHx2v/Bj8iGgImZNC0+Dk3bw1g9+3eX2xpz/EXCoqBgTCREbIhxz/zfBEaZYgqIHP180JOT/jj4fs55VJJ46AHwTGeB+ALJ9i7QISGdltWHgR9r/FLe1wWvvBPd9ZEY2SB1PNg3uB1YrmMAYm3LGpChbtwaiFG4uY/RhxE2Daad1Fq2W1BEOv70Tfr4QIUOEUnjteSPod9KqoXOpBEcRzaCzEE2HKjsO/b9gHEEhJHcppUNifgDKraIDJcqPW1VouxD9tx0ls/cRH5gIpUCMuOn2O8MZtMIAqyM5L198a6+22fzGGlkMEnhYtdvxAKRWTDAOPx5tUtpH/Znr6Kw5Dj+Aqyo9i9ukM38a0vfLzbphBIxzANwQMv2ss6Nleh+pejcS+ZLvkb+JQ8w27OvDGY84rsehiXiEkOt7jAtzPAmh2bmxbt26oT6EikjIWC8w/uIFIFkXYz9/OrZ85xcAgG03/wrjL14Av8PDhEs/0et0pR2Sp2kHhHFIdUsQmeExPyRmXWHbzb/CqEUfAvPlQ6tp4Wlo/elve3VsCfoOnULUAmM7Pafbyrzv0ZuRGrMbwBn89jeNeNjNZeDWZY1ovbCtFfXjxwAA/M6wLRH3gkikyW6qLDg3pNAW5tuGmm591uh6bAsAmnalOF/fg3nfqmJUOi5ESZE+P+b5cNW6vuX/RCiFk06Zxt56GVcpx/g1MhGTWLVbpKiAcXAERsdkzr1ChCyii4ulY6kSpQ93MD/AS5Zof/JXzwbG1OPfn78lst7e3wo907oiabOe/SmYIs60Sd5fh959BQLL5d7+rJByUdrRLvtDFuV942YzkSiVjpjpSKN9Xf18CU7aiUTFqEPhF1XaO62d+oV8LVU+bBGHqHs5fCbGqyj1NuIRtfh6+hmrxfp6/07KgV+0UvuDnMJOImP9g+GmFdNIyFgNmHDpJyAYN6lCR4XUg2K0iermby3DmPM/glTWxR5XnAniUGy46vYe7y+qdRHgTIbH09brpbYSgmKA+gWnIL/sD11uj/kMQSEAdQj8fLkLdYKBxVErrgNjsvye+wGK21pR3J6XaY8KqQ6hNGO82GnSgzLqFZjIQ2FbK4rbWgGoajEV5QKkxxK1jE41mdPQy5gfGN8mYkWQHJUSDDplxSPzgshD3GHpiGDa9nhisRShTjdyLyRXdkRPbwcISSO1tEiccdk0HdGqTr+zCCflyupPP4zC6PMiPDR4jdsU2FWZREVCzLVnskm0hpvLdPv5DjUE43jHtZ/CK5dJw8oNV92OvZZGG53vtXQRum/5DBz38I0IKJXkyqGoow7e/ZvFqnE2j5AdfT19qxtDaUe7IceaNLnZTIR8sWIJQd5Fqi4HP1eEn/fMxFJHoNysC+qQcLkiYoILsKIPBpgImCZvxAmXMV9FsSgx2yWUmOiYJGXRyloNJ5s21ck05eKFT3+n4rXa44oza7ii/QeqNHF93cbbHT/72c+6fP3MMwf3c9VIyFg3mHL1JxE4BIwBYz9/OhDRHJCydKVgApwLCCZQ1kC5BhidjEMQFAKzLeIQUPVgcdLUzCSZx5D90Eko3vOnqtvkOuyvHlCNZ38g8RgbQBz4k0sgGMMLn/4ODrv3anBFUrSGp7g9j+L2Ipy0g/VX3mbed8APP4/6CWPAG+rhbXsLfr4QsQnQKbegWDLkrHPzNqTqZNpQp2y458PXgmambCtUNRsAQ8C0PxQApBvqwB3Z35ErPRBNuSZCJYocqJdNuT3AaNCY1YTZnkQYTzOHgnKKoOBFZ/aWWF73/dMpUzvaZm9bC8HtdjzcC6rqurgXGF8qotKb1LIyiJM1fQ0BIFWfhVuX7feejwOBShFy2xJn0mVnoOQQvHZN14MQABS3tRpCnRvTBG/7DlPsIPs/MuNmz4o+OONI1WckUUiHFZXtr+1Awx4jQRVh1pW9WvTfuUVWTxpdl8/hpKh5VumJCmcCXt6Xkg0mJEHzpeTCSUU1X7zA4aQdpcsURmQveLhNQsMUZiQLEamedJCqzyJVn+3S2LWW65lg+OFzn4uaOPu+j87OTqTTadTV1Q0ZGUtocg3QIXBKQ0JUDZog6Z8x53+k5v3oqkdAabwUEdPb5VyA+RxBzNaCOgR1Hz252+1zkwYQPTquBD2DHrAOvVs+yHX0iPmynx7zOTgX2HjtnWXvZV4AP19QP1LETx3HaIA0OQqUVisohCJt235CMAZHeUDp17S5q45SBUUPQb4AViyZKkTmBbL/oJpI6GPX25CDsCdTTmrfnEfTNZpQheL/IOJ/Zi+3o1J2BWVcC6ZJn2DS+JNSGqkO5Z5vfptraafVKqasrOsVa/vkZNNI1ecwZ93wT+kLLgzh0Jh02RkApKSiJ9D3mPmMiyWkG2S1mT0hMFWrXMgIqR+NkHp5H76KaDppt8wmpLijAK+9aEW+oveBPhazX+vZxVVhk33O+hrYWjG9PP5/LenFvlYtDgQIJaE3YK9/kir67du3R346Ojrw0ksv4dhjj8UvfvGLITuu4XfH1Yhrr70WhBBcdNFFZpkQAosXL8bEiRORy+Uwc+ZMPP/8833el5t1kR6Rgptz1cxLDqT6iz/6Mx82627/0T0otXkotXlKXyAir9cC5jMwn0dmvNyIVAG/GCiCSOCkpSM5TVcXpnbceS+oCekLaW/BRIT8Jegf6Co2QziUvsvvLMJvyxuCpT/Lvb91Lt55s4y+uNmMXFc1JS7t6EBpRweCYklqcdo6kd+0DflN21DcLtOOkvhIAsJUlMjPF8uE636nbJrstXfCa+9EaUc7SjvawfwATNlilHZ0qNc6EHTKY/DaO81AG+SL8DuLKG3vQGm7EvdrEmSbzapj0NE7uV4QHcj1jxcYHZ2dmtTXzZDPYrT3pG1zoMkvU47tgjFQJfrnvm+WadgkrFIDcQBIN9TDrcuFHQ6GMZjHIhFWQFZ3j/386WA+x8Zr76w5iqM/P+YH8h7cLitjdXGIJtHMYxBcICiEpLuwrQPtr21H2/q3wBlH/g15T/n5Iko7OlDYskN9/j5KbSV4Hb55zkkPRQ7qEBMh8/M+uEXWuLLm0c+voBDIyWkxMJNfL+8ZfawmbvaPhn6e2jq1yATA6o4xXGB7r/XlJ0E59tlnH1x33XVlUbPBxE6Zpnz88cfxwx/+sMwPZOnSpfj2t7+N22+/Hfvuuy+uueYaNDc346WXXkJDQ0Ov9qWjUDRdbm5JLE2DnfrruPNe1H30ZKTqU6Y6pxa8+b27MeHSTwAIHxZv3nx3ZB3bM4w4RM50YiH7Suj85R+ROnW+2rYwx5+gf+Hn5Ww/t5u837TOiSnxskw508i1pykXB//syzFdjeVQng/NUb03tyMoeua+0q/LfWlvujDylKrPGmsB7UQedyDXx6l/6+bL3PfBvUBGoFRvPgAIGIejihAEsywBVBsavTwOBy44LLd8nUqFi6AQ7TNorpsiS3aLGyCqD4tH3YhDwWLNo2V60wfSKZOqtBE3uPXzBbh1OYDX9t0dSlQiWuMvXgDGRERC0R0O/tmXQRrrwFQ0LDumEdwPkN+8zURiJVH2jd8W8xhKbSVkR8lUef6NTrg5V+m2OIrbi3Cz20HTLgJ1rwbFqP2EfsZKvR6UBCOaaowbVeu0JVdaWP1Mow4BccJta4lHJRKin8uEkXDi4oRp/Z2heCNB/8FxHLz++utDtv+djox1dHTg4x//OH70ox/hmmtCZ2khBG644QZcfvnlOO200wAAd9xxB8aNG4dly5bh3HPPrbbJiqj/9Omod1x0Zl0ZEfNYOFBwgbGfPx2UEgTW7MomZJ2//CMaz/4AOHhZqLwr6CrMMed/pCzkDsA8XDUpkwMsr6lC0kk5RjemkVRX9j+oIzVSurkwTcmCD5pyIRwOkZfEY8Kln8DLS+/C/j/4nNFEaaKkvZocpdtixZIkZR4Le+qp/XGPRaprBRMotXmgDgFNFwxJy47KhtsETC9BMyjpPpmKvOkKReJQcPjGbJOqiJMmUCG5YpEIl3zNapek3fgd1XKGSyInnFjzcYfKSJtld6FJnuMofyuL9MWLBsCihq/hsXBjfmt7kdnaMeJQuPXZULg/zKIjtWLzt5bVvO4BP/y8vPca6iX5TqVMdwMd2dI6MM8qAHKzLvxiAC/vQzCBTGMGxCHKU0xOVFmKIr+lHSMmNMHPF1HcXoRfDEApUde8fELIIxErAai0pK2nrQW2xAPandFxzPPYiPtjFZbc90HY8Pvck2rK/sEf/hAteBNCYNOmTbjpppvw3ve+d4iOqkYypslNT/CDH/xgQJpvnn/++TjxxBMxZ86cCBlbt24dNm/ejJaWFrMsk8lgxowZePjhh3tMxgQTgKNSJioErsWhgLSMACSZsWETMv1bN+eOo/HsDwCQD7W3fvBrWamZotj8rWVm+9XQkxmvBnUIBCdShJ33u/UoSxCiFl+3g3/2ZZSyaZWmK4VkRzvhOxSMy0gA85ixRQEkuaBM6qCComdE0n5eutv7eQ+l1pIps3dzWi8lTLWsHijDgcUBV1EH5jOk1D1MHGqaI5u+fhbxknqc0LuJqabQzA+MsSdg9ahUBQpxIT2hFNRySNe9KwGo6jwmI1X6/FXESvuUmSIARsOWN+p9Or1o/Kys6lG9P0BGKmnKVdV2kuQ5dtWpLo5QfwOSTHtt8hjSo0bWcHfsvNj7W+dCqH6kQdFDypEie7+ziOJbrYa0ltoKKGxXPVKZQKYxbYqMACmd0M9I/ZukCTq3Fcy9mcq6KLaVpFieEhMh1vd0vKBCR7z05+qkqSFOQkXNdETMSYet3ohFwO3omv5fQ9MSDg41PQCnHDDR7OFl+Js48PcP3v/+90f+J4Rg9913x6xZs/Ctb31raA4KNZKxe++9Fx/5yEeQy+Vq2uiyZcvQ0dHR72Ts7rvvxpNPPonHH3+87LXNmzcDAMaNGxdZPm7cOKxfv77qNkulEkql0GCyra3N/C0Yh44jmdlUbFaml9tf8hFnvB8dd96L+gWnyIdGzi2LQI044/2RykygdwSrJ/DyvlUO3vc2KW8XjFr0ITAuuiRi+33vfATZNJgfmDSMrKD0I2aSAIyWUEMLzxnnoH6YDgSkB5PUxGg9VTi4lNpKMirmRTWGknCp9I4fRsv8vG9MiaXdhDaxJAiKAbjHQFWKyFgGgIJmw7RenOzobQBAUPDN/s15aRLEwkEy7uel06y6AbTdn1CTWUBVhFLPbMOkWGO6r1R9FjSVUpE4arzVKKStghPzqTJ+WGp7Xlsn0o11UryOXRt+3jOfN3EognzBpNO1p5ZgAp1bC2A+A6EEzOdIjUjB2140Oq/i9iKclAM355r730k7IJTAzbnIv5GHq7IMxJHbcAAIRsy9KqOcUQNfG5FiJvU9iEfJbG2s2U7M6NVEYC3bC03IhMMBdc/q+3K4gDgOaBemtbVu4+2OeMHRcEHNacrvfe97NZOre+65p9cHVA0bNmzA5z73OaxatQrZbLbqeoTEyJJqcVAN1157La666qqy5YIJCAg4aaIqcERksNPgsUFVv9cGZ6KsUkI/RJyUg0zj4HsZcY+hOHMWsg89MOj73pkw+jMfhqMGEECSaCdF0bmtAP/3ywHIdGOpMQ20FYyomTgEfr5kfN24imBRKzWiIbUyMppG07KsHoDR5ujogxHjF4PINmXPUSvqZLWKYUrs7KQdE5UwnnNFrcfSlimOIWPEoUpIHUbPzLEqwb3UDPkgFVJNmswRJ4CjHjO6z5/tcK63abzIGI9EFG2Xddv0WJ2pqegDZITZUa2BnJQLpFzTZNr2WZOWISoak3JBuOzjyFX61MmmZfcCLwDJRfvW7WrwOnxDbHa8ss082/QyN+ei4428bOFVCEDTDjKNaXRulca9Tooi05RBx+sdcFIOvA5JloNigHR9CpmmDDq3FqQOjIuIGz5Xkg/ttWcTfq4+01RW3zuyBZFMWesJgPICUwSskgbWSZcTMf0eIFptKScMBAzqe6HkBd0hd/ZHa1ovwfDA1VdfjUsuuQR1dXWR5YVCAddffz2uvPLKITmummKWDz74IEaPHl3zRpcvX45Jkyb1+qAq4e9//zu2bNmCww47DK7rwnVdrF27Ft/73vfguq6JiOkImcaWLVvKomU2LrvsMrS2tpqfDRs2AIjaQITi0Kjp3ogz3l9Vv1D30ZORX/YHqaFQ0Yv6BaeUrafD/YNZ2Sj1HDwemEsQg7b/0ORq9Gc+jExjWhrw1ocPahnd8VFq8ywxskDntgKKbSV4eUmq/A65Do+JkbmqYPOLAUptJXRuaUNhazu8vNyeXwxMhRgAVTUmK9KCQgDu2elGpmwFfPgdPrgXRrm07YqX91BU79Xb0pE1205CgxV9sKLUZwVFLxRwa42ZmqTo74feX3w7kdZMVvWabRwrt6dsNnwVWVTfH21LIHVKnjE+1q2+bD0M55pQuubY9PHY1ZWmQEAJ+4nyyzLHw8s9vHZ2jP7MhzH6Mx+WLdZ8WZ3YtqEdpTYPhe2h3QTzGHa82qrIO0WmMYNMo4wVxu11NBGiDoWbDf3G/A4/MvGMFK6oAgDmM6PF1dFQbSMUr4K0Na9x/autMzM2KMYKI/wx6+uJUwW7B+JQ0+uzO9D04KT+kmrK/sFVV12FDtU/10ZnZ2fFwMxgoaZPZsaMGXDd2rX+xx57LDKZ/o32zJ49G//4xz/w9NNPm5/DDz8cH//4x/H000/jHe94B8aPH4/Vq1eb93ieh7Vr1+I973lP1e1mMhk0NjZGfoBoKgVQEQE/FE83LTxNlWE7SGVdU82oZ2idv/yjIV/6YWA75bfd/jvpG6MeSAOdogTCKAn3GPIBQ6FCgUAChdlzzJ9hGkXrUxzUjwsjJpu/tcwMKjqC6hcDlFpDwqPJh7QtYZGBxGsvSsJWCOB3eOjcWkBxe9EMjn7eN1EEnTbSOpxSW8lsS5td6kFIkzutKbPPg3vcRNQ0SeMmFS8JVVAMiZOX90wqUy6TTuhA6Jquvx9x7zBdDKDvPWMkqyJeVA3AWisX2l4wQ7w06dLHwDyurjUPt2sKGBi45yu7jnYw3biaRRuL6/Xi0MQt3VgPUchjbtsjvbuHhjHe+sGvzfOgqO4RHWXVxR/Ml1HHUpuHji15NbHkKKiUJVcEuXNrQVlThClxAChuL5rUZiXYBSfEoUgp130bQTGQ++K2mXZIqvR3DkAF4hZOYGx7C3lPhpmOiF8ZC78DtSL/w8HxpkrIWP+gWrbsmWee6VHQqb/Rq2pKzjlefvllbNmypSz/+r73va9fDiyOhoYGTJ8+PbKsvr4eY8aMMcsvuugiLFmyBPvssw/22WcfLFmyBHV1dViwoGfGh5VgdAqAigrID5MzjvSIdGSmGA+Ny/UEMqedgNJv7zOaMupQBMUATopi0mVnVDQB7U/oQbzIOApMgAmBxgHd406M+9egoOxJdLcDL+9BtAnUj6svSy1rLRYDM+k0O4rKPV5RXzj+4gXwHBoTGXNDnOw0p5OiZoBx1QQgMBExVWGZohC6ewML28Kk6lORCBqgBqHYrco8DuoIleqkSNdTQ+bMQKUq4by8Z3z3RKyJsp6cyEpPLyqk9nWUJLQX0GTNvgZCkU95TPr7Jsr0a7YzewqIOMQD0pbGSbkm/WmqP63iAnuw4ozDrZMNrHngQ3jDSzvUV2jtoybhtsaKAijlS2h7rQ314+pVBXYRfoeP9k0ymkAdglTWlUTLasqt2w3ZfxNKZPFEmsC2AtKESvslam1X3OxaFwPEoaNvepIMOEbQb090OBegqKx31PvXz3VzzIyAewEOvfsKPP2xa9AdMmckBto7A0aNGgVCCAgh2HfffSOEjDGGjo4OfOYznxmy4+sxGXv00UexYMECrF+/HkJEIyuEELBetADqL1x66aUoFAo477zzsH37dhx11FFYtWpVrzzGdEjdDCBpx/RKIw6FQ6XHly3styNf9QtOMZVFgJzB6W113HkvMqedAKZKwZ1U1HdqoKB7yDEhVIoyyVN2hc5f/tEQ6NGf+TDcrAvmc5TaSnCz0aKMN793N8Z+/nSjf9G/NYmxZ/CAvAcAmHukmJepICclIwRSS2OTORmJkDYCHKn6tKkuswc4DRnl4Gaw0SLlONxcXMzOIBiR+3ekPk1G1cJoQsR2AIgM5gBXGh5JcOziAycdVmsSSgAPAOSArlve6O2GKVmVylSPFR2909YIBo6DoBAgyHqgKhLnFwOjOZLHGR2UAZgWPfY61KHG2oJ7AXj7dsxuvQf37/Whsuu3s2LEGe8Hsq65NzU6txbMhI1taEf9uDo4KQe0iUTuXw3mcThpinTONe2GbNBYxaRtXh2xk+AC3Cpssdez/9bFKXYlpWACgkoJvk5xypSnEvMDZZ1T4rYXxEpnayuVam22hgraRb+v23i74oYbboAQAgsXLsRVV12FpqYm81o6ncbUqVNxzDHHDNnx9ZiMfeYzn8Hhhx+O//3f/8WECRO6FMcPNB566KHI/4QQLF68GIsXL+7ztvWDwlUPLEdJhPTDhjoU2390D5oWnmYE09pp/60f/NpEDOS6BKW2AE7aMYO77rumETc1HAikHnwAxZmzAABpSuD1wP/s7Qr9uehoQv2CU+AVOJxUEW7OjViZOCkHuVFZqbtR0SS/GJpS6jRa5y//GN2Hz01qSBsFA0CpI4yKAVbvSSbg5z0ERVnuT1gYWdP70CTGUS2D9OzfvifltrmJ/JnBD+EA53d44FwYjZxdySajVuG29GTF96Uo20nHCKKKugEwpqHUIWGvTBZd345y6AHWREys9YhDADVJKm4vyo4USqvJU9SIsgXjoCkXjk3GlO+Z/FulJxvqIRhHKd8OJ5UCb98BsYtpx6jyAzN9G1noZE8cgpzjwPNlytLNunIioisdY4bBzJORWrsHJFCuEeOMg6sJgm0TFBQCYxRbCWURU0+AKomHJuecC6Pvq1QkoycXNox21iFlRJJ7DEG+gMlfPRudWzsrWg2NOOP9EIyjY5DEt4nPWN9w1llnAQCmTZuG97znPUjVWKAxWOgxGfv3v/+Ne+65B3vvvfdAHM+wQbouhbTrduvF1frT32L0Zz4svYkK0hl91KIPwbMiCHGhaea0E4CUU6aPmPzVs1HcXsSb37sbxZmz4BBJoDT4rNl4sxRg3F/X9vq87OrJXbtOrH8Q/GkFACD7oZOQHpECg/w8S20l1I+rjzRc37T0Lky9ZiFKbSWjlwGAVH3aGLOWfntfZPtcpUp0CrLUJmfjTkpGlbjSboWWJGFUihrDBpRtM/53vMQ/JFTRljAAAOt2JdY6dnsu39dpLQ6SdgFLa8OKHiglYF4YjdKNoLXDOqCifdZ+NIE0x6i0aNShYFYRQlwErtcFZ2A+QBUx0/u1B1p7QBOMA3qS5dCwUTljYPmCIb9uade0gfHzPjq3FsCFgMcF6lW7NwAm+qRJmuDU3DOEUhVtDe1FDLlW2+ZMgFAOR91zdkSVmIkDN5oyTdAqpTFt6GICOcmJVubGJxP6tdCbTJsTVyF9Km2vtYqpem4i1btf+DGj6x216EMy0t0Pn0GCwceMGTPM34VCAb4f1Y1q3fhgo8dk7KijjsLLL7+8y5OxHTfeCW9E9+nN+gWngGVd4/UE6Cohq/8dExHvJ/mgkgOr9v5KZV10bu2En/eROe0EEBWtwOw5KDKOXNoBJaRPRCxB7yF42ENPk6KgEEQiYwDQua2AttfaFYnQbVgkwYoTMcDqhTgijcL2YkheAJPi03pE2/QSiM5y4+aWlQaeSmkmuZwbywtAVUWmZWGJ9oXiTAqodYRKkyQ98Gnto02C4EeHK9vjTLuq62066Wh3iEgFaEz6EEkxpeXFsvV5jAkQyzLBtpaR0THp5WYTM9MOisu+mMxXg70qJiCU4n2P3oz/O/r8itdwZ4SX99HmM+QcgqxFUGlaFiXxlAM/71mWPmodKzJGleYrHnGRRDe8/zTp0p9TWNQi4NDopEATLrmd8kpKkpaFBMIJvwv2hIKivAWdYAJQqW3dwIui3JdMz0S4x+DnQxKu9zP5q2ejmHPVfgA4jtGkDTR0wVdft/F2R2dnJy699FL86le/wrZt28peHyqpVU1k7NlnnzV/X3DBBbj44ouxefNmHHTQQWWhvni/yF0d+WV/MOFqABAOUS2Qwioe+4FCKAVVuhpTmeZx+AiM6BqQWh7TxkalgjiAJLE4+HBPmgeuIjcmbabSPDYRA4D8G3kU8h4cQiANLYUhZpWgK9V0q6pU1lVRh5CIFZm0IeElAUpCvYxMWRKAye0zjkjfSeOEbkTW0SpHQkN/Jt10WZM46stK4biAmvlc3acyvenm3Ei1qD3Y2pEQXYlnRwEBlXay3qMRtyGwYafXTGuodMw2ARRIhWlbmnNV2oyaNkpONmNc98NG58wQMaKtLlJuVJ+2iyAoBEhTgqylq9OpY0me5Pk7TkhGtEbMhryH5N8R30VLp6jbGulIldB/W1IJ+/O376VIda5FJmT0LiReetuMMcQjat1BVykj7RgrFW0toycMANC5tVNWz6cdeHkfHXfei86OduDIfXq0v94g0Yz1D774xS/iwQcfxPe//32ceeaZuPnmm7Fx40bceuutuO6664bsuGoiY4ceeigIIRHB/sKFC83f+rWhFvAPFaIu5AFS9akw5aE8kLQuB6lQ3K3TVp0IPa2cFAVPOXBSANPVQctXgZ4637S2STB4cE+aBzcrXcUZQoLh5lzkRmXRaq3btPA0tG0tqIydAH3gfkTn2xLO/BYQhyLTmMaOrQUUPIY0JaCEGFJm7CZUsYUcywSylnCZM2G0UqGGSpEl67uqo066356MBjCr4pGbAhOp25LRA0K5aqIs9WPaCkMXI2iSxqwImO1RpVOTYOUVxlqbJAXW3ByHhj3AlkU5eKhb0//bpNF2dNepWc4E3CwxhrpONgMnJVs8Ea6d/MN0BdWCbtUbVJOxGY/fgrVH/A92ZmROOwG8Po02n2GEGxZVaMjK3dCIlVpGsHoC4CiZReRaozxa69Do68xncBASZ8KIcvGnYUpcpZUr3QPxTih26lr/rScKAMy9RS19mY5kaRNZ6oQVofp5DcjIoY4AZ1RfV1s7ptvZJdi58Mc//hE/+9nPMHPmTCxcuBDHHXcc9t57b0yZMgU///nP8fGPf3xIjqsmMrZu3bqBPo6dFqlT58MHTKk3ALAdKpxOw3SlHiz0A0yHxrMfOglOmiJQrUIA3fxbDlZBUabCStYDI8HgIfjTCtSd/YFQH5PSrXiI+bxGf+bD8PI+inkPLOBlWj/3pHkI/rQCqVPnA5DxKeYxKTZ3CHIWURGcK1IkwAIOJgSYgCFkPudwhCRuXAgTfXOUcz4AcCFUxSwBC9T2PIA4WmCtilO4C6ZEz9pdXTBhBt+4gWtQCCJEyI4+6GiH0elYYm49sJsBlEejXpqQ6VSWvQ9WRThvEzGdhrQJmbYHIbpgQe2HUGpc+f3OgokUOCkXXE2ghKrGBBQZ8wJwNcl066t3/9gZkDntBABA28Z2MCEjreU9PcP7PJriLX/+2Ck+HTGTUfyw3ZaJOkGnJ0WkyhUISZpNumz7IA29L9tSo9px2Qj7T6o0ti46QUjYQ31kuSnz+itvK9tHPCo+0CDUAaF9bIfUx/fvCnjrrbcwbdo0AFIf9tZbbwGQ/qj/8z9DN9GqKWY5ZcoU87N+/XpMmjQpsmzKlCmYNGlSlz0gd1UIFjas1UaU+m9ADox2lEJbDsT/14OX1usQpaPRYtm443WCwQPzmGpbJe0kCKXKsZ5j8lfPRqDMVUutHpgQhohp8mXrWoz/V8CV9USoq6EOgdfho7CjFEaYVERMV77q/33Ow99BqGfzS8wQOI9LUsYrDjDCGNKGXQO4EToLJp3udbRBpzH1cRGrYk2nJJkvTVlNmyUrimcPnjqtGU9L2j02ddUo86KWIHrfce0Lt1Jg9jalVYVFGrV8wPcRFDxTTUnTsnWSk81IzZgXRFI61HEMUTv4Z1/u+oYZxuBMmPvUIcToAfW9UGb7YU8UKtxDusBER3Pj7Ya4MurVprJ6HeZLkbx+7mmjZF20YvbJhSnCiFhZsGhRSRn5srzE7ImCfs1EwnhoBmsjvA/DFk5DDur0z8/bHO94xzvw6quvAgAOOOAA/OpXMtr5xz/+ESNHjhyy4+rxXXb88ccbJmmjtbUVxx9/fL8c1M6E4E8rTGWRhpmxcS41Ppb9hz042TCDnLEJoGZdPy8F4FyUzwATDDzyy/5gBg5ZWaa0XNuL6NzaifwbeXS2leBzjtSDDyB16nyMWvQh07synMFbEQJF0pnH4POwKEC/xgJuyJSMjIX3i8eFeg2GdHm+3I5e3pVkRusYfVUgYDuT2+RQD6SaYGnne2FptvQgbvuo6T6SYTqVR1OQavIhYo7qmvQFym/Kvl6Vig8qkTL9/QlTltFHnJ8vIsgXFNFwJRGjuiG5TFMyJdoPih689k4ExRI4Y+BeAK8tj6BYwh5XnDmoLcz6A878FvgdUrTfoSK4OkXn8yjR0hFaJy3TeFpvZyJonJsf+1mmdY5mUhrz19P3nilwsapcAUQInW27YbfqsslUtMdpSLj0etG+qtHXw+W6LReveM8ORneUmkBp//y8zfHJT34SzzzzDADZDvH73/8+MpkMPv/5z+OLX/zikB1Xj6spq7US2LZtG+rr355mCdpYME6wtG0BAFQTcGswL/zyRwZvHj4g6BB6ur3doUW9gBYjSwKy/Uf3gM+aDSAkTP7vlwOLlEHo7DlS+zdrNohLpQYMBI4i6TIVCThCgDKV6vEVIRNRYsViZFxHN+Tf5cfskPCYKlVhCSYgnNCeIB75sJuN6/OWk46u7TTK9mMJuXWlm05DljUNj01qbEuCSoiLwCsdv3F4BxAUJOFKp0I3fnuAsntzcgSAH6vUHGZGoLXCmd8CAKr7BodDSHi/cnkPVjJj1fcGta5l1JzXMldV94d9G8WJGI0kDCuj67SjrNKM3zdy+9HuErVWDtoCff2/xmCYcScYXHz+8583fx9//PH45z//iSeeeAJ77bUXDjnkkCE7rprJ2GmnnQZAivXPPvvsSO9JxhieffbZLntA7sqw9UDxNImGFskyTxgNDxAlaXbvS50GA0JRKRei56HMBP2CSBpafR4FFEFamuFxgTQlcFwKR+nDCtuL4LNmw+MCjhojKJMRrax1X1BCkKZhKjLHSBjtUtsFEIuShccVHyv0/3qw1QReEo9wPa0Lk6lSoSonuXLJDwmcjsraVZoyfU5MalJfE21xUCmdpdliVAskBd7GssAhpsigklUHR7RtlB6MbcsEGzQWdfGLoRDfSXkyVVosqYpBqSUL8gUj3uee7jzAQaicGPn5Img6hUxjZlCMmvsLNC07FOh0d5oSWaHLRITIS+KrDamZIWNxsm1XiZsoJudmefzzs98n2yk4ZWlR/bpOb2sTYSnjkJMGx9qmTciIQwCGisScM+l3ZmcdzN/WPaL3p7tmuDl3+ETFoA2K+6gZ6+P7d3b4vo+Wlhbceuut2HfffQEAe+65J/bcc88hPrIekDHdOkAIgYaGBuRyOfNaOp3G0UcfjUWLFvX/Ee4k0CkpQAq2NWwbArZ8FQCghFBPZK8nf9uVQ2FLGJ0CSzA00BWJJgLABPwOP5I69nyG1CrZqL7zrUKEUKUpMcL6oiYERInsbU2YSk8WzDrEpB7NfiIDjtxGzgkjZGl7lq8ibtoPLBQuWxo2IZAbmZGEi5UbbXImkEoRQ4ZscmV3FrAtDuT/5SatuoLNrMOjeh1bZ6bF45rk2aJ9O+phV+KF+5a+UjZCPZNsdyMLbAIIloeoz0EwTQodMD+Ak5L9KZ2U7mKg+4KmQVOy4GbCpZ/ApqV3YTjDmd+CgAm0FgMwIZCLpfbsCKte5qRpGMmKXVd9L4XL7KbtYRTTJmz2e4hDlP6OgHlBjGD/f/bePM6uokwff07VPadvp0NCIOyEVXSIQQWiEJZsQFgElQyCE0VRRFEckEVGRwVGWRQFRFAQNwaRkS+bo/wEWUICicgaBhAHBgSJEEAwJKTT3ffeqvP7o85b9Vadut19e0l3oN/Ppz9971nq1Fnuqaee932fl1WSKBJKeCk5wN3/XOdQWtkEEW68UkrMSC8vNKsVmYlRBcQADE3M11s8ZixNUzz++OMjWjmomfUbjP385z9HnufI8xyXXHLJgOo9vlWscfOtJUAWGoG3tvmHmBc9hJ2NAsUMlbERYzay1rj5ViTzDnDZenkOWRFAo0iDL17spLpHLkXjKnTLZJKgS+mCmSjimwpARu3Q5/ZgIHGPUWI/O8YsCdyZCUiVTuU5UriYnIRp3FEbck0d2fi0KNasi2xJI8NCpcAsGCpATb1W1nPicV6AA1Q+41G43SPB4aGyuwNkKBkxI9wdSdpTSWyAp2w60orLUCTIaBNHVrB6FpRVTWA/HQtgUheWJRzlXPV++6Oe51jT0FhV1xhfMc+JeV6TQjqFPTsFU8rrOgIsGYIAEnt+6PpSwLvMAMAxpDEXMwlf07uPt8XlMizYzySoGZ7hSUr/AqIkeeJpkIExaDCgK5GJ56Lk8bxZRzagyz1mo98+/vGP46c//emIaorFrKWYsTzPcc011+CrX/3qGBgbIuOq7CRzkavc1i8kBk2OQiT/VjPV0Pa/SBKrHadyHzDX58xFKgSU0jbInga7TCRQeeKxV6IYDFXuQBy5kQB4g6X57qQuMuGejZompg12wLWAr5Ax0HmOlDEXMhOo1gyrV1EVJMKPGxKFZEats24FaQVIUd24jfxMSe2JhtJxYv9RUxDtFQiZoFHrf3JKLGjfDwlIPJ0se52lH/Cva8oCMlVvQMIE9OdaQ2ROzNroBTYsqKAC0uZ6uPb/Z/d98O6HlvT7PNaFUamjNQ2NGG5UhY4dACsunElpRaYBzqi62EIvVoxtp/McqOkCkMFuT+4xks6oVCvFu84BoXDSSiLLxIpSskEineYZABtDZs+ZJgDQVlolkUlk4uBYO9IeM7WINdomjEIwJsQQMGOjfPKwDqxWq+EnP/kJbr/9dkyfPr0U637hhReOSL9aAmNCCOy000547bXXsNNOw684vD4b1TSkwNn+WPf1N6N6xKHovv5mu4wYtLGf0MibrITSCc6VSCCqe/ZcC7RUnpdAVdomgR4DwHgGm7SALPeWURux5TIBMirWnOfIhCht18xMSSIXi2jOxwT0m/UVGxtHA2EsQLvR3bBlcWh9vZ5bhoSzuzH175jsBoDSPmEZG5eF5/+n8xDVxGaIAmUAZ1k11icTWyS8YzY6uyGrmcdQy7SCtg03QG11J9Bdx9QrTsYTn7kI7TLBU+/bF2+//56m130kLMywNc+TWx/Gy4vgWtJ/q0EGc71rBcOYSRkNuk8KhrJeFLxPpM9O0WcuDwT47zoD1BXCN2DsmUlEYllYvszfzySTlIL/C4aMNNJCkeLRYGMK/ENjjz/+OHbbbTcAwFNPPeWtG0n3ZcvZlOeffz6+9KUv4bLLLsO0adOGo09vKlO33GZFP/tjHIiN2eix+py5aO/IPL03iuUjUESxXyIRvgJ+IG8imHtSFFpPUNy16cAcB1TOrQkYN6TvugT8eDHOtNF6wGW1hUbq6mZgrbFBzQxMjUI/jGfUkVtLyIoXwM2PE7IeNPBqlSNh7knAz6Y0Af5+/wDYbDxKIrBXQPqB/Dzrz24fxJvFgKJhwuo2/kmwzEtTT9PFRdW7G8gKgdiQwRxu65w1BwDQpQwwn3TPouh2XQXj5b7HWUgC9FrlqK2p+2WwyC2pmuh6Fcwrsa+VAOwoxpblKke9VkOjW5TcvAbQh8ynsG5NwIdlXLEfMPdYsngxK/4rfZHYGCAj8BhNTR6zN43dddddI92FqLUMxj72sY9h7dq1ePe7340sy7xAfgBRDbK3uvUXiA2n/fm9+wIAdn5gdM3a1xdL71qIBmDixgpgQ27LVBQv8YYTYpVJYhkIAkQiYcHpOQtmLgbTmnYuSO5iBDhzZr5ztsxsV2bO3HZlWQwuoElZmvUehRTmP9YCbRtkxjWkmdwDAavML5CsA1AULidgFoIeBHFczcwHXfw8tBcPFGNdKOaILl5bR2ZixeplIWUrdwEzOFc62qHrDaM9Vqt7+1CZJM7SZCLBy3vPwmZLF/d6PkNhxHiZZ8WxsjWdo7rIJftwbOEDereOPx9cWse2UbjmAXNd6flVuUs6oaxglQOp0qVs03qPKtowAElAo7bGr5+acAAtid2kxI0ijlY5XT4bh8iOEyZ3hMAxfEZEUYDbZBILw+iOFqFXbskQBPDHgi/fovb000/jmWeewcyZM9He3t5UtmtdWctg7Hvf+94wdGPMhtMen76Pfek+Pn0fTHtwdMW1rC9WOfQgUwheGVFWynjM0mImXmQ1kkuIgyLAZTbStqackRvUADdYEmHAAZcbOAHKoiTjbJpb5v4TIPOYs2IQJavpHLADpstoA1zZG4oRIncQxQP1B0xpAFJwvbKyFAyxbtZlxQZnoBwwTxpmQgqr0yczI80gWTtJ4NYyrEilaMOUPxKpiwHLtYak9YUgbK41VM2AMQPEjBtU1RuYesXJwH1349V9ZpeA72Bt9UzDgNH961h8V/Hd3e8YqIoZATfAgXQeZ8iNg6maLuqi5rlNWvHbc0BMJmbf1XVlM4npmaKJikQCkUkIAPU1dca2Cpd5GUnCIKNnSEPY2EPu5qTalsR+xbOEjeQFbz9XGllHhqdP/VGv13FEbCybckjstddew5FHHom77roLSZLg//7v/7DDDjvg05/+NDbccENccMEFI9KvlsHYJz7xieHox5gNo017cAken74PajpHfYyBH7DZYscN7clN2MD+PEeWStTqysaEcVcjuSRtoDMQxI3BY78IzBH4omVkYduha5RvFxrVvXTHTawUR1W6MjkJA0sU1O0GrhxJwDzw0k/8u72G2ndLJsLFpNHgmwgTzxbLQjaxaMSU8KzNgs1Shukw7IkTezU1PA0DQsKvxI7FWJBEOLV5VW9AZKkFZPz8hEzQ6KojEd0mdmzJIqzcd3apvYHayn1nW5YVMPco1j4F6Y+v+OciFt4Jufcsbxk9T8a9maBWiL4Sq0YMVwjwKRnATTTcsTnjJtmzr3LjFm2XwgIy66ZPDYinSYpSOSrtZSYL8AP8PQCvTW3JUActLDYOmIxKP8tWWFYMcFpjYhTGi43Z0NnJJ5+MNE3x/PPPY+edd7bLjzrqKJx88skjBsYGxMUqpXDDDTfg7LPPxjnnnIObbroJSvU+Mx6zgVuoSTYYG+pZ+1vJ+AufZ6FxOYrc28aJr5KFA03MhUSDGAdLoZF7irZJZFJkZSY2dqdZxQZyTXJzGZ2OneIxQ0kxSBmXkrAVCXgslQM+PtsVK21kyx8VdQspOLmvAGNeR9DFmeVRsc96d6OkJWXqImo0uozL0Z1D7oqDezpcQVWCwk1mwKq2cWh5kIzxcgCABmIv7jXLPgd0r7uURpcyQMo9J+UaptxIRiWW0OHAvjFeaov07qhNLjwcq5fKjYAe/QZEkqDS3vfcX7HnirvSufkB+s2fl9gzYdzWXCzWubiFTJCOVlYM8H4jg/lrxe6++24cdthh2HLLLZEkCX7961976/M8x1lnnYUtt9wS7e3tmD17Nv70pz952/T09OBf//VfMXnyZHR0dOADH/gA/va3v3nbrFy5EkcffTQmTpyIiRMn4uijj8brr78+kMvUp91222349re/ja233tpbvtNOO41ofe2WwdjTTz+NnXfeGR//+Mdx44034vrrr8fHPvYxvPOd78QzzzwzHH18yxtlVA5mxj3twSU2wue+Xd+alRIGY52z5hQK3doOWGS8fiSxB9pmOxplfuv6y8P9fJ0nzjg0M76fXdYwAEFWhBc7FQ62VBOTBmc6Li0jN6arFagtm8c1oLjSOndn8dqCbpkvBMqX82W51ragNC0nhX/LSBXFupuVXzIioboEwkgDy6t9qAyIo8LlAGx8WK41Gt01NDq7oLp7oLp7PMClasqCwEQkyDYYZ+UbyJ346j6zo31sxThruaquUdMIAJjZjmfwhsAo5sKOmQNbOQOAbr1ziTowyI9B/aF2uJucu5epuH2ju+ElxJDRc0VaeDxhBAhKZrF4RsAXDY5l0FJAPwDIVNhJRCIF/nrGz0ctEAPQ/0LgQ1govLOzE+9+97tx6aWXRteff/75uPDCC3HppZfigQcewOabb44DDjgAb7zxht3mi1/8Im666Sb86le/wpIlS7BmzRoceuihHoGzYMECPPLII7j11ltx66234pFHHsHRRx89sOvUj3MaN25cafmrr77qVRZa19YyGDvxxBOx4447Yvny5Xj44YexbNkyPP/889h+++1x4oknDkcfxwwmm6+vQbo/Rm6D26btOfjG3kLWUTGMULfSWNNwkhaAG4DInPSEYQQoXoXYK8o8423EpC24cZdQjE0DDCAjwMHX99ZuM8YE8F2OMQDEXa6q5gZFUmKn71xMk1sYnB0zDsgsMLNMmy4NvJoDLWLQdG7+lIt7MwKhhXJ83TElXkHqmkK9swe11V2orV6Lemd3URjbbdvoakBIgWxCB/507HcBuKzGwbDQz+05E+MrwgIxzkhxoENGsYr0fNTnzLXreNwh8wYX6/x2OMAjo8kH/wvdmF1FzUsOBul4KWVorq1bkFfTObo6azYxgCYpFMzPLXRXE7uTFO1yCRPPnUnF6GNK+6wUUyIFso60tM2oM9IZG9Rfa0P+wQcfjLPPPtuWQ+SW5zm+973v4atf/Srmz5+PadOm4T//8z+xdu1aXHPNNQCAVatW4ac//SkuuOAC7L///th1111x9dVX47HHHsMdd9wBAPjzn/+MW2+9FT/5yU8wY8YMzJgxAz/+8Y9x880348knnxz8dQts5syZuOqqq+z3JEmgtcZ3vvMdzJkzZ8iP119rGYwtXrwY559/PjbaaCO7bOONN8a3vvUtLF48/BlEb1VTOWzJm4Ha9IeXet/v3MUHZIveNWNQ7b9ZrT5nbiFQqb0yRWGwvKwIpG3SYym8OK7IQENGg6jPRLj/nOHiA3PoitQBABDMVUT9du27gZN/DhX0FSt3FDJLOugDdyH6rqayC1MwxoO7H91x8hK49JiPJrUpiQFpZnQswepoauZGTQqtMVVXqHc3UOusoXtlN3pW96DRZSQvcl2UxKL1r63CtCtPLx1roO5KA8Q4EPIZ2FCBgQfykyvTrYszZs0md9wtSp+7mIBxDMB1KQaylHum+PPGGeXQFR8+x7ny3dHe88GAuxOD1dAMSNN+qkbMKvtjz7GNE0tbDp9er2316tXeX09PT8ttPPvss3jppZcwb57T0mxra8OsWbPwhz/8AQDw0EMP2XqQZFtuuSWmTZtmt7n33nsxceJE7LHHHnabPffcExMnTrTbDKV95zvfwY9+9CMcfPDBqNVqOP300zFt2jTcfffd+Pa3vz3kx+uvtfwEtrW1eRQk2Zo1a5Blo1C1+E1kMkmwct/ZTfWEWmvL/L9zlz3tyz0TgwN7b1ZLSViVsvWY/MT4irDBzwS2ROHKDHFXrrQXOE9tEbMQ6lRRWaPeGBbKTnNZcQXDAC4/4JgK/t0Nqj6TRvs1uhqOuQCsxpQ5l7wE/Gxh+zw3xy8GPevaLNiIPABT5P7l7kyzPp5NR3UNAW2qIBQZlWY7v74m1SAUTZ5tKoGk4McYGUFYh3i0yqG7GtC1xLhBa46l61ldQyLfgEw7se03Pmlcb/cswot7zRqU7hgBHIBry/nuPwqe71I5mwSg5EYnhs0tK8tbhOti8Wf+PjyWzM/e5SCMZxEDodxKYqtDcKtrHRWTJVFisjAGijTJAFcpIFcKeZG8IVNRmhAlMsH/nXxZ6VxHmw1lofApU6Z4y88880ycddZZLbX10ksvAQA222wzb/lmm21mY69eeuklZFmGSZMmlbah/V966SVsuummpfY33XRTu81Q2tSpU/Hoo4/isssug5QSnZ2dmD9/Pk444QRsscUWQ368/lrLYOzQQw/FZz7zGfz0pz/F+973PgDAfffdh+OPPx4f+MAHhryDY2asumghumfPbepS6q+pPMfsR+/FonfN8FiRmgbGV8bAWMwSmaDeo7z4LhojSOPLqPNrqJoDKeG90soxDiZjzSznGZNhEH8sizJ0j3IZDLvOZnw6Rs1t559f6FY1khss4L4YTLlwZgjEgCAzFA6wkS4bF5t1rr4iE7WmLMMRZjfG3FShthTFbvF4uVjdTH5swMQNKRigSAN2vbMGsAophj0xLEu9nkPUVFDT0ICzta+uha65mCTKThyo0b3LhGmLB8XT8hBUuYLxOV7dZzYmL1nkzrXEpvnHctuFMirNXZv0DLbLxJPICCcVwk40Eu+3Q4wyUGT41hRqdWXasbIqPFbPxJ81q+pAzw/XIgPIBaSBlDGoOkeaJWibMHJxQi2ZEIMvZ1Tsv3z5ckyYMMEuHkysVKjN1R+9rnCb2PbDqfu1+eab4z/+4z+Gpe2BWst39vvf/z523HFHzJgxA9VqFdVqFXvvvTfe9ra34eKLLx6OPo4ZM5XnQ5Kp5bs1csx7/I9QeY6Hd9sbz+05Ey/vPasUgNyxwIDtiZ8qxw+8WS394MHIVTmrLIwR42n3gjFc5Kok1wixBlE3ZwmIufabGQdm3B1FQCwEAxRvZJMLmjStatrEghV/da0tuOLLAQPM6oU8AhlnzvigCPjJAeZYfiY2H3xDlym30H3Ft7fXmwq7a74NMVvauiqdK9Z81uy7dWUy12Ro9SIYvWd1D7pXdnvrBvJ75fclZKy5BAptx0WAw//8WQvdlTH3JeDHJrpntnx8SlZwMizuO9+XEkT4Mfkzz38/9PsyIqxJ6R7HkjfKZZt8o7iyMH6s0l7BM6f/uLT9m90mTJjg/Q0EjG2++eYAUGKvXnnlFcuWbb755qjVali5cmWv27z88sul9v/+97+XWLehspUrV+K73/0ujj32WHz605/GBRdcMOKC9S2DsQ033BD//d//jSeffBLXX389rrvuOjz55JO46aabMHHixOHo45gF1izWoz+27//c67VT0zkOfeI+bxsCC5lIsHrmHHTPngvstz+6V3ajbf4hph7hvAMG3on1yBpdDeg8R8fiu+yAwyUlLCBRLoidMsf4IFfXmjFm/jF4ZqM/iMH7HJe48AfN0ELFdX48wQZHMp5kEEoncBDms3r+AynZ/nSMsP5gWMDbHd+vX8izN0MjJo3W00BLQIwH86uCzQIMqFI1BVXXqHc78VavXI4FikztXbBzKdzSFMRvmD3D2BFYm7xkkQUmA8mslEmC8ZXEA0bhZSBATa5yuhc1bSZZy2c4V+lmSxdHgb3PVCXe/XXLy/0jNpW7R/k6em78iYt/LKAM1gnk8dJaoTUrn0X72IQS7bIsuSUyQVqtIO1Yj0JrRiCbsjfbfvvtsfnmm+P222+3y2q1GhYvXoy99jIZ+7vvvjvSNPW2WbFiBR5//HG7zYwZM7Bq1Srcf//9dpv77rsPq1atstsMpS1evBjbb789vv/972PlypX4xz/+ge9///vYfvvtRzTufcBRizvttNNYsfB1bNVFC9E1BIKSf3jPXl7wLJksYoPI7WCWmZe8zs0gU4XLWHrTK8vttz9yFOrj8IPsCTiZwUYj4ywXhAd2yH3HmapM+O5B114eHTBt20l5QHbxYnFAZvYrr9B57g2+Ks+RFTFi5WeDB5DTccvxaLxPdAzAlYKywdbFScRCYHorRUNuKS6zQd8BvzySBWFKW3V+FAAKmTQgyqscIG1lgUY3r0Hq3JKeq5aBhUZXwwODbfMPQc+Nv4ver/4YL+ZdkolgbZK7ktbxZTXtx4KSkr8Prvxnjt9jfkxu/Pmn9Ubqorzc7eMuAgHUklBx4a5s1wnWNPx4QyET77ng4CoEZhrCisHS8iQzQx3VM5WZRKW9ArkeBe4nQiIZJJhqdf81a9bg6aeftt+fffZZPPLII9hoo42wzTbb4Itf/CLOPfdciwfOPfdcjBs3DgsWLAAATJw4EcceeyxOPfVUbLzxxthoo41w2mmnYZdddsH+++8PANh5551x0EEH4bjjjsOPfmSkRT7zmc/g0EMPxTve8Y5BnW/MTjjhBBx55JE2ZgwAlFL4/Oc/jxNOOAGPP/74kB+zP9byk6iUwpVXXok777wTr7zyCnSQkr5w4cIme47ZUNqLe83Cln8YGIrf65E/4LZpe+LgP91XWuenppsXL700+Ux2VNZuGwajIt6AL7LKZQI4QAOKAtcVBgjYYGxivNxAEgNQMYATsl/NQFs48DcDAyoCxELXqd9Ows7fDdwUQB4beHsDh0BzlxK3mAo/UI4Ha2aWDVMaifKLRedCe8xLLkx5HVLv523k5ofgLaP4t1znUeYutFaSbygW0Weo/GxGzmiF8Ya0vXNnltmt2DNVfn4S+5+SUvgzECYBlJ+F5s8Ar8/K48Nkw7FmdP+bvW8SIWzNymbre7Pesm7HDHjwwQc9uYdTTjkFgKnEc+WVV+L0009HV1cXPv/5z2PlypXYY489cNttt2GDDTaw+1x00UWoVCo48sgj0dXVhf322w9XXnmlBUIA8Mtf/hInnniizbr8wAc+0FTbbLD2zDPP4IYbbvCOL6XEKaec4klerGtrGYyddNJJuPLKK/H+978f06ZNG9HCmm9Fo5feYAKDAWDe438sLdvrEZNG/Pj0fYoSJu7eyqDMSiIT6Ln7QSy8c1D9GK2WfvBg9OQ5sqyC6m2GYo8xiWa5i50BgFpdoVqtQNW0LQtDFrpyeLacyWDj2+UeQxLuz7+7QdIfQGPH5kwLfXeAjAeB83762/H96NgheOR9CuUvQveTK/isrcuQ4oVoQPYyKhVpt5UHW16TkMReaR8++CZSINFOuiORiWXqlM38dICt3t2ArhnXpsgEkEnoIsaMtjEu6goa3Q1UDj0Ik+5ZZOtVZi0EXzt3Yx6AKnd9aT1nWWPmQJS7Z95vO/HvN48R48+A61vwvEcyh/sSmrWMcEUU1R7MtWl0GWZ2fIVkR0QUkFuWlYkB82eFQJiRpCmeQeb6lqnJll0fsiitJUMQwJ+0tv/s2bORN7mHgAm8P+uss3rNxKxWq7jkkktwySWXNN1mo402wtVXX91S3wZqu+22G/785z+XWLc///nPeM973rNO+hCzlsHYr371K/y///f/cMghhwxHf8asD+Osw2DYsd5s2oNL8NT79kWXSrBRJiEzAVXTqLRXPEFMwGhwpXe9udjQcUcdhp6aQk3nGFetoAEThE2DIRU/BsBADJeXAOo9qpTNyAdYbjEgwz/35Qo0baLYptwmdzECcQkTv+YgH3h94BUet9wfd0ze3zD2K8Zsha4oksLg9TB53Bngsuf4QMyN65TFsiuFSJCzY5J7MpEJoJXnmsxVjlpnzQTxd9YLN6df5kkWwKLBYvjHV4QVCu6vOZe4+73HLGS1OICid8PKfWfbbExi1kLGigMxHpAfrvdd9OZ++yCu3L8YUJRJgrTNIF+eWcuzlmkZB+lkVHiejGvWNTOtcqSpf8z1yUbCTflmtBNPPBEnnXQSnn76aey5p9Ha/OMf/4gf/OAH+Na3voVHH33Ubvuud71rnfWrZTCWZRne9ra3DUdfxqwfttnSxUXNutZm2q0aBeZm41Ik0ulA0YtR1bSLiXqTALJX9zGDluxIoWoaMnFxKK6Ish/kbGLGnFQFDWZOJNOXwwhdTUB5oGtm4YAWsmxxMOUP2L6L1J0DnV/Yt+bgrHk/+3KlhkZAqtkAmascSVoeRIgd43IYNltOgoEkkrRwbnalVMGQSCSagr6VbVNKE1uWS7+8FPWXyvhQXU0CAo3uBhIhIDMDECuHHuQxSE+9b1+8/f57+rwmjjFtfj8NmZQwF7JZPuXexVg+YxaWz5iFKfcuxqR7TPHycnkj/jmMB4wf01j8nobVHByAz71teGIHvU9qaxi7SIxZJr0YQw7IwnhBclcCLKif6ZSZ+1ospnYH6V0Ys/XT/uVf/gUAcPrpZZHmf/mXf0GSJFZWY13W3G4ZjJ166qm4+OKLcemll465KEfI+mIohsJ2vO9uYL/9rfvAY8XYW1wkieeq7Jw1Bx2L7xrSvgxHm9xe3GuWVTwHHKsFAGtWdqM2a04BTstxXL47ycTusFKNdjDiGZMhY8a3C9kNwB+QwwGUW8h88ULO1A43robusvJc//srAhwGgMekO8iI2eJuyFzlSLLmM/Zm5XFIa6xZ/BiVTzKDdcLAm/uPFJCphIKC7opJIriEANMXozlG9TJN1p629RONOGwNlfYKhEzQKBhkynQcqE5gCJYIeBvR4dyL53vqffvayRTZpHsWoVZIbDRzPdJEAkApFtBnWX2mlF9+v0amY0urUpT092zmo3JyKakQXi3KRAgDwCKDIm0jC6CuKXFDl99TgJMOIHD91zN+3vR6j0qjckiDbeMtbs8+++xIdyFqLd+ZJUuW4Je//CV23HFHHHbYYZg/f773N1x23nnn4b3vfS822GADbLrppvjQhz5UqlvVnwrybwabcq9xP/TGTgzWxh/9IaTj/XptntZPnlu5Bj13P7t8KPpEMgCds+YMqjh6zP783n2975T677IcXaB6l9JYVfdLy3DjTJLvUnLbx9L+aaAMGadwkOPr4p/D7fw6gpSMwWO3zPHj+4Ygyg3y5QE4NM6o8WtB5gXKF59Vw1QkMMvcf67tBTQP4o+1TaaV3y5tp2t+qSRV90voxNrWSqPR1fAyLL1i1cpX5CeZk0ZXw/5m2mWCdikwvpLguT1n9no+tm9NrnUmTPjARplER3sFHRVptycQteN9d0PlOZ7bc6Y93mZLFxcu9lCh37GjvuCrz/4SmAzZVcuiB+CdPy88q5bLndB7hJhkwLmrZSq9eDKSqxDEaAphgZi9F0UwPzFlXNoiV9pmz/Li9uuNkejrYP/e4rbtttv2+29dWsvM2IYbbojDDz98OPrSqy1evBgnnHAC3vve96LRaOCrX/0q5s2bhyeeeAIdHUYumyrIX3nllXj729+Os88+GwcccACefPJJL7vjzWChO2moTTKlalXjophuoHZuOIfq+5nk1tSohEznrDnFcQbXHrf/2X0fyAR4cLe9Mf3hpRaI8TiYGFAB6Lzi7EaMyWrWDlAW6Gwm9srZMteHsE++8QE51jfAgcgQELr2yoNtMwsDy8v9MfuTij8NgTrPvba5On/Mes2YC1yIudI2O4/MBvTXlS0qTs+0FYYtak4mymT3kevS6IeVC5/zGpmqpoCiPVPeSdnSVzJJTEktrdEuBWTS90PtsinL4quZSGxYAPFFiumJZSIpfkfuuXpmj5nY8b67rSL/i3vNQk2X5Sf4xMOPg6QkDs3KGbnJhnvmXf1M6jPtyycF/JxiGbnEjiUyQaKMG1gV9zYRlai0BeAC92OF5wngqZpCfU29z3sw2mwoyyG91e2FF17A0qVLo4oQJ5544oj0qWUw9vOf94/aXbp0KaZPnz6oMgvcbr311lI/Nt10Uzz00EOYOXNmqYI8APznf/4nNttsM1xzzTX47Gc/OyT9GC1GLzGKCxlK61jwAahi8KJiu7wotA5YHJkAavZcdLRXBuyGISN3Wbs0Qc9mMBDonj0X1UUDj0t76n37lrIEfZeP/90xRTwOzNdSci5K13czQJEUANWbTLzjxRgmHiPELRbjE2PHuPvIDNgO6DgWxLiMYtYM2MX6G/adBlmudeb3y7EiQLmUUqyWZTjYmuU5ADOYhEKxzv3JRFoLhkWrHIlwriuCdMR60TGp5qRgWZKN7gZkoUlmYycL9ySVcBKZtAKwvG+hXhuJuHb1wsS5a1yuJxlmPZKRwj+PawyTRGQCC8gAE9y/fMYsuz5WKos/r0ZE1oBJWub2df3igNFnVMvxiOF+5KIkC0texbJnucZYDIhVqmaII9FhAOhe2d1UTHbM3vz285//HMcffzyyLMPGG29cKss0UmBs2DjLgw8+GC+88MJwNY9Vq1YBMCmxQP8qyMesp6enVMF+fTBiQPrzYm/F2uYfYgc3nolGpiNAwHwmMDG442cisS/8sADxYNudmAqMrwi0ywTP7DHTulZC3S9+XAe8uNvOlRpqJjHiM18c6CX2GDHXDt+WjsPb64ulKrfFSzOV2/TdrH7/QxdlrI/Nzj0WL0ZloZqtjw2QXFrCLtPaY0N4CSMe1M/V/hvdlPmo7QSDmDBdrCdXoyZV/bq27sZaZx09q2s2Ds2eU7E94ALDgbIoLb82/Yl/3GxpORSBrlnsN8+fVb7M/E8QMk+ACXdodv/peOZZDd3o4e/Dfx5kAsiKQCqEx4T5+7t22qX7HchMetUQKDaPAC/g7j+to+/cLUmuykQKC+AaXQ3Uuxv2PmK//fu8D6PKRpkC//pqZ5xxBs444wysWrUKzz33HJ599ln795e//GXE+jVsYKw3bZKhaPuUU07BPvvsg2nTpgHovYJ8b5XfzzvvPEycONH+hdXsR6sRCOhSeSkOajA2fovxyDpSW3Q5VzoasxPO+AGgu7vR1DXXH+uePdd7MYeK9zw2rRWjgOZ2KZCJBG+//x4bU0P99+Osym0Y4EuDkwMqMeM6X3wZB3TkDiImsBnI6kszzN/WrzcZ2yZku3i9TT/o2rUZHqPZut5MNmHFRHDeBGDULbdF2wndTxSfRRIIxKKRoCyBOVXTVipDyASNbhcDpuoOuPGsSKOqTyWTeOxR7tyQDW0ZOWLGqB9CJqhWK5AVx/io3GQf99dCRikGYh2DW64faZ4JB9Qoy/LFvWbZrOwp9y7Gln9YbKUwmk2ADGOdeM9syPza57yhbb1S/tyHExiKU5MVYWPDAJb5yvTDZOa2ybWL/wrd1zy7VRfsJSWL1DtrUDWFnlU14M47+n0fRoWNgbEhsbVr1+IjH/kIxCiLnxtdvemnfeELX8Cjjz6K//qv/yqta7WC/Fe+8hWsWrXK/i1fvnzI+zscJhOjX9StdVN2ZiDWPqlq6/Zx9Ws+yw9ZHzKuUN+qdc6a47na+DG4TMRALOYaoeWcUSCmyoEaF3PDmT/OFtAy56pDscwHZCEI49vxuBvqV2/n6m/Xv2sQAjXqkxtY426wZu377qzEayfso79fGcQDsIH8QBGgffA8b7+SRlgoY1B8psFb1ZWtK6nqym6XVitIhHE39qyuobambiccqq5Q7zYlkhrdYakkmMLVoigs3tDe865VbsBZcUxykSZS2PgzDngpJrI3o/gugCYA5noSaxYaPX/uOS7f796AOmDclyGbRW22S2FZ677CETjoioP8pNRGWEDeMl4hE6mC4vDaAW76rurKspiO2exB1+s9qNUV6lqbmrtj9pazY489Ftddd91Id6Nk609hrsL+9V//Fb/5zW9w9913Y+utt7bLeQX5LbbYwi7n1eFj1tbWNmRxbevSKDOrKgTqQ8RCTr3iZPyjq4F6Z90IWKbSYwyUSyYrARzu3huocSkGaid063XNnIMJd/ft5om1zUHr6plzvIGJBjA6rmPnYiKtLqbHxZe5dea/D7o4o8avl0ycy8YBQD8ImoxnYcaO6w+8sO3E14Wu09w7J7dt/Ib6LjC/j+F5x5iW2GBu5SaaUG4loU/4AI5qEpoMST/GzMSN5XaANgO4NkxJXSItBm2tcmRFFjEdTzPGK03L94SAJN1PmSSoFOr9BCaoEgM/79X9eJa3++PdWD5jFihuK3Rrk7o/3VNirgj0hxOO8L4AwHN7zsR2f7zbO+ar+8wOqkPw+2qeUdNOjljCR/jchOfOgbstWF+wWABpwTV/mfC6lYB7dhwzWlRykBpKm3tYqysvWaC/0i2jxcj1Otg23up23nnn4dBDD8Wtt96KXXbZBWnqqwZceOGFI9Kv9QaM5XmOf/3Xf8VNN92ERYsWYfvtt/fW8wryu+66KwBXQf7b3/72SHR5WG3H++5Gfc5cbNIm8WJ3A/ftuhf2WNY8Nq4/VntjLXpW11ycRnsGWTALiRSQldzO8AE3uxXsRT0Q9qp79twSQAhjrYCBl4Da+YF7iooCZv/n9pxZ6DO5YxEQ6lLa6wPZpHsWYVKxL7UzvhJTKudZghxcmgGTJwGYQs5xFoIbnbcB4CaxwfTR7WuuXXjMvpmz/tyvGHCKAUX3udyfZvt5kgcycdmWHrvk9gkHYcrC1EXZHKXBXJTwBvcGn03AMDGNroaNC5OZtACP4spoX53nkMXFTKSAylkh8UhCi+hq2HMjVpRvzzNe+2PNhGK5u5nHQKrcADKfgc2taLRZZp4pled4ca9ZpexawMSVUYZzu/QnC9Ru2bXvx5QBTqPPn3TQffDvJ4BoAXmAlTRK/fgxgBg1B4KL2g0AnHYgTWi6lEYm1jPXUDIEbsZkzE157rnn4ve//70thxQG8I+UDRsYG+qTOuGEE3DNNdfgv//7v7HBBhvYOLCJEyeivb0dSZL0WUH+zWbpXQsxfuYcpEn/MrR6s50u+hxW/W21KfdCLiClrQsAgE0vD+OGEpkADfc2bqUgMllZLJLa95+jgboquX4YgNJAFYqW8kGOH9OAKfe9GRtIg2OsDA6xCaWg58Stc9lozaQ08uB782U8y5Gv99tsXtsw3L7McJSBWMx4NmWzWLEwi7K3THzrwipcjIC08Vu03tYwVORC1CWAV9caKUw8UqNLo2dVzcY7ec9lwbjJzAH5uCvOMZ1kdD9lAs9VTe7K3oL6e8uWJnAVusXNM22eJbqvmUiwct/ZxUTAX9cuyzVQCaRxM/u6bbIAzfBn22finExGWG81BNhkrgyVhmaF20l/zGS3AlBOvd9uU5RxS4SwsYGcWaZ3jM+JjNlbwS688EL87Gc/wzHHHDPSXfFsvQngv+yyy7Bq1SrMnj0bW2yxhf279tpr7Tann346vvjFL+Lzn/88pk+fjhdeeKFUQf7NaBtlEjJJ8Pj0fQbcxht/W4XulaagXiKE01AK0s1Do5c/Z8f6O+N/dZ/ZWLkvuVnKYqWuvfLxAOPm6a+RG6ZL5SVARUYD6Kq6xt+ZCn9oPHaGjwHUT2o/zpi57+G5UnuhnIFhJMw+Ru4DhV4VH3jd9jGLZTDyAOxmbhs/OLwc58PPPbZdb/uQEnqz56s3sde8cCsSswXAuCBrCvUexUCYizGqa1P7kMBao2CvZFLItRTtdDaUvYexpA4er8SzArnxJI/Q5UyJJPwatfIscyOBZCdN4bu9/dhH1xc+4eATEb5dMxczbUN957GWZhmKPhX6aszCYH+SysnZ/eLgLBTkDYvF2+zJSCfpPqmagij6KZIym73eWJKYQt+D+lu/XLPDYW1tbdh7771Huhsla5kZ6+rqQp7nGDduHADgr3/9K2666SZMnTrVk5V44403hq6X6B+4608F+TebrWnoInYsQXeLbrztzv4UGt0NdK3sRk9N2xixSjsF0hYvSG3cR6qWW9cLH7jJjRO65/oyen+GauBmXRloDNa4inhsHbFJvH8ySVBd5FgL5wYqx21R/4l1C5mG8LNRQjeDYHtwkpzV4q4h0i6jftD+sQHGj/UpMx+9XVe+nsfG8bZpnVvWvxslkiSqJcbjE8NalSHz0WBuQMN2uTqEKs8hwQPCi2y8RuKO1dWw7JdlitbWkY0zXIm7vg5oqRyA1uhFm9a7Fma/mF4YQHFWtA1g9MKaBec3M54R7J4RJ+rb7LcYPrtczsW5XH12zwFtN1Gic/D7EfbRZ23drfQZUlUzGZipEF6cnqcpVyjrawjUO2terUr+vNjs1TqrN4rEE+IdjG7hiBgBqsG28Ra3k046CZdccgm+//3vj3RXPGsZjH3wgx/E/Pnzcfzxx+P111/HHnvsgTRN8eqrr+LCCy/E5z73ueHo55g1sX/UFDZpk5iYSrzc0+h7h8ImHXcEeiZVWQp/jkSUB0j672auRYwYy2IL1dTbZd8/eCpz5MBXOb6JD/jhy54C8FupW7nzA/dYFf5w0DCxYm6AdAKxuQ20fnlvUuwPB9YysOFxPNwt4gOa8nm5/XM7UFMWHV8XqqfzNqhdzkLwgZa3E5ZrChMPYmC4NxaOmI5mRi5KnqlrDszis8Bigwq2hJsVhlWmPa1yq36vVY4sZZpUvPQRuyY1KouTu1qcNZ1D1tzyUCCXM2AhQHXxVmEyROLtH7JQ5rOLFTRuxMQL7H91n9leZmUzI3bKB2Pu3FzWrjtezMUcnqdjzHKIRLA2fNc/Z1HpGgj2TNJ+HATWA6kS3h/uhrb6cUWMmBTw6oLyigv0TMlUmgxZrSFzF9saCysYs7eO3X///Vi4cCFuvvlmvPOd7ywF8N94440j0q+WwdjDDz+Miy66CABw/fXXY7PNNsOyZctwww034IwzzhgDY+vYOpVGrSu3gbit2NpX1yLXTmE/7TAPJc1GKZAfoEHR7ctfuNxig1hoFCzMgQ0f3GKggdtgUtJ5//jAwY/j4rfMPjQwuj46d07IivUWl0XL+EDJr4M/cPuAzD+H+DVqxlL15WqKWehOMtY7+9GMaePsh40bUy6WC4jUrrRuquDcg6B6lecQxfaqptGtNNoLNXwCdKqmLVNS0zmyBgdoASht+OCN/vPzM/fP/w1QcDtnKf1nwz0z3Ph9dJOZBNhvf+jcZd82q7QRY9K6CtclUHY9xyY4fgyk25Y/oyStkWntnQPFqjpG3GfjEpkgy5Mo8xwzleeQFcdoAn7soJWvkNrE7tU0anWFqiyr8xu5EtfPdimKqgimFuaE3rsy6ixPBPJBMluD3f/NYBtuuOGw1tEeqLUMxtauXWtjsG677TbMnz8fQgjsueee+Otf/zrkHRyz3m2PZX/Anbvs2R/PibVNT/4XNGQC1W2EME29PlGokecem6CDt2fIVMRerl1Ko6OPPsSZB3+bkH3gIKmV2DRuuz28FI9P36cYLN2LiY5Fg4Zb7n/mLiZ/OWe5XJuubZdFFmbS0bKwRh+P2fETDHzwFSt/EzPOfoWMV8jk9Gfg5NuVmUHTXrNA/dB4UD8JdEKpUtyYHaA5uNEauofFd9ni44nbtuGfTIzV4SwZMZvNnjFzv7TdpnxNXSwexWXF4xRde158XibQ3dWwz1wrrvrJSxZZyQsTcygA6MJ9Xmbm+Pkb1zlnc3N7Lo7d9Z9z+hxeq7QQX5VZCtVZ8/YJWWHB+lWSMGHA3MX7USJGDqUKRrRduCxcFquWpRK1noZl6sjNv97ZmJtySKy/JR3XtbV8Z972trfh17/+NZYvX47f//73Nk7slVdewYQJ69tc481h+z32x36xYm3zD0HHgg9gzYtrUOs0U0ZSMKfPANXsy0tq53zmyV0ZMYasesShTfsRgpdwHeAr03O3SiqEXV6VAtV+uERDKwu60nm4PwJHXSovFS2PuQdjA5Rr360L2SyeTNAMjPYWlB/bz+3ffB9uzUBHfwFAnAEsgzAOxKxCOosVczFgTuiTK+uH2/H+cx05+l/XJgapHK8VipL6AJW7q0N9Ol75oqbzIpmDS0r44DQWTxWywfTZy9ys6dL5UA3K/lh4nrHfamzSYfoBOzFxMYn++RNwp2SWUFCYzoVP7lzMmQukp8+8QgHdX1rmx4IJ+ywQow+UGVQueSEziXYpUNM5OhvKK7m2XlmSDM3fmKHRaOCOO+7Aj370Ixvf/uKLL2LNmjUj1qeWmbEzzjgDCxYswMknn4y5c+dixowZAAxLRvpeY7burT+B840uF1MmWB29VkzIBPVGOc4jHORDIBezZuCGtxv+T2QCsHipRCb9TBeItRv2xwc3xECpvPfr1B8gHAM8PvPgjtms3aHIAOMuNB7DFjKQve3fm3GgFLJizSQMBmJ9XQuf2XHsVGj8d9MMvIbgirtrQ7DMJxFhtmKMbQx/tzbwX2uv7YEwwe5Y8WvlwKBr12f4fAacWGMOImPaZDLxsyhDdj00eib4s9NXIW96lvg+FGOmi/Uy89un8xAF4Byzt6b99a9/xUEHHYTnn38ePT09OOCAA7DBBhvg/PPPR3d3Ny6//PIR6VfLj+QRRxyB559/Hg8++CB+//vf2+X77befjSUbs3Vv0x9e2vRl/fLes/Dy3rOwsrOOrtd7jJJ4URaG9HpyrT22grsG6L/VgmoyqPEZPwd+fVkzEECzcBrgKPCbZtQDHdi52yceUM3r6Ll+hEHU4eF5WSOfXXHAi1iKMLOzN7dJbLCjtnmweBm8xc/bLwnlszbhMfpa1ltsH+APhLFgfFPZwbFA4YCcsOdQNbSNEyNmivoQAml+vfm2ft9Dxso/n5CZpWWZSGzBeX4tST4hSyWycWlTtjF0BxMrxu+NiUvzQR4F+FPyS18WqwUZniP1ga8n0MWrUKxpaCurwhMBXBvO/ZcJJ1lSqxvl+1QIzxVJ1wswzJVqaBt/RgxWZ0Nhdd0UbXexhdq6oYUkhs08N/TOaXQ1sGZNrdivuMcVYfudyMRmza5XJsTQ/L3F7aSTTsL06dOxcuVKtLe32+WHH3447rzzzhHr14BEXzfffHOsWbMGt99+O2bOnIn29na8973vHVH12jErD+hcu4hiZADzsqoXQogEzEwtP2WzJgGTRi6zsvuyL5OJC7RtZv1lNqg9KjWTKOe6yRraA4b9zToLs77Kxy7vw8vDxLbn4M5nURwoCO8Pd2v1dnweNzaU7Bj/7j6XGclWjMeK6TyHRFICZIB5Pqjos3Odue14DJknWeEN6I5VCq8ZB2r0nwM2zlRyqRJa74CItttTCTKZmMLWBApooiAzgUTlkJlEpVqBqinIuoLKXQA5gZwYcOaAT+Xw2CXqD1VwQB/CyuMrotDU0+DAjx8ntHYprEgxd0vKxGnnuf67/SyYZNcEMPetS5nnPoXLugZgJSxEkqC2to5VdYVVdV1oJvr3S+fF774Qd6XYL/6O6VIaHUkCVVPoqinr6jXsmDAJSkJA5WbSWalW0P/p4uiwsQD+obElS5Zg6dKlyLLMW77tttvihRdeGKFeDYAZe+2117Dffvvh7W9/Ow455BCsWLECAPDpT38ap5566pB3cMz6b9MfXor7dt0LAFCfM7dgBdxg0qVyvNTdwKruBnpW9xSSFrz8ix87BhS6PkXcB4/RiBmPCenLYiCE2uBFjjmTQMG9ro18QAV/MwFPtJUGmI0y6Ula8OLXHOT1N6A6xvSFiu3l5SFL57YxbcbZqVhmnN9ffwCNiXQ2c9s2Mx5/1OyxiD0vlAkJFM8dexZ4/JDOHRumGcjrK1nBz4J0n10coCvyTespHpEAUMgOuYlB4hjaigET1OdKewWVdn9+y8G5E4GNs3Q8EYCzOFwklu5/l8rx6j6zsXzGrOg1oPMox6mVt+Xths+FSwJwMXExiYgupdFVUy5GrWEyW+m6dzZUlIXVubkfrpam+W9KfjmtN4ojpOeAjAP9bmUyK6nPde2qLtS16w8Vkh+zt6ZpraFU+f7/7W9/G1GB+JaZsZNPPhlpmuL555/HzjvvbJcfddRROPnkk3HBBRcMaQfHrDVLE+PKGF9xYIMzNCRIarKcBFQN3ospiQS28ILHoang5WjjZCoCGxxzOFZfeVO0n1TM2LAQbplMErRnspjd+tvXdA4UM2pTYNusI/FGlZvyLVv+YXGv14gPeuMrJgnADBbOHURxXNwV5ZiFBJstXYTlM2b1CsxiLryQFSGgZIpA+9mcnNWhNnjmZOhe6gsghuuJLXWxQH5f6XMs8DwelF7WJNN5DqF8FyUHYrlyxybGIwTc8XMh5sploYbAiW9HywkcAEDGmKeym9Ytp+eTGDAyXkuT2GQqGUYleAR71qi/YSxYMyBtyzQFLlLalrYPy4+9us9sTG6rsLbLbsXQHUvPFS8yTiDMXCtXzkkHzy93bfJnl/rHww34d8ncyCao3k+CWNMwTBlNugyzZXTkAD/Rw/VfeH2QBavGwTQA1NfUsd7ZWDblkNgBBxyA733ve7jiiisAGLH4NWvW4Mwzz8QhhxzS67677bZbS8dKkgS/+c1vsNVWW/W5bctg7LbbbsPvf/97bL311t7ynXbaaUzaYpRYTZuyOXygohfj2++/x9SyY8KYje5yyRHKpqRstly5F2KYzVYGZK5cTcz4i50DIBpQeTFywAxolfYKZE1BNbQN4g+PS+fZX3dlu0zsi71WcyCIq+ETo2REZkM5BHjbxVkHv2/03wwc4XK3bawNwIHrELDR5zLg8r/TIBmCwvBa+udfvt+x7UILYwvD58ZphaG0nYosN/12faJtaILBQQ6da2Ru4TGvsXPy47p8hgzws/yosDhl+ZnzKlx9hd6ZUuV+hPfcHduXA0lkApmXATh34YfubwIv/Br09mxmolCjnz3X/J85x8ZvuTJLrn/hdSL2ndyYjiE3+6+qm3cRTRAJuFGmJm+Lt00gz55HBKzG3NPhfZXwf4dkJOa83tgYGBsSu+iiizBnzhxMnToV3d3dWLBgAf7v//4PkydPxn/913/1uu8jjzyCU089FePHj+/zOHme41vf+hZ6enr61a+WwVhnZ6cthcTt1VdfRVtbW6vNjdkQ224PL8WLe81ig7YbTKk+45btqQmw5cHHMimKgicQmQRqCrVubUU2bemYPAQjzeOPKC4tNJ9Z8V/e4aAIADITqFQrkJnAqn90W9FO2qc+Z64Fcv2JqZqYuhfSmp6GNziHA7hhCszxCOAtnzHLsmJAeZ8YSKPSR5xd46CUjLMHsTZbjRkL2w/jcXyw6O/L70cMlPHAd9o+BsqigftFTJnPGLoB1w3ufRcwp3PkA3HI0PD7G+trb59pW+5CDQVGAXgB44Zh9t36/Pjmf1mln1cw4CwhZ0RNUW+/6HZ9zlykd7nyPgRQy0DN/ywTwyy/uo9j0yfcfRdq+8yGyjVU7v8uOPsYgh6Vw9ZR5ZMpSqBY09BeRQoHoF07sbJM/j7liYr/WzWgj8cu0n0EgLTNTL5EewXtq3WJVRyzN79tueWWeOSRR/CrX/0KDz30ELTWOPbYY/HRj37UC+hvZl/60pew6aab9utYrXgKW4bJM2fOxFVXXWW/J0kCrTW+853vYM6cOa02N2bDYOGLe7s/3m2BGABUJ1WRdWQQ0oAcMl4UPMxUDMESvRjLbIQ/cFYOPajUv9jgGivNQnpAXPPMdzMVcT53LSy12SzjLJl3QDGbN4MDzdodKHR9VLkZqLirl9ZNuXexxyzQteHFod25mftgBlG3j2vPnXO4LGYhuCqzX70DthAstmLhdQhBHV8WY1BpXSJ9YdGYS5d/5iAmFnsUHj+MzYsxUHzfWKafG8j9epoxSRjK8iNtM9Uw8UthuR9+TM4mVaWLV+PHBmBj0/hhub5ZyLrxZB0OnmJMIwGRyUsWlWo1crDXLk1MZUd7paRdRscJWTu6D2sa2rsnfh/ifTNt8olaAdaZOj+fxIWAjgMxCvq3x6xp5Mq4O9cr8ddBFwkfAmbtTWB333030jTFJz/5SVx66aX44Q9/iE9/+tNI0xR33313r/s+++yz2GSTTfp9rCeeeALbbrttv7ZtmRn7zne+g9mzZ+PBBx9ErVbD6aefjj/96U/4xz/+gaVLl7ba3JgNg/Xlohs3uR2N7gZUTSHryCBTiVpnHW0TzOPg3Cx+oeZYsLZzs9ES/+XG1fy5cQBEmVjknqwx94PKc6Ch0ehqWDaCu9R0nkPAd2kQkPNmvfvt71Lt7QDhnwcxfS5DL/eENikeLYy3Ca8JWcgA8MLTZZbG9SGWCciBHwckYT9iy4iF4edqry3rK49janYusRikZnFJAGxGpe+OLEoYRazsEg0/++DPxTe5bVwMGa8JavoYmzjQshAEkaXFJIUrwwumEU9u/N5ApDuuOya/VpwN602rjfbNBH8u/G1IgZ/6wftFz09f7wi+vnOWcdFXFy1EcuhBLAEigcrNJKNLAeMrifc7BIA1jRz1SDgB4AvSysRkgK5plK8PZzZ58kfMaMJD4NlKWyTmHaOL/XOlrUxOyCqOVsuTZAiyKdcj8DlMNmfOHKxYsaLEbq1atQpz5syJBveT9RdYkU2ZMqXf27Z8Z6dOnYpHH30U733ve3HAAQegs7MT8+fPx7Jly7Djjju22tyYjYCpmkJtTd3EgXU3kHakqFQrnqZYrnKbiUSuSqDMpIQzdrON+d/oapSkMMLsL9qWEgoAl0bPNbnqPQq1tXWr+M1jrwA/I9HOopPEMmSr68pme1E8XVcToAjEQIBjGXa872472Pnn4s/S42DP9S8cKPkAHothCrdz24bHac6GcMDVVzxYM8aiOdBw+xm3tnueeKwdUC4Q3exauH6Hrkf3mQNbN8DnNkEkdCfTdvzcdJ4baQrpQD7gJCtCNoxXBeAAIXQ7xix2vajPdN349SDGjfYtu5jNn567n3e9HNCJg9D+Wsfiuyxr1rj51kIyw7WRCsfS+dffCNem9nmHd26hGzVc518z899LHqhQrcl4vz0XccW/hxTjxxnJMXtrWJ7nURmu1157DR0dfRXyc3brrbdiyZIl9vsPfvADvOc978GCBQuwcuXKlvs1YJ2xb3zjGwPZdcxGgdU7XSaRLgoqV9oraHQ1DMtUZFeqImA+tDDuyCzjhYcBaA1o2AB5vu+kexYBzI1Y0zmyHoW0TQZlkBLGJhmdIDNgFoHAa+vgLJZMgImpr1PEB2m/H4YB44yTSBJ0RVLeOYMHmELlmUgw4e5FHnPGM8F4DI3vzgsD58M+ORcwBw+x7Xn/3Po4wxVrK7weZZDVzL1VZvOabQMUQIcxOM49R/0sM3XhdQrZFH5s6Q32zk3HtcGofZNB6bMvxLhJldtsSDLD7MHWQQyZGZEYCQUOeLjLsyyw62IbudZZ6DpuniRRTmzwjrvf/sCdd2DSPYYdo3Yn3bMIL+7lT4QGapStTDqGVNCcQBoBQbq+hjlzIsohK8gBMpmLeQPCCgEAindBkSDRiCefUJxrJhKgkdtapWmb0YEj4N3oaqCLkhdGs40F8A/KqDh4kiQ45phjvBh3pRQeffRR7LXXXv1u70tf+hK+/e1vAwAee+wxnHrqqTjllFOwcOFCnHLKKS3XwBzQnbnnnnvwsY99DHvttZcVSfvFL37hocQxG502/ugPldgqmwWmNerdDa8OIFBmLfggRrNvPgDRQEP6QGSv7jMbGxUZnMRu0cCzpqFR7zFAaHyhlk0AiQZco+rtgvkBp6c06Z5F0UFq0j0GMPn6SQnGV0wMjJWtqAjPLUsDDr3kreTFfvsXQOyu4Fh0rXwQyAOPZXCN3PV17YT6V5671vvvn2czFivsX2/LOODx3ZJue87+hYMqbyPWd6DI3JNODb38XMURY0xNnqQYKGicJwPwtqwrPGAnfTdrWdTYslQ1bScmLtPT/HWzTELu5hSRc6FjiiSx8Ur8WgIosTSJdHUceT3H8HqJxKney4PneedFwGzLPyxGTefYbOni6DVu1XiySazKAf1meB3I2D0ox5qVn2UO9ux2BWMfPjcyAWMqnftZF8yjyKTVg6MYwIHUuF3nliRjtSkHYRMnTsTEiROR5zk22GAD+33ixInYfPPN8ZnPfAZXX311v9t79tlnMXXqVADADTfcgEMPPRTnnnsufvjDH+KWW25puX8tM2M33HADjj76aHz0ox/Fww8/bNM233jjDZx77rn43e9+13InxmzdGTFhBLiETJArE9CaCIG8ZjIgebyFz5SUdacAWHbAZYiZ2W1nQ2Gj+Yeg58bfYXxFYPz4zFO+di/wHKvqqgBKhr2gYF0KzyG5DIpDowGQzMULme+ZSOzsPQx0pixJy0I1NFTDgaewKLNt9847AOYO4lYGLuV1zWK96No2c/3xcyyzZWW3VW/79caQ8e1DdxEB51iGHj0XtE8zYBgKhvI4OQLf/Jzoc+ieI/aL32tq1wV++8cJleNj15okXLh1K40s95lDzr725ZoM48Aojo7LxHj6ZQV4oEQAWRFWq00isdnEsXgyIZ0yPYGuzllzmJhx0262bNVFC9E9e66dfPG2+eSHElh4uTDOFGcCjFFrzha7Z8JcG2ifVeW/bRVcb9qGLFcauqaQS+FYz6G6MMNlY8zYoIyYqu222w6nnXZaSy7JmGVZhrVr1wIA7rjjDnz84x8HAGy00UZYvXp1y+21fGfOPvtsXH755fjxj3+MNHX1vfbaay88/PDDLXdgzNat0ew5jIGh+pT2s8otC8ADbUPmh4wPTJTlSANWo6sB7Le/N7BXFy30ZrtcD40YAC7qCBjAt7qu0N3dcNUC8twq8PO+hjFk4TJ+DiarUtmgfg44yfi+YqGrX9ZsNs/ZmRDQmLqGwmNrwkEoxpw1+0+SGc0AAXfn8b7GBmY+6NE14nF5/rZ5cP4+Ixi20aWMCjopoceOzZmn8FjmXJq78ShjNbzmsfgk1zd/wqGD551YQv49dm3JYkWvid2i7WMgygrhsv04S2brwkpTV1FWTHwbZ3P5b1rP3Q/1OXPtMYmd6ksQuVUj1x5n+eiY9LwZV7Eokg7CWpl56Xl26xD9vYbvH5+ld/dPJkW2dZsfKgEAqqaRSGHZtVzlXszdmL157cwzzxw0EAOAffbZB6eccgq++c1v4v7778f73/9+AMBTTz1V0mHtj7UMxp588knMnDmztHzChAl4/fXXW+7AmK0761jwAfuZu2MoWB+ABWo2ozJx8S0ui6rM8HAXkcpNgWd6GXd3NyAzgSyVXjKArwvlBjU+MFH5E8kEI2vaiYXyAXW7P97tsSH0cibWiUCfG1xzjzHj7jl+XgQwJ92zCN2z53qyGbHU+DBY2o8Fc8ud2j/seg6SQkDDt+H7hPegvE0M+JRlOEI2iv/n7lPeT379Q8kDfq4EvAn48mOS64mesRDgNbu2MQDqu1ATD4Tx6xPrZyg2y8/VPUvcRRhnGbl+Wsh4EYjiFm5DRiCOT0goXpJLbNAEi/+GgQLM7be/bXc4wYbvcjXLeDB/GE/pT/CagX3/maLfSwiK/UmW/+zqPEciBWRFFBPEBLqmvKoj/J00mo1qUw72b8yGxi699FJUKhVcf/31uOyyy6zK/i233IKDDipLOvVlLbspt9hiCzz99NPYbrvtvOVLlizBDjvs0HIHxmzdmhOr1FG9JAD2pc4L/1LwMZCDlLPD4OOYa4sC8NOaLol/8gysiaksXqjl2JMqqyNpXuRAJnLvpb+qkJ1olwL/qCk7AHOwU9OuaDLXYcqEsECTGKoQBLRL5/IkuQw9d7+oS853gfqDOnfPuOtUBhT+93LGWOx7GAMVtsvZJX6NCXCH582Bjg+cOUPlg5yw7xzw8UEzE+XnyJ1XHIAR8OPHJbYlTAbgyvm0jCv10/7jK9IAIF3Wwmrm0qM4JP9aF0dV7v5aQKZYDFNxT2KlxbiobK5cMgEHb6oIM+CF1sl0nhuaFD6oy0QB1up6YEHCfZgL1jfHHF8R9hkLJw507cshD36b/Flzz57/2zX3l9ouT3rCZymRCdAosmC7GqX3H0+AGJWWCGCwmZ9jYGzIbJtttsHNN99cWn7RRRcNqL2WwdhnP/tZnHTSSfjZz36GJEnw4osv4t5778Vpp52GM844Y0CdGK028VMm+0JIgZU/vn6EezN4y1WORJp4CZkJTy1cAKjX82I7FzMTc6lwxsm9XN3gkwmj52U/az/uhpzbLrA3L1LUtW2fvyd1ngMNN0PuUjnapcuABLR9QVcXLQT2mmVn0RwYmdk1lYvKMb7ikgRctlduBXIpGy0TCSaMS1HvUfh7TwNde8/CZksXl1g0shCM8qBj0/dyNlmMneLfQ0YodNP4x+fZerwtf3s+KDqdML+WYrNj8P6VAYwP4ni/6NlZ08ghE2IH/f7F3ac5W2c+8xqKsf7xOKXwHAikpW0SWuXIpMSqomIEXY/YhIOOx6Usmt0z6iu1E7Jc4T4kv5BIYX+DIYtGVtcauicvsWrcnUnstxhm4mfSPYuwct/ZFqBXpYmFo98a4CZpMdbUTeIcS02/VbLYNj676Zcb4+A8ZL5UQ5v3TQF0wxqjyaEHoXHzrcN0tcbszWLPP/98r+u32WabltprGYydfvrpVhytu7sbM2fORFtbG0477TR84QtfaLW5UWuTv/IpiAIs6F70qNYnC1/sIVNlYrRcLcpEJl5gPhAKkrpBnLMuvpvMvJy7lVO6T+Yd4NWf5IOba8vNgk1R8Lz0Qgdc+rrKnSjrln9YjM5Zc1CVhUuIuVd5jFomhA2UpnixcOyjbLBKe8Vk1RXuks5Zc6IDBK+xSWCBl3Ohc+LB5D446r38TwiUQmBF28SADZdS4Pv0FnzujhM7ZlzdnrbnelTkxiJwHgZcu3VldyBty8E/P4eAILLXlmIXQ/ejTIBqtWJZYlmEFMmehn1OmoFPYsXC2C6ZuWdEr62XQCjplfFYR8BNdlLhdLBkJqCVcaeFlhedc9cl947hXJcCYOKVpFg/XBaWFJLzDgAa2gNHnJHlvw/qP2fDuHGmi7NiZp1rzxWq57Vvc6ChbdyYildoszIZBITlwfOgbrltgFdjmGwsgH/Irbu7G9VqdUD7brfddlG9MrLexGNj1tKdUUph8eLFOPXUU/Hqq6/i/vvvxx//+Ef8/e9/xze/+c2WDjzaTbEi16quUT3i0BHszeBt3FGH2cLgMpM2OJ4DtPCzamiPfQD8ma0/KMblGmqa4scckBAFyCNw5bS4fJcUDczcCOhUFy3Eqrqy5YxUnnvByTWdu7I0jMlzyQIOBPKBk5eNmrxkkQNSNQfIOWgIGapYfUw+yMQCzF275WWxTD0CgRwM+exauZ0QwPBr68eDlWPxfNdluR1+XXh8FsWJ0XYEpsZXEo+14rFFzrUI2w6dH7VP7XBNOn6OtI5AUtombTA8AdK2CW3IOlwCEgB0VKQ9D7r2/FybJkgUQEymRr+KBn5+rUiWpRnTBZg4TgKI4SQp3I6LnfJ+hcXKKRGnN9X64bD8ttuLvrnfbCZM8opxYyal+9nM+PqQDStvm3jbkhl5Ej9xhNcZVTVlJ6OJFIjVHm1mW537uX5vOygbK4c0JKa1xje/+U1stdVWGD9+PP7yl78AAL7+9a/jpz/9ab/bWbZsGR5++GH7d9999+Hyyy/H29/+dlx33XUt96ulOyOlxIEHHohVq1Zh3LhxmD59Ot73vvf1q4L5+maqpqCVftOxYtwFSS9uPkjwlxBnu8g4E8OtHPfjlgmZ2MEwjEmijKew/WbGX8yT7lnkvZyfet++djvSHfNdRu670TlzelDNABKBnVzp0oAWP2f/e7gtDULhucZYgVaYjN6AWG/7hNuXv5djyZq5VIHmLkNax7NMOejqy2QS7hev/EDLuEBwXyDISLuY30U8IcO/LyGrlUiBhOpKFqCLW+jqt65E5lbkFibX2HYi21rWrdDJk5mMAgnRB+M6XMbdvCH4cs98eZnfRpyZ5e3H9zGfKZCfS5bwjPJmJdtidXU3PuFIG74CAFt/7eNRBnPMRq+dffbZuPLKK3H++ecjyzK7fJdddsFPfvKTfrfz7ne/2/ubPn06jjvuOHz3u9/F97///Zb71TJM3mWXXSySfDObamjk3NUQoy3WM5OFGj7FUPCXOwUMAyg0tyibsjz4hsDDts8Cq7lbMZEC6fgUFDPU2dVgLj0gHZ8iSyUmpNIbcAGf/Yi9eIkNi4GQNQWzx4PI3ezctEeDocpzjxUDjD4TYGbY3d0N5ib12aDwGvgxdYm3zjBC7jsHb725x3gbbl/Xd95GzHg8Tcxq2slr8HZi/5vFytFx4m5L/4/EWkMWijOq3GXYLv3r6JixcHnxVwAxVVNWsJUzgLpghStVE6lB30lyxO93/KboPLeAit4P1E74XFTaK6hUK+Z/ewWyUrBpmbTZkNw4QDDtS/uZrCoN61dpr1gQaEIPtJdZaYHaMLopYyYW3mmTb/g942Kw/DsH2fy682WhZEyMBYuzye655O5c/p9fW7r+BMg2OfEj2Oj4D0PXzLgw4ZjDscmJH0HP6hrqa+tYJzbGjA2JXXXVVbjiiivw0Y9+FFI62ZN3vetd+N///d9Bt//2t78dDzzwQMv7tRwzds455+C0007DN7/5Tey+++4lvY4JEya03InRalrlHlqtHnEoVF2Z1OiaHr1ZN4FtfMKRqBcv80q1gka3c8Eaal5BK+OKa3Q12MDtu6L8uKRy3IYzB6CI9aIZ/poC5BEzBSSQqSzkNRQQmWSSa8m4MxOsaWgsnzELU+4lIFYGPmQuXsWdg3GTCTtQdCldAmLuuPD6TW1QJh/g3JZ0PHLNuWxRIFbGJgaQKD7PZ93Kgcnm+KGIafO4oJirsxmL586R78//J8Hg54M1XsSa9qO+8nYcGOWsWw7mEYbKTUmjVAioQp+M4oMoQJyW2QG6ImzsD4m4Ur1TGqgdg8WSVWQCQEDWldfHZtcNgAVCgHlfkGRCNi4tynWZbbKOtIhLcr8HExuWe3FeSfCZB/OHRirySdFvaler3IJRigEFzHM+eHWlFu3OO4CZblJDbvrQJa1yHlfpi8KGLuL4JNDP9uWg3oH23JuAAYAoQjYAU/ydXzMpzbUdd9RhaExoQ714b9L9anQ1kMgEjZ4mgWhDbGOFwofGXnjhBbztbW8rLddao17vP7AOhV3zPMeKFStw1llnYaeddmq5Xy2DMdLP+MAHPuAFr1HxzVaD1karmZeaAjLpZknFi7emciQyh1zPsm7oZWJeOL7WDuBccb3FbfkDJRDKEBBQISajrjXQ1bBB1MQcEdAZX0mg6qo04ISuTgrq71KO7Xp8+j6Y9uASbPfHu/HMHjMjLBUHNySO6twmda1Ra5jMvkmR60VSG5lIsKbBwYcDdtzlqHLg7z3KMjpUE7EZIHOAxQ0UYZwWn+WHLJB/veJUFfXL/Xf9bQbcmiUJUJ/jzGDcZTkx9ZkRgMtdhHFpiXcNyucMuKxP85nU9vk5he48X8bEZFASg0TGGZJUCXuPRZKgs+GDM3I7crd1rnLkWjtpi0xA1kxQPgEjGrzDWE3AgIKsIzWTkrqCpj7JBKpmtkmkgCDwyFxsuUIBwKTtS2IZN4mkmOjUdL7uwRhcd1XuJz+Ezz19B4BMCPschEH7ISNMy0J2lcz/nZVdye6eCAds2Tim6go9q3ug6spMHBn4TqsDKu88ZiNo73znO3HPPfdg22239ZZfd9112HXXXfvdzoYbblgK4M/zHFOmTMGvfvWrlvvV8pN01113tXyQ9dFylUMjB1g8QCKdwKLMJGQmsG7mRAO3Sccdge7Omld3j2bkAGzmpCvAXRQJZ0AsZF+cObaDs0P04qXvNe1EPn0BTpNRla6p2361ZxJZIQwazoDDTDferx3vM4DsuT1nWpbLuTJ85sq45Jz6PzFs3JbPmGUTC4hV4edNRueqctjtOEvkZuZlgBmyROYcwdoug0vuIo61ya+Lc4f25r6MtV0GaWU2wndZ8vtqWI44UxcDm372pN8XalfnObJUWsmUkEEsDcBFQDZvg4CUyJxrQsjEsiNcToLkIGhyQn0kKQzASEbkSkMWlUj84HlhXZBkmtGNucptQXKRSchU2kkS9Ss0AgrE3IiA1QsnNLnXn9FlHNTyZyKccMSWldty/302108ESYUBW3S9uYeAzLJkwX1LBL0/FVAHEiEgZA4lE2i9jq7vSEXiKwABAABJREFUWDblkNiZZ56Jo48+Gi+88AK01rjxxhvx5JNP4qqrrorqhjWzEAsJIbDJJpvgbW97GyqV1kF6y3vMmjWr5YOsj6bqCrkElIaNKwHgzXzXB6t11qBquhQfRqWPSFhS1bT30iYgETI53BxA8eM8wozCEJSE7rXVdQWV55iESqF/5sdDUbkf3g65Df/83n2x8wP3ADBuGM6OERMS6mBRO5OXLGp63abcu7hQ2k8s00cgzvTFubyaZU9S/+l4XMqDb+cPMM1ZqfAYzv3aN3gK710YrxbuG9uezofvQ+AxzqZxgOhc39xFSct4m5wh6c1VaJmOJAG0EyoOZR3IVZ7IBJX2SonNMGyHhqoZ4MJ1p9BwblFqWxZafRrOnWh+Pw7Q8exbmUqrmE9uSQogp3dL6FKUqQF9hm0j91kTRF0Yb5tYOG6h/MS6sgl332VLloU1OgFEf0NkoUszBFuAe7ZSIQrxXrM+ZMrpelDsLN0DVQhSA+79zpkzV+1A2vdmrjXodVlfV96gJMGgC32PuSlx2GGH4dprr8W5556LJElwxhlnYLfddsNvf/tbHHDAAf1uZ6ixUMtg7NFHH40uT5IE1WoV22yzDdra2gbdsZE2XTBjFM9Ebg2timXrajY0CKPyR2GwKpnLpvQ1jYgVIyDDB1xiQbjkAMBVuOENsrTeMSd8MPb1t7jxQd/XNvODcTnQmvbgEvz5vfviqffti7fff493Lv45lBXtY0bn7zNYJBzr6v0ZFyh3K3J3nnPL0rWLsVCx5Ije+hhWIeDAKhywXOJBHNyFbcRYsLBP/HghuHLnlbNt/Eb9IPlygfHegs3p2CLx2wD8ZzyswZpIUTBQLhYrkQmkTJArcj0ZlxXF9RKAIpbLJrnUTIwRxYK5dwQsa5VIpx2WCNc/kUlkRR/SagWqrpCIBPVCXZ908mUmkHVU8caKNfYcCJjx+CY6NwENkTm3pNne/cZH0uj5JjclZxpVTTedVHAg1qxNwJ/Y0D6UXMHZLpFJDxQD5jpTNmwui+spfDAWPicASmEew25jzNiQ2YEHHogDDzyw5f1+85vf4OCDD0aapvjNb37T67Yf+MAHel0fWstg7D3veU+vQmdpmuKoo47Cj370owGLqQ3WfvjDH+I73/kOVqxYgXe+85343ve+h3333bfvHfswr0acEOv+x9iCjTvqsEgUj7NEGPaAx6/YMkgF49KM9XDbuPU1nWB8xYGBdmnYq0yIgJniL91A+LNwn9bZ7JaMs3Q1bViwetEv7prc+YF78Of37otn9piJHe+7Gyv3ne2JSwKIuiWbmWH6EMSMJbYCQJfS6Fh8F1btNYuBMDpXc45hQLrrTljQOu6CNcf0t6Pr6LuHeeBz3M0ZthWea0zOhPodYwL5QMkZPwJgIciKDaq0Lwe1sX5TPFdd62hlCDP4ihIIA2B1wLiLklsiE0hIJCKHgvIYEgrkLu8jkAZaZXx7GvTbJlQgpIDIpJ30VKpmWTo+BdYUun71gq0Gy+Zrr6A6qWrrKWqVWGYn147NA1ByvwKwsWecqRsJo/tf19okY7BnKJEJZO60CGl77soma+aKtM9eRSArFPZ5OAZZ+FwkhQQK28Jfb3XfdFmXUZGodAsXYj204RpPR8oeeOABaK2xxx57eMvvu+8+SCkxffr0pvt+6EMfwksvvYRNN90UH/rQh5puN5D4+ZZh8k033YSddtoJV1xxBR555BEsW7YMV1xxBd7xjnfgmmuuwU9/+lMsXLgQX/va11ptekjs2muvxRe/+EV89atfxbJly7Dvvvvi4IMP7rN0QWiimFHlWhcB5i7min7Q9f++Zcj7PxRGArU8Liw0Oj9uNGP1A6w5e+OLmvrlSlzchwvQj4MBE4flpAZo+5Wddazqblgh11CWgu+j4bNR3HZ+4B4PIHBGqzfGJbSOxXfZ8yYAR67PyUsWWY0yAJ7grB+Y7s49xl7x6+32d4yAv4xfS840+rpboZuUH58zCPxahAKq/D//C/eNAbtwIPUZ05AVK8eJ8XPkrkgdDIbk5uLyDWQ0iFqdMeFrjcXiqEQRBxoaZ1e0ctmKbRMyyExaoEVuRwO0DGiSqUTakUJkwjIsuqbQ6G5AK23Wj0+RyARptYK2CRnSasUG42ul0TYhQ9uENrRNaEP7pCqy8alJEChEZkUQm5Yrw5CZ85F96qytC+O/B4rDo3sKOJYz9pyFvwOzLv5bFpFnwcTDlhlTmUomL1K4oItrRn9kLv7OgfSYptxw2kgUCh+q8XQ02QknnIDly5eXlr/wwgs44YQTet1Xa41NN93Ufm72N5BExgFJW1x88cUexfeud70LW2+9Nb7+9a/j/vvvR0dHB0499VR897vfbblDg7ULL7wQxx57LD796U8DAL73ve/h97//PS677DKcd955/W4nEcLyNxTAKaTJ/BuF8bAl4zQ8fecWulm1CoPP/UG8pmG1uboUbeP+ywRW0oEy0ULXGHdd+fv75W58FiwEhqadNEmghPkfY1Om3LvY1pbk7tBWxqSV+86GymFjyzijlsw7wJvd07FirsXQheLO34FdxzzFXYExUBcabefa8Nm83uJyYt9jgKsZM1E+33DfMuvGgb6pFahL/aT7Z+N9MokMsDp4ZFxnyxXYFp4LigZQzQbWEMTITCJVuc08pkoVFJSfK420I0M2PrXxXiITkEogr1actEThDs1YjJquUakxU3YnG58ZANfehp7VPbb8Wi5zVGTRthQGcE1I0LWy2wOGqqYMi6YT52bTGrl0ArSQCXpu/B1G2lyCinnPULWDWGYp4E/6YtmTZjksqAMoucp34ZJrMimOY8V5C6AVhnAkbKKQ6yIGr1hG7Bh9BgBdU9HJ7rDYCLgph2o8HU32xBNPYLfddist33XXXfHEE08Mqu3XX38dG2644YD2bRmMPfbYY6WUUADYdttt8dhjjwEwrswVK1YMqEODsVqthoceeghf/vKXveXz5s3DH/7wh+g+PT096Onpsd9JO0TIBNyjEstuGo3WNv8QgNW56w2E0YtdF5lnFAAbY5wykTO2iZgqvzZeuB+PI+PBtxyA0HcuI+FKMMXPUSYkAirsS5vqUnLjLlFqq5mbLLTlM2ZZvawX95plNcNiGZqrCx0lnuHHwV8sDiyc2ZskBR888TZjRoDLD2SOn084kMVcQO7Yza5K2J/Eu64h2C2DNMZ4VMoB6f71cduGLknJ4n7oO+BcicSgCT74snVcFFXAuAJpuVa5/Q7Auiw508aBmGlb2D6oukZSgLpEJGib2GaBAemCKZkg7UgtqyVTgbYJbYV+oTJMX8HapNWK5wrVKkets2ZdlbTMXAcBVQMq1dEVF/TqPrMxeckiW88VQACCcy+DlUxWfI1CkSSQHKhXgkoHBfOYSBPDR2yl2TgpMiAJzBrAZoAzjw8T0EpDSAGlTSyfvbcAAN9duc6A2BBbqJHV1tZWivUeyHi6PlhbWxtefvll7LDDDt7yFStWtJQF+e1vfxvbbbcdjjrqKADAhz/8Ydxwww3YYost8Lvf/Q7vfve7W+pXy7/af/qnf8K3vvUt1Go1u6xer+Nb3/oW/umf/gmAofs222yzVpsetL366qtQSpWOvdlmm+Gll16K7nPeeedh4sSJ9m/KlCkAYGdRiRDIOlInxkizbDG6XnhklIEVM76cJC3oc8w9wwP5wzI2RrwR9jvguxiI0aL9UyHsYOvcnP62KjfiqkY5X0cZL9Mvvw4iuTP7shiL08xInNLs5ycSuD6bvwl332W3M9v6bJ77c/UZueuu2THMuZYLapevR/n8m7lxerOYm7A3C12eYd/4uXN3pKxw/a1iUGOsGc+6JSDGGQkrT2DdcC47kYwzHlxdnQSbKfzAxGHlnsspEYkBXIVYK/1VCjciJfXQny7Al8xk4Wo0LsW2iW2WFTPJAyZGrG1CG6oT2rzMTpkKq86fVivIxhfHLNxolfYU4zYdj3GT25F1ZIaNK9ygpgwSudjMZzrv0ZD1Tcxyx+K73H2V5bg+Jxvkn0PC/tI2af8IlDdri8B4IoTNaHXHCYGcsMwkATKzj7BZuDI1rkzBXL+mLmk8DnGozYi+Dv4PAKZMmeKNezGWayDj6fpgBxxwAL7yla9g1apVdtnrr7+Of//3f28pm/JHP/qRxQu333477rjjDtx66604+OCD8aUvfanlfrXMjP3gBz/ABz7wAWy99dZ417vehSRJ8Oijj0IpZTU6/vKXv+Dzn/98y50ZKosJsTVLOvjKV76CU045xX5fvXo1pkyZUmTPuNkwzZpzrUctEKsecSgUHFCMzdpKTBnR7U1meAQuYm4uzpSZ7L544LnKAZnzYtDE5JSZomZq9RRIT0yYz7iZtmPsGG/btd+3GY0xFP00H2o6x8SUAKS2IGPlvs4dmgk/fmz5jFnW9VrTrhQSv4b8OOQCpvg27tpTuctwJQtdk5xdilns/sQ+x/ctM3e8b9y1HGfcysvIpcjXc7dTrEg2uZzI7KQCQTZlL3FiNBnRtFzKYN8EUiRW4DMRCXKdW5cVr1kr4KQzDAgQljlTLEtZZhKyODaxNolM7P66YGuoKoCJdXPAQWYVVNozdK/sRlqtoI5GoREoCykMzWLNDMBsm9CGztJVHzmzcZj77e8muBEQ7YElpeLLC2s1bivehv88mThAYQG36ZvwngGkBgA3GutIgT83f4NtAwCWL1/uVcvpTQGhlfF0fbALLrgAM2fOxLbbbmtFXh955BFsttlm+MUvftHvdlasWGHB2M0334wjjzwS8+bNw3bbbVdKDuiPtQzG9tprLzz33HO4+uqr8dRTTyHPcxxxxBFYsGABNthgAwDA0Ucf3XJHhsImT54MKWUJtb/yyitNmboYPUuWsNgLjULkr3gHj0a3ZW9yG+E6ioPhSQkqGPh8dyNnW/xyPwYQ+LUs6fIYEKKsDARtw6UeOKhb00Ch6eWy98gVZ7Y12/A4KwIoIdDYbOlivLjXLIyvOAkKmcDLvozZ6plzLMgraZHtt793Hio3+k1Gk6zsBp1y72I8t+dM+53O2V1X341b07CsozHf9VmOOwsBVXO3ZsxCrbhwnR8f5q/jrkS/UkNigSNnzwADtEjwNBYrFBbPpuLOMkkgmfRBKXanAB+5dMHbRqPLlzdw2l0uDsxmEZOCfQF2E1HuX65zaCa2muscuqYh2h2z4jSrNDQDzknBQEt2fqqmPEYm1zmU8mM+dU0VwrQaqtYoBewTm6ZVbhMD6p11JCLBxG0n4u+lsxgFducd5illoMzXQtTe+5cvB3xA1ayqARfGNe/vpGkb3ELNMU8epG7uObmJZSaBdQTGhtImTJjQZ+nCgYyn64NttdVWePTRR/HLX/4S//M//4P29nZ88pOfxL/8y78gTdO+Gyhs0qRJWL58OaZMmYJbb70VZ599NgADVtdJAD8AjB8/Hscff/xAdh1Wy7IMu+++O26//XYcfvjhdvntt9+OD37wgy21JSuicKcYyhrFj93MbUeftc0/xH+BF59jjBcNRKqmgwy0BCkEVK4Z2+EHzgO+i41/JqDBvxOL01UEZ4dmBFUFupQGxXeRS9QN5q7sjQFe2m5nlguvdqTfvhGd7Jw1h/W1dyA9oXjR1rRC56w5djb/4l6zsFURdC2VA5+rZ86x12jC3XeVGDrnms2t/tnKfWcXhbnzglWkc27mmm3GNrljxPaJbU9sWpgNG7YfAjEO/Li7uW9GzW3DRT/RcIW2azVtt+Hq9965NHxJCz6ZcAAv9+KzwvqytIwP9gTawmxpYkHywAXMv5vkHm1ZKQ4StXZ6X0IK5MIch0tQcHBnQSBl6nEWrlbI6XTXzfNXzUzMU00hLeLOqO88lq5j843jN2W02J13APOMayi8/oAPylRNeYCKMiCBOLvmtQkNjVDGwhkHc04zrvz7SYSRIEmEud9a6eikYjhM57n/+xlgG/21oRxPR5t1dHTgM5/5zKDamD9/PhYsWICddtoJr732Gg4++GAAhmWL1b7sywYExn7xi1/gRz/6Ef7yl7/g3nvvxbbbbouLLroIO+yww4jfpFNOOQVHH300pk+fjhkzZuCKK67A888/3zJ4rLRXbDCf7tKQqUAegJvxR38Ia37x66Hs/joxW7OuiHvghXKVKgeBO+BVHvRjAfxknAGiAPXQxUZtOPekk3ogxojalwmxZkkplq2Za27KvYvx8t6zMDGVtj2qGdmb1bUBBwTE6HzyomPE7rlg/RxAgu7Zc9EuE7y41yx0qRw73ne3vUYExADDptX2nhW5zs6F6zNRsPU+e3NFOhaznEHKP3MgzePbaF1vx+Hbm23cPWoGAGNmhUC97Fznyg7/A24wIXbD0/5jE5FwYsLND8iPD/x2mc5tGSOZCguYeOkj0/2GV/5IaxdTBsDOlGXBcFHwOJ14s4kTmVYaEk4PTWQSKUwyAA8yt5NH6lt99LM2tbpypYpkEtwb947qjzeCJ22UvAGMKY0Zf5aaVTvgLGZWJFaIrnWTXp+jFc67eRut2FCNp6PRnnjiCTz//PNe/DvQf7HWiy66CNtttx2WL1+O888/H+PHjwdg3JcDCdNqGYxddtllOOOMM/DFL34RZ599tn3JTJo0Cd/73vdGHIwdddRReO211/CNb3wDK1aswLRp0/C73/0umgHam4lMQlbMTLfSXoGuaUACsmAxR5Pga9v8Q/rcJhHClfJQOSrVCnKpmw4AXCvLfPfBEwGhrgK8kcuSq+UTeHAB5uZ7uxS2fQcUzH60/8RUWCBmFO/N/iFIMaDMuTaXz5hVEnWlgTy9ayHU7Ll9MmPEEHYVzza1OXnJImC//V2mXQEewmSFTCRe6ZlmMVSbLTX9JBcnv77cRetAj5PCIDAYGt82XBZ+jl2jcFk5CxNNwRIHdn5MmXsOwrgw125ugTV9j/UtzKDjLiqPEakpW66I2BASanasip9xGRoxaEB5cA51yoQUUDVlgspFAq1NYD/1jQNFihDzzl+52FQL1AoA6Nyn1G+XyEBMPWmpyY4KVK2BXOfoWtmNVc++gh3PPw7PnP7j6DmOBkvvWgjAAAU97wDkt9yKyqEHlbbjFQcAfg9EcH3jcbD8Pg9EH4zHjomilq+QCVBbN8zYSNhQjaejyf7yl7/g8MMPx2OPPYYkSZCTXiG9e/rpYkzTFKeddlpp+Re/+MUB9SvJ88hUthebOnUqzj33XHzoQx/CBhtsgP/5n//BDjvsgMcffxyzZ8/Gq6++OqCOjBZbvXo1Jk6ciLv2n4lxUnovYR28mOnl+4/LrxuRvpJVjzjUgkMaXLxU/iLpgANImUr7Paypp/Mcq+rKU67ndR5lAoyvCKRCoLOh7EAM+JmNFKtFGZI0cG+UkRuQQI2rP0n7b9ImbXuhS5T2JcDn4q3MvmEQ/6v7zPZETSm+qV0KW+dyfEVALLwTAFCfMxepEFhdVzZTkkzP3c8ev6ZNJuXKfWdj0j2L0D17LqqLFqJ79lyTMVa01x+j2n1+DUu3no8rBGrCMlHuXpWD+cPPHOAQEArb4a5J7pYkdzQHYSGI4m7mGMDKUgnV0KU4uFg73NI2wwo1ugwTRQXBY6r7ZJ7+WM0VAwf830uYZcd1pQDYuK0QmCUyQdaRmf6NTyEKVxYHYwTSYiDAlVzyE4YAp9TP+xxjbYxERgWJFFC1BmpvdKNnVQ96Vtew8sfXR6/LaLbKoQdF5S/8gu5+iAU3zjTaskesJmUYj5aIxGZOxuLPQjemyITNhO3UGrN/vwirVq3qMw5rIEZj0vMvvjTo9levXo1tttx82Pq6Pthhhx0GKSV+/OMfY4cddsD999+P1157zWqj9lZdoK8SSNyGvRzSs88+azMQuLW1taGzczTl7QzOdJ43paopY4q7IUarUfIBB16m9Ioq9b23jEoeCyaTxLoVpPIHXAMEXOYkgTinQ+VrUwEGcFFMWLPYL3Jj1nRu3YzOHefcqDGbvGSRjesyWZI5MiFQLViTdgYSKOCfEhK6Z8/FqrqCyk2WJI99y0QC7Lc/2qVwhZALsEbMj567X79AWXWRYQfAQBkHQiETxssM8XM3oLT5ccJr1EwINrZ9DBD668uAKvxM7F5ZY8wHh81cnsQsGb0ozpLkHtdk2SQ2gaLMSV4zkowH3RMY4lU3AABF/FcpNhOGKZepAYdoUnLJ9ZVr/QnwuDdh+10AXyqRxAqFa1W+wQImfkkA0PVGNPlgfbLGzbci/aCJweGF28l16QBZ8/MkoB3LgOcgzLmeNaQs37sS0CtAs6prJMFzOJyW5zla5E6ibbzV7d5778XChQuxySabQAgBIQT22WcfnHfeeTjxxBOxbNmypvv2VgKJ2zoph7T99tvjkUceKS2/5ZZbMHXq1FabW69tpEuMAEUNyn4ULQ/1lrjFdHeaufL6oz0Vao2RLhnFzpLLk8d8meXxouHULm0TWui+e3EvPxbr1X1ml9xe1WIWzAdbPXc/VgTd/VGfAT+GrFnfZGKuaeXQg6I1FPsyHrMVX+9itNy2Sa/3Jty2v8bd07F+NtMY89uIgKomzFfY55gRSOL3rmnAtcd0NYsDijNWzaRh+O8tjPWiCRpnUXStzKbFLJ5so0sJBICJZaO/0JwUhlwvWbFmFhZ97816F7t2enL8P1B+RsIyStFjrSOAo/Oh+Xurm1LKxndNnjwZL774IgAjXP/kk0/2um9vJZAGWw6pZTD2pS99CSeccAKuvfZa5HmO+++/H+eccw7+/d//fUBCZ6PW2CyU/pr9UDc+4ch13r3QYi4a70VSiB8KNkjwbbibRySOzQqNWJg6y2gkF6GsCGSptPvRcrOfc1tx0MIFPqk9DojoeATmSCLDB3Gub2Qvs+D4yUsWebFKMgFk5pgGUoQXSYKJqbAuQKqPudnSxZAJ0DlrTnE8B9KoqLkDbUXdPUmCkBVUDj0oGgMTM2LIQuBE57jZ0sXevXGA1mfIYv/5NQuZRD9Dtvc++vs1i0ErgynOmAJ+3FgI2JqBWGLEyjFcefBfe3/GnelPWug34bZ3pY9K7VON2iYTH1LOB8rMlS6OTyxXzKifmumSkRaa0RpzbVNSQQhIAQM0KtUMlfYU47dYv91QvPavD8T6P5lodr96S5ZoNmHl/8UAYs7GbHTYtGnT8OijjwIA9thjD5x//vlYunQpvvGNb5RU+ftr3d3dg+5Xy27KT37yk2g0Gjj99NOxdu1aLFiwAFtttRUuvvhifOQjHxl0h0aT8ZgPwP0QKYVdSAFkI/vDbPZSIfeJEZWMBLPGYizY8ipE04LfQBGsjqKmYK5tG4kUkHXF9MdyGGmKxGZUrmnkkEmOdim9YtsGdMUGe5J9AKhkEiUBuAByP66NG8WMAWYWm7HYkVzlVhFeA0jN1cKqujvvl/eeZV2CVPrImDk300/Tjy5l3Kg0UHL5hWTeASZzrAhYbma9kij77Y92mWBNgzN99J8AVc4Ace6t5+WT3Dm45INwn/Ix/MD+MJasd4asvEwkiWUW/MQFfxsyK9mS56XyOTrPnXtY9Z2hGHNfaZUjL1z6oYsrrPdq+ycTC+RERDoh10b/S9WU906hmCOuR5aoHInyE2tUXUdlNiy4TIW3TFYzpFKgbcMNmp77+mIEyKpHHBoFVjyWrJm8RcxC+RKehRq2D4SJIn4WuqysO7mjMWJr8Pa1r33NhlSdffbZOPTQQ7Hvvvti4403xrXXXtvvdpRSOPfcc3H55Zfj5ZdfxlNPPYUddtgBX//617Hddtvh2GOPbalfA0IRxx13HP7617/ilVdewUsvvYTly5e3fOBRb94PW3iAS4ikKI3hUspHg4WZYbzkUaxUTGiJpJIqJkW/XSYYXxFerBi5rSjuJ5GuTBLVBEyF8EReAcdumaB5p3DPKX4eX8aPReuIXaPvFIBP/1MhML4i7PfVM+dYdXwyAg68np8syptQOZlUCNuP8RVRyGJw3bMy6IhdUl5EuJXYQkoaULn5PHnJIkxesgibLV1srzdgGD9yz9K50XXm9yzMbIyxZZytDNm48HMYu0YMYm/xZ+Hp13RcM6mZS5Nv67mWI9u7MkW99KdmdPYa3Y1S/KRWuVlPcZZau5JJBZsWY6ZiGdamrFpxPetGjLXR3YCuadQ66yW2jvT/uJhto6uB2pq6x6xx16otMK6NlIWJGRPQtQZ2//U3ml6D9cm6r7+51/XE7Dd7t/HgfTJRVDjIi8zX/loiEzsGCLHuYsbG3JQDt0cffRS6APMHHngg5s+fDwDYYYcd8MQTT+DVV1/FK6+8grlz5/a7zXPOOQdXXnklzj//fGRZZpfvsssu+MlPftJyHwdF6UyePBmbbrrpYJoY1UYFgF3NNGnBF2VHpdUBSbUNqXF3S2jNBqTwpWXZG0vDJ6hWKxhfcRIT5GKkQZ+SHGjgVw2NRlcDiTQxWZxpIdDQLhNMLFyZsZqKVBOSgAJlS5IRuKD6dB5rkucMNLn9KOuRjlerK6iGC9DOlfbqJNK5tssEHe0VVKUoFQqPGZ0fMW2KxQrRYJH2s5TWpHsWQSZFlmWh+t85a47nWjWFl8sgyMVx+aAsVtuSX2vuxiyfm/855iKmY3KXLQfUYUwgAbLeYsoAw4yJJLH1CsNtPKCWNxfG9IBT4bbMlXlm6wTKeP1WFrBv3IXN7x3FH+om2ROGfXGsnaorA8q00zwTFrSpQqcscHcycG/jnQqWxrJ3NYVGt9FN0lrjoQ+d0bTP66Px+pLh8mbvOiqLRbGxXFDXrPfb4nVHezMuOjtmo9t23XVXq/Swww474LXXXvPWb7TRRi2XeLrqqqtwxRVX4KMf/aiX+PGud70L//u//9tyH/uFJHbdddd+d/Thhx9uuROj0USS2MKwodFLkgO1rb5yNF44r/91rYbS7Esefro2vZwsO6P90jExc+ChiM0aJ5Aqje5uIx7Jg8dFwLioPIcEy36q+9mOZOSyNECsLPJJ7cXrM5o2VM1kMpmYLZd5WC2YN26k5zXpHpNVaeQyjLQFGjmAgumgwbc4nskYNW5LAo/8XAEEfTbrKHMvFlSeyASqnxmWJJdR1xqYY2Zs3SRBUpzzZkuNqK0PWGHj3rzMz8LoWjkgFY/d4tvQd9qe1pXPH4jpwcWYN8CJ1HKLVQPQeV6UE5LIa41SX2P7hUrqBJikjExGagp5RAiWW7O6tDwTk7NjuqZtjFciEsvCEHAg9yZSB8RKxwyEaE0/HSMvUwGRutc4ZffpegOJlHjPr76GRz5ydrTt9c24ViLPsMzDhw3wmEzh/Q5NHVKzTXNGq1ngvmVdAatntq5sLJty4Lbhhhvi2WefxaabbornnnvOsmSDsRdeeCGqtK+1Rr1eb7m9foExns7Z3d2NH/7wh5g6dSpmzJgBAPjjH/+IP/3pTyNaHHyozRXfLQMXzQjFULdoJK1ZPAtQBmahxUADDWaVagatDKNE7ApJW+Qqt2yPSNzsXzWMgr2vhZVYEMcBEy8wzt+rNLCSy5M0x4AClChfLLSmqWRVAlnIUZDsBAXGh7phgInDaBQlWYQ0/WsvGAdVUzZZIWR4HBvkuwpVniOFm427ayqMumc/zSUMhBmq7l69us/sEuD1r6H7z1kqWkaxYir3dd9ixnXm/FixvAQGycJs1FhSCGfXyut4jJQpL8QzMV1/fCYtHEzDLEcy/vvmshdUpzUR7p5plYPPzWK/N/P7MrFhqm4qd3AXmaopC8gSkVhAQHIapNxP5Y20zgk7FPubt49JGBDRMAmXhKCgaw3sceu3cN9BXy5f3PXMhEygdG/XvX+B+SSoS/eAx41x8N6sLBKXwNBN3O3DYbr4G2wbb0X753/+Z8yaNQtbbLEFkiTB9OnTozImgBGF7Y+9853vxD333FMSwL3uuuui8l99Wb/A2Jlnnmk/f/rTn8aJJ56Ib37zm6Vtli9f3nIHRqtV2iUqacW63fLIj51cXIKVIxkJCwFj7IVki50HP0fHqsUBmZCJnY0afbGymyAEHKqmLEtBQIsGexqMTeA+HS+BrzQPzzUqK6Jwh/oMDgGCTBi3JXpc7A/1lYK6K4ceBJkJ9Nz4u9K1Wbnv7CI2LkGuyi4LP3aKubrKE3Ko3GRE6rn7IS3cGHkQkN2KGCwZZ5DC60PrS9ctALVknDkjoCcTFMK84fb++cYsFpcWY7z6Mg5w/eVMr4wJxQIoMZa214HbvZn0BVAGZDx6g559y341YcfC9uhi0QDPjdxiuXbZm+TyEqwMOX0H+07DqQEKCNolZs/1vdHd4zFn67sRO9bbpLKkxh8Mutb922QwbnrsJg/0QORrxmzd2hVXXIH58+fj6aefxoknnojjjjsOG2wwuASXM888E0cffTReeOEFaK1x44034sknn8RVV12Fm2/uPcYxZi3/Sq+77jo8+OCDpeUf+9jHMH36dPzsZz9ruROj0cit4Ir6FvR4uF1EQHIkzNLyMmkaCEiAzH6PzJO8AsrKFF+mVP+wFA3V2eN9yJU2sVFKAJpU933WJXx5ubJKrgQQUASYp9JcX5mgWnMuxC5VHoBlRUCxYtKJTCCUqTNKcTXjjjoMIjNtrr7yJgCwpYs6Z83xZDmqKrc1KmNq9zEGCDBxXjIBispZHiOmGrrp/ZEHz7PF29Utt6Fj8V2oz5lbHDO314bLf/C+cLch4QEO4LhQLL/GMnHXMwSYnPFz5+r3O+YCDYGgO3asIHk8Yzc0ii8rg0sH8PsyN1gXbC50aYIVBtCTWda3EHjty5yqfwEOak7AFQCDXc4IgNn3CgMM9Nuy5x2EUdhJU6HEb+Uy6g3MeuAyLH7v5/rs82i2RCY207WvTFluvYZlRHXaen+OwmSu5m/cobU8N3+DbeOtagcdZOSFHnzwQZx00kmDBmOHHXYYrr32Wpx77rlIkgRnnHEGdtttN/z2t7/FAQcc0HJ7LYOx9vZ2LFmyBDvttJO3fMmSJahWqy13YLSaqufIJfsRS1lkCzpNovAHvt3Zn8JzXxt5MNosVgkAJA0oNe3FYAC+MjjXa6L9m70AefkWvt4NmmYZMWMyIoXgZBcAkosA4DGObRMr6FlVs4H6vN12KZC1C9TW1M29KVymGiZjkmusmVI6AhOOOby4FkVJnbaKAUsL77RACnPmIr1rofteBNN3K21dnwS+uKkcBbByWapA4UKbd4ArzXPnHXYfAv5eoHlOWY+iOFd3Pem6xWKnwtvkQFjcHRjuy12/3HhSBB2f9ustuYG7OPmxeKIFnUsshpCfb8zINdmM/eqNFStv2ywIn1SLTaC/hj8R48CI6/lRv7TS/kAeFiUvJkL8mS+xapbpE4UqvwOOXMGftml01VDv7H5TyFz0ZqHQrhfnRfcK/vUj4y5KbrGSSCZ8RTgpEmkmnevChiIb8q2aTUnWaDRw9dVX47TTTsO0adMG3d6BBx6IAw88cAh6NgAw9sUvfhGf+9zn8NBDD2HPPfcEYGLGfvazn+GMM948mTvctSRkAplKJKKIHQIsKFM1bWMPRgKI9cdtwhX2uaBlqNvDQZWLGRN2Rp5IYYOneR09+i+lATbciK0wwfiO6VI1DZnkkQHYgYVUuCLPWuU2K0rVnTuNs26JEB5bJzIJAT+tnQ/K1NdGdwNpR4b2SVXUOutIPngwGl3mPLNUQh56EBpdDXQ2FDoKTaHqooWoz5lrg+R5PBngQINTQxeW9XLXLIc4eB7ULbch/eDBJl6t3bjG9bwDkN92uz2Oc9XmDFT5rkHHdiWey9Lfpsyi0TIO2Pxz8V2I7pwduOK1LX0WrTnrRUAsTNxoBsi4JpnVE+vnVN8LNSjirei3EFZiMNuXgVWz77FYNDKtNBKVOF3CoE+JNEXFoc2zKKWrgRnrizmettI63B3LsyppO11voNE5eEHK0WwhCGsWH+i2D66nzgHp38fwXRF+p4QLDobHbPRbpVLBtttuOyCFfLKVK1fi6quvxic+8YlSfc9Vq1bhqquuiq7ry1rmV7/85S/jqquuwrJly3DiiSfaWk5XXnklvvzl9T9INDRvYC9mowacUX0y1fRHvy4sFgOVSAHBMj0BnhIev+VhFqVrywE5Ai/NZ+tFQWRylxZshayYOpBZaqRBRKHnlaUSsojVyoSRwwiBGB8kG90NGzvGQUS7dFo/BHZEkYAhU3cdiDkwbkthpScSUQah9u+2272XbV37bFYINHjMFmW2hTFjZLaA8cHz3LUURd8Zw8FFYrl8RFiUm4494e67CjaNVz3w5SsIfJELltrlGm8k+ktxZWXtON6WY8V8Vy4HjAj295MAwnZj15fc3L395pyMQfk5JeBF9yQUCqVJRyn5op+SJN7x7IDtAyb6TBZKKcQqAFD/7D46D9o1WZUh4BNpxWqPrc/WscAUXeb3IdQVi11bXnkk9szEZC14e81iY92yeBLFcBhlUw72761uX/va1/CVr3wF//jHPwa0/6WXXoq77747CrYmTpyIe+65B5dccknL7Q7I2X3kkUdi6dKl+Mc//oF//OMfWLp0KY48cuRLAg2X9VZ012kDaex4/nHrqktR08oFBAOclSlcZMHA05s+WfmlJGyJHwJU4eBCM0suoErabO6zQFqtoNJesS9TkSQWfNFATICJtJV4Jp3VnSr2o2xOkhXIOtKmMT02YaGmoOrKK6DOxT/p3CqHHgR1y20A4IERPXe/KBME+GDCKfHn9ju1Lwqx2dBkaq5T2/xDvPsRY4Gcm9e5Futz5iKUHgFQkiJxTKQDZ6EWGYE1AB7go3UExHibDpyF2/qlm0KLlUkqn69bx1ky/hyGz3lvYqB8O7N/uaA0/UZi7ZRqIPaDJeFgkZTfnTo/17/j4CwsseSESrn4ayjXIKSArtdRW92JPW8/v8++rQ/WGzAWwXOQa10CYuWyWE1c38Xkm+6TsCB9ZLTF9BD9vdXt+9//Pu655x5sueWWeMc73oHddtvN++vLbrjhBhx//PFN13/2s5/F9de3XhP2zZNmM0xGsRkyrXgxVq0oNg+38VguVwbJrEuksEyAp1fEwZYQkBnTI2PrHMBKAAiEM/rYzNG5DfyEAIrdctvTcndsHnxv/ksv1dw7VlESiFyZja4GKu0VVDdM0ehuoNZZL17OomA7nKK5p7kGjXrdH/w8uYN5BwAyseV3XFC9b44ZMmySYMDLj8fT3nk5IUoXg0SbUxmYnjvvQHrwPHR3N6xOW3hcw14xl+Wdd0AUMW4ygQWy9SKxgrNjoVFSBf8uK6bUVbh9M1ckMXJmm/Ixyts712NvbkgqhRQDbba+agxcKeWtC40/p0A5eN8+kyqmNebc9WGpHbPcsbNxhqU4X50DpHdXxDnx9TYrOgAXSQDE+Hk3umpodNfQVnUq4euTdSz4gJ2YkXmlqpTqE2zzEIzQeLyYZdB5DJmCXSeEe67WtXsyxxAE8A9JT9Zv41JdA7FnnnmmFDPPbaeddsIzzzzTcrv9AmMbbbQRnnrqKUyePLlfjW6zzTZR/Y31yfhL1Qa/ZxXHOinfBUH7jJQRIMu1SeW2L+iigLFhzJRltMLRMRHCZpbRYKQCNfEQiNF/zkaQGCtAsS8ue42DDc4QJVIiUQSs/PMhzSfrLmYDcNomrUuJ4tAMeyeh6kXRZdsHs4+ulYs9c8FXkhig60euWSsy2fDrddKlpBqc7rvJpiTgoOGDAB3E1iWiYq8HV3unvo476jDojszeE4q3i1UgsEBm7n7eNSN1+nKsmfscugudjpu7577oLXd1omTclcpBYxhb11spJX4OBPw4YAMouNq/d6HJTDJXu8tajG1Pv4fQDOvrvvdHLsPfPym5EoFyMH+zd0kiTO5eb2yOF5wuBXS9gdoba9G+8cToPqPd3D1ydXY5KM114v1e+MRGs6SG3uIA+X2heCIbF0bvGBHuU0yixqQt1ivjUl0DMSklXnzxRWyzzTbR9S+++CLEAMIa+gXGXn/9ddxyyy2YOLF/P+bXXnttUAFyo8GENC88GbiSEimAunsp83px4QA7UqbqChISKMBVJTOfgb7dKPQiy7VGbAZvQRcDYZwxDGNwaAQmMEIvUplKKCi3v6QYHumxGyZoP4eq5Z60gUThymQvXRokbT3O4iVMrshQwiA0Umcn8MgZMu42CgPLOaBJ71qINfvOtliXAAOpdseOnd92O9qOOsx3YdK2cLpKudaotBcTAlPxxt4DrXKg4QAKBfw3C3AXQQB+KoQFj1xY1sSamW1MtQPXRpg9ScDMfDbgtJnFgB/vW9jX2HZ0/mRWV6rJesDPznWZh6LUjhRlQMXZL7fM/e75s9I3U+OeC8EGe83S3cJjm365Uj5hrJKZiLlEnUQ6Jrq+uhNqAKrgI23jj/6QBV52QkYu3mIbj21nLuXQZCqslAWFMWgVf89xS4r3FZ+c89qn62oS3lupr1baGLPB2a677opf//rXNoExtJtuumn4RF8B4BOf+ETLjb+ZTNUbkKjYFxxnVwwrM3JArBmwEDAvaCvFwTMNmWuT6P7wvGi70AggeTPQAjR4A0hYvoSBDcm2I2VtAPalF5Zw8jKZyJXJsi2NHKZ/vFAIV9XjbiohEyCT1j1kWbBiACC2L6yjSICDyz2snjnHBr93sED/ZF5ZdyZ0WcmwjpPtCx/8CyZRCuNuZSAvBDFJ4Vq1zC4SqIa7vxxUWnazyHJFIcTLdde4fAWPCYuxWgTMfKFe3yUaAiueLRn2P2SgmsWVGVDePF6QxI05iA3jzPj20TYC9yWC41F2NTfnZvQ1qjT7TP+JcQmzKl37PijsLfMSMEH8Wmn0rFyDuY//JxZOW3/e5eH1jgEnmQnv+YhNaiyQiijtEytWzqB0WnQ8C9qsAxKq2KDXTXJEjsG7GcegGCCE6JXN7ItI+sIXvoCPfOQj2HrrrfG5z33OKvkrpfDDH/4QF110Ea655pqW+9UvMDYUdZzWN3M/Wje7FJlhYlSt4QBO8eLNVY6/fKX1Su1DaQSqcq2Raw2lUfTX3L+KTKAUvFkdNwJFHJB5rJco0/zNwBcHabx/AJCrpMhOzT1tLQEXbEvuCIoJSWSCVAqIAhjl5JIFuaaUPV69u1Fi7Oz51bRFBCVQRi5NctnCxKzxeDaRJIWuEAcZLiNQ5TkmL1lUvje33W7uwaEHecCdXv5rr/2tzRgDygDEumWgrSgpzzYldy7ta89NJpbV89gf5iYUSeKBOieTYf77avdlRgzwWbbisKVYMp81i7NhMUAZux69sRmhcDHggC4BslJsWazmJGNZKO5P2fghtz0xLhyACekD6HAZtUFMXuhCc6ER0pbsKclvBH2OxWOaNgybWl/bDQzAfTLSVgZkdG/LgyaFYBiWm7+bXLKEF9saGXfDLHRdvGNE0J4q1ie9MMBjNvrspptu8r7X63UsW7YM//mf/4n/+I//6HP/f/7nf8bpp5+OE088EV/96lexww47IEkSPPPMM1izZg2+9KUv4Ygjjmi5X2MB/L2YkUeoQBQvM5GmSKRARWs0ANRrPahUK4VOVdpne8PWT5rhs6BWcm1xt83qK2/C+KM/5IBLBJCFbBYt498BlNgaESyPgTVirrgciLedNFma3O2j7WAqi9lpofVWU6itMW6XSrXCgm0L2QK4IOxY+rvHvoVuw2DyQdplmm3LgQYPdCc1/5i1zT8EyIQVmaX+0N48G5WuGBcXduBWWwZISseMEDgT0skz5MUzQH2PaXUhOL5EAjQ0HCDjLFf5mYnVm/SuX2R1fxT3mwW7836H7Gcz46CVZ0jG2okxcVzDqj8SCdQO/x9+Nt/Lvy1fmqGIZZKAVg2riQW4yZdk5Y7C+LdEGq29XGroWh3111/H3Cd+gYVTjy71d7TZxE/Nt08bn9jxWDB3vppdSzaJKaR2rCsYxCo6gBwG8AsICEEyJ+bdRu8UmnwLeywBqHXDjI2Jvg6NffCDHywtO+KII/DOd74T1157LY499tg+2zjnnHPwwQ9+EL/85S/x9NNPI89zzJw5EwsWLMD73ve+AfVrDIw1MRHEIVhAIgTyNIVUGvXOHvsCqLSPHBgLLQRTgD8YhTwnD6znL70QlITWLC6mt+Xc60KyDzwWQ8gEuXTxNGSUidks65ObWd687xxwhlIgVJswJgIqoC37FFpfAeitmouTKU/dnQhvxH0XADHzn84hsYCMjMcucaCaKx5k79qPKf7HjGHjyLqBMQlhvEvU3dxXG/2I5wq3pf/Nnje/D/1jnsJg8H7t089+x8zGjnV2IW1RjHI0WF+lj2QmPfekJ2At4hpjQgrksgyuQxDdV0zZOrN8CMoZjYGxprbHHnvguON6l6d69NFHMW3aNAgh8L73va9P4PWnP/0J73jHO1Cp9A211j/Oeh1apZpBZBWILEUiHUuWdlQh0goq7WkxM5XINhg30t21bFgYqK5Vjvp/32KXcRqeXJrhy46C7Pn3cD1vhz7LzAnOhseLZ2M6Ud1KtYJEJAXT5QNC0t6SqURarUTjgkxShXD1BXW52oAo+kixadzVR0KgJAabK5NlqYo/2i4VwsumJP2tvhiinht/Z6sEGJYvLlpJ/eDXOLyvMRNMUDcG1nh7HITZhAeZeIMaF4EFnJuWa7uR+YAN3vWhtmIgLBb7FXtewu2jsYwsk5C0uXipoMFYONA360PsHFyMlwnS50Csv7pk9Pvg1SQIYMVkdnJVxIFKgUTSPhL1zm7kjVp/TnnELVY3kswynHRthdOTM9ep7Fr02maMO90T+pOFODU9T/y58vtAiRdjw+j6bl1dXbjkkkuw9dZb97rdrrvuitdee63f7c6YMQPPP/98v7YdY8aamAUZTJ2dvtMLrlLo9uh6AyIbOWZs7bW/RfWIQ71lfODmQIyMqH3AZ8YA5p6ULnaLvsfbKRvpepEbwdbdS2WJEeOfbXp5nfWN3HLFoKRrqigvVI6HoizXXOWo13Ov/ZDhoPOWmS+qGdbZ5O1rxhapHLZuZaw+JbfqEYeaQOMCAKoaili4chwRPz4vR6XqirlnKL0foESDUkJAkbGaK8eYCebOoZJPOndF4DmjJlFmKGlbqoQQk66gZakQ0eytMFC/L0V9oGBVm3iD+DXrD7ihbMlwGT2DYUwlBYgTEOPB4H4f3TWMxYnlKgeYThX/z8E3LZepsPvb7Ej2m7LtsixKvi0l7/DrpGsN1N9Y2+c1Gi1mM0eDuDmKo4snWZjYMP/6hUx3mfWiCV5vWeRa5UiLqh55L+/F4TCNHHqQ1NZg938z2KRJk7wA/jzP8cYbb2DcuHG4+uqre903z3N8/etfx7hx/SNfarX+T3zGwFgT48wMzSy11pBgbE5qWDNVa+DxY0ZW3ZoHeANOI6w3AMVdkn6skv/yT1h5Fo/+l8IDOdzsMhYADxj2JmHAIZy9UjHlXBWxZcIBuNAq7RWPvTNB7RKQLikgl+XBmbtsic1TxW+G19ekc/MC5RPKqoQtFA6Yz6TrFTMCQ7lSXjYqt85rfgPAiFyGVRQSmUB3G+ApM3OXE2FqhVKGpWW5mtzzsOSTjTFjnlACuvw6UVYjUJQjUn6Kvcpzy5Tx5SHg8q5HAMjCDMfoNWSCwFTnM3Z+fFkziyWl8AFW1QvZlYxYWh1lWmL1JqN99+KS4lmzMdZNKy79Sr/JgJVM469xE+dU985R1xtY+8rK6Paj3UhjjX9vZhxY9VWr0mznx5Jx49mxgm1PIQTrStoiHwI35ZiyBXDRRRd5YEwIgU022QR77LEHJk2a1Ou+M2fOxJNPPtnvY82YMQPt7e392nZAYOyZZ57Bz3/+czzzzDO4+OKLsemmm+LWW2/FlClT8M53vnMgTY46IwYMcD82mRYleuoNyLQCBfPCyyZ0jGBPjSAowOKMWKxXjBUDCGw5iYkSKGLBqkgFGt3Ng1T5y4pcC727cAzI4wxDrnO7r9Is21BrJFnFS1HPZQIJiUrV6f0IGHDWNqENWmnomkalPbeMkVY58lrDQFVS7Cb3TQCO+KBuXSH2xWsKlXMgZrddeGfTc1577W+NZlImobsa0dg9e85FfznYICZM0boChKqaYkBPG7AbJGGQaGUeyRwz1yGo4EDtFUXhSdtMqxwpGw5FklixV16mihf6Lh2viZ5YOAhyUMY/xxgNN3EY3KBYYk8i7wCzPIm60PrDkIR95Cx0b6wbrScR597OlQsX61rDhFqkaXGOGrU31uI9v/oaHvnI2X32dzSYB3ilm7CF7lm6ZlppVLIKotmTfHsCvDpHmsUTK0KjWrd8/7FC4euXHXPMMQPed9GiRUPWj9BafnstXrwYu+yyC+677z7ceOONWLNmDQAT2DZYZdvRZKWCu0JAVjPIrAJZzZBOGIdKNUO2wThUNx7ZgFj+kqFMsUQmaNx8a3R7NwCIkqgtmUyFzRqyEh+R7ZweGEs9Z8KUzYwAHM9MCtPXCXBwVo6EeCvtftxYQu2xGB2ZNi/iS65SHi9liwp77RZtsWMONAB9zS9+bePUKkV9zoEM4ATMuOuEx0aFiRfEOPFamDSgJ1LYjLPQQt0zHutGbVSliR/jbs7QyA0ZZ2nLy3kyiQz6HF8eZ6d6y2LsMyC8iFGk44XXh5c54uchi3hJ+t3ELJZpzNtt9tvp76DPWVWS5rHuUO1i6d772/UDjAH+dQ6vMf8DyhmStF9pe+HHxbpt+x4WRwKAUTblYP/e6nbrrbdiyZIl9vsPfvADvOc978GCBQuwcuXIscYtg7Evf/nLOPvss3H77bcjy1xdkDlz5uDee+8d0s6NpFHRXm70YpOpYQpkNUN14wmjInifjAbeZoyY2648Q6eBgIMwgGaiSdN9Adh9ei2qXvQtBHq0P7EvgAFSHBQZl6S/PTeZSQhphFBpxhyCPAtKmgz+3rWQ5UQEmhX3xoD1ZauvvAkyk8g6MlSqlV7vky0uXrAhPHib99VlUJoBiDNK1G8K/ubXwCZcMKAW3mfjEvQpNSFNncpKuwOUkl0rnuDA93HtspjEfriOwnPl7VAfw6D/MnsRz8RsljFMIp+xWEpuMfdXCATsuTYRgu2t/WbHMvGObqLkt+u7bCvVtmJ/I2+RKwVVb6DRVcNuN5zV6zFH0rhAK+AD3tJETLqJmPkN+O8AwZ4T2kdrVw0kZuHz1t+SVcNl5KYc7N9b3b70pS9h9erVAIDHHnsMp5xyCg455BD85S9/wSmnnDJi/Wr5aXrsscdw+OGHl5ZvsskmLWUZjHaT1Qyy2gZZvMhsLEcRQ5IrjbSjikp7G9KO/vmEh8PGH/0hOyBRP5uxLZOOM0J01qXIs/YKxonPKkPWgl5OxEzQMoC7J31GwDEIwgN6fPB2L9Hy4EcAohJkUPJgXgskZeG2ZDU1ieGwAITLlBQgpDeWxC+U3tzt24qtvvImiCzONHLjNTMB2OuQMl01x9z5CuKh25HrlZEmHb8e9joFTCnd60q7H9HgJXkUoA5woKdZEW/ajgMxOgZnbH0GzzFhIUsWPp/0nw+kMfaN3/O+JFxiFtOnIgvBQ2/H7i2OLLS+to1lk5KZ74pJuhh3pa43sOftIxvvGrOJn5oPgCbFuQemTaZk4q0HfPbaq3QgXbkpQew5Y8XiIJsnbZVdmJyVXVegjAL4B/v3Vrdnn30WU6dOBQDccMMNOOyww3Duuefihz/8IW65ZfDv94Fay0/RhhtuiBUrVpSWL1u2DFtttdWQdGo0mEidvAKlLsu04lH+NOOsjIBuz0bHf9i+sMjoBUWB4H0ZgR8+A20G5DhrRt+jbhY+QxUBsMpkCYQBDvCk1QrSjhQylQ7cUUp/sZ97Cefl4zUZfOklXalWbF945hqBEv7Zc4s0mTkP1tJqPGRz7bW/tZ95/TuZSWTjUw90WXdnJCNWqxxptWIBJ8Wa0flYuRACSATQAnaMJzDwgceK8xZxajKTSIv+JQV75oLunavbyoZw97NluWIZiYnfzwAsxtgr63JmwCzcthkIp75wpja0mJwEt1DCQrAJELe+AsvLfXNly3gfYuxYuJwSkew51OvQtQZUdw3v+dXX+t2HdWXN3Ly8fqeZlLmEoEq1YqUtCHgBsGWmKPyBg39u4XVrxvTzSV2sesOYjV7Lsgxr15qM4jvuuAPz5s0DAGy00UaWMRsJazmAf8GCBfi3f/s3XHfddUiSBFprLF26FKeddho+/vGPD0cfR9QIiNmYnCLmotJuXLQirSBpGxlmjFK7SQKhLzcHf3k3CxQOBwen05W7kiJWEiPx1nFLpFO7pvUh+OLb2jgQkQBVoGd1zTFdSrugXegCTCirQm+PJ42Io6nD6Zgak42pPWZNgrnliqB6biFAy3XvLrVW7bUf/L9e15sMT+ce9hTAZVH+KTPq6pY9k9JmnvLC7QRmKMM2PA+6LqpmtKnS1Mlo1P/7FjQApB882LalWJFyA5y1PUYijKtYZhKqcK9SPUyezakaGmjkkFlqQZYqkhZUrfycArCJFnwdna8UfoakZQGD+Sb11cYLRhmteCwat8GKuxJbGVrst8St2cAfZt+KtGKvR6O7p1jHM4+Vp1Oma+tGRb6/RpMryfpMz6llX1lMo8iKGLBChkQpH7SZNv2JHBm9Z+j5tjGY7Nix2pUDYVQHY2PZlENj++yzD0455RTsvffeuP/++3HttdcCAJ566qk+dcaG01qG9Oeccw622WYbbLXVVlizZg2mTp2KmTNnYq+99sLXvjY8s6vnnnsOxx57LLbffnu0t7djxx13xJlnnlnS8Hj++edx2GGHoaOjA5MnT8aJJ57Yks5HzLTWUPWG/dNFXcpsg451SlFz2+j4D1tmIRFJEUvlXuDjj/5Q032tbk/BkHC3oq/XVXa/kBHDZZkuUd7WMlaZKDFLjvFwbBzNZKl9yoxMx6fewBeyXIlwrsyw/TB2hFyxgIlBs+7ZVHhCqQTEOJMiU+kxVsNtpBOlmzAnsaD7RCb2vACWCQrHcNF2nvvPXnefJZOpRNv8QzDuqMOcy7gozi7ZfU0sc2z6RHFkzQCHkAnSNhbzIyjI3L+X/Jh8X35fPJFbxoY1255vk8jmMhrcehPcdeLFvkyH1nkJDPA++Syuk4gxQDr33P7e5CgCAHKle2XqaB9ddzIXVuxZGyCm6g2866ovN21jXZvIhP+O8RhNKv9lmFiRuXeYqhXC19q5NsNr05zRb5ZwEcqf6HUOxACTsTwUf291u/TSS1GpVHD99dfjsssusx69W265BQcddNCI9atlZixNU/zyl7/EN77xDSxbtgxaa+y6667YaaedhqN/AID//d//hdYaP/rRj/C2t70Njz/+OI477jh0dnbiu9/9LgBTMf39738/NtlkEyxZsgSvvfYaPvGJTyDPc1xyySUtH5OCXWk2mStl0sSlKPTFKna7vKcL+/3ftbhzp6OG7qSb2KTjjkBS1DcUzD1HQda9qVaT8Rd8M+HCcpq/7wIM2S0ueGn3sQOmQKISbzv+QuVuIXohZh2pffER6wUYpkEX+4nu4n5kfpwb71Ouc2hoG6cWno/rq4Crb6ch2Tkapm14XJXNjLM+4fE5qykpnb+4/y4BgjEKBZOIQosM8F3Uuc49QEDnDwC5igSwF9pxQvqSE9R2Wq34MWusuDZncLJxDgQDQK79eqFJAOKpFiPvi5BGzkUVzE7oZuUmWR8NiwirZRf2r3TOLRo9O1rnHjuWBAN7aDHGmiQtjGnPRdYMhPHYMAL2MVYtVxqqe3Qq8vNnir83DKPpwD/gGEhVL96DxHQJknYpv5/8wvMsZAMApAzuQTxez1zTiGbMmI1a22abbXDzzTeXll900UUj0BtnAxZ93XHHHbHjjjsOZV+a2kEHHeQh1h122AFPPvkkLrvsMgvGbrvtNjzxxBNYvnw5ttxySwDABRdcgGOOOQbnnHMOJrQY16UbDaDNqeonUkLXG1BFzIauNcxLTmjo7rUQ62imZMEBcxfyF5aGjhcE7MN4oHpYFLlUSLc4jqfMrrTnUuBGhY7D/tv1RSYlP0fXJ2JMhFXlF8LobVkhRmnUyrXOPcAVXjdT6kdbVs0r1q1z6wZUiuKYzL6VqsCqn93Y0vUcrK2+8iZMOObwUiZjzIQstNcyaVX1CeDaYOc6vCSHRDKAzUCdgaLMzVe4bBLlMzQC5Ip2For/EktG9T9N5QC3Pbk1qb+SHhKYygGAYb5QU1C6aL9wUycMtAg4lfzQeEA7AW1u7pjNjeuKNY0h6idoI7DIgV9YhNpt6//u6PdA65rpbYUuS9PvWAa0cXfXiTFrIh47EhayUYJNBukZp2uZdaTWUyCgobUDYokUkHDJOmTcZU5tkVFYQ2gj4QXhpjTQCwHa7zbGbHRav359raR7XnjhhQPuTCu2atUqbLTRRvb7vffei2nTplkgBgAHHnggenp68NBDD2HOnDnRdnp6etDT02O/UwCfcZv4elO50tD1BvKsgkZ3D0RqNMfqq9ciXQcx/Jue/C9QnJVSPrihZb3N5kOXZIzlajawcIaKf09kAl0zDFZarUDVtTerDdukFyW5cUL2ICxaHStTomrKujCo9AlgWBlaV+9uWNekjUmDQJKZF7rXJ+FKP9HxaNBvBvCG21ZfeRMmfmq+jSNSde0zUkEmrBO9NKWjQp01YsBypaxMCA3oZj9tgRmty4rrmUhzjV0WqwM3DiCw+wbz4hcyAaSJMxMygWivWPV8DsQI/NqYnSK2i4Am6rDnlogcFZvNW8QRFjFqzWpQ+oyUByFL20XZqQAkue3jLq/Y8SkhgAst91evKgSSdN8SyfT5lYZsAhg4M2YFgYsSbqq7B2Fw/0ibnVylfvyelO79YJ5LI7GiaiSk7KqQ2HspnaQL4MqMAWXQatbzmMVIIoTnNm+uJzfUNhRuxjE35ei1foGxZcuWed8feughKKXwjne8A4AJfJNSYvfddx/6HkbsmWeewSWXXIILLrjALnvppZew2WabedtNmjQJWZbhpZdeatrWeeedh//4j/9ouj58YdoXmtJAQZxppdDo7B7IqbRkRLkrZQYdAhglMBWZvU845nCItMn2EXcjAMtmIYvpNPlxXLRMZtKCK41ysD7NVgHYWazpQxBozY5HAIv2JdclPz6Pz7H9YUAs6ygGnppT0veLaBeDOosr+8fl15Wu47q2VT+7ERM/NR8yMxmmqkbuxmIgSSse85h2pKV4I1NeityXgE7NANboanjsCw3r/DvFoeXaoKFEJABLGFHKASjf3ZwgUT7oIXCbCBdET3peZNQ+jwmkDEIaZIU3sGp7/hwkUvvhxIQC+t3xnbRJCMJC1om74nsrPM4nGtwcS5db1rWvOKUQRHqljQrw5X5PbDu2n6tQIG3gvq67gP3Rlg249dc+jgac65HYVa5BSDF5AtoyZYBzWwNOtJieB5lKW+YKMM9CMwmL2L3mYRTeszHCjNmYvTmsX0/RXXfdZf8OO+wwzJ49G3/729/w8MMP4+GHH8by5csxZ84cvP/972/p4GeddRaSJOn178EHH/T2efHFF3HQQQfhwx/+MD796U9765KItlGe59HlZF/5ylewatUq+7d8+XK7jmq+5UoVbhYTK+aCwikY3Ehc7Pd/17Z0/q0asUA8ANuqzbMg175carHg/JjsRBhoz/f31gfijDYQn4mNOo0fpvklhV3Xm5H2FaWj02fS27LJCKIckG2TAzJZBHvHFLcTGzDcNrEN/7j8ulEBxMhcRQFzHYgBIj0luheV9gqy8RnSjhSVasU+H4lMsPLH19vzNEH+oqQdxu9rM4Cea6f2T0CJx3nROlLrJ2FY+kxMBvWXPw+cySNAQS5oStpIO7JCSiMeb8UHXmIN+R9PduH/OWijAHr6nfOA+vBaheb9JoJnPn5v40LEvK2Y8Zgwt308C7Qk1yClybYMtMj0CASl92XhufCEmth7I7xmnhRLwfwCsM8CjxXrq62Y9SVxMpSmizJjg/kbY8ZGr7UcJHDBBRfgtttu8wpqTpo0CWeffTbmzZuHU089td9tfeELX8BHPvKRXrfZbrvt7OcXX3wRc+bMwYwZM3DFFVd4222++ea47777vGUrV65EvV4vMWbc2tra0NbWVlpuA4WFKBgeZVWvVa2BXGqPNUukQF4f3kBYCuY2xbDdcpOxWI4diVkoYtqXezIWRGuPK/z6iiEYapZKTu3yIHHHWIUDSfHy5aV5CrkKIRMkBbtC6ewUG0KzWKfAXQSrl6oqOJeczCReuei/Sn0daau0uwmATAUUgEQ6N6oXz8fiwmgZAGx+6gLUGbgGCsZR6pJwJlAwTixLjRICNGOeaF2j20hZwEoPcNFd343DpVhIZ01kAvXOurePqusCRJvkDy4tUC/qpJYqEtRhlxtmzt+PTLOn1pNsUdq6Yck91p+EmGZuyZCd8wAfY1lC64/bKxoDFtlP0ITSSp1I+5+LwDbbf13blDOP8fTnKCM3fIdYlyR79vOQ4YyAYB5ry7elddzK70phxwDb1lAEcvXTTDmjwboph6gzYzbk1jIYW716NV5++eVSQfBXXnkFb7zxRkttTZ48GZMnT+7Xti+88ALmzJmD3XffHT//+c+t/hfZjBkzcM4552DFihXYYostAJig/ra2tgG7T5vNFK3wotLIpXYvVq0x94lfYOHUowd0vL5sxflXY6PjP1z0wQEYXhKlqVCiyiHT6Covjqy0rgBcAmUgxs0HdUHmEgs8Do1ifVxfQgauPNsXMreAS8AIn9JgTrEhGgIyA1TdAcK0EHvkOlj8ev39+7+K9nGk7e/f/5WJFyxi4ZpZrnJAJNatCzg3eyIFqhPa0L2aNKf8+o6UheZYTWFBD2AAU65ySGmuIQ1UUko0KDZP+DGFWuVeDdF6d8MALLhkAgD2nhDwMYxdw+5LemU2jq3ZgwwC48KrwhDqUiUqKa0z+woorUoDOLdYnGXsNxcDYKHlSiOxYKnMvMXPr8x6xTL8CGyZbcogmWIHafv1yXj1Dz/Lmdyxve/PXYzcJd0MVIf7AmDeEQGosWzK9c0eeOABXHfddXj++edL8lc33rhuk7XIWv4VHn744fjkJz+J66+/Hn/729/wt7/9Dddffz2OPfZYzJ8/fzj6iBdffBGzZ8/GlClT8N3vfhd///vf8dJLL3mxYPPmzcPUqVNx9NFHY9myZbjzzjtx2mmn4bjjjms5kxJw4q6e2GsAzlS9brfJTboX1kUgLDEZflyDYXZW/vj66D6kRZTI+EDELRYTY19ebABNpHAZS6TqXkgV8HiNcJk7jnAxQeSWCjSFQldSWijOC5lY9XkeX+PXrBMeaDSB/tJbnkijRdaXCOtIG6mG87p8IROqasokLUimNh7EZLVPqgJwoIuua9aRFm5f4QEo/34nNv6OtiH3IbkjRebckGnV3BshfP0zmUqvpqWN7WNZkrasTQDwhBTIOlKvf/RH7uqQ5ROZkz8R7Pysqz9jrl5yqxfbOvemn8xB4DBWOiw28Wjm1jTCzb2/hmnixyU4eJZodJ8iRsz8heBMQAgBkaUQqQO2I1H8Omb0/PKi9FxXrtJuKnVwNzvve8z1G0rzxALv+XvIW046eIK9p+y9X3dAlki4wf691e1Xv/oV9t57bzzxxBO46aabUK/X8cQTT2DhwoWYOHHiiPWrZWbs8ssvx2mnnYaPfexjqNcNG1GpVHDsscfiO9/5zpB3EDAM19NPP42nn366pJCbF7StlBL/3//3/+Hzn/889t57b7S3t2PBggVW+qJVk9UMMq1A1RvezDJUq0462v2XWCULmxpSczpJxT+uPyUSbHzCkSVgMfFT801ArBSebAVQnhFSqRpapnV5OyGKmo5dDc8VoEHlbnyXI8+6E9J3QThWjgVWFwILLqvRdxm5QFwTuJ0UM+SkiAmhygQAikwrF/tDLgrNBsF1lQ01GFtx/tXY6itH20D5ECzz+5kXrluAAKqfSEGxMiUpiuIakoXPVl7Eb6XjMyRdDai6gkwlsvGm6Hmju+GBdqqeUKlWIFEkFxRsGbF3usjwNPcpzjDQ/ef94jIm9npkjvUgsBWyn+TKJbbXVpNgzyIxcQCAWjnGMhYfCZSzgmPmu5BZEkwhp1CKz6RwibQCmVWiMWJe+6I5SEuktHGw5pgV5EKPGpWsHc77NHqKa5+NT20GMWU9UoYw3ad6vVFy90Zj74KYVoBNMqT0fhtm+xjTGSRSSBb8v47eH2PZlENj5557Li666CKccMIJ2GCDDXDxxRdj++23x2c/+1nrVRsJaxmMjRs3Dj/84Q/xne98B8888wzyPMfb3vY2dHR0DEf/AADHHHMMjjnmmD63aybmNhAzM0dzeRTLPOLqy9F4Cz28rzY+MJSEWXuJQUlY7Azfl/TBwgww/t0OXkwhP9YvwT6X1xfxH5F1oSCr1fpi+k6A+e60lYzblQOM2JUPJQHWZ0ukyTQ0YLh8rw275A8a4XqeQVgu+ZJ4GWZWSJNlsXkDn3A1Pu3/IgOTAx3qi81YTZ3QLwq3YK6SpvePsjOb1XEMXek2i7QAkL1ZKO/BlwMUI9ck8zgAXjxT2D+H5mx0b6WPYv2JWW/xZ2E2Zmx9ovsvsTHUtuP5x9l7nIO05OLWm4t+IAxVmCkPlIFYby7cdR1jR0H4g23jrW7PPPOMTTZsa2tDZ2cnkiTBySefjLlz5/aqrjCcNuCnqaOjA+9617vw7ne/e1iB2EhZIo3SfqWjWrjPDJ3PU8L5tgCgG/VhB2M0IGUdaYkxAJq/tGUqvMGM/jsmzBXWpay2XLmZvnVHFlmJ5lh9x42V+kGZkamwcUOicFFVqhWX+UasWjGrpcxBF1DuF5d27rPUa4ey5+h4lJFpXFpxodDRan87+yrLeFUntKE6oQ1ZR2azStsmZEjH+8wsZRgCsOccZlE22966LNlzxt2Nll0rmNKUFWim4HvBmVM28PmCwb6YKd1rMnKD8+LPPHifxyhSX11h6MRbzo306ej6UQ1ULyGCuTdDppD6Frq3wnJH3JxL0w8ub7Y9XRP+e+JisdQH/xjS6w9gWDCZVrx72yzrcl1apZohEcJVEFEaqqa8GELPLatzqLqyEhVll2JS+h6WU+LtudAIXzaEVzng+/F1Y4XC10/baKONbHz7VltthccffxwA8Prrr9sC4iNhLTNjc+bM6VUqYuHChYPq0Gg0IYQN5qdZqCxKIvGYMZFWADG8MWNaGVlDGhgaXY2mNfD4PvRfekK2PNvMsSFu8BaeDhMxKTZTsVBHd+2xF5yMZ1bSZ8tepJRRR7ExxrVlSuqwOJC04iVL8CBsOiYNNo3umnWH0uBq44fSii2wnSsNrev9UrkfLVapOrcraYrFMlE9lX3lyilxQNEIiqNTFqEswFSju1FIZAjU19Qs88YL1NNxSWEfcFpuPA6MekaSF4BxO1HiAFAAMfbM5Ur7gN9mApLr1W1LgAoA6t3dxjVqi8UXv1l2jQQ0UAzCudIlFo3Hytn+MZ07bvxacKDam6As/200SwSwkzzlxFwti2S1w4pkooCl5++ssD3OpCVSQCgBtY6ZsZ0vP8mAMBgPg6prJkqsfVdxYRQnT9fRli4KjAMymUmvaDrPhlQRrbWmk9lqNiL1KLlpDD4b8s3hIxic7bvvvrj99tuxyy674Mgjj8RJJ52EhQsX4vbbb8d+++03Yv1qGdK/5z3vwbvf/W77N3XqVNRqNTz88MPYZZddhqOPI2Kl2a6IB2uaODIFrdSwzyy3OP1jdnAg9WkKciaLMQC5zm2ANRkPPqag9thM2QCZ+CBC2UzhS9OyE9IxU77WE3NT0bGE6485dnyAIvAW9pcH18q0AllNowMq9a+tYJX6ivEZbdY2od3GV9kAc8ZgOcYwsaDXMoPsmhvNrrQIupdWZBVw7FSl6idHpEXgfCISBu78JAHSDgOMdEbbhMwCJiENC0UAr1I1sWP0fNmEDEoMKD7b4Hr2DHOWlpgoy7oWgM98ds8i6Z2ZfksrrUHt0XEM61wkFjA9KwsCIr9zHjDOA/n9uEliJ/0i77H6sI4J0t49MJOgivtcBOC74H4OHkUp65y3HQalryt7x/dPAGC8DLoAlrqmUFtTh2D3MVc5VE2Dx9iVGEX2TuGJF5xFF/ROSCuotGf2+sm00pTVChnPXGuINI26MdcVM6Z0PiR/w2XnnHMO9tprL4wbNw4bbrhhdJvnn38ehx12GDo6OjB58mSceOKJpWzGxx57DLNmzUJ7ezu22morfOMb37Cx4WSLFy/G7rvvjmq1ih122AGXX355v/t56aWXWkmtr3zlKzjttNPw8ssvY/78+fjpT3/a2kkPobXMjDUrpnnWWWdhzZo1g+7QaDFRqSB0lYi0Ag0TNNrorqEC82OUWVqiuYfatjj9YyZgOgAWNChylmKL0z+GFedfDQDY7uxPYWUhd5BIgVpnzTIWje6yyzWM3bKDSGYGKno5EusihYn1sWKfBbMRsk1hEDUfbPhslbYl9oMzERawZRVWGNq/5iTOS4HoVFQ47Asv8DtS5Y4GYk+e+APseP5xaHQ1rFQE4GKyYm4uCg7PVQ6ROial0k4sSzwWy7qqLRBKi+Vmva65Mkw8uQKo20xLGyeWCeTKCc5S+xSzpeoaoAkGJWzQBABOyNXoOpFUhe+qpISEtgltlq1yA2rC5EycqxA1ZdvPlQO2xlWmbRydYJyCjWm0IMlnzEIGLBpjyUstRa69ty1jtERaMYArDdcpLzMy2g5j0CwTnlYgUPGWDbdRn1WtAdVdt+y1ACzYVjVlGWAXLxjXBeOuZf4s8xAM/n7OtWMVUWvYAHwdxN6Fkz2zjNe3XH8Y9XVhtVoNH/7whzFjxowoqFFK4f3vfz822WQTLFmyBK+99ho+8YlPIM9zXHLJJQCMdNYBBxyAOXPm4IEHHsBTTz2FY445Bh0dHVbD9Nlnn8UhhxyC4447DldffTWWLl2Kz3/+89hkk03wz//8z332k5dRFELg9NNPx+mnnz5EV2HgNmSVYT/2sY/hfe9734CzF0ej0ayRAvm9wr71BlA1o5KssjidYYgZ2/prH0ejGDQpiJrHp2g41wP9p8y7uscYCKTKyReQkWiqVk6/K2euLStJkEmoogYlLbODMHODmcHIzWSU5q7MxHsx8lk/L+Ys0wq0KLLLqlTXT1tQbGrRMSCScpZDIhemakLOBGBN/5zLglxkMpV42wWfxdOn/miwt2qdGI+vQVoGuZV2N3jbUi7agVKThSqg6g07weDXjzMRlWoFKVjZIQBa+BmX3LVklrl4PytWWzBtDuARsyMgtAZQd4C+2MZmDBeJGk5XL7Ht5zq3vz9VV0hEgjQAbTITJUBkfz+ZRMVzubqYxVAmJZQJ4et4GR5uVmxYu8L2lOAQsxI7XYpbkqVtZFqxyQ9RMKE1tNbGTRvERTWLOxsu2/nyk5AUbkNdb6DWaVgRet9Uqq70EWUBxyZ39hzYtbTPUwHw67Uel7zEag17LkuWoSpQBmC8jmeYKJErVdyPdQPK8iHIpgwZpqE0Cny/8soro+tvu+02PPHEE1i+fLmtIX3BBRfgmGOOwTnnnIMJEybgl7/8Jbq7u3HllVeira0N06ZNw1NPPYULL7wQp5xyCpIkweWXX45tttkG3/ve9wAAO++8Mx588EF897vf7RcYA0wQ/89//nM888wzuPjii7Hpppvi1ltvxZQpU0oaquvKhuwXeO+996JarQ5VcyNuzg1QQbbBuNJLURQxY4Ch2y1Qq9dLbQ1dnxLLOADN0tf9ci/dq3uQdaReLAu5rbLxKWQmmF6XWU7fHdtl2I+0I0M2PvVcWma9sG4C3lf672v8iIJNrHiBybGUfcugVNtMKSoPhAasZZZCZCm4npKsZkg7qiYRo5AqITOVFJQdZNc34332MiiFc8kYFsUBF5FJNrhU2Gzf3A/OIonChZNIAVnNUGnP7HqZmetZaU/d/Ujp/iQWeFXaU+vyNM9Pm2ufAR3jPkptcoW5n9L744Mgd0lVqhW7DeCeC3LPWreXF3Dvu/Wt8Cc7TpjoQO1Y1zvrG9+G/sh9Rn0pBZZbdi4mxeCzxLHfuYvxjAfkc/cod1fSO02wYH46Jgfkw2XE3ulaw4J+FQj0UnA+udKtxl7xnnFJPu5Z4ZMtele42r00iS6L3HraYfw3UYC30A0ZJk+sS1P50PwBhoHifz09PcPe/3vvvRfTpk2zQAwADjzwQPT09OChhx6y28yaNcurinPggQfixRdfxHPPPWe3mTdvntf2gQceiAcffNDKbfVmixcvxi677IL77rsPN954o/XoPfroozjzzDMHe5oDtpZ/faGwa57nWLFiBR588EF8/etfH7KOjbTZl52U0BQ3oLT346Ufqa41zAxLayRaYf/lN+OOKYcOWV8MG+VcJWm1AlU37pVYqSEKfq53N6BrGkmHL55oA/ezxJWCgWMl6MWmVY8beFBoFBWJs42uOrjOV+zamc+516b3IpTuWpJ2GwcIYYF2kVUg0hShjlnsxSiy1A1AxYtV1+vQtQYSIRhjY1jB9YUVAxwL2eg2GWdGd83JrYh2wxTprpoZYFNAaCcaqpVGorTTrSKQVQzGWph1quZLunCjGq2eNEQ1NYNhWpQryiqo1bo8to76INOKx7ZVqpkL3GZua1cfUjdlt+x3XuiZ6YwBsM84sWa8mLouEgVKhaKlYSEFmEuUieXy7zbzL6xCAHLBlV2apWe8eKeYvvrnGcaeAS6O1SQgENNHBdbZdsV9jrUBmPsEwLvfw22N7hrTg3Msv6or627motYSLjY1rbb5CQsFg2XFcdlEmsytjwMycxwGrIvsedresMxO1Ntc9/XXTTllyhTv+5lnnomzzjprWI/50ksvlUoTTpo0CVmWWQH3l156ySuBCMDu89JLL2H77bePtrPZZpuh0Wjg1Vdf7VMr7Mtf/jLOPvtsnHLKKdhggw3s8jlz5uDiiy8e6OkN2loGYxMmTPCyKYUQeMc73oFvfOMbJbS6Pht/cZVmnAX41nUjeprYH64eQsdv/yyMU9HFzNIOQiw4WtU1qFSIVhqVLLXxP1AuNgPQqFQzVDc0LzkapBMpIOFnOZLF3Csmvi6336OK1zQ4k6u3eEnTend+sqiK4GdvijRFo7MLula32xEQ06GLgYEwAGib0GZU6zuHj80cDqNBhmL+RCYh6srG1QDmelfaCeCwskYF+KDYOsB/hvICpJWYEwZ8KW6JYiaT4ndQSdOCSdPQ9XoBoKXdh54lugPExulasX81AxCv7xoLnA4HZHJvaqUhRepl55rjmcw6oTUaXax8VqGJxgd//7z9rE4+eQm/h3F7sklFDv5+CWMiAdh7520bTGS0dlmWtIwmizHjgMzGTab+fV8XZn7HDrzKANBSmSg/ycfFuFXaM+haEfxfJDjool2l3TlWiklJuR5t87gve32CbNSQadRag1zGch0wisDQir4uX77cq0wTq88MmFjwvnS3HnjgAUyfPr1fx48pMeR57i0PtyHXaqvbNLPHHnsM11xzTWn5Jptsgtdee63P/YfLWn6KmvmD32zm1LhdLIuddbKBKZy15lohr3UPcV9IfNMMFJrF55iMI1XIW0jb16wjsyxY24Q25Co3NQQDN58/e8yt/EUiBaQUiM2opRSsXFTugSrXZwHAxCPRdz7404AesgQiq0B31fzUfeorUjs7ldUMIktRqWbQ9bqd+RLDIrIKVGe3CWzO3H783OnxV3WN7c7+FJ772s+G5H4Nt/3fyZdhx/OPA0AuZKfZRkbnqmsNe69sDCTYwC0ElKoV+8QyVKXXXi6UG4RkG4QQaAAWKBPYSoqKCmlHFY2umr0/iRQAf6aE//upVEOdNB+00ABM+3JmTmZVwwh39ljWT3S0QdUb0DVlVexVrYFKe2qfQ6XqxfMpEQJTIRNAOhe8lUqRruwSF7vl+/qTCS554Sx0SYbAywdgfqYkUI4VjQExWk6SGAAsG8q3WReWSIG8W3vVBjhgdlqAjtmyrvXi/hFLnrDz4WxieA199rEcc9d3n6UBYCiqFvAJcC/gd6htKLIhaf8JEyb0q0zgF77wBZt52MxCJquZbb755rjvvvu8ZStXrkS9XrdM1+abb+6VOQRM3WsAfW5TqVSw8cYb99mPDTfcECtWrMD222/vLV+2bBm22mqrfp3LcFjLYGyHHXbAAw88UDrp119/Hbvtthv+8pe/DFnnRtpI4JX+uwDmcgwBwNyVPV1D2o+whIqqa1vsGkDBeBmKn9LxARTSBYYhqNd6LHsGFG4cL4i+Yh8GDjZJ4yjUNUqlQKOrBo2G1VzjZaJ4RiMxiCJNbYkpfhyrD6ZqltGh4/OZJ5VusbFLpFFG6f3SxDep7jK7Qi9hPrjzQm1pR3xmOFqNi6ZyhojS9V1wsWEzk6ofM5QXM3taBvjgi5aHAw+8RIkC3GltmUm3zsTu0f1sdNU8xi1kefh/q2NX9NN79pT7DpgBWnd2Q2QVyGqbG5yLxISkmAQ0RM0CNGLkaFvVXTcAq0gaAYrBXWhIlrmZK+0Fi3MW0tPAi52bcBOYWGwWd8/zZTwGsrQP25bHO/F7R888saExrSxq576Dvhw9znCZrJqYwkZ3zVxXup6ZX66NQBDvq4lxS6GLGKG8eE+Vr7/0AqM5s0UAiyyuzeZkfyrFNc6l9p5Dsa7dIevQJk+ejMmTJw9JWzNmzMA555yDFStWWFfibbfdhra2Nuy+++52m3//939HrVZDlmV2my233NKCvhkzZuC3v/2t1/Ztt92G6dOnI+0joxgAFixYgH/7t3/DddddhyRJoLXG0qVLcdppp+HjH//4kJzrQKxlSP/cc89BRV4OPT09eOGFF4akU6PBTJAoZYn5sRTkWqHPZnt2KbXGfk+WadCB2HZnf6oYUAhMOPZD1RREJtE2IUPbBAcmaJu0o80AJckU6otCyDyI3uwjvIEyZNDoHM2sNIWstkFmFaQdVcNSpanV76HYLhoIKtXMgicKqrdB5uxYlWqGtKMd6bh2E7TPgsjpWtN+NkC9YMNkEaRPgzidC8V+cOYtnMma4Oz174UaKosDxaDMxVGrbah0tKPS0W6vl8hSxhr4+nh0jWOzfgN4shJgIDZLFBIvobaVfdbSCkSWIh3Xjkq1DdalzLSy6PmheyerbcWzYLYRxTNE5wUYd5Sstrl+Z+WB2wOCxcSAnhNZTUtuWWJqbAKBjRXlwf/Fs5ixZAdKZBDur1LNHKMTJJHw/pWAGzGAtjauyRDWtXrhJovHgHnPg3RxaPwa8/tNy9eFieKdahI22LUorrOspsXvOPGYQqutFsR3kfYX/e7Tce0FY95mnp/imeurP2T8M71TOFvL3y+ieKZo8jjcRm7Kwf4Nlz3//PN45JFH8Pzzz0MphUceeQSPPPKIDZCfN28epk6diqOPPhrLli3DnXfeidNOOw3HHXecZekWLFiAtrY2HHPMMXj88cdx00034dxzz7WZlABw/PHH469//StOOeUU/PnPf8bPfvYz/PSnP8Vpp53Wr36ec8452GabbbDVVlthzZo1mDp1KmbOnIm99toLX/va14bn4vTD+j0C/eY3v7Gff//733vVzZVSuPPOO/tNV64PZspuGMDluepY0Kzdls3GEyEAIQAhsd+T1+DOdywYdD/IKMg4TSV0TVnNJOOy82UoDN3v3IL8RUauQ+6+AIrUbhYALIL9K1Xj8iGq3gmwymJZoC1mX5TSgTRWtcC4iGr22tlzlkYkoB4ENxOYEnT8go1T9YYZ8JiLkoQeOXBWSkNW26C6e1xslDRK86rWwM6Xn4Q/Hz9yAZytGi8bBRi2jBIU7DbewBsPUOYDHDEQFItkIqboeMImqthjsrg8PmhJVKClgOo2WVq20gL7/YSg7v9v783j7CjqtfGnqrvPMpNMEgiQBJKQoKAIFzUIRsAQ9kUFd68IiXi5P8Q9Kgp6WbwqXlnkheuC93pZvHxEXwV92XeQRRAQWWRXYiIkIgGSMMnMOae7fn9Ufau+VafPzCSZyWRCPZ/MJzPndFdXVXdXPfV8l7JbjjGVjTazprqSPyA9u828MBOvUb2y1PkPlvQDTxpMZfLJNAwc4OpxAd9XjTvLq1x7jTnzZsm1k3YiJIJ3M/SDC+uq/yZyxhTEwC+qvH9T72+67sbKLD/n199Ay6h0NljEjANJQKBl4C/Hf6fxpGg0LeGisVpWUru7BillaLSgAt897uclCmnHtNBJn/dPOPbboCJsnC3VeDTkhpQxUjjllFNw8cUX27/f8pa3AABuvfVW7LvvvkiSBFdffTVOOOEE7LXXXqjX6/joRz/qpcOaMGECbrzxRnzqU5/C7rvvjkmTJmHRokVYtGiRPWbWrFm45ppr8IUvfAHf//73MW3aNJx33nlDTmuRZRkuvfRS/Pu//zv+8Ic/oCgKvOUtb8HrX//6YeqJ9cOQydiRRx4JQDvILViwwPsuyzJsv/32OPvss4e1cqMJPylj++qRE5VS04NM9M8GYKfzPoV+KaAaOdJaqglYs7CZx4tc5y6q9NTdJMMGdT5wcFOiKtrVLpsIkU3MfEXJHb4dMXK5d/SPIYRmgNR5sIIVP/PzKJotbS4ArCOxvV5Qf6s0BCoA9yeRid7WhSZGPvHaiUvqLVjs/cqAtNZA3je2nPid35LJP8ciDcPJtTRtSDixBAsM71jorWOsycvcC75PK+0xSPeNHOV5+UWj6S0AnCO0MQPRPoXS5EAL7nda0+ovN8mltYr37KvCPZe67bn3nLZHhbpnnNcPxkE8YYoMBSrQMxyadYnUcXMr1Ys+DyP8bBJXr999UzE3p3Hl0bYlEH6Sih+pStfl9eL9mgzBtLOh2OPqb9vk0KooICgLPutfG/FYQkj57+EYIBIJUfhjdNFo2aAgGrf4M8WfBXqG8r4GuE8Z9zkLx/fw3dkYGE4H/pHARRddNKhP+YwZM3DVVVcNeMyuu+6K3/72twMeM2/ePPzhD39Y1yp6mD17NmbPno08z/HII4/g5ZdfxqRJkzaozA3BkMkY2dJnzZqF++67b9jsyJsqaOIBtDLg5cTqK9peQD0JpBAyAYoCaDUgKhuWd63V5xyrAZNlv5EjzyhLuU6imZhJivtV5A2X+4xPXiT380kprVVRFIEvDpuseWJEGjj5CtQ3ZWXIumreNRSblAl8Qqa/yZTT6mvo/m+0LKkqG4CJGJQ50YaOzQBTezKXHyvv67dO3GOJkPH+zZs5RC70VknddW3OIpJqlNqyfQplliLJC6t28qzu3v1mZEln7teTXJNNnp3MXCkzaxJ1s88PqRFF4T3rfBIt84MiIkSf8e+pzaEvEKgcmqwLR875eS1WFpXMnxf62x5j+japVUrfI1JvikazfUJvU74Kq04WwfvBHcgHIs72/Sy5F3rBoslGyyiWOhVKta284Uarr4Gi2ULLqNKW4AaElsaKtF6x/ZxUypW/8PdwgQG455fA95jkail/zmXwzAm2eB1o8RIxNvD5z38eu+66Kz7xiU8gz3PMmzcPd999N7q6unDVVVdh3333HZV6rbOjzLPPPjsS9dgkYQkM9EscqgGAP5CqvNDRZtI4L2/AtWd+4+PITeZumZhM4yZBK5FEFwqem1UdG3QCHxRd18SaGuk8AKXEqlQtCyYPkUgoWXjmD/qcrz6tylUU/neyADI/Izb1pW2HMWGUmmKCQZWclHn90loFzd4+73OKuKSJ05kry9MqbGrY+cdfQFGraNIqJRKzBQz1a5KllnzZNrMJzdsgOdEO/rJkkvfuNxNPrJnY/M/NN/azRFrlhxTZhJFquh5FN0pmXg19vgBf7fNUnsInjfY+F04Rpu+5ilv0Nax6y58XWRTI+/q98pJAVaJyLaEDIGs6oW1inmvbl8asqljkMDc3UjlSalWXFGyRF/bdco7i7r5QnxcsGIbMdWVmR/uZTceQochzSOt7NXI+k3tc/W309zXQ7F2LZq8faS55WiC4tqWmP/NmC2l3HXlfv02Bwp/Rsr03AbjnzyQobqxa4xaiHcYbIaX3vITjJy+boPICaoNG+qGjKJSJmt+wMl7r+OUvf4mPfexjAIArr7wSf/nLX/DEE0/gkksuwde+9jXcddddo1KvIb2B5513Hv71X/8VtVoN55133oDHfvaznx2Wim1KoAHC/k2qijFbIGOZmZkqtqG+GHwLlbxZoDapbsmFTo5J+XlYxJuJMKLkqNwPx07W8CdrG0IuXRv4ZORtGRKYZ0mhkpl25qfB1kZAJu2qGF03HFjtvnlGaaHM70mtgiTL3Go+NLs14amYdsJnKgvVSySU/8zVX+Vuq6WxApFIs7tAhrzSbyMPCdKY+ogYlJl5vWz8XFlhChS/HuBMzQC8xLBWVUgkS1vg/KeUURg6mZq032Pqzme/Eygql5S5Ii+Apn9tuk5SMrTZhYBxqpdZ6sgMM3vqd8WoNRm8oIXcPDtEvHjZoWpSFI7I8fO5IicSbRIFnOpVtuihOnZacNFxsnBklxZCocqpcq3kiYCUjxQ4cbamWaaIWfWW9QtXuxLjRN/s7bM+iPaeE3FnRBuAjXDUAURVrcwRmevzyRivp4T/LoRkncrk40XR3DjJX4th8BmLXAx48cUXMWXKFADANddcgw996EPYcccd8YlPfGJQfjOSGBIZ+973voejjjoKtVqt40bhgPYn21zImPZ38gcpaRKPhk6+becWBUSrCQXggGcvx02z3rdO1575jY8DMDmkWBbxyvguyEqmN9ht5JYEUUh/UqsirVXQ6nNpCOwAHDguSwCQLHItkd7ESiYp/hlFZqmigEraJ1Xy6SkzoYQDGzl7F82WVbTIsZcmkqy7Zk1VBcuEza/LI7J4RBvdB8BNpq2+hh5Ija8aba6c5/2mvzdMHdjnbr3ZrcxS3P62T25QWUOFbauJtOMIiddQ1A9LqEB+Xn66EsDlLqMoQHsuERpz/xJp0gBI5xvkkTVSd8g3y5INP0kt2ORHiweVa19DnmbGq0+GNqLv+W6x7bV4ZLSspMgCEzdXfqWUEFmKtLtmCSsPiPEWLWby93xNc5NWgdIksKhIrviFCxXe/wDfIcQnFFyZDO8fEWn77rB3cKRMbm+/8bsAJ6pSk+msu64XC3lhxyGu/OV5w5HnxJm1G6ud2ZaO5eohmdu5+tvs1amGeD8XzZb3TPDvPZ87Ni7yvqbvAABjRFGP0Nhmm23w2GOPYerUqbjuuuvwgx/8AACwZs2ajkmaNwaGNPtw0+RrxUwZrhRVUdhoqtDJlOT+otmCNCafDUWSJTb3lUhakEluHeMrPd3ewECrecoxxZ2pYerMB2kvmlI63zhSOmjwo4E89AvjK3QvJUaizR+52fSZTyze4AWg0tMNlRdo9fUjAdBYtUZP4ONp02ff3EJEmOpjyzXpFijHW0qfmwFXJgkKk77BkVfTP0HIehGkMBkq9nvsp8h7X0VO6qgsMO++HwLAiJAy3i+kFqa1qk6+mlP2cuklxeSLC6tYsWjW0CcwYSYce/8Q3HsWGUvnEsL3R0iJlCIqMz9hchKoemURbEL6i6OwDoSE3VO+kGjzbaRnPnMKXNZds+9D3mh55kbrxJ05VZKel1ZfA3lfw8ttRsoub4ddHFBKjUqqE+IGylWIcCEEaAU4JLW8b8gMWYZwoUkJekcCVI+82bJ9S2lrPHM5PW+Bed2mrTDjR2V8lyWPpPwBQJh+Ik0qKJo6SprujffsGPdQF0Th+oAvstvUs1BdzguE+46OFDZ1B/6xgo9//OP40Ic+hKlTp0IIgQMPPBAAcO+99+INb3jDqNVrnVnDN77xDXzpS19CV1eX9/natWtx5pln4pRTThm2ym1q8LKIA3rlbwY2ewz7WyTrHlE5+4x/ATK3OXKnwTkzZMamDqhkbQMYP94brPPO5qKhIjQh8VW3yINkoSXXoIkrYU66enJJoAIfNPJrSbIMhcyhEkcw9ACf2JQOpDgQOS4DTcA0Wae1ClrAOpOx/R7+H/s7JyUq6ZwNfTjAHaC5qdGLXpTOxEznAJTMtN1kyZUYTl74MwXAU3L4RFXm2Bz+Xvosk1mKlRsSMTqf/2+VEKRo5X6gi0d8SM2Dn9crvE4ipX0Ww+t6Pko8nQUbD6yCg7T0PG9hwlI58GPJf5FAZ3PCZesR9F8IvZNFXqqwhRip59SWXUIKQ9Jljy95pgBHPLkzf2hKp/KozXx84tHZ/B0prW+Hzwqj9rbVeQT7jyNXCvkGkqkNPX9zwGmnnYZddtkFS5cuxQc/+EG7FVSSJPjqVzdu4mOOdSZjp59+Oo4//vg2MrZmzRqcfvrpmw0Z4y81/wwwpgBGCEg1o4G4aLYgM6yXW6dIhF6hW/VCJ75MaSUonR9KmVM6J1l8QuWESLHfw2SnPDeZl08qLzxliyYw7pyfN5qWOPHVuRfOHxA4Ik9pnjufoKQKlWXIm003QZprZ0ZtaK3tt6TL+767bkmVTfwKaMdlc3zedFGTpASuK3mad98PkcPtztBa2+++bLiBft59PxxWdezNl30dre667whuyFV14jg0V63xjs+6ayjyAi0TxAAAlR737nL/L57/iT833D+GB3PIJGnb0Jr+t0SZKazWxF1mTm36Sg1PkQHQO5VapZPqTmqorXNA7hL7XvjmQMBF7rUpv4lEVqm5nRzYwiNh9ckbLfu+EMEqGFEg5darq/F3C82J5K/JU1IALGlrENTAla/SrPrm/nhm0GArIKv2jSBEIpGQk36hI3dT82xQAEVRFHYje/sMFJ3fRZFIty9wB9IMtLs0lI3l9DvvcxoTCKTchrnnrKrWHDtR2BEaH/jAB9o+C1N2bWys85sYbupJeOihh7DFFlsMS6U2VdAEk7A8RjmabdGG3AcjqXUPufw3fP8zaAJITCSRNT2awZpvIxQGFZDJqUwR4+B+NQUjb4DvV8OPFcYZnMrk5YerU61AJDZqS4I55ucuGCCM/kzrVRSMWHHTZ2HSdHBVgt8Daj8AO/lqlSHzButEatMFmWUS48Td7O2DbLRsipDBMO++H+ow/bUuPQBNrERiuVM8J2T7PXoxbtll/V/6oqFzJbUaTS9De9FsOf8/E5FHk0Vhngtn0ilvp8ycudZTYYJniAiRNc/D3ZNWX799Nu135j4mlQy5ScjqRfOZfGl8IWHbwciXZM9UATe5av8jTdw50SazPb8W/U/XaK3tR5437PND55OZEYAlcxxcxUoyvd0U3zatYHWgxRrtQEFtyZtNJIUjYcoQMZc3LSCt0pGqpFZBAj3WhD5Rzhcv93KIheTF3s90ZPKM7ffoxciZ6Vb1FW73DKtYtpzKFyyAyf2gzJeT/EA9MzzKCSYfE2iM49HZZNqnOnDSxY8XLMDJmq434s4dMZpy88aQn6RJkyZBCAEhBHbccUePkOV5jldffRXHH3/8iFRytMBXVOHqma/OaRLgZjGVFyiaLSQTBo+0mXvzWehbsQqr+xpuSx8pbbh8HpjbPKWpr7ADU5l8Hm5nxP+XYKtMZroiVStsq6yk9nM+6fFJgBOgotFq81shUyMdHw7AIcEKHZxtOcYnhK5DCpk9LynaiKK3hyOrpy23t/MG73vf8X/ssUVR2GtSGaQKFlLn+OJqEGG/Ry9uL3g9wXMzZcaZnKJHLdk2/ZvWKjp1x1rfdwbwiVnebLbdh5CcE0KSFBJlexzg3Rv+HdhzFe6LCnYeP6dMASmbECkC1yrHlKE/8fe8pOcrrVdtH9hr02brzDQOwLu3XL3Tn5Gi5/tapqbfs+66U/mYE39iynVmzPboYVKDCthtHJE3nH8mV4rzvobX76GySZ+JYUhOPRCI9CRZiiJLIbszGzwBFmzhKbHQ6qjdyq1WsQtcWUmRsTGjzBVBJgnyol3ttN+XqP+Ua09m+lm0iytyAzD+gpyIAeWmzpFCjmHIwD8sNYkYCQyZjJ177rlQSuHYY4/F6aef7m2HVKlUsP3222Pu3LkjUsnRQvvA5QY7/lIWZksZO2iaSSatV1GsfgX7P/1z3Pz6DwMA3nnP9yESicaqXvui969agzXLV2hzXXfdD3sHrLMpN6fRQMSPs+YXptJwv5Oy5Jx8Jcnb6Dkf5+3mQDTbTVadTH2eQ3Yi3TYlQT9LmFX0AANcuPoPr6Hywg7eBUtDALhJlOpKK2/A7QZQhr1u+x5azaZ3j8NJ2H6GtCMBBLBBqtgeV38bTUO8+ZVtrq4s9foagFWGWgAkey7sM0MkpVZBsSr3nh3AJcnUZM9/BiT8+0EBE6EprNNzQc8Z1YOOT4KdHXQbfUJmE/jaXR+Yr5XMfVVUuvvPc02RGpd11616QosFT0XKJfJG09YhZwo4qXcWmauTJXaGXHkKsiERCcuzRfVMKhlS46pQNFpABm9RQ/6Q/B4mQWJajo79n2aWiG3Ic7nfYz/FLTsf7X22/59/CZiFW9HUwTmUO0zlRVtKFFpMkPtDuHWUbYt0OciavWv9cYipfkTmaLEJaDWVHP0pItxbcCe+fyP3gwVglV5Omr17HxGxARgyGSN76qxZs/COd7xjSLujj2UI4ZsAU5Ol2lsVsUmLXsqCZT9XeYHWmrVIihz7PfZTFH1rkJtcO3lfA6oosHbFKjRX9aLIC1R6uu1gwQeihJEswA0GnEiF/hChwlGwcuxx0oWF09/epBeQKD5wWeXMqCJlJIATr6LRcpMc8zUDfDMfmRDDxIxeuWYCETKBKnIvgo6+t8qEaWOrtw9FniOtV+3x3OyTddfQ6mvgLb84BQ9+6BsAgLdd+U0IKdGiNjQdmbOmQOq7wkXQ2Wgv1h/7/uECYBjMQVxBsOYoszcnfQ/olX7W7XaAoBV/uMDgv6d1E5FZtE9A1heLK5cdkv2CXYeeDd5/3nfsGbC+OIGPmki0mb4tc3qwdQ0nT/w58+rH1b1KikRWvHYktQpkUfimrYCAk7JWBMQzCd8RZB5pV4mf94snXaX20L2SaYZCuklfNN3CIlSiqd55X3tkZpnSacsYJkXslp2Pxv5//qXu29S8i5UaUKlBrVzRpmTyvG2UqFYk0nOQ58SKB6mEbbF7ntL/5t3MG822HRySmrRWjLyvYV0weAofKhfQpNhem+6NCTAqGi2opIDfspFFjKbcvLHOBu958+bZ39euXYtm4LxIu6+PdchKZieitF710gBwXww76QaKmUj0liOJUbBk1nCkJM/Rt2IV8mYLeV8/kloFVbPaozLLfg8nz3DF6yYpaX1Q6HOZ+MQrlNlpcPFUjRIlzU6kzNQTfmfrxxJQAvAmPu4zxn2UwglfsHqrvICoBmaVQisGSfd4qGYTRaMPolKDaDEiIBPIrGVNOjLNULScWTntriFvNlEZ3wWVF3jLL3QQSp5on7mkVtGDcQabX4rXm0iknuw1EbR+MrmbgJXMN8hnTFZSFKvX6EAR9nwUeeG27mEEhzt987tY9twQsf/dOz6DuTfrjXvLzLqe6pc70hJO/vw6nCTx63GCN1BkG5mIOMmla3KzK/cDKosy5M8YJfcMnbFJHZGVGlDkyPv7dRJZpmDZvFbsXG/hwn3fggUPN6t5ZDJxqVVkJUXRarq6VtwuBnxcAIBsfFdpmp2yPmxz9C9y/S4Nh6mtyKEACPM+0lZw+do1tk0qL1Dp6UJlfLc1iae1KmSzaXPX8YTTtg0l9eNjW5Jl/iboibtfIpGeLypXvQB975q9fW1EnZdtFU72PjXNeJTWqkjyjUPJYjTl8GDffffFscceiw9+8IOo1+ujXR2LdSZja9aswYknnohf/OIXWLFiRdv3eYfcNmMN2vcm05sDcwKSFDpajl5qM6jkxpbIV9J2wMidGS5vNtH/8qtorlmLpFZFbcsJntIVDkJ80KA6ELlCkFsH8J2tw890Jup+L4WDF54fyPKhjxmVSZMgmQLD6/HJl9ebR7G1+a9Zp2VpfTNogpOVGlSrofs+WM3b+te6AdkHWeQQmTatyVqmt8Upcu1rgnqbXx8NsNWJ41GdOB79r6z2HXuJMOY5Kj3dSKpVtNasbVNcnDqY28/4/yovcOubj8P8P/6XTokhk3UiZe+85/toSp1nqdnbZ/utZdQQaXYq8JRMZj4GtFmRcq6FzxVvK5nU8qKw5rFORIxSlNhrsuPaniN6dtLM9pO3C4AxdSrp9y0H/5urVPazIAkt3wGC1yd0WiffKSITYHWWMIlES5J7hsTBEorQ1YDVWSWFR+QBloC1Qf6biU8srRqsf8/7+5FUqxDdPVBre1E0tL8j99/j/cCfR6dG6q3bwo3K1wsyceOETCCyCvIVy9C3YiVEop9bAKhOGq/f9V5A1LSSLPqkzZHH4QVesM854SQiFm6Xxl0vqA94f1hXhkYLRdZqv08UfV3RY3aR55rAm3MpEEVmKZKNRHCKQiGPDvwbjDlz5uDEE0/EZz7zGXzoQx/CJz7xCbz97W8f7WqV7ic7IL785S/jlltuwQ9+8ANUq1X893//N04//XRMmzYNl1xyyUjUcVQgpHBmiYrbu8863iZ+RCM3aXDTS//LrwLQjrZ5XwPN3j40Vq+x2fIBtG1NRNer9HR5piZ7DJ+QEu2gzZMeclgzKlMQKCDAyyxu/FpsW4qibSXtD+R8oiiP2mzb6Fkm5scvJ6lVINKK/i6tQNa7IWtd+vdKDSLL9O9ppidJ+qHrpxUoMxmJak1PBtUaZL3bHifTDGlXXQ/SMoFMM00mzKSc1LuQVKtIsgzVieNR33qSJRY0CSf1LksGQzUnnNxlmrm+MeYUisJURb5eagRNtLzviFDqraN0/ZMss/4s9CzRc+U50LP7R22ad98P7dZEvH1t5rpK6ikFfNLj6oNMM3tvyacN9jnQ90GXV4Oo1JBUq7Zsqju1lb8faZc+lpMU3ibd/+5ZS6pVVi+jrhKxt/9LbUpm91KaOiXVqk0WTP1B/3vvRc7IZYnaApiFniGy1s8vL5B2mZQ2babVxBAnR3boOUarAdXSzyclNLbbDdGzR1G2FXc9iyLHzTt9tOxxWyfcvMMHbJ+KSg1IMzRfftluQ1TbcoIjYnA+cDpFiCM2NopatpMj/kOf8WPLLAdAu0rqPZ8VnUQ7665rFS1MNp2lXjATYMaSetVzeYgYOzj77LPx3HPP4ZJLLsE//vEPvPOd78TOO++Ms846C3//+99HrV7rrIxdeeWVuOSSS6zUt88+++B1r3sdZs6ciUsvvRRHHXXUSNRzo4M24XakK4FIXCZua9oxzrQUkchXxoBeTTdWG6k+kWj19nmh3SovvM1urUO1GSRUXhhzpjGRNloARSPBRY3lJbluZCJtVnhOHlVe6FUpOdialSapXRQZKCupdVLuZIbi/3OItAJR5B45NZXSkzAYoUsrlmBRolwhE6hmw54DmUNkxuG4yLVvipmERLVmjxWZ8Z1KM2Ou1NtSodUE0gxpT6aVs2YDojCDegpLjshxmhy7KaItqWTOrANYUgBwBdFM6mmm29FsQrUadvJPzKS6vki7a8hf0XuM5sZPLAXM3n06GtAmvQ1MZm3+NiVKF92P3779UwB04AL5QJb6/YQ+WUzBsf0R/g1Y0zJBppm+twAUAEn3GHD3m5VhVawsg+rvsybF8LrU964eTUsGLRmW0m4qjqLwSbJ5HhWlQgFQtJrtkzvrY1pckCnc9Qvb+UKytBm8/9IKkprZ9SJQWMM+FGnFkrDQr5MUwRAjlcLCXSCBSDPIejeK3lXoW7FSj2/dKdKuOvpfWmkVLMpLaBcUzC83bzTt78j9fhjIDM6P45YGT7ksOZ9M4Fytp/dFZm7rK1oM0DFWcU43jhN/PgzK2Iaev7kgSRIcccQROOKII/CPf/wDF1xwAf7t3/4NJ598Mg477DB89rOfxX777bdR67TOZOyll17CrFmzAGj/sJdeegkAsPfee+OTn9w4+/FtLLiVFTcRmM/SivYpId+nJrzEgDD/p2zblAKwkyjgRz0SPF8Yc70kS/V1aNBP/Fw45H9BTt2Aljw9BcoMgDJJkFRSn0wETvNh5FpZn7T1B63eTb8QuUqgJxZPZWNqluAqFzeXFDlEtW4nWZFVrBJA11YygWC7Hag81+elmXUkJt8Vrawk+vMi18fz+iQJlDd5Jki7a8jM9isw7RDwfdFcm8wzQqtoIpBMdRFZpieXVlP/rAPIBFmdON72eVqveltW0f+kjuh+cROM9ccx54f5xEKIRHrZ07mvVKmPFAussCSqyB2xIOduTsbMcYpdR2SZJUD2M/Y7mdd0J2SOTFniJf3+TVlm/TKndSntM1tmsqPPFGAWEX4iY6/dNeNvBkDYFC6OjBetpjNjGhVJNfrcu1et2vYl5B8pJdAISDydn2V6MVcUlpxZAsr6i/cDikL3Z0B0NxQizSDq3ZDd49Fc/DiavX1uH8p+t8E3LSz5ojWtV5GN6/YIrK6iyQ2HdpMwH9vK9u2k3zsplNzvlRZf9j4wFTTpHqdPsKQ9d3nSAiVtJBHJ2PDj97//PS688EL87Gc/w9Zbb42FCxdi2bJlePe7341PfvKTOOusszZaXdbZVjJ79mwsXrwYALDzzjvjF7/4BQCtmE2cOHE46zaqSCoVa2qy8jv7IZMGqRI0AVJWaUCTJpUXSOsVq5iFEY3VieOQBRnRlXH6z/sa2tepu27NlZ6/jzGhNXv7vJUd4IiYtyG3mXzJH46OCyMyQ4mf163Mj800VitRZCZMEqM0MDNS4CwsKzXI7h6rZlkYBcqqW5WaJlhs0rZEoFJz94cm0rSiJzmrvOlJgsrkJiqRVawahzRDUu8ySl1iTaDWxGU+lxVjAg3KAntWNBEp2pQwvkXW/D/+F0Ic9OKt3t/7//mX2O+xn3r3h0wktILnpkvdr2nHe+j5H/FjOpCypJLhngNP9Ez1vCz3O1P9uPnPI2jMp6i7R98TOseqO4n9n368fjWmbHoW7PdUjyyzxJ3IH91jMp+JLPPKF1nFEZVOEYbSHUfmdDK/8rbaxYV5dkRasddEmkHWurRJ1jxvIqs4EzygP0sr9j2y7aJrBf2oTfJ1iHq3I7umbG/cqtTc+8H94oZJLTtw2fX63ah1u4UQJ/7NFpJaBa3ePmuWtG2TEmmXvjdJ93jnj8pS0XD4RDgwRwZmZM+y0aZoajO5Ne+S+btWsfeIfOrcc+jcHsjEHjG28MILL+Dss8/GLrvsgn322Qf/+Mc/cNlll2Hx4sU4/fTT8eMf/xi/+c1v8KMf/Wij1mudlbGPf/zjeOihhzBv3jycdNJJOPzww3H++eej1WrhnHPOGYk6eujv78eee+6Jhx56CA8++CDe/OY32++WLFmCT33qU7jllltQr9fx0Y9+FGeddRYqlXW364uqGbgLYw7J2QDWarpVEvQLn2SZdvJtNoG+hqdSkWmQjqXPiAgleYGcBg1D4FprGzrKMs2Q9XTpFWXj5bbti3ITYVYA3n51ACxJbKzutdcPB0ICl/S5KYEPNkm1as0/tu18wqjWrXJl+6vI244jc5Csd0OOnwSV5yhefUWf6x2nzZFCSqgWADT9CcUjehJA1h4cICUg9cCqGn2ajAFQLTjljcqp1t1g3ugzapae+KVRIQC4442p1JGCINJT5tYEa78n1dD0y36PXgxIafM0FWt77en7//mXUP1rrcpjzSLBa8sVr9A8VaZg2eoFCwOKMCTcuc/ndB0f+ykKlpOtrHxPjeFRekXhzNB0TqZJNoocqr/PqVIhKafjAZOln0xWxnRYFDqCz6ia1owNWDKj+teaxvlqkd/wxN7nNrWIkS37bHjnSmfeNP3Av+Pkm/ePyplJvlrzFhqiavxEZe5IJADVamrzOr0DSeKUYMDm9bJKL68HtQ/w1MThcN4/8O832XqLejdU7yqIukvT01rbrxcPxoJAkblFo2UVX2kWS3qxk9pdBeyuCyxQQyTSppIpTauTtAdD2fvfKgnCCBRd1ejTJu5KzS0oTWAQAN3vhnDKtb2QoWo5QsiLDVe2NlLg5yaN7bbbDjvssAOOPfZYLFy4EFtttVXbMXvssQfe9ra3bdR6rTMZ+8IXvmB/nz9/Pp544gncf//92GGHHbDbbrsNa+XKcOKJJ2LatGl46KGHvM/zPMfhhx+OrbbaCnfeeSdWrFiBBQsWQCmF888/f90vxAfotAKRgpldjEmo1UDLZG3n5kZKN5DVKpBNnUcn7a5ZUyOP6Ot/5VWmeGji0WSZ4EltkFlqBzebuNL4k2kymLpcQ4aQpN3a+bhotlw2bxY91zZgwa00uTmB9wk6Te7UN82mm3iL3PrY2PL5JGEULAFNfhSVQ6arVlOvUOvdQLOpB8TKeNP3zdKJU5j7I4jYkWJG6oSJrqTz7DXpuob8Ia0ARN4suSDlg13X1J/D9k/GlIoScxBXi/Z77KeaXFRr2O+xn0LWu/W9N5OB4OUG94zSMtB3fkQsIyGGSFuzofQdw3mUYydwVbSTqdY7nhEk1WxYlUv3K1PKyAxdYsK0ZIZ9LgBLxOyxqU/mhJSaHJh7LgIVyEvdIiVUYe4vV1WDid4+T54CqutofRyLwvdvpMk8NXmrZKLHE6pnpabJJJiPJN37rOKeybK+pued+jVz34my94Pq3Wr45awHDlx2vVtsVeuQtW7dx909kOMmomvqluh/eXWbGY+ez6RWQdpVL713umq6bkmtok2FrSZaa9bq8YnlkrP+qcx83WaWDEzpJRezx9nFnPEt9b+nhVjm+nED+nBdEM2Uw4Obb74Z++yzz4DH9PT04NZbbx3wmOHGBm+sNWPGDMyYMQNLly7Fsccei//5n/8ZjnqV4tprr8UNN9yAX/3qV7j22mu972644QY89thjWLp0KaZNmwZAR00sXLgQ3/rWt9Yv/5k1i7AJpdFn/WhUUViSY3NpmdXp2hdeRrLtVkhrFax94RUvPxURM8ANTFl3zYZbp/UKcrMfY2tNnz2m0qP3uaSVYtFsobGqFzLTpsx03Dg0Xn4Fzd61On9P5vIVAS6CiZA3m1B9TlWhpJXkUMvNUiovUDT6nOmW9xERG6ZyIBiAbf8ZFYn8u1SrYSMoCwCqr9d33k4rkLVuqLSJvNEHOWFLiLSC/OUXLCGjSdYOnux8Mi9IY84s+nqBZsOZUoocKLTyZs0cZOJqubKE2WO0bXKm60jpfM5giILXT9IRSH4fAlJJg793DfrO3Je2aLu8PaVE+2SUgPyMXFqJdqf3W//pWO+0/f/8S63IBMqujSalCZ6ZvkSSQDWb1kePRwFaEkCLmkA98hASw5SpVzLRPln8utx8Ts9hWoFoNZhKxJTc4DPu6ybC4xghVGxMUI3ca6OdvLl/nNfPrC+YOV7XO9fKl1n4eUSWSJxRyRxJzfz3BXCkjyt9RVDPDguEoeCgF291729RaDeAWpdW9ISEyHQwSTZ1e8jKcjRefgWADmaivHSykuqI6SSB6OqxpIb8SLPuuotirlaRTNgSRd8apDBBFAlbFJi2ewqX6SOPoCWJd7xbNPqBG9THdI89Imz9Yc07D3jnRmz6GIyIjRaGbZfTl156CRdffPGIkbG///3vOO644/DrX/8aXV1dbd//7ne/wy677GKJGAAcfPDB6O/vxwMPPID58+eXltvf349+41wKAKtWrQIAiGqXNaXYQbBlVvZG8ZAAZLbad+JMEk2m+lwofVEUaJnEgtWJ41DbcgL6Vqz0skanxiessarXbnWS1qo2SWxSyZCN73ITBgCZNRxpSisQ9W5UityStbyv4YWOh8kh7e/GXODteVmS1kKbQ5s2eq1NRaG/iWCA+W6U9L1q9KFY/Yo2TdS7rTOzVsCc75lqNbXTdPd4z3QgpJlgquw+2UlRK2nKXFubnSs615ZnjjJEzhKUwvO9oZQZyfhJbUQvnMzsJAg2sXOzCE30ZlJQrYaNVrXn0MRgzSQ5VL9pW9KuSuo8bDpje573ez4y9prAoBMGTVr7//mXEGmGm2YeYe8pOaxzE6gmY50VAc/niciTmchUUVin9SERMU+VZD6M/HoDtg5oU5ZY2f59k75CS9fnZaWuTrZsKouieen+cMWHtUPxAAOZANKZDUmdsyb6otDPUVqBqHXr56d/rVXEVGGeK8ASBXoHrYmfvxvMl3O9QYuUSg2ye7x+f9MMKqlA5A39zq5ZhXztGk/JzaZMt/3DfToVEUbz7idg1gbj8ykoZ2B/H4pGn1kgtiDTwLzMibTs8HyBqar8GQzfaSJezFQMUpPpfnYwrw83ojK2/njLW97i7ac9EP7whz+McG3KsfG2nN8AKKWwcOFCHH/88dh9991tAAHH8uXLsc0223ifTZo0CZVKBcuXL+9Y9hlnnIHTTz+97XNZ74Ksd7mVLgN3Ak/rVTQoMzhlZe6qoTpxvDEjNlGdOA5FQytetS0n6FxKWYr6NlsZs1Fh94nLjK9WKiWqW0xA3t+vHfmJcNEkZ4hh2u2cmXUEYg0Z9OTa7Ftj02+IYG887rxNe/bxcHueVyo8fsAVtV3x64lT0qDNzTYMRHYUmQbSDIBx3M+0r1HRu8oMetrMqBp92o/PtFfWum053B9G9efapwsVqP4+Tcqsv1Jhd00gp2zV6APIx4jaIl0ggS5zrambTquguBnWrs7JL81FznltJpOr1OlS/P6jdApmRZ9WgGbTRs1p5cCYFys1bUo19dQRuMx8xlf/JSgjU4L5s+3/9M9dypC0oid7Mj17/jjSV0NDosKVyjSD6luj+y3NgFq37UPFzy+ZWL37Anjkg5Mb5yuYuIk+KIuTFE/dk84EassyCEmMJU30N0u34lQqp5DxccOLJqay2LPv/Kgk0N9nlVb7HuW5JaCiyI1PJesfRr5CdUdQf8lE5wdbV7ByZb3bLqSQVgFVAELf8/4X/uFtV0TJfOX4ibqv+/u8Z9Uq3aaeiek6a8KmfjTvQmHGN+8552oXKeZ8R4IsgwrdZlNOoAd+d4msWz/JSs1Go480YtLX9ceRRx452lUYFKNKxk477bRSIsRx33334e6778aqVatw0kknDXhsGfNVSg3IiE866SQsWrTI/r1q1SpMnz7dRV5ROXmgiJAyA9iEqc3etSZZazeSehfytWuQv9JEbeJ45M2mdqivdwFSorblBDtw2AG5WkMqpfajACDq3UisCpbagViYxJQkt6s1q5wvFBtwySQAONMm4MhWUtcKI5kKRb1bOzw3nGlUtz3w+eAh+4xcqcAvRySJ9vcC2CrfmYGsrwwpBd5qu8cFCpA/GoBizSo7mQFwJkoyKWQZirW9JuKusA7PdrIm9YlAKpKU2tRSqXmrdCpbtRom0i3zlDsYh3sijvR8qH7n9+chIEiyknj3ze3zR4qsJt7K5JEjImknYiI+xnfGIzH0XLHJSLFzfdOLvlc3zXofDnj2cn2saYN1wGfRoSrX2zsRISJfwFDpsuYyNCHHTdTRg8Ekx1OKUJ0VN0ly1TIkl9yfqs0/iqkaQVn6GYJvTqR6Gx+kEI6wMWKTol3hYX3r6kY+Xe45saQ7Mf5mTEVzz7WJDOX1Meqqvg+5VWq4aZybZUOVtCzNw2A48LlrcOO2h5nrs1QiRDCTDEpQ8MtaU7dC76aRF0i32gKqvw+tfzyHSvd4fW615iVsBpmTC+0sT1HUNqGzlChynfJGpECSVSD5YllK42tZtN1vZwpuf/4907G9x4Uby+gzfi/onal1Q8qY+HVTx6mnnjraVRgUo0rGPv3pT+MjH/nIgMdsv/32+OY3v4l77rkH1WrV+2733XfHUUcdhYsvvhhTpkzBvffe633/8ssvo9lstilmHNVqta1cAHZ1x3MUURSNU2EqyHp6kE3U0UrJKy9p0lPrgqjWkQBIjZ9EippnBpT1bjvBkmnMmuZoQIEmaAkzvVnlha926Tzu29ZsICUiRE1iK/Ni9cum/DpE4dJHFEVuovf8yDnrdEs5dwAvl5N1CjcRlaq/z5pz7aBm1BXbfzQhdjKZkLkFYO1qIhnfbSJda3albPNSpRUI2ef8kUwdyHFd+4755i7XPxUXOdtqopAJ1OpX9Jd0j9LMbj0jZOLaSOk3pIk2LQpfNWP9QORTmz0Lp/oZcLWCiJHd7qbWZesvksSZWMgka/dMLVEvZQLIctOyqNbsdeWELd13Xh4vZ/7kSWJFkfgRhnyysrsmsNQQLM2CajZKndMFmZAD8mPbQX1KfmGAfu6YMzsRHnDSk7O6ZYxkUr1pgqbnhh3Pr20JlFHSuIpq70fg+F+mVPIABCLg9Le9Nr8uPV98IUdl9K+FqNaN31nGypXWt8t+hnWDajVxwNKrNDmiulPEeaUGJdlU0tJmSlLTK+MmQvZsCdXXi/yF51H0rkYyYUvbX4oH2/DdNMgkSws141tKizg5fiugKJC//IJPsmWifUCN0sj7TytqKFdeuW8fLbwCki+qNYDeXUKn8WuYkathMFPGvSk3WQyZjL3vfe8b8PtXXnllnS8+efJkTJ48edDjzjvvPHzzm9+0fz///PM4+OCD8fOf/xx77rknAGDu3Ln41re+hWXLlmHq1KkAtFN/tVrFnDlz1rluHHrAgCNAfLKpd9sJIalTZCUN6DoPWcLJHk0ugJ7cTJZ4mkTtap6O52rL2l7v2gDzzaHIPzvoJx5BoNWmVR4afdrkRhM7S5TanhtLnyOz1Ft5kqJBSV1pSxsFQK3t7ehTZAkKXSeY7JRRYIRMoND0J1YqI3TWLwMjERakFBQuSab7zkzs0rVH2QmMmb7Mjw2OYN+Fztqe47idGN39tQqaaf/+T/8cN7/+w7YMz7eItZ23h/rQS6MQnsRJBO8bA35NkVZw4LLrUdqz9CxxMyU902T6De9J8Bx0TKdAZXfw2yqLbORl8n611+HmU95+wH8PwUyTLHdZ+LlHcssIouxwD8rehaBuYMpmSBx9Ra9SHvVKCmlW8dVGwCO81Ffr68BPsPtaihKlraWTYSf1Lh10k2UAuv2xEGaskcZczxaTNoCBQP6FtW679ywf67yxJGwvkVF6v9MmUJQE4gBt77CnHtvPOvgfjjCiz9j6Y4sttsBTTz2FyZMnY9KkSQNayyiR/cbGkMnYhAkTBv3+mGOO2eAKlWHGjBne3+PGaXVmhx12wHbbbQcAOOigg7Dzzjvj6KOPxplnnomXXnoJX/rSl3DcccetXySlcpm7rGrVaralVJCAR8y4eUvluU4iSnmEyFcoIaJkJtXQyRtwUVOWPOQoZGKUET0Aye7xkN09vlmMjjXkjPL3iIqOdEJuCFSziXxtb9ugYn2EyrY4qtQgunq0j0pfL1SaoegzWz3VurT/SPd4u6lvW+RYSTuduYelOqDzjdmH1CwbFUX9yRQq+2qRORFmoA9TYJBJjYWkqyI3CRyDgZiSxRY5ZFePO99sXO5MIBWrWOgAhMJN2pTxn9/PVgOKkngyBcmZ9BgK7Q9os7onrr/KojrbJgl2DW+iBzxzEwcFUYCOYQsIO0G2BSYU/iRFfkCUe0uSHxyZvpnq46VuyNomQ5e2oaIjYUva01E948TIkB8vHUZ4nbDfgGAREOTokhIoWDnUP0XiLRZKCSg9f3wrs4BgAnBKjEdMHdH0iCt/n4JreXVg7Ttg6VW4afq72usXgPv/CfIT018AQkIULW2qNHXIJk5EMmlr66ogqgmSLaeA1GN7PqDfq2qdOcpr1wl6z1Sz4Rae0uTU611l0+Mgzdr8vOz9NGlqILWPm6rW9Hi5ZlV7v7MFAJk0vRQX1JcZ3PvTihn4N3V873vfw/jx4wEA55577uhWpgOGTMYuvPDCkazHBiNJElx99dU44YQTsNdee3lJX9cHesVW1blzzORfUCJQ4+ipWk2zL2JTrwRJQYMZCKp1V6CZ0KySxgZNxY8B9HfkE1WtORJiIpZoEJDdPc7virKSm1xOCcn5aU1HN6V6RSp04yDr3chJmcsqbnJsaVNouHWNIuWlyO2gKNlKW07cWh+3ttdGAqqisBn0YQgcALM6zbxJVfexITE8qWxo1spza0ZUfWsAKaHM9/Q5rbCFTLR/m+dvw8xr4eQtE+OUT+ZDrRgKWXP7XxpFzZJyQppBtIw/HstNpAkXM5eGASHUz2kF4Gk9ApC/oDbrcQKbd17hI/DDsn2Q2zJV7idbPfjVe1GYIAb7bLdN5NI9H+Zvi4HUFtrUmhQgrmLYbPmZSZES5PYiE6f5qM0MKxMA7p54qgqRxaCubVsG2T7juwkwh3B7nfC65b+LsJ5scWLNvcz/yy+XLWToHIoapvNCk2fm58TT9c7b7p812RoSORQipq9fd4lpTRAL0gqUIWJQhVUSVZ4j2XIqZPd4qEYfZK1bLxDr3bCmeUa2qEw5fqJ2BVjba5I06whSMlVSBK5qNfX3tENHfaImZ9SvtMVUkVv3Am/fWpnoRSO9y1yFBVPTEqc2cv9SvWgoUdcjNkksWLCg9PdNCWMimjLE9ttvD1Vi+54xYwauuuqqYbmGSDLImlZ6VFHYCcJbcabQq2JpnJcpp1GraZOZkjlPtRraj8z446g8d2kcmPmFthSiNA98b0NZMyk9uK8W+SUlmVbzrLJWh8qqeqWaJHrAVAWUTCHyBkStC8mkrXV9jJNssfoVu22Qvk5DRx4VLO+SGdxkrRtFVTva674w0YVEFI0500aAFc73Q5ApJfSJIVMUggmRESinuPiTsS6rsMeTgqX7yA2YlFmfnNFLTancrMUnQaZcOWUisecoQwTtJBxOjPa5qTifKG5KCY474NnL25zi7S4BXLmROqovjEociqO2SBJrojz41XsdyTQLgrb+IfJAm617juRm1wYzSbflaSojLsYXyE56Fa1a2OeAbROkz2OqR2EIOH1WdUqLS2hr6ifDyda9VzZzPpkNmQLkwUzGXkqNkvvL94IUaeYWCN45XIULFGQ6jnZvkDWoSq5z8a3tDYiqdIE8RHAD878lpvReWJWzggP/fhNu3OaA9rYGEKROh4EFWdUocy3vWNpCSLtD9Okcgs2mddqHHRdym7eNykTCibSE7O5B6x/P6b1Bx02E7BqvU3uwZ1XWurW/K4GIm0327Pe5SDPI7vFAUTjix5Q0kWU2OMctnCu+mmfKEY2No4y1CoVkA5Wt1mtUGeuEtWvXotn0XUHWy5I2DBiTZGxjgDbhRVoF+l61qzCdA6ppt0rS5jLm35BlEBTFR5NDk63Ya11WxSr6elH0rrYrNRSknJGqk1gznZPoE4BPyLqyzlRQSaGEtJFNRMAAaEKW6oSPsttM7EZdKYoCIqtA9miyiFYDRR+cKQ1mQKbIujQzeaPMgNu7yktNYCehksmcfHu4/46N3Msy01aWK6swOc3Y4CqyzPYP4IICuGJjndlD4mbVv8xFINIPU5J4Wd5G1vxzL4kpm4Sl1Kk1ihxhHiJNZliiWrbBuWppvzEi+DzsXhUFZK3LJ6amv/X/nESWRBiaNvK23LzTR9n3RUAGMuitpEzAATP5tjk3G1Lk9oBkOxnA97fiG2+TaqPy3L4HokqEzDnZSxPlqvjWM5xYhGQKgWmSb8nEj2HkyiNWsmgn/cxE5vVZ8HdIYFXq6qf7sNwcqvu84kiVVWIogpr8nZw6Rv2gr81My4BTc7iPGb8eUxoHg1XoQ4JPqpj5Xbt36OvoqGZmdi7cPQbcOyVr3V4bVLPfuoTQeyq7xgMyQTJhS53OpjXJtEE79QOwkcbWD808PzaNSOr6Q2SZHdvsZu1GEadxXjWbnmndBs6wraVU7gjqSCOaKYcHvb29+MpXvoJf/OIXWLFiRdv3eVnw00ZAJGOdQC+gKuwLa1Uy+ETCmieNagTAmrSsmc7I9UTy8tW9llzI8RP1Ocb/Sq/odf4sANa06algJU6zikgZABgHRe3DYW5z0dLETJr2ZaYtrX5LsGRNJ5Yt+nq9FARkckzGT9SrfLM/p2r0oehdpaObOFGgCDe2chWVms4ZVkZaTJ8KpqjoOuftE0ilBiSZG0SbTTcI29V/YiIN3aRrB02aO0w6D4r+JJ8+/gyE5jnvf+YPBQCyUrNRj6F6Ycu27SocqU0za2IRMvfMiZ6vWScToFXX3CQUfhcqPSJJPCJ2yJr7UfBUIoCnAsjuup5cpbR+gt5zz53bGRHjPlZ0XRcIwZQKXrcgUapT2BL7zPFgCm97JzjVy9ubMTTd8X7j/WTrEJgCi8SVw/u2cFneVfDs6POC5MlMZbF1NkmNbYoVUlxprCHCSgE81C+sXJtWpjBZ7GkLMEtSzbPXlmx2cPWU6ukRcKOSkeJuKmH7V3aNN/uFdnvt5W3ikcTe/q7UPqaKJpO29vceTTPI8ZNgFXAiUQDQt8ZEFlcgyJrAVD3rX0gLskrN+pEVa1a5VD9GEbf3itwlbB+se1RqxOjjxBNPxK233oof/OAHOOaYY/D9738fzz33HC644AJ85zvfGbV6RTLWCeS/1Ox35hqZQCSZ8yeAzotDaSrIl0ikmVXFbE6wJIGisG1mIpHjJ0KOn6Tl/rWrPYXIM93RoG6IGFe+bKJFTsSk1MTLHCv4MXlDf0bjMCN2pExI0wc2tQepgWYVGq7wbR1pVR9M7HL8RN2WWpeXuFT16clBBmk4bFRYs+E2yqZEsIQkA1KWN6jR51SFFFqtMYRJMGd8l3PMbN1CJlabcsNNpHZQp4m30/NizC4ScL6FpHqxfvDISfC/TQNB9SukS44KGKUmiCYs/PJtOUBHBU0gUMQAvU0UEVnydbSpOPSkLc0kJhFEedLzbPz57P0ocmvG9XynSKmidpHJmE2WbqcFpvpQ/zB1BVK6PTUDIkpBHDwXG3+m/SS1JQErJapumc9YmPNN0QReuB0g2gihp44Z0sdVNeknsvXyHIbn0zUAhP6DFARj3zciPQBumLg3Dl71u7Z2hzhkzf06KTP1Ey1SaFGoCv8ZkwmSrbZFc+nTOvik7ggZfz+5/6utL12Hxk9yETCJX7lFQJqgJNXs19HbmUk9Q8ljKUjKmMItaUegZCWZHteNuwalwSF/URh/M1Ht0qqdvW+JJZMbAzHp6/DgyiuvxCWXXIJ9990Xxx57LPbZZx+87nWvw8yZM3HppZfiqKOOGpV6RTLWCakx7fWvdRmgZWqUpVRHDhW5XVWLDM75GND7rVmfDTOQsOSZiSEnetCoQyUZRB1utc0mNTuI0CQr3MCoWk23MgV8RQzwFTQiZmYAtcckGeS4ifp3s1qV4ydaQlms7XUkk6+Om00o2WcnDmlWjgX5WhCKXCeFrNQh6Zq5NkPkrabOJh6YvbRKpq9X9K522fNpIlXML6rWDaSGHDb6XFg/7UVHhNjkHRL9fYGKkZp8WqE50zjLs02sad9Fapd9BgCb88tOyq0Gez5KTEZUhvF/oSSkArAmQfI7tM9Smtn+9sgBW63bCE7ApQCAUWEaeRsRO/jVe41J1PWvlyhU+mS9KHLA+NnQPSDS6pl7g8mf+5cJqg87liettWTGqp0JUyILj2S4Pg8IlZQQfro8RyQA3/crcKIfiHSH53gZ3aXU7gvMVMrVOu47xvvUI9ZMfeLXKq0TI+++mdxXDPWzlHl+VQe9cmc7uQxwaP6o9ukK2mwDT4SASipAwhaGgCP0rQZUUXPmyRbcPeXmYrb5ukoqEFVpo1G1CZtIlSaAotrlxjPZtDt46AVaZv1uXcb9pq+eMej6J0BRhZxQaJUasOOfynObS01IY64n9TfJIGrj2socCeRKbXCesJhnTKeumDVrFgDtH0apLPbee2988pOfHLV6RTLWAbKrB6Ja0RnppXFUTTKdGVwVQBOBcuXMD6p/rRm0XO4uL1N8kQNp1UYhaYJX7sTrrQZ5YkVpBiKgzWSpklT7igHGqT/1812pFMgb9jyV1fQ5Zl85ADr6MqtrZ/9mE6IrgejusYMlxtch86ZTytIM6ZQZEFKitWK5JqVWHSt0So284kwZiR6cZaUGb21MhJM75JOZJa2094+BMCZPKkvWu/Xm3tLP44W0qutMCVfzplkZaxJTFh1ls/hzR89gotPHNb3ziXgJmQAVf4K2ZUOboUFpRkw7LZFi17KQxpzJt9qxyWwZiQJ8Qlam7AAu4CRUbnhaC1KzrL8SU/OoTZR+w/Ohyj1zIaWWsOoDrw83SYfEmJNe7ifGPmvLA0b9wAi+1zchAWJo+461wytHJv7G76x+lmTKxE+ea8oYqK7WJ9WUw0mt7RPeN2VKYUnbBHvGb5i4NwbCofmjto6ewhhCJlBJalwemtaHjNwWRJFDpEb5DqObw3bLVJcnmDIO2GdCP6suSl0oEzRSrWuVW+nfE/JdBFcVpXU18awNRChTbSKWpnwlUx153lzrxt4kM4sCTcSUTKFYfSI2fcyePRuLFy/GzJkzsfPOO+MXv/gF9thjD1x55ZWYOHHiqNUrkrEOUFkNqHVr00yiN8BVacW9lHlLDwpWoWGUwkrxFTtweA71aU0rWErpF54GWZL7mblFZFVHmgQjbLaeVSBvAbTiCdUBIj/MuVavJlP3PRG2TDplLUn1RC60rxxkApXWoJQ281B/iCRDMkGnK1DjJwNFC8mkAmptL4pXX2lXyUyuM1Vo/zdRrUHyCTiYyPX/nJRkfnvo3CQD0hRyXGYJlpKpWWH3O4KgyEFX++DowAzdp6KaOLWLkxpyXg/BTV/mPM+sCAzsU2KdwTObokT1rtIKU1LXk3yroQMeaPKwpLJiAyjAcqaV1dGaWI0P1AF//Y3dCPzAv98EmInLIzwFm4TDBKGcNLJ6eUElofnUKFvUbgC6X41zu2deDNsSOLy3JVMtMzGSakV9JtvfHQ/UlwMoRW15uuhzz6Hb+S3y+tljwv5p80PMvc865QbThN1tk+WpYOZ/UWGK2wDEc0AEQR1ufJJQadUtTi1ZIZ8wCTlhSxS9qzFQCog2gilTPfbkLa1+QS+G3B6p/GA9dgk7HmUQzX59DPnWmjQ+ihZTSWbHas9XsGgBSQVF1gWRVPT4UrT0/9ycLhMIchMJLQwjjOjAPzz4+Mc/joceegjz5s3DSSedhMMPPxznn38+Wq0WzjnnnFGrVyRjHaCS1GRfd8qPR2iSVBMgQ6qgCk20hISopUCrH0irKCp1LaubwahIqrYcfXymBzJVaIJEgykpRDK1ZkiKjFRphZGRVK/q8ob26wohGAkxuYDoc+tLRp+rQreL90OaAWKcVeIA6B18zepXJSnEhK3t4KTbPx6iaoislJBdPVCVbk06c3gTs6iPB9J+axpoyy8lpc2dZmFC31VCTtCFNd2qRPvJiaIF0ez3orucT51x5mVbH1mYfGH2HATKA/WLNVFLb7LyosU8AtPZoZtHiqpU+5mJjBLXJt4Eq8swEZrkf5YYws/LtYldORnqAyVhPejFW53qUPVNN7w+dD3yEfQcuW0bOkxGgYppoylDAuL1Dzue+Tq1qTIdFNL2OgwyUYblhKbfsuP5seHnLNUGXd+5OSRt57WZH3m/Bvt8AnDmQfN7SJ7bygmeT+rL63vmtrctgAvIyJyfFZVLVgKZ+v6rea7HGZmYhNT6OSrWrIaNZGTk2PMxpOfcLC71YqpLP39Nev7cGGwXr0mmF6VJxV2fbVquyOdT9vmL08SUpZQeW5lfLR93VUKE01zWjJG6vYN247AhkrHhwRe+8AX7+/z58/HEE0/g/vvvxw477IDddttt1OoVyVgnGN8wlUnnIA8ARcv5aAlhiZHIXSJQJQ3BShI9QABQiSZfSFySRAXYtBNCFSgqde3PBTexinDlRduPsEEDQpg6Gb8IOpyIWgkUmQOK3JE9yqAdhKsrNgEos2r0vmerRFtHJBATt0E6bqK/gk4qur7kf5do86soci94QROSqj7GOOfaPfdSMwEQYaW6CalVR5lodazV1P1Z7QZFkgo+GKcVIF+r0yjQJuxZRZfHnfwpMW6TmV0D1Y4mOUrLEKYdaIu2YxBSb60kSAnhZEUmnkmrkzqjy/EJn/OXQRvhUJTY1SQS5oTTRr6R/xNgzEssuo+cnfl1S+pUClKOPLIr29QdKk+EhImTpcA8GSotfDPuAUlW8DlPDeL73Zn3k6uUJaZQrz6hibjMTGrysymUtCEt351Bq1PGpN2EU2mBNjVR19mdf/Cq3w1KyK6r6InpUPFUO9ljKrvNcdhqQbT6XNS3NE709W6T0DjI7UcqIL8fqoBorNWLBrOQte3NKn7QgGmbHkcq+v0WwhFEvkBLM61oNfv1uFKp6z5v9dv+h2jpvjRjqmeRYAtoe+28oUlgX8kiOGLMYMaMGW27/IwGIhnrBEZ4rCmPBiCrZOnjrEID6AFHSKDCSBA/j5XvmS6FhEgMEeDKWZ7b/RHJxNnJOR+Ar2AJ6ZQ7BkWfU9344EbHyBQCQf4gE53J+6dNoid5n8rJan4fkNlVMhJXSSFZWLzdeooRSR5RyNtL94I+06tVc6/SDKpIoCpdQN9qQz5Z/xKZW9tr8gkllpDRpvCCFFECTc4cfLItIV2esjUAKQtVMwAuKhewyoI/6SbOBDQAOYBJwGmDQlpNvREz+YrxttC1+CbbMvFUGTl+IoqVK3x/NNM/tu6MwHbcj5K3nSIO6XxuXrRmbF5XZ8brSFKLvFxhstdw+4d2IpVln7dFL4aEK/fJb6drhubKtrqW/c79ygBLyLz6cPDnhX82RPCdRez1+YJQSCBJHbGherCIajLDc2h12UQxUkLovOGimrOqXlQZNU1Uu9ziFfDHIlokSwklq26RlFb0OFK0gEQvPFWlrhdtRhXTY2Di/GypXSz5rB27c+MTRwtXwC1MRxhRGdtwFEWBiy66CJdffjkWL14MIQRmzZqFD3zgAzj66KMH3LNypBHJ2ACwLxvgmfusrwD9LhMomJVZywwkfAJnJkxrzpOJlsfNi219uPggBwCiZc2YygwQKq1oKb/IXQAAoJU6TpgAR8QCJU1n4m+6lV6owJHTP5PsVdAHlkyRnxkFIuSJG+gMRNHSQQOkiPEVpulr7cuV6shSudb2L01Qopo5gsb97EJyasyuSkidKT6tQqR9btIw5gWV1oC0BillkHLEXM8QMdq1wE2MTd9sxkiE3SMUgcJD5QI2pN939g9yIIEpUDSZhWZPTgRQor6xCZhv0UTmX1FtjyzT5+Vtk7WXeoLy53X3QK1cARTmHTBJOt11pPud6kz14spScB1qi9eGoShuZUiZr1ZAGD3fPuP7Zj+zixv45weEsFQpIzPyAGZUe55MOuQ5Y4sPISHg9l1sm07bfMI6BDPA9ev14/bsWLdBYdvZ0sozW+SopKIVqP41ti5qbS88HzbAJGHNbIoMyrfGo4Zp3KGFiB3b6N02xwDQLglkqaDxpWj5C8gkgRJ17RfGVfwc1r0h6Czj/sCe21GcrHNVIC8j2+tYxmsVSim85z3vwTXXXIPddtsNu+66K5RSePzxx7Fw4UJcfvnl+PWvfz1q9YtkrBPMSksxAgPA+YnxgVaZl1RmRmZfEyRgZQMJDV5GxVFCOJ8J7rPAiSCVYaR4+l6EDgvS93fwFDBAEznZ4ZYL6QYxKoNfmwZgIli2rsIftGyEkgRU7o6lz8zfKqlY4irsqjbVPnZSr7JpxanshEr1EaWKHPUN7b9pfeGK3COpqmjpvrNmZgFh9u6EWd1bhYHaSWSkkO37SxKK3CcTlBy3bKIMMrW3K17SJZ6kBMIyac+FJqWfMJUTMlOel6PKmAQ93yP6jpfLkhvzjcWJQNotsVaucGk5ihyQNba3qDH9mgSk1Ee8v0JTpe27kmNcXd29bzMHlqHD53a7LjKp+V+y97WknMB06kXndSDhdJyncBGpD82wgemOg2e150oYbQ3lqYRtueaGrogdWnvO+JQyckh1pvFLFVq9qtSNRaCu96alhRSgiZlZAKhKN0TeQP7i87qctOK7MeQtiLTpItcL7ZSPoqUXnmlV+yVIE1BEY7M1W6ZelLkdJ2gsqXR5baRUReR+4fmj0ZhGSnredIvIkgXlSCPmGdswXHTRRfjtb3+Lm2++GfPnz/e+u+WWW3DkkUfikksuwTHHHDMq9YtkrBMsmXHkCYBbUdGYppSTuiWMqiM9xcYSIJp4jEJjU0+EBIdXg5QgRuD4RtrcMV+R6mRVK+E7orYRGOEGLqonJ1nsOFevAsZRyH52/YuayBy0DXMUFhJC+OoYd/Z1E11q20NmAdHs0wM8XT6r6gG96AO6K86kwAmvuTdKJroc45RLfaSSilHEGlpVZKtolRnfm6JldiMIstgDLjpTFhBVHS2q2yT93RhaMCqeidgkX6Bc2vQYipOaEkXEmnOK3Cd+Q3RY17s10DmFNTdCJnqirNbbTIKlObrIRFmtQ9Zh8z3RnqrkpE0BB2r1Kx7B0KkwfPMjbYHUKc2Gp6yF7bUKUFFOKjqUOXifBb5kNClzQsYnXf43NwmTusaJGatX2xZmEqWpRwQRAF6PkCzy6xqfspCQUo4zW4d1hA3u8fogUF5loVXjBvzFk5TW8V2kVZv6QmVdkI1X2R68dRRpBarS7aIoW/12PINModIaRH+vvo7xcS2ybv3+qwIqqQKVbj3WSK3K61tnVLOipd955hqhqH3UNjJJqna3Dtt2IQDoKFIICdFca04ZOsGNGD387Gc/w8knn9xGxABgv/32w1e/+lVceumlkYxtaqAXzpISUp1yPeA4AqNXT6KxVg8iQjp/BDIrZjWbzkI0zCRuBgdNBqAnTRr4qGwukQMmyohPCsKZ0IxyBmP+1N+3DxL2Gkyt8oYe4SYMzx/L1EebDAAFN+gftBURJ11fVcCSTW0GFUAekCemwCGr+ZOrUt5mwSqtatMHq49XljFtQilfbaHVLplRlQmcIBJGvn9mpatTfiROGeRRpkRyZQJUdXSsJiEVG0GpWk3dZrN3qCoKm4dNgMyETv2inE+eI7eneuSa3KVmL87+chNkmJSVT8jebgMAkNRLE196jt8h0bEkIbHkUBU6ClXUuvS2WSlLeEz7qxonf/JrC7c5CtO42HLBFOHQTyoAEcayPFwDnVdemP9stqkk9DsdGypmNhChxPcvJGKeGdTkrQqc2b1gGlX45wOwxCjJtBkzDUyjhsBpxYzdj6GCjxH0PvDv6F61GjpanEyvNBYR8cmk70qR1iAnTIaSKYqsyhacqUuZ0+wDlHKEqz4BorkGIm/pACm4hbGSEiqpaVWNkWQFPRZ6QSZ2PHD3gJMpz3LAI8t5MBeg35ekYiJHN840mhcKMvqMrTcefvhhfPe73+34/aGHHorzzjtvI9bIRyRjnZCwjPAqd6soVWinUOny66gk00SJEqbSS8pWdxBCy9xGDRL5Gp3BvqojgSALoFk4AkaqEaAl+lbDnyTIVElkSiZMBXOTAff18jL1E2SiDyfSyQmcEIBIfLkfbsDyypNsgkmkXdEqVUD2v+qXCejN1MkXjkyI5FNWrUDlmU7Vkeh2qazmrmv87Oz9sCaNwhJiqNwjljSZqcwldBRFC6Jw5M76BlL/plVDDBPtkC2EXr1LCVEfr++nIW+2eYnbU48TCtquR1aM0kr+MQXLa1bkLomu2TKKzHyiPh6i1o18xfL2e4gShc2cq9Ig0ov7coUIfMUonYA9j5zhKakog96HUG9xJDnZk1IHYxhCAJNgFlLqTb+L3N+rkMoL2zRUxWug1BTWVFeiugHtJqdOikeJgl1qsgyvz1VhMu+BEYU2shWcx8mhbUfwe1uQg9sRQtdTH3NI34O4rvaW8vYBOLS+DEqlLsKaX5fMdooSS2vfV6VSL9q7NNDIpKwo6hPaohYp15clcuYdF/29erElx6NIUjMWUl5FpgRy8khWBOMqYd1CksyOkW3XBzQBKyFXrrwCXkQ9nKI/0mgVgNhAMtV67bqM4aWXXsI222zT8fttttkGL7/88kaskY9IxjpAJRU98Ra5GYQktIlOucGo1UBRraBIqxCVLutQz9M+ANAvb65Xj1olq1qCRSkmRN4eHl22/6RKUk06aFWYpHoAoVVebgYwriDRipWW8kXRZvIIpXbBCB/9Hf6ugpWjO5kNxDJBUR0HkdX8yYRPjOYjYfrKOt0aImaLbfVpgpdWIXK3WrfHJKlWKotC+4Qxs7CgvqD+IBJmzlUmPL+oT7CTAq+vKEwOtqQClTe0b0xRdfet1R+oEmZQNz5oNjiB6pDVNXEsck3KjUJmt4Ay9wlFrk2cqoDK6kgmbYXWiuXuWJNKw0OR+/tKAqbNbEIu888KTIC0pYyX3oEm9/4+p+ABdpN7ScljaUsmUv9YvWxmdL73Iiczdm/N9vxuro2FvTaAjtGapUrVQIStvJDyv/nn9CszWQ5YVsn7Hh5HKrayCzijrjL/KFRNpCB/n8g/ixQ3QOfdKlrm/cgHJWJWMQYbfwJTLX83Pb9aqmMnMmsDjZg/q6B3suGSrtpxgG0DZ1IDlfmh2mMAq9Bbv1qKVJcSCtK4KsAfwwqm1tPimSH0RRPI2/xyIzZd5HmONO1MeZIkQau1cSJjyxDJWCfQpCmEmW0KoxKxPDaG+OSFgkwyO2hY3wk78BqCZkLCKQO+SphfGTddhPUoGPGSKYCWGxdtPaV1UrWmQvP7kMGdt9mg5v1NdeWyP/3PyQtvP/m78cmEzKn8PJkCoWmQYPw+VAqQ+ReAv5UU1UMCKIRbzZb1h5SA0gRb5ylKff8aUoJYn1pTplEjhYSOxBLkE9W0dbAmUN5Hpi9seULqLZvQC5tY1fSDl7S1KPR3SQUqq1uCQn5podJjUwZ02s/QdlXgKM/qJ2g7GZm2qz5BP4oWLAn2IBObMZ3vr6rznzVRZp5swxD8wEqJ2EDnlClmZceHEz79zp/ZdQEnKKE6F16fkx8ywdN1aQFBhCZveOW4QAinDHPfUAA4pPGQzSNWBi8fH6l4MnHEiJOpkFSxMlTYdwDafLLKiFu4AOXnAwOrV2C3h/y8gnGKH8tNxqU5xsLzaPyj29eJdA4zoplyw6CUwsKFC1GtVku/7+/vL/18Y2HjPEVjEYzkkNol8qZeLdHgl5jEqQCasgJVG69z2JAPU5I5vwPuUG5MYKrSjSKrOVm+zF/HkAmPdNGxYTi2kGb/RqOWcdPhAPBMo5xolRC50I9NH5c64hSuoI1ZQtGWUuSUm9X8CSnJoLI6VNalTYnC+N4BNtpSZTWoqnb0taZNPokFPi7aiTj1+4PXudKl60H9SObQrGryE2XOdxBw12R+IzbEPjE5yVLmpyak3oM0TDciXXkqrRlCZggJ1T2tBFFxOURzre6LSg1ywpZ69wJbpiFlfCNqMkny+0k+jlwZKiMi3L8rYRu0M7JmI/fIJNps+LmkpLRKmDQ/olJzEZDmb/qefO+87ZE6kSop9S4FIRHjPmak6JWkpABK1KuOSo7/7rkI60HO533LzNk8MIgTnNLrAtZU7tLipCZfX7si45k8ue9kqhNR6+AN/flh1aWll7127VT7u71mVmfRi7ru166Zoo/JauZ9ce+R/qJdXbOWAxNAY3cTofGMlC9Oeslf03xH44jz4zTRkJ5Sr8tTaUW/z5U6VLXb1Y058zsyxsqjBR93cwjHYCFKrQojBcoztqE/I4HFixfjE5/4BGbNmoV6vY4ddtgBp556KhoNP/J8yZIlePe7343u7m5MnjwZn/3sZ9uOeeSRRzBv3jzU63Vsu+22+MY3vgEVEPjbb78dc+bMQa1Ww+zZs/GjH/1o0DouWLAAW2+9NSZMmFD6s/XWW4+a8z4QlbGOUDIxPkPGD4ltJSTyFlTF5RYrCv2iqKSCSsUNmHaQzZvaRGDUHjKtFRBo5gqJADKZONOYefF5tme7OuQqEtBOxkLQgObtl6eles9pu20iaScPANw5/HhWZ78TTX8VLWP2NXm7ABuJJPp7AZmV5/kxZai0Zv3CVKVbB0FIQAn/8SVfPR31mDqlsEO/kELp+eKFzttUB1OGyBvOTGvC8YUqNCGjtjLCqoTQvzf7jSkmh02PkpBZUJN6WetGUe12q3siLZkjQ6rZr/3Kqt1OOeNBAZSsNungFwWmiIVEh6tinNTZZyjXUZomeMGdZ/qmygIxCpdmwVPSAP+5Y2XIpKb91Eoc+8PEpaJad5GnLT+HGidfgpHR0oSo5nMKTOlwQJtS4qkq9Jx5PpQuQMESsU7vamD+8/6nZyEllZLtktFa613PC3rgClXRgspNvU3qCd6W0ibTeyFNDrE00++LSTMBmeLQruW4dtUUHNLzEmyqBw7eV4aIUZCRXYgULRQp8zFMMudHGJRHPl+uksqSJu2jm2rlnBRsO3ayxM15EzanI2++JdjC1ZnaIBQbdxMopnh3tGi8xvDEE0+gKApccMEFeN3rXodHH30Uxx13HHp7e3HWWWcB0GbCww8/HFtttRXuvPNOrFixAgsWLIBSCueffz4AYNWqVTjwwAMxf/583HfffXjqqaewcOFCdHd344tf/CIA4Nlnn8Vhhx2G4447Dv/7v/+Lu+66CyeccAK22morvP/97+9YxwsvvHDkO2IDEMlYB9icXLTNBpyErVLjJ1bkaCl4rF0JnUunBYlWoZBIgbSSQRS5P7ioAjm0iRNSIJUpkBTOT4HIQplvxFBe/nDgT/zBHYCbDAdb4fPzLKEzAx6PAA3aZ02VSmlSIhJNWgFklNcrbekVrSq02TfxyZGqdGv1igZ2E/Zu/UkC0w/fGkmEfWD+D02uVE8epBFGrupoWKeMuNxEAmj0GvWtAjRMuDsN+OSj0GravUXJB1E/T/qeiyyDqI9HYXzSpDUHJhC1bhuhK5pmqxjmKyeyivUbo1xTpFS55gcJYUk1s1sTObJD+3WKNPMVAUYwvC1tAO20H3zGYRUsqpdN/Bpuhu2rsvw7ynWmc7BlLsFoQL4oWEKEKiEnc0NJjTHIe+Y9M4DuK75dD50elNNmAuTX63BN8pcC4KIr6R0xpCa8lg3o4UmQAZ3ba20vZN4ILwMAOKTnJSiV2T0idd8UhpewBZaQ2r+sJaz7QHnlmVouJIpaj1PtAJZWwhEeFNCLYcB3FyD1mBzx2fPpLYCpOJlAJRU0FZAIgcScb/sUcO8lJ2L2GS5gXVUoFZBVC82YkGyc7ZA2ZTPlIYccgkMOOcT+PXv2bDz55JP44Q9/aMnYDTfcgMceewxLly7FtGnTAABnn302Fi5ciG9961vo6enBpZdeir6+Plx00UWoVqvYZZdd8NRTT+Gcc87BokWLIITAj370I8yYMQPnnnsuAOCNb3wj7r//fpx11lkDkrFNHZHSd0ALEi2TU0ab2DItdWc1T5WiR1sK/bJDSDQh0cgVCsW2sAhIAA0IUuifEJ6vgo3I7DxQ8x/vGmUDPJXJvytbuYfHsc+UmZzDLZ46QZNRBSkECqX7F4k265F50ovkIxMDT9LIyBeZLPyOULaOpZGj4UqWkyte/5xFwvJBXiYmVUmXU/oAS8y0qSSB86VpJ6kqNc+R2ZJFpTWd6Hbcliiq3ZZoqqyu83uNn6hNs2mmTU00QRmlgUiHqHdDTphsN2e2hAeaiPFs+2Emf0rsqvfnlDr6cW1v2/Y1ZQTGqndcFQOcuTQMEJDuWqKq9/wUlZoxr5vvqjWT26zbmjGRVvTf5js7QVPfphVbP53Dqsu4Ceg+U0kFolI32z9Jz4xnNz5PAjVwIOWIPztlKtdQFZNgAVPqi6YKiFafa29R2OhepHqTbE/94QuPxJgnucnQOPGrVhOHZc+2Xe66VVuYCG9HVoTZ65WX7+qT6whH+3ervB3UFqXz/uVJVb/7RI68sUS4PjTuAraNLNG0PccQaedKQLkb9UKwmSsU5jPF75v9PQg+AHyF0RsbhUnBUXWR3BsBxTCYKCnp66pVq7yfkfCXWrlyJbbYYgv79+9+9zvssssulogBwMEHH4z+/n488MAD9ph58+Z5fl0HH3wwnn/+eSxevNgec9BBB3nXOvjgg3H//fej2Ry7+4RGMtYBrULpH0io6jh/j8WipTe2NtnzEymQSoGSjUoghIAsc3BVhV6pSaFJnHeSr9xYHwZOyjqRrICYeX4RnFwBncsqG4BY+eGxpU663rWFmwgEkAjdv8qQDgB20rD1ot/JBEXtSSo2Z5sdLGnwpMmMD8plfVHSNhFOhEKrRSqttE3S5EtiJylTBxu4wX1XaHIyk6ae5JiPnSF3RW289ZGDkJqAjdtC/8+fhyTTJkqbUNMEjVTqKIxfjKjWmILkkgZ7e2SawAAANk8X0or1KRLVWvu+nKEZEDDEqmJ/t35iWcVtY2W+t+elFecvZoiQjgztMik8xgG18frZSKv6p96jTdS1cRBZVdeDiEC1S39G5Iv5E1kyTaQlq9tnzoLIafDeefe8jLSz7+zn9Dx2IlYDocM7LVQB0ezXuQzJh5RvKG+e1fayhPWvtAElRlnVaUYanop5WHUpDh33gm5/knU2Y4bt5dcP33/AkjOroucNyL6VSIomCjhn+bY9HgNFzbWp4n/G3nmralnFTEDmTVQSNg4PNN7RM8PbzxaeisYWo7gVaRXFRkptMZyYPn265y91xhlnDGv5f/7zn3H++efj+OOPt58tX768LbXEpEmTUKlUsHz58o7H0N+DHdNqtfDiiy8Oazs2JqKZsgMKpX9sDi+W4I9eyrZzjNdGIgBwawelwjYDB73kEsqoYsoOHl4WfAIRGfKBKCNJVE8zeHvRdUQWOGlh5MRuVM7LKis//J1J/l69PNLDI5OElckLBfQXQCJSZKphV8vUDhS5iVpiechoAmZ1UWnVTxMgKP9aiR+OHdj5Ktitlj0fPXYOZQYvvS9GQRN5wxxbceZDk4yXE0nrP2PvNyk0um1F6laEomhB9K+GaPZD1cajEFJvIUVkTyZ6cm01XR/LFLI2zhIc1ejTKlez4fyK2qIJDXHL2LUzF3jAFRCdaiN3BCtwUhcyd9cixamQ2teMRVTa+0LdaQkUy4AuEyhlJmDaLqfp+o4WF1ah5KQqJEImNYmQmix7e7IGW1OFsCSeTfC24mZvQ7pu+BwNiKG6HAA2p5cSrO/InC4YiTFjiCIiTeOJSdtgSTnlszOE/LDqUkAVuPbVrQEA16+o45DxJkE15fuiZ53GMJn4JNAoxKLVZwkLaKN4xf0uW0DeNP5jmXu+lII2C7JxhJsiAbMwde+voPfXfO5vH5fZ5zdFASWS9jEkjOyEP76G0ZT0e2Gel7xQZUWMCPJCbXCeMRp/ly5dip6eHvt5pwjD0047DaeffvqAZd53333Yfffd7d/PP/88DjnkEHzwgx/Ev/zLv3jHlm3ErZTyPg+PITegdT1mrCGSsQ7g5sMiySABL50CPdQKmlhIASuDA4AAjEmOJnsBoZReWSnHB0T4JssEUCwRoSoAxZSbDsqOvoaZ3BXbn9EV7IhgcK41E5SpRebzsDw7uIZqkv09eFmEtP5ipCYq0xF2RUurTlVAFv3tuYvMNYokg2z1u9W+cfr1EjjSYMxNcrZPVVu5HlEF2pWGkr7yCWRqyZjbxzRQyHhfgj1PXFlITN6onHxkjJqRVaFqE1g2dlI7lPabYoRBZVUgq6IQEtI4Q3dsE3f8N31kSZklHgykdLFIWJFVXb8VZsKV0imKidR7f1rlkgWjlD17ZMqi+8/NZQGBIZ9Eq5TaAAKhiZwlRqR46P4tqmZnhKIFtF5h/ZHr6FG+QPHqZK7BAxjC544ILLWRf76uahng59oL32GlIFpNp8oSEQsjf8131B5RIeW5H4c2HsU1/bu0Xfe61ZNxaO052H1hyWxvF3+uTW3RpUZZsosOUnJNIBMdmxRNlzYjfNZM3W9c2ocDZ3SZNiRugxFhxlVm4PH2oJXaRzVJMkfawntQZrVoW7yxe6uAXMEt4uCP+yMJpRTUBpIxIi09PT0eGeuET3/60/jIRz4y4DHbb7+9/f3555/H/PnzMXfuXPz4xz/2jpsyZQruvfde77OXX34ZzWbTKl1TpkyxChjhhRe0WjvYMWmaYssttxy0TZsqIhnrgERqE6KANqmBR+4Z1cz+qRRyBWOSdJ/n9MIqN3AQIUkg3DjAJ2quWgFm8My94+wkyQcBb1DRk4M/tLG8XWUTQokSxwcnxY4p2xeyDdRoPnGyrxOh6yyF0Jn2qQ2KBTGoAhAmHxlT/ZQyqUQUUOH+HawtRPog4asadgXODg/NIdKVQ/WgZLvk6B5OqqqEEIaRX7asYOIGy6NkHYQTEzmXpBAygezv1b5qadVGokJIG7ZPZRNBtP5uWT8gVzt/H+qrkJgZ5UmbgTPIxlq7ECBVzCYRpQCBFnxTpipMGoyqrxARMQ76wctFx8kFVzApBYFM9SRO2+eoAqKx1p1HKq25R+THY7O1J4mNypWNXhS18fod6e9Fkva6cphyQguQkADatgak0MvK3vb+oeOxpYsjmdgkw/qdaGgCWBQuGKeszCTxSZOQ2q1CwqVioXZKU8dGHw7NH4XomoBr+qd75V7bty0OS57Ri6BK3SpNFIBB5erVqiPbSkjtD1odr8kWfwepX1t9NmpdyUT7leZN3fHsuAOn6+AVJVO945l5hmwP2+3O9O9EzpSCNU0qIfSQFPS3p4LJRC+YzcK5bHzjxMuW3XbUyKBgPl8bUsa6YPLkyZg8efKQjn3uuecwf/58zJkzBxdeeCFkMMbMnTsX3/rWt7Bs2TJMnarTp9xwww2oVquYM2eOPebkk09Go9FApVKxx0ybNs2Svrlz5+LKK6/0yr7hhhuw++67I8vGnsmYMDSN/DUMUr6sAySZL5WyP/ZYVeIwqTQp41Eshoe0oSyUu015sgpIQMTM50IpbxXonUurT57fKAiDb7tOyWdtq2Ah/AbRNQBfTWOXSKRAKgCpcj86zJyjSUrm/DNkikIkKJLMBjc1c2X9NdoCGEw9ub8d92HraI7l5CD84TsdUD/w1AWBqcte35rfinZ1p8TXR5nkrqo6Dqo6HkXXJEtAvK2jcrZFllUDUm26NfUiH7Ki0edtQA4Ast4N2d0DOW6iTnlAGfVTtvVUSNztc5NCVOp+IIW5tvbNcg7XVvkjXyfjS+b1Hwt80EESJtebkJZEUfuKSjeK+gTdL5W6PpeeNaWYSc4EgZi0DJ7ixu4x7eqgc3ex+1HmiE6+dmXvjK1D+zvrqc8dFBj+/FJ+PIrq9t5l4zzOfSW9RRwnXEK6LYaCXILKkHlR67Yk9NAurTgcMv5FHNq1XJsvU0P4jQqs83qR43z7mEXKoEqretsjZnqnsUJVu3V5QloiZmHKINM+XwTaQ6CJUaH4WOtMhgWYVYLzDzZO2CAMNgbyvUmUEFBCoICwvyu0k6+xaxgbPjz//PPYd999MX36dJx11ln4xz/+geXLl3sK1kEHHYSdd94ZRx99NB588EHcfPPN+NKXvoTjjjvOqnQf/ehHUa1WsXDhQjz66KO44oor8O1vf9tGUgLA8ccfj7/+9a9YtGgRHn/8cfzP//wPfvKTn+BLX/rSqLR9uBCVsQ4g0hUiTD4XnsMhhT6eXnBJrjBksjQvuFDtk16b8mImlzZ/J+knHSR/CsHMkoL932Yu0UtbXzUiskLmHa9ioSlBudGOJlPjUyeU84XTX+j/csNwpRCQRJR4SgDAOcwKgUIlpn/1YJsIE/RgRDMX2Sb8la2ts6/OhYPnYEqFf3DhTWqKf64KTzXzMpAbxceSzHBCLvldGYUJtR7tK0aXoug4Sm9hAwf0JM1NZEqmEPUeSPLdMRtri6p2jldZVU+oSkEkWoEh/zfKMUV+ZgJwJis+8TP1i0eW6Q3ZpVZ08tyZzwBAuP39bF8k7lnVebUSazZUSWr3HdWEqgJVTaGKKkTegmj1Q/St1v1krkFBN/w+KCEhkkzny1JrzRZbmcvxJ10KEvL5a1OUSYWz6TqkM/fye84Qfs7fx46mfqNICrP7hP3Yi5wUequujs+Tv5OFKPQG3MhzLTqblCyCbluR47DKX6FyvS+rElITMSLnLM8Z5Qa0jvneM6Eg8iaKSjdEkjJTpNTJlplqLJt9bswx45nnk2vTwWg/WyGZhYG5gri+FZ4CVCiFRAjnu8v6icbLMj80r0xF5M+5rwgBW4+NgXDxv75ljARuuOEGPPPMM3jmmWew3XbblV4zSRJcffXVOOGEE7DXXnuhXq/jox/9qE19AQATJkzAjTfeiE996lPYfffdMWnSJCxatAiLFi2yx8yaNQvXXHMNvvCFL+D73/8+pk2bhvPOO29Mp7UAAKFG6u6MUaxatQoTJkzAX59bNiSbOkcZeZOeYCTsZzQ4CLPJLuArWZ4qVmLysyoGH5jByBgzB/EyvWuw3EShWck7t8wc6ikBzOGaVpjCDaZkriVFkfdHIrRK1iqUyQOk1RtKistRKB3hmpIJ2eRuC4+lfm3z+Qj7ozB5lAYiwkx98A8qmfwAIG/opMDcrAlocxngh8EXAbHjof2GjMrmWkeqbK6lliUgep9THT2myPTWt9rdpyKHyBvazEkTJzMlqUrdfacKbRo1Oc0g9BZW5Acn8qZvipL+Wk6F0ZdURtHS6TIomjTsVzbZurKqbnI3uedsv7Jrc18p0VgD2b+aRbUaU2Xe0ClETP8AgGj2aXKXN0xalQSi0avvk5SmPG0GVZkmuKLZb+tsfQPJb4rn5Cp7XgZDGEBgkwbr/8lsrJKKbgcA2Vyjr031IuLEVFK7D6TUx8nGq21qFn8HbF4yIrQyNalV9MJANg2BtYtDaY8v20pIVcdpUmtMm0IVKLom6euaZ9NLEwNYv7DCpMKRaF9gFRBoFjphdhlo0UV+u2RStGMD0DZm2N+Zny9HbiLs+TheKD1nzJg2BStXrlznOWMooDnpHd+8CqnZrWN90errxd1ff9eI1TVi/RGVsfWAc9gf2rGAU8kAowxJ4zeGQJmhgQxMwSF/8FCuNwNfOGhYlK28OfigzY9vO4YpZuw873tWP6oaXzUOlGyQzAxpqssvksw4yio7oHrNMudIkUAKiZaiT/1jrTrH2uaZRGzdfZOrUiWElcoYyO/OKkSUgsT1p02KSfeDKR1tYERPyRSiuSYwbVJeM2Zus47rLUeKzQRMqpXeozPx7qUoWlB9r+p0EqZsUj/szgnGfKfSiiUlyqhVAJxqU6YIkX9RmIaEk0/yf7QmV0cg+B6EnqJC6pRpW5FWIbK6JqRKQfS/qos2G7WHebhUpcvdL6MOyqKl+yhhhDlJnKmMtlZigQX23WXkSajCRVhS+4Bysmbay/eFtYew990qdYDOOaYKrTim3OzJFG1VuETVbIcN7cvmfB/deYmrFpFYq/a2dMAmKbos9YxKMm/JpLKaVYghzTOU1UG+oIonKzaLiCKr+U755vfERlAVrn7G90sTLP21Fyhl6pFb0kQLQeZn5pXRPnYWzJ/X+vsqM24jGMfZ3xERG4JIxtYT6+pHyUkZ/S2g33TJzV0Mncxn2k81cCD2LYWlZCEM0+bmPfs5U7wsUdQ19urggRQMXrZyA2OnvqJoSgp+AGCddAHY/Gt8oLXHQZO1ArA7HXiTAjM/hM647X0aql5OVQrb2fY3J0kimPQ4kQvP9XJEBT5BthGF25Irb7T7cVHkpXHoFo01ljS1ER/yd0skRLPPkh89QeauzsonA9aPiplhPXOkUUR0mb7/GmCegYSpKGSaJH8xBKSDUliE/UnHC8mImDDO36l1zi7SKvJCIasn2jSWVqCM2tV27axmkpX6vmSW+EhHxBwha7UtcNqefVju0N6vee4d6xEx9mxw3y8FaNIFQCuULRfJys2XxsfOI1EAkLf7b9J1PBBpNt8VVAchtX8iXwxQ3SpdQLNPB3iY4ApttnTbmBUi0a9UWtXBN4VCJgVkkun3nw0QqXJ1cGkrnGM9LdJoQUy+Y3ysUeZ748EPKdzCtlAKkvmTESHjpAtw/5NrRKjqjwZGw4E/YuMhkrF1wHA+x0op5JrulGbgt8cFkzSFctuJwwwkbfBIVtImvQu47x2Rk9bxNTFbklAdyvysrMnHkA4yTQoTUl7Yga1zx3HZnyZUqnboj8H9NQi5GShFyXdlvh/C+MG4vwM1kJtdWVu9ornvHdrvkSu8RJUMiaBgEy/NBmFkLE9Saoh7uBUMyOQqWNmAVZL8bat807jomqCPY5OajeYDHHkjsDQY1ieR7y0a/g9ffbVpTLiiB0AJloSY+5OF5TF/QlI4EglA6WomUmhlyuyYwNU1mL5TSJwZs9kHCImiPkH/3WoAKoXKfNOx3YnB1M+abfn9pGP538w9wMt/VxY/VZZ+hO6lSSFiiR3tc1pyfbouihZEs7DPCFfx7GFUNxl8xhcKJjhDm5xbLrjAkGFdd0auhU7OWkBohdtUs2XGBR1NrQM3dK4uvaCybWVKlFbBYdsajsMhEQPaLRf0qwDaVLRm4c7hGCoB21j8hnuubEgZEZsmOswimyauvvpq7LnnnqjX65g8eTLe9773ed8PZUf4dQU58g/mDzYUhMcrNYDzJ1uV6qzP7atFPnoWSvm+/WbFGZoHyd++gFllmiikwqw8aZWpFOx1FTnVsp9CJHpfThMlCOhBrVkoNHJlB1hapYY/YT/Q+S1TP07E+Dm8DGqfDZQwEzMlYlQBqbE/rO+8CExu/jVRg5Rt326J5UVISl+xMcSEbz3D1QRvW6uQEBIJZJGx9t5CWB+qtuhXTuZ4MAf5/pj28L01kSSuDURY6NrkZE1pFQgmClKZPSHb6kAbWTMli/eXd2yoBHIFxvYp/STuh+6XTNFizy6HEDC7YzCiS/cyrXrb6uioU0Yize4OOgKzaqNS6RmATKCyGorqOG0yZVGZ/JkY8D4DsJGlnkk9bXu2SkEm6rRiIk4zVw6RLX4/+LMQqp782Q8/K6u7SRmid86oQtXG2+hdq1B6EaCufbkhV2R6bBUKjbxAIy+c2a9Q6MsV+luFHgvMTxilHo4rtPALiZNkizp7DNwPnUvlhZHwQ1XC1nUeiIgow5hRxn71q1/huOOOw7e//W3st99+UErhkUcesd8PZUf4dQG96EP1DVsXUD4yqxwJP3EhwapeJKEzJQDk72DK4FI7AGsmtAtKMvmxxnCyAwCUUFD/p1ezdEzKTAV0soIZzJKqkfNd2evaZ3ZANivpsu9ClJE6TSgBBYXE+IcAzmdNmsAJ2+dlS0WalHhEKH2lCkAFDiWAVbXaTH3cOZ0UFfa7LZd8abh9i7eNO3jzTd/5ZGoz8/PouZatp/UDk6mv9BVEBqEJR5rpzadJnSKzJ5+oVZBOQSYoaKcCL99aEAQSBqIEShjvf+cTGZJPZ08q8/nxzPB0jiEHOvEy26tRuVQMaPZBSGlNf27LqtRtQJ+Y7bGUSa4rhG82JZWJ7g/VB6QYcbM2+94q3b7azNtjiSovGwBEw1M+Lcmm+8TKsopduABRPNGuu9fewsIQL5g8dqQs8qChVihlw1eYhBDIEr1XpL5/7bcPGJoiFaYVGsoxeclh3IWEq+9l0fFl6vzGwqYcTRmx4RgTZKzVauFzn/sczjzzTHziE5+wn++0007296HsCD/cGA6SViiTVBawzuo84oeDZ7DX57Y7oHJfB7DjoNzEVSbrA6SWabNhaGK0poXAPwMAWkF01mD9MqBZdh0Gi7JyiHTlysxxcGqfrpvyk0WKxJkueUQZHIn1MnwDWgErWvClSEfaPMd0ITV54+1i5kUvxUEJRGC2JDKiJ1jpFCNUTOqJAQID2PfWEZsSglIbpHQqWuAP58iN7jfF9vxSSQpVHQ9V5BDNNfpDKj9v2YfWliF9otSWU4/aFSgsSukFxUBPSQEBwYg0L0MJAWnJp7lnaQVKGdJcsAS/STvxcVv3FMZfrmBBIkQ4ZVvkqmsA27WBEZ02UzcnViJ4ftj3ALxdILxdK+g+cfJcBk6qqf4UiQmmIpsN10MSRk1XZiEVbm/D32kiQ+tDaEIixMeZkECFx3UiWGH5Ax3T6fuNZaaMPmObN8YEGfvDH/6A5557DlJKvOUtb8Hy5cvx5je/GWeddRbe9KY3ARh8R/j58+eXlt3f3+/tWL9q1Srv+5F4dsMVWrPQg4UQAsooUlz10ufogYwGFfqKIg7pb8q7w0kbP5bQRsQU7EbnpQqXUlYQavtuhFE2wA4FuVHIwkHbElXzn43aEn7ySS8YIpgsLYGw3wtYq3+pWkP+YDyKULpqkBJUAqc4SE0kVXB9QCshhpCReqVJXgswuaZESBIMIVOq0GobL6/EF6p05wXWN0WSQckMiUxsFKNTzgK/L8D5IwkZRA+7fijg3gN6rv3nTqdEIeLsqcPkX8nKI+KtlavcbTrPFVAhbeSibSNFBzZZvrfERCoWXCk1BJkTc0/ZE15aDqX0/SgjZTxHHT/f1lWy3Smk71fom731s9lG+JhKa0kcqXzkMxj6zNm6hf6mfsR0uKiy7/A6ZuUaKvEZbCyKHCRiU8eY8Bn7y1/+AkBvWvr1r38dV111FSZNmoR58+bhpZdeAjC0HeHLcMYZZ3i710+fPr3jsSMFS7DIb0Fp4kQ+WLlSbaY7jlw5v4mcTVgKsL+HP2WEK/TpKhsIB/KhGyrW9/z1uTb3CSE/EwXnw6LsMe6cNsLBJ8iBdiwYYH89b2LkflDWT0u0n2Pr4zJ/07NQCOcf5tQm45RuytNKhlFL0gpUVoOqdqPI6i6hLPPT0tFvFdsm7qBNfkA0SXPfIiUkUBSQDa2INWnrMMpXlQRrPiKBaVWnPSB/LOZ7Rb8X1F6zgCm7n83Cz77OEeaqs20z7QtVR9t3bMN3yBTIau486m+zJZDvO+iImc6RlrnPBU/ZwYNw2H1MMueraEkVmQkpcIKZesP6txEuBcpD5z1r5nfb50mmd3yo1G20rEprKCrdejeIMD+cgYQqFe5CcGUqfIc7vdfDRaDCRdxY9fFShRqWn4hNE6NKxk477TQIIQb8uf/++1EYM9jXvvY1vP/977d7Xwkh8H//7/+15Q1lR/gQJ510ElauXGl/li5dOvwNXUfY0Gz2OydI4etExCo81h4f+BqETvVl2Bjv7FCI1UD1G+j8ge45J6OuX7n60J67LVQC/O8Cx2dWjj3Jmo4CP6YBnLXbTHedwK9vJ2wiaGmbSRCJu67nrC2EixYkf6204hExRzwDIgit9CRFE6mAb/oK+yQkNfQ5JzPmHlhhtkPTw5xP+rPwGPZ7yX3Q/wvXd+Gz4DnnGyIVKlgyIKehv1sZUWJO/CrsF1aGh04LAd5e+9wN4fmh67A9QEGKWJKZAB6WzNWqpMrrz8E2y17X8WQkx58xy0eGg4iN2cZv/hhVM+VQd4RfvXo1AGDnnXe2n1erVcyePRtLliwBMLQd4ctQrVZRrVY7fj+cGMp7wFUyAhFKPvGEQQCdrjcUJ9dNBes7ToS+JMDAbeXkVbAJHwAgpDWN2RxEZBqk/ERC+yRBkf+Wyx3FzW3OH4wTDD3hWcXGJK5tSy5L1VEFoKRnftZtVpCknLC6e2ZIwJonqT4eZAIooQ9lqg2vP4QEUu1PpXgqDVV4e3XaiT9n2wnx46l+jHxSMAHPd8ezo5PZiy9MBrqfnJAJ5czP5CfY5ovJyRI3UdqgB+kCJ5g/mNfnPPEuWlC0SXWiVUbR6tO8lKciIRTumjyViN3Qm54f5YidDZqgiEzafkspQOWOUHZAGznm+1XCmSKLShf6WwXQKpBKgdQEovBAEs8sifbxZjCUve/DxRU2R85RKFXqS7yuZURsmhhVMjbUHeHnzJmDarWKJ598EnvvvTcAoNlsYvHixZg5cyaAoe0IPxbAiQX3lQqVHAllHe7LjuPlbeoYjjqGZQwlSosILUGnyfBJD98FoPCILdrVLvN7SO6Adn8bATe/FxB6v8TQyZ/9rskf+6jsvECN0hO3aQupWrnZLFxKKFkBWg13PqldxoFdqAIqb7VN2PrY1CMznGxY/zRDEmx+LtMPYY40IqaF6X/yP6Is6uGzH4KnMKDjhdArldJoS34fykiWkABPBKyU8yGzfWDydRky6e0zSSZYymNGhIzKozISQ6qoP1Whd2bg2fEBP4lv7tJjiLxllTTLKYV00Z8sCraNCIY+gbZOme1L6u9c6X0FRZHbIKIyglx2f0YiGj0iYnPEmHDg7+npwfHHH49TTz0V06dPx8yZM3HmmWcCAD74wQ8C8HeEP/PMM/HSSy+17Qg/VjBU0+FYJF4bC5ygDuU4OjZXqpTYcVIW+sjwxLtafWHfBSRMKYBSlejra8LQKnT5XjABMwV1WtBSFJug6EOlz7VlJJlW7ozyJAE/cjQ15ItP1kb10r5gLZdvjAhJ4OtkfyeTl2m3JTvcyZ/VVRMuaNIGgLavUap9+6zBFOBQUfaTKpe4L7DoSk6CXVCGaics9mSnCtqowwJWgaTzbbqJpAKgoVUzbhbu2CBHuBSkJb6gTbptG6Q1KSpVwIukTSt2/0xvH0+l2tJm8N0QqFze3UoptAoAkG0m/sGiFOOYNHxQasN9vjZ168hrGWOCjAHAmWeeiTRNcfTRR2Pt2rXYc889ccstt2DSpEkAhrYj/FjFSMr5mztCssXBzb9l6TxsGfAVNCtElfmPKX9SJtXHmsgMsVLGDEoRn2HZgCFZwh0btkmUnMcnSB0xCAASlMlXyQzSqDA6cz7b6xHQn+cNq+6IVr9Tv8icGOZOI/8omXrE0SpdZkcGqzqS4hKYIRMTOEmqDE/mOxjKyDcRMgVDpFneuTZzTxhJyqOZJUvjYUi59c8rMRUD0NtXKU7YGAGjvmfPiTXtpnCkikfd0jXIlJm3HOEC/B0WhPQ23+Z7tIYmbBv0YeoMpYA0RR7kAeP3yu0JiYiNiOFwwI8O/JsuxgwZy7IMZ5111oDkasaMGbjqqqs2Yq0ixhIG8i3jxCwkcLSHpi6jfTBry/Vm1BbFJnQyaxKx4qVwIsG/46ZM+pvXuaVITQrMRYY8cnMSlU/7eUqRACKx7ZGp2TZJALLpFC4AlrQpoTeBpo3EaVcA2vJGT+AKadDJlnwRIQDsPqOhT2OTRKH1nOjpHnMyRz6WudK7NSTC38e0o5N76H9lzJfepuOqsEQ2TFnizhOA1EEQWpVK3L6PqrBpQKypM0x9IqRLQUFkT6YoKt3e/bBkmZuOAYjcqX3WSd8oZnbfSACw9QNSqfeMHcxEzPuc/x0REbFuGDNkLCJipFEm4YeTuyVE5n8BR9Ds2QpGiQmIl3JEhFC212anhJUhuQrrzCNIB1NTiZgUyv8bChBJ1RLMJDF+X7QBdO6cywuRoFkoz8zYvr+f6xufdLq683qEPkbrM7HzyGMq06Y1EUAhgEwyh/4wgIJQ5mPFCVLwmTuvJJIyrKNIkCuFLCgvdLAXymXQV2nVlqcA9BeAFBKZTO3OAn6AgFM7dUckyNMuTZwLBaGETk1h+1giMRut00dD8cW8+2+r8Y7txkelbIRRFIDYQKZbdFh3RIw+IhmLeE2hTB0Lwf1guC8SN1eWjYkhMaJs5BwDpdzgdez0N0/VwreYGSq4AuhFHzIzLcDImqxYYibNZE+kQQhXnmce7NAOq7JAtPXLYFvRhFgXJaaN3Ck/S3wigMQEQljiI1Od1kEBUuWl2esL44/XloKEmWw5uGlUqhxCJnqzcYP2NCACSlFQQOJ8v1SBIsmQNwsTaCmRyUQ791MyWBbIQWbRIsnQ13T1lMZ5kRNlMk+WmYd5n9+5dLX9/R3bjW/r54jhR9wOafNGJGMRYxbrG6nF1a7ByufotLddGcqizMqiXdcHQyVhZcQt/L3TZ0IIG51oiRm0eVOSmqN4+ojOZQ92rfVRwjr5Lq3L+TDtaimnSAqRWvlTWuu0bFOdCgjjE5eAb71k2yiEF4RAKVKkMQWKvOml0LAIInRttCWAFiSkCcIQSiFLhFWxcpnpFCmGKBfGBK395LRJutnh4Q1TUnSKirxz6WrsPX28JWJ7Tx8fCVhExDAhkrGIMQk+EW+IKWugMjZ0oqE6khmn0yQ3GDqpeSO5yuW+dIDLbaegbNIHvtXUhtRlQ+8h75t1LSv0LSNQZKf5BxsEATI167a3isIS3oz5mIX7Z5K/nBTGJCmKwCFQtAUDeJuCC4lWrncaqCQSKYBMAEnikzWbWoXMsqaene7PQCps2edExPaZ0dMW8RoxshhqDujByojYNBHJ2GsYY9XpttP2JmWRk+uqfg31+sNV7lB8ckIT3lAROshvKNZFGdyYGGoakzIMlI+u1aGtoSJJfdwcwkTXBJCIBDJhfmp8X8og9xoACGMuJf+7VqGQG9MwRdRKIZBIYSNRyxLhdmrnumKfGT3R3DUKKAo1DD5j8b5tqohk7DWKu/+22vt7UzA5DAc5DNtF/ixl1+B+L2XHlp3DP1sf8jcQhpoTbSw6Sg+UYmQkrrE+5wy1XoPtBDDg9cwuDlIAicy8XQF4WhCe144UKHrmyMSas3IriY4Spf07bXoT4fs5SqiOxH6g/uPvVSRio4OY2mLzRiRjrzGEZIVAxKSMvGyM9zecHMi0x3+n/8l3hUB/l7WtjHTSOZ2O7UTK7lzq6sGvx+vSqX/LPufnrQuGau4Mt9EaqLwy9W19zaqD1XVjELPBUEaeO5HdoaiXQwUPYmhPk1Liy2c+sySsA1qFQqtwZmNhlTO/3mG0LpXdCfy5Xd/nNSIiYnAIFZc5HlatWoUJEybg2b8tG3OZ+wcCJxqdCAOhExkJsT5K1mATWRlJGgsYSr8OBWUT3vqQ4U79HBfGw4OBnuPhILGdMBC55tdNOlxwqEl0OynnY9W1YSSxatUqzNpuKlauXDkicwbNSTudcBmSatcGlZX3r8GTP/jIiNU1Yv0RlbHNHOGgOhTCMNAxQyVqHJ0morFKvMowHEQMQJvqt74oU3ni5Dl86KTuDeYAv6GkbKC1c7j7AF13fZ4Bvrjo9DzGfSc3LuJG4Zs3IhnbzDBcpGBdyx8qSducCNhIgffRhhKzOFmOPNYluGK4VLNO97WMeK3vMzCQ2ksKXSRkERHDgwF2q43YlDAYybr7b6tHnIgNhKFMKJGIrTvuXLra3lspYH/o74hNA4P5dA3lXP4z0PdDLWtDQM8ZUP7eRu+WjQ9y4N/Qn4hNE1EZGwMgksWd2su+Hy2QejPQKjkSsQ1H2Ic8+SYhjrWbBwa6j8N9jymhK4CO2xqVPWsjUZeIzlBqGKIpI4neZBGVsWEEX00OF8p8vsaKIkKKTiRiI4s7l662P2Pl2YgYfdB4xf0Uabyh5ykE/ywSsYiI4UNUxjYAnSa+Dck5xVepncBXsaOtinXCplqvzR2UfiMiYiDwsSumrBgbUIXa4KSt0Uy56SKSsQ4YSOXie7SF+a4GAh3L8zoB609cRpvwdBrER7ter3WEuaHi+Dt2MdzRsEP17dxnRg/uWLJqwy+4mYH70XH3jI2BuFH45o1IxgZBJ4JFn6+LCW5zM9eV+ZFEIrZpodMzF9WzsYGRJNLhYpJvAj6URMGbKwbzmaPtsMJtsSIiNgSRjHXAPc+9iq6V8WUbDNHEMTbRKRgkYvMGz3e2Lqo+B5G4zZGQ0e4anHyV/Q5sfJUpboe0eSM68EesN0Iitrkpf5s7RjsdSgS8dCU8ZclIBANxFMq9r0II7DOjPRt7p4XWxjbPbQxQf4eEq9Pv9PedS1fjnude3Sh1LIzP2Ib+RGyaiGQsYr3BTbWRiI1NRHVs9DCQTyqPjh0pYkb3nnzD5s3UhKyMmIX12xywMUjvcEIV+bD8RGyaiGbKiA3C5jIwR0QMNwbLTl8oZxYjcJ8kwDeFhaQh9PkaLCs/P57/zsvgRGygd3u4tu3a2HgtbM0WMTYRyVhExGsUURUrB5luN6R/aNIfLM3Nhpr6w62zyq5DxGkg8qSUwu1Lhn7tsUbENgcSNhzKVlTGNl1EMhYR8RpCJGADgzu283x+QHukMCc/XAUrm/g7qWSkjg0HQmLB8xAOlsB1fTDW3I/C+9PJMX9ThSqKYSBjxTDVJmK4EclYRMRrBJGIlaOTahKqP/Q3bZIdnhuaHENTXidCNlJk4LUenMHvTZlZNSTdERGjiUjGIiI2c/Bkw69lDEROhosQ8YTQZRiIkNH5mzLGgnmyjFyX1XtT7+sQKs+h8g1Uxjbw/IiRQyRjERGbMV4rRGxDfYKGc2IeKB3CWAd/jsI+H0vP2Fi8L0oNg8+YimRsU0UkYxERmzHG0gQ5VGwOzthjCUOJ2ASGf+umdcVgKSri8xGxKSOSsYiI1zg6TWKbGpELUzTEPRTXDUPJuD+YGXKoObkGiyIdboRO+ZsjYjTl5o1IxiIiNmMMlOtqsIl1oO83JlEL60GEYbDkpBE+OuUWG8l7OViuteHAayVQIZKxzRuRjEVEbMYo20ewjGR1SjTaCcNlkipLZBpiIOfrseBQvikhTNcRYn3u5VBI/UgQstcKCYt4bSBuhxQRsZljKNvqKKXsz7oi3F9xoOsMdEwnExPfHijcemtzNksNB96x3fi2H8DtSzochKZQ7T/h58DQTJydniW+d+drdU/VTX07pPe85z2YMWMGarUapk6diqOPPhrPP/+8d8ySJUvw7ne/G93d3Zg8eTI++9nPotFoeMc88sgjmDdvHur1Orbddlt84xvfaBuXbr/9dsyZMwe1Wg2zZ8/Gj370oxFr18bCmFHGnnrqKXz5y1/GXXfdhUajgV133RXf/OY3MX/+fHvMkiVL8KlPfQq33HIL6vU6PvrRj+Kss85CpVIZxZpHRIw+uImK58kaSazrnn+bQ/qBTQ0haeGEbCTRaSeAMgxF3YzPwaaf9HX+/Pk4+eSTMXXqVDz33HP40pe+hA984AO4++67AQB5nuPwww/HVltthTvvvBMrVqzAggULoJTC+eefDwBYtWoVDjzwQMyfPx/33XcfnnrqKSxcuBDd3d344he/CAB49tlncdhhh+G4447D//7v/+Kuu+7CCSecgK222grvf//7R6x9I40xQ8YOP/xw7LjjjpZonXvuuXjXu96FP//5z5gyZcqQbnRExGsZcUKL2BQVpfhcDg1FkQMbSMaKEVTGvvCFL9jfZ86cia9+9as48sgj0Ww2kWUZbrjhBjz22GNYunQppk2bBgA4++yzsXDhQnzrW99CT08PLr30UvT19eGiiy5CtVrFLrvsgqeeegrnnHMOFi1aBCEEfvSjH2HGjBk499xzAQBvfOMbcf/99+Oss84a02RsTJgpX3zxRTzzzDP46le/in/6p3/C61//enznO9/BmjVr8Kc//QkA7I3+3//9X7zlLW/BAQccgLPPPhv/9V//hVWrYrRVREREREQEoBUo/tPf3z+s5b/00ku49NJL8Y53vANZlgEAfve732GXXXaxRAwADj74YPT39+OBBx6wx8ybNw/VatU75vnnn8fixYvtMQcddJB3vYMPPhj3338/ms3msLZjY2JMkLEtt9wSb3zjG3HJJZegt7cXrVYLF1xwAbbZZhvMmTMHwNBudBn6+/vbHsyIiIiIiIhNCcPpMzZ9+nRMmDDB/pxxxhnDUsevfOUr6O7uxpZbboklS5bgN7/5jf1u+fLl2GabbbzjJ02ahEqlguXLl3c8hv4e7JhWq4UXX3xxWNoxGhgTZEwIgRtvvBEPPvggxo8fj1qthu9973u47rrrMHHiRABDu9FlOOOMM7yHcvr06SPZlIiIiIiIiHXGcJKxpUuXYuXKlfbnpJNOKr3maaedBiHEgD/333+/Pf7LX/4yHnzwQdxwww1IkgTHHHOM55/Ko7Ztu5TyPg+PofPX9ZixhlH1GTvttNNw+umnD3jMfffdhzlz5uCEE07A1ltvjTvuuAP1eh3//d//jXe961247777MHXqVABDu9EhTjrpJCxatMj+vWrVqkjIIiIiIiI2W/T09KCnZ/A8fZ/+9KfxkY98ZMBjtt9+e/v75MmTMXnyZOy444544xvfiOnTp+Oee+7B3LlzMWXKFNx7773euS+//DKazaYVUqZMmdImnrzwwgsAMOgxaZpiyy23HLRNmypGlYwN9UbfcsstuOqqq/Dyyy/bB+gHP/gBbrzxRlx88cX46le/OqQbXYZqterZpyMiIiIiIjY55DmU3EAH/HXcKJzI1fqA1CryR5s7dy6+9a1vYdmyZVZAueGGG1CtVq270dy5c3HyySej0WjYLAg33HADpk2bZknf3LlzceWVV3rXuuGGG7D77rtb/7SxiFElY0O90WvWrAEASOlbVaWUKEyo7lBudERERERExFiEUhseTTlSG4X//ve/x+9//3vsvffemDRpEv7yl7/glFNOwQ477IC5c+cCAA466CDsvPPOOProo3HmmWfipZdewpe+9CUcd9xxVmT56Ec/itNPPx0LFy7EySefjKeffhrf/va3ccopp1gL1/HHH4///M//xKJFi3Dcccfhd7/7HX7yk5/gZz/72Yi0bWNhTPiMzZ07F5MmTcKCBQvw0EMP2Zxjzz77LA4//HAA/o1+8MEHcfPNN7fd6IiIiIiIiIjhRb1ex+WXX479998fO+20E4499ljssssuuP32263lKUkSXH311ajVathrr73woQ99CEceeSTOOussW86ECRNw44034m9/+xt23313nHDCCVi0aJHnSjRr1ixcc801uO222/DmN78Z//7v/47zzjtvTKe1AAChNkb2x2HA/fffj6997Ws2fPVNb3oTTjnlFBx66KH2mCVLluCEE05oS/q6LmbIVatWYcKECfj5759G17i41UpERERERGeseXU1PrzH67Fy5coRWfjTnDRh/lcg0g1zqVGtfqy89T9GrK4R648xk/R19913x/XXXz/gMTNmzMBVV121kWoUERERERGxcaCGIelr3Ch808WYMFNGRERERERERGyuGDPKWERERERExGsVqiiADdxbciT3pozYMEQyFhERERERsYkjmik3b0QyFhERERERsYkjkrHNG9FnLCIiIiIiIiJiFBGVsYiIiIiIiE0cRZFDRGVss0UkYxEREREREZs4VF4AYgPJWB4d+DdVRDNlRERERERERMQoIipjERERERERmzg25b0pIzYckYxFRERERERs4lBFvuFmyugztskimikjIiIiIiIiIkYRURmLiIiIiIjYxBGVsc0bkYxFRERERERs4ohkbPNGJGMBlFIAgDWvrh7lmkREREREbOqguYLmjhFD3sQGXyFvDkdNIkYAkYwFWLFiBQDg4/u9dZRrEhERERExVrB69WpMmDBh2MutVCqYMmUKlj/2i2Epb8qUKahUKsNSVsTwQagRp/NjC6+88gomTZqEJUuWjMiLNZpYtWoVpk+fjqVLl6Knp2e0qzOsiG0bm4htG5vYnNsGrFv7lFJYvXo1pk2bBilHJiaur68PjUZjWMqqVCqo1WrDUlbE8CEqYwHoZZowYcJmOcgAQE9PT2zbGERs29hEbNvYxVDbN9IL91qtFgnUZo6Y2iIiIiIiIiIiYhQRyVhERERERERExCgikrEA1WoVp556KqrV6mhXZdgR2zY2Eds2NhHbNnaxubcvYtNDdOCPiIiIiIiIiBhFRGUsIiIiIiIiImIUEclYRERERERERMQoIpKxiIiIiIiIiIhRRCRjERERERERERGjiEjGGH7wgx9g1qxZqNVqmDNnDu64447RrtI647TTToMQwvuZMmWK/V4phdNOOw3Tpk1DvV7Hvvvuiz/96U+jWOPO+O1vf4t3v/vdmDZtGoQQ+PWvf+19P5S29Pf34zOf+QwmT56M7u5uvOc978Hf/va3jdiKcgzWtoULF7bdx7e//e3eMZtq28444wy87W1vw/jx47H11lvjyCOPxJNPPukdM1bv3VDaNlbv3Q9/+EP80z/9k010OnfuXFx77bX2+7F6z4DB2zZW71nE5oNIxgx+/vOf4/Of/zy+9rWv4cEHH8Q+++yDQw89FEuWLBntqq0z3vSmN2HZsmX255FHHrHfffe738U555yD//zP/8R9992HKVOm4MADD8Tq1Zvexui9vb3Ybbfd8J//+Z+l3w+lLZ///OdxxRVX4LLLLsOdd96JV199Fe9617uQ5/nGakYpBmsbABxyyCHefbzmmmu87zfVtt1+++341Kc+hXvuuQc33ngjWq0WDjroIPT29tpjxuq9G0rbgLF577bbbjt85zvfwf3334/7778f++23H4444ghLuMbqPQMGbxswNu9ZxGYEFaGUUmqPPfZQxx9/vPfZG97wBvXVr351lGq0fjj11FPVbrvtVvpdURRqypQp6jvf+Y79rK+vT02YMEH96Ec/2kg1XD8AUFdccYX9eyhteeWVV1SWZeqyyy6zxzz33HNKSqmuu+66jVb3wRC2TSmlFixYoI444oiO54yVtiml1AsvvKAAqNtvv10ptXndu7BtSm1e927SpEnqv//7vzere0agtim1ed2ziLGJqIwBaDQaeOCBB3DQQQd5nx900EG4++67R6lW64+nn34a06ZNw6xZs/CRj3wEf/nLXwAAzz77LJYvX+61s1qtYt68eWOunUNpywMPPIBms+kdM23aNOyyyy5jor233XYbtt56a+y444447rjj8MILL9jvxlLbVq5cCQDYYostAGxe9y5sG2Gs37s8z3HZZZeht7cXc+fO3azuWdg2wli/ZxFjG3GjcAAvvvgi8jzHNtts432+zTbbYPny5aNUq/XDnnvuiUsuuQQ77rgj/v73v+Ob3/wm3vGOd+BPf/qTbUtZO//617+ORnXXG0Npy/Lly1GpVDBp0qS2Yzb1+3rooYfigx/8IGbOnIlnn30W//Zv/4b99tsPDzzwAKrV6phpm1IKixYtwt57741ddtkFwOZz78raBozte/fII49g7ty56Ovrw7hx43DFFVdg5513toRjLN+zTm0DxvY9i9g8EMkYgxDC+1sp1fbZpo5DDz3U/r7rrrti7ty52GGHHXDxxRdbh9TNoZ2E9WnLWGjvhz/8Yfv7Lrvsgt133x0zZ87E1Vdfjfe9730dz9vU2vbpT38aDz/8MO68886278b6vevUtrF873baaSf88Y9/xCuvvIJf/epXWLBgAW6//Xb7/Vi+Z53atvPOO4/pexaxeSCaKQFMnjwZSZK0rXBeeOGFtpXgWEN3dzd23XVXPP300zaqcnNo51DaMmXKFDQaDbz88ssdjxkrmDp1KmbOnImnn34awNho22c+8xn8v//3/3Drrbdiu+22s59vDveuU9vKMJbuXaVSwete9zrsvvvuOOOMM7Dbbrvh//yf/7NZ3LNObSvDWLpnEZsHIhmDfknnzJmDG2+80fv8xhtvxDve8Y5RqtXwoL+/H48//jimTp2KWbNmYcqUKV47G40Gbr/99jHXzqG0Zc6cOciyzDtm2bJlePTRR8dce1esWIGlS5di6tSpADbttiml8OlPfxqXX345brnlFsyaNcv7fizfu8HaVoaxdO9CKKXQ398/pu9ZJ1DbyjCW71nEGMVGDxnYRHHZZZepLMvUT37yE/XYY4+pz3/+86q7u1stXrx4tKu2TvjiF7+obrvtNvWXv/xF3XPPPepd73qXGj9+vG3Hd77zHTVhwgR1+eWXq0ceeUT98z//s5o6dapatWrVKNe8HatXr1YPPvigevDBBxUAdc4556gHH3xQ/fYjsDoAAA+SSURBVPWvf1VKDa0txx9/vNpuu+3UTTfdpP7whz+o/fbbT+22226q1WqNVrOUUgO3bfXq1eqLX/yiuvvuu9Wzzz6rbr31VjV37ly17bbbjom2ffKTn1QTJkxQt912m1q2bJn9WbNmjT1mrN67wdo2lu/dSSedpH7729+qZ599Vj388MPq5JNPVlJKdcMNNyilxu49U2rgto3lexax+SCSMYbvf//7aubMmapSqai3vvWtXrj6WMGHP/xhNXXqVJVlmZo2bZp63/vep/70pz/Z74uiUKeeeqqaMmWKqlar6p3vfKd65JFHRrHGnXHrrbcqAG0/CxYsUEoNrS1r165Vn/70p9UWW2yh6vW6ete73qWWLFkyCq3xMVDb1qxZow466CC11VZbqSzL1IwZM9SCBQva6r2ptq2sXQDUhRdeaI8Zq/dusLaN5Xt37LHH2vFvq622Uvvvv78lYkqN3Xum1MBtG8v3LGLzgVBKqY2nw0VERERERERERHBEn7GIiIiIiIiIiFFEJGMREREREREREaOISMYiIiIiIiIiIkYRkYxFRERERERERIwiIhmLiIiIiIiIiBhFRDIWERERERERETGKiGQsIiIiIiIiImIUEclYRMQwY/HixRBC4I9//OOIlC+EwK9//ev1Pv+2226DEAJCCBx55JEDHrvvvvvi85///HpfK2Jg0H2YOHHiaFclIiJiFBHJWMRmhYULFw5KMEYa06dPx7Jly7DLLrsAcOTnlVdeGdV6hXjyySdx0UUXjXY1XhPo9FwuW7YM55577kavT0RExKaFSMYiIoYZSZJgypQpSNN0tKsyILbeeutNQpFpNpujXYVRw5QpUzBhwoTRrkZERMQoI5KxiNcUbr/9duyxxx6oVquYOnUqvvrVr6LVatnv9913X3z2s5/FiSeeiC222AJTpkzBaaed5pXxxBNPYO+990atVsPOO++Mm266yTMdcjPl4sWLMX/+fADApEmTIITAwoULAQDbb799myry5je/2bve008/jXe+8532WjfeeGNbm5577jl8+MMfxqRJk7DlllviiCOOwOLFi9e5b3p7e3HMMcdg3LhxmDp1Ks4+++y2YxqNBk488URsu+226O7uxp577onbbrvNO+a//uu/MH36dHR1deG9730vzjnnHI/0nXbaaXjzm9+M//mf/8Hs2bNRrVahlMLKlSvxr//6r9h6663R09OD/fbbDw899JBX9pVXXok5c+agVqth9uzZOP300737d9ppp2HGjBmoVquYNm0aPvvZzw6p7YO1a8WKFfjnf/5nbLfddujq6sKuu+6Kn/3sZ14Zv/zlL7HrrruiXq9jyy23xAEHHIDe3l6cdtppuPjii/Gb3/zGmiXDPouIiHhtY9NeukdEDCOee+45HHbYYVi4cCEuueQSPPHEEzjuuONQq9U8AnTxxRdj0aJFuPfee/G73/0OCxcuxF577YUDDzwQRVHgyCOPxIwZM3Dvvfdi9erV+OIXv9jxmtOnT8evfvUrvP/978eTTz6Jnp4e1Ov1IdW3KAq8733vw+TJk3HPPfdg1apVbf5ba9aswfz587HPPvvgt7/9LdI0xTe/+U0ccsghePjhh1GpVIbcP1/+8pdx66234oorrsCUKVNw8skn44EHHsCb3/xme8zHP/5xLF68GJdddhmmTZuGK664AocccggeeeQRvP71r8ddd92F448/Hv/xH/+B97znPbjpppvwb//2b23XeuaZZ/CLX/wCv/rVr5AkCQDg8MMPxxZbbIFrrrkGEyZMwAUXXID9998fTz31FLbYYgtcf/31+NjHPobzzjsP++yzD/785z/jX//1XwEAp556Kn75y1/ie9/7Hi677DK86U1vwvLly9vIXCcM1q6+vj7MmTMHX/nKV9DT04Orr74aRx99NGbPno0999wTy5Ytwz//8z/ju9/9Lt773vdi9erVuOOOO6CUwpe+9CU8/vjjWLVqFS688EIAwBZbbDHk+xIREfEawOjuUx4RMbxYsGCBOuKII0q/O/nkk9VOO+2kiqKwn33/+99X48aNU3meK6WUmjdvntp777298972trepr3zlK0oppa699lqVpqlatmyZ/f7GG29UANQVV1yhlFLq2WefVQDUgw8+qJRS6tZbb1UA1Msvv+yVO3PmTPW9733P+2y33XZTp556qlJKqeuvv14lSaKWLl1qv7/22mu9a/3kJz9pa1N/f7+q1+vq+uuvL+2HsvqsXr1aVSoVddlll9nPVqxYoer1uvrc5z6nlFLqmWeeUUII9dxzz3nl7b///uqkk05SSin14Q9/WB1++OHe90cddZSaMGGC/fvUU09VWZapF154wX528803q56eHtXX1+edu8MOO6gLLrhAKaXUPvvso7797W973//0pz9VU6dOVUopdfbZZ6sdd9xRNRqN0nZ3wlDaVYbDDjtMffGLX1RKKfXAAw8oAGrx4sWlxw70XF544YVe/0RERLz2EJWxiNcMHn/8ccydOxdCCPvZXnvthVdffRV/+9vfMGPGDADAP/3TP3nnTZ06FS+88AIA7fQ+ffp0TJkyxX6/xx57jFh9Z8yYge22285+NnfuXO+YBx54AM888wzGjx/vfd7X14c///nPQ77Wn//8ZzQaDa/8LbbYAjvttJP9+w9/+AOUUthxxx29c/v7+7HlllsC0P3z3ve+1/t+jz32wFVXXeV9NnPmTGy11VZeO1599VVbDmHt2rW2HQ888ADuu+8+fOtb37Lf53mOvr4+rFmzBh/84Adx7rnnYvbs2TjkkENw2GGH4d3vfvegvntDaVee5/jOd76Dn//853juuefQ39+P/v5+dHd3AwB222037L///th1111x8MEH46CDDsIHPvABTJo0acBrR0RERADRTBnxGoJSyiNi9BkA7/Msy7xjhBAoiqJjGesLKaW9PoE7s4ffhfUEtClzzpw5uPTSS9uO5WRnMJRdK0RRFEiSBA888IA1LRLGjRtny+nUxxxEYnjZU6dOLfWlIn+zoihw+umn433ve1/bMbVaDdOnT8eTTz6JG2+8ETfddBNOOOEEnHnmmbj99tvb7um6tuvss8/G9773PZx77rnYdddd0d3djc9//vNoNBoAdNDGjTfeiLvvvhs33HADzj//fHzta1/Dvffei1mzZnW8dkRERAQQyVjEawg777wzfvWrX3mE4e6778b48eOx7bbbDqmMN7zhDViyZAn+/ve/Y5tttgEA3HfffQOeQ35beZ57n2+11VZYtmyZ/XvVqlV49tlnvfouWbIEzz//PKZNmwYA+N3vfueV8da3vhU///nPrdP7+uJ1r3sdsizDPffcYxXCl19+GU899RTmzZsHAHjLW96CPM/xwgsvYJ999ikt5w1veAN+//vfe5/df//9g17/rW99K5YvX440TbH99tt3PObJJ5/E6173uo7l1Ot1vOc978F73vMefOpTn8Ib3vAGPPLII3jrW9/a8ZyhtOuOO+7AEUccgY997GMANIF7+umn8cY3vtEeI4TAXnvthb322gunnHIKZs6ciSuuuAKLFi1CpVJpu/8RERERhBhNGbHZYeXKlfjjH//o/SxZsgQnnHACli5dis985jN44okn8Jvf/AannnoqFi1aBCmH9ioceOCB2GGHHbBgwQI8/PDDuOuuu/C1r30NQLtqRZg5cyaEELjqqqvwj3/8A6+++ioAYL/99sNPf/pT3HHHHXj00UexYMECT5k54IADsNNOO+GYY47BQw89hDvuuMNei3DUUUdh8uTJOOKII3DHHXfg2Wefxe23347Pfe5z+Nvf/jbkPhs3bhw+8YlP4Mtf/jJuvvlmPProo1i4cKHXLzvuuCOOOuooHHPMMbj88svx7LPP4r777sN//Md/4JprrgEAfOYzn8E111yDc845B08//TQuuOACXHvttYOqiQcccADmzp2LI488Etdffz0WL16Mu+++G1//+tctmTvllFNwySWX4LTTTsOf/vQnPP744/j5z3+Or3/96wCAiy66CD/5yU/w6KOP4i9/+Qt++tOfol6vY+bMmQNeeyjtet3rXmeVr8cffxz/3//3/2H58uW2jHvvvRff/va3cf/992PJkiW4/PLL8Y9//MOSte233x4PP/wwnnzySbz44ouv6XQeERERJRglX7WIiBHBggULFIC2nwULFiillLrtttvU2972NlWpVNSUKVPUV77yFdVsNu358+bNsw7rhCOOOMKer5RSjz/+uNprr71UpVJRb3jDG9SVV16pAKjrrrtOKdXuwK+UUt/4xjfUlClTlBDClrVy5Ur1oQ99SPX09Kjp06eriy66yHPgV0qpJ598Uu29996qUqmoHXfcUV133XWeA79SSi1btkwdc8wxavLkyapararZs2er4447Tq1cubK0jzoFFKxevVp97GMfU11dXWqbbbZR3/3ud9v6o9FoqFNOOUVtv/32KssyNWXKFPXe975XPfzww/aYH//4x2rbbbdV9XpdHXnkkeqb3/ymmjJliv3+1FNPVbvttltbvVatWqU+85nPqGnTpqksy9T06dPVUUcdpZYsWWKPue6669Q73vEOVa/XVU9Pj9pjjz3Uj3/8Y6WUUldccYXac889VU9Pj+ru7lZvf/vb1U033VTaByEGa9eKFSvUEUccocaNG6e23npr9fWvf10dc8wx1in/scceUwcffLDaaqutVLVaVTvuuKM6//zzbfkvvPCCOvDAA9W4ceMUAHXrrbfa76IDf0REhFBqCM4iERERHXHXXXdh7733xjPPPIMddthhtKszKG677TbMnz8fL7/88kZJ+nrcccfhiSeewB133DHi1xqLuOiii/D5z39+k9uhISIiYuMh+oxFRKwjrrjiCowbNw6vf/3r8cwzz+Bzn/sc9tprrzFBxDi22247vPvd725LXrqhOOuss3DggQeiu7sb1157LS6++GL84Ac/GNZrbC4YN24cWq0WarXaaFclIiJiFBHJWETEOmL16tU48cQTsXTpUkyePBkHHHBAabb6TRV77rknnn76aQAuWnA48fvf/x7f/e53sXr1asyePRvnnXce/uVf/mXYrzNU3HHHHTj00EM7fk8+fKMB2kw+jOKMiIh4bSGaKSMiIjZrrF27Fs8991zH7weKzoyIiIjYGIhkLCIiIiIiIiJiFBFTW0REREREREREjCIiGYuIiIiIiIiIGEVEMhYRERERERERMYqIZCwiIiIiIiIiYhQRyVhERERERERExCgikrGIiIiIiIiIiFFEJGMREREREREREaOISMYiIiIiIiIiIkYR/z9n0zpwVXML3QAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import apache_beam as beam\n", + "from pangeo_forge_recipes.transforms import OpenURLWithFSSpec, OpenWithXarray, StoreToZarr" ] - }, - "metadata": {}, - "output_type": "display_data" + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A place for our data to go" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'/var/folders/kl/7rfdrpx96bb0rhbnl5l2dnkw0000gn/T/tmpy6h7cm84/output.zarr'" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from tempfile import TemporaryDirectory\n", + "td = TemporaryDirectory()\n", + "target_path = td.name + \"/output.zarr\"\n", + "target_path" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<_ChainedPTransform(PTransform) label=[Create|OpenURLWithFSSpec|OpenWithXarray|StoreToZarr] at 0x14ee0f070>" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transforms = (\n", + " beam.Create(pattern_pruned.items())\n", + " | OpenURLWithFSSpec()\n", + " | OpenWithXarray(file_type=pattern_pruned.file_type)\n", + " | StoreToZarr(\n", + " target_url=target_path,\n", + " combine_dims=pattern.combine_dim_keys,\n", + " )\n", + ")\n", + "transforms" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Run the Recipe" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" + ] + }, + { + "data": { + "application/javascript": "\n if (typeof window.interactive_beam_jquery == 'undefined') {\n var jqueryScript = document.createElement('script');\n jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n jqueryScript.type = 'text/javascript';\n jqueryScript.onload = function() {\n var datatableScript = document.createElement('script');\n datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n datatableScript.type = 'text/javascript';\n datatableScript.onload = function() {\n window.interactive_beam_jquery = jQuery.noConflict(true);\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }\n document.head.appendChild(datatableScript);\n };\n document.head.appendChild(jqueryScript);\n } else {\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "with beam.Pipeline() as p:\n", + " p | transforms" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Check output\n", + "\n", + "Now that the process has run we can use `xarray` to inspect the output data." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "import xarray as xr" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+              "Dimensions:  (time: 2, zlev: 1, lat: 720, lon: 1440)\n",
+              "Coordinates:\n",
+              "  * lat      (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n",
+              "  * lon      (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n",
+              "  * time     (time) datetime64[ns] 1981-09-01 1981-09-02\n",
+              "  * zlev     (zlev) float32 0.0\n",
+              "Data variables:\n",
+              "    anom     (time, zlev, lat, lon) float32 ...\n",
+              "    err      (time, zlev, lat, lon) float32 ...\n",
+              "    ice      (time, zlev, lat, lon) float32 ...\n",
+              "    sst      (time, zlev, lat, lon) float32 ...\n",
+              "Attributes: (12/34)\n",
+              "    Conventions:                CF-1.6, ACDD-1.3\n",
+              "    cdm_data_type:              Grid\n",
+              "    comment:                    Data was converted from NetCDF-3 to NetCDF-4 ...\n",
+              "    creator_email:              oisst-help@noaa.gov\n",
+              "    creator_url:                https://www.ncei.noaa.gov/\n",
+              "    date_created:               2020-05-08T19:05:13Z\n",
+              "    ...                         ...\n",
+              "    references:                 Reynolds, et al.(2007) Daily High-Resolution-...\n",
+              "    sensor:                     Thermometer, AVHRR\n",
+              "    source:                     ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pathfin...\n",
+              "    standard_name_vocabulary:   CF Standard Name Table (v40, 25 January 2017)\n",
+              "    summary:                    NOAAs 1/4-degree Daily Optimum Interpolation ...\n",
+              "    title:                      NOAA/NCEI 1/4 Degree Daily Optimum Interpolat...
" + ], + "text/plain": [ + "\n", + "Dimensions: (time: 2, zlev: 1, lat: 720, lon: 1440)\n", + "Coordinates:\n", + " * lat (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n", + " * lon (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n", + " * time (time) datetime64[ns] 1981-09-01 1981-09-02\n", + " * zlev (zlev) float32 0.0\n", + "Data variables:\n", + " anom (time, zlev, lat, lon) float32 ...\n", + " err (time, zlev, lat, lon) float32 ...\n", + " ice (time, zlev, lat, lon) float32 ...\n", + " sst (time, zlev, lat, lon) float32 ...\n", + "Attributes: (12/34)\n", + " Conventions: CF-1.6, ACDD-1.3\n", + " cdm_data_type: Grid\n", + " comment: Data was converted from NetCDF-3 to NetCDF-4 ...\n", + " creator_email: oisst-help@noaa.gov\n", + " creator_url: https://www.ncei.noaa.gov/\n", + " date_created: 2020-05-08T19:05:13Z\n", + " ... ...\n", + " references: Reynolds, et al.(2007) Daily High-Resolution-...\n", + " sensor: Thermometer, AVHRR\n", + " source: ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pathfin...\n", + " standard_name_vocabulary: CF Standard Name Table (v40, 25 January 2017)\n", + " summary: NOAAs 1/4-degree Daily Optimum Interpolation ...\n", + " title: NOAA/NCEI 1/4 Degree Daily Optimum Interpolat..." + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "oisst_zarr = xr.open_dataset(target_path, engine=\"zarr\")\n", + "oisst_zarr" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHFCAYAAAC+Zf4TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9eZgcVdn9ubeqt5nMTBbISkgim0BYlF3BhCQzSVgVV6IsBiN+IIiCKMIPA2LA4IICIm6AYERFxeUjK0s+FRCQTRZRJMQQEkJCMktPd1fVvff3x13qVnX3TM8+CXWeZ56Zqa6uravrnvu+5z0vEUIIJEiQIEGCBAkSJBgS0KE+gAQJEiRIkCBBgrczEjKWIEGCBAkSJEgwhEjIWIIECRIkSJAgwRAiIWMJEiRIkCBBggRDiISMJUiQIEGCBAkSDCESMpYgQYIECRIkSDCESMhYggQJEiRIkCDBECIhYwkSJEiQIEGCBEOIhIwlSJAgQYIECRIMIRIyNkzx8MMPY/HixdixY0fZazNnzsTMmTMH/ZgGCzfccANOO+00TJs2DYSQLs915cqVeO9734tcLoempiacfPLJeP7558vWK5VKuP766zF9+nTU19dj3LhxmD9/Ph5++OGyda+44gqcdNJJmDRpEgghOPvss3t8Dlu2bMHZZ5+N3XbbDXV1dTjmmGNw//33l63neR6uvPJKTJs2Del0GlOmTMFll12GQqHQo/3deOONeOc734lMJoNp06bhqquugu/7kXV++9vf4vTTT8fee++NXC6HqVOn4uMf/zj+/e9/9/j8eoLbb78dhBC8+uqrA7qfwUAt17kafN/HVVddhalTpyKTyeCd73wnbrzxxpree/bZZ4MQAkIIpk+f3pdT6DW6eiYNFg499FBzHU466aQhO44ECfodIsGwxPXXXy8AiHXr1pW99vzzz4vnn39+8A9qkLDffvuJd7/73WLhwoVi9913FzNmzKi43r333isIIeL973+/+N///V+xbNkysd9++4lRo0aJl19+ObLuGWecISil4vLLLxf333+/+PWvfy0OO+ww4bqu+Nvf/hZZt66uThx99NHiM5/5jEin0+Kss87q0fEXi0Uxffp0sccee4i77rpLrFq1Spx66qnCdV3x0EMPRdY97bTTRDabFUuWLBGrV68WV199tUin0+Lkk0+ueX/XXHONIISIyy67TDz44INi6dKlIp1Oi0WLFkXWO/LII8Upp5wifvrTn4qHHnpI3HnnnWL//fcXI0aMEM8991yPzrEnuO2226reyzsTar3O1fCpT31KZDIZsXTpUvHggw+KL3/5y4IQIr7+9a93+96zzjpLjB8/XjzyyCPimWee6eup9ApdPZMGC88++6x45JFHxPjx48WJJ544ZMeRIEF/IyFjwxTD4cE3VGCMmb8PPPDAqmRsv/32EwcffLDgnJtlr776qkin02LBggVmWbFYFI7jiE984hOR97/++usCgLjwwgur7r++vr7HZOzmm28WAMTDDz9slvm+Lw444ABx5JFHmmWPPPKIACC+9a1vRd6/ZMkSAUCsWrWq231t3bpVZLNZ8elPfzqy/Otf/7oghERI+xtvvFH2/o0bN4pUKiXOOeecms+vp9gVyFhPrnMlPPfcc4IQIpYsWRJZvmjRIpHL5cS2bdu6fP9ZZ50lpkyZ0qtj7y8M1DMpn8/3+D1TpkxJyFiCXQpJmnIYYvHixfjiF78IACZVRwjBQw89BKA8Tfnqq6+CEILrr78e3/jGNzB16lTkcjnMnDkT//rXv+D7Pr785S9j4sSJaGpqwgc+8AFs2bKlbL+//OUvccwxx6C+vh4jRozA3Llz8dRTTw3GKUdAafe35bZt2/DSSy9h/vz5IISY5VOmTMH06dNx7733gjFmtkcpRVNTU2QbjY2NoJQim832eP9d4Xe/+x32228/HHPMMWaZ67r4xCc+gcceewwbN24EAPz1r38FAJxwwgmR9+v0y29+85tu97VixQoUi0V88pOfjCz/5Cc/CSEE7r33XrNs7NixZe+fOHEi9thjD2zYsKG2k4th6tSp5v6M/+j7tRrWrFmD2bNno7GxEXV1dXjve98bSeXee++9IIRUTO/ecsstIITg2Wef7dVx9xQ9uc6VcO+990IIUfH9hUIBK1as6PWxEULw2c9+Frfddhv2228/5HI5HH744Xj00UchhMD111+PadOmYcSIEZg1axZefvnlsm1091l090wCant+nH322RgxYgT+8Y9/oKWlBQ0NDZg9ezYA4KmnnsJJJ52EsWPHIpPJYOLEiTjxxBPx2muv9fraJEiwsyAhY8MQn/rUp3DBBRcAkDqfRx55BI888gje/e53d/m+m2++GX/9619x880348c//jH++c9/4uSTT8Y555yDN998Ez/96U+xdOlSrFmzBp/61Kci712yZAlOP/10HHDAAfjVr36FO++8E+3t7TjuuOPwwgsvdHvMQRDU9COE6P2FseB5HgAgk8mUvZbJZNDZ2Yn//Oc/AIBUKoXzzjsPd9xxB+699160tbXh1VdfxaJFi9DU1IRFixb1yzFpPPfcczj44IPLlutlWtNW7Rz0/7UQjeeeew4AcNBBB0WWT5gwAbvttpt5vRpeeeUVrF+/HgceeGC3+6qE3/3ud+b+fOSRR/DXv/4VBx10EOrr67HnnntWfd9dd92FlpYWNDY24o477sCvfvUrjB49GnPnzjUkQA/Mt912W9n7b7/9drz73e+ueJ1t9Nd92dfr/Nxzz2H33XfH+PHjI8v18Xf3/u7wpz/9CT/+8Y9x3XXX4Re/+AXa29tx4okn4uKLL8Zf//pX3HTTTfjhD3+IF154AR/84Acj51vLZ9HdM6knzw/P83DKKadg1qxZ+P3vf4+rrroK+Xwezc3NeOONN3DzzTdj9erVuOGGG7Dnnnuivb29T9cmQYKdAkMYlUvQBbpKCcyYMSOSulu3bp0AIA455JBIiu2GG24QAMQpp5wSef9FF10kAIjW1lYhhBD//e9/heu64oILLois197eLsaPHy8+8pGPdHmsev+1/Dz44IM9ug7V0pSMMTF69Ggxe/bsyPLt27eLhoaGsjQh51xceeWVglJqjmXPPfcUTz31VJf7702aMpVKiXPPPbds+cMPPywAiGXLlgkhpOYNgLjzzjsj6/3kJz8RAMS+++7b7b4WLVokMplMxdf23Xdf0dLSUvW9vu+LmTNnisbGRvHf//63233Vgs9+9rPCdV1x3333mWXxNGU+nxejR48u08UxxsQhhxwSSeV+4QtfELlcTuzYscMse+GFFwQAceONN3Z5LP15X/blOgshRHNzs9hvv/0qvpZOp8vSn3F0laYEIMaPHy86OjrMMn1vHXrooZE0vn4mPPvss0KInn0W1Z5JPXl+nHXWWQKA+OlPfxpZ94knnhAAxL333tvlddBI0pQJdjW4A0n0EgwuTjjhhEiKbf/99wcAnHjiiZH19PL//ve/mD59OlauXIkgCHDmmWciCAKzXjabxYwZM/Dggw92ud+JEyfi8ccfr+kY99tvv5rW6w6UUpx//vn42te+hq997Ws499xz0dbWhosuugidnZ1mHY2vf/3r+OY3v4nFixfjuOOOQ1tbG2666SY0Nzdj1apVeNe73tWj/QshTBpUw3XDr5OdOo1DvzZ//nzsvffe+NKXvoRx48bhiCOOwKOPPoqvfOUrcBwncvz25wIAjuOY7dSyr0rHf8455+DPf/4zfvOb32Dy5MlVt1ErrrvuOtx000348Y9/jPnz51dd7+GHH8Zbb72Fs846q+y85s2bh6VLlyKfz6O+vh4LFy7Et7/9bfzyl7/Epz/9aQDAbbfdhkwmgwULFnR5PP19X/bmOvfn+7vC8ccfj/r6evO//o7H0/h6+fr163HQQQf16LOoht48Pz74wQ9G/t97770xatQofOlLX8KmTZvwvve9DwcccEAPrkCCBDs3EjK2C2H06NGR/9PpdJfLi8UiAOCNN94AABxxxBEVt9udhiqdTuPQQw+t6Rgdx6lpvVpw5ZVXoqOjA9dccw2uvPJKAJJ4fvKTn8SPf/xjTJo0CQDw4osv4sorr8TSpUtxySWXmPfPnz8fBxxwAL7whS90SzjjuOOOO8r0P0KlfsaMGYNt27aVveett94CEH4e6XQay5cvxxlnnIGWlhYAQH19PZYsWYKvfe1r5vgBmWq1cdttt+Hss8/GmDFjUCwW0dnZibq6urL9HXbYYWXHIYTApz71Kdx111244447cOqpp/bo3Cvhrrvuwle+8hVceeWVOOecc7pcV99vH/rQh6qu89Zbb6G+vh4HHnggjjjiCNx222349Kc/DcYY7rrrLpx66qll93Uc/Xlf9uY6x9//9NNPly3P5/PwPK/bc+kOff3u1/JZVENPnx91dXVobGyMLGtqasLatWvx9a9/HV/5ylewfft2TJgwAYsWLcIVV1xRdv8nSLCrISFjCbDbbrsBAO655x5MmTKlx+9/9dVXMW3atJrWffDBB/vNI811XXz729/G1VdfjXXr1mG33XbDhAkTMHfuXEybNg177LEHAOCZZ56BEKJssEilUjjkkEOwdu3aHu/75JNPrhp1Oeigg/CPf/yjbLleZvtE7b333njkkUewceNGvPXWW9hrr73Q2tqKz33uc3jf+95n1ovvS19vrWH6xz/+gaOOOsq8vnnzZmzdurXMk0oTsdtuuw0/+clP8IlPfKInp10Rq1evxsKFC3H22Wfjqquu6nZ9fb/deOONOProoyuuM27cOPP3Jz/5SZx33nl48cUX8corr2DTpk1lRLgS+vO+7Ol1rvT+u+++G5s3b47oxirdE4OJnn4WXW2j1udHtSigvkZCCDz77LO4/fbbcfXVVyOXy+HLX/5yt9tNkGBnRkLGhim0iLun5p+9wdy5c+G6Lv7zn/+UpQ9qwVCkKW2MGDHCDJZPPvkk7r//fnzrW9+KHB8APProo5gxY4ZZXiqV8OSTTxrS1hOMGTMGY8aMqfjaBz7wAZx33nn429/+ZgbuIAhw11134aijjjLHY2PSpEkmEnbFFVegvr4+EmE6/PDDK+5r3rx5yGazuP322yMkQRutvv/97zfLhBBYtGgRbrvtNtx66601EZru8PTTT+ODH/wgZs2ahR/+8Ic1vee9730vRo4ciRdeeAGf/exnu13/9NNPxxe+8AXcfvvteOWVVzBp0iQTSewK/Xlf9uQ6V8Kpp56KK664AnfccQe+9KUvRd6fy+Uwb968mo6zv9GTz6LaM6mvz484CCE45JBD8J3vfAe33347nnzyyT5vM0GC4Y6EjA1TaHLx3e9+F2eddRZSqRT2228/NDQ09Pu+pk6diquvvhqXX345XnnlFcybNw+jRo3CG2+8gcceewz19fVdRjzS6XRVstAbPPHEE8atva2tDUII3HPPPQBkKkTPvh966CE8/vjjOPjggyGEwGOPPYZvfOMbmDdvXmRgOfbYY3HEEUdg8eLF6OzsxPve9z60trbixhtvxLp163DnnXdG9r927Vq8+eabAADGGNavX2/2P2PGDOy+++5dHv/ChQtx880348Mf/jCuu+46jB07Ft///vfx0ksvYc2aNZF1ly5divHjx2PPPffEG2+8gV/96le49957ceedd0bSlNUwevRoXHHFFfh//+//YfTo0WhpacHjjz+OxYsX41Of+lREd3PhhRfiJz/5CRYuXIiDDjoIjz76qHktk8lEdHOLFy/GVVdd1WXEqK2tDSeccAJyuRwuueQSPPHEE5HXDzjggLJ0FCDJ84033oizzjoLb731Fj70oQ9h7NixePPNN/HMM8/gzTffxC233GLWHzlyJD7wgQ/g9ttvx44dO3DJJZfUZD/Sn/dlT67zz372MyxcuBA//elPceaZZwIADjzwQJxzzjn46le/CsdxcMQRR2DVqlX44Q9/iGuuuabPacreoiefRbVnUl+fH4CsBv3+97+P97///XjHO94BIQR++9vfYseOHWhubh7w65AgwZBjiAoHEtSAyy67TEycONFUAOqKr2rVlNdff33k/Q8++KAAIH79619Hluvqtscffzyy/N577xXHH3+8aGxsFJlMRkyZMkV86EMfEmvWrBmQ86sGXXFV6ee2224z6/31r38VRx11lDne6dOni29+85vC87yybe7YsUNcfvnlYv/99xd1dXVi7NixYubMmZGqP40ZM2b0uRp08+bN4swzzxSjR48W2WxWHH300WL16tVl61111VVir732EplMRowcOVLMmzdP/N///V/N10rju9/9rth3331FOp0We+65p/jqV79adh2mTJlS9bzilXoXX3yxIISIF198seo+u6tW1Neqmunr2rVrxYknnihGjx4tUqmUmDRpkjjxxBPL7lchhFi1apXZ7r/+9a8eX5/+Qi3XWZ+vfa8KIYTneeKrX/2q2HPPPUU6nRb77ruv+N73vlfTfrurpjz//PMjy3r6TKj1s6j2TBKitufHWWedJerr68vO4Z///Kc4/fTTxV577SVyuZxoamoSRx55pLj99tsrnnNSTZlgVwMRop+MnxIkSLDL4Mgjj8SUKVPw61//eqgPJQGkWepDDz2El19+GYSQfi2E2ZnAGIMQAnvvvTemT5+OP/3pT0N9SAkS9AsS09cECRJE0NbWhmeeeQZXX331UB9KAgvr1683RSdvVxx22GFIpVJYv379UB9KggT9iiQyliBBggTDHK+++iq2bt0KAMjlcr3umLCz44UXXjA+giNHjsTee+89xEeUIEH/ICFjCRIkSJAgQYIEQ4gkTZkgQYIECRIkSDCESMhYggQJEiRIkCDBECIhYwkSJEiQIEGCBEOIxPQ1Bs45Xn/9dTQ0NPS5eW+CBAkSJNi1IYRAe3s7Jk6cWJMZcW9QLBbheV6/bCudTiObzfbLthL0HxIyFsPrr7+OyZMnD/VhJEiQIEGCnQgbNmzoVWu17lAsFjEmNwKdYP2yvfHjx2PdunUJIRtmSMhYDLrd0PMv/XtAWg8lSJAgQYJdB+3t7Thwv30GbLzwPA+dYDgTk5Duo7LIA8fPNm+E53kJGRtmSMhYDDo12dDQEOmrR7vIWPLEHCRBggQJBhVdPZN7i748ywda1pIGRZr0MQ2ajFXDFgkZqwJKav+yV1svIWkJdhbUcq8Ph/tZH+dwOJYEg4+BIGB93f5AH5OGQwicPhI+ByQhZMMUCRkbQOwsA1yCty96MpAMBRGqdnzx5UPxPUqIYYLBBCWA00fiR4GEjA1TJGRsiEFJ8jBPMDTo7Yx+ON6z9rkM9LHFr9tg7vvtjGr3a09v4+QjSjAckZCxGlDLl70vX/DhOLglSDDUGI5ksbtjSojZ4KDSx0CrpPB4rOPfQD/PBwr9lqZMMCyRkLEqIOjZjEuv29sv8a5MyHrb/jTxeesaXV3Xgb52w/1+HYjj6yk5HO7XqCvY99Zw+x7aR1ONgKGLdeLkrLt92BjKj9PphzSl0z+HkmAAkJCxGtHVl97+cveVlPUnhnKw7m7/PXn/cBsMakVfz7+/9l3p+lUiFl1d5eFwP/cUw4EM9eUYqt0//fV9qPX+rHYvDeb3s9L9qp/JPdm9ELU/yyuh0jt3zqdTguGGhIx1gVpmXfZ63ZEye2uVvvL9NXjU8pCttE5fHqoDSTyEEGXHVuv+dgbSOdCodP3i6O4qEfSMkPXmmvT0GAfzqg9WxRzQ/bXrbdSqP+7TStvoKSnryyRRv0oJiZAwUsszL/aeSm+p9MyvJZI2GEjSlLs2EjJWBfaXspb7355xVSJlcfR0cKsVfXng1jJo93Zf3ZHM7ga73p5X/H39Tc6GOxHT6Oqz7Up/E7+XaznbvnxW+hjj90NXEYmu9razRcd6eu26i1oNJvqT7HX1PbWJmCFhgne7bWIZpsaJWflxRPdnY6jIWZKm3LWRNAofBOwcw7VEVw9U+7WdhYTY2FnTnUOBWgacwYoWJZ9abRBCmJ+dHd1HBwd2/109KmrNmCRI0BMkkbF+QFcPBhH73V10oS/VWP31EO4qLThQD3p9rgM1wPeGiNVi5tvVdofboGh/rlyE5ydQmfBUImTx+7c/vLb6SpIHKsqs0ZWlQi37HerI3M6KavdrZB1CakpRxqHfI7q49wip/my3CdlgkbMkTblrIyFj3aCn9749gFX6HvfksdFVemOgB/qhIhLVHrp9QXeDfS37s1NitRKQoU4bVUJXhAyoLQpVKT3Y03RgrQQsvlal9KlebyCucHeFDt3ttyfXZLjcI8MJf/5vW4/WnzNlhPxDtw3S6csqbYSqETlN0mpNZQ4GCPqeykqo2PBFQsaqgJCeE7GybWDnSlEOFqpF/wZTJF3rPu2XbSJgk7KuoM+PEDJsBtuuIg7VCk4qoZwoye11d67VdGFdb5uU/T+Q2p1aNGv2a8Pjk62Mv2xox7GTG8zfNo6d3FC2LA79Xhu9LaiJH1d/Y836DgDA7GlNkmgpEsZRQWfWA1R8Ty+qOfuCJDK2ayMhY/2M+CDR1wd1tYhDfzwMe4PuIho9PQ59fkNBxHqCeFpCf8bdna39+Q00IdOfTb+lq+1tW39Xqzgj6J6QxYlYtY+9N6mfat81+zPozX3W3Vv6WkBQ6+dln0OlbT78Wjves0eD+dtGNeJTCyGqtM5xezZG/u/u3tbbqEYK+xv3r2s1fx87uQEOBYgusuoitdlV2jIOvY3ekLsECeLYachYEARYvHgxfv7zn2Pz5s2YMGECzj77bFxxxRWgVM5+hBC46qqr8MMf/hDbt2/HUUcdhZtvvhkHHnjggB6b/v4K87Dsv+qbahGY+MO4EknSEZCeDM591u9UIQSDSbZ6cg69HaQ1IauFbPemoq/S+l2RCvuca41M9SdsgmoTssrrquNAddLVnQVBz4+vd+/r6m21HlZXOtBKn1O1z97eTpxsdbe8PzB7WhOECCPDa9f3LIUIREnYzCmS0D3Ui+10BzviRwgxEz4uhIkurXm1TaY1VfRMEFLxXhsuev2kmnLXxk5TTfmNb3wDP/jBD3DTTTfhxRdfxNKlS3H99dfjxhtvNOssXboU3/72t3HTTTfh8ccfx/jx49Hc3Iz29p4/oIgQPf6hqPzjUNLtDyVVlqkfAjkw6L8dEj6gqwqMTRidRH4cWvnvv2xoN81oq22/q/31J+LHHP/p6n0DAS5E2Q8QHZC5qP7Ts331fB27iq4rs9BK16erY9T3XeVjqCzwB6rfJ9UiYloWYH7s71b8NaK3FYsOVzn27n4qnUNX511pX71B/HOq9jnY17G7+3+gMHtak3U8pFdELI6H1rcNCBEDoqSPEqk9W6v2d/+6Vqx5Ve53zfoOrHm1DWtebYPHBFjs+63Rk4jZQEE+l0kff3q2z1tuuQUHH3wwGhsb0djYiGOOOQbLly83rwshsHjxYkycOBG5XA4zZ87E888/H9lGqVTCBRdcgN122w319fU45ZRT8Nprr0XW2b59O8444ww0NTWhqakJZ5xxBnbs2NHbS7VTYqeJjD3yyCM49dRTceKJJwIApk6dil/84hd44oknAMib4oYbbsDll1+O0047DQBwxx13YNy4cVi2bBnOPffcnu1QcCP+JOq3qCAC1a9FfG6EiEynCKEV3xvZDgCARrZjtkCo9UAWoCScxcX1S/FUBiXlg4pDdfRKHqYd0net17gQeGh9G2ZPazLrzJraBC5Er/2bbP2KRldRHvv1SgNAPF3SW1St1urBNmq5JrWkEqttp5br3ZcUZfwa1ELCuqu4rKXYQZMvA/u7RGhZGkh7RAkRjcjZx1s5XRmuUYsXYDX09grb16ASEauESpGuGVMaMWtqEx54NfzeNu9Zh9X/7ezlkVWG/q4D0WfEzoauiKNO68Z1k0NPvYYH9thjD1x33XXYe++9Acgx9dRTT8VTTz2FAw880ARAbr/9duy777645ppr0NzcjJdeegkNDfLaXnTRRfjjH/+Iu+++G2PGjMHFF1+Mk046CX//+9/hODJWt2DBArz22mtYsWIFAODTn/40zjjjDPzxj38cmhMfAhAxXFTF3eC6667DD37wA6xatQr77rsvnnnmGbS0tOCGG27A6aefjldeeQV77bUXnnzySbzrXe8y7zv11FMxcuRI3HHHHTXtp62tDU1NTXhj0+tobJQDPdHETJEqQ8A4A+FBSNzsCh5C5Y/gEE5ajTix1y1UJXpxM0MdUqduGSGLrAZJuogQZhbYPDlbcVvhQXCs3lCU6+5ZFzk2fSzCSYODmH0ORLVYJTJW7YF63J6NNaWB+hpNqEVsrnfdFysDESE6vT+m3sC+RrWQskqo5dTD6FkN5p3dTGKEIbfhMpto1do8ust91LheX8hytfRzV9qqOVNGYM36DvldrWB6qr/LPYGOgFWaqO1qmDGlEYxLKYfMBMiLX+n+6Ur839bWhnHjx6O1tdWMGf0JPSZ9vf4dyJK+JRqLguHy/Ct9OtbRo0fj+uuvx8KFCzFx4kRcdNFF+NKXvgRARsHGjRuHb3zjGzj33HPR2tqK3XffHXfeeSc++tGPAgBef/11TJ48Gffddx/mzp2LF198EQcccAAeffRRHHXUUQCARx99FMcccwz++c9/Yr/99uvTOe8s2GkiY1/60pfQ2tqKd77znXAcB4wxfP3rX8fpp58OANi8eTMAYNy4cZH3jRs3DuvXr6+63VKphFKpZP5va6s+i4oQJk3E/GJIVKgLUApwDjiuIWmrN0W/wM2Ts2WzWFu7IHfGLRIkwocthSF5BFQ+JUQYjag09JhybzuKx5lUtCqSKAjFmv92Ys7UxkhUUO5HoZuB0UYlgjQQAvY//7cNM5T2hKA8EmPvs6cdBmzYUaNqW7AjQrWiKyI52O7xNnGtxYdMv4YuXkeV16sK9AmtSCwAy27A+j5oV3VivU67OJpaSVhPL3tXn1N393zVFHEP7tU48WreI1PzeyvvW15n/ezQVYq7CmZPawLjwmQJ9MRVP+2Go7Frf1ZTxse5TCaDTKbre4Yxhl//+tfI5/M45phjsG7dOmzevBktLS2R7cyYMQMPP/wwzj33XPz973+H7/uRdSZOnIjp06fj4Ycfxty5c/HII4+gqanJEDEAOProo9HU1ISHH344IWPDDb/85S9x1113YdmyZTjwwAPx9NNP46KLLsLEiRNx1llnmfUqVRl29VC79tprcdVVV5W/YBEPoaJcnDjgQiDFfZCgCBJ4oMVWLO8Ya9ad17AVcNJY8aYkCC3jgOZJKQDA6o2+/B17cM6ZMgJEcDkAECpJnn0odvSNq4gbdQHqANSFQ0PhafxUBSEQWrZJHFDBYqlVCkHlNpv3rAPMvhRREwKAigpS10TFNGzyY6dEI+2kEEbueIWBsrvPiIswHVnJd0hHzWZNDXUtep/xyr5aCVlXRp+VYI+n9jWJ7y8ecSq7TooI6WPt6li6qkLtqjCh24ibOhsmKkfLurp6lV7TETAiRCSSFRHpk7DCTVB5v+r1I7ciABASaW1j9m2lK+33AQDj5dHjrtCddqsr9Kai2EatJEwTpNX/7TSTOR0FX/1aqau3RqC/N/F0MeEBBKHm89gVcNyejUY35dqXmTP57CVKl2sRMyB271VLqe9EmDx5cuT/r371q1i8eHHFdf/xj3/gmGOOQbFYxIgRI/C73/0OBxxwAB5++GEAXQdANm/ejHQ6jVGjRpWtowMomzdvxtixYxHH2LFjzTpvB+w0ZOyLX/wivvzlL+NjH/sYAOCggw7C+vXrce211+Kss87C+PHjAcBUWmps2bKl7Gaxcdlll+ELX/iC+b+trU3eqDHdCgA4QREu8wAegDBJmISbxfzcJiwvyH2uaN8NADB3TAErt+Ww6g0HgI/mPTJonpSSpEunMKkD7qTkg0DtRyiBvo5eER5AUFcSMrVPUBUx4xRwOIQrZzQUAhBAIMKZHiDTncSOtBEqI2wqwkCYH452gpeRQeFm5ENZReHsSkKNSkTMCK0RJRxmu+p3JYJWCZTI1EKllOXMKY1G4wbI9boyzO1NhEyTp0pv1YN9me6qyn70tqh1PUhMrwdCwGLETEOfWzWftr4440eiYnba1Pqc4sRMR8/073hv1zgRs3/rVTUhi6eCTIrIImS2oLqatYDZbiSFWXHVsvOKXz8hRBk5rYRaqljtCcVxezZWTaXr+10v7UrsLqhjIlm1RrFmTW2KEDABAkEImDppQeTwsHYXSlUydXMLLqsq5TPTmpyqNKB+Dse/1w4IRMSzDINGyHRxVZ+2oX5v2LAhkqbsKiq233774emnn8aOHTvwm9/8BmeddRbWrl1rXu9pAKTSOl25AbxdsNOQsc7OTmNhoeE4DjiXX4Rp06Zh/PjxWL16tdGMeZ6HtWvX4hvf+EbV7VYLz5KgJImQk5b/Mw/E7ww1W65cLhwXhLpAIfr+ldtykf/1TLVlopplCg5w9eVQkSgiuIx4AfJ/ixSJVA4EBZDAA1gYRdPrEwJJEDlDOijKSF6mIap101EvLqNjQkfX1P7Ck49q3YSTDgdKyAdVPBVUKf0jRPlrdlpLb8Eh0eXVtFf6/7hOTG/XJmn23zOnNEYiTl2h1oiYTQBsYlCJEFXaliZ1mtLaJIRY7w2LLSQBZiraVimF2RviVanwoxoqpTHtXQrrN7PPBcQcd5TAV46S2dDXRBNBLoSZEFR7T9yiIK5v7IowVSNcNXcMsAo0KhWrADBp9bXr2yLE7NjJDSCEmGVhsUzXBrdzpjZiTS8IExcCVJELLgQYFz12vN9ZUOlzADTpClPjetJAVKRMR88ElSSVCQGXElDmm0k09XuuzesN+jNNqasja0E6nTYC/sMPPxyPP/44vvvd7xqdWFcBkPHjx8PzPGzfvj0SHduyZQve8573mHXeeOONsv2++eabXQZSdjXsNGTs5JNPxte//nXsueeeOPDAA/HUU0/h29/+NhYuXAhAPgQvuugiLFmyBPvssw/22WcfLFmyBHV1dViwYEGP90c4A/ELIF4exC/JiJGOagHRCBchmLubJFsrt1aeYcwdUwAIxcrXMwCYSV3K8DgBqGPSgCAOnHjBAFMVnY4LwmRkTriSLBFFrnQqU7hZEOaBltol4XJSUvCvRP+EM6NxC0QYzXDBQf2C2k8awpHHGOn/JriSmkWJsa7wBKzIjoI9jNQy6GtCVk1PVckoVpOvOVOrP2CEegPjlY+tK+j1mBCheaQ+NisFZkcHKz03QxInL7y5ZpX0UJZeT1BXRs64AEPvtHfxlHJX3Q+60vfp5V1FivT2mAiJmb08/i5ze2lyakXTKhWpaFLmWAdeTcwfJ2I9McetRbdXLQpZqdLXPv+ZUxojROuh9VL/OHNKIx5a32aqJWdPawIFwaypTaCChRuzCoLmTG00KcpaEImKCY4HdjFNWBxOhQdO5B6DlKAIATkRBoWj7j2mJkr6O039opGpiFR2p01V9hZCCJRKpZoCIIcddhhSqRRWr16Nj3zkIwCATZs24bnnnsPSpUsBAMcccwxaW1vx2GOP4cgjjwQA/O1vf0Nra6shbG8H7DRk7MYbb8T/+3//D+eddx62bNmCiRMn4txzz8WVV15p1rn00ktRKBRw3nnnGdPXVatWmRLbnoIEHkhQkjoqRWZgHuSW0FgIQEhS1bK7j1VvpiLbmTumEArmFVZv9E3Fol0YQJVuSEalKMB8Fc1SBCyVla9ZUS5QV26DuoCjNGYMJhWqo2IkKBkCKdwMAivCQJkf7ksRT8I862Ioew5FGk1FaMSKg3aZctQaKgAm/QZUHtC7ErbbKTq9nhnYrPUeeLU1bIuiSCQAuJbJIxAd9FmNJCc0OCWRAVUTWx11iAyeFUAq7C6i6bNSzXDSoITIwSGW4qzVm8z2/6olCtYTxCNnGl0S72qENbb7SpVudio+PIZwu0KEKXUTfbV3GDtO+5y704fFU4sEYYTXjspqQqbT+JQQPPBqqyFDgIwcciGMCSoQ6rgeeLXVVDSWTTTUfaLTks2Ts91WUOrvCRUMxC9JUsECzN1Nbi8e0d9VsFZZ9Nj3h33vSH8xOVFLO/I7bT8PHB0NE1w+A1M5iJS8VsIZrMjY4Ju+fuUrX8H8+fMxefJktLe34+6778ZDDz2EFStW1BQAaWpqwjnnnIOLL74YY8aMwejRo3HJJZfgoIMOwpw5cwAA+++/P+bNm4dFixbh1ltvBSCtLU466aS3jXgfwM5jbTFY0GXEb776LzQ21IN4BUlKlIDdVDLauio9uDspOVMiFKtUBWXL7r4kQsyXkalsgyQ1KupU5k+mlhFNwAIPwlGcmXPATYcaMu1/5qQB6oA5GVCI6GvqmE2akQdhNE6TQOab/Znj4bp6kwKO3CcApR8jCNQoVqa7sK6HJmwcxDzs5Gn2TERfaWC3I1AadoTBxswpjRGxrp1WZF2wmEqpU3vf8f3bxwBIwpmiauBjvrXh6Ew6bp1SBr2MEHA3g4CLCLEN9131VKzj1ZuqrNGohlorYbsi1vGoqJ1yib/N1phV+l8vM8deISpmo5IVix31ss+NEFI2GYiTs7I0eGzdSpWxBBaB1N9xIGJTY5+i/p/wGKG3JhO2dU1X0FWRti0P9ISLBWZ5tcj+rgRNaitF8gWUgF+RNa3ZLbMjssaAth3bMXbytAG3trhx5N7I9dHaoiAYLtjxcs3Hes455+D+++/Hpk2b0NTUhIMPPhhf+tKX0NzcDACm682tt94a6Xozffp0s41isYgvfvGLWLZsGQqFAmbPno3vf//7kSKCt956CxdeeCH+8Ic/AABOOeUU3HTTTRg5cmSfzndnQkLGYtA3/tZ/P4Om+hygo0OEGv0YgPBLSrS9hHxyCuoCblp+WUv5iFeYcDOSrKntRUiL7VVGKBB44QBOHUnItJ5MR6QElxoyyPSlSNWZYxFOymyfqNQj4QGIX1SpzHS4PXNSMSKgI4JuRhYaACgFHA6NOnDPmTJCEUBhInHmmilBsD1YVUMt1Wp6FTsqYj9UbSNMG1oIHSdqs6Y2RfRN+mEsjzWMftmI63fiflmG8AJR+xOgMtkyG6ImAhtZnzqGqHHiwOeh235PdGK1Vu31po1WfJtd+bvZUaKIgLwGgl7mR6YLSxCNioXnIn93pxuLEzCgQioVURKmU4NaA1aJgEG9R+sc9XkDYdUqBMea9R3G48volmJES4vzeyLSt9G8Z11EZgFATsQCFdnh3NyDqzbtOsOCsetR90pXt7X9PeYgcFhJPk/dTGQbgMwmEL+Ath3bsfu0dw44Gfv+qH36hYydt/3fA3asCXqPnSZNOdigXh4ko/U8kvxQv1M+sDiTA6SbhnDSSsPlAZyDZ0ZU1xBwJskQYCJNhAcREiQH3zASIiNqluhfVVSSeHQl8EALrdCaMZGplwJ+lZIkdgqS+XK7NjGwy9etp9XKt+oAVHb2NmaTetv2g17rnggFsWb+OsxeTVMGlA+C9jr2gKgHr1qMKauZxmryZrzYCJUpZwDEslgwx1FBRCtElIQRXXEbeGGxhCLHRHCs3JpBy+6SaK96M4W5u5XC6KeecVuE1kTMTOk9IlVvtaAn9gl98YPTRK6rCFklIgZESZkdJYosNwvLP5tK0TUY4mOlkqtEZu3InU2aCAnvMd2NYva0JkCISHcKG8ft2Vg1VauP44HYPWlvR9+P0m5GRbKttKQmGERLFWzYURxCjG0DOAMhlrzA3LM89EqECxJ0AsihZaKUJKx+rRQSOf0d50G/O/4PFCKEdmojEPvuxKu/AZjKcXm+Ud9FyoLw2gWemewmSNAXJGSsGjgPZ4pAmJ4MStB+X5IolQBH6agozECsIZdbl1kNEBF3fV3ZCIRifTuapio3TTqB+eGArQmW0n+AMynY9ztB/KKMxBm9m0q1imilJhEcCALzEF/ROrLscrSMFxBu1kT/OHHgCwFK5exRVnIqoqiqOiE4RKYehFCpsbC1cbGIRiXXax3NYFxUdCLvT3dwWmpXehB1nXTxAnVCI0gIUywRGZg0wVW+THJhlGCv3JbD3NGditwioisUhCoLFGXWqUcFHeFU29MkRV8ToHI0MZ5Ws0lBV2XodnqtK7LWVe/LaqjYakogYhOgl3F9bohZf8RIcWjdUjmyFr+/7KPuKlVuN5XW92KoPQwJWFfFIn/+b5up4Dtuz6gdi66S1NuxtaM64sWJoyqkOSKSAgXT5FrwCIuoav5qSR/k88uSIVAqHzdqIijgygmCT0EoRcs4AH4htNwBABZg7mh5z6/YsfNEWPQ94dCQkJlJgQjXIUKA8iCUcKjvoswuFIx8RVA3KkEYQDjoB83YrhPw3OWQkLEqEOk6SWRsbRhXs8fAB3FTIRkKOAhh5qFoUor6AUodMxOVKwgZfbFSLZFIl57tqlmZTC0KSfQUYRD29s12ZCQNPADat8HxSyGpcHRKNXyo64cr8YtY3jm+4nWYu5sS/TOAEE9GAgUHoU44WJqZt6rGtEgmKXLwTL18qOmUrj5nfbqEgiptmX55MNuwtIxjAFODlalSVSlDEQ7K8iENU/Vq60pIUAxnzercJfG2q20rpxgiBR/WwLt6QycAWaXbvGediYK4mgw6KXAnBY/JtKWuGCOWniwu9I9ro3QUzCZkGpUCb7USsUrky14USfWKaCrYTvsKRCt55YbK+1WGxxeNcMTNXilBTb52Jp2JcJB2woOyUl/yM505pRFMSBKmqyG7amX00Po2zJraJIlZhXvejsZpmOitQi2pyoiljv2M0Z1C9ITTsXRRDoWwtKNysuZFIuZGb0Yo5o7qwMrt0WMbjpDkVaZ+50yVOlJD4K1rQ3n4t9Hu8gDE75QTTeabZ3Hck3EgQStE5XuzjQTDEwkZqwbmASIbEi5AzhqdtNQWqWpH/WXUc3ndPkgAgCIuosrMyXh9AeHgrR5ytJQPNVs6OkJVuop5MvWn9FwAIDL1Zju0lAelrXJd7SytQuvSN0yRRVMAUH4bzBvZJo9NZzVU4YDxR9OpWq05IRRIZcHVQ52wQNqCeJ2gzJOp03TOEA1ddCAtN5wu9V4DhZbd/XBQAsxgFB6bE7XBEIBQEQvGpcWFKQxQ+j0SlKKFHrb2i1C5Tx3pVCkiAEarA50+JhTNk7Ph/aGqYfV7iHqPQ11k3Qy4mzHH6liDjO5A0BXssv+urEeq2UJUInJA5XRzvCqyUoqobL86bamMTauuJ6K/4+iqY0H5cZa/NzxmecAUAOEMzXvWgVOCIJCf5UNWRwj7vGxbE7sHpF4ctZsQ0cibGvh15HT1hmJN1ZOAjI4J614saznFOQAuCVnkpHkkamZ0oTqFZ6q4nYpV5MMNa9Z3oHlyVqZcEX5Hyu4p/RygLuDwyERZOK4sqKCukSIQv/ZuBwkSVENCxqqAegUQL6U0Vymj/wFg0nUQIhwsATWiyPSlDPdbL8UjX3oWaqJIch1aaIXobJVyhWy90ZDFI2HGsNUSfQMACYoQTgo8Ux85ZnncqTBlahUL6K4BGvMa3wKgiJcW5ItQVxJ/f6VCAJ5rAupGhSlV9R7auV2lLxsg0nXqmEsggqNlAhkU4XDzpJQ08Q1UetYuONBRMX0qgHHKLzKBtEMhBKTxo/Yb8gogPADP1EO46VArplNClj6QMA8iKAGEYuVbdZjX2Bo++C2xPlSLKqIGPKntscibBRKUQDkDcTOG2Gq4VnYrrjHT9iKVImB2taaxb7CrG6uwp1rn3WEUT6UYK7bJ0scSpgsrDaBmWaX9WAUktVh66O3o/VWbIBy3ZyP+/F8lulcfiUtJxJ4iss14wYAS6WsrG8AikxWu7f2vdkRsWuZMGQHwQBILfX8xS6No6zd1RJ1FoziVnknCuveQSqvvOTeTMLkezLNATjwdEMFN15HhiOZJqbAQRvstWhFXu6K5YlWzJcHQ32tDTgcJ/WJtkQTGhi0SMlYFegCUmoAAdmsiuUIsZK/C2SLwwygH8aIpSKM7swTvKqIlo1iWJQVjkTSeGbA1qBMSBx5YLZSs6I7gIJrIxQZ1wgIZEbMqRAFFxPSMV52n1rEJfQ5WVA3MM62hzHVTBISn60Pxuiay6XoZPXLTWPU6gzREGxzMmNIow/zcx6qNPoCwjL9lnDyOVZsJmicTFQlg0pNMCfodSkEFM+mhlnFMzoyVdkRGMVXENPBC0s08UEunQ5QOcf6IDixvkz3Z5jVslQdC1WfCdbrSi+qF7Eiehh4YAphUsCF3PLz37B6m1RzdK6UhK1VG2u2vAESaiVeyG9HLCYEyHY7uo2KvScB0e6gcYYqtX4GgaSlQpYifXpaixC6IVoRHfubVBPraqV6/Nmtqk4ySWuJ5QULSpY8n7hnGIaNMcdKni2PsyJd9HLOnNVWMKGsdmRbXN++RkQL8SWms3kzQMiFMywl1T5oWaeo5JuACjiWBsKwvzLkh/LxJICNDIj4pG0ZYvdFH8+Sw0psYGYiCPclESFSN7ENdJxKUwupTyAmucAcnItgvDvxJmnLYYvh+e4YYZuanRdma4KinNgmKUjuWypgHmQh8qa1ISwf80P5CvUeRLeGX5IBMHZPiMw8yK6UpAl8OzLYonOreaXqg1Q8NK12hw+xuNhzz9CBNqBTUE4oVbaMj5zyvYStA3PJZoTXAmChPKR+awirRf8vuvhGyg7NweGWescgQ6TrwzAjTNH2wUK2npYYW0ANREXTz5KwZpVPUBfXysffk1A/QMlEJ/4k07aXMB9UpDELCYhCrMGT+iC0hgQXkACk4AFXFpV4zEQs7ramh7s9IFaYQJg1sQ5MN03tSLa+lMDMuetcDciUdir2fan0k7QhOtQpk3XjLjpx15zemW0vJFlii7NxC0qh+QwCcg4ECOvWsCia60y7OmNIIxoUhRDOmNIZGvpaOL16NGT+HWVObooRM60YroHlyFmB+WTXjrKlNWBMjdVozpr9vqzYJGRk2Widedu1NRFcUzXlogh9GkBz5y4ooxSu8hwNMNSoQfpf0i5pw2REuXX2qV1HaVmLpxMLewpbVUIIEfURCxrqAFqvbwnyiIxzUBeBDFNoNQSJuCkhnwQt50Fy9NHYVHEQL/wvtEExFiOxKTXuf6jdxHFk27aaAwAkrKpW2jOiIkraksNNiGna43TqOSFGCwvwRWyBoOkx/xmeN5ryl4N9259fVl1IzksK8ph0gzMPK1xnmju6UkSNFKoWTAnczAAZXH9YVEesKtWhyDJgHolpPgboQ6RyEIuXydatoQw1w8cKJeQ1bw/Xtz8BJyYiFTiFpWGlQER8cdJssvcwm9TEYY1ZdOVoh8hWHTcQqTbjtIoewEpSA6smLPiY9eSAkFp0KiUJZ5MyeIECSMI8JUCIiQvu4eF+fC0EsrUkoAqaIm3Jg510w1Gq2KvZ9NmNKI+5f12qE+rabPgBFGnlFIf7qDUU0T0qhZaKDVa8zYy1hyE+MqDXvWYfVVVKqc6Y2mu/gmlfbovcEpSr9aJER/dyIa8iIFPYTFoQdP4KSisYOL0KiiyhW/7czUq1KYjpOXSkZkjBrYmOiY9Zz1ZZ5KM0YLeXjux8QJGnKXRsJGasGaxA1pct2VZdJAToAZxC+D96+A0Kn44qdAKUgbtos07D/J9Qpe41QRw4inAPIqxSkiD7w9N/Mi/xNWBDRmIWzXCsVoa0n7P3qCByhgJWmiYjQ3bSqqrIGwgoPYZ6uBy2qgUHNqEW2waQlm/ek5mG5K0GWuwcRY1+RrodQRQ4EDLafW6UK1rh+T2New1bAzcoODpXMem37g1hKCUDE5T1EuVLLIVY60b7fTeot7BWptXRqU1EIDqo6T2iNo3Az0fvGmjjYvmkUBCDRBs6R8wJMhIMIDu6kpC5MyEbqhCKSkq1oMhvZrjwelxJp+ktl/9Zq/RqlIL5753tNzHT7Ixu2q75OWZZtz0ymmCTWXaX0u7BXCLcrJxbyeyjtagCEHT00jBZMyy2i5N+k+rSZ8TCMiD2k2h8RIUzxQqTNGBQZt5+DelJtRb+NRMWQ4CCUZVSYTA8kkjTlro2EjHUF5puKQVBHph11hWSpE6KQj0SmhHLDB+fgKm1IUqnwSx4jXrJSyXoYcC4jYdQBSaXlNhkDvKJMV1pREEMItahbV1pSa0DWaavYIC0cFytiRMBExOwZstaLKUJHi+X7XN4xNrKdOVMbwQU3lVU8N1KmSraH57mzmEX2FERwcDvaoweuTD1ErkleO7+IlVszmNe0o8fblppED8ThFUmN7X0mX0O4HIj4uememjbpMpGsmKaLWOdCIImfQ8IG9ZEIl14/1mKLECq/R1rPpo9d/dYie9Nei4fbEipqRhC29eJKL6W/U5QQOFQWKVBCQIMShJOGr87DIWE6MiLWFtzoK121P1IqAX4RLbvLFFZclE6LbepcaxerxzVhdnRGE1w7lT57WlM0Fan1XEqqEI/Yrt7oo3lSqkfp/1WbCQAHLbtHo4wR6OPU8gQAWqeqyWKlyFjLRAcdtA4Pv1bd3mOgoaOQOjIWgT0ZsGUkKuJP/FIY/befebAm54Mnd03wNkDSDikG3Xpi+9MPonFEHXjHDtARI+WXNyhBcA5RKgCBb8T6ekDgXlEuZyyccVEnQsg0bGJG3JQhZbS+ESRTZx54oihnaSTXICsUNdQDgngFOcjp9JgZ4EiUWGmSFvgRS43lhQlmk/NGqhm0jqYRKh9K1v+AHECWFydVvYbVRM9vBzRPSsF3cwMW9TOWI3Y6yZ6h6/S3SiNp5/8yoqYRS9sAiJB3/VqcQM+ZMiJKaoBIlIEERVm9p6t9tV1IpeiuTeKsfelKQVtfJQSiRrAxo12jGWO6TVjarKcjdHpSZS83ZszMByl1hN55gsuopohWKMo0XrrXhqdGi0gdcCcFIQCfCxOZpEISXfu6G0NgTYJUulLrwvoK7SkYuR8sf8JomjQw6TtNTmxSLtI5wEmbKNxgQnvA2enf5snZiuuaziSBF4nyGeE+EH4PtF7TTv8DaGttxah3zxnwdki/HLc/6uIT+h6ikzN89I0Xk3ZIwxBJZKwaOJN6sMCHKHWCZEdIQhX4EJ4U7wNypsjV3wh8CN+LbAMAhA8ZzQDU4OSYv1eOOArzOp8AAKwccRROcF4OBwqjU9DRN8s1X/uGMR+CcxAnTN2EqUb9wKBmkC6zp7CwYkejrKYUquKTkMjsEHrb3aArL6hdHas3+pgxZeDK+1fsaJSEjFCs3F6+n7mjS4BwrIFRIDSLi0VA4voZVXBil/3rAXjOlBGmLZdJsemBWG/XjsSaaAIAoqIopr1UjMRpMiR4JLIjiDICBiKCfEIJqJEOhBauMm1pXQzOQEQp3AcQpmXNAMvMseoIWSSXa5+P5dUnF/Xe8HP1hqJxxydCRBLGMjrJu40g93eE2W7TJRwX2uQ6Ul0NADYx0YviJFvpSwfLriZ6MDWmTW1rC3UfG6LNPPO3IWK6qth+hg6iVo44BKRWo7xq20jSlMMWSWQsBj0Leevx5WggDNwrgmbrQXL1IKkMRKEdbPubEL4Hksmah1IkGmZFxUyK0gkJGHHTWNl4TLfHcoLzMoRXBElnlZWF8jdT+zBpIG5pkQiNVj3BSkHGYPerlFYUcjartWfmdathubG1EBz3+dMqHvecKSPAiTPoJq4JJOaOKcj7QPVOBRC9P0h55VtZdElFhmwRvlwx9FcipQ5TXRpJPSodZQTUgUhlZZ/UoCS1h5RGqlh7gtnTmkyaNDIwxgdJW0sVIQwkLHrRVi+prEkl21FlHSWp5rbOs03gmRGq5Ve0erIW6DQaV+bOOrJXqXjETrnZ7ZO6Q1m1ZnfHNEkdi9Kk2jrFiA4VkKnfmGZNt/0abJiILdREQqXGy/SUsKJfLJCdQxQBAwDTgxgIybj9TNUV8U4Kbe0dGPWu2QMeGbtn8oH9Ehn70Ibnk8jYMEQSGauGwINwVAox8ICSStExJqNfnMmHUDorU4ysfPABdUAcB6t2Ox4A0PLWWqwaPaOm3c/zngFXqVBSKsptZbJyf7rKUxExGaXzLW2aHxkQ5UPEqrgzBpphqsOUfSsitrxzPE5Ir5cph0Bp5pxUxEesKghNiNgQQvZMjXrShc7pclBZvaFoBnYdYbEd300UC2FUSqYIIUmM1ykHMBUN04M2SJhEtM1+wdT7/CLA/D63z+mK7MgUIA+JYRxCRNJTq95MYV6T1Dat3JoBkJPtqziDMXambuhir3Vw6nuCDgBQ38FeYPV/O9EygYBq+YC6jpUc9nUXDC1I1xFLrbnTcQ+XwHhikcCDKLWZSFwtaU3py5WFQFrKISxtoJnsAZKkCssEFWF1dU/211+Ik1NJKimMM6/5Hohw0qm9w1S1cyQiBqj7REpUTLajkIegDkiuPhpJTZCgl0jIWBUIxkAyOZWSVKJOR6YpwZn8YpYKkphRaUMhYqaeAAwRA1AzEQOAFelDAMuPdW7H30yK07iyEwrBY6lRIFrYpo5pRfZdOMF5GUhRANEqS+mPJrVketsnZDbgvtIUuQ2iNuoBJ2Q2yH2kMmhprNICpdY0QYIBQVTHVJkk6IHSJm1dVQfOmdooo0Scq+4FpTCSoNN3gkOkMoCTCtM+zJODnEp5h+msgetlGPGJ0zorJdAu1zDJ+1cTCA1JylCx76IpvqBUVrn2QTumo5jwIUleur7c545QQ5j1Z6T7VArqIODSkkMb0Zr3quiWbYtDBMfc3Urm/LqCtteIEHv7u230Y1aEUXDMa9iKFe27wd36CniuCc17jh30oh27Qbr8bT0V1fESPySr5nU3BZTyIPoZb73HFFRZy0UhD94xONYWcGhkbOkVSEIchyuGlznMMILwShEiBs4hfBUhykitjuCSyAivCOEVZeol8LB60gmVZ+R9wMoRR2FF+hAsF/vivtJkuX/qgrgpkwIljozEgXN5PABIKiULCCwQ5kEo4b8o5uUDpX0H2LbNEMUOKc4XHCek1pUdx32lybjPmyLTX6lstH+ehTlTG01rmBlVWsQkGDqsfq2E1f/trKlpNiBJgDQrVebHjnVPaX2ZTnMLoVJ/niT52uKCMaxo362qfcdAYPVrJazeUMTq10ogXs8JQaUI3orWkVjRNlpWElPXELGuKmRnTmnErKlNaN6zDi0THdU4Hli5LSfTyW5aSQDiDrWSiMWtMThxsGZ9B5giYkIIHDu5IXruGy09n31OljasK7RMjBUdWRE58ECK3m0PLqtQRHeUIEFx8InYJO3vGFj6xJhRsF+Ujb/9UqivdRxVaOKqSa9VmKKJGCAzFJmsmhwPomaMEqkb68tPHzVnCQYOiWYsBp2f33r/z9GQy0iy46al1iuTUzOhHeDt2yPvE1z6joE6WDPl1EE51vnZjSB+QRIvrU8LZKRuOdlfriNeNHYZWvtwnz8N87xnsCJ9COZ1PoEVdYeXbfsE52Xcx/bu9hiq+YX1VKOSYOfBrKlNcLgPUmiVKZ5Itwkp5NdVuMKX6T59P+7qmDNlBAjzpf0F8yEy9eCZBpM+06nHubuVwipoXRHrpMFTOUOedKVod/pLPdmJGxvrFl+Ipxd1ZWksClcJLRPtFkKWGbExMlZpPjslrdaPRxsHEi3jRRnp1Mdiey7qQhVSyoN6HaEw3yKUuruKBqFUTrpLRRlVy2TDCBmlaOvIY8yxpw24Zuw37zgY9U7fJvl5xvDBV55NNGPDEEmasgpIKgOarZcPSZWaZB07IHzfRJ20hoC4KfmF5eVVRgMJbS8xjz0DMGYVCTgmV0myI8yD5j5vinnvivQh8ncFIgagJiIGYJczbk3QPTQxaJ7cAMHrZKrHtkABwsGf+uClAuYFT4AX8z1K1e9saN6zDpw6JkW7cvsIQxKMI7wiPzJNmMG8xrdkbJK64BkA6fpuzWRtzJ7WFPGPi0DrywKZHiaOjBLJogkH2gS2K2ij5pbxIlpZmcpFKmkjRUODIFPQpFenR+MmwgAMCSVep1lXOCkzgbB1vmXdSyyYdCWlpliKAGEf4kECdQhoHy30aY2R8ASDj4SMVYMKQYtiJ0TgSRJWzJdXiXEGwRUJCrzy7QwCVqQPQcuOv8gIGOdY2XgMWnb8BU7TGEDUAcyvmVz1B7pqzZJg18HqDUWZpnZSEG42FPUDEG7KWK1QJwVR6gS8Yo+KWHY2RNNxUsogjVWrk6t4f9j4ut11qrh/XSvmTG3EAxXWWbVJoHmPbBit1N0zkEPzHpmQyBiCVh2rNhPM3S0IiwTsykKtEbQIzUCmolsmEMDLR4lf3HpD/+8X4eS3hUVKVu/JiEDf7glsV1LqSnVlxD2UaSRC+64ZezvbDg13JJqxKhBeyaQjRSFvvMXKRJ2AMoGVROz+/RYMxeHKqk+vCMEZ5qz/PVaNPBasdRtEqXNQidicKSPKG40n2GWx5tU2MCqd31e9mTIDIWHSkFg3LyeuEpP7Ppo33jfER73zoJbIc7VIWssEVTXtZmREK5WFSGXRMl4oY1uZWqzVXmTl1gxWveFI3zBNZKgLuGljLqxJkNaM9TdaJpCwmtUvyntMaXWh9WvaZDjwzOQAgIoSqrS6X4DwChDFDtkzWD/fAx+iVJDPfNVhhaSzIOmc/O04oSSESn0ugt77zSVIoJGMmlXAO9shSsWoQN+C0FWVuvE3YwNKxOZ1PoETUuswP7ep7LUTUuvgjBqLVaNngKazoA0jAQCrRh476FqdNes7avY+SrBrwNYzrWgdqTQ5HeAdO2TbMK8Atv1NrBp5LFaPmwMACSHrZ8ye1mSKaVomEElabO84NyN/tKG0SjHKyF1lVGwjpKGJl50eHGAj1OY9MibtSkp5k3o06UoapiXdt/4LZ/NLsrgiv10SMOaZ6nHhFbFc7AvevgO8kDeWRVIXJtfhXlFFxlyLfOpexJ7MmHhF8EFqFK7TlH39STA8kaQpq4A40tcLgDReVctNBWXMTqInWrHZ//4l7t/noz06nhV1h2Ne6xOgDSOlGaz2/krnALimwnJF3eHA0PgtJtjFMZ/8CwCwXOzb5XrLO8ZiPtsiJzCcY0X2XYClFV496YSBPMy3JZxSBwR10TwphVUbfbRMIGGEWqfttEkuoTKS1R2Yj5aJTpkdSMs4BnAhSYry6oLWj2n0AyHTvTabJ6WMAJ8EXtTwWtv8BLI6lZbaIbZuBCvmsWrksQCA5WR/zGt/St6HGioYuLLxGGkbxDlIKiXTsClZsAVdGBUzvhaFvCRixU6lIxscnbCuiOzTNhLN2LBFEhmrAuH70srCXhbREvDIzwPTz+rR9uds+JP5qRW8mI9E6GT6tGCIWIIEAwlNwuaTf5mfOE7IbMD83CaQuiZpUBx4aNn64GAf6tsPzJP2HTyQZEnbUOgOHYoorXo9fK279OTqjT7gF8OetZBEjASeJEV+URIxoKx4A+ja6qM7tEx0QIRsp0SYB1psMz1Dqd8pi0Z4AJrfBrr1VYgNLwLrnwXfvM48I1u2PojmN9YAQJSIxbByxFHyGrlpkEwOxE2B5upBc/Wy+4k6H8GlSbDOlAjfA8+3gxcG17ojwa6JJDJWDZzJL55uCK6XxQX8QI+I2OyXloFk1Zdce5LVCqVTuI/tDRBgHn1G6hoq98BNkKBfMZ/8S2q/7PRUPECczkkxf1AEadwNaNsqIwgJBgzzGraCYxQAqD6QTqgX010ILOG2TE12b/oKAKveTGHuqBJadvchsg1AsT203rBMXyOpSm1x0ks0T0rJiJsuONCRL+aBFtsRvLnR6vvrKx2X2p/VecQ23O4OJFcvI25plQ1RmQcpR1ETYM6UDjf8X1fTDwZkZKyPAn4MThQvQc+RkLEqEJxHxfpAuQMzZ3jg4IU92i6pa5RC0FRKtlHqAVaNPBbzvGdwQk6mKZcre4oECQYK87MbzWBOeM4M7sKRVgbz6UbTPkakMrJ/qpMCAmU6rAbKOet+K7U52oxYTSx6GlFOUA7il0C8AuyuBqs2CbRM4KaiNW790DKBgHidWLmt+6b2K7ePkJ0CgpJlXyHC9mtMMXIdQbK0ar06H+WKT/yCOWZayoPveBOBVwQCPzRg1URMm2yrNnWCMTS/sSbSjq4a5osXI/pf7dcoW91ZLZBKRZkxUZNzQlVhChscAX9ibbFrIyFj1WATpZgDc6XoWE+3S9x0r0r8V6QPkX3+ku9UgkGA9rKbn90Y6WsKIGzJFYuUCMGls3lJCqNJOgvaMAqgDjgAlu8AcTgI7cP36G2OEzIbpLcX8yDgRjoFtIxjICzAyk0y+tUyPuwbaiwtAFlZOY7VVE25clsOc3dTESHVWkoA0apKwLRE0vdEpXZS3cF41qlt0EKrFNprQT0QeioCynzVMTYUwvfDvxlD86aVWD1hbtl+5nb8DcRNQ1BqqimJmzJVkxFtcBAlYfLA1D6D7rsZ9AcI6buDPuHJwDFckZCxKhB+CQhUTzfOovqxXszoZ//nHrldAGtURVmCBDsLiF+ASOUAUKU5Ug2XCTFRMgQ+qF8CghLuY3tjPntOvtdNgzRmQbJ1xoLlwUMXDe0J7cQ4IbPB6vvpA24G80dswfKOsZg3sg3Ck8RLtzwiAYdwXKx6w0HLBC3mV9Ec6qJlovxMZYpTolIHDS2U16SbqOinMYIFQDQp05Eq2rMUXsvuPkipqCJ9MurG23eAF1XFoop6AVZUTEevqANCHZlxsHzCBOeY2/YISLYO4DzclpuSrwdyHwBAGkYaoid8L9ToqhZzxHEAJ2fSoqJULM+gJEjQCyRkrBo4MzMhM9NS6GlqctazPwXqZTnZ/Xt9qP+OMUGCQYLwioBXhGAMtL7RpL0kQZMwFW6Q7bTgZI1TOUlnITI5KZaeNEQnsYtAUBfEy4eRGteHEK60vSnKbqPLi5OkgJ4HICyASGUxd5QLUuCyklKlGU0rJkJhh9sfeFWayRLmYfWGomqtREH9zrBxuKUTM+2Q9P/aENbNoGUCiRC9rkC9PEj7Vss+wjc2QloeQhwnmlK0G3d7Visj3SFF68CKnZKoKed8EQBw5f0pinnATZttCcakyau9PZUOJdSRPYvV9oXffSeD/gB1KGgfNWNUJDV7wxUJGesG0mtMhqp7M5s//ukfgeiqnAQJhgCzXrgTDxxwRo/fd4LzMkSuUQ7YbDeQUgdEvl1FIVDmZC4IlZER7cukPZ1KRYhCvmrrrQS1Y/6ILUDAVTWfD5JKSS0XDUwq8r7SZJnGLFHLZV6AEILlneMByEpHQTJYpZuGO1TaYagm2as3FI2ZrGwY7oAUWqUFBIKwlZDjAH7RONwDCPuUOrIfruABjJdEF2jZ3Qdpz0Pk2yA4kz2B41CRMBO9KhWNESuhDjgLxfVSm1sPWtcgK9Ft4b2bBkkBwmOyCEotF14RIlsnJx+BH4m6aehKSh1126msLUSSphyu2Klo8saNG/GJT3wCY8aMQV1dHQ499FD8/e9/N68LIbB48WJMnDgRuVwOM2fOxPPPP9/7HVr6rt6mVYibltWTlCaELMGAYvZ/7sGc9b/HnPW/N8tmvXBnVF9TA1p2/AXzOp8AXFVxR6h0b8+MABk51jSdFxmlBdLRhFQGPFMvB2IWrUIWg6Sr2ZUxv24zSCkPFNoMsRCMRSu+odKYPDAmp/eVJpf1XVzROtKI91e9qVKJ6j2E+WjeI4PmyVk075GRZNwvgiprCVkwkA97kgZWX1IVHZWWGtyI8U3T8i5gtuOmZIEHZ2GRE7WE+jpFqPvxUhpGqwCj+9IEine2g+fbQ6NubVGhXfYBkGx9qAvWJExti9Y1gqrtiVJRdlzRon5Lx5YgQV+w05Cx7du3473vfS9SqRSWL1+OF154Ad/61rcwcuRIs87SpUvx7W9/GzfddBMef/xxjB8/Hs3NzWhvb+/bzvvaDFa3zugBZj13B2b/+5d922+Ctw3mbPiTrOyiDtZMOdUslwaWtd97LVsfBE1njeExEHpICUdZFtjWBUIAQsgB2/yQsNJODaA9rRxOEMX87EZ5nb1iGOEBwlQcpSEZipmvzs9t6raycdVmIrelU83GM4wYw1XE+xpyFlmXCG6IOgD53GQskmLsCiRmrmpgC+YVwjSlur902hDRe54X8uCF8p7Cxrw7iO0vPnGwSaA+Z72NwB/UfsQ6MtbXnwTDEzsNGfvGN76ByZMn47bbbsORRx6JqVOnYvbs2dhrr70AyKjYDTfcgMsvvxynnXYapk+fjjvuuAOdnZ1YtmxZz3eoBjZQKr/cvYVu7qpC4LWCpORs9finf9T7fSd4W6B5430yJaMisBotWx8ESWdr7vYwr/MJ0MbRoKPGgeQaZIRD2SYQv2QMPgV1ZfRLi/gBYzBqbA6AMLKcyYLWNWCe90yfznPWc3f06f07OwgPQvd3S6QeiY5pJ3xFjE26sJbtxzRghPlhqyFNsiE/f7gZ2TIo3xYlLzZhY8wI/YngmLtbqeq+W8YxgHmKOIWth4jShBH1N4lPbHVFoxL2k1QqtA7SUasYYTJ9Ui0vMVHMhwSNszD6pp327aIA6ph1QR05VgwCtGasrz8Jhid2mk/mD3/4Aw4//HB8+MMfxtixY/Gud70LP/pRSFTWrVuHzZs3o6WlxSzLZDKYMWMGHn744Z7vUM84HSc6E+0FdINxoat4agAdMRKikAcrDt7MK8HOh+aN90nXcMeRA1GuHnPbHpHEqq4hEiWzEXfFn9f5BEgmK0XLWpwf+GGVnN0DELCiMGrw5VxWwLVvAwptRoCtoxIkkwNtGN3r85z55K2RCuYZj9+CmU/e2uvt7Uw4IbUOxC+At7+lSJhKC8ftd2xYTbthpYu7gm4Ebno/ljqkHswvYuXWDES6DiJTD5HOySIArbEqFSQJDGT60qQqlUs+8UtyXVXhOW9km9S+xY6XWOlBGY2y0pL6R6+eSskJq1XpThxJ3OwombxOsb/1JCGdBdG2FsW8TF0W86qzSVGRzXbpj6f2o/taAiqFOWIkaH1Tl9c1QYJasNMI+F955RXccsst+MIXvoCvfOUreOyxx3DhhRcik8ngzDPPxObNmwEA48aNi7xv3LhxWL9+fdXtlkollErhjK2tTYpWeb4NIjUS4BysD+0uHjjgDMz+9y+lhoEzHP/0jyA4x0PvPhcA8L5Hb4bgHEGhBFb0QByK7JgmrD7if3Dc+hvx5/dc0Ot9J9i1MWfDn4B0VplTan2jmvVzJisXLcz+zz0mlSncFFp2/AWrRh6Llh1/AQfg1DfKwakkoy86AiGotK4QxQ75/rR8bBhDUQAAlToxPXFJpYywejnZHxDACdiAE5yXcR/bu8dFBSQmFVh7xP9g5pO3YuaTt4Kqc37g4IWY9exPe1ztPNxhUpMWmTIRIkqjmkCt56OuJEIWeRbKLqJb6P0ISKG7iojyTL38mzMIJw2n1AEozVVY2ZmCcNLSCkX1diRuCrQTksjphuWEYl7jW1jRJgk68QqSyKVSoRYMkjwRNx36hunsgpU2JJmsvC95WNgQOQ/OAB7eP8IiY9pLjKTS4QSisx3EK0odmb4k+XYZYVPtkOCmQw3wYOkh+yPNmAj4hy12GjLGOcfhhx+OJUuWAADe9a534fnnn8ctt9yCM88806xHSPRmE6qKqBquvfZaXHXVVZVf1CFryHRhr72RrPA2USHuY//8XQjGIdIuuKf6uzkUf5v3ZfO2hIglAIA5634LuGmIYj6SciTprOyf56YAro0rAQR+xHVce9xpQkOUvxI4Q8uOv4QEKvAg3DREvk3eqylFuKgrtUGcgRc8kFTO2FgQnQ7TO1PVbsKX9gE0W48TyHqIUif4dmnHMGfbszU3ZZn90jI5OCtrGE2+eOAbEqZTVTOfvBUcykpG6Yh2BT+zOBEz0BIKdf5Sn+eG1hNl2ykANSguSFCESNXJtCTnWLlVFXJQN3Sbpw7g6JRgeAwADBETjCmzjJRMX5ck6RJuCnDSEG4Wc3crQTguaHubSfuRiJs+U5IRdV9xFnqJBT7gpkA1qVJVjnbaNGLcSivcddwifsrCSACmFZ5uWxfRllFHXuvAA/eK4Pm28u0OACghoH00faVdjIUJhhY7DRmbMGECDjjggMiy/fffH7/5zW8AAOPHy5LtzZs3Y8KECWadLVu2lEXLbFx22WX4whe+YP5va2vD5Mmy8TYrlUwvMO5Xbnlx5P8uwWMnfqXrgze6hrA6iKZc/N9x53f9vgRvG8z+9y9N1MoWv+u2XIQzM1Of1/iWTOtk94do2yrX5Y4ZMOLtXwil0kNJQw8objqsQHMcOfuHFD3TXL0c7IMSwAtywHFltCuiC9P6JABwUqD1jUbYLBgDb90mt9nZLqPNSsfTowpPzsHzbZjx+C0gKVceh/ouEYsECMbND0254H6AmU/eaqLQOy30c6OSCN6uNnRShohFWhRpYXyNFgzSQZ/IalnLP2zVJoF5I2UWQagInG6sbSoVvVDHZkhO4IO4ACFq0unlpeZM+52pZZrQ6+guL3hRHzH9eevzdlNy33a6FOp7o8lTENMwapsKZfaqvwuSxKnvQqDSmaZykkcjkGpCHUnFJ0jQR+w0mrH3vve9eOmllyLL/vWvf2HKlCkAgGnTpmH8+PFYvXq1ed3zPKxduxbvec97qm43k8mgsbEx8gMArOSbBzv3g4raraNXL+22casWHQvVT437AQTjfW74mmDXwez/3BOt1qogOHZGjYU7ZjzmixdBi+1Sn0UdqVlRxAlAOFjpbf/7l5HJgNm+NTHQxSKm8iyQAxNxlFC5kFetaJRWSQ+8Wj9j9ywkFCSdk8UEGWmdIJTnE62XfVnhykjKrBfuxJx1v5WRPwDzik9VvkDKusDJZMoE3Xr7gjPzndLfWeJQCMYx4/Fb+vLxDDlW1B2OlSOOMucJqGvqxMTsingZZ37t/6YE9yuy76ppf8s7xhqSJJuKW+CBKuywUp52hWEpTBMK3w+jTYEvu5ooyxNR7ADy24GObUDnjvKqRiC837xiWLSAMM1Is/XK0sKXui4tqNfHYvWwLGtpp49PeeAJTzrp66gb94ryd7FTylQCv8z8W7dC4sHgVAoTh/bLT4LhiZ3mk/n85z+PRx99FEuWLMHLL7+MZcuW4Yc//CHOP19GlwghuOiii7BkyRL87ne/w3PPPYezzz4bdXV1WLBgQY/3pyNh+jdxKI65/5vm9aNXL+12G7NeuDMUmZbCwSzIF8GKHo7983d7fFwJdi3MWfdbM6M3FVo2tFZGz+I5A+/YAdG6RUattJ1A4GPVyGOxsvEY81YTbdPbAaIl/LpyzWoxA0BGO5QWTb5HphtBKXghD7ZtE9j2N8Fbt8lWNfl2k8YMvabC6jOaq4czancldm4EzdYZsqYH0tkvLQPbHhV1a5JKG0ZJXVDGstwwmilLW0QpnGw6Qsr0z/sevblPn9NwAE3LqlRNTm0vLW1tEbGH0J8HAOGkcEK6unY2jpVv1WHV6+Ukw2i8/KLcn4pCiVJBkhtD+H1JoFSE1J5kELv6UEWl9N8aJvJkKkf1RMALo1taR6h7Sur0u742kBFf7dhf1ls4pkMklILrriuK0HNPTsRZqQTuFXH/fgvk91Wdl+Csatakv6Ebhff1J8HwxE5Dxo444gj87ne/wy9+8QtMnz4dX/va13DDDTfg4x//uFnn0ksvxUUXXYTzzjsPhx9+ODZu3IhVq1ahoaGhV/uM9xxz0ikcc/83I6QMAI5acV3lDVitNfSDCQD+OvPzECzpZ/Z2x+z/3GPuMW1/Ikvl09EBy5B5Bl7IS7KUyYUVj16xorv9/ft8NKweU0JqDTPYxQYo4qhoW8MoqQlyU6C5elDVs0876vN8G3j7dvB8G1jrNpOOBABRaAfb/qZc3qk8/twMSE66oZNMTpog66bMmRwEYxEyNmfdb4HAw/37fBRrJp9komlmYOfhd4pQR3qjuWn5d8qNRAB0qndnJ2QkV6/Sgmkr1Wzp5qx2VDaxIZocCy7bVPURK9pGy+tPXdkOyxbTW9FKTfQBFYViLHym2pFafY+aiC2X90ZORr7CCYXano6KWjYUJJUGydWbbcuIrReSMC57p+oIl5kc21E9U6UaZkQEl1mMtUf8j0l3P3DAGbh/vwWSBPbQP7IvSHzGdm3sNGQMAE466ST84x//QLFYxIsvvohFi6LiXEIIFi9ejE2bNqFYLGLt2rWYPn16r/YlGAf3gjBVqf6mltbl0eZLzeuVwFUVlA6BA7IKDABo2gVN7TSSvQT9jDkb/gRAkjCaqzfVWZqkAFakjDqgDSMBNyVL7du3y0iEHRGoAlOFyK1eqybq4BvdSySNowdGwaVo25EVchpGLB3olFMevLM93D5TGp5CHqJUUKlPqTUiGV39WU4SdXXlnA1/Aty0HPAgRfyGkJpzYNbgaQ3skKnaSt9J4tCd2rdvOdkfCDyZbqQUwklHyZBtZ6FTeumc7IqQyvTvweiopJtSJCp2vSvq27ipRhSMRdOYijQJ3zOkDAhJnT2ZJUrQL3T6s6SE+yXrnvSKYEoDqX0ieeDLH68oI2Aq7SssEgkA3AuMnETrD6vZqPDATybWCfoFCRuogqCzAJ9z0LQLJ5UCt9I4gCRiGoLzikJ+wTgErRzGTiol375o3rRSWlIogT6AMCWoSvVhpSyJlY4BZzIt2L5DkrRcfSQ1GceaaadJcmMNcJFUpbIfAMI20dwrglIHJGdZJPgF8x0glueTIXalgrQIcFNy8HNTANO2A2nTgkYXEhivJrVPTcSaN62U23bTmLPhT+b47B6xtl5Mg1vXqqtoBaEO5hWfqlk/Ndyw3JGTyxXpQ4CibH0U8cUnNNQIavG7o7omUDeqeeoDhBMOHcRNm6pJUSqWd1uw9GCmjZNdkEApCNdif09Wyur2REqrqCcJ5n7SOjJN5qyIm9Y5CiYjacRNmYpHTbCIQyGoPE7uB+B+0XzPDMln4e9qqcggXxw0MtYfmi/Cd6r4y9sKCRmrAvum14OQrR/TMIOptWzG47dIz7B6OcCaL38yg3rbw3iDOQ7g5ECgWrsoTZg92GhvOqH8k6DaFIlS0TiGrx43p+q+mjetjLZsiTuXA9HB2SJ9QkXGCA8gih1gOg0Z+DKKp3Q40J5LSqxvNpXOgqvfJJVSOhsf8H1DqjS0Ma0+XuKmJCENvAjRiKTALOi0kg39fTP6MS4HVJpyy/a/M+O+0mTZ0D3wQXT0S0c9KQchFMJNY0XrSMwXG+Xr/ZGpsqNwuUYQ5ocpUl9FTmMRJyBKwkxE0yLXpqLXfo/9/VCeY9qEFUBoQaGF974PVipBMOkRKQLPeDjK/fKIBEVrw4hDy7IVnDGg6MHJRj1BZj3700GPislgZB+tLZIhaNgiocndQDAe+fLqlKUGoRSPn3wFsmOaIu/Rg4HWHBCHIsj3zck/wc6N5k0rLY0PLW+jYguLVSm9IWS64quQl0SsBqPJSBPjiK6HhgJ9S3+kXzeCagAQ0laCK12YKBUkkXSlAzrN1cNpGgOSrTP71OkiQ558X7aU0eeofJqIm8KaySeheeN9mLP+92GaM97Q2fdgehAqwXR8QNXfMTuKoQdfLQnQkUj25kZTwbkr4D62N5aLfWW1oi7oACSBUV0T5pN/gbVuk6nOfsCKttEyTeoqZ34r6qZT0Vrvxb2iJEna1V7dy0YvplOLgW8E9zoKDFhRVOWpZ6oqi+F3QQQ+eLFTFpgUOk31u2Acfnunin6F6UcAUphf9BAUSpHMh5GmWBo3fS9pvfADBy80GjJew3cxQYLukETGqoC6Lmi6/PIQh0ZC1o+d+BVp4JpyTXUkU2SMI4AoSs2B/nIneHtC6qBSWD1hrmxFpA2AIQcggbQiHr5Jy8gWR+lY9EqlFN1UWYFJGaz3RdZ30yryZJEezsIolCW8lu9Nm/eTTE5W9LkpKc7XRpxQREy9x0SvODWBGD0QE8fBmmmnAZBFDBzRAgYR+OB6e7rVTSpVNjBqUmmInj5ehxpj2Mjl0CRu6xtywTRZKKCPZWfHcrEvoHk0AebjOfmZlaRliSjkgZH9t7+Vb0kCPm+kL41iOQ+LT7SXl9YiltS9QR15n3N1b1MqP2NFuHRBCXGc0Eoi8EAaRsFpGAnh++DtOyC02aryAEPggeXbo7YmnMPJpiP6L86Y0f0GReWZFotu6fX0c/6vzZ8HIDMea2dfElmXMzZ4aUpKQPpo+trX9ycYOCSRsRphC/W59eU7asV1Mhxe9PCX4z4n//Z9MM8H9wL85bjPmRnYI7EvcoK3EVTfuzkb/hQpqZf2BKGhpChaXl/MimpZPyai1QV0U+6IaB+SlMkefswUARjSptq9aOj30oaRoE1jZEWlioAh8JUux65stIT9WmzPufFsEpzJtCqlaH5jjekMIAdnHqZjdcsZLdqO+UPRbJ0pfCCptEyFWtdUMF6WQjLRMkqNKHv2S8sgvKL0YtsFoT8bnm/Diuy7sHrC3AHZz4odjRBuVvrLpXPy71QmTD/G/Oki4n9N2nTVoxb4K/sIae4qi1sEY+DFvLR26WwL72MVjTUdJig1f7OiZ8gV8/2K2q+I7MSKiAnGIx1R1h7xPzj2z9/Fkf+7JFy/Qop8oEBpPzQKpz0b8q+99locccQRaGhowNixY/H+97+/zO9TCIHFixdj4sSJyOVymDlzJp5//vnIOqVSCRdccAF222031NfX45RTTsFrr70WWWf79u0444wz0NTUhKamJpxxxhnYsWNHr67VzoiEjFWBEOGXTBMxpsLcAHDYvVcDAP4278tgvo+/zpSzJ+bLQeCR2ZeYZX+d+Xnzd4K3J9ZMO01GYFT0a9XIYw1B4fl2QzYiA5ZFQgzBgfQBo/UNIG4qJDQW5rPnZKl/XWO4TYRO/ML3JJHSWhud1nLTcuCzKjDNb23+mm+Xbvqq6T1JRbsGhOszU0kp8m3K04yheeN9iqh5ISFkIRkUhXzYW9CG0rERNy29yuobDSHVaTGze2XSbPuMRaQFTijyF4xF3pugdxDpHHg6Z5rMAwgrHq0KXdPyyIkZEXOLiHlFWZ3r6XS33A7vbJetumIaSMEl+Y4banMvgJ8vyGcytyfTzETFIufAeWTdeEHWcQ/faKQn+vn/aPOlcDI19JjaSbF27Vqcf/75ePTRR7F69WoEQYCWlhbk82HXgaVLl+Lb3/42brrpJjz++OMYP348mpub0d7ebta56KKL8Lvf/Q533303/vKXv6CjowMnnXQSmDXJWrBgAZ5++mmsWLECK1aswNNPP40zzjhjUM93KJGkKauAEKlB0Q9x/QVljOPJDy6OrGtXVtp/J0gQhwh8iI4dwDhg1chjMWf978HzbXCaxoR2D5xGiRDCikqaq5eRM8bCNjQx8Hy78l4KTTCNGD7mUm4aJAdeJJUpVESFArLlS74Nopg3EQ1JCBth9wykVsNyUciDFztBqBT40/pG0HQWQb4domNHSAI5l2SKUpPG0h0B5Hk7hpia1kecRdOutvEpAMJCoTah1KStABUh8yUhe+jghZj55K1lxQe7CkgmZ+6fAa8gVYJ+Iri0MdE+YCrCyYud0GawgNR/abE+gDBlru9nzmSfVcpNGzBRUBYqpbA4wDZpBcLCDVb0wBkz94QdEbP/jhsEd1VoFRRKcNIpEErx95OvMMsfm3khgBt7f+1qRH/4hPX0/StWrIj8f9ttt2Hs2LH4+9//jve9730QQuCGG27A5ZdfjtNOk+n+O+64A+PGjcOyZctw7rnnorW1FT/5yU9w5513Ys4cWXB01113YfLkyVizZg3mzp2LF198EStWrMCjjz6Ko446CgDwox/9CMcccwxeeukl7Lfffn06750BSWSsCoSQs2nmBwiKHpgX4MkPLi4jYgkS9AT37/NR3L/Xh8z//pbX8cABZ2D1pBMi68X1YKEvF5XkxZHmsHGrgjnrfgvevh1s+5uS6GTrTeRHRx2A0EpDMKXTMmaaNGxjVOxUvk9RAicjaMrrqdhpiBygbCdUdaWdOpTpppRJN2miRHL1crBVqSjaNAa0cUzooJ7JRtK6xlsq8GXEzfcg8m3gxU5zzWytp60zMxFuzzcdMLgXQBTyu5SgX2O52BeAJNw2wR0IrNjRKEX9XsF8PgDC6FWpEJkYcF2IUsyHkVSLiGn/OaIKRcJoa2idIV3xyyvcuR+Aqeiq1ofZUVKtK/PzRfj5orwHOA+f9eq1ONxcBsSh3fciHiD0Zzuktra2yE+pVB4prITW1lYAwOjRshPDunXrsHnzZrS0tJh1MpkMZsyYgYcffhgA8Pe//x2+70fWmThxIqZPn27WeeSRR9DU1GSIGAAcffTRaGpqMuvs6kjIWBU8fvxF5kHO/SAhYQkGBHaFbdznCECF9J/0TTLl/haa31gj05Ccy0EOSu/VMDKsnqSWzsa2vYClERsxErSuQQr1IQmQ6YNo7DekAS1TLZGENtNU+zV6IO0rVpKpp3hRAq1rMClX+xiJqp4k6awkE5msJHP6epiIGTc2BpUMmE1k29IN6eWCcfzf0ecj6OjYJZs9N++RAepG1qQx7Dfo+0n9lm20wqpa/bmaqttCWA0ZMR4GQn2k5byvEamk1RFRVVzFvHK9oO2uHxQ9cCt9zfwAzAuiJt/VfMUKtZGW4Y7JkycbbVZTUxOuvfbabt8jhMAXvvAFHHvsscZMffPmzQCAcePGRdYdN26ceW3z5s1Ip9MYNWpUl+uMHTu2bJ9jx4416+zqSNKUVXDon74Bnk136bCfIEFfUbXCVkWSAER8mIR2O1fCZk2YNHSvQNO7j3MZjXJlKxiit63TiYEPcKXhohTQBQWpNKAr2iAjadRNGd0aICNtduUccdMQarko5GUrpYZR0sgz3w4o4027wwCx7BCMb1Rnm4nU0YZRUlfmFWXFphWlI6kUeCEvq5U5N15R8cHUOKk7DhgPdUPUcXDcwzeCMw5e7NylKisBYPVrJczPAaAuCGXAIBRzC8YA1X5IcAaayRqNWFity0w/VmNQq0gYSaXDdLSl6zN6M3W/6GiWsQ+itGw5R2D85Vjs3qBwDXmLFGcpL7pnPh6K9I9evRRuNoPAq1wAMFiwCxP6sg0A2LBhAxobG83yTKb7Dg2f/exn8eyzz+Ivf/lL+XZJNP0phChbFkd8nUrr17KdXQVJZKwKbPG+/cVMkKA/YbfXUgtM9ED/L3VUqjej70une516irvNW6lL2YOvUNEktex/lao0FY163+a4aCxlxKPHaVVrCluo7aakUSfKzTbDlkw8JJh6WbxjQDyyoyvwOFeO/NGKONu807aViQ9mhIapG92wfFeDILT8Phlo2LYqTvnnJyOtqpODJuQ6+ooYAbMqdXngm/soKJTAPF/+LnrSRyzmF8a9wFS/x9OU8WhqnJiZU/FktI37QaS6crDR50pK9QMAjY2NkZ/uyNgFF1yAP/zhD3jwwQexxx57mOXjx48HgLLo1ZYtW0y0bPz48fA8D9u3b+9ynTfeeKNsv2+++WZZ1G1XRULGqoAHgbGkSJBgoEDTLo57OBT/6pSSSdNpE0zAVJzp9XTLGACYs/73ssl3zkoLdbaBd+yQZq2dbREtj2nGnM5GolsmhVnIGzG9bj8k3c85ePsOsO1bpChbkSZt5CmKnbI6VKUrdcVo/PjlyTvGykPbbIiYPo3rqk8d8dPb0BWeLEw/VXJY54xFzDuNhqhCmqtMG7cLYHlhAgDgPn/agO5H91qNeNRxLtO/+j5LpcO+pGqCoTs5hM27mdEp6j6svLMdvHUbWPsOBPmiaUGkq2al/qsAPy+jbXblLIuZvPqdRVkV7wXwO4sIiqGtil5XcI53/epKHPyzL+PQu6+A196Jwps74OeLOPJ/l2D67ZfikJ8PgW6sP/RiPWynJITAZz/7Wfz2t7/FAw88gGnTovfRtGnTMH78eKxevdos8zwPa9euxXve8x4AwGGHHYZUKhVZZ9OmTXjuuefMOscccwxaW1vx2GOPmXX+9re/obW11ayzqyNJU3aBpz92zVAfQoK3E3SPP936xXFCN3w7UgbAOPhTB3M2/MkI4yPRBE3KPNlImdhROIt8AYj4P4lSEZxzOCp1qEXzhMrjMQ75pSKEHWlSREtYUS7oyJWbgvBCg1kdAZTtZsIBW0f2hHbe18eVzqr/uTSAtSMgnEVSlGbw9fxo25tYStiIvNOusv2QgvHmTSsHzJNrKLC8OGlAtz/rhTsh7AmDTkN7qlF3Ogta3wDhpiL3nLm3A3mPBZ1FOIFvyBRNu5FIlqmU9H04qiCB+QFS6Wyk44ngHJxxUKsyUjCpFSMOhaOjporAm1ZIlIJzDqIjZZwD6rWg6MFJuXDSLp47e+mAXs/hhPPPPx/Lli3D73//ezQ0NJgIWFNTE3K5HAghuOiii7BkyRLss88+2GeffbBkyRLU1dVhwYIFZt1zzjkHF198McaMGYPRo0fjkksuwUEHHWSqK/fff3/MmzcPixYtwq23yqbsn/70p3HSSSe9LSopgYSMVcU/Pvj/UDfUB5HgbYGwLF/aRgigzNrCJmMmWuUoMX2uXkYS2rdD6JSg0u4YPycgTBXZejG9bUWYZGQsrGwj2ToZ7VICd2PICYDWNwDUCZsw66bjmtRxLjVu1vbNPgMPyNbLys3AA5AK/afcFAR1pEbMl5o2U9UJADQLAoBr1/ZYY2cgJGK6BZK5xlZzdsE4OGWAB/BUAMeVzdnX7EJEbKAx67k7AM5w/wFnoHnjfeC5ellNq8kzYLSLgHXPxaA1f5oYMc8H8lY1LKUmqhnPWLCiZ9LSzBLnB17UzkJ2tQh7lmryxfwAhIfEjSEAVfYonHNQAG42DZpy8biytDjs3qsR5IsgDkWxj827a4WdUu/LNnqCW265BQAwc+bMyPLbbrsNZ599NgDg0ksvRaFQwHnnnYft27fjqKOOwqpVq9DQEOpZv/Od78B1XXzkIx9BoVDA7Nmzcfvtt8OxJog///nPceGFF5qqy1NOOQU33XRTL86ye9x55534wQ9+gHXr1uGRRx7BlClTcMMNN2DatGk49dRTB2Sf3SEhYwkSDBOs2u14tOz4ixSm56N9JaVWywlNSt2UFPBn61VzZM+0otEpQnAOAWVtoPZh/Lx0OkgVAgCxCBp1wAMPFCpV2NkmiZEeWCmVlhR2pWUcXKafiMPDfpqBZ3yjJEGD3Jaqoox0HVBWHgAk2Qx8UB1dUWlTR/Wr1GJs48fmOIDjVGxXowlZ3Hk96OgAKXTi+Kd/hAcPXdSXj3KXQfOmleBt20zhhlCFGtyTqUKRcsMm353tIMpIWBdmCK8o9Y4K0QIMeb/KNHVYpaitR5gllqcOBWccrmrYzSxLC+bJz12nH82+LNKtt8U9X0bxfMBJufJ/zo03nUybSj9J3ZIMNEzzHfHHayTxy6bhqMKR4iBJWfpTwF8rhBDdrkMIweLFi7F48eKq62SzWdx444248cbqfmyjR4/GXXfd1aPj6w1uueUWXHnllbjooovw9a9/3RjPjhw5EjfccMOQkbFEM5YgwRBC+14ZqNSegd3IW7cyghrI0jljrgnqyEgVYLUiYqElgLa0sCwEdA9MBJ7UbNmVkqWibLrcuk1G3OKu+Mo+Q3jFSMrQnIP6LbxiqCfLt8l9UEf6n+miAMtyQ6dZtY7NdBvIZEE1CQVM83CSyYZVdSxWIKBAU25ZGsu2EdF9DFnRQ5AvRirmjl69NNL+5u2EOet+GxHiA8CDhy5C0NFhtFpBZxEPHLwQgPTQWzPlVKyeMFc65QOmclIXndBsnfzMI9ffQZAvmrRxnIjJzYTpSqrShdwP5PuKnvQHi/0AYXoyEjUtluSPH4RtyKr0eeW+b/zHHN1w3qRLAwQFD157Z8X3JhieuPHGG/GjH/0Il19+eSQyd/jhh+Mf//jHkB1XEhlLkGCIcMz93wQD8MjsSzDj8VvkQ37SXjL96FppO8BUJQqrFYwgFLyYN+kgUWKqebeKSmjXerV+mY8ToCwItOBavy9W2WjD2jZr3WYc8vUxGF2aTolaBQdmHauCzkAfn96HTm3qqBlUyjLwo50EUukwfaMOVUe8NMmljgMORAxC7cGXeb5cx2oiPWfdb0HqGrG6+VIcc/83K318wwLvfeg7oGkXf37PBf263Tkb/lRm8zHruTtw7J+/C0+1EnJSqarWLJJQQ0ZYi53mMzdN6S3fMMEYijukvoynpOGq4Byp+ixoykVQ1PeWjIJpPZgmWcShofheRbOIQ0EB+PmCIXDmu6TT17rVmEXUjBmxNUhz3wd8SeozIxvgteclEcsX8czHl6Czox345sBHdGR0rm8FJsQZBH+TYY5169bhXe8q70aRyWQibZ4GGwkZS5BgiKAf/Mfc/00443YPX7AsI4zuxk2pSkkq/cIoBfyCiYDpdjO2Q7lBXDCt0oywKh2JbT1gV0BCuurbxE7wsDpRcA5qPUWETmFSZgTx8vjTMgxv+UfJc3XkwK3Jn7bZ0EUIah1N7njgy9Rp4Jv9ErVtuzehHmA1yYr7Q9nr2REXne7khTwoZJUq9n1ntY9wSHHsn78LqHM49s/fxV+O+1y/bHd+bhOWTz4psmzWsz8FD3xp8WAZ6VbzYFwz5VRZYcnDlkQipvGThq6S1GvzY55yZdSNczjZNICgTNAPAIEXgHs+aDpV9Rh8FTXTHRl4hZ6nZTYvln5T/wjG4OeL8No6kRnZMGQt72wH/b5s4+2OadOm4emnn8aUKVMiy5cvX44DDjhgiI4qIWMJEgwJ3vvQd8AQmkySlErXBZ4kQhbhAWdGd0Nz9cZzibXvMNWNopBXvmNhL0aqiZCOhkU8vmRz5Ygnl05l8rBdUdwbjNDozLysqbiCscbQthlayK+PR/uQqdfCik2qKiqLYWrU9UNtGaXmuPXTi6SUt5ntGRWptgz7DtpELT6I2+lOf8cOOMVOPPTuc2v5OAcd7/7NYogxTZEB+t2/6Z92bdoOQ+PI/12CYEyTIbT2/VCtNdD7Hr0ZvLERpveo3UsUMClsQN5DTjaN0o4OOJa+ixU9CKXLAmDE/VylDeUy3xAmDS3O95TVhT7moOCBapuHWGGHWc+6h2gqZaovBefK4iLqlZVg58MXv/hFnH/++SgWixBC4LHHHsMvfvELXHvttfjxj388ZMeVkLEECYYAxoTUoXhk9iXGbNQ44iOMnAEwmi6SawhTdIEfCuMtmAFGfbvj0bI4obKd8DURi6RuWKirsglLOKiFxFGKjJ2we4A6J9HZFlZZaud+AIAapAPlM5VKyb9tWwvVHUAXCsQH9fh5B0WrZY2V1omfk7keVrNoBkn0iC/NRPsz4tRfOOKP1yBgHEGxBOJQpOplH9BUfXZA9vfYiV/Bex/6TiTCqFPDOoWrNVrMD/D391+J/zv6fBz/9I/kZCPwpKjfNnUtFRF0dMCty4Hm6pEZOcJURerPT1dXAmFvUfjhZ8es9KVNtgFlS6Fes0X9Grp6U68T6W3JpL0FY/L6IpsBTaXAfR+dW3Zg+u2XIjem0VRWDhYolSSzr9t4u+OTn/wkgiDApZdeis7OTixYsACTJk3Cd7/7XXzsYx8bsuNKyNhOislfPRtOiuLVK37ao/eNOOP9AADqELTd/rsBOLIE3eHo1UvBVNsWTbZYvh2OMlWN+H9Zxq4AIEqdYK3bQNNZ8EI+7KlopYLKIhCcmWgZYKcdrRYyJhog00R2vz+brJRXJsptRSNsstm4iYYEniRaJlLHIXxPRvm80OjT6OEQtr2RryFSZUnTYQQPimhqkqCrJwXjoGkXzPeNcJ8zDsq7rkgz0RedGuujRqe/8a5fXQlNLf4278t4928WA5D6rYFMQWniBygxvRcYQbsW0DsqjXjk/y4BTbvgIxvC1LGOACtSJgIpsicOhb7Cbn02cn8FxZJMg6dScB3Zmo7bNiU2ifYDuE4aNJUCVZWVpv1RleiXXu5Y0VJ7HXtdAHCyGXDfhyhyFDD4SNKUfUcQBPj5z3+Ok08+GYsWLcLWrVvBOa/YF3OwkZCxYYy9li7Cfy79kfl/jyvOhGACzGPAiHSPidiY8z+CEtSDZpgNMm8n6Fm8ny8aPUuQL8Kpj5XIq0bJodaGQbTvAAIfrFQMLSwQCuftyFXQWZCDXSaDIN8Bt16aY3LtIabSfvoBHeSLcOuzhpA4jtJpWYaqACLEzo6kCSfUaRHL4FOoPoUkgEmFao8wovpfikA6oWsLDn2M9qCor5UNXdVnone6l6YTEs2y629F8YQVQYkLuYFyo9ihxlMfuTryfzwteeBPLsHz5/R/wYHX1mn2fcjPv4JnPr4Eh/z8K0Zn56RdONmwmEIK5KMRLM4Y0o0BnFydIWKCcfgdeQSd0irDa+8s84cTNIwiUwBBmZmvNvkNI122PowqgT8AMGvbAMxxRvzH1DapRVwE4/Da8nDSrpxIsTz2/8Hn8OJnvtvv17oaEjLWd7iui//5n//Biy++CADYbbfdhviIQiRkbJhi0mVnIMi5mHrNQggusP7K28A8DuYzCCZACj1vWKsfLsxLGp8PNQTjZpA69s/fDYmEcjDXGrGIMasiNdp0ldiasFIRrFRCkC/CzxfA/EDqYyhFdkwTgmIJjjKuDDqLRqcDRFM5Jg0Ve/DbbYeY58NJp+RATKukAbUAX1e3qUpQncIk2vbC0gPJbXRG+kqaiJeKJNr70Q3CTdVk/Fgtqws9YNtREntYqmSLwRkvE/4PV7zz5gvkPUQppt9+Kfy2PFKN9XCz6X7pJPLUR67G/j+Q6doglcI7b74AQTYDP19EurEOVA0lkXSfIu2cMUO+aMqFCDzTuqiwrRWCcaPFiqcOiUONSD/S7sr6jI07P+eqIXgpQsLt3pQ2BLNkALHX9LNSH0NQ9MA9BlaU9xp3SDJ47qQ46qij8NRTT5UJ+Icayf3UT5h02RngTGDT0v4pcWaenA3a29S/d7/wYz3az+4Xfsxsk3s6kkG6eVeCgcDRq5dKc0o1uHjtnagbO8oMUkSTLm1X4XvKa6sRoBSikJfmmtl62QNSRZS4F8iS+6Iny//9AL5u85J24WYzshrNGsh0REn/bYNQWQDASqUISbFJi5PJgGSyKlUYEhcn5wOlohHaE4dKf6l01tq+E9GxRSIdCEx0xUZQKIE6Dpjvm4iGjlwJzhH4gWoWzaODNytPbTlWlM0mbNQa1PV7hzv2WroIpFH2C3nh09/B9NsvVQTbR8nWz/USzZtWgm3bjAesKNABP/y8FLbHdHhuVjac5srt3i4CSdXnAMhImZNOobCtFdtf/C9o2kGprQQnReGkQ3KvSXn8s4s0/7YIOnFkI2wzsWA8cr/bx1kJlaJGzAtMWyXOOIKi+k45g//8JKQfTF/J2zsyBgDnnXceLr74Yrz22ms47LDDUF9fH3n94IMPHpLjSshYP2HjtXdi/MULMPWahT1OH8Yx/uIF4FyAMAHBOMZfvACbv7UMu1/4MTlb78U2mccQFAMwn6H02/v6dHwJeoejVlwnPz/GEeSL8NrzCAoe/jrz83jfozfLlaw0np71u3VFqbVhLHTOB8AKnZJ8eAE4Y/DaOo0ImqbccFDyArjZTEQLJtM/PGxDo0gNL8jf6WzakKm4MW1o2MnA8+2yebM16NOODvU6N6SJur7UjClNHI8VHdiDDPcDEBZG5vS5sKIHrgZGmnbBKpi9csbLUpOVBt9IhEzvR7m8U4vE6aq94Qz5eadMevK5s5finTdfUNE8taeY/Z97QJrG4IHpZ5ll7/rVlWCKdLGiB6+tE8ShcLNpFUUKBfh6HT35KLy5HdwL4GTTKG5rg5f3kHEySNcrM18mHd/tz8eeKISEjIFUIET2+Zo0qcesSFf4nrhoP05T9DH4+ZIidgJO2gHzGBgDnNTgSj2SNGX/4KMf/SgA4MILLzTLCCEQQoAQYhz5BxsJGesldr/wY3jze3eb/8ec/xEg64L5fZtJT7j0ExAAKCWgDgGHHHx2v/Bj8iGgImZNC0+Dk3bw1g9+3eX2xpz/EXCoqBgTCREbIhxz/zfBEaZYgqIHP180JOT/jj4fs55VJJ46AHwTGeB+ALJ9i7QISGdltWHgR9r/FLe1wWvvBPd9ZEY2SB1PNg3uB1YrmMAYm3LGpChbtwaiFG4uY/RhxE2Daad1Fq2W1BEOv70Tfr4QIUOEUnjteSPod9KqoXOpBEcRzaCzEE2HKjsO/b9gHEEhJHcppUNifgDKraIDJcqPW1VouxD9tx0ls/cRH5gIpUCMuOn2O8MZtMIAqyM5L198a6+22fzGGlkMEnhYtdvxAKRWTDAOPx5tUtpH/Znr6Kw5Dj+Aqyo9i9ukM38a0vfLzbphBIxzANwQMv2ss6Nleh+pejcS+ZLvkb+JQ8w27OvDGY84rsehiXiEkOt7jAtzPAmh2bmxbt26oT6EikjIWC8w/uIFIFkXYz9/OrZ85xcAgG03/wrjL14Av8PDhEs/0et0pR2Sp2kHhHFIdUsQmeExPyRmXWHbzb/CqEUfAvPlQ6tp4Wlo/elve3VsCfoOnULUAmM7Pafbyrzv0ZuRGrMbwBn89jeNeNjNZeDWZY1ovbCtFfXjxwAA/M6wLRH3gkikyW6qLDg3pNAW5tuGmm591uh6bAsAmnalOF/fg3nfqmJUOi5ESZE+P+b5cNW6vuX/RCiFk06Zxt56GVcpx/g1MhGTWLVbpKiAcXAERsdkzr1ChCyii4ulY6kSpQ93MD/AS5Zof/JXzwbG1OPfn78lst7e3wo907oiabOe/SmYIs60Sd5fh959BQLL5d7+rJByUdrRLvtDFuV942YzkSiVjpjpSKN9Xf18CU7aiUTFqEPhF1XaO62d+oV8LVU+bBGHqHs5fCbGqyj1NuIRtfh6+hmrxfp6/07KgV+0UvuDnMJOImP9g+GmFdNIyFgNmHDpJyAYN6lCR4XUg2K0iermby3DmPM/glTWxR5XnAniUGy46vYe7y+qdRHgTIbH09brpbYSgmKA+gWnIL/sD11uj/kMQSEAdQj8fLkLdYKBxVErrgNjsvye+wGK21pR3J6XaY8KqQ6hNGO82GnSgzLqFZjIQ2FbK4rbWgGoajEV5QKkxxK1jE41mdPQy5gfGN8mYkWQHJUSDDplxSPzgshD3GHpiGDa9nhisRShTjdyLyRXdkRPbwcISSO1tEiccdk0HdGqTr+zCCflyupPP4zC6PMiPDR4jdsU2FWZREVCzLVnskm0hpvLdPv5DjUE43jHtZ/CK5dJw8oNV92OvZZGG53vtXQRum/5DBz38I0IKJXkyqGoow7e/ZvFqnE2j5AdfT19qxtDaUe7IceaNLnZTIR8sWIJQd5Fqi4HP1eEn/fMxFJHoNysC+qQcLkiYoILsKIPBpgImCZvxAmXMV9FsSgx2yWUmOiYJGXRyloNJ5s21ck05eKFT3+n4rXa44oza7ii/QeqNHF93cbbHT/72c+6fP3MMwf3c9VIyFg3mHL1JxE4BIwBYz9/OhDRHJCydKVgApwLCCZQ1kC5BhidjEMQFAKzLeIQUPVgcdLUzCSZx5D90Eko3vOnqtvkOuyvHlCNZ38g8RgbQBz4k0sgGMMLn/4ODrv3anBFUrSGp7g9j+L2Ipy0g/VX3mbed8APP4/6CWPAG+rhbXsLfr4QsQnQKbegWDLkrHPzNqTqZNpQp2y458PXgmambCtUNRsAQ8C0PxQApBvqwB3Z35ErPRBNuSZCJYocqJdNuT3AaNCY1YTZnkQYTzOHgnKKoOBFZ/aWWF73/dMpUzvaZm9bC8HtdjzcC6rqurgXGF8qotKb1LIyiJM1fQ0BIFWfhVuX7feejwOBShFy2xJn0mVnoOQQvHZN14MQABS3tRpCnRvTBG/7DlPsIPs/MuNmz4o+OONI1WckUUiHFZXtr+1Awx4jQRVh1pW9WvTfuUVWTxpdl8/hpKh5VumJCmcCXt6Xkg0mJEHzpeTCSUU1X7zA4aQdpcsURmQveLhNQsMUZiQLEamedJCqzyJVn+3S2LWW65lg+OFzn4uaOPu+j87OTqTTadTV1Q0ZGUtocg3QIXBKQ0JUDZog6Z8x53+k5v3oqkdAabwUEdPb5VyA+RxBzNaCOgR1Hz252+1zkwYQPTquBD2DHrAOvVs+yHX0iPmynx7zOTgX2HjtnWXvZV4AP19QP1LETx3HaIA0OQqUVisohCJt235CMAZHeUDp17S5q45SBUUPQb4AViyZKkTmBbL/oJpI6GPX25CDsCdTTmrfnEfTNZpQheL/IOJ/Zi+3o1J2BWVcC6ZJn2DS+JNSGqkO5Z5vfptraafVKqasrOsVa/vkZNNI1ecwZ93wT+kLLgzh0Jh02RkApKSiJ9D3mPmMiyWkG2S1mT0hMFWrXMgIqR+NkHp5H76KaDppt8wmpLijAK+9aEW+oveBPhazX+vZxVVhk33O+hrYWjG9PP5/LenFvlYtDgQIJaE3YK9/kir67du3R346Ojrw0ksv4dhjj8UvfvGLITuu4XfH1Yhrr70WhBBcdNFFZpkQAosXL8bEiRORy+Uwc+ZMPP/8833el5t1kR6Rgptz1cxLDqT6iz/6Mx82627/0T0otXkotXlKXyAir9cC5jMwn0dmvNyIVAG/GCiCSOCkpSM5TVcXpnbceS+oCekLaW/BRIT8Jegf6Co2QziUvsvvLMJvyxuCpT/Lvb91Lt55s4y+uNmMXFc1JS7t6EBpRweCYklqcdo6kd+0DflN21DcLtOOkvhIAsJUlMjPF8uE636nbJrstXfCa+9EaUc7SjvawfwATNlilHZ0qNc6EHTKY/DaO81AG+SL8DuLKG3vQGm7EvdrEmSbzapj0NE7uV4QHcj1jxcYHZ2dmtTXzZDPYrT3pG1zoMkvU47tgjFQJfrnvm+WadgkrFIDcQBIN9TDrcuFHQ6GMZjHIhFWQFZ3j/386WA+x8Zr76w5iqM/P+YH8h7cLitjdXGIJtHMYxBcICiEpLuwrQPtr21H2/q3wBlH/g15T/n5Iko7OlDYskN9/j5KbSV4Hb55zkkPRQ7qEBMh8/M+uEXWuLLm0c+voBDIyWkxMJNfL+8ZfawmbvaPhn6e2jq1yATA6o4xXGB7r/XlJ0E59tlnH1x33XVlUbPBxE6Zpnz88cfxwx/+sMwPZOnSpfj2t7+N22+/Hfvuuy+uueYaNDc346WXXkJDQ0Ov9qWjUDRdbm5JLE2DnfrruPNe1H30ZKTqU6Y6pxa8+b27MeHSTwAIHxZv3nx3ZB3bM4w4RM50YiH7Suj85R+ROnW+2rYwx5+gf+Hn5Ww/t5u837TOiSnxskw508i1pykXB//syzFdjeVQng/NUb03tyMoeua+0q/LfWlvujDylKrPGmsB7UQedyDXx6l/6+bL3PfBvUBGoFRvPgAIGIejihAEsywBVBsavTwOBy44LLd8nUqFi6AQ7TNorpsiS3aLGyCqD4tH3YhDwWLNo2V60wfSKZOqtBE3uPXzBbh1OYDX9t0dSlQiWuMvXgDGRERC0R0O/tmXQRrrwFQ0LDumEdwPkN+8zURiJVH2jd8W8xhKbSVkR8lUef6NTrg5V+m2OIrbi3Cz20HTLgJ1rwbFqP2EfsZKvR6UBCOaaowbVeu0JVdaWP1Mow4BccJta4lHJRKin8uEkXDi4oRp/Z2heCNB/8FxHLz++utDtv+djox1dHTg4x//OH70ox/hmmtCZ2khBG644QZcfvnlOO200wAAd9xxB8aNG4dly5bh3HPPrbbJiqj/9Omod1x0Zl0ZEfNYOFBwgbGfPx2UEgTW7MomZJ2//CMaz/4AOHhZqLwr6CrMMed/pCzkDsA8XDUpkwMsr6lC0kk5RjemkVRX9j+oIzVSurkwTcmCD5pyIRwOkZfEY8Kln8DLS+/C/j/4nNFEaaKkvZocpdtixZIkZR4Le+qp/XGPRaprBRMotXmgDgFNFwxJy47KhtsETC9BMyjpPpmKvOkKReJQcPjGbJOqiJMmUCG5YpEIl3zNapek3fgd1XKGSyInnFjzcYfKSJtld6FJnuMofyuL9MWLBsCihq/hsXBjfmt7kdnaMeJQuPXZULg/zKIjtWLzt5bVvO4BP/y8vPca6iX5TqVMdwMd2dI6MM8qAHKzLvxiAC/vQzCBTGMGxCHKU0xOVFmKIr+lHSMmNMHPF1HcXoRfDEApUde8fELIIxErAai0pK2nrQW2xAPandFxzPPYiPtjFZbc90HY8Pvck2rK/sEf/hAteBNCYNOmTbjpppvw3ve+d4iOqkYypslNT/CDH/xgQJpvnn/++TjxxBMxZ86cCBlbt24dNm/ejJaWFrMsk8lgxowZePjhh3tMxgQTgKNSJioErsWhgLSMACSZsWETMv1bN+eOo/HsDwCQD7W3fvBrWamZotj8rWVm+9XQkxmvBnUIBCdShJ33u/UoSxCiFl+3g3/2ZZSyaZWmK4VkRzvhOxSMy0gA85ixRQEkuaBM6qCComdE0n5eutv7eQ+l1pIps3dzWi8lTLWsHijDgcUBV1EH5jOk1D1MHGqaI5u+fhbxknqc0LuJqabQzA+MsSdg9ahUBQpxIT2hFNRySNe9KwGo6jwmI1X6/FXESvuUmSIARsOWN+p9Or1o/Kys6lG9P0BGKmnKVdV2kuQ5dtWpLo5QfwOSTHtt8hjSo0bWcHfsvNj7W+dCqH6kQdFDypEie7+ziOJbrYa0ltoKKGxXPVKZQKYxbYqMACmd0M9I/ZukCTq3Fcy9mcq6KLaVpFieEhMh1vd0vKBCR7z05+qkqSFOQkXNdETMSYet3ohFwO3omv5fQ9MSDg41PQCnHDDR7OFl+Js48PcP3v/+90f+J4Rg9913x6xZs/Ctb31raA4KNZKxe++9Fx/5yEeQy+Vq2uiyZcvQ0dHR72Ts7rvvxpNPPonHH3+87LXNmzcDAMaNGxdZPm7cOKxfv77qNkulEkql0GCyra3N/C0Yh44jmdlUbFaml9tf8hFnvB8dd96L+gWnyIdGzi2LQI044/2RykygdwSrJ/DyvlUO3vc2KW8XjFr0ITAuuiRi+33vfATZNJgfmDSMrKD0I2aSAIyWUEMLzxnnoH6YDgSkB5PUxGg9VTi4lNpKMirmRTWGknCp9I4fRsv8vG9MiaXdhDaxJAiKAbjHQFWKyFgGgIJmw7RenOzobQBAUPDN/s15aRLEwkEy7uel06y6AbTdn1CTWUBVhFLPbMOkWGO6r1R9FjSVUpE4arzVKKStghPzqTJ+WGp7Xlsn0o11UryOXRt+3jOfN3EognzBpNO1p5ZgAp1bC2A+A6EEzOdIjUjB2140Oq/i9iKclAM355r730k7IJTAzbnIv5GHq7IMxJHbcAAIRsy9KqOcUQNfG5FiJvU9iEfJbG2s2U7M6NVEYC3bC03IhMMBdc/q+3K4gDgOaBemtbVu4+2OeMHRcEHNacrvfe97NZOre+65p9cHVA0bNmzA5z73OaxatQrZbLbqeoTEyJJqcVAN1157La666qqy5YIJCAg4aaIqcERksNPgsUFVv9cGZ6KsUkI/RJyUg0zj4HsZcY+hOHMWsg89MOj73pkw+jMfhqMGEECSaCdF0bmtAP/3ywHIdGOpMQ20FYyomTgEfr5kfN24imBRKzWiIbUyMppG07KsHoDR5ujogxHjF4PINmXPUSvqZLWKYUrs7KQdE5UwnnNFrcfSlimOIWPEoUpIHUbPzLEqwb3UDPkgFVJNmswRJ4CjHjO6z5/tcK63abzIGI9EFG2Xddv0WJ2pqegDZITZUa2BnJQLpFzTZNr2WZOWISoak3JBuOzjyFX61MmmZfcCLwDJRfvW7WrwOnxDbHa8ss082/QyN+ei4428bOFVCEDTDjKNaXRulca9Tooi05RBx+sdcFIOvA5JloNigHR9CpmmDDq3FqQOjIuIGz5Xkg/ttWcTfq4+01RW3zuyBZFMWesJgPICUwSskgbWSZcTMf0eIFptKScMBAzqe6HkBd0hd/ZHa1ovwfDA1VdfjUsuuQR1dXWR5YVCAddffz2uvPLKITmummKWDz74IEaPHl3zRpcvX45Jkyb1+qAq4e9//zu2bNmCww47DK7rwnVdrF27Ft/73vfguq6JiOkImcaWLVvKomU2LrvsMrS2tpqfDRs2AIjaQITi0Kjp3ogz3l9Vv1D30ZORX/YHqaFQ0Yv6BaeUrafD/YNZ2Sj1HDwemEsQg7b/0ORq9Gc+jExjWhrw1ocPahnd8VFq8ywxskDntgKKbSV4eUmq/A65Do+JkbmqYPOLAUptJXRuaUNhazu8vNyeXwxMhRgAVTUmK9KCQgDu2elGpmwFfPgdPrgXRrm07YqX91BU79Xb0pE1205CgxV9sKLUZwVFLxRwa42ZmqTo74feX3w7kdZMVvWabRwrt6dsNnwVWVTfH21LIHVKnjE+1q2+bD0M55pQuubY9PHY1ZWmQEAJ+4nyyzLHw8s9vHZ2jP7MhzH6Mx+WLdZ8WZ3YtqEdpTYPhe2h3QTzGHa82qrIO0WmMYNMo4wVxu11NBGiDoWbDf3G/A4/MvGMFK6oAgDmM6PF1dFQbSMUr4K0Na9x/autMzM2KMYKI/wx6+uJUwW7B+JQ0+uzO9D04KT+kmrK/sFVV12FDtU/10ZnZ2fFwMxgoaZPZsaMGXDd2rX+xx57LDKZ/o32zJ49G//4xz/w9NNPm5/DDz8cH//4x/H000/jHe94B8aPH4/Vq1eb93ieh7Vr1+I973lP1e1mMhk0NjZGfoBoKgVQEQE/FE83LTxNlWE7SGVdU82oZ2idv/yjIV/6YWA75bfd/jvpG6MeSAOdogTCKAn3GPIBQ6FCgUAChdlzzJ9hGkXrUxzUjwsjJpu/tcwMKjqC6hcDlFpDwqPJh7QtYZGBxGsvSsJWCOB3eOjcWkBxe9EMjn7eN1EEnTbSOpxSW8lsS5td6kFIkzutKbPPg3vcRNQ0SeMmFS8JVVAMiZOX90wqUy6TTuhA6Jquvx9x7zBdDKDvPWMkqyJeVA3AWisX2l4wQ7w06dLHwDyurjUPt2sKGBi45yu7jnYw3biaRRuL6/Xi0MQt3VgPUchjbtsjvbuHhjHe+sGvzfOgqO4RHWXVxR/Ml1HHUpuHji15NbHkKKiUJVcEuXNrQVlThClxAChuL5rUZiXYBSfEoUgp130bQTGQ++K2mXZIqvR3DkAF4hZOYGx7C3lPhpmOiF8ZC78DtSL/w8HxpkrIWP+gWrbsmWee6VHQqb/Rq2pKzjlefvllbNmypSz/+r73va9fDiyOhoYGTJ8+PbKsvr4eY8aMMcsvuugiLFmyBPvssw/22WcfLFmyBHV1dViwoGfGh5VgdAqAigrID5MzjvSIdGSmGA+Ny/UEMqedgNJv7zOaMupQBMUATopi0mVnVDQB7U/oQbzIOApMgAmBxgHd406M+9egoOxJdLcDL+9BtAnUj6svSy1rLRYDM+k0O4rKPV5RXzj+4gXwHBoTGXNDnOw0p5OiZoBx1QQgMBExVWGZohC6ewML28Kk6lORCBqgBqHYrco8DuoIleqkSNdTQ+bMQKUq4by8Z3z3RKyJsp6cyEpPLyqk9nWUJLQX0GTNvgZCkU95TPr7Jsr0a7YzewqIOMQD0pbGSbkm/WmqP63iAnuw4ozDrZMNrHngQ3jDSzvUV2jtoybhtsaKAijlS2h7rQ314+pVBXYRfoeP9k0ymkAdglTWlUTLasqt2w3ZfxNKZPFEmsC2AtKESvslam1X3OxaFwPEoaNvepIMOEbQb090OBegqKx31PvXz3VzzIyAewEOvfsKPP2xa9AdMmckBto7A0aNGgVCCAgh2HfffSOEjDGGjo4OfOYznxmy4+sxGXv00UexYMECrF+/HkJEIyuEELBetADqL1x66aUoFAo477zzsH37dhx11FFYtWpVrzzGdEjdDCBpx/RKIw6FQ6XHly3styNf9QtOMZVFgJzB6W113HkvMqedAKZKwZ1U1HdqoKB7yDEhVIoyyVN2hc5f/tEQ6NGf+TDcrAvmc5TaSnCz0aKMN793N8Z+/nSjf9G/NYmxZ/CAvAcAmHukmJepICclIwRSS2OTORmJkDYCHKn6tKkuswc4DRnl4Gaw0SLlONxcXMzOIBiR+3ekPk1G1cJoQsR2AIgM5gBXGh5JcOziAycdVmsSSgAPAOSArlve6O2GKVmVylSPFR2909YIBo6DoBAgyHqgKhLnFwOjOZLHGR2UAZgWPfY61KHG2oJ7AXj7dsxuvQf37/Whsuu3s2LEGe8Hsq65NzU6txbMhI1taEf9uDo4KQe0iUTuXw3mcThpinTONe2GbNBYxaRtXh2xk+AC3Cpssdez/9bFKXYlpWACgkoJvk5xypSnEvMDZZ1T4rYXxEpnayuVam22hgraRb+v23i74oYbboAQAgsXLsRVV12FpqYm81o6ncbUqVNxzDHHDNnx9ZiMfeYzn8Hhhx+O//3f/8WECRO6FMcPNB566KHI/4QQLF68GIsXL+7ztvWDwlUPLEdJhPTDhjoU2390D5oWnmYE09pp/60f/NpEDOS6BKW2AE7aMYO77rumETc1HAikHnwAxZmzAABpSuD1wP/s7Qr9uehoQv2CU+AVOJxUEW7OjViZOCkHuVFZqbtR0SS/GJpS6jRa5y//GN2Hz01qSBsFA0CpI4yKAVbvSSbg5z0ERVnuT1gYWdP70CTGUS2D9OzfvifltrmJ/JnBD+EA53d44FwYjZxdySajVuG29GTF96Uo20nHCKKKugEwpqHUIWGvTBZd345y6AHWREys9YhDADVJKm4vyo4USqvJU9SIsgXjoCkXjk3GlO+Z/FulJxvqIRhHKd8OJ5UCb98BsYtpx6jyAzN9G1noZE8cgpzjwPNlytLNunIioisdY4bBzJORWrsHJFCuEeOMg6sJgm0TFBQCYxRbCWURU0+AKomHJuecC6Pvq1QkoycXNox21iFlRJJ7DEG+gMlfPRudWzsrWg2NOOP9EIyjY5DEt4nPWN9w1llnAQCmTZuG97znPUjVWKAxWOgxGfv3v/+Ne+65B3vvvfdAHM+wQbouhbTrduvF1frT32L0Zz4svYkK0hl91KIPwbMiCHGhaea0E4CUU6aPmPzVs1HcXsSb37sbxZmz4BBJoDT4rNl4sxRg3F/X9vq87OrJXbtOrH8Q/GkFACD7oZOQHpECg/w8S20l1I+rjzRc37T0Lky9ZiFKbSWjlwGAVH3aGLOWfntfZPtcpUp0CrLUJmfjTkpGlbjSboWWJGFUihrDBpRtM/53vMQ/JFTRljAAAOt2JdY6dnsu39dpLQ6SdgFLa8OKHiglYF4YjdKNoLXDOqCifdZ+NIE0x6i0aNShYFYRQlwErtcFZ2A+QBUx0/u1B1p7QBOMA3qS5dCwUTljYPmCIb9uade0gfHzPjq3FsCFgMcF6lW7NwAm+qRJmuDU3DOEUhVtDe1FDLlW2+ZMgFAOR91zdkSVmIkDN5oyTdAqpTFt6GICOcmJVubGJxP6tdCbTJsTVyF9Km2vtYqpem4i1btf+DGj6x216EMy0t0Pn0GCwceMGTPM34VCAb4f1Y1q3fhgo8dk7KijjsLLL7+8y5OxHTfeCW9E9+nN+gWngGVd4/UE6Cohq/8dExHvJ/mgkgOr9v5KZV10bu2En/eROe0EEBWtwOw5KDKOXNoBJaRPRCxB7yF42ENPk6KgEEQiYwDQua2AttfaFYnQbVgkwYoTMcDqhTgijcL2YkheAJPi03pE2/QSiM5y4+aWlQaeSmkmuZwbywtAVUWmZWGJ9oXiTAqodYRKkyQ98Gnto02C4EeHK9vjTLuq62066Wh3iEgFaEz6EEkxpeXFsvV5jAkQyzLBtpaR0THp5WYTM9MOisu+mMxXg70qJiCU4n2P3oz/O/r8itdwZ4SX99HmM+QcgqxFUGlaFiXxlAM/71mWPmodKzJGleYrHnGRRDe8/zTp0p9TWNQi4NDopEATLrmd8kpKkpaFBMIJvwv2hIKivAWdYAJQqW3dwIui3JdMz0S4x+DnQxKu9zP5q2ejmHPVfgA4jtGkDTR0wVdft/F2R2dnJy699FL86le/wrZt28peHyqpVU1k7NlnnzV/X3DBBbj44ouxefNmHHTQQWWhvni/yF0d+WV/MOFqABAOUS2Qwioe+4FCKAVVuhpTmeZx+AiM6BqQWh7TxkalgjiAJLE4+HBPmgeuIjcmbabSPDYRA4D8G3kU8h4cQiANLYUhZpWgK9V0q6pU1lVRh5CIFZm0IeElAUpCvYxMWRKAye0zjkjfSeOEbkTW0SpHQkN/Jt10WZM46stK4biAmvlc3acyvenm3Ei1qD3Y2pEQXYlnRwEBlXay3qMRtyGwYafXTGuodMw2ARRIhWlbmnNV2oyaNkpONmNc98NG58wQMaKtLlJuVJ+2iyAoBEhTgqylq9OpY0me5Pk7TkhGtEbMhryH5N8R30VLp6jbGulIldB/W1IJ+/O376VIda5FJmT0LiReetuMMcQjat1BVykj7RgrFW0toycMANC5tVNWz6cdeHkfHXfei86OduDIfXq0v94g0Yz1D774xS/iwQcfxPe//32ceeaZuPnmm7Fx40bceuutuO6664bsuGoiY4ceeigIIRHB/sKFC83f+rWhFvAPFaIu5AFS9akw5aE8kLQuB6lQ3K3TVp0IPa2cFAVPOXBSANPVQctXgZ4637S2STB4cE+aBzcrXcUZQoLh5lzkRmXRaq3btPA0tG0tqIydAH3gfkTn2xLO/BYQhyLTmMaOrQUUPIY0JaCEGFJm7CZUsYUcywSylnCZM2G0UqGGSpEl67uqo066356MBjCr4pGbAhOp25LRA0K5aqIs9WPaCkMXI2iSxqwImO1RpVOTYOUVxlqbJAXW3ByHhj3AlkU5eKhb0//bpNF2dNepWc4E3CwxhrpONgMnJVs8Ea6d/MN0BdWCbtUbVJOxGY/fgrVH/A92ZmROOwG8Po02n2GEGxZVaMjK3dCIlVpGsHoC4CiZReRaozxa69Do68xncBASZ8KIcvGnYUpcpZUr3QPxTih26lr/rScKAMy9RS19mY5kaRNZ6oQVofp5DcjIoY4AZ1RfV1s7ptvZJdi58Mc//hE/+9nPMHPmTCxcuBDHHXcc9t57b0yZMgU///nP8fGPf3xIjqsmMrZu3bqBPo6dFqlT58MHTKk3ALAdKpxOw3SlHiz0A0yHxrMfOglOmiJQrUIA3fxbDlZBUabCStYDI8HgIfjTCtSd/YFQH5PSrXiI+bxGf+bD8PI+inkPLOBlWj/3pHkI/rQCqVPnA5DxKeYxKTZ3CHIWURGcK1IkwAIOJgSYgCFkPudwhCRuXAgTfXOUcz4AcCFUxSwBC9T2PIA4WmCtilO4C6ZEz9pdXTBhBt+4gWtQCCJEyI4+6GiH0elYYm49sJsBlEejXpqQ6VSWvQ9WRThvEzGdhrQJmbYHIbpgQe2HUGpc+f3OgokUOCkXXE2ghKrGBBQZ8wJwNcl066t3/9gZkDntBABA28Z2MCEjreU9PcP7PJriLX/+2Ck+HTGTUfyw3ZaJOkGnJ0WkyhUISZpNumz7IA29L9tSo9px2Qj7T6o0ti46QUjYQ31kuSnz+itvK9tHPCo+0CDUAaF9bIfUx/fvCnjrrbcwbdo0AFIf9tZbbwGQ/qj/8z9DN9GqKWY5ZcoU87N+/XpMmjQpsmzKlCmYNGlSlz0gd1UIFjas1UaU+m9ADox2lEJbDsT/14OX1usQpaPRYtm443WCwQPzmGpbJe0kCKXKsZ5j8lfPRqDMVUutHpgQhohp8mXrWoz/V8CV9USoq6EOgdfho7CjFEaYVERMV77q/33Ow99BqGfzS8wQOI9LUsYrDjDCGNKGXQO4EToLJp3udbRBpzH1cRGrYk2nJJkvTVlNmyUrimcPnjqtGU9L2j02ddUo86KWIHrfce0Lt1Jg9jalVYVFGrV8wPcRFDxTTUnTsnWSk81IzZgXRFI61HEMUTv4Z1/u+oYZxuBMmPvUIcToAfW9UGb7YU8UKtxDusBER3Pj7Ya4MurVprJ6HeZLkbx+7mmjZF20YvbJhSnCiFhZsGhRSRn5srzE7ImCfs1EwnhoBmsjvA/DFk5DDur0z8/bHO94xzvw6quvAgAOOOAA/OpXMtr5xz/+ESNHjhyy4+rxXXb88ccbJmmjtbUVxx9/fL8c1M6E4E8rTGWRhpmxcS41Ppb9hz042TCDnLEJoGZdPy8F4FyUzwATDDzyy/5gBg5ZWaa0XNuL6NzaifwbeXS2leBzjtSDDyB16nyMWvQh07synMFbEQJF0pnH4POwKEC/xgJuyJSMjIX3i8eFeg2GdHm+3I5e3pVkRusYfVUgYDuT2+RQD6SaYGnne2FptvQgbvuo6T6SYTqVR1OQavIhYo7qmvQFym/Kvl6Vig8qkTL9/QlTltFHnJ8vIsgXFNFwJRGjuiG5TFMyJdoPih689k4ExRI4Y+BeAK8tj6BYwh5XnDmoLcz6A878FvgdUrTfoSK4OkXn8yjR0hFaJy3TeFpvZyJonJsf+1mmdY5mUhrz19P3nilwsapcAUQInW27YbfqsslUtMdpSLj0etG+qtHXw+W6LReveM8ORneUmkBp//y8zfHJT34SzzzzDADZDvH73/8+MpkMPv/5z+OLX/zikB1Xj6spq7US2LZtG+rr355mCdpYME6wtG0BAFQTcGswL/zyRwZvHj4g6BB6ur3doUW9gBYjSwKy/Uf3gM+aDSAkTP7vlwOLlEHo7DlS+zdrNohLpQYMBI4i6TIVCThCgDKV6vEVIRNRYsViZFxHN+Tf5cfskPCYKlVhCSYgnNCeIB75sJuN6/OWk46u7TTK9mMJuXWlm05DljUNj01qbEuCSoiLwCsdv3F4BxAUJOFKp0I3fnuAsntzcgSAH6vUHGZGoLXCmd8CAKr7BodDSHi/cnkPVjJj1fcGta5l1JzXMldV94d9G8WJGI0kDCuj67SjrNKM3zdy+9HuErVWDtoCff2/xmCYcScYXHz+8583fx9//PH45z//iSeeeAJ77bUXDjnkkCE7rprJ2GmnnQZAivXPPvvsSO9JxhieffbZLntA7sqw9UDxNImGFskyTxgNDxAlaXbvS50GA0JRKRei56HMBP2CSBpafR4FFEFamuFxgTQlcFwKR+nDCtuL4LNmw+MCjhojKJMRrax1X1BCkKZhKjLHSBjtUtsFEIuShccVHyv0/3qw1QReEo9wPa0Lk6lSoSonuXLJDwmcjsraVZoyfU5MalJfE21xUCmdpdliVAskBd7GssAhpsigklUHR7RtlB6MbcsEGzQWdfGLoRDfSXkyVVosqYpBqSUL8gUj3uee7jzAQaicGPn5Img6hUxjZlCMmvsLNC07FOh0d5oSWaHLRITIS+KrDamZIWNxsm1XiZsoJudmefzzs98n2yk4ZWlR/bpOb2sTYSnjkJMGx9qmTciIQwCGisScM+l3ZmcdzN/WPaL3p7tmuDl3+ETFoA2K+6gZ6+P7d3b4vo+Wlhbceuut2HfffQEAe+65J/bcc88hPrIekDHdOkAIgYaGBuRyOfNaOp3G0UcfjUWLFvX/Ee4k0CkpQAq2NWwbArZ8FQCghFBPZK8nf9uVQ2FLGJ0CSzA00BWJJgLABPwOP5I69nyG1CrZqL7zrUKEUKUpMcL6oiYERInsbU2YSk8WzDrEpB7NfiIDjtxGzgkjZGl7lq8ibtoPLBQuWxo2IZAbmZGEi5UbbXImkEoRQ4ZscmV3FrAtDuT/5SatuoLNrMOjeh1bZ6bF45rk2aJ9O+phV+KF+5a+UjZCPZNsdyMLbAIIloeoz0EwTQodMD+Ak5L9KZ2U7mKg+4KmQVOy4GbCpZ/ApqV3YTjDmd+CgAm0FgMwIZCLpfbsCKte5qRpGMmKXVd9L4XL7KbtYRTTJmz2e4hDlP6OgHlBjGD/f/bePM6uokwff07VPadvp0NCIOyEVXSIQQWiEJZsQFgElQyCE0VRRFEckEVGRwVGWRQFRFAQNwaRkS+bo/wEWUICicgaBhAHBgSJEEAwJKTT3ffeqvP7o85b9Vadut19e0l3oN/Ppz9971nq1Fnuqaee932fl1WSKBJKeCk5wN3/XOdQWtkEEW68UkrMSC8vNKsVmYlRBcQADE3M11s8ZixNUzz++OMjWjmomfUbjP385z9HnufI8xyXXHLJgOo9vlWscfOtJUAWGoG3tvmHmBc9hJ2NAsUMlbERYzay1rj5ViTzDnDZenkOWRFAo0iDL17spLpHLkXjKnTLZJKgS+mCmSjimwpARu3Q5/ZgIHGPUWI/O8YsCdyZCUiVTuU5UriYnIRp3FEbck0d2fi0KNasi2xJI8NCpcAsGCpATb1W1nPicV6AA1Q+41G43SPB4aGyuwNkKBkxI9wdSdpTSWyAp2w60orLUCTIaBNHVrB6FpRVTWA/HQtgUheWJRzlXPV++6Oe51jT0FhV1xhfMc+JeV6TQjqFPTsFU8rrOgIsGYIAEnt+6PpSwLvMAMAxpDEXMwlf07uPt8XlMizYzySoGZ7hSUr/AqIkeeJpkIExaDCgK5GJ56Lk8bxZRzagyz1mo98+/vGP46c//emIaorFrKWYsTzPcc011+CrX/3qGBgbIuOq7CRzkavc1i8kBk2OQiT/VjPV0Pa/SBKrHadyHzDX58xFKgSU0jbInga7TCRQeeKxV6IYDFXuQBy5kQB4g6X57qQuMuGejZompg12wLWAr5Ax0HmOlDEXMhOo1gyrV1EVJMKPGxKFZEats24FaQVIUd24jfxMSe2JhtJxYv9RUxDtFQiZoFHrf3JKLGjfDwlIPJ0se52lH/Cva8oCMlVvQMIE9OdaQ2ROzNroBTYsqKAC0uZ6uPb/Z/d98O6HlvT7PNaFUamjNQ2NGG5UhY4dACsunElpRaYBzqi62EIvVoxtp/McqOkCkMFuT+4xks6oVCvFu84BoXDSSiLLxIpSskEineYZABtDZs+ZJgDQVlolkUlk4uBYO9IeM7WINdomjEIwJsQQMGOjfPKwDqxWq+EnP/kJbr/9dkyfPr0U637hhReOSL9aAmNCCOy000547bXXsNNOw684vD4b1TSkwNn+WPf1N6N6xKHovv5mu4wYtLGf0MibrITSCc6VSCCqe/ZcC7RUnpdAVdomgR4DwHgGm7SALPeWURux5TIBMirWnOfIhCht18xMSSIXi2jOxwT0m/UVGxtHA2EsQLvR3bBlcWh9vZ5bhoSzuzH175jsBoDSPmEZG5eF5/+n8xDVxGaIAmUAZ1k11icTWyS8YzY6uyGrmcdQy7SCtg03QG11J9Bdx9QrTsYTn7kI7TLBU+/bF2+//56m130kLMywNc+TWx/Gy4vgWtJ/q0EGc71rBcOYSRkNuk8KhrJeFLxPpM9O0WcuDwT47zoD1BXCN2DsmUlEYllYvszfzySTlIL/C4aMNNJCkeLRYGMK/ENjjz/+OHbbbTcAwFNPPeWtG0n3ZcvZlOeffz6+9KUv4bLLLsO0adOGo09vKlO33GZFP/tjHIiN2eix+py5aO/IPL03iuUjUESxXyIRvgJ+IG8imHtSFFpPUNy16cAcB1TOrQkYN6TvugT8eDHOtNF6wGW1hUbq6mZgrbFBzQxMjUI/jGfUkVtLyIoXwM2PE7IeNPBqlSNh7knAz6Y0Af5+/wDYbDxKIrBXQPqB/Dzrz24fxJvFgKJhwuo2/kmwzEtTT9PFRdW7G8gKgdiQwRxu65w1BwDQpQwwn3TPouh2XQXj5b7HWUgC9FrlqK2p+2WwyC2pmuh6Fcwrsa+VAOwoxpblKke9VkOjW5TcvAbQh8ynsG5NwIdlXLEfMPdYsngxK/4rfZHYGCAj8BhNTR6zN43dddddI92FqLUMxj72sY9h7dq1ePe7340sy7xAfgBRDbK3uvUXiA2n/fm9+wIAdn5gdM3a1xdL71qIBmDixgpgQ27LVBQv8YYTYpVJYhkIAkQiYcHpOQtmLgbTmnYuSO5iBDhzZr5ztsxsV2bO3HZlWQwuoElZmvUehRTmP9YCbRtkxjWkmdwDAavML5CsA1AULidgFoIeBHFczcwHXfw8tBcPFGNdKOaILl5bR2ZixeplIWUrdwEzOFc62qHrDaM9Vqt7+1CZJM7SZCLBy3vPwmZLF/d6PkNhxHiZZ8WxsjWdo7rIJftwbOEDereOPx9cWse2UbjmAXNd6flVuUs6oaxglQOp0qVs03qPKtowAElAo7bGr5+acAAtid2kxI0ijlY5XT4bh8iOEyZ3hMAxfEZEUYDbZBILw+iOFqFXbskQBPDHgi/fovb000/jmWeewcyZM9He3t5UtmtdWctg7Hvf+94wdGPMhtMen76Pfek+Pn0fTHtwdMW1rC9WOfQgUwheGVFWynjM0mImXmQ1kkuIgyLAZTbStqackRvUADdYEmHAAZcbOAHKoiTjbJpb5v4TIPOYs2IQJavpHLADpstoA1zZG4oRIncQxQP1B0xpAFJwvbKyFAyxbtZlxQZnoBwwTxpmQgqr0yczI80gWTtJ4NYyrEilaMOUPxKpiwHLtYak9YUgbK41VM2AMQPEjBtU1RuYesXJwH1349V9ZpeA72Bt9UzDgNH961h8V/Hd3e8YqIoZATfAgXQeZ8iNg6maLuqi5rlNWvHbc0BMJmbf1XVlM4npmaKJikQCkUkIAPU1dca2Cpd5GUnCIKNnSEPY2EPu5qTalsR+xbOEjeQFbz9XGllHhqdP/VGv13FEbCybckjstddew5FHHom77roLSZLg//7v/7DDDjvg05/+NDbccENccMEFI9KvlsHYJz7xieHox5gNo017cAken74PajpHfYyBH7DZYscN7clN2MD+PEeWStTqysaEcVcjuSRtoDMQxI3BY78IzBH4omVkYduha5RvFxrVvXTHTawUR1W6MjkJA0sU1O0GrhxJwDzw0k/8u72G2ndLJsLFpNHgmwgTzxbLQjaxaMSU8KzNgs1Shukw7IkTezU1PA0DQsKvxI7FWJBEOLV5VW9AZKkFZPz8hEzQ6KojEd0mdmzJIqzcd3apvYHayn1nW5YVMPco1j4F6Y+v+OciFt4Jufcsbxk9T8a9maBWiL4Sq0YMVwjwKRnATTTcsTnjJtmzr3LjFm2XwgIy66ZPDYinSYpSOSrtZSYL8AP8PQCvTW3JUActLDYOmIxKP8tWWFYMcFpjYhTGi43Z0NnJJ5+MNE3x/PPPY+edd7bLjzrqKJx88skjBsYGxMUqpXDDDTfg7LPPxjnnnIObbroJSvU+Mx6zgVuoSTYYG+pZ+1vJ+AufZ6FxOYrc28aJr5KFA03MhUSDGAdLoZF7irZJZFJkZSY2dqdZxQZyTXJzGZ2OneIxQ0kxSBmXkrAVCXgslQM+PtsVK21kyx8VdQspOLmvAGNeR9DFmeVRsc96d6OkJWXqImo0uozL0Z1D7oqDezpcQVWCwk1mwKq2cWh5kIzxcgCABmIv7jXLPgd0r7uURpcyQMo9J+UaptxIRiWW0OHAvjFeaov07qhNLjwcq5fKjYAe/QZEkqDS3vfcX7HnirvSufkB+s2fl9gzYdzWXCzWubiFTJCOVlYM8H4jg/lrxe6++24cdthh2HLLLZEkCX7961976/M8x1lnnYUtt9wS7e3tmD17Nv70pz952/T09OBf//VfMXnyZHR0dOADH/gA/va3v3nbrFy5EkcffTQmTpyIiRMn4uijj8brr78+kMvUp91222349re/ja233tpbvtNOO41ofe2WwdjTTz+NnXfeGR//+Mdx44034vrrr8fHPvYxvPOd78QzzzwzHH18yxtlVA5mxj3twSU2wue+Xd+alRIGY52z5hQK3doOWGS8fiSxB9pmOxplfuv6y8P9fJ0nzjg0M76fXdYwAEFWhBc7FQ62VBOTBmc6Li0jN6arFagtm8c1oLjSOndn8dqCbpkvBMqX82W51ragNC0nhX/LSBXFupuVXzIioboEwkgDy6t9qAyIo8LlAGx8WK41Gt01NDq7oLp7oLp7PMClasqCwEQkyDYYZ+UbyJ346j6zo31sxThruaquUdMIAJjZjmfwhsAo5sKOmQNbOQOAbr1ziTowyI9B/aF2uJucu5epuH2ju+ElxJDRc0VaeDxhBAhKZrF4RsAXDY5l0FJAPwDIVNhJRCIF/nrGz0ctEAPQ/0LgQ1govLOzE+9+97tx6aWXRteff/75uPDCC3HppZfigQcewOabb44DDjgAb7zxht3mi1/8Im666Sb86le/wpIlS7BmzRoceuihHoGzYMECPPLII7j11ltx66234pFHHsHRRx89sOvUj3MaN25cafmrr77qVRZa19YyGDvxxBOx4447Yvny5Xj44YexbNkyPP/889h+++1x4oknDkcfxwwmm6+vQbo/Rm6D26btOfjG3kLWUTGMULfSWNNwkhaAG4DInPSEYQQoXoXYK8o8423EpC24cZdQjE0DDCAjwMHX99ZuM8YE8F2OMQDEXa6q5gZFUmKn71xMk1sYnB0zDsgsMLNMmy4NvJoDLWLQdG7+lIt7MwKhhXJ83TElXkHqmkK9swe11V2orV6Lemd3URjbbdvoakBIgWxCB/507HcBuKzGwbDQz+05E+MrwgIxzkhxoENGsYr0fNTnzLXreNwh8wYX6/x2OMAjo8kH/wvdmF1FzUsOBul4KWVorq1bkFfTObo6azYxgCYpFMzPLXRXE7uTFO1yCRPPnUnF6GNK+6wUUyIFso60tM2oM9IZG9Rfa0P+wQcfjLPPPtuWQ+SW5zm+973v4atf/Srmz5+PadOm4T//8z+xdu1aXHPNNQCAVatW4ac//SkuuOAC7L///th1111x9dVX47HHHsMdd9wBAPjzn/+MW2+9FT/5yU8wY8YMzJgxAz/+8Y9x880348knnxz8dQts5syZuOqqq+z3JEmgtcZ3vvMdzJkzZ8iP119rGYwtXrwY559/PjbaaCO7bOONN8a3vvUtLF48/BlEb1VTOWzJm4Ha9IeXet/v3MUHZIveNWNQ7b9ZrT5nbiFQqb0yRWGwvKwIpG3SYym8OK7IQENGg6jPRLj/nOHiA3PoitQBABDMVUT9du27gZN/DhX0FSt3FDJLOugDdyH6rqayC1MwxoO7H91x8hK49JiPJrUpiQFpZnQswepoauZGTQqtMVVXqHc3UOusoXtlN3pW96DRZSQvcl2UxKL1r63CtCtPLx1roO5KA8Q4EPIZ2FCBgQfykyvTrYszZs0md9wtSp+7mIBxDMB1KQaylHum+PPGGeXQFR8+x7ny3dHe88GAuxOD1dAMSNN+qkbMKvtjz7GNE0tbDp9er2316tXeX09PT8ttPPvss3jppZcwb57T0mxra8OsWbPwhz/8AQDw0EMP2XqQZFtuuSWmTZtmt7n33nsxceJE7LHHHnabPffcExMnTrTbDKV95zvfwY9+9CMcfPDBqNVqOP300zFt2jTcfffd+Pa3vz3kx+uvtfwEtrW1eRQk2Zo1a5Blo1C1+E1kMkmwct/ZTfWEWmvL/L9zlz3tyz0TgwN7b1ZLSViVsvWY/MT4irDBzwS2ROHKDHFXrrQXOE9tEbMQ6lRRWaPeGBbKTnNZcQXDAC4/4JgK/t0Nqj6TRvs1uhqOuQCsxpQ5l7wE/Gxh+zw3xy8GPevaLNiIPABT5P7l7kyzPp5NR3UNAW2qIBQZlWY7v74m1SAUTZ5tKoGk4McYGUFYh3i0yqG7GtC1xLhBa46l61ldQyLfgEw7se03Pmlcb/cswot7zRqU7hgBHIBry/nuPwqe71I5mwSg5EYnhs0tK8tbhOti8Wf+PjyWzM/e5SCMZxEDodxKYqtDcKtrHRWTJVFisjAGijTJAFcpIFcKeZG8IVNRmhAlMsH/nXxZ6VxHmw1lofApU6Z4y88880ycddZZLbX10ksvAQA222wzb/lmm21mY69eeuklZFmGSZMmlbah/V966SVsuummpfY33XRTu81Q2tSpU/Hoo4/isssug5QSnZ2dmD9/Pk444QRsscUWQ368/lrLYOzQQw/FZz7zGfz0pz/F+973PgDAfffdh+OPPx4f+MAHhryDY2asumghumfPbepS6q+pPMfsR+/FonfN8FiRmgbGV8bAWMwSmaDeo7z4LhojSOPLqPNrqJoDKeG90soxDiZjzSznGZNhEH8sizJ0j3IZDLvOZnw6Rs1t559f6FY1khss4L4YTLlwZgjEgCAzFA6wkS4bF5t1rr4iE7WmLMMRZjfG3FShthTFbvF4uVjdTH5swMQNKRigSAN2vbMGsAophj0xLEu9nkPUVFDT0ICzta+uha65mCTKThyo0b3LhGmLB8XT8hBUuYLxOV7dZzYmL1nkzrXEpvnHctuFMirNXZv0DLbLxJPICCcVwk40Eu+3Q4wyUGT41hRqdWXasbIqPFbPxJ81q+pAzw/XIgPIBaSBlDGoOkeaJWibMHJxQi2ZEIMvZ1Tsv3z5ckyYMMEuHkysVKjN1R+9rnCb2PbDqfu1+eab4z/+4z+Gpe2BWst39vvf/z523HFHzJgxA9VqFdVqFXvvvTfe9ra34eKLLx6OPo4ZM5XnQ5Kp5bs1csx7/I9QeY6Hd9sbz+05Ey/vPasUgNyxwIDtiZ8qxw+8WS394MHIVTmrLIwR42n3gjFc5Kok1wixBlE3ZwmIufabGQdm3B1FQCwEAxRvZJMLmjStatrEghV/da0tuOLLAQPM6oU8AhlnzvigCPjJAeZYfiY2H3xDlym30H3Ft7fXmwq7a74NMVvauiqdK9Z81uy7dWUy12Ro9SIYvWd1D7pXdnvrBvJ75fclZKy5BAptx0WAw//8WQvdlTH3JeDHJrpntnx8SlZwMizuO9+XEkT4Mfkzz38/9PsyIqxJ6R7HkjfKZZt8o7iyMH6s0l7BM6f/uLT9m90mTJjg/Q0EjG2++eYAUGKvXnnlFcuWbb755qjVali5cmWv27z88sul9v/+97+XWLehspUrV+K73/0ujj32WHz605/GBRdcMOKC9S2DsQ033BD//d//jSeffBLXX389rrvuOjz55JO46aabMHHixOHo45gF1izWoz+27//c67VT0zkOfeI+bxsCC5lIsHrmHHTPngvstz+6V3ajbf4hph7hvAMG3on1yBpdDeg8R8fiu+yAwyUlLCBRLoidMsf4IFfXmjFm/jF4ZqM/iMH7HJe48AfN0ELFdX48wQZHMp5kEEoncBDms3r+AynZ/nSMsP5gWMDbHd+vX8izN0MjJo3W00BLQIwH86uCzQIMqFI1BVXXqHc78VavXI4FikztXbBzKdzSFMRvmD3D2BFYm7xkkQUmA8mslEmC8ZXEA0bhZSBATa5yuhc1bSZZy2c4V+lmSxdHgb3PVCXe/XXLy/0jNpW7R/k6em78iYt/LKAM1gnk8dJaoTUrn0X72IQS7bIsuSUyQVqtIO1Yj0JrRiCbsjfbfvvtsfnmm+P222+3y2q1GhYvXoy99jIZ+7vvvjvSNPW2WbFiBR5//HG7zYwZM7Bq1Srcf//9dpv77rsPq1atstsMpS1evBjbb789vv/972PlypX4xz/+ge9///vYfvvtRzTufcBRizvttNNYsfB1bNVFC9E1BIKSf3jPXl7wLJksYoPI7WCWmZe8zs0gU4XLWHrTK8vttz9yFOrj8IPsCTiZwUYj4ywXhAd2yH3HmapM+O5B114eHTBt20l5QHbxYnFAZvYrr9B57g2+Ks+RFTFi5WeDB5DTccvxaLxPdAzAlYKywdbFScRCYHorRUNuKS6zQd8BvzySBWFKW3V+FAAKmTQgyqscIG1lgUY3r0Hq3JKeq5aBhUZXwwODbfMPQc+Nv4ver/4YL+ZdkolgbZK7ktbxZTXtx4KSkr8Prvxnjt9jfkxu/Pmn9Ubqorzc7eMuAgHUklBx4a5s1wnWNPx4QyET77ng4CoEZhrCisHS8iQzQx3VM5WZRKW9ArkeBe4nQiIZJJhqdf81a9bg6aeftt+fffZZPPLII9hoo42wzTbb4Itf/CLOPfdciwfOPfdcjBs3DgsWLAAATJw4EcceeyxOPfVUbLzxxthoo41w2mmnYZdddsH+++8PANh5551x0EEH4bjjjsOPfmSkRT7zmc/g0EMPxTve8Y5BnW/MTjjhBBx55JE2ZgwAlFL4/Oc/jxNOOAGPP/74kB+zP9byk6iUwpVXXok777wTr7zyCnSQkr5w4cIme47ZUNqLe83Cln8YGIrf65E/4LZpe+LgP91XWuenppsXL700+Ux2VNZuGwajIt6AL7LKZQI4QAOKAtcVBgjYYGxivNxAEgNQMYATsl/NQFs48DcDAyoCxELXqd9Ows7fDdwUQB4beHsDh0BzlxK3mAo/UI4Ha2aWDVMaifKLRedCe8xLLkx5HVLv523k5ofgLaP4t1znUeYutFaSbygW0Weo/GxGzmiF8Ya0vXNnltmt2DNVfn4S+5+SUvgzECYBlJ+F5s8Ar8/K48Nkw7FmdP+bvW8SIWzNymbre7Pesm7HDHjwwQc9uYdTTjkFgKnEc+WVV+L0009HV1cXPv/5z2PlypXYY489cNttt2GDDTaw+1x00UWoVCo48sgj0dXVhf322w9XXnmlBUIA8Mtf/hInnniizbr8wAc+0FTbbLD2zDPP4IYbbvCOL6XEKaec4klerGtrGYyddNJJuPLKK/H+978f06ZNG9HCmm9Fo5feYAKDAWDe438sLdvrEZNG/Pj0fYoSJu7eyqDMSiIT6Ln7QSy8c1D9GK2WfvBg9OQ5sqyC6m2GYo8xiWa5i50BgFpdoVqtQNW0LQtDFrpyeLacyWDj2+UeQxLuz7+7QdIfQGPH5kwLfXeAjAeB83762/H96NgheOR9CuUvQveTK/isrcuQ4oVoQPYyKhVpt5UHW16TkMReaR8++CZSINFOuiORiWXqlM38dICt3t2ArhnXpsgEkEnoIsaMtjEu6goa3Q1UDj0Ik+5ZZOtVZi0EXzt3Yx6AKnd9aT1nWWPmQJS7Z95vO/HvN48R48+A61vwvEcyh/sSmrWMcEUU1R7MtWl0GWZ2fIVkR0QUkFuWlYkB82eFQJiRpCmeQeb6lqnJll0fsiitJUMQwJ+0tv/s2bORN7mHgAm8P+uss3rNxKxWq7jkkktwySWXNN1mo402wtVXX91S3wZqu+22G/785z+XWLc///nPeM973rNO+hCzlsHYr371K/y///f/cMghhwxHf8asD+Osw2DYsd5s2oNL8NT79kWXSrBRJiEzAVXTqLRXPEFMwGhwpXe9udjQcUcdhp6aQk3nGFetoAEThE2DIRU/BsBADJeXAOo9qpTNyAdYbjEgwz/35Qo0baLYptwmdzECcQkTv+YgH3h94BUet9wfd0ze3zD2K8Zsha4oksLg9TB53Bngsuf4QMyN65TFsiuFSJCzY5J7MpEJoJXnmsxVjlpnzQTxd9YLN6df5kkWwKLBYvjHV4QVCu6vOZe4+73HLGS1OICid8PKfWfbbExi1kLGigMxHpAfrvdd9OZ++yCu3L8YUJRJgrTNIF+eWcuzlmkZB+lkVHiejGvWNTOtcqSpf8z1yUbCTflmtBNPPBEnnXQSnn76aey5p9Ha/OMf/4gf/OAH+Na3voVHH33Ubvuud71rnfWrZTCWZRne9ra3DUdfxqwfttnSxUXNutZm2q0aBeZm41Ik0ulA0YtR1bSLiXqTALJX9zGDluxIoWoaMnFxKK6Ish/kbGLGnFQFDWZOJNOXwwhdTUB5oGtm4YAWsmxxMOUP2L6L1J0DnV/Yt+bgrHk/+3KlhkZAqtkAmascSVoeRIgd43IYNltOgoEkkrRwbnalVMGQSCSagr6VbVNKE1uWS7+8FPWXyvhQXU0CAo3uBhIhIDMDECuHHuQxSE+9b1+8/f57+rwmjjFtfj8NmZQwF7JZPuXexVg+YxaWz5iFKfcuxqR7TPHycnkj/jmMB4wf01j8nobVHByAz71teGIHvU9qaxi7SIxZJr0YQw7IwnhBclcCLKif6ZSZ+1ospnYH6V0Ys/XT/uVf/gUAcPrpZZHmf/mXf0GSJFZWY13W3G4ZjJ166qm4+OKLcemll465KEfI+mIohsJ2vO9uYL/9rfvAY8XYW1wkieeq7Jw1Bx2L7xrSvgxHm9xe3GuWVTwHHKsFAGtWdqM2a04BTstxXL47ycTusFKNdjDiGZMhY8a3C9kNwB+QwwGUW8h88ULO1A43robusvJc//srAhwGgMekO8iI2eJuyFzlSLLmM/Zm5XFIa6xZ/BiVTzKDdcLAm/uPFJCphIKC7opJIriEANMXozlG9TJN1p629RONOGwNlfYKhEzQKBhkynQcqE5gCJYIeBvR4dyL53vqffvayRTZpHsWoVZIbDRzPdJEAkApFtBnWX2mlF9+v0amY0urUpT092zmo3JyKakQXi3KRAgDwCKDIm0jC6CuKXFDl99TgJMOIHD91zN+3vR6j0qjckiDbeMtbs8+++xIdyFqLd+ZJUuW4Je//CV23HFHHHbYYZg/f773N1x23nnn4b3vfS822GADbLrppvjQhz5UqlvVnwrybwabcq9xP/TGTgzWxh/9IaTj/XptntZPnlu5Bj13P7t8KPpEMgCds+YMqjh6zP783n2975T677IcXaB6l9JYVfdLy3DjTJLvUnLbx9L+aaAMGadwkOPr4p/D7fw6gpSMwWO3zPHj+4Ygyg3y5QE4NM6o8WtB5gXKF59Vw1QkMMvcf67tBTQP4o+1TaaV3y5tp2t+qSRV90voxNrWSqPR1fAyLL1i1cpX5CeZk0ZXw/5m2mWCdikwvpLguT1n9no+tm9NrnUmTPjARplER3sFHRVptycQteN9d0PlOZ7bc6Y93mZLFxcu9lCh37GjvuCrz/4SmAzZVcuiB+CdPy88q5bLndB7hJhkwLmrZSq9eDKSqxDEaAphgZi9F0UwPzFlXNoiV9pmz/Li9uuNkejrYP/e4rbtttv2+29dWsvM2IYbbojDDz98OPrSqy1evBgnnHAC3vve96LRaOCrX/0q5s2bhyeeeAIdHUYumyrIX3nllXj729+Os88+GwcccACefPJJL7vjzWChO2moTTKlalXjophuoHZuOIfq+5nk1tSohEznrDnFcQbXHrf/2X0fyAR4cLe9Mf3hpRaI8TiYGFAB6Lzi7EaMyWrWDlAW6Gwm9srZMteHsE++8QE51jfAgcgQELr2yoNtMwsDy8v9MfuTij8NgTrPvba5On/Mes2YC1yIudI2O4/MBvTXlS0qTs+0FYYtak4mymT3kevS6IeVC5/zGpmqpoCiPVPeSdnSVzJJTEktrdEuBWTS90PtsinL4quZSGxYAPFFiumJZSIpfkfuuXpmj5nY8b67rSL/i3vNQk2X5Sf4xMOPg6QkDs3KGbnJhnvmXf1M6jPtyycF/JxiGbnEjiUyQaKMG1gV9zYRlai0BeAC92OF5wngqZpCfU29z3sw2mwoyyG91e2FF17A0qVLo4oQJ5544oj0qWUw9vOf94/aXbp0KaZPnz6oMgvcbr311lI/Nt10Uzz00EOYOXNmqYI8APznf/4nNttsM1xzzTX47Gc/OyT9GC1GLzGKCxlK61jwAahi8KJiu7wotA5YHJkAavZcdLRXBuyGISN3Wbs0Qc9mMBDonj0X1UUDj0t76n37lrIEfZeP/90xRTwOzNdSci5K13czQJEUANWbTLzjxRgmHiPELRbjE2PHuPvIDNgO6DgWxLiMYtYM2MX6G/adBlmudeb3y7EiQLmUUqyWZTjYmuU5ADOYhEKxzv3JRFoLhkWrHIlwriuCdMR60TGp5qRgWZKN7gZkoUlmYycL9ySVcBKZtAKwvG+hXhuJuHb1wsS5a1yuJxlmPZKRwj+PawyTRGQCC8gAE9y/fMYsuz5WKos/r0ZE1oBJWub2df3igNFnVMvxiOF+5KIkC0texbJnucZYDIhVqmaII9FhAOhe2d1UTHbM3vz285//HMcffzyyLMPGG29cKss0UmBs2DjLgw8+GC+88MJwNY9Vq1YBMCmxQP8qyMesp6enVMF+fTBiQPrzYm/F2uYfYgc3nolGpiNAwHwmMDG442cisS/8sADxYNudmAqMrwi0ywTP7DHTulZC3S9+XAe8uNvOlRpqJjHiM18c6CX2GDHXDt+WjsPb64ulKrfFSzOV2/TdrH7/QxdlrI/Nzj0WL0ZloZqtjw2QXFrCLtPaY0N4CSMe1M/V/hvdlPmo7QSDmDBdrCdXoyZV/bq27sZaZx09q2s2Ds2eU7E94ALDgbIoLb82/Yl/3GxpORSBrlnsN8+fVb7M/E8QMk+ACXdodv/peOZZDd3o4e/Dfx5kAsiKQCqEx4T5+7t22qX7HchMetUQKDaPAC/g7j+to+/cLUmuykQKC+AaXQ3Uuxv2PmK//fu8D6PKRpkC//pqZ5xxBs444wysWrUKzz33HJ599ln795e//GXE+jVsYKw3bZKhaPuUU07BPvvsg2nTpgHovYJ8b5XfzzvvPEycONH+hdXsR6sRCOhSeSkOajA2fovxyDpSW3Q5VzoasxPO+AGgu7vR1DXXH+uePdd7MYeK9zw2rRWjgOZ2KZCJBG+//x4bU0P99+Osym0Y4EuDkwMqMeM6X3wZB3TkDiImsBnI6kszzN/WrzcZ2yZku3i9TT/o2rUZHqPZut5MNmHFRHDeBGDULbdF2wndTxSfRRIIxKKRoCyBOVXTVipDyASNbhcDpuoOuPGsSKOqTyWTeOxR7tyQDW0ZOWLGqB9CJqhWK5AVx/io3GQf99dCRikGYh2DW64faZ4JB9Qoy/LFvWbZrOwp9y7Gln9YbKUwmk2ADGOdeM9syPza57yhbb1S/tyHExiKU5MVYWPDAJb5yvTDZOa2ybWL/wrd1zy7VRfsJSWL1DtrUDWFnlU14M47+n0fRoWNgbEhsbVr1+IjH/kIxCiLnxtdvemnfeELX8Cjjz6K//qv/yqta7WC/Fe+8hWsWrXK/i1fvnzI+zscJhOjX9StdVN2ZiDWPqlq6/Zx9Ws+yw9ZHzKuUN+qdc6a47na+DG4TMRALOYaoeWcUSCmyoEaF3PDmT/OFtAy56pDscwHZCEI49vxuBvqV2/n6m/Xv2sQAjXqkxtY426wZu377qzEayfso79fGcQDsIH8QBGgffA8b7+SRlgoY1B8psFb1ZWtK6nqym6XVitIhHE39qyuobambiccqq5Q7zYlkhrdYakkmMLVoigs3tDe865VbsBZcUxykSZS2PgzDngpJrI3o/gugCYA5noSaxYaPX/uOS7f796AOmDclyGbRW22S2FZ677CETjoioP8pNRGWEDeMl4hE6mC4vDaAW76rurKspiO2exB1+s9qNUV6lqbmrtj9pazY489Ftddd91Id6Nk609hrsL+9V//Fb/5zW9w9913Y+utt7bLeQX5LbbYwi7n1eFj1tbWNmRxbevSKDOrKgTqQ8RCTr3iZPyjq4F6Z90IWKbSYwyUSyYrARzu3huocSkGaid063XNnIMJd/ft5om1zUHr6plzvIGJBjA6rmPnYiKtLqbHxZe5dea/D7o4o8avl0ycy8YBQD8ImoxnYcaO6w+8sO3E14Wu09w7J7dt/Ib6LjC/j+F5x5iW2GBu5SaaUG4loU/4AI5qEpoMST/GzMSN5XaANgO4NkxJXSItBm2tcmRFFjEdTzPGK03L94SAJN1PmSSoFOr9BCaoEgM/79X9eJa3++PdWD5jFihuK3Rrk7o/3VNirgj0hxOO8L4AwHN7zsR2f7zbO+ar+8wOqkPw+2qeUdNOjljCR/jchOfOgbstWF+wWABpwTV/mfC6lYB7dhwzWlRykBpKm3tYqysvWaC/0i2jxcj1Otg23up23nnn4dBDD8Wtt96KXXbZBWnqqwZceOGFI9Kv9QaM5XmOf/3Xf8VNN92ERYsWYfvtt/fW8wryu+66KwBXQf7b3/72SHR5WG3H++5Gfc5cbNIm8WJ3A/ftuhf2WNY8Nq4/VntjLXpW11ycRnsGWTALiRSQldzO8AE3uxXsRT0Q9qp79twSQAhjrYCBl4Da+YF7iooCZv/n9pxZ6DO5YxEQ6lLa6wPZpHsWYVKxL7UzvhJTKudZghxcmgGTJwGYQs5xFoIbnbcB4CaxwfTR7WuuXXjMvpmz/tyvGHCKAUX3udyfZvt5kgcycdmWHrvk9gkHYcrC1EXZHKXBXJTwBvcGn03AMDGNroaNC5OZtACP4spoX53nkMXFTKSAylkh8UhCi+hq2HMjVpRvzzNe+2PNhGK5u5nHQKrcADKfgc2taLRZZp4pled4ca9ZpexawMSVUYZzu/QnC9Ru2bXvx5QBTqPPn3TQffDvJ4BoAXmAlTRK/fgxgBg1B4KL2g0AnHYgTWi6lEYm1jPXUDIEbsZkzE157rnn4ve//70thxQG8I+UDRsYG+qTOuGEE3DNNdfgv//7v7HBBhvYOLCJEyeivb0dSZL0WUH+zWbpXQsxfuYcpEn/MrR6s50u+hxW/W21KfdCLiClrQsAgE0vD+OGEpkADfc2bqUgMllZLJLa95+jgboquX4YgNJAFYqW8kGOH9OAKfe9GRtIg2OsDA6xCaWg58Stc9lozaQ08uB782U8y5Gv99tsXtsw3L7McJSBWMx4NmWzWLEwi7K3THzrwipcjIC08Vu03tYwVORC1CWAV9caKUw8UqNLo2dVzcY7ec9lwbjJzAH5uCvOMZ1kdD9lAs9VTe7K3oL6e8uWJnAVusXNM22eJbqvmUiwct/ZxUTAX9cuyzVQCaRxM/u6bbIAzfBn22finExGWG81BNhkrgyVhmaF20l/zGS3AlBOvd9uU5RxS4SwsYGcWaZ3jM+JjNlbwS688EL87Gc/wzHHHDPSXfFsvQngv+yyy7Bq1SrMnj0bW2yxhf279tpr7Tann346vvjFL+Lzn/88pk+fjhdeeKFUQf7NaBtlEjJJ8Pj0fQbcxht/W4XulaagXiKE01AK0s1Do5c/Z8f6O+N/dZ/ZWLkvuVnKYqWuvfLxAOPm6a+RG6ZL5SVARUYD6Kq6xt+ZCn9oPHaGjwHUT2o/zpi57+G5UnuhnIFhJMw+Ru4DhV4VH3jd9jGLZTDyAOxmbhs/OLwc58PPPbZdb/uQEnqz56s3sde8cCsSswXAuCBrCvUexUCYizGqa1P7kMBao2CvZFLItRTtdDaUvYexpA4er8SzArnxJI/Q5UyJJPwatfIscyOBZCdN4bu9/dhH1xc+4eATEb5dMxczbUN957GWZhmKPhX6aszCYH+SysnZ/eLgLBTkDYvF2+zJSCfpPqmagij6KZIym73eWJKYQt+D+lu/XLPDYW1tbdh7771Huhsla5kZ6+rqQp7nGDduHADgr3/9K2666SZMnTrVk5V44403hq6X6B+4608F+TebrWnoInYsQXeLbrztzv4UGt0NdK3sRk9N2xixSjsF0hYvSG3cR6qWW9cLH7jJjRO65/oyen+GauBmXRloDNa4inhsHbFJvH8ySVBd5FgL5wYqx21R/4l1C5mG8LNRQjeDYHtwkpzV4q4h0i6jftD+sQHGj/UpMx+9XVe+nsfG8bZpnVvWvxslkiSqJcbjE8NalSHz0WBuQMN2uTqEKs8hwQPCi2y8RuKO1dWw7JdlitbWkY0zXIm7vg5oqRyA1uhFm9a7Fma/mF4YQHFWtA1g9MKaBec3M54R7J4RJ+rb7LcYPrtczsW5XH12zwFtN1Gic/D7EfbRZ23drfQZUlUzGZipEF6cnqcpVyjrawjUO2terUr+vNjs1TqrN4rEE+IdjG7hiBgBqsG28Ra3k046CZdccgm+//3vj3RXPGsZjH3wgx/E/Pnzcfzxx+P111/HHnvsgTRN8eqrr+LCCy/E5z73ueHo55g1sX/UFDZpk5iYSrzc0+h7h8ImHXcEeiZVWQp/jkSUB0j672auRYwYy2IL1dTbZd8/eCpz5MBXOb6JD/jhy54C8FupW7nzA/dYFf5w0DCxYm6AdAKxuQ20fnlvUuwPB9YysOFxPNwt4gOa8nm5/XM7UFMWHV8XqqfzNqhdzkLwgZa3E5ZrChMPYmC4NxaOmI5mRi5KnqlrDszis8Bigwq2hJsVhlWmPa1yq36vVY4sZZpUvPQRuyY1KouTu1qcNZ1D1tzyUCCXM2AhQHXxVmEyROLtH7JQ5rOLFTRuxMQL7H91n9leZmUzI3bKB2Pu3FzWrjtezMUcnqdjzHKIRLA2fNc/Z1HpGgj2TNJ+HATWA6kS3h/uhrb6cUWMmBTw6oLyigv0TMlUmgxZrSFzF9saCysYs7eO3X///Vi4cCFuvvlmvPOd7ywF8N94440j0q+WwdjDDz+Miy66CABw/fXXY7PNNsOyZctwww034IwzzhgDY+vYOpVGrSu3gbit2NpX1yLXTmE/7TAPJc1GKZAfoEHR7ctfuNxig1hoFCzMgQ0f3GKggdtgUtJ5//jAwY/j4rfMPjQwuj46d07IivUWl0XL+EDJr4M/cPuAzD+H+DVqxlL15WqKWehOMtY7+9GMaePsh40bUy6WC4jUrrRuquDcg6B6lecQxfaqptGtNNoLNXwCdKqmLVNS0zmyBgdoASht+OCN/vPzM/fP/w1QcDtnKf1nwz0z3Ph9dJOZBNhvf+jcZd82q7QRY9K6CtclUHY9xyY4fgyk25Y/oyStkWntnQPFqjpG3GfjEpkgy5Mo8xwzleeQFcdoAn7soJWvkNrE7tU0anWFqiyr8xu5EtfPdimKqgimFuaE3rsy6ixPBPJBMluD3f/NYBtuuOGw1tEeqLUMxtauXWtjsG677TbMnz8fQgjsueee+Otf/zrkHRyz3m2PZX/Anbvs2R/PibVNT/4XNGQC1W2EME29PlGokecem6CDt2fIVMRerl1Ko6OPPsSZB3+bkH3gIKmV2DRuuz28FI9P36cYLN2LiY5Fg4Zb7n/mLiZ/OWe5XJuubZdFFmbS0bKwRh+P2fETDHzwFSt/EzPOfoWMV8jk9Gfg5NuVmUHTXrNA/dB4UD8JdEKpUtyYHaA5uNEauofFd9ni44nbtuGfTIzV4SwZMZvNnjFzv7TdpnxNXSwexWXF4xRde158XibQ3dWwz1wrrvrJSxZZyQsTcygA6MJ9Xmbm+Pkb1zlnc3N7Lo7d9Z9z+hxeq7QQX5VZCtVZ8/YJWWHB+lWSMGHA3MX7USJGDqUKRrRduCxcFquWpRK1noZl6sjNv97ZmJtySKy/JR3XtbV8Z972trfh17/+NZYvX47f//73Nk7slVdewYQJ69tc481h+z32x36xYm3zD0HHgg9gzYtrUOs0U0ZSMKfPANXsy0tq53zmyV0ZMYasesShTfsRgpdwHeAr03O3SiqEXV6VAtV+uERDKwu60nm4PwJHXSovFS2PuQdjA5Rr360L2SyeTNAMjPYWlB/bz+3ffB9uzUBHfwFAnAEsgzAOxKxCOosVczFgTuiTK+uH2/H+cx05+l/XJgapHK8VipL6AJW7q0N9Ol75oqbzIpmDS0r44DQWTxWywfTZy9ys6dL5UA3K/lh4nrHfamzSYfoBOzFxMYn++RNwp2SWUFCYzoVP7lzMmQukp8+8QgHdX1rmx4IJ+ywQow+UGVQueSEziXYpUNM5OhvKK7m2XlmSDM3fmKHRaOCOO+7Aj370Ixvf/uKLL2LNmjUj1qeWmbEzzjgDCxYswMknn4y5c+dixowZAAxLRvpeY7burT+B840uF1MmWB29VkzIBPVGOc4jHORDIBezZuCGtxv+T2QCsHipRCb9TBeItRv2xwc3xECpvPfr1B8gHAM8PvPgjtms3aHIAOMuNB7DFjKQve3fm3GgFLJizSQMBmJ9XQuf2XHsVGj8d9MMvIbgirtrQ7DMJxFhtmKMbQx/tzbwX2uv7YEwwe5Y8WvlwKBr12f4fAacWGMOImPaZDLxsyhDdj00eib4s9NXIW96lvg+FGOmi/Uy89un8xAF4Byzt6b99a9/xUEHHYTnn38ePT09OOCAA7DBBhvg/PPPR3d3Ny6//PIR6VfLj+QRRxyB559/Hg8++CB+//vf2+X77befjSUbs3Vv0x9e2vRl/fLes/Dy3rOwsrOOrtd7jJJ4URaG9HpyrT22grsG6L/VgmoyqPEZPwd+fVkzEECzcBrgKPCbZtQDHdi52yceUM3r6Ll+hEHU4eF5WSOfXXHAi1iKMLOzN7dJbLCjtnmweBm8xc/bLwnlszbhMfpa1ltsH+APhLFgfFPZwbFA4YCcsOdQNbSNEyNmivoQAml+vfm2ft9Dxso/n5CZpWWZSGzBeX4tST4hSyWycWlTtjF0BxMrxu+NiUvzQR4F+FPyS18WqwUZniP1ga8n0MWrUKxpaCurwhMBXBvO/ZcJJ1lSqxvl+1QIzxVJ1wswzJVqaBt/RgxWZ0Nhdd0UbXexhdq6oYUkhs08N/TOaXQ1sGZNrdivuMcVYfudyMRmza5XJsTQ/L3F7aSTTsL06dOxcuVKtLe32+WHH3447rzzzhHr14BEXzfffHOsWbMGt99+O2bOnIn29na8973vHVH12jErD+hcu4hiZADzsqoXQogEzEwtP2WzJgGTRi6zsvuyL5OJC7RtZv1lNqg9KjWTKOe6yRraA4b9zToLs77Kxy7vw8vDxLbn4M5nURwoCO8Pd2v1dnweNzaU7Bj/7j6XGclWjMeK6TyHRFICZIB5Pqjos3Odue14DJknWeEN6I5VCq8ZB2r0nwM2zlRyqRJa74CItttTCTKZmMLWBApooiAzgUTlkJlEpVqBqinIuoLKXQA5gZwYcOaAT+Xw2CXqD1VwQB/CyuMrotDU0+DAjx8ntHYprEgxd0vKxGnnuf67/SyYZNcEMPetS5nnPoXLugZgJSxEkqC2to5VdYVVdV1oJvr3S+fF774Qd6XYL/6O6VIaHUkCVVPoqinr6jXsmDAJSkJA5WbSWalW0P/p4uiwsQD+obElS5Zg6dKlyLLMW77tttvihRdeGKFeDYAZe+2117Dffvvh7W9/Ow455BCsWLECAPDpT38ap5566pB3cMz6b9MfXor7dt0LAFCfM7dgBdxg0qVyvNTdwKruBnpW9xSSFrz8ix87BhS6PkXcB4/RiBmPCenLYiCE2uBFjjmTQMG9ro18QAV/MwFPtJUGmI0y6Ula8OLXHOT1N6A6xvSFiu3l5SFL57YxbcbZqVhmnN9ffwCNiXQ2c9s2Mx5/1OyxiD0vlAkJFM8dexZ4/JDOHRumGcjrK1nBz4J0n10coCvyTespHpEAUMgOuYlB4hjaigET1OdKewWVdn9+y8G5E4GNs3Q8EYCzOFwklu5/l8rx6j6zsXzGrOg1oPMox6mVt+Xths+FSwJwMXExiYgupdFVUy5GrWEyW+m6dzZUlIXVubkfrpam+W9KfjmtN4ojpOeAjAP9bmUyK6nPde2qLtS16w8Vkh+zt6ZpraFU+f7/7W9/G1GB+JaZsZNPPhlpmuL555/HzjvvbJcfddRROPnkk3HBBRcMaQfHrDVLE+PKGF9xYIMzNCRIarKcBFQN3ospiQS28ILHoang5WjjZCoCGxxzOFZfeVO0n1TM2LAQbplMErRnspjd+tvXdA4UM2pTYNusI/FGlZvyLVv+YXGv14gPeuMrJgnADBbOHURxXNwV5ZiFBJstXYTlM2b1CsxiLryQFSGgZIpA+9mcnNWhNnjmZOhe6gsghuuJLXWxQH5f6XMs8DwelF7WJNN5DqF8FyUHYrlyxybGIwTc8XMh5sploYbAiW9HywkcAEDGmKeym9Ytp+eTGDAyXkuT2GQqGUYleAR71qi/YSxYMyBtyzQFLlLalrYPy4+9us9sTG6rsLbLbsXQHUvPFS8yTiDMXCtXzkkHzy93bfJnl/rHww34d8ncyCao3k+CWNMwTBlNugyzZXTkAD/Rw/VfeH2QBavGwTQA1NfUsd7ZWDblkNgBBxyA733ve7jiiisAGLH4NWvW4Mwzz8QhhxzS67677bZbS8dKkgS/+c1vsNVWW/W5bctg7LbbbsPvf/97bL311t7ynXbaaUzaYpRYTZuyOXygohfj2++/x9SyY8KYje5yyRHKpqRstly5F2KYzVYGZK5cTcz4i50DIBpQeTFywAxolfYKZE1BNbQN4g+PS+fZX3dlu0zsi71WcyCIq+ETo2REZkM5BHjbxVkHv2/03wwc4XK3bawNwIHrELDR5zLg8r/TIBmCwvBa+udfvt+x7UILYwvD58ZphaG0nYosN/12faJtaILBQQ6da2Ru4TGvsXPy47p8hgzws/yosDhl+ZnzKlx9hd6ZUuV+hPfcHduXA0lkApmXATh34YfubwIv/Br09mxmolCjnz3X/J85x8ZvuTJLrn/hdSL2ndyYjiE3+6+qm3cRTRAJuFGmJm+Lt00gz55HBKzG3NPhfZXwf4dkJOa83tgYGBsSu+iiizBnzhxMnToV3d3dWLBgAf7v//4PkydPxn/913/1uu8jjzyCU089FePHj+/zOHme41vf+hZ6enr61a+WwVhnZ6cthcTt1VdfRVtbW6vNjdkQ224PL8WLe81ig7YbTKk+45btqQmw5cHHMimKgicQmQRqCrVubUU2bemYPAQjzeOPKC4tNJ9Z8V/e4aAIADITqFQrkJnAqn90W9FO2qc+Z64Fcv2JqZqYuhfSmp6GNziHA7hhCszxCOAtnzHLsmJAeZ8YSKPSR5xd46CUjLMHsTZbjRkL2w/jcXyw6O/L70cMlPHAd9o+BsqigftFTJnPGLoB1w3ufRcwp3PkA3HI0PD7G+trb59pW+5CDQVGAXgB44Zh9t36/Pjmf1mln1cw4CwhZ0RNUW+/6HZ9zlykd7nyPgRQy0DN/ywTwyy/uo9j0yfcfRdq+8yGyjVU7v8uOPsYgh6Vw9ZR5ZMpSqBY09BeRQoHoF07sbJM/j7liYr/WzWgj8cu0n0EgLTNTL5EewXtq3WJVRyzN79tueWWeOSRR/CrX/0KDz30ELTWOPbYY/HRj37UC+hvZl/60pew6aab9utYrXgKW4bJM2fOxFVXXWW/J0kCrTW+853vYM6cOa02N2bDYOGLe7s/3m2BGABUJ1WRdWQQ0oAcMl4UPMxUDMESvRjLbIQ/cFYOPajUv9jgGivNQnpAXPPMdzMVcT53LSy12SzjLJl3QDGbN4MDzdodKHR9VLkZqLirl9ZNuXexxyzQteHFod25mftgBlG3j2vPnXO4LGYhuCqzX70DthAstmLhdQhBHV8WY1BpXSJ9YdGYS5d/5iAmFnsUHj+MzYsxUHzfWKafG8j9epoxSRjK8iNtM9Uw8UthuR9+TM4mVaWLV+PHBmBj0/hhub5ZyLrxZB0OnmJMIwGRyUsWlWo1crDXLk1MZUd7paRdRscJWTu6D2sa2rsnfh/ifTNt8olaAdaZOj+fxIWAjgMxCvq3x6xp5Mq4O9cr8ddBFwkfAmbtTWB333030jTFJz/5SVx66aX44Q9/iE9/+tNI0xR33313r/s+++yz2GSTTfp9rCeeeALbbrttv7ZtmRn7zne+g9mzZ+PBBx9ErVbD6aefjj/96U/4xz/+gaVLl7ba3JgNg/Xlohs3uR2N7gZUTSHryCBTiVpnHW0TzOPg3Cx+oeZYsLZzs9ES/+XG1fy5cQBEmVjknqwx94PKc6Ch0ehqWDaCu9R0nkPAd2kQkPNmvfvt71Lt7QDhnwcxfS5DL/eENikeLYy3Ca8JWcgA8MLTZZbG9SGWCciBHwckYT9iy4iF4edqry3rK49janYusRikZnFJAGxGpe+OLEoYRazsEg0/++DPxTe5bVwMGa8JavoYmzjQshAEkaXFJIUrwwumEU9u/N5ApDuuOya/VpwN602rjfbNBH8u/G1IgZ/6wftFz09f7wi+vnOWcdFXFy1EcuhBLAEigcrNJKNLAeMrifc7BIA1jRz1SDgB4AvSysRkgK5plK8PZzZ58kfMaMJD4NlKWyTmHaOL/XOlrUxOyCqOVsuTZAiyKdcj8DlMNmfOHKxYsaLEbq1atQpz5syJBveT9RdYkU2ZMqXf27Z8Z6dOnYpHH30U733ve3HAAQegs7MT8+fPx7Jly7Djjju22tyYjYCpmkJtTd3EgXU3kHakqFQrnqZYrnKbiUSuSqDMpIQzdrON+d/oapSkMMLsL9qWEgoAl0bPNbnqPQq1tXWr+M1jrwA/I9HOopPEMmSr68pme1E8XVcToAjEQIBjGXa872472Pnn4s/S42DP9S8cKPkAHothCrdz24bHac6GcMDVVzxYM8aiOdBw+xm3tnueeKwdUC4Q3exauH6Hrkf3mQNbN8DnNkEkdCfTdvzcdJ4baQrpQD7gJCtCNoxXBeAAIXQ7xix2vajPdN349SDGjfYtu5jNn567n3e9HNCJg9D+Wsfiuyxr1rj51kIyw7WRCsfS+dffCNem9nmHd26hGzVc518z899LHqhQrcl4vz0XccW/hxTjxxnJMXtrWJ7nURmu1157DR0dfRXyc3brrbdiyZIl9vsPfvADvOc978GCBQuwcuXKlvs1YJ2xb3zjGwPZdcxGgdU7XSaRLgoqV9oraHQ1DMtUZFeqImA+tDDuyCzjhYcBaA1o2AB5vu+kexYBzI1Y0zmyHoW0TQZlkBLGJhmdIDNgFoHAa+vgLJZMgImpr1PEB2m/H4YB44yTSBJ0RVLeOYMHmELlmUgw4e5FHnPGM8F4DI3vzgsD58M+ORcwBw+x7Xn/3Po4wxVrK7weZZDVzL1VZvOabQMUQIcxOM49R/0sM3XhdQrZFH5s6Q32zk3HtcGofZNB6bMvxLhJldtsSDLD7MHWQQyZGZEYCQUOeLjLsyyw62IbudZZ6DpuniRRTmzwjrvf/sCdd2DSPYYdo3Yn3bMIL+7lT4QGapStTDqGVNCcQBoBQbq+hjlzIsohK8gBMpmLeQPCCgEAindBkSDRiCefUJxrJhKgkdtapWmb0YEj4N3oaqCLkhdGs40F8A/KqDh4kiQ45phjvBh3pRQeffRR7LXXXv1u70tf+hK+/e1vAwAee+wxnHrqqTjllFOwcOFCnHLKKS3XwBzQnbnnnnvwsY99DHvttZcVSfvFL37hocQxG502/ugPldgqmwWmNerdDa8OIFBmLfggRrNvPgDRQEP6QGSv7jMbGxUZnMRu0cCzpqFR7zFAaHyhlk0AiQZco+rtgvkBp6c06Z5F0UFq0j0GMPn6SQnGV0wMjJWtqAjPLUsDDr3kreTFfvsXQOyu4Fh0rXwQyAOPZXCN3PV17YT6V5671vvvn2czFivsX2/LOODx3ZJue87+hYMqbyPWd6DI3JNODb38XMURY0xNnqQYKGicJwPwtqwrPGAnfTdrWdTYslQ1bScmLtPT/HWzTELu5hSRc6FjiiSx8Ur8WgIosTSJdHUceT3H8HqJxKney4PneedFwGzLPyxGTefYbOni6DVu1XiySazKAf1meB3I2D0ox5qVn2UO9ux2BWMfPjcyAWMqnftZF8yjyKTVg6MYwIHUuF3nliRjtSkHYRMnTsTEiROR5zk22GAD+33ixInYfPPN8ZnPfAZXX311v9t79tlnMXXqVADADTfcgEMPPRTnnnsufvjDH+KWW25puX8tM2M33HADjj76aHz0ox/Fww8/bNM233jjDZx77rn43e9+13InxmzdGTFhBLiETJArE9CaCIG8ZjIgebyFz5SUdacAWHbAZYiZ2W1nQ2Gj+Yeg58bfYXxFYPz4zFO+di/wHKvqqgBKhr2gYF0KzyG5DIpDowGQzMULme+ZSOzsPQx0pixJy0I1NFTDgaewKLNt9847AOYO4lYGLuV1zWK96No2c/3xcyyzZWW3VW/79caQ8e1DdxEB51iGHj0XtE8zYBgKhvI4OQLf/Jzoc+ieI/aL32tq1wV++8cJleNj15okXLh1K40s95lDzr725ZoM48Aojo7LxHj6ZQV4oEQAWRFWq00isdnEsXgyIZ0yPYGuzllzmJhx0262bNVFC9E9e66dfPG2+eSHElh4uTDOFGcCjFFrzha7Z8JcG2ifVeW/bRVcb9qGLFcauqaQS+FYz6G6MMNlY8zYoIyYqu222w6nnXZaSy7JmGVZhrVr1wIA7rjjDnz84x8HAGy00UZYvXp1y+21fGfOPvtsXH755fjxj3+MNHX1vfbaay88/PDDLXdgzNat0ew5jIGh+pT2s8otC8ADbUPmh4wPTJTlSANWo6sB7Le/N7BXFy30ZrtcD40YAC7qCBjAt7qu0N3dcNUC8twq8PO+hjFk4TJ+DiarUtmgfg44yfi+YqGrX9ZsNs/ZmRDQmLqGwmNrwkEoxpw1+0+SGc0AAXfn8b7GBmY+6NE14nF5/rZ5cP4+Ixi20aWMCjopoceOzZmn8FjmXJq78ShjNbzmsfgk1zd/wqGD551YQv49dm3JYkWvid2i7WMgygrhsv04S2brwkpTV1FWTHwbZ3P5b1rP3Q/1OXPtMYmd6ksQuVUj1x5n+eiY9LwZV7Eokg7CWpl56Xl26xD9vYbvH5+ld/dPJkW2dZsfKgEAqqaRSGHZtVzlXszdmL157cwzzxw0EAOAffbZB6eccgq++c1v4v7778f73/9+AMBTTz1V0mHtj7UMxp588knMnDmztHzChAl4/fXXW+7AmK0761jwAfuZu2MoWB+ABWo2ozJx8S0ui6rM8HAXkcpNgWd6GXd3NyAzgSyVXjKArwvlBjU+MFH5E8kEI2vaiYXyAXW7P97tsSH0cibWiUCfG1xzjzHj7jl+XgQwJ92zCN2z53qyGbHU+DBY2o8Fc8ud2j/seg6SQkDDt+H7hPegvE0M+JRlOEI2iv/n7lPeT379Q8kDfq4EvAn48mOS64mesRDgNbu2MQDqu1ATD4Tx6xPrZyg2y8/VPUvcRRhnGbl+Wsh4EYjiFm5DRiCOT0goXpJLbNAEi/+GgQLM7be/bXc4wYbvcjXLeDB/GE/pT/CagX3/maLfSwiK/UmW/+zqPEciBWRFFBPEBLqmvKoj/J00mo1qUw72b8yGxi699FJUKhVcf/31uOyyy6zK/i233IKDDipLOvVlLbspt9hiCzz99NPYbrvtvOVLlizBDjvs0HIHxmzdmhOr1FG9JAD2pc4L/1LwMZCDlLPD4OOYa4sC8NOaLol/8gysiaksXqjl2JMqqyNpXuRAJnLvpb+qkJ1olwL/qCk7AHOwU9OuaDLXYcqEsECTGKoQBLRL5/IkuQw9d7+oS853gfqDOnfPuOtUBhT+93LGWOx7GAMVtsvZJX6NCXCH582Bjg+cOUPlg5yw7xzw8UEzE+XnyJ1XHIAR8OPHJbYlTAbgyvm0jCv10/7jK9IAIF3Wwmrm0qM4JP9aF0dV7v5aQKZYDFNxT2KlxbiobK5cMgEHb6oIM+CF1sl0nhuaFD6oy0QB1up6YEHCfZgL1jfHHF8R9hkLJw507cshD36b/Flzz57/2zX3l9ouT3rCZymRCdAosmC7GqX3H0+AGJWWCGCwmZ9jYGzIbJtttsHNN99cWn7RRRcNqL2WwdhnP/tZnHTSSfjZz36GJEnw4osv4t5778Vpp52GM844Y0CdGK028VMm+0JIgZU/vn6EezN4y1WORJp4CZkJTy1cAKjX82I7FzMTc6lwxsm9XN3gkwmj52U/az/uhpzbLrA3L1LUtW2fvyd1ngMNN0PuUjnapcuABLR9QVcXLQT2mmVn0RwYmdk1lYvKMb7ikgRctlduBXIpGy0TCSaMS1HvUfh7TwNde8/CZksXl1g0shCM8qBj0/dyNlmMneLfQ0YodNP4x+fZerwtf3s+KDqdML+WYrNj8P6VAYwP4ni/6NlZ08ghE2IH/f7F3ac5W2c+8xqKsf7xOKXwHAikpW0SWuXIpMSqomIEXY/YhIOOx6Usmt0z6iu1E7Jc4T4kv5BIYX+DIYtGVtcauicvsWrcnUnstxhm4mfSPYuwct/ZFqBXpYmFo98a4CZpMdbUTeIcS02/VbLYNj676Zcb4+A8ZL5UQ5v3TQF0wxqjyaEHoXHzrcN0tcbszWLPP/98r+u32WabltprGYydfvrpVhytu7sbM2fORFtbG0477TR84QtfaLW5UWuTv/IpiAIs6F70qNYnC1/sIVNlYrRcLcpEJl5gPhAKkrpBnLMuvpvMvJy7lVO6T+Yd4NWf5IOba8vNgk1R8Lz0Qgdc+rrKnSjrln9YjM5Zc1CVhUuIuVd5jFomhA2UpnixcOyjbLBKe8Vk1RXuks5Zc6IDBK+xSWCBl3Ohc+LB5D446r38TwiUQmBF28SADZdS4Pv0FnzujhM7ZlzdnrbnelTkxiJwHgZcu3VldyBty8E/P4eAILLXlmIXQ/ejTIBqtWJZYlmEFMmehn1OmoFPYsXC2C6ZuWdEr62XQCjplfFYR8BNdlLhdLBkJqCVcaeFlhedc9cl947hXJcCYOKVpFg/XBaWFJLzDgAa2gNHnJHlvw/qP2fDuHGmi7NiZp1rzxWq57Vvc6ChbdyYildoszIZBITlwfOgbrltgFdjmGwsgH/Irbu7G9VqdUD7brfddlG9MrLexGNj1tKdUUph8eLFOPXUU/Hqq6/i/vvvxx//+Ef8/e9/xze/+c2WDjzaTbEi16quUT3i0BHszeBt3FGH2cLgMpM2OJ4DtPCzamiPfQD8ma0/KMblGmqa4scckBAFyCNw5bS4fJcUDczcCOhUFy3Eqrqy5YxUnnvByTWdu7I0jMlzyQIOBPKBk5eNmrxkkQNSNQfIOWgIGapYfUw+yMQCzF275WWxTD0CgRwM+exauZ0QwPBr68eDlWPxfNdluR1+XXh8FsWJ0XYEpsZXEo+14rFFzrUI2w6dH7VP7XBNOn6OtI5AUtombTA8AdK2CW3IOlwCEgB0VKQ9D7r2/FybJkgUQEymRr+KBn5+rUiWpRnTBZg4TgKI4SQp3I6LnfJ+hcXKKRGnN9X64bD8ttuLvrnfbCZM8opxYyal+9nM+PqQDStvm3jbkhl5Ej9xhNcZVTVlJ6OJFIjVHm1mW537uX5vOygbK4c0JKa1xje/+U1stdVWGD9+PP7yl78AAL7+9a/jpz/9ab/bWbZsGR5++GH7d9999+Hyyy/H29/+dlx33XUt96ulOyOlxIEHHohVq1Zh3LhxmD59Ot73vvf1q4L5+maqpqCVftOxYtwFSS9uPkjwlxBnu8g4E8OtHPfjlgmZ2MEwjEmijKew/WbGX8yT7lnkvZyfet++djvSHfNdRu670TlzelDNABKBnVzp0oAWP2f/e7gtDULhucZYgVaYjN6AWG/7hNuXv5djyZq5VIHmLkNax7NMOejqy2QS7hev/EDLuEBwXyDISLuY30U8IcO/LyGrlUiBhOpKFqCLW+jqt65E5lbkFibX2HYi21rWrdDJk5mMAgnRB+M6XMbdvCH4cs98eZnfRpyZ5e3H9zGfKZCfS5bwjPJmJdtidXU3PuFIG74CAFt/7eNRBnPMRq+dffbZuPLKK3H++ecjyzK7fJdddsFPfvKTfrfz7ne/2/ubPn06jjvuOHz3u9/F97///Zb71TJM3mWXXSySfDObamjk3NUQoy3WM5OFGj7FUPCXOwUMAyg0tyibsjz4hsDDts8Cq7lbMZEC6fgUFDPU2dVgLj0gHZ8iSyUmpNIbcAGf/Yi9eIkNi4GQNQWzx4PI3ezctEeDocpzjxUDjD4TYGbY3d0N5ib12aDwGvgxdYm3zjBC7jsHb725x3gbbl/Xd95GzHg8Tcxq2slr8HZi/5vFytFx4m5L/4/EWkMWijOq3GXYLv3r6JixcHnxVwAxVVNWsJUzgLpghStVE6lB30lyxO93/KboPLeAit4P1E74XFTaK6hUK+Z/ewWyUrBpmbTZkNw4QDDtS/uZrCoN61dpr1gQaEIPtJdZaYHaMLopYyYW3mmTb/g942Kw/DsH2fy682WhZEyMBYuzye655O5c/p9fW7r+BMg2OfEj2Oj4D0PXzLgw4ZjDscmJH0HP6hrqa+tYJzbGjA2JXXXVVbjiiivw0Y9+FFI62ZN3vetd+N///d9Bt//2t78dDzzwQMv7tRwzds455+C0007DN7/5Tey+++4lvY4JEya03InRalrlHlqtHnEoVF2Z1OiaHr1ZN4FtfMKRqBcv80q1gka3c8Eaal5BK+OKa3Q12MDtu6L8uKRy3IYzB6CI9aIZ/poC5BEzBSSQqSzkNRQQmWSSa8m4MxOsaWgsnzELU+4lIFYGPmQuXsWdg3GTCTtQdCldAmLuuPD6TW1QJh/g3JZ0PHLNuWxRIFbGJgaQKD7PZ93Kgcnm+KGIafO4oJirsxmL586R78//J8Hg54M1XsSa9qO+8nYcGOWsWw7mEYbKTUmjVAioQp+M4oMoQJyW2QG6ImzsD4m4Ur1TGqgdg8WSVWQCQEDWldfHZtcNgAVCgHlfkGRCNi4tynWZbbKOtIhLcr8HExuWe3FeSfCZB/OHRirySdFvaler3IJRigEFzHM+eHWlFu3OO4CZblJDbvrQJa1yHlfpi8KGLuL4JNDP9uWg3oH23JuAAYAoQjYAU/ydXzMpzbUdd9RhaExoQ714b9L9anQ1kMgEjZ4mgWhDbGOFwofGXnjhBbztbW8rLddao17vP7AOhV3zPMeKFStw1llnYaeddmq5Xy2DMdLP+MAHPuAFr1HxzVaD1karmZeaAjLpZknFi7emciQyh1zPsm7oZWJeOL7WDuBccb3FbfkDJRDKEBBQISajrjXQ1bBB1MQcEdAZX0mg6qo04ISuTgrq71KO7Xp8+j6Y9uASbPfHu/HMHjMjLBUHNySO6twmda1Ra5jMvkmR60VSG5lIsKbBwYcDdtzlqHLg7z3KMjpUE7EZIHOAxQ0UYZwWn+WHLJB/veJUFfXL/Xf9bQbcmiUJUJ/jzGDcZTkx9ZkRgMtdhHFpiXcNyucMuKxP85nU9vk5he48X8bEZFASg0TGGZJUCXuPRZKgs+GDM3I7crd1rnLkWjtpi0xA1kxQPgEjGrzDWE3AgIKsIzWTkrqCpj7JBKpmtkmkgCDwyFxsuUIBwKTtS2IZN4mkmOjUdL7uwRhcd1XuJz+Ezz19B4BMCPschEH7ISNMy0J2lcz/nZVdye6eCAds2Tim6go9q3ug6spMHBn4TqsDKu88ZiNo73znO3HPPfdg22239ZZfd9112HXXXfvdzoYbblgK4M/zHFOmTMGvfvWrlvvV8pN01113tXyQ9dFylUMjB1g8QCKdwKLMJGQmsG7mRAO3Sccdge7Omld3j2bkAGzmpCvAXRQJZ0AsZF+cObaDs0P04qXvNe1EPn0BTpNRla6p2361ZxJZIQwazoDDTDferx3vM4DsuT1nWpbLuTJ85sq45Jz6PzFs3JbPmGUTC4hV4edNRueqctjtOEvkZuZlgBmyROYcwdoug0vuIo61ya+Lc4f25r6MtV0GaWU2wndZ8vtqWI44UxcDm372pN8XalfnObJUWsmUkEEsDcBFQDZvg4CUyJxrQsjEsiNcToLkIGhyQn0kKQzASEbkSkMWlUj84HlhXZBkmtGNucptQXKRSchU2kkS9Ss0AgrE3IiA1QsnNLnXn9FlHNTyZyKccMSWldty/302108ESYUBW3S9uYeAzLJkwX1LBL0/FVAHEiEgZA4lE2i9jq7vSEXiKwABAABJREFUWDblkNiZZ56Jo48+Gi+88AK01rjxxhvx5JNP4qqrrorqhjWzEAsJIbDJJpvgbW97GyqV1kF6y3vMmjWr5YOsj6bqCrkElIaNKwHgzXzXB6t11qBquhQfRqWPSFhS1bT30iYgETI53BxA8eM8wozCEJSE7rXVdQWV55iESqF/5sdDUbkf3g65Df/83n2x8wP3ADBuGM6OERMS6mBRO5OXLGp63abcu7hQ2k8s00cgzvTFubyaZU9S/+l4XMqDb+cPMM1ZqfAYzv3aN3gK710YrxbuG9uezofvQ+AxzqZxgOhc39xFSct4m5wh6c1VaJmOJAG0EyoOZR3IVZ7IBJX2SonNMGyHhqoZ4MJ1p9BwblFqWxZafRrOnWh+Pw7Q8exbmUqrmE9uSQogp3dL6FKUqQF9hm0j91kTRF0Yb5tYOG6h/MS6sgl332VLloU1OgFEf0NkoUszBFuAe7ZSIQrxXrM+ZMrpelDsLN0DVQhSA+79zpkzV+1A2vdmrjXodVlfV96gJMGgC32PuSlx2GGH4dprr8W5556LJElwxhlnYLfddsNvf/tbHHDAAf1uZ6ixUMtg7NFHH40uT5IE1WoV22yzDdra2gbdsZE2XTBjFM9Ebg2timXrajY0CKPyR2GwKpnLpvQ1jYgVIyDDB1xiQbjkAMBVuOENsrTeMSd8MPb1t7jxQd/XNvODcTnQmvbgEvz5vfviqffti7fff493Lv45lBXtY0bn7zNYJBzr6v0ZFyh3K3J3nnPL0rWLsVCx5Ije+hhWIeDAKhywXOJBHNyFbcRYsLBP/HghuHLnlbNt/Eb9IPlygfHegs3p2CLx2wD8ZzyswZpIUTBQLhYrkQmkTJArcj0ZlxXF9RKAIpbLJrnUTIwRxYK5dwQsa5VIpx2WCNc/kUlkRR/SagWqrpCIBPVCXZ908mUmkHVU8caKNfYcCJjx+CY6NwENkTm3pNne/cZH0uj5JjclZxpVTTedVHAg1qxNwJ/Y0D6UXMHZLpFJDxQD5jpTNmwui+spfDAWPicASmEew25jzNiQ2YEHHogDDzyw5f1+85vf4OCDD0aapvjNb37T67Yf+MAHel0fWstg7D3veU+vQmdpmuKoo47Cj370owGLqQ3WfvjDH+I73/kOVqxYgXe+85343ve+h3333bfvHfswr0acEOv+x9iCjTvqsEgUj7NEGPaAx6/YMkgF49KM9XDbuPU1nWB8xYGBdmnYq0yIgJniL91A+LNwn9bZ7JaMs3Q1bViwetEv7prc+YF78Of37otn9piJHe+7Gyv3ne2JSwKIuiWbmWH6EMSMJbYCQJfS6Fh8F1btNYuBMDpXc45hQLrrTljQOu6CNcf0t6Pr6LuHeeBz3M0ZthWea0zOhPodYwL5QMkZPwJgIciKDaq0Lwe1sX5TPFdd62hlCDP4ihIIA2B1wLiLklsiE0hIJCKHgvIYEgrkLu8jkAZaZXx7GvTbJlQgpIDIpJ30VKpmWTo+BdYUun71gq0Gy+Zrr6A6qWrrKWqVWGYn147NA1ByvwKwsWecqRsJo/tf19okY7BnKJEJZO60CGl77soma+aKtM9eRSArFPZ5OAZZ+FwkhQQK28Jfb3XfdFmXUZGodAsXYj204RpPR8oeeOABaK2xxx57eMvvu+8+SCkxffr0pvt+6EMfwksvvYRNN90UH/rQh5puN5D4+ZZh8k033YSddtoJV1xxBR555BEsW7YMV1xxBd7xjnfgmmuuwU9/+lMsXLgQX/va11ptekjs2muvxRe/+EV89atfxbJly7Dvvvvi4IMP7rN0QWiimFHlWhcB5i7min7Q9f++Zcj7PxRGArU8Liw0Oj9uNGP1A6w5e+OLmvrlSlzchwvQj4MBE4flpAZo+5Wddazqblgh11CWgu+j4bNR3HZ+4B4PIHBGqzfGJbSOxXfZ8yYAR67PyUsWWY0yAJ7grB+Y7s49xl7x6+32d4yAv4xfS840+rpboZuUH58zCPxahAKq/D//C/eNAbtwIPUZ05AVK8eJ8XPkrkgdDIbk5uLyDWQ0iFqdMeFrjcXiqEQRBxoaZ1e0ctmKbRMyyExaoEVuRwO0DGiSqUTakUJkwjIsuqbQ6G5AK23Wj0+RyARptYK2CRnSasUG42ul0TYhQ9uENrRNaEP7pCqy8alJEChEZkUQm5Yrw5CZ85F96qytC+O/B4rDo3sKOJYz9pyFvwOzLv5bFpFnwcTDlhlTmUomL1K4oItrRn9kLv7OgfSYptxw2kgUCh+q8XQ02QknnIDly5eXlr/wwgs44YQTet1Xa41NN93Ufm72N5BExgFJW1x88cUexfeud70LW2+9Nb7+9a/j/vvvR0dHB0499VR897vfbblDg7ULL7wQxx57LD796U8DAL73ve/h97//PS677DKcd955/W4nEcLyNxTAKaTJ/BuF8bAl4zQ8fecWulm1CoPP/UG8pmG1uboUbeP+ywRW0oEy0ULXGHdd+fv75W58FiwEhqadNEmghPkfY1Om3LvY1pbk7tBWxqSV+86GymFjyzijlsw7wJvd07FirsXQheLO34FdxzzFXYExUBcabefa8Nm83uJyYt9jgKsZM1E+33DfMuvGgb6pFahL/aT7Z+N9MokMsDp4ZFxnyxXYFp4LigZQzQbWEMTITCJVuc08pkoVFJSfK420I0M2PrXxXiITkEogr1actEThDs1YjJquUakxU3YnG58ZANfehp7VPbb8Wi5zVGTRthQGcE1I0LWy2wOGqqYMi6YT52bTGrl0ArSQCXpu/B1G2lyCinnPULWDWGYp4E/6YtmTZjksqAMoucp34ZJrMimOY8V5C6AVhnAkbKKQ6yIGr1hG7Bh9BgBdU9HJ7rDYCLgph2o8HU32xBNPYLfddist33XXXfHEE08Mqu3XX38dG2644YD2bRmMPfbYY6WUUADYdttt8dhjjwEwrswVK1YMqEODsVqthoceeghf/vKXveXz5s3DH/7wh+g+PT096Onpsd9JO0TIBNyjEstuGo3WNv8QgNW56w2E0YtdF5lnFAAbY5wykTO2iZgqvzZeuB+PI+PBtxyA0HcuI+FKMMXPUSYkAirsS5vqUnLjLlFqq5mbLLTlM2ZZvawX95plNcNiGZqrCx0lnuHHwV8sDiyc2ZskBR888TZjRoDLD2SOn084kMVcQO7Yza5K2J/Eu64h2C2DNMZ4VMoB6f71cduGLknJ4n7oO+BcicSgCT74snVcFFXAuAJpuVa5/Q7Auiw508aBmGlb2D6oukZSgLpEJGib2GaBAemCKZkg7UgtqyVTgbYJbYV+oTJMX8HapNWK5wrVKkets2ZdlbTMXAcBVQMq1dEVF/TqPrMxeckiW88VQACCcy+DlUxWfI1CkSSQHKhXgkoHBfOYSBPDR2yl2TgpMiAJzBrAZoAzjw8T0EpDSAGlTSyfvbcAAN9duc6A2BBbqJHV1tZWivUeyHi6PlhbWxtefvll7LDDDt7yFStWtJQF+e1vfxvbbbcdjjrqKADAhz/8Ydxwww3YYost8Lvf/Q7vfve7W+pXy7/af/qnf8K3vvUt1Go1u6xer+Nb3/oW/umf/gmAofs222yzVpsetL366qtQSpWOvdlmm+Gll16K7nPeeedh4sSJ9m/KlCkAYGdRiRDIOlInxkizbDG6XnhklIEVM76cJC3oc8w9wwP5wzI2RrwR9jvguxiI0aL9UyHsYOvcnP62KjfiqkY5X0cZL9Mvvw4iuTP7shiL08xInNLs5ycSuD6bvwl332W3M9v6bJ77c/UZueuu2THMuZYLapevR/n8m7lxerOYm7A3C12eYd/4uXN3pKxw/a1iUGOsGc+6JSDGGQkrT2DdcC47kYwzHlxdnQSbKfzAxGHlnsspEYkBXIVYK/1VCjciJfXQny7Al8xk4Wo0LsW2iW2WFTPJAyZGrG1CG6oT2rzMTpkKq86fVivIxhfHLNxolfYU4zYdj3GT25F1ZIaNK9ygpgwSudjMZzrv0ZD1Tcxyx+K73H2V5bg+Jxvkn0PC/tI2af8IlDdri8B4IoTNaHXHCYGcsMwkATKzj7BZuDI1rkzBXL+mLmk8DnGozYi+Dv4PAKZMmeKNezGWayDj6fpgBxxwAL7yla9g1apVdtnrr7+Of//3f28pm/JHP/qRxQu333477rjjDtx66604+OCD8aUvfanlfrXMjP3gBz/ABz7wAWy99dZ417vehSRJ8Oijj0IpZTU6/vKXv+Dzn/98y50ZKosJsTVLOvjKV76CU045xX5fvXo1pkyZUmTPuNkwzZpzrUctEKsecSgUHFCMzdpKTBnR7U1meAQuYm4uzpSZ7L544LnKAZnzYtDE5JSZomZq9RRIT0yYz7iZtmPsGG/btd+3GY0xFP00H2o6x8SUAKS2IGPlvs4dmgk/fmz5jFnW9VrTrhQSv4b8OOQCpvg27tpTuctwJQtdk5xdilns/sQ+x/ctM3e8b9y1HGfcysvIpcjXc7dTrEg2uZzI7KQCQTZlL3FiNBnRtFzKYN8EUiRW4DMRCXKdW5cVr1kr4KQzDAgQljlTLEtZZhKyODaxNolM7P66YGuoKoCJdXPAQWYVVNozdK/sRlqtoI5GoREoCykMzWLNDMBsm9CGztJVHzmzcZj77e8muBEQ7YElpeLLC2s1bivehv88mThAYQG36ZvwngGkBgA3GutIgT83f4NtAwCWL1/uVcvpTQGhlfF0fbALLrgAM2fOxLbbbmtFXh955BFsttlm+MUvftHvdlasWGHB2M0334wjjzwS8+bNw3bbbVdKDuiPtQzG9tprLzz33HO4+uqr8dRTTyHPcxxxxBFYsGABNthgAwDA0Ucf3XJHhsImT54MKWUJtb/yyitNmboYPUuWsNgLjULkr3gHj0a3ZW9yG+E6ioPhSQkqGPh8dyNnW/xyPwYQ+LUs6fIYEKKsDARtw6UeOKhb00Ch6eWy98gVZ7Y12/A4KwIoIdDYbOlivLjXLIyvOAkKmcDLvozZ6plzLMgraZHtt793Hio3+k1Gk6zsBp1y72I8t+dM+53O2V1X341b07CsozHf9VmOOwsBVXO3ZsxCrbhwnR8f5q/jrkS/UkNigSNnzwADtEjwNBYrFBbPpuLOMkkgmfRBKXanAB+5dMHbRqPLlzdw2l0uDsxmEZOCfQF2E1HuX65zaCa2muscuqYh2h2z4jSrNDQDzknBQEt2fqqmPEYm1zmU8mM+dU0VwrQaqtYoBewTm6ZVbhMD6p11JCLBxG0n4u+lsxgFducd5illoMzXQtTe+5cvB3xA1ayqARfGNe/vpGkb3ELNMU8epG7uObmJZSaBdQTGhtImTJjQZ+nCgYyn64NttdVWePTRR/HLX/4S//M//4P29nZ88pOfxL/8y78gTdO+Gyhs0qRJWL58OaZMmYJbb70VZ599NgADVtdJAD8AjB8/Hscff/xAdh1Wy7IMu+++O26//XYcfvjhdvntt9+OD37wgy21JSuicKcYyhrFj93MbUeftc0/xH+BF59jjBcNRKqmgwy0BCkEVK4Z2+EHzgO+i41/JqDBvxOL01UEZ4dmBFUFupQGxXeRS9QN5q7sjQFe2m5nlguvdqTfvhGd7Jw1h/W1dyA9oXjR1rRC56w5djb/4l6zsFURdC2VA5+rZ86x12jC3XeVGDrnms2t/tnKfWcXhbnzglWkc27mmm3GNrljxPaJbU9sWpgNG7YfAjEO/Li7uW9GzW3DRT/RcIW2azVtt+Hq9965NHxJCz6ZcAAv9+KzwvqytIwP9gTawmxpYkHywAXMv5vkHm1ZKQ4StXZ6X0IK5MIch0tQcHBnQSBl6nEWrlbI6XTXzfNXzUzMU00hLeLOqO88lq5j843jN2W02J13APOMayi8/oAPylRNeYCKMiCBOLvmtQkNjVDGwhkHc04zrvz7SYSRIEmEud9a6eikYjhM57n/+xlgG/21oRxPR5t1dHTgM5/5zKDamD9/PhYsWICddtoJr732Gg4++GAAhmWL1b7sywYExn7xi1/gRz/6Ef7yl7/g3nvvxbbbbouLLroIO+yww4jfpFNOOQVHH300pk+fjhkzZuCKK67A888/3zJ4rLRXbDCf7tKQqUAegJvxR38Ia37x66Hs/joxW7OuiHvghXKVKgeBO+BVHvRjAfxknAGiAPXQxUZtOPekk3ogxojalwmxZkkplq2Za27KvYvx8t6zMDGVtj2qGdmb1bUBBwTE6HzyomPE7rlg/RxAgu7Zc9EuE7y41yx0qRw73ne3vUYExADDptX2nhW5zs6F6zNRsPU+e3NFOhaznEHKP3MgzePbaF1vx+Hbm23cPWoGAGNmhUC97Fznyg7/A24wIXbD0/5jE5FwYsLND8iPD/x2mc5tGSOZCguYeOkj0/2GV/5IaxdTBsDOlGXBcFHwOJ14s4kTmVYaEk4PTWQSKUwyAA8yt5NH6lt99LM2tbpypYpkEtwb947qjzeCJ22UvAGMKY0Zf5aaVTvgLGZWJFaIrnWTXp+jFc67eRut2FCNp6PRnnjiCTz//PNe/DvQf7HWiy66CNtttx2WL1+O888/H+PHjwdg3JcDCdNqGYxddtllOOOMM/DFL34RZ599tn3JTJo0Cd/73vdGHIwdddRReO211/CNb3wDK1aswLRp0/C73/0umgHam4lMQlbMTLfSXoGuaUACsmAxR5Pga9v8Q/rcJhHClfJQOSrVCnKpmw4AXCvLfPfBEwGhrgK8kcuSq+UTeHAB5uZ7uxS2fQcUzH60/8RUWCBmFO/N/iFIMaDMuTaXz5hVEnWlgTy9ayHU7Ll9MmPEEHYVzza1OXnJImC//V2mXQEewmSFTCRe6ZlmMVSbLTX9JBcnv77cRetAj5PCIDAYGt82XBZ+jl2jcFk5CxNNwRIHdn5MmXsOwrgw125ugTV9j/UtzKDjLiqPEakpW66I2BASanasip9xGRoxaEB5cA51yoQUUDVlgspFAq1NYD/1jQNFihDzzl+52FQL1AoA6Nyn1G+XyEBMPWmpyY4KVK2BXOfoWtmNVc++gh3PPw7PnP7j6DmOBkvvWgjAAAU97wDkt9yKyqEHlbbjFQcAfg9EcH3jcbD8Pg9EH4zHjomilq+QCVBbN8zYSNhQjaejyf7yl7/g8MMPx2OPPYYkSZCTXiG9e/rpYkzTFKeddlpp+Re/+MUB9SvJ88hUthebOnUqzj33XHzoQx/CBhtsgP/5n//BDjvsgMcffxyzZ8/Gq6++OqCOjBZbvXo1Jk6ciLv2n4lxUnovYR28mOnl+4/LrxuRvpJVjzjUgkMaXLxU/iLpgANImUr7Paypp/Mcq+rKU67ndR5lAoyvCKRCoLOh7EAM+JmNFKtFGZI0cG+UkRuQQI2rP0n7b9ImbXuhS5T2JcDn4q3MvmEQ/6v7zPZETSm+qV0KW+dyfEVALLwTAFCfMxepEFhdVzZTkkzP3c8ev6ZNJuXKfWdj0j2L0D17LqqLFqJ79lyTMVa01x+j2n1+DUu3no8rBGrCMlHuXpWD+cPPHOAQEArb4a5J7pYkdzQHYSGI4m7mGMDKUgnV0KU4uFg73NI2wwo1ugwTRQXBY6r7ZJ7+WM0VAwf830uYZcd1pQDYuK0QmCUyQdaRmf6NTyEKVxYHYwTSYiDAlVzyE4YAp9TP+xxjbYxERgWJFFC1BmpvdKNnVQ96Vtew8sfXR6/LaLbKoQdF5S/8gu5+iAU3zjTaskesJmUYj5aIxGZOxuLPQjemyITNhO3UGrN/vwirVq3qMw5rIEZj0vMvvjTo9levXo1tttx82Pq6Pthhhx0GKSV+/OMfY4cddsD999+P1157zWqj9lZdoK8SSNyGvRzSs88+azMQuLW1taGzczTl7QzOdJ43paopY4q7IUarUfIBB16m9Ioq9b23jEoeCyaTxLoVpPIHXAMEXOYkgTinQ+VrUwEGcFFMWLPYL3Jj1nRu3YzOHefcqDGbvGSRjesyWZI5MiFQLViTdgYSKOCfEhK6Z8/FqrqCyk2WJI99y0QC7Lc/2qVwhZALsEbMj567X79AWXWRYQfAQBkHQiETxssM8XM3oLT5ccJr1EwINrZ9DBD668uAKvxM7F5ZY8wHh81cnsQsGb0ozpLkHtdk2SQ2gaLMSV4zkowH3RMY4lU3AABF/FcpNhOGKZepAYdoUnLJ9ZVr/QnwuDdh+10AXyqRxAqFa1W+wQImfkkA0PVGNPlgfbLGzbci/aCJweGF28l16QBZ8/MkoB3LgOcgzLmeNaQs37sS0CtAs6prJMFzOJyW5zla5E6ibbzV7d5778XChQuxySabQAgBIQT22WcfnHfeeTjxxBOxbNmypvv2VgKJ2zoph7T99tvjkUceKS2/5ZZbMHXq1FabW69tpEuMAEUNyn4ULQ/1lrjFdHeaufL6oz0Vao2RLhnFzpLLk8d8meXxouHULm0TWui+e3EvPxbr1X1ml9xe1WIWzAdbPXc/VgTd/VGfAT+GrFnfZGKuaeXQg6I1FPsyHrMVX+9itNy2Sa/3Jty2v8bd07F+NtMY89uIgKomzFfY55gRSOL3rmnAtcd0NYsDijNWzaRh+O8tjPWiCRpnUXStzKbFLJ5so0sJBICJZaO/0JwUhlwvWbFmFhZ97816F7t2enL8P1B+RsIyStFjrSOAo/Oh+Xurm1LKxndNnjwZL774IgAjXP/kk0/2um9vJZAGWw6pZTD2pS99CSeccAKuvfZa5HmO+++/H+eccw7+/d//fUBCZ6PW2CyU/pr9UDc+4ch13r3QYi4a70VSiB8KNkjwbbibRySOzQqNWJg6y2gkF6GsCGSptPvRcrOfc1tx0MIFPqk9DojoeATmSCLDB3Gub2Qvs+D4yUsWebFKMgFk5pgGUoQXSYKJqbAuQKqPudnSxZAJ0DlrTnE8B9KoqLkDbUXdPUmCkBVUDj0oGgMTM2LIQuBE57jZ0sXevXGA1mfIYv/5NQuZRD9Dtvc++vs1i0ErgynOmAJ+3FgI2JqBWGLEyjFcefBfe3/GnelPWug34bZ3pY9K7VON2iYTH1LOB8rMlS6OTyxXzKifmumSkRaa0RpzbVNSQQhIAQM0KtUMlfYU47dYv91QvPavD8T6P5lodr96S5ZoNmHl/8UAYs7GbHTYtGnT8OijjwIA9thjD5x//vlYunQpvvGNb5RU+ftr3d3dg+5Xy27KT37yk2g0Gjj99NOxdu1aLFiwAFtttRUuvvhifOQjHxl0h0aT8ZgPwP0QKYVdSAFkI/vDbPZSIfeJEZWMBLPGYizY8ipE04LfQBGsjqKmYK5tG4kUkHXF9MdyGGmKxGZUrmnkkEmOdim9YtsGdMUGe5J9AKhkEiUBuAByP66NG8WMAWYWm7HYkVzlVhFeA0jN1cKqujvvl/eeZV2CVPrImDk300/Tjy5l3Kg0UHL5hWTeASZzrAhYbma9kij77Y92mWBNgzN99J8AVc4Ace6t5+WT3Dm45INwn/Ix/MD+MJasd4asvEwkiWUW/MQFfxsyK9mS56XyOTrPnXtY9Z2hGHNfaZUjL1z6oYsrrPdq+ycTC+RERDoh10b/S9WU906hmCOuR5aoHInyE2tUXUdlNiy4TIW3TFYzpFKgbcMNmp77+mIEyKpHHBoFVjyWrJm8RcxC+RKehRq2D4SJIn4WuqysO7mjMWJr8Pa1r33NhlSdffbZOPTQQ7Hvvvti4403xrXXXtvvdpRSOPfcc3H55Zfj5ZdfxlNPPYUddtgBX//617Hddtvh2GOPbalfA0IRxx13HP7617/ilVdewUsvvYTly5e3fOBRb94PW3iAS4ikKI3hUspHg4WZYbzkUaxUTGiJpJIqJkW/XSYYXxFerBi5rSjuJ5GuTBLVBEyF8EReAcdumaB5p3DPKX4eX8aPReuIXaPvFIBP/1MhML4i7PfVM+dYdXwyAg68np8syptQOZlUCNuP8RVRyGJw3bMy6IhdUl5EuJXYQkoaULn5PHnJIkxesgibLV1srzdgGD9yz9K50XXm9yzMbIyxZZytDNm48HMYu0YMYm/xZ+Hp13RcM6mZS5Nv67mWI9u7MkW99KdmdPYa3Y1S/KRWuVlPcZZau5JJBZsWY6ZiGdamrFpxPetGjLXR3YCuadQ66yW2jvT/uJhto6uB2pq6x6xx16otMK6NlIWJGRPQtQZ2//U3ml6D9cm6r7+51/XE7Dd7t/HgfTJRVDjIi8zX/loiEzsGCLHuYsbG3JQDt0cffRS6APMHHngg5s+fDwDYYYcd8MQTT+DVV1/FK6+8grlz5/a7zXPOOQdXXnklzj//fGRZZpfvsssu+MlPftJyHwdF6UyePBmbbrrpYJoY1UYFgF3NNGnBF2VHpdUBSbUNqXF3S2jNBqTwpWXZG0vDJ6hWKxhfcRIT5GKkQZ+SHGjgVw2NRlcDiTQxWZxpIdDQLhNMLFyZsZqKVBOSgAJlS5IRuKD6dB5rkucMNLn9KOuRjlerK6iGC9DOlfbqJNK5tssEHe0VVKUoFQqPGZ0fMW2KxQrRYJH2s5TWpHsWQSZFlmWh+t85a47nWjWFl8sgyMVx+aAsVtuSX2vuxiyfm/855iKmY3KXLQfUYUwgAbLeYsoAw4yJJLH1CsNtPKCWNxfG9IBT4bbMlXlm6wTKeP1WFrBv3IXN7x3FH+om2ROGfXGsnaorA8q00zwTFrSpQqcscHcycG/jnQqWxrJ3NYVGt9FN0lrjoQ+d0bTP66Px+pLh8mbvOiqLRbGxXFDXrPfb4nVHezMuOjtmo9t23XVXq/Swww474LXXXvPWb7TRRi2XeLrqqqtwxRVX4KMf/aiX+PGud70L//u//9tyH/uFJHbdddd+d/Thhx9uuROj0USS2MKwodFLkgO1rb5yNF44r/91rYbS7Esefro2vZwsO6P90jExc+ChiM0aJ5Aqje5uIx7Jg8dFwLioPIcEy36q+9mOZOSyNECsLPJJ7cXrM5o2VM1kMpmYLZd5WC2YN26k5zXpHpNVaeQyjLQFGjmAgumgwbc4nskYNW5LAo/8XAEEfTbrKHMvFlSeyASqnxmWJJdR1xqYY2Zs3SRBUpzzZkuNqK0PWGHj3rzMz8LoWjkgFY/d4tvQd9qe1pXPH4jpwcWYN8CJ1HKLVQPQeV6UE5LIa41SX2P7hUrqBJikjExGagp5RAiWW7O6tDwTk7NjuqZtjFciEsvCEHAg9yZSB8RKxwyEaE0/HSMvUwGRutc4ZffpegOJlHjPr76GRz5ydrTt9c24ViLPsMzDhw3wmEzh/Q5NHVKzTXNGq1ngvmVdAatntq5sLJty4Lbhhhvi2WefxaabbornnnvOsmSDsRdeeCGqtK+1Rr1eb7m9foExns7Z3d2NH/7wh5g6dSpmzJgBAPjjH/+IP/3pTyNaHHyozRXfLQMXzQjFULdoJK1ZPAtQBmahxUADDWaVagatDKNE7ApJW+Qqt2yPSNzsXzWMgr2vhZVYEMcBEy8wzt+rNLCSy5M0x4AClChfLLSmqWRVAlnIUZDsBAXGh7phgInDaBQlWYQ0/WsvGAdVUzZZIWR4HBvkuwpVniOFm427ayqMumc/zSUMhBmq7l69us/sEuD1r6H7z1kqWkaxYir3dd9ixnXm/FixvAQGycJs1FhSCGfXyut4jJQpL8QzMV1/fCYtHEzDLEcy/vvmshdUpzUR7p5plYPPzWK/N/P7MrFhqm4qd3AXmaopC8gSkVhAQHIapNxP5Y20zgk7FPubt49JGBDRMAmXhKCgaw3sceu3cN9BXy5f3PXMhEygdG/XvX+B+SSoS/eAx41x8N6sLBKXwNBN3O3DYbr4G2wbb0X753/+Z8yaNQtbbLEFkiTB9OnTozImgBGF7Y+9853vxD333FMSwL3uuuui8l99Wb/A2Jlnnmk/f/rTn8aJJ56Ib37zm6Vtli9f3nIHRqtV2iUqacW63fLIj51cXIKVIxkJCwFj7IVki50HP0fHqsUBmZCJnY0afbGymyAEHKqmLEtBQIsGexqMTeA+HS+BrzQPzzUqK6Jwh/oMDgGCTBi3JXpc7A/1lYK6K4ceBJkJ9Nz4u9K1Wbnv7CI2LkGuyi4LP3aKubrKE3Ko3GRE6rn7IS3cGHkQkN2KGCwZZ5DC60PrS9ctALVknDkjoCcTFMK84fb++cYsFpcWY7z6Mg5w/eVMr4wJxQIoMZa214HbvZn0BVAGZDx6g559y341YcfC9uhi0QDPjdxiuXbZm+TyEqwMOX0H+07DqQEKCNolZs/1vdHd4zFn67sRO9bbpLKkxh8Mutb922QwbnrsJg/0QORrxmzd2hVXXIH58+fj6aefxoknnojjjjsOG2wwuASXM888E0cffTReeOEFaK1x44034sknn8RVV12Fm2/uPcYxZi3/Sq+77jo8+OCDpeUf+9jHMH36dPzsZz9ruROj0cit4Ir6FvR4uF1EQHIkzNLyMmkaCEiAzH6PzJO8AsrKFF+mVP+wFA3V2eN9yJU2sVFKAJpU933WJXx5ubJKrgQQUASYp9JcX5mgWnMuxC5VHoBlRUCxYtKJTCCUqTNKcTXjjjoMIjNtrr7yJgCwpYs6Z83xZDmqKrc1KmNq9zEGCDBxXjIBispZHiOmGrrp/ZEHz7PF29Utt6Fj8V2oz5lbHDO314bLf/C+cLch4QEO4LhQLL/GMnHXMwSYnPFz5+r3O+YCDYGgO3asIHk8Yzc0ii8rg0sH8PsyN1gXbC50aYIVBtCTWda3EHjty5yqfwEOak7AFQCDXc4IgNn3CgMM9Nuy5x2EUdhJU6HEb+Uy6g3MeuAyLH7v5/rs82i2RCY207WvTFluvYZlRHXaen+OwmSu5m/cobU8N3+DbeOtagcdZOSFHnzwQZx00kmDBmOHHXYYrr32Wpx77rlIkgRnnHEGdtttN/z2t7/FAQcc0HJ7LYOx9vZ2LFmyBDvttJO3fMmSJahWqy13YLSaqufIJfsRS1lkCzpNovAHvt3Zn8JzXxt5MNosVgkAJA0oNe3FYAC+MjjXa6L9m70AefkWvt4NmmYZMWMyIoXgZBcAkosA4DGObRMr6FlVs4H6vN12KZC1C9TW1M29KVymGiZjkmusmVI6AhOOOby4FkVJnbaKAUsL77RACnPmIr1rofteBNN3K21dnwS+uKkcBbByWapA4UKbd4ArzXPnHXYfAv5eoHlOWY+iOFd3Pem6xWKnwtvkQFjcHRjuy12/3HhSBB2f9ustuYG7OPmxeKIFnUsshpCfb8zINdmM/eqNFStv2ywIn1SLTaC/hj8R48CI6/lRv7TS/kAeFiUvJkL8mS+xapbpE4UqvwOOXMGftml01VDv7H5TyFz0ZqHQrhfnRfcK/vUj4y5KbrGSSCZ8RTgpEmkmnevChiIb8q2aTUnWaDRw9dVX47TTTsO0adMG3d6BBx6IAw88cAh6NgAw9sUvfhGf+9zn8NBDD2HPPfcEYGLGfvazn+GMM948mTvctSRkAplKJKKIHQIsKFM1bWMPRgKI9cdtwhX2uaBlqNvDQZWLGRN2Rp5IYYOneR09+i+lATbciK0wwfiO6VI1DZnkkQHYgYVUuCLPWuU2K0rVnTuNs26JEB5bJzIJAT+tnQ/K1NdGdwNpR4b2SVXUOutIPngwGl3mPLNUQh56EBpdDXQ2FDoKTaHqooWoz5lrg+R5PBngQINTQxeW9XLXLIc4eB7ULbch/eDBJl6t3bjG9bwDkN92uz2Oc9XmDFT5rkHHdiWey9Lfpsyi0TIO2Pxz8V2I7pwduOK1LX0WrTnrRUAsTNxoBsi4JpnVE+vnVN8LNSjirei3EFZiMNuXgVWz77FYNDKtNBKVOF3CoE+JNEXFoc2zKKWrgRnrizmettI63B3LsyppO11voNE5eEHK0WwhCGsWH+i2D66nzgHp38fwXRF+p4QLDobHbPRbpVLBtttuOyCFfLKVK1fi6quvxic+8YlSfc9Vq1bhqquuiq7ry1rmV7/85S/jqquuwrJly3DiiSfaWk5XXnklvvzl9T9INDRvYC9mowacUX0y1fRHvy4sFgOVSAHBMj0BnhIev+VhFqVrywE5Ai/NZ+tFQWRylxZshayYOpBZaqRBRKHnlaUSsojVyoSRwwiBGB8kG90NGzvGQUS7dFo/BHZEkYAhU3cdiDkwbkthpScSUQah9u+2272XbV37bFYINHjMFmW2hTFjZLaA8cHz3LUURd8Zw8FFYrl8RFiUm4494e67CjaNVz3w5SsIfJELltrlGm8k+ktxZWXtON6WY8V8Vy4HjAj295MAwnZj15fc3L395pyMQfk5JeBF9yQUCqVJRyn5op+SJN7x7IDtAyb6TBZKKcQqAFD/7D46D9o1WZUh4BNpxWqPrc/WscAUXeb3IdQVi11bXnkk9szEZC14e81iY92yeBLFcBhlUw72761uX/va1/CVr3wF//jHPwa0/6WXXoq77747CrYmTpyIe+65B5dccknL7Q7I2X3kkUdi6dKl+Mc//oF//OMfWLp0KY48cuRLAg2X9VZ012kDaex4/nHrqktR08oFBAOclSlcZMHA05s+WfmlJGyJHwJU4eBCM0suoErabO6zQFqtoNJesS9TkSQWfNFATICJtJV4Jp3VnSr2o2xOkhXIOtKmMT02YaGmoOrKK6DOxT/p3CqHHgR1y20A4IERPXe/KBME+GDCKfHn9ju1Lwqx2dBkaq5T2/xDvPsRY4Gcm9e5Futz5iKUHgFQkiJxTKQDZ6EWGYE1AB7go3UExHibDpyF2/qlm0KLlUkqn69bx1ky/hyGz3lvYqB8O7N/uaA0/UZi7ZRqIPaDJeFgkZTfnTo/17/j4CwsseSESrn4ayjXIKSArtdRW92JPW8/v8++rQ/WGzAWwXOQa10CYuWyWE1c38Xkm+6TsCB9ZLTF9BD9vdXt+9//Pu655x5sueWWeMc73oHddtvN++vLbrjhBhx//PFN13/2s5/F9de3XhP2zZNmM0xGsRkyrXgxVq0oNg+38VguVwbJrEuksEyAp1fEwZYQkBnTI2PrHMBKAAiEM/rYzNG5DfyEAIrdctvTcndsHnxv/ksv1dw7VlESiFyZja4GKu0VVDdM0ehuoNZZL17OomA7nKK5p7kGjXrdH/w8uYN5BwAyseV3XFC9b44ZMmySYMDLj8fT3nk5IUoXg0SbUxmYnjvvQHrwPHR3N6xOW3hcw14xl+Wdd0AUMW4ygQWy9SKxgrNjoVFSBf8uK6bUVbh9M1ckMXJmm/Ixyts712NvbkgqhRQDbba+agxcKeWtC40/p0A5eN8+kyqmNebc9WGpHbPcsbNxhqU4X50DpHdXxDnx9TYrOgAXSQDE+Hk3umpodNfQVnUq4euTdSz4gJ2YkXmlqpTqE2zzEIzQeLyYZdB5DJmCXSeEe67WtXsyxxAE8A9JT9Zv41JdA7FnnnmmFDPPbaeddsIzzzzTcrv9AmMbbbQRnnrqKUyePLlfjW6zzTZR/Y31yfhL1Qa/ZxXHOinfBUH7jJQRIMu1SeW2L+iigLFhzJRltMLRMRHCZpbRYKQCNfEQiNF/zkaQGCtAsS8ue42DDc4QJVIiUQSs/PMhzSfrLmYDcNomrUuJ4tAMeyeh6kXRZdsHs4+ulYs9c8FXkhig60euWSsy2fDrddKlpBqc7rvJpiTgoOGDAB3E1iWiYq8HV3unvo476jDojszeE4q3i1UgsEBm7n7eNSN1+nKsmfscugudjpu7577oLXd1omTclcpBYxhb11spJX4OBPw4YAMouNq/d6HJTDJXu8tajG1Pv4fQDOvrvvdHLsPfPym5EoFyMH+zd0kiTO5eb2yOF5wuBXS9gdoba9G+8cToPqPd3D1ydXY5KM114v1e+MRGs6SG3uIA+X2heCIbF0bvGBHuU0yixqQt1ivjUl0DMSklXnzxRWyzzTbR9S+++CLEAMIa+gXGXn/9ddxyyy2YOLF/P+bXXnttUAFyo8GENC88GbiSEimAunsp83px4QA7UqbqChISKMBVJTOfgb7dKPQiy7VGbAZvQRcDYZwxDGNwaAQmMEIvUplKKCi3v6QYHumxGyZoP4eq5Z60gUThymQvXRokbT3O4iVMrshQwiA0Umcn8MgZMu42CgPLOaBJ71qINfvOtliXAAOpdseOnd92O9qOOsx3YdK2cLpKudaotBcTAlPxxt4DrXKg4QAKBfw3C3AXQQB+KoQFj1xY1sSamW1MtQPXRpg9ScDMfDbgtJnFgB/vW9jX2HZ0/mRWV6rJesDPznWZh6LUjhRlQMXZL7fM/e75s9I3U+OeC8EGe83S3cJjm365Uj5hrJKZiLlEnUQ6Jrq+uhNqAKrgI23jj/6QBV52QkYu3mIbj21nLuXQZCqslAWFMWgVf89xS4r3FZ+c89qn62oS3lupr1baGLPB2a677opf//rXNoExtJtuumn4RF8B4BOf+ETLjb+ZTNUbkKjYFxxnVwwrM3JArBmwEDAvaCvFwTMNmWuT6P7wvGi70AggeTPQAjR4A0hYvoSBDcm2I2VtAPalF5Zw8jKZyJXJsi2NHKZ/vFAIV9XjbiohEyCT1j1kWbBiACC2L6yjSICDyz2snjnHBr93sED/ZF5ZdyZ0WcmwjpPtCx/8CyZRCuNuZSAvBDFJ4Vq1zC4SqIa7vxxUWnazyHJFIcTLdde4fAWPCYuxWgTMfKFe3yUaAiueLRn2P2SgmsWVGVDePF6QxI05iA3jzPj20TYC9yWC41F2NTfnZvQ1qjT7TP+JcQmzKl37PijsLfMSMEH8Wmn0rFyDuY//JxZOW3/e5eH1jgEnmQnv+YhNaiyQiijtEytWzqB0WnQ8C9qsAxKq2KDXTXJEjsG7GcegGCCE6JXN7ItI+sIXvoCPfOQj2HrrrfG5z33OKvkrpfDDH/4QF110Ea655pqW+9UvMDYUdZzWN3M/Wje7FJlhYlSt4QBO8eLNVY6/fKX1Su1DaQSqcq2Raw2lUfTX3L+KTKAUvFkdNwJFHJB5rJco0/zNwBcHabx/AJCrpMhOzT1tLQEXbEvuCIoJSWSCVAqIAhjl5JIFuaaUPV69u1Fi7Oz51bRFBCVQRi5NctnCxKzxeDaRJIWuEAcZLiNQ5TkmL1lUvje33W7uwaEHecCdXv5rr/2tzRgDygDEumWgrSgpzzYldy7ta89NJpbV89gf5iYUSeKBOieTYf77avdlRgzwWbbisKVYMp81i7NhMUAZux69sRmhcDHggC4BslJsWazmJGNZKO5P2fghtz0xLhyACekD6HAZtUFMXuhCc6ER0pbsKclvBH2OxWOaNgybWl/bDQzAfTLSVgZkdG/LgyaFYBiWm7+bXLKEF9saGXfDLHRdvGNE0J4q1ie9MMBjNvrspptu8r7X63UsW7YM//mf/4n/+I//6HP/f/7nf8bpp5+OE088EV/96lexww47IEkSPPPMM1izZg2+9KUv4Ygjjmi5X2MB/L2YkUeoQBQvM5GmSKRARWs0ANRrPahUK4VOVdpne8PWT5rhs6BWcm1xt83qK2/C+KM/5IBLBJCFbBYt498BlNgaESyPgTVirrgciLedNFma3O2j7WAqi9lpofVWU6itMW6XSrXCgm0L2QK4IOxY+rvHvoVuw2DyQdplmm3LgQYPdCc1/5i1zT8EyIQVmaX+0N48G5WuGBcXduBWWwZISseMEDgT0skz5MUzQH2PaXUhOL5EAjQ0HCDjLFf5mYnVm/SuX2R1fxT3mwW7836H7Gcz46CVZ0jG2okxcVzDqj8SCdQO/x9+Nt/Lvy1fmqGIZZKAVg2riQW4yZdk5Y7C+LdEGq29XGroWh3111/H3Cd+gYVTjy71d7TZxE/Nt08bn9jxWDB3vppdSzaJKaR2rCsYxCo6gBwG8AsICEEyJ+bdRu8UmnwLeywBqHXDjI2Jvg6NffCDHywtO+KII/DOd74T1157LY499tg+2zjnnHPwwQ9+EL/85S/x9NNPI89zzJw5EwsWLMD73ve+AfVrDIw1MRHEIVhAIgTyNIVUGvXOHvsCqLSPHBgLLQRTgD8YhTwnD6znL70QlITWLC6mt+Xc60KyDzwWQ8gEuXTxNGSUidks65ObWd687xxwhlIgVJswJgIqoC37FFpfAeitmouTKU/dnQhvxH0XADHzn84hsYCMjMcucaCaKx5k79qPKf7HjGHjyLqBMQlhvEvU3dxXG/2I5wq3pf/Nnje/D/1jnsJg8H7t089+x8zGjnV2IW1RjHI0WF+lj2QmPfekJ2At4hpjQgrksgyuQxDdV0zZOrN8CMoZjYGxprbHHnvguON6l6d69NFHMW3aNAgh8L73va9P4PWnP/0J73jHO1Cp9A211j/Oeh1apZpBZBWILEUiHUuWdlQh0goq7WkxM5XINhg30t21bFgYqK5Vjvp/32KXcRqeXJrhy46C7Pn3cD1vhz7LzAnOhseLZ2M6Ud1KtYJEJAXT5QNC0t6SqURarUTjgkxShXD1BXW52oAo+kixadzVR0KgJAabK5NlqYo/2i4VwsumJP2tvhiinht/Z6sEGJYvLlpJ/eDXOLyvMRNMUDcG1nh7HITZhAeZeIMaF4EFnJuWa7uR+YAN3vWhtmIgLBb7FXtewu2jsYwsk5C0uXipoMFYONA360PsHFyMlwnS50Csv7pk9Pvg1SQIYMVkdnJVxIFKgUTSPhL1zm7kjVp/TnnELVY3kswynHRthdOTM9ep7Fr02maMO90T+pOFODU9T/y58vtAiRdjw+j6bl1dXbjkkkuw9dZb97rdrrvuitdee63f7c6YMQPPP/98v7YdY8aamAUZTJ2dvtMLrlLo9uh6AyIbOWZs7bW/RfWIQ71lfODmQIyMqH3AZ8YA5p6ULnaLvsfbKRvpepEbwdbdS2WJEeOfbXp5nfWN3HLFoKRrqigvVI6HoizXXOWo13Ov/ZDhoPOWmS+qGdbZ5O1rxhapHLZuZaw+JbfqEYeaQOMCAKoaili4chwRPz4vR6XqirlnKL0foESDUkJAkbGaK8eYCebOoZJPOndF4DmjJlFmKGlbqoQQk66gZakQ0eytMFC/L0V9oGBVm3iD+DXrD7ihbMlwGT2DYUwlBYgTEOPB4H4f3TWMxYnlKgeYThX/z8E3LZepsPvb7Ej2m7LtsixKvi0l7/DrpGsN1N9Y2+c1Gi1mM0eDuDmKo4snWZjYMP/6hUx3mfWiCV5vWeRa5UiLqh55L+/F4TCNHHqQ1NZg938z2KRJk7wA/jzP8cYbb2DcuHG4+uqre903z3N8/etfx7hx/SNfarX+T3zGwFgT48wMzSy11pBgbE5qWDNVa+DxY0ZW3ZoHeANOI6w3AMVdkn6skv/yT1h5Fo/+l8IDOdzsMhYADxj2JmHAIZy9UjHlXBWxZcIBuNAq7RWPvTNB7RKQLikgl+XBmbtsic1TxW+G19ekc/MC5RPKqoQtFA6Yz6TrFTMCQ7lSXjYqt85rfgPAiFyGVRQSmUB3G+ApM3OXE2FqhVKGpWW5mtzzsOSTjTFjnlACuvw6UVYjUJQjUn6Kvcpzy5Tx5SHg8q5HAMjCDMfoNWSCwFTnM3Z+fFkziyWl8AFW1QvZlYxYWh1lWmL1JqN99+KS4lmzMdZNKy79Sr/JgJVM469xE+dU985R1xtY+8rK6Paj3UhjjX9vZhxY9VWr0mznx5Jx49mxgm1PIQTrStoiHwI35ZiyBXDRRRd5YEwIgU022QR77LEHJk2a1Ou+M2fOxJNPPtnvY82YMQPt7e392nZAYOyZZ57Bz3/+czzzzDO4+OKLsemmm+LWW2/FlClT8M53vnMgTY46IwYMcD82mRYleuoNyLQCBfPCyyZ0jGBPjSAowOKMWKxXjBUDCGw5iYkSKGLBqkgFGt3Ng1T5y4pcC727cAzI4wxDrnO7r9Is21BrJFnFS1HPZQIJiUrV6f0IGHDWNqENWmnomkalPbeMkVY58lrDQFVS7Cb3TQCO+KBuXSH2xWsKlXMgZrddeGfTc1577W+NZlImobsa0dg9e85FfznYICZM0boChKqaYkBPG7AbJGGQaGUeyRwz1yGo4EDtFUXhSdtMqxwpGw5FklixV16mihf6Lh2viZ5YOAhyUMY/xxgNN3EY3KBYYk8i7wCzPIm60PrDkIR95Cx0b6wbrScR597OlQsX61rDhFqkaXGOGrU31uI9v/oaHvnI2X32dzSYB3ilm7CF7lm6ZlppVLIKotmTfHsCvDpHmsUTK0KjWrd8/7FC4euXHXPMMQPed9GiRUPWj9BafnstXrwYu+yyC+677z7ceOONWLNmDQAT2DZYZdvRZKWCu0JAVjPIrAJZzZBOGIdKNUO2wThUNx7ZgFj+kqFMsUQmaNx8a3R7NwCIkqgtmUyFzRqyEh+R7ZweGEs9Z8KUzYwAHM9MCtPXCXBwVo6EeCvtftxYQu2xGB2ZNi/iS65SHi9liwp77RZtsWMONAB9zS9+bePUKkV9zoEM4ATMuOuEx0aFiRfEOPFamDSgJ1LYjLPQQt0zHutGbVSliR/jbs7QyA0ZZ2nLy3kyiQz6HF8eZ6d6y2LsMyC8iFGk44XXh5c54uchi3hJ+t3ELJZpzNtt9tvp76DPWVWS5rHuUO1i6d772/UDjAH+dQ6vMf8DyhmStF9pe+HHxbpt+x4WRwKAUTblYP/e6nbrrbdiyZIl9vsPfvADvOc978GCBQuwcuXIscYtg7Evf/nLOPvss3H77bcjy1xdkDlz5uDee+8d0s6NpFHRXm70YpOpYQpkNUN14wmjInifjAbeZoyY2648Q6eBgIMwgGaiSdN9Adh9ei2qXvQtBHq0P7EvgAFSHBQZl6S/PTeZSQhphFBpxhyCPAtKmgz+3rWQ5UQEmhX3xoD1ZauvvAkyk8g6MlSqlV7vky0uXrAhPHib99VlUJoBiDNK1G8K/ubXwCZcMKAW3mfjEvQpNSFNncpKuwOUkl0rnuDA93HtspjEfriOwnPl7VAfw6D/MnsRz8RsljFMIp+xWEpuMfdXCATsuTYRgu2t/WbHMvGObqLkt+u7bCvVtmJ/I2+RKwVVb6DRVcNuN5zV6zFH0rhAK+AD3tJETLqJmPkN+O8AwZ4T2kdrVw0kZuHz1t+SVcNl5KYc7N9b3b70pS9h9erVAIDHHnsMp5xyCg455BD85S9/wSmnnDJi/Wr5aXrsscdw+OGHl5ZvsskmLWUZjHaT1Qyy2gZZvMhsLEcRQ5IrjbSjikp7G9KO/vmEh8PGH/0hOyBRP5uxLZOOM0J01qXIs/YKxonPKkPWgl5OxEzQMoC7J31GwDEIwgN6fPB2L9Hy4EcAohJkUPJgXgskZeG2ZDU1ieGwAITLlBQgpDeWxC+U3tzt24qtvvImiCzONHLjNTMB2OuQMl01x9z5CuKh25HrlZEmHb8e9joFTCnd60q7H9HgJXkUoA5woKdZEW/ajgMxOgZnbH0GzzFhIUsWPp/0nw+kMfaN3/O+JFxiFtOnIgvBQ2/H7i2OLLS+to1lk5KZ74pJuhh3pa43sOftIxvvGrOJn5oPgCbFuQemTaZk4q0HfPbaq3QgXbkpQew5Y8XiIJsnbZVdmJyVXVegjAL4B/v3Vrdnn30WU6dOBQDccMMNOOyww3Duuefihz/8IW65ZfDv94Fay0/RhhtuiBUrVpSWL1u2DFtttdWQdGo0mEidvAKlLsu04lH+NOOsjIBuz0bHf9i+sMjoBUWB4H0ZgR8+A20G5DhrRt+jbhY+QxUBsMpkCYQBDvCk1QrSjhQylQ7cUUp/sZ97Cefl4zUZfOklXalWbF945hqBEv7Zc4s0mTkP1tJqPGRz7bW/tZ95/TuZSWTjUw90WXdnJCNWqxxptWIBJ8Wa0flYuRACSATQAnaMJzDwgceK8xZxajKTSIv+JQV75oLunavbyoZw97NluWIZiYnfzwAsxtgr63JmwCzcthkIp75wpja0mJwEt1DCQrAJELe+AsvLfXNly3gfYuxYuJwSkew51OvQtQZUdw3v+dXX+t2HdWXN3Ly8fqeZlLmEoEq1YqUtCHgBsGWmKPyBg39u4XVrxvTzSV2sesOYjV7Lsgxr15qM4jvuuAPz5s0DAGy00UaWMRsJazmAf8GCBfi3f/s3XHfddUiSBFprLF26FKeddho+/vGPD0cfR9QIiNmYnCLmotJuXLQirSBpGxlmjFK7SQKhLzcHf3k3CxQOBwen05W7kiJWEiPx1nFLpFO7pvUh+OLb2jgQkQBVoGd1zTFdSrugXegCTCirQm+PJ42Io6nD6Zgak42pPWZNgrnliqB6biFAy3XvLrVW7bUf/L9e15sMT+ce9hTAZVH+KTPq6pY9k9JmnvLC7QRmKMM2PA+6LqpmtKnS1Mlo1P/7FjQApB882LalWJFyA5y1PUYijKtYZhKqcK9SPUyezakaGmjkkFlqQZYqkhZUrfycArCJFnwdna8UfoakZQGD+Sb11cYLRhmteCwat8GKuxJbGVrst8St2cAfZt+KtGKvR6O7p1jHM4+Vp1Oma+tGRb6/RpMryfpMz6llX1lMo8iKGLBChkQpH7SZNv2JHBm9Z+j5tjGY7Nix2pUDYVQHY2PZlENj++yzD0455RTsvffeuP/++3HttdcCAJ566qk+dcaG01qG9Oeccw622WYbbLXVVlizZg2mTp2KmTNnYq+99sLXvjY8s6vnnnsOxx57LLbffnu0t7djxx13xJlnnlnS8Hj++edx2GGHoaOjA5MnT8aJJ57Yks5HzLTWUPWG/dNFXcpsg451SlFz2+j4D1tmIRFJEUvlXuDjj/5Q032tbk/BkHC3oq/XVXa/kBHDZZkuUd7WMlaZKDFLjvFwbBzNZKl9yoxMx6fewBeyXIlwrsyw/TB2hFyxgIlBs+7ZVHhCqQTEOJMiU+kxVsNtpBOlmzAnsaD7RCb2vACWCQrHcNF2nvvPXnefJZOpRNv8QzDuqMOcy7gozi7ZfU0sc2z6RHFkzQCHkAnSNhbzIyjI3L+X/Jh8X35fPJFbxoY1255vk8jmMhrcehPcdeLFvkyH1nkJDPA++Syuk4gxQDr33P7e5CgCAHKle2XqaB9ddzIXVuxZGyCm6g2866ovN21jXZvIhP+O8RhNKv9lmFiRuXeYqhXC19q5NsNr05zRb5ZwEcqf6HUOxACTsTwUf291u/TSS1GpVHD99dfjsssusx69W265BQcddNCI9atlZixNU/zyl7/EN77xDSxbtgxaa+y6667YaaedhqN/AID//d//hdYaP/rRj/C2t70Njz/+OI477jh0dnbiu9/9LgBTMf39738/NtlkEyxZsgSvvfYaPvGJTyDPc1xyySUtH5OCXWk2mStl0sSlKPTFKna7vKcL+/3ftbhzp6OG7qSb2KTjjkBS1DcUzD1HQda9qVaT8Rd8M+HCcpq/7wIM2S0ueGn3sQOmQKISbzv+QuVuIXohZh2pffER6wUYpkEX+4nu4n5kfpwb71Ouc2hoG6cWno/rq4Crb6ch2Tkapm14XJXNjLM+4fE5qykpnb+4/y4BgjEKBZOIQosM8F3Uuc49QEDnDwC5igSwF9pxQvqSE9R2Wq34MWusuDZncLJxDgQDQK79eqFJAOKpFiPvi5BGzkUVzE7oZuUmWR8NiwirZRf2r3TOLRo9O1rnHjuWBAN7aDHGmiQtjGnPRdYMhPHYMAL2MVYtVxqqe3Qq8vNnir83DKPpwD/gGEhVL96DxHQJknYpv5/8wvMsZAMApAzuQTxez1zTiGbMmI1a22abbXDzzTeXll900UUj0BtnAxZ93XHHHbHjjjsOZV+a2kEHHeQh1h122AFPPvkkLrvsMgvGbrvtNjzxxBNYvnw5ttxySwDABRdcgGOOOQbnnHMOJrQY16UbDaDNqeonUkLXG1BFzIauNcxLTmjo7rUQ62imZMEBcxfyF5aGjhcE7MN4oHpYFLlUSLc4jqfMrrTnUuBGhY7D/tv1RSYlP0fXJ2JMhFXlF8LobVkhRmnUyrXOPcAVXjdT6kdbVs0r1q1z6wZUiuKYzL6VqsCqn93Y0vUcrK2+8iZMOObwUiZjzIQstNcyaVX1CeDaYOc6vCSHRDKAzUCdgaLMzVe4bBLlMzQC5Ip2For/EktG9T9N5QC3Pbk1qb+SHhKYygGAYb5QU1C6aL9wUycMtAg4lfzQeEA7AW1u7pjNjeuKNY0h6idoI7DIgV9YhNpt6//u6PdA65rpbYUuS9PvWAa0cXfXiTFrIh47EhayUYJNBukZp2uZdaTWUyCgobUDYokUkHDJOmTcZU5tkVFYQ2gj4QXhpjTQCwHa7zbGbHRav359raR7XnjhhQPuTCu2atUqbLTRRvb7vffei2nTplkgBgAHHnggenp68NBDD2HOnDnRdnp6etDT02O/UwCfcZv4elO50tD1BvKsgkZ3D0RqNMfqq9ciXQcx/Jue/C9QnJVSPrihZb3N5kOXZIzlajawcIaKf09kAl0zDFZarUDVtTerDdukFyW5cUL2ICxaHStTomrKujCo9AlgWBlaV+9uWNekjUmDQJKZF7rXJ+FKP9HxaNBvBvCG21ZfeRMmfmq+jSNSde0zUkEmrBO9NKWjQp01YsBypaxMCA3oZj9tgRmty4rrmUhzjV0WqwM3DiCw+wbz4hcyAaSJMxMygWivWPV8DsQI/NqYnSK2i4Am6rDnlogcFZvNW8QRFjFqzWpQ+oyUByFL20XZqQAkue3jLq/Y8SkhgAst91evKgSSdN8SyfT5lYZsAhg4M2YFgYsSbqq7B2Fw/0ibnVylfvyelO79YJ5LI7GiaiSk7KqQ2HspnaQL4MqMAWXQatbzmMVIIoTnNm+uJzfUNhRuxjE35ei1foGxZcuWed8feughKKXwjne8A4AJfJNSYvfddx/6HkbsmWeewSWXXIILLrjALnvppZew2WabedtNmjQJWZbhpZdeatrWeeedh//4j/9ouj58YdoXmtJAQZxppdDo7B7IqbRkRLkrZQYdAhglMBWZvU845nCItMn2EXcjAMtmIYvpNPlxXLRMZtKCK41ysD7NVgHYWazpQxBozY5HAIv2JdclPz6Pz7H9YUAs6ygGnppT0veLaBeDOosr+8fl15Wu47q2VT+7ERM/NR8yMxmmqkbuxmIgSSse85h2pKV4I1NeityXgE7NANboanjsCw3r/DvFoeXaoKFEJABLGFHKASjf3ZwgUT7oIXCbCBdET3peZNQ+jwmkDEIaZIU3sGp7/hwkUvvhxIQC+t3xnbRJCMJC1om74nsrPM4nGtwcS5db1rWvOKUQRHqljQrw5X5PbDu2n6tQIG3gvq67gP3Rlg249dc+jgac65HYVa5BSDF5AtoyZYBzWwNOtJieB5lKW+YKMM9CMwmL2L3mYRTeszHCjNmYvTmsX0/RXXfdZf8OO+wwzJ49G3/729/w8MMP4+GHH8by5csxZ84cvP/972/p4GeddRaSJOn178EHH/T2efHFF3HQQQfhwx/+MD796U9765KItlGe59HlZF/5ylewatUq+7d8+XK7jmq+5UoVbhYTK+aCwikY3Ehc7Pd/17Z0/q0asUA8ANuqzbMg175carHg/JjsRBhoz/f31gfijDYQn4mNOo0fpvklhV3Xm5H2FaWj02fS27LJCKIckG2TAzJZBHvHFLcTGzDcNrEN/7j8ulEBxMhcRQFzHYgBIj0luheV9gqy8RnSjhSVasU+H4lMsPLH19vzNEH+oqQdxu9rM4Cea6f2T0CJx3nROlLrJ2FY+kxMBvWXPw+cySNAQS5oStpIO7JCSiMeb8UHXmIN+R9PduH/OWijAHr6nfOA+vBaheb9JoJnPn5v40LEvK2Y8Zgwt308C7Qk1yClybYMtMj0CASl92XhufCEmth7I7xmnhRLwfwCsM8CjxXrq62Y9SVxMpSmizJjg/kbY8ZGr7UcJHDBBRfgtttu8wpqTpo0CWeffTbmzZuHU089td9tfeELX8BHPvKRXrfZbrvt7OcXX3wRc+bMwYwZM3DFFVd4222++ea47777vGUrV65EvV4vMWbc2tra0NbWVlpuA4WFKBgeZVWvVa2BXGqPNUukQF4f3kBYCuY2xbDdcpOxWI4diVkoYtqXezIWRGuPK/z6iiEYapZKTu3yIHHHWIUDSfHy5aV5CrkKIRMkBbtC6ewUG0KzWKfAXQSrl6oqOJeczCReuei/Sn0daau0uwmATAUUgEQ6N6oXz8fiwmgZAGx+6gLUGbgGCsZR6pJwJlAwTixLjRICNGOeaF2j20hZwEoPcNFd343DpVhIZ01kAvXOurePqusCRJvkDy4tUC/qpJYqEtRhlxtmzt+PTLOn1pNsUdq6Yck91p+EmGZuyZCd8wAfY1lC64/bKxoDFtlP0ITSSp1I+5+LwDbbf13blDOP8fTnKCM3fIdYlyR79vOQ4YyAYB5ry7elddzK70phxwDb1lAEcvXTTDmjwboph6gzYzbk1jIYW716NV5++eVSQfBXXnkFb7zxRkttTZ48GZMnT+7Xti+88ALmzJmD3XffHT//+c+t/hfZjBkzcM4552DFihXYYostAJig/ra2tgG7T5vNFK3wotLIpXYvVq0x94lfYOHUowd0vL5sxflXY6PjP1z0wQEYXhKlqVCiyiHT6Covjqy0rgBcAmUgxs0HdUHmEgs8Do1ifVxfQgauPNsXMreAS8AIn9JgTrEhGgIyA1TdAcK0EHvkOlj8ev39+7+K9nGk7e/f/5WJFyxi4ZpZrnJAJNatCzg3eyIFqhPa0L2aNKf8+o6UheZYTWFBD2AAU65ySGmuIQ1UUko0KDZP+DGFWuVeDdF6d8MALLhkAgD2nhDwMYxdw+5LemU2jq3ZgwwC48KrwhDqUiUqKa0z+woorUoDOLdYnGXsNxcDYKHlSiOxYKnMvMXPr8x6xTL8CGyZbcogmWIHafv1yXj1Dz/Lmdyxve/PXYzcJd0MVIf7AmDeEQGosWzK9c0eeOABXHfddXj++edL8lc33rhuk7XIWv4VHn744fjkJz+J66+/Hn/729/wt7/9Dddffz2OPfZYzJ8/fzj6iBdffBGzZ8/GlClT8N3vfhd///vf8dJLL3mxYPPmzcPUqVNx9NFHY9myZbjzzjtx2mmn4bjjjms5kxJw4q6e2GsAzlS9brfJTboX1kUgLDEZflyDYXZW/vj66D6kRZTI+EDELRYTY19ebABNpHAZS6TqXkgV8HiNcJk7jnAxQeSWCjSFQldSWijOC5lY9XkeX+PXrBMeaDSB/tJbnkijRdaXCOtIG6mG87p8IROqasokLUimNh7EZLVPqgJwoIuua9aRFm5f4QEo/34nNv6OtiH3IbkjRebckGnV3BshfP0zmUqvpqWN7WNZkrasTQDwhBTIOlKvf/RH7uqQ5ROZkz8R7Pysqz9jrl5yqxfbOvemn8xB4DBWOiw28Wjm1jTCzb2/hmnixyU4eJZodJ8iRsz8heBMQAgBkaUQqQO2I1H8Omb0/PKi9FxXrtJuKnVwNzvve8z1G0rzxALv+XvIW046eIK9p+y9X3dAlki4wf691e1Xv/oV9t57bzzxxBO46aabUK/X8cQTT2DhwoWYOHHiiPWrZWbs8ssvx2mnnYaPfexjqNcNG1GpVHDsscfiO9/5zpB3EDAM19NPP42nn366pJCbF7StlBL/3//3/+Hzn/889t57b7S3t2PBggVW+qJVk9UMMq1A1RvezDJUq0462v2XWCULmxpSczpJxT+uPyUSbHzCkSVgMfFT801ArBSebAVQnhFSqRpapnV5OyGKmo5dDc8VoEHlbnyXI8+6E9J3QThWjgVWFwILLqvRdxm5QFwTuJ0UM+SkiAmhygQAikwrF/tDLgrNBsF1lQ01GFtx/tXY6itH20D5ECzz+5kXrluAAKqfSEGxMiUpiuIakoXPVl7Eb6XjMyRdDai6gkwlsvGm6Hmju+GBdqqeUKlWIFEkFxRsGbF3usjwNPcpzjDQ/ef94jIm9npkjvUgsBWyn+TKJbbXVpNgzyIxcQCAWjnGMhYfCZSzgmPmu5BZEkwhp1CKz6RwibQCmVWiMWJe+6I5SEuktHGw5pgV5EKPGpWsHc77NHqKa5+NT20GMWU9UoYw3ad6vVFy90Zj74KYVoBNMqT0fhtm+xjTGSRSSBb8v47eH2PZlENj5557Li666CKccMIJ2GCDDXDxxRdj++23x2c/+1nrVRsJaxmMjRs3Dj/84Q/xne98B8888wzyPMfb3vY2dHR0DEf/AADHHHMMjjnmmD63aybmNhAzM0dzeRTLPOLqy9F4Cz28rzY+MJSEWXuJQUlY7Azfl/TBwgww/t0OXkwhP9YvwT6X1xfxH5F1oSCr1fpi+k6A+e60lYzblQOM2JUPJQHWZ0ukyTQ0YLh8rw275A8a4XqeQVgu+ZJ4GWZWSJNlsXkDn3A1Pu3/IgOTAx3qi81YTZ3QLwq3YK6SpvePsjOb1XEMXek2i7QAkL1ZKO/BlwMUI9ck8zgAXjxT2D+H5mx0b6WPYv2JWW/xZ2E2Zmx9ovsvsTHUtuP5x9l7nIO05OLWm4t+IAxVmCkPlIFYby7cdR1jR0H4g23jrW7PPPOMTTZsa2tDZ2cnkiTBySefjLlz5/aqrjCcNuCnqaOjA+9617vw7ne/e1iB2EhZIo3SfqWjWrjPDJ3PU8L5tgCgG/VhB2M0IGUdaYkxAJq/tGUqvMGM/jsmzBXWpay2XLmZvnVHFlmJ5lh9x42V+kGZkamwcUOicFFVqhWX+UasWjGrpcxBF1DuF5d27rPUa4ey5+h4lJFpXFpxodDRan87+yrLeFUntKE6oQ1ZR2azStsmZEjH+8wsZRgCsOccZlE22966LNlzxt2Nll0rmNKUFWim4HvBmVM28PmCwb6YKd1rMnKD8+LPPHifxyhSX11h6MRbzo306ej6UQ1ULyGCuTdDppD6Frq3wnJH3JxL0w8ub7Y9XRP+e+JisdQH/xjS6w9gWDCZVrx72yzrcl1apZohEcJVEFEaqqa8GELPLatzqLqyEhVll2JS+h6WU+LtudAIXzaEVzng+/F1Y4XC10/baKONbHz7VltthccffxwA8Prrr9sC4iNhLTNjc+bM6VUqYuHChYPq0Gg0IYQN5qdZqCxKIvGYMZFWADG8MWNaGVlDGhgaXY2mNfD4PvRfekK2PNvMsSFu8BaeDhMxKTZTsVBHd+2xF5yMZ1bSZ8tepJRRR7ExxrVlSuqwOJC04iVL8CBsOiYNNo3umnWH0uBq44fSii2wnSsNrev9UrkfLVapOrcraYrFMlE9lX3lyilxQNEIiqNTFqEswFSju1FIZAjU19Qs88YL1NNxSWEfcFpuPA6MekaSF4BxO1HiAFAAMfbM5Ur7gN9mApLr1W1LgAoA6t3dxjVqi8UXv1l2jQQ0UAzCudIlFo3Hytn+MZ07bvxacKDam6As/200SwSwkzzlxFwti2S1w4pkooCl5++ssD3OpCVSQCgBtY6ZsZ0vP8mAMBgPg6prJkqsfVdxYRQnT9fRli4KjAMymUmvaDrPhlQRrbWmk9lqNiL1KLlpDD4b8s3hIxic7bvvvrj99tuxyy674Mgjj8RJJ52EhQsX4vbbb8d+++03Yv1qGdK/5z3vwbvf/W77N3XqVNRqNTz88MPYZZddhqOPI2Kl2a6IB2uaODIFrdSwzyy3OP1jdnAg9WkKciaLMQC5zm2ANRkPPqag9thM2QCZ+CBC2UzhS9OyE9IxU77WE3NT0bGE6485dnyAIvAW9pcH18q0AllNowMq9a+tYJX6ivEZbdY2od3GV9kAc8ZgOcYwsaDXMoPsmhvNrrQIupdWZBVw7FSl6idHpEXgfCISBu78JAHSDgOMdEbbhMwCJiENC0UAr1I1sWP0fNmEDEoMKD7b4Hr2DHOWlpgoy7oWgM98ds8i6Z2ZfksrrUHt0XEM61wkFjA9KwsCIr9zHjDOA/n9uEliJ/0i77H6sI4J0t49MJOgivtcBOC74H4OHkUp65y3HQalryt7x/dPAGC8DLoAlrqmUFtTh2D3MVc5VE2Dx9iVGEX2TuGJF5xFF/ROSCuotGf2+sm00pTVChnPXGuINI26MdcVM6Z0PiR/w2XnnHMO9tprL4wbNw4bbrhhdJvnn38ehx12GDo6OjB58mSceOKJpWzGxx57DLNmzUJ7ezu22morfOMb37Cx4WSLFy/G7rvvjmq1ih122AGXX355v/t56aWXWkmtr3zlKzjttNPw8ssvY/78+fjpT3/a2kkPobXMjDUrpnnWWWdhzZo1g+7QaDFRqSB0lYi0Ag0TNNrorqEC82OUWVqiuYfatjj9YyZgOgAWNChylmKL0z+GFedfDQDY7uxPYWUhd5BIgVpnzTIWje6yyzWM3bKDSGYGKno5EusihYn1sWKfBbMRsk1hEDUfbPhslbYl9oMzERawZRVWGNq/5iTOS4HoVFQ47Asv8DtS5Y4GYk+e+APseP5xaHQ1rFQE4GKyYm4uCg7PVQ6ROial0k4sSzwWy7qqLRBKi+Vmva65Mkw8uQKo20xLGyeWCeTKCc5S+xSzpeoaoAkGJWzQBABOyNXoOpFUhe+qpISEtgltlq1yA2rC5EycqxA1ZdvPlQO2xlWmbRydYJyCjWm0IMlnzEIGLBpjyUstRa69ty1jtERaMYArDdcpLzMy2g5j0CwTnlYgUPGWDbdRn1WtAdVdt+y1ACzYVjVlGWAXLxjXBeOuZf4s8xAM/n7OtWMVUWvYAHwdxN6Fkz2zjNe3XH8Y9XVhtVoNH/7whzFjxowoqFFK4f3vfz822WQTLFmyBK+99ho+8YlPIM9zXHLJJQCMdNYBBxyAOXPm4IEHHsBTTz2FY445Bh0dHVbD9Nlnn8UhhxyC4447DldffTWWLl2Kz3/+89hkk03wz//8z332k5dRFELg9NNPx+mnnz5EV2HgNmSVYT/2sY/hfe9734CzF0ej0ayRAvm9wr71BlA1o5KssjidYYgZ2/prH0ejGDQpiJrHp2g41wP9p8y7uscYCKTKyReQkWiqVk6/K2euLStJkEmoogYlLbODMHODmcHIzWSU5q7MxHsx8lk/L+Ys0wq0KLLLqlTXT1tQbGrRMSCScpZDIhemakLOBGBN/5zLglxkMpV42wWfxdOn/miwt2qdGI+vQVoGuZV2N3jbUi7agVKThSqg6g07weDXjzMRlWoFKVjZIQBa+BmX3LVklrl4PytWWzBtDuARsyMgtAZQd4C+2MZmDBeJGk5XL7Ht5zq3vz9VV0hEgjQAbTITJUBkfz+ZRMVzubqYxVAmJZQJ4et4GR5uVmxYu8L2lOAQsxI7XYpbkqVtZFqxyQ9RMKE1tNbGTRvERTWLOxsu2/nyk5AUbkNdb6DWaVgRet9Uqq70EWUBxyZ39hzYtbTPUwHw67Uel7zEag17LkuWoSpQBmC8jmeYKJErVdyPdQPK8iHIpgwZpqE0Cny/8soro+tvu+02PPHEE1i+fLmtIX3BBRfgmGOOwTnnnIMJEybgl7/8Jbq7u3HllVeira0N06ZNw1NPPYULL7wQp5xyCpIkweWXX45tttkG3/ve9wAAO++8Mx588EF897vf7RcYA0wQ/89//nM888wzuPjii7Hpppvi1ltvxZQpU0oaquvKhuwXeO+996JarQ5VcyNuzg1QQbbBuNJLURQxY4Ch2y1Qq9dLbQ1dnxLLOADN0tf9ci/dq3uQdaReLAu5rbLxKWQmmF6XWU7fHdtl2I+0I0M2PvVcWma9sG4C3lf672v8iIJNrHiBybGUfcugVNtMKSoPhAasZZZCZCm4npKsZkg7qiYRo5AqITOVFJQdZNc34332MiiFc8kYFsUBF5FJNrhU2Gzf3A/OIonChZNIAVnNUGnP7HqZmetZaU/d/Ujp/iQWeFXaU+vyNM9Pm2ufAR3jPkptcoW5n9L744Mgd0lVqhW7DeCeC3LPWreXF3Dvu/Wt8Cc7TpjoQO1Y1zvrG9+G/sh9Rn0pBZZbdi4mxeCzxLHfuYvxjAfkc/cod1fSO02wYH46Jgfkw2XE3ulaw4J+FQj0UnA+udKtxl7xnnFJPu5Z4ZMtele42r00iS6L3HraYfw3UYC30A0ZJk+sS1P50PwBhoHifz09PcPe/3vvvRfTpk2zQAwADjzwQPT09OChhx6y28yaNcurinPggQfixRdfxHPPPWe3mTdvntf2gQceiAcffNDKbfVmixcvxi677IL77rsPN954o/XoPfroozjzzDMHe5oDtpZ/faGwa57nWLFiBR588EF8/etfH7KOjbTZl52U0BQ3oLT346Ufqa41zAxLayRaYf/lN+OOKYcOWV8MG+VcJWm1AlU37pVYqSEKfq53N6BrGkmHL55oA/ezxJWCgWMl6MWmVY8beFBoFBWJs42uOrjOV+zamc+516b3IpTuWpJ2GwcIYYF2kVUg0hShjlnsxSiy1A1AxYtV1+vQtQYSIRhjY1jB9YUVAxwL2eg2GWdGd83JrYh2wxTprpoZYFNAaCcaqpVGorTTrSKQVQzGWph1quZLunCjGq2eNEQ1NYNhWpQryiqo1bo8to76INOKx7ZVqpkL3GZua1cfUjdlt+x3XuiZ6YwBsM84sWa8mLouEgVKhaKlYSEFmEuUieXy7zbzL6xCAHLBlV2apWe8eKeYvvrnGcaeAS6O1SQgENNHBdbZdsV9jrUBmPsEwLvfw22N7hrTg3Msv6or627motYSLjY1rbb5CQsFg2XFcdlEmsytjwMycxwGrIvsedresMxO1Ntc9/XXTTllyhTv+5lnnomzzjprWI/50ksvlUoTTpo0CVmWWQH3l156ySuBCMDu89JLL2H77bePtrPZZpuh0Wjg1Vdf7VMr7Mtf/jLOPvtsnHLKKdhggw3s8jlz5uDiiy8e6OkN2loGYxMmTPCyKYUQeMc73oFvfOMbJbS6Pht/cZVmnAX41nUjeprYH64eQsdv/yyMU9HFzNIOQiw4WtU1qFSIVhqVLLXxP1AuNgPQqFQzVDc0LzkapBMpIOFnOZLF3Csmvi6336OK1zQ4k6u3eEnTend+sqiK4GdvijRFo7MLula32xEQ06GLgYEwAGib0GZU6zuHj80cDqNBhmL+RCYh6srG1QDmelfaCeCwskYF+KDYOsB/hvICpJWYEwZ8KW6JYiaT4ndQSdOCSdPQ9XoBoKXdh54lugPExulasX81AxCv7xoLnA4HZHJvaqUhRepl55rjmcw6oTUaXax8VqGJxgd//7z9rE4+eQm/h3F7sklFDv5+CWMiAdh7520bTGS0dlmWtIwmizHjgMzGTab+fV8XZn7HDrzKANBSmSg/ycfFuFXaM+haEfxfJDjool2l3TlWiklJuR5t87gve32CbNSQadRag1zGch0wisDQir4uX77cq0wTq88MmFjwvnS3HnjgAUyfPr1fx48pMeR57i0PtyHXaqvbNLPHHnsM11xzTWn5Jptsgtdee63P/YfLWn6KmvmD32zm1LhdLIuddbKBKZy15lohr3UPcV9IfNMMFJrF55iMI1XIW0jb16wjsyxY24Q25Co3NQQDN58/e8yt/EUiBaQUiM2opRSsXFTugSrXZwHAxCPRdz7404AesgQiq0B31fzUfeorUjs7ldUMIktRqWbQ9bqd+RLDIrIKVGe3CWzO3H783OnxV3WN7c7+FJ772s+G5H4Nt/3fyZdhx/OPA0AuZKfZRkbnqmsNe69sDCTYwC0ElKoV+8QyVKXXXi6UG4RkG4QQaAAWKBPYSoqKCmlHFY2umr0/iRQAf6aE//upVEOdNB+00ABM+3JmTmZVwwh39ljWT3S0QdUb0DVlVexVrYFKe2qfQ6XqxfMpEQJTIRNAOhe8lUqRruwSF7vl+/qTCS554Sx0SYbAywdgfqYkUI4VjQExWk6SGAAsG8q3WReWSIG8W3vVBjhgdlqAjtmyrvXi/hFLnrDz4WxieA199rEcc9d3n6UBYCiqFvAJcC/gd6htKLIhaf8JEyb0q0zgF77wBZt52MxCJquZbb755rjvvvu8ZStXrkS9XrdM1+abb+6VOQRM3WsAfW5TqVSw8cYb99mPDTfcECtWrMD222/vLV+2bBm22mqrfp3LcFjLYGyHHXbAAw88UDrp119/Hbvtthv+8pe/DFnnRtpI4JX+uwDmcgwBwNyVPV1D2o+whIqqa1vsGkDBeBmKn9LxARTSBYYhqNd6LHsGFG4cL4i+Yh8GDjZJ4yjUNUqlQKOrBo2G1VzjZaJ4RiMxiCJNbYkpfhyrD6ZqltGh4/OZJ5VusbFLpFFG6f3SxDep7jK7Qi9hPrjzQm1pR3xmOFqNi6ZyhojS9V1wsWEzk6ofM5QXM3taBvjgi5aHAw+8RIkC3GltmUm3zsTu0f1sdNU8xi1kefh/q2NX9NN79pT7DpgBWnd2Q2QVyGqbG5yLxISkmAQ0RM0CNGLkaFvVXTcAq0gaAYrBXWhIlrmZK+0Fi3MW0tPAi52bcBOYWGwWd8/zZTwGsrQP25bHO/F7R888saExrSxq576Dvhw9znCZrJqYwkZ3zVxXup6ZX66NQBDvq4lxS6GLGKG8eE+Vr7/0AqM5s0UAiyyuzeZkfyrFNc6l9p5Dsa7dIevQJk+ejMmTJw9JWzNmzMA555yDFStWWFfibbfdhra2Nuy+++52m3//939HrVZDlmV2my233NKCvhkzZuC3v/2t1/Ztt92G6dOnI+0joxgAFixYgH/7t3/DddddhyRJoLXG0qVLcdppp+HjH//4kJzrQKxlSP/cc89BRV4OPT09eOGFF4akU6PBTJAoZYn5sRTkWqHPZnt2KbXGfk+WadCB2HZnf6oYUAhMOPZD1RREJtE2IUPbBAcmaJu0o80AJckU6otCyDyI3uwjvIEyZNDoHM2sNIWstkFmFaQdVcNSpanV76HYLhoIKtXMgicKqrdB5uxYlWqGtKMd6bh2E7TPgsjpWtN+NkC9YMNkEaRPgzidC8V+cOYtnMma4Oz174UaKosDxaDMxVGrbah0tKPS0W6vl8hSxhr4+nh0jWOzfgN4shJgIDZLFBIvobaVfdbSCkSWIh3Xjkq1DdalzLSy6PmheyerbcWzYLYRxTNE5wUYd5Sstrl+Z+WB2wOCxcSAnhNZTUtuWWJqbAKBjRXlwf/Fs5ixZAdKZBDur1LNHKMTJJHw/pWAGzGAtjauyRDWtXrhJovHgHnPg3RxaPwa8/tNy9eFieKdahI22LUorrOspsXvOPGYQqutFsR3kfYX/e7Tce0FY95mnp/imeurP2T8M71TOFvL3y+ieKZo8jjcRm7Kwf4Nlz3//PN45JFH8Pzzz0MphUceeQSPPPKIDZCfN28epk6diqOPPhrLli3DnXfeidNOOw3HHXecZekWLFiAtrY2HHPMMXj88cdx00034dxzz7WZlABw/PHH469//StOOeUU/PnPf8bPfvYz/PSnP8Vpp53Wr36ec8452GabbbDVVlthzZo1mDp1KmbOnIm99toLX/va14bn4vTD+j0C/eY3v7Gff//733vVzZVSuPPOO/tNV64PZspuGMDluepY0Kzdls3GEyEAIQAhsd+T1+DOdywYdD/IKMg4TSV0TVnNJOOy82UoDN3v3IL8RUauQ+6+AIrUbhYALIL9K1Xj8iGq3gmwymJZoC1mX5TSgTRWtcC4iGr22tlzlkYkoB4ENxOYEnT8go1T9YYZ8JiLkoQeOXBWSkNW26C6e1xslDRK86rWwM6Xn4Q/Hz9yAZytGi8bBRi2jBIU7DbewBsPUOYDHDEQFItkIqboeMImqthjsrg8PmhJVKClgOo2WVq20gL7/YSg7v9v783j7CjqtfGnqrvPMpNMEgiQBJKQoKAIFzUIRsAQ9kUFd68IiXi5P8Q9Kgp6WbwqXlnkheuC93pZvHxEXwV92XeQRRAQWWRXYiIkIgGSMMnMOae7fn9Ufau+VafPzCSZyWRCPZ/MJzPndFdXVXdXPfV8l7JbjjGVjTazprqSPyA9u828MBOvUb2y1PkPlvQDTxpMZfLJNAwc4OpxAd9XjTvLq1x7jTnzZsm1k3YiJIJ3M/SDC+uq/yZyxhTEwC+qvH9T72+67sbKLD/n199Ay6h0NljEjANJQKBl4C/Hf6fxpGg0LeGisVpWUru7BillaLSgAt897uclCmnHtNBJn/dPOPbboCJsnC3VeDTkhpQxUjjllFNw8cUX27/f8pa3AABuvfVW7LvvvkiSBFdffTVOOOEE7LXXXqjX6/joRz/qpcOaMGECbrzxRnzqU5/C7rvvjkmTJmHRokVYtGiRPWbWrFm45ppr8IUvfAHf//73MW3aNJx33nlDTmuRZRkuvfRS/Pu//zv+8Ic/oCgKvOUtb8HrX//6YeqJ9cOQydiRRx4JQDvILViwwPsuyzJsv/32OPvss4e1cqMJPylj++qRE5VS04NM9M8GYKfzPoV+KaAaOdJaqglYs7CZx4tc5y6q9NTdJMMGdT5wcFOiKtrVLpsIkU3MfEXJHb4dMXK5d/SPIYRmgNR5sIIVP/PzKJotbS4ArCOxvV5Qf6s0BCoA9yeRid7WhSZGPvHaiUvqLVjs/cqAtNZA3je2nPid35LJP8ciDcPJtTRtSDixBAsM71jorWOsycvcC75PK+0xSPeNHOV5+UWj6S0AnCO0MQPRPoXS5EAL7nda0+ovN8mltYr37KvCPZe67bn3nLZHhbpnnNcPxkE8YYoMBSrQMxyadYnUcXMr1Ys+DyP8bBJXr999UzE3p3Hl0bYlEH6Sih+pStfl9eL9mgzBtLOh2OPqb9vk0KooICgLPutfG/FYQkj57+EYIBIJUfhjdNFo2aAgGrf4M8WfBXqG8r4GuE8Z9zkLx/fw3dkYGE4H/pHARRddNKhP+YwZM3DVVVcNeMyuu+6K3/72twMeM2/ePPzhD39Y1yp6mD17NmbPno08z/HII4/g5ZdfxqRJkzaozA3BkMkY2dJnzZqF++67b9jsyJsqaOIBtDLg5cTqK9peQD0JpBAyAYoCaDUgKhuWd63V5xyrAZNlv5EjzyhLuU6imZhJivtV5A2X+4xPXiT380kprVVRFIEvDpuseWJEGjj5CtQ3ZWXIumreNRSblAl8Qqa/yZTT6mvo/m+0LKkqG4CJGJQ50YaOzQBTezKXHyvv67dO3GOJkPH+zZs5RC70VknddW3OIpJqlNqyfQplliLJC6t28qzu3v1mZEln7teTXJNNnp3MXCkzaxJ1s88PqRFF4T3rfBIt84MiIkSf8e+pzaEvEKgcmqwLR875eS1WFpXMnxf62x5j+japVUrfI1JvikazfUJvU74Kq04WwfvBHcgHIs72/Sy5F3rBoslGyyiWOhVKta284Uarr4Gi2ULLqNKW4AaElsaKtF6x/ZxUypW/8PdwgQG455fA95jkail/zmXwzAm2eB1o8RIxNvD5z38eu+66Kz7xiU8gz3PMmzcPd999N7q6unDVVVdh3333HZV6rbOjzLPPPjsS9dgkYQkM9EscqgGAP5CqvNDRZtI4L2/AtWd+4+PITeZumZhM4yZBK5FEFwqem1UdG3QCHxRd18SaGuk8AKXEqlQtCyYPkUgoWXjmD/qcrz6tylUU/neyADI/Izb1pW2HMWGUmmKCQZWclHn90loFzd4+73OKuKSJ05kry9MqbGrY+cdfQFGraNIqJRKzBQz1a5KllnzZNrMJzdsgOdEO/rJkkvfuNxNPrJnY/M/NN/azRFrlhxTZhJFquh5FN0pmXg19vgBf7fNUnsInjfY+F04Rpu+5ilv0Nax6y58XWRTI+/q98pJAVaJyLaEDIGs6oW1inmvbl8asqljkMDc3UjlSalWXFGyRF/bdco7i7r5QnxcsGIbMdWVmR/uZTceQochzSOt7NXI+k3tc/W309zXQ7F2LZq8faS55WiC4tqWmP/NmC2l3HXlfv02Bwp/Rsr03AbjnzyQobqxa4xaiHcYbIaX3vITjJy+boPICaoNG+qGjKJSJmt+wMl7r+OUvf4mPfexjAIArr7wSf/nLX/DEE0/gkksuwde+9jXcddddo1KvIb2B5513Hv71X/8VtVoN55133oDHfvaznx2Wim1KoAHC/k2qijFbIGOZmZkqtqG+GHwLlbxZoDapbsmFTo5J+XlYxJuJMKLkqNwPx07W8CdrG0IuXRv4ZORtGRKYZ0mhkpl25qfB1kZAJu2qGF03HFjtvnlGaaHM70mtgiTL3Go+NLs14amYdsJnKgvVSySU/8zVX+Vuq6WxApFIs7tAhrzSbyMPCdKY+ogYlJl5vWz8XFlhChS/HuBMzQC8xLBWVUgkS1vg/KeUURg6mZq032Pqzme/Eygql5S5Ii+Apn9tuk5SMrTZhYBxqpdZ6sgMM3vqd8WoNRm8oIXcPDtEvHjZoWpSFI7I8fO5IicSbRIFnOpVtuihOnZacNFxsnBklxZCocqpcq3kiYCUjxQ4cbamWaaIWfWW9QtXuxLjRN/s7bM+iPaeE3FnRBuAjXDUAURVrcwRmevzyRivp4T/LoRkncrk40XR3DjJX4th8BmLXAx48cUXMWXKFADANddcgw996EPYcccd8YlPfGJQfjOSGBIZ+973voejjjoKtVqt40bhgPYn21zImPZ38gcpaRKPhk6+becWBUSrCQXggGcvx02z3rdO1575jY8DMDmkWBbxyvguyEqmN9ht5JYEUUh/UqsirVXQ6nNpCOwAHDguSwCQLHItkd7ESiYp/hlFZqmigEraJ1Xy6SkzoYQDGzl7F82WVbTIsZcmkqy7Zk1VBcuEza/LI7J4RBvdB8BNpq2+hh5Ija8aba6c5/2mvzdMHdjnbr3ZrcxS3P62T25QWUOFbauJtOMIiddQ1A9LqEB+Xn66EsDlLqMoQHsuERpz/xJp0gBI5xvkkTVSd8g3y5INP0kt2ORHiweVa19DnmbGq0+GNqLv+W6x7bV4ZLSspMgCEzdXfqWUEFmKtLtmCSsPiPEWLWby93xNc5NWgdIksKhIrviFCxXe/wDfIcQnFFyZDO8fEWn77rB3cKRMbm+/8bsAJ6pSk+msu64XC3lhxyGu/OV5w5HnxJm1G6ud2ZaO5eohmdu5+tvs1amGeD8XzZb3TPDvPZ87Ni7yvqbvAABjRFGP0Nhmm23w2GOPYerUqbjuuuvwgx/8AACwZs2ajkmaNwaGNPtw0+RrxUwZrhRVUdhoqtDJlOT+otmCNCafDUWSJTb3lUhakEluHeMrPd3ewECrecoxxZ2pYerMB2kvmlI63zhSOmjwo4E89AvjK3QvJUaizR+52fSZTyze4AWg0tMNlRdo9fUjAdBYtUZP4ONp02ff3EJEmOpjyzXpFijHW0qfmwFXJgkKk77BkVfTP0HIehGkMBkq9nvsp8h7X0VO6qgsMO++HwLAiJAy3i+kFqa1qk6+mlP2cuklxeSLC6tYsWjW0CcwYSYce/8Q3HsWGUvnEsL3R0iJlCIqMz9hchKoemURbEL6i6OwDoSE3VO+kGjzbaRnPnMKXNZds+9D3mh55kbrxJ05VZKel1ZfA3lfw8ttRsoub4ddHFBKjUqqE+IGylWIcCEEaAU4JLW8b8gMWYZwoUkJekcCVI+82bJ9S2lrPHM5PW+Bed2mrTDjR2V8lyWPpPwBQJh+Ik0qKJo6SprujffsGPdQF0Th+oAvstvUs1BdzguE+46OFDZ1B/6xgo9//OP40Ic+hKlTp0IIgQMPPBAAcO+99+INb3jDqNVrnVnDN77xDXzpS19CV1eX9/natWtx5pln4pRTThm2ym1q8LKIA3rlbwY2ewz7WyTrHlE5+4x/ATK3OXKnwTkzZMamDqhkbQMYP94brPPO5qKhIjQh8VW3yINkoSXXoIkrYU66enJJoAIfNPJrSbIMhcyhEkcw9ACf2JQOpDgQOS4DTcA0Wae1ClrAOpOx/R7+H/s7JyUq6ZwNfTjAHaC5qdGLXpTOxEznAJTMtN1kyZUYTl74MwXAU3L4RFXm2Bz+Xvosk1mKlRsSMTqf/2+VEKRo5X6gi0d8SM2Dn9crvE4ipX0Ww+t6Pko8nQUbD6yCg7T0PG9hwlI58GPJf5FAZ3PCZesR9F8IvZNFXqqwhRip59SWXUIKQ9Jljy95pgBHPLkzf2hKp/KozXx84tHZ/B0prW+Hzwqj9rbVeQT7jyNXCvkGkqkNPX9zwGmnnYZddtkFS5cuxQc/+EG7FVSSJPjqVzdu4mOOdSZjp59+Oo4//vg2MrZmzRqcfvrpmw0Z4y81/wwwpgBGCEg1o4G4aLYgM6yXW6dIhF6hW/VCJ75MaSUonR9KmVM6J1l8QuWESLHfw2SnPDeZl08qLzxliyYw7pyfN5qWOPHVuRfOHxA4Ik9pnjufoKQKlWXIm003QZprZ0ZtaK3tt6TL+767bkmVTfwKaMdlc3zedFGTpASuK3mad98PkcPtztBa2+++bLiBft59PxxWdezNl30dre667whuyFV14jg0V63xjs+6ayjyAi0TxAAAlR737nL/L57/iT833D+GB3PIJGnb0Jr+t0SZKazWxF1mTm36Sg1PkQHQO5VapZPqTmqorXNA7hL7XvjmQMBF7rUpv4lEVqm5nRzYwiNh9ckbLfu+EMEqGFEg5darq/F3C82J5K/JU1IALGlrENTAla/SrPrm/nhm0GArIKv2jSBEIpGQk36hI3dT82xQAEVRFHYje/sMFJ3fRZFIty9wB9IMtLs0lI3l9DvvcxoTCKTchrnnrKrWHDtR2BEaH/jAB9o+C1N2bWys85sYbupJeOihh7DFFlsMS6U2VdAEk7A8RjmabdGG3AcjqXUPufw3fP8zaAJITCSRNT2awZpvIxQGFZDJqUwR4+B+NQUjb4DvV8OPFcYZnMrk5YerU61AJDZqS4I55ucuGCCM/kzrVRSMWHHTZ2HSdHBVgt8Daj8AO/lqlSHzButEatMFmWUS48Td7O2DbLRsipDBMO++H+ow/bUuPQBNrERiuVM8J2T7PXoxbtll/V/6oqFzJbUaTS9De9FsOf8/E5FHk0Vhngtn0ilvp8ycudZTYYJniAiRNc/D3ZNWX799Nu135j4mlQy5ScjqRfOZfGl8IWHbwciXZM9UATe5av8jTdw50SazPb8W/U/XaK3tR5437PND55OZEYAlcxxcxUoyvd0U3zatYHWgxRrtQEFtyZtNJIUjYcoQMZc3LSCt0pGqpFZBAj3WhD5Rzhcv93KIheTF3s90ZPKM7ffoxciZ6Vb1FW73DKtYtpzKFyyAyf2gzJeT/EA9MzzKCSYfE2iM49HZZNqnOnDSxY8XLMDJmq434s4dMZpy88aQn6RJkyZBCAEhBHbccUePkOV5jldffRXHH3/8iFRytMBXVOHqma/OaRLgZjGVFyiaLSQTBo+0mXvzWehbsQqr+xpuSx8pbbh8HpjbPKWpr7ADU5l8Hm5nxP+XYKtMZroiVStsq6yk9nM+6fFJgBOgotFq81shUyMdHw7AIcEKHZxtOcYnhK5DCpk9LynaiKK3hyOrpy23t/MG73vf8X/ssUVR2GtSGaQKFlLn+OJqEGG/Ry9uL3g9wXMzZcaZnKJHLdk2/ZvWKjp1x1rfdwbwiVnebLbdh5CcE0KSFBJlexzg3Rv+HdhzFe6LCnYeP6dMASmbECkC1yrHlKE/8fe8pOcrrVdtH9hr02brzDQOwLu3XL3Tn5Gi5/tapqbfs+66U/mYE39iynVmzPboYVKDCthtHJE3nH8mV4rzvobX76GySZ+JYUhOPRCI9CRZiiJLIbszGzwBFmzhKbHQ6qjdyq1WsQtcWUmRsTGjzBVBJgnyol3ttN+XqP+Ua09m+lm0iytyAzD+gpyIAeWmzpFCjmHIwD8sNYkYCQyZjJ177rlQSuHYY4/F6aef7m2HVKlUsP3222Pu3LkjUsnRQvvA5QY7/lIWZksZO2iaSSatV1GsfgX7P/1z3Pz6DwMA3nnP9yESicaqXvui969agzXLV2hzXXfdD3sHrLMpN6fRQMSPs+YXptJwv5Oy5Jx8Jcnb6Dkf5+3mQDTbTVadTH2eQ3Yi3TYlQT9LmFX0AANcuPoPr6Hywg7eBUtDALhJlOpKK2/A7QZQhr1u+x5azaZ3j8NJ2H6GtCMBBLBBqtgeV38bTUO8+ZVtrq4s9foagFWGWgAkey7sM0MkpVZBsSr3nh3AJcnUZM9/BiT8+0EBE6EprNNzQc8Z1YOOT4KdHXQbfUJmE/jaXR+Yr5XMfVVUuvvPc02RGpd11616QosFT0XKJfJG09YhZwo4qXcWmauTJXaGXHkKsiERCcuzRfVMKhlS46pQNFpABm9RQ/6Q/B4mQWJajo79n2aWiG3Ic7nfYz/FLTsf7X22/59/CZiFW9HUwTmUO0zlRVtKFFpMkPtDuHWUbYt0OciavWv9cYipfkTmaLEJaDWVHP0pItxbcCe+fyP3gwVglV5Omr17HxGxARgyGSN76qxZs/COd7xjSLujj2UI4ZsAU5Ol2lsVsUmLXsqCZT9XeYHWmrVIihz7PfZTFH1rkJtcO3lfA6oosHbFKjRX9aLIC1R6uu1gwQeihJEswA0GnEiF/hChwlGwcuxx0oWF09/epBeQKD5wWeXMqCJlJIATr6LRcpMc8zUDfDMfmRDDxIxeuWYCETKBKnIvgo6+t8qEaWOrtw9FniOtV+3x3OyTddfQ6mvgLb84BQ9+6BsAgLdd+U0IKdGiNjQdmbOmQOq7wkXQ2Wgv1h/7/uECYBjMQVxBsOYoszcnfQ/olX7W7XaAoBV/uMDgv6d1E5FZtE9A1heLK5cdkv2CXYeeDd5/3nfsGbC+OIGPmki0mb4tc3qwdQ0nT/w58+rH1b1KikRWvHYktQpkUfimrYCAk7JWBMQzCd8RZB5pV4mf94snXaX20L2SaYZCuklfNN3CIlSiqd55X3tkZpnSacsYJkXslp2Pxv5//qXu29S8i5UaUKlBrVzRpmTyvG2UqFYk0nOQ58SKB6mEbbF7ntL/5t3MG822HRySmrRWjLyvYV0weAofKhfQpNhem+6NCTAqGi2opIDfspFFjKbcvLHOBu958+bZ39euXYtm4LxIu6+PdchKZieitF710gBwXww76QaKmUj0liOJUbBk1nCkJM/Rt2IV8mYLeV8/kloFVbPaozLLfg8nz3DF6yYpaX1Q6HOZ+MQrlNlpcPFUjRIlzU6kzNQTfmfrxxJQAvAmPu4zxn2UwglfsHqrvICoBmaVQisGSfd4qGYTRaMPolKDaDEiIBPIrGVNOjLNULScWTntriFvNlEZ3wWVF3jLL3QQSp5on7mkVtGDcQabX4rXm0iknuw1EbR+MrmbgJXMN8hnTFZSFKvX6EAR9nwUeeG27mEEhzt987tY9twQsf/dOz6DuTfrjXvLzLqe6pc70hJO/vw6nCTx63GCN1BkG5mIOMmla3KzK/cDKosy5M8YJfcMnbFJHZGVGlDkyPv7dRJZpmDZvFbsXG/hwn3fggUPN6t5ZDJxqVVkJUXRarq6VtwuBnxcAIBsfFdpmp2yPmxz9C9y/S4Nh6mtyKEACPM+0lZw+do1tk0qL1Dp6UJlfLc1iae1KmSzaXPX8YTTtg0l9eNjW5Jl/iboibtfIpGeLypXvQB975q9fW1EnZdtFU72PjXNeJTWqkjyjUPJYjTl8GDffffFscceiw9+8IOo1+ujXR2LdSZja9aswYknnohf/OIXWLFiRdv3eYfcNmMN2vcm05sDcwKSFDpajl5qM6jkxpbIV9J2wMidGS5vNtH/8qtorlmLpFZFbcsJntIVDkJ80KA6ELlCkFsH8J2tw890Jup+L4WDF54fyPKhjxmVSZMgmQLD6/HJl9ebR7G1+a9Zp2VpfTNogpOVGlSrofs+WM3b+te6AdkHWeQQmTatyVqmt8Upcu1rgnqbXx8NsNWJ41GdOB79r6z2HXuJMOY5Kj3dSKpVtNasbVNcnDqY28/4/yovcOubj8P8P/6XTokhk3UiZe+85/toSp1nqdnbZ/utZdQQaXYq8JRMZj4GtFmRcq6FzxVvK5nU8qKw5rFORIxSlNhrsuPaniN6dtLM9pO3C4AxdSrp9y0H/5urVPazIAkt3wGC1yd0WiffKSITYHWWMIlES5J7hsTBEorQ1YDVWSWFR+QBloC1Qf6biU8srRqsf8/7+5FUqxDdPVBre1E0tL8j99/j/cCfR6dG6q3bwo3K1wsyceOETCCyCvIVy9C3YiVEop9bAKhOGq/f9V5A1LSSLPqkzZHH4QVesM854SQiFm6Xxl0vqA94f1hXhkYLRdZqv08UfV3RY3aR55rAm3MpEEVmKZKNRHCKQiGPDvwbjDlz5uDEE0/EZz7zGXzoQx/CJz7xCbz97W8f7WqV7ic7IL785S/jlltuwQ9+8ANUq1X893//N04//XRMmzYNl1xyyUjUcVQgpHBmiYrbu8863iZ+RCM3aXDTS//LrwLQjrZ5XwPN3j40Vq+x2fIBtG1NRNer9HR5piZ7DJ+QEu2gzZMeclgzKlMQKCDAyyxu/FpsW4qibSXtD+R8oiiP2mzb6Fkm5scvJ6lVINKK/i6tQNa7IWtd+vdKDSLL9O9ppidJ+qHrpxUoMxmJak1PBtUaZL3bHifTDGlXXQ/SMoFMM00mzKSc1LuQVKtIsgzVieNR33qSJRY0CSf1LksGQzUnnNxlmrm+MeYUisJURb5eagRNtLzviFDqraN0/ZMss/4s9CzRc+U50LP7R22ad98P7dZEvH1t5rpK6ikFfNLj6oNMM3tvyacN9jnQ90GXV4Oo1JBUq7Zsqju1lb8faZc+lpMU3ibd/+5ZS6pVVi+jrhKxt/9LbUpm91KaOiXVqk0WTP1B/3vvRc7IZYnaApiFniGy1s8vL5B2mZQ2babVxBAnR3boOUarAdXSzyclNLbbDdGzR1G2FXc9iyLHzTt9tOxxWyfcvMMHbJ+KSg1IMzRfftluQ1TbcoIjYnA+cDpFiCM2NopatpMj/kOf8WPLLAdAu0rqPZ8VnUQ7665rFS1MNp2lXjATYMaSetVzeYgYOzj77LPx3HPP4ZJLLsE//vEPvPOd78TOO++Ms846C3//+99HrV7rrIxdeeWVuOSSS6zUt88+++B1r3sdZs6ciUsvvRRHHXXUSNRzo4M24XakK4FIXCZua9oxzrQUkchXxoBeTTdWG6k+kWj19nmh3SovvM1urUO1GSRUXhhzpjGRNloARSPBRY3lJbluZCJtVnhOHlVe6FUpOdialSapXRQZKCupdVLuZIbi/3OItAJR5B45NZXSkzAYoUsrlmBRolwhE6hmw54DmUNkxuG4yLVvipmERLVmjxWZ8Z1KM2Ou1NtSodUE0gxpT6aVs2YDojCDegpLjshxmhy7KaItqWTOrANYUgBwBdFM6mmm29FsQrUadvJPzKS6vki7a8hf0XuM5sZPLAXM3n06GtAmvQ1MZm3+NiVKF92P3779UwB04AL5QJb6/YQ+WUzBsf0R/g1Y0zJBppm+twAUAEn3GHD3m5VhVawsg+rvsybF8LrU964eTUsGLRmW0m4qjqLwSbJ5HhWlQgFQtJrtkzvrY1pckCnc9Qvb+UKytBm8/9IKkprZ9SJQWMM+FGnFkrDQr5MUwRAjlcLCXSCBSDPIejeK3lXoW7FSj2/dKdKuOvpfWmkVLMpLaBcUzC83bzTt78j9fhjIDM6P45YGT7ksOZ9M4Fytp/dFZm7rK1oM0DFWcU43jhN/PgzK2Iaev7kgSRIcccQROOKII/CPf/wDF1xwAf7t3/4NJ598Mg477DB89rOfxX777bdR67TOZOyll17CrFmzAGj/sJdeegkAsPfee+OTn9w4+/FtLLiVFTcRmM/SivYpId+nJrzEgDD/p2zblAKwkyjgRz0SPF8Yc70kS/V1aNBP/Fw45H9BTt2Aljw9BcoMgDJJkFRSn0wETvNh5FpZn7T1B63eTb8QuUqgJxZPZWNqluAqFzeXFDlEtW4nWZFVrBJA11YygWC7Hag81+elmXUkJt8Vrawk+vMi18fz+iQJlDd5Jki7a8jM9isw7RDwfdFcm8wzQqtoIpBMdRFZpieXVlP/rAPIBFmdON72eVqveltW0f+kjuh+cROM9ccx54f5xEKIRHrZ07mvVKmPFAussCSqyB2xIOduTsbMcYpdR2SZJUD2M/Y7mdd0J2SOTFniJf3+TVlm/TKndSntM1tmsqPPFGAWEX4iY6/dNeNvBkDYFC6OjBetpjNjGhVJNfrcu1et2vYl5B8pJdAISDydn2V6MVcUlpxZAsr6i/cDikL3Z0B0NxQizSDq3ZDd49Fc/DiavX1uH8p+t8E3LSz5ojWtV5GN6/YIrK6iyQ2HdpMwH9vK9u2k3zsplNzvlRZf9j4wFTTpHqdPsKQ9d3nSAiVtJBHJ2PDj97//PS688EL87Gc/w9Zbb42FCxdi2bJlePe7341PfvKTOOusszZaXdbZVjJ79mwsXrwYALDzzjvjF7/4BQCtmE2cOHE46zaqSCoVa2qy8jv7IZMGqRI0AVJWaUCTJpUXSOsVq5iFEY3VieOQBRnRlXH6z/sa2tepu27NlZ6/jzGhNXv7vJUd4IiYtyG3mXzJH46OCyMyQ4mf163Mj800VitRZCZMEqM0MDNS4CwsKzXI7h6rZlkYBcqqW5WaJlhs0rZEoFJz94cm0rSiJzmrvOlJgsrkJiqRVawahzRDUu8ySl1iTaDWxGU+lxVjAg3KAntWNBEp2pQwvkXW/D/+F0Ic9OKt3t/7//mX2O+xn3r3h0wktILnpkvdr2nHe+j5H/FjOpCypJLhngNP9Ez1vCz3O1P9uPnPI2jMp6i7R98TOseqO4n9n368fjWmbHoW7PdUjyyzxJ3IH91jMp+JLPPKF1nFEZVOEYbSHUfmdDK/8rbaxYV5dkRasddEmkHWurRJ1jxvIqs4EzygP0sr9j2y7aJrBf2oTfJ1iHq3I7umbG/cqtTc+8H94oZJLTtw2fX63ah1u4UQJ/7NFpJaBa3ePmuWtG2TEmmXvjdJ93jnj8pS0XD4RDgwRwZmZM+y0aZoajO5Ne+S+btWsfeIfOrcc+jcHsjEHjG28MILL+Dss8/GLrvsgn322Qf/+Mc/cNlll2Hx4sU4/fTT8eMf/xi/+c1v8KMf/Wij1mudlbGPf/zjeOihhzBv3jycdNJJOPzww3H++eej1WrhnHPOGYk6eujv78eee+6Jhx56CA8++CDe/OY32++WLFmCT33qU7jllltQr9fx0Y9+FGeddRYqlXW364uqGbgLYw7J2QDWarpVEvQLn2SZdvJtNoG+hqdSkWmQjqXPiAgleYGcBg1D4FprGzrKMs2Q9XTpFWXj5bbti3ITYVYA3n51ACxJbKzutdcPB0ICl/S5KYEPNkm1as0/tu18wqjWrXJl+6vI244jc5Csd0OOnwSV5yhefUWf6x2nzZFCSqgWADT9CcUjehJA1h4cICUg9cCqGn2ajAFQLTjljcqp1t1g3ugzapae+KVRIQC4442p1JGCINJT5tYEa78n1dD0y36PXgxIafM0FWt77en7//mXUP1rrcpjzSLBa8sVr9A8VaZg2eoFCwOKMCTcuc/ndB0f+ykKlpOtrHxPjeFRekXhzNB0TqZJNoocqr/PqVIhKafjAZOln0xWxnRYFDqCz6ia1owNWDKj+teaxvlqkd/wxN7nNrWIkS37bHjnSmfeNP3Av+Pkm/ePyplJvlrzFhqiavxEZe5IJADVamrzOr0DSeKUYMDm9bJKL68HtQ/w1MThcN4/8O832XqLejdU7yqIukvT01rbrxcPxoJAkblFo2UVX2kWS3qxk9pdBeyuCyxQQyTSppIpTauTtAdD2fvfKgnCCBRd1ejTJu5KzS0oTWAQAN3vhnDKtb2QoWo5QsiLDVe2NlLg5yaN7bbbDjvssAOOPfZYLFy4EFtttVXbMXvssQfe9ra3bdR6rTMZ+8IXvmB/nz9/Pp544gncf//92GGHHbDbbrsNa+XKcOKJJ2LatGl46KGHvM/zPMfhhx+OrbbaCnfeeSdWrFiBBQsWQCmF888/f90vxAfotAKRgpldjEmo1UDLZG3n5kZKN5DVKpBNnUcn7a5ZUyOP6Ot/5VWmeGji0WSZ4EltkFlqBzebuNL4k2kymLpcQ4aQpN3a+bhotlw2bxY91zZgwa00uTmB9wk6Te7UN82mm3iL3PrY2PL5JGEULAFNfhSVQ6arVlOvUOvdQLOpB8TKeNP3zdKJU5j7I4jYkWJG6oSJrqTz7DXpuob8Ia0ARN4suSDlg13X1J/D9k/GlIoScxBXi/Z77KeaXFRr2O+xn0LWu/W9N5OB4OUG94zSMtB3fkQsIyGGSFuzofQdw3mUYydwVbSTqdY7nhEk1WxYlUv3K1PKyAxdYsK0ZIZ9LgBLxOyxqU/mhJSaHJh7LgIVyEvdIiVUYe4vV1WDid4+T54CqutofRyLwvdvpMk8NXmrZKLHE6pnpabJJJiPJN37rOKeybK+pued+jVz34my94Pq3Wr45awHDlx2vVtsVeuQtW7dx909kOMmomvqluh/eXWbGY+ez6RWQdpVL713umq6bkmtok2FrSZaa9bq8YnlkrP+qcx83WaWDEzpJRezx9nFnPEt9b+nhVjm+nED+nBdEM2Uw4Obb74Z++yzz4DH9PT04NZbbx3wmOHGBm+sNWPGDMyYMQNLly7Fsccei//5n/8ZjnqV4tprr8UNN9yAX/3qV7j22mu972644QY89thjWLp0KaZNmwZAR00sXLgQ3/rWt9Yv/5k1i7AJpdFn/WhUUViSY3NpmdXp2hdeRrLtVkhrFax94RUvPxURM8ANTFl3zYZbp/UKcrMfY2tNnz2m0qP3uaSVYtFsobGqFzLTpsx03Dg0Xn4Fzd61On9P5vIVAS6CiZA3m1B9TlWhpJXkUMvNUiovUDT6nOmW9xERG6ZyIBiAbf8ZFYn8u1SrYSMoCwCqr9d33k4rkLVuqLSJvNEHOWFLiLSC/OUXLCGjSdYOnux8Mi9IY84s+nqBZsOZUoocKLTyZs0cZOJqubKE2WO0bXKm60jpfM5giILXT9IRSH4fAlJJg793DfrO3Je2aLu8PaVE+2SUgPyMXFqJdqf3W//pWO+0/f/8S63IBMqujSalCZ6ZvkSSQDWb1kePRwFaEkCLmkA98hASw5SpVzLRPln8utx8Ts9hWoFoNZhKxJTc4DPu6ybC4xghVGxMUI3ca6OdvLl/nNfPrC+YOV7XO9fKl1n4eUSWSJxRyRxJzfz3BXCkjyt9RVDPDguEoeCgF291729RaDeAWpdW9ISEyHQwSTZ1e8jKcjRefgWADmaivHSykuqI6SSB6OqxpIb8SLPuuotirlaRTNgSRd8apDBBFAlbFJi2ewqX6SOPoCWJd7xbNPqBG9THdI89Imz9Yc07D3jnRmz6GIyIjRaGbZfTl156CRdffPGIkbG///3vOO644/DrX/8aXV1dbd//7ne/wy677GKJGAAcfPDB6O/vxwMPPID58+eXltvf349+41wKAKtWrQIAiGqXNaXYQbBlVvZG8ZAAZLbad+JMEk2m+lwofVEUaJnEgtWJ41DbcgL6Vqz0skanxiessarXbnWS1qo2SWxSyZCN73ITBgCZNRxpSisQ9W5UityStbyv4YWOh8kh7e/GXODteVmS1kKbQ5s2eq1NRaG/iWCA+W6U9L1q9KFY/Yo2TdS7rTOzVsCc75lqNbXTdPd4z3QgpJlgquw+2UlRK2nKXFubnSs615ZnjjJEzhKUwvO9oZQZyfhJbUQvnMzsJAg2sXOzCE30ZlJQrYaNVrXn0MRgzSQ5VL9pW9KuSuo8bDpje573ez4y9prAoBMGTVr7//mXEGmGm2YeYe8pOaxzE6gmY50VAc/niciTmchUUVin9SERMU+VZD6M/HoDtg5oU5ZY2f59k75CS9fnZaWuTrZsKouieen+cMWHtUPxAAOZANKZDUmdsyb6otDPUVqBqHXr56d/rVXEVGGeK8ASBXoHrYmfvxvMl3O9QYuUSg2ye7x+f9MMKqlA5A39zq5ZhXztGk/JzaZMt/3DfToVEUbz7idg1gbj8ykoZ2B/H4pGn1kgtiDTwLzMibTs8HyBqar8GQzfaSJezFQMUpPpfnYwrw83ojK2/njLW97i7ac9EP7whz+McG3KsfG2nN8AKKWwcOFCHH/88dh9991tAAHH8uXLsc0223ifTZo0CZVKBcuXL+9Y9hlnnIHTTz+97XNZ74Ksd7mVLgN3Ak/rVTQoMzhlZe6qoTpxvDEjNlGdOA5FQytetS0n6FxKWYr6NlsZs1Fh94nLjK9WKiWqW0xA3t+vHfmJcNEkZ4hh2u2cmXUEYg0Z9OTa7Ftj02+IYG887rxNe/bxcHueVyo8fsAVtV3x64lT0qDNzTYMRHYUmQbSDIBx3M+0r1HRu8oMetrMqBp92o/PtFfWum053B9G9efapwsVqP4+Tcqsv1Jhd00gp2zV6APIx4jaIl0ggS5zrambTquguBnWrs7JL81FznltJpOr1OlS/P6jdApmRZ9WgGbTRs1p5cCYFys1bUo19dQRuMx8xlf/JSgjU4L5s+3/9M9dypC0oid7Mj17/jjSV0NDosKVyjSD6luj+y3NgFq37UPFzy+ZWL37Anjkg5Mb5yuYuIk+KIuTFE/dk84EassyCEmMJU30N0u34lQqp5DxccOLJqay2LPv/Kgk0N9nlVb7HuW5JaCiyI1PJesfRr5CdUdQf8lE5wdbV7ByZb3bLqSQVgFVAELf8/4X/uFtV0TJfOX4ibqv+/u8Z9Uq3aaeiek6a8KmfjTvQmHGN+8552oXKeZ8R4IsgwrdZlNOoAd+d4msWz/JSs1Go480YtLX9ceRRx452lUYFKNKxk477bRSIsRx33334e6778aqVatw0kknDXhsGfNVSg3IiE866SQsWrTI/r1q1SpMnz7dRV5ROXmgiJAyA9iEqc3etSZZazeSehfytWuQv9JEbeJ45M2mdqivdwFSorblBDtw2AG5WkMqpfajACDq3UisCpbagViYxJQkt6s1q5wvFBtwySQAONMm4MhWUtcKI5kKRb1bOzw3nGlUtz3w+eAh+4xcqcAvRySJ9vcC2CrfmYGsrwwpBd5qu8cFCpA/GoBizSo7mQFwJkoyKWQZirW9JuKusA7PdrIm9YlAKpKU2tRSqXmrdCpbtRom0i3zlDsYh3sijvR8qH7n9+chIEiyknj3ze3zR4qsJt7K5JEjImknYiI+xnfGIzH0XLHJSLFzfdOLvlc3zXofDnj2cn2saYN1wGfRoSrX2zsRISJfwFDpsuYyNCHHTdTRg8Ekx1OKUJ0VN0ly1TIkl9yfqs0/iqkaQVn6GYJvTqR6Gx+kEI6wMWKTol3hYX3r6kY+Xe45saQ7Mf5mTEVzz7WJDOX1Meqqvg+5VWq4aZybZUOVtCzNw2A48LlrcOO2h5nrs1QiRDCTDEpQ8MtaU7dC76aRF0i32gKqvw+tfzyHSvd4fW615iVsBpmTC+0sT1HUNqGzlChynfJGpECSVSD5YllK42tZtN1vZwpuf/4907G9x4Uby+gzfi/onal1Q8qY+HVTx6mnnjraVRgUo0rGPv3pT+MjH/nIgMdsv/32+OY3v4l77rkH1WrV+2733XfHUUcdhYsvvhhTpkzBvffe633/8ssvo9lstilmHNVqta1cAHZ1x3MUURSNU2EqyHp6kE3U0UrJKy9p0lPrgqjWkQBIjZ9EippnBpT1bjvBkmnMmuZoQIEmaAkzvVnlha926Tzu29ZsICUiRE1iK/Ni9cum/DpE4dJHFEVuovf8yDnrdEs5dwAvl5N1CjcRlaq/z5pz7aBm1BXbfzQhdjKZkLkFYO1qIhnfbSJda3albPNSpRUI2ef8kUwdyHFd+4755i7XPxUXOdtqopAJ1OpX9Jd0j9LMbj0jZOLaSOk3pIk2LQpfNWP9QORTmz0Lp/oZcLWCiJHd7qbWZesvksSZWMgka/dMLVEvZQLIctOyqNbsdeWELd13Xh4vZ/7kSWJFkfgRhnyysrsmsNQQLM2CajZKndMFmZAD8mPbQX1KfmGAfu6YMzsRHnDSk7O6ZYxkUr1pgqbnhh3Pr20JlFHSuIpq70fg+F+mVPIABCLg9Le9Nr8uPV98IUdl9K+FqNaN31nGypXWt8t+hnWDajVxwNKrNDmiulPEeaUGJdlU0tJmSlLTK+MmQvZsCdXXi/yF51H0rkYyYUvbX4oH2/DdNMgkSws141tKizg5fiugKJC//IJPsmWifUCN0sj7TytqKFdeuW8fLbwCki+qNYDeXUKn8WuYkathMFPGvSk3WQyZjL3vfe8b8PtXXnllnS8+efJkTJ48edDjzjvvPHzzm9+0fz///PM4+OCD8fOf/xx77rknAGDu3Ln41re+hWXLlmHq1KkAtFN/tVrFnDlz1rluHHrAgCNAfLKpd9sJIalTZCUN6DoPWcLJHk0ugJ7cTJZ4mkTtap6O52rL2l7v2gDzzaHIPzvoJx5BoNWmVR4afdrkRhM7S5TanhtLnyOz1Ft5kqJBSV1pSxsFQK3t7ehTZAkKXSeY7JRRYIRMoND0J1YqI3TWLwMjERakFBQuSab7zkzs0rVH2QmMmb7Mjw2OYN+Fztqe47idGN39tQqaaf/+T/8cN7/+w7YMz7eItZ23h/rQS6MQnsRJBO8bA35NkVZw4LLrUdqz9CxxMyU902T6De9J8Bx0TKdAZXfw2yqLbORl8n611+HmU95+wH8PwUyTLHdZ+LlHcssIouxwD8rehaBuYMpmSBx9Ra9SHvVKCmlW8dVGwCO81Ffr68BPsPtaihKlraWTYSf1Lh10k2UAuv2xEGaskcZczxaTNoCBQP6FtW679ywf67yxJGwvkVF6v9MmUJQE4gBt77CnHtvPOvgfjjCiz9j6Y4sttsBTTz2FyZMnY9KkSQNayyiR/cbGkMnYhAkTBv3+mGOO2eAKlWHGjBne3+PGaXVmhx12wHbbbQcAOOigg7Dzzjvj6KOPxplnnomXXnoJX/rSl3DcccetXySlcpm7rGrVaralVJCAR8y4eUvluU4iSnmEyFcoIaJkJtXQyRtwUVOWPOQoZGKUET0Aye7xkN09vlmMjjXkjPL3iIqOdEJuCFSziXxtb9ugYn2EyrY4qtQgunq0j0pfL1SaoegzWz3VurT/SPd4u6lvW+RYSTuduYelOqDzjdmH1CwbFUX9yRQq+2qRORFmoA9TYJBJjYWkqyI3CRyDgZiSxRY5ZFePO99sXO5MIBWrWOgAhMJN2pTxn9/PVgOKkngyBcmZ9BgK7Q9os7onrr/KojrbJgl2DW+iBzxzEwcFUYCOYQsIO0G2BSYU/iRFfkCUe0uSHxyZvpnq46VuyNomQ5e2oaIjYUva01E948TIkB8vHUZ4nbDfgGAREOTokhIoWDnUP0XiLRZKCSg9f3wrs4BgAnBKjEdMHdH0iCt/n4JreXVg7Ttg6VW4afq72usXgPv/CfIT018AQkIULW2qNHXIJk5EMmlr66ogqgmSLaeA1GN7PqDfq2qdOcpr1wl6z1Sz4Rae0uTU611l0+Mgzdr8vOz9NGlqILWPm6rW9Hi5ZlV7v7MFAJk0vRQX1JcZ3PvTihn4N3V873vfw/jx4wEA55577uhWpgOGTMYuvPDCkazHBiNJElx99dU44YQTsNdee3lJX9cHesVW1blzzORfUCJQ4+ipWk2zL2JTrwRJQYMZCKp1V6CZ0KySxgZNxY8B9HfkE1WtORJiIpZoEJDdPc7virKSm1xOCcn5aU1HN6V6RSp04yDr3chJmcsqbnJsaVNouHWNIuWlyO2gKNlKW07cWh+3ttdGAqqisBn0YQgcALM6zbxJVfexITE8qWxo1spza0ZUfWsAKaHM9/Q5rbCFTLR/m+dvw8xr4eQtE+OUT+ZDrRgKWXP7XxpFzZJyQppBtIw/HstNpAkXM5eGASHUz2kF4Gk9ApC/oDbrcQKbd17hI/DDsn2Q2zJV7idbPfjVe1GYIAb7bLdN5NI9H+Zvi4HUFtrUmhQgrmLYbPmZSZES5PYiE6f5qM0MKxMA7p54qgqRxaCubVsG2T7juwkwh3B7nfC65b+LsJ5scWLNvcz/yy+XLWToHIoapvNCk2fm58TT9c7b7p812RoSORQipq9fd4lpTRAL0gqUIWJQhVUSVZ4j2XIqZPd4qEYfZK1bLxDr3bCmeUa2qEw5fqJ2BVjba5I06whSMlVSBK5qNfX3tENHfaImZ9SvtMVUkVv3Am/fWpnoRSO9y1yFBVPTEqc2cv9SvWgoUdcjNkksWLCg9PdNCWMimjLE9ttvD1Vi+54xYwauuuqqYbmGSDLImlZ6VFHYCcJbcabQq2JpnJcpp1GraZOZkjlPtRraj8z446g8d2kcmPmFthSiNA98b0NZMyk9uK8W+SUlmVbzrLJWh8qqeqWaJHrAVAWUTCHyBkStC8mkrXV9jJNssfoVu22Qvk5DRx4VLO+SGdxkrRtFVTva674w0YVEFI0500aAFc73Q5ApJfSJIVMUggmRESinuPiTsS6rsMeTgqX7yA2YlFmfnNFLTancrMUnQaZcOWUisecoQwTtJBxOjPa5qTifKG5KCY474NnL25zi7S4BXLmROqovjEociqO2SBJrojz41XsdyTQLgrb+IfJAm617juRm1wYzSbflaSojLsYXyE56Fa1a2OeAbROkz2OqR2EIOH1WdUqLS2hr6ifDyda9VzZzPpkNmQLkwUzGXkqNkvvL94IUaeYWCN45XIULFGQ6jnZvkDWoSq5z8a3tDYiqdIE8RHAD878lpvReWJWzggP/fhNu3OaA9rYGEKROh4EFWdUocy3vWNpCSLtD9Okcgs2mddqHHRdym7eNykTCibSE7O5B6x/P6b1Bx02E7BqvU3uwZ1XWurW/K4GIm0327Pe5SDPI7vFAUTjix5Q0kWU2OMctnCu+mmfKEY2No4y1CoVkA5Wt1mtUGeuEtWvXotn0XUHWy5I2DBiTZGxjgDbhRVoF+l61qzCdA6ppt0rS5jLm35BlEBTFR5NDk63Ya11WxSr6elH0rrYrNRSknJGqk1gznZPoE4BPyLqyzlRQSaGEtJFNRMAAaEKW6oSPsttM7EZdKYoCIqtA9miyiFYDRR+cKQ1mQKbIujQzeaPMgNu7yktNYCehksmcfHu4/46N3Msy01aWK6swOc3Y4CqyzPYP4IICuGJjndlD4mbVv8xFINIPU5J4Wd5G1vxzL4kpm4Sl1Kk1ihxhHiJNZliiWrbBuWppvzEi+DzsXhUFZK3LJ6amv/X/nESWRBiaNvK23LzTR9n3RUAGMuitpEzAATP5tjk3G1Lk9oBkOxnA97fiG2+TaqPy3L4HokqEzDnZSxPlqvjWM5xYhGQKgWmSb8nEj2HkyiNWsmgn/cxE5vVZ8HdIYFXq6qf7sNwcqvu84kiVVWIogpr8nZw6Rv2gr81My4BTc7iPGb8eUxoHg1XoQ4JPqpj5Xbt36OvoqGZmdi7cPQbcOyVr3V4bVLPfuoTQeyq7xgMyQTJhS53OpjXJtEE79QOwkcbWD808PzaNSOr6Q2SZHdvsZu1GEadxXjWbnmndBs6wraVU7gjqSCOaKYcHvb29+MpXvoJf/OIXWLFiRdv3eVnw00ZAJGOdQC+gKuwLa1Uy+ETCmieNagTAmrSsmc7I9UTy8tW9llzI8RP1Ocb/Sq/odf4sANa06algJU6zikgZABgHRe3DYW5z0dLETJr2ZaYtrX5LsGRNJ5Yt+nq9FARkckzGT9SrfLM/p2r0oehdpaObOFGgCDe2chWVms4ZVkZaTJ8KpqjoOuftE0ilBiSZG0SbTTcI29V/YiIN3aRrB02aO0w6D4r+JJ8+/gyE5jnvf+YPBQCyUrNRj6F6Ycu27SocqU0za2IRMvfMiZ6vWScToFXX3CQUfhcqPSJJPCJ2yJr7UfBUIoCnAsjuup5cpbR+gt5zz53bGRHjPlZ0XRcIwZQKXrcgUapT2BL7zPFgCm97JzjVy9ubMTTd8X7j/WTrEJgCi8SVw/u2cFneVfDs6POC5MlMZbF1NkmNbYoVUlxprCHCSgE81C+sXJtWpjBZ7GkLMEtSzbPXlmx2cPWU6ukRcKOSkeJuKmH7V3aNN/uFdnvt5W3ikcTe/q7UPqaKJpO29vceTTPI8ZNgFXAiUQDQt8ZEFlcgyJrAVD3rX0gLskrN+pEVa1a5VD9GEbf3itwlbB+se1RqxOjjxBNPxK233oof/OAHOOaYY/D9738fzz33HC644AJ85zvfGbV6RTLWCeS/1Ox35hqZQCSZ8yeAzotDaSrIl0ikmVXFbE6wJIGisG1mIpHjJ0KOn6Tl/rWrPYXIM93RoG6IGFe+bKJFTsSk1MTLHCv4MXlDf0bjMCN2pExI0wc2tQepgWYVGq7wbR1pVR9M7HL8RN2WWpeXuFT16clBBmk4bFRYs+E2yqZEsIQkA1KWN6jR51SFFFqtMYRJMGd8l3PMbN1CJlabcsNNpHZQp4m30/NizC4ScL6FpHqxfvDISfC/TQNB9SukS44KGKUmiCYs/PJtOUBHBU0gUMQAvU0UEVnydbSpOPSkLc0kJhFEedLzbPz57P0ocmvG9XynSKmidpHJmE2WbqcFpvpQ/zB1BVK6PTUDIkpBHDwXG3+m/SS1JQErJapumc9YmPNN0QReuB0g2gihp44Z0sdVNeknsvXyHIbn0zUAhP6DFARj3zciPQBumLg3Dl71u7Z2hzhkzf06KTP1Ey1SaFGoCv8ZkwmSrbZFc+nTOvik7ggZfz+5/6utL12Hxk9yETCJX7lFQJqgJNXs19HbmUk9Q8ljKUjKmMItaUegZCWZHteNuwalwSF/URh/M1Ht0qqdvW+JJZMbAzHp6/DgyiuvxCWXXIJ9990Xxx57LPbZZx+87nWvw8yZM3HppZfiqKOOGpV6RTLWCakx7fWvdRmgZWqUpVRHDhW5XVWLDM75GND7rVmfDTOQsOSZiSEnetCoQyUZRB1utc0mNTuI0CQr3MCoWk23MgV8RQzwFTQiZmYAtcckGeS4ifp3s1qV4ydaQlms7XUkk6+Om00o2WcnDmlWjgX5WhCKXCeFrNQh6Zq5NkPkrabOJh6YvbRKpq9X9K522fNpIlXML6rWDaSGHDb6XFg/7UVHhNjkHRL9fYGKkZp8WqE50zjLs02sad9Fapd9BgCb88tOyq0Gez5KTEZUhvF/oSSkArAmQfI7tM9Smtn+9sgBW63bCE7ApQCAUWEaeRsRO/jVe41J1PWvlyhU+mS9KHLA+NnQPSDS6pl7g8mf+5cJqg87liettWTGqp0JUyILj2S4Pg8IlZQQfro8RyQA3/crcKIfiHSH53gZ3aXU7gvMVMrVOu47xvvUI9ZMfeLXKq0TI+++mdxXDPWzlHl+VQe9cmc7uQxwaP6o9ukK2mwDT4SASipAwhaGgCP0rQZUUXPmyRbcPeXmYrb5ukoqEFVpo1G1CZtIlSaAotrlxjPZtDt46AVaZv1uXcb9pq+eMej6J0BRhZxQaJUasOOfynObS01IY64n9TfJIGrj2socCeRKbXCesJhnTKeumDVrFgDtH0apLPbee2988pOfHLV6RTLWAbKrB6Ja0RnppXFUTTKdGVwVQBOBcuXMD6p/rRm0XO4uL1N8kQNp1UYhaYJX7sTrrQZ5YkVpBiKgzWSpklT7igHGqT/1812pFMgb9jyV1fQ5Zl85ADr6MqtrZ/9mE6IrgejusYMlxtch86ZTytIM6ZQZEFKitWK5JqVWHSt0So284kwZiR6cZaUGb21MhJM75JOZJa2094+BMCZPKkvWu/Xm3tLP44W0qutMCVfzplkZaxJTFh1ls/hzR89gotPHNb3ziXgJmQAVf4K2ZUOboUFpRkw7LZFi17KQxpzJt9qxyWwZiQJ8Qlam7AAu4CRUbnhaC1KzrL8SU/OoTZR+w/Ohyj1zIaWWsOoDrw83SYfEmJNe7ifGPmvLA0b9wAi+1zchAWJo+461wytHJv7G76x+lmTKxE+ea8oYqK7WJ9WUw0mt7RPeN2VKYUnbBHvGb5i4NwbCofmjto6ewhhCJlBJalwemtaHjNwWRJFDpEb5DqObw3bLVJcnmDIO2GdCP6suSl0oEzRSrWuVW+nfE/JdBFcVpXU18awNRChTbSKWpnwlUx153lzrxt4kM4sCTcSUTKFYfSI2fcyePRuLFy/GzJkzsfPOO+MXv/gF9thjD1x55ZWYOHHiqNUrkrEOUFkNqHVr00yiN8BVacW9lHlLDwpWoWGUwkrxFTtweA71aU0rWErpF54GWZL7mblFZFVHmgQjbLaeVSBvAbTiCdUBIj/MuVavJlP3PRG2TDplLUn1RC60rxxkApXWoJQ281B/iCRDMkGnK1DjJwNFC8mkAmptL4pXX2lXyUyuM1Vo/zdRrUHyCTiYyPX/nJRkfnvo3CQD0hRyXGYJlpKpWWH3O4KgyEFX++DowAzdp6KaOLWLkxpyXg/BTV/mPM+sCAzsU2KdwTObokT1rtIKU1LXk3yroQMeaPKwpLJiAyjAcqaV1dGaWI0P1AF//Y3dCPzAv98EmInLIzwFm4TDBKGcNLJ6eUElofnUKFvUbgC6X41zu2deDNsSOLy3JVMtMzGSakV9JtvfHQ/UlwMoRW15uuhzz6Hb+S3y+tljwv5p80PMvc865QbThN1tk+WpYOZ/UWGK2wDEc0AEQR1ufJJQadUtTi1ZIZ8wCTlhSxS9qzFQCog2gilTPfbkLa1+QS+G3B6p/GA9dgk7HmUQzX59DPnWmjQ+ihZTSWbHas9XsGgBSQVF1gWRVPT4UrT0/9ycLhMIchMJLQwjjOjAPzz4+Mc/joceegjz5s3DSSedhMMPPxznn38+Wq0WzjnnnFGrVyRjHaCS1GRfd8qPR2iSVBMgQ6qgCk20hISopUCrH0irKCp1LaubwahIqrYcfXymBzJVaIJEgykpRDK1ZkiKjFRphZGRVK/q8ob26wohGAkxuYDoc+tLRp+rQreL90OaAWKcVeIA6B18zepXJSnEhK3t4KTbPx6iaoislJBdPVCVbk06c3gTs6iPB9J+axpoyy8lpc2dZmFC31VCTtCFNd2qRPvJiaIF0ez3orucT51x5mVbH1mYfGH2HATKA/WLNVFLb7LyosU8AtPZoZtHiqpU+5mJjBLXJt4Eq8swEZrkf5YYws/LtYldORnqAyVhPejFW53qUPVNN7w+dD3yEfQcuW0bOkxGgYppoylDAuL1Dzue+Tq1qTIdFNL2OgwyUYblhKbfsuP5seHnLNUGXd+5OSRt57WZH3m/Bvt8AnDmQfN7SJ7bygmeT+rL63vmtrctgAvIyJyfFZVLVgKZ+v6rea7HGZmYhNT6OSrWrIaNZGTk2PMxpOfcLC71YqpLP39Nev7cGGwXr0mmF6VJxV2fbVquyOdT9vmL08SUpZQeW5lfLR93VUKE01zWjJG6vYN247AhkrHhwRe+8AX7+/z58/HEE0/g/vvvxw477IDddttt1OoVyVgnGN8wlUnnIA8ARcv5aAlhiZHIXSJQJQ3BShI9QABQiSZfSFySRAXYtBNCFSgqde3PBTexinDlRduPsEEDQpg6Gb8IOpyIWgkUmQOK3JE9yqAdhKsrNgEos2r0vmerRFtHJBATt0E6bqK/gk4qur7kf5do86soci94QROSqj7GOOfaPfdSMwEQYaW6CalVR5lodazV1P1Z7QZFkgo+GKcVIF+r0yjQJuxZRZfHnfwpMW6TmV0D1Y4mOUrLEKYdaIu2YxBSb60kSAnhZEUmnkmrkzqjy/EJn/OXQRvhUJTY1SQS5oTTRr6R/xNgzEssuo+cnfl1S+pUClKOPLIr29QdKk+EhImTpcA8GSotfDPuAUlW8DlPDeL73Zn3k6uUJaZQrz6hibjMTGrysymUtCEt351Bq1PGpN2EU2mBNjVR19mdf/Cq3w1KyK6r6InpUPFUO9ljKrvNcdhqQbT6XNS3NE709W6T0DjI7UcqIL8fqoBorNWLBrOQte3NKn7QgGmbHkcq+v0WwhFEvkBLM61oNfv1uFKp6z5v9dv+h2jpvjRjqmeRYAtoe+28oUlgX8kiOGLMYMaMGW27/IwGIhnrBEZ4rCmPBiCrZOnjrEID6AFHSKDCSBA/j5XvmS6FhEgMEeDKWZ7b/RHJxNnJOR+Ar2AJ6ZQ7BkWfU9344EbHyBQCQf4gE53J+6dNoid5n8rJan4fkNlVMhJXSSFZWLzdeooRSR5RyNtL94I+06tVc6/SDKpIoCpdQN9qQz5Z/xKZW9tr8gkllpDRpvCCFFECTc4cfLItIV2esjUAKQtVMwAuKhewyoI/6SbOBDQAOYBJwGmDQlpNvREz+YrxttC1+CbbMvFUGTl+IoqVK3x/NNM/tu6MwHbcj5K3nSIO6XxuXrRmbF5XZ8brSFKLvFxhstdw+4d2IpVln7dFL4aEK/fJb6drhubKtrqW/c79ygBLyLz6cPDnhX82RPCdRez1+YJQSCBJHbGherCIajLDc2h12UQxUkLovOGimrOqXlQZNU1Uu9ziFfDHIlokSwklq26RlFb0OFK0gEQvPFWlrhdtRhXTY2Di/GypXSz5rB27c+MTRwtXwC1MRxhRGdtwFEWBiy66CJdffjkWL14MIQRmzZqFD3zgAzj66KMH3LNypBHJ2ACwLxvgmfusrwD9LhMomJVZywwkfAJnJkxrzpOJlsfNi219uPggBwCiZc2YygwQKq1oKb/IXQAAoJU6TpgAR8QCJU1n4m+6lV6owJHTP5PsVdAHlkyRnxkFIuSJG+gMRNHSQQOkiPEVpulr7cuV6shSudb2L01Qopo5gsb97EJyasyuSkidKT6tQqR9btIw5gWV1oC0BillkHLEXM8QMdq1wE2MTd9sxkiE3SMUgcJD5QI2pN939g9yIIEpUDSZhWZPTgRQor6xCZhv0UTmX1FtjyzT5+Vtk7WXeoLy53X3QK1cARTmHTBJOt11pPud6kz14spScB1qi9eGoShuZUiZr1ZAGD3fPuP7Zj+zixv45weEsFQpIzPyAGZUe55MOuQ5Y4sPISHg9l1sm07bfMI6BDPA9ev14/bsWLdBYdvZ0sozW+SopKIVqP41ti5qbS88HzbAJGHNbIoMyrfGo4Zp3KGFiB3b6N02xwDQLglkqaDxpWj5C8gkgRJ17RfGVfwc1r0h6Czj/sCe21GcrHNVIC8j2+tYxmsVSim85z3vwTXXXIPddtsNu+66K5RSePzxx7Fw4UJcfvnl+PWvfz1q9YtkrBPMSksxAgPA+YnxgVaZl1RmRmZfEyRgZQMJDV5GxVFCOJ8J7rPAiSCVYaR4+l6EDgvS93fwFDBAEznZ4ZYL6QYxKoNfmwZgIli2rsIftGyEkgRU7o6lz8zfKqlY4irsqjbVPnZSr7JpxanshEr1EaWKHPUN7b9pfeGK3COpqmjpvrNmZgFh9u6EWd1bhYHaSWSkkO37SxKK3CcTlBy3bKIMMrW3K17SJZ6kBMIyac+FJqWfMJUTMlOel6PKmAQ93yP6jpfLkhvzjcWJQNotsVaucGk5ihyQNba3qDH9mgSk1Ee8v0JTpe27kmNcXd29bzMHlqHD53a7LjKp+V+y97WknMB06kXndSDhdJyncBGpD82wgemOg2e150oYbQ3lqYRtueaGrogdWnvO+JQyckh1pvFLFVq9qtSNRaCu96alhRSgiZlZAKhKN0TeQP7i87qctOK7MeQtiLTpItcL7ZSPoqUXnmlV+yVIE1BEY7M1W6ZelLkdJ2gsqXR5baRUReR+4fmj0ZhGSnredIvIkgXlSCPmGdswXHTRRfjtb3+Lm2++GfPnz/e+u+WWW3DkkUfikksuwTHHHDMq9YtkrBMsmXHkCYBbUdGYppSTuiWMqiM9xcYSIJp4jEJjU0+EBIdXg5QgRuD4RtrcMV+R6mRVK+E7orYRGOEGLqonJ1nsOFevAsZRyH52/YuayBy0DXMUFhJC+OoYd/Z1E11q20NmAdHs0wM8XT6r6gG96AO6K86kwAmvuTdKJroc45RLfaSSilHEGlpVZKtolRnfm6JldiMIstgDLjpTFhBVHS2q2yT93RhaMCqeidgkX6Bc2vQYipOaEkXEmnOK3Cd+Q3RY17s10DmFNTdCJnqirNbbTIKlObrIRFmtQ9Zh8z3RnqrkpE0BB2r1Kx7B0KkwfPMjbYHUKc2Gp6yF7bUKUFFOKjqUOXifBb5kNClzQsYnXf43NwmTusaJGatX2xZmEqWpRwQRAF6PkCzy6xqfspCQUo4zW4d1hA3u8fogUF5loVXjBvzFk5TW8V2kVZv6QmVdkI1X2R68dRRpBarS7aIoW/12PINModIaRH+vvo7xcS2ybv3+qwIqqQKVbj3WSK3K61tnVLOipd955hqhqH3UNjJJqna3Dtt2IQDoKFIICdFca04ZOsGNGD387Gc/w8knn9xGxABgv/32w1e/+lVceumlkYxtaqAXzpISUp1yPeA4AqNXT6KxVg8iQjp/BDIrZjWbzkI0zCRuBgdNBqAnTRr4qGwukQMmyohPCsKZ0IxyBmP+1N+3DxL2Gkyt8oYe4SYMzx/L1EebDAAFN+gftBURJ11fVcCSTW0GFUAekCemwCGr+ZOrUt5mwSqtatMHq49XljFtQilfbaHVLplRlQmcIBJGvn9mpatTfiROGeRRpkRyZQJUdXSsJiEVG0GpWk3dZrN3qCoKm4dNgMyETv2inE+eI7eneuSa3KVmL87+chNkmJSVT8jebgMAkNRLE196jt8h0bEkIbHkUBU6ClXUuvS2WSlLeEz7qxonf/JrC7c5CtO42HLBFOHQTyoAEcayPFwDnVdemP9stqkk9DsdGypmNhChxPcvJGKeGdTkrQqc2b1gGlX45wOwxCjJtBkzDUyjhsBpxYzdj6GCjxH0PvDv6F61GjpanEyvNBYR8cmk70qR1iAnTIaSKYqsyhacqUuZ0+wDlHKEqz4BorkGIm/pACm4hbGSEiqpaVWNkWQFPRZ6QSZ2PHD3gJMpz3LAI8t5MBeg35ekYiJHN840mhcKMvqMrTcefvhhfPe73+34/aGHHorzzjtvI9bIRyRjnZCwjPAqd6soVWinUOny66gk00SJEqbSS8pWdxBCy9xGDRL5Gp3BvqojgSALoFk4AkaqEaAl+lbDnyTIVElkSiZMBXOTAff18jL1E2SiDyfSyQmcEIBIfLkfbsDyypNsgkmkXdEqVUD2v+qXCejN1MkXjkyI5FNWrUDlmU7Vkeh2qazmrmv87Oz9sCaNwhJiqNwjljSZqcwldBRFC6Jw5M76BlL/plVDDBPtkC2EXr1LCVEfr++nIW+2eYnbU48TCtquR1aM0kr+MQXLa1bkLomu2TKKzHyiPh6i1o18xfL2e4gShc2cq9Ig0ov7coUIfMUonYA9j5zhKakog96HUG9xJDnZk1IHYxhCAJNgFlLqTb+L3N+rkMoL2zRUxWug1BTWVFeiugHtJqdOikeJgl1qsgyvz1VhMu+BEYU2shWcx8mhbUfwe1uQg9sRQtdTH3NI34O4rvaW8vYBOLS+DEqlLsKaX5fMdooSS2vfV6VSL9q7NNDIpKwo6hPaohYp15clcuYdF/29erElx6NIUjMWUl5FpgRy8khWBOMqYd1CksyOkW3XBzQBKyFXrrwCXkQ9nKI/0mgVgNhAMtV67bqM4aWXXsI222zT8fttttkGL7/88kaskY9IxjpAJRU98Ra5GYQktIlOucGo1UBRraBIqxCVLutQz9M+ANAvb65Xj1olq1qCRSkmRN4eHl22/6RKUk06aFWYpHoAoVVebgYwriDRipWW8kXRZvIIpXbBCB/9Hf6ugpWjO5kNxDJBUR0HkdX8yYRPjOYjYfrKOt0aImaLbfVpgpdWIXK3WrfHJKlWKotC+4Qxs7CgvqD+IBJmzlUmPL+oT7CTAq+vKEwOtqQClTe0b0xRdfet1R+oEmZQNz5oNjiB6pDVNXEsck3KjUJmt4Ay9wlFrk2cqoDK6kgmbYXWiuXuWJNKw0OR+/tKAqbNbEIu888KTIC0pYyX3oEm9/4+p+ABdpN7ScljaUsmUv9YvWxmdL73Iiczdm/N9vxuro2FvTaAjtGapUrVQIStvJDyv/nn9CszWQ5YVsn7Hh5HKrayCzijrjL/KFRNpCB/n8g/ixQ3QOfdKlrm/cgHJWJWMQYbfwJTLX83Pb9aqmMnMmsDjZg/q6B3suGSrtpxgG0DZ1IDlfmh2mMAq9Bbv1qKVJcSCtK4KsAfwwqm1tPimSH0RRPI2/xyIzZd5HmONO1MeZIkQau1cSJjyxDJWCfQpCmEmW0KoxKxPDaG+OSFgkwyO2hY3wk78BqCZkLCKQO+SphfGTddhPUoGPGSKYCWGxdtPaV1UrWmQvP7kMGdt9mg5v1NdeWyP/3PyQtvP/m78cmEzKn8PJkCoWmQYPw+VAqQ+ReAv5UU1UMCKIRbzZb1h5SA0gRb5ylKff8aUoJYn1pTplEjhYSOxBLkE9W0dbAmUN5Hpi9seULqLZvQC5tY1fSDl7S1KPR3SQUqq1uCQn5podJjUwZ02s/QdlXgKM/qJ2g7GZm2qz5BP4oWLAn2IBObMZ3vr6rznzVRZp5swxD8wEqJ2EDnlClmZceHEz79zp/ZdQEnKKE6F16fkx8ywdN1aQFBhCZveOW4QAinDHPfUAA4pPGQzSNWBi8fH6l4MnHEiJOpkFSxMlTYdwDafLLKiFu4AOXnAwOrV2C3h/y8gnGKH8tNxqU5xsLzaPyj29eJdA4zoplyw6CUwsKFC1GtVku/7+/vL/18Y2HjPEVjEYzkkNol8qZeLdHgl5jEqQCasgJVG69z2JAPU5I5vwPuUG5MYKrSjSKrOVm+zF/HkAmPdNGxYTi2kGb/RqOWcdPhAPBMo5xolRC50I9NH5c64hSuoI1ZQtGWUuSUm9X8CSnJoLI6VNalTYnC+N4BNtpSZTWoqnb0taZNPokFPi7aiTj1+4PXudKl60H9SObQrGryE2XOdxBw12R+IzbEPjE5yVLmpyak3oM0TDciXXkqrRlCZggJ1T2tBFFxOURzre6LSg1ywpZ69wJbpiFlfCNqMkny+0k+jlwZKiMi3L8rYRu0M7JmI/fIJNps+LmkpLRKmDQ/olJzEZDmb/qefO+87ZE6kSop9S4FIRHjPmak6JWkpABK1KuOSo7/7rkI60HO533LzNk8MIgTnNLrAtZU7tLipCZfX7si45k8ue9kqhNR6+AN/flh1aWll7127VT7u71mVmfRi7ru166Zoo/JauZ9ce+R/qJdXbOWAxNAY3cTofGMlC9Oeslf03xH44jz4zTRkJ5Sr8tTaUW/z5U6VLXb1Y058zsyxsqjBR93cwjHYCFKrQojBcoztqE/I4HFixfjE5/4BGbNmoV6vY4ddtgBp556KhoNP/J8yZIlePe7343u7m5MnjwZn/3sZ9uOeeSRRzBv3jzU63Vsu+22+MY3vgEVEPjbb78dc+bMQa1Ww+zZs/GjH/1o0DouWLAAW2+9NSZMmFD6s/XWW4+a8z4QlbGOUDIxPkPGD4ltJSTyFlTF5RYrCv2iqKSCSsUNmHaQzZvaRGDUHjKtFRBo5gqJADKZONOYefF5tme7OuQqEtBOxkLQgObtl6eles9pu20iaScPANw5/HhWZ78TTX8VLWP2NXm7ABuJJPp7AZmV5/kxZai0Zv3CVKVbB0FIQAn/8SVfPR31mDqlsEO/kELp+eKFzttUB1OGyBvOTGvC8YUqNCGjtjLCqoTQvzf7jSkmh02PkpBZUJN6WetGUe12q3siLZkjQ6rZr/3Kqt1OOeNBAZSsNungFwWmiIVEh6tinNTZZyjXUZomeMGdZ/qmygIxCpdmwVPSAP+5Y2XIpKb91Eoc+8PEpaJad5GnLT+HGidfgpHR0oSo5nMKTOlwQJtS4qkq9Jx5PpQuQMESsU7vamD+8/6nZyEllZLtktFa613PC3rgClXRgspNvU3qCd6W0ibTeyFNDrE00++LSTMBmeLQruW4dtUUHNLzEmyqBw7eV4aIUZCRXYgULRQp8zFMMudHGJRHPl+uksqSJu2jm2rlnBRsO3ayxM15EzanI2++JdjC1ZnaIBQbdxMopnh3tGi8xvDEE0+gKApccMEFeN3rXodHH30Uxx13HHp7e3HWWWcB0GbCww8/HFtttRXuvPNOrFixAgsWLIBSCueffz4AYNWqVTjwwAMxf/583HfffXjqqaewcOFCdHd344tf/CIA4Nlnn8Vhhx2G4447Dv/7v/+Lu+66CyeccAK22morvP/97+9YxwsvvHDkO2IDEMlYB9icXLTNBpyErVLjJ1bkaCl4rF0JnUunBYlWoZBIgbSSQRS5P7ioAjm0iRNSIJUpkBTOT4HIQplvxFBe/nDgT/zBHYCbDAdb4fPzLKEzAx6PAA3aZ02VSmlSIhJNWgFklNcrbekVrSq02TfxyZGqdGv1igZ2E/Zu/UkC0w/fGkmEfWD+D02uVE8epBFGrupoWKeMuNxEAmj0GvWtAjRMuDsN+OSj0GravUXJB1E/T/qeiyyDqI9HYXzSpDUHJhC1bhuhK5pmqxjmKyeyivUbo1xTpFS55gcJYUk1s1sTObJD+3WKNPMVAUYwvC1tAO20H3zGYRUsqpdN/Bpuhu2rsvw7ynWmc7BlLsFoQL4oWEKEKiEnc0NJjTHIe+Y9M4DuK75dD50elNNmAuTX63BN8pcC4KIr6R0xpCa8lg3o4UmQAZ3ba20vZN4ILwMAOKTnJSiV2T0idd8UhpewBZaQ2r+sJaz7QHnlmVouJIpaj1PtAJZWwhEeFNCLYcB3FyD1mBzx2fPpLYCpOJlAJRU0FZAIgcScb/sUcO8lJ2L2GS5gXVUoFZBVC82YkGyc7ZA2ZTPlIYccgkMOOcT+PXv2bDz55JP44Q9/aMnYDTfcgMceewxLly7FtGnTAABnn302Fi5ciG9961vo6enBpZdeir6+Plx00UWoVqvYZZdd8NRTT+Gcc87BokWLIITAj370I8yYMQPnnnsuAOCNb3wj7r//fpx11lkDkrFNHZHSd0ALEi2TU0ab2DItdWc1T5WiR1sK/bJDSDQh0cgVCsW2sAhIAA0IUuifEJ6vgo3I7DxQ8x/vGmUDPJXJvytbuYfHsc+UmZzDLZ46QZNRBSkECqX7F4k265F50ovkIxMDT9LIyBeZLPyOULaOpZGj4UqWkyte/5xFwvJBXiYmVUmXU/oAS8y0qSSB86VpJ6kqNc+R2ZJFpTWd6Hbcliiq3ZZoqqyu83uNn6hNs2mmTU00QRmlgUiHqHdDTphsN2e2hAeaiPFs+2Emf0rsqvfnlDr6cW1v2/Y1ZQTGqndcFQOcuTQMEJDuWqKq9/wUlZoxr5vvqjWT26zbmjGRVvTf5js7QVPfphVbP53Dqsu4Ceg+U0kFolI32z9Jz4xnNz5PAjVwIOWIPztlKtdQFZNgAVPqi6YKiFafa29R2OhepHqTbE/94QuPxJgnucnQOPGrVhOHZc+2Xe66VVuYCG9HVoTZ65WX7+qT6whH+3ervB3UFqXz/uVJVb/7RI68sUS4PjTuAraNLNG0PccQaedKQLkb9UKwmSsU5jPF75v9PQg+AHyF0RsbhUnBUXWR3BsBxTCYKCnp66pVq7yfkfCXWrlyJbbYYgv79+9+9zvssssulogBwMEHH4z+/n488MAD9ph58+Z5fl0HH3wwnn/+eSxevNgec9BBB3nXOvjgg3H//fej2Ry7+4RGMtYBrULpH0io6jh/j8WipTe2NtnzEymQSoGSjUoghIAsc3BVhV6pSaFJnHeSr9xYHwZOyjqRrICYeX4RnFwBncsqG4BY+eGxpU663rWFmwgEkAjdv8qQDgB20rD1ot/JBEXtSSo2Z5sdLGnwpMmMD8plfVHSNhFOhEKrRSqttE3S5EtiJylTBxu4wX1XaHIyk6ae5JiPnSF3RW289ZGDkJqAjdtC/8+fhyTTJkqbUNMEjVTqKIxfjKjWmILkkgZ7e2SawAAANk8X0or1KRLVWvu+nKEZEDDEqmJ/t35iWcVtY2W+t+elFecvZoiQjgztMik8xgG18frZSKv6p96jTdS1cRBZVdeDiEC1S39G5Iv5E1kyTaQlq9tnzoLIafDeefe8jLSz7+zn9Dx2IlYDocM7LVQB0ezXuQzJh5RvKG+e1fayhPWvtAElRlnVaUYanop5WHUpDh33gm5/knU2Y4bt5dcP33/AkjOroucNyL6VSIomCjhn+bY9HgNFzbWp4n/G3nmralnFTEDmTVQSNg4PNN7RM8PbzxaeisYWo7gVaRXFRkptMZyYPn265y91xhlnDGv5f/7zn3H++efj+OOPt58tX768LbXEpEmTUKlUsHz58o7H0N+DHdNqtfDiiy8Oazs2JqKZsgMKpX9sDi+W4I9eyrZzjNdGIgBwawelwjYDB73kEsqoYsoOHl4WfAIRGfKBKCNJVE8zeHvRdUQWOGlh5MRuVM7LKis//J1J/l69PNLDI5OElckLBfQXQCJSZKphV8vUDhS5iVpiechoAmZ1UWnVTxMgKP9aiR+OHdj5Ktitlj0fPXYOZQYvvS9GQRN5wxxbceZDk4yXE0nrP2PvNyk0um1F6laEomhB9K+GaPZD1cajEFJvIUVkTyZ6cm01XR/LFLI2zhIc1ejTKlez4fyK2qIJDXHL2LUzF3jAFRCdaiN3BCtwUhcyd9cixamQ2teMRVTa+0LdaQkUy4AuEyhlJmDaLqfp+o4WF1ah5KQqJEImNYmQmix7e7IGW1OFsCSeTfC24mZvQ7pu+BwNiKG6HAA2p5cSrO/InC4YiTFjiCIiTeOJSdtgSTnlszOE/LDqUkAVuPbVrQEA16+o45DxJkE15fuiZ53GMJn4JNAoxKLVZwkLaKN4xf0uW0DeNP5jmXu+lII2C7JxhJsiAbMwde+voPfXfO5vH5fZ5zdFASWS9jEkjOyEP76G0ZT0e2Gel7xQZUWMCPJCbXCeMRp/ly5dip6eHvt5pwjD0047DaeffvqAZd53333Yfffd7d/PP/88DjnkEHzwgx/Ev/zLv3jHlm3ErZTyPg+PITegdT1mrCGSsQ7g5sMiySABL50CPdQKmlhIASuDA4AAjEmOJnsBoZReWSnHB0T4JssEUCwRoSoAxZSbDsqOvoaZ3BXbn9EV7IhgcK41E5SpRebzsDw7uIZqkv09eFmEtP5ipCYq0xF2RUurTlVAFv3tuYvMNYokg2z1u9W+cfr1EjjSYMxNcrZPVVu5HlEF2pWGkr7yCWRqyZjbxzRQyHhfgj1PXFlITN6onHxkjJqRVaFqE1g2dlI7lPabYoRBZVUgq6IQEtI4Q3dsE3f8N31kSZklHgykdLFIWJFVXb8VZsKV0imKidR7f1rlkgWjlD17ZMqi+8/NZQGBIZ9Eq5TaAAKhiZwlRqR46P4tqmZnhKIFtF5h/ZHr6FG+QPHqZK7BAxjC544ILLWRf76uahng59oL32GlIFpNp8oSEQsjf8131B5RIeW5H4c2HsU1/bu0Xfe61ZNxaO052H1hyWxvF3+uTW3RpUZZsosOUnJNIBMdmxRNlzYjfNZM3W9c2ocDZ3SZNiRugxFhxlVm4PH2oJXaRzVJMkfawntQZrVoW7yxe6uAXMEt4uCP+yMJpRTUBpIxIi09PT0eGeuET3/60/jIRz4y4DHbb7+9/f3555/H/PnzMXfuXPz4xz/2jpsyZQruvfde77OXX34ZzWbTKl1TpkyxChjhhRe0WjvYMWmaYssttxy0TZsqIhnrgERqE6KANqmBR+4Z1cz+qRRyBWOSdJ/n9MIqN3AQIUkg3DjAJ2quWgFm8My94+wkyQcBb1DRk4M/tLG8XWUTQokSxwcnxY4p2xeyDdRoPnGyrxOh6yyF0Jn2qQ2KBTGoAhAmHxlT/ZQyqUQUUOH+HawtRPog4asadgXODg/NIdKVQ/WgZLvk6B5OqqqEEIaRX7asYOIGy6NkHYQTEzmXpBAygezv1b5qadVGokJIG7ZPZRNBtP5uWT8gVzt/H+qrkJgZ5UmbgTPIxlq7ECBVzCYRpQCBFnxTpipMGoyqrxARMQ76wctFx8kFVzApBYFM9SRO2+eoAqKx1p1HKq25R+THY7O1J4mNypWNXhS18fod6e9Fkva6cphyQguQkADatgak0MvK3vb+oeOxpYsjmdgkw/qdaGgCWBQuGKeszCTxSZOQ2q1CwqVioXZKU8dGHw7NH4XomoBr+qd75V7bty0OS57Ri6BK3SpNFIBB5erVqiPbSkjtD1odr8kWfwepX1t9NmpdyUT7leZN3fHsuAOn6+AVJVO945l5hmwP2+3O9O9EzpSCNU0qIfSQFPS3p4LJRC+YzcK5bHzjxMuW3XbUyKBgPl8bUsa6YPLkyZg8efKQjn3uuecwf/58zJkzBxdeeCFkMMbMnTsX3/rWt7Bs2TJMnarTp9xwww2oVquYM2eOPebkk09Go9FApVKxx0ybNs2Svrlz5+LKK6/0yr7hhhuw++67I8vGnsmYMDSN/DUMUr6sAySZL5WyP/ZYVeIwqTQp41Eshoe0oSyUu015sgpIQMTM50IpbxXonUurT57fKAiDb7tOyWdtq2Ah/AbRNQBfTWOXSKRAKgCpcj86zJyjSUrm/DNkikIkKJLMBjc1c2X9NdoCGEw9ub8d92HraI7l5CD84TsdUD/w1AWBqcte35rfinZ1p8TXR5nkrqo6Dqo6HkXXJEtAvK2jcrZFllUDUm26NfUiH7Ki0edtQA4Ast4N2d0DOW6iTnlAGfVTtvVUSNztc5NCVOp+IIW5tvbNcg7XVvkjXyfjS+b1Hwt80EESJtebkJZEUfuKSjeK+gTdL5W6PpeeNaWYSc4EgZi0DJ7ixu4x7eqgc3ex+1HmiE6+dmXvjK1D+zvrqc8dFBj+/FJ+PIrq9t5l4zzOfSW9RRwnXEK6LYaCXILKkHlR67Yk9NAurTgcMv5FHNq1XJsvU0P4jQqs83qR43z7mEXKoEqretsjZnqnsUJVu3V5QloiZmHKINM+XwTaQ6CJUaH4WOtMhgWYVYLzDzZO2CAMNgbyvUmUEFBCoICwvyu0k6+xaxgbPjz//PPYd999MX36dJx11ln4xz/+geXLl3sK1kEHHYSdd94ZRx99NB588EHcfPPN+NKXvoTjjjvOqnQf/ehHUa1WsXDhQjz66KO44oor8O1vf9tGUgLA8ccfj7/+9a9YtGgRHn/8cfzP//wPfvKTn+BLX/rSqLR9uBCVsQ4g0hUiTD4XnsMhhT6eXnBJrjBksjQvuFDtk16b8mImlzZ/J+knHSR/CsHMkoL932Yu0UtbXzUiskLmHa9ioSlBudGOJlPjUyeU84XTX+j/csNwpRCQRJR4SgDAOcwKgUIlpn/1YJsIE/RgRDMX2Sb8la2ts6/OhYPnYEqFf3DhTWqKf64KTzXzMpAbxceSzHBCLvldGYUJtR7tK0aXoug4Sm9hAwf0JM1NZEqmEPUeSPLdMRtri6p2jldZVU+oSkEkWoEh/zfKMUV+ZgJwJis+8TP1i0eW6Q3ZpVZ08tyZzwBAuP39bF8k7lnVebUSazZUSWr3HdWEqgJVTaGKKkTegmj1Q/St1v1krkFBN/w+KCEhkkzny1JrzRZbmcvxJ10KEvL5a1OUSYWz6TqkM/fye84Qfs7fx46mfqNICrP7hP3Yi5wUequujs+Tv5OFKPQG3MhzLTqblCyCbluR47DKX6FyvS+rElITMSLnLM8Z5Qa0jvneM6Eg8iaKSjdEkjJTpNTJlplqLJt9bswx45nnk2vTwWg/WyGZhYG5gri+FZ4CVCiFRAjnu8v6icbLMj80r0xF5M+5rwgBW4+NgXDxv75ljARuuOEGPPPMM3jmmWew3XbblV4zSRJcffXVOOGEE7DXXnuhXq/jox/9qE19AQATJkzAjTfeiE996lPYfffdMWnSJCxatAiLFi2yx8yaNQvXXHMNvvCFL+D73/8+pk2bhvPOO29Mp7UAAKFG6u6MUaxatQoTJkzAX59bNiSbOkcZeZOeYCTsZzQ4CLPJLuArWZ4qVmLysyoGH5jByBgzB/EyvWuw3EShWck7t8wc6ikBzOGaVpjCDaZkriVFkfdHIrRK1iqUyQOk1RtKistRKB3hmpIJ2eRuC4+lfm3z+Qj7ozB5lAYiwkx98A8qmfwAIG/opMDcrAlocxngh8EXAbHjof2GjMrmWkeqbK6lliUgep9THT2myPTWt9rdpyKHyBvazEkTJzMlqUrdfacKbRo1Oc0g9BZW5Acn8qZvipL+Wk6F0ZdURtHS6TIomjTsVzbZurKqbnI3uedsv7Jrc18p0VgD2b+aRbUaU2Xe0ClETP8AgGj2aXKXN0xalQSi0avvk5SmPG0GVZkmuKLZb+tsfQPJb4rn5Cp7XgZDGEBgkwbr/8lsrJKKbgcA2Vyjr031IuLEVFK7D6TUx8nGq21qFn8HbF4yIrQyNalV9MJANg2BtYtDaY8v20pIVcdpUmtMm0IVKLom6euaZ9NLEwNYv7DCpMKRaF9gFRBoFjphdhlo0UV+u2RStGMD0DZm2N+Zny9HbiLs+TheKD1nzJg2BStXrlznOWMooDnpHd+8CqnZrWN90errxd1ff9eI1TVi/RGVsfWAc9gf2rGAU8kAowxJ4zeGQJmhgQxMwSF/8FCuNwNfOGhYlK28OfigzY9vO4YpZuw873tWP6oaXzUOlGyQzAxpqssvksw4yio7oHrNMudIkUAKiZaiT/1jrTrH2uaZRGzdfZOrUiWElcoYyO/OKkSUgsT1p02KSfeDKR1tYERPyRSiuSYwbVJeM2Zus47rLUeKzQRMqpXeozPx7qUoWlB9r+p0EqZsUj/szgnGfKfSiiUlyqhVAJxqU6YIkX9RmIaEk0/yf7QmV0cg+B6EnqJC6pRpW5FWIbK6JqRKQfS/qos2G7WHebhUpcvdL6MOyqKl+yhhhDlJnKmMtlZigQX23WXkSajCRVhS+4Bysmbay/eFtYew990qdYDOOaYKrTim3OzJFG1VuETVbIcN7cvmfB/deYmrFpFYq/a2dMAmKbos9YxKMm/JpLKaVYghzTOU1UG+oIonKzaLiCKr+U755vfERlAVrn7G90sTLP21Fyhl6pFb0kQLQeZn5pXRPnYWzJ/X+vsqM24jGMfZ3xERG4JIxtYT6+pHyUkZ/S2g33TJzV0Mncxn2k81cCD2LYWlZCEM0+bmPfs5U7wsUdQ19urggRQMXrZyA2OnvqJoSgp+AGCddAHY/Gt8oLXHQZO1ArA7HXiTAjM/hM647X0aql5OVQrb2fY3J0kimPQ4kQvP9XJEBT5BthGF25Irb7T7cVHkpXHoFo01ljS1ER/yd0skRLPPkh89QeauzsonA9aPiplhPXOkUUR0mb7/GmCegYSpKGSaJH8xBKSDUliE/UnHC8mImDDO36l1zi7SKvJCIasn2jSWVqCM2tV27axmkpX6vmSW+EhHxBwha7UtcNqefVju0N6vee4d6xEx9mxw3y8FaNIFQCuULRfJys2XxsfOI1EAkLf7b9J1PBBpNt8VVAchtX8iXwxQ3SpdQLNPB3iY4ApttnTbmBUi0a9UWtXBN4VCJgVkkun3nw0QqXJ1cGkrnGM9LdJoQUy+Y3ysUeZ748EPKdzCtlAKkvmTESHjpAtw/5NrRKjqjwZGw4E/YuMhkrF1wHA+x0op5JrulGbgt8cFkzSFctuJwwwkbfBIVtImvQu47x2Rk9bxNTFbklAdyvysrMnHkA4yTQoTUl7Yga1zx3HZnyZUqnboj8H9NQi5GShFyXdlvh/C+MG4vwM1kJtdWVu9ornvHdrvkSu8RJUMiaBgEy/NBmFkLE9Saoh7uBUMyOQqWNmAVZL8bat807jomqCPY5OajeYDHHkjsDQY1ieR7y0a/g9ffbVpTLiiB0AJloSY+5OF5TF/QlI4EglA6WomUmhlyuyYwNU1mL5TSJwZs9kHCImiPkH/3WoAKoXKfNOx3YnB1M+abfn9pGP538w9wMt/VxY/VZZ+hO6lSSFiiR3tc1pyfbouihZEs7DPCFfx7GFUNxl8xhcKJjhDm5xbLrjAkGFdd0auhU7OWkBohdtUs2XGBR1NrQM3dK4uvaCybWVKlFbBYdsajsMhEQPaLRf0qwDaVLRm4c7hGCoB21j8hnuubEgZEZsmOswimyauvvpq7LnnnqjX65g8eTLe9773ed8PZUf4dQU58g/mDzYUhMcrNYDzJ1uV6qzP7atFPnoWSvm+/WbFGZoHyd++gFllmiikwqw8aZWpFOx1FTnVsp9CJHpfThMlCOhBrVkoNHJlB1hapYY/YT/Q+S1TP07E+Dm8DGqfDZQwEzMlYlQBqbE/rO+8CExu/jVRg5Rt326J5UVISl+xMcSEbz3D1QRvW6uQEBIJZJGx9t5CWB+qtuhXTuZ4MAf5/pj28L01kSSuDURY6NrkZE1pFQgmClKZPSHb6kAbWTMli/eXd2yoBHIFxvYp/STuh+6XTNFizy6HEDC7YzCiS/cyrXrb6uioU0Yize4OOgKzaqNS6RmATKCyGorqOG0yZVGZ/JkY8D4DsJGlnkk9bXu2SkEm6rRiIk4zVw6RLX4/+LMQqp782Q8/K6u7SRmid86oQtXG2+hdq1B6EaCufbkhV2R6bBUKjbxAIy+c2a9Q6MsV+luFHgvMTxilHo4rtPALiZNkizp7DNwPnUvlhZHwQ1XC1nUeiIgow5hRxn71q1/huOOOw7e//W3st99+UErhkUcesd8PZUf4dQG96EP1DVsXUD4yqxwJP3EhwapeJKEzJQDk72DK4FI7AGsmtAtKMvmxxnCyAwCUUFD/p1ezdEzKTAV0soIZzJKqkfNd2evaZ3ZANivpsu9ClJE6TSgBBYXE+IcAzmdNmsAJ2+dlS0WalHhEKH2lCkAFDiWAVbXaTH3cOZ0UFfa7LZd8abh9i7eNO3jzTd/5ZGoz8/PouZatp/UDk6mv9BVEBqEJR5rpzadJnSKzJ5+oVZBOQSYoaKcCL99aEAQSBqIEShjvf+cTGZJPZ08q8/nxzPB0jiEHOvEy26tRuVQMaPZBSGlNf27LqtRtQJ+Y7bGUSa4rhG82JZWJ7g/VB6QYcbM2+94q3b7azNtjiSovGwBEw1M+Lcmm+8TKsopduABRPNGuu9fewsIQL5g8dqQs8qChVihlw1eYhBDIEr1XpL5/7bcPGJoiFaYVGsoxeclh3IWEq+9l0fFl6vzGwqYcTRmx4RgTZKzVauFzn/sczjzzTHziE5+wn++0007296HsCD/cGA6SViiTVBawzuo84oeDZ7DX57Y7oHJfB7DjoNzEVSbrA6SWabNhaGK0poXAPwMAWkF01mD9MqBZdh0Gi7JyiHTlysxxcGqfrpvyk0WKxJkueUQZHIn1MnwDWgErWvClSEfaPMd0ITV54+1i5kUvxUEJRGC2JDKiJ1jpFCNUTOqJAQID2PfWEZsSglIbpHQqWuAP58iN7jfF9vxSSQpVHQ9V5BDNNfpDKj9v2YfWliF9otSWU4/aFSgsSukFxUBPSQEBwYg0L0MJAWnJp7lnaQVKGdJcsAS/STvxcVv3FMZfrmBBIkQ4ZVvkqmsA27WBEZ02UzcnViJ4ftj3ALxdILxdK+g+cfJcBk6qqf4UiQmmIpsN10MSRk1XZiEVbm/D32kiQ+tDaEIixMeZkECFx3UiWGH5Ax3T6fuNZaaMPmObN8YEGfvDH/6A5557DlJKvOUtb8Hy5cvx5je/GWeddRbe9KY3ARh8R/j58+eXlt3f3+/tWL9q1Srv+5F4dsMVWrPQg4UQAsooUlz10ufogYwGFfqKIg7pb8q7w0kbP5bQRsQU7EbnpQqXUlYQavtuhFE2wA4FuVHIwkHbElXzn43aEn7ySS8YIpgsLYGw3wtYq3+pWkP+YDyKULpqkBJUAqc4SE0kVXB9QCshhpCReqVJXgswuaZESBIMIVOq0GobL6/EF6p05wXWN0WSQckMiUxsFKNTzgK/L8D5IwkZRA+7fijg3gN6rv3nTqdEIeLsqcPkX8nKI+KtlavcbTrPFVAhbeSibSNFBzZZvrfERCoWXCk1BJkTc0/ZE15aDqX0/SgjZTxHHT/f1lWy3Smk71fom731s9lG+JhKa0kcqXzkMxj6zNm6hf6mfsR0uKiy7/A6ZuUaKvEZbCyKHCRiU8eY8Bn7y1/+AkBvWvr1r38dV111FSZNmoR58+bhpZdeAjC0HeHLcMYZZ3i710+fPr3jsSMFS7DIb0Fp4kQ+WLlSbaY7jlw5v4mcTVgKsL+HP2WEK/TpKhsIB/KhGyrW9/z1uTb3CSE/EwXnw6LsMe6cNsLBJ8iBdiwYYH89b2LkflDWT0u0n2Pr4zJ/07NQCOcf5tQm45RuytNKhlFL0gpUVoOqdqPI6i6hLPPT0tFvFdsm7qBNfkA0SXPfIiUkUBSQDa2INWnrMMpXlQRrPiKBaVWnPSB/LOZ7Rb8X1F6zgCm7n83Cz77OEeaqs20z7QtVR9t3bMN3yBTIau486m+zJZDvO+iImc6RlrnPBU/ZwYNw2H1MMueraEkVmQkpcIKZesP6txEuBcpD5z1r5nfb50mmd3yo1G20rEprKCrdejeIMD+cgYQqFe5CcGUqfIc7vdfDRaDCRdxY9fFShRqWn4hNE6NKxk477TQIIQb8uf/++1EYM9jXvvY1vP/977d7Xwkh8H//7/+15Q1lR/gQJ510ElauXGl/li5dOvwNXUfY0Gz2OydI4etExCo81h4f+BqETvVl2Bjv7FCI1UD1G+j8ge45J6OuX7n60J67LVQC/O8Cx2dWjj3Jmo4CP6YBnLXbTHedwK9vJ2wiaGmbSRCJu67nrC2EixYkf6204hExRzwDIgit9CRFE6mAb/oK+yQkNfQ5JzPmHlhhtkPTw5xP+rPwGPZ7yX3Q/wvXd+Gz4DnnGyIVKlgyIKehv1sZUWJO/CrsF1aGh04LAd5e+9wN4fmh67A9QEGKWJKZAB6WzNWqpMrrz8E2y17X8WQkx58xy0eGg4iN2cZv/hhVM+VQd4RfvXo1AGDnnXe2n1erVcyePRtLliwBMLQd4ctQrVZRrVY7fj+cGMp7wFUyAhFKPvGEQQCdrjcUJ9dNBes7ToS+JMDAbeXkVbAJHwAgpDWN2RxEZBqk/ERC+yRBkf+Wyx3FzW3OH4wTDD3hWcXGJK5tSy5L1VEFoKRnftZtVpCknLC6e2ZIwJonqT4eZAIooQ9lqg2vP4QEUu1PpXgqDVV4e3XaiT9n2wnx46l+jHxSMAHPd8ezo5PZiy9MBrqfnJAJ5czP5CfY5ovJyRI3UdqgB+kCJ5g/mNfnPPEuWlC0SXWiVUbR6tO8lKciIRTumjyViN3Qm54f5YidDZqgiEzafkspQOWOUHZAGznm+1XCmSKLShf6WwXQKpBKgdQEovBAEs8sifbxZjCUve/DxRU2R85RKFXqS7yuZURsmhhVMjbUHeHnzJmDarWKJ598EnvvvTcAoNlsYvHixZg5cyaAoe0IPxbAiQX3lQqVHAllHe7LjuPlbeoYjjqGZQwlSosILUGnyfBJD98FoPCILdrVLvN7SO6Adn8bATe/FxB6v8TQyZ/9rskf+6jsvECN0hO3aQupWrnZLFxKKFkBWg13PqldxoFdqAIqb7VN2PrY1CMznGxY/zRDEmx+LtMPYY40IqaF6X/yP6Is6uGzH4KnMKDjhdArldJoS34fykiWkABPBKyU8yGzfWDydRky6e0zSSZYymNGhIzKozISQ6qoP1Whd2bg2fEBP4lv7tJjiLxllTTLKYV00Z8sCraNCIY+gbZOme1L6u9c6X0FRZHbIKIyglx2f0YiGj0iYnPEmHDg7+npwfHHH49TTz0V06dPx8yZM3HmmWcCAD74wQ8C8HeEP/PMM/HSSy+17Qg/VjBU0+FYJF4bC5ygDuU4OjZXqpTYcVIW+sjwxLtafWHfBSRMKYBSlejra8LQKnT5XjABMwV1WtBSFJug6EOlz7VlJJlW7ozyJAE/cjQ15ItP1kb10r5gLZdvjAhJ4OtkfyeTl2m3JTvcyZ/VVRMuaNIGgLavUap9+6zBFOBQUfaTKpe4L7DoSk6CXVCGaics9mSnCtqowwJWgaTzbbqJpAKgoVUzbhbu2CBHuBSkJb6gTbptG6Q1KSpVwIukTSt2/0xvH0+l2tJm8N0QqFze3UoptAoAkG0m/sGiFOOYNHxQasN9vjZ168hrGWOCjAHAmWeeiTRNcfTRR2Pt2rXYc889ccstt2DSpEkAhrYj/FjFSMr5mztCssXBzb9l6TxsGfAVNCtElfmPKX9SJtXHmsgMsVLGDEoRn2HZgCFZwh0btkmUnMcnSB0xCAASlMlXyQzSqDA6cz7b6xHQn+cNq+6IVr9Tv8icGOZOI/8omXrE0SpdZkcGqzqS4hKYIRMTOEmqDE/mOxjKyDcRMgVDpFneuTZzTxhJyqOZJUvjYUi59c8rMRUD0NtXKU7YGAGjvmfPiTXtpnCkikfd0jXIlJm3HOEC/B0WhPQ23+Z7tIYmbBv0YeoMpYA0RR7kAeP3yu0JiYiNiOFwwI8O/JsuxgwZy7IMZ5111oDkasaMGbjqqqs2Yq0ixhIG8i3jxCwkcLSHpi6jfTBry/Vm1BbFJnQyaxKx4qVwIsG/46ZM+pvXuaVITQrMRYY8cnMSlU/7eUqRACKx7ZGp2TZJALLpFC4AlrQpoTeBpo3EaVcA2vJGT+AKadDJlnwRIQDsPqOhT2OTRKH1nOjpHnMyRz6WudK7NSTC38e0o5N76H9lzJfepuOqsEQ2TFnizhOA1EEQWpVK3L6PqrBpQKypM0x9IqRLQUFkT6YoKt3e/bBkmZuOAYjcqX3WSd8oZnbfSACw9QNSqfeMHcxEzPuc/x0REbFuGDNkLCJipFEm4YeTuyVE5n8BR9Ds2QpGiQmIl3JEhFC212anhJUhuQrrzCNIB1NTiZgUyv8bChBJ1RLMJDF+X7QBdO6cywuRoFkoz8zYvr+f6xufdLq683qEPkbrM7HzyGMq06Y1EUAhgEwyh/4wgIJQ5mPFCVLwmTuvJJIyrKNIkCuFLCgvdLAXymXQV2nVlqcA9BeAFBKZTO3OAn6AgFM7dUckyNMuTZwLBaGETk1h+1giMRut00dD8cW8+2+r8Y7txkelbIRRFIDYQKZbdFh3RIw+IhmLeE2hTB0Lwf1guC8SN1eWjYkhMaJs5BwDpdzgdez0N0/VwreYGSq4AuhFHzIzLcDImqxYYibNZE+kQQhXnmce7NAOq7JAtPXLYFvRhFgXJaaN3Ck/S3wigMQEQljiI1Od1kEBUuWl2esL44/XloKEmWw5uGlUqhxCJnqzcYP2NCACSlFQQOJ8v1SBIsmQNwsTaCmRyUQ791MyWBbIQWbRIsnQ13T1lMZ5kRNlMk+WmYd5n9+5dLX9/R3bjW/r54jhR9wOafNGJGMRYxbrG6nF1a7ByufotLddGcqizMqiXdcHQyVhZcQt/L3TZ0IIG51oiRm0eVOSmqN4+ojOZQ92rfVRwjr5Lq3L+TDtaimnSAqRWvlTWuu0bFOdCgjjE5eAb71k2yiEF4RAKVKkMQWKvOml0LAIInRttCWAFiSkCcIQSiFLhFWxcpnpFCmGKBfGBK395LRJutnh4Q1TUnSKirxz6WrsPX28JWJ7Tx8fCVhExDAhkrGIMQk+EW+IKWugMjZ0oqE6khmn0yQ3GDqpeSO5yuW+dIDLbaegbNIHvtXUhtRlQ+8h75t1LSv0LSNQZKf5BxsEATI167a3isIS3oz5mIX7Z5K/nBTGJCmKwCFQtAUDeJuCC4lWrncaqCQSKYBMAEnikzWbWoXMsqaene7PQCps2edExPaZ0dMW8RoxshhqDujByojYNBHJ2GsYY9XpttP2JmWRk+uqfg31+sNV7lB8ckIT3lAROshvKNZFGdyYGGoakzIMlI+u1aGtoSJJfdwcwkTXBJCIBDJhfmp8X8og9xoACGMuJf+7VqGQG9MwRdRKIZBIYSNRyxLhdmrnumKfGT3R3DUKKAo1DD5j8b5tqohk7DWKu/+22vt7UzA5DAc5DNtF/ixl1+B+L2XHlp3DP1sf8jcQhpoTbSw6Sg+UYmQkrrE+5wy1XoPtBDDg9cwuDlIAicy8XQF4WhCe144UKHrmyMSas3IriY4Spf07bXoT4fs5SqiOxH6g/uPvVSRio4OY2mLzRiRjrzGEZIVAxKSMvGyM9zecHMi0x3+n/8l3hUB/l7WtjHTSOZ2O7UTK7lzq6sGvx+vSqX/LPufnrQuGau4Mt9EaqLwy9W19zaqD1XVjELPBUEaeO5HdoaiXQwUPYmhPk1Liy2c+sySsA1qFQqtwZmNhlTO/3mG0LpXdCfy5Xd/nNSIiYnAIFZc5HlatWoUJEybg2b8tG3OZ+wcCJxqdCAOhExkJsT5K1mATWRlJGgsYSr8OBWUT3vqQ4U79HBfGw4OBnuPhILGdMBC55tdNOlxwqEl0OynnY9W1YSSxatUqzNpuKlauXDkicwbNSTudcBmSatcGlZX3r8GTP/jIiNU1Yv0RlbHNHOGgOhTCMNAxQyVqHJ0morFKvMowHEQMQJvqt74oU3ni5Dl86KTuDeYAv6GkbKC1c7j7AF13fZ4Bvrjo9DzGfSc3LuJG4Zs3IhnbzDBcpGBdyx8qSducCNhIgffRhhKzOFmOPNYluGK4VLNO97WMeK3vMzCQ2ksKXSRkERHDgwF2q43YlDAYybr7b6tHnIgNhKFMKJGIrTvuXLra3lspYH/o74hNA4P5dA3lXP4z0PdDLWtDQM8ZUP7eRu+WjQ9y4N/Qn4hNE1EZGwMgksWd2su+Hy2QejPQKjkSsQ1H2Ic8+SYhjrWbBwa6j8N9jymhK4CO2xqVPWsjUZeIzlBqGKIpI4neZBGVsWEEX00OF8p8vsaKIkKKTiRiI4s7l662P2Pl2YgYfdB4xf0Uabyh5ykE/ywSsYiI4UNUxjYAnSa+Dck5xVepncBXsaOtinXCplqvzR2UfiMiYiDwsSumrBgbUIXa4KSt0Uy56SKSsQ4YSOXie7SF+a4GAh3L8zoB609cRpvwdBrER7ter3WEuaHi+Dt2MdzRsEP17dxnRg/uWLJqwy+4mYH70XH3jI2BuFH45o1IxgZBJ4JFn6+LCW5zM9eV+ZFEIrZpodMzF9WzsYGRJNLhYpJvAj6URMGbKwbzmaPtsMJtsSIiNgSRjHXAPc+9iq6V8WUbDNHEMTbRKRgkYvMGz3e2Lqo+B5G4zZGQ0e4anHyV/Q5sfJUpboe0eSM68EesN0Iitrkpf5s7RjsdSgS8dCU8ZclIBANxFMq9r0II7DOjPRt7p4XWxjbPbQxQf4eEq9Pv9PedS1fjnude3Sh1LIzP2Ib+RGyaiGQsYr3BTbWRiI1NRHVs9DCQTyqPjh0pYkb3nnzD5s3UhKyMmIX12xywMUjvcEIV+bD8RGyaiGbKiA3C5jIwR0QMNwbLTl8oZxYjcJ8kwDeFhaQh9PkaLCs/P57/zsvgRGygd3u4tu3a2HgtbM0WMTYRyVhExGsUURUrB5luN6R/aNIfLM3Nhpr6w62zyq5DxGkg8qSUwu1Lhn7tsUbENgcSNhzKVlTGNl1EMhYR8RpCJGADgzu283x+QHukMCc/XAUrm/g7qWSkjg0HQmLB8xAOlsB1fTDW3I/C+9PJMX9ThSqKYSBjxTDVJmK4EclYRMRrBJGIlaOTahKqP/Q3bZIdnhuaHENTXidCNlJk4LUenMHvTZlZNSTdERGjiUjGIiI2c/Bkw69lDEROhosQ8YTQZRiIkNH5mzLGgnmyjFyX1XtT7+sQKs+h8g1Uxjbw/IiRQyRjERGbMV4rRGxDfYKGc2IeKB3CWAd/jsI+H0vP2Fi8L0oNg8+YimRsU0UkYxERmzHG0gQ5VGwOzthjCUOJ2ASGf+umdcVgKSri8xGxKSOSsYiI1zg6TWKbGpELUzTEPRTXDUPJuD+YGXKoObkGiyIdboRO+ZsjYjTl5o1IxiIiNmMMlOtqsIl1oO83JlEL60GEYbDkpBE+OuUWG8l7OViuteHAayVQIZKxzRuRjEVEbMYo20ewjGR1SjTaCcNlkipLZBpiIOfrseBQvikhTNcRYn3u5VBI/UgQstcKCYt4bSBuhxQRsZljKNvqKKXsz7oi3F9xoOsMdEwnExPfHijcemtzNksNB96x3fi2H8DtSzochKZQ7T/h58DQTJydniW+d+drdU/VTX07pPe85z2YMWMGarUapk6diqOPPhrPP/+8d8ySJUvw7ne/G93d3Zg8eTI++9nPotFoeMc88sgjmDdvHur1Orbddlt84xvfaBuXbr/9dsyZMwe1Wg2zZ8/Gj370oxFr18bCmFHGnnrqKXz5y1/GXXfdhUajgV133RXf/OY3MX/+fHvMkiVL8KlPfQq33HIL6vU6PvrRj+Kss85CpVIZxZpHRIw+uImK58kaSazrnn+bQ/qBTQ0haeGEbCTRaSeAMgxF3YzPwaaf9HX+/Pk4+eSTMXXqVDz33HP40pe+hA984AO4++67AQB5nuPwww/HVltthTvvvBMrVqzAggULoJTC+eefDwBYtWoVDjzwQMyfPx/33XcfnnrqKSxcuBDd3d344he/CAB49tlncdhhh+G4447D//7v/+Kuu+7CCSecgK222grvf//7R6x9I40xQ8YOP/xw7LjjjpZonXvuuXjXu96FP//5z5gyZcqQbnRExGsZcUKL2BQVpfhcDg1FkQMbSMaKEVTGvvCFL9jfZ86cia9+9as48sgj0Ww2kWUZbrjhBjz22GNYunQppk2bBgA4++yzsXDhQnzrW99CT08PLr30UvT19eGiiy5CtVrFLrvsgqeeegrnnHMOFi1aBCEEfvSjH2HGjBk499xzAQBvfOMbcf/99+Oss84a02RsTJgpX3zxRTzzzDP46le/in/6p3/C61//enznO9/BmjVr8Kc//QkA7I3+3//9X7zlLW/BAQccgLPPPhv/9V//hVWrYrRVREREREQEoBUo/tPf3z+s5b/00ku49NJL8Y53vANZlgEAfve732GXXXaxRAwADj74YPT39+OBBx6wx8ybNw/VatU75vnnn8fixYvtMQcddJB3vYMPPhj3338/ms3msLZjY2JMkLEtt9wSb3zjG3HJJZegt7cXrVYLF1xwAbbZZhvMmTMHwNBudBn6+/vbHsyIiIiIiIhNCcPpMzZ9+nRMmDDB/pxxxhnDUsevfOUr6O7uxpZbboklS5bgN7/5jf1u+fLl2GabbbzjJ02ahEqlguXLl3c8hv4e7JhWq4UXX3xxWNoxGhgTZEwIgRtvvBEPPvggxo8fj1qthu9973u47rrrMHHiRABDu9FlOOOMM7yHcvr06SPZlIiIiIiIiHXGcJKxpUuXYuXKlfbnpJNOKr3maaedBiHEgD/333+/Pf7LX/4yHnzwQdxwww1IkgTHHHOM55/Ko7Ztu5TyPg+PofPX9ZixhlH1GTvttNNw+umnD3jMfffdhzlz5uCEE07A1ltvjTvuuAP1eh3//d//jXe961247777MHXqVABDu9EhTjrpJCxatMj+vWrVqkjIIiIiIiI2W/T09KCnZ/A8fZ/+9KfxkY98ZMBjtt9+e/v75MmTMXnyZOy444544xvfiOnTp+Oee+7B3LlzMWXKFNx7773euS+//DKazaYVUqZMmdImnrzwwgsAMOgxaZpiyy23HLRNmypGlYwN9UbfcsstuOqqq/Dyyy/bB+gHP/gBbrzxRlx88cX46le/OqQbXYZqterZpyMiIiIiIjY55DmU3EAH/HXcKJzI1fqA1CryR5s7dy6+9a1vYdmyZVZAueGGG1CtVq270dy5c3HyySej0WjYLAg33HADpk2bZknf3LlzceWVV3rXuuGGG7D77rtb/7SxiFElY0O90WvWrAEASOlbVaWUKEyo7lBudERERERExFiEUhseTTlSG4X//ve/x+9//3vsvffemDRpEv7yl7/glFNOwQ477IC5c+cCAA466CDsvPPOOProo3HmmWfipZdewpe+9CUcd9xxVmT56Ec/itNPPx0LFy7EySefjKeffhrf/va3ccopp1gL1/HHH4///M//xKJFi3Dcccfhd7/7HX7yk5/gZz/72Yi0bWNhTPiMzZ07F5MmTcKCBQvw0EMP2Zxjzz77LA4//HAA/o1+8MEHcfPNN7fd6IiIiIiIiIjhRb1ex+WXX479998fO+20E4499ljssssuuP32263lKUkSXH311ajVathrr73woQ99CEceeSTOOussW86ECRNw44034m9/+xt23313nHDCCVi0aJHnSjRr1ixcc801uO222/DmN78Z//7v/47zzjtvTKe1AAChNkb2x2HA/fffj6997Ws2fPVNb3oTTjnlFBx66KH2mCVLluCEE05oS/q6LmbIVatWYcKECfj5759G17i41UpERERERGeseXU1PrzH67Fy5coRWfjTnDRh/lcg0g1zqVGtfqy89T9GrK4R648xk/R19913x/XXXz/gMTNmzMBVV121kWoUERERERGxcaCGIelr3Ch808WYMFNGRERERERERGyuGDPKWERERERExGsVqiiADdxbciT3pozYMEQyFhERERERsYkjmik3b0QyFhERERERsYkjkrHNG9FnLCIiIiIiIiJiFBGVsYiIiIiIiE0cRZFDRGVss0UkYxEREREREZs4VF4AYgPJWB4d+DdVRDNlRERERERERMQoIipjERERERERmzg25b0pIzYckYxFRERERERs4lBFvuFmyugztskimikjIiIiIiIiIkYRURmLiIiIiIjYxBGVsc0bkYxFRERERERs4ohkbPNGJGMBlFIAgDWvrh7lmkREREREbOqguYLmjhFD3sQGXyFvDkdNIkYAkYwFWLFiBQDg4/u9dZRrEhERERExVrB69WpMmDBh2MutVCqYMmUKlj/2i2Epb8qUKahUKsNSVsTwQagRp/NjC6+88gomTZqEJUuWjMiLNZpYtWoVpk+fjqVLl6Knp2e0qzOsiG0bm4htG5vYnNsGrFv7lFJYvXo1pk2bBilHJiaur68PjUZjWMqqVCqo1WrDUlbE8CEqYwHoZZowYcJmOcgAQE9PT2zbGERs29hEbNvYxVDbN9IL91qtFgnUZo6Y2iIiIiIiIiIiYhQRyVhERERERERExCgikrEA1WoVp556KqrV6mhXZdgR2zY2Eds2NhHbNnaxubcvYtNDdOCPiIiIiIiIiBhFRGUsIiIiIiIiImIUEclYRERERERERMQoIpKxiIiIiIiIiIhRRCRjERERERERERGjiEjGGH7wgx9g1qxZqNVqmDNnDu64447RrtI647TTToMQwvuZMmWK/V4phdNOOw3Tpk1DvV7Hvvvuiz/96U+jWOPO+O1vf4t3v/vdmDZtGoQQ+PWvf+19P5S29Pf34zOf+QwmT56M7u5uvOc978Hf/va3jdiKcgzWtoULF7bdx7e//e3eMZtq28444wy87W1vw/jx47H11lvjyCOPxJNPPukdM1bv3VDaNlbv3Q9/+EP80z/9k010OnfuXFx77bX2+7F6z4DB2zZW71nE5oNIxgx+/vOf4/Of/zy+9rWv4cEHH8Q+++yDQw89FEuWLBntqq0z3vSmN2HZsmX255FHHrHfffe738U555yD//zP/8R9992HKVOm4MADD8Tq1Zvexui9vb3Ybbfd8J//+Z+l3w+lLZ///OdxxRVX4LLLLsOdd96JV199Fe9617uQ5/nGakYpBmsbABxyyCHefbzmmmu87zfVtt1+++341Kc+hXvuuQc33ngjWq0WDjroIPT29tpjxuq9G0rbgLF577bbbjt85zvfwf3334/7778f++23H4444ghLuMbqPQMGbxswNu9ZxGYEFaGUUmqPPfZQxx9/vPfZG97wBvXVr351lGq0fjj11FPVbrvtVvpdURRqypQp6jvf+Y79rK+vT02YMEH96Ec/2kg1XD8AUFdccYX9eyhteeWVV1SWZeqyyy6zxzz33HNKSqmuu+66jVb3wRC2TSmlFixYoI444oiO54yVtiml1AsvvKAAqNtvv10ptXndu7BtSm1e927SpEnqv//7vzere0agtim1ed2ziLGJqIwBaDQaeOCBB3DQQQd5nx900EG4++67R6lW64+nn34a06ZNw6xZs/CRj3wEf/nLXwAAzz77LJYvX+61s1qtYt68eWOunUNpywMPPIBms+kdM23aNOyyyy5jor233XYbtt56a+y444447rjj8MILL9jvxlLbVq5cCQDYYostAGxe9y5sG2Gs37s8z3HZZZeht7cXc+fO3azuWdg2wli/ZxFjG3GjcAAvvvgi8jzHNtts432+zTbbYPny5aNUq/XDnnvuiUsuuQQ77rgj/v73v+Ob3/wm3vGOd+BPf/qTbUtZO//617+ORnXXG0Npy/Lly1GpVDBp0qS2Yzb1+3rooYfigx/8IGbOnIlnn30W//Zv/4b99tsPDzzwAKrV6phpm1IKixYtwt57741ddtkFwOZz78raBozte/fII49g7ty56Ovrw7hx43DFFVdg5513toRjLN+zTm0DxvY9i9g8EMkYgxDC+1sp1fbZpo5DDz3U/r7rrrti7ty52GGHHXDxxRdbh9TNoZ2E9WnLWGjvhz/8Yfv7Lrvsgt133x0zZ87E1Vdfjfe9730dz9vU2vbpT38aDz/8MO68886278b6vevUtrF873baaSf88Y9/xCuvvIJf/epXWLBgAW6//Xb7/Vi+Z53atvPOO4/pexaxeSCaKQFMnjwZSZK0rXBeeOGFtpXgWEN3dzd23XVXPP300zaqcnNo51DaMmXKFDQaDbz88ssdjxkrmDp1KmbOnImnn34awNho22c+8xn8v//3/3Drrbdiu+22s59vDveuU9vKMJbuXaVSwete9zrsvvvuOOOMM7Dbbrvh//yf/7NZ3LNObSvDWLpnEZsHIhmDfknnzJmDG2+80fv8xhtvxDve8Y5RqtXwoL+/H48//jimTp2KWbNmYcqUKV47G40Gbr/99jHXzqG0Zc6cOciyzDtm2bJlePTRR8dce1esWIGlS5di6tSpADbttiml8OlPfxqXX345brnlFsyaNcv7fizfu8HaVoaxdO9CKKXQ398/pu9ZJ1DbyjCW71nEGMVGDxnYRHHZZZepLMvUT37yE/XYY4+pz3/+86q7u1stXrx4tKu2TvjiF7+obrvtNvWXv/xF3XPPPepd73qXGj9+vG3Hd77zHTVhwgR1+eWXq0ceeUT98z//s5o6dapatWrVKNe8HatXr1YPPvigevDBBxUAdc4556gHH3xQ/fYjsDoAAA+SSURBVPWvf1VKDa0txx9/vNpuu+3UTTfdpP7whz+o/fbbT+22226q1WqNVrOUUgO3bfXq1eqLX/yiuvvuu9Wzzz6rbr31VjV37ly17bbbjom2ffKTn1QTJkxQt912m1q2bJn9WbNmjT1mrN67wdo2lu/dSSedpH7729+qZ599Vj388MPq5JNPVlJKdcMNNyilxu49U2rgto3lexax+SCSMYbvf//7aubMmapSqai3vvWtXrj6WMGHP/xhNXXqVJVlmZo2bZp63/vep/70pz/Z74uiUKeeeqqaMmWKqlar6p3vfKd65JFHRrHGnXHrrbcqAG0/CxYsUEoNrS1r165Vn/70p9UWW2yh6vW6ete73qWWLFkyCq3xMVDb1qxZow466CC11VZbqSzL1IwZM9SCBQva6r2ptq2sXQDUhRdeaI8Zq/dusLaN5Xt37LHH2vFvq622Uvvvv78lYkqN3Xum1MBtG8v3LGLzgVBKqY2nw0VERERERERERHBEn7GIiIiIiIiIiFFEJGMREREREREREaOISMYiIiIiIiIiIkYRkYxFRERERERERIwiIhmLiIiIiIiIiBhFRDIWERERERERETGKiGQsIiIiIiIiImIUEclYRMQwY/HixRBC4I9//OOIlC+EwK9//ev1Pv+2226DEAJCCBx55JEDHrvvvvvi85///HpfK2Jg0H2YOHHiaFclIiJiFBHJWMRmhYULFw5KMEYa06dPx7Jly7DLLrsAcOTnlVdeGdV6hXjyySdx0UUXjXY1XhPo9FwuW7YM55577kavT0RExKaFSMYiIoYZSZJgypQpSNN0tKsyILbeeutNQpFpNpujXYVRw5QpUzBhwoTRrkZERMQoI5KxiNcUbr/9duyxxx6oVquYOnUqvvrVr6LVatnv9913X3z2s5/FiSeeiC222AJTpkzBaaed5pXxxBNPYO+990atVsPOO++Mm266yTMdcjPl4sWLMX/+fADApEmTIITAwoULAQDbb799myry5je/2bve008/jXe+8532WjfeeGNbm5577jl8+MMfxqRJk7DlllviiCOOwOLFi9e5b3p7e3HMMcdg3LhxmDp1Ks4+++y2YxqNBk488URsu+226O7uxp577onbbrvNO+a//uu/MH36dHR1deG9730vzjnnHI/0nXbaaXjzm9+M//mf/8Hs2bNRrVahlMLKlSvxr//6r9h6663R09OD/fbbDw899JBX9pVXXok5c+agVqth9uzZOP300737d9ppp2HGjBmoVquYNm0aPvvZzw6p7YO1a8WKFfjnf/5nbLfddujq6sKuu+6Kn/3sZ14Zv/zlL7HrrruiXq9jyy23xAEHHIDe3l6cdtppuPjii/Gb3/zGmiXDPouIiHhtY9NeukdEDCOee+45HHbYYVi4cCEuueQSPPHEEzjuuONQq9U8AnTxxRdj0aJFuPfee/G73/0OCxcuxF577YUDDzwQRVHgyCOPxIwZM3Dvvfdi9erV+OIXv9jxmtOnT8evfvUrvP/978eTTz6Jnp4e1Ov1IdW3KAq8733vw+TJk3HPPfdg1apVbf5ba9aswfz587HPPvvgt7/9LdI0xTe/+U0ccsghePjhh1GpVIbcP1/+8pdx66234oorrsCUKVNw8skn44EHHsCb3/xme8zHP/5xLF68GJdddhmmTZuGK664AocccggeeeQRvP71r8ddd92F448/Hv/xH/+B97znPbjpppvwb//2b23XeuaZZ/CLX/wCv/rVr5AkCQDg8MMPxxZbbIFrrrkGEyZMwAUXXID9998fTz31FLbYYgtcf/31+NjHPobzzjsP++yzD/785z/jX//1XwEAp556Kn75y1/ie9/7Hi677DK86U1vwvLly9vIXCcM1q6+vj7MmTMHX/nKV9DT04Orr74aRx99NGbPno0999wTy5Ytwz//8z/ju9/9Lt773vdi9erVuOOOO6CUwpe+9CU8/vjjWLVqFS688EIAwBZbbDHk+xIREfEawOjuUx4RMbxYsGCBOuKII0q/O/nkk9VOO+2kiqKwn33/+99X48aNU3meK6WUmjdvntp777298972trepr3zlK0oppa699lqVpqlatmyZ/f7GG29UANQVV1yhlFLq2WefVQDUgw8+qJRS6tZbb1UA1Msvv+yVO3PmTPW9733P+2y33XZTp556qlJKqeuvv14lSaKWLl1qv7/22mu9a/3kJz9pa1N/f7+q1+vq+uuvL+2HsvqsXr1aVSoVddlll9nPVqxYoer1uvrc5z6nlFLqmWeeUUII9dxzz3nl7b///uqkk05SSin14Q9/WB1++OHe90cddZSaMGGC/fvUU09VWZapF154wX528803q56eHtXX1+edu8MOO6gLLrhAKaXUPvvso7797W973//0pz9VU6dOVUopdfbZZ6sdd9xRNRqN0nZ3wlDaVYbDDjtMffGLX1RKKfXAAw8oAGrx4sWlxw70XF544YVe/0RERLz2EJWxiNcMHn/8ccydOxdCCPvZXnvthVdffRV/+9vfMGPGDADAP/3TP3nnTZ06FS+88AIA7fQ+ffp0TJkyxX6/xx57jFh9Z8yYge22285+NnfuXO+YBx54AM888wzGjx/vfd7X14c///nPQ77Wn//8ZzQaDa/8LbbYAjvttJP9+w9/+AOUUthxxx29c/v7+7HlllsC0P3z3ve+1/t+jz32wFVXXeV9NnPmTGy11VZeO1599VVbDmHt2rW2HQ888ADuu+8+fOtb37Lf53mOvr4+rFmzBh/84Adx7rnnYvbs2TjkkENw2GGH4d3vfvegvntDaVee5/jOd76Dn//853juuefQ39+P/v5+dHd3AwB222037L///th1111x8MEH46CDDsIHPvABTJo0acBrR0RERADRTBnxGoJSyiNi9BkA7/Msy7xjhBAoiqJjGesLKaW9PoE7s4ffhfUEtClzzpw5uPTSS9uO5WRnMJRdK0RRFEiSBA888IA1LRLGjRtny+nUxxxEYnjZU6dOLfWlIn+zoihw+umn433ve1/bMbVaDdOnT8eTTz6JG2+8ETfddBNOOOEEnHnmmbj99tvb7um6tuvss8/G9773PZx77rnYdddd0d3djc9//vNoNBoAdNDGjTfeiLvvvhs33HADzj//fHzta1/Dvffei1mzZnW8dkRERAQQyVjEawg777wzfvWrX3mE4e6778b48eOx7bbbDqmMN7zhDViyZAn+/ve/Y5tttgEA3HfffQOeQ35beZ57n2+11VZYtmyZ/XvVqlV49tlnvfouWbIEzz//PKZNmwYA+N3vfueV8da3vhU///nPrdP7+uJ1r3sdsizDPffcYxXCl19+GU899RTmzZsHAHjLW96CPM/xwgsvYJ999ikt5w1veAN+//vfe5/df//9g17/rW99K5YvX440TbH99tt3PObJJ5/E6173uo7l1Ot1vOc978F73vMefOpTn8Ib3vAGPPLII3jrW9/a8ZyhtOuOO+7AEUccgY997GMANIF7+umn8cY3vtEeI4TAXnvthb322gunnHIKZs6ciSuuuAKLFi1CpVJpu/8RERERhBhNGbHZYeXKlfjjH//o/SxZsgQnnHACli5dis985jN44okn8Jvf/AannnoqFi1aBCmH9ioceOCB2GGHHbBgwQI8/PDDuOuuu/C1r30NQLtqRZg5cyaEELjqqqvwj3/8A6+++ioAYL/99sNPf/pT3HHHHXj00UexYMECT5k54IADsNNOO+GYY47BQw89hDvuuMNei3DUUUdh8uTJOOKII3DHHXfg2Wefxe23347Pfe5z+Nvf/jbkPhs3bhw+8YlP4Mtf/jJuvvlmPProo1i4cKHXLzvuuCOOOuooHHPMMbj88svx7LPP4r777sN//Md/4JprrgEAfOYzn8E111yDc845B08//TQuuOACXHvttYOqiQcccADmzp2LI488Etdffz0WL16Mu+++G1//+tctmTvllFNwySWX4LTTTsOf/vQnPP744/j5z3+Or3/96wCAiy66CD/5yU/w6KOP4i9/+Qt++tOfol6vY+bMmQNeeyjtet3rXmeVr8cffxz/3//3/2H58uW2jHvvvRff/va3cf/992PJkiW4/PLL8Y9//MOSte233x4PP/wwnnzySbz44ouv6XQeERERJRglX7WIiBHBggULFIC2nwULFiillLrtttvU2972NlWpVNSUKVPUV77yFdVsNu358+bNsw7rhCOOOMKer5RSjz/+uNprr71UpVJRb3jDG9SVV16pAKjrrrtOKdXuwK+UUt/4xjfUlClTlBDClrVy5Ur1oQ99SPX09Kjp06eriy66yHPgV0qpJ598Uu29996qUqmoHXfcUV133XWeA79SSi1btkwdc8wxavLkyapararZs2er4447Tq1cubK0jzoFFKxevVp97GMfU11dXWqbbbZR3/3ud9v6o9FoqFNOOUVtv/32KssyNWXKFPXe975XPfzww/aYH//4x2rbbbdV9XpdHXnkkeqb3/ymmjJliv3+1FNPVbvttltbvVatWqU+85nPqGnTpqksy9T06dPVUUcdpZYsWWKPue6669Q73vEOVa/XVU9Pj9pjjz3Uj3/8Y6WUUldccYXac889VU9Pj+ru7lZvf/vb1U033VTaByEGa9eKFSvUEUccocaNG6e23npr9fWvf10dc8wx1in/scceUwcffLDaaqutVLVaVTvuuKM6//zzbfkvvPCCOvDAA9W4ceMUAHXrrbfa76IDf0REhFBqCM4iERERHXHXXXdh7733xjPPPIMddthhtKszKG677TbMnz8fL7/88kZJ+nrcccfhiSeewB133DHi1xqLuOiii/D5z39+k9uhISIiYuMh+oxFRKwjrrjiCowbNw6vf/3r8cwzz+Bzn/sc9tprrzFBxDi22247vPvd725LXrqhOOuss3DggQeiu7sb1157LS6++GL84Ac/GNZrbC4YN24cWq0WarXaaFclIiJiFBHJWETEOmL16tU48cQTsXTpUkyePBkHHHBAabb6TRV77rknnn76aQAuWnA48fvf/x7f/e53sXr1asyePRvnnXce/uVf/mXYrzNU3HHHHTj00EM7fk8+fKMB2kw+jOKMiIh4bSGaKSMiIjZrrF27Fs8991zH7weKzoyIiIjYGIhkLCIiIiIiIiJiFBFTW0REREREREREjCIiGYuIiIiIiIiIGEVEMhYRERERERERMYqIZCwiIiIiIiIiYhQRyVhERERERERExCgikrGIiIiIiIiIiFFEJGMREREREREREaOISMYiIiIiIiIiIkYR/z9n0zpwVXML3QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "oisst_zarr['sst'].sel(time='1981-09-02').plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There it is! Some zarr data that we created during this tutorial! We have converted the netCDF OISST data to zarr and opened it up in xarray. We have a working local recipe.\n", + "\n", + "If we wanted to run the recipe on the full dataset (as opposed to the much smaller pruned version), we would just repeat the above steps on recipe rather than recipe_pruned. This would take a long time, but it would work." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.9" + }, + "vscode": { + "interpreter": { + "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" + } } - ], - "source": [ - "oisst_zarr['sst'].sel(time='1981-09-02').plot()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "There it is! Some zarr data that we created during this tutorial! We have converted the netCDF OISST data to zarr and opened it up in xarray. We have a working local recipe.\n", - "\n", - "If we wanted to run the recipe on the full dataset (as opposed to the much smaller pruned version), we would just repeat the above steps on recipe rather than recipe_pruned. This would take a long time, but it would work." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.9" }, - "vscode": { - "interpreter": { - "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" - } - } - }, - "nbformat": 4, - "nbformat_minor": 4 + "nbformat": 4, + "nbformat_minor": 4 } diff --git a/docs/introduction_tutorial/intro_tutorial_part3.ipynb b/docs/introduction_tutorial/intro_tutorial_part3.ipynb index b1ebfca6..72872472 100644 --- a/docs/introduction_tutorial/intro_tutorial_part3.ipynb +++ b/docs/introduction_tutorial/intro_tutorial_part3.ipynb @@ -1,440 +1,440 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Running your recipe on Pangeo Forge Cloud\n", - "\n", - "Welcome to the Pangeo Forge introduction tutorial! This is the 3rd part in a sequence, the flow of which is described {doc}`here `." - ] + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Running your recipe on Pangeo Forge Cloud\n", + "\n", + "Welcome to the Pangeo Forge introduction tutorial! This is the 3rd part in a sequence, the flow of which is described {doc}`here `." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Outline Part 3\n", + "\n", + "We are at an exciting point - transitioning to [Pangeo Forge Cloud](../pangeo_forge_cloud/index.md). In this part of the tutorial we are setting up our recipe, which we have thus far only run in a limited compute environment on a small section of data, to run at scale in the cloud. In order to do that we will need to:\n", + "\n", + "1. Fork the `staged-recipes` repo\n", + "2. Add the recipe files: a `.py` file and a `meta.yaml` file\n", + "4. Make a PR to the `staged-recipes` repo\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### A note for Sandbox users\n", + "If you have been using the [Pangeo Forge Sandbox](../pangeo_forge_recipes/installation.md#pangeo-forge-sandbox) for the first two parts that's great. In order to complete this part of the tutorial you will have to complete step 1 locally, and download the files you make in step 2 in order to make the PR in step 3." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fork the `staged-recipes` repo\n", + "\n", + "[`pangeo-forge/staged-recipes`](https://github.com/pangeo-forge/staged-recipes) is a repository that exists as a staging ground for recipes. It is where recipes get reviewed before they are run. Once the recipe is run the code will be transitioned to its own repository for that recipe, called a [Feedstock](../pangeo_forge_cloud/core_concepts.md). \n", + "\n", + "You can fork a repo through the web browser or the Github CLI. Checkout the [Github docs](https://docs.github.com/en/get-started/quickstart/fork-a-repo) for steps how to do this." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Add the recipe files\n", + "\n", + "Within `staged-recipes`, recipes files should go in a new folder for your dataset in the `recipes` subdirectory. The name of the new folder will become the name of the feedstock repository, the repository where the recipe code will live after the data have been processed.\n", + "\n", + "In the example below we call the folder `oisst`, so the feedstoack will be called `oisst-feedstock`. The final file structure we are creating is this:\n", + "\n", + "```\n", + "staged-recipes/recipes/\n", + " \u2514\u2500\u2500oisst/\n", + " \u00a0\u00a0 \u251c\u2500\u2500recipe.py\n", + " \u00a0\u00a0 \u2514\u2500\u2500meta.yaml\n", + "```\n", + "The name of the folder `oisst` would vary based on the name of the dataset." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Copy the recipe code into a single `.py` file\n", + "\n", + "Within the `oisst` folder create a file called `recipe.py` and copy the recipe creation code from the first two parts of this tutorial. We don't have to copy any of the code we used for local testing - the cloud automation will take care of testing and scaling the processing on the cloud infrastructure. We will call this file `recipe.py` the **recipe module**. For OISST it should look like:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "\n", + "from pangeo_forge_recipes.patterns import ConcatDim, FilePattern\n", + "from pangeo_forge_recipes.recipes import XarrayZarrRecipe\n", + "\n", + "dates = pd.date_range('1981-09-01', '2022-02-01', freq='D')\n", + "\n", + "URL_FORMAT = (\n", + " \"https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/\"\n", + " \"v2.1/access/avhrr/{time:%Y%m}/oisst-avhrr-v02r01.{time:%Y%m%d}.nc\"\n", + ")\n", + "\n", + "def make_url(time):\n", + " return URL_FORMAT.format(time=time)\n", + "\n", + "time_concat_dim = ConcatDim(\"time\", dates, nitems_per_file=1)\n", + "pattern = FilePattern(make_url, time_concat_dim)\n", + "\n", + "recipe = XarrayZarrRecipe(pattern, inputs_per_chunk=2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Another step, complete!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create a `meta.yaml` file\n", + "\n", + "The `meta.yaml` is a YAML file. YAML is a common language used for writing configuration files. `meta.yaml` contains two important things:\n", + "1. metadata about the recipe \n", + "2. the [Bakery](../pangeo_forge_cloud/core_concepts.md), designating the cloud infrastructure where the recipe will be run and stored.\n", + "\n", + "Here we will walk through each field of the `meta.yaml`. A template of `meta.yaml` is also available [here](https://github.com/pangeo-forge/sandbox/blob/main/recipe/meta.yaml). \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### `title` and `description`\n", + "\n", + "These fields describe the dataset. They are not highly restricted.\n", + "\n", + "```{code-block} yaml\n", + ":lineno-start: 1\n", + "title: \"NOAA Optimum Interpolated SST\"\n", + "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```{admonition} Full File Preview\n", + ":class: dropdown\n", + "```{code-block} yaml\n", + ":emphasize-lines: 1, 2\n", + "\n", + "title: \"NOAA Optimum Interpolated SST\"\n", + "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### `pangeo_forge_version`\n", + "\n", + "This is the version of the `pangeo_forge_recipes` library that you used to create the recipe. It's important to track in case someone wants to run your recipe in the future. Conda users can find this information with `conda list`.\n", + "\n", + "```{code-block} yaml\n", + ":lineno-start: 3\n", + "pangeo_forge_version: \"0.8.2\"\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```{admonition} Full File Preview\n", + ":class: dropdown\n", + "```{code-block} yaml\n", + ":lineno-start: 1\n", + ":emphasize-lines: 3\n", + "\n", + "title: \"NOAA Optimum Interpolated SST\"\n", + "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", + "pangeo_forge_version: \"0.6.2\"\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### `recipes` section\n", + "\n", + "The `recipes` section explains the recipes contained in the **recipe module** (`recipe.py`). This feels a bit repetitive in the case of OISST, but becomes relevant in the case where someone is defining multiple recipe classes in the same recipe module, for example with different chunk schemes.\n", + "\n", + "```{code-block} yaml\n", + ":lineno-start: 4\n", + "recipes:\n", + " - id: noaa-oisst-avhrr-only\n", + " object: \"recipe:recipe\"\n", + "```\n", + "The id `noaa-oisst-avhrr-only` is the name that we are giving our recipe class. It is a string that we as the maintainer chose.\n", + "The entry `recipe:recipe` describes where the recipe Python object is. We are telling it that our recipe object is in a file called `recipe`, inside of of a variable called `recipe`. Unless there is a specific reason to deviate, `recipe:recipe` is a good convention here." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```{admonition} Full File Preview\n", + ":class: dropdown\n", + "```{code-block} yaml\n", + ":lineno-start: 1\n", + ":emphasize-lines: 4-6\n", + "\n", + "title: \"NOAA Optimum Interpolated SST\"\n", + "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", + "pangeo_forge_version: \"0.6.2\"\n", + "recipes:\n", + " - id: noaa-oisst-avhrr-only\n", + " object: \"recipe:recipe\"\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### `provenance` section\n", + "\n", + "Provenance explains the origin of the dataset. The core information about provenance is the `provider` field, which is outlined as part of the STAC Metadata Specification. See the [STAC Provider docs](https://github.com/radiantearth/stac-spec/blob/master/collection-spec/collection-spec.md#provider-object) for more details.\n", + "\n", + "```{code-block} yaml\n", + ":lineno-start: 7\n", + "provenance:\n", + " providers:\n", + " - name: \"NOAA NCEI\"\n", + " description: \"National Oceanographic & Atmospheric Administration National Centers for Environmental Information\"\n", + " roles:\n", + " - producer\n", + " - licensor\n", + " url: https://www.ncdc.noaa.gov/oisst\n", + " license: \"CC-BY-4.0\"\n", + "```\n", + "One field to highlight is the `license` field, described in the STAC docs [here](https://github.com/radiantearth/stac-spec/blob/master/collection-spec/collection-spec.md#license). It is important to locate the licensing information of the dataset and provide it in the `meta.yaml`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```{admonition} Full File Preview\n", + ":class: dropdown\n", + "```{code-block} yaml\n", + ":lineno-start: 1\n", + ":emphasize-lines: 7-15\n", + "\n", + "title: \"NOAA Optimum Interpolated SST\"\n", + "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", + "pangeo_forge_version: \"0.6.2\"\n", + "recipes:\n", + " - id: noaa-oisst-avhrr-only\n", + " object: \"recipe:recipe\"\n", + "provenance:\n", + " providers:\n", + " - name: \"NOAA NCEI\"\n", + " description: \"National Oceanographic & Atmospheric Administration National Centers for Environmental Information\"\n", + " roles:\n", + " - producer\n", + " - licensor\n", + " url: https://www.ncdc.noaa.gov/oisst\n", + " license: \"CC-BY-4.0\"\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### `maintainers` section\n", + "\n", + "This is information about you, the recipe creator! Multiple maintainers can be listed. The required fields are `name` and `github` username; `orcid` and `email` may also be included.\n", + "\n", + "```{code-block} yaml\n", + ":lineno-start: 17\n", + "maintainers:\n", + " - name: \"Dorothy Vaughan\"\n", + " orcid: \"9999-9999-9999-9999\"\n", + " github: dvaughan0987\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```{admonition} Full File Preview\n", + ":class: dropdown\n", + "```{code-block} yaml\n", + ":lineno-start: 1\n", + ":emphasize-lines: 16-19\n", + "\n", + "title: \"NOAA Optimum Interpolated SST\"\n", + "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", + "pangeo_forge_version: \"0.6.2\"\n", + "recipes:\n", + " - id: noaa-oisst-avhrr-only\n", + " object: \"recipe:recipe\"\n", + "provenance:\n", + " providers:\n", + " - name: \"NOAA NCEI\"\n", + " description: \"National Oceanographic & Atmospheric Administration National Centers for Environmental Information\"\n", + " roles:\n", + " - producer\n", + " - licensor\n", + " url: https://www.ncdc.noaa.gov/oisst\n", + " license: \"CC-BY-4.0\"\n", + "maintainers:\n", + " - name: \"Dorothy Vaughan\"\n", + " orcid: \"9999-9999-9999-9999\"\n", + " github: dvaughan0987\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### `bakery` section\n", + "\n", + "**Bakeries** are where the work gets done on Pangeo Forge Cloud. A single bakery is a set of cloud infrastructure hosted by a particular institution or group.\n", + "\n", + "Selecting a `bakery` is how you choose where the recipe will be run and hosted. The [Pangeo Forge website](https://pangeo-forge.org/dashboard/bakeries) hosts a full list of available bakeries.\n", + "\n", + "```{code-block} yaml\n", + ":lineno-start: 17\n", + "bakery:\n", + " id: \"pangeo-ldeo-nsf-earthcube\"\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```{admonition} Full File Preview\n", + ":class: dropdown\n", + "```{code-block} yaml\n", + ":lineno-start: 1\n", + ":emphasize-lines: 20, 21\n", + "\n", + "title: \"NOAA Optimum Interpolated SST\"\n", + "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", + "pangeo_forge_version: \"0.6.2\"\n", + "recipes:\n", + " - id: noaa-oisst-avhrr-only\n", + " object: \"recipe:recipe\"\n", + "provenance:\n", + " providers:\n", + " - name: \"NOAA NCEI\"\n", + " description: \"National Oceanographic & Atmospheric Administration National Centers for Environmental Information\"\n", + " roles:\n", + " - producer\n", + " - licensor\n", + " url: https://www.ncdc.noaa.gov/oisst\n", + " license: \"CC-BY-4.0\"\n", + "maintainers:\n", + " - name: \"Dorothy Vaughan\"\n", + " orcid: \"9999-9999-9999-9999\"\n", + " github: dvaughan0987\n", + "bakery:\n", + " id: \"pangeo-ldeo-nsf-earthcube\"\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And that is the `meta.yaml`! Between the `meta.yaml` and `recipe.py` we have now put together all the files we need for cloud processing." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Make a PR to the `staged-recipes` repo\n", + "\n", + "At this point you should have created two files - `recipe.py` and `meta.yaml` and they should be in the new folder you created for your dataset in `staged-recipes/recipes`. \n", + "\n", + "It's time to submit the changes as a Pull Request. Creating the Pull Request on Github is what officially submits your recipe for review to run. If you have opened an issue for your dataset you can reference it in the Pull Request. Otherwise, provide a notes about the datasets and hit submit! " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## After the PR\n", + "\n", + "With the PR in, all the steps to stage the recipe are complete! At this point a [`@pangeo-forge-bot`](https://github.com/pangeo-forge-bot) will perform a series of automated checks on your PR, a full listing of which is provided in {doc}`../pangeo_forge_cloud/pr_checks_reference`.\n", + "\n", + "All information you need to contribute your recipe to Pangeo Forge Cloud will be provided in the PR discussion thread by either [`@pangeo-forge-bot`](https://github.com/pangeo-forge-bot) or a human maintainer of Pangeo Forge.\n", + "\n", + "Merging the PR will transform your submitted files into a new Pangeo Forge [Feedstock repository](../pangeo_forge_cloud/core_concepts.md) and initiate full builds for all recipes contained in your PR. A complete description of what to expect during and post PR merge is provided in {doc}`../pangeo_forge_cloud/recipe_contribution`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## End of the Introduction Tutorial\n", + "\n", + "Congratulations, you've completed the introduction tutorial!\n", + "\n", + "From here, we hope you are excited to try writing your own recipe. As you write, you may find additional documentation helpful, such as the {doc}`../pangeo_forge_recipes/recipe_user_guide/index` or the more advanced {doc}`../pangeo_forge_recipes/tutorials/index`. For recipes questions not covered there, you are invited to open Issues on the [`pangeo-forge/pangeo-forge-recipes`](https://github.com/pangeo-forge/pangeo-forge-recipes/issues) GitHub repository.\n", + "\n", + "Happy ARCO building! We look forward to your {doc}`../pangeo_forge_cloud/recipe_contribution`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + } + ], + "metadata": { + "interpreter": { + "hash": "872ea42c32c3f63d8f4b36be21cfb5d37e4f64dbfc719d9980b5e00daca69998" + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.13" + } }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Outline Part 3\n", - "\n", - "We are at an exciting point - transitioning to [Pangeo Forge Cloud](../pangeo_forge_cloud/index.md). In this part of the tutorial we are setting up our recipe, which we have thus far only run in a limited compute environment on a small section of data, to run at scale in the cloud. In order to do that we will need to:\n", - "\n", - "1. Fork the `staged-recipes` repo\n", - "2. Add the recipe files: a `.py` file and a `meta.yaml` file\n", - "4. Make a PR to the `staged-recipes` repo\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### A note for Sandbox users\n", - "If you have been using the [Pangeo Forge Sandbox](../pangeo_forge_recipes/installation.md#pangeo-forge-sandbox) for the first two parts that's great. In order to complete this part of the tutorial you will have to complete step 1 locally, and download the files you make in step 2 in order to make the PR in step 3." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fork the `staged-recipes` repo\n", - "\n", - "[`pangeo-forge/staged-recipes`](https://github.com/pangeo-forge/staged-recipes) is a repository that exists as a staging ground for recipes. It is where recipes get reviewed before they are run. Once the recipe is run the code will be transitioned to its own repository for that recipe, called a [Feedstock](../pangeo_forge_cloud/core_concepts.md). \n", - "\n", - "You can fork a repo through the web browser or the Github CLI. Checkout the [Github docs](https://docs.github.com/en/get-started/quickstart/fork-a-repo) for steps how to do this." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Add the recipe files\n", - "\n", - "Within `staged-recipes`, recipes files should go in a new folder for your dataset in the `recipes` subdirectory. The name of the new folder will become the name of the feedstock repository, the repository where the recipe code will live after the data have been processed.\n", - "\n", - "In the example below we call the folder `oisst`, so the feedstoack will be called `oisst-feedstock`. The final file structure we are creating is this:\n", - "\n", - "```\n", - "staged-recipes/recipes/\n", - " └──oisst/\n", - "    ├──recipe.py\n", - "    └──meta.yaml\n", - "```\n", - "The name of the folder `oisst` would vary based on the name of the dataset." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Copy the recipe code into a single `.py` file\n", - "\n", - "Within the `oisst` folder create a file called `recipe.py` and copy the recipe creation code from the first two parts of this tutorial. We don't have to copy any of the code we used for local testing - the cloud automation will take care of testing and scaling the processing on the cloud infrastructure. We will call this file `recipe.py` the **recipe module**. For OISST it should look like:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "\n", - "from pangeo_forge_recipes.patterns import ConcatDim, FilePattern\n", - "from pangeo_forge_recipes.recipes import XarrayZarrRecipe\n", - "\n", - "dates = pd.date_range('1981-09-01', '2022-02-01', freq='D')\n", - "\n", - "URL_FORMAT = (\n", - " \"https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/\"\n", - " \"v2.1/access/avhrr/{time:%Y%m}/oisst-avhrr-v02r01.{time:%Y%m%d}.nc\"\n", - ")\n", - "\n", - "def make_url(time):\n", - " return URL_FORMAT.format(time=time)\n", - "\n", - "time_concat_dim = ConcatDim(\"time\", dates, nitems_per_file=1)\n", - "pattern = FilePattern(make_url, time_concat_dim)\n", - "\n", - "recipe = XarrayZarrRecipe(pattern, inputs_per_chunk=2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Another step, complete!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Create a `meta.yaml` file\n", - "\n", - "The `meta.yaml` is a YAML file. YAML is a common language used for writing configuration files. `meta.yaml` contains two important things:\n", - "1. metadata about the recipe \n", - "2. the [Bakery](../pangeo_forge_cloud/core_concepts.md), designating the cloud infrastructure where the recipe will be run and stored.\n", - "\n", - "Here we will walk through each field of the `meta.yaml`. A template of `meta.yaml` is also available [here](https://github.com/pangeo-forge/sandbox/blob/main/recipe/meta.yaml). \n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### `title` and `description`\n", - "\n", - "These fields describe the dataset. They are not highly restricted.\n", - "\n", - "```{code-block} yaml\n", - ":lineno-start: 1\n", - "title: \"NOAA Optimum Interpolated SST\"\n", - "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```{admonition} Full File Preview\n", - ":class: dropdown\n", - "```{code-block} yaml\n", - ":emphasize-lines: 1, 2\n", - "\n", - "title: \"NOAA Optimum Interpolated SST\"\n", - "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### `pangeo_forge_version`\n", - "\n", - "This is the version of the `pangeo_forge_recipes` library that you used to create the recipe. It's important to track in case someone wants to run your recipe in the future. Conda users can find this information with `conda list`.\n", - "\n", - "```{code-block} yaml\n", - ":lineno-start: 3\n", - "pangeo_forge_version: \"0.8.2\"\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```{admonition} Full File Preview\n", - ":class: dropdown\n", - "```{code-block} yaml\n", - ":lineno-start: 1\n", - ":emphasize-lines: 3\n", - "\n", - "title: \"NOAA Optimum Interpolated SST\"\n", - "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", - "pangeo_forge_version: \"0.6.2\"\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### `recipes` section\n", - "\n", - "The `recipes` section explains the recipes contained in the **recipe module** (`recipe.py`). This feels a bit repetitive in the case of OISST, but becomes relevant in the case where someone is defining multiple recipe classes in the same recipe module, for example with different chunk schemes.\n", - "\n", - "```{code-block} yaml\n", - ":lineno-start: 4\n", - "recipes:\n", - " - id: noaa-oisst-avhrr-only\n", - " object: \"recipe:recipe\"\n", - "```\n", - "The id `noaa-oisst-avhrr-only` is the name that we are giving our recipe class. It is a string that we as the maintainer chose.\n", - "The entry `recipe:recipe` describes where the recipe Python object is. We are telling it that our recipe object is in a file called `recipe`, inside of of a variable called `recipe`. Unless there is a specific reason to deviate, `recipe:recipe` is a good convention here." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```{admonition} Full File Preview\n", - ":class: dropdown\n", - "```{code-block} yaml\n", - ":lineno-start: 1\n", - ":emphasize-lines: 4-6\n", - "\n", - "title: \"NOAA Optimum Interpolated SST\"\n", - "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", - "pangeo_forge_version: \"0.6.2\"\n", - "recipes:\n", - " - id: noaa-oisst-avhrr-only\n", - " object: \"recipe:recipe\"\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### `provenance` section\n", - "\n", - "Provenance explains the origin of the dataset. The core information about provenance is the `provider` field, which is outlined as part of the STAC Metadata Specification. See the [STAC Provider docs](https://github.com/radiantearth/stac-spec/blob/master/collection-spec/collection-spec.md#provider-object) for more details.\n", - "\n", - "```{code-block} yaml\n", - ":lineno-start: 7\n", - "provenance:\n", - " providers:\n", - " - name: \"NOAA NCEI\"\n", - " description: \"National Oceanographic & Atmospheric Administration National Centers for Environmental Information\"\n", - " roles:\n", - " - producer\n", - " - licensor\n", - " url: https://www.ncdc.noaa.gov/oisst\n", - " license: \"CC-BY-4.0\"\n", - "```\n", - "One field to highlight is the `license` field, described in the STAC docs [here](https://github.com/radiantearth/stac-spec/blob/master/collection-spec/collection-spec.md#license). It is important to locate the licensing information of the dataset and provide it in the `meta.yaml`." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```{admonition} Full File Preview\n", - ":class: dropdown\n", - "```{code-block} yaml\n", - ":lineno-start: 1\n", - ":emphasize-lines: 7-15\n", - "\n", - "title: \"NOAA Optimum Interpolated SST\"\n", - "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", - "pangeo_forge_version: \"0.6.2\"\n", - "recipes:\n", - " - id: noaa-oisst-avhrr-only\n", - " object: \"recipe:recipe\"\n", - "provenance:\n", - " providers:\n", - " - name: \"NOAA NCEI\"\n", - " description: \"National Oceanographic & Atmospheric Administration National Centers for Environmental Information\"\n", - " roles:\n", - " - producer\n", - " - licensor\n", - " url: https://www.ncdc.noaa.gov/oisst\n", - " license: \"CC-BY-4.0\"\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### `maintainers` section\n", - "\n", - "This is information about you, the recipe creator! Multiple maintainers can be listed. The required fields are `name` and `github` username; `orcid` and `email` may also be included.\n", - "\n", - "```{code-block} yaml\n", - ":lineno-start: 17\n", - "maintainers:\n", - " - name: \"Dorothy Vaughan\"\n", - " orcid: \"9999-9999-9999-9999\"\n", - " github: dvaughan0987\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```{admonition} Full File Preview\n", - ":class: dropdown\n", - "```{code-block} yaml\n", - ":lineno-start: 1\n", - ":emphasize-lines: 16-19\n", - "\n", - "title: \"NOAA Optimum Interpolated SST\"\n", - "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", - "pangeo_forge_version: \"0.6.2\"\n", - "recipes:\n", - " - id: noaa-oisst-avhrr-only\n", - " object: \"recipe:recipe\"\n", - "provenance:\n", - " providers:\n", - " - name: \"NOAA NCEI\"\n", - " description: \"National Oceanographic & Atmospheric Administration National Centers for Environmental Information\"\n", - " roles:\n", - " - producer\n", - " - licensor\n", - " url: https://www.ncdc.noaa.gov/oisst\n", - " license: \"CC-BY-4.0\"\n", - "maintainers:\n", - " - name: \"Dorothy Vaughan\"\n", - " orcid: \"9999-9999-9999-9999\"\n", - " github: dvaughan0987\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### `bakery` section\n", - "\n", - "**Bakeries** are where the work gets done on Pangeo Forge Cloud. A single bakery is a set of cloud infrastructure hosted by a particular institution or group.\n", - "\n", - "Selecting a `bakery` is how you choose where the recipe will be run and hosted. The [Pangeo Forge website](https://pangeo-forge.org/dashboard/bakeries) hosts a full list of available bakeries.\n", - "\n", - "```{code-block} yaml\n", - ":lineno-start: 17\n", - "bakery:\n", - " id: \"pangeo-ldeo-nsf-earthcube\"\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```{admonition} Full File Preview\n", - ":class: dropdown\n", - "```{code-block} yaml\n", - ":lineno-start: 1\n", - ":emphasize-lines: 20, 21\n", - "\n", - "title: \"NOAA Optimum Interpolated SST\"\n", - "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", - "pangeo_forge_version: \"0.6.2\"\n", - "recipes:\n", - " - id: noaa-oisst-avhrr-only\n", - " object: \"recipe:recipe\"\n", - "provenance:\n", - " providers:\n", - " - name: \"NOAA NCEI\"\n", - " description: \"National Oceanographic & Atmospheric Administration National Centers for Environmental Information\"\n", - " roles:\n", - " - producer\n", - " - licensor\n", - " url: https://www.ncdc.noaa.gov/oisst\n", - " license: \"CC-BY-4.0\"\n", - "maintainers:\n", - " - name: \"Dorothy Vaughan\"\n", - " orcid: \"9999-9999-9999-9999\"\n", - " github: dvaughan0987\n", - "bakery:\n", - " id: \"pangeo-ldeo-nsf-earthcube\"\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And that is the `meta.yaml`! Between the `meta.yaml` and `recipe.py` we have now put together all the files we need for cloud processing." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Make a PR to the `staged-recipes` repo\n", - "\n", - "At this point you should have created two files - `recipe.py` and `meta.yaml` and they should be in the new folder you created for your dataset in `staged-recipes/recipes`. \n", - "\n", - "It's time to submit the changes as a Pull Request. Creating the Pull Request on Github is what officially submits your recipe for review to run. If you have opened an issue for your dataset you can reference it in the Pull Request. Otherwise, provide a notes about the datasets and hit submit! " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## After the PR\n", - "\n", - "With the PR in, all the steps to stage the recipe are complete! At this point a [`@pangeo-forge-bot`](https://github.com/pangeo-forge-bot) will perform a series of automated checks on your PR, a full listing of which is provided in {doc}`../pangeo_forge_cloud/pr_checks_reference`.\n", - "\n", - "All information you need to contribute your recipe to Pangeo Forge Cloud will be provided in the PR discussion thread by either [`@pangeo-forge-bot`](https://github.com/pangeo-forge-bot) or a human maintainer of Pangeo Forge.\n", - "\n", - "Merging the PR will transform your submitted files into a new Pangeo Forge [Feedstock repository](../pangeo_forge_cloud/core_concepts.md) and initiate full builds for all recipes contained in your PR. A complete description of what to expect during and post PR merge is provided in {doc}`../pangeo_forge_cloud/recipe_contribution`." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## End of the Introduction Tutorial\n", - "\n", - "Congratulations, you've completed the introduction tutorial!\n", - "\n", - "From here, we hope you are excited to try writing your own recipe. As you write, you may find additional documentation helpful, such as the {doc}`../pangeo_forge_recipes/recipe_user_guide/index` or the more advanced {doc}`../pangeo_forge_recipes/tutorials/index`. For recipes questions not covered there, you are invited to open Issues on the [`pangeo-forge/pangeo-forge-recipes`](https://github.com/pangeo-forge/pangeo-forge-recipes/issues) GitHub repository.\n", - "\n", - "Happy ARCO building! We look forward to your {doc}`../pangeo_forge_cloud/recipe_contribution`." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - } - ], - "metadata": { - "interpreter": { - "hash": "872ea42c32c3f63d8f4b36be21cfb5d37e4f64dbfc719d9980b5e00daca69998" - }, - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.13" - } - }, - "nbformat": 4, - "nbformat_minor": 4 + "nbformat": 4, + "nbformat_minor": 4 } diff --git a/docs/pangeo_forge_recipes/tutorials/grib_reference/reference_HRRR.ipynb b/docs/pangeo_forge_recipes/tutorials/grib_reference/reference_HRRR.ipynb index d6e3b2fd..cb36e688 100644 --- a/docs/pangeo_forge_recipes/tutorials/grib_reference/reference_HRRR.ipynb +++ b/docs/pangeo_forge_recipes/tutorials/grib_reference/reference_HRRR.ipynb @@ -1,1577 +1,1577 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# GRIB2 Reference Recipe for HRRR (High-Resolution Rapid Refresh)\n", - "\n", - "In this notebook, we will demonstrate how to create a reference recipe using GRIB2 files. As with all reference recipes, the original data is not duplicated, instead a reference/index of the dataset is built so the dataset can be read as if it were a Zarr store.\n", - "\n", - "The input files for this recipe are GRIB2 files provided by NOAA and stored in Amazon S3 ([HRRR AWS Open Data Page](https://registry.opendata.aws/noaa-hrrr-pds/)).\n", - "\n", - "This Pangeo-Forge tutorial is an adaptation of the [Kerchunk GRIB2 Project Pythia Cookbook](https://projectpythia.org/kerchunk-cookbook/notebooks/case_studies/HRRR.html). " - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Define the FilePattern\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "text/plain": [ - "" + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# GRIB2 Reference Recipe for HRRR (High-Resolution Rapid Refresh)\n", + "\n", + "In this notebook, we will demonstrate how to create a reference recipe using GRIB2 files. As with all reference recipes, the original data is not duplicated, instead a reference/index of the dataset is built so the dataset can be read as if it were a Zarr store.\n", + "\n", + "The input files for this recipe are GRIB2 files provided by NOAA and stored in Amazon S3 ([HRRR AWS Open Data Page](https://registry.opendata.aws/noaa-hrrr-pds/)).\n", + "\n", + "This Pangeo-Forge tutorial is an adaptation of the [Kerchunk GRIB2 Project Pythia Cookbook](https://projectpythia.org/kerchunk-cookbook/notebooks/case_studies/HRRR.html). " ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import fsspec\n", - "import xarray as xr\n", - "from pangeo_forge_recipes.patterns import pattern_from_file_sequence\n", - "\n", - "fs = fsspec.filesystem(\"s3\", anon=True, skip_instance_cache=True)\n", - "\n", - "# retrieve list of available days in archive\n", - "days_available = fs.glob(\"s3://noaa-hrrr-bdp-pds/hrrr.*\")\n", - "\n", - "# Read HRRR GRIB2 files from latest day, the select the first 2\n", - "files = fs.glob(f\"s3://{days_available[-1]}/conus/*wrfsfcf01.grib2\")[0:2]\n", - "\n", - "# Create a filepattern object from input file paths\n", - "pattern = pattern_from_file_sequence(['s3://' + path for path in files], 'time', file_type='grib')\n", - "pattern\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Optional: Examine an input file" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# import s3fs\n", - "# import xarray as xr \n", - "# url = f'simplecache::s3://{files[0]}'\n", - "# file = fsspec.open_local(url, s3={'anon': True}, filecache={'cache_storage':'/tmp/files'})\n", - "\n", - "# ds = xr.open_dataset(file, engine=\"cfgrib\", backend_kwargs={'filter_by_keys': grib_filters})" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Write the Recipe\n", - "\n", - "Now that we have created our `FilePattern`, we can build our `beam` pipeline. A beam pipeline is a chained together list of (Apache Beam transformations)[https://beam.apache.org/documentation/programming-guide/#transforms].\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Specify where our target data should be written\n", - "Here, we are creating a temporary directory to store the written reference files. If we wanted these reference files to persist locally, we would want to specify another file path. \n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "from tempfile import TemporaryDirectory\n", - "td = TemporaryDirectory()\n", - "target_root = td.name" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Specify additional args\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "grib_filters = {\"typeOfLevel\": \"heightAboveGround\", \"level\": [2, 10]}\n", - "storage_options = {\"anon\": True}\n", - "remote_protocol = \"s3\"" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Construct a Pipeline\n", - "Next, we will construct a beam pipeline. This should look similar to the other standard Zarr examples, but will involve a few different transforms. " - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import apache_beam as beam\n", - "from pangeo_forge_recipes.transforms import OpenWithKerchunk, CombineReferences, WriteCombinedReference\n", - "\n", - "store_name = \"grib2-reference\"\n", - "transforms = (\n", - " # Create a beam PCollection from our input file pattern\n", - " beam.Create(pattern.items())\n", - " # Open with Kerchunk and create references for each file\n", - " | OpenWithKerchunk(\n", - " file_type=pattern.file_type,\n", - " remote_protocol=remote_protocol,\n", - " storage_options=storage_options,\n", - " kerchunk_open_kwargs={\"filter\": grib_filters},\n", - " )\n", - " # Use Kerchunk's `MultiZarrToZarr` functionality to combine the reference files into a single\n", - " # reference file. *Note*: Setting the correct contact_dims and identical_dims is important.\n", - " | CombineReferences(\n", - " concat_dims=[\"valid_time\"],\n", - " identical_dims=[\"latitude\", \"longitude\", \"heightAboveGround\", \"step\"],\n", - " mzz_kwargs={\"remote_protocol\": remote_protocol},\n", - " # GRIB2 input files may generate > 1 kerchunk reference per input file,\n", - " # therefore we must precombine each input's references with itself, before\n", - " # adding them to the aggregate dataset. This is accomplished by setting the\n", - " # `precombine_inputs` option to `True`.\n", - " precombine_inputs=True,\n", - " )\n", - " # Write the combined Kerchunk reference to file\n", - " | WriteCombinedReference(target_root=target_root, store_name=store_name)\n", - ")" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Execute the Recipe" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ + }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" - ] + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Define the FilePattern\n", + "\n" + ] }, { - "data": { - "application/javascript": "\n if (typeof window.interactive_beam_jquery == 'undefined') {\n var jqueryScript = document.createElement('script');\n jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n jqueryScript.type = 'text/javascript';\n jqueryScript.onload = function() {\n var datatableScript = document.createElement('script');\n datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n datatableScript.type = 'text/javascript';\n datatableScript.onload = function() {\n window.interactive_beam_jquery = jQuery.noConflict(true);\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }\n document.head.appendChild(datatableScript);\n };\n document.head.appendChild(jqueryScript);\n } else {\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }" - }, - "metadata": {}, - "output_type": "display_data" + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import fsspec\n", + "import xarray as xr\n", + "from pangeo_forge_recipes.patterns import pattern_from_file_sequence\n", + "\n", + "fs = fsspec.filesystem(\"s3\", anon=True, skip_instance_cache=True)\n", + "\n", + "# retrieve list of available days in archive\n", + "days_available = fs.glob(\"s3://noaa-hrrr-bdp-pds/hrrr.*\")\n", + "\n", + "# Read HRRR GRIB2 files from latest day, the select the first 2\n", + "files = fs.glob(f\"s3://{days_available[-1]}/conus/*wrfsfcf01.grib2\")[0:2]\n", + "\n", + "# Create a filepattern object from input file paths\n", + "pattern = pattern_from_file_sequence(['s3://' + path for path in files], 'time', file_type='grib')\n", + "pattern\n" + ] }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/charlesstern/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/kerchunk/combine.py:260: UserWarning: Concatenated coordinate 'valid_time' contains less than expectednumber of values across the datasets: [1682643600]\n", - " warnings.warn(\n", - "/Users/charlesstern/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/kerchunk/combine.py:260: UserWarning: Concatenated coordinate 'valid_time' contains less than expectednumber of values across the datasets: [1682647200]\n", - " warnings.warn(\n" - ] - } - ], - "source": [ - "with beam.Pipeline() as p:\n", - " p | transforms" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Examine the Result\n", - "\n", - "Here we are creating an fsspec mapper of the reference file and then passing it to Xarray's `open_dataset` to be read as if it were a Zarr store." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Optional: Examine an input file" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# import s3fs\n", + "# import xarray as xr \n", + "# url = f'simplecache::s3://{files[0]}'\n", + "# file = fsspec.open_local(url, s3={'anon': True}, filecache={'cache_storage':'/tmp/files'})\n", + "\n", + "# ds = xr.open_dataset(file, engine=\"cfgrib\", backend_kwargs={'filter_by_keys': grib_filters})" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Write the Recipe\n", + "\n", + "Now that we have created our `FilePattern`, we can build our `beam` pipeline. A beam pipeline is a chained together list of (Apache Beam transformations)[https://beam.apache.org/documentation/programming-guide/#transforms].\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Specify where our target data should be written\n", + "Here, we are creating a temporary directory to store the written reference files. If we wanted these reference files to persist locally, we would want to specify another file path. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "from tempfile import TemporaryDirectory\n", + "td = TemporaryDirectory()\n", + "target_root = td.name" + ] + }, { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.Dataset>\n",
-       "Dimensions:            (valid_time: 2, y: 1059, x: 1799, heightAboveGround: 1,\n",
-       "                        step: 1, time: 1)\n",
-       "Coordinates:\n",
-       "  * heightAboveGround  (heightAboveGround) int64 2\n",
-       "  * step               (step) timedelta64[ns] 01:00:00\n",
-       "  * time               (time) datetime64[ns] 2023-04-28\n",
-       "  * valid_time         (valid_time) datetime64[ns] 2023-04-28T01:00:00 2023-0...\n",
-       "Dimensions without coordinates: y, x\n",
-       "Data variables:\n",
-       "    d2m                (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
-       "    latitude           (y, x) float64 dask.array<chunksize=(1059, 1799), meta=np.ndarray>\n",
-       "    longitude          (y, x) float64 dask.array<chunksize=(1059, 1799), meta=np.ndarray>\n",
-       "    pt                 (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
-       "    r2                 (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
-       "    sh2                (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
-       "    si10               (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
-       "    t2m                (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
-       "    u10                (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
-       "    unknown            (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
-       "    v10                (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
-       "Attributes:\n",
-       "    centre:             kwbc\n",
-       "    centreDescription:  US National Weather Service - NCEP\n",
-       "    edition:            2\n",
-       "    subCentre:          0
" + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Specify additional args\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "grib_filters = {\"typeOfLevel\": \"heightAboveGround\", \"level\": [2, 10]}\n", + "storage_options = {\"anon\": True}\n", + "remote_protocol = \"s3\"" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Construct a Pipeline\n", + "Next, we will construct a beam pipeline. This should look similar to the other standard Zarr examples, but will involve a few different transforms. " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "import apache_beam as beam\n", + "from pangeo_forge_recipes.transforms import OpenWithKerchunk, CombineReferences, WriteCombinedReference\n", + "\n", + "store_name = \"grib2-reference\"\n", + "transforms = (\n", + " # Create a beam PCollection from our input file pattern\n", + " beam.Create(pattern.items())\n", + " # Open with Kerchunk and create references for each file\n", + " | OpenWithKerchunk(\n", + " file_type=pattern.file_type,\n", + " remote_protocol=remote_protocol,\n", + " storage_options=storage_options,\n", + " kerchunk_open_kwargs={\"filter\": grib_filters},\n", + " )\n", + " # Use Kerchunk's `MultiZarrToZarr` functionality to combine the reference files into a single\n", + " # reference file. *Note*: Setting the correct contact_dims and identical_dims is important.\n", + " | CombineReferences(\n", + " concat_dims=[\"valid_time\"],\n", + " identical_dims=[\"latitude\", \"longitude\", \"heightAboveGround\", \"step\"],\n", + " mzz_kwargs={\"remote_protocol\": remote_protocol},\n", + " # GRIB2 input files may generate > 1 kerchunk reference per input file,\n", + " # therefore we must precombine each input's references with itself, before\n", + " # adding them to the aggregate dataset. This is accomplished by setting the\n", + " # `precombine_inputs` option to `True`.\n", + " precombine_inputs=True,\n", + " )\n", + " # Write the combined Kerchunk reference to file\n", + " | WriteCombinedReference(target_root=target_root, store_name=store_name)\n", + ")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Execute the Recipe" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" + ] + }, + { + "data": { + "application/javascript": "\n if (typeof window.interactive_beam_jquery == 'undefined') {\n var jqueryScript = document.createElement('script');\n jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n jqueryScript.type = 'text/javascript';\n jqueryScript.onload = function() {\n var datatableScript = document.createElement('script');\n datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n datatableScript.type = 'text/javascript';\n datatableScript.onload = function() {\n window.interactive_beam_jquery = jQuery.noConflict(true);\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }\n document.head.appendChild(datatableScript);\n };\n document.head.appendChild(jqueryScript);\n } else {\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/charlesstern/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/kerchunk/combine.py:260: UserWarning: Concatenated coordinate 'valid_time' contains less than expectednumber of values across the datasets: [1682643600]\n", + " warnings.warn(\n", + "/Users/charlesstern/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/kerchunk/combine.py:260: UserWarning: Concatenated coordinate 'valid_time' contains less than expectednumber of values across the datasets: [1682647200]\n", + " warnings.warn(\n" + ] + } ], - "text/plain": [ - "\n", - "Dimensions: (valid_time: 2, y: 1059, x: 1799, heightAboveGround: 1,\n", - " step: 1, time: 1)\n", - "Coordinates:\n", - " * heightAboveGround (heightAboveGround) int64 2\n", - " * step (step) timedelta64[ns] 01:00:00\n", - " * time (time) datetime64[ns] 2023-04-28\n", - " * valid_time (valid_time) datetime64[ns] 2023-04-28T01:00:00 2023-0...\n", - "Dimensions without coordinates: y, x\n", - "Data variables:\n", - " d2m (valid_time, y, x) float64 dask.array\n", - " latitude (y, x) float64 dask.array\n", - " longitude (y, x) float64 dask.array\n", - " pt (valid_time, y, x) float64 dask.array\n", - " r2 (valid_time, y, x) float64 dask.array\n", - " sh2 (valid_time, y, x) float64 dask.array\n", - " si10 (valid_time, y, x) float64 dask.array\n", - " t2m (valid_time, y, x) float64 dask.array\n", - " u10 (valid_time, y, x) float64 dask.array\n", - " unknown (valid_time, y, x) float64 dask.array\n", - " v10 (valid_time, y, x) float64 dask.array\n", - "Attributes:\n", - " centre: kwbc\n", - " centreDescription: US National Weather Service - NCEP\n", - " edition: 2\n", - " subCentre: 0" + "source": [ + "with beam.Pipeline() as p:\n", + " p | transforms" ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# open dataset as zarr object using fsspec reference file system and Xarray\n", - "full_path = os.path.join(target_root, store_name, \"reference.json\")\n", - "fs = fsspec.filesystem(\"reference\", fo=full_path)\n", - "ds = xr.open_dataset(\n", - " fs.get_mapper(\"\"), engine=\"zarr\", backend_kwargs=dict(consolidated=False), chunks={\"valid_time\": 1}\n", - ")\n", - "ds\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Make a Map" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "" + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Examine the Result\n", + "\n", + "Here we are creating an fsspec mapper of the reference file and then passing it to Xarray's `open_dataset` to be read as if it were a Zarr store." ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHFCAYAAAAT5Oa6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebRlSVUnjn8i4gx3eEPOU81SUMjUKiKgLgFpEKQERKUFQZDJBSoLhbYVFIp2olFBWwVpBwopaGxaAaEVoYGi2y+FFCg/gaZAZagqqrJyfOMdzjkR+/dHxI7Y57ybmS8rM6sKuXutm/nuvefGienE/sRnD6GIiDCXucxlLnOZy1zm8g0s+u6uwFzmMpe5zGUuc5nL3S1zQDSXucxlLnOZy1y+4WUOiOYyl7nMZS5zmcs3vMwB0VzmMpe5zGUuc/mGlzkgmstc5jKXucxlLt/wMgdEc5nLXOYyl7nM5Rte5oBoLnOZy1zmMpe5fMPLHBDNZS5zmctc5jKXb3iZA6K5zGUuc5nLXObyDS9zQDSX8ybXX389lFK4/vrr42fXXHMNlFLb+v3ll1+OZz/72Wd1z1//9V/Hu9/97m3V5d+S/PEf/zGe/OQn4/LLL0e/38eVV16JF77whbj99ttnXv+Od7wD3/It34Jer4dDhw7hJS95CTY2NlrXfPjDH8ZznvMc3Pe+98VwOMRFF12EJz3pSfjUpz61pbz/+l//Kx72sIdhz549KMsSl156KX70R38Un/vc586qHdup16y2K6WwsLCw7fucTX+tra3hFa94Be5zn/tgMBjgoosuwo/8yI+02qaU2tZLzr/f+73fw33ve1+UZYkrrrgCr371q1HXdevef/mXf4mnPe1puPLKK9Hv93H55Zfjx37sx/DP//zP227rdu8FAEeOHMGzn/1s7NmzB4PBAA9/+MPxoQ996B57r7nM5YIKzWUu50k+8pGPEAD6yEc+Ej+75ZZb6IYbbtjW7y+77DJ61rOedVb3HA6HM3+zurpKN9xwA62urp5VeV8vcujQIfqxH/sxetvb3kbXX389velNb6KLL76YDh48SIcPH25de9111xEAet7znkcf/vCH6Q//8A9peXmZHvOYx7Su++Ef/mF61KMeRW94wxvo+uuvp3e+8530sIc9jLIsow996EOta1/5ylfSNddcQ+9617vo+uuvpz/90z+l+9znPjQcDummm27aVhu2Wy8pt956Ky0vL9OhQ4doOBxus7fOrr++53u+hwaDAb32ta+lD3/4w/Rnf/ZndOWVV9Li4iJ95StfISKiG264ofX6/u//fur3+1s+5/n3q7/6q6SUol/8xV+kj3zkI/Ta176WiqKg5z//+a17f8d3fAc98YlPpD/90z+l66+/nt761rfSN3/zN9PCwgJ99rOf3VZbt3uvyWRCD3jAA+jiiy+m6667jj7wgQ/Qk570JMqyjK6//vp73L3mMpcLLXNANJfzJrMA0dnI+QRE/9bljjvu2PLZjTfeSADoV37lV+JnTdPQwYMH6bGPfWzr2re97W0EgP76r//6tGWur6/T/v376dGPfvQZ6/T//t//IwD0y7/8y2e89mzqJeXqq6+mH/iBH6BnPetZZwWItttf//zP/0wA6Jd+6Zda137sYx8jAPS6171uZvmnq8+xY8eo1+vRC17wgtbnv/Zrv0ZKKfrc5z532np+7WtfozzP6bnPfe6pG3gn7vUHf/AHBIA+9rGPxc/quqb73e9+9B3f8R33qHvNZS53hcxNZt+g8u53vxtKqZmU9Rvf+EYopfBP//RPAIBPfvKT+NEf/dFobrj88svxtKc9DV/96lfPeJ9ZJrO6rvHzP//zOHDgAAaDAb77u78bn/jEJ866DUopbG5u4i1veUs0UTzykY8EMNtk9uxnPxsLCwu46aab8H3f930YDoc4ePAgXvOa1wAAPv7xj+O7v/u7MRwOcZ/73Advectbttzz8OHD+Mmf/ElcfPHFKIoimgiapjnr+p+L7Nu3b8tnD37wg2GMwS233BI/+/jHP47bb78dP/ETP9G69kd+5EewsLCAd73rXactc2FhAfe73/1aZZ5K9u7dCwDIsuyM155NvViuu+46fPSjH8Ub3vCGM5bfle32V57nAIDl5eXWtTt27AAA9Hq9s773+9//fkwmky1t/Ymf+AkQUcvkO6uehw4dwsUXX7ytMTibe73rXe/CVVddhYc//OHxsyzL8IxnPAOf+MQn8LWvfe0ec6+5zOWukDkg+gaVq6++Gvv27cOb3/zmLd9de+21+LZv+zY86EEPAgB85StfwVVXXYXf+Z3fwd/+7d/iv/yX/4Lbb78dD3nIQ3Ds2LGzvvfzn/98/NZv/RZ+/Md/HO95z3vwQz/0Q3jKU56CkydPnlU5N9xwA/r9Pr7/+78fN9xwA2644YYzKsu6rvGUpzwFT3jCE/Ce97wHj3/84/GLv/iLePnLX45nPetZeM5znhMX72c/+9kt/5nDhw/jO77jO/C3f/u3eOUrX4m/+Zu/wXOf+1z8xm/8Bp7//Oefsb7OOTRNc8aXtfas+oHlox/9KKy1uP/97x8/++xnPwsAcSxZ8jzHfe973/j9qWR1dRX/8A//0CpTirUW0+kUN910E573vOdh3759WxTkLDnbeh05cgQveclL8JrXvAYXX3zxGcvfjszqr8suuwxPetKT8PrXvx4f+chHsLGxgZtuugkvfvGLo5/U2Qq35YEPfGDr84MHD2LPnj1nHIMvfelL+OpXv7plDHizIUH/2dzrs5/97Jb+B9KYSJ+pu/Jec5nL3SVn3srN5d+k8O7sjW98I1ZXV+OO+POf/zw+8YlP4Pd+7/fitT/8wz+MH/7hH47vrbW4+uqrsX//frz97W/Hi1/84m3f96abbsJb3vIW/OzP/ixe+9rXAgAe85jHYP/+/fixH/uxs2rDwx72MGitsXfvXjzsYQ/b1m+qqsKv/uqv4ilPeQoA4JGPfCTe97734Td+4zfwD//wD/jWb/1WAMC3f/u3Y9++fXj729+OBz/4wQC8Ujh58iQ+97nP4dJLLwUAPPrRj0a/38fLXvYy/Mf/+B9xv/vd75T3fs5znjOTderKIx7xiLN2Bl9fX8eLXvQiXHLJJXjOc54TPz9+/DgAYNeuXVt+s2vXLnzlK185bbk/9VM/hc3NTbziFa+Y+f1wOMR0OgUA3Oc+98H111+PSy655Iz1Pdt6vehFL8JVV12FF77whWcseztyqv4CgHe+8534qZ/6KXzv935v/OxBD3oQPvrRj2Lnzp1nfa/jx4+jLEsMh8Mt3+3atSv2xSxpmgbPfe5zsbCwgJ/92Z9tfae1hjGmxcCezb2OHz9+yv7n7++Oe81lLneXzBmib2B5znOeg/F4jD//8z+Pn735zW9GWZZ4+tOfHj/b2NjAf/pP/wlXXnklsixDlmVYWFjA5uYmPv/5z5/VPT/ykY8AwBbw89SnPnVbppZzFaUUvv/7vz++z7IMV155JQ4ePBjBEOAX6n379rXMgu973/vwqEc9CocOHWoxOo9//OMBeMbhdHLNNdfgxhtvPOPrTW9601m1aTKZ4ClPeQq++tWv4p3vfOfM6KtTRfqdLgLwl3/5l/G2t70Nr3/96yMo7MrHPvYx3HDDDbjuuuuwuLiIRz3qUa3dvrW21VfOubOu11/8xV/gve99L/7oj/7otPXtMnCnYtrO1F8vfOEL8Rd/8Rd4/etfj49+9KP48z//cxRFge/93u/dlpn4TO3Z7ndEhOc+97n4v//3/+LP/uzPtgDNV77ylWiaBo94xCPu9L22e+1dea+5zOXukjlD9A0s97///fGQhzwEb37zm/GCF7wA1lpcd911eNKTntTazT396U/Hhz70IfzyL/8yHvKQh2BpaSkCi/F4fFb35J3ggQMHWp9nWYbdu3efe6POIIPBYIsfSFEUM3evRVFgMpnE93fccQfe+973Rj+TrpzJfHjppZduy9xzNsphOp3iB3/wB/F3f/d3eN/73oeHPvShre+5T48fP479+/e3vjtx4sTMdgPAq1/9avzqr/4qfu3Xfg0//dM/fcr7f9u3fRsAz9Y98YlPxJVXXomXv/zleM973gMAuNe97tUCEa961atwzTXXbLteGxsb+Kmf+in8zM/8DA4dOoSVlRUAnukDgJWVFeR5juFwiP/8n/8zXv3qV8dyLrvssi1M05n66/3vfz/+5E/+BO985ztbrOhjH/tYXH755bjmmmtmmplPJ7t378ZkMsFoNMJgMNjS1llgk4jwvOc9D9dddx3e8pa34ElPetJ5v9fu3btnMjMnTpwAMJu9u7vuNZe53BUyB0Tf4PITP/ETeNGLXoTPf/7z+NKXvrTF0XV1dRXve9/78KpXvQq/8Au/ED+fTqdxMTsbYUV4+PBhXHTRRfHzpmnu8bT5nj178KAHPQi/9mu/NvP7Q4cOnfb359tkNp1O8eQnPxkf+chH8J73vAePfvSjt1zD/h2f+cxnWua8pmlw00034WlPe9qW37z61a/GNddcg2uuuQYvf/nLz1gPlsXFRdz3vvfFF7/4xfjZe9/73mhSA1Ifbbdex44dwx133IHf/u3fxm//9m9vuefOnTvxpCc9Ce9+97vxghe8AFdffXX8rizL1rXb6a9Pf/rTAICHPOQhrc937NiBK6+88oz+PrNEtlUCsMOHD+PYsWN4wAMe0LqewdCb3/xm/Mmf/Ame8YxnXJB7PfCBD8RnPvOZLWXwZ9163Z33mstc7gqZA6JvcHna056Gn/u5n8O1116LL33pS7jooovw2Mc+Nn6vlAIRbVEuf/zHf3ynnH85Cuxtb3tbawf5P/7H/7hTkVplWZ41S3Vn5eqrr8Zf//Vf4173uted8iW55pprTsu2sCwuLp7xGmY6PvzhD+Mv//Iv8X3f930zr3voQx+KgwcP4tprr8V/+A//IX7+P//n/8TGxkb0pWL5lV/5FVxzzTX4pV/6JbzqVa86Yz2kHDt2DJ/5zGfwXd/1XfGzrsPt2dbrwIED0cwq5TWveQ0++tGP4m/+5m+wZ88eAB5snQqUbre/+Pcf//jHcdlll8XPjx8/ji9+8YszQdSZ5HGPexx6vR6uvfbaFnC49tproZTCk5/85PgZEeH5z38+3vzmN+NNb3rTthzU7+y9fvAHfxAvetGL8Pd///fx2qZpcN111+GhD33oGQH+XXmvuczlLpG7L+J/LvcUedrTnkb79u2joijo5S9/+Zbvv+d7vod27dpFf/RHf0Qf/OAH6Zd+6Zfo4MGDtGPHjlYOoFl5iF71qldRd5o94xnPIKUU/fzP/zx94AMfoNe97nV06NAhWlpaOuucQo94xCNo37599Fd/9Vd04403xqSAs+pyqlwxj3jEI+j+97//ls8vu+wyesITnhDf33bbbXTZZZfRfe97X3rDG95AH/rQh+h//a//RX/wB39AT3jCE+iWW245q7qfi1x99dUEgF7xildsSQYo878QEb31rW8lAPSCF7yAPvKRj9B/+2//jXbs2LElAeJv/dZvEQB63OMet6VMmVxzZWWFHvKQh9DrX/96et/73kcf+tCH6I1vfCPd9773pcFgQDfeeOO22rDdes2Ss81DtN3+Wl9fp8suu4x27txJv/Vbv0Uf/vCH6W1vext9y7d8CxljTplj60z14QSGL3/5y+n666+n3/zN36SyLLckMPzpn/5pAkDPec5zttTzH/7hH1rXvvrVryZjzJbEhtu912Qyofvf//50ySWX0Nve9jb64Ac/SD/4gz84M1niXXmvuczl7pI5IJoLfeADHyAABIC++MUvbvn+1ltvpR/6oR+inTt30uLiIj3ucY+jz372s1sSKW4XEE2nU3rpS19K+/bto16vRw972MPohhtuuFOJGT/96U/Td33Xd9FgMCAA9IhHPOKUdTlXQEREdPToUXrxi19MV1xxBeV5Trt27aIHP/jB9IpXvII2NjbOqu7nIjxes17cB1Le/va304Me9CAqioIOHDhAL37xi2l9fb11zSMe8YjTlssymUzoec97XsygnGUZXXzxxfSMZzxjCxg7k2ynXrPkbAHR2fTX7bffTj/90z9NV155JfV6PTp06BA94QlPOG3G9e3U53d/93fpPve5DxVFQZdeeim96lWvoqqqWtdcdtllp6znZZdd1rqWn61ZIG079yIiOnz4MP34j/847dq1Kz6LH/zgB7dcd1feay5zubtEERFdGO5pLnOZy1zmMpe5zOXrQ+Zh93OZy1zmMpe5zOUbXuZO1XO5R8qZHKy11tB6jufnMpe5zGUu50fmGmUu90jJ8/y0r2524bnMZS5zmctczkXmDNFc7pFy4403nvZ7DrWey1zmMpe53LXyxje+EW984xtj4tP73//+eOUrXxmz9v/lX/4l3vSmN+FTn/oUjh8/jn/8x3/Et3zLt7TKmE6neNnLXob//t//O8bjMR796EfjDW94w3k7q/DOyNypei5zmctc5jKXuWxb3vve98IYgyuvvBIA8Ja3vAW/+Zu/iX/8x3/E/e9/f7z1rW/Fl7/8ZRw6dAjPf/7zZwKiF77whXjve9+La6+9Frt378ZLX/pSnDhxAp/61KdgjLkbWjUHRHOZy1zmMpe5zOUcZdeuXfjN3/xNPPe5z42ffeUrX8EVV1yxBRCtrq5i7969eOtb3xoTs95222245JJL8Nd//denTJx6oWVuMtumOOdw2223YXFxcX4Q4VzmMpe5zOW0QkRYX1/HoUOHLlgAyGQyief6nasQ0RbdVpblllMKumKtxTvf+U5sbm7i4Q9/+Lbu9alPfQp1XbdORTh06BAe8IAH4GMf+9gcEN3ThdHrXOYyl7nMZS7blVtuueWC+MVMJhNccdkCDh85+yOUZsnCwgI2NjZan/FhzLPkM5/5DB7+8IdjMplgYWEB73rXu1rnEp5ODh8+jKIothyBtH//fhw+fPhO1f98yBwQbVP4fKlveskroct0Wro6g8GRzoVMOsNvSbWvifdSAOVAsxgeFAKydQPXdz7lbUaAIZhNAxBgFy3UREM3Cnqq4AqCrhXMCDATQFnA5UAzBKYHayx9PodywHQHYHuAHTgoq+BKB71YwW3mQOl83RT5PLsTAzXVIA1Q6aAaBTPWcDkh29RQVbhUA8PbAVsALgOGdzi43Dds/WIF0r5OxSZQnnSoljSKdYemp+AyhWoJqBYB1yeQ8W0H4OMpFeFUwxW7kVTMDaxc+N8qKCs+C32qSPwPcS/46+K13fHRiPfQjW+zcr6fFaXfxjK23JfSvTpzhLTy9xEbUmUBU1EsiwzQlAq2DL+n9L8zYdhE3UmlumvrX75f0jW2TONHOlRPifIptZv7i9urKy6bQFrBFu1rsjHFvmbRFUE53ybdEJQl1EODbOJARsU+tbkCmXQvEAFKYbqskY1d+D1QLygUaw66odA2f09b6pnPmaLQL1oBCnGOpk5vXwvRN0AaZx5TKC4v/K19maSAbELIRiS+U5js9PdVLtzDbR1L5cK9HVr9l038H8oRVAOY2pdtSz/PyQD5hoMtNcrVGuPdOUxFsKVCvulAWvl54oBirUG9mMV2kQ59b/31XC/SsgMp9gH3EZSCy/3fZirGW/SxLQBT+b5pev4+ZPz8IK1azwRpQNcEU/u6kFZQjuL9dON/y/OaMgWXAaRUfL5az7d8zs8gXKatJ/j//cWvbOtswjsjVVXh8BGLr37qciwtnhsDtbbucNmDv4JbbrkFS0tL8fPTsUNXXXUVPv3pT2NlZQV/8Rd/gWc961n46Ec/um1QNEtmsVR3pcwB0TaFB0mXPZhtAqJTgSFeTE9/wzN/dzpA1Cw66IJXHEBBwzhA1wrNwMH1LbTN/EKdOyAH1FRDZQqqJJADNCmgBPQUcAPA7SRkVAALGtkI0BOgKoBp34Eygu5ZQOUwOgMZBzKEbFiDnILNMqi+guJKLlvQpoFyCsppsA+dywA1AGgRWLidoHpAMSFMdmpkRVC8BZBvAnpAMKUCKYLKFbQGsgxwJdD0CJSJzlbk/1NCSbUGK42Nr4iKi6CyHhRJEBAXSdf+rQoLrZl4UMrjoZwHlSSBCoOioBh1hfY9BTjClsWZQEql8Sev4Fym0hzh7xygNcW6kwF0T8WnX1sPhADAKP89tyMqNFGerr1CQZ76wwTl5bKgaCQo4v4VQFBxWxygM38/BggqT2OkGsAE4OP7IShTE0ARAcr4/zUUqJ/63F/HlfaAi0VXCgqAHSjkGw7lOvl2FqHPMwCOoHLt+yY8/y7zyhOOAK2gA4jkYZV9CdUGjQyI5LiSTm1tShW7SylAMYDKgaxycexcrqAH/ko5N4BTKPEAGiMoyfzFNlfIxoQ6C6CL/L1AAJYAA6DZ20NBAEr/XpeEpq+QVYRytUGzXCLT8PMu9BEpAJkfR64Tg8d6oFBsuFRXJLBki1A9MU78PSlAKwA9D4a0ADPIwnyMgxv6OQfMiJBXDnVfe5DLIFSMUbwHj4HYcHSB651a7y+wgl9YVFhYPLd7uNARS0tLLUB0OimKIjpVf/u3fztuvPFG/O7v/i7e9KY3nfG3Bw4cQFVVOHnyZIslOnLkCL7zO7/zTrTg/MgcEJ2tnMW8U52dWYtBELvFLQ/Sme5Bs6+JQIv/N+HBJgU4wPYJ5YpCNtYYX+xiffRUwy5YOEdwOQGFA2oFMzGY7iHQyO/GipNeM072E/Iv+513vUyg0kEv1Mhyi2qUg3ICGYKqNewoB4yDyh2QKVCjoKZBK2ivMCgjOBcUTk4Y71dYuKXdpmxC0FOFesH3W7UMNLWCroHpsvIayQH9Y4TpThWUMgWmIOwMDaUFsNt5TsWFjxSgdPhN6DsY8iCJ64RQd52UDimvED0QC3+HeqWFN7RLKDJmMyIACX9D1Efb9DePqZw3np1R0A212AoKmMllKraJQROXKZkqBECkG8AGZiWCKwU0PQHqCDABONkSKFcJtREMVfjNTADK7YAHEPnUAzwJEOT3WSNAEgG28IxgvuHCe+3HOTwb9VDDFu0dfzZNLIGyfl70TjoPfERfeyDjQRZl5EFPrjwrEYG7mAsqtYfEM18PVRxXEn0RGRy5Lqg0JyLLxv3M7XYEm3kGjcGmZEFNLcbQcTs8TmlyBVOFDYVTMBOCmRJskeZMZCUtxXaCAJupyK6RUoExVhjvyZGNHeqhDu1M4xfZK7EB8POY0PTE/GSQxvMhzDFd+w1ENiY0vdDfAVS7TMztLgtr/PdmCuQj/7zbXnq2Z28g01gqEWN0toxQ+uHWe11IseRgt1nX05VxrkJEmE6n27r2wQ9+MPI8xwc/+EE89alPBQDcfvvt+OxnP4vXvva151yXOytzQHRnRCzmMxf77copgM25lMELtBlpNAueZqBGgzIEkxgwuphAGcHurmGO5X7xyrw5TZUWWM9QnDBoFoBm4IFANgGKNW+OytcUmj4wuogwuFVhWmVo+g2cUaDKCLqbgEoDAweqNFThV+lsU4N2W9iJQbZhQAqwA0J5TKF/TGHzkF/UJjsVlm52mC5r5COHfKQw2UdQzpvGTAX0jgPlGmHjIgXdABsXKbjSt2/Ljo4UoNPur9X3OgAepwBDcZFTIJBRgI3rZiwKDGTCz4nBRFA8ZppAk7xnyzwmWJuoSELXRTAB8R3Pu+48YIVsgtkjE58HXUKCPZLgmcUrS19vIPwvAA0p3+fNICirkW+bLQIoYqWq4Ymc8FtXesZMAkNZb28GCYpZqTY4VL5NTUkwFQCl0JS+3goeJJBW0LWL17tMwUwJZgrUA68YmR1oBhrFmg0gVswRYcZh8AEgmodcYDu6mxg5DoraLKBuvNmIL2wxugpwWrZRgE8EppTnlAJWL/ego1zxLCBloQ8Y+AhwRdqzjpQlsB2fSUrvGfSQAWDhmRUFqABSIqCJIM1PGEWAMyqZFI1KrGC4njcDzrSfQVIqbhh4PvCmggKAa3oKRUPQjf9bWYCKNkhULgDAjlmc56WpCdqSX5NUqIdTW+Z8ayp2Ppfz/lRr/FlvZi+AOBDcKZ0Btl/G2cjLX/5yPP7xj8cll1yC9fV1vOMd78D111+P97///QCAEydO4Oabb8Ztt90GAPjCF74AwDNDBw4cwPLyMp773OfipS99KXbv3o1du3bhZS97GR74wAfi3//7f39ObTkXmWeqPs+ybZ+hcwfkpxXdAPkdOVTu2ZnipBLK17M3etWv8nZoodcy6ImGWsnRO2JQ7XTQFaB3TeEKv0uzBTDd61AvEMwEWPxXr7xcRrjowEk0mwVUaUGFg5oYwCqgtAApmPUM2jioRkM1CnS4j3zHFMUq4EqCGSvUSwQzIUwvrqEcMLrYd9LwSIN64Hf8zYJDdckU090Ow9sITd+zBZQBo0MO+UZQXgRQz0WWqN054X8b2B/J3Dm/cLbMkoa8yQxo7/5U+o38X+7yHZtgbHvx5s+AtONlVkU1/jtd83gJIMTXdNcvCUBywTIEhUNBqVvhEtDyVeowFvE9K11K1+brQHki1EUDxYb3RZEmqegDFNizVt/JamvA5um5aXq+z+T9dBNAaQf464YiSiWtQMazRpEl1UC+SdB18DWyhGI9gaF66BFBBDdchlHeHOl4DEO5PH6nUo7GAwVv4vEvXacxkHMqsl1i7sjxAjxgkiCKNDDdoVrM0SzGg8G0atJ13m8moWlm2PzvOgNDQN33QFD6NCnnwastVPTRsUUCHIBvv6kR/bdcpsIYK9hCRfDHcyeakzMBdgIoIgU0AwVbqlgPl/v/dR3miE196P2gGKSHcQjAmtm9OA4dcMrA/ky44LTr+yz26d+o3HHHHXjmM5+Jq666Co9+9KPx93//93j/+9+PxzzmMQCAv/qrv8K3fuu34glPeAIA4Ed/9Efxrd/6rfjDP/zDWMbrX/96PPnJT8ZTn/pUfNd3fRcGg0HMb3R3yTwP0TZlbW0Ny8vLuPIXfj35EMlFH+2HQAnFN8tkBiDauu/ULkOJ33XXM/HA14sOVBAoc+jfkqNaJq/gGwW7YGHWDCgHXN96VsUpqEahOG5QXzZBOahhblwEyDMG6/dyKE5qZJuenVm5imAmCvlmYA7uu4lqtYQe+9UtPzRCtVZCr2Rwu/0qpldyuIyQ752gPt6D2VEBX+vBTBQWvwKsPHoMe7JAedRg+UsUafzJTo1yjXD08RMs/X99bFxGsD1C74jG4DAwOgg0faDe3XgHbhPMeWMD0p5ZojwMQsehFRpAo6Br5U1rsqttApPsSyR9FpTzrBBlgBn5stgfQpH3wQIA20f6bVBYZPzfOjiL6oqVfahmAHfM1sTfS4AEAcYYEDETRR5wsBMp795j2wVzVQ/89dkkKcAIFhgMhDoU65SAVvDTYdOLy/nz9jyNjr8uFuP9p1y4Z/iNy73C8wo4sTjMqrEy5jZnE4pKkNklULommskY4DE7BHg/IPbPiW0NbJVRqHYY2LwNxlrmL6Q+8Z9tvbbLHMW+Rxoj79CL+NxGR3axRjCAioyjagMqZphIB1AdWCBvcmag4eeSqQk2VzCVZ5yyKcVyZLtsLuYLgik1sGXZ1LNzTtgZbKGiM7PNg7M5CZCXI7Eu3BaV6m97gBmjBQJ5LbWlnyvaBrAnmVekfivXKALLpqdg+0C26d+b4HcmzdBAZ65y++WmQDwrs9b71gaK+6Ka4B/f/gqsrq5u2y/nbIR10m1fuPi8OFUfuurWC1bXrxeZM0TnQUhh9o7gQkHNs9h9ZBsaeqyhKo3Jfgt1cOIXo9r78rhecLYlBb1pkJ803qeoR9CHS4xP9kAKqBf9S9V+t9YMPQAp1hTqZYfxQYdsBAwHUyzt24AbWLiBRbVeALWC210BEw21mvtFbqmGvXUAPdXIv9BH76hCeZzb5xmZpa94Zbh2ufffWLjdYrqs4DZyD36WHAa3aez8gkP/hIUtgPIkoEcm7kBV7YER2CTFjIUTjI9TQKO83UtTVCpxNymVF5sbOk8OKy3bY98H7/jNwIKZIr5WjqUK/hJRuYUF22Vo+YqwSYGZHjZ5MCMQF3Tx3gYF1HXQVtabkkxNsiqt9sSyIcCMKCsfeZ8Sbpup24VsUSIBDPkbpEvNNLBkwcwT60sCYDDg0AwoVVSk9UBFUEbaRylBeaXPYAjwfkXSVAYCECKQSKsW6+YCI8UMx8zNDrfpFCJNLRxJx8yXtgnkukyYyMyMuSeAaGKz2uBIMoIMhmQdLLODwaxUDzyr6jIVovtExcVckr5rkckJrIszqtW/QAKfkeli4Bb+183sNrBpmfvEFmlTAYTIMzYz82ZEzPM4163/XdP3a4bteXOtZxORGK3M+1G1fJAIrTnA7TiVT9BpXSXuQobIEp2X11zmgOjftoQFw+WeKQEAbRzc0EJfueGZj0Z5JVVaKKfQDH10mB06KKdQLFUYH3QoT/hdlhta4Cqfq2J87ymqZcLSFSsoTmg0A2Dl6ALqxiBfrLC0d9OvKD0HTAyyVQM9VaDCwU1NXDR0BWxeagHld512mmH4VY3j/84vYMOvhZ2oUcg3CMufzUD32cTiF0LagJ7Cyr0Meie8X1O+pqCrUDgzdA6I3tAAoCm230wVzEQBLpgJ4gIuFkyhjCI4ALbuKgPbw8AjG3nmjBf/qByovZOXzJHLkmlgizBLJMBHS2GrdI00d8UIJ8svCuHqqeiotIGYZqB1a6E8RvtUNMFkY/8/K6SWCVIqmdj34j3595JFUU1qkwcIKvlYUWCRTPt7F1gwDg9XNilx73ANFOtuiw+J9NPx4d3JAZfD3vm6mX0hGDYp1BkbZv9aTIIE2zaZjSIYNqKMjql0S32s+J7BSLiuxX4wg9ZigVS7zjM2eAyM2GzG949RjbHh4k+dQOqW+cn3CuCK5yUCaM8mwV+t5+dV01Np3st7ibmlHAI761krU3s/JJf5tAp8v6avIkDiPk8AHDPlVJ/PBEWnAFBzuefLHBBdSDnDA3GX2JkJQO58ZFdGqI/0Yyi821nHxUkXNlxL0BMFtVCjWbRopgb5uoYNVsLhlzMY4/xObiODahQm/7gLLk9Ud55ZNNMMmxsldOk1vp541okKQr5zCmW847MrHCb7CNm6QT4CqkUFWOWjRNZUvO/mxcB4j/Yh7VOgHueoF4FyBdg4pLB4i0OxStAVsPRlSg6qpLxPkOyPEFIPIDpaKhsUofYro1QOYLaJgYzyC7M0ZbACMhPPBsWxFSxCa1cPwQgEpRDXVlZqKpnOmN1xGZJZCGgpmGjK6fiYsINr9BVyKc+LNBu08v+cYcPIjtDSTKQogaOZvjb8XjBt8brAmrDCi9/L9sh6hV1+VObGK8Gmr2Fzr/B8/6rIOnXbRXnyTQEEyyKU/EzziGjPFmAic0RBjFOnD5jpi87jaANOrg/3K88xBnQcjTij6Na6wywN96ep/dixuMz7VkkzYDsQQcxZ2S4JalR6cT29acwzT46dqAM4k2Ze9gGKTJP2YJ3vbWokk2InUGDLvA8g2Rb+PfsZ9Va8gz1/bqY+dUA9UHGzcD7YfLm54PrfFcJO1ef6msscEF0YETusLZTruYIgWa54fzrJVo1niAoHGIKtDOqNAtjI4HZWflG+vecXv4mPSKPNHHAK+nAJWxJsD6iXgHoIjDdKVMsEM9Yo1oDpLgcz8d+b0mLjZm+Ddo2BHWfAZgaXeb8l7J3COQWyCmr3FJQT7EKDYt0vTJsX+TpP9gCLXyWs3sehWvaKa3QQGN7W+Kimyps/xnuBzW9qwOaT3f8U+j+DjwyT7AR1BwYgTYAhuJCzSddeubPpTLItUlm0oqCY/YEHQ9EHIryyUdp9soJgRoB3vcoi5iNqrU2BWYiMgQQIAmwxqxSbKJrKzI2uU9K7uNOmBI7ycVIirZ13dxdOvk5NX7XaRCrkiLEeyLX7PtVVQSih8L/Lk3N1ZFWUMJsIYKLI54uRDr/RfykAxqavI2CKz4oj/zIKruD0AOFLoyIQUg0FsKTQ1RMzzeNdBgwCgHWUpK6RTD7iNzLqKxWS+rWl9AV7Jtk/30ZEB37JhnE4ujRFMeD2qQn8++jrxGMlTKxNX7XGID4TArwCnIspOG0LJoiy4P8jAgp4XpJREeTJfuf52AJD/D/XUYLk4N9kJoR85CIbmtrq2yHrLNlWCRbPKN250Rm/LsC9UOJAsOf4mgMiL3NAdC4yC4yIB7almGaBobMBR3cGTPGCYRWU9TmAMGyAEWfkI5hjBdzuKlHXwZdGVQoofI4XXDTx/gcENAuE4uYSzZKD3VuhGQBYbDA+4GDGgD1RQO2aQmcOFPyUdOVD7V1BUApwR3owGxnc1HiT1XqGyT6HyS5guq8BxhpLXyaM9isUJzX6Rwn1vcbQNbBxcY71exF0v0EzAMZXVtjxmQxrl2jkI/JMVcULqYrKmBmg6EeTEWIEGvk2c5iw7DvJusRIsxnjx74tpEP27rIdqt0FsC2WSLVZAhmZ5YIiieH7SIyBBC6RTWG/oo4i9k7JFJ2TWyLK6wKQ2EZWrCJKh51rpanGFUhmylksker8TeE3KjncSn8nM0ELTLGwEzCPD/uG+L4k6OAsrAgxESC0AkKSP2ki4USLqiEQ+wwF9kua/Kgz3tt6nnl8XLusLZsm/r/b7xC/EwEakc0STse+jeK22puetEOKduMEnNP0mbxPqz6ifOV83iLAZ7SOzApfp9K8YuAEJJOUlWHzxM8TIjskzXitZ4NZMjandRJdyghFBk/eTKYw3m1ABpgueWY5H5H33aoYNEuE7v+UfkuyT2ZK+B3P15bM8cXXpcwB0bnKNkDKlkgyubCeaVGdAYROZ2o75XfOAw+lfNJEZA66VshXFbCRwS4llkU1ClQQUGnUuxu4RiHbBKZ7nAdPGsh3TQD4jNjFsIKufR4gPdUgUnCTDNlq5oEY7zx71mfArnwkV3Y0R3nUwA2td9bOADOsQT2HY99GGN5OWPoK4cjjpnArBZb/1cEWwN5PArSZob5oCmxkIAPs+FcLWyiM9yjoKqxGGYXF1PsURcWiAM6B4s1JfCwCr25IDBH89/EzwZK0mA+5ew+LuMvTK42D2B3HHTGigoyOo6JcJxQPj3Erj5EAEHHaMPgTTrHlmu+XaMIITY7h2EGavgd1Tb8Tpt9teyjD5YCuwvEIneg7/l18T21dEaOLuI8otY2/9yYdNROEtI5fkH4zDEZVioJjhkgRYMb+CApbJLNb0w8FhGMeOIR/1k7/VCyRjDKTzuF+HlLrehkZ2PVtkmUCCEdsBLBvRZliPCJ21YgsXNNDBIo6mGV13R5XqGTKagGkUD9OjMgmW1NRAmIdxoYjAOU46UbMQwZZwd8n9lloQ4wCy1J+Ky7fVEC+6WL/y00Gb2bYvJZNKTpiI2xWlPMMqal8KobWGIQyYwSnHAsJZE8nM4D7XSFzk9n5kzkgOh/S2f3Lz1tmFtW+9oL5EM0oN1s1XtEcK6EyB2xmIAVMLq+hpxpmPZ1HBABmQ8NMlE/YOMpQ7fJAyhwpPO2vCPpk7sPrCcg2vWNrseqTMzLjMviaL9SVDmbToOg1MalcseoVaHYyg5koTHc5kFPQpc8V0/R8gj113G/bxns1eiuElXsrDG7OYAqL4c0aq/exOPwwDVN5EDXaF86fClmwof0OVI+1zz0ExMXL5Rw+Tgl8yvFkMCR25q7ryyC+UwRwgrsYaYP2whvNScxAuOQkHJ9IJRZ91XGyFqyNIornb7XML0EJ8L3I+MzJMR2AiBprzZMRooJh80ETjsNoOZUjKDLZHuL2UctkRKK/W2aOUE9XBBZDJCZkNsQr6ZBtGkJpc72pXeZWn54ZY+AItqcTY0begVpbBlAeMLlcJYDL/S7aMNN8dhoho1rKNbIdYc7Ev/m7AA65f31OJt83fNRJyycKiXlpRZ8pDzAoYbWWmYjbJtk/KcyoKErgJobni7Ut+sgpFect16+VRDF8Z0UqAgmYdDhbLZuk8HnSIcGmAP4xIpHbK8ywTalakZsgoFpQrWckHwl0Huqku+xpV2TfzMIQdwOumEeZnT+ZA6LzJWdibboM0XYW0hnXnIpp2vJd9xpWvAPrR90QehdvQK8buF011P4JaM805ekBYIcOmBqg5/z3hUN5rzW/e7P+YFY7cJiulT6aJyTV06sZ9IkcdsFifMjnQVKLNcpLNlAWdVzA8jWg2uGTPGabAC03UJpAlQ+b9wyFQr6i0T9sAAes3Fth5xecz3lUe2dv3ShkI4XpksbaFQrVDiBf92ZCCTxd37NinlYPEXbk+wIBjCirfNZeCVwNwZUuMUCGvM+OQWvBjlE8XWAVylHOh+NHZ9JafBcW8lguEDP6yl01K0r/PgGh6EQsHESj+SzUibP+bmEkVJofivxYAEnRmElqSyuvlphbQAKEphbXYPbuumUmDHlloi9Vg+gzogLoA5L/CY9DlwXjQ2y5LS2nd4V0pIkAJezrEiOMgj9NvWi2MB1bmINTPcfUfvE4eQCWDqXlNsWNEzwwbDFLfMsAgkglR2NZF+KgTUpmS2mmY/ZDslL8/xZWSIzvTBMf+8F1GJEtTDjEs0BpnGLofdwQ+KzSinz+Ig4C6Jq0lPXjEXNQUapLuUow49Q+7wsVsmI7P4c451L0PwsbBZt7AAWIdmH2vI1tAlJwgpDuuMzl60vmgOjOyNkwO2I32VLOp0rGeZqHcFu70RkLXfwdeZ8eqjTQsxid7MMOHMyRHM1Gnq7lh9qQ9yMK3r6q1piMCjRXjGGMg554/yCzYdAMyZ8/xBFTuV+JXU4w6xo6d7BWY+XIov9sGvK+GP+70RUNTGHhaoNdf5+jPKqxfi8bzW166sHEzpsc1i/W0FOArMbkoIXr+fqNDgKLNwfGhzPfKh/Z5koXyvKJJPVEh0VWedYoMhasPcVusvHgyuUEFyLlKAumRx2i5QJ4YX+YGD3G4CWEFcczygIAYiXHzMQW51lphoNQQt3XLGYkjLvmyCIVQpJNyuCbrvcFsELIRr7MbJzK58X+VACH55zN29+1nKsFSyGd0aPfEIU6dJ2y4fuHFZcJYDI66TLAqFLl+DMzceHEc3g/IgUgsEMmKFdOvugVrB/7pp8UpwQG7YajNQats7CcV/IMiiRb0VWmKmBbNo+2IshUam82QTKZSvNl6J9W7p4q1S9GKzID4hh8UhiLdsMiw9lZv1hah9iG+rfOveuI4wNYea7GuUmRmeM6kkIrBYTsC567tmAA7O9t87SBiMyY4bqGNopjQ2xg/5xBPF5lSyqFTn/wd2kuKGRj1zaF4jRz5QKJO0+vudzNgOj//J//gx/4gR/AoUOHoJTCu9/97tb3RIRrrrkGhw4dQr/fxyMf+Uh87nOfa10znU7xMz/zM9izZw+GwyGe+MQn4tZbb21dc/LkSTzzmc/E8vIylpeX8cxnPhMrKyvn3oDtMj0dOS2wuVAPES9sIR+RUj4PT7lj4kHRuvGRZfL+hfMKP2yz9VKFrLRwq4X/bP8EtudZIlbazaKFLQm0XEOPDIqTBrZPKIoG1dE+8mNJW659E/nEkRWQH89gVwoUwwqTXcCOfyWUxw1I+xD84R2E8V5gukNj+csOk33O13XYAD3nM+gWwOZB5UFRa3fLiz6SOcv4zNWqUVsUttfK8OYy67/XdfBBauCBJe++Gw+eokJu2uPrpOOxAEK2H8BDz7/nc9Gio69Oi3p8qdlAmlQ6hqFlSkJbqbVy2wTQlQC7Sn0EtJS1DMfn30rABfhcUK12nmoek9A3nTJYuqYveQCoCb4f1F25SCg+9skKLBqxDxEf4mkJMApwBF05mMpt8XNyMjfPLNYjVvYUf/N7yfYwkBHgUtaf3dckWG5F63EzRHldMx6nb9AOqPviPpQAB7OhpqJ4Jplvl2q1l+/RciYX3zOQ6V4jr5WMlMsQczFxdBmbdWW/MkiT9eV+aHrKj40wMSoLOM5Szma7LLXb8XEsgX1lRtWba1Vs63Y3nZEhCvOtG5l2wVwhTiHnGmHGr7nczYBoc3MT/+7f/Tv8/u///szvX/va1+J1r3sdfv/3fx833ngjDhw4gMc85jFYX1+P17zkJS/Bu971LrzjHe/A3/3d32FjYwNXX301rE3G4Kc//en49Kc/jfe///14//vfj09/+tN45jOfeW6VP92iOGthVLMX1/Mucl7PuKdZM37BaDRQOkxXS/QOjOB2NEDfBoZEtGMjQ97zWt7VBtWxPoq9Y+R5A2c1sFhDVQrZpoKuADPR0DunHnAxgFAeVKkmVSRfTcdoNOEEe8odqiN9n8snA5o++eMBDDBdUhjc4Z0kT3xzmrb6eIH8awVcDgzu8Nm08w3nd44BrICP7FAhsoxDgKdqtglIwTNHtYZu0tlYfL0Zs2JNO8vo1yCeKOkDFA82pQRKgJBFV55SrnzdIsMF8bsAYmR4MjsbR58OMdbROTl8zoDIhSMVnOmEpdNWoMP35yjDLSJ+C+XNnGyG4O+j74pqfzYLaJBoa++EFder1jhFwBvqbAIzRELB5yPnFZ5QYLbw55XFg10jkA2HxFYO2lKbNaCt9e0yKm0ToXyD1n22iAAsMqmlNHdJJ/zWWLtOOXw/9g0P/kYMJrJRSsSZjfyp86aiaGb0IHK287pvc+rzWcA5Xhfq0AXRpNIBwnwPjj7TTTKVWQYpTTIpFmsUHfZtHtoVvtMNRaY1pgloUtmyT9hM5zIV2NIZz66a3a7Yv/D3NFPfb579Sgzgthywz6NYOj+vudzNp90//vGPx+Mf//iZ3xERfud3fgeveMUr8JSnPAUA8Ja3vAX79+/H29/+dvzkT/4kVldX8Sd/8id461vfGk/Ive6663DJJZfgf//v/43v+77vw+c//3m8//3vx8c//nE89KEPBQD80R/9ER7+8IfjC1/4Aq666qrz05jtAJ2wOM4ETTTjM/nTWYqqA37k51t20HyZU8hWDZr9fnunCofJ0QHUsIYyBGcM7O4G5ngGtZpBOYVm6jV4sVChogJ5ZpFnFqOxQbaSwbHfkQbKEwrmyimmdYZaFbAloCvtm+dUdF6eXORXsOIkUO0EbN+hOJL7BGo97ytUrALKEWyZHCqrZWD3/3P42n7yfkqLDbLNHNUOh2xTozzho4WKleCDoDRc4WL94qne2pu/VKPSeHTYFQ+gtvavy7aaOyQjwyIdVzkkHyqARM4pZAAXDqQkzskiI3DY3Cbu5ww82cEmCuEro1hRCJaFFShn7WXTnc8ZxBeF/9inRc6l8HXTTzmVENiMLnvgc934HTydbq5z2yi0I/QjZ6le+moFV+qZzwVHAikCsrGLZhQA6J2ooWoH2zOolrMIRvhwWD71nkPto6k0nF9mezqBAqR6ymfXM2DUOrBX5qRqHZYq50UHILSYHUoKPZrpWLnL+WXSdab2EWCRMXJ+LvF4K3jfmmpRYeFrDca7DQZHLKol37hsQuH8N4rtk4klGSwoIJ57Fk3YIps4Cx9zEvtMtF+CYZunOvLRITzHzdTXF/DmZwbizJJCBXNdMKu6Au18R/y8sUlPzj+HVqqBeGgyoW3C7M45AdKl75kO5myXq+igP8cVX99yj/Uh+vKXv4zDhw/jsY99bPysLEs84hGPwMc+9jEAwKc+9SnUdd265tChQ3jAAx4Qr7nhhhuwvLwcwRAAPOxhD8Py8nK85oKI6vy/3evP5hadKJMWjX6qcvn6qQFGxjMomkDrObLcAoPGnzlG8FFmfCSAIWhFGOwYwzmF9S/sRLbqtVC2qXwWagVMdxI21nqo7uhjz5XHkY0ACr8F4K9bqgGnkK0YVMtAtaeBG1rk60D/CLB4C6G+bOKzYQNwl4y96awGhocdRns1ekcN3MBCTQxcQcg2NepFYLrT/6Zc84usrgAz0j6vkgn+RTod8Oh9dITWD6/oS6QCkBPmq3jkCbWVs3zFBTz0eTzNO5TPzsCcY4iBAID28QRAdBxt5TUy8KBD+BhFH6Qw7tIEwAu/y4NTLvtzxLlEUWlHX5BQTjZFK+psy3wS5WTBAdtMBYvQZUe64F2ABfbx2Lg4x2ivabMtQcoVG5QoRVNhsWpRrFqYsUW9lIOMgpm62F9QrLDbSRlJnFVmc4Wmr2N9sjGl89l4bAVgafkXcZsYVHBT5ZzQqQwl2q2bkBdIRJZ1o8u2mHRUGvs4n+B97djkmo8I9YJCPiJMdhpoCzQD3ZqP2cS3sWsGbJmcEUyVodxo4pLgh3/fZZcCSOb6xmGPTKUALqH/sonfFMVnRAHFmkM9UJ6BDP3W9GfUgUGpThuAaIKWz2R431pDt4tmQnn1wJ+Xxg77rkMv3FWms7kP0fmTu5UhOp0cPnwYALB///7W5/v378dXv/rVeE1RFNi5c+eWa/j3hw8fxr59+7aUv2/fvnjNLJlOp5hOp/H92trazOtaCqcrMx6IUzE325Vo4jnVw8a72FmMEteJFMyqgV1wPlmjAlTfop5k0Cdz77y6p0F2NI92cm0c6trAjksUtxWgISHb9P49k/uNUXyxHxU8jX3+oeP/vBt6CFBG0Jq8qWkQzFYOKNZDNIghlMtTuCLH5iFg5fIpaD2HCaeuu9rATAnTZW8iiixL36I8nIEyYN+nLFbuZTA6lBycdeMPofXmsrDI56HN4TiPeLK9WJBTP6WXZ7ZElJZOFD8rR12nBbflYEoIEWxcVvterMz4N7oGKIQ620LoGganwUTHioQjrwAxDyUgF74YPiEfhUzZW5kMVtzxY+136WaKLaH6XX+T6KsUgJtkxbbMwe49DQCb+tAZheERi819pg30CZjsMj5fDZsoHCEbW4AIG5f0fK4ZSv2kagKMiuxQ9JkJY6cr8pGTpTehIKQ44CgnjrajwE5oJF+uWVFGvrpbF4SUrmBrv3CW8Wgqs8L/TExR6b/VykUlvnMGMbN0sU7RoTnOL99Vvu0BVJbrDtWCTnO+IxL8xfrHSom2CMdkCdhiO+QGLrRxWiqfY2iDUPd1MOOFA4y5vuEAXpeHXbwAqDIyLD5rAfArG8x01m8EyhWHqTwZPs5lBU3pyJ5oQhTA8KxMYd2N6QUUBwV7jjdzd1Vl7+Fyj2WIWJRqDxQRbfmsK91rZl1/pnJ+4zd+IzphLy8v45JLLtlaxnbn0HmYa9JnYrvS8o8R4grvUJytaygNn59nM4OrDNzOGmasYE6Eo9ZDtJWzGs1mDowNnAGKkyoqZXV7zy9eGnC5gwrRZxSYFmUVXDg4Vk801PESGFo4A0z2OPRuy2EbjXzDn2BvCovlm0yMHoEibFyiMNnlj/QAgOkugs4cesc8C7RyL9M64LJa9GBNVyoq8rRoetMdGQ/OWuBBLmTsjB3MfGSo5Qc1K29LN/IHhJgDhs9S4ut0g7RTDSwRszjxcFJmFoKiccwO8f1s+i4CLmYSVAJNMRyfWQmbIqxYsZhaTBZ5bSeMnsuWDrvcf/HUetmnpxL5XSjD5UCx4fs7giGk8loKi19KYborR72U+7xVge3iA2xh2C8mOMbXLrFXlrxDLnmgCASTnyhfhf6KYPE0CpJm9UsAKfKw1la7BQvE86d78K7sI/l3K0ov/D4bA/kIKNY9OpM5fuL/4VqeK/XAA8YWEyYBrxPtkvOd0uecEyuaD8V1TT+VG4G1AEu2AKplhXoRmOxSqPsJdPaP8/PXBnbcD8ysbfEBEptDyexFM7EEZzNYPRYr/NC2jENHXIZz3vTO5e6Te+zQHThwAAC2sDhHjhyJrNGBAwdQVRVOnjx52mvuuOOOLeUfPXp0C/sk5Rd/8RexuroaX7fccstp68sLyylB0vkA4GfDa57mobWLTQpJPpmBFhtQ6aBqHRdEEOB6BGiCOl6CnEKxWEE1CtkIqBe9+alY9/4/McfIVGPhKz5VPvUcKAey/WNoHcLUlT+7DBsZ6mWCWq68L0Djp2L/Ng1z0xD1AlA9ehWrjxsBBCzcSshGQL7hzy9zpYPJnM9Ku+l9i3onfflNT6Fa8ueutfsvDJCm5HDd9XVo9aHwiTAhSVzmL5yl9FgUpYVbOe84rYT/gq4S4InO1MLfgaONpFKKZrMCaMrwCg7MW44bYRAUfkdCqcF5ZogdQmUkkK6Dr1anLdGH6VRzSsxtDtOXJiG+95afC+Uqd+HVgpoJNCM7yEBBsTNrCJ0PisvlGlCALbV3llaITtDOAM3QpHPOjEpMH/cdkuJuhWILJctKuNuomWyCuD6aj5RqgRkGLhx5RVohmwRAHuYIn0MXn1GkUHYJzk3lTWEtMzCluSBZsgiifOJ5nwm7SXP4VCAssnYSNMbfUWuMqkXEHFP1MPWxPE7EFf65Zh+lZiGY0zKfNoE0UC8gBR0IU3EE6E6Y4LjfAqBnMEva+87JNvE85VD8bnslKyrHOQKnUJwLzCZnPr+rhI/oO9fXXO7BgOiKK67AgQMH8MEPfjB+VlUVPvrRj+I7v/M7AQAPfvCDked565rbb78dn/3sZ+M1D3/4w7G6uopPfOIT8Zq///u/x+rqarxmlpRliaWlpdbr7pSWn8KZpKPQtizcpNAsOCCEnaPSULkDBg105ldpu+Qjzpiap1EGW2t/3McGUJ5U0DWwfoUDBhau8GCFzQs7vqCQH8tgRgr1JANR8OVp/Onz2gLFikJWWm86G2eoF71pptrpMP7mCdw/LkN/fgilg/NnUBr1EgELFs4pjC4mDxIWCDZXUCHxImWAKyn1mUIClJoVCM1c8KMS0UEhBbNadHLl3aa8NnVtq7yoWNkfpGPeYEXh75N+z2YPzf5FGSu6kHslVN/mbXPLTJGMTnjvHc5T3aWfyxY2CILdCjv7LvCPDI4EmJLNEXWJQEl8H4GfwswdtiKf0yc6qotxTZFRPnIO5M1Ajg9oVcm/irNF21JFZ2sJFPINCqHgYu6E+3T9TVpmmu7fMxRMBHUAunOGwTP7RvHREizZmFrjm2/QljHwjO7WMUymxQRUvY8NxWNNlA1JEcUxLjItg+wHvlf0cRLzmsGHrtO5eeUK4gYgHtaqPKhngNsMgP5RX2Y2DtGXweSqyPvoRPaNzcXUnisxB5rYJHSfsWpBb2E8Y7vkxgHp91vMfrLLVfqfRH6vu8p/CABsMJmd62sud7MP0cbGBv7lX/4lvv/yl7+MT3/609i1axcuvfRSvOQlL8Gv//qv4973vjfufe9749d//dcxGAzw9Kc/HQCwvLyM5z73uXjpS1+K3bt3Y9euXXjZy16GBz7wgTHq7Ju/+ZvxuMc9Ds9//vPxpje9CQDwghe8AFdfffX5izDryCn9imbsNE4pp5ufnQXvtMWEiCWphJQhuJ5Dtu6ZnGzVwB5qQFbB5P74DPQtMNU+R9FIo9g5QbVZoJgobF5CcLsrFDeX0LWCua2IC1A2UnFnScZHJVW1P9/MLjhYAlS/gasKVEsEO8rhLib0bsswuazC5IAB5Q7L/9DzydYMQOMM1YKve73o72MKv8Jlm97R0pUOgD8s1lPi3t8A0i9A9n845R5A9CcCxPeRDWANInakxn9GxoMVuLRwxtBopMU7JqxkVig4UjMroBrvREpFyAoNtE4y53Ek7dklcGSTDiZFCxjh3C3nRvTj4S4I39lcBRNHUqA292dA5Q6ohpKeQWSoOM+SYuAiWI5oYpFgRyiMLsCQh5XyNaxge8cdJrt8xZX1yfuavgc7zKA4E+oUTksHfN+iUYAjmKkDGQWX+XJIU4w+ckbBKA88mtJHmMWIpwkgEylyGLgEbBzS3jqFXbAu0tcn9oH2wC7m/mHMRQHwcc4hncY/9k24Jzvc1wshuzbjJsa3Dsg30w85qjB2fQDp3rwpTrnPgo+VBcC/CdFc2xFFgGrITwwHGOvb1PS9s7HL/LKVjRGTkyrlHz3lgN7RVJbLEUPuXYiGrIeqNacY+LAfUvTPCp9Fxig4b+vah+73TlrUCxrTZX5IxW8VvKO9lh2PYO5OjF274YiAuhuReleCormcH7lbAdEnP/lJPOpRj4rvf+7nfg4A8KxnPQvXXnstfv7nfx7j8RgvetGLcPLkSTz0oQ/FBz7wASwuLsbfvP71r0eWZXjqU5+K8XiMRz/60bj22mthTHK0eNvb3oYXv/jFMRrtiU984ilzH21Lzoat6cp2QdHp7iGZjDtRJ102cI1GfdAhv73wETm3laEYn+pWHytAOUEt1bA6hx3lwKZBdfEUUEBxc4l62SFf02guHyP/1z7qBSBf9wtD0w/HcWTA7gNrGBQVbjnRh8oJrjJQuYNdcFDGYeFmhcluIL+9gLtijIUb+smXogZG8KzI6EBYJAsH1BpZ2cAWPhlkedRg5X4EOGC8RyHb8LvKZuB9mIg5YY0Y5r2dvlPsfB18oWDIA0ai4MCqoBTiMRy8o2VnUG/CgVeeDHKYZQlKLq7zNvTbGJFp01O0o2NUiJ6R4d7SF6NEcih1abcqnaVjqLiIForX6uBL0qIwPHPXAjkqASPZf8y0xMR4EIqB0s9bf8gywt8MhuR10gxDGuidtJguG1DmFXmx2mC6Mwt9rmBq8sW6BEL83NTeBDPUIOUPeWXHXM5VxDf1x12Eg2tDX+sqsQaSJZJsQQSmQkkyOyWv8Rm0fbCAAiV/Me4rBmWlijl8+Pcx2rDDbLR8zwLzJKPUuG4MaKMPG/8dwHHXLBbb2WEBKWCVWbmZVOPBERDACWfSDvdiUyKH0oP8GuLyYGqzvu11HzHqzJaITFirLVwnIDl0h++c8exX09MwEwKWE1j1m5SwwRERnpJRdZkHZtmE0qYglp3aHXM63YVyPhieOUPkRRHNT3XbjqytrWF5eRlX/sKvw5S9be8CZkYmbKfHu+XKRamz2+46sMZdqWo/9Cz24gnIamCqgcLBHM+TOUkBulbRZ8YdmMJNPYDRmYMyBJM50D8voF62KE4YmCkwPmix9EWDpu9Zjmpn8DPKCL2LNrB/aR1f/vJ+QBEW9oywudqHznzWayw0yA4XcAVQXroO95mlGG1kJsDmNzUYfimLJ3RTBjT3HsNWBjr3x33s+WiOYw+1KI5lqJYdilW/QtqCPPCqFagXHFmY8WF/oEZ5xih8zuyFsuk9ZQRVq1YyRiAoaZfMeZHm5908R5fBl8nvpXnMTBBCotMizsrJTJOjJkfKRCaBF+QslOu8smalw6YCVngRCIW6ekUko7VCfSrCdEmnOSaUq8/VoyJgi79TyUxhKg/sGGQ4cX/ibMVICi7+LaLYGBQs3lpj82CGfJTOodKW0D9uMdpjYkI/XVNsH5trWAEywwQgmNL8ESDeATk4YZs0rtynSoLGrK3wI/gRDu7yO37umWGRCTS1DeZd4XzMiSV5XL2JmGKOpci6hvKY+ZDPuJl4H7AIxsN1nFG65bMk6ulTKlBsHwNI9ndKYFm0nYFv+JvPSWOgpsTcjEdmCIDV9dnivteVd+63hfLnFWZAuUKY7AxJUQMYtUVqozwkl0FjnFvcN9PgZA7vkzTaZ1KSU0qAUVnPkkphnyBXJIbOz9GwKco4jQNapk5bTfDp616B1dXVC+JywTrp7z57CAsycu5OyMa6w3c/4LYLVtevF7nH+hDdU6VFgXdBSweonFJmXSN/e7oyzmbExHMtdzsAfOh5RsDYwO5sgEvG8VqXEeAUTKXgKgNd+hXHjnLYEyVso9FcPEG+asBmn/5tBtOdfoEbHySfKHGkoCuF8UaJoxsLUIWDygmbq31gw2BpeQwMLGDDuUJ9i/F6D9VOh+r+Y/SPhN2g8uVOLm6Qr3ugZWsNjAyywsIcy3HskRXMmo+A2/1pjWrZoekT7KLXAm5g250hFnr2FYq78iopRxWO5YjRZdx/bLYklaKDgJYjMRnP8GgBYuTizTtwFcozU8AEk8KW0PxwLZsRY1OcB0lmmnL/qODQHXOvMCgWUUYxB0wWjjUQu2k2EUmTGIup4XfYkkQSfaLIO/+yyHPNbC/4O83yTUGao9JxePNAht4Jh+my9s6wyu/UNw5lcQyjhHHQDQVQ4YME2LHahgR6kZ1xDCqUYBQoHh7qzYoCDM3aO8qNCtprQgIQKrYrnW2GGJUl/XakiYqZHe5P5ahlZmxttsLYVUu+j7icWU7eErQU636ToAITxt8rSoCDTcUsPj2BeB46fSB90VqbgU73KRsCDgI4z0YUwTxHCvrDjtUWAMbm59jPygMWWVf2JeLy/flnPidT3FAw0xbKz8eUkosG4YNnOVIwms51eHYUYmb5lsP2XL7uZA6ILoScDjRt57ezhJB8gbZT5oy1Oy4CNjhRK/KHq65msNMMdl8Nu5dPzSQ0Q4JZz6BC2LkZ1D7r9O19uMozQ7zzm+71kSDTvQ6252+ua6BZbrBv71qqlFXARAN9h5O3L0GtZ8DIwO6toScau/asQzUKLpwxlo2B4miG0eUN0LNxl2aOFCiOGW++umgMtZLDTBSWvuT9jLKR8gyQIlDhfJ8xqOFT7q3yTgx8wKtD8olpwjlnYnfNyRih02nb3T6X0SfMXqSDNBGZn3i9Q2S+ePh1lcpmcBSdicPiL0FFPMVcgKwEDhB9KaDaoCRGrgXQwuH+rdQBSpQb6hyjn2awj5HlYQVlhFJm1qLo1JWLFs/M4JiN0WHFeoP+MedTO4Ty8g2KdW7KdEBn3O2HvENsqlKOQ8J9jhtmkYoNBzN1KE8y3aDakUMZkI1cBEMyao/bKwMXlOwreDDEJ9xH5guJmZN+UzxezA7Je8S+DhFWPEaENFdc7gGGB7gq1YnZnc69gOBk3BBM7Y+i8H2mtpyZJ5kz9oWS4fy+D6gFhiKDSMIhvOOw7HNIUUxMWa74BIx+jAJA77fnFpvoYuReDtSDdhsjcyrmpzMK0yUdNwmUhfxa3EfGRzjaQsWEjjynENYiM+VDgtMzxABcMoMzLQMXSOZO1edP7rGJGe/JMhPknGY+yQeldf2pHpqOogAQoet2HrSuM+esC0xh4Rrv7FysKEyzzAOHwsEuOlDmj9KoD1XQBOjMISssmn0TaOOAw33oCqh2EGwPGNzis1tXewn5rgnqEz24DOjtnKCyxmeq3sw8I1QbmKUpmo0cNLRQhQU5hR1XnsR4miO7ZBPT1dL71AzhI+JqBWQ+QqTeadG/NcN0t4Mh+PB7eGUy3ekBBoMyWBWOuWAqJu1sGeCkiDM/UNI52oMfFc8xY2ocwGxnbCA6UgMJTPHf0W8jE4oO7R19Nk1ZeF3hWSYXQJHtJUdiObwRxKit8zM6zsZIq4CrQttj4jsFgEJ2Zt5pq7TD9vfxCrPFiIm5nI04gab/jn2PKDhkO3TmpWR5VHpWRntSQsa1SwsMjlpkY4VyleIxCaO+Acib8Ej7xUyDQloB500ZBlBTgsu1z1ytEBI0hrFW8M7XIRrNj4X/g7MzN32dnilKdW2ZWuT3oR1+7CmOgeLINSXmhSjThTmhbTBZBT8eZiuc8ZGdLveK2eVqS714zKzxlYwKvLNuxHmXA/k4OFU7Cge+Aija0Xek/Pg1PV8HH6XXPUQ5nfvXYmoEQ8Z1ZDAUGc7Ke1lnY0LTI4z3qAgQG7FhkEeXxHsEQMP9x9e18jiRH8+ml7LOKxsOV0ZqXyyfvBN/TEPhUgOysaTD/H8+uo5S4tbtblzPg1ho2HPkNrpuld+oMmeILqTM2P2mD8T3XQXWMVOcUs6wG+neM+7Aaw3XaGSFBTKHyWU1dKWQnfRsDQhQWWCFjucgp5DlFtV6ATvO0O/VyA6NUC0Dw5sVyhN+8ZruBFSlsGNhBLOhUV8+gVaEfl6jbgzMrqk31S16tFDekUGXDcgp7Nu7hs1JgfFaD01tUB7OI3ORrWtgsQGmGpuXOWQr3lcJCr4dxoKWm7hALnyNUJzUUFbBjDWykxkodz6qjP0KBBjRFt40RqKTFKJfUbbhcy/l60C+GY40acKCHaJx+NRuXQkwBbSS8XX9TVqnzRvvH2HC0QvR/yewOuzIqadpN8uLrsxDJP1HpKOvVJh86rf09WAl43LlQ+wFizDLFMxggUELt3e6Q0VWykx9OXyorLIhU3Y1I/pN+hApUWYof7rDIN8kTHZojPcYrF1mYEuvtJxBTAway2ImxPrjKhgoeOdoiixXsVJD14Txviz1jwJ6x5oIBNlHRIImKTLE+5QZw2f9HcbKOzGnL2XEUpyOoR8YOPPp7rHPwjU+spLzCVH7nlKPMyPFvmTMcmgV/LwoAj7At4tNTgCgGp/MkcGjDRGd3LYEftpsF4AYWRnnFxHyTYd807PMzPbFYzrEPGFGp2W6DoCb54wTYIj7l0FdNqHWs8jPbQRY3JduxriETYPtJYCXmFlqremkVTx66EILkYI7xxedtSnj36bMAdHZyoxF7bzKuVCt2/ytmmqQU6hHOeAUyltz2EXrFfJEeyAwMX5xWvDsTRN8ibKVDGvHhqiO9uF6fkVr+sD6vf1ZZLRgkRmHZtnCTQyKvAGRwmSthNYEVWsoQ2g2cq9saoPF5TGOHFnyGORkDqWA4W3A6n28Pb9e9vcxG9qnCxirAFYApf2CoFazeLzEeI+C7ROKk95sRllgBGQ/SYVPSixsSCYQwIcQB98e5fz/ZoyUg8UGBT9Nyj4qqs6OmM9v6gIjVh6sAGJ0UNOJaBLbOKbtfQGSkfD3pQ5IkuA7+k2IXTz7tABIPkV8XQRanh2K9Q79F4+YkOyASUol+nwIpoJB1yzfEr63VDDOANMlDdvz/ST7lqP5WPK1BtWCRrZp235TDGyC/0uxagGloGvb8v/wfjs2HnHiP1SpThD3V8nhGRB/U3sORH8VHg/ZVgAyzJ+VeDalqOylv4yZUtukRcGxvEkh6C0gLgGWfB/aw0eWNP2UmNAVqs2ykPDlCSYww+CfGTKTfu8bxX3UAXsC7GobHMFDLik+niNGWXac7vnZiGBfMmSElkmZ/en4mVMkkn4G4cg2Es9SBLMdkATZRlEGA6PExKpkspvL15XMAdH5kHMBRTPYIboAoxIf6rB4aONX32KhQr1AMGsmnEyvoAZB2xOAwiG7o/D5iawCHZhATTVgCPmqRrUDGNwB5LsnyCaAyi0a6xuggklu0mTQhfUAbGChMwezGew2mtDLa2CUwVpvErNrOTYvAlzP+SSQxzWKvvdvWvp8FnyTLMxIwx3zfHq+pj3DUQDT3YRsQ2Hpqz4jtcsp+QoBng2yKjhMK0jnaMmq8O6UwYfP5OxZomLFA6NsEyhPAsWaZ5BM3R4/v+MNLAkvvjLHTIcllBS+qfxv2JdCIYE11bQVbGuRDgCoFfXT8d1gxeGyFA7NoeUcvdRyYmWFSNRyvG4lyBP9xWSbVCZ8X1cyK5cAU0ymF/olKvwW8Gmbf6SpKt+k4A/lEzJmE8J0R5buHcCJz2WUwKMtNSjTyDcJi1+t4r3GewufDDBD8P+heN8tfkKd51VRRxl2xrgFuBlIWQi2RUWHYpn1mceFy2IgoDvmom54frynSuXw5+UaO80p4W/mx5nnAoNJbROLlPo/+Q1FEK2YgVQRVEtzqPTZAfn0B2biYAuFfMO2QL333UvzRQL5eIaZQuuwYglipKN1tdDZFPGfpjOmAajzZxFMa98fukpjJcvz36to6r6rZO5DdP5kDojujJwNM3Q28+xc2KFZtxZ0evqQAAMUvQbKODS3+PMtVKPQ7PAxxlQboHCodzfQaxmaAxWc1T5j9Cj3x3xU2u/y4Xf79cRrAHWsxInVBeh+A7NjisXeFESAO1mCGgWlHVytUR5XqHZamMJidbMPPdVwtwzQ7K3Ruy1DeRxQlUI9BAa3AUoTFj5X+KMNagA5wRWBvlf+WI+mD1TLBNv3YdbjPcovbE75yDH+28H7BNVITp4udU80uUSwhLjgNeGgSHb4ziZpNxpZHGZWQph5S0HqtNuNrIFgaoD0t64R/SgiUOuYlVoskRb1D/Xgk8lj+LdJ7+Mp40GB2CJ9H++nkvKBQvTB4Gu4PSzxrDW5g+bDZZmFE5mCmdVTnf5vm5sV+HBPZYHeilfW2RgRaNmcrwFs33hfF+mzE0wx+aaLoAlEqBczTHfmHuBp+Ci0oMwTa6AQGaIOAJ3FpLX8g7gvjWxHu5yYYLJJjBAAtA7g1Wke8Anr3F88/rb033dNNcyylCsWxZpLDCDgExSSAFTsAB4cq+NxKc77ZvHfCTAHcCTnsJJsHCD9coD0exBQrlqYiYMrNfrHakAk2Mw2UxtlX7VN3WkuKRfmmNgc2JDsVG4YWmNH7bHjZ47HDUCL+VJNeh6anoqmZ+/HplKQggCgF1os6fPymsscEN01IhmH08lZAiK5W95WmXF3SWjYofrSDeiLRmgWHLKTGeplC7VhoDIHlTm4pQamsMiKBsoQlCFkJzMo588xY3+QxU+XWL/ML3Q7ljehFGHfznUcXx+ibgwGF61j4V9yEClQozHdRcCwwXAwhTEO2DfxAGczw2Sfxfo3eQfY8iQw3eGrvXGZ82ecLcP7A4XDWZ3TyDf9wpuvpeiwha85EIOmRsW8Qt5B2qcVyEYqKlVYvyrKqCgVHKCjE3QWGB+TdsJQyfen6SEthl32xqXr4wIrd6UCHCmkqKHWAa58rWQZkBZpBk2mSmWyn1PL8TYU5owHMYkJCPXoghqbvovgSgMyfxUpz1ZEUCjMNhIcGFY6rMS5iK5y49+J32oLTJe8c7XtIYJQzcddIJm+2DQGMZ7NQHsz7EAhG1ssfHk9mH/Ih+krBV1RbH9kBoQi3qLoxDgwoDO1uFah5UtDSiWgQUKxS0BFCQxFhkjOHQayOoBQHaITA9BgxR2dvh0w3mNQLWmfXFDMBw4zb3r+bDdToeWLxqBHpgfguaUCY8h5lnw9UxJLkvMg1I19cUzl62dqgp462J5Pm6Gr8BwhbQi4voqxVJh78fHh5KciCzxUMDlzqDyPhUl14Q0D92k8nFUwUa1xD2MTxyRTnnV0gc0T47ltX9C53GNkDojuYumaEdIX4T8GOVJRng70nM0uJGp6H5k1XJqgmmao1wvoSqHeW3ugsbOCMuT9eTKHPLdwVsMYBzOogYvHsAvWR3OV/jwz2wcoJ+RrvkImd+hlNYxx2LO4ifFmic1LLRAOcVUWyPsNRuPC+wBp2qJwaKlGveDNSGXeINs7Rr0IkCGo1Qz92zXMrgp1bbB6b7/61IsEVzg0A2Dl3hqLX9Iw45ArKIAiby4DXE4paSErXgL4EFjK/PdNn+LxAy73kW/1Yvh74BfvajkkIyyRolKEcmeWhJPkRcDRHV/e2bLZSjBWEgjNBFLcf7p9TddnRYbCU+7rzGxW3M3bdK8WUBK5V1rOrQLksSKUIcjKIZr8uiHYctxbIf/8HQF8lpkERcyESXDZO2EjEKoHYS5WiXnxfjAK5ZrDxiU9NIslendM/I5/YEIf+dBrNl1JR9suGJUMjer0VzK9qlM/w0G5SidzD4ApnGvGYKd96C5UMNeuUgSFNoDxZoho3pL+RGzOsYWK8wYIAJX8PaXvS9cfyI97AnOxCeE9aZ84UwKJOC8lyFCIJ87XA+0duAGo2sGW2o9XuLbphXniUl8T0nzSzOaKDNNxPJhd5XGIuaYQzbdcH45Si4CJQSelurfWWrEZ1cGBXfZXjP67C8RBwUGf4+suquw9XOaA6J4k3R0odf7vXn6WjBI/oaQJttE+8itL1IPKHdCzoHXv8KwrhWLgQY3ShOlaCXuyhF0roEcG1Q6H+vIJaLHB6MoK2YbG9JIKdWNw8e6TyLSD0Q5GOQwWpli6eA26bPxhslYhyyyIFLR2sCdKn106ZI9GRjCFw+AIUO0ijCcF3NcGcRdtRhqbFzvYNZ8sUi1XyEZh8c8ICzcDuz7v0D9GyDYRzVytcF0gmt10lZSE362n1ZfBSzMMZ44xexDYDZcj5tyRprFZYyVNHdLZOZrQutQ+X4v0mQQisY4MpCRDFW+edta68b5PbHqLyebC4s/vY5ZiBjBBcXBWbL5vt67RnCEcjZmtmDWPpVlO+isBPidNuk6AG9EX+YiisgZ8NJpyPiSdP2cAELN1I/jEBKBk+xkWvzpBPVRbACP7kdhSbfEdao0HBBDaksOHtrxXIiIrgoSgvJOvDqLJqem3FRaDDVuols9XsY7k+wXEucHOw7b0R5r4MaJWeS5XiY1UCLmaAqvFR5fItYnbbbAVEEtQxfdn1g+ImbBdBlRLBq7UaAYmZuWOiUWzNAachiBWQSUwIyMruV9jNm9Zb/HMxX5R/vecBTs6aSNdW/chAG4aB87h5M1lCfhSF0BdQJn7EJ0/mQOiCyTdaJILUvbZAiJRAIdZauN8iP2+CbDhkzDq5SouHApAr6g9QCos1EINs1jDbGqYsUZ/Yer9G9Yy6ArYtW8do3GBO9YWAQAHl9aQaYdhWUFr8iYzQ6h3+y2drQyaEJLvcgI0QU800G/QbOSYLgNuZ4X6SN8rpnuNoKyCHTjk6xq92zJ/oGvuYHs+ISOcwspVhGrBh1jv/GKIUhuncHkofzaZGSnoWkEmW3Q5pT7WfmfeDAi2SCyRdOpUwhQWaXflQVJMgmjStTKiLTpv8meMT51niWzuTSKsFKIZAwJQiZdXbGmObFnEw67ZVIjKj0P5JbiRu2kAMTFkZEkYyAlTRpetIoMWM9AFT+jWDULJkY8qY6fWhcMNKJ5mnwClDawHK3fvC5Xy4XB92PQl729qgss0dG0xOlAGZsyXY6YhW3UINc83HfigYCXu3wIfsRH+FZW0QgQWEQhRAnmslIFgbhLmmOib5tAyeyoC6gX/294Jf7xFvg5Mlz3gtT3vJ8XnhbFZkDRiUkqXpYOYuXyfvRwhg3ZqUj5K/RvHOPRrFzzEPuB685zR4n8wsPe/t8Gviw9y5Wi5VhqLTmAAs61yQ8CpHgBEp3B2rI6+SGIOcB05cnHLhiM8o1JT8lxnn6+m553vpSM96XbI/ly+PmQOiM6TSAV0QYAQtcs+a3ZIiCL4EHhFcNavAMoQ8j0T5GUD1xiftNEQBj0feaM0QWce0GjjYAd+dRpvlFjcMQKswnS3w3JvDJM55JmFVoRjoyFWxn2MqzymKcmGDUy/gQ7h/bYxKIomRrhRToD1ylDXgCkt8nWN8oSCHWd+J5cTyBCagS/TVgZmAvSOw59bJs7/8okMgzN1DfBp9TLKKb63SGa1ppNoLqPkT6J5h44YDcMLLwgxoqyV30QqB6BtMhIACcBs/xsIn6KgWBi8QMwLknl5JHBmwKXa94jv+W+p9Dq7/xbTI+diV4kIHwyOGOPyo8lMoe2UrZLiBfzngyMNoIGNA1k8QoHNE4o8I9Y6D41S/yTmRoU8Oim5prIEM3EwkwbKAfWCjso7hXwTskkqm4X7Y5ZZJM4nldrNjY8JCqMDOSUGxSSA7YIilWPPbdF16m/S/gBUWwLjvQqjA561jGf+ifuzGTTfoOibJH3gXI7oQ+RBqAcoDIQrcdo8dcZdW0Hb8PedOUPMEIl51XLGl2H+Ym2LDtGUyo7klPTRYaAqnq8Yzdl9DuWwhH6Pc1+MF89V3gBJlpfBEDuoz2JuSQCkCylzp+rzJ/NeuIukHb0kvpgFbKRimfG9OsXnp7rvFiGACMiMg1LeNBXNaaRQLkw9c2QVMu2wPuqhqTKfO8gq4F+HyDZ8iLy+o/S5hvZOsXzZCjamJQ4urwEAjo2G0CBMmwxKEcrMwuReexW9BnlmQwZpX8lmgVD2a7i+BYyL2aVN5tAsONgCKJemfvFZrFHvbtAsWlBBUCs5RldN0yJs/MK/ekXKMsyshQr3jAkDRRRXvu7PX9OVZ450pTz4yjwIcyXF3EZxoUdggxg8iMUfEPdlZS0jquR7EaHGPi/ShAT4a1lJR6ZKJGmM9wv3lMwVglKM7BLS/aKpRwJvAdQ470xkfTr32vI+zDMA3uFVKArHDEFgINghHQCqRdUCg5sHs6ic2IcFASjryitMMxVHRkD0iQBlsq3cj/WCwXhfic1DPZipZ4GiI7aQVv8LpdgVydy6DiMoHbxnAVX/++SzJEELj0n0rQkAhutTLQclXfk+dYX/n6POIqPWZenC33XfM298UrtPoEmQZ5vF38j+CO3TdWpza75S6nNlETcpANJGpSLYUqHpeRDWDBSmu7jPUr9Gti2MY2tOC2Aac2LxdUjzoTV+wjQWzedi3sXUBB0QyCCJASMfhROTqIow/+7xJxdKvA/Rub/mMgdEF1RaYESCGPGgtX9w+s/jrncWRd1531qUOguvHhloTTDa+f8zv6VWmlAUDZra+FPoFaFxGkY72Knxh7OuewVFGaEZEPINhcJYQMH/D+Dw6hKIFKzTMJqQZxZL/Ql6eY3lxTGazQxLgwk2Nkugb5HlFk1jvDN0o5Et1KDKAApYf9AUzirkaxpmClTjHNkm4KbGOz8rwGxq5Ot+hR/vS+3fvBhYutlh46BGeVL0HXlQRFqcDK7Jm86QDkqNfUr+WsADLSgGBpSyJIsF018nFlRmE3hXTF5hqWC64qzUgM9xFE+oDz4lkrmwpfCjoQSKuouwQljoBYPEZrzIaMnw4Blzh0PopblGKik2H22Rjr8QJ5iESreLu2or6ifYoq4vjr9X8mnJR953g0O4u+ypTJAYWS4BQuqhX/p89Bc7NW9NuidF+n0x49AFSBKAkWAQ2G8o+iax3wuzFyHpIQPhyHAKZ+Kmp1pmWi5HMoaAn7u2BIrVYCKzCVA1Zcq3xWUUmxSBPZvVWsACPGiirbo9blkwMXYZRPaNYlaty66x35YtFMa7FZo+4qGvHIXG/doV7h8X5iizYDKlhawn+8dBJROwdKTmg6Sj6UvMyRZDGMxjTS8BQpcjHk8T58AcY3zdyTyX5gWSLYqCd2mzLj4VS9TdnUA8mLMeNprxOSstsYtSDshz79BsjIO1GYxx2DEcY2NSoCxrTHcBtNODnU0qkPVrNMd7MKNgWqgUilVgdNUUS+UEt1e70C9qrIz6KAvvH5RrG9PCn9wcoG6Mzxm0UKOyBs1mAd3zNIE2DmqpBjntAdqi9zlSwQE82/RgYVRr5CNAlxZ52aD52tAvqD3fuc3+Cv1/KUDGR5zVfYXhYYfxXo0aYqEK3pmUERqjIjvS9H2ov7IAloDGiLHrjofhgVYpfDd8r/g69s0w8EmeOfIFItOvDqfYh8VbN20w4oIfCDuNN2VycCUFKFZCQnlIVowX/GheQ/pf+pCkwypD+zSgqjS3uK5NLzmgthxtuT5OgD90AJ6Yl3x/6XvR2lUHvxFp+lKW0D9uMV02PjqLQkQeV1PFIYlz3YNGFc9AY5NY0wuO0o5aDteR2VCAPOGeHbejchYASbJpCRypmEySD3mVz7KM5lJWZGuWmx/urlAuh4XzeXYcZt4C5AEox9QGIemmLYFy3aFa0JENYofsbOz7xhY+qWXTVzHyKq5b3bWFgXOWsktL4bGNjKfzUWE8t02FmCHblv76ejGAtynieYCpExDHL7KM/J7TN3SYpDgVVHof/X2U2GQw65qhdawIz4l8lMAcHxvEebDieOpAnobxcDNA3IUQdx7OMnN32iH135bMGaKzlHP2DzrVvJtRbvTdkOCIFxfdvm7Wb7fcLyzytucw2ijRWI3GaihFqMY5po3x5+I4jSy36PUrWKdgtPNO2IbQLFlUl0xh+77g3r+W2KhK9JYnGFc5enmDwlj08wYOCpU1cKSgFXnnbAD7dq5jWmVY3ruOomzQL8PZZv3a39NquKM91CslqjVPv4yumvq2jE1SOKTgCgdXOlBG0KuevRpf2mCy36JYURjvVdg8oJGvdzo+OCN41iSwP9qbwqodQLPQUTL8J6X/o49NCM+X37cUpTDTAEkJ8VEeQDIJRFNL95gO50P8s3HazXPeldZ1YuGX95C7VsqEw3cAU8zWtOZWpHNSP+g6KTrugxZjIZmwDqhvEVGUfh/vQUjsiAx9FqIbYLzbbAkN56NUdEcpNz0VI7HICA0ZXt5xPfgYieSOXWGmphVBJliPFjAM33EYuwxTjxFTwfwn/dha9+3MM8Bn42bJpnyPNggs1r2Cz8edrNwh83TdV5EFAhLoaPneSLZRgmqdAI4JZ8Ep65k6MxXPl2DIgNBnAsAz0OXymZlhYJKN2vWRDuzs5MxdzVnWNQcJiCg5uWlwuZjvkCAb6Xic0O+mTpsCaZJmdrXFXIoxiyk1Qn+ZLqC7QDL3ITp/Mu+FOyFnAkWncng+5e/O8nPJVLTKPBNYE8pAhYgv22iv6IxDZhyKvIFSBK0IRIBSwHSao1kvgJ6D2VnBlBYuJ4wP+INhJ02Gh1x0M9bGPUzqDJlxcKTQWA3nFIZFhTzzZ5wpAKujHsqiQT9vUOQNNkclbOOBWR0cuvODI5ilCrpsYFcKYDPDeB+8o7MBqDLQxoEKvzrqachGrQFkPlKtWPOh8qYCig2KeUmkmUFZlfom9CEZQtMDXDmb0pOmE0iF3hkHVlassKL/DcRCy4BEgAjS4aDXKizkZVIaTd8nJYxARCRMlAqagqIgQf/H76VJhBVHEA55hkrRSVx+ueLS7lcAwGiy47aySxqlNsXr+LbhGpmvh5kI2bcMiri+zPbw39EpWDIlYiyj2YN9PErVAlMRJKpUDlQIoZZncIWx6vr/RbOZYIb4O6ANhpxRrSzRfKo9m9bk3EGnLNJAtZTO3GNGMfoohfpPl/1cqRb9+3rBO0pz+Xy0DPeHNLNyvbiPmn76HY8P4IGZIm9ey8chIaYS+Z66mzXB2DE48glOFeqBSvUQAD2CYwbqsl9ngGRpxnQSUAumTTKU0vTZZTmlb56/gQB1oZ+yMZLJ0AjAFq6fydZfIDn3HET+NZc5ILrTsgWMIO3+Zsqshe405W4BT91yz8BwysgfuWsBPAhQCp650YTdi5tQhjCaFKjqDGXhgUqeWaxs9mFXSl+eVd4ZO7fIDoyx85tOIhtWOHF8ASemA9xn71H08gZL5QRF1uDQ0hr2LmzAOo3CWFjncw4pBVS1wfoknEOWNygKzxTV4wy0mcFZFUxmQP9rBtma8TmPShd3tdPNAsoQMPROCnboHbHJAcWKSoelGmDjIh3D5lsKPKeUJ0cLJZ0J84bo69iXcdFjdklcJ/q95cTJC7Twx4k+FcJk5UwCSzpknHYh/N4WXhl2HVtbSt6gvZPttEO5cEBtcIbd4usm2skLvS28co3RTp0IOclmRn+RoJxajtqif2K92MQnouWir1dQcmn3raKzr7LA4KiN2YJtmY4WcVk6Eywe/ipAG5+bFlMmhLaUKzaAq9QpPF66plYYOTNScgy5TI7UkpLYQ5VAtEKM7JLh6LPmnpn4srXwKWNGQzJq0TyqA6MY5nbTU5guM9hLQNfUaa56kIZwtImYPwrJ3MsAVNSNj7Dp+jbFLOkKLdBvi3TGH7RwTA5AntcvM0nzWLYPnTnbWi916ptYR+6zjj9QXBM5szcHHWhsyW0kcyTVgzT3+Z5+bMPbpnOfuXxdyBwQnaNIBuC0MmOBa9sQzvDzcwRa0uRGCw2KsgY5BdsYrI56GPQrFHkTHKE9aBmNS1TrBYpjxh/4mjnom/uYHhng4K5VZNqBnAat5fjyiV3YqAvsH67j6OYCqiaLprLMWChFUAooch+OrxRQNwZ1Y2CdxrCs4EjBFBaUEUzmUJ8sQXf0MNnv4EpC8aWeX8CnAIXFJrvDH6jWDJ1fGMOCm28C9RJQrKZT5Ad3JNYjglcHH6XWXVR54eVFjxIYaDFC4UeUUWIagLgYR0dTcDlonVUFJNDAxTE46CpFV3plUS+kBHrShMeOnewsHRkTh+iLww7cMToIsx1oJYMD5Rf4mOEYqd5KtkeAP2kKYuAgTUNyRx3BFFI5kXWRfcd/8rlmDtjcn8X62sKDoWpRwZYhAqgIPjQCfPmzqVSsC5CO+8hGLo4L+ybxobHe/JbAagvksWJlJUgpHD0mZmSWzPjPrABv3T7pAktp1mEfFxX6usvwsMmx6fu+qIfe76vpA8W6T1tgC+XBnGDJzNR/rsgDqdguVvJWmIal43I82kOABAa43B0MnMP9eL52AbCu2sMdE6FqtO+NVI5kaSj4AMX7sq+cbc8rP7BcfwHWSPg+dcaXGdtsEnyK+P6ijQyi5NEoF1osqfPymsscEJ032dZ8mgWKOg/NmYDVGYHX6e6ryB/NoYCmMchCdFkTgInRFA9pzbX1bI1TaBYdslt6KL9Solm0KI8a3HJ4F3JjYWsNaGB0cgCtCFVYnY12KMLqoJWPaCuMhdEO0zqDcwpKEWzwPKyswWTqzzrr75h4v6WM4HIf/u9zBwHFzgnW7kVQEwOqNZoDlfcr6ltgYKEafwhtPQynz1d+kR3eQShXKCV6U6lLVK3aeVFmABv/N+/kfV0YGEXFJRVAJ+RWOipLuj6bICkdAaK4bq5M4CU5A6e6ncqRnnfJMidPq02d3esWHxggHovAEtMUCGDYNSO1fGJCmyLj1a0nJUXEZ6pxs7qsHMRLkZ/D0VQY7mlLbyKNzJSoE+lgZhJjy+DTA1D/YTM0YSwZMPjw6ngv0fb4W2b+hHkw3js4S8dxCfWJZ6SxeUf463TNTK2x4TnCTAazJR3lzE7V0X8szMdq0R9JEvNUiT5iwNuUquUXFVmP2oMm0uxL5jOCK0eRdVPUNuECaT4ACbxFc1Roa/QBCoBEQZRBon8pmUnTBPF+RzwXIjBk85zCKcErPxfyrLRo4u0AOgbC8qifWYx+N5fShRYbnKrP9TWXOSA6ezkN8DkVKDotdSp+cyZQ1fJdOU2duiYyqQAQDji1tQ6sjX9yOQEjOYWVtQHWxz2Y0gJOYfgVjWLFL1q9owb2qk3Qao6qMTi4fwV6qQIaH2ZfaItLllawb7ABLVZoIoXc+Mi2Mm9S2L8iKHi2KM8shoMpHClkxsGsZ1BWwWUEN7AgDdTTDNmmQrHij/9ApZGtGu9b1Ghkaxr54QK27++ra+EIOiUfQRbAiUzAqEIYrgcTlCjwVuRRQhVmEtgS7UGmd16m1jEKvOvnxTZGZoViGAiYyitrzsfDykz6A7X8Pkzbh0SawpSDzzwtosfk9605EpQp56+RYf7SP0b6HUWfJ6G0ZfZuoK1oI9MmRDdoZb7uOmBHBSre906kynO2aj4kFEFZSf+nOOdFnSJ40al85fy80I0fw+myj6LMN1xU8KTEYbmxA1M/8llgkdUT30mGqMX+afFSCTC2zEJI79mExwyHotA9ATRzOex0bKbJDKUCQ8hMmcsD45enrNhcV1v4jrOFSmCE+9Kk8WJndd14R20P7lJaAFIeoLKZms263EcxoSa3Bx6AE2b0oejvFtjm6lEnESmLQszl1Z2bkb1V4n+k+cO/5xfn4DLTBKQQzNyxPsL/aS5fnzIHROdZZoKaGQ/IthilUz1YYpd6SpEKQSFtHxVAVkFnDqPVPpTyIfgb49KbuIyDHeWYrJUoyxr5SROPn6h2ECYHrM8wbYD1cQ8LxRT796xBL9QY5lW8feV8dBkAaFAEX0oRdABCRlMLlE2rDBvrPTirUNUZ3HLtTVGaYNYz2AFBHSnR3G8TtiTA+fxAulZATtBjLZQ3QYdInN4JYLzbr3jFOiXGRTpXE8Lhr0iai3MORbONb0+2rn1UW+UduVU4+sP3UzopPSq2sHDakDBvC9UflHk8/ykoBBn6K5PatUAGpZey/l7RPCWnDAMdwYLFqcIKSfh7dE0Z0jzA0TZdRiOadVRSfrF8ZjU6jFL0vZL3FGUySBjv0eCswi2w5IByzUV/KI6Ci6ZKyYx1+sPFqDMVwKaKx1bYUiGbUmSabNHuMzZVaZv8kaTPE7fbXxtC/gU4BVJkXBqIBJa43gwumMGS7eJ7tNoX+pfNoM0w1bvlaxTGsR76L+uhd3BWFDYDOl3L7auWfH81fX8dA0xt2+xh9PuqEPPymLGYC0hzITadWVEEvywGiKp9XXwvgAcpYHCE4jyNrGGYB/mmeIZaG5y2n1DcRHZ8jBhERlDMz5KsnwBpd4rFPwdxpM/Lay5zQHTn5AxgpkWjdnaLp/uN/D990S7zTNK9pvve9f3TPuhXUMahqdhc5lDVBguLE8A4qNxhtN5DvbtBvQRM9hLswGFwsw/NL/aMfeSYdihNg6ywWCom0MpHqGkQsgB8OAuqdRq5dnBO+6M9gmduZtJqmJUW2hDq2q+IVPj8RG6XB0dmquCsRjZS0BMN5fzuNF+o/N8hm7QZK2RTYPMioFryC7AtFLIxId9ICREj4HFiywn/vmuqAQFm5JVmeUIFRsIzTAjRahRAEYAUHSNMFpLtccwOCNZId/wfZK4iCg6o0u+DlZCZeGZI12KuyJecC6HNLRYRQpmgDVr4NywMJsG/CW1szW9WqApbTHectRjwSsv2xO+6ykQlpdwChAqReWl6yh+yGRSwYnAZGAI+nwtIO/sIVriOQZlK35l4JtqsenHbKTEG7LwtTZQxd5FRMaVAq3nCPBpNr9L8RQzwPJLQNaV5qxLAVE1qA/cTJwx1IrpROf+3LdJ963AsB2kf+cXzJzr2B4Cia/+9Nz2qCCKacG6aIuFfJUyrpvJjzODRhbLkeMr+5PnFbF68LvSVrpH2eGEObx5QSZupNA4ewIl7CNOtOxU40mitm/xMxXHn+dcB8nz4bOvZuwtkbjI7fzJPzHhnRYCdOyunBDizyu5+tp2HbdY1jYIiDes0dO5XGK0IRd5g38IGGqdBpFA1BtONEnAK1aVTFIMa+p8WvKOqU7CbOfKdPvGiUoTFwQQTm6MJEWWFsdFkVpoGU5uhIZ+XqMgbnxRSJ3aIxTYaZVl7H6Lcomn8g9qs5nAZoZgC1TjD0hGAMoWqD7iC4CrjF+TlBmo9g8sV6oEHCtUOYOcXKJpVZLi7sn4d9WY1gnIKCOcU8QDlGyoyPYrCbpe83wKfGwWlIjvkcuEcGtml8B/XIUsLsMwlw+aFrh8EBCAgHaony6YQ+dUgRZmJeSAXaqb3WfE2PQRl2wYucWEnJF8VqRjCPxJcRaUewB3/LpqrYl+nMZAh/IqA4CIEaD9+tpfayO3nzNIR3IX8QQyu5PiC2QZ2sHXwTAiF0+JZ8TcpOSLS8G+VDrBkRe8Pi5WHyKpUDps8uT/gx5VPc+f2y3Zq23ZUzsbe6ZlEqoLI/CnEpISuQDLnwLNEugGyTUQGSfZlZJsgPuMPwpw0wteNHaI54kw3FIEfR0ty0kU53tzGCJgEYyjrAQSAp9LzEgGsADoREFJocwDfkamxfk43Q0TznMsRIyShfZ/JZKjisff3AIAiReJFYJWla/jZs51+25YVYC73KJnDwnOR0034O/vddq69E7+PCqt0gCZUVYaFoU/P6gI4AYBjGwuYTHM86MDt+ObLb4PKHA7sW0Vz6xC2D9RLBDvNcPDQSexe2ETjNCZNDqMIE5tBK3/ch1aEL6/sipFmGt5nyIQtcaZdSAoJn72az1XLHKaTAtZpTG4fwnxhCLplALVUI18zmO520IXFyv1TchLOS+SWG1BgahQB5QqQbfjFdbRXoVoUPg5GLNRhl6+DycxMVWQ1WGxJ0XSoGyDf8BFs2WYwDbAJLtD0tkfpKACRNZiVgWR6JDMAQjsxITvGCr+TaI4TgIgPk40Mxan81sSiLvPXAGidDE7decO/5fvzPZE+i/4uLinGro+KkuYQILEAHR8alqaf6i3Zj9hHBjG3jy3QUkQth2dmhmICTAVXqHRQrBOmGslGSRGsjS9b/J4EG6REeyn0D/d1ACPxuA2p3FX7HrHfgtgymLQgxlcnICtzOkEB+Rpa1/LY5pvkWaK8fb00TzHo6ibZbLE/CjG3Es+BVlCA6G8GVrGv8gBew/1lKokIXin9nkz7c6DjOB/AD5DmEM8XPU1t4I0Ks6sxQo+fScHuEDzQiQBKifkRvs/Hadz4jMG7WhzOPdLsdG6u30gyB0TnKpIa7VClLUpVLPZn3DmcinmS9zpTnTD7PipzMEs1nNUYTwoMB1PkmUXdGIybHEoRBv0pPnHTFaisARRw5Ka90FN/VIddaEI+IoVcW0ytX5W0IhTam80GWY3GaVyx4wQcKZ+kUWiYPJjSdDjnjEJFKUSexT4YNqiXHSgDzO2lj8ra0FAnfJJI+01j35aMoAoLVUiQlM6OUg4YHCW4AuEATyQlybtMycpoeP8gm859MmMVnXazMeLiGMeVEJM8KguoRoWoHP4uLNrMUEkAgKRI2OTjilAnAeBayQElOAnluEywLeysvJ15ott/x5BjvoYVO8+p8L7FOMm5JhVb+E6yBFHxy+dCowVEJIAxU6FYVSo35l4yyQQklVkLbKrg/OxSX5ppYjZM3X7ousBMlh3fOoqh/tG3CamvTsUStMxhIrNy934pQSbP48BAyTFhEOzEPA5gv9qZ2sKmS8CnbbC5v12MQuuuYy7NSQYitvRzE84DVVuGtnPahlAHZ9pjw5sCGYquQ/SnjMhy4SwwjphrTSlus0tAi+eGjMDsOvDH/mYAl6U6SVNp1yWBWT0nmKy4YdHi+wwzQ+y3PBMXUOaJGc+fzHvhfMk2J/9dZl/m8jt0PFkF1/jkhRftWvGJE8MRHuPah72vr/eRrWT4yh17sLx7AyrQ7ZO9hP7NObKhP9KjZxr0sxrjOkdmLHYUY3xpdTdu3Vj2/kOgltmsMA2MJjhSqEO+I8AzVFXt88mQU7CVxnS19EpyVwXSBDgFWxDqRQdSQHY0R/bFvs+n1Leg9Rw08lFpeurBTL2gMLwjZVcm5U0k0ncomhxkZBVHaImFNDI9NkTO5CG5HFP1xIt1Gtgt5jKhZKNfhwAV/JLHBkTQJMdRAh1WMMGpWCYflHmKTjc3WuyA+L/LLnYlJjxEp06h7vLeZHy/tuY/Awb+v3Nfdu5tQi4aPgqBAaIEcRJkxHBqUVTL50m0izIPhiQj1gIxs9ouFadUwIKRiqYzCf647vIzmjFG1P7bGRWSTKo2GCWEaLHUBzKnlXQUjmY5l5Q8++vEW4l5Ia/nuZ9vUOgvtDKkx+dEmEpbcziYFbmOcuyY/YwO+/mMugjTsmybP5QZ0b8JQPSlim0SbCeXwf0Xnb+75YexyUadQ547G4DuszmXr3+ZA6ILJZ2HMkp3sT2Lck55iVzET1Om7ZPP7AxgYXGC21aWcXI8wBV7jmPQq7AxLtHLa7hGewV3aw+rty0BCqiXCdmGPxOqKBoUmUXlDLQiTKY5jq8PUTmDHb0xLl86gUmTxe9ra1A7/7LOm9D6eR38iLym4uNCmtoAEwPTb0CNgpsaqN1TNEsWtk9Y/JIGLTZohg71YjAfhBxFeqEGeg7ZWPnDYNcJ00XtI0RC/pTpskY9bO84WdgpVypsNn+xXxAZoFr2RyOwE2U0BdhAybuUxDH6mGTte8WzxBRax0+wD1KMFBK7Xl6wZyl3yPZI0MGmGmmKCS/22dmyu+2ajGbMKakI5A49/kQoFlLJB0WJ8uJ9RH9LRUM6OZ6zeYMVeuzH8FkEVEjlAOm38RTyjmmO81LxtbIvWzLruWIlHsrUlvw5YRzRxFm6dXvsZfJGJcdHgN5u9JkHHrTlOY/KWfQJZ43uMnWRSQt9xSxbdHBnQCDaynOz6YVjQBRQhxPpyQD1MF0TGS8SYxjqIc8Di+ZoAQhbJi9uL+cjCsCvZUbkPuOIUSAlZOxE88XhEsBZPkutOShYzOkuxINg2Rm8dSwI2szg3SXzs8zOn8x74ULI2TwgZ7p2O2XJxVH+pvNb6lvo0qIY1CizBrsWRrBO4fb1JdSNQb+scfToEvTJHM3OxpuASEFX/lXtdGgWCDuHY+woxzGKbPfiJqzT+JeTe3Cgv4ZM+SSMk2BOy41FaRofjWYcMmNRNRnKrEFjtchkTbDjDGrQwFkNZQhm08Bt5D60PiOM9wOL/1SAehb5ZRuY3rIAfTIHs1+AT75oS2D9MhXPV/L+F8DGxSqG0EqaPTrcchZgyXg4zyoxgInHF/CBkQHsZBtIPhQCbLBJqDVGFJSTRgqpF2YjBljRhCTBkGqXw/4ZLgtvWQGGS7QEK1L5CuUQI9nkdaKMrkR8pdCKnJJASZr3mAWQZkm+T9dfK7J3st+AlIVbfN/yaQm/jTl9gqJmJ/YIqEJ/OxN8gMS1LSA1429+LzuCM2c3vXA2V2AZGaR18z8ltogSk+fSfInzT4AFD5xU7DvOWSX7gkGGLcUAId3PFt5vh/MRkVTmAiTKNjNgY6aEBCsU2b0s/TaymgwKudwwjmYcrumcvyfnIlTwHQtt4ueuZU5Fqg8fZ9OKMuP/u+bgANBipKQEb7rdB9ko3Sc+X917zJC70lwGAA7qvLzmMgdE5194Xs3o2S10fPc3s2Q7dOys3VAXDClgsHOMvPTszsn1ASprUNUZ+nmNYVnFumSHRjCDBrhiE2bHFIPbQ+jpYgO75A9/7WUNlvIpBlmNqjEY9Cos9XykmSOFk5M+Cu0jzTKdotlKk44HAQCjfT4idqrOBg2oNh7kKHgwMjZQlTeFNYsWm5d4oFSNc8D6IxzMrgo686tbNgb6x/xiaSpCuQIoR+idIPSO+wXVFkIRBYDDviCsBHTjEzBmI0T/HyivVJjq94nnyPszVN60yA6zrSMeeLcsxoXZJXYwZT8NBlrRGTuMccuHQSp9ndiqllJgRSSAVHfeRIXcoJ2td9Yco6QIY1Gz5q4W1wpg1zJfSEUoQQCS4mr1m2CMWkdViGv4HkYk2eRyuG/YqV5ROIwU3rx1qufsVEAolgk/tzhbcwtI8/PeZX7EvbrAJ/oUSYBE5PMYhfA7ZnY0z10eH9UuGzqwRVqAd/afkb5mfJZfp40M1k2VynY6mOlCdCUnUwTQNolK4Xrptkks3pMZ0jBWTT/46YV2ydQEPEdJh2dGzv3O3JVO1zxPeMOSokPRBk3hOhOWQxe+67KyPP6zGFaWmWv9BZA5Q3T+ZN4L51NO8QCcEghtV04Dimb5O5zqXnVtQE5hY82fXabhj+0YVXnMLH3poeOoxjl27tgE3TqAXS1QLQHTXQ6mZ1EuT3Fyc4C1qsSoyVHoBvuGG1gop7j52K54r4PDNaxXJTS8zxAf42FiUkYH63y27Mb6NACN9SfY67KBW2pAlYZdatC/XaF3TEGPNfIVAzNVyDY0aKWAKwiUEdTNfdj1HHAK/WMUHXLrgUbTA6oF7f1/emk3zlFgUckE9oEXWBMyPjNrxP9zxJk3aVEENtUyfIbsoABa5isGMsxo8CJvEwiyJVoRZqQRfXPYBOPK9D0DD96Nx0Ueac5tmR/h/7iYM1vhACV2zTzv4k9OZV5ToY6hjdK0MevoEMkSRZkBllrMmWAeWKnH/4Upg+vDGZIZYDBDxiwRaZ+g04+1Sn4k0iRzCtkCkBTAh7NG1gT+Hhwu7qPtKOZNkhId/63oe6HYlaMIdloh/QZxbkj/KQAx0pGUN2klRkr0b6v+oZ4zzD/sMxdNfxBAVoCalp8cifFiJ2Y57jPmJJnwp0qBCHIeAZ4FchlitFzMTE5oATHuRy2YRwlgo9+SiIDr9mXMW8VNlZFm4dmLIF4lnylp9p3L15/MAdH5ku5C2V37tvGAzNyZx0K3ljlT2XXfq1SwNgRr/VlfALA27kEbh8t3nAQAFMbijtVFmNzh+NFF//vCYXxJAyw2WFwcIzMW02mGUV2gcgajpsBCXmFnOcbicIJP3nJppF9rZzwdSwqbtb8u0w5GO+TaYu9gAzo0isjnIKpWS5Dzx3BAEcxahukuoF4Emp1NXATNBChPaJjdU5iRRrEGmHUDvZJh5UqFYsP7cuRjwsJthHrRMwJRYQclxGHtvDOX/hyqTrtjXnhtz2fG5nL8OWtICQA5aof9FVTyPYqh6EE5ZCP/WTwOQIQpx7BsBAUnFvZochCLNzNYfIRBS/nxDlc6jSIpKr5OKmZ5/+686yrWLdeoBIbYnMd90mV3bA+tc7VaJhehXLm+DAwj2OO+gGDkdAKvPMYk6liu+j9sEcynNbV2/jOl9Ty1282h9y0zJv/fAZ6z2KFYbgcIKZsQKamt5+3FCCeHFisHLaKvBBAFBGANn3FEIftqMcDm6+XBuKQRTbKRMQl14YN0szHaqQsYMAPJ/NVhSqUvFYMPnovMKPGGJJq6mLGS0WyE9torACrfn597Li+yk/xcUPoMSL93ISlqM0yAjCAYSzk/5HjfBTJPzHj+ZJ6Y8XzIWUz+04Kezvf8MEYH3W08bKek+HNAKcJw4J0BMuOgdY3JNMcgq3BsMoQjH07fbOTYeXANK+MMurRQPYuDe1agFeHwZAmu0agagzXqQffGaJxGL2uwd7iBnf0RKpvh1o1ln/3aesfqMmtwdDzEYjHFznKMQlscHQ8BAKNxAW0IxjjY0kJpH0aPUQZoQrO/BjUK/Vtz2NL7IRSrPgM1kQcMo3vVGH4hx8a9a+z6XIbRPgWXE0A+2V6x6he5/lEHl2nPynQzB1MCFoD/Px8B02UAQZFnmwpNPyk5BhquoKB8Vau8luMmJedi0kATEkdGX4bg/OuCUtNV2vkSfDujv1Mo25VpgQeEMhL1YxMXJxCMPkMK/qByUcd4xtgsMMR/u7Duyx25+DsqYFEHVihAqhs7pPIRK7OUCQM/LkM1opzAoMnzs5gViuAg9KWCV179YxRBlu0BxapEKOJZE34t8vst76USFspYW3/waVc4IST3mSIA8gBY4jJTziHJkLXqof10Uw7QIYGlrv38iSYxC+gOQIvgi03FmQDcJpUtfYjkWuQyADyXBENDKpmxOBt5PFtOp3vBpnsDAuRR2pzwPOT/szGh6XsAG49KCf1HaD+PEXCJfmCwq4WJ0hZijnAZEM+cmEOKABLmRW4Xzzvp6B/n8l0Eiji1ybmWMZc5Q3Te5ZTz6gxAaJZsiTY54w9O/ZUdWkzXS/TyButrfTRWY//COga9CmtVDz3TIDcWznrTlD9t3sFVBvt2raGf1R4wOQU3zeCgsDEpMWkyFMaicRqOfCg+4B2ph3mFhbzyx3eQQmMNNusCR0YLODoeYmozWNLo93x4ST3NoDMHpQGdO1DuYIcWprRQhjC5Yopm6JBv+IUz3wRcbVBfMYEqLMaHHLIV71nMh7quX6qxeYCPdiCQ8eCIF1TOOk3a7255Z61roHeCYCYUD3bkxbHreK0IiKdsawo5kNByKuadO5t5osOmSgtwlwVk8NLaxQaJWaA7rBapsIMNYINBB1+jxHWRDeJ7NO33UVFIvxgS3wNt4NQBT1JJRfYNyW8KEABMOrJ3FLf0keo+D8yWSRakW4+W6VAoKpmkr1WmADaznj8Of5/1W3lfdsTlc9Jkv8W5Idspxij5C7VvwD4wkfkKbKCuQ3to67W6EW0FImMT6yHMijJCbIt5szNXY9oFweBJX5uuabS7Nkqn5hYQFp8xc+sy/6WMRtOdeSkdomN9RR1abJkEzF1Rrf/SfRkEOWy9gN8zmFJb2zuXe77MGaK7SsTDPvPrOwGYtpQ9o8z4UGq/AqyNehgsTFFmDXqmwSVLK1jKJyhNg6+tL0Nrgts9xfqoB5U7DJZ8+tXjoyEWyimGgynWao2VtQFc4/MXrZZ9lFmDQV5htfJnJ+ztb+KO0QIKbZEph5H1GnCzKjAsKmxWBSa1/6yxGuT8gbMAYDKHepxB5Q6YGNhawxzPvf9O3x+4Od1DGNyuoNYy6MpTKG7/FMW/9NAMAsAZKUx3eLNX01eYkoaZEnJL2Cw9520mgAnZkPU05brxDIJCvkEpZN6hxaiAPPgAAOX8Suvy4IBufOdHvyWxK2bAEhVPx3/BswZtJdZVMPJ3vPDHHX8AO3EOyDwtFqAcSQGxcmVQwkqioyxM1U5+qOu0U+e6MKvCithXtH2NcgDYDBKUugQyzDxtUazMaAiwpEN+qZiDSSo5/l3oG10HU5lQVNmY4rPTVd7nvBFRfm4xAxkTP7I5VSSa3LImCCA6K9GgrvwcUgxi5fUqjQVvCqAQ2cdYPYcWO6osgJBbS57dFetAnWtV+iiCJGayOMQ+5O1qZbvmMrpgm0Eqg3QxlrpOzxmPk+K/HaB0CoaIgLMLjJgxazrgeda6zBsc7m+ew/BjymfjsfmulY/rbhB3Hkxe88SMXua9cC5yBlp01q70jNeK9zN3GGfx4LXs55pQLlTIM4vGagwLr213FGM0pLEjH2Nnf4Tl4RjKEC7auYJiUOOiHauYNlk8xDXXFnt2bSDPLfKeD6Mvswa7eiPvI6Qcjo4W0DiNi4ZrMcJskNVYLCfRT2l93EPVGFSNgXUaRIDW3mxGTkFpwq49G0DpQLWGK7zprDipMdlPcedtRhrZhkI2UnBVONqjASZ7vPMz5YRmSBjvBcpVh8lODZcrzwwp7wStq2C6CgrGTP3LGWCyK+3sJTPEJ3n7HWvSDrpiGkRFJZCvI6YC4MixGI4ulEnLDAdE6r91zAN/L0EHj3fericYxHFiSlYmAoRExSBYhzhnBDPFjrXxXsEJVpqYWBHye1A6ziCyAaEOkRliZ+Yu8yPnf2i37Xkl3spMzEpR9hE3yXiz6uAIId+kmayFFMlAdZ3SW0yNfAbp1N+xeUz6lUm2b4uvYYd1csabzdicFpkhnf7mQ4JnsUwAYmRkt+08HhxN1fQSoGITa5dhadUtE9UN94s5oyBAuABoALac8Tdr3ZMgVddANqHIiMaUF5kIQuDNgQRdDNDEnGwlbZSbxQ4YkoCMATrPUZ57RhzTcTbr/IWQ+Wn350/mvXBn5BQTfxaAkQ9d11EvXZQ+7wKhmdFCs8o4w4No+k08GmPYq9DP62jmOjYZ4mvjZfRMg2FRwU4zfOVzh1BtFDjQX8e377sFRdbg6OYClnoTTBuDA8tr6BU1enmNhcKH32tFyI1FbixuWduByhmcnPTRyxpMbIaVcR+jKke/rFFNM0zXSjRVhn3L67j3gaO4fO9x7F7axM7FEfJeg81JEZSmPzgVY4Pp/sY75/YcxvuB3lH4/EgDQnEkB+Ue/DS7GigCipMKqlbIN4ETVxk0faBaVDFRnyuA/tHgl7TuWYRijdA7SfHIiLgABsCUr/vrVROAVAxZ96iG6xsPmgwLaTYK4Gsc/g++M7zbZKdjZ4TiMIFRknNOLOoRIHXnCDvaCkUpD6SUClU5hANPw1QSEVfde6qO8pCfR0USAJ8K1+hueZRMSVuepe59hcSQ6+CwG80YSP3ApkmXeR+tHf/iorlzSz1mMBYe2Cm4TEUzDR8iCyTwE0HQLMAkhRCTP3YBbMvZWvwfgSv5o0VaiTkhwG0wJUKhlRyRHZIZgEYnfKR7xISCgeVk0KKcfx/zNokxlud+SQYvzgEgmc8EYxRBoahjqw/CK94viA4BDbZQ0TyYjSmCb55H6QcCwDFjyFGOwsn+jOyf+J005fEQmWliJ+WGZi5f/zI3mZ2tbHPit3wELuS9O+Bpy3Xh6VfKnx2WGQfrvBPeIPcgpmcaZMqhlzW46fb9yHo16kbh4otO4NbNZVjybM+X6l2YNDnus+sYjk0GAIBhUYXoMYuBrlBoi0Jb5NrCkcL+wQYa0uiZBq6c4raVZVTjHLRSwEwV7C5gXOfQirAy6kNrwurKAMs7RiACaKBQIYea5IAFihXjaf3KYOGrPuoj29AwFVDtIOhKwZbA4KsZmr4/hNUVwHhfYH4C8Gn6fnzKE2nnqSuKIdikfYQaWAGatvMu4Mu2IQwe7LyqUmh0a/FlFiiAF85lBPL14rxIHCEUzRSs6GugWUiKTu66QYgOrHGXH5LzMfADkHbQyv/dPbJAmhK6Jg4xlQAEc1Bf7PRnbK0YsNgstY1cMt/FfpHMTtfnA4gnvkfn8c6clwAgsgd9YPlfE7uSjb2Tc3TOFveMdVfeV6UeJrAazSFiHPmeWxyfId6jDZrib7QAZlKhhrbIRI7R0Zrb3AGjxSphslttAcg8P9iMpKsEiNjfiE1r9YIAkpSAVWTgkO5re4BeR8x9FNkzjqDk24sUCCoALmZqdJXuJecr9xNvHpLZ0J8Xx75DTU9F0y0/AwlAyt+Jz+DrHPN6iX6MbFiXoWTALuaGvAdHMrbm0Plc689CLBTsOSKyc/39vxWZA6LzJGd0oDvdw9Jd7LYrs8DQDGkOVMgVMOxPsaM3Ru0MigBYKmfQMw1OTAeonMHeHRs4fMcyzIbB0dUFWKtxv0OHcWLax4GFdQ9cqh529cY4MFhHJra9HKmwkFfYUY5x2+YSJiaLeYhWJ33Ukwz6jhKkgHxdwfYN1kc9TCoPiogI1GhMpjmWBhNsOtWK3JrucihWNbINH4o/OkgYfs0f1QGn0Az9taOLLIY3e0bIFh68ZCOgf5SwedBHq/SPeFNBNvZ5aaoFhf4xB20J9VAjG/NqrdH0EbNVs59DsUEYl0nJAp0FOiyotkwgoGs6iEAI7V2vVPyeEeOB9mUS/P8cmszZmPl3WoIqca10rmaH29au+hRzUTIo3m/CX8x+Ol2foZbTufW4kkg4yYpMxqpzX+n4zeCt61TOvlGtOiKVu/RlaoE0jvhiZ+GukFExSooZAF1xoxFNV936thysTyMu89fpcG5aTGgoxlgqdlIKyhJ0ZHmYmUrtnuxUrTGTh5YC7MsWxjr4E0XfHufBKc83f+SMH6d4ll9g+aLPFQcCBDMls44RYEGE6TM7JO8X2E5dhXIN921qQwQbwdzms4kjmuD4OfTMkdgYiHkdhqz1Bx8Z0gLf21l35fcqtZPBurxEbae8CyDnw+Q1N5l5mffCBRJ1moeuFd657QLTn7PMZV0nwZaJBUBTeV+dQVajn3nt3DgNrQiVM1iZ9rGQVzhyfBF5v4FqFKZrPtPfsfHQn1lmM4yaHI3TqKzBStXHxOYY2QINaRyZLAAATkz7ODbxvzk2GqJxGut1ifE0hztZoneHr5ieAsUJg3qcwTmF9dU+Vo4sAgqoJhkqa0CkAE1wfQfVKOTrGk2fMLqiwegQIdv0SsrUhGq315o7/pnQu8Nguosw2U8+c/XREJk2SpT75kHv45KNCdnIwVTkj/iwhHzDYXjzJsyUoBvakngNSHlsJMCIUTDhHko4ssbdZAiNt2Xysemanvi6eGSABElsDgugwYTooghumFkSZeoKLbMB79DjTr2T/2hWBA6JezKbsR2l0jJtQcxNBnciezL727T6QgEUHFkZDMTQa3FvzkPUP5reM1Dlfox9zQyNABEye7GZUmiziv+3opgI7fcQf0c2gTq+X+TZR2F6IuWP/Yg+P8yaaAZGAlh2EjvyuWFsTuo6EnfBloyUZGd2zrPVDABXCvZKgGQZbSYZkmjOD+W7MgEf4gSKIs0Ds1UyTYScP9qGavOYB1Mfs0tx/gvQ1xoPfjbEvI9sVTcsHum6rjBj1GpzuDwCIX7mZxcxl69TmTNE9xSRimU7T1nnmlOBK9JAb1jBkT/F/kRRYaGYYk9vAxt1D40z2FGMsZBP8bljB+DWCjgCDAHl7Tmab2pgtMO0yXyiRVIoTQNHymehDhVpnMEgq3H7aBEahMViinGTQ4NwcjxAL2swneTIRgqjix3cwGJiDNyOBqgD8FnLoTICjNeeVW0w6FcYUQlrfdZqZxWGX87gTmYwE7+QlysUwImD2dRY/SavFKdWoVomb0prFPQUqBYUhrcTVu/lmZ3Jbs8eNQMN0gr1ApCPPChqFgpoy1FqAVh0TtNWlMLjZdJB1aikCMS4tvx95G4YfhfPvjERaEnTmCjD8U5VmNA4qsdUHQXCdRKKsOVUTZ654KzNESywwlft+aXIR+A5oYSj6UowRN3oI+lT0jqzLSp8+BxFAqyRDlF6oU7MDsg2MThjRawstcKrWXlvcUJXiAyPywN7UQeTpcYWk5dkIFobD9EvLTMaUlsR2DE+jV7mrYl+Zk3qJznH/JygBOC47swUcn2E47aZeLMhg0hlU+b1CNicB4HR9BRAOue7Avmoyxi12JkHMbVDiKxE0wadukE0VekGIDkn5BxhJ3EG6/DlcI4uzihvNWKS04YPmOUEpVxHflY0gDoBtGiGmwHgqdPfcjwjeA5m1pgMU4xvnAvA3cISWZy7ycue+ZJvCJkzRGcrnUXhlLKNh0L6o3DZd6Y+3b/T7olgB/6MsMXBBCazGOQVpk0GE1YARworVR+fO3YA0yqDWqiBYRMVuqsNpnWG9arEgeE6AGBqfdSZg8KoyaPprXEai/kUi8UUTdDiG5MSk2mO9YnPQA3nHY7NWga3s8bijhEuvuQY9i2vAxnFHZ7SwGjdR6LZiQFGBqrSKI5lyNf9NfkGL3gKo/0AMkK+DgxvD4sgH89m/QJKGhjvUZjuUNF51AYHUjMNmYHJH/cBANWOHKSAuq9itmg2M2WBadLTtNhmfKK7NBWF6BcZ3cKfM7PDO3b+TobJt07T5kgaOe485pl4z8yKLFfseGM9xBw1wm9DziHJBPDcZ+fvLfO1C+gV4mnh0tcofiaZIcngiPtHcCDa0H3+GCyR5nuplg/fFoWn0u9I+zlQL0AoVmqZwk4VBBHLktdtqRslECxMRBHYzNqSCrDs26VSpBmDPJ4XHcCqK6B30vvJFauI81HX8EySSQe12tx/xnObVDB56XQP2VQ+NkOyJ1BIR4VknbrBH2czq+8BBCfp9vhKp3yOIqsXE2ADMDOMX1Y0RlVy+0T5XVYx9unpRCXwpsTzNKNJd4vMo8zOn8x74U6KjP46K9PXmeQMZc1adLtRaa1y+hZVlWE0KdBUHrTwwaqjJsfto0UcGS1gNCl84sWNHNjI0OxsMN3f4KKDJ7BQTnHp0oqPHLMGu3ojbNQF1qsSlTUYNXk4xiPHZjjSQ4MwzCvsWhjBOYXNtR707SXyTaB3h0F+2Qb6C1OsHVnA4RNLuPXIThS7xzh4r2NA5adlMaixa2GE5T0bWLxkzTfLAhuX+gWpWg7AYkqol/0KlY+AzUMpn0p5UmFwu4o79OiAyzs55UESGaAZ+E7TlgClkG1aH6m26YLPjAcx+QbB1N78Vq5RPHvJloi+FdFhVETkdJ2C5aGybL6IYcW5GMeOwmAWyQ94uqYVFRNefH085HTmpEI0O7aYI+ngHIrmAgxHTol6yYvjOWPCrMRKrXXAKLNG6JQnzCbRBCJyK82K2oICBodTuWxCk0AOSH/bQsXT34EEWJgpk9FcMnoqHkvB/dEBRd7XSIX3Krbdheg1ip3pmbnYFm4nm0yVav8+/JbHn8T9meUxtZ+H9YJPPaECSyMTjrJpUFHbsZ4ZUFd6MKEcYAeeaaJMmPPE0SnMyhD7FcFvElTj3+cbgGInegEquK+bvh8nCXpIJ/M2KERn1n6cmr4YF+rMAQaL3dxNHUfqsxKxGdEWKaWFnPOnKvsuQkp3x+Gub3zjG/GgBz0IS0tLWFpawsMf/nD8zd/8TfyeiHDNNdfg0KFD6Pf7eOQjH4nPfe5zrTKm0yl+5md+Bnv27MFwOMQTn/hE3HrrreelT+6szAHR2cq5sjhBGLiccXdyjmJ6FloTFnpT3OvQUWTaIdMOd4wXsTLtY23cw+a0QHW8h/rmBaiFGtRzUJXG0sF1FKZBL2swanKfvZoUjo4WsFmVWJ+UsMGf6OR4gJVJH1Ob4dhoiNWqh8oabFYFjHFQmuB6hMk+h8khi+lGiWqaQxHQrJSwowz33ncUt92yC2rYQAXQdnJjgNUTQ4wnHiHk64DtO0zuP8bokEssUUaAVShPEoqTPvqsXgJ6J4Ad/9J4Nsb537sM6B1DPBupWQCmixrZyCdWbEqF0V6D6Y4MzgCDwxWKNQq+NoSFWyboH6mhnE/4CPjFMjnjpjB9VgBxF80h1F0/Cvj6taLI2NwhFl+5S+3uVKWZiNkhBtDykNNZANoWIdRc+NTwWVhQYs2ngLnsbKXETru2QPQxikrcte8ZFVt4H0Px0a5nyxRHqU2RMQogq3cCERwAiOHzvjwuLNTJJJ+gehnpuJY6AaqWwusyEhBtY0AUgBOZEEVoGBQJMOdS5Js/rFXFc/DiOXfscC76DxCh60j3627GqkWfe6ke+jrrJpwc3xkn7sdW0lGR4FKCRzP2zBCbcckEwMT941L50vzJyUjl2GkLTHdRvCYLZrF8szOP4IGpy8R5gi7N4djfcn4ArWSfEYhhK2CX0t1k0oxr+Av57Mnnr1XEjE3rvzW5+OKL8ZrXvAaf/OQn8clPfhLf+73fiyc96UkR9Lz2ta/F6173Ovz+7/8+brzxRhw4cACPecxjsL6+Hst4yUtegne96114xzvegb/7u7/DxsYGrr76alh79xnw5oDozsh5muznzCxJdkq1P+cnlRygFEEpoGcaDLIahbbYqAvsKMewTmPt5MADCgXQWu4XvYUGw7KKEWk+AsznMWqcxuqoh8z8/9n7s1jblrS+F/xFxGhmt7rdnzbPyZYmMykMVdjYV3ZdEq6MjS1RFjJIyJJ5sIVkKS0wbrAtZInMMjaNBQ/3BYmUEMIPFm8WBbjK6FLYuqYxThKS7E5mnm73q5nd6CKiHqIZMcaaa+/T7DwkrhXS1JprzjFHEyNGfP/4f//v+wy1zti2bom9XE84WU+xVrBtc1qjOD2ZUW0Kii9MEJ1zl8n9BrRwrrDSKSlFLbm3WSByy7UrS6wVGC2oVgUsc8zrM5hqqm9eY+Ya7kyYvSZdTh9tMYVFbSTdRAxKFcxva1Rlovh4+tBw8CWNLqE8hskDn1PIwOTYJXXUE4FsLdVViS4Fm5sFzV7fwZunS2wuB6xDvJ9BVKoASYyQidt5hiqdwGMYcyJEjaxJMACmNwjjiKtwz1MhdGA2ou5J9y9IDFcAPN51lDJWj2o26wXhEbxEsBEYkaFhhWSFHQCNcAyAqogGPkZSeaYg1Vul7q+0T0MZE9la5wbN+4iw4EILUWLggICeQH3kfh/Ahsl7UNEsEgPoj3PeJdZfX2SevC4nGmz/XmrrQFA2ZHvC9YVrTZ/p6KoMWhnoGZn0fozcoUBcBIyNeMiwHEDLYHEm+nDy4LrVU8f6YIlZ4Me/i+xlAuri6aTuVesyyAfA302GIFj4BYXU0E7pS91sbZ9/KrC8Y3YoYcsi25Yyp49hdHbOx+nvYDDOw/djttI+4hhfiWYRroj223jZN2nUvuu7vovv/M7v5P3vfz/vf//7+fEf/3EWiwX/9b/+V6y1/MzP/Aw/+qM/ynd/93fzwQ9+kE984hNsNht+6Zd+CYDT01N+/ud/np/8yZ/kIx/5CN/4jd/IL/7iL/LJT36S3/iN3/hKdNMbapeA6K22N7MKGE+aO1bob2g3Fx3zgn10M0tWutmm8xFmmy5nkddk0iCF5Wi+4caNM4SymCPHDpW3c2aHW3KlWdUlmTSc1RNaIymU5upsTVl0aCNZ1wVVl7Fpclf2wwo6LamanLune8jMZZqub3WY3KKu1BRlR7FfO00RwMSBom2T8+zTD7j72iHdOndC603mJtAWxDIj+9Sc4m5O9tya7Q1Xn2z5jPQRaMIlWnxgnIh0C+1MUF3LsRksXteoxrhIMgMHL2nmrzu3WHUV8rUGA6qyTI61Kxp7Q7K5IWkXAj11YKnelyyfzagP+5wo4T6k+V7Sez5YzY6iu2LkVN67ymzWA4qBeHg0QcdxEfaXgI1U9xSP7XDvuXEXGImB1mfkMhPJWNMldOX5sTdwMwVjnoLGYNQ8EIzZvru+D1L3U+jTFGTGyuay3+fknvsuJDLUhTtHXfb9ZwowhaCbiCggjiLnvM8knup6umnSAUnfRLeg77dQzsFkRGZubDyNEv0+fORg0FINqrYn/ZgeI94X0RvdqA0bg5NUO4YL80+Tbw5E8P76tM9dFd28gQ2S/TUGV6kVvWhapNfrQVOMrgx6pOD6FL0wPgQApC7QcJ+FhqzuhebtvHc1BvdvtF4j0BrPPY0qDH/fClB53BydgKM/jfYkXWZnZ2eDV13Xjz++1vzyL/8y6/Wav/AX/gIvvfQSt2/f5ju+4zviNmVZ8pf/8l/mt3/7twH43d/9Xdq2HWzz9NNP88EPfjBu86fRLgHRm2znNENvENA8asX9RkDRG95mtN1s0iCk5eR0RiE7pLCcNROksBzXUzqteHg2w3aCfNoiC42eWCZFR6k6tJZkwlB1GW2nqLuM02qKkgZjBNYKqtpZ8Xqb02xyNtuC7bqgqTJ0o6CVyK2EzJXmaJvMJYosvZhHC8qbG1ZnE0rVsX99jcgN9s4ESkN3oNELQ34q6RYWtYXmrGT+iqCbCeeqqt2Fz28b2pkk28LidUt9KNlec4ndtlcVq6czls9IrIR81bG9quhm7jS213PyjYu2avZdDqNgXEOVbV06ZqGdEr+HZJKON4PeBZawB6GlehiEF7N6YxCMa2SRdgg54zFIDGB6/xNmYKxRATx48OedaG3SsRRdW+GVfB+yCI/Hn00YnZ2C5nA+XW/Mu6lzb4ZmMnd+EQglYDJcWwpKilO3PcYL5UtnlFXIBm57YNFNnDtpc9PpVkK/BoaonTs2RDUOQJjcC65Fcsyk79yJMWT9RsAjAECTu+Nb4X+f9/d6vMBKwV6qwQrvY8h96OdwH1PjHMB3CqT9OEizdksPzGXbg5wIYkTvRowJNe2O8UR/bvmyfy6kL4OjfMBBTKqoe+AVx5p/H2r9xeg1kbBugQlKwNAAUCWas9gPcP5cL2oXzbNix2t8jNH2f0r46G215557joODg/j6+Mc/fuG2n/zkJ1ksFpRlyd//+3+fX/mVX+Hrvu7ruH37NgA3b94cbH/z5s343e3btymKgqOjowu3+dNol2H3b7ENJvow4Txm+7fTdkWknWOaBg+poHxqhTGCr7t5h8/cv85GF2TC0FnHFp3VE043E6S0TI8qirzj7P4+prBRa/T+a/fIpGaSdbSdm+WW2xJrBU2dUZQdXSepN1NMrRC1pJsqqKSbtGYdlBotLUJZl6W6keiHBex1oAXWwLRsqe9POammSGmQxzmiExSv5TRXNChLe+ByEdXX3Cy4fI/mxv/pXFd6Ysk2jrGxGRy81KEqw+Jlw90/N3EZq73hKZbOJbJ8tqDZJxruZtF3YFeKgcDZBBeYL6yZ9nfMgCuAENacTNyDBHQJs+F+zKB0QjSywVg1wxV76o6IK2HZ7zu6xsL/g0HkPtO5jyoLDEzqVkjHVeIKC0xD2I+ejLb124XyC8ElEtkw//t4nUkph1i8M2znDWdgjaKrzGtd4ml0YMvAWtiBWzOEjsvOYgoRa1+1e0QXVjD4wUgHnVUKFoTpI6+iK0/0xjpqoxIgMhCmk/ST8CkRZA8EBEQtD9bLkALzoqHLkmhEGLBXxoKQbhuTMpOJOH3g5gvHoz+fsSs3XHP834M5AnOTAqELmJE0zUBwGQ/0cmFsdj2bFEPocWMouO3CQkFoJ/YO5zdIOjpqofDtgDVKAOobbeH+nLtekv9TwJWwZHbX9l+hZqyISXHfzj4AXn75Zfb3+9VJWZYX/YQPfOAD/Pf//t85OTnhP/yH/8Df+Tt/h9/8zd+M34tRORtr7bnPxu2NbPOVbJcM0ZNqYvT3UdvsaKk7bdfYvtBdBhesUBz4EMJyUk949vDEhcjjHp5MGNZ1gbWCvXlFtS44vbMHgJkalDTs5zUz1bikjUWNEJaDyZbD+ZY80wgBXScxncR2sp9BlIF5h80MKjeowiAKA8qiCo06y5i9opDKzdzCCJpWoZaKvaKmaV1Ifn7mDFl5X5GdZD5MV5CfuWPNX1ZgfTSKsuiJ5fQ9ElW5EHo9lTSHeTSyLsdMn2ixPhQxRNiF09s+D4yxTE5M1Lcon1AuhobL3kUSEieOXUVR/8OOlWu4darfPhjKqMVIXV0J6yBrH8mTCFjjOBD9ajlM5tH4pQZdJf/vGl87NCnp/7tcQu5kGIqlR4Y3ZaMCyIjgKhi5ZLER+k2GaCYv6A3Hmt51b4Mmp5sl+9DeTTVazUeXXepeDECiHfYTglg6hKQfw7mlQvH4efo3AZfCEHNWhVB42TgtVr5xryDGDy3f2D6XTmcH7tbA7FjPqI3nhxSoXRhEZJMxjd+nd2UG0Ji6ZGNS0HQX/hhpTqPA2IX0EjGxKb5Irx8H2abfPkbOWVyOKw/0s60TXbuLGp1/0u87Iw/fAE3zWPY+uY8XztHigvfvQNO+2v3bfQExaiy8HgWIiqLgve99L9/8zd/Mxz/+cb7hG76Bf/fv/h23bt0COMf03L17N7JGt27domkajo+PL9zmT6NdAqIn1UYrsZ2ribe668ft65xRsnT7hum8pu0Uq7rkeDuLxVwLqTlpJlydr3nuyjHaSFShEcpS3leI3DDLnSr5Uw9uMctaTivnXjssKxZFzbbKyYoO00myQjM73CInHUw1MoCg3KArRbfJYKso5y5joDA+m/CdCdYIrLR0WmFu1rzyu89QVzn5qyX5yrE5gXLPVpJu7mYvsXY1zVbPCB58UKLWEpO72mRZbVk/lbF8JmP5rGLy0EWPba87A9POBNP7NtYTiyHeQqAaGw1CtrUcfKF2AMJH49gEBKVRTsHAhnDjtExAdJslrASCKKKGHqAE0fE5MW8yaQ+0H6mbJohkUzFvasQ9EIrjRfqfp7NACp4CWKA3VKRAJQU7ogdxaag/9MxccIuMFw/RiPo+CQdMI6qiSzKcjHSGVZdO/Ly94WttNb1RlK2NLkg9cexQmvtpAAqtB7V5Im6W/XW3c+fa03lynQkYwvdjcPOlup/YtSFKKhUZh7YDdIamfdkJk4sI4AYRfqJ/HzVEqeh4zJCEcesBh2oc+xKvN/wmEcDHe2X7/UbXqG+qYuDGC1FlQWg+EEF74B7Kb6RAxuQMxmS2tXST/pi7BOTh/UA3tAPopALweD2jPorurl0gaNciIG1jVu7/j5q1lrquefHFF7l16xa//uu/Hr9rmobf/M3f5Fu/9VsB+KZv+ibyPB9s8/rrr/OHf/iHcZs/jXbpMntS7VEPwOO+Gz+4/oF8S7oj/6PZzRXzskEIKLKOg6KKyRONpyS1deLnSdZxssmhkugCZgdbDsuKTGpePHzISTNh0+ROLK3dkJlOWp49PCEThs/eu87RfMvBrGJVlWyrnO6kRNQSu9eRnWSoraBSE2SpOXjJ5X+58ik4+UCGfqpGtwqZuWgx0yiYWJZf35HfyTGZRdUCm1mmrzuj0O25SVxP3CqzaAXZykWVdVNJs+86MV8RQYlVsL4pnXFsBNkWmgwyH7rf7MPsLujS0s0EWSVgP6NYWrqpiKt76yl9nYiKA+0f3CnQG/fIjiR1n6IbzYOB+F2IlvKutwByZOOifQLLAO53scBkMIZpRmE5OkYYb6YHcWFbIXoDCYmBGhmH1HUWDYXyK3rVG0zpwWEAVamYOmXDxsxU6oJL3X/C9CyDFb3LKkSJDdw9wo2JzS1BtvHaoak/H99noSYduO9VEukbAVoCSoOWJWRuHjBaI3dJvC6SPk2AS2Rl/N8sYftSBqmbgdBiWKIjuEsDwFFujAfXb0jeKbQ/nAePAyySgJp4/z2gDzW/grYtzZUV2Ub68TPQxSWM5SBjeohuzNziJiRJxe+jWDlNnvBjJUSIFkt3kfW+oJuHAZKMF9+fofJ8dLtqHulSG/RD2OeOZoFHeW9ShjDd34Vs3FeoPUmX2Rtt/+yf/TP+6l/9qzz33HMsl0t++Zd/mf/8n/8zv/qrv4oQgo9+9KN87GMf433vex/ve9/7+NjHPsZsNuP7vu/7ADg4OOAHfuAH+KEf+iGuXr3KlStX+OEf/mE+9KEP8ZGPfORtXcvbaZeA6CvRHvUgpgBo9GC/GVB1TlMUPvStrgoOZhVXJhsaX1ajaRSZNLx2esC0aFlVBW2bYbREnmWOqbnSMc80Z02JyQWdkdQ6Y7MtmE5atm3OzdmK/Ws1L58dcnO+pCxajBXUXcZ6VZIVmvLalvruDHmaYzOLnkK2aNGbnPqKC3m3UjC9A8uDDLtRHHxWcPwtDfJBTvb8Gv5kAR9YwUtzmusdk9czqmuWyQNBtpSUx27lbjO3v24KZ+9SsZjq7J5l9Yxg/0teYNs4UasuobpCnOj1BKb3feZe4XILWQGLl9boRc7q6UmMijJFb1jDPQtiVFUTBdrpPUuFrtazIMH9FtgT2TojHsTAkU3yBjQFTDE3UbJSF4F9Ifk8nIIYGjsUsUxIAF7RTRV+dMFKN4CjNGtwYMkCiIiXK3t9UMx3k+4rAEV/fqkeKrouA1BJVujhdyEqKpx31HxloA/cduF+hOclGDHZQlsQ80aF8zAKZ7ib5LHyFz6oS5dcwyCFQXK/w3WkJSZiH3uRNcKN4Wzrwv1DTp7UqJrMe8TS9Cwps6F7oA3n+3lwT1MgR9+nWB9FFmrrCQbj6xwQgaE2KNlfcOdZ4f7GJKPhfFNXXgb1vt8unEoWwJRAGOueD6/dC7/rZpD53EUxkjCAwCTkP70v55p9xDbh/B4xl4cxtXP/j2KRnnAzSMzbdPa82d/fuXOH7//+7+f111/n4OCAD3/4w/zqr/4q3/7t3w7Aj/zIj7DdbvnBH/xBjo+P+ZZv+RZ+7dd+jb29vbiPn/7pnybLMr7ne76H7XbLt33bt/ELv/ALKKUuOuxXvF0CoifdRtTrbn3PG/yMHaDncYf326tMs21z1sr5ZDKfS2g/r5ldvc9LJ1cAmE2dZqe5ZeH2FFtqjqZb9os6FnJd1SVZZtBGcG+14Kn5GV88ucrJ6ZxVVbCYNMzyhpP1lGLS0dQZ5rRwTEED81clp/+XhkIZtLB9FIuf6CgNdt4h/2hC/mrB4Wcsp5sF+1+wVMcLqv/rmtn/mLuVpR+x2dqtigMrEhiAoEfJtm6SnNwHrBNcl0vD6paMie+yNZg9t111FfKzfkK3OdTXJkxfXWKyiTMWdX9/QwHXYA906Q1/YJGCZsQbveBui66z1AVEb5SjriVhPCJjgQcYie4p/U1kffDnGQAE/XHjb7yRjsJR+t/1Oiq/H5JhnACS+H6sX5GgPejTQVROv9/BmL6AHQVibbbAyAXWK/ZFM/qdP1ZMIOiPJxvXF1ErI3qwZlUSjp7cjwGb5cGmYHjPwr6ii8/3WQAD4f80Gi0tpaLqxKgal1iy2evduLEorh29wr32+7G4femE9YpuK9HrccJ5DRi5BNjHiLRxS8BQjAxTCZhO+kIEdtCP2QCGZNdnj++mRAAb7q9RnqUL99E/k5MHIia6jIyU7KPWxu7CN6IZitd0Udu1aB39NgVBg8CC5O/bJG2+qtvP//zPP/J7IQQ/9mM/xo/92I9duM1kMuFnf/Zn+dmf/dknfHZvvV0CorfYHuXOelJt5wN10YSVND03KGB/UtEaxSxvqHTOfl5zUGzRVjAvFhxNO/YLx/QIYanMFARO2KwVE9VRkVFmHcVcc/vOAfODivvVnOPjOYu9iqbNuHv3gJP5FN1JVzdtb8vpWYEtDfJYOW1B5ixxsdewfTrDKkl54lmLZYa4WjtRpoV24SK8li+4qLHupKSwOHfaTLN6r0XUkvmXFfkKNk9BdcOw+KIc1ALTpWB2R7N6RmElNFaip7D/BUtzIGhnfUkDPXHZrYtlH0VWXc1oDg/7hIXeCISsvYFtidmdw+0IpQ28IQm1o4ztQYsNGiT/oxBpFu67HE3uqatnZ32ywCSNQBHQu7E8w5HmPgqGMK50d6x4B2AoAUQpYxMARtCFqKbXh6QuPGuH+4psQQCCKVNkGLILY+2ISN5DrwXy1xCTQNKft9QOIEAPNlO21aokmindbsSQjHUsY91X6j5JAW36/O4SxRdn/TY6AdjRVZmwT/HaPUAPof3RBZoY9gGjPAK9O108Y6OegqgwZnwainzJwA0cxyf9uO38QgUPBFM3XNrHodSLUQ7IdtMk5D6MTT08l0cuPB/F4jyq7QJFF+0j7Zvxeb0DTVuBfpvo6+3+/n+WdimqfsLtLT14F70YvfdtEOWQrmrDZ/MOpdwsu/BV58+aEoNg3RVU2pXhuLt0dcxOl1OUtJTHAjYZnZXuZSQSyyRzCUj2jzZUVc4Xbl9nsee49eeuHCezv0Aqy2o9YXJbIbeKbmE5ezfY04K2ypgULfJ6xfb5jvXTjuU5evcx9kHpXB2Fq1Q+vesm3dkdUEsHaPKlYPpyxt6f5Agj2DxrOPk6TXO9QxjHCqVVrYszg6pN1PuE1e3+SxXZ2k3UIQNv0DmYTJAvLSaDZk+wfEZGoxxWuANXj+2BSuo6st5FJL3IOgCSkMtF+qi11H3QherkiassliLwBsjuut8jI5nObbtCr+MxRgZzAMB2jMM0emzAItGDoTRqLeaTCVF44XjJqj4eL1xzACk6eaVG2zIogxL6PAUpARxEF5cHYzvzIaVGz1+rSZm8oMNKGKSgx4o/9ZqhFIANgMholh1EoaXMD04nFt6H6Kx4jsm4SPVNqSg55goi+U1yPsC5hIVpP6djK16/33bAJvn/1bYHu7EffQvsqFEO6JWn/TMYAapniyOTllyT9dnEA5M8doUNiiaH9gSASPpcDe6dGPwZzr3h1MPc/A7ii6Aheruvy3YJiJ5suwAMRePzZtv4Nxf87x5Ad3A9dX+FsChhWDUuZ9BEdRgr+MzxdZecsZpwONty72RBUXTUTUa2gvKuYts6BCCFpTGKW7MlTy3O2Js4qiMrOs6OZ0hp2S9qblw/oz519E59UpLlGvHhM6y0mCsN+pmKyT1JPnW5jA73N5Ab5AeWtO/dsqkK7Fyzfs6iD3Sk0vOlK+BanIqYRTjqaAQuT9GxYv75DLPfDYyX0NDsSfTECcUnDyzVVXzovXbRZIm+IbqsrO0NY+ENFF7H4ZmksMJFEN1/QYMRDLSq/DmOyiRAD24is5EYGncyDN1bqZbD3/cYKTNeue9yG4xYgii+tv2xdo6xMbsQDN/omJGdCvuJriuLLm281hg6HcCe1/LEaKZw74y799mavlRJIlROI5nCfQj5j+JleBYuluTw4GmQBHFk9FM3VwRMOvnObxsBjQcWsukFxLtacB2dq0+2Y3u13XEvUhA02HHfZxfpfFJx/BjgRkZr9Jtz4yH9XjIAigPGSyf9pfphGBYkIVouBCPoaQ/40ojNIB5PI/W6+fBZC9cdXORwQf9f9N0Fi8wUrO56T7LdCMue6+N3CmNY+/Yr3dt3Wgn+Vdoue+Er2HbqDZ7EPh/VMovMXRHWp+dnHJZbFkVNoTSZMGzrnIf1jHnRcPdkj6LoaOqcts5o950hb0M0mhXcWe5xe7PHqi3YtjmmlRSZC60/O5vy6vKA67MV08OKbpWTzTvqs5KuU4iDlmLaIjNDfdWABSkthXJh+l2TUUw66k2O1QLZCCi1z11iaQ5g+0zH5L6b/LqpZfuUM7D7n5d9RFENYpWhyz6sOmQrrg8kuoTNTVfPShegJxn5xsYVqvJRPq5MgKDedyVA2rkHSkHEO+lXrFFYTaL5ML0uIrAT0usiAqORshJRaxQiqXSvU4psAAkw2gW4B1RFAr5TcBQMTeJmSUF6nOBTZioxdruYp3PsUnI+JrcDwBFi96PgPGUrdpwblig8T90851qyryjqTvVNAQQlDFLaPwNDR/859PsZh2Jb+vuepeDFjvoh6dvgxoqlWN7InJCCkDHISYFfcr9SMDx2Z4bjnnObcd74D8bOqD8CoE5dgKkOagyyUybIKGLUGtCzgQljFO5hSH1hZQ+S4z6TZyMCyDEIeTtz7a77s2usXPQbeMfA0GV7su0SED3Jlq4e0pXgju0eRe0+inIdUPy7tp12YKHIO15eHbLIm5h7qFAdH7h+j8/fvcYkazna2zAtHcduKkVzaN2rU7Ra0VnJcwcnaCvZL2quz1eUs5ZJ3pKXHVYLzrYln/rCM7zn2n2eff4BedFR7tfoViKVRXcKXSvsXofuFFWV89rLV9gsJxwerJHSMP30BGGgfaqBbcbqOVeDTFgob2dklWX+KqhGYHLD9pZLmJithBNGSzAzTbPvJtFsQyzwGjMD255dWj3nRCL5xtUzK1YWVbuyH8XKMDmxTO/B4hVLeerZig2RUTIl0SXWzRLNie6jdPQ0MVYeBIUcRdADpPB+vNKPhilxY6QMwcCdITjHogxWrfYC4x82TBmLACQuAAt2tG1sQfuRA0bQLixOLyKGxm5kcAOAHLeQGDC6gxJDHGqahfOKBj+wCopBkdxBMsig+doBsFLXU9A0hXMPpTYGoNMmLqqxIU7Yv+gyVK4MSLvP0P1zASgbAJXkusN9vyhsPE1PMNCYiaTfAngM+0/csen9GoPSQaoE0X8fQfvomoIrsTw1FEv/Vahfp3sWKGba9s9C0PGF443LpISmp4+YL0f3ZCdLdBGwGQHRtG/O3esxYB0zeV/hphFP5HXZLgHRk2/jhyx9kODcAzimah+5Xy54qH0zpSuPMV+4hIxNl7HpcrZdTiE7fufV5/jcg2tMJw33VguksHRaYjqByI1LpX+zRQioda+3n+cNry4PuDVd8q6rD1mUNTcPlhwcbVhMGq7fPOVTf/Ic2kjm05qDWUVWavRZzmTaUC4aqBTi5Qm6ysj3GtQ9F/22eW1BcQLTVzLUpCN/qKKh6abOzbJ8XlBdg+IYjv5QYSYGqxxIaQ58VIsWtAeWfGNRDWSVpTmE7TUR+1/WTpvULATNnqCbwuz1LdN7HYvXNcWpZv5qTXUomN7X6EKQbS3T+wZhnQ5C1b7Ug0kmcZ3UzSIxQqlxtS4jsdT9/2HCjyvrZMU8GB/BfRaARDrhjsZFXL1LH12UGujARgUGa8QqDM49NcRytyGIDFnQCQXAUVpkK/ooogystEPNTNhPwjKlqQTahWPo4rknhjgtepsa/egWK3r3Zbr4CP0YxeOpXikBqlGflAII/94qdx/DOIiRbgmY7coe3NZHCThT/fnXh+4VE2W+gWZFnzbi3Mydgm/TM5MD8DoCa/EepuAyAZ7nAAB9X6dsYjoehPHpAzzgCWH39YGMDGF0Odu+D3uGlsikxiACmUTkpYDYDs/7wjly1Ifn2g6An87LdrTfc31qh78b7PcdaMY+CR3RO3OuX+3tqxoQdV3HP//n/5wXX3yR6XTKu9/9bv7Vv/pXGNNbBGstP/ZjP8bTTz/NdDrlr/yVv8KnPvWpwX7quuYf/IN/wLVr15jP5/yNv/E3eOWVV97WuT0pSnRn+OZ4/+MHPf0u/b1yq/JOS27uL9krKyqd8dzihNc2+xgt0UawWru0r+u6oNMKu87BCOwzFVeuLanajNPNhG2b8/LpIRLL2bbk924/S+cr3udSsyjruJ/soOb2nQMefOmIu3cOkMJCJ7AWrBHIgwb54ho2ijzXZGvB/VcPmX9ZcfINHdtbGr3JXSkG4QxitnX5hSYP3KRZX4X6CohCs37GGdrJPWeApi9nmMJEar0+FIhEYCo0LG6bqB0CB7pO3zunOG5o55LJnQ2mcCLq6Z2KG//5da787gPytWOkjAdCxWk/UcvWaV3AgYxYkDIYCtEfPzWyouszcAeXmUxcZ/GvoXfPJQYrjIM4JsaumJSh8DopYUYLXx/GHABCdAmlxoD+nM8xQx4ABXCipxarLLIWEQDFXDU7jM652lkjQfIuBioY8JQVSs8lpEdIDfdYJ5SKkiMYSkBqPHZgl9RwH0H3Mgg7F30/ZsHtKbzQPxj6cOzE6Df7DhjtarvyGgVGapfkIwUM8f6Nzn1nX9CfE6Jn2QbsUnKNcVyOoxU9aC2Ww34JDFB0EZv+s27mnuPQRxG0Gwa5q4LbMfbfRQBo14Jx9NkY7KRA5yJmNAXV8e8j9r/zXC7bV337qgZE//pf/2v+9//9f+fnfu7n+OM//mN+4id+gn/zb/7NIG/BT/zET/BTP/VT/NzP/Rz/7b/9N27dusW3f/u3s1wu4zYf/ehH+ZVf+RV++Zd/md/6rd9itVrx1//6X0frHVz949pFoGXUdjE54892/X5g8B7T0t93CwNzzd7Blr1pzbopOdlOWeQNnVFcm2zI846uU0wmLfOyoe0U1bYAC9dvnnLjypIy6+i0pK5zap0xK1rubRY8c3jKwWzLpi0wVtAaxaYpqNqMus6xRlLMW6Y314izjOruDASsH85oliWmlbRVRrZUFHmH+Pol+bECAbPra9TVGpRxFcEXNhFGEydkoaE+tGR3CsoHPry7dkAiX4LaSNqpK79hMjcxa0+9Tx9YdC7YXhPsvdbF/e2/tGX97JTyVHP2vj3ufbgk30B29wxzMMMWGd3MPSbZxrMDjZ/0jTt+vibWFrMiMRipENg4xiYKmr1hCJFx0fWSuNJMlqymcf0QV+8JoxRbsmq2MhmqlpgbJnwvE/ARWZaUUaH/O4huE/32qTvH5L31FsbtS3ZOtyUbQbYRvZA7GbvnQvzHzEQ41pi5Sgx9MODhnnZTIkAasxiBhYp/E31W1OEkmhaTDRmeVBi+M99YAHb+eMF1G914cqhpivcvnYkvmlfCOQY3VtJ3gZEKbrmQ1TzW6rPn+1zY5N4GQDhijAbHTsbaICItkMlp1Jfv8xTA6XwI8sI9CIxaOkeGYsoBoA2i/EbjMv0unu4uYMPo/0fN5eLi1wA4XTRXv4Ng6O0KqsPrsn2VA6L/8l/+C3/zb/5N/tpf+2u88MIL/K2/9bf4ju/4Dn7nd34HAGstP/MzP8OP/uiP8t3f/d188IMf5BOf+ASbzYZf+qVfAuD09JSf//mf5yd/8if5yEc+wjd+4zfyi7/4i3zyk5/kN37jN972Ob4RUHTRNhcBn8EK4zH7iL/JHTuUKUPdKdZ1waoqmaiWWdZwdzvnPVcfMClb9iY1Z9sJxgrEl6ZgoWpdIVglDdW2QNcZ67qgNZJJ7jJRBxfbqinZNjltp7BWcLC3RbcSJQ1CWOSNCrFoYa4RWpAvGopZy2Te0B1otlVBU2foqWX9YkemDFJabKNcIccz4VwSXqujJ7B6l6G50TlB9ecE63cZFq+4yXJ7g2hsXeZb11nNgZtwZ3csRgm6qXfjdJbizLFJonGguLyzBQHT+5bDzzasv/Y67cEEuaqxAibHBqF9wkfh3Rb4yLNQ7sD0brPBqpo+2gkPgjA9O4RngdwO/T33+wrG+FxId7pSDe6S4J4KYIH+u4GGJxlPwiaMgOAc+InAYuQ6i6yRDNXmBbJ1zFAAFSa30XhHw+WN4C7t0JjNiaHlI+MWDZE/l9TAD9xCqQHX/RhJ3XYDl2ECCFKAEe7jGMzJbtinkIAw3HW2CxchNb4/adZxcPXYxi6tRz3zIcLKjMCIbF0pD6GJua1Sfc65iEUSIEi/r/Q8zrnbxu6q8L84//tYxiYwbaLXVMU+8+7NoL+zkhiRF/IwDfbvx178/S4wc67DRq+LPt+xIOgPNASCF7YRcPtKN4N4Iq/L9lUOiP7SX/pL/Kf/9J/4zGc+A8Af/MEf8Fu/9Vt853d+JwAvvfQSt2/f5ju+4zvib8qy5C//5b/Mb//2bwPwu7/7u7RtO9jm6aef5oMf/GDcZler65qzs7PBa9AuWF2MVyYXsUCP+h6GE9TObcaTmLAgLevKVbDvtOT91++xl9VsusLXJjO858oDWiNZn7nCqt2VDnXU0GlJqTrmecN01qDKjjzTKH8QKSytVkyLFiUNBkHdZKzXJUoYZObA0OZsimkdPZFPW8S0o10VNMuSal2gDhomZUs5aTFTTXG1YrMtMMZdZKznhXNNQS+onH8hI1sLl1X6RFIfQnMEemY84yIoTw1Sw97LXni9gcmJQU9d5JpsYXs9Q7Wu4r2eZZQnHd1BQba1lKcahGD20gmq1lDXHP3mlzj4/bux31XjAIwI7727K3w/WPmHj6Wrg5XWwgrhxwNmwhuXlM2xfqUdV/L0xjpljAJQiG6ToE8Zr2r97wVDV0bKuqQuqZQNCtcycKnQX6/sRLw+0QkPpiyx+nm41hFrMzjGjpV9ynCkIGjcgsG6yKU0Nv7jZyu6c0KRVw94oqbFG/KgmUrBobv+sGOXaTlb+35P+nngQvPnuitL9KOY4nAPBmkE6MdCqL3mhO3eNZWAzTQ6jfT9CJQBEcgPTy45HkPAM/49gr4+GsRM4qko3fo+RfZRm/Hee1CXMmvQL0qAnuUcjaFHub/OgaMd1zf+7EImif5+PnIfl+2run1VA6J//I//Md/7vd/L13zN15DnOd/4jd/IRz/6Ub73e78XgNu3bwNw8+bNwe9u3rwZv7t9+zZFUXB0dHThNrvaxz/+cQ4ODuLrueeeO7/RI4DQuI3ZosdtP/7do5qeGkThKszvTyuuL1Zc31+5OmQmc/mEtOL22iVizKVBFZp2nZOdKObziuv7K3Jf4TLPNPNZjcQxRkoYl7toOyH3lr9pM4S0qMyw3DpwlSmDzF1IvtVuaIW/8izDNIrrR86Vaa1gfnXDpGix/iJF7WgNk/nK9CvAOO3Q4ksSjJtAq+tOON3s+yy2nUA2zvh0pSvamq80+crSTaGbSmZ3DFZAvrbkK4PoLJNjQ/HaKc2+wmQSrEUXkuK4Qu9PyR6uQQjIHCLbe6V1oKpLcuusLMWZJfeRaioYIty5h1D6qP/w1xfZkeBaC1oem/yf3v8UOI0ZifDXG+7IcKSCXZGAnPBbyaA+1zm2Q57/7NzqOQC4UFrjnOvIIZnBODb9tQZDlgKVsXvunKbIjl4wYD5iRFL4Wbpf2xvnVGAdWQ6GfZ7qjVJWKpZhuchwesDTzXcAAfp+PdfHyTkMmDqGf9Pvu+n544frTH+n0+0SDRXJvUgZwdhs8n+yX5P19z1NyBlPw7Ocob/Dd+2ePdfvIrmucH6RhfTnFRm5BPQPrnl0/DcMSMZ9/KjfhXuVunZHx3qjc/uTaiFT9dt9XbavckD07//9v+cXf/EX+aVf+iV+7/d+j0984hP823/7b/nEJz4x2E6MShJba899Nm6P2+af/tN/yunpaXy9/PLLyQHZ/T797HHj6zHfn5sQ030mqy9hgSuNc1UpQ91lnFRTtJFsupxK55w0E5ZtyYPlnDvHewBcP1yRz1vaI432OYdCO5xsuTpfU+YdUljHOBnJ0wenFEpjrUApw7RsOVxsmJQtk1mDlJZy0rK3qFCFpig61KRDlh1cr5i86jJkZ8qwN624stgAoBuFNQIKE2sWNUc2Ts5BmIrwle3PBOVDZ5S6uSHbuHOf3YGzdws3YWYiRrgYBVa5MP7Zfc30bk1x3KBqA0IwedDSTSX5UrO+JdGznO2tCWZesv3ATezZCpRk+oWHHP3xug/l19DOBcWZY5vChJ3mNgL3V/rEfSF7c0g4CL2BCcxSFKwmq3ldMHTf+NslvcYoFZ/2g2j4Xnq30UDP4v8OEi4mq+0xExRX4v59YDZkwnC4DMvC/W/EgB0YtJEhDW61cWqJ8H3oo3A9Yx3Qrv1H11foo5SZ8mLq+F1gedr++3OsiTfGshmGgg8WOjvck9EdmaYASBibmIQwMFLj/krniwCa/P6EdouDbkLv+gz7Hu8nADwYAnE52rcfq/jxnGbGtkn/uZxhyWcwAAtjFjHtg3Df0mclpgxQCWj212iy4fVEIJYypOO5Mu3/xwGV0XdvGtgkz80bsgFPqF1qiJ5c+6ruhX/0j/4R/+Sf/BP+9t/+23zoQx/i+7//+/mH//Af8vGPfxyAW7duAZxjeu7evRtZo1u3btE0DcfHxxdus6uVZcn+/v7gFdujJqsn+RBcBLaSZgVM5zXTRY21sNkWVE1O3WWc1RMmquXaZM3d0z2u7q2ZTRsenM25fzrHWshOFFpLTjdT7q0XnNUTpnnLlcmWed5wWLrMZ1WXk0mDxDLLG/YnFYeTLa23ClJatJbUVc6irMmKDmMEWa7JCs1ir6J9zxZtJNO8RVtJLrXTLRUaUyvnXls47YnJDdWV3ohtr/dMS/kQtjeh3TPsvSSpvbYoX3uX2E3QuXOfOWG2QLaWvS815GctotHIbYtVgu76HtlZhdSW8ssPOfpMw9m7SrKNYfXCgvysxbz3Oey9B7Ct0JOMbiL6EHEB81e3ZJV10Wn3LWpDn30ZYpK5sHJPS4ykoeZxXKUCaNEbrsE2Y3YkgANvvFJ3TNgmDd1P9S+DDMojYx3D6QO75LcN+q4x42kKSzt30WZW2R74pdqLsL8AhjwQGEREjVbs51x33gUXnwNvFE0i3E33HfuJfj8mSzQuwaCPdE0xCs27RxFDBio938DUhNp3aQj/+PNovBO2o50NjfAuEDlgYHS/Hyt8MlJfk09Pkv5Lfpu6DSNzlvRrCtIG+riEUYuRZp5dCkEBMTt1AEqtE0yPAWlxKmIJnACMzAh4yxYXJZo8Z1EgbhiA1ZShCtd54WJy1IcXtQu3CYAyEeMPjhn6/M2Cqcv2VdG+qgHRZrNByuEpKqVi2P2LL77IrVu3+PVf//X4fdM0/OZv/ibf+q3fCsA3fdM3kef5YJvXX3+dP/zDP4zbvKkmPL87FiM8ZkUw1PtwHlTtaonRu7BJizGSTvtw9swwKVr2SwdYpDA0OuPa/opb8yVXZhvabYZ5fYZ9ZQZAWbRoI9Ba8nA1I/OWY6I6MmmY5w1KGjojeXV5QKsV87xh3RS0nZuJyrxjvS6RyqCNJFOGPNPU6wKtJWXWcePqksy75QIoMkZSli0oi9XSFXO80XLlkwpduqiu6T0vQDZeKK2hfADZxhV/FbVk9SxkW0Pm3WyqsXRTQXmCj+YydHNFdbWgOyionp7TTQRYy+b5PbKNxk5yTCnZ+3LD+lbG9E4FUtBcncAzN0EK1LaNAlDZOIN68v4ZsnORbdO7HZMTOwijT9kWYXrtg6AHOzGLdRIBFY1BmPzD993QILhx0K/2UyN+TmuWjivbr9iBQaTRWIOEB0NBgB2rzydsgashJpCdQGgBRpwbv49kL2KnDA3zgGVIAaHfPgVj0RAl+xi7bHaxOGl02YDxCS4dDz5ipOCoX00ilO58skCT9yAoJHWMqQZGLFhgDh+5UB8xw1FHpPr7Di57c4xa9NeVrXsXtBVO7J3uNzB9Vob76D5XKQOZuNjScRNcYzaAloSxkZ55M0mB5HhMDxZ1MbpM1QvCQzBBYCPTexhE2GNX4sB9Jobfx2NcBFjsBZ+nfZUuWMK+UmaI4Xl8pZvhCdQye6dO9qu8fVVXu/+u7/oufvzHf5znn3+er//6r+f3f//3+amf+in+7t/9uwAIIfjoRz/Kxz72Md73vvfxvve9j4997GPMZjO+7/u+D4CDgwN+4Ad+gB/6oR/i6tWrXLlyhR/+4R/mQx/6EB/5yEfe2omlhkhc/ATt/CqslsJ+LmrhdxcZjfC1gP1ZRaMV603J19y6w2fuXcda4cLqu5ymU9yYrziupqybAnmSY2Yadaqwz1SurIcy5NJQNzMao8ikIZOGqssolGZOQ6MVV2drpLBILLcWS+6s95DCUmQdZl+w3pSsqpJ52VB3ir2DLcuTGQaXLTuXmqrLY8HYIu/QRrKVFnuWY0oLWmB8iHNXgigcuFg/DUhLuxAUS5epWk+hfCjpZhZTCA6+pDl9QZEvO5bPTiiWluzEYjJBfSiZv95RXck91W9RZ1vq984QRpGXOfmywypBvrasn50we91l3muvzsiB9bMz2plb/crOJQ+sDwXtwkfIrTvKU4kuFd3UGybZT5qBGUpdBibvwVWY9KWfeE1yvyNTlLI/KbvkDVUKhFLGIx2LA/1FOJ9Un5Eex/9N8xnZ8fgU/fXoiXVMlQSd4TReoQyD7sFfyl7ZRxmS9LxDvyXHF0DIezQO607fh4i6gevML06CcQ7bxN+F+9MRI6PUpj9fkd5L6wv0Fv1+Ux2XTPRa8fi274vgNtsV+RYj6QJbktwb648nWzccVItP1kd0X3XzvjacFT5gIZnHwj2P7iv/nWqIFegH6zgDtgSrwXb9/U9ZktR9h+2BWzyuJkaY5SuXjym9B7LpDyhb368QXWgIYjRqeB4G99Ym42A8pi5g3x4HC8I4GoPr8bMSvnsnmuXtAxp7CYiAr3JA9LM/+7P8i3/xL/jBH/xB7t69y9NPP83f+3t/j3/5L/9l3OZHfuRH2G63/OAP/iDHx8d8y7d8C7/2a7/G3t5e3Oanf/qnybKM7/me72G73fJt3/Zt/MIv/AJKqV2HfXw7N2HvfrrGD0Q6saUTdtjFzgcoWcmMDxMePum/mE1r/ujVpyjKlqrJeOrgjE1bUGSa02bC2XbCajVh+q4l1ef2sQrKSUuRaZZVSV4YyqIjE4bjasrV6YZCaaSwZMLQ4PrLWEFjFLOsZa+saI1yWaoLBx6qOkcpw2ZbcrjYoK6umBcNlS8a22mJzC1Vl6OEpTUCmRn0XkeXKVCW6pqb3Ooji6oF+5/3+VUyqG5YhBFu5ZnB4Wctx1/rJk3VWB8GbpmcGKZ3WvTEWd69lzvauUI1Fqxlcr9h+9wBk2NNN5WYMgNj0VNFedKRbXzBWByzdPaukvpIOAMZMk5DLDw7XVmsFBQnHdurymXg9YbApkbW9MbDeLYlNU4qAU1RVGr7fcV7b51BwfifeiMkPAgjJM6z/blGsCP7SKqUARmvqKM7ReISfxrRGx8/HrN1n/cmGGxTWgeEWtGDhtQAJ8YnZRpSfdJg/A+scQ+uwvv4fIQHKTVQEJNmRtaNBKQGvZZIXDfhOfURVkF8vqvMCMIbZQPdYhgNNS5JMb721JAHt2q43giCkksa90F6nelYEtoDXD8Gso3/bQSQ9IDagykRsm57ViewQbHrUxDn+ywmKA2/FX4RY0I6BvcKUW6q7oFSdJMat59sC/Wkv0em6I8TTyIB7dihG/LcPQ/9lIydc30ozgOcnS0FqOlvUrCePj/vIL54EtXqL6vduyastY/iKS6bb2dnZxwcHPDiv/pxZBkKVT2ixSfM/Ump/nRlfGHb8YDuChdur3Y89dxDllXJB2/c5vdeeZai6Hj64JTXTg8wRtB1iqLoeP7omFdODtlsC3h5Sr4SiG8449bBGQCn1ZRZ0bBX1GTCMUTgAFfVZRgEDzZzJnnLXl6TScOmy+mMpDUuJ1GrFSfrKbOJS/zYNBntNmN+UNF2ijzTXF+smOYtJ9UU6x9mJQ2bJqf6/SvUtzr2Pp1RH7lrzpcwf92yelaw97Jl9bSgm/cT0P5LlrMXnS6hOHVG6OAljaoN3UxRnHWIzlJdy5nea7BKoLYatapZvncf1Vrys47qWkG21phSkq86jBKU9zaYSU51vaQ+UDT7Ap170IJnBLw7RG3g5u9sUNuObp5z/IFpXL0GFgiIeWgQfbI6ob3uwzo3Yay5xQhIJ1qbOL6CWycVCIeVbKIHCYyFScKVdenPJylBEcbfIDeRIrHMjo1xrrH+WML44rk+Y7XQ/feyEz0YsYNdnVscxDEedEa7Vvj0AMoqO9yXTiyisJGhSgvuBrF9BCL0IezRxen3KVsnXpc+bcIgwaQHBVb5iu6+b1Xj9TeBlUrYusBSRTdVACTG5xAK7kfbg7Z4zf6e6oJBjh9w16daYgHVkN05slT+WkyixQnnmjI5EYsmUWpW+ksOWjLhCx37Yw+CCJJM8MG9qnMXLRqzvNvkHKwri6MLv7go/bk2JKVfeoYoZT9j6L3/LB1jaZ+Ntwn/D8bTjkVpBKX6/PZp30QglrDBuqn43P/zn3F6ejrUoD6hFmzS/+M3/g75vHj8Dx7R2nXDf/jIJ75i5/pnpX1VM0Rfjc36STa8vxAXXfR5MhHR7+r8yiRMGMn355giAfl+zabJ6bSkMYrDxYb9SUUhNc8entBoxaoueXb/lFnWUC0yXm0PMUbQHFmm0iKFxVjBcj2h7RRSWOZ5w7IqqXXGs4tTMmkwVnA03cTVhBSWQvZLZm0l2ki6RsEE9qcVD7o5s/2KpsnQraTMO2qdkSvNJGupuhxtJPfuHlDMWuobmuxhFkW7e18AoW00AlhLceZyEckO8jPQpQu7z9cu2ubqH2nO3qW49ocd3VTS7CmKM3eeulTYTKAnCn2zdCLt+zVCG2SXuz5ddZhMIjuDaDXZvVPE1WcoTzXdLCPbWNq5iIYwJGw0OWSnFTZXIFxG7JN3Z3GboPvRgUFQXmORTt6mN1jpZ3Hs6ARIpKCIxKCF0gdpmHeSJyYa5rwfVwOWhd7oxWKiYcz78jBWgdURc/TAX/tt/LZW4Ut5JMLyZLyfW5mnLNIoiis9t/gbaXtxtj8Pq2zPSnnQFo21Z9mMZ9ZS11YAniEPTviNG2OO/VEPk/sl+nMcuE4gRkvGe5m6CINI2faapHGWcYTvinBNCfsRAbHt70/UNCUsDobIEkVXm+yPJTq/adL3KSs1mMOS/cbM0bIHEabAA9++/wLzpXPHIBanHsCMwFAENeEepwvFxA2W6uKCzmjs+gz7iefMjnlaMOynR7T0twNWyPb3I2VUB8d4h9qTiBK7jDJz7bIXvhLtUfTj6AFMgc4b3U36EL7n5n0OZ1uePTqJ4rhXjg+5MV2yakoyafi6q3d4fvaQF6YPmGUt09L5cuzVOoqcrRW0DxwgOqsm3Fnt0VlJrjSrzq0+UsaoMYrOyPi5TGYclRkHuLQLp2/bDOPdYtLv4956QSYNpeqwVjCZN9QrNzN2+5p8DSazTlcg3cWqClTt3GnlQ5jecUZKl75MR+kmyXylnYHoXJSTKQTb6xlCW3Tp9mUyQTeVDmwp91n5oEZVhm6qwFryh1vW7znErtbM/vMfUT5sKE8Mxcr2q26/0tc+fP3sA4fIZYVsNKrSfQi9SNwZQTMSwAb0T+Iu6n4MeLzhSTUp4Tip2DcYdZm4e6J7LuxaDfcRo8lGE31kGsK5JucbDXg0+P3JCy38d7Yf6+krvUbR7yeyU2ERkLi5Bn2SArqwTxmAnyDB69HFakOSvwCsRm7EAOjCcaJLqybWMYvnkh4zYZis6AXo4Rjj646M1AiUxu3T6027atx3jzLEYTykfWQ8++K7MRxDBkH/GJRwHnDZAPJE8rntAU8EcEmIfaqbS8eWqhPdVgLMAzMUANdFz0o49rmW9HcKKC9qu76LffGIBW76u4vefyXb2y/s+vZdbv+ztEtA9NXaxquaC9osa5nnDZk0fObedTZVwfX9FZuu5P2Hd7k1XXK9XFHKjtYqKp3RtI61mC5qykzTGkVnJdmVitnERZSdns24OnFsUKNVfGDqLsNYwaopWbUOKEksDzZzXrlzhJKGw8WGPNOOcdrkSGUoy5aDvS3LpYtNvjpb0xlX7mNR1uxNa8Rp5kp+SFi+x82ccbIOehElmNyHYgXTBwZdOm3R3pd1NCztXFGeWLqpYvmsYnVLsnxe0uy54e6ixIw3vO4AonPJGm0myFcd3cyxPO1cor/mXVR/8WuprpXMbjdsr0myjQclOjk3AatnJLbMUCdb8uOK2V1XIkQGgxCidMLqGnqRKAxBg+0j1aIRVj3AStkg9yVDaj9ZVQ9C8xOGCAE2s+ddcYlh78XfFlP4baWN25jC9nqk8YwyZqik1+mI4XGiKyayZ9Ypy0k+B8cI+WPHDNjhGjLbA4zCddoAWKQ6KtV/Z3JncB2Asef7DZ9gMZQh8cdMgUBggNLw8QgERHLcpF8RPjIOPxaSqL5BhB/932jYvQspLRVihX/rz02aXh+VFkdV7WMIjIQRGbjpZe9uHZxrwm6FkiHhnpnc/SaOj/ExvKu4XSR9k6R6iOeh6ZOIJuM7gv30PMeg+23Y+nPgMz1+8v4cU/Q2j3vZ/nTaJSB6G22nyPmC9qYA+GiVMfjt6EEL7q5GK56/csw3P/0yudQYKzhpZrxnfo+pbFiompfW15ioju1yQrev2Z/WzIsabVzZjrLsKDMX9YWwdEYihXVh9N5lFvIOKenC+Sud0VnJ9fmKZ28e02pFaxRVk6M7hSy8q8pIqiZHCNh6cXXIUB1yG9nSoHJNeUdhpgbVCLIKVs872j1fQ1YZpg8MWFg9LTn6tKW6Zsm2hul9QEJ96Ib1yfty2gW0B87YNfsCXUh07tghK6CbCKwU2Exic4kuJRiLai2i6SiWmrP3zDh7Ief0BcWDr59EA65qoiEMkVMmg5MPX0FYi9i2lMd9IdnU1Rk0N+FvBDjpZG/6idb6z1JDFN06frtBrajgikn2F3QlwUDF8eUNZlpdfJCzJxgp6YGHsj294LfRpfs8gorRmI2C5wBmwnFVMJy2P5Yas0lDcOPcYf02ZmJ8LT/hXSkWo1y0m57Y6NpM62epWkSXnrt2G5mh4G4LYCXc27ErJl6eSe6bdNcYit1G92Zm4/GCuykFhRgoTvrn3Xg2K4p4E8bGCiIbFdxXYV8B2GnvLjWq30cUSj+q7ViEpZFbAybL9mMt9FNkxLIe+I6TewaGMYi68zMGNfhCWZywcNgFQIXtFyKD6L1wajJ57WKH3uB8nAYCPG6bgVvzHQRDl7XMnly7BERvob2hAf9Wx9eboVyF5c5mwSJv2LYFX354FF1Xn7z9FNfLFf/lwYtcy5e0VvH+xR02XY58mJPtNUyylkXeUHUZd5d77E1qOi0xRrCYVxgE2yZ3brO24LSeoKTh4XYWgdJZNaHunKUJJT4Ap+cQlvm8pmsVunNs0GxWc/Jgwd3lXtQPtUZR6wy517KY19Qv1pS3M+avusKte1+ydDNBsbIcvydjfUsiNEyOLcLA4acF9z+UU11xrrTjDwiqK4L6aFjDyeRQXZHUh5LNTTdzdxPB5ukSPcnITiumr66QnUVVGjMryDaa8kxz8//1Kvtf1kjtXHchgigFHaZ0q931LYGZFYhtTbZu2XtFxyKu8f4mmhagfxJ9+LcKIccBeAStSMJSnHP7e6MXI8gyBsYnrtqzYebrYPyjyyywciFrsGdqBpFSwfAXvfvQuaOs1+34nahe4xPrf4Xx7VmgAG4C8AnnHYFPYFY8UErrd4Xj9aDJW8vCjI7RAzs9sXRz63PgOGbJjhI0RlCmHDsU0iL0J08EGjGTcmEHFxiM9rk0BX6zCJoSdi4Y/3j/0jES7rHo+zKyeNqNv5hl2/8mMoyJ+H3czk0zF2wXx1MAZLIXU4dEkMJ413blxdoekAXReDp2U21OcEeGvEexry9iWsJzNwKLcfsxc5OAz7cCjAbz8ohJTbc5d7x3oF26zJ5cuwREX4kWn/Rd3z3qd/3bNwKGAF7/H7dYZDWTrOVgViGFYb+oec+1+5y2U15cPOC0m3Gn3mdjCl49PsQUBtM6ILJqC/bLisWk5nQz4WQ1Y70pWS6nZMJwON1SSE0mDa1xrrNcGqo2j5qlZVO64q9G8XDlkj1qI9lbVEhpyHNNnmvmZcPqbIJQhrrJKLKOzsrIcE2mDWenU/JJR77ER5FYttcF22tQHQnyrSuaWawt89c7hIHF6x26dOH4WFfs1cIwD4r/KzuLyV2eo/rIsUNGOVDUXJ3R7U9Qqxq16dCznOLumtkXzzj95qdo9iX7LzXIzoGHGDUWtBlJ07McrCF77SGTezVZZQegJoqiA5gKq2B6N4cu6JPkJeMj/C6dmKNWKdk/JO6pxBBZ6QEXEUeQum/C+BsDrlTULBs5ZIxk/9txlE9Y6RPuibSekUlYhXBtYnicwXdJdFRgfGzmwZQvKuv0VQJa0d935bZzbhs7yOWT5m0KgDKCwgB6Q3TaiImILFtgc3yBYgdQxAAIpUVv+/MQPUBQ/V/HbrkkpDH3TmCOQvRhwvhEhsq67UOE2ti1FMDG4J4O/z2Xvbub9K/I+iTPVUigmG3cuUgPkAJIybZ9tNi4D61wv++mw3s+cLOm94ME/KTXN2rOJZ6Ak7fRBgB+DH7Uuc3jd+e2v2x/JtpllNlXuo1WKxfqgnY9eOMHKrpc7OCz+9Wc69M1D+sp96sF9zYL7tzb59rVJd9wveKPV7c4aabcXS8wWsCi4+jKmtsPDlC55j3X75NJQ640x+sZy+MZ4izjztEeTy3OIuvTZK3LNzRpOK2mKGmQRtIaSd25IrK6k7Sd4mBWoa1wgumyRQrLnfv7WC0p5g3NvSn6YOUyYFvhC8la8klH1yo2T/V5bHThJrhs60BCeQzba4JsKynONKunMiYPXeZqBNjc0u4lLqDEXbS9KmLotDMcLiJpeq+l3VPMXt0g6hZlLWppMfMSua5p9gXX/4+76IMZ7UJRS4kpBOWppToS7hCaGMGjpxk5YE+XiJuHfcZpeoYjrXoudbSnBFdEVkG2seiJwGq/eol6HgYuENmeZwyiuyIYddGzWmnyweCSCb9PE0A6sMNo9Ws9GEn2oayr12ZFX3IhjtfRMM52fJ64R6ILyOcAsgKEIOZX0hODbKVjg5SFqUassh4cRSbO/a8nFlnLno3KLLKSjl1K+0Lh2C2LY4yCZ1ABIzH6OcYhgGLhfyQt1jgXnrU9aIn33ANDod3x8hXRjWZK+szX6f0ZAVQH8PsxHv4GkCfCby1Dlqrv8nPXEnRtukhE3wHMpoA8/ET3z9LATTtiVMLzp/y2Qdwu/LOYAk8YAp84b6bXFsaIv2a1TYrXJiA/nrfYgY3C3JzM0TvbmIEKjK3fZ/rcndv/O9Au8xA9uXbJEH2lWgpaHvegpJPHo+7IjjHbHXVMso5XVgdIYbm92uP2l66QTzu+7uod7mz3+IPbT/Ohg9d4+HBBty4oFy5HUDlpePHaA+6v5zFi7NpiRfFKgaoEy62LUvvU67e4vd5jv6iZ5i2F1BRZR6E6lDS0nWLdFJxVE7CCedlgrTOOhY9iW64nCAlWC5pVgS0Nq7qg9YJtgysYW+Yd9rUpshGsXzDIzkWQhbB2qZ0brZvA8fuVY3hy97+eOp1RcV+5RIE2maSDscjctuAm4GJpydeG/LjyWg+JPpw5KyYlcttSPb3H1T9Y0t7cY/PsjG4q472qD5xBC66K4JJaPpfDpESfnoFwtdSC+yoWQvWTfAhHlwkTFNwc+bYXPKeTdogWS1mfYHSjKNUDQpP1AtxgkE0RDLntBd1Zf/5RyxO1HV7D4xNiOiPg2SHPEJmyFzw7ACjidkE/FGqcOSF3sGz9NaAsunT7MKXp9xUYm9xCOJ/Mu8ZaiZ2Hi8ABKZG8ADMzQyH1rBft91F5wjNebj8iRAWmbN7IyEZWSfWgZai/sv1UYIRnWCyyFRFEpdF9yGEYeprrZyCuT+aJmJMogIbAfoVtwvhPWiSPAugJrA/00XhBexXZuP73AyH/SF9lkyKsASzJ2rvXguhf9OcanoFw/akmavC/6I+bslCxwLAH4tnGlyax/f0bTMePAj+7cMH4s1SXFIFwv907riG6dJk9sXYJiN5CGz9gb31HDMGQ2P15POi4WYFoJau24Mpkw8PtjHu3D7ny7CnTsuFuteDTt2/SthkP2zkHhxuef/4eRkvyTDMtHbi5Nl8DsKpLlygxg/aKE1dLLFmmKVVHZySF1M5Fho2i6EnesWkKNtsC3SinOapKlDAoH2YvpEVlmmzukEN2nGGMpNEKbQXaR5xJaTHXGvTcRYHpiTNirQ+vjxOon2SbfdmXg2ih2fNZeRlNSoHiTibWGJZeG0Rn2F5VtPsF1Y0J2+f2sblCnCyZ3F5DZxz4ypwrJt+6+xHzAgUGyDhD0k0FVkrUwT7dLEfVttdxJGLpeJ6m30/qDQjai2zjGKNYsT4FCmGFmoZ4Jy6qNAouNZIxL1FicAbC52Ts9WyPTYydt6DSghYuK3KqrUjPTey45siu+GOGBIvGgQbRho0TwBA+KhyDaDsJpXaatQDOwnvSc0kAWOgClWiLZOhv0bOKias1iqHTltyobtaPt9jP0gGfgV7GwNhaZmvi+Ix17kYsy0UBHAOtDf3clM5RMVVA350ecPbXPViI2eF1n2N7SO5pAAcpKxNAW2CodL/fAUhLx0joX5swU/63A8AVfu77dJDTLckHdq7f3uZ8fc51lgKieLAL/l62PzPt0mX2ZluC/t8UKBrTshcBoXO/Gy1tRpOpzZ2Q+WE1Y7UtObyxZL+seOXBIZ+vr7lq8srwhw+eQvlIMaMli7JmmrVUOuOwqHiwmTMrGqZ5y9GH77HcTjBGcNaWdJ3i7nLB0fUtx9WU1iiEsORSo6ThbDthsyqxjeLFd92JWqPMF3qNudAFCGGhlahaULcZk7wlU4YGV9IjuM30w4Lygcs+rUs32W1vWrKViOn/2z1AuLpmxRI2N5JQZBLQk5Z4MFCewvS+C4evD4SLOBLOcK2fypndbilOG+SDJXQa0XSgBMXrNXpyBGS0C4GqLEzEMKrLgzNdQHdtTt5eQdUaXeYx51HKIgTRrfHAJQpXvfGoD1xiwfLUoAvhwaFwK3Z6PYkMoMHrLnRJzM5sFcGD1AMpXKK85rAHUI7xEVGkHIeaFT2YCExVZvv76gXUaiOdfkt5UBHAk7SRicB6IKUstMI9T35s9M+B09dEwCVwbBBgC4NonLvMTszACEfjlBnnLpIW0Um3j84dC+O1PYmoPYbxC9w4yCyyEYMcToFdi+M44MKUfRkBBxGOaf19kglDlfdg1Hexc+8VCXhKGEOd98A2iLUjKziKQBOGmOMq1C6zKpl+BIOsz+mYiEAoRI+F80u1XBE8El1mUdeVAgXf9QHQiC4RX1t3jsIfO7rcOiDJpN5fWH+eA6xuhu+DLmngsrXD/exs6fw8nqsf086BvLCPdwgQXbrMnly7BERvpe14YHaOpxTAJBPfY4HUozYYfScax7JI4TJOH062/MXrX6C9pni1OuT2Zg9tJM8tTrhWrrhfL7g5W1F1WUyoeL+acXW2ZtvmLJsSg6CpM4SA4+2MPNfsTyuMFbx+us+1vfUgZL7TErvJmL6cwbuI5yKFRUhDaQXGdDSdwmiFFS7UtvaGdFHUrBo3C1ormE1rTq9kqFdKbObS+m9uuZIQpnSC3OKhwipn0IVxdHx5DOtnXL8EoHEu5b7AgyxBeaKx+xkmF4imY/LQsUSbW7lzcd3YR91fYu/eR5Ql5uEJ2a19urlC1dDOpNM++EMEpkfgJuXNzZKZ3XduuFI4MJSOE0vU9gxwb2CJ/NNZLA2qsa4EQgGmEjFKLOaZKdyx8aAvjrUw9iLz0huWbjY6F2/co7ZFgPWx/5F1kj1DhBFgXHV7qyzdoXbfd0475sRRNgIRcr8vbH+O0saHwpYGoR0goZZ+uAsXyeaZJOE/t0XCIHUyPhvCn6NtA4Vg3bFt8tBGdsJiEaBAtCKCUtkKZCNc3qXcIqRAbZNhZB2gCWBMRjdQoGT8dp45s1kfweeuORzfbWMydx0xB1N6WwIDo3AZpzWQMajxFZiV1J0Wpp6QgFJ4xiu4T8ExrDYD0SS/9WkIUkYugK5BVKXo3bbhWEInOh7VR7iFbU3mGBwrfV4n2wN27Z9LAqMUbqkZXk/UEqXPkXRjOVu5RK2kaRCSv49l9sXo/WgtOgDto7ZLX/VONffYvj1A8zYJtP9p2iUg+lNsY5eO+/sGh6b/seicTqfqcjJleHH/AX949jSfvnuDb33uJf7XG58Z/OyknWI6wSJ3YUYnzYT9ombTufD6usmQWEwnefaph0hhOVlNYQpfPDlCdy4qLGSYjqc/7dg+I5hkHWf1hJv7y5izCKDpXK0zIUAUGl1mtGclelHFBI3KSDSgJOwdbOkmZVztuYSAFrvn6kU0M43VAqEs07sF9aGfDGP/uOiWqGcIq13rJuBiacjXGnWoyJca0bRIbdl7pcXkgvy0Qp6ssbMSsc7BGOT+gk4JirMOo3JUYzGFwBrv6pB+pWt9qYepQE/cI2aUGLgCovaC4TnHiTiZkE0mENqhpGwLJvPFbT34im5E7XCGqocGO+x7LPw0UR/Un5cI34eoMW+FhHXXhXHgJzXCJrO98dM+2kum1+gZJl8YNrizIgMhLUw1UhlkZtG1cu4z6/eD+43NbA+sSPooMDH+2bHan3OSMRthIbNOHI3oXWvCgTObWW+VwajAEA2RaqhfN8g7RB8iP3DrBQMZ2Ks0mi0xmqEEheygm7n7KlMQ78eSajxT2tGLmEWyL9uzNbFvYRCxGKMcOw+KZA+sgrDZeuYq5m4SPdMobEjXYMm2IpY/kS3Yohd4RwbUeMATghsSNqib99cvQ6bqjgjejOwZn8EiMoD7hJkL59nNkn4LffLYxefoN+Pvwq7CPd31Wbp9YMcuGaI/k+0SEL3NZkdz7oUtXaCOx146mb+BcSmS1aidO03PneM9nrt2jLFOU/Tnnn6F1zYHfPb0Oh++8hoLVXOn3ueT95/ifUf3XV2yYsNEtXTWaYNWXYG1gjLvuHH9DID7yzlSWrZtzo3FinvCMUDH2ynTvKPIOuptjl3nPPueuxxvZxxNN2zbPLrorIUic2BLNxIEbJ/rELVEG8G2LRDCun21fhmaQfuNS+pVSW2AVjrDJy0qN0hlHDjrpBNZz2zCcjhGo5v5VWxiNOavgTCW9U3lslDngvL2kgd/8Ra6ECxebZGNweaK6j3XkI1BTQqE1sjbDyk+e5vq654G/Grbr8BtYlzCanl7TTA5kS4Dtkwm8UQLE1ibqJ2AvlJ5sjq3SqAqQzv3iTHr/vjC+lBt1Yu7o0jVACpZ3eM+DyUqRCuwk95yDDRA8Xz9P14QLQIo8qHk5UNJfcU4QGHDPgJoElhhB0AvHENMO2ytHCvUCbKppqsyRGYQuUZXGWarHAAyAlHq/n0lo0vNApQmgithPDPlRd0iN7D1B81sdNGBW1A4oEXvPvMMRGTK0nD7wDQkuiyTeQYk0W0FTRihv6L70D27jqVz56enFhPdY75fQ2RbAmKtdMAjAo3ZEFSLVCvkQZjxLJFNxmloekIMiW/nvSg5bBevK/PEoHApLbKVjMBKehcxeBAenoEg4A/JJf1iIdv04zyM/1QQnrbIcPZd4w80/Kz1/VCcueMG5jNf+kXSmC0atxFrO27nWJ8EHA20RUn/2tF3l+3PRrsERG+jDbQ/b4TY2bXdRWBo18O04xiTgwqAK/sbnp2f8t/vPs3plw945daG/+X5L/Cl1RFX8zW1yZhnNSenMziC+9WMiWopVQcGKgSdkU7jg8tEvVfU3O32uLq/5mQ9RS6cG2zdFFRNHiPIFnsV82tn5FKT+RlaCIsxrtgrQNupfiLZKrda32s5ubOHuLVkmrfkUrvCq0aCMRwtNmzL1gEp7YCU7iRKefG1EQhpqW92iEY68FC7jot5XpKJVlVOnD297/6Wp5rZ1tAdTt2EujJ0U4nsLFU5wShBezOnPM3Ilx35Z1eIa1cxmYgFLFXj6fqtzw4Mzr2B+050lnauBqHs4V6mq15hHQNhvDskCMh1IRDaG+lMRJdGWCULC9a7DIMRjKv0xFgFV0z8zIMUG5kSD6ymBtm4NAIY0Rs4bxEHrJYErKU5DGii7+sAhmJTnt0BB8IKA51EZCYiiXZVIJSjokyn3PuZdnofDyxEZrCbLBqj4K4TjXTbdo41pJHu81pihUX48iTCALl1+iUrYpScaOXwvL2rTybuG+j7tv+ACFzTFlxUeC1VuB+iEzGaLv7e9iyI0CIyQikgsPRAI5S7SA19yCsVx5MANH05lQS0Y8F4LU8skJowV0FzFFkeEcCiv+1dUqQ10RlhcRGAqh+PJvfAyH9WXfWbhnth/feiH0LxGuICZ3RtfiNdOGF42E+zn/S9dRrDsTvxsW0Mjt4IqEn67U9DUH3JED259qfg8fyfpO2gUHdvN3oSz1GsIzD0BvaZil33ZxUHRUWjFbe3e1yZbcivV9T3p0gsLy4e8unlLQ6yLaftlKuHKzorOSwrNrpAW0HjRdCLvGGWN6zqklne8OmXb9GsCzotee+1+zEj9TRvmU8aDCJGm83yhta4CDMAawWdVi4s36g40UllELVE1BJ1r0CtFcY4EFR1OZU/hrYOTOVSkymX3FEKS55rtHbATUrrAFxpYg4ap6cJ4eJOA2IytxKe3emZlWwDq6edfmj97ARdwMGnTtj73Bmqdvsqj1vytaGdS7bXC8RTNzFH83hbVdOHaOsgUg0uBhsMh0Q15nx0l2cR4v32E38AILLDle5ItRhh/206GOhdGSMGwBSJQbTE0Gl3zqLXWljn9jKlJTtTLvlfqAsWXI4eJISs0qIT8XzioPRanSASj2AriImVxeZmAEBs5/MB6X5/qtCR4ZFlhyw1IjcI5VkgI6KQO/7W96HI/DFzg1C9LgkjevZECwfIhe3dd57xEq2I90htRQQLg4SCqQH092AQ7RXAQ2JQgy7G+jQHshW9u0kEw+827uv2JfdT9KyDnjDQx8XaduO5Q/hj+mSOgRkMYD6CHL9dSPoYnx2fpykAFqwTzgtNTEoaS9dIYrqHcA6m6AF4CLkvznpA7+6fP1XTHyNcU+jbGF6fAJtUPB1/E74fgHIubFacfw1awswN5vt0e8nFzNA7hDEuw+6fXLsERE+wXTimdoEiccHn537L+UnOH0u2sFdWnNROyZhJ44DI7SlYgRSGl1ZXuFquOO2m3N0uXERXyP1jBZ1RZMLwR3dukglDoVzk2IONd/J7EWsmDWf1BCVMLPBqreDBek5VO2uwrHy1eiOpdUbrGaKmdTSF9KyEmbraU2oryM4ky1N3/o1WqMBQ+TIgBsG2cvuX0iCEpSwdIhCJiDYtz0CopSW8URNuJZlvLMXSvfKNA0rFaeuiX4pgYF2Ns3ztZuTpndrXOwN9ZU5zbYYuJdM7bQyJF8blP0qBizN67jy211TCFvQr9WAE0szOwYBY4YiTIIwNE66qev1O6oJSzdAApXqh6NZLP0/GntCOaRGtoFtoBxYCoPHbpVXjnatKDPdhzg/nkHPonCsks/GeCQsiib4S0kWIZWXncll53ZGQ1gGcTeb2mbsIs3gMgEbCVjltWWbc31bCpAfM+FxDWAeKQokOrIgh97IZPYi7jGro+9CVtjeGKXglfQ/Oned/H0LwAysVXXEJABg0mRwrGOlk/1YS3YHx4yQVwiDreXIdAYgMS5MIVCMGxj3of8K5RRYsgAQ/zkIUaADhIZ/TgD1JWKXASI1D/CMz5I8VXYfhWElL+2oAjOxwH8nl7WwXgaTBZwnTm36fXt8lvviz2S4B0Zttu1Zib+h3Y/DT/79bU0Q/cYwm1bgCy+GkmlKojq+/dpsHmzl3zvZ4/4dfJr9SsdWFqxEmnKvr2fkJD1czvnx6yB/fucmn795g1ZWsupIP33odgKrL2CtqVuuSo6M12XHGvGh4dXlA2ymmResSMW5K2k6hlGFSttTa5RXadjmvnR5wsp6ijeRkPcVaEbNdm04iCu3cGhK6PYs1ktPNhLZTVG3Gui7QVlJ1GZ2WLOZ1TPTYdYq2zciUca4zZZxB9cY7Vm73RrabO4M8fwWfCygYQEu2tVTXS/KtcWH8R1P0LGdyb4tRApsJ1Kpm8YorD3727hl64iLG6is55alzNwZAE7Jpq8Z9ViwtRgl04SKYTEEstumYJNtnGfbGJYpZvYfR5C7MvptK76rzLrTEqITElNFNFlbPMhlmYwG3N8wmA1sk7iTbW/kIIkKeoQAkAoDTSc0ykuug7xNb2KibIXdgJwKgRjqA4kXQatqRlRrdyijYt51ESEtWakwrnVYocffZ3PZsjwdIIrOY2gtoSh3P0+mFTGSB0mdY+Oi6GJYf+m6XEQ+X611RgSUZi2r7dAb0rII/Z2GI6Q1EJ3pBshrdM89WpTob2TqQkbI8cRvZa4ZC9GHQ7+xqKXgTtv9d0BalrrIA9nTZg3ntE3ymuqAA4NMM1mHbcB1pSoHYzwE06l6gPRhb/pjdvD+H8F26XdS+pUxRusmI7Tk3p1/0P/QJLMO9H83JAzD8hv10b69dMkRPrl0Coifcdq0qYgtLl10PyujBGu6U86AIyN93xo35isOy4rPH1znbTPjIuz5DZyTNWUFjFPO84T9+8kP88dkt/o+X3kP9YMrpvT3qk5L2M/v8j1eejsLqzkpmmZs5bx4tyaTh6MP3ADjbTJh4nQ9Almk6LZlkHctTB36mRUvTZWyWJUXeYYyIhs1Yr0vRApkZRKFprmi3etSCZptTtxlNm9F0ik1VRBCkpEFJy3ZVkmUapVx27OAyE9JGEbIzRD1DhHXh+Pna0k1CfhywSpBtLdurErRl/0sdyxcmrJ+dIOqWbKupDzKXmPGLD8G6UP36QGGVoJ0LNjdyJieG+W3D5NhQLg3Te5ry1DK7ZymPO0zhM1kn+WDC7Te5QFiLMCELtDu3qNuBKG5tFg5YOcPX18UKrhnhAVkwiuOIsjiO6A1pcIeEZrJwYjgBux9vVuCAh7A9KxDKZqRD2BJLUbhBYgfHDcCH1um96BIqAxACjHZTkgxRbgFAWbxLzt9Xf35BExRrqvnjiE461rCTTk+UGW+IPbBL0wcEt3VSqiJbeUCWsDKRBUn7xd+HWCds8LwT95Fqu2Qt/Gc21jzTpY1RYtF1JPr7GN1DyX6Fj/4KbjDwgJsexAhfw+ycK8lvE0CKLvt9pAyILnrwEqPNdN8vYTzY5BWeuxDeL4zrW5M78XZMLzBmXwITOtI7xQSZIfdYcg0RhNvh+8FUa4fHSe/duZcc/s/ou+iGHLmnz42Jd7BZz9a/3ddluwREb709BvyPx9ejKNrYHjUmd2xXrQskltvrPVcctWz5/YfPuAzTW8V/f/0Z/uizz5C/XnB3s+DKf5zF1bQoDN1RR5ZrKp1T6SyuEhwAMVRtxvMHJ2zagqPFhrrL2LQFdZtRFh1l0aG9nmO/rHhwOudkNcUawTTvEMKitQvTF4A1AjXtENIZOZRF7+to3LrWJXy0RmCMoGkz2k6RS4P0+XCMFWgtab0bzoEhb+C8kUGArNw+85VwE7MIK2Ub/+pS0E0Fy+dzVGUQGuoDid6fsr1Rsve5M+xqjZ0WFCuXGNFkxFc7F1SHku0V9xgVSyfKzraG6V3HKuVrEw2K8lE80jNIjq1y+YlSxsJ43Y6M4M2de7OQdBPHNgXNkNCJoDYxwLJLtB/CGyT/coVObQwVBw8UAtAReDaoB5c21OaS1oEL4QfvwPAkFi4OcBxT1bqoMKuFu98+h1EAKUK5cHtrICscSyQ8cDGtpKudQMWGZI3KxntqddiXcFojAWLeOk2QFzVHJivUQAugwp8XJCyKsIPorngd4W2PFWN/p5oXRiVJAlsQWLhYOy1zINRFbImeZUnAfPjfZH0Zjxgx6Pc9EA6L/p6em0/CtqPrMUXv2hwb+cDwuO18Ru4QRp/0jWrcuA7jLbhYA+BKx1pxmrBMHgANyp2k5+1/000TVigF0SMANBZgn5unU8AiktcFbcwmpUBpvM3QbWbfcWB02d5+u4wyeyvtTTKhu+zEoD3uwUlWjPEjfw6Ncfl9bi6W3N/MuXuyx1981xf4Ek9Rv7xg/4UzVtt99suKP/lfG4S0mCpjfrimzguO5ls2XS8eMLi8RsYK1usJ2TWDtVCqjpV1GqFM6ag1OpxsUU9ZzuoJppPoRpFNHBhq2gyjJca4OmUAk0lLVeXOgBUGGwxl57MPW4HueoGAUoY79/fZ298y299ifCSc8myA9OJqowy2ENBIshOFnhnURjK77dghk4HqwBTOoFolYkK8YmnY3sidgHqhqK+4pa1oOpjNoGop721p9ubU+3JgIIIxrK5KmtZnvFYSoR2b0ixc1FqXuYitUMcsJKGL48Lf46gtCitQ61b9whuVrBJ9mLNnDazyItewPy+OTZkNINZM60oHimKRU+GBpK8PJjyzEmpEmZAR2o/FCC4CYAOnjfFgwIQotogcXHFVK0XU/YS8QsLnAHLRZW77ZpsT3HYyM5hWYVvRs4ApO9AKB46CsNoDZatceD7KCcGFEc5V1eLYo2CA9PxzgQABAABJREFUS4PcKIRxkYPZyiUXNHnP3gSAGe8V/fHj85meV9A9dcQisbEFwNAKDHbAYJwTAQfWMPwOIqhKRfqD3EMJKxKF3ePz9exNyFEUsnLHFBDCR4e1CVAJY8gfK820HTPCd/15htQRafbqsL/msD+/QYZskZwD7m9I9BjL1Txq7n3Ud+Nn7c2CFTH6Gw55ATjate1XqhnE207M+HZ//z9LuwRET7KNx5R9E58/ajzueND1xDJd1BRSkynNqim5Mt3w8OGC//cffJ1bWF2raTuFmWr285r3PX+HB5s52ggWZYNYbJjnjSuz4bNWF1KTSUPVZVw9XLFqCwyCWmcsJjWNVuSZi/jatjlXJhuKrOPO6R5SWUSuOdjbAnAwq7izKZCK3nVmBCozGCFcaHVhnLETFiGgqV1NCiemdSH2ednRtBl5puk6F2pvtKTTkrbOyHLtEvppC8aJtoUWHHzehddbnxRxftvECV8ndL4wML3f0M0U03uabiIRFrorc7LVBrRGtBqjBKp21edDeLzQTr9jMgcKsgo6KVAzOdBWRD2GByiys+hcDFb04+rigSmCPjJIl+7zbt4blGBUYtkPhoYjNZ4mc4bJSBCVdAVUA7vjs1OTG9AWhIjiZwITh0tlILqeSggrc2F86oHUVSYgFDWNxk8Buc+BlFmXd0h4QGadS3Ugum29OLpMPk+i0qIrLXwXTs1nzRbSa4cq1Ued2XAOshe2e00buPukkppxaVh7ivXidQLZWtAteoF4iO5zwEgk4NGxMs4lJHoA4zEdElcCxnd/6MeBPiUIrxNmZdAeY5SDHicCcw+CYu2wAHSSjNipyzUyf+FWi6TfxQ7g5pspXH8onxxSrUfX58+32fdJKkM2bJPsf3wtFwGhi8CL4PzitMfuw+0v2N+YZRq41N5hdugy7P7JtUuX2Vtpux7AXeMpTBK7Hqw3CoZ2HMNKMDPNwazi9nqPed5wY7ZiWU+4df0UtXRLrK9/zgmls3nHa+t9Mmk4Pp7Tdor9smKatcyyNmatnmUNh8UWiaU1inlRs8gbCqWZZC5nUaE027rgdDNxuYGAO6d71OuCZ64fI5Wl7RSTrCVTGpW7wpuhppo20rleglBC9PofIV1kkPHG1mpB43MQdZ0DQEGXJLzxzMtu2H8Wpq9KV/zVi5bnr2uMwkeL+WR4pYjh9cWpRk8U+bJDNZZ27jVCT01g4bK8yVXN/uc3g+OEv9IzP1HQnEN1JLFKuJIdEbjYAXg4l6k6TMqBIQoh0F5/YaUDRLrsv08NWDSUpt9HMGSB4QjCWeHz98hQ/sIXIu1D59PZH+dq6iRU0oGhoO9IwIEpE99F0Oh41ijVLQWggnCYazz+RfK/aVw+ohCZ5jJgi0H/h76zhQuzp3TMo1XWgbPCxGSNohV9VFoQNY+eZ+v1S7H4qxoCgwBcQ3+G8xDW9WvUrCgIddyCCDoFM9FdGbRjoY+CYHqUdTq9H4GRCWNItkNwsguwBTbHJLog4UFyEPubvNchBYF/OMeQ0iKNVAsLixB2n+p9YqJ6PwadazC5bt2zrH3f9/0sO+JYli2oLTvbLhfYQAcUtknB0AWvc3qh9DXu2/CbVDsVwNCOcX3ZvvrbJSB6q20XKBpT3ux+WHc9aI9s6XYWTGkoD2smWUvV5NRdxvVyxVOLM77+ym3MtQZ5reYD+3e5tr/iO9//Kb726A7H2xnf/OKX2SwndEby4uIhJ/WEQmpOqilfWh7RGBUjwiZZhxQm5hbqrCuxMS0dq/TC0UM+d/8aB7OK2V6FEoZ265gca11uIeOLawppnQ4IXIkGb3SEtFiDM2DGRRShHWgyWrrIIiuwRtI0rr4aFoxnCKLuyAK1c79lFWQbB2qMgmZPolpo9hyzowsHhoJhE8bSTST1oXMdmswJmOsDgT6YQlWD6dFLcCUFAxJysqg0JLlzQminiXDiaXDaJWG8xkfbuH1knBJhNUFv4g8dCmNGwao3PCG/TDAcIaFeONc0UihE4MRcOFYgG4lsHFOCAdaqH7etdEkPQwi7ABHKWnh2Q1iSUhj+d0EjNGpW4OqRaV/Ow7tSrQc51ogYZWaT34uQSgGiXqx3UeESPYIvHGsQhaNArC8BYqWL7rKlSfrYX0MQgge9kQdPqQC+PkyM3uCCGACqgQ4pIpT+XGVLf+7J54M0DAkrFF1fph9nERAFJicJrY9RfuP5yf/fzon1w4yPEAupC6IwPWisUrApkzHjxx3CLQR02R/PBBeZZ5Bi+L3sgWTEzM3oFD2waPe95ssk25mkTtqONtD2jBaigwjAHXPuOR3nju/P7T8FUFF7F6Iyk2O9A+1SVP3k2iUgejttBwCKn8NgVfHI3YxWMzubn2SEAZSlaxSZNMzLhucWJ/x/X32RZ6cn3CzOyCcd/7cXvshZO6HTitvVPpnQ/LnrLzPLnI5olrWUsmOWtRSy44X9h2zbnE3nlnwPVzNeO9sHcMkRpaHTKiZcFEClM7qXFhxNN+SZ20YVmlwayqxz+YpOi3gJykeFxYfPeldZSLJnwXTSV1EX2EZitfQGEnSV0a5z51bxDISuM8c4aeGyVVvnwsL0bMr2mqA8dav9dibQPtrMZM4IZ1vN7LUtCGj2VR9pIgXVjQnMpnC2RFiLatxrzNAEABP+l9pGMBKYqhA1I3XiVhG93icNbx4IZiGCo25Kn52XHgyNV7473Qhi9NfvN+h1wIGEEKKO8ZqRAEw60UefBXufDFpnND0QMv0+wzbxtnujKzeBigj33/0VgaFJQJEN56jsgEFyYfLu3oeaaGgP4LIExEqca073maJtZhGNiIbMgSJfqsOX1QgGb1Ai4wKwMejnWFCWpHxH0gkBGCTs3jk2w/dpN++BVRoVODgPsePz5PswpoNbSgQgpfAAsI8KC9sHgBajwlKmLHR/Umg2nLdVvWs3ndMGuYMCQFv012YFtHu2f6Z8/8SFwI42Bik7wQs7/jKcc624+HVu8boDNA3OhWS7d6Bdht0/uXYJiN5sexQAGn/8BoHQI38zesjMsxXF1QohLdsuR1vB77z2HB+8cZvPLK/z5e0VvubWHZ6bHnOn2uMv3HyJd80f0lmFwrKfVfz597zEIq+5W+9FMZ0UFm0kx/WUxiiKXCME3K/m8diTrKVQHZnSCGFZ1hOufN19ZlnLjcWKTBqevnrKwWRLZyTbOkdtJWadOxthHesjhY3h1dYKJq9nrrRCyiqEHDdh5dlK5EmOPM5p17mLQlsVyOOcrlVYLZm+LimOZUyQWJ44d4UpHBAKE/X0vqErRWKQXOh71MB4QGIF1PsKhIDpBPXS60zvdcjWolzFlCgyTd0e0leml9oiGzu4ryIYtYQZSIt5DnREItm3JBbFDGUbAtsQgZk3cuEVhNapiyMad1+WI/ZBkjCwFyvvAAOd2GlwQ8h+n52awexiS4OdmH71roX7H7Hz+bEBUHjWSPjSIbYVPYMRNCyWCKrFSe6izmoFGxWvxxrc57nxwl3b9zP+NLKeGYlG2UBI+nnOtRaeS9uDh3i/wIFCDxD7ivd2cL3ptpFUSuaFcH3dDPQsuddhzKTXkJ5feo88SAn6nZ0LuQTAOsNue3AdCsqGumZ+XMnOpXqI4DzDF2FO9Eg2gC7iIiJct7CQL8XA5RTHZkgX0Lms8t18BK7GADJ8njJDO4DS4Ldv5LXDdXYOLMWbOTrWO4QxLhmiJ9cuAdGbbePVQmjj1dpjgM6bHn9+Envq2ikHsy2LecXD1Yxp3nIwq7hfzTDWJUD881de4l6z4Gv3b1PKjlvFCc9Ojsmk5je+9H7mWcML0wcc5FsWWUNjMlZtyf6k4mTjeOlcaowRPNjMef10n1pndFZyWk154fCY7XLCXllRZK5+2SxrkVjunu5hrOD+eg6/v4++2iIXbayRlmXOOktlkLl2ofgbEKee6emkMyAGRCOZfa6ATkKlwMD0rkCeZZhOkt3LkZWIbrTgWgiZcnUhYq6VyUMTI2e2VyTFugdBTlck0Hmf6ycYmW4qsGUG2sBsRn5SIzvIauuEtsF9oR0TJLXt61AlOg2EY6TSlXTQFUW9kDo/yaeZqyE9Vm9kYpRPEqGTjrM0LFz6elqxGTwrhGNarP/bCWQtokF1leD7QR6Md9DbCCN8hmv/iqAlbOgYEjNJ0FUQSSenI0aoI1S7t9qBIaEstpX9/vF9O9OOJcKDo1LDNFhq4ftbxBpn8ZnCgblQuiOE3I81XtqzjlivjUnZgqRPHPKnHxfJ9cXcPZ6BGyS1HDd/34JYH7x7tu5D4fWEAVsT2w7gFoB4vK7k/K0K2jYPQPPkd2Y4NmMW6vDz4P5tA9hyO1Y1vUuv66/dCn/+qv8sgHrHDjn2NquICSbbBQOwEfs67asxQArbD/Q9w9+wY7tz2iGGAOgcIyXdydj0/OLrgpXyZfuqbZeA6O20R6wCdgGeXSuaN9tONlMOp1tmRcu8bJDCcnW6RhvJ/3bzj5zmR2g2XclMNtzMz2itopQtC1VzON+ybCccdzNaK5moli8vD1m1BfO8QUrLST3h/sM9JnmHsYKb+0u0kWzbnJuLJcf1FFVork3W3Jov47lJYbm6t2aWtZw+XLB9sWXvaENRdvH7UOxV+Lw2nOV0c8hPJeI0R26le20U+5+Rzv0VDJ2nz01hMeucoz/2k2swOn7iFwbyM2j23Pd64kTOuoTFaw4ZlA87JsfGaYlKRbfIafaEEzGnEyNQPb2HPdqD5QqAbOt+V546tiHb2qgNEsZlxJbRdRZuPn7fLrw7FIJ1maf9NsJfRhBpp0yS7YFNNIKJq27gUqXfJnqtkiivVN4ifLLEAIqcVqi/9sF+7XCOjy4Y/94BAf9DE25GGBwutF4o69ItFH6HI0AU+mogyJYu+7QIDE4SxRMBWSV7hqcw/T6tA1Ei5D6yLmljZJQ8QAkamtCvDr2Jvu7bmI0JXbPDeMbLCFohk2znz3mQTye5R+eMOkm/hzGkdgAbhvtKTzKI8o0PYx/UNstszFEVwI9o6d2YCfsU2SvFQBwtW/8cZq5D9dTdh6iJ82xh/D/0cQAiwp1fvhTkK1cGJ/RDAH3xmdwFXMZjKAFHoS/ja6Qn2gWC0uPtYpKGv7sIDJ2/FV+pZp+Au+ySIXLtEhA9ifaYsfTIUM430oJbwMKNvSUPtzNypXnh4Jhtk7NsS3Klud0cctZO+Y+vfz2vrA7YUxXvLu/ygfJ1PlC+zkk747WXr/B7rzzLVue8sj6kMRlXJhvurRbcX8+5uViyqkuyQrOuCz5w5R6rukRJQy4N2zZnmrV8+LlXOWucc/+zx9dofEjJtena+aO3iuu3TpiXjdMXefGs8kkWdedE1IsvSuqb2k10i47pbcn+Z92rm/u+LbWfYPsMzfPPZZy8X7iJ2AjkcY7JoTiB7XW3ag2upck95yqTLXQzN+RNKakPpIsqWyjaPXf+YVUamBihLdvrOXpvAkqijleoqqcOZGcpli5TtewgXxmyylCe6Gj03AQq4sRvfA4kHXMiufO19NsPwqrDBBwS+vnJOAU40TU0Wg2PQUvqPgvur+AiCYxA70p0LEa2kv1KXjLQxwwipcJ5pMyHz8ljBb0OSFjkxCvTRw9Eqi9zO6YXIYePfKi+O56ImqsQOSfWKoJohBPt9+fDQAtlBS4fUxfuj/XZwPuH1noRdzcjGuBdjG9k/nxf9QxCAF7J9omrLoL5pBZemj4h2+CAwoo4D+gyOfhFc8qoe4NAOZb5CJ+HIAH6+x9yUqXXEHRBQMxDFOvjRYDVAyRED8S6Sa91IxlLMXLPBwX0+j2fBHIMdHaxOCl4HwOb8Xdpv6RA6aKXPP9/ZH9SMDRmod5BdsiCz+r/Nl7v2Nl+dbfLPERPqoUHPbxPWjBKbwQMXSTYDJ+/8n8+y7U/d4eDouJhPaXRimv5GoD/z2vvZb+s+PPXv8h7J3d4Oj/mqlyztgWtVbx7eg817bAvzTl5esZpNeXhdubC6vOOeeHyDClpuXG45MZsRSG7WJKj0YqHqxl/8fkv0JiMQioyqdnWOdLnbwkrjumNNZkyrOuCIu981JkALem0Iss1ulExuaBsIbuXM3/dogtBdQWaI1eBHUAtFVZZ6msGJprNs8LlG/J0f750zEt95KJUZCPo5j4r7gSMde4GcJNvvS8xSriEh37yDqtZK9wkLpPJTs8yzNc8S3F3RbZqyX1tMVXZeH/ytctmjRAIY8m2BoRAF859V565CbTZE32Ivl+9h8zSgSUK7r/wN126BLYoMEZRRxMmNg8epIm4yg3JZHKP+9K4PD2pC4oElAloDzSyE8hGRNYjup3wfaUDmBnOrsEdE9kFk4id43bDQW/HD4xw9e5EYJyCQc0NwsoeDOa+AGwlnWtMmJ6R8CxPcBcGcImyTrDuhe2ykiBcUeDAAIRTSTHaTgbAj6GB2zLcR9Hft3ManpR5G/1VG/poN38tujzXZYNzSPVpgR0KJT6scvuJ5znGpP69KS1yK6N7ULS9yy3N4WU8Y+UWEhYzMRR3VMym7bRLrpBzyoTFxKHhNtQ9S4VwwQNp/5w7R5P8fjRuB5+H/hjh7AGj82baQGfl9zkAt+e/v2x/dtolQ/Qm2zkKNW2PeQiCYXjDi4fxJOnfl6pjv6ioupz3XnmAxPLHX3yKQmle2HvIh2cvc0U5945GkKM50XMednOsEXSHHZ97cI2qzdhUBcerGVWb0fhCsNdnKw7LLa+v9jlppuzlNXfu77Moa7BgrCvHUciO//rSi1zfX8UCspXOOKmnHM63LIqam3tLDicugUin+9Ic1gjYZFTXLJM7ypWiUFAfCs5ehM1zGj2x6LlDDtPXBXpPw0yj7juxtrCQ3c/guECX0B5qmisWXVq3mseJPmUL1XVLvvXgpnR5iIR1ES3FUntgIjDJytytep1hXN8q6GYZ7bU5plTI2rjSGwkTEDRC7UzQzl0R2HjbvBGY3u/I15bJiat9JhOiJDWkwfioFrKgx/AG0fjcRDGr8Oh36Qo5XEu/ATEUugcLEDJNR21HIigO7EnAO2kNs8guydG+6I8ffxf9dPQlOEYtlmLx24WNBmH34WORnIu/HhsyVis7OF4KmlIwFzNcJ5FmosOxRqH+XCr4TQ4/OO/wgUmuNzmvNAN5/yMiGErzDqWgxuY94JWdE1anrpu4fXgfLjkRMQ8YoDDePNjrFwLJPQ1uwpCQ03imx7NnIUpQT1yf6cLGNAVqK2OJESsdGIL+rxggdH88Mfysm40myXB9SY3CMXMT9xO+S7+Xw/s4ZJnsm3pdyFAl7jM7vj9f4RYyVb/d12W7BERvv+0YR+PVwUBn8WbbYPXodlDrjM4oCtVxbzuns5Lnn3nAtemaw3yLtgIlLHPR0NqMiew40TO+sLnGzetn0AnWq5Jt5ZZ6e9MKKS3H6ylnlXODZdLQGsmmy9l0OZNZw9XJJhorYyUGQVZ0XJ+uXeSYdRmvt23Oflmxafs43tW2dJFhjSvn0awKKAzzVwTZ2jM5U+NqFs0MZD3YoBWsXjBO59FJTGFdorYzxdEfwfSOpLvVwLzD5CbmqcnWjrnoZoCPIAsgpjpy1eibPQdi8o3LS2SKfiWfVg23ClACkytsJlxYvdcIWZkkYPT3yigPsLIEBAvAWiYnGlWbvlAm9FW0Q9mC0WQeDOogqsezDbLrjWYASfF7hkArZSdSnVRgQgZ6jMTQiMDA2OH4DiLsAIxiPbnwZdxoPK7PPwxBUD1gguL/yYn7/4W0EKrdeyMuMoPNTa8HSoFCBEain/kCEPAXab2mBnr3UDzli2ZL278CkE6jwNxx/OmkgMDu+L2PIMsqen1YAqjOHXrMnPixEsaBsD2LMxgP0g5dQOEe+usM4MyxSt59ZgW6dPfYlB4cZHYQsn8uNN+AbER/fr5PBolDw+mbJMUAnAckg8+Gv01B0dC11b9SsDJemY5dZbvaeDE82N+u9g65zS6jzJ5cuwREb7a9SeQv7O73j23J/O/+F3EyebCcY6zgymTL/3L980xUxzRrWTYlv/HlD1DbnFx0NFZxZiY81DOuZ2e8b37XMTsPFeL2BPPyjO2y5Hg54+xs6sR5CL54fIVVWzDNXZa5dVOijaSQmq+5cZfGKIwVdEaxmNax5AdAJgxnqwlSWM62EzZtwbopsZ9ZUFc5ulHw2gQaiSg0xZmrYN0uIDtTtAtvV7cSZhq5Vm6ynrgoouxMgYB86fpn9ZwL0ZW5ppi2sNB9FJWA6qqb1FUjmD50Fe9DVfPlc67qertQNAtJs5cYDel+pwtizTMrwBTO1WalQLYWrEV23rgoQTdxrxQ4NAsZDaTNJflp64CUN7gyuC+S1WcoFREAkWog2/YGM4yNUIE8gpx0xTwCRwOmI4CcdAZImYoRoLcCV48s7q9f8cfnIYCQ4BYiWQx4Eb3wRWMjSxRu1OjZEInRcy40/z7mQepP0AY2yAK1y2zdZ7Wm1zQFgCJ3PIihiK0gZqhO2ZbQn/GxHPVPfI0ZkAR8hlIsqYvzHJNk+ygyVRMjI9s9aA4YCrR3AIKYE8i/UvYwXkcA2iGaLCRPDIsQaV3gQvheJt/nXjcTtGGRqRyCWEQIvU8iK23SD34b69mVbm5pF3Y4fh81zyb6ndjfo/cDcXQASEkCxTcCnsbbWDHaXwKu3rY77rL9qbdLQPQW2y6/+7n3b+S3b/iA/V/xRwvO2pLOSDamIJOG104P+NLrV1lMapZ6SmVyKpujhGFtSm53h9yu97n/mavo2TD9fldlTKYNs0nDflmxP63YL5zgpvUz6o2DJYXsXIJGz05lUrNX1GTCYHAh/xPV8fTVUwCkNKybAiVdDTG9ztk72KKvtex9JsNqQX0IzZGhPXCzdbYFPdfMv+TollAIVPi/JrfYvY6sAr0wbN/bsP66hix32bFlrrF7Hc2RpptbJg+g2zdxEitWbtJXTa/FqPcl9aGI0TAxF5By26nWkm0sVglUpZHaYjLhIsQsCG1RtWX+Wk1W2ZiB2iVwFEweaspTQ3nqOt0UivJ+RbE05Bt3L1RNNBiDSdq3mAHYGxZV93lawrkGUBUmZJEk8YtjaGyIIbo7IFm5x5BpESOOIovkz0PY3uA6jYsHjknElk3cHP15OAAkvPF1rsBklRq3dYk8U6ZIKOsSL4Zt0v0HoFMplw27SxI2DvY76pOQ/yphdGyoKJ+c8sBo7mpp5BhDcBnYwEh0BOYn0cIE4CmM07sFIX1z5M9hdH9T4+1YHq+9CWMnYays8nq1rO8zoYkAIa1DhnV6sV6L5MCPKWz8LoimY5kTCbIWZKt+8ZAK/1Xlnq8Q0ZYCzm5uz4351O206xXOdbBdGE/C+nHXv6z0rwsA0IUvmfTnzu9tf76h/+j7+J1ol4kZn1y7FFW/jRZcCedabz/e2Pbndrz749T1Zqxg0+V0RtF54Ys9yzmZT/mTzU3eVdwDQGFobeaq13eli545amGroHN5f/IHGetOcvDsQ65MtkxUy6urA5ou4z2H9zGeRtjogkwYMulyD92tFrE4LOAKwVrBPO9z8u9PXAZD8+yWq4cbjBUIZVi+z4EDm4GZakQnmX4RVi8al6RRugsVWsB+64ylT3CHtCzfbWAeSpCDlBaLxRiByB0Ayu4qVs9bzNSQn0rH3pQCVflkbzPIt+5YsoP6yF2H8RXK+0gzXH6hytDNnMtscE/xrrmpoxCm9zXdVLpz2DiLkK819ZEi2xjsRCIbp0PKtoKsdHqjEM4MRLG5u/H+j2eVsgpXtd0mk7slMkzn88wM9xNBUfxf+HIOfaTZrmEYx68lRvyFJIcRRCm83sdCKyOzAP7zBNiTgJ3B0YIhlsOs5kjrAK/1+ao87SC8YQ4pBALgkhvVAzLfP8Pju/MllFDRviSJsFHQ7q5X9MY3bUl/hj7VOUPXVjie7Ldz2bWT8RWYJeNAohVgi6QkRgrUAhgNu07mlKDdiZXoZWBp3LhJwUPcF04bJLp+PyEnkwB0aRBGxshLWftnpPDbGd/3PsIPIeLz4xY0fvvS18oLIM2PUz1Nx8CoT9P/R/0Zx6Lo+8GOgO+F9yvd3UU44FGfP2YSPweOvsItRIq93X1ctktA9NZanI3Of7bzAfMP7lt2KccZrF/0LPKGTZdztVjxyvaQednw7Adf5tNfvsWyczqg1ipaq5jJmo255mqUzTV0kuJqRdc4A37lQyccTTfOzdWUUMDV6YZ53nCQb6mN0yxV7YTGKgolKWTHts1d7iJheVhNOSwd+DmpncssZK9utOLG1SUnaxc64oTVULxcOheZEVBqTKbIzyTtkaG+iosUOmyxtUKWGjvvovtDLzRKGUyrUJPOMwmCPNdUmxw1a6nehUvoWDi9TjdzgEMGjUNgZCQ0+6JnhryhL878rTWgKoPJnZtMq8RACoHs/CpRifia3W7Y3CrQE0G+dr/NNgZdSFfpfuoevXylaWeyL7jpgYUJtLw/fqpPshL35CZC66hRSZJBRiBkk1doY2M+ymkTXBnWr4JjsVeLL0XRG6UYFeZZCqsFovDJDoUDNsHFAsn7yDadfzCEsr1Lzf/OGpdTSCqL1tbrhsKDMdRwRWAjcMC/NFE4HhmvJAItPFcBWNncorOQn8lfbyYGfXTOzWcSMB3mgh1zxcCNHhiikO6gZpBmIBj7+DvRf57gWQ88idGLNvOkl4/ccufvWB7R9ffXKHxCSr9P4/4POYVkI/0zkpx08t4EoBRyF4nRNqIXq0c9XBDs46JDwbNEClc0OFzz4wBFvNlJXydg6LHazTcLWMbPx47vbRjPga26bH+m2qXL7M22EfqPD0YyWV34G3Y8SBc9lP18svNzYwV1l3Hczvjg/mt821N/wufuXGexX7GXVVS2oLUZSzNF+WSNU9Xw1K1j5InLCn14sCGfdNy9t8/xdsZ+XrNf1FRdxoPtjHcvHgDwyvowRpCt2oKH1ZTOKHKlaYyi85a7M5LOSD7/yg22XU6tndHPpOHhasa1/RV70woEZCtJ80xDc0W7RHobxfprG5pna+caCcxDKxG5xa5zVKHJZi0qNy4aSVmKec9GdZ2kbRUi15hWMtmv3STVSvIVcRUstEvaqCewuS5oFoJu2k/Y0BsXoZ2bqJ0rZNuXcHDUu4jRZd3U5RayAtq5pL6SM73rNFixfId0O7dK0C4UJnf/q8ZGIxqq2sfxldL1JG6PlFAJ7IwfH4OcQOOWAnN/zBDpNqi/FQ3bjjGe7AvOj1Fh6XU7wgMg1ecNim0g6iaKqgMrZK2vdSf7FwKXxTyUwEjOKdWOgTP+znUoHFskhn0bcheFsRYyVod9hcr1QScT+j26bUZsRu+y8acRAFi4RJ/baaDVSvrMZDhdTwqmkteAeRD9eeiiD6m3iphcNLjqILiprNMHlf3kEoGKT48QSoyYLOjibCxzIhuBKX10WdCQWfr6cNLG/E02jCdA+r4cRC+GrgvX4bVlj9XejEBP7yoL19Ff+yMjwt6M2yy+bAR4u84pgiH/953yQl2Kqp9cuwREb6UldG40jkkUx4WU7biNwNXOQ+36zsJZU9JZSe0Vir95973sL7Z0WvJth3+EwjCRLXvShbxrBMfNnLsP9wEw2tUaq+/MmC5q7rxyFHf/5ZMjcqVdyL4wjuXxQupJ1jHJOh7Wju0JxWGvlFvubhZ0Pl9MpxXTrI37PJxvo9Yoy3U/KVuQpxlivyXNZlzfantD68tGKGXIMkNRtkwPKvJcI6TF3JtEt52UFrvMKWctbatg2iEa4ULtJ8Rq8KZwkW1CQ7vvtRcBLKTsjHWZqd3qWqAn0kefueOZzIXwG+VC7WVnI7BqDjOvD9KUDxtUa6OxcsDG7W9gIK1jskJOlsBmBcMWSiWIZAymf9+QiD8FSyNwlA46k7sPo2FPfheu0WU8tsPvLVgtkIV2LE9mnO4nsDPN+WkniqiTc4xRZ2n9L9sbAKHMMFw868dUYLb6yLGkNAdEvY8tDTZJwhj0Mukzbr3GypSWun9MRhfQG2Tn/hJJkkuRdmvvIhPJ79KXz9GTrXYcIwF14VJk51xPESD4+egckAJE693QKjHYwZXpXdTGRxMKLZybiwCMXL9ZZWOfub7pNWjxPvj+l23fD3HcjoDkoHOSax03m15LAmyifi64alNd2TkwZCOwedMvOAdKU2Dag6HwemcYoktA9OTaJSB6K031Az+N5Bm0HZNR+vmbomsH6k43mVadCwFZdhNerw94arZECcv3vu93WeppjDJrbYbCoLBcLVfoByU2s1w/WtK2iufff4fmpT2uPXMSdUnvvXo/Ro29sj1kP6+5u10wy1r285oHmzkT1dH5yDOAzkquTDYYBMWsZZK1fPnhUdQ3SWGpdUahHIgpnl07jUnmEsBlpSafdsjM+WLUpHOrVu3rmk07jBFOIxQMZZik9jqk6JP3iX0HxPLcZbjOVgrVQLPfJ5VTVe8S62b0LrQQZp+A2m4qfeSPBwZJuXWXLygYB5eAUWgXch9C8Te3ClbPTQZuOmEckNKeJWrnDlyoJHmkq8eWjDF/76NRtP3fMQuZskARcAW8MBqzgfUalJMQDCvXj1oQu+PDrmPoe+4YIZEb1/cLdy+sweWequTwoQjnHsBCwhL1+qHhdxGUGf9D4Vxzg+dEWg+kGYqMg7vMh54HMXXQD6U5iqJeKum3mMwwXEZy7u3CejdmEmWY3oMRqIyurGQWFr6Aath3tnZjItv098UKD+x9iRcX6i6G5ykS4F3YwbVbH5wQgZ9x35nC9K4xf18C4xP0P/hnUnigJDsRQY9jKkV/fZ1AFzYGBLjITXuu38ZtPGcOgFDyf0yHkQqm43e9kHogrk63eQOvwfFSMJSea9x/f12PZbqeYLsUVT+5dgmI3mSzY9T/BhcBT3K8Vbc0i6KmbjMe1jNOmymfPb7Gw7MZ95o9ADSSjSlZmgmNzdhTW5dd+uYGm1me2TvlxRsP0Eair7ZUTc79asZEdWTCcG2ypjOK/bxiltVcm2x8FFnLXlmxX1QUSiOF5fMn12i04tXlAeDKc9xbLTicu6r3xgo2Tc6mySlVR9dklEULE+cu6/Y0WeY1QZ1EHxcxo7FcK4QEoSzGRxcJQXyABZBNndE1WqA7p4sSwkZdUbZ1hmF22wGYZt+xQlbQl8NIcg7FEgPCGayu9OHPjUMGAQA50OAFqb5QrLDeBQZeqOzYI4QLvx8Y/1hR3Q4S5snGA6ZJb0THUWcRjMPOidcGY3fui9H/Y6M9Bj+D1fXoWDIxBGEfMSyeAXAdCKrT46a/DR+Fe5ceHwautOF1JAjQ0gOdmAbA9i68JGJu/FA6kXCKJv3nI/B47hri7znfrDi3XZoQ04o+TxD48ZgwRUFPpCduXECffmHAGIWW6KiMD5MPLsF4TA9cbCjPkbB8wuuAop7KfyZrF9Bg0vxgoQtTIJb3STpNnmjP/LHdcUd96AHMTnfYRfNmHJePn4Afu6/H/Paiz3azQuEzm66bLtufkXYJiN5ue9SgT1cLPOaB3PXdBdsfPneKFJZr8zWF1BwUW3KpOdjbctZNmMiWU+1SNd/MTpmIllK0vDi9z9X9Nc++7y6//zvvwVjBq68fMd2v2G4KXnlwRCE1E9UihWGtXdTYZ0+vc2vijrnpCq5NNjQm43jrjnH/eEGhNKt1SdVlTIoOrSXWCm6fOhdd3Wbc2ltSZh2LhXPjTRe1q3Z/pfFRYmBPCrKVxDQKmblkjGQGe79ESEueaax1jJOUPhlkZgZGNCs12kiktGS3C7KVY4Pydc/khBwreuLvTebdIl5HYoreDWClqzvWTSVW9SJbZ1zcylzVNmqBsI4hCmBL1S4sHyEGE7Nq3WTa7ElChXVwbEDIDZOmAIhsUMoOJZFTwTim7rRzQIohE2Q96Bus2AOLEUOy+xV2NIj+x27/7jpsbmBiosvCaMfYydz4zNQepBSmP0bY1cCv0/82nk/yV4yN4Mj95DrXktZRC8k6XRmUBAx5tjcUe3WsAj4Pzw5jmwKAkYs8aoKSaKc+X5MH8DZlMRjeG9mzQxGc+zGoascGZVt6NiZhmgLrYzKfOTqAfduPdaDPfO2Fvza3TsgcQIzXEKEFqhKRben2w2JA9IxM0BfhmSSZFN1NS3Mk4De4zOJ2Mu3HEbgY9/sF343dWOd0Q4/bzzlA85hXOOaFYCh5/w60t13HzL8u2yUgeuttINbY8d1FD8MbWTXY0XbhiReAdKHs+3nN/fWc03rCg3rO//3pz3JluuG1zT6VybmiVhyqTcxFNJc1pWx598EDXvn8DfTM8PmXb/LCM/epXl1gtUC/MuOTd27x0vIKpezYyyo+9eAW2kjWuuT2eo+rpatv9mA7Y5I7/ZBe5xRS89y1Y1Z1SaE0h/Mt2ru3pLDcPFhyVk9YtwWnx3NmhWN1rt46oyhb5w7Tkv3PuUrkIjcI6fOXWJA3Ksr/MUNJ42qhKRPLhQAumkm56LWuUWRKu30+u3VskHLuLNn6LNdb158mJ7qEBpE01pXxMJmILghTBAMhwNqdeh1h3XbhPgpj+xIg4bd47VHRF6sN2qbABqS1pkLelii4pp/0B3/T4TIyOucYGb9NSpRE4xT6IRVZh/3kxgEawGbGM1iObRBec2QTTUo4ISGJNcysj0Qb6JeE+421vqxL8j4mZoT+/8HFMGR+AgDy54jsNS/RpROSW4bzSJ8561xEabbrPt+OpTlM+tqPjfrI9noWgU9F0I8Rpw9LnmP/LIe8QaFwakgBEcBxHGP+f5MPQXIcH/H/cN12kDHaeoAXk3hKd+1OT5Tcc3+/bGbpZjaWOpG1iEkZ1SYI7BxASjVYgVWVjUjSIPR9G8ZGKngeg6SdQIXRd75zUvfbRW6ugT5LDF+I85890m02cMGNzlGE0h7Bhcs70mx4Vt7W650516/2dgmI3k4bg6I3+gA8brvR9ynFDiCxTrMz2/Dnr3+Rq+WarS54sJnzTVdeZmNchBnAvtzSWsVVteaKWvPC9AHvef9rlIcVthW8frqPmWmsEZgrLdpIrk/XfPrkJvfqPaZ5y+Fky6dPbjALIfb1jOvTNS/uPWTVlRzeOiOTmkJprs3XnG1L9sqKw+mWZw5PMVbQdBmTrEUKy3y/YtvmSGmpmoxMGZomo304ob4C7dM1Knf+J/1UjVCWsmzpvnGFlJZp2SCEHfi929YVjBWSKOoGB5K6uaW64vpVl4Js41bbQjsgEjQYCGLdLoDCi1pVnTBCWbjXgSnyBkiA0BbZODZIVdaX7hD+tzYySaEFoBQMsvS5hVTIM5SEUKe1y6xwRlM2OLdcmOhHjEOctwPgG4+7oQ30gysxMknSvVC8M+4/S97750BmGpGZWI1eZpquDjSZQ17xOEY8evZJryN1n6X/YwfXEABcBCRexySEA2M2c2DOSgcQ0ppsZmoGINEUaShUf50hz4+e+MMrV4QYQa+1CueZlDRJwUrK+KXAQNXESMOBkU8SKw7vB5GJifokiKxhjOgKoDXzEWbh3voyN9bfmxQQik64/tEuZYHJrNMN+Rpm4UYGRs1dfwr4/EIl1TZJhoNwBDpCHw/csLuaP/++/85rhd7oqwdhj9nmQhDkv4v9YPvP3iFAdNmeXLsERE+67XoILvos/fwRpNK4HU2cNmfb5RgreH7ykFe2h2TS8GzxkMrmNFbxXPaQyhZcURvWtuBUO43RLGupTyYII6hvz5Cl5vDqmtnBlv1pxabLebiZ8el7N1DS8DX7dzheO/dYZxQPtnNmmRM0HFdTVqspEsvDzYxCatYPZ8691hZ0RnJ3teB4PY1Zr/NMU9U5ShqKXFM3GeqzMw7/UKFLkJnBdG6mlJnLR1Pkmr15xaYqMEYO9CltqzAjhsBoQdcpdJ2BhfK0F0/LzjFEVoKs3f9BCxFyAcUwYInLPt31oEgXrpq91H3Ycmj51gzdVhbyjfHAxP1Gdg78yMZGBimrggHpQUxkjUyvH4nCXr/vuMKGqD1JQVCM+pLJ/378hesJ15Cu0AM7EsKvo4CasL9QS8y7yaBnbkK0oATrI8qEMv13XhMWMzsL91uRsBTp/R1HwAwyWu8ypqNmPSBwN6hXl0f9i3EiYbmRyFY4N5U38qY0yb0Ug0jA5sgVDQ5pDwb3JZwPybEjiEhArHfRWuETK6ashmAQRTWoq+fPPaRhiJ/746cMIwlbFRJq0kpfqsP2LlE17D/R+vxNQZwu6CP1lHWfqaQfk/In48sOof2BQUwZVfs4K5SM2Z1AJn73Vl6PAjrpNvRjbfRdzNPkt+vZoTc4ob/Ndhll9uTaJSB6C23niuai9ibG2a4VfJgw0sN0Rrpq922OQfJKdUTmLeCpnrEnK/ZVRWUz9uTWR5kZni0e8N7ZXQDe/e7bbmcKrl1ZoqThYOZYnbN6wvXFiheOHvJgNScXmqcPTln4DNQ350tK2VHKjnftHfP8DZevqMw77qz3ePFdd3m4mbEoaqoup/2vV5DCUqqOs2rCelPStorNtqDtFG2dsfclWD8N3VHnXF9doOUtaEnTKqomZzGtUd64Bh2RPi6dXkj1q3rdKredsKhaeLeGBz8K8rUzGpkvmeEAiE/O6CO5uimRzs+2Ftk6nZAwYJRAF9KV8Mjow/C99qeb9jdTFwLVWPKV6Y1EBla6pI7Z1iYZsd3vVduDItX04CVEqA3cXKnhSVfcidFxb4ZjK20DMbXod5bmjeldBv5/4zNGa4EojBPCS4tUTjMUQK21HuAEEOVdm/E8PChJo8ps4q47pxkKLSm3EUGP7RGiEP3L5S5y+416nlaA8GxhKzBzjZkYHznnAJtsZSIkHhrObm56g+jF0PH7BLTFWmtiqLvp9hKWI7MDIAYM8hTFPEOJizQWcNUO6EQmKIyJFI8JMBPTi6tz07tErQfAQecV7lFhEY2IaS9C+gLZSq/DYmcEYnTnyT63k00YnajXCvg5qc33KBZz3OJYHGuGBvPzBa/x949qu4CQ3MUKBTBk39h+n1CzT+h12S4B0Vtu5x7clGZNP4vvufgBSQ3XY0am0NAYxaotOZg4cbIUhqvliv/tmT9mqScszQTpZyqF5cRM0f5Wv1xdoVCaTBqeeeE++ZWKe1+8wrxwYOfhdoY2ktYoCqW5sbfk5e0R+0VNITXLruSw2GIQvLo5oJQdL+w9ZKML5nnDXllhEGgrWbcF904WbN7VcTh351oozXxWYzpJ93BCpjQ8LBDG0u0ZxKxzhtYIeNUrnitJpgzz0pUJUdJ4Q+c6K79aRYYoy13uG9soOm+sVeWKvBYnDnQByM7XHDPORaUazxz1eR7RExcx5kKhXRi9ahwosllvpEzmEzTmbkbMakOxNHFlPLnfIFpDvuoGWbIBl+xROdF2vP8iGA7+f+z9e9BtyV3Xj7+6e9327bmd+8ycuSUTcsVEgkgAwSKAXErys0rqpwbM76eWJWBCUKlCS4WyKqhVCAUICiIoCFQp8DXgLSgXQSoEA/xCQkgmmZlkzplzf+77si7d/fujL6v3fp5z5pwzZ8KMnq7a9Tx77bV6rdWrV/e735/35/OJDJHJicxS0BnFfFvJgL3kUr8KgNLumYCkNB9ZNL1Zlvqviy3jWZ8gRA5sgRcpH0nImvRp46OiB2GzWNIn+ZhC6esiwwX778L2DJJNbi4wPCJ5/ZbMMj2DEHQSMc0HgHaMkBnrvr0SLzUTwgksmbvCJE/C4iQXv9J2aQmgRg/6+tTc69QyJ4qWbWjzZdOYu/YeFPXnIk7C8TrE8v7W35PNrANDoW1E/yxt3jM3Nkz63jQaWDC5kA40hnAFnXCA0tLHFvPXZSXYHGeeTLRRKTsUrnH1cd2qBJPokQCLJP+v/rb6udVvq/sd2de3SfJ/jMgeFwz25kD+fnnJlvuA6KVUbvb+JEDJKudyvtAZrVaczvcZqJbPGl7hmdkJ1rMZE7lgJGtamzG1Bbt6yMLkVMKNtJuFyyk2b3NGwxq5kMwb54qyvT1mVNTkPl/ZM5dOst9UNFpRyI5R1jBQDXOdc264jxSGWVeyW1ecH+3y2Hib/UVFpyW51Fgj2Xpwj1J1GCu4+ulNlDQu3pBxE2exIzl4RGDXWqcN6iRyqtAT7SbCTnjTCVFEvVqkdALryDJkxtU9aVALxwjNz7i4LmHC6QaCfGqjbiebOg8v1QjHKvm3Q3bB3OCfgT+FA0KinzAEYAOD5Fe+QDvOULVBHbbI2vQrf7+KF8blVDv2mYc5S/dgR/qErlFgm9QVAUkAErYnTVIwlDajTJgIYTli+nAshOhBhBFRcxUTtPq2D4JoqVz72wCORNJwnpVINTzRpd4IrJFHYhDZVJ+y1D6OgbKBNQtgJF2pr7QnJBNqvGkSFiMBAbnpQarowUkAD+n+bkM4Xw/KIsMmV7+7CbQb9+wJeNNuEgLCeFf2GDvIX1tw108ZodRs5rzlTA+aBVivoaI0/fMLoDI30XwntOhDFYQ2kmCGAUwRo09b/2zlQsZzLx0XLinVEKXY6biF4uricKlOEgCULERvlSrjOCb/dgDR0r49gIxgCI7GwFo99kUufxQms+/6ru/icz/3c5lMJpw+fZq3ve1tfOxjH1va58qVK7zjHe/ggQceYDgc8mf+zJ/hySefXNqnrmv+5t/8m5w8eZLRaMSf/bN/lgsXLrzgNrnbch8QvYDyvH0oDPy30ddWg+Id3aGvslId47zhzNCpfpWwvH/3cT5/45N8fHqGoazJ0UhvKgvFIDlVuKz1J6sZ69Wc2aJAWLj21Akuf+wUZp5RZS6r/XPTNVTuYg3t1AMak5EJ932gWiSWuS74g2tnWCtqNvI5n5puslYt2BrOaI0iLzoK5Wbcpy+eojw5R2LRjaI8O6PTEqGhfrRGFcbnqjLY9Y5sw0UptMqipMUgUMIgceBHCOvAlTIoZZYiGwtpUZlBd5LiwJnLTG5pJ96zByj2Xdb66oaLWq0rHyXau9/rgXsmJu/pBV2IKJY2WW8iC2k4AluUzY2LL2Rd2o9sf4Gc1qjW9M/SC2KdaNsuAZUwiQlLDMIXclDFT6IriRGs037ECgaJA3naRyFkXY8r9ZWUE1EfEiJXFxpCmgtlllNrrHbbwodEyEysy8a4OCnjk4CiTkTzTUjwKrM+rks8z+pEFLYtMUTu0QnZf4BeTBzBj43bASfAFo5VCQEenWu7wRTGm9FsH7LAg7OUseuBsweloQl83J80UGI0UyXatWB2irfiAYrJbfQ4TG/VpkL31e/hObfS4TbtNVshbpS0yL3M9TkfpDECIq8Js0F/JZwpbUkrh+ufKdg3RQCay9cS+mDfj1cXA8cMgP5ZL5mE07/HAaSlj9/nTsXXMvmki40l7ZL/LZjPPtMGKHuPPndQfu3Xfo1v+qZv4v3vfz+/9Eu/RNd1fPmXfznT6dRdkrW87W1v46mnnuI//sf/yO/+7u/yyCOP8Na3vjXuA/At3/It/PzP/zw/8zM/w2/8xm9weHjI13zN16C1vtmpX9RyP7nrCyzpSvzYEgbLYw9eOXZlHDiuTmHhkzdO8LrTVzhsC2am4NJijUeGNyhEx0PVLk/XpymE5tH8OoaOXGlaq7ihJ2xlhxgEN+ox47yhuT4gawXFQtCccmkuLh2s8YaTl5h3OedP7vDgcJdzg32mumCuCwaJXel3Lj/EG89c5Ex1QK0zrs9GbFRzFl3OjYMRJyZTpk3BrMnJq45R1VB3bobIlHG5xzJQpU/zIBzLkFUuw72UTsvQaUmVd0faDqBdZIwnC7SRDMqGmSnJMheLCGB+Csodl82+3IVyrz84W4TVuUDNcSDID3wmc0lfrYLBdUM7FuhM+NxkDhShoJga2oGAQjivNWEpdxra0cCBAQumzJ3zj0jAhp/4hLbYwumJtBRxUpGJUDc1NeiKaHoLH1X7STfkJTtmRX3LPhouaaUPBrBF64CBzU1cEatK9xOrZYnlEd6MZlvhYjcJi7EkSWJXkFl4F4JQu5Mu/1lgPkwPZmIy2eMmzjDvptWnICWcR9CLjQPbFfbXPoxAK7142AOHhDkQzerLip+wAyiycbkZ2L1ohrIu0KGpksSn/j4DQ2dtCJwYQMYK0orUH3E/97wccLT46w3Rt73JC4AsMedk1pkr21BBcj8BxGr3TopaQm6RU+XNZu4SZNf36eBNF/tCwkDF6wved7h9j/TL5N6OHTuPYwDDNd+iJLKu2yrHyiKSc8X+Evtafz3iOEbqxSp3wfAcV8edlP/6X//r0vcf+7Ef4/Tp03zwgx/kT/2pP8WTTz7J+9//fj784Q/zute9DoAf/MEf5PTp0/z0T/80f/Wv/lX29vb40R/9UX7iJ36Ct771rQD85E/+JOfPn+e///f/zld8xVe8sHu6i3KfIbrT8gL7XSzJpLj0WVq9H/MGW+g+vM5hV7BRzlmYnJPFIR87OOMjUruM87nouKzXWdiMXT3k2fYEAJeaDS7Xa8y6nB2fj8xmPghd5WbijWrOflvRdBmZNNQmwyAYKWcuM9ZpjForef3pS5ypDmiN5Go94YHxvjPpdRknJlOaTjFbFEhpKYoObQTTWclgsqBpMrpGsTjngE7+iYFjBLQLqmiuOQ2R8OYvJU0MIqaEQfnVs5nmCGGZ7lc0bYaQlvYTE4x2edPU3Ae2a1MA4bRAg23N8ErH8KpmcMMyvOQ8uoKbezNxoMnkLuK0zoWLM2SDKc3SDp3pzIEH62MdabLagBDoAprNgm6tohv2r9xqvJnUdBVNZcmYGq5dNkRWJwCgkOIjTQ67xB6sMEWhvmCyIwVTLK/aHWsheu1PI93+icDatH2YZmtdTCkMiNxgFulvHtismhg8QLLG0x6e8QvgKhxzxHS2NCklQSPDZOnfKWs8GArvmF/1CwEUjuWK+wQ2I4mZE8yGSBvF2L1mKWnjpG1TJi8wTCm7oeYifrC4WD/BFJa5hQCCPvpzSh9aEVkum/eb44XEpKz+XqJHnxe0h+s0YBuFzc3ynBhNwCICGls4AGkKH3wz6GtwddvMMauOwTJ9PKoE2ESwmIiVop4qtGH6XI8r0UybtPFtfMJ5j6T5OO4TmKRjGCIX2oP+92PB0PPcw/9hZW9vD4CtrS3AmcIAqqqK+yilKIqC3/iN3wDggx/8IG3b8uVf/uVxnwceeIDXv/71/OZv/uZn6tKXyn1AdDflTjv6LV6OVYY1YqCbxY7xxxgr6IxiohZMtRM6X23XONAVuexobca+rsiFjoJqhWEzn5ILw5nBAacGU6pTM0zpxJy2dSvAnfmACwfrLLqMWVtw2FYRAHVWYRBIYbgw3eDBwR7aCp46PMnF6RrX5yO3b6doteJwUTKsGqyFpsmwVqBrhbXCsTjzjGzcovcK6rPdclC+9TaaW5QyaCNd2g7fmDp4JlkwRlJ8unSu9q2i2HGTq9GSfAY6h+oGjC5byj1DtrAUex1qoclmHWphWPtUw/C6ptiD8obzsFqcsuy8SmKUiBOjzkXMfK4LQVcJF5smd9Gsu6FCDzKymWZ4pUF2zqTWjbOYe8o9Y9v3gfCs00l1aTDvn/2Rxac3l4XEsUuu2aL/blIRdgKEoAdDq3nOYv/0E6AN7vcJWIm/A1bL3nspiK8L4wASROCxBIpWFwUAWi4xTiEX2hGzXHqMN1kt5ePyn6iVSRcZHiiFc4TrAxBzFQXmwufxsj76dZhQHUj015iY8VI9ELA0ygZAEABT0CE5UXP/fKyiF61b0eewC6BK2Ggutd7UFoMwhutLxcBGOHF4WnxTyIVE7WeuX3WiD94Y7ruwPZDBM0LgTGjSOtOaspjS9CY+61z2Q18zpQ/NkABFhF0KfnnLsvIekDzK4/e3Rz/P9/sxJrYgll4yC6+a4TwYitHy4//Pc0/3qNzLSNX7+/tLnwBsbn1+y7d+67fyhV/4hbz+9a8H4NWvfjWPPPII3/7t387Ozg5N0/CP//E/5vLly1y6dAmAy5cvUxQFm5ubS/WdOXOGy5cv39tGus1yHxDdbbnTzh4movD/LeqMgy0s5QJKB4Dt2RBjBZfrdU4Whzw3W6M1iq1sirGSa92EbT2mtcpFqRYtjVUYKxllNXOdc2F/nSLvkKcWqIUg281Q+4qH13c5mFacGh1ycjCNMYeMlWgr0FZgrOTCzgatkXxo5wF+/5kHAbhxMEIbSZ5p9mcV9dwtX3evTDBGsH9jRDVusOAAThIXRow6NwAdOJZHCIv2E+nhtETbPqKqwZnclDJkGzXaCEYXoT0sXAJb5V7ydpFRHFjKXTfptwMHYJqxpN7KmJ/MQQq6oWSxmaMWhvEly+RTluoaDK4KdAW7T0iKA+OSsQrH5ugqpO0gDo5dBc1EsDhVogtJdtC4fGhDiWiNf6bEeDbYfnI0OctAJWEYYoLM0EcSb6OoI9I98IkmGpK6kuB+aV9Mc2mFbRGrSOsm0kTfEo537uyuPeikAy5pJvuF6kHJ3J3ABl3KajDAJgAp3ASbgKXgdWh1EG2L5fcpADyb3PMquypsLwAP59ACEe4puOOH47IErCYeTTY3bqJPgVn6vup4uiQ/nbs4oYUDOeGdXvUYwwMhTQRN8Rn4/YNWJcQeCsL06Pmmkjg/wvYmvyB8D/nafPuJoO+J5j2fcibopnw72MCMKOuCWIZnJ+hznKXgxusBw3ORrURXpr+P0OeLmw2GSdveCgTdDNCkx97kk+rKjnw8EEqZofgJzFhYLXgA1IMoe+fzwwso91JUff78edbX1+Pnu77ru573/N/8zd/Mhz70IX76p386bsvznJ/92Z/l4x//OFtbWwyHQ371V3+Vr/zKr0Sp45L+pfdjEX9EieDua4juQbkjU/HqvsccG80oZnkA6Ccp2PvgKYovu8bHD06xVc44OzjgwmKT08U+C5NTypyJXDA1Jdt6zIEeMJQ12r+pxgoe39jmdy48hN4tkQLMmRohLQud8cTpa4zzhuuLIWv5wkWkLmYoYdFW8Mn9E0wGNdebMZ/8xDkefvwqEks7z2iGCollcVhSjt0KQ1aa7qAA6fKRaSNomgyMY4zkpHWTnwU71nHA1rMcNejIc82NaxNOn94HC9I33KJTmE4iSiecFrmm2M6RLZj9AjQsNgSHj1qyQweahIHiUGMyB46m5wrKfcN8S6KrDKOgHTsWSDaQHziwMjutkK2LFyNx4Cc/7J9PiCnkzGeCYtcByWxhaHKJzSU67yNXS22xuYzxhqg4MpDGBWhw1/e6otQNO7IMAWjhAJQI+y+ZkQSBxYgggt71XrZgiqTfeXOZzfoYQnQSVWiflkW44JfebV6EHGLKRhMsFpfuw6x05vR7kVCi0dzVA+DeU83vr2WcrITw/Ub0L4m1xEStMbAgft/we5JwViRBCVeZKJv5eDyhzs4BG5ObqKkh815n4bkY39TGnzSJ5xQ9Bv18Gv8X1uuXwon7pgp5yaxyXpcRfMCyq70ApHVyIQ8crRekRy+vPAAaE1mjkOg1eGBK7RYdIoC/5HmFQ/FtAfShCaRwKV0C8I3Yyz0HPTQOFEK/T3KvSyV93qm5MNzLcQPv6vuTfr+dgVrc5P9jB+pwjgQU+e1CwJFE4C+D8uyzz7K2tha/l2V5y/3/5t/8m7z3ve/lf/7P/8lDDz209NvnfM7n8Hu/93vs7e3RNA2nTp3i8z7v83jzm98MwNmzZ2mahp2dnSWW6OrVq7zlLW+5h3d1++U+Q3S35W76+i3AUDRNCJbNZf77qvcQAn77wsMAFFKz0Dn7bUVrFcYKapOzsDmtzShFy7qaMVELhrIh955i+21JVbaIxgl5rRHICxXDrGW3HvCHN05xspp5E5nFWInE/R1kLQ9O9vjojTNQaSTO1DYY18wWBdo6DcmoaqibjHLQkk0apJ9IjZGozCALjSoMZpGhcpftvliraesMM8/IRs7cJj1dLYWNYMggGBYNk7U5Wktmr2qQmaU+qTl8ZYfaqFFbDZMLOpqVql2DVYKDhzKnCSoFs9OSnVdmNBNBMxbUG84EtjgJ7cTlmcoPoB37OatyYCkwOVJbZAPVjqHc0VS7mmK/c3qieQvGASW10MjOUt1oyA81orV0pYuDEwI1rj7nnkkiTp6pOcZKYkC/kFYkLJKDyccxQCHthF1ml5ZMO97UEr3A6HN9+aSeUvWd0xrHCokgftbSMUB1UmnInu6fNdYFcUSLI5NXvKfAYFj/EkRWSPTvTZigjViKRC0SBskaf53KJsDKt6tw12Y7p4dy1636Y6VFLuSy91miiRFGONORT2chwrmiScWxH4G5S9NpLJnybG9Owqe5CIwLKtG6yIQBypaFyDb3Ocdy48xYwT3fX6vL5WZ60CeIDJ3Yy2Idvdu8wAwMttJ9AE2IIFXUsg/D4EEanftufQ5CBhoWvdkx4FwgxnB6XhYlgqF+LFwNlXCEvfHPNnyOM4MdYXuWWJ/wSR7QTY6NsbFWGKLPeLkTIdWtPsDa2trS52aAyFrLN3/zN/NzP/dz/PIv/zKPPfbYTS9vfX2dU6dO8eSTT/K///f/5mu/9msBB5jyPOeXfumX4r6XLl3iwx/+8B8ZILrPEL2YZYnDv9k+3Bxc+RdTLNFERG8RKSwnqynb9ZDDtuAtJ5/m2cUWY1UzVgtmpuj1Q8K54E/kglo5M9Z+XbE5mnHIWjSlyEbQGMW0cVGkAZ493GC9WCB9QDcpDOO8oVItdZtx4qRL3Lq/N2Q4rim8N5jIDNNFQX1YMlqfI6Why5x+yPhVuGkVxahBdzlGS2zr0nLY3cLFRfG6ISfGPb6hMmVYgDPLlBq50YAFvVcgJy3X36Aot338HtwArUsHbKbnRGRcdBlWvq6du7Gh2JPOq6t1wKIduoncZMKJonV/TboQVNc72lFGN1RYUVDNGqcfGjjxbL7fYkpFNutoNgt06epxwmx/fauMcpjY/CewOzGCeZsck0wecRKSzk07ALhAtoRtafeK0Y+DKSztn5FexwuQ3YE2ASbO5GL7eWGuYNj1DE8o0t9YoGwkjh1JzhXpq7Qd8OcyuAkeHFuU7OPnbffV4sxCvh2imSywNd5kJhqfpiKY8oxwnlSEibVvt/Q+hO4b2pmjkt8CiPXvsVViibELoEDWsg97EN34BSazLrdeyhiFawnPOgAwP6mFNrFlwsQEABSeYSf68ANJvbIV0OFyleUOtIrctZXVsm9vfL8JbWHpAZZw4DMCtpuMgcK6e43BRY8rIt05qSYFQ2HT6imO2efY7+m+t9onnscu7bcafFEk1/iZCsx4L7LV3+nx3/RN38RP/dRP8R//439kMplEzc/6+jqDgXPW+ff//t9z6tQpHn74YX7/93+fd73rXbztbW+LIur19XX+yl/5K/ytv/W3OHHiBFtbW/ztv/23ecMb3hC9zj7T5T4guptyL/r5Cju0KhhMX9JIUUMyYEJzYcTviIfYGs94eLIT91/P5lSiRcl+dK5EixQGJQwawVY+4yl7gv3p0HldNaClpdnUzNuc2aLg7MY+nZWcH+8y6wouTDc4PThkpBqGWcNC5zy6uU1jFE9++ixrm1MODyomJw7Yn5cUw5b62pDq1MwFVBRgraHTknq3otxcxBxXatKiD/K+CUYd2dWC7OTcERRGUlTOSy0twrdF1yq3ovZzrFAG0zowtTirWf9DFQGRqi2jS5bdV0raiX8WHjSYgUEdSvREYyVMHzeoQ0V1XVDtWJo1x+gEgCRyEVf+s9MSXVRUuxqdC2QnsVJG77FmPWN02CHbFps5obawUK/LqB+KJpfQHzz5YqQDMLpkyRsMnIkLiGa1mKNstb+lrvulm7ytT1Wy5AoNRydoz8gIaVFVF7VDNgCCJIu80AJCgtJKewDTT9bMlbvOPEEPMTO6q8eGbXggHMw1YZ6T9B5nQRdkRbx/4cXPS7GLgilsSaPkwUzlwgnYNhyQAAjrWQDb4zRTGuRCumcz8PdhYMnt3vdP6/PBuZhKASiJHixZErf5BFQagSl6E5kILExg2LxQWvi8ZEtsRusQj/Uu9raV0ZwpMhOZFltYCPn7UuZGEIXoVnt9VTTNWczA9s889NXUtBa8DFf6lTueqEm6ZUmBkOi/r7JBq/vf3OwFywPvMac8DhwlTNWRfW8Fyv4PLj/0Qz8EwJd8yZcsbf+xH/sx3vGOdwCO7fnWb/1Wrly5wrlz5/iGb/gG/v7f//tL+3/P93wPWZbxdV/3dcznc770S7+UH//xH39endGLVe4Dohe7xFHUf09frmRMTouNK3Q/IGQurkfIdxVKdiBp6px2oJhkNX9wcI5Cai4v1nnL5icYyZqZKciFJhc1GsmB7t0g18oFUlim7brTDmwXVA+6oFnjQU3TZXRGYqRgnDktUCYMl+ZrrBULfu/ZB3nVuat0RmJbFzNobX2ONoLZ3oD1E4fYk3OUMhjrzG5tq8hzjZoquqFCZpauVW5yKw0cZFFEqx9ckOHAjmklw0ntAjRaQWck+4cVa+MFxq9MKZzJTSpH26uTC6cvWms5PC858WEHPtoRdCMfhDG3/WQwcjkIdGEcA5FZaCT5gWD/VYbhBRfksRv6+cYDoaC7MMrFOrJKoUvB4A8bbK5ohzLu205y8oPWxR4KHjcyATLQm8Wsm2OM7LctJfjEuTkHs6pVPg6SZ3msn6RsYAiCJkf0YKiPgJ2wMemi3guRA3gJhI5QNoIhm2pBgjdX6N/SgQyRO7pEaAGDDrHC6qRgCHvUm2x1BRtd6NPi64gRoZX3hNMCioSuUaYHcaEYgfV6o/gswsStRUxXEu5JzoLoyjrNjBGIRvbBEoNbur+/oPOKDK9IzF7JABDi9ERPLtH/bEOOtWDGFO57jO0TLtCLgS3CLxg8GJUu5pDz9HM6MD13+qeoXQqALLBwPhZTEGNbSy9ED5q0oGfyiZgRuGOTxxLb0qcIQdjISsfhMX2eK8DEtamvJ3gC3owxOrISSOtN/r1dZiiCr+PB1HGgTAh7T9bNt1WOexfupo472f02KKV3vvOdvPOd77zlPlVV8f3f//18//d//51dwItU7muI7kE5DtDYY16SIyVdfTxf/cL2Ytow4QB54QIvHnQlhdRIYRhmNa1VXGnXOdADWqs4MAOutOtIYVFY1rI5jVbszyvGr9il2bAMLkvq50ZMm4Ibl9Y4N96nM5JZV7BdD+mMpDGKhc44bEtObx5wfTpi2pSsnXJAqmkV07qgGDWMy4ZMaTotmc8KB2TmOfODClMZykHrXbDdxCVzjdTQNQqRGfKqYzEtMFcrhr9fURUOeTRaoYShLF06kLZTdHsloz8ooJOYnZKuzlDKYFuJ1RK1ENFU1g2gWbfooXMVNpXBDDQi1271nBlE7iePhUQtYHDJR9Te9I8uiJe9h5auiMHvuoHA5R+TLM4OltzsbSboRhmByhLWXdNSqoYEKJk86Su4Z+9yqLl4L8LSm20SIJK61IdOZDOvNQmAywu0o/5I9vcVNW0JgJeZQTcO3JlWxpAHcUII11Al9hQtorh7CYCkgMe/MJH9CfGAvPll9QWLUa9Xy8o7F4Ca00V5D7XUhJMwKiLRTAkDdAI5U65tg8u4dfWIRh4Ni2Hxbua+njB5h4jex0y2EegED7Do0eQARzTBhTrLRB8ETshsExZG9vcQ7w96ZieERgismAV8Kg/HPrlz6nHXM01WILrebA0JkxTu07cLPplvGp8q3KctTNQ6xQCRKyx4OMauHhsE1IGBIjn+OH1PKtBa+S24xsdrDNu9V+utPsv19J8j3m3h8j5DjNH9bPf3rtwHRPeorGjT4rZYjrN7Hzeuh0lt1W4eDyIOQt3QeWydHh7y7OEGlWqZdQUb+ZxDXTGUzstJW8muHtLaDIUhF5r9boC2krrJOPzkBsWucy8XJ2oOFyVy7sTZhXIC7E9cP8mZwQGF1NQ64+psTN1lziTVZghh2b2wTpFr5hcmnN3cd9dvBc087wP3+YFjeOYQEzQoYcULZA/OMHsFCGjnGUwz7EbL7Lwhl4ZZk7O3M6Q1isW8iG75Ythx+KoWcahg3C2BxurpAj2wdJUgP7QukWswjVjhVs6ehctKjcoN+aB1E9pYMz/rJo124gZntXDAQdU9aAneaMIDlnYMi5MZovPPURL1RmqhEa2h2O8jb8f4QeH5+mKSXFXCOjYqmLOWXLiT/rKaz8rVb3vX/eAivTohJ48oFTBbr+8xWrr0KgnzEZiECJziROkmvqWFpFqdzJLjSCYQr0mK1xeASDADdf6Zm5UXLmmHSDtYIhAIbMmSYDuZiAHPXrj7MIVx3mWHamlys4VBDwxmpN3+0GeK9/ceYhchAeWOiS7ysgdKy2MEcVvqQk9u3fEhYjYOBItW9N99G8V4Spl1rFxImutN00JZZGZQhXbvZCd6Eb4X34tOYjvp+lcQcwcTnW9b4QGbS3FCAuhs/z5L37ekB1Bp+AArlgXSwh4FQuHZJAArBslcBUEpgl8FPysgaAn8yKPg6GafJRCUXHda+vNxv7wMy32T2R9FCQP1KtWZvvR2Zd+kWP9SqlpwYjRloTOe/fRJRq9oqFRHKTtyoZmoOdpKDkyFsdK73btRqLXS5QWTztU2RHE2rWJxo+TR1z7HYVswzhuuTCdURctc5xy2Ja9av4bEcnG2zm49YN7kTKcl2eaC/f1BdKe9tj92CVdbiRp0GO/VM9ycExKBmlahSkdLmN0CTs9BQDH0bJAR0ElOvuJGD6CmOWyCbhQzSqyBYtDSKYvYztCbbsBv5xnFxYJm0yDnkmaNaBIxCvI9gR5AlzmhqSwNupXIzNA1ClMrNwnklsUZF3k331PIGopDnIt95gZ/6cGO8ROuqoPw2rnhFwearpLIQ41sNLJukW2O8BnstUrAT9T1EM0YsR/4vyHLeARR0E88hJhGyaQMMf2HTUBLNM/6ukN+tchWeBMKPjZNcP8+AiyAqB/xndR2MtYlZLhw26O7sF/av20ywXv2KQiibag/6NFEaCPRnzsuPEIKC19t2CyXzxv0PjY9b+rlJnCBCZPrthmI3AeY1A6o2cIgOhnF4fHdTc14iaYJk7RbaM7U1T9NPhu2BS+0IlFmJ8cJCaLQ2EY5XZCy0bSZhhgA/P34L62Iz1O2Aj3SPSLRfljyrJCQzhRkTRCnCyw2CXxJNKlZjGsbb25NlQNBm5YSdtEEl1xn/C2wbAFsRP3OMQvNFW1P3HZkP46W49j8tL8ed8hNLQA3P+ael8/gqf5PLi95hujixYu8/e1v58SJEwyHQ974xjfywQ9+MP5ureU7vuM7eOCBBxgMBnzJl3wJH/nIR5bquOcZde8A/d/UdLbagVfrTCfCm9QnOvj01S02ijmiE3zsGachmnbOVVL7QXNDzZAJHbXdjZh2JRvlgs3xjPZEx+xBl4U9u1xgBpq9hfMU+NTeJucnu+xeXkNiubEYAjDVBYXSPL52g/kiRwgYVC1mv+Dh1z+HNpLmqqtDlpos18y2B4xPzJDS0jQZxrMAUhlsoxCT1t+XS9PRTHMwgtHWDCFg93DAdFYyPOOC/xTDhrzoKAfuOJVp9DmndWoPnNJY1c79OVs4c1e96Sb9wVUXQ0i2AjWVbuAOQmErkMr2QSPDKrkw6KGhG0OzBu1IkE3dpJzNXXqPbGFRtfte7Wia9YxiX1PsNKjakB92oC3tiSHzU0WMd9SvqN0zVi3RjT4++wT8qAaEdsyUbJIV9UqeKCC6aaeTvU3A01L/86AoapAsLkaQtMhSO0bIs2rHmZ6wHnz4NBdLZrLg4t4ui2vSiUkkjI6NLvUcYcKWFgxL71UCmOzKij4CORG9Fp1ZTSx5ULln7p9HiI80d+Yz4U2GUWhs6fVZmYnfI3OUvLCBVUlZ4BBpGhwwDYA9Lo4y4wCPJeZcI4CizEawEZmUcKveW9J6AblN2CP3v3QODYU3wwXwJ13MMFHqaOa03qyGby/ntNAD0BB1fInhE+7erY95FPPQpQu8lBU6ZkyNrJJI+v4qGPLbUrbnZgxQDLgY+kRq6krYnmgiSx9cUo6Y0uL29POZQyj3TWb3rrykAdHOzg5f8AVfQJ7n/Jf/8l/4gz/4A777u7+bjY2NuM8//af/lH/2z/4ZP/ADP8Bv//Zvc/bsWb7sy76Mg4ODuM+LklH3XvWf1ZWMXXn/7NHf0+PEpYpR5mbEE6f3OVvtc6I4RHtGaEPNGEqXfwxc+g4lDA8PthlmDY1WZNsZxY50Zp9DUFPFosnYX1TsXhtjEKydPmSgWjJhmOucTBjW8gXPzdYYVC1SGZpORQq/6VSMa2KNM7cI71ZtjBNgd9cGUDs3+zRruJp7kbQfwMuQ1FXAZLygyLXTDbXKpfRI0jwI5QfB3OU/C6YlNXNu992wD6bYDSGbgWh9BGHbi3mFNE6cHVIiDDSilqipF0h7gbv04uhsYam2DaNLHaqx6ErQTCTdQKAL4cTUU9ffbKFoxxld5VzuI/BNdD/aa4fS3GShDUJcqoBxpcaJcMOk6EGNyRy74SrsWQthibqTmO/qZkXiGIR0Igtd0wMM4aM8i1R4jPtrM9NHiFbWRTC2aQfu2ZsYV0gufwd6nVRawoSa2KojEbCyEInmMnqgFM5/hKmNLJffJRFYx3QUJMd3ojd/rwK1wJqEv8G8KEhE132FQXDcX5eIk37UFUl6Lzrp+7wXTVstvAbOx33y1ySEM5VZ48A+wiKDODrrQwbYzAvRwzXkXjCeOTG28HnpbACCoUiOpGSJQvw0/pGwvXnxZszLKvBJAP6SqSxsThihW2p9CHUu9/mbA5ybaIlYBT8r/e0zXew9+twvL22T2T/5J/+E8+fP82M/9mNx26OPPhr/t9byvd/7vfy9v/f3+HN/7s8B8G/+zb/hzJkz/NRP/RR//a//9XueUXfV5u82Pv8xPZCxycqaSPsv1ZPWd8yLllgFUDPB/3j/GxAWdveHjB6sudpM+LzJUxTCiawlhnU143o34Vy+y8LkTLuSRrvcYjEOT+WYh3xPsvj0hObsHJTlxnxI0yn22gE3piP264onNq9jrODCzgaboznTaUm7W3Lq8RsIYdneGzvBshGYWtG2Ejl2GezbVlEUHc1AI6cqxqix2umNNp8R1E8AtULWguysd82XBukHpcYLXmQyGAJ99nW/SuuGbpAvDp1nmdAwP+1YlWzmmB5hHSgyWqAb5SYOBKZx5xCdAK2QtYxan6AnElYwuGEpd1p0qeiGkuHljoPzOap2D2p2WjG5YJmfyil3NKYQVFfmdNWIeiPoYYjmKGGJCTtN7lODWKJrNqELif5/oYGc6BEVE7JasRQfJzAUwSQjGuHn3B6ARtNNkiBUhP46zRCDLjJNEcgG8BIiWxu73PHDM5JJ5w392V9z0KwsLc6D8Ps4vYZeeY+W3huLQPTgx9nGesZJ0Lvtg3MbVN5jqxVOsCzx2iUP0grHAEWReAL+YiBL5fpSZIgEznwVWRN83cnvyfO0mUFY2R8neobDWg8y5gpy2+eRE7gEyCmAzJbzxyHAeIbOhDhEApcyBaKo2gE82WuDwMUkkhaZm2i2TtsUaRHSYIXqQbIXvouc3jxo6Vmu8LBCW/qSko6xfbw2aTkpcP+OL/9lpYLlssro3Mty215r98tLtrykGaL3vve9vPnNb+bP//k/z+nTp3nTm97Ej/zIj8Tfn376aS5fvryULbcsS774i784Zsu924y6dV0fSXQXyrFC5zvt/OkgngKrZAEj/ISTjgHp+cPffM89xqLoWM9mnMintFbxVHOKQmiM1xENZcO2HjFRi2hCG+QtZqulfWSBVU4wrBYweE7SbVcUg9YlU/3IhEq1PLC+h7GCD189y2FXcGb9gCprnUCzMOwcOJOabiTFmTld4/JZyUI7L6WEzZGldlF5jSDfqGGegRbsvLFzmeyNm1ykcBGqi7yj05LDeenNWi6mEfTAKAokjcBOc7rNLgaoy+auPXXlWJ16E/TA0q5p9Frn4us0ElOr3n24c4wQBvJDN9GZ0iK0A5DNBJqRS//RDSXV9YZir3HaIQHFrsYUsP9IRn5omJ3JUAuDzRSmEDH+UPjIjjhBGNUDjpC7KjBDabTp0H9k4wFNcIM2LAl3o7ki/A1B/3xfjDmv6L8LH34gZJ6n1O75rQqaNX1U47CKDv01EV3bJon+bP1OgakIZriAFdSKWS+wCoHpUX09S1qUAATNynGJfiiY84S02E7EjPfxXfSeZnGy9nGAHJDybZhqhbxZyGbGtX9o+8ybjFKhuO1BZzShZc4kKyQ+b5xZerZB+I/xIQDCdUsQyvQ53vDgyLOdKWsnVG9GiiY0r5GLTZwZB2oOsxiB2rWbcM4OyviPjeeSucaaYBMLfSD0i9A5/f2mrFhgNY8pNrn3ZY0R8XMsGBIOnAU2R8rlT2Bz5C28ym5VbumFtrTjLau5x0Xco8/98pJmiJ566il+6Id+iG/91m/l7/7dv8sHPvAB3vnOd1KWJd/wDd8Qo2OeOXNm6bgzZ87wqU99Crj7jLrf9V3fxXd+53ce/UH0E8aRdydMNLdTwsseqgyDVnp8OuGs1GsFfeA0RRR+fvjgQdbzOY+V13ikuEEuOhqhGMqG2uQYK7lYbzBULcOs4aHxHovTGXsfOolsHWiYnwE1dxPscNBweWeN5hEXiLGQmtecuMJHb5yhMxJtJFJqyrFLtzEa1uzXFep6gZrUdNdGlA9NaaY5ps4o1mrKsiULg/jIR7X2HjRibGK0ajWXTsAqLI1WLJqcUdVwsJczGNcUhT82DErggJIPHqhnCgqLUZpyT2CU4OCVBjMwdGNBeV0xvCyYPiTRRhDGdOYKOwQaJwqWjSR6YRkXCFHuOtObMKAHMHimQzbGzbXakC2cmLpZd+kLTAF7j2eIDsqhIt+pEcbHdkm8wiL1r0HpBAhZnMDVELOiJ9hgaTwLDEUICCi9O7Ww/YQUXbWFj1cTulvoZ8kE5gIKeqASwEgA6uEgRTTjxA7qQaWwYLWbPOOyPAVmfn8H+FY6etAhWbHym1gBS/T3cEwJ5pzVHGY0jhmKTIkPdhjbWq6Ar1Cf9DGVUpf6kNLCOlAaBc2RAbLRQ1RETzmW60jvIbBmhY3JVpdYmdx9dyErvDmsNF7n459fYIz8czHGa6ACqPVmNlMZsm0VTW+hPRhpJ47PrDMbK4vVkshcgUu5o2XvfRgecSc9i9WD08DqhTZK2aGlskQTJu0joEfMCRiSy+Ys9zet4ybniY2e7Po8oOiWJX0PX0g9d1LCguqF1vEyKB/60Ifu+JjXvva1ZNntQZ2XNCAyxvDmN7+Z97znPQC86U1v4iMf+Qg/9EM/xDd8wzfE/VYz495Ottzn2+fbv/3b+dZv/db4fX9/n/Pnz/sT+pf8bkHRqtmMY+pZutib/x7FhhbWBjWHbclWPuPp+hRvGj7DgXbC5tYqNIJStpzIpxgrKGXH1cXYsSzSIhvHWJTb3iQk4OCwYjJe0ByU7DYV07Zgpx4ghWVvMaDRihPDqZMblB3rgwWXttfRI7dKs8qSKY2pnJAz6IGqvONAWmwnyXNNVbY0aoAQluLEnKbNsGcXjHxy2L2DgQsmN+hTiAhBdLsPJf9URffYHIwTS+uR7gd3cDdVGsihPmORTUZ2KOjGBrmXYSrjVuoL56kTAuRhhIvu7KMGtxPPpF13QMMoQdY4d/rF2QGqtszOKDpvhgzCa+e2bxDGYJSIhMgSUxgW254RAgd6pQb8Al2XRFCRJnoN+0bzlUdBgj4vVjRzBUbE9rm+ohnKe0vFQT30vzRicdqmKRDC3ZAL/LjMEIg8iVFk/Q2ESS1NbBpBrguYuMTyhEYL/6fXGABY0LNAn74jve/am8iUB0iBVWukMxHNVRRBWx/vKQLG9Jy+PaLZO4jVE1PhUvJV75kWvciEa2db9CYqEXKvCRyL0kjH4mgc8AzmUIP3dnPtIYRFezOvKpwAXmYuYjtBUGyStgqmSi2QtXQBRpO2jcloc4NtpNMlZQYrbGSgALpa9c/D643MQrnjfIRsIcF2vWl0iSUMf1M0G4mLBOQkoKgXTSd9JQVCK0P7zcCJTcbhpeu5VblPpvyRlTe+8Y0IIW4rMCSAlJKPf/zjPP7447e1/0saEJ07d47Xvva1S9te85rX8LM/+7OAy5YLjgU6d+5c3Ofq1auRNbrbjLplWd46028CisLX/jeOZ3TuBoUfd0wcmN2/1Wt2OdgecunZLc69xomqZ7pgakpOZIcx/tDMOs+rXGiGWc21ZkKjFXvPrpNZgSnB1sQUF8KC3inZnWcwUzGQ46hseMXGDZ7cORkv6fzWDtemY8DFD8q3Fk6ftO50Q0XRUS+KKIKelAuubZ+ADechlkvn32s6RaYaF8hRSwaFOz7PNYupYm86cIN+2XpxtnGrXnBxcmriBJHPBBpLcT1j6knEJX1MZl3aCwtyvSF7ZkBnJcb0DEp2KN083DndkbCgGzdxdyOoPqHpSokwFj3M0JWiHUlmZyRdBdU2CG0p911kXqFBl4J2s0I1lnwGpkjAcZjjte9iqn/eRvUhXILewyg/4foOdpxLfZiQw+QXWaIAVsLcFOITRZbI/01A0lLqieBlJT2Doewy1rc4BsAzIKrU6HnmdV7ETOsIXIwhP6lHcLJk9qKfJFPwGMBVmDgTj/S4zf8upI+q3UiXkNiblqRyEc6B/tyBQUu9qTxjFEXCmfZpSDxbFNohANWglwkAyYOYcM/hHbZ5YtoKjI7wLBS+nYVZvvcA/gLD588hcWY3q0Vk9WQWAJZFhMCuEkzr+oecO0CzOK3ds6m9q7xw1yGVQXt0qZShM6off0I08MAoggtX4e9FhOjaURxuewrHP+OlknaglQCP4YEvB1ZMmaF+/yM5xo7UsrzfEWCU7nRcBf5Ya0X8u/rbZ6z4Z/GC63iZlN/6rd/i1KlTz7uftZbXv/71d1T3S1pD9AVf8AV87GMfW9r28Y9/nEceeQSAxx57jLNnzy5ly22ahl/7tV+LYOeeZ9RNVypJOVZX9Hz7HFP37dQTNRM+bs30mTW+6DVPIlrBRjHjUFfkQnOlW2dhchrrTGbrak4uNJVs2WlHZFKzVtRsPbJLt9m55KUjJzaWrbuW7EA6U0dh+PS1LQ72BtzYH/HswQa718ecm+wjhWWjWHB+bZdr+2PKcUOWaeaHJYNxzWJWkGeawoMYYwWZNGy+Yoes7KjK1oUIGHSwkE4PBIjdPP4/KFtMoxgOGopBS55pZxqTFqVcPCWAxTmNmWcIaWk3DNSKE79vqLdg+pD1eae8vqDQmNybvpRFdG7eUTPnTaYWbgJTjWPN8inuex1c9mHvkYx2JFzajFpjMsH+w5ITH6kpd92KfO3TDd1AIFtLPtUU+x1CW6rttk8mm+AQYYjswZJXkmcYYr+Iq2uBKR3gsrmbgIwX7sZAf9KvzH2dUvfHL+mRUqAiPTgR9IxEmOj8BJtqXGKX7XwQxQAOvAeaELZnlzLjWJpwWGkc4BLLdS2ZSiIQsNEEmLbBkrki3M/qRBcm7k463Yvx4nkjXP6t4KmVmwgObYiMbUWMom2NcOJmQ3Kv4uj7anHRoAPQCvdQhVDnvYejbaUDgOn9+3APIk+923owYI1AhfAQEMGazBybE8IJREtl4nrvzJQWWTtBtWz9/WfWmfQ8oDWdpLiaOwDuj5fBe3C1fQW911toch+OIPQdt5EUxy6XpF9FLZGwcbsI3nW+naS03nOOJfP50mdF57M6jB8LYMQxO67Ulf494ol2zK29KCXV1r2Qz8ugfPEXfzGvfOUreeSRR5738+ijj/Kn/tSfislmb6e8pBmid7/73bzlLW/hPe95D1/3dV/HBz7wAX74h3+YH/7hHwZACMG3fMu38J73vIcnnniCJ554gve85z0Mh0P+4l/8i8CLnFE3Xc1wDAuUTlovsKyyyemqQHSCBwe7YGGgWmY6Z9cMGGcLALa7MZV0YKS1ymWrzxZoJNO8ZFzWmAf2OdzZoth3QGt4GbqhpD3XuPOVDnR89mMXWOiMjWLOostYdBkb5YJCdcy6nK5TbIxn7M0G8fqKQcv6YMFUFRzOS7bGLtlrmXVkmWGQt0zrArTz4hLCkhWaRllaI2najCpvEVpgjGBQNShpsdav8IXLb5bnHe1AI/czxMSi1zuyqzmydcyJbATGT25Bd9Gua/RQRBZENkkcGL+Sbiv3nMttB47UwumsRs/B7msM1RVJtSMwuaIbuOCFhw8W1OswuQj5bk05cKvm8sYC0Wqmj07cZBtEzSqZ740fo7yoOrp9S47EphKW3m3dbw9gKJhjgqdWFGUHNiMZB9N6bGZ7z68YoDFFbIECEf07IHqWqPfWkslE6QWt0jqTVGCYBC7XWWBRgmZIOdFwNJWkXlmrxQPIVIgbrjd1sV8ymQl7dGXdumcnWklMTIqvO4QNSCJB0/l7D/UYXNqShYzbXfPYPmhkFB8LBwJnKorZnTeb8EDHX2tpCAmMhTLRizIyZ/6+hEq/C3fT6bPxDzoIqtHSna+0keHSQx1Zw+Dejzdri64HIFjHFLn4NaCkA01RZxbaPzzfxIzWX2T/b7R4puA3/A2msNBPV1ig8NtxIOQ4kLPKCKVD9HFMz82Ov1/+aMqv/Mqv3NH+//k//+c72v8lzRB97ud+Lj//8z/PT//0T/P617+ef/SP/hHf+73fy1/6S38p7vNt3/ZtfMu3fAvf+I3fyJvf/GYuXrzI+973PiaTSdzne77ne3jb297G133d1/EFX/AFDIdDfuEXfuHeZNRdeUGOgO1bvV/pb7d6z1ZWKqtiWivhycPTnH58m712gLGCgWz5w8NzTE2JRrKhZsxMSWsVudC0JqM2GQudc6KakUuNeGzK9LzFx3WkPdu4+v3JTm8ckAmDxGKsZKOaUyhNZyQSy7XZmDOb+2TKoFvF2TN7ZMrw8NYOShiqrENJw1Y1c0EeD0aMBjVSWA72B9AJsnGLlBbdOvtQpyWzecGizcnWa+o2Q0mLNoLDwyq6AYO7TnU9x5ZOvyRzzeiiYO9xSbkN3bnGeeA0ymkbpIWRRpxxSWBVTUzUKhtQC0G7ZrCZy322OAnThw3NBlQ3AAN6pJk9YLj0BYrFyZzZaafF2H2VIFtAOxQsTg3I5pp8rwUDi7Mj6jXJ7IzL+m4yb/ryzzONMRSed+gjaYC6dL4jOUZ2gXVI6rEusrWw9Hqe9DyWRCTsPjE1SJJaJbASS8xM+Jt6qFkflC8Avk7SLjI3mRYONNjMa3XyPmeZiJot54Xo4hcZBx5KF6TwyPu1pNlJwY6f3A1O8BycEKQHNHimSIuYDgRw5xL4vFvCt4UXQfvAhLYV0VV/qYSkr4HJSto6gDEb9EwL6dijIPLOLaLwep00MGhgpCwu9YbX8qTjh26UAyUx7IRnT5TxIKK/Tqud6VDWEjFXfbNp4WJOtYJsP3GhX0hMGQBmH2RReGYmeJiFwKbODd+BPFXoeL50xShSD760JOayZXaI+HHA2i3QYhDG8PMKS3OzssoWHbf9Vsccd+ztbH8xirX35vNyKb/6q7/6vPt84zd+413V/ZIGRABf8zVfw+///u+zWCz46Ec/yl/7a39t6XchBN/xHd/BpUuXWCwW/Nqv/doRu2HIqHvjxg1msxm/8Au/0Auk77SsrmLgCCiCm4OiHsisrHhTgBMAT6SJk48faEI+JCyY0nBlNuZ1Jy6xns+5UY9prXRxgtotTqhDLrabnMwOyIV2+cykS/HRGMXTu1tM64L890ZMPimcANNYmGbIzFH7MtMsuowLh+vsNRUAZdaxMx+yVc4oVUdnJIOsJVeabpYxyBsWtfNMa41yYGg869vCCLRxHmX2IIfCUJQtbadc9OrMknl9x6LOnaao9FGppUUqE9khJZ02qbruNBBCgJ7ltGMHXtqJG0QRIHJDtuvyrxWjxulHbB+PSXbQrRmaUxo2GsyJBlMFX3jB7Lxm73Ud239MO/G1j2Z89c2C/MCZ3tY+ackPrRNS5wLZGPZeUaGHGflBy+hyx/CK7jUvYUQPbINIwEqYgPxvKVgKJjXp4wkF80eIehw+ciUGacoMRQbK96cw+ePNb3GwTMHn6shh6cGTCOYs4d3QA8vhdS1B62QFDNyFCWl9VGZfXerSHuqXvSnmyCsX9/OsRKqPCttMcm8WpyUSNsnNlgCorH/nQvqJADJZSKQXXZOyYGlzFP1DilotDzCFwUW8Fp55sh4wyOQd9yBJZsa5toc4QwEcheZRntXQ/UWkE7f1IGZpFSVALqQPLAo2dz+pmXsP8j1Ft+5iTYmDDHJLd8pp+UznzHq6U+hO+kCPznymQugCcAmVQ2BIP6iJBMQ5tjIB1vHi7dH2FO6B9ZGnjwFDK2as23GPvxn4uR23+mR9+hkFP8cWe48+L5PytV/7tfzO7/zOTX//pm/6Jv7dv/t3d1X3Sx4QvaTLKihaWYkd2TdZTMdjbL9taWJcAVE9S9BHGI6L89LR1w9Vu5zIXdZ5KSyjrKY1GZVsqUTLhnK/zUzJRC7Y7yrODfZ4bGObelHQjqHe6uP1qFrANReLKCs1OzsjOi0pVUchO/brimHekHvAU2YdhdRc2x9z/uHrZNLFNMmkQRuXO+1ENcMg6KxEt5Jx6bzI1EZDNmgp8o7FvCDLNGunD5nOS6phg1SGatBQNw7IzOs8MlfGuIz37SJzbbPu8qbJuaS6BofnoZ14d2EAC91Gh7WCes/Vj+xzujUbBj3SqPUGmRvKUYOYtLTrFlMa5KTBKsuZ90tGFyRyphhcdsBjdlYwuuKiMU8utEw+vWB6JqPeKrBSYAqFXGiyaYsuxVJW+jgXWJZMZcJ7l4WYVAEYRXObN23IzvcTD5JEYHYCKPCr9BTMhL4kvHYleEjZIIaF6Dp9hB1K+3o4j/GVdiLeUBD5hv1MKxEBMCwk1oODEHU51GvqhDaTDhzIQsegf/GdWNIc2Xi/MYdXsq+L7+PMQE5XJSMISdNgWB8GYunePKuRtqsw9GDE4oBMALCddJN+mhg1gEHvxReYtWCeEsI6FtOnNwli7+gmH86DY3/idWTGpZuRCQAKj8ZHiI9mtuD63gkHgnx766FrGz0IJ7DYcYdYOB2h8G1rtMQkAMwEc6AHLO76LLpeUWQE3Y8POJmaOI+1VKXmspQdCv/jxjmZxB0KZrRbRZG+E6bnuHLspSbb49/75rUXpfzVv/pX+cqv/Eo+/vGPH/ntm7/5m/m3//bf8ou/+It3Vfd9QHQ3Raz8f2RFkwg+b4LCg1lhSTAbtvtPzxSlv9ml/YUFdajQRvKB7UfIheZEeciVxRo7zYhcdjRWYRC0NosaolxocqFZyxY0WjGZzGlPdqgFlHuWZiIodgWjTwuawwIhLCe3Drl+Y8KsLeis5FUb13hs7QbXFmNmXUGuNFJYhlVDJgyF1GxOHCNUqg5tnWC6kJqPP3uGydqcXGoyP9N3tTOHIVwQtTzTzHcrtJGsDxdoIxlWDRL3+2hY03aO8tdGUn2soj7paHq9yBBGMH3IAQYzNM5zSAvnPlxqiqKjXK/RPjbL4oSlXbPYSqMGnWOgfAweVWjHEo00Kjdk2xnTMwK1gGwqmFwwDK5CN4D5CUm5a5ifzJCNF27vd4yudlgJ2589ZnGydKBzYSMr5fQ9IIOQ2rrvVkCM6Gt78GwyMJ7FieyGj3AtEtF0ZJasm+itD3gYxdSAKWwv/M3dpBKzlgdz2Eo/71NshA2uX0Ygp3w9AdzV0gmHg34j5LlaMZ0E7ywRYxD5+9YC06m4KIhsSvLeub/05iYvFBYr75lI2KKQn6u/AM9epBNxnWh/0iICeO3BDRbHKsVI3/2z6JEZvXZIWvAskGtP0ae98L+72D9gO4npFKaVmEb5+D/ObKUb5YCKDRG5XaiLOH7YJPq6b56QBy+E3cAKjA8QGWMIrXcxyGPwqgr34jRagRUSS+wVPvK7UAkzZASMdc8+iqNNGto1msvomZ/wNwChEGxRBQcLaVHSxKj2sbpjgFFaZzjlrcpxQ/1x+3zGS8oAvpDPy6R893d/N1/91V/Nl33Zl3Hx4sW4/Z3vfCc//uM/zi/+4i/yRV/0RXdV931AdLflCAha+b4yAB85PAVIdnn/JXHhyrLjuH6rppL9ecmF3Q0+Nj2DsU7T85rJJW60E4yVTKQTUZ/J9qlEy54espnP2G5GNEaxqHOqixmqhsWmG9RMDtPzlurpglHVMP3VU2Sl5uyozxM360ouHa7RWcccVapjo5qjpBvQlbQx3cZ6scBYwU49ILtQsT5YkElDaxTrkzmjNScCL4qOtlMYrykZVg1SWJe7TFgOFyV55iImN3XmEsluV7RjMGdqrAF1PUfNXGM1m2H0t1ifxd4aSVl0jAc1VeHMcHpo0CODGnRkhSbLNEJajBaozFCcmAMW3Un0yZb5OQdmBpdxAmjtksa2Y2jWpAvMuFFSHFiyWUt5rWb/0YL1TyzYe1wxPyGZPiAj8ME6hkp0HiAFnOMn1GDSC0lfRbBIePbGBDB0Exq81xsJzwZ5lBQ8fgQuqacImp7QB8MEeEwn9gDd5eDy281yZxWpPif2X19ZYZzHVQAIjVyOXeQnU6sFtvV5tFJ9VZaCJn8+gdOIedd54e9VRJOVB48hLUnw7gqXFRYqQdsTGTF3z+miZekdDg9Mi57Rq2Wf5iPcU2BR4jZ3zsCiWSNcItzgzu4Zl9jWnXAOCP6+zUosLpPoiITsWSRrhDu2Vn5B5t5xqxwrZDPvfaiInnQunlPwKHOsVHQ1NyyJkK3tE8hCAg5l3yFjyo8s9LsVQJuMgceKqQPrmBwXxpcjXl4BOB3HCN3EdCZu8bmT8plkh1LjxAv5vJzKv/pX/4rP+ZzP4a1vfSvXr1/n3e9+Nz/6oz/KL/zCL/DFX/zFd13vS9rL7GVXwltj6WPD+O2rq+BjkU2yybLyEt6kw5rcnWc+dUroJ3dO8dj6tvt/ehqAg4FL27Grh5zK9l0qDlywxoFqeMXkOrvzAddOD1G1oqmWz6cr0EZQn7CIT4wYP1y7gI5GcnpwyBOb18iEy3MkhWWjXNAZyUJntEay35RslA7sXJ2NuXhpi7XX7ThmRrlEsOCo905LmiaL30MMHW1cLKO9WRUHYW3cyr45LMhvZJjMead1lwcIC4NrsDgJdqCjGUIufOoICfKkRQmDFoJy3GAGnfNwyzQh6GMzy2GWUZw5RGXOxd9+aA0rID+A0SX3YI0SlHvObCW1oN4QrD3TITvjvdwE3SjHKth+7YBz/+uQ628co2rIpi7RbEzTEiZQA2R931kK1BjMLjjWRxiB6NykZvIeLN10oLO4SSm6QfuoyshoalrWDvkvxsepKc1ywlVhXQTtVkQgEUFGSBwqbTS9WC1jwExrZYzqTGIyQ3vRcnD3j1SXu54YGTtMvJZesJy0C41ElMYnEnb33QMpsfTeRhOXwJl2vGkrYJ2lhQwJaIU+4WrAMGa57lWNmM0da4lx/THE85GF7qNpC3oXef9cRIjwHJCZWX7Q0ZMMQPTxiOjkkjjcKjCljSL8br1DNBJ1KOk2PAhqJZQ+KXHKbnmg6YCRXBblWhFZwzRGUQQ0HpBHT7SlBuVo8be5mkVeiGUwtHSIWI4RFLSGQnCsgPh2PMxW90/LH2m2+JU+edd1vIyKlJKf+Zmf4au/+qt57Wtfy3Q65b3vfS9/+k//6RdU731AdKdFrPx/Jx3puP1XGKD4v6BPj7ByfHDLTn9TFysQlhvKcmZ0wMWDdQZ5y+nhIR+ZPcgfHz3DRM5ZmJx1NSMXJa3NMFYyUC0bgzlXS8P8jMRstlBLTn5AsfuEoN3QNG2GeHSG+NgIg+CTV06yNl7w2ZvPcbV2Hn2FV+5K3KrsyuGEjWrO/qJirajZrSsuPnmK4QOHnBhNyaTxgmgLxpCFeEJWoBsJQ1CDDmuh0Yqy6Ni9PqYYNxgjqBcFphPIvYx2q0OtN+gLQwbXhfMSq10KEkLE3lkW55AgelXSTdaZMnS4BLKBfZodlLCfg7TMdoYMN2fUi5wzHzM+ZpGb/GanFfOTDticff+UwTjn8MGcYrclm7ZMzxbIRrP3hlFclXfjnNFlzfarFKMrzmvORQr2WCjz3SCYyTwwSiOTp2Up8q+kTwSbmM5Sc5HN6WfyCI5wAESL3u076EOCnscn+gzXIoyPWxPBq5t805xVIWJxuAjrrxErYsLUEKsokCFYlrPS01+P8O7vFtsnWvXHhZg+0YwY2KOpT4haS7+IgGhH827nS++nsCB7pidsgpX/g7Yq6IbaJAp1zAO2cg/g03IE/RIuOWpguNJjbJis/bPIjWOPiLjQ1+m/hG7gwZPxZs+Ya8yzcGrhTJXd2AFbMzDRTNit6x68hPosyFCfIJoZTWhff/oY5FIIykntHCd0Gn6BCIRSLHqkJOzj0mYPioRwprHVdB0p2Hk+kLP6+5EgjTc55nbqul9evPJ93/d98f8v+ZIv4dd//df5iq/4Cj7ykY/wkY98JP72zne+847rvg+I7qYsDZzJ/2kJg9vNAFN42Y9oEpaZpThur5x7aUBOjtOt5KntEzHp6UYxY6xqaptTCmcaav1sqRGsZXMAHhnv8NTuedQjU7pGMfxwgS5h8inYfrPzDrt4aYtCuFhH1kge29imM4rOKIwQGMcvAGCsYFHntEUTtUOtUTAwjKuGwuuNDpoSISzjsnFRsDONPsih0s5s1iqsFexvj5hszlBVR+4933QjoVYUe5KuE+g8p5gLTAHlrgsy2Y1AeG8Xud5gdguoDNW6Y6zm3o1fCovR0nm1GRnjrGQzAUaiO4Fed2aK6VnJ4JqlG0iyuQuIaAoYPGtpTpQYBfnUgaVuUrDYFNQnqqjZEQb2HitdbKQWVBNnNfcYVb+QDmDIPeukDwhfV2BVrGcnTE8cxAjK4di0q4XvHgABDpB0CRvif7etn4it6282t16DE2Y026enyIIpzrMQnnlKO7FUBtOomMZBFKYHLqslgBv/o+1cCok0HUesOrjBp0BBuPsTWmBKz42KdB9fr4/iHdkhz6qIEIRy5ZLigiT8mLSj28H2D3HVNV8QXe1FIuR2IFAg8MlXdc+u2MCqLJkfj7kwenbIJB5wNoRhsCEsA44l7YSLW2VxYQ1a4b3qXCcQ47a/pgjOBDbQ3kG7ZnomyrF9UB+U0fX+poDhWEboKNsTtgczWAqUj/v/VsAoZYnuZZTplJX6jJZ7oQF6GYG57/me71n6fu7cOT70oQ8t5TkTQtwHRC+JclMARL8iWsI8xxwQXqhjBJxxd5MmjaTXhdSK6V7FcG1B2ykeGWxTShcJuiUjFx0HumJhcxSWoWpYmJydZsjwiT02RzOe++ADdEPIFm5i3zxzwLiowUK+D3OdMxzWnKn22W0HfPT6ac6v79J54FMpl/vjwc1d9hdVZIL2ZgPOPbjNMG+iXf/6/pgHN3epVMfaYOEGtErHCNciM044fZixGOZIaWlb5RiTvdylBpEZ42cEe6cM1TU4eIVBthJduhUwgOmUG5jXWuetJGzUKWWqpelUr13SgvGoRgjL2ifcSnp2TjJfK1Glxgq48Qb3bNY+KWhHznxmFKiFpph1mFwiWkM3LDA5zM7m6JJoEmtHIDQUB7jJyRLNXGlCV4vbX1cseaQFlsiGvFY22T+CAXzUYUFIKooVvdDXT9jWszRLwlNBzKPlGCWbACB6rywrVpK6eiAUgBFEzzHrGRE9d4L3GAsoALK4Akj6eZwM3aQuMuP+BhNbeKksy0lSV9KSAC5Egm+DJeAocGyNJkE6HDl+6bfQ/r4O0SYLIMtRN/r40JLryUwvqg7XFZgi3w4hDYaQvv2sB2/hvU9An2tL2V9baFcfsdp2AtH4IIsWmjUXSkB4pizeqgfY6oZCnzaxfy2lt7DOAy6yRiQMSwweKcAIdEjl4fvNLU08xwIk+uStgoQVWgZGz1eC2exI9S93dudW7XkndbxMytNPP/2i1X1fVP0ilqWFgu0HS/ej3yyOfuIPS5X1x8ZBODUVWBxIal0leeZWZQuTM5ELcqExCA7MgKGsGcmaoayRXvvzitE1To4PGWQtw8tQnzTRXPPgZI/T1SH5sKWdwHY9ZG2w4GN7p7m6GHNiNKVQmtPVIcOsZaGzqCeaNQVF1tFoxcnxIScHzvX/xmyExNIsMud5pjSLNkdJQzF07vdZobFaorVErDcoZZiMFgwHDV2nsOstCOcpM7pikMrQjRwIaCbQrlnUXPhgdpqyalC5S/mhjaTpFMYI5nWO7qRz1ReW8ahm99qY9c0Z22/uWJzwbT9XZEXHwRtrunM13ciw+zrD4qQzmXQDQb2RszhVIjvL4kyF7AzFAYwutTEAoy5daAPpzW7gGKZQZJOAIg+GrHL7BGF13yeSScqD5MBcHBnjU1NMcBcPOg7jghPGlbNnFELaCtGKfvL1dYu2Hz6CySmEAgjfRe4qdPF0kolb2WUhs0nMdNCn3hD0+ccSsOa0KfTicJK6Vq4pMjLCYgvr35GkjWKj+XfKv4hBfO3qFemfpXc1JWnj9/Tlj1ql9DqPW9VbL/gXMa1IuCfbyX78iG3lN6RaqHANbWJW09IFwPSCdVULuqF7N5AWM9QOTLc+r1nmTIt64JwQhAo539LGDawQMZp5CphCvCkZYxGRTNzPAz6Wfl51pXf/Z0ovgaFV4fSxGe+P+b3/fm8QwarG6X55eZX7gOhelvAu3Gy1sfrO3Wy3lQE1jp3H7J9GGw5/N04e+kHDcL0ZMzMllWw5k+0xknU0mV3vJlTCsTnb7YgvPPUUT109SVfBxkcl2cySLSwXD9aZ5At0K2nOuPhDp4eHfPr6FpcPJpwdHjDMGkZZzTirueqTvBZSkylN6dN6VFlHoTTTpmRz4OIRPXxmO4Kn8HdYNZHWLoYNADI3WKBQ2qULUIZy3DgvsBymZyR6nlFvWapLClNYv5omBo9T3lVfSEsXJh4rKHKN6VyAyGHlgkkyU+xcniAGHfmUaCLqmozhZEFWdoiNBrPeMbooWH/KUO5ZVGM4OJ+xOFlw+ICiGyjKPcP11xWxD1gJuvAskfFgxydxtd78Fp6rrty2AIRMzDPWs0RLmda9+cMKYlwhk9ul/hSkM0HnEtN5gJtcQ4TqRGMUIwt7cCECO5UyJqG/endql7vKMTumUzEwZpy4rXCRkQNY8KAuhEeI1wNLCV+jdgYiUxJjeAGicSayVa3VEsAJYFKsTPL+npYWL6HRVtvQHxPE8P17avuggxYHAkNMo+D9pSwi19GcFCoTwfTmtT/CA7+l8wVhdVw80beV9Z5kwVxXS9/G+Bxzrg+Zwpl6A/DTI+2YvpHzMpSdcMCoTATex5Rlc5UXy1v3fzFssUaQVZ03/YWHxTKQT5/Jcf/7BpfKmTyddsg3p+i9yG7mUXazchwoelnGDrL36PMyKN/3fd/HYrG47f3/xb/4FxwcHDz/jr7cB0QvUrnt9+omQAd43k4aQZKfENqTHSgXtHCtWrA5mPHxvVNcatZ5uj7FzJQMpQuEKLGcy3eRwrCezTlZHPKfnn0d7TwD6eLpmEygaot87xYf3T1DUXX8sdd8ijef/DSf3t9gUDWcnbh0HpNswa986glmXcHWYEZnJYXSTCoX52fR5Yyzhs5IGu1m9Up1nBvtUyi3ipzuDDisC6rMma6Cp1eWacajBevDBbMm5+BgwPygYrFbYWpFdQP2Xu+And5qnadXB6YyMeJunmuUMtEzReUG3Sm6IFCVMK4apouC5sKIM++XlJdyVKGZnXXJXK0A0wkWswLTScw8w7aS+Rk4OC+ptjtuvDpDtqAL70EloV6TtGuQ+yDdqnFeZVaCrgTNRGIKaCbQVQ4sWeX+j8yRIGqVYl4y3z+MN08FwXV0gQ8TfNJfQhyi0L+sZ3Cs8h5gFgc+gku6ES7wZ2V6nYwVS55V/UKAPl6RTNJxSAeKrE+eGqJWO71UAjR8/J1g4knFxX2+NrsUE6mPaJ3sK+m9z1JWSeDMfFmaHFb0MYT8PQTgFKtMqCBhk/qTn2IRx230lYW4TgIIucA84AlmspBGxCZMWlqcYNsusUH4xUMafDFqn4K43GukHOC2PZvln6lQ1unEwj0AYtRGc54MQDGYrvwkaq13+7f4mEc2JnftakVedb13WDL5Lnl6pWNgymwKYiJX6eMLhdhDKfi5GZBZBWtwlEk6rqwmbr2b8hkFVv8XAaJ3v/vddwRwvu3bvo1r167d9v73NUQvtKx2pLu1Raer3pusoGz6VVifCNL9MHqtc7U/Ozngk1dOIrHM2oJxUTNWDgRNTcmpbJ8DBow8MNrTQ3KhGcqGLzj7NL9fnuO5Cw+6U+y5gVd2lp35kNPrriM+WO6yVi4YjlqGWUtnJbkw/IkHP831ekQhNVXWIbEMspbd+YCz4wMao7gyndB2iuuzEQ9N9ljoPLrsnzqzx9nxATu1y06cZZqN0Zxc6WjigiAWtQjhVt66AEpDfqWgPenMaKITTD6hOHglyEEThdgARd7RkLl4QosMOV6gG4mSxkXhLSxqATZzpotmSzO8pMgPJK3KsUMdWQS1p5x3WHh+0pnEuqFw8Yfmho0n5+w/PqArXdBF7eMFmdKBn3LPYgo/CXc493XtwY8XYpvMP3OfmD0yItFVX/hM9z3wCSYu672lgN4DKgRPTMS2Ftn3PUuM3Bzj+QQzWNLnQ+qJYGoSEQgl9aTgJgDQMLEnXmEi65OX9i7ZfccX0gE1qQzGKqep8cLxyAZ5EBCTlPoQCyGlCEkoh+iW7+MGBcBzhFWy/YuYAsHViN/xWgMICQAqWbhEzZIR8X5XRdcOdPkwCNKDh8A8hXoMbsb3932cmNhKZ/py+7tUHVa6hYLofN3KOg2ZFsiZwnimyGy00CrIDBaBsDZ5vsKBV5/FHvDbvehZWapBQ6dd/rojQuOgkYo33D/j2AD0z9zFQQoBGE10tb/dsqoRSrVEt3LDT/8eV26mO3pZskwvk2Kt5Uu/9EvJstuDLvP5/I7qvw+I7qbYlb8r/x+h229VxyrtnZZj3rfUdJa+d02b8fiJG1ybjZHSMshbRnkTYw4tfNS+wpvINBKF4YF8h109pLWKTGr+5Kln+Hn9oKPVc0G9JsnnFisNudR85LmzPDG5xms2rvBodYPf2n2MT+yc5MEH9mjqjEp1SGHJhKGzkkwaDuYu91ndZZxb26fK/LVZQWdkTBALziTWaUXbKbbGM4Z5Q2tUHMCsFQwmNfO9inJ9QfvpMbPzBnU9Z3AF2hOuPYp92Hyyo1nLWOQZeiTRph8MLQ5YleOGTBo2Tky5sT9ycWAawfScizRstIChRljF4ApkM8X8QaDSWGkpdwTd0AGb7VfnWAH1BlQ7wTQhfXwgZ4bQJR5kQrsG8gbkhwa1UHRD53VmcqJbuw6WNmm9qzwxhk50n2/pgwgK7wKucCLhjGg6E51wEYK915UNEYSjiNeBpyDyTsF9SO0R+mDo4yKz2I44I0dXeQE0bkcRIxg7kCYEDggVNoKtoI2JYum+yijSDtdpOhWBmQ3vTsqYkABC6+47gCBRSx8Dh3g9aR6weL/p/SeAJLZF+J5qd+K77EFmcmwEbQIf/JJeAC18bKYAumQfxiC2ZwBNkWkJAC+5Z+uBpo/vJGcu35rxLGGMRi5dH5JzgZq6NBxmqB0YyixiL8OudS4oZqjbOFATg0AGYGSPAgAhDYt5gfHPXYikvVcHtbQNw/OAPkGtSNgh4XIbhhI9WlfqvFPx9HFg8nbKS0aMfawe7S7qeBmUf/gP/+Ed7f+1X/u1bG1t3fb+9wHRH3U5Zow4Uo4MuCwPyEBZdGwvhoyKmmleUKmOYdawWw841CUPljt8ujnBg/k2EzWnEJrGKirRopEcmIrNbMZON0R/1pT890c0Y1g8Kjj9O5Ybl9c5mFSYTrKZTclExcnsgGvzEWXekQnNej7n0nzNXaOC3bqiUh1aSx6Y7PPxa6fYKBY8Pd/ikckOUhh2myEAC505l3crMFawPpyTeWYI/CCH8F5hhnKtpmsyp48ZdVQXC/QAxEIhG8ewdKX0EaCd+HN2UKEKTZZrMmVYdJL6sKDzYQAYNOzvDzADw/RBl+HbdhKhDLOzMLro4wM1Alu4QUiXLnnsYovIDgkNs1OOHah2wKxlmMyZyoJAuhs4wNRVcHBeYTJ3LNCn0whgJrhF4+p2Ls/+/8y6eDmWPmFq2FkRGYJgUgNcnKEAkiwOGMGyiz4J4PZ1By8zYWw/ISf9Ms7VwfIS7TIBHIjIXomgE0pAhLWJdid5JyKjY/01KgMhro4HiEfCC6wIiFJQtLQYSXRFMehlYRH1yku5xGD017zMAAXAJI7uG09i+8CX4a/oGZPACC1d6yr4SusJgmaDF1sLhBWRATS5E5GH9pGNQK9pJ4i3LjCjmgtsJh1TVEu3T2C5SJ51OLWwWOsuVAiLMRJBz9o4U6ADUcWwpat9upAopL/5gLeqlRSeJXIxyvq4QzJ5thI3NvxRAJTlRLrLTNhnSlS9Im+76zpeDuVOAdGdlvsaontZ0pcxfRme78VYZZfS45KV0vF1uwN2r49ptEJbyStPXGfW5RSy4/TggO1mxMenZ3mo2I7Z7idyzkjWVKJFYdxfYTjoKr7osU9Sv3aOMDjWZSR4zSsuurxBlys+sPMobxp+ilx0nB/vcn68C8AoqzFWcNgWXJmNuT4dsVsPePTUDYZZg5SWQnZMygWl7FjonMO24LAtuDYd8+jadtQYGQTayAiCWq0iONJGuEzbV8vYNrpyIuV8Xzq9j4LdJ9z/wkKnFdlzJd00j8EXs1GLKl28o0YrZvPCaTikdclfJcjcmdrq8w2zs1DtWIbPSRf1ODNYBfUm2Myl7AjmrXbiusPsdMbu426lriunRZKt84CzuaUbuYS6unKska6cSNwEIXUwgfmliylsnCBNmeSCSiZKpJ8Eg2eYdZO0HbiQAWTO20pWndMLWdF7gAUX/VCfFzmL1kUzRtODCEF053f50RL2InzSxKY2qdPiXcATQCKImhqR3E9IGxHNUTgwZT3wEavXHd+b/v2KYDFEkLfJdViQmqi7kbXo9yGpMykpRohanaUdko/fP5xbdNK70Ivomh5c6oNOJx4rPEAKJr9w3WlJ7iPOjh48itZ7HmoH+PTIxFAK4DLcdxPjGTiQc+n6fvAgDM/QEuMbBa1Q2kccCEqO8dubaeGCotYuZc4qGxeSCcfnlZjLpAfqUrgI8UpaF/SV23e3v5k32fHpPJY/d1rum8pe/uU+IPpMlNthgUhX5GJpQ/BcOTIwJwAsv1QwyFvOj3c5N9hjZz5koXOMlY5VkZrnmk1u6DFnsz0UFoWhxSV7BRhK59H1WxcfwWrB7EGLNA4QLboMC6i5YJzX/I/d17Ktxzw6uMH5wQ7TriQXmkfG2zzsAVLTZkybgmHWUkjNA+t7AJwdHnCtdglhA71tjOCTuyeZdTmDvEUblwR00ebUbeZTdsBikTO9MST7yIj1j8k4cVnhBnvVuOz204cNs/Oa/dd0iEFHVyu6iUaWGmMkg9wFqVSZcWlJmiwGYxSFMyXZtRYzzWNbLx5pWWwJquuQ7StoJdnUt78HOmoB2cyzQEMnlF77tGHtE4KDxw3d0AE3gG6jY/5Qh65sBD/gwYX3BEpzhMV8XCIRUEtc8MQQzDGYRPJkUvV1ilpGb7EQrJLMuOCAQYMkICSRJU6wrt/Z4NmUMEdoJ0qOaTyCDictyeQePdqChijp+2lk6igQDq+C8eLn2oFR6Cd8Z060CeAKlRJHOFvpmAakt7XRC52DVijeh2eMQlukYt/wW/gqlv9JNUORlYuTvu2jX4f328dVigenTNDqSQJACikx0u3S5WULoMP452WUY8gCWxQ0Tlb6DPfW/S5nyiUw9oDABs/CmIYoAYqrC7cEPMYcZ/7SukXmTWccRZKiZy6jSdEDWies9xHshUuzk4KVJbd7fwG3iiS9Wp5PYL0KkG4XKN0toLrrYu/R5365c0D0jne8g//5P//ni3EtL98SB4MEwNxh6cWsy2AoniKCIrt8kKfnTW65ujdhv6m4Vk+YlAuMlWwVUw67kt+9/hCVbBnJmlwYGqvIfSTASrScyg7IRRcHFnmlpLommD5oKfcsa0XN689e5m1f85t8+dZHOOicfedVg8v85rXH2G0HGCRD1TJQDevFggc29nhi8zrDrGGhc05WUxrjYhTt1hVr+YJh1tIaRZl1zJuc/YXTGw3yloNFSaMVe9MBUljmiwKVGUQt2fiEod50K3usoJ1YjPLJVTc0tjCIcYscdCCgqDo/aRNTc5hOMh7UzHaGNHXOYla4CV1YN6nMXaoPs8icV5AWLE7C4cMuTQeNZPNJw/AyqJmb5ModF2Oo2PVBFw10lWB+Ctb/UFJvwuKs05Bkww45ccBMGNClY31M4dkfZTGZxZQmTvpxLgnmJmmjK36MTxQmcC/Itj7VxRJA6mRc0dvOMSxusqQH3l4861gh+tW9WPme9P+oLQqaowgI6MGGP8Z6LUvs3x4EWZMAo8D+dOH6RX++IAhf8qhKXyoiOJJzlRwvIpiSmp6lStOfeDDj6uVIiSlU/H1jj7yyfZ2R/aAHO5FF69s7xPUJaTEiM+bPEaJXr7Z5ELGH/k3QkHnvQ2E8s0jf3tnUXYesBTKYVQPwCXGOPPCK0buT8A7uAKI2zCZAx3TSAzYXRNOZnVMQlDwfP66F8a1PSmuR0pJlvalM+eez7GF2TJvfpBwnlL5TV/1wzpuBnvuxh17e5Y4B0cHBAV/+5V/OE088wXve8x4uXrz4YlzXS7/czjuUrBSPJHe9gzqf9331g4z9+JhMGmZdzslqhrGC7WaEsYI3bF3if22/Am0lB6bkcrdOG2dQkMKtwjbyGY9s7aAnmmwO40/3LtaPjW7w0f2zvLq4xKwr+H+e+2O8tnwOgN1mQGskpWipTcZeU3GymjHOF0hh2W9LOuPYqEq1rBU1G/kcKSw3DkcMipbN0SwOeuOipm0Vs0VBW2fMrw1p6wz9zIj1jyl04Va4RuEYA2WhcMEkbWHIN2vyQUdedUhlKYuWyaN72HnGoGhR0rC2PmP7qsvDphNK3x7kfbsMOjcB1ArRCrqJT3TpGZl2KJg826GHLop3ZAX8MysOLLp04KjaNeQHkB0otzrfdgAvjUxtFNjcxmjSQov4lorWrfKDDidOfmk8IIXXHdmehQkr7tTUEv4/JqJzNLM1IgqwhfbgIXhkEc5tjhwX6z/ufJYYEXrZPJxcn2dBECAWcpm9CRnrQ1BJ22/Dt1XUEwUPtnBd6XsYQJvtTUpL5pww5/evyNJ9RnlUAnbSCOA2BIxMc32BazuZuP2TbA+gJoAc6eMNhf3S1XyoLwJMEdnCWLF/XtE7MDzHWoLBpaWJ92pjPxLxOlauL54zNKBvi8RU6gCbB0udjJ5oNgniGcygwXNMpAJ3gXuGwucr86Ey1C1MXc9Xjgcuy/UEYHQ3sYxeiJntXhTf5V7Y54/m0l9y5Y4B0c/+7M9y8eJFvvmbv5l//+//PY8++ihf+ZVfyX/4D/+Btm1fjGt8aZY7WZmYZab4yO9h5QrHgqIjjJM4Zps/7rAt+LytZyikE1UDdEYy1zl/YvMZjH/ka2pBYzO0lezqIQd6QCE6xqpmo5gzPD3FKOcSXhwaduoBEsMnb5zggWzBmzae5bndddZEw7se+x+M8zoOJMZKBlmLsYKBahmolrW8ZtblXF+MMFayli9Yy+ZcmY15aGOXxybb/LHN5xDC8sB4n0p15LnmkRPbVMMGOVOcObmPmjshczsS5AegFoLJk8pR/uOW7T/ROm2KB1Zl3qEyjZKWPNNMzhxS5a2L4t3k0Ejkboa6kZPtZKjtzE0M0jrxdPCq0QI1k2T7Cl3C6BKMn5IMtjX5QUd1Hapti6r7eEPtCA4fErRjQTOB7ddIzn5ggaqduHV4UbkAkZlFlxY9MC4WjNfjWGVd/B/hPbUq48CSZ1acm73FZiZqMUIKieDKHr2TQooOSQQU1jMjwte5POFxNAZOAEop2AkaoWyl46aMQqgzsEZq5Tdhe7YkMcmkCVeDWU5YHKMTGKNQgmkrTP4h4KQPqBk+KSgSbQLu/PY0PUr6wqZmMGA5OnYykfe6Km9KTO9Ti/j8lkxw0AusUzF1KjyPwCFpz+hp5p9jYrYMbRqinYdjZOO8CNt1g64seuAYycjChfsLudZWGa5wwz72EHjw4s1bEXxGAByu3/bftXTC+AiEeoDk7tPEe82UjnkP7yRw4s1AzbLo+eZ1rQKku2GS7peXX7krL7MTJ07wrne9i3e961387u/+Lv/6X/9rvv7rv57xeMzb3/52vvEbv5EnnnjiXl/rS78kA9HNfr5lWR3sWJ6UjgVV6SK8cHqcG82YjXzO9caJVc4N9xnIloeKbSrhQFIuOrSVVKLFIKlky3PtBuvZjM9eu8BHb5xh/2HL5FmLyQQXPn6Gt5x6mtl+RWtBW8nJyZRzKuOh4XV+Suc8WO7wWzuP86rxFdayBR8/OMUwaxioht2mIhOGx8bbrOULau1SdgyyljdsXGK3HVCbjK1qRiGd6e6VJ67TGEX3sTUYWA4WJd3Y0jzYIfdd/rL8QDi9znpHmWua/QIsNAcFw405nXbgaG9/yMb6lCLvKFXHc3vrdK1C1C6RpREwfkbSbIIOq93MwlQhRprisnIYo3WswdozLboUqIWm2cgZXdHsP6KYPKuZnVSo1iWWBZid6RmgbuA8ymTrWAl5pURPNMLKpSStFBY1k5jKJTI1A7/SzmyctK0HbksdxFrP6hAFz+6Bm6UJD683sblxE1AajTjk5UqCLi71Oz8/GukmctkKLHIZFAlLyBa/xGaEcFDh2uQyMyRSLyQjXJt0YjneUVwS+8WGf14p+EjZMGGIouF0wrc5PYD0E7ktfJTteE3J+xxZIeLL6MIGWHc/qaiclffVsqybWmlPvGdWPBCw3g9crD5jgTdrWU9NWJeLLYDO8HDC9eP7g8Ulcw1mSuXaRs3cO6CHfQOG+7cCx1IlmiegB32+0YW0Lsv90nX2129Nf38h6KZjwULbBprCxthDISL10bQcL8ybLD1+1Uvs+Uq/6HsJcSqp1OKF1PEyK9Za/sN/+A/8yq/8ClevXsWYZTPMz/3cz91xnS9IVH3p0iXe97738b73vQ+lFF/1VV/FRz7yEV772tceyUj7f1yxK38hDpBBRxE+YWy46QIj7YxLg449ckzUEnl9SG9/d59ZW5BJN+uMsgZjJbXOaK1EJ5HklF8atygWJkdhUP5m/uDgAXYuT5g8Ldh+nWSxIdn6kEJheOyha7zjY2/nqdlJHp7s4OCU5P995gPsdUO+cOtJNvMpp4oDHhvf4FR5yFq2wFjB69Yvcao4QGKQwjBRC169dpVr9ZiRcnnVzg33MVZSqI5x7rzWTv7xK7zhc55yA+TZBWQGUxj2X+lEylYQc2ap9QZGGlk4nVCeacaDGoRlazBjrVywtxgwKhs3MOYu7pCtNNNHDM266VNS+Meirua0ExfFeXQRNj9maceKfKpR047hhSlWwvrTHeVOS7VrkB0MrjtNkfWRkU1uka2NkbSHV60zW+T9pCtagZxLZ66CGFNGNM5tXCiLLR2LJLwgWki3zRQmmjv6VByuX8RJPPRD7zEmGgkL1TMubSqSZinb+6p4mMy6hKkkQC2wRyvsRejP6f99mIAVxiUIg4NOSSTnXLkGK+iZo/R6A2Pk4zlFFsUHspStXNrmrimZx9MXL/wfLmHV/C1W/jfhWvp6A1MnvD4oVmuTnGmBWUkHC4vT6VgRhcnhfqMWqpO9uc6HaAiibZGwR1Y5L0abLIOFZ630oA+yGM/rhc399qMTr9HSfdqg0cI958wxQCGB7RIY9bpHEQfK8JuNLJFUztVeSQ+4jhk8j2Nsbh4scfX70WMDA5V+blZuxiCtphL5jBR7jz4vs/Kud72Lr//6r+fpp59mPB6zvr6+9LmbcscMUdu2vPe97+XHfuzHeN/73sdnf/Zn8+53v5u/9Jf+EpOJ02P8zM/8DH/jb/wN3v3ud9/VRb1cy9LAdkx5fobI9g4mCeO8asoI+66+5VbAlT88xYeLmlevXWWSLZh2BZN8wcXZBnvDIaeyfSSWqSlpbcZQ1kyUyw0zUXM+sTjDs4cb5JMG2eaohYuPE7QUT6xd58n9k3zqYJM3bV1E+Yt7dXGZ39h/FQ8V2xjrGKeBcibUoWrYKucMVcPC5E4grQtK2XKiOHQi7GzO0/OTZEKTSc3Ch3M+P9qlHTjt0c7QRbDe3x3CQCMyQ5dndBM3eXaNIitdFGmrBfODkmJrirUClRmG3ox3/XBMkXdIaaHSqG1FtwF2pJ2gN7Nu/O6cGFfVwgEXAcXUMnquZnGiQFeK7KBh+vAIkwmEttSbOSaD/NDSrInYboFouPT5BdnMhwiY+hgwhphCwY40zBRYpxdyWh6JHevepICI5jBbK+f+Ly0iI+atiiVlibymJZi+wuSJ8fWFgIg+Zo8Ik3PSd13/9CB81SSUMimir3cpBlDo2z0h4DZF0bc/pwc3S0DJ7y8sSylJ3PH0eh0pYmDLMOdG1ie+YzY6JIR6gy5s6X5WzGbpNYMHcsa1ZcRsoU5BrzEKbWyJAQAD6xXjMuHjGnmRktDJ/Qvrnrs/LoCioBuKIC4BjrITzsPMx6vyPhTYIqmzC1HG6T3ygjYr9BPBytI5sFS+UQiAJx3/bP8cvbg+eg1asFo6E1t/QF91WIgosxRv6IWW1QCMadykmx/z/PscV6SwkQy9X16c8pM/+ZP83M/9HF/1VV91z+q8Y0B07tw5jDH8hb/wF/jABz7AG9/4xiP7fMVXfAUbGxv34PJeRuVWL9XNAFKw7yeTjkhXUikQSqpPLXOrZ1UzSWckV+sJZ6s9Hh9e57l6na1yyvuuvYYzD+xxzawxUXMeyHbYNS4w4q4esqeHDGXDicGMZ+0m85PO7JOKhDfyGZk0fOXZP+B6O+ZZbfnDZosvG1zls4aX0EiGsubAVOTC2f532iFSGHKhmdmCJw9P+3QdkhvNmAeqHd6//TjjvGYrb9nKZ8xVzu9cfYjHHrwBwH5b8eBoj1J1LJqcTGlm+wPUWovp3Oq5GjZu4FKQV5pOuyjYmTIwcMlm99sSISz7hwOMn6S6sSEfNzEnE4AxCiuF8/CaK3RlKW8IDh8QNOOKrY/OMYXEZor8QHNwPidXksNzkvElg9CWrhK0E/9gvPmnXbNsftCy/RrJ7LRkeNVSb2XokUFogbE4N/jAYHhTjxq26EXmJhEPZGRusMp4BkFFj7NVs1KII4RxeclEI9wEFfKVSWI2+SjANX0nS6M+x34p6L2NQheOgQ2dJyD0QCdO7qEvpcxRYCGsiOAiZKSXXS/qj9cV3wl3QT2b1b8vjiGz/XtmwzwteuZKANoH2zzOjV7YXt4UGJjAvAXBdLz5Hnz1AIz+ftN76EQff4fA3vi2Ds8t/G9FNJnFSMqJNiglWWL7QRSMyxZkK9DBrBeE5Il2Kt6vF6ovRQ9PSzhXQIU+OCNJYMkeRDlzWggPEEXymUUVOkaxvlkRnmlR8vl1Q2n6jdQcdvOI1Ulbwm2Zze4WGH1GStoHXkgdL7Oyvr7O448/fk/rvGOT2fd8z/fw3HPP8c//+T8/FgwBbG5u8vTTT7/Qa3tplpt0nFu9s3f0DtnlQdb9v/L3JnUL62KPPP3p01SqJZcGjaSUHbvNkLODfT6xOMOJ7JADPaDFRapemByNpLWK3Ot3ttamLE4b9NCQzaEbuwFmux2xVtR8/vBJnp6e5BcPPpvfPnycNTlgXc3YUDOUBzuHuqQ2GU8dnuTx4XWut2Nqk3HpcI0PXT4HuGCOlejYKqd0RjFQDaOs5kyxz+ZgxkA2tEYy1QWf2DnJYVMi/aBXjmuyosO2ClUY1ocLBmWLlNaZxIBrFzbJlWatXDg9kpG0ncJoSZ471sWeaBgOGrJCo3LjPNNKHVfOurTI1qXoKHdhcMMwfaBEVwqrBIuTGc264OBBSbEPi03JwUMSk7mI1GFyDECiGbnXbvoAlLs+oaqfhKJX1YqNVdcZCBu95oSy6P3CTWja6498gs4ouA4lZRmC15rfJrx50GamD8AX4uWsitZWQHkESvE89C7sAbysgPmj3kr02d29zoWkrZb6d0yOamObycYDuAiCiExIvOaV90ZYerbGA8gI+mMOtP4+l//p942PKGG1YlyjNDJ4yhgdNxYE4JOCunSSDkyMxx54V3rXniLxskvbyQFQNRfoIqmrcBcdxNVCuzaIfWI1jclxF2xwwmhcO9jUmw9ivKWQ88y2qmdnOoFu+2PjA0qpcOGSmNwKCC2DmJvudgtxdf9ZrfdW5rLbMad9pouw9+bzcivf8R3fwXd+53fecb6yW5U7BkRf//VfT1VV9+wCXpblLjrPEvsj+gE3/R1wA4nsdUExAN8KKEp1Q3E8sYAEdSPn/3ftAT413XIi63rMQmfRdTUXHRtqyg09ZmZLDMJ7mC0YyoZXjK9x7fIGKMvm4zu0Y+jGhkv1Or954VEarTiwFf+fc7/Of7/yal41uExrO2qbMzMF2kpK2fLaoXPJf3x8HSksB13F5cU68zZjULZohI+e3XGqOORstcd6NmeiFmzmU6Sw7LZD57WmWtaqBTuHQ4wR1POcMnd502TZMRy6ZLVl1rE2XNBoxen1A849coPd2YBJUXPYFhzUFUXecfbEnltYGUFWaJf/rWzIMu2aVFoIARpzp/+xCg4fgt3HJbuvlMy3FEJbRAcbn+zixGqUYx3qLaKpyOTeZGFg+pB7Xt3YcOVzHfskNX3cnlHXP9fMYAuDbSSEZJkGzEEOWmB2CzjM4FDBXLlrHmkHcNLOJekZAr8tuK6nK/XezNRvS5mPWKRjliIoaqQTP+fe1OaZrSMDbWpWW2I3/LnSa1kFQ8G0Yx0QcmEAcLnXVphWV1f/e0x/YpP3SeCZMn++EHgynjT5QG+SW72+KJTuwWDfcMQZZ+l+UqYmPTyAoxVQbIMHWde70S8tlBKAJLTA5AY1l+iRweb0gT99+4aM97IVzsssAOVUM5Ted9L24ECaDSyP9aDNkNyMv4/QD6VF5Ibh5pxy1CAzsywWXwHJxwmnjwM3zvvM/+8PvplL/c3KzWMK3Rr4HKc5eikBpf/Ty5//83+enZ0dTp8+zRve8Ab++B//40ufuyn3c5ndTUlfXtGvTJ+v3IwpSrcf+T9dCaXmiXAdq2DJ/7Z7bcxsssenZic47AoKqblRj5hkC1qboZEUQnOtm8T6D3WFtpIr9YSN0y6z/c7OiMzn3Zp7Xc84r/lfB6/iq9d/j7Wi5lP1SZhcZEsd8qH5wzxWXqPVCiksv3vjIV65fh1jJWeKfVqj2LuwzujcIa1VHOqK0/k+Q9WwmU9jtOzfOzjPp7c3AVgravabkkWXc2IyZX9eUZUto7KhyRSZMtRtxvpwTqk6ap1xbrxPITULnXHpuU0WkwOXrwx4eH2XvaYiU4auMOS5S3grBEhp0dppjqg0nc+obluF0I4hasfQrFsGH+zoRhndUDA/lTG5YFhsSGzmIlaLtWUMEQBIfgDNupv8u82ObDdzwfMmTizNoXf9D5OfETHzvNXS5fwaddhp1pttQuyiEKsnMZfFCTsxN9nCeO8hgZgr7MBFco5eV8eVVfIgeFnLoHdxDJFNJ2h/vtBXhfGTZ2BZQuLWpO9iHNhxILK/5pTJCeeKuiCv6e0BX3+9zgTkqKmY4T4AjcCUBWYoxH+yy4sUJElgShsZnSWNX2ijcF/BzJb+nF5X+N/4bPJpkwmWB4PUjJZcL11v/grXE9otxKwSxon4TYb3PvT36sF79MIL1x8vzl+L5YgbfTCrLeuckrb3f60VlOsL6mnB+uaUps2oD0ryYRtT8aQPK/X+UrcVvO34cpyJaxUUrZrTbpbk9U7NZQHMfcbA0epi5W7reJmVd7zjHXzwgx/k7W9/O2fOnEHcg0BQ9wHR3ZS084SBwR7z280O90BnKVDe6j6JxuBICZOHcNnJw3nD4CwsMM348Cce4qHzN1grFzFg44PlTqymsYp1NXPmM6soZctMuwCK+3sDHjl7g/r9W8webVGHGSPV8JrTV5l1BZu5y1nx9O4WZ6p9OjS/fvBZPFpdd2Y4kfPk4iyztuA3LzzKEyev8/hYM8pq1h7cB+BGO+F07v7fzKaMZM2FZovWKN5/4VEGZcuNmQssWWvXVY0VdFqyNZ4hhCW3goV13mTaSHbbAY+vb1MoZ/rrrOTzPutpdpsKYwXDvOGgKZk3TtxdDRryTLts2lhUYZjOS5Q0dFYhcoNtvVvyADb/sGP3iZz5WcPeK/oAjvWm8yobbBsWVpItLAjB/Gz/PIVxE9DosjNZgKDOJO1WR37DgSIbXJ8Xffyj8Mytwel9tMsdReFsSyLXTquhPXgLQAHfh0I3StzCY2oGcBnOG7ncd5cQQeiU9GJr059jqR9boullqfsGdmZFj5T+LlbeJRFMMR4MLe2r+/0iAPOMz5JZLr0X4ye9wHSExcyq6S8hdiJA8l547jmKhGXq2zQ8J0x/XOqhJmIb9NcUNYThXtLf/GUvWS/TIJW4OFwhCrXxQTkxomd+wDFoViAbImMptG+S0h551KkpNEbBDm74SZiEpWcSn2nyAL3+p2sy1jZm7O8NY1yvdp7jdHA6cdfvWRYlbz9fGRB1QSHRa799BWgeA5DuFBjdqhznzv+il/9LAdF/+k//if/23/4bX/iFX3jP6nxBbvf/V5ZjBs6b/n5MWWV9jjvGBnv+6urz2Lr6OtJq1dz90HQKY10usnHW8Oxii31deTd7p/UJA4hJ7HhCwqJzXmYnH9hDnpvxULXDw8NtLh2uUZucDVmzvz/gbLmPtpbtZhTTgSxsTq0zXrFxnbrO+eiVMzx1eJLNbMbWcMaD63s8WLiM95eaDSrRoq3kgzsP8z8ufRYPb+0wyFvKrMNYEVeTnZacWTtgmDdoI5nWBbPDEmME24dDcmliVGyDSxHy6YMNPvapc2zPhuzXFdPGmfXqNmNUNuTSgalFm9NpSVk4bzQ9zR1wVdYxKlpw5fNyZudgeFGxOOm8xRYnXN6ywwcke49KZ6FqLYPrTntkMpzZrXBMg6otzQbIhpg6IgINgMxgS2cqCxOxyD2jEx68n/SVj8ZdjFrn6ixwXmdL/bQHzbEsJGIhXe6r8FsQGqc22jDAh3k9BT9NsOey5PW15FnFSndPgEPUGJlke3KdqwuGACqlI/QwGZG9ifobu3y+XgNED2wgCsoDe5ZGnI6m6nBPEQzgtUGJV9dS/b5ORdR0xfQp3gzeB15cBYxiqQ2O4FEr+lAEXkwdPB9t5nPcKRsjiptEN6TqBMB44GIKl8fMFGZp3yMkSAL2ln5L20R4EBF/F0vjltGC/d1hTPOBsOSDFqRF+bARLhij7aNX3waguNk+t/JMO8609Xw6o/vlpVnOnz/P2traPa3zPiC61+V2kbafSI4ccyvAdCvGSBw/mClpabRimLVUqmW3dd5k23oMOJZoVztPM41gpxtyYbpOd5jz0HiP+RnLbFFgjeS5ep1HK6cHyoWOcYtO5/vkQrHfVjyzOIlGcqgrHh9cYz13grfmRsVhW5BLzawt2CjmfVJZVaOE4cBULHTGmdEBjTe5ddrFT1KyX44qaTBW0GhF0ylsK9Fa0rWK63uOUXL50gaM84Zh3qDKjmldAGAQaONYpfDdGMc8xRWeb2+ZGeReBq3EFJZuAN3IsDhtqbcMJnfmM8ABpDViJO1uKCiv+4v2JiWA658tYygD0bgIyjbzk3Lwzmod2LCZhYEhKzuEMmAE+bi5eXb0cPGJDi32t/Sv/1+0vQdajNQcfpbLE+URLZHog0Sm0aqj+PmY8/W0ToKNTK+l6T2nxNK5QqLb5eCL9No5L+BdYmtS0OEBUXgG0ZMqKaGuCJYC4xTScIRtR7RC9NtD28vk1sNxKcoRliOi9BV1a/i6xECHKOPKYgoHhtTUBfAMnnkmSfchF4LM59kzIXmvBZObJQDY51xbRWJJ26xu82yWWG0H3PmFv+9Uoxa2LQGS1WtJm8Tv92LE9LkdUOT2u31g9EehIQr95IV+Xm7lu7/7u/m2b/s2nnnmmXtW532T2WeyxEll+e1Kx6AjmoTnrXN5xRnqMaUTvV7fG/HIqZrOSjKp2W2GbHdj3jR8BoBCaDbUjE/VJ1HCsNu6RKrZxGl59NBQFh3rwwVvnjzjKGkrmJmCBslg2DAzDmicKKfstkOeaze4XK/z+OAapewYDWv29woy6Vzv/18P/x6X63WuNmsRXGkrUVheu36ZqS7ZKqf8zpWHsFaQKcO0LtgYzikyaI1i0ea0naKeFtA6sbFQlrMnnXZot6modYYShnlboJSh04q2sxR5R9spilxHr7O2c8ra+aIgyzRSGoq1xgGltQ6McGlP/DM0Q42oJc2mJZsLuoFjBNaelKw/1dKsKaZnBfWWf74SZ7oAupElmwrUHKwS1CPHBgWtUHRVLwwUUPhwAjKz6M7S1Somy1Q+E3hMveFBRIgO7DpD6Csi7hMmVWsEshPLQRMDmxJYj5U+Gr+npgnjTAzxOoI2Jc0Fls7uASCkLttpCfdhQA/6NvFd3R0a2J40KHMSLmBVZL0EaCwxzlFqGlsCO+Eag+A4BYPhXBDBRAQIqblSsHx/8dqS7Smo820eYwGF04VJWXoPwlZich+qYWBd3wlaLP9sQ4DOGLzUAjoZY1YWWsfFfEp/j5ulXR6iIlNm+/sBp6NJbn6yPmd6WCJwiVulMhgjXDww5VzzpTLuI19YqozUdBYYI3PMwHo7bvr9vke3HefhdlwS2Re1rLCLd13Hy6y8/e1vZzab8YpXvILhcEie50u/b29v33Gd9wHRCy1HZgqIOgFYivcBKyvt1cOPY4dutyT1AchGoJVFN4pZW1DrjFPlIcOs4ff3H+T1g2fZULOlBK/aSmZdyawtWJ/MOVvt81mvu8DZwQHXFyNK0aKE5TVbVzid79NayRc8+LSvRzPtCl4zvsyWmqIGFo1gLVtwfn2XT7QZF3Y3yE9pxmpBXmkuNxtcnK3zmvFlcqH5dL1FLg1n1D432hHGyDhAaSOZNoXT+UjXuHWbIfZyhIFzj+5y42DEo2vbfOT62Sig1lYwyFsGVcP+7hDdSZ892w1mnT+HEBZtJFIZCi+yNkYihEDnBls74bGpJQw01MqBmFpRn+7I9hVGwOwsVNuKcldz+KATWEf9TA5B/6JqGF2x5E9ZLr3FrfCpTG8WKR1VIpWhaxQy8daJJehbwrVnBtN6RGJW+iT9dQRBrmx71qp3aU+ATAACx4Eiv286sQdB9lIPNsTIyCJhyXrNjF1yz7e500BJD4ZsxpFEo0c0SwlIEcaLhwmT/PJ2d3+JSzyBGXIv5pIQOrxMQawetmcWu+LaH7VGgW3xWA9hY4Tppclz9TUPxxh6XWC0U7LkuCEX0rE9oSjb66aCJgrIptJphQJI9SbRJQG1SNopNIZDu0cWZqm2Jj63LHSK0Hn8DoLei8z/OTyoqIYNi1lBs8iQmSHPdXzHrQWVGTIP8tNirFjyFrud+EKrprObAaNVUHSz+o8rqyDpViEAXrSSvgMvpI6XWfne7/3ee17nfUD0QsuqFgDi6nqV7Vl6x8Lgknx/3nfwGOCVfl+i1gVkV3LaEx3Xdsec3drnWj3mTLXPDT1makpOqCm50Gx3Y15ZXeFKu87p8oBLswlvOnmBq/WEx8Y3+O2rD3N6dOgYEms4VR5yNtvlt+ePsZHP0FZyaDv+v2d+nV89eA0A62rGhWYLgPOjHXbrAa/auArARM652q5xvrzhXP1VTS46rtdjRlnNZjXlN68/Rt1kdI2iKlqM8Toi6eL2rFdzru+M/UTnbvrBzV2ePdyg7RRN6xggJQ17s4Eb9DpJVysOjCAvOxeYETcgGitopjn5oKPTikxpP1D6mcK7DUe3ZAO2sM5lfi7RpSWYkHZeLTnzv40z/3RAEfqD8+ISHhRlM8v2qyXCeK2REi4FiXKgQGU9cItBI4VfeRearNARDOlWOf2FPzau2pMAhKmWKM61qdt35oCCDMfLwMr0HToCjbSvhS4X6pwnE3aai0/274Vo/eQczH3h8oR1GhyfusRkdqlPmxxEZ5cAwpGJOyxIRHKvyf1a0V/LzViQyBaFST0AhjQgI8m2lQsQiYt7TH8R2LAEWcYkqj49x1Jd6TtuehDrtGiuDhvAUHp9EtTU9UnZCFQDOnMAph17m6QHurEd0sZL2nRpwg8eeRaXmyyI56OA/Jh2tPQmXaCpc2RmqCoXxd76S0EZzygFV3obgzOullWwkjI7R4DnbZZVT7L0vHeSt+xuz3+/3Hn5y3/5L9/zOu9riO62JJ3+Zu/LzciewHCGgTmILpdEmjc517Hbjogh3McKEAuni9mfV1zYX+fibIP1Ys6nm5Nc1RMq0fJIcZ2JnHMu32Etm3N5Z41np5v87sUHmeuCk8Mprxxfp7UKg+QNw2fJhebD04d4w/BZHsh3+Dd7b+TVxS6tVWyoKbnoUD469UC1DPOGUnZIYWhtxul8n5GsOZ3vs6FcevjnZmusZQu3j3ET/Gjs4gvND0raTtFpSaMV8y53sVm8ycdYQaU6pk1B2yrHLnldUKcl01npRKfKkuU+1lCyMuxahSo17W7J7KDEGOm8zzyFLzKDyo07p3S5w0RmsQPtJiVv6monNra9FZCFmGFhIvaMRzeExQlJO3bmTZMlE61NnqH3jArmr2BSULmO19+1KiY4jdqiYJaJbIfvkEUvwglu2SHP2qqZzEqfg60yzoNptbt5pmA1phZ49ikB+UGXsywU7tkfWxqXgBaQtfTmr2XA1rvGr4AcH9BRJO2+xAD5tBpCJ27roX1XgyeGeleEFVa54JURtEkccMuSnGz+eaWsmmvofrJebqRjwGAKVkOgyUYi5xKM6ytI6yKZh+uOyVfduUVg/nwyWeuBcTdKwFDy3I6YyjzT1We6Tz/+d+Uz1C+lZAk34wGG7dtV5ob1jVl8SHWdxRhCwTympEFKg1KGPNEM3qzcbt6y1fJ8ousj+4s7y3Z/s6CPL1YRq4/oLj/3y31AdM9KCnJuWW7VG2/jBTqyAEsGUrch+YBLwOlXW1vDGQdNSSE7LtfrgEvuWsmWSraczvbJpeb0xoF7+YVLmfGqyTXOlnssTM52N45JYgeq4UK7xYcXD/Ha6jlaC68eXOLADLjSrUdzXCk7bsxGzHVBaxUHpqK1ik8szvDU4jS7esj1bo3HJtu8bniRmS7drYTVGk7crLVkWLT8ybPPsFnOOX9um2Am6LTk6nTMbFHEZlg0OU2b0TSOCBXSkg1bmlmOlE5TJISl0/1sb6XF1A54aSNRypAV2nlxCZ9QVbq/Vvu0Cla4lXLrov8i4PCBjMF1J3ztTVGBFXEms3rDP7rSuCzrhYl6FFEYxwqBz45g+4lIOQ0G+MHae+boxidaNT6zeNpXJMvZ6PGgJQihTcLWeKAJOL1KmBiXOmJyT/57mGBN1k+2wvTniLSSsku5zYJ+CiuQi35ISpOQBlYumvRWAE8EQ8rFJIqMa7iu4LkJveA5gLUsgISknURSx9I9r5jb0hE0gNDwf2gz5eoP6SvgmAkoXQxZDwRD+ATpAWtox070ICgyQ0StWAgkKucygnCbB8+4pD3p2+TI8126NpLQBCkwssv7hH8Txkgq6yLAK0MuNZOxy5uY506np/wn86bqPNMUnp29HQASHCjAtW/4PB8gkdibAqNbBVi8U3D0GSn2Hn1eRuUHf/AHeetb38rXfd3X8cu//MtLv12/fv2uU3rcB0QvpMSBYrk3HeuRcbOXUySfe3lpFvTYaVLag8KxRHXFicGMnWZI60fyiVigraC1GY3NeLi4wes3L7FXV2DhxmJIJjUX6w2enJ9hYTNy0XGtW2M9m7PTjtjrhjxZn0Ej+JODp3kg26G1ik9OT7GvBy7y9GDGc7M1DruK39l/hNYqXlld4ZOHJ9lSU9aVc+v/xOIM//3SZ3F9f4zRgrZTPLS2x+kTB3zhw0/x0HiPj+2dBuDi9Q2vZYC6y2g9jZFlmkHZkmearlNkeWB6LNa42TCAoRBATSmDrp0wO/eCcmOcbiHz3mhSWlSpsUYilEVVnVtpV9qJW4cO2OgCmgnUmz5YoXZeZAH8Cg2Dq/45Gbz7uwuQyFz1TJERmFZhakXQZIRrDdcTrjMmyhQ20W6IhHm0biINQuTj+lvYloiUgweaY0KWGZ5UrBwATmSE/ARqctMzBWFSTSItp3oW0axclBc8Cwuy7k2N0dTm8VVgiGxmexG3AALzFVzeZQ/gIgBM4yJ5sJYyrPGeknfc5SizkfUSyh4dB8L/x42w/vqXvLPAR4ReWVkFcJqa6nzS38gApefQ7pkFl/zQPia30bS8dE5w5r2wLQCJ1Xs50l/8tuTcvdu8/3h3eqUM66O5Y4OEZTKZUxZdzw5J5+hQKE2Z6cgW3W0E6BQI3Q5TczNwdKcZ7++Xz0z5vu/7Pv7O3/k7vPrVr6YsS77qq76K7/qu74q/a6351Kc+dVd13wdEd1uOWTnGr8exOMcdfy9B0DFjcb6rHIWeu0FnmDdkwvD03gkGqmVmSma2YCRrLrab8fhpV/LgeI9B1aCEYTObMVQtZ8s9brQTtvWYmSl4qNjmXLGHsYIz2R4HJmMoDGtywansgOdma2gryIVmq5zz2Hib/W7AKKvZUDMHwIbbLGzOgak4l+9yqEveeu5jnF4/QAhoFo4m+PwzT3OjHvHkzknWiprHx9d5y6NPYyuDldC0GcaI6JUGbqWolFuBIkA3sjd/SadZ0FqiO+c9JjPtJmHhRNwu/pGrU3ogIoRFenOV8ceJRiI6gTqUqJlciuuSHRJza8naTW6qhq5ysYuE9ttx2p3R0yGPBNjW1a8GXXy+0k86UvaDdZhUhOrZqyVTBniAwJL+JZhSeg8rHFPlQULUCd3CemEF/QQdSgAe6YQffj8SEdlXkqQUWTIjgfea8oAnsE8iYXqg3+7PH8Cbu/6wEw7ApEzJcfcTrkscB3To9UkJUxLi8DgwmuyfRM4OE3PYNyY8DcxVeGaB8Y1hBHy7hesJYChh8sJ9B4F6yNEmGxcHK96zEa49PUBNrymCh2Mm9yVwsArk/DHBrBtZzPAeAvvzir3ZcsqnaCYT1jtLWHKl+233AGyEY29lxlr1RlsttwvG/shAUbLmuWtz2csIz/3Lf/kv+ZEf+RF+4Ad+gJ/4iZ/gV37lV/je7/1e/sE/+AcvuO77ouo7LWEQDANM6Ejp/74si5xXBpN7eDmhXrFiJjGZhdItn2eLgo1qzm5T8Zqty1yYbfLE4AoLW9BYxdlsl0J0/PNPfjFnRwd84vpJxoOaQmnO5Hs8VGzzu4ePcKI4ZK8bsq8HbGZTWqtoreJ6t8bPzh/gs4fP8uriMutqxhed+iTPLTZoc0VnJaeKAw51yZtGz7KnhzxSXOOwrLjeTrjWuBQiF+YbXDxY55G1HRaTnEnp8pL9j2dfFdmczkh+6VOfhRCw9eAe289ucHr9gJ3pkNGgJpeGRruUHlq4uEVdpyjHzn0dC/ODiqxqvT5HgtQORLQu+WTQGmkjkcLSLDJU7tyBrcGBKIQTK3tPJiu9ySazIIXLaVZCNgM9BF31YuB2zU1aOuSUqiVIy/wcVM8ULM5qxKAPx1xUzvNNa0mudDQLGOMYsXqeu0lLgZAuwWt36GMZBeGssA4U+TbowY7odTDCOPBRmj56tRFO5Bz6bgJuRCti7KS4PSZIDYCBeGxw2baewQn7i070uiHLUqDH6PIeLlFabFSvil7AHc5jQHA0pURws+/fXdGbiuJ1uoZNdVIimLvi9bj7EixvjyA0HR+WFk4egAQBsGejbIj6HTz9VsXVab0hVUmY3D1DGpgtm0G+o8inPrGwxOUzC/UFYHWzyXupzfr/+1QUrt1FAhSdF91yfYG9FF4fJOXK78n+SpgYjHEpNlDiFSaFdfE7b0K1h/fhuHOsutOnwuc78UTjFudfPeedCLFfcLkXgOZlBIiefvpp3vKWt8Tvn//5n88v//Iv86Vf+qW0bcu3fMu33HXd9xmiuylhoEs70U06VD+w3uULcjsd9SY2OltYUJZq3MTNO/MhC53z0HCH/3btdXx4/hBX2nU0ksZmvP7EZXbrAScnUxZNzmvXL7OwOZ9uTrDmFcI73ZBr9ZidbgTAejbnd/YfZr8b8MPPfhH7pmRhcg51xVq+4FPzE5ypXL6yy4t1DkzFR6fnGMmamSk41CWfODzJdjvkxmLovKoQHC4KTlYzdusBhwcV2nuaXTxYJ1OGtlM8trHNZ736ApO8Zlz9/9n701jZluwsFP2imU02q9lr7332Pl3VqRZXY5ctm+ZZdWW/a2OQjBDiB9LFT8IWEkJuhG1shEFI/oNLQtiAjUACoQJkGesJ8LOl9+SLwaYMFwrsgoKyXS5XlatOv89uV5Mrc3YR8X6MGDHHnJm51tpNnXPqskJK5VqZs8+YEd/8xje+UWOStSlDzBoPG9Pvy6KlaE1ryHvHOnSnOUIAspzARnAK9nYGf5hHHQ5lvfhALJFryfzRNTqJRrm4pZ9S9lu36xFMQH0FaTJsd5AmSN0C+RFgVkgiWQJKgN9x8PstmivChDIWnvWe8rsmZYMQiMEiESpNNibzfWo+N2aLctf3k4ABA8RNBQLUqtGUZRZrkiVxLq8uQVEAFZ7N/aCfapmSPh5hQg9U0iS9oczHgN1Rw+XouBhsRQBq+hAWOUSPn06wVQCewJoAbfzgo2RIaMwyiNBkCr0l5o4HiNBPWEElLRGDpzBmeYDhw5PUW0XX8vTwY0JvGeAU7JGhlPwioN6n8KHP4zKm3/bAXXrc+NB5/2KZHgwoMLOlIxPErJAs2CrDZ0CfPcagoe0MNIYlOrQKsMrHz+N6onONtUWSAZJtzNaMmaZHFTxfNIR3GUb7yrVr167h5ZdfHnz2oQ99CL/6q7+Kj3/84/jRH/3RR972JSB62DZmheTn/BQxmmzo+zf35uBq2qGmkbDMW9TO4spkid+6/TReW+3juCnwzz/3h/AfHrwfX6hv4Av1Tby23MVrb+zDeY1vevplPJUfI1MOU01ZYi5oZMqh0B12zQqZcrjd7OAdk/vYtSt8y/UvAADe6PZwr5midhb/9Y134GZxjFv1Hl5f7uB2s4t7zQyl6rB0eRo4dmyF1+/vofUGz5RH+APX76DxBrfu7cFHF2mtQhIZG+3x6Zeew83JCf7gwYtUSNJ0mNgWuXGw2qOwDrOiofR0R1SJtlGwbAIVcQXpcHxr0O07wIZUXymAUt5JQA3S80SwBMSBNU7ErvRUZd4AUIFCFbFWFZXmoPBYNyF2qJvFoqgxfR+GRNU+CmZDo+Eak849BBKPAyD2S2TSea/onNJkSmDIlI6AUhHZJg2EUto9x/fQv3PqvQoYiJ9lHw55P2knVkwuEtB7G+lAxWkFq8CmgQOdTuiBkaniTSTBhxGARoE8i7RYHxiG0WIGZ2KXxOXhkBEfdAJTfE3S3B969mEtzoDElARHA4MaiI/jxnhfkZ3ql0GvP+pUnynGzYPKo/DvE8uBpN+Az9MECtVmFCIjpjKK26ONA1QgHZg4zwHrNWCwh2NVmvxDfw3YWylpqOK1MNb34VzepMIIjND3k7xNwISd6CWzMi6QOgYY21yszwIiY1C0DRidJboen8dbXuk+PKHXV0n76Ec/in/1r/7V2ucf/OAH8e/+3b/DL//yLz/yti9DZo/SxuyQ/HxT3Ey+Cxp6MPht65Cb9rVp2Q27nbxwjMWdGdrW4Mp8iXle46X7V2CNxxcOr+KZ+TGaZYb//uqzePH4Cq5OTvHi3QM8e/MB3rnzAE+XRwBokMqUQ4UMO6ZCqQ0K3cFD4V6zg2eLQ7igsWMqTHUND42lK5Apj4XL8c69B3BBY9dSNXoOjzko1J7Sbw+KJbQK+OgLX8TvPriBV1b72M0qdEEjL1o0IBfSwQAZRZuf+J3349fte3FwdQEfFOZZg9YZdFqjcwZ1Z9E5Q0+ySsEFAxX6UUCpQKCjo0yx4p5B+96WwlPapYnDJ9M7Sm9X0V1XAYBT0K2GnzpQZXUN3QLVHhLTEmzA/JWYXdYB0DGsqQPUfhsLXxJoYZGxKmOdJzHBAFFIrQLats+QS+GYODibgmyJCSiBDCUDUso2aweYjVnroqNsrrVQMYdFnCKwItykwWAq0DGpjly4+1BSiGJt329bUSgszc0Og3pivL1BqnzUx3iRaSYw4fDhhdkRPgYMv2PWhH/vgS5oPHF6BURtGoJKywKR9UnXMUTXcGGHYIZurQPjSQHmVKvIzoF/1+j7E7L+mikdgJWh6xT68KHugG4aeiApHtjSafNn/MNLxou3H6+L/N0HLFAMAwbVMz2sHWKQo1WA8wrzskHVWoSgMCuawTZkeGtj6jvCIHSmMQRPHBa7CCtzniP1eL/AZpfrTe2iobUn2QQ+f6xtfLW0v/pX/yo+9alPbfzuQx/6EH7t134N//Jf/stH2vYlQ/Sk2hhliyfMPlUm9EDoCdwv53Xi1e/vwkxbGOuxqAqsugw7kxpXZkvkxmGe1bj51BGmkwandY7cOPw/3vFlfPjK63hhcg+Zcmi9RRsstPKYmhqFbnEjO8KOqbB0OXZthRNXYs8u8d6CHKdvux28t3wDu1mFymXJDdpBU6mMoPGR3VcAAK+srgAA7tdUT63QVHPMB4WXFvs4jlXqi5IGUE4xVwopZAQTkE2oHIfVHqWhENiqzeADZao5p2NxyRiy0AEmVolnXZFqdapx5TtKufdBJSFz4CwgnvD4/1ZBNxq6AdTCUnaYBeorgJsE8h6KAOL0GWByN6DdBVQbf6jSITgFnbmUURSsB2aO9hvZIaVD9FcixqjrDGXOjQZf/t93Gr5TybtIxad5lZGPEodTNvWjxHLGFPbETGzKVFL9MkGHxNwEZjQcegDE25eO0FpksLEvF2vL43GMl2cAw6GxlDUmji2dm4p1vMREPzhu/jcyOWvMgbxnGSAkIMEURxBjwBDgcP9KpVQk8GQRuQCSA3bKhiiVCr3JpjzeygCBz4+OQ9cqlTVJGYOd6s8f4vz4Iq2dX7+fAdDlU9AhldgwxsNaD8u+XYp9hQLyjOKnRgfUsTyOjgCfM8mkEaNRo7AvepBxXibYw4SoHjZ8dhHGaNtxXbYn277u674O3/M934OXXnoJYYML5gc/+EF8z/d8zyNt+xIQPUpLT1LARiCUJghAGrixHwkzAE8CFG1tip4ScadE9/IMJ6/uwCqPMmvxzvkDHC1L/Ncvv4BVm2G3rPDeq3ex7IiF2c9WcCAQ0wYDB3r3gi7IlMP9dob3l6/jXcUdLH0OozzudjuY6RqlalCoFpXLcNIWWLgCX1xcx7Vyif1shamp8euLr0FpWqxchgeraX/oKuDl433MswavnuwBoAFVNh7QjPHIJy26xlAdMu2hlccsIwH1aU11zDSDp0ADoM0dOUHzhBrDPiELcNMAdFQwFiAhs7Yxa0aD/GEa3WtBYnjClQQ09EqTqHkWtUETn9gNNwlYPqVgKlApj52WGAZmWEyAqjVVtlcR7AQqPhs8vTvXH1tKww9KeLDQetoE6GyYcRZiaZAEJNJEvKEzKhAwi2nmABCyeC6RrYAXBow69ALo9LdK7yoQGzIIGTU63QshpvYzo+Gj4JxT5ZOmie+pyBZ5Bm1jk0Xwd6EPWWG0jJy0GAzo0fIDdiXSJAmU8bkMw2Wcdp4OfKwT4sseMAxLAtGWgPpSGl/kMfBvFX8bs9LQlU4skWl6QImAHsDL85bnmIwkxbgmmOyUQs/vOgwE5JtCR9b4ZA/BfZSB+k5ZJ/+hzDhk2sEq8im6qPZmm0/Rk0jVP6s9LDC6bF+59q53vQt37txZ+/z+/ft417ve9UjbvAREj9rUhvc02KAfMMdpu29WY41D9GjRrcKLv/M0Xr27j5cX+7i2c4qnDo5xfbaA8xpfOjzAblbjN19/Hp89von7zQwOGkZ5GAS0waDyGdpgcOoLZKrD+6dv4PX2StIY3el28YHyVRh4OGgUukPnNZ6enuDfv/peHLcFrKZlX64O8IdmX8T7Zrexcjly26HxFj5oPDVfYJo3eFBPAACTosVyWaQ0edlsTDXPii75BflAmWFGeZQ56YmMDunhPcs7uI7S7ROb0upUd85nAfowRpPjU3z/IBLI7VlH/U9AnxllAuwDi7DXIux08BMPt+sIVET9hs8BV8bfpAEgPISSUHu/jWEXheCI5fGdRltbuKgX4pTtxHp5wK0sgaZOw1UiGh5IHxWcTvqn5BCdTAp7zx8571I4LO6r8FB1BDAjtqLvd+LFcyxndqWwV2QwEpgAPTBocTxSyK1DzzaNSoHwPZayx0xI6/B9kNLk+fhGDySS6CHEHF+StWGWJlJOSjJWEAxiwPAaQKw7vlDMRI2v45iNkcxSTuJ9ZQKxQxo9GwTqg+1uiAVx0af9s2eSwprvEBBG12eDn1BKpScNHuuE9AbwkcX7MIQ+BBYC3au7EzJmZOG0FE/LZkXqPYCt4EZ+/7iMzMM4TPOxvy3AUXhCr6+yFkKA2vBjLRYLlGW5YY3z26WG6FEbc/HAcEB7FNZnW2d8Ep009HMTALj7Bb58eBMf+sBL8JnCveUMe+UK87zGostxc/cYt5dzHBSnaROvN3uYmxpGefigsQwGO5r0Qm2givI7usKOXsEojyZQmO1Os4OnJ8fwUJgXDaa2Ra7pifCwmqJULaa6waIrcLVcYuUyzEwDqz0mtsWd0zmAOOip0M9PgWL6XMcLQHziDCk81wUNowMMAqrOosxadE5DaY+msSlUZmwnrlVkT0yAXWiEEa3OobYQ3ZdVo1MYlMGDciCwYEhIrGxIvi+q0zBLYodsBdRSNIw4UcX/zaQjAbdGzzwEJDErH4c2pG5QzMzEbqmzKKKOgE9njkARgyEAXA9rAIBYLI54vZMGDlBt1MEwEOFlOyVSw8OQDRG3STqejq5RsCF5NJHoPDJBHCYKCpp1TCH+APFz2JCuPWICgRRJD975OGQbM0PA+n2s+++G2pARWEr7oO/UeL/xGqyN3QxEW73+uWwMfhWoLEcs81K+bkmcv8N1YeJvEf2IGHyGzI3ObQjmpEYoOaJHlpEtB6jPRW2Q9X34b9R0DPHqeD8a5WHjLFNm7WDZ80DO4BK8iZocoL/fL9JY3/RWtf/VNEQ//MM/DABQSuFv/I2/gem0jy445/Bf/st/wdd//dc/0rYvAdGjNnmDbuLZtokzxCR1YWS+ZTDYuAuJfoBUzJIX5hpTn331Jp6+doSr01PcPp3j5uwEyy7D1NKg9crpPvazVdpO7amr7NkVprrB0heY6ho7ZpVKdLzYXMcfKF9L3kS7doWpafBfH7yA0raYWspUK3QLHZmnE1fimfIIxx1phWpvkWuH47pH+EZ57MwrOKfTIMomjCGChKAUyox0RssuQ64dctuhajNoFdB6gyLv0LQmaTp8axAK11+uTtH1ygJ0R9IXLgDr2VtHaj54Ao7sxOzLBsvnAlAboFOw1yq4xsBkDv4wR35ooBuQRwzfw7UGZpQyH1yfVRO8ovIgcVLizB6ei70nbZOP18RYhzAF3NKSkWP8zXlQ5wlFddGXCHQOIaMMKd31hVsHfccT0Ats6sjAR7IhzM44CYyQGJvkTO3jPkQIJ1hP2i3HnTlmn9kA+AAEjaB98unhbL3A/k+I7zLVX+4fggHi4xUAaHBr8fNNnNRlJtkg02oMhvg6q0AsnNwHxxMT6yR2ykBHI7GT8CCjy3QsQACBRWYhVa1R3DHkMVTGY+wAZAQmVYjZjPNAXlGdJnDOx6XEzsdN7Jf8hjz0CCjJxv9xJplm0MQhWYUUGpPNQxGeFYDzK5GqLusVPvy69P4wxVolYxQuNLhftodt//2//3cAxBB95jOfQZ7n6bs8z/GRj3wEP/IjP/JI274ERI/aVBDeHuLzQaaNYADGQOhJHwtX0g5DoDSYDCC+u1Pg9bCHVxfXsHNzgdunczw1W2C/WKFyGV4+3sdJV6LTLSamofAZPBwUlj7H0hV4td7HzeII1+0JAOCzp0/jmewBPlc9jQO7wJXsFEfdFFoFvGfnHrTyKHSHqW7wzsl9OCgY5TExBGSOuxKVy1A5iwenExgdUGYtWm9Q2g4VbMyu6oGK86SnMcbjtM6xW1bYzSscNhP4oFKmiwvkYZRKdiiFbNoieIWuMZQ1xmCoUahvdMiYlPCIYKS/kCpOwoqLqcbrak8V7G2DZj8QiHIKPhDT080CZvcUqmuxq5QeyGJIwSmq1xar1gNAcAomVrQPXtNTetRi+FbHDKSY5ROBmpn2jFcQyUyc+UQ6k57R4v4ToiZHYSS0jqApCaPjZ6kPR2PHpI/jxuyNi2wOgzmNxAoloJWqwSNmq/E+yLNIRSCkI5hL64YI2vINN1Qg6wByDWfgih688U8p2Dc6n8jmRQZuAIYUkjEni9yD18TGAfCdQYimngwUg9RMxX2HTiWNWA+WVEq7T+G+0E/GxN4BqtGwx4aYoXmAPVHooohdtWThoDoVi8DGdaU/1dpTVOzk3BVUSAA8uVjH4+nDX1E35lUCAJv8gBjk8D0I9JlhlC2m+nJvIu1+GyjaxMKcly32ZjNLb1n7Xwh7/dqv/RoA4Hu+53vw9/7e38Pu7u4T2/YlIHrIlu4vtWFsOatTPgEw9DAPT6Gf62j8j7mq8gEV9wooBZy8MUd7dYXndo8wMw18UHh+9xCffXAD79+noltaeVzNKIx2u9nFSVfCRUZnkZV4V3kH75/dwo5ZodQUCnuj3sNLqwO8MKOMtdpbzE2NA7PA89m9qEVymJsaWgW8tLyCxhtoFTApiKnyUCnFPDcODQxy47CIFe3b2sKt6JVzDbKgYZVHYTosPT09aAR0gfQNVZfB2L54qjYBzketSeHhcsAKYOGj9oZ1MylcEEM+rMGpr1DGj26A2asKhwcWxX6N5s4EutIo7iu0c8AVBEy8DeQ/U4iBO0Q9k+lLdHCtsm6VwU6i3igyMcQQ+XWzPyBN6ON37iBBBWIWQH/r6HnDoAiIoMkhCqnRi6kjYElZZwFigkesMSeYIBOS99CgqQA0miZyxi4CWAUyEe+BinjgUCECvCj6Vu1w3wK/xhX4OJFE4ErH68VAKa6U2Div+kwtFRLIVLr3HoKi3wzsOeUBKNVP3wrkHh4HDGX5gg2vQygofDbQ+PB3DlC1gamIPXNZPM+goGsFs1JwBYCckgN80QNfOnZxvdOBDY9hzdKC2ZXQgyJexsSHivH6Mm3eqL40R9ouM7wi449C8WrgO3QeUxSC+oq7QW9yv97W3lItkXxAeZxtfJW1j3/84098m5eA6DGafIoefnHWShuWf+gdn7FPHme48rUCQgZK8eandbFOiE64AUDlLI7aCV462ce94xmyzOHL5gAH5QpX81Mcaw/tPDpvMDM1Vi7HyuX4rdUe5rbCgTnFqS+glcfr7T7+4513Y7+o8J7pnZROO9UNSt1i3yxTaG0vht3uVVPUrcUHr74BqzzurmZYtRm5MauAZWdwZUJhvMMFCa59FA+rE4vWepw2Baz2JNpUAYXp4I3CqskS6LBZL/pUCuiaWFA185S5U5Opjet0D34E66cUgFalawdEgi5qgNpdoHM9QEHpYB4YTN4Aqms0ibvIDoUY9mKhqgOSf5Dm2mTxOLNpS0JVTT4qPGF5p6P3S5xsoq5KmcgeuTiBt6pnY3Sg8JXSQEP+S+hPcdDHGFQnxocbg5EAwIjPA6DaGKaxiKEy9JocLUAN14Orpamk6MehZz5kv06FSn0f5gyces5AwI7YoAgGGMAyOQIlMsI4E1EHBPS/fbqWiECTQRMQTTzV8L6PYKov/BqBZgqpxeVqTaftFVStgDIaWEqHbj6MLKBj9il+3+x7FPc0lKMMRm66VilLL+GGlGUnQFG8Pil0ldiheE08BmU3nNd0+AL4AARwLPtlxZbS6jdobCQw8sEMmByjh07V8rsnCYIu4kf0MOGyy/bV3y4B0eO0TTfLticbeeNtA0U8eF+kxW2Mw2NpnEuDIIVmTKfhr7YInYJZmAEDYOcNnt47xlPlArcr0hNlxuGNox28cu8KvrR6Ci88ewc3pgtMbY2r+RJWOezaCq9U+3h2eoijboo9s8LSF3gmO8SLzVV8eP8WZrZGqVvMTYWlz7FjVvBBwyDAIWBuKhS6xdTUCEHhYLpEph3uVxRq2y0rHK1IT3Rt1gu9uZSGyh3QkQbFLynUtlNUfS0lFdB2lgTXTqPrTEoHDjrAdSZOfv2112UH32qE1sSn/XiteAINgMo9lZJggAEqwxE0ZfS1OwE6dxQ2WxnMXiVDRm+RwFACBSqQgDpz0HGiN9HThcITBI4oVGagMwcNj64hHyJKz0cqNhtaA5U7Ol6P/knf+p6BCQAcWQfoyKwM+p8AQ71XTuj1Orw8/8/9WYIZLkvB32n0/8t98eQfGbMkHI6/kS9Ev2cht8NQe+MUdKzqHl37+n2O7ysR3uFsvQTW4o0hGbtUq27bQwiDMKf6G1JFVkVkbDFQBQT7wudUOmBl+ptZWnsA0CuDoAM0M1Hx+voyEOMY9USKr6VTgBZPRQkEjU5iAIZCAkPpXhBgaBs2YJ0QV6rfxPJIBmVT6IuLKRvtAa8B7QcuCbJt893qj+fiKOZhTBofpqkRPv5KNpanPe42Lttl2v2jN54oEN/5xaGVIN6lEJdTYfn/izR+UlLAmfduZCkCD/Cx6ZWm6tdHFnppkm9LUDTh7M4rvPZgD13Q+NLdq/j9BwdoncELV+9jOqlhig53FnMqu7HawWePbsDAwyiPq/kSc1PDB4XPnj6D6/YYN+0hPly+gm+Yv4j3lm+g0C1musbddgeFanGr2wMA5Mrhuj3BwpUksK4K3JyQHmm/WCHTDlWbITcOpw15DC1bKvWhmFmJT+Bup4OadsitQ+0sGk8mjQCQGRcHWwpB2WhSmLJ8OFyS+aT3CEH1AuEAEiPHJ3lGnir3UDZ6E5kAn8XUegt0e1QstqsslFPIlqTTaXfEj154qIzcjs2kix4vXhhIUraO0sRWGe2TnkmbWLtMhZTZE7yCW1oED/iKBG6cTafkRJcASuxXORWD5bIOcnDk/kZhq76fESsU0NsGQ7AwcVsMfjhFn/s8Z43x9zzzCfZJtyqWPYkMkQ5J/4SAHjDFch4pWhd9ltL++O8RwEi//aj+FhAGvk30QyDVtpMAIv0GQH8urMERF4/7FAOk9LtwWQ4FhE7H1Pj+eJWJ/UuMFT7z0B2dvy8DdEW6Kp+HVCrFzRz8lMFQ/E0MI3msp9Qn/yQ6t3FKvWwDXKnoXtKpDxIwClGvh9Gy0mAxvQQw1EpUu0f/QPOwTQKkt8Ic8VHrpD1yC0/o9RDtYx/7GP7gH/yD2NnZwVNPPYU/9af+FD73uc8NllksFvj+7/9+PPfcc5hMJvjABz6Af/gP/+Fgmbqu8QM/8AO4du0aZrMZ/uSf/JN45ZVXHvICPLl2CYget0mws6ljjZ+Gz92e+HvLOltBEQ/8gh0C+qfoAX0u2v0vXUFzZ4L//PvvQv3aDMdHU6zaDPeXU+TGoSxbeK9wXJUEmu4f4KXVAZYujwxPh2vZAgBw6GaYqQbP2kOUusWOrvB8dg+HboouGLTBYqZrVMFCw2Oqa+yZJTLlkFmH29Uc7yjv485yjnunMypkGjSqmkwjG2cGx85lAnThyIRQhfS0yQNupt1A2JlSipUYdPlpXk4S/FQdFLFBre49YHhbEcRo6xEKjzB3aK846EkHV1uagDxQ75NhnqkVablMPzlp69cG7uAVMuvAVcDZrbqYtMjzjsSqYj2tyYSRAISmUFTsEzruyzeRDePvhNA5hWX0sI8kx2kpSuO+JfQ1iYlhsCiBB9DrjtKFC4PvFT9ICIdqMMBh/VFHzFGwYQByVARjgYu6KgxBmDQ/ThP/6PhEiGbjccZlJVgFIAD0lnXCaILksYDtD/gyxBAsr8/gNQSVSq3obqjBCiqye/y/CfAzN9Bujfc7MIxkcKcwAEV8WTaBIdnflALchn05r5L9BTfOIJPb5HAamzTmtoNRHmM9ztpxPCTIuXSMfvLtE5/4BL7v+74Pn/zkJ/Erv/Ir6LoO3/Ed34HT057F/6Ef+iH88i//Mn72Z38Wn/3sZ/FDP/RD+IEf+AH84i/+YlrmB3/wB/ELv/AL+Pmf/3n8x//4H7FYLPAn/sSfgHPjtNE3p10CokdtTI3LwXZ83/EgwwMzMzeDx6wNf28CReMJU/XfJU0E/61DX9jyjMMfnEcAwr2CHtxrg7qxsBFsXJktMS9rPL1zjM+/+hQ6Z/AfPvs+/NtX/wCOuglqb1H5DNfzE3ypvo5PVS/AIOCF7A6uWyoO+4XlDVzNTtAGg0w5HLoZcuWiF1ENrTwy7bGb1QCAVZPh6uwUVZthsSyQZyRyfmq2gFYBzx88QD5tURa907PvdF8FPl4PNnhjkJRnXWReSCFiOLXd9AZ0vqVirnCaPqt173sjBbiVSUVgjfXQ85ZCPvMWO7urHiB4heXTAd7ENGnxOysTM8x0nBisTxqnzDrY+MRsrEcAmdtxyj1NMEj+SEoFEoMrmhyV9sjKDiYjV247Ez4wzIAxeBGsiizUmkJSjKY5Ljvut9y3AcEM8XeBXhpbR5xUYR6i3wakkh58LIqZIwC6plBpwlaRvUu+SHzPCfATRv8DdFw6euuklHv+7QAhVqcD8zGzUI3PRcXPgkrhJwnAEhgJIJ0aXytNx8A+VBKkhFbTZbeBshIVBtcjGPrO7Xa903dA2ncCuwEC7Pf9hfaH9BCgGeBhnWlJJTciK8TeX5wZ5qHQxgcWFklvKtDKZTuS27zyKG2LwghPMO4CElRhuzv1ee2sZb7aq9Lz7fW4r4dpv/zLv4zv/u7vxoc+9CF85CMfwcc//nG89NJLgxpj//k//2f8uT/35/Ct3/qteOGFF/AX/sJfwEc+8hH85m/+JgDg6OgI/+Sf/BP85E/+JL79278d3/AN34Cf/dmfxWc+8xn823/7b5/kJbpwuwREj9OC6gGOQu+kO5gsxMAsn5ol+Nk0uWD0GW9L9NzBk7wARePtyEkgLcL0fXoqplFQxSfaNvr1zPIGs6zBO/YO8VS5wDe88Aqa0xw4tTg8muL/uvVuvF7toQ0GO1EPlKsOr7o9AEgu123UDU11jamu8Vp7BQBw4ieoQ4ZStXjn7gM8VZxgx1S4Nl9gJ6/x3qt3Ya1DGQFRaTpY5XGtXOI91++izFooQ2GF4Klu2arJkjkjD9a57ZBZl15UB613iNbWw+QuCWRDp6FODXBqEUoHZJ4m59zH+lEK+tQMBtq87GB2WmQl1VUzZUdp8jagm3m0e4DbcX2RVSCZJbKNwHxSo8g7ZPF8yWKAvIYU+idyrQLyrBuEOJQixiwkXZGCNS6GJdCnkSewwMJZlcKDyquh83EUfg/0OgppH/2C6MPB49CaQj+LdxEAyHR7Zi+YbchY44XEDA36tVPQjerBnDgGzQ+WOohSOfK+iOnkArCoWKQ1pZcbv3YPcoZYb7/Qe1NpS6EtBqdsKgkAJuMwJxJAgAL1AT6fwol7uw8huaVN/STEWmwhXid7okk3NKGadCr3CFkYFoqN10GJBzHFYVHThwuV7muSKQbafLkEq0NaoZD8hlIdM+PgvEKmPZwYlLivypAYgBTKrh1JWNuYWapVgI1s0Xms0LbSHZuWPe/zJ9ne9HAZsB6heNTXY7SjoyMAwMHBQfrsox/9KH7pl34Jr776KkII+LVf+zX83u/9Hv7YH/tjAIBPfepTaNsW3/Ed35HWeeaZZ/DhD38Y/+k//afHO6BHbJeA6FHbeDIAxBN0GA7C/NTGy45B0IX2N9r3KOTAux+0MGSJBt8nYBS3oUJalgZ1heNVgftLchDsvEYXNHazFa5fP4JZKfgFFW61mlLqnTiYe90cp75AEwxK3WLXVng6e4BcOeTK4cAu4KBQqgYnbgIHjffObuOV1T72zBJPTU6xn69wWJeUKt9aWOWxaHN4qHgsNV7Ye4Cvf+EVmMwDC4t2ZbFs8pi90qfmhijYZG2Di0VSlQqwluoueS4AG0Fh2OmIlXCK/GRsSE/+9q6FbpHYJddGUWgsW6CUSHefd0BQaK46Kr2go3YINBmb3GFStgTU4mTDOidig/r/edt8Tta6xBbpWD/KTFvo0qEo2r5kCeI5JQNEkNEhh88YdPA+AnotLqewi76neNLnjbOWCIjaItVrjBiAMLvGwl8TYibYqOM61afhg9b3NpbkMAG+GDozJymfDUkfpxpNoSZmaRRG5xCXEyEkbQkk9KwEAWU5WXAotQ+rxs/HABF0PQahNDkGcAmU3PcHptEfaABp1DpNDGW8xioQa9bNI+g1AaH0SY9EzHBI4cME/viYVf/Sun/xdZZAiN77/7lOHjE8oQfaEei18d5qfWSJEO9B9N5CEsQUpkNmHPbyalCqQ4bXxmn7chsSFMnzOqs9jDv2/4rt+Ph48Krr+tx1Qgj44R/+YXz0ox/Fhz/84fT5T//0T+ODH/wgnnvuOeR5jj/+x/84/sE/+Af46Ec/CgC4desW8jzHlStXBtu7ceMGbt269WRP7ILtEhA9buPCl4OBTw3F1dy2MT/y77OA0gVBVJDbSk+HYvAO4mlcPB2oAIR5B2UCiqKFNQQg6s6i8xp3qxkWbYmD6ZJS+Scd9krKGtuzK2TK4cCc4oY9wn03x6GfYqZrnPoCH5q+il1T4U63g0x1uGkPkSmPUrdY+hy56jA1DT648zo8FK4WCxSmQ24cDqZLzIomeRT5oHC/mmBqa8yzCrtZRZljZczE8grLNu/LeETgk2mPSdbCeWJOjKGn0QAq4DrIEorO0cEG6JWhiSkWd9WnccDPiR2wuYO2lPVVFi2yzMF5DZu59HQeCg81a2NV+76obDbpxJM2HY81HpmN24ifW+MQgkKeuSgOJ/CTZ8R4yay6YtJivlMlt2AWVievosSQxPeu17PIPAEgHrtCEjgn0J+8iNCDIe5r0tFaZnkp8b8XO2KQJJ9WRX91Ox1CTsVOQ0YgKk36LK7OIxuU+2HyQaeG//NxRM3QQECtQir4azIhmEYUUEcmMrGt6Zpj0HpDQxbv9a+kDTKBjtUDaDRQ9LYJiSUKKi3H1z+YgJCh1xux6WU8/sF9zuwY7z9ErZkZmS5GdkxqfBhccA0yPi/+PD1wRBAks9Eu2iQzJJtki4ZV6fvaYZu8jS7a/m+nKXpURmj8AvD8889jb28vvT72sY+du/vv//7vx//8n/8T/+Jf/IvB5z/90z+NT37yk/ilX/olfOpTn8JP/uRP4nu/93vPDYdtq1H2ZrTLtPtHbUlkiv5dsjY8cErdBbD+PUZ/y+/Pa4q8UhRvY/RdeoLfxAwBQ68TPqVTC0wdlscl8lkLoz0+eOUWXl3uo3NUNHVqW7zza1/FraNdfOPVV/Dqag+3mx0sTY6dssLSFzgwC7zWXsGuXsHAJyPGL1ZP4fn8Pqooer5pjnHFnsIFjalusGeWuNPt4GZ+jM+d3sC18hQH2RK/v7iKZUdeQplxuL+c4qBc4ZnyCIftBDuTCqvDkjKOHRVtbZyF0R6t78NmqyZLQM9oj87pZNBIvjG+/1vHiuOtSqnmoVMwtYKbevjdjiKPiibjED1bqoYMGpuTArro0jX2lUW2W8NaD28o5JBnHQrbpVTkwnTpaZsnKJ5spiWZZhJYUsh0BFzGoXEmFb7VmiwGWL/BGWgcVuR+EdgoUQUErfpMrVg/TEWjQWQBamWiuFr2bYxKc8j+LFggFgKP+yKQmCPtejYzFMSMBBvrwWkAtQRgCn7ioRo1yAZkR2a2REhAv1H0O8bDSuAk6W3i55ESs7mD6zSUQbp3Q2B2rT8PzqzykUEEMGCNNNdki+eefotGQ2V03ir3CLXpL4u4tiHqpTiLTgLQYONyvrcoUIKR6sOCtFEJfNhlm68PJxwwM8a2FLIlcB3UoH4gh52dI8d4LuwKYE0cza3zGi6Gs8uoG7Lw6GJRZtkGztaxP+uAxDr5eEwPmz6/qaTHeBsPU8+Ml38r2ggHP/I2AODll18eOD8XRbFlDWo/8AM/gF/6pV/Cr//6r+O5555Ln69WK/y1v/bX8Au/8Av4zu/8TgDA133d1+HTn/40/vbf/tv49m//dty8eRNN0+DBgwcDluj27dv45m/+5sc7oUdslwzRk2qaAQg/PY+e2rjDDsASBk9vw9IHW/bzsDedJKhGNw2Hg1iMmkJ9lQYqg7ayaBqL/3bneeTakX5HO5SmxQs79/F/vO9TeHd5G9fyU/zm3Xfgdxc38Znlc3DQKDUJeI/9BJlyOPETGOUx1Q00PO50u/iV4w/j5e4A78nfwHV7DAeFE19i0ZU4dhO8MLmH5ycPsHA5TltynPYgA7jCOryxnEMrj52sos+ju7T3Cqd1jpOqQOsMOmfQxpcctLiUR9eY5OHDE0VgYbVXFIbR9JnKPNpnavgrLYrdmkIscXtF2ZBVz/+ck9mjDvCt6VmQ+HTOk8bulCp/KwVkmkTlwNCYTqPPkiPxaZcGcw8FF5kf1hSx6JoHdhe9hhDQhwSjWEzFCZX6QN8FWJsTNFL9MC6hsSljK4EhyQZ5CJYUQ7DE+h5RD81z2n/cXrA+2hLEiTj3wNQhlB6YxNjRxBNDEq0XlFMUXuKaajEbLZX2kA8tm24V7VPWIoOCxPJwCz1blH6HTguWhpdTSWME9GAjBJUK/sKQaHrdcCcCk1MDVWsyzewUdKOhfCxHkvV2D+Nz6muWhaSPonMhbVBiZVTPrmjdh2qNJoZShq6UComJ3FSBXmu/llXG7xohGTcy81OYDleK1YANyrUjQ1UE2ChYG4fReL+SKZK+Rw/DFm1iip5U6GyTZcFXrD0MC3TWC8Du7u7gtQ0QhRDw/d///fjX//pf41d/9Vfxrne9a/B927Zo2xZaDycyYwy8p9/2G7/xG5FlGX7lV34lff/666/jt37rt94yQHTJED1O49lDNn7yGiuez2KF+Lvx5iRTNP4b4v/x9/L4ZAxk2w3KmE2LZZyCrw0msxqndY5nnjrEyuX4/PE1PDc7widfeQFf3jvAD7/wK5jtUJz5sJ1gbmq80hzg6ewBDDxebK7h3flt7Gia/N9T3kapWrw7v43r9hjXzTEMAjLl8M78Lu50u9gzK7xUX8W1bIHfX13Hoi3x7PwIry72cLic4EiVeGq+QO0sJqbFqsn7kFCcXNpowNi43gWXByh+wuWSIMncME7QvjbD6yX8YbKyI61OzLAJQaHIOtQtmT9a43H0XAfUFuAn7cjcqMzTJJkBZdGi7gwyS+zOJFYCr7oMk1iktul6AGcQ2YjIrLG9gFYhabesiYxXIPdq1ndwmIbNHVNocDQRMwuRGAn+vOsHNa4rloC8U0g+RNwP2awx9i1mMgYMqhT/mlG/DIgOz7x+ILYGgQCSV1CG2DpYn/q+6nTSJKXbLxsJpFkYFYb7S6ABSCGhNKGpkNL4ddSLaStqysmV0z3aO1kDSKVT0vVisGK02L58eqHfwZce5sQMfJcS8wz0NgNBsBlCE8RhOm37TMUEVuLhynpjSZyvAgKXGwGSOzo5pXsYhYEmLzdukHHG22EdELvHQyHpiuZZjcpl6ZQlGEmZaxtA1pgp4uMei7cvwhhdhCm6SHur2KG3qn3f930ffu7nfg6/+Iu/iJ2dnaT52dvbw2Qywe7uLr7lW74FP/qjP4rJZIJ3vvOd+MQnPoF//s//OX7qp34qLfvn//yfx1/+y38ZV69excHBAX7kR34EX/u1X4tv//Zvf0vO6xIQPYmWgE0YDIiDSVWCk9HA2espMBy8H/VweNsbxKrKhLWPAfSmd2kjgF4adLsGsA4+aBy1E7TeJLHk67/+HPbfvcRT5gQn0xK/cfwuPJffx9IXeMoeY9dU+NWjD+Cd+V2ceHKbvmoXMMojAzldT3WLL7cH2NdL5MphR6+QK4fZpMahm8JqelLtvEFmHJrWoshb5NphNydDyJmt6enTeDhnqL5X5uCcRtsZKokRC8Dy4O+irgiBTA59TLGnYpygchdy0o7sWdcY2Fhc2WjKFuMUfrYGQKtSplRiJRgUxe1ZQ4xP1WYp7AAAJ1WBVWtxZbJCq0xkgKgIrofqy0XE4/dQKXQTgqJQGWf3xMkq/axxgmLmi1krDpdBdNX0xzisKrMoA4RWSPRtCY64yTIfY1zuFGVIsRFjwhjxntHxbz5+r1OGmoqhygQQTEjFYwl0jMJIso2fZfT2iVSZWOokKJhYOX5g6Ki2vDNIj+9Bkw+UEkBucD3F/yH+Pn7ioVcaA9uCwcNOv04KCYLBTQTDY/DLbIu4LpJpGV8DtnpIAH0Ehhisp2uJIbOT655x4rI6AGAVhcrSeltAENCDJP6b98MgSyYbPEzbBIr67xC3edb6w//fdIH2pnvqUbbxEI0NFr/1W7918PnHP/5xfPd3fzcA4Od//ufxYz/2Y/iu7/ou3L9/H+985zvxN//m38Rf/It/MS3/d/7O34G1Fn/mz/wZrFYrfNu3fRv+6T/9pzBm6Df3ZrVLQPS4jUFQGtRUP1HwQM2iUR6UpGkcr8hP2TJbRwKnMPpftDH5s0YGJXA2xEi8TNBIpnfpODQ5K9fHBdR+hU++8U5UbYZZ0eD2ao6n947x4nsz3PdzPGMP8b9NP48vVk/hleYAN7IjvNpS+uXz5X3s6hW+2NzAVbPATJ/ixE/wjD1E5S3udTMAwMvdVVw1JzhGiVNf4G63g9ebPXTeINcdvnRygFnWIIDAxEGxxKIr8NtHT+P52QNUrUVXWwprWY/K57C5Q6uIhckzSoUPih7KAcRyHn3NMMdMSMwgCq1OKd9BR81IY6DKLj1RFzn9bQyFvFathTlo4GrTe9qIa82sFO9/XtZonEHnNIwOmBUNXCBReAhA5zRy0+syfBSNexbdBtJfyMnACxE1OSxrwXaAbAMUgCJERsXTuTI7FHUrskxHyAOCo7DUoLq87O9SSyQne9lvue9zn44CbGW9MIwEKeNSX40rO4VgQKwQ/yiGYn3KeMBEPR0nOvBv6Td0eiBpRAjcCAsG8D3EjEhI711reg8fCRzH9zP63yMtG6+HUujF3Kzn4rpn4nQxdf3Dkgb8xPVsGzCqYs/XWgwY8dqzUHyYlQVktksgml2n+UHBO40ugnj+HPDJL0vqiLgNM76Qwrwyg6xftg+JyTFtI+jZApLaoJPjNV92WePvYZieMSg6S090Fhv0VmSrqTAa7x9xGw/TwgXEVTdv3jy3AGtZlviZn/kZ/MzP/MzDHcBXqH1VaYg+9rGPQSmFH/zBH0yfhRDw4z/+43jmmWcwmUzwrd/6rfjt3/7twXpP1B48AaDR06EckOTksPbEqNbXAwaDwlooTH6+9pS74Sl1/B3vM04Om24gxZMTt+hCrGqN+qRAbqn8ReMMDldUWHV3f4n/z71vAABkyuObdz6Pw3aKz69u4JXmANftMaa6wVQ12NErNMGgCjl2otD60E9xq93HG90eTlyJ362fwZGbogoZtPKYmz7lU6uA0nQ4mC/x1GyBxltoFfDS4RW8Ue2mrBxlAnkHLS262qBpLNrOwHmdBvG2MymdXWolXGN6dqXrDQBD5kn8urRJROt9P2Gw2y5Ag6VrtZj8qD8EFqU6harO0HYGVWfhvMZuUaGI7JLRHjt5DRcU2PfFBY3W0zmE0B+/94r0UZ1B3WTpPGV/CY70LSGKrMOp7dkUTtW2IU3qg37BKfoO6XsO3az5DXVqjeGQTsxJU8St8PQZ3yutHvocBRBACor0XK0mM0OnEKKpocqjxQEXUBWZVwl08L0qfIdkY70NMz48KfoIEigjKwKE2D+kb5QyIemO0kVXIsU9sUOxH1sPFbMSQ0O18npxO3rhtjw+YGDKmMTS47A8/xbobQGS6aLq9UAM8Gj7IRqA+lSdntPoObtsUFzV9w7wAPX9ECh0ldL54/ccKtMIyXuIW88e+aQXGoMX1glJYCTXN0o4tQtN0ab9XKSdn7J/cTB0EQuAy/b2a181gOg3fuM38I/+0T/C133d1w0+/1t/62/hp37qp/D3//7fx2/8xm/g5s2b+KN/9I/i5OQkLfPE7cHVhr8HAxJSOCLNMDK1WIuBGuL/MTPEr7P2P9r9mY3DH+OFmUAKGBXqjEaEXuGNBztYLXMUtsP+ZIXaWeTG4bCZ4uX2CkrlcdMc4SPzlzA3NfbsErnq8DXFazDK48RPcNMe4dhR6Ow3Vu/CoZsiUx32zBKlbpEph6Uv8FJ9Fb97+nQUYjrsZBWuFCtMbYNlk8Eqj71sBR8UnFd4x/Q+JnmLvYMFdg9OoXZbqFrD1wbBqZQBU7DoOPQuurKRW3GcfNP1itfbKaiKnJG7ZZY0PG1nUmo8pynTxpAmRG18rJbeT8guTqpaBTTOom5t/FyjdnYw6bB2g8FQ8lJyBLzqVYbA/0PQ/CygFsxk0D2zkIBEPF52hYZCD06ir0/quyaKn8dgIwl80Wd9pZTv+C5BS7yWZNSI9ACRgHkK+xGYUMywmgBddnGyiecnWJEQRvsRfVxmXXH/VtEEUOke1Mrwi+v0UBAtw4eSQdDC7FBJQCL2FY9JR3dyWi+ebx5/EytQpQIgCt2uNTnhcjgrYN0jSYAh9g/iyZ1fzCgaFeAii0mZmJSx2IfMCKADQKYdhc9jp2a2RinAGodMO+TaDRhObrK0zhi0SAA0BjpyWWaeJBDjZcZgZCzOvoip48OAqTEYelNbeEKvy/bVAYgWiwW+67u+C//4H//jQXpeCAF/9+/+Xfz1v/7X8af/9J/Ghz/8Yfyzf/bPsFwu8XM/93MA3iR7cJ4YGGvwk7D0IeLPpA8MD/JSdJ22F/8ev8vv0ytOQIKRCuPleRthfQHJsiMo4VEU/640utpC6YBFVWCeNThakh/R/3jpWfzP1Ttw6DPccTvQCPiayWvY0RW+2NyAiTv/2uJlnPgSz2YPUKoW7ytuwagADw0TqYY2GFQ+w55d4mtmr6MOGQrdYWpavHt+F7l2KKzDF+9dRRs0ll2Gb37uy9i1Fd65+wAH0yXKrMN0XiPYANWSnsY5jbq1yTnXewJSbWeS9sY5DROLpSpmhDKfJpoQQ0UhXsOuM1RwNYYTpnmTgIq+m1NhThNSSQj+jW3mkGUueQ1Z45J4uuoIFGXGJeAGINVxS2nRkdliU8a8FCUPxMDGTsShNqlIKE/alJ0lTAcTWBAtMSvDPqg4Q0z0t0GfcqMNcf8etWDjcQQQWyTXU6QpYmYlaFqW2ZjA4N6JIUw+SPD/Chi4ybMWiYGL6vU1UnzPoMJ3xAzx5/SOfjn+W/ds0qBWmNBcc0kP38XMNAak/OAkvZ4iczT4HeKfCEiMY7+fkIAn/e7r1zstzkDb9/2J9WgcQqQiyC6V6xizSkAvaAYggJCn/htDZSlchrDG8Iyr3sswFfscSVAy/nv8GR/H+Dy3tW2AZ8zunAWMxt+9FayQCk/mddm+SgDR933f9+E7v/M715TnX/rSl3Dr1q2B9XdRFPiWb/mWZP39qPbgdV2vuXae2fjJOmAoPJXMED85y4lEYZjKzKkf43YWSDqLHuKeLkFP2uYGUIT15ULuE1iaFQ0+8+rTOJgvseoyfPfXfhL/v1c+BAD41Om78PXlSwCAUre42+7g2JdwQSNXDplyMAg49QVc0JjpGplyaIOFCxq3m11MDX0GABPdpPdMORw2E3z9tVfxh599EVfzZRRrdni93sP/eP0ZTG2LK5Mlbu4eI7taAbMOvjZwNaXWV02GVU1lPZrGJk8VHxS62iQNkY61xJTtBegqgl6qa+bpaTqCGoAm0zIjZ2iYoX8QARC6hq4zieUJQaFuLYqMdEil7RACcLicRB8h0hAFAHWToWltmqzYtFFHL5i2tmiWGZplliY6ADC56yu6i9IyZtKlzCfFxVuZ5eG+FVQCKal8RqvJZVlMyH0YZzhJJyDUqeH9IBgr1USdFm8jEDulOCOrVVCnZIwZAsjGIN4/2ngCdb6/oRQXfpXhPMHMcRhTc6kScX8kM8LI3HUNAVQlf8cEhhBDbBg0CUQ4HKcFe+g7nYrwpuORWWGg8SJ4CpkGyXQFJCuBjfc8Z6/F/drMwVgXhdP9djg7EUDSmzGQYJdp6nsmMUgEmqSeqGeEeF12leZirQkUqR4U5dG2Y3DYahhOA0Bld6A2aoDGoKi/3mFtmYuErs5iizYBo20s06OyS5ft7dPe9oDo53/+5/Hf/tt/2+iYyal+N27cGHwurb8f1R78Yx/72MCx8/nnn99+kJEAGDy1BSCVKwAGE0j6fhPA8eJ/udwmwMKfb4H4aSzhfQ/AEBLIgVNDdkmyAmk/CiYChfmsRqYdXr27j2+Yfhk/+TX/bzhoPJ0fogoW78lv4343w46pcN/NYeKA95Q5wVQ3mOkaHgqZ6pmNma7xVH6MUhGQut2QOVgXDFY+x5XsFNfLBZ4pD/FceYjjtsTcNnj59AoOMqqw/NTkBD4oHFclVYSPLE0eHaLbyqJtLWlAnEa9IubFdRrB61S00zsdy1rQRQishckCzLUKCAp5ToCiD1MFNF3UK81dun5aZBgpMQlzVo7Rvc8QhyNC1Goto52AnNB4oM2si+VIaAL0jUHoNEzu4VtNadLxvHiSNLmDyR103tfR0nmso8WgN/bjIPuMU/S/VzQhI07UmvsKL6vSdhMg4dplyadIdG5+QMijn1AsyaGXhkBB7qMzM4XpmKnzNdWQS/4/8RiSeJlZoQFdJko7KMRQGRIgMcbDR3DsPQNmDAwMGaQg/n5dazY/aACxgCqJ7TWXAwkxXDbQ6qHPOOOLp/pzTeCHty+q26fFBfvFTBHXJRszc8O0eNqo8wou6KRRY9Z0mjdou2G2T9IHCRAjtTVGe2TaJXaIwBC98uhj5qEGQGoMcMYgKHkSbVgnHdc54EONznnczgujnQWq5Pdjv6Q3pYUn9Lpsb29A9PLLL+Mv/aW/hJ/92Z9FWZZblxvbfF/E+vu8ZX7sx34MR0dH6fXyyy+Pdjo+iDi4R5Zo4BItwYYarjNgi9ZObHzQZyzLOoeztrdp2zwJxswhNd4Hn0egm53DOq2ndPZStcgjo7NjKvxu/QwykVZ76osokg4kqva0fhVyGoSDQhMMHDR80GiDRe0trmWUnn/FnmJuKpSqw7V8QX/rFjNbIzcd3rtzBwDQnBK4WXUZJjk9gZqMim66Tqc6Vd5ptLWF76LGSFoexMKuyVgzsQtxtIgZTdmEyppoFUtoiCdjAINCn0l8q/rwysCfJoIgq3zKytHR40jHiQ3AQL+ixMTBob9s2iagYwuXstm8U9C5g6uM2CcoVaH1OsMAAPchSURBVJ37QVA9cOFzFf1DcbakCqQxM4E8f3TorQl4QJXrq9Dr49BvjwX7YLDDOppaAw5UqywZOar0cBF4XQChJQAYul7zFZjlgjiGeC/2QGhdXzPo7qwtkyBEye8joPU6lUSR3wVxHXRklIJX9DvyNYnbUJrMFZPeiMXZqt9G/8AzPI7++McfjL8PA1sHGZaS4UIGSjZ6VSkV0DhDWqAYmjXaJ4dpXp89i4wIjeXGiTT7yBRtYIG4sZ5oW2u8GaTqy7YpZLUNNMllzgNGZ4XSxq9t+3jT2iUgemLtbQ2IPvWpT+H27dv4xm/8RlhrYa3FJz7xCfz0T/80rLWJGRozPbdv307fSXvwbctsakVRrLl2rjXJqAA08MrOxZOIAEty3WS/kQY88UQ3mLDE+4ZB+qyW9jlmncZ/O/S1oXjw5VCBmNSrOkMIwOv39nB19xQtDBwUDDz+SPll3Hcz/E79DN6X38Jz+T2UqsWJn6DyFjPd4NBTFlnlM1QhwxvdHuqQwQWFqa6RqQ7vm7yBTDloBMxNhaeyY2Sqw/vLW9g3S1yzJ5ibGgfZEi8tD1DoDjdvHKHQHe4vpjhtcuxPV5hNa5SzBvNZhaJskGXEhoRWAwsLvTRolnlihtAphLZnhVK5A08OyKHVcCsCdJ3TmBQtDm/v9GnAjkBHPmsji6D6shmIIIT7QmBBtRmIeJnxcXESDQHIrEshOE4PZv0TrUPLSQZKqUB10iyxZGbSwXcaSpM55EBjogP5JmWh1/WAjlVxyCyAyl8weAIGpoB9yGtLxwxiORZkOwU4QFeatsmhsyiqVgx0cg/F9dZUoO9b+n1UFt2s0wMI30OhB7V8vaO2JpWvUL3YOETNihf17Ppq8L0IWWaUKfF7sGO1jyLs4IYCbB9LwfCxcNX7pDUb+zsxoxh1fOPLmh66+PdDz2YxO6TQgwIuvcHnPMhGRA/knLBoMAI4ZtohY8AuwH3KXFPEdA70QyMQI0GPFGPzdmQ2mhRU55FxWk/dH87i2wDTtnYR1uiiTYu+xNfjMmT21dfe1oDo277t2/CZz3wGn/70p9Prm77pm/Bd3/Vd+PSnP413v/vduHnz5sD6u2kafOITn0jW30/cHlyJMX/b+J9oou1tDI7G+1j7W2EkDh0tM9ZwbN1xfA10S9GrhT+P2wsM0qKmwTmNsmhRWBIGP7tzhM9Vz+CemwNArF7f4tBNUaoWM12j1C00PDw0HDT29RJtIOBQ+QylatEEizbYNNgCwI5ZYcdUyJRDrrqkK2LH6z27RGE6PFMeYcdUuDE7wdw2KPMOTWuxajPMctIgWeMxLxu0rWCEvIJdaAJAfNmE1kV5UNFN33+vl3Tc7WGBapmjcxpPP/sAPqhYg4yWM9rTxOhiZk4UMo+zlNrOQCPqgUTGDIXQQnL/7XVKGExkkh1grxltPHnlKMC1Bq62UIJpcq1BVnSp/lZgXySeMDvVexApJA1LMIEqyEeQpFrS/yQ2LZXh6Lc1KOUhQBYDKgQAhgBPKITjtEfKclO1qPYOgEXDnJVF4Amp78uwWD//xnMQy/G25BI6gpuUiSlvUvlg43WfnTbyDkqiaoVUKkXHsFli+ET2mZYaId4Qs2piHEmHrcShqciaiWNTJiSjUIDAdA+GeuZCqxD1Q0jfcTZjSvUX5+9B9fU8VMoa6zPXfAr7ylCZ1e5M5mfctAoDJmkbANq0zW0s0abtbGrbWJ9NuqGxoHscIksi8jeJdlFP6HXZ3ubGjDs7O/jwhz88+Gw2m+Hq1avp8x/8wR/ET/zET+B973sf3ve+9+EnfuInMJ1O8Wf/7J8F8BW2B2fAAGxGRnFglvjorMUH2ThRIJnErtvuLe7No+2vbTY+dfZZb2KbQQEhiLIMYmMxl5dFtaXtcHVyijv3dvDGco5PqnfjjdkuvuvKJwEAU93ghfwOWvQhGgI0He64OWaqwe1uF0YFtMHixJeY6gZ51BO1waBULTQC9swy6YxOwgQ7uoKDRhYF2oVqsZuvcLvdxd3VDO+e38WVyRIv3jnA1aunOKwmsMZTSClvURQt6ioHagPd0lO3OTVUfoGLf3Z0QVVDaeG+9JSmroFQkkAZHWmQ2s6gMR5XJkvUzqL1hrLZOirt4DudQmapWGxQaTIFKPSoFLBoChyUSxyFMoY1/ABAhaBS2ILDNFWVIcscuk5DGwI9zunEYpSTBq01sNahbS208MzhMJPOSYtENdl6kXBQQTA0olNFkkj5HjxR3+LvVW9IagOl7Qf6nDL/GDgBmHdARWaZJFYPCYinumkxpZ8TFZQO0LkjndcI8DCj4ztiOULKQ2eggsFk10+AdF7O63SzJKCADQ83giGRomrpPTQObxrtEbyB1h4uGKjMR41QgG91L9zWI9dkFZk4Zp9HTYYAdeZhM9dPzEl87+BjMWNZ8Fc2DqUZwXo5r1BYl9zSc+NSSr4ZgQKjh6wQO8yzXugijQFYaTs0kW3lzxpnkBuXjlMaOG5rGmGNhZLbPKtts1cYb0suOwZsb7qG6HG3cdne3oDoIu2v/JW/gtVqhe/93u/FgwcP8If/8B/Gv/k3/wY7Oztpma+EPfjWe4qf2HhgHS23dT2xDoChoy8weuLF8LtNN8Ta8mH4dxrRxWaYgRK6DbkvpWkwunW6A5M5PD09wTdf+QLeV9xCqTyW3uAPTr6MzzfXMdM1Tn2BHb3CoZtBI2BfL3HPzWFUwNLnaILFF5dP4f3TN2DgYxYa0fJGeWhBYy19juv2GG2wyCJjdC1bIFNdfGrt8NpqHx/efx3zrEHjDa6UK1TO4vYpMVghKGR5B6cz6EbBroBOK/gswNyzCBZUYd1Qyjc8gE5B5QByUWhUx4rows2XPYnoidwnsbVrTEq917bXAxHAcSkjR6uAxhtMbIvWGVQdaaI4nXlnUqFqsz7UA6As2+QPE0RYk1u1ymGi+DrLOtQ+Q1cbElrHSdZ3BjpzqY5bEg0PLCFC39/S/yKMw0wSs0cc4kl9SEWGSSW2SDWk4dK1ho4gi8wwo1eStKfg/qcolOkbshEIUKRp0jGUpWIWV9TBJCE1b0Nx6Iv+59CPTCdX2qeSJ+P7hsETaYdE2MiEGIak6ybdm6E4XOcjMO1T+JUlTZsSvkSB2TZFN6eK92Pwgc5X9fckVbSnv7UlMDRmK2Q9OwY6Wge0naZVBbjjxstbE9BF9hKK/IlYOyf7WRa9hlg3NNYLMSgap9nLRplm7LFA5UAY+DR+JOxWARa+9z9SYQCQxiVEzkrvl39vaw+TpcZ1BseffyWbIAgfaxuX7asQEP37f//vB/8rpfDjP/7j+PEf//Gt6zxJe/BUSVpOFDwZ8ZNv+qf/OzDQ4HVF64khMfGM71EV1kFSXEVynudG6/hLzhrS/ceBt5eWXT/kVZOhzFpkmcNvfPGd+OjB51GqFr/TPIUX7D34oFDqFre6feybJXZ1Rf5CIUPrDXLVoVQNKmTIVYc/svtFNMGmsFiJFqe+iKGy3tCNQ2VtMBSCCwqFbtN6H96/hf/zS1+D/9cfeA2T3RZ3mzlab/B7d5/HNG/iAO8xKxrcaQ3CsYEr6KTMMhou7ndJu+G9AlL9qEBlLgJNyCpmCjVHJSbPNGngbluDnVkF5zWWq5x8jUCgKGkLzDBLTFa472I6NIchWmdSwUxrPGa6Qet7o0Ce4BarApxhlZyWY590scit8xquMX1x0aBgCgffiW1xqEaLvsyfM9kSqGOE1PeRwlzBgoTSAQRsWHCtI8PIaf0uskW1plBZFTP1PKiaPYffAnrjxsSgYHgPcEhPTPpQxI7wMfZu1D17I8Me7L8jzToVszIjNoVDVMFrYtFUoEsWQ4J9ij2BIBZUM1jmbWhxDsGpYTg1gUmkBywFAmH0W6Efe9RwApYMEAvAuSyM9BKSjtTjCZ8ZICP6Jl+DTLuUmi91P4kZkiU5RNsEhtacqZWHD3oNpGgESsPfAlw21p4Tv9s2UDRua/sVAOsi4GYMhrbLyC/b27W9rTVEXxVtw33CMf6kweEPuUlIPwBOYjEtvg/oQ2fj/W7TFYmWdjEeOITuiMMgadtqtP/49Ku1x7LJoXVAVnYw8FS9PrubNnvTkGcTCactdiIouqpPUaoOM11j31Cq/IFZIFcdpprKe1DWWgcNStXNVIcmmORinSkHowKmuoEBZb1kyuFqvsCfft//wGeOnyVvI2/wyukenNNYVAXqzqJzGnePZugWGbr9Dt3co5t7BA10+w4qd1CNhikcOSLvN1Dztv8tgGT2GJxCfod8gWys7VQW7Zorr44hDW0DjI1skDC7s8ahMB0yTev5oNKEY7SPYQyPurMw2iM3JDCVOoki6xIQGBTqVAEmllxhKwGebE3hqGyE51puNJlzGn7wADJKe1e2ByOBwQm/M1CqdZ9xphDr4oW+3hZfQxeZp6jnUbVOywc2fOTLzSyRfJhg4BeF8LKumFIETBIAYv8lBkMKAiyoGFISzEz8vYqy6X9vRSJlI9g9eVNpLfymmG1RSKJmZoiKrIveUgp50aX6eUam3PP7+D5kUMnhMb7+fF4xXCr1LzLU2jtt8/kD4+wz7m/Ezq4PagwUKMTbp96ziJrBEGeWPWpLNc6wzvYMl1s3e5TfAUNm5yJhO2kEeZZ4m7c3fq2Fzt4s2iU8oddl++pjiN42bdzZJQu0bXlGSQOwodbX5adzuS3+LG1PvF+0M4tjHozr8sl0A7jitOhmlcEYj+u7CwAUJvrE/T+A6bUG31i+CK0CTjyVgp/qGqVq4aDhQD5DTTDE9PgSpyhQ+QzGBly3J7jXzTGzNUxcB0BysJ7pGlUISYwNoNcW+RIOCkfdBF84uY6TpkDjn8VxU6D1Bs9eOcRLdw+wDATmjPVwhUNYWfiZg+pIJ2T2GnSLDNMbp+RPtDDwM5BJo0fSeahGwSwszDtrNE91mAIJtOyUVHstxN/KaJ/YppR5EkGQ0TShOB9LikSGKJXlEMUzWXTdOoPcdjTQOkMTWKAndK09qiYjvc3A8Zne2lUGlXkqeFtZGEshPxVCnxnFAmumLBUzJWJzhkI3yodBXwkFgScCJmL9GD5LjJPUF3VU5Z7DXr04Ok7gRkz8sqzNpr6vEEXTgt0R9eUYBPAq8paR1ggBCnV0Bh9bECQwJMJxzg2fKdVoMmUGCSDfIiMcyBOg0z2zFRgwit9gzAIDvW6IwRDpywKcj8BQUeFinqQptb2/FlySg8GcUT7WI1ufyF3UHxWmG4RyrfaDKvaPA4aIGSKGCIjHEIasTRdF3Wel8I9ZnvOYoouyP4N9jAbcsQhbbvtNa5eA5om0S4boSbRtN9QG0HShddUQCw0ngS37Cv33QU4UEGyV+H/bd4N9im1yK/IOqyZD01H20hurOe67GQ79BAYBX26vowo0aBrlkwt1FfIktNagp9AjNyUmCB775jRphkrVoFQNTjwVkW2DRRtMqqF06Kbw0ElLZBDw0vIAlSN8f6+aIjcOTWcxzxpc2VliZ1L1+geuxwXAnBjywvGAKhzyjNLTdaOTtiZ4DXNERVF5PWsdUETNRNQByQKvCEg1zkyskSYnTx4sZf2s9JsEErTyYJ3bPoOt6WxKb2Yxa2aopIlC7yjMrVmSB1Qxr2Eyh3ZF59FWNpkGAnEijufKWpsg/JhUZCnG/QEMWkCTs7Khr3cml+f1OeU+qF5wzThX9vNN6473La4Xt14j1GtjJHMjrzllWumB7QEvD6D36HG9dQIfw2AS1D0DNTiuuEtm+tKxhvXjliAvsVpaUEUqpPdkB2H6v+X5A8N6bJxlFoIauJgPbAEw/FymjnPIrPVm4LklU+HHmVeP0nwYTkdjloaPsYthtbP2edFjkADqIgBGCqbPStm/bF+d7RIQPU5TGD65ps/PuEk2fSdQyeBr/kcCk/FNK7PFzmlr4GfEBqXvlGAF4jkqT0aHx8cTNM5EbYLBXl7h/3zjgzj2JapgqBwHHCqfoQ09AbmjV1FLZNHCoFQN3lu8gVx1yFUHB50yzTLlUrFXBkUMhn57+SxK1aINBnUEXgDwTftfxrvm91E7iy5mqFydnuKgOMXV6Sms8ThdFjTohVi6Ik7O06tLQAGz3QpVkyF0Gn5GmUy+sgiNhi88MRAzB7fjkGcOO/srTLI2aTfYvZfLIQAR3LQGUCFVqO/dqekayoFYCnJ5sG46i0neIjMkwl62eTRl1GjF+rtT0lmxbw4LjBmIdauMGIWig7YBTroQO90X/5VmldwXxDuHzlIxWG4NhbGCIX+g9F0YCrAHgEm+DOmVQvyea3IlI8U0WhE4GIeHUt0zqQOJoMFaRyVSRHFfzpiSh0bbQwSLvs+6k/dYUD344XAkkMDJmIECehZKRzaH9UxJzM4hafYQYrsGBoTp2PpQIB8nAALyIjTG6fM9GOqvC98f0kuImxP9loGcVgG56VJoiO0xmCXqw2UjMfUGgMF6ux6E6DUgJNeVYMcHhVWboeosOlk+5JxQ1UVDZxcJjY23J4/xrfIdivj/sV+X7RIQPV4ToGHz9/0Tdmpq9AJSj9zYKeWHQQ08V5LwcnwMchAdgR7+jMegoHhyGx06P/Xz3BhTtvOiQ91EBkh7HDUljqoJPDQO/QTP2/vY1TVu2iOUqsG+pqr3zBIxsNEI2DErAASAZrqGg0apKAX/TreLfXOKHb2CVh5HbgoPhUJTVhm5XGsSWSuP1lvMbI1pRiLnurPYz1codIfSUJjp+v4CXWtQTFr41mC6t4J/ukbbGriVxaxoUJ/mxHK0Cvpe3nsIFaSzgQ7QK5pQdicVplmDzmuaMFRA0xmsqhxZ1qHMWiqLUBsEp2CsT6wDXVsKn0n3X66tZjSZNnaO3LyrNkthtMy4JIY14indaI+9aQX2HcqKDlBAs4glQKynTLeg4DsFV9F5J+8dDo9FYLSxQKgS4EAh9V0GSJyhGFoNFmQrNzIsTX0sAggJgjTIbJGZp2h5oIxP/TqVQeG/xaTf64V6lsMKfU2Qt4ZgkBAPL63LFgnc/0eZZ0pqh3QPcrQKPUBCNElUSJqlcfNOJ0NH6Umkk28TUkiNigVHLZQmBklFKwbetwQ+QM8UyXOlMOxwmSD6H5szOiHg5/tWMkcMALaFsM4DCBIISaCUwNAG8EICeAF41flaorXPR9u96HKAYA8vAIIuNURffe0SED1mS5PDqEMNUPeGzqYkYAHSU/RGBkd+FjOEButuWCfI99GyScLAT+Z8sCP6fXCOQcF1Gpl1eOfV+2iihuVoVcJoj1vtHkrVIlMeDgq7msptaE6nVx47ekWhLji0MJgpEq8aBEq7h4ODTun69zpKl/dBR3G1xbXsJAmpAaD2GWqfwSiP2lvkxuHKZImqy/DFw2vIlMfc1nGgV8mocLq7Qp45ZGWHmwfH2H/qBJlxdHFWBqHw8FdaaK4krwBddlQLrFaYZG2szeTT0+rUtmicwXRSo8w7pBpPlRHsBVLWWP+T9oMrhwWYvZA+LjwYSzdhdljm/3PbYXdSIY9siIkp/2zECNAEzi7IrK0ZdCAW+srPFRJgYmEvTcoRPI/YywRYYvr+mCxQHtClS6BIxRBQL6QOvV+T6nUgMlNMsicSGJGjdH/NjPbDoqTawxpH2V46DMAMb2fNe0awUUqFVLZD1kSjvqoG68uUfulynbIBu34/vV1APH+FJBjvwZ+nGmmWwp0MhoIAPloARMmajJkNFvLzcbN7OrNEEqTLtik8pbeU1pBtEyskAdCmxq7XGsRCJRYWKoXINx3b+H2N1TkHAcjvxxqhrQBqA1i8bF9d7RIQPW4b9/vRxEDLKPESi/KEKZ60N7YBS4SeJRKDJS03XCeISW0AkMb7UqNtCJAmt+dOs5Q6PMla0hK1Fssmw6/e/wAy5fHl9gAAcNvtIFNdGsC+3FwnHRAotDRTDb7YPAUHjYadq2NJDwDRuTqgCnn6fhkF21Wgsh9tzD4rdAutPK7YJd41v4dcO7Re4/p0gcJ0uFYs8IGDW2i9wfXrR6jrDF00etuZVmhifbZ+8gk0kTfxqTh3aaLcmVfonq5htMfUUs00GzUWizbHNG8xzVsUtkMXi2UiyIlxOKEUpkMRhdJJPOp0KvLKAzO7VMuJOjOuz/iJWqJUMNa6BIrsrIWxHrbsgMhUaOOhyw4qIwPJJII2PQiBcKxO/YGXG7EyiCQT10gLMZSbwmrinKl4LOAjUFQKEQjFi6Wkd1DPkAz6J38XgVQK/whwQwJ2H9PNVQplMmMD9JMYg4+1CVWEuJjtAdAL5YXOiE4Og3c/AhNG+8REuShmZ71eH/oL/W8ArJUQYddra1w/hsR21kQ8tmtwQacQLVW3jw8No342BgSDCvaPAIb4/zEQkuU8xoaK7IC9X1S4Uq6Qa5fuPwBbWSLZLgqKtoGhgb/U26hxV3nc12W7BERPpm1ghwZsTxrMN/c6+YS5tkxkZwbhuU2AZbzp0DvbJkZITkxj5mnjgYU0oSsNqE7h5LRMA9miKmCNR+cM3j9/Azkc3pPdwy23i2ftIU59kaj257N7AAjMnPgSTTC4bik9/9BP0y57B1wPFxRcUPCxm7aB9DIPutkg44wHWQcNg4D37tzB//OZL6ByFq+u9nCr2sXVfIlnd44AAPNZBe8UFlWOSUaDqlKkrdD3M0oNLxxgwyDzKs9j6O3acV/RWzyxAgRwMuNQ2jbprDB18K2G+8IO2s7AshA6htnofPsfMLe92zBn/mwSy/IksEnYqUFggAtzss4py7seDBjy/DE5pdtrKy0D4iydLrIafiXeGdQkvyK5HDNLEGFZwXAGoRse90cZvgKzJbws+L5hEOHXls2zLqWWJ1NBTZlhMvsKwEBsnHYhGJYEXOTx8b4iyxSET5jSIQEfo+l3YFaQU+Fd0/dhk1NBXpO5AWsFILmcp+OMl9nEcFkv5u/DguPr2P+NxCKxdcO2iZ51RHI7sr8yc8NtG8AYg6HBdxEESQAkQZE0X2S9Ev+f9nsGY3PW9xvX2XIOY23fptdb1sITel22S0D0RNtazIsfetUA6KxVqB59NgQwvACGoIgFsDwpyF/Sb9hBOpjRttJOR8tsOi4b0BwVeO1oj3YTFDpH5Sk+PHmF6HYovNxcBYDEDp34SXSepsruv1s/gyqQMWMbbEyrz9PyADFEPuagnbgSR24at1Ximj1JyzAwWroCh+0Et+sdEhwHhf2iwu3VHL/58jtwp57j+dkDGB2wN6lwZWeJzpEz9LM7R7g+WyC3HfzVhgqJ6oDplSV295a9KZ2l0N+8qDG1LV48uoLK9QLP06ZAYTsUhjRTyyqH/+IcQCATxOdWg5CE0R6l6Sh1GWFQ9TsTXkOdSMHn7DKtyKxukCkktCBG07qZdcgyCvu5ZZaYDWOJ1WLfIQB9WC/W6pL9RsXCuKl/RCuG1G+62Pe9inXxRmCdQ0hKbGZTPxX9nc9lMm1SeGzstwT0YS89sggIkS3jArnAEPgMtCjCS0grElozs4QIILiIrtYx1V0NTR45g0x+xiCIgZHR0dVagD0OlfH+ZOgv3atSF8Smm743YVSKMuaYAZMAek1zo0IKl3E/kfXO8ijet4KBHIiX0RdhTdtE/915LQGkEcI8K3QmhdXjZdcNHh9+dt9Ue2zsK/Sw274Mm331tUtA9JCt1wxtv3kHc4Fkc4IcjMW2Ntw4595Lcl0e5EdAJygMZ6Dx0/umd2xehtyHaX87ZY2JbbE3rehJ12m83B6kgel9xS046JQhdqAXiSny0NjRFZa+wO1uF41Ip3eBwmenvgBAjNCJK1GFDA+6GZauwGvVFQJLcZ1MOTj09HvjDV5ZXUmnUHUZTRZBYddWeHp+jNMmx7yoYY3Dbl7j1ukOTuoSALB3cIqw38JXFvOyQecMQqcRPBVjZc8gq6mGmdUerTdoOkvZOJE5AoCmsUlo7NtY3yyCHo2QDBjZbFGyPbycUkBhiXXiz6V+iJvUSsgJxyiPPHOkAzG9tsU7naqiB6fgW9OzNQgizXx9X2M0HbwgfYJgIsM6+FfxabQP3WLQ2aUWiFmjapUPwJDc2CYtER8vA/YQNVtsZSC9adK1ViGF0sYp1VoRaPFBZJdFkGTZVygeXzJkjMfgfA90+PdRCqlkRzreGM4ztq9zN7ALGH0W0DNNPqgUmhuDA8lscJiKwFlIoFuux7qj1pmkKeL98rXglrRvY5HyJjH0BnZo+H0PdM5Lf38cf59NYbPzxNNp2bcpwEnD+2O+LtulMeOTbTwbqNDXcxp9nhZVQ/1FChkEsbxs/D03FlfLSUJuY+sxjt5li3qRNLmN3lF6FNMGR8sSk6whhqNosaxyvLi6hmpqUaLDiZ8gg8NNc4TTkJNoWvnoJUSTNIOeEm1ieTLt07FzrbP7UVjNbT9bogoWU93EEJqOoCimlnOWlgqY2xq7RYZmZlA50iY9NznElw4PMM8aTA/uo/Ma905mmE/qZK54WhQIucPxsky6Il06FHmHiW3TU3ZuHKrOYlEXqBsL5zWenh9Dh4AVAvK8Q1godFcUsikxNSGoWDncYJ7XNGkLUfaizdO5etDMp4OiOqeD/rP+I3MdtE6yRlDJGsAVTfLd4RpsBh5eKZjMo2vMIOwzaBvCs8EjuVMHHXVXcnkeaYMeZpkpAtdBS5aTvufwkGLWM5I+bLbI5ov9dej/T2EmRWyRZIW4fIX3Q9DDjdiWddbIe6Qwm49lOAK2TI7pOPpSF7KEhlJAE2uZcVp8CEgCd++p3ybdFABkDsGv11xkjRSfnzbkPK0EIzTQXmH49DusS4aYrUjrtV4ji4agm7LK5P9WD53Z+31trl02ZocuUo5D6us2fS+3t63JbYwB8bh9NYEhAE8m5PU2Pr03s10yRI/TxiEyAXoCP+WOwRAvvvYkPPw+rSImkbTsuEkGaPTE3S8j3i/4gDXWIsAD9WGJ1UkJqz12iwqznDLFDtsJqpDBQeF92R3MdAMHhVNf4NBPk1kjNwZIJ24SQ1/0ypVL4TEfwVPtLRYdAYU9u0x1zQwCMuXwu6dPx+U13jjdQWk7uKDw2nIXjTNovcFhU2LhCljt8E03XsZuXiE3DrtZhaf2TnB0MsGizrGXV3j+2gOUJWmAVosCaKhch48MQx4nAat8b1anAz508xYAoHJUZmN1e4bmwEM5hXZFgIkn6dK2tC3jKG0/bpNLf3ReU8hri75jEKaJrXYWHgqlbVHaFln8jVh/UVgXJ2taP2VK8cSs+kyoBBgk9QP0gy8DJ3ELsIBaPnGmoqUjIM6Zab2x4JCJ4H0l0TV4+Q2s0wjcyPR2Bg5KyRT09fujDxn175zCzmFGBhj8e/P2pVmhFGgn9sXr+KJrnXyq4vXWujdh7BqDrjXp93Xd+hDN9dLk+UuWiEvDqHQsHFYUbBHYi0kPWB6j/Fr5GWDdF4jYoV4/tw2QPAm35rNA01mhs8dp54GhtxVACk/oddkuAdHDNq4+nfCLBCzjm0QuJCl91jowOInMTAoXDMICYjsDgDTiOSVbJH9Vucy28UJuc7QeFZ5EqnulDB3ESV0i1w4nVYGuMdjJKlTBwkGjigaMLpDZYuUznLhJYoWkh9DS5ynTjEXUbbACKNEy+9kKU1PDRJqeQ2VtMHjX5C5MrH329Pw4DZT7eYVlm+PZnSMcVRMctRTC27EVruUL3KumaLzFTl4jzztY41E58uXJrEPTWEx3KqB0QEDKBitNh8YZNN4kUfXN3eN06fhpNL+2gs8C1euqaKJrOwpF1M7Cao/GGcyzBl3QKdSW0uuDXvOLGbchAzCcJCcZgVXnNcrIEgFAmXe9DoaNAGNfVNFvSpmwcR/M4tDnEfgn0E/9JgEj6YpMRFHyHGLTxYGFxIb+ySxqEgEbSjuX4bIQFK0uQIjUnFCpCr/m0SN/r/G5MpBQYt8sypaWCQDi5z4tw+sbEZJyfqjlMWIbqbBsLPIaPBUKbhs7LMPC11ywQJ3TCdCyXkim4G86Rw4TsQYJoBplpL3ry8coRV5Eq+g7tqYl2tL3xk1mlgHns0NntW3ZadvawwCXTWB5DIweRkD9ppbuuGxPpF0CoifRgjobYcen8FSpW4CgAXPDwGg0sQDAmkcQT0BcUHPcJGDa+L14FyBq/CSfWCp5HEHh6uSUJvE4qQJAFTgtPjI+MKhCjhNf4sSXVL4j2JSOX+oWe2ZJYRvo9H1ytA4GRXSsPu5KLLqS1gWXu6CDLnSbRKJWexzWJQ7bKeZZhaNliZO2wKrJ8J//0wfwW4dPp0y2q+UyMT47kzqZIiYvoNqgrqI54xFNCqUhY8hlRyUx2CTx7umMzt3ZXo/hFaBBYaWsZ2Scp3pMGjHsFoXZXO1eTkh0nsMfkHUjMnV83Ka2RWm7lCl02uQobRttARpYQ2n5eWSsutqk6uy0E+4bgslUoe8ngwcBJAClS5eWDeK7pBnic5DWEVjXAqXtxgcQFjPTdcFgwpeaKql7SWEuHdC0NgEFeR0ZSAxCNCIUZY1PPkacLcYC6/G++f8Q0DuSW0cmmdbBxdAdCaDVYL2BvtCrWF8O0LYHp1ytngF3AlL8vJTeFcYsGrdBeRkMAaIEOlyfLzMOs7wRITI/CJVt0+AAW5yqt4ChsSnjpm1s+nvT9rYBkW1AZo1h3AT4trBEb3mGGUSA4DFfl+0SED1+4440Dp/Jxr1tg1Ptxm0B6yBGApMgPuP/eTJJ7+K1aftyH1qsJ48XIvSHOIjG8gxaBVSxnpmxHr/z4CbudDtp2SaY5Ct06KY4dFNUnvyDGJCcuAmWvkAVMmJ8gkITDK7ZExhQxlrrLfbsCjfzY1zJTpPJI0Cp+Uufow0GU93gQTNDaVq03mDRFdi1FTpnULUZrs0X8Nca3FvOKLQUNOa2Rhc0prbB1ekpbszJ9FEjYHFaoJgTwzKZ1QhzKrVhtcdutiL2Szvk2mGStb1YWQzq2njoJZX9QKsScJQMQ+dp/zaWSei2iGM5vCFNGcfNR3F5FzS9YjFMFzUhtbMpw4gL0TKzkZVkJJkAkWA0e+sB6kRKB3LzZjZF96nevjai7zFYQAL0nMmWGCjpc5T6WUh9lY0IZRYY98XxdZBiaC0ASydqyI0ZogFrE4EP0IfauHCqDMPxuY6ZJaV6rygGvgBQNxZ1Q95XXWMHDI88hh4c8TaRwl0MtOh/P1jfj/bpA3su9ce5KdvMBZ3K8OTRw4rfZUtu6JEdSh5ECANQIK/Hw2SQnQeOxn+P93EWGNq237Fwnq/JGAy9HQDPuS08oddluwRET6JtRdnbBgHZAeXfGwBJ+ny8rYCeJZLrbj1IbF+W97flpkg+MwHIDyqYSYe7qxly41DaDnvTCjt5DRc0Xm6vpKyxymc49QV+9/RpLFzZp8hHEMOlO9pg0neUbq+SE3WmqYArh8scNCqfxUGy775tMHh++gAz0+DlL19HE+s1TYomPRW/45l7yI1D7SmXoDAd7lVTdN6gNB3mWQONgAerCSZliyLrABUwKVrA9KyAUQE7WZ2yzXLTJWaCB2/WlCgP0ttkgYrESjAUw2SNJ1Zpalt0sbK4HIR7N+L4M40mtoEXjAqJQQKAqs1iKIeu5zRrcFRNsGzyWNIiEoQR1JCrddSixFIfSmSnQaEv0Mp9JvSp3lKIz4aJA3G+EmFhjeQfJH1+hqJgpHpkCaRJNimuts78qAj26DPn+1CS3EbSBMVjYE0NszoABuAinQco7NUzQ/3kKUN5HCIFonmjCvF6iQ0GEosnnVI8V1nXLIXCBi7Y/TltYnq49Vl0PfvI1wCgsFvjDEIAqs7CCdbJDAwYw2Cb47YtnX7bctu2c956FxFiP2zbBIC2hcs2gaSvCuB02c5tl4Docdume3DTjbnpZnmY+0cyP5s+H+/70ceGzeuqXiz69NUjLKoCbyx2kJuO6nkFHUXV5B10382jnijDvXqWABE7UXMj/RABFAZDsi26Elp5GARUwabBnVklSl8nvdLcVPidwxtQjmz922CwN6nQOQIeRpG3Shs0XNwPu1Rb5VF1tP+mtSkLZz4jAXc26V1xXTyG0vSf5dHrh7VBALA8mlC4zATAUmjRaC/MJ+m9NKTvWXRUc4yLb45bbp1wFha1n+K5jIHRoilSpXKeCJdt3utGOpNMCpnpG2cmSTExIETJOoiwb/w/lctA3y+Z2eHvJSgf3xNhBHY2sCj9ga0zRNyklkYW2h2nsw+9jPzahJomRh0Gy0ptEO+v365wvR6JucetP9coFheO25t+B4AAK7OEAwuG0flvayGsAxZ+gDEjNphBIl+LHig8mmPzeazRJmZIfj747LEGuGE7D8hs+/7tAoBUCE/kddkuAdFjt6TzSU/Mqh/o5Q0zAC1YB0Pn/Z+2I4DRphBc2rfY76a/07bC5u/SccanxXhe9WmOVZthkreoG6odNssa3D2d4dX6Cl5sruHQT6GVRxssFq6EVgGH7QT3uzlpiXxGxV59lkTTVIaDDA1P3AQOCkfdFIXuYOLFYA8iLuHBoMZD4ZXqCgrd4o9cfxHPvvsOcu2wchlmWZMGz9J2aDqLzht0MZX5ymSJxhtUzqLxBq0zqJY5jKYwwjRv6X1SIzdUjqNyGeYZhZxsLOHBgIPdp632QGUQbBiCgti4RhlvrzTEDrHfkFEEnGQquBdhM9Z4SDaIz5OPc57X0YNn6IpNddhoP0pM+gBgMpfYiUGoSAEqaozYTFAZD5XJumcBKncDsJRN275/8eknx2rRFZk54v9j5pUEMf2XcXW/DjQ2eecM/IP4EBKbM9QeUQbZUB8EDA0dh0aGQ9DCruCyRAuDFy65wfXPEigLw5pyfd07Garkz4bXLWXOpWNA6hfyWvA16EOvwwsiC746TwWFXQy5StZTluwYt8cBCNtCXWfphrYtd1Y7i+nZZCuQPtsyIL8tmKLwhF6X7RIQPXSLICLdf0H1GTSMhYLaHi4DtrM3Ycsy488ZyKR9ieXk91K4fYHxIoyf2jc8xYdW497tXdQdZaW8drSHZZfh2uwU//3Bc5jqBve6Od5o97D0OW63u7DK4+XTfRy7CRbRaJFftc8S4MmFPmjhyrTPTHXQymNiKJV/4UosXYGlK1I9s+v5CWqfwQWFb73xeTTe4LidYG4bZNqjdQa5drgxOyEfoND7FjXeDJx3y2mTQltcGoFrnzXe4LCZoPO0vWWXoXIWpe1IJB1dp63yCJmHWapknNkLcGmAbSIos8pj2eUUslOUHcYeMewYDGAQjpGTbRKDB4XWGSzqAlrRsczyGrOsSXXPmD2RpSzIbydOoKbXE6UMLmYyUv8CfBc9aqxPYSAACE4n8AQA7SojZoizK9W4Q8euFtmjvrZXHxbqNTUSGYgumtiYfvLnxiEwXn8sxmY3Zgy2g7RvYkmGDJWHQmG7PoQa+wiHlbX4zRhI8drW9mG8wfeKzBqT7keeTxK698xXEIBmk68SgzppuChJAAYVfRZcDJPG/6VT+pPMljor1HbWOo+y3kXbthBY+hs9KNokIn/bp+Vftgu3S2PGx2gEhMIA/AzuUckWDVaUy2z4jp/mxt+Lp3UAWCt9IJmggM373tTSemHjsaUBnAfXTmFxWqIsW3RO4/5yiklGE8TvV0/hij3FB8pXcavbx2ePbqSnzDv1HG1GRoqtMnjQzpAphwfdFB/d/TyaYHAYPYimukGhWwqHQcPAY8+uYBDwSnUFN/JjtIH8WuoY9oIHOm/wwE/x+Zdu4H3veAPXylPM8hpaERtzv5pintUwcbDfzyssuhxVDHUVpqNyF7qvRxaCQpm3Sa/TBY07qxmen5OXULvBOK8LGuV+hbpT6Zp2jUUea1pJQSgDssZRGr+1PoUxeH+sc/GjcJpVHkFR1hofa25JGHva5mgj6zXNGrIIiI9Ak5xMHGtR2DYBA4BS4wH42CW6WlPIzzp0VQYgwDsdAVHsLALsKBUQJIhK/adfTkn7ifieJvUNzA8CkmGhnNCl4FiCgs6ZtYnJJIHysOwF93PJqPD2gb6Qq1YhlbaAM71TdWy8DXKo9oDTKfTEGjNmw9hjiB3CmRmC+C0CexcNhOG0nwSKzOb7fFuYjq8nP3ww0ypDZlLHdhbrwcyRvGbD7zc/c29jds4UX29ghrbv93ywtA0EbQJDa+tis/HkWdv/SjV+/n3cbVy2S4bo4VvS6PQskfio/+OsHraJCVIbvuNtnndvS1fsNTbpjPX5u3NuhvHTpXLEgLWRJbo2O8VOUaXvC93i1BeDAqxaBby23MVxV+JuO0ftM7xe7eFBN8UVu8TS57jvyJX6QTtD5UkjVMa0ewDYM0s4KLxnehsPuik+d3IDALBwBY67MoqzNVYuw87+CndO52kCyzXVALs2OcVv3X4aJ20JD4W9fIXSdLDKE6OSNZjmbRQcs6Fhh2vT02SeyMLn47ZMnzXOUBhMTA4H8yX0TgsUHiZ3sHmHurVJ8F1yeE35NLHkxhEDYbo0GLPXURsneGaKknA77tMmpoK+4wyzMhaw9VDJnqBqs7Qdaxx8ZFIU+kmOM9BcR2AISqS+s9jXKwGKqJkYRpOiYAAo53VaTo3BPeLkz1loA7Yj1gET9cPGjIgEM7LPSXbB6P6cJCt0vjcRLWeiiJ6tFjhcKcMrMq2d65ONzyeJpL1O3kP0xQYQCMRr34ve+TsWWcvlx9dgmzRExf7BDyuSRdtkzAgMwc+2dlGPoU3beRQwdF7bFCI7ixG6CBi66PdvWgtP6HXZLgHRYzfBAqVxjYtbXgR2j56QB2GqEbjhB+yggL64a0jM0WCcEGAtSGC0CSSdN77EGyZlOZkA15J7c5F1OKlLtM5gt6jQeh3LaljUPksDLkAD2e3VDl5b7eM/3HkPDhsyS2wjM7T0OXzQmJoGnzl+FrXPhF6o76q1z9B4i3lWY+Uy3KvnyXTRB43OG3zw+ht4z5V78EHh3nKWQmJaBVyZLXHYlDhpS9SuJ0mr6PQ8y+uB5sYqn8BLF3SqPXbcFJhaAhuF7bDsMnShDz1oFTCb1TBFlyZ11xo4r0mr5OgceFmrCZTNbZOOiydv6U0kJyZOpefPJ7bFLGuQa9INWeMGWpDWU9bTLCcNFOuUmLkIfOwxdKQQwzfRsNF1pi/8GidoNg9UOkQw1IedtA1Jc1Svsh4YhB4UDTPEgJ2d1dDXB31YKIX5RoCF+5ec2HUEiBJEskePFFaz2aLcJmm4SMfF6fgaAbklD62mI1BrhBhbqQAT2aEUghwBN6NpaueMM6WRAGUYZbOla8LjyRayeZzGPwZ5PXvGy/brSH0ah8gG2xfHzmzmNjG0/H9Tk6aO47a2TfTJAmcxMWd5Dl2EoRmKxS8Ohs47rsv21dkuAdGjNBliGnwumCEVcKaOSG5LgiIAa9ST3J0CpXJHPQa5/w63d56E6cy26WlhtC2lATiFtrJU+6vOyRF6eoSbxRFut7sAgPvdLK3Dg+Zpm+PV0104r7Foc9yvp2iDwVEXq9lH7dD7528kY8alz2HgU1HXTDnkmhiUNphkkkgvj0VHJTo4Nf/G7CQN5AwajqoJjtsCXdAJyHAJDWYBOK2em1U+AaC667PJePBkc0XWBjE7c3XvFHneYVK0CJ58aRpHx3PclClbrfMaVpNRY2E6FDZWqRcgS5ZaYK1SFtkv53Vin5itYnbJeZ2y13wgR+KmMyljblqS55LRVKurL0MRUriGGAkPnfkEdBAnV5M7mMwlr6XUbxh46Di5RuYo9TX0rIc2xDidHE/67hjIBoBBkZwAmY1hA8YQKL1eTmzjDDP6rAcG3q+LsKXOyAWVSqiwR1Hj+mzIsZ9QFz2BOrcuXGaQ5Meh7tDbFvD/vIz3G5aP58CZaGPGi9+lPxE3mfkmr2ViNkUoUvoMDc5DDDgD5mbA4uit4bLz2rZt0nafDAjZJqgG1rM1t4qwNyz3VjSedh73ddkuAdHDtwR4+LUOgKSZYVpuZHi31rg21Khjyvtfsj0S9KgQQRKGxNQaSRWG21kbW84abAahDSRWoHUG07zBvcM5ZqZGqTo8aKe472a421AIjAffEFSaqLmWUuMMVi5LhVq5ZdrhXjPHoitR+wxHkUFqg8HS5ThpKXut8RZT22JiWhy2E3zx5BqOmwK3lju4s+oB2WmbU0q9J92MjYVZKcOrS8fYbCmkOXhHoEwt7fDGcg6jPe4vpsh1b2rng4rGlSBwZcjA8R037iMEharJ0Hoq/7HsclwvTrCbVWicpRCe9qQn0j5mNfXARzbJgMjK5lzktvUGZQRxLPTlcNy44jmzJ7l1aCMDolRIGhf6HzCWtERQfeisF0EjuSynMjex1MZAIwRmPvq+FTx6v6Eg0+Z7hoj3wSzIJh+e1NcEqybPsf9sKF7mzzVCSk+Xy0sLA54Mh1qj/n8jgEfaryKA45xeC9PJawy1HsYbfI9hiHAc/uPaafKcvd8c7lJq6K/FfW0tpITepXps98BsThIfxweTi6Tnb2JnvpJtExA6C+Q86vbfVIAUntDrsl0CoifW1OgdSGhEpXpP2NzxJLCSA2GE7mOcMl6EP9x4/z0E+mcGitdLxyaX4ad9E5BPW5ysCgrDeOA3774DOhZjNQh4fbmb1tsofIxhnNpbdMHABY1S0+SdKQr5sHcR1UMrI2vU4dZqBzoWVwVAjJEKuLecpfT0RV2kfR9X5SBj5nhV4rgmNqrzOoGQtSfn+JQsS3Iwm7TsMuzF4qkH82VilHjSkG1ekKjZaA8XhbatI8Gzh8LK5cTU2AZWO6qX5ntRMDM9uemSTkiNJpPWm8Qm8XnsFlXSFjFLlEqTeIXWM/vTsyZsYujY80aTCaGxvY5H6zBig+Lk67UwFwyDyV0aDHLfGvvtDMKzo2voYoHUcWPmaFPJih6wDBkmI8pgyGPSICBjdAQHyiexceeG4SL+m7cxAD/idwlBpQQJx+LoMMwU498giaWDikVc1043ns+6juqsdt5yLLA2msrRbAoZyQnej/pZWuZNnlkfBnRs0w2l/y8IhsYA6q3WEl0yRE+uXQKih22R2u4N1CDA0JA9SpW55Uu2IN5T6CysbWcAigbf0+dcMHMt0hafytPnevzdOtga7nf9qySwFs7NTWuAuwVOG9IA8YAhxZkhUEkJmSLOoZv79QyLLsedZgdH3QQnrsTS5ShUi4UrsIjp9febGV6r9uGhMM8a+EAePrnuUOgOnz0kkTVrfa5Oqd6aZKVy7ZLYuHN0LFJfxD4rrTOp9AUAHFWsUVIJPO3mNSpncVCscG1yOtCwLNs8PSXyhNFGgHPjyjG6CIo8iCWrXDaYWEhf1CQg5NEzJOOSCdwKQ/qWVQwhchmGuqMQ3HrIKaTwDrMpHGbJrEvZTRL48N66mCGVAA2DgFQsdsNkHYa+OuyKLV2qU/8DUj9nzRADMWZfZEugxA91O9LlW4tq9OzLMwau7ONDPk+kLbJRRN2DKZ8YGinyTscyMm4csD0RCAVPF5OZH06lH6TGxzT8BNjEuJPE6Wk86r2R5H7HzBlbBIzduV0gD6xJ1sCoHnCP+5mc/Hs2dH0a6ZmfdZZoGyt0Uc3PRT6T353HCgEPD+Qed/3L9vZsl4DoUVoEE6kUQQIzYhEFXAh6y/ViqID3MRj8xtvh/2XhzQ1wP4wBlVwX/XcphDbeTfxsrTSDDmhqcp2eFC3czOHkc1dwt51j11b43PIG3je/PaDXeVKR9Z58ULi9nOPF0wMcd1SUtfbkMu1AAun7zQy1tygi8DnqCJxQurpLpS+empxGYTexRlPbpkG7iD5BDIbq2uJ0SQzS3dWM9DuK0uGtIg1R7WxilZ7dOYKHikaKJHiunI2aI5dAFYMiFkEzAwMQu6NVwLLJU0hNgkM+D891yOKxZ4b8mUIEkDI0BlCGGwuyAVFuIQKnWfQ34gmudQanTR4F1ypNpG1LjlDOEVhMYTMdYG3UKXUaXaehTYAeOE9HoCF8dbaxG2uZZuh1RMwaDRYfs0iIoTlmXni5uMyaQNf3ISqqA9Z/Z8TvxhqgznHIr5+4JTjg9RJoQH+t+3MPa6CIQM34YYfZMF4Q/YPR6NzUaBxgRk+rkLIix3oiFpevOU+P2JBJ1qbQ6rhJMGRjf9fCoJH1fMDFs8w2bf9JLr8tZLUJyDwpLdA2n6KveAtP6HXZLgHRQ7cB4zMetEYTwXmDgvxaDoQjUKS27G/jdmQbDMASMIlz4O/kuzwm/nM0SPvawDVU+sHEbboZ6Vx4Un+hvDuY8HnS4adS/h8ADqsJ7tdT3GtmOGwnqL1NIEjHtPSJIeGvDwr7+RK5dli0BSpnsXI5ll2G65NTNJ0daB00AkrbJj2ODwqzaY1re6dovEGmHbrIbDGoAICd6F/E2wCI9Woie5TCWghYtDnVJotV7KvWDs5Xan2WVY5mleF4MUn7ACjsx4VZc+2SnikXgMsJoMTb41Df4Ek+sk8SwLEbsfMaRgfUrUUR9ULOKxgbtSOROXGdTuCk60xihTTXMmOgLHxw2NCSQQdPzjvzKvU9FlenPibAhwTcqe+J8huDiu7cjdUwEy310RQuYxCznZFg0JOArbipnABUTtSaM/GVzl0x64IUouNTlMehRueewGBasD9G1mHJ+z/ppkBgrw8XMgAKyKxLppuDsiNqeH5KBRS2G4Chscu1vEbMovLropP/NpCxEbRcYJvbjm0bGzRmuS5qsHjeMWxluxC2DstfiTZ+Hn7Y12WjdgmIHrqNAEUawAVoGPe0szrcBlZm+H0/wK4Dmf6QBoOoTMnfcgqD/cf9rAE4fnodAbzk5NspTCcNTlYF7KwFctL0ZMrh/bNbWLgSndcp1Zt1KQORtdgnMzVZnFjuNzO0QaPQHTLtydAxaNTeYmKI/dnNSCNTe4tr5QIvHl+BUgHHVUlC6rj9xll0MUOrtOQzdHVySoxArPo9HtwYiDC4AGLIzHYoY3kMDsEdVZP0dxPPV4IyniyZ1fC1wY0rxykrjEN7AJKYOr2LbLdtWhAOrQ0AkgBxDJiYKWicQesJ2HH1dOlpFDx56HinoqZnlNqd9EDUL7g4LB9jSruPk/LJokzrbQyPxb+V9im0JkuHSDEyZ2+NQ1NKnB+fjwRJTrBXifWB0GKhv9cywcJtEl0DPbvEQMuDwq8cukuhOtUX11XxvlTyPhYgj4+PzzmBqOj5xNtIafMYsnKypAhP2DJjUKkeELBNwJhxHJ+zZL/GzM8mRmV9me1hs/HfD9POY3MeBmydBdi2ga3xuo96Hpft7dMuAdHDNgX0j7UYAIr0pCw/f9SWYljDp+axhqBfXvy5qcbZwx5XmtzER2Kz/AS/OC2QZx125hVU5nCn2cGeXWGqG7DoWTJCHorqJMWJbTzRAojMhsFBfopMeUxMCw2fjB4LTenoWgXMbI2qs1h0BRpvUXcmeQi9+PrVVG6DtUL8ujY9peNvCoSgsKiLQQmPg2KF46Ygw0bjMI3sVK4ddrN6wMhULsNeuUphKvZ0YTGzHEytonpgdtZuHEgpXblngNj/SIPErpPIdMkm/5fmkSzKlhOaVuSlw9lFMj2b2QRrKIPMWpfCYhy2MtYnViMEJNNA7g/O6TUzQtLvCFDBGiPdv/o+pgbvgwyyyFzJENg2NoN/AwnOaHv99xyC5PBmEpuPjoGPw0Q7hrG+hrebivbqXpvD27DGw1qHLHN0DdP5Y9j4YcOL7Dmxj8H5hJ4t4lIdDLz5mBnAWe0Hmj4GRplZz1w8S4A9BgZSVJ2KDJ8FHrYIl8f3whp7I1idTczOecBlWyjrLFB1EZB01ndvGkBiYefjvi7bJSB6pJaARQRGUsczEFnj4UCIaIP+KdkeJcJo8njOPVYMKHkZ3lsblHm9c+4RZT2806iaDJl2mMxrXM9PsPQ57rY7CcD0jNBwkvGgLCeenArTYZ7VsMqlp0qrXQRXdDCT6Nnjg0LlMmTKo/EGizbHsstRWEpvL2yH6Q6ZD7JJYWk65NqRiWRWY2pbLBsSMy+qIjlG36+oOO3N6UkKgwFUld5DDcwZAQIfNycnyQ07Ny551uSihhhrlJ7aP8H+7jKBqiYyNZXLwNoMCXK0CmuGj8xc5dolITjQZ8ClST70VgcATXbOa2Lc4ktrTyGWBJL6SZHZDWviZK5JNM1sTWJgAgbrremAEjiRbIvoa7Evsp0DEHVCowKuKWML6yGyAauRwNj2myOFVMVxcVHfcQYZL2MUlVVhwCObEfokZofkcbGpJLNfAImqx9cxMcLiutE1jVogduzWPeBLjCRGQHHEZtFvHNK7ZLzkNeZlh69eb/UofkCbwM5FQMNGIHPRUN0jAKGHaRdhkL7SjaeHx31dtktA9NBtMLCPgc/jtNEAw4UiNy4je68AOf3KD7lvJZ5Ut6wrQVgKowUV3Ys1rPHYm1b43cVNuKCT67RkgMaD9abJSiNE3VAcyFXAG81uGoCnusGpK9AFg9K0aIPGQbFCrh0O6xJ75QoAMM9rXJktSe8TNArbxcmPWJvStCQQjcBlXhJ46rzGfrGKWV86TQQynLXNQiDXXfrOap8qhvOkyttgH6BM6JUYMHFYDejZHlm6Q/ocDa7b6AmbQVg6nqj3yCJLUNp2kE3Fy3P2WwopiVIUnJmVWze4D+SEnvoI+2oBmJRtAjx9h0JyvO6BUeyHKgzuh9RfRoVS06YEmOH/e5+hCAT08Pr0WqSeLRqEz0ZAi5k+1qHJ7zh7SzbZt/n6jr9jJimdQwQ2Y3Y2RLZYM6OGPiSWMsb4/FjcLNhlCZjG55RphzGQ5G2Pr4Psm3IfwMO7Nm9jeeQ+L1I6YxtYehwg9LjA5q0ER5ft8dolIHrUNghdSYgdWaOLjA9x0f5/ye2HtafscXbYGrszBmYbmCFgNDHJbacJZcsyvGhkj5SlUhTGUlHUzpH7dO0tdkyFQrcDdmhTkxPHTl5jYtqUTVboDlY53KnmqD0Jg5c+hwsKVjk8Vz4A0KfCr9qchM5R9DyxLRpv8IVb1xPY0CpgalvMLAGgp2YLAPT03niT2J/K2cQOVS5Dx5XptSMwxaLS+JtUjsqJaEVFZPPoMi2zlbpo6OeDShqe1pm+ZpkmB+7cdMlXic9PhuH4PFjjJD/rBGvBnzWOGLQilp1gLyPJImnx2ztPafch9KnnqXxFnBS1GYaixuwffQiwiHpaNmvs0JjhGXayXkMka6IxSNtUkwzos7+0DvBeJcBL34W1yZ9BFKWa931SbjeFHePvlEUGSVa75/DYGBhIUMnLMgsk+8agjIl48Ej6oMjMSTYrsUwCJDNLx8vxfcdiennumdDI8Wfjdw632pEOSIbHLtK00LhdbPmLgSJe5rwMr4sClIuEwc57vektPKHXZbsERI/TBoP5WngsbAYn4uvhugJUjW+qTdsR66wBp037G4Oh8b6kXil9Jw43DN/5HHT0IzqsJtifUEHVhSuQKZfKcQBD119g+HTJT+kcFuKirvx69/wuDtspMuWQKYf9bIW5JU3PaVfgOGaaXY1eQLeOdweTxM2DY3RB47Ape/dnFeBjNldhek1S4wwaZ1DGz3xQmEfwREDGovMmhc5SyrwzSYPEkw0gvH6ENsjG0AdPoMsuiyAsw7IrhEA6huRCX1KExdJ5yuZTqJyNXkYWresF7HxOWgW4CO6s9uRvxMBhBBBC6JkWrakuVxI4qxA9i9Sg/6Z0dy4zwZNyBCBVk2FZ5Ykl2gSCUjZV7IvMnnDf3plW6Vzk+SmF5JmkFGVX5VEXY41f0wHxeTLw4//pt+rFx/KdmaMsFgmWflPUf/t9SDE2AcleoyXZtLGmSp7r+rXprz8L4OV5KMUhzB5083FxuFR6LqnR+Y77wLYXr88PCJwRyQarnSiPI7c3bmOws4mNGv//KMDjosuetdyjAJw3Gxwp/2Rel+0SED1e48H9ccNlG7a7MaNswEphsN+BJugsJmjb/oDeXVg0CYDGLE9oDVyrkWcON+YnlFHWGby4OAAA7JhqbVfjAVNOjnn0N+FCrhQ+a7FnV3i6PEou1VPdYB63vZ+t8PzskJaPg9AHr7+BL792bbC/qW1xrTxFph328yWxT7Fu2OtH5KjNvkCNN7DKpww01vb4oKMHSxjsj/U+yy4bhL6A/snceY2TukzLzosaTWeiJUCXztdGILVja+SRjZraBvOsSdeJwVUXdBKMn1d0UyNg2WWw2ifXbQkEAQovMaPCobNxDbQEMgagB4OMMKpaH8Xl6FkbTq8fh84G2ZnYrPM8XRWDc9N68+TpvKawXtR4qQhOM+3S78DMifQLkj5Z8vc1gtkYh5wY4Mh1OBQ1Xm5wrKYPFcoQWWoDsNmH1qRNhdxuf07xIQAqFaflZTcdvx8du7yW4/BY5WwE7Hnqd503W8NSm/6X2WbbwMK2Y9m27FmMznntvOXO2+/bgh26bE+0XQKih2xpcDu376v+7TxgErAR5DzcgQ0PaACKNoXAgkLyJEoTkjheMXFtBFYxDGZyB+d0BBxLvP/aHXRB48SVqVDrprZp8HhQT7BylCq/cGUa0AkULTE1DU3kukvmi1Y7THSL3byibDDb4m41RTFrUsr/4ekEt5dUV631Bs+Vh+mJdtEUMNpjnteD0JPMOOuLx1L4jBtPKFzGI4WyIkMxy5t0nDxZfeHeNZSmQ2G6dF2ZlWo8OVZ30VqA99F5A63IGZutA9g3SRo4dqJ+lTQc1KrXwFSdTYaVUgfEjEoSgJuhtxGnj3eurw9mWCQsXjYWeFXoNSccqpFAivvQJlaEgcJAN8THKbRA7CrNx8xNAhLO/JIFcmmZHrhQiY51sCP/T7910GuTnxbXUa4z3tYgRLjxnkJyvpelVJg9UmJ73J+k47QESHy+cr9r4vRxiBNYOy+gz1gEmCWlkPTUNolBowcD8bCwNXQ1pCIuAqjO+/5hQMnDLHfWeondGoXq3hJwFJ7Q67JdAqJHao/LCDEA2hLWeqwmnrTTR0pkrvD3cpkxIyXCapvAUHpy9wrBKVR1hlunO7hbTXHc0JP8whXYs8uzD3V0nFVLT6ArRzqhQrcwCDCs3VAOhe7ItDFkcNDIYkbaXrbC1fwUpWnxYDXFM/tHWLU5CtNhdVTiuflRAlO/v7yGQneonMWD0wn2phVy7bCfVwPHaR74eTLodUM9ayDZmVWbJQ3P1LaJmQCIKepELS4KY9HfzGaUUTvEmXQs5uaJJtdUMmRum43Cbhn64XMYf5+y0yJoo3IffVo2MUBA25m0nbYzaDsTHZwVjPGDjCkW9loRqsqsEOuGdTDABV+VCokxGbM+SoVUIb4POfWhPD5f9hzic3deo+rId6pxVN9NitF5W2NjRcnA0DWicicManl7AKJn0boGymgPI0BLCAqdM4MUfBma61Pm0LNl/H9Q6RqzFskks8X+3FlP1VsRiCKzAvDyNR1P1gxaBxN+fE+WFcqnBAXuQ50AXZt0PNtT7Nf1RNvCZuP2MMs9KQZncJyj8xuwxSMN05sWMgtP5nXZLgHRo7dBuGpTb7pADwujv8OGzx/meAYgZzNj1O9Pnc9KbQjJDbalAtwyQwhA3dmUyWKVx2lX4D/ce99gczKVefA5+oH8fj3BymexRMcUle8ZmUz1WVlWkZaDABGBpjZo3K1m8F7hoFzBeap5tn99EQXLDnfqOZ4tDzE3Nb58eAV55nBzdpIE1bTtIeCpo9PzYTNJgup0HHFycEHjuC6xaHO8erKXAMZuWaX+wewKX4fSdqi6DI3rtRc+aKxGdc2AfvClOmpu4Ki96dryMfF3BKhcYofY36j1BmXWJhPDEEhQzYAms27A8jAoMTFVXwIf1vNw9tqgbbxF+Hfvf/+ki4tgXAsX7HnZgE0P5TnLMJKLoMV79rmSFehjHS/V63CcOE4ZdpOAxwlzUdl35TlyOI6XMRG0pVNlbBj6rL5N2sCUsMDZdopC2db4NYG41CXJY0peS+gd0mWT2WXMcEprBp7cN/kLVZ1NfScXfmDbgMdFRdFrn11ghh4DuCfFzmwCauPjHO9nEGp9s+mWSx+iJ9YuAdFXrJ1B93CYalPbBpK2bXY8qJ7FMqmAZPjIjsFroCiM/h9tQoKkLEDlDnneJb3G1LaY2hY3imN84/5LYrJTo+0MT4wZrNJQZtnKZamumQy9lbrF1DQoNRkbZpqE1oXp8Nv3nsZJS0aLGgEH0yVK0+Ij11/Doi0S68MD18F0iWd3jgDQ0/9xU6w9gTIossoTmIDCoiuSuBnonxqt9qmAqw9USDY3LpXK4Otw2ubII3tkzTDThzPNaBskhO7/V5jaBpXLUNpuAIo2TQgyBZs9khgYWaEv4YwpYk16toZ/a6N9Kp/BZSEy69KkmlkXhcMY1EBjIXAKi6l4XUPfj0IM823SIslwnjEeVWsH5Sg43ZwZK2kLQewS2z7E82DAE2ifbkvYyGifiulWXQ/IW29QdRlqZwcWEs6T0Sj3R76OSiHVRUtu1gK8pQk1jgfBKXIGBzFoxsZMOgD709WAkRpn2A1AJfcJ9N9zk95EwDC8tmr7c+XGdg3MnE5ti71shecmhzDxfLVgTc9qm1iibd8/THtSTMxZYGocEjvvGN6SmmaX7bHbJSB6MxuPvWfdJxueGrf+f95ykguV71sHkLDxz63NA7bskGcOIcTQTxzoFq7A1FB2lnxKP69Z7ZGJwZJDTstY8R7oB1NmjArdwUWwc7VcIs/6J1erfEqx16oXMJe6xdcfvDqoAwb0egnS89heYB3DLnJgTOU84uSZmaGvEO+fW5l1yKzDss3TOpPI2PBTOrNEvD8Wr8pjzLVLT/DbGAstJsy1p1n02UeTWMOKQjt6wEQw4NARPGsB3M7y2aHvRw+dSmhtzsim6l+0jkK/X2bYZMr6plAQsUh67Zi0CoPUcxYjy1T5dM1ADBtfu20ZkmtCdpHVxdlv8vpocX7DFPuolwpDxou3flIVaTl5nvK4gmCH+BjkcUpAJfsui+vTdRJ9XGaRpT6d/LHcQH+lR+Hk8fY2tYuAi/M+P2/bZ23vLFZp/GBx3nGxqeqb3XhIf9zXZbsERE+srYutN9E7W5ocVMPoffz3YKfnfJ+WGy0wGMODeG2gmM66U4KCa00KvZzGid5qh1vVLhau7EMfilKD06pbmCOrPdqgQaaIfTFWHxQqn6ENBj5oVD5LgKgNBBreufcAABLoYUaHB3L2FbqWneAXXvkIrmULfO72U0moLBvv87WjPapPFlkBWcCV2+3TOXLjkn5FqYAH9QQAgcRp1pDTs3HQ2uP6dIHOkxbjpC77iSeCIQZehelZIJm2z9oiBlxWhKhYZO2DGrhpSw0Ni7hXkf3onIFSAbl1CTCwJmeWN5gVzdokDxBjwqGhXswdBuwSsxcDzYsi3ZCxLvUvHTVJHCK6trcYrCPDT7RdOu66tUl47AUbNGRQhvoqPiYpqmagkkVQL2vXyZfsH8w+eahBP5VC9iLrEoMlf4cxOBzXeAtBwTudxO+d04P9s3ZIpuF7EU7k0CZrmOQx1zHLkFvt7IDt5L6Vx9Cs7OuUYWbTOTAAGuuxtrVtLNGTEFf3x7SuhdoUWnucNma47IitfVNbeEKvy3YJiB67XYz4eLR1uJNuYoDUlu/P2/Z5uqFN29l2g6uA4DROqxylpcypZUceJYu2wO1mZzA4nJ7SU+5Y+yEN7V492cPK5Vh5coquvUUbDJY+x8rnWLocbTDYs0uYWCsNAH7v5DreMX0Aqzx2iwpd0Lian2JmGnTB4NbpDpZdjqvFArXPcHg6gQsaH7jxBu5XUxxVBGDaKKT2QVGJj0lFnyU9jh6wQwDw3M4RTYDKYxGf5J0AJrWzmERn6MK6VH2es8IWTUEp/jJjLGjU0Ryy8TYCJR3ZIp0mcZ6MSVvUT7pyewy4ll2G46bAUVPi1mIHPigs2zwBORPdtZl5MCokkDEtm6QnYo0Qh8jS8gOxL8TnPgEWKVwGsAaeeLK6v5ji2s5p38UVvWZFbz/gPR+DEdlvwxCR/HvM5kgvIwDpN2QQLeuC8Ttfz8E5oC+Hwd+xaJtF50r8nVkHE4XnxnoyueSabvJaRENMCb7G5yUF51oJ64N4T7Veo036pt57KYnHRWhHsmN8rklsL8rUuKDiQwsB+NabkRbrbJZoLbz0GADiYbRDj7Kfs9ghZsQYDDFAZKborWCLLtvjtUtA9DhtE7JeAxoXuCnOZHDO2JTa8Nr2OYMPt23jG7Z91rHEYy7mFI7aKSpcK5dRa9NgntW4V8/xv9/8PQDkBJwXHerGphDa+KkbGKZMA0AdKJ2dUu013miIeWLTR60CDPrsr3lWYdVmKKPj9cxSbbRrk1McN6T9+fTR8whB4Vazi6ltyMm5ygnEgLKKcu2S+HSe16On/5654mNgncW8rBGCQtVZ/N4dcsg+KJcoTYc7x3PMcrpeyzYfnGcVPYw4nJVrJ8SsQ/8W3i9nvbGzNk9gPBi7CIpYN6VVSBlX1hAIamI2WWG6ZOrIvxcDHg+FurVwTqcsKqrRRsfUjZi/8cQtQ0A0afvUt5ILNZAmdu52d09m0Cpgf7YCuzaf1nncD5Inko314gb6Gd3X/OM+NT4uI5i+lLI+SldnUbK0IBjXMOvLmgS0kW2T/YLZE87Mk9lJed71vkQ6pDFFPiysi6aHbtXD1P7+uOQ2Vk2Glg1F4+/lYjhsHDbc1JhxBJBC2l0wOHV5zETTA1D0KG2ctfVWtTGY2XQsPoyy8jD8Xd/Mps4JhV30ddkuAdGjN44wibbdY+Qhe5tcfAxyHqUFRDZH9YPuuTseUvjb7pj6uMBzVw6xn1eonE1lMZhWBzhMARR5i7rK0qTJLwmKctNhYpqU2eWCQu0tTrsiZWAtXYbaWyyjZ1EdSGTsg4aJbEjlMsxsHTPRKKV9N6+xayu8vtzBlfkS9+o5nipOkBuH07szAMQQSc0QAJzUJZXj0G7gQ7OJmgfixI+ASdHifj3Bbl5hals8d+UQWpHwnFkT5zXuncxwfzFNoAZYZzOSK7Bg0zxU0m2RtmNoIqhUn2lWdXQ92aAwXW/rogA4hou0R2F7jyRrCABN8yZpszhby7neX4g1SACQZy6xRZwurhWBHhPdm0mr5HrTRmDwzuDJB4XjVQnPZUa8SkAHQCzRoaNmiPtbSCEr1qDxtZCp4eMSNUbUKQtBpVInfG3GYIQbezTxtR+6Y/ffFZZKprTekHGiDiiyDnnekYA6skTaRo8nxan2fo1Jk9tOInPTAz8+Vg0Kt/H1ZOaIs+IAAkZFtBionB30ZdkPS9PioFih0F1ihmTz4ezpZHNY7OySHufpe55kWwNCZ2qftpQyAY8LFxOaP5F2mWX2xNolIHqc9ih96CKhqjE7k9bZREmdcyAM3DYCqvO2Fc4/3qDwhS/dxBcPr6JyFq+e7uJOtYM3lnO8sZyj1C3+txtfpEUDCUc5PVlOHEzpV12GiWlxkJ8C6I0JAcBBYdnlOO0KnHZFcrS2yuFKvoTVDrWzmGUN3jG9j9erPdyq9lCYDtfLk+QR9MH9NzDPa0xtjc4bvGPnEFeePsZpk+P1W1egVEDd0cSwbPNBGItrm0mBNR+nTUwEhY86p3Fclei8Qa47XCtPk1M0Z3OxENsHhdOmiPqeGCqLAImzzXwYlQCJDBGAVGpEDuqtEGOHGEaTYCgVBo3fG+VRZm3axrLJEyPDvxE7WANAntEkyllnzFZwhXoJODhExEDNGpf6AH8mGY1ek+Thfe+1M/YqYvZHiqoTc8ehrPg72ejj07/o/LPon8Rgk9brJ2qrfPLpkfXf+oyxIZiTYUHebm67gegeAHaLCoXtcHV+CsXZcrmDyZyobUbXmQEeA+mxLopfgwLMsWndm25yKC+VLUGfes/HO25ahWQ3MbU1nBgUuIyMBAASGJ0nRL7od2+H8FMP3vwgWeKy/d+nXQKiJ9E2gYYBAHnIMNX477WxIIxe48+wEQSprcDogsclB6XRNu7f2cHLD/axajO8fLKPprNYtjlOXInjrsQ7dx9QCQKvsFrmA/diHrw9FOpYPoMHwNrbNBB1MaV9Ypr4lKpSyIw9Ue7WM+znFa5kS3z2/o207hW7xIN6korGrrosmTzeryc4ejDF0ekE093VIGyiVcAsulgzIOF98eQJIJk3Jv1IZFpc1O4sugKdNzgoluncukAhKwYD9xdTHDUl7qxmWLRFBD866Zc6MRkTC2ZJsxUL0nJqvVUetbPYyWvMsibpmFzcVmlbFNFLhnUymSGLgEw7lDHzrMg6FLZL4SmjPXbKOoGIWd7AxLCVMR5l3oq0+AhOPBeIdYMsMgCD5YCh3oebSZN5/5lkwJQiIFFmVFyYgcxYTC6F0/z78HlnMTwqJ7nCdMlvh49tnMlGICUMtFTEtAzPJQSgbm1aj9tpk6NzGqsmI9F95lDkHazpWS0GOVpm/ImmVEAWw5hGLM/hRA+VrACYGZPCcy5ZwuG0TWFsuo49EObvs9jfJqZBpvpjGLMjF2ddHs/YcMzcjsNeYzZXvo+Pcb3OWg+GWLs3bmOW6M1q6jHCZPJ12QB7/iKX7U1r3CnH99rjhebXAY3CxpDfQzWJjeJ2moa608JrXJmtMMvr5C79od3X8PtHVONsm44pBIVllUcBMTFC9IRN4moPhd1shWwDHb2KBSfvLWeY7rbQCHh6foyZbWCVw9LnKcV9165wfUIMlFYei6aAMgGuMyjyPiwEAKVtU0V5AImxYZCS2Jio0yltiy5oZNql8FvjTRSmusFAWbd0Tm1L2p0sc2g6i9lkOZh8fFBogkkZYrlxvWPyaJLicN8sa7BqM7CXTmG6wTFrTaBJpnFb5dEEKlliRdacZCaaziKL4CZlpBmPSdYmIbYLvfNxGLEnAOC9jnXTyL+o29AfZJ0xKX7Wo23x+bjQ11nLjYMLCpn2cL4Xe8tzVRE48nayyAL5oFLocDxRbnKmBvqJ0IA9ndaXmeUNTpscu8V6fT8JTKZ5g6PlhLaqeuZLGidCE8jam6zSMS6aYk3bxAJxPnavkH5PDfr9dAwFagAePdjO1ZDNSucagVGmOroHDaIdhgeiJon7gGxS+zb+jOsEnrf8o7QxMNkGis7exmZwJzWEF9n3V6xtCxw87DYu2yVD9LBtk5HbEBw8ZEjrSYGdi+xPYzvo2rp+DJud11O8QneaY7UoMClaqr7eZfjy8iqeL+/jXjPHwWSJnb0Vgu+f5Dlswk+tZUEaJKsdDEhMrZXHSdcX9+SsjjaYFHpqvE1+Q7vZCiYCkUmsg5YpYlDaYDC3FRpnMDEtXl3u0+WIhW0zS0CGDfmqWBA1hV1UXxxVDnhZBCmZCAVNswa57bBoCiy7DI23JLIulpSVl3XJEdlYTqEG7i9JT8TFZVMqfRRcV9ECQKZHl6btPZWSRobEzzJUI8M+Rg1ZFFmWoTAdctOhjCVIqjZLWWjyd/OxhAbbDcj9cJgs9SSeQETYB+iBD4uOadm+a0nBtARJKjI0PgIxPp8Q+pIV1njk0YYht12f6aXdGvCRmiONgMpZMtA0fahPHlMS2QthNps+8v9A71M1y/sMOf6cgdBuUWG3qOC8xrysMSlaFFmXQl1jtkOCQx8U5nmdgI7UQgHkIu+8SiaRQYA2ZjM2hbHTcW5hjbiZLYzIWt0y1e9z/NlgufO+/woCjbMMGLft90kAt8v29miXgOitahy6Gt9jm+6tbff/mYLr+NigRhu48L2rRtolUG/hQWHDIBACEDqNk5MJOqcxz0lcvXQFam/xhw5eRJ51UMbjj7/js2upw5zS/Ylb78WeXeFqvsCeXWFiSNcy0S3mhiYVTkEHEEEBhcLetXcfV/MltPLItcOuXSFTDq9W+/jmq7+PZ4sHMDEj7H4zw8vH+zhekV+S7zRWdYa6s5hmVJj1yoTqsbFBIxklDkNXDI5cBC+LOk8Tr1WegJF26LzGiydXoFXAYTVJE1uWxVplmUPrDazxCQT1RV8tVm1f5gNA8ijicB3XOsuNGwiuC0OhL9YhefSaEQ4dlabD1LbJe4avK7s257ZLk38bj0EpUdojiqpTTTHlYyiqD3lJMbBSAW1H27kyW6VMLQ43cXYYT9AcshsKr2kdDt2QANzDBZ0AFIcFp1kDE7UfJno3aRUGaeUy1NJFATYzg7Kfcm0yl46XGCBmNWSm5E5RYb9ciWPezDBxmLYwHaZZk/RFKRQm2CyriZHjPsgaoGnWkDaKrw2U2G+/Pyu0YzJkOK6BJ1kUDqfx9wuX43a9k4oQ03I+gXFp1ijbJlC0abnx/s9jdB4XrGwKkz3qtt7spi5DZk+sXQKiR21nhLU2s0SjdpEO+Khan407CqNlHuYYBXJTGIKi0bkGr+BWFpl1qDuLRZvjTrOD11e7WPqcJg4T8OLyKm1uw7XicNDcVCh0i1K3eKo4wcpT5hgPwlazU67Hrq3SZ9w6r5OR40d2XsGteg9ZDJ/l2uHFkyt4z5V7uDJbYjohoNU0FlZ7LNscqyYbiJWZtRmEL+J+6q7XiBS2BxSclcYT1/PzQzTO4nhVoo3nmVmXMrjKmInkIju07DKsYr0zWWRUCoV7obdOYEaW52CQM65rlRsXC8q6WDKFypPkUU/EQE+CDmYWmFHgiY+OO6TfjgXVElAkQ8fOpFIfIQAPTie4uXucti9T5bmNtTPjxiwQh8e41pcZAZ1Z1qTCtqxZGZdekYyIXK60LZzXmOU1plmDWd6gyDoSoqPXJYUYditjiHYMMJIeacM9KDVQDEgZOLPdwV65wjyvB78l2ylcieFWWTuNt6sU0rkzoO28xk5eJ8YL6IH+uDH474JB423SrA1+J9bajEDRprDTJgCyDTCNl7to2wqgJAA60yNpHaidx5jxNtWbFYfy4cm8LtslIHrkxv1Hif+3iasHK4jPz2KHzrrfzvtuq3A6iNdZy2G4zJhhGoOi8Wom4P79OVpvsOwy3K53UDmL2lt8y1NfQDlpiNERhUFlhpFGwBdPr6P2WQybtdizK+xnK+yYCnNTJ2G1UR6ZcpibGqVucZAt8f/9/Q/CB42pbbFyOTLlMNU1/tu952Dg8eLqADdLyir7wv2rmGUNyqyDNhTmOTydEGAZsUE+UCmN45iGfxjfx6UfphmBK61CH4KJE+uiK3C9PMH1+SKxDJylBQDLJkvhmbqzOK5LnDY5FYHtDE6jViSBsyDcs4WRYBJY674yOR9Ppl0CUgx+rHapZAkDLgYzk6ijmuc18iiylmzNJGtTUVVumyYidlHugUEvmr6zmMPE8FCfSdVvQzJHQA+QGCw0nbB5GDExzKAcFCtMbYt51qQMPR1BBrNm/HuN7Q+4Rt3OSAO06TxlOFhWuR8vL4XOkgHi/bK4XW7XRkAz/n059Np5HUODfC38QNNUd3bwOwFAFY1D2aGbmcnxNWiijq/1BhohPYQAFDbrz3EdFMnPt7VxCv5XSpw8AECPAIaG/w+n0PP8nL4iLTyh12W7BESP3DaBidFT2ZnrbgJQX4lOuQ30bANfZ4KyEZBKYCZ+HJcPLaXXH69K3F3M8fqSXJGvZqd4aXWAad7g2clhyl4am8q5oPH5w+u4Ve/hdruL1ltkymHXrHDUUaip0B0M+ppmmY7hJu3wwRtvEAiyDVY+w389egFaBXzrjc8DACamhdUOz+wcY1VRWv2Dkyl8p9BWNLHmWYfSdmmyYT0PgAR4GmcTMMn+/+39ebBlV30djq+995nu+F6/HtXqlmgxCRCTBRa2CYNNgBgCmHyDjTE2FbtsbMDIONhOkZSJyzHEqWASEnDhwsSBECjHYOOhbCQbZPgJgy2JQYwChNSSen7DfXc4097798ce7j7nnnPffa9fD6LPqrr9bp9xn3OHve7nsz7rw7it2GI6DePCjZQwSDxq6azV4zBdoaOavQqkuYc493Fu1LH6ksjLrF7G9X9xtUym3UnEVMsSkwJzdS5utMSMySMC4zwAJdKSolEWIOPMRrFyQTHUxpYmgmMeKnKiJlLjbzN1RIY9rxE92/tARaGc3qfcVlKZ6rVpZRrs8VzjQwNTOUeIRKTTScYo0aTEjGbHjXwpewNm75MlTFQUoiRWD2QF3sXoElAfdTCoSvu4FW/lFJGJNtlqSirQcyJDbsrPENTMEdszIrXn0FSnVzbRNEQvoBwH28OCS7VxVLfvM0wjnbmk4CBgkLYMv3gNzvu9gtTURYl22vR1kXRW03C1wVZoCNGFhgSKYSTMkiFS+rsIStvW6RPqtp+/nszZXv+cKBEtS4qoXp5TTGIfjAksBTH6QYJzWQfL/hiMSvzld5+A5x6+B889/K2ZX8aESNyw9wSGPACFgK/L3BkR2OOP0Kap1aj4hNsv0UwytGlqU0XmF6xqfUFw/2QFp7IlMEjkgiFiOdKx8tlhTEDmFHLoI/RzpJmH9VEL41xFbL5zbq+NyBgicW6zgzOjro0imYnXlGuXhZmUSAzSEIM8slU+aebBY8IKn7kgGKcqRdYJU7T8DKkumXfvkZmUCqRAe8UAQJulMG0FyhVTJmLitvfIddRplAUq1SgYxlmAhHs4N+4o926dVuuFMTqaFBoRuQslvlYpMSMoNuc1ZGfqMyRtny8upxVtJkrmkqFpo1TY9YYMmPO6/kHusQBg7HSud8mgcfp2jS0jlttISdvL0NNu5WUyU/W8POkSUiQ75m+VcLcMM9EvRRP0tMt51aQeMF4YZ6BTr64+z9OmmO0gLRzbcyKL5ZSdeW8b5IIh1hWda2kbq1nbavlYidxUYZHUmRvpnCdy3k0sEh0qby9Kn8lLBfPb9Lwe2zzn2972Njz96U9Hr9fDgQMH8LKXvQzf+MY3iuMipPLxX/7Lf7HbJEmCN7zhDdi3bx86nQ5e8pKX4IEHHjj/m7JDNIRoh7BfgFt9Rt30Ut1692/l/qX/24iMnE+EqnRO89JkdiyyenkB+lNkejDNHEuCMmlJQttL8bX1g3hosoyDnU0QIrGetfH3Jx5pXYjdtNnd565CSHP4hNvIh09U5VlElWYjE8z+OlXEaCqIzSTDataGRzgCqgjKk/vHseIN0fcm8HRlFojEmVEX8TAAmLoO3+NIc4Ys9fCdk/shJEGvldjJwZCIq5Y3EHk5Rum0R5sryC0bN5q/PuXYzENwPo2kGAEyIcrRmEL5HwW62ivOfMS5V9DWuL5DnnbRVucwHcqn+iWgOAmbcQpJMLCeR8TaBRhx8Dj10fIzDJMQxr05EwwbccsKthXpga3SYkQi1JoekzYxQl5DnD1dgWYiD+Z94jtGi6T0vpuZtDD1FAJUk1JrVKlTQC0vQ6Q9hUyj0rL2JaCKTACw3k4m8mcqCkdZUKl1cT9/i2gHy6/BPAhJ0AtjLGlRtiHCbqSrUu+kX/NyF3ufTo03XeJotp/aQ0zF1SOnxYx1S4eTQpNT53RKRIEUGZE1gIVTZ/NIUfkay8vmoS4yVLXvImRoWtAx3XbGVuBiRaMugVP1bbfdhte97nX4h3/4B9xyyy3I8xzPf/7zMRqN7DYnTpwoPP7wD/8QhBD8q3/1r+w2N998Mz72sY/hwx/+MD7zmc9gOBzixS9+MTivtn240Gh8iHYA1xtlIZTfa1X6obr95qS7qnxRypqcXYMd82KDl4IgHQbIWwk8IvDgcEmXOatUFjAVQJsvEka0GFQPfcIDhOEGuKQzkSBGBDiUcaFRWkQ0Q0gzPL53AlRXVHW9FGupasvhE44vDY/C9T1hAcc4DkB9PQlEHMNJiCjIkKceBNfmdjoSkmmPIY8KRF6OOPfha0+fUEcVzC9uIQniXHkBmaiRSXeZ1ia50z8M0BVzmih4VFjfoRGmglgTgTHn8nS6x+iIBNTzHLr6TAukBdcRDjI1laREwoMa71g7cPuMY5wFkBJoB+ru9qMY40xpmYyWxUzKqgeafs85E4zpl2YqsQAUysUBRQSFTr2Ye0YxbTmi7o0RW2vBstPnzWwjiFoeMFXNR4kEShEfoGimacwsC/de/3+YBTPrF8F2vxvce1Hn02PWlbctb59KFfVkREBIZqNzHhM6nTklLx4RAIXVTNlzmPeErqgsw55T/wkon23sqtNpdhnklv5EZpvydVetr7p387AdYrJIu43LtdrsYuKv//qvC/9///vfjwMHDuCOO+7As571LADAoUOHCtv82Z/9GZ773OfiuuuuAwBsbGzgfe97Hz7wgQ/gec97HgDggx/8II4ePYpbb70VL3jBCy7ClRTRRIi2iZlfgaXozfwvQzL7tO6zWkeGFsSWKbQ6LLTL7MDcX/M2YkQl4tTDehrZ3mQx9/Hls1ch5xSfuv9ReNqB+0ueM8AT953AY/ecBgC0WWJTZj7h9kGJQJumyCRDJjzbpwoAeizGyWQJZ+OOMuyjHAHJ1baSouulONY+g3Ee4Jr9q5CC2AeoRLIWYTwJbAuFzTREnHs4NVBaqMQ4ROtWFsbQD4CdjCnRk4CuGEvFVKRKIW0JfOjn4EKREBMtMs1WPSKsjmkpmiDwVLQoZDk6WudiS531L3LfaStgiJJx1jYGk66g2kSKhlmgIik6stP2UxD9fg5YbquojCGjRwQyrtJqlJg2HdMKMTeNFXimUa7Wu+jSd5+qFI4xUsz0vVOTZ7HcXUhS+AFgmqWqUvNpub1pZGuut+unVvi+nkYY576tTky5Ev2PdRWfiQCOtfeU6zllqux2mropa4S2g1kh75QkmWieu8yMXVXGFY1GjdDbpPFMKxlzncaqwaRjCVFpXuuF5Ywl5UyZkJJpx3eDaaRoKrAGUFmOXx8JmhVZL4p5Wq7yeecepyIqWEyVlQwlL5AQfB62nR6reQDAYDAoPJIkWWgMGxsbAICVlZXK9adOncJf/uVf4md/9mftsjvuuANZluH5z3++XXb48GHccMMNuP3223d4N84PDSHaTcitwubSeWjMIz1VhyqQh60/eFu1RpjdYetN1CWQyvFNtUQSyCnynOGhjSVwQbE6aVsS4TEBIShuO/6owviYmeSJwLI/hpAUEVGpMxcMEm2WqC99XZrv0xwMEifSJXxz8wCOdVdxTbiKfcEQqfRw32Qf/tnSPTganoNPOJ7YfxBtL0O/O1GEiBOwkIMw5UlEiEoHmrYL6voIHjy5x/Y4M72+3Oqk8i/7jXFkUy5cT84Ry+Axjj2dMQLd46sTpNjTGiPTE40RRXtE6ZI6fop+kKDrp6pM3omABDTXqSluo2MmaqR6qfGZL3czEVKi3KxTratqexlC3XsrzhXZjHPTlFddVyaYbeFh/rqWAVyoFiGuKaQxWDRaIEOwzLhMusxMmlaQbft66ciOxwsk2kTsmLYNMBP9chAXvKNs+xXBsJ5GAFAgql0/VWaMjGM5iBF56h4b7dGi/auKXkn1zUlnUzXzl7nvKfMw5fK5rvIzZK5wvxhHP4xniKZPp42BzTlsdE3DHGtacq/+DrMAZycdfGdjb6GNThWRKWMrUlQkRudPiirXbZViqyCw6p7TGYK6k+PvKuQuPQAcPXoUS0tL9vG2t71t69NLiTe96U145jOfiRtuuKFymz/6oz9Cr9fDy1/+crvs5MmTCIIAe/bsKWx78OBBnDx5cuHL3000KbPdwLwskqxa74Sdt/rcFCJFNTtURJum7Q7K7Q+2me4rn0cWBuSsk4DU7sM6dQIiwTkFpRKT1AelAvec2Y8XP/Ir2OON8OFv34hM9/Iyg/ep8hSiRFWSbfIIPRZbQiR0fy/zRdljMTiI9RsSALoswaHWQEeREjy5cxyn8j6+O1rBk7v322O0WYLHLZ3CmXEXAMBCDpFTgEqIjCHVpI9LpfXhXH0ZsoBjlAaF8nDzyxoohvnT3MOezgTDJMSecILIyzDKA3S8FPs6Kt/OtImkYER5BjGOtUlbX28xnaZSb2JmkjQdyAHVhoIxCU8SxFxN5qlghX3MsYxWph8q8nB63EU/jK2mphskGKYhGBWIcw+mCazH1IRh0oQhy7GZKJJhohEp96bl+c51uCSJUYGcM/guOdKk0ZTDMyLtPmmu0jgeUzYAgCIy6nrUmD0tuE+4hzEPbKTHTQUJSTDOfURebglT5OXo+inWk8jeG6sLc6oM6+DeX7cSrirKUIW6ibb8WhtiZ2B6ljFNhI3WzGwTeRni3LcCdOkeR6c9DWEup+hcIpKXyAAlspByA1ytkEqdqa8KlaJ2014mfeY2hC2kyrRGUchpa4956bPtoJqglrrXSzJDhHZ67IcTjh8/jn6/b/8fhuGcrRVe//rX40tf+hI+85nP1G7zh3/4h3jVq16FKIq2PJ6UEqQsILxIuKwjRIso2aWUeOtb34rDhw+j1WrhOc95Dr7yla8UtrngSvYSESkIrrciS8DWURk582SK0r519vvbiRRtWa3mHn7eoQjAU4Y09myUJQwyZIJiI2/hedd8A/FGhDyf6mjMl0+XJbaajBKBTDIMeYSxmIo8TVheSKo1KFOX5L2Bcpje4G2czXvwCceLD3wJsfBxNuuiTRMISXEm6aITJDiwf4Cj+9Yghz6IJwCiGtGaMYUen/JYAmyst5Fxhr29kepfpiMQbW3GZ/QXJoJysLuJfdEQRzobiJgShR9oDW2Jt/sAgI4ur+76CfpBjK6foGu0V0SgxTJ0WGo7jQNTUatJXxgyZLQxuaCFiICJPpnlqkRbfSUMdQQsd6I9Jt3lMUU4WjoaY67ZNHB1oxemx1vIcp1Kk9YZGYA9H3G28Rgv6I5M77TIy9CPYrT9FG1NgvpBgranfK0GaaQF9NPJzaR/pmlEYT12pJxWkRkPn3HuWzJIoUijIUvzUCXyLUcZtopybCclR4ks2AnY63UqCjOhbBMElIu4We4K802KZ180smkxYOqCbsYScw9tLVA3633KlQM65bYAgkJUltkXzjdHaF1HICs9iuru43mmyQymkbj6arK6PmcXE0TKXXkAQL/fLzy2IkRveMMb8PGPfxyf/OQnceTIkcptPv3pT+Mb3/gGfu7nfq6w/NChQ0jTFGtra4Xlp0+fxsGDB8/jjuwclzUhWkTJ/ru/+7t4xzvegf/xP/4H/vEf/xGHDh3CP//n/xybm5t2m11Vspe5RmXaqCg8rD2AIReLfI6qyFP5+GQaEVpUP1S33Y70Ry7MPZAEImU2EpCkvi2HX/ImkALIYvVLPOcMS9EEfW+CTDLceuqx2MhbOJ32cTbrYsynZEhIirEIrHhzLFRT2EwyfG3zqsI2jwpPok1TbPA22jRFm6X49NpjsJp38MBoCY/sn8PpM32cGvQgPaFSn7p6TmpRMHd/9TMBkTCc3ehqUbOwKSwjnjbpBaJ/RUcsR5el6HjJ1N2ZZWh7KQ61Ngu//o0potL1ZGixzG6r2nNwbGYRKBHoeAm62qSyMJFARUzcFAZQnFDMOdvetA+aMQP06LR9iKlyMjC9vWx7ETElPcovSRQmXeO6nXNWEGOb8ZhzJtyzRobKs2gqCPcptw1jJ7lvq8YARfwCynFVa4BhFiHmPjzCMcgirCYtTDIfm1mot1Xmgm50ZKAjYBtJBFdTRYnEOPfR9ac9yKqEz2XSU364mp5FtC3l47r3qryN61outaao66c2ahf5mfJi0kJ9cyy30W1AOVaTduG8xo3dVOW1vQxx7hXSdaGX42hn3VZ4mr/T4wgrlp9xq3ZIUV0KbatWGuY4dUaLdfezuHy2UXTVNlvBHe9Fh9ilxzYgpcTrX/96fPSjH8Xf/d3f4dixY7Xbvu9978ONN96IJz/5yYXlN954I3zfxy233GKXnThxAnfffTd+8Ad/cHsD2iVc1imzrZTsUkq8853vxFve8habm/yjP/ojHDx4EB/60IfwC7/wCxdeyb4oobGoSTktcp5Fdi/wrfqBbZvwlM9rnk8Y0OJ6fTE1Ai1SBpWq6Ws3Qb8dYz1r43C0hofiPQABmC/sBDhMQ9x+9hgOtEaIMx//v5PX4XErp7A/HIJDIpNMRYyEhx5TxEpAaVpMWuVY5ywAJSre5ylifNQ/hzOkj0P+Os7mPfT8GBHNMIgjbEYRKBMI/BwTX/kR0VBdkxQqUpHlDOnEB+0pMW/YT5BnSlS8xKZl0SDTMu5zcRtcUCTwsBzGqqcYgDFXDtwZD7DkT7CZR4i5cqWOOjkCxrE6auNwdwBGVA83AOAgmHAfwyxCLilGeYiQ5eCSWEKUaZHrSHgY54ElRWOhU0a02JLDTNiAcjE2JGF13LZGinE+baYaeBx7wonVkRjkglryEnk5JplvK+pMs1HP0+kRkEIKNxOqN5iv92dUQApq+5cBsNdmWk0Augw8p4hYjnEeIKVMk5hAkSJaTC26FYCBpyrIYu7Z9BjRKbVhPiVDlEhbcVbGvFRYVUTI3cakfsznqJyKsts4aST3Xrvr3cot4w9lWpCELNfmlIqwD9MQkki0gqSgKzNi9EA3KTZpKXN+I9Z2SbTr62TAoCNWxIxRR3Kd9JdavlgKDRJOqxwza8/qeHYSFVqE6JixqL/VxLR8zEXTaw9nvO51r8OHPvQh/Nmf/Rl6vZ7V/CwtLaHVatntBoMB/viP/xj/9b/+15ljLC0t4Wd/9mfxq7/6q9i7dy9WVlbwb//tv8UTn/hEO1dfbDysXrmykv3ee+/FyZMnCyr1MAzx7Gc/26rUL4qSfafpzvLnal70p+ozuBWnWXBcC3mp1BxLBmJaolC5gdqZeqqTeZIzPDBZxkbeRiYpvE4GnjD0ogSEAAfaQ2zELdyztg+A+vLpezE8wsEw9TWJ6LStQSYZQprbUm1fb+sTji8Mr8GmaOGhbA/uTfYjFj42eYS1tA2fKGfoA+EmCJNIUl+JwWM29Xoaerak3A/z6RcxAfywaMBoy961PmWYhPCZSi0BQCYohnlgU30qzaCiB11dLWU0PYc6m/CIsNV5lAhcHa4jFZ4yWzQpLi0SToSHCffhEwEOFbWxE5ouNTcCa0D3gXNet4hltoIsoFyZU+qIDgC0dJpKNew1xyg2SU10BMFUpLmpMbfVhyE9kU65mXuacYbHLJ+x78OQ5ba6y0zKbS8ruCkDsGJic23j3McwCzDOfRupA4CRXmY0QwHj6AeJraiSklitUUHPUorUlFGbLkN9lGPe/xeZeN39jGs20a+1uW6zv7WM4MxG76yBp5cWIkLufu712HJ9KtD1VZpyOZxoUkNnxjR9Pj+lVJdCK29Tdd2L3JvzJUPzjreVePxiYTdTZoviPe95DzY2NvCc5zwHV111lX185CMfKWz34Q9/GFJKvPKVr6w8zu/93u/hZS97GV7xilfgh37oh9But/Hnf/7nYGzW8uFi4LKOELmoUrIbVlrONx48eBD33Xef3WYnSvYkSQolh4PBYM7gFrkCN8RjZtsqcfKcXS8w5qXPirokHS6SUFGgutSfczwv4DjUH2CUhnhkV0VwQprD8zl4wnR7AeCes/vge9z2XyJEYiJ8hFIZAPpQRo2McGRyao5mokbqV7cAI4DIKa7vnECbJvjs4JH4gf63wYjEd8b7MMwCfGlwBN+//z4kwgMf+9h/eIjTsQeylEJyHcXoTKvHwmBawswJRTLxsUEk9rZG2ExDCJ9gOVSl8fuiaVrXpDAAIJcMm3mEJX8y/XUumE3RxLmHfjB93+WS4mTcx5H2Gu6d7MMwC21kw0Clv6aTUt+LMdHNXjtego2shUCLn02aKRUMbS9RVVWaYKnyd2URsL81wtALbDSCkqmXjynVNrBCXBCEVImWE0fEbPahRGKSqaiLaXMCKNEvlxRXtadpbqO9EpLYPlsBi22pd9UkZMZkrtEQIRNR2kxD6/rtEi1KpI2OmWsVktjXwTTYNUaHVdEc87ygcamJIBX2d6IkMyTJiSC5+1YRFwECnwjbBJgSp48epK0KBGAb3CrjSX+GuLnRPpvKJYoIUUej1mOpJn5FcuFGiWxUyLw/7fVMI0HufXAjRWUhda3IuiKKVodFTCHNfV7kOHWv90WFM6Wc1zG2s/mCBOrnf/7n8fM///O166Mowrve9S68613v2t4ALhAeNhEio2T/v//3/86sKyvSF1Gpb7XN2972tkL54dGjR0vnXPAdJMtPiPPANBW1KOnZLjkimDnlwrtWXCMh+kvaRJS0oeH0HIbsFffNJh4eXFvGKAnw5fWrsJ61ENIcz77m22j1Epw520c8DpDns78MHhwvYZgHEKD6y15FQczDVKAxItBmCcY8AIVEi6VKmA2BkOZ4IF1BLHw8vnsCEctxuLWOLktw73AvlvYr92weexA5hd/KIROGaEml5cznf5z69j5QJm2XetOZ3v012/Yy9IMEEcuwPxyC6vTX6UkXuVPufShSZHt/a4SAceyPhpogKdKwnkbwteO26yKsGpIy6yBMicBE+EiEhy5LEbFMl9zntpmpIQmGNHT9xEaLPCJwsDW05f4RU+m7g+2hfW7K0I1vjyEBAeWWMFAi0fIy1VqFKeGtW/2k7qfycxKSWA8pE10LtdfSWKeqTIQi5p6tdHInrGlKBfb8LuLcKzguc6FsBIwjdZx7aPmZFZG7miHzOrpkyAjB3fOVo0JlHVF5+6px1qGoyyk+d+9fGeYeJdxTAmjtbWVE9GYbkyozmjDzXuj6ihCa91zKp6Rxq7SQIUrTe6AjhaWImavhqfIqKjtWu/uZ41SRlzq9UOU457xGxXGI4nhL43KLGy4qLoFT9fcqHhaEqE7Jbpwwy5EeV6W+UyX7v/t3/w4bGxv2cfz48cL6utL1euPGqu1lMbIy9z1Zv9IVUlcKqt3/bpMcVVWnFY5PS4Mn7jJzHgmZMaSJh8NLG0pfk3Rxz/AAQprj+w4/gE5fEY88U4TIFX+uxy1MeFDQSrgVZgaGGA15iIhmWPIm6NAEHZrgocky7ty4BiMR4qvDq1Q1EU1xJu2pChuudCxBL1XpPSIB3Xcr5wxp6iFzquFMs8xumBbSCW5psiIKOTqeEj2vZy1FWLiHr6wdgpAUifCwmUe4vn8Kh6MNdP0UPS/Gkc46Yu6jw6bRJeP3kkuKM+MuTo27hVSRkBRcKp2RR7m2L1BpMtvXjAi0tAib6YkvoLkVRq+nEfq+ei3aXoaVcIyIZRjpqrNCilALrwFFSqpKt43uxGiLDGkw98mU8eeS4vhwGbmkONAaIqDKO8dNV7nRqjLmpbMsUSHT/mZtXd3HBQWXFKMswFKg7AaMZsiM26QIDWEol9S75yiPrz5lU51am9nOJVgoEiLz17wnjP9TOeLDHBJtdFrG1qDrJej5sR2Le49TJ30Y6RYygWPvYP9WTCOm8TIr3CtFJhikI7YuEZyaCrStSNE8AupuW77/O0WZ/JbH3ODhicuaEG2lZD927BgOHTpUUKmnaYrbbrvNqtR3qmQPw3CmBNFFXS+zeo8f6TzM/+dVo5WX14l4qs+5UKVZRZWaXVYiTpXHmiF/TojfNHnVxyIBhxTT0uaHRn3ldiwpvnL2EDzG0e3FaLWnv87NjxbjVJw7XjocBGtZB2ezrqouEx5Mv7MDwSZ8wjHmAUYiRCo9PH35u3h09zRi6ePkuIeI5fjW6ABGPLBf/GdXu+i0E/R6EzAmQENum4NmmwHyXDVjncSByhZmSqw6ygJbASUkxTgPbARoWvquXKQzwbAnnOBAe4hMUmSS4sHxEr66cQge5TgYKSH1atLBV04eggDB45dO4UzaxXrWQsoZYu6hF8bI9XNANd1U/joUuWRYTTtosdRJLWh9lSYtIVWTm69LpiOmIiSH2wOspy1bzTZIVSNan3Hrzm20TVN9k7QpN097KnlOexGzTcqZ7cbukamHk2oEqyIvuWAYZmGhlNyNCNWlq6rgkgbjZm0egNIeLYWK/BkxsiEFpjS/THDNWAvnKUWFzLbl51WTdh0xKpMrd7nrd+VprRZQ/MFiCgxyodKDe6JpijZgqo9f10vQYhl6Xow2Swsl9YZA9P3Y6tUUOXRSpXoZL0Xs3PvvluGXo0JV0SL3WssEo4poLlYBVqpeW5C41L1uOx3HhQKRu/NocJkTote97nX44Ac/iA996ENWyX7y5ElMJqqqhxCCm2++Gb/zO7+Dj33sY7j77rvxmte8Bu12Gz/5kz8JoKhk/9u//Vvcdddd+Kmf+qndU7JvFWmxvMdlG7L0vLSo9kDOaYnW9dTxJKeKp5bUmHOWI0Z1OqYyQSIoVpW5x5SYuWTKJM6NO8gFxXI4Qcw9+ETgaQen0Te3XNt84RIi8a0NJbLOJEMifCTCxxfXr8Yeb4w2TdREB6nTY6qn2YFggDs3rwWgvrBGeYh7JgdxbtzBWtJCz48xzgOcmnRVB3aqSFiWM2Uo6QnkXDlrR3tiJUxNlchacPXRMZVUALARt0CJKr1XbtQ5Htxcsr+qE6FSPoHu5xZzH+tpGw+sL1svnzabisUPLQ+w4o+w7I+RC4Z7B3tt41gzAY2zAIMs1EJhNRYuTb8vipVgpEnQVFBtIkYhzdGiStjcYhn2RSPE3MdKOEKLZXbizaVKIxkBsnHd9uk0imKIhEm/ALA6Ic95TY0Dtumz5bY9MREqd8KpKnN3/wJF0W1V6sONaLlCcGPK2CmV1bt+O2aZSZUZ8fJWBGcRVO3rXk954i1fs3lEnkoxBkylKE36y9MmjJGXW6G10ZG1WKYIMwg2c2WWtycYq3Spto7o6siRIU+Asjiw92NR3U4FKVLPp6TIXebeA1OWX4gGzUm7zd7jxUTd2y2ZL0eqZsnbRSRITcps13BZi6rf8573AACe85znFJa///3vx2te8xoAwK/92q9hMpngl37pl7C2toabbroJn/jEJ9Dr9ez2v/d7vwfP8/CKV7wCk8kEP/IjP4L/9b/+18VTskv7j0YF+1goSqQXOb8E64jUQgLpLb7PtnK1Nq0YFClyzycrBeOCE2Q5Q5z76AeJ7SvlLVim+k9nj+IJKyfRYeqX7fX9U6plB+E46KsmsLFUYuIhj9CmCY5Ea+jQBD7hOJt2cCgaYE9rDI8KtGiGBzeXcLCziZNrfRAq0A1TpIzh7LkegnaGeBJAZBStXgLf5/Yq84yB+sobh0MRuc04tB3AI6Z0ON+3/ziEJJgIv9Asc6xLu0+Pu1hqK3I44QFGnGBfMMQ17TVc1dpAm6nJuufHeGhtCYf3bCAIEkyyABvjyJokCkmwHMSanKgv7GEeoOulWPYnWM9ayGG+yFUfMY9w5IKBQYJDiVWX/AkyTd5ME1Ul4la6IY9oR2l9I0x0yKRuTBrNeCnlghbaQZRTX24xu3HLdgnSdiJCM9uZzSvewoscy/VLciGd8c0T05aFz1Xndrep296sM2MCiqSJQunZyg1vKZHWKFM1+1X3ve2lqscfATpMGYD2PGAzj3Bt+xxOJX10vASjPFQNc2mOjawFIacGnmpMFLaVRcU9ZhBTYbV+zmtE0O4yK5pG8ZpcMTXkVDvm7mfGVZUic+9bFWz14pwvxm21DrmEUaMGO8NlTYgWUbITQvDWt74Vb33rW2u3ufRK9jJh2MXD1v1fouCavV3focL2VedxJxsOEF9C8qovRmm3s405temgiiowrKUd3Ui0eizudWSCIaMMXSS29xUHBaT6a3yKuixGQFRT0pEIkUmGiCny1PVTnBl3cf94DwBVnZRnDH6Y68aXQNjOFNek0kbBqNacEH1/mC9s7y4pCXpRYicfQGl+lHaojZDmSPXklUMJkoc61eZGxTzC8Y3Ng7ih/5D9os80aSFUYpBEaPkZAi9HrtueJNxDT5fDq2oyCugU3Zj76LIEHZbY6h2fCDshAsB6pnxDen6sfrELD2fStiVA4zywnkMmsuKSHHdScnU3AeVIBStEiNztfMohKLEp0VEWoKeFvLOTYfWbY9EJyoxxHhFyyUZ5UnQncOJMruXIzVYEriqCNW9chjy6xy9Ho8qVZ7lu3mo0WilnaIeZ9VyKWAZGJHLJAKEqHzOhrCsGeYS+F+Ns2kGgDUDbXlIUsVeMV4CC6wht1TUbUsTBSutUBRpHDVEqVZ9VrZslzudHRMrEaF7Zf1V06GKDCPU432M0uMxTZg8bOJ/TauKhwzg2dSadx/ZPst1eZOUxlZtPltct5F7tps6YhB/mIExC5uY6Z4mQEStnukJpkET46sZBPDBcghD1v8Rd9L0YXZboxpRct+AgiKWP01m/8KvV/SIb8ghdlmKQR1hLpsZhPuOY5D6Wl8ZINiKsj1rKVTvXmhtfl6mnnm1IKgSB1BPVYKLSDYFuvmpgNDuZZBjmoS6DL04q7vUNksh+Ae8NR7piLsWYBxiLAJmkePzBUxhOwqm+JWEYb6oU06lRD6dGPatdMpOCT7gigUw5ZCfCsxGgUR5iInzV2oKqaFHIcrR0hdpKOFal1kTaprIeEVgOJuj6qa1Ecydmt1LJrf7yqLCia5NuM/oXn3KsRGNLhlwsQirq4EYFtlMWXSZi5uE2a63Sk5S333I8kAvtYyNImLpH27FWaKtcYpRrzZOJ3qk0oYdMMHhEpc5MihVQ5ChkOfYFI3usVHg2zQpgWqrvRGTm3k9nbFWpsypslQKrSi/WaXzqokNbpTfrUmnzdEOXhBw1KbNdQ0OIdoLyPO28l2YmcSssls7GrnK5lGrazhgM51iEwMxZtwgJmok0lVJ1UhJ4Abdl+IRKQEdRlCWJBCHTNByXFN0gwXIY43F7TlWO16bkHKxnLZxK+gh1h3tAfUElwkcsfGSS2RYfmyJCRDNkkmGPp7U4kmFj3ELLT3F63EXbT5FkqoKsvWeMyboiRZRKcN3x3mtlgCRIcwZGJcIgRxBm6HViJJmHSebb9NB6Mm1eKECwkbVwbtLGMA+14JnaiS0TzPb7irwMXzxzGKfiPgKaIxMMsfBxIl6yE0pAOdLNAGdHHSSZarTa7sVYH7cQeDmWookSPpca4FIiMeSqdYUhjEa7EVA1+YW6B5jxD0q13okSqTVQxEaFjHAaUNE1YyaZS4qYezY6ZCYTU2lW1vIYgfVWKE9w81CnOQLqJ7hFx+Dqj7ajFXLHUdY7ueRoHtEqH8vdxtguuGSU6s9Zx09tZRkAtFlq05K+E8n0CLdEMCTqcyUksf5VS8HEEh9KZKGNDoCF9ESmGq1KZF0WWJvl7j0rt/iYlwar0lzVrlvwtSyQK2MjcImjQw12Fw0h2i3MrcYqLyiTI4kZhlHYrvwcqvHoVkJod3s3IlGzbZ1mqC7CZI5FiEQWe0g3A1s+T5j+VZuTAhkCpq0cNuIW9gYj3Lu5AlraxozZwHwRDbLIdnbvshhtmiIRPjbyFiKqDP7aLLUl+Pu8Tdw9Oao0RUwZy+WcYnXcRuRlGKYq4sKF6p9FcoI8Z/A8DpHr7vaeAGUCyUinjahy3Q4YB8+nqaOpaJfbzuv3rO3H/tYIlEhNHhxxq214qibZlfYY31lbgZBEi8c97AuHNpoDAP29IzAq0Y9iBO0MvsfRb8UYTCIVZTJpNkuKpD3e9Ne0qu6jRKDNMptGa7HMnsuIaAHYyc9cX6jLr/tas+SWpgOKuLnEzyVQ7qTia1+jlj8VkgsQ+3BRGY2ZpweZQ6K2S4zKRMWN0ixCYuZGi0rHrJqo6yJRlvxgNtUEqM+S8VXaFw3tMUKaY9mf2Em9xTL4RKDDEuwLnO1YbqvaRnngRITUuVaTDjbzEFmptcVWqCNP2yFF7n0w6yuJUUUkrg6LrtuKDF10kiR36dGgIUTbRaWX41bfA+6brbDtvAhRmSwVN7GCand5+U3tVIZZokFK68q7lMhOrWdRxbLlA5vKZTrgIFSqFJmniQ4VmhgpN+ZMMHBJ0GIpnrTnIUgJnZZQ93iaolDHNl+2G0mE/cEmukzpXU7lfWzyCEMe4t7xPu3Yq7qyd2ii+pXxFjKpdDhnki6W2jEIge25tbHaRRTk2By0QDo5PI9bXZDR9xCirkdIAiGoTfH5Pkc7SG0E5cyoaycrADjaX1emkoY46FJ5QxbcHl6T3FeGhcLDiXgJE672u3e4F0NNiOLUR+jlqkO7IGgHGSIvg8cEukFiK7xCOu1CPuQh2iyzDsOjPLS9z8bc19GP6X7m755gDI8IS+76fqw8ibQgHAD2RSPbHR6YOlKbdFpXt4Yw98REJwxByviUqM0Ts5ZRlf5w/5afbxfz0lp1E+tWhKB4rFmzvy1J0ZwUjqvTcgm66U2WC4blQPfc0wJ685r4hKPvTdBlSkgtpO6BplOoHuU2bea+hjH3MEijmfEYcGd6MdEhQ4aq7hXf4vUvRnmqS+kLEbcFiVDhHIUoUFUK7vIT21yK1h3fq2gI0Xlg4VRVrfh53puQlP7W/NclOuWIUYmIbUtYXdBFOcuqCJI+9mC9jXEcgKcMkASU6T5nmthQIm1LjjMbXSxHE4x4iFywaqJZukZKlC7lH849Al8bXYUN3sJG3saAt5Bof5RMMGSSqRYU0sNYBAiJKsPfyFsQkuBobx3L0QRrkzaevP8hPPm641hb7UBmWveTMWSJB+brHlCJZ++DEKpSLgxyjJIAe3sjJJmHc+MOuKDY3xki5j5irgwYza93k0ozlUvm133kZdYXR0gC3+P4yrmrkAoPE6Eq5o51z00JBeO2O3y7lWCc+spJ2VPOzraiSDKM8tBGljyiyNH+cKjPRe1kqAik6laeSaoicPpF9inHetJC3491xRGftuMgAjFX3kQRUyStrzVHZhIxneXt/x3ReUA5On5aGRGqQlWJ9HbSHVXHqztH3XbliXa7mB+FmEZDqghY+T66f80+bhUf4DSCBUHPS9DxEktKXF+vc1nHFiQM8hYS7qHjJbpJrHY313YSHuVWcL/oPeBytky/LIR2/abmoZw6mx5jZ6mwKlRH9abn2yoK1KTSHp5oCNFuooas1KbRKqMv2yMtcwXWtUSsYtm8aFDVbjUf+Cz2QD0BP8jBPDF1z9bRIUZUiqTdUk7BK/4IHASPXTlTKLc2DSsNzDLjB/P19YP44sYR3Dvah+PjPZjwAOupEktnUpGiiGRIpYeuFyvilKv1q0kLT937AI721nEkWsPXTx+AFBTEF5BjD5RKiJRBnGiD8+lHhOhf4VGYoRsmWG5P0PFTtIIMSephlKrUUi5UPzCjwVkJx8i0caK5Ftdcz7Sn8IhKJZqJg+toEQAMUkVspCRYm7RBicRjVs7iEctrODfpoBskaPupbkfha2JIbZQIUF/SQye602UJJjzAkIcISQYBanUlxvF6I23hQGsTHS+BR3T5vR6Tr8mRGxFLnUm2nM4RILV9yOahkqTUpJHcv+Xni5ynfPyqlMz5TLRq/1mH5brx1o2pvK/RaZm0pnmuPK8ytNhUb9fVhp2ZJsVDHoISiQkP4FPVFidkOSbct9EroyMzx4i8HLlURNiviZpUVZwB1dEhIdV7T0iKU3F/GxGd+nYcu4l5ZKgu/XrRSFEjqt41NIRop3A0Q7XVV6W/czvJF74jpPO3JgJkdiXSOWdNSs895CJYJEVGqq9dxAwio+i1YnhMf/HbRq3q4VOObphgQ7fk2Mwi7AlGiLwcZVSmJvRg1uIWTk86OD3pIOa++nKmHJlgOtrBsMFbGOaRJRapYDi+uge5UB3S75+s4BlH7sMjrj4DkTBIKpGOfZCBB9FWESLKVLqPMqWxMkQg1ILTjp+iHaXoholtvGpsBQJNRva3Rphop+eUMxspMo04Pa0l6oZTO4FUeEiEByEpDrcHyCVFmnroBCm+fPywTU3taY1t1ZeNCEhVqpwLZtMVIdFaES/Bsj/GIG+h4yUIaQ4OCgrVC81EiVosw/5oEyHNkQuGjayljSXVZDjKp9oiSuS0+k2Le9tMETTjcJ0LiiT3bD+1wutc8wbdigjNEJcKUlS3rzn+VlGnRVJl8yIbVetmUjzlc7oErCZt5xKU8jLTdqXc5w2A9ZxqsQw+FZhoN/W+N4FHOPb6IyWylhQHw039nkltmxchCbpeguUgRttLC2SBY9YmAJiSg/K9KFeoeZSj70/w4Hi59n66x1PXv7M01qL7LUKGzkewf96QUL1yz+fR8CEADSG66Fg8bTV/u+2W3u8U8/yBqsZBIw7qC7SCDIwKRdD0Ju5k5VOOlp+qvlosxzc2DuCmA98tTBR15E7IqfBWSuUsvCcYYZCFCGmGNkuxwdvWpDGTU4+V5WCCm47ch0xSPDBYwjWtVQCqASbxBIgnAUkg+zmkrjQDgDxVjUkpVR3FQ081Wk20t0snUBEvMwF1/RS5YLZxat+PMUxCZLobuSENAGzjVdM89WBnE8ZZWgmipx/TXjdGxhmCMMcdx48g5p7V8Bj9kIEhY+aeuQRokEcwrU5CZzuPFI+RCyXuFiDWdJISifWkhWGmIgvdkk+NOd8wD9HWneqHOp1nXlugwmSwjhTVRH62So/UkaN5EYTdSrksgnnXu9W1pJxZAuTqhwyMo3ngCPzLMJP7sj+xUT9D7nKdPjOd6zP9Xo60g7mJGtWXx89PK5pqRw4l+HcR0lw38jUR1e2155i3zWyD1uL/5x130cjQxUajIdo9NIToQmALIfJ2TRIBaPPnmuatmI0MzZCJefxpC25lIjtzI1CO/rvVViSH6uaoUhCb7jIVVZGXYzmMIUDR82Jc013HII8QMCWIdoXVtOaagWkaJhEeHtU9a3uacRCczXp6G4o2Vb9k9wRjDLII39+7F886/B2cyzqgRGBt2AYLxPRahh4gCUTGkE/UL2iPCQhBLfEwUSKjhen6qRUSG9HwMJtWfh3tryPhnm1XwSVFmns2bQbAevWo5zlOTnq2H1pAOeLEV2aQnMLzBGLuFbQcK9HEKcNWabNBFmGQR5gIHwwCXe1O7FNhq/HaNNV6IlVxtplHaLMMmaRIhYczcReAmojt8XWZvRF8G0JnIl5qslatJLikWAkn6AXT6rWtXIOL7RGqoyTnqxOpOs5Wx9ttkuTqpzzdZsU04y1fnyHSU7doYpe716R0ZBTLwbSarHBO3QgYUBP9sq8E1+b9kAkKRiROpX1QSKSCgRGJY61zuu1HhlCny8pRnq3uj7t9LlhlNOhY9xy4JDg+2jP3WMXz1pOinRCmWpI0Jxp0SSNFDc4bDSHaJVSmxlxitEhAZ56Gx9ELGefmelF38e+WcDJz20FllIoA42GIU5s9Nel6HJ6n6kcokVNCxHL0/Rhjrrq1x9xXlVGMW+H1POLoRiQCyq3vjvm1GZEcbZYgkwyDTPkRxdxHm2X47voerPIO1rMWvrx6GA+MlkGpQBBmIJ5QLt8tHSmZMBBPIGqlyLnyJWoFqlw/YByH2wNELEOce3YsbV1Z5foHjfNArfNT22ldET9pK3ag75Hx+xEg2IiV7inVGqR4U9kELHfHWO5MkAuKE+OeNkwcF84poDRIJl1IITHIVcVdlyWgUK+FqcoLqeqJlUmKDkuxnrXgE4FhpgiPaSMy1qkyM1Ga8RrNEKD8iYQkOD3pYpCG2BNOCo1S6zBPL7TIY+Z4C5KcedvvhDRt51x168opNKM7SwWz2iw3VelGHAFYUl6HacROtXEx5/P15ynQDYCVT5EW/ut0Wyo861005FMXc1c3ZP5fvs6zaQdDHuCsbkD8iM45nIz7TtRGbe+KvhfFhaoCu6xF0hK7oCG61BdxeaAhRLuIuRoh9zkpRnt2FDEqnHd2mYmALkyKFjxucb0sPne2H25GGMcBGBMI/By+x9GNEoQsR6SjKkILd40nTkhzPLJ/zkaFtoL9dey4QquJgWqDxhBcUnS0p86+YISQZHjxNV/BmIf49DcfhRNnl7ARt3DT1ffhhoMnsbQ8BlKqROBMAi0OySk8xuExgb29EVpepgwbicA31/eDEoHDnQEA9YVsJn5KJNqeIhHGsDDS1x/pZpz9MIZHBbqeii55pq2JnvBOPbSMVHg4PlxGzD3sP7CBLGcYxiG4IIhzX0eZ1CRlIkwmqmQaYwotsDbVPMao0dyzTCpdU6Ib7nraWDERKiWYCxVpMpEfQE3Mro7FNoMV1Gqp+kFiG9eW21AYLEpyCssx+3C3WeQ8Vevdv7uFypSdO94aCwH1XMwsM+lVc/+NUN2QaQDomhYoDkEo92ZzjRbV/6frQpZjjzcGg3r/hCzHkWgNFBKHww1wnVbj+vO2FWFwG7x2vBSMSOuGDQCHW+sAUGj26mk/q/PBvEjPoijolRZkDhc1UtSIqncNDSE6HyxQKu7+f2HiUyNgLhx7i8jTtqJDi1SXFc5fd87i9WVaABwwRYb2tUZOywcVcs8Fw/HRHpyedBHSHB0vKaTI5qXLgGmz0KkhIbOO1Uo3o4wcM8nQ8RKcyzroejES4eHQgQ202imetO8hfPJrj8WZSQfjOAB8AVCABFwJDiEhBEWaM3BdYt7xlffQNb11xNwv+PW4v2zNuJaDidZFUEsq2l6mO6tn1mkYUIJYQzC6e8eIc9WrbD1ugVGJOPHRCjOMkgCRl+Gq7kCdE0rEbSI5xuvJkCIGiT3+GF2WYI83BlCsBNrIW6BEYG8wRK4r4kzkoeBIrYXhgNY/UWEFty7aXoa1uGWPMU9cXIVaYlQx0bh2BoueZx5BWtRksOr4lRElK5yuqYqqIXhmLK5Vg9EMUSILhMEldDaiU0EoytdW2X8Mwpbhq6aus9EmCglfE46QZLVVZeXlFBIdNtumpbANUcdeCccz+9rj1hJfUfhbGIvehxFZeNRhJ2SowcMXDSE6X2xBihYlQpXeRSWistNIUoHAlA9RHr+s0ApVnJfUkCj3eqUATpxdQiYYlqMJ9kVDa+4X0hybWYTVpI31pIVH9s5hPWsDgE2rLfpLPeNM+fZw35oZcj0RdJkyZzR+O6M8xH5vE3cPDiPyMly//zROTXoACB5aW1JjpxLgBMznIJ6AF6kIF88pNsYRBmmIvq+aqe7Vvj5GR2OEx6nu/WQmLCMwNgQuFcySCpWemLZX6PqpdXo+0NvEiWEf63ELwzhE5GXgnKLlZ+iE09ScSdN5lGPZn+BAuAkAGGQt+yseALikGIsAviYvHFRXmE3v9VrWtum2kOU24pXkniV1RvPkTvym3YcAwTALkApWcKF2sZ0UmKuLKVdkWWfrBcjQIu+nnWxTHieAWYKjyZAlPyVytJ2oVC6oTUmacxl/p4jlNjpk4OqF7PsAxBohclAwTYA4qG30KqAiTxwqGhQL33pmtbTDOSUCfS/GmbRXOCcjKiVcuDcQSIRnI7Z1kZtTcd8+X9LapjpsRYp2giqiVDaFXERrdNFwvhVm5tGgIUQ7QaVgufwAaglD1bp5uqAql+mpZmm7g3ePW71+V6OnEtjcbOHEZh/fHuxTpePCw4lJ36aRhkmAb2/uRUhzjPIQV3c2alt4VEEdk9mqlSEPp7oZIm1fsIhmGOYqjSYkwdXdDTyx/yBW4zba/QmSjVBbBRCwVo5sGIAFHIIrAuD7HEkcYJIFGGQhzk46WEvbNjpjtDaAEh+numTekCXzC984Na87TWZzSXFm3C1M7B4RGCQRjvbXAQBL7QnGWYCV/gjDJMC+zghx7qPrJ7Y557I/samxXFLtjO1bJ+ohD9GmKYZ5ZCNJZjLM9T1023xMtPGi1KmZckTOwHVbNuaMdSgTlK3IEDCdkKy+RBMvc18XjehslU7bDurSd0bkbgiqfRQInUoh+fq1mjcG9564ETlgqhcykSOXDJXvSVXLjMQhVoB6L3CoIgWKqeje0z8muKS4P16xAnyhCxo8R6/E5hCErpfWrjM4GA30Z8UljBd+xq6LFi0SGbqUpKipMts9NIRoB1jovbMdMTUqUmK7OZaZc80nUltFh4rbbj0AKYE48RFnPtbTFtbTyP7CzThDO8iwHreslqjjpYVqJHWMaS+2KoJkJkVDQhLpg6OYSvMJx5HWOmLp43H9kxhmIYY8wvftfUD1MQsE0tQDYQKECtBAkaBOJ8Ek8+B7HEv9sSI7OrqjfH4IBllYSF90dUoNUF+ouZimytxJzyUX+9vD6SSqv2AfsbQGjwrV4oNydIIEa5tttHyl61kdtq3pXt+Lres0JRJL/gQRy23bBQ6CLkum+iGn/9ggjwpRA5dsuH3JZmwWDEERDIM0Qpx7WE1aWA7iyvdCFRnaCuUJyRVnu3/Lj3nL3fFshwjNRIcqXKXVdk47DlLWOInC/nXnmNUWzQqUDRHy6DRlu93UjtBRQlOQkAhPp8skBKjWEan35VgEaNHMFjEYGC+jRVFPTKeNXic8wJm4N7tN6foWETwbsuOanm73GGZ8O1nX4OGBhhBdDJQiR3PbbTii65ltUVwHh9gUiNE2vuDL5GguGSr9n9RdT0UaLks9nNvo4LvnVjDJfWScYSONwKhA5GVo+aqx6LI/QSYYNtOwkmy5pMidnDeSCGMeIBMME+FjkEUY5SHGQlXACEnQpgkySdGjMYY8xI3L9+O+0Qq+vHYVrl1eQ9hJkU18PP7oCTBPAASYbEYYTwKkmQePCYRejj2tMQaJGrtbMt32Moxz36ZwzCRSJkrm/4wK250eUGXrZj8zcQY0R1+nDbhUkZpOOwEhEpPcB+cUx0fL6LAEifAw4QE8pxVHxDKVUoFq06H8h9R97XoxIprZRrIGqfC0aJba1hzAdCIqa1lyMSVMqWBYCavTHHVkaG7UpmSYWPW8LkJkS9Rrokc7iQiVx2Zep0IkiBadx03EyKMcPlWRFTZzbbNtKOx5ZqqvqI0yLgcTLdLPZshd3fWVdUWZPh4jEolUxMYn6r0Ykgwt3SyZEWn9q8xxPF2R5p6PO8dnFSRuUfIxyKLSvagnklXHrEp9baUZcjFr2HmZEp5GVL1r8LbepMGuwXnPFVJCUOmywq9vApB5v/RK3/GzaTy9rz5mncGilNss0yfSHrNqHAWRtnM+wQkIBbig2JhESDMPgZ+j5Sstyzj1cS/Zi2t7a+h7sU0tbQWTaswlxXoS2ckfACKWYcUfg1PlQwQAT+t9F6u8g9tPHEM/inHDnhO4b7AHce4j9HPkgYdvnDwAQoBef4LBWhsip5jEEXiXYmnPBIM4wqHOpmq5AYn1NELXT9H1EvT9ie5oTwEJpHxa+SUk0Y02KQQhaDmmhctBDBBgmAXo+yq6IiRVJf3ch5Tq3lHKQQhwZr0L3+doRSmOry0jyT08de8D0+asJIPHKHp+DAGCgObwqUAmKHosBiUCiVCT35CHelITVm9iep2ZKF6oK80AWCJkdE9u1VnXT230z42GVabB3EiIfqkL+1SQoa3ITd127v/r0lLudmXCVTXmKl3Q7HGnndEpHHLjbOPDRORmPX3KxwGmxLmrCxAC3Xtuqx5rZSLgVnSZCKp67iGD0hG1WYq1vKOF1RnaTBEoADPRxHnnrr4mWbi3gLnXAj6Aq1obODFZmrkPloA5n/V511mF7ZbRb8fVuu41vGDYDULTECIADSG6oDAkxJIR89ktRHOmxKccEbEEyYnEuKSpvk0HmRIihxjNc50+n/L82fOjQJSkJMrbhxNkEw/ZxIPfyhGnPjwm0A9j7G2N0A9i1XwSBAdbQ5yZdGZcbCtPp0lRnPs4wT3knGEpmqgJwtfRIZaAg2I174ISgUfuOYdT466KovgZzg076ouZSHTaCTZO9NE/MgH1dLf7gEMKJdZebqkISEA5Apqj61NnQqUq3UVU41OBoubGVJMFjBccpimRgJydUIzgepwG8FgMn3G0/Aysp6IMe1pjUCKxHExw17kjePLKg+jqCh4GgTbLbOk0lwR7/REoERjzED7hOJd1bNoPWg8CqC/2XCiBuvFKKkew1HYSbS+zPkrDTPktlauf6qJB80rOy8uKJePVqbu6beZFocr/rzt2OfVlrAnMep/ygtmhe31ulIdBCZUtISFKbKw+M9PoizmfcIiHRzkELzbMNe+duutcdDIXUO1bjKDaJ8pQMyQZWn6qHN9JBk4CCH0an3DkmLpm15IxCIBQu1/53rr/t/ohSXGkta5bjbitSqpJ0W56BZ1PZOiSkKIGu4LmVdtl1EVbCqmpur+l54TKAhkql9/XD0JHcQqRHEO6posu1I8CqcmXayZpltuHICqIJKetB87GHaTCw6FggGs7qzjWP7etcxq4v/JN24shj3A67SOkGdayDr55dj9+cP+9+OrGIXT8FFnOMDjbwS8+6e+R5QySAOceWIbIKaRQjtWCU6yN2jg56GM1biujRO5jbziCkKrH2XraQio8W3EFoNAA1aSaypGT1aSFgOVat1HUu/iUYzSIrG7JZxzDSQgpgY24ZZ2xH7N0xvZBMz2lbMqDqomOEYHTad+SROVaPTXdc7VYAGxFWcSKJfVu09Zx7ltiZCvktqj2WjSSsJDGiMx2ea8iQ5VRqhovo6pzlHVAbpTI1+TIOH2rVFkxhabWKRG1IanmETomiL4+nhFcm3EH2iAxsCmyYpVaMV1WrIBapPdXwj3b984gkww+VcadDAIHggGuCjbsMcwPFldUDRTTZlWYR17KOiwGaXVMi6TPzhe7kSa7qNVnTcps19BEiC4AFks9LfB/OSVC5e2qK8RK6Sxg+v+KL6Ct+pTVouo8JUj1g1CZqIrZbXmuzA+TzEPiuDT/06mjCK5Sk+/eYIzlcIKNNNpW7zamq3DMLzUBinNpF4nwrND6psP34UAwsPsstSc4sxnAJxyP3X8GX5wEigglDKydg2fqRnXCFOujFkZJAHTUvhNNis4lHVs5Z3p4udVQa0kLe6Ox9fKJAhUhEpLiSGd9aqwIVcJuIhCZYGj3YmxsttALVEVZ6OcqrRfGmkipSZXqCIPRgJjnXH/JZ5JhjzfGWAR4MNmDiXYIh1D3f6Kdw1MtuHbtAMxE4bYKMa+b6VXW9rJiG4mS6NjuUyUmnjOxWZF0RYqkKs1l1zmpJHe8dnyliJCJONRFsqxmyBIVYbu9V4meDfFxz6vEveWxqogICECJSUXSQtRIkQiBjk6R8VIllroXdGZZOVpl7xkpps1CliMTFJQQ+/4xnxdTxWiO3/diDPIImWRaR7TY55NCzJAuMz5eIrFba7+caJp7bfo1L7/2Ve+d2fHVk6GqNOp2/aouCFRh7Pkfo0ETIdo2SH3TUYNK0q3TMYVDkTpiU/q7wJjUicthKVn91xlnfW+yxZhSVY8zQqQlQTNWAvqpyCnyVE26GWcYZwEmuY+Wn1kfkjvOHcG+aOpmW33+WcdvI3YWDhnpeyrNpfQzEmtpG0Me4QUHv4pHdc/iuuVVLO9XnkJ7wxGuPXgOYSsDIQBPtWZi4iHOPWQZw3J7Ao+oXmKrSdt2rXermYyTsPkibWmyIKRyhE6Fh9MTlcKLuY9UE8OQ5ej5sTU6pERgpTtGHqsGs1xQtIMMbT/F+qQFT0/KD0yWC/fGJSHGHG/IIzCiqt1MZZCQFPuDoSVDQiofoXE+rRxyrQCUmWRul5tzGfdklwBVEaHtkqEqlAnZPEFxbbSoQHJqNEAokjq3v5gpnVfHcJqA6ojGNAqk+sYZobspZ3cFvlNyxcF0pMkQYnc73z3PFumxwvErUncuzHvSjNN4EhnCnAn1/7EIoJyphY1GMkhb6Tg995xqLIfgLSJ4tlEuyJrXctb40f3rLq8yvizvV3nMitSe+budiOeFQFN2v3toIkQ7xFZl6/O0OgUiskW0hdDZY9VWglU9L5ARUk+eCifY5ofDPaaJbFE5ew9k8a/IKOJJAEYFOmGKiHKETFVVbWYRHtk/h420hSqUU4dlDYn7xZkJiqHoIJMUsRYSP7p7GmtZGxQSy/4YQx7gFx/19wBUU9V7v3EVEAmASYBTgEqACUipyNwoDUDbur3GsIe+n9gIiZvucn9FGm1NwLg1Njyx0ceRzgYA1SOs78fWXbrFMqRCRdAokWCBIkOhlyvSJwmGcYiTkx6u7azhSGtd//pWx2ZEIBMMDyVLOBxu6MlWYCNvWQGtKdXPJEOLZTo65FmbgFif2xC7yMunqUAqbLTLtOpwXw9XX7PTCWO7v8DL74OqCFUxcuW0tnB0KYXr0JFGkyYzmBFKl67RpJHUdhXbSBUtMeXgbuRjWrmlXlE38lOIiCxwexbVadEKN2rj8q5SfipNZ3yq+myCkGTK4mLO66QIeFELWBUpmm4vZ45nrt2HEnO7WrayZ9FO9DuNC3UDoIkQXRC4fcQseXFSVwUyhMWrvOZ3m98ijbXoxHIev3RmxlZ5KCMuIoAgEDkBFxSDSYT1uAVKJB4YLWM9baFFM9sLTB1/67G5E18ulevuetZGro0HM8kwykNMuI9D4QYO+htY8sZgRGLFG+Js3sMjonNqmFRF9aT+riVUtfCgnij4JLWDVEd5vEpCZp4bshRQjr6fIM499FvK8dpUh415oFNnqq0Jl8qJeX9rhE5HVZ+ZPmgGoyyYGi/mgXIeJgJcC3MPhxt24uBGLGvM94i0LsOjPLRREDNuE9GiRNr2HBHLpp43ZCpqrYsMuXqdi4XaCBWpjg6odbMpr/I6Nzo0//zVLTqAabSOaqJk+nyZh40+FQhltUnhdu7pdjUtqs8gs21wDIleyzv2NV/yJjblbVAXHapr7QHA3ofieKv9nUwEjaGabC9cEVYTLdoqOlR7vEsVJWo0RLuGhhBtE7MtNtT/3ffTVsaHhfSZjtpUibDd45bX2/OZideN/mx1ztI5FkHddZeXVbb0mEOUZE4Rxz48xjFJfFVCzj2cnXS0L9G4VFlX7HNmH6Uvtknu49ykjW9t7MPZuIONVJEt46OSCA8rbARGBL44OIqDwQCfGTwGx8IzOJEuQQYCSKmNeslcCcHjxIfIKQaJ8kgZ5z5Ca36oHLNzSW3DTZcgmXSS+f+ZcRedIEHHS9FiKe5dW0Hfn1hxbYul9tfuOPfRCVO0/MxGokZpCCEJjnbX7XkS3TrEiFqZFujav9qJuE1T+ERgPWuh4yW255siQUoD5ZIuc2/jkgGf0RptpuHs6+FOZFUpigVSDfPW16XNzHJjWFg3rrrITpn4FPedimWrbAHcNJklOLrjO4OwpMA8nx67mOoqk6JZYue0jpiTAtoqVQbAWiy4MP34fMIR0czulwgfLZoWztfxEky4v9BrVfWal4nQ1scobr+RtSpJ0aXwDbok6TMhd+fRoCFEO4ZLaLA7Zet1qbEtyZX71+67jWay5WPtIhYRQ/OUYThsIc8Zcs4wTEIwKnBi0kcmWeW1uBNtYWJy/i+gxKAj3Vcr1hoZnwocCgfYFBG4pLi6tY5bHroet97/WGzyCG2a4vCRVSAQQEJBcgIiCGRGISXgBar0PZcUXDdrHWYBNpOooCFyq57MF6Vp3EqJBKMCh9qbumKL4qkHH0RIc/R181mhiZXxMhpMVKWZcbw+u9pFFCjXYNNk86DuYTYR055u3EkFGXHsWAQIaW5bKZjqpxbLVDWTPkfEFElyK9DGeYBhFiLlzF5nL0hmjAjrUzPbnzTKxKqs7anTeBTOW/AOKo6xLhLjkm1Leoi0Wh6jKSqfa6rdmZKhqnG5UZPqKIkoCJ+rr7UYMaozFHT3MxqnMqyTM4jVEsXCV687D3QlHbe98DLJENEMfa/amXwrLEqGptdSfJ0YpO13diHIyE6Pd8miRQ3OCw0h2gl2881O5AypqnWOxiLLFyRC5YjRFvsYrx9zjuJKslhKjgBFd0r9EAQ8YUgnvvITSlUqJ2Ace/0R9kbjysOZL/2tmujGuW+bkpoyfKObeSBdwYT7eNZV38bwXBufOPcEXBWs418dvQs04IAvAE4AX4AwCcEpKFNkYaAjNA9tLGGQROgECTLOkOQqhVB0nVaPce7bCrh9rZEVTnNN3nw9CZuy92EWqpYJuY/xZoiRE4nxQo6V9hj3by7bydtcG4XAIG8VtVSSIRNqAst1dVBIlEO4TwW6Xmp9iDwqZoiNSZPkgtoomDFudDuwV/0tLttuRGC2Esx9XkWOyhGJsnFiVeTKHV/ZcNEQKVNSX76OMsEoRHwwe2+K5KQcxRI2SuQev3xvyqmk6ihcqcKthggBxTRvlyXIhNI3lVNdhqyrSjf1eTKNmbeCiYy5+qE6LVFhv4rXrnjc6vU78RDaLdCLVYDWpMx2DQ0h2iZqHaEv1PFrNywSmh1FhMxxFsS8XmLFscCxByiRKKPNmdlf/ckzhjxXaZjVuIVzWadQ7QQUv/DK10ycic5MEJGXFTrLm8lKSIozaRdn0y66LAYNOO749jXYFBHe+9Vn4ocf/U147Uylz/S4CQHSiY9xqlpabIyV6Pv0ah9cqC70puzfRFkMhCTo+wkiliGgHCvhuLAuoLn9Zb6ZqdSeIRoRy3Hd1Wdw6pv7cPfJQ+h6CQ4tD9D1Uzxt33FbHQQoD6K71o7gZNxHIn37K9+IY43Znk84EumDQWKQRRjmgdUy5WJqNmmsACLtVu1eFyUSPiuKcef9Ut/JhCMkKdgXVJGe8mvuLi+fvy7aVL6G4t9y5KhIhtx1jEhrcmhJKp0VLJdJUSGN5pAiNxpSRWaK6b36Lux1RAiYL0Q2nlZUR4zMe8SUtq9l7cK56jyIKJHTY5nPoP7/PFJk3tdlndXMdnO0YTvBwyfKsxtk6OFyrRcWDSE6H2z3A1NFJHbiY2GiSs6+c8mK2a0qsnMhQYrjcUkbYWJK6pzIkeTKuHGYhJhkaoJ+ZO/s3C+nRdIwHlW/oM2XufnS3h8M0fNi3Dvehyc94kGAE5xMlsBzigfHS9jTG+PYI06jvTSB38rBEwZIYJIEWB230QmVqWPUSjHWXjzl0mDbrkMW/W2UtmdaxeRinKv2HwFV+iRjjnj9k+/Ho/adxSCLcMOeE3hEZxVDHiDhHjKhhNIMAjeuHMehaIBBFtmoTy4ZJrq3GwDb0XxvMMThaF1PeIp4GC0UJcpI0qT6jC6n66tUW6TNJF3voZnXp6Kia97rN59QFaM4RgBee95C9KheNF0c52z0CNjaCXkaVVKpL1PVN0211QutC+eZQ4qm28jCwxyrLk25E7RYhpAo8fxYp2DPpF0IEGxypaFby9oQkuJQOJh3KGv14I6JQrmnm0cVxJx1LlEc5FFpXZngNkY7DbZGQ4jOB07lWCFiU/cFZIjMbqAiQuT+LWyqiUiBLLki7N38JWTH4YyrdHg7VipBmEOKJCA4BWMCSeaBEInVtIPNvNjkEVCTFamZAKruQcYZhnmAc2kHEx5gLAKcTns4l3XQ92KtMfKwtG+Ivzv+GPzII7+Je8/uxZl7V3Bio4/xeguP2H8OkhOI2EM68hGnviI7OUW/FSPOlKDZo6Lg1mz8iEykgxKl5fEIt/ohYOqzknAPbS/DetZSpfpClVmPsgBnRx3si0Y40lpHrgXN391cUaRIeFb3AQAT4eO+0R5LAr+8fhWAYmokEZ7ymNHjzYUqv6eQtpQ+5cqo0ZTXm2OUU1nni7rWD5RI2yalKvLhkiNX82P2rSIUda7UZRJlju+SoXIz0+kYZomJu828yMn5RiOK3kezxytHsbZDEJhu52GOm4lpM+BQRzXL5LHqWs2YqtrxnE26OJX0beSI6ffW2bQ7FaZXaKwAYDVrY9kvRltHebjw9VXh4RMdQpMy20U0hOh8UPWhcUlGFUna5gdtxtyxahh6uW2ZgWlkpjaNthsf+KpjVKbTSn9Ly90xEiKRZQy+x+EzjkEWIeUeKCR6frLjLypfN2KlkNbHpMUyrKVtm0rKBcWB7hDDzQgjHiA+0wZdTuExgaCbYpL7ymOJSSBhSIYh4tSzhom9KLGREtu7zEk9pYIpAqUni1wy7Yps2m0oQpAID23duNMKm0Hw4OoyNsYtrCZtPfmr/fpBgmEWYcIDHB/vwYQHGOUhEu6pNJeegFbHSucx1lEidXxqf/3v9UeFiqHAMSE0CFheTDXp7czxXFSRgnmoT3E5lV1ONKkuorRVpOR8StWr3I65NgEFtta6zD9XxXVAzESmqsjNvOhb8f/b028ZRDSz7xFAExZMS/EZEXPNGO02JUJjUmD7wqFq0OxokXwqcFU0qCRBbuRsXzAsRIgokWixdNvX/rCNIjVVZruGhhDtAEXn5QV/Ie9mZKiUhjLkhzpmiNTR6exW49Z5UajC+OYexHmUj0101Iio61gftzBIQ6ynEQiR2MzUr76ZFgQOaMUYjbGhSvdw60e0mnbwpP4DAIDjw2Xsi8a4trsGKQi+vnoA0X5V8t+LEqSrESaZD8KJ0kDlBDInmDygPHw2xi3de0oWmrkad2dDbDwqrCO1myqgRCAXDBPuYyNTuqRBFmE1aePr5/aj6yV47rF7wKjA8cEyfMLx4HgZHS/BqVHPHiPmHv7qnsdjog0oV8KR9Ym5fuU01rOW8jeyfkRE9zNTUStTZbYSjuFpvyQz7q6fIBdKjO2RadrM6JzKr4H7Wl2IyUa5ahe/wlxyUO6vVUaZUFWRLWA2VVZOvZW1K+X35FZEoWpcZeIwL+XorjdVaa6HUf0+2yNHHNQ6WLdoWtjGtXkw1zsvIub+NWgx1Xdvy/G4lXn6tTJVbm768HyjRA2uPDSE6HyxyK9AN1K0nXUokZlSyqtMUIwDNiGAKPUPU8vnV2NthUqd0gIEyJ5P1jzsGNV/mCfsOUyqqR8kc8WvlafW6/phbFNZlEjdQJNjI2shIjm+unEIAPCd9RUca53FkatW4VMB3+NodxPVt8yXGE1CoMUB05YkJ6D7Y8iUYXO1jYR79hwBU5VhxqcHADYSVTYfsQyZnswZkco0UjJbvROxDD5RLtAPbi6BEJWaWPbH+P8e9QVcu7SGQR7h1KiHXDKcXu3hxLiHXDDsj4bodWOcSzrI9fE5VJsOQ3YySbGuSVebZYUJzCeKFIW6kahHOSKWoe+rViWqqaiahEyky9zbMrbSDm0X5XSYQVm3pbYt6rLKXjuLRG9Mqqzc8sE9FnMIn+tIXYXtEiNXSzR/nLL0d/HzbBVhcmGqEwEn1Qo6vQcLRN7KZK9AbiBxNu0Wt597P8tRwammCFD+SItGiR620SEAkGJ3Hg0aQrRtELkr5KLquAul1WoMGKc9xfSXE5WgVBaW7UakqPJ6ayJmsxV5ehNJCuSq8H9BVKUZp/CYIkZtL8NGUhRNkpkvw+pUBdEpneUgxp5gjBXdpmM9a+NQtIEN3sK+SHWrf8zKGZzNuri6M8DJU8t4/P5TiCcBRqMQfjdFfLYFxAxkxBQpkgS+z1XEiEpl0MinBMh49BjisCeaqDQVpnoi1+XXtCAwv5KPdtawvzPEMw5919oFCElwXfcs7hut4Cn7HsSpuIfD+9fR8jIM8xBcEuxpjfGtc/sAAJlQztxCUturTKUUVLk9lwQPxHsw5KE1Z3R/ZRtdj1+aMFLBLOHJBS207Si/BopAnN9XTXliUyTM6Iq2TpftBigRlSkzN2I027h0fvWViajMSzlRIivF1VUi8XLkal5l2k5AoaKdifCQSF+7my/unD2PFLaYMnw8k3TtuerG7WqNiuuL++RiVq/kbnMq7s3ss5t6rouCRkO0a2h6me0ARJOiaaRk9s20ne7sxYPL4vO6aExh0p8dnyEZdYRtRmS9ILa7j+3rVlVgVzqWGS8hqkUGFwSZYDjY2sQwC2b2n1sx5KQ+AsbR9lIs+xNQCHS8BD7hWPLGiEiGA8sDPLbTg09zjHmIA+EmHveIh9T4qQAf+6BMQDIJNlQfGSIB0eZIxj7CpcQ2lPWJwGYSYW97ZK8vFxSgQABuIym5pLa3meldZjQ9BqnwMExD9L0YZ9Iu2izFvWPlvP2o7lnctXo1BpMIj917Bsc3l7E+aSFY5jjcGeBIZwOp8ECJijZl2jfoxKSP67pn0aap7WROIW0EyXQvV209BAI9HCOiNdt7RCBgOeK0SFQNXNF1nTZIbVclvi2mRKpeW8/19tHvr3kC72ryUNIHOWNxhdRu1/R5E755Hetg2qmY5/O2MffOOItTCHCwynFP95WFFOyiJHQ7BCARnk1PTXiAvjdBm6U4nfasvqgMrpvBFs4n9XXp55n0sJ61LekbZFFBKG2w/d52AqfiPg5G0yo49750/aRqt4cXRCnUvuNjNGgiRDuFEyUykZjC6vONHrnRolJarVC+XjBxLG1D5cy6840SbXldFeMtpM0qxlpc4Z4HiHMP926uFDYJ2NQdeKvogKvlGeYBjk/2oE1TrHgj9GiMiKqy4nNZB0tsgltPPBZ9b4Jj3XO4b7AHz3vkN4CEIdsMQFIKsZRBUgnRUi7WImHIJh66UYKWbnchpZo4TS81m2LSgmujISqneqwHkGQ4l3YAANf01uETjmV/Ai4phnmImHv4znAvjvVWceOh47jz/qMYJYGtFPMqJv/bHzqGo601XN1ex15/BJ9y7UBNC01IE+EhER463nSiMNEsYNq6w4irzXmqBNhV0ZQyqirGaretMFc0RMe95p2m6tz0kdsl3jqfbyPKVde3a1HxsRqPLByrzn+njO2I2MvbbmUtAExNGDkI2jqa6ZIhNxJWFxUzbWTMOFRz4dS2qzEEvGrM9nlNlMjFWtrBVa2NwrW674teyWH7QkUXGzw80BCincCtmipN4OU+ZruaVisPo4YM2XHJ8vZFUlRXor8VFo4SueczpKiQwqs/vzkHFyqtdMPySbuN2xIDmF9lFOmJ29Mu0Fe3NgCo0t9V3sE6b0NIgqPRKjo0wffvvw9f2rgae/0R9reHqgQ9ISAJBc1Umkx6EsgJaEpAmESrm6AbKgLR9jK0gsxqhwiZiqwNqUgdMbBJR5k+Wb41QczsMkokrg7XsJ61kXKGWGuTDDn5vmuOI058tIPUpuPUtWdosQwCShg+4YGdbLiktvzZCHAT7mlnYkWMQt1TzRCOXOubPD3GVDeHrRIilzFfEFytY6mrCpuW2Kvtfcqt8WHVtjOtLUpkyTX8K+y7A6M/4z+023C1RFUkxjUv3AncY1iiURZ2Q2KvP4JHOZa8Ca4O1wHUi6dduNsYkuk7Fg5u649cqp6Abvpx3vuryqfIpKwO6FY2Zcx7v50PLlqazEWTMts1NIRou6jiAgVSNCUBVQSpFlI1D92qGq0u0mNJiru8rty9dLztkLaFyVDJo6lA3qisrjJzzuE2cB0mIb413Ddz7nn6CQNjMKjWKyO4c1kHq3kHmfCUi7NUxGKTRzibdvGd1b34+uYhLAcTtGkKOqFAl0MEqvpNhkKRI05ANj2M11uIcx9nRkr70PN1C4/MQ8hycEmRC4rNNLRl+OoLX1egwUSxph9H097j/s09dt0gj7CZhhgmAcZZgAeGS5YUHdm7hl6Q4PhgGTH3C6Lfr68fwKOWzoLr85xK+xjkEXLBtBCcwyfcRoVaLEVbC7stSSPC6nWEpEiFZ5vVBozbPmaLRjDqJrjyunKJvyVBRNhHXdfyrd4bVeShihip/Y2zMrHnL++n+sFN3ZgXwaLjNgJr5nwubPXXHPPCRTCPRJVfB0YE9vlDu75MhhaJCtpjYyqwXs9a6HoqOuQRod3Rp/d4O6myravxZi0bKt8fFeaXdbiomqEyJHaBEF2aoV9uaAjRTlD15pmJFs2miLYqW9+KOM0jLUUrAGeMO5UyXYiolhMlKpxHFivYbLWZ0yLCNBgtY6sJOMk9Xe2lyM+E+3hgskdVdGn/mEwynM16iKUPCuWDdCga4Im9B/Gt0QGIayaQGYH0BUiixc2+hAhVSw/JlU5mY6CiTQHjyARDK8jAdTQrEwwtL5sKra1z9TQ6ZLabcN9GZva1VCoiFj7GeQABgtBT6a7VYRupUD3aIk81Yb26t4FBFiLVWg9KBPa3RghpjlwwrKVtcEkw4UVNlokcZYLaX+bcud/TlgnCIZizJobbRXlyKqyb48BcNeltRZBnzQNJITVW9bc4TjFjpOmeZ7v3YFE/pKo00W6BlY5d7flTfc7zIUP2nJpI5pJhkEXq/a0jk0N+Ycvm571eVeSmbtklI0INdh0NIdoJnHTUTISlLo1VWlYXldm1yGVFyqx4/urd5jZx3S5cc8h5x6ohklmuIhBSTlNfW00+5eWhp/tvEYETkyWcmCzhYDRQmiIeYcwDJMLHetbCRt5Gx0sQBjk+feI6bOQtnBj38NRrHwDJ1UdF+kqbJUMBUEBSCdbKLfExZfU+5QhZrjyQIMEdbyLjVj3OA6QOMTMmjSFTWqIJ97ESjnD34DAEiE2jLUUT5JyiFWa6xYciWWfHHV0ir/qlrWZtfHXjEPaGIwgQjHgAj3KkwsMdZ45gVWtBTCWOmYgANTkyqHReQNW959rJ2tMTZJulCFgOTztaz5tgqtyd6163stP0dJupUDiXzKY9MkltJKs8Kc+twiLFyNJ2U2QmdWfK7Y0mrE4/VNi3TLhK/68iIWwBzcx0bFtrqMpkyN23evupPcNukCFANSL2KcdV4QZWghEywZBJir4fY8L9rQ/goHbcFa/rPI+ieQRnO1Gji4YmZbZraAjRLmDGFXpuiqrqADWl6jVh4ioB9+wxMSNmdsvbF0WZ8C1MkiojZGZMzjCdyjK14XS9xwQCxtHyc2wkEQ62Vai+yvMGKP5SNw9T5fTQuA9KJJaDCVItHB5kEcYiQCYY9vojZJLhcLiB7zv0AEbjEGt5GwdbQ3zpwcOQngDxTf81gGRaS6Q/QVx7E41zFclZCmN0feWWm0sKpsds2ngMswAxV60+MsGwmYdKV6GjEJ42SeyyFNe0V3Ey6avUFuPo+in2dUaQElibtJEKhm8/tN9GL7p+jFxSjPMAB1pDUEh8be0gVvwxOl4KIQl6QYKY+0orxPLC5GnSL4aY5Tq9ByjzPENETMqPEjntdj+HVBREz/MeFWkMY1wJlKvBipYAVeTGRLIWRXFfUw1HnPeXKAjRgcU6trvXvghmKrMw1RK5ZMZ9Pq/SbRGR+WyKTtjxlomQALGPqvWLwqbjIHAwHNjXMxes4Fxd5TcFVBPEeY1thSSFogGz/rIiOduBELvzaNAQop2ijliUSVFVRVi5vcYi5o7zyuft+cpib+meYzYCU0XOtkrLbYdQmR8dljBSoUmRjrK4tgAEtipuWrmnHi0/hc+UQSBQ1BNUOVWXBdbm7zj3cTruYi1t41Tcx6m4p9JEjtkcI+pLudNOcOeZo9gfbULc3wYdM1BfpciW9w2BDgfJCMBUP7aUMxAqcP+ZFZwY9q1BYz+MrVP1OAswTEOkXJGi1XEb62lLf0GnhQmmeI0Ux0d7ICTFI3tn7f57WhMISXBu3AFhEoxKBDSHTwTGeYC+H+P0pAuPcjxq6SwAIKA59gUj7G2NMUhDVWLPPfhUYMJ9283cJxyZjnqZqBEAG83qeCk6LLVVbYGzzXarnOamzSrK8w2JtFYAIMglU2aXINNjl7RFVVVG2wXVuiVAtZaouqY6DdF2SJmBW5W2aEWYqyeqEqy7WiQ1ruqqtu1gJ0TIhXuNy/7YXsMiztUGZYuHAskHsYTHJ+LyjPQ0uORoCNEOIAWZKWkvd3VXT+AsM9vVHNRNK0ktrt5iYpnXyBVAYYzueKpIkWvguCuQBOVqNkIUKbLnLouryXQZo6IwkQVOJZGL+om0SIqEJJhkvq7SUpGZVJsWTniATDIseROcTnvwCcdVvQGu6g5U88q2gGhzPPrwaVx77Rmsn+0Cmx7Q4iCtHPnIR5p5oEzde0aF9U1qexkS7qHjp0hyD1xQxLmPgHHV18zpdQZMBbK5VKSHQz2u7a7akuTlcIK+n+CqzgD7ddSMJ54lMJQIXNNeRd+LcW13DW2WYdkf467VqzHKQ9Wuw0uwPmnZVhymFUMumHUj9qmw5wdUyf1mphvtOronU1FnokZVrtH2OWajP1WvmcE01TY9tom6Gcdok84z5616L5TJ0CKd6939lYBbVSqa6FCBeGAaSZo51oJRoXnbGMKwlXv1Vr3UZnVV9WSonLYzZDOTzP6I2GlUqAqmFN8QtpDlhQjRPGxlScAgC5q4CwlDQMl5EO9toUmZ7RoaQrQDUCZqS9pn4JACWSAJNQffCSmpJDrTaEuVxmmrSFHduq1Ikz2XQ/CKZHH610aEqNQ9zKActh0C5X7JnZqYnl2LRyBc+EwZI46yAOPcR8RynI07GOSqMepa1rZfwH0/QaC9esw9+8Z3DuP+4/sgOQERADIK6kmQlCIeBRCcQHCKkOUYZQHWk0hFZFojpJyh5WcqpaHH0A1TPLSxhFQwfG3toJ7UKYZZZFt7THUp6lpCmhfK6vtBjLafgnq6hBkEZ5IeBnmETFKcmvRwfLwHn3zg0XjSykOaSBD4lOP6ldO2QafaXhMbCGSSYZgHYFBkciNtaZdrJarezEOcS7q2yi0XDGnJO6as+XIrxcqOy+5fF2a8qfAKGiwhCWKunJJN1Mqc03396yIG8983VZGf6jEaUrRoygwoulOfL8rl9lUps3IUrlxeX4VydVkiPMTChwCZJUr6PVqX0poHN+VWOD8EerooYB4pqrqGTLLKfbYbCdpOWxN3+4uOhhDtGhpCtANIPUlWTczzdDqzKast3oQVx5nxECrpceahzhzRfB5myc/OPyfz0nMz98DohsyXMBWgVEVaGBXWiFFIgkf2zmElnDrYulVoVSjrigAltM646jxPiUTMfdst20Qgrm2fQyoYvrpxCCRXPkQ3Xf8d9bqHHDKQoCOGfOhDelIRI03yfMbRCxKshKpVR9vLMExCBCy3aRYpCeLcQ78VQ0iKlWhszx+xDB0v0e7SiqRkOiKSCA8RyzDIQqynbcTcx55ogm4vRsAUKQp0RdmJyRK6WmD9hP3Kx6nFMts81qNckTCoSjvjP2QiZqa/2lra0YJvqYhPqU3HlBTRyihNOYrntvKwPcC0YLrq9aRE+SAZL6SUq55vbiuNKWGZTbm5E1XRb6d62+L/Z1Mqde+1rUjR+ZIgZsdTHyWqIkPz1m8FQ1hCmlsTU2D7jtF1qKrmM9dnkFVEoApRv1J1nOn7p5yvq/yGxEKPsnP5Vo8GD380rTt2AjmbjnLFweZ52RtIit35EimPpSrq42Km4KymAm1R1GmJtjJ6dJvPSiJBQOwwpAAIU/eVaTIEqC/MXFC0gwwRyzDh/paOwdZZuCZETolEy88Qc0+lrgRDQHMkwsO+cIhMMrRZiqtaG+j3YkRPzjHMAnxjdT9+4LHfxl0PHUGyGgBUgvgC1OdgviIj8kQL4gBBQDkCltsKLUKUGLwTJFaAPEwCdAKVqrq6vW5L4U3UZgJFNMzkbyrEAJWKs+kjQXFVf6DSgdxXxAGKoHzt3EH0I5U628haaGkd1oT76HmKjGVCNejMdKUbBwHVqTtFjOjMxGUEzjaCI1X6z3URr3pNiq9DURxcl24qn9etoDLXY15XdyKbEdZuQQbMfXb/75N8zh71UO02pinerVp1GFDIwvu2/F5mRECYSB6RME05Z3uo1UeM1HEXn8DHPLCO1HZ/InctVVYHk6J0dWFlTEk2KVyz0SIN8ghdlu6IsDxsSE7TumPX0BCibcL10TFvIaKXmy/0ckWWW4XmEom5EZ1Ff8nNO8RiR1DbOqmsclRoKgJ3l9XopmrgRqBMxZnicsQ2WjaEkjE1UTIq4DNuO93nukJrNWnVps0KKRM9uVDntXHXZfp4ikioaqtESHRZgiU2QeypKqxHdFYx5AHOjTr45tp+7OmOcWqfB7EaAilFtDRBK8ywvtGB8CTi3MdKOMEwC7GRLOHxe05if3uIVDC0vWm3+KVWjFCTpgkP4OuITS6Y+j8RCGmOifABSZHLqQFf20uRC4Zx7k8F3H6CmHs4GfcQeRkywbCnNcYoDTHMQwSUg+voUcBy7VytSv0nPLDiaSEJMjD7PGKZjsqoc3uU28ozm8YSRdHzNE1TjLi4pMOIkwu2A1AOxplOzwmtpXIjAp6jJWvRTJXdg0LY98RiOqFCj7KZKIJcmAy5pEOAAnK2dcp2UEkeHaJkiJDpBaZ0VKIyQjXrvj3fnVl1rzf+X6oHWZkMqeMK2ypm3vF2CgYBEFV+P8iiLY/rkkOQ6X1Y9icAimR7xEN02O72MFtUE3chIKWAPM9u9ee7//cKGkK0AxAiLdmwX8FzyI0lDwQ2JlJHktTC6lTcIi0v7P/L61H/G2IrQ8iqdJo557wGsnXHMVoq1fR1enBzH6gmQx4R03JuotpZDOf4h1RhZiLBdMLp+SpaYwTQozyA53PdSDXBg5NlfH31AJZbExzprGOw2gHd8OAfGYEQgO2LwSceRmc76B9dxd7lIc7kSuc0zpXeouVnmoBwrIRjnE062BeMkAoltG7rLvWK0ExsdCOTFCFVHj9ZHmGcB4qYaC2NgDZ4lBRpPo0YpILh9HoP+5aGiLwM95/eCx4zBF6OcRog5xSPXDmHPA8QUA6PcptCyyVFR09+E+5jrO+1R7k9t+0dpkmRC5OymxXuzjauVdsJmxI04uiQ5fAIRwZmSZLxPTLnnh7PfV0FoLd3U2Lz/HGq0jWGfG2lNylXNFVFYlTUQhEvc6fKqZjtYBFSBNSn7haNClWRIuD8KsnmpQpnomJk2tiWEYGVYLFWKPb1kIocFpvdSq1xomjp1N9WhGXRtODFIj61kPL8IzyNhghAoyHaEdyPiauPWMhJmsz6Fm3VOqN2fRVJ0X/rgqjzxNXV59bHqyBFrrt0mdRt1bbELa2355EEecbAhZpsfDb9IgwcMfEiX0BFjcFsKwj3OFlpYg9pjnNZDy2W4fF7T+HxSyfRYhmeeN0DwL4EyYkOBCfggwDIKEAkTq/2MIwDdPsxRmmAM+MuvntuBaMswKm4h4PRAMv+BKbpq0c5jnXPoc1SrMUt9PUvWQDW7E9IilyoMvgj7TV88fRhfO6bxzDOfQzSEBtJhFxQpFoPFWttD2UCwzhEyj3wTR9k08MDD+wFIRK9KLHRHCNMFtooUkWqfKvx2ROMbHQo5j48Om3RYciKOc7M/XcqBKuEzYxI5JLZqjpDskyFnXsck5YTctqI1njJzER2yqX2JY+j6vfKNKJjSrK3QtV7sKp9hiER3ImMzabyFv91TiEL27sNUqfbTDU15nnZeLGu0g+Arm6cvkdMJZkrmq4SUF8oYsAg6pvl1qyra/zq9sDb1LrBOsy7R1Xrd9pHrsHlg4YQnQcK+hhnGcH8dFV1hKdadF0oWXcPWnMCIylyx2CPscV43GKDKoF11fLyMaqWz/guldaZaJHgBJAEkySwUY9AT8KediE20RyDhULpQO2EOEhDLAUx2p7SKJlWHh7hOBgOACgtCYPyMQpbGVhMIGKmnBESCpJTiE0fo7MddKMEQhCMkgBJ7CPOfHz1xCEbhQGgokMsRSo8HIw28ZilMzg9UQTMp1xFhnSDUOPCnAgPTz34IB537CGcHPUwzgLEuY9hGip3X8GwmYZIcg95xhD5GRgViPZOICngnfGx+u0VbMahTbGp+5uj7SWW5Jjlqu2HRMdLFBHSDV2VMeMsuaxuqzJ/ojdRFSuQ1kTMpMvK+5sokoGquHPaiCwgcp1p0VEgFxd2QttpZKgKzCFxhhTMkM8d+Am5hMclRfO8v4Aq8bbAdqrp3F5pVccDptfpPtx1s8esTg+a+1ROmzEicTrp2f8bwuQSyDoyWTbKrOuJd0HQVJntGhpCtANU9ilDkYRIzBKQohuzipCo5bPbVRGhukhRgUQ5y8tbuqRtZmO7bv6yso7I/J1GvequB/Z63cESIq1hI2XqOSQwTlUDU49O2yP0dEfsqi+lqmqyqnVV+xv3aNXvjNqJUUiCa1qrOBRu4LujFZze7CGZ+OD7U9AJA5GqEJCOKcAJ6IRikvnwPSUslueUCSMhEsMsRN+b4HFLpxDQHB0vwVraxnrWQiYprm5vYDOLMMoDfHX9EADgwfESziVdm8LpezGesHQST9r3kIpCrXcxmETYjEPlsZR7ODfqaE8ihuMnVhCPAqCTQzJAehLjSYBhpkSybS9VAmytB8olha/JT4ul6HsxGCQ6XoqIZQhZbgkaUCRBhYhQScdVhpDUWgyofVwhMyls575muVQpQgFSEFO7PcUKkcEtSNGi2I641lTtuddRlWo6L3NIhzxsJyqzVcTDQLjRoR1METutpFuEFC10nDlkZd52XBKs+GOsph0Y8886nE56WM9a2MyjWtfwi4bGqXrX0BCibcJ8zdGSS+1WGp6Z9h72OG5EaPYxbxDzUm2GpEkU9Ud1sEJnuTUBM9dT1jXVehaVjmeXu4cmEtDESkqCnCttzCBVLS0m3MeEB1NhbUGsW50OK06O1ZNm10+RC6oawHLPqZ5iGOQqqrPJIzy2fxqRn0GeC/H/PfkuO3bKodyqOQGRuv8aJCgV6F27gY31NrrtBBtphET64JLgQLiJCfdxatzFKA/QYhnWUuWbciDcxINnl/GNjQNWP3V8pJrRmnYjQlI8bu8pPO2a44hjHxtnehgMWxjGAZLMQ9BJsb7agRz4oEzA72TwNwkQcYgTun+ZQy5y3WEc0FEbSGSOMWQmVPWaq5MJHAE2JXKmusy9z1URBWFTSVvrNCjKeqHiMYBik83FtR8LRC4qPYkWm/Q4pmmmaXqx+it3uySiihTVRYoWHbO9x6XIyk5I0fnCJUWL3m+G2e+E6fGKURv3/y6J8SjHSjACJRIrwajyPEITp2V/Yn+kuahKUzZ4eKAhROeBssi5GNmRxfRV+UNNZo9z3uOpGJf5YrAVcHU72X23OEdNBGkR8jbTWqTy+KrKTGrtwlTnQjDOp+myXFIsB9Mvo3kd1xcRT5ovXqNRyYTSqyTCw4l4Cfds7sfqoIPD159Gwj3c8JTv4geeeA+8TQrhSchAgHe41pIBSerDYwIrK0N1DZmPQRbhbNLFII+UfkZQpMIDg8R3N/ZgmIdYz9oIwwz9ILHXeXywjLW0jQfHSxAgGGQRAsqxmrSwf3kIGuYQx9sYn+5Y8RhlAjISIEyCZxTJikDnGwGwP8b6pIVxHugKO69AWkxZv9Al9z7hVr9jG6s6FWb191xsOxJTfE1czc2sODqk+YzzcJUTcZ3JYtmJejdhokTFZVNH591MnRnsxjXsVkRmEdSl0up1XrPR4IXGVkFM5kVxFmkoa74nymTqkpGgJmW2a2iqzM4DM35DGotEY0zV2aJzRtUxqyI/deemZLZMvuCTJLeuGqurNltovO61ytLy0niEIKBUIk49xL6P2MvgSSUedrGezpbjbiWCrFrmksaY+zg96SHQvdOubm3ApxxXt9cRXZPjULSBrw8O4trOGk5M+hCBig6JUACSYPNkF/6RDcQnOmgfSxEwjrVJiP5SjHM6FJ9yhn3RyDZPPZt2cP3KacTcR8x9PPHgSRtV8IjAseVVmzLKhIqaeURgOYjhUQGxQnA6p2AhRzrxVR6PEywf2ESa6QayeYTJVQKEAmfO9nG4p/RRAcutd5FpwZFyD3uCMSgRNjXV9hLkglkBtFtmH3MPXV9Vp80jpuoe15MBU2Zf3pYSAQ8qRaeE1Mozyd9uVGWXfGXmEcHydqYEnIIXqs3MeHaDHJkSeLc6y1Sf2XFcJnAbxW4VFZvxaDoP0ldnSzA9l44Ye1OLgXNpG3uDcWE7E9Hcyu2bEomYB5XrdhtSCMjzfG83ZfcKTYRoFzCPhABFofPszvOPUbd9eZ/tirjrjl2I5FTsX6UhKm9bpVGqHUOJZJnnQqfOVodtPDTs4+Soh80sxKGWmsgpkTgQqT5e8/pjGcxb1/VTpJxhkIWqvN3L9eRCce9oLzLBsNcf4UC4CSEpjnXP4ROfexK+9M2jCB8zgNQNXokAkGsBaqDKlrmg6LQScKHMDft+rI+vPJYMCTMprIhlaHsJVpMWTL810xzWODXvi8ZYTyNV2i8J9rTG6CzFgCTo9GNE3QQ0ypFzBt/jYFRALOeQFOAJg8xU1En5GKlI0TALbJUaUGzoau5d7kSJXFfptpfZ18Hdp5yuNChWK5VL8d302NQx2KccIcvtepcMuf3WqgW/l8ZJ2J2AzbjKeqKCqHsHabM63c289NHCx6851nbSWGW4kb46UuS+j7bb5mS7112ovnOe89J7bDoeWUuGyvem7e2u11GDC4+GEG0Tda03ZvQx7nL3/+axjS+UuSX5mE+GFj4uqflbsW11b7L5eqaya3fVscv7m0lkNFGi4UmqIihGuGvSO0bDYp5vVRFSBRPh2EginBp3Mc5969DcYinauiKFEqHM3voZfvAJ38JkFABEuZBLT4Iup+p8nGB9tQNA+fPEuUpNpUI1lx3nIY501m2DV3NdqWDwiVAEikiknOHMpGPJyjgP8MBwSTlVgyDJPaSc4UBvE36Qg1GBXitGp5MgyxlCTxGb9p4x/A0KjBmuvfYM4tSzESiXRAyzQFXzab2WMcO0NgAV7TVmo3SLaHOm++SC6fPQgt7GBZfEVt5RMm3U6abJzicSsp0Ks0XeT9y5R3VkaFGY9hl1fb/qsJOu9dv5zFRXW23vnNu5J+6xd0LKZghMyZrAXTbKQ/T9xfRB5bGYtNtO7v+O0KTMdg0NIToPzNXOFLarnvDrRMdV27rb1R1rkVRd6TBbDLz4X0pNmbwhf1uf16yjbuTJKckz3e1n7qM+pEnhjeMAKWe4f3MPDkRDLeIV2BdOhY/nq6OIWI6lMIaUBJNMfam1PVVtdS7rIZMUnz7xSNw72oeX3vBF3PnQEfCJh/2PWAXxBIgnwGMPWc7A9iTwwhzDWIXNA8YRcw8DHdlRESAl5laCboZhFiAXDCMe4PrlU4hYhoBx7G2NQYm0245SdUyPCGSCYZiEkJLg6MoaelECLin2dYcI/RweE/C0Jis5mINNKE5v9MAFRa5JV6QjL+aXuepJpsjJkAe2V5kVUqO+iWeVwH0rmIk+15OjN6PxUY7dM1VBu0CGdlM/NK+v3jxh8jwCWUWAysvcKNGilWeLTNZuafsiBGRRMrQdUrcVqsY079rKxKeOACqbiXovJ3df97wMyiLjopEhQJky7sajQUOIdoJyCqmubL4umlR9UMykzxYps18ElX3HSmNd9NhV1WTVG259rqpz2h8qZHbcaeZhmAR4YLQEjwjE3MeXzlw1o2kpf1FtZ7IUkqAbJNgTTRCxDJQI3Dfei+PjPfCJwGNXTuPu04fwZ7c/DU86dAKPeeQJXLO0Dkw8QBCQnGA8CUCpRD4KkGvTRC6oTUsdP7tHGSoKhgOtEbigWI3bWB23rQXAZh7pyAm1potdP1XRGiqQCwqPCrT9FKsbXTAqkOnz9EP1y3ZvZ4ScU1AqwTlFd/8IJCOIT7WRTnyci9tWN+RRgbaXIaAqjTfMQ6ylHaTCU27ZuoeYkMSKqj09Dmt8SIwX0GJd5oWckqDiazf1JDLtS9x9FvHFuZCYd75iuX01mZkXFdltUlHl3WMm66pJu8rjZ7dF5+eDbacVK8bukiF7XF2dZ9KcXRMRriBO7vu76n7t9aur076X8La3vQ1Pf/rT0ev1cODAAbzsZS/DN77xjZntvva1r+ElL3kJlpaW0Ov18IxnPAP333+/XZ8kCd7whjdg37596HQ6eMlLXoIHHnjgYl5KAQ0h2gEWjQypbYuppkVF0LMHql+0G+m32uhUTU7ORIe2g3njdU0aXUio+8aoinJkOcO5cUd1e08iLLViSyIMyo665WXl7dzl5otukIaIuY/vbq4goDl6fowhDzBII8Sxj86RTfzjFx+Je756Ne76x0dBekK5VnMCPvHgeRxSAunIR8CUjmeUhki4hzz2MUxCDNJI6WF0uu9If8OmqQCl2Wl7WaEs3tP3YTMLVXpLEnS7E8S5D59x7G8PkXDP3rONUQucU3BOMR6GEKEEujnkwMcDD60g5bofmja/jLmHzTTEIA1xatxVbUcot/fYpM1MVMLoh9S9M7+opf1/nTvzjMsxZMFKAYCOClV7FNW9potgUSHzbuiOqnREuwVbyl9ZXbfYZ7PO6HA7x9mOxsfgfKJEu0GK7LHK5K+mUmwesaw63/norLYNKVUft/N6bG+st912G173utfhH/7hH3DLLbcgz3M8//nPx2g0JYPf/va38cxnPhPXX389PvWpT+GLX/wi/sN/+A+IoqlD+M0334yPfexj+PCHP4zPfOYzGA6HePGLXwzOF2vXsttoqsy2iXkOzlu9pwqEQ385SpQ0NkCxImsRYfKWY54lYVKSgolk1T51Y1p0HJXEB9NrLq8gqG8YK6XqAicEBecSk9wHF0pse6g1wCBrVU6Y5q+JbtRNSu5yk0pajVvwqMDZpIOVcIwVf4yTIAiCHOPjPWApA13zASJBMgqSEUhfAmOGvMNUxIhJO/5J5qFNJHrLYzCq9EJ5RpFxhmUdkRpmIVLJrIYpYrklJLmgCCjHOA7QDnRVF5FoBxkePLEHRw6vIuMMwziE3+HIch/ddoLBMILkBCJhQC8HEgaEAoSrKNW+aGQF1hHLsZq1Eee+6n+W+wicdFVAc3jQQnBB4bFpisb9WxQLy1q/IbePlZDE2h6UydCiqOqXVrWu3Nl+++ep1k8tvn/x/ItWnJWFyFXEolx1VoVFKtAq01H62GVSUmnAuQXpcZvrLrrPTjHvXpS3A1D5I2nR85Sr4y40pJCQ50m+5DYJ0V//9V8X/v/+978fBw4cwB133IFnPetZAIC3vOUt+NEf/VH87u/+rt3uuuuus883Njbwvve9Dx/4wAfwvOc9DwDwwQ9+EEePHsWtt96KF7zgBTu9nB3jiooQvfvd78axY8cQRRFuvPFGfPrTn97V4xddpXd6kO1tthOSVJVCW/ik5/F9NW+kbnWblGRLO4I485FxptyVKya2cvRnO7/OTdRDld6rHmoUEoM8wtlRB0f2rKN37QYoExCeHqhQTtAGPKMgqTpnzim4IJY8BH5uU1ym9QagxcWSIuYeUp2iyrXWx8We7liZVwqKhHuYZD4Ik5hkqqHsaBQizhRhFJKApwyC0ymhFer9ScMcmbYyMKLtmHvggoIQiTT3bErN3lfMRtXqsJP2BYxI+AtUhbm+SFX/Ly+/EN4/VaiLDJyvsNrdd6tjbLW+ytNn0UiQ+9ceo1TpVl4+D2Wh+E68q7arI6ra53zNJ83rvlOX7vPCeUeH9APAYDAoPJJksUq5jY0NAMDKygoAQAiBv/zLv8RjHvMYvOAFL8CBAwdw00034U//9E/tPnfccQeyLMPzn/98u+zw4cO44YYbcPvtt+/SzdkerhhC9JGPfAQ333wz3vKWt+Cuu+7CP/tn/wz/4l/8i0I+c1FUfaG4z+scmxchIpVtNWaDKQthEaH1BcGcAW5nNOX7RfX1CEkwSX0kudLMnEm6hYal1c7I8+9aOcwdsVyLi4nVK43zAMutidqOSvhRDrKUQSxnkKFQnybDjzgFfAlIIMk9EAJdqUXgU1XZlWgSwgXFKAuwmrQw0j3KzHXkktroEKAIS6hJ2iQLEGe+6lnWTsGFijb1+xOtWyJIM6aE6xI2WgVBgJQCBKonmqnc0wLrTpCgH8Zo+em007yO5Ji0mXvP1HPhaImqy5Vdo8XCvS+1/ViEDLnPz4fsWKLilO5XnedSYF60ZFEd0ryKy7IIe15lZt1EX3TMFvC13isRiyUfyj0GL1SECKhOZXHQSjK03Wq7Mi4JMdoFHD16FEtLS/bxtre9bct9pJR405vehGc+85m44YYbAACnT5/GcDjE29/+drzwhS/EJz7xCfzYj/0YXv7yl+O2224DAJw8eRJBEGDPnj2F4x08eBAnT57c/YtbAFdMyuwd73gHfvZnfxY/93M/BwB45zvfib/5m7/Be97znoVedBdcqA8tIdMvVCm3bkNQJkZGH+NWVEmUdEYSMwTDXVTXEsRdN29Z3ce9sN1W3wk1BLC8quqLw6TCZvatuJVT40aTcaTIuarUcrUsQDUBcg316tJrZpzm/7lOPaSCwaMC/SCBRwQmkQ8pgdDPkXOKySiEiAGS6UhMReqPmaaqRCqXat3nzCVIUhLb2NanvJC6NL5FZlkmqNWlhUEOX6ebOFf3hUUC/VYCjwnEiQ+eM/CMKjIkAJFTTFJFvgLKEbAcESO2+atHRLElh9RpDiIQVMzHbgqEEVnQEqlXiwJEVGte3EmxosfZTjFvghWS6fNOiRoHKZTgu6Soajzl1NkiqbSyQWMd3HRiFeaZG85L25T32c625fEBgE9zMDhieEcIv9U11B0TqH/tymOt+7HjRom2GwHaTpXYII9U379LRIJ2M2V2/Phx9Pt9uzwMwy33ff3rX48vfelL+MxnPmOXCd0b7aUvfSl+5Vd+BQDwlKc8Bbfffjt+//d/H89+9rPnjoXsOMVyfrgiIkRpmuKOO+4ohOYA4PnPf/55heakLP6t3oYsFBlyt6msCjvvN/zsOLYkQ3LORgSFFFq5ss7Nrs2rZKt0tHa5mCZM7sNNgxECjLLARnOqsF29R9lw0F3eZik8ytHxU6y0x/A9jizzIFOmxs1U6k/mBJJKEG1VYH5tEmfizHKGOPXBhXptTIrLYzo1oQXUJq2QcWZJHaMCPhUgRKpKMiJteb2Qyumb6fO1gwzddoJ2O0GrmwBtrsYqCLggumKNwyMCEcvQ92O0vdRWnal7V6we24qsmEhPWSdDiYBHuH2UIwTF+12dArPPS/485Ql0WxPxFu+NraNWW5/L9DYDoNvSVOudtjOx1hGZquWu+NlG80ol++VH+bUx+/jaE6rNEvhEWWAYUmSg/KyqJ9R5r/uFQJ0ouiyOnieWrkNf9zNz27NcTA3RbqbM+v1+4bEVIXrDG96Aj3/84/jkJz+JI0eO2OX79u2D53l4/OMfX9j+cY97nM3KHDp0CGmaYm1trbDN6dOncfDgwd24M9vGFREhOnv2LDjnMzd5XmguSZJC/tTkSPlYLasisPOJkfvcIT/m/2a9JECV4Lgm6mKXbfGFvigZmtm2vOGcaFDV2GYF3e55puez96EGZZG31I1PJylHQiTCthL+howX0mcu6krxy0E4m/qkArk2VJREwqMCqZeCQoInDBAZ0jFDPqQQsZogBCcgGYXMJYgvIGkOOYnBWQ7pEKI895ClEkIAaZhD0mJVReDlyCm36TNDpiiR8ClHnhsnbIY8ZxBUglCOXFIQwSEEheDp9JejoIBgoIKAcA6eBADlyFiKocfhhxyc5fCJadpKbbwndiYv80u7mDoTkERC6O0EUa0EFAEy97v6dd1pWmq3UitT4qb+zyBRVd9CdljZ5LoaUyLBICAoB4G0aSYXojShurauO4niuDDmBaTm0y8r7mkspu+/cR6CUY42TdHxEghJkdHMXoOEao8hZY5h3tL7TTCUBBwUEZ3+wDBjyCVD6CznUvX382l9ldGiEaKdIN96E4v5JJojGanr2q5gebvIkW1Pi1B3jG1ASok3vOEN+NjHPoZPfepTOHbsWGF9EAR4+tOfPlOK/81vfhPXXnstAODGG2+E7/u45ZZb8IpXvAIAcOLECdx9990FIfZFhbwC8OCDD0oA8vbbby8s/+3f/m352Mc+tnKf3/zN3ywHJppH82gezaN5NI9tPY4fP35B5rXJZCIPHTq0a+M8dOiQnEwmC537F3/xF+XS0pL81Kc+JU+cOGEf4/HYbvPRj35U+r4v3/ve98p77rlHvutd75KMMfnpT3/abvPa175WHjlyRN56663yzjvvlD/8wz8sn/zkJ8s8z3f9fi0CIuX3vmd3mqZot9v44z/+Y/zYj/2YXf7GN74RX/jCF6zIy0U5QrS+vo5rr70W999/P5aWli7KuM8Hg8EAR48enckJX65oxnth0Yz3wuPhNuZmvBcWUkpsbm7i8OHDoPTCpNDiOEaapltvuACCICh4BM1Dncbn/e9/P17zmtfY///hH/4h3va2t+GBBx7AYx/7WPzH//gf8dKXvtSuj+MYb37zm/GhD30Ik8kEP/IjP4J3v/vdOHr06Hldy05xRRAiALjppptw44034t3vfrdd9vjHPx4vfelLFxJVDwYDLC0tYWNj42HxYWzGe2HRjPfC4uE2XuDhN+ZmvA0aFHFFaIgA4E1vehNe/epX42lPexp+4Ad+AO9973tx//3347Wvfe2lHlqDBg0aNGjQ4BLjiiFEP/7jP45z587ht37rt3DixAnccMMN+Ku/+isr8GrQoEGDBg0aXLm4YggRAPzSL/0SfumXfmlH+4ZhiN/8zd9cyJfhckAz3guLZrwXFg+38QIPvzE3423QoIgrRkPUoEGDBg0aNGhQhyvCmLFBgwYNGjRo0GAeGkLUoEGDBg0aNLji0RCiBg0aNGjQoMEVj4YQNWjQoEGDBg2ueDSEaAG8+93vxrFjxxBFEW688UZ8+tOfviTjeNvb3oanP/3p6PV6OHDgAF72spfN9IqRUuKtb30rDh8+jFarhec85zn4yle+UtgmSRK84Q1vwL59+9DpdPCSl7wEDzzwwAUfOyEEN99882U91gcffBA/9VM/hb1796LdbuMpT3kK7rjjjstyzHme49//+3+PY8eOodVq4brrrsNv/dZv2U7Tl3q8f//3f49/+S//JQ4fPgxCCP70T/+0sH63xra2toZXv/rVWFpawtLSEl796ldjfX19V8ebZRl+/dd/HU984hPR6XRw+PBh/PRP/zQeeuihy3K8ZfzCL/wCCCF45zvfecnGu+iYv/a1r+ElL3kJlpaW0Ov18IxnPMM2BL0UY25wBeGSNAx5GOHDH/6w9H1f/sEf/IH86le/Kt/4xjfKTqcj77vvvos+lhe84AXy/e9/v7z77rvlF77wBfmiF71IXnPNNXI4HNpt3v72t8teryf/5E/+RH75y1+WP/7jPy6vuuoqORgM7Davfe1r5dVXXy1vueUWeeedd8rnPve5F7R/zOc//3n5iEc8Qj7pSU+Sb3zjGy/bsa6ursprr71WvuY1r5Gf+9zn5L333itvvfVW+a1vfeuyHPNv//Zvy71798q/+Iu/kPfee6/84z/+Y9ntduU73/nOy2K8f/VXfyXf8pa3yD/5kz+RAOTHPvaxwvrdGtsLX/hCecMNN8jbb79d3n777fKGG26QL37xi3d1vOvr6/J5z3ue/MhHPiK//vWvy89+9rPypptukjfeeGPhGJfLeF187GMfk09+8pPl4cOH5e/93u9dsvEuMuZvfetbcmVlRb75zW+Wd955p/z2t78t/+Iv/kKeOnXqko25wZWDhhBtge///u+Xr33tawvLrr/+evkbv/Ebl2hEU5w+fVoCkLfddpuUUkohhDx06JB8+9vfbreJ41guLS3J3//935dSqi923/flhz/8YbvNgw8+KCml8q//+q93fYybm5vy0Y9+tLzlllvks5/9bEuILsex/vqv/7p85jOfWbv+chvzi170Ivlv/s2/KSx7+ctfLn/qp37qshtvefLbrbF99atflQDkP/zDP9htPvvZz0oA8utf//qujbcKn//85yUA++PochzvAw88IK+++mp59913y2uvvbZAiC7leOvG/OM//uP2/VuFSz3mBt/baFJmc5CmKe644w48//nPLyx//vOfj9tvv/0SjWqKjY0NAMDKygoA4N5778XJkycL4w3DEM9+9rPteO+44w5kWVbY5vDhw7jhhhsuyDW97nWvw4te9CI873nPKyy/HMf68Y9/HE972tPwr//1v8aBAwfw1Kc+FX/wB39w2Y75mc98Jv72b/8W3/zmNwEAX/ziF/GZz3wGP/qjP3pZjtfFbo3ts5/9LJaWlnDTTTfZbZ7xjGdgaWnpgn9GNzY2QAjB8vLyZTleIQRe/epX481vfjOe8IQnzKy/HMf7l3/5l3jMYx6DF7zgBThw4ABuuummQlrtchtzg+8tNIRoDs6ePQvOOQ4ePFhYfvDgQZw8efISjUpBSok3velNeOYzn4kbbrgBAOyY5o335MmTCIIAe/bsqd1mt/DhD38Yd955Z2Xz3MttrADwne98B+95z3vw6Ec/Gn/zN3+D1772tfjlX/5l/O///b8vyzH/+q//Ol75ylfi+uuvh+/7eOpTn4qbb74Zr3zlKy/L8brYrbGdPHkSBw4cmDn+gQMHLuj44zjGb/zGb+Anf/InbaPRy228//k//2d4nodf/uVfrlx/uY339OnTGA6HePvb344XvvCF+MQnPoEf+7Efw8tf/nLcdtttl+WYG3xv4Ypq3bFTEEIK/5dSziy72Hj961+PL33pS/jMZz4zs24n493tazp+/Dje+MY34hOf+ASiKKrd7nIYq4EQAk972tPwO7/zOwCApz71qfjKV76C97znPfjpn/7py27MH/nIR/DBD34QH/rQh/CEJzwBX/jCF3DzzTfj8OHD+Jmf+ZnLbrxV2I2xVW1/IcefZRl+4id+AkIIvPvd795y+0sx3jvuuAP/7b/9N9x5553bPu6lur+mGOClL30pfuVXfgUA8JSnPAW33347fv/3fx/PfvazL7sxN/jeQhMhmoN9+/aBMTbzq+L06dMzv2wvJt7whjfg4x//OD75yU/iyJEjdvmhQ4cAYO54Dx06hDRNsba2VrvNbuCOO+7A6dOnceONN8LzPHieh9tuuw3//b//d3ieZ891OYzV4KqrrsLjH//4wrLHPe5xtsLlcrq/APDmN78Zv/Ebv4Gf+ImfwBOf+ES8+tWvxq/8yq/YiNzlNl4XuzW2Q4cO4dSpUzPHP3PmzAUZf5ZleMUrXoF7770Xt9xyi40OXW7j/fSnP43Tp0/jmmuusZ+/++67D7/6q7+KRzziEZfdeAH1fet53pafwctpzA2+t9AQojkIggA33ngjbrnllsLyW265BT/4gz940ccjpcTrX/96fPSjH8Xf/d3f4dixY4X1x44dw6FDhwrjTdMUt912mx3vjTfeCN/3C9ucOHECd999965e04/8yI/gy1/+Mr7whS/Yx9Oe9jS86lWvwhe+8AVcd911l81YDX7oh35oxsbgm9/8Jq699loAl9f9BYDxeAxKix9hxpj9pX25jdfFbo3tB37gB7CxsYHPf/7zdpvPfe5z2NjY2PXxGzJ0zz334NZbb8XevXsL6y+n8b761a/Gl770pcLn7/Dhw3jzm9+Mv/mbv7nsxguo79unP/3pcz+Dl9uYG3yP4eJquB9+MGX373vf++RXv/pVefPNN8tOpyO/+93vXvSx/OIv/qJcWlqSn/rUp+SJEyfsYzwe223e/va3y6WlJfnRj35UfvnLX5avfOUrK0uZjxw5Im+99VZ55513yh/+4R++oGX3Bm6V2eU41s9//vPS8zz5n/7Tf5L33HOP/D//5//IdrstP/jBD16WY/6Zn/kZefXVV9uy+49+9KNy37598td+7dcui/Fubm7Ku+66S951110SgHzHO94h77rrLluVtVtje+ELXyif9KQnyc9+9rPys5/9rHziE5+4oxLreePNsky+5CUvkUeOHJFf+MIXCp+/JEkuu/FWoVxldrHHu8iYP/rRj0rf9+V73/teec8998h3vetdkjEmP/3pT1+yMTe4ctAQogXwP//n/5TXXnutDIJAft/3fZ8tc7/YAFD5eP/732+3EULI3/zN35SHDh2SYRjKZz3rWfLLX/5y4TiTyUS+/vWvlysrK7LVaskXv/jF8v7777/g4y8TostxrH/+538ub7jhBhmGobz++uvle9/73sL6y2nMg8FAvvGNb5TXXHONjKJIXnfddfItb3lLYYK+lOP95Cc/Wfl+/Zmf+ZldHdu5c+fkq171Ktnr9WSv15OvetWr5Nra2q6O99577639/H3yk5+87MZbhSpCdDHHu+iY3/e+98lHPepRMooi+eQnP1n+6Z/+6SUdc4MrB0RKKS9sDKpBgwYNGjRo0ODyRqMhatCgQYMGDRpc8WgIUYMGDRo0aNDgikdDiBo0aNCgQYMGVzwaQtSgQYMGDRo0uOLREKIGDRo0aNCgwRWPhhA1aNCgQYMGDa54NISoQYMGDRo0aHDFoyFEDRo0aNCgQYMrHg0hatCgQYMGDRpc8WgIUYMGDRo0aNDgikdDiBo0aLAtnDlzBocOHcLv/M7v2GWf+9znEAQBPvGJT1zCkTVo0KDBztH0MmvQoMG28Vd/9Vd42ctehttvvx3XX389nvrUp+JFL3oR3vnOd17qoTVo0KDBjtAQogYNGuwIr3vd63Drrbfi6U9/Or74xS/iH//xHxFF0aUeVoMGDRrsCA0hatCgwY4wmUxwww034Pjx4/inf/onPOlJT7rUQ2rQoEGDHaPREDVo0GBH+M53voOHHnoIQgjcd999l3o4DRo0aHBeaCJEDRo02DbSNMX3f//34ylPeQquv/56vOMd78CXv/xlHDx48FIPrUGDBg12hIYQNWjQYNt485vfjP/3//4fvvjFL6Lb7eK5z30uer0e/uIv/uJSD61BgwYNdoQmZdagQYNt4VOf+hTe+c534gMf+AD6/T4opfjABz6Az3zmM3jPe95zqYfXoEGDBjtCEyFq0KBBgwYNGlzxaCJEDRo0aNCgQYMrHg0hatCgQYMGDRpc8WgIUYMGDRo0aNDgikdDiBo0aNCgQYMGVzwaQtSgQYMGDRo0uOLREKIGDRo0aNCgwRWPhhA1aNCgQYMGDa54NISoQYMGDRo0aHDFoyFEDRo0aNCgQYMrHg0hatCgQYMGDRpc8WgIUYMGDRo0aNDgikdDiBo0aNCgQYMGVzz+/yGd+PHHn3/5AAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+              "Dimensions:            (valid_time: 2, y: 1059, x: 1799, heightAboveGround: 1,\n",
+              "                        step: 1, time: 1)\n",
+              "Coordinates:\n",
+              "  * heightAboveGround  (heightAboveGround) int64 2\n",
+              "  * step               (step) timedelta64[ns] 01:00:00\n",
+              "  * time               (time) datetime64[ns] 2023-04-28\n",
+              "  * valid_time         (valid_time) datetime64[ns] 2023-04-28T01:00:00 2023-0...\n",
+              "Dimensions without coordinates: y, x\n",
+              "Data variables:\n",
+              "    d2m                (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
+              "    latitude           (y, x) float64 dask.array<chunksize=(1059, 1799), meta=np.ndarray>\n",
+              "    longitude          (y, x) float64 dask.array<chunksize=(1059, 1799), meta=np.ndarray>\n",
+              "    pt                 (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
+              "    r2                 (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
+              "    sh2                (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
+              "    si10               (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
+              "    t2m                (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
+              "    u10                (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
+              "    unknown            (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
+              "    v10                (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
+              "Attributes:\n",
+              "    centre:             kwbc\n",
+              "    centreDescription:  US National Weather Service - NCEP\n",
+              "    edition:            2\n",
+              "    subCentre:          0
" + ], + "text/plain": [ + "\n", + "Dimensions: (valid_time: 2, y: 1059, x: 1799, heightAboveGround: 1,\n", + " step: 1, time: 1)\n", + "Coordinates:\n", + " * heightAboveGround (heightAboveGround) int64 2\n", + " * step (step) timedelta64[ns] 01:00:00\n", + " * time (time) datetime64[ns] 2023-04-28\n", + " * valid_time (valid_time) datetime64[ns] 2023-04-28T01:00:00 2023-0...\n", + "Dimensions without coordinates: y, x\n", + "Data variables:\n", + " d2m (valid_time, y, x) float64 dask.array\n", + " latitude (y, x) float64 dask.array\n", + " longitude (y, x) float64 dask.array\n", + " pt (valid_time, y, x) float64 dask.array\n", + " r2 (valid_time, y, x) float64 dask.array\n", + " sh2 (valid_time, y, x) float64 dask.array\n", + " si10 (valid_time, y, x) float64 dask.array\n", + " t2m (valid_time, y, x) float64 dask.array\n", + " u10 (valid_time, y, x) float64 dask.array\n", + " unknown (valid_time, y, x) float64 dask.array\n", + " v10 (valid_time, y, x) float64 dask.array\n", + "Attributes:\n", + " centre: kwbc\n", + " centreDescription: US National Weather Service - NCEP\n", + " edition: 2\n", + " subCentre: 0" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# open dataset as zarr object using fsspec reference file system and Xarray\n", + "full_path = os.path.join(target_root, store_name, \"reference.json\")\n", + "fs = fsspec.filesystem(\"reference\", fo=full_path)\n", + "ds = xr.open_dataset(\n", + " fs.get_mapper(\"\"), engine=\"zarr\", backend_kwargs=dict(consolidated=False), chunks={\"valid_time\": 1}\n", + ")\n", + "ds\n" ] - }, - "metadata": {}, - "output_type": "display_data" + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Make a Map" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHFCAYAAAAT5Oa6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebRlSVUnjn8i4gx3eEPOU81SUMjUKiKgLgFpEKQERKUFQZDJBSoLhbYVFIp2olFBWwVpBwopaGxaAaEVoYGi2y+FFCg/gaZAZagqqrJyfOMdzjkR+/dHxI7Y57ybmS8rM6sKuXutm/nuvefGienE/sRnD6GIiDCXucxlLnOZy1zm8g0s+u6uwFzmMpe5zGUuc5nL3S1zQDSXucxlLnOZy1y+4WUOiOYyl7nMZS5zmcs3vMwB0VzmMpe5zGUuc/mGlzkgmstc5jKXucxlLt/wMgdEc5nLXOYyl7nM5Rte5oBoLnOZy1zmMpe5fMPLHBDNZS5zmctc5jKXb3iZA6K5zGUuc5nLXObyDS9zQDSX8ybXX389lFK4/vrr42fXXHMNlFLb+v3ll1+OZz/72Wd1z1//9V/Hu9/97m3V5d+S/PEf/zGe/OQn4/LLL0e/38eVV16JF77whbj99ttnXv+Od7wD3/It34Jer4dDhw7hJS95CTY2NlrXfPjDH8ZznvMc3Pe+98VwOMRFF12EJz3pSfjUpz61pbz/+l//Kx72sIdhz549KMsSl156KX70R38Un/vc586qHdup16y2K6WwsLCw7fucTX+tra3hFa94Be5zn/tgMBjgoosuwo/8yI+02qaU2tZLzr/f+73fw33ve1+UZYkrrrgCr371q1HXdevef/mXf4mnPe1puPLKK9Hv93H55Zfjx37sx/DP//zP227rdu8FAEeOHMGzn/1s7NmzB4PBAA9/+MPxoQ996B57r7nM5YIKzWUu50k+8pGPEAD6yEc+Ej+75ZZb6IYbbtjW7y+77DJ61rOedVb3HA6HM3+zurpKN9xwA62urp5VeV8vcujQIfqxH/sxetvb3kbXX389velNb6KLL76YDh48SIcPH25de9111xEAet7znkcf/vCH6Q//8A9peXmZHvOYx7Su++Ef/mF61KMeRW94wxvo+uuvp3e+8530sIc9jLIsow996EOta1/5ylfSNddcQ+9617vo+uuvpz/90z+l+9znPjQcDummm27aVhu2Wy8pt956Ky0vL9OhQ4doOBxus7fOrr++53u+hwaDAb32ta+lD3/4w/Rnf/ZndOWVV9Li4iJ95StfISKiG264ofX6/u//fur3+1s+5/n3q7/6q6SUol/8xV+kj3zkI/Ta176WiqKg5z//+a17f8d3fAc98YlPpD/90z+l66+/nt761rfSN3/zN9PCwgJ99rOf3VZbt3uvyWRCD3jAA+jiiy+m6667jj7wgQ/Qk570JMqyjK6//vp73L3mMpcLLXNANJfzJrMA0dnI+QRE/9bljjvu2PLZjTfeSADoV37lV+JnTdPQwYMH6bGPfWzr2re97W0EgP76r//6tGWur6/T/v376dGPfvQZ6/T//t//IwD0y7/8y2e89mzqJeXqq6+mH/iBH6BnPetZZwWItttf//zP/0wA6Jd+6Zda137sYx8jAPS6171uZvmnq8+xY8eo1+vRC17wgtbnv/Zrv0ZKKfrc5z532np+7WtfozzP6bnPfe6pG3gn7vUHf/AHBIA+9rGPxc/quqb73e9+9B3f8R33qHvNZS53hcxNZt+g8u53vxtKqZmU9Rvf+EYopfBP//RPAIBPfvKT+NEf/dFobrj88svxtKc9DV/96lfPeJ9ZJrO6rvHzP//zOHDgAAaDAb77u78bn/jEJ866DUopbG5u4i1veUs0UTzykY8EMNtk9uxnPxsLCwu46aab8H3f930YDoc4ePAgXvOa1wAAPv7xj+O7v/u7MRwOcZ/73Advectbttzz8OHD+Mmf/ElcfPHFKIoimgiapjnr+p+L7Nu3b8tnD37wg2GMwS233BI/+/jHP47bb78dP/ETP9G69kd+5EewsLCAd73rXactc2FhAfe73/1aZZ5K9u7dCwDIsuyM155NvViuu+46fPSjH8Ub3vCGM5bfle32V57nAIDl5eXWtTt27AAA9Hq9s773+9//fkwmky1t/Ymf+AkQUcvkO6uehw4dwsUXX7ytMTibe73rXe/CVVddhYc//OHxsyzL8IxnPAOf+MQn8LWvfe0ec6+5zOWukDkg+gaVq6++Gvv27cOb3/zmLd9de+21+LZv+zY86EEPAgB85StfwVVXXYXf+Z3fwd/+7d/iv/yX/4Lbb78dD3nIQ3Ds2LGzvvfzn/98/NZv/RZ+/Md/HO95z3vwQz/0Q3jKU56CkydPnlU5N9xwA/r9Pr7/+78fN9xwA2644YYzKsu6rvGUpzwFT3jCE/Ce97wHj3/84/GLv/iLePnLX45nPetZeM5znhMX72c/+9kt/5nDhw/jO77jO/C3f/u3eOUrX4m/+Zu/wXOf+1z8xm/8Bp7//Oefsb7OOTRNc8aXtfas+oHlox/9KKy1uP/97x8/++xnPwsAcSxZ8jzHfe973/j9qWR1dRX/8A//0CpTirUW0+kUN910E573vOdh3759WxTkLDnbeh05cgQveclL8JrXvAYXX3zxGcvfjszqr8suuwxPetKT8PrXvx4f+chHsLGxgZtuugkvfvGLo5/U2Qq35YEPfGDr84MHD2LPnj1nHIMvfelL+OpXv7plDHizIUH/2dzrs5/97Jb+B9KYSJ+pu/Jec5nL3SVn3srN5d+k8O7sjW98I1ZXV+OO+POf/zw+8YlP4Pd+7/fitT/8wz+MH/7hH47vrbW4+uqrsX//frz97W/Hi1/84m3f96abbsJb3vIW/OzP/ixe+9rXAgAe85jHYP/+/fixH/uxs2rDwx72MGitsXfvXjzsYQ/b1m+qqsKv/uqv4ilPeQoA4JGPfCTe97734Td+4zfwD//wD/jWb/1WAMC3f/u3Y9++fXj729+OBz/4wQC8Ujh58iQ+97nP4dJLLwUAPPrRj0a/38fLXvYy/Mf/+B9xv/vd75T3fs5znjOTderKIx7xiLN2Bl9fX8eLXvQiXHLJJXjOc54TPz9+/DgAYNeuXVt+s2vXLnzlK185bbk/9VM/hc3NTbziFa+Y+f1wOMR0OgUA3Oc+98H111+PSy655Iz1Pdt6vehFL8JVV12FF77whWcseztyqv4CgHe+8534qZ/6KXzv935v/OxBD3oQPvrRj2Lnzp1nfa/jx4+jLEsMh8Mt3+3atSv2xSxpmgbPfe5zsbCwgJ/92Z9tfae1hjGmxcCezb2OHz9+yv7n7++Oe81lLneXzBmib2B5znOeg/F4jD//8z+Pn735zW9GWZZ4+tOfHj/b2NjAf/pP/wlXXnklsixDlmVYWFjA5uYmPv/5z5/VPT/ykY8AwBbw89SnPnVbppZzFaUUvv/7vz++z7IMV155JQ4ePBjBEOAX6n379rXMgu973/vwqEc9CocOHWoxOo9//OMBeMbhdHLNNdfgxhtvPOPrTW9601m1aTKZ4ClPeQq++tWv4p3vfOfM6KtTRfqdLgLwl3/5l/G2t70Nr3/96yMo7MrHPvYx3HDDDbjuuuuwuLiIRz3qUa3dvrW21VfOubOu11/8xV/gve99L/7oj/7otPXtMnCnYtrO1F8vfOEL8Rd/8Rd4/etfj49+9KP48z//cxRFge/93u/dlpn4TO3Z7ndEhOc+97n4v//3/+LP/uzPtgDNV77ylWiaBo94xCPu9L22e+1dea+5zOXukjlD9A0s97///fGQhzwEb37zm/GCF7wA1lpcd911eNKTntTazT396U/Hhz70IfzyL/8yHvKQh2BpaSkCi/F4fFb35J3ggQMHWp9nWYbdu3efe6POIIPBYIsfSFEUM3evRVFgMpnE93fccQfe+973Rj+TrpzJfHjppZduy9xzNsphOp3iB3/wB/F3f/d3eN/73oeHPvShre+5T48fP479+/e3vjtx4sTMdgPAq1/9avzqr/4qfu3Xfg0//dM/fcr7f9u3fRsAz9Y98YlPxJVXXomXv/zleM973gMAuNe97tUCEa961atwzTXXbLteGxsb+Kmf+in8zM/8DA4dOoSVlRUAnukDgJWVFeR5juFwiP/8n/8zXv3qV8dyLrvssi1M05n66/3vfz/+5E/+BO985ztbrOhjH/tYXH755bjmmmtmmplPJ7t378ZkMsFoNMJgMNjS1llgk4jwvOc9D9dddx3e8pa34ElPetJ5v9fu3btnMjMnTpwAMJu9u7vuNZe53BUyB0Tf4PITP/ETeNGLXoTPf/7z+NKXvrTF0XV1dRXve9/78KpXvQq/8Au/ED+fTqdxMTsbYUV4+PBhXHTRRfHzpmnu8bT5nj178KAHPQi/9mu/NvP7Q4cOnfb359tkNp1O8eQnPxkf+chH8J73vAePfvSjt1zD/h2f+cxnWua8pmlw00034WlPe9qW37z61a/GNddcg2uuuQYvf/nLz1gPlsXFRdz3vvfFF7/4xfjZe9/73mhSA1Ifbbdex44dwx133IHf/u3fxm//9m9vuefOnTvxpCc9Ce9+97vxghe8AFdffXX8rizL1rXb6a9Pf/rTAICHPOQhrc937NiBK6+88oz+PrNEtlUCsMOHD+PYsWN4wAMe0LqewdCb3/xm/Mmf/Ame8YxnXJB7PfCBD8RnPvOZLWXwZ9163Z33mstc7gqZA6JvcHna056Gn/u5n8O1116LL33pS7jooovw2Mc+Nn6vlAIRbVEuf/zHf3ynnH85Cuxtb3tbawf5P/7H/7hTkVplWZ41S3Vn5eqrr8Zf//Vf4173uted8iW55pprTsu2sCwuLp7xGmY6PvzhD+Mv//Iv8X3f930zr3voQx+KgwcP4tprr8V/+A//IX7+P//n/8TGxkb0pWL5lV/5FVxzzTX4pV/6JbzqVa86Yz2kHDt2DJ/5zGfwXd/1XfGzrsPt2dbrwIED0cwq5TWveQ0++tGP4m/+5m+wZ88eAB5snQqUbre/+Pcf//jHcdlll8XPjx8/ji9+8YszQdSZ5HGPexx6vR6uvfbaFnC49tproZTCk5/85PgZEeH5z38+3vzmN+NNb3rTthzU7+y9fvAHfxAvetGL8Pd///fx2qZpcN111+GhD33oGQH+XXmvuczlLpG7L+J/LvcUedrTnkb79u2joijo5S9/+Zbvv+d7vod27dpFf/RHf0Qf/OAH6Zd+6Zfo4MGDtGPHjlYOoFl5iF71qldRd5o94xnPIKUU/fzP/zx94AMfoNe97nV06NAhWlpaOuucQo94xCNo37599Fd/9Vd04403xqSAs+pyqlwxj3jEI+j+97//ls8vu+wyesITnhDf33bbbXTZZZfRfe97X3rDG95AH/rQh+h//a//RX/wB39AT3jCE+iWW245q7qfi1x99dUEgF7xildsSQYo878QEb31rW8lAPSCF7yAPvKRj9B/+2//jXbs2LElAeJv/dZvEQB63OMet6VMmVxzZWWFHvKQh9DrX/96et/73kcf+tCH6I1vfCPd9773pcFgQDfeeOO22rDdes2Ss81DtN3+Wl9fp8suu4x27txJv/Vbv0Uf/vCH6W1vext9y7d8CxljTplj60z14QSGL3/5y+n666+n3/zN36SyLLckMPzpn/5pAkDPec5zttTzH/7hH1rXvvrVryZjzJbEhtu912Qyofvf//50ySWX0Nve9jb64Ac/SD/4gz84M1niXXmvuczl7pI5IJoLfeADHyAABIC++MUvbvn+1ltvpR/6oR+inTt30uLiIj3ucY+jz372s1sSKW4XEE2nU3rpS19K+/bto16vRw972MPohhtuuFOJGT/96U/Td33Xd9FgMCAA9IhHPOKUdTlXQEREdPToUXrxi19MV1xxBeV5Trt27aIHP/jB9IpXvII2NjbOqu7nIjxes17cB1Le/va304Me9CAqioIOHDhAL37xi2l9fb11zSMe8YjTlssymUzoec97XsygnGUZXXzxxfSMZzxjCxg7k2ynXrPkbAHR2fTX7bffTj/90z9NV155JfV6PTp06BA94QlPOG3G9e3U53d/93fpPve5DxVFQZdeeim96lWvoqqqWtdcdtllp6znZZdd1rqWn61ZIG079yIiOnz4MP34j/847dq1Kz6LH/zgB7dcd1feay5zubtEERFdGO5pLnOZy1zmMpe5zOXrQ+Zh93OZy1zmMpe5zOUbXuZO1XO5R8qZHKy11tB6jufnMpe5zGUu50fmGmUu90jJ8/y0r2524bnMZS5zmctczkXmDNFc7pFy4403nvZ7DrWey1zmMpe53LXyxje+EW984xtj4tP73//+eOUrXxmz9v/lX/4l3vSmN+FTn/oUjh8/jn/8x3/Et3zLt7TKmE6neNnLXob//t//O8bjMR796EfjDW94w3k7q/DOyNypei5zmctc5jKXuWxb3vve98IYgyuvvBIA8Ja3vAW/+Zu/iX/8x3/E/e9/f7z1rW/Fl7/8ZRw6dAjPf/7zZwKiF77whXjve9+La6+9Frt378ZLX/pSnDhxAp/61KdgjLkbWjUHRHOZy1zmMpe5zOUcZdeuXfjN3/xNPPe5z42ffeUrX8EVV1yxBRCtrq5i7969eOtb3xoTs95222245JJL8Nd//denTJx6oWVuMtumOOdw2223YXFxcX4Q4VzmMpe5zOW0QkRYX1/HoUOHLlgAyGQyief6nasQ0RbdVpblllMKumKtxTvf+U5sbm7i4Q9/+Lbu9alPfQp1XbdORTh06BAe8IAH4GMf+9gcEN3ThdHrXOYyl7nMZS7blVtuueWC+MVMJhNccdkCDh85+yOUZsnCwgI2NjZan/FhzLPkM5/5DB7+8IdjMplgYWEB73rXu1rnEp5ODh8+jKIothyBtH//fhw+fPhO1f98yBwQbVP4fKlveskroct0Wro6g8GRzoVMOsNvSbWvifdSAOVAsxgeFAKydQPXdz7lbUaAIZhNAxBgFy3UREM3Cnqq4AqCrhXMCDATQFnA5UAzBKYHayx9PodywHQHYHuAHTgoq+BKB71YwW3mQOl83RT5PLsTAzXVIA1Q6aAaBTPWcDkh29RQVbhUA8PbAVsALgOGdzi43Dds/WIF0r5OxSZQnnSoljSKdYemp+AyhWoJqBYB1yeQ8W0H4OMpFeFUwxW7kVTMDaxc+N8qKCs+C32qSPwPcS/46+K13fHRiPfQjW+zcr6fFaXfxjK23JfSvTpzhLTy9xEbUmUBU1EsiwzQlAq2DL+n9L8zYdhE3UmlumvrX75f0jW2TONHOlRPifIptZv7i9urKy6bQFrBFu1rsjHFvmbRFUE53ybdEJQl1EODbOJARsU+tbkCmXQvEAFKYbqskY1d+D1QLygUaw66odA2f09b6pnPmaLQL1oBCnGOpk5vXwvRN0AaZx5TKC4v/K19maSAbELIRiS+U5js9PdVLtzDbR1L5cK9HVr9l038H8oRVAOY2pdtSz/PyQD5hoMtNcrVGuPdOUxFsKVCvulAWvl54oBirUG9mMV2kQ59b/31XC/SsgMp9gH3EZSCy/3fZirGW/SxLQBT+b5pev4+ZPz8IK1azwRpQNcEU/u6kFZQjuL9dON/y/OaMgWXAaRUfL5az7d8zs8gXKatJ/j//cWvbOtswjsjVVXh8BGLr37qciwtnhsDtbbucNmDv4JbbrkFS0tL8fPTsUNXXXUVPv3pT2NlZQV/8Rd/gWc961n46Ec/um1QNEtmsVR3pcwB0TaFB0mXPZhtAqJTgSFeTE9/wzN/dzpA1Cw66IJXHEBBwzhA1wrNwMH1LbTN/EKdOyAH1FRDZQqqJJADNCmgBPQUcAPA7SRkVAALGtkI0BOgKoBp34Eygu5ZQOUwOgMZBzKEbFiDnILNMqi+guJKLlvQpoFyCsppsA+dywA1AGgRWLidoHpAMSFMdmpkRVC8BZBvAnpAMKUCKYLKFbQGsgxwJdD0CJSJzlbk/1NCSbUGK42Nr4iKi6CyHhRJEBAXSdf+rQoLrZl4UMrjoZwHlSSBCoOioBh1hfY9BTjClsWZQEql8Sev4Fym0hzh7xygNcW6kwF0T8WnX1sPhADAKP89tyMqNFGerr1CQZ76wwTl5bKgaCQo4v4VQFBxWxygM38/BggqT2OkGsAE4OP7IShTE0ARAcr4/zUUqJ/63F/HlfaAi0VXCgqAHSjkGw7lOvl2FqHPMwCOoHLt+yY8/y7zyhOOAK2gA4jkYZV9CdUGjQyI5LiSTm1tShW7SylAMYDKgaxycexcrqAH/ko5N4BTKPEAGiMoyfzFNlfIxoQ6C6CL/L1AAJYAA6DZ20NBAEr/XpeEpq+QVYRytUGzXCLT8PMu9BEpAJkfR64Tg8d6oFBsuFRXJLBki1A9MU78PSlAKwA9D4a0ADPIwnyMgxv6OQfMiJBXDnVfe5DLIFSMUbwHj4HYcHSB651a7y+wgl9YVFhYPLd7uNARS0tLLUB0OimKIjpVf/u3fztuvPFG/O7v/i7e9KY3nfG3Bw4cQFVVOHnyZIslOnLkCL7zO7/zTrTg/MgcEJ2tnMW8U52dWYtBELvFLQ/Sme5Bs6+JQIv/N+HBJgU4wPYJ5YpCNtYYX+xiffRUwy5YOEdwOQGFA2oFMzGY7iHQyO/GipNeM072E/Iv+513vUyg0kEv1Mhyi2qUg3ICGYKqNewoB4yDyh2QKVCjoKZBK2ivMCgjOBcUTk4Y71dYuKXdpmxC0FOFesH3W7UMNLWCroHpsvIayQH9Y4TpThWUMgWmIOwMDaUFsNt5TsWFjxSgdPhN6DsY8iCJ64RQd52UDimvED0QC3+HeqWFN7RLKDJmMyIACX9D1Efb9DePqZw3np1R0A212AoKmMllKraJQROXKZkqBECkG8AGZiWCKwU0PQHqCDABONkSKFcJtREMVfjNTADK7YAHEPnUAzwJEOT3WSNAEgG28IxgvuHCe+3HOTwb9VDDFu0dfzZNLIGyfl70TjoPfERfeyDjQRZl5EFPrjwrEYG7mAsqtYfEM18PVRxXEn0RGRy5Lqg0JyLLxv3M7XYEm3kGjcGmZEFNLcbQcTs8TmlyBVOFDYVTMBOCmRJskeZMZCUtxXaCAJupyK6RUoExVhjvyZGNHeqhDu1M4xfZK7EB8POY0PTE/GSQxvMhzDFd+w1ENiY0vdDfAVS7TMztLgtr/PdmCuQj/7zbXnq2Z28g01gqEWN0toxQ+uHWe11IseRgt1nX05VxrkJEmE6n27r2wQ9+MPI8xwc/+EE89alPBQDcfvvt+OxnP4vXvva151yXOytzQHRnRCzmMxf77copgM25lMELtBlpNAueZqBGgzIEkxgwuphAGcHurmGO5X7xyrw5TZUWWM9QnDBoFoBm4IFANgGKNW+OytcUmj4wuogwuFVhWmVo+g2cUaDKCLqbgEoDAweqNFThV+lsU4N2W9iJQbZhQAqwA0J5TKF/TGHzkF/UJjsVlm52mC5r5COHfKQw2UdQzpvGTAX0jgPlGmHjIgXdABsXKbjSt2/Ljo4UoNPur9X3OgAepwBDcZFTIJBRgI3rZiwKDGTCz4nBRFA8ZppAk7xnyzwmWJuoSELXRTAB8R3Pu+48YIVsgtkjE58HXUKCPZLgmcUrS19vIPwvAA0p3+fNICirkW+bLQIoYqWq4Ymc8FtXesZMAkNZb28GCYpZqTY4VL5NTUkwFQCl0JS+3goeJJBW0LWL17tMwUwJZgrUA68YmR1oBhrFmg0gVswRYcZh8AEgmodcYDu6mxg5DoraLKBuvNmIL2wxugpwWrZRgE8EppTnlAJWL/ego1zxLCBloQ8Y+AhwRdqzjpQlsB2fSUrvGfSQAWDhmRUFqABSIqCJIM1PGEWAMyqZFI1KrGC4njcDzrSfQVIqbhh4PvCmggKAa3oKRUPQjf9bWYCKNkhULgDAjlmc56WpCdqSX5NUqIdTW+Z8ayp2Ppfz/lRr/FlvZi+AOBDcKZ0Btl/G2cjLX/5yPP7xj8cll1yC9fV1vOMd78D111+P97///QCAEydO4Oabb8Ztt90GAPjCF74AwDNDBw4cwPLyMp773OfipS99KXbv3o1du3bhZS97GR74wAfi3//7f39ObTkXmWeqPs+ybZ+hcwfkpxXdAPkdOVTu2ZnipBLK17M3etWv8nZoodcy6ImGWsnRO2JQ7XTQFaB3TeEKv0uzBTDd61AvEMwEWPxXr7xcRrjowEk0mwVUaUGFg5oYwCqgtAApmPUM2jioRkM1CnS4j3zHFMUq4EqCGSvUSwQzIUwvrqEcMLrYd9LwSIN64Hf8zYJDdckU090Ow9sITd+zBZQBo0MO+UZQXgRQz0WWqN054X8b2B/J3Dm/cLbMkoa8yQxo7/5U+o38X+7yHZtgbHvx5s+AtONlVkU1/jtd83gJIMTXdNcvCUBywTIEhUNBqVvhEtDyVeowFvE9K11K1+brQHki1EUDxYb3RZEmqegDFNizVt/JamvA5um5aXq+z+T9dBNAaQf464YiSiWtQMazRpEl1UC+SdB18DWyhGI9gaF66BFBBDdchlHeHOl4DEO5PH6nUo7GAwVv4vEvXacxkHMqsl1i7sjxAjxgkiCKNDDdoVrM0SzGg8G0atJ13m8moWlm2PzvOgNDQN33QFD6NCnnwastVPTRsUUCHIBvv6kR/bdcpsIYK9hCRfDHcyeakzMBdgIoIgU0AwVbqlgPl/v/dR3miE196P2gGKSHcQjAmtm9OA4dcMrA/ky44LTr+yz26d+o3HHHHXjmM5+Jq666Co9+9KPx93//93j/+9+PxzzmMQCAv/qrv8K3fuu34glPeAIA4Ed/9Efxrd/6rfjDP/zDWMbrX/96PPnJT8ZTn/pUfNd3fRcGg0HMb3R3yTwP0TZlbW0Ny8vLuPIXfj35EMlFH+2HQAnFN8tkBiDauu/ULkOJ33XXM/HA14sOVBAoc+jfkqNaJq/gGwW7YGHWDCgHXN96VsUpqEahOG5QXzZBOahhblwEyDMG6/dyKE5qZJuenVm5imAmCvlmYA7uu4lqtYQe+9UtPzRCtVZCr2Rwu/0qpldyuIyQ752gPt6D2VEBX+vBTBQWvwKsPHoMe7JAedRg+UsUafzJTo1yjXD08RMs/X99bFxGsD1C74jG4DAwOgg0faDe3XgHbhPMeWMD0p5ZojwMQsehFRpAo6Br5U1rsqttApPsSyR9FpTzrBBlgBn5stgfQpH3wQIA20f6bVBYZPzfOjiL6oqVfahmAHfM1sTfS4AEAcYYEDETRR5wsBMp795j2wVzVQ/89dkkKcAIFhgMhDoU65SAVvDTYdOLy/nz9jyNjr8uFuP9p1y4Z/iNy73C8wo4sTjMqrEy5jZnE4pKkNklULommskY4DE7BHg/IPbPiW0NbJVRqHYY2LwNxlrmL6Q+8Z9tvbbLHMW+Rxoj79CL+NxGR3axRjCAioyjagMqZphIB1AdWCBvcmag4eeSqQk2VzCVZ5yyKcVyZLtsLuYLgik1sGXZ1LNzTtgZbKGiM7PNg7M5CZCXI7Eu3BaV6m97gBmjBQJ5LbWlnyvaBrAnmVekfivXKALLpqdg+0C26d+b4HcmzdBAZ65y++WmQDwrs9b71gaK+6Ka4B/f/gqsrq5u2y/nbIR10m1fuPi8OFUfuurWC1bXrxeZM0TnQUhh9o7gQkHNs9h9ZBsaeqyhKo3Jfgt1cOIXo9r78rhecLYlBb1pkJ803qeoR9CHS4xP9kAKqBf9S9V+t9YMPQAp1hTqZYfxQYdsBAwHUyzt24AbWLiBRbVeALWC210BEw21mvtFbqmGvXUAPdXIv9BH76hCeZzb5xmZpa94Zbh2ufffWLjdYrqs4DZyD36WHAa3aez8gkP/hIUtgPIkoEcm7kBV7YER2CTFjIUTjI9TQKO83UtTVCpxNymVF5sbOk8OKy3bY98H7/jNwIKZIr5WjqUK/hJRuYUF22Vo+YqwSYGZHjZ5MCMQF3Tx3gYF1HXQVtabkkxNsiqt9sSyIcCMKCsfeZ8Sbpup24VsUSIBDPkbpEvNNLBkwcwT60sCYDDg0AwoVVSk9UBFUEbaRylBeaXPYAjwfkXSVAYCECKQSKsW6+YCI8UMx8zNDrfpFCJNLRxJx8yXtgnkukyYyMyMuSeAaGKz2uBIMoIMhmQdLLODwaxUDzyr6jIVovtExcVckr5rkckJrIszqtW/QAKfkeli4Bb+183sNrBpmfvEFmlTAYTIMzYz82ZEzPM4163/XdP3a4bteXOtZxORGK3M+1G1fJAIrTnA7TiVT9BpXSXuQobIEp2X11zmgOjftoQFw+WeKQEAbRzc0EJfueGZj0Z5JVVaKKfQDH10mB06KKdQLFUYH3QoT/hdlhta4Cqfq2J87ymqZcLSFSsoTmg0A2Dl6ALqxiBfrLC0d9OvKD0HTAyyVQM9VaDCwU1NXDR0BWxeagHld512mmH4VY3j/84vYMOvhZ2oUcg3CMufzUD32cTiF0LagJ7Cyr0Meie8X1O+pqCrUDgzdA6I3tAAoCm230wVzEQBLpgJ4gIuFkyhjCI4ALbuKgPbw8AjG3nmjBf/qByovZOXzJHLkmlgizBLJMBHS2GrdI00d8UIJ8svCuHqqeiotIGYZqB1a6E8RvtUNMFkY/8/K6SWCVIqmdj34j3595JFUU1qkwcIKvlYUWCRTPt7F1gwDg9XNilx73ANFOtuiw+J9NPx4d3JAZfD3vm6mX0hGDYp1BkbZv9aTIIE2zaZjSIYNqKMjql0S32s+J7BSLiuxX4wg9ZigVS7zjM2eAyM2GzG949RjbHh4k+dQOqW+cn3CuCK5yUCaM8mwV+t5+dV01Np3st7ibmlHAI761krU3s/JJf5tAp8v6avIkDiPk8AHDPlVJ/PBEWnAFBzuefLHBBdSDnDA3GX2JkJQO58ZFdGqI/0Yyi821nHxUkXNlxL0BMFtVCjWbRopgb5uoYNVsLhlzMY4/xObiODahQm/7gLLk9Ud55ZNNMMmxsldOk1vp541okKQr5zCmW847MrHCb7CNm6QT4CqkUFWOWjRNZUvO/mxcB4j/Yh7VOgHueoF4FyBdg4pLB4i0OxStAVsPRlSg6qpLxPkOyPEFIPIDpaKhsUofYro1QOYLaJgYzyC7M0ZbACMhPPBsWxFSxCa1cPwQgEpRDXVlZqKpnOmN1xGZJZCGgpmGjK6fiYsINr9BVyKc+LNBu08v+cYcPIjtDSTKQogaOZvjb8XjBt8brAmrDCi9/L9sh6hV1+VObGK8Gmr2Fzr/B8/6rIOnXbRXnyTQEEyyKU/EzziGjPFmAic0RBjFOnD5jpi87jaANOrg/3K88xBnQcjTij6Na6wywN96ep/dixuMz7VkkzYDsQQcxZ2S4JalR6cT29acwzT46dqAM4k2Ze9gGKTJP2YJ3vbWokk2InUGDLvA8g2Rb+PfsZ9Va8gz1/bqY+dUA9UHGzcD7YfLm54PrfFcJO1ef6msscEF0YETusLZTruYIgWa54fzrJVo1niAoHGIKtDOqNAtjI4HZWflG+vecXv4mPSKPNHHAK+nAJWxJsD6iXgHoIjDdKVMsEM9Yo1oDpLgcz8d+b0mLjZm+Ddo2BHWfAZgaXeb8l7J3COQWyCmr3FJQT7EKDYt0vTJsX+TpP9gCLXyWs3sehWvaKa3QQGN7W+Kimyps/xnuBzW9qwOaT3f8U+j+DjwyT7AR1BwYgTYAhuJCzSddeubPpTLItUlm0oqCY/YEHQ9EHIryyUdp9soJgRoB3vcoi5iNqrU2BWYiMgQQIAmwxqxSbKJrKzI2uU9K7uNOmBI7ycVIirZ13dxdOvk5NX7XaRCrkiLEeyLX7PtVVQSih8L/Lk3N1ZFWUMJsIYKLI54uRDr/RfykAxqavI2CKz4oj/zIKruD0AOFLoyIQUg0FsKTQ1RMzzeNdBgwCgHWUpK6RTD7iNzLqKxWS+rWl9AV7Jtk/30ZEB37JhnE4ujRFMeD2qQn8++jrxGMlTKxNX7XGID4TArwCnIspOG0LJoiy4P8jAgp4XpJREeTJfuf52AJD/D/XUYLk4N9kJoR85CIbmtrq2yHrLNlWCRbPKN250Rm/LsC9UOJAsOf4mgMiL3NAdC4yC4yIB7almGaBobMBR3cGTPGCYRWU9TmAMGyAEWfkI5hjBdzuKlHXwZdGVQoofI4XXDTx/gcENAuE4uYSzZKD3VuhGQBYbDA+4GDGgD1RQO2aQmcOFPyUdOVD7V1BUApwR3owGxnc1HiT1XqGyT6HyS5guq8BxhpLXyaM9isUJzX6Rwn1vcbQNbBxcY71exF0v0EzAMZXVtjxmQxrl2jkI/JMVcULqYrKmBmg6EeTEWIEGvk2c5iw7DvJusRIsxnjx74tpEP27rIdqt0FsC2WSLVZAhmZ5YIiieH7SIyBBC6RTWG/oo4i9k7JFJ2TWyLK6wKQ2EZWrCJKh51rpanGFUhmylksker8TeE3KjncSn8nM0ELTLGwEzCPD/uG+L4k6OAsrAgxESC0AkKSP2ki4USLqiEQ+wwF9kua/Kgz3tt6nnl8XLusLZsm/r/b7xC/EwEakc0STse+jeK22puetEOKduMEnNP0mbxPqz6ifOV83iLAZ7SOzApfp9K8YuAEJJOUlWHzxM8TIjskzXitZ4NZMjandRJdyghFBk/eTKYw3m1ABpgueWY5H5H33aoYNEuE7v+UfkuyT2ZK+B3P15bM8cXXpcwB0bnKNkDKlkgyubCeaVGdAYROZ2o75XfOAw+lfNJEZA66VshXFbCRwS4llkU1ClQQUGnUuxu4RiHbBKZ7nAdPGsh3TQD4jNjFsIKufR4gPdUgUnCTDNlq5oEY7zx71mfArnwkV3Y0R3nUwA2td9bOADOsQT2HY99GGN5OWPoK4cjjpnArBZb/1cEWwN5PArSZob5oCmxkIAPs+FcLWyiM9yjoKqxGGYXF1PsURcWiAM6B4s1JfCwCr25IDBH89/EzwZK0mA+5ew+LuMvTK42D2B3HHTGigoyOo6JcJxQPj3Erj5EAEHHaMPgTTrHlmu+XaMIITY7h2EGavgd1Tb8Tpt9teyjD5YCuwvEIneg7/l18T21dEaOLuI8otY2/9yYdNROEtI5fkH4zDEZVioJjhkgRYMb+CApbJLNb0w8FhGMeOIR/1k7/VCyRjDKTzuF+HlLrehkZ2PVtkmUCCEdsBLBvRZliPCJ21YgsXNNDBIo6mGV13R5XqGTKagGkUD9OjMgmW1NRAmIdxoYjAOU46UbMQwZZwd8n9lloQ4wCy1J+Ky7fVEC+6WL/y00Gb2bYvJZNKTpiI2xWlPMMqal8KobWGIQyYwSnHAsJZE8nM4D7XSFzk9n5kzkgOh/S2f3Lz1tmFtW+9oL5EM0oN1s1XtEcK6EyB2xmIAVMLq+hpxpmPZ1HBABmQ8NMlE/YOMpQ7fJAyhwpPO2vCPpk7sPrCcg2vWNrseqTMzLjMviaL9SVDmbToOg1MalcseoVaHYyg5koTHc5kFPQpc8V0/R8gj113G/bxns1eiuElXsrDG7OYAqL4c0aq/exOPwwDVN5EDXaF86fClmwof0OVI+1zz0ExMXL5Rw+Tgl8yvFkMCR25q7ryyC+UwRwgrsYaYP2whvNScxAuOQkHJ9IJRZ91XGyFqyNIornb7XML0EJ8L3I+MzJMR2AiBprzZMRooJh80ETjsNoOZUjKDLZHuL2UctkRKK/W2aOUE9XBBZDJCZkNsQr6ZBtGkJpc72pXeZWn54ZY+AItqcTY0begVpbBlAeMLlcJYDL/S7aMNN8dhoho1rKNbIdYc7Ev/m7AA65f31OJt83fNRJyycKiXlpRZ8pDzAoYbWWmYjbJtk/KcyoKErgJobni7Ut+sgpFect16+VRDF8Z0UqAgmYdDhbLZuk8HnSIcGmAP4xIpHbK8ywTalakZsgoFpQrWckHwl0Huqku+xpV2TfzMIQdwOumEeZnT+ZA6LzJWdibboM0XYW0hnXnIpp2vJd9xpWvAPrR90QehdvQK8buF011P4JaM805ekBYIcOmBqg5/z3hUN5rzW/e7P+YFY7cJiulT6aJyTV06sZ9IkcdsFifMjnQVKLNcpLNlAWdVzA8jWg2uGTPGabAC03UJpAlQ+b9wyFQr6i0T9sAAes3Fth5xecz3lUe2dv3ShkI4XpksbaFQrVDiBf92ZCCTxd37NinlYPEXbk+wIBjCirfNZeCVwNwZUuMUCGvM+OQWvBjlE8XWAVylHOh+NHZ9JafBcW8lguEDP6yl01K0r/PgGh6EQsHESj+SzUibP+bmEkVJofivxYAEnRmElqSyuvlphbQAKEphbXYPbuumUmDHlloi9Vg+gzogLoA5L/CY9DlwXjQ2y5LS2nd4V0pIkAJezrEiOMgj9NvWi2MB1bmINTPcfUfvE4eQCWDqXlNsWNEzwwbDFLfMsAgkglR2NZF+KgTUpmS2mmY/ZDslL8/xZWSIzvTBMf+8F1GJEtTDjEs0BpnGLofdwQ+KzSinz+Ig4C6Jq0lPXjEXNQUapLuUow49Q+7wsVsmI7P4c451L0PwsbBZt7AAWIdmH2vI1tAlJwgpDuuMzl60vmgOjOyNkwO2I32VLOp0rGeZqHcFu70RkLXfwdeZ8eqjTQsxid7MMOHMyRHM1Gnq7lh9qQ9yMK3r6q1piMCjRXjGGMg554/yCzYdAMyZ8/xBFTuV+JXU4w6xo6d7BWY+XIov9sGvK+GP+70RUNTGHhaoNdf5+jPKqxfi8bzW166sHEzpsc1i/W0FOArMbkoIXr+fqNDgKLNwfGhzPfKh/Z5koXyvKJJPVEh0VWedYoMhasPcVusvHgyuUEFyLlKAumRx2i5QJ4YX+YGD3G4CWEFcczygIAYiXHzMQW51lphoNQQt3XLGYkjLvmyCIVQpJNyuCbrvcFsELIRr7MbJzK58X+VACH55zN29+1nKsFSyGd0aPfEIU6dJ2y4fuHFZcJYDI66TLAqFLl+DMzceHEc3g/IgUgsEMmKFdOvugVrB/7pp8UpwQG7YajNQats7CcV/IMiiRb0VWmKmBbNo+2IshUam82QTKZSvNl6J9W7p4q1S9GKzID4hh8UhiLdsMiw9lZv1hah9iG+rfOveuI4wNYea7GuUmRmeM6kkIrBYTsC567tmAA7O9t87SBiMyY4bqGNopjQ2xg/5xBPF5lSyqFTn/wd2kuKGRj1zaF4jRz5QKJO0+vudzNgOj//J//gx/4gR/AoUOHoJTCu9/97tb3RIRrrrkGhw4dQr/fxyMf+Uh87nOfa10znU7xMz/zM9izZw+GwyGe+MQn4tZbb21dc/LkSTzzmc/E8vIylpeX8cxnPhMrKyvn3oDtMj0dOS2wuVAPES9sIR+RUj4PT7lj4kHRuvGRZfL+hfMKP2yz9VKFrLRwq4X/bP8EtudZIlbazaKFLQm0XEOPDIqTBrZPKIoG1dE+8mNJW659E/nEkRWQH89gVwoUwwqTXcCOfyWUxw1I+xD84R2E8V5gukNj+csOk33O13XYAD3nM+gWwOZB5UFRa3fLiz6SOcv4zNWqUVsUttfK8OYy67/XdfBBauCBJe++Gw+eokJu2uPrpOOxAEK2H8BDz7/nc9Gio69Oi3p8qdlAmlQ6hqFlSkJbqbVy2wTQlQC7Sn0EtJS1DMfn30rABfhcUK12nmoek9A3nTJYuqYveQCoCb4f1F25SCg+9skKLBqxDxEf4mkJMApwBF05mMpt8XNyMjfPLNYjVvYUf/N7yfYwkBHgUtaf3dckWG5F63EzRHldMx6nb9AOqPviPpQAB7OhpqJ4Jplvl2q1l+/RciYX3zOQ6V4jr5WMlMsQczFxdBmbdWW/MkiT9eV+aHrKj40wMSoLOM5Szma7LLXb8XEsgX1lRtWba1Vs63Y3nZEhCvOtG5l2wVwhTiHnGmHGr7nczYBoc3MT/+7f/Tv8/u///szvX/va1+J1r3sdfv/3fx833ngjDhw4gMc85jFYX1+P17zkJS/Bu971LrzjHe/A3/3d32FjYwNXX301rE3G4Kc//en49Kc/jfe///14//vfj09/+tN45jOfeW6VP92iOGthVLMX1/Mucl7PuKdZM37BaDRQOkxXS/QOjOB2NEDfBoZEtGMjQ97zWt7VBtWxPoq9Y+R5A2c1sFhDVQrZpoKuADPR0DunHnAxgFAeVKkmVSRfTcdoNOEEe8odqiN9n8snA5o++eMBDDBdUhjc4Z0kT3xzmrb6eIH8awVcDgzu8Nm08w3nd44BrICP7FAhsoxDgKdqtglIwTNHtYZu0tlYfL0Zs2JNO8vo1yCeKOkDFA82pQRKgJBFV55SrnzdIsMF8bsAYmR4MjsbR58OMdbROTl8zoDIhSMVnOmEpdNWoMP35yjDLSJ+C+XNnGyG4O+j74pqfzYLaJBoa++EFder1jhFwBvqbAIzRELB5yPnFZ5QYLbw55XFg10jkA2HxFYO2lKbNaCt9e0yKm0ToXyD1n22iAAsMqmlNHdJJ/zWWLtOOXw/9g0P/kYMJrJRSsSZjfyp86aiaGb0IHK287pvc+rzWcA5Xhfq0AXRpNIBwnwPjj7TTTKVWQYpTTIpFmsUHfZtHtoVvtMNRaY1pgloUtmyT9hM5zIV2NIZz66a3a7Yv/D3NFPfb579Sgzgthywz6NYOj+vudzNp90//vGPx+Mf//iZ3xERfud3fgeveMUr8JSnPAUA8Ja3vAX79+/H29/+dvzkT/4kVldX8Sd/8id461vfGk/Ive6663DJJZfgf//v/43v+77vw+c//3m8//3vx8c//nE89KEPBQD80R/9ER7+8IfjC1/4Aq666qrz05jtAJ2wOM4ETTTjM/nTWYqqA37k51t20HyZU8hWDZr9fnunCofJ0QHUsIYyBGcM7O4G5ngGtZpBOYVm6jV4sVChogJ5ZpFnFqOxQbaSwbHfkQbKEwrmyimmdYZaFbAloCvtm+dUdF6eXORXsOIkUO0EbN+hOJL7BGo97ytUrALKEWyZHCqrZWD3/3P42n7yfkqLDbLNHNUOh2xTozzho4WKleCDoDRc4WL94qne2pu/VKPSeHTYFQ+gtvavy7aaOyQjwyIdVzkkHyqARM4pZAAXDqQkzskiI3DY3Cbu5ww82cEmCuEro1hRCJaFFShn7WXTnc8ZxBeF/9inRc6l8HXTTzmVENiMLnvgc934HTydbq5z2yi0I/QjZ6le+moFV+qZzwVHAikCsrGLZhQA6J2ooWoH2zOolrMIRvhwWD71nkPto6k0nF9mezqBAqR6ymfXM2DUOrBX5qRqHZYq50UHILSYHUoKPZrpWLnL+WXSdab2EWCRMXJ+LvF4K3jfmmpRYeFrDca7DQZHLKol37hsQuH8N4rtk4klGSwoIJ57Fk3YIps4Cx9zEvtMtF+CYZunOvLRITzHzdTXF/DmZwbizJJCBXNdMKu6Au18R/y8sUlPzj+HVqqBeGgyoW3C7M45AdKl75kO5myXq+igP8cVX99yj/Uh+vKXv4zDhw/jsY99bPysLEs84hGPwMc+9jEAwKc+9SnUdd265tChQ3jAAx4Qr7nhhhuwvLwcwRAAPOxhD8Py8nK85oKI6vy/3evP5hadKJMWjX6qcvn6qQFGxjMomkDrObLcAoPGnzlG8FFmfCSAIWhFGOwYwzmF9S/sRLbqtVC2qXwWagVMdxI21nqo7uhjz5XHkY0ACr8F4K9bqgGnkK0YVMtAtaeBG1rk60D/CLB4C6G+bOKzYQNwl4y96awGhocdRns1ekcN3MBCTQxcQcg2NepFYLrT/6Zc84usrgAz0j6vkgn+RTod8Oh9dITWD6/oS6QCkBPmq3jkCbWVs3zFBTz0eTzNO5TPzsCcY4iBAID28QRAdBxt5TUy8KBD+BhFH6Qw7tIEwAu/y4NTLvtzxLlEUWlHX5BQTjZFK+psy3wS5WTBAdtMBYvQZUe64F2ABfbx2Lg4x2ivabMtQcoVG5QoRVNhsWpRrFqYsUW9lIOMgpm62F9QrLDbSRlJnFVmc4Wmr2N9sjGl89l4bAVgafkXcZsYVHBT5ZzQqQwl2q2bkBdIRJZ1o8u2mHRUGvs4n+B97djkmo8I9YJCPiJMdhpoCzQD3ZqP2cS3sWsGbJmcEUyVodxo4pLgh3/fZZcCSOb6xmGPTKUALqH/sonfFMVnRAHFmkM9UJ6BDP3W9GfUgUGpThuAaIKWz2R431pDt4tmQnn1wJ+Xxg77rkMv3FWms7kP0fmTu5UhOp0cPnwYALB///7W5/v378dXv/rVeE1RFNi5c+eWa/j3hw8fxr59+7aUv2/fvnjNLJlOp5hOp/H92trazOtaCqcrMx6IUzE325Vo4jnVw8a72FmMEteJFMyqgV1wPlmjAlTfop5k0Cdz77y6p0F2NI92cm0c6trAjksUtxWgISHb9P49k/uNUXyxHxU8jX3+oeP/vBt6CFBG0Jq8qWkQzFYOKNZDNIghlMtTuCLH5iFg5fIpaD2HCaeuu9rATAnTZW8iiixL36I8nIEyYN+nLFbuZTA6lBycdeMPofXmsrDI56HN4TiPeLK9WJBTP6WXZ7ZElJZOFD8rR12nBbflYEoIEWxcVvterMz4N7oGKIQ620LoGganwUTHioQjrwAxDyUgF74YPiEfhUzZW5kMVtzxY+136WaKLaH6XX+T6KsUgJtkxbbMwe49DQCb+tAZheERi819pg30CZjsMj5fDZsoHCEbW4AIG5f0fK4ZSv2kagKMiuxQ9JkJY6cr8pGTpTehIKQ44CgnjrajwE5oJF+uWVFGvrpbF4SUrmBrv3CW8Wgqs8L/TExR6b/VykUlvnMGMbN0sU7RoTnOL99Vvu0BVJbrDtWCTnO+IxL8xfrHSom2CMdkCdhiO+QGLrRxWiqfY2iDUPd1MOOFA4y5vuEAXpeHXbwAqDIyLD5rAfArG8x01m8EyhWHqTwZPs5lBU3pyJ5oQhTA8KxMYd2N6QUUBwV7jjdzd1Vl7+Fyj2WIWJRqDxQRbfmsK91rZl1/pnJ+4zd+IzphLy8v45JLLtlaxnbn0HmYa9JnYrvS8o8R4grvUJytaygNn59nM4OrDNzOGmasYE6Eo9ZDtJWzGs1mDowNnAGKkyoqZXV7zy9eGnC5gwrRZxSYFmUVXDg4Vk801PESGFo4A0z2OPRuy2EbjXzDn2BvCovlm0yMHoEibFyiMNnlj/QAgOkugs4cesc8C7RyL9M64LJa9GBNVyoq8rRoetMdGQ/OWuBBLmTsjB3MfGSo5Qc1K29LN/IHhJgDhs9S4ut0g7RTDSwRszjxcFJmFoKiccwO8f1s+i4CLmYSVAJNMRyfWQmbIqxYsZhaTBZ5bSeMnsuWDrvcf/HUetmnpxL5XSjD5UCx4fs7giGk8loKi19KYborR72U+7xVge3iA2xh2C8mOMbXLrFXlrxDLnmgCASTnyhfhf6KYPE0CpJm9UsAKfKw1la7BQvE86d78K7sI/l3K0ov/D4bA/kIKNY9OpM5fuL/4VqeK/XAA8YWEyYBrxPtkvOd0uecEyuaD8V1TT+VG4G1AEu2AKplhXoRmOxSqPsJdPaP8/PXBnbcD8ysbfEBEptDyexFM7EEZzNYPRYr/NC2jENHXIZz3vTO5e6Te+zQHThwAAC2sDhHjhyJrNGBAwdQVRVOnjx52mvuuOOOLeUfPXp0C/sk5Rd/8RexuroaX7fccstp68sLyylB0vkA4GfDa57mobWLTQpJPpmBFhtQ6aBqHRdEEOB6BGiCOl6CnEKxWEE1CtkIqBe9+alY9/4/McfIVGPhKz5VPvUcKAey/WNoHcLUlT+7DBsZ6mWCWq68L0Djp2L/Ng1z0xD1AlA9ehWrjxsBBCzcSshGQL7hzy9zpYPJnM9Ku+l9i3onfflNT6Fa8ueutfsvDJCm5HDd9XVo9aHwiTAhSVzmL5yl9FgUpYVbOe84rYT/gq4S4InO1MLfgaONpFKKZrMCaMrwCg7MW44bYRAUfkdCqcF5ZogdQmUkkK6Dr1anLdGH6VRzSsxtDtOXJiG+95afC+Uqd+HVgpoJNCM7yEBBsTNrCJ0PisvlGlCALbV3llaITtDOAM3QpHPOjEpMH/cdkuJuhWILJctKuNuomWyCuD6aj5RqgRkGLhx5RVohmwRAHuYIn0MXn1GkUHYJzk3lTWEtMzCluSBZsgiifOJ5nwm7SXP4VCAssnYSNMbfUWuMqkXEHFP1MPWxPE7EFf65Zh+lZiGY0zKfNoE0UC8gBR0IU3EE6E6Y4LjfAqBnMEva+87JNvE85VD8bnslKyrHOQKnUJwLzCZnPr+rhI/oO9fXXO7BgOiKK67AgQMH8MEPfjB+VlUVPvrRj+I7v/M7AQAPfvCDked565rbb78dn/3sZ+M1D3/4w7G6uopPfOIT8Zq///u/x+rqarxmlpRliaWlpdbr7pSWn8KZpKPQtizcpNAsOCCEnaPSULkDBg105ldpu+Qjzpiap1EGW2t/3McGUJ5U0DWwfoUDBhau8GCFzQs7vqCQH8tgRgr1JANR8OVp/Onz2gLFikJWWm86G2eoF71pptrpMP7mCdw/LkN/fgilg/NnUBr1EgELFs4pjC4mDxIWCDZXUCHxImWAKyn1mUIClJoVCM1c8KMS0UEhBbNadHLl3aa8NnVtq7yoWNkfpGPeYEXh75N+z2YPzf5FGSu6kHslVN/mbXPLTJGMTnjvHc5T3aWfyxY2CILdCjv7LvCPDI4EmJLNEXWJQEl8H4GfwswdtiKf0yc6qotxTZFRPnIO5M1Ajg9oVcm/irNF21JFZ2sJFPINCqHgYu6E+3T9TVpmmu7fMxRMBHUAunOGwTP7RvHREizZmFrjm2/QljHwjO7WMUymxQRUvY8NxWNNlA1JEcUxLjItg+wHvlf0cRLzmsGHrtO5eeUK4gYgHtaqPKhngNsMgP5RX2Y2DtGXweSqyPvoRPaNzcXUnisxB5rYJHSfsWpBb2E8Y7vkxgHp91vMfrLLVfqfRH6vu8p/CABsMJmd62sud7MP0cbGBv7lX/4lvv/yl7+MT3/609i1axcuvfRSvOQlL8Gv//qv4973vjfufe9749d//dcxGAzw9Kc/HQCwvLyM5z73uXjpS1+K3bt3Y9euXXjZy16GBz7wgTHq7Ju/+ZvxuMc9Ds9//vPxpje9CQDwghe8AFdfffX5izDryCn9imbsNE4pp5ufnQXvtMWEiCWphJQhuJ5Dtu6ZnGzVwB5qQFbB5P74DPQtMNU+R9FIo9g5QbVZoJgobF5CcLsrFDeX0LWCua2IC1A2UnFnScZHJVW1P9/MLjhYAlS/gasKVEsEO8rhLib0bsswuazC5IAB5Q7L/9DzydYMQOMM1YKve73o72MKv8Jlm97R0pUOgD8s1lPi3t8A0i9A9n845R5A9CcCxPeRDWANInakxn9GxoMVuLRwxtBopMU7JqxkVig4UjMroBrvREpFyAoNtE4y53Ek7dklcGSTDiZFCxjh3C3nRvTj4S4I39lcBRNHUqA292dA5Q6ohpKeQWSoOM+SYuAiWI5oYpFgRyiMLsCQh5XyNaxge8cdJrt8xZX1yfuavgc7zKA4E+oUTksHfN+iUYAjmKkDGQWX+XJIU4w+ckbBKA88mtJHmMWIpwkgEylyGLgEbBzS3jqFXbAu0tcn9oH2wC7m/mHMRQHwcc4hncY/9k24Jzvc1wshuzbjJsa3Dsg30w85qjB2fQDp3rwpTrnPgo+VBcC/CdFc2xFFgGrITwwHGOvb1PS9s7HL/LKVjRGTkyrlHz3lgN7RVJbLEUPuXYiGrIeqNacY+LAfUvTPCp9Fxig4b+vah+73TlrUCxrTZX5IxW8VvKO9lh2PYO5OjF274YiAuhuReleCormcH7lbAdEnP/lJPOpRj4rvf+7nfg4A8KxnPQvXXnstfv7nfx7j8RgvetGLcPLkSTz0oQ/FBz7wASwuLsbfvP71r0eWZXjqU5+K8XiMRz/60bj22mthTHK0eNvb3oYXv/jFMRrtiU984ilzH21Lzoat6cp2QdHp7iGZjDtRJ102cI1GfdAhv73wETm3laEYn+pWHytAOUEt1bA6hx3lwKZBdfEUUEBxc4l62SFf02guHyP/1z7qBSBf9wtD0w/HcWTA7gNrGBQVbjnRh8oJrjJQuYNdcFDGYeFmhcluIL+9gLtijIUb+smXogZG8KzI6EBYJAsH1BpZ2cAWPhlkedRg5X4EOGC8RyHb8LvKZuB9mIg5YY0Y5r2dvlPsfB18oWDIA0ai4MCqoBTiMRy8o2VnUG/CgVeeDHKYZQlKLq7zNvTbGJFp01O0o2NUiJ6R4d7SF6NEcih1abcqnaVjqLiIForX6uBL0qIwPHPXAjkqASPZf8y0xMR4EIqB0s9bf8gywt8MhuR10gxDGuidtJguG1DmFXmx2mC6Mwt9rmBq8sW6BEL83NTeBDPUIOUPeWXHXM5VxDf1x12Eg2tDX+sqsQaSJZJsQQSmQkkyOyWv8Rm0fbCAAiV/Me4rBmWlijl8+Pcx2rDDbLR8zwLzJKPUuG4MaKMPG/8dwHHXLBbb2WEBKWCVWbmZVOPBERDACWfSDvdiUyKH0oP8GuLyYGqzvu11HzHqzJaITFirLVwnIDl0h++c8exX09MwEwKWE1j1m5SwwRERnpJRdZkHZtmE0qYglp3aHXM63YVyPhieOUPkRRHNT3XbjqytrWF5eRlX/sKvw5S9be8CZkYmbKfHu+XKRamz2+46sMZdqWo/9Cz24gnIamCqgcLBHM+TOUkBulbRZ8YdmMJNPYDRmYMyBJM50D8voF62KE4YmCkwPmix9EWDpu9Zjmpn8DPKCL2LNrB/aR1f/vJ+QBEW9oywudqHznzWayw0yA4XcAVQXroO95mlGG1kJsDmNzUYfimLJ3RTBjT3HsNWBjr3x33s+WiOYw+1KI5lqJYdilW/QtqCPPCqFagXHFmY8WF/oEZ5xih8zuyFsuk9ZQRVq1YyRiAoaZfMeZHm5908R5fBl8nvpXnMTBBCotMizsrJTJOjJkfKRCaBF+QslOu8smalw6YCVngRCIW6ekUko7VCfSrCdEmnOSaUq8/VoyJgi79TyUxhKg/sGGQ4cX/ibMVICi7+LaLYGBQs3lpj82CGfJTOodKW0D9uMdpjYkI/XVNsH5trWAEywwQgmNL8ESDeATk4YZs0rtynSoLGrK3wI/gRDu7yO37umWGRCTS1DeZd4XzMiSV5XL2JmGKOpci6hvKY+ZDPuJl4H7AIxsN1nFG65bMk6ulTKlBsHwNI9ndKYFm0nYFv+JvPSWOgpsTcjEdmCIDV9dnivteVd+63hfLnFWZAuUKY7AxJUQMYtUVqozwkl0FjnFvcN9PgZA7vkzTaZ1KSU0qAUVnPkkphnyBXJIbOz9GwKco4jQNapk5bTfDp616B1dXVC+JywTrp7z57CAsycu5OyMa6w3c/4LYLVtevF7nH+hDdU6VFgXdBSweonFJmXSN/e7oyzmbExHMtdzsAfOh5RsDYwO5sgEvG8VqXEeAUTKXgKgNd+hXHjnLYEyVso9FcPEG+asBmn/5tBtOdfoEbHySfKHGkoCuF8UaJoxsLUIWDygmbq31gw2BpeQwMLGDDuUJ9i/F6D9VOh+r+Y/SPhN2g8uVOLm6Qr3ugZWsNjAyywsIcy3HskRXMmo+A2/1pjWrZoekT7KLXAm5g250hFnr2FYq78iopRxWO5YjRZdx/bLYklaKDgJYjMRnP8GgBYuTizTtwFcozU8AEk8KW0PxwLZsRY1OcB0lmmnL/qODQHXOvMCgWUUYxB0wWjjUQu2k2EUmTGIup4XfYkkQSfaLIO/+yyHPNbC/4O83yTUGao9JxePNAht4Jh+my9s6wyu/UNw5lcQyjhHHQDQVQ4YME2LHahgR6kZ1xDCqUYBQoHh7qzYoCDM3aO8qNCtprQgIQKrYrnW2GGJUl/XakiYqZHe5P5ahlZmxttsLYVUu+j7icWU7eErQU636ToAITxt8rSoCDTcUsPj2BeB46fSB90VqbgU73KRsCDgI4z0YUwTxHCvrDjtUWAMbm59jPygMWWVf2JeLy/flnPidT3FAw0xbKz8eUkosG4YNnOVIwms51eHYUYmb5lsP2XL7uZA6ILoScDjRt57ezhJB8gbZT5oy1Oy4CNjhRK/KHq65msNMMdl8Nu5dPzSQ0Q4JZz6BC2LkZ1D7r9O19uMozQ7zzm+71kSDTvQ6252+ua6BZbrBv71qqlFXARAN9h5O3L0GtZ8DIwO6toScau/asQzUKLpwxlo2B4miG0eUN0LNxl2aOFCiOGW++umgMtZLDTBSWvuT9jLKR8gyQIlDhfJ8xqOFT7q3yTgx8wKtD8olpwjlnYnfNyRih02nb3T6X0SfMXqSDNBGZn3i9Q2S+ePh1lcpmcBSdicPiL0FFPMVcgKwEDhB9KaDaoCRGrgXQwuH+rdQBSpQb6hyjn2awj5HlYQVlhFJm1qLo1JWLFs/M4JiN0WHFeoP+MedTO4Ty8g2KdW7KdEBn3O2HvENsqlKOQ8J9jhtmkYoNBzN1KE8y3aDakUMZkI1cBEMyao/bKwMXlOwreDDEJ9xH5guJmZN+UzxezA7Je8S+DhFWPEaENFdc7gGGB7gq1YnZnc69gOBk3BBM7Y+i8H2mtpyZJ5kz9oWS4fy+D6gFhiKDSMIhvOOw7HNIUUxMWa74BIx+jAJA77fnFpvoYuReDtSDdhsjcyrmpzMK0yUdNwmUhfxa3EfGRzjaQsWEjjynENYiM+VDgtMzxABcMoMzLQMXSOZO1edP7rGJGe/JMhPknGY+yQeldf2pHpqOogAQoet2HrSuM+esC0xh4Rrv7FysKEyzzAOHwsEuOlDmj9KoD1XQBOjMISssmn0TaOOAw33oCqh2EGwPGNzis1tXewn5rgnqEz24DOjtnKCyxmeq3sw8I1QbmKUpmo0cNLRQhQU5hR1XnsR4miO7ZBPT1dL71AzhI+JqBWQ+QqTeadG/NcN0t4Mh+PB7eGUy3ekBBoMyWBWOuWAqJu1sGeCkiDM/UNI52oMfFc8xY2ocwGxnbCA6UgMJTPHf0W8jE4oO7R19Nk1ZeF3hWSYXQJHtJUdiObwRxKit8zM6zsZIq4CrQttj4jsFgEJ2Zt5pq7TD9vfxCrPFiIm5nI04gab/jn2PKDhkO3TmpWR5VHpWRntSQsa1SwsMjlpkY4VyleIxCaO+Acib8Ej7xUyDQloB500ZBlBTgsu1z1ytEBI0hrFW8M7XIRrNj4X/g7MzN32dnilKdW2ZWuT3oR1+7CmOgeLINSXmhSjThTmhbTBZBT8eZiuc8ZGdLveK2eVqS714zKzxlYwKvLNuxHmXA/k4OFU7Cge+Aija0Xek/Pg1PV8HH6XXPUQ5nfvXYmoEQ8Z1ZDAUGc7Ke1lnY0LTI4z3qAgQG7FhkEeXxHsEQMP9x9e18jiRH8+ml7LOKxsOV0ZqXyyfvBN/TEPhUgOysaTD/H8+uo5S4tbtblzPg1ho2HPkNrpuld+oMmeILqTM2P2mD8T3XQXWMVOcUs6wG+neM+7Aaw3XaGSFBTKHyWU1dKWQnfRsDQhQWWCFjucgp5DlFtV6ATvO0O/VyA6NUC0Dw5sVyhN+8ZruBFSlsGNhBLOhUV8+gVaEfl6jbgzMrqk31S16tFDekUGXDcgp7Nu7hs1JgfFaD01tUB7OI3ORrWtgsQGmGpuXOWQr3lcJCr4dxoKWm7hALnyNUJzUUFbBjDWykxkodz6qjP0KBBjRFt40RqKTFKJfUbbhcy/l60C+GY40acKCHaJx+NRuXQkwBbSS8XX9TVqnzRvvH2HC0QvR/yewOuzIqadpN8uLrsxDJP1HpKOvVJh86rf09WAl43LlQ+wFizDLFMxggUELt3e6Q0VWykx9OXyorLIhU3Y1I/pN+hApUWYof7rDIN8kTHZojPcYrF1mYEuvtJxBTAway2ImxPrjKhgoeOdoiixXsVJD14Txviz1jwJ6x5oIBNlHRIImKTLE+5QZw2f9HcbKOzGnL2XEUpyOoR8YOPPp7rHPwjU+spLzCVH7nlKPMyPFvmTMcmgV/LwoAj7At4tNTgCgGp/MkcGjDRGd3LYEftpsF4AYWRnnFxHyTYd807PMzPbFYzrEPGFGp2W6DoCb54wTYIj7l0FdNqHWs8jPbQRY3JduxriETYPtJYCXmFlqremkVTx66EILkYI7xxedtSnj36bMAdHZyoxF7bzKuVCt2/ytmmqQU6hHOeAUyltz2EXrFfJEeyAwMX5xWvDsTRN8ibKVDGvHhqiO9uF6fkVr+sD6vf1ZZLRgkRmHZtnCTQyKvAGRwmSthNYEVWsoQ2g2cq9saoPF5TGOHFnyGORkDqWA4W3A6n28Pb9e9vcxG9qnCxirAFYApf2CoFazeLzEeI+C7ROKk95sRllgBGQ/SYVPSixsSCYQwIcQB98e5fz/ZoyUg8UGBT9Nyj4qqs6OmM9v6gIjVh6sAGJ0UNOJaBLbOKbtfQGSkfD3pQ5IkuA7+k2IXTz7tABIPkV8XQRanh2K9Q79F4+YkOyASUol+nwIpoJB1yzfEr63VDDOANMlDdvz/ST7lqP5WPK1BtWCRrZp235TDGyC/0uxagGloGvb8v/wfjs2HnHiP1SpThD3V8nhGRB/U3sORH8VHg/ZVgAyzJ+VeDalqOylv4yZUtukRcGxvEkh6C0gLgGWfB/aw0eWNP2UmNAVqs2ykPDlCSYww+CfGTKTfu8bxX3UAXsC7GobHMFDLik+niNGWXac7vnZiGBfMmSElkmZ/en4mVMkkn4G4cg2Es9SBLMdkATZRlEGA6PExKpkspvL15XMAdH5kHMBRTPYIboAoxIf6rB4aONX32KhQr1AMGsmnEyvoAZB2xOAwiG7o/D5iawCHZhATTVgCPmqRrUDGNwB5LsnyCaAyi0a6xuggklu0mTQhfUAbGChMwezGew2mtDLa2CUwVpvErNrOTYvAlzP+SSQxzWKvvdvWvp8FnyTLMxIwx3zfHq+pj3DUQDT3YRsQ2Hpqz4jtcsp+QoBng2yKjhMK0jnaMmq8O6UwYfP5OxZomLFA6NsEyhPAsWaZ5BM3R4/v+MNLAkvvjLHTIcllBS+qfxv2JdCIYE11bQVbGuRDgCoFfXT8d1gxeGyFA7NoeUcvdRyYmWFSNRyvG4lyBP9xWSbVCZ8X1cyK5cAU0ymF/olKvwW8Gmbf6SpKt+k4A/lEzJmE8J0R5buHcCJz2WUwKMtNSjTyDcJi1+t4r3GewufDDBD8P+heN8tfkKd51VRRxl2xrgFuBlIWQi2RUWHYpn1mceFy2IgoDvmom54frynSuXw5+UaO80p4W/mx5nnAoNJbROLlPo/+Q1FEK2YgVQRVEtzqPTZAfn0B2biYAuFfMO2QL333UvzRQL5eIaZQuuwYglipKN1tdDZFPGfpjOmAajzZxFMa98fukpjJcvz36to6r6rZO5DdP5kDojujJwNM3Q28+xc2KFZtxZ0evqQAAMUvQbKODS3+PMtVKPQ7PAxxlQboHCodzfQaxmaAxWc1T5j9Cj3x3xU2u/y4Xf79cRrAHWsxInVBeh+A7NjisXeFESAO1mCGgWlHVytUR5XqHZamMJidbMPPdVwtwzQ7K3Ruy1DeRxQlUI9BAa3AUoTFj5X+KMNagA5wRWBvlf+WI+mD1TLBNv3YdbjPcovbE75yDH+28H7BNVITp4udU80uUSwhLjgNeGgSHb4ziZpNxpZHGZWQph5S0HqtNuNrIFgaoD0t64R/SgiUOuYlVoskRb1D/Xgk8lj+LdJ7+Mp40GB2CJ9H++nkvKBQvTB4Gu4PSzxrDW5g+bDZZmFE5mCmdVTnf5vm5sV+HBPZYHeilfW2RgRaNmcrwFs33hfF+mzE0wx+aaLoAlEqBczTHfmHuBp+Ci0oMwTa6AQGaIOAJ3FpLX8g7gvjWxHu5yYYLJJjBAAtA7g1Wke8Anr3F88/rb033dNNcyylCsWxZpLDCDgExSSAFTsAB4cq+NxKc77ZvHfCTAHcCTnsJJsHCD9coD0exBQrlqYiYMrNfrHakAk2Mw2UxtlX7VN3WkuKRfmmNgc2JDsVG4YWmNH7bHjZ47HDUCL+VJNeh6anoqmZ+/HplKQggCgF1os6fPymsscEN01IhmH08lZAiK5W95WmXF3SWjYofrSDeiLRmgWHLKTGeplC7VhoDIHlTm4pQamsMiKBsoQlCFkJzMo588xY3+QxU+XWL/ML3Q7ljehFGHfznUcXx+ibgwGF61j4V9yEClQozHdRcCwwXAwhTEO2DfxAGczw2Sfxfo3eQfY8iQw3eGrvXGZ82ecLcP7A4XDWZ3TyDf9wpuvpeiwha85EIOmRsW8Qt5B2qcVyEYqKlVYvyrKqCgVHKCjE3QWGB+TdsJQyfen6SEthl32xqXr4wIrd6UCHCmkqKHWAa58rWQZkBZpBk2mSmWyn1PL8TYU5owHMYkJCPXoghqbvovgSgMyfxUpz1ZEUCjMNhIcGFY6rMS5iK5y49+J32oLTJe8c7XtIYJQzcddIJm+2DQGMZ7NQHsz7EAhG1ssfHk9mH/Ih+krBV1RbH9kBoQi3qLoxDgwoDO1uFah5UtDSiWgQUKxS0BFCQxFhkjOHQayOoBQHaITA9BgxR2dvh0w3mNQLWmfXFDMBw4zb3r+bDdToeWLxqBHpgfguaUCY8h5lnw9UxJLkvMg1I19cUzl62dqgp462J5Pm6Gr8BwhbQi4voqxVJh78fHh5KciCzxUMDlzqDyPhUl14Q0D92k8nFUwUa1xD2MTxyRTnnV0gc0T47ltX9C53GNkDojuYumaEdIX4T8GOVJRng70nM0uJGp6H5k1XJqgmmao1wvoSqHeW3ugsbOCMuT9eTKHPLdwVsMYBzOogYvHsAvWR3OV/jwz2wcoJ+RrvkImd+hlNYxx2LO4ifFmic1LLRAOcVUWyPsNRuPC+wBp2qJwaKlGveDNSGXeINs7Rr0IkCGo1Qz92zXMrgp1bbB6b7/61IsEVzg0A2Dl3hqLX9Iw45ArKIAiby4DXE4paSErXgL4EFjK/PdNn+LxAy73kW/1Yvh74BfvajkkIyyRolKEcmeWhJPkRcDRHV/e2bLZSjBWEgjNBFLcf7p9TddnRYbCU+7rzGxW3M3bdK8WUBK5V1rOrQLksSKUIcjKIZr8uiHYctxbIf/8HQF8lpkERcyESXDZO2EjEKoHYS5WiXnxfjAK5ZrDxiU9NIslendM/I5/YEIf+dBrNl1JR9suGJUMjer0VzK9qlM/w0G5SidzD4ApnGvGYKd96C5UMNeuUgSFNoDxZoho3pL+RGzOsYWK8wYIAJX8PaXvS9cfyI97AnOxCeE9aZ84UwKJOC8lyFCIJ87XA+0duAGo2sGW2o9XuLbphXniUl8T0nzSzOaKDNNxPJhd5XGIuaYQzbdcH45Si4CJQSelurfWWrEZ1cGBXfZXjP67C8RBwUGf4+suquw9XOaA6J4k3R0odf7vXn6WjBI/oaQJttE+8itL1IPKHdCzoHXv8KwrhWLgQY3ShOlaCXuyhF0roEcG1Q6H+vIJaLHB6MoK2YbG9JIKdWNw8e6TyLSD0Q5GOQwWpli6eA26bPxhslYhyyyIFLR2sCdKn106ZI9GRjCFw+AIUO0ijCcF3NcGcRdtRhqbFzvYNZ8sUi1XyEZh8c8ICzcDuz7v0D9GyDYRzVytcF0gmt10lZSE362n1ZfBSzMMZ44xexDYDZcj5tyRprFZYyVNHdLZOZrQutQ+X4v0mQQisY4MpCRDFW+edta68b5PbHqLyebC4s/vY5ZiBjBBcXBWbL5vt67RnCEcjZmtmDWPpVlO+isBPidNuk6AG9EX+YiisgZ8NJpyPiSdP2cAELN1I/jEBKBk+xkWvzpBPVRbACP7kdhSbfEdao0HBBDaksOHtrxXIiIrgoSgvJOvDqLJqem3FRaDDVuols9XsY7k+wXEucHOw7b0R5r4MaJWeS5XiY1UCLmaAqvFR5fItYnbbbAVEEtQxfdn1g+ImbBdBlRLBq7UaAYmZuWOiUWzNAachiBWQSUwIyMruV9jNm9Zb/HMxX5R/vecBTs6aSNdW/chAG4aB87h5M1lCfhSF0BdQJn7EJ0/mQOiCyTdaJILUvbZAiJRAIdZauN8iP2+CbDhkzDq5SouHApAr6g9QCos1EINs1jDbGqYsUZ/Yer9G9Yy6ArYtW8do3GBO9YWAQAHl9aQaYdhWUFr8iYzQ6h3+y2drQyaEJLvcgI0QU800G/QbOSYLgNuZ4X6SN8rpnuNoKyCHTjk6xq92zJ/oGvuYHs+ISOcwspVhGrBh1jv/GKIUhuncHkofzaZGSnoWkEmW3Q5pT7WfmfeDAi2SCyRdOpUwhQWaXflQVJMgmjStTKiLTpv8meMT51niWzuTSKsFKIZAwJQiZdXbGmObFnEw67ZVIjKj0P5JbiRu2kAMTFkZEkYyAlTRpetIoMWM9AFT+jWDULJkY8qY6fWhcMNKJ5mnwClDawHK3fvC5Xy4XB92PQl729qgss0dG0xOlAGZsyXY6YhW3UINc83HfigYCXu3wIfsRH+FZW0QgQWEQhRAnmslIFgbhLmmOib5tAyeyoC6gX/294Jf7xFvg5Mlz3gtT3vJ8XnhbFZkDRiUkqXpYOYuXyfvRwhg3ZqUj5K/RvHOPRrFzzEPuB685zR4n8wsPe/t8Gviw9y5Wi5VhqLTmAAs61yQ8CpHgBEp3B2rI6+SGIOcB05cnHLhiM8o1JT8lxnn6+m553vpSM96XbI/ly+PmQOiM6TSAV0QYAQtcs+a3ZIiCL4EHhFcNavAMoQ8j0T5GUD1xiftNEQBj0feaM0QWce0GjjYAd+dRpvlFjcMQKswnS3w3JvDJM55JmFVoRjoyFWxn2MqzymKcmGDUy/gQ7h/bYxKIomRrhRToD1ylDXgCkt8nWN8oSCHWd+J5cTyBCagS/TVgZmAvSOw59bJs7/8okMgzN1DfBp9TLKKb63SGa1ppNoLqPkT6J5h44YDcMLLwgxoqyV30QqB6BtMhIACcBs/xsIn6KgWBi8QMwLknl5JHBmwKXa94jv+W+p9Dq7/xbTI+diV4kIHwyOGOPyo8lMoe2UrZLiBfzngyMNoIGNA1k8QoHNE4o8I9Y6D41S/yTmRoU8Oim5prIEM3EwkwbKAfWCjso7hXwTskkqm4X7Y5ZZJM4nldrNjY8JCqMDOSUGxSSA7YIilWPPbdF16m/S/gBUWwLjvQqjA561jGf+ifuzGTTfoOibJH3gXI7oQ+RBqAcoDIQrcdo8dcZdW0Hb8PedOUPMEIl51XLGl2H+Ym2LDtGUyo7klPTRYaAqnq8Yzdl9DuWwhH6Pc1+MF89V3gBJlpfBEDuoz2JuSQCkCylzp+rzJ/NeuIukHb0kvpgFbKRimfG9OsXnp7rvFiGACMiMg1LeNBXNaaRQLkw9c2QVMu2wPuqhqTKfO8gq4F+HyDZ8iLy+o/S5hvZOsXzZCjamJQ4urwEAjo2G0CBMmwxKEcrMwuReexW9BnlmQwZpX8lmgVD2a7i+BYyL2aVN5tAsONgCKJemfvFZrFHvbtAsWlBBUCs5RldN0yJs/MK/ekXKMsyshQr3jAkDRRRXvu7PX9OVZ450pTz4yjwIcyXF3EZxoUdggxg8iMUfEPdlZS0jquR7EaHGPi/ShAT4a1lJR6ZKJGmM9wv3lMwVglKM7BLS/aKpRwJvAdQ470xkfTr32vI+zDMA3uFVKArHDEFgINghHQCqRdUCg5sHs6ic2IcFASjryitMMxVHRkD0iQBlsq3cj/WCwXhfic1DPZipZ4GiI7aQVv8LpdgVydy6DiMoHbxnAVX/++SzJEELj0n0rQkAhutTLQclXfk+dYX/n6POIqPWZenC33XfM298UrtPoEmQZ5vF38j+CO3TdWpza75S6nNlETcpANJGpSLYUqHpeRDWDBSmu7jPUr9Gti2MY2tOC2Aac2LxdUjzoTV+wjQWzedi3sXUBB0QyCCJASMfhROTqIow/+7xJxdKvA/Rub/mMgdEF1RaYESCGPGgtX9w+s/jrncWRd1531qUOguvHhloTTDa+f8zv6VWmlAUDZra+FPoFaFxGkY72Knxh7OuewVFGaEZEPINhcJYQMH/D+Dw6hKIFKzTMJqQZxZL/Ql6eY3lxTGazQxLgwk2Nkugb5HlFk1jvDN0o5Et1KDKAApYf9AUzirkaxpmClTjHNkm4KbGOz8rwGxq5Ot+hR/vS+3fvBhYutlh46BGeVL0HXlQRFqcDK7Jm86QDkqNfUr+WsADLSgGBpSyJIsF018nFlRmE3hXTF5hqWC64qzUgM9xFE+oDz4lkrmwpfCjoQSKuouwQljoBYPEZrzIaMnw4Blzh0PopblGKik2H22Rjr8QJ5iESreLu2or6ifYoq4vjr9X8mnJR953g0O4u+ypTJAYWS4BQuqhX/p89Bc7NW9NuidF+n0x49AFSBKAkWAQ2G8o+iax3wuzFyHpIQPhyHAKZ+Kmp1pmWi5HMoaAn7u2BIrVYCKzCVA1Zcq3xWUUmxSBPZvVWsACPGiirbo9blkwMXYZRPaNYlaty66x35YtFMa7FZo+4qGvHIXG/doV7h8X5iizYDKlhawn+8dBJROwdKTmg6Sj6UvMyRZDGMxjTS8BQpcjHk8T58AcY3zdyTyX5gWSLYqCd2mzLj4VS9TdnUA8mLMeNprxOSstsYtSDshz79BsjIO1GYxx2DEcY2NSoCxrTHcBtNODnU0qkPVrNMd7MKNgWqgUilVgdNUUS+UEt1e70C9qrIz6KAvvH5RrG9PCn9wcoG6Mzxm0UKOyBs1mAd3zNIE2DmqpBjntAdqi9zlSwQE82/RgYVRr5CNAlxZ52aD52tAvqD3fuc3+Cv1/KUDGR5zVfYXhYYfxXo0aYqEK3pmUERqjIjvS9H2ov7IAloDGiLHrjofhgVYpfDd8r/g69s0w8EmeOfIFItOvDqfYh8VbN20w4oIfCDuNN2VycCUFKFZCQnlIVowX/GheQ/pf+pCkwypD+zSgqjS3uK5NLzmgthxtuT5OgD90AJ6Yl3x/6XvR2lUHvxFp+lKW0D9uMV02PjqLQkQeV1PFIYlz3YNGFc9AY5NY0wuO0o5aDteR2VCAPOGeHbejchYASbJpCRypmEySD3mVz7KM5lJWZGuWmx/urlAuh4XzeXYcZt4C5AEox9QGIemmLYFy3aFa0JENYofsbOz7xhY+qWXTVzHyKq5b3bWFgXOWsktL4bGNjKfzUWE8t02FmCHblv76ejGAtynieYCpExDHL7KM/J7TN3SYpDgVVHof/X2U2GQw65qhdawIz4l8lMAcHxvEebDieOpAnobxcDNA3IUQdx7OMnN32iH135bMGaKzlHP2DzrVvJtRbvTdkOCIFxfdvm7Wb7fcLyzytucw2ijRWI3GaihFqMY5po3x5+I4jSy36PUrWKdgtPNO2IbQLFlUl0xh+77g3r+W2KhK9JYnGFc5enmDwlj08wYOCpU1cKSgFXnnbAD7dq5jWmVY3ruOomzQL8PZZv3a39NquKM91CslqjVPv4yumvq2jE1SOKTgCgdXOlBG0KuevRpf2mCy36JYURjvVdg8oJGvdzo+OCN41iSwP9qbwqodQLPQUTL8J6X/o49NCM+X37cUpTDTAEkJ8VEeQDIJRFNL95gO50P8s3HazXPeldZ1YuGX95C7VsqEw3cAU8zWtOZWpHNSP+g6KTrugxZjIZmwDqhvEVGUfh/vQUjsiAx9FqIbYLzbbAkN56NUdEcpNz0VI7HICA0ZXt5xPfgYieSOXWGmphVBJliPFjAM33EYuwxTjxFTwfwn/dha9+3MM8Bn42bJpnyPNggs1r2Cz8edrNwh83TdV5EFAhLoaPneSLZRgmqdAI4JZ8Ep65k6MxXPl2DIgNBnAsAz0OXymZlhYJKN2vWRDuzs5MxdzVnWNQcJiCg5uWlwuZjvkCAb6Xic0O+mTpsCaZJmdrXFXIoxiyk1Qn+ZLqC7QDL3ITp/Mu+FOyFnAkWncng+5e/O8nPJVLTKPBNYE8pAhYgv22iv6IxDZhyKvIFSBK0IRIBSwHSao1kvgJ6D2VnBlBYuJ4wP+INhJ02Gh1x0M9bGPUzqDJlxcKTQWA3nFIZFhTzzZ5wpAKujHsqiQT9vUOQNNkclbOOBWR0cuvODI5ilCrpsYFcKYDPDeB+8o7MBqDLQxoEKvzrqachGrQFkPlKtWPOh8qYCig2KeUmkmUFZlfom9CEZQtMDXDmb0pOmE0iF3hkHVlassKL/DcRCy4BEgAjS4aDXKizkZVIaTd8nJYxARCRMlAqagqIgQf/H76VJhBVHEA55hkrRSVx+ueLS7lcAwGiy47aySxqlNsXr+LbhGpmvh5kI2bcMiri+zPbw39EpWDIlYiyj2YN9PErVAlMRJKpUDlQIoZZncIWx6vr/RbOZYIb4O6ANhpxRrSzRfKo9m9bk3EGnLNJAtZTO3GNGMfoohfpPl/1cqRb9+3rBO0pz+Xy0DPeHNLNyvbiPmn76HY8P4IGZIm9ey8chIaYS+Z66mzXB2DE48glOFeqBSvUQAD2CYwbqsl9ngGRpxnQSUAumTTKU0vTZZTmlb56/gQB1oZ+yMZLJ0AjAFq6fydZfIDn3HET+NZc5ILrTsgWMIO3+Zsqshe405W4BT91yz8BwysgfuWsBPAhQCp650YTdi5tQhjCaFKjqDGXhgUqeWaxs9mFXSl+eVd4ZO7fIDoyx85tOIhtWOHF8ASemA9xn71H08gZL5QRF1uDQ0hr2LmzAOo3CWFjncw4pBVS1wfoknEOWNygKzxTV4wy0mcFZFUxmQP9rBtma8TmPShd3tdPNAsoQMPROCnboHbHJAcWKSoelGmDjIh3D5lsKPKeUJ0cLJZ0J84bo69iXcdFjdklcJ/q95cTJC7Twx4k+FcJk5UwCSzpknHYh/N4WXhl2HVtbSt6gvZPttEO5cEBtcIbd4usm2skLvS28co3RTp0IOclmRn+RoJxajtqif2K92MQnouWir1dQcmn3raKzr7LA4KiN2YJtmY4WcVk6Eywe/ipAG5+bFlMmhLaUKzaAq9QpPF66plYYOTNScgy5TI7UkpLYQ5VAtEKM7JLh6LPmnpn4srXwKWNGQzJq0TyqA6MY5nbTU5guM9hLQNfUaa56kIZwtImYPwrJ3MsAVNSNj7Dp+jbFLOkKLdBvi3TGH7RwTA5AntcvM0nzWLYPnTnbWi916ptYR+6zjj9QXBM5szcHHWhsyW0kcyTVgzT3+Z5+bMPbpnOfuXxdyBwQnaNIBuC0MmOBa9sQzvDzcwRa0uRGCw2KsgY5BdsYrI56GPQrFHkTHKE9aBmNS1TrBYpjxh/4mjnom/uYHhng4K5VZNqBnAat5fjyiV3YqAvsH67j6OYCqiaLprLMWChFUAooch+OrxRQNwZ1Y2CdxrCs4EjBFBaUEUzmUJ8sQXf0MNnv4EpC8aWeX8CnAIXFJrvDH6jWDJ1fGMOCm28C9RJQrKZT5Ad3JNYjglcHH6XWXVR54eVFjxIYaDFC4UeUUWIagLgYR0dTcDlonVUFJNDAxTE46CpFV3plUS+kBHrShMeOnewsHRkTh+iLww7cMToIsx1oJYMD5Rf4mOEYqd5KtkeAP2kKYuAgTUNyRx3BFFI5kXWRfcd/8rlmDtjcn8X62sKDoWpRwZYhAqgIPjQCfPmzqVSsC5CO+8hGLo4L+ybxobHe/JbAagvksWJlJUgpHD0mZmSWzPjPrABv3T7pAktp1mEfFxX6usvwsMmx6fu+qIfe76vpA8W6T1tgC+XBnGDJzNR/rsgDqdguVvJWmIal43I82kOABAa43B0MnMP9eL52AbCu2sMdE6FqtO+NVI5kaSj4AMX7sq+cbc8rP7BcfwHWSPg+dcaXGdtsEnyK+P6ijQyi5NEoF1osqfPymsscEJ032dZ8mgWKOg/NmYDVGYHX6e6ryB/NoYCmMchCdFkTgInRFA9pzbX1bI1TaBYdslt6KL9Solm0KI8a3HJ4F3JjYWsNaGB0cgCtCFVYnY12KMLqoJWPaCuMhdEO0zqDcwpKEWzwPKyswWTqzzrr75h4v6WM4HIf/u9zBwHFzgnW7kVQEwOqNZoDlfcr6ltgYKEafwhtPQynz1d+kR3eQShXKCV6U6lLVK3aeVFmABv/N+/kfV0YGEXFJRVAJ+RWOipLuj6bICkdAaK4bq5M4CU5A6e6ncqRnnfJMidPq02d3esWHxggHovAEtMUCGDYNSO1fGJCmyLj1a0nJUXEZ6pxs7qsHMRLkZ/D0VQY7mlLbyKNzJSoE+lgZhJjy+DTA1D/YTM0YSwZMPjw6ngv0fb4W2b+hHkw3js4S8dxCfWJZ6SxeUf463TNTK2x4TnCTAazJR3lzE7V0X8szMdq0R9JEvNUiT5iwNuUquUXFVmP2oMm0uxL5jOCK0eRdVPUNuECaT4ACbxFc1Roa/QBCoBEQZRBon8pmUnTBPF+RzwXIjBk85zCKcErPxfyrLRo4u0AOgbC8qifWYx+N5fShRYbnKrP9TWXOSA6ezkN8DkVKDotdSp+cyZQ1fJdOU2duiYyqQAQDji1tQ6sjX9yOQEjOYWVtQHWxz2Y0gJOYfgVjWLFL1q9owb2qk3Qao6qMTi4fwV6qQIaH2ZfaItLllawb7ABLVZoIoXc+Mi2Mm9S2L8iKHi2KM8shoMpHClkxsGsZ1BWwWUEN7AgDdTTDNmmQrHij/9ApZGtGu9b1Ghkaxr54QK27++ra+EIOiUfQRbAiUzAqEIYrgcTlCjwVuRRQhVmEtgS7UGmd16m1jEKvOvnxTZGZoViGAiYyitrzsfDykz6A7X8Pkzbh0SawpSDzzwtosfk9605EpQp56+RYf7SP0b6HUWfJ6G0ZfZuoK1oI9MmRDdoZb7uOmBHBSre906kynO2aj4kFEFZSf+nOOdFnSJ40al85fy80I0fw+myj6LMN1xU8KTEYbmxA1M/8llgkdUT30mGqMX+afFSCTC2zEJI79mExwyHotA9ATRzOex0bKbJDKUCQ8hMmcsD45enrNhcV1v4jrOFSmCE+9Kk8WJndd14R20P7lJaAFIeoLKZms263EcxoSa3Bx6AE2b0oejvFtjm6lEnESmLQszl1Z2bkb1V4n+k+cO/5xfn4DLTBKQQzNyxPsL/aS5fnzIHROdZZoKaGQ/IthilUz1YYpd6SpEKQSFtHxVAVkFnDqPVPpTyIfgb49KbuIyDHeWYrJUoyxr5SROPn6h2ECYHrM8wbYD1cQ8LxRT796xBL9QY5lW8feV8dBkAaFAEX0oRdABCRlMLlE2rDBvrPTirUNUZ3HLtTVGaYNYz2AFBHSnR3G8TtiTA+fxAulZATtBjLZQ3QYdInN4JYLzbr3jFOiXGRTpXE8Lhr0iai3MORbONb0+2rn1UW+UduVU4+sP3UzopPSq2sHDakDBvC9UflHk8/ykoBBn6K5PatUAGpZey/l7RPCWnDAMdwYLFqcIKSfh7dE0Z0jzA0TZdRiOadVRSfrF8ZjU6jFL0vZL3FGUySBjv0eCswi2w5IByzUV/KI6Ci6ZKyYx1+sPFqDMVwKaKx1bYUiGbUmSabNHuMzZVaZv8kaTPE7fbXxtC/gU4BVJkXBqIBJa43gwumMGS7eJ7tNoX+pfNoM0w1bvlaxTGsR76L+uhd3BWFDYDOl3L7auWfH81fX8dA0xt2+xh9PuqEPPymLGYC0hzITadWVEEvywGiKp9XXwvgAcpYHCE4jyNrGGYB/mmeIZaG5y2n1DcRHZ8jBhERlDMz5KsnwBpd4rFPwdxpM/Lay5zQHTn5AxgpkWjdnaLp/uN/D990S7zTNK9pvve9f3TPuhXUMahqdhc5lDVBguLE8A4qNxhtN5DvbtBvQRM9hLswGFwsw/NL/aMfeSYdihNg6ywWCom0MpHqGkQsgB8OAuqdRq5dnBO+6M9gmduZtJqmJUW2hDq2q+IVPj8RG6XB0dmquCsRjZS0BMN5fzuNF+o/N8hm7QZK2RTYPMioFryC7AtFLIxId9ICREj4HFiywn/vmuqAQFm5JVmeUIFRsIzTAjRahRAEYAUHSNMFpLtccwOCNZId/wfZK4iCg6o0u+DlZCZeGZI12KuyJecC6HNLRYRQpmgDVr4NywMJsG/CW1szW9WqApbTHectRjwSsv2xO+6ykQlpdwChAqReWl6yh+yGRSwYnAZGAI+nwtIO/sIVriOQZlK35l4JtqsenHbKTEG7LwtTZQxd5FRMaVAq3nCPBpNr9L8RQzwPJLQNaV5qxLAVE1qA/cTJwx1IrpROf+3LdJ963AsB2kf+cXzJzr2B4Cia/+9Nz2qCCKacG6aIuFfJUyrpvJjzODRhbLkeMr+5PnFbF68LvSVrpH2eGEObx5QSZupNA4ewIl7CNOtOxU40mitm/xMxXHn+dcB8nz4bOvZuwtkbjI7fzJPzHhnRYCdOyunBDizyu5+tp2HbdY1jYIiDes0dO5XGK0IRd5g38IGGqdBpFA1BtONEnAK1aVTFIMa+p8WvKOqU7CbOfKdPvGiUoTFwQQTm6MJEWWFsdFkVpoGU5uhIZ+XqMgbnxRSJ3aIxTYaZVl7H6Lcomn8g9qs5nAZoZgC1TjD0hGAMoWqD7iC4CrjF+TlBmo9g8sV6oEHCtUOYOcXKJpVZLi7sn4d9WY1gnIKCOcU8QDlGyoyPYrCbpe83wKfGwWlIjvkcuEcGtml8B/XIUsLsMwlw+aFrh8EBCAgHaony6YQ+dUgRZmJeSAXaqb3WfE2PQRl2wYucWEnJF8VqRjCPxJcRaUewB3/LpqrYl+nMZAh/IqA4CIEaD9+tpfayO3nzNIR3IX8QQyu5PiC2QZ2sHXwTAiF0+JZ8TcpOSLS8G+VDrBkRe8Pi5WHyKpUDps8uT/gx5VPc+f2y3Zq23ZUzsbe6ZlEqoLI/CnEpISuQDLnwLNEugGyTUQGSfZlZJsgPuMPwpw0wteNHaI54kw3FIEfR0ty0kU53tzGCJgEYyjrAQSAp9LzEgGsADoREFJocwDfkamxfk43Q0TznMsRIyShfZ/JZKjisff3AIAiReJFYJWla/jZs51+25YVYC73KJnDwnOR0034O/vddq69E7+PCqt0gCZUVYaFoU/P6gI4AYBjGwuYTHM86MDt+ObLb4PKHA7sW0Vz6xC2D9RLBDvNcPDQSexe2ETjNCZNDqMIE5tBK3/ch1aEL6/sipFmGt5nyIQtcaZdSAoJn72az1XLHKaTAtZpTG4fwnxhCLplALVUI18zmO520IXFyv1TchLOS+SWG1BgahQB5QqQbfjFdbRXoVoUPg5GLNRhl6+DycxMVWQ1WGxJ0XSoGyDf8BFs2WYwDbAJLtD0tkfpKACRNZiVgWR6JDMAQjsxITvGCr+TaI4TgIgPk40Mxan81sSiLvPXAGidDE7decO/5fvzPZE+i/4uLinGro+KkuYQILEAHR8alqaf6i3Zj9hHBjG3jy3QUkQth2dmhmICTAVXqHRQrBOmGslGSRGsjS9b/J4EG6REeyn0D/d1ACPxuA2p3FX7HrHfgtgymLQgxlcnICtzOkEB+Rpa1/LY5pvkWaK8fb00TzHo6ibZbLE/CjG3Es+BVlCA6G8GVrGv8gBew/1lKokIXin9nkz7c6DjOB/AD5DmEM8XPU1t4I0Ks6sxQo+fScHuEDzQiQBKifkRvs/Hadz4jMG7WhzOPdLsdG6u30gyB0TnKpIa7VClLUpVLPZn3DmcinmS9zpTnTD7PipzMEs1nNUYTwoMB1PkmUXdGIybHEoRBv0pPnHTFaisARRw5Ka90FN/VIddaEI+IoVcW0ytX5W0IhTam80GWY3GaVyx4wQcKZ+kUWiYPJjSdDjnjEJFKUSexT4YNqiXHSgDzO2lj8ra0FAnfJJI+01j35aMoAoLVUiQlM6OUg4YHCW4AuEATyQlybtMycpoeP8gm859MmMVnXazMeLiGMeVEJM8KguoRoWoHP4uLNrMUEkAgKRI2OTjilAnAeBayQElOAnluEywLeysvJ15ott/x5BjvoYVO8+p8L7FOMm5JhVb+E6yBFHxy+dCowVEJIAxU6FYVSo35l4yyQQklVkLbKrg/OxSX5ppYjZM3X7ousBMlh3fOoqh/tG3CamvTsUStMxhIrNy934pQSbP48BAyTFhEOzEPA5gv9qZ2sKmS8CnbbC5v12MQuuuYy7NSQYitvRzE84DVVuGtnPahlAHZ9pjw5sCGYquQ/SnjMhy4SwwjphrTSlus0tAi+eGjMDsOvDH/mYAl6U6SVNp1yWBWT0nmKy4YdHi+wwzQ+y3PBMXUOaJGc+fzHvhfMk2J/9dZl/m8jt0PFkF1/jkhRftWvGJE8MRHuPah72vr/eRrWT4yh17sLx7AyrQ7ZO9hP7NObKhP9KjZxr0sxrjOkdmLHYUY3xpdTdu3Vj2/kOgltmsMA2MJjhSqEO+I8AzVFXt88mQU7CVxnS19EpyVwXSBDgFWxDqRQdSQHY0R/bFvs+n1Leg9Rw08lFpeurBTL2gMLwjZVcm5U0k0ncomhxkZBVHaImFNDI9NkTO5CG5HFP1xIt1Gtgt5jKhZKNfhwAV/JLHBkTQJMdRAh1WMMGpWCYflHmKTjc3WuyA+L/LLnYlJjxEp06h7vLeZHy/tuY/Awb+v3Nfdu5tQi4aPgqBAaIEcRJkxHBqUVTL50m0izIPhiQj1gIxs9ouFadUwIKRiqYzCf647vIzmjFG1P7bGRWSTKo2GCWEaLHUBzKnlXQUjmY5l5Q8++vEW4l5Ia/nuZ9vUOgvtDKkx+dEmEpbcziYFbmOcuyY/YwO+/mMugjTsmybP5QZ0b8JQPSlim0SbCeXwf0Xnb+75YexyUadQ547G4DuszmXr3+ZA6ILJZ2HMkp3sT2Lck55iVzET1Om7ZPP7AxgYXGC21aWcXI8wBV7jmPQq7AxLtHLa7hGewV3aw+rty0BCqiXCdmGPxOqKBoUmUXlDLQiTKY5jq8PUTmDHb0xLl86gUmTxe9ra1A7/7LOm9D6eR38iLym4uNCmtoAEwPTb0CNgpsaqN1TNEsWtk9Y/JIGLTZohg71YjAfhBxFeqEGeg7ZWPnDYNcJ00XtI0RC/pTpskY9bO84WdgpVypsNn+xXxAZoFr2RyOwE2U0BdhAybuUxDH6mGTte8WzxBRax0+wD1KMFBK7Xl6wZyl3yPZI0MGmGmmKCS/22dmyu+2ajGbMKakI5A49/kQoFlLJB0WJ8uJ9RH9LRUM6OZ6zeYMVeuzH8FkEVEjlAOm38RTyjmmO81LxtbIvWzLruWIlHsrUlvw5YRzRxFm6dXvsZfJGJcdHgN5u9JkHHrTlOY/KWfQJZ43uMnWRSQt9xSxbdHBnQCDaynOz6YVjQBRQhxPpyQD1MF0TGS8SYxjqIc8Di+ZoAQhbJi9uL+cjCsCvZUbkPuOIUSAlZOxE88XhEsBZPkutOShYzOkuxINg2Rm8dSwI2szg3SXzs8zOn8x74ULI2TwgZ7p2O2XJxVH+pvNb6lvo0qIY1CizBrsWRrBO4fb1JdSNQb+scfToEvTJHM3OxpuASEFX/lXtdGgWCDuHY+woxzGKbPfiJqzT+JeTe3Cgv4ZM+SSMk2BOy41FaRofjWYcMmNRNRnKrEFjtchkTbDjDGrQwFkNZQhm08Bt5D60PiOM9wOL/1SAehb5ZRuY3rIAfTIHs1+AT75oS2D9MhXPV/L+F8DGxSqG0EqaPTrcchZgyXg4zyoxgInHF/CBkQHsZBtIPhQCbLBJqDVGFJSTRgqpF2YjBljRhCTBkGqXw/4ZLgtvWQGGS7QEK1L5CuUQI9nkdaKMrkR8pdCKnJJASZr3mAWQZkm+T9dfK7J3st+AlIVbfN/yaQm/jTl9gqJmJ/YIqEJ/OxN8gMS1LSA1429+LzuCM2c3vXA2V2AZGaR18z8ltogSk+fSfInzT4AFD5xU7DvOWSX7gkGGLcUAId3PFt5vh/MRkVTmAiTKNjNgY6aEBCsU2b0s/TaymgwKudwwjmYcrumcvyfnIlTwHQtt4ueuZU5Fqg8fZ9OKMuP/u+bgANBipKQEb7rdB9ko3Sc+X917zJC70lwGAA7qvLzmMgdE5194Xs3o2S10fPc3s2Q7dOys3VAXDClgsHOMvPTszsn1ASprUNUZ+nmNYVnFumSHRjCDBrhiE2bHFIPbQ+jpYgO75A9/7WUNlvIpBlmNqjEY9Cos9XykmSOFk5M+Cu0jzTKdotlKk44HAQCjfT4idqrOBg2oNh7kKHgwMjZQlTeFNYsWm5d4oFSNc8D6IxzMrgo686tbNgb6x/xiaSpCuQIoR+idIPSO+wXVFkIRBYDDviCsBHTjEzBmI0T/HyivVJjq94nnyPszVN60yA6zrSMeeLcsxoXZJXYwZT8NBlrRGTuMccuHQSp9ndiqllJgRSSAVHfeRIXcoJ2td9Yco6QIY1Gz5q4W1wpg1zJfSEUoQQCS4mr1m2CMWkdViGv4HkYk2eRyuG/YqV5ROIwU3rx1qufsVEAolgk/tzhbcwtI8/PeZX7EvbrAJ/oUSYBE5PMYhfA7ZnY0z10eH9UuGzqwRVqAd/afkb5mfJZfp40M1k2VynY6mOlCdCUnUwTQNolK4Xrptkks3pMZ0jBWTT/46YV2ydQEPEdJh2dGzv3O3JVO1zxPeMOSokPRBk3hOhOWQxe+67KyPP6zGFaWmWv9BZA5Q3T+ZN4L51NO8QCcEghtV04Dimb5O5zqXnVtQE5hY82fXabhj+0YVXnMLH3poeOoxjl27tgE3TqAXS1QLQHTXQ6mZ1EuT3Fyc4C1qsSoyVHoBvuGG1gop7j52K54r4PDNaxXJTS8zxAf42FiUkYH63y27Mb6NACN9SfY67KBW2pAlYZdatC/XaF3TEGPNfIVAzNVyDY0aKWAKwiUEdTNfdj1HHAK/WMUHXLrgUbTA6oF7f1/emk3zlFgUckE9oEXWBMyPjNrxP9zxJk3aVEENtUyfIbsoABa5isGMsxo8CJvEwiyJVoRZqQRfXPYBOPK9D0DD96Nx0Ueac5tmR/h/7iYM1vhACV2zTzv4k9OZV5ToY6hjdK0MevoEMkSRZkBllrMmWAeWKnH/4Upg+vDGZIZYDBDxiwRaZ+g04+1Sn4k0iRzCtkCkBTAh7NG1gT+Hhwu7qPtKOZNkhId/63oe6HYlaMIdloh/QZxbkj/KQAx0pGUN2klRkr0b6v+oZ4zzD/sMxdNfxBAVoCalp8cifFiJ2Y57jPmJJnwp0qBCHIeAZ4FchlitFzMTE5oATHuRy2YRwlgo9+SiIDr9mXMW8VNlZFm4dmLIF4lnylp9p3L15/MAdH5ku5C2V37tvGAzNyZx0K3ljlT2XXfq1SwNgRr/VlfALA27kEbh8t3nAQAFMbijtVFmNzh+NFF//vCYXxJAyw2WFwcIzMW02mGUV2gcgajpsBCXmFnOcbicIJP3nJppF9rZzwdSwqbtb8u0w5GO+TaYu9gAzo0isjnIKpWS5Dzx3BAEcxahukuoF4Emp1NXATNBChPaJjdU5iRRrEGmHUDvZJh5UqFYsP7cuRjwsJthHrRMwJRYQclxGHtvDOX/hyqTrtjXnhtz2fG5nL8OWtICQA5aof9FVTyPYqh6EE5ZCP/WTwOQIQpx7BsBAUnFvZochCLNzNYfIRBS/nxDlc6jSIpKr5OKmZ5/+686yrWLdeoBIbYnMd90mV3bA+tc7VaJhehXLm+DAwj2OO+gGDkdAKvPMYk6liu+j9sEcynNbV2/jOl9Ty1282h9y0zJv/fAZ6z2KFYbgcIKZsQKamt5+3FCCeHFisHLaKvBBAFBGANn3FEIftqMcDm6+XBuKQRTbKRMQl14YN0szHaqQsYMAPJ/NVhSqUvFYMPnovMKPGGJJq6mLGS0WyE9torACrfn597Li+yk/xcUPoMSL93ISlqM0yAjCAYSzk/5HjfBTJPzHj+ZJ6Y8XzIWUz+04Kezvf8MEYH3W08bKek+HNAKcJw4J0BMuOgdY3JNMcgq3BsMoQjH07fbOTYeXANK+MMurRQPYuDe1agFeHwZAmu0agagzXqQffGaJxGL2uwd7iBnf0RKpvh1o1ln/3aesfqMmtwdDzEYjHFznKMQlscHQ8BAKNxAW0IxjjY0kJpH0aPUQZoQrO/BjUK/Vtz2NL7IRSrPgM1kQcMo3vVGH4hx8a9a+z6XIbRPgWXE0A+2V6x6he5/lEHl2nPynQzB1MCFoD/Px8B02UAQZFnmwpNPyk5BhquoKB8Vau8luMmJedi0kATEkdGX4bg/OuCUtNV2vkSfDujv1Mo25VpgQeEMhL1YxMXJxCMPkMK/qByUcd4xtgsMMR/u7Duyx25+DsqYFEHVihAqhs7pPIRK7OUCQM/LkM1opzAoMnzs5gViuAg9KWCV179YxRBlu0BxapEKOJZE34t8vst76USFspYW3/waVc4IST3mSIA8gBY4jJTziHJkLXqof10Uw7QIYGlrv38iSYxC+gOQIvgi03FmQDcJpUtfYjkWuQyADyXBENDKpmxOBt5PFtOp3vBpnsDAuRR2pzwPOT/szGh6XsAG49KCf1HaD+PEXCJfmCwq4WJ0hZijnAZEM+cmEOKABLmRW4Xzzvp6B/n8l0Eiji1ybmWMZc5Q3Te5ZTz6gxAaJZsiTY54w9O/ZUdWkzXS/TyButrfTRWY//COga9CmtVDz3TIDcWznrTlD9t3sFVBvt2raGf1R4wOQU3zeCgsDEpMWkyFMaicRqOfCg+4B2ph3mFhbzyx3eQQmMNNusCR0YLODoeYmozWNLo93x4ST3NoDMHpQGdO1DuYIcWprRQhjC5Yopm6JBv+IUz3wRcbVBfMYEqLMaHHLIV71nMh7quX6qxeYCPdiCQ8eCIF1TOOk3a7255Z61roHeCYCYUD3bkxbHreK0IiKdsawo5kNByKuadO5t5osOmSgtwlwVk8NLaxQaJWaA7rBapsIMNYINBB1+jxHWRDeJ7NO33UVFIvxgS3wNt4NQBT1JJRfYNyW8KEABMOrJ3FLf0keo+D8yWSRakW4+W6VAoKpmkr1WmADaznj8Of5/1W3lfdsTlc9Jkv8W5Idspxij5C7VvwD4wkfkKbKCuQ3to67W6EW0FImMT6yHMijJCbIt5szNXY9oFweBJX5uuabS7Nkqn5hYQFp8xc+sy/6WMRtOdeSkdomN9RR1abJkEzF1Rrf/SfRkEOWy9gN8zmFJb2zuXe77MGaK7SsTDPvPrOwGYtpQ9o8z4UGq/AqyNehgsTFFmDXqmwSVLK1jKJyhNg6+tL0Nrgts9xfqoB5U7DJZ8+tXjoyEWyimGgynWao2VtQFc4/MXrZZ9lFmDQV5htfJnJ+ztb+KO0QIKbZEph5H1GnCzKjAsKmxWBSa1/6yxGuT8gbMAYDKHepxB5Q6YGNhawxzPvf9O3x+4Od1DGNyuoNYy6MpTKG7/FMW/9NAMAsAZKUx3eLNX01eYkoaZEnJL2Cw9520mgAnZkPU05brxDIJCvkEpZN6hxaiAPPgAAOX8Suvy4IBufOdHvyWxK2bAEhVPx3/BswZtJdZVMPJ3vPDHHX8AO3EOyDwtFqAcSQGxcmVQwkqioyxM1U5+qOu0U+e6MKvCithXtH2NcgDYDBKUugQyzDxtUazMaAiwpEN+qZiDSSo5/l3oG10HU5lQVNmY4rPTVd7nvBFRfm4xAxkTP7I5VSSa3LImCCA6K9GgrvwcUgxi5fUqjQVvCqAQ2cdYPYcWO6osgJBbS57dFetAnWtV+iiCJGayOMQ+5O1qZbvmMrpgm0Eqg3QxlrpOzxmPk+K/HaB0CoaIgLMLjJgxazrgeda6zBsc7m+ew/BjymfjsfmulY/rbhB3Hkxe88SMXua9cC5yBlp01q70jNeK9zN3GGfx4LXs55pQLlTIM4vGagwLr213FGM0pLEjH2Nnf4Tl4RjKEC7auYJiUOOiHauYNlk8xDXXFnt2bSDPLfKeD6Mvswa7eiPvI6Qcjo4W0DiNi4ZrMcJskNVYLCfRT2l93EPVGFSNgXUaRIDW3mxGTkFpwq49G0DpQLWGK7zprDipMdlPcedtRhrZhkI2UnBVONqjASZ7vPMz5YRmSBjvBcpVh8lODZcrzwwp7wStq2C6CgrGTP3LGWCyK+3sJTPEJ3n7HWvSDrpiGkRFJZCvI6YC4MixGI4ulEnLDAdE6r91zAN/L0EHj3fericYxHFiSlYmAoRExSBYhzhnBDPFjrXxXsEJVpqYWBHye1A6ziCyAaEOkRliZ+Yu8yPnf2i37Xkl3spMzEpR9hE3yXiz6uAIId+kmayFFMlAdZ3SW0yNfAbp1N+xeUz6lUm2b4uvYYd1csabzdicFpkhnf7mQ4JnsUwAYmRkt+08HhxN1fQSoGITa5dhadUtE9UN94s5oyBAuABoALac8Tdr3ZMgVddANqHIiMaUF5kIQuDNgQRdDNDEnGwlbZSbxQ4YkoCMATrPUZ57RhzTcTbr/IWQ+Wn350/mvXBn5BQTfxaAkQ9d11EvXZQ+7wKhmdFCs8o4w4No+k08GmPYq9DP62jmOjYZ4mvjZfRMg2FRwU4zfOVzh1BtFDjQX8e377sFRdbg6OYClnoTTBuDA8tr6BU1enmNhcKH32tFyI1FbixuWduByhmcnPTRyxpMbIaVcR+jKke/rFFNM0zXSjRVhn3L67j3gaO4fO9x7F7axM7FEfJeg81JEZSmPzgVY4Pp/sY75/YcxvuB3lH4/EgDQnEkB+Ue/DS7GigCipMKqlbIN4ETVxk0faBaVDFRnyuA/tHgl7TuWYRijdA7SfHIiLgABsCUr/vrVROAVAxZ96iG6xsPmgwLaTYK4Gsc/g++M7zbZKdjZ4TiMIFRknNOLOoRIHXnCDvaCkUpD6SUClU5hANPw1QSEVfde6qO8pCfR0USAJ8K1+hueZRMSVuepe59hcSQ6+CwG80YSP3ApkmXeR+tHf/iorlzSz1mMBYe2Cm4TEUzDR8iCyTwE0HQLMAkhRCTP3YBbMvZWvwfgSv5o0VaiTkhwG0wJUKhlRyRHZIZgEYnfKR7xISCgeVk0KKcfx/zNokxlud+SQYvzgEgmc8EYxRBoahjqw/CK94viA4BDbZQ0TyYjSmCb55H6QcCwDFjyFGOwsn+jOyf+J005fEQmWliJ+WGZi5f/zI3mZ2tbHPit3wELuS9O+Bpy3Xh6VfKnx2WGQfrvBPeIPcgpmcaZMqhlzW46fb9yHo16kbh4otO4NbNZVjybM+X6l2YNDnus+sYjk0GAIBhUYXoMYuBrlBoi0Jb5NrCkcL+wQYa0uiZBq6c4raVZVTjHLRSwEwV7C5gXOfQirAy6kNrwurKAMs7RiACaKBQIYea5IAFihXjaf3KYOGrPuoj29AwFVDtIOhKwZbA4KsZmr4/hNUVwHhfYH4C8Gn6fnzKE2nnqSuKIdikfYQaWAGatvMu4Mu2IQwe7LyqUmh0a/FlFiiAF85lBPL14rxIHCEUzRSs6GugWUiKTu66QYgOrHGXH5LzMfADkHbQyv/dPbJAmhK6Jg4xlQAEc1Bf7PRnbK0YsNgstY1cMt/FfpHMTtfnA4gnvkfn8c6clwAgsgd9YPlfE7uSjb2Tc3TOFveMdVfeV6UeJrAazSFiHPmeWxyfId6jDZrib7QAZlKhhrbIRI7R0Zrb3AGjxSphslttAcg8P9iMpKsEiNjfiE1r9YIAkpSAVWTgkO5re4BeR8x9FNkzjqDk24sUCCoALmZqdJXuJecr9xNvHpLZ0J8Xx75DTU9F0y0/AwlAyt+Jz+DrHPN6iX6MbFiXoWTALuaGvAdHMrbm0Plc689CLBTsOSKyc/39vxWZA6LzJGd0oDvdw9Jd7LYrs8DQDGkOVMgVMOxPsaM3Ru0MigBYKmfQMw1OTAeonMHeHRs4fMcyzIbB0dUFWKtxv0OHcWLax4GFdQ9cqh529cY4MFhHJra9HKmwkFfYUY5x2+YSJiaLeYhWJ33Ukwz6jhKkgHxdwfYN1kc9TCoPiogI1GhMpjmWBhNsOtWK3JrucihWNbINH4o/OkgYfs0f1QGn0Az9taOLLIY3e0bIFh68ZCOgf5SwedBHq/SPeFNBNvZ5aaoFhf4xB20J9VAjG/NqrdH0EbNVs59DsUEYl0nJAp0FOiyotkwgoGs6iEAI7V2vVPyeEeOB9mUS/P8cmszZmPl3WoIqca10rmaH29au+hRzUTIo3m/CX8x+Ol2foZbTufW4kkg4yYpMxqpzX+n4zeCt61TOvlGtOiKVu/RlaoE0jvhiZ+GukFExSooZAF1xoxFNV936thysTyMu89fpcG5aTGgoxlgqdlIKyhJ0ZHmYmUrtnuxUrTGTh5YC7MsWxjr4E0XfHufBKc83f+SMH6d4ll9g+aLPFQcCBDMls44RYEGE6TM7JO8X2E5dhXIN921qQwQbwdzms4kjmuD4OfTMkdgYiHkdhqz1Bx8Z0gLf21l35fcqtZPBurxEbae8CyDnw+Q1N5l5mffCBRJ1moeuFd657QLTn7PMZV0nwZaJBUBTeV+dQVajn3nt3DgNrQiVM1iZ9rGQVzhyfBF5v4FqFKZrPtPfsfHQn1lmM4yaHI3TqKzBStXHxOYY2QINaRyZLAAATkz7ODbxvzk2GqJxGut1ifE0hztZoneHr5ieAsUJg3qcwTmF9dU+Vo4sAgqoJhkqa0CkAE1wfQfVKOTrGk2fMLqiwegQIdv0SsrUhGq315o7/pnQu8Nguosw2U8+c/XREJk2SpT75kHv45KNCdnIwVTkj/iwhHzDYXjzJsyUoBvakngNSHlsJMCIUTDhHko4ssbdZAiNt2Xysemanvi6eGSABElsDgugwYTooghumFkSZeoKLbMB79DjTr2T/2hWBA6JezKbsR2l0jJtQcxNBnciezL727T6QgEUHFkZDMTQa3FvzkPUP5reM1Dlfox9zQyNABEye7GZUmiziv+3opgI7fcQf0c2gTq+X+TZR2F6IuWP/Yg+P8yaaAZGAlh2EjvyuWFsTuo6EnfBloyUZGd2zrPVDABXCvZKgGQZbSYZkmjOD+W7MgEf4gSKIs0Ds1UyTYScP9qGavOYB1Mfs0tx/gvQ1xoPfjbEvI9sVTcsHum6rjBj1GpzuDwCIX7mZxcxl69TmTNE9xSRimU7T1nnmlOBK9JAb1jBkT/F/kRRYaGYYk9vAxt1D40z2FGMsZBP8bljB+DWCjgCDAHl7Tmab2pgtMO0yXyiRVIoTQNHymehDhVpnMEgq3H7aBEahMViinGTQ4NwcjxAL2swneTIRgqjix3cwGJiDNyOBqgD8FnLoTICjNeeVW0w6FcYUQlrfdZqZxWGX87gTmYwE7+QlysUwImD2dRY/SavFKdWoVomb0prFPQUqBYUhrcTVu/lmZ3Jbs8eNQMN0gr1ApCPPChqFgpoy1FqAVh0TtNWlMLjZdJB1aikCMS4tvx95G4YfhfPvjERaEnTmCjD8U5VmNA4qsdUHQXCdRKKsOVUTZ654KzNESywwlft+aXIR+A5oYSj6UowRN3oI+lT0jqzLSp8+BxFAqyRDlF6oU7MDsg2MThjRawstcKrWXlvcUJXiAyPywN7UQeTpcYWk5dkIFobD9EvLTMaUlsR2DE+jV7mrYl+Zk3qJznH/JygBOC47swUcn2E47aZeLMhg0hlU+b1CNicB4HR9BRAOue7Avmoyxi12JkHMbVDiKxE0wadukE0VekGIDkn5BxhJ3EG6/DlcI4uzihvNWKS04YPmOUEpVxHflY0gDoBtGiGmwHgqdPfcjwjeA5m1pgMU4xvnAvA3cISWZy7ycue+ZJvCJkzRGcrnUXhlLKNh0L6o3DZd6Y+3b/T7olgB/6MsMXBBCazGOQVpk0GE1YARworVR+fO3YA0yqDWqiBYRMVuqsNpnWG9arEgeE6AGBqfdSZg8KoyaPprXEai/kUi8UUTdDiG5MSk2mO9YnPQA3nHY7NWga3s8bijhEuvuQY9i2vAxnFHZ7SwGjdR6LZiQFGBqrSKI5lyNf9NfkGL3gKo/0AMkK+DgxvD4sgH89m/QJKGhjvUZjuUNF51AYHUjMNmYHJH/cBANWOHKSAuq9itmg2M2WBadLTtNhmfKK7NBWF6BcZ3cKfM7PDO3b+TobJt07T5kgaOe485pl4z8yKLFfseGM9xBw1wm9DziHJBPDcZ+fvLfO1C+gV4mnh0tcofiaZIcngiPtHcCDa0H3+GCyR5nuplg/fFoWn0u9I+zlQL0AoVmqZwk4VBBHLktdtqRslECxMRBHYzNqSCrDs26VSpBmDPJ4XHcCqK6B30vvJFauI81HX8EySSQe12tx/xnObVDB56XQP2VQ+NkOyJ1BIR4VknbrBH2czq+8BBCfp9vhKp3yOIqsXE2ADMDOMX1Y0RlVy+0T5XVYx9unpRCXwpsTzNKNJd4vMo8zOn8x74U6KjP46K9PXmeQMZc1adLtRaa1y+hZVlWE0KdBUHrTwwaqjJsfto0UcGS1gNCl84sWNHNjI0OxsMN3f4KKDJ7BQTnHp0oqPHLMGu3ojbNQF1qsSlTUYNXk4xiPHZjjSQ4MwzCvsWhjBOYXNtR707SXyTaB3h0F+2Qb6C1OsHVnA4RNLuPXIThS7xzh4r2NA5adlMaixa2GE5T0bWLxkzTfLAhuX+gWpWg7AYkqol/0KlY+AzUMpn0p5UmFwu4o79OiAyzs55UESGaAZ+E7TlgClkG1aH6m26YLPjAcx+QbB1N78Vq5RPHvJloi+FdFhVETkdJ2C5aGybL6IYcW5GMeOwmAWyQ94uqYVFRNefH085HTmpEI0O7aYI+ngHIrmAgxHTol6yYvjOWPCrMRKrXXAKLNG6JQnzCbRBCJyK82K2oICBodTuWxCk0AOSH/bQsXT34EEWJgpk9FcMnoqHkvB/dEBRd7XSIX3Krbdheg1ip3pmbnYFm4nm0yVav8+/JbHn8T9meUxtZ+H9YJPPaECSyMTjrJpUFHbsZ4ZUFd6MKEcYAeeaaJMmPPE0SnMyhD7FcFvElTj3+cbgGInegEquK+bvh8nCXpIJ/M2KERn1n6cmr4YF+rMAQaL3dxNHUfqsxKxGdEWKaWFnPOnKvsuQkp3x+Gub3zjG/GgBz0IS0tLWFpawsMf/nD8zd/8TfyeiHDNNdfg0KFD6Pf7eOQjH4nPfe5zrTKm0yl+5md+Bnv27MFwOMQTn/hE3HrrreelT+6szAHR2cq5sjhBGLiccXdyjmJ6FloTFnpT3OvQUWTaIdMOd4wXsTLtY23cw+a0QHW8h/rmBaiFGtRzUJXG0sF1FKZBL2swanKfvZoUjo4WsFmVWJ+UsMGf6OR4gJVJH1Ob4dhoiNWqh8oabFYFjHFQmuB6hMk+h8khi+lGiWqaQxHQrJSwowz33ncUt92yC2rYQAXQdnJjgNUTQ4wnHiHk64DtO0zuP8bokEssUUaAVShPEoqTPvqsXgJ6J4Ad/9J4Nsb537sM6B1DPBupWQCmixrZyCdWbEqF0V6D6Y4MzgCDwxWKNQq+NoSFWyboH6mhnE/4CPjFMjnjpjB9VgBxF80h1F0/Cvj6taLI2NwhFl+5S+3uVKWZiNkhBtDykNNZANoWIdRc+NTwWVhQYs2ngLnsbKXETru2QPQxikrcte8ZFVt4H0Px0a5nyxRHqU2RMQogq3cCERwAiOHzvjwuLNTJJJ+gehnpuJY6AaqWwusyEhBtY0AUgBOZEEVoGBQJMOdS5Js/rFXFc/DiOXfscC76DxCh60j3627GqkWfe6ke+jrrJpwc3xkn7sdW0lGR4FKCRzP2zBCbcckEwMT941L50vzJyUjl2GkLTHdRvCYLZrF8szOP4IGpy8R5gi7N4djfcn4ArWSfEYhhK2CX0t1k0oxr+Av57Mnnr1XEjE3rvzW5+OKL8ZrXvAaf/OQn8clPfhLf+73fiyc96UkR9Lz2ta/F6173Ovz+7/8+brzxRhw4cACPecxjsL6+Hst4yUtegne96114xzvegb/7u7/DxsYGrr76alh79xnw5oDozsh5muznzCxJdkq1P+cnlRygFEEpoGcaDLIahbbYqAvsKMewTmPt5MADCgXQWu4XvYUGw7KKEWk+AsznMWqcxuqoh8z8/9n7s1jblrS+F/xFxGhmt7rdnzbPyZYmMykMVdjYV3ZdEq6MjS1RFjJIyJJ5sIVkKS0wbrAtZInMMjaNBQ/3BYmUEMIPFm8WBbjK6FLYuqYxThKS7E5mnm73q5nd6CKiHqIZMcaaa+/T7DwkrhXS1JprzjFHEyNGfP/4f//v+wy1zti2bom9XE84WU+xVrBtc1qjOD2ZUW0Kii9MEJ1zl8n9BrRwrrDSKSlFLbm3WSByy7UrS6wVGC2oVgUsc8zrM5hqqm9eY+Ya7kyYvSZdTh9tMYVFbSTdRAxKFcxva1Rlovh4+tBw8CWNLqE8hskDn1PIwOTYJXXUE4FsLdVViS4Fm5sFzV7fwZunS2wuB6xDvJ9BVKoASYyQidt5hiqdwGMYcyJEjaxJMACmNwjjiKtwz1MhdGA2ou5J9y9IDFcAPN51lDJWj2o26wXhEbxEsBEYkaFhhWSFHQCNcAyAqogGPkZSeaYg1Vul7q+0T0MZE9la5wbN+4iw4EILUWLggICeQH3kfh/Ahsl7UNEsEgPoj3PeJdZfX2SevC4nGmz/XmrrQFA2ZHvC9YVrTZ/p6KoMWhnoGZn0fozcoUBcBIyNeMiwHEDLYHEm+nDy4LrVU8f6YIlZ4Me/i+xlAuri6aTuVesyyAfA302GIFj4BYXU0E7pS91sbZ9/KrC8Y3YoYcsi25Yyp49hdHbOx+nvYDDOw/djttI+4hhfiWYRroj223jZN2nUvuu7vovv/M7v5P3vfz/vf//7+fEf/3EWiwX/9b/+V6y1/MzP/Aw/+qM/ynd/93fzwQ9+kE984hNsNht+6Zd+CYDT01N+/ud/np/8yZ/kIx/5CN/4jd/IL/7iL/LJT36S3/iN3/hKdNMbapeA6K22N7MKGE+aO1bob2g3Fx3zgn10M0tWutmm8xFmmy5nkddk0iCF5Wi+4caNM4SymCPHDpW3c2aHW3KlWdUlmTSc1RNaIymU5upsTVl0aCNZ1wVVl7Fpclf2wwo6LamanLune8jMZZqub3WY3KKu1BRlR7FfO00RwMSBom2T8+zTD7j72iHdOndC603mJtAWxDIj+9Sc4m5O9tya7Q1Xn2z5jPQRaMIlWnxgnIh0C+1MUF3LsRksXteoxrhIMgMHL2nmrzu3WHUV8rUGA6qyTI61Kxp7Q7K5IWkXAj11YKnelyyfzagP+5wo4T6k+V7Sez5YzY6iu2LkVN67ymzWA4qBeHg0QcdxEfaXgI1U9xSP7XDvuXEXGImB1mfkMhPJWNMldOX5sTdwMwVjnoLGYNQ8EIzZvru+D1L3U+jTFGTGyuay3+fknvsuJDLUhTtHXfb9ZwowhaCbiCggjiLnvM8knup6umnSAUnfRLeg77dQzsFkRGZubDyNEv0+fORg0FINqrYn/ZgeI94X0RvdqA0bg5NUO4YL80+Tbw5E8P76tM9dFd28gQ2S/TUGV6kVvWhapNfrQVOMrgx6pOD6FL0wPgQApC7QcJ+FhqzuhebtvHc1BvdvtF4j0BrPPY0qDH/fClB53BydgKM/jfYkXWZnZ2eDV13Xjz++1vzyL/8y6/Wav/AX/gIvvfQSt2/f5ju+4zviNmVZ8pf/8l/mt3/7twH43d/9Xdq2HWzz9NNP88EPfjBu86fRLgHRm2znNENvENA8asX9RkDRG95mtN1s0iCk5eR0RiE7pLCcNROksBzXUzqteHg2w3aCfNoiC42eWCZFR6k6tJZkwlB1GW2nqLuM02qKkgZjBNYKqtpZ8Xqb02xyNtuC7bqgqTJ0o6CVyK2EzJXmaJvMJYosvZhHC8qbG1ZnE0rVsX99jcgN9s4ESkN3oNELQ34q6RYWtYXmrGT+iqCbCeeqqt2Fz28b2pkk28LidUt9KNlec4ndtlcVq6czls9IrIR81bG9quhm7jS213PyjYu2avZdDqNgXEOVbV06ZqGdEr+HZJKON4PeBZawB6GlehiEF7N6YxCMa2SRdgg54zFIDGB6/xNmYKxRATx48OedaG3SsRRdW+GVfB+yCI/Hn00YnZ2C5nA+XW/Mu6lzb4ZmMnd+EQglYDJcWwpKilO3PcYL5UtnlFXIBm57YNFNnDtpc9PpVkK/BoaonTs2RDUOQJjcC65Fcsyk79yJMWT9RsAjAECTu+Nb4X+f9/d6vMBKwV6qwQrvY8h96OdwH1PjHMB3CqT9OEizdksPzGXbg5wIYkTvRowJNe2O8UR/bvmyfy6kL4OjfMBBTKqoe+AVx5p/H2r9xeg1kbBugQlKwNAAUCWas9gPcP5cL2oXzbNix2t8jNH2f0r46G215557joODg/j6+Mc/fuG2n/zkJ1ksFpRlyd//+3+fX/mVX+Hrvu7ruH37NgA3b94cbH/z5s343e3btymKgqOjowu3+dNol2H3b7ENJvow4Txm+7fTdkWknWOaBg+poHxqhTGCr7t5h8/cv85GF2TC0FnHFp3VE043E6S0TI8qirzj7P4+prBRa/T+a/fIpGaSdbSdm+WW2xJrBU2dUZQdXSepN1NMrRC1pJsqqKSbtGYdlBotLUJZl6W6keiHBex1oAXWwLRsqe9POammSGmQxzmiExSv5TRXNChLe+ByEdXX3Cy4fI/mxv/pXFd6Ysk2jrGxGRy81KEqw+Jlw90/N3EZq73hKZbOJbJ8tqDZJxruZtF3YFeKgcDZBBeYL6yZ9nfMgCuAENacTNyDBHQJs+F+zKB0QjSywVg1wxV76o6IK2HZ7zu6xsL/g0HkPtO5jyoLDEzqVkjHVeIKC0xD2I+ejLb124XyC8ElEtkw//t4nUkph1i8M2znDWdgjaKrzGtd4ml0YMvAWtiBWzOEjsvOYgoRa1+1e0QXVjD4wUgHnVUKFoTpI6+iK0/0xjpqoxIgMhCmk/ST8CkRZA8EBEQtD9bLkALzoqHLkmhEGLBXxoKQbhuTMpOJOH3g5gvHoz+fsSs3XHP834M5AnOTAqELmJE0zUBwGQ/0cmFsdj2bFEPocWMouO3CQkFoJ/YO5zdIOjpqofDtgDVKAOobbeH+nLtekv9TwJWwZHbX9l+hZqyISXHfzj4AXn75Zfb3+9VJWZYX/YQPfOAD/Pf//t85OTnhP/yH/8Df+Tt/h9/8zd+M34tRORtr7bnPxu2NbPOVbJcM0ZNqYvT3UdvsaKk7bdfYvtBdBhesUBz4EMJyUk949vDEhcjjHp5MGNZ1gbWCvXlFtS44vbMHgJkalDTs5zUz1bikjUWNEJaDyZbD+ZY80wgBXScxncR2sp9BlIF5h80MKjeowiAKA8qiCo06y5i9opDKzdzCCJpWoZaKvaKmaV1Ifn7mDFl5X5GdZD5MV5CfuWPNX1ZgfTSKsuiJ5fQ9ElW5EHo9lTSHeTSyLsdMn2ixPhQxRNiF09s+D4yxTE5M1Lcon1AuhobL3kUSEieOXUVR/8OOlWu4darfPhjKqMVIXV0J6yBrH8mTCFjjOBD9ajlM5tH4pQZdJf/vGl87NCnp/7tcQu5kGIqlR4Y3ZaMCyIjgKhi5ZLER+k2GaCYv6A3Hmt51b4Mmp5sl+9DeTTVazUeXXepeDECiHfYTglg6hKQfw7mlQvH4efo3AZfCEHNWhVB42TgtVr5xryDGDy3f2D6XTmcH7tbA7FjPqI3nhxSoXRhEZJMxjd+nd2UG0Ji6ZGNS0HQX/hhpTqPA2IX0EjGxKb5Irx8H2abfPkbOWVyOKw/0s60TXbuLGp1/0u87Iw/fAE3zWPY+uY8XztHigvfvQNO+2v3bfQExaiy8HgWIiqLgve99L9/8zd/Mxz/+cb7hG76Bf/fv/h23bt0COMf03L17N7JGt27domkajo+PL9zmT6NdAqIn1UYrsZ2ribe668ft65xRsnT7hum8pu0Uq7rkeDuLxVwLqTlpJlydr3nuyjHaSFShEcpS3leI3DDLnSr5Uw9uMctaTivnXjssKxZFzbbKyYoO00myQjM73CInHUw1MoCg3KArRbfJYKso5y5joDA+m/CdCdYIrLR0WmFu1rzyu89QVzn5qyX5yrE5gXLPVpJu7mYvsXY1zVbPCB58UKLWEpO72mRZbVk/lbF8JmP5rGLy0EWPba87A9POBNP7NtYTiyHeQqAaGw1CtrUcfKF2AMJH49gEBKVRTsHAhnDjtExAdJslrASCKKKGHqAE0fE5MW8yaQ+0H6mbJohkUzFvasQ9EIrjRfqfp7NACp4CWKA3VKRAJQU7ogdxaag/9MxccIuMFw/RiPo+CQdMI6qiSzKcjHSGVZdO/Ly94WttNb1RlK2NLkg9cexQmvtpAAqtB7V5Im6W/XW3c+fa03lynQkYwvdjcPOlup/YtSFKKhUZh7YDdIamfdkJk4sI4AYRfqJ/HzVEqeh4zJCEcesBh2oc+xKvN/wmEcDHe2X7/UbXqG+qYuDGC1FlQWg+EEF74B7Kb6RAxuQMxmS2tXST/pi7BOTh/UA3tAPopALweD2jPorurl0gaNciIG1jVu7/j5q1lrquefHFF7l16xa//uu/Hr9rmobf/M3f5Fu/9VsB+KZv+ibyPB9s8/rrr/OHf/iHcZs/jXbpMntS7VEPwOO+Gz+4/oF8S7oj/6PZzRXzskEIKLKOg6KKyRONpyS1deLnSdZxssmhkugCZgdbDsuKTGpePHzISTNh0+ROLK3dkJlOWp49PCEThs/eu87RfMvBrGJVlWyrnO6kRNQSu9eRnWSoraBSE2SpOXjJ5X+58ik4+UCGfqpGtwqZuWgx0yiYWJZf35HfyTGZRdUCm1mmrzuj0O25SVxP3CqzaAXZykWVdVNJs+86MV8RQYlVsL4pnXFsBNkWmgwyH7rf7MPsLujS0s0EWSVgP6NYWrqpiKt76yl9nYiKA+0f3CnQG/fIjiR1n6IbzYOB+F2IlvKutwByZOOifQLLAO53scBkMIZpRmE5OkYYb6YHcWFbIXoDCYmBGhmH1HUWDYXyK3rVG0zpwWEAVamYOmXDxsxU6oJL3X/C9CyDFb3LKkSJDdw9wo2JzS1BtvHaoak/H99noSYduO9VEukbAVoCSoOWJWRuHjBaI3dJvC6SPk2AS2Rl/N8sYftSBqmbgdBiWKIjuEsDwFFujAfXb0jeKbQ/nAePAyySgJp4/z2gDzW/grYtzZUV2Ub68TPQxSWM5SBjeohuzNziJiRJxe+jWDlNnvBjJUSIFkt3kfW+oJuHAZKMF9+fofJ8dLtqHulSG/RD2OeOZoFHeW9ShjDd34Vs3FeoPUmX2Rtt/+yf/TP+6l/9qzz33HMsl0t++Zd/mf/8n/8zv/qrv4oQgo9+9KN87GMf433vex/ve9/7+NjHPsZsNuP7vu/7ADg4OOAHfuAH+KEf+iGuXr3KlStX+OEf/mE+9KEP8ZGPfORtXcvbaZeA6CvRHvUgpgBo9GC/GVB1TlMUPvStrgoOZhVXJhsaX1ajaRSZNLx2esC0aFlVBW2bYbREnmWOqbnSMc80Z02JyQWdkdQ6Y7MtmE5atm3OzdmK/Ws1L58dcnO+pCxajBXUXcZ6VZIVmvLalvruDHmaYzOLnkK2aNGbnPqKC3m3UjC9A8uDDLtRHHxWcPwtDfJBTvb8Gv5kAR9YwUtzmusdk9czqmuWyQNBtpSUx27lbjO3v24KZ+9SsZjq7J5l9Yxg/0teYNs4UasuobpCnOj1BKb3feZe4XILWQGLl9boRc7q6UmMijJFb1jDPQtiVFUTBdrpPUuFrtazIMH9FtgT2TojHsTAkU3yBjQFTDE3UbJSF4F9Ifk8nIIYGjsUsUxIAF7RTRV+dMFKN4CjNGtwYMkCiIiXK3t9UMx3k+4rAEV/fqkeKrouA1BJVujhdyEqKpx31HxloA/cduF+hOclGDHZQlsQ80aF8zAKZ7ib5LHyFz6oS5dcwyCFQXK/w3WkJSZiH3uRNcKN4Wzrwv1DTp7UqJrMe8TS9Cwps6F7oA3n+3lwT1MgR9+nWB9FFmrrCQbj6xwQgaE2KNlfcOdZ4f7GJKPhfFNXXgb1vt8unEoWwJRAGOueD6/dC7/rZpD53EUxkjCAwCTkP70v55p9xDbh/B4xl4cxtXP/j2KRnnAzSMzbdPa82d/fuXOH7//+7+f111/n4OCAD3/4w/zqr/4q3/7t3w7Aj/zIj7DdbvnBH/xBjo+P+ZZv+RZ+7dd+jb29vbiPn/7pnybLMr7ne76H7XbLt33bt/ELv/ALKKUuOuxXvF0CoifdRtTrbn3PG/yMHaDncYf326tMs21z1sr5ZDKfS2g/r5ldvc9LJ1cAmE2dZqe5ZeH2FFtqjqZb9os6FnJd1SVZZtBGcG+14Kn5GV88ucrJ6ZxVVbCYNMzyhpP1lGLS0dQZ5rRwTEED81clp/+XhkIZtLB9FIuf6CgNdt4h/2hC/mrB4Wcsp5sF+1+wVMcLqv/rmtn/mLuVpR+x2dqtigMrEhiAoEfJtm6SnNwHrBNcl0vD6paMie+yNZg9t111FfKzfkK3OdTXJkxfXWKyiTMWdX9/QwHXYA906Q1/YJGCZsQbveBui66z1AVEb5SjriVhPCJjgQcYie4p/U1kffDnGQAE/XHjb7yRjsJR+t/1Oiq/H5JhnACS+H6sX5GgPejTQVROv9/BmL6AHQVibbbAyAXWK/ZFM/qdP1ZMIOiPJxvXF1ErI3qwZlUSjp7cjwGb5cGmYHjPwr6ii8/3WQAD4f80Gi0tpaLqxKgal1iy2evduLEorh29wr32+7G4femE9YpuK9HrccJ5DRi5BNjHiLRxS8BQjAxTCZhO+kIEdtCP2QCGZNdnj++mRAAb7q9RnqUL99E/k5MHIia6jIyU7KPWxu7CN6IZitd0Udu1aB39NgVBg8CC5O/bJG2+qtvP//zPP/J7IQQ/9mM/xo/92I9duM1kMuFnf/Zn+dmf/dknfHZvvV0CorfYHuXOelJt5wN10YSVND03KGB/UtEaxSxvqHTOfl5zUGzRVjAvFhxNO/YLx/QIYanMFARO2KwVE9VRkVFmHcVcc/vOAfODivvVnOPjOYu9iqbNuHv3gJP5FN1JVzdtb8vpWYEtDfJYOW1B5ixxsdewfTrDKkl54lmLZYa4WjtRpoV24SK8li+4qLHupKSwOHfaTLN6r0XUkvmXFfkKNk9BdcOw+KIc1ALTpWB2R7N6RmElNFaip7D/BUtzIGhnfUkDPXHZrYtlH0VWXc1oDg/7hIXeCISsvYFtidmdw+0IpQ28IQm1o4ztQYsNGiT/oxBpFu67HE3uqatnZ32ywCSNQBHQu7E8w5HmPgqGMK50d6x4B2AoAUQpYxMARtCFqKbXh6QuPGuH+4psQQCCKVNkGLILY+2ISN5DrwXy1xCTQNKft9QOIEAPNlO21aokmindbsSQjHUsY91X6j5JAW36/O4SxRdn/TY6AdjRVZmwT/HaPUAPof3RBZoY9gGjPAK9O108Y6OegqgwZnwainzJwA0cxyf9uO38QgUPBFM3XNrHodSLUQ7IdtMk5D6MTT08l0cuPB/F4jyq7QJFF+0j7Zvxeb0DTVuBfpvo6+3+/n+WdimqfsLtLT14F70YvfdtEOWQrmrDZ/MOpdwsu/BV58+aEoNg3RVU2pXhuLt0dcxOl1OUtJTHAjYZnZXuZSQSyyRzCUj2jzZUVc4Xbl9nsee49eeuHCezv0Aqy2o9YXJbIbeKbmE5ezfY04K2ypgULfJ6xfb5jvXTjuU5evcx9kHpXB2Fq1Q+vesm3dkdUEsHaPKlYPpyxt6f5Agj2DxrOPk6TXO9QxjHCqVVrYszg6pN1PuE1e3+SxXZ2k3UIQNv0DmYTJAvLSaDZk+wfEZGoxxWuANXj+2BSuo6st5FJL3IOgCSkMtF+qi11H3QherkiassliLwBsjuut8jI5nObbtCr+MxRgZzAMB2jMM0emzAItGDoTRqLeaTCVF44XjJqj4eL1xzACk6eaVG2zIogxL6PAUpARxEF5cHYzvzIaVGz1+rSZm8oMNKGKSgx4o/9ZqhFIANgMholh1EoaXMD04nFt6H6Kx4jsm4SPVNqSg55goi+U1yPsC5hIVpP6djK16/33bAJvn/1bYHu7EffQvsqFEO6JWn/TMYAapniyOTllyT9dnEA5M8doUNiiaH9gSASPpcDe6dGPwZzr3h1MPc/A7ii6Aheruvy3YJiJ5suwAMRePzZtv4Nxf87x5Ad3A9dX+FsChhWDUuZ9BEdRgr+MzxdZecsZpwONty72RBUXTUTUa2gvKuYts6BCCFpTGKW7MlTy3O2Js4qiMrOs6OZ0hp2S9qblw/oz519E59UpLlGvHhM6y0mCsN+pmKyT1JPnW5jA73N5Ab5AeWtO/dsqkK7Fyzfs6iD3Sk0vOlK+BanIqYRTjqaAQuT9GxYv75DLPfDYyX0NDsSfTECcUnDyzVVXzovXbRZIm+IbqsrO0NY+ENFF7H4ZmksMJFEN1/QYMRDLSq/DmOyiRAD24is5EYGncyDN1bqZbD3/cYKTNeue9yG4xYgii+tv2xdo6xMbsQDN/omJGdCvuJriuLLm281hg6HcCe1/LEaKZw74y799mavlRJIlROI5nCfQj5j+JleBYuluTw4GmQBHFk9FM3VwRMOvnObxsBjQcWsukFxLtacB2dq0+2Y3u13XEvUhA02HHfZxfpfFJx/BjgRkZr9Jtz4yH9XjIAigPGSyf9pfphGBYkIVouBCPoaQ/40ojNIB5PI/W6+fBZC9cdXORwQf9f9N0Fi8wUrO56T7LdCMue6+N3CmNY+/Yr3dt3Wgn+Vdoue+Er2HbqDZ7EPh/VMovMXRHWp+dnHJZbFkVNoTSZMGzrnIf1jHnRcPdkj6LoaOqcts5o950hb0M0mhXcWe5xe7PHqi3YtjmmlRSZC60/O5vy6vKA67MV08OKbpWTzTvqs5KuU4iDlmLaIjNDfdWABSkthXJh+l2TUUw66k2O1QLZCCi1z11iaQ5g+0zH5L6b/LqpZfuUM7D7n5d9RFENYpWhyz6sOmQrrg8kuoTNTVfPShegJxn5xsYVqvJRPq5MgKDedyVA2rkHSkHEO+lXrFFYTaL5ML0uIrAT0usiAqORshJRaxQiqXSvU4psAAkw2gW4B1RFAr5TcBQMTeJmSUF6nOBTZioxdruYp3PsUnI+JrcDwBFi96PgPGUrdpwblig8T90851qyryjqTvVNAQQlDFLaPwNDR/859PsZh2Jb+vuepeDFjvoh6dvgxoqlWN7InJCCkDHISYFfcr9SMDx2Z4bjnnObcd74D8bOqD8CoE5dgKkOagyyUybIKGLUGtCzgQljFO5hSH1hZQ+S4z6TZyMCyDEIeTtz7a77s2usXPQbeMfA0GV7su0SED3Jlq4e0pXgju0eRe0+inIdUPy7tp12YKHIO15eHbLIm5h7qFAdH7h+j8/fvcYkazna2zAtHcduKkVzaN2rU7Ra0VnJcwcnaCvZL2quz1eUs5ZJ3pKXHVYLzrYln/rCM7zn2n2eff4BedFR7tfoViKVRXcKXSvsXofuFFWV89rLV9gsJxwerJHSMP30BGGgfaqBbcbqOVeDTFgob2dklWX+KqhGYHLD9pZLmJithBNGSzAzTbPvJtFsQyzwGjMD255dWj3nRCL5xtUzK1YWVbuyH8XKMDmxTO/B4hVLeerZig2RUTIl0SXWzRLNie6jdPQ0MVYeBIUcRdADpPB+vNKPhilxY6QMwcCdITjHogxWrfYC4x82TBmLACQuAAt2tG1sQfuRA0bQLixOLyKGxm5kcAOAHLeQGDC6gxJDHGqahfOKBj+wCopBkdxBMsig+doBsFLXU9A0hXMPpTYGoNMmLqqxIU7Yv+gyVK4MSLvP0P1zASgbAJXkusN9vyhsPE1PMNCYiaTfAngM+0/csen9GoPSQaoE0X8fQfvomoIrsTw1FEv/Vahfp3sWKGba9s9C0PGF443LpISmp4+YL0f3ZCdLdBGwGQHRtG/O3esxYB0zeV/hphFP5HXZLgHRk2/jhyx9kODcAzimah+5Xy54qH0zpSuPMV+4hIxNl7HpcrZdTiE7fufV5/jcg2tMJw33VguksHRaYjqByI1LpX+zRQioda+3n+cNry4PuDVd8q6rD1mUNTcPlhwcbVhMGq7fPOVTf/Ic2kjm05qDWUVWavRZzmTaUC4aqBTi5Qm6ysj3GtQ9F/22eW1BcQLTVzLUpCN/qKKh6abOzbJ8XlBdg+IYjv5QYSYGqxxIaQ58VIsWtAeWfGNRDWSVpTmE7TUR+1/WTpvULATNnqCbwuz1LdN7HYvXNcWpZv5qTXUomN7X6EKQbS3T+wZhnQ5C1b7Ug0kmcZ3UzSIxQqlxtS4jsdT9/2HCjyvrZMU8GB/BfRaARDrhjsZFXL1LH12UGujARgUGa8QqDM49NcRytyGIDFnQCQXAUVpkK/ooogystEPNTNhPwjKlqQTahWPo4rknhjgtepsa/egWK3r3Zbr4CP0YxeOpXikBqlGflAII/94qdx/DOIiRbgmY7coe3NZHCThT/fnXh+4VE2W+gWZFnzbi3Mydgm/TM5MD8DoCa/EepuAyAZ7nAAB9X6dsYjoehPHpAzzgCWH39YGMDGF0Odu+D3uGlsikxiACmUTkpYDYDs/7wjly1Ifn2g6An87LdrTfc31qh78b7PcdaMY+CR3RO3OuX+3tqxoQdV3HP//n/5wXX3yR6XTKu9/9bv7Vv/pXGNNbBGstP/ZjP8bTTz/NdDrlr/yVv8KnPvWpwX7quuYf/IN/wLVr15jP5/yNv/E3eOWVV97WuT0pSnRn+OZ4/+MHPf0u/b1yq/JOS27uL9krKyqd8dzihNc2+xgt0UawWru0r+u6oNMKu87BCOwzFVeuLanajNPNhG2b8/LpIRLL2bbk924/S+cr3udSsyjruJ/soOb2nQMefOmIu3cOkMJCJ7AWrBHIgwb54ho2ijzXZGvB/VcPmX9ZcfINHdtbGr3JXSkG4QxitnX5hSYP3KRZX4X6CohCs37GGdrJPWeApi9nmMJEar0+FIhEYCo0LG6bqB0CB7pO3zunOG5o55LJnQ2mcCLq6Z2KG//5da787gPytWOkjAdCxWk/UcvWaV3AgYxYkDIYCtEfPzWyouszcAeXmUxcZ/GvoXfPJQYrjIM4JsaumJSh8DopYUYLXx/GHABCdAmlxoD+nM8xQx4ABXCipxarLLIWEQDFXDU7jM652lkjQfIuBioY8JQVSs8lpEdIDfdYJ5SKkiMYSkBqPHZgl9RwH0H3Mgg7F30/ZsHtKbzQPxj6cOzE6Df7DhjtarvyGgVGapfkIwUM8f6Nzn1nX9CfE6Jn2QbsUnKNcVyOoxU9aC2Ww34JDFB0EZv+s27mnuPQRxG0Gwa5q4LbMfbfRQBo14Jx9NkY7KRA5yJmNAXV8e8j9r/zXC7bV337qgZE//pf/2v+9//9f+fnfu7n+OM//mN+4id+gn/zb/7NIG/BT/zET/BTP/VT/NzP/Rz/7b/9N27dusW3f/u3s1wu4zYf/ehH+ZVf+RV++Zd/md/6rd9itVrx1//6X0frHVz949pFoGXUdjE54892/X5g8B7T0t93CwNzzd7Blr1pzbopOdlOWeQNnVFcm2zI846uU0wmLfOyoe0U1bYAC9dvnnLjypIy6+i0pK5zap0xK1rubRY8c3jKwWzLpi0wVtAaxaYpqNqMus6xRlLMW6Y314izjOruDASsH85oliWmlbRVRrZUFHmH+Pol+bECAbPra9TVGpRxFcEXNhFGEydkoaE+tGR3CsoHPry7dkAiX4LaSNqpK79hMjcxa0+9Tx9YdC7YXhPsvdbF/e2/tGX97JTyVHP2vj3ufbgk30B29wxzMMMWGd3MPSbZxrMDjZ/0jTt+vibWFrMiMRipENg4xiYKmr1hCJFx0fWSuNJMlqymcf0QV+8JoxRbsmq2MhmqlpgbJnwvE/ARWZaUUaH/O4huE/32qTvH5L31FsbtS3ZOtyUbQbYRvZA7GbvnQvzHzEQ41pi5Sgx9MODhnnZTIkAasxiBhYp/E31W1OEkmhaTDRmeVBi+M99YAHb+eMF1G914cqhpivcvnYkvmlfCOQY3VtJ3gZEKbrmQ1TzW6rPn+1zY5N4GQDhijAbHTsbaICItkMlp1Jfv8xTA6XwI8sI9CIxaOkeGYsoBoA2i/EbjMv0unu4uYMPo/0fN5eLi1wA4XTRXv4Ng6O0KqsPrsn2VA6L/8l/+C3/zb/5N/tpf+2u88MIL/K2/9bf4ju/4Dn7nd34HAGstP/MzP8OP/uiP8t3f/d188IMf5BOf+ASbzYZf+qVfAuD09JSf//mf5yd/8if5yEc+wjd+4zfyi7/4i3zyk5/kN37jN972Ob4RUHTRNhcBn8EK4zH7iL/JHTuUKUPdKdZ1waoqmaiWWdZwdzvnPVcfMClb9iY1Z9sJxgrEl6ZgoWpdIVglDdW2QNcZ67qgNZJJ7jJRBxfbqinZNjltp7BWcLC3RbcSJQ1CWOSNCrFoYa4RWpAvGopZy2Te0B1otlVBU2foqWX9YkemDFJabKNcIccz4VwSXqujJ7B6l6G50TlB9ecE63cZFq+4yXJ7g2hsXeZb11nNgZtwZ3csRgm6qXfjdJbizLFJonGguLyzBQHT+5bDzzasv/Y67cEEuaqxAibHBqF9wkfh3Rb4yLNQ7sD0brPBqpo+2gkPgjA9O4RngdwO/T33+wrG+FxId7pSDe6S4J4KYIH+u4GGJxlPwiaMgOAc+InAYuQ6i6yRDNXmBbJ1zFAAFSa30XhHw+WN4C7t0JjNiaHlI+MWDZE/l9TAD9xCqQHX/RhJ3XYDl2ECCFKAEe7jGMzJbtinkIAw3HW2CxchNb4/adZxcPXYxi6tRz3zIcLKjMCIbF0pD6GJua1Sfc65iEUSIEi/r/Q8zrnbxu6q8L84//tYxiYwbaLXVMU+8+7NoL+zkhiRF/IwDfbvx178/S4wc67DRq+LPt+xIOgPNASCF7YRcPtKN4N4Iq/L9lUOiP7SX/pL/Kf/9J/4zGc+A8Af/MEf8Fu/9Vt853d+JwAvvfQSt2/f5ju+4zvib8qy5C//5b/Mb//2bwPwu7/7u7RtO9jm6aef5oMf/GDcZler65qzs7PBa9AuWF2MVyYXsUCP+h6GE9TObcaTmLAgLevKVbDvtOT91++xl9VsusLXJjO858oDWiNZn7nCqt2VDnXU0GlJqTrmecN01qDKjjzTKH8QKSytVkyLFiUNBkHdZKzXJUoYZObA0OZsimkdPZFPW8S0o10VNMuSal2gDhomZUs5aTFTTXG1YrMtMMZdZKznhXNNQS+onH8hI1sLl1X6RFIfQnMEemY84yIoTw1Sw97LXni9gcmJQU9d5JpsYXs9Q7Wu4r2eZZQnHd1BQba1lKcahGD20gmq1lDXHP3mlzj4/bux31XjAIwI7727K3w/WPmHj6Wrg5XWwgrhxwNmwhuXlM2xfqUdV/L0xjpljAJQiG6ToE8Zr2r97wVDV0bKuqQuqZQNCtcycKnQX6/sRLw+0QkPpiyx+nm41hFrMzjGjpV9ynCkIGjcgsG6yKU0Nv7jZyu6c0KRVw94oqbFG/KgmUrBobv+sGOXaTlb+35P+nngQvPnuitL9KOY4nAPBmkE6MdCqL3mhO3eNZWAzTQ6jfT9CJQBEcgPTy45HkPAM/49gr4+GsRM4qko3fo+RfZRm/Hee1CXMmvQL0qAnuUcjaFHub/OgaMd1zf+7EImif5+PnIfl+2run1VA6J//I//Md/7vd/L13zN15DnOd/4jd/IRz/6Ub73e78XgNu3bwNw8+bNwe9u3rwZv7t9+zZFUXB0dHThNrvaxz/+cQ4ODuLrueeeO7/RI4DQuI3ZosdtP/7do5qeGkThKszvTyuuL1Zc31+5OmQmc/mEtOL22iVizKVBFZp2nZOdKObziuv7K3Jf4TLPNPNZjcQxRkoYl7toOyH3lr9pM4S0qMyw3DpwlSmDzF1IvtVuaIW/8izDNIrrR86Vaa1gfnXDpGix/iJF7WgNk/nK9CvAOO3Q4ksSjJtAq+tOON3s+yy2nUA2zvh0pSvamq80+crSTaGbSmZ3DFZAvrbkK4PoLJNjQ/HaKc2+wmQSrEUXkuK4Qu9PyR6uQQjIHCLbe6V1oKpLcuusLMWZJfeRaioYIty5h1D6qP/w1xfZkeBaC1oem/yf3v8UOI0ZifDXG+7IcKSCXZGAnPBbyaA+1zm2Q57/7NzqOQC4UFrjnOvIIZnBODb9tQZDlgKVsXvunKbIjl4wYD5iRFL4Wbpf2xvnVGAdWQ6GfZ7qjVJWKpZhuchwesDTzXcAAfp+PdfHyTkMmDqGf9Pvu+n544frTH+n0+0SDRXJvUgZwdhs8n+yX5P19z1NyBlPw7Ocob/Dd+2ePdfvIrmucH6RhfTnFRm5BPQPrnl0/DcMSMZ9/KjfhXuVunZHx3qjc/uTaiFT9dt9XbavckD07//9v+cXf/EX+aVf+iV+7/d+j0984hP823/7b/nEJz4x2E6MShJba899Nm6P2+af/tN/yunpaXy9/PLLyQHZ/T797HHj6zHfn5sQ030mqy9hgSuNc1UpQ91lnFRTtJFsupxK55w0E5ZtyYPlnDvHewBcP1yRz1vaI432OYdCO5xsuTpfU+YdUljHOBnJ0wenFEpjrUApw7RsOVxsmJQtk1mDlJZy0rK3qFCFpig61KRDlh1cr5i86jJkZ8qwN624stgAoBuFNQIKE2sWNUc2Ts5BmIrwle3PBOVDZ5S6uSHbuHOf3YGzdws3YWYiRrgYBVa5MP7Zfc30bk1x3KBqA0IwedDSTSX5UrO+JdGznO2tCWZesv3ATezZCpRk+oWHHP3xug/l19DOBcWZY5vChJ3mNgL3V/rEfSF7c0g4CL2BCcxSFKwmq3ldMHTf+NslvcYoFZ/2g2j4Xnq30UDP4v8OEi4mq+0xExRX4v59YDZkwnC4DMvC/W/EgB0YtJEhDW61cWqJ8H3oo3A9Yx3Qrv1H11foo5SZ8mLq+F1gedr++3OsiTfGshmGgg8WOjvck9EdmaYASBibmIQwMFLj/krniwCa/P6EdouDbkLv+gz7Hu8nADwYAnE52rcfq/jxnGbGtkn/uZxhyWcwAAtjFjHtg3Df0mclpgxQCWj212iy4fVEIJYypOO5Mu3/xwGV0XdvGtgkz80bsgFPqF1qiJ5c+6ruhX/0j/4R/+Sf/BP+9t/+23zoQx/i+7//+/mH//Af8vGPfxyAW7duAZxjeu7evRtZo1u3btE0DcfHxxdus6uVZcn+/v7gFdujJqsn+RBcBLaSZgVM5zXTRY21sNkWVE1O3WWc1RMmquXaZM3d0z2u7q2ZTRsenM25fzrHWshOFFpLTjdT7q0XnNUTpnnLlcmWed5wWLrMZ1WXk0mDxDLLG/YnFYeTLa23ClJatJbUVc6irMmKDmMEWa7JCs1ir6J9zxZtJNO8RVtJLrXTLRUaUyvnXls47YnJDdWV3ohtr/dMS/kQtjeh3TPsvSSpvbYoX3uX2E3QuXOfOWG2QLaWvS815GctotHIbYtVgu76HtlZhdSW8ssPOfpMw9m7SrKNYfXCgvysxbz3Oey9B7Ct0JOMbiL6EHEB81e3ZJV10Wn3LWpDn30ZYpK5sHJPS4ykoeZxXKUCaNEbrsE2Y3YkgANvvFJ3TNgmDd1P9S+DDMojYx3D6QO75LcN+q4x42kKSzt30WZW2R74pdqLsL8AhjwQGEREjVbs51x33gUXnwNvFE0i3E33HfuJfj8mSzQuwaCPdE0xCs27RxFDBio938DUhNp3aQj/+PNovBO2o50NjfAuEDlgYHS/Hyt8MlJfk09Pkv5Lfpu6DSNzlvRrCtIG+riEUYuRZp5dCkEBMTt1AEqtE0yPAWlxKmIJnACMzAh4yxYXJZo8Z1EgbhiA1ZShCtd54WJy1IcXtQu3CYAyEeMPjhn6/M2Cqcv2VdG+qgHRZrNByuEpKqVi2P2LL77IrVu3+PVf//X4fdM0/OZv/ibf+q3fCsA3fdM3kef5YJvXX3+dP/zDP4zbvKkmPL87FiM8ZkUw1PtwHlTtaonRu7BJizGSTvtw9swwKVr2SwdYpDA0OuPa/opb8yVXZhvabYZ5fYZ9ZQZAWbRoI9Ba8nA1I/OWY6I6MmmY5w1KGjojeXV5QKsV87xh3RS0nZuJyrxjvS6RyqCNJFOGPNPU6wKtJWXWcePqksy75QIoMkZSli0oi9XSFXO80XLlkwpduqiu6T0vQDZeKK2hfADZxhV/FbVk9SxkW0Pm3WyqsXRTQXmCj+YydHNFdbWgOyionp7TTQRYy+b5PbKNxk5yTCnZ+3LD+lbG9E4FUtBcncAzN0EK1LaNAlDZOIN68v4ZsnORbdO7HZMTOwijT9kWYXrtg6AHOzGLdRIBFY1BmPzD993QILhx0K/2UyN+TmuWjivbr9iBQaTRWIOEB0NBgB2rzydsgashJpCdQGgBRpwbv49kL2KnDA3zgGVIAaHfPgVj0RAl+xi7bHaxOGl02YDxCS4dDz5ipOCoX00ilO58skCT9yAoJHWMqQZGLFhgDh+5UB8xw1FHpPr7Di57c4xa9NeVrXsXtBVO7J3uNzB9Vob76D5XKQOZuNjScRNcYzaAloSxkZ55M0mB5HhMDxZ1MbpM1QvCQzBBYCPTexhE2GNX4sB9Jobfx2NcBFjsBZ+nfZUuWMK+UmaI4Xl8pZvhCdQye6dO9qu8fVVXu/+u7/oufvzHf5znn3+er//6r+f3f//3+amf+in+7t/9uwAIIfjoRz/Kxz72Md73vvfxvve9j4997GPMZjO+7/u+D4CDgwN+4Ad+gB/6oR/i6tWrXLlyhR/+4R/mQx/6EB/5yEfe2omlhkhc/ATt/CqslsJ+LmrhdxcZjfC1gP1ZRaMV603J19y6w2fuXcda4cLqu5ymU9yYrziupqybAnmSY2Yadaqwz1SurIcy5NJQNzMao8ikIZOGqssolGZOQ6MVV2drpLBILLcWS+6s95DCUmQdZl+w3pSsqpJ52VB3ir2DLcuTGQaXLTuXmqrLY8HYIu/QRrKVFnuWY0oLWmB8iHNXgigcuFg/DUhLuxAUS5epWk+hfCjpZhZTCA6+pDl9QZEvO5bPTiiWluzEYjJBfSiZv95RXck91W9RZ1vq984QRpGXOfmywypBvrasn50we91l3muvzsiB9bMz2plb/crOJQ+sDwXtwkfIrTvKU4kuFd3UGybZT5qBGUpdBibvwVWY9KWfeE1yvyNTlLI/KbvkDVUKhFLGIx2LA/1FOJ9Un5Eex/9N8xnZ8fgU/fXoiXVMlQSd4TReoQyD7sFfyl7ZRxmS9LxDvyXHF0DIezQO607fh4i6gevML06CcQ7bxN+F+9MRI6PUpj9fkd5L6wv0Fv1+Ux2XTPRa8fi274vgNtsV+RYj6QJbktwb648nWzccVItP1kd0X3XzvjacFT5gIZnHwj2P7iv/nWqIFegH6zgDtgSrwXb9/U9ZktR9h+2BWzyuJkaY5SuXjym9B7LpDyhb368QXWgIYjRqeB4G99Ym42A8pi5g3x4HC8I4GoPr8bMSvnsnmuXtAxp7CYiAr3JA9LM/+7P8i3/xL/jBH/xB7t69y9NPP83f+3t/j3/5L/9l3OZHfuRH2G63/OAP/iDHx8d8y7d8C7/2a7/G3t5e3Oanf/qnybKM7/me72G73fJt3/Zt/MIv/AJKqV2HfXw7N2HvfrrGD0Q6saUTdtjFzgcoWcmMDxMePum/mE1r/ujVpyjKlqrJeOrgjE1bUGSa02bC2XbCajVh+q4l1ef2sQrKSUuRaZZVSV4YyqIjE4bjasrV6YZCaaSwZMLQ4PrLWEFjFLOsZa+saI1yWaoLBx6qOkcpw2ZbcrjYoK6umBcNlS8a22mJzC1Vl6OEpTUCmRn0XkeXKVCW6pqb3Ooji6oF+5/3+VUyqG5YhBFu5ZnB4Wctx1/rJk3VWB8GbpmcGKZ3WvTEWd69lzvauUI1Fqxlcr9h+9wBk2NNN5WYMgNj0VNFedKRbXzBWByzdPaukvpIOAMZMk5DLDw7XVmsFBQnHdurymXg9YbApkbW9MbDeLYlNU4qAU1RVGr7fcV7b51BwfifeiMkPAgjJM6z/blGsCP7SKqUARmvqKM7ReISfxrRGx8/HrN1n/cmGGxTWgeEWtGDhtQAJ8YnZRpSfdJg/A+scQ+uwvv4fIQHKTVQEJNmRtaNBKQGvZZIXDfhOfURVkF8vqvMCMIbZQPdYhgNNS5JMb721JAHt2q43giCkksa90F6nelYEtoDXD8Gso3/bQSQ9IDagykRsm57ViewQbHrUxDn+ywmKA2/FX4RY0I6BvcKUW6q7oFSdJMat59sC/Wkv0em6I8TTyIB7dihG/LcPQ/9lIydc30ozgOcnS0FqOlvUrCePj/vIL54EtXqL6vduyastY/iKS6bb2dnZxwcHPDiv/pxZBkKVT2ixSfM/Ump/nRlfGHb8YDuChdur3Y89dxDllXJB2/c5vdeeZai6Hj64JTXTg8wRtB1iqLoeP7omFdODtlsC3h5Sr4SiG8449bBGQCn1ZRZ0bBX1GTCMUTgAFfVZRgEDzZzJnnLXl6TScOmy+mMpDUuJ1GrFSfrKbOJS/zYNBntNmN+UNF2ijzTXF+smOYtJ9UU6x9mJQ2bJqf6/SvUtzr2Pp1RH7lrzpcwf92yelaw97Jl9bSgm/cT0P5LlrMXnS6hOHVG6OAljaoN3UxRnHWIzlJdy5nea7BKoLYatapZvncf1Vrys47qWkG21phSkq86jBKU9zaYSU51vaQ+UDT7Ap170IJnBLw7RG3g5u9sUNuObp5z/IFpXL0GFgiIeWgQfbI6ob3uwzo3Yay5xQhIJ1qbOL6CWycVCIeVbKIHCYyFScKVdenPJylBEcbfIDeRIrHMjo1xrrH+WML44rk+Y7XQ/feyEz0YsYNdnVscxDEedEa7Vvj0AMoqO9yXTiyisJGhSgvuBrF9BCL0IezRxen3KVsnXpc+bcIgwaQHBVb5iu6+b1Xj9TeBlUrYusBSRTdVACTG5xAK7kfbg7Z4zf6e6oJBjh9w16daYgHVkN05slT+WkyixQnnmjI5EYsmUWpW+ksOWjLhCx37Yw+CCJJM8MG9qnMXLRqzvNvkHKwri6MLv7go/bk2JKVfeoYoZT9j6L3/LB1jaZ+Ntwn/D8bTjkVpBKX6/PZp30QglrDBuqn43P/zn3F6ejrUoD6hFmzS/+M3/g75vHj8Dx7R2nXDf/jIJ75i5/pnpX1VM0Rfjc36STa8vxAXXfR5MhHR7+r8yiRMGMn355giAfl+zabJ6bSkMYrDxYb9SUUhNc8entBoxaoueXb/lFnWUC0yXm0PMUbQHFmm0iKFxVjBcj2h7RRSWOZ5w7IqqXXGs4tTMmkwVnA03cTVhBSWQvZLZm0l2ki6RsEE9qcVD7o5s/2KpsnQraTMO2qdkSvNJGupuhxtJPfuHlDMWuobmuxhFkW7e18AoW00AlhLceZyEckO8jPQpQu7z9cu2ubqH2nO3qW49ocd3VTS7CmKM3eeulTYTKAnCn2zdCLt+zVCG2SXuz5ddZhMIjuDaDXZvVPE1WcoTzXdLCPbWNq5iIYwJGw0OWSnFTZXIFxG7JN3Z3GboPvRgUFQXmORTt6mN1jpZ3Hs6ARIpKCIxKCF0gdpmHeSJyYa5rwfVwOWhd7oxWKiYcz78jBWgdURc/TAX/tt/LZW4Ut5JMLyZLyfW5mnLNIoiis9t/gbaXtxtj8Pq2zPSnnQFo21Z9mMZ9ZS11YAniEPTviNG2OO/VEPk/sl+nMcuE4gRkvGe5m6CINI2faapHGWcYTvinBNCfsRAbHt70/UNCUsDobIEkVXm+yPJTq/adL3KSs1mMOS/cbM0bIHEabAA9++/wLzpXPHIBanHsCMwFAENeEepwvFxA2W6uKCzmjs+gz7iefMjnlaMOynR7T0twNWyPb3I2VUB8d4h9qTiBK7jDJz7bIXvhLtUfTj6AFMgc4b3U36EL7n5n0OZ1uePTqJ4rhXjg+5MV2yakoyafi6q3d4fvaQF6YPmGUt09L5cuzVOoqcrRW0DxwgOqsm3Fnt0VlJrjSrzq0+UsaoMYrOyPi5TGYclRkHuLQLp2/bDOPdYtLv4956QSYNpeqwVjCZN9QrNzN2+5p8DSazTlcg3cWqClTt3GnlQ5jecUZKl75MR+kmyXylnYHoXJSTKQTb6xlCW3Tp9mUyQTeVDmwp91n5oEZVhm6qwFryh1vW7znErtbM/vMfUT5sKE8Mxcr2q26/0tc+fP3sA4fIZYVsNKrSfQi9SNwZQTMSwAb0T+Iu6n4MeLzhSTUp4Tip2DcYdZm4e6J7LuxaDfcRo8lGE31kGsK5JucbDXg0+P3JCy38d7Yf6+krvUbR7yeyU2ERkLi5Bn2SArqwTxmAnyDB69HFakOSvwCsRm7EAOjCcaJLqybWMYvnkh4zYZis6AXo4Rjj646M1AiUxu3T6027atx3jzLEYTykfWQ8++K7MRxDBkH/GJRwHnDZAPJE8rntAU8EcEmIfaqbS8eWqhPdVgLMAzMUANdFz0o49rmW9HcKKC9qu76LffGIBW76u4vefyXb2y/s+vZdbv+ztEtA9NXaxquaC9osa5nnDZk0fObedTZVwfX9FZuu5P2Hd7k1XXK9XFHKjtYqKp3RtI61mC5qykzTGkVnJdmVitnERZSdns24OnFsUKNVfGDqLsNYwaopWbUOKEksDzZzXrlzhJKGw8WGPNOOcdrkSGUoy5aDvS3LpYtNvjpb0xlX7mNR1uxNa8Rp5kp+SFi+x82ccbIOehElmNyHYgXTBwZdOm3R3pd1NCztXFGeWLqpYvmsYnVLsnxe0uy54e6ixIw3vO4AonPJGm0myFcd3cyxPO1cor/mXVR/8WuprpXMbjdsr0myjQclOjk3AatnJLbMUCdb8uOK2V1XIkQGgxCidMLqGnqRKAxBg+0j1aIRVj3AStkg9yVDaj9ZVQ9C8xOGCAE2s+ddcYlh78XfFlP4baWN25jC9nqk8YwyZqik1+mI4XGiKyayZ9Ypy0k+B8cI+WPHDNjhGjLbA4zCddoAWKQ6KtV/Z3JncB2Asef7DZ9gMZQh8cdMgUBggNLw8QgERHLcpF8RPjIOPxaSqL5BhB/932jYvQspLRVihX/rz02aXh+VFkdV7WMIjIQRGbjpZe9uHZxrwm6FkiHhnpnc/SaOj/ExvKu4XSR9k6R6iOeh6ZOIJuM7gv30PMeg+23Y+nPgMz1+8v4cU/Q2j3vZ/nTaJSB6G22nyPmC9qYA+GiVMfjt6EEL7q5GK56/csw3P/0yudQYKzhpZrxnfo+pbFiompfW15ioju1yQrev2Z/WzIsabVzZjrLsKDMX9YWwdEYihXVh9N5lFvIOKenC+Sud0VnJ9fmKZ28e02pFaxRVk6M7hSy8q8pIqiZHCNh6cXXIUB1yG9nSoHJNeUdhpgbVCLIKVs872j1fQ1YZpg8MWFg9LTn6tKW6Zsm2hul9QEJ96Ib1yfty2gW0B87YNfsCXUh07tghK6CbCKwU2Exic4kuJRiLai2i6SiWmrP3zDh7Ief0BcWDr59EA65qoiEMkVMmg5MPX0FYi9i2lMd9IdnU1Rk0N+FvBDjpZG/6idb6z1JDFN06frtBrajgikn2F3QlwUDF8eUNZlpdfJCzJxgp6YGHsj294LfRpfs8gorRmI2C5wBmwnFVMJy2P5Yas0lDcOPcYf02ZmJ8LT/hXSkWo1y0m57Y6NpM62epWkSXnrt2G5mh4G4LYCXc27ErJl6eSe6bdNcYit1G92Zm4/GCuykFhRgoTvrn3Xg2K4p4E8bGCiIbFdxXYV8B2GnvLjWq30cUSj+q7ViEpZFbAybL9mMt9FNkxLIe+I6TewaGMYi68zMGNfhCWZywcNgFQIXtFyKD6L1wajJ57WKH3uB8nAYCPG6bgVvzHQRDl7XMnly7BERvob2hAf9Wx9eboVyF5c5mwSJv2LYFX354FF1Xn7z9FNfLFf/lwYtcy5e0VvH+xR02XY58mJPtNUyylkXeUHUZd5d77E1qOi0xRrCYVxgE2yZ3brO24LSeoKTh4XYWgdJZNaHunKUJJT4Ap+cQlvm8pmsVunNs0GxWc/Jgwd3lXtQPtUZR6wy517KY19Qv1pS3M+avusKte1+ydDNBsbIcvydjfUsiNEyOLcLA4acF9z+UU11xrrTjDwiqK4L6aFjDyeRQXZHUh5LNTTdzdxPB5ukSPcnITiumr66QnUVVGjMryDaa8kxz8//1Kvtf1kjtXHchgigFHaZ0q931LYGZFYhtTbZu2XtFxyKu8f4mmhagfxJ9+LcKIccBeAStSMJSnHP7e6MXI8gyBsYnrtqzYebrYPyjyyywciFrsGdqBpFSwfAXvfvQuaOs1+34nahe4xPrf4Xx7VmgAG4C8AnnHYFPYFY8UErrd4Xj9aDJW8vCjI7RAzs9sXRz63PgOGbJjhI0RlCmHDsU0iL0J08EGjGTcmEHFxiM9rk0BX6zCJoSdi4Y/3j/0jES7rHo+zKyeNqNv5hl2/8mMoyJ+H3czk0zF2wXx1MAZLIXU4dEkMJ413blxdoekAXReDp2U21OcEeGvEexry9iWsJzNwKLcfsxc5OAz7cCjAbz8ohJTbc5d7x3oF26zJ5cuwREX4kWn/Rd3z3qd/3bNwKGAF7/H7dYZDWTrOVgViGFYb+oec+1+5y2U15cPOC0m3Gn3mdjCl49PsQUBtM6ILJqC/bLisWk5nQz4WQ1Y70pWS6nZMJwON1SSE0mDa1xrrNcGqo2j5qlZVO64q9G8XDlkj1qI9lbVEhpyHNNnmvmZcPqbIJQhrrJKLKOzsrIcE2mDWenU/JJR77ER5FYttcF22tQHQnyrSuaWawt89c7hIHF6x26dOH4WFfs1cIwD4r/KzuLyV2eo/rIsUNGOVDUXJ3R7U9Qqxq16dCznOLumtkXzzj95qdo9iX7LzXIzoGHGDUWtBlJ07McrCF77SGTezVZZQegJoqiA5gKq2B6N4cu6JPkJeMj/C6dmKNWKdk/JO6pxBBZ6QEXEUeQum/C+BsDrlTULBs5ZIxk/9txlE9Y6RPuibSekUlYhXBtYnicwXdJdFRgfGzmwZQvKuv0VQJa0d935bZzbhs7yOWT5m0KgDKCwgB6Q3TaiImILFtgc3yBYgdQxAAIpUVv+/MQPUBQ/V/HbrkkpDH3TmCOQvRhwvhEhsq67UOE2ti1FMDG4J4O/z2Xvbub9K/I+iTPVUigmG3cuUgPkAJIybZ9tNi4D61wv++mw3s+cLOm94ME/KTXN2rOJZ6Ak7fRBgB+DH7Uuc3jd+e2v2x/JtpllNlXuo1WKxfqgnY9eOMHKrpc7OCz+9Wc69M1D+sp96sF9zYL7tzb59rVJd9wveKPV7c4aabcXS8wWsCi4+jKmtsPDlC55j3X75NJQ640x+sZy+MZ4izjztEeTy3OIuvTZK3LNzRpOK2mKGmQRtIaSd25IrK6k7Sd4mBWoa1wgumyRQrLnfv7WC0p5g3NvSn6YOUyYFvhC8la8klH1yo2T/V5bHThJrhs60BCeQzba4JsKynONKunMiYPXeZqBNjc0u4lLqDEXbS9KmLotDMcLiJpeq+l3VPMXt0g6hZlLWppMfMSua5p9gXX/4+76IMZ7UJRS4kpBOWppToS7hCaGMGjpxk5YE+XiJuHfcZpeoYjrXoudbSnBFdEVkG2seiJwGq/eol6HgYuENmeZwyiuyIYddGzWmnyweCSCb9PE0A6sMNo9Ws9GEn2oayr12ZFX3IhjtfRMM52fJ64R6ILyOcAsgKEIOZX0hODbKVjg5SFqUassh4cRSbO/a8nFlnLno3KLLKSjl1K+0Lh2C2LY4yCZ1ABIzH6OcYhgGLhfyQt1jgXnrU9aIn33ANDod3x8hXRjWZK+szX6f0ZAVQH8PsxHv4GkCfCby1Dlqrv8nPXEnRtukhE3wHMpoA8/ET3z9LATTtiVMLzp/y2Qdwu/LOYAk8YAp84b6bXFsaIv2a1TYrXJiA/nrfYgY3C3JzM0TvbmIEKjK3fZ/rcndv/O9Au8xA9uXbJEH2lWgpaHvegpJPHo+7IjjHbHXVMso5XVgdIYbm92uP2l66QTzu+7uod7mz3+IPbT/Ohg9d4+HBBty4oFy5HUDlpePHaA+6v5zFi7NpiRfFKgaoEy62LUvvU67e4vd5jv6iZ5i2F1BRZR6E6lDS0nWLdFJxVE7CCedlgrTOOhY9iW64nCAlWC5pVgS0Nq7qg9YJtgysYW+Yd9rUpshGsXzDIzkWQhbB2qZ0brZvA8fuVY3hy97+eOp1RcV+5RIE2maSDscjctuAm4GJpydeG/LjyWg+JPpw5KyYlcttSPb3H1T9Y0t7cY/PsjG4q472qD5xBC66K4JJaPpfDpESfnoFwtdSC+yoWQvWTfAhHlwkTFNwc+bYXPKeTdogWS1mfYHSjKNUDQpP1AtxgkE0RDLntBd1Zf/5RyxO1HV7D4xNiOiPg2SHPEJmyFzw7ACjidkE/FGqcOSF3sGz9NaAsunT7MKXp9xUYm9xCOJ/Mu8ZaiZ2Hi8ABKZG8ADMzQyH1rBft91F5wjNebj8iRAWmbN7IyEZWSfWgZai/sv1UYIRnWCyyFRFEpdF9yGEYeprrZyCuT+aJmJMogIbAfoVtwvhPWiSPAugJrA/00XhBexXZuP73AyH/SF9lkyKsASzJ2rvXguhf9OcanoFw/akmavC/6I+bslCxwLAH4tnGlyax/f0bTMePAj+7cMH4s1SXFIFwv907riG6dJk9sXYJiN5CGz9gb31HDMGQ2P15POi4WYFoJau24Mpkw8PtjHu3D7ny7CnTsuFuteDTt2/SthkP2zkHhxuef/4eRkvyTDMtHbi5Nl8DsKpLlygxg/aKE1dLLFmmKVVHZySF1M5Fho2i6EnesWkKNtsC3SinOapKlDAoH2YvpEVlmmzukEN2nGGMpNEKbQXaR5xJaTHXGvTcRYHpiTNirQ+vjxOon2SbfdmXg2ih2fNZeRlNSoHiTibWGJZeG0Rn2F5VtPsF1Y0J2+f2sblCnCyZ3F5DZxz4ypwrJt+6+xHzAgUGyDhD0k0FVkrUwT7dLEfVttdxJGLpeJ6m30/qDQjai2zjGKNYsT4FCmGFmoZ4Jy6qNAouNZIxL1FicAbC52Ts9WyPTYydt6DSghYuK3KqrUjPTey45siu+GOGBIvGgQbRho0TwBA+KhyDaDsJpXaatQDOwnvSc0kAWOgClWiLZOhv0bOKias1iqHTltyobtaPt9jP0gGfgV7GwNhaZmvi+Ix17kYsy0UBHAOtDf3clM5RMVVA350ecPbXPViI2eF1n2N7SO5pAAcpKxNAW2CodL/fAUhLx0joX5swU/63A8AVfu77dJDTLckHdq7f3uZ8fc51lgKieLAL/l62PzPt0mX2ZluC/t8UKBrTshcBoXO/Gy1tRpOpzZ2Q+WE1Y7UtObyxZL+seOXBIZ+vr7lq8srwhw+eQvlIMaMli7JmmrVUOuOwqHiwmTMrGqZ5y9GH77HcTjBGcNaWdJ3i7nLB0fUtx9WU1iiEsORSo6ThbDthsyqxjeLFd92JWqPMF3qNudAFCGGhlahaULcZk7wlU4YGV9IjuM30w4Lygcs+rUs32W1vWrKViOn/2z1AuLpmxRI2N5JQZBLQk5Z4MFCewvS+C4evD4SLOBLOcK2fypndbilOG+SDJXQa0XSgBMXrNXpyBGS0C4GqLEzEMKrLgzNdQHdtTt5eQdUaXeYx51HKIgTRrfHAJQpXvfGoD1xiwfLUoAvhwaFwK3Z6PYkMoMHrLnRJzM5sFcGD1AMpXKK85rAHUI7xEVGkHIeaFT2YCExVZvv76gXUaiOdfkt5UBHAk7SRicB6IKUstMI9T35s9M+B09dEwCVwbBBgC4NonLvMTszACEfjlBnnLpIW0Um3j84dC+O1PYmoPYbxC9w4yCyyEYMcToFdi+M44MKUfRkBBxGOaf19kglDlfdg1Hexc+8VCXhKGEOd98A2iLUjKziKQBOGmOMq1C6zKpl+BIOsz+mYiEAoRI+F80u1XBE8El1mUdeVAgXf9QHQiC4RX1t3jsIfO7rcOiDJpN5fWH+eA6xuhu+DLmngsrXD/exs6fw8nqsf086BvLCPdwgQXbrMnly7BERvpe14YHaOpxTAJBPfY4HUozYYfScax7JI4TJOH062/MXrX6C9pni1OuT2Zg9tJM8tTrhWrrhfL7g5W1F1WUyoeL+acXW2ZtvmLJsSg6CpM4SA4+2MPNfsTyuMFbx+us+1vfUgZL7TErvJmL6cwbuI5yKFRUhDaQXGdDSdwmiFFS7UtvaGdFHUrBo3C1ormE1rTq9kqFdKbObS+m9uuZIQpnSC3OKhwipn0IVxdHx5DOtnXL8EoHEu5b7AgyxBeaKx+xkmF4imY/LQsUSbW7lzcd3YR91fYu/eR5Ql5uEJ2a19urlC1dDOpNM++EMEpkfgJuXNzZKZ3XduuFI4MJSOE0vU9gxwb2CJ/NNZLA2qsa4EQgGmEjFKLOaZKdyx8aAvjrUw9iLz0huWbjY6F2/co7ZFgPWx/5F1kj1DhBFgXHV7qyzdoXbfd0475sRRNgIRcr8vbH+O0saHwpYGoR0goZZ+uAsXyeaZJOE/t0XCIHUyPhvCn6NtA4Vg3bFt8tBGdsJiEaBAtCKCUtkKZCNc3qXcIqRAbZNhZB2gCWBMRjdQoGT8dp45s1kfweeuORzfbWMydx0xB1N6WwIDo3AZpzWQMajxFZiV1J0Wpp6QgFJ4xiu4T8ExrDYD0SS/9WkIUkYugK5BVKXo3bbhWEInOh7VR7iFbU3mGBwrfV4n2wN27Z9LAqMUbqkZXk/UEqXPkXRjOVu5RK2kaRCSv49l9sXo/WgtOgDto7ZLX/VONffYvj1A8zYJtP9p2iUg+lNsY5eO+/sGh6b/seicTqfqcjJleHH/AX949jSfvnuDb33uJf7XG58Z/OyknWI6wSJ3YUYnzYT9ombTufD6usmQWEwnefaph0hhOVlNYQpfPDlCdy4qLGSYjqc/7dg+I5hkHWf1hJv7y5izCKDpXK0zIUAUGl1mtGclelHFBI3KSDSgJOwdbOkmZVztuYSAFrvn6kU0M43VAqEs07sF9aGfDGP/uOiWqGcIq13rJuBiacjXGnWoyJca0bRIbdl7pcXkgvy0Qp6ssbMSsc7BGOT+gk4JirMOo3JUYzGFwBrv6pB+pWt9qYepQE/cI2aUGLgCovaC4TnHiTiZkE0mENqhpGwLJvPFbT34im5E7XCGqocGO+x7LPw0UR/Un5cI34eoMW+FhHXXhXHgJzXCJrO98dM+2kum1+gZJl8YNrizIgMhLUw1UhlkZtG1cu4z6/eD+43NbA+sSPooMDH+2bHan3OSMRthIbNOHI3oXWvCgTObWW+VwajAEA2RaqhfN8g7RB8iP3DrBQMZ2Ks0mi0xmqEEheygm7n7KlMQ78eSajxT2tGLmEWyL9uzNbFvYRCxGKMcOw+KZA+sgrDZeuYq5m4SPdMobEjXYMm2IpY/kS3Yohd4RwbUeMATghsSNqib99cvQ6bqjgjejOwZn8EiMoD7hJkL59nNkn4LffLYxefoN+Pvwq7CPd31Wbp9YMcuGaI/k+0SEL3NZkdz7oUtXaCOx146mb+BcSmS1aidO03PneM9nrt2jLFOU/Tnnn6F1zYHfPb0Oh++8hoLVXOn3ueT95/ifUf3XV2yYsNEtXTWaYNWXYG1gjLvuHH9DID7yzlSWrZtzo3FinvCMUDH2ynTvKPIOuptjl3nPPueuxxvZxxNN2zbPLrorIUic2BLNxIEbJ/rELVEG8G2LRDCun21fhmaQfuNS+pVSW2AVjrDJy0qN0hlHDjrpBNZz2zCcjhGo5v5VWxiNOavgTCW9U3lslDngvL2kgd/8Ra6ECxebZGNweaK6j3XkI1BTQqE1sjbDyk+e5vq654G/Grbr8BtYlzCanl7TTA5kS4Dtkwm8UQLE1ibqJ2AvlJ5sjq3SqAqQzv3iTHr/vjC+lBt1Yu7o0jVACpZ3eM+DyUqRCuwk95yDDRA8Xz9P14QLQIo8qHk5UNJfcU4QGHDPgJoElhhB0AvHENMO2ytHCvUCbKppqsyRGYQuUZXGWarHAAyAlHq/n0lo0vNApQmgithPDPlRd0iN7D1B81sdNGBW1A4oEXvPvMMRGTK0nD7wDQkuiyTeQYk0W0FTRihv6L70D27jqVz56enFhPdY75fQ2RbAmKtdMAjAo3ZEFSLVCvkQZjxLJFNxmloekIMiW/nvSg5bBevK/PEoHApLbKVjMBKehcxeBAenoEg4A/JJf1iIdv04zyM/1QQnrbIcPZd4w80/Kz1/VCcueMG5jNf+kXSmC0atxFrO27nWJ8EHA20RUn/2tF3l+3PRrsERG+jDbQ/b4TY2bXdRWBo18O04xiTgwqAK/sbnp2f8t/vPs3plw945daG/+X5L/Cl1RFX8zW1yZhnNSenMziC+9WMiWopVQcGKgSdkU7jg8tEvVfU3O32uLq/5mQ9RS6cG2zdFFRNHiPIFnsV82tn5FKT+RlaCIsxrtgrQNupfiLZKrda32s5ubOHuLVkmrfkUrvCq0aCMRwtNmzL1gEp7YCU7iRKefG1EQhpqW92iEY68FC7jot5XpKJVlVOnD297/6Wp5rZ1tAdTt2EujJ0U4nsLFU5wShBezOnPM3Ilx35Z1eIa1cxmYgFLFXj6fqtzw4Mzr2B+050lnauBqHs4V6mq15hHQNhvDskCMh1IRDaG+lMRJdGWCULC9a7DIMRjKv0xFgFV0z8zIMUG5kSD6ymBtm4NAIY0Rs4bxEHrJYErKU5DGii7+sAhmJTnt0BB8IKA51EZCYiiXZVIJSjokyn3PuZdnofDyxEZrCbLBqj4K4TjXTbdo41pJHu81pihUX48iTCALl1+iUrYpScaOXwvL2rTybuG+j7tv+ACFzTFlxUeC1VuB+iEzGaLv7e9iyI0CIyQikgsPRAI5S7SA19yCsVx5MANH05lQS0Y8F4LU8skJowV0FzFFkeEcCiv+1dUqQ10RlhcRGAqh+PJvfAyH9WXfWbhnth/feiH0LxGuICZ3RtfiNdOGF42E+zn/S9dRrDsTvxsW0Mjt4IqEn67U9DUH3JED259qfg8fyfpO2gUHdvN3oSz1GsIzD0BvaZil33ZxUHRUWjFbe3e1yZbcivV9T3p0gsLy4e8unlLQ6yLaftlKuHKzorOSwrNrpAW0HjRdCLvGGWN6zqklne8OmXb9GsCzotee+1+zEj9TRvmU8aDCJGm83yhta4CDMAawWdVi4s36g40UllELVE1BJ1r0CtFcY4EFR1OZU/hrYOTOVSkymX3FEKS55rtHbATUrrAFxpYg4ap6cJ4eJOA2IytxKe3emZlWwDq6edfmj97ARdwMGnTtj73Bmqdvsqj1vytaGdS7bXC8RTNzFH83hbVdOHaOsgUg0uBhsMh0Q15nx0l2cR4v32E38AILLDle5ItRhh/206GOhdGSMGwBSJQbTE0Gl3zqLXWljn9jKlJTtTLvlfqAsWXI4eJISs0qIT8XzioPRanSASj2AriImVxeZmAEBs5/MB6X5/qtCR4ZFlhyw1IjcI5VkgI6KQO/7W96HI/DFzg1C9LgkjevZECwfIhe3dd57xEq2I90htRQQLg4SCqQH092AQ7RXAQ2JQgy7G+jQHshW9u0kEw+827uv2JfdT9KyDnjDQx8XaduO5Q/hj+mSOgRkMYD6CHL9dSPoYnx2fpykAFqwTzgtNTEoaS9dIYrqHcA6m6AF4CLkvznpA7+6fP1XTHyNcU+jbGF6fAJtUPB1/E74fgHIubFacfw1awswN5vt0e8nFzNA7hDEuw+6fXLsERE+wXTimdoEiccHn537L+UnOH0u2sFdWnNROyZhJ44DI7SlYgRSGl1ZXuFquOO2m3N0uXERXyP1jBZ1RZMLwR3dukglDoVzk2IONd/J7EWsmDWf1BCVMLPBqreDBek5VO2uwrHy1eiOpdUbrGaKmdTSF9KyEmbraU2oryM4ky1N3/o1WqMBQ+TIgBsG2cvuX0iCEpSwdIhCJiDYtz0CopSW8URNuJZlvLMXSvfKNA0rFaeuiX4pgYF2Ns3ztZuTpndrXOwN9ZU5zbYYuJdM7bQyJF8blP0qBizN67jy211TCFvQr9WAE0szOwYBY4YiTIIwNE66qev1O6oJSzdAApXqh6NZLP0/GntCOaRGtoFtoBxYCoPHbpVXjnatKDPdhzg/nkHPonCsks/GeCQsiib4S0kWIZWXncll53ZGQ1gGcTeb2mbsIs3gMgEbCVjltWWbc31bCpAfM+FxDWAeKQokOrIgh97IZPYi7jGro+9CVtjeGKXglfQ/Oned/H0LwAysVXXEJABg0mRwrGOlk/1YS3YHx4yQVwiDreXIdAYgMS5MIVCMGxj3of8K5RRYsgAQ/zkIUaADhIZ/TgD1JWKXASI1D/CMz5I8VXYfhWElL+2oAjOxwH8nl7WwXgaTBZwnTm36fXt8lvviz2S4B0Zttu1Zib+h3Y/DT/79bU0Q/cYwm1bgCy+GkmlKojq+/dpsHmzl3zvZ4/4dfJr9SsdWFqxEmnKvr2fkJD1czvnx6yB/fucmn795g1ZWsupIP33odgKrL2CtqVuuSo6M12XHGvGh4dXlA2ymmResSMW5K2k6hlGFSttTa5RXadjmvnR5wsp6ijeRkPcVaEbNdm04iCu3cGhK6PYs1ktPNhLZTVG3Gui7QVlJ1GZ2WLOZ1TPTYdYq2zciUca4zZZxB9cY7Vm73RrabO4M8fwWfCygYQEu2tVTXS/KtcWH8R1P0LGdyb4tRApsJ1Kpm8YorD3727hl64iLG6is55alzNwZAE7Jpq8Z9ViwtRgl04SKYTEEstumYJNtnGfbGJYpZvYfR5C7MvptK76rzLrTEqITElNFNFlbPMhlmYwG3N8wmA1sk7iTbW/kIIkKeoQAkAoDTSc0ykuug7xNb2KibIXdgJwKgRjqA4kXQatqRlRrdyijYt51ESEtWakwrnVYocffZ3PZsjwdIIrOY2gtoSh3P0+mFTGSB0mdY+Oi6GJYf+m6XEQ+X611RgSUZi2r7dAb0rII/Z2GI6Q1EJ3pBshrdM89WpTob2TqQkbI8cRvZa4ZC9GHQ7+xqKXgTtv9d0BalrrIA9nTZg3ntE3ymuqAA4NMM1mHbcB1pSoHYzwE06l6gPRhb/pjdvD+H8F26XdS+pUxRusmI7Tk3p1/0P/QJLMO9H83JAzD8hv10b69dMkRPrl0Coifcdq0qYgtLl10PyujBGu6U86AIyN93xo35isOy4rPH1znbTPjIuz5DZyTNWUFjFPO84T9+8kP88dkt/o+X3kP9YMrpvT3qk5L2M/v8j1eejsLqzkpmmZs5bx4tyaTh6MP3ADjbTJh4nQ9Almk6LZlkHctTB36mRUvTZWyWJUXeYYyIhs1Yr0vRApkZRKFprmi3etSCZptTtxlNm9F0ik1VRBCkpEFJy3ZVkmUapVx27OAyE9JGEbIzRD1DhHXh+Pna0k1CfhywSpBtLdurErRl/0sdyxcmrJ+dIOqWbKupDzKXmPGLD8G6UP36QGGVoJ0LNjdyJieG+W3D5NhQLg3Te5ry1DK7ZymPO0zhM1kn+WDC7Te5QFiLMCELtDu3qNuBKG5tFg5YOcPX18UKrhnhAVkwiuOIsjiO6A1pcIeEZrJwYjgBux9vVuCAh7A9KxDKZqRD2BJLUbhBYgfHDcCH1um96BIqAxACjHZTkgxRbgFAWbxLzt9Xf35BExRrqvnjiE461rCTTk+UGW+IPbBL0wcEt3VSqiJbeUCWsDKRBUn7xd+HWCds8LwT95Fqu2Qt/Gc21jzTpY1RYtF1JPr7GN1DyX6Fj/4KbjDwgJsexAhfw+ycK8lvE0CKLvt9pAyILnrwEqPNdN8vYTzY5BWeuxDeL4zrW5M78XZMLzBmXwITOtI7xQSZIfdYcg0RhNvh+8FUa4fHSe/duZcc/s/ou+iGHLmnz42Jd7BZz9a/3ddluwREb709BvyPx9ejKNrYHjUmd2xXrQskltvrPVcctWz5/YfPuAzTW8V/f/0Z/uizz5C/XnB3s+DKf5zF1bQoDN1RR5ZrKp1T6SyuEhwAMVRtxvMHJ2zagqPFhrrL2LQFdZtRFh1l0aG9nmO/rHhwOudkNcUawTTvEMKitQvTF4A1AjXtENIZOZRF7+to3LrWJXy0RmCMoGkz2k6RS4P0+XCMFWgtab0bzoEhb+C8kUGArNw+85VwE7MIK2Ub/+pS0E0Fy+dzVGUQGuoDid6fsr1Rsve5M+xqjZ0WFCuXGNFkxFc7F1SHku0V9xgVSyfKzraG6V3HKuVrEw2K8lE80jNIjq1y+YlSxsJ43Y6M4M2de7OQdBPHNgXNkNCJoDYxwLJLtB/CGyT/coVObQwVBw8UAtAReDaoB5c21OaS1oEL4QfvwPAkFi4OcBxT1bqoMKuFu98+h1EAKUK5cHtrICscSyQ8cDGtpKudQMWGZI3KxntqddiXcFojAWLeOk2QFzVHJivUQAugwp8XJCyKsIPorngd4W2PFWN/p5oXRiVJAlsQWLhYOy1zINRFbImeZUnAfPjfZH0Zjxgx6Pc9EA6L/p6em0/CtqPrMUXv2hwb+cDwuO18Ru4QRp/0jWrcuA7jLbhYA+BKx1pxmrBMHgANyp2k5+1/000TVigF0SMANBZgn5unU8AiktcFbcwmpUBpvM3QbWbfcWB02d5+u4wyeyvtTTKhu+zEoD3uwUlWjPEjfw6Ncfl9bi6W3N/MuXuyx1981xf4Ek9Rv7xg/4UzVtt99suKP/lfG4S0mCpjfrimzguO5ls2XS8eMLi8RsYK1usJ2TWDtVCqjpV1GqFM6ag1OpxsUU9ZzuoJppPoRpFNHBhq2gyjJca4OmUAk0lLVeXOgBUGGwxl57MPW4HueoGAUoY79/fZ298y299ifCSc8myA9OJqowy2ENBIshOFnhnURjK77dghk4HqwBTOoFolYkK8YmnY3sidgHqhqK+4pa1oOpjNoGop721p9ubU+3JgIIIxrK5KmtZnvFYSoR2b0ixc1FqXuYitUMcsJKGL48Lf46gtCitQ61b9whuVrBJ9mLNnDazyItewPy+OTZkNINZM60oHimKRU+GBpK8PJjyzEmpEmZAR2o/FCC4CYAOnjfFgwIQotogcXHFVK0XU/YS8QsLnAHLRZW77ZpsT3HYyM5hWYVvRs4ApO9AKB46CsNoDZatceD7KCcGFEc5V1eLYo2CA9PxzgQABAABJREFUS4PcKIRxkYPZyiUXNHnP3gSAGe8V/fHj85meV9A9dcQisbEFwNAKDHbAYJwTAQfWMPwOIqhKRfqD3EMJKxKF3ePz9exNyFEUsnLHFBDCR4e1CVAJY8gfK820HTPCd/15htQRafbqsL/msD+/QYZskZwD7m9I9BjL1Txq7n3Ud+Nn7c2CFTH6Gw55ATjate1XqhnE207M+HZ//z9LuwRET7KNx5R9E58/ajzueND1xDJd1BRSkynNqim5Mt3w8OGC//cffJ1bWF2raTuFmWr285r3PX+HB5s52ggWZYNYbJjnjSuz4bNWF1KTSUPVZVw9XLFqCwyCWmcsJjWNVuSZi/jatjlXJhuKrOPO6R5SWUSuOdjbAnAwq7izKZCK3nVmBCozGCFcaHVhnLETFiGgqV1NCiemdSH2ednRtBl5puk6F2pvtKTTkrbOyHLtEvppC8aJtoUWHHzehddbnxRxftvECV8ndL4wML3f0M0U03uabiIRFrorc7LVBrRGtBqjBKp21edDeLzQTr9jMgcKsgo6KVAzOdBWRD2GByiys+hcDFb04+rigSmCPjJIl+7zbt4blGBUYtkPhoYjNZ4mc4bJSBCVdAVUA7vjs1OTG9AWhIjiZwITh0tlILqeSggrc2F86oHUVSYgFDWNxk8Buc+BlFmXd0h4QGadS3Ugum29OLpMPk+i0qIrLXwXTs1nzRbSa4cq1Ued2XAOshe2e00buPukkppxaVh7ivXidQLZWtAteoF4iO5zwEgk4NGxMs4lJHoA4zEdElcCxnd/6MeBPiUIrxNmZdAeY5SDHicCcw+CYu2wAHSSjNipyzUyf+FWi6TfxQ7g5pspXH8onxxSrUfX58+32fdJKkM2bJPsf3wtFwGhi8CL4PzitMfuw+0v2N+YZRq41N5hdugy7P7JtUuX2Vtpux7AXeMpTBK7Hqw3CoZ2HMNKMDPNwazi9nqPed5wY7ZiWU+4df0UtXRLrK9/zgmls3nHa+t9Mmk4Pp7Tdor9smKatcyyNmatnmUNh8UWiaU1inlRs8gbCqWZZC5nUaE027rgdDNxuYGAO6d71OuCZ64fI5Wl7RSTrCVTGpW7wpuhppo20rleglBC9PofIV1kkPHG1mpB43MQdZ0DQEGXJLzxzMtu2H8Wpq9KV/zVi5bnr2uMwkeL+WR4pYjh9cWpRk8U+bJDNZZ27jVCT01g4bK8yVXN/uc3g+OEv9IzP1HQnEN1JLFKuJIdEbjYAXg4l6k6TMqBIQoh0F5/YaUDRLrsv08NWDSUpt9HMGSB4QjCWeHz98hQ/sIXIu1D59PZH+dq6iRU0oGhoO9IwIEpE99F0Oh41ijVLQWggnCYazz+RfK/aVw+ohCZ5jJgi0H/h76zhQuzp3TMo1XWgbPCxGSNohV9VFoQNY+eZ+v1S7H4qxoCgwBcQ3+G8xDW9WvUrCgIddyCCDoFM9FdGbRjoY+CYHqUdTq9H4GRCWNItkNwsguwBTbHJLog4UFyEPubvNchBYF/OMeQ0iKNVAsLixB2n+p9YqJ6PwadazC5bt2zrH3f9/0sO+JYli2oLTvbLhfYQAcUtknB0AWvc3qh9DXu2/CbVDsVwNCOcX3ZvvrbJSB6q20XKBpT3ux+WHc9aI9s6XYWTGkoD2smWUvV5NRdxvVyxVOLM77+ym3MtQZ5reYD+3e5tr/iO9//Kb726A7H2xnf/OKX2SwndEby4uIhJ/WEQmpOqilfWh7RGBUjwiZZhxQm5hbqrCuxMS0dq/TC0UM+d/8aB7OK2V6FEoZ265gca11uIeOLawppnQ4IXIkGb3SEtFiDM2DGRRShHWgyWrrIIiuwRtI0rr4aFoxnCKLuyAK1c79lFWQbB2qMgmZPolpo9hyzowsHhoJhE8bSTST1oXMdmswJmOsDgT6YQlWD6dFLcCUFAxJysqg0JLlzQminiXDiaXDaJWG8xkfbuH1knBJhNUFv4g8dCmNGwao3PCG/TDAcIaFeONc0UihE4MRcOFYgG4lsHFOCAdaqH7etdEkPQwi7ABHKWnh2Q1iSUhj+d0EjNGpW4OqRaV/Ow7tSrQc51ogYZWaT34uQSgGiXqx3UeESPYIvHGsQhaNArC8BYqWL7rKlSfrYX0MQgge9kQdPqQC+PkyM3uCCGACqgQ4pIpT+XGVLf+7J54M0DAkrFF1fph9nERAFJicJrY9RfuP5yf/fzon1w4yPEAupC6IwPWisUrApkzHjxx3CLQR02R/PBBeZZ5Bi+L3sgWTEzM3oFD2waPe95ssk25mkTtqONtD2jBaigwjAHXPuOR3nju/P7T8FUFF7F6Iyk2O9A+1SVP3k2iUgejttBwCKn8NgVfHI3YxWMzubn2SEAZSlaxSZNMzLhucWJ/x/X32RZ6cn3CzOyCcd/7cXvshZO6HTitvVPpnQ/LnrLzPLnI5olrWUsmOWtRSy44X9h2zbnE3nlnwPVzNeO9sHcMkRpaHTKiZcFEClM7qXFhxNN+SZ20YVmlwayqxz+YpOi3gJykeFxYfPeldZSLJnwXTSV1EX2EZitfQGEnSV0a5z51bxDISuM8c4aeGyVVvnwsL0bMr2mqA8dav9dibQPtrMZM4IZ1vN7LUtCGj2VR9pIgXVjQnMpnC2RFiLatxrzNAEABP+l9pGMBKYqhA1I3XiVhG93icNbx4IZiGCo25Kn52XHgyNV7473Qhi9NfvN+h1wIGEEKKO8ZqRAEw60UefBXufDFpnND0QMv0+wzbxtnujKzeBigj33/0VgaFJQJEN56jsgEFyYfLu3oeaaGgP4LIExEqca073maJtZhGNiIbMgSJfqsOX1QgGb1Ai4wKwMejnWFCWpHxH0gkBGCTs3jk2w/dpN++BVRoVODgPsePz5PswpoNbSgQgpfAAsI8KC9sHgBajwlKmLHR/Umg2nLdVvWs3ndMGuYMCQFv012YFtHu2f6Z8/8SFwI42Bik7wQs7/jKcc624+HVu8boDNA3OhWS7d6Bdht0/uXYJiN5sexQAGn/8BoHQI38zesjMsxXF1QohLdsuR1vB77z2HB+8cZvPLK/z5e0VvubWHZ6bHnOn2uMv3HyJd80f0lmFwrKfVfz597zEIq+5W+9FMZ0UFm0kx/WUxiiKXCME3K/m8diTrKVQHZnSCGFZ1hOufN19ZlnLjcWKTBqevnrKwWRLZyTbOkdtJWadOxthHesjhY3h1dYKJq9nrrRCyiqEHDdh5dlK5EmOPM5p17mLQlsVyOOcrlVYLZm+LimOZUyQWJ44d4UpHBAKE/X0vqErRWKQXOh71MB4QGIF1PsKhIDpBPXS60zvdcjWolzFlCgyTd0e0leml9oiGzu4ryIYtYQZSIt5DnREItm3JBbFDGUbAtsQgZk3cuEVhNapiyMad1+WI/ZBkjCwFyvvAAOd2GlwQ8h+n52awexiS4OdmH71roX7H7Hz+bEBUHjWSPjSIbYVPYMRNCyWCKrFSe6izmoFGxWvxxrc57nxwl3b9zP+NLKeGYlG2UBI+nnOtRaeS9uDh3i/wIFCDxD7ivd2cL3ptpFUSuaFcH3dDPQsuddhzKTXkJ5feo88SAn6nZ0LuQTAOsNue3AdCsqGumZ+XMnOpXqI4DzDF2FO9Eg2gC7iIiJct7CQL8XA5RTHZkgX0Lms8t18BK7GADJ8njJDO4DS4Ldv5LXDdXYOLMWbOTrWO4QxLhmiJ9cuAdGbbePVQmjj1dpjgM6bHn9+Envq2ikHsy2LecXD1Yxp3nIwq7hfzTDWJUD881de4l6z4Gv3b1PKjlvFCc9Ojsmk5je+9H7mWcML0wcc5FsWWUNjMlZtyf6k4mTjeOlcaowRPNjMef10n1pndFZyWk154fCY7XLCXllRZK5+2SxrkVjunu5hrOD+eg6/v4++2iIXbayRlmXOOktlkLl2ofgbEKee6emkMyAGRCOZfa6ATkKlwMD0rkCeZZhOkt3LkZWIbrTgWgiZcnUhYq6VyUMTI2e2VyTFugdBTlck0Hmf6ycYmW4qsGUG2sBsRn5SIzvIauuEtsF9oR0TJLXt61AlOg2EY6TSlXTQFUW9kDo/yaeZqyE9Vm9kYpRPEqGTjrM0LFz6elqxGTwrhGNarP/bCWQtokF1leD7QR6Md9DbCCN8hmv/iqAlbOgYEjNJ0FUQSSenI0aoI1S7t9qBIaEstpX9/vF9O9OOJcKDo1LDNFhq4ftbxBpn8ZnCgblQuiOE3I81XtqzjlivjUnZgqRPHPKnHxfJ9cXcPZ6BGyS1HDd/34JYH7x7tu5D4fWEAVsT2w7gFoB4vK7k/K0K2jYPQPPkd2Y4NmMW6vDz4P5tA9hyO1Y1vUuv66/dCn/+qv8sgHrHDjn2NquICSbbBQOwEfs67asxQArbD/Q9w9+wY7tz2iGGAOgcIyXdydj0/OLrgpXyZfuqbZeA6O20R6wCdgGeXSuaN9tONlMOp1tmRcu8bJDCcnW6RhvJ/3bzj5zmR2g2XclMNtzMz2itopQtC1VzON+ybCccdzNaK5moli8vD1m1BfO8QUrLST3h/sM9JnmHsYKb+0u0kWzbnJuLJcf1FFVork3W3Jov47lJYbm6t2aWtZw+XLB9sWXvaENRdvH7UOxV+Lw2nOV0c8hPJeI0R26le20U+5+Rzv0VDJ2nz01hMeucoz/2k2swOn7iFwbyM2j23Pd64kTOuoTFaw4ZlA87JsfGaYlKRbfIafaEEzGnEyNQPb2HPdqD5QqAbOt+V546tiHb2qgNEsZlxJbRdRZuPn7fLrw7FIJ1maf9NsJfRhBpp0yS7YFNNIKJq27gUqXfJnqtkiivVN4ifLLEAIqcVqi/9sF+7XCOjy4Y/94BAf9DE25GGBwutF4o69ItFH6HI0AU+mogyJYu+7QIDE4SxRMBWSV7hqcw/T6tA1Ei5D6yLmljZJQ8QAkamtCvDr2Jvu7bmI0JXbPDeMbLCFohk2znz3mQTye5R+eMOkm/hzGkdgAbhvtKTzKI8o0PYx/UNstszFEVwI9o6d2YCfsU2SvFQBwtW/8cZq5D9dTdh6iJ82xh/D/0cQAiwp1fvhTkK1cGJ/RDAH3xmdwFXMZjKAFHoS/ja6Qn2gWC0uPtYpKGv7sIDJ2/FV+pZp+Au+ySIXLtEhA9ifaYsfTIUM430oJbwMKNvSUPtzNypXnh4Jhtk7NsS3Klud0cctZO+Y+vfz2vrA7YUxXvLu/ygfJ1PlC+zkk747WXr/B7rzzLVue8sj6kMRlXJhvurRbcX8+5uViyqkuyQrOuCz5w5R6rukRJQy4N2zZnmrV8+LlXOWucc/+zx9dofEjJtena+aO3iuu3TpiXjdMXefGs8kkWdedE1IsvSuqb2k10i47pbcn+Z92rm/u+LbWfYPsMzfPPZZy8X7iJ2AjkcY7JoTiB7XW3ag2upck95yqTLXQzN+RNKakPpIsqWyjaPXf+YVUamBihLdvrOXpvAkqijleoqqcOZGcpli5TtewgXxmyylCe6Gj03AQq4sRvfA4kHXMiufO19NsPwqrDBBwS+vnJOAU40TU0Wg2PQUvqPgvur+AiCYxA70p0LEa2kv1KXjLQxwwipcJ5pMyHz8ljBb0OSFjkxCvTRw9Eqi9zO6YXIYePfKi+O56ImqsQOSfWKoJohBPt9+fDQAtlBS4fUxfuj/XZwPuH1noRdzcjGuBdjG9k/nxf9QxCAF7J9omrLoL5pBZemj4h2+CAwoo4D+gyOfhFc8qoe4NAOZb5CJ+HIAH6+x9yUqXXEHRBQMxDFOvjRYDVAyRED8S6Sa91IxlLMXLPBwX0+j2fBHIMdHaxOCl4HwOb8Xdpv6RA6aKXPP9/ZH9SMDRmod5BdsiCz+r/Nl7v2Nl+dbfLPERPqoUHPbxPWjBKbwQMXSTYDJ+/8n8+y7U/d4eDouJhPaXRimv5GoD/z2vvZb+s+PPXv8h7J3d4Oj/mqlyztgWtVbx7eg817bAvzTl5esZpNeXhdubC6vOOeeHyDClpuXG45MZsRSG7WJKj0YqHqxl/8fkv0JiMQioyqdnWOdLnbwkrjumNNZkyrOuCIu981JkALem0Iss1ulExuaBsIbuXM3/dogtBdQWaI1eBHUAtFVZZ6msGJprNs8LlG/J0f750zEt95KJUZCPo5j4r7gSMde4GcJNvvS8xSriEh37yDqtZK9wkLpPJTs8yzNc8S3F3RbZqyX1tMVXZeH/ytctmjRAIY8m2BoRAF859V565CbTZE32Ivl+9h8zSgSUK7r/wN126BLYoMEZRRxMmNg8epIm4yg3JZHKP+9K4PD2pC4oElAloDzSyE8hGRNYjup3wfaUDmBnOrsEdE9kFk4id43bDQW/HD4xw9e5EYJyCQc0NwsoeDOa+AGwlnWtMmJ6R8CxPcBcGcImyTrDuhe2ykiBcUeDAAIRTSTHaTgbAj6GB2zLcR9Hft3ManpR5G/1VG/poN38tujzXZYNzSPVpgR0KJT6scvuJ5znGpP69KS1yK6N7ULS9yy3N4WU8Y+UWEhYzMRR3VMym7bRLrpBzyoTFxKHhNtQ9S4VwwQNp/5w7R5P8fjRuB5+H/hjh7AGj82baQGfl9zkAt+e/v2x/dtolQ/Qm2zkKNW2PeQiCYXjDi4fxJOnfl6pjv6ioupz3XnmAxPLHX3yKQmle2HvIh2cvc0U5945GkKM50XMednOsEXSHHZ97cI2qzdhUBcerGVWb0fhCsNdnKw7LLa+v9jlppuzlNXfu77Moa7BgrCvHUciO//rSi1zfX8UCspXOOKmnHM63LIqam3tLDicugUin+9Ic1gjYZFTXLJM7ypWiUFAfCs5ehM1zGj2x6LlDDtPXBXpPw0yj7juxtrCQ3c/guECX0B5qmisWXVq3mseJPmUL1XVLvvXgpnR5iIR1ES3FUntgIjDJytytep1hXN8q6GYZ7bU5plTI2rjSGwkTEDRC7UzQzl0R2HjbvBGY3u/I15bJiat9JhOiJDWkwfioFrKgx/AG0fjcRDGr8Oh36Qo5XEu/ATEUugcLEDJNR21HIigO7EnAO2kNs8guydG+6I8ffxf9dPQlOEYtlmLx24WNBmH34WORnIu/HhsyVis7OF4KmlIwFzNcJ5FmosOxRqH+XCr4TQ4/OO/wgUmuNzmvNAN5/yMiGErzDqWgxuY94JWdE1anrpu4fXgfLjkRMQ8YoDDePNjrFwLJPQ1uwpCQ03imx7NnIUpQT1yf6cLGNAVqK2OJESsdGIL+rxggdH88Mfysm40myXB9SY3CMXMT9xO+S7+Xw/s4ZJnsm3pdyFAl7jM7vj9f4RYyVb/d12W7BERvv+0YR+PVwUBn8WbbYPXodlDrjM4oCtVxbzuns5Lnn3nAtemaw3yLtgIlLHPR0NqMiew40TO+sLnGzetn0AnWq5Jt5ZZ6e9MKKS3H6ylnlXODZdLQGsmmy9l0OZNZw9XJJhorYyUGQVZ0XJ+uXeSYdRmvt23Oflmxafs43tW2dJFhjSvn0awKKAzzVwTZ2jM5U+NqFs0MZD3YoBWsXjBO59FJTGFdorYzxdEfwfSOpLvVwLzD5CbmqcnWjrnoZoCPIAsgpjpy1eibPQdi8o3LS2SKfiWfVg23ClACkytsJlxYvdcIWZkkYPT3yigPsLIEBAvAWiYnGlWbvlAm9FW0Q9mC0WQeDOogqsezDbLrjWYASfF7hkArZSdSnVRgQgZ6jMTQiMDA2OH4DiLsAIxiPbnwZdxoPK7PPwxBUD1gguL/yYn7/4W0EKrdeyMuMoPNTa8HSoFCBEain/kCEPAXab2mBnr3UDzli2ZL278CkE6jwNxx/OmkgMDu+L2PIMsqen1YAqjOHXrMnPixEsaBsD2LMxgP0g5dQOEe+usM4MyxSt59ZgW6dPfYlB4cZHYQsn8uNN+AbER/fr5PBolDw+mbJMUAnAckg8+Gv01B0dC11b9SsDJemY5dZbvaeDE82N+u9g65zS6jzJ5cuwREb7a9SeQv7O73j23J/O/+F3EyebCcY6zgymTL/3L980xUxzRrWTYlv/HlD1DbnFx0NFZxZiY81DOuZ2e8b37XMTsPFeL2BPPyjO2y5Hg54+xs6sR5CL54fIVVWzDNXZa5dVOijaSQmq+5cZfGKIwVdEaxmNax5AdAJgxnqwlSWM62EzZtwbopsZ9ZUFc5ulHw2gQaiSg0xZmrYN0uIDtTtAtvV7cSZhq5Vm6ynrgoouxMgYB86fpn9ZwL0ZW5ppi2sNB9FJWA6qqb1FUjmD50Fe9DVfPlc67qertQNAtJs5cYDel+pwtizTMrwBTO1WalQLYWrEV23rgoQTdxrxQ4NAsZDaTNJflp64CUN7gyuC+S1WcoFREAkWog2/YGM4yNUIE8gpx0xTwCRwOmI4CcdAZImYoRoLcCV48s7q9f8cfnIYCQ4BYiWQx4Eb3wRWMjSxRu1OjZEInRcy40/z7mQepP0AY2yAK1y2zdZ7Wm1zQFgCJ3PIihiK0gZqhO2ZbQn/GxHPVPfI0ZkAR8hlIsqYvzHJNk+ygyVRMjI9s9aA4YCrR3AIKYE8i/UvYwXkcA2iGaLCRPDIsQaV3gQvheJt/nXjcTtGGRqRyCWEQIvU8iK23SD34b69mVbm5pF3Y4fh81zyb6ndjfo/cDcXQASEkCxTcCnsbbWDHaXwKu3rY77rL9qbdLQPQW2y6/+7n3b+S3b/iA/V/xRwvO2pLOSDamIJOG104P+NLrV1lMapZ6SmVyKpujhGFtSm53h9yu97n/mavo2TD9fldlTKYNs0nDflmxP63YL5zgpvUz6o2DJYXsXIJGz05lUrNX1GTCYHAh/xPV8fTVUwCkNKybAiVdDTG9ztk72KKvtex9JsNqQX0IzZGhPXCzdbYFPdfMv+TollAIVPi/JrfYvY6sAr0wbN/bsP66hix32bFlrrF7Hc2RpptbJg+g2zdxEitWbtJXTa/FqPcl9aGI0TAxF5By26nWkm0sVglUpZHaYjLhIsQsCG1RtWX+Wk1W2ZiB2iVwFEweaspTQ3nqOt0UivJ+RbE05Bt3L1RNNBiDSdq3mAHYGxZV93lawrkGUBUmZJEk8YtjaGyIIbo7IFm5x5BpESOOIovkz0PY3uA6jYsHjknElk3cHP15OAAkvPF1rsBklRq3dYk8U6ZIKOsSL4Zt0v0HoFMplw27SxI2DvY76pOQ/yphdGyoKJ+c8sBo7mpp5BhDcBnYwEh0BOYn0cIE4CmM07sFIX1z5M9hdH9T4+1YHq+9CWMnYays8nq1rO8zoYkAIa1DhnV6sV6L5MCPKWz8LoimY5kTCbIWZKt+8ZAK/1Xlnq8Q0ZYCzm5uz4351O206xXOdbBdGE/C+nHXv6z0rwsA0IUvmfTnzu9tf76h/+j7+J1ol4kZn1y7FFW/jRZcCedabz/e2Pbndrz749T1Zqxg0+V0RtF54Ys9yzmZT/mTzU3eVdwDQGFobeaq13eli545amGroHN5f/IHGetOcvDsQ65MtkxUy6urA5ou4z2H9zGeRtjogkwYMulyD92tFrE4LOAKwVrBPO9z8u9PXAZD8+yWq4cbjBUIZVi+z4EDm4GZakQnmX4RVi8al6RRugsVWsB+64ylT3CHtCzfbWAeSpCDlBaLxRiByB0Ayu4qVs9bzNSQn0rH3pQCVflkbzPIt+5YsoP6yF2H8RXK+0gzXH6hytDNnMtscE/xrrmpoxCm9zXdVLpz2DiLkK819ZEi2xjsRCIbp0PKtoKsdHqjEM4MRLG5u/H+j2eVsgpXtd0mk7slMkzn88wM9xNBUfxf+HIOfaTZrmEYx68lRvyFJIcRRCm83sdCKyOzAP7zBNiTgJ3B0YIhlsOs5kjrAK/1+ao87SC8YQ4pBALgkhvVAzLfP8Pju/MllFDRviSJsFHQ7q5X9MY3bUl/hj7VOUPXVjie7Ldz2bWT8RWYJeNAohVgi6QkRgrUAhgNu07mlKDdiZXoZWBp3LhJwUPcF04bJLp+PyEnkwB0aRBGxshLWftnpPDbGd/3PsIPIeLz4xY0fvvS18oLIM2PUz1Nx8CoT9P/R/0Zx6Lo+8GOgO+F9yvd3UU44FGfP2YSPweOvsItRIq93X1ctktA9NZanI3Of7bzAfMP7lt2KccZrF/0LPKGTZdztVjxyvaQednw7Adf5tNfvsWyczqg1ipaq5jJmo255mqUzTV0kuJqRdc4A37lQyccTTfOzdWUUMDV6YZ53nCQb6mN0yxV7YTGKgolKWTHts1d7iJheVhNOSwd+DmpncssZK9utOLG1SUnaxc64oTVULxcOheZEVBqTKbIzyTtkaG+iosUOmyxtUKWGjvvovtDLzRKGUyrUJPOMwmCPNdUmxw1a6nehUvoWDi9TjdzgEMGjUNgZCQ0+6JnhryhL878rTWgKoPJnZtMq8RACoHs/CpRifia3W7Y3CrQE0G+dr/NNgZdSFfpfuoevXylaWeyL7jpgYUJtLw/fqpPshL35CZC66hRSZJBRiBkk1doY2M+ymkTXBnWr4JjsVeLL0XRG6UYFeZZCqsFovDJDoUDNsHFAsn7yDadfzCEsr1Lzf/OGpdTSCqL1tbrhsKDMdRwRWAjcMC/NFE4HhmvJAItPFcBWNncorOQn8lfbyYGfXTOzWcSMB3mgh1zxcCNHhiikO6gZpBmIBj7+DvRf57gWQ88idGLNvOkl4/ccufvWB7R9ffXKHxCSr9P4/4POYVkI/0zkpx08t4EoBRyF4nRNqIXq0c9XBDs46JDwbNEClc0OFzz4wBFvNlJXydg6LHazTcLWMbPx47vbRjPga26bH+m2qXL7M22EfqPD0YyWV34G3Y8SBc9lP18svNzYwV1l3Hczvjg/mt821N/wufuXGexX7GXVVS2oLUZSzNF+WSNU9Xw1K1j5InLCn14sCGfdNy9t8/xdsZ+XrNf1FRdxoPtjHcvHgDwyvowRpCt2oKH1ZTOKHKlaYyi85a7M5LOSD7/yg22XU6tndHPpOHhasa1/RV70woEZCtJ80xDc0W7RHobxfprG5pna+caCcxDKxG5xa5zVKHJZi0qNy4aSVmKec9GdZ2kbRUi15hWMtmv3STVSvIVcRUstEvaqCewuS5oFoJu2k/Y0BsXoZ2bqJ0rZNuXcHDUu4jRZd3U5RayAtq5pL6SM73rNFixfId0O7dK0C4UJnf/q8ZGIxqq2sfxldL1JG6PlFAJ7IwfH4OcQOOWAnN/zBDpNqi/FQ3bjjGe7AvOj1Fh6XU7wgMg1ecNim0g6iaKqgMrZK2vdSf7FwKXxTyUwEjOKdWOgTP+znUoHFskhn0bcheFsRYyVod9hcr1QScT+j26bUZsRu+y8acRAFi4RJ/baaDVSvrMZDhdTwqmkteAeRD9eeiiD6m3iphcNLjqILiprNMHlf3kEoGKT48QSoyYLOjibCxzIhuBKX10WdCQWfr6cNLG/E02jCdA+r4cRC+GrgvX4bVlj9XejEBP7yoL19Ff+yMjwt6M2yy+bAR4u84pgiH/953yQl2Kqp9cuwREb6UldG40jkkUx4WU7biNwNXOQ+36zsJZU9JZSe0Vir95973sL7Z0WvJth3+EwjCRLXvShbxrBMfNnLsP9wEw2tUaq+/MmC5q7rxyFHf/5ZMjcqVdyL4wjuXxQupJ1jHJOh7Wju0JxWGvlFvubhZ0Pl9MpxXTrI37PJxvo9Yoy3U/KVuQpxlivyXNZlzfantD68tGKGXIMkNRtkwPKvJcI6TF3JtEt52UFrvMKWctbatg2iEa4ULtJ8Rq8KZwkW1CQ7vvtRcBLKTsjHWZqd3qWqAn0kefueOZzIXwG+VC7WVnI7BqDjOvD9KUDxtUa6OxcsDG7W9gIK1jskJOlsBmBcMWSiWIZAymf9+QiD8FSyNwlA46k7sPo2FPfheu0WU8tsPvLVgtkIV2LE9mnO4nsDPN+WkniqiTc4xRZ2n9L9sbAKHMMFw868dUYLb6yLGkNAdEvY8tDTZJwhj0Mukzbr3GypSWun9MRhfQG2Tn/hJJkkuRdmvvIhPJ79KXz9GTrXYcIwF14VJk51xPESD4+egckAJE693QKjHYwZXpXdTGRxMKLZybiwCMXL9ZZWOfub7pNWjxPvj+l23fD3HcjoDkoHOSax03m15LAmyifi64alNd2TkwZCOwedMvOAdKU2Dag6HwemcYoktA9OTaJSB6K031Az+N5Bm0HZNR+vmbomsH6k43mVadCwFZdhNerw94arZECcv3vu93WeppjDJrbYbCoLBcLVfoByU2s1w/WtK2iufff4fmpT2uPXMSdUnvvXo/Ro29sj1kP6+5u10wy1r285oHmzkT1dH5yDOAzkquTDYYBMWsZZK1fPnhUdQ3SWGpdUahHIgpnl07jUnmEsBlpSafdsjM+WLUpHOrVu3rmk07jBFOIxQMZZik9jqk6JP3iX0HxPLcZbjOVgrVQLPfJ5VTVe8S62b0LrQQZp+A2m4qfeSPBwZJuXWXLygYB5eAUWgXch9C8Te3ClbPTQZuOmEckNKeJWrnDlyoJHmkq8eWjDF/76NRtP3fMQuZskARcAW8MBqzgfUalJMQDCvXj1oQu+PDrmPoe+4YIZEb1/cLdy+sweWequTwoQjnHsBCwhL1+qHhdxGUGf9D4Vxzg+dEWg+kGYqMg7vMh54HMXXQD6U5iqJeKum3mMwwXEZy7u3CejdmEmWY3oMRqIyurGQWFr6Aath3tnZjItv098UKD+x9iRcX6i6G5ykS4F3YwbVbH5wQgZ9x35nC9K4xf18C4xP0P/hnUnigJDsRQY9jKkV/fZ1AFzYGBLjITXuu38ZtPGcOgFDyf0yHkQqm43e9kHogrk63eQOvwfFSMJSea9x/f12PZbqeYLsUVT+5dgmI3mSzY9T/BhcBT3K8Vbc0i6KmbjMe1jNOmymfPb7Gw7MZ95o9ADSSjSlZmgmNzdhTW5dd+uYGm1me2TvlxRsP0Eair7ZUTc79asZEdWTCcG2ypjOK/bxiltVcm2x8FFnLXlmxX1QUSiOF5fMn12i04tXlAeDKc9xbLTicu6r3xgo2Tc6mySlVR9dklEULE+cu6/Y0WeY1QZ1EHxcxo7FcK4QEoSzGRxcJQXyABZBNndE1WqA7p4sSwkZdUbZ1hmF22wGYZt+xQlbQl8NIcg7FEgPCGayu9OHPjUMGAQA50OAFqb5QrLDeBQZeqOzYI4QLvx8Y/1hR3Q4S5snGA6ZJb0THUWcRjMPOidcGY3fui9H/Y6M9Bj+D1fXoWDIxBGEfMSyeAXAdCKrT46a/DR+Fe5ceHwautOF1JAjQ0gOdmAbA9i68JGJu/FA6kXCKJv3nI/B47hri7znfrDi3XZoQ04o+TxD48ZgwRUFPpCduXECffmHAGIWW6KiMD5MPLsF4TA9cbCjPkbB8wuuAop7KfyZrF9Bg0vxgoQtTIJb3STpNnmjP/LHdcUd96AHMTnfYRfNmHJePn4Afu6/H/Paiz3azQuEzm66bLtufkXYJiN5ue9SgT1cLPOaB3PXdBdsfPneKFJZr8zWF1BwUW3KpOdjbctZNmMiWU+1SNd/MTpmIllK0vDi9z9X9Nc++7y6//zvvwVjBq68fMd2v2G4KXnlwRCE1E9UihWGtXdTYZ0+vc2vijrnpCq5NNjQm43jrjnH/eEGhNKt1SdVlTIoOrSXWCm6fOhdd3Wbc2ltSZh2LhXPjTRe1q3Z/pfFRYmBPCrKVxDQKmblkjGQGe79ESEueaax1jJOUPhlkZgZGNCs12kiktGS3C7KVY4Pydc/khBwreuLvTebdIl5HYoreDWClqzvWTSVW9SJbZ1zcylzVNmqBsI4hCmBL1S4sHyEGE7Nq3WTa7ElChXVwbEDIDZOmAIhsUMoOJZFTwTim7rRzQIohE2Q96Bus2AOLEUOy+xV2NIj+x27/7jpsbmBiosvCaMfYydz4zNQepBSmP0bY1cCv0/82nk/yV4yN4Mj95DrXktZRC8k6XRmUBAx5tjcUe3WsAj4Pzw5jmwKAkYs8aoKSaKc+X5MH8DZlMRjeG9mzQxGc+zGoascGZVt6NiZhmgLrYzKfOTqAfduPdaDPfO2Fvza3TsgcQIzXEKEFqhKRben2w2JA9IxM0BfhmSSZFN1NS3Mk4De4zOJ2Mu3HEbgY9/sF343dWOd0Q4/bzzlA85hXOOaFYCh5/w60t13HzL8u2yUgeuttINbY8d1FD8MbWTXY0XbhiReAdKHs+3nN/fWc03rCg3rO//3pz3JluuG1zT6VybmiVhyqTcxFNJc1pWx598EDXvn8DfTM8PmXb/LCM/epXl1gtUC/MuOTd27x0vIKpezYyyo+9eAW2kjWuuT2eo+rpatv9mA7Y5I7/ZBe5xRS89y1Y1Z1SaE0h/Mt2ru3pLDcPFhyVk9YtwWnx3NmhWN1rt46oyhb5w7Tkv3PuUrkIjcI6fOXWJA3Ksr/MUNJ42qhKRPLhQAumkm56LWuUWRKu30+u3VskHLuLNn6LNdb158mJ7qEBpE01pXxMJmILghTBAMhwNqdeh1h3XbhPgpj+xIg4bd47VHRF6sN2qbABqS1pkLelii4pp/0B3/T4TIyOucYGb9NSpRE4xT6IRVZh/3kxgEawGbGM1iObRBec2QTTUo4ISGJNcysj0Qb6JeE+421vqxL8j4mZoT+/8HFMGR+AgDy54jsNS/RpROSW4bzSJ8561xEabbrPt+OpTlM+tqPjfrI9noWgU9F0I8Rpw9LnmP/LIe8QaFwakgBEcBxHGP+f5MPQXIcH/H/cN12kDHaeoAXk3hKd+1OT5Tcc3+/bGbpZjaWOpG1iEkZ1SYI7BxASjVYgVWVjUjSIPR9G8ZGKngeg6SdQIXRd75zUvfbRW6ugT5LDF+I85890m02cMGNzlGE0h7Bhcs70mx4Vt7W650516/2dgmI3k4bg6I3+gA8brvR9ynFDiCxTrMz2/Dnr3+Rq+WarS54sJnzTVdeZmNchBnAvtzSWsVVteaKWvPC9AHvef9rlIcVthW8frqPmWmsEZgrLdpIrk/XfPrkJvfqPaZ5y+Fky6dPbjALIfb1jOvTNS/uPWTVlRzeOiOTmkJprs3XnG1L9sqKw+mWZw5PMVbQdBmTrEUKy3y/YtvmSGmpmoxMGZomo304ob4C7dM1Knf+J/1UjVCWsmzpvnGFlJZp2SCEHfi929YVjBWSKOoGB5K6uaW64vpVl4Js41bbQjsgEjQYCGLdLoDCi1pVnTBCWbjXgSnyBkiA0BbZODZIVdaX7hD+tzYySaEFoBQMsvS5hVTIM5SEUKe1y6xwRlM2OLdcmOhHjEOctwPgG4+7oQ30gysxMknSvVC8M+4/S97750BmGpGZWI1eZpquDjSZQ17xOEY8evZJryN1n6X/YwfXEABcBCRexySEA2M2c2DOSgcQ0ppsZmoGINEUaShUf50hz4+e+MMrV4QYQa+1CueZlDRJwUrK+KXAQNXESMOBkU8SKw7vB5GJifokiKxhjOgKoDXzEWbh3voyN9bfmxQQik64/tEuZYHJrNMN+Rpm4UYGRs1dfwr4/EIl1TZJhoNwBDpCHw/csLuaP/++/85rhd7oqwdhj9nmQhDkv4v9YPvP3iFAdNmeXLsERE+67XoILvos/fwRpNK4HU2cNmfb5RgreH7ykFe2h2TS8GzxkMrmNFbxXPaQyhZcURvWtuBUO43RLGupTyYII6hvz5Cl5vDqmtnBlv1pxabLebiZ8el7N1DS8DX7dzheO/dYZxQPtnNmmRM0HFdTVqspEsvDzYxCatYPZ8691hZ0RnJ3teB4PY1Zr/NMU9U5ShqKXFM3GeqzMw7/UKFLkJnBdG6mlJnLR1Pkmr15xaYqMEYO9CltqzAjhsBoQdcpdJ2BhfK0F0/LzjFEVoKs3f9BCxFyAcUwYInLPt31oEgXrpq91H3Ycmj51gzdVhbyjfHAxP1Gdg78yMZGBimrggHpQUxkjUyvH4nCXr/vuMKGqD1JQVCM+pLJ/378hesJ15Cu0AM7EsKvo4CasL9QS8y7yaBnbkK0oATrI8qEMv13XhMWMzsL91uRsBTp/R1HwAwyWu8ypqNmPSBwN6hXl0f9i3EiYbmRyFY4N5U38qY0yb0Ug0jA5sgVDQ5pDwb3JZwPybEjiEhArHfRWuETK6ashmAQRTWoq+fPPaRhiJ/746cMIwlbFRJq0kpfqsP2LlE17D/R+vxNQZwu6CP1lHWfqaQfk/In48sOof2BQUwZVfs4K5SM2Z1AJn73Vl6PAjrpNvRjbfRdzNPkt+vZoTc4ob/Ndhll9uTaJSB6C23niuai9ibG2a4VfJgw0sN0Rrpq922OQfJKdUTmLeCpnrEnK/ZVRWUz9uTWR5kZni0e8N7ZXQDe/e7bbmcKrl1ZoqThYOZYnbN6wvXFiheOHvJgNScXmqcPTln4DNQ350tK2VHKjnftHfP8DZevqMw77qz3ePFdd3m4mbEoaqoup/2vV5DCUqqOs2rCelPStorNtqDtFG2dsfclWD8N3VHnXF9doOUtaEnTKqomZzGtUd64Bh2RPi6dXkj1q3rdKredsKhaeLeGBz8K8rUzGpkvmeEAiE/O6CO5uimRzs+2Ftk6nZAwYJRAF9KV8Mjow/C99qeb9jdTFwLVWPKV6Y1EBla6pI7Z1iYZsd3vVduDItX04CVEqA3cXKnhSVfcidFxb4ZjK20DMbXod5bmjeldBv5/4zNGa4EojBPCS4tUTjMUQK21HuAEEOVdm/E8PChJo8ps4q47pxkKLSm3EUGP7RGiEP3L5S5y+416nlaA8GxhKzBzjZkYHznnAJtsZSIkHhrObm56g+jF0PH7BLTFWmtiqLvp9hKWI7MDIAYM8hTFPEOJizQWcNUO6EQmKIyJFI8JMBPTi6tz07tErQfAQecV7lFhEY2IaS9C+gLZSq/DYmcEYnTnyT63k00YnajXCvg5qc33KBZz3OJYHGuGBvPzBa/x949qu4CQ3MUKBTBk39h+n1CzT+h12S4B0Vtu5x7clGZNP4vvufgBSQ3XY0am0NAYxaotOZg4cbIUhqvliv/tmT9mqScszQTpZyqF5cRM0f5Wv1xdoVCaTBqeeeE++ZWKe1+8wrxwYOfhdoY2ktYoCqW5sbfk5e0R+0VNITXLruSw2GIQvLo5oJQdL+w9ZKML5nnDXllhEGgrWbcF904WbN7VcTh351oozXxWYzpJ93BCpjQ8LBDG0u0ZxKxzhtYIeNUrnitJpgzz0pUJUdJ4Q+c6K79aRYYoy13uG9soOm+sVeWKvBYnDnQByM7XHDPORaUazxz1eR7RExcx5kKhXRi9ahwosllvpEzmEzTmbkbMakOxNHFlPLnfIFpDvuoGWbIBl+xROdF2vP8iGA7+f+z9e9BtyV3Xj7+6e9327bmd+8ycuSUTcsVEgkgAwSKAXErys0rqpwbM76eWJWBCUKlCS4WyKqhVCAUICiIoCFQp8DXgLSgXQSoEA/xCQkgmmZlkzplzf+77si7d/fujL6v3fp5z5pwzZ8KMnq7a9Tx77bV6rdWrV/e735/35/OJDJHJicxS0BnFfFvJgL3kUr8KgNLumYCkNB9ZNL1Zlvqviy3jWZ8gRA5sgRcpH0nImvRp46OiB2GzWNIn+ZhC6esiwwX778L2DJJNbi4wPCJ5/ZbMMj2DEHQSMc0HgHaMkBnrvr0SLzUTwgksmbvCJE/C4iQXv9J2aQmgRg/6+tTc69QyJ4qWbWjzZdOYu/YeFPXnIk7C8TrE8v7W35PNrANDoW1E/yxt3jM3Nkz63jQaWDC5kA40hnAFnXCA0tLHFvPXZSXYHGeeTLRRKTsUrnH1cd2qBJPokQCLJP+v/rb6udVvq/sd2de3SfJ/jMgeFwz25kD+fnnJlvuA6KVUbvb+JEDJKudyvtAZrVaczvcZqJbPGl7hmdkJ1rMZE7lgJGtamzG1Bbt6yMLkVMKNtJuFyyk2b3NGwxq5kMwb54qyvT1mVNTkPl/ZM5dOst9UNFpRyI5R1jBQDXOdc264jxSGWVeyW1ecH+3y2Hib/UVFpyW51Fgj2Xpwj1J1GCu4+ulNlDQu3pBxE2exIzl4RGDXWqcN6iRyqtAT7SbCTnjTCVFEvVqkdALryDJkxtU9aVALxwjNz7i4LmHC6QaCfGqjbiebOg8v1QjHKvm3Q3bB3OCfgT+FA0KinzAEYAOD5Fe+QDvOULVBHbbI2vQrf7+KF8blVDv2mYc5S/dgR/qErlFgm9QVAUkAErYnTVIwlDajTJgIYTli+nAshOhBhBFRcxUTtPq2D4JoqVz72wCORNJwnpVINTzRpd4IrJFHYhDZVJ+y1D6OgbKBNQtgJF2pr7QnJBNqvGkSFiMBAbnpQarowUkAD+n+bkM4Xw/KIsMmV7+7CbQb9+wJeNNuEgLCeFf2GDvIX1tw108ZodRs5rzlTA+aBVivoaI0/fMLoDI30XwntOhDFYQ2kmCGAUwRo09b/2zlQsZzLx0XLinVEKXY6biF4uricKlOEgCULERvlSrjOCb/dgDR0r49gIxgCI7GwFo99kUufxQms+/6ru/icz/3c5lMJpw+fZq3ve1tfOxjH1va58qVK7zjHe/ggQceYDgc8mf+zJ/hySefXNqnrmv+5t/8m5w8eZLRaMSf/bN/lgsXLrzgNrnbch8QvYDyvH0oDPy30ddWg+Id3aGvslId47zhzNCpfpWwvH/3cT5/45N8fHqGoazJ0UhvKgvFIDlVuKz1J6sZ69Wc2aJAWLj21Akuf+wUZp5RZS6r/XPTNVTuYg3t1AMak5EJ932gWiSWuS74g2tnWCtqNvI5n5puslYt2BrOaI0iLzoK5Wbcpy+eojw5R2LRjaI8O6PTEqGhfrRGFcbnqjLY9Y5sw0UptMqipMUgUMIgceBHCOvAlTIoZZYiGwtpUZlBd5LiwJnLTG5pJ96zByj2Xdb66oaLWq0rHyXau9/rgXsmJu/pBV2IKJY2WW8iC2k4AluUzY2LL2Rd2o9sf4Gc1qjW9M/SC2KdaNsuAZUwiQlLDMIXclDFT6IriRGs037ECgaJA3naRyFkXY8r9ZWUE1EfEiJXFxpCmgtlllNrrHbbwodEyEysy8a4OCnjk4CiTkTzTUjwKrM+rks8z+pEFLYtMUTu0QnZf4BeTBzBj43bASfAFo5VCQEenWu7wRTGm9FsH7LAg7OUseuBsweloQl83J80UGI0UyXatWB2irfiAYrJbfQ4TG/VpkL31e/hObfS4TbtNVshbpS0yL3M9TkfpDECIq8Js0F/JZwpbUkrh+ufKdg3RQCay9cS+mDfj1cXA8cMgP5ZL5mE07/HAaSlj9/nTsXXMvmki40l7ZL/LZjPPtMGKHuPPndQfu3Xfo1v+qZv4v3vfz+/9Eu/RNd1fPmXfznT6dRdkrW87W1v46mnnuI//sf/yO/+7u/yyCOP8Na3vjXuA/At3/It/PzP/zw/8zM/w2/8xm9weHjI13zN16C1vtmpX9RyP7nrCyzpSvzYEgbLYw9eOXZlHDiuTmHhkzdO8LrTVzhsC2am4NJijUeGNyhEx0PVLk/XpymE5tH8OoaOXGlaq7ihJ2xlhxgEN+ox47yhuT4gawXFQtCccmkuLh2s8YaTl5h3OedP7vDgcJdzg32mumCuCwaJXel3Lj/EG89c5Ex1QK0zrs9GbFRzFl3OjYMRJyZTpk3BrMnJq45R1VB3bobIlHG5xzJQpU/zIBzLkFUuw72UTsvQaUmVd0faDqBdZIwnC7SRDMqGmSnJMheLCGB+Csodl82+3IVyrz84W4TVuUDNcSDID3wmc0lfrYLBdUM7FuhM+NxkDhShoJga2oGAQjivNWEpdxra0cCBAQumzJ3zj0jAhp/4hLbYwumJtBRxUpGJUDc1NeiKaHoLH1X7STfkJTtmRX3LPhouaaUPBrBF64CBzU1cEatK9xOrZYnlEd6MZlvhYjcJi7EkSWJXkFl4F4JQu5Mu/1lgPkwPZmIy2eMmzjDvptWnICWcR9CLjQPbFfbXPoxAK7142AOHhDkQzerLip+wAyiycbkZ2L1ohrIu0KGpksSn/j4DQ2dtCJwYQMYK0orUH3E/97wccLT46w3Rt73JC4AsMedk1pkr21BBcj8BxGr3TopaQm6RU+XNZu4SZNf36eBNF/tCwkDF6wved7h9j/TL5N6OHTuPYwDDNd+iJLKu2yrHyiKSc8X+Evtafz3iOEbqxSp3wfAcV8edlP/6X//r0vcf+7Ef4/Tp03zwgx/kT/2pP8WTTz7J+9//fj784Q/zute9DoAf/MEf5PTp0/z0T/80f/Wv/lX29vb40R/9UX7iJ36Ct771rQD85E/+JOfPn+e///f/zld8xVe8sHu6i3KfIbrT8gL7XSzJpLj0WVq9H/MGW+g+vM5hV7BRzlmYnJPFIR87OOMjUruM87nouKzXWdiMXT3k2fYEAJeaDS7Xa8y6nB2fj8xmPghd5WbijWrOflvRdBmZNNQmwyAYKWcuM9ZpjForef3pS5ypDmiN5Go94YHxvjPpdRknJlOaTjFbFEhpKYoObQTTWclgsqBpMrpGsTjngE7+iYFjBLQLqmiuOQ2R8OYvJU0MIqaEQfnVs5nmCGGZ7lc0bYaQlvYTE4x2edPU3Ae2a1MA4bRAg23N8ErH8KpmcMMyvOQ8uoKbezNxoMnkLuK0zoWLM2SDKc3SDp3pzIEH62MdabLagBDoAprNgm6tohv2r9xqvJnUdBVNZcmYGq5dNkRWJwCgkOIjTQ67xB6sMEWhvmCyIwVTLK/aHWsheu1PI93+icDatH2YZmtdTCkMiNxgFulvHtismhg8QLLG0x6e8QvgKhxzxHS2NCklQSPDZOnfKWs8GArvmF/1CwEUjuWK+wQ2I4mZE8yGSBvF2L1mKWnjpG1TJi8wTCm7oeYifrC4WD/BFJa5hQCCPvpzSh9aEVkum/eb44XEpKz+XqJHnxe0h+s0YBuFzc3ynBhNwCICGls4AGkKH3wz6GtwddvMMauOwTJ9PKoE2ESwmIiVop4qtGH6XI8r0UybtPFtfMJ5j6T5OO4TmKRjGCIX2oP+92PB0PPcw/9hZW9vD4CtrS3AmcIAqqqK+yilKIqC3/iN3wDggx/8IG3b8uVf/uVxnwceeIDXv/71/OZv/uZn6tKXyn1AdDflTjv6LV6OVYY1YqCbxY7xxxgr6IxiohZMtRM6X23XONAVuexobca+rsiFjoJqhWEzn5ILw5nBAacGU6pTM0zpxJy2dSvAnfmACwfrLLqMWVtw2FYRAHVWYRBIYbgw3eDBwR7aCp46PMnF6RrX5yO3b6doteJwUTKsGqyFpsmwVqBrhbXCsTjzjGzcovcK6rPdclC+9TaaW5QyaCNd2g7fmDp4JlkwRlJ8unSu9q2i2HGTq9GSfAY6h+oGjC5byj1DtrAUex1qoclmHWphWPtUw/C6ptiD8obzsFqcsuy8SmKUiBOjzkXMfK4LQVcJF5smd9Gsu6FCDzKymWZ4pUF2zqTWjbOYe8o9Y9v3gfCs00l1aTDvn/2Rxac3l4XEsUuu2aL/blIRdgKEoAdDq3nOYv/0E6AN7vcJWIm/A1bL3nspiK8L4wASROCxBIpWFwUAWi4xTiEX2hGzXHqMN1kt5ePyn6iVSRcZHiiFc4TrAxBzFQXmwufxsj76dZhQHUj015iY8VI9ELA0ygZAEABT0CE5UXP/fKyiF61b0eewC6BK2Ggutd7UFoMwhutLxcBGOHF4WnxTyIVE7WeuX3WiD94Y7ruwPZDBM0LgTGjSOtOaspjS9CY+61z2Q18zpQ/NkABFhF0KfnnLsvIekDzK4/e3Rz/P9/sxJrYgll4yC6+a4TwYitHy4//Pc0/3qNzLSNX7+/tLnwBsbn1+y7d+67fyhV/4hbz+9a8H4NWvfjWPPPII3/7t387Ozg5N0/CP//E/5vLly1y6dAmAy5cvUxQFm5ubS/WdOXOGy5cv39tGus1yHxDdbbnTzh4movD/LeqMgy0s5QJKB4Dt2RBjBZfrdU4Whzw3W6M1iq1sirGSa92EbT2mtcpFqRYtjVUYKxllNXOdc2F/nSLvkKcWqIUg281Q+4qH13c5mFacGh1ycjCNMYeMlWgr0FZgrOTCzgatkXxo5wF+/5kHAbhxMEIbSZ5p9mcV9dwtX3evTDBGsH9jRDVusOAAThIXRow6NwAdOJZHCIv2E+nhtETbPqKqwZnclDJkGzXaCEYXoT0sXAJb5V7ydpFRHFjKXTfptwMHYJqxpN7KmJ/MQQq6oWSxmaMWhvEly+RTluoaDK4KdAW7T0iKA+OSsQrH5ugqpO0gDo5dBc1EsDhVogtJdtC4fGhDiWiNf6bEeDbYfnI0OctAJWEYYoLM0EcSb6OoI9I98IkmGpK6kuB+aV9Mc2mFbRGrSOsm0kTfEo537uyuPeikAy5pJvuF6kHJ3J3ABl3KajDAJgAp3ASbgKXgdWh1EG2L5fcpADyb3PMquypsLwAP59ACEe4puOOH47IErCYeTTY3bqJPgVn6vup4uiQ/nbs4oYUDOeGdXvUYwwMhTQRN8Rn4/YNWJcQeCsL06Pmmkjg/wvYmvyB8D/nafPuJoO+J5j2fcibopnw72MCMKOuCWIZnJ+hznKXgxusBw3ORrURXpr+P0OeLmw2GSdveCgTdDNCkx97kk+rKjnw8EEqZofgJzFhYLXgA1IMoe+fzwwso91JUff78edbX1+Pnu77ru573/N/8zd/Mhz70IX76p386bsvznJ/92Z/l4x//OFtbWwyHQ371V3+Vr/zKr0Sp45L+pfdjEX9EieDua4juQbkjU/HqvsccG80oZnkA6Ccp2PvgKYovu8bHD06xVc44OzjgwmKT08U+C5NTypyJXDA1Jdt6zIEeMJQ12r+pxgoe39jmdy48hN4tkQLMmRohLQud8cTpa4zzhuuLIWv5wkWkLmYoYdFW8Mn9E0wGNdebMZ/8xDkefvwqEks7z2iGCollcVhSjt0KQ1aa7qAA6fKRaSNomgyMY4zkpHWTnwU71nHA1rMcNejIc82NaxNOn94HC9I33KJTmE4iSiecFrmm2M6RLZj9AjQsNgSHj1qyQweahIHiUGMyB46m5wrKfcN8S6KrDKOgHTsWSDaQHziwMjutkK2LFyNx4Cc/7J9PiCnkzGeCYtcByWxhaHKJzSU67yNXS22xuYzxhqg4MpDGBWhw1/e6otQNO7IMAWjhAJQI+y+ZkQSBxYgggt71XrZgiqTfeXOZzfoYQnQSVWiflkW44JfebV6EHGLKRhMsFpfuw6x05vR7kVCi0dzVA+DeU83vr2WcrITw/Ub0L4m1xEStMbAgft/we5JwViRBCVeZKJv5eDyhzs4BG5ObqKkh815n4bkY39TGnzSJ5xQ9Bv18Gv8X1uuXwon7pgp5yaxyXpcRfMCyq70ApHVyIQ8crRekRy+vPAAaE1mjkOg1eGBK7RYdIoC/5HmFQ/FtAfShCaRwKV0C8I3Yyz0HPTQOFEK/T3KvSyV93qm5MNzLcQPv6vuTfr+dgVrc5P9jB+pwjgQU+e1CwJFE4C+D8uyzz7K2tha/l2V5y/3/5t/8m7z3ve/lf/7P/8lDDz209NvnfM7n8Hu/93vs7e3RNA2nTp3i8z7v83jzm98MwNmzZ2mahp2dnSWW6OrVq7zlLW+5h3d1++U+Q3S35W76+i3AUDRNCJbNZf77qvcQAn77wsMAFFKz0Dn7bUVrFcYKapOzsDmtzShFy7qaMVELhrIh955i+21JVbaIxgl5rRHICxXDrGW3HvCHN05xspp5E5nFWInE/R1kLQ9O9vjojTNQaSTO1DYY18wWBdo6DcmoaqibjHLQkk0apJ9IjZGozCALjSoMZpGhcpftvliraesMM8/IRs7cJj1dLYWNYMggGBYNk7U5Wktmr2qQmaU+qTl8ZYfaqFFbDZMLOpqVql2DVYKDhzKnCSoFs9OSnVdmNBNBMxbUG84EtjgJ7cTlmcoPoB37OatyYCkwOVJbZAPVjqHc0VS7mmK/c3qieQvGASW10MjOUt1oyA81orV0pYuDEwI1rj7nnkkiTp6pOcZKYkC/kFYkLJKDyccxQCHthF1ml5ZMO97UEr3A6HN9+aSeUvWd0xrHCokgftbSMUB1UmnInu6fNdYFcUSLI5NXvKfAYFj/EkRWSPTvTZigjViKRC0SBskaf53KJsDKt6tw12Y7p4dy1636Y6VFLuSy91miiRFGONORT2chwrmiScWxH4G5S9NpLJnybG9Owqe5CIwLKtG6yIQBypaFyDb3Ocdy48xYwT3fX6vL5WZ60CeIDJ3Yy2Idvdu8wAwMttJ9AE2IIFXUsg/D4EEanftufQ5CBhoWvdkx4FwgxnB6XhYlgqF+LFwNlXCEvfHPNnyOM4MdYXuWWJ/wSR7QTY6NsbFWGKLPeLkTIdWtPsDa2trS52aAyFrLN3/zN/NzP/dz/PIv/zKPPfbYTS9vfX2dU6dO8eSTT/K///f/5mu/9msBB5jyPOeXfumX4r6XLl3iwx/+8B8ZILrPEL2YZYnDv9k+3Bxc+RdTLNFERG8RKSwnqynb9ZDDtuAtJ5/m2cUWY1UzVgtmpuj1Q8K54E/kglo5M9Z+XbE5mnHIWjSlyEbQGMW0cVGkAZ493GC9WCB9QDcpDOO8oVItdZtx4qRL3Lq/N2Q4rim8N5jIDNNFQX1YMlqfI6Why5x+yPhVuGkVxahBdzlGS2zr0nLY3cLFRfG6ISfGPb6hMmVYgDPLlBq50YAFvVcgJy3X36Aot338HtwArUsHbKbnRGRcdBlWvq6du7Gh2JPOq6t1wKIduoncZMKJonV/TboQVNc72lFGN1RYUVDNGqcfGjjxbL7fYkpFNutoNgt06epxwmx/fauMcpjY/CewOzGCeZsck0wecRKSzk07ALhAtoRtafeK0Y+DKSztn5FexwuQ3YE2ASbO5GL7eWGuYNj1DE8o0t9YoGwkjh1JzhXpq7Qd8OcyuAkeHFuU7OPnbffV4sxCvh2imSywNd5kJhqfpiKY8oxwnlSEibVvt/Q+hO4b2pmjkt8CiPXvsVViibELoEDWsg97EN34BSazLrdeyhiFawnPOgAwP6mFNrFlwsQEABSeYSf68ANJvbIV0OFyleUOtIrctZXVsm9vfL8JbWHpAZZw4DMCtpuMgcK6e43BRY8rIt05qSYFQ2HT6imO2efY7+m+t9onnscu7bcafFEk1/iZCsx4L7LV3+nx3/RN38RP/dRP8R//439kMplEzc/6+jqDgXPW+ff//t9z6tQpHn74YX7/93+fd73rXbztbW+LIur19XX+yl/5K/ytv/W3OHHiBFtbW/ztv/23ecMb3hC9zj7T5T4guptyL/r5Cju0KhhMX9JIUUMyYEJzYcTviIfYGs94eLIT91/P5lSiRcl+dK5EixQGJQwawVY+4yl7gv3p0HldNaClpdnUzNuc2aLg7MY+nZWcH+8y6wouTDc4PThkpBqGWcNC5zy6uU1jFE9++ixrm1MODyomJw7Yn5cUw5b62pDq1MwFVBRgraHTknq3otxcxBxXatKiD/K+CUYd2dWC7OTcERRGUlTOSy0twrdF1yq3ovZzrFAG0zowtTirWf9DFQGRqi2jS5bdV0raiX8WHjSYgUEdSvREYyVMHzeoQ0V1XVDtWJo1x+gEgCRyEVf+s9MSXVRUuxqdC2QnsVJG77FmPWN02CHbFps5obawUK/LqB+KJpfQHzz5YqQDMLpkyRsMnIkLiGa1mKNstb+lrvulm7ytT1Wy5AoNRydoz8gIaVFVF7VDNgCCJIu80AJCgtJKewDTT9bMlbvOPEEPMTO6q8eGbXggHMw1YZ6T9B5nQRdkRbx/4cXPS7GLgilsSaPkwUzlwgnYNhyQAAjrWQDb4zRTGuRCumcz8PdhYMnt3vdP6/PBuZhKASiJHixZErf5BFQagSl6E5kILExg2LxQWvi8ZEtsRusQj/Uu9raV0ZwpMhOZFltYCPn7UuZGEIXoVnt9VTTNWczA9s889NXUtBa8DFf6lTueqEm6ZUmBkOi/r7JBq/vf3OwFywPvMac8DhwlTNWRfW8Fyv4PLj/0Qz8EwJd8yZcsbf+xH/sx3vGOdwCO7fnWb/1Wrly5wrlz5/iGb/gG/v7f//tL+3/P93wPWZbxdV/3dcznc770S7+UH//xH39endGLVe4Dohe7xFHUf09frmRMTouNK3Q/IGQurkfIdxVKdiBp6px2oJhkNX9wcI5Cai4v1nnL5icYyZqZKciFJhc1GsmB7t0g18oFUlim7brTDmwXVA+6oFnjQU3TZXRGYqRgnDktUCYMl+ZrrBULfu/ZB3nVuat0RmJbFzNobX2ONoLZ3oD1E4fYk3OUMhjrzG5tq8hzjZoquqFCZpauVW5yKw0cZFFEqx9ckOHAjmklw0ntAjRaQWck+4cVa+MFxq9MKZzJTSpH26uTC6cvWms5PC858WEHPtoRdCMfhDG3/WQwcjkIdGEcA5FZaCT5gWD/VYbhBRfksRv6+cYDoaC7MMrFOrJKoUvB4A8bbK5ohzLu205y8oPWxR4KHjcyATLQm8Wsm2OM7LctJfjEuTkHs6pVPg6SZ3msn6RsYAiCJkf0YKiPgJ2wMemi3guRA3gJhI5QNoIhm2pBgjdX6N/SgQyRO7pEaAGDDrHC6qRgCHvUm2x1BRtd6NPi64gRoZX3hNMCioSuUaYHcaEYgfV6o/gswsStRUxXEu5JzoLoyjrNjBGIRvbBEoNbur+/oPOKDK9IzF7JABDi9ERPLtH/bEOOtWDGFO57jO0TLtCLgS3CLxg8GJUu5pDz9HM6MD13+qeoXQqALLBwPhZTEGNbSy9ED5q0oGfyiZgRuGOTxxLb0qcIQdjISsfhMX2eK8DEtamvJ3gC3owxOrISSOtN/r1dZiiCr+PB1HGgTAh7T9bNt1WOexfupo472f02KKV3vvOdvPOd77zlPlVV8f3f//18//d//51dwItU7muI7kE5DtDYY16SIyVdfTxf/cL2Ytow4QB54QIvHnQlhdRIYRhmNa1VXGnXOdADWqs4MAOutOtIYVFY1rI5jVbszyvGr9il2bAMLkvq50ZMm4Ibl9Y4N96nM5JZV7BdD+mMpDGKhc44bEtObx5wfTpi2pSsnXJAqmkV07qgGDWMy4ZMaTotmc8KB2TmOfODClMZykHrXbDdxCVzjdTQNQqRGfKqYzEtMFcrhr9fURUOeTRaoYShLF06kLZTdHsloz8ooJOYnZKuzlDKYFuJ1RK1ENFU1g2gWbfooXMVNpXBDDQi1271nBlE7iePhUQtYHDJR9Te9I8uiJe9h5auiMHvuoHA5R+TLM4OltzsbSboRhmByhLWXdNSqoYEKJk86Su4Z+9yqLl4L8LSm20SIJK61IdOZDOvNQmAywu0o/5I9vcVNW0JgJeZQTcO3JlWxpAHcUII11Al9hQtorh7CYCkgMe/MJH9CfGAvPll9QWLUa9Xy8o7F4Ca00V5D7XUhJMwKiLRTAkDdAI5U65tg8u4dfWIRh4Ni2Hxbua+njB5h4jex0y2EegED7Do0eQARzTBhTrLRB8ETshsExZG9vcQ7w96ZieERgismAV8Kg/HPrlz6nHXM01WILrebA0JkxTu07cLPplvGp8q3KctTNQ6xQCRKyx4OMauHhsE1IGBIjn+OH1PKtBa+S24xsdrDNu9V+utPsv19J8j3m3h8j5DjNH9bPf3rtwHRPeorGjT4rZYjrN7Hzeuh0lt1W4eDyIOQt3QeWydHh7y7OEGlWqZdQUb+ZxDXTGUzstJW8muHtLaDIUhF5r9boC2krrJOPzkBsWucy8XJ2oOFyVy7sTZhXIC7E9cP8mZwQGF1NQ64+psTN1lziTVZghh2b2wTpFr5hcmnN3cd9dvBc087wP3+YFjeOYQEzQoYcULZA/OMHsFCGjnGUwz7EbL7Lwhl4ZZk7O3M6Q1isW8iG75Ythx+KoWcahg3C2BxurpAj2wdJUgP7QukWswjVjhVs6ehctKjcoN+aB1E9pYMz/rJo124gZntXDAQdU9aAneaMIDlnYMi5MZovPPURL1RmqhEa2h2O8jb8f4QeH5+mKSXFXCOjYqmLOWXLiT/rKaz8rVb3vX/eAivTohJ48oFTBbr+8xWrr0KgnzEZiECJziROkmvqWFpFqdzJLjSCYQr0mK1xeASDADdf6Zm5UXLmmHSDtYIhAIbMmSYDuZiAHPXrj7MIVx3mWHamlys4VBDwxmpN3+0GeK9/ceYhchAeWOiS7ysgdKy2MEcVvqQk9u3fEhYjYOBItW9N99G8V4Spl1rFxImutN00JZZGZQhXbvZCd6Eb4X34tOYjvp+lcQcwcTnW9b4QGbS3FCAuhs/z5L37ekB1Bp+AArlgXSwh4FQuHZJAArBslcBUEpgl8FPysgaAn8yKPg6GafJRCUXHda+vNxv7wMy32T2R9FCQP1KtWZvvR2Zd+kWP9SqlpwYjRloTOe/fRJRq9oqFRHKTtyoZmoOdpKDkyFsdK73btRqLXS5QWTztU2RHE2rWJxo+TR1z7HYVswzhuuTCdURctc5xy2Ja9av4bEcnG2zm49YN7kTKcl2eaC/f1BdKe9tj92CVdbiRp0GO/VM9ycExKBmlahSkdLmN0CTs9BQDH0bJAR0ElOvuJGD6CmOWyCbhQzSqyBYtDSKYvYztCbbsBv5xnFxYJm0yDnkmaNaBIxCvI9gR5AlzmhqSwNupXIzNA1ClMrNwnklsUZF3k331PIGopDnIt95gZ/6cGO8ROuqoPw2rnhFwearpLIQ41sNLJukW2O8BnstUrAT9T1EM0YsR/4vyHLeARR0E88hJhGyaQMMf2HTUBLNM/6ukN+tchWeBMKPjZNcP8+AiyAqB/xndR2MtYlZLhw26O7sF/av20ywXv2KQiibag/6NFEaCPRnzsuPEIKC19t2CyXzxv0PjY9b+rlJnCBCZPrthmI3AeY1A6o2cIgOhnF4fHdTc14iaYJk7RbaM7U1T9NPhu2BS+0IlFmJ8cJCaLQ2EY5XZCy0bSZhhgA/P34L62Iz1O2Aj3SPSLRfljyrJCQzhRkTRCnCyw2CXxJNKlZjGsbb25NlQNBm5YSdtEEl1xn/C2wbAFsRP3OMQvNFW1P3HZkP46W49j8tL8ed8hNLQA3P+ael8/gqf5PLi95hujixYu8/e1v58SJEwyHQ974xjfywQ9+MP5ureU7vuM7eOCBBxgMBnzJl3wJH/nIR5bquOcZde8A/d/UdLbagVfrTCfCm9QnOvj01S02ijmiE3zsGachmnbOVVL7QXNDzZAJHbXdjZh2JRvlgs3xjPZEx+xBl4U9u1xgBpq9hfMU+NTeJucnu+xeXkNiubEYAjDVBYXSPL52g/kiRwgYVC1mv+Dh1z+HNpLmqqtDlpos18y2B4xPzJDS0jQZxrMAUhlsoxCT1t+XS9PRTHMwgtHWDCFg93DAdFYyPOOC/xTDhrzoKAfuOJVp9DmndWoPnNJY1c79OVs4c1e96Sb9wVUXQ0i2AjWVbuAOQmErkMr2QSPDKrkw6KGhG0OzBu1IkE3dpJzNXXqPbGFRtfte7Wia9YxiX1PsNKjakB92oC3tiSHzU0WMd9SvqN0zVi3RjT4++wT8qAaEdsyUbJIV9UqeKCC6aaeTvU3A01L/86AoapAsLkaQtMhSO0bIs2rHmZ6wHnz4NBdLZrLg4t4ui2vSiUkkjI6NLvUcYcKWFgxL71UCmOzKij4CORG9Fp1ZTSx5ULln7p9HiI80d+Yz4U2GUWhs6fVZmYnfI3OUvLCBVUlZ4BBpGhwwDYA9Lo4y4wCPJeZcI4CizEawEZmUcKveW9J6AblN2CP3v3QODYU3wwXwJ13MMFHqaOa03qyGby/ntNAD0BB1fInhE+7erY95FPPQpQu8lBU6ZkyNrJJI+v4qGPLbUrbnZgxQDLgY+kRq6krYnmgiSx9cUo6Y0uL29POZQyj3TWb3rrykAdHOzg5f8AVfQJ7n/Jf/8l/4gz/4A777u7+bjY2NuM8//af/lH/2z/4ZP/ADP8Bv//Zvc/bsWb7sy76Mg4ODuM+LklH3XvWf1ZWMXXn/7NHf0+PEpYpR5mbEE6f3OVvtc6I4RHtGaEPNGEqXfwxc+g4lDA8PthlmDY1WZNsZxY50Zp9DUFPFosnYX1TsXhtjEKydPmSgWjJhmOucTBjW8gXPzdYYVC1SGZpORQq/6VSMa2KNM7cI71ZtjBNgd9cGUDs3+zRruJp7kbQfwMuQ1FXAZLygyLXTDbXKpfRI0jwI5QfB3OU/C6YlNXNu992wD6bYDSGbgWh9BGHbi3mFNE6cHVIiDDSilqipF0h7gbv04uhsYam2DaNLHaqx6ErQTCTdQKAL4cTUU9ffbKFoxxld5VzuI/BNdD/aa4fS3GShDUJcqoBxpcaJcMOk6EGNyRy74SrsWQthibqTmO/qZkXiGIR0Igtd0wMM4aM8i1R4jPtrM9NHiFbWRTC2aQfu2ZsYV0gufwd6nVRawoSa2KojEbCyEInmMnqgFM5/hKmNLJffJRFYx3QUJMd3ojd/rwK1wJqEv8G8KEhE132FQXDcX5eIk37UFUl6Lzrp+7wXTVstvAbOx33y1ySEM5VZ48A+wiKDODrrQwbYzAvRwzXkXjCeOTG28HnpbACCoUiOpGSJQvw0/pGwvXnxZszLKvBJAP6SqSxsThihW2p9CHUu9/mbA5ybaIlYBT8r/e0zXew9+twvL22T2T/5J/+E8+fP82M/9mNx26OPPhr/t9byvd/7vfy9v/f3+HN/7s8B8G/+zb/hzJkz/NRP/RR//a//9XueUXfV5u82Pv8xPZCxycqaSPsv1ZPWd8yLllgFUDPB/3j/GxAWdveHjB6sudpM+LzJUxTCiawlhnU143o34Vy+y8LkTLuSRrvcYjEOT+WYh3xPsvj0hObsHJTlxnxI0yn22gE3piP264onNq9jrODCzgaboznTaUm7W3Lq8RsIYdneGzvBshGYWtG2Ejl2GezbVlEUHc1AI6cqxqix2umNNp8R1E8AtULWguysd82XBukHpcYLXmQyGAJ99nW/SuuGbpAvDp1nmdAwP+1YlWzmmB5hHSgyWqAb5SYOBKZx5xCdAK2QtYxan6AnElYwuGEpd1p0qeiGkuHljoPzOap2D2p2WjG5YJmfyil3NKYQVFfmdNWIeiPoYYjmKGGJCTtN7lODWKJrNqELif5/oYGc6BEVE7JasRQfJzAUwSQjGuHn3B6ARtNNkiBUhP46zRCDLjJNEcgG8BIiWxu73PHDM5JJ5w392V9z0KwsLc6D8Ps4vYZeeY+W3huLQPTgx9nGesZJ0Lvtg3MbVN5jqxVOsCzx2iUP0grHAEWReAL+YiBL5fpSZIgEznwVWRN83cnvyfO0mUFY2R8neobDWg8y5gpy2+eRE7gEyCmAzJbzxyHAeIbOhDhEApcyBaKo2gE82WuDwMUkkhaZm2i2TtsUaRHSYIXqQbIXvouc3jxo6Vmu8LBCW/qSko6xfbw2aTkpcP+OL/9lpYLlssro3Mty215r98tLtrykGaL3vve9vPnNb+bP//k/z+nTp3nTm97Ej/zIj8Tfn376aS5fvryULbcsS774i784Zsu924y6dV0fSXQXyrFC5zvt/OkgngKrZAEj/ISTjgHp+cPffM89xqLoWM9mnMintFbxVHOKQmiM1xENZcO2HjFRi2hCG+QtZqulfWSBVU4wrBYweE7SbVcUg9YlU/3IhEq1PLC+h7GCD189y2FXcGb9gCprnUCzMOwcOJOabiTFmTld4/JZyUI7L6WEzZGldlF5jSDfqGGegRbsvLFzmeyNm1ykcBGqi7yj05LDeenNWi6mEfTAKAokjcBOc7rNLgaoy+auPXXlWJ16E/TA0q5p9Frn4us0ElOr3n24c4wQBvJDN9GZ0iK0A5DNBJqRS//RDSXV9YZir3HaIQHFrsYUsP9IRn5omJ3JUAuDzRSmEDH+UPjIjjhBGNUDjpC7KjBDabTp0H9k4wFNcIM2LAl3o7ki/A1B/3xfjDmv6L8LH34gZJ6n1O75rQqaNX1U47CKDv01EV3bJon+bP1OgakIZriAFdSKWS+wCoHpUX09S1qUAATNynGJfiiY84S02E7EjPfxXfSeZnGy9nGAHJDybZhqhbxZyGbGtX9o+8ybjFKhuO1BZzShZc4kKyQ+b5xZerZB+I/xIQDCdUsQyvQ53vDgyLOdKWsnVG9GiiY0r5GLTZwZB2oOsxiB2rWbcM4OyviPjeeSucaaYBMLfSD0i9A5/f2mrFhgNY8pNrn3ZY0R8XMsGBIOnAU2R8rlT2Bz5C28ym5VbumFtrTjLau5x0Xco8/98pJmiJ566il+6Id+iG/91m/l7/7dv8sHPvAB3vnOd1KWJd/wDd8Qo2OeOXNm6bgzZ87wqU99Crj7jLrf9V3fxXd+53ce/UH0E8aRdydMNLdTwsseqgyDVnp8OuGs1GsFfeA0RRR+fvjgQdbzOY+V13ikuEEuOhqhGMqG2uQYK7lYbzBULcOs4aHxHovTGXsfOolsHWiYnwE1dxPscNBweWeN5hEXiLGQmtecuMJHb5yhMxJtJFJqyrFLtzEa1uzXFep6gZrUdNdGlA9NaaY5ps4o1mrKsiULg/jIR7X2HjRibGK0ajWXTsAqLI1WLJqcUdVwsJczGNcUhT82DErggJIPHqhnCgqLUZpyT2CU4OCVBjMwdGNBeV0xvCyYPiTRRhDGdOYKOwQaJwqWjSR6YRkXCFHuOtObMKAHMHimQzbGzbXakC2cmLpZd+kLTAF7j2eIDsqhIt+pEcbHdkm8wiL1r0HpBAhZnMDVELOiJ9hgaTwLDEUICCi9O7Ww/YQUXbWFj1cTulvoZ8kE5gIKeqASwEgA6uEgRTTjxA7qQaWwYLWbPOOyPAVmfn8H+FY6etAhWbHym1gBS/T3cEwJ5pzVHGY0jhmKTIkPdhjbWq6Ar1Cf9DGVUpf6kNLCOlAaBc2RAbLRQ1RETzmW60jvIbBmhY3JVpdYmdx9dyErvDmsNF7n459fYIz8czHGa6ACqPVmNlMZsm0VTW+hPRhpJ47PrDMbK4vVkshcgUu5o2XvfRgecSc9i9WD08DqhTZK2aGlskQTJu0joEfMCRiSy+Ys9zet4ybniY2e7Po8oOiWJX0PX0g9d1LCguqF1vEyKB/60Ifu+JjXvva1ZNntQZ2XNCAyxvDmN7+Z97znPQC86U1v4iMf+Qg/9EM/xDd8wzfE/VYz495Ottzn2+fbv/3b+dZv/db4fX9/n/Pnz/sT+pf8bkHRqtmMY+pZutib/x7FhhbWBjWHbclWPuPp+hRvGj7DgXbC5tYqNIJStpzIpxgrKGXH1cXYsSzSIhvHWJTb3iQk4OCwYjJe0ByU7DYV07Zgpx4ghWVvMaDRihPDqZMblB3rgwWXttfRI7dKs8qSKY2pnJAz6IGqvONAWmwnyXNNVbY0aoAQluLEnKbNsGcXjHxy2L2DgQsmN+hTiAhBdLsPJf9URffYHIwTS+uR7gd3cDdVGsihPmORTUZ2KOjGBrmXYSrjVuoL56kTAuRhhIvu7KMGtxPPpF13QMMoQdY4d/rF2QGqtszOKDpvhgzCa+e2bxDGYJSIhMgSUxgW254RAgd6pQb8Al2XRFCRJnoN+0bzlUdBgj4vVjRzBUbE9rm+ohnKe0vFQT30vzRicdqmKRDC3ZAL/LjMEIg8iVFk/Q2ESS1NbBpBrguYuMTyhEYL/6fXGABY0LNAn74jve/am8iUB0iBVWukMxHNVRRBWx/vKQLG9Jy+PaLZO4jVE1PhUvJV75kWvciEa2db9CYqEXKvCRyL0kjH4mgc8AzmUIP3dnPtIYRFezOvKpwAXmYuYjtBUGyStgqmSi2QtXQBRpO2jcloc4NtpNMlZQYrbGSgALpa9c/D643MQrnjfIRsIcF2vWl0iSUMf1M0G4mLBOQkoKgXTSd9JQVCK0P7zcCJTcbhpeu5VblPpvyRlTe+8Y0IIW4rMCSAlJKPf/zjPP7447e1/0saEJ07d47Xvva1S9te85rX8LM/+7OAy5YLjgU6d+5c3Ofq1auRNbrbjLplWd46028CisLX/jeOZ3TuBoUfd0wcmN2/1Wt2OdgecunZLc69xomqZ7pgakpOZIcx/tDMOs+rXGiGWc21ZkKjFXvPrpNZgSnB1sQUF8KC3inZnWcwUzGQ46hseMXGDZ7cORkv6fzWDtemY8DFD8q3Fk6ftO50Q0XRUS+KKIKelAuubZ+ADechlkvn32s6RaYaF8hRSwaFOz7PNYupYm86cIN+2XpxtnGrXnBxcmriBJHPBBpLcT1j6knEJX1MZl3aCwtyvSF7ZkBnJcb0DEp2KN083DndkbCgGzdxdyOoPqHpSokwFj3M0JWiHUlmZyRdBdU2CG0p911kXqFBl4J2s0I1lnwGpkjAcZjjte9iqn/eRvUhXILewyg/4foOdpxLfZiQw+QXWaIAVsLcFOITRZbI/01A0lLqieBlJT2Doewy1rc4BsAzIKrU6HnmdV7ETOsIXIwhP6lHcLJk9qKfJFPwGMBVmDgTj/S4zf8upI+q3UiXkNiblqRyEc6B/tyBQUu9qTxjFEXCmfZpSDxbFNohANWglwkAyYOYcM/hHbZ5YtoKjI7wLBS+nYVZvvcA/gLD588hcWY3q0Vk9WQWAJZFhMCuEkzr+oecO0CzOK3ds6m9q7xw1yGVQXt0qZShM6off0I08MAoggtX4e9FhOjaURxuewrHP+OlknaglQCP4YEvB1ZMmaF+/yM5xo7UsrzfEWCU7nRcBf5Ya0X8u/rbZ6z4Z/GC63iZlN/6rd/i1KlTz7uftZbXv/71d1T3S1pD9AVf8AV87GMfW9r28Y9/nEceeQSAxx57jLNnzy5ly22ahl/7tV+LYOeeZ9RNVypJOVZX9Hz7HFP37dQTNRM+bs30mTW+6DVPIlrBRjHjUFfkQnOlW2dhchrrTGbrak4uNJVs2WlHZFKzVtRsPbJLt9m55KUjJzaWrbuW7EA6U0dh+PS1LQ72BtzYH/HswQa718ecm+wjhWWjWHB+bZdr+2PKcUOWaeaHJYNxzWJWkGeawoMYYwWZNGy+Yoes7KjK1oUIGHSwkE4PBIjdPP4/KFtMoxgOGopBS55pZxqTFqVcPCWAxTmNmWcIaWk3DNSKE79vqLdg+pD1eae8vqDQmNybvpRFdG7eUTPnTaYWbgJTjWPN8inuex1c9mHvkYx2JFzajFpjMsH+w5ITH6kpd92KfO3TDd1AIFtLPtUU+x1CW6rttk8mm+AQYYjswZJXkmcYYr+Iq2uBKR3gsrmbgIwX7sZAf9KvzH2dUvfHL+mRUqAiPTgR9IxEmOj8BJtqXGKX7XwQxQAOvAeaELZnlzLjWJpwWGkc4BLLdS2ZSiIQsNEEmLbBkrki3M/qRBcm7k463Yvx4nkjXP6t4KmVmwgObYiMbUWMom2NcOJmQ3Kv4uj7anHRoAPQCvdQhVDnvYejbaUDgOn9+3APIk+923owYI1AhfAQEMGazBybE8IJREtl4nrvzJQWWTtBtWz9/WfWmfQ8oDWdpLiaOwDuj5fBe3C1fQW911toch+OIPQdt5EUxy6XpF9FLZGwcbsI3nW+naS03nOOJfP50mdF57M6jB8LYMQxO67Ulf494ol2zK29KCXV1r2Qz8ugfPEXfzGvfOUreeSRR5738+ijj/Kn/tSfislmb6e8pBmid7/73bzlLW/hPe95D1/3dV/HBz7wAX74h3+YH/7hHwZACMG3fMu38J73vIcnnniCJ554gve85z0Mh0P+4l/8i8CLnFE3Xc1wDAuUTlovsKyyyemqQHSCBwe7YGGgWmY6Z9cMGGcLALa7MZV0YKS1ymWrzxZoJNO8ZFzWmAf2OdzZoth3QGt4GbqhpD3XuPOVDnR89mMXWOiMjWLOostYdBkb5YJCdcy6nK5TbIxn7M0G8fqKQcv6YMFUFRzOS7bGLtlrmXVkmWGQt0zrArTz4hLCkhWaRllaI2najCpvEVpgjGBQNShpsdav8IXLb5bnHe1AI/czxMSi1zuyqzmydcyJbATGT25Bd9Gua/RQRBZENkkcGL+Sbiv3nMttB47UwumsRs/B7msM1RVJtSMwuaIbuOCFhw8W1OswuQj5bk05cKvm8sYC0Wqmj07cZBtEzSqZ740fo7yoOrp9S47EphKW3m3dbw9gKJhjgqdWFGUHNiMZB9N6bGZ7z68YoDFFbIECEf07IHqWqPfWkslE6QWt0jqTVGCYBC7XWWBRgmZIOdFwNJWkXlmrxQPIVIgbrjd1sV8ymQl7dGXdumcnWklMTIqvO4QNSCJB0/l7D/UYXNqShYzbXfPYPmhkFB8LBwJnKorZnTeb8EDHX2tpCAmMhTLRizIyZ/6+hEq/C3fT6bPxDzoIqtHSna+0keHSQx1Zw+Dejzdri64HIFjHFLn4NaCkA01RZxbaPzzfxIzWX2T/b7R4puA3/A2msNBPV1ig8NtxIOQ4kLPKCKVD9HFMz82Ov1/+aMqv/Mqv3NH+//k//+c72v8lzRB97ud+Lj//8z/PT//0T/P617+ef/SP/hHf+73fy1/6S38p7vNt3/ZtfMu3fAvf+I3fyJvf/GYuXrzI+973PiaTSdzne77ne3jb297G133d1/EFX/AFDIdDfuEXfuHeZNRdeUGOgO1bvV/pb7d6z1ZWKqtiWivhycPTnH58m712gLGCgWz5w8NzTE2JRrKhZsxMSWsVudC0JqM2GQudc6KakUuNeGzK9LzFx3WkPdu4+v3JTm8ckAmDxGKsZKOaUyhNZyQSy7XZmDOb+2TKoFvF2TN7ZMrw8NYOShiqrENJw1Y1c0EeD0aMBjVSWA72B9AJsnGLlBbdOvtQpyWzecGizcnWa+o2Q0mLNoLDwyq6AYO7TnU9x5ZOvyRzzeiiYO9xSbkN3bnGeeA0ymkbpIWRRpxxSWBVTUzUKhtQC0G7ZrCZy322OAnThw3NBlQ3AAN6pJk9YLj0BYrFyZzZaafF2H2VIFtAOxQsTg3I5pp8rwUDi7Mj6jXJ7IzL+m4yb/ryzzONMRSed+gjaYC6dL4jOUZ2gXVI6rEusrWw9Hqe9DyWRCTsPjE1SJJaJbASS8xM+Jt6qFkflC8Avk7SLjI3mRYONNjMa3XyPmeZiJot54Xo4hcZBx5KF6TwyPu1pNlJwY6f3A1O8BycEKQHNHimSIuYDgRw5xL4vFvCt4UXQfvAhLYV0VV/qYSkr4HJSto6gDEb9EwL6dijIPLOLaLwep00MGhgpCwu9YbX8qTjh26UAyUx7IRnT5TxIKK/Tqud6VDWEjFXfbNp4WJOtYJsP3GhX0hMGQBmH2RReGYmeJiFwKbODd+BPFXoeL50xShSD760JOayZXaI+HHA2i3QYhDG8PMKS3OzssoWHbf9Vsccd+ztbH8xirX35vNyKb/6q7/6vPt84zd+413V/ZIGRABf8zVfw+///u+zWCz46Ec/yl/7a39t6XchBN/xHd/BpUuXWCwW/Nqv/doRu2HIqHvjxg1msxm/8Au/0Auk77SsrmLgCCiCm4OiHsisrHhTgBMAT6SJk48faEI+JCyY0nBlNuZ1Jy6xns+5UY9prXRxgtotTqhDLrabnMwOyIV2+cykS/HRGMXTu1tM64L890ZMPimcANNYmGbIzFH7MtMsuowLh+vsNRUAZdaxMx+yVc4oVUdnJIOsJVeabpYxyBsWtfNMa41yYGg869vCCLRxHmX2IIfCUJQtbadc9OrMknl9x6LOnaao9FGppUUqE9khJZ02qbruNBBCgJ7ltGMHXtqJG0QRIHJDtuvyrxWjxulHbB+PSXbQrRmaUxo2GsyJBlMFX3jB7Lxm73Ud239MO/G1j2Z89c2C/MCZ3tY+ackPrRNS5wLZGPZeUaGHGflBy+hyx/CK7jUvYUQPbINIwEqYgPxvKVgKJjXp4wkF80eIehw+ciUGacoMRQbK96cw+ePNb3GwTMHn6shh6cGTCOYs4d3QA8vhdS1B62QFDNyFCWl9VGZfXerSHuqXvSnmyCsX9/OsRKqPCttMcm8WpyUSNsnNlgCorH/nQvqJADJZSKQXXZOyYGlzFP1DilotDzCFwUW8Fp55sh4wyOQd9yBJZsa5toc4QwEcheZRntXQ/UWkE7f1IGZpFSVALqQPLAo2dz+pmXsP8j1Ft+5iTYmDDHJLd8pp+UznzHq6U+hO+kCPznymQugCcAmVQ2BIP6iJBMQ5tjIB1vHi7dH2FO6B9ZGnjwFDK2as23GPvxn4uR23+mR9+hkFP8cWe48+L5PytV/7tfzO7/zOTX//pm/6Jv7dv/t3d1X3Sx4QvaTLKihaWYkd2TdZTMdjbL9taWJcAVE9S9BHGI6L89LR1w9Vu5zIXdZ5KSyjrKY1GZVsqUTLhnK/zUzJRC7Y7yrODfZ4bGObelHQjqHe6uP1qFrANReLKCs1OzsjOi0pVUchO/brimHekHvAU2YdhdRc2x9z/uHrZNLFNMmkQRuXO+1ENcMg6KxEt5Jx6bzI1EZDNmgp8o7FvCDLNGunD5nOS6phg1SGatBQNw7IzOs8MlfGuIz37SJzbbPu8qbJuaS6BofnoZ14d2EAC91Gh7WCes/Vj+xzujUbBj3SqPUGmRvKUYOYtLTrFlMa5KTBKsuZ90tGFyRyphhcdsBjdlYwuuKiMU8utEw+vWB6JqPeKrBSYAqFXGiyaYsuxVJW+jgXWJZMZcJ7l4WYVAEYRXObN23IzvcTD5JEYHYCKPCr9BTMhL4kvHYleEjZIIaF6Dp9hB1K+3o4j/GVdiLeUBD5hv1MKxEBMCwk1oODEHU51GvqhDaTDhzIQsegf/GdWNIc2Xi/MYdXsq+L7+PMQE5XJSMISdNgWB8GYunePKuRtqsw9GDE4oBMALCddJN+mhg1gEHvxReYtWCeEsI6FtOnNwli7+gmH86DY3/idWTGpZuRCQAKj8ZHiI9mtuD63gkHgnx766FrGz0IJ7DYcYdYOB2h8G1rtMQkAMwEc6AHLO76LLpeUWQE3Y8POJmaOI+1VKXmspQdCv/jxjmZxB0KZrRbRZG+E6bnuHLspSbb49/75rUXpfzVv/pX+cqv/Eo+/vGPH/ntm7/5m/m3//bf8ou/+It3Vfd9QHQ3Raz8f2RFkwg+b4LCg1lhSTAbtvtPzxSlv9ml/YUFdajQRvKB7UfIheZEeciVxRo7zYhcdjRWYRC0NosaolxocqFZyxY0WjGZzGlPdqgFlHuWZiIodgWjTwuawwIhLCe3Drl+Y8KsLeis5FUb13hs7QbXFmNmXUGuNFJYhlVDJgyF1GxOHCNUqg5tnWC6kJqPP3uGydqcXGoyP9N3tTOHIVwQtTzTzHcrtJGsDxdoIxlWDRL3+2hY03aO8tdGUn2soj7paHq9yBBGMH3IAQYzNM5zSAvnPlxqiqKjXK/RPjbL4oSlXbPYSqMGnWOgfAweVWjHEo00Kjdk2xnTMwK1gGwqmFwwDK5CN4D5CUm5a5ifzJCNF27vd4yudlgJ2589ZnGydKBzYSMr5fQ9IIOQ2rrvVkCM6Gt78GwyMJ7FieyGj3AtEtF0ZJasm+itD3gYxdSAKWwv/M3dpBKzlgdz2Eo/71NshA2uX0Ygp3w9AdzV0gmHg34j5LlaMZ0E7ywRYxD5+9YC06m4KIhsSvLeub/05iYvFBYr75lI2KKQn6u/AM9epBNxnWh/0iICeO3BDRbHKsVI3/2z6JEZvXZIWvAskGtP0ae98L+72D9gO4npFKaVmEb5+D/ObKUb5YCKDRG5XaiLOH7YJPq6b56QBy+E3cAKjA8QGWMIrXcxyGPwqgr34jRagRUSS+wVPvK7UAkzZASMdc8+iqNNGto1msvomZ/wNwChEGxRBQcLaVHSxKj2sbpjgFFaZzjlrcpxQ/1x+3zGS8oAvpDPy6R893d/N1/91V/Nl33Zl3Hx4sW4/Z3vfCc//uM/zi/+4i/yRV/0RXdV931AdLflCAha+b4yAB85PAVIdnn/JXHhyrLjuH6rppL9ecmF3Q0+Nj2DsU7T85rJJW60E4yVTKQTUZ/J9qlEy54espnP2G5GNEaxqHOqixmqhsWmG9RMDtPzlurpglHVMP3VU2Sl5uyozxM360ouHa7RWcccVapjo5qjpBvQlbQx3cZ6scBYwU49ILtQsT5YkElDaxTrkzmjNScCL4qOtlMYrykZVg1SWJe7TFgOFyV55iImN3XmEsluV7RjMGdqrAF1PUfNXGM1m2H0t1ifxd4aSVl0jAc1VeHMcHpo0CODGnRkhSbLNEJajBaozFCcmAMW3Un0yZb5OQdmBpdxAmjtksa2Y2jWpAvMuFFSHFiyWUt5rWb/0YL1TyzYe1wxPyGZPiAj8ME6hkp0HiAFnOMn1GDSC0lfRbBIePbGBDB0Exq81xsJzwZ5lBQ8fgQuqacImp7QB8MEeEwn9gDd5eDy281yZxWpPif2X19ZYZzHVQAIjVyOXeQnU6sFtvV5tFJ9VZaCJn8+gdOIedd54e9VRJOVB48hLUnw7gqXFRYqQdsTGTF3z+miZekdDg9Mi57Rq2Wf5iPcU2BR4jZ3zsCiWSNcItzgzu4Zl9jWnXAOCP6+zUosLpPoiITsWSRrhDu2Vn5B5t5xqxwrZDPvfaiInnQunlPwKHOsVHQ1NyyJkK3tE8hCAg5l3yFjyo8s9LsVQJuMgceKqQPrmBwXxpcjXl4BOB3HCN3EdCZu8bmT8plkh1LjxAv5vJzKv/pX/4rP+ZzP4a1vfSvXr1/n3e9+Nz/6oz/KL/zCL/DFX/zFd13vS9rL7GVXwltj6WPD+O2rq+BjkU2yybLyEt6kw5rcnWc+dUroJ3dO8dj6tvt/ehqAg4FL27Grh5zK9l0qDlywxoFqeMXkOrvzAddOD1G1oqmWz6cr0EZQn7CIT4wYP1y7gI5GcnpwyBOb18iEy3MkhWWjXNAZyUJntEay35RslA7sXJ2NuXhpi7XX7ThmRrlEsOCo905LmiaL30MMHW1cLKO9WRUHYW3cyr45LMhvZJjMead1lwcIC4NrsDgJdqCjGUIufOoICfKkRQmDFoJy3GAGnfNwyzQh6GMzy2GWUZw5RGXOxd9+aA0rID+A0SX3YI0SlHvObCW1oN4QrD3TITvjvdwE3SjHKth+7YBz/+uQ628co2rIpi7RbEzTEiZQA2R931kK1BjMLjjWRxiB6NykZvIeLN10oLO4SSm6QfuoyshoalrWDvkvxsepKc1ywlVhXQTtVkQgEUFGSBwqbTS9WC1jwExrZYzqTGIyQ3vRcnD3j1SXu54YGTtMvJZesJy0C41ElMYnEnb33QMpsfTeRhOXwJl2vGkrYJ2lhQwJaIU+4WrAMGa57lWNmM0da4lx/THE85GF7qNpC3oXef9cRIjwHJCZWX7Q0ZMMQPTxiOjkkjjcKjCljSL8br1DNBJ1KOk2PAhqJZQ+KXHKbnmg6YCRXBblWhFZwzRGUQQ0HpBHT7SlBuVo8be5mkVeiGUwtHSIWI4RFLSGQnCsgPh2PMxW90/LH2m2+JU+edd1vIyKlJKf+Zmf4au/+qt57Wtfy3Q65b3vfS9/+k//6RdU731AdKdFrPx/Jx3puP1XGKD4v6BPj7ByfHDLTn9TFysQlhvKcmZ0wMWDdQZ5y+nhIR+ZPcgfHz3DRM5ZmJx1NSMXJa3NMFYyUC0bgzlXS8P8jMRstlBLTn5AsfuEoN3QNG2GeHSG+NgIg+CTV06yNl7w2ZvPcbV2Hn2FV+5K3KrsyuGEjWrO/qJirajZrSsuPnmK4QOHnBhNyaTxgmgLxpCFeEJWoBsJQ1CDDmuh0Yqy6Ni9PqYYNxgjqBcFphPIvYx2q0OtN+gLQwbXhfMSq10KEkLE3lkW55AgelXSTdaZMnS4BLKBfZodlLCfg7TMdoYMN2fUi5wzHzM+ZpGb/GanFfOTDticff+UwTjn8MGcYrclm7ZMzxbIRrP3hlFclXfjnNFlzfarFKMrzmvORQr2WCjz3SCYyTwwSiOTp2Up8q+kTwSbmM5Sc5HN6WfyCI5wAESL3u076EOCnscn+gzXIoyPWxPBq5t805xVIWJxuAjrrxErYsLUEKsokCFYlrPS01+P8O7vFtsnWvXHhZg+0YwY2KOpT4haS7+IgGhH827nS++nsCB7pidsgpX/g7Yq6IbaJAp1zAO2cg/g03IE/RIuOWpguNJjbJis/bPIjWOPiLjQ1+m/hG7gwZPxZs+Ya8yzcGrhTJXd2AFbMzDRTNit6x68hPosyFCfIJoZTWhff/oY5FIIykntHCd0Gn6BCIRSLHqkJOzj0mYPioRwprHVdB0p2Hk+kLP6+5EgjTc55nbqul9evPJ93/d98f8v+ZIv4dd//df5iq/4Cj7ykY/wkY98JP72zne+847rvg+I7qYsDZzJ/2kJg9vNAFN42Y9oEpaZpThur5x7aUBOjtOt5KntEzHp6UYxY6xqaptTCmcaav1sqRGsZXMAHhnv8NTuedQjU7pGMfxwgS5h8inYfrPzDrt4aYtCuFhH1kge29imM4rOKIwQGMcvAGCsYFHntEUTtUOtUTAwjKuGwuuNDpoSISzjsnFRsDONPsih0s5s1iqsFexvj5hszlBVR+4933QjoVYUe5KuE+g8p5gLTAHlrgsy2Y1AeG8Xud5gdguoDNW6Y6zm3o1fCovR0nm1GRnjrGQzAUaiO4Fed2aK6VnJ4JqlG0iyuQuIaAoYPGtpTpQYBfnUgaVuUrDYFNQnqqjZEQb2HitdbKQWVBNnNfcYVb+QDmDIPeukDwhfV2BVrGcnTE8cxAjK4di0q4XvHgABDpB0CRvif7etn4it6282t16DE2Y026enyIIpzrMQnnlKO7FUBtOomMZBFKYHLqslgBv/o+1cCok0HUesOrjBp0BBuPsTWmBKz42KdB9fr4/iHdkhz6qIEIRy5ZLigiT8mLSj28H2D3HVNV8QXe1FIuR2IFAg8MlXdc+u2MCqLJkfj7kwenbIJB5wNoRhsCEsA44l7YSLW2VxYQ1a4b3qXCcQ47a/pgjOBDbQ3kG7ZnomyrF9UB+U0fX+poDhWEboKNsTtgczWAqUj/v/VsAoZYnuZZTplJX6jJZ7oQF6GYG57/me71n6fu7cOT70oQ8t5TkTQtwHRC+JclMARL8iWsI8xxwQXqhjBJxxd5MmjaTXhdSK6V7FcG1B2ykeGWxTShcJuiUjFx0HumJhcxSWoWpYmJydZsjwiT02RzOe++ADdEPIFm5i3zxzwLiowUK+D3OdMxzWnKn22W0HfPT6ac6v79J54FMpl/vjwc1d9hdVZIL2ZgPOPbjNMG+iXf/6/pgHN3epVMfaYOEGtErHCNciM044fZixGOZIaWlb5RiTvdylBpEZ42cEe6cM1TU4eIVBthJduhUwgOmUG5jXWuetJGzUKWWqpelUr13SgvGoRgjL2ifcSnp2TjJfK1Glxgq48Qb3bNY+KWhHznxmFKiFpph1mFwiWkM3LDA5zM7m6JJoEmtHIDQUB7jJyRLNXGlCV4vbX1cseaQFlsiGvFY22T+CAXzUYUFIKooVvdDXT9jWszRLwlNBzKPlGCWbACB6rywrVpK6eiAUgBFEzzHrGRE9d4L3GAsoALK4Akj6eZwM3aQuMuP+BhNbeKksy0lSV9KSAC5Egm+DJeAocGyNJkE6HDl+6bfQ/r4O0SYLIMtRN/r40JLryUwvqg7XFZgi3w4hDYaQvv2sB2/hvU9An2tL2V9baFcfsdp2AtH4IIsWmjUXSkB4pizeqgfY6oZCnzaxfy2lt7DOAy6yRiQMSwweKcAIdEjl4fvNLU08xwIk+uStgoQVWgZGz1eC2exI9S93dudW7XkndbxMytNPP/2i1X1fVP0ilqWFgu0HS/ej3yyOfuIPS5X1x8ZBODUVWBxIal0leeZWZQuTM5ELcqExCA7MgKGsGcmaoayRXvvzitE1To4PGWQtw8tQnzTRXPPgZI/T1SH5sKWdwHY9ZG2w4GN7p7m6GHNiNKVQmtPVIcOsZaGzqCeaNQVF1tFoxcnxIScHzvX/xmyExNIsMud5pjSLNkdJQzF07vdZobFaorVErDcoZZiMFgwHDV2nsOstCOcpM7pikMrQjRwIaCbQrlnUXPhgdpqyalC5S/mhjaTpFMYI5nWO7qRz1ReW8ahm99qY9c0Z22/uWJzwbT9XZEXHwRtrunM13ciw+zrD4qQzmXQDQb2RszhVIjvL4kyF7AzFAYwutTEAoy5daAPpzW7gGKZQZJOAIg+GrHL7BGF13yeSScqD5MBcHBnjU1NMcBcPOg7jghPGlbNnFELaCtGKfvL1dYu2Hz6CySmEAgjfRe4qdPF0kolb2WUhs0nMdNCn3hD0+ccSsOa0KfTicJK6Vq4pMjLCYgvr35GkjWKj+XfKv4hBfO3qFemfpXc1JWnj9/Tlj1ql9DqPW9VbL/gXMa1IuCfbyX78iG3lN6RaqHANbWJW09IFwPSCdVULuqF7N5AWM9QOTLc+r1nmTIt64JwQhAo539LGDawQMZp5CphCvCkZYxGRTNzPAz6Wfl51pXf/Z0ovgaFV4fSxGe+P+b3/fm8QwarG6X55eZX7gOhelvAu3Gy1sfrO3Wy3lQE1jp3H7J9GGw5/N04e+kHDcL0ZMzMllWw5k+0xknU0mV3vJlTCsTnb7YgvPPUUT109SVfBxkcl2cySLSwXD9aZ5At0K2nOuPhDp4eHfPr6FpcPJpwdHjDMGkZZzTirueqTvBZSkylN6dN6VFlHoTTTpmRz4OIRPXxmO4Kn8HdYNZHWLoYNADI3WKBQ2qULUIZy3DgvsBymZyR6nlFvWapLClNYv5omBo9T3lVfSEsXJh4rKHKN6VyAyGHlgkkyU+xcniAGHfmUaCLqmozhZEFWdoiNBrPeMbooWH/KUO5ZVGM4OJ+xOFlw+ICiGyjKPcP11xWxD1gJuvAskfFgxydxtd78Fp6rrty2AIRMzDPWs0RLmda9+cMKYlwhk9ul/hSkM0HnEtN5gJtcQ4TqRGMUIwt7cCECO5UyJqG/endql7vKMTumUzEwZpy4rXCRkQNY8KAuhEeI1wNLCV+jdgYiUxJjeAGicSayVa3VEsAJYFKsTPL+npYWL6HRVtvQHxPE8P17avuggxYHAkNMo+D9pSwi19GcFCoTwfTmtT/CA7+l8wVhdVw80beV9Z5kwVxXS9/G+Bxzrg+Zwpl6A/DTI+2YvpHzMpSdcMCoTATex5Rlc5UXy1v3fzFssUaQVZ03/YWHxTKQT5/Jcf/7BpfKmTyddsg3p+i9yG7mUXazchwoelnGDrL36PMyKN/3fd/HYrG47f3/xb/4FxwcHDz/jr7cB0QvUrnt9+omQAd43k4aQZKfENqTHSgXtHCtWrA5mPHxvVNcatZ5uj7FzJQMpQuEKLGcy3eRwrCezTlZHPKfnn0d7TwD6eLpmEygaot87xYf3T1DUXX8sdd8ijef/DSf3t9gUDWcnbh0HpNswa986glmXcHWYEZnJYXSTCoX52fR5Yyzhs5IGu1m9Up1nBvtUyi3ipzuDDisC6rMma6Cp1eWacajBevDBbMm5+BgwPygYrFbYWpFdQP2Xu+And5qnadXB6YyMeJunmuUMtEzReUG3Sm6IFCVMK4apouC5sKIM++XlJdyVKGZnXXJXK0A0wkWswLTScw8w7aS+Rk4OC+ptjtuvDpDtqAL70EloV6TtGuQ+yDdqnFeZVaCrgTNRGIKaCbQVQ4sWeX+j8yRIGqVYl4y3z+MN08FwXV0gQ8TfNJfQhyi0L+sZ3Cs8h5gFgc+gku6ES7wZ2V6nYwVS55V/UKAPl6RTNJxSAeKrE+eGqJWO71UAjR8/J1g4knFxX2+NrsUE6mPaJ3sK+m9z1JWSeDMfFmaHFb0MYT8PQTgFKtMqCBhk/qTn2IRx230lYW4TgIIucA84AlmspBGxCZMWlqcYNsusUH4xUMafDFqn4K43GukHOC2PZvln6lQ1unEwj0AYtRGc54MQDGYrvwkaq13+7f4mEc2JnftakVedb13WDL5Lnl6pWNgymwKYiJX6eMLhdhDKfi5GZBZBWtwlEk6rqwmbr2b8hkFVv8XAaJ3v/vddwRwvu3bvo1r167d9v73NUQvtKx2pLu1Raer3pusoGz6VVifCNL9MHqtc7U/Ozngk1dOIrHM2oJxUTNWDgRNTcmpbJ8DBow8MNrTQ3KhGcqGLzj7NL9fnuO5Cw+6U+y5gVd2lp35kNPrriM+WO6yVi4YjlqGWUtnJbkw/IkHP831ekQhNVXWIbEMspbd+YCz4wMao7gyndB2iuuzEQ9N9ljoPLrsnzqzx9nxATu1y06cZZqN0Zxc6WjigiAWtQjhVt66AEpDfqWgPenMaKITTD6hOHglyEEThdgARd7RkLl4QosMOV6gG4mSxkXhLSxqATZzpotmSzO8pMgPJK3KsUMdWQS1p5x3WHh+0pnEuqFw8Yfmho0n5+w/PqArXdBF7eMFmdKBn3LPYgo/CXc493XtwY8XYpvMP3OfmD0yItFVX/hM9z3wCSYu672lgN4DKgRPTMS2Ftn3PUuM3Bzj+QQzWNLnQ+qJYGoSEQgl9aTgJgDQMLEnXmEi65OX9i7ZfccX0gE1qQzGKqep8cLxyAZ5EBCTlPoQCyGlCEkoh+iW7+MGBcBzhFWy/YuYAsHViN/xWgMICQAqWbhEzZIR8X5XRdcOdPkwCNKDh8A8hXoMbsb3932cmNhKZ/py+7tUHVa6hYLofN3KOg2ZFsiZwnimyGy00CrIDBaBsDZ5vsKBV5/FHvDbvehZWapBQ6dd/rojQuOgkYo33D/j2AD0z9zFQQoBGE10tb/dsqoRSrVEt3LDT/8eV26mO3pZskwvk2Kt5Uu/9EvJstuDLvP5/I7qvw+I7qbYlb8r/x+h229VxyrtnZZj3rfUdJa+d02b8fiJG1ybjZHSMshbRnkTYw4tfNS+wpvINBKF4YF8h109pLWKTGr+5Kln+Hn9oKPVc0G9JsnnFisNudR85LmzPDG5xms2rvBodYPf2n2MT+yc5MEH9mjqjEp1SGHJhKGzkkwaDuYu91ndZZxb26fK/LVZQWdkTBALziTWaUXbKbbGM4Z5Q2tUHMCsFQwmNfO9inJ9QfvpMbPzBnU9Z3AF2hOuPYp92Hyyo1nLWOQZeiTRph8MLQ5YleOGTBo2Tky5sT9ycWAawfScizRstIChRljF4ApkM8X8QaDSWGkpdwTd0AGb7VfnWAH1BlQ7wTQhfXwgZ4bQJR5kQrsG8gbkhwa1UHRD53VmcqJbuw6WNmm9qzwxhk50n2/pgwgK7wKucCLhjGg6E51wEYK915UNEYSjiNeBpyDyTsF9SO0R+mDo4yKz2I44I0dXeQE0bkcRIxg7kCYEDggVNoKtoI2JYum+yijSDtdpOhWBmQ3vTsqYkABC6+47gCBRSx8Dh3g9aR6weL/p/SeAJLZF+J5qd+K77EFmcmwEbQIf/JJeAC18bKYAumQfxiC2ZwBNkWkJAC+5Z+uBpo/vJGcu35rxLGGMRi5dH5JzgZq6NBxmqB0YyixiL8OudS4oZqjbOFATg0AGYGSPAgAhDYt5gfHPXYikvVcHtbQNw/OAPkGtSNgh4XIbhhI9WlfqvFPx9HFg8nbKS0aMfawe7S7qeBmUf/gP/+Ed7f+1X/u1bG1t3fb+9wHRH3U5Zow4Uo4MuCwPyEBZdGwvhoyKmmleUKmOYdawWw841CUPljt8ujnBg/k2EzWnEJrGKirRopEcmIrNbMZON0R/1pT890c0Y1g8Kjj9O5Ybl9c5mFSYTrKZTclExcnsgGvzEWXekQnNej7n0nzNXaOC3bqiUh1aSx6Y7PPxa6fYKBY8Pd/ikckOUhh2myEAC505l3crMFawPpyTeWYI/CCH8F5hhnKtpmsyp48ZdVQXC/QAxEIhG8ewdKX0EaCd+HN2UKEKTZZrMmVYdJL6sKDzYQAYNOzvDzADw/RBl+HbdhKhDLOzMLro4wM1Alu4QUiXLnnsYovIDgkNs1OOHah2wKxlmMyZyoJAuhs4wNRVcHBeYTJ3LNCn0whgJrhF4+p2Ls/+/8y6eDmWPmFq2FkRGYJgUgNcnKEAkiwOGMGyiz4J4PZ1By8zYWw/ISf9Ms7VwfIS7TIBHIjIXomgE0pAhLWJdid5JyKjY/01KgMhro4HiEfCC6wIiFJQtLQYSXRFMehlYRH1yku5xGD017zMAAXAJI7uG09i+8CX4a/oGZPACC1d6yr4SusJgmaDF1sLhBWRATS5E5GH9pGNQK9pJ4i3LjCjmgtsJh1TVEu3T2C5SJ51OLWwWOsuVAiLMRJBz9o4U6ADUcWwpat9upAopL/5gLeqlRSeJXIxyvq4QzJ5thI3NvxRAJTlRLrLTNhnSlS9Im+76zpeDuVOAdGdlvsaontZ0pcxfRme78VYZZfS45KV0vF1uwN2r49ptEJbyStPXGfW5RSy4/TggO1mxMenZ3mo2I7Z7idyzkjWVKJFYdxfYTjoKr7osU9Sv3aOMDjWZSR4zSsuurxBlys+sPMobxp+ilx0nB/vcn68C8AoqzFWcNgWXJmNuT4dsVsPePTUDYZZg5SWQnZMygWl7FjonMO24LAtuDYd8+jadtQYGQTayAiCWq0iONJGuEzbV8vYNrpyIuV8Xzq9j4LdJ9z/wkKnFdlzJd00j8EXs1GLKl28o0YrZvPCaTikdclfJcjcmdrq8w2zs1DtWIbPSRf1ODNYBfUm2Myl7AjmrXbiusPsdMbu426lriunRZKt84CzuaUbuYS6unKska6cSNwEIXUwgfmliylsnCBNmeSCSiZKpJ8Eg2eYdZO0HbiQAWTO20pWndMLWdF7gAUX/VCfFzmL1kUzRtODCEF053f50RL2InzSxKY2qdPiXcATQCKImhqR3E9IGxHNUTgwZT3wEavXHd+b/v2KYDFEkLfJdViQmqi7kbXo9yGpMykpRohanaUdko/fP5xbdNK70Ivomh5c6oNOJx4rPEAKJr9w3WlJ7iPOjh48itZ7HmoH+PTIxFAK4DLcdxPjGTiQc+n6fvAgDM/QEuMbBa1Q2kccCEqO8dubaeGCotYuZc4qGxeSCcfnlZjLpAfqUrgI8UpaF/SV23e3v5k32fHpPJY/d1rum8pe/uU+IPpMlNthgUhX5GJpQ/BcOTIwJwAsv1QwyFvOj3c5N9hjZz5koXOMlY5VkZrnmk1u6DFnsz0UFoWhxSV7BRhK59H1WxcfwWrB7EGLNA4QLboMC6i5YJzX/I/d17Ktxzw6uMH5wQ7TriQXmkfG2zzsAVLTZkybgmHWUkjNA+t7AJwdHnCtdglhA71tjOCTuyeZdTmDvEUblwR00ebUbeZTdsBikTO9MST7yIj1j8k4cVnhBnvVuOz204cNs/Oa/dd0iEFHVyu6iUaWGmMkg9wFqVSZcWlJmiwGYxSFMyXZtRYzzWNbLx5pWWwJquuQ7StoJdnUt78HOmoB2cyzQEMnlF77tGHtE4KDxw3d0AE3gG6jY/5Qh65sBD/gwYX3BEpzhMV8XCIRUEtc8MQQzDGYRPJkUvV1ilpGb7EQrJLMuOCAQYMkICSRJU6wrt/Z4NmUMEdoJ0qOaTyCDictyeQePdqChijp+2lk6igQDq+C8eLn2oFR6Cd8Z060CeAKlRJHOFvpmAakt7XRC52DVijeh2eMQlukYt/wW/gqlv9JNUORlYuTvu2jX4f328dVigenTNDqSQJACikx0u3S5WULoMP452WUY8gCWxQ0Tlb6DPfW/S5nyiUw9oDABs/CmIYoAYqrC7cEPMYcZ/7SukXmTWccRZKiZy6jSdEDWies9xHshUuzk4KVJbd7fwG3iiS9Wp5PYL0KkG4XKN0toLrrYu/R5365c0D0jne8g//5P//ni3EtL98SB4MEwNxh6cWsy2AoniKCIrt8kKfnTW65ujdhv6m4Vk+YlAuMlWwVUw67kt+9/hCVbBnJmlwYGqvIfSTASrScyg7IRRcHFnmlpLommD5oKfcsa0XN689e5m1f85t8+dZHOOicfedVg8v85rXH2G0HGCRD1TJQDevFggc29nhi8zrDrGGhc05WUxrjYhTt1hVr+YJh1tIaRZl1zJuc/YXTGw3yloNFSaMVe9MBUljmiwKVGUQt2fiEod50K3usoJ1YjPLJVTc0tjCIcYscdCCgqDo/aRNTc5hOMh7UzHaGNHXOYla4CV1YN6nMXaoPs8icV5AWLE7C4cMuTQeNZPNJw/AyqJmb5ModF2Oo2PVBFw10lWB+Ctb/UFJvwuKs05Bkww45ccBMGNClY31M4dkfZTGZxZQmTvpxLgnmJmmjK36MTxQmcC/Itj7VxRJA6mRc0dvOMSxusqQH3l4861gh+tW9WPme9P+oLQqaowgI6MGGP8Z6LUvs3x4EWZMAo8D+dOH6RX++IAhf8qhKXyoiOJJzlRwvIpiSmp6lStOfeDDj6uVIiSlU/H1jj7yyfZ2R/aAHO5FF69s7xPUJaTEiM+bPEaJXr7Z5ELGH/k3QkHnvQ2E8s0jf3tnUXYesBTKYVQPwCXGOPPCK0buT8A7uAKI2zCZAx3TSAzYXRNOZnVMQlDwfP66F8a1PSmuR0pJlvalM+eez7GF2TJvfpBwnlL5TV/1wzpuBnvuxh17e5Y4B0cHBAV/+5V/OE088wXve8x4uXrz4YlzXS7/czjuUrBSPJHe9gzqf9331g4z9+JhMGmZdzslqhrGC7WaEsYI3bF3if22/Am0lB6bkcrdOG2dQkMKtwjbyGY9s7aAnmmwO40/3LtaPjW7w0f2zvLq4xKwr+H+e+2O8tnwOgN1mQGskpWipTcZeU3GymjHOF0hh2W9LOuPYqEq1rBU1G/kcKSw3DkcMipbN0SwOeuOipm0Vs0VBW2fMrw1p6wz9zIj1jyl04Va4RuEYA2WhcMEkbWHIN2vyQUdedUhlKYuWyaN72HnGoGhR0rC2PmP7qsvDphNK3x7kfbsMOjcB1ArRCrqJT3TpGZl2KJg826GHLop3ZAX8MysOLLp04KjaNeQHkB0otzrfdgAvjUxtFNjcxmjSQov4lorWrfKDDidOfmk8IIXXHdmehQkr7tTUEv4/JqJzNLM1IgqwhfbgIXhkEc5tjhwX6z/ufJYYEXrZPJxcn2dBECAWcpm9CRnrQ1BJ22/Dt1XUEwUPtnBd6XsYQJvtTUpL5pww5/evyNJ9RnlUAnbSCOA2BIxMc32BazuZuP2TbA+gJoAc6eMNhf3S1XyoLwJMEdnCWLF/XtE7MDzHWoLBpaWJ92pjPxLxOlauL54zNKBvi8RU6gCbB0udjJ5oNgniGcygwXNMpAJ3gXuGwucr86Ey1C1MXc9Xjgcuy/UEYHQ3sYxeiJntXhTf5V7Y54/m0l9y5Y4B0c/+7M9y8eJFvvmbv5l//+//PY8++ihf+ZVfyX/4D/+Btm1fjGt8aZY7WZmYZab4yO9h5QrHgqIjjJM4Zps/7rAt+LytZyikE1UDdEYy1zl/YvMZjH/ka2pBYzO0lezqIQd6QCE6xqpmo5gzPD3FKOcSXhwaduoBEsMnb5zggWzBmzae5bndddZEw7se+x+M8zoOJMZKBlmLsYKBahmolrW8ZtblXF+MMFayli9Yy+ZcmY15aGOXxybb/LHN5xDC8sB4n0p15LnmkRPbVMMGOVOcObmPmjshczsS5AegFoLJk8pR/uOW7T/ROm2KB1Zl3qEyjZKWPNNMzhxS5a2L4t3k0Ejkboa6kZPtZKjtzE0M0jrxdPCq0QI1k2T7Cl3C6BKMn5IMtjX5QUd1Hapti6r7eEPtCA4fErRjQTOB7ddIzn5ggaqduHV4UbkAkZlFlxY9MC4WjNfjWGVd/B/hPbUq48CSZ1acm73FZiZqMUIKieDKHr2TQooOSQQU1jMjwte5POFxNAZOAEop2AkaoWyl46aMQqgzsEZq5Tdhe7YkMcmkCVeDWU5YHKMTGKNQgmkrTP4h4KQPqBk+KSgSbQLu/PY0PUr6wqZmMGA5OnYykfe6Km9KTO9Ti/j8lkxw0AusUzF1KjyPwCFpz+hp5p9jYrYMbRqinYdjZOO8CNt1g64seuAYycjChfsLudZWGa5wwz72EHjw4s1bEXxGAByu3/bftXTC+AiEeoDk7tPEe82UjnkP7yRw4s1AzbLo+eZ1rQKku2GS7peXX7krL7MTJ07wrne9i3e961387u/+Lv/6X/9rvv7rv57xeMzb3/52vvEbv5EnnnjiXl/rS78kA9HNfr5lWR3sWJ6UjgVV6SK8cHqcG82YjXzO9caJVc4N9xnIloeKbSrhQFIuOrSVVKLFIKlky3PtBuvZjM9eu8BHb5xh/2HL5FmLyQQXPn6Gt5x6mtl+RWtBW8nJyZRzKuOh4XV+Suc8WO7wWzuP86rxFdayBR8/OMUwaxioht2mIhOGx8bbrOULau1SdgyyljdsXGK3HVCbjK1qRiGd6e6VJ67TGEX3sTUYWA4WJd3Y0jzYIfdd/rL8QDi9znpHmWua/QIsNAcFw405nXbgaG9/yMb6lCLvKFXHc3vrdK1C1C6RpREwfkbSbIIOq93MwlQhRprisnIYo3WswdozLboUqIWm2cgZXdHsP6KYPKuZnVSo1iWWBZid6RmgbuA8ymTrWAl5pURPNMLKpSStFBY1k5jKJTI1A7/SzmyctK0HbksdxFrP6hAFz+6Bm6UJD683sblxE1AajTjk5UqCLi71Oz8/GukmctkKLHIZFAlLyBa/xGaEcFDh2uQyMyRSLyQjXJt0YjneUVwS+8WGf14p+EjZMGGIouF0wrc5PYD0E7ktfJTteE3J+xxZIeLL6MIGWHc/qaiclffVsqybWmlPvGdWPBCw3g9crD5jgTdrWU9NWJeLLYDO8HDC9eP7g8Ulcw1mSuXaRs3cO6CHfQOG+7cCx1IlmiegB32+0YW0Lsv90nX2129Nf38h6KZjwULbBprCxthDISL10bQcL8ybLD1+1Uvs+Uq/6HsJcSqp1OKF1PEyK9Za/sN/+A/8yq/8ClevXsWYZTPMz/3cz91xnS9IVH3p0iXe97738b73vQ+lFF/1VV/FRz7yEV772tceyUj7f1yxK38hDpBBRxE+YWy46QIj7YxLg449ckzUEnl9SG9/d59ZW5BJN+uMsgZjJbXOaK1EJ5HklF8atygWJkdhUP5m/uDgAXYuT5g8Ldh+nWSxIdn6kEJheOyha7zjY2/nqdlJHp7s4OCU5P995gPsdUO+cOtJNvMpp4oDHhvf4FR5yFq2wFjB69Yvcao4QGKQwjBRC169dpVr9ZiRcnnVzg33MVZSqI5x7rzWTv7xK7zhc55yA+TZBWQGUxj2X+lEylYQc2ap9QZGGlk4nVCeacaDGoRlazBjrVywtxgwKhs3MOYu7pCtNNNHDM266VNS+Meirua0ExfFeXQRNj9maceKfKpR047hhSlWwvrTHeVOS7VrkB0MrjtNkfWRkU1uka2NkbSHV60zW+T9pCtagZxLZ66CGFNGNM5tXCiLLR2LJLwgWki3zRQmmjv6VByuX8RJPPRD7zEmGgkL1TMubSqSZinb+6p4mMy6hKkkQC2wRyvsRejP6f99mIAVxiUIg4NOSSTnXLkGK+iZo/R6A2Pk4zlFFsUHspStXNrmrimZx9MXL/wfLmHV/C1W/jfhWvp6A1MnvD4oVmuTnGmBWUkHC4vT6VgRhcnhfqMWqpO9uc6HaAiibZGwR1Y5L0abLIOFZ630oA+yGM/rhc399qMTr9HSfdqg0cI958wxQCGB7RIY9bpHEQfK8JuNLJFUztVeSQ+4jhk8j2Nsbh4scfX70WMDA5V+blZuxiCtphL5jBR7jz4vs/Kud72Lr//6r+fpp59mPB6zvr6+9LmbcscMUdu2vPe97+XHfuzHeN/73sdnf/Zn8+53v5u/9Jf+EpOJ02P8zM/8DH/jb/wN3v3ud9/VRb1cy9LAdkx5fobI9g4mCeO8asoI+66+5VbAlT88xYeLmlevXWWSLZh2BZN8wcXZBnvDIaeyfSSWqSlpbcZQ1kyUyw0zUXM+sTjDs4cb5JMG2eaohYuPE7QUT6xd58n9k3zqYJM3bV1E+Yt7dXGZ39h/FQ8V2xjrGKeBcibUoWrYKucMVcPC5E4grQtK2XKiOHQi7GzO0/OTZEKTSc3Ch3M+P9qlHTjt0c7QRbDe3x3CQCMyQ5dndBM3eXaNIitdFGmrBfODkmJrirUClRmG3ox3/XBMkXdIaaHSqG1FtwF2pJ2gN7Nu/O6cGFfVwgEXAcXUMnquZnGiQFeK7KBh+vAIkwmEttSbOSaD/NDSrInYboFouPT5BdnMhwiY+hgwhphCwY40zBRYpxdyWh6JHevepICI5jBbK+f+Ly0iI+atiiVlibymJZi+wuSJ8fWFgIg+Zo8Ik3PSd13/9CB81SSUMimir3cpBlDo2z0h4DZF0bc/pwc3S0DJ7y8sSylJ3PH0eh0pYmDLMOdG1ie+YzY6JIR6gy5s6X5WzGbpNYMHcsa1ZcRsoU5BrzEKbWyJAQAD6xXjMuHjGnmRktDJ/Qvrnrs/LoCioBuKIC4BjrITzsPMx6vyPhTYIqmzC1HG6T3ygjYr9BPBytI5sFS+UQiAJx3/bP8cvbg+eg1asFo6E1t/QF91WIgosxRv6IWW1QCMadykmx/z/PscV6SwkQy9X16c8pM/+ZP83M/9HF/1VV91z+q8Y0B07tw5jDH8hb/wF/jABz7AG9/4xiP7fMVXfAUbGxv34PJeRuVWL9XNAFKw7yeTjkhXUikQSqpPLXOrZ1UzSWckV+sJZ6s9Hh9e57l6na1yyvuuvYYzD+xxzawxUXMeyHbYNS4w4q4esqeHDGXDicGMZ+0m85PO7JOKhDfyGZk0fOXZP+B6O+ZZbfnDZosvG1zls4aX0EiGsubAVOTC2f532iFSGHKhmdmCJw9P+3QdkhvNmAeqHd6//TjjvGYrb9nKZ8xVzu9cfYjHHrwBwH5b8eBoj1J1LJqcTGlm+wPUWovp3Oq5GjZu4FKQV5pOuyjYmTIwcMlm99sSISz7hwOMn6S6sSEfNzEnE4AxCiuF8/CaK3RlKW8IDh8QNOOKrY/OMYXEZor8QHNwPidXksNzkvElg9CWrhK0E/9gvPmnXbNsftCy/RrJ7LRkeNVSb2XokUFogbE4N/jAYHhTjxq26EXmJhEPZGRusMp4BkFFj7NVs1KII4RxeclEI9wEFfKVSWI2+SjANX0nS6M+x34p6L2NQheOgQ2dJyD0QCdO7qEvpcxRYCGsiOAiZKSXXS/qj9cV3wl3QT2b1b8vjiGz/XtmwzwteuZKANoH2zzOjV7YXt4UGJjAvAXBdLz5Hnz1AIz+ftN76EQff4fA3vi2Ds8t/G9FNJnFSMqJNiglWWL7QRSMyxZkK9DBrBeE5Il2Kt6vF6ovRQ9PSzhXQIU+OCNJYMkeRDlzWggPEEXymUUVOkaxvlkRnmlR8vl1Q2n6jdQcdvOI1Ulbwm2Zze4WGH1GStoHXkgdL7Oyvr7O448/fk/rvGOT2fd8z/fw3HPP8c//+T8/FgwBbG5u8vTTT7/Qa3tplpt0nFu9s3f0DtnlQdb9v/L3JnUL62KPPP3p01SqJZcGjaSUHbvNkLODfT6xOMOJ7JADPaDFRapemByNpLWK3Ot3ttamLE4b9NCQzaEbuwFmux2xVtR8/vBJnp6e5BcPPpvfPnycNTlgXc3YUDOUBzuHuqQ2GU8dnuTx4XWut2Nqk3HpcI0PXT4HuGCOlejYKqd0RjFQDaOs5kyxz+ZgxkA2tEYy1QWf2DnJYVMi/aBXjmuyosO2ClUY1ocLBmWLlNaZxIBrFzbJlWatXDg9kpG0ncJoSZ471sWeaBgOGrJCo3LjPNNKHVfOurTI1qXoKHdhcMMwfaBEVwqrBIuTGc264OBBSbEPi03JwUMSk7mI1GFyDECiGbnXbvoAlLs+oaqfhKJX1YqNVdcZCBu95oSy6P3CTWja6498gs4ouA4lZRmC15rfJrx50GamD8AX4uWsitZWQHkESvE89C7sAbysgPmj3kr02d29zoWkrZb6d0yOamObycYDuAiCiExIvOaV90ZYerbGA8gI+mMOtP4+l//p942PKGG1YlyjNDJ4yhgdNxYE4JOCunSSDkyMxx54V3rXniLxskvbyQFQNRfoIqmrcBcdxNVCuzaIfWI1jclxF2xwwmhcO9jUmw9ivKWQ88y2qmdnOoFu+2PjA0qpcOGSmNwKCC2DmJvudgtxdf9ZrfdW5rLbMad9pouw9+bzcivf8R3fwXd+53fecb6yW5U7BkRf//VfT1VV9+wCXpblLjrPEvsj+gE3/R1wA4nsdUExAN8KKEp1Q3E8sYAEdSPn/3ftAT413XIi63rMQmfRdTUXHRtqyg09ZmZLDMJ7mC0YyoZXjK9x7fIGKMvm4zu0Y+jGhkv1Or954VEarTiwFf+fc7/Of7/yal41uExrO2qbMzMF2kpK2fLaoXPJf3x8HSksB13F5cU68zZjULZohI+e3XGqOORstcd6NmeiFmzmU6Sw7LZD57WmWtaqBTuHQ4wR1POcMnd502TZMRy6ZLVl1rE2XNBoxen1A849coPd2YBJUXPYFhzUFUXecfbEnltYGUFWaJf/rWzIMu2aVFoIARpzp/+xCg4fgt3HJbuvlMy3FEJbRAcbn+zixGqUYx3qLaKpyOTeZGFg+pB7Xt3YcOVzHfskNX3cnlHXP9fMYAuDbSSEZJkGzEEOWmB2CzjM4FDBXLlrHmkHcNLOJekZAr8tuK6nK/XezNRvS5mPWKRjliIoaqQTP+fe1OaZrSMDbWpWW2I3/LnSa1kFQ8G0Yx0QcmEAcLnXVphWV1f/e0x/YpP3SeCZMn++EHgynjT5QG+SW72+KJTuwWDfcMQZZ+l+UqYmPTyAoxVQbIMHWde70S8tlBKAJLTA5AY1l+iRweb0gT99+4aM97IVzsssAOVUM5Ted9L24ECaDSyP9aDNkNyMv4/QD6VF5Ibh5pxy1CAzsywWXwHJxwmnjwM3zvvM/+8PvplL/c3KzWMK3Rr4HKc5eikBpf/Ty5//83+enZ0dTp8+zRve8Ab++B//40ufuyn3c5ndTUlfXtGvTJ+v3IwpSrcf+T9dCaXmiXAdq2DJ/7Z7bcxsssenZic47AoKqblRj5hkC1qboZEUQnOtm8T6D3WFtpIr9YSN0y6z/c7OiMzn3Zp7Xc84r/lfB6/iq9d/j7Wi5lP1SZhcZEsd8qH5wzxWXqPVCiksv3vjIV65fh1jJWeKfVqj2LuwzujcIa1VHOqK0/k+Q9WwmU9jtOzfOzjPp7c3AVgravabkkWXc2IyZX9eUZUto7KhyRSZMtRtxvpwTqk6ap1xbrxPITULnXHpuU0WkwOXrwx4eH2XvaYiU4auMOS5S3grBEhp0dppjqg0nc+obluF0I4hasfQrFsGH+zoRhndUDA/lTG5YFhsSGzmIlaLtWUMEQBIfgDNupv8u82ObDdzwfMmTizNoXf9D5OfETHzvNXS5fwaddhp1pttQuyiEKsnMZfFCTsxN9nCeO8hgZgr7MBFco5eV8eVVfIgeFnLoHdxDJFNJ2h/vtBXhfGTZ2BZQuLWpO9iHNhxILK/5pTJCeeKuiCv6e0BX3+9zgTkqKmY4T4AjcCUBWYoxH+yy4sUJElgShsZnSWNX2ijcF/BzJb+nF5X+N/4bPJpkwmWB4PUjJZcL11v/grXE9otxKwSxon4TYb3PvT36sF79MIL1x8vzl+L5YgbfTCrLeuckrb3f60VlOsL6mnB+uaUps2oD0ryYRtT8aQPK/X+UrcVvO34cpyJaxUUrZrTbpbk9U7NZQHMfcbA0epi5W7reJmVd7zjHXzwgx/k7W9/O2fOnEHcg0BQ9wHR3ZS084SBwR7z280O90BnKVDe6j6JxuBICZOHcNnJw3nD4CwsMM348Cce4qHzN1grFzFg44PlTqymsYp1NXPmM6soZctMuwCK+3sDHjl7g/r9W8webVGHGSPV8JrTV5l1BZu5y1nx9O4WZ6p9OjS/fvBZPFpdd2Y4kfPk4iyztuA3LzzKEyev8/hYM8pq1h7cB+BGO+F07v7fzKaMZM2FZovWKN5/4VEGZcuNmQssWWvXVY0VdFqyNZ4hhCW3goV13mTaSHbbAY+vb1MoZ/rrrOTzPutpdpsKYwXDvOGgKZk3TtxdDRryTLts2lhUYZjOS5Q0dFYhcoNtvVvyADb/sGP3iZz5WcPeK/oAjvWm8yobbBsWVpItLAjB/Gz/PIVxE9DosjNZgKDOJO1WR37DgSIbXJ8Xffyj8Mytwel9tMsdReFsSyLXTquhPXgLQAHfh0I3StzCY2oGcBnOG7ncd5cQQeiU9GJr059jqR9boullqfsGdmZFj5T+LlbeJRFMMR4MLe2r+/0iAPOMz5JZLr0X4ye9wHSExcyq6S8hdiJA8l547jmKhGXq2zQ8J0x/XOqhJmIb9NcUNYThXtLf/GUvWS/TIJW4OFwhCrXxQTkxomd+wDFoViAbImMptG+S0h551KkpNEbBDm74SZiEpWcSn2nyAL3+p2sy1jZm7O8NY1yvdp7jdHA6cdfvWRYlbz9fGRB1QSHRa799BWgeA5DuFBjdqhznzv+il/9LAdF/+k//if/23/4bX/iFX3jP6nxBbvf/V5ZjBs6b/n5MWWV9jjvGBnv+6urz2Lr6OtJq1dz90HQKY10usnHW8Oxii31deTd7p/UJA4hJ7HhCwqJzXmYnH9hDnpvxULXDw8NtLh2uUZucDVmzvz/gbLmPtpbtZhTTgSxsTq0zXrFxnbrO+eiVMzx1eJLNbMbWcMaD63s8WLiM95eaDSrRoq3kgzsP8z8ufRYPb+0wyFvKrMNYEVeTnZacWTtgmDdoI5nWBbPDEmME24dDcmliVGyDSxHy6YMNPvapc2zPhuzXFdPGmfXqNmNUNuTSgalFm9NpSVk4bzQ9zR1wVdYxKlpw5fNyZudgeFGxOOm8xRYnXN6ywwcke49KZ6FqLYPrTntkMpzZrXBMg6otzQbIhpg6IgINgMxgS2cqCxOxyD2jEx68n/SVj8ZdjFrn6ixwXmdL/bQHzbEsJGIhXe6r8FsQGqc22jDAh3k9BT9NsOey5PW15FnFSndPgEPUGJlke3KdqwuGACqlI/QwGZG9ifobu3y+XgNED2wgCsoDe5ZGnI6m6nBPEQzgtUGJV9dS/b5ORdR0xfQp3gzeB15cBYxiqQ2O4FEr+lAEXkwdPB9t5nPcKRsjiptEN6TqBMB44GIKl8fMFGZp3yMkSAL2ln5L20R4EBF/F0vjltGC/d1hTPOBsOSDFqRF+bARLhij7aNX3waguNk+t/JMO8609Xw6o/vlpVnOnz/P2traPa3zPiC61+V2kbafSI4ccyvAdCvGSBw/mClpabRimLVUqmW3dd5k23oMOJZoVztPM41gpxtyYbpOd5jz0HiP+RnLbFFgjeS5ep1HK6cHyoWOcYtO5/vkQrHfVjyzOIlGcqgrHh9cYz13grfmRsVhW5BLzawt2CjmfVJZVaOE4cBULHTGmdEBjTe5ddrFT1KyX44qaTBW0GhF0ylsK9Fa0rWK63uOUXL50gaM84Zh3qDKjmldAGAQaONYpfDdGMc8xRWeb2+ZGeReBq3EFJZuAN3IsDhtqbcMJnfmM8ABpDViJO1uKCiv+4v2JiWA658tYygD0bgIyjbzk3Lwzmod2LCZhYEhKzuEMmAE+bi5eXb0cPGJDi32t/Sv/1+0vQdajNQcfpbLE+URLZHog0Sm0aqj+PmY8/W0ToKNTK+l6T2nxNK5QqLb5eCL9No5L+BdYmtS0OEBUXgG0ZMqKaGuCJYC4xTScIRtR7RC9NtD28vk1sNxKcoRliOi9BV1a/i6xECHKOPKYgoHhtTUBfAMnnkmSfchF4LM59kzIXmvBZObJQDY51xbRWJJ26xu82yWWG0H3PmFv+9Uoxa2LQGS1WtJm8Tv92LE9LkdUOT2u31g9EehIQr95IV+Xm7lu7/7u/m2b/s2nnnmmXtW532T2WeyxEll+e1Kx6AjmoTnrXN5xRnqMaUTvV7fG/HIqZrOSjKp2W2GbHdj3jR8BoBCaDbUjE/VJ1HCsNu6RKrZxGl59NBQFh3rwwVvnjzjKGkrmJmCBslg2DAzDmicKKfstkOeaze4XK/z+OAapewYDWv29woy6Vzv/18P/x6X63WuNmsRXGkrUVheu36ZqS7ZKqf8zpWHsFaQKcO0LtgYzikyaI1i0ea0naKeFtA6sbFQlrMnnXZot6modYYShnlboJSh04q2sxR5R9spilxHr7O2c8ra+aIgyzRSGoq1xgGltQ6McGlP/DM0Q42oJc2mJZsLuoFjBNaelKw/1dKsKaZnBfWWf74SZ7oAupElmwrUHKwS1CPHBgWtUHRVLwwUUPhwAjKz6M7S1Somy1Q+E3hMveFBRIgO7DpD6Csi7hMmVWsEshPLQRMDmxJYj5U+Gr+npgnjTAzxOoI2Jc0Fls7uASCkLttpCfdhQA/6NvFd3R0a2J40KHMSLmBVZL0EaCwxzlFqGlsCO+Eag+A4BYPhXBDBRAQIqblSsHx/8dqS7Smo820eYwGF04VJWXoPwlZich+qYWBd3wlaLP9sQ4DOGLzUAjoZY1YWWsfFfEp/j5ulXR6iIlNm+/sBp6NJbn6yPmd6WCJwiVulMhgjXDww5VzzpTLuI19YqozUdBYYI3PMwHo7bvr9vke3HefhdlwS2Re1rLCLd13Hy6y8/e1vZzab8YpXvILhcEie50u/b29v33Gd9wHRCy1HZgqIOgFYivcBKyvt1cOPY4dutyT1AchGoJVFN4pZW1DrjFPlIcOs4ff3H+T1g2fZULOlBK/aSmZdyawtWJ/MOVvt81mvu8DZwQHXFyNK0aKE5TVbVzid79NayRc8+LSvRzPtCl4zvsyWmqIGFo1gLVtwfn2XT7QZF3Y3yE9pxmpBXmkuNxtcnK3zmvFlcqH5dL1FLg1n1D432hHGyDhAaSOZNoXT+UjXuHWbIfZyhIFzj+5y42DEo2vbfOT62Sig1lYwyFsGVcP+7hDdSZ892w1mnT+HEBZtJFIZCi+yNkYihEDnBls74bGpJQw01MqBmFpRn+7I9hVGwOwsVNuKcldz+KATWEf9TA5B/6JqGF2x5E9ZLr3FrfCpTG8WKR1VIpWhaxQy8daJJehbwrVnBtN6RGJW+iT9dQRBrmx71qp3aU+ATAACx4Eiv286sQdB9lIPNsTIyCJhyXrNjF1yz7e500BJD4ZsxpFEo0c0SwlIEcaLhwmT/PJ2d3+JSzyBGXIv5pIQOrxMQawetmcWu+LaH7VGgW3xWA9hY4Tppclz9TUPxxh6XWC0U7LkuCEX0rE9oSjb66aCJgrIptJphQJI9SbRJQG1SNopNIZDu0cWZqm2Jj63LHSK0Hn8DoLei8z/OTyoqIYNi1lBs8iQmSHPdXzHrQWVGTIP8tNirFjyFrud+EKrprObAaNVUHSz+o8rqyDpViEAXrSSvgMvpI6XWfne7/3ee17nfUD0QsuqFgDi6nqV7Vl6x8Lgknx/3nfwGOCVfl+i1gVkV3LaEx3Xdsec3drnWj3mTLXPDT1makpOqCm50Gx3Y15ZXeFKu87p8oBLswlvOnmBq/WEx8Y3+O2rD3N6dOgYEms4VR5yNtvlt+ePsZHP0FZyaDv+v2d+nV89eA0A62rGhWYLgPOjHXbrAa/auArARM652q5xvrzhXP1VTS46rtdjRlnNZjXlN68/Rt1kdI2iKlqM8Toi6eL2rFdzru+M/UTnbvrBzV2ePdyg7RRN6xggJQ17s4Eb9DpJVysOjCAvOxeYETcgGitopjn5oKPTikxpP1D6mcK7DUe3ZAO2sM5lfi7RpSWYkHZeLTnzv40z/3RAEfqD8+ISHhRlM8v2qyXCeK2REi4FiXKgQGU9cItBI4VfeRearNARDOlWOf2FPzau2pMAhKmWKM61qdt35oCCDMfLwMr0HToCjbSvhS4X6pwnE3aai0/274Vo/eQczH3h8oR1GhyfusRkdqlPmxxEZ5cAwpGJOyxIRHKvyf1a0V/LzViQyBaFST0AhjQgI8m2lQsQiYt7TH8R2LAEWcYkqj49x1Jd6TtuehDrtGiuDhvAUHp9EtTU9UnZCFQDOnMAph17m6QHurEd0sZL2nRpwg8eeRaXmyyI56OA/Jh2tPQmXaCpc2RmqCoXxd76S0EZzygFV3obgzOullWwkjI7R4DnbZZVT7L0vHeSt+xuz3+/3Hn5y3/5L9/zOu9riO62JJ3+Zu/LzciewHCGgTmILpdEmjc517Hbjogh3McKEAuni9mfV1zYX+fibIP1Ys6nm5Nc1RMq0fJIcZ2JnHMu32Etm3N5Z41np5v87sUHmeuCk8Mprxxfp7UKg+QNw2fJhebD04d4w/BZHsh3+Dd7b+TVxS6tVWyoKbnoUD469UC1DPOGUnZIYWhtxul8n5GsOZ3vs6FcevjnZmusZQu3j3ET/Gjs4gvND0raTtFpSaMV8y53sVm8ycdYQaU6pk1B2yrHLnldUKcl01npRKfKkuU+1lCyMuxahSo17W7J7KDEGOm8zzyFLzKDyo07p3S5w0RmsQPtJiVv6monNra9FZCFmGFhIvaMRzeExQlJO3bmTZMlE61NnqH3jArmr2BSULmO19+1KiY4jdqiYJaJbIfvkEUvwglu2SHP2qqZzEqfg60yzoNptbt5pmA1phZ49ikB+UGXsywU7tkfWxqXgBaQtfTmr2XA1rvGr4AcH9BRJO2+xAD5tBpCJ27roX1XgyeGeleEFVa54JURtEkccMuSnGz+eaWsmmvofrJebqRjwGAKVkOgyUYi5xKM6ytI6yKZh+uOyVfduUVg/nwyWeuBcTdKwFDy3I6YyjzT1We6Tz/+d+Uz1C+lZAk34wGG7dtV5ob1jVl8SHWdxRhCwTympEFKg1KGPNEM3qzcbt6y1fJ8ousj+4s7y3Z/s6CPL1YRq4/oLj/3y31AdM9KCnJuWW7VG2/jBTqyAEsGUrch+YBLwOlXW1vDGQdNSSE7LtfrgEvuWsmWSraczvbJpeb0xoF7+YVLmfGqyTXOlnssTM52N45JYgeq4UK7xYcXD/Ha6jlaC68eXOLADLjSrUdzXCk7bsxGzHVBaxUHpqK1ik8szvDU4jS7esj1bo3HJtu8bniRmS7drYTVGk7crLVkWLT8ybPPsFnOOX9um2Am6LTk6nTMbFHEZlg0OU2b0TSOCBXSkg1bmlmOlE5TJISl0/1sb6XF1A54aSNRypAV2nlxCZ9QVbq/Vvu0Cla4lXLrov8i4PCBjMF1J3ztTVGBFXEms3rDP7rSuCzrhYl6FFEYxwqBz45g+4lIOQ0G+MHae+boxidaNT6zeNpXJMvZ6PGgJQihTcLWeKAJOL1KmBiXOmJyT/57mGBN1k+2wvTniLSSsku5zYJ+CiuQi35ISpOQBlYumvRWAE8EQ8rFJIqMa7iu4LkJveA5gLUsgISknURSx9I9r5jb0hE0gNDwf2gz5eoP6SvgmAkoXQxZDwRD+ATpAWtox070ICgyQ0StWAgkKucygnCbB8+4pD3p2+TI8126NpLQBCkwssv7hH8Txkgq6yLAK0MuNZOxy5uY506np/wn86bqPNMUnp29HQASHCjAtW/4PB8gkdibAqNbBVi8U3D0GSn2Hn1eRuUHf/AHeetb38rXfd3X8cu//MtLv12/fv2uU3rcB0QvpMSBYrk3HeuRcbOXUySfe3lpFvTYaVLag8KxRHXFicGMnWZI60fyiVigraC1GY3NeLi4wes3L7FXV2DhxmJIJjUX6w2enJ9hYTNy0XGtW2M9m7PTjtjrhjxZn0Ej+JODp3kg26G1ik9OT7GvBy7y9GDGc7M1DruK39l/hNYqXlld4ZOHJ9lSU9aVc+v/xOIM//3SZ3F9f4zRgrZTPLS2x+kTB3zhw0/x0HiPj+2dBuDi9Q2vZYC6y2g9jZFlmkHZkmearlNkeWB6LNa42TCAoRBATSmDrp0wO/eCcmOcbiHz3mhSWlSpsUYilEVVnVtpV9qJW4cO2OgCmgnUmz5YoXZeZAH8Cg2Dq/45Gbz7uwuQyFz1TJERmFZhakXQZIRrDdcTrjMmyhQ20W6IhHm0biINQuTj+lvYloiUgweaY0KWGZ5UrBwATmSE/ARqctMzBWFSTSItp3oW0axclBc8Cwuy7k2N0dTm8VVgiGxmexG3AALzFVzeZQ/gIgBM4yJ5sJYyrPGeknfc5SizkfUSyh4dB8L/x42w/vqXvLPAR4ReWVkFcJqa6nzS38gApefQ7pkFl/zQPia30bS8dE5w5r2wLQCJ1Xs50l/8tuTcvdu8/3h3eqUM66O5Y4OEZTKZUxZdzw5J5+hQKE2Z6cgW3W0E6BQI3Q5TczNwdKcZ7++Xz0z5vu/7Pv7O3/k7vPrVr6YsS77qq76K7/qu74q/a6351Kc+dVd13wdEd1uOWTnGr8exOMcdfy9B0DFjcb6rHIWeu0FnmDdkwvD03gkGqmVmSma2YCRrLrab8fhpV/LgeI9B1aCEYTObMVQtZ8s9brQTtvWYmSl4qNjmXLGHsYIz2R4HJmMoDGtywansgOdma2gryIVmq5zz2Hib/W7AKKvZUDMHwIbbLGzOgak4l+9yqEveeu5jnF4/QAhoFo4m+PwzT3OjHvHkzknWiprHx9d5y6NPYyuDldC0GcaI6JUGbqWolFuBIkA3sjd/SadZ0FqiO+c9JjPtJmHhRNwu/pGrU3ogIoRFenOV8ceJRiI6gTqUqJlciuuSHRJza8naTW6qhq5ysYuE9ttx2p3R0yGPBNjW1a8GXXy+0k86UvaDdZhUhOrZqyVTBniAwJL+JZhSeg8rHFPlQULUCd3CemEF/QQdSgAe6YQffj8SEdlXkqQUWTIjgfea8oAnsE8iYXqg3+7PH8Cbu/6wEw7ApEzJcfcTrkscB3To9UkJUxLi8DgwmuyfRM4OE3PYNyY8DcxVeGaB8Y1hBHy7hesJYChh8sJ9B4F6yNEmGxcHK96zEa49PUBNrymCh2Mm9yVwsArk/DHBrBtZzPAeAvvzir3ZcsqnaCYT1jtLWHKl+233AGyEY29lxlr1RlsttwvG/shAUbLmuWtz2csIz/3Lf/kv+ZEf+RF+4Ad+gJ/4iZ/gV37lV/je7/1e/sE/+AcvuO77ouo7LWEQDANM6Ejp/74si5xXBpN7eDmhXrFiJjGZhdItn2eLgo1qzm5T8Zqty1yYbfLE4AoLW9BYxdlsl0J0/PNPfjFnRwd84vpJxoOaQmnO5Hs8VGzzu4ePcKI4ZK8bsq8HbGZTWqtoreJ6t8bPzh/gs4fP8uriMutqxhed+iTPLTZoc0VnJaeKAw51yZtGz7KnhzxSXOOwrLjeTrjWuBQiF+YbXDxY55G1HRaTnEnp8pL9j2dfFdmczkh+6VOfhRCw9eAe289ucHr9gJ3pkNGgJpeGRruUHlq4uEVdpyjHzn0dC/ODiqxqvT5HgtQORLQu+WTQGmkjkcLSLDJU7tyBrcGBKIQTK3tPJiu9ySazIIXLaVZCNgM9BF31YuB2zU1aOuSUqiVIy/wcVM8ULM5qxKAPx1xUzvNNa0mudDQLGOMYsXqeu0lLgZAuwWt36GMZBeGssA4U+TbowY7odTDCOPBRmj56tRFO5Bz6bgJuRCti7KS4PSZIDYCBeGxw2baewQn7i070uiHLUqDH6PIeLlFabFSvil7AHc5jQHA0pURws+/fXdGbiuJ1uoZNdVIimLvi9bj7EixvjyA0HR+WFk4egAQBsGejbIj6HTz9VsXVab0hVUmY3D1DGpgtm0G+o8inPrGwxOUzC/UFYHWzyXupzfr/+1QUrt1FAhSdF91yfYG9FF4fJOXK78n+SpgYjHEpNlDiFSaFdfE7b0K1h/fhuHOsutOnwuc78UTjFudfPeedCLFfcLkXgOZlBIiefvpp3vKWt8Tvn//5n88v//Iv86Vf+qW0bcu3fMu33HXd9xmiuylhoEs70U06VD+w3uULcjsd9SY2OltYUJZq3MTNO/MhC53z0HCH/3btdXx4/hBX2nU0ksZmvP7EZXbrAScnUxZNzmvXL7OwOZ9uTrDmFcI73ZBr9ZidbgTAejbnd/YfZr8b8MPPfhH7pmRhcg51xVq+4FPzE5ypXL6yy4t1DkzFR6fnGMmamSk41CWfODzJdjvkxmLovKoQHC4KTlYzdusBhwcV2nuaXTxYJ1OGtlM8trHNZ736ApO8Zlz9/9n701jZluwsFP2imU02q9lr7332Pl3VqRZXY5ctm+ZZdWW/a2OQjBDiB9LFT8IWEkJuhG1shEFI/oNLQtiAjUACoQJkGesJ8LOl9+SLwaYMFwrsgoKyXS5XlatOv89uV5Mrc3YR8X6MGDHHnJm51tpNnXPqskJK5VqZs8+YEd/8xje+UWOStSlDzBoPG9Pvy6KlaE1ryHvHOnSnOUIAspzARnAK9nYGf5hHHQ5lvfhALJFryfzRNTqJRrm4pZ9S9lu36xFMQH0FaTJsd5AmSN0C+RFgVkgiWQJKgN9x8PstmivChDIWnvWe8rsmZYMQiMEiESpNNibzfWo+N2aLctf3k4ABA8RNBQLUqtGUZRZrkiVxLq8uQVEAFZ7N/aCfapmSPh5hQg9U0iS9oczHgN1Rw+XouBhsRQBq+hAWOUSPn06wVQCewJoAbfzgo2RIaMwyiNBkCr0l5o4HiNBPWEElLRGDpzBmeYDhw5PUW0XX8vTwY0JvGeAU7JGhlPwioN6n8KHP4zKm3/bAXXrc+NB5/2KZHgwoMLOlIxPErJAs2CrDZ0CfPcagoe0MNIYlOrQKsMrHz+N6onONtUWSAZJtzNaMmaZHFTxfNIR3GUb7yrVr167h5ZdfHnz2oQ99CL/6q7+Kj3/84/jRH/3RR972JSB62DZmheTn/BQxmmzo+zf35uBq2qGmkbDMW9TO4spkid+6/TReW+3juCnwzz/3h/AfHrwfX6hv4Av1Tby23MVrb+zDeY1vevplPJUfI1MOU01ZYi5oZMqh0B12zQqZcrjd7OAdk/vYtSt8y/UvAADe6PZwr5midhb/9Y134GZxjFv1Hl5f7uB2s4t7zQyl6rB0eRo4dmyF1+/vofUGz5RH+APX76DxBrfu7cFHF2mtQhIZG+3x6Zeew83JCf7gwYtUSNJ0mNgWuXGw2qOwDrOiofR0R1SJtlGwbAIVcQXpcHxr0O07wIZUXymAUt5JQA3S80SwBMSBNU7ErvRUZd4AUIFCFbFWFZXmoPBYNyF2qJvFoqgxfR+GRNU+CmZDo+Eak849BBKPAyD2S2TSea/onNJkSmDIlI6AUhHZJg2EUto9x/fQv3PqvQoYiJ9lHw55P2knVkwuEtB7G+lAxWkFq8CmgQOdTuiBkaniTSTBhxGARoE8i7RYHxiG0WIGZ2KXxOXhkBEfdAJTfE3S3B969mEtzoDElARHA4MaiI/jxnhfkZ3ql0GvP+pUnynGzYPKo/DvE8uBpN+Az9MECtVmFCIjpjKK26ONA1QgHZg4zwHrNWCwh2NVmvxDfw3YWylpqOK1MNb34VzepMIIjND3k7xNwISd6CWzMi6QOgYY21yszwIiY1C0DRidJboen8dbXuk+PKHXV0n76Ec/in/1r/7V2ucf/OAH8e/+3b/DL//yLz/yti9DZo/SxuyQ/HxT3Ey+Cxp6MPht65Cb9rVp2Q27nbxwjMWdGdrW4Mp8iXle46X7V2CNxxcOr+KZ+TGaZYb//uqzePH4Cq5OTvHi3QM8e/MB3rnzAE+XRwBokMqUQ4UMO6ZCqQ0K3cFD4V6zg2eLQ7igsWMqTHUND42lK5Apj4XL8c69B3BBY9dSNXoOjzko1J7Sbw+KJbQK+OgLX8TvPriBV1b72M0qdEEjL1o0IBfSwQAZRZuf+J3349fte3FwdQEfFOZZg9YZdFqjcwZ1Z9E5Q0+ySsEFAxX6UUCpQKCjo0yx4p5B+96WwlPapYnDJ9M7Sm9X0V1XAYBT0K2GnzpQZXUN3QLVHhLTEmzA/JWYXdYB0DGsqQPUfhsLXxJoYZGxKmOdJzHBAFFIrQLats+QS+GYODibgmyJCSiBDCUDUso2aweYjVnroqNsrrVQMYdFnCKwItykwWAq0DGpjly4+1BSiGJt329bUSgszc0Og3pivL1BqnzUx3iRaSYw4fDhhdkRPgYMv2PWhH/vgS5oPHF6BURtGoJKywKR9UnXMUTXcGGHYIZurQPjSQHmVKvIzoF/1+j7E7L+mikdgJWh6xT68KHugG4aeiApHtjSafNn/MNLxou3H6+L/N0HLFAMAwbVMz2sHWKQo1WA8wrzskHVWoSgMCuawTZkeGtj6jvCIHSmMQRPHBa7CCtzniP1eL/AZpfrTe2iobUn2QQ+f6xtfLW0v/pX/yo+9alPbfzuQx/6EH7t134N//Jf/stH2vYlQ/Sk2hhliyfMPlUm9EDoCdwv53Xi1e/vwkxbGOuxqAqsugw7kxpXZkvkxmGe1bj51BGmkwandY7cOPw/3vFlfPjK63hhcg+Zcmi9RRsstPKYmhqFbnEjO8KOqbB0OXZthRNXYs8u8d6CHKdvux28t3wDu1mFymXJDdpBU6mMoPGR3VcAAK+srgAA7tdUT63QVHPMB4WXFvs4jlXqi5IGUE4xVwopZAQTkE2oHIfVHqWhENiqzeADZao5p2NxyRiy0AEmVolnXZFqdapx5TtKufdBJSFz4CwgnvD4/1ZBNxq6AdTCUnaYBeorgJsE8h6KAOL0GWByN6DdBVQbf6jSITgFnbmUURSsB2aO9hvZIaVD9FcixqjrDGXOjQZf/t93Gr5TybtIxad5lZGPEodTNvWjxHLGFPbETGzKVFL9MkGHxNwEZjQcegDE25eO0FpksLEvF2vL43GMl2cAw6GxlDUmji2dm4p1vMREPzhu/jcyOWvMgbxnGSAkIMEURxBjwBDgcP9KpVQk8GQRuQCSA3bKhiiVCr3JpjzeygCBz4+OQ9cqlTVJGYOd6s8f4vz4Iq2dX7+fAdDlU9AhldgwxsNaD8u+XYp9hQLyjOKnRgfUsTyOjgCfM8mkEaNRo7AvepBxXibYw4SoHjZ8dhHGaNtxXbYn277u674O3/M934OXXnoJYYML5gc/+EF8z/d8zyNt+xIQPUpLT1LARiCUJghAGrixHwkzAE8CFG1tip4ScadE9/IMJ6/uwCqPMmvxzvkDHC1L/Ncvv4BVm2G3rPDeq3ex7IiF2c9WcCAQ0wYDB3r3gi7IlMP9dob3l6/jXcUdLH0OozzudjuY6RqlalCoFpXLcNIWWLgCX1xcx7Vyif1shamp8euLr0FpWqxchgeraX/oKuDl433MswavnuwBoAFVNh7QjPHIJy26xlAdMu2hlccsIwH1aU11zDSDp0ADoM0dOUHzhBrDPiELcNMAdFQwFiAhs7Yxa0aD/GEa3WtBYnjClQQ09EqTqHkWtUETn9gNNwlYPqVgKlApj52WGAZmWEyAqjVVtlcR7AQqPhs8vTvXH1tKww9KeLDQetoE6GyYcRZiaZAEJNJEvKEzKhAwi2nmABCyeC6RrYAXBow69ALo9LdK7yoQGzIIGTU63QshpvYzo+Gj4JxT5ZOmie+pyBZ5Bm1jk0Xwd6EPWWG0jJy0GAzo0fIDdiXSJAmU8bkMw2Wcdp4OfKwT4sseMAxLAtGWgPpSGl/kMfBvFX8bs9LQlU4skWl6QImAHsDL85bnmIwkxbgmmOyUQs/vOgwE5JtCR9b4ZA/BfZSB+k5ZJ/+hzDhk2sEq8im6qPZmm0/Rk0jVP6s9LDC6bF+59q53vQt37txZ+/z+/ft417ve9UjbvAREj9rUhvc02KAfMMdpu29WY41D9GjRrcKLv/M0Xr27j5cX+7i2c4qnDo5xfbaA8xpfOjzAblbjN19/Hp89von7zQwOGkZ5GAS0waDyGdpgcOoLZKrD+6dv4PX2StIY3el28YHyVRh4OGgUukPnNZ6enuDfv/peHLcFrKZlX64O8IdmX8T7Zrexcjly26HxFj5oPDVfYJo3eFBPAACTosVyWaQ0edlsTDXPii75BflAmWFGeZQ56YmMDunhPcs7uI7S7ROb0upUd85nAfowRpPjU3z/IBLI7VlH/U9AnxllAuwDi7DXIux08BMPt+sIVET9hs8BV8bfpAEgPISSUHu/jWEXheCI5fGdRltbuKgX4pTtxHp5wK0sgaZOw1UiGh5IHxWcTvqn5BCdTAp7zx8571I4LO6r8FB1BDAjtqLvd+LFcyxndqWwV2QwEpgAPTBocTxSyK1DzzaNSoHwPZayx0xI6/B9kNLk+fhGDySS6CHEHF+StWGWJlJOSjJWEAxiwPAaQKw7vlDMRI2v45iNkcxSTuJ9ZQKxQxo9GwTqg+1uiAVx0af9s2eSwprvEBBG12eDn1BKpScNHuuE9AbwkcX7MIQ+BBYC3au7EzJmZOG0FE/LZkXqPYCt4EZ+/7iMzMM4TPOxvy3AUXhCr6+yFkKA2vBjLRYLlGW5YY3z26WG6FEbc/HAcEB7FNZnW2d8Ep009HMTALj7Bb58eBMf+sBL8JnCveUMe+UK87zGostxc/cYt5dzHBSnaROvN3uYmxpGefigsQwGO5r0Qm2givI7usKOXsEojyZQmO1Os4OnJ8fwUJgXDaa2Ra7pifCwmqJULaa6waIrcLVcYuUyzEwDqz0mtsWd0zmAOOip0M9PgWL6XMcLQHziDCk81wUNowMMAqrOosxadE5DaY+msSlUZmwnrlVkT0yAXWiEEa3OobYQ3ZdVo1MYlMGDciCwYEhIrGxIvi+q0zBLYodsBdRSNIw4UcX/zaQjAbdGzzwEJDErH4c2pG5QzMzEbqmzKKKOgE9njkARgyEAXA9rAIBYLI54vZMGDlBt1MEwEOFlOyVSw8OQDRG3STqejq5RsCF5NJHoPDJBHCYKCpp1TCH+APFz2JCuPWICgRRJD975OGQbM0PA+n2s+++G2pARWEr7oO/UeL/xGqyN3QxEW73+uWwMfhWoLEcs81K+bkmcv8N1YeJvEf2IGHyGzI3ObQjmpEYoOaJHlpEtB6jPRW2Q9X34b9R0DPHqeD8a5WHjLFNm7WDZ80DO4BK8iZocoL/fL9JY3/RWtf/VNEQ//MM/DABQSuFv/I2/gem0jy445/Bf/st/wdd//dc/0rYvAdGjNnmDbuLZtokzxCR1YWS+ZTDYuAuJfoBUzJIX5hpTn331Jp6+doSr01PcPp3j5uwEyy7D1NKg9crpPvazVdpO7amr7NkVprrB0heY6ho7ZpVKdLzYXMcfKF9L3kS7doWpafBfH7yA0raYWspUK3QLHZmnE1fimfIIxx1phWpvkWuH47pH+EZ57MwrOKfTIMomjCGChKAUyox0RssuQ64dctuhajNoFdB6gyLv0LQmaTp8axAK11+uTtH1ygJ0R9IXLgDr2VtHaj54Ao7sxOzLBsvnAlAboFOw1yq4xsBkDv4wR35ooBuQRwzfw7UGZpQyH1yfVRO8ovIgcVLizB6ei70nbZOP18RYhzAF3NKSkWP8zXlQ5wlFddGXCHQOIaMMKd31hVsHfccT0Ats6sjAR7IhzM44CYyQGJvkTO3jPkQIJ1hP2i3HnTlmn9kA+AAEjaB98unhbL3A/k+I7zLVX+4fggHi4xUAaHBr8fNNnNRlJtkg02oMhvg6q0AsnNwHxxMT6yR2ykBHI7GT8CCjy3QsQACBRWYhVa1R3DHkMVTGY+wAZAQmVYjZjPNAXlGdJnDOx6XEzsdN7Jf8hjz0CCjJxv9xJplm0MQhWYUUGpPNQxGeFYDzK5GqLusVPvy69P4wxVolYxQuNLhftodt//2//3cAxBB95jOfQZ7n6bs8z/GRj3wEP/IjP/JI274ERI/aVBDeHuLzQaaNYADGQOhJHwtX0g5DoDSYDCC+u1Pg9bCHVxfXsHNzgdunczw1W2C/WKFyGV4+3sdJV6LTLSamofAZPBwUlj7H0hV4td7HzeII1+0JAOCzp0/jmewBPlc9jQO7wJXsFEfdFFoFvGfnHrTyKHSHqW7wzsl9OCgY5TExBGSOuxKVy1A5iwenExgdUGYtWm9Q2g4VbMyu6oGK86SnMcbjtM6xW1bYzSscNhP4oFKmiwvkYZRKdiiFbNoieIWuMZQ1xmCoUahvdMiYlPCIYKS/kCpOwoqLqcbrak8V7G2DZj8QiHIKPhDT080CZvcUqmuxq5QeyGJIwSmq1xar1gNAcAomVrQPXtNTetRi+FbHDKSY5ROBmpn2jFcQyUyc+UQ6k57R4v4ToiZHYSS0jqApCaPjZ6kPR2PHpI/jxuyNi2wOgzmNxAoloJWqwSNmq/E+yLNIRSCkI5hL64YI2vINN1Qg6wByDWfgih688U8p2Dc6n8jmRQZuAIYUkjEni9yD18TGAfCdQYimngwUg9RMxX2HTiWNWA+WVEq7T+G+0E/GxN4BqtGwx4aYoXmAPVHooohdtWThoDoVi8DGdaU/1dpTVOzk3BVUSAA8uVjH4+nDX1E35lUCAJv8gBjk8D0I9JlhlC2m+nJvIu1+GyjaxMKcly32ZjNLb1n7Xwh7/dqv/RoA4Hu+53vw9/7e38Pu7u4T2/YlIHrIlu4vtWFsOatTPgEw9DAPT6Gf62j8j7mq8gEV9wooBZy8MUd7dYXndo8wMw18UHh+9xCffXAD79+noltaeVzNKIx2u9nFSVfCRUZnkZV4V3kH75/dwo5ZodQUCnuj3sNLqwO8MKOMtdpbzE2NA7PA89m9qEVymJsaWgW8tLyCxhtoFTApiKnyUCnFPDcODQxy47CIFe3b2sKt6JVzDbKgYZVHYTosPT09aAR0gfQNVZfB2L54qjYBzketSeHhcsAKYOGj9oZ1MylcEEM+rMGpr1DGj26A2asKhwcWxX6N5s4EutIo7iu0c8AVBEy8DeQ/U4iBO0Q9k+lLdHCtsm6VwU6i3igyMcQQ+XWzPyBN6ON37iBBBWIWQH/r6HnDoAiIoMkhCqnRi6kjYElZZwFigkesMSeYIBOS99CgqQA0miZyxi4CWAUyEe+BinjgUCECvCj6Vu1w3wK/xhX4OJFE4ErH68VAKa6U2Div+kwtFRLIVLr3HoKi3wzsOeUBKNVP3wrkHh4HDGX5gg2vQygofDbQ+PB3DlC1gamIPXNZPM+goGsFs1JwBYCckgN80QNfOnZxvdOBDY9hzdKC2ZXQgyJexsSHivH6Mm3eqL40R9ouM7wi449C8WrgO3QeUxSC+oq7QW9yv97W3lItkXxAeZxtfJW1j3/84098m5eA6DGafIoefnHWShuWf+gdn7FPHme48rUCQgZK8eandbFOiE64AUDlLI7aCV462ce94xmyzOHL5gAH5QpX81Mcaw/tPDpvMDM1Vi7HyuX4rdUe5rbCgTnFqS+glcfr7T7+4513Y7+o8J7pnZROO9UNSt1i3yxTaG0vht3uVVPUrcUHr74BqzzurmZYtRm5MauAZWdwZUJhvMMFCa59FA+rE4vWepw2Baz2JNpUAYXp4I3CqskS6LBZL/pUCuiaWFA185S5U5Opjet0D34E66cUgFalawdEgi5qgNpdoHM9QEHpYB4YTN4Aqms0ibvIDoUY9mKhqgOSf5Dm2mTxOLNpS0JVTT4qPGF5p6P3S5xsoq5KmcgeuTiBt6pnY3Sg8JXSQEP+S+hPcdDHGFQnxocbg5EAwIjPA6DaGKaxiKEy9JocLUAN14Orpamk6MehZz5kv06FSn0f5gyces5AwI7YoAgGGMAyOQIlMsI4E1EHBPS/fbqWiECTQRMQTTzV8L6PYKov/BqBZgqpxeVqTaftFVStgDIaWEqHbj6MLKBj9il+3+x7FPc0lKMMRm66VilLL+GGlGUnQFG8Pil0ldiheE08BmU3nNd0+AL4AARwLPtlxZbS6jdobCQw8sEMmByjh07V8rsnCYIu4kf0MOGyy/bV3y4B0eO0TTfLticbeeNtA0U8eF+kxW2Mw2NpnEuDIIVmTKfhr7YInYJZmAEDYOcNnt47xlPlArcr0hNlxuGNox28cu8KvrR6Ci88ewc3pgtMbY2r+RJWOezaCq9U+3h2eoijboo9s8LSF3gmO8SLzVV8eP8WZrZGqVvMTYWlz7FjVvBBwyDAIWBuKhS6xdTUCEHhYLpEph3uVxRq2y0rHK1IT3Rt1gu9uZSGyh3QkQbFLynUtlNUfS0lFdB2lgTXTqPrTEoHDjrAdSZOfv2112UH32qE1sSn/XiteAINgMo9lZJggAEqwxE0ZfS1OwE6dxQ2WxnMXiVDRm+RwFACBSqQgDpz0HGiN9HThcITBI4oVGagMwcNj64hHyJKz0cqNhtaA5U7Ol6P/knf+p6BCQAcWQfoyKwM+p8AQ71XTuj1Orw8/8/9WYIZLkvB32n0/8t98eQfGbMkHI6/kS9Ev2cht8NQe+MUdKzqHl37+n2O7ysR3uFsvQTW4o0hGbtUq27bQwiDMKf6G1JFVkVkbDFQBQT7wudUOmBl+ptZWnsA0CuDoAM0M1Hx+voyEOMY9USKr6VTgBZPRQkEjU5iAIZCAkPpXhBgaBs2YJ0QV6rfxPJIBmVT6IuLKRvtAa8B7QcuCbJt893qj+fiKOZhTBofpqkRPv5KNpanPe42Lttl2v2jN54oEN/5xaGVIN6lEJdTYfn/izR+UlLAmfduZCkCD/Cx6ZWm6tdHFnppkm9LUDTh7M4rvPZgD13Q+NLdq/j9BwdoncELV+9jOqlhig53FnMqu7HawWePbsDAwyiPq/kSc1PDB4XPnj6D6/YYN+0hPly+gm+Yv4j3lm+g0C1musbddgeFanGr2wMA5Mrhuj3BwpUksK4K3JyQHmm/WCHTDlWbITcOpw15DC1bKvWhmFmJT+Bup4OadsitQ+0sGk8mjQCQGRcHWwpB2WhSmLJ8OFyS+aT3CEH1AuEAEiPHJ3lGnir3UDZ6E5kAn8XUegt0e1QstqsslFPIlqTTaXfEj154qIzcjs2kix4vXhhIUraO0sRWGe2TnkmbWLtMhZTZE7yCW1oED/iKBG6cTafkRJcASuxXORWD5bIOcnDk/kZhq76fESsU0NsGQ7AwcVsMfjhFn/s8Z43x9zzzCfZJtyqWPYkMkQ5J/4SAHjDFch4pWhd9ltL++O8RwEi//aj+FhAGvk30QyDVtpMAIv0GQH8urMERF4/7FAOk9LtwWQ4FhE7H1Pj+eJWJ/UuMFT7z0B2dvy8DdEW6Kp+HVCrFzRz8lMFQ/E0MI3msp9Qn/yQ6t3FKvWwDXKnoXtKpDxIwClGvh9Gy0mAxvQQw1EpUu0f/QPOwTQKkt8Ic8VHrpD1yC0/o9RDtYx/7GP7gH/yD2NnZwVNPPYU/9af+FD73uc8NllksFvj+7/9+PPfcc5hMJvjABz6Af/gP/+Fgmbqu8QM/8AO4du0aZrMZ/uSf/JN45ZVXHvICPLl2CYget0mws6ljjZ+Gz92e+HvLOltBEQ/8gh0C+qfoAX0u2v0vXUFzZ4L//PvvQv3aDMdHU6zaDPeXU+TGoSxbeK9wXJUEmu4f4KXVAZYujwxPh2vZAgBw6GaYqQbP2kOUusWOrvB8dg+HboouGLTBYqZrVMFCw2Oqa+yZJTLlkFmH29Uc7yjv485yjnunMypkGjSqmkwjG2cGx85lAnThyIRQhfS0yQNupt1A2JlSipUYdPlpXk4S/FQdFLFBre49YHhbEcRo6xEKjzB3aK846EkHV1uagDxQ75NhnqkVablMPzlp69cG7uAVMuvAVcDZrbqYtMjzjsSqYj2tyYSRAISmUFTsEzruyzeRDePvhNA5hWX0sI8kx2kpSuO+JfQ1iYlhsCiBB9DrjtKFC4PvFT9ICIdqMMBh/VFHzFGwYQByVARjgYu6KgxBmDQ/ThP/6PhEiGbjccZlJVgFIAD0lnXCaILksYDtD/gyxBAsr8/gNQSVSq3obqjBCiqye/y/CfAzN9Bujfc7MIxkcKcwAEV8WTaBIdnflALchn05r5L9BTfOIJPb5HAamzTmtoNRHmM9ztpxPCTIuXSMfvLtE5/4BL7v+74Pn/zkJ/Erv/Ir6LoO3/Ed34HT057F/6Ef+iH88i//Mn72Z38Wn/3sZ/FDP/RD+IEf+AH84i/+YlrmB3/wB/ELv/AL+Pmf/3n8x//4H7FYLPAn/sSfgHPjtNE3p10CokdtTI3LwXZ83/EgwwMzMzeDx6wNf28CReMJU/XfJU0E/61DX9jyjMMfnEcAwr2CHtxrg7qxsBFsXJktMS9rPL1zjM+/+hQ6Z/AfPvs+/NtX/wCOuglqb1H5DNfzE3ypvo5PVS/AIOCF7A6uWyoO+4XlDVzNTtAGg0w5HLoZcuWiF1ENrTwy7bGb1QCAVZPh6uwUVZthsSyQZyRyfmq2gFYBzx88QD5tURa907PvdF8FPl4PNnhjkJRnXWReSCFiOLXd9AZ0vqVirnCaPqt173sjBbiVSUVgjfXQ85ZCPvMWO7urHiB4heXTAd7ENGnxOysTM8x0nBisTxqnzDrY+MRsrEcAmdtxyj1NMEj+SEoFEoMrmhyV9sjKDiYjV247Ez4wzIAxeBGsiizUmkJSjKY5Ljvut9y3AcEM8XeBXhpbR5xUYR6i3wakkh58LIqZIwC6plBpwlaRvUu+SHzPCfATRv8DdFw6euuklHv+7QAhVqcD8zGzUI3PRcXPgkrhJwnAEhgJIJ0aXytNx8A+VBKkhFbTZbeBshIVBtcjGPrO7Xa903dA2ncCuwEC7Pf9hfaH9BCgGeBhnWlJJTciK8TeX5wZ5qHQxgcWFklvKtDKZTuS27zyKG2LwghPMO4CElRhuzv1ee2sZb7aq9Lz7fW4r4dpv/zLv4zv/u7vxoc+9CF85CMfwcc//nG89NJLgxpj//k//2f8uT/35/Ct3/qteOGFF/AX/sJfwEc+8hH85m/+JgDg6OgI/+Sf/BP85E/+JL79278d3/AN34Cf/dmfxWc+8xn823/7b5/kJbpwuwREj9OC6gGOQu+kO5gsxMAsn5ol+Nk0uWD0GW9L9NzBk7wARePtyEkgLcL0fXoqplFQxSfaNvr1zPIGs6zBO/YO8VS5wDe88Aqa0xw4tTg8muL/uvVuvF7toQ0GO1EPlKsOr7o9AEgu123UDU11jamu8Vp7BQBw4ieoQ4ZStXjn7gM8VZxgx1S4Nl9gJ6/x3qt3Ya1DGQFRaTpY5XGtXOI91++izFooQ2GF4Klu2arJkjkjD9a57ZBZl15UB613iNbWw+QuCWRDp6FODXBqEUoHZJ4m59zH+lEK+tQMBtq87GB2WmQl1VUzZUdp8jagm3m0e4DbcX2RVSCZJbKNwHxSo8g7ZPF8yWKAvIYU+idyrQLyrBuEOJQixiwkXZGCNS6GJdCnkSewwMJZlcKDyquh83EUfg/0OgppH/2C6MPB49CaQj+LdxEAyHR7Zi+YbchY44XEDA36tVPQjerBnDgGzQ+WOohSOfK+iOnkArCoWKQ1pZcbv3YPcoZYb7/Qe1NpS6EtBqdsKgkAJuMwJxJAgAL1AT6fwol7uw8huaVN/STEWmwhXid7okk3NKGadCr3CFkYFoqN10GJBzHFYVHThwuV7muSKQbafLkEq0NaoZD8hlIdM+PgvEKmPZwYlLivypAYgBTKrh1JWNuYWapVgI1s0Xms0LbSHZuWPe/zJ9ne9HAZsB6heNTXY7SjoyMAwMHBQfrsox/9KH7pl34Jr776KkII+LVf+zX83u/9Hv7YH/tjAIBPfepTaNsW3/Ed35HWeeaZZ/DhD38Y/+k//afHO6BHbJeA6FHbeDIAxBN0GA7C/NTGy45B0IX2N9r3KOTAux+0MGSJBt8nYBS3oUJalgZ1heNVgftLchDsvEYXNHazFa5fP4JZKfgFFW61mlLqnTiYe90cp75AEwxK3WLXVng6e4BcOeTK4cAu4KBQqgYnbgIHjffObuOV1T72zBJPTU6xn69wWJeUKt9aWOWxaHN4qHgsNV7Ye4Cvf+EVmMwDC4t2ZbFs8pi90qfmhijYZG2Di0VSlQqwluoueS4AG0Fh2OmIlXCK/GRsSE/+9q6FbpHYJddGUWgsW6CUSHefd0BQaK46Kr2go3YINBmb3GFStgTU4mTDOidig/r/edt8Tta6xBbpWD/KTFvo0qEo2r5kCeI5JQNEkNEhh88YdPA+AnotLqewi76neNLnjbOWCIjaItVrjBiAMLvGwl8TYibYqOM61afhg9b3NpbkMAG+GDozJymfDUkfpxpNoSZmaRRG5xCXEyEkbQkk9KwEAWU5WXAotQ+rxs/HABF0PQahNDkGcAmU3PcHptEfaABp1DpNDGW8xioQa9bNI+g1AaH0SY9EzHBI4cME/viYVf/Sun/xdZZAiN77/7lOHjE8oQfaEei18d5qfWSJEO9B9N5CEsQUpkNmHPbyalCqQ4bXxmn7chsSFMnzOqs9jDv2/4rt+Ph48Krr+tx1Qgj44R/+YXz0ox/Fhz/84fT5T//0T+ODH/wgnnvuOeR5jj/+x/84/sE/+Af46Ec/CgC4desW8jzHlStXBtu7ceMGbt269WRP7ILtEhA9buPCl4OBTw3F1dy2MT/y77OA0gVBVJDbSk+HYvAO4mlcPB2oAIR5B2UCiqKFNQQg6s6i8xp3qxkWbYmD6ZJS+Scd9krKGtuzK2TK4cCc4oY9wn03x6GfYqZrnPoCH5q+il1T4U63g0x1uGkPkSmPUrdY+hy56jA1DT648zo8FK4WCxSmQ24cDqZLzIomeRT5oHC/mmBqa8yzCrtZRZljZczE8grLNu/LeETgk2mPSdbCeWJOjKGn0QAq4DrIEorO0cEG6JWhiSkWd9WnccDPiR2wuYO2lPVVFi2yzMF5DZu59HQeCg81a2NV+76obDbpxJM2HY81HpmN24ifW+MQgkKeuSgOJ/CTZ8R4yay6YtJivlMlt2AWVievosSQxPeu17PIPAEgHrtCEjgn0J+8iNCDIe5r0tFaZnkp8b8XO2KQJJ9WRX91Ox1CTsVOQ0YgKk36LK7OIxuU+2HyQaeG//NxRM3QQECtQir4azIhmEYUUEcmMrGt6Zpj0HpDQxbv9a+kDTKBjtUDaDRQ9LYJiSUKKi3H1z+YgJCh1xux6WU8/sF9zuwY7z9ErZkZmS5GdkxqfBhccA0yPi/+PD1wRBAks9Eu2iQzJJtki4ZV6fvaYZu8jS7a/m+nKXpURmj8AvD8889jb28vvT72sY+du/vv//7vx//8n/8T/+Jf/IvB5z/90z+NT37yk/ilX/olfOpTn8JP/uRP4nu/93vPDYdtq1H2ZrTLtPtHbUlkiv5dsjY8cErdBbD+PUZ/y+/Pa4q8UhRvY/RdeoLfxAwBQ68TPqVTC0wdlscl8lkLoz0+eOUWXl3uo3NUNHVqW7zza1/FraNdfOPVV/Dqag+3mx0sTY6dssLSFzgwC7zWXsGuXsHAJyPGL1ZP4fn8Pqooer5pjnHFnsIFjalusGeWuNPt4GZ+jM+d3sC18hQH2RK/v7iKZUdeQplxuL+c4qBc4ZnyCIftBDuTCqvDkjKOHRVtbZyF0R6t78NmqyZLQM9oj87pZNBIvjG+/1vHiuOtSqnmoVMwtYKbevjdjiKPiibjED1bqoYMGpuTArro0jX2lUW2W8NaD28o5JBnHQrbpVTkwnTpaZsnKJ5spiWZZhJYUsh0BFzGoXEmFb7VmiwGWL/BGWgcVuR+EdgoUQUErfpMrVg/TEWjQWQBamWiuFr2bYxKc8j+LFggFgKP+yKQmCPtejYzFMSMBBvrwWkAtQRgCn7ioRo1yAZkR2a2REhAv1H0O8bDSuAk6W3i55ESs7mD6zSUQbp3Q2B2rT8PzqzykUEEMGCNNNdki+eefotGQ2V03ir3CLXpL4u4tiHqpTiLTgLQYONyvrcoUIKR6sOCtFEJfNhlm68PJxwwM8a2FLIlcB3UoH4gh52dI8d4LuwKYE0cza3zGi6Gs8uoG7Lw6GJRZtkGztaxP+uAxDr5eEwPmz6/qaTHeBsPU8+Ml38r2ggHP/I2AODll18eOD8XRbFlDWo/8AM/gF/6pV/Cr//6r+O5555Ln69WK/y1v/bX8Au/8Av4zu/8TgDA133d1+HTn/40/vbf/tv49m//dty8eRNN0+DBgwcDluj27dv45m/+5sc7oUdslwzRk2qaAQg/PY+e2rjDDsASBk9vw9IHW/bzsDedJKhGNw2Hg1iMmkJ9lQYqg7ayaBqL/3bneeTakX5HO5SmxQs79/F/vO9TeHd5G9fyU/zm3Xfgdxc38Znlc3DQKDUJeI/9BJlyOPETGOUx1Q00PO50u/iV4w/j5e4A78nfwHV7DAeFE19i0ZU4dhO8MLmH5ycPsHA5TltynPYgA7jCOryxnEMrj52sos+ju7T3Cqd1jpOqQOsMOmfQxpcctLiUR9eY5OHDE0VgYbVXFIbR9JnKPNpnavgrLYrdmkIscXtF2ZBVz/+ck9mjDvCt6VmQ+HTOk8bulCp/KwVkmkTlwNCYTqPPkiPxaZcGcw8FF5kf1hSx6JoHdhe9hhDQhwSjWEzFCZX6QN8FWJsTNFL9MC6hsSljK4EhyQZ5CJYUQ7DE+h5RD81z2n/cXrA+2hLEiTj3wNQhlB6YxNjRxBNDEq0XlFMUXuKaajEbLZX2kA8tm24V7VPWIoOCxPJwCz1blH6HTguWhpdTSWME9GAjBJUK/sKQaHrdcCcCk1MDVWsyzewUdKOhfCxHkvV2D+Nz6muWhaSPonMhbVBiZVTPrmjdh2qNJoZShq6UComJ3FSBXmu/llXG7xohGTcy81OYDleK1YANyrUjQ1UE2ChYG4fReL+SKZK+Rw/DFm1iip5U6GyTZcFXrD0MC3TWC8Du7u7gtQ0QhRDw/d///fjX//pf41d/9Vfxrne9a/B927Zo2xZaDycyYwy8p9/2G7/xG5FlGX7lV34lff/666/jt37rt94yQHTJED1O49lDNn7yGiuez2KF+Lvx5iRTNP4b4v/x9/L4ZAxk2w3KmE2LZZyCrw0msxqndY5nnjrEyuX4/PE1PDc7widfeQFf3jvAD7/wK5jtUJz5sJ1gbmq80hzg6ewBDDxebK7h3flt7Gia/N9T3kapWrw7v43r9hjXzTEMAjLl8M78Lu50u9gzK7xUX8W1bIHfX13Hoi3x7PwIry72cLic4EiVeGq+QO0sJqbFqsn7kFCcXNpowNi43gWXByh+wuWSIMncME7QvjbD6yX8YbKyI61OzLAJQaHIOtQtmT9a43H0XAfUFuAn7cjcqMzTJJkBZdGi7gwyS+zOJFYCr7oMk1iktul6AGcQ2YjIrLG9gFYhabesiYxXIPdq1ndwmIbNHVNocDQRMwuRGAn+vOsHNa4rloC8U0g+RNwP2awx9i1mMgYMqhT/mlG/DIgOz7x+ILYGgQCSV1CG2DpYn/q+6nTSJKXbLxsJpFkYFYb7S6ABSCGhNKGpkNL4ddSLaStqysmV0z3aO1kDSKVT0vVisGK02L58eqHfwZce5sQMfJcS8wz0NgNBsBlCE8RhOm37TMUEVuLhynpjSZyvAgKXGwGSOzo5pXsYhYEmLzdukHHG22EdELvHQyHpiuZZjcpl6ZQlGEmZaxtA1pgp4uMei7cvwhhdhCm6SHur2KG3qn3f930ffu7nfg6/+Iu/iJ2dnaT52dvbw2Qywe7uLr7lW74FP/qjP4rJZIJ3vvOd+MQnPoF//s//OX7qp34qLfvn//yfx1/+y38ZV69excHBAX7kR34EX/u1X4tv//Zvf0vO6xIQPYmWgE0YDIiDSVWCk9HA2espMBy8H/VweNsbxKrKhLWPAfSmd2kjgF4adLsGsA4+aBy1E7TeJLHk67/+HPbfvcRT5gQn0xK/cfwuPJffx9IXeMoeY9dU+NWjD+Cd+V2ceHKbvmoXMMojAzldT3WLL7cH2NdL5MphR6+QK4fZpMahm8JqelLtvEFmHJrWoshb5NphNydDyJmt6enTeDhnqL5X5uCcRtsZKokRC8Dy4O+irgiBTA59TLGnYpygchdy0o7sWdcY2Fhc2WjKFuMUfrYGQKtSplRiJRgUxe1ZQ4xP1WYp7AAAJ1WBVWtxZbJCq0xkgKgIrofqy0XE4/dQKXQTgqJQGWf3xMkq/axxgmLmi1krDpdBdNX0xzisKrMoA4RWSPRtCY64yTIfY1zuFGVIsRFjwhjxntHxbz5+r1OGmoqhygQQTEjFYwl0jMJIso2fZfT2iVSZWOokKJhYOX5g6Ki2vDNIj+9Bkw+UEkBucD3F/yH+Pn7ioVcaA9uCwcNOv04KCYLBTQTDY/DLbIu4LpJpGV8DtnpIAH0Ehhisp2uJIbOT655x4rI6AGAVhcrSeltAENCDJP6b98MgSyYbPEzbBIr67xC3edb6w//fdIH2pnvqUbbxEI0NFr/1W7918PnHP/5xfPd3fzcA4Od//ufxYz/2Y/iu7/ou3L9/H+985zvxN//m38Rf/It/MS3/d/7O34G1Fn/mz/wZrFYrfNu3fRv+6T/9pzBm6Df3ZrVLQPS4jUFQGtRUP1HwQM2iUR6UpGkcr8hP2TJbRwKnMPpftDH5s0YGJXA2xEi8TNBIpnfpODQ5K9fHBdR+hU++8U5UbYZZ0eD2ao6n947x4nsz3PdzPGMP8b9NP48vVk/hleYAN7IjvNpS+uXz5X3s6hW+2NzAVbPATJ/ixE/wjD1E5S3udTMAwMvdVVw1JzhGiVNf4G63g9ebPXTeINcdvnRygFnWIIDAxEGxxKIr8NtHT+P52QNUrUVXWwprWY/K57C5Q6uIhckzSoUPih7KAcRyHn3NMMdMSMwgCq1OKd9BR81IY6DKLj1RFzn9bQyFvFathTlo4GrTe9qIa82sFO9/XtZonEHnNIwOmBUNXCBReAhA5zRy0+syfBSNexbdBtJfyMnACxE1OSxrwXaAbAMUgCJERsXTuTI7FHUrskxHyAOCo7DUoLq87O9SSyQne9lvue9zn44CbGW9MIwEKeNSX40rO4VgQKwQ/yiGYn3KeMBEPR0nOvBv6Td0eiBpRAjcCAsG8D3EjEhI711reg8fCRzH9zP63yMtG6+HUujF3Kzn4rpn4nQxdf3Dkgb8xPVsGzCqYs/XWgwY8dqzUHyYlQVktksgml2n+UHBO40ugnj+HPDJL0vqiLgNM76Qwrwyg6xftg+JyTFtI+jZApLaoJPjNV92WePvYZieMSg6S090Fhv0VmSrqTAa7x9xGw/TwgXEVTdv3jy3AGtZlviZn/kZ/MzP/MzDHcBXqH1VaYg+9rGPQSmFH/zBH0yfhRDw4z/+43jmmWcwmUzwrd/6rfjt3/7twXpP1B48AaDR06EckOTksPbEqNbXAwaDwlooTH6+9pS74Sl1/B3vM04Om24gxZMTt+hCrGqN+qRAbqn8ReMMDldUWHV3f4n/z71vAABkyuObdz6Pw3aKz69u4JXmANftMaa6wVQ12NErNMGgCjl2otD60E9xq93HG90eTlyJ362fwZGbogoZtPKYmz7lU6uA0nQ4mC/x1GyBxltoFfDS4RW8Ue2mrBxlAnkHLS262qBpLNrOwHmdBvG2MymdXWolXGN6dqXrDQBD5kn8urRJROt9P2Gw2y5Ag6VrtZj8qD8EFqU6harO0HYGVWfhvMZuUaGI7JLRHjt5DRcU2PfFBY3W0zmE0B+/94r0UZ1B3WTpPGV/CY70LSGKrMOp7dkUTtW2IU3qg37BKfoO6XsO3az5DXVqjeGQTsxJU8St8PQZ3yutHvocBRBACor0XK0mM0OnEKKpocqjxQEXUBWZVwl08L0qfIdkY70NMz48KfoIEigjKwKE2D+kb5QyIemO0kVXIsU9sUOxH1sPFbMSQ0O18npxO3rhtjw+YGDKmMTS47A8/xbobQGS6aLq9UAM8Gj7IRqA+lSdntPoObtsUFzV9w7wAPX9ECh0ldL54/ccKtMIyXuIW88e+aQXGoMX1glJYCTXN0o4tQtN0ab9XKSdn7J/cTB0EQuAy/b2a181gOg3fuM38I/+0T/C133d1w0+/1t/62/hp37qp/D3//7fx2/8xm/g5s2b+KN/9I/i5OQkLfPE7cHVhr8HAxJSOCLNMDK1WIuBGuL/MTPEr7P2P9r9mY3DH+OFmUAKGBXqjEaEXuGNBztYLXMUtsP+ZIXaWeTG4bCZ4uX2CkrlcdMc4SPzlzA3NfbsErnq8DXFazDK48RPcNMe4dhR6Ow3Vu/CoZsiUx32zBKlbpEph6Uv8FJ9Fb97+nQUYjrsZBWuFCtMbYNlk8Eqj71sBR8UnFd4x/Q+JnmLvYMFdg9OoXZbqFrD1wbBqZQBU7DoOPQuurKRW3GcfNP1itfbKaiKnJG7ZZY0PG1nUmo8pynTxpAmRG18rJbeT8guTqpaBTTOom5t/FyjdnYw6bB2g8FQ8lJyBLzqVYbA/0PQ/CygFsxk0D2zkIBEPF52hYZCD06ir0/quyaKn8dgIwl80Wd9pZTv+C5BS7yWZNSI9ACRgHkK+xGYUMywmgBddnGyiecnWJEQRvsRfVxmXXH/VtEEUOke1Mrwi+v0UBAtw4eSQdDC7FBJQCL2FY9JR3dyWi+ebx5/EytQpQIgCt2uNTnhcjgrYN0jSYAh9g/iyZ1fzCgaFeAii0mZmJSx2IfMCKADQKYdhc9jp2a2RinAGodMO+TaDRhObrK0zhi0SAA0BjpyWWaeJBDjZcZgZCzOvoip48OAqTEYelNbeEKvy/bVAYgWiwW+67u+C//4H//jQXpeCAF/9+/+Xfz1v/7X8af/9J/Ghz/8Yfyzf/bPsFwu8XM/93MA3iR7cJ4YGGvwk7D0IeLPpA8MD/JSdJ22F/8ev8vv0ytOQIKRCuPleRthfQHJsiMo4VEU/640utpC6YBFVWCeNThakh/R/3jpWfzP1Ttw6DPccTvQCPiayWvY0RW+2NyAiTv/2uJlnPgSz2YPUKoW7ytuwagADw0TqYY2GFQ+w55d4mtmr6MOGQrdYWpavHt+F7l2KKzDF+9dRRs0ll2Gb37uy9i1Fd65+wAH0yXKrMN0XiPYANWSnsY5jbq1yTnXewJSbWeS9sY5DROLpSpmhDKfJpoQQ0UhXsOuM1RwNYYTpnmTgIq+m1NhThNSSQj+jW3mkGUueQ1Z45J4uuoIFGXGJeAGINVxS2nRkdliU8a8FCUPxMDGTsShNqlIKE/alJ0lTAcTWBAtMSvDPqg4Q0z0t0GfcqMNcf8etWDjcQQQWyTXU6QpYmYlaFqW2ZjA4N6JIUw+SPD/Chi4ybMWiYGL6vU1UnzPoMJ3xAzx5/SOfjn+W/ds0qBWmNBcc0kP38XMNAak/OAkvZ4iczT4HeKfCEiMY7+fkIAn/e7r1zstzkDb9/2J9WgcQqQiyC6V6xizSkAvaAYggJCn/htDZSlchrDG8Iyr3sswFfscSVAy/nv8GR/H+Dy3tW2AZ8zunAWMxt+9FayQCk/mddm+SgDR933f9+E7v/M715TnX/rSl3Dr1q2B9XdRFPiWb/mWZP39qPbgdV2vuXae2fjJOmAoPJXMED85y4lEYZjKzKkf43YWSDqLHuKeLkFP2uYGUIT15ULuE1iaFQ0+8+rTOJgvseoyfPfXfhL/v1c+BAD41Om78PXlSwCAUre42+7g2JdwQSNXDplyMAg49QVc0JjpGplyaIOFCxq3m11MDX0GABPdpPdMORw2E3z9tVfxh599EVfzZRRrdni93sP/eP0ZTG2LK5Mlbu4eI7taAbMOvjZwNaXWV02GVU1lPZrGJk8VHxS62iQNkY61xJTtBegqgl6qa+bpaTqCGoAm0zIjZ2iYoX8QARC6hq4zieUJQaFuLYqMdEil7RACcLicRB8h0hAFAHWToWltmqzYtFFHL5i2tmiWGZplliY6ADC56yu6i9IyZtKlzCfFxVuZ5eG+FVQCKal8RqvJZVlMyH0YZzhJJyDUqeH9IBgr1USdFm8jEDulOCOrVVCnZIwZAsjGIN4/2ngCdb6/oRQXfpXhPMHMcRhTc6kScX8kM8LI3HUNAVQlf8cEhhBDbBg0CUQ4HKcFe+g7nYrwpuORWWGg8SJ4CpkGyXQFJCuBjfc8Z6/F/drMwVgXhdP9djg7EUDSmzGQYJdp6nsmMUgEmqSeqGeEeF12leZirQkUqR4U5dG2Y3DYahhOA0Bld6A2aoDGoKi/3mFtmYuErs5iizYBo20s06OyS5ft7dPe9oDo53/+5/Hf/tt/2+iYyal+N27cGHwurb8f1R78Yx/72MCx8/nnn99+kJEAGDy1BSCVKwAGE0j6fhPA8eJ/udwmwMKfb4H4aSzhfQ/AEBLIgVNDdkmyAmk/CiYChfmsRqYdXr27j2+Yfhk/+TX/bzhoPJ0fogoW78lv4343w46pcN/NYeKA95Q5wVQ3mOkaHgqZ6pmNma7xVH6MUhGQut2QOVgXDFY+x5XsFNfLBZ4pD/FceYjjtsTcNnj59AoOMqqw/NTkBD4oHFclVYSPLE0eHaLbyqJtLWlAnEa9IubFdRrB61S00zsdy1rQRQishckCzLUKCAp5ToCiD1MFNF3UK81dun5aZBgpMQlzVo7Rvc8QhyNC1Goto52AnNB4oM2si+VIaAL0jUHoNEzu4VtNadLxvHiSNLmDyR103tfR0nmso8WgN/bjIPuMU/S/VzQhI07UmvsKL6vSdhMg4dplyadIdG5+QMijn1AsyaGXhkBB7qMzM4XpmKnzNdWQS/4/8RiSeJlZoQFdJko7KMRQGRIgMcbDR3DsPQNmDAwMGaQg/n5dazY/aACxgCqJ7TWXAwkxXDbQ6qHPOOOLp/pzTeCHty+q26fFBfvFTBHXJRszc8O0eNqo8wou6KRRY9Z0mjdou2G2T9IHCRAjtTVGe2TaJXaIwBC98uhj5qEGQGoMcMYgKHkSbVgnHdc54EONznnczgujnQWq5Pdjv6Q3pYUn9Lpsb29A9PLLL+Mv/aW/hJ/92Z9FWZZblxvbfF/E+vu8ZX7sx34MR0dH6fXyyy+Pdjo+iDi4R5Zo4BItwYYarjNgi9ZObHzQZyzLOoeztrdp2zwJxswhNd4Hn0egm53DOq2ndPZStcgjo7NjKvxu/QwykVZ76osokg4kqva0fhVyGoSDQhMMHDR80GiDRe0trmWUnn/FnmJuKpSqw7V8QX/rFjNbIzcd3rtzBwDQnBK4WXUZJjk9gZqMim66Tqc6Vd5ptLWF76LGSFoexMKuyVgzsQtxtIgZTdmEyppoFUtoiCdjAINCn0l8q/rwysCfJoIgq3zKytHR40jHiQ3AQL+ixMTBob9s2iagYwuXstm8U9C5g6uM2CcoVaH1OsMAAPchSURBVJ37QVA9cOFzFf1DcbakCqQxM4E8f3TorQl4QJXrq9Dr49BvjwX7YLDDOppaAw5UqywZOar0cBF4XQChJQAYul7zFZjlgjiGeC/2QGhdXzPo7qwtkyBEye8joPU6lUSR3wVxHXRklIJX9DvyNYnbUJrMFZPeiMXZqt9G/8AzPI7++McfjL8PA1sHGZaS4UIGSjZ6VSkV0DhDWqAYmjXaJ4dpXp89i4wIjeXGiTT7yBRtYIG4sZ5oW2u8GaTqy7YpZLUNNMllzgNGZ4XSxq9t+3jT2iUgemLtbQ2IPvWpT+H27dv4xm/8RlhrYa3FJz7xCfz0T/80rLWJGRozPbdv307fSXvwbctsakVRrLl2rjXJqAA08MrOxZOIAEty3WS/kQY88UQ3mLDE+4ZB+qyW9jlmncZ/O/S1oXjw5VCBmNSrOkMIwOv39nB19xQtDBwUDDz+SPll3Hcz/E79DN6X38Jz+T2UqsWJn6DyFjPd4NBTFlnlM1QhwxvdHuqQwQWFqa6RqQ7vm7yBTDloBMxNhaeyY2Sqw/vLW9g3S1yzJ5ibGgfZEi8tD1DoDjdvHKHQHe4vpjhtcuxPV5hNa5SzBvNZhaJskGXEhoRWAwsLvTRolnlihtAphLZnhVK5A08OyKHVcCsCdJ3TmBQtDm/v9GnAjkBHPmsji6D6shmIIIT7QmBBtRmIeJnxcXESDQHIrEshOE4PZv0TrUPLSQZKqUB10iyxZGbSwXcaSpM55EBjogP5JmWh1/WAjlVxyCyAyl8weAIGpoB9yGtLxwxiORZkOwU4QFeatsmhsyiqVgx0cg/F9dZUoO9b+n1UFt2s0wMI30OhB7V8vaO2JpWvUL3YOETNihf17Ppq8L0IWWaUKfF7sGO1jyLs4IYCbB9LwfCxcNX7pDUb+zsxoxh1fOPLmh66+PdDz2YxO6TQgwIuvcHnPMhGRA/knLBoMAI4ZtohY8AuwH3KXFPEdA70QyMQI0GPFGPzdmQ2mhRU55FxWk/dH87i2wDTtnYR1uiiTYu+xNfjMmT21dfe1oDo277t2/CZz3wGn/70p9Prm77pm/Bd3/Vd+PSnP413v/vduHnz5sD6u2kafOITn0jW30/cHlyJMX/b+J9oou1tDI7G+1j7W2EkDh0tM9ZwbN1xfA10S9GrhT+P2wsM0qKmwTmNsmhRWBIGP7tzhM9Vz+CemwNArF7f4tBNUaoWM12j1C00PDw0HDT29RJtIOBQ+QylatEEizbYNNgCwI5ZYcdUyJRDrrqkK2LH6z27RGE6PFMeYcdUuDE7wdw2KPMOTWuxajPMctIgWeMxLxu0rWCEvIJdaAJAfNmE1kV5UNFN33+vl3Tc7WGBapmjcxpPP/sAPqhYg4yWM9rTxOhiZk4UMo+zlNrOQCPqgUTGDIXQQnL/7XVKGExkkh1grxltPHnlKMC1Bq62UIJpcq1BVnSp/lZgXySeMDvVexApJA1LMIEqyEeQpFrS/yQ2LZXh6Lc1KOUhQBYDKgQAhgBPKITjtEfKclO1qPYOgEXDnJVF4Amp78uwWD//xnMQy/G25BI6gpuUiSlvUvlg43WfnTbyDkqiaoVUKkXHsFli+ET2mZYaId4Qs2piHEmHrcShqciaiWNTJiSjUIDAdA+GeuZCqxD1Q0jfcTZjSvUX5+9B9fU8VMoa6zPXfAr7ylCZ1e5M5mfctAoDJmkbANq0zW0s0abtbGrbWJ9NuqGxoHscIksi8jeJdlFP6HXZ3ubGjDs7O/jwhz88+Gw2m+Hq1avp8x/8wR/ET/zET+B973sf3ve+9+EnfuInMJ1O8Wf/7J8F8BW2B2fAAGxGRnFglvjorMUH2ThRIJnErtvuLe7No+2vbTY+dfZZb2KbQQEhiLIMYmMxl5dFtaXtcHVyijv3dvDGco5PqnfjjdkuvuvKJwEAU93ghfwOWvQhGgI0He64OWaqwe1uF0YFtMHixJeY6gZ51BO1waBULTQC9swy6YxOwgQ7uoKDRhYF2oVqsZuvcLvdxd3VDO+e38WVyRIv3jnA1aunOKwmsMZTSClvURQt6ioHagPd0lO3OTVUfoGLf3Z0QVVDaeG+9JSmroFQkkAZHWmQ2s6gMR5XJkvUzqL1hrLZOirt4DudQmapWGxQaTIFKPSoFLBoChyUSxyFMoY1/ABAhaBS2ILDNFWVIcscuk5DGwI9zunEYpSTBq01sNahbS208MzhMJPOSYtENdl6kXBQQTA0olNFkkj5HjxR3+LvVW9IagOl7Qf6nDL/GDgBmHdARWaZJFYPCYinumkxpZ8TFZQO0LkjndcI8DCj4ztiOULKQ2eggsFk10+AdF7O63SzJKCADQ83giGRomrpPTQObxrtEbyB1h4uGKjMR41QgG91L9zWI9dkFZk4Zp9HTYYAdeZhM9dPzEl87+BjMWNZ8Fc2DqUZwXo5r1BYl9zSc+NSSr4ZgQKjh6wQO8yzXugijQFYaTs0kW3lzxpnkBuXjlMaOG5rGmGNhZLbPKtts1cYb0suOwZsb7qG6HG3cdne3oDoIu2v/JW/gtVqhe/93u/FgwcP8If/8B/Gv/k3/wY7Oztpma+EPfjWe4qf2HhgHS23dT2xDoChoy8weuLF8LtNN8Ta8mH4dxrRxWaYgRK6DbkvpWkwunW6A5M5PD09wTdf+QLeV9xCqTyW3uAPTr6MzzfXMdM1Tn2BHb3CoZtBI2BfL3HPzWFUwNLnaILFF5dP4f3TN2DgYxYa0fJGeWhBYy19juv2GG2wyCJjdC1bIFNdfGrt8NpqHx/efx3zrEHjDa6UK1TO4vYpMVghKGR5B6cz6EbBroBOK/gswNyzCBZUYd1Qyjc8gE5B5QByUWhUx4rows2XPYnoidwnsbVrTEq917bXAxHAcSkjR6uAxhtMbIvWGVQdaaI4nXlnUqFqsz7UA6As2+QPE0RYk1u1ymGi+DrLOtQ+Q1cbElrHSdZ3BjpzqY5bEg0PLCFC39/S/yKMw0wSs0cc4kl9SEWGSSW2SDWk4dK1ho4gi8wwo1eStKfg/qcolOkbshEIUKRp0jGUpWIWV9TBJCE1b0Nx6Iv+59CPTCdX2qeSJ+P7hsETaYdE2MiEGIak6ybdm6E4XOcjMO1T+JUlTZsSvkSB2TZFN6eK92Pwgc5X9fckVbSnv7UlMDRmK2Q9OwY6Wge0naZVBbjjxstbE9BF9hKK/IlYOyf7WRa9hlg3NNYLMSgap9nLRplm7LFA5UAY+DR+JOxWARa+9z9SYQCQxiVEzkrvl39vaw+TpcZ1BseffyWbIAgfaxuX7asQEP37f//vB/8rpfDjP/7j+PEf//Gt6zxJe/BUSVpOFDwZ8ZNv+qf/OzDQ4HVF64khMfGM71EV1kFSXEVynudG6/hLzhrS/ceBt5eWXT/kVZOhzFpkmcNvfPGd+OjB51GqFr/TPIUX7D34oFDqFre6feybJXZ1Rf5CIUPrDXLVoVQNKmTIVYc/svtFNMGmsFiJFqe+iKGy3tCNQ2VtMBSCCwqFbtN6H96/hf/zS1+D/9cfeA2T3RZ3mzlab/B7d5/HNG/iAO8xKxrcaQ3CsYEr6KTMMhou7ndJu+G9AlL9qEBlLgJNyCpmCjVHJSbPNGngbluDnVkF5zWWq5x8jUCgKGkLzDBLTFa472I6NIchWmdSwUxrPGa6Qet7o0Ce4BarApxhlZyWY590scit8xquMX1x0aBgCgffiW1xqEaLvsyfM9kSqGOE1PeRwlzBgoTSAQRsWHCtI8PIaf0uskW1plBZFTP1PKiaPYffAnrjxsSgYHgPcEhPTPpQxI7wMfZu1D17I8Me7L8jzToVszIjNoVDVMFrYtFUoEsWQ4J9ij2BIBZUM1jmbWhxDsGpYTg1gUmkBywFAmH0W6Efe9RwApYMEAvAuSyM9BKSjtTjCZ8ZICP6Jl+DTLuUmi91P4kZkiU5RNsEhtacqZWHD3oNpGgESsPfAlw21p4Tv9s2UDRua/sVAOsi4GYMhrbLyC/b27W9rTVEXxVtw33CMf6kweEPuUlIPwBOYjEtvg/oQ2fj/W7TFYmWdjEeOITuiMMgadtqtP/49Ku1x7LJoXVAVnYw8FS9PrubNnvTkGcTCactdiIouqpPUaoOM11j31Cq/IFZIFcdpprKe1DWWgcNStXNVIcmmORinSkHowKmuoEBZb1kyuFqvsCfft//wGeOnyVvI2/wyukenNNYVAXqzqJzGnePZugWGbr9Dt3co5t7BA10+w4qd1CNhikcOSLvN1Dztv8tgGT2GJxCfod8gWys7VQW7Zorr44hDW0DjI1skDC7s8ahMB0yTev5oNKEY7SPYQyPurMw2iM3JDCVOoki6xIQGBTqVAEmllxhKwGebE3hqGyE51puNJlzGn7wADJKe1e2ByOBwQm/M1CqdZ9xphDr4oW+3hZfQxeZp6jnUbVOywc2fOTLzSyRfJhg4BeF8LKumFIETBIAYv8lBkMKAiyoGFISzEz8vYqy6X9vRSJlI9g9eVNpLfymmG1RSKJmZoiKrIveUgp50aX6eUam3PP7+D5kUMnhMb7+fF4xXCr1LzLU2jtt8/kD4+wz7m/Ezq4PagwUKMTbp96ziJrBEGeWPWpLNc6wzvYMl1s3e5TfAUNm5yJhO2kEeZZ4m7c3fq2Fzt4s2iU8oddl++pjiN42bdzZJQu0bXlGSQOwodbX5adzuS3+LG1PvF+0M4tjHozr8sl0A7jitOhmlcEYj+u7CwAUJvrE/T+A6bUG31i+CK0CTjyVgp/qGqVq4aDhQD5DTTDE9PgSpyhQ+QzGBly3J7jXzTGzNUxcB0BysJ7pGlUISYwNoNcW+RIOCkfdBF84uY6TpkDjn8VxU6D1Bs9eOcRLdw+wDATmjPVwhUNYWfiZg+pIJ2T2GnSLDNMbp+RPtDDwM5BJo0fSeahGwSwszDtrNE91mAIJtOyUVHstxN/KaJ/YppR5EkGQ0TShOB9LikSGKJXlEMUzWXTdOoPcdjTQOkMTWKAndK09qiYjvc3A8Zne2lUGlXkqeFtZGEshPxVCnxnFAmumLBUzJWJzhkI3yodBXwkFgScCJmL9GD5LjJPUF3VU5Z7DXr04Ok7gRkz8sqzNpr6vEEXTgt0R9eUYBPAq8paR1ggBCnV0Bh9bECQwJMJxzg2fKdVoMmUGCSDfIiMcyBOg0z2zFRgwit9gzAIDvW6IwRDpywKcj8BQUeFinqQptb2/FlySg8GcUT7WI1ufyF3UHxWmG4RyrfaDKvaPA4aIGSKGCIjHEIasTRdF3Wel8I9ZnvOYoouyP4N9jAbcsQhbbvtNa5eA5om0S4boSbRtN9QG0HShddUQCw0ngS37Cv33QU4UEGyV+H/bd4N9im1yK/IOqyZD01H20hurOe67GQ79BAYBX26vowo0aBrlkwt1FfIktNagp9AjNyUmCB775jRphkrVoFQNTjwVkW2DRRtMqqF06Kbw0ElLZBDw0vIAlSN8f6+aIjcOTWcxzxpc2VliZ1L1+geuxwXAnBjywvGAKhzyjNLTdaOTtiZ4DXNERVF5PWsdUETNRNQByQKvCEg1zkyskSYnTx4sZf2s9JsEErTyYJ3bPoOt6WxKb2Yxa2aopIlC7yjMrVmSB1Qxr2Eyh3ZF59FWNpkGAnEijufKWpsg/JhUZCnG/QEMWkCTs7Khr3cml+f1OeU+qF5wzThX9vNN6473La4Xt14j1GtjJHMjrzllWumB7QEvD6D36HG9dQIfw2AS1D0DNTiuuEtm+tKxhvXjliAvsVpaUEUqpPdkB2H6v+X5A8N6bJxlFoIauJgPbAEw/FymjnPIrPVm4LklU+HHmVeP0nwYTkdjloaPsYthtbP2edFjkADqIgBGCqbPStm/bF+d7RIQPU5TGD65ps/PuEk2fSdQyeBr/kcCk/FNK7PFzmlr4GfEBqXvlGAF4jkqT0aHx8cTNM5EbYLBXl7h/3zjgzj2JapgqBwHHCqfoQ09AbmjV1FLZNHCoFQN3lu8gVx1yFUHB50yzTLlUrFXBkUMhn57+SxK1aINBnUEXgDwTftfxrvm91E7iy5mqFydnuKgOMXV6Sms8ThdFjTohVi6Ik7O06tLQAGz3QpVkyF0Gn5GmUy+sgiNhi88MRAzB7fjkGcOO/srTLI2aTfYvZfLIQAR3LQGUCFVqO/dqekayoFYCnJ5sG46i0neIjMkwl62eTRl1GjF+rtT0lmxbw4LjBmIdauMGIWig7YBTroQO90X/5VmldwXxDuHzlIxWG4NhbGCIX+g9F0YCrAHgEm+DOmVQvyea3IlI8U0WhE4GIeHUt0zqQOJoMFaRyVSRHFfzpiSh0bbQwSLvs+6k/dYUD344XAkkMDJmIECehZKRzaH9UxJzM4hafYQYrsGBoTp2PpQIB8nAALyIjTG6fM9GOqvC98f0kuImxP9loGcVgG56VJoiO0xmCXqw2UjMfUGgMF6ux6E6DUgJNeVYMcHhVWboeosOlk+5JxQ1UVDZxcJjY23J4/xrfIdivj/sV+X7RIQPV4ToGHz9/0Tdmpq9AJSj9zYKeWHQQ08V5LwcnwMchAdgR7+jMegoHhyGx06P/Xz3BhTtvOiQ91EBkh7HDUljqoJPDQO/QTP2/vY1TVu2iOUqsG+pqr3zBIxsNEI2DErAASAZrqGg0apKAX/TreLfXOKHb2CVh5HbgoPhUJTVhm5XGsSWSuP1lvMbI1pRiLnurPYz1codIfSUJjp+v4CXWtQTFr41mC6t4J/ukbbGriVxaxoUJ/mxHK0Cvpe3nsIFaSzgQ7QK5pQdicVplmDzmuaMFRA0xmsqhxZ1qHMWiqLUBsEp2CsT6wDXVsKn0n3X66tZjSZNnaO3LyrNkthtMy4JIY14indaI+9aQX2HcqKDlBAs4glQKynTLeg4DsFV9F5J+8dDo9FYLSxQKgS4EAh9V0GSJyhGFoNFmQrNzIsTX0sAggJgjTIbJGZp2h5oIxP/TqVQeG/xaTf64V6lsMKfU2Qt4ZgkBAPL63LFgnc/0eZZ0pqh3QPcrQKPUBCNElUSJqlcfNOJ0NH6Umkk28TUkiNigVHLZQmBklFKwbetwQ+QM8UyXOlMOxwmSD6H5szOiHg5/tWMkcMALaFsM4DCBIISaCUwNAG8EICeAF41flaorXPR9u96HKAYA8vAIIuNURffe0SED1mS5PDqEMNUPeGzqYkYAHSU/RGBkd+FjOEButuWCfI99GyScLAT+Z8sCP6fXCOQcF1Gpl1eOfV+2iihuVoVcJoj1vtHkrVIlMeDgq7msptaE6nVx47ekWhLji0MJgpEq8aBEq7h4ODTun69zpKl/dBR3G1xbXsJAmpAaD2GWqfwSiP2lvkxuHKZImqy/DFw2vIlMfc1nGgV8mocLq7Qp45ZGWHmwfH2H/qBJlxdHFWBqHw8FdaaK4krwBddlQLrFaYZG2szeTT0+rUtmicwXRSo8w7pBpPlRHsBVLWWP+T9oMrhwWYvZA+LjwYSzdhdljm/3PbYXdSIY9siIkp/2zECNAEzi7IrK0ZdCAW+srPFRJgYmEvTcoRPI/YywRYYvr+mCxQHtClS6BIxRBQL6QOvV+T6nUgMlNMsicSGJGjdH/NjPbDoqTawxpH2V46DMAMb2fNe0awUUqFVLZD1kSjvqoG68uUfulynbIBu34/vV1APH+FJBjvwZ+nGmmWwp0MhoIAPloARMmajJkNFvLzcbN7OrNEEqTLtik8pbeU1pBtEyskAdCmxq7XGsRCJRYWKoXINx3b+H2N1TkHAcjvxxqhrQBqA1i8bF9d7RIQPW4b9/vRxEDLKPESi/KEKZ60N7YBS4SeJRKDJS03XCeISW0AkMb7UqNtCJAmt+dOs5Q6PMla0hK1Fssmw6/e/wAy5fHl9gAAcNvtIFNdGsC+3FwnHRAotDRTDb7YPAUHjYadq2NJDwDRuTqgCnn6fhkF21Wgsh9tzD4rdAutPK7YJd41v4dcO7Re4/p0gcJ0uFYs8IGDW2i9wfXrR6jrDF00etuZVmhifbZ+8gk0kTfxqTh3aaLcmVfonq5htMfUUs00GzUWizbHNG8xzVsUtkMXi2UiyIlxOKEUpkMRhdJJPOp0KvLKAzO7VMuJOjOuz/iJWqJUMNa6BIrsrIWxHrbsgMhUaOOhyw4qIwPJJII2PQiBcKxO/YGXG7EyiCQT10gLMZSbwmrinKl4LOAjUFQKEQjFi6Wkd1DPkAz6J38XgVQK/whwQwJ2H9PNVQplMmMD9JMYg4+1CVWEuJjtAdAL5YXOiE4Og3c/AhNG+8REuShmZ71eH/oL/W8ArJUQYddra1w/hsR21kQ8tmtwQacQLVW3jw8No342BgSDCvaPAIb4/zEQkuU8xoaK7IC9X1S4Uq6Qa5fuPwBbWSLZLgqKtoGhgb/U26hxV3nc12W7BERPpm1ghwZsTxrMN/c6+YS5tkxkZwbhuU2AZbzp0DvbJkZITkxj5mnjgYU0oSsNqE7h5LRMA9miKmCNR+cM3j9/Azkc3pPdwy23i2ftIU59kaj257N7AAjMnPgSTTC4bik9/9BP0y57B1wPFxRcUPCxm7aB9DIPutkg44wHWQcNg4D37tzB//OZL6ByFq+u9nCr2sXVfIlnd44AAPNZBe8UFlWOSUaDqlKkrdD3M0oNLxxgwyDzKs9j6O3acV/RWzyxAgRwMuNQ2jbprDB18K2G+8IO2s7AshA6htnofPsfMLe92zBn/mwSy/IksEnYqUFggAtzss4py7seDBjy/DE5pdtrKy0D4iydLrIafiXeGdQkvyK5HDNLEGFZwXAGoRse90cZvgKzJbws+L5hEOHXls2zLqWWJ1NBTZlhMvsKwEBsnHYhGJYEXOTx8b4iyxSET5jSIQEfo+l3YFaQU+Fd0/dhk1NBXpO5AWsFILmcp+OMl9nEcFkv5u/DguPr2P+NxCKxdcO2iZ51RHI7sr8yc8NtG8AYg6HBdxEESQAkQZE0X2S9Ev+f9nsGY3PW9xvX2XIOY23fptdb1sITel22S0D0RNtazIsfetUA6KxVqB59NgQwvACGoIgFsDwpyF/Sb9hBOpjRttJOR8tsOi4b0BwVeO1oj3YTFDpH5Sk+PHmF6HYovNxcBYDEDp34SXSepsruv1s/gyqQMWMbbEyrz9PyADFEPuagnbgSR24at1Ximj1JyzAwWroCh+0Et+sdEhwHhf2iwu3VHL/58jtwp57j+dkDGB2wN6lwZWeJzpEz9LM7R7g+WyC3HfzVhgqJ6oDplSV295a9KZ2l0N+8qDG1LV48uoLK9QLP06ZAYTsUhjRTyyqH/+IcQCATxOdWg5CE0R6l6Sh1GWFQ9TsTXkOdSMHn7DKtyKxukCkktCBG07qZdcgyCvu5ZZaYDWOJ1WLfIQB9WC/W6pL9RsXCuKl/RCuG1G+62Pe9inXxRmCdQ0hKbGZTPxX9nc9lMm1SeGzstwT0YS89sggIkS3jArnAEPgMtCjCS0grElozs4QIILiIrtYx1V0NTR45g0x+xiCIgZHR0dVagD0OlfH+ZOgv3atSF8Smm743YVSKMuaYAZMAek1zo0IKl3E/kfXO8ijet4KBHIiX0RdhTdtE/915LQGkEcI8K3QmhdXjZdcNHh9+dt9Ue2zsK/Sw274Mm331tUtA9JCt1wxtv3kHc4Fkc4IcjMW2Ntw4595Lcl0e5EdAJygMZ6Dx0/umd2xehtyHaX87ZY2JbbE3rehJ12m83B6kgel9xS046JQhdqAXiSny0NjRFZa+wO1uF41Ip3eBwmenvgBAjNCJK1GFDA+6GZauwGvVFQJLcZ1MOTj09HvjDV5ZXUmnUHUZTRZBYddWeHp+jNMmx7yoYY3Dbl7j1ukOTuoSALB3cIqw38JXFvOyQecMQqcRPBVjZc8gq6mGmdUerTdoOkvZOJE5AoCmsUlo7NtY3yyCHo2QDBjZbFGyPbycUkBhiXXiz6V+iJvUSsgJxyiPPHOkAzG9tsU7naqiB6fgW9OzNQgizXx9X2M0HbwgfYJgIsM6+FfxabQP3WLQ2aUWiFmjapUPwJDc2CYtER8vA/YQNVtsZSC9adK1ViGF0sYp1VoRaPFBZJdFkGTZVygeXzJkjMfgfA90+PdRCqlkRzreGM4ztq9zN7ALGH0W0DNNPqgUmhuDA8lscJiKwFlIoFuux7qj1pmkKeL98rXglrRvY5HyJjH0BnZo+H0PdM5Lf38cf59NYbPzxNNp2bcpwEnD+2O+LtulMeOTbTwbqNDXcxp9nhZVQ/1FChkEsbxs/D03FlfLSUJuY+sxjt5li3qRNLmN3lF6FNMGR8sSk6whhqNosaxyvLi6hmpqUaLDiZ8gg8NNc4TTkJNoWvnoJUSTNIOeEm1ieTLt07FzrbP7UVjNbT9bogoWU93EEJqOoCimlnOWlgqY2xq7RYZmZlA50iY9NznElw4PMM8aTA/uo/Ma905mmE/qZK54WhQIucPxsky6Il06FHmHiW3TU3ZuHKrOYlEXqBsL5zWenh9Dh4AVAvK8Q1godFcUsikxNSGoWDncYJ7XNGkLUfaizdO5etDMp4OiOqeD/rP+I3MdtE6yRlDJGsAVTfLd4RpsBh5eKZjMo2vMIOwzaBvCs8EjuVMHHXVXcnkeaYMeZpkpAtdBS5aTvufwkGLWM5I+bLbI5ov9dej/T2EmRWyRZIW4fIX3Q9DDjdiWddbIe6Qwm49lOAK2TI7pOPpSF7KEhlJAE2uZcVp8CEgCd++p3ybdFABkDsGv11xkjRSfnzbkPK0EIzTQXmH49DusS4aYrUjrtV4ji4agm7LK5P9WD53Z+31trl02ZocuUo5D6us2fS+3t63JbYwB8bh9NYEhAE8m5PU2Pr03s10yRI/TxiEyAXoCP+WOwRAvvvYkPPw+rSImkbTsuEkGaPTE3S8j3i/4gDXWIsAD9WGJ1UkJqz12iwqznDLFDtsJqpDBQeF92R3MdAMHhVNf4NBPk1kjNwZIJ24SQ1/0ypVL4TEfwVPtLRYdAYU9u0x1zQwCMuXwu6dPx+U13jjdQWk7uKDw2nIXjTNovcFhU2LhCljt8E03XsZuXiE3DrtZhaf2TnB0MsGizrGXV3j+2gOUJWmAVosCaKhch48MQx4nAat8b1anAz508xYAoHJUZmN1e4bmwEM5hXZFgIkn6dK2tC3jKG0/bpNLf3ReU8hri75jEKaJrXYWHgqlbVHaFln8jVh/UVgXJ2taP2VK8cSs+kyoBBgk9QP0gy8DJ3ELsIBaPnGmoqUjIM6Zab2x4JCJ4H0l0TV4+Q2s0wjcyPR2Bg5KyRT09fujDxn175zCzmFGBhj8e/P2pVmhFGgn9sXr+KJrnXyq4vXWujdh7BqDrjXp93Xd+hDN9dLk+UuWiEvDqHQsHFYUbBHYi0kPWB6j/Fr5GWDdF4jYoV4/tw2QPAm35rNA01mhs8dp54GhtxVACk/oddkuAdHDNq4+nfCLBCzjm0QuJCl91jowOInMTAoXDMICYjsDgDTiOSVbJH9Vucy28UJuc7QeFZ5EqnulDB3ESV0i1w4nVYGuMdjJKlTBwkGjigaMLpDZYuUznLhJYoWkh9DS5ynTjEXUbbACKNEy+9kKU1PDRJqeQ2VtMHjX5C5MrH329Pw4DZT7eYVlm+PZnSMcVRMctRTC27EVruUL3KumaLzFTl4jzztY41E58uXJrEPTWEx3KqB0QEDKBitNh8YZNN4kUfXN3eN06fhpNL+2gs8C1euqaKJrOwpF1M7Cao/GGcyzBl3QKdSW0uuDXvOLGbchAzCcJCcZgVXnNcrIEgFAmXe9DoaNAGNfVNFvSpmwcR/M4tDnEfgn0E/9JgEj6YpMRFHyHGLTxYGFxIb+ySxqEgEbSjuX4bIQFK0uQIjUnFCpCr/m0SN/r/G5MpBQYt8sypaWCQDi5z4tw+sbEZJyfqjlMWIbqbBsLPIaPBUKbhs7LMPC11ywQJ3TCdCyXkim4G86Rw4TsQYJoBplpL3ry8coRV5Eq+g7tqYl2tL3xk1mlgHns0NntW3ZadvawwCXTWB5DIweRkD9ppbuuGxPpF0CoifRgjobYcen8FSpW4CgAXPDwGg0sQDAmkcQT0BcUHPcJGDa+L14FyBq/CSfWCp5HEHh6uSUJvE4qQJAFTgtPjI+MKhCjhNf4sSXVL4j2JSOX+oWe2ZJYRvo9H1ytA4GRXSsPu5KLLqS1gWXu6CDLnSbRKJWexzWJQ7bKeZZhaNliZO2wKrJ8J//0wfwW4dPp0y2q+UyMT47kzqZIiYvoNqgrqI54xFNCqUhY8hlRyUx2CTx7umMzt3ZXo/hFaBBYaWsZ2Scp3pMGjHsFoXZXO1eTkh0nsMfkHUjMnV83Ka2RWm7lCl02uQobRttARpYQ2n5eWSsutqk6uy0E+4bgslUoe8ngwcBJAClS5eWDeK7pBnic5DWEVjXAqXtxgcQFjPTdcFgwpeaKql7SWEuHdC0NgEFeR0ZSAxCNCIUZY1PPkacLcYC6/G++f8Q0DuSW0cmmdbBxdAdCaDVYL2BvtCrWF8O0LYHp1ytngF3AlL8vJTeFcYsGrdBeRkMAaIEOlyfLzMOs7wRITI/CJVt0+AAW5yqt4ChsSnjpm1s+nvT9rYBkW1AZo1h3AT4trBEb3mGGUSA4DFfl+0SED1+4440Dp/Jxr1tg1Ptxm0B6yBGApMgPuP/eTJJ7+K1aftyH1qsJ48XIvSHOIjG8gxaBVSxnpmxHr/z4CbudDtp2SaY5Ct06KY4dFNUnvyDGJCcuAmWvkAVMmJ8gkITDK7ZExhQxlrrLfbsCjfzY1zJTpPJI0Cp+Uufow0GU93gQTNDaVq03mDRFdi1FTpnULUZrs0X8Nca3FvOKLQUNOa2Rhc0prbB1ekpbszJ9FEjYHFaoJgTwzKZ1QhzKrVhtcdutiL2Szvk2mGStb1YWQzq2njoJZX9QKsScJQMQ+dp/zaWSei2iGM5vCFNGcfNR3F5FzS9YjFMFzUhtbMpw4gL0TKzkZVkJJkAkWA0e+sB6kRKB3LzZjZF96nevjai7zFYQAL0nMmWGCjpc5T6WUh9lY0IZRYY98XxdZBiaC0ASydqyI0ZogFrE4EP0IfauHCqDMPxuY6ZJaV6rygGvgBQNxZ1Q95XXWMHDI88hh4c8TaRwl0MtOh/P1jfj/bpA3su9ce5KdvMBZ3K8OTRw4rfZUtu6JEdSh5ECANQIK/Hw2SQnQeOxn+P93EWGNq237Fwnq/JGAy9HQDPuS08oddluwRET6JtRdnbBgHZAeXfGwBJ+ny8rYCeJZLrbj1IbF+W97flpkg+MwHIDyqYSYe7qxly41DaDnvTCjt5DRc0Xm6vpKyxymc49QV+9/RpLFzZp8hHEMOlO9pg0neUbq+SE3WmqYArh8scNCqfxUGy775tMHh++gAz0+DlL19HE+s1TYomPRW/45l7yI1D7SmXoDAd7lVTdN6gNB3mWQONgAerCSZliyLrABUwKVrA9KyAUQE7WZ2yzXLTJWaCB2/WlCgP0ttkgYrESjAUw2SNJ1Zpalt0sbK4HIR7N+L4M40mtoEXjAqJQQKAqs1iKIeu5zRrcFRNsGzyWNIiEoQR1JCrddSixFIfSmSnQaEv0Mp9JvSp3lKIz4aJA3G+EmFhjeQfJH1+hqJgpHpkCaRJNimuts78qAj26DPn+1CS3EbSBMVjYE0NszoABuAinQco7NUzQ/3kKUN5HCIFonmjCvF6iQ0GEosnnVI8V1nXLIXCBi7Y/TltYnq49Vl0PfvI1wCgsFvjDEIAqs7CCdbJDAwYw2Cb47YtnX7bctu2c956FxFiP2zbBIC2hcs2gaSvCuB02c5tl4Docdume3DTjbnpZnmY+0cyP5s+H+/70ceGzeuqXiz69NUjLKoCbyx2kJuO6nkFHUXV5B10382jnijDvXqWABE7UXMj/RABFAZDsi26Elp5GARUwabBnVklSl8nvdLcVPidwxtQjmz922CwN6nQOQIeRpG3Shs0XNwPu1Rb5VF1tP+mtSkLZz4jAXc26V1xXTyG0vSf5dHrh7VBALA8mlC4zATAUmjRaC/MJ+m9NKTvWXRUc4yLb45bbp1wFha1n+K5jIHRoilSpXKeCJdt3utGOpNMCpnpG2cmSTExIETJOoiwb/w/lctA3y+Z2eHvJSgf3xNhBHY2sCj9ga0zRNyklkYW2h2nsw+9jPzahJomRh0Gy0ptEO+v365wvR6JucetP9coFheO25t+B4AAK7OEAwuG0flvayGsAxZ+gDEjNphBIl+LHig8mmPzeazRJmZIfj747LEGuGE7D8hs+/7tAoBUCE/kddkuAdFjt6TzSU/Mqh/o5Q0zAC1YB0Pn/Z+2I4DRphBc2rfY76a/07bC5u/SccanxXhe9WmOVZthkreoG6odNssa3D2d4dX6Cl5sruHQT6GVRxssFq6EVgGH7QT3uzlpiXxGxV59lkTTVIaDDA1P3AQOCkfdFIXuYOLFYA8iLuHBoMZD4ZXqCgrd4o9cfxHPvvsOcu2wchlmWZMGz9J2aDqLzht0MZX5ymSJxhtUzqLxBq0zqJY5jKYwwjRv6X1SIzdUjqNyGeYZhZxsLOHBgIPdp632QGUQbBiCgti4RhlvrzTEDrHfkFEEnGQquBdhM9Z4SDaIz5OPc57X0YNn6IpNddhoP0pM+gBgMpfYiUGoSAEqaozYTFAZD5XJumcBKncDsJRN275/8eknx2rRFZk54v9j5pUEMf2XcXW/DjQ2eecM/IP4EBKbM9QeUQbZUB8EDA0dh0aGQ9DCruCyRAuDFy65wfXPEigLw5pyfd07Garkz4bXLWXOpWNA6hfyWvA16EOvwwsiC746TwWFXQy5StZTluwYt8cBCNtCXWfphrYtd1Y7i+nZZCuQPtsyIL8tmKLwhF6X7RIQPXSLICLdf0H1GTSMhYLaHi4DtrM3Ycsy488ZyKR9ieXk91K4fYHxIoyf2jc8xYdW497tXdQdZaW8drSHZZfh2uwU//3Bc5jqBve6Od5o97D0OW63u7DK4+XTfRy7CRbRaJFftc8S4MmFPmjhyrTPTHXQymNiKJV/4UosXYGlK1I9s+v5CWqfwQWFb73xeTTe4LidYG4bZNqjdQa5drgxOyEfoND7FjXeDJx3y2mTQltcGoFrnzXe4LCZoPO0vWWXoXIWpe1IJB1dp63yCJmHWapknNkLcGmAbSIos8pj2eUUslOUHcYeMewYDGAQjpGTbRKDB4XWGSzqAlrRsczyGrOsSXXPmD2RpSzIbydOoKbXE6UMLmYyUv8CfBc9aqxPYSAACE4n8AQA7SojZoizK9W4Q8euFtmjvrZXHxbqNTUSGYgumtiYfvLnxiEwXn8sxmY3Zgy2g7RvYkmGDJWHQmG7PoQa+wiHlbX4zRhI8drW9mG8wfeKzBqT7keeTxK698xXEIBmk68SgzppuChJAAYVfRZcDJPG/6VT+pPMljor1HbWOo+y3kXbthBY+hs9KNokIn/bp+Vftgu3S2PGx2gEhMIA/AzuUckWDVaUy2z4jp/mxt+Lp3UAWCt9IJmggM373tTSemHjsaUBnAfXTmFxWqIsW3RO4/5yiklGE8TvV0/hij3FB8pXcavbx2ePbqSnzDv1HG1GRoqtMnjQzpAphwfdFB/d/TyaYHAYPYimukGhWwqHQcPAY8+uYBDwSnUFN/JjtIH8WuoY9oIHOm/wwE/x+Zdu4H3veAPXylPM8hpaERtzv5pintUwcbDfzyssuhxVDHUVpqNyF7qvRxaCQpm3Sa/TBY07qxmen5OXULvBOK8LGuV+hbpT6Zp2jUUea1pJQSgDssZRGr+1PoUxeH+sc/GjcJpVHkFR1hofa25JGHva5mgj6zXNGrIIiI9Ak5xMHGtR2DYBA4BS4wH42CW6WlPIzzp0VQYgwDsdAVHsLALsKBUQJIhK/adfTkn7ifieJvUNzA8CkmGhnNCl4FiCgs6ZtYnJJIHysOwF93PJqPD2gb6Qq1YhlbaAM71TdWy8DXKo9oDTKfTEGjNmw9hjiB3CmRmC+C0CexcNhOG0nwSKzOb7fFuYjq8nP3ww0ypDZlLHdhbrwcyRvGbD7zc/c29jds4UX29ghrbv93ywtA0EbQJDa+tis/HkWdv/SjV+/n3cbVy2S4bo4VvS6PQskfio/+OsHraJCVIbvuNtnndvS1fsNTbpjPX5u3NuhvHTpXLEgLWRJbo2O8VOUaXvC93i1BeDAqxaBby23MVxV+JuO0ftM7xe7eFBN8UVu8TS57jvyJX6QTtD5UkjVMa0ewDYM0s4KLxnehsPuik+d3IDALBwBY67MoqzNVYuw87+CndO52kCyzXVALs2OcVv3X4aJ20JD4W9fIXSdLDKE6OSNZjmbRQcs6Fhh2vT02SeyMLn47ZMnzXOUBhMTA4H8yX0TgsUHiZ3sHmHurVJ8F1yeE35NLHkxhEDYbo0GLPXURsneGaKknA77tMmpoK+4wyzMhaw9VDJnqBqs7Qdaxx8ZFIU+kmOM9BcR2AISqS+s9jXKwGKqJkYRpOiYAAo53VaTo3BPeLkz1loA7Yj1gET9cPGjIgEM7LPSXbB6P6cJCt0vjcRLWeiiJ6tFjhcKcMrMq2d65ONzyeJpL1O3kP0xQYQCMRr34ve+TsWWcvlx9dgmzRExf7BDyuSRdtkzAgMwc+2dlGPoU3beRQwdF7bFCI7ixG6CBi66PdvWgtP6HXZLgHRYzfBAqVxjYtbXgR2j56QB2GqEbjhB+yggL64a0jM0WCcEGAtSGC0CSSdN77EGyZlOZkA15J7c5F1OKlLtM5gt6jQeh3LaljUPksDLkAD2e3VDl5b7eM/3HkPDhsyS2wjM7T0OXzQmJoGnzl+FrXPhF6o76q1z9B4i3lWY+Uy3KvnyXTRB43OG3zw+ht4z5V78EHh3nKWQmJaBVyZLXHYlDhpS9SuJ0mr6PQ8y+uB5sYqn8BLF3SqPXbcFJhaAhuF7bDsMnShDz1oFTCb1TBFlyZ11xo4r0mr5OgceFmrCZTNbZOOiydv6U0kJyZOpefPJ7bFLGuQa9INWeMGWpDWU9bTLCcNFOuUmLkIfOwxdKQQwzfRsNF1pi/8GidoNg9UOkQw1IedtA1Jc1Svsh4YhB4UDTPEgJ2d1dDXB31YKIX5RoCF+5ec2HUEiBJEskePFFaz2aLcJmm4SMfF6fgaAbklD62mI1BrhBhbqQAT2aEUghwBN6NpaueMM6WRAGUYZbOla8LjyRayeZzGPwZ5PXvGy/brSH0ah8gG2xfHzmzmNjG0/H9Tk6aO47a2TfTJAmcxMWd5Dl2EoRmKxS8Ohs47rsv21dkuAdGjNBliGnwumCEVcKaOSG5LgiIAa9ST3J0CpXJHPQa5/w63d56E6cy26WlhtC2lATiFtrJU+6vOyRF6eoSbxRFut7sAgPvdLK3Dg+Zpm+PV0104r7Foc9yvp2iDwVEXq9lH7dD7528kY8alz2HgU1HXTDnkmhiUNphkkkgvj0VHJTo4Nf/G7CQN5AwajqoJjtsCXdAJyHAJDWYBOK2em1U+AaC667PJePBkc0XWBjE7c3XvFHneYVK0CJ58aRpHx3PclClbrfMaVpNRY2E6FDZWqRcgS5ZaYK1SFtkv53Vin5itYnbJeZ2y13wgR+KmMyljblqS55LRVKurL0MRUriGGAkPnfkEdBAnV5M7mMwlr6XUbxh46Di5RuYo9TX0rIc2xDidHE/67hjIBoBBkZwAmY1hA8YQKL1eTmzjDDP6rAcG3q+LsKXOyAWVSqiwR1Hj+mzIsZ9QFz2BOrcuXGaQ5Meh7tDbFvD/vIz3G5aP58CZaGPGi9+lPxE3mfkmr2ViNkUoUvoMDc5DDDgD5mbA4uit4bLz2rZt0nafDAjZJqgG1rM1t4qwNyz3VjSedh73ddkuAdHDtwR4+LUOgKSZYVpuZHi31rg21Khjyvtfsj0S9KgQQRKGxNQaSRWG21kbW84abAahDSRWoHUG07zBvcM5ZqZGqTo8aKe472a421AIjAffEFSaqLmWUuMMVi5LhVq5ZdrhXjPHoitR+wxHkUFqg8HS5ThpKXut8RZT22JiWhy2E3zx5BqOmwK3lju4s+oB2WmbU0q9J92MjYVZKcOrS8fYbCmkOXhHoEwt7fDGcg6jPe4vpsh1b2rng4rGlSBwZcjA8R037iMEharJ0Hoq/7HsclwvTrCbVWicpRCe9qQn0j5mNfXARzbJgMjK5lzktvUGZQRxLPTlcNy44jmzJ7l1aCMDolRIGhf6HzCWtERQfeisF0EjuSynMjex1MZAIwRmPvq+FTx6v6Eg0+Z7hoj3wSzIJh+e1NcEqybPsf9sKF7mzzVCSk+Xy0sLA54Mh1qj/n8jgEfaryKA45xeC9PJawy1HsYbfI9hiHAc/uPaafKcvd8c7lJq6K/FfW0tpITepXps98BsThIfxweTi6Tnb2JnvpJtExA6C+Q86vbfVIAUntDrsl0CoifW1OgdSGhEpXpP2NzxJLCSA2GE7mOcMl6EP9x4/z0E+mcGitdLxyaX4ad9E5BPW5ysCgrDeOA3774DOhZjNQh4fbmb1tsofIxhnNpbdMHABY1S0+SdKQr5sHcR1UMrI2vU4dZqBzoWVwVAjJEKuLecpfT0RV2kfR9X5SBj5nhV4rgmNqrzOoGQtSfn+JQsS3Iwm7TsMuzF4qkH82VilHjSkG1ekKjZaA8XhbatI8Gzh8LK5cTU2AZWO6qX5ntRMDM9uemSTkiNJpPWm8Qm8XnsFlXSFjFLlEqTeIXWM/vTsyZsYujY80aTCaGxvY5H6zBig+Lk67UwFwyDyV0aDHLfGvvtDMKzo2voYoHUcWPmaFPJih6wDBkmI8pgyGPSICBjdAQHyiexceeG4SL+m7cxAD/idwlBpQQJx+LoMMwU498giaWDikVc1043ns+6juqsdt5yLLA2msrRbAoZyQnej/pZWuZNnlkfBnRs0w2l/y8IhsYA6q3WEl0yRE+uXQKih22R2u4N1CDA0JA9SpW55Uu2IN5T6CysbWcAigbf0+dcMHMt0hafytPnevzdOtga7nf9qySwFs7NTWuAuwVOG9IA8YAhxZkhUEkJmSLOoZv79QyLLsedZgdH3QQnrsTS5ShUi4UrsIjp9febGV6r9uGhMM8a+EAePrnuUOgOnz0kkTVrfa5Oqd6aZKVy7ZLYuHN0LFJfxD4rrTOp9AUAHFWsUVIJPO3mNSpncVCscG1yOtCwLNs8PSXyhNFGgHPjyjG6CIo8iCWrXDaYWEhf1CQg5NEzJOOSCdwKQ/qWVQwhchmGuqMQ3HrIKaTwDrMpHGbJrEvZTRL48N66mCGVAA2DgFQsdsNkHYa+OuyKLV2qU/8DUj9nzRADMWZfZEugxA91O9LlW4tq9OzLMwau7ONDPk+kLbJRRN2DKZ8YGinyTscyMm4csD0RCAVPF5OZH06lH6TGxzT8BNjEuJPE6Wk86r2R5H7HzBlbBIzduV0gD6xJ1sCoHnCP+5mc/Hs2dH0a6ZmfdZZoGyt0Uc3PRT6T353HCgEPD+Qed/3L9vZsl4DoUVoEE6kUQQIzYhEFXAh6y/ViqID3MRj8xtvh/2XhzQ1wP4wBlVwX/XcphDbeTfxsrTSDDmhqcp2eFC3czOHkc1dwt51j11b43PIG3je/PaDXeVKR9Z58ULi9nOPF0wMcd1SUtfbkMu1AAun7zQy1tygi8DnqCJxQurpLpS+empxGYTexRlPbpkG7iD5BDIbq2uJ0SQzS3dWM9DuK0uGtIg1R7WxilZ7dOYKHikaKJHiunI2aI5dAFYMiFkEzAwMQu6NVwLLJU0hNgkM+D891yOKxZ4b8mUIEkDI0BlCGGwuyAVFuIQKnWfQ34gmudQanTR4F1ypNpG1LjlDOEVhMYTMdYG3UKXUaXaehTYAeOE9HoCF8dbaxG2uZZuh1RMwaDRYfs0iIoTlmXni5uMyaQNf3ISqqA9Z/Z8TvxhqgznHIr5+4JTjg9RJoQH+t+3MPa6CIQM34YYfZMF4Q/YPR6NzUaBxgRk+rkLIix3oiFpevOU+P2JBJ1qbQ6rhJMGRjf9fCoJH1fMDFs8w2bf9JLr8tZLUJyDwpLdA2n6KveAtP6HXZLgHRQ7cB4zMetEYTwXmDgvxaDoQjUKS27G/jdmQbDMASMIlz4O/kuzwm/nM0SPvawDVU+sHEbboZ6Vx4Un+hvDuY8HnS4adS/h8ADqsJ7tdT3GtmOGwnqL1NIEjHtPSJIeGvDwr7+RK5dli0BSpnsXI5ll2G65NTNJ0daB00AkrbJj2ODwqzaY1re6dovEGmHbrIbDGoAICd6F/E2wCI9Woie5TCWghYtDnVJotV7KvWDs5Xan2WVY5mleF4MUn7ACjsx4VZc+2SnikXgMsJoMTb41Df4Ek+sk8SwLEbsfMaRgfUrUUR9ULOKxgbtSOROXGdTuCk60xihTTXMmOgLHxw2NCSQQdPzjvzKvU9FlenPibAhwTcqe+J8huDiu7cjdUwEy310RQuYxCznZFg0JOArbipnABUTtSaM/GVzl0x64IUouNTlMehRueewGBasD9G1mHJ+z/ppkBgrw8XMgAKyKxLppuDsiNqeH5KBRS2G4Chscu1vEbMovLropP/NpCxEbRcYJvbjm0bGzRmuS5qsHjeMWxluxC2DstfiTZ+Hn7Y12WjdgmIHrqNAEUawAVoGPe0szrcBlZm+H0/wK4Dmf6QBoOoTMnfcgqD/cf9rAE4fnodAbzk5NspTCcNTlYF7KwFctL0ZMrh/bNbWLgSndcp1Zt1KQORtdgnMzVZnFjuNzO0QaPQHTLtydAxaNTeYmKI/dnNSCNTe4tr5QIvHl+BUgHHVUlC6rj9xll0MUOrtOQzdHVySoxArPo9HtwYiDC4AGLIzHYoY3kMDsEdVZP0dxPPV4IyniyZ1fC1wY0rxykrjEN7AJKYOr2LbLdtWhAOrQ0AkgBxDJiYKWicQesJ2HH1dOlpFDx56HinoqZnlNqd9EDUL7g4LB9jSruPk/LJokzrbQyPxb+V9im0JkuHSDEyZ2+NQ1NKnB+fjwRJTrBXifWB0GKhv9cywcJtEl0DPbvEQMuDwq8cukuhOtUX11XxvlTyPhYgj4+PzzmBqOj5xNtIafMYsnKypAhP2DJjUKkeELBNwJhxHJ+zZL/GzM8mRmV9me1hs/HfD9POY3MeBmydBdi2ga3xuo96Hpft7dMuAdHDNgX0j7UYAIr0pCw/f9SWYljDp+axhqBfXvy5qcbZwx5XmtzER2Kz/AS/OC2QZx125hVU5nCn2cGeXWGqG7DoWTJCHorqJMWJbTzRAojMhsFBfopMeUxMCw2fjB4LTenoWgXMbI2qs1h0BRpvUXcmeQi9+PrVVG6DtUL8ujY9peNvCoSgsKiLQQmPg2KF46Ygw0bjMI3sVK4ddrN6wMhULsNeuUphKvZ0YTGzHEytonpgdtZuHEgpXblngNj/SIPErpPIdMkm/5fmkSzKlhOaVuSlw9lFMj2b2QRrKIPMWpfCYhy2MtYnViMEJNNA7g/O6TUzQtLvCFDBGiPdv/o+pgbvgwyyyFzJENg2NoN/AwnOaHv99xyC5PBmEpuPjoGPw0Q7hrG+hrebivbqXpvD27DGw1qHLHN0DdP5Y9j4YcOL7Dmxj8H5hJ4t4lIdDLz5mBnAWe0Hmj4GRplZz1w8S4A9BgZSVJ2KDJ8FHrYIl8f3whp7I1idTczOecBlWyjrLFB1EZB01ndvGkBiYefjvi7bJSB6pJaARQRGUsczEFnj4UCIaIP+KdkeJcJo8njOPVYMKHkZ3lsblHm9c+4RZT2806iaDJl2mMxrXM9PsPQ57rY7CcD0jNBwkvGgLCeenArTYZ7VsMqlp0qrXQRXdDCT6Nnjg0LlMmTKo/EGizbHsstRWEpvL2yH6Q6ZD7JJYWk65NqRiWRWY2pbLBsSMy+qIjlG36+oOO3N6UkKgwFUld5DDcwZAQIfNycnyQ07Ny551uSihhhrlJ7aP8H+7jKBqiYyNZXLwNoMCXK0CmuGj8xc5dolITjQZ8ClST70VgcATXbOa2Lc4ktrTyGWBJL6SZHZDWviZK5JNM1sTWJgAgbrremAEjiRbIvoa7Evsp0DEHVCowKuKWML6yGyAauRwNj2myOFVMVxcVHfcQYZL2MUlVVhwCObEfokZofkcbGpJLNfAImqx9cxMcLiutE1jVogduzWPeBLjCRGQHHEZtFvHNK7ZLzkNeZlh69eb/UofkCbwM5FQMNGIHPRUN0jAKGHaRdhkL7SjaeHx31dtktA9NBtMLCPgc/jtNEAw4UiNy4je68AOf3KD7lvJZ5Ut6wrQVgKowUV3Ys1rPHYm1b43cVNuKCT67RkgMaD9abJSiNE3VAcyFXAG81uGoCnusGpK9AFg9K0aIPGQbFCrh0O6xJ75QoAMM9rXJktSe8TNArbxcmPWJvStCQQjcBlXhJ46rzGfrGKWV86TQQynLXNQiDXXfrOap8qhvOkyttgH6BM6JUYMHFYDejZHlm6Q/ocDa7b6AmbQVg6nqj3yCJLUNp2kE3Fy3P2WwopiVIUnJmVWze4D+SEnvoI+2oBmJRtAjx9h0JyvO6BUeyHKgzuh9RfRoVS06YEmOH/e5+hCAT08Pr0WqSeLRqEz0ZAi5k+1qHJ7zh7SzbZt/n6jr9jJimdQwQ2Y3Y2RLZYM6OGPiSWMsb4/FjcLNhlCZjG55RphzGQ5G2Pr4Psm3IfwMO7Nm9jeeQ+L1I6YxtYehwg9LjA5q0ER5ft8dolIHrUNghdSYgdWaOLjA9x0f5/ye2HtafscXbYGrszBmYbmCFgNDHJbacJZcsyvGhkj5SlUhTGUlHUzpH7dO0tdkyFQrcDdmhTkxPHTl5jYtqUTVboDlY53KnmqD0Jg5c+hwsKVjk8Vz4A0KfCr9qchM5R9DyxLRpv8IVb1xPY0CpgalvMLAGgp2YLAPT03niT2J/K2cQOVS5Dx5XptSMwxaLS+JtUjsqJaEVFZPPoMi2zlbpo6OeDShqe1pm+ZpkmB+7cdMlXic9PhuH4PFjjJD/rBGvBnzWOGLQilp1gLyPJImnx2ztPafch9KnnqXxFnBS1GYaixuwffQiwiHpaNmvs0JjhGXayXkMka6IxSNtUkwzos7+0DvBeJcBL34W1yZ9BFKWa931SbjeFHePvlEUGSVa75/DYGBhIUMnLMgsk+8agjIl48Ej6oMjMSTYrsUwCJDNLx8vxfcdiennumdDI8Wfjdw632pEOSIbHLtK00LhdbPmLgSJe5rwMr4sClIuEwc57vektPKHXZbsERI/TBoP5WngsbAYn4uvhugJUjW+qTdsR66wBp037G4Oh8b6kXil9Jw43DN/5HHT0IzqsJtifUEHVhSuQKZfKcQBD119g+HTJT+kcFuKirvx69/wuDtspMuWQKYf9bIW5JU3PaVfgOGaaXY1eQLeOdweTxM2DY3RB47Ape/dnFeBjNldhek1S4wwaZ1DGz3xQmEfwREDGovMmhc5SyrwzSYPEkw0gvH6ENsjG0AdPoMsuiyAsw7IrhEA6huRCX1KExdJ5yuZTqJyNXkYWresF7HxOWgW4CO6s9uRvxMBhBBBC6JkWrakuVxI4qxA9i9Sg/6Z0dy4zwZNyBCBVk2FZ5Ykl2gSCUjZV7IvMnnDf3plW6Vzk+SmF5JmkFGVX5VEXY41f0wHxeTLw4//pt+rFx/KdmaMsFgmWflPUf/t9SDE2AcleoyXZtLGmSp7r+rXprz8L4OV5KMUhzB5083FxuFR6LqnR+Y77wLYXr88PCJwRyQarnSiPI7c3bmOws4mNGv//KMDjosuetdyjAJw3Gxwp/2Rel+0SED1e48H9ccNlG7a7MaNswEphsN+BJugsJmjb/oDeXVg0CYDGLE9oDVyrkWcON+YnlFHWGby4OAAA7JhqbVfjAVNOjnn0N+FCrhQ+a7FnV3i6PEou1VPdYB63vZ+t8PzskJaPg9AHr7+BL792bbC/qW1xrTxFph328yWxT7Fu2OtH5KjNvkCNN7DKpww01vb4oKMHSxjsj/U+yy4bhL6A/snceY2TukzLzosaTWeiJUCXztdGILVja+SRjZraBvOsSdeJwVUXdBKMn1d0UyNg2WWw2ifXbQkEAQovMaPCobNxDbQEMgagB4OMMKpaH8Xl6FkbTq8fh84G2ZnYrPM8XRWDc9N68+TpvKawXtR4qQhOM+3S78DMifQLkj5Z8vc1gtkYh5wY4Mh1OBQ1Xm5wrKYPFcoQWWoDsNmH1qRNhdxuf07xIQAqFaflZTcdvx8du7yW4/BY5WwE7Hnqd503W8NSm/6X2WbbwMK2Y9m27FmMznntvOXO2+/bgh26bE+0XQKih2xpcDu376v+7TxgErAR5DzcgQ0PaACKNoXAgkLyJEoTkjheMXFtBFYxDGZyB+d0BBxLvP/aHXRB48SVqVDrprZp8HhQT7BylCq/cGUa0AkULTE1DU3kukvmi1Y7THSL3byibDDb4m41RTFrUsr/4ekEt5dUV631Bs+Vh+mJdtEUMNpjnteD0JPMOOuLx1L4jBtPKFzGI4WyIkMxy5t0nDxZfeHeNZSmQ2G6dF2ZlWo8OVZ30VqA99F5A63IGZutA9g3SRo4dqJ+lTQc1KrXwFSdTYaVUgfEjEoSgJuhtxGnj3eurw9mWCQsXjYWeFXoNSccqpFAivvQJlaEgcJAN8THKbRA7CrNx8xNAhLO/JIFcmmZHrhQiY51sCP/T7910GuTnxbXUa4z3tYgRLjxnkJyvpelVJg9UmJ73J+k47QESHy+cr9r4vRxiBNYOy+gz1gEmCWlkPTUNolBowcD8bCwNXQ1pCIuAqjO+/5hQMnDLHfWeondGoXq3hJwFJ7Q67JdAqJHao/LCDEA2hLWeqwmnrTTR0pkrvD3cpkxIyXCapvAUHpy9wrBKVR1hlunO7hbTXHc0JP8whXYs8uzD3V0nFVLT6ArRzqhQrcwCDCs3VAOhe7ItDFkcNDIYkbaXrbC1fwUpWnxYDXFM/tHWLU5CtNhdVTiuflRAlO/v7yGQneonMWD0wn2phVy7bCfVwPHaR74eTLodUM9ayDZmVWbJQ3P1LaJmQCIKepELS4KY9HfzGaUUTvEmXQs5uaJJtdUMmRum43Cbhn64XMYf5+y0yJoo3IffVo2MUBA25m0nbYzaDsTHZwVjPGDjCkW9loRqsqsEOuGdTDABV+VCokxGbM+SoVUIb4POfWhPD5f9hzic3deo+rId6pxVN9NitF5W2NjRcnA0DWicicManl7AKJn0boGymgPI0BLCAqdM4MUfBma61Pm0LNl/H9Q6RqzFskks8X+3FlP1VsRiCKzAvDyNR1P1gxaBxN+fE+WFcqnBAXuQ50AXZt0PNtT7Nf1RNvCZuP2MMs9KQZncJyj8xuwxSMN05sWMgtP5nXZLgHRo7dBuGpTb7pADwujv8OGzx/meAYgZzNj1O9Pnc9KbQjJDbalAtwyQwhA3dmUyWKVx2lX4D/ce99gczKVefA5+oH8fj3BymexRMcUle8ZmUz1WVlWkZaDABGBpjZo3K1m8F7hoFzBeap5tn99EQXLDnfqOZ4tDzE3Nb58eAV55nBzdpIE1bTtIeCpo9PzYTNJgup0HHFycEHjuC6xaHO8erKXAMZuWaX+wewKX4fSdqi6DI3rtRc+aKxGdc2AfvClOmpu4Ki96dryMfF3BKhcYofY36j1BmXWJhPDEEhQzYAms27A8jAoMTFVXwIf1vNw9tqgbbxF+Hfvf/+ki4tgXAsX7HnZgE0P5TnLMJKLoMV79rmSFehjHS/V63CcOE4ZdpOAxwlzUdl35TlyOI6XMRG0pVNlbBj6rL5N2sCUsMDZdopC2db4NYG41CXJY0peS+gd0mWT2WXMcEprBp7cN/kLVZ1NfScXfmDbgMdFRdFrn11ghh4DuCfFzmwCauPjHO9nEGp9s+mWSx+iJ9YuAdFXrJ1B93CYalPbBpK2bXY8qJ7FMqmAZPjIjsFroCiM/h9tQoKkLEDlDnneJb3G1LaY2hY3imN84/5LYrJTo+0MT4wZrNJQZtnKZamumQy9lbrF1DQoNRkbZpqE1oXp8Nv3nsZJS0aLGgEH0yVK0+Ij11/Doi0S68MD18F0iWd3jgDQ0/9xU6w9gTIossoTmIDCoiuSuBnonxqt9qmAqw9USDY3LpXK4Otw2ubII3tkzTDThzPNaBskhO7/V5jaBpXLUNpuAIo2TQgyBZs9khgYWaEv4YwpYk16toZ/a6N9Kp/BZSEy69KkmlkXhcMY1EBjIXAKi6l4XUPfj0IM823SIslwnjEeVWsH5Sg43ZwZK2kLQewS2z7E82DAE2ifbkvYyGifiulWXQ/IW29QdRlqZwcWEs6T0Sj3R76OSiHVRUtu1gK8pQk1jgfBKXIGBzFoxsZMOgD709WAkRpn2A1AJfcJ9N9zk95EwDC8tmr7c+XGdg3MnE5ti71shecmhzDxfLVgTc9qm1iibd8/THtSTMxZYGocEjvvGN6SmmaX7bHbJSB6MxuPvWfdJxueGrf+f95ykguV71sHkLDxz63NA7bskGcOIcTQTxzoFq7A1FB2lnxKP69Z7ZGJwZJDTstY8R7oB1NmjArdwUWwc7VcIs/6J1erfEqx16oXMJe6xdcfvDqoAwb0egnS89heYB3DLnJgTOU84uSZmaGvEO+fW5l1yKzDss3TOpPI2PBTOrNEvD8Wr8pjzLVLT/DbGAstJsy1p1n02UeTWMOKQjt6wEQw4NARPGsB3M7y2aHvRw+dSmhtzsim6l+0jkK/X2bYZMr6plAQsUh67Zi0CoPUcxYjy1T5dM1ADBtfu20ZkmtCdpHVxdlv8vpocX7DFPuolwpDxou3flIVaTl5nvK4gmCH+BjkcUpAJfsui+vTdRJ9XGaRpT6d/LHcQH+lR+Hk8fY2tYuAi/M+P2/bZ23vLFZp/GBx3nGxqeqb3XhIf9zXZbsERE+srYutN9E7W5ocVMPoffz3YKfnfJ+WGy0wGMODeG2gmM66U4KCa00KvZzGid5qh1vVLhau7EMfilKD06pbmCOrPdqgQaaIfTFWHxQqn6ENBj5oVD5LgKgNBBreufcAABLoYUaHB3L2FbqWneAXXvkIrmULfO72U0moLBvv87WjPapPFlkBWcCV2+3TOXLjkn5FqYAH9QQAgcRp1pDTs3HQ2uP6dIHOkxbjpC77iSeCIQZehelZIJm2z9oiBlxWhKhYZO2DGrhpSw0Ni7hXkf3onIFSAbl1CTCwJmeWN5gVzdokDxBjwqGhXswdBuwSsxcDzYsi3ZCxLvUvHTVJHCK6trcYrCPDT7RdOu66tUl47AUbNGRQhvoqPiYpqmagkkVQL2vXyZfsH8w+eahBP5VC9iLrEoMlf4cxOBzXeAtBwTudxO+d04P9s3ZIpuF7EU7k0CZrmOQx1zHLkFvt7IDt5L6Vx9Cs7OuUYWbTOTAAGuuxtrVtLNGTEFf3x7SuhdoUWnucNma47IitfVNbeEKvy3YJiB67XYz4eLR1uJNuYoDUlu/P2/Z5uqFN29l2g6uA4DROqxylpcypZUceJYu2wO1mZzA4nJ7SU+5Y+yEN7V492cPK5Vh5coquvUUbDJY+x8rnWLocbTDYs0uYWCsNAH7v5DreMX0Aqzx2iwpd0Lian2JmGnTB4NbpDpZdjqvFArXPcHg6gQsaH7jxBu5XUxxVBGDaKKT2QVGJj0lFnyU9jh6wQwDw3M4RTYDKYxGf5J0AJrWzmERn6MK6VH2es8IWTUEp/jJjLGjU0Ryy8TYCJR3ZIp0mcZ6MSVvUT7pyewy4ll2G46bAUVPi1mIHPigs2zwBORPdtZl5MCokkDEtm6QnYo0Qh8jS8gOxL8TnPgEWKVwGsAaeeLK6v5ji2s5p38UVvWZFbz/gPR+DEdlvwxCR/HvM5kgvIwDpN2QQLeuC8Ttfz8E5oC+Hwd+xaJtF50r8nVkHE4XnxnoyueSabvJaRENMCb7G5yUF51oJ64N4T7Veo036pt57KYnHRWhHsmN8rklsL8rUuKDiQwsB+NabkRbrbJZoLbz0GADiYbRDj7Kfs9ghZsQYDDFAZKborWCLLtvjtUtA9DhtE7JeAxoXuCnOZHDO2JTa8Nr2OYMPt23jG7Z91rHEYy7mFI7aKSpcK5dRa9NgntW4V8/xv9/8PQDkBJwXHerGphDa+KkbGKZMA0AdKJ2dUu013miIeWLTR60CDPrsr3lWYdVmKKPj9cxSbbRrk1McN6T9+fTR8whB4Vazi6ltyMm5ygnEgLKKcu2S+HSe16On/5654mNgncW8rBGCQtVZ/N4dcsg+KJcoTYc7x3PMcrpeyzYfnGcVPYw4nJVrJ8SsQ/8W3i9nvbGzNk9gPBi7CIpYN6VVSBlX1hAIamI2WWG6ZOrIvxcDHg+FurVwTqcsKqrRRsfUjZi/8cQtQ0A0afvUt5ILNZAmdu52d09m0Cpgf7YCuzaf1nncD5Inko314gb6Gd3X/OM+NT4uI5i+lLI+SldnUbK0IBjXMOvLmgS0kW2T/YLZE87Mk9lJed71vkQ6pDFFPiysi6aHbtXD1P7+uOQ2Vk2Glg1F4+/lYjhsHDbc1JhxBJBC2l0wOHV5zETTA1D0KG2ctfVWtTGY2XQsPoyy8jD8Xd/Mps4JhV30ddkuAdGjN44wibbdY+Qhe5tcfAxyHqUFRDZH9YPuuTseUvjb7pj6uMBzVw6xn1eonE1lMZhWBzhMARR5i7rK0qTJLwmKctNhYpqU2eWCQu0tTrsiZWAtXYbaWyyjZ1EdSGTsg4aJbEjlMsxsHTPRKKV9N6+xayu8vtzBlfkS9+o5nipOkBuH07szAMQQSc0QAJzUJZXj0G7gQ7OJmgfixI+ASdHifj3Bbl5hals8d+UQWpHwnFkT5zXuncxwfzFNoAZYZzOSK7Bg0zxU0m2RtmNoIqhUn2lWdXQ92aAwXW/rogA4hou0R2F7jyRrCABN8yZpszhby7neX4g1SACQZy6xRZwurhWBHhPdm0mr5HrTRmDwzuDJB4XjVQnPZUa8SkAHQCzRoaNmiPtbSCEr1qDxtZCp4eMSNUbUKQtBpVInfG3GYIQbezTxtR+6Y/ffFZZKprTekHGiDiiyDnnekYA6skTaRo8nxan2fo1Jk9tOInPTAz8+Vg0Kt/H1ZOaIs+IAAkZFtBionB30ZdkPS9PioFih0F1ihmTz4ezpZHNY7OySHufpe55kWwNCZ2qftpQyAY8LFxOaP5F2mWX2xNolIHqc9ih96CKhqjE7k9bZREmdcyAM3DYCqvO2Fc4/3qDwhS/dxBcPr6JyFq+e7uJOtYM3lnO8sZyj1C3+txtfpEUDCUc5PVlOHEzpV12GiWlxkJ8C6I0JAcBBYdnlOO0KnHZFcrS2yuFKvoTVDrWzmGUN3jG9j9erPdyq9lCYDtfLk+QR9MH9NzDPa0xtjc4bvGPnEFeePsZpk+P1W1egVEDd0cSwbPNBGItrm0mBNR+nTUwEhY86p3Fclei8Qa47XCtPk1M0Z3OxENsHhdOmiPqeGCqLAImzzXwYlQCJDBGAVGpEDuqtEGOHGEaTYCgVBo3fG+VRZm3axrLJEyPDvxE7WANAntEkyllnzFZwhXoJODhExEDNGpf6AH8mGY1ek+Thfe+1M/YqYvZHiqoTc8ehrPg72ejj07/o/LPon8Rgk9brJ2qrfPLpkfXf+oyxIZiTYUHebm67gegeAHaLCoXtcHV+CsXZcrmDyZyobUbXmQEeA+mxLopfgwLMsWndm25yKC+VLUGfes/HO25ahWQ3MbU1nBgUuIyMBAASGJ0nRL7od2+H8FMP3vwgWeKy/d+nXQKiJ9E2gYYBAHnIMNX477WxIIxe48+wEQSprcDogsclB6XRNu7f2cHLD/axajO8fLKPprNYtjlOXInjrsQ7dx9QCQKvsFrmA/diHrw9FOpYPoMHwNrbNBB1MaV9Ypr4lKpSyIw9Ue7WM+znFa5kS3z2/o207hW7xIN6korGrrosmTzeryc4ejDF0ekE093VIGyiVcAsulgzIOF98eQJIJk3Jv1IZFpc1O4sugKdNzgoluncukAhKwYD9xdTHDUl7qxmWLRFBD866Zc6MRkTC2ZJsxUL0nJqvVUetbPYyWvMsibpmFzcVmlbFNFLhnUymSGLgEw7lDHzrMg6FLZL4SmjPXbKOoGIWd7AxLCVMR5l3oq0+AhOPBeIdYMsMgCD5YCh3oebSZN5/5lkwJQiIFFmVFyYgcxYTC6F0/z78HlnMTwqJ7nCdMlvh49tnMlGICUMtFTEtAzPJQSgbm1aj9tpk6NzGqsmI9F95lDkHazpWS0GOVpm/ImmVEAWw5hGLM/hRA+VrACYGZPCcy5ZwuG0TWFsuo49EObvs9jfJqZBpvpjGLMjF2ddHs/YcMzcjsNeYzZXvo+Pcb3OWg+GWLs3bmOW6M1q6jHCZPJ12QB7/iKX7U1r3CnH99rjhebXAY3CxpDfQzWJjeJ2moa608JrXJmtMMvr5C79od3X8PtHVONsm44pBIVllUcBMTFC9IRN4moPhd1shWwDHb2KBSfvLWeY7rbQCHh6foyZbWCVw9LnKcV9165wfUIMlFYei6aAMgGuMyjyPiwEAKVtU0V5AImxYZCS2Jio0yltiy5oZNql8FvjTRSmusFAWbd0Tm1L2p0sc2g6i9lkOZh8fFBogkkZYrlxvWPyaJLicN8sa7BqM7CXTmG6wTFrTaBJpnFb5dEEKlliRdacZCaaziKL4CZlpBmPSdYmIbYLvfNxGLEnAOC9jnXTyL+o29AfZJ0xKX7Wo23x+bjQ11nLjYMLCpn2cL4Xe8tzVRE48nayyAL5oFLocDxRbnKmBvqJ0IA9ndaXmeUNTpscu8V6fT8JTKZ5g6PlhLaqeuZLGidCE8jam6zSMS6aYk3bxAJxPnavkH5PDfr9dAwFagAePdjO1ZDNSucagVGmOroHDaIdhgeiJon7gGxS+zb+jOsEnrf8o7QxMNkGis7exmZwJzWEF9n3V6xtCxw87DYu2yVD9LBtk5HbEBw8ZEjrSYGdi+xPYzvo2rp+DJud11O8QneaY7UoMClaqr7eZfjy8iqeL+/jXjPHwWSJnb0Vgu+f5Dlswk+tZUEaJKsdDEhMrZXHSdcX9+SsjjaYFHpqvE1+Q7vZCiYCkUmsg5YpYlDaYDC3FRpnMDEtXl3u0+WIhW0zS0CGDfmqWBA1hV1UXxxVDnhZBCmZCAVNswa57bBoCiy7DI23JLIulpSVl3XJEdlYTqEG7i9JT8TFZVMqfRRcV9ECQKZHl6btPZWSRobEzzJUI8M+Rg1ZFFmWoTAdctOhjCVIqjZLWWjyd/OxhAbbDcj9cJgs9SSeQETYB+iBD4uOadm+a0nBtARJKjI0PgIxPp8Q+pIV1njk0YYht12f6aXdGvCRmiONgMpZMtA0fahPHlMS2QthNps+8v9A71M1y/sMOf6cgdBuUWG3qOC8xrysMSlaFFmXQl1jtkOCQx8U5nmdgI7UQgHkIu+8SiaRQYA2ZjM2hbHTcW5hjbiZLYzIWt0y1e9z/NlgufO+/woCjbMMGLft90kAt8v29miXgOitahy6Gt9jm+6tbff/mYLr+NigRhu48L2rRtolUG/hQWHDIBACEDqNk5MJOqcxz0lcvXQFam/xhw5eRJ51UMbjj7/js2upw5zS/Ylb78WeXeFqvsCeXWFiSNcy0S3mhiYVTkEHEEEBhcLetXcfV/MltPLItcOuXSFTDq9W+/jmq7+PZ4sHMDEj7H4zw8vH+zhekV+S7zRWdYa6s5hmVJj1yoTqsbFBIxklDkNXDI5cBC+LOk8Tr1WegJF26LzGiydXoFXAYTVJE1uWxVplmUPrDazxCQT1RV8tVm1f5gNA8ijicB3XOsuNGwiuC0OhL9YhefSaEQ4dlabD1LbJe4avK7s257ZLk38bj0EpUdojiqpTTTHlYyiqD3lJMbBSAW1H27kyW6VMLQ43cXYYT9AcshsKr2kdDt2QANzDBZ0AFIcFp1kDE7UfJno3aRUGaeUy1NJFATYzg7Kfcm0yl46XGCBmNWSm5E5RYb9ciWPezDBxmLYwHaZZk/RFKRQm2CyriZHjPsgaoGnWkDaKrw2U2G+/Pyu0YzJkOK6BJ1kUDqfx9wuX43a9k4oQ03I+gXFp1ijbJlC0abnx/s9jdB4XrGwKkz3qtt7spi5DZk+sXQKiR21nhLU2s0SjdpEO+Khan407CqNlHuYYBXJTGIKi0bkGr+BWFpl1qDuLRZvjTrOD11e7WPqcJg4T8OLyKm1uw7XicNDcVCh0i1K3eKo4wcpT5hgPwlazU67Hrq3SZ9w6r5OR40d2XsGteg9ZDJ/l2uHFkyt4z5V7uDJbYjohoNU0FlZ7LNscqyYbiJWZtRmEL+J+6q7XiBS2BxSclcYT1/PzQzTO4nhVoo3nmVmXMrjKmInkIju07DKsYr0zWWRUCoV7obdOYEaW52CQM65rlRsXC8q6WDKFypPkUU/EQE+CDmYWmFHgiY+OO6TfjgXVElAkQ8fOpFIfIQAPTie4uXucti9T5bmNtTPjxiwQh8e41pcZAZ1Z1qTCtqxZGZdekYyIXK60LZzXmOU1plmDWd6gyDoSoqPXJYUYditjiHYMMJIeacM9KDVQDEgZOLPdwV65wjyvB78l2ylcieFWWTuNt6sU0rkzoO28xk5eJ8YL6IH+uDH474JB423SrA1+J9bajEDRprDTJgCyDTCNl7to2wqgJAA60yNpHaidx5jxNtWbFYfy4cm8LtslIHrkxv1Hif+3iasHK4jPz2KHzrrfzvtuq3A6iNdZy2G4zJhhGoOi8Wom4P79OVpvsOwy3K53UDmL2lt8y1NfQDlpiNERhUFlhpFGwBdPr6P2WQybtdizK+xnK+yYCnNTJ2G1UR6ZcpibGqVucZAt8f/9/Q/CB42pbbFyOTLlMNU1/tu952Dg8eLqADdLyir7wv2rmGUNyqyDNhTmOTydEGAZsUE+UCmN45iGfxjfx6UfphmBK61CH4KJE+uiK3C9PMH1+SKxDJylBQDLJkvhmbqzOK5LnDY5FYHtDE6jViSBsyDcs4WRYBJY674yOR9Ppl0CUgx+rHapZAkDLgYzk6ijmuc18iiylmzNJGtTUVVumyYidlHugUEvmr6zmMPE8FCfSdVvQzJHQA+QGCw0nbB5GDExzKAcFCtMbYt51qQMPR1BBrNm/HuN7Q+4Rt3OSAO06TxlOFhWuR8vL4XOkgHi/bK4XW7XRkAz/n059Np5HUODfC38QNNUd3bwOwFAFY1D2aGbmcnxNWiijq/1BhohPYQAFDbrz3EdFMnPt7VxCv5XSpw8AECPAIaG/w+n0PP8nL4iLTyh12W7BESP3DaBidFT2ZnrbgJQX4lOuQ30bANfZ4KyEZBKYCZ+HJcPLaXXH69K3F3M8fqSXJGvZqd4aXWAad7g2clhyl4am8q5oPH5w+u4Ve/hdruL1ltkymHXrHDUUaip0B0M+ppmmY7hJu3wwRtvEAiyDVY+w389egFaBXzrjc8DACamhdUOz+wcY1VRWv2Dkyl8p9BWNLHmWYfSdmmyYT0PgAR4GmcTMMn+/+39ebBlV30djq+995nu+F6/HtXqlmgxCRCTBRa2CYNNgBgCmHyDjTE2FbtsbMDIONhOkZSJyzHEqWASEnDhwsSBECjHYOOhbCQbZPgJgy2JQYwChNSSen7DfXc4097798ce7j7nnnPffa9fD6LPqrr9bp9xn3OHve7nsz7rw7it2GI6DePCjZQwSDxq6azV4zBdoaOavQqkuYc493Fu1LH6ksjLrF7G9X9xtUym3UnEVMsSkwJzdS5utMSMySMC4zwAJdKSolEWIOPMRrFyQTHUxpYmgmMeKnKiJlLjbzN1RIY9rxE92/tARaGc3qfcVlKZ6rVpZRrs8VzjQwNTOUeIRKTTScYo0aTEjGbHjXwpewNm75MlTFQUoiRWD2QF3sXoElAfdTCoSvu4FW/lFJGJNtlqSirQcyJDbsrPENTMEdszIrXn0FSnVzbRNEQvoBwH28OCS7VxVLfvM0wjnbmk4CBgkLYMv3gNzvu9gtTURYl22vR1kXRW03C1wVZoCNGFhgSKYSTMkiFS+rsIStvW6RPqtp+/nszZXv+cKBEtS4qoXp5TTGIfjAksBTH6QYJzWQfL/hiMSvzld5+A5x6+B889/K2ZX8aESNyw9wSGPACFgK/L3BkR2OOP0Kap1aj4hNsv0UwytGlqU0XmF6xqfUFw/2QFp7IlMEjkgiFiOdKx8tlhTEDmFHLoI/RzpJmH9VEL41xFbL5zbq+NyBgicW6zgzOjro0imYnXlGuXhZmUSAzSEIM8slU+aebBY8IKn7kgGKcqRdYJU7T8DKkumXfvkZmUCqRAe8UAQJulMG0FyhVTJmLitvfIddRplAUq1SgYxlmAhHs4N+4o926dVuuFMTqaFBoRuQslvlYpMSMoNuc1ZGfqMyRtny8upxVtJkrmkqFpo1TY9YYMmPO6/kHusQBg7HSud8mgcfp2jS0jlttISdvL0NNu5WUyU/W8POkSUiQ75m+VcLcMM9EvRRP0tMt51aQeMF4YZ6BTr64+z9OmmO0gLRzbcyKL5ZSdeW8b5IIh1hWda2kbq1nbavlYidxUYZHUmRvpnCdy3k0sEh0qby9Kn8lLBfPb9Lwe2zzn2972Njz96U9Hr9fDgQMH8LKXvQzf+MY3iuMipPLxX/7Lf7HbJEmCN7zhDdi3bx86nQ5e8pKX4IEHHjj/m7JDNIRoh7BfgFt9Rt30Ut1692/l/qX/24iMnE+EqnRO89JkdiyyenkB+lNkejDNHEuCMmlJQttL8bX1g3hosoyDnU0QIrGetfH3Jx5pXYjdtNnd565CSHP4hNvIh09U5VlElWYjE8z+OlXEaCqIzSTDataGRzgCqgjKk/vHseIN0fcm8HRlFojEmVEX8TAAmLoO3+NIc4Ys9fCdk/shJEGvldjJwZCIq5Y3EHk5Rum0R5sryC0bN5q/PuXYzENwPo2kGAEyIcrRmEL5HwW62ivOfMS5V9DWuL5DnnbRVucwHcqn+iWgOAmbcQpJMLCeR8TaBRhx8Dj10fIzDJMQxr05EwwbccsKthXpga3SYkQi1JoekzYxQl5DnD1dgWYiD+Z94jtGi6T0vpuZtDD1FAJUk1JrVKlTQC0vQ6Q9hUyj0rL2JaCKTACw3k4m8mcqCkdZUKl1cT9/i2gHy6/BPAhJ0AtjLGlRtiHCbqSrUu+kX/NyF3ufTo03XeJotp/aQ0zF1SOnxYx1S4eTQpNT53RKRIEUGZE1gIVTZ/NIUfkay8vmoS4yVLXvImRoWtAx3XbGVuBiRaMugVP1bbfdhte97nX4h3/4B9xyyy3I8xzPf/7zMRqN7DYnTpwoPP7wD/8QhBD8q3/1r+w2N998Mz72sY/hwx/+MD7zmc9gOBzixS9+MTivtn240Gh8iHYA1xtlIZTfa1X6obr95qS7qnxRypqcXYMd82KDl4IgHQbIWwk8IvDgcEmXOatUFjAVQJsvEka0GFQPfcIDhOEGuKQzkSBGBDiUcaFRWkQ0Q0gzPL53AlRXVHW9FGupasvhE44vDY/C9T1hAcc4DkB9PQlEHMNJiCjIkKceBNfmdjoSkmmPIY8KRF6OOPfha0+fUEcVzC9uIQniXHkBmaiRSXeZ1ia50z8M0BVzmih4VFjfoRGmglgTgTHn8nS6x+iIBNTzHLr6TAukBdcRDjI1laREwoMa71g7cPuMY5wFkBJoB+ru9qMY40xpmYyWxUzKqgeafs85E4zpl2YqsQAUysUBRQSFTr2Ye0YxbTmi7o0RW2vBstPnzWwjiFoeMFXNR4kEShEfoGimacwsC/de/3+YBTPrF8F2vxvce1Hn02PWlbctb59KFfVkREBIZqNzHhM6nTklLx4RAIXVTNlzmPeErqgsw55T/wkon23sqtNpdhnklv5EZpvydVetr7p387AdYrJIu43LtdrsYuKv//qvC/9///vfjwMHDuCOO+7As571LADAoUOHCtv82Z/9GZ773OfiuuuuAwBsbGzgfe97Hz7wgQ/gec97HgDggx/8II4ePYpbb70VL3jBCy7ClRTRRIi2iZlfgaXozfwvQzL7tO6zWkeGFsSWKbQ6LLTL7MDcX/M2YkQl4tTDehrZ3mQx9/Hls1ch5xSfuv9ReNqB+0ueM8AT953AY/ecBgC0WWJTZj7h9kGJQJumyCRDJjzbpwoAeizGyWQJZ+OOMuyjHAHJ1baSouulONY+g3Ee4Jr9q5CC2AeoRLIWYTwJbAuFzTREnHs4NVBaqMQ4ROtWFsbQD4CdjCnRk4CuGEvFVKRKIW0JfOjn4EKREBMtMs1WPSKsjmkpmiDwVLQoZDk6WudiS531L3LfaStgiJJx1jYGk66g2kSKhlmgIik6stP2UxD9fg5YbquojCGjRwQyrtJqlJg2HdMKMTeNFXimUa7Wu+jSd5+qFI4xUsz0vVOTZ7HcXUhS+AFgmqWqUvNpub1pZGuut+unVvi+nkYY576tTky5Ev2PdRWfiQCOtfeU6zllqux2mropa4S2g1kh75QkmWieu8yMXVXGFY1GjdDbpPFMKxlzncaqwaRjCVFpXuuF5Ywl5UyZkJJpx3eDaaRoKrAGUFmOXx8JmhVZL4p5Wq7yeecepyIqWEyVlQwlL5AQfB62nR6reQDAYDAoPJIkWWgMGxsbAICVlZXK9adOncJf/uVf4md/9mftsjvuuANZluH5z3++XXb48GHccMMNuP3223d4N84PDSHaTcitwubSeWjMIz1VhyqQh60/eFu1RpjdYetN1CWQyvFNtUQSyCnynOGhjSVwQbE6aVsS4TEBIShuO/6owviYmeSJwLI/hpAUEVGpMxcMEm2WqC99XZrv0xwMEifSJXxz8wCOdVdxTbiKfcEQqfRw32Qf/tnSPTganoNPOJ7YfxBtL0O/O1GEiBOwkIMw5UlEiEoHmrYL6voIHjy5x/Y4M72+3Oqk8i/7jXFkUy5cT84Ry+Axjj2dMQLd46sTpNjTGiPTE40RRXtE6ZI6fop+kKDrp6pM3omABDTXqSluo2MmaqR6qfGZL3czEVKi3KxTratqexlC3XsrzhXZjHPTlFddVyaYbeFh/rqWAVyoFiGuKaQxWDRaIEOwzLhMusxMmlaQbft66ciOxwsk2kTsmLYNMBP9chAXvKNs+xXBsJ5GAFAgql0/VWaMjGM5iBF56h4b7dGi/auKXkn1zUlnUzXzl7nvKfMw5fK5rvIzZK5wvxhHP4xniKZPp42BzTlsdE3DHGtacq/+DrMAZycdfGdjb6GNThWRKWMrUlQkRudPiirXbZViqyCw6p7TGYK6k+PvKuQuPQAcPXoUS0tL9vG2t71t69NLiTe96U145jOfiRtuuKFymz/6oz9Cr9fDy1/+crvs5MmTCIIAe/bsKWx78OBBnDx5cuHL3000KbPdwLwskqxa74Sdt/rcFCJFNTtURJum7Q7K7Q+2me4rn0cWBuSsk4DU7sM6dQIiwTkFpRKT1AelAvec2Y8XP/Ir2OON8OFv34hM9/Iyg/ep8hSiRFWSbfIIPRZbQiR0fy/zRdljMTiI9RsSALoswaHWQEeREjy5cxyn8j6+O1rBk7v322O0WYLHLZ3CmXEXAMBCDpFTgEqIjCHVpI9LpfXhXH0ZsoBjlAaF8nDzyxoohvnT3MOezgTDJMSecILIyzDKA3S8FPs6Kt/OtImkYER5BjGOtUlbX28xnaZSb2JmkjQdyAHVhoIxCU8SxFxN5qlghX3MsYxWph8q8nB63EU/jK2mphskGKYhGBWIcw+mCazH1IRh0oQhy7GZKJJhohEp96bl+c51uCSJUYGcM/guOdKk0ZTDMyLtPmmu0jgeUzYAgCIy6nrUmD0tuE+4hzEPbKTHTQUJSTDOfURebglT5OXo+inWk8jeG6sLc6oM6+DeX7cSrirKUIW6ibb8WhtiZ2B6ljFNhI3WzGwTeRni3LcCdOkeR6c9DWEup+hcIpKXyAAlspByA1ytkEqdqa8KlaJ2014mfeY2hC2kyrRGUchpa4956bPtoJqglrrXSzJDhHZ67IcTjh8/jn6/b/8fhuGcrRVe//rX40tf+hI+85nP1G7zh3/4h3jVq16FKIq2PJ6UEqQsILxIuKwjRIso2aWUeOtb34rDhw+j1WrhOc95Dr7yla8UtrngSvYSESkIrrciS8DWURk582SK0r519vvbiRRtWa3mHn7eoQjAU4Y09myUJQwyZIJiI2/hedd8A/FGhDyf6mjMl0+XJbaajBKBTDIMeYSxmIo8TVheSKo1KFOX5L2Bcpje4G2czXvwCceLD3wJsfBxNuuiTRMISXEm6aITJDiwf4Cj+9Yghz6IJwCiGtGaMYUen/JYAmyst5Fxhr29kepfpiMQbW3GZ/QXJoJysLuJfdEQRzobiJgShR9oDW2Jt/sAgI4ur+76CfpBjK6foGu0V0SgxTJ0WGo7jQNTUatJXxgyZLQxuaCFiICJPpnlqkRbfSUMdQQsd6I9Jt3lMUU4WjoaY67ZNHB1oxemx1vIcp1Kk9YZGYA9H3G28Rgv6I5M77TIy9CPYrT9FG1NgvpBgranfK0GaaQF9NPJzaR/pmlEYT12pJxWkRkPn3HuWzJIoUijIUvzUCXyLUcZtopybCclR4ks2AnY63UqCjOhbBMElIu4We4K802KZ180smkxYOqCbsYScw9tLVA3633KlQM65bYAgkJUltkXzjdHaF1HICs9iuru43mmyQymkbj6arK6PmcXE0TKXXkAQL/fLzy2IkRveMMb8PGPfxyf/OQnceTIkcptPv3pT+Mb3/gGfu7nfq6w/NChQ0jTFGtra4Xlp0+fxsGDB8/jjuwclzUhWkTJ/ru/+7t4xzvegf/xP/4H/vEf/xGHDh3CP//n/xybm5t2m11Vspe5RmXaqCg8rD2AIReLfI6qyFP5+GQaEVpUP1S33Y70Ry7MPZAEImU2EpCkvi2HX/ImkALIYvVLPOcMS9EEfW+CTDLceuqx2MhbOJ32cTbrYsynZEhIirEIrHhzLFRT2EwyfG3zqsI2jwpPok1TbPA22jRFm6X49NpjsJp38MBoCY/sn8PpM32cGvQgPaFSn7p6TmpRMHd/9TMBkTCc3ehqUbOwKSwjnjbpBaJ/RUcsR5el6HjJ1N2ZZWh7KQ61Ngu//o0potL1ZGixzG6r2nNwbGYRKBHoeAm62qSyMJFARUzcFAZQnFDMOdvetA+aMQP06LR9iKlyMjC9vWx7ETElPcovSRQmXeO6nXNWEGOb8ZhzJtyzRobKs2gqCPcptw1jJ7lvq8YARfwCynFVa4BhFiHmPjzCMcgirCYtTDIfm1mot1Xmgm50ZKAjYBtJBFdTRYnEOPfR9ac9yKqEz2XSU364mp5FtC3l47r3qryN61outaao66c2ahf5mfJi0kJ9cyy30W1AOVaTduG8xo3dVOW1vQxx7hXSdaGX42hn3VZ4mr/T4wgrlp9xq3ZIUV0KbatWGuY4dUaLdfezuHy2UXTVNlvBHe9Fh9ilxzYgpcTrX/96fPSjH8Xf/d3f4dixY7Xbvu9978ONN96IJz/5yYXlN954I3zfxy233GKXnThxAnfffTd+8Ad/cHsD2iVc1imzrZTsUkq8853vxFve8habm/yjP/ojHDx4EB/60IfwC7/wCxdeyb4oobGoSTktcp5Fdi/wrfqBbZvwlM9rnk8Y0OJ6fTE1Ai1SBpWq6Ws3Qb8dYz1r43C0hofiPQABmC/sBDhMQ9x+9hgOtEaIMx//v5PX4XErp7A/HIJDIpNMRYyEhx5TxEpAaVpMWuVY5ywAJSre5ylifNQ/hzOkj0P+Os7mPfT8GBHNMIgjbEYRKBMI/BwTX/kR0VBdkxQqUpHlDOnEB+0pMW/YT5BnSlS8xKZl0SDTMu5zcRtcUCTwsBzGqqcYgDFXDtwZD7DkT7CZR4i5cqWOOjkCxrE6auNwdwBGVA83AOAgmHAfwyxCLilGeYiQ5eCSWEKUaZHrSHgY54ElRWOhU0a02JLDTNiAcjE2JGF13LZGinE+baYaeBx7wonVkRjkglryEnk5JplvK+pMs1HP0+kRkEIKNxOqN5iv92dUQApq+5cBsNdmWk0Augw8p4hYjnEeIKVMk5hAkSJaTC26FYCBpyrIYu7Z9BjRKbVhPiVDlEhbcVbGvFRYVUTI3cakfsznqJyKsts4aST3Xrvr3cot4w9lWpCELNfmlIqwD9MQkki0gqSgKzNi9EA3KTZpKXN+I9Z2SbTr62TAoCNWxIxRR3Kd9JdavlgKDRJOqxwza8/qeHYSFVqE6JixqL/VxLR8zEXTaw9nvO51r8OHPvQh/Nmf/Rl6vZ7V/CwtLaHVatntBoMB/viP/xj/9b/+15ljLC0t4Wd/9mfxq7/6q9i7dy9WVlbwb//tv8UTn/hEO1dfbDysXrmykv3ee+/FyZMnCyr1MAzx7Gc/26rUL4qSfafpzvLnal70p+ozuBWnWXBcC3mp1BxLBmJaolC5gdqZeqqTeZIzPDBZxkbeRiYpvE4GnjD0ogSEAAfaQ2zELdyztg+A+vLpezE8wsEw9TWJ6LStQSYZQprbUm1fb+sTji8Mr8GmaOGhbA/uTfYjFj42eYS1tA2fKGfoA+EmCJNIUl+JwWM29Xoaerak3A/z6RcxAfywaMBoy961PmWYhPCZSi0BQCYohnlgU30qzaCiB11dLWU0PYc6m/CIsNV5lAhcHa4jFZ4yWzQpLi0SToSHCffhEwEOFbWxE5ouNTcCa0D3gXNet4hltoIsoFyZU+qIDgC0dJpKNew1xyg2SU10BMFUpLmpMbfVhyE9kU65mXuacYbHLJ+x78OQ5ba6y0zKbS8ruCkDsGJic23j3McwCzDOfRupA4CRXmY0QwHj6AeJraiSklitUUHPUorUlFGbLkN9lGPe/xeZeN39jGs20a+1uW6zv7WM4MxG76yBp5cWIkLufu712HJ9KtD1VZpyOZxoUkNnxjR9Pj+lVJdCK29Tdd2L3JvzJUPzjreVePxiYTdTZoviPe95DzY2NvCc5zwHV111lX185CMfKWz34Q9/GFJKvPKVr6w8zu/93u/hZS97GV7xilfgh37oh9But/Hnf/7nYGzW8uFi4LKOELmoUrIbVlrONx48eBD33Xef3WYnSvYkSQolh4PBYM7gFrkCN8RjZtsqcfKcXS8w5qXPirokHS6SUFGgutSfczwv4DjUH2CUhnhkV0VwQprD8zl4wnR7AeCes/vge9z2XyJEYiJ8hFIZAPpQRo2McGRyao5mokbqV7cAI4DIKa7vnECbJvjs4JH4gf63wYjEd8b7MMwCfGlwBN+//z4kwgMf+9h/eIjTsQeylEJyHcXoTKvHwmBawswJRTLxsUEk9rZG2ExDCJ9gOVSl8fuiaVrXpDAAIJcMm3mEJX8y/XUumE3RxLmHfjB93+WS4mTcx5H2Gu6d7MMwC21kw0Clv6aTUt+LMdHNXjtego2shUCLn02aKRUMbS9RVVWaYKnyd2URsL81wtALbDSCkqmXjynVNrBCXBCEVImWE0fEbPahRGKSqaiLaXMCKNEvlxRXtadpbqO9EpLYPlsBi22pd9UkZMZkrtEQIRNR2kxD6/rtEi1KpI2OmWsVktjXwTTYNUaHVdEc87ygcamJIBX2d6IkMyTJiSC5+1YRFwECnwjbBJgSp48epK0KBGAb3CrjSX+GuLnRPpvKJYoIUUej1mOpJn5FcuFGiWxUyLw/7fVMI0HufXAjRWUhda3IuiKKVodFTCHNfV7kOHWv90WFM6Wc1zG2s/mCBOrnf/7n8fM///O166Mowrve9S68613v2t4ALhAeNhEio2T/v//3/86sKyvSF1Gpb7XN2972tkL54dGjR0vnXPAdJMtPiPPANBW1KOnZLjkimDnlwrtWXCMh+kvaRJS0oeH0HIbsFffNJh4eXFvGKAnw5fWrsJ61ENIcz77m22j1Epw520c8DpDns78MHhwvYZgHEKD6y15FQczDVKAxItBmCcY8AIVEi6VKmA2BkOZ4IF1BLHw8vnsCEctxuLWOLktw73AvlvYr92weexA5hd/KIROGaEml5cznf5z69j5QJm2XetOZ3v012/Yy9IMEEcuwPxyC6vTX6UkXuVPufShSZHt/a4SAceyPhpogKdKwnkbwteO26yKsGpIy6yBMicBE+EiEhy5LEbFMl9zntpmpIQmGNHT9xEaLPCJwsDW05f4RU+m7g+2hfW7K0I1vjyEBAeWWMFAi0fIy1VqFKeGtW/2k7qfycxKSWA8pE10LtdfSWKeqTIQi5p6tdHInrGlKBfb8LuLcKzguc6FsBIwjdZx7aPmZFZG7miHzOrpkyAjB3fOVo0JlHVF5+6px1qGoyyk+d+9fGeYeJdxTAmjtbWVE9GYbkyozmjDzXuj6ihCa91zKp6Rxq7SQIUrTe6AjhaWImavhqfIqKjtWu/uZ41SRlzq9UOU457xGxXGI4nhL43KLGy4qLoFT9fcqHhaEqE7Jbpwwy5EeV6W+UyX7v/t3/w4bGxv2cfz48cL6utL1euPGqu1lMbIy9z1Zv9IVUlcKqt3/bpMcVVWnFY5PS4Mn7jJzHgmZMaSJh8NLG0pfk3Rxz/AAQprj+w4/gE5fEY88U4TIFX+uxy1MeFDQSrgVZgaGGA15iIhmWPIm6NAEHZrgocky7ty4BiMR4qvDq1Q1EU1xJu2pChuudCxBL1XpPSIB3Xcr5wxp6iFzquFMs8xumBbSCW5psiIKOTqeEj2vZy1FWLiHr6wdgpAUifCwmUe4vn8Kh6MNdP0UPS/Gkc46Yu6jw6bRJeP3kkuKM+MuTo27hVSRkBRcKp2RR7m2L1BpMtvXjAi0tAib6YkvoLkVRq+nEfq+ei3aXoaVcIyIZRjpqrNCilALrwFFSqpKt43uxGiLDGkw98mU8eeS4vhwGbmkONAaIqDKO8dNV7nRqjLmpbMsUSHT/mZtXd3HBQWXFKMswFKg7AaMZsiM26QIDWEol9S75yiPrz5lU51am9nOJVgoEiLz17wnjP9TOeLDHBJtdFrG1qDrJej5sR2Le49TJ30Y6RYygWPvYP9WTCOm8TIr3CtFJhikI7YuEZyaCrStSNE8AupuW77/O0WZ/JbH3ODhicuaEG2lZD927BgOHTpUUKmnaYrbbrvNqtR3qmQPw3CmBNFFXS+zeo8f6TzM/+dVo5WX14l4qs+5UKVZRZWaXVYiTpXHmiF/TojfNHnVxyIBhxTT0uaHRn3ldiwpvnL2EDzG0e3FaLWnv87NjxbjVJw7XjocBGtZB2ezrqouEx5Mv7MDwSZ8wjHmAUYiRCo9PH35u3h09zRi6ePkuIeI5fjW6ABGPLBf/GdXu+i0E/R6EzAmQENum4NmmwHyXDVjncSByhZmSqw6ygJbASUkxTgPbARoWvquXKQzwbAnnOBAe4hMUmSS4sHxEr66cQge5TgYKSH1atLBV04eggDB45dO4UzaxXrWQsoZYu6hF8bI9XNANd1U/joUuWRYTTtosdRJLWh9lSYtIVWTm69LpiOmIiSH2wOspy1bzTZIVSNan3Hrzm20TVN9k7QpN097KnlOexGzTcqZ7cbukamHk2oEqyIvuWAYZmGhlNyNCNWlq6rgkgbjZm0egNIeLYWK/BkxsiEFpjS/THDNWAvnKUWFzLbl51WTdh0xKpMrd7nrd+VprRZQ/MFiCgxyodKDe6JpijZgqo9f10vQYhl6Xow2Swsl9YZA9P3Y6tUUOXRSpXoZL0Xs3PvvluGXo0JV0SL3WssEo4poLlYBVqpeW5C41L1uOx3HhQKRu/NocJkTote97nX44Ac/iA996ENWyX7y5ElMJqqqhxCCm2++Gb/zO7+Dj33sY7j77rvxmte8Bu12Gz/5kz8JoKhk/9u//Vvcdddd+Kmf+qndU7JvFWmxvMdlG7L0vLSo9kDOaYnW9dTxJKeKp5bUmHOWI0Z1OqYyQSIoVpW5x5SYuWTKJM6NO8gFxXI4Qcw9+ETgaQen0Te3XNt84RIi8a0NJbLOJEMifCTCxxfXr8Yeb4w2TdREB6nTY6qn2YFggDs3rwWgvrBGeYh7JgdxbtzBWtJCz48xzgOcmnRVB3aqSFiWM2Uo6QnkXDlrR3tiJUxNlchacPXRMZVUALARt0CJKr1XbtQ5Htxcsr+qE6FSPoHu5xZzH+tpGw+sL1svnzabisUPLQ+w4o+w7I+RC4Z7B3tt41gzAY2zAIMs1EJhNRYuTb8vipVgpEnQVFBtIkYhzdGiStjcYhn2RSPE3MdKOEKLZXbizaVKIxkBsnHd9uk0imKIhEm/ALA6Ic95TY0Dtumz5bY9MREqd8KpKnN3/wJF0W1V6sONaLlCcGPK2CmV1bt+O2aZSZUZ8fJWBGcRVO3rXk954i1fs3lEnkoxBkylKE36y9MmjJGXW6G10ZG1WKYIMwg2c2WWtycYq3Spto7o6siRIU+Asjiw92NR3U4FKVLPp6TIXebeA1OWX4gGzUm7zd7jxUTd2y2ZL0eqZsnbRSRITcps13BZi6rf8573AACe85znFJa///3vx2te8xoAwK/92q9hMpngl37pl7C2toabbroJn/jEJ9Dr9ez2v/d7vwfP8/CKV7wCk8kEP/IjP4L/9b/+18VTskv7j0YF+1goSqQXOb8E64jUQgLpLb7PtnK1Nq0YFClyzycrBeOCE2Q5Q5z76AeJ7SvlLVim+k9nj+IJKyfRYeqX7fX9U6plB+E46KsmsLFUYuIhj9CmCY5Ea+jQBD7hOJt2cCgaYE9rDI8KtGiGBzeXcLCziZNrfRAq0A1TpIzh7LkegnaGeBJAZBStXgLf5/Yq84yB+sobh0MRuc04tB3AI6Z0ON+3/ziEJJgIv9Asc6xLu0+Pu1hqK3I44QFGnGBfMMQ17TVc1dpAm6nJuufHeGhtCYf3bCAIEkyyABvjyJokCkmwHMSanKgv7GEeoOulWPYnWM9ayGG+yFUfMY9w5IKBQYJDiVWX/AkyTd5ME1Ul4la6IY9oR2l9I0x0yKRuTBrNeCnlghbaQZRTX24xu3HLdgnSdiJCM9uZzSvewoscy/VLciGd8c0T05aFz1Xndrep296sM2MCiqSJQunZyg1vKZHWKFM1+1X3ve2lqscfATpMGYD2PGAzj3Bt+xxOJX10vASjPFQNc2mOjawFIacGnmpMFLaVRcU9ZhBTYbV+zmtE0O4yK5pG8ZpcMTXkVDvm7mfGVZUic+9bFWz14pwvxm21DrmEUaMGO8NlTYgWUbITQvDWt74Vb33rW2u3ufRK9jJh2MXD1v1fouCavV3focL2VedxJxsOEF9C8qovRmm3s405temgiiowrKUd3Ui0eizudWSCIaMMXSS29xUHBaT6a3yKuixGQFRT0pEIkUmGiCny1PVTnBl3cf94DwBVnZRnDH6Y68aXQNjOFNek0kbBqNacEH1/mC9s7y4pCXpRYicfQGl+lHaojZDmSPXklUMJkoc61eZGxTzC8Y3Ng7ih/5D9os80aSFUYpBEaPkZAi9HrtueJNxDT5fDq2oyCugU3Zj76LIEHZbY6h2fCDshAsB6pnxDen6sfrELD2fStiVA4zywnkMmsuKSHHdScnU3AeVIBStEiNztfMohKLEp0VEWoKeFvLOTYfWbY9EJyoxxHhFyyUZ5UnQncOJMruXIzVYEriqCNW9chjy6xy9Ho8qVZ7lu3mo0WilnaIeZ9VyKWAZGJHLJAKEqHzOhrCsGeYS+F+Ns2kGgDUDbXlIUsVeMV4CC6wht1TUbUsTBSutUBRpHDVEqVZ9VrZslzudHRMrEaF7Zf1V06GKDCPU432M0uMxTZg8bOJ/TauKhwzg2dSadx/ZPst1eZOUxlZtPltct5F7tps6YhB/mIExC5uY6Z4mQEStnukJpkET46sZBPDBcghD1v8Rd9L0YXZboxpRct+AgiKWP01m/8KvV/SIb8ghdlmKQR1hLpsZhPuOY5D6Wl8ZINiKsj1rKVTvXmhtfl6mnnm1IKgSB1BPVYKLSDYFuvmpgNDuZZBjmoS6DL04q7vUNksh+Ae8NR7piLsWYBxiLAJmkePzBUxhOwqm+JWEYb6oU06lRD6dGPatdMpOCT7gigUw5ZCfCsxGgUR5iInzV2oKqaFHIcrR0hdpKOFal1kTaprIeEVgOJuj6qa1Ecydmt1LJrf7yqLCia5NuM/oXn3KsRGNLhlwsQirq4EYFtlMWXSZi5uE2a63Sk5S333I8kAvtYyNImLpH27FWaKtcYpRrzZOJ3qk0oYdMMHhEpc5MihVQ5ChkOfYFI3usVHg2zQpgWqrvRGTm3k9nbFWpsypslQKrSi/WaXzqokNbpTfrUmnzdEOXhBw1KbNdQ0OIdoLyPO28l2YmcSssls7GrnK5lGrazhgM51iEwMxZtwgJmok0lVJ1UhJ4Abdl+IRKQEdRlCWJBCHTNByXFN0gwXIY43F7TlWO16bkHKxnLZxK+gh1h3tAfUElwkcsfGSS2RYfmyJCRDNkkmGPp7U4kmFj3ELLT3F63EXbT5FkqoKsvWeMyboiRZRKcN3x3mtlgCRIcwZGJcIgRxBm6HViJJmHSebb9NB6Mm1eKECwkbVwbtLGMA+14JnaiS0TzPb7irwMXzxzGKfiPgKaIxMMsfBxIl6yE0pAOdLNAGdHHSSZarTa7sVYH7cQeDmWookSPpca4FIiMeSqdYUhjEa7EVA1+YW6B5jxD0q13okSqTVQxEaFjHAaUNE1YyaZS4qYezY6ZCYTU2lW1vIYgfVWKE9w81CnOQLqJ7hFx+Dqj7ajFXLHUdY7ueRoHtEqH8vdxtguuGSU6s9Zx09tZRkAtFlq05K+E8n0CLdEMCTqcyUksf5VS8HEEh9KZKGNDoCF9ESmGq1KZF0WWJvl7j0rt/iYlwar0lzVrlvwtSyQK2MjcImjQw12Fw0h2i3MrcYqLyiTI4kZhlHYrvwcqvHoVkJod3s3IlGzbZ1mqC7CZI5FiEQWe0g3A1s+T5j+VZuTAhkCpq0cNuIW9gYj3Lu5AlraxozZwHwRDbLIdnbvshhtmiIRPjbyFiKqDP7aLLUl+Pu8Tdw9Oao0RUwZy+WcYnXcRuRlGKYq4sKF6p9FcoI8Z/A8DpHr7vaeAGUCyUinjahy3Q4YB8+nqaOpaJfbzuv3rO3H/tYIlEhNHhxxq214qibZlfYY31lbgZBEi8c97AuHNpoDAP29IzAq0Y9iBO0MvsfRb8UYTCIVZTJpNkuKpD3e9Ne0qu6jRKDNMptGa7HMnsuIaAHYyc9cX6jLr/tas+SWpgOKuLnEzyVQ7qTia1+jlj8VkgsQ+3BRGY2ZpweZQ6K2S4zKRMWN0ixCYuZGi0rHrJqo6yJRlvxgNtUEqM+S8VXaFw3tMUKaY9mf2Em9xTL4RKDDEuwLnO1YbqvaRnngRITUuVaTDjbzEFmptcVWqCNP2yFF7n0w6yuJUUUkrg6LrtuKDF10kiR36dGgIUTbRaWX41bfA+6brbDtvAhRmSwVN7GCand5+U3tVIZZokFK68q7lMhOrWdRxbLlA5vKZTrgIFSqFJmniQ4VmhgpN+ZMMHBJ0GIpnrTnIUgJnZZQ93iaolDHNl+2G0mE/cEmukzpXU7lfWzyCEMe4t7xPu3Yq7qyd2ii+pXxFjKpdDhnki6W2jEIge25tbHaRRTk2By0QDo5PI9bXZDR9xCirkdIAiGoTfH5Pkc7SG0E5cyoaycrADjaX1emkoY46FJ5QxbcHl6T3FeGhcLDiXgJE672u3e4F0NNiOLUR+jlqkO7IGgHGSIvg8cEukFiK7xCOu1CPuQh2iyzDsOjPLS9z8bc19GP6X7m755gDI8IS+76fqw8ibQgHAD2RSPbHR6YOlKbdFpXt4Yw98REJwxByviUqM0Ts5ZRlf5w/5afbxfz0lp1E+tWhKB4rFmzvy1J0ZwUjqvTcgm66U2WC4blQPfc0wJ685r4hKPvTdBlSkgtpO6BplOoHuU2bea+hjH3MEijmfEYcGd6MdEhQ4aq7hXf4vUvRnmqS+kLEbcFiVDhHIUoUFUK7vIT21yK1h3fq2gI0Xlg4VRVrfh53puQlP7W/NclOuWIUYmIbUtYXdBFOcuqCJI+9mC9jXEcgKcMkASU6T5nmthQIm1LjjMbXSxHE4x4iFywaqJZukZKlC7lH849Al8bXYUN3sJG3saAt5Bof5RMMGSSqRYU0sNYBAiJKsPfyFsQkuBobx3L0QRrkzaevP8hPPm641hb7UBmWveTMWSJB+brHlCJZ++DEKpSLgxyjJIAe3sjJJmHc+MOuKDY3xki5j5irgwYza93k0ozlUvm133kZdYXR0gC3+P4yrmrkAoPE6Eq5o51z00JBeO2O3y7lWCc+spJ2VPOzraiSDKM8tBGljyiyNH+cKjPRe1kqAik6laeSaoicPpF9inHetJC3491xRGftuMgAjFX3kQRUyStrzVHZhIxneXt/x3ReUA5On5aGRGqQlWJ9HbSHVXHqztH3XbliXa7mB+FmEZDqghY+T66f80+bhUf4DSCBUHPS9DxEktKXF+vc1nHFiQM8hYS7qHjJbpJrHY313YSHuVWcL/oPeBytky/LIR2/abmoZw6mx5jZ6mwKlRH9abn2yoK1KTSHp5oCNFuooas1KbRKqMv2yMtcwXWtUSsYtm8aFDVbjUf+Cz2QD0BP8jBPDF1z9bRIUZUiqTdUk7BK/4IHASPXTlTKLc2DSsNzDLjB/P19YP44sYR3Dvah+PjPZjwAOupEktnUpGiiGRIpYeuFyvilKv1q0kLT937AI721nEkWsPXTx+AFBTEF5BjD5RKiJRBnGiD8+lHhOhf4VGYoRsmWG5P0PFTtIIMSephlKrUUi5UPzCjwVkJx8i0caK5Ftdcz7Sn8IhKJZqJg+toEQAMUkVspCRYm7RBicRjVs7iEctrODfpoBskaPupbkfha2JIbZQIUF/SQye602UJJjzAkIcISQYBanUlxvF6I23hQGsTHS+BR3T5vR6Tr8mRGxFLnUm2nM4RILV9yOahkqTUpJHcv+Xni5ynfPyqlMz5TLRq/1mH5brx1o2pvK/RaZm0pnmuPK8ytNhUb9fVhp2ZJsVDHoISiQkP4FPVFidkOSbct9EroyMzx4i8HLlURNiviZpUVZwB1dEhIdV7T0iKU3F/GxGd+nYcu4l5ZKgu/XrRSFEjqt41NIRop3A0Q7XVV6W/czvJF74jpPO3JgJkdiXSOWdNSs895CJYJEVGqq9dxAwio+i1YnhMf/HbRq3q4VOObphgQ7fk2Mwi7AlGiLwcZVSmJvRg1uIWTk86OD3pIOa++nKmHJlgOtrBsMFbGOaRJRapYDi+uge5UB3S75+s4BlH7sMjrj4DkTBIKpGOfZCBB9FWESLKVLqPMqWxMkQg1ILTjp+iHaXoholtvGpsBQJNRva3Rphop+eUMxspMo04Pa0l6oZTO4FUeEiEByEpDrcHyCVFmnroBCm+fPywTU3taY1t1ZeNCEhVqpwLZtMVIdFaES/Bsj/GIG+h4yUIaQ4OCgrVC81EiVosw/5oEyHNkQuGjayljSXVZDjKp9oiSuS0+k2Le9tMETTjcJ0LiiT3bD+1wutc8wbdigjNEJcKUlS3rzn+VlGnRVJl8yIbVetmUjzlc7oErCZt5xKU8jLTdqXc5w2A9ZxqsQw+FZhoN/W+N4FHOPb6IyWylhQHw039nkltmxchCbpeguUgRttLC2SBY9YmAJiSg/K9KFeoeZSj70/w4Hi59n66x1PXv7M01qL7LUKGzkewf96QUL1yz+fR8CEADSG66Fg8bTV/u+2W3u8U8/yBqsZBIw7qC7SCDIwKRdD0Ju5k5VOOlp+qvlosxzc2DuCmA98tTBR15E7IqfBWSuUsvCcYYZCFCGmGNkuxwdvWpDGTU4+V5WCCm47ch0xSPDBYwjWtVQCqASbxBIgnAUkg+zmkrjQDgDxVjUkpVR3FQ081Wk20t0snUBEvMwF1/RS5YLZxat+PMUxCZLobuSENAGzjVdM89WBnE8ZZWgmipx/TXjdGxhmCMMcdx48g5p7V8Bj9kIEhY+aeuQRokEcwrU5CZzuPFI+RCyXuFiDWdJISifWkhWGmIgvdkk+NOd8wD9HWneqHOp1nXlugwmSwjhTVRH62So/UkaN5EYTdSrksgnnXu9W1pJxZAuTqhwyMo3ngCPzLMJP7sj+xUT9D7nKdPjOd6zP9Xo60g7mJGtWXx89PK5pqRw4l+HcR0lw38jUR1e2155i3zWyD1uL/5x130cjQxUajIdo9NIToQmALIfJ2TRIBaPPnmuatmI0MzZCJefxpC25lIjtzI1CO/rvVViSH6uaoUhCb7jIVVZGXYzmMIUDR82Jc013HII8QMCWIdoXVtOaagWkaJhEeHtU9a3uacRCczXp6G4o2Vb9k9wRjDLII39+7F886/B2cyzqgRGBt2AYLxPRahh4gCUTGkE/UL2iPCQhBLfEwUSKjhen6qRUSG9HwMJtWfh3tryPhnm1XwSVFmns2bQbAevWo5zlOTnq2H1pAOeLEV2aQnMLzBGLuFbQcK9HEKcNWabNBFmGQR5gIHwwCXe1O7FNhq/HaNNV6IlVxtplHaLMMmaRIhYczcReAmojt8XWZvRF8G0JnIl5qslatJLikWAkn6AXT6rWtXIOL7RGqoyTnqxOpOs5Wx9ttkuTqpzzdZsU04y1fnyHSU7doYpe716R0ZBTLwbSarHBO3QgYUBP9sq8E1+b9kAkKRiROpX1QSKSCgRGJY61zuu1HhlCny8pRnq3uj7t9LlhlNOhY9xy4JDg+2jP3WMXz1pOinRCmWpI0Jxp0SSNFDc4bDSHaJVSmxlxitEhAZ56Gx9ELGefmelF38e+WcDJz20FllIoA42GIU5s9Nel6HJ6n6kcokVNCxHL0/Rhjrrq1x9xXlVGMW+H1POLoRiQCyq3vjvm1GZEcbZYgkwyDTPkRxdxHm2X47voerPIO1rMWvrx6GA+MlkGpQBBmIJ5QLt8tHSmZMBBPIGqlyLnyJWoFqlw/YByH2wNELEOce3YsbV1Z5foHjfNArfNT22ldET9pK3ag75Hx+xEg2IiV7inVGqR4U9kELHfHWO5MkAuKE+OeNkwcF84poDRIJl1IITHIVcVdlyWgUK+FqcoLqeqJlUmKDkuxnrXgE4FhpgiPaSMy1qkyM1Ga8RrNEKD8iYQkOD3pYpCG2BNOCo1S6zBPL7TIY+Z4C5KcedvvhDRt51x168opNKM7SwWz2iw3VelGHAFYUl6HacROtXEx5/P15ynQDYCVT5EW/ut0Wyo861005FMXc1c3ZP5fvs6zaQdDHuCsbkD8iM45nIz7TtRGbe+KvhfFhaoCu6xF0hK7oCG61BdxeaAhRLuIuRoh9zkpRnt2FDEqnHd2mYmALkyKFjxucb0sPne2H25GGMcBGBMI/By+x9GNEoQsR6SjKkILd40nTkhzPLJ/zkaFtoL9dey4QquJgWqDxhBcUnS0p86+YISQZHjxNV/BmIf49DcfhRNnl7ARt3DT1ffhhoMnsbQ8BlKqROBMAi0OySk8xuExgb29EVpepgwbicA31/eDEoHDnQEA9YVsJn5KJNqeIhHGsDDS1x/pZpz9MIZHBbqeii55pq2JnvBOPbSMVHg4PlxGzD3sP7CBLGcYxiG4IIhzX0eZ1CRlIkwmqmQaYwotsDbVPMao0dyzTCpdU6Ib7nraWDERKiWYCxVpMpEfQE3Mro7FNoMV1Gqp+kFiG9eW21AYLEpyCssx+3C3WeQ8Vevdv7uFypSdO94aCwH1XMwsM+lVc/+NUN2QaQDomhYoDkEo92ZzjRbV/6frQpZjjzcGg3r/hCzHkWgNFBKHww1wnVbj+vO2FWFwG7x2vBSMSOuGDQCHW+sAUGj26mk/q/PBvEjPoijolRZkDhc1UtSIqncNDSE6HyxQKu7+f2HiUyNgLhx7i8jTtqJDi1SXFc5fd87i9WVaABwwRYb2tUZOywcVcs8Fw/HRHpyedBHSHB0vKaTI5qXLgGmz0KkhIbOO1Uo3o4wcM8nQ8RKcyzroejES4eHQgQ202imetO8hfPJrj8WZSQfjOAB8AVCABFwJDiEhBEWaM3BdYt7xlffQNb11xNwv+PW4v2zNuJaDidZFUEsq2l6mO6tn1mkYUIJYQzC6e8eIc9WrbD1ugVGJOPHRCjOMkgCRl+Gq7kCdE0rEbSI5xuvJkCIGiT3+GF2WYI83BlCsBNrIW6BEYG8wRK4r4kzkoeBIrYXhgNY/UWEFty7aXoa1uGWPMU9cXIVaYlQx0bh2BoueZx5BWtRksOr4lRElK5yuqYqqIXhmLK5Vg9EMUSILhMEldDaiU0EoytdW2X8Mwpbhq6aus9EmCglfE46QZLVVZeXlFBIdNtumpbANUcdeCccz+9rj1hJfUfhbGIvehxFZeNRhJ2SowcMXDSE6X2xBihYlQpXeRSWistNIUoHAlA9RHr+s0ApVnJfUkCj3eqUATpxdQiYYlqMJ9kVDa+4X0hybWYTVpI31pIVH9s5hPWsDgE2rLfpLPeNM+fZw35oZcj0RdJkyZzR+O6M8xH5vE3cPDiPyMly//zROTXoACB5aW1JjpxLgBMznIJ6AF6kIF88pNsYRBmmIvq+aqe7Vvj5GR2OEx6nu/WQmLCMwNgQuFcySCpWemLZX6PqpdXo+0NvEiWEf63ELwzhE5GXgnKLlZ+iE09ScSdN5lGPZn+BAuAkAGGQt+yseALikGIsAviYvHFRXmE3v9VrWtum2kOU24pXkniV1RvPkTvym3YcAwTALkApWcKF2sZ0UmKuLKVdkWWfrBcjQIu+nnWxTHieAWYKjyZAlPyVytJ2oVC6oTUmacxl/p4jlNjpk4OqF7PsAxBohclAwTYA4qG30KqAiTxwqGhQL33pmtbTDOSUCfS/GmbRXOCcjKiVcuDcQSIRnI7Z1kZtTcd8+X9LapjpsRYp2giqiVDaFXERrdNFwvhVm5tGgIUQ7QaVgufwAaglD1bp5uqAql+mpZmm7g3ePW71+V6OnEtjcbOHEZh/fHuxTpePCw4lJ36aRhkmAb2/uRUhzjPIQV3c2alt4VEEdk9mqlSEPp7oZIm1fsIhmGOYqjSYkwdXdDTyx/yBW4zba/QmSjVBbBRCwVo5sGIAFHIIrAuD7HEkcYJIFGGQhzk46WEvbNjpjtDaAEh+numTekCXzC984Na87TWZzSXFm3C1M7B4RGCQRjvbXAQBL7QnGWYCV/gjDJMC+zghx7qPrJ7Y557I/samxXFLtjO1bJ+ohD9GmKYZ5ZCNJZjLM9T1023xMtPGi1KmZckTOwHVbNuaMdSgTlK3IEDCdkKy+RBMvc18XjehslU7bDurSd0bkbgiqfRQInUoh+fq1mjcG9564ETlgqhcykSOXDJXvSVXLjMQhVoB6L3CoIgWKqeje0z8muKS4P16xAnyhCxo8R6/E5hCErpfWrjM4GA30Z8UljBd+xq6LFi0SGbqUpKipMts9NIRoB1jovbMdMTUqUmK7OZaZc80nUltFh4rbbj0AKYE48RFnPtbTFtbTyP7CzThDO8iwHreslqjjpYVqJHWMaS+2KoJkJkVDQhLpg6OYSvMJx5HWOmLp43H9kxhmIYY8wvftfUD1MQsE0tQDYQKECtBAkaBOJ8Ek8+B7HEv9sSI7OrqjfH4IBllYSF90dUoNUF+ouZimytxJzyUX+9vD6SSqv2AfsbQGjwrV4oNydIIEa5tttHyl61kdtq3pXt+Lres0JRJL/gQRy23bBQ6CLkum+iGn/9ggjwpRA5dsuH3JZmwWDEERDIM0Qpx7WE1aWA7iyvdCFRnaCuUJyRVnu3/Lj3nL3fFshwjNRIcqXKXVdk47DlLWOInC/nXnmNUWzQqUDRHy6DRlu93UjtBRQlOQkAhPp8skBKjWEan35VgEaNHMFjEYGC+jRVFPTKeNXic8wJm4N7tN6foWETwbsuOanm73GGZ8O1nX4OGBhhBdDJQiR3PbbTii65ltUVwHh9gUiNE2vuDL5GguGSr9n9RdT0UaLks9nNvo4LvnVjDJfWScYSONwKhA5GVo+aqx6LI/QSYYNtOwkmy5pMidnDeSCGMeIBMME+FjkEUY5SHGQlXACEnQpgkySdGjMYY8xI3L9+O+0Qq+vHYVrl1eQ9hJkU18PP7oCTBPAASYbEYYTwKkmQePCYRejj2tMQaJGrtbMt32Moxz36ZwzCRSJkrm/4wK250eUGXrZj8zcQY0R1+nDbhUkZpOOwEhEpPcB+cUx0fL6LAEifAw4QE8pxVHxDKVUoFq06H8h9R97XoxIprZRrIGqfC0aJba1hzAdCIqa1lyMSVMqWBYCavTHHVkaG7UpmSYWPW8LkJkS9Rrokc7iQiVx2Zep0IkiBadx03EyKMcPlWRFTZzbbNtKOx5ZqqvqI0yLgcTLdLPZshd3fWVdUWZPh4jEolUxMYn6r0Ykgwt3SyZEWn9q8xxPF2R5p6PO8dnFSRuUfIxyKLSvagnklXHrEp9baUZcjFr2HmZEp5GVL1r8LbepMGuwXnPFVJCUOmywq9vApB5v/RK3/GzaTy9rz5mncGilNss0yfSHrNqHAWRtnM+wQkIBbig2JhESDMPgZ+j5Sstyzj1cS/Zi2t7a+h7sU0tbQWTaswlxXoS2ckfACKWYcUfg1PlQwQAT+t9F6u8g9tPHEM/inHDnhO4b7AHce4j9HPkgYdvnDwAQoBef4LBWhsip5jEEXiXYmnPBIM4wqHOpmq5AYn1NELXT9H1EvT9ie5oTwEJpHxa+SUk0Y02KQQhaDmmhctBDBBgmAXo+yq6IiRVJf3ch5Tq3lHKQQhwZr0L3+doRSmOry0jyT08de8D0+asJIPHKHp+DAGCgObwqUAmKHosBiUCiVCT35CHelITVm9iep2ZKF6oK80AWCJkdE9u1VnXT230z42GVabB3EiIfqkL+1SQoa3ITd127v/r0lLudmXCVTXmKl3Q7HGnndEpHHLjbOPDRORmPX3KxwGmxLmrCxAC3Xtuqx5rZSLgVnSZCKp67iGD0hG1WYq1vKOF1RnaTBEoADPRxHnnrr4mWbi3gLnXAj6Aq1obODFZmrkPloA5n/V511mF7ZbRb8fVuu41vGDYDULTECIADSG6oDAkxJIR89ktRHOmxKccEbEEyYnEuKSpvk0HmRIihxjNc50+n/L82fOjQJSkJMrbhxNkEw/ZxIPfyhGnPjwm0A9j7G2N0A9i1XwSBAdbQ5yZdGZcbCtPp0lRnPs4wT3knGEpmqgJwtfRIZaAg2I174ISgUfuOYdT466KovgZzg076ouZSHTaCTZO9NE/MgH1dLf7gEMKJdZebqkISEA5Apqj61NnQqUq3UVU41OBoubGVJMFjBccpimRgJydUIzgepwG8FgMn3G0/Aysp6IMe1pjUCKxHExw17kjePLKg+jqCh4GgTbLbOk0lwR7/REoERjzED7hOJd1bNoPWg8CqC/2XCiBuvFKKkew1HYSbS+zPkrDTPktlauf6qJB80rOy8uKJePVqbu6beZFocr/rzt2OfVlrAnMep/ygtmhe31ulIdBCZUtISFKbKw+M9PoizmfcIiHRzkELzbMNe+duutcdDIXUO1bjKDaJ8pQMyQZWn6qHN9JBk4CCH0an3DkmLpm15IxCIBQu1/53rr/t/ohSXGkta5bjbitSqpJ0W56BZ1PZOiSkKIGu4LmVdtl1EVbCqmpur+l54TKAhkql9/XD0JHcQqRHEO6posu1I8CqcmXayZpltuHICqIJKetB87GHaTCw6FggGs7qzjWP7etcxq4v/JN24shj3A67SOkGdayDr55dj9+cP+9+OrGIXT8FFnOMDjbwS8+6e+R5QySAOceWIbIKaRQjtWCU6yN2jg56GM1biujRO5jbziCkKrH2XraQio8W3EFoNAA1aSaypGT1aSFgOVat1HUu/iUYzSIrG7JZxzDSQgpgY24ZZ2xH7N0xvZBMz2lbMqDqomOEYHTad+SROVaPTXdc7VYAGxFWcSKJfVu09Zx7ltiZCvktqj2WjSSsJDGiMx2ea8iQ5VRqhovo6pzlHVAbpTI1+TIOH2rVFkxhabWKRG1IanmETomiL4+nhFcm3EH2iAxsCmyYpVaMV1WrIBapPdXwj3b984gkww+VcadDAIHggGuCjbsMcwPFldUDRTTZlWYR17KOiwGaXVMi6TPzhe7kSa7qNVnTcps19BEiC4AFks9LfB/OSVC5e2qK8RK6Sxg+v+KL6Ct+pTVouo8JUj1g1CZqIrZbXmuzA+TzEPiuDT/06mjCK5Sk+/eYIzlcIKNNNpW7zamq3DMLzUBinNpF4nwrND6psP34UAwsPsstSc4sxnAJxyP3X8GX5wEigglDKydg2fqRnXCFOujFkZJAHTUvhNNis4lHVs5Z3p4udVQa0kLe6Ox9fKJAhUhEpLiSGd9aqwIVcJuIhCZYGj3YmxsttALVEVZ6OcqrRfGmkipSZXqCIPRgJjnXH/JZ5JhjzfGWAR4MNmDiXYIh1D3f6Kdw1MtuHbtAMxE4bYKMa+b6VXW9rJiG4mS6NjuUyUmnjOxWZF0RYqkKs1l1zmpJHe8dnyliJCJONRFsqxmyBIVYbu9V4meDfFxz6vEveWxqogICECJSUXSQtRIkQiBjk6R8VIllroXdGZZOVpl7xkpps1CliMTFJQQ+/4xnxdTxWiO3/diDPIImWRaR7TY55NCzJAuMz5eIrFba7+caJp7bfo1L7/2Ve+d2fHVk6GqNOp2/aouCFRh7Pkfo0ETIdo2SH3TUYNK0q3TMYVDkTpiU/q7wJjUicthKVn91xlnfW+yxZhSVY8zQqQlQTNWAvqpyCnyVE26GWcYZwEmuY+Wn1kfkjvOHcG+aOpmW33+WcdvI3YWDhnpeyrNpfQzEmtpG0Me4QUHv4pHdc/iuuVVLO9XnkJ7wxGuPXgOYSsDIQBPtWZi4iHOPWQZw3J7Ao+oXmKrSdt2rXermYyTsPkibWmyIKRyhE6Fh9MTlcKLuY9UE8OQ5ej5sTU6pERgpTtGHqsGs1xQtIMMbT/F+qQFT0/KD0yWC/fGJSHGHG/IIzCiqt1MZZCQFPuDoSVDQiofoXE+rRxyrQCUmWRul5tzGfdklwBVEaHtkqEqlAnZPEFxbbSoQHJqNEAokjq3v5gpnVfHcJqA6ojGNAqk+sYZobspZ3cFvlNyxcF0pMkQYnc73z3PFumxwvErUncuzHvSjNN4EhnCnAn1/7EIoJyphY1GMkhb6Tg995xqLIfgLSJ4tlEuyJrXctb40f3rLq8yvizvV3nMitSe+budiOeFQFN2v3toIkQ7xFZl6/O0OgUiskW0hdDZY9VWglU9L5ARUk+eCifY5ofDPaaJbFE5ew9k8a/IKOJJAEYFOmGKiHKETFVVbWYRHtk/h420hSqUU4dlDYn7xZkJiqHoIJMUsRYSP7p7GmtZGxQSy/4YQx7gFx/19wBUU9V7v3EVEAmASYBTgEqACUipyNwoDUDbur3GsIe+n9gIiZvucn9FGm1NwLg1Njyx0ceRzgYA1SOs78fWXbrFMqRCRdAokWCBIkOhlyvSJwmGcYiTkx6u7azhSGtd//pWx2ZEIBMMDyVLOBxu6MlWYCNvWQGtKdXPJEOLZTo65FmbgFif2xC7yMunqUAqbLTLtOpwXw9XX7PTCWO7v8DL74OqCFUxcuW0tnB0KYXr0JFGkyYzmBFKl67RpJHUdhXbSBUtMeXgbuRjWrmlXlE38lOIiCxwexbVadEKN2rj8q5SfipNZ3yq+myCkGTK4mLO66QIeFELWBUpmm4vZ45nrt2HEnO7WrayZ9FO9DuNC3UDoIkQXRC4fcQseXFSVwUyhMWrvOZ3m98ijbXoxHIev3RmxlZ5KCMuIoAgEDkBFxSDSYT1uAVKJB4YLWM9baFFM9sLTB1/67G5E18ulevuetZGro0HM8kwykNMuI9D4QYO+htY8sZgRGLFG+Js3sMjonNqmFRF9aT+riVUtfCgnij4JLWDVEd5vEpCZp4bshRQjr6fIM499FvK8dpUh415oFNnqq0Jl8qJeX9rhE5HVZ+ZPmgGoyyYGi/mgXIeJgJcC3MPhxt24uBGLGvM94i0LsOjPLRREDNuE9GiRNr2HBHLpp43ZCpqrYsMuXqdi4XaCBWpjg6odbMpr/I6Nzo0//zVLTqAabSOaqJk+nyZh40+FQhltUnhdu7pdjUtqs8gs21wDIleyzv2NV/yJjblbVAXHapr7QHA3ofieKv9nUwEjaGabC9cEVYTLdoqOlR7vEsVJWo0RLuGhhBtE7MtNtT/3ffTVsaHhfSZjtpUibDd45bX2/OZideN/mx1ztI5FkHddZeXVbb0mEOUZE4Rxz48xjFJfFVCzj2cnXS0L9G4VFlX7HNmH6Uvtknu49ykjW9t7MPZuIONVJEt46OSCA8rbARGBL44OIqDwQCfGTwGx8IzOJEuQQYCSKmNeslcCcHjxIfIKQaJ8kgZ5z5Ca36oHLNzSW3DTZcgmXSS+f+ZcRedIEHHS9FiKe5dW0Hfn1hxbYul9tfuOPfRCVO0/MxGokZpCCEJjnbX7XkS3TrEiFqZFujav9qJuE1T+ERgPWuh4yW255siQUoD5ZIuc2/jkgGf0RptpuHs6+FOZFUpigVSDfPW16XNzHJjWFg3rrrITpn4FPedimWrbAHcNJklOLrjO4OwpMA8nx67mOoqk6JZYue0jpiTAtoqVQbAWiy4MP34fMIR0czulwgfLZoWztfxEky4v9BrVfWal4nQ1scobr+RtSpJ0aXwDbok6TMhd+fRoCFEO4ZLaLA7Zet1qbEtyZX71+67jWay5WPtIhYRQ/OUYThsIc8Zcs4wTEIwKnBi0kcmWeW1uBNtYWJy/i+gxKAj3Vcr1hoZnwocCgfYFBG4pLi6tY5bHroet97/WGzyCG2a4vCRVSAQQEJBcgIiCGRGISXgBar0PZcUXDdrHWYBNpOooCFyq57MF6Vp3EqJBKMCh9qbumKL4qkHH0RIc/R181mhiZXxMhpMVKWZcbw+u9pFFCjXYNNk86DuYTYR055u3EkFGXHsWAQIaW5bKZjqpxbLVDWTPkfEFElyK9DGeYBhFiLlzF5nL0hmjAjrUzPbnzTKxKqs7anTeBTOW/AOKo6xLhLjkm1Leoi0Wh6jKSqfa6rdmZKhqnG5UZPqKIkoCJ+rr7UYMaozFHT3MxqnMqyTM4jVEsXCV687D3QlHbe98DLJENEMfa/amXwrLEqGptdSfJ0YpO13diHIyE6Pd8miRQ3OCw0h2gl2881O5AypqnWOxiLLFyRC5YjRFvsYrx9zjuJKslhKjgBFd0r9EAQ8YUgnvvITSlUqJ2Ace/0R9kbjysOZL/2tmujGuW+bkpoyfKObeSBdwYT7eNZV38bwXBufOPcEXBWs418dvQs04IAvAE4AX4AwCcEpKFNkYaAjNA9tLGGQROgECTLOkOQqhVB0nVaPce7bCrh9rZEVTnNN3nw9CZuy92EWqpYJuY/xZoiRE4nxQo6V9hj3by7bydtcG4XAIG8VtVSSIRNqAst1dVBIlEO4TwW6Xmp9iDwqZoiNSZPkgtoomDFudDuwV/0tLttuRGC2Esx9XkWOyhGJsnFiVeTKHV/ZcNEQKVNSX76OMsEoRHwwe2+K5KQcxRI2SuQev3xvyqmk6ihcqcKthggBxTRvlyXIhNI3lVNdhqyrSjf1eTKNmbeCiYy5+qE6LVFhv4rXrnjc6vU78RDaLdCLVYDWpMx2DQ0h2iZqHaEv1PFrNywSmh1FhMxxFsS8XmLFscCxByiRKKPNmdlf/ckzhjxXaZjVuIVzWadQ7QQUv/DK10ycic5MEJGXFTrLm8lKSIozaRdn0y66LAYNOO749jXYFBHe+9Vn4ocf/U147Uylz/S4CQHSiY9xqlpabIyV6Pv0ah9cqC70puzfRFkMhCTo+wkiliGgHCvhuLAuoLn9Zb6ZqdSeIRoRy3Hd1Wdw6pv7cPfJQ+h6CQ4tD9D1Uzxt33FbHQQoD6K71o7gZNxHIn37K9+IY43Znk84EumDQWKQRRjmgdUy5WJqNmmsACLtVu1eFyUSPiuKcef9Ut/JhCMkKdgXVJGe8mvuLi+fvy7aVL6G4t9y5KhIhtx1jEhrcmhJKp0VLJdJUSGN5pAiNxpSRWaK6b36Lux1RAiYL0Q2nlZUR4zMe8SUtq9l7cK56jyIKJHTY5nPoP7/PFJk3tdlndXMdnO0YTvBwyfKsxtk6OFyrRcWDSE6H2z3A1NFJHbiY2GiSs6+c8mK2a0qsnMhQYrjcUkbYWJK6pzIkeTKuHGYhJhkaoJ+ZO/s3C+nRdIwHlW/oM2XufnS3h8M0fNi3Dvehyc94kGAE5xMlsBzigfHS9jTG+PYI06jvTSB38rBEwZIYJIEWB230QmVqWPUSjHWXjzl0mDbrkMW/W2UtmdaxeRinKv2HwFV+iRjjnj9k+/Ho/adxSCLcMOeE3hEZxVDHiDhHjKhhNIMAjeuHMehaIBBFtmoTy4ZJrq3GwDb0XxvMMThaF1PeIp4GC0UJcpI0qT6jC6n66tUW6TNJF3voZnXp6Kia97rN59QFaM4RgBee95C9KheNF0c52z0CNjaCXkaVVKpL1PVN0211QutC+eZQ4qm28jCwxyrLk25E7RYhpAo8fxYp2DPpF0IEGxypaFby9oQkuJQOJh3KGv14I6JQrmnm0cVxJx1LlEc5FFpXZngNkY7DbZGQ4jOB07lWCFiU/cFZIjMbqAiQuT+LWyqiUiBLLki7N38JWTH4YyrdHg7VipBmEOKJCA4BWMCSeaBEInVtIPNvNjkEVCTFamZAKruQcYZhnmAc2kHEx5gLAKcTns4l3XQ92KtMfKwtG+Ivzv+GPzII7+Je8/uxZl7V3Bio4/xeguP2H8OkhOI2EM68hGnviI7OUW/FSPOlKDZo6Lg1mz8iEykgxKl5fEIt/ohYOqzknAPbS/DetZSpfpClVmPsgBnRx3si0Y40lpHrgXN391cUaRIeFb3AQAT4eO+0R5LAr+8fhWAYmokEZ7ymNHjzYUqv6eQtpQ+5cqo0ZTXm2OUU1nni7rWD5RI2yalKvLhkiNX82P2rSIUda7UZRJlju+SoXIz0+kYZomJu828yMn5RiOK3kezxytHsbZDEJhu52GOm4lpM+BQRzXL5LHqWs2YqtrxnE26OJX0beSI6ffW2bQ7FaZXaKwAYDVrY9kvRltHebjw9VXh4RMdQpMy20U0hOh8UPWhcUlGFUna5gdtxtyxahh6uW2ZgWlkpjaNthsf+KpjVKbTSn9Ly90xEiKRZQy+x+EzjkEWIeUeKCR6frLjLypfN2KlkNbHpMUyrKVtm0rKBcWB7hDDzQgjHiA+0wZdTuExgaCbYpL7ymOJSSBhSIYh4tSzhom9KLGREtu7zEk9pYIpAqUni1wy7Yps2m0oQpAID23duNMKm0Hw4OoyNsYtrCZtPfmr/fpBgmEWYcIDHB/vwYQHGOUhEu6pNJeegFbHSucx1lEidXxqf/3v9UeFiqHAMSE0CFheTDXp7czxXFSRgnmoT3E5lV1ONKkuorRVpOR8StWr3I65NgEFtta6zD9XxXVAzESmqsjNvOhb8f/b028ZRDSz7xFAExZMS/EZEXPNGO02JUJjUmD7wqFq0OxokXwqcFU0qCRBbuRsXzAsRIgokWixdNvX/rCNIjVVZruGhhDtAEXn5QV/Ie9mZKiUhjLkhzpmiNTR6exW49Z5UajC+OYexHmUj0101Iio61gftzBIQ6ynEQiR2MzUr76ZFgQOaMUYjbGhSvdw60e0mnbwpP4DAIDjw2Xsi8a4trsGKQi+vnoA0X5V8t+LEqSrESaZD8KJ0kDlBDInmDygPHw2xi3de0oWmrkad2dDbDwqrCO1myqgRCAXDBPuYyNTuqRBFmE1aePr5/aj6yV47rF7wKjA8cEyfMLx4HgZHS/BqVHPHiPmHv7qnsdjog0oV8KR9Ym5fuU01rOW8jeyfkRE9zNTUStTZbYSjuFpvyQz7q6fIBdKjO2RadrM6JzKr4H7Wl2IyUa5ahe/wlxyUO6vVUaZUFWRLWA2VVZOvZW1K+X35FZEoWpcZeIwL+XorjdVaa6HUf0+2yNHHNQ6WLdoWtjGtXkw1zsvIub+NWgx1Xdvy/G4lXn6tTJVbm768HyjRA2uPDSE6HyxyK9AN1K0nXUokZlSyqtMUIwDNiGAKPUPU8vnV2NthUqd0gIEyJ5P1jzsGNV/mCfsOUyqqR8kc8WvlafW6/phbFNZlEjdQJNjI2shIjm+unEIAPCd9RUca53FkatW4VMB3+NodxPVt8yXGE1CoMUB05YkJ6D7Y8iUYXO1jYR79hwBU5VhxqcHADYSVTYfsQyZnswZkco0UjJbvROxDD5RLtAPbi6BEJWaWPbH+P8e9QVcu7SGQR7h1KiHXDKcXu3hxLiHXDDsj4bodWOcSzrI9fE5VJsOQ3YySbGuSVebZYUJzCeKFIW6kahHOSKWoe+rViWqqaiahEyky9zbMrbSDm0X5XSYQVm3pbYt6rLKXjuLRG9Mqqzc8sE9FnMIn+tIXYXtEiNXSzR/nLL0d/HzbBVhcmGqEwEn1Qo6vQcLRN7KZK9AbiBxNu0Wt597P8tRwammCFD+SItGiR620SEAkGJ3Hg0aQrRtELkr5KLquAul1WoMGKc9xfSXE5WgVBaW7UakqPJ6ayJmsxV5ehNJCuSq8H9BVKUZp/CYIkZtL8NGUhRNkpkvw+pUBdEpneUgxp5gjBXdpmM9a+NQtIEN3sK+SHWrf8zKGZzNuri6M8DJU8t4/P5TiCcBRqMQfjdFfLYFxAxkxBQpkgS+z1XEiEpl0MinBMh49BjisCeaqDQVpnoi1+XXtCAwv5KPdtawvzPEMw5919oFCElwXfcs7hut4Cn7HsSpuIfD+9fR8jIM8xBcEuxpjfGtc/sAAJlQztxCUturTKUUVLk9lwQPxHsw5KE1Z3R/ZRtdj1+aMFLBLOHJBS207Si/BopAnN9XTXliUyTM6Iq2TpftBigRlSkzN2I027h0fvWViajMSzlRIivF1VUi8XLkal5l2k5AoaKdifCQSF+7my/unD2PFLaYMnw8k3TtuerG7WqNiuuL++RiVq/kbnMq7s3ss5t6rouCRkO0a2h6me0ARJOiaaRk9s20ne7sxYPL4vO6aExh0p8dnyEZdYRtRmS9ILa7j+3rVlVgVzqWGS8hqkUGFwSZYDjY2sQwC2b2n1sx5KQ+AsbR9lIs+xNQCHS8BD7hWPLGiEiGA8sDPLbTg09zjHmIA+EmHveIh9T4qQAf+6BMQDIJNlQfGSIB0eZIxj7CpcQ2lPWJwGYSYW97ZK8vFxSgQABuIym5pLa3meldZjQ9BqnwMExD9L0YZ9Iu2izFvWPlvP2o7lnctXo1BpMIj917Bsc3l7E+aSFY5jjcGeBIZwOp8ECJijZl2jfoxKSP67pn0aap7WROIW0EyXQvV209BAI9HCOiNdt7RCBgOeK0SFQNXNF1nTZIbVclvi2mRKpeW8/19tHvr3kC72ryUNIHOWNxhdRu1/R5E755Hetg2qmY5/O2MffOOItTCHCwynFP95WFFOyiJHQ7BCARnk1PTXiAvjdBm6U4nfasvqgMrpvBFs4n9XXp55n0sJ61LekbZFFBKG2w/d52AqfiPg5G0yo49750/aRqt4cXRCnUvuNjNGgiRDuFEyUykZjC6vONHrnRolJarVC+XjBxLG1D5cy6840SbXldFeMtpM0qxlpc4Z4HiHMP926uFDYJ2NQdeKvogKvlGeYBjk/2oE1TrHgj9GiMiKqy4nNZB0tsgltPPBZ9b4Jj3XO4b7AHz3vkN4CEIdsMQFIKsZRBUgnRUi7WImHIJh66UYKWbnchpZo4TS81m2LSgmujISqneqwHkGQ4l3YAANf01uETjmV/Ai4phnmImHv4znAvjvVWceOh47jz/qMYJYGtFPMqJv/bHzqGo601XN1ex15/BJ9y7UBNC01IE+EhER463nSiMNEsYNq6w4irzXmqBNhV0ZQyqirGaretMFc0RMe95p2m6tz0kdsl3jqfbyPKVde3a1HxsRqPLByrzn+njO2I2MvbbmUtAExNGDkI2jqa6ZIhNxJWFxUzbWTMOFRz4dS2qzEEvGrM9nlNlMjFWtrBVa2NwrW674teyWH7QkUXGzw80BCincCtmipN4OU+ZruaVisPo4YM2XHJ8vZFUlRXor8VFo4SueczpKiQwqs/vzkHFyqtdMPySbuN2xIDmF9lFOmJ29Mu0Fe3NgCo0t9V3sE6b0NIgqPRKjo0wffvvw9f2rgae/0R9reHqgQ9ISAJBc1Umkx6EsgJaEpAmESrm6AbKgLR9jK0gsxqhwiZiqwNqUgdMbBJR5k+Wb41QczsMkokrg7XsJ61kXKGWGuTDDn5vmuOI058tIPUpuPUtWdosQwCShg+4YGdbLiktvzZCHAT7mlnYkWMQt1TzRCOXOubPD3GVDeHrRIilzFfEFytY6mrCpuW2Kvtfcqt8WHVtjOtLUpkyTX8K+y7A6M/4z+023C1RFUkxjUv3AncY1iiURZ2Q2KvP4JHOZa8Ca4O1wHUi6dduNsYkuk7Fg5u649cqp6Abvpx3vuryqfIpKwO6FY2Zcx7v50PLlqazEWTMts1NIRou6jiAgVSNCUBVQSpFlI1D92qGq0u0mNJiru8rty9dLztkLaFyVDJo6lA3qisrjJzzuE2cB0mIb413Ddz7nn6CQNjMKjWKyO4c1kHq3kHmfCUi7NUxGKTRzibdvGd1b34+uYhLAcTtGkKOqFAl0MEqvpNhkKRI05ANj2M11uIcx9nRkr70PN1C4/MQ8hycEmRC4rNNLRl+OoLX1egwUSxph9H097j/s09dt0gj7CZhhgmAcZZgAeGS5YUHdm7hl6Q4PhgGTH3C6Lfr68fwKOWzoLr85xK+xjkEXLBtBCcwyfcRoVaLEVbC7stSSPC6nWEpEiFZ5vVBozbPmaLRjDqJrjyunKJvyVBRNhHXdfyrd4bVeShihip/Y2zMrHnL++n+sFN3ZgXwaLjNgJr5nwubPXXHPPCRTCPRJVfB0YE9vlDu75MhhaJCtpjYyqwXs9a6HoqOuQRod3Rp/d4O6myravxZi0bKt8fFeaXdbiomqEyJHaBEF2aoV9uaAjRTlD15pmJFs2miLYqW9+KOM0jLUUrAGeMO5UyXYiolhMlKpxHFivYbLWZ0yLCNBgtY6sJOMk9Xe2lyM+E+3hgskdVdGn/mEwynM16iKUPCuWDdCga4Im9B/Gt0QGIayaQGYH0BUiixc2+hAhVSw/JlU5mY6CiTQHjyARDK8jAdTQrEwwtL5sKra1z9TQ6ZLabcN9GZva1VCoiFj7GeQABgtBT6a7VYRupUD3aIk81Yb26t4FBFiLVWg9KBPa3RghpjlwwrKVtcEkw4UVNlokcZYLaX+bcud/TlgnCIZizJobbRXlyKqyb48BcNeltRZBnzQNJITVW9bc4TjFjpOmeZ7v3YFE/pKo00W6BlY5d7flTfc7zIUP2nJpI5pJhkEXq/a0jk0N+Ycvm571eVeSmbtklI0INdh0NIdoJnHTUTISlLo1VWlYXldm1yGVFyqx4/urd5jZx3S5cc8h5x6ohklmuIhBSTlNfW00+5eWhp/tvEYETkyWcmCzhYDRQmiIeYcwDJMLHetbCRt5Gx0sQBjk+feI6bOQtnBj38NRrHwDJ1UdF+kqbJUMBUEBSCdbKLfExZfU+5QhZrjyQIMEdbyLjVj3OA6QOMTMmjSFTWqIJ97ESjnD34DAEiE2jLUUT5JyiFWa6xYciWWfHHV0ir/qlrWZtfHXjEPaGIwgQjHgAj3KkwsMdZ45gVWtBTCWOmYgANTkyqHReQNW959rJ2tMTZJulCFgOTztaz5tgqtyd6163stP0dJupUDiXzKY9MkltJKs8Kc+twiLFyNJ2U2QmdWfK7Y0mrE4/VNi3TLhK/68iIWwBzcx0bFtrqMpkyN23evupPcNukCFANSL2KcdV4QZWghEywZBJir4fY8L9rQ/goHbcFa/rPI+ieQRnO1Gji4YmZbZraAjRLmDGFXpuiqrqADWl6jVh4ioB9+wxMSNmdsvbF0WZ8C1MkiojZGZMzjCdyjK14XS9xwQCxtHyc2wkEQ62Vai+yvMGKP5SNw9T5fTQuA9KJJaDCVItHB5kEcYiQCYY9vojZJLhcLiB7zv0AEbjEGt5GwdbQ3zpwcOQngDxTf81gGRaS6Q/QVx7E41zFclZCmN0feWWm0sKpsds2ngMswAxV60+MsGwmYdKV6GjEJ42SeyyFNe0V3Ey6avUFuPo+in2dUaQElibtJEKhm8/tN9GL7p+jFxSjPMAB1pDUEh8be0gVvwxOl4KIQl6QYKY+0orxPLC5GnSL4aY5Tq9ByjzPENETMqPEjntdj+HVBREz/MeFWkMY1wJlKvBipYAVeTGRLIWRXFfUw1HnPeXKAjRgcU6trvXvghmKrMw1RK5ZMZ9Pq/SbRGR+WyKTtjxlomQALGPqvWLwqbjIHAwHNjXMxes4Fxd5TcFVBPEeY1thSSFogGz/rIiOduBELvzaNAQop2ijliUSVFVRVi5vcYi5o7zyuft+cpib+meYzYCU0XOtkrLbYdQmR8dljBSoUmRjrK4tgAEtipuWrmnHi0/hc+UQSBQ1BNUOVWXBdbm7zj3cTruYi1t41Tcx6m4p9JEjtkcI+pLudNOcOeZo9gfbULc3wYdM1BfpciW9w2BDgfJCMBUP7aUMxAqcP+ZFZwY9q1BYz+MrVP1OAswTEOkXJGi1XEb62lLf0GnhQmmeI0Ux0d7ICTFI3tn7f57WhMISXBu3AFhEoxKBDSHTwTGeYC+H+P0pAuPcjxq6SwAIKA59gUj7G2NMUhDVWLPPfhUYMJ9283cJxyZjnqZqBEAG83qeCk6LLVVbYGzzXarnOamzSrK8w2JtFYAIMglU2aXINNjl7RFVVVG2wXVuiVAtZaouqY6DdF2SJmBW5W2aEWYqyeqEqy7WiQ1ruqqtu1gJ0TIhXuNy/7YXsMiztUGZYuHAskHsYTHJ+LyjPQ0uORoCNEOIAWZKWkvd3VXT+AsM9vVHNRNK0ktrt5iYpnXyBVAYYzueKpIkWvguCuQBOVqNkIUKbLnLouryXQZo6IwkQVOJZGL+om0SIqEJJhkvq7SUpGZVJsWTniATDIseROcTnvwCcdVvQGu6g5U88q2gGhzPPrwaVx77Rmsn+0Cmx7Q4iCtHPnIR5p5oEzde0aF9U1qexkS7qHjp0hyD1xQxLmPgHHV18zpdQZMBbK5VKSHQz2u7a7akuTlcIK+n+CqzgD7ddSMJ54lMJQIXNNeRd+LcW13DW2WYdkf467VqzHKQ9Wuw0uwPmnZVhymFUMumHUj9qmw5wdUyf1mphvtOronU1FnokZVrtH2OWajP1WvmcE01TY9tom6Gcdok84z5616L5TJ0CKd6939lYBbVSqa6FCBeGAaSZo51oJRoXnbGMKwlXv1Vr3UZnVV9WSonLYzZDOTzP6I2GlUqAqmFN8QtpDlhQjRPGxlScAgC5q4CwlDQMl5EO9toUmZ7RoaQrQDUCZqS9pn4JACWSAJNQffCSmpJDrTaEuVxmmrSFHduq1Ikz2XQ/CKZHH610aEqNQ9zKActh0C5X7JnZqYnl2LRyBc+EwZI46yAOPcR8RynI07GOSqMepa1rZfwH0/QaC9esw9+8Z3DuP+4/sgOQERADIK6kmQlCIeBRCcQHCKkOUYZQHWk0hFZFojpJyh5WcqpaHH0A1TPLSxhFQwfG3toJ7UKYZZZFt7THUp6lpCmhfK6vtBjLafgnq6hBkEZ5IeBnmETFKcmvRwfLwHn3zg0XjSykOaSBD4lOP6ldO2QafaXhMbCGSSYZgHYFBkciNtaZdrJarezEOcS7q2yi0XDGnJO6as+XIrxcqOy+5fF2a8qfAKGiwhCWKunJJN1Mqc03396yIG8983VZGf6jEaUrRoygwoulOfL8rl9lUps3IUrlxeX4VydVkiPMTChwCZJUr6PVqX0poHN+VWOD8EerooYB4pqrqGTLLKfbYbCdpOWxN3+4uOhhDtGhpCtANIPUlWTczzdDqzKast3oQVx5nxECrpceahzhzRfB5myc/OPyfz0nMz98DohsyXMBWgVEVaGBXWiFFIgkf2zmElnDrYulVoVSjrigAltM646jxPiUTMfdst20Qgrm2fQyoYvrpxCCRXPkQ3Xf8d9bqHHDKQoCOGfOhDelIRI03yfMbRCxKshKpVR9vLMExCBCy3aRYpCeLcQ78VQ0iKlWhszx+xDB0v0e7SiqRkOiKSCA8RyzDIQqynbcTcx55ogm4vRsAUKQp0RdmJyRK6WmD9hP3Kx6nFMts81qNckTCoSjvjP2QiZqa/2lra0YJvqYhPqU3HlBTRyihNOYrntvKwPcC0YLrq9aRE+SAZL6SUq55vbiuNKWGZTbm5E1XRb6d62+L/Z1Mqde+1rUjR+ZIgZsdTHyWqIkPz1m8FQ1hCmlsTU2D7jtF1qKrmM9dnkFVEoApRv1J1nOn7p5yvq/yGxEKPsnP5Vo8GD380rTt2AjmbjnLFweZ52RtIit35EimPpSrq42Km4KymAm1R1GmJtjJ6dJvPSiJBQOwwpAAIU/eVaTIEqC/MXFC0gwwRyzDh/paOwdZZuCZETolEy88Qc0+lrgRDQHMkwsO+cIhMMrRZiqtaG+j3YkRPzjHMAnxjdT9+4LHfxl0PHUGyGgBUgvgC1OdgviIj8kQL4gBBQDkCltsKLUKUGLwTJFaAPEwCdAKVqrq6vW5L4U3UZgJFNMzkbyrEAJWKs+kjQXFVf6DSgdxXxAGKoHzt3EH0I5U628haaGkd1oT76HmKjGVCNejMdKUbBwHVqTtFjOjMxGUEzjaCI1X6z3URr3pNiq9DURxcl24qn9etoDLXY15XdyKbEdZuQQbMfXb/75N8zh71UO02pinerVp1GFDIwvu2/F5mRECYSB6RME05Z3uo1UeM1HEXn8DHPLCO1HZ/InctVVYHk6J0dWFlTEk2KVyz0SIN8ghdlu6IsDxsSE7TumPX0BCibcL10TFvIaKXmy/0ckWWW4XmEom5EZ1Ff8nNO8RiR1DbOqmsclRoKgJ3l9XopmrgRqBMxZnicsQ2WjaEkjE1UTIq4DNuO93nukJrNWnVps0KKRM9uVDntXHXZfp4ikioaqtESHRZgiU2QeypKqxHdFYx5AHOjTr45tp+7OmOcWqfB7EaAilFtDRBK8ywvtGB8CTi3MdKOMEwC7GRLOHxe05if3uIVDC0vWm3+KVWjFCTpgkP4OuITS6Y+j8RCGmOifABSZHLqQFf20uRC4Zx7k8F3H6CmHs4GfcQeRkywbCnNcYoDTHMQwSUg+voUcBy7VytSv0nPLDiaSEJMjD7PGKZjsqoc3uU28ozm8YSRdHzNE1TjLi4pMOIkwu2A1AOxplOzwmtpXIjAp6jJWvRTJXdg0LY98RiOqFCj7KZKIJcmAy5pEOAAnK2dcp2UEkeHaJkiJDpBaZ0VKIyQjXrvj3fnVl1rzf+X6oHWZkMqeMK2ypm3vF2CgYBEFV+P8iiLY/rkkOQ6X1Y9icAimR7xEN02O72MFtUE3chIKWAPM9u9ee7//cKGkK0AxAiLdmwX8FzyI0lDwQ2JlJHktTC6lTcIi0v7P/L61H/G2IrQ8iqdJo557wGsnXHMVoq1fR1enBzH6gmQx4R03JuotpZDOf4h1RhZiLBdMLp+SpaYwTQozyA53PdSDXBg5NlfH31AJZbExzprGOw2gHd8OAfGYEQgO2LwSceRmc76B9dxd7lIc7kSuc0zpXeouVnmoBwrIRjnE062BeMkAoltG7rLvWK0ExsdCOTFCFVHj9ZHmGcB4qYaC2NgDZ4lBRpPo0YpILh9HoP+5aGiLwM95/eCx4zBF6OcRog5xSPXDmHPA8QUA6PcptCyyVFR09+E+5jrO+1R7k9t+0dpkmRC5OymxXuzjauVdsJmxI04uiQ5fAIRwZmSZLxPTLnnh7PfV0FoLd3U2Lz/HGq0jWGfG2lNylXNFVFYlTUQhEvc6fKqZjtYBFSBNSn7haNClWRIuD8KsnmpQpnomJk2tiWEYGVYLFWKPb1kIocFpvdSq1xomjp1N9WhGXRtODFIj61kPL8IzyNhghAoyHaEdyPiauPWMhJmsz6Fm3VOqN2fRVJ0X/rgqjzxNXV59bHqyBFrrt0mdRt1bbELa2355EEecbAhZpsfDb9IgwcMfEiX0BFjcFsKwj3OFlpYg9pjnNZDy2W4fF7T+HxSyfRYhmeeN0DwL4EyYkOBCfggwDIKEAkTq/2MIwDdPsxRmmAM+MuvntuBaMswKm4h4PRAMv+BKbpq0c5jnXPoc1SrMUt9PUvWQDW7E9IilyoMvgj7TV88fRhfO6bxzDOfQzSEBtJhFxQpFoPFWttD2UCwzhEyj3wTR9k08MDD+wFIRK9KLHRHCNMFtooUkWqfKvx2ROMbHQo5j48Om3RYciKOc7M/XcqBKuEzYxI5JLZqjpDskyFnXsck5YTctqI1njJzER2yqX2JY+j6vfKNKJjSrK3QtV7sKp9hiER3ImMzabyFv91TiEL27sNUqfbTDU15nnZeLGu0g+Arm6cvkdMJZkrmq4SUF8oYsAg6pvl1qyra/zq9sDb1LrBOsy7R1Xrd9pHrsHlg4YQnQcK+hhnGcH8dFV1hKdadF0oWXcPWnMCIylyx2CPscV43GKDKoF11fLyMaqWz/guldaZaJHgBJAEkySwUY9AT8KediE20RyDhULpQO2EOEhDLAUx2p7SKJlWHh7hOBgOACgtCYPyMQpbGVhMIGKmnBESCpJTiE0fo7MddKMEQhCMkgBJ7CPOfHz1xCEbhQGgokMsRSo8HIw28ZilMzg9UQTMp1xFhnSDUOPCnAgPTz34IB537CGcHPUwzgLEuY9hGip3X8GwmYZIcg95xhD5GRgViPZOICngnfGx+u0VbMahTbGp+5uj7SWW5Jjlqu2HRMdLFBHSDV2VMeMsuaxuqzJ/ojdRFSuQ1kTMpMvK+5sokoGquHPaiCwgcp1p0VEgFxd2QttpZKgKzCFxhhTMkM8d+Am5hMclRfO8v4Aq8bbAdqrp3F5pVccDptfpPtx1s8esTg+a+1ROmzEicTrp2f8bwuQSyDoyWTbKrOuJd0HQVJntGhpCtANU9ilDkYRIzBKQohuzipCo5bPbVRGhukhRgUQ5y8tbuqRtZmO7bv6yso7I/J1GvequB/Z63cESIq1hI2XqOSQwTlUDU49O2yP0dEfsqi+lqmqyqnVV+xv3aNXvjNqJUUiCa1qrOBRu4LujFZze7CGZ+OD7U9AJA5GqEJCOKcAJ6IRikvnwPSUslueUCSMhEsMsRN+b4HFLpxDQHB0vwVraxnrWQiYprm5vYDOLMMoDfHX9EADgwfESziVdm8LpezGesHQST9r3kIpCrXcxmETYjEPlsZR7ODfqaE8ihuMnVhCPAqCTQzJAehLjSYBhpkSybS9VAmytB8olha/JT4ul6HsxGCQ6XoqIZQhZbgkaUCRBhYhQScdVhpDUWgyofVwhMyls575muVQpQgFSEFO7PcUKkcEtSNGi2I641lTtuddRlWo6L3NIhzxsJyqzVcTDQLjRoR1METutpFuEFC10nDlkZd52XBKs+GOsph0Y8886nE56WM9a2MyjWtfwi4bGqXrX0BCibcJ8zdGSS+1WGp6Z9h72OG5EaPYxbxDzUm2GpEkU9Ud1sEJnuTUBM9dT1jXVehaVjmeXu4cmEtDESkqCnCttzCBVLS0m3MeEB1NhbUGsW50OK06O1ZNm10+RC6oawHLPqZ5iGOQqqrPJIzy2fxqRn0GeC/H/PfkuO3bKodyqOQGRuv8aJCgV6F27gY31NrrtBBtphET64JLgQLiJCfdxatzFKA/QYhnWUuWbciDcxINnl/GNjQNWP3V8pJrRmnYjQlI8bu8pPO2a44hjHxtnehgMWxjGAZLMQ9BJsb7agRz4oEzA72TwNwkQcYgTun+ZQy5y3WEc0FEbSGSOMWQmVPWaq5MJHAE2JXKmusy9z1URBWFTSVvrNCjKeqHiMYBik83FtR8LRC4qPYkWm/Q4pmmmaXqx+it3uySiihTVRYoWHbO9x6XIyk5I0fnCJUWL3m+G2e+E6fGKURv3/y6J8SjHSjACJRIrwajyPEITp2V/Yn+kuahKUzZ4eKAhROeBssi5GNmRxfRV+UNNZo9z3uOpGJf5YrAVcHU72X23OEdNBGkR8jbTWqTy+KrKTGrtwlTnQjDOp+myXFIsB9Mvo3kd1xcRT5ovXqNRyYTSqyTCw4l4Cfds7sfqoIPD159Gwj3c8JTv4geeeA+8TQrhSchAgHe41pIBSerDYwIrK0N1DZmPQRbhbNLFII+UfkZQpMIDg8R3N/ZgmIdYz9oIwwz9ILHXeXywjLW0jQfHSxAgGGQRAsqxmrSwf3kIGuYQx9sYn+5Y8RhlAjISIEyCZxTJikDnGwGwP8b6pIVxHugKO69AWkxZv9Al9z7hVr9jG6s6FWb191xsOxJTfE1czc2sODqk+YzzcJUTcZ3JYtmJejdhokTFZVNH591MnRnsxjXsVkRmEdSl0up1XrPR4IXGVkFM5kVxFmkoa74nymTqkpGgJmW2a2iqzM4DM35DGotEY0zV2aJzRtUxqyI/deemZLZMvuCTJLeuGqurNltovO61ytLy0niEIKBUIk49xL6P2MvgSSUedrGezpbjbiWCrFrmksaY+zg96SHQvdOubm3ApxxXt9cRXZPjULSBrw8O4trOGk5M+hCBig6JUACSYPNkF/6RDcQnOmgfSxEwjrVJiP5SjHM6FJ9yhn3RyDZPPZt2cP3KacTcR8x9PPHgSRtV8IjAseVVmzLKhIqaeURgOYjhUQGxQnA6p2AhRzrxVR6PEywf2ESa6QayeYTJVQKEAmfO9nG4p/RRAcutd5FpwZFyD3uCMSgRNjXV9hLkglkBtFtmH3MPXV9Vp80jpuoe15MBU2Zf3pYSAQ8qRaeE1Mozyd9uVGWXfGXmEcHydqYEnIIXqs3MeHaDHJkSeLc6y1Sf2XFcJnAbxW4VFZvxaDoP0ldnSzA9l44Ye1OLgXNpG3uDcWE7E9Hcyu2bEomYB5XrdhtSCMjzfG83ZfcKTYRoFzCPhABFofPszvOPUbd9eZ/tirjrjl2I5FTsX6UhKm9bpVGqHUOJZJnnQqfOVodtPDTs4+Soh80sxKGWmsgpkTgQqT5e8/pjGcxb1/VTpJxhkIWqvN3L9eRCce9oLzLBsNcf4UC4CSEpjnXP4ROfexK+9M2jCB8zgNQNXokAkGsBaqDKlrmg6LQScKHMDft+rI+vPJYMCTMprIhlaHsJVpMWTL810xzWODXvi8ZYTyNV2i8J9rTG6CzFgCTo9GNE3QQ0ypFzBt/jYFRALOeQFOAJg8xU1En5GKlI0TALbJUaUGzoau5d7kSJXFfptpfZ18Hdp5yuNChWK5VL8d302NQx2KccIcvtepcMuf3WqgW/l8ZJ2J2AzbjKeqKCqHsHabM63c289NHCx6851nbSWGW4kb46UuS+j7bb5mS7112ovnOe89J7bDoeWUuGyvem7e2u11GDC4+GEG0Tda03ZvQx7nL3/+axjS+UuSX5mE+GFj4uqflbsW11b7L5eqaya3fVscv7m0lkNFGi4UmqIihGuGvSO0bDYp5vVRFSBRPh2EginBp3Mc5969DcYinauiKFEqHM3voZfvAJ38JkFABEuZBLT4Iup+p8nGB9tQNA+fPEuUpNpUI1lx3nIY501m2DV3NdqWDwiVAEikiknOHMpGPJyjgP8MBwSTlVgyDJPaSc4UBvE36Qg1GBXitGp5MgyxlCTxGb9p4x/A0KjBmuvfYM4tSzESiXRAyzQFXzab2WMcO0NgAV7TVmo3SLaHOm++SC6fPQgt7GBZfEVt5RMm3U6abJzicSsp0Ks0XeT9y5R3VkaFGY9hl1fb/qsJOu9dv5zFRXW23vnNu5J+6xd0LKZghMyZrAXTbKQ/T9xfRB5bGYtNtO7v+O0KTMdg0NIToPzNXOFLarnvDrRMdV27rb1R1rkVRd6TBbDLz4X0pNmbwhf1uf16yjbuTJKckz3e1n7qM+pEnhjeMAKWe4f3MPDkRDLeIV2BdOhY/nq6OIWI6lMIaUBJNMfam1PVVtdS7rIZMUnz7xSNw72oeX3vBF3PnQEfCJh/2PWAXxBIgnwGMPWc7A9iTwwhzDWIXNA8YRcw8DHdlRESAl5laCboZhFiAXDCMe4PrlU4hYhoBx7G2NQYm0245SdUyPCGSCYZiEkJLg6MoaelECLin2dYcI/RweE/C0Jis5mINNKE5v9MAFRa5JV6QjL+aXuepJpsjJkAe2V5kVUqO+iWeVwH0rmIk+15OjN6PxUY7dM1VBu0CGdlM/NK+v3jxh8jwCWUWAysvcKNGilWeLTNZuafsiBGRRMrQdUrcVqsY079rKxKeOACqbiXovJ3df97wMyiLjopEhQJky7sajQUOIdoJyCqmubL4umlR9UMykzxYps18ElX3HSmNd9NhV1WTVG259rqpz2h8qZHbcaeZhmAR4YLQEjwjE3MeXzlw1o2kpf1FtZ7IUkqAbJNgTTRCxDJQI3Dfei+PjPfCJwGNXTuPu04fwZ7c/DU86dAKPeeQJXLO0Dkw8QBCQnGA8CUCpRD4KkGvTRC6oTUsdP7tHGSoKhgOtEbigWI3bWB23rQXAZh7pyAm1potdP1XRGiqQCwqPCrT9FKsbXTAqkOnz9EP1y3ZvZ4ScU1AqwTlFd/8IJCOIT7WRTnyci9tWN+RRgbaXIaAqjTfMQ6ylHaTCU27ZuoeYkMSKqj09Dmt8SIwX0GJd5oWckqDiazf1JDLtS9x9FvHFuZCYd75iuX01mZkXFdltUlHl3WMm66pJu8rjZ7dF5+eDbacVK8bukiF7XF2dZ9KcXRMRriBO7vu76n7t9aur076X8La3vQ1Pf/rT0ev1cODAAbzsZS/DN77xjZntvva1r+ElL3kJlpaW0Ov18IxnPAP333+/XZ8kCd7whjdg37596HQ6eMlLXoIHHnjgYl5KAQ0h2gEWjQypbYuppkVF0LMHql+0G+m32uhUTU7ORIe2g3njdU0aXUio+8aoinJkOcO5cUd1e08iLLViSyIMyo665WXl7dzl5otukIaIuY/vbq4goDl6fowhDzBII8Sxj86RTfzjFx+Je756Ne76x0dBekK5VnMCPvHgeRxSAunIR8CUjmeUhki4hzz2MUxCDNJI6WF0uu9If8OmqQCl2Wl7WaEs3tP3YTMLVXpLEnS7E8S5D59x7G8PkXDP3rONUQucU3BOMR6GEKEEujnkwMcDD60g5bofmja/jLmHzTTEIA1xatxVbUcot/fYpM1MVMLoh9S9M7+opf1/nTvzjMsxZMFKAYCOClV7FNW9potgUSHzbuiOqnREuwVbyl9ZXbfYZ7PO6HA7x9mOxsfgfKJEu0GK7LHK5K+mUmwesaw63/norLYNKVUft/N6bG+st912G173utfhH/7hH3DLLbcgz3M8//nPx2g0JYPf/va38cxnPhPXX389PvWpT+GLX/wi/sN/+A+IoqlD+M0334yPfexj+PCHP4zPfOYzGA6HePGLXwzOF2vXsttoqsy2iXkOzlu9pwqEQ385SpQ0NkCxImsRYfKWY54lYVKSgolk1T51Y1p0HJXEB9NrLq8gqG8YK6XqAicEBecSk9wHF0pse6g1wCBrVU6Y5q+JbtRNSu5yk0pajVvwqMDZpIOVcIwVf4yTIAiCHOPjPWApA13zASJBMgqSEUhfAmOGvMNUxIhJO/5J5qFNJHrLYzCq9EJ5RpFxhmUdkRpmIVLJrIYpYrklJLmgCCjHOA7QDnRVF5FoBxkePLEHRw6vIuMMwziE3+HIch/ddoLBMILkBCJhQC8HEgaEAoSrKNW+aGQF1hHLsZq1Eee+6n+W+wicdFVAc3jQQnBB4bFpisb9WxQLy1q/IbePlZDE2h6UydCiqOqXVrWu3Nl+++ep1k8tvn/x/ItWnJWFyFXEolx1VoVFKtAq01H62GVSUmnAuQXpcZvrLrrPTjHvXpS3A1D5I2nR85Sr4y40pJCQ50m+5DYJ0V//9V8X/v/+978fBw4cwB133IFnPetZAIC3vOUt+NEf/VH87u/+rt3uuuuus883Njbwvve9Dx/4wAfwvOc9DwDwwQ9+EEePHsWtt96KF7zgBTu9nB3jiooQvfvd78axY8cQRRFuvPFGfPrTn97V4xddpXd6kO1tthOSVJVCW/ik5/F9NW+kbnWblGRLO4I485FxptyVKya2cvRnO7/OTdRDld6rHmoUEoM8wtlRB0f2rKN37QYoExCeHqhQTtAGPKMgqTpnzim4IJY8BH5uU1ym9QagxcWSIuYeUp2iyrXWx8We7liZVwqKhHuYZD4Ik5hkqqHsaBQizhRhFJKApwyC0ymhFer9ScMcmbYyMKLtmHvggoIQiTT3bErN3lfMRtXqsJP2BYxI+AtUhbm+SFX/Ly+/EN4/VaiLDJyvsNrdd6tjbLW+ytNn0UiQ+9ceo1TpVl4+D2Wh+E68q7arI6ra53zNJ83rvlOX7vPCeUeH9APAYDAoPJJksUq5jY0NAMDKygoAQAiBv/zLv8RjHvMYvOAFL8CBAwdw00034U//9E/tPnfccQeyLMPzn/98u+zw4cO44YYbcPvtt+/SzdkerhhC9JGPfAQ333wz3vKWt+Cuu+7CP/tn/wz/4l/8i0I+c1FUfaG4z+scmxchIpVtNWaDKQthEaH1BcGcAW5nNOX7RfX1CEkwSX0kudLMnEm6hYal1c7I8+9aOcwdsVyLi4nVK43zAMutidqOSvhRDrKUQSxnkKFQnybDjzgFfAlIIMk9EAJdqUXgU1XZlWgSwgXFKAuwmrQw0j3KzHXkktroEKAIS6hJ2iQLEGe+6lnWTsGFijb1+xOtWyJIM6aE6xI2WgVBgJQCBKonmqnc0wLrTpCgH8Zo+em007yO5Ji0mXvP1HPhaImqy5Vdo8XCvS+1/ViEDLnPz4fsWKLilO5XnedSYF60ZFEd0ryKy7IIe15lZt1EX3TMFvC13isRiyUfyj0GL1SECKhOZXHQSjK03Wq7Mi4JMdoFHD16FEtLS/bxtre9bct9pJR405vehGc+85m44YYbAACnT5/GcDjE29/+drzwhS/EJz7xCfzYj/0YXv7yl+O2224DAJw8eRJBEGDPnj2F4x08eBAnT57c/YtbAFdMyuwd73gHfvZnfxY/93M/BwB45zvfib/5m7/Be97znoVedBdcqA8tIdMvVCm3bkNQJkZGH+NWVEmUdEYSMwTDXVTXEsRdN29Z3ce9sN1W3wk1BLC8quqLw6TCZvatuJVT40aTcaTIuarUcrUsQDUBcg316tJrZpzm/7lOPaSCwaMC/SCBRwQmkQ8pgdDPkXOKySiEiAGS6UhMReqPmaaqRCqXat3nzCVIUhLb2NanvJC6NL5FZlkmqNWlhUEOX6ebOFf3hUUC/VYCjwnEiQ+eM/CMKjIkAJFTTFJFvgLKEbAcESO2+atHRLElh9RpDiIQVMzHbgqEEVnQEqlXiwJEVGte3EmxosfZTjFvghWS6fNOiRoHKZTgu6Soajzl1NkiqbSyQWMd3HRiFeaZG85L25T32c625fEBgE9zMDhieEcIv9U11B0TqH/tymOt+7HjRom2GwHaTpXYII9U379LRIJ2M2V2/Phx9Pt9uzwMwy33ff3rX48vfelL+MxnPmOXCd0b7aUvfSl+5Vd+BQDwlKc8Bbfffjt+//d/H89+9rPnjoXsOMVyfrgiIkRpmuKOO+4ohOYA4PnPf/55heakLP6t3oYsFBlyt6msCjvvN/zsOLYkQ3LORgSFFFq5ss7Nrs2rZKt0tHa5mCZM7sNNgxECjLLARnOqsF29R9lw0F3eZik8ytHxU6y0x/A9jizzIFOmxs1U6k/mBJJKEG1VYH5tEmfizHKGOPXBhXptTIrLYzo1oQXUJq2QcWZJHaMCPhUgRKpKMiJteb2Qyumb6fO1gwzddoJ2O0GrmwBtrsYqCLggumKNwyMCEcvQ92O0vdRWnal7V6we24qsmEhPWSdDiYBHuH2UIwTF+12dArPPS/485Ql0WxPxFu+NraNWW5/L9DYDoNvSVOudtjOx1hGZquWu+NlG80ol++VH+bUx+/jaE6rNEvhEWWAYUmSg/KyqJ9R5r/uFQJ0ouiyOnieWrkNf9zNz27NcTA3RbqbM+v1+4bEVIXrDG96Aj3/84/jkJz+JI0eO2OX79u2D53l4/OMfX9j+cY97nM3KHDp0CGmaYm1trbDN6dOncfDgwd24M9vGFREhOnv2LDjnMzd5XmguSZJC/tTkSPlYLasisPOJkfvcIT/m/2a9JECV4Lgm6mKXbfGFvigZmtm2vOGcaFDV2GYF3e55puez96EGZZG31I1PJylHQiTCthL+howX0mcu6krxy0E4m/qkArk2VJREwqMCqZeCQoInDBAZ0jFDPqQQsZogBCcgGYXMJYgvIGkOOYnBWQ7pEKI895ClEkIAaZhD0mJVReDlyCm36TNDpiiR8ClHnhsnbIY8ZxBUglCOXFIQwSEEheDp9JejoIBgoIKAcA6eBADlyFiKocfhhxyc5fCJadpKbbwndiYv80u7mDoTkERC6O0EUa0EFAEy97v6dd1pWmq3UitT4qb+zyBRVd9CdljZ5LoaUyLBICAoB4G0aSYXojShurauO4niuDDmBaTm0y8r7mkspu+/cR6CUY42TdHxEghJkdHMXoOEao8hZY5h3tL7TTCUBBwUEZ3+wDBjyCVD6CznUvX382l9ldGiEaKdIN96E4v5JJojGanr2q5gebvIkW1Pi1B3jG1ASok3vOEN+NjHPoZPfepTOHbsWGF9EAR4+tOfPlOK/81vfhPXXnstAODGG2+E7/u45ZZb8IpXvAIAcOLECdx9990FIfZFhbwC8OCDD0oA8vbbby8s/+3f/m352Mc+tnKf3/zN3ywHJppH82gezaN5NI9tPY4fP35B5rXJZCIPHTq0a+M8dOiQnEwmC537F3/xF+XS0pL81Kc+JU+cOGEf4/HYbvPRj35U+r4v3/ve98p77rlHvutd75KMMfnpT3/abvPa175WHjlyRN56663yzjvvlD/8wz8sn/zkJ8s8z3f9fi0CIuX3vmd3mqZot9v44z/+Y/zYj/2YXf7GN74RX/jCF6zIy0U5QrS+vo5rr70W999/P5aWli7KuM8Hg8EAR48enckJX65oxnth0Yz3wuPhNuZmvBcWUkpsbm7i8OHDoPTCpNDiOEaapltvuACCICh4BM1Dncbn/e9/P17zmtfY///hH/4h3va2t+GBBx7AYx/7WPzH//gf8dKXvtSuj+MYb37zm/GhD30Ik8kEP/IjP4J3v/vdOHr06Hldy05xRRAiALjppptw44034t3vfrdd9vjHPx4vfelLFxJVDwYDLC0tYWNj42HxYWzGe2HRjPfC4uE2XuDhN+ZmvA0aFHFFaIgA4E1vehNe/epX42lPexp+4Ad+AO9973tx//3347Wvfe2lHlqDBg0aNGjQ4BLjiiFEP/7jP45z587ht37rt3DixAnccMMN+Ku/+isr8GrQoEGDBg0aXLm4YggRAPzSL/0SfumXfmlH+4ZhiN/8zd9cyJfhckAz3guLZrwXFg+38QIPvzE3423QoIgrRkPUoEGDBg0aNGhQhyvCmLFBgwYNGjRo0GAeGkLUoEGDBg0aNLji0RCiBg0aNGjQoMEVj4YQNWjQoEGDBg2ueDSEaAG8+93vxrFjxxBFEW688UZ8+tOfviTjeNvb3oanP/3p6PV6OHDgAF72spfN9IqRUuKtb30rDh8+jFarhec85zn4yle+UtgmSRK84Q1vwL59+9DpdPCSl7wEDzzwwAUfOyEEN99882U91gcffBA/9VM/hb1796LdbuMpT3kK7rjjjstyzHme49//+3+PY8eOodVq4brrrsNv/dZv2U7Tl3q8f//3f49/+S//JQ4fPgxCCP70T/+0sH63xra2toZXv/rVWFpawtLSEl796ldjfX19V8ebZRl+/dd/HU984hPR6XRw+PBh/PRP/zQeeuihy3K8ZfzCL/wCCCF45zvfecnGu+iYv/a1r+ElL3kJlpaW0Ov18IxnPMM2BL0UY25wBeGSNAx5GOHDH/6w9H1f/sEf/IH86le/Kt/4xjfKTqcj77vvvos+lhe84AXy/e9/v7z77rvlF77wBfmiF71IXnPNNXI4HNpt3v72t8teryf/5E/+RH75y1+WP/7jPy6vuuoqORgM7Davfe1r5dVXXy1vueUWeeedd8rnPve5F7R/zOc//3n5iEc8Qj7pSU+Sb3zjGy/bsa6ursprr71WvuY1r5Gf+9zn5L333itvvfVW+a1vfeuyHPNv//Zvy71798q/+Iu/kPfee6/84z/+Y9ntduU73/nOy2K8f/VXfyXf8pa3yD/5kz+RAOTHPvaxwvrdGtsLX/hCecMNN8jbb79d3n777fKGG26QL37xi3d1vOvr6/J5z3ue/MhHPiK//vWvy89+9rPypptukjfeeGPhGJfLeF187GMfk09+8pPl4cOH5e/93u9dsvEuMuZvfetbcmVlRb75zW+Wd955p/z2t78t/+Iv/kKeOnXqko25wZWDhhBtge///u+Xr33tawvLrr/+evkbv/Ebl2hEU5w+fVoCkLfddpuUUkohhDx06JB8+9vfbreJ41guLS3J3//935dSqi923/flhz/8YbvNgw8+KCml8q//+q93fYybm5vy0Y9+tLzlllvks5/9bEuILsex/vqv/7p85jOfWbv+chvzi170Ivlv/s2/KSx7+ctfLn/qp37qshtvefLbrbF99atflQDkP/zDP9htPvvZz0oA8utf//qujbcKn//85yUA++PochzvAw88IK+++mp59913y2uvvbZAiC7leOvG/OM//uP2/VuFSz3mBt/baFJmc5CmKe644w48//nPLyx//vOfj9tvv/0SjWqKjY0NAMDKygoA4N5778XJkycL4w3DEM9+9rPteO+44w5kWVbY5vDhw7jhhhsuyDW97nWvw4te9CI873nPKyy/HMf68Y9/HE972tPwr//1v8aBAwfw1Kc+FX/wB39w2Y75mc98Jv72b/8W3/zmNwEAX/ziF/GZz3wGP/qjP3pZjtfFbo3ts5/9LJaWlnDTTTfZbZ7xjGdgaWnpgn9GNzY2QAjB8vLyZTleIQRe/epX481vfjOe8IQnzKy/HMf7l3/5l3jMYx6DF7zgBThw4ABuuummQlrtchtzg+8tNIRoDs6ePQvOOQ4ePFhYfvDgQZw8efISjUpBSok3velNeOYzn4kbbrgBAOyY5o335MmTCIIAe/bsqd1mt/DhD38Yd955Z2Xz3MttrADwne98B+95z3vw6Ec/Gn/zN3+D1772tfjlX/5l/O///b8vyzH/+q//Ol75ylfi+uuvh+/7eOpTn4qbb74Zr3zlKy/L8brYrbGdPHkSBw4cmDn+gQMHLuj44zjGb/zGb+Anf/InbaPRy228//k//2d4nodf/uVfrlx/uY339OnTGA6HePvb344XvvCF+MQnPoEf+7Efw8tf/nLcdtttl+WYG3xv4Ypq3bFTEEIK/5dSziy72Hj961+PL33pS/jMZz4zs24n493tazp+/Dje+MY34hOf+ASiKKrd7nIYq4EQAk972tPwO7/zOwCApz71qfjKV76C97znPfjpn/7py27MH/nIR/DBD34QH/rQh/CEJzwBX/jCF3DzzTfj8OHD+Jmf+ZnLbrxV2I2xVW1/IcefZRl+4id+AkIIvPvd795y+0sx3jvuuAP/7b/9N9x5553bPu6lur+mGOClL30pfuVXfgUA8JSnPAW33347fv/3fx/PfvazL7sxN/jeQhMhmoN9+/aBMTbzq+L06dMzv2wvJt7whjfg4x//OD75yU/iyJEjdvmhQ4cAYO54Dx06hDRNsba2VrvNbuCOO+7A6dOnceONN8LzPHieh9tuuw3//b//d3ieZ891OYzV4KqrrsLjH//4wrLHPe5xtsLlcrq/APDmN78Zv/Ebv4Gf+ImfwBOf+ES8+tWvxq/8yq/YiNzlNl4XuzW2Q4cO4dSpUzPHP3PmzAUZf5ZleMUrXoF7770Xt9xyi40OXW7j/fSnP43Tp0/jmmuusZ+/++67D7/6q7+KRzziEZfdeAH1fet53pafwctpzA2+t9AQojkIggA33ngjbrnllsLyW265BT/4gz940ccjpcTrX/96fPSjH8Xf/d3f4dixY4X1x44dw6FDhwrjTdMUt912mx3vjTfeCN/3C9ucOHECd999965e04/8yI/gy1/+Mr7whS/Yx9Oe9jS86lWvwhe+8AVcd911l81YDX7oh35oxsbgm9/8Jq699loAl9f9BYDxeAxKix9hxpj9pX25jdfFbo3tB37gB7CxsYHPf/7zdpvPfe5z2NjY2PXxGzJ0zz334NZbb8XevXsL6y+n8b761a/Gl770pcLn7/Dhw3jzm9+Mv/mbv7nsxguo79unP/3pcz+Dl9uYG3yP4eJquB9+MGX373vf++RXv/pVefPNN8tOpyO/+93vXvSx/OIv/qJcWlqSn/rUp+SJEyfsYzwe223e/va3y6WlJfnRj35UfvnLX5avfOUrK0uZjxw5Im+99VZ55513yh/+4R++oGX3Bm6V2eU41s9//vPS8zz5n/7Tf5L33HOP/D//5//IdrstP/jBD16WY/6Zn/kZefXVV9uy+49+9KNy37598td+7dcui/Fubm7Ku+66S951110SgHzHO94h77rrLluVtVtje+ELXyif9KQnyc9+9rPys5/9rHziE5+4oxLreePNsky+5CUvkUeOHJFf+MIXCp+/JEkuu/FWoVxldrHHu8iYP/rRj0rf9+V73/teec8998h3vetdkjEmP/3pT1+yMTe4ctAQogXwP//n/5TXXnutDIJAft/3fZ8tc7/YAFD5eP/732+3EULI3/zN35SHDh2SYRjKZz3rWfLLX/5y4TiTyUS+/vWvlysrK7LVaskXv/jF8v7777/g4y8TostxrH/+538ub7jhBhmGobz++uvle9/73sL6y2nMg8FAvvGNb5TXXHONjKJIXnfddfItb3lLYYK+lOP95Cc/Wfl+/Zmf+ZldHdu5c+fkq171Ktnr9WSv15OvetWr5Nra2q6O99577639/H3yk5+87MZbhSpCdDHHu+iY3/e+98lHPepRMooi+eQnP1n+6Z/+6SUdc4MrB0RKKS9sDKpBgwYNGjRo0ODyRqMhatCgQYMGDRpc8WgIUYMGDRo0aNDgikdDiBo0aNCgQYMGVzwaQtSgQYMGDRo0uOLREKIGDRo0aNCgwRWPhhA1aNCgQYMGDa54NISoQYMGDRo0aHDFoyFEDRo0aNCgQYMrHg0hatCgQYMGDRpc8WgIUYMGDRo0aNDgikdDiBo0aLAtnDlzBocOHcLv/M7v2GWf+9znEAQBPvGJT1zCkTVo0KDBztH0MmvQoMG28Vd/9Vd42ctehttvvx3XX389nvrUp+JFL3oR3vnOd17qoTVo0KDBjtAQogYNGuwIr3vd63Drrbfi6U9/Or74xS/iH//xHxFF0aUeVoMGDRrsCA0hatCgwY4wmUxwww034Pjx4/inf/onPOlJT7rUQ2rQoEGDHaPREDVo0GBH+M53voOHHnoIQgjcd999l3o4DRo0aHBeaCJEDRo02DbSNMX3f//34ylPeQquv/56vOMd78CXv/xlHDx48FIPrUGDBg12hIYQNWjQYNt485vfjP/3//4fvvjFL6Lb7eK5z30uer0e/uIv/uJSD61BgwYNdoQmZdagQYNt4VOf+hTe+c534gMf+AD6/T4opfjABz6Az3zmM3jPe95zqYfXoEGDBjtCEyFq0KBBgwYNGlzxaCJEDRo0aNCgQYMrHg0hatCgQYMGDRpc8WgIUYMGDRo0aNDgikdDiBo0aNCgQYMGVzwaQtSgQYMGDRo0uOLREKIGDRo0aNCgwRWPhhA1aNCgQYMGDa54NISoQYMGDRo0aHDFoyFEDRo0aNCgQYMrHg0hatCgQYMGDRpc8WgIUYMGDRo0aNDgikdDiBo0aNCgQYMGVzz+/yGd+PHHn3/5AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ds[\"t2m\"][-1].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "pangeo-forge-recipes", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.15" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "6b8a746a12f29aa2c546c85b48de78550232bc5612f99eafab965bc70842be27" + } } - ], - "source": [ - "ds[\"t2m\"][-1].plot()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "pangeo-forge-recipes", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.15" }, - "orig_nbformat": 4, - "vscode": { - "interpreter": { - "hash": "6b8a746a12f29aa2c546c85b48de78550232bc5612f99eafab965bc70842be27" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 + "nbformat": 4, + "nbformat_minor": 2 } diff --git a/docs/pangeo_forge_recipes/tutorials/hdf_reference/reference_cmip6.ipynb b/docs/pangeo_forge_recipes/tutorials/hdf_reference/reference_cmip6.ipynb index 1aee14d8..a99943af 100644 --- a/docs/pangeo_forge_recipes/tutorials/hdf_reference/reference_cmip6.ipynb +++ b/docs/pangeo_forge_recipes/tutorials/hdf_reference/reference_cmip6.ipynb @@ -1,1666 +1,1666 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "id": "49caf2b2", - "metadata": {}, - "source": [ - "# HDF Reference Recipe for CMIP6\n", - "\n", - "This example illustrates how to create a Reference Recipe using CMIP6 data.\n", - "This recipe does not actually copy the original source data.\n", - "Instead, it generates metadata files which reference and index the original data, allowing it to be accessed more efficiently. It does this by using the Python library, [Kerchunk](https://fsspec.github.io/kerchunk/) under the hood. Pangeo-Forge is acting as a runner for Kerchunk to generate reference files. \n", - "\n", - "As the input for this recipe, we will use some CMIP6 NetCDF4 files provided by ESGF and stored in Amazon S3 ([CMIP6 AWS Open Data Page](https://registry.opendata.aws/cmip6/)).\n", - "Many CMIP6 simulations spread their outputs over many HDF5/ NetCDF4 files, in order to limit the individual file size.\n", - "This can be inconvenient for analysis.\n", - "In this recipe, we will see how to virtually concatenate many HDF5 files into one big virtual Zarr dataset." - ] - }, - { - "cell_type": "markdown", - "id": "941f9855", - "metadata": {}, - "source": [ - "## Define the FilePattern\n", - "\n", - "Let's pick a random dataset: ocean model output from the GFDL ocean model from the [OMIP](https://www.wcrp-climate.org/modelling-wgcm-mip-catalogue/cmip6-endorsed-mips-article/1063-modelling-cmip6-omip) experiments." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "965272cf", - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "text/plain": [ - "['esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_170801-172712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_172801-174712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_174801-176712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_176801-178712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_178801-180712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_180801-182712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_182801-184712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_184801-186712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_186801-188712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_188801-190712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_190801-192712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_192801-194712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_194801-196712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_196801-198712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_198801-200712.nc']" + "attachments": {}, + "cell_type": "markdown", + "id": "49caf2b2", + "metadata": {}, + "source": [ + "# HDF Reference Recipe for CMIP6\n", + "\n", + "This example illustrates how to create a Reference Recipe using CMIP6 data.\n", + "This recipe does not actually copy the original source data.\n", + "Instead, it generates metadata files which reference and index the original data, allowing it to be accessed more efficiently. It does this by using the Python library, [Kerchunk](https://fsspec.github.io/kerchunk/) under the hood. Pangeo-Forge is acting as a runner for Kerchunk to generate reference files. \n", + "\n", + "As the input for this recipe, we will use some CMIP6 NetCDF4 files provided by ESGF and stored in Amazon S3 ([CMIP6 AWS Open Data Page](https://registry.opendata.aws/cmip6/)).\n", + "Many CMIP6 simulations spread their outputs over many HDF5/ NetCDF4 files, in order to limit the individual file size.\n", + "This can be inconvenient for analysis.\n", + "In this recipe, we will see how to virtually concatenate many HDF5 files into one big virtual Zarr dataset." ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import s3fs\n", - "fs = s3fs.S3FileSystem(anon=True)\n", - "base_path = 's3://esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/'\n", - "all_paths = fs.ls(base_path)\n", - "all_paths" - ] - }, - { - "cell_type": "markdown", - "id": "ba062f69-5c31-44e9-a252-6b55e292b4e5", - "metadata": {}, - "source": [ - "We see there are 15 individual NetCDF files. Let's time how long it takes to open and display one of them using Xarray.\n", - "\n", - "```{note}\n", - "The argument `decode_coords='all'` helps Xarray promote all of the `_bnds` variables to coordinates (rather than data variables).\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "64ce8337-8984-43b5-bc01-33c531bb21cd", - "metadata": {}, - "outputs": [], - "source": [ - "import xarray as xr" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "6143ffb9", - "metadata": {}, - "outputs": [ + }, { - "name": "stderr", - "output_type": "stream", - "text": [ - ":1: UserWarning: Variable(s) referenced in cell_measures not in variables: ['areacello', 'volcello']\n" - ] + "cell_type": "markdown", + "id": "941f9855", + "metadata": {}, + "source": [ + "## Define the FilePattern\n", + "\n", + "Let's pick a random dataset: ocean model output from the GFDL ocean model from the [OMIP](https://www.wcrp-climate.org/modelling-wgcm-mip-catalogue/cmip6-endorsed-mips-article/1063-modelling-cmip6-omip) experiments." + ] }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 713 ms, sys: 324 ms, total: 1.04 s\n", - "Wall time: 4.41 s\n" - ] + "cell_type": "code", + "execution_count": 1, + "id": "965272cf", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_170801-172712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_172801-174712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_174801-176712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_176801-178712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_178801-180712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_180801-182712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_182801-184712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_184801-186712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_186801-188712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_188801-190712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_190801-192712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_192801-194712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_194801-196712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_196801-198712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_198801-200712.nc']" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import s3fs\n", + "fs = s3fs.S3FileSystem(anon=True)\n", + "base_path = 's3://esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/'\n", + "all_paths = fs.ls(base_path)\n", + "all_paths" + ] }, { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.Dataset>\n",
-       "Dimensions:    (lat: 180, bnds: 2, lon: 360, time: 240, lev: 35)\n",
-       "Coordinates:\n",
-       "  * lat        (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n",
-       "    lat_bnds   (lat, bnds) float64 dask.array<chunksize=(180, 2), meta=np.ndarray>\n",
-       "  * lon        (lon) float64 0.5 1.5 2.5 3.5 4.5 ... 356.5 357.5 358.5 359.5\n",
-       "    lon_bnds   (lon, bnds) float64 dask.array<chunksize=(360, 2), meta=np.ndarray>\n",
-       "  * time       (time) object 1708-01-16 12:00:00 ... 1727-12-16 12:00:00\n",
-       "    time_bnds  (time, bnds) object dask.array<chunksize=(240, 2), meta=np.ndarray>\n",
-       "    lev_bnds   (lev, bnds) float64 dask.array<chunksize=(35, 2), meta=np.ndarray>\n",
-       "  * lev        (lev) float64 2.5 10.0 20.0 32.5 ... 5e+03 5.5e+03 6e+03 6.5e+03\n",
-       "Dimensions without coordinates: bnds\n",
-       "Data variables:\n",
-       "    thetao     (time, lev, lat, lon) float32 dask.array<chunksize=(240, 35, 180, 360), meta=np.ndarray>\n",
-       "Attributes: (12/44)\n",
-       "    title:                 NOAA GFDL GFDL-CM4 model output prepared for CMIP6...\n",
-       "    history:               File was processed by fremetar (GFDL analog of CMO...\n",
-       "    external_variables:    areacello volcello\n",
-       "    table_id:              Omon\n",
-       "    activity_id:           OMIP\n",
-       "    branch_method:         none provided\n",
-       "    ...                    ...\n",
-       "    sub_experiment_id:     none\n",
-       "    tracking_id:           hdl:21.14100/97e4edf3-22e7-4e5f-831a-f2a671b7094f\n",
-       "    variable_id:           thetao\n",
-       "    variant_info:          N/A\n",
-       "    references:            see further_info_url attribute\n",
-       "    variant_label:         r1i1p1f1
" + "cell_type": "markdown", + "id": "ba062f69-5c31-44e9-a252-6b55e292b4e5", + "metadata": {}, + "source": [ + "We see there are 15 individual NetCDF files. Let's time how long it takes to open and display one of them using Xarray.\n", + "\n", + "```{note}\n", + "The argument `decode_coords='all'` helps Xarray promote all of the `_bnds` variables to coordinates (rather than data variables).\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "64ce8337-8984-43b5-bc01-33c531bb21cd", + "metadata": {}, + "outputs": [], + "source": [ + "import xarray as xr" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "6143ffb9", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":1: UserWarning: Variable(s) referenced in cell_measures not in variables: ['areacello', 'volcello']\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 713 ms, sys: 324 ms, total: 1.04 s\n", + "Wall time: 4.41 s\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+              "Dimensions:    (lat: 180, bnds: 2, lon: 360, time: 240, lev: 35)\n",
+              "Coordinates:\n",
+              "  * lat        (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n",
+              "    lat_bnds   (lat, bnds) float64 dask.array<chunksize=(180, 2), meta=np.ndarray>\n",
+              "  * lon        (lon) float64 0.5 1.5 2.5 3.5 4.5 ... 356.5 357.5 358.5 359.5\n",
+              "    lon_bnds   (lon, bnds) float64 dask.array<chunksize=(360, 2), meta=np.ndarray>\n",
+              "  * time       (time) object 1708-01-16 12:00:00 ... 1727-12-16 12:00:00\n",
+              "    time_bnds  (time, bnds) object dask.array<chunksize=(240, 2), meta=np.ndarray>\n",
+              "    lev_bnds   (lev, bnds) float64 dask.array<chunksize=(35, 2), meta=np.ndarray>\n",
+              "  * lev        (lev) float64 2.5 10.0 20.0 32.5 ... 5e+03 5.5e+03 6e+03 6.5e+03\n",
+              "Dimensions without coordinates: bnds\n",
+              "Data variables:\n",
+              "    thetao     (time, lev, lat, lon) float32 dask.array<chunksize=(240, 35, 180, 360), meta=np.ndarray>\n",
+              "Attributes: (12/44)\n",
+              "    title:                 NOAA GFDL GFDL-CM4 model output prepared for CMIP6...\n",
+              "    history:               File was processed by fremetar (GFDL analog of CMO...\n",
+              "    external_variables:    areacello volcello\n",
+              "    table_id:              Omon\n",
+              "    activity_id:           OMIP\n",
+              "    branch_method:         none provided\n",
+              "    ...                    ...\n",
+              "    sub_experiment_id:     none\n",
+              "    tracking_id:           hdl:21.14100/97e4edf3-22e7-4e5f-831a-f2a671b7094f\n",
+              "    variable_id:           thetao\n",
+              "    variant_info:          N/A\n",
+              "    references:            see further_info_url attribute\n",
+              "    variant_label:         r1i1p1f1
" + ], + "text/plain": [ + "\n", + "Dimensions: (lat: 180, bnds: 2, lon: 360, time: 240, lev: 35)\n", + "Coordinates:\n", + " * lat (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n", + " lat_bnds (lat, bnds) float64 dask.array\n", + " * lon (lon) float64 0.5 1.5 2.5 3.5 4.5 ... 356.5 357.5 358.5 359.5\n", + " lon_bnds (lon, bnds) float64 dask.array\n", + " * time (time) object 1708-01-16 12:00:00 ... 1727-12-16 12:00:00\n", + " time_bnds (time, bnds) object dask.array\n", + " lev_bnds (lev, bnds) float64 dask.array\n", + " * lev (lev) float64 2.5 10.0 20.0 32.5 ... 5e+03 5.5e+03 6e+03 6.5e+03\n", + "Dimensions without coordinates: bnds\n", + "Data variables:\n", + " thetao (time, lev, lat, lon) float32 dask.array\n", + "Attributes: (12/44)\n", + " title: NOAA GFDL GFDL-CM4 model output prepared for CMIP6...\n", + " history: File was processed by fremetar (GFDL analog of CMO...\n", + " external_variables: areacello volcello\n", + " table_id: Omon\n", + " activity_id: OMIP\n", + " branch_method: none provided\n", + " ... ...\n", + " sub_experiment_id: none\n", + " tracking_id: hdl:21.14100/97e4edf3-22e7-4e5f-831a-f2a671b7094f\n", + " variable_id: thetao\n", + " variant_info: N/A\n", + " references: see further_info_url attribute\n", + " variant_label: r1i1p1f1" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "\n", - "Dimensions: (lat: 180, bnds: 2, lon: 360, time: 240, lev: 35)\n", - "Coordinates:\n", - " * lat (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n", - " lat_bnds (lat, bnds) float64 dask.array\n", - " * lon (lon) float64 0.5 1.5 2.5 3.5 4.5 ... 356.5 357.5 358.5 359.5\n", - " lon_bnds (lon, bnds) float64 dask.array\n", - " * time (time) object 1708-01-16 12:00:00 ... 1727-12-16 12:00:00\n", - " time_bnds (time, bnds) object dask.array\n", - " lev_bnds (lev, bnds) float64 dask.array\n", - " * lev (lev) float64 2.5 10.0 20.0 32.5 ... 5e+03 5.5e+03 6e+03 6.5e+03\n", - "Dimensions without coordinates: bnds\n", - "Data variables:\n", - " thetao (time, lev, lat, lon) float32 dask.array\n", - "Attributes: (12/44)\n", - " title: NOAA GFDL GFDL-CM4 model output prepared for CMIP6...\n", - " history: File was processed by fremetar (GFDL analog of CMO...\n", - " external_variables: areacello volcello\n", - " table_id: Omon\n", - " activity_id: OMIP\n", - " branch_method: none provided\n", - " ... ...\n", - " sub_experiment_id: none\n", - " tracking_id: hdl:21.14100/97e4edf3-22e7-4e5f-831a-f2a671b7094f\n", - " variable_id: thetao\n", - " variant_info: N/A\n", - " references: see further_info_url attribute\n", - " variant_label: r1i1p1f1" + "source": [ + "%%time\n", + "ds_orig = xr.open_dataset(fs.open(all_paths[0]), engine='h5netcdf', chunks={}, decode_coords='all')\n", + "ds_orig" ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "%%time\n", - "ds_orig = xr.open_dataset(fs.open(all_paths[0]), engine='h5netcdf', chunks={}, decode_coords='all')\n", - "ds_orig" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "2de47e7f-5196-4b98-b05d-f281cb2eb056", - "metadata": {}, - "source": [ - "It took ~5 seconds to open this one dataset. So it would take over a minute for us to open every file.\n", - "\n", - "As a first step in our recipe, we create a `File Pattern <../../recipe_user_guide/file_patterns>` to represent the input files.\n", - "In this case, since we already have a list of inputs, we just use the `pattern_from_file_sequence` convenience function." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "8c3a47bf", - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "" + "attachments": {}, + "cell_type": "markdown", + "id": "2de47e7f-5196-4b98-b05d-f281cb2eb056", + "metadata": {}, + "source": [ + "It took ~5 seconds to open this one dataset. So it would take over a minute for us to open every file.\n", + "\n", + "As a first step in our recipe, we create a `File Pattern <../../recipe_user_guide/file_patterns>` to represent the input files.\n", + "In this case, since we already have a list of inputs, we just use the `pattern_from_file_sequence` convenience function." ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from pangeo_forge_recipes.patterns import pattern_from_file_sequence\n", - "pattern = pattern_from_file_sequence(['s3://' + path for path in all_paths], 'time')\n", - "pattern" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "8fa5d0a3-fdee-4072-a621-b905427cd616", - "metadata": {}, - "source": [ - "## Write the Recipe\n", - "\n", - "Once we have our `FilePattern`, describing our input file paths, we can construct out `beam` pipeline. A beam pipeline is a chained together list of (Apache Beam transformations)[https://beam.apache.org/documentation/programming-guide/#transforms].\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "3a443948", - "metadata": {}, - "source": [ - "### Specify where our target data should be written\n", - "Here, we are creating a temporary directory to store the written reference files. If we wanted these reference files to persist locally, we would want to specify another file path. \n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "41f8bdab", - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "from tempfile import TemporaryDirectory\n", - "td = TemporaryDirectory()\n", - "target_root = td.name\n", - "store_name = \"output.json\"\n", - "target_store = os.path.join(target_root, store_name)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "6b9d27c7", - "metadata": {}, - "source": [ - "## Construct a Pipeline\n", - "Next, we will construct a beam pipeline. This should look similar to the other standard Zarr examples, but will involve a few different transforms. " - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "edebe82b", - "metadata": {}, - "outputs": [], - "source": [ - "import apache_beam as beam\n", - "from pangeo_forge_recipes.transforms import OpenWithKerchunk, CombineReferences, WriteCombinedReference\n", - "\n", - "store_name = \"cmip6_reference\"\n", - "transforms = (\n", - " # Create a beam PCollection from our input file pattern\n", - " beam.Create(pattern.items())\n", - " # Open with Kerchunk and create references for each file\n", - " | OpenWithKerchunk(file_type=pattern.file_type, storage_options={'anon':True})\n", - " # Use Kerchunk's `MultiZarrToZarr` functionality to combine the reference files into a single\n", - " # reference file. *Note*: Setting the correct contact_dims and identical_dims is important.\n", - " | CombineReferences(\n", - " concat_dims=[\"time\"], \n", - " identical_dims=[\"lat\", \"lat_bnds\", \"lon\", \"lon_bnds\", \"lev_bnds\", \"lev\"],\n", - " mzz_kwargs = {\"remote_protocol\": \"s3\"},\n", - " )\n", - " # Write the combined Kerchunk reference to file.\n", - " | WriteCombinedReference(target_root=target_root, store_name=store_name)\n", - ")" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "5a1e6228", - "metadata": {}, - "source": [ - "## Execute the Recipe" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "b0a08c82", - "metadata": {}, - "outputs": [ + }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" - ] + "cell_type": "code", + "execution_count": 4, + "id": "8c3a47bf", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pangeo_forge_recipes.patterns import pattern_from_file_sequence\n", + "pattern = pattern_from_file_sequence(['s3://' + path for path in all_paths], 'time')\n", + "pattern" + ] }, { - "data": { - "application/javascript": "\n if (typeof window.interactive_beam_jquery == 'undefined') {\n var jqueryScript = document.createElement('script');\n jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n jqueryScript.type = 'text/javascript';\n jqueryScript.onload = function() {\n var datatableScript = document.createElement('script');\n datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n datatableScript.type = 'text/javascript';\n datatableScript.onload = function() {\n window.interactive_beam_jquery = jQuery.noConflict(true);\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }\n document.head.appendChild(datatableScript);\n };\n document.head.appendChild(jqueryScript);\n } else {\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "with beam.Pipeline() as p:\n", - " p | transforms" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "300f5b49-4b3c-4dc5-8519-63485456af94", - "metadata": {}, - "source": [ - "## Examine the Result\n", - "\n", - "Here we are creating an fsspec mapper of the reference file and then passing it to Xarray's `open_dataset` to be read as if it were a Zarr store." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "01d262ac", - "metadata": {}, - "outputs": [ + "attachments": {}, + "cell_type": "markdown", + "id": "8fa5d0a3-fdee-4072-a621-b905427cd616", + "metadata": {}, + "source": [ + "## Write the Recipe\n", + "\n", + "Once we have our `FilePattern`, describing our input file paths, we can construct out `beam` pipeline. A beam pipeline is a chained together list of (Apache Beam transformations)[https://beam.apache.org/documentation/programming-guide/#transforms].\n" + ] + }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "/var/folders/tt/4f941hdn0zq549zdwhcgg98c0000gn/T/ipykernel_51158/4021537054.py:5: UserWarning: Variable(s) referenced in cell_measures not in variables: ['areacello', 'volcello']\n", - " ds = xr.open_dataset(mapper, engine=\"zarr\", decode_coords='all', backend_kwargs={\"consolidated\": False})\n" - ] - } - ], - "source": [ - "import fsspec\n", - "import xarray as xr\n", - "full_path = os.path.join(target_root, store_name, \"reference.json\")\n", - "mapper = fsspec.get_mapper(\"reference://\", fo=full_path, remote_protocol=\"s3\",)\n", - "ds = xr.open_dataset(mapper, engine=\"zarr\", decode_coords='all', backend_kwargs={\"consolidated\": False})\n" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "f57db791", - "metadata": {}, - "outputs": [ + "attachments": {}, + "cell_type": "markdown", + "id": "3a443948", + "metadata": {}, + "source": [ + "### Specify where our target data should be written\n", + "Here, we are creating a temporary directory to store the written reference files. If we wanted these reference files to persist locally, we would want to specify another file path. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "41f8bdab", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "from tempfile import TemporaryDirectory\n", + "td = TemporaryDirectory()\n", + "target_root = td.name\n", + "store_name = \"output.json\"\n", + "target_store = os.path.join(target_root, store_name)" + ] + }, { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.Dataset>\n",
-       "Dimensions:    (lat: 180, bnds: 2, lev: 35, lon: 360, time: 3600)\n",
-       "Coordinates:\n",
-       "  * lat        (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n",
-       "    lat_bnds   (lat, bnds) float64 ...\n",
-       "  * lev        (lev) float64 2.5 10.0 20.0 32.5 ... 5e+03 5.5e+03 6e+03 6.5e+03\n",
-       "    lev_bnds   (lev, bnds) float64 ...\n",
-       "  * lon        (lon) float64 0.5 1.5 2.5 3.5 4.5 ... 356.5 357.5 358.5 359.5\n",
-       "    lon_bnds   (lon, bnds) float64 ...\n",
-       "  * time       (time) object 1708-01-16 12:00:00 ... 2007-12-16 12:00:00\n",
-       "    time_bnds  (time, bnds) object ...\n",
-       "Dimensions without coordinates: bnds\n",
-       "Data variables:\n",
-       "    thetao     (time, lev, lat, lon) float32 ...\n",
-       "Attributes: (12/44)\n",
-       "    Conventions:           CF-1.7 CMIP-6.0 UGRID-1.0\n",
-       "    activity_id:           OMIP\n",
-       "    branch_method:         none provided\n",
-       "    branch_time_in_child:  0.0\n",
-       "    comment:               Experiment name = OM4p25_IAF_BLING_csf_rerun\\nFor ...\n",
-       "    contact:               gfdl.climate.model.info@noaa.gov\n",
-       "    ...                    ...\n",
-       "    table_id:              Omon\n",
-       "    title:                 NOAA GFDL GFDL-CM4 model output prepared for CMIP6...\n",
-       "    tracking_id:           hdl:21.14100/97e4edf3-22e7-4e5f-831a-f2a671b7094f\n",
-       "    variable_id:           thetao\n",
-       "    variant_info:          N/A\n",
-       "    variant_label:         r1i1p1f1
" + "attachments": {}, + "cell_type": "markdown", + "id": "6b9d27c7", + "metadata": {}, + "source": [ + "## Construct a Pipeline\n", + "Next, we will construct a beam pipeline. This should look similar to the other standard Zarr examples, but will involve a few different transforms. " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "edebe82b", + "metadata": {}, + "outputs": [], + "source": [ + "import apache_beam as beam\n", + "from pangeo_forge_recipes.transforms import OpenWithKerchunk, CombineReferences, WriteCombinedReference\n", + "\n", + "store_name = \"cmip6_reference\"\n", + "transforms = (\n", + " # Create a beam PCollection from our input file pattern\n", + " beam.Create(pattern.items())\n", + " # Open with Kerchunk and create references for each file\n", + " | OpenWithKerchunk(file_type=pattern.file_type, storage_options={'anon':True})\n", + " # Use Kerchunk's `MultiZarrToZarr` functionality to combine the reference files into a single\n", + " # reference file. *Note*: Setting the correct contact_dims and identical_dims is important.\n", + " | CombineReferences(\n", + " concat_dims=[\"time\"], \n", + " identical_dims=[\"lat\", \"lat_bnds\", \"lon\", \"lon_bnds\", \"lev_bnds\", \"lev\"],\n", + " mzz_kwargs = {\"remote_protocol\": \"s3\"},\n", + " )\n", + " # Write the combined Kerchunk reference to file.\n", + " | WriteCombinedReference(target_root=target_root, store_name=store_name)\n", + ")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "5a1e6228", + "metadata": {}, + "source": [ + "## Execute the Recipe" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "b0a08c82", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" + ] + }, + { + "data": { + "application/javascript": "\n if (typeof window.interactive_beam_jquery == 'undefined') {\n var jqueryScript = document.createElement('script');\n jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n jqueryScript.type = 'text/javascript';\n jqueryScript.onload = function() {\n var datatableScript = document.createElement('script');\n datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n datatableScript.type = 'text/javascript';\n datatableScript.onload = function() {\n window.interactive_beam_jquery = jQuery.noConflict(true);\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }\n document.head.appendChild(datatableScript);\n };\n document.head.appendChild(jqueryScript);\n } else {\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }" + }, + "metadata": {}, + "output_type": "display_data" + } ], - "text/plain": [ - "\n", - "Dimensions: (lat: 180, bnds: 2, lev: 35, lon: 360, time: 3600)\n", - "Coordinates:\n", - " * lat (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n", - " lat_bnds (lat, bnds) float64 ...\n", - " * lev (lev) float64 2.5 10.0 20.0 32.5 ... 5e+03 5.5e+03 6e+03 6.5e+03\n", - " lev_bnds (lev, bnds) float64 ...\n", - " * lon (lon) float64 0.5 1.5 2.5 3.5 4.5 ... 356.5 357.5 358.5 359.5\n", - " lon_bnds (lon, bnds) float64 ...\n", - " * time (time) object 1708-01-16 12:00:00 ... 2007-12-16 12:00:00\n", - " time_bnds (time, bnds) object ...\n", - "Dimensions without coordinates: bnds\n", - "Data variables:\n", - " thetao (time, lev, lat, lon) float32 ...\n", - "Attributes: (12/44)\n", - " Conventions: CF-1.7 CMIP-6.0 UGRID-1.0\n", - " activity_id: OMIP\n", - " branch_method: none provided\n", - " branch_time_in_child: 0.0\n", - " comment: Experiment name = OM4p25_IAF_BLING_csf_rerun\\nFor ...\n", - " contact: gfdl.climate.model.info@noaa.gov\n", - " ... ...\n", - " table_id: Omon\n", - " title: NOAA GFDL GFDL-CM4 model output prepared for CMIP6...\n", - " tracking_id: hdl:21.14100/97e4edf3-22e7-4e5f-831a-f2a671b7094f\n", - " variable_id: thetao\n", - " variant_info: N/A\n", - " variant_label: r1i1p1f1" + "source": [ + "with beam.Pipeline() as p:\n", + " p | transforms" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "300f5b49-4b3c-4dc5-8519-63485456af94", + "metadata": {}, + "source": [ + "## Examine the Result\n", + "\n", + "Here we are creating an fsspec mapper of the reference file and then passing it to Xarray's `open_dataset` to be read as if it were a Zarr store." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "01d262ac", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/tt/4f941hdn0zq549zdwhcgg98c0000gn/T/ipykernel_51158/4021537054.py:5: UserWarning: Variable(s) referenced in cell_measures not in variables: ['areacello', 'volcello']\n", + " ds = xr.open_dataset(mapper, engine=\"zarr\", decode_coords='all', backend_kwargs={\"consolidated\": False})\n" + ] + } + ], + "source": [ + "import fsspec\n", + "import xarray as xr\n", + "full_path = os.path.join(target_root, store_name, \"reference.json\")\n", + "mapper = fsspec.get_mapper(\"reference://\", fo=full_path, remote_protocol=\"s3\",)\n", + "ds = xr.open_dataset(mapper, engine=\"zarr\", decode_coords='all', backend_kwargs={\"consolidated\": False})\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "f57db791", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+              "Dimensions:    (lat: 180, bnds: 2, lev: 35, lon: 360, time: 3600)\n",
+              "Coordinates:\n",
+              "  * lat        (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n",
+              "    lat_bnds   (lat, bnds) float64 ...\n",
+              "  * lev        (lev) float64 2.5 10.0 20.0 32.5 ... 5e+03 5.5e+03 6e+03 6.5e+03\n",
+              "    lev_bnds   (lev, bnds) float64 ...\n",
+              "  * lon        (lon) float64 0.5 1.5 2.5 3.5 4.5 ... 356.5 357.5 358.5 359.5\n",
+              "    lon_bnds   (lon, bnds) float64 ...\n",
+              "  * time       (time) object 1708-01-16 12:00:00 ... 2007-12-16 12:00:00\n",
+              "    time_bnds  (time, bnds) object ...\n",
+              "Dimensions without coordinates: bnds\n",
+              "Data variables:\n",
+              "    thetao     (time, lev, lat, lon) float32 ...\n",
+              "Attributes: (12/44)\n",
+              "    Conventions:           CF-1.7 CMIP-6.0 UGRID-1.0\n",
+              "    activity_id:           OMIP\n",
+              "    branch_method:         none provided\n",
+              "    branch_time_in_child:  0.0\n",
+              "    comment:               Experiment name = OM4p25_IAF_BLING_csf_rerun\\nFor ...\n",
+              "    contact:               gfdl.climate.model.info@noaa.gov\n",
+              "    ...                    ...\n",
+              "    table_id:              Omon\n",
+              "    title:                 NOAA GFDL GFDL-CM4 model output prepared for CMIP6...\n",
+              "    tracking_id:           hdl:21.14100/97e4edf3-22e7-4e5f-831a-f2a671b7094f\n",
+              "    variable_id:           thetao\n",
+              "    variant_info:          N/A\n",
+              "    variant_label:         r1i1p1f1
" + ], + "text/plain": [ + "\n", + "Dimensions: (lat: 180, bnds: 2, lev: 35, lon: 360, time: 3600)\n", + "Coordinates:\n", + " * lat (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n", + " lat_bnds (lat, bnds) float64 ...\n", + " * lev (lev) float64 2.5 10.0 20.0 32.5 ... 5e+03 5.5e+03 6e+03 6.5e+03\n", + " lev_bnds (lev, bnds) float64 ...\n", + " * lon (lon) float64 0.5 1.5 2.5 3.5 4.5 ... 356.5 357.5 358.5 359.5\n", + " lon_bnds (lon, bnds) float64 ...\n", + " * time (time) object 1708-01-16 12:00:00 ... 2007-12-16 12:00:00\n", + " time_bnds (time, bnds) object ...\n", + "Dimensions without coordinates: bnds\n", + "Data variables:\n", + " thetao (time, lev, lat, lon) float32 ...\n", + "Attributes: (12/44)\n", + " Conventions: CF-1.7 CMIP-6.0 UGRID-1.0\n", + " activity_id: OMIP\n", + " branch_method: none provided\n", + " branch_time_in_child: 0.0\n", + " comment: Experiment name = OM4p25_IAF_BLING_csf_rerun\\nFor ...\n", + " contact: gfdl.climate.model.info@noaa.gov\n", + " ... ...\n", + " table_id: Omon\n", + " title: NOAA GFDL GFDL-CM4 model output prepared for CMIP6...\n", + " tracking_id: hdl:21.14100/97e4edf3-22e7-4e5f-831a-f2a671b7094f\n", + " variable_id: thetao\n", + " variant_info: N/A\n", + " variant_label: r1i1p1f1" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "206619cc", + "metadata": {}, + "source": [ + "## Make a Map" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "4f95c115-3cff-4454-83fd-8d9b89a77560", + "metadata": {}, + "outputs": [], + "source": [ + "ds_ann = ds.resample(time='A').mean()\n", + "sst_diff = ds_ann.thetao.isel(time=-1, lev=0) - ds_ann.thetao.isel(time=0, lev=0)\n", + "sst_diff.plot()" ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" } - ], - "source": [ - "ds" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "206619cc", - "metadata": {}, - "source": [ - "## Make a Map" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "4f95c115-3cff-4454-83fd-8d9b89a77560", - "metadata": {}, - "outputs": [], - "source": [ - "ds_ann = ds.resample(time='A').mean()\n", - "sst_diff = ds_ann.thetao.isel(time=-1, lev=0) - ds_ann.thetao.isel(time=0, lev=0)\n", - "sst_diff.plot()" - ] - } - ], - "metadata": { - "execution": { - "allow_errors": false, - "timeout": 3000 - }, - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" + ], + "metadata": { + "execution": { + "allow_errors": false, + "timeout": 3000 + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.15" + } }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.15" - } - }, - "nbformat": 4, - "nbformat_minor": 5 + "nbformat": 4, + "nbformat_minor": 5 } diff --git a/docs/pangeo_forge_recipes/tutorials/xarray_zarr/cmip6-recipe.ipynb b/docs/pangeo_forge_recipes/tutorials/xarray_zarr/cmip6-recipe.ipynb index f78cbe4d..d145d8a9 100755 --- a/docs/pangeo_forge_recipes/tutorials/xarray_zarr/cmip6-recipe.ipynb +++ b/docs/pangeo_forge_recipes/tutorials/xarray_zarr/cmip6-recipe.ipynb @@ -1,1846 +1,1846 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# NetCDF Zarr Sequential Recipe: CMIP6\n", - "\n", - "This tutorial describes how to create a suitable recipe for many of the CMIP6 datasets.\n", - "The source data is a sequence of NetCDF files accessed from the 's3://esgf-world' bucket.\n", - "The target is a Zarr store." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Background\n", - "\n", - "- The s3://esgf-world bucket has about 250,000 datasets stored in about 950,000 netcdf files (for an average of about four netcdf files per dataset). This is a small subset of the WCRP-CMIP6 collection available at the Federated ESGF-COG nodes such as https://esgf-node.llnl.gov/search/cmip6, but it is faster and easier to work with. \n", - "\n", - "- Each CMIP6 dataset can be identified by a 6-tuple consisting of:\n", - "\n", - " (model,experiment,ensemble_member,mip_table,variable,grid_label)\n", - " \n", - "and so a convenient name for a particular dataset is a string of these values joined with a '.' separator:\n", - "\n", - " dataset = model.experiment.ensemble_member.mip_table.variable.grid_label\n", - " \n", - "\n", - "- There can be multiple versions of a dataset, designated by a string beginning with 'v' and then an 8 digit date, loosely associated with its creation time" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import xarray as xr\n", - "import s3fs" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 1: Get to know your source data\n", - "The CMIP6 collection is very heterogeneous, so getting to know the source data is rather complicated. We first need to identify a dataset and learn how to list the set of netcdf files which are associated with it. Fortunately, you can explore the data here: https://esgf-world.s3.amazonaws.com/index.html#CMIP6/ or download a CSV file listing all of the netcdf files, one per line.\n", - "\n", - "Here we will read the CSV file into a pandas dataframe so we can search, sort and subset the available datasets and their netcdf files." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ + "cells": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "RangeIndex: 1056266 entries, 0 to 1056265\n", - "Data columns (total 13 columns):\n", - " # Column Non-Null Count Dtype \n", - "--- ------ -------------- ----- \n", - " 0 project 1056266 non-null object\n", - " 1 institution_id 1056266 non-null object\n", - " 2 source_id 1056266 non-null object\n", - " 3 experiment_id 1056266 non-null object\n", - " 4 frequency 559718 non-null object\n", - " 5 modeling_realm 559718 non-null object\n", - " 6 table_id 1056266 non-null object\n", - " 7 member_id 1056266 non-null object\n", - " 8 grid_label 1056266 non-null object\n", - " 9 variable_id 1056266 non-null object\n", - " 10 temporal_subset 1027893 non-null object\n", - " 11 version 1056266 non-null object\n", - " 12 path 1056266 non-null object\n", - "dtypes: object(13)\n", - "memory usage: 104.8+ MB\n" - ] - } - ], - "source": [ - "netcdf_cat = 's3://cmip6-nc/esgf-world.csv.gz'\n", - "df_s3 = pd.read_csv(netcdf_cat, dtype='unicode')\n", - "df_s3.info()" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# NetCDF Zarr Sequential Recipe: CMIP6\n", + "\n", + "This tutorial describes how to create a suitable recipe for many of the CMIP6 datasets.\n", + "The source data is a sequence of NetCDF files accessed from the 's3://esgf-world' bucket.\n", + "The target is a Zarr store." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Background\n", + "\n", + "- The s3://esgf-world bucket has about 250,000 datasets stored in about 950,000 netcdf files (for an average of about four netcdf files per dataset). This is a small subset of the WCRP-CMIP6 collection available at the Federated ESGF-COG nodes such as https://esgf-node.llnl.gov/search/cmip6, but it is faster and easier to work with. \n", + "\n", + "- Each CMIP6 dataset can be identified by a 6-tuple consisting of:\n", + "\n", + " (model,experiment,ensemble_member,mip_table,variable,grid_label)\n", + " \n", + "and so a convenient name for a particular dataset is a string of these values joined with a '.' separator:\n", + "\n", + " dataset = model.experiment.ensemble_member.mip_table.variable.grid_label\n", + " \n", + "\n", + "- There can be multiple versions of a dataset, designated by a string beginning with 'v' and then an 8 digit date, loosely associated with its creation time" + ] + }, { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
projectinstitution_idsource_idexperiment_idfrequencymodeling_realmtable_idmember_idgrid_labelvariable_idtemporal_subsetversionpath
0CMIP6AS-RCECTaiESM1histSST-piNTCFNaNNaNAERmonr1i1p1f1gnps185001-201412v20200318s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES...
1CMIP6AS-RCECTaiESM1histSST-piNTCFNaNNaNCFmonr1i1p1f1gnta185001-201412v20200318s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES...
2CMIP6AS-RCECTaiESM1histSST-piNTCFNaNNaNLImonr1i1p1f1gnsnc185002-201412v20200318s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES...
3CMIP6AS-RCECTaiESM1histSST-piNTCFNaNNaNLImonr1i1p1f1gnsnd185002-201412v20200318s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES...
4CMIP6AS-RCECTaiESM1histSST-piNTCFNaNNaNLImonr1i1p1f1gnsnw185002-201412v20200318s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES...
\n", - "
" + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import xarray as xr\n", + "import s3fs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 1: Get to know your source data\n", + "The CMIP6 collection is very heterogeneous, so getting to know the source data is rather complicated. We first need to identify a dataset and learn how to list the set of netcdf files which are associated with it. Fortunately, you can explore the data here: https://esgf-world.s3.amazonaws.com/index.html#CMIP6/ or download a CSV file listing all of the netcdf files, one per line.\n", + "\n", + "Here we will read the CSV file into a pandas dataframe so we can search, sort and subset the available datasets and their netcdf files." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 1056266 entries, 0 to 1056265\n", + "Data columns (total 13 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 project 1056266 non-null object\n", + " 1 institution_id 1056266 non-null object\n", + " 2 source_id 1056266 non-null object\n", + " 3 experiment_id 1056266 non-null object\n", + " 4 frequency 559718 non-null object\n", + " 5 modeling_realm 559718 non-null object\n", + " 6 table_id 1056266 non-null object\n", + " 7 member_id 1056266 non-null object\n", + " 8 grid_label 1056266 non-null object\n", + " 9 variable_id 1056266 non-null object\n", + " 10 temporal_subset 1027893 non-null object\n", + " 11 version 1056266 non-null object\n", + " 12 path 1056266 non-null object\n", + "dtypes: object(13)\n", + "memory usage: 104.8+ MB\n" + ] + } ], - "text/plain": [ - " project institution_id source_id experiment_id frequency modeling_realm \\\n", - "0 CMIP6 AS-RCEC TaiESM1 histSST-piNTCF NaN NaN \n", - "1 CMIP6 AS-RCEC TaiESM1 histSST-piNTCF NaN NaN \n", - "2 CMIP6 AS-RCEC TaiESM1 histSST-piNTCF NaN NaN \n", - "3 CMIP6 AS-RCEC TaiESM1 histSST-piNTCF NaN NaN \n", - "4 CMIP6 AS-RCEC TaiESM1 histSST-piNTCF NaN NaN \n", - "\n", - " table_id member_id grid_label variable_id temporal_subset version \\\n", - "0 AERmon r1i1p1f1 gn ps 185001-201412 v20200318 \n", - "1 CFmon r1i1p1f1 gn ta 185001-201412 v20200318 \n", - "2 LImon r1i1p1f1 gn snc 185002-201412 v20200318 \n", - "3 LImon r1i1p1f1 gn snd 185002-201412 v20200318 \n", - "4 LImon r1i1p1f1 gn snw 185002-201412 v20200318 \n", - "\n", - " path \n", - "0 s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES... \n", - "1 s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES... \n", - "2 s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES... \n", - "3 s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES... \n", - "4 s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES... " + "source": [ + "netcdf_cat = 's3://cmip6-nc/esgf-world.csv.gz'\n", + "df_s3 = pd.read_csv(netcdf_cat, dtype='unicode')\n", + "df_s3.info()" ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# So there are 956,306 entries, one for each netcdf file. We can see the first five here:\n", - "# The 'path' column is the most important - you may need to scroll the window to see it!\n", - "\n", - "df_s3.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "239268" + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
projectinstitution_idsource_idexperiment_idfrequencymodeling_realmtable_idmember_idgrid_labelvariable_idtemporal_subsetversionpath
0CMIP6AS-RCECTaiESM1histSST-piNTCFNaNNaNAERmonr1i1p1f1gnps185001-201412v20200318s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES...
1CMIP6AS-RCECTaiESM1histSST-piNTCFNaNNaNCFmonr1i1p1f1gnta185001-201412v20200318s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES...
2CMIP6AS-RCECTaiESM1histSST-piNTCFNaNNaNLImonr1i1p1f1gnsnc185002-201412v20200318s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES...
3CMIP6AS-RCECTaiESM1histSST-piNTCFNaNNaNLImonr1i1p1f1gnsnd185002-201412v20200318s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES...
4CMIP6AS-RCECTaiESM1histSST-piNTCFNaNNaNLImonr1i1p1f1gnsnw185002-201412v20200318s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES...
\n", + "
" + ], + "text/plain": [ + " project institution_id source_id experiment_id frequency modeling_realm \\\n", + "0 CMIP6 AS-RCEC TaiESM1 histSST-piNTCF NaN NaN \n", + "1 CMIP6 AS-RCEC TaiESM1 histSST-piNTCF NaN NaN \n", + "2 CMIP6 AS-RCEC TaiESM1 histSST-piNTCF NaN NaN \n", + "3 CMIP6 AS-RCEC TaiESM1 histSST-piNTCF NaN NaN \n", + "4 CMIP6 AS-RCEC TaiESM1 histSST-piNTCF NaN NaN \n", + "\n", + " table_id member_id grid_label variable_id temporal_subset version \\\n", + "0 AERmon r1i1p1f1 gn ps 185001-201412 v20200318 \n", + "1 CFmon r1i1p1f1 gn ta 185001-201412 v20200318 \n", + "2 LImon r1i1p1f1 gn snc 185002-201412 v20200318 \n", + "3 LImon r1i1p1f1 gn snd 185002-201412 v20200318 \n", + "4 LImon r1i1p1f1 gn snw 185002-201412 v20200318 \n", + "\n", + " path \n", + "0 s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES... \n", + "1 s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES... \n", + "2 s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES... \n", + "3 s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES... \n", + "4 s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES... " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# So there are 956,306 entries, one for each netcdf file. We can see the first five here:\n", + "# The 'path' column is the most important - you may need to scroll the window to see it!\n", + "\n", + "df_s3.head()" ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# We will add a new column which is our short name for the datasets (may take a moment for all 956306 rows)\n", - "df_s3['dataset'] = df_s3.apply(lambda row: '.'.join(row.path.split('/')[6:12]),axis=1)\n", - "# the number of unique dataset names can be found using the 'nunique' method\n", - "df_s3.dataset.nunique()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "'s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiESM1/histSST-piNTCF/r1i1p1f1/AERmon/ps/gn/v20200318/ps_AERmon_TaiESM1_histSST-piNTCF_r1i1p1f1_gn_185001-201412.nc'" + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "239268" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# We will add a new column which is our short name for the datasets (may take a moment for all 956306 rows)\n", + "df_s3['dataset'] = df_s3.apply(lambda row: '.'.join(row.path.split('/')[6:12]),axis=1)\n", + "# the number of unique dataset names can be found using the 'nunique' method\n", + "df_s3.dataset.nunique()" ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# The value in the `path` column of the first row is:\n", - "df_s3.path.values[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "'TaiESM1.histSST-piNTCF.r1i1p1f1.AERmon.ps.gn'" + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiESM1/histSST-piNTCF/r1i1p1f1/AERmon/ps/gn/v20200318/ps_AERmon_TaiESM1_histSST-piNTCF_r1i1p1f1_gn_185001-201412.nc'" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# The value in the `path` column of the first row is:\n", + "df_s3.path.values[0]" ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# which has the short name:\n", - "df_s3.dataset.values[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "EC-Earth3-LR.piControl.r1i1p1f1.Omon.mlotst.gn ['v20200409' 'v20200919']\n", - "FIO-ESM-2-0.piControl.r1i1p1f1.Amon.rsds.gn ['v20190911' 'v20191010']\n", - "IPSL-CM6A-LR.piControl.r1i1p1f1.Amon.o3.gr ['v20181022' 'v20181123']\n", - "CESM2.1pctCO2.r1i1p1f1.day.zg.gn ['v20190425' 'v20190826']\n", - "NorCPM1.historical.r1i1p1f1.Omon.thetao.gr ['v20190914' 'v20200724']\n", - "NorESM2-LM.piControl.r1i1p1f1.Ofx.areacello.gn ['v20190815' 'v20190920']\n", - "NorESM2-LM.hist-GHG.r1i1p1f1.Emon.va.gn ['v20190909' 'v20191108']\n", - "CESM2.deforest-globe.r1i1p1f1.Amon.rsuscs.gn ['v20190401' 'v20191122']\n" - ] - } - ], - "source": [ - "# some datasets have multiple versions: (will just check one in each 500 of them ...)\n", - "for dataset in df_s3.dataset.unique()[::500]:\n", - " df_dataset = df_s3[df_s3.dataset==dataset]\n", - " if df_dataset.version.nunique() > 1:\n", - " print(dataset,df_dataset.version.unique())" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# So pick a dataset, any dataset, and try it! N.B. some datasets are VERY large - especially the day, 6hourly, etc.\n", - "#dataset = df_s3.dataset[10450]\n", - "# or:\n", - "dataset = 'GFDL-CM4.historical.r1i1p1f1.Amon.tas.gr1'" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'TaiESM1.histSST-piNTCF.r1i1p1f1.AERmon.ps.gn'" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# which has the short name:\n", + "df_s3.dataset.values[0]" + ] + }, { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
projectinstitution_idsource_idexperiment_idfrequencymodeling_realmtable_idmember_idgrid_labelvariable_idtemporal_subsetversionpathdataset
603842CMIP6NOAA-GFDLGFDL-CM4historicalmonatmosAmonr1i1p1f1gr1tas185001-194912v20180701s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/...GFDL-CM4.historical.r1i1p1f1.Amon.tas.gr1
603843CMIP6NOAA-GFDLGFDL-CM4historicalmonatmosAmonr1i1p1f1gr1tas195001-201412v20180701s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/...GFDL-CM4.historical.r1i1p1f1.Amon.tas.gr1
\n", - "
" + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "EC-Earth3-LR.piControl.r1i1p1f1.Omon.mlotst.gn ['v20200409' 'v20200919']\n", + "FIO-ESM-2-0.piControl.r1i1p1f1.Amon.rsds.gn ['v20190911' 'v20191010']\n", + "IPSL-CM6A-LR.piControl.r1i1p1f1.Amon.o3.gr ['v20181022' 'v20181123']\n", + "CESM2.1pctCO2.r1i1p1f1.day.zg.gn ['v20190425' 'v20190826']\n", + "NorCPM1.historical.r1i1p1f1.Omon.thetao.gr ['v20190914' 'v20200724']\n", + "NorESM2-LM.piControl.r1i1p1f1.Ofx.areacello.gn ['v20190815' 'v20190920']\n", + "NorESM2-LM.hist-GHG.r1i1p1f1.Emon.va.gn ['v20190909' 'v20191108']\n", + "CESM2.deforest-globe.r1i1p1f1.Amon.rsuscs.gn ['v20190401' 'v20191122']\n" + ] + } ], - "text/plain": [ - " project institution_id source_id experiment_id frequency \\\n", - "603842 CMIP6 NOAA-GFDL GFDL-CM4 historical mon \n", - "603843 CMIP6 NOAA-GFDL GFDL-CM4 historical mon \n", - "\n", - " modeling_realm table_id member_id grid_label variable_id \\\n", - "603842 atmos Amon r1i1p1f1 gr1 tas \n", - "603843 atmos Amon r1i1p1f1 gr1 tas \n", - "\n", - " temporal_subset version \\\n", - "603842 185001-194912 v20180701 \n", - "603843 195001-201412 v20180701 \n", - "\n", - " path \\\n", - "603842 s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/... \n", - "603843 s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/... \n", - "\n", - " dataset \n", - "603842 GFDL-CM4.historical.r1i1p1f1.Amon.tas.gr1 \n", - "603843 GFDL-CM4.historical.r1i1p1f1.Amon.tas.gr1 " + "source": [ + "# some datasets have multiple versions: (will just check one in each 500 of them ...)\n", + "for dataset in df_s3.dataset.unique()[::500]:\n", + " df_dataset = df_s3[df_s3.dataset==dataset]\n", + " if df_dataset.version.nunique() > 1:\n", + " print(dataset,df_dataset.version.unique())" ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_dataset = df_s3[df_s3.dataset==dataset]\n", - "df_dataset" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**So is this what we expect?**\n", - "- this dataset is split over 3 netcdf files - see any trouble here?\n", - "- lets do a quick sanity check (make sure one and only one variable is specified) and get only the latest version of the files" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "The variable is: tas\n" - ] + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# So pick a dataset, any dataset, and try it! N.B. some datasets are VERY large - especially the day, 6hourly, etc.\n", + "#dataset = df_s3.dataset[10450]\n", + "# or:\n", + "dataset = 'GFDL-CM4.historical.r1i1p1f1.Amon.tas.gr1'" + ] }, { - "data": { - "text/plain": [ - "['s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_185001-194912.nc',\n", - " 's3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_195001-201412.nc']" + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
projectinstitution_idsource_idexperiment_idfrequencymodeling_realmtable_idmember_idgrid_labelvariable_idtemporal_subsetversionpathdataset
603842CMIP6NOAA-GFDLGFDL-CM4historicalmonatmosAmonr1i1p1f1gr1tas185001-194912v20180701s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/...GFDL-CM4.historical.r1i1p1f1.Amon.tas.gr1
603843CMIP6NOAA-GFDLGFDL-CM4historicalmonatmosAmonr1i1p1f1gr1tas195001-201412v20180701s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/...GFDL-CM4.historical.r1i1p1f1.Amon.tas.gr1
\n", + "
" + ], + "text/plain": [ + " project institution_id source_id experiment_id frequency \\\n", + "603842 CMIP6 NOAA-GFDL GFDL-CM4 historical mon \n", + "603843 CMIP6 NOAA-GFDL GFDL-CM4 historical mon \n", + "\n", + " modeling_realm table_id member_id grid_label variable_id \\\n", + "603842 atmos Amon r1i1p1f1 gr1 tas \n", + "603843 atmos Amon r1i1p1f1 gr1 tas \n", + "\n", + " temporal_subset version \\\n", + "603842 185001-194912 v20180701 \n", + "603843 195001-201412 v20180701 \n", + "\n", + " path \\\n", + "603842 s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/... \n", + "603843 s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/... \n", + "\n", + " dataset \n", + "603842 GFDL-CM4.historical.r1i1p1f1.Amon.tas.gr1 \n", + "603843 GFDL-CM4.historical.r1i1p1f1.Amon.tas.gr1 " + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_dataset = df_s3[df_s3.dataset==dataset]\n", + "df_dataset" ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dvars = df_dataset.variable_id.unique()\n", - "assert len(dvars) > 0, 'no netcdf files found for this dataset'\n", - "assert len(dvars) == 1, f\"trouble with this dataset, too many datasets found: {dvars}\"\n", - " \n", - "var = dvars[0]\n", - "print('The variable is:',var)\n", - "\n", - "# make sure we are looking at the last available version:\n", - "last_version = sorted(df_dataset.version.unique())[-1]\n", - "dze = df_dataset[df_dataset.version == last_version].reset_index(drop=True)\n", - "\n", - "input_urls = sorted(dze.path.unique())\n", - "input_urls" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**There are only two files - one netcdf file was from an older version!**\n", - "- We want to look at the first netcdf file to make sure we know what to expect\n", - "- To use `xarray.open_dataset`, we need to turn the input_url (starting with 's3://') into an appropriate file_like object." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Dimensions: (bnds: 2, lat: 180, lon: 288, time: 1200)\n", - "Coordinates:\n", - " * bnds (bnds) float64 1.0 2.0\n", - " height float64 ...\n", - " * lat (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n", - " * lon (lon) float64 0.625 1.875 3.125 4.375 ... 355.6 356.9 358.1 359.4\n", - " * time (time) object 1850-01-16 12:00:00 ... 1949-12-16 12:00:00\n", - "Data variables:\n", - " lat_bnds (lat, bnds) float64 ...\n", - " lon_bnds (lon, bnds) float64 ...\n", - " tas (time, lat, lon) float32 ...\n", - " time_bnds (time, bnds) object ...\n", - "Attributes: (12/46)\n", - " external_variables: areacella\n", - " history: File was processed by fremetar (GFDL analog of CM...\n", - " table_id: Amon\n", - " activity_id: CMIP\n", - " branch_method: standard\n", - " branch_time_in_child: 0.0\n", - " ... ...\n", - " variable_id: tas\n", - " variant_info: N/A\n", - " references: see further_info_url attribute\n", - " variant_label: r1i1p1f1\n", - " branch_time_in_parent: 36500.0\n", - " parent_time_units: days since 0001-1-1\n" - ] - } - ], - "source": [ - "# Connect to AWS S3 storage\n", - "fs_s3 = s3fs.S3FileSystem(anon=True)\n", - "\n", - "file_url = fs_s3.open(input_urls[0], mode='rb')\n", - "ds = xr.open_dataset(file_url)\n", - "print(ds)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 2: Deciding how to chunk the dataset\n", - "- For parallel I/O and subsetting the dataset in time, we will chunk the data in the time dimension\n", - "- In order to figure out the number of time slices in each chunk, we do a small calculation on the first netcdf file\n", - "- Here we set the desired chunk size to 50 Mb, but something between 50-100 Mb is usually alright" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**So is this what we expect?**\n", + "- this dataset is split over 3 netcdf files - see any trouble here?\n", + "- lets do a quick sanity check (make sure one and only one variable is specified) and get only the latest version of the files" + ] + }, { - "data": { - "text/plain": [ - "{'bnds': 2, 'lat': 180, 'lon': 288, 'time': 241}" + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The variable is: tas\n" + ] + }, + { + "data": { + "text/plain": [ + "['s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_185001-194912.nc',\n", + " 's3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_195001-201412.nc']" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dvars = df_dataset.variable_id.unique()\n", + "assert len(dvars) > 0, 'no netcdf files found for this dataset'\n", + "assert len(dvars) == 1, f\"trouble with this dataset, too many datasets found: {dvars}\"\n", + " \n", + "var = dvars[0]\n", + "print('The variable is:',var)\n", + "\n", + "# make sure we are looking at the last available version:\n", + "last_version = sorted(df_dataset.version.unique())[-1]\n", + "dze = df_dataset[df_dataset.version == last_version].reset_index(drop=True)\n", + "\n", + "input_urls = sorted(dze.path.unique())\n", + "input_urls" ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#ntime = len(ds.time) # the number of time slices\n", - "#chunksize_optimal = 50e6 # desired chunk size in bytes\n", - "#ncfile_size = ds.nbytes # the netcdf file size\n", - "#chunksize = max(int(ntime* chunksize_optimal/ ncfile_size),1)\n", - "\n", - "#target_chunks = ds.dims.mapping\n", - "#target_chunks['time'] = chunksize\n", - "\n", - "# Remove the comments above to recalculate\n", - "target_chunks = {'bnds': 2, 'lat': 180, 'lon': 288, 'time': 241}\n", - "target_chunks # a dictionary giving the chunk sizes in each dimension" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 3: Define the File Pattern\n", - "- A `FilePattern` is the starting place for all recipes. These Python objects are the \"raw ingredients\" upon which the recipe will act. They describe how the individual source files are organized logically as part of a larger dataset. To create a file pattern, the first step is to define a function which takes any variable components of the source file path as inputs, and returns full file path strings.\n", - "- Revisting our input urls, we see that the only variable components of these paths are the 13-character numerical strings which immediatly precede the .nc file extension:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "scrolled": true - }, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_185001-194912.nc\n", - " \n", - "s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_195001-201412.nc\n", - " \n" - ] - } - ], - "source": [ - "for url in input_urls:\n", - " print(f'''{url}\n", - " ''')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**What do these strings refer to?**\n", - "- If it was not immediately apparent, comparison to our dataset coordinates makes it clear that these numerical strings are time ranges; the string `'185001-194912'` from the first url, e.g., represents a time range from Jan 1850 through Dec 1949:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**There are only two files - one netcdf file was from an older version!**\n", + "- We want to look at the first netcdf file to make sure we know what to expect\n", + "- To use `xarray.open_dataset`, we need to turn the input_url (starting with 's3://') into an appropriate file_like object." + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Coordinates:\n", - " * bnds (bnds) float64 1.0 2.0\n", - " height float64 ...\n", - " * lat (lat) float64 -89.5 -88.5 -87.5 -86.5 -85.5 ... 86.5 87.5 88.5 89.5\n", - " * lon (lon) float64 0.625 1.875 3.125 4.375 ... 355.6 356.9 358.1 359.4\n", - " * time (time) object 1850-01-16 12:00:00 ... 1949-12-16 12:00:00\n" - ] - } - ], - "source": [ - "print(ds.coords)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Let's define a function that takes these strings as input**\n", - "- ... and returns full file paths!" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "def make_full_path(time):\n", - " '''\n", - " Parameters\n", - " ----------\n", - " time : str\n", - " \n", - " A 13-character string, comprised of two 6-character dates delimited by a dash. \n", - " The first four characters of each date are the year, and the final two are the month.\n", - " \n", - " e.g. The time range from Jan 1850 through Dec 1949 is expressed as '185001-194912'.\n", - " \n", - " '''\n", - " base_url = 's3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/'\n", - " return base_url + f'tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_{time}.nc'" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Dimensions: (bnds: 2, lat: 180, lon: 288, time: 1200)\n", + "Coordinates:\n", + " * bnds (bnds) float64 1.0 2.0\n", + " height float64 ...\n", + " * lat (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n", + " * lon (lon) float64 0.625 1.875 3.125 4.375 ... 355.6 356.9 358.1 359.4\n", + " * time (time) object 1850-01-16 12:00:00 ... 1949-12-16 12:00:00\n", + "Data variables:\n", + " lat_bnds (lat, bnds) float64 ...\n", + " lon_bnds (lon, bnds) float64 ...\n", + " tas (time, lat, lon) float32 ...\n", + " time_bnds (time, bnds) object ...\n", + "Attributes: (12/46)\n", + " external_variables: areacella\n", + " history: File was processed by fremetar (GFDL analog of CM...\n", + " table_id: Amon\n", + " activity_id: CMIP\n", + " branch_method: standard\n", + " branch_time_in_child: 0.0\n", + " ... ...\n", + " variable_id: tas\n", + " variant_info: N/A\n", + " references: see further_info_url attribute\n", + " variant_label: r1i1p1f1\n", + " branch_time_in_parent: 36500.0\n", + " parent_time_units: days since 0001-1-1\n" + ] + } + ], + "source": [ + "# Connect to AWS S3 storage\n", + "fs_s3 = s3fs.S3FileSystem(anon=True)\n", + "\n", + "file_url = fs_s3.open(input_urls[0], mode='rb')\n", + "ds = xr.open_dataset(file_url)\n", + "print(ds)" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_185001-194912.nc\n" - ] + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 2: Deciding how to chunk the dataset\n", + "- For parallel I/O and subsetting the dataset in time, we will chunk the data in the time dimension\n", + "- In order to figure out the number of time slices in each chunk, we do a small calculation on the first netcdf file\n", + "- Here we set the desired chunk size to 50 Mb, but something between 50-100 Mb is usually alright" + ] }, { - "data": { - "text/plain": [ - "True" + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'bnds': 2, 'lat': 180, 'lon': 288, 'time': 241}" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#ntime = len(ds.time) # the number of time slices\n", + "#chunksize_optimal = 50e6 # desired chunk size in bytes\n", + "#ncfile_size = ds.nbytes # the netcdf file size\n", + "#chunksize = max(int(ntime* chunksize_optimal/ ncfile_size),1)\n", + "\n", + "#target_chunks = ds.dims.mapping\n", + "#target_chunks['time'] = chunksize\n", + "\n", + "# Remove the comments above to recalculate\n", + "target_chunks = {'bnds': 2, 'lat': 180, 'lon': 288, 'time': 241}\n", + "target_chunks # a dictionary giving the chunk sizes in each dimension" ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# And let's be sure to test our function before moving on.\n", - "\n", - "test_url = make_full_path('185001-194912')\n", - "print(test_url)\n", - "\n", - "# If our function works, inputting '185001-194912' should have returned a url identical to\n", - "# the first of the two urls in the list named `input_urls` defined in cell 10, above:\n", - "\n", - "test_url == input_urls[0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Combining dimensions**\n", - "- Before we initialize our file pattern, we need to define how we want files to be combined in our eventual zarr store\n", - "- We have two options:\n", - "\n", - " 1. Concatenating dimensions with a `ConcatDim` instance\n", - " 2. Merging dimensions with a `MergeDim` instance\n", - " \n", - " \n", - "- Our current dataset requires only concatenation, which we can achieve by instantiating `ConcatDim` with our variable name (`\"time\"`) as a positional argument, followed by a `keys` kwarg, which is a list containing all of the ways which this variable appears in our set of source file paths.\n", - "\n", - "> **Note:** This example reads from only two source files, so we can simply copy-and-paste their respective time variables into a list. If the number of source files was much larger, we might consider finding a way to create this `keys` list programatically." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "from pangeo_forge_recipes.patterns import ConcatDim\n", - "time_concat_dim = ConcatDim(\"time\", keys=['185001-194912', '195001-201412'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Instantiating the file pattern**\n", - "- Now that we have a both file path function and our \"combine dimensions\" object, we can move on to instantiating to file pattern, passing these two objects as arguments.\n", - "- Note that we will use `fsspec.open` under the hood for most file opening, so if there are any special keyword arguments we want to pass to this function, now is the time to do it.\n", - "- Here we specify `fsspec_open_kwargs={'anon':True}` as a keyword argument in the `FilePattern`, because we want to access the source files anonymously." - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 3: Define the File Pattern\n", + "- A `FilePattern` is the starting place for all recipes. These Python objects are the \"raw ingredients\" upon which the recipe will act. They describe how the individual source files are organized logically as part of a larger dataset. To create a file pattern, the first step is to define a function which takes any variable components of the source file path as inputs, and returns full file path strings.\n", + "- Revisting our input urls, we see that the only variable components of these paths are the 13-character numerical strings which immediatly precede the .nc file extension:" ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from pangeo_forge_recipes.patterns import FilePattern\n", - "pattern = FilePattern(make_full_path, time_concat_dim, fsspec_open_kwargs={'anon':True})\n", - "pattern" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "> By inspecting our instantiated pattern we see that our pattern has indexed our two files chronologically according to the concatenation key we provided it, and assigned the correct url to each file using the file path function:" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "scrolled": true - }, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "{Dimension(name='time', operation=): Position(value=0, indexed=False)} s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_185001-194912.nc\n", - "{Dimension(name='time', operation=): Position(value=1, indexed=False)} s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_195001-201412.nc\n" - ] - } - ], - "source": [ - "for index, fname in pattern.items():\n", - " print(index, fname)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 4: Write the Recipe\n", - "\n", - "Now that we have a `FilePattern`, we are ready to write our recipe. As described in {doc}`netcdf_zarr_sequential`, a recipe is defined as a pipeline of [Apache Beam transforms](https://beam.apache.org/documentation/programming-guide/#transforms) applied to the data collection associated with a `FilePattern`.\n", - "\n", - "First, we'll import the transforms provided by Pangeo Forge that may be used to transform a `FilePattern` collection into a Zarr store." - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "import apache_beam as beam\n", - "from pangeo_forge_recipes.transforms import OpenURLWithFSSpec, OpenWithXarray, StoreToZarr" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Define a pre-processing function\n", - "\n", - "- This is an optional step which we want to apply to each chunk\n", - "- Here we change some data variables into coordinate variables, but you can define your own pre-processing step here\n", - "\n", - "We will write a Beam transform that fixes both these issues. This is achieved by creating a [composite transform](https://beam.apache.org/documentation/programming-guide/#composite-transform-creation), which is a subclass of the `apache_beam.PTransform` class that overrides the `expand()` method to specify the actual processing logic. " - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "from pangeo_forge_recipes.transforms import Indexed, T\n", - "\n", - "class SetBndsAsCoords(beam.PTransform):\n", - " \"\"\"\n", - " Fix issues in retrieved data.\n", - " \"\"\"\n", - "\n", - " @staticmethod\n", - " def _set_bnds_as_coords(item: Indexed[T]) -> Indexed[T]:\n", - " \"\"\"\n", - " The netcdf lists some of the coordinate variables as data variables. \n", - " This is a fix which we want to apply to each dataset.\n", - " \"\"\"\n", - " index, ds = item\n", - " new_coords_vars = [var for var in ds.data_vars if 'bnds' in var or 'bounds' in var]\n", - " ds = ds.set_coords(new_coords_vars)\n", - " return index, ds\n", - "\n", - " def expand(self, pcoll: beam.PCollection) -> beam.PCollection:\n", - " return pcoll | beam.Map(self._set_bnds_as_coords)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Define the Recipe Object\n", - "The recipe pipeline of transforms applied to `pattern` is similar to that described in {doc}`netcdf_zarr_sequential`, with the following modifications:\n", - "1. `open_kwargs={'anon':True}` is specified to `OpenURLWithFSSpec`, because we want to access the source files anonymously.\n", - "1. The new preprocessing transform `SetBndsAsCoords` is included in the pipeline." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A place for our data to go" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "from tempfile import TemporaryDirectory\n", - "td = TemporaryDirectory()\n", - "target_root = td.name\n", - "store_name = \"output.zarr\"\n", - "target_store = os.path.join(target_root, store_name)" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": 13, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_185001-194912.nc\n", + " \n", + "s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_195001-201412.nc\n", + " \n" + ] + } + ], + "source": [ + "for url in input_urls:\n", + " print(f'''{url}\n", + " ''')" + ] + }, { - "data": { - "text/plain": [ - "<_ChainedPTransform(PTransform) label=[Create|OpenURLWithFSSpec|OpenWithXarray|SetBndsAsCoords|StoreToZarr] at 0x7fc01da350d0>" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**What do these strings refer to?**\n", + "- If it was not immediately apparent, comparison to our dataset coordinates makes it clear that these numerical strings are time ranges; the string `'185001-194912'` from the first url, e.g., represents a time range from Jan 1850 through Dec 1949:" ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "transforms = (\n", - " beam.Create(pattern.items())\n", - " | OpenURLWithFSSpec(open_kwargs={'anon':True})\n", - " | OpenWithXarray(file_type=pattern.file_type)\n", - " | SetBndsAsCoords() # New preprocessor\n", - " | StoreToZarr(\n", - " store_name=store_name,\n", - " target_root=target_root,\n", - " combine_dims=pattern.combine_dim_keys,\n", - " target_chunks=target_chunks\n", - " )\n", - ")\n", - "transforms" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 5: Execute the recipe\n", - "\n", - "Execute the recipe pipeline using Beam." - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Coordinates:\n", + " * bnds (bnds) float64 1.0 2.0\n", + " height float64 ...\n", + " * lat (lat) float64 -89.5 -88.5 -87.5 -86.5 -85.5 ... 86.5 87.5 88.5 89.5\n", + " * lon (lon) float64 0.625 1.875 3.125 4.375 ... 355.6 356.9 358.1 359.4\n", + " * time (time) object 1850-01-16 12:00:00 ... 1949-12-16 12:00:00\n" + ] + } + ], + "source": [ + "print(ds.coords)" + ] + }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" - ] + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Let's define a function that takes these strings as input**\n", + "- ... and returns full file paths!" + ] }, { - "data": { - "application/javascript": [ - "\n", - " if (typeof window.interactive_beam_jquery == 'undefined') {\n", - " var jqueryScript = document.createElement('script');\n", - " jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n", - " jqueryScript.type = 'text/javascript';\n", - " jqueryScript.onload = function() {\n", - " var datatableScript = document.createElement('script');\n", - " datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n", - " datatableScript.type = 'text/javascript';\n", - " datatableScript.onload = function() {\n", - " window.interactive_beam_jquery = jQuery.noConflict(true);\n", - " window.interactive_beam_jquery(document).ready(function($){\n", - " \n", - " });\n", - " }\n", - " document.head.appendChild(datatableScript);\n", - " };\n", - " document.head.appendChild(jqueryScript);\n", - " } else {\n", - " window.interactive_beam_jquery(document).ready(function($){\n", - " \n", - " });\n", - " }" + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "def make_full_path(time):\n", + " '''\n", + " Parameters\n", + " ----------\n", + " time : str\n", + " \n", + " A 13-character string, comprised of two 6-character dates delimited by a dash. \n", + " The first four characters of each date are the year, and the final two are the month.\n", + " \n", + " e.g. The time range from Jan 1850 through Dec 1949 is expressed as '185001-194912'.\n", + " \n", + " '''\n", + " base_url = 's3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/'\n", + " return base_url + f'tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_{time}.nc'" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "with beam.Pipeline() as p:\n", - " p | transforms" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 6: Check the resulting Zarr store" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.Dataset>\n",
-       "Dimensions:    (bnds: 2, lat: 180, lon: 288, time: 1980)\n",
-       "Coordinates:\n",
-       "  * bnds       (bnds) float64 1.0 2.0\n",
-       "    height     float64 ...\n",
-       "  * lat        (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n",
-       "    lat_bnds   (lat, bnds) float64 dask.array<chunksize=(180, 2), meta=np.ndarray>\n",
-       "  * lon        (lon) float64 0.625 1.875 3.125 4.375 ... 355.6 356.9 358.1 359.4\n",
-       "    lon_bnds   (lon, bnds) float64 dask.array<chunksize=(288, 2), meta=np.ndarray>\n",
-       "  * time       (time) float64 15.5 45.0 74.5 ... 6.015e+04 6.018e+04 6.021e+04\n",
-       "    time_bnds  (time, bnds) float64 dask.array<chunksize=(241, 2), meta=np.ndarray>\n",
-       "Data variables:\n",
-       "    tas        (time, lat, lon) float32 dask.array<chunksize=(241, 180, 288), meta=np.ndarray>\n",
-       "Attributes: (12/44)\n",
-       "    Conventions:            CF-1.7 CMIP-6.0 UGRID-1.0\n",
-       "    activity_id:            CMIP\n",
-       "    branch_method:          standard\n",
-       "    branch_time_in_child:   0.0\n",
-       "    branch_time_in_parent:  36500.0\n",
-       "    comment:                <null ref>\n",
-       "    ...                     ...\n",
-       "    sub_experiment_id:      none\n",
-       "    table_id:               Amon\n",
-       "    title:                  NOAA GFDL GFDL-CM4 model output prepared for CMIP...\n",
-       "    variable_id:            tas\n",
-       "    variant_info:           N/A\n",
-       "    variant_label:          r1i1p1f1
" + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_185001-194912.nc\n" + ] + }, + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "\n", - "Dimensions: (bnds: 2, lat: 180, lon: 288, time: 1980)\n", - "Coordinates:\n", - " * bnds (bnds) float64 1.0 2.0\n", - " height float64 ...\n", - " * lat (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n", - " lat_bnds (lat, bnds) float64 dask.array\n", - " * lon (lon) float64 0.625 1.875 3.125 4.375 ... 355.6 356.9 358.1 359.4\n", - " lon_bnds (lon, bnds) float64 dask.array\n", - " * time (time) float64 15.5 45.0 74.5 ... 6.015e+04 6.018e+04 6.021e+04\n", - " time_bnds (time, bnds) float64 dask.array\n", - "Data variables:\n", - " tas (time, lat, lon) float32 dask.array\n", - "Attributes: (12/44)\n", - " Conventions: CF-1.7 CMIP-6.0 UGRID-1.0\n", - " activity_id: CMIP\n", - " branch_method: standard\n", - " branch_time_in_child: 0.0\n", - " branch_time_in_parent: 36500.0\n", - " comment: \n", - " ... ...\n", - " sub_experiment_id: none\n", - " table_id: Amon\n", - " title: NOAA GFDL GFDL-CM4 model output prepared for CMIP...\n", - " variable_id: tas\n", - " variant_info: N/A\n", - " variant_label: r1i1p1f1" + "source": [ + "# And let's be sure to test our function before moving on.\n", + "\n", + "test_url = make_full_path('185001-194912')\n", + "print(test_url)\n", + "\n", + "# If our function works, inputting '185001-194912' should have returned a url identical to\n", + "# the first of the two urls in the list named `input_urls` defined in cell 10, above:\n", + "\n", + "test_url == input_urls[0]" ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Check to see if it worked:\n", - "ds = xr.open_zarr(target_store)\n", - "ds" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Combining dimensions**\n", + "- Before we initialize our file pattern, we need to define how we want files to be combined in our eventual zarr store\n", + "- We have two options:\n", + "\n", + " 1. Concatenating dimensions with a `ConcatDim` instance\n", + " 2. Merging dimensions with a `MergeDim` instance\n", + " \n", + " \n", + "- Our current dataset requires only concatenation, which we can achieve by instantiating `ConcatDim` with our variable name (`\"time\"`) as a positional argument, followed by a `keys` kwarg, which is a list containing all of the ways which this variable appears in our set of source file paths.\n", + "\n", + "> **Note:** This example reads from only two source files, so we can simply copy-and-paste their respective time variables into a list. If the number of source files was much larger, we might consider finding a way to create this `keys` list programatically." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "from pangeo_forge_recipes.patterns import ConcatDim\n", + "time_concat_dim = ConcatDim(\"time\", keys=['185001-194912', '195001-201412'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Instantiating the file pattern**\n", + "- Now that we have a both file path function and our \"combine dimensions\" object, we can move on to instantiating to file pattern, passing these two objects as arguments.\n", + "- Note that we will use `fsspec.open` under the hood for most file opening, so if there are any special keyword arguments we want to pass to this function, now is the time to do it.\n", + "- Here we specify `fsspec_open_kwargs={'anon':True}` as a keyword argument in the `FilePattern`, because we want to access the source files anonymously." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pangeo_forge_recipes.patterns import FilePattern\n", + "pattern = FilePattern(make_full_path, time_concat_dim, fsspec_open_kwargs={'anon':True})\n", + "pattern" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> By inspecting our instantiated pattern we see that our pattern has indexed our two files chronologically according to the concatenation key we provided it, and assigned the correct url to each file using the file path function:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{Dimension(name='time', operation=): Position(value=0, indexed=False)} s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_185001-194912.nc\n", + "{Dimension(name='time', operation=): Position(value=1, indexed=False)} s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_195001-201412.nc\n" + ] + } + ], + "source": [ + "for index, fname in pattern.items():\n", + " print(index, fname)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 4: Write the Recipe\n", + "\n", + "Now that we have a `FilePattern`, we are ready to write our recipe. As described in {doc}`netcdf_zarr_sequential`, a recipe is defined as a pipeline of [Apache Beam transforms](https://beam.apache.org/documentation/programming-guide/#transforms) applied to the data collection associated with a `FilePattern`.\n", + "\n", + "First, we'll import the transforms provided by Pangeo Forge that may be used to transform a `FilePattern` collection into a Zarr store." + ] + }, { - "data": { - "text/plain": [ - "" + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "import apache_beam as beam\n", + "from pangeo_forge_recipes.transforms import OpenURLWithFSSpec, OpenWithXarray, StoreToZarr" ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAHFCAYAAAAExnZzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebgdRZ0+/lZV91nukhXIAiGgBBQIiqBo8BEY9hHRYb4yg4phUVFQDBJBXCCMJiwCoigII0NgEHBUUMCBH+iYKAKPBEUBFUeMwEAWCdnudk53V/3+qL27z7nn5t5sUO/zXDjdXV1dXV3d6Xr7/bwfIoQQCAgICAgICAgIGBZ0azcgICAgICAgIGB7QXhxCggICAgICAjoEOHFKSAgICAgICCgQ4QXp4CAgICAgICADhFenAICAgICAgICOkR4cQoICAgICAgI6BDhxSkgICAgICAgoEOEF6eAgICAgICAgA4RXpwCAgICAgICAjpEeHF6lWHBggUghODll18eszpPOeUU7Lbbbpu9PYsWLcKPfvSjTTrOaLBhwwYsXLgQhx56KKZOnYqenh7Mnj0bl112GYaGhjqu54477sCb3/xm1Go1TJ8+HfPmzUNfX9+w+y1evBiEEPM3ltfuRz/6kVf3smXLRlzHSy+9hAULFuCJJ54obNPX99WM/v5+XHjhhdhzzz1RrVYxefJkHHbYYfjf//3fjvbvZFz8z//8D0477TS84Q1vQHd3N3beeWe8973vxeOPP16o76GHHsJHPvIRHHDAAahWqyCE4G9/+9tYnOomYVPG/Xe+8x0QQtDT07OFWhkQMHYIL04Bw+JLX/oS7rrrrs1+nK314vT888/j6quvxlve8hbccMMNuPvuu/H//t//w4IFC3Dcccehk6xE3/3ud3HSSSfhrW99K+677z5cdNFFWLx4MU444YSO23HnnXfikUcewYQJE0ZxNj4OOeQQPPLII/jiF7+4yXW89NJLuPjii0tfnD7ykY/gkUceGUULt2309fXh0EMPxY033ohPfepTeOCBB3DTTTfhoIMOwsDAwLD7dzourrvuOvztb3/Dpz/9afz3f/83vv71r2P16tV4+9vfjv/5n//xyv7sZz/DT3/6U+y6666YM2fOmJ7vSLEp4/7FF1/E/PnzMX369C3Y0oCAMYQIeFXhoosuEgDE3//+963dFCHEyNrT3d0t5s6du/kblUNfX5/o6+srrP/qV78qAIhf/vKXbfdP01RMmzZNHHXUUd767373uwKA+O///u+2+990000CgFi+fPmI294p9DEee+yxEe/72GOPCQDipptuGvuGbeP49Kc/Lbq7u8Wzzz474n1HMi5WrVpV2H/jxo1iypQp4vDDD/fWZ1lmfusxOtZj5+c///mw9W7quD/uuOPEe97zHjF37lzR3d09ls0OCNgiCIzTqxSrVq3CSSedhPHjx2PKlCk47bTTsH79eq+MEALXXnst3vzmN6Ner2PixIn4f//v/+Gvf/2rV67sU926detw+umnY9KkSejp6cG73/1u/PWvfwUhBAsWLBhxewgh6O/vx80332w+Kx166KFj1R1t0d3dje7u7sL6t73tbQCAF154oe3+jz76KFasWIFTTz3VW//+978fPT09o2LrDj30UOy777545JFHMGfOHNTrdey222646aabAAA/+clP8Ja3vAVdXV2YPXs27r///k0+VhmWLFmCt771rQCAU0891VwbfY3LPtXttttuOO6443Dvvfdi//33R71exxvf+Ebce++9AOSnyTe+8Y3o7u7G2972ttLPh8uWLcPxxx+PSZMmoVarYf/998d//dd/jem5DYeBgQF85zvfwfvf/3687nWvG/H+IxkXO+20U2H/np4e7L333oXxR2nnj+0NGzZg/vz52H333VGpVLDzzjtj3rx56O/vH+HZFLEp4/7WW2/F0qVLce211476+AEBWwvhxelVin/+53/GnnvuiR/+8If43Oc+h9tuuw3nnHOOV+aMM87AvHnzcMQRR+BHP/oRrr32Wjz99NOYM2cOVq1a1bJuzjne85734LbbbsP555+Pu+66CwcddBCOOeaYTW7PI488gnq9jn/8x3/EI488gkceeWTYh2uWZUjTdNg/znmHveZDfyLZZ5992pZ76qmnAAD77beftz6OY7zhDW8w2zcVK1euxKmnnoqPfOQj+PGPf4zZs2fjtNNOw7/927/hggsuwHnnnYcf/vCH6Onpwfve9z689NJLozqei7e85S3mJe2LX/yiuTYf+chH2u73u9/9DhdccAHOP/983HnnnRg/fjxOOOEEXHTRRfjOd76DRYsW4bvf/S7Wr1+P4447DoODg2bfn//85zj44IOxbt06fPvb38aPf/xjvPnNb8a//Mu/YPHixcO2eazGxeOPP47+/n7MmjULn/jEJzBx4kRUKhUceOCB+MlPfjJsO0Y7LtavX4/f/OY3w46/VhgYGMAhhxyCm2++GWeffTbuu+8+nH/++Vi8eDGOP/74jj5Bt8NIz2/16tWYN28eLr30Uuyyyy6jOnZAwFbF1qa8AsYW+tPY5Zdf7q0/88wzRa1WE5xzIYQQjzzyiAAgrrzySq/cCy+8IOr1ujjvvPPMurlz54qZM2ea5Z/85CcCgLjuuuu8fS+55BIBQFx00UUjbo8QI/9UN3PmTAFg2D+3PZ3id7/7najX6+Kf/umfhi27cOFCAUCsWLGisO2oo44Se+65Z9v9232qO+SQQwQAsWzZMrNuzZo1gjEm6vW6ePHFF836J554QgAQ3/jGN1oeY6w/1enr62LmzJmiXq+L//u//yu0bdq0aaK/v9+s/9GPfiQAiLvvvtuse8Mb3iD2339/kSSJV+9xxx0npk2b5n2qKsNYjYvbb79dABDjxo0TBx98sLj77rvFvffeKw477DBBCBH3339/2/1HOy4++MEPiiiKvGufR7tPdZdccomglBau+Q9+8IPCp7Q0TUWSJObvpz/9qQAg/vKXv3jr3b4f6fn98z//s5gzZ46558OnuoDtFdHmfCkL2Ho4/vjjveX99tsPQ0NDWL16NaZMmYJ7770XhBB86EMfQpqmptzUqVPxpje9CUuWLGlZ99KlSwEAJ554orf+pJNOwgUXXLBJ7dkU3HPPPWg0GsOWG6kI9W9/+xuOO+44zJgxA9/5znc63q9VdNloo86mTZuGAw44wCxPmjQJO+20E3bbbTfv3N74xjcCAJ577rlRHW8s8OY3vxk777yzWdZtO/TQQ9HV1VVYr9v8l7/8BX/6059wxRVXAIA3Nv/xH/8R9957L5555hmzXxnGalxoRqpSqeC+++5Db28vAOCwww7DrFmz8OUvfxlHH330sMfZlHHxpS99Cd/97ndxzTXXeNd+JLj33nux77774s1vfrPXj0cffTQIIViyZAmOPfZYAMDhhx9u7msXe+yxh7c8d+7cAuvXyfn98Ic/xD333IPf/va3r/oozIBXP8KL06sUkydP9par1SoAmE8iq1atghCi5UtLO03HmjVrEEURJk2a5K1v9wI0XHs2BXvvvXdHnxtGogl57rnncNhhhyGKIvzsZz8rnGMZ9LmtWbOm0AevvPJKR3W0Q9n+lUqlsL5SqQDAiCwUNhdatW24NutPxPPnz8f8+fNL6x7OrmGsxoW+rnPmzDEvTQDQ1dWFQw45ZNgI0E0dFxdffDG+8pWvYOHChfjkJz853Gm0xKpVq/CXv/wFcRyXbnf78frrr8fGjRvN8uOPP46Pf/zjuPvuuzFt2jSzfocddjC/Oz2/vr4+nHXWWfjUpz6F6dOnY926dQCAZrMJQOol4zgu1RkGBGyLCC9Or1HssMMOIITgl7/8pXmJcVG2TmPy5MlI07Tw8F+5cuVmaWsrvP71r++IXbnoootKBet5PPfcczj00EMhhMCSJUs61mHMnj0bAPDkk09i7733NuvTNMWf/vQnnHTSSR3VE2D/Yb7gggtahrTvtddebesYq3GR1+64EEIM++K1KePi4osvxoIFC7BgwQJ8/vOfH+YM2mOHHXZAvV7Hf/zHf7TcrpHvU+3DNHv27JYebp2e38svv4xVq1bhyiuvxJVXXlmoZ+LEiXjve9+7VaxIAgI2BeHF6TWK4447DpdeeilefPHFwie34XDIIYfg8ssvx/e+9z184hOfMOvvuOOOUbWpWq2OiIEay091zz//PA499FBkWYYlS5Zg5syZHbfjoIMOwrRp07B48WL8y7/8i1n/gx/8AH19fSPyctoWMRbsYKfYa6+9MGvWLPzud7/DokWLNqmOsRoX06ZNwzve8Q786le/woYNGzBu3DgAUnS9dOlSvP3tb2+7/0jHxZe//GUsWLAAX/ziF3HRRRcN2/7hcNxxx2HRokWYPHkydt9991HXl0en5zd16lT8/Oc/L+x/6aWXYunSpbjvvvu8l7iAgG0d4cXpNYqDDz4YH/vYx3Dqqadi2bJleNe73oXu7m6sWLECDz30EGbPnu29FLk45phjcPDBB+Pcc8/Fhg0bcMABB+CRRx7BLbfcAmBkn8ZczJ49G0uWLME999yDadOmobe3ty27oGe8o8Xq1atx2GGHYcWKFbjxxhuxevVqrF692mzfZZddDPv03HPP4fWvfz3mzp2LG2+8EQDAGMPll1+Ok08+GWeccQZOOukk/O///i/OO+88HHnkkW2jDbcmFi9ejFNPPRU33XQTTjnllJblXv/616Ner+O73/0u3vjGN6KnpwfTp0/fbAaG119/PY499lgcffTROOWUU7DzzjvjlVdewR//+Ef85je/wfe///22+4/VuACAK664AocddhiOPvponH/++SCE4Morr8TLL7+ML3/5y6bcaMfFlVdeiQsvvBDHHHMM3v3ud+PRRx/12uG+pP397383eqQnn3wSAHDfffdhxx13xI477ohDDjkEADBv3jz88Ic/xLve9S6cc8452G+//cA5x/PPP48HHngA5557Lg466KBN7ptOz69Wq5VaiyxevBiMsS1mOxIQMFYIL06vYVx//fV4+9vfjuuvvx7XXnstOOeYPn06Dj74YONhVAZKKe655x6ce+65uPTSS9FsNnHwwQfj1ltvxdvf/vZNdr7++te/jrPOOgv/+q//akKp24nUxwp/+MMfjHfVhz70ocJ295OOEAJZliHLMq/Mhz70ITDGcOmll2Lx4sWYNGkSPvzhD2PhwoWbvf2bCv05xtWwlKGrqwv/8R//gYsvvhhHHXUUkiTp+PPnpuCwww7Dr3/9ayxcuBDz5s3D2rVrMXnyZOy9994jZkdHizlz5uBnP/sZvvjFL+KDH/wgAPkSs2TJErzjHe8w5UY7Lu655x4AwP3331/qxeVqtp5++mm8//3v97afeeaZAODdM93d3fjlL3+JSy+9FDfccAOWL1+Oer2OXXfdFUccccQmp1HalPMLCHg1gYhOVJQBAR3gtttuwwc/+EH86le/2uqpILYnaObnL3/5C2bOnIkoGrv5jP4H/ZZbbsHpp5+Oxx57DAceeCAAGRW5fPlyPPbYY2N2vICAgIBXOwLjFLBJuP322/Hiiy9i9uzZoJTi0UcfxVe/+lW8613vCi9Nmwgd+v33v/99zDQfP/7xj/FP//RPhfVaAH/rrbeOyXECAgICXisIjFPAJuHee+/FggUL8Je//AX9/f2YNm0a3ve+9+ErX/mKEdEGdIY1a9Zg+fLlZvnNb37zmLFO69atw1/+8hezvPfee3s+SgEBAQEBI0N4cQoICAgICAgI6BAhV11AQEBAQEBAQIcIL04BAQEBAQEBAR0ivDgFBAQEBAQEBHSIEFWXA+ccL730Enp7e0MyyoCAgICAthBCYOPGjZg+ffomm/8Oh6GhIZPbb7SoVCqo1WpjUtdrFeHFKYeXXnoJM2bM2NrNCAgICAjYjvDCCy90nN9yJBgaGsLuM3uwcnU2fOEOMHXqVCxfvjy8PI0C4cUpB50F/Z1vmY+ItU502xaBqJJoxdgNF8i5jcd5ku0lELWTdm4np7ItYHNfd7G5GO7t8Xm0DbD9nV6PNGvgod9cYf7tGGs0m02sXJ1h+eMzMa53dIzWho0cux/wHJrNZnhxGgXCi1MO+vNcFNcQRcWBJYYbtyO44cUIng0k98x2981v22LYxH9ICB/jdgCb3JZtBpuh+R39Q99pv22Oa5ZDvr2b7UViG8FmeRHb3u8Dg+Gv/bDjo9N3jBb1CNrB+CMESIn6uXnH67heOuoXp5Hiuuuuw3XXXYe//e1vAIB99tkHF154IY499lgAwJ133onrr78ejz/+ONasWYPf/va3ePOb3+zV0Wg0MH/+fNx+++0YHBzE4YcfjmuvvXazsHNbCkEcHhAQEBAQsI0jE3xM/kaCXXbZBZdeeimWLVuGZcuW4R/+4R/w3ve+F08//TQAoL+/HwcffDAuvfTSlnXMmzcPd911F+644w489NBD6Ovrw3HHHVfI67g9ITBOLSCowy7lZhIFpqjVTKNkddtZUpvXWHceua3NxMdk5tzB/TzscTptRpt6Stm7duXL2j0Wn8g6vcRt6smPkxFfpxGyTCNiuDoYw0SILTbWO+6bkfThZmTzNttnw9HW28n+nV7TknLueCD552W+fAmlXxhPFH6b3e16dafP+80MDgE+Smp6pPu/5z3v8ZYXLlyI6667Do8++ij22WcfnHzyyQBgGKk81q9fjxtvvBH/+Z//iSOOOAIAcOutt2LGjBn46U9/iqOPPnrkJ7ENIDBOAQEBAQEBryFs2LDB+2s0GsPuk2UZ7rjjDvT39+Md73hHR8d5/PHHkSQJjjrqKLNu+vTp2HffffHwww9vcvu3NgLj1AKCEvmNW88u3ImIO+OgLdbn9pHb3W3DsVhtGtfm2/tIdFObC8Nqrng7mmQE9ZXMbluXzZcrL5hnsmW5klmoXqTCKWt+lbbPY6dIcXu79rZDW/ahbJvTjs3CtHSyf4f1mZ7vZJY/lkzASPq0BWNU2rcjvVajKVtgYEZQ/3BjZKwYr8JzsPzZqst6pTnxtplnXxkdUMY0lWzzjk9KtpfsJ7bQQ5eDj1pqqGvIR45fdNFFWLBgQek+Tz75JN7xjndgaGgIPT09uOuuu7D33nt3dLyVK1eiUqlg4sSJ3vopU6Zg5cqVIz+BbQThxSkgICAgIGAbRyYEslG+sOr9X3jhBS8Ze7XaOoJ8r732whNPPIF169bhhz/8IebOnYulS5d2/PJUBiHEdu2TGF6cWkDEFCKS04v8LKQVc2TWu9spyZVHsXyunsK2fJ1l2/MY5aDclEnUJkX35VmZfB2ixTbFBPnrWpTVDJdXd35ftcD8fQXIMGwVMbPzfNO9cgIQrE37nbKEw7/euXpatyWHYdimjsp3sm1T0OnUWc/w88cvsLstWIMRYkT9WcpO5sp2yrR12B8j0zZ1cC68pM2tlguNaaXtJO339fYTHoPubXEZpTI9U7tr7mwvsFj5/XLP4TJWSZbNtZ3I/fl2qHgZN26c9+LUDpVKBXvssQcA4MADD8Rjjz2Gr3/967j++uuH3Xfq1KloNptYu3atxzqtXr0ac+bM2bTGbwPY/q54QEBAQEDAawxaHD7av9FCCNGRJgoADjjgAMRxjAcffNCsW7FiBZ566qnt+sUpME4twBkBZ1rfRIpsEtWzGaDAIpWxUCgp54KQ4nq3PO1s/62BfFuGi0zzmZ5c5FdplFpZ3aS8TpEv13qdCZoRqj4A4EKub8N0CVXWrDesSL7ZxGcIPN2Iqa5wPoKq7WYjcfrFZ88EIUWmo50+pYwVKcMW8G1qiVbTubIxXrJu1BFnm6jH8q5FOzamrM4CG9niGGactqi+3b759m0qo9Rum6sLdY7bFu2m722YxUL9LaKgizuIzurNn4timPRx9HG3nMZJINvCUXWf//znceyxx2LGjBnYuHEj7rjjDixZsgT3338/AOCVV17B888/j5deegkA8MwzzwCQTNPUqVMxfvx4nH766Tj33HMxefJkTJo0CfPnz8fs2bNNlN32iPDiFBAQEBAQEFDAqlWrcPLJJ2PFihUYP3489ttvP9x///048sgjAQB33303Tj31VFP+X//1XwH4YvOvfe1riKIIJ554ojHAXLx4MRhjheNtLyBCvGqsZscEGzZswPjx4zHnyIsRxTWrUdITRcUouQxUXqvUijUC8lEZuW2bzFa1P6ctjjasT3G9aF+Wl683+7j7D3OM0m2t2uZpP4Zn0UrrLZT3F1uzUcIv6+mfhOwTkW+fQ2HxXP2tWCaO4mx/E5gMU/VYsZ6toqJGW//mftS10ZS1Zf70cis2Ko98ItlOmaN2GqxO9Foa+t7Q2iRCyv2RhkOrvtGHbRdhp47r/XY1TXmdkrNNRNSLmBOO7qmVjkm3wdVE6bJpOoRf/fQirF+/vmPd0Eig/0169k9T0TtK5/CNGzle/4aVm62trxUExikgICAgIGAbx1hG1QWMDuHFqQV4TMBj7eXksDwkx0A52qPST91tGKiy9e3YqjJsts/rndRbxgCp9SRHmpD8Pnl9UhnL1Kr+sqaoa2K0Q8TuT3J6KEHa11XmM6X72duPjLDePMPormB25p3XsXhRfoRAUAGiGyQkA2WaIYgfiZZZJqMws6clLIfedxg2II/CLL8V8oxWO/fnkWplhsFmuVVauk77/akjxEo1UJpt6tSbqVU5IdozjlzY32kGpKldNqyKZZE8a26auy6EONdSgLRin/JMYRk75bZzOGbOGz9OH7vPE0ohQMs99vT1yOtXjWaVmG3Gub7V1wYmf/MtRPlzjF56uDWli68mhKi6gICAgICAgIAOsd0wTmmaYsGCBfjud7+LlStXYtq0aTjllFPwxS9+EVR98xdC4OKLL8YNN9yAtWvX4qCDDsK3vvUt7LPPPiM+XlahILH8Fp7XJbnfwQv6JwAFVqlDfdJwzuOdoKMIN2+HkdVvWBFCQNydRQtWRi/nNDuFKLgSlqnM48huJP7/IY+vS3osTc4ziXBAwGmDw04BkLPPFu7mBVaphHVqB39f/7iiBTPk5eeCPBdzHFGsR/elEGoI6WvG5ey/lEUqY574CFmeDvRRbSOg2hxruHZsciTdaD5dDLdvO91Qu/07YVna1Zlx/3eayuXBIYh8GLkec5UKUK0AVAl2Cc2xTwRg6jlLKcBIi3uQSCZG67AYKUanuW317neHceIA4dxb9s63jJ1y6iVCWB8oKuxzixMQIozrOI8gdayKZTIZIwBwzTZpNoqqZ4zpF7mcbaGI5mwMoupGu3+AxHbDOF122WX49re/jW9+85v44x//iMsvvxxf/epXcc0115gyl19+Oa666ip885vfxGOPPYapU6fiyCOPxMaNG7diywMCAgICAkaHTIzNX8Dosd0wTo888gje+9734t3vfjcAYLfddsPtt9+OZcuWAZCswtVXX40vfOELOOGEEwAAN998M6ZMmYLbbrsNZ5xxxoiOx6sEWYWYGb0XRUdzLFQOeS8il4UQnlYgV6aMvWp5kJJ9vYM6RXPaowI7oZmYwgyw3eFFS4apbXvLyA6vDc4GzUyVbYNmvtQSI9KZm7hbdVECktmVgiiNkGG5RKF5xL1OuQi7kZx32zIFZm74Cg3TZxpKJHvWIj+eLK9AHeZJ7VuInvIimTbxKVsY/26daM0stTn/ETNKo2GSWumINiUnXbv+zUdlZqLlNut+34a1KoueowSI1GN+fC8IyUVSRZJhEjEDKLXeRHFJqHguUk3kdU9us3LPR/NM5AL5CFBvWfUByTNKKhpOOLorj6HlJRfH7Y+8lkst80oknx2Rwyo5Hn35iDvvGaO+PGRsu+EfAsYI280Vf+c734mf/exn+POf/wwA+N3vfoeHHnoI//iP/wgAWL58OVauXOllYa5WqzjkkEO26yzMAQEBAQEBfIz+AkaP7YZxOv/887F+/Xq84Q1vAGMMWZZh4cKFOOmkkwDAZFqeMmWKt9+UKVPw3HPPtay30Wh49vEbNmzYDK0PCAgICAjYdHAQZKOM4NtSEYCvdmw3L07f+973cOutt+K2227DPvvsgyeeeALz5s3D9OnTMXfuXFMun3F5uCzMl1xyCS6++OLC+iwGEGuxIAw3xyP55yeRlf9jDYA1ReHzjEnumv8U53zy08JDa8zWssl2fxfuF4D8avdTl7C0OeGw6T2ghJOOCFPA2VbSHndb4ZxtFK9XD3RIr2oUgWqDKw7PmVoS7i+XnnYmwJq5T3duWhy4nw+I+mqi6yX+VwEBCLcNlKDsc6Hg6pOZ+WRg2z4s2n2m08aUOWuAQjnA+Zyp2ut97hnBJ652gvFOy2u4PHaZyWb+XEeAdsL5jtqTP2YrO4Syess+Xebb750bL5QjQv3IcjsKYT6beccXwrcRyH/CyrLcMUs+DZpPSQyiFstNlQiCMZPIHJSARwS8KtvAIzcsH6ANDtbIiuefO2+SyXuCptwupxwkk/uSlEsrBPdczGdIVwwuZLv1pzlGQSIGUYlM+6HaxykFSASi+tRYCOhPbK4tASW+GFx9puPMbjfllTmmfn5rYbjdLusOLM5rD9vNp7rPfvaz+NznPod//dd/xezZs3HyySfjnHPOwSWXXAJA5sYBLPOksXr16gIL5eKCCy7A+vXrzd8LL7yw+U4iICAgICBgE8DF2PwFjB7bDeM0MDBgbAc0GGPgala3++67Y+rUqXjwwQex//77AwCazSaWLl2Kyy67rGW91WoV1Wq1sD6rEaAiZyKCAZkqklXhMUfgAGvabTQjoIlcpmmOqcmLzJnDhpQJvPNC8bwgvAMUxNW5ZcJ9tscyTsQrm69LlrcLrViuMnhpDcpYGpHfVl62LHWKy0Dpc+EMysxU75jrUCE8Fs7tEyFyTJLbB4yUMFC5dWjR3tz1c80wSZ7ZcGfM3Bd0F1Kw5FmmTRVJtwofb7W93XHKGLPRiLcdtEuqa9ioTiiBTmwR8uLrMqF2GyuBguA5XzbPQukyromkFq7rfaPIL5tlgM4BRikQMSP0FpUIXP+OKXhEwWNZL80ESCZAFasU9dt/ZYlmzjSDw6hkiTPnntDnmHKQJANtqIdgM5F2CJplchkyxTaJzGGg8iJv9cwnUaRYp0gtM0A9t0U1goid84wpeMwciwHbdsJFwU7Gex7lmCrBYJlrCi8wSAvJOW8xXsYY2Rh8qhvt/gES282L03ve8x4sXLgQu+66K/bZZx/89re/xVVXXYXTTjsNgPxEN2/ePCxatAizZs3CrFmzsGjRInR1deEDH/jAVm59QEBAQEBAwKsB282L0zXXXIMvfelLOPPMM7F69WpMnz4dZ5xxBi688EJT5rzzzsPg4CDOPPNMY4D5wAMPoLe3d8TH4xFAYslWZDWAV+R6OwtRBQXANWHFAZpYBkqG2to6RZtk0KWapTzjVILhQuJFO8aJW9ZJLwvub3P3FdyRYGl9T1k7hiMTSK6MSiOS3yYAEG6ZokJ7hD0u4f7slwjbKEIIaCLszDGyv/Xx3RNw2T/NnuUNO80x8tw3yZ2aM8OTaWBadI57jRXbZ9iUMsYkp2spZXIKhqpqWY9D1ySwBctCWtWXD63Pt62VLmskWqqR6q7yRdvpoVz20U0DUmbM6bbHCZ8nKffZn7LrlGMLDfNB3P1EkW1xt3n15a5X4Ro7ByREskx1qWviFYZMaZjSboas4txbHIgGOeKNqW6AbQqlksWpaANM4hWhKTftzMvyqG6jPo8sM8yayDIgyyC0QafHPnEILkAUe0YoARizjFOlYlgswmsAqVoLBSJ1S1lVn5xtM8kEaDPvTOqySLZPNNtk9U+WZdLLcDRQmxuBcdp2sN28OPX29uLqq6/G1Vdf3bIMIQQLFizAggULtli7AgICAgICNje4IOCjTE462v0DJLabF6ctDa4COngs2Sd/FuIwTkTATNo5AY8lQ2XgMCiSoXB+l6Btkl+3nnYosCL2N3HNPKhikRx2hea1PmoCSFW0TBnzYg47mlADrSvwU98WI+5gf5dFsZn2OYwYS/xIR0GgUkHYZTeNAuCycDlmLSsybR2lucmZeZZe27xsyGGIPPZJ5I6RZ/DM9S3R4OS1PPnZcp6lcRvlTtRbsVlQbTUhlwLIB2OVJXotAxujh3yOnfESEuu2kJLyANy0IDTlIM3UMEMkEzZZLFBu7ulqsJhdzmvVvLJcWOrXXQ/Ia+Am4HXTmcQRRI0YjZMgBKLKwCuKZaozJD0qaq4io+hcM9eswpB0y3pp4uj+1H3GlUkkj2V/6WcDyQSo+7vJwRSrQxsxaCMFaUrKngwlwJC0fyHNJkRqOVmRuXwIA1Gsk+wvAUKEZae0ngtyvBEAqKqIQaNbUl3mnCciWngWuGlWBFVpWADoqDo3obtgOUaKwDBSmxuBcdp2sN1E1QUEBAQEBAQEbG0ExqkFRGT/8tFsknHS01DLOIioJMokpynqVLDkFpN1WPFMIW1KnuFwtgs4socsVz4DaAYTBciGpA8VALBEt9nVOhCvXa6fift/7evkJaLNMVXFNguzXs9kNbOi20BTZxacCsvimLLCZ9NasBpUCIjUsgycEaNh45HWvFh9lMdsEf86CFeDovvcmcV758Vz2h8uzLlJXy81o49oS30O8UIHHTauDKWaG591KiaWbqN1ajWzbqfxya8bjmnKszabkEC1cE6qTqtjynn15NkmL3LTLnMagUS0wACZqDN3v0z4DB8hPjvltlNrp5qSTSHcaoZa6rzyWie3Pq0TUnogrWvKaq7gSrJKlk2RfZJV5Iq0RuAxLTn/In3ugLwvqSKCWFOARQQiVsxVRMEYAXMZScOkUpBm4iTmFhAmQbFi9VwtouDmGSYIMd5QSFMgScD6huS2uEtF/ul7GE6iXmFTaalzEZQYlimvYfKi6FRaJ1fzBAqINvZWY4kMFNkouY4t1NRXPcKLU0BAQEBAwDYOMQYaJxE0TmOC8OLUAoLZb9h5/yVppavKOd/AQUSRUHI8PuTkUdMVrQ5c8lszF96yE9lSqqlRh3ES6Bq9kLONpjYKMB60xzDMWlyu/WnHPAlC/Mgy7redutMe5aHk+SiZRJ8+4yX1WWqb8p0hHuPjlE3tzLEAIpkbrl2TmdWJEA6fDtPXXp8w9xMCF5IB56+Fo92SehS1WghwRgszfrNbBo9NM6BSH2MmnkJYhi5/aK2n6YS16WQ8toKbqFW1yfP4KmOAvGOPnGHydEq5fc3xiF2fT9ZqvXqKx/OiJV2Pr4wbdsg9D0GLLIBgaMkammU1/kr9nTSLlU9nr8eqbn9E7fEZAY8pBHOi3yiMNsmNoGUN4et1NEXssKXePU5c5kUzpLqJxDxDCjrHjIBS4jCmsOeq2VhFibv9I5TOS0fVgTGAEBB9rlEEUldi0koM1KrgSuMk2+gwXBxwb1r3muvEva2i6rjbR0rr6juJbzmNU8C2g/DiFBAQEBAQsI0jiMO3HYQXpxbgEUAimG/aQn8DZ0J+D3ei6tpFwgmWj5xpf1zfD0nNKhWr5AYqudqZAv3qyGAEtcfU2iijR0gANghEDauzEe73e2/GKaOAPP2ObrOegTvMG/J9kitv8s9lij3KRfCYajjMrJtwq2lqGZFk2uusy0dNKW0RU/m02BA8BkI4uazy15OkwuTEAqByfOkZfgmD0cK3Sfen0Z1RYWbcgmmdFcx5m/7T7I5zbq6PDOEw0XQ6cstjnpzthX7p0A3ctF2D+bn+4EWM8WK9eeZlJDqmDqLhNLtkWWKimENi6iiwUqYxADLJSALqeuu8a3ktEyc+28Ry0YIFFik3bnV9eQaLW2bFjMPIX7au3cK2KxNyLJuxK8cx0wxURM1Y5RWKrEaRxZaNkiyb04cO4+lG5xptj2ZLHR0oTWC0QHIbkXojkxOPwtV9ebn0GAOYjpTjENzpWy7keVUkq0RqNaC3W27qqiDrriDt1n5V8tobZtv5YqAZJT/fnMMqOQwSjxRjp8/F/Qqh9uUM4FtK4yQoslGFLhcJzIBNQ4iqCwgICAgICAjoEIFxagEeA6SiGKfIMkdmtuU4XfuMU+6VPse2uIXL3La9aLqc6Y8bpWa0RrmK5E9nTzuJlMuOnog2pT+TN3M0zczN5vMzFacNhRx2uT7xGCbdbXkPmHa5y1ytiqHPiIzyMlbFRc2LO/t3I+4IQe7cBEiifGc49yPB2k0tuNxOmZ7FM/AKtVE5BNY5XLF19vyFF1XntxtSp+LaMLsBUYQ4qf4ECBzWyXFpJuDWGdw9H1cL5OpKCudK/Jx95hqWXCs3Gk3rsAAnb5pTDvbaeOyZGU8l2qx8ZJzSKbWNjtN9xHx2qlBOn6CqFtQWErGjQzM228XTlwWcasv6iALCcfY27GReI+P6PTHJanEVGSeUXokNKmZG664AyWhRq48iKQdp5thJxfxk3RXQlIEqN/CsRqWeR0UGC0H8gEjnQUIzebvpSDTtdac7x/goAdLbrkJBMqXn4hGo29eAM25Sy7QBgODgTUPJgsYRAJWmIY4gKipqsKeKrMZM32gNG2e2D7nOWxfBjw7O6ZQk26x+668NrqbJ1UOpbVsqcS4HAR8l18E7Ei0GDIfw4hQQEBAQELCNI2icth2EF6cW4FUAVcksCQaH9VBskzt7NTQC/P9ruMyBLsrlbCzvb2TgsiJ6tpdjdTzkia6crsmrRu0rvYuI0TyVu1fbwwlCLEPiaAjyGcchAOroctyoLxO848o/nBm+p6vKnay3n+lH+YNmADKrgfLYnXy0m9I16JkuzXyGwGNBsqI2xehOKPWctUnGjcbDwGVRPIZRM04oggIkL5xQfcsjyUTp4xJuWSfZNjjjjcGNxpQaNY/S9NiIsuMZJqswPjt7AIsc02Q36P6FE0UpgJTbvnYj55SeyHCpmjnTzJZiguUxfVYrD99jrEQb5zhJIwJQY3abA9bkRi8HKAZWM0XI6cBKNFl6nJhjxTrKzvaJ3G6ZJl02q6scbhm1GqxMSPoj032S60/Yell/E2yQgqn8brzKkNWY8XrKKrAsOCOym009BERH6Jpzkf9Pq7K9WVW1s0JRYQSxbj+jYIpVopRKtlaxcASAl2uv2bTbKAGpVEBi5Q7eVUfWLdmnrMqkO7iWUSXymnDtSVUlJrKw4M2kWUu17DFMzLJMZt/cds6Cbui1iPDiFBAQEBAQsI1jbMTh4S1vLBBenFqAxwKIFbNE/cg5OUPJsUwaeV2QgJkB0pSAKr8TkhKQzIn80GyQnvlEsHqDguNw7pg66gVQEU2O/ihzZoZar6KuekbkjEkzTjRx9svlRCswB0QYXQBTuinLTjgz8FyfuPZTpj6XAWjHpOVIN1dnBQhQEBCdI4sL6S4OFHVE2pvH1eyYyL2cV08ZXJ2O4xxNEgCM+5F1joam4C2DFoyMbp/xuwGIclKmzcyPatMMh9aGRFa3JHUnxF5Dp37dBhshKCR7Y4UnnoZIaj+sxqfMR6ksUq0sjx9JBVhDZ7YXll1JuXSDzo8fAKISgTgWzQJS02L0UML2gdeH+lTgs21es9woO2hGwjkXR7Pm/rslYgra5HacCXsuJMtnXfT3lYWI93/DKsFhnDQLrO9LCGQxBSKH3dX6oVSUMpvmcAKGnaKNFCTJQPVykoENUWQ1+XBIuxz2qSqPbPyKiADhxHuuCGWhpJ8BrKHPmSDphtFWxQ67o2EWncSZpucSHQJMjV+TKe6ySBExEYK8i5q8coCfa5QzojSqsPs63kwFxsmNwCspCyogttDLiNQ4je5T22j3D5AIL04BAQEBAQHbOPgYpFwJ4vCxQXhxagHBhM09B3fWIZS+omQAEsjZXmoZJpIQsCG13PR3k6yH8zvPrphs5GqmoycLVDFiql1SE6FmaplfF+F29kcTnwEgWW7mTdz9hO9eDdjZL3SkofqtWC7bPsnEmHxvIndcV3fFczoCV5uUynbQ1NEiqeg3U6fD6Ghtg162XlG5WTgUS+Tpj3wGp6VPFHG8e6ismySZKSMianNxwbZPMElXUF2WcwjGAJW5njt3oo2Ss+eG1NnOuefjI7U++mRsFJj0vXLHMMmxSPAvjMizc8JqiJxZO0AA5aps6vVcqP2ucyPuWEOApZkNRcqcvgdkn2hQSN8fWIbLsl7q3nBythlmTUXRedF5FOV6MyGky7wzdgVzIsrcKEXV1zy2TAevUEBFb9FUgGptGlM6qby0y/GSKqzzWO1yZsC7x6BlbPr5IqzeUPcDs+0FADYozywaYjLqLvXHOdXRpSm1ec0Us2uGNVHPDlWAOpdTPreAtK6W6wA4QWWj83zSDF1CQVIGoXLOkTi2YyGlQBSBVhXD1F2H6O0Cr8mkkrzCwJU+C0SyX+6zKqsQpHV975UwTO5yCctkziVXFlT4y2TL+TgFbDsIL04BAQEBAQHbOILGadtBeHFqAREpximvvaF5p3BHQ8CJzM2UqKiRBgEbsrng8roZz/8oz4hkjsP3IOB5IxH7/T6rSkZKgybKCVvXR+3MEFzqkWhiyxZcu00HFEk1LwLMYZ+0y7DXLy6b4WwjAtKLyd03D2HLUkcHRpsctKkjiEocqZFrgzuTz0fNOf/3cqvlnbnzecRcJgOS6dFZ7ZFxoF4xs1fisimUgjBuNCY2qkzNxF1H5ZKHm2YfJUNH7cXJlZWMkWVzCtGChHhaK82eaZ2XKa8jtfTsOmUm4z2PqdTSOQxTFufqda434cLcA6yR+W12x0mbnF8ky/zU7ipKzfhkQVhmKIU3NjTzYpzZc87nervsD1JgMv1ITgGm2D4dqaWdujkjXl64/L4F9s/tK9cHK+dJVbgPBWQuNwDEZdq0NkuzURFBVnE8vgTAI7mQ1SloIllaAFLr5GrKKDFML3ecwAGYfJJUjV3XSJ9HAGIdsQuwASAegqnLixCMqfxLVIRgxC31WoPMRafy0WXj62hMqqIxQZZNuqh57hk/KZ3dIVKZH3S/uIy20lh57KjD5uczJoAUGSbjzG/22VIaJxp8nLYRjO4qBAQEBAQEBAS8hhAYp1aIBBAJCCo8axEgrwsS1iVZQEbLKUaHNeB5GHku4sQjbez+ue3uAb3ZqyI5SKpmWLHdBuF4LDUtw8SacubnRhsV4OoscrPefN47t30810cClqES8Gd/RRGMe24l2iJuZ3iGedF6J8PCydm+1sAQIcysXGplHBdsqNm9y9oYV3EO4fo66Rxj3JlWa5YmAUgjARqawiOSfdLaCzdaLyYQGQCt52hmUt+kPW2EcLRTfv8UWLmy62ZYQ5/W9CLJUil+s9GOBKRF+KA5fzN+M8Os0FSAg5u2Wx2SOqbje8YJQIT1RRIkAmtwo6WRohLVR/noR0J8PyNGnGNQORZK+kK7srd0o6cAZ7ZTC1F0gBNJ594Eim3ROiDtuu+ObTi/idM+Ifwcfi6JCVhHfFXW+HIRlLNPIrfstlmdWhZLfZMZP05ZHhOQqnDYZ6I0gqreTCDqU3qovgy8QpHWZUVSO0SsrM78R/6fJkDULxejoaK20827CABC3S9ZzABWV+et2Ky6/CeqOT5CcxzFwE5yfdILj0kr1YhqDWYsPMZMXhtbriX0A5r4DJN3DCqK+Ug3EzJBkJU8O0daR8DoEV6cAgICAgICtnFkYxBVl4VPdWOC8OI0HPSMw52huFSRgI1oa1DQJgFrWAYK1AYm+bms1HIuqs7TArnRHU7kBwDjBwXiR2TRFGCJ3U5Tqy8g+eiPksmHy264ee0AqwfIlzPb3KqFPyMUznqPWcvN1olLy2mNiJ5dczjeTP7+IKrOzFBHjnN4/iRzDw+XUcpUtnntzZQJWae7T6ZFV0qXFJnwQiDjEFWVwT3LQFJVNklBGLXtSzMgYiBDTd18k3tLxEyyTw7zZD1zhIyGypyL2cpzipZeYgtX70SIp7tBpajJMRnuc8clCQcDNf2dgXh5D6H0PrIeGYlmc5mhwHLqdpQFrnoQosCyAABikhtjwtc8Ocyldpx2x4gbBcpjP4oOAoiGFEuYSt8mz3Mp30SHEfVu8Fz5fOSpje4EyrR8rkbQRDeqyMZMOWZnFdmXpXnzhGQCqbpOjFII5vhQCcuW0USujwZt5GYzyo1NV0/kSPBoE4gatl5XV8WGUtBmBq4iS5NxFSQ96ne3r89Ka0DSA6Td6jhMFJk0/Wxi8AaP67+Vj76T+ieRy+5A7HmhhPH1QqMxzE0W8GpEeHEKCAgICAjYxsEFBR9lVB0PUXVjgvDi1AJaW0D0jMKdZbhjN6PGt4lkBCR1ZraOJkhDs0PSe8myQDSB0VDo4xvkGCeZC0ptymQUHRtS9ShvKFcr5cKL5NNt1LNXZ/ZUmkPNaZdbNp8TTOZEa7G/+o/rUO5HF/odZq6BOhfDFBAq2Zdc/2p2DYI7OpCca7Tj4WSWjc6GS18mzRQJxThpsxbKjE+TiOS5E62X4RxoNEAbDVPW7OcwYQAARkEaTaDp6KOUZ42oMIhaxczEoTVZkA7PSLllyEqi/mxEWE4rRYj0F1LMkWDUHsMh+rx9dG60KjW5v7Qzfd4DSB8uqxJvHNHUshVE5RM0eiYOP8dczsHbIO9rxIXVWBVPVTKxxFmAvScEtS7TIrKMjSkjhIlo1RFk+regvl8VccakZJ9b6apUZF9JXrsyeBFhZcywccW2kXw8kgxZWlPLsd7XMihG+6hyO2pId20iI4MhWSvzjOHSf0sj6aa+j1ve+4jZ51M0oBgox/PJuMZnHIIRpD2SoW1MZBjYUVaU9EqWSTOXggl5PlpPpPRF+rfH/BAho5sb1CyaANsMUofqsElZF7d1RZYeN3LB3LPYZbnlSWGLYGt8qrvuuutw3XXX4W9/+xsAYJ999sGFF16IY489FgAghMDFF1+MG264AWvXrsVBBx2Eb33rW9hnn31MHY1GA/Pnz8ftt9+OwcFBHH744bj22muxyy67jOpctiZCVF1AQEBAQEBAAbvssgsuvfRSLFu2DMuWLcM//MM/4L3vfS+efvppAMDll1+Oq666Ct/85jfx2GOPYerUqTjyyCOxceNGU8e8efNw11134Y477sBDDz2Evr4+HHfccciyvHZk+0FgnFqBCvlH9J9cTdRvoTOQJ5Zl0rMqL6M8t7MxEfnf5WlKzJurUHoiTwsEp2wCCNc92tEIuQ7fJFPHzUWuAA4DlpsxuZnCvQMQey5ac2Vm5zlditsmk6OrpAyg2SbnBD2GzJnSub91HY43kwxays2gVPvybIjntq3ZGtdJ2tE4IeNAopggrW/S26llnwiPgYgZBocggqhX7DGHEpljCwBM1KNug2JMlE8NktRG3A1JRoxEcpvvj0RA8wxTHm7+OmrLCEohIurk+CJ+JJujBRKMgEfU6HuSHpZjMqx2hjXlNc3UqfsMjlD+RnIg0UQ5wavj0Ca3LGEeLrtDSY6FzWmy8n5WrmYo10duvrE8myMIwB22JRoSJoIVkNGPps+If64gMDnkChGCGnp8ckgdEeDYbpecDoHHtul7ULNMWdU/AZrKNgNAQgl41We5TSQclww5dyKAaWrbTVOBSLHYSRdBYwJFqhkoyOeMzl2XucwQleNDR/kKClTWE9TWqX0zex+STIDHzJxLs4ci6ZHlmuMFspoTsVbmoUTsdQBylzkW4HrfRGpP5TEJaOYw57Hy66vaB6VlBZXOazgN0xbzcRp9VFwrOWQrvOc97/GWFy5ciOuuuw6PPvoo9t57b1x99dX4whe+gBNOOAEAcPPNN2PKlCm47bbbcMYZZ2D9+vW48cYb8Z//+Z844ogjAAC33norZsyYgZ/+9Kc4+uijR3U+WwuBcQoICAgICNjGoQ0wR/sHABs2bPD+Glpe0AZZluGOO+5Af38/3vGOd2D58uVYuXIljjrqKFOmWq3ikEMOwcMPPwwAePzxx5EkiVdm+vTp2HfffU2Z7RGBcWoBEgmQSLJNxGGcBCdS09RQbrdNR9ekZycumVIRxkW3oO3JbFlXIyB3tNtIfl/nN5SVkauJIO4sidqM2C6j5Z+s89uZ6QqWZ6HcWXyxDjNLbjdLU9ssW5AXgcGL3BPUdy0u1WzpanJu0K2inQrMk+vjlOacrR03Z/N/zRAMyYcNidX0msk8ddqXRnRVLYNDiNQlaUdurW3S9UcMrv4JETUu40TvC/jaJg3FJOn2mWum3bLdyDNCrA8Rz7z2uQwjIPtP1LRbuM39lVVVOSf6yMtr6IxPIYjn3EwqcsZPm5rZyOXOo65Xk2VW9Lg2ZXWuPKOlIt61chkfQ+xEbj/Y7nMj8PS5aMYkqRMwdam0yz5xfNt0PjPTa1pDJGR7WkUGupFnOiqtXVmjH6tQZDWCtGrZPw9Oe3isdU/ldbrtZQ2CuN96vum6ZFni9RmnkLkKVb2Zw2rJe9Y+L7MaAVkLj2UybSAEvMqQdMvBkXZJbRMAZHUBEYtyhkm1zWof1fHMNVXLeixXOTL1jOZcji+i2SgmpKO/qptn1F5flavRe645/UJ0m9KR8jibhrFJuSL3nzFjhrf+oosuwoIFC0r3efLJJ/GOd7wDQ0ND6OnpwV133YW9997bvPhMmTLFKz9lyhQ899xzAICVK1eiUqlg4sSJhTIrV64c1blsTYQXp4CAgICAgNcQXnjhBYwbN84sV3Uy5RLstddeeOKJJ7Bu3Tr88Ic/xNy5c7F06VKzneQ/hQtRWJdHJ2W2ZYQXpxagUQYaZ4BQs+ZU6Vg2RjIqQ0fdZKTlTJFX5Hd6nT2dpARI9CydeLMk7bZsvJbyLFBu2eiKqJpoU7ubIPCjxpxqSuGySJqkEcXzKkTgtainsB/JrdP54IaB1KJYb2tKACgPGEKU9sfRcnk5vJDLr5VzoJZlnGg4z1SHAJpFitQtoqPics7cEAJI1WBIAQwO2UsVMRlZB4BUY98HyWWYcu0y/lCpZoZsFCDJRdEJxsDrMXjFRsrpvuURBY9szjHazEATbvveZaeo77ye1ajUNSmWKa0RJMpDh8fwxophTPKRkgDAlXZGT/Ab0q2aJVqHBYiKq+FxGCcKc65EKO1R7Ot9PKbWGZSCUf+aO3opNzeZ9iqz0ZiqiE4/GBOj7WGJPVfdJkGstsvdL++Blo9m9erRbXCi91xw5rJ9RDmCq22xz8IJ4rB9KhLXsEsCznMLHsOY9EitEhsi9jw0a+TkntPtcyPn3Ag7zTZp/RPvFehndlzR1N6LNKJIxkUYmiS3DU0G0h7ZeM02eZFzKGGZzDbhlBGKkXL2rZTsD1teqAHBmCOAUlkhBHfuU/XvgXecZMswThzEfD0YTR0AMG7cOO/FqR0qlQr22GMPAMCBBx6Ixx57DF//+tdx/vnnA5Cs0rRp00z51atXGxZq6tSpaDabWLt2rcc6rV69GnPmzBnVuWxNBI1TQEBAQEDANg79qW60f6OFEAKNRgO77747pk6digcffNBsazabWLp0qXkpOuCAAxDHsVdmxYoVeOqpp7brF6ftinF68cUXcf755+O+++7D4OAg9txzT9x444044IADAKAjT4lOQRkHZRyCUxnNNiinUGyQgCaW6XDHoZ3Rqtm0/kavGCchYFzGQdUsx/1+7sygPe+TFN6MHi6j5Mzs9WIZ4wPI2VbBoTgPhzUSzr5a3+TlnHN3c2VBueUCI+ewFWXbWzp+l9WlQQHBickrKNxGKiMXHaFDOJXRc3o2ywmI+s2Ve7dhZbTHUwvGB25ONM0+aQ+ooYad4vIMpF4D76rY9jmeS1KLpOt0jqXboCAIsbnwIHN5De5URdqlGNFMmKgqwmVescp62R7aBLKuqFg/gKzKkHRTDE1UepO60jKZiFDHoT7v2Cx8lkl65cC0QTKp6jyZZAUzhy6gnp+QZYZoai9h2mX9iXS9ghZd8wGANQVoUxjWQ+vkWkXSgTg6QCoKeiOT+61CcuNWM3tWO6WPIXNC+kyF6Q/k7g8u+6vM3VpGnlnGicfEZ3iYry/ydIi6Tfo2SJ1nivaQ00OsIq95Ms72kfe8yTFmXn8yWGZIH89pQ9ol0L+zXJF0U9TWyHuANQV4BCRdqly3inAD5L3qRTOjnGVSv4lXVjNOtg26Q4n5PzwQ78Hi/Kaind2W3DfefsPqh8PnP/95HHvssZgxYwY2btyIO+64A0uWLMH9998PQgjmzZuHRYsWYdasWZg1axYWLVqErq4ufOADHwAAjB8/HqeffjrOPfdcTJ48GZMmTcL8+fMxe/ZsE2W3PWK7eXFau3YtDj74YBx22GG47777sNNOO+HZZ5/FhAkTTBntKbF48WLsueee+MpXvoIjjzwSzzzzDHp7e7de4wMCAgICAkaBsTHAHNn+q1atwsknn4wVK1Zg/Pjx2G+//XD//ffjyCOPBACcd955GBwcxJlnnmnIigceeMD79/ZrX/saoijCiSeeaAwwFy9eDMZYq8Nu89huXpwuu+wyzJgxAzfddJNZt9tuu5nfQohhPSUCAgICAgK2R3BBwEfr4zTC/W+88ca22wkhWLBgQcuIPACo1Wq45pprcM0114zo2NsytpsXp7vvvhtHH3003v/+92Pp0qXYeeedceaZZ+KjH/0oAAzrKbGpL06EcoDYN2Mb2qxWOOZnhiqnflk3CaWmtHlMZEis3kYAkvipAERNbmQNIpP2ujS1/p1L0UJywvB8igCR/wyRo9XNJ0hdPnfMQmguHErfPQ4pWY/isvkkkfs/gELy1bbZAsr0mUZ4r8wSTdoS+WGG6+968Gc+RDi2mkIl1VVCbVGW4sS0gYOkzH6qc5P65topYgZeY0h6bKw4zaXr0CH1+RBuUCCtyzYP7sDQGE/MeKQZMel3okGBeEAgqypLgUoFSbc1MuSx/fSU1eSnGm1kqEXH5vq7v4Fcmhx/mXCjiZefh4QNXU8FAWVu6g/hGXLK1B/2OPp3WiNeqqG0G574H5AmjgAQDcjgDb0MqtKClExw9RgzbhPq85qX+kjf844ZLABwQgqf3Nx6C/2F8jYQTkAi+xnNE5YLgqTbfqoTTNoBmM9kbn+p+84TzDvLnNhjQH2m08dhQ+rTrvJj5VV4nzYLn/idz6Tys1quvxwRtiBA1iU7YLBOMLSD3BQNENAEyOrqmI79QLGThF/vMGJw82lPbfdcVdpljy55ryisMl/mtUi8dXUBr05sN+Lwv/71r7juuuswa9Ys/H//3/+Hj3/84zj77LNxyy23AIDxhCjzlGjnF9FoNApmYAEBAQEBAdsSuPpUN5o/vv38k79NY7thnDjnOPDAA7Fo0SIAwP7774+nn34a1113HT784Q+bciP1lLjkkktw8cUXtz02oQJCWfKLQYqsIiB0SgGXNQJKZyymLRG3ZoQZkQyTniSlUrysZ7ysCaDpTpN89sfkcXWM9MzxXdbLZZgU+2Si0QVaMk4AfJaBFE/TzMoByaTkZtiGBXPrFbYdgD2+nUja/pTiVVFkyHQfCBSEzp5hpyO2JrD1iojKBLBu+hZjlinc7LByFaUgkTKgTLntQG3WaeqJILhlp0gSyVQqpl5hDCwFmAzRVhYEzR4qxcf69Lid8XPmMAPKoHBwkiybdisWRjWJNSzTEg8IJF0ESbfsiLQOLwWHdx2YL262zIHLdtk+8bW0xLJOqu2WAZOsCNWuDhWACGLSebiGi0bErRkSJs8PUGk9qGO6WBPgFW6vsdvWjIBkBGxQNriynoA2UBQ7q13KWNhWSa7zwnFO/PN2WU7vhmlzDCNI1zYZLnsnpAWBsR9gimVyEn4XTGlz7I93H9rmSEuPnHmnFti79gPRkAwsSDUzVNWJfYVpg8+G55J8O20QRACx3C+rq/Qn+lkVC7+RBYE34LJIHuMEmMAQbVrckmUqY5XasVAOXGsC18ZgS4ALCj7KqLjR7h8gsd304rRp07D33nt76974xjfi+eefByD9IgAU2CXXU6IMF1xwAdavX2/+XnjhhTFueUBAQEBAQMCrBdsN43TwwQfjmWee8db9+c9/xsyZMwHA85TYf//9AVhPicsuu6xlvdVqta1rqhAqVJ3J6SHvlgZpIlasAhVAooUYuVlmJLzv/8TRCGlrAJJLPmmOy+BpRrw2ubNElUalED7tzqhLZtpwf5YwTpoxapViRQj45+UyXx1M3jQzRIQoMACF83WO05bRy4X029QqQqbyUCZ8Onxcg6QCRHDzWxoDuswVATLqlNcJf0tOlBAv/YlNOsxl0l1tP6DM//qmylsw6fVTYwgCm3omx4B4zJAOf9fJWptA3C/bNTSBIu2WqSwAmyrF0+DltCh51sJrj7vsnrJm+1zNk5qZC8U+EZ0gVhk/6mSutOlXTBN73lnNam6ymoCoWIsBMKWH8dgVxTzEUqOm2ap0PAHbwMAasjBNJYOij+eG5WsrANcWJH+/2WTWJV3ljGOdgNs9b6+oYYV9xq5geeBonkQMlW5Gd1ibezR/v+TuswKEYrrhjzeawrMyaEbIywKL48hZX0iX4jBDPBbFsm4D9f+pbKCvY7K/3bKabWrFMpWxS+14Iy2oFpwgS6gpTBnfovqmDMSx8dj0OgJGj+3mxemcc87BnDlzsGjRIpx44on49a9/jRtuuAE33HADAHTkKREQEBAQELA9Inyq23aw3bw4vfWtb8Vdd92FCy64AP/2b/+G3XffHVdffTU++MEPmjKdeEp0CutNKL9js4pOBcAhMu+jvTVWzEhO9KD+5zATxhRPOfvnJ1gGbtqK/NTWYXtM5Jkz8277ud6ZcOSLEWd74ZDOMQt1le2T1yXpvjAJTf2jGz0PsSaWhMu+N7oLR/NAKYHIhNGFGC2U7noqrB6BERlZ57JIQjgpLoStmAiQjDuJXIVHFZIk8/VQ7dzxCJHpUwAIlSpEG2w2dqyib3qEphqaOiGrPLkStkA3m8BnGQBEA0Dcp07VSXIuIsk2GW1KBGno5+lRnHqB1te4cG6O9klX4I5XrX8RAKLcmHTLOvWzhtxXM286LYg+F+5qYKhQ2hqXgXDa5ra7KpBOEsiaKu1HkyDaKH9Hg5J98lKROM1yTTaN6WOe/XO7xc3BLIykUd7vHpPkX0PiDCV3HJvILccM170PvDRIrt5Lt8+5xplrhilgIh69Y2oytWnr0GaZ+tx4LOvh5ma0Uaj5cWTYppIxl39OesyUez1R3NfXOMn9XHNLkhsDLstUNqRbaZyEsClX0iaDaDLLNFeAKHazW29eZBg9Y/TqtercsthuXpwA4LjjjsNxxx3XcnsnnhIBAQEBAQEBAZuK7erFaYvCzGCkMMBMkAkk42QYCUg/JsCkVjEzkkh4bJPIiEz0C4CmREb/6Jmlmk15KRlKZqDDtzuniXHZqTKKydE9uNFFBR2HIl3K9Bw6HYMXXSRyE7ES/YbZ5DIfTu5bQggIF5aBSAmImsLzyE9pQTMh9UluG9wkvxygWpvEoVglXZg4LBL8yDmtWdL9yZGjDnwWC64XExWGcQKlyLoqGJwqRTv90xiavbC+Sa7PEEFBb+QlvnVm5myIIOqXrJOGToTLIxnFxt0IUE9HYvdpTX2qfYeb6LozeuFcZq0P8Wvzfurot6wK8BovpAwBAETCYy50MtmWLFNuoJLIbueU6FzbAKFgFBBN53huyhNnHJsh7GrEciyO+xuw2XKIZoadey3P/rpsVeEy6EdMQ+qQ9FhJq1ILJvsIRQ2b0xaXseGRekw5z4m8Z5r3bHI0jKxh9XK6XleH6GucRI5lyp2XNx5zJ+1d03bMrh9FV/B1cg9fpm9yy1lyuXT7cE3ZnAif6rYdhBengICAgICAbRxjkaR3LJL8BoQXp2FhiQet2bBMk4GOIKJqZqtZJs3mGMEELEvCiT/DIyh6MnWA4cq7OqrizqqM1hS5H8B9+YHxfWkVleNGwxUiiNwZtJnFKu2GWmFmrzkdiAvu+BwJxTwZf6OGAKXCskicGPaHcCEdqpXGiXdRsCGADmhhi9MHAtK3SUeKMQJeYZaRojARdoIRiMjSWqSZSQ2U6ymlIuyyrhhDO1QwsKNNopt35navh6ddyelCPEd1oXx2UmHar/2g0prSozB7Md1ovVYeTS3RobzCr6s4WycCIJryITJiDpBsk8dOADln/qKuxWcy3MFTZAqEGaBWt5L0cvCIGsZO6Agydyw75yUY/CTHOcLRu2FcBkpFupYl+TX7a2dy7jJ2xXK6bgCIGjaikit20TCMKjGzbgNt2rKFyFXIthc0TxrELtJEMZz6UcbtRiEAuEl/hXpo5FkooHw8udfXLaOuZ8EdHK1ZJJJbNutzx6W5/XXCZ2m9Rswzn0Zc5vTm6v7nBJwTz9sp4LWB8OIUEBAQEBCwjUOAmJe60dQRMHqEF6cW4Bk1zII3o3FmIHrZQP/UDJTWMOlJUt7nKYeWWia13mVtigyO0wRnpuvOFPMeSYUIPOIzGd45wc5K8+sLbRbwCQBXA5FjowQhfoSdwziYnF1mWdgZcyaZF27YFemDRRWTwRrckBU0EyBCIOmWw50zAJzKvHK6HcrbiahIPZLLG2f9l5h1VSYqWk+zZzEFbVLLegkBXlU+Td0RBAGiIcWuqONlpi54UVF+tFSeWfH1JTyy/jtplaA5Tv5OegBeEV7Zgs8OnG0ORmSI3Ant6RxGEIDXdfiWc2zFIBU0MmpHN/+YHSdF9qJM4yKLWCZQqEhDUSVImQDRxkhDAJxceu3uVxml6DC1zv2VZ3A0GyWc+6/0foYladrBJbY0tCeVjqxMu/wCxrNKVeD5UwnVNjcyz31WwG+jZDnVceo231xWQrO7nnSl46xVZCTNnaF3jf0Geb5NuWO4TBUhPsNUGk2nBmDGKdJmZK4ZjThYJUOm9XApRQaAJyUJCDcDwqe6bQehFwMCAgICAgICOkRgnFpAqG/X0g+IgmeWRQInEKlio1xGSfvTODoBN/LL1Ti1zIVV2pgcW+RO6EpmcMS1FsnrMHIsk6uXIQJO7jd4mdbzvkLCPU/1H7esm+Hd86UhkBoIYrcJToozbgCECRBKPA0WG5KVxv2ZjLhTuqW0m6l8b7oWCpJm6hwJhibGyGpE7csVY1VOq0iHcW5+u+UEswwZyYTMP6dOjuqoPq2tEgK0IaflEQEIZ2BNuS3uI0h6KFLVpqQLSMbrY8DpOL9vC9ebSi2LqacXaEyU23hFFH2bnP4tYMQCuxa/AUsUaKqCOatzEXBFt2j1v3YMk1pX5g7dmnmwxxGaFaQAujLolHmCMrAGwN0ppaN30i7aAECYjGjTPk/uPa2Z1UKeOOce8cjqXESb+7uUFGlzqQrsrj6XvAu6eygOT/sjAJv7rYQJdxlR1vDbmLosIkXxoeOOQ9ePqcCsCu+a5r2ZClDbqKuFMvu23paHZqSylHq6NarykqaOzlWkFCLbMvwDF8S4mI+mjoDRI7w4BQQEBAQEbOPIQJGN8iPRaPcPkAgvTq3gzLJ4ahkmkREQlyFxXZDLqiFoyy7ZGamQeh9nNmbmBvoQzpj3PlU7bJS2nirzltEaJtNcXc7N72YnU6Wzu7yWqiVcliQ3gxaOJEAIObPVM3xBrXZCz/D1ctzPQRsqZyAjoABYUy6zJgcbZGhMlJUnXQSCyt88AnhMEA0oZigRACHIqpr9c2egUt+ko+UM2+RoNLjKeYdIngBNlG4JXP7WDuWpKzAh9thQE23BQfW4osToRIxTdQtW0V3OagJZTEw+Oq1rAuBF05n62s3a2zCZpeVIfrnFgMjrluCULdOtlDJZIle2XMek9/Eip/JaJwKTCYBnBIQIcNVXqWYGh5zT1U/JVDG0moFIZLO05s1o3+Azuar1he7xdIhtclMW7J5bXSd9nXPaJe5cfzdaTVC/e0Hg2pcVZEn5HHSmnZagNcf0PKS8Z5DwfhMKPwrZobF9d3DhX1dSdAr3I+d8lsm0rcA4oQC9nTIBQrhdJgJJEtkO1c0dIVEbsP0jvDgFBAQEBARs4wif6rYdhBenYcATKr9ja00Th5xx5DyYDDx2xdfutIyac+rxtCz5mWcuIi6/LwA5OyWwmhJWnMF6x8gRZrponrnKH8fVQGi9Uz5iz/x2dRpCMSp6Jqky1buRSfGg0gH1c6XTcJgiB7SRgSrGiXAOwQgqfbLirGL1TlmFoNInjNcRiGSgbFttJ9BE+FF+OXZFUGIi8KR0g4CrXmNqSm+0XjEzTJNgBIISx2dKMlc6mIumfh+4yLuIe/5LjCAZD1MPrwnroQOtRcnrhJy6OkU7/ZMeR21Ynvwx2zt+t9AtlTBOXtW54xei6vQ1dOgfRiFzUTLZ+Vk3QdakYA3NEAJCXRedt05fXx2lRh3XceGwhR7bi1yXlGmXhK0nHzXr+ae595Y3NuFfB5pjvN3ni1u3+1vvy53DcH+bPqbeJeuy0aGmf5yyeaZKn5xhm9yxoH8SP+sCCEBoST46tc3VLhEiwGhrLZM7TigRhZcJqo4bsQwksowVFwQJEZYh018bttC7CAcFH+WnttHuHyARXpwCAgICAgK2cWSCIBslYzTa/QMkwotTC/BmBLDIeDFZx2+o79pyOc8i5WeZpgzgfxsH/FmnzunVSrvgeqyUoUTfYOBEpZU6Uus2uNFuPHcuZbNVJ9rIjcAjzjpA1ePOaJ3ZKhWS5aluULPFTCAakFN81uBoToiRdmkKx7IykYquo00tiJKMjmGOUmHKxkrb5Gm93FMhsMyQirYrMm1qe0Q87ZaMEpTbeERVGy31JpQeSns9uSIyXiHG5Vmeu+0v01fI/VYaEbdM2u2zTIV9Wq3vJIqupI5yH6giS+RtzrNR3jjPMQul+id/XUGbUsIukLL9y/aFMN5snHHweoamolOjjdT4ImktkjuWtc4JkGPeMH8Rikyvc6rGN6nYfO/eMufcgoFyGSaTpy5/fi6B6rLNOa2UcCJhBYUXAeje/9pbLdWavNiOXREp36YWkY0e9DhwtUmO3ik/ZqjLOFFr5VimaWqlZaLOsTQYEZ43n95Wq/hsFOEEUZyBMaWPU89zLhIEvLYQXpwCAgICAgK2cQSN07aD8OLUCikBUu38TUo0TVqrQgqMkjdT4j6T0FLz4FRpFi3R4uWJy3tFuWVBoLxT7LJxvlXtMfXr3Fi6DjeqjsLX1sBvO3XzecEvK3TKMTfzuj5G/pgMyKoEmYoEq7+cobqq3xwn7WIgFebtC8A4ewsnF1xWpciqWosmWmquTKSP7l9mN/IKhWDCuaZC9qVhlayrOEmFYiHktoxJJ3Gic9lRQMSacVL9k+p2E6RVR2vlOKR3As/7KE9ktmJ32qFdHW5dbfYpi1Aq3aeEZZL7t9cxFd2iy1mkVpF2bberVVElQ8IJeCxXNGscUB5u0UYm9XhqFx39iPw9qNbl9UXu/wVgNYJaKuMyuK4ZtXPva72gyzK5z4CCHs55VriRutqd3M3RCIdx4rFzf6h8d17OQ4eRok0YRl4IqePz+mLYceOwU3osUJ9F0myUyzJRh2VllJcyjUDRu8nbpjrH/RhAnYcrIU6mCApU4xSpur+TJELaZFvMOVwICj5K528RnMPHBKEXAwICAgICArZZPPvss/jiF7+Ik046CatXrwYA3H///Xj66ae3SnsC49QCOhqEAMXoNkfj5Op1CBVy6uIKeIid5nmsh2KzzKyOKpajRaZt4bBIBSbF3UXAj2JzNnPoWXuuPTn9kVlXprFxj63aztXs0zBrPNdeV+Ok6nZnyVkVaI7TLE0MQboBAJVXGqCJnb1yRhDlIut4RXs1UXBHfyQj2NTxMyHz1anlLJbMkNcorWGiAJxZvPaQ4k4knZFhuCygPpeanYtwBuMDRYTynFLLaZUi7SImGknuC3OMkUbqtMrv5v1f/y7Rn7T0WXL30z9HykZ55fNapRb6JrNs688zTGWu4V4T8lF1Zc0mziAFpJdaV2IyBaSNyJRJhWSd3Aq5wyh7jLFybBc5VsqMe2JZGg3DMokc+0ScS6Z82LKqXM7qTp8kAGs6+rzc/e3qqsqi8wiATGvuKKxDeiL9wkzEIJNMoL2/7JinCcBBzLkIo2NyT9Q5qHMPEmo1TkbPpMkedf01y5SPosvnoNPr5amUs02yjPw/U2WE8Mc3g4DQrJRgaCQRmoOyk0Qm/f14cwvlqgNRuQBHV8f2hqVLl+LYY4/FwQcfjF/84hdYuHAhdtppJ/z+97/Hd77zHfzgBz/Y4m0KjFNAQEBAQMA2Di6szmnT/7b2WYwcn/vc5/CVr3wFDz74ICoV6zJ72GGH4ZFHHtkqbQqMUysQRYu4DBIgZ4MZAUnlmztNiGElIJQ2IFIzFAaACft66rqMCwGSEBuNovNI6VmUy2QYtocU1nlRMHDW5ZgQ3T5XL2F1PE7ZElbLgyPJ8dYJ2CicGIUZpjvTphmMGzLJ/PxfSQ9B0iNvjnpvhNrLTVT65NGGJjCTk42mFBggYIMyooUNpuBRHYLKRhR8mohlf2xuMcsyuUwVzVS0lLNNu4zrMrIexxsKkpXKqsRonlymgA0p1kLV0z+VIhnn95GOsDNRSWWMUR5EM1Ql7EsH+3taqVy9QIfsUv4YbRgmWadw6i/TOtnjDMcyedvzTWqha2kXYSeEABEERDOQnCNrKEYhFsi6rMGRHsukqceke39LarKlZ5qQx1Kn6WmRZGXq/xnxdUoMyKrCusNHzvMlBkCoeTYVOsXxZhK54xn228kiYJjeGOBV4bHjbuUu62W0eoayVe0rHTM+G0WoZZQIFW29mVz9E1DUMbksU+kYdvZzwUFK1wFSR1WNUwj13EiGIoAJEFY+zgLGBk8++SRuu+22wvodd9wRa9as2QotCoxTQEBAQEDANg+uxOGj/dveMGHCBKxYsaKw/re//S123nnnrdCiwDi1BKHyTyavgpmdsSEK2iBgyi2YJpYpyKqwPiYOvNxMmdW8FCKZnDHNI2dWrvbhlJtyVDM2ic+IES71BcJoNpz6Y4BX7LSTDchzcaPfDFSEjsumef3DUJyxOhNRweD5PLmzdJHB5AKLhqSPk9YQcWZ1IYOTKQSpIO6TJ1tbl5lyhAvwmCKZIMUemYpeY0oDJajVWYAAaYW21H7k17luxzwiSGvEaEoAt0+kTk2zToJIpstl+DSTBiLrGtK59MbJ8UJKNGPaj6cssq3U58tdbqVncra11UPp1a2YqHbHLtOStGKJyhitnMdOOx0TIcI/1Rb6FvcYeSahbD8AEIIg02xknIErBkcIChELiIqmeQHeoGAOw+NeT8KJlzewGNmp64XHyqqq7S9BLJFF5fOFJmrfjJhoNxEL8Kow0XqFc3WYaKKZ9DwzrNvP3PGo2uD2aUYMsy7iXB96zxFhWVF14oahoQChHFQtM8atxom092ZyNU2ECFCIArNUdr11+Tx05ByjRard7U4apYYVGyBAcyC2osfNDA5i2K/R1LG94QMf+ADOP/98fP/73wchBJxz/OpXv8L8+fPx4Q9/eKu0aft7/QwICAgICHiNQTuHj/Zve8PChQux6667Yuedd0ZfXx/23ntvvOtd78KcOXPwxS9+cau0KTBOw0HN0jTrwwYJsppA2qOZDUBUVb60Sgb0R1ZjQPzZPXF8UsBV9AvVM1IAVDFNAEQ9MzMzMcQk8xVZcZLOOUSIH40njEgJql4BXlftizgEJyANao4pImG+2RMOM0PW/2cDsixNUc7QKAg42/Xpa12Gk9+LDQKVjZa1oU2B5jiCpMepWu3HqZxZZ1U5TFlDRscBAG0ICEaQKt+mrErltdB+SzkfHFfHpM/VjVL0/HaI9fERVLJNnFmmkDuaBiJsxB2E7FNdVkYe2es71EsxuCNUe/2cfbKMM6Y8HxynU3Io6Jt0ed04UlK25NlZyjC1ZJaAIgXp1lWmW7Ljcjg/Jr9sew1Tuxxk7coOB6b1PdxGeokKh9CaIwCkQUEbVLK+KLqIA45uLccICsDvAwFzH9oC8t4hQvjsbgYPmvEx2sqaDZ0jKTUaLGTEPm90FJm+PqnUapr7hsJGxqmIX3uPEIiKsHWV/Vucu97EXa/GOY04WFRkmQAZVedeQ0p5KctkqiX+NW93rUuZqJJ12ixS16Udxom6AKLaRNpkAGslCA0YLYQQeOmll/Dv//7v+PKXv4zf/OY34Jxj//33x6xZs7Zau8KLU0BAQEBAwDaOsdAobW8aJyEEZs2ahaeffhqzZs3C6173uq3dJADhxak1qPAiQjSLxGMg6+EQsWJxmhREaR7iegpezZCtl1FhpEFzXk12VpjXQekcZKIuZzO0mpmZDqcCSKmZqYEIw06QAQZk1r1cqIzjJiKmxkHrqTmMGIyMPoJkcrZoZtTuLDNS59xCU+O5IqtlkxNPszl6du14wsQDQDQokHTJjY1x8hhmwuf0F68CmaMv4hOJ0XbRJpN6JmeGz93RTHzWRhDiRTiRDIa98pgoc3zZvizORehxGC8mkovtlUyRvRbEibhr9lAMTQIyJ78XjwTYkFM3zYmvTP/5DI7HMhHnT8NlAtpFrbnIa50KZXymqi2rlNs/r2PqNFKuTMOU37cVy1DUPNnf7j75FBTSx8e2kTF7D4iMgCRO1JqAjKrSjG0Kr/9o055FoscYc6+NqoZJ/sf1QfMiaN1MALpK/WyIBFDVBmVaEKT6igrJQGv/pdi5hkKyTC5LzGN4einzjEupHPcOI5pnLj3G0rtwuqNUH1EOVlHPOBVFR5WuyL2eZQwTYKPl2l17vV5f27JyIscmlSGfw06fn350p5yCMr7FGCeOMUi5sp1pnCilmDVrFtasWbNVGaY8tq/Xz4CAgICAgIDXDC6//HJ89rOfxVNPPbW1m2IQGKdWUDNC0pMgrqbSswNS39Lb3TCzpI0b6sgGpJAhQYR6bwPZJLmtsa5mItcAHS1lWaM8RCxAq2o2FtncSzTiQBXe7IfWJIWTxBHYqgqifnuMtNvqHoiwjBJlXEUCSUaM6mg3h+3Rv2lCrIcM4HkSAXrWqRY4TBSeLWDrIhnMK3pjPJDWifFJqq4Hquu50SalVUczBIBXLAtGLHGGZi+k344zS6eZO2u3bJSgxOTb0n0iGMBNYj7LHukIQBPlFysmy7ls1uOJ+H2Sn8wxglRpXBoTgLTLYfSYjLA0Wq8EyDRxUNe6sNwMH7Yf2+qY4G9rGSGXZ6o8jIBhKmOy2miYyvbV60ihfHFfoDz/WFnEVdl2Vxuj5Wh6Ji6UUaDeP82s9ogkSs/ksEo8FnDDSV32stK0rKxmMl2tk30WyP+ZXHAOBesxyXD2dSLTDOMhKOBGu6qoT2jNExPWgE17U+ljR0I+Myq2rOluyr1xVhgyDgNWuK5CP7f0s0yYKDpKBBjjJpItH0XHHEo7HxlZxjDlUVbWrO9A75Zxiv5mBU0nFx1zGDLOKYT62xIQYxBVJ7YzxgkAPvShD2FgYABvetObUKlUUK/Xve2vvPLKFm9TeHEKCAgICAjYxqHdv0dbx/aGq6++ems3oYDw4tQKQ9LIKZ7cxKSeAaDX2ZRGZhbS3dPAxlTNSIYYGnGMnh5pUlSbkqB/oIrsFSnSoQ2rjzD53FzNQ1cGFtvv/2Y2yIlijYozqHpvA1l3gqG/y7fw6t8Z4o2WShCUorGrnCFVelNQJpDoWfaGWLanJJoHXLE5rk5J2BmzoDa6jGQE0YBlYnSUmmZ/aApEA/J31BCIBrjJTWfq1oyPICYSqTlB64ZUvRkQ98vfrOnrxEQEpLEzw8/sOcn64euomLO/8MsDdpvOJWdm/sJGShEOwGG5wIBmj9UxQcB4UnF1PKNxU15cXNXPIyDrUtoMpUXxGAndvBJfHFNGr8qVzUc7eoKZvISjpU4pr0NydyrXH7WrtyxarixKbjgNU5l2abgcZWUaL52rTJOjVgsDCJ2LTY8R91RS66OUddsbhA4R8IqNUiMZFNujmEzHT82ws+becm+0Ek2bw0AK6l9CwYR//WMnarZBPXZZ55wz9dYyEFevY+oBCuMkl1dOk2557VCeYaRUskyA9Exyo+fcSDl97VsxS51ESLZkotrkrnORARgYqqDZr4361DhwvhqIlIIPvnr/Gb3kkktw55134k9/+hPq9TrmzJmDyy67DHvttZcps2rVKpx//vl44IEHsG7dOrzrXe/CNddc42mSGo0G5s+fj9tvvx2Dg4M4/PDDce2112KXXXYZtg1z587dLOc2GgSNU0BAQEBAwDaOreEcvnTpUpx11ll49NFH8eCDDyJNUxx11FHo75czWCEE3ve+9+Gvf/0rfvzjH+O3v/0tZs6ciSOOOMKUAYB58+bhrrvuwh133IGHHnoIfX19OO6445BlWatDGzz//PNt/7YGttsXp0suuQSEEMybN8+sE0JgwYIFmD59Our1Og499FA8/fTTW6+RAQEBAQEBY4DRJ/gd+ae++++/H6eccgr22WcfvOlNb8JNN92E559/Ho8//jgA4H//93/x6KOP4rrrrsNb3/pW7LXXXrj22mvR19eH22+/HQCwfv163HjjjbjyyitxxBFHYP/998ett96KJ598Ej/96U+HbcNuu+2G3XffveXf1sB2yTE+9thjuOGGG7Dffvt56y+//HJcddVVWLx4Mfbcc0985StfwZFHHolnnnkGvb29LWorRzS+AdpFML5rEIxyb8AxyhEpVWktThHvsBEAsH5DF7Ihho3qW824CQOYMG4A69R+fHXNfBLS4movcaaAERpmQiBTgnT0M5CMgHfLt/OoO0Ec2zd1wW3SYUHk5x/92YcNELCXJdXMe5qIowxQ4f3NGoMYLH93JhlRgm/NwUtDSntQK5IlAmANeJ8eogEgHpD7xn02GW5jPEXfzgxplyrK5LHcZMdGiJ1CpmXQx6T20xltys8fJskxA7KabQPJbD3awkB/NqGqjR6T73yyyGL7iU2Q3OdCDjD9STKT6VZ025vdBM2JOSGv7hIqP42YepVlhP50Z84dUImhW4i+ywTf3mcz2BNXn8TcoAKSK1/45FH4xOYcx1tfTHHR6jNffhvJrc9/1ikT9XZSpp0hYh4tP/VwCuGk72DUEVRHAmg61h9E3Sd6O3UE/THAE2KuN8mklYZQwQAiIgWbCe+3MarUddtrWthPf4rTn/RIbpvzea7wyVdbF0RyzOnPb27aFp0WRYu4KZW/jV0Kp97zUVo6qMM49gK6je51YYR7ZfOf5joSgQ/z6c29B1pd97LtjErhOlW2DByAl6gdBCTiINH2Z4C5YcMGb7laraJarbYobbF+/XoAwKRJkwDIT3AAUKvVTBnGGCqVCh566CF85CMfweOPP44kSXDUUUeZMtOnT8e+++6Lhx9+GEcffXTbY/72t7/1lpMkwW9/+1tcddVVWLhw4bBt3hzY7hinvr4+fPCDH8S///u/Y+LEiWa9EAJXX301vvCFL+CEE07Avvvui5tvvhkDAwOlmZUDAgICAgK2F+hcdaP9A4AZM2Zg/Pjx5u+SSy4Z9vhCCHzmM5/BO9/5Tuy7774AgDe84Q2YOXMmLrjgAqxduxbNZhOXXnopVq5caRLzrly5EpVKxfv3GgCmTJmClStXDnvcN73pTd7fgQceiI9+9KO44oor8I1vfGOk3Tgm2O4Yp7POOgvvfve7ccQRR+ArX/mKWb98+XKsXLnSe6utVqs45JBD8PDDD+OMM84Y0XF2mrgRUXdTWewLMGcmkiUxGonsuq5Kgmokp5E7TtyIgWaMDeskndI/UEV3V8OwQw3iiIO7M9BqaqmEpqRD0j7JDtFBikiZI5KMgEcCJJXHFOsjJGqSQxMZ2l+XL/5yQhQBemqZTMys6LTBUKskgNI6JnEGkRLLZuQZGNeIj6pZmwmvtiabGRVoTCKGlYg3ErBXYBIhN8ZTpN2qbKxC/B1RdD6k3xVxE+EIbAVAdAqLSLZPi8VB4Kd2yWw9gkmmSm+jiqlyU1doMThnVvytj5nWTXciGpCiUUCzSNagc2gywKv+jNb0LbUsk66YDRFzbrwiPDZAUCdZq8vuuIwS7Lp2dgEkJwZvZRvgVdlC3Js/btk+bYq0NLIELMPQiQVBu6SupeHnLdqhYVg5ygsMnWYUBACRRg7hoI6n7xGX0VG/XQsMmgLcGdv2ILn/e+uEVw+osMxSWVnvpFR5HSiSt5hgwphRRpUMlAjTLMmqWyYlYtzYA2jWSLNMQrTXqXCQjo0rWzFMeVZpLFKqmPapZ3x+30xIdo04bJ97kUVGJFO3hTCWUXUvvPACxo0bZ9Z3wjZ98pOfxO9//3s89NBDZl0cx/jhD3+I008/HZMmTQJjDEcccQSOPfbYYesTQoCUuvF2hj333BOPPfbYJu8/GmxXL0533HEHfvOb35R2ln5znTJlird+ypQpeO6551rW2Wg0DN0IFCnMgICAgICArY2xfHEaN26c9+I0HD71qU/h7rvvxi9+8YtCJNwBBxyAJ554AuvXr0ez2cSOO+6Igw46CAceeCAAYOrUqWg2m1i7dq3HOq1evRpz5swZ9tj5f5OFEFixYgUWLFiw1dzEO3pxestb3jKiSgkhuPvuu7HzzjtvUqPK8MILL+DTn/40HnjgAe97atmxXQz3VnvJJZfg4osvLqynRIbJZo4ZnkaFZSYNh/utHwDG1e3sK0kZ6nEqdRIAhnqrwKCkGGgtRa3eRJrJ5WaTAX0RImWWCeezuQynt2aJrraHcEgtkG4C0doLtZgQiF65Y7WeoBanJkN21kUxlFKT6oNwYpMFEwFBiJOOxRcFsQGKeIMsGw1IdqmixndtbYasQtA/TVImQ5N9SwHkUkgI1W7AZ6BoIvshGrL7MvWOK48pkHSrc6nKsvpKZzV7DJKTIPBYbtP2CSBwmB/ZVs06ZTUBEcMYjDbH29l/NCjrbo5TWo9q2UwXtv9UOhx74sSaeta5TeJszAcdrZLWnrRgftqxSO3Sj7TTJbU8XovipYxTi2OXsQ5aN7WpiVxbMU754wEluhhz2xFkjpivGqUYUimLspQiTSnokEqSTQCSWn0eKKwXJiSLaFjOhmSGfZNYl44CXMsBV9NGqHNOpmltmA6HJRSc2GVmt4EANM5Qq0tauLvaBKPCY17c9CRlfd3uH/FCqhJ92GHYQP96ty7bTr/WSfvatUFDG6FG6osBIQI8peCZTrAOVLoTZCQp3f/VACEEPvWpT+Guu+7CkiVL2oqxx48fD0AKxpctW4Yvf/nLAOSLVRzHePDBB3HiiScCAFasWIGnnnoKl19++bBtmDBhQum/6zNmzMAdd9yxqac2KnT04vTEE0/g3HPPRU9Pz7BlhRC49NJLPRZnLPD4449j9erVOOCAA8y6LMvwi1/8At/85jfxzDPPAJDM07Rp00yZ1atXF1goFxdccAE+85nPmOUNGzZgxowZY9r2gICAgICA0WBrGGCeddZZuO222/DjH/8Yvb295svO+PHjjYP397//fey4447Ydddd8eSTT+LTn/403ve+9xnZzPjx43H66afj3HPPxeTJkzFp0iTMnz8fs2fPxhFHHDFsG37+8597y5RS7Ljjjthjjz0QRVvno1nHR/3sZz+LnXbaqaOyV1555SY3qBUOP/xwPPnkk966U089FW94wxtw/vnn43Wvex2mTp2KBx98EPvvvz8AoNlsYunSpbjsssta1tsqmoAR+U2flSRw7IqbqMVylkEhjOAuyRgyTo3mSUef1FVEybhJ/djwsnz55AkFr1JUY5U6pRJBNCz7oxPxApCzw9TX5JiEtgRA1bInbEj+bo5XM8cGASeycDw5Qy1OzIxa1AiajQhcmXmKpjOzjABAeDNoQeEbS6o2JD0AWwN0rZYNrKxrojmxgkhF7NEUSLoVGxBBmmu20DXRBIg3qiYMyn0z5/JUNsqCXasz0ESgMUExdr0Uac2W5XV/dk9Th/USUBGMqmzF9qdMiwOkPYpFiiTT1pxg6zJJXTkFawKsqVivbi4j4hwmwWia8tqUQQZBBbJedVGrHERHHtEiG+JGtw2XJDePsqS5rcp0ik6T6Laqu53GqUwPQ4gorbeMLSiLsuokOgsAiCCgVCBVFy5iHF01ycokKcNAQoFBlbKoqUI+dWSsYqAAeZ/wqrCaQG2A6V4Ek7QbRteml30T05w2qWzZOwn1fwE/HQhzTCuZQKWaoEedW1fcNFFzZX3U6T+4xaTJ/vJw46wdq9QutYp7XBPJ14ZJ6gRmPGrmTWsUU9vBjHKAbpmouq3x4nTdddcBAA499FBv/U033YRTTjkFgGSPPvOZz2DVqlWYNm0aPvzhD+NLX/qSV/5rX/saoijCiSeeaAwwFy9eDMby2e6LIIRgzpw5hZekNE3xi1/8Au9617tGdE5jgY5enJYvX44dd9yx40r/8Ic/YPr06ZvcqDL09vYaJb9Gd3c3Jk+ebNbPmzcPixYtwqxZszBr1iwsWrQIXV1d+MAHPjCmbQkICAgICHi1Q4jhJ1Rnn302zj777LZlarUarrnmGlxzzTUjbsNhhx2GFStWFIib9evX47DDDuvIRHOs0dGL08yZM0dU6db61HXeeedhcHAQZ555JtauXYuDDjoIDzzwwIg9nACrcdK/U83SqDd2/eZOnRlymlH0DVUxvkuKcuqVIa/O7moTG1UUC4szVCuJ0T/VuxsYaDKZ6gVSL6P1L0RIJoVXisyCITfUpCfeQEFTy4Lo9CKAjPLrqiSox3KWGdMMfXEVDZUyQGs3ANiEn3oWzGVsjvZ1ympEMiwAkBFU1lMr0eBA1Jeh9oqsL+miEGoKLZg8D240TwSsAVTXyuXqWoHKRhXFxAjSOgFRJ5l0A0MT9Xkx6YtjfLDk/yOny7nDVLleTDopMXe2mUg6pS+hTbuNZNSk1eB1boQsCQFEPzVlwQnQnXm+PmZ+RyQTJZqKyRigEBUB0qXYSWY1ZAVtR863RyfDNavaRKK5njplaKUZKtOouJoXd7kd+5Q/Rqs6ARspV8Yy5dklWbaccWp1THddq5m3vtcjdREps8fYyKuIaymasRwsJCMydYrLdmg/skwyFHrsynHvMMWA9WqiAGFu9JZllFpr2lS/tDGU4Zod1kl1I26OEcUZemoNdKlnQTVK20axucll3STIpcfN9W07lsNli8rYJt0ONzKvVT16n+FYFUoEOkmWG9MM1Sg1fZ0QBs6J6fRKV4LJvf1I6djKUlpBAB21e7g6tje00imvWbMG3d3dW6FFmxhVt27dOvz617/G6tWrwblPU374wx8ek4Z1giVLlnjLhBAsWLAACxYs2GJtCAgICAgI2Nx4rSX5PeGEEwDIf9dPOeUUT1KTZRl+//vfdxSVtzkw4hene+65Bx/84AfR39+P3t5e702QELJFX5w2J9YNdYHRKgYbsRdlk8ekngHD4PRUG6hEGWJqozBcUCawwyQp4OEgiB1H8nH1BiLGsTGWgrtad9Mct7G2hsr4BmKltxpc60QVEv//jToH62dgg2oW17R6Kb6yjlWraxA9alrMONBgnuu4njGjScCZE1Un4GuTiDD70SGC6noYk5qkN4aICOIB2d4JfxVoqKS+g5MJsjoxU5+4H+j6O0dlnUpunArwqizb7CFgDevMzRpAVtXsEzHaL0Aycllsl0X+0zmxfaT9nqxPksNG6VX63BqAqAiIitZocatpYQI8cSomQiZJ1b5TXgQdwNdVUF0nN2YVgawnQ0UxkISKInOj/59jhfKsTLvkuoCN9BrOMqWMRSjTjuRRGsXWYYJdz5uphMHKMw9uWZdlGO48Oi3DBUFEuWGYqQCouiniKEOSMqBbDjJOIoiYe9N4PqSiZh0GEwCyqgBnBPA8gdRPJpT+yNG4GcbJavH0fmVjRUMIAqGzE3ACQrmsX9Wr2ctKlKGn2kBXJMWREeVt+8T7B3e4f3uJP264c9FLx0UbfVx+v5Fc27ZMl9OOVuUqLMOkrgEzFjY2aqB1yy7VIunhl8bN0v0DRgcdpSeEQG9vrxGjA0ClUsHb3/52fPSjH90qbRvxi9O5556L0047zeiHAgICAgICAjYvXmuM00033QRA5qqbP3/+VvssV4YRvzi9+OKLOPvss1/1L03r19VBmzXpgwKY/0taRiCqqmg4TtHtzIJqUdJyVpRyiu6KnJ00sgjNjCFWs8yIZZjQlWJyt7TCpkQYxqm/axDdlSbWDck37qGoame5rv8LAFoR4DGHoPLSVhJqWRgKICKga5UDOQN4lUNUdcI3O2MmHNIDSs0WSULBBqjxM2INx6V7SNa1bo/Y1ENTySQBQPWVBLW/y1l716oINBNIeuzQEwSGZcpqUtsEOFGEzihlQ0qjMQBkFWKYJTaknJ2daEPXcVy6fPvXQy/rSDq9n1emIpB1ZyCxmrUzJ0cXkdon7YIuahwsspqXrMmM3klwqdXKlNdT1psh6k4QRcq5ORe92YpRoFQUHJYBeJFoXvvLJvhj/OwcaU64vK6qTLvUqm6aZ5xaMFudMBMaZWyKYS2ccvU4QZIyNBVLmHEdhap24jB6IqEj6ExEFpGspd4eC0CNKTDuaZxcRonk2NBCFCWs5kwIOc70Mo24/HNYrojJtndXm+iJm6gwK6xt1Ze8ZMC0+wc4r4Fyl9vpo0bDFLZqR9nvsjrLtlPltB4pAelGAJUotZpWQfHKhnHIBraMxum19uKkcdFFF23tJhQw4heno48+GsuWLcPrXve6zdGegICAgICAgACDH/zgB/iv//ovPP/882g2/U+jv/nNb7Z4ezp6cbr77rvN73e/+9347Gc/iz/84Q+YPXs24jj2yh5//PFj28KtBJ4yIGEAEaARR1xP7baMIFL5q+KcNqDst37Lr7DMfC+vkQQxywyrFBFe9FFRy5UoM5m6AUCkxOgWdPvMfoxDRByZ2pwNVqyLOCfIYm79Y5gAYm61PhyWfUqI1F2kciPrp6isJ4gG1HESy+hkXcC6PQX4RGUmNcBQX8lA9Ln1U7AhFT2WCPCYIOpXs/YaBa8QM7WnqUBm2B/JKOlIJM6IzwgJGOaNpkA8KHPSAfL/VLuBayJM70v9ZREJx6kZJrIOkBGAJOamj2lks7mDALwng1BsUVxLQQiQDGlfLBtpCCZAJzZMbrAKk7nAtE9YIU9XG41QO5+kTdUpjRYjzR3mapba3T+tmAqK1hqndsfVaDnzVgRS2b5VlqK72jSMzoAgyJoUUU2OeyEIMsXu8CYDSYjNY0dg8lQCgHAi3AiV97DxjCOwjLIa8q4XV6Fl9lEAgBsvuDjOQJ1nShxl6KrItu5Q7zf6JgCgeXt9BzwvAETr6C6O9hF3w6Fd5BzQ2fg113YE5EpZxKVmogZS+QDpb1SwZp01gRZC+fENtgltHEO8Vhmnb3zjG/jCF76AuXPn4sc//jFOPfVUPPvss3jsscdw1llnbZU2dfTi9L73va+w7t/+7d8K6wghW8VTISAgICAg4NUMIUjLVDYjqWN7w7XXXosbbrgBJ510Em6++Wacd955eN3rXocLL7wQr7zyylZpU0cvTnnLgdcEFPOgZ4NuxE815sjUTDLjxJuheP/PRYK4s7GIcgBZWzZAL/dUGqBEYEOf1DgRN+eZ0jVQ7dXChJw9qnrTiSnogGRA2ABB1E+Rqqg6USlmmHchJ5pKkxFJ5qap8kIyxy8p6ZGaHc2mkHqKwXoMCDlTq79MEfdp8QiQdjPwSEX6qdx0Rs9EAJaoYxIBHlPrjcMETBY3KqvPT4Y1C+axRjqKzule4WhHPI8ns05TWZoVUOcdWeYvigh4NTXLGado9FUsG1jNjBaORRy1SmK0THnPIqA9c9Sp83VZFvkt8bAcMeOU0yqZ9Sg/T8/LCsV7rR3KWAyt29FMlnsPp5yq+7Ook+mpWO+jofoQ/r6+B9WKvMaECDRj+UhNU4p0IAZXdCkhQjJOmgxhwhlbAoxZLVJZFKXLRqcZbRs9qb3hKJXsqI7y7ak2MKk2CADoYuWRYGVMEiX+ZFj2WenupexUfl+/7vx1bf1vTacMIiWyHcYDqkRXpc/TzfyQPw4XBOsbNbwyIPW8gwMVZIORvb8F5IMk20KME8iofZxGu//WwPPPP29sB+r1OjZulJHpJ598Mt7+9rfjm9/85hZv04iv+C233FKah67ZbOKWW24Zk0YFBAQEBAQEBEydOhVr1qwBIM24H330UQAyo0knzuabAyMWh5966qk45phjCvbnGzduxKmnnvqq8XGS/idcMjjMXhwhiGGbAKBvqIpGaruxGqXYQUXG5bGhUUN/U4pweqoNdMdNM7Md7tt+6szkSJxZTyLtDkzsLCiOM6OXSKIMSZeaBa+tIOqjoIlyJ2eA4EJ6E8lGgCjWCFkEUAGqI4ioAI+YYX+yQWuLnXZzsO4EsWJXIsYRdQ9hQyxnausbNbBEnnfUp9gurT+KiIzg07O8mFrtkY56cydJRpckvZv0BFUQWV7nqiPcRthldQEIWxZcRkYat3ABn2kiKGSx1x47jHLEKhKO5ViQJGVoEKBSl9qRejVxPL3kTNZlDobLtTZcRFon60eK0eihOo2K0vqk/H7tWKT8/THa83Udqct0Obofymb5uuy46hAGu2I0EjnQqlEGQHk88Rgk4uB1Nd45gecIzqw2kTKuPJb0GMt7c/nMcEwyL78fUwM7305GBCpRivEqg8GE6iAqKsSWqfozj1GjrSPrOh0XhJeyGpbRK+7SzrG8k2i8QhQfCNx4SPeYhhHThHKbyMx1SQ1r+rvR3ycfKtlALJ8h+t8DCvlQibbMF5nXqsbpH/7hH3DPPffgLW95C04//XScc845+MEPfoBly5YZk8wtjRG/OLWyP/+///s/Y1gVEBAQEBAQMHZ4rWqcbrjhBiMX+vjHP45JkybhoYcewnve8x58/OMf3ypt6vjFaf/99wchBIQQHH744V6m4izLsHz5chxzzDGbpZFbA4QK9cc9d2atGSHOTGioYSMLM06xTrE9PZUGaiw1b/mDSSydhwH0oYpGEqEayxlgTDPUotR4hnBhZ7pcEKwfqjv5qRzdSi7MhnPJiFVi63YsVAb0PiaQZTWbA69JgBhW4FPhiFXutARSVxLX5HIWc2RMgDdKvu52ZYirqTkXPUOeNLkPALBmHwoIyTiNX05Q2ZAZZ/O0iyKtU/BYnSuDiQrK5+NzHb4Jl5F9mY6YUxosHYFHOJD0qFl1Nwc4jBs4GySSddIeO8yfcQoqgMhucx81kYqGA2REpcsaVViGtIeiV7kLxyzzna7hswitNG2tljvZNhxz6cLN/9VK++A5LDu6kOHQjhlzdU15TVMrjcsm+zIN39KCi7TnHE5snsp8F1EIjK8NYk0mjfm6Kk0MJnJADjVi6d2l93Ec5wF5D0fqHqWKbcprk1qh1TbNIumvFzHLMLE6iB1q8j6s0rSwD1WN4iBgOS1T5rFMrdtThrzWqeX4aqNxYsNc88xhsbzjCZQwULr+ol4r3x697u/9PejvqyIbcv6ZrGeGKSRE9TXbMozTaxFpmmLhwoU47bTTTA7cE088ESeeeOJWbVfHL046su6JJ57A0UcfjZ4eG5ZZqVSw22674Z//+Z/HvIEBAQEBAQGvdbwWP9VFUYSvfvWrmDt37tZuioeOX5wuuugiZFmGmTNn4uijj8a0adM2Z7u2Oijj8s/kapMDTjMI2n/JdeqVbJT0+wCAgWaMepyaXHaECOPcS4lAJigGlOaJEIGh1HHxJY5zeKOCZsqQJswcs5A93TBQcr9ETS7jKFPaC6Bn8nq8mFDQVyq6qNRI6ckZZ0CX1OdUuhNkibXaJkRqoUxRTiAqSqMRZ4iY1f7kGYnJO23AK2+SL9rJuBp6nmfoXq2Ytr4MhAPNXmrapKfMghDJIOlTcyZ2JAMqg0LmrAPQVBF2RrdEZaQfoBglYc+TxwJEAFz76lBhdQsKnpM4sTq3iHHjthyzDIxwT4cR9dpchS7KcqsVZtub6IK9ubyZ8scoy2I/0nZY/yXrX+Vu67QeoPU/Aq0iqFrUouqyDBMEvKg6U1+uWZQI9MRN9MdSAxPTDHWlbxtqxsiqFFxHiKp71mWNNQgRnq4pH0VXxryY6Fxmx5sQBKmgZlt33MSEyiDqLCnsnz//Qngq2l+HdtFvAJDmbPqzNv9gs5IxkD8GF7Rk2bKljGQeA6XL5OvMozyKUD/j5bOdxEp7VslUZgBZTggCzomfk3Iz4rX6qe6II47AkiVLcMopp2ztphiMSOPEGMPHP/5x/PGPf9xc7QkICAgICAgIAAAce+yxuOCCC/DUU0/hgAMOKOSs2xqm2yMWh8+ePRt//etfsfvuu2+O9mwziCsZWCUFV6xPq/xQeWiWSO4DbMwYhtJiN2eceLNMppgiM2uCQDNjpizPqI2gc9qjZyE6LJNAsWCqGVlGUavJqJod6/3omtHE/4qpcmM/kzvoejmQqYi7qJpBcMksaVAmkHHVD10p6j2SSaOUoxqnZuboel5p7DBZem8MjRvCml260f+8pIZ6/yZQW8dR3SBndYOTKdKa1Th5eeRgncEFBbpWO15MTJY3LuGRMLnACCCDnXROr0jISaOJjrHRTog5QAVILn+ZPpcKy1Blii1jmcwq7+mAijoS038tosnyy2URRK1yf3WCkeie2sKJ5Br2mG20Si29mtQ+pQxLid9OnsUo6Gqcewko9+6xx3fbSz3n7rynk8t0RZRjcpeMou1PKuiikt3prsp7I4nkPdwciGV0ptLHsIjb/lQ+TsyJsNV6J0Y5Kiw1bdCoKJapK0oQqd9NLvNf6vZ1RQnqLEFMigwoFxSZE02Y1/6UgXU4jjIQRPDri3IskAt3rLRmM7PCsr2+PgMFFCPrWqGgjwIwlFnNaq2r6ecNFPYZTyHAGJDFW8b0WYzBp7rtkXH6xCc+AQC46qqrCtu2lun2iH2cFi5ciPnz5+Pee+/FihUrsGHDBu8vICAgICAgYGyhVQyj+tvaJ7EJ4Jy3/NtamUpGzDjpyLnjjz/esyXQNgWvlpQrOo9YoiLoXN+UjPvsQJluAZBsDaUCmXKWdfNGcU4hhDARWk0nigeQQV+pYpzGdw2hkUboo1JLkThRHkJrd9xDEzhMGceQivSJujh2qvdh/U7rAQCvbOhC6kaMgJiIEUY5UjAIVQ+LM5AoBVezMcoEJnQPqmMUb0d3ZsMoN7O0WpygPm0d+iZK6ujv07pR+XuEyjpZNh6wllRpRUbLablE0gs0dlKRezFHVq+YCEHBAF6BzQdGAKgIQBFJTZORqjBhnOEB5SrueLMQJqzOihNQxlFR+q1KlKIayYNWaOYxAXkXahetGKRW7EtbDDNpzLM9Y62BGklUHSXcm9FTwsHaeOfoMq3q8/yEnHlfGcPQSuvCBUE+WtBn+zjMnFKgGE2XYwYnVAbNsvZbm9K9EWujOjYM1gAAyWAEkRFEFatxdCMua1HqLVcUq9kTN1FhmfFf0tt19G1MM4dRa6KRRaYNWksWO2PU6oAy0BGwD618rsr6BIJ6rGEGYtiqrM1YZC30TbLekjk+sfu59crr648Pry4QNDL73KNEmD4bymKsa8hrxqhAJU7Ns0wIqVNjjoaRMY4sa80yB4wthoaGUKvVtnYzRv7i9POf/3xztCMgICAgICCgBTgIyGsw5UqWZVi0aBG+/e1vY9WqVfjzn/+M173udfjSl76E3XbbDaeffvoWb9OIX5wOOeSQzdGObQ7VKAWLGCgVvs6HSmZN5zJLM2pmXwSSfdFsD2PcYyBIzv+Jws/EnXFiPGMiR/MAAG+cvAovD0lR3PKXJyMZtJeOMGEYE0K0j5Kdveo6B9IYO9QamDXx7wCA56KJ2DBYQy22mp2+RsXUk3Eqo4EgWSMuCJj6nl+tpuitDplzyTg1szYhCDLh6icEarGN7OGCoEdNGsbvNoRsV4p1/TIP38a1NbB+RTERoRzB1bmNSzBx4oBsK83wSrUH2XrZXraRglcFRFX1WUINAUGUhsvmn4PP0DlRdYRynzkkQLWeYFxdnms9SlBjlnHyGCbHb0qfdytQJxrPrNsEIt31Yioeo9X6cu1Hnhkabls7nx0bIccLEVH5dnWindH1eExGgWXIM1CqfifiSreuXUSeZZ1kWVfvVCjv6NYiwjGQSkZ2UnUANZaabYNDFSScWm0ifOd5LghqkXb15ianXE/U8Fgl3Re63nzfRSQzEW2JStxIW7hogwC8A7UGzTF5HPI66D51r4lcn2sTXL1Zm+O0ZUZLWEh3wRmfjAhk7TROghqdYiYIuKAYSOVzZF2jhqE09orraxYx+QzUp2eiH+nwWqqxwGs1qm7hwoW4+eabcfnll+OjH/2oWT979mx87Wtf2z5enABg3bp1uPHGG/HHP/4RhBDsvffeOO2004JzeEBAQEBAwGYAF8QPWtnEOrY33HLLLbjhhhtw+OGHe07h++23H/70pz9tlTaN+MVp2bJlOProo1Gv1/G2t70NQghcddVVWLhwIR544AG85S1v2Rzt3OKoRCmimKEiMjRTZmZvScoQOY7QESTrBFjHbDfxoDtDKZsxGDZLR8E5UXlaS6NnYjO71wKQ0TtraLct7+gwKBGelkq3AQDWN2sYVxlCt8qMvu/EFVjfU0d3JJc3JjWsoL2m3phmdtaqZuKsLuuusMzOtClHEzATPJ153tU+ufnXuuMUG9V67bSs9VK0Z8DkAuSQTJbuo2qUIhPW6binZxB9qp4sq0DUOJhyOucpM9GCOhqRuIyQyldn11udGiEAVdqzKMowoXsQPRXpBt4VJSaiSUcztfI3KmOCXO0PMLw78kgxqgi6dt48Bd3U8JFQgGJE2uw73P5+OastsYytYneJ1bnkt8n2552w2+ud7DW1eidXI6XrcNs+oTqIrihRZSgmVgbMtv6eCtYMRUib8pEbV1Jv35RbB/MKy9Cl7tHuqFFglTzGKdd3kSBocKufy7eR5ViYbBPGC4X2a2s17kv+cTaBu+0ZLs1u5cu5DFc5cmNXUI8h9HPtcScFATCUMcMUUiIQM+uLlTk6XhNVl2O3tk/J9faDF198EXvssUdhPeccSdLOo2zzYcQvTueccw6OP/54/Pu//7tJu5KmKT7ykY9g3rx5+MUvfjHmjQwICAgICHgtQ0fGjbaO7Q377LMPfvnLX2LmzJne+u9///vYf//9t0qbNolxcl+aAGmLft555+HAAw8c08ZtTcQ0Q0QzCEGQEGZyzKUZNQwTAG92KjKKWLloA2rG4jiLp5nVOLGcI7nKYWh0TYRYr5mYZuhLqtihIvmV149bY2Z5/c0Kmknk+Tq50G7mADCUxOhLqiYiZ1w0hJ2qG9GfyWi98fEgesdLLU8ji8BBjKeJPke9b5Mzq8fSPjfq/81MasOML43TRzJCKEOvYnDqUeJFCXFYr5KUUxklpKILuSBIU3nMOMrQU21iUGmysp4ULObSH0f1g84yRxgBICTLBEimiRPLRDFhdE00knXotvfUmhhXHTK6pq6oWXS4drpcR40B7dmfMo1TK3TqnzNSZG2Eop3qjlpvy+mY2uqhhteItGYqnH0dFqF0m7PedQr3I/XKrml5frO8disiHN2KZRrMYlDCsWNNcqupoBhsxBgasJkCNDJOgJQB8jZEhTpeYSQr7UvdZ/ltkdNuva/r48Ry1yxW7FFWFrXWBlwQsBbDhxEga3G9KDqLuqbICp+VaIeaLKNRU+eUH+dcUPNsbWQRBtKK59Glx4DM8mAd0JnKTam/CmScglEOETROmxUXXXQRTj75ZLz44ovgnOPOO+/EM888g1tuuQX33nvvVmnTiH2cxo0bh+eff76w/oUXXkBvb++YNCogICAgICAg4D3veQ++973v4b//+79BCMGFF16IP/7xj7jnnntw5JFHbpU2jZhx+pd/+RecfvrpuOKKKzBnzhwQQvDQQw/hs5/9LE466aTN0cZtAlpnIwSRWc81YwSAOxqn/AyQELuvZH/0b+45wQpOUK8mZrbDqECiZjYxyzCURUhUtMykSj/66lVzDNcJOc0ohCAmx56sy86I+pIKemLJ9gzyGJkgWNfsAgBMqAxgQiy1Rr2RTiqpZ+aSIdHMQV9awdqm1FnlnaxrLMVQFhXcrjVSTg3DpCNV3MgkX/uRoKl0VhsaNaP76q40Pf8dVuEgznkSN/dXbnpAKIfgFEJH3VFf01StpOiuSI3JpNoAhrLIiZbqt/1K8i7Yqo86ZGs87ckItE5lDE27mXgrbcgmRYYojJRBaq+Daj1jz4y+KMdA5C8qgELeNePjpCO6XDYp5xTu1iJaRyq69VJSjHbT6I7kPVZV/ku7da9BX1LB8uZkAECzGUGoCFUBqYvUesKIctSVA3mcYzMo9BgrMk6aTcozTK5zunm+5Jknkg3LOvmRiq3LZYIWmKVNESWXMleifOy7Gqg8i8ic5yMXFImgaHI5+ptZZJ4vADxfNsItEw7I53fCmcekEyIC47QFcPTRR+Poo4/e2s0wGPGz84orrgAhBB/+8IeRpopOjmN84hOfwKWXXjrmDQwICAgICHit47UaVaexbNkyE8n/xje+EQcccMBWa8uIX5wqlQq+/vWv45JLLsGzzz4LIQT22GMPdHV1bY72BQQEBAQEBLxG8X//93846aST8Ktf/QoTJkwAIC2R5syZg9tvvx0zZszY4m3aZLa+q6sLs2fPHsu2bFPQYbxc/zZibmESdQLa8FJ9fqPSCkALyZkSSLuRDDq6tYwyZcQXVEcqLLbiJPEEgInRAGb1rFZ77YRVosdLPJkJaqj4zDENjJn83LGhKd0nh5j8/KRF3huSuhGDT6wMqM8Mtj2uKLVHWRgAwMa0hkgQRzgeoSdumLpSTg0dzlXaAn1MIxp30hh0qbojwpEKaj4X9jWrqDpmnYNpDKY+sXH92cN8FgUIc6+TTYlDiABxPtXEkbWXqEYpxtWG0BPLNkyoDGLlYK9Zjr0wfF5Ydj9nyv73TQJ9M0LR9jNVWZoRd70Lt0z+80ZEimVGi0399NZ2P2fMGqhPMxmobxNg3E2VUDcXbs4FtZ9M85/mcqHqzPm0JY1bW6T4gP85Ll8mJtxYVMQkAxcUDXXPTo778aaJL+GVQTnBXLehy1qREGW86hjG6uPoT3OmrbnlmGSln91K4TwXKOEyVQn8fmt1bvLYFu0+61GSFRyqh/u0VwYuiDeW9BjQ28zxwM3nOlmf/oSvkzPb+vVnuqZKucIhn1v6+e5+zqxQeR7us6rKUiuvMMa3W+pT3Wszqu60005DkiT44x//iL322gsA8Mwzz+C0007D6aefjgceeGCLt2nEL079/f249NJL8bOf/QyrV68G5/6g+etf/zpmjQsICAgICAjQL06j1TiNUWO2IH75y1/i4YcfNi9NALDXXnvhmmuuwcEHH7xV2jTiF6ePfOQjWLp0KU4++WRMmzbNS/T7aoJhnFSaFM3+SPNLK/im1CbqleW4CZ8H5EDXKVgo5Z7dALEejIad0jOqmGaoqzQlFZZhII2xVou440FMjKRIecfqRqxr1JARLeJmSJwJJwM3hm4xzVBhvolgRLgx7UsFNSxRf1pF1THpKxjtkQzjImldEBOOBo/MjDXiGZo8shYDxM7aNBppZPqBOtYLNZYa9okSjjpJMKjalGTMnIsRkzvnIwQgVE4J7rBNLCfeJMQKOwHJOGkx+PjKEHrihmnDuGgIqAN1Vs44ueHeNg2GM0tW1yXPFORZgrwYOb+9HTKHQeEgJsTcbDMnXtzXNwYsF/Pn0Srha9n5uezncLDibbuvqVP4DJM+bp55clplf+YYpnZSep22hbdgxjyzzPw9QTMzFqo0LfTTxKgfB+z4fwCAX/NdMdSQ41pAjsFYjbkaS4wovNyOgHsib2Omqhgkl2Fxr39MU8PCWUbLwt2PkaytXUU+ebN7POYaTA4DDtJmfPjXmoHbYAFSnky7E/hpcqTA3yb5Lf6T6Br9uki5TN2zpcThr1XsuuuupUaXaZpi55133got2oQXp/vuuw8/+clPttqbXkBAQEBAwGsNr9Woussvvxyf+tSn8K1vfQsHHHAACCFYtmwZPv3pT+OKK67YKm0a8YvTxIkTMWnSpM3Rlra45JJLcOedd+JPf/oT6vU65syZg8suu8yj74QQuPjii3HDDTdg7dq1OOigg/Ctb30L++yzz4iPpxknob6X15W2hlGOJGPIqDV09DQHNDOzxYRT9A9WzRw1YtywUzoE3xgvqlmQnnVWo9RL8dAVJWaGNZDFmBzLeibH/VhOJ5tQ5phmnkkbJQIVZaYXUY6IcDNzipQmQ7e/gtRoNOosKbBMrt4iJpmZxcckQ0PYxJhxxrHOCfFNeVGb4Oo53JlchaaYUt0g+4CmYIRjbSKZtkqUFm78iBXZJADIHKPSSpyBUe6dD6PcmAzW4wQTKtKGoTtqIiKZCSOPKceOrM/T0Lh6JZcRGAmLlDePLEurodFKb6MR59gBt/ywYeatnqOkmEk9fz56e16/4ofoZ6pMiX6pBfLMk14LoL3mqdSiQLY0n57Fha/z8dPoFNpWwra594QZN3kWUp3LjhVpiNlTbRjWOs0oOKfmHk6de0dq5njbseSySBQAz7FKbjn3XAu2GYXxq8+xRb+2YRI7Zkxb6ZsUE6XHy3AMk9Y5yWO3Ts8SEw5Qe10o4RgQ1Ovf1GmTa84bqS8CqfmCIJlyylpoysYYAqNP7rIdfqnDKaecgoGBARx00EFetpIoinDaaafhtNNOM2VfeeWVLdKmEb84ffnLX8aFF16Im2++eYtG0i1duhRnnXUW3vrWtyJNU3zhC1/AUUcdhT/84Q/o7pZ+QpdffjmuuuoqLF68GHvuuSe+8pWv4Mgjj8QzzzwTzDkDAgICArZbvFYZp6uvvnprN6GAEb84XXnllXj22WcxZcoU7Lbbbojj2Nv+m9/8Zswa5+L+++/3lm+66SbstNNOePzxx/Gud70LQghcffXV+MIXvoATTjgBAHDzzTdjypQpuO2223DGGWds0nGJYmyi2M6gBlBBpjQ6LqMjBAGjHHUVgcWyCEMsNrObapQaRqSZMWScIGI60kuu1xoel2GqKFZILzd5ZGaL46NBzOheh+UbLQvIwI22BrDf5vWMyX6z99kySgR6lJanytKCkaGr5/F0FpSjCzbK7rlksoxccSLpjJEcgWeOWWEZIsJNSpOd6+sxPho0dWWCYnIs9VwzetZh9WCPbHsugo1F/rkMcIcBoxkm1AfNMZqcgRKBcbFO3NtAnSnDQSIZw3xKCzeVhdYwxVTqI1oxSe1YpLIyrVKY8A7miW5i1Xz5dqlR2iHPNOTr6STyDOjsHF2sT+WErEatrkGzD67myY2y0usMStinfJJgs76sESYSsX0fuKRcTLnHNLnjQjKT3BlPNpKLCYGME2wYrJltvbHUD9arzdIxlqhovbzGiRIOuAaYheS3cr9EMDDVJrttZMxSKSNVMkZajuuc/s1lI7Wpb56p1OfTKsLOa58ZGxz6aZARIeVvznErNEWkDYSdCOBCaiUUzX4rNEOyhRin1yrmzp27tZtQwIhfnN73vvdthmaMHOvXrwcA89lw+fLlWLlyJY466ihTplqt4pBDDsHDDz/c8sWp0Wig0WiY5Q0bNmzGVgcEBAQEBGwCtsK3uk4kMn19ffjc5z6HH/3oR1izZg122203nH322fjEJz5hyjQaDcyfPx+33347BgcHcfjhh+Paa6/FLrvs0nFbVq9eXRrJv99++43spMYAI35xuuiiizoqd/vtt+P44483n9HGEkIIfOYzn8E73/lO7LvvvgCAlStXAgCmTJnilZ0yZQqee+65lnVdcskluPjiiwvrY8qN3qjiMDOa+RlKi13HQcA5Q6Ki6mKWYWL3gFdGR9xpfVPFiRKLaWYi3OQx5QCpKTbE1z6obSTBnl2r0J/K5KErB3q9mRvLzXIj6uslPI2Gk1y0lX+Mm9ahFbvSn1UwlEU2cSYs40SJQBdJvOiVrijBzK41AOCxTbb9ct+ZXa8YLysuCOIsQ0JtfwIw2q6qo4eqxikmVQdNPS8PdaMrSjBepZeps6bRpenzjnPaHBe6/9woJdkGO/PPr8ujnddRoWxJHXmvJi86yjl+BtJxQso8O9COuZJsQVa6rR2GawuDwEupTCcUxzZKrRh9RQvpN7TWKoOf8oPmtFqu58/w4C31MvKYfsJdV9PkMkX6fullkkma1m0naI0sQjNjGBiS9/ArA11YVZHSgh0qfajRpKXmTXqJlTNMZZ5ZMVL7m6RmHK1ujkNDxJgcSw1WjbjlsvY6u3asVZtxkY/MczVNmwKPIW8RZUlhE6zrNlDCkYqivgwoMkzusmbLCd1CjNMYfKrDCPfvRCJzzjnn4Oc//zluvfVW7LbbbnjggQdw5plnYvr06Xjve98LAJg3bx7uuece3HHHHZg8eTLOPfdcHHfccXj88cfBGGvXBDz++OOYO3cu/vjHP0Lk/BQIIciyLc/4jSZdVVucccYZOOigg/C6171uzOv+5Cc/id///vd46KGHCtvy9ghCiLaWCRdccAE+85nPmOUNGzZsFSfSgICAgICAbQnDSWQA4JFHHsHcuXNx6KGHAgA+9rGP4frrr8eyZcvw3ve+F+vXr8eNN96I//zP/8QRRxwBALj11lsxY8YM/PSnPx02B92pp56KPffcEzfeeCOmTJmyTVggbbYXp/yb4VjhU5/6FO6++2784he/8Gi+qVOnApDM07Rp08z61atXF1goF9VqFdVqtbC+K0oQRwQR516ix4hm4DHBkEr6mvcI4oIYnVKVpag5TrNNzpBobyNBIITVNFFIHyddNqKZOS4jAhWaIlXLiaBoKA1PjSXoYUOYWJHM1vMbJyLjFDXFXOlIOv0bsFEjnEuXXO3UPSEeRJSbvbaaQWvnYf3bRZ0l2NCseclV7XlZPZNsf4oZXWsxMbbJc/Mzao1eNoQdq3JGvKbRY9g5WU5Gu1Qqsv0pp2ZmSYlQ3jhy21AcY0JlwCRijUnWVpsykFVMP3Sxhnfe5YxT+1l/K+RZqEKCUweaUSnTdxhdiHElao28d49fT+uZXH5bOx1LO+S9gjIQE3nmR47lPam4TAJbUn8hwWzhGCN7Nvn6MdrS/V1r3ty223Elx0ovk/fp2yf8FX+r7QAAeLnRg5cb3dgQKUf/1CaV3pDWSt3B9XnXkLQdb3nn7URpnKpU7SfstkwQb2zrZwwFKXUjN1GKbn/mx0GZ11Mbt3JX0+QmL2+Hdm7iQFlCap/pqtIUVP171RVZ2Yauz42y85+n6npT+zzbnBhL5/C8JKXVv4N55CUyAPDOd74Td999N0477TRMnz4dS5YswZ///Gd8/etfByAZoyRJPBnN9OnTse++++Lhhx8e9sVp+fLluPPOO7HHHnt0dI5bApvOi25hCCHwyU9+EnfeeSf+53/+B7vvvru3fffdd8fUqVPx4IMPmnXNZhNLly7FnDlztnRzAwICAgICxgw6qm60fwAwY8YMjB8/3vxdcsklHRy/KJEBgG984xvYe++9scsuu6BSqeCYY47Btddei3e+850AJJlRqVQwceJEr74pU6YYiU07HH744fjd7343kq7a7NhsjNNY46yzzsJtt92GH//4x+jt7TUdPn78eNTrdRBCMG/ePCxatAizZs3CrFmzsGjRInR1deEDH/jAiI8X0xQVSg3zQw1TRNGk3ETSuWCEox5lhlHR2ig9Y6GZ70XCqGU3KixDxXH2jgg3njARzdDDGqCRnC70p1W82Jgg21nL0MOG8Lr63wEAq7rH4cWN480xXI8kLqSDt57FVWiGcfEQJlUk21MlPoOjzwmAYZsKETy534BkrtY0ur1zTV1fKZqiUpHntkO1D5PjjW1nrTbnGDfRbxWWosYSy6JxipRSoz2LKEd3pWHPW1BMULP9ej1BlaXmfF2WKX+eNZJibdptZubjo4HC7LvVjD/PII3EDRxAZ0LOlt5FReZFwxuDmxBxp5mwdjot6/BcLOOxXDlvIS6oiabLry9joGgbVqylz1TJtL2VzxQXpKV2ioEXWKa87o86zJPbX710CPt0vQgAeKXSgxfiSVgdS13Ty0NdhtFe0+gBF9YNnBJuHPsBoNeRh7Rjm/RyVfWtYclU/+1aXVNgL7toA60go9qKuqvhvKHcHILtnMmBEh8xJ7K4dOzl74UWUZbS50lFOtMUDNzzoctD655SQY33HWCzCDBadLXe1vHCCy9g3LhxZrkTtqmVROYb3/gGHn30Udx9992YOXMmfvGLX+DMM8/EtGnTzKe5Mgwno9H4zne+g7lz5+Kpp57CvvvuW4jkP/7444etY6yx3bw4XXfddQBgvqNq3HTTTTjllFMAAOeddx4GBwdx5plnGgPMBx54IHg4BQQEBARs3xBkxOLu0joAjBs3zntxGg6tJDKDg4P4/Oc/j7vuugvvfve7AcgotyeeeAJXXHEFjjjiCEydOhXNZhNr1671WKfVq1d39DXo4YcfxkMPPYT77ruvsO1VJw4fa3SimSKEYMGCBViwYMGojzcxHkC1kqgcbMLMOjZmMbggXs43z5uFCJPnTM9MdCdHkdUwbYSfZy3lVOVps0yWZpzqrIke1vB0E88Pym/MQzxGDxtCF5U6pV27XsGqgR5UI8t6abanyRkorH/RTtWN6I4aflSO6xfjzB71bLpM3yN/2/3GsUF5XD1Lht8nvfEQJkaS/RkfDRZYiVb5s7igpq2T4gFUWYrmQGT6r0Izw8rJY1k9WV9SNVF0PayBKk1LI+d09JM+typNPE2LyxyU5aZz0aovO0YHbJDxtRlJNFIblqoTdMRktdFrFaKpHAbC3dZWO4PhdVWtYnXaXos82+noqCiywjXNs7D5tul1+VyFHMS0Y0q8HuPZAF6pySilF6qT8EK//AdGe62tTyQjMJTFaFQiwzqVsTbtmMB224bT47W6vnn2SZb1r6FuZ/76ts2H52icCj5eKOr7CufmjnOHfaJEoKraOz4aRCIYKNfPcOv+rqGf/Yk6vj4nnb+yEW8ZxmksNU6dlxf41Kc+hbvuugtLliwpSGSSJEGSJKDUf6YwxoxtwAEHHIA4jvHggw/ixBNPBACsWLECTz31FC6//PJh23D22Wfj5JNPxpe+9KW2euUtic324jRz5swCpRYQEBAQEBCwfWA4icy4ceNwyCGH4LOf/Szq9TpmzpyJpUuX4pZbbsFVV11lyp5++uk499xzMXnyZEyaNAnz58/H7Nmz237K01izZg3OOeecbealCdiEF6cXXngBhBBD1/3617/Gbbfdhr333hsf+9jHTLmnnnpq7Fq5FSB9nDhi2kQmiI0KI1yyJ6rn3BmQ+/1bg0KAOut0tExX3FSu5PnoJPvtXdfVxZqo0cSL0NGzopXNcdgh3mhmW1WaIiK8MBsDJPs0qdqPKSoybXw0gIRHnpYgzzLZdvGWuqY8A9PLhtAbD2F9sy77xfHBqrMEUysb0MWsfqKgi3DhzFAp4ehR+/WwBjiIiYJpcoYKzdAklmdwvaP6kgr+PiQ/2Y7rGVIO4WnJuQiPQeOCoIs1DaOX98xppxFq1ZcdY0Qs0gjqH+WstVW0XxljUaZJGVYfU+qdNXyEnsEwfdFOd6VHj+dinWMmyximfL35caSj70o9uZSuaxf6CgBgSrQBO1fXAZAO3z1sCC9Hcuw+s3EK1jW7TKTY6uY4rBRS01ilKSbG/RjPBlUbRuAV1kFEZyunbgZe9BVzNKHtjyvK2SjNMOl8nTkfrzz7pPdxt7ssk6tzi2lm7ucqTQAOk2nBjbCNSQYOYnIIJoIpzSoz2wGAt9HZjSm2ggFmJxKZO+64AxdccAE++MEP4pVXXsHMmTOxcOFCfPzjHzflv/a1ryGKIpx44onGAHPx4sXDejgBwAknnICf//zneP3rXz+yxm9GjPjF6QMf+AA+9rGP4eSTT8bKlStx5JFHYp999sGtt96KlStX4sILL9wc7QwICAgICHjNYmvkqutEIjN16lTcdNNNbcvUajVcc801uOaaa0Z0fADYc889ccEFF+Chhx7C7NmzC1+yzj777BHXOVqM+MXpqaeewtve9jYAwH/9139h3333xa9+9Ss88MAD+PjHP/6qeXGq0yaqygcoEcwwPFWaosEjX3ujZ0xqlukyJLHDQjV4hKFMeaMQgaEsMhF4Ogu3jhrrjhqODkhGclWUm29VRKY9zw9MxF5dK81sq0YT4w2l651QlTPQabUNmBgV/ZLy3jN236JPUZmuKa/1qdIEUyobjJs5d6KfIpJ5Xkhu3W6bNBiEYRBc198MBAmPTH8N0Aw15jssa8apzhLUWIIB1R5ARk0ajVOOPXO9eQCgh9koJi5IW1fxPHxNTGcMgPWfGQmL1Hpmn49O2iT2C8V8YS3LeXqmIksxnD5mpDnTCtgE92ntS+WyH4UyuehRvc6Fzzrxwr2ROYwK96IGmee6pe/TAV5BjSTYo7YKAJAKhlVDvYYFWZfUTXQXAMkgUxtN2Mr/aTiUsUj2HIXnoM0FaclY6edhXsdmz7v1Nr89RR8vr02l0Xy+K7kuF9PURBcCkjnKVJ81eGwzHhA9FtRXAPX8NUyTIGiIGI3NY1lYji15rG0E3/nOd9DT04OlS5di6dKl3jZCyPbx4pQkiQld/OlPf2pCAd/whjdgxYoVY9u6gICAgICAgNcsli9fvrWbUMCIX5z22WcffPvb38a73/1uPPjgg/jyl78MAHjppZcwefLkMW/g1kJfVkWSxSrKSqBf5c9a3egFF8SwSDtU+j1dk/QIIeZ3lVjH6oQzM7vqyyrYkNTRpSIzIpohJtxEanTRptEBddMGqiQxuoaNSR0bUuUynEVg4EjUd/cu2sT0rg2mnh0rfSY/FiBndfn8UBpls+lWvjRls2nmbNsh7sP/URkZNJC6OfaKUybapg0APAZBMwMUBKAwmqfBKEYPa2KQWxq3rmaVVZYW8o3J6DjLnln2yT8XXdaF62PULkJrU9imsrK8xcy/1bE0shyjOBKUOTa3ymRfKFeqefHb0Er7JMuWa5BcdqdtNNYmMmpAe0fgVk75fhk/eqsVyvrPHWX6ftb16DH4pq7n0KjHWJd1AQD6shqG1Jg3Tv3OcVtdp068uFptkyyhy0SLlhFuBUbRaU+BYRpBnrsyZYzHWuc8vvI5A7Ur+gCvgEJggEs2uj+tmmdIhaaoUpv5IaYcFPZZMcAraPAIzS0lcdoKn+q2JTSbTSxfvhyvf/3rEUVb1xBgxJz2ZZddhuuvvx6HHnooTjrpJLzpTW8CANx9993mE15AQEBAQEDAGEKM0d92hoGBAZx++uno6urCPvvsg+effx6A1DZdeumlW6VNI35tO/TQQ/Hyyy9jw4YNnpnVxz72MXR1dY1p47YmXhqcgJhWDJvU5LKrmhnzZlvrkrrJeVZniXSjVi/1eT+QKk1RdRzHGREeK+L5BdEMNeVs3UWbiElq8kz9bWgyXml0mfZs5DWzHxcUe3av8iLw8rqhvMagEx8avS4fJSTPw+oHNLpow3jNpIKiWzFgPUrf1OmsHYDpT7etEBQcwvTxuGhI+jMJuTyQxebaVUmCBiwTxeBHCLreTGXMjcwOT8xvPVvXztV51+lNZZpaYaR1tNJIjcTrqR1LlY9wKqu/HVsB+KxIOzfoPAvV0qF6BHDZquHqyWuWhsNIchPa9tBS5g2wY9P0LZHXZhKTGqhJrN/c/+vTLhMp2u5YgO1zrribTWm3i1b+Snn2cUQMU17vSLKOrh1TrJILV88IAA3F6PVlNWSCYFBpTxs8sr5NnCGllttqcH8MDmYxmjxC0myWtiNgbHDBBRfgd7/7HZYsWYJjjjnGrD/iiCNw0UUX4XOf+9wWb9Mm8V1CCDz++ON49tln8YEPfAC9vb2oVCqvqhengICAgICAbQcEaPOJuvM6ti/86Ec/wve+9z28/e1v91K07L333nj22We3SptG/OL03HPP4ZhjjsHzzz+PRqOBI488Er29vbj88ssxNDSEb3/725ujnVscHAQcBClnNgs2JHvCOUFTzUqGsggbEjnjq7EU0+vrzIylO2pgMItN5FeDR2go5ooLggnxIOrKT4QpnY3LFOmcXZpteimZAECyYWsb0iMpzRjWJt1GKwUA49mgmZk1eIyNWU21XbZrp9hmxnaz3LfSM8nlYrRZnmnycokRjqlVmUk7ERQTlGt3Lxsq0VLlo/lyM0lRwgYRIAZMHyECulgD4yGPs57UTf4pSgSqSAwD1sWaHnvm+uuUMS01kmAIRTPXDNSwgoX2tUAxU/vokddvuQyVq4/apLx0JSyV663jYjgWCij3C+rEDbqMefr/2XvveC2Ks338mtmnnMI5R4o0RbAkKoEYRWNAo2IBjRrU/GKNivKa16gYg2j0axIrYi8xrzUGW2KJgo2I4KtosCWivnZNbBAFRaSew3nK7vz+2J3ZmdnZffY5/chc+Zzw7O7szD3b3Pva677vtmqZKvFuccxSUp6qavvSNWDysikCkR9rj0XVPfVBTbmS46DEnFS6JYeoOqoaUkIrywqtTw0pKTooFzSi9YtjyXTNU1LEnYIUGqfUnClTWTs951wfJ2SJ17q14rnMvywA/nmgjIp7tuDmxHre1pNy/HU6uiGPU0/AihUrMHDgwMj65ubmVLXuOgNVa5x++ctfYuedd8aqVatQW1sr1h966KH43//93w41zsLCwsLCwmLjxS677IK5c+eKZf6ydNttt2Hs2LHdYlPVjNOiRYvw/PPPI5fLKeuHDx+Ozz77rMMM625kiCfyAGWIh1wmyN0BgvWlHIqu763J9edayll8VeiDfjlff/B1sV7pU87/VGIU5ZKDvrV+2zrqsyDce3QZRQP1GRIHHj4vN+DLYqPoi2ulyq6DgpcR3uMGNws3R4VNa8u1WB94SlnioV+uOSFXSpRl4jBlPq6UGZvnolmVqY9UY08TfSTaGGqrUbjw4CFPw7w7dbQYjpN1BdMGAHWZAvpmm8U8lahA4kXmwpkSXlOM59Bq9bIhyyVsab+OqT3QWSyZgWqrbZVySclZnc37qzXG4pBYXwzx+qdq2LP26nfa2nccI8ORxFToOdLkY+iCKhF0/Np0wLDGzYus2PxZotgrnbNWlsW/W/wyFlvVroALgq9KfobypiCHHABxX5W0jNkme5M0bHrbCPTDkVKTZ6qT52gsUxyL3S+zPsjTJ+ec86R+mMiZxb8y8P8u1GUK8BhF0ekijdNGxjjtvffemD17NmbOnIn9998f77zzDsrlMq6//nq8/fbbePHFFyN5nboKVTNOnucZqxH/5z//QUNDQ4cYZWFhYWFhYSGBkY756yVYuHAhisUixo0bh+effx4tLS3YeuutMX/+fAwaNAgvvvgixowZ0y22Vc047bfffrjuuutw6623AvBps/Xr1+P888/Hj370ow43sLuQpWXkgorPGeoKpqjOKSrftXPURZmzE4xgfTkv2KBaWkKJUfH9fIMrZ652kaNltAg2yEUfWhIeYZ4WhOdTYhl8VuiLFcU+/phOWXhQNZkSmt081gU6q/WlHFYUGtAYaIr8aLMwVxT3RoHkvDS6l2Zimyp5/dwT7uO0Co9Z91Z13ZQJ8R4qhROUBCgF7UKNmMqeyZFxXFcjvHrDXORs8A7xkOUeNQm1Hq1eVq1dJ+XwisyhAuuRplZYWiQxUGlRkalK6DLCRlW4TuKi8XT9UyVUU5utI2E6V0mZt4HK2qik/kvMkbL+e+I+65dZj1aWwUcbNgUAfKv2CyUK1IGHbMCWlpiDBtoqdIgNzga83bIZmjKBFpG2imPPmSueL6raazMuh5cOE6uoj5XmHIc1BdU8cwpI+Mzul2kOGXrioRQcW/7cpuLLg58tneflyxD/vwukQiSjRfsxevRo3Hnnnd1thkDVL07XXnstxo8fj5EjR6K1tRVHH300/vWvf2HAgAG49957O8NGCwsLCwuLjRqM+X/t7aM3Yd26daipqUls09jYmLi9M1D1i9PQoUPx+uuv495778Wrr74Kz/MwZcoUHHPMMYpYvLejlpaQc/zIOpeFGW4pAfpkVO0Arz9XZA48RgT7s4FmFc+bZwf3+/FzCfEoFpR9ViQXsFUtXh65gM1o9vLI0zJaguzl60shc+VQDyXPwbC6VQCAgpuBCyLq3NU5xZDVomqdOD3SRIYpgi5J02SK5OLtebV2wK9jt96tEfXfkvIncZjyIwEAmMSWscBmaTmOFfHzOOkMmp73JW69K7I2F7wsaugaheHpqKi5SoyF3lZGxEtPzGDdNuo+Kbt5pIp9JWFFTEbyahkkPZ9WV6EtTJcp27YJMksaros/Rptnv0ZNwECt82pQQ8qo47pJUMEatQYRp3z5zebN4TEqGOkGp1WcY4cwlJijMK3+/RO1Nw1zmoZFNGnb0rKPqfRwQVc56iHLXPQJMlG3eDmUXNVmniuOP7vlShFZUgahXZU6HBuVxgnwC/zGgTEGQohROtTZaFMep9raWpx44ok48cQTO9oeCwsLCwsLCx0doVHqRRonAHjwwQfRr1+/7jYjgja9ON1999245ZZb8NFHH+HFF1/E8OHDce2112KrrbbCpEmTOtrGbkGGeshQv55ZwcsoOWuyThhVJW/j2idenTxDPJ9ZCjylnPYtXM7rlM26aPFywjsEQm8tS8pK/qO6TAk55r9lry7UwGNERLDlcyWUmCO8ziwJK4Gbq7ubPbq4CDqT9xanh+Ftm5wWcYxcRpV5miq4x/VjWl+DEjciuo/kXcl6GT43c/4pX6dEoa6Tc94UhNYj/UOoLaxE0j5JbJQe4ZQ4hoja6p4HqikXVFsZo45gmtIc1/b2w8Gvx0rMkx9FZ87+H6lLR4ABGT9PW4FlUWSZUIfHgK9dP9J3VakeTZkN+E/rJgD862CLmq/Fs2KdWyP2KzFHYci8YBx+f5mi7DjaesxM7FJFLWQVkZaKzcQTEcyFTFadp2QLNcyTEg+kHbURLZKx2267GXM4dTeqftLcdNNNmDZtGg444ACsWrVK0GR9+/bFdddd19H2WVhYWFhYbPQgrGP+LNqPqhmnG264AbfddhsOOeQQpcDezjvvjOnTp3eocd2JTTItyGeyyNMySszB2nIoUKOEiezgzW4uzPeU8VBmVHwDp8RDlnjKN3G+H88PJDNArV4WawL9TB0tCJajjhbQ5LRgm/oVAIANXg4ri367VjeDhmyr0CbI7A7gM0VZFnqOsldnipwTvxMyaevwQEHhKToXHRSh10bBhB1y5m29bSoEdtaghBYvjxIJsrbTgqJ5kTVDnG0K5+gpzMsatw4NgQaLM0/83xpaQguVoiPlqLoujOqSWSX9nMpRVLxNxf4SIgLjoJ/vahgfnWnqaKTVh6XRGYlcSu2IdOxoyFnvZbgsvB54/jE5p1YpYLhXFPvAA8XXBZ+B6pdvFtc84M+ZP4tavBzytCQYGJdROMQT7BSQzDpVO6fENinYHQomnq9pQMHE83NIdrXYby31UHDV/0RGauBRDx7tovt+I9M4DR8+HI4TzZTfE1D1i9PHH3+MHXfcMbI+n8+jubm5Q4yysLCwsLCw2Hjx8ccfd7cJsaj6xWnLLbfE66+/juHDhyvrn3jiCYwcObLDDOtuDMqtQW0uAxroW7inU/IcZKkrItUy5RrkMkHm3iDLrIhWIyyIpAuyjjMKUP7b9wJ5xAbP/s01TwOyoRdXQ0qooSUMya32bWCOYEDytIzGTKvi/VEwZEmop+IeZ6U6Vr7N5szg+jYdSWyTrlsZmlsVO0aSPTLWuTVK1uRsUDl9Xdn3kp2MF+asCsZP49G2eHms80J9R6jFCu3sF+jJXEYS+0yqpaZrVtoKPfou7neqvqpgndrKNrWXaUoTOVdtlu6kPhx4yr46u5e0H5CcQbst0K8pFzRkEWL0YaZ7qOhlsKy1UdjXP9cS2BhUNkBYy67VywbPtYCJCdj3gbl1AICs4wrmmLM9ReY/x3KkbTmOOKsVh0rPjapYawkO8TAou0Yst5CckqVdZtY8RpCnZbQ6Uda8U7ARisN7Kqp+cTrrrLNw6qmnorW1FYwx/OMf/8C9996LmTNn4o9//GNn2GhhYWFhYbFxYyP7VNeTUfWL0wknnIByuYyzzz4bLS0tOProo7HZZpvh+uuvx5FHHtkZNlpYWFhYWFhY9AhU9eJULpfx5z//GQcffDBOOukkfPXVV/A8r0eGC7YXWeIiSwgc4idL5OH+PBFcXipdsCFIgOkxijwtK6HCeVoOP9WBik8hesir/xsow6fHv0IfkRyzxcujX2Y9RuR8cXirlxUh8dxWTqt7jCBLXKUQreuZP2skliTQUE2obyWYaPRkWl5NDQD4tn/SOgADsusBAAMy61BDSmiBnyS0xDIAiuF4hnIxcr/8WC8rbaJ89hTjyjaIxIBBf1LfHfUJrhpUkyyzYl8xYTf6Jzw9GCApjUDaz3NpPvfpbTqqrElcf/qycn617pV7WQi0owVoOZI+5eowfqID/GK1RBJtayVrHKjnhT8nyp6frHdIrf9ZanAgA5DBn1tZ4mKDl0Mt8e+nPk4BdU5RKdjN7+ksKcOTEm0WkWnT5zpz2pPOo0vka5SPPSi7Bus8qVC4VEQcCI/vhmwXlVzZCBmnUqmECRMm4JZbbklMhtnVqOppm8lk8Itf/AKFgq/7GDBgwDfypcnCwsLCwqJHgXXQXy9CNpvFW2+9BUJ6ljar6k91u+66K1577bWIOPybBs44AX4IvRye70gJ01rcvBB0I/BG5NT8eVqWvBQXrlRc0t+De4v+Mk9XsMHNhSUOaAZfl/tg0yCxXT0tYEBmnbDTBRHizBpa8hmnwDtc59VGvOaqCqd2ENOki3rThRXrpRNCuzdxWjAgux5ryn6Znyxx0eS0oCVgi/zEo9L+TGVHZJSYf3wBoMXNoY/TKhi7SiVUdCYgLYtAideh7FSSULkrkMQWyUyBiX2K29dU4DVuTh0hvDb3m8RoRbfJSVEdsEgbebsbsD9Own/NKl1PvjhcakPiGTOPEawu1YnfTbkNGJxbK2xwlTQmEMyrC4INXk7cNwOyzdjEaUGzlxft5QSxDgnTnPCAlLRC7yR2Uk+z0lGIG9MhHjZxWmKvz+4qKr2x4bjjjsPtt9+upD/qblT94nTKKafgzDPPxH/+8x+MGTMG9fX1yvbvfve7HWachYWFhYWFBTbaqLpisYg//vGPWLBgAXbeeefIO8c111zT5TZV/eJ0xBFHAABOP/10sY4Q0q0F9zoT3FPi/hSFhxwJmSOHeGGIanBNZoOEaBnipyJQQvx5eeqgrSjiSSjKzAH/Wl5iYYmQLHFBiSd0A1niCvaphpbQ4uXQ5PjhxI3UL6i7Oiit0CppodpSxqCtiAsnbgvTFPap3vRDsquEp7vGrRWJQoEg2afEbpkK+rYEHnOLl8c619cyeIbyFn6i0MqpBarRrKRpb2I00ozB92vLuU2dOLJKNkv36tOyTHHbOpphiiuiW01Zncj50s6Vx2iEkQJ8njr2vFZgJSnR0lGw+PO+zqvB8tZGAEDOKWNAbj3qHF4AWJ2nx6iwqYaU0cdpVTRNrV5YmsQFFc8znrZAL89CxVx1rRwzLlfSxXV2AlXAfI229ZnWEeiIzN+9MXP4W2+9hZ122gkA8MEHHyjbkj7hVVvjjhCCV199NdXXtDYlwLSwsLCwsLDoQmyE4nAAeOaZZ9q03+rVq3HdddehqampYlvGGE455ZTUxE/VL069Qdt044034sorr8SyZcvwne98B9dddx1++MMftqkvXZPjgcIFU5ic2iABmpwoDQj1Rtxz8xiNfpvnzBMIWj2gEJwSShg2BJFeWdeFByIiv+poEZsGGqcaUkSNU8QmAdMCACvdPor+IK70hu6ZmpJfVqNJ4uD7tGXfasG1Xl+79WhlWdSLhJWa9kiaKy9+ytmqdW6N+E3hwQUJ2T3HRZE58Ji/XENKaA1+8+SY/Fg3OBsi9lVT9iQOHclkVaurMiXErDb5pafoejouKq4jNVw6y5TmOJnYKJl9dJkT2SbP3xPRt9G2OhsVp4MyRenFldz5dEN/Uf5pYH4dBmTXRfrj48jXUIk5yNOSKBzO1/H7QLeHwpMSgPqMmCitxGib2aJK11lbnzPVlAqS23YV02TRdhx55JGpA9imTp2aut+qX5weffRR43pCCGpqarDNNttgyy23rLbbDsP999+PM844AzfeeCN222033HLLLTjggAPwzjvvYIsttug2uywsLCwsLCwq47DDDsMdd9yBxsZGHHbYYYltZ8+ebVzvedW92K5bF3Uk4lD1i9MhhxwiNE0yZJ3T7rvvjocffhh9+/attvt245prrsGUKVPwX//1XwCA6667Dk8++SRuuukmzJw5M3U/HohSKFJmT1xGhNck5/xxGfXzKAVeXZ6WVE9R8lC4BkhmZzxGsCFgOkqeIyLs/GUqRe8BCPRxI/OfoYaUBAuw0q3HOrdWiXLhiNM+xHlOaT0q3WNLm5OJQ2cw4nLgmPYLy9KUsd6tUXQYWR5hJ/IuBefS84+17K3zKLo8LaGBtgo2CfA1UKZSHzzKS5+v6TinybWkMwQm5qha3VI0ojI+r5DJBqVtav1Tx+tPKh07WZNj2ub3EdUXhf2T2Lax/SWVfYlhVvg+HiNhHjVDQW2ZjfJZGoTLcYjR2n1Z9HVNyzY0YbO61QCAzfKrlPxvgH9MRLko6TrLEhd1JMxH54KKfHH+XKjUtqzoOuWiw2KunZTrrBrmqKPG60rWiaADNE4dYknno6mpSeiX0nxqi8Nnn32GzTbbLLHNn//8ZxxzzDFV9Vv1i9OCBQtw3nnnYcaMGfj+978PAPjHP/6B3/zmN/jtb3+LpqYm/Pd//zemT5+O22+/vdru24VisYjFixfjnHPOUdZPmDABL7zwgnGfQqEg8lIBwNq1azvVRgsLCwsLC4t4zJo1y/i7Wuy33354/vnnY0mcv/zlLzjhhBM6/8Xpl7/8JW699VaMGzdOrNtnn31QU1ODn//853j77bdx3XXX4cQTT6y263bjq6++guu6GDRokLJ+0KBBWL58uXGfmTNn4sILL4ysd7kegXgRXZKfAZzrCJjYTokLEDkSjyn5ehwpg7XLqOLteYyg4GVEFnIKJgoA19IigBy+LPg5i1rdLAbngxe8PFCCg9Wun59ltVtvZJs4ZJbL5Om2BXrW6Go9MT0LNYcHWpF14uM0OBvQyjJCB9ZAW4VNfk6ncI5Z4qKVZQWrUENLwtPmWddzPIcWyyrsk0OYyJEF+J650G/A977XebViXx796AS6jzS6HFO7tkY/6vvFMVAm5sln0zjjGu+r6uefF3pNa1/cMZGjsyodu0rZ23UGKY5R4vcrZ6TkdpV0T2kjB/1xmKThCtoZ8o65jAr2yW9J4vVOCBkqIDgvoPgiYJxa3Qz6ZnwtZJa4ynxktkm2EQDqSEHLiQZ4cKR2XuQ6ywf3hEf85xy/R4rMUWiPtCxRR7JJbdXG6RpWwLer2FWC6400HYEJq1atwj333IPbb78dr7/+emy7gQMHYv/998fTTz8dSWNw3333YfLkybj88surHr/qK+jDDz9EY2NjZH1jYyM++ugjAMC3vvUtfPXVV1Ub01HQQxT5J0QTzj33XKxZs0b8LV26tCtMtLCwsLCwSI+NMHO4jqeeegpHHXUUhg4diiuuuAJ77rlnYvvHH38cruti0qRJKJVCB/eBBx7Acccdh0svvRS/+tWvqrajasZpzJgxOOuss3DXXXdh0003BQCsWLECZ599NnbZZRcAwL/+9S9svvnmVRvTXgwYMACO40TYpS+//DLCQnHk83nk8/nIehfBt3kGhXUysSl61lyR80nLDq1H6ygsDXzPrOj6pyRDw2i8EnNQcDNoyvpRWzVOSWGJSswRkV0eSIQBiGhwDNFz7UVahqna/D9pkSUuHDC0uP5xqCElJRISLGSdssTP5s5tqaEFJdNxnpSQDSKIPi/1xdflehGBtGlmXSRqSdaFeAiZxC9LjcLTbnA2BHl8qLBB7gPomkzfccyNiXmS2zqEKRmqK53HKEsbMEcxWjHAPH9+XjxGUjN25rkkX+dK1myNJebb9H71uUQjZiuxpZLNMfYJVljWRyaweS5zgIAtpcG1WAq0kjVOGX0yrWIOlKhnMRJlK1+bCYyPn+dMrXsp9+wyKhhxnfFO+/xJqoVYDaq9x0yRnfq6zspab+FjyZIlmDVrFmbNmoX169dj1apVeOCBB/CTn/yk4r59+vTBE088gT322ANHHnkkHnzwQTz44IP42c9+hosvvhjTp09vk01VX4m33347Pv74Y2y++ebYZptt8K1vfQubb745PvnkE/zxj38EAKxfvx6//e1v22RQe5DL5TBmzBgsWLBAWb9gwQLl06KFhYWFhUWvwkbGOD3wwAOYMGECtt9+e7z11lu4/vrr8fnnn4NSiu233z51P5tuuinmz5+PV155Bfvuuy9+9rOf4fzzz8evf/3rNttWNeO07bbb4t1338WTTz6JDz74AIwxbLfddthvv/1Aqf8edsghh7TZoPZi2rRpOPbYY7Hzzjtj7NixuPXWW7FkyRKcfPLJVfXjR10Rv/ZTwDoBvmcos05yBEnJc1BiWfE6SpmneKxyHhcPfv/cAyozP4qOe24Z4okoOkoYMtSF6/n9NGZaxZgtLO9n8UXo9XLWSYeelbczq413FJJ0Tvr6AZl1WFbaBIBffy7LwmRmeel45IiLOlpESdous0g54orlr8v1Qe2/gDmiGwx5jPx/W1kOWVIWObVchJFVfj28epSYf07ztIR6WpAq0CdXWNdZrvYgieWK0zxV7FO73tQoVDV/mXx9mpgnk21CV8Iqzz8uKjFpTjIj5YIoxyFum9humAtQ3f2VGIlqjK6M12CVtDatgW6yMduq9ZE0ZtT2yPlgXmzbMC+aX9szL9XS5PdAq5cNWKeQpeK/SywT0YzJxygN+9ReBtfEJLUn2rS96I7M4TNnzsTs2bPx3nvvoba2FuPGjcPll1+ObbfdNuwzRgZzxRVX4KyzzgLgB2FNnz4d9957LzZs2IB99tkHN954Y+KXqaOPPhpnn302HnroITQ0NFRneIA33nhD/L7yyitx3HHH4dBDD8XBBx+sbKu2VFzVL06Af6D2339/7LXXXsjn8z2qcvERRxyBlStX4qKLLsKyZcswatQo/O1vf+sViTstLCwsLCx6Cp599lmceuqp2GWXXVAul3HeeedhwoQJeOedd4TYetmyZco+TzzxBKZMmaJ8SjvjjDPw2GOP4b777kP//v1x5pln4qCDDsLixYvhOOZgphNPPBE33ngjnn32WRx77LE44ogjqk5x9L3vfU9JlcQYwwMPPIC//vWvIqVSW0rFVf3i5HkeZsyYgZtvvhlffPEFPvjgA2y11Vb47W9/ixEjRmDKlCnVdtnhOOWUU3DKKad06hjcm8zTEvoEntF61IAyJuVqoRV1Djp4Zt8MdVEOvLaCx/xcKkGG8lpaFEzFynIfQ5bsZLdC3l5tHhKZ5ekqTysOjhLdQpAlZfTNNAMAWryc8HqzxBVRcoDvwTc4G4TnC4Qessuowv4MyK5DPS1gnetHyslecSvLosXLi6g7lxE4oIrmie/3n2I/LC80ClagMduK/tl1aKA+C9DgtApWy5RLJ7QzY4xiaivi2KcwuizUH8kRdpWuA/m6Soq6i2Oq4mwzsRuAyg7EMVcm5kZnoaqpTaejrTl9KmWGr6TPkuFKrLZDGUrMQTlY7pspiOzfabLRK/mXYLjmSLid3z+FIJu4HKXqwEMp+E+N54X76Lo/B25473lQ9ILVoD1MU4/WK3VDyZV58+Ypy7NmzcLAgQOxePFi7LHHHgCAwYMHK20eeeQRjB8/HltttRUAYM2aNbj99ttx9913Y9999wUA3HPPPRg2bBieeuopTJw40Tj2rbfeiuuvvx4PPPAA/vSnP+GMM87AxIkTwRhLndyys0rEVX2FXXLJJbjjjjtwxRVXIJfLifWjR48WGicLCwsLCwuLDkQP0DitWbMGQHwB3S+++AJz585VCJTFixejVCphwoQJYt3QoUMxatSo2PyKHLW1tTj++OPx7LPP4s0338TIkSMxaNAg7Lbbbjj66KNjs4YD/me6YcOGYfjw4RX/AODtt99GuZwsmeComnG66667cOutt2KfffZRdEPf/e538d5771XbXa+AiK4DInmdakgJJRIyG0DoNZeYA6pF4YlIL82TyhAXtU4RtY6fI2iDmxNeedlzkHVcoROQ698BmtanEx0mXVMkaxNMiKtVp/eTxFzpbZ0YxoGvb6B+5KFcS6sOxYiH7cCDE+RjcghT8hTJY2zitKCBbhDHvsgc1Af5tepJAfW0IOZZ45SUufTLrEcD8xmlPC350UUlP7qo4GawCvUoOL6NX5f7oF9mPQCgyWkRNfcA1YNuZVmAhXXyOop54n3Feet6hJ18vCpdB/4+qj5F19uZ2vG2fHwT4pgoEwPVGVGL1dQRNNWVq4RKbJOsoQT848dZmhJz/GcQeDRpuC2vH2dQ5RhHmBeiso/ydvm48shhKrR9DrKSZrAkVUNo9vKopwVxz/L8ZwAChthN1Dzp9qdFV9ZA7Eh0pMZJT/QcF10ugzGGadOmYffdd8eoUaOMbe688040NDQoZVKWL1+OXC4X+cyWlF/RhG9961uYOXMmZsyYgblz5+L222/HUUcdpSSwlrHjjjti+fLlIvq/EsaOHYvXX39dMGVJqPrF6bPPPsM222wTWe95npInwcLCwsLCwqLnYdiwYcry+eefjwsuuCBxn9NOOw1vvPEGFi1aFNvmT3/6E4455hjU1NRUtCEpv2ISKKU4+OCDcfDBB+PLL79M7P+3v/0t6urqUvVbLBYrNwpQ9YvTd77zHfz973+PiK3/+te/Yscdd6y2ux4LT+RxCrww/j1fy+sEQGhTWkgOrpdVPD4g9HjztCy8pkh9N3jI0jDCpOBlIjWdeCbxSN4oiQGohs2pFm3tKymTOO/TFCVj2ofPsxLz1M9Zj5Ygt5UToxmS+4jrr4aUkCWuiJQzjxlGVcnHPyc9EwZnVqO/sx7NgVe3xq3DOrcGawMN1IpCH3zuNPlt82sxMLtWGXOdWyPGanJapAiqjKLJai8DJbMKkegxg96JQ9c9xcGDdi0kREeZokPT5vKRGSg5+zgQ1XL5bcK8TX4bNXcTb2NigNLqoqphp+KYJj03nGmb/Gzq47Sib86/jr4q1qM+43vnQ3KrAehsUfSZJEPXG/H2sj38t7yuwCg8EuYvq6P+f6DWuHWCkQL8KDvO3tfRIhroBtCANfY8GmHpq0Ecy1QdU2VuW20EapvRgZnDly5dqiSyrsQ2TZ06FY8++iiee+652Ei4v//973j//fdx//33K+sHDx6MYrGIVatWKazTl19+2e40QQMHDozdtscee+D9999P3dfYsWNRW1tbuSHa8OJ0/vnn49hjj8Vnn30Gz/Mwe/ZsvP/++7jrrrvw+OOPV9udhYWFhYWFRSV0oDi8sbHRWAEk0pwxTJ06FXPmzMHChQux5ZZbxra9/fbbMWbMGOywww7K+jFjxiCbzWLBggU4/PDDAfiReG+99RauuOKKts+lAhYuXNhpfVf94nTwwQfj/vvvx6WXXgpCCH73u99hp512wmOPPYb99tuvM2zsFniMBlFxwQqJedI9Me4x1ZAyWpAX0XAUvqaAe+eUsYg2QHjDJGwP+OwS/83b1Dm+t1jwsoKN4GPrEWYceh24uLpwaZDEKFTqU9Y7RfMgSR6rUsE+Po9TJeYpR1zkpHxKX5SaBAuxidMSaHY80TZubg3OhsR5yTBlN5azTGdJGQ1OOE4dLYhz6jIi6hR+3roJ1pRrsVP9J8K+BsfXSkUixrRIviQPWmdcKtWxk6Fm046OFXceZDsBwzVkcKBNmbjjMo+bGLZKLIJp3knMkol94u38/uLn3tYoPX0/PkYldsPEavHrallzIxoCxmlQdi1Aov2pGcrVYyxncdcholKDWnpJNf5avHAfCoIVZT9HT5a4aPV8W1u9LJyM59e2Q5jzKQ4mfV7aPEwmG+NgOp/ticTs6Tj11FPxl7/8BY888ggaGhqEJqmpqUlhZ9auXYu//vWvuPrqqyN9NDU1YcqUKTjzzDPRv39/9OvXD9OnT8fo0aNFlF1vQ5vyOE2cODE2hNDCwsLCwsKiY9EdCTBvuukmAMBee+2lrJ81axYmT54slu+77z4wxnDUUUcZ+7n22muRyWRw+OGHiwSYd9xxR2wOp56ONr04bQxwQfw/5vjensQ8uQjzM2Wl/EBca8K96wxlAAuXC14mwrbIHniJOVhX9rUs9U4YKUAJAyUMq0p+wrEhudVCJ+AyEvH2k6KeOiP3UhKDpCNumylihmujdMYsCXEaHzmyp8XLodXLimOYJWURxebnfCrH6j0qsRnKvky6Jgz7ydqpmpowsGKNW4cWNxdmgyel2HmLLOfSJRCnpdFtqDSXSl54NXX20jKifttohmg9Ci9N/qek3E961J1J9+S3i+qaKjFQejsTqtHFUOJVxWrIdhW8LPrl/Nxm75cGYlXRF8q69UQ56pwpkqHfS0nRaHEMGc+0LtvEo11LzAGYI/RPoP696Y9FlUg/SphiT6XadXFRf7zvJNsrQd+/6zRO6PI8TjxJZCX8/Oc/x89//vPY7TU1Nbjhhhtwww03VGdAgNWrV+PBBx/Ehx9+iLPOOgv9+vXDq6++ikGDBmGzzTZrU5/tQaoXp759+6ZWv3/99dftMsjCwsLCwsLCAvDzMe27775oamrCJ598gpNOOgn9+vXDnDlz8Omnn+Kuu+7qcptSvThdd9114vfKlStxySWXYOLEiRg7diwA4MUXX8STTz7ZLYV9OwslRuEEbJMHiLwkUcaIKXXrZAYK8D3tgusfZscJmSDuEeWpv2+Ll0PBy6CWloLtof6JEoYNblZE1XG9C++/EjqKZUrqJ6LtSfDi9MzmiflZtIg8nX2qpHUCfNanX2a98Awp8dBAqcJAOcKzKqKVZUXbOlpAiTmooSEjxDOOu4z4eZy0yKSwHqEhUjDwmhucDWj1siLTch0tijGanBZ8WBiEr8t9fPuzbmK0XJQZSM4XJB+HjkK17JObMjpI1zSZdE9yO2EDi2oRFUhZrz1GEjOoy5AZKJ2pSIp44/vGIW20oI4057BPwF471MOyFl9PtKahDoOya5Rr1AURUY6mfk2Rihz8mJSYAxBPYa8cMOWY6VHHfO7y8RyUXYMscbHa9RmykkeRc8LoUf14yeeM26au0+ZpWK9vM8GkfauuWEc70AGf6npBedIIpk2bhsmTJ+OKK65QatYdcMABOProo7vFplQvTscff7z4/ZOf/AQXXXQRTjvtNLHu9NNPxx/+8Ac89dRT+NWvftXxVlpYWFhYWGzM6IZPdT0B//znP3HLLbdE1m+22WZVJdDsSFStcXryySdx+eWXR9ZPnDgR55xzTocY1RPAo+o8BN4X90yIH+fFPV+/hpOPLHF9TY7EKlGE3/dNXnbB80+BHJUC+NnCQ1t8G2TWg2sBAAitThzSZHZuC+Ki4fRtMnzNUnWagrgM5GobX+sVFzEGQMl3lKOhn8gzF4t2cJGjUm4k4iEr+ZXCDsIZkPSZqeU2NbSEHHMj63PExZDsaqwJvO3Vbp2wMUfM/q2cj4hHIuWI22YGpLOhMITMzCiq7aOMUlxNRlP+J76P6E/JV6UyKWnZs0rRY4pNnFWpQuMX7hs+CyrVoTSBM9UDapvxyap+AIAlG/qhwWlVrps49ooSFmGY9GzhojYdQtYJ8I+RzsLrc+GRpQ4YWgM2t9nLYxMpgz6PtjMdvzCflFnX5OulzOeJr097L4j/Hkj7dOd9tDGgpqYmkukcAN5///3UWcE7GlWf8f79+2POnDmR9Q8//DD69+/fIUZZWFhYWFhYSOgBteq6A5MmTcJFF10kKpMQQrBkyRKcc845+MlPftItNlXNOF144YWYMmUKFi5cKDROL730EubNm/eNKvJb1uo8cQ8KjMIDg4eQdeDIEj/3EmeRuBfH2aQsXMW7LTFHYZYy1JV0TaH3l6dl1Doh27TarRNenMcI8qSUSutUbQ6ntLoLUzb0WE89MFPXrhihZWhXGANDtJ3C6EkaFrAqaoORaBX4LFwp+7jKMkS0FgnaCxMEC8Yyoq0LiganNcyozLJhhnUwI5sme72cldLrjyWhUtbo9iCpLzkLOc8+nuYaTYqqqlQHT2eeVE2Tyq4k1e9L0sOYmIy2MLTRfgO7pJqX8j1iYtr4us3qVuPDlb5z++81AzAovxZ9s81hQxZGC8vWeIwEOefi9UCybi6L+GPjMYpS8HwseBnkaVlElq5261AImCUHDKsRPueyxE18vpjYJsHyGezUz4/p+OvniB9n/TyWWcfdK0nojnQEPQFXXXUVfvSjH2HgwIHYsGED9txzTyxfvhxjx47FjBkzusWmql+cJk+ejO233x6///3vMXv2bDDGMHLkSDz//PPYddddO8NGCwsLCwsLi40QjY2NWLRoEZ5++mm8+uqr8DwPO+20U7cmz2xTHqddd90Vf/7znzvalh4FlwXRUcTzvTruZdAyKAgoQk8lZKX8b/GcceJthTekOWFlz0Ep6DcbaKOyhFcDp0KbkKUe6mhRid7j3/7jtUShF8+RNru3CSbvy9OYl/isvEQwbXKOI6MNEkviSh5wBJruSeQ8EvvKEVdQssA7ATvFj5GenVzJHxOTw4fb54EouipZh+ZfG1nFvrhoMmpgUHhfNeiY4tnV1OWqloHqTMYKiEZXApVz+SQxT0msU7VIo5kJIy3NbGWlWmrRyMmgOgFhCgulM1AyNsluQL8+Qd26tX3wYf2m2K6Pv3eelpF1CsYs6JQwuNpqF8QYnVkpmzqVNI5+vn4iIudWleql5wRR6tjpx0M9FmoUXRLTpNsOxDOBUfbYh85ctjUi0qI67L333th777272wwAKTVOJmFWEtatW9cmYywsLCwsLCwM2Eg1Tqeffjp+//vfR9b/4Q9/wBlnnNH1BqGKBJjLli1LrEQsY7PNNsPrr7+Orbbaql3GdSc8xpmiMJoOgP99nkp5SxBqlErMUTxH36vRveSw3hPXA8goSd5LXorsytIyWly/gnWLlxOMk9ynCY4SMRTdXk3+Jb1dbISQwXuW11Ep+s24j6ZPMkLSnHHEZRnnDJKIgkEQQcRklskJt8GT2EFfZxUX2afncKIszOvlEA+DHd/paPUyaGVZtECtQk4ldk1no+LOa3uYI2VbQi6lSK4lUp1XnRTdqIyjsT1KXiEDa2NinYzjy7msDMyTnp1cj7IzX8PtZzLiWKYkttbfX4qsU7Kwh8fYY46/LeaY1NAShjesAgCsWNsHH6/uh7Lnj9uYbcWIupUYkPWdXgeeGMcJ7gfOe0aOg3YM4jKty/vKc+O6JhcUWVIKxvSj8eIiHNNompKYwDQsUxwLKEc5JrXraGysGqeHHnoIjz76aGT9uHHjcNlllyl5JrsKqV6cGGP44x//iD59+qTqlKvfLSwsLCwsLCzaipUrV6KpqSmyvrGxEV999VU3WJTyxWmLLbbAbbfdlrrTwYMHI5vVuZTeBRc0yALNPbqQefIYhRuUoJFnWWIO8rSMPk6YV0mOqqOEIRN8s6fUE/sAqg4I8Nkmzjht8HIiEgXwPbRmz2cuaoj6kmqq/M5zoHxVbkC/zPrEzN3VfK9PZDMSmY7kTNNcT+HAUzxtIPS2BQMk9eOBqHOT6gvqjImvTwr3FToN3pbJfYTRfbqnWkNK4fkFU86HKedSXE4tno1ctbH7qq7rY5ts0RkxUxb3aiL7wn7MbIDM/PnjVNdvnOapvTBFkHH9m7wMJOUaUvtI0iPKzDGV7hGuRZIrDujHaLOa1QCAz5qa8NnXm+C9Vv8rgkM9LG3YBN9uWgEA+Hb98lBbR7R7jQAucwR7U2IUWYkdl1knGmQR5/dIi5dDyVPzUuUDLV+LG+amA9T6kvoxMmUFl1klneVKq2OqxALqzHlcu05DL2SM2ottttkG8+bNU5JuA8ATTzzRbV+1Ur04ffLJJ51shoWFhYWFhUUsNtLM4dOmTcNpp52GFStWCHH4//7v/+Lqq6/uls90QBuj6iwsLCwsLCwsOhsnnngiCoUCZsyYgYsvvhgAMGLECNx000047rjjusUm++IUg1AcDoBQ8fnIYwSgAGVhQkRO2bayLBzioX9uvein1csiy3hou5RckVBkqRdqx4OhssEnvFpaDAsBkxJavJwo7kulsi5pvjrw0h1flhrRx2lFTio9IiNVAksJSWUY9HDsSJmChKSCjvikEm1Dtc8+Cu0ufRZylDI5MJb14HS+Q5j6aY55oNpx5eMUWUZ8/qgnRaXcTYlR1JOSSCnhl5AIPsUSIq4PAGI8fi5qSBGt8D9VuIzEHh99/vJ80qA9n7oi4zKzTWoqCDUQQBZhmyAL85MCF/hnu0qlVapFUmqC9hTx9ber16oSSBL5XJ3uc6ILRwo44cePC6DNEgAA2KbpK6wr5rHyK79oKitSfNqcx7qiLwHIUBfb1vl1wChckQSTQyniSzwpIW8gDQjGoQhTCwBAyXPUfiQpgwsqnoeudgMmFe6NCL8DkX6SOD/pk1zaz6b8eFtxeOfjF7/4BX7xi19gxYoVqK2tTa237izYFycLCwsLC4uejo30U52M7qpNp8O+OMXAAxWehvDkAN+b8ySv1gHqEBap7JtpFqkCeGmUkha+GgwADwTZoBuekDEfiItraEkpNyAX9QVCL4mX7DCJwoGwOCYA0beOtKUMTP2H7aKhv+oYhmNg2BfQEzhoEEL7qMjaF8r6Y5d4aDYAh3lwpPItvA1PYurBEzbnAIBIHjVDIIYN0xHUk6IYr4aU0RCcpwIjyBKGbDD9EgNcwbC4QdHdkCl0GRXnuJ4W0BqIY01CcY72ClEVYXQVzIzO9ihIcrj1chSCDYkJ9QaNZYxkhokHAlTDLsWJwk2JNKmUNqSzkZQctdrxXTihMJuzT4aSIANy6zGiaRXcIB3B2rW18FozWL3WZ6c/re+Hvhk/WebA3NrAlpDRccAE20qlMkWtyCosIBdqc+F3gWXFs5Q/G93gGVVmjnItJaUc4Hbo44jfCeJ8k+DcxCqlYf1cOCh1UcmVjRkPPvggHnjgASxZsgTFolrU/tVXX+1ye7owHMDCwsLCwsKiLeCf6tr719vw+9//HieccAIGDhyI1157Dd///vfRv39/fPTRRzjggAO6xaY2MU5///vfccstt+DDDz/Egw8+iM022wx33303ttxyS+y+++4dbWO3oORRUI9KIac+0+EEpUYEeyF5wVlSRg0tiW2bOC2gDhNs0dfl8LssJQxZuChIHlStpJdZ59aIkhsDMuswIFNQ0hpwVssU8u6CijGLLIM1bi0AX9/glxtJ975cyeMLt8UnnNPBvWF9eyV9iA7KmSWpXwoiEpL6y0HKBzhwmKdoPfw2IXvBWaIi81knV2YYWagH2oS2oEE6TzXEQy5ITZEjoV3+vgwuT5TKGLKkLOZNmZ/gj7NXrcgqIdt1tNjhYfMc4vxXoXFSrhltv6QyH34RX5mBSF9s2sQYqOyoqtOKMoqqTZ2VjiAt4hJrmo5HRGeTqK2Sx1CTuvLnFR9faADh4Vt9vkT/nF/k9+P6fvhkRX+UNvjsz5LVfcV+32lajs1yq1RbiCeK8xYlhrQGJZRImKqgIOuX4D9Xs2IqLkqegwILWfGkNCWmNANhWxJ7jFwW6snitGXtYfu6SuO0sX6qu/HGG3HrrbfiqKOOwp133omzzz4bW221FX73u9/h66+/7habqmacHnroIUycOBG1tbV47bXXUCj4/wFft24dLr300g430MLCwsLCYqPHRlpyZcmSJRg3bhwAoLa2VpR0O/bYY3Hvvfd2i01VM06XXHIJbr75Zhx33HG47777xPpx48bhoosu6lDjuhOMUXiMhpFDIiqMgJIw8qvVy2JF2Y9MaaCtaHJalCSIsr6phYbJEj0QOARCY5APIlPWB2VV1rt5NEvlOQZm1wpNQZaUjUwTt3OdWyMKZ7a4eawp+4zTgOx64z4cpm//1RTONK3Xwf3J2HItadkAjeUowWcfQu0TU/RQPusUJuWTx5LnnecFPPm6ICEmTwY41NmABiqX2QlNcojOEoS/s8RDFh4ER8ajKIPz6IIYI+Y4OqOQaJFlKianbA3YAKXYqql0D+Kj9HRGqpJOKy5BocwWCPZQtkVnwtrILFUq+hvHmlYLXUdlKsztb9ci7vSixdJBMJV5EslfpUSwDvznzeY1PpO0SbYFGerhg88HAQBaNuTwqddX2Oc2EWyW99vmaQkOPDQFjNMXpSZxfTiBPrAl0C15jCBLXaX4dVliocrMQYk/A2lZHJMscRPnXanUjVwSStY1eVrEKj/WSSV2dIho3OC4M1vkt1MxePBgrFy5EsOHD8fw4cPx0ksvYYcddsDHH38MxrrnTbDqM/7+++9jjz32iKxvbGzE6tWrO8ImCwsLCwsLCwkbq8Zp7733xmOPPQYAmDJlCn71q19hv/32wxFHHIFDDz20W2yqmnEaMmQI/v3vf2PEiBHK+kWLFnVa+vNPPvkEF198MZ5++mksX74cQ4cOxc9+9jOcd955yOXCaLMlS5bg1FNPxdNPP43a2locffTRuOqqq5Q2aeGCKB4OjwpzwOAxwBPebS7MUUIzPisUEBL1tODnOPH8yLc6WhA5lbLEVaKqamgJLW7YV9lzwLMtrXdrlGg9OTeOzhhwL4kXBF5RbBDb8rS6GoK+h5/g2aUsnJlqLIPXlkY7IOuWSswRrAeFVG6COX4OHhEpx5dp0DaMCvII9XVJWl6nesc/9jWEoI5wFsZBgZVEVE0Jnq+zCpaLjImSPD6bUEIJ6vHjOZ+aPSoYh6zGJlabXysORq86pngsR1hAlhj3kfeNY8V8Bqd9iIv2VMuNmO+JiD2GKLqksdKiUp4nxQaN1dJ1TnFRfcaIVX2dYoMnsXRyjjSCLFx4AUvaxyngO03LsWSVzzIVixnBhn/VUo/Pc5sIxjrr+KVQvig1GedGiSfpPhlqaElE9zrwUAg0URREYdf0EjFJOshKJVWSdE2Ayuol6cmSWEVXMNZW49SZuPXWW+F5/nVx8skno1+/fli0aBEOPvhgnHzyyd1iU9UvTv/93/+NX/7yl/jTn/4EQgg+//xzvPjii5g+fTp+97vfdYaNeO+99+B5Hm655RZss802eOutt3DSSSehubkZV111FQDAdV0ceOCB2HTTTbFo0SKsXLkSxx9/PBhjuOGGGzrFLgsLCwsLC4uOxWGHHYY77rgDjY2NuOeee3DEEUcgk/FfVw4//HAcfvjh3Wpf1S9OZ599NtasWYPx48ejtbUVe+yxB/L5PKZPnx4pwtdR2H///bH//vuL5a222grvv/8+brrpJvHiNH/+fLzzzjtYunQphg4dCgC4+uqrMXnyZMyYMQONjY1VjemxOA+dR+wEHq9LUQgOY9lxsMati+RW4kwC1wQAvnbEYxR1xGcy1pTrUGBZNJdDXRPP8pshrmCo/LG9SIFVDko81NGiKLpZYlT0w7VXcWyVP++4vE0kkitFbIvJmVKpT/M4Ve4rNGiqh04JU2yijIYReMRnhjgDlQVENF6W+cea66Aa6Qb0c1qwWVC4uY5kkCW8qC9FBg5ooBuhzIUHJsbJESKi6hz4560g6WNqwESGcj9/kb9QFzCLPJ+T25bjAjODVKn4cluh76sWX3YSrzndvqQ2cfbL45vYTuVYaLZWKuZaCXGaJwpmtMVkm8ckjRuhGhMTZbIS7ZM2ucyRNFAq+xSsEjZkiIvGWr86wWqvFq7rj7mhkEWrmxFseD0toMgyxgoERZYJip37d4EDP3qUZwIvMSdkC/l9I927oS4pPnpX3256/lTSNVUTtRi2ick91lUszkbEOD3++ONobm5GY2MjTjjhBOy///4YOHBgd5sl0KZ0BDNmzMB5552Hd955B57nYeTIkV2eAn3NmjXo16+fWH7xxRcxatQo8dIEABMnTkShUMDixYsxfvx4Yz+FQkFEBgLA2rVrO89oCwsLCwuLNmBjKrmy3Xbb4dxzz8X48ePBGMMDDzwQS350R726NmcOr6urw84779yRtqTGhx9+iBtuuAFXX321WLd8+XIMGjRIade3b1/kcjksX748tq+ZM2fiwgsvjKz3eFRdTE4Y7mXoPtdXpT5KVusaUkJNkKvHoUxEl7R4eZFZHABaSB7rGUGGhtnC+wS6mj4Ztb6cBykbMDF76HKkTWOmVfTpb1Pby/mhqoHwDqUIFiAakZcEM6uXxIrEeNrMZ/aE58nC+ThQczh5IKCMSjq1MAN7DS3hW7kvBMPUl+YBEFDU+H0RKjKO82WP8YgiAgcEJZ4/inki6o6KcdRoMH4d1ZCSEnkUGCrsNR1foDKDxKOnAACEiggmf1+iXCeR/Svk4kpCbH0v0IqaEDkXVzW2yTUOqRZhx4+Fvz0+i310HPm4RyNL46DrqCrpqqL7y5Fy4XgOWMUcaHokcFj7T2Wf/Ng4f99MoELrkwuqHjTXwnH8/QkBMlTNl1VPC4Ih80DR7PlMOX+WhM8apv5LwnvRZQRlzxF2luAgHzxR4+Zo1EIa6tDFM5Mq21SJ2eL9xYH/d8KiY3HzzTdj2rRpmDt3Lggh+M1vfgNCoueBENJzX5wOO+yw1B3Onj07ddsLLrjA+NIi45///Kfygvb5559j//33x09/+lP813/9l9LWdGAZY8b1HOeeey6mTZsmlteuXYthw4alnYKFhYWFhUXnYyP6VDdu3Di89NJLAABKKT744IPe96muqSmMnmCMYc6cOWhqahIvNIsXL8bq1auresECgNNOOw1HHnlkYhs5eu/zzz/H+PHjMXbsWNx6661Ku8GDB+Pll19W1q1atQqlUinCRMnI5/PI5/OR9R6I8t1c1yq4Bq+lFGiAmjIb/GWq1lXLooQclxaQEuppAeuCrN5ZWsaQ3Bqsc31moynTIrw0rhcI2RQqeVRlpUJ6DSmhxcsLrylPy+iXaY6dfxzisvbKnp9+TOKYkLTVxv1+03t7OniOLQ45goiCSUybn/mYRx9R4gm2Z7vcMmyVYcgT/5rgeiaIPbXcMkxn7zyUgtwifq06zr6pbEExiPThUXV1tIT+jh+11OzlUWKOyNWVVLvOn7c5342fNTrZozbWUayAOAWSzvKYbNPHT0IJ6dgtk11UGyPuWJhsVvpMmUtI749vi2Qzb0MNPH8frd8U/XiCgQltkzWaDmMh60qD2otOyGyXSv61kcuVUeOUxHOolWVRTwpS1m0aRhYrrJZ/vORrzK836G8vuBm4IMgHbFYtLSqsa5KOSYbMNPljqstpstTHXZNt0UJ1FjamT3Uc5XIZxx13nCKn6QlI9eI0a9Ys8fvXv/41Dj/8cNx8881wnCCRmevilFNOqVqAPWDAAAwYMCBV288++wzjx4/HmDFjMGvWLFCqXsBjx47FjBkzsGzZMgwZMgSALxjP5/MYM2ZMVXZZWFhYWFhYdC8ymQweeughXHDBBd1tioKqNU5/+tOfsGjRIvHSBACO42DatGkYN24crrzyyg41EPCZpr322gtbbLEFrrrqKqxYsUJsGzx4MABgwoQJGDlyJI499lhceeWV+PrrrzF9+nScdNJJVb/QyYit4q55OQBQZhlkiSfqxPVhfl4nHs3mSFXEeVZw7o2tL9egzimK/laV6kVVcgcemr28FBUXZmkO2QjfU2z1smj1siKPU56WE/M3uaBqVIum6UjDDui6A93jA1Svr9q6UNV5eXJdNDV/TUSvJrENQ7N+VuR6UsZqj8EJNE91xEEdyQoGg0fQmeAyhlbmohgwTq2MoiQxBPVSfiZuD9/eyjLIBjqTGlJCK8sK9qKeFuB5/vhcSxLOUdXdyMeKz05nldJmefftrqaeXahNakstQpN+RY6ErASlTps25zj2ilap86qUxVveXq2uKQ1owJTGMiQJ96uawd0LcpQFbLkHqYYcQCmDGzBOXsZDvVNEA/W1kqZoOq5pKnhZZX2JOSh5YUSeykoT//kkPR/Ffl4mMp9K0bpJLHcS2so2cdu6rPbhRvSpTsY+++yDhQsXYvLkyd1tikDVL07lchnvvvsutt12W2X9u+++K5JUdTTmz5+Pf//73/j3v/+NzTffXNnGU647joO5c+filFNOwW677aYkwLSwsLCwsOjV2EhfnA444ACce+65eOuttzBmzBjU19cr23/84x93uU1VvzidcMIJOPHEE/Hvf/8bP/jBDwAAL730Ei677DKccMIJHW4gAEyePDnV2+YWW2yBxx9/vEPGdBkx6pjC5dDbEL8ZBc14SvTaJk6zYBJKcITXVGL+b84G1TkO1rk1KASeVh0thmwCCfcBAn1DcANw9ilkdFw1I7H2UTupHp0+T0XTxPM4SZF0+vHQ+45jmdqqGzBFu0Tmx0wRWWEEIgCAeSJyi4/PMxuvZTk0oqjk9waALGfR9OhKeGgNour8HE4MLYJFcsIoI7gi2o6jhrhiJFmDxffhNnmgSlSn6RyZGKfwmJg95UqgSMgGnsAA6VuqySjf1hqGSbZyGNmrIIt8W6ILAQMD1Q6GKe39okPXVZn6ANSoU485oIwBQRQvghp3OcdfzmfLKGT9Z1E246JfrhkNjs84UXjIEVfUMYzoP0FQCq7dVi+LgpdRs6IHV0gfp4A8LSuZ8vXni65fCseonHsrieVuj1apyxgmDQRo98jdY3n78Itf/AIAcM0110S2EULguu2tS1A9qn5xuuqqqzB48GBce+21WLZsGQC/DMvZZ5+NM888s8MNtLCwsLCwsNg40VlfstqDql+cKKU4++yzcfbZZ4tkke3REPUGpM3aWw5yetTRorI+rJkGKaeK3yfXQwHABjcrGCePEfQJ8i/loWb8BvOUGl26s5wjZeEdtnrZSF2vUIOUHDFkqgcle4J6FJ2uaYrzmivpREz7mLfTaM4aMb7ERgXetAChCuvkMA+tzD8P67w8HOqhBrIX7CLHo9+0g12CB5dH0YEpGawdMEDypougCrNRlI6ZA0+pY1diGRQCj95VoigrM4GxrI3heOqeu5zjKy6vl0M8eAnReKaM2WmYmCT7/Ggt1bZqdCx8H96XDD+TPFOWFRtSshNpmAhj3rKqIkdVW6o5DhFtIfFrYvoduWhxs1hd8KN6C6XwPw1961uUaDf+m9eyk6PquAarECwXvAw2uDlxjzdmWsXzkUe7KvOLYZqqye6uR9Hpz6FKbFO111WXYSP9VNcT0eYEmMA3/4XJwsLCwsKiJ2BjTEcAABdddFHi9s6qkZuEql+cttxyy8SEkh999FG7DOopaGtG2GY3ZJBc+NqZLOWZpT3xxp8lZaxx60QUis8MUWwI9l9XrhEZv2tIWcnyrOsFPIT6Iu6pce1UnpYieYBiaz4ZIoRkb1v21NNomszetRoFJu9vQkXvUNZsRNwpT7TheWsAwCOeH0EU5GAqeaEWyWUUzV4OCLxiF17wP16PrIysnAcJTGQHb9Yih+RzJrIlG/Qg/r/hsfazfZdBEUQoEQ8lj3vwWeRpCS08b04QsRTnmVdk7fT2sn3MzDrF9RnOMb5tW7PJ+7aF11/0XCdrXAAo3jbV2Ks4pq29kXFy7cTEdhX0TXH3qT5nE9sXl2/KZUQw4GXPQYa6aC0Hz6PWLAivsZlr9es3Iqzf2MpyIQvlIdQ7iSi9IFrYzSvZwbPEVVglKjGyMltqer5UQqXIXRNCbWD8s0odQ47yI8q/30TMnDkTs2fPxnvvvYfa2lqMGzcOl19+uTE47Ne//jWeffZZeJ6H73znO3jggQewxRZbAPBLm02fPh333nsvNmzYgH322Qc33nhjJNjLhDlz5ijLpVIJH3/8MTKZDLbeeuve8eJ0xhlnKMulUgmvvfYa5s2bh7POOquj7LKwsLCwsLDg6IZPdc8++yxOPfVU7LLLLiiXyzjvvPMwYcIEvPPOOyK67cMPP8Tuu++OKVOm4MILL0RTUxPeffdd1NTUiH7OOOMMPPbYY7jvvvvQv39/nHnmmTjooIOwePFiJbWRCa+99lpk3dq1azF58mQceuih1U2og1D1i9Mvf/lL4/r/+Z//wSuvvNJug3oaeORWrJet5QdqdbP4quQXPO6TaRW5lwCggbZKuT+oiKwDfC3AejeHlrLPOGWoK/ROrSwT5P0xjR8wPXJ2YIM+iaNiXhotAiqJcQrbcbarsqapEtMUlyslDoq3pzXlOhyfnfDC7Yyi5IUV4ilhIj9SC/P/9QL9Rg0pwSNluCLijSEo9A4HDK3SsW5lmcBTDj3qGurnvMmx5MiPEqNKpB9nnQC/ruE6z38IrS/XIE+z0n6OWnHe4HVXl6Vai8QyPGnLcBTGRkBcg+Y6a5WQpE0R9oicY/H9xOdek9eH+bUcnaVh8XqoSuDMlc6suQZ7I2xcFfdP3PY0bJO8XtYIZuCiWPbnyzyCfK3/7KpxygpzvdarRT0toD7oOkvKYeZw4ii5nDzm5yqrpdHIOUfKZM7Xy8xpWysOpMkJF8faJT1/zPnnurhWXRd/aps3b56yPGvWLAwcOBCLFy/GHnvsAQA477zz8KMf/QhXXHGFaLfVVluJ32vWrMHtt9+Ou+++G/vuuy8A4J577sGwYcPw1FNPYeLEiVXb1djYiIsuuggHHXQQjj322LZMrV3osDN+wAEH4KGHHuqo7iwsLCwsLCw6AWvXrlX+0pY0WbNmDQCgX79+APyIt7lz5+Lb3/42Jk6ciIEDB2LXXXfFww8/LPZZvHgxSqUSJkyYINYNHToUo0aNwgsvvNDmOaxevVrY09VolzhcxoMPPigO5jcBan6mSnlUfDcgQ120ull8sqE/AGBAbj0cMBGlU0NLwttyGUWWuCL6jWsB5JpWYbZdCgRMEt+Xw682Hnr/XMdjyuuTVFnc1EbXGZSVmlPxzFFSFfk0OZwqeXlx++sshFIdXoqs0zVPALCq7NPODXQD4AAewshIFwRZUSssjNZz4PmsoRYJxOFHn/nbisSPCuPHk/8WHrakJ9PZihILvfhSkH/HIaE9vlcfzcycdB5iERwSByxgL+P0TPF9OmDKeXMS9D3V1iaM0wyZriv5vohnXhDUa9Nyn/HjUIWa1tcbmhkqzpbITF2SrintuTOxTekYN4P1jKC54DPe2XwZw/v52fQ3r1uFOlqUrjmq6CZLLBM+40gJBYSMU56WscHNKc9SoYUz5GiSqw6kYSBNc0tigOIY76TnkBvTRs7l1xXoSHG4Xsj+/PPPr1jWhDGGadOmYffdd8eoUaMAAF9++SXWr1+Pyy67DJdccgkuv/xyzJs3D4cddhieeeYZ7Lnnnli+fDlyuRz69u2r9Ddo0CAsX768os2///3vI3YsW7YMd999N/bff/+K+3cGqn5x2nHHHRVxOGMMy5cvx4oVK3DjjTd2qHEWFhYWFhYW6FCN09KlS5WoeFOhex2nnXYa3njjDSxatEis4zmWJk2ahF/96lcAgO9973t44YUXcPPNN2PPPfeMN4WxxEAzjmuvvVZZppRi0003xfHHH49zzz234v6dgapfnCZNmqRMlk9ir732wnbbbdehxnUnGEjVngQlDLmAdQIg8pdwz6rVywpPjdciKwV5nMqegxbJM8sQT8moW/IyxrpNHgiorEMK/q2mxpOMaiLlkvNAmfOlxFc4j9Fs6FFDVVSX5xonj7AgO3SoRQuZBgAesM71NURr3DrkiAtKVQ0Pj5xzQRRWpsicyJx4xFcOrtBG6XmaPJBg33jvmLMdMruytlyDPpmiqO9VCvqQPeekqKu0tek4KxdrG4s+wanEgqljpruPjFnPNRtEZGmF/4D4953K/sTawajKYLFwnDIQYa7i6/fRikxYHFOn3y9J0V7cDhNM95GJGdG1mzW0hIKXQSnI37RZv9XYps9XAIAhuTXYNLMWOaLq9IpShvti8FwrsYwfsSdd11nqxure2lptIPEYJGZ6j94PlZ5J+vNIb896YT7uxsbGqtIJTZ06FY8++iiee+45JRJuwIAByGQyGDlypNJ+++23Fy9YgwcPRrFYxKpVqxTW6csvv8S4ceMqjv3xxx+ntrOrUPWLU0+rUmxhYWFhYfFNR3fkcWKMYerUqZgzZw4WLlyILbfcUtmey+Wwyy674P3331fWf/DBBxg+fDgAYMyYMchms1iwYAEOP/xwAMCyZcvw1ltvKYLytPj000/R3NyM7bbbDpR2oTBfQtUvTo7jYNmyZRg4cKCyfuXKlRg4cGC31I3pDHjMnIdIh+5h+tEpPgpeBuvLYUimByKYglwQicLrkRW8DNYW88gF0SfZvIt8EJHFo+/MXpdjjPqrJtNuaF/ljLtJuqW4iJSkmn+6XbpXHIEhciuurcxOUUbgCQbH89kcnnMGkCIYsz4byDjzQoU3zZdF/0LjJGnO4AmmqISyiLKijCkee2vARCrMoNwPYcjCP//1tCBYw+ZyHnlaBqVBFFMQUadmElfPRxJzGqlnpkeXGb4N0CAaKq5OYCXIkXpp83mJ7W307uMiz/j8BbsnMU1AmAlbAQsj8iLQMsdHGDMDUydsMVz7ac6h2D+GIZHhGe5pvs/aUg1qa3xt35aNKzGq/j8AgE2cFgBh7cQsKaOV5UTVg2Yvr+gxvUC/CQCO4yFLPWTkenQxLFM19SwrsUpJzKrp/Mdr4DQ7jOeoixinbkhHcOqpp+Ivf/kLHnnkETQ0NAhNUlNTE2prawEAZ511Fo444gjsscceGD9+PObNm4fHHnsMCxcuFG2nTJmCM888E/3790e/fv0wffp0jB49WkTZmXDnnXdi1apVSgqkn//857j99tsBANtuuy2efPLJiF6rK1D16xqLufELhQJyuZxxm4WFhYWFhUXbwRmn9v5Vg5tuuglr1qzBXnvthSFDhoi/+++/X7Q59NBDcfPNN+OKK67A6NGj8cc//hEPPfQQdt99d9Hm2muvxSGHHILDDz8cu+22G+rq6vDYY48l5nC6+eab0dTUJJbnzZuHWbNm4a677sI///lPbLLJJrjwwgurm1AHITXjxJXthBD88Y9/RJ8+fcQ213Xx3HPPfaM0Tunzc8QXICx6DlaW6oVnupq4whPzGMUatxbrXV+UV2IUOeqiLuMzUg2ZVhGpUvIcJQLLA1Xz6Eg3Q6VIlDQ5TkyQmQy9bTQyL9nzjeaaSadvAmQWSbc9Gm0lt6FyPTJGQcGQ4RndQVAORI4tbh7rpNxbrdr51Y9vq5dVPOgcKUusoityMTmEoYSypE2Letkc/rkO69PJ9QY5OEOmR9Ppmo243DNx0Gv/yZ59mEMpyI+VwJ7oUHRCFXINpWWV4uqcmVBJQxcyTPFz0rVNpog72SZPa+8xGllnQjWRcon7GvQ4erty8G+tU8SXrX3Qr85nl7asXSnauqBYWuwnasw5GtPKc4kBUS1mlrqgLIwQ1p9jSbrJJK1e3Jz9fklFllvut9L1Vkln1qV5nLoYcUSJjhNPPBEnnnhi7PaamhrccMMNuOGGG1KP/cEHH2DnnXcWy4888gh+/OMf45hjjgEAXHrppTjhhBNS99eRSP3ixJXtjDHcfPPNyptiLpfDiBEjcPPNN3e8hRYWFhYWFhs7uuFTXXdiw4YNioD9hRdeUF7Ottpqq1TpDDoDqV+cuLJ9/PjxmD17diQnwzcNaTVOav4XT/nX06J1vio1KMxIczkvmIOWch51mRL659cDAOpoUdR7kj06bpsenZM22s00z7SQ2YwokxUfuafrAtK2bYu9SZFTGcnbp8QLyUIpS3uLl0ONFx+ay9kgAEKjJrxt5udqaspsAAD0cVpRT/3EclniwkFW8dKzxI1obOR+edtV5XoUglpgekZrfjzj9GRGXZx0jE0aJn9flUL3dXTQ1lVmT/jc5P5M9dR0230bop68PGbcdZ10fYl1cWxGwn9YKOG5mFQdVLidSb8N2ijAuI6f+7QsiYxEJqZSlnHpGVfwMii6DvIZf1ZNmRZRi26dW4P1bo2oguCQIM+cF17LPM8Y12Ly6zOrReLpmqa4aMLQvnRsZFI0YdJ+1UTrxV1H5a5inDayF6fhw4dj8eLFGD58OL766iu8/fbbyue/5cuXK5/yuhJVi8OfeeaZzrDDwsLCwsLCwgIAcNxxx+HUU0/F22+/jaeffhrbbbcdxowZI7a/8MILIhFnVyPVi9O0adNw8cUXo76+HtOmTUtse80113SIYd0NL20eJ+UN3pzjhXtfa8s1IqLIz3Uief7EQ1O2gE2yPlvhgopM3SWPRmtmxXgOlSJKlLZV6if8/qPenNyXbIe+j7w+KXouyYuO06BUjKojDGXIjAENGQMpcfQGN4s1qEWrVA/OkVkORoUubb2bR9HLRDRdX1CfXq53ChhR42tF6gLmibNIBS+LPC2JqDvZM29lWbR4ObQE4ywvNor51WcKKDEH5YCN5HqOuGNcTZRakr5H7oczRpTF76ucf42JiaujaLqmIjqmhMi9pGsw0raCls4EUwStAiZdc56TeDyBeOaqmsjBdPnMKs+VX0/lgEXaxGkROso1bl2EOQIkZt0Ls957TK020OLl4BAm+uK6Jt5WjtTVnxlJWr1qonOT5h33PFPaVGCruiqqrjvSEXQnfv3rX6OlpQWzZ8/G4MGD8de//lXZ/vzzz+Ooo47qFttSvTi99tprKJV8mvbVV19Nle3TwsLCwsLCooOwkX2qo5Ti4osvxsUXX2zcrr9IdSVSvTjJn+d4bgYLCwsLCwsLi67CKaecgosuuggDBgzoVjuq1jideOKJuP7669HQ0KCsb25uxtSpU/GnP/2pw4zrTpQ9CuJFSyhEIJNvzP+UwPehxEPZc/BVMUzdkAuSWhbcHDI0THJZmy+i1ikJ2pcnNpR/p0nqpn+2qYRqhNmR9ilLuSQljauW5k7+/KJ+Okqyh4KJi7/srwTgH+v1bl6IsU3pHFaX6gD46Sb0EhyUMJRd/7hscEPh+Gb51X6BXs3l4+kKlIK/gQCdJxhcV6oRx7DeKYo5AH6qCjmkOilxYNLnTH5k0kCMJRWkrnRe+LxNn9oSP/NWUeQ2uR1RPt2m7T/OLgB+UlXD50SlTUKJIL0MSVxZks4Anzf/NMfhSoJvKn1y6+O0ik9w/BOy2IeFUoIyc5QUAwUvgzwtI0t523Cb/lxLSkxZSeAf10buI65txaS7Cfum3acjQBgDqSIFSFwfvRn33HMPpk+f3u0vTlWHA9x5553YsGFDZP2GDRtw1113dYhRFhYWFhYWFhJYB/31YqTNK9XZSM04rV27FowxMMawbt061NSEpURc18Xf/va3SBmW3gweqmtKrKi3E14lL0MhmlJscLNie5a6or8MdeFISRgB3zszlS+pFHIesTuFKFjdJ334rdjWxtID4rh2cmFMmeWQ13FkqBeKxRkRLkRzOe8n7XN52D9F0csofXAhLYCISFrHKlanjN0n4zNGeVJClmZCoTRTz0OLl8OGoFh00cuI66SkJWYtB+HfaUT7EcZEYor8wseVBc2mvmhQRDmxfcrUASY729Kveaw4Vq76YAR57EQbkg6nvq2D/ptQTQCF/DwqeQ6yPHDMSQAAYQ5JREFUwXVWZBlRaqWP04oaUsI6z3/m+8lwJUG4xhQVvIxyz+RRFqkLdDE4Z6iidkULFCexqZXmWo3AuyNZcIv2wXVdLFq0CN/97nd7VAqk1C9Om2yyCQghIITg29/+dmQ7IaTb0p9bWFhYWFh8k7GxRdUBfm3ciRMn4t1330Xfvn2xbt267jYJQBUvTs888wwYY9h7773x0EMPoV+/fmJbLpfD8OHDMXTo0E4xsjvgMgISlOYA4r0KxWvnVyVvylS2QA57z8AFCOAGnhlPUxBX6FMuI6AnNjSzP/FJ4OJKVbTl+z5fl9br8kAiuopKGpm2QklIqLvzHiQtGoPncc2HyrpwRsfkxZtSK+jgeqeil0GNU8IG19ct1WcKcEFFkkEAIuEpAKwt12J5a2Owr4O6gNEpSqykbwNN1DjFrdPX83PA55mphkHStH2prqMOSMra1msm6RilKR7d0aiG8aqsU0tmyeL6KnsOmos5DKz3E/CuKtejgfqSjBpSgkM8kQDTIxStyAiWseRlRFoNjxEUvYxgS33dpsoyyZomWZOZpGOKY+JNbeO2m9abnl1J16bp2VlNOpd2YSOLquMYPXo0PvroI2y55ZbdbYpA6henPffcE4CfQXzYsGGg9Jtbn8fCwsLCwqInYWNknABgxowZmD59Oi6++GKMGTMG9fX1yna5LEtXoeqouuHDhwMAWlpasGTJEhSLRWX7d7/73Y6xrJtRSYujJFeUWClf7xEyGRl4oSaGQgQuuUEuLF5ugULViegJ4Hj0FJCOYYrTtpjYk7Tf99PqZ0zeeyUvr6OhM4H6vMugSpFatVwGU85vHOPEt6eFzLS1lHMo5xwRVQmEhXsLXgbry3msLtQIe2ocv13Ri9EyJejM2sJolBGNKI29jkjlceJsSdIRVnMtVhw3pRaqo65L8UxIWeoj9hpL8x+6oI3Yny+n2FkUIC/WouxSUWTcZVSURuEJYB2ppJQj3Tse8URUXcHLoOBmUHT9azlHy4ouz1SAt9Izi7fT11d6/qRZrpapTWKeLToH+++/PwDgxz/+sZJDkjEGQghcN5qctbNR9YvTihUrcMIJJ+CJJ54wbu+OSVhYWFhYWHyjsZF+quuJZd6qfnE644wzsGrVKrz00ksYP3485syZgy+++AKXXHIJrr766s6wsVtQdB14rlSYlJjZCUDSDikRdUE/zEGGBt//XQIv0DtR4uunON9gikyKY5FknYC8XW8T2ZYigqQtOoGk/jlYXD9VaF3SajcAwGWhx+0CIBKLpPelnzeTvif2OLSxKLHPPtUJ/ZvHqCgW2lrOoKWcRU0mZKNaAw++UgRjNWVHgPAYcfZNzu+TkyI+c44bGVvXSCn9xuidEr3/BI1LZH0bvPyO2icN+9gW9qya6zsJ1WieuLZvQzmLulwJ/XPNAHx2qTUo3MuZpiLjjGhWKTxe8hyh3dvg5rC2VKPpBJ1IXib/N4mwRpVyw5kLF8ezmPp+adub2ungc9Q1m52FjfVTHZcJ9SRU/eL09NNP45FHHsEuu+wCSimGDx+O/fbbD42NjZg5cyYOPPDAzrDTwsLCwsLCYiNFT5IHVf3i1NzcLPI19evXDytWrMC3v/1tjB49Gq+++mqHG6ijUChg1113xf/93//htddew/e+9z2xbcmSJTj11FPx9NNPo7a2FkcffTSuuuoq5HK5qsdxGQWRvB9X0g14MeyF0DhJXjwlDMWAucpQT3h4vqYp+vov53WK+84vb6vkgRkZpxRefEVmI4FVMrEeMuNEtHnHsVF8X36cqo1ekYvLygVY+Tnk4+pslEfalsW5GkbDIwTlEhXsln4t1GVKynHkjFOlsSpp2OK26d5zczEPQhjqskWxPcmL1/ViiZqrKjM1p21XqU2aPhgjyvVpujb5HZp0HVcjWAjzs4Xr0uiT4qCPTQzPKjF2YHNLMec/nwJbWr2syNuUJS6yJGQcXRC0ellsCDLbry/nBOO0tlSDlnIWjblC0D+Fx+JZ8TiGKY45TfOMqvaZyDTmK06fFseAy3ndOhUb6ae6nigPqppj3HbbbfH+++8DAL73ve/hlltuwWeffYabb74ZQ4YM6XADdZx99tnGtAeu6+LAAw9Ec3MzFi1ahPvuuw8PPfQQzjzzzE63ycLCwsLCorPBP9e19a83QpYH1dbWYt68ebjzzjvxrW99C48++mi32NQmjdOyZcsAAOeffz4mTpyIP//5z8jlcrjjjjs62j4FTzzxBObPn4+HHnoo8vY5f/58vPPOO1i6dKl4sbr66qsxefJkzJgxo+qQRTeoVafDC/QwMnuhe6AiFw71lLZlN8ow6NFbGeoo6+NQrhBdpayL6AjUZRO7wv9lmqdo8sZ4H3K/uqdu6g+Ieu0yeFvONBGJJaoEQhigjamfH7mtzkZxmJiWtDYkgY9RJtHzWOncJx1nuW/TsY7zmvk55LmkSh5FTaYs9HnFSl611G0a5qcSo5m2L45qzklFXV3K/8CYMtMn2VHN9VvJh066bzgEeyZF3cklK2R7SmUHJMuwpljrtwUT2qY6WoRHwlxMq0r1WFHsI7KDlz1H6PPWFtU6dmUt55wMPQeZv64NWiREn2lxfSWx4nJ/cts4e/g5KrtdxDhtpOiJ8qCqX5yOOeYY8XvHHXfEJ598gvfeew9bbLFFpxbe++KLL3DSSSfh4YcfRl1dXWT7iy++iFGjRils1MSJE1EoFLB48WKMHz/e2G+hUEChUBDLa9eu7XjjLSwsLCws2gPG/L/29tHL0N3yIBOqfnHSUVdXh5122qkjbIkFYwyTJ0/GySefjJ133hmffPJJpM3y5csxaNAgZV3fvn2Ry+WwfPny2L5nzpxpLBVTdh2wmKg6IPQ+HOopbWT2glcaN2kMeK4g2eMve1R4+LJWSt/XY0R4eLoXpjNZsq2m9rKdyvxi8pvI3pi8TfaQkzy16H1LQNI54YJBkvuS91X7Dvvl63kOEG6rfIxkNiqNJiTWxJjtEYYgYCJdw3PMz0/CxLVQ9miE+UuyJy7bPUX0muJXL2MELsIIqiz1kKVuqoghnZVLw5jFMU6Ra6cNtehMqMT0tCXijl9HMqPZEWxkR4Nfe4xo7DgL2ZKyS0GIgy829AHgM4wix1huPSiYiKL7ulSPtaVa0b/HCFrKfgSe61HUZsNs+EU3ozDVAJTITR2RyM0K0XBxyzr7x5+XnIVj0jhxz8pKjJNYb6PqOhVcHjRixAghDxoxYkSXyYNMSPXiNG3atNQdXnPNNanbXnDBBRXr2/3zn//ECy+8gLVr1+Lcc89NbEsM/wXmSbLicO655yrzW7t2LYYNG1bBcgsLCwsLC4vORnfKg+KQ6sXptddeS9VZ0guKCaeddhqOPPLIxDYjRozAJZdcgpdeegn5vPr9fOedd8YxxxyDO++8E4MHD8bLL7+sbF+1ahVKpVKEiZKRz+cj/QK+h8I8Kry1OM/b1Twbh3iC6dAZqDS6hJIXam3iNDlA6P24jKLkOsIGh3pwqKd4eMLjTOHFceiMkrzetK+JAY7TCuggGguiR+DFRRh5qKBH0UkeT9U6ce2U3z/fpu6jM1BJqKRv0fuNixJsLmdAwZDPlkXbOE/YeI5i7HUZiei3aLDYUsqhtZRBfd6PonOo5+tTPPkYmeejR+aZIvv0tnEautg5VaNhqkKTVplBVJcJia6Ta0BWw5DpaEsknUl3GD1XwbHWGFZKGNzg/LoehVciWF/wn4XyOSwxig1uDq1B/bmWchZFqaZj0XVQCKI+807ZPw7as0aNpAsYJxbPOOm/Tdt07aLOMJnuE6Zdfy4j2rMy/muW6dwyRuAa5tEp2Eij6rpLHpSEVC9OnZW5c8CAAakm/vvf/x6XXHKJWP78888xceJE3H///dh1110BAGPHjsWMGTOwbNkyQd/Nnz8f+XweY8aM6RT7LSwsLCwsugLE8//a20dvRbFYxMcff4ytt9660+VBldBujVNXYIsttlCW+/Txv8NvvfXW2HzzzQEAEyZMwMiRI3HsscfiyiuvxNdff43p06fjpJNOalMRQNcjgEeAih6kygS4hEQZJ3DGKdyLswiyd0OI2WvnOipXiqTTtVEcjkfgUHNuFK4JkvdlLPSkHD2fUQKjpHtfJoZK3kdnkRRtkmfWOfn2klgGxZRvJ5VWxRAdo9f5MrNSJhtUe+MRtcvEbgH+eS55BBnHE/Yp5leYo6sda2UMaR0FQ2ugTVnfmgu87WDfQAfC+0qTG4gp9ctCttTEAMWxnklsWlrWSb7ejdsT7umKY+j3QazOz/83iYTX28RF0lXKKabvJy/LWfHVZ5GvaeNRlGAAAxEMFGNEyaBPiSd0TPxfEYHpOsg6vCKCz7rxZ5J+/uUoOp19NLH6cVFwyrHQmWVG4HpUzEW/Rz2EbBVv41D1/lf6V/qOrBJ9dDo2UsappaUFU6dOxZ133gkA+OCDD7DVVlvh9NNPx9ChQ3HOOed0uU1dxDF2PhzHwdy5c1FTU4PddtsNhx9+OA455BBcddVV3W2ahYWFhYWFRRtw7rnn4v/+7/+wcOFC1NTUiPX77rsv7r///m6xqVcwTjpGjBiheLccW2yxBR5//PEOGUOOqkvy+PRtsibGA4l4/DIbZerPBFNbPn3dQ3YJASuTRAZG1lxF9EQ0ZLnSRpXotpj2i2PW5LHlf3k/MiOmb9cj8vxo3fQ6IxkqSwMjK2VCYh2wCudWj+rjxyhLXYDGs2hpI4oJUT0jff5rCzXYUPDZg4zjoUaKhioZctPIDIluuyNlnaZSDi1eMzApb078PJPYp+h8lf5Ruf+0fcXBdK21J6ou7vpsj25KNkdhb5k/nuv6V4jrUlDKBPNSly2Kc7yuXIO1xRqsL/nZwTljWCyH//mQIznLHhUXHmUswi7KzJKsVdLzMSnzCFikcC7hsTJFBcvaU5OGkrNEnkcDG7xIv0nPM2WsLsrjtLFG1T388MO4//778YMf/EDRUY8cORIffvhht9jUK1+cLCwsLCwsNipspHmcVqxYIfI4yWhubq46IK2jYF+cYuC6BODemLSeX3b8dLnQIozkmkc0/iI1MRW6txOn1dCvFTmfkYn90W32YtgegMAJOvA8EmYeDmDy7HQ7+JhxdbyEd6kxFvwGqMTuJeVJquTtp2Wjqnm2tJcNEAwkIDIzc3s8SW9SqX6aDCKxCvK14RAG16NY1+pHThUKGWQyvqedy5bhMgpe9imJndNZBAr/2jDVFCSB5iUNe2lihipp6/R9TWOY2Nn2MEOVoknlMdJGZAJqVLLO0LYF+v1CCFMYKMYoimWfLfHKFMiEmqayR4WWiZIM1pdyoR4KXIfnPw8cwsIIOc+/tzmrJOci88dM1rfFVRjgbV3DOTQ9J2SWWz+ujKkaJ8YIvGBuuv6SPwfDbSySt8l1u+c/3hsLdtllF8ydOxdTp04FEJ7P2267DWPHju0Wm+yLk4WFhYWFRQ/HxvqpbubMmdh///3xzjvvoFwu4/rrr8fbb7+NF198Ec8++2y32GRfnGLguVQwTiYtkHL9RSgg/x/XBQhlRh/ZzPqYNR6cNeLLptxCnhbZIW8V/fD/I+pc5JpubpBHisjbg23yGEzx6NRjJGuldHtC3QHEv7JnrnrEGuOVyBhFdVRhP3pbQwcpGYhKEU5pwdkA07x96Cv4sfWX9LkqEVqyV05YqPHwKAplB+Xgus5kPOSCXFFlca2LHYWdOjzis04cLiO+F0gNsc4pIuPSMkyVWKs49kdmGCqNF2djXL+J24HY66q9HEWqWnXaIISo+bXKLkW5GPwngKkMeclzlGzgJc9RIwg9KhhoSl1xLMqgkOtzMte/xnmuI9eL1q5L0vLpObJk1ltmEuX1SbpD11OvBf3Z6h8nid2VnnmEAsyj6jqJGe50bKRRdePGjcPzzz+Pq666CltvvTXmz5+PnXbaCS+++CJGjx7dLTbZFycLCwsLCwuLHovRo0eLdAQ9AfbFKQaCcTIwQTpjYdIc+f8SEC/8Zq54iUTvU2V6AANrxIkDkFiPNeIFGyLNggASn6mA6n2LLMNMNdHzCCBHx5k8F67XcbyoS81tD3I2McGgMBDKFPc4jRZFH55o6yv5gGm1J3q7JNYrDVOh54eSmaS00ZtR/Vj429O9YSmy0w00VbX5UmTfsIaXaq9JU0QRpDiT1zEWZa1iUG1mZqBybqakayZJ6xS3j2mYNumi4uwFYu8RmLZFOgjvnzgQrQ1TbzMUC1mUW/z/BJAMA+CKY5UhnvhdcDNwPaoce5eFyy6jIVMtGNTgmtNsUqLotPOSxC4WJY0U/1fe35SBXobCusv9S88l07i+EJFPFOoBDP7b4Lm2Vt3GBvviZGFhYWFh0dOxkUXVUUorRs0RQlAul7vIohD2xSkGnksANyajNbRIC+5w6K/z4vt5sFl2ViLEULIHKWuK/Ha6NxnDzBgYJ7HN8G0+9MhU7YxgrtJ4/B6B52rZwaVjoDjW1ANF6MgZ5Ucm+w3sgaJNMHWmDJwc8SQYrHbomExIqq+lVK7X2ojjo2mYwn6l7WIlUSKrTJGOMrNVKdJTzk/G+w5tl44nUzOtm7LMy32mzdcUYYVizo2JnTLpWkwwMbZxSLo2qvnvU5xuLQ2YIVccP9y+nFE6/1CvP0K9cH4ugVumKJaCbOA5B3VZv25h3iljnZuP6It4dJnnhcfcoR4cwiLZ/uN0ZXrEZRw7qF+r8vhxLJIJ0Wso+FcwWvJG/ozUPzGoP7zyNyaPdI/CnDlzYre98MILuOGGG2DK59gVsC9OFhYWFhYWPRwb26e6SZMmRda99957OPfcc/HYY4/hmGOOwcUXX9wNltkXp1gwj4C5BCzO9RPONREeiPD8dGaJSG3l/SPtGMDzoUiRc6EnRcS28EXbxMbEe+3GOSSwVeHveNbH1wFIq10C5gbaJd1MPULRo/AIRFs9Gi8uf5E+J3+beR5xzJJMA6v6M4PTWo3+JAZpczEJViBGt5PElPlMocQEMYk1rXBdmPRb8jHiDBPltRMFexHtP4lxUI2odE6jv+X+qtE8sZjtJoYizT2Rdp9KMEf2pds3GvELMR99GyMSa+hSlAsZEK7tAQN1PFEf0WNEZI9vLWdRdqmSv0ipP+cRlMphHiRKGTJB7TqHMsUOV8uLJEc8yrmX9EhI/riU2SXmhddA4rHX2HpxnAAwL/5aiLJN2vOdye26AAzGa7XqPqrAzJkzMXv2bLz33nuora3FuHHjcPnll2PbbbcVbSZPnhwRbu+666546aWXxHKhUMD06dNx7733YsOGDdhnn31w4403ilqzlfD555/j/PPPx5133omJEyfi9ddfx6hRo6qbTAfCcowWFhYWFhY9HJxxau9fNXj22Wdx6qmn4qWXXsKCBQtQLpcxYcIENDc3K+32339/LFu2TPz97W9/U7afccYZmDNnDu677z4sWrQI69evx0EHHQTXjStm5WPNmjX49a9/jW222QZvv/02/vd//xePPfZYt740AZZxigfzdRzgqWkMjodYzz0PorkiRGOZ5N10vYk+iK7BkTch6kHpnSV7YNpiLBsgL5gEQ4HH5xKfMVKmL3mMnE2D4Xhwpy4Yy5OjWIzjyibEsxWqpSYmRZqeli3YqGuL6d/U1qRfMmY2j5uauJ7U/nif8m7pfN14piue0SPR7WIz1fYzjKhLhSodi5i2lXI1pY3ATGKY4nQvSXaFK1Oyux0IVTsoX7hMYRwZUzWaBEzcC55H/DDLgC0heQ9OxhOML2ME64p+hvlS2VGi6pLOnccIPDdkoKie8w4RwkbRJsVlyxftTPe84XkXua41IzxpTLN18J/9Sr/6s4m36yLGqRswb948ZXnWrFkYOHAgFi9ejD322EOsz+fzGDx4sLGPNWvW4Pbbb8fdd9+NfffdFwBwzz33YNiwYXjqqacwceJE435XXHEFLr/8cgwePBj33nuv8dNdd8G+OFlYWFhYWPR0eMz/a28fANauXauszufzyOfzFXdfs2YNAKBfv37K+oULF2LgwIHYZJNNsOeee2LGjBmivtzixYtRKpUwYcIE0X7o0KEYNWoUXnjhhdgXp3POOQe1tbXYZpttcOedd8bmcZo9e3ZFuzsa9sUpBqxMwMqStsigX+IQXp3wRkhsW9G/ECNIno/i3ITeoa6dqnjrVNImGdrFGqy3kbVVfJpclyRpnpQIIcrCgxRhIqAwc4SxKIuT5NCl1ZwYjm/Yjsaze0RlEYh+jgzjmxmraL02NWLNNIGoPbwv8VsnsXTNi9TexPTE5S+SI7FEX6KtVzFMmIProriHb6o3GKd/SmKX9HWRy9TAMLVJy1eJUeoChkmHYoPChAuKMvhXZaAi4j0KQNIUei6FG+QkakVGsEa8XlvM5Wg+9hKDLEcEJ2n1/Kzc0iBEeu4youqRmPpbR5RlTsOqB8uyfk5aFv3odndVrboO1DgNGzZMWX3++efjggsuSN6VMUybNg2777678qnsgAMOwE9/+lMMHz4cH3/8MX77299i7733xuLFi5HP57F8+XLkcjn07dtX6W/QoEFYvnx57HjHHXdc6udMV8O+OFlYWFhYWGxEWLp0KRobG8VyGrbptNNOwxtvvIFFixYp64844gjxe9SoUdh5550xfPhwzJ07F4cddlhsf4yxxBejO+64o6JN3QUrDrewsLCwsOjh4FLRdv0FfTU2Nip/lV6cpk6dikcffRTPPPNMxUi4IUOGYPjw4fjXv/4FABg8eDCKxSJWrVqltPvyyy8xaNCgth6OboVlnGJAXALiahSt9A+HqjsMKXJ9lVhUllUqWtmXmkSvpu9CmhFiNxOnm+JTXBwilHZUcCk2SaJNAGAeiX7OFKZon0JcX8LKNxkFonxP/TjHfXIxfGPQqXx5OTGRpvz00cLxw6Sh6T49yRcDIywqaI02iy7rn7O0hIhyCHqacHn984dynPhnN49GzouxD/jFrNMWaq5UCiXpUk1KXMnkTy9x+yV9kkvxyTCVkR2BCt/JlLI5hJc3Cpoy9dqmWTeMfQnSELiB0Nn1HJHwUhdXM+InulQKgItjTCLh+Uq6gJjPdsZxpAmLbXwfL3pdRlTnJqT59Mrva+OnOkTOAemyT3XMfBFX20dVzRmmTp2KOXPmYOHChdhyyy0r7rNy5UosXboUQ4YMAQCMGTMG2WwWCxYswOGHHw4AWLZsGd566y1cccUV1c+hB8C+OFlYWFhYWFhEcOqpp+Ivf/kLHnnkETQ0NAhNUlNTE2pra7F+/XpccMEF+MlPfoIhQ4bgk08+wf/7f/8PAwYMwKGHHiraTpkyBWeeeSb69++Pfv36Yfr06Rg9erSIsuttsC9OcQhKrgBIFCfrBWoj7ZOcU6I1IKGIWo3I5x5VDGOke8eMJAuqkw1SxzRtQwXHxeDFhV6oKq4kNBhLF2AGNiQlIGVEnqdGK5nsi7OZqBvVEG9tP4LIsQ0dfLNYPA5cGO93GxWP6/37C4FINziGJuYnwlbFXY/S+LECanHphaJu/fJKcvQZI2oiT227acbK5dzGtBppkiLKbdP0WRXz1Flg5nMebpbOPYLr0ZRrI0jBwZkmQv22PMmlMoZ+LBng6ikppDQCEbG9vE55Fugsk+HaE/tpzx9PXiLR61rbrF5U0fNGJPuUdsZrQ9u/ixintuRhMvVRDW666SYAwF577aWsnzVrFiZPngzHcfDmm2/irrvuwurVqzFkyBCMHz8e999/PxoaGkT7a6+9FplMBocffrhIgHnHHXfAcZz2TaibYF+cLCwsLCwsejp0J7mtfVTTvIInWFtbiyeffLJiPzU1Nbjhhhtwww03VGdAD4V9cYqDR9IlNtO9DSK78Yj39qOLAIWouKKWrFA9KlGehUP3nmVhTludoUredBU6AhnEA2SjmHa41MaqhkgZgjMhIpxa82yj3cRDYvrCdXwgw7ixJFhy4eAkmA4ZSWQaSfw2xSb4xVx5U4mxMCUGlPUnkcSb0jGJaMJ0r16zIcm+yLoYHZtZA2XeL3UZDBOLFMcsVX1q4+g9vbOEg2dAhBFVepKOF0/xoazjPzQGxyXwQFEK1juOp5RM0u8rr2zWuSUlqdRtFyVNTKyOrkvT1uskNfGQfAh1Dam+PoF1rMRWfZMTYFqYYV+cLCwsLCwsejgIYyDtFIe3d38LH/bFKQbE4+xItTsavOI0DgllgEciOTTDfiXnSGa1NGZEFO3km72U43ciSILHRjyV7WEGpzzRkZS8PTngTWkTOZYGEYRO4OhtxHrZQ47xuJNEP2kha5N0VkGaKPOi2yNkBo+OImrBVWGvCYxEHe/Y+ZDEMirVsHA6YxF2wi8G8xgmnVJSpF1FG4z7RNkoaJvjxzPc0Ppy6vuUGX/6iwbb5etI0qwBIWPLXAKvTAV74lIGJxcU6g10UHoEYiIDGNE5acuyjQYdk/FaYyR8JjO19FD6z1gm9jahucx+xjBRbfrvRFvgISwB1p4+LNoN++JkYWFhYWHRw2EZp54D++LU0TBpbOKuVdnx8ohGmUR1DIREN4llzrwEZJQirYp4njFsSmeBwawl4IOz0CZFImaKqInRdpn7DnbRNWEG715l84CIvkocw5hzJK/qiGcTk7zuNGRFTGFhtc+EyL0YDz+9ufFtVT1Uwnh+Y8km5SqObI8ghulL1ijFnbAU2hcd7T3vKZ4TYkXc4TYcWCbNRblOZAaKMvU+lKKFXZdCj4yLDmtm6cysn3RsmcQaS88JkUNJh6fu6/9u+wMsFRlq3zUsNNgXJwsLCwsLi56O1J8jK/Rh0W7YF6cY6CRFp+iEpP59pkWLdIkbsz22kOg4ZnqqHTB5mXHeKtfyCFGW1kb/TTQmIK3mRE8+JHnXclOmMQ0hA8X/qaRziaO9+Ji6DdqyaQJaYSTfi2dKMyPjw1dRaQ4VTm+qvEmJWh7D9oSmpgZJuZNUmjZuUwKDZNpsujb07TCzZElBjTyTfLtAmHmesVM0nBzpvOnHVmeglEg6j/9LjVGW+jCqcTHbJVZJL6KrsEwiU3h0Onx7mx5VHfB462rCXqAbModbmGFr1VlYWFhYWFhYpIRlnFKiI4gYE0xRZLFjClqkbT6OTlSYXSeJ+TGNrXSYNFjCss4oJNT2i+ybNmeKyVOXGROZ5ZK2RXRBAWUQ0UDxfiLnyGxfRCul22SAcA5dqJI3guTzw9kyED83mORlpq0xF90YvykR1VyqCmthGFdiJwCN0dE1bLF9R/uoaFPCcYkSYuqaVA5+wjEiaW68uGsLUK9Hk/5JY3qNUXnQGTcDG6TYIPeh7WtimOI0aAzK/U70a6GD0OZnuxZl2NnojszhFmbYFycLCwsLC4ueDvuprsegV32qmzt3LnbddVfU1tZiwIABOOyww5TtS5YswcEHH4z6+noMGDAAp59+OorFYtsG4/lk4vLKdBC4F5E6uqMtf4axCAOIR5Q/KH8w//E+vYTxPPh9KOvVYxlnB7Q/4qo2RuYQ9+dJ40VsSZpX1AZ4ROT1UuwJfitzk/eTxmNe8MfS//F9xViu3y9zU/6J88jtIb5eRfwR6Y9Gr3llLm38S7NvZAztOoqZs3Jck45Lmf9L/T9pG6n0J5/7NH+u4ZoN5mZaF3t98lveeF3oxzDhvleWSfyffp/K5z44hnBp8Be9zpTfhnNhOp68b7gI/ojy57ePOc4x93xVz4hKz91K163FRotewzg99NBDOOmkk3DppZdi7733BmMMb775ptjuui4OPPBAbLrppli0aBFWrlyJ448/Hoyxb0x9HAsLCwuLjRNtTsqs9WHRfvSKF6dyuYxf/vKXuPLKKzFlyhSxfttttxW/58+fj3feeQdLly7F0KFDAQBXX301Jk+ejBkzZqCxsbF9RnSGh6G5O50WxZeSnVVzKKkGGO2Jc9cM3/6TPbvKXbYFsskMJOxc1lXwQZm0k2wD0X4QbRthsfIaY6SbGCfFRGUbA60H4fsq2hXNLml3ubYe4cvcBKIdA33MjkLSXPXrTG4qnSdzXh8Srw9S+qkwJ71vTsTo/ZiWNXPi9otYQLSrg5F4vaOmq9O/tig6KOUhkmCrbpghSk7PrxTbnW6P6Rzq66RthGnrjf1UcV2mOd8diY7uL3YcFj35benDot3oFZ/qXn31VXz22WeglGLHHXfEkCFDcMABB+Dtt98WbV588UWMGjVKvDQBwMSJE1EoFLB48eLYvguFAtauXav8WVhYWFhYWFiY0CsYp48++ggAcMEFF+Caa67BiBEjcPXVV2PPPffEBx98gH79+mH58uUYNGiQsl/fvn2Ry+WwfPny2L5nzpyJCy+8MLrB6OEG6CinXGc9oC52y2d0fc6crTAdi6727KqF6qjH2yt7+3EMg8xWyW1NObHkLOg64jx8wyqjJ851WHp/pqGItj2JoIlLONQhFKBmb+QYq2MTjZEQv9Mirm3s+g680SpFiIpt2smQmUt9P9P1KedU0trG546SHiry9WxqyXVXvM+0n3j08yVrp6CzSOquFRmmjnqetLWf7pY1Jf03qZo+LNqNbmWcLrjgAhBCEv9eeeUVeJ5/15533nn4yU9+gjFjxmDWrFkghOCvf/2r6I8YnhiMMeN6jnPPPRdr1qwRf0uXLu34iVpYWFhYWLQDvFZde/8s2o9uZZxOO+00HHnkkYltRowYgXXr1gEARo4cKdbn83lstdVWWLJkCQBg8ODBePnll5V9V61ahVKpFGGiZOTzeeTz+eoMr+baa4eXYig11vXoovusMyU2fsfpxo9u4PuT8B9df6JrU5LSRafZZGT3tN8JbKXaqYGdMjSPmEy0f7VtjCQPG4GuIUrDYJo87DRjVriI4qrctxskeezIJjkrvcxAGfRNkV7l61GbQGyNQ1lzGMnNpMHTtEeyTinSLyLXJ5H1URWQyDQl7d/Jz6YI618tk9nRsBqnHoNufXEaMGAABgwYULHdmDFjkM/n8f7772P33XcHAJRKJXzyyScYPnw4AGDs2LGYMWMGli1bhiFDhgDwBeP5fB5jxozpvElYWFhYWFhYbDToFRqnxsZGnHzyyTj//PMxbNgwDB8+HFdeeSUA4Kc//SkAYMKECRg5ciSOPfZYXHnllfj6668xffp0nHTSSe2PqGsPYjRD4XJ6D8AUdddeCUp3pSOJLemW6GGmMDZJV5RyoCQvU4k8DBor7U0Zy5Ngsi0FG5PKS29LIFJEo2OOJqzYtcxWRBi5mLZxyxEjozBr8BLsq7Rv3PiJEYLJl2gk+lJmjQgzCycYURk6XQspOjCMzeJZa6bRKTq7Qjy5MaAzSlE7wwH0CMiqjm/SGKbxYvpPfR5SmtMjwODnNmtvHxbtRq94cQKAK6+8EplMBsceeyw2bNiAXXfdFU8//TT69u0LAHAcB3PnzsUpp5yC3XbbDbW1tTj66KNx1VVXdbPlFhYWFhYW7UNHaJSsxqlj0GtenLLZLK666qrEF6EtttgCjz/+eOcYkOZ660IPpV3MjLRzNYxVVbqWShqctmgZTExQgm4nef/4SC/j0ZMZGY35U6dX5UWQpnlbn3VV7BdGdMVouZRGcZ3EjOtpB0lerlaPJKPK45IqMrQi01HB3qQNMZFw/qEmgBdDKSudagyg1G9UuxWdW6hli1qqyKUiLJPETplYj5iJE6/CBZ76eRL01wYWMa0cMF3HKddZfKPRa16cLCwsLCwsNlowdIA4vEMs2ehhX5zSoBqvqFrvo6M/pCfZqkWIVZu9umrvXx6vIyJSUuhYKkhQ2m6DaKNpjSrpdXSQuN9VCjUSx0g2IrHbRM/eoHdKiwj70Ua9WhWoyMDEjdFZ/3GR7yWJKWLiZwydYTKbBkZSxB9Lpv0bNwRvk3SvMy1Sjkg2aCb4pUFi9FHtQFIOKLVhwn4mVPPcbsszvqNgo+p6DHpF5nALCwsLCwsLi54AyzjFoa2eUiXvLo33V02/aTxmXXvCPcWgUjmj2npAjahJ6jsJhraVytsp9b6CHUwONdE8ZHMumeAnDbvmY5lrn0FtCEMbTfvDqNk7N7U19i0zWWmvB3na+j5Ea2Danek/qkNP91mNTFMbr+P2aGIi0ZmR64rEjxGXGZxvDhgdxhDtIAVLHCGdE+ZJPALiQkR0MQdgDgPLaLo1SGyTpIOKPYYG9qYiGV4VO8wNSLG/fM/yn3EkcHueie2Bh/azXbbIb4fAvjhZWFhYWFj0cNioup4D++IUA8JSB/5IO6H9mp227KezUbId8sdYD6AlAlryJ0TL/mo3F2zOA17WLHIxMjwVYIpsYSSwKa3n6Em13/XoNzccg7gEpAxQN1guQ3hnXtYf160JGjsALQZeNB/K4f+ykIFTJhOOqUYYMXgZ/htwCgS0FJ13xLOm4ZhirnFSFZMuSsk6Ha5n4v8M+0RYjyrc1zSRSWlzYyUNk/KeSIzwNLGl8nXTWfdogrbGyFQkjqvpobSOVdJQ0p5VGCO2Hh604+KF9wcp+2wocyRdFfx7zrc1qmlqK2PUpijKhDmlGTOxrXxMY665DinnmAZW49RjYDVOFhYWFhYWFhYpYRmnFIjLCRJBR77MV9EXYZJOiWt7OCFRhjCauIBTBDLr/W3U9ZtlAubDyxJ4uUA74QBeRmJiKFMZEkiMHAWUPDU8k7E8HUk/Rbyw2jop+7+Fd+uF2iR4PiumbJNYIjCEr/6BlyvauqrGycsCzPHt8hx/P3EuKQRrxBwSOcfEC9k5UpbsYwAICTVUgX28LS2FbXlmZnGeiD8mH9fLAW5eO568KTGxThLLIEU4EV0jxu00/JZZm4qMUNL1KIvH9HV8MeLJV0vnIjyIpv50G5MYpo5inJKOs7Y9UvesQvtkG0g61i9NpvXY1OIB0wT+fGEKc0k8STdmYpjSME6czUlzCVQ63wljGo99HFLeO2nG7XBYxqnHwL44WVhYWFhY9HTYF6ceA/viFIfgW321OUFSVdNOidTfzgNtDQA4BYAWoWb35dKEEuCU/O0AQMvqAIwShRGRmQ9GfSaGMyRuLeDWBL/zgJdjUlsW/Bt05YV6CFoCMusJHG5DSWWHTOwTcZmyLB8bRUMke766Ro0ETFNgl5chYJlwORLVxxk7T7WJlpk5czKk9ryty3zGD5LXK3RXBF4GcAOGz81LWrMswDKqTfxY8nMSRkLyPqMiJKNWS7ZV/t2ea7Uaj17sIzFmWl8V96nQviL7YRqDJGyLtQdR+xO2VySDZK1OLKNk2NYW3Zq4TySGSTqPsn4QLLh/+bLDVDsS7QlWmeZe7TWXyCImzzspkjR210r2tTfCzaLXwr44WVhYWFhY9HTYdAQ9BvbFKQ4mrYiEtiR1rvitPY6t8hCNauOek0fgFIBMs7+YafV1TCFrEzIkxPV1TbQUMDgu86PQZPqW1yqjgOeErIyXISjnSajDkfQ5yPlMCwvso5onSosEmRb+G8i2hKyXU2Iq48R8m/n+/jaZcWLK9MXhqnQ+SKhd8lmbkF3zMj6j5rdD1LNl4TGkZdW+yDBMtVepPwYAVDq+GQIvEzBOORLqnTLE15NxdsqBpDVTmSvOPslaKd6nlwVAwzxYiTqbikyGtqxtj5wPdBASOkrMJN0ONiNpvKruexNBlvb+r2acDtBscV0k5cxw2WevAZ8VZlRimHMkjLCrMEalKLRItGHM9RmyXySyzYhYFkm6GSR7jOel4jMlZbsOgk1H0HNgo+osLCwsLCwsLFLCMk4WFhYWFhY9HVYc3mNgX5xiwLQQcL00gbKsCZR16lkIe01UvExry+H2HgnD2ss+XQ5ZGO2FlLr/+c3f5rQyf10g/PbD+dVPXWGSSOZ/VhJzYuKTlecQkByBx0s7EH+cMg2X9QSOtCzR/K3+HxCI0gPa3ykyOEXJvpL6OdG3U/5UJ9nnMU38rYnbCRHrmJ41UD6fREs5IKcgiBHtinFd2QamlG5JpME9BCkQwk91pERAM6Gon6dL4CL98PMcUcThsu3UDT6jBCLzco3/uQ4ASn3CPsVUpM98zJH64t9Xle96kcNgXmE4ZnGJFiuG5McgVbh7hU9EiXZoYxl16AmfKs2DqG2q3j8NKsyz4meomPOkpzRx3PDzOukDlGuIuGZSJSONMS7ps12lpLuJGS0qCvfD61z/9B1rekx/lYIwOgweq3xhp+nDot2wn+osLCwsLCwsIpg5cyZ22WUXNDQ0YODAgTjkkEPw/vvvx7b/7//+bxBCcN111ynrC4UCpk6digEDBqC+vh4//vGP8Z///KeTre88WMYpBk4rAQWB08oFweE2v+xG8FtmmLgnL3v0MnPgqG2UfQNngugsE8IkkHKYPtVC9IV4ucRC0Td8xkYwTi4LQuS5q6Z5fJSAZWWajcDLcqExgZsPxeKQUhVQF2AyQ1YCsut8oToA0CKDw+dSYv6fFN4Pl6mib35sg/UhAyUxUyZ2R2KZuABcLBu9bnmu0nGQ1hOmMS9MstVlmofMVKaLhGOEgvRQhM4cAuZKLJNURoU5RL2eInU3JJMCIT8AZHME5UDEm9ngC875dcMolGSfXhYo1QfbMgGrJeYTHY9Ik6067UZUk5sOsUxGwlDtYJvSbE9EHCtRgdFUutBZGNMwVRxHPS2HsMPUR8AieZmw5ApzfMJU3PtBQlj+bJCvi9ji4CZoKSkq9RM359hAERObpjUWrKt820rBNHKiTyXhr4xiF6nDu+FT3bPPPotTTz0Vu+yyC8rlMs477zxMmDAB77zzDurr65W2Dz/8MF5++WUMHTo00s8ZZ5yBxx57DPfddx/69++PM888EwcddBAWL14Mx3Ei7Xs67IuThYWFhYVFj0cHvDhVGW46b948ZXnWrFkYOHAgFi9ejD322EOs/+yzz3DaaafhySefxIEHHqjss2bNGtx+++24++67se+++wIA7rnnHgwbNgxPPfUUJk6c2Ma5dB/si1MM6pYDTs7XnmRamQjhV8LRAyif4R1NjyIvy55NhTBduQ11A7aIJ1M0MDScVfJDijVWRITHB4wNC9sKdgOAHKLPMgRuVgqXDxI2ChNZqFviTIVgnApAZoOvZwICjRP/XWZ+Ekl+PAMGjLheaKMr2Vv2JHulA6TnI+EME2d4CAk/RCewNaItb6o/mBgL0kFINvDfnqG93B8FQH0jfAYpZJyYQ0BcjYGS9mOEwMRO6NHUfhkXAoeXkyn6TBMQpDWgoQftZQnKecDNB+c0D5Rrg465ti6GPVVWwnCt6p68fJ3HsRvVIs09Y7IBiNe7xB3jahm1Sn0TxFMjDBH2WewWx1R5MesracrEBrW9zogRV2LKM1ATu5Yk9sk0UAKDlmhLG0VfsWyeNHCkjcb8i8PhQiTrzbT6XwA488+TguraV7fQJrOrRwcyTmvXrlVW5/N55PP5iruvWbMGANCvXz+xzvM8HHvssTjrrLPwne98J7LP4sWLUSqVMGHCBLFu6NChGDVqFF544YVe+eJkNU4WFhYWFhYbEYYNG4ampibxN3PmzIr7MMYwbdo07L777hg1apRYf/nllyOTyeD000837rd8+XLkcjn07dtXWT9o0CAsX768fRPpJljGKQa1Kzxksh6Iy5ApMNBiwIiUtSRkDKEXIPQskksiRVLJIAGTAcFGBZFU1NQWavSbq+t+NO0P0xgSWZ8l63AcEowbsiDyb6W0Bwm0VbyvIoCS1K/kkTqFIHpOeGqqzoqUmdBo0ZIXrAuOr+uJ3772yQM8TplEDo0KSddEJPZJHIcKzJMC5RxXZpmAkOUifBxPLQAMQgQDRVx/WZwLkx5KYSxUPYjMEhLGxKGhIDzgEsTz9UyCYcoRFPsAXuBYurmwP2GjmEzojYcNjNMOoqFUbZdc4qJqHzmBlTWOHWefohGLGUOHSDYb7Cu7lpUuH5O98iWo7a8n8KSl4Nr1oEbQsmhbU9JILwO1VA+iRJecuFI+v7Tka5pEOaaixLQEbWUGSi/4HQc9Gjl2uwFVJaUkUAqJywmMTdHRTLpHiEvEc42Wwnlnmjlbzrf52ky5PBQYQ7nURem4Pf3Et7UPYOnSpWhsbBSr07BNp512Gt544w0sWrRIrFu8eDGuv/56vPrqq+FzLyUYY1Xv01NgGScLCwsLC4ueDuZ1zB+AxsZG5a/Si9PUqVPx6KOP4plnnsHmm28u1v/973/Hl19+iS222AKZTAaZTAaffvopzjzzTIwYMQIAMHjwYBSLRaxatUrp88svv8SgQYM69hh1ESzjFIPcOheZjCuiungkmtDgSDohYtLgxCHOOREsg8osCMjjuBLr5XlRDU4CGKUgQoPlh/kJL8wLPTKfJQpLMLCST0EIVolIXlvghQkWKcgjJQrcyrmjPI0x8xhIyZMYJzfUa3leyDoFbRPnR4goaaIcS+4eaMc+9pjpuU4qjcl/Uv+gyLmRxNZgPWHBgfB8RkyQK5ImiwS2865lnRwIgZehoRYtS4WWCfCj62QNU7GRKMWDvVzIojAn9K4lM4NxtHkanN1IriaJKQq9/OD6qiYMLC3TZGKS+DYqjekF162sa+GsQVkTjSmd+Ku5ds8chabuohbJZuqxYUS1l99rwbGVtTRCz1jijHOwjxd0Ie8rjy8fExIUtpaWlbxemm6JykyXVBeNOT7LxPODeRX0TaZSOMbTX+E862ynkudJev4wXnQ4ibzg17zHn1VBN2U/GtjZ4C87xZB1y7YEOecCPaZTVCOWeU63ctnFNxWMMUydOhVz5szBwoULseWWWyrbjz32WCH45pg4cSKOPfZYnHDCCQCAMWPGIJvNYsGCBTj88MMBAMuWLcNbb72FK664omsm0sGwL04WFhYWFhY9Hd2QjuDUU0/FX/7yFzzyyCNoaGgQmqSmpibU1taif//+6N+/v7JPNpvF4MGDse2224q2U6ZMwZlnnon+/fujX79+mD59OkaPHh156eotsC9OMXAKLhzXVbJRczAaempE1794Gq0REwlmZDv0YrumCC+tL8IY4Fb4xu4EkV2EgDgMDL5AQWiJAihyDo+AMAoaeFNOxs/pFEYMSkwLz+jN9RJB5KGsu5K9NDmXFC37jBI/bn4UoKZx4vOr9OAgRIo2IuH3c4NuDEDILOn9pn248HMkNE1QdFZ6XwQQ0Ws+KyJt02yHzEB5BCw4h35epjDDO2cZeB6ncm3IOBUbgFJjUOwXPvvgFBGyAK7GkGiMiRxCpOufAE3/EwcxRaItq6srgjBENEIeRAZ9neWQ2VJaCu5XrmORfnP2hnjqPA21YJX1fGclkzsNGB4EGiA947uU+ywyhsw4SUwQ/y1II66x0dgqxR6pIDRl4Zieox1uKf8baHAoJTaS9+Nl/T9xvoM5iyoHcSyati7yuxJ0nZLEMoEALMOErfoYfnWFwFyG8DrxtBx5pbDwOBDknOMFyAtMRAEDEJUWwjxP/BnW+zROaXHTTTcBAPbaay9l/axZszB58uTU/Vx77bXIZDI4/PDDsWHDBuyzzz644447emUOJ8C+OFlYWFhYWFgYwNrAcH3yySeRdTU1Nbjhhhtwww03dIBV3Q/74lQBpggq2ePTwShNrz8yRWuJZQMDYsxnFGOIpPXh7QnhLikfg/qsDvfcXA+kHLBTGQpa9MCCPE4ej7gT9dRMkw+GZIjWdJO8NFqWNE1cM+ZKc+P2MhY9DsqyByHYkg2Q5w8IbzMV0jwolOzgJFx2aDR/FCHRfYRdysDhT8qiDFRgF/V8GoF4QXSeB5BsSBX4GZ2DHh1f28MPEQ2uW0mKFDIMnDmR6o8pYhol/C7u4o9hlUzrkk6JqX9GIiwGLUm5w8pQs+7Ly0HWfbVmYziUkttM2BA1UGc9GIWiL9OjUHU2SvShz19naZi2jqnbiCypkcb0HH8cj5q3Q2aj+PnVNUNEW9Z/Q2XAlDlJY+pzE5sSbq/E+oCGbYKVc32tUmaDtCyzclIknJ/nTtKQlQGnxKQqDWHOPq7bFNeNbjtF5UjfjoQt8ttjYF+cLCwsLCwsejoYOuDFqUMs2ehhX5zSQLtgGQV4PBRjCHUgxPcIRCwVcUAoAxNRYVG9lABlYF4YZeV7M9xlMuidhD7H4PIwprmInHIggOeFkUQO9fMKBVoQQmkYdcN/K5m41eiuSJ4hWc+jsAOh1+brSTxpmWmRc9I2N8jhJLNwfL6CfZPcb5klcKV5C/GVLpIxubHEvN60H9cZUX58tf3lyD6OtAlA9LxTItrJA8tQkWk94JlEfh6nGEbRZVp8j9qToup0BkL0K7QkwZy49EDTmIgFY1Zm7qmTZIZJvjg8orA/PvMaPf5G7ZEnMQeu+tvXOEnLHoMepeV3yJk2WXxkZkaEnkhq6pSYmZkhiJ77uMtKsEsssk6Mq9kms15y9nmZbeK1MiNsl9ydomkztzHZIIMmsC6JNfqSwKckZ0hn0lgMoS7NVdlHoQvjEYNKnU+mZkHn14Zc21OaDyMQLHt4sTCxkYDZpD4bIeyLk4WFhYWFRU+H/VTXY9BrXpw++OADnHXWWXj++edRLBYxevRoXHLJJRg/frxos2TJEpx66ql4+umnUVtbi6OPPhpXXXUVcrlc1eMxnktHzwoOBgIistT6Xk+gC+E8FN+H+utAgig2ykKxHWNRBiqyPRia3zByFJicAlfX/cg2eIFrDqi6JwDwHF9LQ0NGikgME5EjxJJYmEoMjSlqTZ+bGzJOCpumzzvRBqaxSporLLvjVGLI4jRLvJ3WRskPZdjXuF07RjobIV8Hik4KAaMlZ3d3/FxOfNnLEbg5f7lcE0bVgQREAvemOfvAp+2FOWsiNc4MVePj6taBR4ylRgy7o2XtBgxMh6b9kbfxiDZCfPs580Y4OyHlKFKzP0vLIvO+wT6pvfgNma3TiTUzgxSZFxC5tpUxJVJVYYgQaA+dUJPDCAHyYVuWCdsm1vrjc+KLpls6LWskHTMirdP7ieTiUlhNrUuCCGPIJEKZZQCXR6G6/iOXM45MYZ8C3Z/UGdXFXgg1TT6bF24jbsgEs+B5Y6r20CnwpERb7erDor3oNSTjgQceiHK5jKeffhqLFy/G9773PRx00EEir4TrujjwwAPR3NyMRYsW4b777sNDDz2EM888s5stt7CwsLCwaCe4k9neP4t2o1cwTl999RX+/e9/409/+hO++93vAgAuu+wy3HjjjXj77bcxePBgzJ8/H++88w6WLl2KoUOHAgCuvvpqTJ48GTNmzFDq8qQB9+whdBeh16FnsJVryPkMU/DtnV+oXGMAokR4JTJQEqvEGPxtRG5rYJ+AkIHizJP8aqxn3nY1JgoIbSeGd2qTnsqEpEzclfJXAem8Is6S6YyPPJYSXURC+wn12/F563oiIJqBXO9L/q3owFQb49gpnXHS9WIyg8McGuZtyhB4OQo35y+7OT+/FmdXSn2IyOzMa5eFHfl/RhZAZx48qASDfJ0zRBmJapxuncUi5m1iu2k/GFgnaZv8Q2inRGSnxIh4OgNFFAbK/y0xEDLzwVQbqBadJ/cbzajNomxaDCLZweVriTF44PesXydSOU4MYSSdlDKH2x13HtuS6dvUNu4ciaEkXRUP+pVtZfq1IkUQinOWCVglHkVJAHjho5aEpL9gn3iOL5+OBAjXeRIWMFAIrhnp2UAChokzUp7/O04XZvHNRa9gnPr374/tt98ed911F5qbm1Eul3HLLbdg0KBBGDNmDADgxRdfxKhRo8RLE+Cnfi8UCli8eHFs34VCAWvXrlX+LCwsLCwsehQs49Rj0CsYJ0IIFixYgEmTJqGhoQGUUgwaNAjz5s3DJptsAgBYvnx5pGBg3759kcvlxOc8E2bOnIkLL7wwsl5k+uXCBX69CfZJ1TwBPhsg5yxiIOqFyhBmg2ZMMEl8GYSFzQ3sk7xN7sfIQHE3SGefZK+YR6yZqntXusGSWCUALC07pUFhukxRcEKf5fmsk6xTkpkjA4sGvW+dOeL/StuMbJO2X6QmXoLmS6lFSIiIYmQk3I9RApYJtRN+Nmj/t5ch/h/PBp71GaZybbBd0hvxPEIk7amQTmGEVdJYj6R9FcS1lZz4pCvNGAkn20Fi2kpjMPinXonwkqO1JKYjqnkCmJw9nUnsM4uySmGmdXVWPvPClH7DfGW83+j8I1FplJiZIjEOAy2FE/ey4e3PXPXagEk3ZO62MmKYK2baJkHOpq5nVgcMx4TXyiyrDKLIDg+JRZSf2Zq+TckBJbVVGDLtGSeuNxF57NsTiZ7sLHRD5nALM7qVcbrgggtAgtIYcX+vvPIKGGM45ZRTMHDgQPz973/HP/7xD0yaNAkHHXQQli1bJvojhguYMWZcz3HuuedizZo14m/p0qWdMlcLCwsLCwuL3o9uZZxOO+00HHnkkYltRowYgaeffhqPP/44Vq1aJbRKN954IxYsWIA777wT55xzDgYPHoyXX35Z2XfVqlUolUoRJkpGPp9HPp+PbuARUjwrk/6iTsIfumcuvFeDgxBho/i3dwY/l5GQ4bBwV8Eq8X5DypXFbeOeBZUMYgxwXYlxYipLw1ioL+IMjux1Sd5KhFGqxpOR69zJOabClebflEbX6/8aouBAaAwDZWgbsE2xLJLGOCUxUpFtJnDWwXAdhceeRJgV4SG7AJwwOo54gCcqvwNeXqpmz/UkUl6fjJaFWkpRU8FubT99XSVo7JboJ44d0++jhLEiNe0EgxDdl2uGxBQoZ5nCfaKaJo2BEmyGVJORBOdMGkzJ+G2Cos/jTDREPUJuH6Ohji0pg7+IKuPPHEfvB+HEgzGItCy6q3QtJLU1Levr+HnRIhZV9kfdzrPDAxJrpEdKaswgAJEpXj5nxJXHVfM4RZhBIMLSVZ2jqo1gzGszky/3YdF+dOuL04ABAzBgwICK7Vpa/AqMlKpPCUopvOA/9GPHjsWMGTOwbNkyDBkyBAAwf/585PN5oYOysLCwsLDolZAd4vb0YdFu9AqN09ixY9G3b18cf/zx+N3vfofa2lrcdttt+Pjjj3HggQcCACZMmICRI0fi2GOPxZVXXomvv/4a06dPx0knnVR1RB3APQ8Wei5anpekLNnRvuIGUSkG5tCQoZDZHq530qLsQnvUbcRF2I8+tlyNmuufTKySzjZxNkowJFTdlrbIdVxmbmpwnZNySCVEwYVtJDYrTa6mYFtFXZMOfowp1OsCAJPr5FEmkTM+vcOzHzMqebqMgbCQ9WIewHi9rCDak9fWYg6BUyDwskwsczbCzRGUSMh08EzSIrrKQTR6SWMPZB1JEoikKQommAzTdsO6pMizuIgtI0McaRD2GSFAZIKPqOwTtDFVjRZBtChqyOYSLxQV+YcrOL/QIuwoMZ4PbpvKFIXGimzqPK8cIz7hbNA48dxbYlgq9c3HJYbfBpti825J243nkYUMEKAyQTynV2y+LZkZ4iySNoZSK1NmaCUb/DGYsqwzTGp0JovMN4n9tPhmoldE1Q0YMADz5s3D+vXrsffee2PnnXfGokWL8Mgjj2CHHXYAADiOg7lz56Kmpga77bYbDj/8cBxyyCG46qqrutl6CwsLCwuLdsJG1fUY9ArGCQB23nlnPPnkk4lttthiCzz++OMdMh4teaDCVUOUYeJeiczoVLooZdZCbyu8mvZf2IzoNe+k8eWbx5HEE0CQ24h3YshALrNVEfursLutWchT1ZpLiMqrBjEsEiAty8cZErtEQ9ZOCUxgIZMgalzxvFlSdA4h/v+JiDsX6lwJwm2UwHOIiPRh1I+8A3zGKbcubOsFDJPH2zpAsSnsU8nGzIkSno1bPwQaC+FJy7IWRbZZWVQi0cxjINwU5k9KYH8qgej7poGn7iezICErEj4LIgxJwBTSElP3lfM4VcFaUNc/1mEUoEb1KcfIZ2VEdKamb5PPN2exxLI8aNxtxKTN+jk0sTXBclSLJG2TdUn6tSG1JVJ0cKyWNC2LFHcuXH0fptkUnNtyF+mGPJmSayOsxqlD0CsYJwsLCwsLCwuLnoBewzh1NUjZA5EEQonMEl80eWbKd3d1vwi7pGiNtO2K5kn2zNrAUMlRdIrWR24UUA0iOk/roz2ei2xze3OgmDKcVzM+oOrAaHBsuV2CCWJKG9GPZL9glyQWT4kykjROPvsX9uvXBtSOC9exif/z1zMKkemYEYBSNQqQM0rOBp+JClkFIqKy/GUgty78rTMQTNba0DA6z8saGAmZvNR0UpB0VZzp4HXlIvXJNAZCRtKVHonAYpB0iRoLxiQTtW3Eg8YMaboaLes4ZMaJQc0l5DJQN2RQhJ2Alk0fat4sj4HwcwQgwta5YXZrLxOOD0P0pa9T49dYeO755afcfvp5S6lZM9UTjLBI2vGV+zTpn4xMkKe2M2mYlG0GRipOp2RuywzP4bAtb99ljBMzUGtt6sOivbAvThYWFhYWFj0czPPA2vmpzqYj6BjYF6cYEJcpFbQVxKzWswWb91VZJWV/nWHSf3uGdnx7JMutxFbwTLeM+Wu4nVzzJAwgUY9E2VfZgFhUOg7tIZnkG78atqnSPDlE9XPJq9S1UlrCpTBzMItE4yl7yhF2cq4nBIdE31drg6ANkfJMCVOlJo7IQO43CJkgEjBDITvFrynm8G3BMg3YC0kfE+qfVObKyyBgqyQtjehHXfYzn0PRUilMVdKhlqGRgArD5EHRG4XaJKYsq9ukZSliS2aYohoXaR3fl+ti5Az9JvMNm1iOhnOWyUslbxifu98BLct1DX0qjbDwPGgSO2XgSvmZKuqu9OPPTVDYH/WYAQnMUdDeOH5cv3HbU0fKGZ6tsUyWdG4l8HPe6bCMU4+B1ThZWFhYWFhYWKSEZZzikPLlPlGnxGFgRyvul8BMqR0R9V8tp5LSLdfMREKkTDbHsW2pDkr8tmo9Ht2OalgmQyZmow2V2KhIKmp1WSxREn+uTOWA9OjHmPZKZF4MC2UcJ0Vb0loO1+tZz+X2cjZ1mcGCz1b5+qlwH7mtUodPZ5WomjGds2R6W6aNaUQltkJiDBStkZE50RgK0Y96X1YbBZtY18wJxpSYPgKAydnHuTZJrJD75sssXG4HIrexfivGMEXGfdP0IUO/72X2qNKYOpsEKPdlRLOk9aVfA2K9fm+3R2faFng6rdYGWMapQ2BfnCwsLCwsLHo6mPQ9ul19WLQX9sUpJWI9y6QIrWr3betFLbMkiR5tzDBedJ94fVeCjV6CDbJ9pj7i+m1PLqa2II1tccc4DTMor0rRxghKUu+rsFpif+m3p62TNVd6v9oYsUyWyZ6YSE5jHwlzSUS7tHNt3C9pzAr26nXmhAYrovMy9BNDvBrbxpnRzv+GVsW2pfzvfWKfScNVqSeLa19Re21fPCxgX5wsLCwsLCx6PJjHlM+2berDvvh1COyLUwyIq+ZxEusrXXjt3Z7g8bQpq7iJ4YnUeYv2KzIO6faYmBM5E7kJPJovDdpbxFIZs4PQEX2l6SMNawiIjMZGxOmv4kBjznMFO4xMluizwpiyfquKMatCJbYnNbvX/rHStmVx909bx0IV84yMU80gbRuiGrTp2deWfeT7wIlhx7X2xO2qPE4e2v+pzqYj6AjYqDoLCwsLCwsLi5SwjJOFhYWFhUUPh/1U13NgX5xi4H+qC+ontJPd7IjCve36XJRUXFjfrkPPc2nYn1Xk9bXPR0mfmtJ8rrDo2ah4v8hpIvRNVV7ncdduhX5SfyKs9t5vz6fGcgdd+9IxtXdTO+Cma2Y/1W18sC9OGvgbedkthCt7+4tTR/bTAXZ0WaZdi05Dm7UzkY7auX8XaaK6op8ec0wtqgL/b0VnszlllNp9bssodYwxGznsi5OGlStXAgCee+u67jXEwsLCwqLXYN26dWhqaurwfnO5HAYPHoxFy//WIf0NHjwYuVyuQ/raWEGY/eipYPXq1ejbty+WLFnSKTdBd2Lt2rUYNmwYli5disbGxu42p0Nh59Y7YefWO/FNnhtQ3fwYY1i3bh2GDh0KSjsn3qq1tRXFYrFD+srlcqipqemQvjZWWMZJA7/wm5qavpEPBABobGy0c+uFsHPrnbBz671IO7/OdrJramrsy04Pgk1HYGFhYWFhYWGREvbFycLCwsLCwsIiJeyLk4Z8Po/zzz8f+Xy+u03pcNi59U7YufVO2Ln1XnzT52fRPlhxuIWFhYWFhYVFSljGycLCwsLCwsIiJeyLk4WFhYWFhYVFStgXJwsLCwsLCwuLlLAvThYWFhYWFhYWKWFfnCTceOON2HLLLVFTU4MxY8bg73//e3ebVDUuuOACEEKUv8GDB4vtjDFccMEFGDp0KGpra7HXXnvh7bff7kaL4/Hcc8/h4IMPxtChQ0EIwcMPP6xsTzOXQqGAqVOnYsCAAaivr8ePf/xj/Oc//+nCWZhRaW6TJ0+OnMcf/OAHSpueOreZM2dil112QUNDAwYOHIhDDjkE77//vtKmt567NHPrrefupptuwne/+12R9HHs2LF44oknxPbees6AynPrrefMontgX5wC3H///TjjjDNw3nnn4bXXXsMPf/hDHHDAAViyZEl3m1Y1vvOd72DZsmXi78033xTbrrjiClxzzTX4wx/+gH/+858YPHgw9ttvP6xbt64bLTajubkZO+ywA/7whz8Yt6eZyxlnnIE5c+bgvvvuw6JFi7B+/XocdNBBcN2Upc87CZXmBgD777+/ch7/9je1VlVPnduzzz6LU089FS+99BIWLFiAcrmMCRMmoLm5WbTprecuzdyA3nnuNt98c1x22WV45ZVX8Morr2DvvffGpEmTxMtRbz1nQOW5Ab3znFl0E5gFY4yx73//++zkk09W1m233XbsnHPO6SaL2obzzz+f7bDDDsZtnuexwYMHs8suu0ysa21tZU1NTezmm2/uIgvbBgBszpw5YjnNXFavXs2y2Sy77777RJvPPvuMUUrZvHnzusz2StDnxhhjxx9/PJs0aVLsPr1lbowx9uWXXzIA7Nlnn2WMfbPOnT43xr5Z565v377sj3/84zfqnHHwuTH2zTpnFp0PyzgBKBaLWLx4MSZMmKCsnzBhAl544YVusqrt+Ne//oWhQ4diyy23xJFHHomPPvoIAPDxxx9j+fLlyjzz+Tz23HPPXjfPNHNZvHgxSqWS0mbo0KEYNWpUr5jvwoULMXDgQHz729/GSSedhC+//FJs601zW7NmDQCgX79+AL5Z506fG0dvP3eu6+K+++5Dc3Mzxo4d+406Z/rcOHr7ObPoOtgivwC++uoruK6LQYMGKesHDRqE5cuXd5NVbcOuu+6Ku+66C9/+9rfxxRdf4JJLLsG4cePw9ttvi7mY5vnpp592h7ltRpq5LF++HLlcDn379o206enn9YADDsBPf/pTDB8+HB9//DF++9vfYu+998bixYuRz+d7zdwYY5g2bRp23313jBo1CsA359yZ5gb07nP35ptvYuzYsWhtbUWfPn0wZ84cjBw5Urwc9OZzFjc3oHefM4uuh31xkkAIUZYZY5F1PR0HHHCA+D169GiMHTsWW2+9Ne68804hdvwmzJOjLXPpDfM94ogjxO9Ro0Zh5513xvDhwzF37lwcdthhsfv1tLmddtppeOONN7Bo0aLItt5+7uLm1pvP3bbbbovXX38dq1evxkMPPYTjjz8ezz77rNjem89Z3NxGjhzZq8+ZRdfDfqoDMGDAADiOE/Ecvvzyy4iH1dtQX1+P0aNH41//+peIrvsmzDPNXAYPHoxisYhVq1bFtuktGDJkCIYPH45//etfAHrH3KZOnYpHH30UzzzzDDbffHOx/ptw7uLmZkJvOne5XA7bbLMNdt55Z8ycORM77LADrr/++m/EOYubmwm96ZxZdD3sixP8G2rMmDFYsGCBsn7BggUYN25cN1nVMSgUCnj33XcxZMgQbLnllhg8eLAyz2KxiGeffbbXzTPNXMaMGYNsNqu0WbZsGd56661eN9+VK1di6dKlGDJkCICePTfGGE477TTMnj0bTz/9NLbccktle28+d5XmZkJvOnc6GGMoFAq9+pzFgc/NhN58ziy6AF0uR++huO+++1g2m2W33347e+edd9gZZ5zB6uvr2SeffNLdplWFM888ky1cuJB99NFH7KWXXmIHHXQQa2hoEPO47LLLWFNTE5s9ezZ788032VFHHcWGDBnC1q5d282WR7Fu3Tr22muvsddee40BYNdccw177bXX2KeffsoYSzeXk08+mW2++ebsqaeeYq+++irbe++92Q477MDK5XJ3TYsxljy3devWsTPPPJO98MIL7OOPP2bPPPMMGzt2LNtss816xdx+8YtfsKamJrZw4UK2bNky8dfS0iLa9NZzV2luvfncnXvuuey5555jH3/8MXvjjTfY//t//49RStn8+fMZY733nDGWPLfefM4sugf2xUnC//zP/7Dhw4ezXC7HdtppJyXEuLfgiCOOYEOGDGHZbJYNHTqUHXbYYeztt98W2z3PY+effz4bPHgwy+fzbI899mBvvvlmN1ocj2eeeYYBiPwdf/zxjLF0c9mwYQM77bTTWL9+/VhtbS076KCD2JIlS7phNiqS5tbS0sImTJjANt10U5bNZtkWW2zBjj/++IjdPXVupnkBYLNmzRJteuu5qzS33nzuTjzxRPH823TTTdk+++wjXpoY673njLHkufXmc2bRPSCMMdZ1/JaFhYWFhYWFRe+F1ThZWFhYWFhYWKSEfXGysLCwsLCwsEgJ++JkYWFhYWFhYZES9sXJwsLCwsLCwiIl7IuThYWFhYWFhUVK2BcnCwsLCwsLC4uUsC9OFhYWFhYWFhYpYV+cLL5x2GuvvXDGGWd8o8adPHkyDjnkkHb1MWLECBBCQAjB6tWrY9vdcccd2GSTTdo1lkU8Jk+eLM7Dww8/3N3mWFhYVAn74mRh0UGYPXs2Lr74YrE8YsQIXHfddd1nkAEXXXQRli1bhqampu425RuPhQsXGl9Sr7/+eixbtqx7jLKwsGg3Mt1tgIXFNwX9+vXrbhMqoqGhQVS6726USiVks9nuNqPL0dTUZF9cLSx6MSzjZPGNx6pVq3Dcccehb9++qKurwwEHHIB//etfYjv/NPXkk09i++23R58+fbD//vsrrEC5XMbpp5+OTTbZBP3798evf/1rHH/88crnM/lT3V577YVPP/0Uv/rVr8RnGQC44IIL8L3vfU+x77rrrsOIESPEsuu6mDZtmhjr7LPPhl4ZiTGGK664AltttRVqa2uxww474MEHH2zT8bnjjjuwxRZboK6uDoceeihWrlwZafPYY49hzJgxqKmpwVZbbYULL7wQ5XJZbH/vvfew++67o6amBiNHjsRTTz2lfIr65JNPQAjBAw88gL322gs1NTW45557AACzZs3C9ttvj5qaGmy33Xa48cYblbE/++wzHHHEEejbty/69++PSZMm4ZNPPhHbFy5ciO9///uor6/HJptsgt122w2ffvppqrlXmtc111yD0aNHo76+HsOGDcMpp5yC9evXi+2ffvopDj74YPTt2xf19fX4zne+g7/97W/45JNPMH78eABA3759QQjB5MmTU9lkYWHRs2FfnCy+8Zg8eTJeeeUVPProo3jxxRfBGMOPfvQjlEol0aalpQVXXXUV7r77bjz33HNYsmQJpk+fLrZffvnl+POf/4xZs2bh+eefx9q1axP1KbNnz8bmm28uPo1V82nm6quvxp/+9CfcfvvtWLRoEb7++mvMmTNHafOb3/wGs2bNwk033YS3334bv/rVr/Czn/0Mzz77bPoDA+Dll1/GiSeeiFNOOQWvv/46xo8fj0suuURp8+STT+JnP/sZTj/9dLzzzju45ZZbcMcdd2DGjBkAAM/zcMghh6Curg4vv/wybr31Vpx33nnG8X7961/j9NNPx7vvvouJEyfitttuw3nnnYcZM2bg3XffxaWXXorf/va3uPPOOwH452X8+PHo06cPnnvuOSxatEi82BaLRZTLZRxyyCHYc8898cYbb+DFF1/Ez3/+c/GimoRK8wIASil+//vf46233sKdd96Jp59+GmeffbbYfuqpp6JQKOC5557Dm2++icsvvxx9+vTBsGHD8NBDDwEA3n//fSxbtgzXX399VefGwsKih6JbSwxbWHQC9txzT/bLX/6SMcbYBx98wACw559/Xmz/6quvWG1tLXvggQcYY4zNmjWLAWD//ve/RZv/+Z//YYMGDRLLgwYNYldeeaVYLpfLbIsttmCTJk0yjssYY8OHD2fXXnutYtv555/PdthhB2Xdtddey4YPHy6WhwwZwi677DKxXCqV2Oabby7GWr9+PaupqWEvvPCC0s+UKVPYUUcdFXtcTPYcddRRbP/991fWHXHEEaypqUks//CHP2SXXnqp0ubuu+9mQ4YMYYwx9sQTT7BMJsOWLVsmti9YsIABYHPmzGGMMfbxxx8zAOy6665T+hk2bBj7y1/+oqy7+OKL2dixYxljjN1+++1s2223ZZ7nie2FQoHV1tayJ598kq1cuZIBYAsXLoyddxwqzcuEBx54gPXv318sjx49ml1wwQXGts888wwDwFatWmXcLh8fCwuL3gOrcbL4RuPdd99FJpPBrrvuKtb1798f2267Ld59912xrq6uDltvvbVYHjJkCL788ksAwJo1a/DFF1/g+9//vtjuOA7GjBkDz/M61N41a9Zg2bJlGDt2rFiXyWSw8847i89177zzDlpbW7Hffvsp+xaLRey4445Vjffuu+/i0EMPVdaNHTsW8+bNE8uLFy/GP//5T4WJcV0Xra2taGlpwfvvv49hw4Yp2in5WMnYeeedxe8VK1Zg6dKlmDJlCk466SSxvlwuCw3Q4sWL8e9//xsNDQ1KP62trfjwww8xYcIETJ48GRMnTsR+++2HfffdF4cffjiGDBlSce6V5lVXV4dnnnkGl156Kd555x2sXbsW5XIZra2taG5uRn19PU4//XT84he/wPz587HvvvviJz/5Cb773e9WHNvCwqL3wr44WXyjwTRtkLxe/pyji5QJIZF99c8/cX0ngVIa2U/+ZJgG/GVt7ty52GyzzZRt+Xy+qr7SzMHzPFx44YU47LDDIttqamoixzIJ9fX1Sr8AcNtttykvtoD/YsrbjBkzBn/+858jfW266aYAfI3U6aefjnnz5uH+++/Hb37zGyxYsAA/+MEP2jWvTz/9FD/60Y9w8skn4+KLL0a/fv2waNEiTJkyRZyz//qv/8LEiRMxd+5czJ8/HzNnzsTVV1+NqVOnpjoeFhYWvQ/2xcniG42RI0eiXC7j5Zdfxrhx4wAAK1euxAcffIDtt98+VR9NTU0YNGgQ/vGPf+CHP/whAJ+ZeO211yJCbxm5XA6u6yrrNt10Uyxfvlx52Xj99deVsYYMGYKXXnoJe+yxBwCfgVm8eDF22mknMad8Po8lS5Zgzz33TDWHOIwcORIvvfSSsk5f3mmnnfD+++9jm222Mfax3XbbYcmSJfjiiy8waNAgAMA///nPimMPGjQIm222GT766CMcc8wxxjY77bQT7r//fgwcOBCNjY2xfe24447Ycccdce6552Ls2LH4y1/+UvHFqdK8XnnlFZTLZVx99dWg1JeDPvDAA5F2w4YNw8knn4yTTz4Z5557Lm677TZMnToVuVwOACLXgIWFRe+GfXGy+EbjW9/6FiZNmoSTTjoJt9xyCxoaGnDOOedgs802w6RJk1L3M3XqVMycORPbbLMNtttuO9xwww1YtWpVItMyYsQIPPfcczjyyCORz+cxYMAA7LXXXlixYgWuuOIK/H//3/+HefPm4YknnlBeCn75y1/isssuw7e+9S1sv/32uOaaa5RcQA0NDZg+fTp+9atfwfM87L777li7di1eeOEF9OnTB8cff3zqeZ1++ukYN24crrjiChxyyCGYP3++8pkOAH73u9/hoIMOwrBhw/DTn/4UlFK88cYbePPNN3HJJZdgv/32w9Zbb43jjz8eV1xxBdatWyfE4ZWYqAsuuACnn346GhsbccABB6BQKOCVV17BqlWrMG3aNBxzzDG48sorMWnSJFx00UXYfPPNsWTJEsyePRtnnXUWSv9/e/cPkmgYxwH89w698pJYklJGYSj0hyKaGjKaAikwWgoJfJuKAiFpcWsogoYKoqGyIRBac6hBKIIGaWwoiCQocSgiClstvzcceHmd3Ntd3dXd97M++D6+z6vwRb/v82azEolEpK+vT6qrq+Xs7EySyaTouv7Tc//Zebndbnl8fJTl5WXx+XySSCRkdXW14BihUEh6enqkvr5e7u/vZX9/Px/InU6nKIoiOzs70tvbK5qmidlsNnxtiOiD+mvtKqJ38n1J++7uDoFAAGVlZdA0DV6vF8lkMj++sbFRUIYGgFgshudfj2w2i2AwCIvFAqvVinA4jIGBAfj9/qLzHh4eorW1FSaTqeBYKysrqK2tRWlpKXRdx+zsbEE5PJvNYmJiAhaLBeXl5ZicnISu6wVF9Fwuh6WlJTQ0NKCkpAR2ux1erxcHBwdF1+VH5XDgawG7pqYGmqbB5/Nhfn7+xXrE43F0dHRA0zRYLBa0t7cjEonkx09PT+HxeKCqKhobG7G9vQ0RQTweB/CtHH50dPRi/s3NTbS1tUFVVVitVnR1dWFrays/fnV1BV3XYbPZYDKZ4HK5MDIygkwmg+vra/T398PhcEBVVTidTkxNTeHp6anoOrzmvBYXF+FwOPKfm2g0WlD4DgaDcLvdMJlMsNvtCAQCuL29zb9+enoaVVVVUBQFw8PDBXMLy+FEn5IC/EJRg+g/l8vlpKmpSQYHBwt2C//I6urqJBQK/ZHH0SQSCens7JTz8/OC0j19oyiKxGKx336UDhH9WdzHiciAVCol6+vrkkwm5fj4WMbHx+Xi4kKGhob+9lt7lXA4LGazWTKZzJseNxaLye7urlxeXsre3p6Mjo6Kx+NhaPqBsbEx/mVH9InxFyciA9LptPj9fjk5OREA0tLSInNzc/kC92eQSqXyd4O5XK584fktRKNRmZmZkXQ6LTabTbq7u2VhYUEqKirebI7Xam5uLrqD+NraWtFC+nu7ubmRh4cHEfm67cXzOw2J6ONjcCKif9LzoPi9ysrKF3tDEREZweBEREREZBA7TkREREQGMTgRERERGcTgRERERGQQgxMRERGRQQxORERERAYxOBEREREZxOBEREREZBCDExEREZFBXwBVAp/T6A0mFAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define a pre-processing function\n", + "\n", + "- This is an optional step which we want to apply to each chunk\n", + "- Here we change some data variables into coordinate variables, but you can define your own pre-processing step here\n", + "\n", + "We will write a Beam transform that fixes both these issues. This is achieved by creating a [composite transform](https://beam.apache.org/documentation/programming-guide/#composite-transform-creation), which is a subclass of the `apache_beam.PTransform` class that overrides the `expand()` method to specify the actual processing logic. " + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "from pangeo_forge_recipes.transforms import Indexed, T\n", + "\n", + "class SetBndsAsCoords(beam.PTransform):\n", + " \"\"\"\n", + " Fix issues in retrieved data.\n", + " \"\"\"\n", + "\n", + " @staticmethod\n", + " def _set_bnds_as_coords(item: Indexed[T]) -> Indexed[T]:\n", + " \"\"\"\n", + " The netcdf lists some of the coordinate variables as data variables. \n", + " This is a fix which we want to apply to each dataset.\n", + " \"\"\"\n", + " index, ds = item\n", + " new_coords_vars = [var for var in ds.data_vars if 'bnds' in var or 'bounds' in var]\n", + " ds = ds.set_coords(new_coords_vars)\n", + " return index, ds\n", + "\n", + " def expand(self, pcoll: beam.PCollection) -> beam.PCollection:\n", + " return pcoll | beam.Map(self._set_bnds_as_coords)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define the Recipe Object\n", + "The recipe pipeline of transforms applied to `pattern` is similar to that described in {doc}`netcdf_zarr_sequential`, with the following modifications:\n", + "1. `open_kwargs={'anon':True}` is specified to `OpenURLWithFSSpec`, because we want to access the source files anonymously.\n", + "1. The new preprocessing transform `SetBndsAsCoords` is included in the pipeline." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A place for our data to go" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "from tempfile import TemporaryDirectory\n", + "td = TemporaryDirectory()\n", + "target_root = td.name\n", + "store_name = \"output.zarr\"\n", + "target_store = os.path.join(target_root, store_name)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<_ChainedPTransform(PTransform) label=[Create|OpenURLWithFSSpec|OpenWithXarray|SetBndsAsCoords|StoreToZarr] at 0x7fc01da350d0>" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transforms = (\n", + " beam.Create(pattern.items())\n", + " | OpenURLWithFSSpec(open_kwargs={'anon':True})\n", + " | OpenWithXarray(file_type=pattern.file_type)\n", + " | SetBndsAsCoords() # New preprocessor\n", + " | StoreToZarr(\n", + " store_name=store_name,\n", + " target_root=target_root,\n", + " combine_dims=pattern.combine_dim_keys,\n", + " target_chunks=target_chunks\n", + " )\n", + ")\n", + "transforms" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 5: Execute the recipe\n", + "\n", + "Execute the recipe pipeline using Beam." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" + ] + }, + { + "data": { + "application/javascript": [ + "\n", + " if (typeof window.interactive_beam_jquery == 'undefined') {\n", + " var jqueryScript = document.createElement('script');\n", + " jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n", + " jqueryScript.type = 'text/javascript';\n", + " jqueryScript.onload = function() {\n", + " var datatableScript = document.createElement('script');\n", + " datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n", + " datatableScript.type = 'text/javascript';\n", + " datatableScript.onload = function() {\n", + " window.interactive_beam_jquery = jQuery.noConflict(true);\n", + " window.interactive_beam_jquery(document).ready(function($){\n", + " \n", + " });\n", + " }\n", + " document.head.appendChild(datatableScript);\n", + " };\n", + " document.head.appendChild(jqueryScript);\n", + " } else {\n", + " window.interactive_beam_jquery(document).ready(function($){\n", + " \n", + " });\n", + " }" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "with beam.Pipeline() as p:\n", + " p | transforms" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 6: Check the resulting Zarr store" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+              "Dimensions:    (bnds: 2, lat: 180, lon: 288, time: 1980)\n",
+              "Coordinates:\n",
+              "  * bnds       (bnds) float64 1.0 2.0\n",
+              "    height     float64 ...\n",
+              "  * lat        (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n",
+              "    lat_bnds   (lat, bnds) float64 dask.array<chunksize=(180, 2), meta=np.ndarray>\n",
+              "  * lon        (lon) float64 0.625 1.875 3.125 4.375 ... 355.6 356.9 358.1 359.4\n",
+              "    lon_bnds   (lon, bnds) float64 dask.array<chunksize=(288, 2), meta=np.ndarray>\n",
+              "  * time       (time) float64 15.5 45.0 74.5 ... 6.015e+04 6.018e+04 6.021e+04\n",
+              "    time_bnds  (time, bnds) float64 dask.array<chunksize=(241, 2), meta=np.ndarray>\n",
+              "Data variables:\n",
+              "    tas        (time, lat, lon) float32 dask.array<chunksize=(241, 180, 288), meta=np.ndarray>\n",
+              "Attributes: (12/44)\n",
+              "    Conventions:            CF-1.7 CMIP-6.0 UGRID-1.0\n",
+              "    activity_id:            CMIP\n",
+              "    branch_method:          standard\n",
+              "    branch_time_in_child:   0.0\n",
+              "    branch_time_in_parent:  36500.0\n",
+              "    comment:                <null ref>\n",
+              "    ...                     ...\n",
+              "    sub_experiment_id:      none\n",
+              "    table_id:               Amon\n",
+              "    title:                  NOAA GFDL GFDL-CM4 model output prepared for CMIP...\n",
+              "    variable_id:            tas\n",
+              "    variant_info:           N/A\n",
+              "    variant_label:          r1i1p1f1
" + ], + "text/plain": [ + "\n", + "Dimensions: (bnds: 2, lat: 180, lon: 288, time: 1980)\n", + "Coordinates:\n", + " * bnds (bnds) float64 1.0 2.0\n", + " height float64 ...\n", + " * lat (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n", + " lat_bnds (lat, bnds) float64 dask.array\n", + " * lon (lon) float64 0.625 1.875 3.125 4.375 ... 355.6 356.9 358.1 359.4\n", + " lon_bnds (lon, bnds) float64 dask.array\n", + " * time (time) float64 15.5 45.0 74.5 ... 6.015e+04 6.018e+04 6.021e+04\n", + " time_bnds (time, bnds) float64 dask.array\n", + "Data variables:\n", + " tas (time, lat, lon) float32 dask.array\n", + "Attributes: (12/44)\n", + " Conventions: CF-1.7 CMIP-6.0 UGRID-1.0\n", + " activity_id: CMIP\n", + " branch_method: standard\n", + " branch_time_in_child: 0.0\n", + " branch_time_in_parent: 36500.0\n", + " comment: \n", + " ... ...\n", + " sub_experiment_id: none\n", + " table_id: Amon\n", + " title: NOAA GFDL GFDL-CM4 model output prepared for CMIP...\n", + " variable_id: tas\n", + " variant_info: N/A\n", + " variant_label: r1i1p1f1" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Check to see if it worked:\n", + "ds = xr.open_zarr(target_store)\n", + "ds" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAHFCAYAAAAExnZzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebgdRZ0+/lZV91nukhXIAiGgBBQIiqBo8BEY9hHRYb4yg4phUVFQDBJBXCCMJiwCoigII0NgEHBUUMCBH+iYKAKPBEUBFUeMwEAWCdnudk53V/3+qL27z7nn5t5sUO/zXDjdXV1dXV3d6Xr7/bwfIoQQCAgICAgICAgIGBZ0azcgICAgICAgIGB7QXhxCggICAgICAjoEOHFKSAgICAgICCgQ4QXp4CAgICAgICADhFenAICAgICAgICOkR4cQoICAgICAgI6BDhxSkgICAgICAgoEOEF6eAgICAgICAgA4RXpwCAgICAgICAjpEeHF6lWHBggUghODll18eszpPOeUU7Lbbbpu9PYsWLcKPfvSjTTrOaLBhwwYsXLgQhx56KKZOnYqenh7Mnj0bl112GYaGhjqu54477sCb3/xm1Go1TJ8+HfPmzUNfX9+w+y1evBiEEPM3ltfuRz/6kVf3smXLRlzHSy+9hAULFuCJJ54obNPX99WM/v5+XHjhhdhzzz1RrVYxefJkHHbYYfjf//3fjvbvZFz8z//8D0477TS84Q1vQHd3N3beeWe8973vxeOPP16o76GHHsJHPvIRHHDAAahWqyCE4G9/+9tYnOomYVPG/Xe+8x0QQtDT07OFWhkQMHYIL04Bw+JLX/oS7rrrrs1+nK314vT888/j6quvxlve8hbccMMNuPvuu/H//t//w4IFC3Dcccehk6xE3/3ud3HSSSfhrW99K+677z5cdNFFWLx4MU444YSO23HnnXfikUcewYQJE0ZxNj4OOeQQPPLII/jiF7+4yXW89NJLuPjii0tfnD7ykY/gkUceGUULt2309fXh0EMPxY033ohPfepTeOCBB3DTTTfhoIMOwsDAwLD7dzourrvuOvztb3/Dpz/9afz3f/83vv71r2P16tV4+9vfjv/5n//xyv7sZz/DT3/6U+y6666YM2fOmJ7vSLEp4/7FF1/E/PnzMX369C3Y0oCAMYQIeFXhoosuEgDE3//+963dFCHEyNrT3d0t5s6du/kblUNfX5/o6+srrP/qV78qAIhf/vKXbfdP01RMmzZNHHXUUd767373uwKA+O///u+2+990000CgFi+fPmI294p9DEee+yxEe/72GOPCQDipptuGvuGbeP49Kc/Lbq7u8Wzzz474n1HMi5WrVpV2H/jxo1iypQp4vDDD/fWZ1lmfusxOtZj5+c///mw9W7quD/uuOPEe97zHjF37lzR3d09ls0OCNgiCIzTqxSrVq3CSSedhPHjx2PKlCk47bTTsH79eq+MEALXXnst3vzmN6Ner2PixIn4f//v/+Gvf/2rV67sU926detw+umnY9KkSejp6cG73/1u/PWvfwUhBAsWLBhxewgh6O/vx80332w+Kx166KFj1R1t0d3dje7u7sL6t73tbQCAF154oe3+jz76KFasWIFTTz3VW//+978fPT09o2LrDj30UOy777545JFHMGfOHNTrdey222646aabAAA/+clP8Ja3vAVdXV2YPXs27r///k0+VhmWLFmCt771rQCAU0891VwbfY3LPtXttttuOO6443Dvvfdi//33R71exxvf+Ebce++9AOSnyTe+8Y3o7u7G2972ttLPh8uWLcPxxx+PSZMmoVarYf/998d//dd/jem5DYeBgQF85zvfwfvf/3687nWvG/H+IxkXO+20U2H/np4e7L333oXxR2nnj+0NGzZg/vz52H333VGpVLDzzjtj3rx56O/vH+HZFLEp4/7WW2/F0qVLce211476+AEBWwvhxelVin/+53/GnnvuiR/+8If43Oc+h9tuuw3nnHOOV+aMM87AvHnzcMQRR+BHP/oRrr32Wjz99NOYM2cOVq1a1bJuzjne85734LbbbsP555+Pu+66CwcddBCOOeaYTW7PI488gnq9jn/8x3/EI488gkceeWTYh2uWZUjTdNg/znmHveZDfyLZZ5992pZ76qmnAAD77beftz6OY7zhDW8w2zcVK1euxKmnnoqPfOQj+PGPf4zZs2fjtNNOw7/927/hggsuwHnnnYcf/vCH6Onpwfve9z689NJLozqei7e85S3mJe2LX/yiuTYf+chH2u73u9/9DhdccAHOP/983HnnnRg/fjxOOOEEXHTRRfjOd76DRYsW4bvf/S7Wr1+P4447DoODg2bfn//85zj44IOxbt06fPvb38aPf/xjvPnNb8a//Mu/YPHixcO2eazGxeOPP47+/n7MmjULn/jEJzBx4kRUKhUceOCB+MlPfjJsO0Y7LtavX4/f/OY3w46/VhgYGMAhhxyCm2++GWeffTbuu+8+nH/++Vi8eDGOP/74jj5Bt8NIz2/16tWYN28eLr30Uuyyyy6jOnZAwFbF1qa8AsYW+tPY5Zdf7q0/88wzRa1WE5xzIYQQjzzyiAAgrrzySq/cCy+8IOr1ujjvvPPMurlz54qZM2ea5Z/85CcCgLjuuuu8fS+55BIBQFx00UUjbo8QI/9UN3PmTAFg2D+3PZ3id7/7najX6+Kf/umfhi27cOFCAUCsWLGisO2oo44Se+65Z9v9232qO+SQQwQAsWzZMrNuzZo1gjEm6vW6ePHFF836J554QgAQ3/jGN1oeY6w/1enr62LmzJmiXq+L//u//yu0bdq0aaK/v9+s/9GPfiQAiLvvvtuse8Mb3iD2339/kSSJV+9xxx0npk2b5n2qKsNYjYvbb79dABDjxo0TBx98sLj77rvFvffeKw477DBBCBH3339/2/1HOy4++MEPiiiKvGufR7tPdZdccomglBau+Q9+8IPCp7Q0TUWSJObvpz/9qQAg/vKXv3jr3b4f6fn98z//s5gzZ46558OnuoDtFdHmfCkL2Ho4/vjjveX99tsPQ0NDWL16NaZMmYJ7770XhBB86EMfQpqmptzUqVPxpje9CUuWLGlZ99KlSwEAJ554orf+pJNOwgUXXLBJ7dkU3HPPPWg0GsOWG6kI9W9/+xuOO+44zJgxA9/5znc63q9VdNloo86mTZuGAw44wCxPmjQJO+20E3bbbTfv3N74xjcCAJ577rlRHW8s8OY3vxk777yzWdZtO/TQQ9HV1VVYr9v8l7/8BX/6059wxRVXAIA3Nv/xH/8R9957L5555hmzXxnGalxoRqpSqeC+++5Db28vAOCwww7DrFmz8OUvfxlHH330sMfZlHHxpS99Cd/97ndxzTXXeNd+JLj33nux77774s1vfrPXj0cffTQIIViyZAmOPfZYAMDhhx9u7msXe+yxh7c8d+7cAuvXyfn98Ic/xD333IPf/va3r/oozIBXP8KL06sUkydP9par1SoAmE8iq1atghCi5UtLO03HmjVrEEURJk2a5K1v9wI0XHs2BXvvvXdHnxtGogl57rnncNhhhyGKIvzsZz8rnGMZ9LmtWbOm0AevvPJKR3W0Q9n+lUqlsL5SqQDAiCwUNhdatW24NutPxPPnz8f8+fNL6x7OrmGsxoW+rnPmzDEvTQDQ1dWFQw45ZNgI0E0dFxdffDG+8pWvYOHChfjkJz853Gm0xKpVq/CXv/wFcRyXbnf78frrr8fGjRvN8uOPP46Pf/zjuPvuuzFt2jSzfocddjC/Oz2/vr4+nHXWWfjUpz6F6dOnY926dQCAZrMJQOol4zgu1RkGBGyLCC9Or1HssMMOIITgl7/8pXmJcVG2TmPy5MlI07Tw8F+5cuVmaWsrvP71r++IXbnoootKBet5PPfcczj00EMhhMCSJUs61mHMnj0bAPDkk09i7733NuvTNMWf/vQnnHTSSR3VE2D/Yb7gggtahrTvtddebesYq3GR1+64EEIM++K1KePi4osvxoIFC7BgwQJ8/vOfH+YM2mOHHXZAvV7Hf/zHf7TcrpHvU+3DNHv27JYebp2e38svv4xVq1bhyiuvxJVXXlmoZ+LEiXjve9+7VaxIAgI2BeHF6TWK4447DpdeeilefPHFwie34XDIIYfg8ssvx/e+9z184hOfMOvvuOOOUbWpWq2OiIEay091zz//PA499FBkWYYlS5Zg5syZHbfjoIMOwrRp07B48WL8y7/8i1n/gx/8AH19fSPyctoWMRbsYKfYa6+9MGvWLPzud7/DokWLNqmOsRoX06ZNwzve8Q786le/woYNGzBu3DgAUnS9dOlSvP3tb2+7/0jHxZe//GUsWLAAX/ziF3HRRRcN2/7hcNxxx2HRokWYPHkydt9991HXl0en5zd16lT8/Oc/L+x/6aWXYunSpbjvvvu8l7iAgG0d4cXpNYqDDz4YH/vYx3Dqqadi2bJleNe73oXu7m6sWLECDz30EGbPnu29FLk45phjcPDBB+Pcc8/Fhg0bcMABB+CRRx7BLbfcAmBkn8ZczJ49G0uWLME999yDadOmobe3ty27oGe8o8Xq1atx2GGHYcWKFbjxxhuxevVqrF692mzfZZddDPv03HPP4fWvfz3mzp2LG2+8EQDAGMPll1+Ok08+GWeccQZOOukk/O///i/OO+88HHnkkW2jDbcmFi9ejFNPPRU33XQTTjnllJblXv/616Ner+O73/0u3vjGN6KnpwfTp0/fbAaG119/PY499lgcffTROOWUU7DzzjvjlVdewR//+Ef85je/wfe///22+4/VuACAK664AocddhiOPvponH/++SCE4Morr8TLL7+ML3/5y6bcaMfFlVdeiQsvvBDHHHMM3v3ud+PRRx/12uG+pP397383eqQnn3wSAHDfffdhxx13xI477ohDDjkEADBv3jz88Ic/xLve9S6cc8452G+//cA5x/PPP48HHngA5557Lg466KBN7ptOz69Wq5VaiyxevBiMsS1mOxIQMFYIL06vYVx//fV4+9vfjuuvvx7XXnstOOeYPn06Dj74YONhVAZKKe655x6ce+65uPTSS9FsNnHwwQfj1ltvxdvf/vZNdr7++te/jrPOOgv/+q//akKp24nUxwp/+MMfjHfVhz70ocJ295OOEAJZliHLMq/Mhz70ITDGcOmll2Lx4sWYNGkSPvzhD2PhwoWbvf2bCv05xtWwlKGrqwv/8R//gYsvvhhHHXUUkiTp+PPnpuCwww7Dr3/9ayxcuBDz5s3D2rVrMXnyZOy9994jZkdHizlz5uBnP/sZvvjFL+KDH/wgAPkSs2TJErzjHe8w5UY7Lu655x4AwP3331/qxeVqtp5++mm8//3v97afeeaZAODdM93d3fjlL3+JSy+9FDfccAOWL1+Oer2OXXfdFUccccQmp1HalPMLCHg1gYhOVJQBAR3gtttuwwc/+EH86le/2uqpILYnaObnL3/5C2bOnIkoGrv5jP4H/ZZbbsHpp5+Oxx57DAceeCAAGRW5fPlyPPbYY2N2vICAgIBXOwLjFLBJuP322/Hiiy9i9uzZoJTi0UcfxVe/+lW8613vCi9Nmwgd+v33v/99zDQfP/7xj/FP//RPhfVaAH/rrbeOyXECAgICXisIjFPAJuHee+/FggUL8Je//AX9/f2YNm0a3ve+9+ErX/mKEdEGdIY1a9Zg+fLlZvnNb37zmLFO69atw1/+8hezvPfee3s+SgEBAQEBI0N4cQoICAgICAgI6BAhV11AQEBAQEBAQIcIL04BAQEBAQEBAR0ivDgFBAQEBAQEBHSIEFWXA+ccL730Enp7e0MyyoCAgICAthBCYOPGjZg+ffomm/8Oh6GhIZPbb7SoVCqo1WpjUtdrFeHFKYeXXnoJM2bM2NrNCAgICAjYjvDCCy90nN9yJBgaGsLuM3uwcnU2fOEOMHXqVCxfvjy8PI0C4cUpB50F/Z1vmY+ItU502xaBqJJoxdgNF8i5jcd5ku0lELWTdm4np7ItYHNfd7G5GO7t8Xm0DbD9nV6PNGvgod9cYf7tGGs0m02sXJ1h+eMzMa53dIzWho0cux/wHJrNZnhxGgXCi1MO+vNcFNcQRcWBJYYbtyO44cUIng0k98x2981v22LYxH9ICB/jdgCb3JZtBpuh+R39Q99pv22Oa5ZDvr2b7UViG8FmeRHb3u8Dg+Gv/bDjo9N3jBb1CNrB+CMESIn6uXnH67heOuoXp5Hiuuuuw3XXXYe//e1vAIB99tkHF154IY499lgAwJ133onrr78ejz/+ONasWYPf/va3ePOb3+zV0Wg0MH/+fNx+++0YHBzE4YcfjmuvvXazsHNbCkEcHhAQEBAQsI0jE3xM/kaCXXbZBZdeeimWLVuGZcuW4R/+4R/w3ve+F08//TQAoL+/HwcffDAuvfTSlnXMmzcPd911F+644w489NBD6Ovrw3HHHVfI67g9ITBOLSCowy7lZhIFpqjVTKNkddtZUpvXWHceua3NxMdk5tzB/TzscTptRpt6Stm7duXL2j0Wn8g6vcRt6smPkxFfpxGyTCNiuDoYw0SILTbWO+6bkfThZmTzNttnw9HW28n+nV7TknLueCD552W+fAmlXxhPFH6b3e16dafP+80MDgE+Smp6pPu/5z3v8ZYXLlyI6667Do8++ij22WcfnHzyyQBgGKk81q9fjxtvvBH/+Z//iSOOOAIAcOutt2LGjBn46U9/iqOPPnrkJ7ENIDBOAQEBAQEBryFs2LDB+2s0GsPuk2UZ7rjjDvT39+Md73hHR8d5/PHHkSQJjjrqKLNu+vTp2HffffHwww9vcvu3NgLj1AKCEvmNW88u3ImIO+OgLdbn9pHb3W3DsVhtGtfm2/tIdFObC8Nqrng7mmQE9ZXMbluXzZcrL5hnsmW5klmoXqTCKWt+lbbPY6dIcXu79rZDW/ahbJvTjs3CtHSyf4f1mZ7vZJY/lkzASPq0BWNU2rcjvVajKVtgYEZQ/3BjZKwYr8JzsPzZqst6pTnxtplnXxkdUMY0lWzzjk9KtpfsJ7bQQ5eDj1pqqGvIR45fdNFFWLBgQek+Tz75JN7xjndgaGgIPT09uOuuu7D33nt3dLyVK1eiUqlg4sSJ3vopU6Zg5cqVIz+BbQThxSkgICAgIGAbRyYEslG+sOr9X3jhBS8Ze7XaOoJ8r732whNPPIF169bhhz/8IebOnYulS5d2/PJUBiHEdu2TGF6cWkDEFCKS04v8LKQVc2TWu9spyZVHsXyunsK2fJ1l2/MY5aDclEnUJkX35VmZfB2ixTbFBPnrWpTVDJdXd35ftcD8fQXIMGwVMbPzfNO9cgIQrE37nbKEw7/euXpatyWHYdimjsp3sm1T0OnUWc/w88cvsLstWIMRYkT9WcpO5sp2yrR12B8j0zZ1cC68pM2tlguNaaXtJO339fYTHoPubXEZpTI9U7tr7mwvsFj5/XLP4TJWSZbNtZ3I/fl2qHgZN26c9+LUDpVKBXvssQcA4MADD8Rjjz2Gr3/967j++uuH3Xfq1KloNptYu3atxzqtXr0ac+bM2bTGbwPY/q54QEBAQEDAawxaHD7av9FCCNGRJgoADjjgAMRxjAcffNCsW7FiBZ566qnt+sUpME4twBkBZ1rfRIpsEtWzGaDAIpWxUCgp54KQ4nq3PO1s/62BfFuGi0zzmZ5c5FdplFpZ3aS8TpEv13qdCZoRqj4A4EKub8N0CVXWrDesSL7ZxGcIPN2Iqa5wPoKq7WYjcfrFZ88EIUWmo50+pYwVKcMW8G1qiVbTubIxXrJu1BFnm6jH8q5FOzamrM4CG9niGGactqi+3b759m0qo9Rum6sLdY7bFu2m722YxUL9LaKgizuIzurNn4timPRx9HG3nMZJINvCUXWf//znceyxx2LGjBnYuHEj7rjjDixZsgT3338/AOCVV17B888/j5deegkA8MwzzwCQTNPUqVMxfvx4nH766Tj33HMxefJkTJo0CfPnz8fs2bNNlN32iPDiFBAQEBAQEFDAqlWrcPLJJ2PFihUYP3489ttvP9x///048sgjAQB33303Tj31VFP+X//1XwH4YvOvfe1riKIIJ554ojHAXLx4MRhjheNtLyBCvGqsZscEGzZswPjx4zHnyIsRxTWrUdITRcUouQxUXqvUijUC8lEZuW2bzFa1P6ctjjasT3G9aF+Wl683+7j7D3OM0m2t2uZpP4Zn0UrrLZT3F1uzUcIv6+mfhOwTkW+fQ2HxXP2tWCaO4mx/E5gMU/VYsZ6toqJGW//mftS10ZS1Zf70cis2Ko98ItlOmaN2GqxO9Foa+t7Q2iRCyv2RhkOrvtGHbRdhp47r/XY1TXmdkrNNRNSLmBOO7qmVjkm3wdVE6bJpOoRf/fQirF+/vmPd0Eig/0169k9T0TtK5/CNGzle/4aVm62trxUExikgICAgIGAbx1hG1QWMDuHFqQV4TMBj7eXksDwkx0A52qPST91tGKiy9e3YqjJsts/rndRbxgCp9SRHmpD8Pnl9UhnL1Kr+sqaoa2K0Q8TuT3J6KEHa11XmM6X72duPjLDePMPormB25p3XsXhRfoRAUAGiGyQkA2WaIYgfiZZZJqMws6clLIfedxg2II/CLL8V8oxWO/fnkWplhsFmuVVauk77/akjxEo1UJpt6tSbqVU5IdozjlzY32kGpKldNqyKZZE8a26auy6EONdSgLRin/JMYRk75bZzOGbOGz9OH7vPE0ohQMs99vT1yOtXjWaVmG3Gub7V1wYmf/MtRPlzjF56uDWli68mhKi6gICAgICAgIAOsd0wTmmaYsGCBfjud7+LlStXYtq0aTjllFPwxS9+EVR98xdC4OKLL8YNN9yAtWvX4qCDDsK3vvUt7LPPPiM+XlahILH8Fp7XJbnfwQv6JwAFVqlDfdJwzuOdoKMIN2+HkdVvWBFCQNydRQtWRi/nNDuFKLgSlqnM48huJP7/IY+vS3osTc4ziXBAwGmDw04BkLPPFu7mBVaphHVqB39f/7iiBTPk5eeCPBdzHFGsR/elEGoI6WvG5ey/lEUqY574CFmeDvRRbSOg2hxruHZsciTdaD5dDLdvO91Qu/07YVna1Zlx/3eayuXBIYh8GLkec5UKUK0AVAl2Cc2xTwRg6jlLKcBIi3uQSCZG67AYKUanuW317neHceIA4dxb9s63jJ1y6iVCWB8oKuxzixMQIozrOI8gdayKZTIZIwBwzTZpNoqqZ4zpF7mcbaGI5mwMoupGu3+AxHbDOF122WX49re/jW9+85v44x//iMsvvxxf/epXcc0115gyl19+Oa666ip885vfxGOPPYapU6fiyCOPxMaNG7diywMCAgICAkaHTIzNX8Dosd0wTo888gje+9734t3vfjcAYLfddsPtt9+OZcuWAZCswtVXX40vfOELOOGEEwAAN998M6ZMmYLbbrsNZ5xxxoiOx6sEWYWYGb0XRUdzLFQOeS8il4UQnlYgV6aMvWp5kJJ9vYM6RXPaowI7oZmYwgyw3eFFS4apbXvLyA6vDc4GzUyVbYNmvtQSI9KZm7hbdVECktmVgiiNkGG5RKF5xL1OuQi7kZx32zIFZm74Cg3TZxpKJHvWIj+eLK9AHeZJ7VuInvIimTbxKVsY/26daM0stTn/ETNKo2GSWumINiUnXbv+zUdlZqLlNut+34a1KoueowSI1GN+fC8IyUVSRZJhEjEDKLXeRHFJqHguUk3kdU9us3LPR/NM5AL5CFBvWfUByTNKKhpOOLorj6HlJRfH7Y+8lkst80oknx2Rwyo5Hn35iDvvGaO+PGRsu+EfAsYI280Vf+c734mf/exn+POf/wwA+N3vfoeHHnoI//iP/wgAWL58OVauXOllYa5WqzjkkEO26yzMAQEBAQEBfIz+AkaP7YZxOv/887F+/Xq84Q1vAGMMWZZh4cKFOOmkkwDAZFqeMmWKt9+UKVPw3HPPtay30Wh49vEbNmzYDK0PCAgICAjYdHAQZKOM4NtSEYCvdmw3L07f+973cOutt+K2227DPvvsgyeeeALz5s3D9OnTMXfuXFMun3F5uCzMl1xyCS6++OLC+iwGEGuxIAw3xyP55yeRlf9jDYA1ReHzjEnumv8U53zy08JDa8zWssl2fxfuF4D8avdTl7C0OeGw6T2ghJOOCFPA2VbSHndb4ZxtFK9XD3RIr2oUgWqDKw7PmVoS7i+XnnYmwJq5T3duWhy4nw+I+mqi6yX+VwEBCLcNlKDsc6Hg6pOZ+WRg2z4s2n2m08aUOWuAQjnA+Zyp2ut97hnBJ652gvFOy2u4PHaZyWb+XEeAdsL5jtqTP2YrO4Syess+Xebb750bL5QjQv3IcjsKYT6beccXwrcRyH/CyrLcMUs+DZpPSQyiFstNlQiCMZPIHJSARwS8KtvAIzcsH6ANDtbIiuefO2+SyXuCptwupxwkk/uSlEsrBPdczGdIVwwuZLv1pzlGQSIGUYlM+6HaxykFSASi+tRYCOhPbK4tASW+GFx9puPMbjfllTmmfn5rYbjdLusOLM5rD9vNp7rPfvaz+NznPod//dd/xezZs3HyySfjnHPOwSWXXAJA5sYBLPOksXr16gIL5eKCCy7A+vXrzd8LL7yw+U4iICAgICBgE8DF2PwFjB7bDeM0MDBgbAc0GGPgala3++67Y+rUqXjwwQex//77AwCazSaWLl2Kyy67rGW91WoV1Wq1sD6rEaAiZyKCAZkqklXhMUfgAGvabTQjoIlcpmmOqcmLzJnDhpQJvPNC8bwgvAMUxNW5ZcJ9tscyTsQrm69LlrcLrViuMnhpDcpYGpHfVl62LHWKy0Dpc+EMysxU75jrUCE8Fs7tEyFyTJLbB4yUMFC5dWjR3tz1c80wSZ7ZcGfM3Bd0F1Kw5FmmTRVJtwofb7W93XHKGLPRiLcdtEuqa9ioTiiBTmwR8uLrMqF2GyuBguA5XzbPQukyromkFq7rfaPIL5tlgM4BRikQMSP0FpUIXP+OKXhEwWNZL80ESCZAFasU9dt/ZYlmzjSDw6hkiTPnntDnmHKQJANtqIdgM5F2CJplchkyxTaJzGGg8iJv9cwnUaRYp0gtM0A9t0U1goid84wpeMwciwHbdsJFwU7Gex7lmCrBYJlrCi8wSAvJOW8xXsYY2Rh8qhvt/gES282L03ve8x4sXLgQu+66K/bZZx/89re/xVVXXYXTTjsNgPxEN2/ePCxatAizZs3CrFmzsGjRInR1deEDH/jAVm59QEBAQEBAwKsB282L0zXXXIMvfelLOPPMM7F69WpMnz4dZ5xxBi688EJT5rzzzsPg4CDOPPNMY4D5wAMPoLe3d8TH4xFAYslWZDWAV+R6OwtRBQXANWHFAZpYBkqG2to6RZtk0KWapTzjVILhQuJFO8aJW9ZJLwvub3P3FdyRYGl9T1k7hiMTSK6MSiOS3yYAEG6ZokJ7hD0u4f7slwjbKEIIaCLszDGyv/Xx3RNw2T/NnuUNO80x8tw3yZ2aM8OTaWBadI57jRXbZ9iUMsYkp2spZXIKhqpqWY9D1ySwBctCWtWXD63Pt62VLmskWqqR6q7yRdvpoVz20U0DUmbM6bbHCZ8nKffZn7LrlGMLDfNB3P1EkW1xt3n15a5X4Ro7ByREskx1qWviFYZMaZjSboas4txbHIgGOeKNqW6AbQqlksWpaANM4hWhKTftzMvyqG6jPo8sM8yayDIgyyC0QafHPnEILkAUe0YoARizjFOlYlgswmsAqVoLBSJ1S1lVn5xtM8kEaDPvTOqySLZPNNtk9U+WZdLLcDRQmxuBcdp2sN28OPX29uLqq6/G1Vdf3bIMIQQLFizAggULtli7AgICAgICNje4IOCjTE462v0DJLabF6ctDa4COngs2Sd/FuIwTkTATNo5AY8lQ2XgMCiSoXB+l6Btkl+3nnYosCL2N3HNPKhikRx2hea1PmoCSFW0TBnzYg47mlADrSvwU98WI+5gf5dFsZn2OYwYS/xIR0GgUkHYZTeNAuCycDlmLSsybR2lucmZeZZe27xsyGGIPPZJ5I6RZ/DM9S3R4OS1PPnZcp6lcRvlTtRbsVlQbTUhlwLIB2OVJXotAxujh3yOnfESEuu2kJLyANy0IDTlIM3UMEMkEzZZLFBu7ulqsJhdzmvVvLJcWOrXXQ/Ia+Am4HXTmcQRRI0YjZMgBKLKwCuKZaozJD0qaq4io+hcM9eswpB0y3pp4uj+1H3GlUkkj2V/6WcDyQSo+7vJwRSrQxsxaCMFaUrKngwlwJC0fyHNJkRqOVmRuXwIA1Gsk+wvAUKEZae0ngtyvBEAqKqIQaNbUl3mnCciWngWuGlWBFVpWADoqDo3obtgOUaKwDBSmxuBcdp2sN1E1QUEBAQEBAQEbG0ExqkFRGT/8tFsknHS01DLOIioJMokpynqVLDkFpN1WPFMIW1KnuFwtgs4socsVz4DaAYTBciGpA8VALBEt9nVOhCvXa6fift/7evkJaLNMVXFNguzXs9kNbOi20BTZxacCsvimLLCZ9NasBpUCIjUsgycEaNh45HWvFh9lMdsEf86CFeDovvcmcV758Vz2h8uzLlJXy81o49oS30O8UIHHTauDKWaG591KiaWbqN1ajWzbqfxya8bjmnKszabkEC1cE6qTqtjynn15NkmL3LTLnMagUS0wACZqDN3v0z4DB8hPjvltlNrp5qSTSHcaoZa6rzyWie3Pq0TUnogrWvKaq7gSrJKlk2RfZJV5Iq0RuAxLTn/In3ugLwvqSKCWFOARQQiVsxVRMEYAXMZScOkUpBm4iTmFhAmQbFi9VwtouDmGSYIMd5QSFMgScD6huS2uEtF/ul7GE6iXmFTaalzEZQYlimvYfKi6FRaJ1fzBAqINvZWY4kMFNkouY4t1NRXPcKLU0BAQEBAwDYOMQYaJxE0TmOC8OLUAoLZb9h5/yVppavKOd/AQUSRUHI8PuTkUdMVrQ5c8lszF96yE9lSqqlRh3ES6Bq9kLONpjYKMB60xzDMWlyu/WnHPAlC/Mgy7redutMe5aHk+SiZRJ8+4yX1WWqb8p0hHuPjlE3tzLEAIpkbrl2TmdWJEA6fDtPXXp8w9xMCF5IB56+Fo92SehS1WghwRgszfrNbBo9NM6BSH2MmnkJYhi5/aK2n6YS16WQ8toKbqFW1yfP4KmOAvGOPnGHydEq5fc3xiF2fT9ZqvXqKx/OiJV2Pr4wbdsg9D0GLLIBgaMkammU1/kr9nTSLlU9nr8eqbn9E7fEZAY8pBHOi3yiMNsmNoGUN4et1NEXssKXePU5c5kUzpLqJxDxDCjrHjIBS4jCmsOeq2VhFibv9I5TOS0fVgTGAEBB9rlEEUldi0koM1KrgSuMk2+gwXBxwb1r3muvEva2i6rjbR0rr6juJbzmNU8C2g/DiFBAQEBAQsI0jiMO3HYQXpxbgEUAimG/aQn8DZ0J+D3ei6tpFwgmWj5xpf1zfD0nNKhWr5AYqudqZAv3qyGAEtcfU2iijR0gANghEDauzEe73e2/GKaOAPP2ObrOegTvMG/J9kitv8s9lij3KRfCYajjMrJtwq2lqGZFk2uusy0dNKW0RU/m02BA8BkI4uazy15OkwuTEAqByfOkZfgmD0cK3Sfen0Z1RYWbcgmmdFcx5m/7T7I5zbq6PDOEw0XQ6cstjnpzthX7p0A3ctF2D+bn+4EWM8WK9eeZlJDqmDqLhNLtkWWKimENi6iiwUqYxADLJSALqeuu8a3ktEyc+28Ry0YIFFik3bnV9eQaLW2bFjMPIX7au3cK2KxNyLJuxK8cx0wxURM1Y5RWKrEaRxZaNkiyb04cO4+lG5xptj2ZLHR0oTWC0QHIbkXojkxOPwtV9ebn0GAOYjpTjENzpWy7keVUkq0RqNaC3W27qqiDrriDt1n5V8tobZtv5YqAZJT/fnMMqOQwSjxRjp8/F/Qqh9uUM4FtK4yQoslGFLhcJzIBNQ4iqCwgICAgICAjoEIFxagEeA6SiGKfIMkdmtuU4XfuMU+6VPse2uIXL3La9aLqc6Y8bpWa0RrmK5E9nTzuJlMuOnog2pT+TN3M0zczN5vMzFacNhRx2uT7xGCbdbXkPmHa5y1ytiqHPiIzyMlbFRc2LO/t3I+4IQe7cBEiifGc49yPB2k0tuNxOmZ7FM/AKtVE5BNY5XLF19vyFF1XntxtSp+LaMLsBUYQ4qf4ECBzWyXFpJuDWGdw9H1cL5OpKCudK/Jx95hqWXCs3Gk3rsAAnb5pTDvbaeOyZGU8l2qx8ZJzSKbWNjtN9xHx2qlBOn6CqFtQWErGjQzM228XTlwWcasv6iALCcfY27GReI+P6PTHJanEVGSeUXokNKmZG664AyWhRq48iKQdp5thJxfxk3RXQlIEqN/CsRqWeR0UGC0H8gEjnQUIzebvpSDTtdac7x/goAdLbrkJBMqXn4hGo29eAM25Sy7QBgODgTUPJgsYRAJWmIY4gKipqsKeKrMZM32gNG2e2D7nOWxfBjw7O6ZQk26x+668NrqbJ1UOpbVsqcS4HAR8l18E7Ei0GDIfw4hQQEBAQELCNI2icth2EF6cW4FUAVcksCQaH9VBskzt7NTQC/P9ruMyBLsrlbCzvb2TgsiJ6tpdjdTzkia6crsmrRu0rvYuI0TyVu1fbwwlCLEPiaAjyGcchAOroctyoLxO848o/nBm+p6vKnay3n+lH+YNmADKrgfLYnXy0m9I16JkuzXyGwGNBsqI2xehOKPWctUnGjcbDwGVRPIZRM04oggIkL5xQfcsjyUTp4xJuWSfZNjjjjcGNxpQaNY/S9NiIsuMZJqswPjt7AIsc02Q36P6FE0UpgJTbvnYj55SeyHCpmjnTzJZiguUxfVYrD99jrEQb5zhJIwJQY3abA9bkRi8HKAZWM0XI6cBKNFl6nJhjxTrKzvaJ3G6ZJl02q6scbhm1GqxMSPoj032S60/Yell/E2yQgqn8brzKkNWY8XrKKrAsOCOym009BERH6Jpzkf9Pq7K9WVW1s0JRYQSxbj+jYIpVopRKtlaxcASAl2uv2bTbKAGpVEBi5Q7eVUfWLdmnrMqkO7iWUSXymnDtSVUlJrKw4M2kWUu17DFMzLJMZt/cds6Cbui1iPDiFBAQEBAQsI1jbMTh4S1vLBBenFqAxwKIFbNE/cg5OUPJsUwaeV2QgJkB0pSAKr8TkhKQzIn80GyQnvlEsHqDguNw7pg66gVQEU2O/ihzZoZar6KuekbkjEkzTjRx9svlRCswB0QYXQBTuinLTjgz8FyfuPZTpj6XAWjHpOVIN1dnBQhQEBCdI4sL6S4OFHVE2pvH1eyYyL2cV08ZXJ2O4xxNEgCM+5F1joam4C2DFoyMbp/xuwGIclKmzcyPatMMh9aGRFa3JHUnxF5Dp37dBhshKCR7Y4UnnoZIaj+sxqfMR6ksUq0sjx9JBVhDZ7YXll1JuXSDzo8fAKISgTgWzQJS02L0UML2gdeH+lTgs21es9woO2hGwjkXR7Pm/rslYgra5HacCXsuJMtnXfT3lYWI93/DKsFhnDQLrO9LCGQxBSKH3dX6oVSUMpvmcAKGnaKNFCTJQPVykoENUWQ1+XBIuxz2qSqPbPyKiADhxHuuCGWhpJ8BrKHPmSDphtFWxQ67o2EWncSZpucSHQJMjV+TKe6ySBExEYK8i5q8coCfa5QzojSqsPs63kwFxsmNwCspCyogttDLiNQ4je5T22j3D5AIL04BAQEBAQHbOPgYpFwJ4vCxQXhxagHBhM09B3fWIZS+omQAEsjZXmoZJpIQsCG13PR3k6yH8zvPrphs5GqmoycLVDFiql1SE6FmaplfF+F29kcTnwEgWW7mTdz9hO9eDdjZL3SkofqtWC7bPsnEmHxvIndcV3fFczoCV5uUynbQ1NEiqeg3U6fD6Ghtg162XlG5WTgUS+Tpj3wGp6VPFHG8e6ismySZKSMianNxwbZPMElXUF2WcwjGAJW5njt3oo2Ss+eG1NnOuefjI7U++mRsFJj0vXLHMMmxSPAvjMizc8JqiJxZO0AA5aps6vVcqP2ucyPuWEOApZkNRcqcvgdkn2hQSN8fWIbLsl7q3nBythlmTUXRedF5FOV6MyGky7wzdgVzIsrcKEXV1zy2TAevUEBFb9FUgGptGlM6qby0y/GSKqzzWO1yZsC7x6BlbPr5IqzeUPcDs+0FADYozywaYjLqLvXHOdXRpSm1ec0Us2uGNVHPDlWAOpdTPreAtK6W6wA4QWWj83zSDF1CQVIGoXLOkTi2YyGlQBSBVhXD1F2H6O0Cr8mkkrzCwJU+C0SyX+6zKqsQpHV975UwTO5yCctkziVXFlT4y2TL+TgFbDsIL04BAQEBAQHbOILGadtBeHFqAREpximvvaF5p3BHQ8CJzM2UqKiRBgEbsrng8roZz/8oz4hkjsP3IOB5IxH7/T6rSkZKgybKCVvXR+3MEFzqkWhiyxZcu00HFEk1LwLMYZ+0y7DXLy6b4WwjAtKLyd03D2HLUkcHRpsctKkjiEocqZFrgzuTz0fNOf/3cqvlnbnzecRcJgOS6dFZ7ZFxoF4xs1fisimUgjBuNCY2qkzNxF1H5ZKHm2YfJUNH7cXJlZWMkWVzCtGChHhaK82eaZ2XKa8jtfTsOmUm4z2PqdTSOQxTFufqda434cLcA6yR+W12x0mbnF8ky/zU7ipKzfhkQVhmKIU3NjTzYpzZc87nervsD1JgMv1ITgGm2D4dqaWdujkjXl64/L4F9s/tK9cHK+dJVbgPBWQuNwDEZdq0NkuzURFBVnE8vgTAI7mQ1SloIllaAFLr5GrKKDFML3ecwAGYfJJUjV3XSJ9HAGIdsQuwASAegqnLixCMqfxLVIRgxC31WoPMRafy0WXj62hMqqIxQZZNuqh57hk/KZ3dIVKZH3S/uIy20lh57KjD5uczJoAUGSbjzG/22VIaJxp8nLYRjO4qBAQEBAQEBAS8hhAYp1aIBBAJCCo8axEgrwsS1iVZQEbLKUaHNeB5GHku4sQjbez+ue3uAb3ZqyI5SKpmWLHdBuF4LDUtw8SacubnRhsV4OoscrPefN47t30810cClqES8Gd/RRGMe24l2iJuZ3iGedF6J8PCydm+1sAQIcysXGplHBdsqNm9y9oYV3EO4fo66Rxj3JlWa5YmAUgjARqawiOSfdLaCzdaLyYQGQCt52hmUt+kPW2EcLRTfv8UWLmy62ZYQ5/W9CLJUil+s9GOBKRF+KA5fzN+M8Os0FSAg5u2Wx2SOqbje8YJQIT1RRIkAmtwo6WRohLVR/noR0J8PyNGnGNQORZK+kK7srd0o6cAZ7ZTC1F0gBNJ594Eim3ROiDtuu+ObTi/idM+Ifwcfi6JCVhHfFXW+HIRlLNPIrfstlmdWhZLfZMZP05ZHhOQqnDYZ6I0gqreTCDqU3qovgy8QpHWZUVSO0SsrM78R/6fJkDULxejoaK20827CABC3S9ZzABWV+et2Ky6/CeqOT5CcxzFwE5yfdILj0kr1YhqDWYsPMZMXhtbriX0A5r4DJN3DCqK+Ug3EzJBkJU8O0daR8DoEV6cAgICAgICtnFkYxBVl4VPdWOC8OI0HPSMw52huFSRgI1oa1DQJgFrWAYK1AYm+bms1HIuqs7TArnRHU7kBwDjBwXiR2TRFGCJ3U5Tqy8g+eiPksmHy264ee0AqwfIlzPb3KqFPyMUznqPWcvN1olLy2mNiJ5dczjeTP7+IKrOzFBHjnN4/iRzDw+XUcpUtnntzZQJWae7T6ZFV0qXFJnwQiDjEFWVwT3LQFJVNklBGLXtSzMgYiBDTd18k3tLxEyyTw7zZD1zhIyGypyL2cpzipZeYgtX70SIp7tBpajJMRnuc8clCQcDNf2dgXh5D6H0PrIeGYlmc5mhwHLqdpQFrnoQosCyAABikhtjwtc8Ocyldpx2x4gbBcpjP4oOAoiGFEuYSt8mz3Mp30SHEfVu8Fz5fOSpje4EyrR8rkbQRDeqyMZMOWZnFdmXpXnzhGQCqbpOjFII5vhQCcuW0USujwZt5GYzyo1NV0/kSPBoE4gatl5XV8WGUtBmBq4iS5NxFSQ96ne3r89Ka0DSA6Td6jhMFJk0/Wxi8AaP67+Vj76T+ieRy+5A7HmhhPH1QqMxzE0W8GpEeHEKCAgICAjYxsEFBR9lVB0PUXVjgvDi1AJaW0D0jMKdZbhjN6PGt4lkBCR1ZraOJkhDs0PSe8myQDSB0VDo4xvkGCeZC0ptymQUHRtS9ShvKFcr5cKL5NNt1LNXZ/ZUmkPNaZdbNp8TTOZEa7G/+o/rUO5HF/odZq6BOhfDFBAq2Zdc/2p2DYI7OpCca7Tj4WSWjc6GS18mzRQJxThpsxbKjE+TiOS5E62X4RxoNEAbDVPW7OcwYQAARkEaTaDp6KOUZ42oMIhaxczEoTVZkA7PSLllyEqi/mxEWE4rRYj0F1LMkWDUHsMh+rx9dG60KjW5v7Qzfd4DSB8uqxJvHNHUshVE5RM0eiYOP8dczsHbIO9rxIXVWBVPVTKxxFmAvScEtS7TIrKMjSkjhIlo1RFk+regvl8VccakZJ9b6apUZF9JXrsyeBFhZcywccW2kXw8kgxZWlPLsd7XMihG+6hyO2pId20iI4MhWSvzjOHSf0sj6aa+j1ve+4jZ51M0oBgox/PJuMZnHIIRpD2SoW1MZBjYUVaU9EqWSTOXggl5PlpPpPRF+rfH/BAho5sb1CyaANsMUofqsElZF7d1RZYeN3LB3LPYZbnlSWGLYGt8qrvuuutw3XXX4W9/+xsAYJ999sGFF16IY489FgAghMDFF1+MG264AWvXrsVBBx2Eb33rW9hnn31MHY1GA/Pnz8ftt9+OwcFBHH744bj22muxyy67jOpctiZCVF1AQEBAQEBAAbvssgsuvfRSLFu2DMuWLcM//MM/4L3vfS+efvppAMDll1+Oq666Ct/85jfx2GOPYerUqTjyyCOxceNGU8e8efNw11134Y477sBDDz2Evr4+HHfccciyvHZk+0FgnFqBCvlH9J9cTdRvoTOQJ5Zl0rMqL6M8t7MxEfnf5WlKzJurUHoiTwsEp2wCCNc92tEIuQ7fJFPHzUWuAA4DlpsxuZnCvQMQey5ac2Vm5zlditsmk6OrpAyg2SbnBD2GzJnSub91HY43kwxays2gVPvybIjntq3ZGtdJ2tE4IeNAopggrW/S26llnwiPgYgZBocggqhX7DGHEpljCwBM1KNug2JMlE8NktRG3A1JRoxEcpvvj0RA8wxTHm7+OmrLCEohIurk+CJ+JJujBRKMgEfU6HuSHpZjMqx2hjXlNc3UqfsMjlD+RnIg0UQ5wavj0Ca3LGEeLrtDSY6FzWmy8n5WrmYo10duvrE8myMIwB22JRoSJoIVkNGPps+If64gMDnkChGCGnp8ckgdEeDYbpecDoHHtul7ULNMWdU/AZrKNgNAQgl41We5TSQclww5dyKAaWrbTVOBSLHYSRdBYwJFqhkoyOeMzl2XucwQleNDR/kKClTWE9TWqX0zex+STIDHzJxLs4ci6ZHlmuMFspoTsVbmoUTsdQBylzkW4HrfRGpP5TEJaOYw57Hy66vaB6VlBZXOazgN0xbzcRp9VFwrOWQrvOc97/GWFy5ciOuuuw6PPvoo9t57b1x99dX4whe+gBNOOAEAcPPNN2PKlCm47bbbcMYZZ2D9+vW48cYb8Z//+Z844ogjAAC33norZsyYgZ/+9Kc4+uijR3U+WwuBcQoICAgICNjGoQ0wR/sHABs2bPD+Glpe0AZZluGOO+5Af38/3vGOd2D58uVYuXIljjrqKFOmWq3ikEMOwcMPPwwAePzxx5EkiVdm+vTp2HfffU2Z7RGBcWoBEgmQSLJNxGGcBCdS09RQbrdNR9ekZycumVIRxkW3oO3JbFlXIyB3tNtIfl/nN5SVkauJIO4sidqM2C6j5Z+s89uZ6QqWZ6HcWXyxDjNLbjdLU9ssW5AXgcGL3BPUdy0u1WzpanJu0K2inQrMk+vjlOacrR03Z/N/zRAMyYcNidX0msk8ddqXRnRVLYNDiNQlaUdurW3S9UcMrv4JETUu40TvC/jaJg3FJOn2mWum3bLdyDNCrA8Rz7z2uQwjIPtP1LRbuM39lVVVOSf6yMtr6IxPIYjn3EwqcsZPm5rZyOXOo65Xk2VW9Lg2ZXWuPKOlIt61chkfQ+xEbj/Y7nMj8PS5aMYkqRMwdam0yz5xfNt0PjPTa1pDJGR7WkUGupFnOiqtXVmjH6tQZDWCtGrZPw9Oe3isdU/ldbrtZQ2CuN96vum6ZFni9RmnkLkKVb2Zw2rJe9Y+L7MaAVkLj2UybSAEvMqQdMvBkXZJbRMAZHUBEYtyhkm1zWof1fHMNVXLeixXOTL1jOZcji+i2SgmpKO/qptn1F5flavRe645/UJ0m9KR8jibhrFJuSL3nzFjhrf+oosuwoIFC0r3efLJJ/GOd7wDQ0ND6OnpwV133YW9997bvPhMmTLFKz9lyhQ899xzAICVK1eiUqlg4sSJhTIrV64c1blsTYQXp4CAgICAgNcQXnjhBYwbN84sV3Uy5RLstddeeOKJJ7Bu3Tr88Ic/xNy5c7F06VKzneQ/hQtRWJdHJ2W2ZYQXpxagUQYaZ4BQs+ZU6Vg2RjIqQ0fdZKTlTJFX5Hd6nT2dpARI9CydeLMk7bZsvJbyLFBu2eiKqJpoU7ubIPCjxpxqSuGySJqkEcXzKkTgtainsB/JrdP54IaB1KJYb2tKACgPGEKU9sfRcnk5vJDLr5VzoJZlnGg4z1SHAJpFitQtoqPics7cEAJI1WBIAQwO2UsVMRlZB4BUY98HyWWYcu0y/lCpZoZsFCDJRdEJxsDrMXjFRsrpvuURBY9szjHazEATbvveZaeo77ye1ajUNSmWKa0RJMpDh8fwxophTPKRkgDAlXZGT/Ab0q2aJVqHBYiKq+FxGCcKc65EKO1R7Ot9PKbWGZSCUf+aO3opNzeZ9iqz0ZiqiE4/GBOj7WGJPVfdJkGstsvdL++Blo9m9erRbXCi91xw5rJ9RDmCq22xz8IJ4rB9KhLXsEsCznMLHsOY9EitEhsi9jw0a+TkntPtcyPn3Ag7zTZp/RPvFehndlzR1N6LNKJIxkUYmiS3DU0G0h7ZeM02eZFzKGGZzDbhlBGKkXL2rZTsD1teqAHBmCOAUlkhBHfuU/XvgXecZMswThzEfD0YTR0AMG7cOO/FqR0qlQr22GMPAMCBBx6Ixx57DF//+tdx/vnnA5Cs0rRp00z51atXGxZq6tSpaDabWLt2rcc6rV69GnPmzBnVuWxNBI1TQEBAQEDANg79qW60f6OFEAKNRgO77747pk6digcffNBsazabWLp0qXkpOuCAAxDHsVdmxYoVeOqpp7brF6ftinF68cUXcf755+O+++7D4OAg9txzT9x444044IADAKAjT4lOQRkHZRyCUxnNNiinUGyQgCaW6XDHoZ3Rqtm0/kavGCchYFzGQdUsx/1+7sygPe+TFN6MHi6j5Mzs9WIZ4wPI2VbBoTgPhzUSzr5a3+TlnHN3c2VBueUCI+ewFWXbWzp+l9WlQQHBickrKNxGKiMXHaFDOJXRc3o2ywmI+s2Ve7dhZbTHUwvGB25ONM0+aQ+ooYad4vIMpF4D76rY9jmeS1KLpOt0jqXboCAIsbnwIHN5De5URdqlGNFMmKgqwmVescp62R7aBLKuqFg/gKzKkHRTDE1UepO60jKZiFDHoT7v2Cx8lkl65cC0QTKp6jyZZAUzhy6gnp+QZYZoai9h2mX9iXS9ghZd8wGANQVoUxjWQ+vkWkXSgTg6QCoKeiOT+61CcuNWM3tWO6WPIXNC+kyF6Q/k7g8u+6vM3VpGnlnGicfEZ3iYry/ydIi6Tfo2SJ1nivaQ00OsIq95Ms72kfe8yTFmXn8yWGZIH89pQ9ol0L+zXJF0U9TWyHuANQV4BCRdqly3inAD5L3qRTOjnGVSv4lXVjNOtg26Q4n5PzwQ78Hi/Kaind2W3DfefsPqh8PnP/95HHvssZgxYwY2btyIO+64A0uWLMH9998PQgjmzZuHRYsWYdasWZg1axYWLVqErq4ufOADHwAAjB8/HqeffjrOPfdcTJ48GZMmTcL8+fMxe/ZsE2W3PWK7eXFau3YtDj74YBx22GG47777sNNOO+HZZ5/FhAkTTBntKbF48WLsueee+MpXvoIjjzwSzzzzDHp7e7de4wMCAgICAkaBsTHAHNn+q1atwsknn4wVK1Zg/Pjx2G+//XD//ffjyCOPBACcd955GBwcxJlnnmnIigceeMD79/ZrX/saoijCiSeeaAwwFy9eDMZYq8Nu89huXpwuu+wyzJgxAzfddJNZt9tuu5nfQohhPSUCAgICAgK2R3BBwEfr4zTC/W+88ca22wkhWLBgQcuIPACo1Wq45pprcM0114zo2NsytpsXp7vvvhtHH3003v/+92Pp0qXYeeedceaZZ+KjH/0oAAzrKbGpL06EcoDYN2Mb2qxWOOZnhiqnflk3CaWmtHlMZEis3kYAkvipAERNbmQNIpP2ujS1/p1L0UJywvB8igCR/wyRo9XNJ0hdPnfMQmguHErfPQ4pWY/isvkkkfs/gELy1bbZAsr0mUZ4r8wSTdoS+WGG6+968Gc+RDi2mkIl1VVCbVGW4sS0gYOkzH6qc5P65topYgZeY0h6bKw4zaXr0CH1+RBuUCCtyzYP7sDQGE/MeKQZMel3okGBeEAgqypLgUoFSbc1MuSx/fSU1eSnGm1kqEXH5vq7v4Fcmhx/mXCjiZefh4QNXU8FAWVu6g/hGXLK1B/2OPp3WiNeqqG0G574H5AmjgAQDcjgDb0MqtKClExw9RgzbhPq85qX+kjf844ZLABwQgqf3Nx6C/2F8jYQTkAi+xnNE5YLgqTbfqoTTNoBmM9kbn+p+84TzDvLnNhjQH2m08dhQ+rTrvJj5VV4nzYLn/idz6Tys1quvxwRtiBA1iU7YLBOMLSD3BQNENAEyOrqmI79QLGThF/vMGJw82lPbfdcVdpljy55ryisMl/mtUi8dXUBr05sN+Lwv/71r7juuuswa9Ys/H//3/+Hj3/84zj77LNxyy23AIDxhCjzlGjnF9FoNApmYAEBAQEBAdsSuPpUN5o/vv38k79NY7thnDjnOPDAA7Fo0SIAwP7774+nn34a1113HT784Q+bciP1lLjkkktw8cUXtz02oQJCWfKLQYqsIiB0SgGXNQJKZyymLRG3ZoQZkQyTniSlUrysZ7ysCaDpTpN89sfkcXWM9MzxXdbLZZgU+2Si0QVaMk4AfJaBFE/TzMoByaTkZtiGBXPrFbYdgD2+nUja/pTiVVFkyHQfCBSEzp5hpyO2JrD1iojKBLBu+hZjlinc7LByFaUgkTKgTLntQG3WaeqJILhlp0gSyVQqpl5hDCwFmAzRVhYEzR4qxcf69Lid8XPmMAPKoHBwkiybdisWRjWJNSzTEg8IJF0ESbfsiLQOLwWHdx2YL262zIHLdtk+8bW0xLJOqu2WAZOsCNWuDhWACGLSebiGi0bErRkSJs8PUGk9qGO6WBPgFW6vsdvWjIBkBGxQNriynoA2UBQ7q13KWNhWSa7zwnFO/PN2WU7vhmlzDCNI1zYZLnsnpAWBsR9gimVyEn4XTGlz7I93H9rmSEuPnHmnFti79gPRkAwsSDUzVNWJfYVpg8+G55J8O20QRACx3C+rq/Qn+lkVC7+RBYE34LJIHuMEmMAQbVrckmUqY5XasVAOXGsC18ZgS4ALCj7KqLjR7h8gsd304rRp07D33nt76974xjfi+eefByD9IgAU2CXXU6IMF1xwAdavX2/+XnjhhTFueUBAQEBAQMCrBdsN43TwwQfjmWee8db9+c9/xsyZMwHA85TYf//9AVhPicsuu6xlvdVqta1rqhAqVJ3J6SHvlgZpIlasAhVAooUYuVlmJLzv/8TRCGlrAJJLPmmOy+BpRrw2ubNElUalED7tzqhLZtpwf5YwTpoxapViRQj45+UyXx1M3jQzRIQoMACF83WO05bRy4X029QqQqbyUCZ8Onxcg6QCRHDzWxoDuswVATLqlNcJf0tOlBAv/YlNOsxl0l1tP6DM//qmylsw6fVTYwgCm3omx4B4zJAOf9fJWptA3C/bNTSBIu2WqSwAmyrF0+DltCh51sJrj7vsnrJm+1zNk5qZC8U+EZ0gVhk/6mSutOlXTBN73lnNam6ymoCoWIsBMKWH8dgVxTzEUqOm2ap0PAHbwMAasjBNJYOij+eG5WsrANcWJH+/2WTWJV3ljGOdgNs9b6+oYYV9xq5geeBonkQMlW5Gd1ibezR/v+TuswKEYrrhjzeawrMyaEbIywKL48hZX0iX4jBDPBbFsm4D9f+pbKCvY7K/3bKabWrFMpWxS+14Iy2oFpwgS6gpTBnfovqmDMSx8dj0OgJGj+3mxemcc87BnDlzsGjRIpx44on49a9/jRtuuAE33HADAHTkKREQEBAQELA9Inyq23aw3bw4vfWtb8Vdd92FCy64AP/2b/+G3XffHVdffTU++MEPmjKdeEp0CutNKL9js4pOBcAhMu+jvTVWzEhO9KD+5zATxhRPOfvnJ1gGbtqK/NTWYXtM5Jkz8277ud6ZcOSLEWd74ZDOMQt1le2T1yXpvjAJTf2jGz0PsSaWhMu+N7oLR/NAKYHIhNGFGC2U7noqrB6BERlZ57JIQjgpLoStmAiQjDuJXIVHFZIk8/VQ7dzxCJHpUwAIlSpEG2w2dqyib3qEphqaOiGrPLkStkA3m8BnGQBEA0Dcp07VSXIuIsk2GW1KBGno5+lRnHqB1te4cG6O9klX4I5XrX8RAKLcmHTLOvWzhtxXM286LYg+F+5qYKhQ2hqXgXDa5ra7KpBOEsiaKu1HkyDaKH9Hg5J98lKROM1yTTaN6WOe/XO7xc3BLIykUd7vHpPkX0PiDCV3HJvILccM170PvDRIrt5Lt8+5xplrhilgIh69Y2oytWnr0GaZ+tx4LOvh5ma0Uaj5cWTYppIxl39OesyUez1R3NfXOMn9XHNLkhsDLstUNqRbaZyEsClX0iaDaDLLNFeAKHazW29eZBg9Y/TqtercsthuXpwA4LjjjsNxxx3XcnsnnhIBAQEBAQEBAZuK7erFaYvCzGCkMMBMkAkk42QYCUg/JsCkVjEzkkh4bJPIiEz0C4CmREb/6Jmlmk15KRlKZqDDtzuniXHZqTKKydE9uNFFBR2HIl3K9Bw6HYMXXSRyE7ES/YbZ5DIfTu5bQggIF5aBSAmImsLzyE9pQTMh9UluG9wkvxygWpvEoVglXZg4LBL8yDmtWdL9yZGjDnwWC64XExWGcQKlyLoqGJwqRTv90xiavbC+Sa7PEEFBb+QlvnVm5myIIOqXrJOGToTLIxnFxt0IUE9HYvdpTX2qfYeb6LozeuFcZq0P8Wvzfurot6wK8BovpAwBAETCYy50MtmWLFNuoJLIbueU6FzbAKFgFBBN53huyhNnHJsh7GrEciyO+xuw2XKIZoadey3P/rpsVeEy6EdMQ+qQ9FhJq1ILJvsIRQ2b0xaXseGRekw5z4m8Z5r3bHI0jKxh9XK6XleH6GucRI5lyp2XNx5zJ+1d03bMrh9FV/B1cg9fpm9yy1lyuXT7cE3ZnAif6rYdhBengICAgICAbRxjkaR3LJL8BoQXp2FhiQet2bBMk4GOIKJqZqtZJs3mGMEELEvCiT/DIyh6MnWA4cq7OqrizqqM1hS5H8B9+YHxfWkVleNGwxUiiNwZtJnFKu2GWmFmrzkdiAvu+BwJxTwZf6OGAKXCskicGPaHcCEdqpXGiXdRsCGADmhhi9MHAtK3SUeKMQJeYZaRojARdoIRiMjSWqSZSQ2U6ymlIuyyrhhDO1QwsKNNopt35navh6ddyelCPEd1oXx2UmHar/2g0prSozB7Md1ovVYeTS3RobzCr6s4WycCIJryITJiDpBsk8dOADln/qKuxWcy3MFTZAqEGaBWt5L0cvCIGsZO6Agydyw75yUY/CTHOcLRu2FcBkpFupYl+TX7a2dy7jJ2xXK6bgCIGjaikit20TCMKjGzbgNt2rKFyFXIthc0TxrELtJEMZz6UcbtRiEAuEl/hXpo5FkooHw8udfXLaOuZ8EdHK1ZJJJbNutzx6W5/XXCZ2m9Rswzn0Zc5vTm6v7nBJwTz9sp4LWB8OIUEBAQEBCwjUOAmJe60dQRMHqEF6cW4Bk1zII3o3FmIHrZQP/UDJTWMOlJUt7nKYeWWia13mVtigyO0wRnpuvOFPMeSYUIPOIzGd45wc5K8+sLbRbwCQBXA5FjowQhfoSdwziYnF1mWdgZcyaZF27YFemDRRWTwRrckBU0EyBCIOmWw50zAJzKvHK6HcrbiahIPZLLG2f9l5h1VSYqWk+zZzEFbVLLegkBXlU+Td0RBAGiIcWuqONlpi54UVF+tFSeWfH1JTyy/jtplaA5Tv5OegBeEV7Zgs8OnG0ORmSI3Ant6RxGEIDXdfiWc2zFIBU0MmpHN/+YHSdF9qJM4yKLWCZQqEhDUSVImQDRxkhDAJxceu3uVxml6DC1zv2VZ3A0GyWc+6/0foYladrBJbY0tCeVjqxMu/wCxrNKVeD5UwnVNjcyz31WwG+jZDnVceo231xWQrO7nnSl46xVZCTNnaF3jf0Geb5NuWO4TBUhPsNUGk2nBmDGKdJmZK4ZjThYJUOm9XApRQaAJyUJCDcDwqe6bQehFwMCAgICAgICOkRgnFpAqG/X0g+IgmeWRQInEKlio1xGSfvTODoBN/LL1Ti1zIVV2pgcW+RO6EpmcMS1FsnrMHIsk6uXIQJO7jd4mdbzvkLCPU/1H7esm+Hd86UhkBoIYrcJToozbgCECRBKPA0WG5KVxv2ZjLhTuqW0m6l8b7oWCpJm6hwJhibGyGpE7csVY1VOq0iHcW5+u+UEswwZyYTMP6dOjuqoPq2tEgK0IaflEQEIZ2BNuS3uI0h6KFLVpqQLSMbrY8DpOL9vC9ebSi2LqacXaEyU23hFFH2bnP4tYMQCuxa/AUsUaKqCOatzEXBFt2j1v3YMk1pX5g7dmnmwxxGaFaQAujLolHmCMrAGwN0ppaN30i7aAECYjGjTPk/uPa2Z1UKeOOce8cjqXESb+7uUFGlzqQrsrj6XvAu6eygOT/sjAJv7rYQJdxlR1vDbmLosIkXxoeOOQ9ePqcCsCu+a5r2ZClDbqKuFMvu23paHZqSylHq6NarykqaOzlWkFCLbMvwDF8S4mI+mjoDRI7w4BQQEBAQEbOPIQJGN8iPRaPcPkAgvTq3gzLJ4ahkmkREQlyFxXZDLqiFoyy7ZGamQeh9nNmbmBvoQzpj3PlU7bJS2nirzltEaJtNcXc7N72YnU6Wzu7yWqiVcliQ3gxaOJEAIObPVM3xBrXZCz/D1ctzPQRsqZyAjoABYUy6zJgcbZGhMlJUnXQSCyt88AnhMEA0oZigRACHIqpr9c2egUt+ko+UM2+RoNLjKeYdIngBNlG4JXP7WDuWpKzAh9thQE23BQfW4osToRIxTdQtW0V3OagJZTEw+Oq1rAuBF05n62s3a2zCZpeVIfrnFgMjrluCULdOtlDJZIle2XMek9/Eip/JaJwKTCYBnBIQIcNVXqWYGh5zT1U/JVDG0moFIZLO05s1o3+Azuar1he7xdIhtclMW7J5bXSd9nXPaJe5cfzdaTVC/e0Hg2pcVZEn5HHSmnZagNcf0PKS8Z5DwfhMKPwrZobF9d3DhX1dSdAr3I+d8lsm0rcA4oQC9nTIBQrhdJgJJEtkO1c0dIVEbsP0jvDgFBAQEBARs4wif6rYdhBenYcATKr9ja00Th5xx5DyYDDx2xdfutIyac+rxtCz5mWcuIi6/LwA5OyWwmhJWnMF6x8gRZrponrnKH8fVQGi9Uz5iz/x2dRpCMSp6Jqky1buRSfGg0gH1c6XTcJgiB7SRgSrGiXAOwQgqfbLirGL1TlmFoNInjNcRiGSgbFttJ9BE+FF+OXZFUGIi8KR0g4CrXmNqSm+0XjEzTJNgBIISx2dKMlc6mIumfh+4yLuIe/5LjCAZD1MPrwnroQOtRcnrhJy6OkU7/ZMeR21Ynvwx2zt+t9AtlTBOXtW54xei6vQ1dOgfRiFzUTLZ+Vk3QdakYA3NEAJCXRedt05fXx2lRh3XceGwhR7bi1yXlGmXhK0nHzXr+ae595Y3NuFfB5pjvN3ni1u3+1vvy53DcH+bPqbeJeuy0aGmf5yyeaZKn5xhm9yxoH8SP+sCCEBoST46tc3VLhEiwGhrLZM7TigRhZcJqo4bsQwksowVFwQJEZYh018bttC7CAcFH+WnttHuHyARXpwCAgICAgK2cWSCIBslYzTa/QMkwotTC/BmBLDIeDFZx2+o79pyOc8i5WeZpgzgfxsH/FmnzunVSrvgeqyUoUTfYOBEpZU6Uus2uNFuPHcuZbNVJ9rIjcAjzjpA1ePOaJ3ZKhWS5aluULPFTCAakFN81uBoToiRdmkKx7IykYquo00tiJKMjmGOUmHKxkrb5Gm93FMhsMyQirYrMm1qe0Q87ZaMEpTbeERVGy31JpQeSns9uSIyXiHG5Vmeu+0v01fI/VYaEbdM2u2zTIV9Wq3vJIqupI5yH6giS+RtzrNR3jjPMQul+id/XUGbUsIukLL9y/aFMN5snHHweoamolOjjdT4ImktkjuWtc4JkGPeMH8Rikyvc6rGN6nYfO/eMufcgoFyGSaTpy5/fi6B6rLNOa2UcCJhBYUXAeje/9pbLdWavNiOXREp36YWkY0e9DhwtUmO3ik/ZqjLOFFr5VimaWqlZaLOsTQYEZ43n95Wq/hsFOEEUZyBMaWPU89zLhIEvLYQXpwCAgICAgK2cQSN07aD8OLUCikBUu38TUo0TVqrQgqMkjdT4j6T0FLz4FRpFi3R4uWJy3tFuWVBoLxT7LJxvlXtMfXr3Fi6DjeqjsLX1sBvO3XzecEvK3TKMTfzuj5G/pgMyKoEmYoEq7+cobqq3xwn7WIgFebtC8A4ewsnF1xWpciqWosmWmquTKSP7l9mN/IKhWDCuaZC9qVhlayrOEmFYiHktoxJJ3Gic9lRQMSacVL9k+p2E6RVR2vlOKR3As/7KE9ktmJ32qFdHW5dbfYpi1Aq3aeEZZL7t9cxFd2iy1mkVpF2bberVVElQ8IJeCxXNGscUB5u0UYm9XhqFx39iPw9qNbl9UXu/wVgNYJaKuMyuK4ZtXPva72gyzK5z4CCHs55VriRutqd3M3RCIdx4rFzf6h8d17OQ4eRok0YRl4IqePz+mLYceOwU3osUJ9F0myUyzJRh2VllJcyjUDRu8nbpjrH/RhAnYcrIU6mCApU4xSpur+TJELaZFvMOVwICj5K528RnMPHBKEXAwICAgICArZZPPvss/jiF7+Ik046CatXrwYA3H///Xj66ae3SnsC49QCOhqEAMXoNkfj5Op1CBVy6uIKeIid5nmsh2KzzKyOKpajRaZt4bBIBSbF3UXAj2JzNnPoWXuuPTn9kVlXprFxj63aztXs0zBrPNdeV+Ok6nZnyVkVaI7TLE0MQboBAJVXGqCJnb1yRhDlIut4RXs1UXBHfyQj2NTxMyHz1anlLJbMkNcorWGiAJxZvPaQ4k4knZFhuCygPpeanYtwBuMDRYTynFLLaZUi7SImGknuC3OMkUbqtMrv5v1f/y7Rn7T0WXL30z9HykZ55fNapRb6JrNs688zTGWu4V4T8lF1Zc0mziAFpJdaV2IyBaSNyJRJhWSd3Aq5wyh7jLFybBc5VsqMe2JZGg3DMokc+0ScS6Z82LKqXM7qTp8kAGs6+rzc/e3qqsqi8wiATGvuKKxDeiL9wkzEIJNMoL2/7JinCcBBzLkIo2NyT9Q5qHMPEmo1TkbPpMkedf01y5SPosvnoNPr5amUs02yjPw/U2WE8Mc3g4DQrJRgaCQRmoOyk0Qm/f14cwvlqgNRuQBHV8f2hqVLl+LYY4/FwQcfjF/84hdYuHAhdtppJ/z+97/Hd77zHfzgBz/Y4m0KjFNAQEBAQMA2Di6szmnT/7b2WYwcn/vc5/CVr3wFDz74ICoV6zJ72GGH4ZFHHtkqbQqMUysQRYu4DBIgZ4MZAUnlmztNiGElIJQ2IFIzFAaACft66rqMCwGSEBuNovNI6VmUy2QYtocU1nlRMHDW5ZgQ3T5XL2F1PE7ZElbLgyPJ8dYJ2CicGIUZpjvTphmMGzLJ/PxfSQ9B0iNvjnpvhNrLTVT65NGGJjCTk42mFBggYIMyooUNpuBRHYLKRhR8mohlf2xuMcsyuUwVzVS0lLNNu4zrMrIexxsKkpXKqsRonlymgA0p1kLV0z+VIhnn95GOsDNRSWWMUR5EM1Ql7EsH+3taqVy9QIfsUv4YbRgmWadw6i/TOtnjDMcyedvzTWqha2kXYSeEABEERDOQnCNrKEYhFsi6rMGRHsukqceke39LarKlZ5qQx1Kn6WmRZGXq/xnxdUoMyKrCusNHzvMlBkCoeTYVOsXxZhK54xn228kiYJjeGOBV4bHjbuUu62W0eoayVe0rHTM+G0WoZZQIFW29mVz9E1DUMbksU+kYdvZzwUFK1wFSR1WNUwj13EiGIoAJEFY+zgLGBk8++SRuu+22wvodd9wRa9as2QotCoxTQEBAQEDANg+uxOGj/dveMGHCBKxYsaKw/re//S123nnnrdCiwDi1BKHyTyavgpmdsSEK2iBgyi2YJpYpyKqwPiYOvNxMmdW8FCKZnDHNI2dWrvbhlJtyVDM2ic+IES71BcJoNpz6Y4BX7LSTDchzcaPfDFSEjsumef3DUJyxOhNRweD5PLmzdJHB5AKLhqSPk9YQcWZ1IYOTKQSpIO6TJ1tbl5lyhAvwmCKZIMUemYpeY0oDJajVWYAAaYW21H7k17luxzwiSGvEaEoAt0+kTk2zToJIpstl+DSTBiLrGtK59MbJ8UJKNGPaj6cssq3U58tdbqVncra11UPp1a2YqHbHLtOStGKJyhitnMdOOx0TIcI/1Rb6FvcYeSahbD8AEIIg02xknIErBkcIChELiIqmeQHeoGAOw+NeT8KJlzewGNmp64XHyqqq7S9BLJFF5fOFJmrfjJhoNxEL8Kow0XqFc3WYaKKZ9DwzrNvP3PGo2uD2aUYMsy7iXB96zxFhWVF14oahoQChHFQtM8atxom092ZyNU2ECFCIArNUdr11+Tx05ByjRard7U4apYYVGyBAcyC2osfNDA5i2K/R1LG94QMf+ADOP/98fP/73wchBJxz/OpXv8L8+fPx4Q9/eKu0aft7/QwICAgICHiNQTuHj/Zve8PChQux6667Yuedd0ZfXx/23ntvvOtd78KcOXPwxS9+cau0KTBOw0HN0jTrwwYJsppA2qOZDUBUVb60Sgb0R1ZjQPzZPXF8UsBV9AvVM1IAVDFNAEQ9MzMzMcQk8xVZcZLOOUSIH40njEgJql4BXlftizgEJyANao4pImG+2RMOM0PW/2cDsixNUc7QKAg42/Xpa12Gk9+LDQKVjZa1oU2B5jiCpMepWu3HqZxZZ1U5TFlDRscBAG0ICEaQKt+mrErltdB+SzkfHFfHpM/VjVL0/HaI9fERVLJNnFmmkDuaBiJsxB2E7FNdVkYe2es71EsxuCNUe/2cfbKMM6Y8HxynU3Io6Jt0ed04UlK25NlZyjC1ZJaAIgXp1lWmW7Ljcjg/Jr9sew1Tuxxk7coOB6b1PdxGeokKh9CaIwCkQUEbVLK+KLqIA45uLccICsDvAwFzH9oC8t4hQvjsbgYPmvEx2sqaDZ0jKTUaLGTEPm90FJm+PqnUapr7hsJGxqmIX3uPEIiKsHWV/Vucu97EXa/GOY04WFRkmQAZVedeQ0p5KctkqiX+NW93rUuZqJJ12ixS16Udxom6AKLaRNpkAGslCA0YLYQQeOmll/Dv//7v+PKXv4zf/OY34Jxj//33x6xZs7Zau8KLU0BAQEBAwDaOsdAobW8aJyEEZs2ahaeffhqzZs3C6173uq3dJADhxak1qPAiQjSLxGMg6+EQsWJxmhREaR7iegpezZCtl1FhpEFzXk12VpjXQekcZKIuZzO0mpmZDqcCSKmZqYEIw06QAQZk1r1cqIzjJiKmxkHrqTmMGIyMPoJkcrZoZtTuLDNS59xCU+O5IqtlkxNPszl6du14wsQDQDQokHTJjY1x8hhmwuf0F68CmaMv4hOJ0XbRJpN6JmeGz93RTHzWRhDiRTiRDIa98pgoc3zZvizORehxGC8mkovtlUyRvRbEibhr9lAMTQIyJ78XjwTYkFM3zYmvTP/5DI7HMhHnT8NlAtpFrbnIa50KZXymqi2rlNs/r2PqNFKuTMOU37cVy1DUPNnf7j75FBTSx8e2kTF7D4iMgCRO1JqAjKrSjG0Kr/9o055FoscYc6+NqoZJ/sf1QfMiaN1MALpK/WyIBFDVBmVaEKT6igrJQGv/pdi5hkKyTC5LzGN4einzjEupHPcOI5pnLj3G0rtwuqNUH1EOVlHPOBVFR5WuyL2eZQwTYKPl2l17vV5f27JyIscmlSGfw06fn350p5yCMr7FGCeOMUi5sp1pnCilmDVrFtasWbNVGaY8tq/Xz4CAgICAgIDXDC6//HJ89rOfxVNPPbW1m2IQGKdWUDNC0pMgrqbSswNS39Lb3TCzpI0b6sgGpJAhQYR6bwPZJLmtsa5mItcAHS1lWaM8RCxAq2o2FtncSzTiQBXe7IfWJIWTxBHYqgqifnuMtNvqHoiwjBJlXEUCSUaM6mg3h+3Rv2lCrIcM4HkSAXrWqRY4TBSeLWDrIhnMK3pjPJDWifFJqq4Hquu50SalVUczBIBXLAtGLHGGZi+k344zS6eZO2u3bJSgxOTb0n0iGMBNYj7LHukIQBPlFysmy7ls1uOJ+H2Sn8wxglRpXBoTgLTLYfSYjLA0Wq8EyDRxUNe6sNwMH7Yf2+qY4G9rGSGXZ6o8jIBhKmOy2miYyvbV60ihfHFfoDz/WFnEVdl2Vxuj5Wh6Ji6UUaDeP82s9ogkSs/ksEo8FnDDSV32stK0rKxmMl2tk30WyP+ZXHAOBesxyXD2dSLTDOMhKOBGu6qoT2jNExPWgE17U+ljR0I+Myq2rOluyr1xVhgyDgNWuK5CP7f0s0yYKDpKBBjjJpItH0XHHEo7HxlZxjDlUVbWrO9A75Zxiv5mBU0nFx1zGDLOKYT62xIQYxBVJ7YzxgkAPvShD2FgYABvetObUKlUUK/Xve2vvPLKFm9TeHEKCAgICAjYxqHdv0dbx/aGq6++ems3oYDw4tQKQ9LIKZ7cxKSeAaDX2ZRGZhbS3dPAxlTNSIYYGnGMnh5pUlSbkqB/oIrsFSnSoQ2rjzD53FzNQ1cGFtvv/2Y2yIlijYozqHpvA1l3gqG/y7fw6t8Z4o2WShCUorGrnCFVelNQJpDoWfaGWLanJJoHXLE5rk5J2BmzoDa6jGQE0YBlYnSUmmZ/aApEA/J31BCIBrjJTWfq1oyPICYSqTlB64ZUvRkQ98vfrOnrxEQEpLEzw8/sOcn64euomLO/8MsDdpvOJWdm/sJGShEOwGG5wIBmj9UxQcB4UnF1PKNxU15cXNXPIyDrUtoMpUXxGAndvBJfHFNGr8qVzUc7eoKZvISjpU4pr0NydyrXH7WrtyxarixKbjgNU5l2abgcZWUaL52rTJOjVgsDCJ2LTY8R91RS66OUddsbhA4R8IqNUiMZFNujmEzHT82ws+becm+0Ek2bw0AK6l9CwYR//WMnarZBPXZZ55wz9dYyEFevY+oBCuMkl1dOk2557VCeYaRUskyA9Exyo+fcSDl97VsxS51ESLZkotrkrnORARgYqqDZr4361DhwvhqIlIIPvnr/Gb3kkktw55134k9/+hPq9TrmzJmDyy67DHvttZcps2rVKpx//vl44IEHsG7dOrzrXe/CNddc42mSGo0G5s+fj9tvvx2Dg4M4/PDDce2112KXXXYZtg1z587dLOc2GgSNU0BAQEBAwDaOreEcvnTpUpx11ll49NFH8eCDDyJNUxx11FHo75czWCEE3ve+9+Gvf/0rfvzjH+O3v/0tZs6ciSOOOMKUAYB58+bhrrvuwh133IGHHnoIfX19OO6445BlWatDGzz//PNt/7YGttsXp0suuQSEEMybN8+sE0JgwYIFmD59Our1Og499FA8/fTTW6+RAQEBAQEBY4DRJ/gd+ae++++/H6eccgr22WcfvOlNb8JNN92E559/Ho8//jgA4H//93/x6KOP4rrrrsNb3/pW7LXXXrj22mvR19eH22+/HQCwfv163HjjjbjyyitxxBFHYP/998ett96KJ598Ej/96U+HbcNuu+2G3XffveXf1sB2yTE+9thjuOGGG7Dffvt56y+//HJcddVVWLx4Mfbcc0985StfwZFHHolnnnkGvb29LWorRzS+AdpFML5rEIxyb8AxyhEpVWktThHvsBEAsH5DF7Ihho3qW824CQOYMG4A69R+fHXNfBLS4movcaaAERpmQiBTgnT0M5CMgHfLt/OoO0Ec2zd1wW3SYUHk5x/92YcNELCXJdXMe5qIowxQ4f3NGoMYLH93JhlRgm/NwUtDSntQK5IlAmANeJ8eogEgHpD7xn02GW5jPEXfzgxplyrK5LHcZMdGiJ1CpmXQx6T20xltys8fJskxA7KabQPJbD3awkB/NqGqjR6T73yyyGL7iU2Q3OdCDjD9STKT6VZ025vdBM2JOSGv7hIqP42YepVlhP50Z84dUImhW4i+ywTf3mcz2BNXn8TcoAKSK1/45FH4xOYcx1tfTHHR6jNffhvJrc9/1ikT9XZSpp0hYh4tP/VwCuGk72DUEVRHAmg61h9E3Sd6O3UE/THAE2KuN8mklYZQwQAiIgWbCe+3MarUddtrWthPf4rTn/RIbpvzea7wyVdbF0RyzOnPb27aFp0WRYu4KZW/jV0Kp97zUVo6qMM49gK6je51YYR7ZfOf5joSgQ/z6c29B1pd97LtjErhOlW2DByAl6gdBCTiINH2Z4C5YcMGb7laraJarbYobbF+/XoAwKRJkwDIT3AAUKvVTBnGGCqVCh566CF85CMfweOPP44kSXDUUUeZMtOnT8e+++6Lhx9+GEcffXTbY/72t7/1lpMkwW9/+1tcddVVWLhw4bBt3hzY7hinvr4+fPCDH8S///u/Y+LEiWa9EAJXX301vvCFL+CEE07Avvvui5tvvhkDAwOlmZUDAgICAgK2F+hcdaP9A4AZM2Zg/Pjx5u+SSy4Z9vhCCHzmM5/BO9/5Tuy7774AgDe84Q2YOXMmLrjgAqxduxbNZhOXXnopVq5caRLzrly5EpVKxfv3GgCmTJmClStXDnvcN73pTd7fgQceiI9+9KO44oor8I1vfGOk3Tgm2O4Yp7POOgvvfve7ccQRR+ArX/mKWb98+XKsXLnSe6utVqs45JBD8PDDD+OMM84Y0XF2mrgRUXdTWewLMGcmkiUxGonsuq5Kgmokp5E7TtyIgWaMDeskndI/UEV3V8OwQw3iiIO7M9BqaqmEpqRD0j7JDtFBikiZI5KMgEcCJJXHFOsjJGqSQxMZ2l+XL/5yQhQBemqZTMys6LTBUKskgNI6JnEGkRLLZuQZGNeIj6pZmwmvtiabGRVoTCKGlYg3ErBXYBIhN8ZTpN2qbKxC/B1RdD6k3xVxE+EIbAVAdAqLSLZPi8VB4Kd2yWw9gkmmSm+jiqlyU1doMThnVvytj5nWTXciGpCiUUCzSNagc2gywKv+jNb0LbUsk66YDRFzbrwiPDZAUCdZq8vuuIwS7Lp2dgEkJwZvZRvgVdlC3Js/btk+bYq0NLIELMPQiQVBu6SupeHnLdqhYVg5ygsMnWYUBACRRg7hoI6n7xGX0VG/XQsMmgLcGdv2ILn/e+uEVw+osMxSWVnvpFR5HSiSt5hgwphRRpUMlAjTLMmqWyYlYtzYA2jWSLNMQrTXqXCQjo0rWzFMeVZpLFKqmPapZ3x+30xIdo04bJ97kUVGJFO3hTCWUXUvvPACxo0bZ9Z3wjZ98pOfxO9//3s89NBDZl0cx/jhD3+I008/HZMmTQJjDEcccQSOPfbYYesTQoCUuvF2hj333BOPPfbYJu8/GmxXL0533HEHfvOb35R2ln5znTJlird+ypQpeO6551rW2Wg0DN0IFCnMgICAgICArY2xfHEaN26c9+I0HD71qU/h7rvvxi9+8YtCJNwBBxyAJ554AuvXr0ez2cSOO+6Igw46CAceeCAAYOrUqWg2m1i7dq3HOq1evRpz5swZ9tj5f5OFEFixYgUWLFiw1dzEO3pxestb3jKiSgkhuPvuu7HzzjtvUqPK8MILL+DTn/40HnjgAe97atmxXQz3VnvJJZfg4osvLqynRIbJZo4ZnkaFZSYNh/utHwDG1e3sK0kZ6nEqdRIAhnqrwKCkGGgtRa3eRJrJ5WaTAX0RImWWCeezuQynt2aJrraHcEgtkG4C0doLtZgQiF65Y7WeoBanJkN21kUxlFKT6oNwYpMFEwFBiJOOxRcFsQGKeIMsGw1IdqmixndtbYasQtA/TVImQ5N9SwHkUkgI1W7AZ6BoIvshGrL7MvWOK48pkHSrc6nKsvpKZzV7DJKTIPBYbtP2CSBwmB/ZVs06ZTUBEcMYjDbH29l/NCjrbo5TWo9q2UwXtv9UOhx74sSaeta5TeJszAcdrZLWnrRgftqxSO3Sj7TTJbU8XovipYxTi2OXsQ5aN7WpiVxbMU754wEluhhz2xFkjpivGqUYUimLspQiTSnokEqSTQCSWn0eKKwXJiSLaFjOhmSGfZNYl44CXMsBV9NGqHNOpmltmA6HJRSc2GVmt4EANM5Qq0tauLvaBKPCY17c9CRlfd3uH/FCqhJ92GHYQP96ty7bTr/WSfvatUFDG6FG6osBIQI8peCZTrAOVLoTZCQp3f/VACEEPvWpT+Guu+7CkiVL2oqxx48fD0AKxpctW4Yvf/nLAOSLVRzHePDBB3HiiScCAFasWIGnnnoKl19++bBtmDBhQum/6zNmzMAdd9yxqac2KnT04vTEE0/g3HPPRU9Pz7BlhRC49NJLPRZnLPD4449j9erVOOCAA8y6LMvwi1/8At/85jfxzDPPAJDM07Rp00yZ1atXF1goFxdccAE+85nPmOUNGzZgxowZY9r2gICAgICA0WBrGGCeddZZuO222/DjH/8Yvb295svO+PHjjYP397//fey4447Ydddd8eSTT+LTn/403ve+9xnZzPjx43H66afj3HPPxeTJkzFp0iTMnz8fs2fPxhFHHDFsG37+8597y5RS7Ljjjthjjz0QRVvno1nHR/3sZz+LnXbaqaOyV1555SY3qBUOP/xwPPnkk966U089FW94wxtw/vnn43Wvex2mTp2KBx98EPvvvz8AoNlsYunSpbjsssta1tsqmoAR+U2flSRw7IqbqMVylkEhjOAuyRgyTo3mSUef1FVEybhJ/djwsnz55AkFr1JUY5U6pRJBNCz7oxPxApCzw9TX5JiEtgRA1bInbEj+bo5XM8cGASeycDw5Qy1OzIxa1AiajQhcmXmKpjOzjABAeDNoQeEbS6o2JD0AWwN0rZYNrKxrojmxgkhF7NEUSLoVGxBBmmu20DXRBIg3qiYMyn0z5/JUNsqCXasz0ESgMUExdr0Uac2W5XV/dk9Th/USUBGMqmzF9qdMiwOkPYpFiiTT1pxg6zJJXTkFawKsqVivbi4j4hwmwWia8tqUQQZBBbJedVGrHERHHtEiG+JGtw2XJDePsqS5rcp0ik6T6Laqu53GqUwPQ4gorbeMLSiLsuokOgsAiCCgVCBVFy5iHF01ycokKcNAQoFBlbKoqUI+dWSsYqAAeZ/wqrCaQG2A6V4Ek7QbRteml30T05w2qWzZOwn1fwE/HQhzTCuZQKWaoEedW1fcNFFzZX3U6T+4xaTJ/vJw46wdq9QutYp7XBPJ14ZJ6gRmPGrmTWsUU9vBjHKAbpmouq3x4nTdddcBAA499FBv/U033YRTTjkFgGSPPvOZz2DVqlWYNm0aPvzhD+NLX/qSV/5rX/saoijCiSeeaAwwFy9eDMby2e6LIIRgzpw5hZekNE3xi1/8Au9617tGdE5jgY5enJYvX44dd9yx40r/8Ic/YPr06ZvcqDL09vYaJb9Gd3c3Jk+ebNbPmzcPixYtwqxZszBr1iwsWrQIXV1d+MAHPjCmbQkICAgICHi1Q4jhJ1Rnn302zj777LZlarUarrnmGlxzzTUjbsNhhx2GFStWFIib9evX47DDDuvIRHOs0dGL08yZM0dU6db61HXeeedhcHAQZ555JtauXYuDDjoIDzzwwIg9nACrcdK/U83SqDd2/eZOnRlymlH0DVUxvkuKcuqVIa/O7moTG1UUC4szVCuJ0T/VuxsYaDKZ6gVSL6P1L0RIJoVXisyCITfUpCfeQEFTy4Lo9CKAjPLrqiSox3KWGdMMfXEVDZUyQGs3ANiEn3oWzGVsjvZ1ympEMiwAkBFU1lMr0eBA1Jeh9oqsL+miEGoKLZg8D240TwSsAVTXyuXqWoHKRhXFxAjSOgFRJ5l0A0MT9Xkx6YtjfLDk/yOny7nDVLleTDopMXe2mUg6pS+hTbuNZNSk1eB1boQsCQFEPzVlwQnQnXm+PmZ+RyQTJZqKyRigEBUB0qXYSWY1ZAVtR863RyfDNavaRKK5njplaKUZKtOouJoXd7kd+5Q/Rqs6ARspV8Yy5dklWbaccWp1THddq5m3vtcjdREps8fYyKuIaymasRwsJCMydYrLdmg/skwyFHrsynHvMMWA9WqiAGFu9JZllFpr2lS/tDGU4Zod1kl1I26OEcUZemoNdKlnQTVK20axucll3STIpcfN9W07lsNli8rYJt0ONzKvVT16n+FYFUoEOkmWG9MM1Sg1fZ0QBs6J6fRKV4LJvf1I6djKUlpBAB21e7g6tje00imvWbMG3d3dW6FFmxhVt27dOvz617/G6tWrwblPU374wx8ek4Z1giVLlnjLhBAsWLAACxYs2GJtCAgICAgI2Nx4rSX5PeGEEwDIf9dPOeUUT1KTZRl+//vfdxSVtzkw4hene+65Bx/84AfR39+P3t5e702QELJFX5w2J9YNdYHRKgYbsRdlk8ekngHD4PRUG6hEGWJqozBcUCawwyQp4OEgiB1H8nH1BiLGsTGWgrtad9Mct7G2hsr4BmKltxpc60QVEv//jToH62dgg2oW17R6Kb6yjlWraxA9alrMONBgnuu4njGjScCZE1Un4GuTiDD70SGC6noYk5qkN4aICOIB2d4JfxVoqKS+g5MJsjoxU5+4H+j6O0dlnUpunArwqizb7CFgDevMzRpAVtXsEzHaL0Aycllsl0X+0zmxfaT9nqxPksNG6VX63BqAqAiIitZocatpYQI8cSomQiZJ1b5TXgQdwNdVUF0nN2YVgawnQ0UxkISKInOj/59jhfKsTLvkuoCN9BrOMqWMRSjTjuRRGsXWYYJdz5uphMHKMw9uWZdlGO48Oi3DBUFEuWGYqQCouiniKEOSMqBbDjJOIoiYe9N4PqSiZh0GEwCyqgBnBPA8gdRPJpT+yNG4GcbJavH0fmVjRUMIAqGzE3ACQrmsX9Wr2ctKlKGn2kBXJMWREeVt+8T7B3e4f3uJP264c9FLx0UbfVx+v5Fc27ZMl9OOVuUqLMOkrgEzFjY2aqB1yy7VIunhl8bN0v0DRgcdpSeEQG9vrxGjA0ClUsHb3/52fPSjH90qbRvxi9O5556L0047zeiHAgICAgICAjYvXmuM00033QRA5qqbP3/+VvssV4YRvzi9+OKLOPvss1/1L03r19VBmzXpgwKY/0taRiCqqmg4TtHtzIJqUdJyVpRyiu6KnJ00sgjNjCFWs8yIZZjQlWJyt7TCpkQYxqm/axDdlSbWDck37qGoame5rv8LAFoR4DGHoPLSVhJqWRgKICKga5UDOQN4lUNUdcI3O2MmHNIDSs0WSULBBqjxM2INx6V7SNa1bo/Y1ENTySQBQPWVBLW/y1l716oINBNIeuzQEwSGZcpqUtsEOFGEzihlQ0qjMQBkFWKYJTaknJ2daEPXcVy6fPvXQy/rSDq9n1emIpB1ZyCxmrUzJ0cXkdon7YIuahwsspqXrMmM3klwqdXKlNdT1psh6k4QRcq5ORe92YpRoFQUHJYBeJFoXvvLJvhj/OwcaU64vK6qTLvUqm6aZ5xaMFudMBMaZWyKYS2ccvU4QZIyNBVLmHEdhap24jB6IqEj6ExEFpGspd4eC0CNKTDuaZxcRonk2NBCFCWs5kwIOc70Mo24/HNYrojJtndXm+iJm6gwK6xt1Ze8ZMC0+wc4r4Fyl9vpo0bDFLZqR9nvsjrLtlPltB4pAelGAJUotZpWQfHKhnHIBraMxum19uKkcdFFF23tJhQw4heno48+GsuWLcPrXve6zdGegICAgICAgACDH/zgB/iv//ovPP/882g2/U+jv/nNb7Z4ezp6cbr77rvN73e/+9347Gc/iz/84Q+YPXs24jj2yh5//PFj28KtBJ4yIGEAEaARR1xP7baMIFL5q+KcNqDst37Lr7DMfC+vkQQxywyrFBFe9FFRy5UoM5m6AUCkxOgWdPvMfoxDRByZ2pwNVqyLOCfIYm79Y5gAYm61PhyWfUqI1F2kciPrp6isJ4gG1HESy+hkXcC6PQX4RGUmNcBQX8lA9Ln1U7AhFT2WCPCYIOpXs/YaBa8QM7WnqUBm2B/JKOlIJM6IzwgJGOaNpkA8KHPSAfL/VLuBayJM70v9ZREJx6kZJrIOkBGAJOamj2lks7mDALwng1BsUVxLQQiQDGlfLBtpCCZAJzZMbrAKk7nAtE9YIU9XG41QO5+kTdUpjRYjzR3mapba3T+tmAqK1hqndsfVaDnzVgRS2b5VlqK72jSMzoAgyJoUUU2OeyEIMsXu8CYDSYjNY0dg8lQCgHAi3AiV97DxjCOwjLIa8q4XV6Fl9lEAgBsvuDjOQJ1nShxl6KrItu5Q7zf6JgCgeXt9BzwvAETr6C6O9hF3w6Fd5BzQ2fg113YE5EpZxKVmogZS+QDpb1SwZp01gRZC+fENtgltHEO8Vhmnb3zjG/jCF76AuXPn4sc//jFOPfVUPPvss3jsscdw1llnbZU2dfTi9L73va+w7t/+7d8K6wghW8VTISAgICAg4NUMIUjLVDYjqWN7w7XXXosbbrgBJ510Em6++Wacd955eN3rXocLL7wQr7zyylZpU0cvTnnLgdcEFPOgZ4NuxE815sjUTDLjxJuheP/PRYK4s7GIcgBZWzZAL/dUGqBEYEOf1DgRN+eZ0jVQ7dXChJw9qnrTiSnogGRA2ABB1E+Rqqg6USlmmHchJ5pKkxFJ5qap8kIyxy8p6ZGaHc2mkHqKwXoMCDlTq79MEfdp8QiQdjPwSEX6qdx0Rs9EAJaoYxIBHlPrjcMETBY3KqvPT4Y1C+axRjqKzule4WhHPI8ns05TWZoVUOcdWeYvigh4NTXLGado9FUsG1jNjBaORRy1SmK0THnPIqA9c9Sp83VZFvkt8bAcMeOU0yqZ9Sg/T8/LCsV7rR3KWAyt29FMlnsPp5yq+7Ook+mpWO+jofoQ/r6+B9WKvMaECDRj+UhNU4p0IAZXdCkhQjJOmgxhwhlbAoxZLVJZFKXLRqcZbRs9qb3hKJXsqI7y7ak2MKk2CADoYuWRYGVMEiX+ZFj2WenupexUfl+/7vx1bf1vTacMIiWyHcYDqkRXpc/TzfyQPw4XBOsbNbwyIPW8gwMVZIORvb8F5IMk20KME8iofZxGu//WwPPPP29sB+r1OjZulJHpJ598Mt7+9rfjm9/85hZv04iv+C233FKah67ZbOKWW24Zk0YFBAQEBAQEBEydOhVr1qwBIM24H330UQAyo0knzuabAyMWh5966qk45phjCvbnGzduxKmnnvqq8XGS/idcMjjMXhwhiGGbAKBvqIpGaruxGqXYQUXG5bGhUUN/U4pweqoNdMdNM7Md7tt+6szkSJxZTyLtDkzsLCiOM6OXSKIMSZeaBa+tIOqjoIlyJ2eA4EJ6E8lGgCjWCFkEUAGqI4ioAI+YYX+yQWuLnXZzsO4EsWJXIsYRdQ9hQyxnausbNbBEnnfUp9gurT+KiIzg07O8mFrtkY56cydJRpckvZv0BFUQWV7nqiPcRthldQEIWxZcRkYat3ABn2kiKGSx1x47jHLEKhKO5ViQJGVoEKBSl9qRejVxPL3kTNZlDobLtTZcRFon60eK0eihOo2K0vqk/H7tWKT8/THa83Udqct0Obofymb5uuy46hAGu2I0EjnQqlEGQHk88Rgk4uB1Nd45gecIzqw2kTKuPJb0GMt7c/nMcEwyL78fUwM7305GBCpRivEqg8GE6iAqKsSWqfozj1GjrSPrOh0XhJeyGpbRK+7SzrG8k2i8QhQfCNx4SPeYhhHThHKbyMx1SQ1r+rvR3ycfKtlALJ8h+t8DCvlQibbMF5nXqsbpH/7hH3DPPffgLW95C04//XScc845+MEPfoBly5YZk8wtjRG/OLWyP/+///s/Y1gVEBAQEBAQMHZ4rWqcbrjhBiMX+vjHP45JkybhoYcewnve8x58/OMf3ypt6vjFaf/99wchBIQQHH744V6m4izLsHz5chxzzDGbpZFbA4QK9cc9d2atGSHOTGioYSMLM06xTrE9PZUGaiw1b/mDSSydhwH0oYpGEqEayxlgTDPUotR4hnBhZ7pcEKwfqjv5qRzdSi7MhnPJiFVi63YsVAb0PiaQZTWbA69JgBhW4FPhiFXutARSVxLX5HIWc2RMgDdKvu52ZYirqTkXPUOeNLkPALBmHwoIyTiNX05Q2ZAZZ/O0iyKtU/BYnSuDiQrK5+NzHb4Jl5F9mY6YUxosHYFHOJD0qFl1Nwc4jBs4GySSddIeO8yfcQoqgMhucx81kYqGA2REpcsaVViGtIeiV7kLxyzzna7hswitNG2tljvZNhxz6cLN/9VK++A5LDu6kOHQjhlzdU15TVMrjcsm+zIN39KCi7TnHE5snsp8F1EIjK8NYk0mjfm6Kk0MJnJADjVi6d2l93Ec5wF5D0fqHqWKbcprk1qh1TbNIumvFzHLMLE6iB1q8j6s0rSwD1WN4iBgOS1T5rFMrdtThrzWqeX4aqNxYsNc88xhsbzjCZQwULr+ol4r3x697u/9PejvqyIbcv6ZrGeGKSRE9TXbMozTaxFpmmLhwoU47bTTTA7cE088ESeeeOJWbVfHL046su6JJ57A0UcfjZ4eG5ZZqVSw22674Z//+Z/HvIEBAQEBAQGvdbwWP9VFUYSvfvWrmDt37tZuioeOX5wuuugiZFmGmTNn4uijj8a0adM2Z7u2Oijj8s/kapMDTjMI2n/JdeqVbJT0+wCAgWaMepyaXHaECOPcS4lAJigGlOaJEIGh1HHxJY5zeKOCZsqQJswcs5A93TBQcr9ETS7jKFPaC6Bn8nq8mFDQVyq6qNRI6ckZZ0CX1OdUuhNkibXaJkRqoUxRTiAqSqMRZ4iY1f7kGYnJO23AK2+SL9rJuBp6nmfoXq2Ytr4MhAPNXmrapKfMghDJIOlTcyZ2JAMqg0LmrAPQVBF2RrdEZaQfoBglYc+TxwJEAFz76lBhdQsKnpM4sTq3iHHjthyzDIxwT4cR9dpchS7KcqsVZtub6IK9ubyZ8scoy2I/0nZY/yXrX+Vu67QeoPU/Aq0iqFrUouqyDBMEvKg6U1+uWZQI9MRN9MdSAxPTDHWlbxtqxsiqFFxHiKp71mWNNQgRnq4pH0VXxryY6Fxmx5sQBKmgZlt33MSEyiDqLCnsnz//Qngq2l+HdtFvAJDmbPqzNv9gs5IxkD8GF7Rk2bKljGQeA6XL5OvMozyKUD/j5bOdxEp7VslUZgBZTggCzomfk3Iz4rX6qe6II47AkiVLcMopp2ztphiMSOPEGMPHP/5x/PGPf9xc7QkICAgICAgIAAAce+yxuOCCC/DUU0/hgAMOKOSs2xqm2yMWh8+ePRt//etfsfvuu2+O9mwziCsZWCUFV6xPq/xQeWiWSO4DbMwYhtJiN2eceLNMppgiM2uCQDNjpizPqI2gc9qjZyE6LJNAsWCqGVlGUavJqJod6/3omtHE/4qpcmM/kzvoejmQqYi7qJpBcMksaVAmkHHVD10p6j2SSaOUoxqnZuboel5p7DBZem8MjRvCml260f+8pIZ6/yZQW8dR3SBndYOTKdKa1Th5eeRgncEFBbpWO15MTJY3LuGRMLnACCCDnXROr0jISaOJjrHRTog5QAVILn+ZPpcKy1Blii1jmcwq7+mAijoS038tosnyy2URRK1yf3WCkeie2sKJ5Br2mG20Si29mtQ+pQxLid9OnsUo6Gqcewko9+6xx3fbSz3n7rynk8t0RZRjcpeMou1PKuiikt3prsp7I4nkPdwciGV0ptLHsIjb/lQ+TsyJsNV6J0Y5Kiw1bdCoKJapK0oQqd9NLvNf6vZ1RQnqLEFMigwoFxSZE02Y1/6UgXU4jjIQRPDri3IskAt3rLRmM7PCsr2+PgMFFCPrWqGgjwIwlFnNaq2r6ecNFPYZTyHAGJDFW8b0WYzBp7rtkXH6xCc+AQC46qqrCtu2lun2iH2cFi5ciPnz5+Pee+/FihUrsGHDBu8vICAgICAgYGyhVQyj+tvaJ7EJ4Jy3/NtamUpGzDjpyLnjjz/esyXQNgWvlpQrOo9YoiLoXN+UjPvsQJluAZBsDaUCmXKWdfNGcU4hhDARWk0nigeQQV+pYpzGdw2hkUboo1JLkThRHkJrd9xDEzhMGceQivSJujh2qvdh/U7rAQCvbOhC6kaMgJiIEUY5UjAIVQ+LM5AoBVezMcoEJnQPqmMUb0d3ZsMoN7O0WpygPm0d+iZK6ujv07pR+XuEyjpZNh6wllRpRUbLablE0gs0dlKRezFHVq+YCEHBAF6BzQdGAKgIQBFJTZORqjBhnOEB5SrueLMQJqzOihNQxlFR+q1KlKIayYNWaOYxAXkXahetGKRW7EtbDDNpzLM9Y62BGklUHSXcm9FTwsHaeOfoMq3q8/yEnHlfGcPQSuvCBUE+WtBn+zjMnFKgGE2XYwYnVAbNsvZbm9K9EWujOjYM1gAAyWAEkRFEFatxdCMua1HqLVcUq9kTN1FhmfFf0tt19G1MM4dRa6KRRaYNWksWO2PU6oAy0BGwD618rsr6BIJ6rGEGYtiqrM1YZC30TbLekjk+sfu59crr648Pry4QNDL73KNEmD4bymKsa8hrxqhAJU7Ns0wIqVNjjoaRMY4sa80yB4wthoaGUKvVtnYzRv7i9POf/3xztCMgICAgICCgBTgIyGsw5UqWZVi0aBG+/e1vY9WqVfjzn/+M173udfjSl76E3XbbDaeffvoWb9OIX5wOOeSQzdGObQ7VKAWLGCgVvs6HSmZN5zJLM2pmXwSSfdFsD2PcYyBIzv+Jws/EnXFiPGMiR/MAAG+cvAovD0lR3PKXJyMZtJeOMGEYE0K0j5Kdveo6B9IYO9QamDXx7wCA56KJ2DBYQy22mp2+RsXUk3Eqo4EgWSMuCJj6nl+tpuitDplzyTg1szYhCDLh6icEarGN7OGCoEdNGsbvNoRsV4p1/TIP38a1NbB+RTERoRzB1bmNSzBx4oBsK83wSrUH2XrZXraRglcFRFX1WUINAUGUhsvmn4PP0DlRdYRynzkkQLWeYFxdnms9SlBjlnHyGCbHb0qfdytQJxrPrNsEIt31Yioeo9X6cu1Hnhkabls7nx0bIccLEVH5dnWindH1eExGgWXIM1CqfifiSreuXUSeZZ1kWVfvVCjv6NYiwjGQSkZ2UnUANZaabYNDFSScWm0ifOd5LghqkXb15ianXE/U8Fgl3Re63nzfRSQzEW2JStxIW7hogwC8A7UGzTF5HPI66D51r4lcn2sTXL1Zm+O0ZUZLWEh3wRmfjAhk7TROghqdYiYIuKAYSOVzZF2jhqE09orraxYx+QzUp2eiH+nwWqqxwGs1qm7hwoW4+eabcfnll+OjH/2oWT979mx87Wtf2z5enABg3bp1uPHGG/HHP/4RhBDsvffeOO2004JzeEBAQEBAwGYAF8QPWtnEOrY33HLLLbjhhhtw+OGHe07h++23H/70pz9tlTaN+MVp2bJlOProo1Gv1/G2t70NQghcddVVWLhwIR544AG85S1v2Rzt3OKoRCmimKEiMjRTZmZvScoQOY7QESTrBFjHbDfxoDtDKZsxGDZLR8E5UXlaS6NnYjO71wKQ0TtraLct7+gwKBGelkq3AQDWN2sYVxlCt8qMvu/EFVjfU0d3JJc3JjWsoL2m3phmdtaqZuKsLuuusMzOtClHEzATPJ153tU+ufnXuuMUG9V67bSs9VK0Z8DkAuSQTJbuo2qUIhPW6binZxB9qp4sq0DUOJhyOucpM9GCOhqRuIyQyldn11udGiEAVdqzKMowoXsQPRXpBt4VJSaiSUcztfI3KmOCXO0PMLw78kgxqgi6dt48Bd3U8JFQgGJE2uw73P5+OastsYytYneJ1bnkt8n2552w2+ud7DW1eidXI6XrcNs+oTqIrihRZSgmVgbMtv6eCtYMRUib8pEbV1Jv35RbB/MKy9Cl7tHuqFFglTzGKdd3kSBocKufy7eR5ViYbBPGC4X2a2s17kv+cTaBu+0ZLs1u5cu5DFc5cmNXUI8h9HPtcScFATCUMcMUUiIQM+uLlTk6XhNVl2O3tk/J9faDF198EXvssUdhPeccSdLOo2zzYcQvTueccw6OP/54/Pu//7tJu5KmKT7ykY9g3rx5+MUvfjHmjQwICAgICHgtQ0fGjbaO7Q377LMPfvnLX2LmzJne+u9///vYf//9t0qbNolxcl+aAGmLft555+HAAw8c08ZtTcQ0Q0QzCEGQEGZyzKUZNQwTAG92KjKKWLloA2rG4jiLp5nVOLGcI7nKYWh0TYRYr5mYZuhLqtihIvmV149bY2Z5/c0Kmknk+Tq50G7mADCUxOhLqiYiZ1w0hJ2qG9GfyWi98fEgesdLLU8ji8BBjKeJPke9b5Mzq8fSPjfq/81MasOML43TRzJCKEOvYnDqUeJFCXFYr5KUUxklpKILuSBIU3nMOMrQU21iUGmysp4ULObSH0f1g84yRxgBICTLBEimiRPLRDFhdE00knXotvfUmhhXHTK6pq6oWXS4drpcR40B7dmfMo1TK3TqnzNSZG2Eop3qjlpvy+mY2uqhhteItGYqnH0dFqF0m7PedQr3I/XKrml5frO8disiHN2KZRrMYlDCsWNNcqupoBhsxBgasJkCNDJOgJQB8jZEhTpeYSQr7UvdZ/ltkdNuva/r48Ry1yxW7FFWFrXWBlwQsBbDhxEga3G9KDqLuqbICp+VaIeaLKNRU+eUH+dcUPNsbWQRBtKK59Glx4DM8mAd0JnKTam/CmScglEOETROmxUXXXQRTj75ZLz44ovgnOPOO+/EM888g1tuuQX33nvvVmnTiH2cxo0bh+eff76w/oUXXkBvb++YNCogICAgICAg4D3veQ++973v4b//+79BCMGFF16IP/7xj7jnnntw5JFHbpU2jZhx+pd/+RecfvrpuOKKKzBnzhwQQvDQQw/hs5/9LE466aTN0cZtAlpnIwSRWc81YwSAOxqn/AyQELuvZH/0b+45wQpOUK8mZrbDqECiZjYxyzCURUhUtMykSj/66lVzDNcJOc0ohCAmx56sy86I+pIKemLJ9gzyGJkgWNfsAgBMqAxgQiy1Rr2RTiqpZ+aSIdHMQV9awdqm1FnlnaxrLMVQFhXcrjVSTg3DpCNV3MgkX/uRoKl0VhsaNaP76q40Pf8dVuEgznkSN/dXbnpAKIfgFEJH3VFf01StpOiuSI3JpNoAhrLIiZbqt/1K8i7Yqo86ZGs87ckItE5lDE27mXgrbcgmRYYojJRBaq+Daj1jz4y+KMdA5C8qgELeNePjpCO6XDYp5xTu1iJaRyq69VJSjHbT6I7kPVZV/ku7da9BX1LB8uZkAECzGUGoCFUBqYvUesKIctSVA3mcYzMo9BgrMk6aTcozTK5zunm+5Jknkg3LOvmRiq3LZYIWmKVNESWXMleifOy7Gqg8i8ic5yMXFImgaHI5+ptZZJ4vADxfNsItEw7I53fCmcekEyIC47QFcPTRR+Poo4/e2s0wGPGz84orrgAhBB/+8IeRpopOjmN84hOfwKWXXjrmDQwICAgICHit47UaVaexbNkyE8n/xje+EQcccMBWa8uIX5wqlQq+/vWv45JLLsGzzz4LIQT22GMPdHV1bY72BQQEBAQEBLxG8X//93846aST8Ktf/QoTJkwAIC2R5syZg9tvvx0zZszY4m3aZLa+q6sLs2fPHsu2bFPQYbxc/zZibmESdQLa8FJ9fqPSCkALyZkSSLuRDDq6tYwyZcQXVEcqLLbiJPEEgInRAGb1rFZ77YRVosdLPJkJaqj4zDENjJn83LGhKd0nh5j8/KRF3huSuhGDT6wMqM8Mtj2uKLVHWRgAwMa0hkgQRzgeoSdumLpSTg0dzlXaAn1MIxp30hh0qbojwpEKaj4X9jWrqDpmnYNpDKY+sXH92cN8FgUIc6+TTYlDiABxPtXEkbWXqEYpxtWG0BPLNkyoDGLlYK9Zjr0wfF5Ydj9nyv73TQJ9M0LR9jNVWZoRd70Lt0z+80ZEimVGi0399NZ2P2fMGqhPMxmobxNg3E2VUDcXbs4FtZ9M85/mcqHqzPm0JY1bW6T4gP85Ll8mJtxYVMQkAxcUDXXPTo778aaJL+GVQTnBXLehy1qREGW86hjG6uPoT3OmrbnlmGSln91K4TwXKOEyVQn8fmt1bvLYFu0+61GSFRyqh/u0VwYuiDeW9BjQ28zxwM3nOlmf/oSvkzPb+vVnuqZKucIhn1v6+e5+zqxQeR7us6rKUiuvMMa3W+pT3Wszqu60005DkiT44x//iL322gsA8Mwzz+C0007D6aefjgceeGCLt2nEL079/f249NJL8bOf/QyrV68G5/6g+etf/zpmjQsICAgICAjQL06j1TiNUWO2IH75y1/i4YcfNi9NALDXXnvhmmuuwcEHH7xV2jTiF6ePfOQjWLp0KU4++WRMmzbNS/T7aoJhnFSaFM3+SPNLK/im1CbqleW4CZ8H5EDXKVgo5Z7dALEejIad0jOqmGaoqzQlFZZhII2xVou440FMjKRIecfqRqxr1JARLeJmSJwJJwM3hm4xzVBhvolgRLgx7UsFNSxRf1pF1THpKxjtkQzjImldEBOOBo/MjDXiGZo8shYDxM7aNBppZPqBOtYLNZYa9okSjjpJMKjalGTMnIsRkzvnIwQgVE4J7rBNLCfeJMQKOwHJOGkx+PjKEHrihmnDuGgIqAN1Vs44ueHeNg2GM0tW1yXPFORZgrwYOb+9HTKHQeEgJsTcbDMnXtzXNwYsF/Pn0Srha9n5uezncLDibbuvqVP4DJM+bp55clplf+YYpnZSep22hbdgxjyzzPw9QTMzFqo0LfTTxKgfB+z4fwCAX/NdMdSQ41pAjsFYjbkaS4wovNyOgHsib2Omqhgkl2Fxr39MU8PCWUbLwt2PkaytXUU+ebN7POYaTA4DDtJmfPjXmoHbYAFSnky7E/hpcqTA3yb5Lf6T6Br9uki5TN2zpcThr1XsuuuupUaXaZpi55133got2oQXp/vuuw8/+clPttqbXkBAQEBAwGsNr9Woussvvxyf+tSn8K1vfQsHHHAACCFYtmwZPv3pT+OKK67YKm0a8YvTxIkTMWnSpM3Rlra45JJLcOedd+JPf/oT6vU65syZg8suu8yj74QQuPjii3HDDTdg7dq1OOigg/Ctb30L++yzz4iPpxknob6X15W2hlGOJGPIqDV09DQHNDOzxYRT9A9WzRw1YtywUzoE3xgvqlmQnnVWo9RL8dAVJWaGNZDFmBzLeibH/VhOJ5tQ5phmnkkbJQIVZaYXUY6IcDNzipQmQ7e/gtRoNOosKbBMrt4iJpmZxcckQ0PYxJhxxrHOCfFNeVGb4Oo53JlchaaYUt0g+4CmYIRjbSKZtkqUFm78iBXZJADIHKPSSpyBUe6dD6PcmAzW4wQTKtKGoTtqIiKZCSOPKceOrM/T0Lh6JZcRGAmLlDePLEurodFKb6MR59gBt/ywYeatnqOkmEk9fz56e16/4ofoZ6pMiX6pBfLMk14LoL3mqdSiQLY0n57Fha/z8dPoFNpWwra594QZN3kWUp3LjhVpiNlTbRjWOs0oOKfmHk6de0dq5njbseSySBQAz7FKbjn3XAu2GYXxq8+xRb+2YRI7Zkxb6ZsUE6XHy3AMk9Y5yWO3Ts8SEw5Qe10o4RgQ1Ovf1GmTa84bqS8CqfmCIJlyylpoysYYAqNP7rIdfqnDKaecgoGBARx00EFetpIoinDaaafhtNNOM2VfeeWVLdKmEb84ffnLX8aFF16Im2++eYtG0i1duhRnnXUW3vrWtyJNU3zhC1/AUUcdhT/84Q/o7pZ+QpdffjmuuuoqLF68GHvuuSe+8pWv4Mgjj8QzzzwTzDkDAgICArZbvFYZp6uvvnprN6GAEb84XXnllXj22WcxZcoU7Lbbbojj2Nv+m9/8Zswa5+L+++/3lm+66SbstNNOePzxx/Gud70LQghcffXV+MIXvoATTjgBAHDzzTdjypQpuO2223DGGWds0nGJYmyi2M6gBlBBpjQ6LqMjBAGjHHUVgcWyCEMsNrObapQaRqSZMWScIGI60kuu1xoel2GqKFZILzd5ZGaL46NBzOheh+UbLQvIwI22BrDf5vWMyX6z99kySgR6lJanytKCkaGr5/F0FpSjCzbK7rlksoxccSLpjJEcgWeOWWEZIsJNSpOd6+sxPho0dWWCYnIs9VwzetZh9WCPbHsugo1F/rkMcIcBoxkm1AfNMZqcgRKBcbFO3NtAnSnDQSIZw3xKCzeVhdYwxVTqI1oxSe1YpLIyrVKY8A7miW5i1Xz5dqlR2iHPNOTr6STyDOjsHF2sT+WErEatrkGzD67myY2y0usMStinfJJgs76sESYSsX0fuKRcTLnHNLnjQjKT3BlPNpKLCYGME2wYrJltvbHUD9arzdIxlqhovbzGiRIOuAaYheS3cr9EMDDVJrttZMxSKSNVMkZajuuc/s1lI7Wpb56p1OfTKsLOa58ZGxz6aZARIeVvznErNEWkDYSdCOBCaiUUzX4rNEOyhRin1yrmzp27tZtQwIhfnN73vvdthmaMHOvXrwcA89lw+fLlWLlyJY466ihTplqt4pBDDsHDDz/c8sWp0Wig0WiY5Q0bNmzGVgcEBAQEBGwCtsK3uk4kMn19ffjc5z6HH/3oR1izZg122203nH322fjEJz5hyjQaDcyfPx+33347BgcHcfjhh+Paa6/FLrvs0nFbVq9eXRrJv99++43spMYAI35xuuiiizoqd/vtt+P44483n9HGEkIIfOYzn8E73/lO7LvvvgCAlStXAgCmTJnilZ0yZQqee+65lnVdcskluPjiiwvrY8qN3qjiMDOa+RlKi13HQcA5Q6Ki6mKWYWL3gFdGR9xpfVPFiRKLaWYi3OQx5QCpKTbE1z6obSTBnl2r0J/K5KErB3q9mRvLzXIj6uslPI2Gk1y0lX+Mm9ahFbvSn1UwlEU2cSYs40SJQBdJvOiVrijBzK41AOCxTbb9ct+ZXa8YLysuCOIsQ0JtfwIw2q6qo4eqxikmVQdNPS8PdaMrSjBepZeps6bRpenzjnPaHBe6/9woJdkGO/PPr8ujnddRoWxJHXmvJi86yjl+BtJxQso8O9COuZJsQVa6rR2GawuDwEupTCcUxzZKrRh9RQvpN7TWKoOf8oPmtFqu58/w4C31MvKYfsJdV9PkMkX6fullkkma1m0naI0sQjNjGBiS9/ArA11YVZHSgh0qfajRpKXmTXqJlTNMZZ5ZMVL7m6RmHK1ujkNDxJgcSw1WjbjlsvY6u3asVZtxkY/MczVNmwKPIW8RZUlhE6zrNlDCkYqivgwoMkzusmbLCd1CjNMYfKrDCPfvRCJzzjnn4Oc//zluvfVW7LbbbnjggQdw5plnYvr06Xjve98LAJg3bx7uuece3HHHHZg8eTLOPfdcHHfccXj88cfBGGvXBDz++OOYO3cu/vjHP0Lk/BQIIciyLc/4jSZdVVucccYZOOigg/C6171uzOv+5Cc/id///vd46KGHCtvy9ghCiLaWCRdccAE+85nPmOUNGzZsFSfSgICAgICAbQnDSWQA4JFHHsHcuXNx6KGHAgA+9rGP4frrr8eyZcvw3ve+F+vXr8eNN96I//zP/8QRRxwBALj11lsxY8YM/PSnPx02B92pp56KPffcEzfeeCOmTJmyTVggbbYXp/yb4VjhU5/6FO6++2784he/8Gi+qVOnApDM07Rp08z61atXF1goF9VqFdVqtbC+K0oQRwQR516ix4hm4DHBkEr6mvcI4oIYnVKVpag5TrNNzpBobyNBIITVNFFIHyddNqKZOS4jAhWaIlXLiaBoKA1PjSXoYUOYWJHM1vMbJyLjFDXFXOlIOv0bsFEjnEuXXO3UPSEeRJSbvbaaQWvnYf3bRZ0l2NCseclV7XlZPZNsf4oZXWsxMbbJc/Mzao1eNoQdq3JGvKbRY9g5WU5Gu1Qqsv0pp2ZmSYlQ3jhy21AcY0JlwCRijUnWVpsykFVMP3Sxhnfe5YxT+1l/K+RZqEKCUweaUSnTdxhdiHElao28d49fT+uZXH5bOx1LO+S9gjIQE3nmR47lPam4TAJbUn8hwWzhGCN7Nvn6MdrS/V1r3ty223Elx0ovk/fp2yf8FX+r7QAAeLnRg5cb3dgQKUf/1CaV3pDWSt3B9XnXkLQdb3nn7URpnKpU7SfstkwQb2zrZwwFKXUjN1GKbn/mx0GZ11Mbt3JX0+QmL2+Hdm7iQFlCap/pqtIUVP171RVZ2Yauz42y85+n6npT+zzbnBhL5/C8JKXVv4N55CUyAPDOd74Td999N0477TRMnz4dS5YswZ///Gd8/etfByAZoyRJPBnN9OnTse++++Lhhx8e9sVp+fLluPPOO7HHHnt0dI5bApvOi25hCCHwyU9+EnfeeSf+53/+B7vvvru3fffdd8fUqVPx4IMPmnXNZhNLly7FnDlztnRzAwICAgICxgw6qm60fwAwY8YMjB8/3vxdcsklHRy/KJEBgG984xvYe++9scsuu6BSqeCYY47Btddei3e+850AJJlRqVQwceJEr74pU6YYiU07HH744fjd7343kq7a7NhsjNNY46yzzsJtt92GH//4x+jt7TUdPn78eNTrdRBCMG/ePCxatAizZs3CrFmzsGjRInR1deEDH/jAiI8X0xQVSg3zQw1TRNGk3ETSuWCEox5lhlHR2ig9Y6GZ70XCqGU3KixDxXH2jgg3njARzdDDGqCRnC70p1W82Jgg21nL0MOG8Lr63wEAq7rH4cWN480xXI8kLqSDt57FVWiGcfEQJlUk21MlPoOjzwmAYZsKETy534BkrtY0ur1zTV1fKZqiUpHntkO1D5PjjW1nrTbnGDfRbxWWosYSy6JxipRSoz2LKEd3pWHPW1BMULP9ej1BlaXmfF2WKX+eNZJibdptZubjo4HC7LvVjD/PII3EDRxAZ0LOlt5FReZFwxuDmxBxp5mwdjot6/BcLOOxXDlvIS6oiabLry9joGgbVqylz1TJtL2VzxQXpKV2ioEXWKa87o86zJPbX710CPt0vQgAeKXSgxfiSVgdS13Ty0NdhtFe0+gBF9YNnBJuHPsBoNeRh7Rjm/RyVfWtYclU/+1aXVNgL7toA60go9qKuqvhvKHcHILtnMmBEh8xJ7K4dOzl74UWUZbS50lFOtMUDNzzoctD655SQY33HWCzCDBadLXe1vHCCy9g3LhxZrkTtqmVROYb3/gGHn30Udx9992YOXMmfvGLX+DMM8/EtGnTzKe5Mgwno9H4zne+g7lz5+Kpp57CvvvuW4jkP/7444etY6yx3bw4XXfddQBgvqNq3HTTTTjllFMAAOeddx4GBwdx5plnGgPMBx54IHg4BQQEBARs3xBkxOLu0joAjBs3zntxGg6tJDKDg4P4/Oc/j7vuugvvfve7AcgotyeeeAJXXHEFjjjiCEydOhXNZhNr1671WKfVq1d39DXo4YcfxkMPPYT77ruvsO1VJw4fa3SimSKEYMGCBViwYMGojzcxHkC1kqgcbMLMOjZmMbggXs43z5uFCJPnTM9MdCdHkdUwbYSfZy3lVOVps0yWZpzqrIke1vB0E88Pym/MQzxGDxtCF5U6pV27XsGqgR5UI8t6abanyRkorH/RTtWN6I4aflSO6xfjzB71bLpM3yN/2/3GsUF5XD1Lht8nvfEQJkaS/RkfDRZYiVb5s7igpq2T4gFUWYrmQGT6r0Izw8rJY1k9WV9SNVF0PayBKk1LI+d09JM+typNPE2LyxyU5aZz0aovO0YHbJDxtRlJNFIblqoTdMRktdFrFaKpHAbC3dZWO4PhdVWtYnXaXos82+noqCiywjXNs7D5tul1+VyFHMS0Y0q8HuPZAF6pySilF6qT8EK//AdGe62tTyQjMJTFaFQiwzqVsTbtmMB224bT47W6vnn2SZb1r6FuZ/76ts2H52icCj5eKOr7CufmjnOHfaJEoKraOz4aRCIYKNfPcOv+rqGf/Yk6vj4nnb+yEW8ZxmksNU6dlxf41Kc+hbvuugtLliwpSGSSJEGSJKDUf6YwxoxtwAEHHIA4jvHggw/ixBNPBACsWLECTz31FC6//PJh23D22Wfj5JNPxpe+9KW2euUtic324jRz5swCpRYQEBAQEBCwfWA4icy4ceNwyCGH4LOf/Szq9TpmzpyJpUuX4pZbbsFVV11lyp5++uk499xzMXnyZEyaNAnz58/H7Nmz237K01izZg3OOeecbealCdiEF6cXXngBhBBD1/3617/Gbbfdhr333hsf+9jHTLmnnnpq7Fq5FSB9nDhi2kQmiI0KI1yyJ6rn3BmQ+/1bg0KAOut0tExX3FSu5PnoJPvtXdfVxZqo0cSL0NGzopXNcdgh3mhmW1WaIiK8MBsDJPs0qdqPKSoybXw0gIRHnpYgzzLZdvGWuqY8A9PLhtAbD2F9sy77xfHBqrMEUysb0MWsfqKgi3DhzFAp4ehR+/WwBjiIiYJpcoYKzdAklmdwvaP6kgr+PiQ/2Y7rGVIO4WnJuQiPQeOCoIs1DaOX98xppxFq1ZcdY0Qs0gjqH+WstVW0XxljUaZJGVYfU+qdNXyEnsEwfdFOd6VHj+dinWMmyximfL35caSj70o9uZSuaxf6CgBgSrQBO1fXAZAO3z1sCC9Hcuw+s3EK1jW7TKTY6uY4rBRS01ilKSbG/RjPBlUbRuAV1kFEZyunbgZe9BVzNKHtjyvK2SjNMOl8nTkfrzz7pPdxt7ssk6tzi2lm7ucqTQAOk2nBjbCNSQYOYnIIJoIpzSoz2wGAt9HZjSm2ggFmJxKZO+64AxdccAE++MEP4pVXXsHMmTOxcOFCfPzjHzflv/a1ryGKIpx44onGAHPx4sXDejgBwAknnICf//zneP3rXz+yxm9GjPjF6QMf+AA+9rGP4eSTT8bKlStx5JFHYp999sGtt96KlStX4sILL9wc7QwICAgICHjNYmvkqutEIjN16lTcdNNNbcvUajVcc801uOaaa0Z0fADYc889ccEFF+Chhx7C7NmzC1+yzj777BHXOVqM+MXpqaeewtve9jYAwH/9139h3333xa9+9Ss88MAD+PjHP/6qeXGq0yaqygcoEcwwPFWaosEjX3ujZ0xqlukyJLHDQjV4hKFMeaMQgaEsMhF4Ogu3jhrrjhqODkhGclWUm29VRKY9zw9MxF5dK81sq0YT4w2l651QlTPQabUNmBgV/ZLy3jN236JPUZmuKa/1qdIEUyobjJs5d6KfIpJ5Xkhu3W6bNBiEYRBc198MBAmPTH8N0Aw15jssa8apzhLUWIIB1R5ARk0ajVOOPXO9eQCgh9koJi5IW1fxPHxNTGcMgPWfGQmL1Hpmn49O2iT2C8V8YS3LeXqmIksxnD5mpDnTCtgE92ntS+WyH4UyuehRvc6Fzzrxwr2ROYwK96IGmee6pe/TAV5BjSTYo7YKAJAKhlVDvYYFWZfUTXQXAMkgUxtN2Mr/aTiUsUj2HIXnoM0FaclY6edhXsdmz7v1Nr89RR8vr02l0Xy+K7kuF9PURBcCkjnKVJ81eGwzHhA9FtRXAPX8NUyTIGiIGI3NY1lYji15rG0E3/nOd9DT04OlS5di6dKl3jZCyPbx4pQkiQld/OlPf2pCAd/whjdgxYoVY9u6gICAgICAgNcsli9fvrWbUMCIX5z22WcffPvb38a73/1uPPjgg/jyl78MAHjppZcwefLkMW/g1kJfVkWSxSrKSqBf5c9a3egFF8SwSDtU+j1dk/QIIeZ3lVjH6oQzM7vqyyrYkNTRpSIzIpohJtxEanTRptEBddMGqiQxuoaNSR0bUuUynEVg4EjUd/cu2sT0rg2mnh0rfSY/FiBndfn8UBpls+lWvjRls2nmbNsh7sP/URkZNJC6OfaKUybapg0APAZBMwMUBKAwmqfBKEYPa2KQWxq3rmaVVZYW8o3J6DjLnln2yT8XXdaF62PULkJrU9imsrK8xcy/1bE0shyjOBKUOTa3ymRfKFeqefHb0Er7JMuWa5BcdqdtNNYmMmpAe0fgVk75fhk/eqsVyvrPHWX6ftb16DH4pq7n0KjHWJd1AQD6shqG1Jg3Tv3OcVtdp068uFptkyyhy0SLlhFuBUbRaU+BYRpBnrsyZYzHWuc8vvI5A7Ur+gCvgEJggEs2uj+tmmdIhaaoUpv5IaYcFPZZMcAraPAIzS0lcdoKn+q2JTSbTSxfvhyvf/3rEUVb1xBgxJz2ZZddhuuvvx6HHnooTjrpJLzpTW8CANx9993mE15AQEBAQEDAGEKM0d92hoGBAZx++uno6urCPvvsg+effx6A1DZdeumlW6VNI35tO/TQQ/Hyyy9jw4YNnpnVxz72MXR1dY1p47YmXhqcgJhWDJvU5LKrmhnzZlvrkrrJeVZniXSjVi/1eT+QKk1RdRzHGREeK+L5BdEMNeVs3UWbiElq8kz9bWgyXml0mfZs5DWzHxcUe3av8iLw8rqhvMagEx8avS4fJSTPw+oHNLpow3jNpIKiWzFgPUrf1OmsHYDpT7etEBQcwvTxuGhI+jMJuTyQxebaVUmCBiwTxeBHCLreTGXMjcwOT8xvPVvXztV51+lNZZpaYaR1tNJIjcTrqR1LlY9wKqu/HVsB+KxIOzfoPAvV0qF6BHDZquHqyWuWhsNIchPa9tBS5g2wY9P0LZHXZhKTGqhJrN/c/+vTLhMp2u5YgO1zrribTWm3i1b+Snn2cUQMU17vSLKOrh1TrJILV88IAA3F6PVlNWSCYFBpTxs8sr5NnCGllttqcH8MDmYxmjxC0myWtiNgbHDBBRfgd7/7HZYsWYJjjjnGrD/iiCNw0UUX4XOf+9wWb9Mm8V1CCDz++ON49tln8YEPfAC9vb2oVCqvqhengICAgICAbQcEaPOJuvM6ti/86Ec/wve+9z28/e1v91K07L333nj22We3SptG/OL03HPP4ZhjjsHzzz+PRqOBI488Er29vbj88ssxNDSEb3/725ujnVscHAQcBClnNgs2JHvCOUFTzUqGsggbEjnjq7EU0+vrzIylO2pgMItN5FeDR2go5ooLggnxIOrKT4QpnY3LFOmcXZpteimZAECyYWsb0iMpzRjWJt1GKwUA49mgmZk1eIyNWU21XbZrp9hmxnaz3LfSM8nlYrRZnmnycokRjqlVmUk7ERQTlGt3Lxsq0VLlo/lyM0lRwgYRIAZMHyECulgD4yGPs57UTf4pSgSqSAwD1sWaHnvm+uuUMS01kmAIRTPXDNSwgoX2tUAxU/vokddvuQyVq4/apLx0JSyV663jYjgWCij3C+rEDbqMefr/2XvveC2Ks338mtmnnMI5R4o0RbAkKoEYRWNAo2IBjRrU/GKNivKa16gYg2j0axIrYi8xrzUGW2KJgo2I4KtosCWivnZNbBAFRaSew3nK7vz+2J3ZmdnZffY5/chc+Zzw7O7szD3b3Pva677vtmqZKvFuccxSUp6qavvSNWDysikCkR9rj0XVPfVBTbmS46DEnFS6JYeoOqoaUkIrywqtTw0pKTooFzSi9YtjyXTNU1LEnYIUGqfUnClTWTs951wfJ2SJ17q14rnMvywA/nmgjIp7tuDmxHre1pNy/HU6uiGPU0/AihUrMHDgwMj65ubmVLXuOgNVa5x++ctfYuedd8aqVatQW1sr1h966KH43//93w41zsLCwsLCwmLjxS677IK5c+eKZf6ydNttt2Hs2LHdYlPVjNOiRYvw/PPPI5fLKeuHDx+Ozz77rMMM625kiCfyAGWIh1wmyN0BgvWlHIqu763J9edayll8VeiDfjlff/B1sV7pU87/VGIU5ZKDvrV+2zrqsyDce3QZRQP1GRIHHj4vN+DLYqPoi2ulyq6DgpcR3uMGNws3R4VNa8u1WB94SlnioV+uOSFXSpRl4jBlPq6UGZvnolmVqY9UY08TfSTaGGqrUbjw4CFPw7w7dbQYjpN1BdMGAHWZAvpmm8U8lahA4kXmwpkSXlOM59Bq9bIhyyVsab+OqT3QWSyZgWqrbZVySclZnc37qzXG4pBYXwzx+qdq2LP26nfa2nccI8ORxFToOdLkY+iCKhF0/Np0wLDGzYus2PxZotgrnbNWlsW/W/wyFlvVroALgq9KfobypiCHHABxX5W0jNkme5M0bHrbCPTDkVKTZ6qT52gsUxyL3S+zPsjTJ+ec86R+mMiZxb8y8P8u1GUK8BhF0ekijdNGxjjtvffemD17NmbOnIn9998f77zzDsrlMq6//nq8/fbbePHFFyN5nboKVTNOnucZqxH/5z//QUNDQ4cYZWFhYWFhYSGBkY756yVYuHAhisUixo0bh+effx4tLS3YeuutMX/+fAwaNAgvvvgixowZ0y22Vc047bfffrjuuutw6623AvBps/Xr1+P888/Hj370ow43sLuQpWXkgorPGeoKpqjOKSrftXPURZmzE4xgfTkv2KBaWkKJUfH9fIMrZ652kaNltAg2yEUfWhIeYZ4WhOdTYhl8VuiLFcU+/phOWXhQNZkSmt081gU6q/WlHFYUGtAYaIr8aLMwVxT3RoHkvDS6l2Zimyp5/dwT7uO0Co9Z91Z13ZQJ8R4qhROUBCgF7UKNmMqeyZFxXFcjvHrDXORs8A7xkOUeNQm1Hq1eVq1dJ+XwisyhAuuRplZYWiQxUGlRkalK6DLCRlW4TuKi8XT9UyVUU5utI2E6V0mZt4HK2qik/kvMkbL+e+I+65dZj1aWwUcbNgUAfKv2CyUK1IGHbMCWlpiDBtoqdIgNzga83bIZmjKBFpG2imPPmSueL6raazMuh5cOE6uoj5XmHIc1BdU8cwpI+Mzul2kOGXrioRQcW/7cpuLLg58tneflyxD/vwukQiSjRfsxevRo3Hnnnd1thkDVL07XXnstxo8fj5EjR6K1tRVHH300/vWvf2HAgAG49957O8NGCwsLCwuLjRqM+X/t7aM3Yd26daipqUls09jYmLi9M1D1i9PQoUPx+uuv495778Wrr74Kz/MwZcoUHHPMMYpYvLejlpaQc/zIOpeFGW4pAfpkVO0Arz9XZA48RgT7s4FmFc+bZwf3+/FzCfEoFpR9ViQXsFUtXh65gM1o9vLI0zJaguzl60shc+VQDyXPwbC6VQCAgpuBCyLq3NU5xZDVomqdOD3SRIYpgi5J02SK5OLtebV2wK9jt96tEfXfkvIncZjyIwEAmMSWscBmaTmOFfHzOOkMmp73JW69K7I2F7wsaugaheHpqKi5SoyF3lZGxEtPzGDdNuo+Kbt5pIp9JWFFTEbyahkkPZ9WV6EtTJcp27YJMksaros/Rptnv0ZNwECt82pQQ8qo47pJUMEatQYRp3z5zebN4TEqGOkGp1WcY4cwlJijMK3+/RO1Nw1zmoZFNGnb0rKPqfRwQVc56iHLXPQJMlG3eDmUXNVmniuOP7vlShFZUgahXZU6HBuVxgnwC/zGgTEGQohROtTZaFMep9raWpx44ok48cQTO9oeCwsLCwsLCx0doVHqRRonAHjwwQfRr1+/7jYjgja9ON1999245ZZb8NFHH+HFF1/E8OHDce2112KrrbbCpEmTOtrGbkGGeshQv55ZwcsoOWuyThhVJW/j2idenTxDPJ9ZCjylnPYtXM7rlM26aPFywjsEQm8tS8pK/qO6TAk55r9lry7UwGNERLDlcyWUmCO8ziwJK4Gbq7ubPbq4CDqT9xanh+Ftm5wWcYxcRpV5miq4x/VjWl+DEjciuo/kXcl6GT43c/4pX6dEoa6Tc94UhNYj/UOoLaxE0j5JbJQe4ZQ4hoja6p4HqikXVFsZo45gmtIc1/b2w8Gvx0rMkx9FZ87+H6lLR4ABGT9PW4FlUWSZUIfHgK9dP9J3VakeTZkN+E/rJgD862CLmq/Fs2KdWyP2KzFHYci8YBx+f5mi7DjaesxM7FJFLWQVkZaKzcQTEcyFTFadp2QLNcyTEg+kHbURLZKx2267GXM4dTeqftLcdNNNmDZtGg444ACsWrVK0GR9+/bFdddd19H2WVhYWFhYbPQgrGP+LNqPqhmnG264AbfddhsOOeQQpcDezjvvjOnTp3eocd2JTTItyGeyyNMySszB2nIoUKOEiezgzW4uzPeU8VBmVHwDp8RDlnjKN3G+H88PJDNArV4WawL9TB0tCJajjhbQ5LRgm/oVAIANXg4ri367VjeDhmyr0CbI7A7gM0VZFnqOsldnipwTvxMyaevwQEHhKToXHRSh10bBhB1y5m29bSoEdtaghBYvjxIJsrbTgqJ5kTVDnG0K5+gpzMsatw4NgQaLM0/83xpaQguVoiPlqLoujOqSWSX9nMpRVLxNxf4SIgLjoJ/vahgfnWnqaKTVh6XRGYlcSu2IdOxoyFnvZbgsvB54/jE5p1YpYLhXFPvAA8XXBZ+B6pdvFtc84M+ZP4tavBzytCQYGJdROMQT7BSQzDpVO6fENinYHQomnq9pQMHE83NIdrXYby31UHDV/0RGauBRDx7tovt+I9M4DR8+HI4TzZTfE1D1i9PHH3+MHXfcMbI+n8+jubm5Q4yysLCwsLCw2Hjx8ccfd7cJsaj6xWnLLbfE66+/juHDhyvrn3jiCYwcObLDDOtuDMqtQW0uAxroW7inU/IcZKkrItUy5RrkMkHm3iDLrIhWIyyIpAuyjjMKUP7b9wJ5xAbP/s01TwOyoRdXQ0qooSUMya32bWCOYEDytIzGTKvi/VEwZEmop+IeZ6U6Vr7N5szg+jYdSWyTrlsZmlsVO0aSPTLWuTVK1uRsUDl9Xdn3kp2MF+asCsZP49G2eHms80J9R6jFCu3sF+jJXEYS+0yqpaZrVtoKPfou7neqvqpgndrKNrWXaUoTOVdtlu6kPhx4yr46u5e0H5CcQbst0K8pFzRkEWL0YaZ7qOhlsKy1UdjXP9cS2BhUNkBYy67VywbPtYCJCdj3gbl1AICs4wrmmLM9ReY/x3KkbTmOOKsVh0rPjapYawkO8TAou0Yst5CckqVdZtY8RpCnZbQ6Uda8U7ARisN7Kqp+cTrrrLNw6qmnorW1FYwx/OMf/8C9996LmTNn4o9//GNn2GhhYWFhYbFxYyP7VNeTUfWL0wknnIByuYyzzz4bLS0tOProo7HZZpvh+uuvx5FHHtkZNlpYWFhYWFhY9AhU9eJULpfx5z//GQcffDBOOukkfPXVV/A8r0eGC7YXWeIiSwgc4idL5OH+PBFcXipdsCFIgOkxijwtK6HCeVoOP9WBik8hesir/xsow6fHv0IfkRyzxcujX2Y9RuR8cXirlxUh8dxWTqt7jCBLXKUQreuZP2skliTQUE2obyWYaPRkWl5NDQD4tn/SOgADsusBAAMy61BDSmiBnyS0xDIAiuF4hnIxcr/8WC8rbaJ89hTjyjaIxIBBf1LfHfUJrhpUkyyzYl8xYTf6Jzw9GCApjUDaz3NpPvfpbTqqrElcf/qycn617pV7WQi0owVoOZI+5eowfqID/GK1RBJtayVrHKjnhT8nyp6frHdIrf9ZanAgA5DBn1tZ4mKDl0Mt8e+nPk4BdU5RKdjN7+ksKcOTEm0WkWnT5zpz2pPOo0vka5SPPSi7Bus8qVC4VEQcCI/vhmwXlVzZCBmnUqmECRMm4JZbbklMhtnVqOppm8lk8Itf/AKFgq/7GDBgwDfypcnCwsLCwqJHgXXQXy9CNpvFW2+9BUJ6ljar6k91u+66K1577bWIOPybBs44AX4IvRye70gJ01rcvBB0I/BG5NT8eVqWvBQXrlRc0t+De4v+Mk9XsMHNhSUOaAZfl/tg0yCxXT0tYEBmnbDTBRHizBpa8hmnwDtc59VGvOaqCqd2ENOki3rThRXrpRNCuzdxWjAgux5ryn6Znyxx0eS0oCVgi/zEo9L+TGVHZJSYf3wBoMXNoY/TKhi7SiVUdCYgLYtAideh7FSSULkrkMQWyUyBiX2K29dU4DVuTh0hvDb3m8RoRbfJSVEdsEgbebsbsD9Own/NKl1PvjhcakPiGTOPEawu1YnfTbkNGJxbK2xwlTQmEMyrC4INXk7cNwOyzdjEaUGzlxft5QSxDgnTnPCAlLRC7yR2Uk+z0lGIG9MhHjZxWmKvz+4qKr2x4bjjjsPtt9+upD/qblT94nTKKafgzDPPxH/+8x+MGTMG9fX1yvbvfve7HWachYWFhYWFBTbaqLpisYg//vGPWLBgAXbeeefIO8c111zT5TZV/eJ0xBFHAABOP/10sY4Q0q0F9zoT3FPi/hSFhxwJmSOHeGGIanBNZoOEaBnipyJQQvx5eeqgrSjiSSjKzAH/Wl5iYYmQLHFBiSd0A1niCvaphpbQ4uXQ5PjhxI3UL6i7Oiit0CppodpSxqCtiAsnbgvTFPap3vRDsquEp7vGrRWJQoEg2afEbpkK+rYEHnOLl8c619cyeIbyFn6i0MqpBarRrKRpb2I00ozB92vLuU2dOLJKNkv36tOyTHHbOpphiiuiW01Zncj50s6Vx2iEkQJ8njr2vFZgJSnR0lGw+PO+zqvB8tZGAEDOKWNAbj3qHF4AWJ2nx6iwqYaU0cdpVTRNrV5YmsQFFc8znrZAL89CxVx1rRwzLlfSxXV2AlXAfI229ZnWEeiIzN+9MXP4W2+9hZ122gkA8MEHHyjbkj7hVVvjjhCCV199NdXXtDYlwLSwsLCwsLDoQmyE4nAAeOaZZ9q03+rVq3HdddehqampYlvGGE455ZTUxE/VL069Qdt044034sorr8SyZcvwne98B9dddx1++MMftqkvXZPjgcIFU5ic2iABmpwoDQj1Rtxz8xiNfpvnzBMIWj2gEJwSShg2BJFeWdeFByIiv+poEZsGGqcaUkSNU8QmAdMCACvdPor+IK70hu6ZmpJfVqNJ4uD7tGXfasG1Xl+79WhlWdSLhJWa9kiaKy9+ytmqdW6N+E3hwQUJ2T3HRZE58Ji/XENKaA1+8+SY/Fg3OBsi9lVT9iQOHclkVaurMiXErDb5pafoejouKq4jNVw6y5TmOJnYKJl9dJkT2SbP3xPRt9G2OhsVp4MyRenFldz5dEN/Uf5pYH4dBmTXRfrj48jXUIk5yNOSKBzO1/H7QLeHwpMSgPqMmCitxGib2aJK11lbnzPVlAqS23YV02TRdhx55JGpA9imTp2aut+qX5weffRR43pCCGpqarDNNttgyy23rLbbDsP999+PM844AzfeeCN222033HLLLTjggAPwzjvvYIsttug2uywsLCwsLCwq47DDDsMdd9yBxsZGHHbYYYltZ8+ebVzvedW92K5bF3Uk4lD1i9MhhxwiNE0yZJ3T7rvvjocffhh9+/attvt245prrsGUKVPwX//1XwCA6667Dk8++SRuuukmzJw5M3U/HohSKFJmT1xGhNck5/xxGfXzKAVeXZ6WVE9R8lC4BkhmZzxGsCFgOkqeIyLs/GUqRe8BCPRxI/OfoYaUBAuw0q3HOrdWiXLhiNM+xHlOaT0q3WNLm5OJQ2cw4nLgmPYLy9KUsd6tUXQYWR5hJ/IuBefS84+17K3zKLo8LaGBtgo2CfA1UKZSHzzKS5+v6TinybWkMwQm5qha3VI0ojI+r5DJBqVtav1Tx+tPKh07WZNj2ub3EdUXhf2T2Lax/SWVfYlhVvg+HiNhHjVDQW2ZjfJZGoTLcYjR2n1Z9HVNyzY0YbO61QCAzfKrlPxvgH9MRLko6TrLEhd1JMxH54KKfHH+XKjUtqzoOuWiw2KunZTrrBrmqKPG60rWiaADNE4dYknno6mpSeiX0nxqi8Nnn32GzTbbLLHNn//8ZxxzzDFV9Vv1i9OCBQtw3nnnYcaMGfj+978PAPjHP/6B3/zmN/jtb3+LpqYm/Pd//zemT5+O22+/vdru24VisYjFixfjnHPOUdZPmDABL7zwgnGfQqEg8lIBwNq1azvVRgsLCwsLC4t4zJo1y/i7Wuy33354/vnnY0mcv/zlLzjhhBM6/8Xpl7/8JW699VaMGzdOrNtnn31QU1ODn//853j77bdx3XXX4cQTT6y263bjq6++guu6GDRokLJ+0KBBWL58uXGfmTNn4sILL4ysd7kegXgRXZKfAZzrCJjYTokLEDkSjyn5ehwpg7XLqOLteYyg4GVEFnIKJgoA19IigBy+LPg5i1rdLAbngxe8PFCCg9Wun59ltVtvZJs4ZJbL5Om2BXrW6Go9MT0LNYcHWpF14uM0OBvQyjJCB9ZAW4VNfk6ncI5Z4qKVZQWrUENLwtPmWddzPIcWyyrsk0OYyJEF+J650G/A977XebViXx796AS6jzS6HFO7tkY/6vvFMVAm5sln0zjjGu+r6uefF3pNa1/cMZGjsyodu0rZ23UGKY5R4vcrZ6TkdpV0T2kjB/1xmKThCtoZ8o65jAr2yW9J4vVOCBkqIDgvoPgiYJxa3Qz6ZnwtZJa4ynxktkm2EQDqSEHLiQZ4cKR2XuQ6ywf3hEf85xy/R4rMUWiPtCxRR7JJbdXG6RpWwLer2FWC6400HYEJq1atwj333IPbb78dr7/+emy7gQMHYv/998fTTz8dSWNw3333YfLkybj88surHr/qK+jDDz9EY2NjZH1jYyM++ugjAMC3vvUtfPXVV1Ub01HQQxT5J0QTzj33XKxZs0b8LV26tCtMtLCwsLCwSI+NMHO4jqeeegpHHXUUhg4diiuuuAJ77rlnYvvHH38cruti0qRJKJVCB/eBBx7Acccdh0svvRS/+tWvqrajasZpzJgxOOuss3DXXXdh0003BQCsWLECZ599NnbZZRcAwL/+9S9svvnmVRvTXgwYMACO40TYpS+//DLCQnHk83nk8/nIehfBt3kGhXUysSl61lyR80nLDq1H6ygsDXzPrOj6pyRDw2i8EnNQcDNoyvpRWzVOSWGJSswRkV0eSIQBiGhwDNFz7UVahqna/D9pkSUuHDC0uP5xqCElJRISLGSdssTP5s5tqaEFJdNxnpSQDSKIPi/1xdflehGBtGlmXSRqSdaFeAiZxC9LjcLTbnA2BHl8qLBB7gPomkzfccyNiXmS2zqEKRmqK53HKEsbMEcxWjHAPH9+XjxGUjN25rkkX+dK1myNJebb9H71uUQjZiuxpZLNMfYJVljWRyaweS5zgIAtpcG1WAq0kjVOGX0yrWIOlKhnMRJlK1+bCYyPn+dMrXsp9+wyKhhxnfFO+/xJqoVYDaq9x0yRnfq6zspab+FjyZIlmDVrFmbNmoX169dj1apVeOCBB/CTn/yk4r59+vTBE088gT322ANHHnkkHnzwQTz44IP42c9+hosvvhjTp09vk01VX4m33347Pv74Y2y++ebYZptt8K1vfQubb745PvnkE/zxj38EAKxfvx6//e1v22RQe5DL5TBmzBgsWLBAWb9gwQLl06KFhYWFhUWvwkbGOD3wwAOYMGECtt9+e7z11lu4/vrr8fnnn4NSiu233z51P5tuuinmz5+PV155Bfvuuy9+9rOf4fzzz8evf/3rNttWNeO07bbb4t1338WTTz6JDz74AIwxbLfddthvv/1Aqf8edsghh7TZoPZi2rRpOPbYY7Hzzjtj7NixuPXWW7FkyRKcfPLJVfXjR10Rv/ZTwDoBvmcos05yBEnJc1BiWfE6SpmneKxyHhcPfv/cAyozP4qOe24Z4okoOkoYMtSF6/n9NGZaxZgtLO9n8UXo9XLWSYeelbczq413FJJ0Tvr6AZl1WFbaBIBffy7LwmRmeel45IiLOlpESdous0g54orlr8v1Qe2/gDmiGwx5jPx/W1kOWVIWObVchJFVfj28epSYf07ztIR6WpAq0CdXWNdZrvYgieWK0zxV7FO73tQoVDV/mXx9mpgnk21CV8Iqzz8uKjFpTjIj5YIoxyFum9humAtQ3f2VGIlqjK6M12CVtDatgW6yMduq9ZE0ZtT2yPlgXmzbMC+aX9szL9XS5PdAq5cNWKeQpeK/SywT0YzJxygN+9ReBtfEJLUn2rS96I7M4TNnzsTs2bPx3nvvoba2FuPGjcPll1+ObbfdNuwzRgZzxRVX4KyzzgLgB2FNnz4d9957LzZs2IB99tkHN954Y+KXqaOPPhpnn302HnroITQ0NFRneIA33nhD/L7yyitx3HHH4dBDD8XBBx+sbKu2VFzVL06Af6D2339/7LXXXsjn8z2qcvERRxyBlStX4qKLLsKyZcswatQo/O1vf+sViTstLCwsLCx6Cp599lmceuqp2GWXXVAul3HeeedhwoQJeOedd4TYetmyZco+TzzxBKZMmaJ8SjvjjDPw2GOP4b777kP//v1x5pln4qCDDsLixYvhOOZgphNPPBE33ngjnn32WRx77LE44ogjqk5x9L3vfU9JlcQYwwMPPIC//vWvIqVSW0rFVf3i5HkeZsyYgZtvvhlffPEFPvjgA2y11Vb47W9/ixEjRmDKlCnVdtnhOOWUU3DKKad06hjcm8zTEvoEntF61IAyJuVqoRV1Djp4Zt8MdVEOvLaCx/xcKkGG8lpaFEzFynIfQ5bsZLdC3l5tHhKZ5ekqTysOjhLdQpAlZfTNNAMAWryc8HqzxBVRcoDvwTc4G4TnC4Qessuowv4MyK5DPS1gnetHyslecSvLosXLi6g7lxE4oIrmie/3n2I/LC80ClagMduK/tl1aKA+C9DgtApWy5RLJ7QzY4xiaivi2KcwuizUH8kRdpWuA/m6Soq6i2Oq4mwzsRuAyg7EMVcm5kZnoaqpTaejrTl9KmWGr6TPkuFKrLZDGUrMQTlY7pspiOzfabLRK/mXYLjmSLid3z+FIJu4HKXqwEMp+E+N54X76Lo/B25473lQ9ILVoD1MU4/WK3VDyZV58+Ypy7NmzcLAgQOxePFi7LHHHgCAwYMHK20eeeQRjB8/HltttRUAYM2aNbj99ttx9913Y9999wUA3HPPPRg2bBieeuopTJw40Tj2rbfeiuuvvx4PPPAA/vSnP+GMM87AxIkTwRhLndyys0rEVX2FXXLJJbjjjjtwxRVXIJfLifWjR48WGicLCwsLCwuLDkQP0DitWbMGQHwB3S+++AJz585VCJTFixejVCphwoQJYt3QoUMxatSo2PyKHLW1tTj++OPx7LPP4s0338TIkSMxaNAg7Lbbbjj66KNjs4YD/me6YcOGYfjw4RX/AODtt99GuZwsmeComnG66667cOutt2KfffZRdEPf/e538d5771XbXa+AiK4DInmdakgJJRIyG0DoNZeYA6pF4YlIL82TyhAXtU4RtY6fI2iDmxNeedlzkHVcoROQ698BmtanEx0mXVMkaxNMiKtVp/eTxFzpbZ0YxoGvb6B+5KFcS6sOxYiH7cCDE+RjcghT8hTJY2zitKCBbhDHvsgc1Af5tepJAfW0IOZZ45SUufTLrEcD8xmlPC350UUlP7qo4GawCvUoOL6NX5f7oF9mPQCgyWkRNfcA1YNuZVmAhXXyOop54n3Feet6hJ18vCpdB/4+qj5F19uZ2vG2fHwT4pgoEwPVGVGL1dQRNNWVq4RKbJOsoQT848dZmhJz/GcQeDRpuC2vH2dQ5RhHmBeiso/ydvm48shhKrR9DrKSZrAkVUNo9vKopwVxz/L8ZwAChthN1Dzp9qdFV9ZA7Eh0pMZJT/QcF10ugzGGadOmYffdd8eoUaOMbe688040NDQoZVKWL1+OXC4X+cyWlF/RhG9961uYOXMmZsyYgblz5+L222/HUUcdpSSwlrHjjjti+fLlIvq/EsaOHYvXX39dMGVJqPrF6bPPPsM222wTWe95npInwcLCwsLCwqLnYdiwYcry+eefjwsuuCBxn9NOOw1vvPEGFi1aFNvmT3/6E4455hjU1NRUtCEpv2ISKKU4+OCDcfDBB+PLL79M7P+3v/0t6urqUvVbLBYrNwpQ9YvTd77zHfz973+PiK3/+te/Yscdd6y2ux4LT+RxCrww/j1fy+sEQGhTWkgOrpdVPD4g9HjztCy8pkh9N3jI0jDCpOBlIjWdeCbxSN4oiQGohs2pFm3tKymTOO/TFCVj2ofPsxLz1M9Zj5Ygt5UToxmS+4jrr4aUkCWuiJQzjxlGVcnHPyc9EwZnVqO/sx7NgVe3xq3DOrcGawMN1IpCH3zuNPlt82sxMLtWGXOdWyPGanJapAiqjKLJai8DJbMKkegxg96JQ9c9xcGDdi0kREeZokPT5vKRGSg5+zgQ1XL5bcK8TX4bNXcTb2NigNLqoqphp+KYJj03nGmb/Gzq47Sib86/jr4q1qM+43vnQ3KrAehsUfSZJEPXG/H2sj38t7yuwCg8EuYvq6P+f6DWuHWCkQL8KDvO3tfRIhroBtCANfY8GmHpq0Ecy1QdU2VuW20EapvRgZnDly5dqiSyrsQ2TZ06FY8++iiee+652Ei4v//973j//fdx//33K+sHDx6MYrGIVatWKazTl19+2e40QQMHDozdtscee+D9999P3dfYsWNRW1tbuSHa8OJ0/vnn49hjj8Vnn30Gz/Mwe/ZsvP/++7jrrrvw+OOPV9udhYWFhYWFRSV0oDi8sbHRWAEk0pwxTJ06FXPmzMHChQux5ZZbxra9/fbbMWbMGOywww7K+jFjxiCbzWLBggU4/PDDAfiReG+99RauuOKKts+lAhYuXNhpfVf94nTwwQfj/vvvx6WXXgpCCH73u99hp512wmOPPYb99tuvM2zsFniMBlFxwQqJedI9Me4x1ZAyWpAX0XAUvqaAe+eUsYg2QHjDJGwP+OwS/83b1Dm+t1jwsoKN4GPrEWYceh24uLpwaZDEKFTqU9Y7RfMgSR6rUsE+Po9TJeYpR1zkpHxKX5SaBAuxidMSaHY80TZubg3OhsR5yTBlN5azTGdJGQ1OOE4dLYhz6jIi6hR+3roJ1pRrsVP9J8K+BsfXSkUixrRIviQPWmdcKtWxk6Fm046OFXceZDsBwzVkcKBNmbjjMo+bGLZKLIJp3knMkol94u38/uLn3tYoPX0/PkYldsPEavHrallzIxoCxmlQdi1Aov2pGcrVYyxncdcholKDWnpJNf5avHAfCoIVZT9HT5a4aPV8W1u9LJyM59e2Q5jzKQ4mfV7aPEwmG+NgOp/ticTs6Tj11FPxl7/8BY888ggaGhqEJqmpqUlhZ9auXYu//vWvuPrqqyN9NDU1YcqUKTjzzDPRv39/9OvXD9OnT8fo0aNFlF1vQ5vyOE2cODE2hNDCwsLCwsKiY9EdCTBvuukmAMBee+2lrJ81axYmT54slu+77z4wxnDUUUcZ+7n22muRyWRw+OGHiwSYd9xxR2wOp56ONr04bQxwQfw/5vjensQ8uQjzM2Wl/EBca8K96wxlAAuXC14mwrbIHniJOVhX9rUs9U4YKUAJAyUMq0p+wrEhudVCJ+AyEvH2k6KeOiP3UhKDpCNumylihmujdMYsCXEaHzmyp8XLodXLimOYJWURxebnfCrH6j0qsRnKvky6Jgz7ydqpmpowsGKNW4cWNxdmgyel2HmLLOfSJRCnpdFtqDSXSl54NXX20jKifttohmg9Ci9N/qek3E961J1J9+S3i+qaKjFQejsTqtHFUOJVxWrIdhW8LPrl/Nxm75cGYlXRF8q69UQ56pwpkqHfS0nRaHEMGc+0LtvEo11LzAGYI/RPoP696Y9FlUg/SphiT6XadXFRf7zvJNsrQd+/6zRO6PI8TjxJZCX8/Oc/x89//vPY7TU1Nbjhhhtwww03VGdAgNWrV+PBBx/Ehx9+iLPOOgv9+vXDq6++ikGDBmGzzTZrU5/tQaoXp759+6ZWv3/99dftMsjCwsLCwsLCAvDzMe27775oamrCJ598gpNOOgn9+vXDnDlz8Omnn+Kuu+7qcptSvThdd9114vfKlStxySWXYOLEiRg7diwA4MUXX8STTz7ZLYV9OwslRuEEbJMHiLwkUcaIKXXrZAYK8D3tgusfZscJmSDuEeWpv2+Ll0PBy6CWloLtof6JEoYNblZE1XG9C++/EjqKZUrqJ6LtSfDi9MzmiflZtIg8nX2qpHUCfNanX2a98Awp8dBAqcJAOcKzKqKVZUXbOlpAiTmooSEjxDOOu4z4eZy0yKSwHqEhUjDwmhucDWj1siLTch0tijGanBZ8WBiEr8t9fPuzbmK0XJQZSM4XJB+HjkK17JObMjpI1zSZdE9yO2EDi2oRFUhZrz1GEjOoy5AZKJ2pSIp44/vGIW20oI4057BPwF471MOyFl9PtKahDoOya5Rr1AURUY6mfk2Rihz8mJSYAxBPYa8cMOWY6VHHfO7y8RyUXYMscbHa9RmykkeRc8LoUf14yeeM26au0+ZpWK9vM8GkfauuWEc70AGf6npBedIIpk2bhsmTJ+OKK65QatYdcMABOProo7vFplQvTscff7z4/ZOf/AQXXXQRTjvtNLHu9NNPxx/+8Ac89dRT+NWvftXxVlpYWFhYWGzM6IZPdT0B//znP3HLLbdE1m+22WZVJdDsSFStcXryySdx+eWXR9ZPnDgR55xzTocY1RPAo+o8BN4X90yIH+fFPV+/hpOPLHF9TY7EKlGE3/dNXnbB80+BHJUC+NnCQ1t8G2TWg2sBAAitThzSZHZuC+Ki4fRtMnzNUnWagrgM5GobX+sVFzEGQMl3lKOhn8gzF4t2cJGjUm4k4iEr+ZXCDsIZkPSZqeU2NbSEHHMj63PExZDsaqwJvO3Vbp2wMUfM/q2cj4hHIuWI22YGpLOhMITMzCiq7aOMUlxNRlP+J76P6E/JV6UyKWnZs0rRY4pNnFWpQuMX7hs+CyrVoTSBM9UDapvxyap+AIAlG/qhwWlVrps49ooSFmGY9GzhojYdQtYJ8I+RzsLrc+GRpQ4YWgM2t9nLYxMpgz6PtjMdvzCflFnX5OulzOeJr097L4j/Hkj7dOd9tDGgpqYmkukcAN5///3UWcE7GlWf8f79+2POnDmR9Q8//DD69+/fIUZZWFhYWFhYSOgBteq6A5MmTcJFF10kKpMQQrBkyRKcc845+MlPftItNlXNOF144YWYMmUKFi5cKDROL730EubNm/eNKvJb1uo8cQ8KjMIDg4eQdeDIEj/3EmeRuBfH2aQsXMW7LTFHYZYy1JV0TaH3l6dl1Doh27TarRNenMcI8qSUSutUbQ6ntLoLUzb0WE89MFPXrhihZWhXGANDtJ3C6EkaFrAqaoORaBX4LFwp+7jKMkS0FgnaCxMEC8Yyoq0LiganNcyozLJhhnUwI5sme72cldLrjyWhUtbo9iCpLzkLOc8+nuYaTYqqqlQHT2eeVE2Tyq4k1e9L0sOYmIy2MLTRfgO7pJqX8j1iYtr4us3qVuPDlb5z++81AzAovxZ9s81hQxZGC8vWeIwEOefi9UCybi6L+GPjMYpS8HwseBnkaVlElq5261AImCUHDKsRPueyxE18vpjYJsHyGezUz4/p+OvniB9n/TyWWcfdK0nojnQEPQFXXXUVfvSjH2HgwIHYsGED9txzTyxfvhxjx47FjBkzusWmql+cJk+ejO233x6///3vMXv2bDDGMHLkSDz//PPYddddO8NGCwsLCwsLi40QjY2NWLRoEZ5++mm8+uqr8DwPO+20U7cmz2xTHqddd90Vf/7znzvalh4FlwXRUcTzvTruZdAyKAgoQk8lZKX8b/GcceJthTekOWFlz0Ep6DcbaKOyhFcDp0KbkKUe6mhRid7j3/7jtUShF8+RNru3CSbvy9OYl/isvEQwbXKOI6MNEkviSh5wBJruSeQ8EvvKEVdQssA7ATvFj5GenVzJHxOTw4fb54EouipZh+ZfG1nFvrhoMmpgUHhfNeiY4tnV1OWqloHqTMYKiEZXApVz+SQxT0msU7VIo5kJIy3NbGWlWmrRyMmgOgFhCgulM1AyNsluQL8+Qd26tX3wYf2m2K6Pv3eelpF1CsYs6JQwuNpqF8QYnVkpmzqVNI5+vn4iIudWleql5wRR6tjpx0M9FmoUXRLTpNsOxDOBUfbYh85ctjUi0qI67L333th777272wwAKTVOJmFWEtatW9cmYywsLCwsLCwM2Eg1Tqeffjp+//vfR9b/4Q9/wBlnnNH1BqGKBJjLli1LrEQsY7PNNsPrr7+Orbbaql3GdSc8xpmiMJoOgP99nkp5SxBqlErMUTxH36vRveSw3hPXA8goSd5LXorsytIyWly/gnWLlxOMk9ynCY4SMRTdXk3+Jb1dbISQwXuW11Ep+s24j6ZPMkLSnHHEZRnnDJKIgkEQQcRklskJt8GT2EFfZxUX2afncKIszOvlEA+DHd/paPUyaGVZtECtQk4ldk1no+LOa3uYI2VbQi6lSK4lUp1XnRTdqIyjsT1KXiEDa2NinYzjy7msDMyTnp1cj7IzX8PtZzLiWKYkttbfX4qsU7Kwh8fYY46/LeaY1NAShjesAgCsWNsHH6/uh7Lnj9uYbcWIupUYkPWdXgeeGMcJ7gfOe0aOg3YM4jKty/vKc+O6JhcUWVIKxvSj8eIiHNNompKYwDQsUxwLKEc5JrXraGysGqeHHnoIjz76aGT9uHHjcNlllyl5JrsKqV6cGGP44x//iD59+qTqlKvfLSwsLCwsLCzaipUrV6KpqSmyvrGxEV999VU3WJTyxWmLLbbAbbfdlrrTwYMHI5vVuZTeBRc0yALNPbqQefIYhRuUoJFnWWIO8rSMPk6YV0mOqqOEIRN8s6fUE/sAqg4I8Nkmzjht8HIiEgXwPbRmz2cuaoj6kmqq/M5zoHxVbkC/zPrEzN3VfK9PZDMSmY7kTNNcT+HAUzxtIPS2BQMk9eOBqHOT6gvqjImvTwr3FToN3pbJfYTRfbqnWkNK4fkFU86HKedSXE4tno1ctbH7qq7rY5ts0RkxUxb3aiL7wn7MbIDM/PnjVNdvnOapvTBFkHH9m7wMJOUaUvtI0iPKzDGV7hGuRZIrDujHaLOa1QCAz5qa8NnXm+C9Vv8rgkM9LG3YBN9uWgEA+Hb98lBbR7R7jQAucwR7U2IUWYkdl1knGmQR5/dIi5dDyVPzUuUDLV+LG+amA9T6kvoxMmUFl1klneVKq2OqxALqzHlcu05DL2SM2ottttkG8+bNU5JuA8ATTzzRbV+1Ur04ffLJJ51shoWFhYWFhUUsNtLM4dOmTcNpp52GFStWCHH4//7v/+Lqq6/uls90QBuj6iwsLCwsLCwsOhsnnngiCoUCZsyYgYsvvhgAMGLECNx000047rjjusUm++IUg1AcDoBQ8fnIYwSgAGVhQkRO2bayLBzioX9uvein1csiy3hou5RckVBkqRdqx4OhssEnvFpaDAsBkxJavJwo7kulsi5pvjrw0h1flhrRx2lFTio9IiNVAksJSWUY9HDsSJmChKSCjvikEm1Dtc8+Cu0ufRZylDI5MJb14HS+Q5j6aY55oNpx5eMUWUZ8/qgnRaXcTYlR1JOSSCnhl5AIPsUSIq4PAGI8fi5qSBGt8D9VuIzEHh99/vJ80qA9n7oi4zKzTWoqCDUQQBZhmyAL85MCF/hnu0qlVapFUmqC9hTx9ber16oSSBL5XJ3uc6ILRwo44cePC6DNEgAA2KbpK6wr5rHyK79oKitSfNqcx7qiLwHIUBfb1vl1wChckQSTQyniSzwpIW8gDQjGoQhTCwBAyXPUfiQpgwsqnoeudgMmFe6NCL8DkX6SOD/pk1zaz6b8eFtxeOfjF7/4BX7xi19gxYoVqK2tTa237izYFycLCwsLC4uejo30U52M7qpNp8O+OMXAAxWehvDkAN+b8ySv1gHqEBap7JtpFqkCeGmUkha+GgwADwTZoBuekDEfiItraEkpNyAX9QVCL4mX7DCJwoGwOCYA0beOtKUMTP2H7aKhv+oYhmNg2BfQEzhoEEL7qMjaF8r6Y5d4aDYAh3lwpPItvA1PYurBEzbnAIBIHjVDIIYN0xHUk6IYr4aU0RCcpwIjyBKGbDD9EgNcwbC4QdHdkCl0GRXnuJ4W0BqIY01CcY72ClEVYXQVzIzO9ihIcrj1chSCDYkJ9QaNZYxkhokHAlTDLsWJwk2JNKmUNqSzkZQctdrxXTihMJuzT4aSIANy6zGiaRXcIB3B2rW18FozWL3WZ6c/re+Hvhk/WebA3NrAlpDRccAE20qlMkWtyCosIBdqc+F3gWXFs5Q/G93gGVVmjnItJaUc4Hbo44jfCeJ8k+DcxCqlYf1cOCh1UcmVjRkPPvggHnjgASxZsgTFolrU/tVXX+1ye7owHMDCwsLCwsKiLeCf6tr719vw+9//HieccAIGDhyI1157Dd///vfRv39/fPTRRzjggAO6xaY2MU5///vfccstt+DDDz/Egw8+iM022wx33303ttxyS+y+++4dbWO3oORRUI9KIac+0+EEpUYEeyF5wVlSRg0tiW2bOC2gDhNs0dfl8LssJQxZuChIHlStpJdZ59aIkhsDMuswIFNQ0hpwVssU8u6CijGLLIM1bi0AX9/glxtJ975cyeMLt8UnnNPBvWF9eyV9iA7KmSWpXwoiEpL6y0HKBzhwmKdoPfw2IXvBWaIi81knV2YYWagH2oS2oEE6TzXEQy5ITZEjoV3+vgwuT5TKGLKkLOZNmZ/gj7NXrcgqIdt1tNjhYfMc4vxXoXFSrhltv6QyH34RX5mBSF9s2sQYqOyoqtOKMoqqTZ2VjiAt4hJrmo5HRGeTqK2Sx1CTuvLnFR9faADh4Vt9vkT/nF/k9+P6fvhkRX+UNvjsz5LVfcV+32lajs1yq1RbiCeK8xYlhrQGJZRImKqgIOuX4D9Xs2IqLkqegwILWfGkNCWmNANhWxJ7jFwW6snitGXtYfu6SuO0sX6qu/HGG3HrrbfiqKOOwp133omzzz4bW221FX73u9/h66+/7habqmacHnroIUycOBG1tbV47bXXUCj4/wFft24dLr300g430MLCwsLCYqPHRlpyZcmSJRg3bhwAoLa2VpR0O/bYY3Hvvfd2i01VM06XXHIJbr75Zhx33HG47777xPpx48bhoosu6lDjuhOMUXiMhpFDIiqMgJIw8qvVy2JF2Y9MaaCtaHJalCSIsr6phYbJEj0QOARCY5APIlPWB2VV1rt5NEvlOQZm1wpNQZaUjUwTt3OdWyMKZ7a4eawp+4zTgOx64z4cpm//1RTONK3Xwf3J2HItadkAjeUowWcfQu0TU/RQPusUJuWTx5LnnecFPPm6ICEmTwY41NmABiqX2QlNcojOEoS/s8RDFh4ER8ajKIPz6IIYI+Y4OqOQaJFlKianbA3YAKXYqql0D+Kj9HRGqpJOKy5BocwWCPZQtkVnwtrILFUq+hvHmlYLXUdlKsztb9ci7vSixdJBMJV5EslfpUSwDvznzeY1PpO0SbYFGerhg88HAQBaNuTwqddX2Oc2EWyW99vmaQkOPDQFjNMXpSZxfTiBPrAl0C15jCBLXaX4dVliocrMQYk/A2lZHJMscRPnXanUjVwSStY1eVrEKj/WSSV2dIho3OC4M1vkt1MxePBgrFy5EsOHD8fw4cPx0ksvYYcddsDHH38MxrrnTbDqM/7+++9jjz32iKxvbGzE6tWrO8ImCwsLCwsLCwkbq8Zp7733xmOPPQYAmDJlCn71q19hv/32wxFHHIFDDz20W2yqmnEaMmQI/v3vf2PEiBHK+kWLFnVa+vNPPvkEF198MZ5++mksX74cQ4cOxc9+9jOcd955yOXCaLMlS5bg1FNPxdNPP43a2locffTRuOqqq5Q2aeGCKB4OjwpzwOAxwBPebS7MUUIzPisUEBL1tODnOPH8yLc6WhA5lbLEVaKqamgJLW7YV9lzwLMtrXdrlGg9OTeOzhhwL4kXBF5RbBDb8rS6GoK+h5/g2aUsnJlqLIPXlkY7IOuWSswRrAeFVG6COX4OHhEpx5dp0DaMCvII9XVJWl6nesc/9jWEoI5wFsZBgZVEVE0Jnq+zCpaLjImSPD6bUEIJ6vHjOZ+aPSoYh6zGJlabXysORq86pngsR1hAlhj3kfeNY8V8Bqd9iIv2VMuNmO+JiD2GKLqksdKiUp4nxQaN1dJ1TnFRfcaIVX2dYoMnsXRyjjSCLFx4AUvaxyngO03LsWSVzzIVixnBhn/VUo/Pc5sIxjrr+KVQvig1GedGiSfpPhlqaElE9zrwUAg0URREYdf0EjFJOshKJVWSdE2Ayuol6cmSWEVXMNZW49SZuPXWW+F5/nVx8skno1+/fli0aBEOPvhgnHzyyd1iU9UvTv/93/+NX/7yl/jTn/4EQgg+//xzvPjii5g+fTp+97vfdYaNeO+99+B5Hm655RZss802eOutt3DSSSehubkZV111FQDAdV0ceOCB2HTTTbFo0SKsXLkSxx9/PBhjuOGGGzrFLgsLCwsLC4uOxWGHHYY77rgDjY2NuOeee3DEEUcgk/FfVw4//HAcfvjh3Wpf1S9OZ599NtasWYPx48ejtbUVe+yxB/L5PKZPnx4pwtdR2H///bH//vuL5a222grvv/8+brrpJvHiNH/+fLzzzjtYunQphg4dCgC4+uqrMXnyZMyYMQONjY1VjemxOA+dR+wEHq9LUQgOY9lxsMati+RW4kwC1wQAvnbEYxR1xGcy1pTrUGBZNJdDXRPP8pshrmCo/LG9SIFVDko81NGiKLpZYlT0w7VXcWyVP++4vE0kkitFbIvJmVKpT/M4Ve4rNGiqh04JU2yijIYReMRnhjgDlQVENF6W+cea66Aa6Qb0c1qwWVC4uY5kkCW8qC9FBg5ooBuhzIUHJsbJESKi6hz4560g6WNqwESGcj9/kb9QFzCLPJ+T25bjAjODVKn4cluh76sWX3YSrzndvqQ2cfbL45vYTuVYaLZWKuZaCXGaJwpmtMVkm8ckjRuhGhMTZbIS7ZM2ucyRNFAq+xSsEjZkiIvGWr86wWqvFq7rj7mhkEWrmxFseD0toMgyxgoERZYJip37d4EDP3qUZwIvMSdkC/l9I927oS4pPnpX3256/lTSNVUTtRi2ick91lUszkbEOD3++ONobm5GY2MjTjjhBOy///4YOHBgd5sl0KZ0BDNmzMB5552Hd955B57nYeTIkV2eAn3NmjXo16+fWH7xxRcxatQo8dIEABMnTkShUMDixYsxfvx4Yz+FQkFEBgLA2rVrO89oCwsLCwuLNmBjKrmy3Xbb4dxzz8X48ePBGMMDDzwQS350R726NmcOr6urw84779yRtqTGhx9+iBtuuAFXX321WLd8+XIMGjRIade3b1/kcjksX748tq+ZM2fiwgsvjKz3eFRdTE4Y7mXoPtdXpT5KVusaUkJNkKvHoUxEl7R4eZFZHABaSB7rGUGGhtnC+wS6mj4Ztb6cBykbMDF76HKkTWOmVfTpb1Pby/mhqoHwDqUIFiAakZcEM6uXxIrEeNrMZ/aE58nC+ThQczh5IKCMSjq1MAN7DS3hW7kvBMPUl+YBEFDU+H0RKjKO82WP8YgiAgcEJZ4/inki6o6KcdRoMH4d1ZCSEnkUGCrsNR1foDKDxKOnAACEiggmf1+iXCeR/Svk4kpCbH0v0IqaEDkXVzW2yTUOqRZhx4+Fvz0+i310HPm4RyNL46DrqCrpqqL7y5Fy4XgOWMUcaHokcFj7T2Wf/Ng4f99MoELrkwuqHjTXwnH8/QkBMlTNl1VPC4Ih80DR7PlMOX+WhM8apv5LwnvRZQRlzxF2luAgHzxR4+Zo1EIa6tDFM5Mq21SJ2eL9xYH/d8KiY3HzzTdj2rRpmDt3Lggh+M1vfgNCoueBENJzX5wOO+yw1B3Onj07ddsLLrjA+NIi45///Kfygvb5559j//33x09/+lP813/9l9LWdGAZY8b1HOeeey6mTZsmlteuXYthw4alnYKFhYWFhUXnYyP6VDdu3Di89NJLAABKKT744IPe96muqSmMnmCMYc6cOWhqahIvNIsXL8bq1auresECgNNOOw1HHnlkYhs5eu/zzz/H+PHjMXbsWNx6661Ku8GDB+Pll19W1q1atQqlUinCRMnI5/PI5/OR9R6I8t1c1yq4Bq+lFGiAmjIb/GWq1lXLooQclxaQEuppAeuCrN5ZWsaQ3Bqsc31moynTIrw0rhcI2RQqeVRlpUJ6DSmhxcsLrylPy+iXaY6dfxzisvbKnp9+TOKYkLTVxv1+03t7OniOLQ45goiCSUybn/mYRx9R4gm2Z7vcMmyVYcgT/5rgeiaIPbXcMkxn7zyUgtwifq06zr6pbEExiPThUXV1tIT+jh+11OzlUWKOyNWVVLvOn7c5342fNTrZozbWUayAOAWSzvKYbNPHT0IJ6dgtk11UGyPuWJhsVvpMmUtI749vi2Qzb0MNPH8frd8U/XiCgQltkzWaDmMh60qD2otOyGyXSv61kcuVUeOUxHOolWVRTwpS1m0aRhYrrJZ/vORrzK836G8vuBm4IMgHbFYtLSqsa5KOSYbMNPljqstpstTHXZNt0UJ1FjamT3Uc5XIZxx13nCKn6QlI9eI0a9Ys8fvXv/41Dj/8cNx8881wnCCRmevilFNOqVqAPWDAAAwYMCBV288++wzjx4/HmDFjMGvWLFCqXsBjx47FjBkzsGzZMgwZMgSALxjP5/MYM2ZMVXZZWFhYWFhYdC8ymQweeughXHDBBd1tioKqNU5/+tOfsGjRIvHSBACO42DatGkYN24crrzyyg41EPCZpr322gtbbLEFrrrqKqxYsUJsGzx4MABgwoQJGDlyJI499lhceeWV+PrrrzF9+nScdNJJVb/QyYit4q55OQBQZhlkiSfqxPVhfl4nHs3mSFXEeVZw7o2tL9egzimK/laV6kVVcgcemr28FBUXZmkO2QjfU2z1smj1siKPU56WE/M3uaBqVIum6UjDDui6A93jA1Svr9q6UNV5eXJdNDV/TUSvJrENQ7N+VuR6UsZqj8EJNE91xEEdyQoGg0fQmeAyhlbmohgwTq2MoiQxBPVSfiZuD9/eyjLIBjqTGlJCK8sK9qKeFuB5/vhcSxLOUdXdyMeKz05nldJmefftrqaeXahNakstQpN+RY6ErASlTps25zj2ilap86qUxVveXq2uKQ1owJTGMiQJ96uawd0LcpQFbLkHqYYcQCmDGzBOXsZDvVNEA/W1kqZoOq5pKnhZZX2JOSh5YUSeykoT//kkPR/Ffl4mMp9K0bpJLHcS2so2cdu6rPbhRvSpTsY+++yDhQsXYvLkyd1tikDVL07lchnvvvsutt12W2X9u+++K5JUdTTmz5+Pf//73/j3v/+NzTffXNnGU647joO5c+filFNOwW677aYkwLSwsLCwsOjV2EhfnA444ACce+65eOuttzBmzBjU19cr23/84x93uU1VvzidcMIJOPHEE/Hvf/8bP/jBDwAAL730Ei677DKccMIJHW4gAEyePDnV2+YWW2yBxx9/vEPGdBkx6pjC5dDbEL8ZBc14SvTaJk6zYBJKcITXVGL+b84G1TkO1rk1KASeVh0thmwCCfcBAn1DcANw9ilkdFw1I7H2UTupHp0+T0XTxPM4SZF0+vHQ+45jmdqqGzBFu0Tmx0wRWWEEIgCAeSJyi4/PMxuvZTk0oqjk9waALGfR9OhKeGgNour8HE4MLYJFcsIoI7gi2o6jhrhiJFmDxffhNnmgSlSn6RyZGKfwmJg95UqgSMgGnsAA6VuqySjf1hqGSbZyGNmrIIt8W6ILAQMD1Q6GKe39okPXVZn6ANSoU485oIwBQRQvghp3OcdfzmfLKGT9Z1E246JfrhkNjs84UXjIEVfUMYzoP0FQCq7dVi+LgpdRs6IHV0gfp4A8LSuZ8vXni65fCseonHsrieVuj1apyxgmDQRo98jdY3n78Itf/AIAcM0110S2EULguu2tS1A9qn5xuuqqqzB48GBce+21WLZsGQC/DMvZZ5+NM888s8MNtLCwsLCwsNg40VlfstqDql+cKKU4++yzcfbZZ4tkke3REPUGpM3aWw5yetTRorI+rJkGKaeK3yfXQwHABjcrGCePEfQJ8i/loWb8BvOUGl26s5wjZeEdtnrZSF2vUIOUHDFkqgcle4J6FJ2uaYrzmivpREz7mLfTaM4aMb7ERgXetAChCuvkMA+tzD8P67w8HOqhBrIX7CLHo9+0g12CB5dH0YEpGawdMEDypougCrNRlI6ZA0+pY1diGRQCj95VoigrM4GxrI3heOqeu5zjKy6vl0M8eAnReKaM2WmYmCT7/Ggt1bZqdCx8H96XDD+TPFOWFRtSshNpmAhj3rKqIkdVW6o5DhFtIfFrYvoduWhxs1hd8KN6C6XwPw1961uUaDf+m9eyk6PquAarECwXvAw2uDlxjzdmWsXzkUe7KvOLYZqqye6uR9Hpz6FKbFO111WXYSP9VNcT0eYEmMA3/4XJwsLCwsKiJ2BjTEcAABdddFHi9s6qkZuEql+cttxyy8SEkh999FG7DOopaGtG2GY3ZJBc+NqZLOWZpT3xxp8lZaxx60QUis8MUWwI9l9XrhEZv2tIWcnyrOsFPIT6Iu6pce1UnpYieYBiaz4ZIoRkb1v21NNomszetRoFJu9vQkXvUNZsRNwpT7TheWsAwCOeH0EU5GAqeaEWyWUUzV4OCLxiF17wP16PrIysnAcJTGQHb9Yih+RzJrIlG/Qg/r/hsfazfZdBEUQoEQ8lj3vwWeRpCS08b04QsRTnmVdk7fT2sn3MzDrF9RnOMb5tW7PJ+7aF11/0XCdrXAAo3jbV2Ks4pq29kXFy7cTEdhX0TXH3qT5nE9sXl2/KZUQw4GXPQYa6aC0Hz6PWLAivsZlr9es3Iqzf2MpyIQvlIdQ7iSi9IFrYzSvZwbPEVVglKjGyMltqer5UQqXIXRNCbWD8s0odQ47yI8q/30TMnDkTs2fPxnvvvYfa2lqMGzcOl19+uTE47Ne//jWeffZZeJ6H73znO3jggQewxRZbAPBLm02fPh333nsvNmzYgH322Qc33nhjJNjLhDlz5ijLpVIJH3/8MTKZDLbeeuve8eJ0xhlnKMulUgmvvfYa5s2bh7POOquj7LKwsLCwsLDg6IZPdc8++yxOPfVU7LLLLiiXyzjvvPMwYcIEvPPOOyK67cMPP8Tuu++OKVOm4MILL0RTUxPeffdd1NTUiH7OOOMMPPbYY7jvvvvQv39/nHnmmTjooIOwePFiJbWRCa+99lpk3dq1azF58mQceuih1U2og1D1i9Mvf/lL4/r/+Z//wSuvvNJug3oaeORWrJet5QdqdbP4quQXPO6TaRW5lwCggbZKuT+oiKwDfC3AejeHlrLPOGWoK/ROrSwT5P0xjR8wPXJ2YIM+iaNiXhotAiqJcQrbcbarsqapEtMUlyslDoq3pzXlOhyfnfDC7Yyi5IUV4ilhIj9SC/P/9QL9Rg0pwSNluCLijSEo9A4HDK3SsW5lmcBTDj3qGurnvMmx5MiPEqNKpB9nnQC/ruE6z38IrS/XIE+z0n6OWnHe4HVXl6Vai8QyPGnLcBTGRkBcg+Y6a5WQpE0R9oicY/H9xOdek9eH+bUcnaVh8XqoSuDMlc6suQZ7I2xcFfdP3PY0bJO8XtYIZuCiWPbnyzyCfK3/7KpxygpzvdarRT0toD7oOkvKYeZw4ii5nDzm5yqrpdHIOUfKZM7Xy8xpWysOpMkJF8faJT1/zPnnurhWXRd/aps3b56yPGvWLAwcOBCLFy/GHnvsAQA477zz8KMf/QhXXHGFaLfVVluJ32vWrMHtt9+Ou+++G/vuuy8A4J577sGwYcPw1FNPYeLEiVXb1djYiIsuuggHHXQQjj322LZMrV3osDN+wAEH4KGHHuqo7iwsLCwsLCw6AWvXrlX+0pY0WbNmDQCgX79+APyIt7lz5+Lb3/42Jk6ciIEDB2LXXXfFww8/LPZZvHgxSqUSJkyYINYNHToUo0aNwgsvvNDmOaxevVrY09VolzhcxoMPPigO5jcBan6mSnlUfDcgQ120ull8sqE/AGBAbj0cMBGlU0NLwttyGUWWuCL6jWsB5JpWYbZdCgRMEt+Xw682Hnr/XMdjyuuTVFnc1EbXGZSVmlPxzFFSFfk0OZwqeXlx++sshFIdXoqs0zVPALCq7NPODXQD4AAewshIFwRZUSssjNZz4PmsoRYJxOFHn/nbisSPCuPHk/8WHrakJ9PZihILvfhSkH/HIaE9vlcfzcycdB5iERwSByxgL+P0TPF9OmDKeXMS9D3V1iaM0wyZriv5vohnXhDUa9Nyn/HjUIWa1tcbmhkqzpbITF2SrintuTOxTekYN4P1jKC54DPe2XwZw/v52fQ3r1uFOlqUrjmq6CZLLBM+40gJBYSMU56WscHNKc9SoYUz5GiSqw6kYSBNc0tigOIY76TnkBvTRs7l1xXoSHG4Xsj+/PPPr1jWhDGGadOmYffdd8eoUaMAAF9++SXWr1+Pyy67DJdccgkuv/xyzJs3D4cddhieeeYZ7Lnnnli+fDlyuRz69u2r9Ddo0CAsX768os2///3vI3YsW7YMd999N/bff/+K+3cGqn5x2nHHHRVxOGMMy5cvx4oVK3DjjTd2qHEWFhYWFhYW6FCN09KlS5WoeFOhex2nnXYa3njjDSxatEis4zmWJk2ahF/96lcAgO9973t44YUXcPPNN2PPPfeMN4WxxEAzjmuvvVZZppRi0003xfHHH49zzz234v6dgapfnCZNmqRMlk9ir732wnbbbdehxnUnGEjVngQlDLmAdQIg8pdwz6rVywpPjdciKwV5nMqegxbJM8sQT8moW/IyxrpNHgiorEMK/q2mxpOMaiLlkvNAmfOlxFc4j9Fs6FFDVVSX5xonj7AgO3SoRQuZBgAesM71NURr3DrkiAtKVQ0Pj5xzQRRWpsicyJx4xFcOrtBG6XmaPJBg33jvmLMdMruytlyDPpmiqO9VCvqQPeekqKu0tek4KxdrG4s+wanEgqljpruPjFnPNRtEZGmF/4D4953K/sTawajKYLFwnDIQYa7i6/fRikxYHFOn3y9J0V7cDhNM95GJGdG1mzW0hIKXQSnI37RZv9XYps9XAIAhuTXYNLMWOaLq9IpShvti8FwrsYwfsSdd11nqxure2lptIPEYJGZ6j94PlZ5J+vNIb896YT7uxsbGqtIJTZ06FY8++iiee+45JRJuwIAByGQyGDlypNJ+++23Fy9YgwcPRrFYxKpVqxTW6csvv8S4ceMqjv3xxx+ntrOrUPWLU0+rUmxhYWFhYfFNR3fkcWKMYerUqZgzZw4WLlyILbfcUtmey+Wwyy674P3331fWf/DBBxg+fDgAYMyYMchms1iwYAEOP/xwAMCyZcvw1ltvKYLytPj000/R3NyM7bbbDpR2oTBfQtUvTo7jYNmyZRg4cKCyfuXKlRg4cGC31I3pDHjMnIdIh+5h+tEpPgpeBuvLYUimByKYglwQicLrkRW8DNYW88gF0SfZvIt8EJHFo+/MXpdjjPqrJtNuaF/ljLtJuqW4iJSkmn+6XbpXHIEhciuurcxOUUbgCQbH89kcnnMGkCIYsz4byDjzQoU3zZdF/0LjJGnO4AmmqISyiLKijCkee2vARCrMoNwPYcjCP//1tCBYw+ZyHnlaBqVBFFMQUadmElfPRxJzGqlnpkeXGb4N0CAaKq5OYCXIkXpp83mJ7W307uMiz/j8BbsnMU1AmAlbAQsj8iLQMsdHGDMDUydsMVz7ac6h2D+GIZHhGe5pvs/aUg1qa3xt35aNKzGq/j8AgE2cFgBh7cQsKaOV5UTVg2Yvr+gxvUC/CQCO4yFLPWTkenQxLFM19SwrsUpJzKrp/Mdr4DQ7jOeoixinbkhHcOqpp+Ivf/kLHnnkETQ0NAhNUlNTE2prawEAZ511Fo444gjsscceGD9+PObNm4fHHnsMCxcuFG2nTJmCM888E/3790e/fv0wffp0jB49WkTZmXDnnXdi1apVSgqkn//857j99tsBANtuuy2efPLJiF6rK1D16xqLufELhQJyuZxxm4WFhYWFhUXbwRmn9v5Vg5tuuglr1qzBXnvthSFDhoi/+++/X7Q59NBDcfPNN+OKK67A6NGj8cc//hEPPfQQdt99d9Hm2muvxSGHHILDDz8cu+22G+rq6vDYY48l5nC6+eab0dTUJJbnzZuHWbNm4a677sI///lPbLLJJrjwwgurm1AHITXjxJXthBD88Y9/RJ8+fcQ213Xx3HPPfaM0Tunzc8QXICx6DlaW6oVnupq4whPzGMUatxbrXV+UV2IUOeqiLuMzUg2ZVhGpUvIcJQLLA1Xz6Eg3Q6VIlDQ5TkyQmQy9bTQyL9nzjeaaSadvAmQWSbc9Gm0lt6FyPTJGQcGQ4RndQVAORI4tbh7rpNxbrdr51Y9vq5dVPOgcKUusoityMTmEoYSypE2Letkc/rkO69PJ9QY5OEOmR9Ppmo243DNx0Gv/yZ59mEMpyI+VwJ7oUHRCFXINpWWV4uqcmVBJQxcyTPFz0rVNpog72SZPa+8xGllnQjWRcon7GvQ4erty8G+tU8SXrX3Qr85nl7asXSnauqBYWuwnasw5GtPKc4kBUS1mlrqgLIwQ1p9jSbrJJK1e3Jz9fklFllvut9L1Vkln1qV5nLoYcUSJjhNPPBEnnnhi7PaamhrccMMNuOGGG1KP/cEHH2DnnXcWy4888gh+/OMf45hjjgEAXHrppTjhhBNS99eRSP3ixJXtjDHcfPPNyptiLpfDiBEjcPPNN3e8hRYWFhYWFhs7uuFTXXdiw4YNioD9hRdeUF7Ottpqq1TpDDoDqV+cuLJ9/PjxmD17diQnwzcNaTVOav4XT/nX06J1vio1KMxIczkvmIOWch51mRL659cDAOpoUdR7kj06bpsenZM22s00z7SQ2YwokxUfuafrAtK2bYu9SZFTGcnbp8QLyUIpS3uLl0ONFx+ay9kgAEKjJrxt5udqaspsAAD0cVpRT/3EclniwkFW8dKzxI1obOR+edtV5XoUglpgekZrfjzj9GRGXZx0jE0aJn9flUL3dXTQ1lVmT/jc5P5M9dR0230bop68PGbcdZ10fYl1cWxGwn9YKOG5mFQdVLidSb8N2ijAuI6f+7QsiYxEJqZSlnHpGVfwMii6DvIZf1ZNmRZRi26dW4P1bo2oguCQIM+cF17LPM8Y12Ly6zOrReLpmqa4aMLQvnRsZFI0YdJ+1UTrxV1H5a5inDayF6fhw4dj8eLFGD58OL766iu8/fbbyue/5cuXK5/yuhJVi8OfeeaZzrDDwsLCwsLCwgIAcNxxx+HUU0/F22+/jaeffhrbbbcdxowZI7a/8MILIhFnVyPVi9O0adNw8cUXo76+HtOmTUtse80113SIYd0NL20eJ+UN3pzjhXtfa8s1IqLIz3Uief7EQ1O2gE2yPlvhgopM3SWPRmtmxXgOlSJKlLZV6if8/qPenNyXbIe+j7w+KXouyYuO06BUjKojDGXIjAENGQMpcfQGN4s1qEWrVA/OkVkORoUubb2bR9HLRDRdX1CfXq53ChhR42tF6gLmibNIBS+LPC2JqDvZM29lWbR4ObQE4ywvNor51WcKKDEH5YCN5HqOuGNcTZRakr5H7oczRpTF76ucf42JiaujaLqmIjqmhMi9pGsw0raCls4EUwStAiZdc56TeDyBeOaqmsjBdPnMKs+VX0/lgEXaxGkROso1bl2EOQIkZt0Ls957TK020OLl4BAm+uK6Jt5WjtTVnxlJWr1qonOT5h33PFPaVGCruiqqrjvSEXQnfv3rX6OlpQWzZ8/G4MGD8de//lXZ/vzzz+Ooo47qFttSvTi99tprKJV8mvbVV19Nle3TwsLCwsLCooOwkX2qo5Ti4osvxsUXX2zcrr9IdSVSvTjJn+d4bgYLCwsLCwsLi67CKaecgosuuggDBgzoVjuq1jideOKJuP7669HQ0KCsb25uxtSpU/GnP/2pw4zrTpQ9CuJFSyhEIJNvzP+UwPehxEPZc/BVMUzdkAuSWhbcHDI0THJZmy+i1ikJ2pcnNpR/p0nqpn+2qYRqhNmR9ilLuSQljauW5k7+/KJ+Okqyh4KJi7/srwTgH+v1bl6IsU3pHFaX6gD46Sb0EhyUMJRd/7hscEPh+Gb51X6BXs3l4+kKlIK/gQCdJxhcV6oRx7DeKYo5AH6qCjmkOilxYNLnTH5k0kCMJRWkrnRe+LxNn9oSP/NWUeQ2uR1RPt2m7T/OLgB+UlXD50SlTUKJIL0MSVxZks4Anzf/NMfhSoJvKn1y6+O0ik9w/BOy2IeFUoIyc5QUAwUvgzwtI0t523Cb/lxLSkxZSeAf10buI65txaS7Cfum3acjQBgDqSIFSFwfvRn33HMPpk+f3u0vTlWHA9x5553YsGFDZP2GDRtw1113dYhRFhYWFhYWFhJYB/31YqTNK9XZSM04rV27FowxMMawbt061NSEpURc18Xf/va3SBmW3gweqmtKrKi3E14lL0MhmlJscLNie5a6or8MdeFISRgB3zszlS+pFHIesTuFKFjdJ334rdjWxtID4rh2cmFMmeWQ13FkqBeKxRkRLkRzOe8n7XN52D9F0csofXAhLYCISFrHKlanjN0n4zNGeVJClmZCoTRTz0OLl8OGoFh00cuI66SkJWYtB+HfaUT7EcZEYor8wseVBc2mvmhQRDmxfcrUASY729Kveaw4Vq76YAR57EQbkg6nvq2D/ptQTQCF/DwqeQ6yPHDMSQAAYQ5JREFUwXVWZBlRaqWP04oaUsI6z3/m+8lwJUG4xhQVvIxyz+RRFqkLdDE4Z6iidkULFCexqZXmWo3AuyNZcIv2wXVdLFq0CN/97nd7VAqk1C9Om2yyCQghIITg29/+dmQ7IaTb0p9bWFhYWFh8k7GxRdUBfm3ciRMn4t1330Xfvn2xbt267jYJQBUvTs888wwYY9h7773x0EMPoV+/fmJbLpfD8OHDMXTo0E4xsjvgMgISlOYA4r0KxWvnVyVvylS2QA57z8AFCOAGnhlPUxBX6FMuI6AnNjSzP/FJ4OJKVbTl+z5fl9br8kAiuopKGpm2QklIqLvzHiQtGoPncc2HyrpwRsfkxZtSK+jgeqeil0GNU8IG19ct1WcKcEFFkkEAIuEpAKwt12J5a2Owr4O6gNEpSqykbwNN1DjFrdPX83PA55mphkHStH2prqMOSMra1msm6RilKR7d0aiG8aqsU0tmyeL6KnsOmos5DKz3E/CuKtejgfqSjBpSgkM8kQDTIxStyAiWseRlRFoNjxEUvYxgS33dpsoyyZomWZOZpGOKY+JNbeO2m9abnl1J16bp2VlNOpd2YSOLquMYPXo0PvroI2y55ZbdbYpA6henPffcE4CfQXzYsGGg9Jtbn8fCwsLCwqInYWNknABgxowZmD59Oi6++GKMGTMG9fX1yna5LEtXoeqouuHDhwMAWlpasGTJEhSLRWX7d7/73Y6xrJtRSYujJFeUWClf7xEyGRl4oSaGQgQuuUEuLF5ugULViegJ4Hj0FJCOYYrTtpjYk7Tf99PqZ0zeeyUvr6OhM4H6vMugSpFatVwGU85vHOPEt6eFzLS1lHMo5xwRVQmEhXsLXgbry3msLtQIe2ocv13Ri9EyJejM2sJolBGNKI29jkjlceJsSdIRVnMtVhw3pRaqo65L8UxIWeoj9hpL8x+6oI3Yny+n2FkUIC/WouxSUWTcZVSURuEJYB2ppJQj3Tse8URUXcHLoOBmUHT9azlHy4ouz1SAt9Izi7fT11d6/qRZrpapTWKeLToH+++/PwDgxz/+sZJDkjEGQghcN5qctbNR9YvTihUrcMIJJ+CJJ54wbu+OSVhYWFhYWHyjsZF+quuJZd6qfnE644wzsGrVKrz00ksYP3485syZgy+++AKXXHIJrr766s6wsVtQdB14rlSYlJjZCUDSDikRdUE/zEGGBt//XQIv0DtR4uunON9gikyKY5FknYC8XW8T2ZYigqQtOoGk/jlYXD9VaF3SajcAwGWhx+0CIBKLpPelnzeTvif2OLSxKLHPPtUJ/ZvHqCgW2lrOoKWcRU0mZKNaAw++UgRjNWVHgPAYcfZNzu+TkyI+c44bGVvXSCn9xuidEr3/BI1LZH0bvPyO2icN+9gW9qya6zsJ1WieuLZvQzmLulwJ/XPNAHx2qTUo3MuZpiLjjGhWKTxe8hyh3dvg5rC2VKPpBJ1IXib/N4mwRpVyw5kLF8ezmPp+adub2ungc9Q1m52FjfVTHZcJ9SRU/eL09NNP45FHHsEuu+wCSimGDx+O/fbbD42NjZg5cyYOPPDAzrDTwsLCwsLCYiNFT5IHVf3i1NzcLPI19evXDytWrMC3v/1tjB49Gq+++mqHG6ijUChg1113xf/93//htddew/e+9z2xbcmSJTj11FPx9NNPo7a2FkcffTSuuuoq5HK5qsdxGQWRvB9X0g14MeyF0DhJXjwlDMWAucpQT3h4vqYp+vov53WK+84vb6vkgRkZpxRefEVmI4FVMrEeMuNEtHnHsVF8X36cqo1ekYvLygVY+Tnk4+pslEfalsW5GkbDIwTlEhXsln4t1GVKynHkjFOlsSpp2OK26d5zczEPQhjqskWxPcmL1/ViiZqrKjM1p21XqU2aPhgjyvVpujb5HZp0HVcjWAjzs4Xr0uiT4qCPTQzPKjF2YHNLMec/nwJbWr2syNuUJS6yJGQcXRC0ellsCDLbry/nBOO0tlSDlnIWjblC0D+Fx+JZ8TiGKY45TfOMqvaZyDTmK06fFseAy3ndOhUb6ae6nigPqppj3HbbbfH+++8DAL73ve/hlltuwWeffYabb74ZQ4YM6XADdZx99tnGtAeu6+LAAw9Ec3MzFi1ahPvuuw8PPfQQzjzzzE63ycLCwsLCorPBP9e19a83QpYH1dbWYt68ebjzzjvxrW99C48++mi32NQmjdOyZcsAAOeffz4mTpyIP//5z8jlcrjjjjs62j4FTzzxBObPn4+HHnoo8vY5f/58vPPOO1i6dKl4sbr66qsxefJkzJgxo+qQRTeoVafDC/QwMnuhe6AiFw71lLZlN8ow6NFbGeoo6+NQrhBdpayL6AjUZRO7wv9lmqdo8sZ4H3K/uqdu6g+Ieu0yeFvONBGJJaoEQhigjamfH7mtzkZxmJiWtDYkgY9RJtHzWOncJx1nuW/TsY7zmvk55LmkSh5FTaYs9HnFSl611G0a5qcSo5m2L45qzklFXV3K/8CYMtMn2VHN9VvJh066bzgEeyZF3cklK2R7SmUHJMuwpljrtwUT2qY6WoRHwlxMq0r1WFHsI7KDlz1H6PPWFtU6dmUt55wMPQeZv64NWiREn2lxfSWx4nJ/cts4e/g5KrtdxDhtpOiJ8qCqX5yOOeYY8XvHHXfEJ598gvfeew9bbLFFpxbe++KLL3DSSSfh4YcfRl1dXWT7iy++iFGjRils1MSJE1EoFLB48WKMHz/e2G+hUEChUBDLa9eu7XjjLSwsLCws2gPG/L/29tHL0N3yIBOqfnHSUVdXh5122qkjbIkFYwyTJ0/GySefjJ133hmffPJJpM3y5csxaNAgZV3fvn2Ry+WwfPny2L5nzpxpLBVTdh2wmKg6IPQ+HOopbWT2glcaN2kMeK4g2eMve1R4+LJWSt/XY0R4eLoXpjNZsq2m9rKdyvxi8pvI3pi8TfaQkzy16H1LQNI54YJBkvuS91X7Dvvl63kOEG6rfIxkNiqNJiTWxJjtEYYgYCJdw3PMz0/CxLVQ9miE+UuyJy7bPUX0muJXL2MELsIIqiz1kKVuqoghnZVLw5jFMU6Ra6cNtehMqMT0tCXijl9HMqPZEWxkR4Nfe4xo7DgL2ZKyS0GIgy829AHgM4wix1huPSiYiKL7ulSPtaVa0b/HCFrKfgSe61HUZsNs+EU3ozDVAJTITR2RyM0K0XBxyzr7x5+XnIVj0jhxz8pKjJNYb6PqOhVcHjRixAghDxoxYkSXyYNMSPXiNG3atNQdXnPNNanbXnDBBRXr2/3zn//ECy+8gLVr1+Lcc89NbEsM/wXmSbLicO655yrzW7t2LYYNG1bBcgsLCwsLC4vORnfKg+KQ6sXptddeS9VZ0guKCaeddhqOPPLIxDYjRozAJZdcgpdeegn5vPr9fOedd8YxxxyDO++8E4MHD8bLL7+sbF+1ahVKpVKEiZKRz+cj/QK+h8I8Kry1OM/b1Twbh3iC6dAZqDS6hJIXam3iNDlA6P24jKLkOsIGh3pwqKd4eMLjTOHFceiMkrzetK+JAY7TCuggGguiR+DFRRh5qKBH0UkeT9U6ce2U3z/fpu6jM1BJqKRv0fuNixJsLmdAwZDPlkXbOE/YeI5i7HUZiei3aLDYUsqhtZRBfd6PonOo5+tTPPkYmeejR+aZIvv0tnEautg5VaNhqkKTVplBVJcJia6Ta0BWw5DpaEsknUl3GD1XwbHWGFZKGNzg/LoehVciWF/wn4XyOSwxig1uDq1B/bmWchZFqaZj0XVQCKI+807ZPw7as0aNpAsYJxbPOOm/Tdt07aLOMJnuE6Zdfy4j2rMy/muW6dwyRuAa5tEp2Eij6rpLHpSEVC9OnZW5c8CAAakm/vvf/x6XXHKJWP78888xceJE3H///dh1110BAGPHjsWMGTOwbNkyQd/Nnz8f+XweY8aM6RT7LSwsLCwsugLE8//a20dvRbFYxMcff4ytt9660+VBldBujVNXYIsttlCW+/Txv8NvvfXW2HzzzQEAEyZMwMiRI3HsscfiyiuvxNdff43p06fjpJNOalMRQNcjgEeAih6kygS4hEQZJ3DGKdyLswiyd0OI2WvnOipXiqTTtVEcjkfgUHNuFK4JkvdlLPSkHD2fUQKjpHtfJoZK3kdnkRRtkmfWOfn2klgGxZRvJ5VWxRAdo9f5MrNSJhtUe+MRtcvEbgH+eS55BBnHE/Yp5leYo6sda2UMaR0FQ2ugTVnfmgu87WDfQAfC+0qTG4gp9ctCttTEAMWxnklsWlrWSb7ejdsT7umKY+j3QazOz/83iYTX28RF0lXKKabvJy/LWfHVZ5GvaeNRlGAAAxEMFGNEyaBPiSd0TPxfEYHpOsg6vCKCz7rxZ5J+/uUoOp19NLH6cVFwyrHQmWVG4HpUzEW/Rz2EbBVv41D1/lf6V/qOrBJ9dDo2UsappaUFU6dOxZ133gkA+OCDD7DVVlvh9NNPx9ChQ3HOOed0uU1dxDF2PhzHwdy5c1FTU4PddtsNhx9+OA455BBcddVV3W2ahYWFhYWFRRtw7rnn4v/+7/+wcOFC1NTUiPX77rsv7r///m6xqVcwTjpGjBiheLccW2yxBR5//PEOGUOOqkvy+PRtsibGA4l4/DIbZerPBFNbPn3dQ3YJASuTRAZG1lxF9EQ0ZLnSRpXotpj2i2PW5LHlf3k/MiOmb9cj8vxo3fQ6IxkqSwMjK2VCYh2wCudWj+rjxyhLXYDGs2hpI4oJUT0jff5rCzXYUPDZg4zjoUaKhioZctPIDIluuyNlnaZSDi1eMzApb078PJPYp+h8lf5Ruf+0fcXBdK21J6ou7vpsj25KNkdhb5k/nuv6V4jrUlDKBPNSly2Kc7yuXIO1xRqsL/nZwTljWCyH//mQIznLHhUXHmUswi7KzJKsVdLzMSnzCFikcC7hsTJFBcvaU5OGkrNEnkcDG7xIv0nPM2WsLsrjtLFG1T388MO4//778YMf/EDRUY8cORIffvhht9jUK1+cLCwsLCwsNipspHmcVqxYIfI4yWhubq46IK2jYF+cYuC6BODemLSeX3b8dLnQIozkmkc0/iI1MRW6txOn1dCvFTmfkYn90W32YtgegMAJOvA8EmYeDmDy7HQ7+JhxdbyEd6kxFvwGqMTuJeVJquTtp2Wjqnm2tJcNEAwkIDIzc3s8SW9SqX6aDCKxCvK14RAG16NY1+pHThUKGWQyvqedy5bhMgpe9imJndNZBAr/2jDVFCSB5iUNe2lihipp6/R9TWOY2Nn2MEOVoknlMdJGZAJqVLLO0LYF+v1CCFMYKMYoimWfLfHKFMiEmqayR4WWiZIM1pdyoR4KXIfnPw8cwsIIOc+/tzmrJOci88dM1rfFVRjgbV3DOTQ9J2SWWz+ujKkaJ8YIvGBuuv6SPwfDbSySt8l1u+c/3hsLdtllF8ydOxdTp04FEJ7P2267DWPHju0Wm+yLk4WFhYWFRQ/HxvqpbubMmdh///3xzjvvoFwu4/rrr8fbb7+NF198Ec8++2y32GRfnGLguVQwTiYtkHL9RSgg/x/XBQhlRh/ZzPqYNR6cNeLLptxCnhbZIW8V/fD/I+pc5JpubpBHisjbg23yGEzx6NRjJGuldHtC3QHEv7JnrnrEGuOVyBhFdVRhP3pbQwcpGYhKEU5pwdkA07x96Cv4sfWX9LkqEVqyV05YqPHwKAplB+Xgus5kPOSCXFFlca2LHYWdOjzis04cLiO+F0gNsc4pIuPSMkyVWKs49kdmGCqNF2djXL+J24HY66q9HEWqWnXaIISo+bXKLkW5GPwngKkMeclzlGzgJc9RIwg9KhhoSl1xLMqgkOtzMte/xnmuI9eL1q5L0vLpObJk1ltmEuX1SbpD11OvBf3Z6h8nid2VnnmEAsyj6jqJGe50bKRRdePGjcPzzz+Pq666CltvvTXmz5+PnXbaCS+++CJGjx7dLTbZFycLCwsLCwuLHovRo0eLdAQ9AfbFKQaCcTIwQTpjYdIc+f8SEC/8Zq54iUTvU2V6AANrxIkDkFiPNeIFGyLNggASn6mA6n2LLMNMNdHzCCBHx5k8F67XcbyoS81tD3I2McGgMBDKFPc4jRZFH55o6yv5gGm1J3q7JNYrDVOh54eSmaS00ZtR/Vj429O9YSmy0w00VbX5UmTfsIaXaq9JU0QRpDiT1zEWZa1iUG1mZqBybqakayZJ6xS3j2mYNumi4uwFYu8RmLZFOgjvnzgQrQ1TbzMUC1mUW/z/BJAMA+CKY5UhnvhdcDNwPaoce5eFyy6jIVMtGNTgmtNsUqLotPOSxC4WJY0U/1fe35SBXobCusv9S88l07i+EJFPFOoBDP7b4Lm2Vt3GBvviZGFhYWFh0dOxkUXVUUorRs0RQlAul7vIohD2xSkGnksANyajNbRIC+5w6K/z4vt5sFl2ViLEULIHKWuK/Ha6NxnDzBgYJ7HN8G0+9MhU7YxgrtJ4/B6B52rZwaVjoDjW1ANF6MgZ5Ucm+w3sgaJNMHWmDJwc8SQYrHbomExIqq+lVK7X2ojjo2mYwn6l7WIlUSKrTJGOMrNVKdJTzk/G+w5tl44nUzOtm7LMy32mzdcUYYVizo2JnTLpWkwwMbZxSLo2qvnvU5xuLQ2YIVccP9y+nFE6/1CvP0K9cH4ugVumKJaCbOA5B3VZv25h3iljnZuP6It4dJnnhcfcoR4cwiLZ/uN0ZXrEZRw7qF+r8vhxLJIJ0Wso+FcwWvJG/ozUPzGoP7zyNyaPdI/CnDlzYre98MILuOGGG2DK59gVsC9OFhYWFhYWPRwb26e6SZMmRda99957OPfcc/HYY4/hmGOOwcUXX9wNltkXp1gwj4C5BCzO9RPONREeiPD8dGaJSG3l/SPtGMDzoUiRc6EnRcS28EXbxMbEe+3GOSSwVeHveNbH1wFIq10C5gbaJd1MPULRo/AIRFs9Gi8uf5E+J3+beR5xzJJMA6v6M4PTWo3+JAZpczEJViBGt5PElPlMocQEMYk1rXBdmPRb8jHiDBPltRMFexHtP4lxUI2odE6jv+X+qtE8sZjtJoYizT2Rdp9KMEf2pds3GvELMR99GyMSa+hSlAsZEK7tAQN1PFEf0WNEZI9vLWdRdqmSv0ipP+cRlMphHiRKGTJB7TqHMsUOV8uLJEc8yrmX9EhI/riU2SXmhddA4rHX2HpxnAAwL/5aiLJN2vOdye26AAzGa7XqPqrAzJkzMXv2bLz33nuora3FuHHjcPnll2PbbbcVbSZPnhwRbu+666546aWXxHKhUMD06dNx7733YsOGDdhnn31w4403ilqzlfD555/j/PPPx5133omJEyfi9ddfx6hRo6qbTAfCcowWFhYWFhY9HJxxau9fNXj22Wdx6qmn4qWXXsKCBQtQLpcxYcIENDc3K+32339/LFu2TPz97W9/U7afccYZmDNnDu677z4sWrQI69evx0EHHQTXjStm5WPNmjX49a9/jW222QZvv/02/vd//xePPfZYt740AZZxigfzdRzgqWkMjodYzz0PorkiRGOZ5N10vYk+iK7BkTch6kHpnSV7YNpiLBsgL5gEQ4HH5xKfMVKmL3mMnE2D4Xhwpy4Yy5OjWIzjyibEsxWqpSYmRZqeli3YqGuL6d/U1qRfMmY2j5uauJ7U/nif8m7pfN14piue0SPR7WIz1fYzjKhLhSodi5i2lXI1pY3ATGKY4nQvSXaFK1Oyux0IVTsoX7hMYRwZUzWaBEzcC55H/DDLgC0heQ9OxhOML2ME64p+hvlS2VGi6pLOnccIPDdkoKie8w4RwkbRJsVlyxftTPe84XkXua41IzxpTLN18J/9Sr/6s4m36yLGqRswb948ZXnWrFkYOHAgFi9ejD322EOsz+fzGDx4sLGPNWvW4Pbbb8fdd9+NfffdFwBwzz33YNiwYXjqqacwceJE435XXHEFLr/8cgwePBj33nuv8dNdd8G+OFlYWFhYWPR0eMz/a28fANauXauszufzyOfzFXdfs2YNAKBfv37K+oULF2LgwIHYZJNNsOeee2LGjBmivtzixYtRKpUwYcIE0X7o0KEYNWoUXnjhhdgXp3POOQe1tbXYZpttcOedd8bmcZo9e3ZFuzsa9sUpBqxMwMqStsigX+IQXp3wRkhsW9G/ECNIno/i3ITeoa6dqnjrVNImGdrFGqy3kbVVfJpclyRpnpQIIcrCgxRhIqAwc4SxKIuT5NCl1ZwYjm/Yjsaze0RlEYh+jgzjmxmraL02NWLNNIGoPbwv8VsnsXTNi9TexPTE5S+SI7FEX6KtVzFMmIProriHb6o3GKd/SmKX9HWRy9TAMLVJy1eJUeoChkmHYoPChAuKMvhXZaAi4j0KQNIUei6FG+QkakVGsEa8XlvM5Wg+9hKDLEcEJ2n1/Kzc0iBEeu4youqRmPpbR5RlTsOqB8uyfk5aFv3odndVrboO1DgNGzZMWX3++efjggsuSN6VMUybNg2777678qnsgAMOwE9/+lMMHz4cH3/8MX77299i7733xuLFi5HP57F8+XLkcjn07dtX6W/QoEFYvnx57HjHHXdc6udMV8O+OFlYWFhYWGxEWLp0KRobG8VyGrbptNNOwxtvvIFFixYp64844gjxe9SoUdh5550xfPhwzJ07F4cddlhsf4yxxBejO+64o6JN3QUrDrewsLCwsOjh4FLRdv0FfTU2Nip/lV6cpk6dikcffRTPPPNMxUi4IUOGYPjw4fjXv/4FABg8eDCKxSJWrVqltPvyyy8xaNCgth6OboVlnGJAXALiahSt9A+HqjsMKXJ9lVhUllUqWtmXmkSvpu9CmhFiNxOnm+JTXBwilHZUcCk2SaJNAGAeiX7OFKZon0JcX8LKNxkFonxP/TjHfXIxfGPQqXx5OTGRpvz00cLxw6Sh6T49yRcDIywqaI02iy7rn7O0hIhyCHqacHn984dynPhnN49GzouxD/jFrNMWaq5UCiXpUk1KXMnkTy9x+yV9kkvxyTCVkR2BCt/JlLI5hJc3Cpoy9dqmWTeMfQnSELiB0Nn1HJHwUhdXM+InulQKgItjTCLh+Uq6gJjPdsZxpAmLbXwfL3pdRlTnJqT59Mrva+OnOkTOAemyT3XMfBFX20dVzRmmTp2KOXPmYOHChdhyyy0r7rNy5UosXboUQ4YMAQCMGTMG2WwWCxYswOGHHw4AWLZsGd566y1cccUV1c+hB8C+OFlYWFhYWFhEcOqpp+Ivf/kLHnnkETQ0NAhNUlNTE2pra7F+/XpccMEF+MlPfoIhQ4bgk08+wf/7f/8PAwYMwKGHHiraTpkyBWeeeSb69++Pfv36Yfr06Rg9erSIsuttsC9OcQhKrgBIFCfrBWoj7ZOcU6I1IKGIWo3I5x5VDGOke8eMJAuqkw1SxzRtQwXHxeDFhV6oKq4kNBhLF2AGNiQlIGVEnqdGK5nsi7OZqBvVEG9tP4LIsQ0dfLNYPA5cGO93GxWP6/37C4FINziGJuYnwlbFXY/S+LECanHphaJu/fJKcvQZI2oiT227acbK5dzGtBppkiLKbdP0WRXz1Flg5nMebpbOPYLr0ZRrI0jBwZkmQv22PMmlMoZ+LBng6ikppDQCEbG9vE55Fugsk+HaE/tpzx9PXiLR61rbrF5U0fNGJPuUdsZrQ9u/ixintuRhMvVRDW666SYAwF577aWsnzVrFiZPngzHcfDmm2/irrvuwurVqzFkyBCMHz8e999/PxoaGkT7a6+9FplMBocffrhIgHnHHXfAcZz2TaibYF+cLCwsLCwsejp0J7mtfVTTvIInWFtbiyeffLJiPzU1Nbjhhhtwww03VGdAD4V9cYqDR9IlNtO9DSK78Yj39qOLAIWouKKWrFA9KlGehUP3nmVhTludoUredBU6AhnEA2SjmHa41MaqhkgZgjMhIpxa82yj3cRDYvrCdXwgw7ixJFhy4eAkmA4ZSWQaSfw2xSb4xVx5U4mxMCUGlPUnkcSb0jGJaMJ0r16zIcm+yLoYHZtZA2XeL3UZDBOLFMcsVX1q4+g9vbOEg2dAhBFVepKOF0/xoazjPzQGxyXwQFEK1juOp5RM0u8rr2zWuSUlqdRtFyVNTKyOrkvT1uskNfGQfAh1Dam+PoF1rMRWfZMTYFqYYV+cLCwsLCwsejgIYyDtFIe3d38LH/bFKQbE4+xItTsavOI0DgllgEciOTTDfiXnSGa1NGZEFO3km72U43ciSILHRjyV7WEGpzzRkZS8PTngTWkTOZYGEYRO4OhtxHrZQ47xuJNEP2kha5N0VkGaKPOi2yNkBo+OImrBVWGvCYxEHe/Y+ZDEMirVsHA6YxF2wi8G8xgmnVJSpF1FG4z7RNkoaJvjxzPc0Ppy6vuUGX/6iwbb5etI0qwBIWPLXAKvTAV74lIGJxcU6g10UHoEYiIDGNE5acuyjQYdk/FaYyR8JjO19FD6z1gm9jahucx+xjBRbfrvRFvgISwB1p4+LNoN++JkYWFhYWHRw2EZp54D++LU0TBpbOKuVdnx8ohGmUR1DIREN4llzrwEZJQirYp4njFsSmeBwawl4IOz0CZFImaKqInRdpn7DnbRNWEG715l84CIvkocw5hzJK/qiGcTk7zuNGRFTGFhtc+EyL0YDz+9ufFtVT1Uwnh+Y8km5SqObI8ghulL1ijFnbAU2hcd7T3vKZ4TYkXc4TYcWCbNRblOZAaKMvU+lKKFXZdCj4yLDmtm6cysn3RsmcQaS88JkUNJh6fu6/9u+wMsFRlq3zUsNNgXJwsLCwsLi56O1J8jK/Rh0W7YF6cY6CRFp+iEpP59pkWLdIkbsz22kOg4ZnqqHTB5mXHeKtfyCFGW1kb/TTQmIK3mRE8+JHnXclOmMQ0hA8X/qaRziaO9+Ji6DdqyaQJaYSTfi2dKMyPjw1dRaQ4VTm+qvEmJWh7D9oSmpgZJuZNUmjZuUwKDZNpsujb07TCzZElBjTyTfLtAmHmesVM0nBzpvOnHVmeglEg6j/9LjVGW+jCqcTHbJVZJL6KrsEwiU3h0Onx7mx5VHfB462rCXqAbModbmGFr1VlYWFhYWFhYpIRlnFKiI4gYE0xRZLFjClqkbT6OTlSYXSeJ+TGNrXSYNFjCss4oJNT2i+ybNmeKyVOXGROZ5ZK2RXRBAWUQ0UDxfiLnyGxfRCul22SAcA5dqJI3guTzw9kyED83mORlpq0xF90YvykR1VyqCmthGFdiJwCN0dE1bLF9R/uoaFPCcYkSYuqaVA5+wjEiaW68uGsLUK9Hk/5JY3qNUXnQGTcDG6TYIPeh7WtimOI0aAzK/U70a6GD0OZnuxZl2NnojszhFmbYFycLCwsLC4ueDvuprsegV32qmzt3LnbddVfU1tZiwIABOOyww5TtS5YswcEHH4z6+noMGDAAp59+OorFYtsG4/lk4vLKdBC4F5E6uqMtf4axCAOIR5Q/KH8w//E+vYTxPPh9KOvVYxlnB7Q/4qo2RuYQ9+dJ40VsSZpX1AZ4ROT1UuwJfitzk/eTxmNe8MfS//F9xViu3y9zU/6J88jtIb5eRfwR6Y9Gr3llLm38S7NvZAztOoqZs3Jck45Lmf9L/T9pG6n0J5/7NH+u4ZoN5mZaF3t98lveeF3oxzDhvleWSfyffp/K5z44hnBp8Be9zpTfhnNhOp68b7gI/ojy57ePOc4x93xVz4hKz91K163FRotewzg99NBDOOmkk3DppZdi7733BmMMb775ptjuui4OPPBAbLrppli0aBFWrlyJ448/Hoyxb0x9HAsLCwuLjRNtTsqs9WHRfvSKF6dyuYxf/vKXuPLKKzFlyhSxfttttxW/58+fj3feeQdLly7F0KFDAQBXX301Jk+ejBkzZqCxsbF9RnSGh6G5O50WxZeSnVVzKKkGGO2Jc9cM3/6TPbvKXbYFsskMJOxc1lXwQZm0k2wD0X4QbRthsfIaY6SbGCfFRGUbA60H4fsq2hXNLml3ubYe4cvcBKIdA33MjkLSXPXrTG4qnSdzXh8Srw9S+qkwJ71vTsTo/ZiWNXPi9otYQLSrg5F4vaOmq9O/tig6KOUhkmCrbpghSk7PrxTbnW6P6Rzq66RthGnrjf1UcV2mOd8diY7uL3YcFj35benDot3oFZ/qXn31VXz22WeglGLHHXfEkCFDcMABB+Dtt98WbV588UWMGjVKvDQBwMSJE1EoFLB48eLYvguFAtauXav8WVhYWFhYWFiY0CsYp48++ggAcMEFF+Caa67BiBEjcPXVV2PPPffEBx98gH79+mH58uUYNGiQsl/fvn2Ry+WwfPny2L5nzpyJCy+8MLrB6OEG6CinXGc9oC52y2d0fc6crTAdi6727KqF6qjH2yt7+3EMg8xWyW1NObHkLOg64jx8wyqjJ851WHp/pqGItj2JoIlLONQhFKBmb+QYq2MTjZEQv9Mirm3s+g680SpFiIpt2smQmUt9P9P1KedU0trG546SHiry9WxqyXVXvM+0n3j08yVrp6CzSOquFRmmjnqetLWf7pY1Jf03qZo+LNqNbmWcLrjgAhBCEv9eeeUVeJ5/15533nn4yU9+gjFjxmDWrFkghOCvf/2r6I8YnhiMMeN6jnPPPRdr1qwRf0uXLu34iVpYWFhYWLQDvFZde/8s2o9uZZxOO+00HHnkkYltRowYgXXr1gEARo4cKdbn83lstdVWWLJkCQBg8ODBePnll5V9V61ahVKpFGGiZOTzeeTz+eoMr+baa4eXYig11vXoovusMyU2fsfpxo9u4PuT8B9df6JrU5LSRafZZGT3tN8JbKXaqYGdMjSPmEy0f7VtjCQPG4GuIUrDYJo87DRjVriI4qrctxskeezIJjkrvcxAGfRNkV7l61GbQGyNQ1lzGMnNpMHTtEeyTinSLyLXJ5H1URWQyDQl7d/Jz6YI618tk9nRsBqnHoNufXEaMGAABgwYULHdmDFjkM/n8f7772P33XcHAJRKJXzyyScYPnw4AGDs2LGYMWMGli1bhiFDhgDwBeP5fB5jxozpvElYWFhYWFhYbDToFRqnxsZGnHzyyTj//PMxbNgwDB8+HFdeeSUA4Kc//SkAYMKECRg5ciSOPfZYXHnllfj6668xffp0nHTSSe2PqGsPYjRD4XJ6D8AUdddeCUp3pSOJLemW6GGmMDZJV5RyoCQvU4k8DBor7U0Zy5Ngsi0FG5PKS29LIFJEo2OOJqzYtcxWRBi5mLZxyxEjozBr8BLsq7Rv3PiJEYLJl2gk+lJmjQgzCycYURk6XQspOjCMzeJZa6bRKTq7Qjy5MaAzSlE7wwH0CMiqjm/SGKbxYvpPfR5SmtMjwODnNmtvHxbtRq94cQKAK6+8EplMBsceeyw2bNiAXXfdFU8//TT69u0LAHAcB3PnzsUpp5yC3XbbDbW1tTj66KNx1VVXdbPlFhYWFhYW7UNHaJSsxqlj0GtenLLZLK666qrEF6EtttgCjz/+eOcYkOZ660IPpV3MjLRzNYxVVbqWShqctmgZTExQgm4nef/4SC/j0ZMZGY35U6dX5UWQpnlbn3VV7BdGdMVouZRGcZ3EjOtpB0lerlaPJKPK45IqMrQi01HB3qQNMZFw/qEmgBdDKSudagyg1G9UuxWdW6hli1qqyKUiLJPETplYj5iJE6/CBZ76eRL01wYWMa0cMF3HKddZfKPRa16cLCwsLCwsNlowdIA4vEMs2ehhX5zSoBqvqFrvo6M/pCfZqkWIVZu9umrvXx6vIyJSUuhYKkhQ2m6DaKNpjSrpdXSQuN9VCjUSx0g2IrHbRM/eoHdKiwj70Ua9WhWoyMDEjdFZ/3GR7yWJKWLiZwydYTKbBkZSxB9Lpv0bNwRvk3SvMy1Sjkg2aCb4pUFi9FHtQFIOKLVhwn4mVPPcbsszvqNgo+p6DHpF5nALCwsLCwsLi54AyzjFoa2eUiXvLo33V02/aTxmXXvCPcWgUjmj2npAjahJ6jsJhraVytsp9b6CHUwONdE8ZHMumeAnDbvmY5lrn0FtCEMbTfvDqNk7N7U19i0zWWmvB3na+j5Ea2Danek/qkNP91mNTFMbr+P2aGIi0ZmR64rEjxGXGZxvDhgdxhDtIAVLHCGdE+ZJPALiQkR0MQdgDgPLaLo1SGyTpIOKPYYG9qYiGV4VO8wNSLG/fM/yn3EkcHueie2Bh/azXbbIb4fAvjhZWFhYWFj0cNioup4D++IUA8JSB/5IO6H9mp227KezUbId8sdYD6AlAlryJ0TL/mo3F2zOA17WLHIxMjwVYIpsYSSwKa3n6Em13/XoNzccg7gEpAxQN1guQ3hnXtYf160JGjsALQZeNB/K4f+ykIFTJhOOqUYYMXgZ/htwCgS0FJ13xLOm4ZhirnFSFZMuSsk6Ha5n4v8M+0RYjyrc1zSRSWlzYyUNk/KeSIzwNLGl8nXTWfdogrbGyFQkjqvpobSOVdJQ0p5VGCO2Hh604+KF9wcp+2wocyRdFfx7zrc1qmlqK2PUpijKhDmlGTOxrXxMY665DinnmAZW49RjYDVOFhYWFhYWFhYpYRmnFIjLCRJBR77MV9EXYZJOiWt7OCFRhjCauIBTBDLr/W3U9ZtlAubDyxJ4uUA74QBeRmJiKFMZEkiMHAWUPDU8k7E8HUk/Rbyw2jop+7+Fd+uF2iR4PiumbJNYIjCEr/6BlyvauqrGycsCzPHt8hx/P3EuKQRrxBwSOcfEC9k5UpbsYwAICTVUgX28LS2FbXlmZnGeiD8mH9fLAW5eO568KTGxThLLIEU4EV0jxu00/JZZm4qMUNL1KIvH9HV8MeLJV0vnIjyIpv50G5MYpo5inJKOs7Y9UvesQvtkG0g61i9NpvXY1OIB0wT+fGEKc0k8STdmYpjSME6czUlzCVQ63wljGo99HFLeO2nG7XBYxqnHwL44WVhYWFhY9HTYF6ceA/viFIfgW321OUFSVdNOidTfzgNtDQA4BYAWoWb35dKEEuCU/O0AQMvqAIwShRGRmQ9GfSaGMyRuLeDWBL/zgJdjUlsW/Bt05YV6CFoCMusJHG5DSWWHTOwTcZmyLB8bRUMke766Ro0ETFNgl5chYJlwORLVxxk7T7WJlpk5czKk9ryty3zGD5LXK3RXBF4GcAOGz81LWrMswDKqTfxY8nMSRkLyPqMiJKNWS7ZV/t2ea7Uaj17sIzFmWl8V96nQviL7YRqDJGyLtQdR+xO2VySDZK1OLKNk2NYW3Zq4TySGSTqPsn4QLLh/+bLDVDsS7QlWmeZe7TWXyCImzzspkjR210r2tTfCzaLXwr44WVhYWFhY9HTYdAQ9BvbFKQ4mrYiEtiR1rvitPY6t8hCNauOek0fgFIBMs7+YafV1TCFrEzIkxPV1TbQUMDgu86PQZPqW1yqjgOeErIyXISjnSajDkfQ5yPlMCwvso5onSosEmRb+G8i2hKyXU2Iq48R8m/n+/jaZcWLK9MXhqnQ+SKhd8lmbkF3zMj6j5rdD1LNl4TGkZdW+yDBMtVepPwYAVDq+GQIvEzBOORLqnTLE15NxdsqBpDVTmSvOPslaKd6nlwVAwzxYiTqbikyGtqxtj5wPdBASOkrMJN0ONiNpvKruexNBlvb+r2acDtBscV0k5cxw2WevAZ8VZlRimHMkjLCrMEalKLRItGHM9RmyXySyzYhYFkm6GSR7jOel4jMlZbsOgk1H0HNgo+osLCwsLCwsLFLCMk4WFhYWFhY9HVYc3mNgX5xiwLQQcL00gbKsCZR16lkIe01UvExry+H2HgnD2ss+XQ5ZGO2FlLr/+c3f5rQyf10g/PbD+dVPXWGSSOZ/VhJzYuKTlecQkByBx0s7EH+cMg2X9QSOtCzR/K3+HxCI0gPa3ykyOEXJvpL6OdG3U/5UJ9nnMU38rYnbCRHrmJ41UD6fREs5IKcgiBHtinFd2QamlG5JpME9BCkQwk91pERAM6Gon6dL4CL98PMcUcThsu3UDT6jBCLzco3/uQ4ASn3CPsVUpM98zJH64t9Xle96kcNgXmE4ZnGJFiuG5McgVbh7hU9EiXZoYxl16AmfKs2DqG2q3j8NKsyz4meomPOkpzRx3PDzOukDlGuIuGZSJSONMS7ps12lpLuJGS0qCvfD61z/9B1rekx/lYIwOgweq3xhp+nDot2wn+osLCwsLCwsIpg5cyZ22WUXNDQ0YODAgTjkkEPw/vvvx7b/7//+bxBCcN111ynrC4UCpk6digEDBqC+vh4//vGP8Z///KeTre88WMYpBk4rAQWB08oFweE2v+xG8FtmmLgnL3v0MnPgqG2UfQNngugsE8IkkHKYPtVC9IV4ucRC0Td8xkYwTi4LQuS5q6Z5fJSAZWWajcDLcqExgZsPxeKQUhVQF2AyQ1YCsut8oToA0CKDw+dSYv6fFN4Pl6mib35sg/UhAyUxUyZ2R2KZuABcLBu9bnmu0nGQ1hOmMS9MstVlmofMVKaLhGOEgvRQhM4cAuZKLJNURoU5RL2eInU3JJMCIT8AZHME5UDEm9ngC875dcMolGSfXhYo1QfbMgGrJeYTHY9Ik6067UZUk5sOsUxGwlDtYJvSbE9EHCtRgdFUutBZGNMwVRxHPS2HsMPUR8AieZmw5ApzfMJU3PtBQlj+bJCvi9ji4CZoKSkq9RM359hAERObpjUWrKt820rBNHKiTyXhr4xiF6nDu+FT3bPPPotTTz0Vu+yyC8rlMs477zxMmDAB77zzDurr65W2Dz/8MF5++WUMHTo00s8ZZ5yBxx57DPfddx/69++PM888EwcddBAWL14Mx3Ei7Xs67IuThYWFhYVFj0cHvDhVGW46b948ZXnWrFkYOHAgFi9ejD322EOs/+yzz3DaaafhySefxIEHHqjss2bNGtx+++24++67se+++wIA7rnnHgwbNgxPPfUUJk6c2Ma5dB/si1MM6pYDTs7XnmRamQjhV8LRAyif4R1NjyIvy55NhTBduQ11A7aIJ1M0MDScVfJDijVWRITHB4wNC9sKdgOAHKLPMgRuVgqXDxI2ChNZqFviTIVgnApAZoOvZwICjRP/XWZ+Ekl+PAMGjLheaKMr2Vv2JHulA6TnI+EME2d4CAk/RCewNaItb6o/mBgL0kFINvDfnqG93B8FQH0jfAYpZJyYQ0BcjYGS9mOEwMRO6NHUfhkXAoeXkyn6TBMQpDWgoQftZQnKecDNB+c0D5Rrg465ti6GPVVWwnCt6p68fJ3HsRvVIs09Y7IBiNe7xB3jahm1Sn0TxFMjDBH2WewWx1R5MesracrEBrW9zogRV2LKM1ATu5Yk9sk0UAKDlmhLG0VfsWyeNHCkjcb8i8PhQiTrzbT6XwA488+TguraV7fQJrOrRwcyTmvXrlVW5/N55PP5iruvWbMGANCvXz+xzvM8HHvssTjrrLPwne98J7LP4sWLUSqVMGHCBLFu6NChGDVqFF544YVe+eJkNU4WFhYWFhYbEYYNG4ampibxN3PmzIr7MMYwbdo07L777hg1apRYf/nllyOTyeD000837rd8+XLkcjn07dtXWT9o0CAsX768fRPpJljGKQa1Kzxksh6Iy5ApMNBiwIiUtSRkDKEXIPQskksiRVLJIAGTAcFGBZFU1NQWavSbq+t+NO0P0xgSWZ8l63AcEowbsiDyb6W0Bwm0VbyvIoCS1K/kkTqFIHpOeGqqzoqUmdBo0ZIXrAuOr+uJ3772yQM8TplEDo0KSddEJPZJHIcKzJMC5RxXZpmAkOUifBxPLQAMQgQDRVx/WZwLkx5KYSxUPYjMEhLGxKGhIDzgEsTz9UyCYcoRFPsAXuBYurmwP2GjmEzojYcNjNMOoqFUbZdc4qJqHzmBlTWOHWefohGLGUOHSDYb7Cu7lpUuH5O98iWo7a8n8KSl4Nr1oEbQsmhbU9JILwO1VA+iRJecuFI+v7Tka5pEOaaixLQEbWUGSi/4HQc9Gjl2uwFVJaUkUAqJywmMTdHRTLpHiEvEc42Wwnlnmjlbzrf52ky5PBQYQ7nURem4Pf3Et7UPYOnSpWhsbBSr07BNp512Gt544w0sWrRIrFu8eDGuv/56vPrqq+FzLyUYY1Xv01NgGScLCwsLC4ueDuZ1zB+AxsZG5a/Si9PUqVPx6KOP4plnnsHmm28u1v/973/Hl19+iS222AKZTAaZTAaffvopzjzzTIwYMQIAMHjwYBSLRaxatUrp88svv8SgQYM69hh1ESzjFIPcOheZjCuiungkmtDgSDohYtLgxCHOOREsg8osCMjjuBLr5XlRDU4CGKUgQoPlh/kJL8wLPTKfJQpLMLCST0EIVolIXlvghQkWKcgjJQrcyrmjPI0x8xhIyZMYJzfUa3leyDoFbRPnR4goaaIcS+4eaMc+9pjpuU4qjcl/Uv+gyLmRxNZgPWHBgfB8RkyQK5ImiwS2865lnRwIgZehoRYtS4WWCfCj62QNU7GRKMWDvVzIojAn9K4lM4NxtHkanN1IriaJKQq9/OD6qiYMLC3TZGKS+DYqjekF162sa+GsQVkTjSmd+Ku5ds8chabuohbJZuqxYUS1l99rwbGVtTRCz1jijHOwjxd0Ie8rjy8fExIUtpaWlbxemm6JykyXVBeNOT7LxPODeRX0TaZSOMbTX+E862ynkudJev4wXnQ4ibzg17zHn1VBN2U/GtjZ4C87xZB1y7YEOecCPaZTVCOWeU63ctnFNxWMMUydOhVz5szBwoULseWWWyrbjz32WCH45pg4cSKOPfZYnHDCCQCAMWPGIJvNYsGCBTj88MMBAMuWLcNbb72FK664omsm0sGwL04WFhYWFhY9Hd2QjuDUU0/FX/7yFzzyyCNoaGgQmqSmpibU1taif//+6N+/v7JPNpvF4MGDse2224q2U6ZMwZlnnon+/fujX79+mD59OkaPHh156eotsC9OMXAKLhzXVbJRczAaempE1794Gq0REwlmZDv0YrumCC+tL8IY4Fb4xu4EkV2EgDgMDL5AQWiJAihyDo+AMAoaeFNOxs/pFEYMSkwLz+jN9RJB5KGsu5K9NDmXFC37jBI/bn4UoKZx4vOr9OAgRIo2IuH3c4NuDEDILOn9pn248HMkNE1QdFZ6XwQQ0Ws+KyJt02yHzEB5BCw4h35epjDDO2cZeB6ncm3IOBUbgFJjUOwXPvvgFBGyAK7GkGiMiRxCpOufAE3/EwcxRaItq6srgjBENEIeRAZ9neWQ2VJaCu5XrmORfnP2hnjqPA21YJX1fGclkzsNGB4EGiA947uU+ywyhsw4SUwQ/y1II66x0dgqxR6pIDRl4Zieox1uKf8baHAoJTaS9+Nl/T9xvoM5iyoHcSyati7yuxJ0nZLEMoEALMOErfoYfnWFwFyG8DrxtBx5pbDwOBDknOMFyAtMRAEDEJUWwjxP/BnW+zROaXHTTTcBAPbaay9l/axZszB58uTU/Vx77bXIZDI4/PDDsWHDBuyzzz644447emUOJ8C+OFlYWFhYWFgYwNrAcH3yySeRdTU1Nbjhhhtwww03dIBV3Q/74lQBpggq2ePTwShNrz8yRWuJZQMDYsxnFGOIpPXh7QnhLikfg/qsDvfcXA+kHLBTGQpa9MCCPE4ej7gT9dRMkw+GZIjWdJO8NFqWNE1cM+ZKc+P2MhY9DsqyByHYkg2Q5w8IbzMV0jwolOzgJFx2aDR/FCHRfYRdysDhT8qiDFRgF/V8GoF4QXSeB5BsSBX4GZ2DHh1f28MPEQ2uW0mKFDIMnDmR6o8pYhol/C7u4o9hlUzrkk6JqX9GIiwGLUm5w8pQs+7Ly0HWfbVmYziUkttM2BA1UGc9GIWiL9OjUHU2SvShz19naZi2jqnbiCypkcb0HH8cj5q3Q2aj+PnVNUNEW9Z/Q2XAlDlJY+pzE5sSbq/E+oCGbYKVc32tUmaDtCyzclIknJ/nTtKQlQGnxKQqDWHOPq7bFNeNbjtF5UjfjoQt8ttjYF+cLCwsLCwsejoYOuDFqUMs2ehhX5zSQLtgGQV4PBRjCHUgxPcIRCwVcUAoAxNRYVG9lABlYF4YZeV7M9xlMuidhD7H4PIwprmInHIggOeFkUQO9fMKBVoQQmkYdcN/K5m41eiuSJ4hWc+jsAOh1+brSTxpmWmRc9I2N8jhJLNwfL6CfZPcb5klcKV5C/GVLpIxubHEvN60H9cZUX58tf3lyD6OtAlA9LxTItrJA8tQkWk94JlEfh6nGEbRZVp8j9qToup0BkL0K7QkwZy49EDTmIgFY1Zm7qmTZIZJvjg8orA/PvMaPf5G7ZEnMQeu+tvXOEnLHoMepeV3yJk2WXxkZkaEnkhq6pSYmZkhiJ77uMtKsEsssk6Mq9kms15y9nmZbeK1MiNsl9ydomkztzHZIIMmsC6JNfqSwKckZ0hn0lgMoS7NVdlHoQvjEYNKnU+mZkHn14Zc21OaDyMQLHt4sTCxkYDZpD4bIeyLk4WFhYWFRU+H/VTXY9BrXpw++OADnHXWWXj++edRLBYxevRoXHLJJRg/frxos2TJEpx66ql4+umnUVtbi6OPPhpXXXUVcrlc1eMxnktHzwoOBgIistT6Xk+gC+E8FN+H+utAgig2ykKxHWNRBiqyPRia3zByFJicAlfX/cg2eIFrDqi6JwDwHF9LQ0NGikgME5EjxJJYmEoMjSlqTZ+bGzJOCpumzzvRBqaxSporLLvjVGLI4jRLvJ3WRskPZdjXuF07RjobIV8Hik4KAaMlZ3d3/FxOfNnLEbg5f7lcE0bVgQREAvemOfvAp+2FOWsiNc4MVePj6taBR4ylRgy7o2XtBgxMh6b9kbfxiDZCfPs580Y4OyHlKFKzP0vLIvO+wT6pvfgNma3TiTUzgxSZFxC5tpUxJVJVYYgQaA+dUJPDCAHyYVuWCdsm1vrjc+KLpls6LWskHTMirdP7ieTiUlhNrUuCCGPIJEKZZQCXR6G6/iOXM45MYZ8C3Z/UGdXFXgg1TT6bF24jbsgEs+B5Y6r20CnwpERb7erDor3oNSTjgQceiHK5jKeffhqLFy/G9773PRx00EEir4TrujjwwAPR3NyMRYsW4b777sNDDz2EM888s5stt7CwsLCwaCe4k9neP4t2o1cwTl999RX+/e9/409/+hO++93vAgAuu+wy3HjjjXj77bcxePBgzJ8/H++88w6WLl2KoUOHAgCuvvpqTJ48GTNmzFDq8qQB9+whdBeh16FnsJVryPkMU/DtnV+oXGMAokR4JTJQEqvEGPxtRG5rYJ+AkIHizJP8aqxn3nY1JgoIbSeGd2qTnsqEpEzclfJXAem8Is6S6YyPPJYSXURC+wn12/F563oiIJqBXO9L/q3owFQb49gpnXHS9WIyg8McGuZtyhB4OQo35y+7OT+/FmdXSn2IyOzMa5eFHfl/RhZAZx48qASDfJ0zRBmJapxuncUi5m1iu2k/GFgnaZv8Q2inRGSnxIh4OgNFFAbK/y0xEDLzwVQbqBadJ/cbzajNomxaDCLZweVriTF44PesXydSOU4MYSSdlDKH2x13HtuS6dvUNu4ciaEkXRUP+pVtZfq1IkUQinOWCVglHkVJAHjho5aEpL9gn3iOL5+OBAjXeRIWMFAIrhnp2UAChokzUp7/O04XZvHNRa9gnPr374/tt98ed911F5qbm1Eul3HLLbdg0KBBGDNmDADgxRdfxKhRo8RLE+Cnfi8UCli8eHFs34VCAWvXrlX+LCwsLCwsehQs49Rj0CsYJ0IIFixYgEmTJqGhoQGUUgwaNAjz5s3DJptsAgBYvnx5pGBg3759kcvlxOc8E2bOnIkLL7wwsl5k+uXCBX69CfZJ1TwBPhsg5yxiIOqFyhBmg2ZMMEl8GYSFzQ3sk7xN7sfIQHE3SGefZK+YR6yZqntXusGSWCUALC07pUFhukxRcEKf5fmsk6xTkpkjA4sGvW+dOeL/StuMbJO2X6QmXoLmS6lFSIiIYmQk3I9RApYJtRN+Nmj/t5ch/h/PBp71GaZybbBd0hvxPEIk7amQTmGEVdJYj6R9FcS1lZz4pCvNGAkn20Fi2kpjMPinXonwkqO1JKYjqnkCmJw9nUnsM4uySmGmdXVWPvPClH7DfGW83+j8I1FplJiZIjEOAy2FE/ey4e3PXPXagEk3ZO62MmKYK2baJkHOpq5nVgcMx4TXyiyrDKLIDg+JRZSf2Zq+TckBJbVVGDLtGSeuNxF57NsTiZ7sLHRD5nALM7qVcbrgggtAgtIYcX+vvPIKGGM45ZRTMHDgQPz973/HP/7xD0yaNAkHHXQQli1bJvojhguYMWZcz3HuuedizZo14m/p0qWdMlcLCwsLCwuL3o9uZZxOO+00HHnkkYltRowYgaeffhqPP/44Vq1aJbRKN954IxYsWIA777wT55xzDgYPHoyXX35Z2XfVqlUolUoRJkpGPp9HPp+PbuARUjwrk/6iTsIfumcuvFeDgxBho/i3dwY/l5GQ4bBwV8Eq8X5DypXFbeOeBZUMYgxwXYlxYipLw1ioL+IMjux1Sd5KhFGqxpOR69zJOabClebflEbX6/8aouBAaAwDZWgbsE2xLJLGOCUxUpFtJnDWwXAdhceeRJgV4SG7AJwwOo54gCcqvwNeXqpmz/UkUl6fjJaFWkpRU8FubT99XSVo7JboJ44d0++jhLEiNe0EgxDdl2uGxBQoZ5nCfaKaJo2BEmyGVJORBOdMGkzJ+G2Cos/jTDREPUJuH6Ohji0pg7+IKuPPHEfvB+HEgzGItCy6q3QtJLU1Levr+HnRIhZV9kfdzrPDAxJrpEdKaswgAJEpXj5nxJXHVfM4RZhBIMLSVZ2jqo1gzGszky/3YdF+dOuL04ABAzBgwICK7Vpa/AqMlKpPCUopvOA/9GPHjsWMGTOwbNkyDBkyBAAwf/585PN5oYOysLCwsLDolZAd4vb0YdFu9AqN09ixY9G3b18cf/zx+N3vfofa2lrcdttt+Pjjj3HggQcCACZMmICRI0fi2GOPxZVXXomvv/4a06dPx0knnVR1RB3APQ8Wei5anpekLNnRvuIGUSkG5tCQoZDZHq530qLsQnvUbcRF2I8+tlyNmuufTKySzjZxNkowJFTdlrbIdVxmbmpwnZNySCVEwYVtJDYrTa6mYFtFXZMOfowp1OsCAJPr5FEmkTM+vcOzHzMqebqMgbCQ9WIewHi9rCDak9fWYg6BUyDwskwsczbCzRGUSMh08EzSIrrKQTR6SWMPZB1JEoikKQommAzTdsO6pMizuIgtI0McaRD2GSFAZIKPqOwTtDFVjRZBtChqyOYSLxQV+YcrOL/QIuwoMZ4PbpvKFIXGimzqPK8cIz7hbNA48dxbYlgq9c3HJYbfBpti825J243nkYUMEKAyQTynV2y+LZkZ4iySNoZSK1NmaCUb/DGYsqwzTGp0JovMN4n9tPhmoldE1Q0YMADz5s3D+vXrsffee2PnnXfGokWL8Mgjj2CHHXYAADiOg7lz56Kmpga77bYbDj/8cBxyyCG46qqrutl6CwsLCwuLdsJG1fUY9ArGCQB23nlnPPnkk4lttthiCzz++OMdMh4teaDCVUOUYeJeiczoVLooZdZCbyu8mvZf2IzoNe+k8eWbx5HEE0CQ24h3YshALrNVEfursLutWchT1ZpLiMqrBjEsEiAty8cZErtEQ9ZOCUxgIZMgalzxvFlSdA4h/v+JiDsX6lwJwm2UwHOIiPRh1I+8A3zGKbcubOsFDJPH2zpAsSnsU8nGzIkSno1bPwQaC+FJy7IWRbZZWVQi0cxjINwU5k9KYH8qgej7poGn7iezICErEj4LIgxJwBTSElP3lfM4VcFaUNc/1mEUoEb1KcfIZ2VEdKamb5PPN2exxLI8aNxtxKTN+jk0sTXBclSLJG2TdUn6tSG1JVJ0cKyWNC2LFHcuXH0fptkUnNtyF+mGPJmSayOsxqlD0CsYJwsLCwsLCwuLnoBewzh1NUjZA5EEQonMEl80eWbKd3d1vwi7pGiNtO2K5kn2zNrAUMlRdIrWR24UUA0iOk/roz2ei2xze3OgmDKcVzM+oOrAaHBsuV2CCWJKG9GPZL9glyQWT4kykjROPvsX9uvXBtSOC9exif/z1zMKkemYEYBSNQqQM0rOBp+JClkFIqKy/GUgty78rTMQTNba0DA6z8saGAmZvNR0UpB0VZzp4HXlIvXJNAZCRtKVHonAYpB0iRoLxiQTtW3Eg8YMaboaLes4ZMaJQc0l5DJQN2RQhJ2Alk0fat4sj4HwcwQgwta5YXZrLxOOD0P0pa9T49dYeO755afcfvp5S6lZM9UTjLBI2vGV+zTpn4xMkKe2M2mYlG0GRipOp2RuywzP4bAtb99ljBMzUGtt6sOivbAvThYWFhYWFj0czPPA2vmpzqYj6BjYF6cYEJcpFbQVxKzWswWb91VZJWV/nWHSf3uGdnx7JMutxFbwTLeM+Wu4nVzzJAwgUY9E2VfZgFhUOg7tIZnkG78atqnSPDlE9XPJq9S1UlrCpTBzMItE4yl7yhF2cq4nBIdE31drg6ANkfJMCVOlJo7IQO43CJkgEjBDITvFrynm8G3BMg3YC0kfE+qfVObKyyBgqyQtjehHXfYzn0PRUilMVdKhlqGRgArD5EHRG4XaJKYsq9ukZSliS2aYohoXaR3fl+ti5Az9JvMNm1iOhnOWyUslbxifu98BLct1DX0qjbDwPGgSO2XgSvmZKuqu9OPPTVDYH/WYAQnMUdDeOH5cv3HbU0fKGZ6tsUyWdG4l8HPe6bCMU4+B1ThZWFhYWFhYWKSEZZzikPLlPlGnxGFgRyvul8BMqR0R9V8tp5LSLdfMREKkTDbHsW2pDkr8tmo9Ht2OalgmQyZmow2V2KhIKmp1WSxREn+uTOWA9OjHmPZKZF4MC2UcJ0Vb0loO1+tZz+X2cjZ1mcGCz1b5+qlwH7mtUodPZ5WomjGds2R6W6aNaUQltkJiDBStkZE50RgK0Y96X1YbBZtY18wJxpSYPgKAydnHuTZJrJD75sssXG4HIrexfivGMEXGfdP0IUO/72X2qNKYOpsEKPdlRLOk9aVfA2K9fm+3R2faFng6rdYGWMapQ2BfnCwsLCwsLHo6mPQ9ul19WLQX9sUpJWI9y6QIrWr3betFLbMkiR5tzDBedJ94fVeCjV6CDbJ9pj7i+m1PLqa2II1tccc4DTMor0rRxghKUu+rsFpif+m3p62TNVd6v9oYsUyWyZ6YSE5jHwlzSUS7tHNt3C9pzAr26nXmhAYrovMy9BNDvBrbxpnRzv+GVsW2pfzvfWKfScNVqSeLa19Re21fPCxgX5wsLCwsLCx6PJjHlM+2berDvvh1COyLUwyIq+ZxEusrXXjt3Z7g8bQpq7iJ4YnUeYv2KzIO6faYmBM5E7kJPJovDdpbxFIZs4PQEX2l6SMNawiIjMZGxOmv4kBjznMFO4xMluizwpiyfquKMatCJbYnNbvX/rHStmVx909bx0IV84yMU80gbRuiGrTp2deWfeT7wIlhx7X2xO2qPE4e2v+pzqYj6AjYqDoLCwsLCwsLi5SwjJOFhYWFhUUPh/1U13NgX5xi4H+qC+ontJPd7IjCve36XJRUXFjfrkPPc2nYn1Xk9bXPR0mfmtJ8rrDo2ah4v8hpIvRNVV7ncdduhX5SfyKs9t5vz6fGcgdd+9IxtXdTO+Cma2Y/1W18sC9OGvgbedkthCt7+4tTR/bTAXZ0WaZdi05Dm7UzkY7auX8XaaK6op8ec0wtqgL/b0VnszlllNp9bssodYwxGznsi5OGlStXAgCee+u67jXEwsLCwqLXYN26dWhqaurwfnO5HAYPHoxFy//WIf0NHjwYuVyuQ/raWEGY/eipYPXq1ejbty+WLFnSKTdBd2Lt2rUYNmwYli5disbGxu42p0Nh59Y7YefWO/FNnhtQ3fwYY1i3bh2GDh0KSjsn3qq1tRXFYrFD+srlcqipqemQvjZWWMZJA7/wm5qavpEPBABobGy0c+uFsHPrnbBz671IO7/OdrJramrsy04Pgk1HYGFhYWFhYWGREvbFycLCwsLCwsIiJeyLk4Z8Po/zzz8f+Xy+u03pcNi59U7YufVO2Ln1XnzT52fRPlhxuIWFhYWFhYVFSljGycLCwsLCwsIiJeyLk4WFhYWFhYVFStgXJwsLCwsLCwuLlLAvThYWFhYWFhYWKWFfnCTceOON2HLLLVFTU4MxY8bg73//e3ebVDUuuOACEEKUv8GDB4vtjDFccMEFGDp0KGpra7HXXnvh7bff7kaL4/Hcc8/h4IMPxtChQ0EIwcMPP6xsTzOXQqGAqVOnYsCAAaivr8ePf/xj/Oc//+nCWZhRaW6TJ0+OnMcf/OAHSpueOreZM2dil112QUNDAwYOHIhDDjkE77//vtKmt567NHPrrefupptuwne/+12R9HHs2LF44oknxPbees6AynPrrefMontgX5wC3H///TjjjDNw3nnn4bXXXsMPf/hDHHDAAViyZEl3m1Y1vvOd72DZsmXi78033xTbrrjiClxzzTX4wx/+gH/+858YPHgw9ttvP6xbt64bLTajubkZO+ywA/7whz8Yt6eZyxlnnIE5c+bgvvvuw6JFi7B+/XocdNBBcN2Upc87CZXmBgD777+/ch7/9je1VlVPnduzzz6LU089FS+99BIWLFiAcrmMCRMmoLm5WbTprecuzdyA3nnuNt98c1x22WV45ZVX8Morr2DvvffGpEmTxMtRbz1nQOW5Ab3znFl0E5gFY4yx73//++zkk09W1m233XbsnHPO6SaL2obzzz+f7bDDDsZtnuexwYMHs8suu0ysa21tZU1NTezmm2/uIgvbBgBszpw5YjnNXFavXs2y2Sy77777RJvPPvuMUUrZvHnzusz2StDnxhhjxx9/PJs0aVLsPr1lbowx9uWXXzIA7Nlnn2WMfbPOnT43xr5Z565v377sj3/84zfqnHHwuTH2zTpnFp0PyzgBKBaLWLx4MSZMmKCsnzBhAl544YVusqrt+Ne//oWhQ4diyy23xJFHHomPPvoIAPDxxx9j+fLlyjzz+Tz23HPPXjfPNHNZvHgxSqWS0mbo0KEYNWpUr5jvwoULMXDgQHz729/GSSedhC+//FJs601zW7NmDQCgX79+AL5Z506fG0dvP3eu6+K+++5Dc3Mzxo4d+406Z/rcOHr7ObPoOtgivwC++uoruK6LQYMGKesHDRqE5cuXd5NVbcOuu+6Ku+66C9/+9rfxxRdf4JJLLsG4cePw9ttvi7mY5vnpp592h7ltRpq5LF++HLlcDn379o206enn9YADDsBPf/pTDB8+HB9//DF++9vfYu+998bixYuRz+d7zdwYY5g2bRp23313jBo1CsA359yZ5gb07nP35ptvYuzYsWhtbUWfPn0wZ84cjBw5Urwc9OZzFjc3oHefM4uuh31xkkAIUZYZY5F1PR0HHHCA+D169GiMHTsWW2+9Ne68804hdvwmzJOjLXPpDfM94ogjxO9Ro0Zh5513xvDhwzF37lwcdthhsfv1tLmddtppeOONN7Bo0aLItt5+7uLm1pvP3bbbbovXX38dq1evxkMPPYTjjz8ezz77rNjem89Z3NxGjhzZq8+ZRdfDfqoDMGDAADiOE/Ecvvzyy4iH1dtQX1+P0aNH41//+peIrvsmzDPNXAYPHoxisYhVq1bFtuktGDJkCIYPH45//etfAHrH3KZOnYpHH30UzzzzDDbffHOx/ptw7uLmZkJvOne5XA7bbLMNdt55Z8ycORM77LADrr/++m/EOYubmwm96ZxZdD3sixP8G2rMmDFYsGCBsn7BggUYN25cN1nVMSgUCnj33XcxZMgQbLnllhg8eLAyz2KxiGeffbbXzTPNXMaMGYNsNqu0WbZsGd56661eN9+VK1di6dKlGDJkCICePTfGGE477TTMnj0bTz/9NLbccktle28+d5XmZkJvOnc6GGMoFAq9+pzFgc/NhN58ziy6AF0uR++huO+++1g2m2W33347e+edd9gZZ5zB6uvr2SeffNLdplWFM888ky1cuJB99NFH7KWXXmIHHXQQa2hoEPO47LLLWFNTE5s9ezZ788032VFHHcWGDBnC1q5d282WR7Fu3Tr22muvsddee40BYNdccw177bXX2KeffsoYSzeXk08+mW2++ebsqaeeYq+++irbe++92Q477MDK5XJ3TYsxljy3devWsTPPPJO98MIL7OOPP2bPPPMMGzt2LNtss816xdx+8YtfsKamJrZw4UK2bNky8dfS0iLa9NZzV2luvfncnXvuuey5555jH3/8MXvjjTfY//t//49RStn8+fMZY733nDGWPLfefM4sugf2xUnC//zP/7Dhw4ezXC7HdtppJyXEuLfgiCOOYEOGDGHZbJYNHTqUHXbYYeztt98W2z3PY+effz4bPHgwy+fzbI899mBvvvlmN1ocj2eeeYYBiPwdf/zxjLF0c9mwYQM77bTTWL9+/VhtbS076KCD2JIlS7phNiqS5tbS0sImTJjANt10U5bNZtkWW2zBjj/++IjdPXVupnkBYLNmzRJteuu5qzS33nzuTjzxRPH823TTTdk+++wjXpoY673njLHkufXmc2bRPSCMMdZ1/JaFhYWFhYWFRe+F1ThZWFhYWFhYWKSEfXGysLCwsLCwsEgJ++JkYWFhYWFhYZES9sXJwsLCwsLCwiIl7IuThYWFhYWFhUVK2BcnCwsLCwsLC4uUsC9OFhYWFhYWFhYpYV+cLL5x2GuvvXDGGWd8o8adPHkyDjnkkHb1MWLECBBCQAjB6tWrY9vdcccd2GSTTdo1lkU8Jk+eLM7Dww8/3N3mWFhYVAn74mRh0UGYPXs2Lr74YrE8YsQIXHfddd1nkAEXXXQRli1bhqampu425RuPhQsXGl9Sr7/+eixbtqx7jLKwsGg3Mt1tgIXFNwX9+vXrbhMqoqGhQVS6726USiVks9nuNqPL0dTUZF9cLSx6MSzjZPGNx6pVq3Dcccehb9++qKurwwEHHIB//etfYjv/NPXkk09i++23R58+fbD//vsrrEC5XMbpp5+OTTbZBP3798evf/1rHH/88crnM/lT3V577YVPP/0Uv/rVr8RnGQC44IIL8L3vfU+x77rrrsOIESPEsuu6mDZtmhjr7LPPhl4ZiTGGK664AltttRVqa2uxww474MEHH2zT8bnjjjuwxRZboK6uDoceeihWrlwZafPYY49hzJgxqKmpwVZbbYULL7wQ5XJZbH/vvfew++67o6amBiNHjsRTTz2lfIr65JNPQAjBAw88gL322gs1NTW45557AACzZs3C9ttvj5qaGmy33Xa48cYblbE/++wzHHHEEejbty/69++PSZMm4ZNPPhHbFy5ciO9///uor6/HJptsgt122w2ffvppqrlXmtc111yD0aNHo76+HsOGDcMpp5yC9evXi+2ffvopDj74YPTt2xf19fX4zne+g7/97W/45JNPMH78eABA3759QQjB5MmTU9lkYWHRs2FfnCy+8Zg8eTJeeeUVPProo3jxxRfBGMOPfvQjlEol0aalpQVXXXUV7r77bjz33HNYsmQJpk+fLrZffvnl+POf/4xZs2bh+eefx9q1axP1KbNnz8bmm28uPo1V82nm6quvxp/+9CfcfvvtWLRoEb7++mvMmTNHafOb3/wGs2bNwk033YS3334bv/rVr/Czn/0Mzz77bPoDA+Dll1/GiSeeiFNOOQWvv/46xo8fj0suuURp8+STT+JnP/sZTj/9dLzzzju45ZZbcMcdd2DGjBkAAM/zcMghh6Curg4vv/wybr31Vpx33nnG8X7961/j9NNPx7vvvouJEyfitttuw3nnnYcZM2bg3XffxaWXXorf/va3uPPOOwH452X8+PHo06cPnnvuOSxatEi82BaLRZTLZRxyyCHYc8898cYbb+DFF1/Ez3/+c/GimoRK8wIASil+//vf46233sKdd96Jp59+GmeffbbYfuqpp6JQKOC5557Dm2++icsvvxx9+vTBsGHD8NBDDwEA3n//fSxbtgzXX399VefGwsKih6JbSwxbWHQC9txzT/bLX/6SMcbYBx98wACw559/Xmz/6quvWG1tLXvggQcYY4zNmjWLAWD//ve/RZv/+Z//YYMGDRLLgwYNYldeeaVYLpfLbIsttmCTJk0yjssYY8OHD2fXXnutYtv555/PdthhB2Xdtddey4YPHy6WhwwZwi677DKxXCqV2Oabby7GWr9+PaupqWEvvPCC0s+UKVPYUUcdFXtcTPYcddRRbP/991fWHXHEEaypqUks//CHP2SXXnqp0ubuu+9mQ4YMYYwx9sQTT7BMJsOWLVsmti9YsIABYHPmzGGMMfbxxx8zAOy6665T+hk2bBj7y1/+oqy7+OKL2dixYxljjN1+++1s2223ZZ7nie2FQoHV1tayJ598kq1cuZIBYAsXLoyddxwqzcuEBx54gPXv318sjx49ml1wwQXGts888wwDwFatWmXcLh8fCwuL3gOrcbL4RuPdd99FJpPBrrvuKtb1798f2267Ld59912xrq6uDltvvbVYHjJkCL788ksAwJo1a/DFF1/g+9//vtjuOA7GjBkDz/M61N41a9Zg2bJlGDt2rFiXyWSw8847i89177zzDlpbW7Hffvsp+xaLRey4445Vjffuu+/i0EMPVdaNHTsW8+bNE8uLFy/GP//5T4WJcV0Xra2taGlpwfvvv49hw4Yp2in5WMnYeeedxe8VK1Zg6dKlmDJlCk466SSxvlwuCw3Q4sWL8e9//xsNDQ1KP62trfjwww8xYcIETJ48GRMnTsR+++2HfffdF4cffjiGDBlSce6V5lVXV4dnnnkGl156Kd555x2sXbsW5XIZra2taG5uRn19PU4//XT84he/wPz587HvvvviJz/5Cb773e9WHNvCwqL3wr44WXyjwTRtkLxe/pyji5QJIZF99c8/cX0ngVIa2U/+ZJgG/GVt7ty52GyzzZRt+Xy+qr7SzMHzPFx44YU47LDDIttqamoixzIJ9fX1Sr8AcNtttykvtoD/YsrbjBkzBn/+858jfW266aYAfI3U6aefjnnz5uH+++/Hb37zGyxYsAA/+MEP2jWvTz/9FD/60Y9w8skn4+KLL0a/fv2waNEiTJkyRZyz//qv/8LEiRMxd+5czJ8/HzNnzsTVV1+NqVOnpjoeFhYWvQ/2xcniG42RI0eiXC7j5Zdfxrhx4wAAK1euxAcffIDtt98+VR9NTU0YNGgQ/vGPf+CHP/whAJ+ZeO211yJCbxm5XA6u6yrrNt10Uyxfvlx52Xj99deVsYYMGYKXXnoJe+yxBwCfgVm8eDF22mknMad8Po8lS5Zgzz33TDWHOIwcORIvvfSSsk5f3mmnnfD+++9jm222Mfax3XbbYcmSJfjiiy8waNAgAMA///nPimMPGjQIm222GT766CMcc8wxxjY77bQT7r//fgwcOBCNjY2xfe24447Ycccdce6552Ls2LH4y1/+UvHFqdK8XnnlFZTLZVx99dWg1JeDPvDAA5F2w4YNw8knn4yTTz4Z5557Lm677TZMnToVuVwOACLXgIWFRe+GfXGy+EbjW9/6FiZNmoSTTjoJt9xyCxoaGnDOOedgs802w6RJk1L3M3XqVMycORPbbLMNtttuO9xwww1YtWpVItMyYsQIPPfcczjyyCORz+cxYMAA7LXXXlixYgWuuOIK/H//3/+HefPm4YknnlBeCn75y1/isssuw7e+9S1sv/32uOaaa5RcQA0NDZg+fTp+9atfwfM87L777li7di1eeOEF9OnTB8cff3zqeZ1++ukYN24crrjiChxyyCGYP3++8pkOAH73u9/hoIMOwrBhw/DTn/4UlFK88cYbePPNN3HJJZdgv/32w9Zbb43jjz8eV1xxBdatWyfE4ZWYqAsuuACnn346GhsbccABB6BQKOCVV17BqlWrMG3aNBxzzDG48sorMWnSJFx00UXYfPPNsWTJEsyePRtnnXUWSv9/e/cPkmgYxwH89w698pJYklJGYSj0hyKaGjKaAikwWgoJfJuKAiFpcWsogoYKoqGyIRBac6hBKIIGaWwoiCQocSgiClstvzcceHmd3Ntd3dXd97M++D6+z6vwRb/v82azEolEpK+vT6qrq+Xs7EySyaTouv7Tc//Zebndbnl8fJTl5WXx+XySSCRkdXW14BihUEh6enqkvr5e7u/vZX9/Px/InU6nKIoiOzs70tvbK5qmidlsNnxtiOiD+mvtKqJ38n1J++7uDoFAAGVlZdA0DV6vF8lkMj++sbFRUIYGgFgshudfj2w2i2AwCIvFAqvVinA4jIGBAfj9/qLzHh4eorW1FSaTqeBYKysrqK2tRWlpKXRdx+zsbEE5PJvNYmJiAhaLBeXl5ZicnISu6wVF9Fwuh6WlJTQ0NKCkpAR2ux1erxcHBwdF1+VH5XDgawG7pqYGmqbB5/Nhfn7+xXrE43F0dHRA0zRYLBa0t7cjEonkx09PT+HxeKCqKhobG7G9vQ0RQTweB/CtHH50dPRi/s3NTbS1tUFVVVitVnR1dWFrays/fnV1BV3XYbPZYDKZ4HK5MDIygkwmg+vra/T398PhcEBVVTidTkxNTeHp6anoOrzmvBYXF+FwOPKfm2g0WlD4DgaDcLvdMJlMsNvtCAQCuL29zb9+enoaVVVVUBQFw8PDBXMLy+FEn5IC/EJRg+g/l8vlpKmpSQYHBwt2C//I6urqJBQK/ZHH0SQSCens7JTz8/OC0j19oyiKxGKx336UDhH9WdzHiciAVCol6+vrkkwm5fj4WMbHx+Xi4kKGhob+9lt7lXA4LGazWTKZzJseNxaLye7urlxeXsre3p6Mjo6Kx+NhaPqBsbEx/mVH9InxFyciA9LptPj9fjk5OREA0tLSInNzc/kC92eQSqXyd4O5XK584fktRKNRmZmZkXQ6LTabTbq7u2VhYUEqKirebI7Xam5uLrqD+NraWtFC+nu7ubmRh4cHEfm67cXzOw2J6ONjcCKif9LzoPi9ysrKF3tDEREZweBEREREZBA7TkREREQGMTgRERERGcTgRERERGQQgxMRERGRQQxORERERAYxOBEREREZxOBEREREZBCDExEREZFBXwBVAp/T6A0mFAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ds[var][-1].plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Postscript\n", + "- If you find a CMIP6 dataset for which this recipe does not work, Please report it at [issue#105](https://github.com/pangeo-forge/pangeo-forge-recipes/issues/105) so we can refine the recipe, if possible.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "# Troubles found:\n", + "\n", + "dataset = 'IPSL-CM6A-LR.abrupt-4xCO2.r1i1p1f1.Lmon.cLeaf.gr' # need decode_coords=False in xr.open_dataset, but using xarray_open_kwargs = {'decode_coords':False}, still throws an error when caching the input " ] - }, - "metadata": {}, - "output_type": "display_data" } - ], - "source": [ - "ds[var][-1].plot()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Postscript\n", - "- If you find a CMIP6 dataset for which this recipe does not work, Please report it at [issue#105](https://github.com/pangeo-forge/pangeo-forge-recipes/issues/105) so we can refine the recipe, if possible.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "# Troubles found:\n", - "\n", - "dataset = 'IPSL-CM6A-LR.abrupt-4xCO2.r1i1p1f1.Lmon.cLeaf.gr' # need decode_coords=False in xr.open_dataset, but using xarray_open_kwargs = {'decode_coords':False}, still throws an error when caching the input " - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.13" + } }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.13" - } - }, - "nbformat": 4, - "nbformat_minor": 4 + "nbformat": 4, + "nbformat_minor": 4 } diff --git a/docs/pangeo_forge_recipes/tutorials/xarray_zarr/multi_variable_recipe.ipynb b/docs/pangeo_forge_recipes/tutorials/xarray_zarr/multi_variable_recipe.ipynb index 1d8791ae..f5a8e9de 100755 --- a/docs/pangeo_forge_recipes/tutorials/xarray_zarr/multi_variable_recipe.ipynb +++ b/docs/pangeo_forge_recipes/tutorials/xarray_zarr/multi_variable_recipe.ipynb @@ -1,3842 +1,3842 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# NetCDF Zarr Multi-Variable Sequential Recipe: NOAA World Ocean Atlas\n", - "\n", - "This recipe is a little bit more complicated than the {doc}`netcdf_zarr_sequential`.\n", - "You shold probably review that one first; here we will skip the basics.\n", - "\n", - "For this example, we will use data from NOAA's [World Ocean Atlas](https://www.ncei.noaa.gov/products/world-ocean-atlas).\n", - "As we can see from the [data access page](https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/bin/woa18.pl), the dataset is spread over many different files.\n", - "What's important here is that:\n", - "- There is a time sequence (month) to the files.\n", - "- Different variables live in different files.\n", - "\n", - "Because our dataset is spread over muliple files, we will have to use a more complex File Pattern than the previous example.\n", - "\n", - "## Step 1: Get to know your source data\n", - "\n", - "This step can't be skipped! It's impossible to write a recipe if you don't understand intimately how the source data are organized.\n", - "World Ocean Atlass has eight different variables: Temperature, Salinity, Dissolved Oxygen, Percent Oxygen Saturation, Apparent Oxygen Utilization, Silicate, Phosphate, Nitrate.\n", - "Each variable has a page that looks like this:\n", - "\n", - "![screenshot from NCEI website](ncei-woa-screenshot.png)\n", - "\n", - "For the purpose of this tutorial, we will use the 5-degree resolution monthly data.\n", - "We can follow the links to finally find an HTTP download link for a single month of data." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "download_url = 'https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav/5deg/woa18_decav_t01_5d.nc'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's download it and try to open it with xarray." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ + "cells": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "--2023-02-27 10:13:30-- https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav/5deg/woa18_decav_t01_5d.nc\n", - "Resolving www.ncei.noaa.gov (www.ncei.noaa.gov)... 205.167.25.171, 205.167.25.172, 205.167.25.168, ...\n", - "Connecting to www.ncei.noaa.gov (www.ncei.noaa.gov)|205.167.25.171|:443... connected.\n", - "HTTP request sent, awaiting response... 200 \n", - "Length: 2389903 (2.3M) [application/x-netcdf]\n", - "Saving to: ‘woa18_decav_t01_5d.nc.8’\n", - "\n", - "woa18_decav_t01_5d. 100%[===================>] 2.28M 462KB/s in 5.3s \n", - "\n", - "2023-02-27 10:13:36 (437 KB/s) - ‘woa18_decav_t01_5d.nc.8’ saved [2389903/2389903]\n", - "\n" - ] - } - ], - "source": [ - "! wget https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav/5deg/woa18_decav_t01_5d.nc" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# NetCDF Zarr Multi-Variable Sequential Recipe: NOAA World Ocean Atlas\n", + "\n", + "This recipe is a little bit more complicated than the {doc}`netcdf_zarr_sequential`.\n", + "You shold probably review that one first; here we will skip the basics.\n", + "\n", + "For this example, we will use data from NOAA's [World Ocean Atlas](https://www.ncei.noaa.gov/products/world-ocean-atlas).\n", + "As we can see from the [data access page](https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/bin/woa18.pl), the dataset is spread over many different files.\n", + "What's important here is that:\n", + "- There is a time sequence (month) to the files.\n", + "- Different variables live in different files.\n", + "\n", + "Because our dataset is spread over muliple files, we will have to use a more complex File Pattern than the previous example.\n", + "\n", + "## Step 1: Get to know your source data\n", + "\n", + "This step can't be skipped! It's impossible to write a recipe if you don't understand intimately how the source data are organized.\n", + "World Ocean Atlass has eight different variables: Temperature, Salinity, Dissolved Oxygen, Percent Oxygen Saturation, Apparent Oxygen Utilization, Silicate, Phosphate, Nitrate.\n", + "Each variable has a page that looks like this:\n", + "\n", + "![screenshot from NCEI website](ncei-woa-screenshot.png)\n", + "\n", + "For the purpose of this tutorial, we will use the 5-degree resolution monthly data.\n", + "We can follow the links to finally find an HTTP download link for a single month of data." + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Failed to decode variable 'time': unable to decode time units 'months since 1955-01-01 00:00:00' with 'the default calendar'. Try opening your dataset with decode_times=False or installing cftime if it is not installed.\n" - ] - } - ], - "source": [ - "import xarray as xr\n", - "\n", - "try:\n", - " ds = xr.open_dataset(\"woa18_decav_t01_5d.nc\")\n", - "except ValueError as e:\n", - " print(e)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "❗️ Oh no, we got an error!\n", - "\n", - "This is a very common problem. The calendar is encoded using \"months since\" units, which are ambiguous in the [CF Conventions](https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#calendar). (The precise length of a month is variable by month an year.)\n", - "\n", - "We will follow the advice and do" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "download_url = 'https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav/5deg/woa18_decav_t01_5d.nc'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's download it and try to open it with xarray." + ] + }, { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.Dataset>\n",
-       "Dimensions:             (lat: 36, nbounds: 2, lon: 72, depth: 57, time: 1)\n",
-       "Coordinates:\n",
-       "  * lat                 (lat) float32 -87.5 -82.5 -77.5 -72.5 ... 77.5 82.5 87.5\n",
-       "  * lon                 (lon) float32 -177.5 -172.5 -167.5 ... 167.5 172.5 177.5\n",
-       "  * depth               (depth) float32 0.0 5.0 10.0 ... 1.45e+03 1.5e+03\n",
-       "  * time                (time) float32 372.5\n",
-       "Dimensions without coordinates: nbounds\n",
-       "Data variables:\n",
-       "    crs                 int32 ...\n",
-       "    lat_bnds            (lat, nbounds) float32 ...\n",
-       "    lon_bnds            (lon, nbounds) float32 ...\n",
-       "    depth_bnds          (depth, nbounds) float32 ...\n",
-       "    climatology_bounds  (time, nbounds) float32 ...\n",
-       "    t_mn                (time, depth, lat, lon) float32 ...\n",
-       "    t_dd                (time, depth, lat, lon) float64 ...\n",
-       "    t_sd                (time, depth, lat, lon) float32 ...\n",
-       "    t_se                (time, depth, lat, lon) float32 ...\n",
-       "Attributes: (12/49)\n",
-       "    Conventions:                     CF-1.6, ACDD-1.3\n",
-       "    title:                           World Ocean Atlas 2018 : sea_water_tempe...\n",
-       "    summary:                         PRERELEASE Climatological mean temperatu...\n",
-       "    references:                      Locarnini, R. A., A. V. Mishonov, O. K. ...\n",
-       "    institution:                     National Centers for Environmental Infor...\n",
-       "    comment:                         global climatology as part of the World ...\n",
-       "    ...                              ...\n",
-       "    publisher_email:                 NCEI.info@noaa.gov\n",
-       "    nodc_template_version:           NODC_NetCDF_Grid_Template_v2.0\n",
-       "    license:                         These data are openly available to the p...\n",
-       "    metadata_link:                   http://www.nodc.noaa.gov/OC5/WOA18/pr_wo...\n",
-       "    date_created:                    2018-02-19 \n",
-       "    date_modified:                   2018-02-19 
" + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--2023-02-27 10:13:30-- https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav/5deg/woa18_decav_t01_5d.nc\n", + "Resolving www.ncei.noaa.gov (www.ncei.noaa.gov)... 205.167.25.171, 205.167.25.172, 205.167.25.168, ...\n", + "Connecting to www.ncei.noaa.gov (www.ncei.noaa.gov)|205.167.25.171|:443... connected.\n", + "HTTP request sent, awaiting response... 200 \n", + "Length: 2389903 (2.3M) [application/x-netcdf]\n", + "Saving to: \u2018woa18_decav_t01_5d.nc.8\u2019\n", + "\n", + "woa18_decav_t01_5d. 100%[===================>] 2.28M 462KB/s in 5.3s \n", + "\n", + "2023-02-27 10:13:36 (437 KB/s) - \u2018woa18_decav_t01_5d.nc.8\u2019 saved [2389903/2389903]\n", + "\n" + ] + } ], - "text/plain": [ - "\n", - "Dimensions: (lat: 36, nbounds: 2, lon: 72, depth: 57, time: 1)\n", - "Coordinates:\n", - " * lat (lat) float32 -87.5 -82.5 -77.5 -72.5 ... 77.5 82.5 87.5\n", - " * lon (lon) float32 -177.5 -172.5 -167.5 ... 167.5 172.5 177.5\n", - " * depth (depth) float32 0.0 5.0 10.0 ... 1.45e+03 1.5e+03\n", - " * time (time) float32 372.5\n", - "Dimensions without coordinates: nbounds\n", - "Data variables:\n", - " crs int32 ...\n", - " lat_bnds (lat, nbounds) float32 ...\n", - " lon_bnds (lon, nbounds) float32 ...\n", - " depth_bnds (depth, nbounds) float32 ...\n", - " climatology_bounds (time, nbounds) float32 ...\n", - " t_mn (time, depth, lat, lon) float32 ...\n", - " t_dd (time, depth, lat, lon) float64 ...\n", - " t_sd (time, depth, lat, lon) float32 ...\n", - " t_se (time, depth, lat, lon) float32 ...\n", - "Attributes: (12/49)\n", - " Conventions: CF-1.6, ACDD-1.3\n", - " title: World Ocean Atlas 2018 : sea_water_tempe...\n", - " summary: PRERELEASE Climatological mean temperatu...\n", - " references: Locarnini, R. A., A. V. Mishonov, O. K. ...\n", - " institution: National Centers for Environmental Infor...\n", - " comment: global climatology as part of the World ...\n", - " ... ...\n", - " publisher_email: NCEI.info@noaa.gov\n", - " nodc_template_version: NODC_NetCDF_Grid_Template_v2.0\n", - " license: These data are openly available to the p...\n", - " metadata_link: http://www.nodc.noaa.gov/OC5/WOA18/pr_wo...\n", - " date_created: 2018-02-19 \n", - " date_modified: 2018-02-19 " + "source": [ + "! wget https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav/5deg/woa18_decav_t01_5d.nc" ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ds = xr.open_dataset(\"woa18_decav_t01_5d.nc\", decode_times=False)\n", - "ds" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.DataArray 'time' (time: 1)>\n",
-       "array([372.5], dtype=float32)\n",
-       "Coordinates:\n",
-       "  * time     (time) float32 372.5\n",
-       "Attributes:\n",
-       "    standard_name:  time\n",
-       "    long_name:      time\n",
-       "    units:          months since 1955-01-01 00:00:00\n",
-       "    axis:           T\n",
-       "    climatology:    climatology_bounds
" + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Failed to decode variable 'time': unable to decode time units 'months since 1955-01-01 00:00:00' with 'the default calendar'. Try opening your dataset with decode_times=False or installing cftime if it is not installed.\n" + ] + } ], - "text/plain": [ - "\n", - "array([372.5], dtype=float32)\n", - "Coordinates:\n", - " * time (time) float32 372.5\n", - "Attributes:\n", - " standard_name: time\n", - " long_name: time\n", - " units: months since 1955-01-01 00:00:00\n", - " axis: T\n", - " climatology: climatology_bounds" + "source": [ + "import xarray as xr\n", + "\n", + "try:\n", + " ds = xr.open_dataset(\"woa18_decav_t01_5d.nc\")\n", + "except ValueError as e:\n", + " print(e)" ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ds.time" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We have opened the data, but the time coordinate is just a number, not an actual datetime object.\n", - "We can work around this issue by explicitly specifying the `360_day` calendar (in which every month is assumed to have 30 days)." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\u2757\ufe0f Oh no, we got an error!\n", + "\n", + "This is a very common problem. The calendar is encoded using \"months since\" units, which are ambiguous in the [CF Conventions](https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#calendar). (The precise length of a month is variable by month an year.)\n", + "\n", + "We will follow the advice and do" + ] + }, { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.Dataset>\n",
-       "Dimensions:             (lat: 36, nbounds: 2, lon: 72, depth: 57, time: 1)\n",
-       "Coordinates:\n",
-       "  * lat                 (lat) float32 -87.5 -82.5 -77.5 -72.5 ... 77.5 82.5 87.5\n",
-       "  * lon                 (lon) float32 -177.5 -172.5 -167.5 ... 167.5 172.5 177.5\n",
-       "  * depth               (depth) float32 0.0 5.0 10.0 ... 1.45e+03 1.5e+03\n",
-       "  * time                (time) object 1986-01-16 00:00:00\n",
-       "Dimensions without coordinates: nbounds\n",
-       "Data variables:\n",
-       "    crs                 int32 ...\n",
-       "    lat_bnds            (lat, nbounds) float32 ...\n",
-       "    lon_bnds            (lon, nbounds) float32 ...\n",
-       "    depth_bnds          (depth, nbounds) float32 ...\n",
-       "    climatology_bounds  (time, nbounds) float32 ...\n",
-       "    t_mn                (time, depth, lat, lon) float32 ...\n",
-       "    t_dd                (time, depth, lat, lon) float64 ...\n",
-       "    t_sd                (time, depth, lat, lon) float32 ...\n",
-       "    t_se                (time, depth, lat, lon) float32 ...\n",
-       "Attributes: (12/49)\n",
-       "    Conventions:                     CF-1.6, ACDD-1.3\n",
-       "    title:                           World Ocean Atlas 2018 : sea_water_tempe...\n",
-       "    summary:                         PRERELEASE Climatological mean temperatu...\n",
-       "    references:                      Locarnini, R. A., A. V. Mishonov, O. K. ...\n",
-       "    institution:                     National Centers for Environmental Infor...\n",
-       "    comment:                         global climatology as part of the World ...\n",
-       "    ...                              ...\n",
-       "    publisher_email:                 NCEI.info@noaa.gov\n",
-       "    nodc_template_version:           NODC_NetCDF_Grid_Template_v2.0\n",
-       "    license:                         These data are openly available to the p...\n",
-       "    metadata_link:                   http://www.nodc.noaa.gov/OC5/WOA18/pr_wo...\n",
-       "    date_created:                    2018-02-19 \n",
-       "    date_modified:                   2018-02-19 
" + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+              "Dimensions:             (lat: 36, nbounds: 2, lon: 72, depth: 57, time: 1)\n",
+              "Coordinates:\n",
+              "  * lat                 (lat) float32 -87.5 -82.5 -77.5 -72.5 ... 77.5 82.5 87.5\n",
+              "  * lon                 (lon) float32 -177.5 -172.5 -167.5 ... 167.5 172.5 177.5\n",
+              "  * depth               (depth) float32 0.0 5.0 10.0 ... 1.45e+03 1.5e+03\n",
+              "  * time                (time) float32 372.5\n",
+              "Dimensions without coordinates: nbounds\n",
+              "Data variables:\n",
+              "    crs                 int32 ...\n",
+              "    lat_bnds            (lat, nbounds) float32 ...\n",
+              "    lon_bnds            (lon, nbounds) float32 ...\n",
+              "    depth_bnds          (depth, nbounds) float32 ...\n",
+              "    climatology_bounds  (time, nbounds) float32 ...\n",
+              "    t_mn                (time, depth, lat, lon) float32 ...\n",
+              "    t_dd                (time, depth, lat, lon) float64 ...\n",
+              "    t_sd                (time, depth, lat, lon) float32 ...\n",
+              "    t_se                (time, depth, lat, lon) float32 ...\n",
+              "Attributes: (12/49)\n",
+              "    Conventions:                     CF-1.6, ACDD-1.3\n",
+              "    title:                           World Ocean Atlas 2018 : sea_water_tempe...\n",
+              "    summary:                         PRERELEASE Climatological mean temperatu...\n",
+              "    references:                      Locarnini, R. A., A. V. Mishonov, O. K. ...\n",
+              "    institution:                     National Centers for Environmental Infor...\n",
+              "    comment:                         global climatology as part of the World ...\n",
+              "    ...                              ...\n",
+              "    publisher_email:                 NCEI.info@noaa.gov\n",
+              "    nodc_template_version:           NODC_NetCDF_Grid_Template_v2.0\n",
+              "    license:                         These data are openly available to the p...\n",
+              "    metadata_link:                   http://www.nodc.noaa.gov/OC5/WOA18/pr_wo...\n",
+              "    date_created:                    2018-02-19 \n",
+              "    date_modified:                   2018-02-19 
" + ], + "text/plain": [ + "\n", + "Dimensions: (lat: 36, nbounds: 2, lon: 72, depth: 57, time: 1)\n", + "Coordinates:\n", + " * lat (lat) float32 -87.5 -82.5 -77.5 -72.5 ... 77.5 82.5 87.5\n", + " * lon (lon) float32 -177.5 -172.5 -167.5 ... 167.5 172.5 177.5\n", + " * depth (depth) float32 0.0 5.0 10.0 ... 1.45e+03 1.5e+03\n", + " * time (time) float32 372.5\n", + "Dimensions without coordinates: nbounds\n", + "Data variables:\n", + " crs int32 ...\n", + " lat_bnds (lat, nbounds) float32 ...\n", + " lon_bnds (lon, nbounds) float32 ...\n", + " depth_bnds (depth, nbounds) float32 ...\n", + " climatology_bounds (time, nbounds) float32 ...\n", + " t_mn (time, depth, lat, lon) float32 ...\n", + " t_dd (time, depth, lat, lon) float64 ...\n", + " t_sd (time, depth, lat, lon) float32 ...\n", + " t_se (time, depth, lat, lon) float32 ...\n", + "Attributes: (12/49)\n", + " Conventions: CF-1.6, ACDD-1.3\n", + " title: World Ocean Atlas 2018 : sea_water_tempe...\n", + " summary: PRERELEASE Climatological mean temperatu...\n", + " references: Locarnini, R. A., A. V. Mishonov, O. K. ...\n", + " institution: National Centers for Environmental Infor...\n", + " comment: global climatology as part of the World ...\n", + " ... ...\n", + " publisher_email: NCEI.info@noaa.gov\n", + " nodc_template_version: NODC_NetCDF_Grid_Template_v2.0\n", + " license: These data are openly available to the p...\n", + " metadata_link: http://www.nodc.noaa.gov/OC5/WOA18/pr_wo...\n", + " date_created: 2018-02-19 \n", + " date_modified: 2018-02-19 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "\n", - "Dimensions: (lat: 36, nbounds: 2, lon: 72, depth: 57, time: 1)\n", - "Coordinates:\n", - " * lat (lat) float32 -87.5 -82.5 -77.5 -72.5 ... 77.5 82.5 87.5\n", - " * lon (lon) float32 -177.5 -172.5 -167.5 ... 167.5 172.5 177.5\n", - " * depth (depth) float32 0.0 5.0 10.0 ... 1.45e+03 1.5e+03\n", - " * time (time) object 1986-01-16 00:00:00\n", - "Dimensions without coordinates: nbounds\n", - "Data variables:\n", - " crs int32 ...\n", - " lat_bnds (lat, nbounds) float32 ...\n", - " lon_bnds (lon, nbounds) float32 ...\n", - " depth_bnds (depth, nbounds) float32 ...\n", - " climatology_bounds (time, nbounds) float32 ...\n", - " t_mn (time, depth, lat, lon) float32 ...\n", - " t_dd (time, depth, lat, lon) float64 ...\n", - " t_sd (time, depth, lat, lon) float32 ...\n", - " t_se (time, depth, lat, lon) float32 ...\n", - "Attributes: (12/49)\n", - " Conventions: CF-1.6, ACDD-1.3\n", - " title: World Ocean Atlas 2018 : sea_water_tempe...\n", - " summary: PRERELEASE Climatological mean temperatu...\n", - " references: Locarnini, R. A., A. V. Mishonov, O. K. ...\n", - " institution: National Centers for Environmental Infor...\n", - " comment: global climatology as part of the World ...\n", - " ... ...\n", - " publisher_email: NCEI.info@noaa.gov\n", - " nodc_template_version: NODC_NetCDF_Grid_Template_v2.0\n", - " license: These data are openly available to the p...\n", - " metadata_link: http://www.nodc.noaa.gov/OC5/WOA18/pr_wo...\n", - " date_created: 2018-02-19 \n", - " date_modified: 2018-02-19 " + "source": [ + "ds = xr.open_dataset(\"woa18_decav_t01_5d.nc\", decode_times=False)\n", + "ds" ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ds.time.attrs['calendar'] = '360_day'\n", - "ds = xr.decode_cf(ds)\n", - "ds" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.DataArray 'time' (time: 1)>\n",
-       "array([cftime.Datetime360Day(1986, 1, 16, 0, 0, 0, 0, has_year_zero=True)],\n",
-       "      dtype=object)\n",
-       "Coordinates:\n",
-       "  * time     (time) object 1986-01-16 00:00:00\n",
-       "Attributes:\n",
-       "    standard_name:  time\n",
-       "    long_name:      time\n",
-       "    axis:           T\n",
-       "    climatology:    climatology_bounds
" + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.DataArray 'time' (time: 1)>\n",
+              "array([372.5], dtype=float32)\n",
+              "Coordinates:\n",
+              "  * time     (time) float32 372.5\n",
+              "Attributes:\n",
+              "    standard_name:  time\n",
+              "    long_name:      time\n",
+              "    units:          months since 1955-01-01 00:00:00\n",
+              "    axis:           T\n",
+              "    climatology:    climatology_bounds
" + ], + "text/plain": [ + "\n", + "array([372.5], dtype=float32)\n", + "Coordinates:\n", + " * time (time) float32 372.5\n", + "Attributes:\n", + " standard_name: time\n", + " long_name: time\n", + " units: months since 1955-01-01 00:00:00\n", + " axis: T\n", + " climatology: climatology_bounds" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "\n", - "array([cftime.Datetime360Day(1986, 1, 16, 0, 0, 0, 0, has_year_zero=True)],\n", - " dtype=object)\n", - "Coordinates:\n", - " * time (time) object 1986-01-16 00:00:00\n", - "Attributes:\n", - " standard_name: time\n", - " long_name: time\n", - " axis: T\n", - " climatology: climatology_bounds" + "source": [ + "ds.time" ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ds.time" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will need this trick for later.\n", - "\n", - "## Step 2: Define the File Pattern\n", - "\n", - "We can browse through the files on the website and see how they are organized.\n", - "\n", - "```\n", - "https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav/5deg/woa18_decav_t01_5d.nc\n", - "https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav/5deg/woa18_decav_t02_5d.nc\n", - "...\n", - "https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/salinity/decav/5deg/woa18_decav_s01_5d.nc\n", - "https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/salinity/decav/5deg/woa18_decav_s02_5d.nc\n", - "...\n", - "```\n", - "\n", - "From this we can deduce the general pattern.\n", - "We write a function to return the correct filename for a given variable / month combination." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "'https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav/5deg/woa18_decav_t02_5d.nc'" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have opened the data, but the time coordinate is just a number, not an actual datetime object.\n", + "We can work around this issue by explicitly specifying the `360_day` calendar (in which every month is assumed to have 30 days)." ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Here it is important that the function argument name \"time\" match\n", - "# the name of the dataset dimension \"time\"\n", - "def format_function(variable, time):\n", - " return (\"https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/\"\n", - " f\"{variable}/decav/5deg/woa18_decav_{variable[0]}{time:02d}_5d.nc\")\n", - "\n", - "format_function(\"temperature\", 2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we turn this into a `FilePattern` object.\n", - "This pattern has two distinct `combine_dims`: variable name and month.\n", - "We want to merge over variable names and concatenate over months. " - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "" + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+              "Dimensions:             (lat: 36, nbounds: 2, lon: 72, depth: 57, time: 1)\n",
+              "Coordinates:\n",
+              "  * lat                 (lat) float32 -87.5 -82.5 -77.5 -72.5 ... 77.5 82.5 87.5\n",
+              "  * lon                 (lon) float32 -177.5 -172.5 -167.5 ... 167.5 172.5 177.5\n",
+              "  * depth               (depth) float32 0.0 5.0 10.0 ... 1.45e+03 1.5e+03\n",
+              "  * time                (time) object 1986-01-16 00:00:00\n",
+              "Dimensions without coordinates: nbounds\n",
+              "Data variables:\n",
+              "    crs                 int32 ...\n",
+              "    lat_bnds            (lat, nbounds) float32 ...\n",
+              "    lon_bnds            (lon, nbounds) float32 ...\n",
+              "    depth_bnds          (depth, nbounds) float32 ...\n",
+              "    climatology_bounds  (time, nbounds) float32 ...\n",
+              "    t_mn                (time, depth, lat, lon) float32 ...\n",
+              "    t_dd                (time, depth, lat, lon) float64 ...\n",
+              "    t_sd                (time, depth, lat, lon) float32 ...\n",
+              "    t_se                (time, depth, lat, lon) float32 ...\n",
+              "Attributes: (12/49)\n",
+              "    Conventions:                     CF-1.6, ACDD-1.3\n",
+              "    title:                           World Ocean Atlas 2018 : sea_water_tempe...\n",
+              "    summary:                         PRERELEASE Climatological mean temperatu...\n",
+              "    references:                      Locarnini, R. A., A. V. Mishonov, O. K. ...\n",
+              "    institution:                     National Centers for Environmental Infor...\n",
+              "    comment:                         global climatology as part of the World ...\n",
+              "    ...                              ...\n",
+              "    publisher_email:                 NCEI.info@noaa.gov\n",
+              "    nodc_template_version:           NODC_NetCDF_Grid_Template_v2.0\n",
+              "    license:                         These data are openly available to the p...\n",
+              "    metadata_link:                   http://www.nodc.noaa.gov/OC5/WOA18/pr_wo...\n",
+              "    date_created:                    2018-02-19 \n",
+              "    date_modified:                   2018-02-19 
" + ], + "text/plain": [ + "\n", + "Dimensions: (lat: 36, nbounds: 2, lon: 72, depth: 57, time: 1)\n", + "Coordinates:\n", + " * lat (lat) float32 -87.5 -82.5 -77.5 -72.5 ... 77.5 82.5 87.5\n", + " * lon (lon) float32 -177.5 -172.5 -167.5 ... 167.5 172.5 177.5\n", + " * depth (depth) float32 0.0 5.0 10.0 ... 1.45e+03 1.5e+03\n", + " * time (time) object 1986-01-16 00:00:00\n", + "Dimensions without coordinates: nbounds\n", + "Data variables:\n", + " crs int32 ...\n", + " lat_bnds (lat, nbounds) float32 ...\n", + " lon_bnds (lon, nbounds) float32 ...\n", + " depth_bnds (depth, nbounds) float32 ...\n", + " climatology_bounds (time, nbounds) float32 ...\n", + " t_mn (time, depth, lat, lon) float32 ...\n", + " t_dd (time, depth, lat, lon) float64 ...\n", + " t_sd (time, depth, lat, lon) float32 ...\n", + " t_se (time, depth, lat, lon) float32 ...\n", + "Attributes: (12/49)\n", + " Conventions: CF-1.6, ACDD-1.3\n", + " title: World Ocean Atlas 2018 : sea_water_tempe...\n", + " summary: PRERELEASE Climatological mean temperatu...\n", + " references: Locarnini, R. A., A. V. Mishonov, O. K. ...\n", + " institution: National Centers for Environmental Infor...\n", + " comment: global climatology as part of the World ...\n", + " ... ...\n", + " publisher_email: NCEI.info@noaa.gov\n", + " nodc_template_version: NODC_NetCDF_Grid_Template_v2.0\n", + " license: These data are openly available to the p...\n", + " metadata_link: http://www.nodc.noaa.gov/OC5/WOA18/pr_wo...\n", + " date_created: 2018-02-19 \n", + " date_modified: 2018-02-19 " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds.time.attrs['calendar'] = '360_day'\n", + "ds = xr.decode_cf(ds)\n", + "ds" ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from pangeo_forge_recipes import patterns\n", - "\n", - "variable_merge_dim = patterns.MergeDim(\"variable\", keys=[\"temperature\", \"salinity\"])\n", - "\n", - "# Here it is important that the ConcatDim name \"time\" match the name of the \n", - "# dataset dimension \"time\" (and the argument name in format_function)\n", - "month_concat_dim = patterns.ConcatDim(\"time\", keys=list(range(1, 13)), nitems_per_file=1)\n", - "\n", - "pattern = patterns.FilePattern(format_function, variable_merge_dim, month_concat_dim)\n", - "pattern" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 3: Write the Recipe\n", - "\n", - "Now that we have a `FilePattern`, we are ready to write our recipe. As described in {doc}`netcdf_zarr_sequential`, a recipe is defined as a pipeline of [Apache Beam transforms](https://beam.apache.org/documentation/programming-guide/#transforms) applied to the data collection associated with a `FilePattern`.\n", - "\n", - "First, we'll import the transforms provided by Pangeo Forge that may be used to transform a `FilePattern` collection into a Zarr store." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "import apache_beam as beam\n", - "from pangeo_forge_recipes.transforms import OpenURLWithFSSpec, OpenWithXarray, StoreToZarr" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Define an Input Preprocessor\n", - "Above we noted that the time was encoded wrong in the original data.\n", - "We might have also noticed that many variables that seems like coordinates (e.g. `lat_bnds`) were in the Data Variables part of the dataset.\n", - "We will write a Beam transform that fixes both these issues. This is achieved by creating a [composite transform](https://beam.apache.org/documentation/programming-guide/#composite-transform-creation), which is a subclass of the `apache_beam.PTransform` class that overrides the `expand()` method to specify the actual processing logic. \n", - "\n", - "In this example:\n", - "* `expand()` operates on an `apache_beam.PCollection`, performing a one-to-one mapping using [`apache_beam.Map`](https://beam.apache.org/documentation/programming-guide/#pardo) of input elements to output elements, i.e. for each input element, it applies `_fix_encoding_and_attrs()` that produces exactly one output element.\n", - "* As the preprocessor transform will be preceded by the `OpenWithXarray` transform in the pipeline, each input collection element will be a `pangeo_forge_recipes.transforms.Indexed[T]`. In this case each tuple will contain an index and an `xarray.Dataset`. The output tuple will contain the original index and the preprocessed `Dataset`." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "from pangeo_forge_recipes.transforms import Indexed, T\n", - "\n", - "class FixEncodingAttrs(beam.PTransform):\n", - " \"\"\"\n", - " Fix issues in retrieved data.\n", - " \"\"\"\n", - "\n", - " @staticmethod\n", - " def _fix_encoding_and_attrs(item: Indexed[T]) -> Indexed[T]:\n", - " index, ds = item\n", - " ds.time.attrs['calendar'] = '360_day'\n", - " ds = xr.decode_cf(ds)\n", - " ds = ds.set_coords(['crs', 'lat_bnds', 'lon_bnds', 'depth_bnds', 'climatology_bounds'])\n", - " return index, ds\n", - "\n", - " def expand(self, pcoll: beam.PCollection) -> beam.PCollection:\n", - " return pcoll | beam.Map(self._fix_encoding_and_attrs)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Define the Recipe Object\n", - "The recipe pipeline of transforms applied to `pattern` is similar to that described in {doc}`netcdf_zarr_sequential`, with the following modifications:\n", - "1. Due to the decoding issue described earlier, `decode_times=false` is specified to `OpenWithXarray`.\n", - "1. The new preprocessing transform `FixEncodingAttrs` is included in the pipeline." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A place for our data to go" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "'/tmp/tmpmkk0h21h/output.zarr'" + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.DataArray 'time' (time: 1)>\n",
+              "array([cftime.Datetime360Day(1986, 1, 16, 0, 0, 0, 0, has_year_zero=True)],\n",
+              "      dtype=object)\n",
+              "Coordinates:\n",
+              "  * time     (time) object 1986-01-16 00:00:00\n",
+              "Attributes:\n",
+              "    standard_name:  time\n",
+              "    long_name:      time\n",
+              "    axis:           T\n",
+              "    climatology:    climatology_bounds
" + ], + "text/plain": [ + "\n", + "array([cftime.Datetime360Day(1986, 1, 16, 0, 0, 0, 0, has_year_zero=True)],\n", + " dtype=object)\n", + "Coordinates:\n", + " * time (time) object 1986-01-16 00:00:00\n", + "Attributes:\n", + " standard_name: time\n", + " long_name: time\n", + " axis: T\n", + " climatology: climatology_bounds" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds.time" ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import os\n", - "from tempfile import TemporaryDirectory\n", - "td = TemporaryDirectory()\n", - "target_root = td.name\n", - "store_name = \"output.zarr\"\n", - "target_store = os.path.join(target_root, store_name)\n", - "target_store" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "<_ChainedPTransform(PTransform) label=[Create|OpenURLWithFSSpec|OpenWithXarray|FixEncodingAttrs|StoreToZarr] at 0x7fed26e108b0>" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will need this trick for later.\n", + "\n", + "## Step 2: Define the File Pattern\n", + "\n", + "We can browse through the files on the website and see how they are organized.\n", + "\n", + "```\n", + "https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav/5deg/woa18_decav_t01_5d.nc\n", + "https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav/5deg/woa18_decav_t02_5d.nc\n", + "...\n", + "https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/salinity/decav/5deg/woa18_decav_s01_5d.nc\n", + "https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/salinity/decav/5deg/woa18_decav_s02_5d.nc\n", + "...\n", + "```\n", + "\n", + "From this we can deduce the general pattern.\n", + "We write a function to return the correct filename for a given variable / month combination." ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "transforms = (\n", - " beam.Create(pattern.items())\n", - " | OpenURLWithFSSpec()\n", - " | OpenWithXarray(file_type=pattern.file_type, xarray_open_kwargs=dict(decode_times=False))\n", - " | FixEncodingAttrs() # New preprocessor\n", - " | StoreToZarr(\n", - " store_name=store_name,\n", - " target_root=target_root,\n", - " combine_dims=pattern.combine_dim_keys,\n", - " )\n", - ")\n", - "transforms" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 4: Run the Recipe\n", - "\n", - "Execute the recipe pipeline using Beam." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav/5deg/woa18_decav_t02_5d.nc'" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Here it is important that the function argument name \"time\" match\n", + "# the name of the dataset dimension \"time\"\n", + "def format_function(variable, time):\n", + " return (\"https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/\"\n", + " f\"{variable}/decav/5deg/woa18_decav_{variable[0]}{time:02d}_5d.nc\")\n", + "\n", + "format_function(\"temperature\", 2)" + ] + }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" - ] + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we turn this into a `FilePattern` object.\n", + "This pattern has two distinct `combine_dims`: variable name and month.\n", + "We want to merge over variable names and concatenate over months. " + ] }, { - "data": { - "application/javascript": [ - "\n", - " if (typeof window.interactive_beam_jquery == 'undefined') {\n", - " var jqueryScript = document.createElement('script');\n", - " jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n", - " jqueryScript.type = 'text/javascript';\n", - " jqueryScript.onload = function() {\n", - " var datatableScript = document.createElement('script');\n", - " datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n", - " datatableScript.type = 'text/javascript';\n", - " datatableScript.onload = function() {\n", - " window.interactive_beam_jquery = jQuery.noConflict(true);\n", - " window.interactive_beam_jquery(document).ready(function($){\n", - " \n", - " });\n", - " }\n", - " document.head.appendChild(datatableScript);\n", - " };\n", - " document.head.appendChild(jqueryScript);\n", - " } else {\n", - " window.interactive_beam_jquery(document).ready(function($){\n", - " \n", - " });\n", - " }" + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pangeo_forge_recipes import patterns\n", + "\n", + "variable_merge_dim = patterns.MergeDim(\"variable\", keys=[\"temperature\", \"salinity\"])\n", + "\n", + "# Here it is important that the ConcatDim name \"time\" match the name of the \n", + "# dataset dimension \"time\" (and the argument name in format_function)\n", + "month_concat_dim = patterns.ConcatDim(\"time\", keys=list(range(1, 13)), nitems_per_file=1)\n", + "\n", + "pattern = patterns.FilePattern(format_function, variable_merge_dim, month_concat_dim)\n", + "pattern" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:apache_beam.coders.coder_impl:Using fallback deterministic coder for type '' in '[14]: Create|OpenURLWithFSSpec|OpenWithXarray|FixEncodingAttrs|StoreToZarr/StoreToZarr/DetermineSchema/CombinePerKey(CombineXarraySchemas)/GroupByKey'. \n", - "WARNING:apache_beam.coders.coder_impl:Using fallback deterministic coder for type '' in '[14]: Create|OpenURLWithFSSpec|OpenWithXarray|FixEncodingAttrs|StoreToZarr/StoreToZarr/DetermineSchema/CombinePerKey(CombineXarraySchemas)/GroupByKey'. \n", - "WARNING:apache_beam.coders.coder_impl:Using fallback deterministic coder for type '' in '[14]: Create|OpenURLWithFSSpec|OpenWithXarray|FixEncodingAttrs|StoreToZarr/StoreToZarr/DetermineSchema/CombinePerKey(CombineXarraySchemas)'. \n", - "/home/derek/anaconda3/envs/forgerunner/lib/python3.9/site-packages/xarray/core/dataset.py:2081: SerializationWarning: saving variable None with floating point data as an integer dtype without any _FillValue to use for NaNs\n", - " return to_zarr( # type: ignore\n", - "/home/derek/anaconda3/envs/forgerunner/lib/python3.9/site-packages/xarray/core/dataset.py:2081: SerializationWarning: saving variable None with floating point data as an integer dtype without any _FillValue to use for NaNs\n", - " return to_zarr( # type: ignore\n" - ] - } - ], - "source": [ - "with beam.Pipeline() as p:\n", - " p | transforms" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 5: Check the Target\n", - "\n", - "All the data should be there!" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 3: Write the Recipe\n", + "\n", + "Now that we have a `FilePattern`, we are ready to write our recipe. As described in {doc}`netcdf_zarr_sequential`, a recipe is defined as a pipeline of [Apache Beam transforms](https://beam.apache.org/documentation/programming-guide/#transforms) applied to the data collection associated with a `FilePattern`.\n", + "\n", + "First, we'll import the transforms provided by Pangeo Forge that may be used to transform a `FilePattern` collection into a Zarr store." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "import apache_beam as beam\n", + "from pangeo_forge_recipes.transforms import OpenURLWithFSSpec, OpenWithXarray, StoreToZarr" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define an Input Preprocessor\n", + "Above we noted that the time was encoded wrong in the original data.\n", + "We might have also noticed that many variables that seems like coordinates (e.g. `lat_bnds`) were in the Data Variables part of the dataset.\n", + "We will write a Beam transform that fixes both these issues. This is achieved by creating a [composite transform](https://beam.apache.org/documentation/programming-guide/#composite-transform-creation), which is a subclass of the `apache_beam.PTransform` class that overrides the `expand()` method to specify the actual processing logic. \n", + "\n", + "In this example:\n", + "* `expand()` operates on an `apache_beam.PCollection`, performing a one-to-one mapping using [`apache_beam.Map`](https://beam.apache.org/documentation/programming-guide/#pardo) of input elements to output elements, i.e. for each input element, it applies `_fix_encoding_and_attrs()` that produces exactly one output element.\n", + "* As the preprocessor transform will be preceded by the `OpenWithXarray` transform in the pipeline, each input collection element will be a `pangeo_forge_recipes.transforms.Indexed[T]`. In this case each tuple will contain an index and an `xarray.Dataset`. The output tuple will contain the original index and the preprocessed `Dataset`." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "from pangeo_forge_recipes.transforms import Indexed, T\n", + "\n", + "class FixEncodingAttrs(beam.PTransform):\n", + " \"\"\"\n", + " Fix issues in retrieved data.\n", + " \"\"\"\n", + "\n", + " @staticmethod\n", + " def _fix_encoding_and_attrs(item: Indexed[T]) -> Indexed[T]:\n", + " index, ds = item\n", + " ds.time.attrs['calendar'] = '360_day'\n", + " ds = xr.decode_cf(ds)\n", + " ds = ds.set_coords(['crs', 'lat_bnds', 'lon_bnds', 'depth_bnds', 'climatology_bounds'])\n", + " return index, ds\n", + "\n", + " def expand(self, pcoll: beam.PCollection) -> beam.PCollection:\n", + " return pcoll | beam.Map(self._fix_encoding_and_attrs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define the Recipe Object\n", + "The recipe pipeline of transforms applied to `pattern` is similar to that described in {doc}`netcdf_zarr_sequential`, with the following modifications:\n", + "1. Due to the decoding issue described earlier, `decode_times=false` is specified to `OpenWithXarray`.\n", + "1. The new preprocessing transform `FixEncodingAttrs` is included in the pipeline." + ] + }, { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.Dataset>\n",
-       "Dimensions:             (time: 12, nbounds: 2, depth: 57, lat: 36, lon: 72)\n",
-       "Coordinates:\n",
-       "    climatology_bounds  (time, nbounds) float32 dask.array<chunksize=(1, 2), meta=np.ndarray>\n",
-       "    crs                 int32 ...\n",
-       "  * depth               (depth) float32 0.0 5.0 10.0 ... 1.45e+03 1.5e+03\n",
-       "    depth_bnds          (depth, nbounds) float32 dask.array<chunksize=(57, 2), meta=np.ndarray>\n",
-       "  * lat                 (lat) float32 -87.5 -82.5 -77.5 -72.5 ... 77.5 82.5 87.5\n",
-       "    lat_bnds            (lat, nbounds) float32 dask.array<chunksize=(36, 2), meta=np.ndarray>\n",
-       "  * lon                 (lon) float32 -177.5 -172.5 -167.5 ... 167.5 172.5 177.5\n",
-       "    lon_bnds            (lon, nbounds) float32 dask.array<chunksize=(72, 2), meta=np.ndarray>\n",
-       "  * time                (time) float32 372.5 373.5 374.5 ... 381.5 382.5 383.5\n",
-       "Dimensions without coordinates: nbounds\n",
-       "Data variables:\n",
-       "    s_dd                (time, depth, lat, lon) int32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
-       "    s_mn                (time, depth, lat, lon) float32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
-       "    s_sd                (time, depth, lat, lon) float32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
-       "    s_se                (time, depth, lat, lon) float32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
-       "    t_dd                (time, depth, lat, lon) int32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
-       "    t_mn                (time, depth, lat, lon) float32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
-       "    t_sd                (time, depth, lat, lon) float32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
-       "    t_se                (time, depth, lat, lon) float32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
-       "Attributes: (12/39)\n",
-       "    Conventions:                     CF-1.6, ACDD-1.3\n",
-       "    cdm_data_type:                   Grid\n",
-       "    comment:                         global climatology as part of the World ...\n",
-       "    contributor_name:                Ocean Climate Laboratory\n",
-       "    contributor_role:                Calculation of climatologies\n",
-       "    creator_email:                   NCEI.info@noaa.gov\n",
-       "    ...                              ...\n",
-       "    publisher_type:                  institution\n",
-       "    publisher_url:                   http://www.ncei.noaa.gov/\n",
-       "    sea_name:                        World-Wide Distribution\n",
-       "    standard_name_vocabulary:        CF Standard Name Table v49\n",
-       "    time_coverage_duration:          P63Y\n",
-       "    time_coverage_resolution:        P01M
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A place for our data to go" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'/tmp/tmpmkk0h21h/output.zarr'" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "\n", - "Dimensions: (time: 12, nbounds: 2, depth: 57, lat: 36, lon: 72)\n", - "Coordinates:\n", - " climatology_bounds (time, nbounds) float32 dask.array\n", - " crs int32 ...\n", - " * depth (depth) float32 0.0 5.0 10.0 ... 1.45e+03 1.5e+03\n", - " depth_bnds (depth, nbounds) float32 dask.array\n", - " * lat (lat) float32 -87.5 -82.5 -77.5 -72.5 ... 77.5 82.5 87.5\n", - " lat_bnds (lat, nbounds) float32 dask.array\n", - " * lon (lon) float32 -177.5 -172.5 -167.5 ... 167.5 172.5 177.5\n", - " lon_bnds (lon, nbounds) float32 dask.array\n", - " * time (time) float32 372.5 373.5 374.5 ... 381.5 382.5 383.5\n", - "Dimensions without coordinates: nbounds\n", - "Data variables:\n", - " s_dd (time, depth, lat, lon) int32 dask.array\n", - " s_mn (time, depth, lat, lon) float32 dask.array\n", - " s_sd (time, depth, lat, lon) float32 dask.array\n", - " s_se (time, depth, lat, lon) float32 dask.array\n", - " t_dd (time, depth, lat, lon) int32 dask.array\n", - " t_mn (time, depth, lat, lon) float32 dask.array\n", - " t_sd (time, depth, lat, lon) float32 dask.array\n", - " t_se (time, depth, lat, lon) float32 dask.array\n", - "Attributes: (12/39)\n", - " Conventions: CF-1.6, ACDD-1.3\n", - " cdm_data_type: Grid\n", - " comment: global climatology as part of the World ...\n", - " contributor_name: Ocean Climate Laboratory\n", - " contributor_role: Calculation of climatologies\n", - " creator_email: NCEI.info@noaa.gov\n", - " ... ...\n", - " publisher_type: institution\n", - " publisher_url: http://www.ncei.noaa.gov/\n", - " sea_name: World-Wide Distribution\n", - " standard_name_vocabulary: CF Standard Name Table v49\n", - " time_coverage_duration: P63Y\n", - " time_coverage_resolution: P01M" + "source": [ + "import os\n", + "from tempfile import TemporaryDirectory\n", + "td = TemporaryDirectory()\n", + "target_root = td.name\n", + "store_name = \"output.zarr\"\n", + "target_store = os.path.join(target_root, store_name)\n", + "target_store" ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ds = xr.open_zarr(target_store)\n", - "ds" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Just to check, we will make a plot." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "" + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<_ChainedPTransform(PTransform) label=[Create|OpenURLWithFSSpec|OpenWithXarray|FixEncodingAttrs|StoreToZarr] at 0x7fed26e108b0>" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transforms = (\n", + " beam.Create(pattern.items())\n", + " | OpenURLWithFSSpec()\n", + " | OpenWithXarray(file_type=pattern.file_type, xarray_open_kwargs=dict(decode_times=False))\n", + " | FixEncodingAttrs() # New preprocessor\n", + " | StoreToZarr(\n", + " store_name=store_name,\n", + " target_root=target_root,\n", + " combine_dims=pattern.combine_dim_keys,\n", + " )\n", + ")\n", + "transforms" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 4: Run the Recipe\n", + "\n", + "Execute the recipe pipeline using Beam." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" + ] + }, + { + "data": { + "application/javascript": [ + "\n", + " if (typeof window.interactive_beam_jquery == 'undefined') {\n", + " var jqueryScript = document.createElement('script');\n", + " jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n", + " jqueryScript.type = 'text/javascript';\n", + " jqueryScript.onload = function() {\n", + " var datatableScript = document.createElement('script');\n", + " datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n", + " datatableScript.type = 'text/javascript';\n", + " datatableScript.onload = function() {\n", + " window.interactive_beam_jquery = jQuery.noConflict(true);\n", + " window.interactive_beam_jquery(document).ready(function($){\n", + " \n", + " });\n", + " }\n", + " document.head.appendChild(datatableScript);\n", + " };\n", + " document.head.appendChild(jqueryScript);\n", + " } else {\n", + " window.interactive_beam_jquery(document).ready(function($){\n", + " \n", + " });\n", + " }" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:apache_beam.coders.coder_impl:Using fallback deterministic coder for type '' in '[14]: Create|OpenURLWithFSSpec|OpenWithXarray|FixEncodingAttrs|StoreToZarr/StoreToZarr/DetermineSchema/CombinePerKey(CombineXarraySchemas)/GroupByKey'. \n", + "WARNING:apache_beam.coders.coder_impl:Using fallback deterministic coder for type '' in '[14]: Create|OpenURLWithFSSpec|OpenWithXarray|FixEncodingAttrs|StoreToZarr/StoreToZarr/DetermineSchema/CombinePerKey(CombineXarraySchemas)/GroupByKey'. \n", + "WARNING:apache_beam.coders.coder_impl:Using fallback deterministic coder for type '' in '[14]: Create|OpenURLWithFSSpec|OpenWithXarray|FixEncodingAttrs|StoreToZarr/StoreToZarr/DetermineSchema/CombinePerKey(CombineXarraySchemas)'. \n", + "/home/derek/anaconda3/envs/forgerunner/lib/python3.9/site-packages/xarray/core/dataset.py:2081: SerializationWarning: saving variable None with floating point data as an integer dtype without any _FillValue to use for NaNs\n", + " return to_zarr( # type: ignore\n", + "/home/derek/anaconda3/envs/forgerunner/lib/python3.9/site-packages/xarray/core/dataset.py:2081: SerializationWarning: saving variable None with floating point data as an integer dtype without any _FillValue to use for NaNs\n", + " return to_zarr( # type: ignore\n" + ] + } + ], + "source": [ + "with beam.Pipeline() as p:\n", + " p | transforms" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 5: Check the Target\n", + "\n", + "All the data should be there!" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+              "Dimensions:             (time: 12, nbounds: 2, depth: 57, lat: 36, lon: 72)\n",
+              "Coordinates:\n",
+              "    climatology_bounds  (time, nbounds) float32 dask.array<chunksize=(1, 2), meta=np.ndarray>\n",
+              "    crs                 int32 ...\n",
+              "  * depth               (depth) float32 0.0 5.0 10.0 ... 1.45e+03 1.5e+03\n",
+              "    depth_bnds          (depth, nbounds) float32 dask.array<chunksize=(57, 2), meta=np.ndarray>\n",
+              "  * lat                 (lat) float32 -87.5 -82.5 -77.5 -72.5 ... 77.5 82.5 87.5\n",
+              "    lat_bnds            (lat, nbounds) float32 dask.array<chunksize=(36, 2), meta=np.ndarray>\n",
+              "  * lon                 (lon) float32 -177.5 -172.5 -167.5 ... 167.5 172.5 177.5\n",
+              "    lon_bnds            (lon, nbounds) float32 dask.array<chunksize=(72, 2), meta=np.ndarray>\n",
+              "  * time                (time) float32 372.5 373.5 374.5 ... 381.5 382.5 383.5\n",
+              "Dimensions without coordinates: nbounds\n",
+              "Data variables:\n",
+              "    s_dd                (time, depth, lat, lon) int32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
+              "    s_mn                (time, depth, lat, lon) float32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
+              "    s_sd                (time, depth, lat, lon) float32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
+              "    s_se                (time, depth, lat, lon) float32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
+              "    t_dd                (time, depth, lat, lon) int32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
+              "    t_mn                (time, depth, lat, lon) float32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
+              "    t_sd                (time, depth, lat, lon) float32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
+              "    t_se                (time, depth, lat, lon) float32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
+              "Attributes: (12/39)\n",
+              "    Conventions:                     CF-1.6, ACDD-1.3\n",
+              "    cdm_data_type:                   Grid\n",
+              "    comment:                         global climatology as part of the World ...\n",
+              "    contributor_name:                Ocean Climate Laboratory\n",
+              "    contributor_role:                Calculation of climatologies\n",
+              "    creator_email:                   NCEI.info@noaa.gov\n",
+              "    ...                              ...\n",
+              "    publisher_type:                  institution\n",
+              "    publisher_url:                   http://www.ncei.noaa.gov/\n",
+              "    sea_name:                        World-Wide Distribution\n",
+              "    standard_name_vocabulary:        CF Standard Name Table v49\n",
+              "    time_coverage_duration:          P63Y\n",
+              "    time_coverage_resolution:        P01M
" + ], + "text/plain": [ + "\n", + "Dimensions: (time: 12, nbounds: 2, depth: 57, lat: 36, lon: 72)\n", + "Coordinates:\n", + " climatology_bounds (time, nbounds) float32 dask.array\n", + " crs int32 ...\n", + " * depth (depth) float32 0.0 5.0 10.0 ... 1.45e+03 1.5e+03\n", + " depth_bnds (depth, nbounds) float32 dask.array\n", + " * lat (lat) float32 -87.5 -82.5 -77.5 -72.5 ... 77.5 82.5 87.5\n", + " lat_bnds (lat, nbounds) float32 dask.array\n", + " * lon (lon) float32 -177.5 -172.5 -167.5 ... 167.5 172.5 177.5\n", + " lon_bnds (lon, nbounds) float32 dask.array\n", + " * time (time) float32 372.5 373.5 374.5 ... 381.5 382.5 383.5\n", + "Dimensions without coordinates: nbounds\n", + "Data variables:\n", + " s_dd (time, depth, lat, lon) int32 dask.array\n", + " s_mn (time, depth, lat, lon) float32 dask.array\n", + " s_sd (time, depth, lat, lon) float32 dask.array\n", + " s_se (time, depth, lat, lon) float32 dask.array\n", + " t_dd (time, depth, lat, lon) int32 dask.array\n", + " t_mn (time, depth, lat, lon) float32 dask.array\n", + " t_sd (time, depth, lat, lon) float32 dask.array\n", + " t_se (time, depth, lat, lon) float32 dask.array\n", + "Attributes: (12/39)\n", + " Conventions: CF-1.6, ACDD-1.3\n", + " cdm_data_type: Grid\n", + " comment: global climatology as part of the World ...\n", + " contributor_name: Ocean Climate Laboratory\n", + " contributor_role: Calculation of climatologies\n", + " creator_email: NCEI.info@noaa.gov\n", + " ... ...\n", + " publisher_type: institution\n", + " publisher_url: http://www.ncei.noaa.gov/\n", + " sea_name: World-Wide Distribution\n", + " standard_name_vocabulary: CF Standard Name Table v49\n", + " time_coverage_duration: P63Y\n", + " time_coverage_resolution: P01M" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds = xr.open_zarr(target_store)\n", + "ds" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Just to check, we will make a plot." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHFCAYAAAA+FskAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxD0lEQVR4nO3deVhU1f8H8PeAMOyIoCzK4r6bhkuouWSKiqZZ7rlnuaXkbpbiiitSlmuGWq7lkmkiVi7hLmJfU9NUBFQQV0BUtjm/P/gxOcwdmGEGZkbfr+e5zyPnnjnzObPgh3POPVcmhBAgIiIiMnEWxg6AiIiISBtMWoiIiMgsMGkhIiIis8CkhYiIiMwCkxYiIiIyC0xaiIiIyCwwaSEiIiKzwKSFiIiIzAKTFiIiIjILTFrI4K5evYqJEyfC398fZcuWRbly5dCiRQv89NNPanVv3bqF4OBgtG7dGmXLloVMJsP69euLfI5nz56hRo0akMlkWLJkicq5kJAQyGQyjcfWrVs1tvvBBx9AJpOhS5cuaufS0tIwffp01KhRA3Z2dqhYsSJ69uyJixcvqtQ7f/48goKC4OPjA1tbW5QrVw4BAQH44YcfJJ8zOzsbYWFhqF+/PmxtbVG2bFk0b94cx48f1xjnpUuXIJfLIZPJcPbsWZVzbdq0KbT/ycnJGtvV1fr16yGTyXDz5k2DtSll/vz52L17t8bnL/gaGMuTJ08QHBwMLy8v2NjYoGHDhoV+3gpKSUnB4MGD4ebmBjs7OwQEBOD333/X6rF+fn7K93jMmDHF7YJeNm/ejPDwcKM8NwA8fvxY5bNe8HcDmb8yxg6AXj5RUVHYt28fBgwYgCZNmiAnJwfbtm1Dz549MWvWLMyYMUNZ99q1a9i0aRMaNmyIzp07Y8uWLVo9xxdffIGMjAzJcx9++CE6duyoVj58+HBcv35d8hwA7Nu3D7t374aTk5Pk+a5du+Ls2bMICQlB48aNcevWLcyePRsBAQG4cOECfH19AeT94vT29kbfvn1RsWJFZGRkYNOmTRgwYABu3ryJzz//XNlmbm4u3n33XURHR2Py5Mlo3rw5MjIyEBMTo7F/ubm5GDp0KNzc3HDnzh218ytWrEBaWppK2dOnT9GxY0f4+/vDw8NDsl1TNn/+fLz//vvo3r27sUMpVI8ePXDmzBksWLAANWrUwObNm9G3b18oFAr069ev0MdmZmaiXbt2ePz4Mb788ktUqFAB33zzDTp27IjffvsNrVu3LvL5O3fujC+++MJo7/HmzZvx999/Izg42CjP7+joiBMnTiApKQk9evQwSgxUwgSZladPnwqFQmHsMAp17949yRiDgoKEnZ2deP78ubIsNzdX+e8zZ84IACIiIqLQ9k+dOiWsra3Fjz/+KACIxYsXFxlTXFyckMlk4oMPPpA8//jxY1GxYkURFhYmfH19RVBQkMr5f//9VwAQn3/+uUr58ePHBQARFhZWZAzNmjUT3t7eKmXLli0TFhYW4sSJE0U+Pt/ixYtFxYoVxZdffikAiDNnzhT5mPXr1wsA4ttvv9X6ebQREREhAIi4uDiDtluQvb29GDRokMbn1+Y1KGn79u0TAMTmzZtVytu3by+8vLxETk5OoY//5ptvBABx/PhxZVl2draoU6eOaNq0aZHP7+vrK/kalaagoCDh6+tr8HafPn2qU/24uDitfzeQeeH0kBH9888/6Nu3L9zd3SGXy+Hj44OBAwciMzMTwH9D31FRURg6dCjKly8POzs7ZGZm4t69e/joo4/g7e0NuVyO8uXLo0WLFvjtt9+M3CvAzc0NMplMrbxp06Z4+vQpHj58qCyzsNDtI5iVlYWhQ4di9OjRaNy4sdaP++677yCEwIcffih5fsKECfD09MTYsWMlz1tZWQEAnJ2dVcrLli0LALCxsSkyBjc3N5Qpozq4+eWXX6JVq1Z44403inw8APz777+YMWMGVqxYoXFESMq6devg4OCA3r17a/2Ygk6ePIkWLVrAxsYGXl5emDZtGrKzsyXrbtu2DQEBAbC3t4eDgwMCAwMRGxurUmfw4MFwcHDAxYsX0a5dO9jb26N8+fIYM2YMnj59qqwnk8mQkZGBDRs2KIf927Rpo9JWeno6Ro4cCTc3N7i6uqJHjx6So1AladeuXXBwcEDPnj1VyocMGYI7d+7g1KlTRT6+Zs2aCAgIUJaVKVMGH3zwAU6fPo3bt28XK67Dhw9DJpNh8+bNmDJlCjw9PeHg4ICuXbvi7t27SE9Px0cffQQ3Nze4ublhyJAhePLkiUobQgisWLECDRs2hK2tLVxcXPD+++/jxo0byjpt2rTBvn37EB8frzJFky8rKwtz585FrVq1lL+zhgwZgnv37qk8l5+fH7p06YKdO3eiUaNGsLGxwaxZswAAP/74I5o1awZnZ2fY2dmhSpUqGDp0aLFeFzJPTFqM5K+//kKTJk1w8uRJzJ49G/v370doaCgyMzORlZWlUnfo0KGwsrLC999/j59++glWVlYYMGAAdu/ejRkzZiAqKgrffvst3n77bTx48KDQ5xVCICcnR6vD0A4dOoTy5cujQoUKxW5j9uzZyMjIwJw5c7R+jEKhwPr161GtWjXJIfbffvsNGzduxLfffgtLS0vJNnx9fdGtWzcsW7YMhw4dwpMnT/DPP/9g7Nix8PHxQZ8+fSSfNycnB/fu3cOKFStw4MABTJkyRXk+MTERN2/eRP369fHZZ5/B3d0dZcqUQd26dbFhwwa19vKTri5duuCdd97Ruv///vsv/vzzT/Tp0wcODg5aP+5Fly5dUk5drF+/HqtWrUJsbCzmzp2rVnf+/Pno27cv6tSpg+3bt+P7779Heno63nzzTVy6dEmlbnZ2Njp37ox27dph9+7dGDNmDFavXq2SXJ04cQK2trbo3LkzTpw4gRMnTmDFihUq7Xz44YewsrLC5s2bsWjRIhw+fBgffPBBkf0y5Pfh77//Ru3atdUS0wYNGijPF/X4/LpSjy+4dkpXn332GVJSUrB+/XosXboUhw8fRt++ffHee+/B2dkZW7ZsweTJk/H999/js88+U3nsxx9/jODgYLz99tvYvXs3VqxYgYsXL6J58+a4e/cugLxpyRYtWsDDw0P5Pp04cQJA3nehW7duWLBgAfr164d9+/ZhwYIFOHjwINq0aYNnz56pPN+5c+cwadIkjB07FpGRkXjvvfdw4sQJ9O7dG1WqVMHWrVuxb98+zJgxo0R+V5EJM+o4zyvsrbfeEmXLlhUpKSka6+QPfQ8cOFDtnIODgwgODtb5eQ8dOiQAaHUYcsh/7dq1AoD48ssvNdYpanooNjZWWFlZicjISCGE9kPA+/fvFwBEaGio2rn09HTh5+cnpk2bpiyTmh4SQoisrCwxfPhwldeoQYMGGl+njz/+WFnP2tparFixQuX8iRMnBADh5OQk6tSpI7Zv3y4OHDgg3n//fQFArFmzRqX+8uXLhYuLi0hOThZCaD81MmXKFAFApymognr37i1sbW2Vzy2EEDk5OaJWrVoqn5WEhARRpkwZ8cknn6g8Pj09XXh4eIhevXopywYNGiT5mZg3b54AIKKjo5VlRU0PjRo1SqV80aJFAoBISkoqtF/5j9fmKEr16tVFYGCgWvmdO3cEADF//vxCH29lZSU+/vhjtfL8KciC004FaZoeyv/Od+3aVaU8ODhYABBjx45VKe/evbsoV66c8uf8z+nSpUtV6iUmJgpbW1sxefJkZZmm6aEtW7YIAGLHjh0q5fnf+Re/G76+vsLS0lJcuXJFpe6SJUsEAPH48WPpF+AFnB56eXGkxQiePn2KI0eOoFevXihfvnyR9d977z21sqZNm2L9+vWYO3cuTp48qXGYviB/f3+cOXNGq8PLy6vQtgr+JSqEkKy3f/9+jB49Gu+//z4++eQTreKUeq6hQ4eid+/eCAwM1Omx69atQ5kyZTB48GC1c1OnToWVlZXK4mBNRo4ciR07dmDZsmU4cuQItm3bBmtra7z11luIj49Xq//ZZ5/hzJkz2LdvH4YOHYoxY8aoXM2gUCgAAM+fP8evv/6Knj17okOHDti+fTtef/11zJ49W1k3Pj4e06ZNw+LFi+Hu7q5133NycrBhwwbUrVtX6ykoKYcOHUK7du1UntvS0lJtuunAgQPIycnBwIEDVT4bNjY2aN26NQ4fPqzWdv/+/VV+zl+weujQIa3jKzjylD86IfW+vKhr165afx+0ITUtqs05Qz2+MAWviKtduzYAICgoSK384cOHyimivXv3QiaT4YMPPlB5Tz08PPDaa69JvqcF7d27F2XLlkXXrl1V2mjYsCE8PDzU2mjQoAFq1KihUtakSRMAQK9evbB9+/ZiT5cZy9GjR9G1a1d4eXlBJpNJXg1XmCtXrqBt27Zwd3eHjY0NqlSpgs8//1ztd39mZiamT58OX19fyOVyVK1aFd99950Be2JcvHrICB49eoTc3FxUqlRJq/qenp5qZdu2bcPcuXPx7bff4osvvoCDgwPeffddLFq0qNArBxwcHNCwYUOtnrfgMHdB+es88kVERKglBgcOHECPHj3Qvn17bNq0qdi/eMPDw3Hjxg1s374djx8/BgDlFTLPnz/H48eP4ejoqDa9c//+fezZswdBQUFqr8vp06exYsUK7Ny5E8+fP8fz588B/Det8/jxY9ja2kIulyMyMhLr1q3Djz/+iPfff1/ZRocOHeDn54eQkBBERESotO/j4wMfHx8AeVd1AMC0adMwaNAglC9fHq6urgCAWrVqKa88AvL+cwoMDERoaChSUlJQoUIFjB49GvXq1cN7772n7H/+uo8nT54gNTVVbb0NAPz6669ITk5WmZYqjgcPHkh+rgqW5U8V5P8HU1DBNUxlypRRvg4F2yxqqvNFBduQy+UAoDbtUFC5cuUkX7ficHV1lYw5fw1XuXLlSvTxRSn4eGtr60LLnz9/DgcHB9y9exdCCI3JcpUqVYp87rt37+Lx48fKtgu6f/++ys9Sv/NatWqF3bt346uvvlKu/atbty6mT5+Ovn37FhmDsWVkZOC1117DkCFDJP8QLYqVlRUGDhyI119/HWXLlsVff/2F4cOHQ6FQYP78+cp6vXr1wt27d7Fu3TpUq1YNKSkpL9UUGpMWIyhXrhwsLS1x69YtrepL/Ufv5uaG8PBwhIeHIyEhAXv27MHUqVORkpKCyMhIjW0dOXIEbdu21ep54+Li4Ofnp/F8wb8+K1eurPLzgQMH0L17d7Ru3Ro7duzQ+AtLG3///TdSU1NRvXp1tXNffPEFvvjiC8TGxqolZN9//z2ysrIkF+BeunQJQgi8++67aucSExPh4uKCZcuWITg4GOfPnweg/p9x2bJlUa1atSLXKwB5o2OrVq3CjRs3UL58eVStWhV2dnaSdfNHrfL/k//7778RHx8PFxcXtbpt27aFs7OzMpl50bp162BtbY0BAwYUGV9hXF1dJfd3KVjm5uYGAPjpp59UEjFNcnJy8ODBA5WkI7/NgolISdiwYQOGDBmiVV1NI4n56tevjy1btiAnJ0cl4b9w4QIAoF69ekU+Pr/ui7R9fEnJX1j/559/KpPBF0mVSbXh6uqq8XeTo6Ojys+a/rjp1q0bunXrhszMTJw8eRKhoaHo168f/Pz8VBYwm6JOnTqhU6dOGs9nZWXh888/x6ZNm/D48WPUq1cPCxcuVC46r1KlikqC6Ovri8OHD+PPP/9UlkVGRuLIkSO4ceOGMhkt7He4OWLSYgS2trZo3bo1fvzxR8ybN0/5i764fHx8MGbMGPz+++84duxYoXXzp4e0UdT0UGFX70RFRaF79+5o2bIldu/erdUvtsJMnTpVbRQnOTkZffv2xYgRI9C7d29Uq1ZN7XHr1q2Dl5eX5C+Ljh07Sk5B9OnTB5UrV0ZoaKiyzfzX4uTJkyr/GT948ABXr15Fu3btiuzDoUOHYGFhofzFU6ZMGXTr1g0//fQTbt68qfzlIoRAZGQkqlatqvxsbN26VTkSlC8yMhILFy7EqlWrULduXbXnS05Oxq+//ooePXronQC0bdsWe/bswd27d5V/cefm5mLbtm0q9QIDA1GmTBlcv35d678mN23apHLV1ubNmwFA5QohuVxe5KhJceRPDxnCu+++i7Vr12LHjh0q02YbNmyAl5cXmjVrVuTjR40ahVOnTinr5uTk4IcffkCzZs2K/D6WlC5dumDBggW4ffs2evXqVWhdTe9Tly5dsHXrVuTm5hb5OmhDLpcrN6Q8cOAAYmNjTT5pKcqQIUNw8+ZNbN26FV5eXti1axc6duyICxcuSP6xdu3aNURGRqrsR7Nnzx40btwYixYtwvfffw97e3u88847mDNnDmxtbUuzOyWGSYuRhIWFoWXLlmjWrBmmTp2KatWq4e7du9izZw9Wr16t9pfHi1JTU9G2bVv069cPtWrVgqOjI86cOaP2AZbi6Oio06XCxREdHY3u3bvDw8MDn332mXKUIl+dOnVULtfN3yk3//LJs2fPKq9yyZ+KqVWrFmrVqqXSTv4urFWrVlW7BBYATp06hYsXL+Kzzz6TvCrIw8NDcsrDxsYGrq6uKm326NEDM2bMwMiRI3Hr1i28/vrrSEpKwuLFi/H06VOMGzdOWfejjz6Ck5MTmjZtCnd3d9y/fx8//vgjtm3bhkmTJqmsY5ozZw7279+Pjh07IiQkBE5OTvj222/x119/Yfv27cp6UutR8vvv7+8v+Z5u2LABOTk5Gi/zBvJ2D541axYOHTok+Rrm+/zzz7Fnzx689dZbmDFjBuzs7PDNN9+obYDn5+eH2bNnY/r06bhx4wY6duwIFxcX3L17F6dPn4a9vb3y8lUgbypi6dKlePLkCZo0aYLjx49j7ty56NSpE1q2bKmsV79+fRw+fBi//PILPD094ejoiJo1a2qMV1uurq4GG9Hp1KkT2rdvj5EjRyItLQ3VqlXDli1bEBkZiR9++EHlMzhs2DBs2LAB169fVybBQ4cOxTfffIOePXtiwYIFqFChAlasWIErV64YdSuDFi1a4KOPPsKQIUNw9uxZtGrVCvb29khKSkJ0dDTq16+PkSNHAsh7n3bu3ImVK1fC398fFhYWaNy4Mfr06YNNmzahc+fOGDduHJo2bQorKyvcunULhw4dQrdu3SRHPF80Y8YM3Lp1C+3atUOlSpWUm/BZWVlptfGeKbt+/Tq2bNmCW7duKZPTiRMnIjIyEhERESrTP82bN8e5c+eQmZmJjz76SGXt240bNxAdHQ0bGxvs2rUL9+/fx6hRo/Dw4cOXZ12LMVcBv+ouXbokevbsKVxdXYW1tbXw8fERgwcPVm6+punqkOfPn4sRI0aIBg0aCCcnJ2Fraytq1qwpZs6cKTIyMozRFRUzZ84s9CqMQ4cOqdQvrG5hirpCYPjw4UImk4nr16/rFL+mq4eSkpLEmDFjRLVq1YSNjY3w8vISQUFBalflfPfdd+LNN98Ubm5uokyZMqJs2bKidevW4vvvv5d8vgsXLoigoCDh6OgobGxsxBtvvCF++eWXIuMs6uqhGjVqCD8/v0I3I5wwYYKQyWTi8uXLRT7fsWPHxBtvvCHkcrnw8PAQkyZNEmvWrJG80mz37t2ibdu2wsnJScjlcuHr6yvef/998dtvvynrDBo0SNjb24v//e9/ok2bNsLW1laUK1dOjBw5Ujx58kSlvfPnz4sWLVoIOzs7AUC0bt260Ncg/4qZgp+1kpaeni7Gjh0rPDw8hLW1tWjQoIHYsmWLWr38K6cKvm7Jycli4MCBoly5csrPwsGDB7V67qKuHvrxxx9VyjW9dvnf33v37qmUf/fdd6JZs2bC3t5e2NraiqpVq4qBAweKs2fPKus8fPhQvP/++6Js2bJCJpOpfIezs7PFkiVLxGuvvSZsbGyEg4ODqFWrlvj444/Fv//+q9IPqe/f3r17RadOnUTFihWFtbW1qFChgujcubP4888/1eqa+tVDAMSuXbuUP2/fvl0AEPb29ipHmTJlVK64EyLvCr2LFy+KzZs3i4oVK4qFCxcqz7Vv317Y2NioXGG1Y8cOIZPJdN6gz1TJhChiopaIXlpNmzaFr68vfvzxx1J/7sGDB+Onn35S28iMisfPzw+tW7fGunXrYGFhofPGjS+LnJwcxMfHo1q1ali8eDEmTpxo7JDUyGQy7Nq1S3lbim3btqF///64ePGi2qiwg4ODxosrfvjhB3z00UdIT0+HpaUlBg0ahGPHjuHatWvKOpcvX0adOnVw9epVyWkmc/NqfqqJCGlpafjrr79UhpfJvG3cuBFWVlYad3Z+2T1+/BhWVlaS69tMWaNGjZCbm4uUlBRUq1ZN5SjsalAhBLKzs5WLxFu0aIE7d+6o/CFw9epVWFhYaH21qqnjmhaiV5STk5PylhFk/n755Rfl+6nPrtPmLH99Xz5vb28jRqPqyZMnKiMgcXFxOH/+PMqVK4caNWqgf//+GDhwIJYuXYpGjRrh/v37+OOPP1C/fn107twZmzZtgpWVFerXrw+5XI6YmBhMmzYNvXv3Vl6t1q9fP8yZMwdDhgzBrFmzcP/+fUyaNAlDhw59aRbicnqIiIiohB0+fFhyu4lBgwZh/fr1yM7Oxty5c7Fx40bcvn0brq6uCAgIwKxZs1C/fn1s27YNixYtwtWrVyGEgK+vLz744AN8+umnKvc+++eff/DJJ5/g2LFjcHV1Ra9evTB37lwmLURERESliWtaiIiIyCwwaSEiIiKzwIW4BSgUCty5cweOjo5636CMiIhebkIIpKenw8vLq8QuM3/+/DmysrIM0pa1tbXKGhhzw6SlgDt37pjUinMiIjJ9iYmJJXJZ8fPnz1HZ1wHJKbkGac/DwwNxcXFmm7gwaSkgf/v81zaOhqXdf/fLsdqgfqM6AKgcfEWt7MTZWhI1gZFvHVQrWxGr//bT8n/VP3yZ1Z9L1ATcyqlv5HX/oYPedaU0r3pDslzq9bG+L/0Xiq32N/rF4zek+yx7pH6jRk3PJ/W6Sb0OAFDDJUWt7Ph16Tvelj2p/h5pilfq/dRE0/usbQzPNOxgL9Wuprh0iUHqtcz5VfreW1KxZbkpJOsKF/W/QqXed011Nb3HunzepZ7PtepDyboPrqvfsVkqLkC3902KLr8LpD7TgG7fWV1o+n5LfTc8f7GSqAk8K69+iw5dfhdoIvXeSb0+2RlZ2PHO9kJvvaKPrKwsJKfkIi7GF06O+r3maekKVPaPR1ZWFpOWl0X+lJClnRyW9v8lLWWspN9gawf1L4GFhg+DjYP6y21hp/8Hx1Ku3oaF9M2DYWmfrV73uXQMutSVIvXaANKvj6Vc+stoqcONoTX1WfZMvRFNzyfVhtTrAGh47zW8n5bWOrxHEu+nJpra0DYGSw33sZR8HTTEpVMMEq+lkIgr7/kknstGQ9Jip/5+Sr3vmupqeo91+bxLfs7spV9gqe+AVFyAbu+b5HPp8LvAEN9ZXWj6fkvFXMZKOmmxtFZPWnT5XaCJ1Hun6fUBNN+Z2lCcHC30TlpeBkxaiIiITFyuUCBXzw1KcoV00m9OmLQQERGZOAUEFNAva9H38aaAY01ERERkFjjSQkREZOIUUEDfyR39WzA+Ji1EREQmLlcI5Op51x19H28KOD1EREREZoEjLURERCaOC3HzMGnR4MH1cip7E4ge0hs/9XSKVyu7XMNdsu6XUZ3UyqptfSZZt8wd9V2Xbg7wkazr932CWtmV8dI7M96D+gZINv9I70Xh/Lv6Doyud6Q3n8rxUt/t6sJr9STrVv0rQ63swWv2knXd96v3DQDS/SuqlT1+IL2HwptvXFIrO/pvNcm6UmqXuytZPsr9D63KAKBJO/U9Js5kSu8NctK/qlrZuTRfrWMY/O1Yybp2Ejtq2km/nXgA9c9Epd/V3zcAwLy/1IrK+Gi/M+iV8dLz7PJ7+g0EC1fp76xM6nOiYbO28q7pWj+f1Hfr/lXphqVik4wLwDOJvfccW9zTOi5NW57de6B+RqoMACARr+sR6X1TbvdQ/1xX3Cld92kF9T1WAOnXImu49E509SW+n5cfSv8Orl1d+rss5XWJ3+2bbjZVK8vNyNS6TX0oIJDLpIXTQ0RERGQeONJCRERk4jg9lIdJCxERkYnj1UN5mLQQERGZOMX/H/q2Ye64poWIiIjMgtkkLTk5Ofj8889RuXJl2NraokqVKpg9ezYUiv9yRyEEQkJC4OXlBVtbW7Rp0wYXL140YtRERET6y/3/q4f0Pcyd2SQtCxcuxKpVq/D111/j8uXLWLRoERYvXozly5cr6yxatAhhYWH4+uuvcebMGXh4eKB9+/ZIT9f+skUiIiJTkysMc5g7s0laTpw4gW7duiEoKAh+fn54//330aFDB5w9exZA3ihLeHg4pk+fjh49eqBevXrYsGEDnj59is2bNxs5eiIiItKX2SQtLVu2xO+//46rV68CAP766y9ER0ejc+fOAIC4uDgkJyejQ4cOysfI5XK0bt0ax48fN0rMREREhqAw0GHuzObqoSlTpiA1NRW1atWCpaUlcnNzMW/ePPTt2xcAkJycDABwd1fdCdHd3R3x8eo7G+bLzMxEZuZ/OxqmpaWVQPRERETFp4AMuZDp3Ya5M5ukZdu2bfjhhx+wefNm1K1bF+fPn0dwcDC8vLwwaNAgZT2ZTPVNEUKolb0oNDQUs2bNUit3vmIBS+v/BqKeuUlvdb/qnyC1sszy0vlsVYkt+6W26weAnIRbamWV5qmXAUCO5HNJbx/uFR6nXlhdsirQVUO5hKP/VlArkz2Qfh0e17ZVK7vWa6V0wzO1j6HuNyMly0//InE7gVrPtW43wudPDWektybXVhO59OObyCVuXVBW+nYGUjFUmic9sii1tb7U5wwAKu3S8HRa0tSulKrB2tctKZpuO3C3k/qtM6S21QcgceODQtyTuE2ChvftwcfN1cqcO/+r9VMduKN+mwUACOwxUK3seh/176YmtzXc2kRqC/6nFaQH9R+1lP4eSt1aJP1eecm61y+VUytzTpJuV+rWIppiOAr1W31I9U3xXPvfJaQ/s5kemjRpEqZOnYo+ffqgfv36GDBgAD799FOEhoYCADw8PAD8N+KSLyUlRW305UXTpk1Damqq8khMTCy5ThARERWDQhjmMHdmk7Q8ffoUFhaq4VpaWiovea5cuTI8PDxw8OBB5fmsrCwcOXIEzZur/6WSTy6Xw8nJSeUgIiIyJbn/Pz2k72HuzGZ6qGvXrpg3bx58fHxQt25dxMbGIiwsDEOHDgWQNy0UHByM+fPno3r16qhevTrmz58POzs79OvXz8jRExERkb7MJmlZvnw5vvjiC4waNQopKSnw8vLCxx9/jBkzZijrTJ48Gc+ePcOoUaPw6NEjNGvWDFFRUXB01HRzdiIiItNniJESjrSUIkdHR4SHhyM8PFxjHZlMhpCQEISEhJRaXERERCVNIWRQCD2vHtLz8abAbJIWIiKiVxVHWvKYzUJcIiIierVxpIWIiMjE5cICuXqOM+QaKBZjYtJCRERk4oQB1rSIl2BNi0wI8RJsN2M4aWlpcHZ2hu/CubCw+W9XxrKXpTNc9/2adirVji47h2ry7N1mamW2GnaElNqBN92/omTdB3Us1cocW9zTOq57D6Sv2pLa7VIT2/vS5WdnathBV0K17R+rlbnVkN6JOP2Y+q6bft9Lv8f7Tu7TOobSFOj1mrFDeLm9UUKv70npnWs17WhbmqS+Q/J70r8TpXb2ldrVF9C8u/DF0erfb6kYAOnvstT3WBNNv2OkfrdfGa++c7Li+XPET/kcqampJbLPV/7/Sb9f8IG9o34jLRnpCrSrn1BisZYGjrQQERGZOC7EzcOkhYiIyMTlCgvkCj3XtLwE8yq8eoiIiIjMAkdaiIiITJwCMij0HGdQwPyHWpi0EBERmTiuacnD6SEiIiIyCxxpISIiMnGGWYjL6SEiIiIqYXlrWvS8YeJLMD3EpIWIiMjEKQywjT8X4r7EnK9YwNL6vw+IXYr0XRtyvFzVyg7s3FhicUkz/o6ZOmmnfdUhCW9qXVfTjpnXeq3Wvo2r6m1o2rVYaudZQ+xe+jLvaFtSu7vq+5ppiivojSC1sn2l/v02Pl2+QxgtVaj/+65TDA31fjpgpnbV0tJz4TLFAM9HWmHSQkREZOK4piUPkxYiIiITp4AF92kBL3kmIiIiM8GRFiIiIhOXK2TIFXpuLqfn400BkxYiIiITl2uAq4dyOT1EREREVDo40kJERGTiFMICCj2vHlLw6iEiIiIqaZweysPpISIiIjILHGnRoNx3p1BGZlV0xTde3t1LS5OmnW8vP3SXLK92Unr3W21p2kG1po/67rc5BmhXasdV7nybR5fXzBDPp4t9J/eVSLtknqQ+qzkiG8CNEn9uBfS/+kdhmFCMikkLERGRiTPM5nLmP7nCpIWIiMjEGWYbf/NPWsy/B0RERPRK4EgLERGRiVNABgX0XdPCHXGJiIiohHF6KI9Z9eD27dv44IMP4OrqCjs7OzRs2BAxMTHK80IIhISEwMvLC7a2tmjTpg0uXrxoxIiJiIjIUMwmaXn06BFatGgBKysr7N+/H5cuXcLSpUtRtmxZZZ1FixYhLCwMX3/9Nc6cOQMPDw+0b98e6enpxguciIhIT/mby+l7mDuzmR5auHAhvL29ERERoSzz8/NT/lsIgfDwcEyfPh09evQAAGzYsAHu7u7YvHkzPv5Yv309iIiIjEUhZFDou0/LS3CXZ7NJu/bs2YPGjRujZ8+eqFChAho1aoS1a9cqz8fFxSE5ORkdOnRQlsnlcrRu3RrHjx83RshERERkQGaTtNy4cQMrV65E9erVceDAAYwYMQJjx47Fxo0bAQDJyckAAHd31R1U3d3dleekZGZmIi0tTeUgIiIyJQoDTA1xc7lSpFAo0LhxY8yfPx8A0KhRI1y8eBErV67EwIEDlfVkMtXhLyGEWtmLQkNDMWvWrOIHdtI0t2cvqW3NS0qEz5+S5W88fF+y3K3GA7Wy+1ddtX4+za9PybyfpvCZMAV8HUgbrUZ/pHVd212n1As13F7lwM6NamXm8pk0zF2ezT9pMZseeHp6ok6dOipltWvXRkJCAgDAw8MDANRGVVJSUtRGX140bdo0pKamKo/ExEQDR05ERESGYDZJS4sWLXDlyhWVsqtXr8LX1xcAULlyZXh4eODgwYPK81lZWThy5AiaN2+usV25XA4nJyeVg4iIyJTkQmaQw9yZzfTQp59+iubNm2P+/Pno1asXTp8+jTVr1mDNmjUA8qaFgoODMX/+fFSvXh3Vq1fH/PnzYWdnh379+hk5eiIiouLj9FAes0lamjRpgl27dmHatGmYPXs2KleujPDwcPTv319ZZ/LkyXj27BlGjRqFR48eoVmzZoiKioKjo6MRIyciItJPLqD3SEmuYUIxKrNJWgCgS5cu6NKli8bzMpkMISEhCAkJKb2giIiIqFSYVdJCRET0KuL0UB7z7wEREdFLLv+GifoeusjJycHnn3+OypUrw9bWFlWqVMHs2bOhUChKqJdF40gLERERqVm4cCFWrVqFDRs2oG7dujh79iyGDBkCZ2dnjBs3zigxMWkhIiIycQIyKPRciCt0fPyJEyfQrVs3BAUFAci739+WLVtw9uxZveLQB5OWl5Quuzya8u65Jxv+pHXdVms17KLZS78YNL0+5rKTpikx5c8amQ6pXW7L+FSSrJsjVSixUzlg3t/Z4kzvSLUBQO12NXK5HHK5XK1+y5YtsWrVKly9ehU1atTAX3/9hejoaISHh+sVhz6YtBAREb1CvL29VX6eOXOm5FW3U6ZMQWpqKmrVqgVLS0vk5uZi3rx56Nu3bylFqo5JCxERkYlTCBkUQr/pofzHJyYmquz+LjXKAgDbtm3DDz/8gM2bN6Nu3bo4f/48goOD4eXlhUGDBukVS3ExaSEiIjJx+Xdq1rcNAFrfsmbSpEmYOnUq+vTpAwCoX78+4uPjERoaarSkhZc8ExERkZqnT5/CwkI1TbC0tOQlz0RERKSZIaeHtNW1a1fMmzcPPj4+qFu3LmJjYxEWFoahQ4fqFYc+mLQQERGZOAUsoNBzckTXxy9fvhxffPEFRo0ahZSUFHh5eeHjjz/GjBkz9IpDH0xaiIiITFyukCFXz5EWXR/v6OiI8PBwo17iXBDXtBAREZFZ4EgLERGRiTPGmhZTxKSFNO4SaW67lx79Zo3ebZjzjpklzdw+D5o0njVSrcwuJVeyriE+U2QYOQm3jB2CUQkD3OVZ8C7PRERERKWDIy1EREQmLhcy5Op5w0R9H28KmLQQERGZOIXQf02KQhgoGCPi9BARERGZBY60EBERmTiFARbi6vt4U8CkhYiIyMQpIINCzzUp+j7eFDBpISIiMnHG2BHXFJn/WBERERG9EjjSQkREZOK4piUPkxZ6JXHnW8PR97XUZaddQ7xvZ++s1L7db/R+OgK/b4aggAG28X8J1rSYf9pFRERErwSOtBAREZk4YYCrh8RLMNLCpIWIiMjE8S7PeTg9RERERGaBIy1EREQmjlcP5THbHoSGhkImkyE4OFhZJoRASEgIvLy8YGtrizZt2uDixYvGC5KIiMgA8qeH9D3MnVkmLWfOnMGaNWvQoEEDlfJFixYhLCwMX3/9Nc6cOQMPDw+0b98e6enpRoqUiIiIDMXskpYnT56gf//+WLt2LVxcXJTlQgiEh4dj+vTp6NGjB+rVq4cNGzbg6dOn2Lx5sxEjJiIi0k/+vYf0Pcyd2SUto0ePRlBQEN5++22V8ri4OCQnJ6NDhw7KMrlcjtatW+P48eOlHSYREZHBcHooj1ktxN26dSvOnTuHM2fOqJ1LTk4GALi7u6uUu7u7Iz4+XmObmZmZyMzMVP6clpZmoGiJiIgMg5c859EqaXn99dd1alQmk2HPnj2oWLFisYKSkpiYiHHjxiEqKgo2NjaFPveLhBBqZS8KDQ3FrFmzDBYnmR5uIa47qa31S+p11KVdXbb8p5LF7xUZg1ZJy/nz5zFhwgQ4ODgUWVcIgQULFqiMXhhCTEwMUlJS4O/vryzLzc3F0aNH8fXXX+PKlSsA8kZcPD09lXVSUlLURl9eNG3aNIwfP175c1paGry9vQ0aOxERkT440pJH6+mhSZMmoUKFClrVXbp0abED0qRdu3a4cOGCStmQIUNQq1YtTJkyBVWqVIGHhwcOHjyIRo0aAQCysrJw5MgRLFy4UGO7crkccrnc4PESEREZCpOWPFolLXFxcShfvrzWjV66dAleXl7FDkqKo6Mj6tWrp1Jmb28PV1dXZXlwcDDmz5+P6tWro3r16pg/fz7s7OzQr18/g8ZCREREpU+rpMXX11enRo01vTJ58mQ8e/YMo0aNwqNHj9CsWTNERUXB0dHRKPEQEREZggAMcMNE81esq4ceP36M06dPIyUlBQqFQuXcwIEDDRKYNg4fPqzys0wmQ0hICEJCQkotBiIiopLG6aE8Oictv/zyC/r374+MjAw4OjqqXJkjk8lKNWkhIiKiV4fOm8tNmDABQ4cORXp6Oh4/foxHjx4pj4cPH5ZEjERERK80bi6XR+eRltu3b2Ps2LGws7MriXiIiIioAE4P5dF5pCUwMBBnz54tiViIiIiINNJqpGXPnj3KfwcFBWHSpEm4dOkS6tevDysrK5W677zzjmEjJKOR2vHSlHck5Q6dJUuX9760d8/V93Npyp9rIoAjLfm0Slq6d++uVjZ79my1MplMhtzcXL2DIiIiov8IIYPQM+nQ9/GmQKukpeBlzURERFR6FJDpvU+Lvo83BTqvadm4caPkfYWysrKwceNGgwRFREREVJDOScuQIUOQmpqqVp6eno4hQ4YYJCgiIiL6Dy95zqPzJc9CCJUN5fLdunULzs7OBgmKiIiI/sM1LXm0TloaNWoEmUwGmUyGdu3aoUyZ/x6am5uLuLg4dOzYsUSCJCIiItI6acm/guj8+fMIDAyEg4OD8py1tTX8/Pzw3nvvGTxAIiKiVx0vec6jddIyc+ZM5ObmwtfXF4GBgfD09CzJuIiIiOj/cXooj04LcS0tLTFixAg8f/68pOIhIiIikqTzQtz69evjxo0bqFy5cknEQyaupHYk5W62xlFSO8Ga2w6zQW8ESZbvO7mvlCMhkiYMMD30yo20AMC8efMwceJE7N27F0lJSUhLS1M5iIiIyLAEACH0PIzdCQPQeaQl/wqhd955R+XS5/xLobmNPxEREZUEnZOWQ4cOlUQcREREpIECMsi4jb/uSUvr1q1LIg4iIiLSgFcP5dE5aQGAx48fY926dbh8+TJkMhnq1KmDoUOHckdcIiKiEqAQMsi4T4vuC3HPnj2LqlWrYtmyZXj48CHu37+PsLAwVK1aFefOnSuJGImIiIh0H2n59NNP8c4772Dt2rXKrfxzcnLw4YcfIjg4GEePHjV4kERERK+y/CuA9G3D3OmctJw9e1YlYQGAMmXKYPLkyWjcuLFBgyMiIiKuacmn8/SQk5MTEhIS1MoTExPh6OhokKCIiIiICtJ5pKV3794YNmwYlixZgubNm0MmkyE6OhqTJk1C3759SyJGMgNSO9qa266oL7uX+f3Q9/Ony863uuzebG6vOXemNl0cacmjc9KyZMkSyGQyDBw4EDk5OQAAKysrjBw5EgsWLDB4gERERK86Xj2UR+ekxdraGl9++SVCQ0Nx/fp1CCFQrVo12NnZlUR8RERERACKuU8LANjZ2aF+/fqGjIWIiIgk8OqhPDonLRkZGViwYAF+//13pKSkQKFQqJy/ceOGwYIjIiKi/KRF3zUtBgrGiHROWj788EMcOXIEAwYMgKenp8pNE4mIiIhKis5Jy/79+7Fv3z60aNGiJOIhIiKiAnj1UB6d92lxcXFBuXLlSiKWQoWGhqJJkyZwdHREhQoV0L17d1y5ckWljhACISEh8PLygq2tLdq0aYOLFy+WeqxERESGJAx0mDudk5Y5c+ZgxowZePr0aUnEo9GRI0cwevRonDx5EgcPHkROTg46dOiAjIwMZZ1FixYhLCwMX3/9Nc6cOQMPDw+0b98e6enppRorERGRIeWPtOh7mDudp4eWLl2K69evw93dHX5+frCyslI5X1I3TYyMjFT5OSIiAhUqVEBMTAxatWoFIQTCw8Mxffp09OjRAwCwYcMGuLu7Y/Pmzfj4449LJC4iIiIqHTonLd27dy+BMHSXmpoKAMqpqri4OCQnJ6NDhw7KOnK5HK1bt8bx48c1Ji2ZmZnIzMxU/pyWllaCURMRERWDIeZ3ivH427dvY8qUKdi/fz+ePXuGGjVqYN26dfD399czmOLROWmZOXOmVvW2bNmCd955B/b29joHVRQhBMaPH4+WLVuiXr16AIDk5GQAgLu7u0pdd3d3xMfHa2wrNDQUs2bNMniMxC3BqfRIbZev6fOny9b6+n6GSzuG0uwblTJDTO/o+PhHjx6hRYsWaNu2Lfbv348KFSrg+vXrKFu2rH5x6KHYm8sV5eOPP0azZs1QpUoVg7c9ZswY/O9//0N0dLTauYKXYAshCr0se9q0aRg/frzy57S0NHh7exsuWCIiIjO0cOFCeHt7IyIiQlnm5+dnvIBQjIW42hIltIvNJ598gj179uDQoUOoVKmSstzDwwPAfyMu+VJSUtRGX14kl8vh5OSkchAREZmS/B1x9T2AvD/OXzxeXCLxoj179qBx48bo2bMnKlSogEaNGmHt2rWl2Gt1JZa0GJoQAmPGjMHOnTvxxx9/oHLlyirnK1euDA8PDxw8eFBZlpWVhSNHjqB58+alHS4REZHBGPLqIW9vbzg7OyuP0NBQyee8ceMGVq5cierVq+PAgQMYMWIExo4di40bN5Zm11WU2PSQoY0ePRqbN2/Gzz//DEdHR+WIirOzM2xtbSGTyRAcHIz58+ejevXqqF69OubPnw87Ozv069fPyNETERGZhsTERJVZBblcLllPoVCgcePGmD9/PgCgUaNGuHjxIlauXImBAweWSqwFmU3SsnLlSgBAmzZtVMojIiIwePBgAMDkyZPx7NkzjBo1Co8ePUKzZs0QFRUFR0fHUo6WiIjIgIRM54W0km0AWi+F8PT0RJ06dVTKateujR07dugXhx7MJmnRZo2MTCZDSEgIQkJCSj4gIiKiUmKMuzy3aNFCbef5q1evwtfXV79A9FBia1p8fX3VNp4jIiIi8/Dpp5/i5MmTmD9/Pq5du4bNmzdjzZo1GD16tNFi0jlpSUxMxK1bt5Q/nz59GsHBwVizZo1Kvb///puXDhMRERmCEW4+1KRJE+zatQtbtmxBvXr1MGfOHISHh6N///4G6VJx6Dw91K9fP3z00UcYMGAAkpOT0b59e9StWxc//PADkpOTMWPGjJKIk4iI6JVlrLs8d+nSBV26dNHreQ1J56Tl77//RtOmTQEA27dvR7169XDs2DFERUVhxIgRTFqIyCRo2h3WFHaCLakY9N091xReGyrEy3CbZj3pPD2UnZ2tvDzqt99+wzvvvAMAqFWrFpKSkgwbHREREdH/0zlpqVu3LlatWoU///wTBw8eRMeOHQEAd+7cgaurq8EDJCIietUZcnM5c6Zz0rJw4UKsXr0abdq0Qd++ffHaa3nDiXv27FFOGxEREZEBGWEhrinSeU1LmzZtcP/+faSlpcHFxUVZ/tFHH8HOzs6gwRERERHlK9Y+LUIIxMTEYPXq1UhPTwcAWFtbM2khIiIqETIDHeZN55GW+Ph4dOzYEQkJCcjMzET79u3h6OiIRYsW4fnz51i1alVJxElERPTqMsT0zkswPaTzSMu4cePQuHFjPHr0CLa2tsryd999F7///rtBgyMiIiLKp/NIS3R0NI4dOwZra2uVcl9fX9y+fdtggREREdH/40gLgGIkLQqFArm5uWrlt27d4t2UiYiISoIB7/JsznROWtq3b4/w8HDlvYZkMhmePHmCmTNnonPnzgYPkEhfmnZG1dbLskuoVD/0fW3MEXeCzfMq9pnMn85Jy7Jly9C2bVvUqVMHz58/R79+/fDvv//Czc0NW7ZsKYkYiYiIXmlC5B36tmHudE5avLy8cP78eWzZsgXnzp2DQqHAsGHD0L9/f5WFuURERGQgXNMCoBhJCwDY2tpi6NChGDp0qKHjISIiooK4pgVAMTeX+/7779GyZUt4eXkhPj4eQN600c8//2zQ4IiIiIjy6Zy0rFy5EuPHj0enTp3w6NEj5ZVELi4uCA8PN3R8RERErzyZMMxR2hQKBa5evYro6GgcPXpU5SgOnaeHli9fjrVr16J79+5YsGCBsrxx48aYOHFisYIgIiKiQpjhmpaTJ0+iX79+iI+PhyiwClgmk0lun1IUnZOWuLg4NGrUSK1cLpcjIyND5wCIiIjo5TNixAg0btwY+/btg6enJ2Qy/dfU6Jy0VK5cGefPn4evr69K+f79+1GnTh29AyIiIqICzHAh7r///ouffvoJ1apVM1ibOictkyZNwujRo/H8+XMIIXD69Gls2bIFoaGh+Pbbbw0WGBEREf0/M5weatasGa5du2bcpGXIkCHIycnB5MmT8fTpU/Tr1w8VK1bEl19+iT59+hgsMCIiIjJfn3zyCSZMmIDk5GTUr18fVlZWKucbNGigc5s6JS05OTnYtGkTunbtiuHDh+P+/ftQKBSoUKGCzk9MZC502ere3LZGL6l4Tfn2AOb2HulL03sh9TqU8akkWXffyX1aPZ5KkBmOtLz33nsAoLKnm0wmgxCidBbililTBiNHjsTly5cBAG5ubjo/IREREenIDJOWuLg4g7ep8/RQs2bNEBsbq7YQl4iIiChfSeQJOicto0aNwoQJE3Dr1i34+/vD3t5e5Xxx5qiIiIioEGZ49RAA3L59G8eOHUNKSgoUCoXKubFjx+rcns5JS+/evdWeTN85KiIiItLMEDvalvaOuBERERgxYgSsra3h6uqqsk+LTCYrnaSlJOaoiIiIqBBmuKZlxowZmDFjBqZNmwYLi2Ld6lCNzkmLOaxlWbFiBRYvXoykpCTUrVsX4eHhePPNN40dFhER0Svj6dOn6NOnj8ESFqAYScuePXsky2UyGWxsbFCtWjVUrlxZ78CKa9u2bQgODsaKFSvQokULrF69Gp06dcKlS5fg4+NjtLiIiIheJcOGDcOPP/6IqVOnGqxNnZOW7t27K9ewvOjFdS0tW7bE7t274eLiYrBAtRUWFoZhw4bhww8/BACEh4fjwIEDWLlyJUJDQ0s9HiIiIn3JYIA1LQaJRHuhoaHo0qULIiMjJTeXCwsL07lNncdsDh48iCZNmuDgwYNITU1FamoqDh48iKZNm2Lv3r04evQoHjx4YJQ7PmdlZSEmJgYdOnRQKe/QoQOOHz8u+ZjMzEykpaWpHERERKSf+fPn48CBA7h79y4uXLiA2NhY5XH+/PlitanzSMu4ceOwZs0aNG/eXFnWrl072NjY4KOPPsLFixcRHh6usgNeabl//z5yc3Ph7u6uUu7u7o7k5GTJx4SGhmLWrFmlER6VMFPYhVWX3UdfZpr6W5rv0av2mmtiiNeBr6UJMMNLnsPCwvDdd99h8ODBBmtT55GW69evw8nJSa3cyckJN27cAABUr14d9+/f1z+6Yip4++v8aSsp06ZNU44YpaamIjExsTRCJCIi0p4w0FGK5HI5WrRoYdA2dU5a/P39MWnSJNy7d09Zdu/ePUyePBlNmjQBkHc76kqVpO9hUZLc3NxgaWmpNqqSkpKiNvqSTy6Xw8nJSeUgIiIi/YwbNw7Lly83aJs6Tw+tW7cO3bp1Q6VKleDt7Q2ZTIaEhARUqVIFP//8MwDgyZMn+OKLLwwaqDasra3h7++PgwcP4t1331WWHzx4EN26dSv1eIiIiAzCDPdpOX36NP744w/s3bsXdevWVVuIu3PnTp3b1DlpqVmzJi5fvowDBw7g6tWrEEKgVq1aaN++vfJa7O7du+sciKGMHz8eAwYMQOPGjREQEIA1a9YgISEBI0aMMFpMRERE+jDHHXHLli2LHj16GLRNnZMWIG/NSMeOHdGmTRvI5XKN60WMoXfv3njw4AFmz56NpKQk1KtXD7/++qtZbIpHRET0soiIiNCq3rFjx9C4cWPI5fIi6+q8pkWhUGDOnDmoWLEiHBwclNv6f/HFF1i3bp2uzZWIUaNG4ebNm8jMzERMTAxatWpl7JCIiIiKzwwX4mqrU6dOuH37tlZ1dU5a5s6di/Xr12PRokWwtrZWltevXx/ffvutrs0RERFRUV7ipKXgZrWF0Tlp2bhxI9asWYP+/fvD0tJSWd6gQQP8888/ujZHRERERchf06LvYe50Tlpu376NatWqqZUrFApkZ2cbJCgiIiKignReiFu3bl38+eefagtbf/zxRzRq1MhggRHpyhR2YdVElxi4+ygZS07CLWOHAED6+/LKfy/McEfckqBz0jJz5kwMGDAAt2/fhkKhwM6dO3HlyhVs3LgRe/fuLYkYiYiIXm1muE+LtnS5Alnn6aGuXbti27Zt+PXXXyGTyTBjxgxcvnwZv/zyC9q3b69rc0RERPQSevbsGZ4+far8OT4+HuHh4YiKilKpp8tC3GLt0xIYGIjAwMDiPJSIiIh0ZI6by3Xr1g09evTAiBEj8PjxYzRr1gxWVla4f/8+wsLCMHLkSABAenq61m3qPNJCREREpcwML3k+d+4c3nzzTQDATz/9BHd3d8THx2Pjxo346quvitWmViMtLi4uWs85PXz4sFiBEBER0cvj6dOncHR0BABERUWhR48esLCwwBtvvIH4+PhitalV0hIeHq7894MHDzB37lwEBgYiICAAAHDixAkcOHDAKDdJJCIieukZYp+VUh5pqVatGnbv3o13330XBw4cwKeffgoASElJgZOTU7Ha1CppGTRokPLf7733HmbPno0xY8Yoy8aOHYuvv/4av/32mzIoIiIiMhAzvHpoxowZ6NevHz799FO0a9dOOdARFRVV7C1SdF7TcuDAAXTs2FGtPDAwEL/99luxgiAiIqKXy/vvv4+EhAScPXsWkZGRyvJ27dph2bJlxWpT56TF1dUVu3btUivfvXs3XF1dixUEERERFcIMF+ICgIeHBxo1agQLi//SjaZNm6JWrVrFak/nS55nzZqFYcOG4fDhw8qhnpMnTyIyMpI3TCTSwSu/wye9Msr4VJIs17QDL78b6szxkueSoHPSMnjwYNSuXRtfffUVdu7cCSEE6tSpg2PHjqFZs2YlESMRERFR8TaXa9asGTZt2mToWIiIiIg00mpNS1pamk6N6rK7HRERERXBTNe0GJpWSYuLiwtSUlK0brRixYq4ceNGsYMiIiKi/+SvadH3MHdaTQ8JIfDtt9/CwcFBq0azs7P1CoqIiIioIK2SFh8fH6xdu1brRj08PGBlZVXsoIiIiKiAl2CkRF9aJS03b94s4TCIiIhIIzPcEbck8C7PREREZBaKdckzERERlR5uLpeHSQsREZGp4/QQACYt9AqQ2hL8wJ2/jBAJlRRdtn2Xeu+5bbzhSH+39P++8T0igGtaiIiITJ6x92kJDQ2FTCZDcHCwwfpUHMVKWv7880988MEHCAgIwO3btwEA33//PaKjow0aHBEREcGoO+KeOXMGa9asQYMGDfTqgiHonLTs2LEDgYGBsLW1RWxsLDIzMwHkbd0/f/58gwdIRET0yjNS0vLkyRP0798fa9euhYuLi97d0JfOScvcuXOxatUqrF27VmUDuebNm+PcuXMGDY6IiIgMKy0tTeXIH3yQMnr0aAQFBeHtt98uxQg10zlpuXLlClq1aqVW7uTkhMePHxsiJiIiInqBIde0eHt7w9nZWXmEhoZKPufWrVtx7tw5jeeNQeekxdPTE9euXVMrj46ORpUqVQwSVEE3b97EsGHDULlyZdja2qJq1aqYOXMmsrKyVOolJCSga9eusLe3h5ubG8aOHatWh4iIyOwYcHooMTERqampymPatGlqT5eYmIhx48bhhx9+gI2NTcn2TQc6X/L88ccfY9y4cfjuu+8gk8lw584dnDhxAhMnTsSMGTNKIkb8888/UCgUWL16NapVq4a///4bw4cPR0ZGBpYsWQIAyM3NRVBQEMqXL4/o6Gg8ePAAgwYNghACy5cvL5G4iIiIzI2TkxOcnJwKrRMTE4OUlBT4+/sry3Jzc3H06FF8/fXXyMzMhKWlZUmHqkbnpGXy5MlITU1F27Zt8fz5c7Rq1QpyuRwTJ07EmDFjSiJGdOzYER07dlT+XKVKFVy5cgUrV65UJi1RUVG4dOkSEhMT4eXlBQBYunQpBg8ejHnz5hX5BhEREZmsUt5crl27drhw4YJK2ZAhQ1CrVi1MmTLFKAkLUMzN5ebNm4fp06fj0qVLUCgUqFOnDhwcHAwdW6FSU1NRrlw55c8nTpxAvXr1lAkLAAQGBiIzMxMxMTFo27atZDuZmZkqi5DS0tJKLmgiIqJiKO1t/B0dHVGvXj2VMnt7e7i6uqqVl6Zi74hrZ2eHxo0bGzIWrV2/fh3Lly/H0qVLlWXJyclwd3dXqefi4gJra2skJydrbCs0NBSzZs0qsViJAO7mSebNFHaQ1hQDv1uvFq2Slh49emjd4M6dO7WuGxISUmTCcObMGZXk6M6dO+jYsSN69uyJDz/8UKWuTCZTe7wQQrI837Rp0zB+/Hjlz2lpafD29ta2C0RERCXPBO49dPjwYT0D0J9WSYuzs7Py30II7Nq1C87OzspkIiYmBo8fP9YpuQGAMWPGoE+fPoXW8fPzU/77zp07aNu2LQICArBmzRqVeh4eHjh16pRK2aNHj5Cdna02AvMiuVwOuVyuU9xERESliXd5zqNV0hIREaH895QpU9CrVy+sWrVKuRAnNzcXo0aN0nmxq5ubG9zc3LSqe/v2bbRt2xb+/v6IiIiAhYXq1doBAQGYN28ekpKS4OnpCSBvca5cLldZ/UxERETmSed9Wr777jtMnDhRZeWwpaUlxo8fj++++86gweW7c+cO2rRpA29vbyxZsgT37t1DcnKyylqVDh06oE6dOhgwYABiY2Px+++/Y+LEiRg+fDivHCIiIvNmxHsPmRKdF+Lm5OTg8uXLqFmzpkr55cuXoVAoDBbYi6KionDt2jVcu3YNlSpVUjknRN67YGlpiX379mHUqFFo0aIFbG1t0a9fP+Ul0URERGbLBNa0mAKdk5YhQ4Zg6NChuHbtGt544w0AwMmTJ7FgwQIMGTLE4AECwODBgzF48OAi6/n4+GDv3r0lEgMREZGxyP7/0LcNc6dz0rJkyRJ4eHhg2bJlSEpKApC3tf/kyZMxYcIEgwdIREREBBQjabGwsMDkyZMxefJk5UZsXDNCRERUgjg9BECPzeUAJitERESlgZc859E5aalcuXKhm7XduHFDr4CIzBl35yyc1OtT2rut8j16uUh9fvgev7x0TlqCg4NVfs7OzkZsbCwiIyMxadIkQ8VFRERE+Tg9BKAYScu4ceMky7/55hucPXtW74CIiIhIwkuQdOhL583lNOnUqRN27NhhqOaIiIiIVOi1EPdFP/30E8qVK2eo5oiIiOj/cSFuHp2TlkaNGqksxBVCIDk5Gffu3cOKFSsMGhwRERGBa1r+n85JS7du3VSSFgsLC5QvXx5t2rRBrVq1DBocERERUT6dk5aQkJASCIOIiIg04fRQHp0X4lpaWiIlJUWt/MGDByp3fiYiIiID4V2eARRjpCX/rsoFZWZmwtraWu+AiIiISBVHWvJonbR89dVXAACZTIZvv/0WDg4OynO5ubk4evQo17QQkcFwV1PToctOxrq8b4bYDZmfk1eL1knLsmXLAOSNtKxatUplKsja2hp+fn5YtWqV4SMkIiJ61fHqIQA6JC1xcXEAgLZt22Lnzp1wcXEpsaCIiIjoBUxaABRjTcuhQ4dKIg4iIiKiQmmVtIwfPx5z5syBvb09xo8fX2jdsLAwgwRGREREebgQN49WSUtsbCyys7MBAOfOnVPZXI6IiIhKGKeHAGiZtLw4JXT48OGSioWIiIhII503lxs6dCjS09PVyjMyMjB06FCDBEVERET/kQlhkMPc6Zy0bNiwAc+ePVMrf/bsGTZu3GiQoIiIiOgF3BEXgA5XD6WlpUEIASEE0tPTYWNjozyXm5uLX3/9FRUqVCiRIImIiIi0TlrKli0LmUwGmUyGGjVqqJ2XyWSYNWuWQYMjIiIiXj2UT+uk5dChQxBC4K233sKOHTtQrlw55Tlra2v4+vrCy8urRIIkMiZuE16y+PqaJ0O8b3zvdcCrhwDokLS0bt0aQN7OuN7e3rCw0Hk5DBERERUDR1ry6Lwjrq+vLwDg6dOnSEhIQFZWlsr5Bg0aGCYyIiIiohfonLTcu3cPQ4YMwf79+yXP5+bm6h0UERERvYDTQwCKcclzcHAwHj16hJMnT8LW1haRkZHYsGEDqlevjj179pREjERERK+0/OkhfQ9zp/NIyx9//IGff/4ZTZo0gYWFBXx9fdG+fXs4OTkhNDQUQUFBJREnERERveJ0HmnJyMhQ7sdSrlw53Lt3DwBQv359nDt3zrDRScjMzETDhg0hk8lw/vx5lXMJCQno2rUr7O3t4ebmhrFjx6qtuSEiIjI73FwOQDGSlpo1a+LKlSsAgIYNG2L16tW4ffs2Vq1aBU9PT4MHWNDkyZMlL63Ozc1FUFAQMjIyEB0dja1bt2LHjh2YMGFCicdERERU0l71qSGgGNNDwcHBSEpKAgDMnDkTgYGB2LRpE6ytrbF+/XpDx6di//79iIqKwo4dO9QWAkdFReHSpUtITExUJjVLly7F4MGDMW/ePDg5OZVobERERFSydE5a+vfvr/x3o0aNcPPmTfzzzz/w8fGBm5ubQYN70d27dzF8+HDs3r0bdnZ2audPnDiBevXqqYzCBAYGIjMzEzExMWjbtq1ku5mZmcjMzFT+nJaWZvjgiYiI9CFE3qFvG2ZO56SlIDs7O7z++uuGiEUjIQQGDx6MESNGoHHjxrh586ZaneTkZLi7u6uUubi4wNraGsnJyRrbDg0N5e0HSIk7dBKRKeLmcnm0SlrGjx+vdYNhYWFa1w0JCSkyYThz5gyOHz+OtLQ0TJs2rdC6MplMrUwIIVmeb9q0aSr9S0tLg7e3dxGRExERUWnTKmmJjY3VqrHCkgMpY8aMQZ8+fQqt4+fnh7lz5+LkyZOQy+Uq5xo3boz+/ftjw4YN8PDwwKlTp1TOP3r0CNnZ2WojMC+Sy+Vq7RIREZkUbi4HQMuk5dChQyXy5G5ublqtg/nqq68wd+5c5c937txBYGAgtm3bhmbNmgEAAgICMG/ePCQlJSmvYoqKioJcLoe/v3+JxE9ERFQaZIq8Q982zJ3ea1pKg4+Pj8rPDg4OAICqVauiUqVKAIAOHTqgTp06GDBgABYvXoyHDx9i4sSJGD58OK8cIiIi88aRFgDF2KfFVFlaWmLfvn2wsbFBixYt0KtXL3Tv3h1LliwxdmhERERkAGYx0lKQn58fhMSlWz4+Pti7d68RIiIiIio5vHooj1kmLURERK8U7tMC4CWaHiIiIqKXG0daiIiITBynh/IwaaGX3oE7fxk7BCIi/fDqIQCcHiIiIiIzwZEWIiIiE8fpoTxMWoiIiEwdrx4CwOkhIiIiMhMcaSEiIjJxnB7Kw6SFiIjI1PHqIQBMWoiIiEweR1rycE0LERERmQWOtBAREZk6hcg79G3DzDFpoZdeq9EfqZXZ7jplhEiIiIqJa1oAcHqIiIiIzARHWoiIiEycDAZYiGuQSIyLSQsREZGp4464ADg9RERERBJCQ0PRpEkTODo6okKFCujevTuuXLli1JiYtBAREZm4/H1a9D10ceTIEYwePRonT57EwYMHkZOTgw4dOiAjI6NkOqkFTg8RERGZOiNcPRQZGanyc0REBCpUqICYmBi0atVKz2CKh0kLERHRKyQtLU3lZ7lcDrlcXuTjUlNTAQDlypUrkbi0wekhIiIiEycTwiAHAHh7e8PZ2Vl5hIaGFvn8QgiMHz8eLVu2RL169Uq6uxpxpIWIiMjUKf7/0LcNAImJiXByclIWazPKMmbMGPzvf/9DdHS0nkHoh0kLERGRiXtxpESfNgDAyclJJWkpyieffII9e/bg6NGjqFSpkl4x6ItJC730uGV/6SvjI/2LLSfhVilHQkTFJYTAJ598gl27duHw4cOoXLmysUNi0kJERGTyjHD10OjRo7F582b8/PPPcHR0RHJyMgDA2dkZtra2egZTPFyIS0REZOryd8TV99DBypUrkZqaijZt2sDT01N5bNu2rYQ6WTSOtBAREZEaYYLb/jNpISIiMnHF2dFWqg1zx6SFiIjI1PGGiQDMbE3Lvn370KxZM9ja2sLNzQ09evRQOZ+QkICuXbvC3t4ebm5uGDt2LLKysowULRERERmS2Yy07NixA8OHD8f8+fPx1ltvQQiBCxcuKM/n5uYiKCgI5cuXR3R0NB48eIBBgwZBCIHly5cbMXIiIiL9yBR5h75tmDuzSFpycnIwbtw4LF68GMOGDVOW16xZU/nvqKgoXLp0CYmJifDy8gIALF26FIMHD8a8efN02kiHiIjIpHB6CICZTA+dO3cOt2/fhoWFBRo1agRPT0906tQJFy9eVNY5ceIE6tWrp0xYACAwMBCZmZmIiYnR2HZmZibS0tJUDiIiIjI9ZjHScuPGDQBASEgIwsLC4Ofnh6VLl6J169a4evUqypUrh+TkZLi7u6s8zsXFBdbW1soNcaSEhoZi1qxZJRo/vTo07gTr5apXu888bSTLHWNua/1cZe48UCtL96+odbu60NhfiXJNfdN3J2NN74UuJPtx8i+tn0/TDsC61CUCYJTN5UyRUUdaQkJCIJPJCj3Onj0LhSJvIm769Ol477334O/vj4iICMhkMvz444/K9mQymdpzCCEky/NNmzYNqampyiMxMdHwHSUiItKDIe/ybM6MOtIyZswY9OnTp9A6fn5+SE9PBwDUqVNHWS6Xy1GlShUkJCQAADw8PHDqlOpfZo8ePUJ2drbaCMyL5HK5Vne4JCIiMhquaQFg5KTFzc0Nbm5uRdbz9/eHXC7HlStX0LJlSwBAdnY2bt68CV9fXwBAQEAA5s2bh6SkJHh6egLIW5wrl8vh7+9fcp0gIiKiUmEWa1qcnJwwYsQIzJw5E97e3vD19cXixYsBAD179gQAdOjQAXXq1MGAAQOwePFiPHz4EBMnTsTw4cN55RAREZk3AUDfS5bNf6DFPJIWAFi8eDHKlCmDAQMG4NmzZ2jWrBn++OMPuLi4AAAsLS2xb98+jBo1Ci1atICtrS369euHJUuWGDlyIiIi/RhiTQrXtJQiKysrLFmypNAkxMfHB3v37i3FqIiIiKi0mE3SQkRE9MoSMMBCXINEYlRMWoiIiEwdrx4CYCY74hIRERFxpEVLGnc6ldrF8o3XJOveamev9fO5XspVK9Nph1ANMWjazVNKie3aKRWbDnEZgqb3c9/JfWpldb8ZKVnX9r72z2eXIvF+Jj2XrKtph1gpmna0lWIL9d1dNX2mcrRuVQMNO+JK9e1Oa+nNH8tWaK5W9ri2/nd8k99T/1tN03sp9XzydupxAUCl3zPUyq7NqyBZ1yVa/XV45uajdbvX+9hK1n3zjUtqZRE+f0rWrfr7EPV220VI1g16I0it7B8NfSvvmq5W1t/vtGTdL6M6SZbXDFP/PXO3k/Tr47r6uHqhht9/10ZbqpXZ/CP9fZN63Uv795QKBQDN+6Rq34aZY9JCRERk4nj1UB4mLURERKaOa1oAcE0LERERmQmOtBAREZk6jrQAYNJCRERk+pi0AOD0EBEREZkJjrQQERGZOl7yDIBJCxERkcnjJc95OD1EREREZoEjLURERKaOC3EBADIhXoJeGFBaWhqcnZ1RfdJ8WMr/2945s7z0ZKBwzVIrk9qiG5Deyv1pBfVtpQHgmZt6md/3CZJ1pbZy17Q9+7N3m6nX1bCdvNSW11JbdOvKebadeqGG7bFTf60uWa5pW3Apn5SVft20tfyx9PbhUt6wvS4dw+W+amW6bG1e9rL2g6JSnx1A+jN8rddqrdslepVU2/6xWpnULSByM5/j38WfITU1FU5OTgaPI///pLerBqOMpVyvtnJyM/Hb9fASi7U0cHqIiIiIzAKnh4iIiEwdp4cAMGkhIiIyAwZIWsCkhYiIiEoaR1oAcE0LERERmQmOtBAREZk6hYDe0zsK8x9pYdJCRERk6oQi79C3DTPH6SEiIiIyCxxpISIiMnVciAuASYvWaobdkiy/OUB9t1RNO5KW6fZQvUzD811s+JN64WhN0Un4RtMJ6Z1nS9VOXSobP15NO+pK7ZR78llVybq1y91VKzuX5itZV2qX5bMzIwoLkYiKKdDrNcly+XQTm4jgmhYAnB4iIiIiM8GRFiIiIlPH6SEATFqIiIhMn4ABkhaDRGJUnB4iIiIis8CRFiIiIlPH6SEAZjTScvXqVXTr1g1ubm5wcnJCixYtcOjQIZU6CQkJ6Nq1K+zt7eHm5oaxY8ciK0v9SgwiIiKzolAY5jBzZpO0BAUFIScnB3/88QdiYmLQsGFDdOnSBcnJyQCA3NxcBAUFISMjA9HR0di6dSt27NiBCRMmGDlyIiIiPeWPtOh7mDmzSFru37+Pa9euYerUqWjQoAGqV6+OBQsW4OnTp7h48SIAICoqCpcuXcIPP/yARo0a4e2338bSpUuxdu1apKWlGbkHREREpC+zSFpcXV1Ru3ZtbNy4ERkZGcjJycHq1avh7u4Of39/AMCJEydQr149eHl5KR8XGBiIzMxMxMTEaGw7MzMTaWlpKgcREZFJ4UgLADNZiCuTyXDw4EF069YNjo6OsLCwgLu7OyIjI1G2bFkAQHJyMtzd3VUe5+LiAmtra+UUkpTQ0FDMmjVLrfz08G/h5Gj5X4Euu9HSK0HTTrmSdKnr86fuwRBRsRy4o2nXbe12405Lz4XLYsPFoxF3xAVg5JGWkJAQyGSyQo+zZ89CCIFRo0ahQoUK+PPPP3H69Gl069YNXbp0QVJSkrI9mUym9hxCCMnyfNOmTUNqaqrySExMLJG+EhERkX6MOtIyZswY9OnTp9A6fn5++OOPP7B37148evQITk5OAIAVK1bg4MGD2LBhA6ZOnQoPDw+cOnVK5bGPHj1Cdna22gjMi+RyOeRyuf6dISIiKiFCKCCEflf/6Pt4U2DUpMXNzQ1ubhruLviCp0+fAgAsLFQHhiwsLKD4/0u4AgICMG/ePCQlJcHT0xNA3uJcuVyuXPdCRERkloTQf3rnJVjTYhYLcQMCAuDi4oJBgwbhr7/+wtWrVzFp0iTExcUhKCgIANChQwfUqVMHAwYMQGxsLH7//XdMnDgRw4cPV47OEBERkfkyi6TFzc0NkZGRePLkCd566y00btwY0dHR+Pnnn/Haa3m3Fbe0tMS+fftgY2ODFi1aoFevXujevTuWLFli5OiJiIj0xKuHAJjJ1UMA0LhxYxw4cKDQOj4+Pti7d28pRURERFRKFApApuealJdgTYtZjLQQERERmc1ICxER0StLGGCfFk4PERERUUkTCgWEntNDvOSZiIiISh5HWgBwTQsRERGZCY60EBERmTqFAGQcaWHSQkREZOqEAKDvJc/mn7RweoiIiIjMAkdaiIiITJxQCAg9p4cER1qIiIioxAmFYQ4drVixApUrV4aNjQ38/f3x559/lkDntMekhYiIiNRs27YNwcHBmD59OmJjY/Hmm2+iU6dOSEhIMFpMTFqIiIhMnFAIgxy6CAsLw7Bhw/Dhhx+idu3aCA8Ph7e3N1auXFlCvSwakxYiIiJTV8rTQ1lZWYiJiUGHDh1Uyjt06IDjx48bunda40LcAvIXKqU9Mf/tjomIqGTl/19R0otcc5Ct94a4OcgGAKSlpamUy+VyyOVylbL79+8jNzcX7u7uKuXu7u5ITk7WLxA9MGkpID09HQDg+/pN4wZCRERmIz09Hc7OzgZv19raGh4eHohO/tUg7Tk4OMDb21ulbObMmQgJCZGsL5PJVH4WQqiVlSYmLQV4eXkhMTERjo6ORntj0tLS4O3tjcTERDg5ORklhpLCvpkn9s08vcx9A0yjf0IIpKenw8vLq0Tat7GxQVxcHLKysgzSnlTSUXCUBQDc3NxgaWmpNqqSkpKiNvpSmpi0FGBhYYFKlSoZOwwAgJOT00v5iwZg38wV+2aeXua+AcbvX0mMsLzIxsYGNjY2JfocBVlbW8Pf3x8HDx7Eu+++qyw/ePAgunXrVqqxvIhJCxEREakZP348BgwYgMaNGyMgIABr1qxBQkICRowYYbSYmLQQERGRmt69e+PBgweYPXs2kpKSUK9ePfz666/w9fU1WkxMWkyQXC7HzJkzJecZzR37Zp7YN/P0MvcNePn7ZwpGjRqFUaNGGTsMJZl4GW5GQERERC89bi5HREREZoFJCxEREZkFJi1ERERkFpi0EBERkVlg0mJE8+bNQ/PmzWFnZ4eyZctK1pHJZGrHqlWrVOpcuHABrVu3hq2tLSpWrIjZs2eX+H0wiqJN3xISEtC1a1fY29vDzc0NY8eOVdv10RT7JsXPz0/tfZo6dapKHW36a6pWrFiBypUrw8bGBv7+/vjzzz+NHZJOQkJC1N4fDw8P5XkhBEJCQuDl5QVbW1u0adMGFy9eNGLEhTt69Ci6du0KLy8vyGQy7N69W+W8Nv3JzMzEJ598Ajc3N9jb2+Odd97BrVu3SrEX0orq2+DBg9XeyzfeeEOljqn2jfTHpMWIsrKy0LNnT4wcObLQehEREUhKSlIegwYNUp5LS0tD+/bt4eXlhTNnzmD58uVYsmQJwsLCSjr8QhXVt9zcXAQFBSEjIwPR0dHYunUrduzYgQkTJijrmGrfNMnfyyD/+Pzzz5XntOmvqdq2bRuCg4Mxffp0xMbG4s0330SnTp2QkJBg7NB0UrduXZX358KFC8pzixYtQlhYGL7++mucOXMGHh4eaN++vfJeZKYmIyMDr732Gr7++mvJ89r0Jzg4GLt27cLWrVsRHR2NJ0+eoEuXLsjNzS2tbkgqqm8A0LFjR5X38tdfVe/LY6p9IwMQZHQRERHC2dlZ8hwAsWvXLo2PXbFihXB2dhbPnz9XloWGhgovLy+hUCgMHKnuNPXt119/FRYWFuL27dvKsi1btgi5XC5SU1OFEKbftxf5+vqKZcuWaTyvTX9NVdOmTcWIESNUymrVqiWmTp1qpIh0N3PmTPHaa69JnlMoFMLDw0MsWLBAWfb8+XPh7OwsVq1aVUoRFl/B3xHa9Ofx48fCyspKbN26VVnn9u3bwsLCQkRGRpZa7EWR+v03aNAg0a1bN42PMZe+UfFwpMUMjBkzBm5ubmjSpAlWrVoFhUKhPHfixAm0bt1aZXOlwMBA3LlzBzdv3jRCtNo5ceIE6tWrp3KTscDAQGRmZiImJkZZx5z6tnDhQri6uqJhw4aYN2+eytSPNv01RVlZWYiJiUGHDh1Uyjt06IDjx48bKari+ffff+Hl5YXKlSujT58+uHHjBgAgLi4OycnJKn2Uy+Vo3bq12fUR0K4/MTExyM7OVqnj5eWFevXqmUWfDx8+jAoVKqBGjRoYPnw4UlJSlOfMvW9UOO6Ia+LmzJmDdu3awdbWFr///jsmTJiA+/fvK6cekpOT4efnp/KY/DtwJicno3LlyqUdslaSk5PV7hTq4uICa2tr5V1Fzalv48aNw+uvvw4XFxecPn0a06ZNQ1xcHL799lsA2vXXFN2/fx+5ublqsbu7u5t03AU1a9YMGzduRI0aNXD37l3MnTsXzZs3x8WLF5X9kOpjfHy8McLVizb9SU5OhrW1NVxcXNTqmPr72qlTJ/Ts2RO+vr6Ii4vDF198gbfeegsxMTGQy+Vm3TcqGkdaDExqwV/B4+zZs1q39/nnnyMgIAANGzbEhAkTMHv2bCxevFilTsHbjIv/X6hasFxfhu6bVHyiwG3TS6tvUnTp76efforWrVujQYMG+PDDD7Fq1SqsW7cODx480NiX/P6URl/0JfU+mEPc+Tp16oT33nsP9evXx9tvv419+/YBADZs2KCsY+59LKg4/TGHPvfu3RtBQUGoV68eunbtiv379+Pq1avK91QTc+gbFY0jLQY2ZswY9OnTp9A6BUcPdPHGG28gLS0Nd+/ehbu7Ozw8PNT+esgfKi34l5a+DNk3Dw8PnDp1SqXs0aNHyM7OVsZdmn2Tok9/869muHbtGlxdXbXqrylyc3ODpaWl5PtgynEXxd7eHvXr18e///6L7t27A8gbffD09FTWMdc+5l8VVVh/PDw8kJWVhUePHqmMSKSkpKB58+alG7CePD094evri3///RfAy9U3UseRFgNzc3NDrVq1Cj1sbGyK3X5sbCxsbGyUlxEHBATg6NGjKusnoqKi4OXlpVdyJMWQfQsICMDff/+NpKQklbjlcjn8/f1LvW9S9OlvbGwsACj/09Cmv6bI2toa/v7+OHjwoEr5wYMHzfo/gMzMTFy+fBmenp6oXLkyPDw8VPqYlZWFI0eOmGUftemPv78/rKysVOokJSXh77//Nrs+P3jwAImJicrv2svUN5JgtCXAJOLj40VsbKyYNWuWcHBwELGxsSI2Nlakp6cLIYTYs2ePWLNmjbhw4YK4du2aWLt2rXBychJjx45VtvH48WPh7u4u+vbtKy5cuCB27twpnJycxJIlS4zVLSFE0X3LyckR9erVE+3atRPnzp0Tv/32m6hUqZIYM2aMsg1T7VtBx48fF2FhYSI2NlbcuHFDbNu2TXh5eYl33nlHWUeb/pqqrVu3CisrK7Fu3Tpx6dIlERwcLOzt7cXNmzeNHZrWJkyYIA4fPixu3LghTp48Kbp06SIcHR2VfViwYIFwdnYWO3fuFBcuXBB9+/YVnp6eIi0tzciRS0tPT1d+pwAoP3/x8fFCCO36M2LECFGpUiXx22+/iXPnzom33npLvPbaayInJ8dY3RJCFN639PR0MWHCBHH8+HERFxcnDh06JAICAkTFihXNom+kPyYtRjRo0CABQO04dOiQEEKI/fv3i4YNGwoHBwdhZ2cn6tWrJ8LDw0V2drZKO//73//Em2++KeRyufDw8BAhISFGvyS4qL4JkZfYBAUFCVtbW1GuXDkxZswYlcubhTDNvhUUExMjmjVrJpydnYWNjY2oWbOmmDlzpsjIyFCpp01/TdU333wjfH19hbW1tXj99dfFkSNHjB2STnr37i08PT2FlZWV8PLyEj169BAXL15UnlcoFGLmzJnCw8NDyOVy0apVK3HhwgUjRly4Q4cOSX6/Bg0aJITQrj/Pnj0TY8aMEeXKlRO2traiS5cuIiEhwQi9UVVY354+fSo6dOggypcvL6ysrISPj48YNGiQWtym2jfSn0wIE9xelIiIiKgArmkhIiIis8CkhYiIiMwCkxYiIiIyC0xaiIiIyCwwaSEiIiKzwKSFiIiIzAKTFiIiIjILTFropdOmTRsEBwe/VM87ePBg5T1yisvPz095o8fHjx9rrLd+/XrlbSLI8AYPHqx8H3bv3m3scIjMCpMWIgPZuXMn5syZo/zZz88P4eHhxgtIwuzZs5GUlARnZ2djh/LSO3z4sGSC+OWXX6rcg4qItMe7PBMZSLly5YwdQpEcHR2VdwE2tuzsbFhZWRk7jFLn7OzMpJGomDjSQi+9R48eYeDAgXBxcYGdnR06deqkvI098N90yIEDB1C7dm04ODigY8eOKn8N5+TkYOzYsShbtixcXV0xZcoUDBo0SGXK5sXpoTZt2iA+Ph6ffvqpcioAAEJCQtCwYUOV+MLDw1XuWp2bm4vx48crn2vy5MkoeLcNIQQWLVqEKlWqwNbWFq+99hp++umnYr0+69evh4+PD+zs7PDuu+/iwYMHanV++eUX+Pv7w8bGBlWqVMGsWbOQk5OjPP/PP/+gZcuWsLGxQZ06dfDbb7+pTH/cvHkTMpkM27dvR5s2bWBjY4MffvgBABAREYHatWvDxsYGtWrVwooVK1Se+/bt2+jduzdcXFzg6uqKbt264ebNm8rzhw8fRtOmTWFvb4+yZcuiRYsWiI+P16rvRfUrLCwM9evXh729Pby9vTFq1Cg8efJEeT4+Ph5du3aFi4sL7O3tUbduXfz666+4efMm2rZtCwBwcXGBTCbD4MGDtYqJiDRj0kIvvcGDB+Ps2bPYs2cPTpw4ASEEOnfujOzsbGWdp0+fYsmSJfj+++9x9OhRJCQkYOLEicrzCxcuxKZNmxAREYFjx44hLS2t0PUIO3fuRKVKlZTTMbpMByxduhTfffcd1q1bh+joaDx8+BC7du1SqfP5558jIiICK1euxMWLF/Hpp5/igw8+wJEjR7R/YQCcOnUKQ4cOxahRo3D+/Hm0bdsWc+fOValz4MABfPDBBxg7diwuXbqE1atXY/369Zg3bx4AQKFQoHv37rCzs8OpU6ewZs0aTJ8+XfL5pkyZgrFjx+Ly5csIDAzE2rVrMX36dMybNw+XL1/G/Pnz8cUXX2DDhg0A8t6Xtm3bwsHBAUePHkV0dLQyqczKykJOTg66d++O1q1b43//+x9OnDiBjz76SJkkFqaofgGAhYUFvvrqK/z999/YsGED/vjjD0yePFl5fvTo0cjMzMTRo0dx4cIFLFy4EA4ODvD29saOHTsAAFeuXEFSUhK+/PJLnd4bIpJg1Ns1EpWA1q1bi3HjxgkhhLh69aoAII4dO6Y8f//+fWFrayu2b98uhBAiIiJCABDXrl1T1vnmm2+Eu7u78md3d3exePFi5c85OTnCx8dHdOvWTfJ5hRDC19dXLFu2TCW2mTNnitdee02lbNmyZcLX11f5s6enp1iwYIHy5+zsbFGpUiXlcz158kTY2NiI48ePq7QzbNgw0bdvX42vi1Q8ffv2FR07dlQp6927t3B2dlb+/Oabb4r58+er1Pn++++Fp6enECLvbuRlypQRSUlJyvMHDx4UAMSuXbuEEELExcUJACI8PFylHW9vb7F582aVsjlz5oiAgAAhhBDr1q0TNWvWVLmzd2ZmprC1tRUHDhwQDx48EADE4cOHNfZbk6L6JWX79u3C1dVV+XP9+vVFSEiIZN38uxU/evRI8vyLrw8RaYdrWuildvnyZZQpUwbNmjVTlrm6uqJmzZq4fPmysszOzg5Vq1ZV/uzp6YmUlBQAQGpqKu7evYumTZsqz1taWsLf3x8KhcKg8aampiIpKQkBAQHKsjJlyqBx48bKKaJLly7h+fPnaN++vcpjs7Ky0KhRI52e7/Lly3j33XdVygICAhAZGan8OSYmBmfOnFEZgcjNzcXz58/x9OlTXLlyBd7e3iprZV58rV7UuHFj5b/v3buHxMREDBs2DMOHD1eW5+TkKNd8xMTE4Nq1a3B0dFRp5/nz57h+/To6dOiAwYMHIzAwEO3bt8fbb7+NXr16wdPTs8i+F9UvOzs7HDp0CPPnz8elS5eQlpaGnJwcPH/+HBkZGbC3t8fYsWMxcuRIREVF4e2338Z7772HBg0aFPncRFQ8TFropSYKrAV5sfzFKYSCC0JlMpnaYwtOOWhquzAWFhZqj3txmkob+YnSvn37ULFiRZVzcrlcp7a06YNCocCsWbPQo0cPtXM2NjZqr2Vh7O3tVdoFgLVr16oklUBeUphfx9/fH5s2bVJrq3z58gDy1sSMHTsWkZGR2LZtGz7//HMcPHgQb7zxhl79io+PR+fOnTFixAjMmTMH5cqVQ3R0NIYNG6Z8zz788EMEBgZi3759iIqKQmhoKJYuXYpPPvlEq9eDiHTDpIVeanXq1EFOTg5OnTqF5s2bAwAePHiAq1evonbt2lq14ezsDHd3d5w+fRpvvvkmgLy/yGNjY9UW1b7I2toaubm5KmXly5dHcnKyyn/058+fV3kuT09PnDx5Eq1atQKQN/IQExOD119/XdknuVyOhIQEtG7dWqs+aFKnTh2cPHlSpazgz6+//jquXLmCatWqSbZRq1YtJCQk4O7du3B3dwcAnDlzpsjndnd3R8WKFXHjxg30799fss7rr7+Obdu2oUKFCnByctLYVqNGjdCoUSNMmzYNAQEB2Lx5c5FJS1H9Onv2LHJycrB06VJYWOQt/9u+fbtaPW9vb4wYMQIjRozAtGnTsHbtWnzyySewtrYGALXPABEVH5MWeqlVr14d3bp1w/Dhw7F69Wo4Ojpi6tSpqFixIrp166Z1O5988glCQ0NRrVo11KpVC8uXL8ejR48KHWHw8/PD0aNH0adPH8jlcri5uaFNmza4d+8eFi1ahPfffx+RkZHYv3+/yn/I48aNw4IFC1C9enXUrl0bYWFhKnt9ODo6YuLEifj000+hUCjQsmVLpKWl4fjx43BwcMCgQYO07tfYsWPRvHlzLFq0CN27d0dUVJTK1BAAzJgxA126dIG3tzd69uwJCwsL/O9//8OFCxcwd+5ctG/fHlWrVsWgQYOwaNEipKenKxfiFjUCExISgrFjx8LJyQmdOnVCZmYmzp49i0ePHmH8+PHo378/Fi9ejG7dumH27NmoVKkSEhISsHPnTkyaNAnZ2dlYs2YN3nnnHXh5eeHKlSu4evUqBg4cWGTfi+pX1apVkZOTg+XLl6Nr1644duwYVq1apdJGcHAwOnXqhBo1auDRo0f4448/lMmwr68vZDIZ9u7di86dO8PW1hYODg5avzdEJMFoq2mISkjBBbEPHz4UAwYMEM7OzsLW1lYEBgaKq1evKs9HRESoLDwVQohdu3aJF78e2dnZYsyYMcLJyUm4uLiIKVOmiJ49e4o+ffpofN4TJ06IBg0aCLlcrtLWypUrhbe3t7C3txcDBw4U8+bNU1mIm52dLcaNGyecnJxE2bJlxfjx48XAgQNVFv0qFArx5Zdfipo1aworKytRvnx5ERgYKI4cOaLxdZFaiCtE3mLXSpUqCVtbW9G1a1exZMkStdcjMjJSNG/eXNja2gonJyfRtGlTsWbNGuX5y5cvixYtWghra2tRq1Yt8csvvwgAIjIyUgjx30Lc2NhYtefftGmTaNiwobC2thYuLi6iVatWYufOncrzSUlJYuDAgcLNzU3I5XJRpUoVMXz4cJGamiqSk5NF9+7dhaenp7C2tha+vr5ixowZIjc3V+ProEu/wsLChKenp/Jzs3HjRpXFtWPGjBFVq1YVcrlclC9fXgwYMEDcv39f+fjZs2cLDw8PIZPJxKBBg1SeG1yIS6QzmRDFmJgnesUpFArUrl0bvXr1UtkF15T5+fkhODi4VG5xcOzYMbRs2RLXrl1TWeBM/5HJZNi1a5fet2cgepVwnxYiLcTHx2Pt2rW4evUqLly4gJEjRyIuLg79+vUzdmg6mTJlChwcHJCammrQdnft2oWDBw/i5s2b+O233/DRRx+hRYsWTFgkjBgxgtNERMXEkRYiLSQmJqJPnz74+++/IYRAvXr1sGDBAuViWXMQHx+vvOqlSpUqysWlhrBx40bMmTMHiYmJcHNzw9tvv42lS5fC1dXVYM+hq7p162rcGXf16tUaF/+WtJSUFKSlpQHIu7T+xSuqiKhwTFqI6KX0YpJWkLu7u9reL0Rk+pi0EBERkVngmhYiIiIyC0xaiIiIyCwwaSEiIiKzwKSFiIiIzAKTFiIiIjILTFqIiIjILDBpISIiIrPApIWIiIjMwv8BAw83nKm3twkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ds.s_mn.isel(depth=0).mean(dim='time').plot()" ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHFCAYAAAA+FskAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxD0lEQVR4nO3deVhU1f8H8PeAMOyIoCzK4r6bhkuouWSKiqZZ7rlnuaXkbpbiiitSlmuGWq7lkmkiVi7hLmJfU9NUBFQQV0BUtjm/P/gxOcwdmGEGZkbfr+e5zyPnnjnzObPgh3POPVcmhBAgIiIiMnEWxg6AiIiISBtMWoiIiMgsMGkhIiIis8CkhYiIiMwCkxYiIiIyC0xaiIiIyCwwaSEiIiKzwKSFiIiIzAKTFiIiIjILTFrI4K5evYqJEyfC398fZcuWRbly5dCiRQv89NNPanVv3bqF4OBgtG7dGmXLloVMJsP69euLfI5nz56hRo0akMlkWLJkicq5kJAQyGQyjcfWrVs1tvvBBx9AJpOhS5cuaufS0tIwffp01KhRA3Z2dqhYsSJ69uyJixcvqtQ7f/48goKC4OPjA1tbW5QrVw4BAQH44YcfJJ8zOzsbYWFhqF+/PmxtbVG2bFk0b94cx48f1xjnpUuXIJfLIZPJcPbsWZVzbdq0KbT/ycnJGtvV1fr16yGTyXDz5k2DtSll/vz52L17t8bnL/gaGMuTJ08QHBwMLy8v2NjYoGHDhoV+3gpKSUnB4MGD4ebmBjs7OwQEBOD333/X6rF+fn7K93jMmDHF7YJeNm/ejPDwcKM8NwA8fvxY5bNe8HcDmb8yxg6AXj5RUVHYt28fBgwYgCZNmiAnJwfbtm1Dz549MWvWLMyYMUNZ99q1a9i0aRMaNmyIzp07Y8uWLVo9xxdffIGMjAzJcx9++CE6duyoVj58+HBcv35d8hwA7Nu3D7t374aTk5Pk+a5du+Ls2bMICQlB48aNcevWLcyePRsBAQG4cOECfH19AeT94vT29kbfvn1RsWJFZGRkYNOmTRgwYABu3ryJzz//XNlmbm4u3n33XURHR2Py5Mlo3rw5MjIyEBMTo7F/ubm5GDp0KNzc3HDnzh218ytWrEBaWppK2dOnT9GxY0f4+/vDw8NDsl1TNn/+fLz//vvo3r27sUMpVI8ePXDmzBksWLAANWrUwObNm9G3b18oFAr069ev0MdmZmaiXbt2ePz4Mb788ktUqFAB33zzDTp27IjffvsNrVu3LvL5O3fujC+++MJo7/HmzZvx999/Izg42CjP7+joiBMnTiApKQk9evQwSgxUwgSZladPnwqFQmHsMAp17949yRiDgoKEnZ2deP78ubIsNzdX+e8zZ84IACIiIqLQ9k+dOiWsra3Fjz/+KACIxYsXFxlTXFyckMlk4oMPPpA8//jxY1GxYkURFhYmfH19RVBQkMr5f//9VwAQn3/+uUr58ePHBQARFhZWZAzNmjUT3t7eKmXLli0TFhYW4sSJE0U+Pt/ixYtFxYoVxZdffikAiDNnzhT5mPXr1wsA4ttvv9X6ebQREREhAIi4uDiDtluQvb29GDRokMbn1+Y1KGn79u0TAMTmzZtVytu3by+8vLxETk5OoY//5ptvBABx/PhxZVl2draoU6eOaNq0aZHP7+vrK/kalaagoCDh6+tr8HafPn2qU/24uDitfzeQeeH0kBH9888/6Nu3L9zd3SGXy+Hj44OBAwciMzMTwH9D31FRURg6dCjKly8POzs7ZGZm4t69e/joo4/g7e0NuVyO8uXLo0WLFvjtt9+M3CvAzc0NMplMrbxp06Z4+vQpHj58qCyzsNDtI5iVlYWhQ4di9OjRaNy4sdaP++677yCEwIcffih5fsKECfD09MTYsWMlz1tZWQEAnJ2dVcrLli0LALCxsSkyBjc3N5Qpozq4+eWXX6JVq1Z44403inw8APz777+YMWMGVqxYoXFESMq6devg4OCA3r17a/2Ygk6ePIkWLVrAxsYGXl5emDZtGrKzsyXrbtu2DQEBAbC3t4eDgwMCAwMRGxurUmfw4MFwcHDAxYsX0a5dO9jb26N8+fIYM2YMnj59qqwnk8mQkZGBDRs2KIf927Rpo9JWeno6Ro4cCTc3N7i6uqJHjx6So1AladeuXXBwcEDPnj1VyocMGYI7d+7g1KlTRT6+Zs2aCAgIUJaVKVMGH3zwAU6fPo3bt28XK67Dhw9DJpNh8+bNmDJlCjw9PeHg4ICuXbvi7t27SE9Px0cffQQ3Nze4ublhyJAhePLkiUobQgisWLECDRs2hK2tLVxcXPD+++/jxo0byjpt2rTBvn37EB8frzJFky8rKwtz585FrVq1lL+zhgwZgnv37qk8l5+fH7p06YKdO3eiUaNGsLGxwaxZswAAP/74I5o1awZnZ2fY2dmhSpUqGDp0aLFeFzJPTFqM5K+//kKTJk1w8uRJzJ49G/v370doaCgyMzORlZWlUnfo0KGwsrLC999/j59++glWVlYYMGAAdu/ejRkzZiAqKgrffvst3n77bTx48KDQ5xVCICcnR6vD0A4dOoTy5cujQoUKxW5j9uzZyMjIwJw5c7R+jEKhwPr161GtWjXJIfbffvsNGzduxLfffgtLS0vJNnx9fdGtWzcsW7YMhw4dwpMnT/DPP/9g7Nix8PHxQZ8+fSSfNycnB/fu3cOKFStw4MABTJkyRXk+MTERN2/eRP369fHZZ5/B3d0dZcqUQd26dbFhwwa19vKTri5duuCdd97Ruv///vsv/vzzT/Tp0wcODg5aP+5Fly5dUk5drF+/HqtWrUJsbCzmzp2rVnf+/Pno27cv6tSpg+3bt+P7779Heno63nzzTVy6dEmlbnZ2Njp37ox27dph9+7dGDNmDFavXq2SXJ04cQK2trbo3LkzTpw4gRMnTmDFihUq7Xz44YewsrLC5s2bsWjRIhw+fBgffPBBkf0y5Pfh77//Ru3atdUS0wYNGijPF/X4/LpSjy+4dkpXn332GVJSUrB+/XosXboUhw8fRt++ffHee+/B2dkZW7ZsweTJk/H999/js88+U3nsxx9/jODgYLz99tvYvXs3VqxYgYsXL6J58+a4e/cugLxpyRYtWsDDw0P5Pp04cQJA3nehW7duWLBgAfr164d9+/ZhwYIFOHjwINq0aYNnz56pPN+5c+cwadIkjB07FpGRkXjvvfdw4sQJ9O7dG1WqVMHWrVuxb98+zJgxo0R+V5EJM+o4zyvsrbfeEmXLlhUpKSka6+QPfQ8cOFDtnIODgwgODtb5eQ8dOiQAaHUYcsh/7dq1AoD48ssvNdYpanooNjZWWFlZicjISCGE9kPA+/fvFwBEaGio2rn09HTh5+cnpk2bpiyTmh4SQoisrCwxfPhwldeoQYMGGl+njz/+WFnP2tparFixQuX8iRMnBADh5OQk6tSpI7Zv3y4OHDgg3n//fQFArFmzRqX+8uXLhYuLi0hOThZCaD81MmXKFAFApymognr37i1sbW2Vzy2EEDk5OaJWrVoqn5WEhARRpkwZ8cknn6g8Pj09XXh4eIhevXopywYNGiT5mZg3b54AIKKjo5VlRU0PjRo1SqV80aJFAoBISkoqtF/5j9fmKEr16tVFYGCgWvmdO3cEADF//vxCH29lZSU+/vhjtfL8KciC004FaZoeyv/Od+3aVaU8ODhYABBjx45VKe/evbsoV66c8uf8z+nSpUtV6iUmJgpbW1sxefJkZZmm6aEtW7YIAGLHjh0q5fnf+Re/G76+vsLS0lJcuXJFpe6SJUsEAPH48WPpF+AFnB56eXGkxQiePn2KI0eOoFevXihfvnyR9d977z21sqZNm2L9+vWYO3cuTp48qXGYviB/f3+cOXNGq8PLy6vQtgr+JSqEkKy3f/9+jB49Gu+//z4++eQTreKUeq6hQ4eid+/eCAwM1Omx69atQ5kyZTB48GC1c1OnToWVlZXK4mBNRo4ciR07dmDZsmU4cuQItm3bBmtra7z11luIj49Xq//ZZ5/hzJkz2LdvH4YOHYoxY8aoXM2gUCgAAM+fP8evv/6Knj17okOHDti+fTtef/11zJ49W1k3Pj4e06ZNw+LFi+Hu7q5133NycrBhwwbUrVtX6ykoKYcOHUK7du1UntvS0lJtuunAgQPIycnBwIEDVT4bNjY2aN26NQ4fPqzWdv/+/VV+zl+weujQIa3jKzjylD86IfW+vKhr165afx+0ITUtqs05Qz2+MAWviKtduzYAICgoSK384cOHyimivXv3QiaT4YMPPlB5Tz08PPDaa69JvqcF7d27F2XLlkXXrl1V2mjYsCE8PDzU2mjQoAFq1KihUtakSRMAQK9evbB9+/ZiT5cZy9GjR9G1a1d4eXlBJpNJXg1XmCtXrqBt27Zwd3eHjY0NqlSpgs8//1ztd39mZiamT58OX19fyOVyVK1aFd99950Be2JcvHrICB49eoTc3FxUqlRJq/qenp5qZdu2bcPcuXPx7bff4osvvoCDgwPeffddLFq0qNArBxwcHNCwYUOtnrfgMHdB+es88kVERKglBgcOHECPHj3Qvn17bNq0qdi/eMPDw3Hjxg1s374djx8/BgDlFTLPnz/H48eP4ejoqDa9c//+fezZswdBQUFqr8vp06exYsUK7Ny5E8+fP8fz588B/Det8/jxY9ja2kIulyMyMhLr1q3Djz/+iPfff1/ZRocOHeDn54eQkBBERESotO/j4wMfHx8AeVd1AMC0adMwaNAglC9fHq6urgCAWrVqKa88AvL+cwoMDERoaChSUlJQoUIFjB49GvXq1cN7772n7H/+uo8nT54gNTVVbb0NAPz6669ITk5WmZYqjgcPHkh+rgqW5U8V5P8HU1DBNUxlypRRvg4F2yxqqvNFBduQy+UAoDbtUFC5cuUkX7ficHV1lYw5fw1XuXLlSvTxRSn4eGtr60LLnz9/DgcHB9y9exdCCI3JcpUqVYp87rt37+Lx48fKtgu6f/++ys9Sv/NatWqF3bt346uvvlKu/atbty6mT5+Ovn37FhmDsWVkZOC1117DkCFDJP8QLYqVlRUGDhyI119/HWXLlsVff/2F4cOHQ6FQYP78+cp6vXr1wt27d7Fu3TpUq1YNKSkpL9UUGpMWIyhXrhwsLS1x69YtrepL/Ufv5uaG8PBwhIeHIyEhAXv27MHUqVORkpKCyMhIjW0dOXIEbdu21ep54+Li4Ofnp/F8wb8+K1eurPLzgQMH0L17d7Ru3Ro7duzQ+AtLG3///TdSU1NRvXp1tXNffPEFvvjiC8TGxqolZN9//z2ysrIkF+BeunQJQgi8++67aucSExPh4uKCZcuWITg4GOfPnweg/p9x2bJlUa1atSLXKwB5o2OrVq3CjRs3UL58eVStWhV2dnaSdfNHrfL/k//7778RHx8PFxcXtbpt27aFs7OzMpl50bp162BtbY0BAwYUGV9hXF1dJfd3KVjm5uYGAPjpp59UEjFNcnJy8ODBA5WkI7/NgolISdiwYQOGDBmiVV1NI4n56tevjy1btiAnJ0cl4b9w4QIAoF69ekU+Pr/ui7R9fEnJX1j/559/KpPBF0mVSbXh6uqq8XeTo6Ojys+a/rjp1q0bunXrhszMTJw8eRKhoaHo168f/Pz8VBYwm6JOnTqhU6dOGs9nZWXh888/x6ZNm/D48WPUq1cPCxcuVC46r1KlikqC6Ovri8OHD+PPP/9UlkVGRuLIkSO4ceOGMhkt7He4OWLSYgS2trZo3bo1fvzxR8ybN0/5i764fHx8MGbMGPz+++84duxYoXXzp4e0UdT0UGFX70RFRaF79+5o2bIldu/erdUvtsJMnTpVbRQnOTkZffv2xYgRI9C7d29Uq1ZN7XHr1q2Dl5eX5C+Ljh07Sk5B9OnTB5UrV0ZoaKiyzfzX4uTJkyr/GT948ABXr15Fu3btiuzDoUOHYGFhofzFU6ZMGXTr1g0//fQTbt68qfzlIoRAZGQkqlatqvxsbN26VTkSlC8yMhILFy7EqlWrULduXbXnS05Oxq+//ooePXronQC0bdsWe/bswd27d5V/cefm5mLbtm0q9QIDA1GmTBlcv35d678mN23apHLV1ubNmwFA5QohuVxe5KhJceRPDxnCu+++i7Vr12LHjh0q02YbNmyAl5cXmjVrVuTjR40ahVOnTinr5uTk4IcffkCzZs2K/D6WlC5dumDBggW4ffs2evXqVWhdTe9Tly5dsHXrVuTm5hb5OmhDLpcrN6Q8cOAAYmNjTT5pKcqQIUNw8+ZNbN26FV5eXti1axc6duyICxcuSP6xdu3aNURGRqrsR7Nnzx40btwYixYtwvfffw97e3u88847mDNnDmxtbUuzOyWGSYuRhIWFoWXLlmjWrBmmTp2KatWq4e7du9izZw9Wr16t9pfHi1JTU9G2bVv069cPtWrVgqOjI86cOaP2AZbi6Oio06XCxREdHY3u3bvDw8MDn332mXKUIl+dOnVULtfN3yk3//LJs2fPKq9yyZ+KqVWrFmrVqqXSTv4urFWrVlW7BBYATp06hYsXL+Kzzz6TvCrIw8NDcsrDxsYGrq6uKm326NEDM2bMwMiRI3Hr1i28/vrrSEpKwuLFi/H06VOMGzdOWfejjz6Ck5MTmjZtCnd3d9y/fx8//vgjtm3bhkmTJqmsY5ozZw7279+Pjh07IiQkBE5OTvj222/x119/Yfv27cp6UutR8vvv7+8v+Z5u2LABOTk5Gi/zBvJ2D541axYOHTok+Rrm+/zzz7Fnzx689dZbmDFjBuzs7PDNN9+obYDn5+eH2bNnY/r06bhx4wY6duwIFxcX3L17F6dPn4a9vb3y8lUgbypi6dKlePLkCZo0aYLjx49j7ty56NSpE1q2bKmsV79+fRw+fBi//PILPD094ejoiJo1a2qMV1uurq4GG9Hp1KkT2rdvj5EjRyItLQ3VqlXDli1bEBkZiR9++EHlMzhs2DBs2LAB169fVybBQ4cOxTfffIOePXtiwYIFqFChAlasWIErV64YdSuDFi1a4KOPPsKQIUNw9uxZtGrVCvb29khKSkJ0dDTq16+PkSNHAsh7n3bu3ImVK1fC398fFhYWaNy4Mfr06YNNmzahc+fOGDduHJo2bQorKyvcunULhw4dQrdu3SRHPF80Y8YM3Lp1C+3atUOlSpWUm/BZWVlptfGeKbt+/Tq2bNmCW7duKZPTiRMnIjIyEhERESrTP82bN8e5c+eQmZmJjz76SGXt240bNxAdHQ0bGxvs2rUL9+/fx6hRo/Dw4cOXZ12LMVcBv+ouXbokevbsKVxdXYW1tbXw8fERgwcPVm6+punqkOfPn4sRI0aIBg0aCCcnJ2Fraytq1qwpZs6cKTIyMozRFRUzZ84s9CqMQ4cOqdQvrG5hirpCYPjw4UImk4nr16/rFL+mq4eSkpLEmDFjRLVq1YSNjY3w8vISQUFBalflfPfdd+LNN98Ubm5uokyZMqJs2bKidevW4vvvv5d8vgsXLoigoCDh6OgobGxsxBtvvCF++eWXIuMs6uqhGjVqCD8/v0I3I5wwYYKQyWTi8uXLRT7fsWPHxBtvvCHkcrnw8PAQkyZNEmvWrJG80mz37t2ibdu2wsnJScjlcuHr6yvef/998dtvvynrDBo0SNjb24v//e9/ok2bNsLW1laUK1dOjBw5Ujx58kSlvfPnz4sWLVoIOzs7AUC0bt260Ncg/4qZgp+1kpaeni7Gjh0rPDw8hLW1tWjQoIHYsmWLWr38K6cKvm7Jycli4MCBoly5csrPwsGDB7V67qKuHvrxxx9VyjW9dvnf33v37qmUf/fdd6JZs2bC3t5e2NraiqpVq4qBAweKs2fPKus8fPhQvP/++6Js2bJCJpOpfIezs7PFkiVLxGuvvSZsbGyEg4ODqFWrlvj444/Fv//+q9IPqe/f3r17RadOnUTFihWFtbW1qFChgujcubP4888/1eqa+tVDAMSuXbuUP2/fvl0AEPb29ipHmTJlVK64EyLvCr2LFy+KzZs3i4oVK4qFCxcqz7Vv317Y2NioXGG1Y8cOIZPJdN6gz1TJhChiopaIXlpNmzaFr68vfvzxx1J/7sGDB+Onn35S28iMisfPzw+tW7fGunXrYGFhofPGjS+LnJwcxMfHo1q1ali8eDEmTpxo7JDUyGQy7Nq1S3lbim3btqF///64ePGi2qiwg4ODxosrfvjhB3z00UdIT0+HpaUlBg0ahGPHjuHatWvKOpcvX0adOnVw9epVyWkmc/NqfqqJCGlpafjrr79UhpfJvG3cuBFWVlYad3Z+2T1+/BhWVlaS69tMWaNGjZCbm4uUlBRUq1ZN5SjsalAhBLKzs5WLxFu0aIE7d+6o/CFw9epVWFhYaH21qqnjmhaiV5STk5PylhFk/n755Rfl+6nPrtPmLH99Xz5vb28jRqPqyZMnKiMgcXFxOH/+PMqVK4caNWqgf//+GDhwIJYuXYpGjRrh/v37+OOPP1C/fn107twZmzZtgpWVFerXrw+5XI6YmBhMmzYNvXv3Vl6t1q9fP8yZMwdDhgzBrFmzcP/+fUyaNAlDhw59aRbicnqIiIiohB0+fFhyu4lBgwZh/fr1yM7Oxty5c7Fx40bcvn0brq6uCAgIwKxZs1C/fn1s27YNixYtwtWrVyGEgK+vLz744AN8+umnKvc+++eff/DJJ5/g2LFjcHV1Ra9evTB37lwmLURERESliWtaiIiIyCwwaSEiIiKzwIW4BSgUCty5cweOjo5636CMiIhebkIIpKenw8vLq8QuM3/+/DmysrIM0pa1tbXKGhhzw6SlgDt37pjUinMiIjJ9iYmJJXJZ8fPnz1HZ1wHJKbkGac/DwwNxcXFmm7gwaSkgf/v81zaOhqXdf/fLsdqgfqM6AKgcfEWt7MTZWhI1gZFvHVQrWxGr//bT8n/VP3yZ1Z9L1ATcyqlv5HX/oYPedaU0r3pDslzq9bG+L/0Xiq32N/rF4zek+yx7pH6jRk3PJ/W6Sb0OAFDDJUWt7Ph16Tvelj2p/h5pilfq/dRE0/usbQzPNOxgL9Wuprh0iUHqtcz5VfreW1KxZbkpJOsKF/W/QqXed011Nb3HunzepZ7PtepDyboPrqvfsVkqLkC3902KLr8LpD7TgG7fWV1o+n5LfTc8f7GSqAk8K69+iw5dfhdoIvXeSb0+2RlZ2PHO9kJvvaKPrKwsJKfkIi7GF06O+r3maekKVPaPR1ZWFpOWl0X+lJClnRyW9v8lLWWspN9gawf1L4GFhg+DjYP6y21hp/8Hx1Ku3oaF9M2DYWmfrV73uXQMutSVIvXaANKvj6Vc+stoqcONoTX1WfZMvRFNzyfVhtTrAGh47zW8n5bWOrxHEu+nJpra0DYGSw33sZR8HTTEpVMMEq+lkIgr7/kknstGQ9Jip/5+Sr3vmupqeo91+bxLfs7spV9gqe+AVFyAbu+b5HPp8LvAEN9ZXWj6fkvFXMZKOmmxtFZPWnT5XaCJ1Hun6fUBNN+Z2lCcHC30TlpeBkxaiIiITFyuUCBXzw1KcoV00m9OmLQQERGZOAUEFNAva9H38aaAY01ERERkFjjSQkREZOIUUEDfyR39WzA+Ji1EREQmLlcI5Op51x19H28KOD1EREREZoEjLURERCaOC3HzMGnR4MH1cip7E4ge0hs/9XSKVyu7XMNdsu6XUZ3UyqptfSZZt8wd9V2Xbg7wkazr932CWtmV8dI7M96D+gZINv9I70Xh/Lv6Doyud6Q3n8rxUt/t6sJr9STrVv0rQ63swWv2knXd96v3DQDS/SuqlT1+IL2HwptvXFIrO/pvNcm6UmqXuytZPsr9D63KAKBJO/U9Js5kSu8NctK/qlrZuTRfrWMY/O1Yybp2Ejtq2km/nXgA9c9Epd/V3zcAwLy/1IrK+Gi/M+iV8dLz7PJ7+g0EC1fp76xM6nOiYbO28q7pWj+f1Hfr/lXphqVik4wLwDOJvfccW9zTOi5NW57de6B+RqoMACARr+sR6X1TbvdQ/1xX3Cld92kF9T1WAOnXImu49E509SW+n5cfSv8Orl1d+rss5XWJ3+2bbjZVK8vNyNS6TX0oIJDLpIXTQ0RERGQeONJCRERk4jg9lIdJCxERkYnj1UN5mLQQERGZOMX/H/q2Ye64poWIiIjMgtkkLTk5Ofj8889RuXJl2NraokqVKpg9ezYUiv9yRyEEQkJC4OXlBVtbW7Rp0wYXL140YtRERET6y/3/q4f0Pcyd2SQtCxcuxKpVq/D111/j8uXLWLRoERYvXozly5cr6yxatAhhYWH4+uuvcebMGXh4eKB9+/ZIT9f+skUiIiJTkysMc5g7s0laTpw4gW7duiEoKAh+fn54//330aFDB5w9exZA3ihLeHg4pk+fjh49eqBevXrYsGEDnj59is2bNxs5eiIiItKX2SQtLVu2xO+//46rV68CAP766y9ER0ejc+fOAIC4uDgkJyejQ4cOysfI5XK0bt0ax48fN0rMREREhqAw0GHuzObqoSlTpiA1NRW1atWCpaUlcnNzMW/ePPTt2xcAkJycDABwd1fdCdHd3R3x8eo7G+bLzMxEZuZ/OxqmpaWVQPRERETFp4AMuZDp3Ya5M5ukZdu2bfjhhx+wefNm1K1bF+fPn0dwcDC8vLwwaNAgZT2ZTPVNEUKolb0oNDQUs2bNUit3vmIBS+v/BqKeuUlvdb/qnyC1sszy0vlsVYkt+6W26weAnIRbamWV5qmXAUCO5HNJbx/uFR6nXlhdsirQVUO5hKP/VlArkz2Qfh0e17ZVK7vWa6V0wzO1j6HuNyMly0//InE7gVrPtW43wudPDWektybXVhO59OObyCVuXVBW+nYGUjFUmic9sii1tb7U5wwAKu3S8HRa0tSulKrB2tctKZpuO3C3k/qtM6S21QcgceODQtyTuE2ChvftwcfN1cqcO/+r9VMduKN+mwUACOwxUK3seh/176YmtzXc2kRqC/6nFaQH9R+1lP4eSt1aJP1eecm61y+VUytzTpJuV+rWIppiOAr1W31I9U3xXPvfJaQ/s5kemjRpEqZOnYo+ffqgfv36GDBgAD799FOEhoYCADw8PAD8N+KSLyUlRW305UXTpk1Damqq8khMTCy5ThARERWDQhjmMHdmk7Q8ffoUFhaq4VpaWiovea5cuTI8PDxw8OBB5fmsrCwcOXIEzZur/6WSTy6Xw8nJSeUgIiIyJbn/Pz2k72HuzGZ6qGvXrpg3bx58fHxQt25dxMbGIiwsDEOHDgWQNy0UHByM+fPno3r16qhevTrmz58POzs79OvXz8jRExERkb7MJmlZvnw5vvjiC4waNQopKSnw8vLCxx9/jBkzZijrTJ48Gc+ePcOoUaPw6NEjNGvWDFFRUXB01HRzdiIiItNniJESjrSUIkdHR4SHhyM8PFxjHZlMhpCQEISEhJRaXERERCVNIWRQCD2vHtLz8abAbJIWIiKiVxVHWvKYzUJcIiIierVxpIWIiMjE5cICuXqOM+QaKBZjYtJCRERk4oQB1rSIl2BNi0wI8RJsN2M4aWlpcHZ2hu/CubCw+W9XxrKXpTNc9/2adirVji47h2ry7N1mamW2GnaElNqBN92/omTdB3Us1cocW9zTOq57D6Sv2pLa7VIT2/vS5WdnathBV0K17R+rlbnVkN6JOP2Y+q6bft9Lv8f7Tu7TOobSFOj1mrFDeLm9UUKv70npnWs17WhbmqS+Q/J70r8TpXb2ldrVF9C8u/DF0erfb6kYAOnvstT3WBNNv2OkfrdfGa++c7Li+XPET/kcqampJbLPV/7/Sb9f8IG9o34jLRnpCrSrn1BisZYGjrQQERGZOC7EzcOkhYiIyMTlCgvkCj3XtLwE8yq8eoiIiIjMAkdaiIiITJwCMij0HGdQwPyHWpi0EBERmTiuacnD6SEiIiIyCxxpISIiMnGGWYjL6SEiIiIqYXlrWvS8YeJLMD3EpIWIiMjEKQywjT8X4r7EnK9YwNL6vw+IXYr0XRtyvFzVyg7s3FhicUkz/o6ZOmmnfdUhCW9qXVfTjpnXeq3Wvo2r6m1o2rVYaudZQ+xe+jLvaFtSu7vq+5ppiivojSC1sn2l/v02Pl2+QxgtVaj/+65TDA31fjpgpnbV0tJz4TLFAM9HWmHSQkREZOK4piUPkxYiIiITp4AF92kBL3kmIiIiM8GRFiIiIhOXK2TIFXpuLqfn400BkxYiIiITl2uAq4dyOT1EREREVDo40kJERGTiFMICCj2vHlLw6iEiIiIqaZweysPpISIiIjILHGnRoNx3p1BGZlV0xTde3t1LS5OmnW8vP3SXLK92Unr3W21p2kG1po/67rc5BmhXasdV7nybR5fXzBDPp4t9J/eVSLtknqQ+qzkiG8CNEn9uBfS/+kdhmFCMikkLERGRiTPM5nLmP7nCpIWIiMjEGWYbf/NPWsy/B0RERPRK4EgLERGRiVNABgX0XdPCHXGJiIiohHF6KI9Z9eD27dv44IMP4OrqCjs7OzRs2BAxMTHK80IIhISEwMvLC7a2tmjTpg0uXrxoxIiJiIjIUMwmaXn06BFatGgBKysr7N+/H5cuXcLSpUtRtmxZZZ1FixYhLCwMX3/9Nc6cOQMPDw+0b98e6enpxguciIhIT/mby+l7mDuzmR5auHAhvL29ERERoSzz8/NT/lsIgfDwcEyfPh09evQAAGzYsAHu7u7YvHkzPv5Yv309iIiIjEUhZFDou0/LS3CXZ7NJu/bs2YPGjRujZ8+eqFChAho1aoS1a9cqz8fFxSE5ORkdOnRQlsnlcrRu3RrHjx83RshERERkQGaTtNy4cQMrV65E9erVceDAAYwYMQJjx47Fxo0bAQDJyckAAHd31R1U3d3dleekZGZmIi0tTeUgIiIyJQoDTA1xc7lSpFAo0LhxY8yfPx8A0KhRI1y8eBErV67EwIEDlfVkMtXhLyGEWtmLQkNDMWvWrOIHdtI0t2cvqW3NS0qEz5+S5W88fF+y3K3GA7Wy+1ddtX4+za9PybyfpvCZMAV8HUgbrUZ/pHVd212n1As13F7lwM6NamXm8pk0zF2ezT9pMZseeHp6ok6dOipltWvXRkJCAgDAw8MDANRGVVJSUtRGX140bdo0pKamKo/ExEQDR05ERESGYDZJS4sWLXDlyhWVsqtXr8LX1xcAULlyZXh4eODgwYPK81lZWThy5AiaN2+usV25XA4nJyeVg4iIyJTkQmaQw9yZzfTQp59+iubNm2P+/Pno1asXTp8+jTVr1mDNmjUA8qaFgoODMX/+fFSvXh3Vq1fH/PnzYWdnh379+hk5eiIiouLj9FAes0lamjRpgl27dmHatGmYPXs2KleujPDwcPTv319ZZ/LkyXj27BlGjRqFR48eoVmzZoiKioKjo6MRIyciItJPLqD3SEmuYUIxKrNJWgCgS5cu6NKli8bzMpkMISEhCAkJKb2giIiIqFSYVdJCRET0KuL0UB7z7wEREdFLLv+GifoeusjJycHnn3+OypUrw9bWFlWqVMHs2bOhUChKqJdF40gLERERqVm4cCFWrVqFDRs2oG7dujh79iyGDBkCZ2dnjBs3zigxMWkhIiIycQIyKPRciCt0fPyJEyfQrVs3BAUFAci739+WLVtw9uxZveLQB5OWl5Quuzya8u65Jxv+pHXdVms17KLZS78YNL0+5rKTpikx5c8amQ6pXW7L+FSSrJsjVSixUzlg3t/Z4kzvSLUBQO12NXK5HHK5XK1+y5YtsWrVKly9ehU1atTAX3/9hejoaISHh+sVhz6YtBAREb1CvL29VX6eOXOm5FW3U6ZMQWpqKmrVqgVLS0vk5uZi3rx56Nu3bylFqo5JCxERkYlTCBkUQr/pofzHJyYmquz+LjXKAgDbtm3DDz/8gM2bN6Nu3bo4f/48goOD4eXlhUGDBukVS3ExaSEiIjJx+Xdq1rcNAFrfsmbSpEmYOnUq+vTpAwCoX78+4uPjERoaarSkhZc8ExERkZqnT5/CwkI1TbC0tOQlz0RERKSZIaeHtNW1a1fMmzcPPj4+qFu3LmJjYxEWFoahQ4fqFYc+mLQQERGZOAUsoNBzckTXxy9fvhxffPEFRo0ahZSUFHh5eeHjjz/GjBkz9IpDH0xaiIiITFyukCFXz5EWXR/v6OiI8PBwo17iXBDXtBAREZFZ4EgLERGRiTPGmhZTxKSFNO4SaW67lx79Zo3ebZjzjpklzdw+D5o0njVSrcwuJVeyriE+U2QYOQm3jB2CUQkD3OVZ8C7PRERERKWDIy1EREQmLhcy5Op5w0R9H28KmLQQERGZOIXQf02KQhgoGCPi9BARERGZBY60EBERmTiFARbi6vt4U8CkhYiIyMQpIINCzzUp+j7eFDBpISIiMnHG2BHXFJn/WBERERG9EjjSQkREZOK4piUPkxZ6JXHnW8PR97XUZaddQ7xvZ++s1L7db/R+OgK/b4aggAG28X8J1rSYf9pFRERErwSOtBAREZk4YYCrh8RLMNLCpIWIiMjE8S7PeTg9RERERGaBIy1EREQmjlcP5THbHoSGhkImkyE4OFhZJoRASEgIvLy8YGtrizZt2uDixYvGC5KIiMgA8qeH9D3MnVkmLWfOnMGaNWvQoEEDlfJFixYhLCwMX3/9Nc6cOQMPDw+0b98e6enpRoqUiIiIDMXskpYnT56gf//+WLt2LVxcXJTlQgiEh4dj+vTp6NGjB+rVq4cNGzbg6dOn2Lx5sxEjJiIi0k/+vYf0Pcyd2SUto0ePRlBQEN5++22V8ri4OCQnJ6NDhw7KMrlcjtatW+P48eOlHSYREZHBcHooj1ktxN26dSvOnTuHM2fOqJ1LTk4GALi7u6uUu7u7Iz4+XmObmZmZyMzMVP6clpZmoGiJiIgMg5c859EqaXn99dd1alQmk2HPnj2oWLFisYKSkpiYiHHjxiEqKgo2NjaFPveLhBBqZS8KDQ3FrFmzDBYnmR5uIa47qa31S+p11KVdXbb8p5LF7xUZg1ZJy/nz5zFhwgQ4ODgUWVcIgQULFqiMXhhCTEwMUlJS4O/vryzLzc3F0aNH8fXXX+PKlSsA8kZcPD09lXVSUlLURl9eNG3aNIwfP175c1paGry9vQ0aOxERkT440pJH6+mhSZMmoUKFClrVXbp0abED0qRdu3a4cOGCStmQIUNQq1YtTJkyBVWqVIGHhwcOHjyIRo0aAQCysrJw5MgRLFy4UGO7crkccrnc4PESEREZCpOWPFolLXFxcShfvrzWjV66dAleXl7FDkqKo6Mj6tWrp1Jmb28PV1dXZXlwcDDmz5+P6tWro3r16pg/fz7s7OzQr18/g8ZCREREpU+rpMXX11enRo01vTJ58mQ8e/YMo0aNwqNHj9CsWTNERUXB0dHRKPEQEREZggAMcMNE81esq4ceP36M06dPIyUlBQqFQuXcwIEDDRKYNg4fPqzys0wmQ0hICEJCQkotBiIiopLG6aE8Oictv/zyC/r374+MjAw4OjqqXJkjk8lKNWkhIiKiV4fOm8tNmDABQ4cORXp6Oh4/foxHjx4pj4cPH5ZEjERERK80bi6XR+eRltu3b2Ps2LGws7MriXiIiIioAE4P5dF5pCUwMBBnz54tiViIiIiINNJqpGXPnj3KfwcFBWHSpEm4dOkS6tevDysrK5W677zzjmEjJKOR2vHSlHck5Q6dJUuX9760d8/V93Npyp9rIoAjLfm0Slq6d++uVjZ79my1MplMhtzcXL2DIiIiov8IIYPQM+nQ9/GmQKukpeBlzURERFR6FJDpvU+Lvo83BTqvadm4caPkfYWysrKwceNGgwRFREREVJDOScuQIUOQmpqqVp6eno4hQ4YYJCgiIiL6Dy95zqPzJc9CCJUN5fLdunULzs7OBgmKiIiI/sM1LXm0TloaNWoEmUwGmUyGdu3aoUyZ/x6am5uLuLg4dOzYsUSCJCIiItI6acm/guj8+fMIDAyEg4OD8py1tTX8/Pzw3nvvGTxAIiKiVx0vec6jddIyc+ZM5ObmwtfXF4GBgfD09CzJuIiIiOj/cXooj04LcS0tLTFixAg8f/68pOIhIiIikqTzQtz69evjxo0bqFy5cknEQyaupHYk5W62xlFSO8Ga2w6zQW8ESZbvO7mvlCMhkiYMMD30yo20AMC8efMwceJE7N27F0lJSUhLS1M5iIiIyLAEACH0PIzdCQPQeaQl/wqhd955R+XS5/xLobmNPxEREZUEnZOWQ4cOlUQcREREpIECMsi4jb/uSUvr1q1LIg4iIiLSgFcP5dE5aQGAx48fY926dbh8+TJkMhnq1KmDoUOHckdcIiKiEqAQMsi4T4vuC3HPnj2LqlWrYtmyZXj48CHu37+PsLAwVK1aFefOnSuJGImIiIh0H2n59NNP8c4772Dt2rXKrfxzcnLw4YcfIjg4GEePHjV4kERERK+y/CuA9G3D3OmctJw9e1YlYQGAMmXKYPLkyWjcuLFBgyMiIiKuacmn8/SQk5MTEhIS1MoTExPh6OhokKCIiIiICtJ5pKV3794YNmwYlixZgubNm0MmkyE6OhqTJk1C3759SyJGMgNSO9qa266oL7uX+f3Q9/Ony863uuzebG6vOXemNl0cacmjc9KyZMkSyGQyDBw4EDk5OQAAKysrjBw5EgsWLDB4gERERK86Xj2UR+ekxdraGl9++SVCQ0Nx/fp1CCFQrVo12NnZlUR8RERERACKuU8LANjZ2aF+/fqGjIWIiIgk8OqhPDonLRkZGViwYAF+//13pKSkQKFQqJy/ceOGwYIjIiKi/KRF3zUtBgrGiHROWj788EMcOXIEAwYMgKenp8pNE4mIiIhKis5Jy/79+7Fv3z60aNGiJOIhIiKiAnj1UB6d92lxcXFBuXLlSiKWQoWGhqJJkyZwdHREhQoV0L17d1y5ckWljhACISEh8PLygq2tLdq0aYOLFy+WeqxERESGJAx0mDudk5Y5c+ZgxowZePr0aUnEo9GRI0cwevRonDx5EgcPHkROTg46dOiAjIwMZZ1FixYhLCwMX3/9Nc6cOQMPDw+0b98e6enppRorERGRIeWPtOh7mDudp4eWLl2K69evw93dHX5+frCyslI5X1I3TYyMjFT5OSIiAhUqVEBMTAxatWoFIQTCw8Mxffp09OjRAwCwYcMGuLu7Y/Pmzfj4449LJC4iIiIqHTonLd27dy+BMHSXmpoKAMqpqri4OCQnJ6NDhw7KOnK5HK1bt8bx48c1Ji2ZmZnIzMxU/pyWllaCURMRERWDIeZ3ivH427dvY8qUKdi/fz+ePXuGGjVqYN26dfD399czmOLROWmZOXOmVvW2bNmCd955B/b29joHVRQhBMaPH4+WLVuiXr16AIDk5GQAgLu7u0pdd3d3xMfHa2wrNDQUs2bNMniMxC3BqfRIbZev6fOny9b6+n6GSzuG0uwblTJDTO/o+PhHjx6hRYsWaNu2Lfbv348KFSrg+vXrKFu2rH5x6KHYm8sV5eOPP0azZs1QpUoVg7c9ZswY/O9//0N0dLTauYKXYAshCr0se9q0aRg/frzy57S0NHh7exsuWCIiIjO0cOFCeHt7IyIiQlnm5+dnvIBQjIW42hIltIvNJ598gj179uDQoUOoVKmSstzDwwPAfyMu+VJSUtRGX14kl8vh5OSkchAREZmS/B1x9T2AvD/OXzxeXCLxoj179qBx48bo2bMnKlSogEaNGmHt2rWl2Gt1JZa0GJoQAmPGjMHOnTvxxx9/oHLlyirnK1euDA8PDxw8eFBZlpWVhSNHjqB58+alHS4REZHBGPLqIW9vbzg7OyuP0NBQyee8ceMGVq5cierVq+PAgQMYMWIExo4di40bN5Zm11WU2PSQoY0ePRqbN2/Gzz//DEdHR+WIirOzM2xtbSGTyRAcHIz58+ejevXqqF69OubPnw87Ozv069fPyNETERGZhsTERJVZBblcLllPoVCgcePGmD9/PgCgUaNGuHjxIlauXImBAweWSqwFmU3SsnLlSgBAmzZtVMojIiIwePBgAMDkyZPx7NkzjBo1Co8ePUKzZs0QFRUFR0fHUo6WiIjIgIRM54W0km0AWi+F8PT0RJ06dVTKateujR07dugXhx7MJmnRZo2MTCZDSEgIQkJCSj4gIiKiUmKMuzy3aNFCbef5q1evwtfXV79A9FBia1p8fX3VNp4jIiIi8/Dpp5/i5MmTmD9/Pq5du4bNmzdjzZo1GD16tNFi0jlpSUxMxK1bt5Q/nz59GsHBwVizZo1Kvb///puXDhMRERmCEW4+1KRJE+zatQtbtmxBvXr1MGfOHISHh6N///4G6VJx6Dw91K9fP3z00UcYMGAAkpOT0b59e9StWxc//PADkpOTMWPGjJKIk4iI6JVlrLs8d+nSBV26dNHreQ1J56Tl77//RtOmTQEA27dvR7169XDs2DFERUVhxIgRTFqIyCRo2h3WFHaCLakY9N091xReGyrEy3CbZj3pPD2UnZ2tvDzqt99+wzvvvAMAqFWrFpKSkgwbHREREdH/0zlpqVu3LlatWoU///wTBw8eRMeOHQEAd+7cgaurq8EDJCIietUZcnM5c6Zz0rJw4UKsXr0abdq0Qd++ffHaa3nDiXv27FFOGxEREZEBGWEhrinSeU1LmzZtcP/+faSlpcHFxUVZ/tFHH8HOzs6gwRERERHlK9Y+LUIIxMTEYPXq1UhPTwcAWFtbM2khIiIqETIDHeZN55GW+Ph4dOzYEQkJCcjMzET79u3h6OiIRYsW4fnz51i1alVJxElERPTqMsT0zkswPaTzSMu4cePQuHFjPHr0CLa2tsryd999F7///rtBgyMiIiLKp/NIS3R0NI4dOwZra2uVcl9fX9y+fdtggREREdH/40gLgGIkLQqFArm5uWrlt27d4t2UiYiISoIB7/JsznROWtq3b4/w8HDlvYZkMhmePHmCmTNnonPnzgYPkEhfmnZG1dbLskuoVD/0fW3MEXeCzfMq9pnMn85Jy7Jly9C2bVvUqVMHz58/R79+/fDvv//Czc0NW7ZsKYkYiYiIXmlC5B36tmHudE5avLy8cP78eWzZsgXnzp2DQqHAsGHD0L9/f5WFuURERGQgXNMCoBhJCwDY2tpi6NChGDp0qKHjISIiooK4pgVAMTeX+/7779GyZUt4eXkhPj4eQN600c8//2zQ4IiIiIjy6Zy0rFy5EuPHj0enTp3w6NEj5ZVELi4uCA8PN3R8RERErzyZMMxR2hQKBa5evYro6GgcPXpU5SgOnaeHli9fjrVr16J79+5YsGCBsrxx48aYOHFisYIgIiKiQpjhmpaTJ0+iX79+iI+PhyiwClgmk0lun1IUnZOWuLg4NGrUSK1cLpcjIyND5wCIiIjo5TNixAg0btwY+/btg6enJ2Qy/dfU6Jy0VK5cGefPn4evr69K+f79+1GnTh29AyIiIqICzHAh7r///ouffvoJ1apVM1ibOictkyZNwujRo/H8+XMIIXD69Gls2bIFoaGh+Pbbbw0WGBEREf0/M5weatasGa5du2bcpGXIkCHIycnB5MmT8fTpU/Tr1w8VK1bEl19+iT59+hgsMCIiIjJfn3zyCSZMmIDk5GTUr18fVlZWKucbNGigc5s6JS05OTnYtGkTunbtiuHDh+P+/ftQKBSoUKGCzk9MZC502ere3LZGL6l4Tfn2AOb2HulL03sh9TqU8akkWXffyX1aPZ5KkBmOtLz33nsAoLKnm0wmgxCidBbililTBiNHjsTly5cBAG5ubjo/IREREenIDJOWuLg4g7ep8/RQs2bNEBsbq7YQl4iIiChfSeQJOicto0aNwoQJE3Dr1i34+/vD3t5e5Xxx5qiIiIioEGZ49RAA3L59G8eOHUNKSgoUCoXKubFjx+rcns5JS+/evdWeTN85KiIiItLMEDvalvaOuBERERgxYgSsra3h6uqqsk+LTCYrnaSlJOaoiIiIqBBmuKZlxowZmDFjBqZNmwYLi2Ld6lCNzkmLOaxlWbFiBRYvXoykpCTUrVsX4eHhePPNN40dFhER0Svj6dOn6NOnj8ESFqAYScuePXsky2UyGWxsbFCtWjVUrlxZ78CKa9u2bQgODsaKFSvQokULrF69Gp06dcKlS5fg4+NjtLiIiIheJcOGDcOPP/6IqVOnGqxNnZOW7t27K9ewvOjFdS0tW7bE7t274eLiYrBAtRUWFoZhw4bhww8/BACEh4fjwIEDWLlyJUJDQ0s9HiIiIn3JYIA1LQaJRHuhoaHo0qULIiMjJTeXCwsL07lNncdsDh48iCZNmuDgwYNITU1FamoqDh48iKZNm2Lv3r04evQoHjx4YJQ7PmdlZSEmJgYdOnRQKe/QoQOOHz8u+ZjMzEykpaWpHERERKSf+fPn48CBA7h79y4uXLiA2NhY5XH+/PlitanzSMu4ceOwZs0aNG/eXFnWrl072NjY4KOPPsLFixcRHh6usgNeabl//z5yc3Ph7u6uUu7u7o7k5GTJx4SGhmLWrFmlER6VMFPYhVWX3UdfZpr6W5rv0av2mmtiiNeBr6UJMMNLnsPCwvDdd99h8ODBBmtT55GW69evw8nJSa3cyckJN27cAABUr14d9+/f1z+6Yip4++v8aSsp06ZNU44YpaamIjExsTRCJCIi0p4w0FGK5HI5WrRoYdA2dU5a/P39MWnSJNy7d09Zdu/ePUyePBlNmjQBkHc76kqVpO9hUZLc3NxgaWmpNqqSkpKiNvqSTy6Xw8nJSeUgIiIi/YwbNw7Lly83aJs6Tw+tW7cO3bp1Q6VKleDt7Q2ZTIaEhARUqVIFP//8MwDgyZMn+OKLLwwaqDasra3h7++PgwcP4t1331WWHzx4EN26dSv1eIiIiAzCDPdpOX36NP744w/s3bsXdevWVVuIu3PnTp3b1DlpqVmzJi5fvowDBw7g6tWrEEKgVq1aaN++vfJa7O7du+sciKGMHz8eAwYMQOPGjREQEIA1a9YgISEBI0aMMFpMRERE+jDHHXHLli2LHj16GLRNnZMWIG/NSMeOHdGmTRvI5XKN60WMoXfv3njw4AFmz56NpKQk1KtXD7/++qtZbIpHRET0soiIiNCq3rFjx9C4cWPI5fIi6+q8pkWhUGDOnDmoWLEiHBwclNv6f/HFF1i3bp2uzZWIUaNG4ebNm8jMzERMTAxatWpl7JCIiIiKzwwX4mqrU6dOuH37tlZ1dU5a5s6di/Xr12PRokWwtrZWltevXx/ffvutrs0RERFRUV7ipKXgZrWF0Tlp2bhxI9asWYP+/fvD0tJSWd6gQQP8888/ujZHRERERchf06LvYe50Tlpu376NatWqqZUrFApkZ2cbJCgiIiKignReiFu3bl38+eefagtbf/zxRzRq1MhggRHpyhR2YdVElxi4+ygZS07CLWOHAED6+/LKfy/McEfckqBz0jJz5kwMGDAAt2/fhkKhwM6dO3HlyhVs3LgRe/fuLYkYiYiIXm1muE+LtnS5Alnn6aGuXbti27Zt+PXXXyGTyTBjxgxcvnwZv/zyC9q3b69rc0RERPQSevbsGZ4+far8OT4+HuHh4YiKilKpp8tC3GLt0xIYGIjAwMDiPJSIiIh0ZI6by3Xr1g09evTAiBEj8PjxYzRr1gxWVla4f/8+wsLCMHLkSABAenq61m3qPNJCREREpcwML3k+d+4c3nzzTQDATz/9BHd3d8THx2Pjxo346quvitWmViMtLi4uWs85PXz4sFiBEBER0cvj6dOncHR0BABERUWhR48esLCwwBtvvIH4+PhitalV0hIeHq7894MHDzB37lwEBgYiICAAAHDixAkcOHDAKDdJJCIieukZYp+VUh5pqVatGnbv3o13330XBw4cwKeffgoASElJgZOTU7Ha1CppGTRokPLf7733HmbPno0xY8Yoy8aOHYuvv/4av/32mzIoIiIiMhAzvHpoxowZ6NevHz799FO0a9dOOdARFRVV7C1SdF7TcuDAAXTs2FGtPDAwEL/99luxgiAiIqKXy/vvv4+EhAScPXsWkZGRyvJ27dph2bJlxWpT56TF1dUVu3btUivfvXs3XF1dixUEERERFcIMF+ICgIeHBxo1agQLi//SjaZNm6JWrVrFak/nS55nzZqFYcOG4fDhw8qhnpMnTyIyMpI3TCTSwSu/wye9Msr4VJIs17QDL78b6szxkueSoHPSMnjwYNSuXRtfffUVdu7cCSEE6tSpg2PHjqFZs2YlESMRERFR8TaXa9asGTZt2mToWIiIiIg00mpNS1pamk6N6rK7HRERERXBTNe0GJpWSYuLiwtSUlK0brRixYq4ceNGsYMiIiKi/+SvadH3MHdaTQ8JIfDtt9/CwcFBq0azs7P1CoqIiIioIK2SFh8fH6xdu1brRj08PGBlZVXsoIiIiKiAl2CkRF9aJS03b94s4TCIiIhIIzPcEbck8C7PREREZBaKdckzERERlR5uLpeHSQsREZGp4/QQACYt9AqQ2hL8wJ2/jBAJlRRdtn2Xeu+5bbzhSH+39P++8T0igGtaiIiITJ6x92kJDQ2FTCZDcHCwwfpUHMVKWv7880988MEHCAgIwO3btwEA33//PaKjow0aHBEREcGoO+KeOXMGa9asQYMGDfTqgiHonLTs2LEDgYGBsLW1RWxsLDIzMwHkbd0/f/58gwdIRET0yjNS0vLkyRP0798fa9euhYuLi97d0JfOScvcuXOxatUqrF27VmUDuebNm+PcuXMGDY6IiIgMKy0tTeXIH3yQMnr0aAQFBeHtt98uxQg10zlpuXLlClq1aqVW7uTkhMePHxsiJiIiInqBIde0eHt7w9nZWXmEhoZKPufWrVtx7tw5jeeNQeekxdPTE9euXVMrj46ORpUqVQwSVEE3b97EsGHDULlyZdja2qJq1aqYOXMmsrKyVOolJCSga9eusLe3h5ubG8aOHatWh4iIyOwYcHooMTERqampymPatGlqT5eYmIhx48bhhx9+gI2NTcn2TQc6X/L88ccfY9y4cfjuu+8gk8lw584dnDhxAhMnTsSMGTNKIkb8888/UCgUWL16NapVq4a///4bw4cPR0ZGBpYsWQIAyM3NRVBQEMqXL4/o6Gg8ePAAgwYNghACy5cvL5G4iIiIzI2TkxOcnJwKrRMTE4OUlBT4+/sry3Jzc3H06FF8/fXXyMzMhKWlZUmHqkbnpGXy5MlITU1F27Zt8fz5c7Rq1QpyuRwTJ07EmDFjSiJGdOzYER07dlT+XKVKFVy5cgUrV65UJi1RUVG4dOkSEhMT4eXlBQBYunQpBg8ejHnz5hX5BhEREZmsUt5crl27drhw4YJK2ZAhQ1CrVi1MmTLFKAkLUMzN5ebNm4fp06fj0qVLUCgUqFOnDhwcHAwdW6FSU1NRrlw55c8nTpxAvXr1lAkLAAQGBiIzMxMxMTFo27atZDuZmZkqi5DS0tJKLmgiIqJiKO1t/B0dHVGvXj2VMnt7e7i6uqqVl6Zi74hrZ2eHxo0bGzIWrV2/fh3Lly/H0qVLlWXJyclwd3dXqefi4gJra2skJydrbCs0NBSzZs0qsViJAO7mSebNFHaQ1hQDv1uvFq2Slh49emjd4M6dO7WuGxISUmTCcObMGZXk6M6dO+jYsSN69uyJDz/8UKWuTCZTe7wQQrI837Rp0zB+/Hjlz2lpafD29ta2C0RERCXPBO49dPjwYT0D0J9WSYuzs7Py30II7Nq1C87OzspkIiYmBo8fP9YpuQGAMWPGoE+fPoXW8fPzU/77zp07aNu2LQICArBmzRqVeh4eHjh16pRK2aNHj5Cdna02AvMiuVwOuVyuU9xERESliXd5zqNV0hIREaH895QpU9CrVy+sWrVKuRAnNzcXo0aN0nmxq5ubG9zc3LSqe/v2bbRt2xb+/v6IiIiAhYXq1doBAQGYN28ekpKS4OnpCSBvca5cLldZ/UxERETmSed9Wr777jtMnDhRZeWwpaUlxo8fj++++86gweW7c+cO2rRpA29vbyxZsgT37t1DcnKyylqVDh06oE6dOhgwYABiY2Px+++/Y+LEiRg+fDivHCIiIvNmxHsPmRKdF+Lm5OTg8uXLqFmzpkr55cuXoVAoDBbYi6KionDt2jVcu3YNlSpVUjknRN67YGlpiX379mHUqFFo0aIFbG1t0a9fP+Ul0URERGbLBNa0mAKdk5YhQ4Zg6NChuHbtGt544w0AwMmTJ7FgwQIMGTLE4AECwODBgzF48OAi6/n4+GDv3r0lEgMREZGxyP7/0LcNc6dz0rJkyRJ4eHhg2bJlSEpKApC3tf/kyZMxYcIEgwdIREREBBQjabGwsMDkyZMxefJk5UZsXDNCRERUgjg9BECPzeUAJitERESlgZc859E5aalcuXKhm7XduHFDr4CIzBl35yyc1OtT2rut8j16uUh9fvgev7x0TlqCg4NVfs7OzkZsbCwiIyMxadIkQ8VFRERE+Tg9BKAYScu4ceMky7/55hucPXtW74CIiIhIwkuQdOhL583lNOnUqRN27NhhqOaIiIiIVOi1EPdFP/30E8qVK2eo5oiIiOj/cSFuHp2TlkaNGqksxBVCIDk5Gffu3cOKFSsMGhwRERGBa1r+n85JS7du3VSSFgsLC5QvXx5t2rRBrVq1DBocERERUT6dk5aQkJASCIOIiIg04fRQHp0X4lpaWiIlJUWt/MGDByp3fiYiIiID4V2eARRjpCX/rsoFZWZmwtraWu+AiIiISBVHWvJonbR89dVXAACZTIZvv/0WDg4OynO5ubk4evQo17QQkcFwV1PToctOxrq8b4bYDZmfk1eL1knLsmXLAOSNtKxatUplKsja2hp+fn5YtWqV4SMkIiJ61fHqIQA6JC1xcXEAgLZt22Lnzp1wcXEpsaCIiIjoBUxaABRjTcuhQ4dKIg4iIiKiQmmVtIwfPx5z5syBvb09xo8fX2jdsLAwgwRGREREebgQN49WSUtsbCyys7MBAOfOnVPZXI6IiIhKGKeHAGiZtLw4JXT48OGSioWIiIhII503lxs6dCjS09PVyjMyMjB06FCDBEVERET/kQlhkMPc6Zy0bNiwAc+ePVMrf/bsGTZu3GiQoIiIiOgF3BEXgA5XD6WlpUEIASEE0tPTYWNjozyXm5uLX3/9FRUqVCiRIImIiIi0TlrKli0LmUwGmUyGGjVqqJ2XyWSYNWuWQYMjIiIiXj2UT+uk5dChQxBC4K233sKOHTtQrlw55Tlra2v4+vrCy8urRIIkMiZuE16y+PqaJ0O8b3zvdcCrhwDokLS0bt0aQN7OuN7e3rCw0Hk5DBERERUDR1ry6Lwjrq+vLwDg6dOnSEhIQFZWlsr5Bg0aGCYyIiIiohfonLTcu3cPQ4YMwf79+yXP5+bm6h0UERERvYDTQwCKcclzcHAwHj16hJMnT8LW1haRkZHYsGEDqlevjj179pREjERERK+0/OkhfQ9zp/NIyx9//IGff/4ZTZo0gYWFBXx9fdG+fXs4OTkhNDQUQUFBJREnERERveJ0HmnJyMhQ7sdSrlw53Lt3DwBQv359nDt3zrDRScjMzETDhg0hk8lw/vx5lXMJCQno2rUr7O3t4ebmhrFjx6qtuSEiIjI73FwOQDGSlpo1a+LKlSsAgIYNG2L16tW4ffs2Vq1aBU9PT4MHWNDkyZMlL63Ozc1FUFAQMjIyEB0dja1bt2LHjh2YMGFCicdERERU0l71qSGgGNNDwcHBSEpKAgDMnDkTgYGB2LRpE6ytrbF+/XpDx6di//79iIqKwo4dO9QWAkdFReHSpUtITExUJjVLly7F4MGDMW/ePDg5OZVobERERFSydE5a+vfvr/x3o0aNcPPmTfzzzz/w8fGBm5ubQYN70d27dzF8+HDs3r0bdnZ2audPnDiBevXqqYzCBAYGIjMzEzExMWjbtq1ku5mZmcjMzFT+nJaWZvjgiYiI9CFE3qFvG2ZO56SlIDs7O7z++uuGiEUjIQQGDx6MESNGoHHjxrh586ZaneTkZLi7u6uUubi4wNraGsnJyRrbDg0N5e0HSIk7dBKRKeLmcnm0SlrGjx+vdYNhYWFa1w0JCSkyYThz5gyOHz+OtLQ0TJs2rdC6MplMrUwIIVmeb9q0aSr9S0tLg7e3dxGRExERUWnTKmmJjY3VqrHCkgMpY8aMQZ8+fQqt4+fnh7lz5+LkyZOQy+Uq5xo3boz+/ftjw4YN8PDwwKlTp1TOP3r0CNnZ2WojMC+Sy+Vq7RIREZkUbi4HQMuk5dChQyXy5G5ublqtg/nqq68wd+5c5c937txBYGAgtm3bhmbNmgEAAgICMG/ePCQlJSmvYoqKioJcLoe/v3+JxE9ERFQaZIq8Q982zJ3ea1pKg4+Pj8rPDg4OAICqVauiUqVKAIAOHTqgTp06GDBgABYvXoyHDx9i4sSJGD58OK8cIiIi88aRFgDF2KfFVFlaWmLfvn2wsbFBixYt0KtXL3Tv3h1LliwxdmhERERkAGYx0lKQn58fhMSlWz4+Pti7d68RIiIiIio5vHooj1kmLURERK8U7tMC4CWaHiIiIqKXG0daiIiITBynh/IwaaGX3oE7fxk7BCIi/fDqIQCcHiIiIiIzwZEWIiIiE8fpoTxMWoiIiEwdrx4CwOkhIiIiMhMcaSEiIjJxnB7Kw6SFiIjI1PHqIQBMWoiIiEweR1rycE0LERERmQWOtBAREZk6hcg79G3DzDFpoZdeq9EfqZXZ7jplhEiIiIqJa1oAcHqIiIiIzARHWoiIiEycDAZYiGuQSIyLSQsREZGp4464ADg9RERERBJCQ0PRpEkTODo6okKFCujevTuuXLli1JiYtBAREZm4/H1a9D10ceTIEYwePRonT57EwYMHkZOTgw4dOiAjI6NkOqkFTg8RERGZOiNcPRQZGanyc0REBCpUqICYmBi0atVKz2CKh0kLERHRKyQtLU3lZ7lcDrlcXuTjUlNTAQDlypUrkbi0wekhIiIiEycTwiAHAHh7e8PZ2Vl5hIaGFvn8QgiMHz8eLVu2RL169Uq6uxpxpIWIiMjUKf7/0LcNAImJiXByclIWazPKMmbMGPzvf/9DdHS0nkHoh0kLERGRiXtxpESfNgDAyclJJWkpyieffII9e/bg6NGjqFSpkl4x6ItJC730uGV/6SvjI/2LLSfhVilHQkTFJYTAJ598gl27duHw4cOoXLmysUNi0kJERGTyjHD10OjRo7F582b8/PPPcHR0RHJyMgDA2dkZtra2egZTPFyIS0REZOryd8TV99DBypUrkZqaijZt2sDT01N5bNu2rYQ6WTSOtBAREZEaYYLb/jNpISIiMnHF2dFWqg1zx6SFiIjI1PGGiQDMbE3Lvn370KxZM9ja2sLNzQ09evRQOZ+QkICuXbvC3t4ebm5uGDt2LLKysowULRERERmS2Yy07NixA8OHD8f8+fPx1ltvQQiBCxcuKM/n5uYiKCgI5cuXR3R0NB48eIBBgwZBCIHly5cbMXIiIiL9yBR5h75tmDuzSFpycnIwbtw4LF68GMOGDVOW16xZU/nvqKgoXLp0CYmJifDy8gIALF26FIMHD8a8efN02kiHiIjIpHB6CICZTA+dO3cOt2/fhoWFBRo1agRPT0906tQJFy9eVNY5ceIE6tWrp0xYACAwMBCZmZmIiYnR2HZmZibS0tJUDiIiIjI9ZjHScuPGDQBASEgIwsLC4Ofnh6VLl6J169a4evUqypUrh+TkZLi7u6s8zsXFBdbW1soNcaSEhoZi1qxZJRo/vTo07gTr5apXu888bSTLHWNua/1cZe48UCtL96+odbu60NhfiXJNfdN3J2NN74UuJPtx8i+tn0/TDsC61CUCYJTN5UyRUUdaQkJCIJPJCj3Onj0LhSJvIm769Ol477334O/vj4iICMhkMvz444/K9mQymdpzCCEky/NNmzYNqampyiMxMdHwHSUiItKDIe/ybM6MOtIyZswY9OnTp9A6fn5+SE9PBwDUqVNHWS6Xy1GlShUkJCQAADw8PHDqlOpfZo8ePUJ2drbaCMyL5HK5Vne4JCIiMhquaQFg5KTFzc0Nbm5uRdbz9/eHXC7HlStX0LJlSwBAdnY2bt68CV9fXwBAQEAA5s2bh6SkJHh6egLIW5wrl8vh7+9fcp0gIiKiUmEWa1qcnJwwYsQIzJw5E97e3vD19cXixYsBAD179gQAdOjQAXXq1MGAAQOwePFiPHz4EBMnTsTw4cN55RAREZk3AUDfS5bNf6DFPJIWAFi8eDHKlCmDAQMG4NmzZ2jWrBn++OMPuLi4AAAsLS2xb98+jBo1Ci1atICtrS369euHJUuWGDlyIiIi/RhiTQrXtJQiKysrLFmypNAkxMfHB3v37i3FqIiIiKi0mE3SQkRE9MoSMMBCXINEYlRMWoiIiEwdrx4CYCY74hIRERFxpEVLGnc6ldrF8o3XJOveamev9fO5XspVK9Nph1ANMWjazVNKie3aKRWbDnEZgqb3c9/JfWpldb8ZKVnX9r72z2eXIvF+Jj2XrKtph1gpmna0lWIL9d1dNX2mcrRuVQMNO+JK9e1Oa+nNH8tWaK5W9ri2/nd8k99T/1tN03sp9XzydupxAUCl3zPUyq7NqyBZ1yVa/XV45uajdbvX+9hK1n3zjUtqZRE+f0rWrfr7EPV220VI1g16I0it7B8NfSvvmq5W1t/vtGTdL6M6SZbXDFP/PXO3k/Tr47r6uHqhht9/10ZbqpXZ/CP9fZN63Uv795QKBQDN+6Rq34aZY9JCRERk4nj1UB4mLURERKaOa1oAcE0LERERmQmOtBAREZk6jrQAYNJCRERk+pi0AOD0EBEREZkJjrQQERGZOl7yDIBJCxERkcnjJc95OD1EREREZoEjLURERKaOC3EBADIhXoJeGFBaWhqcnZ1RfdJ8WMr/2945s7z0ZKBwzVIrk9qiG5Deyv1pBfVtpQHgmZt6md/3CZJ1pbZy17Q9+7N3m6nX1bCdvNSW11JbdOvKebadeqGG7bFTf60uWa5pW3Apn5SVft20tfyx9PbhUt6wvS4dw+W+amW6bG1e9rL2g6JSnx1A+jN8rddqrdslepVU2/6xWpnULSByM5/j38WfITU1FU5OTgaPI///pLerBqOMpVyvtnJyM/Hb9fASi7U0cHqIiIiIzAKnh4iIiEwdp4cAMGkhIiIyAwZIWsCkhYiIiEoaR1oAcE0LERERmQmOtBAREZk6hYDe0zsK8x9pYdJCRERk6oQi79C3DTPH6SEiIiIyCxxpISIiMnVciAuASYvWaobdkiy/OUB9t1RNO5KW6fZQvUzD811s+JN64WhN0Un4RtMJ6Z1nS9VOXSobP15NO+pK7ZR78llVybq1y91VKzuX5itZV2qX5bMzIwoLkYiKKdDrNcly+XQTm4jgmhYAnB4iIiIiM8GRFiIiIlPH6SEATFqIiIhMn4ABkhaDRGJUnB4iIiIis8CRFiIiIlPH6SEAZjTScvXqVXTr1g1ubm5wcnJCixYtcOjQIZU6CQkJ6Nq1K+zt7eHm5oaxY8ciK0v9SgwiIiKzolAY5jBzZpO0BAUFIScnB3/88QdiYmLQsGFDdOnSBcnJyQCA3NxcBAUFISMjA9HR0di6dSt27NiBCRMmGDlyIiIiPeWPtOh7mDmzSFru37+Pa9euYerUqWjQoAGqV6+OBQsW4OnTp7h48SIAICoqCpcuXcIPP/yARo0a4e2338bSpUuxdu1apKWlGbkHREREpC+zSFpcXV1Ru3ZtbNy4ERkZGcjJycHq1avh7u4Of39/AMCJEydQr149eHl5KR8XGBiIzMxMxMTEaGw7MzMTaWlpKgcREZFJ4UgLADNZiCuTyXDw4EF069YNjo6OsLCwgLu7OyIjI1G2bFkAQHJyMtzd3VUe5+LiAmtra+UUkpTQ0FDMmjVLrfz08G/h5Gj5X4Euu9HSK0HTTrmSdKnr86fuwRBRsRy4o2nXbe12405Lz4XLYsPFoxF3xAVg5JGWkJAQyGSyQo+zZ89CCIFRo0ahQoUK+PPPP3H69Gl069YNXbp0QVJSkrI9mUym9hxCCMnyfNOmTUNqaqrySExMLJG+EhERkX6MOtIyZswY9OnTp9A6fn5++OOPP7B37148evQITk5OAIAVK1bg4MGD2LBhA6ZOnQoPDw+cOnVK5bGPHj1Cdna22gjMi+RyOeRyuf6dISIiKiFCKCCEflf/6Pt4U2DUpMXNzQ1ubhruLviCp0+fAgAsLFQHhiwsLKD4/0u4AgICMG/ePCQlJcHT0xNA3uJcuVyuXPdCRERkloTQf3rnJVjTYhYLcQMCAuDi4oJBgwbhr7/+wtWrVzFp0iTExcUhKCgIANChQwfUqVMHAwYMQGxsLH7//XdMnDgRw4cPV47OEBERkfkyi6TFzc0NkZGRePLkCd566y00btwY0dHR+Pnnn/Haa3m3Fbe0tMS+fftgY2ODFi1aoFevXujevTuWLFli5OiJiIj0xKuHAJjJ1UMA0LhxYxw4cKDQOj4+Pti7d28pRURERFRKFApApuealJdgTYtZjLQQERERmc1ICxER0StLGGCfFk4PERERUUkTCgWEntNDvOSZiIiISh5HWgBwTQsRERGZCY60EBERmTqFAGQcaWHSQkREZOqEAKDvJc/mn7RweoiIiIjMAkdaiIiITJxQCAg9p4cER1qIiIioxAmFYQ4drVixApUrV4aNjQ38/f3x559/lkDntMekhYiIiNRs27YNwcHBmD59OmJjY/Hmm2+iU6dOSEhIMFpMTFqIiIhMnFAIgxy6CAsLw7Bhw/Dhhx+idu3aCA8Ph7e3N1auXFlCvSwakxYiIiJTV8rTQ1lZWYiJiUGHDh1Uyjt06IDjx48bunda40LcAvIXKqU9Mf/tjomIqGTl/19R0otcc5Ct94a4OcgGAKSlpamUy+VyyOVylbL79+8jNzcX7u7uKuXu7u5ITk7WLxA9MGkpID09HQDg+/pN4wZCRERmIz09Hc7OzgZv19raGh4eHohO/tUg7Tk4OMDb21ulbObMmQgJCZGsL5PJVH4WQqiVlSYmLQV4eXkhMTERjo6ORntj0tLS4O3tjcTERDg5ORklhpLCvpkn9s08vcx9A0yjf0IIpKenw8vLq0Tat7GxQVxcHLKysgzSnlTSUXCUBQDc3NxgaWmpNqqSkpKiNvpSmpi0FGBhYYFKlSoZOwwAgJOT00v5iwZg38wV+2aeXua+AcbvX0mMsLzIxsYGNjY2JfocBVlbW8Pf3x8HDx7Eu+++qyw/ePAgunXrVqqxvIhJCxEREakZP348BgwYgMaNGyMgIABr1qxBQkICRowYYbSYmLQQERGRmt69e+PBgweYPXs2kpKSUK9ePfz666/w9fU1WkxMWkyQXC7HzJkzJecZzR37Zp7YN/P0MvcNePn7ZwpGjRqFUaNGGTsMJZl4GW5GQERERC89bi5HREREZoFJCxEREZkFJi1ERERkFpi0EBERkVlg0mJE8+bNQ/PmzWFnZ4eyZctK1pHJZGrHqlWrVOpcuHABrVu3hq2tLSpWrIjZs2eX+H0wiqJN3xISEtC1a1fY29vDzc0NY8eOVdv10RT7JsXPz0/tfZo6dapKHW36a6pWrFiBypUrw8bGBv7+/vjzzz+NHZJOQkJC1N4fDw8P5XkhBEJCQuDl5QVbW1u0adMGFy9eNGLEhTt69Ci6du0KLy8vyGQy7N69W+W8Nv3JzMzEJ598Ajc3N9jb2+Odd97BrVu3SrEX0orq2+DBg9XeyzfeeEOljqn2jfTHpMWIsrKy0LNnT4wcObLQehEREUhKSlIegwYNUp5LS0tD+/bt4eXlhTNnzmD58uVYsmQJwsLCSjr8QhXVt9zcXAQFBSEjIwPR0dHYunUrduzYgQkTJijrmGrfNMnfyyD/+Pzzz5XntOmvqdq2bRuCg4Mxffp0xMbG4s0330SnTp2QkJBg7NB0UrduXZX358KFC8pzixYtQlhYGL7++mucOXMGHh4eaN++vfJeZKYmIyMDr732Gr7++mvJ89r0Jzg4GLt27cLWrVsRHR2NJ0+eoEuXLsjNzS2tbkgqqm8A0LFjR5X38tdfVe/LY6p9IwMQZHQRERHC2dlZ8hwAsWvXLo2PXbFihXB2dhbPnz9XloWGhgovLy+hUCgMHKnuNPXt119/FRYWFuL27dvKsi1btgi5XC5SU1OFEKbftxf5+vqKZcuWaTyvTX9NVdOmTcWIESNUymrVqiWmTp1qpIh0N3PmTPHaa69JnlMoFMLDw0MsWLBAWfb8+XPh7OwsVq1aVUoRFl/B3xHa9Ofx48fCyspKbN26VVnn9u3bwsLCQkRGRpZa7EWR+v03aNAg0a1bN42PMZe+UfFwpMUMjBkzBm5ubmjSpAlWrVoFhUKhPHfixAm0bt1aZXOlwMBA3LlzBzdv3jRCtNo5ceIE6tWrp3KTscDAQGRmZiImJkZZx5z6tnDhQri6uqJhw4aYN2+eytSPNv01RVlZWYiJiUGHDh1Uyjt06IDjx48bKari+ffff+Hl5YXKlSujT58+uHHjBgAgLi4OycnJKn2Uy+Vo3bq12fUR0K4/MTExyM7OVqnj5eWFevXqmUWfDx8+jAoVKqBGjRoYPnw4UlJSlOfMvW9UOO6Ia+LmzJmDdu3awdbWFr///jsmTJiA+/fvK6cekpOT4efnp/KY/DtwJicno3LlyqUdslaSk5PV7hTq4uICa2tr5V1Fzalv48aNw+uvvw4XFxecPn0a06ZNQ1xcHL799lsA2vXXFN2/fx+5ublqsbu7u5t03AU1a9YMGzduRI0aNXD37l3MnTsXzZs3x8WLF5X9kOpjfHy8McLVizb9SU5OhrW1NVxcXNTqmPr72qlTJ/Ts2RO+vr6Ii4vDF198gbfeegsxMTGQy+Vm3TcqGkdaDExqwV/B4+zZs1q39/nnnyMgIAANGzbEhAkTMHv2bCxevFilTsHbjIv/X6hasFxfhu6bVHyiwG3TS6tvUnTp76efforWrVujQYMG+PDDD7Fq1SqsW7cODx480NiX/P6URl/0JfU+mEPc+Tp16oT33nsP9evXx9tvv419+/YBADZs2KCsY+59LKg4/TGHPvfu3RtBQUGoV68eunbtiv379+Pq1avK91QTc+gbFY0jLQY2ZswY9OnTp9A6BUcPdPHGG28gLS0Nd+/ehbu7Ozw8PNT+esgfKi34l5a+DNk3Dw8PnDp1SqXs0aNHyM7OVsZdmn2Tok9/869muHbtGlxdXbXqrylyc3ODpaWl5PtgynEXxd7eHvXr18e///6L7t27A8gbffD09FTWMdc+5l8VVVh/PDw8kJWVhUePHqmMSKSkpKB58+alG7CePD094evri3///RfAy9U3UseRFgNzc3NDrVq1Cj1sbGyK3X5sbCxsbGyUlxEHBATg6NGjKusnoqKi4OXlpVdyJMWQfQsICMDff/+NpKQklbjlcjn8/f1LvW9S9OlvbGwsACj/09Cmv6bI2toa/v7+OHjwoEr5wYMHzfo/gMzMTFy+fBmenp6oXLkyPDw8VPqYlZWFI0eOmGUftemPv78/rKysVOokJSXh77//Nrs+P3jwAImJicrv2svUN5JgtCXAJOLj40VsbKyYNWuWcHBwELGxsSI2Nlakp6cLIYTYs2ePWLNmjbhw4YK4du2aWLt2rXBychJjx45VtvH48WPh7u4u+vbtKy5cuCB27twpnJycxJIlS4zVLSFE0X3LyckR9erVE+3atRPnzp0Tv/32m6hUqZIYM2aMsg1T7VtBx48fF2FhYSI2NlbcuHFDbNu2TXh5eYl33nlHWUeb/pqqrVu3CisrK7Fu3Tpx6dIlERwcLOzt7cXNmzeNHZrWJkyYIA4fPixu3LghTp48Kbp06SIcHR2VfViwYIFwdnYWO3fuFBcuXBB9+/YVnp6eIi0tzciRS0tPT1d+pwAoP3/x8fFCCO36M2LECFGpUiXx22+/iXPnzom33npLvPbaayInJ8dY3RJCFN639PR0MWHCBHH8+HERFxcnDh06JAICAkTFihXNom+kPyYtRjRo0CABQO04dOiQEEKI/fv3i4YNGwoHBwdhZ2cn6tWrJ8LDw0V2drZKO//73//Em2++KeRyufDw8BAhISFGvyS4qL4JkZfYBAUFCVtbW1GuXDkxZswYlcubhTDNvhUUExMjmjVrJpydnYWNjY2oWbOmmDlzpsjIyFCpp01/TdU333wjfH19hbW1tXj99dfFkSNHjB2STnr37i08PT2FlZWV8PLyEj169BAXL15UnlcoFGLmzJnCw8NDyOVy0apVK3HhwgUjRly4Q4cOSX6/Bg0aJITQrj/Pnj0TY8aMEeXKlRO2traiS5cuIiEhwQi9UVVY354+fSo6dOggypcvL6ysrISPj48YNGiQWtym2jfSn0wIE9xelIiIiKgArmkhIiIis8CkhYiIiMwCkxYiIiIyC0xaiIiIyCwwaSEiIiKzwKSFiIiIzAKTFiIiIjILTFropdOmTRsEBwe/VM87ePBg5T1yisvPz095o8fHjx9rrLd+/XrlbSLI8AYPHqx8H3bv3m3scIjMCpMWIgPZuXMn5syZo/zZz88P4eHhxgtIwuzZs5GUlARnZ2djh/LSO3z4sGSC+OWXX6rcg4qItMe7PBMZSLly5YwdQpEcHR2VdwE2tuzsbFhZWRk7jFLn7OzMpJGomDjSQi+9R48eYeDAgXBxcYGdnR06deqkvI098N90yIEDB1C7dm04ODigY8eOKn8N5+TkYOzYsShbtixcXV0xZcoUDBo0SGXK5sXpoTZt2iA+Ph6ffvqpcioAAEJCQtCwYUOV+MLDw1XuWp2bm4vx48crn2vy5MkoeLcNIQQWLVqEKlWqwNbWFq+99hp++umnYr0+69evh4+PD+zs7PDuu+/iwYMHanV++eUX+Pv7w8bGBlWqVMGsWbOQk5OjPP/PP/+gZcuWsLGxQZ06dfDbb7+pTH/cvHkTMpkM27dvR5s2bWBjY4MffvgBABAREYHatWvDxsYGtWrVwooVK1Se+/bt2+jduzdcXFzg6uqKbt264ebNm8rzhw8fRtOmTWFvb4+yZcuiRYsWiI+P16rvRfUrLCwM9evXh729Pby9vTFq1Cg8efJEeT4+Ph5du3aFi4sL7O3tUbduXfz666+4efMm2rZtCwBwcXGBTCbD4MGDtYqJiDRj0kIvvcGDB+Ps2bPYs2cPTpw4ASEEOnfujOzsbGWdp0+fYsmSJfj+++9x9OhRJCQkYOLEicrzCxcuxKZNmxAREYFjx44hLS2t0PUIO3fuRKVKlZTTMbpMByxduhTfffcd1q1bh+joaDx8+BC7du1SqfP5558jIiICK1euxMWLF/Hpp5/igw8+wJEjR7R/YQCcOnUKQ4cOxahRo3D+/Hm0bdsWc+fOValz4MABfPDBBxg7diwuXbqE1atXY/369Zg3bx4AQKFQoHv37rCzs8OpU6ewZs0aTJ8+XfL5pkyZgrFjx+Ly5csIDAzE2rVrMX36dMybNw+XL1/G/Pnz8cUXX2DDhg0A8t6Xtm3bwsHBAUePHkV0dLQyqczKykJOTg66d++O1q1b43//+x9OnDiBjz76SJkkFqaofgGAhYUFvvrqK/z999/YsGED/vjjD0yePFl5fvTo0cjMzMTRo0dx4cIFLFy4EA4ODvD29saOHTsAAFeuXEFSUhK+/PJLnd4bIpJg1Ns1EpWA1q1bi3HjxgkhhLh69aoAII4dO6Y8f//+fWFrayu2b98uhBAiIiJCABDXrl1T1vnmm2+Eu7u78md3d3exePFi5c85OTnCx8dHdOvWTfJ5hRDC19dXLFu2TCW2mTNnitdee02lbNmyZcLX11f5s6enp1iwYIHy5+zsbFGpUiXlcz158kTY2NiI48ePq7QzbNgw0bdvX42vi1Q8ffv2FR07dlQp6927t3B2dlb+/Oabb4r58+er1Pn++++Fp6enECLvbuRlypQRSUlJyvMHDx4UAMSuXbuEEELExcUJACI8PFylHW9vb7F582aVsjlz5oiAgAAhhBDr1q0TNWvWVLmzd2ZmprC1tRUHDhwQDx48EADE4cOHNfZbk6L6JWX79u3C1dVV+XP9+vVFSEiIZN38uxU/evRI8vyLrw8RaYdrWuildvnyZZQpUwbNmjVTlrm6uqJmzZq4fPmysszOzg5Vq1ZV/uzp6YmUlBQAQGpqKu7evYumTZsqz1taWsLf3x8KhcKg8aampiIpKQkBAQHKsjJlyqBx48bKKaJLly7h+fPnaN++vcpjs7Ky0KhRI52e7/Lly3j33XdVygICAhAZGan8OSYmBmfOnFEZgcjNzcXz58/x9OlTXLlyBd7e3iprZV58rV7UuHFj5b/v3buHxMREDBs2DMOHD1eW5+TkKNd8xMTE4Nq1a3B0dFRp5/nz57h+/To6dOiAwYMHIzAwEO3bt8fbb7+NXr16wdPTs8i+F9UvOzs7HDp0CPPnz8elS5eQlpaGnJwcPH/+HBkZGbC3t8fYsWMxcuRIREVF4e2338Z7772HBg0aFPncRFQ8TFropSYKrAV5sfzFKYSCC0JlMpnaYwtOOWhquzAWFhZqj3txmkob+YnSvn37ULFiRZVzcrlcp7a06YNCocCsWbPQo0cPtXM2NjZqr2Vh7O3tVdoFgLVr16oklUBeUphfx9/fH5s2bVJrq3z58gDy1sSMHTsWkZGR2LZtGz7//HMcPHgQb7zxhl79io+PR+fOnTFixAjMmTMH5cqVQ3R0NIYNG6Z8zz788EMEBgZi3759iIqKQmhoKJYuXYpPPvlEq9eDiHTDpIVeanXq1EFOTg5OnTqF5s2bAwAePHiAq1evonbt2lq14ezsDHd3d5w+fRpvvvkmgLy/yGNjY9UW1b7I2toaubm5KmXly5dHcnKyyn/058+fV3kuT09PnDx5Eq1atQKQN/IQExOD119/XdknuVyOhIQEtG7dWqs+aFKnTh2cPHlSpazgz6+//jquXLmCatWqSbZRq1YtJCQk4O7du3B3dwcAnDlzpsjndnd3R8WKFXHjxg30799fss7rr7+Obdu2oUKFCnByctLYVqNGjdCoUSNMmzYNAQEB2Lx5c5FJS1H9Onv2LHJycrB06VJYWOQt/9u+fbtaPW9vb4wYMQIjRozAtGnTsHbtWnzyySewtrYGALXPABEVH5MWeqlVr14d3bp1w/Dhw7F69Wo4Ojpi6tSpqFixIrp166Z1O5988glCQ0NRrVo11KpVC8uXL8ejR48KHWHw8/PD0aNH0adPH8jlcri5uaFNmza4d+8eFi1ahPfffx+RkZHYv3+/yn/I48aNw4IFC1C9enXUrl0bYWFhKnt9ODo6YuLEifj000+hUCjQsmVLpKWl4fjx43BwcMCgQYO07tfYsWPRvHlzLFq0CN27d0dUVJTK1BAAzJgxA126dIG3tzd69uwJCwsL/O9//8OFCxcwd+5ctG/fHlWrVsWgQYOwaNEipKenKxfiFjUCExISgrFjx8LJyQmdOnVCZmYmzp49i0ePHmH8+PHo378/Fi9ejG7dumH27NmoVKkSEhISsHPnTkyaNAnZ2dlYs2YN3nnnHXh5eeHKlSu4evUqBg4cWGTfi+pX1apVkZOTg+XLl6Nr1644duwYVq1apdJGcHAwOnXqhBo1auDRo0f4448/lMmwr68vZDIZ9u7di86dO8PW1hYODg5avzdEJMFoq2mISkjBBbEPHz4UAwYMEM7OzsLW1lYEBgaKq1evKs9HRESoLDwVQohdu3aJF78e2dnZYsyYMcLJyUm4uLiIKVOmiJ49e4o+ffpofN4TJ06IBg0aCLlcrtLWypUrhbe3t7C3txcDBw4U8+bNU1mIm52dLcaNGyecnJxE2bJlxfjx48XAgQNVFv0qFArx5Zdfipo1aworKytRvnx5ERgYKI4cOaLxdZFaiCtE3mLXSpUqCVtbW9G1a1exZMkStdcjMjJSNG/eXNja2gonJyfRtGlTsWbNGuX5y5cvixYtWghra2tRq1Yt8csvvwgAIjIyUgjx30Lc2NhYtefftGmTaNiwobC2thYuLi6iVatWYufOncrzSUlJYuDAgcLNzU3I5XJRpUoVMXz4cJGamiqSk5NF9+7dhaenp7C2tha+vr5ixowZIjc3V+ProEu/wsLChKenp/Jzs3HjRpXFtWPGjBFVq1YVcrlclC9fXgwYMEDcv39f+fjZs2cLDw8PIZPJxKBBg1SeG1yIS6QzmRDFmJgnesUpFArUrl0bvXr1UtkF15T5+fkhODi4VG5xcOzYMbRs2RLXrl1TWeBM/5HJZNi1a5fet2cgepVwnxYiLcTHx2Pt2rW4evUqLly4gJEjRyIuLg79+vUzdmg6mTJlChwcHJCammrQdnft2oWDBw/i5s2b+O233/DRRx+hRYsWTFgkjBgxgtNERMXEkRYiLSQmJqJPnz74+++/IYRAvXr1sGDBAuViWXMQHx+vvOqlSpUqysWlhrBx40bMmTMHiYmJcHNzw9tvv42lS5fC1dXVYM+hq7p162rcGXf16tUaF/+WtJSUFKSlpQHIu7T+xSuqiKhwTFqI6KX0YpJWkLu7u9reL0Rk+pi0EBERkVngmhYiIiIyC0xaiIiIyCwwaSEiIiKzwKSFiIiIzAKTFiIiIjILTFqIiIjILDBpISIiIrPApIWIiIjMwv8BAw83nKm3twkAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\ud83c\udf89 Yay! Our recipe worked!" ] - }, - "metadata": {}, - "output_type": "display_data" + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.13" } - ], - "source": [ - "ds.s_mn.isel(depth=0).mean(dim='time').plot()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "🎉 Yay! Our recipe worked!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.13" - } - }, - "nbformat": 4, - "nbformat_minor": 4 + "nbformat": 4, + "nbformat_minor": 4 } diff --git a/docs/pangeo_forge_recipes/tutorials/xarray_zarr/netcdf_zarr_sequential.ipynb b/docs/pangeo_forge_recipes/tutorials/xarray_zarr/netcdf_zarr_sequential.ipynb index ab91599b..c511508a 100755 --- a/docs/pangeo_forge_recipes/tutorials/xarray_zarr/netcdf_zarr_sequential.ipynb +++ b/docs/pangeo_forge_recipes/tutorials/xarray_zarr/netcdf_zarr_sequential.ipynb @@ -1,1988 +1,1988 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Xarray-to-Zarr Sequential Recipe: NOAA OISST\n", - "\n", - "This tutorial describes how to create a recipe from scratch.\n", - "The source data is a sequence of NetCDF files accessed via HTTP.\n", - "The target is a Zarr store." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 1: Get to know your source data\n", - "\n", - "If you are developing a new recipe, you are probably starting from an existing\n", - "dataset. The first step is to just get to know the dataset. For this tutorial,\n", - "our example will be the _NOAA Optimum Interpolation Sea Surface Temperature\n", - "(OISST) v2.1_. The authoritative website describing the data is\n", - ".\n", - "This website contains links to the actual data files on the\n", - "[data access](https://www.ncdc.noaa.gov/oisst/data-access) page. We will use the\n", - "_AVHRR-Only_ version of the data and follow the corresponding link to the\n", - "[Gridded netCDF Data](https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/).\n", - "Browsing through the directories, we can see that there is one file per day. The\n", - "very first day of the dataset is stored at the following URL:\n", - "\n", - "```text\n", - "https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc\n", - "```\n", - "\n", - "From this example, we can work out the pattern of the file naming conventions.\n", - "But first, let's just download one of the files and open it up.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ + "cells": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "--2023-02-27 10:22:47-- https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc\n", - "Resolving www.ncei.noaa.gov (www.ncei.noaa.gov)... 205.167.25.171, 205.167.25.172, 205.167.25.168, ...\n", - "Connecting to www.ncei.noaa.gov (www.ncei.noaa.gov)|205.167.25.171|:443... connected.\n", - "HTTP request sent, awaiting response... 200 OK\n", - "Length: 1714749 (1.6M) [application/x-netcdf]\n", - "Saving to: ‘oisst-avhrr-v02r01.19810901.nc.3’\n", - "\n", - "oisst-avhrr-v02r01. 100%[===================>] 1.63M 403KB/s in 4.3s \n", - "\n", - "2023-02-27 10:22:52 (393 KB/s) - ‘oisst-avhrr-v02r01.19810901.nc.3’ saved [1714749/1714749]\n", - "\n" - ] - } - ], - "source": [ - "! wget https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc " - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Xarray-to-Zarr Sequential Recipe: NOAA OISST\n", + "\n", + "This tutorial describes how to create a recipe from scratch.\n", + "The source data is a sequence of NetCDF files accessed via HTTP.\n", + "The target is a Zarr store." + ] + }, { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.Dataset>\n",
-       "Dimensions:  (time: 1, zlev: 1, lat: 720, lon: 1440)\n",
-       "Coordinates:\n",
-       "  * lat      (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n",
-       "  * lon      (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n",
-       "  * time     (time) datetime64[ns] 1981-09-01T12:00:00\n",
-       "  * zlev     (zlev) float32 0.0\n",
-       "Data variables:\n",
-       "    anom     (time, zlev, lat, lon) float32 ...\n",
-       "    err      (time, zlev, lat, lon) float32 ...\n",
-       "    ice      (time, zlev, lat, lon) float32 ...\n",
-       "    sst      (time, zlev, lat, lon) float32 ...\n",
-       "Attributes: (12/37)\n",
-       "    title:                      NOAA/NCEI 1/4 Degree Daily Optimum Interpolat...\n",
-       "    source:                     ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pathfin...\n",
-       "    id:                         oisst-avhrr-v02r01.19810901.nc\n",
-       "    naming_authority:           gov.noaa.ncei\n",
-       "    summary:                    NOAAs 1/4-degree Daily Optimum Interpolation ...\n",
-       "    cdm_data_type:              Grid\n",
-       "    ...                         ...\n",
-       "    metadata_link:              https://doi.org/10.25921/RE9P-PT57\n",
-       "    ncei_template_version:      NCEI_NetCDF_Grid_Template_v2.0\n",
-       "    comment:                    Data was converted from NetCDF-3 to NetCDF-4 ...\n",
-       "    sensor:                     Thermometer, AVHRR\n",
-       "    Conventions:                CF-1.6, ACDD-1.3\n",
-       "    references:                 Reynolds, et al.(2007) Daily High-Resolution-...
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 1: Get to know your source data\n", + "\n", + "If you are developing a new recipe, you are probably starting from an existing\n", + "dataset. The first step is to just get to know the dataset. For this tutorial,\n", + "our example will be the _NOAA Optimum Interpolation Sea Surface Temperature\n", + "(OISST) v2.1_. The authoritative website describing the data is\n", + ".\n", + "This website contains links to the actual data files on the\n", + "[data access](https://www.ncdc.noaa.gov/oisst/data-access) page. We will use the\n", + "_AVHRR-Only_ version of the data and follow the corresponding link to the\n", + "[Gridded netCDF Data](https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/).\n", + "Browsing through the directories, we can see that there is one file per day. The\n", + "very first day of the dataset is stored at the following URL:\n", + "\n", + "```text\n", + "https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc\n", + "```\n", + "\n", + "From this example, we can work out the pattern of the file naming conventions.\n", + "But first, let's just download one of the files and open it up.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--2023-02-27 10:22:47-- https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc\n", + "Resolving www.ncei.noaa.gov (www.ncei.noaa.gov)... 205.167.25.171, 205.167.25.172, 205.167.25.168, ...\n", + "Connecting to www.ncei.noaa.gov (www.ncei.noaa.gov)|205.167.25.171|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 1714749 (1.6M) [application/x-netcdf]\n", + "Saving to: \u2018oisst-avhrr-v02r01.19810901.nc.3\u2019\n", + "\n", + "oisst-avhrr-v02r01. 100%[===================>] 1.63M 403KB/s in 4.3s \n", + "\n", + "2023-02-27 10:22:52 (393 KB/s) - \u2018oisst-avhrr-v02r01.19810901.nc.3\u2019 saved [1714749/1714749]\n", + "\n" + ] + } ], - "text/plain": [ - "\n", - "Dimensions: (time: 1, zlev: 1, lat: 720, lon: 1440)\n", - "Coordinates:\n", - " * lat (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n", - " * lon (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n", - " * time (time) datetime64[ns] 1981-09-01T12:00:00\n", - " * zlev (zlev) float32 0.0\n", - "Data variables:\n", - " anom (time, zlev, lat, lon) float32 ...\n", - " err (time, zlev, lat, lon) float32 ...\n", - " ice (time, zlev, lat, lon) float32 ...\n", - " sst (time, zlev, lat, lon) float32 ...\n", - "Attributes: (12/37)\n", - " title: NOAA/NCEI 1/4 Degree Daily Optimum Interpolat...\n", - " source: ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pathfin...\n", - " id: oisst-avhrr-v02r01.19810901.nc\n", - " naming_authority: gov.noaa.ncei\n", - " summary: NOAAs 1/4-degree Daily Optimum Interpolation ...\n", - " cdm_data_type: Grid\n", - " ... ...\n", - " metadata_link: https://doi.org/10.25921/RE9P-PT57\n", - " ncei_template_version: NCEI_NetCDF_Grid_Template_v2.0\n", - " comment: Data was converted from NetCDF-3 to NetCDF-4 ...\n", - " sensor: Thermometer, AVHRR\n", - " Conventions: CF-1.6, ACDD-1.3\n", - " references: Reynolds, et al.(2007) Daily High-Resolution-..." + "source": [ + "! wget https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc " ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import xarray as xr\n", - "\n", - "ds = xr.open_dataset(\"oisst-avhrr-v02r01.19810901.nc\")\n", - "ds" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can see there are four data variables, all with dimension\n", - "`(time, zlev, lat, lon)`. There is a _dimension coordinate_ for each dimension,\n", - "and no _non-dimension coordinates_. Each file in the sequence presumably has the\n", - "same `zlev`, `lat`, and `lon`, but we expect `time` to be different in each one.\n", - "\n", - "Let's also check the total size of the dataset in the file.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "File size is 16.597452 MB\n" - ] - } - ], - "source": [ - "print(f\"File size is {ds.nbytes/1e6} MB\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The file size is important because it will help us define the _chunk size_\n", - "Pangeo Forge will use to build up the target dataset.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 2: Define File Pattern\n", - "\n", - "The first step in developing a recipe is to define a {doc}`File Pattern <../../recipe_user_guide/file_patterns>`.\n", - "The file pattern describes how the source files (a.k.a. \"inputs\") are organized.\n", - "\n", - "In this case, we have a very simple sequence of files that we want to concatenate along a single dimension (time), so we can use the helper function {func}`pangeo_forge_recipes.patterns.pattern_from_file_sequence`. This allows us to simply pass a list of URLs, which we define explicitly." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "from pangeo_forge_recipes.patterns import pattern_from_file_sequence\n", - "\n", - "pattern_from_file_sequence?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To populate the `file_list`, we need understand the file naming conventions. Let's look again at the first URL\n", - "\n", - "```text\n", - "https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc\n", - "```\n", - "\n", - "From this we deduce the following format string." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "input_url_pattern = (\n", - " \"https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation\"\n", - " \"/v2.1/access/avhrr/{yyyymm}/oisst-avhrr-v02r01.{yyyymmdd}.nc\"\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To convert this to an actual list of files, we use Pandas.\n", - "At the time of writing, the latest available data is from 2021-01-05." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+              "Dimensions:  (time: 1, zlev: 1, lat: 720, lon: 1440)\n",
+              "Coordinates:\n",
+              "  * lat      (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n",
+              "  * lon      (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n",
+              "  * time     (time) datetime64[ns] 1981-09-01T12:00:00\n",
+              "  * zlev     (zlev) float32 0.0\n",
+              "Data variables:\n",
+              "    anom     (time, zlev, lat, lon) float32 ...\n",
+              "    err      (time, zlev, lat, lon) float32 ...\n",
+              "    ice      (time, zlev, lat, lon) float32 ...\n",
+              "    sst      (time, zlev, lat, lon) float32 ...\n",
+              "Attributes: (12/37)\n",
+              "    title:                      NOAA/NCEI 1/4 Degree Daily Optimum Interpolat...\n",
+              "    source:                     ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pathfin...\n",
+              "    id:                         oisst-avhrr-v02r01.19810901.nc\n",
+              "    naming_authority:           gov.noaa.ncei\n",
+              "    summary:                    NOAAs 1/4-degree Daily Optimum Interpolation ...\n",
+              "    cdm_data_type:              Grid\n",
+              "    ...                         ...\n",
+              "    metadata_link:              https://doi.org/10.25921/RE9P-PT57\n",
+              "    ncei_template_version:      NCEI_NetCDF_Grid_Template_v2.0\n",
+              "    comment:                    Data was converted from NetCDF-3 to NetCDF-4 ...\n",
+              "    sensor:                     Thermometer, AVHRR\n",
+              "    Conventions:                CF-1.6, ACDD-1.3\n",
+              "    references:                 Reynolds, et al.(2007) Daily High-Resolution-...
" + ], + "text/plain": [ + "\n", + "Dimensions: (time: 1, zlev: 1, lat: 720, lon: 1440)\n", + "Coordinates:\n", + " * lat (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n", + " * lon (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n", + " * time (time) datetime64[ns] 1981-09-01T12:00:00\n", + " * zlev (zlev) float32 0.0\n", + "Data variables:\n", + " anom (time, zlev, lat, lon) float32 ...\n", + " err (time, zlev, lat, lon) float32 ...\n", + " ice (time, zlev, lat, lon) float32 ...\n", + " sst (time, zlev, lat, lon) float32 ...\n", + "Attributes: (12/37)\n", + " title: NOAA/NCEI 1/4 Degree Daily Optimum Interpolat...\n", + " source: ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pathfin...\n", + " id: oisst-avhrr-v02r01.19810901.nc\n", + " naming_authority: gov.noaa.ncei\n", + " summary: NOAAs 1/4-degree Daily Optimum Interpolation ...\n", + " cdm_data_type: Grid\n", + " ... ...\n", + " metadata_link: https://doi.org/10.25921/RE9P-PT57\n", + " ncei_template_version: NCEI_NetCDF_Grid_Template_v2.0\n", + " comment: Data was converted from NetCDF-3 to NetCDF-4 ...\n", + " sensor: Thermometer, AVHRR\n", + " Conventions: CF-1.6, ACDD-1.3\n", + " references: Reynolds, et al.(2007) Daily High-Resolution-..." + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import xarray as xr\n", + "\n", + "ds = xr.open_dataset(\"oisst-avhrr-v02r01.19810901.nc\")\n", + "ds" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Found 14372 files!\n" - ] + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see there are four data variables, all with dimension\n", + "`(time, zlev, lat, lon)`. There is a _dimension coordinate_ for each dimension,\n", + "and no _non-dimension coordinates_. Each file in the sequence presumably has the\n", + "same `zlev`, `lat`, and `lon`, but we expect `time` to be different in each one.\n", + "\n", + "Let's also check the total size of the dataset in the file.\n" + ] }, { - "data": { - "text/plain": [ - "'https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/202101/oisst-avhrr-v02r01.20210105.nc'" + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "File size is 16.597452 MB\n" + ] + } + ], + "source": [ + "print(f\"File size is {ds.nbytes/1e6} MB\")" ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import pandas as pd\n", - "\n", - "dates = pd.date_range(\"1981-09-01\", \"2021-01-05\", freq=\"D\")\n", - "input_urls = [\n", - " input_url_pattern.format(\n", - " yyyymm=day.strftime(\"%Y%m\"), yyyymmdd=day.strftime(\"%Y%m%d\")\n", - " )\n", - " for day in dates\n", - "]\n", - "print(f\"Found {len(input_urls)} files!\")\n", - "input_urls[-1]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we can define our pattern.\n", - "We will include one more piece of information: we know from examining the file above that there is only one timestep per file.\n", - "So we can set `nitems_per_file=1`." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The file size is important because it will help us define the _chunk size_\n", + "Pangeo Forge will use to build up the target dataset.\n" ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pattern = pattern_from_file_sequence(input_urls, \"time\", nitems_per_file=1)\n", - "pattern" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To check out pattern, we can try to get the data back out.\n", - "The pattern is designed to be iterated over, so to key the first key, we do:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "{Dimension(name='time', operation=): Position(value=0, indexed=False)}" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 2: Define File Pattern\n", + "\n", + "The first step in developing a recipe is to define a {doc}`File Pattern <../../recipe_user_guide/file_patterns>`.\n", + "The file pattern describes how the source files (a.k.a. \"inputs\") are organized.\n", + "\n", + "In this case, we have a very simple sequence of files that we want to concatenate along a single dimension (time), so we can use the helper function {func}`pangeo_forge_recipes.patterns.pattern_from_file_sequence`. This allows us to simply pass a list of URLs, which we define explicitly." ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "for key in pattern:\n", - " break\n", - "key" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can now use \"getitem\" syntax on the FilePattern object to retrieve the file name based on this key." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "'https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc'" + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from pangeo_forge_recipes.patterns import pattern_from_file_sequence\n", + "\n", + "pattern_from_file_sequence?" ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pattern[key]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As an alternative way to create the same pattern we could use the more verbose syntax to create a `FilePattern` class.\n", - "With this method, we have to define a function which returns the file path, given a particular key.\n", - "We might do it like this." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To populate the `file_list`, we need understand the file naming conventions. Let's look again at the first URL\n", + "\n", + "```text\n", + "https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc\n", + "```\n", + "\n", + "From this we deduce the following format string." ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from pangeo_forge_recipes.patterns import ConcatDim, FilePattern\n", - "\n", - "def format_function(time):\n", - " return input_url_pattern.format(\n", - " yyyymm=time.strftime(\"%Y%m\"), yyyymmdd=time.strftime(\"%Y%m%d\")\n", - " )\n", - "\n", - "concat_dim = ConcatDim(name=\"time\", keys=dates, nitems_per_file=1)\n", - "pattern = FilePattern(format_function, concat_dim)\n", - "pattern" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can check that it gives us the same thing:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "'https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc'" + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "input_url_pattern = (\n", + " \"https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation\"\n", + " \"/v2.1/access/avhrr/{yyyymm}/oisst-avhrr-v02r01.{yyyymmdd}.nc\"\n", + ")" ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pattern[key]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 3: Create storage target\n", - "\n", - "Here we will create a temporary directory to write our output dataset to. We could also write to cloud storage." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "'/tmp/tmp3x0x1m53/output.zarr'" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To convert this to an actual list of files, we use Pandas.\n", + "At the time of writing, the latest available data is from 2021-01-05." ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import os\n", - "from tempfile import TemporaryDirectory\n", - "td = TemporaryDirectory()\n", - "target_root = td.name\n", - "store_name = \"output.zarr\"\n", - "target_store = os.path.join(target_root, store_name)\n", - "target_store" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 4: Write the Recipe\n", - "\n", - "Now that we have a file pattern, we are ready to write our recipe. A recipe is defined as a pipeline of [Apache Beam transforms](https://beam.apache.org/documentation/programming-guide/#transforms) applied to the data collection associated with a `FilePattern`.\n", - "\n", - "First, we'll import the transforms provided by Pangeo Forge that may be used to transform a `FilePattern` collection of NetCDF files into a Zarr store." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "import apache_beam as beam\n", - "from pangeo_forge_recipes.transforms import OpenURLWithFSSpec, OpenWithXarray, StoreToZarr" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Define the Recipe Object\n", - "A recipe pipeline contains a set of transforms, which operate on an `apache_beam.PCollection`, performing a one-to-one mapping using `apache_beam.Map` of input elements to output elements, applying the specified transformation. For creating a Zarr store from a NetCDF collection, the recipe pipeline will contain the following transforms applied to the file pattern collection:\n", - "* `OpenURLWithFSSpec`: retrieves each pattern file using the specified URLs.\n", - "* `OpenWithXarray`: load each pattern file into an `xarray.Dataset`:\n", - " * The `file_type` is specified from the pattern.\n", - "* `StoreToZarr`: generate a Zarr store by combining the datasets:\n", - " * `store_name` specifies the name of the generated Zarr store.\n", - " * `target_root` specifies where the output will be stored, in this case, the temporary directory we created.\n", - " * `combine_dims` informs the transform of the dimension used to combine the datasets. Here we use the dimension specified in the file pattern (`time`).\n", - " * `target_chunks`: specifies a dictionary of required chunk size per dimension. In the event that this is not specified for a particular dimension, it will default to the corresponding full shape.\n", - " \n", - "Here, each input file will correspond to a single `time`, so we're going to specify a `time` chunk size of 10. This means that we will need to be able to hold 10 files like the one we examined above in memory at once. That's `16MB * 10 = 160MB`.\n", - "\n", - "To avoid retrieving all of the collection files here, we initially prune the pattern." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "" + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found 14372 files!\n" + ] + }, + { + "data": { + "text/plain": [ + "'https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/202101/oisst-avhrr-v02r01.20210105.nc'" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "dates = pd.date_range(\"1981-09-01\", \"2021-01-05\", freq=\"D\")\n", + "input_urls = [\n", + " input_url_pattern.format(\n", + " yyyymm=day.strftime(\"%Y%m\"), yyyymmdd=day.strftime(\"%Y%m%d\")\n", + " )\n", + " for day in dates\n", + "]\n", + "print(f\"Found {len(input_urls)} files!\")\n", + "input_urls[-1]" ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pattern = pattern.prune(nkeep=15)\n", - "pattern" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "<_ChainedPTransform(PTransform) label=[Create|OpenURLWithFSSpec|OpenWithXarray|StoreToZarr] at 0x7ff8b511a5e0>" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can define our pattern.\n", + "We will include one more piece of information: we know from examining the file above that there is only one timestep per file.\n", + "So we can set `nitems_per_file=1`." ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "transforms = (\n", - " beam.Create(pattern.items())\n", - " | OpenURLWithFSSpec()\n", - " | OpenWithXarray(file_type=pattern.file_type)\n", - " | StoreToZarr(\n", - " store_name=store_name,\n", - " target_root=target_root,\n", - " combine_dims=pattern.combine_dim_keys,\n", - " target_chunks={\"time\": 10}\n", - " )\n", - ")\n", - "transforms" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 5: Run the Recipe\n", - "\n", - "Execute the recipe pipeline using Beam" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ + }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" - ] + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pattern = pattern_from_file_sequence(input_urls, \"time\", nitems_per_file=1)\n", + "pattern" + ] }, { - "data": { - "application/javascript": [ - "\n", - " if (typeof window.interactive_beam_jquery == 'undefined') {\n", - " var jqueryScript = document.createElement('script');\n", - " jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n", - " jqueryScript.type = 'text/javascript';\n", - " jqueryScript.onload = function() {\n", - " var datatableScript = document.createElement('script');\n", - " datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n", - " datatableScript.type = 'text/javascript';\n", - " datatableScript.onload = function() {\n", - " window.interactive_beam_jquery = jQuery.noConflict(true);\n", - " window.interactive_beam_jquery(document).ready(function($){\n", - " \n", - " });\n", - " }\n", - " document.head.appendChild(datatableScript);\n", - " };\n", - " document.head.appendChild(jqueryScript);\n", - " } else {\n", - " window.interactive_beam_jquery(document).ready(function($){\n", - " \n", - " });\n", - " }" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To check out pattern, we can try to get the data back out.\n", + "The pattern is designed to be iterated over, so to key the first key, we do:" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/derek/anaconda3/envs/forgerunner/lib/python3.9/site-packages/xarray/core/dataset.py:2081: SerializationWarning: saving variable None with floating point data as an integer dtype without any _FillValue to use for NaNs\n", - " return to_zarr( # type: ignore\n", - "/home/derek/anaconda3/envs/forgerunner/lib/python3.9/site-packages/xarray/core/dataset.py:2081: SerializationWarning: saving variable None with floating point data as an integer dtype without any _FillValue to use for NaNs\n", - " return to_zarr( # type: ignore\n", - "/home/derek/anaconda3/envs/forgerunner/lib/python3.9/site-packages/xarray/core/dataset.py:2081: SerializationWarning: saving variable None with floating point data as an integer dtype without any _FillValue to use for NaNs\n", - " return to_zarr( # type: ignore\n", - "/home/derek/anaconda3/envs/forgerunner/lib/python3.9/site-packages/xarray/core/dataset.py:2081: SerializationWarning: saving variable None with floating point data as an integer dtype without any _FillValue to use for NaNs\n", - " return to_zarr( # type: ignore\n" - ] - } - ], - "source": [ - "with beam.Pipeline() as p:\n", - " p | transforms" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 6: Examine the Target\n", - "\n", - "Now we can examine the output of our pruned execution test. Here see that:\n", - "* The `time` dimension matches the pruned pattern length.\n", - "* The `time` chunk size is as requested." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{Dimension(name='time', operation=): Position(value=0, indexed=False)}" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "for key in pattern:\n", + " break\n", + "key" + ] + }, { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.Dataset>\n",
-       "Dimensions:  (time: 15, zlev: 1, lat: 720, lon: 1440)\n",
-       "Coordinates:\n",
-       "  * lat      (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n",
-       "  * lon      (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n",
-       "  * time     (time) datetime64[ns] 1981-09-01T12:00:00 ... 1981-09-15T12:00:00\n",
-       "  * zlev     (zlev) float32 0.0\n",
-       "Data variables:\n",
-       "    anom     (time, zlev, lat, lon) float64 dask.array<chunksize=(10, 1, 720, 1440), meta=np.ndarray>\n",
-       "    err      (time, zlev, lat, lon) float64 dask.array<chunksize=(10, 1, 720, 1440), meta=np.ndarray>\n",
-       "    ice      (time, zlev, lat, lon) float64 dask.array<chunksize=(10, 1, 720, 1440), meta=np.ndarray>\n",
-       "    sst      (time, zlev, lat, lon) float64 dask.array<chunksize=(10, 1, 720, 1440), meta=np.ndarray>\n",
-       "Attributes: (12/34)\n",
-       "    Conventions:                CF-1.6, ACDD-1.3\n",
-       "    cdm_data_type:              Grid\n",
-       "    comment:                    Data was converted from NetCDF-3 to NetCDF-4 ...\n",
-       "    creator_email:              oisst-help@noaa.gov\n",
-       "    creator_url:                https://www.ncei.noaa.gov/\n",
-       "    date_created:               2020-05-08T19:05:13Z\n",
-       "    ...                         ...\n",
-       "    references:                 Reynolds, et al.(2007) Daily High-Resolution-...\n",
-       "    sensor:                     Thermometer, AVHRR\n",
-       "    source:                     ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pathfin...\n",
-       "    standard_name_vocabulary:   CF Standard Name Table (v40, 25 January 2017)\n",
-       "    summary:                    NOAAs 1/4-degree Daily Optimum Interpolation ...\n",
-       "    title:                      NOAA/NCEI 1/4 Degree Daily Optimum Interpolat...
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can now use \"getitem\" syntax on the FilePattern object to retrieve the file name based on this key." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc'" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "\n", - "Dimensions: (time: 15, zlev: 1, lat: 720, lon: 1440)\n", - "Coordinates:\n", - " * lat (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n", - " * lon (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n", - " * time (time) datetime64[ns] 1981-09-01T12:00:00 ... 1981-09-15T12:00:00\n", - " * zlev (zlev) float32 0.0\n", - "Data variables:\n", - " anom (time, zlev, lat, lon) float64 dask.array\n", - " err (time, zlev, lat, lon) float64 dask.array\n", - " ice (time, zlev, lat, lon) float64 dask.array\n", - " sst (time, zlev, lat, lon) float64 dask.array\n", - "Attributes: (12/34)\n", - " Conventions: CF-1.6, ACDD-1.3\n", - " cdm_data_type: Grid\n", - " comment: Data was converted from NetCDF-3 to NetCDF-4 ...\n", - " creator_email: oisst-help@noaa.gov\n", - " creator_url: https://www.ncei.noaa.gov/\n", - " date_created: 2020-05-08T19:05:13Z\n", - " ... ...\n", - " references: Reynolds, et al.(2007) Daily High-Resolution-...\n", - " sensor: Thermometer, AVHRR\n", - " source: ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pathfin...\n", - " standard_name_vocabulary: CF Standard Name Table (v40, 25 January 2017)\n", - " summary: NOAAs 1/4-degree Daily Optimum Interpolation ...\n", - " title: NOAA/NCEI 1/4 Degree Daily Optimum Interpolat..." + "source": [ + "pattern[key]" ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ds = xr.open_zarr(target_store)\n", - "ds" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Total chunk size: 331.784724 MB\n" - ] - } - ], - "source": [ - "print(f'Total chunk size: {ds.isel(time=slice(0, 10)).nbytes / 1e6} MB')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "👀 Inspect the Xarray HTML repr above carefully by clicking on the buttons to expand the different sections.\n", - "- ✅ Is the shape of the variable what we expect?\n", - "- ✅ Is `time` going in the right order?\n", - "- ✅ Do the variable attributes make sense?\n", - "\n", - "\n", - "Now let's visualize some data and make sure things look good" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As an alternative way to create the same pattern we could use the more verbose syntax to create a `FilePattern` class.\n", + "With this method, we have to define a function which returns the file path, given a particular key.\n", + "We might do it like this." + ] + }, { - "data": { - "text/plain": [ - "" + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pangeo_forge_recipes.patterns import ConcatDim, FilePattern\n", + "\n", + "def format_function(time):\n", + " return input_url_pattern.format(\n", + " yyyymm=time.strftime(\"%Y%m\"), yyyymmdd=time.strftime(\"%Y%m%d\")\n", + " )\n", + "\n", + "concat_dim = ConcatDim(name=\"time\", keys=dates, nitems_per_file=1)\n", + "pattern = FilePattern(format_function, concat_dim)\n", + "pattern" ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHFCAYAAADSY6wWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9eZwcVdn1ubeql5nJTFbIRgiRTSDiwr4mkMwkQVCMiIKyy4uCQkBAET4MCEHiAi4I6vsKiKIoq0BWtigCGmRTVBQMIYSEkHVmequqe+/3x13qVnX3TM8+k9T5ZX6Zqa6uqq6uqnvu85znPEQIIZAgQYIECRIkSJCgS6ADfQAJEiRIkCBBggRDEQmJSpAgQYIECRIk6AYSEpUgQYIECRIkSNANJCQqQYIECRIkSJCgG0hIVIIECRIkSJAgQTeQkKgECRIkSJAgQYJuICFRCRIkSJAgQYIE3UBCohIkSJAgQYIECbqBhEQlSJAgQYIECRJ0AzsUiXrmmWcwf/58bN26tey16dOnY/r06f1+TP2Fm2++GXPnzsWUKVNACOnwsy5duhRHHHEE6urqMHz4cJxwwgl49dVXy9YrlUr49re/jalTp6KhoQFjx47FnDlz8Mwzz5Ste9VVV+H444/HxIkTQQjBmWee2eXPsGHDBpx55pkYM2YM6uvrcdhhh+Hxxx8vW8/zPFx99dWYMmUK0uk0Jk+ejCuuuAKFQqFL+/vhD3+I97///chkMpgyZQquueYa+L4fWeftt9/GvHnzMG3aNIwYMQKEENxxxx2RdebPnw9CSKc/+jt59dVXcf755+Owww5DQ0MDCCF46qmnyo5v3bp1uOqqq3DYYYdhzJgxaGpqwgEHHICf/vSnYIzV/Dn/+9//Yu7cuRgxYgSGDRuG5uZmvPDCCxXX/c1vfoMPfehDyGazmDBhAubNm4f29vZBua/uYLfdduvWtTnY0JXzXAkvvPACZs6ciWHDhmHEiBGYO3cu/vvf/3b6vjfffDNyTd977709+RjdxoIFC/Dggw8OyL4B4MEHH4ych+eff37AjiVBH0PsQPj2t78tAIhVq1aVvfbqq6+KV199tf8Pqp+w9957i4985CPi7LPPFjvttJOYNm1axfUefPBBQQgRJ554onj00UfF3XffLfbee28xcuRI8frrr0fWPe200wSlVFx55ZXi8ccfF7/73e/EAQccIFzXFX/+858j69bX14tDDz1UfOELXxDpdFqcccYZXTr+YrEopk6dKnbZZRfxy1/+Uixbtkx8/OMfF67riqeeeiqy7ty5c0U2mxULFiwQy5cvF9dee61Ip9PihBNOqHl/1113nSCEiCuuuEI8+eSTYuHChSKdTotzzz03st6TTz4pxowZI2bOnClOOeUUAUDcfvvtkXXWrFkjnn32WfNz//33CwDiy1/+cmS5vv7uuOMOMX78eHHccceJE044QQAQTz75ZNkxPvzww2LSpEniyiuvFI8++qhYtmyZuPjiiwWlVJx11lk1fc4NGzaICRMmiP3220/cd9994tFHHxVHHnmkaGxsFP/6178i6/7yl78UAMTnP/958cQTT4jbbrtNDB8+XDQ3Nw+6fXUXkydP7vK1OdjQlfNcCf/85z9FY2OjOOqoo8Sjjz4q7rvvPrHffvuJCRMmiA0bNnT43lWrVgkA4qqrrhLPPvus2LRpU299rC6hoaFhQL/HzZs3i2effVZcddVVAoBYuXLlgB1Lgr5FQqJ2EDDGzO/77bdfVRK19957i/33319wzs2yN998U6TTaXHqqaeaZcViUTiOIz73uc9F3v/OO+8IAOLCCy+suv/uPOBuueUWAUA888wzZpnv+2LfffcVBx98sFn27LPPCgDiu9/9buT9CxYsEADEsmXLOt3Xxo0bRTabFf/zP/8TWX799dcLQkiEbNufa+XKlRVJVBx6oPn2t79d8XV7m7/73e+qkqjNmzcLz/PKll9wwQUCgHjrrbc6PA4hhLjssstEKpUSb775plm2bds2MWbMGHHyySebZUEQiPHjx4uWlpbI+3/1q18JAGLRokWDal/dxfZAomo9z9XwqU99SowZM0Zs27bNLHvzzTdFKpUSl19+eYfv1dd2Z/dAX6MvSFQQBKJYLHbpPbfffntCorZz7DDpvPnz5+Oyyy4DAJPSstMk8XSeDkt/+9vfxo033ojddtsNdXV1mD59Ov7973/D93187Wtfw4QJEzB8+HB84hOfwIYNG8r2e88995i0zLBhwzBr1iy8+OKL/fGRI6C0869606ZNeO211zBnzhwQQszyyZMnY+rUqXjwwQdNmohSCkophg8fHtlGU1MTKKXIZrNd3n9HeOCBB7D33nvjsMMOM8tc18XnPvc5/OUvf8HatWsBAH/6058AAMcdd1zk/ccffzwA4L777ut0X0uWLEGxWMRZZ50VWX7WWWdBCBFJE/T0c1VCrdscOXIkUqlU2fKDDz4YgEw1doYHHngAxx57LCZPnmyWNTU1Ye7cuXj44YcRBAEA4LnnnsO6devKzsmnPvUpDBs2DA888MCg2lccd9xxR6dp1GpobW3FpZdeatLDEydOxLx585DL5cw6H/7wh3HUUUeVvZcxhokTJ2Lu3LldPubuotbzXAlBEOCRRx7BJz/5STQ1NZnlkydPxjHHHNOtc6+h09qvvPIKPvWpT2H48OEYNWoULrnkEgRBgNdeew2zZ89GY2MjdtttNyxcuLBsG7V8F4QQ5HI53HnnnRW/4/Xr1+O8887DLrvsgnQ6bVL19nnRz/+FCxfiuuuuw5QpU5DJZPDkk0+Cc47rrrsOe++9N+rq6jBixAjsv//++P73v9/tc5Ng6GKHIVGf//zn8eUvfxkAcP/99+PZZ5/Fs88+i4985CMdvu+WW27Bn/70J9xyyy343//9X/zrX//CCSecgHPOOQfvvfcefv7zn2PhwoV47LHH8PnPfz7y3gULFuCUU07Bvvvui9/+9re466670NbWhqOOOgr/+Mc/Oj3mIAhq+hFCdP/EWPA8DwCQyWTKXstkMsjn83jjjTcAAKlUCueffz7uvPNOPPjgg2htbcWbb76Jc889F8OHD8e5557bK8ek8fe//x37779/2XK9TGu2qn0G/fcrr7xS074A4AMf+EBk+fjx4zFmzBjz+mDFE088Add1sddee0WWxweTQqGAN954o+p5LRQKRgejP3N83VQqhfe///1l56Q/91ULPvrRj5p7Xv9873vfAwDst99+Vd+Xz+cxbdo03HnnnbjwwguxePFifPWrX8Udd9yBj33sY+beO+uss/D000/jP//5T+T9y5YtwzvvvFNGCOPgnNd0r3emdevKea6EN954A4VCoer7X3/9dRSLxQ6PoTOcfPLJ+OAHP4j77rsP5557Lm666SZcfPHFOPHEE/HRj37UkMCvfvWruP/++837av0unn32WdTV1eG4444z3/WPf/xjAJJAHXzwwVi6dCmuvvpqLF68GOeccw5uuOGGis+sH/zgB3jiiSfwne98B4sXL8b73/9+LFy4EPPnz8cpp5yCRx99FPfccw/OOeecilrbBNs/3IE+gP7CLrvsgl133RWAnDXutttuNb1vxIgRePDBB010YOPGjZg3bx7e//7346GHHjLr/etf/8LNN9+M1tZWNDU1Yc2aNfjGN76BL33pS/jBD35g1mtubsaee+6Ja665Bvfcc0/V/b755puYMmVKTcf45JNP9ooofuzYsRg1apSJ5mhs3brVDFybNm0yy2+66SYMHz4cn/zkJ8E5BwDsuuuueOKJJ7DHHnv0+HhsbNq0CaNGjSpbrpfp49p3330ByIiUff6efvrpsuPvaF+ZTAYNDQ0V91fLNgYKy5Ytw1133YWLLroIo0ePjrzmOA4cxzF/b9myBUKIms6r/r/aum+++eaA7asW7LTTTthpp53M36+99hquv/56HHPMMbjpppuqvu8HP/gBXnnlFfz5z3/GgQceCACYMWMGJk6ciJNOOglLlizBnDlz8NnPfhaXXXYZ7rjjDlx//fXm/XfccYcpuOgIZ599Nu68885OP8e0adMqFhlodOU8V0Jn514IgS1btmD8+PGdHms1/M///A8uueQSAMDMmTOxbNky/OhHP8L999+PT3ziEwBkZuCRRx7Br371KxPFq/W7OPTQQ0EpxU477YRDDz00su/58+djy5YtePXVV814MGPGDNTV1eHSSy/FZZddZp4hAJDNZrF06dJIxPdPf/oTPvCBD2D+/Plm2axZs7p9PhIMbewwJKq7OO644yLplX322QeAnNna0MvfeustTJ06FUuXLkUQBDj99NMjYeJsNotp06bhySef7HC/EyZMwMqVK2s6xr333rum9ToDpRQXXHABvvnNb+Kb3/wmzjvvPLS2tmLevHnI5/NmHY3rr78e3/nOdzB//nwcddRRaG1txY9+9CM0Nzdj2bJl+PCHP9yl/QshymbarhteonaKMQ792pw5c7DHHnvgq1/9KsaOHYuDDjoIzz33HL7+9a/DcZzI8cfTGo7jmO3Usq/BhhdeeAEnn3wyDj30UNxwww1lr1dL43Tls1ZbN768P/fVVaxfvx6zZ8/G+PHj8cADDyCdTldd95FHHsHUqVPxoQ99KPKZZs2aZeQAc+bMwejRo3HCCSfgzjvvxDe/+U1QSrFlyxY89NBDuPDCCyPXcSXMnz8fX/rSlzo99sbGxpo+Y0+v3768/nVqXWOfffbByy+/HCGarutijz32wOrVq82yWr+LjvDII4/gmGOOwYQJEyLbmDNnDi699FKsWLEiQqI+9rGPlaXMDz74YDz66KM4//zz8fGPfxyHHXZYJPWZYMdCQqI6QXxGph+41ZbrUPe7774LADjooIMqbrcz3Us6ncaHPvShmo7RnvH3FFdffTXa29tx3XXX4eqrrwYgCeNZZ52F//3f/8XEiRMBAP/85z9x9dVXY+HChbj00kvN++fMmYN9990Xl1xySadEMY4777yzLO2hQ/SjR4+uOIPevHkzgPD7SKfTWLx4MU477TS0tLQAABoaGrBgwQJ885vfNMcPoOzhePvtt+PMM8/E6NGjUSwWkc/nUV9fX7a/Aw44oEufqz/w4osvmijnokWLKqZk4xg5ciQIITWdVx3V2rRpE8aOHVu2bqXIxUDtqyO0tbXhuOOOg+/7WLx4cZmmL453330Xr7/+ekXtGSAj0xpnn3027rvvPixfvhyzZs3Cr3/9a5RKpZosE3bddVfssssuna7XGYHpynmuBPvcV3o/IQQjRozo9Dg7QqVnZ319fZmOMp1Oo7W11fzdle+iGt599108/PDDNW+jUsTtiiuuQENDA375y1/itttug+M4OProo3HjjTeaCFmCHQcJieojjBkzBgBw7733RgSetWIg0nmAnAF+73vfw7XXXotVq1ZhzJgxGD9+PGbNmoUpU6aYB/3LL78MIUQZSUylUvjgBz+IFStWdHnfJ5xwQtXo2wc+8AH87W9/K1uul02dOtUs22OPPfDss89i7dq12Lx5M3bffXds27YNF110EY4++mizXnxf+nxrLdTf/vY3HHLIIeb19evXY+PGjZF9DQa8+OKLmDlzJiZPnoxly5Z1Sgw06urqsMcee1Q9r3V1dXjf+94HIHpO7Jl6EAT417/+hVNOOWXQ7KsafN/HJz/5Sbzxxhv44x//WBNpGTNmDOrq6vDzn/+86usas2bNwoQJE3D77bdj1qxZuP3223HIIYdEPkM19FY6ryvnuRJ233131NXVVX3/HnvsUUZ2+gtd+S462sb+++8fSbnamDBhQuTvSqTVdV1ccskluOSSS7B161Y89thj+PrXv45Zs2ZhzZo1ZROvBNs3digSpWfnXTVd7A5mzZoF13Xxxhtv4JOf/GSX3z8Q6Twbw4YNM4PZCy+8gMcffxzf/e53I8cHyEqqadOmmeWlUgkvvPBCTQNUHKNHjy7T8Wh84hOfwPnnn48///nPhtgEQYBf/vKXOOSQQ8oefgAwceJEE3m66qqr0NDQgHPOOce8Xm3WOHv2bGSzWdxxxx0REqUrvE488cQuf7a+wksvvYSZM2dil112wfLlyzFy5Mguvf8Tn/gEbr75ZqxZswaTJk0CIKM1999/Pz72sY+ZNNQhhxyC8ePH44477sCnP/1p8/57770X7e3tNVWf9ee+KuGcc87BU089hcWLF1cUTlfC8ccfjwULFmD06NGdTmocx8Fpp52Gm2++GX/84x/x/PPP4yc/+UlN++nNdF6t57kSXNfFCSecgPvvvx8LFy40+3vrrbfw5JNP4uKLL67p8/QFuvJdZDKZis/5448/HosWLcLuu+/e5XulEkaMGIGTTjoJa9euxbx58/Dmm2/WRJoTbD/YoUiUJgXf//73ccYZZyCVSmHvvfeuWWfQFey222649tprceWVV+K///0vZs+ejZEjR+Ldd9/FX/7yFzQ0NOCaa66p+v50Ot2roeHnn3/eCHJbW1shhDBuwgcddJCJlj311FNYuXIl9t9/fwgh8Je//AU33ngjZs+eHXnIH3nkkTjooIMwf/585PN5HH300di2bRt++MMfYtWqVbjrrrsi+1+xYgXee+89ALLse/Xq1Wb/06ZNi4h+K+Hss8/GLbfcgk996lP41re+hZ133hk//vGP8dprr+Gxxx6LrLtw4UKMGzcOu+66K95991389re/xYMPPoi77rorks6rhlGjRuGqq67C//t//w+jRo1CS0sLVq5cifnz5+Pzn/982UNSfw5d9fT8889j2LBhAICTTjqp0/3Fkc/nsWjRIgCSpALy/G3cuBENDQ1G9/Haa69h5syZAKQ+7T//+U+kOmz33XePnFfXdTFt2rSIy/ull16Ku+66Cx/96Edx7bXXIpPJ4Fvf+haKxWJEOOs4DhYuXIjTTjsN5513Hk455RT85z//weWXX47m5mbMnj078hn6c1+EkE4jNN/+9rdx11134ctf/jIaGhrMeQVk+X+1gW/evHm47777cPTRR+Piiy/G/vvvD8453nrrLSxbtgxf+cpXIkT77LPPxo033ohTTz0VdXV1ERLYEXbbbbeai106Q63nGYApAHn99dfNsmuuuQYHHXQQjj/+eHzta19DsVjE1VdfjTFjxuArX/lKrxxjd9CV7+IDH/gAnnrqKTz88MMYP348Ghsbsffee+Paa6/F8uXLcfjhh+PCCy/E3nvvjWKxiDfffBOLFi3Cbbfd1ukE8IQTTsDUqVNx4IEHYqeddsLq1atx8803Y/Lkydhzzz3741QkGEwYEHeqAcQVV1whJkyYICilERPDadOmRQwoqxkiPvnkkwKA+N3vfhdZXs1U7cEHHxTHHHOMaGpqEplMRkyePFmcdNJJ4rHHHuuTz1cNZ5xxhgBQ8cc2xvvTn/4kDjnkEHO8U6dOFd/5zncqmjpu3bpVXHnllWKfffYR9fX1YueddxbTp0+vaIY4bdq0qvuvZCRZCevXrxenn366GDVqlMhms+LQQw8Vy5cvL1vvmmuuEbvvvrvIZDJixIgRYvbs2eIPf/hDzedK4/vf/77Ya6+9RDqdFrvuuqv4xje+UfE8VPtc1W6vzsw29euVfiZPnmzW09dcLd+rPs5KJquvv/66OPHEE0VTU5Oor68XM2bMEH/9618rHtvdd98t9t9/f5FOp8W4cePEhRdeKNra2iqek/7YV1tbmwAgPvOZz1TchkZH1799nJXMNtvb28VVV10l9t57b5FOp8Xw4cPFBz7wAXHxxReL9evXl+3r8MMPFwDEZz/72Q6PqS9R63mePHly5JrSeP7558WMGTNEfX29aGpqEieeeGJZx4JK6Mhs8xvf+IYAIN57773I8jPOOEM0NDSUrT9t2jSx3377RZbV+l289NJL4ogjjhD19fVl3/F7770nLrzwQjFlyhSRSqXEqFGjxAEHHCCuvPJK0d7eHvkcle7R7373u+Lwww8XY8aMMc+Gc845J2JuqpGYbW7/IEL0kslQggQJEvQzFi1ahOOPPx4vv/xyma9Xgv6H1nL+3//9H04//fRIxeuOBKEqjX/xi1/gnHPOwcqVKxPR+XaKHcZsM0GCBNsfnnzySXzmM59JCNQgwznnnINUKlVTh4DtEQ899BBSqVREg5lg+0QSiUqQIEGCBL0Cz/MiXQF6S8A91LB169aIzmzfffdNqva2UyQkKkGCBAkSJEiQoBtI0nkJEiRIkCBBggTdQEKiEiRIkCBBggQJuoGERCVIkCBBggQJEnQDO5TZZi3gnOOdd95BY2PjDlmamyBBggQJaocQAm1tbZgwYUKnPVG7i2KxCM/zemVb6XR6wFr3bI9ISFQM77zzjmmVkCBBggQJEtSCNWvWdKvdVWcoFosYXTcMebBe2d64ceOwatWqhEj1EhISFYNuAfPqa//pk3YwCRIkSJBg+0FbWxv223vPPhsvPM9DHgynYyLSPVTgeOD4xfq18DwvIVG9hIRExaBTeI2NjWhqagIA0BqyejwxikiQIEGCfkMtz+WO0NvP7L6Wf6RBkSY9TBcm41SvIyFRVUBJ127SjtbVNyslCdlKMDjR2bWeXLcJBgN6Spz6Ylu9eUwdwSEETg+JmgOSEKleRkKi+gH2TRa/4ZLBKcFAotYBwF6vP6/ZWo9vIO6jgTonOyr6i6wMVlACOD08BxRISFQvIyFRA4wkOpVgoNDdQak/yENXj60/CU2lY0smRwOLWi6X5CtJ0BdISFQNqPV53t2bNCFSCYYqNHkYTNdvX95PXY3cDabzMpRR6bx3dQ4QX3+ofTW9ls5L0KtISFQVEPTsJu3qDbq9EaneasmYeHX1DXo7NdKb129vHFtfkJjuHNdQu68r3beD8R6MHxGt4Rh57LNVesdg/qqcXkjnOb1zKAksJCSqRnR2k1a7QQfyphyIB2Jv97Pu6vYG0wO/o2PvjeOMb7+3Pnt3Z+yDkTAMhmPqyTH01Xfclfuqr46hu7D3Hn8uVzs0IaLrxp/XlbbdneNJsOMhIVGdoJYZjr1eLbMdoO/JVbWHpL28Nx+GvU2euotqx9FXD/7ufu6OBib9WqVlXT2WWj93R2sRDI4Zek/IHTDwZKpWdPRdd+X+7at7ciCjVXov9nM5vmsSOz5BiFlHv1QLoRpsSNJ5gxMJiaoCSoi50Wq5buM3Z2c3ZqWBqbdmzbU+PIUQPX741bKv7nym3k439QV57M1BqtK2emP7lQhZ/NzWcjYGMrJa7fgGQ7S3VtR6b3c3QtRVwt3b6OhZ0tvR5ErP5ThxguDha7ZBZeQ8RbcHDG5ClaTzBieSBsQJeoS+moEOhajBQKc1uouhcG41BssZHuzl9UII8zPQsI+lO8fTX5+j0u1ba+YhQQKNJBLVB+jJbKan0aiBeIgSQqrudzAN2D0lPZW+m0rbHAwDWRzxSAEXITEQqJ2s9GVqrzsRMr1eX57xagSq1khYrffAYLxuuoK+0EMSE9m307Kic7JTo7M3IWFESiMemepsX/1FvJJ03uBEQqI6QVdSeUA5gdJ/deXSrUXD0V3dTLXtVILedk8ejoNB2Fsreaol2lCLH9BAp1ZqRZxI2ehMI1XpPUDt33dn57rSy/HByr7XOiJSPbn+aimt76t9JwD++FZrl9afuVtT1ddEledAfLF9yw6myBRBz1NHg+fTbD9ISFQVEFIbgerRPtT/XXnOxgflvhykB4IA9HbapDcIVFzMag/e1d6nB8/eIKK1ojPy1hUNXC3kv9JrAh0TKft8dbTtgR68uhoVq0SkukKg+vL6eHpNG46c1AgugGfebou8dvgujWXL4jhyUnlj3d6YKDy9puP9dgePvSlJ14wpwwGEWikOUntk01pRiPJlHa3fl0giUYMTCYnqY9Qq2q31MdSfg/JgPoZa0NP0XbVKIIqQTFUjwvFoYkcpz94AISSyz77eX9XjQHUipY+v0nkt206Fgay7sI8l/r3UQtoH47BTiaA983YbDt+l0fxuoxph6YxAVXvvUbuGEZ9arjW9DU3I+oJA2Xh81Tbz+1G7NsEhAlA2B/rassXotUapEiSIY8gIy4MgwFVXXYUpU6agrq4O73vf+3DttdeC87AKQwiB+fPnY8KECairq8P06dPx6quv9vmx2VErXdVn/9jLq26jwjLdBNn+CfdJyn5657OUb9fedvz33tx3b0aheotAdYQIuaplmzUZAlb+6QoMWanwXVXaX9Xj7dI+rWpW9VPp2o0TKH3vxH8ix9HBa7UfX3kPy94gUML6qbbPzvYVJyC1fPfPvN1W9mMv7wscu9twTJ/chOmTm0CJTLXpn6fXtHX4o2H/rbfVF4hHz5jkUOBCGFKuo1bdARHC/PQXdHVeT3+6gltvvRX7778/mpqa0NTUhMMOOwyLFy82rw/UmDuYMGQiUTfeeCNuu+023Hnnndhvv/3w/PPP46yzzsLw4cNx0UUXAQAWLlyI733ve7jjjjuw11574brrrkNzczNee+01NDaWh6Q7QtkNYpXMyhXK+We165MSQKgXK4VjO7sP7fSRvglE5HW1/9i2a0nf2LP0P77VGnmoRfYBOdusFGHobBZaaQCpFqXQiB93fL/6s/WVZ40tttbnnxJivqtq2jcbfaWHqRZF6eh76ehaqLS9rp7BSsUUXYqw1uKDZREvbZ5Yi5VI1e3VsE6Hx9PF9StdwzZquV4GqiJ0xpThkefUitXdJyAaT/XCNqrBJm6UVD9em0hNm9xUkeTHEb9W+4tISRLUs++/qxYHu+yyC771rW9hjz32AADceeed+PjHP44XX3wR++23X6+OuUMVRAz2nIzC8ccfj7Fjx+L//u//zLJPfvKTqK+vx1133QUhBCZMmIB58+bhq1/9KgCgVCph7NixuPHGG3HeeefVtJ/W1lYMHz4c7657B01NklAQwWsiUQDkevqU6vcQClAHoqOKEes1M1hUM8xUg7keQPRalQZRO82j4cQeEHboW2sJ9PafWt2KY3cbjifelOscu9twcCHAOhgMOoLWZ+jjrVr5ZCJ46m9UfujqtIJNqro70HQ1MtFdMbFdFNDRuesNgXYcHZ2bnpCojmB/jGqDFKl0z1TbnkknR8lbpf30Bbr7wOyIQMVf16gUVZo2uQkOIeaeBIDmXeux/K18N4+sMmziZO9re4J+flBSTvodK/VnI/5cbm1txdhx47Bt2zYzZvQm9Jh0bf37kCU9c3oqCoar8//t0bGOGjUK3/72t3H22Wf3ypg71DFkIlFHHnkkbrvtNvz73//GXnvthZdffhlPP/00br75ZgDAqlWrsH79erS0tJj3ZDIZTJs2Dc8880y3v1BDoMoeempZnFwBIDxQ7+EgLIBw0wB1ASdVdXAwWyc0MqCQCtvXpIwiOhOPD6iuI/elSdLMycPMzuztNu9ab35fbq3rCI7mXeshBDPrCAiAEAiIqhGwip9PHacdZu8KAehs1qrJIo8Nn11pWVGLGLqzgbqWAbZSerTSoGrvt9KxVYtEdSV1ZB+D/X47EtdTdGs7gpffK2qZuT+U0LYSD7Wjh5XQFRuSWtfsqZlmrfeDjqrMnDwMj61uN/dm86RseM4Ex/I1xdo2aEFPojS2V/IEyHSigCRLFPJZzokDNkCRps7Qm2abra3R52kmk0Emk+nwvYwx/O53v0Mul8Nhhx3WZ2PuUMOQIVFf/epXsW3bNrz//e+H4zhgjOH666/HKaecAgBYv349AGDs2LGR940dOxarV6+uut1SqYRSqWT+jl9cgtAokYkoXnlImOwHPg/U/xzgDMvWEwBM/VSeNRqCY4NQOZhZ+9fRLCIkmdFESub7y7UnQIWyXyGPS38WQeVl8NjqdsyYMlxuW+9TRGmJIKSmUaW3hNUdRasAmYKcZqUgO9tvd5zL48fQ0bsIOi/zr5jerLDVzohVV17rCHG7DP15e5NI1QxCI9eeTQrKVtXHrf62I1Qd6Q9rIVBdvVL7InXblYhq/HnSPCnb8/0LISdR1O2Rfmgwwo6yEQIQJp/ZhDpykqmX28/CGr2n+gq9WZ03adKkyPJvfOMbmD9/fsX3/O1vf8Nhhx2GYrGIYcOG4YEHHsC+++6LZ555BkDXx9ztDUOGRN1zzz345S9/ibvvvhv77bcfXnrpJcybNw8TJkzAGWecYdbrqi7ohhtuwDXXXFPxNROFIhQANw944hcAFoDwAIT5WLK1CfqxO2tkO0AdLN1UB8BBy05Ayzj5miRT5Q+8mZOHgQhuCJI9GMibOnrz6nQerHSGHrx1SFoA8JgoI1Wu/kULS8yHpXJGy/zyyJvWYVE3kkKpVOkUT9c4BCHJ64QodKTZ0WH3Sr4xemZ+7G7hLFrGyjr32qpFMxZus3Po3VXz+opvLxRjh6nZWqJOldCT9CAl0e+CmQGmPK0K1KZH0uvJ7YTLKr1NEGJFmMoHK0HlHLpSVEC/1yZVXE0uKrX06Arfsc9ZV0hqrROGSt9Z/JxXw2Or2wHI58nMycMAQg3Z6UoUSgrFSUga9HHwAILQqpVrQxGyUk/+TvWVoIqThIpyulReT1wAAkQ+gxEjVMCAk6qeYM2aNZF0XkdRqL333hsvvfQStm7divvuuw9nnHEGVqxYYV7vjhZ3e8KQIVGXXXYZvva1r+Ezn/kMAOADH/gAVq9ejRtuuAFnnHEGxo0bB0BGpMaPH2/et2HDhjKmbOOKK67AJZdcYv5ubW3FpEmTyiNMQoDmN4H4BRC/JFNajgsQitlNm7GkdRQAYOkWGVFq2cnHsvdSWPZeCgDQvEsGzRPD9JygrtRJUTcy0+EghhzpAcB+iAkBcF6uSYo6+oavMQAOJUhRld+3ByrBJCkMSiFBjOu/CIVQx2lHoexbpLPSdT3gxkPRAgAI6dIs/qhdmyoSqemTm4yGS69nPkIH5KLaDV9tAIsPNnF9TlxXUS0qRSC/F70dWXwQbkuv5fPKLTAqkbOeuMZXIwt6m0xEH5YCoiqpjH//HT1PVUBV/m4TKSByHer+Z/F7Qb5mra8HfSHPr15PE3mg61FCuQ1Rdg6qrd+Zga19/errtNqgY4udO0ppC+qACIGZuzXVHDUyUWe5BfmPEDCur205PKywNJNDHYwLCPUYc8y9HGYcuCJM+hqyq/nkpMeJ6PgIl5Pp/gDthXSepn262q4WpNNpIyw/8MADsXLlSnz/+983OqiujrnbG4YMicrn86A0yvwdxzEWB1OmTMG4ceOwfPlyfPjDHwYAeJ6HFStW4MYbb6y63Wq5YMICQAgIKm8uEhRBS21m1gIhpN7JqXwKNXnSWP62TBm2TFACc8EBxkGYL/cnOEB8OE4K3EkB1uBChJADDGfqRqaRgYoJIB2rXDLvVWk7wn1JlvQNT6ghcvrzAOphov4XbgYgFIGQ3kg6xF1Jh1JNg1IpWqHTRHrNShWH8r1lbwUQFYPa27QrcOyBavrkpsjg251IT7WX9XdTad14VEq/VjHVJHjYKNV6PUXDM6UF/dWqJOU6HX8OG11N/8UJZ3xX+pWy71xE14+Tbft6LUOs4CKSgrG/f0IA4oTRKCvQah9PZ5WllYiS3F71KGm1df/4VmtFo0o7qmpfp0dOaoyQLK3Z6ewrnTFleKQ4pFYIgTClrwjDU9upBsr+Hsq+S50BgBWJExyEUJAYEedCwAVAghII8+R6pfZ++ASDx2xTCIFSqdTtMXd7w5AhUSeccAKuv/567Lrrrthvv/3w4osv4nvf+x7OPvtsAPLGmDdvHhYsWIA999wTe+65JxYsWID6+nqceuqpXd4fKW4DzanIDA9AAs88lQkPJBkhVGmLKOYM2wBBXRORiqNlJ0mWlr0DAAwtEzR54RBOWpIWJwVOHPPU1DNCHbGQ+2UgPABVZEik6kHdDICQaFG9HvOsD0QlcXJDrYRwM5IgqRkZDUogzDcEygcFYzLK5VA56LrqoUJjj3Zijch2yq8aMepKi5VaiIEmUNHZtToeFeHQgzCxjqpWzqGJHxdCmm1aAzq3DtA286sEovOwgsPMC2OaOsKZWjdMM0A/0LkAQ/l30Nk5qiRC70xvVgmaSFX6Hlk3thduVxEfPRmQuWz5Wmyg11YTZZV91rpAecZawyagtVYr1nJ+9TqamB21a1MZ8dTbdAgpsxNZsVrq+6ZPbsJTq1tN5OnY3YaDCYFpk5vM/WeTdyJEl4lUxNFbcDy+un+IwEDBoaRMMxr/6gV1zDXmUEdNWmV2gBA1WAoOWmwD8Yvm2U/8Qj9/mv7D17/+dcyZMweTJk1CW1sbfvOb3+Cpp57CkiVLen3MHaoYMiTqhz/8If7f//t/OP/887FhwwZMmDAB5513Hq6++mqzzuWXX45CoYDzzz8fW7ZswSGHHIJly5Z1z6/CSYEwD8RTNwihgKNCvVCzaSUsF9QFOAGo1ETplJ7GrNEFgEM90WWEatk7LFJNo/VQVMgb0zzABQcJpPYKzJNVfqrqD4JDuNkwBK9mSZpAkcALt+2mIdwMGE1FBp+UCGR0zcr3E8GBoIQ0dRT5kulHjjDUH0lrqSiKHSnQ0Omt+ADDKgxKXc2j2w9FrevQs2shZGWRTarsSF6cuMRtI4DyyIkNexC3Z4fyfMRXjglTVdpUVFoHIXnS2jQCJiOGhIISB1B6L/scdkY446SnkiFntTRUV76XrnpOVdp0pVSpjjyVnetOQAgiDvNO7PPHj7vSa5Vgi/G1FlATKdujSEdAwnWIuS4d6/MBiJAqre974s1tpkIuXjmnodN3ulqvIxy723B5TpgPMB8kKIKwALPGAGB+2bNre8EKZdWiSTiFMCQIUBo6LhBwAYfK55yr5BVUMBC/ZCbPtJQDICehIpWFyFSooO4D9GZ1Xq149913cdppp2HdunUYPnw49t9/fyxZsgTNzc0AennMHaIYMj5R/QXtybHx9VcwvD4LEhRNlZ1JfaloEFQqDtQBqAueaYBI1UFQ16TzZo1WJEyNBCIzTJIaJyVTZzwIn6IijHzJKJciOG5avh54AKVGvyT37UoS56QgqCvDzEERRN3ocFIQaWVP4KQixyJTkl5UA6WOA7YTfLYR3M2AcQHPGrkdSuAQKVbXItSI2FIRFQ4CJkQZkYrDLvfvSKdEIsvsNJ3cblw7Mn1yUyior4K4HsmOYtiHEh/gzTKjdXOiKSd9rVTR+gCIaioixI6GywiR59JJIeBK9FqDVspG3PE+jlqNSzsTjtpRmUrfWbgeKUs/Ax2c407QkQC6GkEGOhb/VzufZelia/14qtU+By5BeJ/rY1F6w7IJiH6fikxqvZedptSkrDPEq3+19pH4BRVll4R96eb6KlvYfmBPrOLXDFMkClD3LvPVZDovxwDIcyeoC5HKQKTq0draip13mdznPlE/HLEH6nroE1UQDF/e+nqfHeuOiCETiepvkMADmBrEKDUickARBkZNNArKIoB4BblOiqJlJx/ULwBBGPEQTgpgHogVCTECdgBggSRJgAwXCyHF5yqiJCNEsQE3UNGpVFZ+m4RAOGkga0U9CttkZE0fLxB6V1UqJyc0VCDqzyYEXHCZ10OUqMycPCyMrlA3JHmKQHGLQAGdRzYqGYSa19T/oSg7fBg6hFRMaTyl0iQE5QSreZcMQAiI1ohpcbOwI0Iw1WGVBmpBiNQzCS5n+IBFtD2A80hqLpKmA8LKTErl+baJqEWgBKGKDISEpzul9dVMSWslVtWW2xYJ5vgs+hSPTulIpoxWWhGxCsehUypAOaGqtH5cq6YjUrbAXB9r/LjsyKl93FxEyZNOodkEyv5fR5/09ScAlT53QKgT+RyPr9pWFmkiQkRE4jMnD8Pjb7Z3STyuof2k9ERHV91RHUlmAUBUJTF1sewd1qXtD2bYFi+ahAqQisRdklz1TKEOaEml7hDep8LNyPHASYMwT2pl+wGDRROVIIqERFUBYR6ISId/66o1xqLEx4oKkaBkKu5IrPxVismFrOwTHMLNgMb8muSKFpEBlyF3nVaLQxMfTbwK2+SxESrDzK4UzAsnLY9fpfjk7MqPRI6EkwJhJWv6Kz/X0k0OgKL6icKYdGpbBCiSo8+J0hZQ6sKh0Zl23NCu7PzbHzP2e1z/VMuAUq3tgxH8jxMg1A2jdWqg0Q/OiKaKWAO5TYY1ceKBtMDQVY80nD0SwbF0YybUyL2XwqwxoU9ZtCIN4aCnyawO6ROCgFcXmMcRr7jrjMjWEpWKr1Npu3EPKgCmMjGy7Qq6pniEyv7b1gNVEvebSr/I5ICUpVrjZF3EluuXNfnWeqXpk5sgRHVR91G7NlX8XiRBkyQ9Tujt7WjC07xrffiMUNfGY2+2ymufMxW51pEqK3yqQUj4OmcghJtriXLlc8etiRQLFGmoQ/NEaQ68/O2S8YvSpJiitvtuMMA+Tk1UjbZRo0rUUzhpeU7s5yXzwypczsOMRIIdEgmJqgauUlqURiIGJFBkwprR6dcAgJTa4ajBUzgp8MywyCCqo0sRKwG1LLr/MIRv/o4TN0JBggKIDyV+l2SG8AAiXQeeHgaRUpWH1FWpP6Wz4UFEl0P9gtmm9L2KQs9QdbRGpiBoWOLLPDmbVceptWLCzYC4aZnmtEgbodG0BBBaIegUnSZajIuKXd+7U5FUFZpkKt2ZoC6ItnawfGLk9xa+LSw8CCsftV7N3vbSTXXG9gKIVm8KQkMrjInRqk67XVCkvB8hMXFI9YhRHB0Roa5UpcVf6yyyZZMSuwehjgjYJFUL9StZJVRL61VKz+gIoe2rFkel9JsNrUGZPrnJED/dBineT86GXZl35KTGCInX2idNwCIdA5SHnCY68p4kkWcNIK99HQG2CYCeFGg07yLv/7DzAgcRhfD6tNL2sKKks0blgaK8z1vGUsAvgBAqA9RqO7PGeABnQyoFqCOfhJKywh1D3tX/NCiZ5yQIgUjVKRIlSRXRz+B+UsQ46AVNVCLe6XUkJKoKRLoeIpWNDobK1VZ4RZB0NowO2FVwAMB8SRq0/YEVmTEPPJsUATAdigFDcgxBY0HEmkD/r0kK9IyUEBCuHpZtm+BkSzJvTyjgpMNZuR3tUORncX5cxfMwa1ReDuRMp5pUBICFhA2BZ2ks8sb6QRMsoSNVTtoIpEGoidbZhEo/0PpzltsyngA8JD+CchCHQ5AOXJ+tVCxhvjwHKhoFhKRaf4ezxpQqDuJAzA7DGijlgChnuc271puog6PTf8oOI+BCCmBjZKBSk+aekK1aCZX+Ox7lsf+MtCtS1Y7yfdWbrEaMIKtEn+IfjwkAVgovvuWySFRsAwzh52A8JPg6CqrTkNMmNxmyr6NVlYi/hu5JOX1yE5jaZlzbFL8H4rqmzkTkQNRaJfyQoebRpKhiKWQzKeSBLIpBWJ2so1uEeQChmDWSDwlBevOkLITgeGy1TIm6xCLdgoPojxefrOoCD78URqoBeT64329mpLQX0nkdOfkn6B4SEtURdOREkQ/hcICnoVNbJq3HQ/2ACJTvk5uR0QIei0oAkb+FrYFR5AnMA1VVgcIiLqAxYwFFpAih4Ok6c6y0lANxc5F+fNARE8HLomeVptOzR7SqFCQkwXNUVaBOUemoS+DJcLYWtjtp+bkDXx534IOgAHjtivRlJSlLZUOfKvUZ+js90DKWGc2XSd8BgDo2nsoiUF4ALiURLyJJWmhIHoOSSZnq7Zn/BaCf0C07+VK/ZtLDihzrgoGgaK675okpeX6EkCkEnSrkHITKdR0nDepmwJ2UGuTl5rgIiU2cSHXWqLkS+eoIHVWzlZMWEok8Vnum27vm1uBtR6OqiYPL3lfhmLTuya5WtM9ZdDt2WlJZfaj0GiUUM3drQiBCAvuUlW62P4u9af2a9lzjQuDY3YaDQk2gBDcu5HbVrE7zPba6Hc2TsjU5kzfvkoHQEx4jAQDAdaq6XKOHDp4NBvreoU4kyjpYsXxNEc2TsoZMxV3wzfPQKiISevIJmMyEaRFjIvBJOm9HRkKiqoAERYCl1QPHshUAQDL1agAMbx7BwxtQ+D6ImwLSddbDyIr+aB0CDQdaQagUKRbbIPySHHdNKk7NFPVxaFsFvW8lchSEggRFFZ2ynHT1QzE249S/L2nfOfLZDYFSomahqwMFl6RJaX+M67rSXtlpPZFpkKTKRKbSUpvl56MEw3FBlXBz1miodjl9i+ZJWRmO90pA4IWfDwjJnSYgUIM9Z/BBkZLTcjiaUCobDMIDeR5UZFBeL1Z6UG1fvkdeN0s312N2U5shw+Z86winJlb2jFhHELTRKw9AfCloJ27GVAc6YXBHjYOhqFpqrao7xVciXUD3DUk1qNlOuUi8IyKkj1mjo5m//ZKetbMqH7Sjz6PTJtVcwqdNbsIK1WtSHpSs6jpq16aw/ZLWz+l0JUh56kdETR2la3i5/vGx1e2RSNTM3ZoAHphlRhulCzys68ZU4LIqkyh9HPHiEkB9EItQCS6j3eo90FpPwTFrVH7Qpva0viuiL6xGEE1aT0XLCQUJPHnedKU2YCalZZPkPkKvWBwkgaheR0KiqkBQN3zgMC98SOnoDw8ggqLUN1GqyJMHBD5E4EOkUqBOTg6s9s2qH2pqtiOykhwR9RqYH96k6gYVJBVWbek0niqxtQdYWyQqnJD4mCo8ezC29Ek2Zo1sl+0eTBgbxiNFOOpBRB0IixyS2MOUMB+CeYCbgUg3gKestJjgoH4egjMs26yd4vueOAG2lxRTM/jQqV5GpSiWrRNonkSgtQ52axaHEBC/hOVrJQlq2ck3JdDCScsUsKrYAQ8AD+Z3GhHwCsBxMGdYOxa3SgI7u3GjfI26UrhACHSRgRlUqSoi4Dw60Jq0KkJhP4CIlkYRNL1YfiRRE5GqFrWqFGWKg0fIGEKxd1z/DBr723pT7NeOqvPiAnWl4TafUw8iRhiMkGxpE1ZbI6NTc3FojZPW5c2YMhxuXMcIIb9zEvaf09HW5klZQ5w5CJ6I6fu0Tmq5lbKz03czpgwHp6lIqyP9PiG4iVA1T0xh2TqBlgkulq0nYVqPBxB6UmiTACVilxMkea2ZZxMhgGXxaqfwAajI1OAkUcvX+mF1Yhz6/rFlF9yX5JZ5AAvCiB2PFhYJJw04/dP2pVeq85J0Xq8jIVEdQLdnIToCQKg03OQEopSDKBVBUimZ8WIMwgtD66JUlBGpTExXoy0LqAPAB/GKMmqlcu2CcwjfA3EcmRp00uahrHUw5nfAzC5NWkiDUCmENAckyvoBLtk2IvKW2cO3AoKGaUjzXm5C97oUn/qF0M+KuliytQktO/mSTNhRMkWghPocJPDAUd/vM9Zqg6HGsndDzYidImmelDUhBYfowgK5rkxfpKAHjpYJqhKPIbSG0E738YeXIlRz6tdL/Zh+KJuZLQWghas8nAVr0PLBwFRmAhGCrAsIqEkbQ6bGRHk0RqeuCCER36547zhKEIkQVYou6fWATqJHgkdTz4AZpKi59qOCcfO7kMdghOlWVR4BBbPSbGX7VaeCKrd/xpUtgX6/AJ7qRHekI0+aTE2f3GTYGSVh81r9urYnEOZ+kiaPZddnTCZgo3lSFmB+WSPzGVOGY3mMjGnCry0Llr3D0LxLJjQL1sUgep+QJ4XE961JuEppy2OnofAaCCdWgwgzJw8L74sqE8dIxB6IkkL1vCN+2OYlTIm6lUlZgh0KCYmqBju0rR8OTthnjih9kigV1SosjAJxBuExEDdlPJ4AgLjpcPDzrVSgbwnT7TSfFm/ylCEhRuQIJgdrO2djIkzEGohhRalUBR8A4Ub1C7MbNwIkHSmpj4f7dfrNmPMp6Go+SSpGmKjK0o2Z0GyUSH8VnlE6jy3RKqK+RkcEqiOUa046MLvzi8rLS5miOqlocYLg5vzr6OTiwvjIJuYM2yB/sR74Oq0gnFQkBWxgP8zjD3UtdCc8uj11bVQSWmuRun6tGgHSqU65fSvKVOE4IiQn1u5GSsbC6JqwBuq4/qna8Wg3fQIVSYJuRFxO6MK/zScEEQKMC3lLOcS4VVfDzN1kP8Z4hah9nU2b3IQVb0oBua7oM7o/M0ETFa/N5WuKaJngoGU8kdFRO4piG/0qNO9aX0ag7GPVhSqPrW6PEgEgnCgilkq0I5pAJDolTyAFAhJubxDBnG+VBo10AbAnGNoIV4vlIynzopzgMEsaYXvrqQizqdjuYyTpvMGJhERVAfFLkX55ABBvjwLACMkliWIREiRMQZ2jHj5yHWGtR6gTETKadQBJtFSrErgMSFkDVJzgaYJl6570w1GnI81BW4O5homcqAeC0lgBsBoSp8sHSVp+CYlUPajXHjkukaozM+eZk4fh2N2yNTktDyVQvwBh2gApUqDTuVrLllbniwdY0jambBuLY/o0jdmNGwGRhcg0lM+ATZQgRk5i68QjOICIkCBTIakjSrEHrhbU28Jwk9wRqDwwW1EOAhgfNfsajmh4EBKmeMl5vCJPH6+teRKIuk7L40RIruz717q1ieDIuinVN00OqE9UiUI1T5TR584sNnTK74k3t5k2LuGBhvdjNb+z8Jz4xuMpPODaIyDx7Zp09DiYKKi5rW0yZaf17GeOOg7tOVdJ9znQiLR80hGmSp0B7BQsBcA4qJcD8QoQ6TqQIPo8BQ+MNjac7PaXJipJ5w1GJCSqCgjzZWNJHXanrtFEyYdOOEBECBQgB1DGAPgm3SeJUuxm41YagzNJqNwUiONIUqVE6qBFEOpCCEsbFX9wWbPByG2i/aH0665K5cUH8AqRjIi3DACUEPoiqQfS4ljD5eZJWXBSj6VvyRQXzwyTD+1NYeqhltLsoQrhpiHcrCGvAq7sW2iR1GXvOpg1smvnwFT+BSkIF6GZq3UtRNIVgsmXrO9TV4FpRPsfIuLZBCAqhLbTa9b7ytr9KLIYqVjSpK4C4UaMQNnrR6JP6vggwvQbgIglgm6Hk6KyEMCkNs05FOVpasAcl8N9OABIsQAEHmaN4RV9kGipHSi1w9bUdYb4hCESeRPSikGK1SXh0cJxk7LTOjKlSVy+JprKW/5WvqbeeTaWrScAHLTspDWZIkoYIgccI+26KldUJnbNu2SQQxrPvN0/bt6VoElu8671JoIfdW8Nj10XidBim9SLpTLhdci8iN7UNi+Vlcrbj7t7gq4j6Z0Xg+5TtOWFx9DUoPQ8ymRN9tFjMvqkCI4IPPm3jkgx6wYDpPA8lTK/axD7d51ac1MgmToQXdXHfKmzog5Idhh4trHs4RZ1HBaVH36ERGdNStgMziP+ULObNqsKO0UO3VQ0YmU9gKr5SgHoVluK7QUtExwE6WF9FmWb3bRZpnaV35bWqBFLE2daFGkHdksPUqnnX1kqJ05oUE587RSJsKpGQahpbGuistRV1ZmxEnh7MgAY4qW9jbSZZWTcE5BNuiu83/58NCghYmKrB1G9HVcOkkRbRwguiwJ4IPukMT9MualBVNipHPWZuqvta56UNedOUEemEkUYNdM99uzzrlsU2WSUCF6mjeouIn0+ARPdFI4bjTiLaJVuxMNOkWWRygBOekDax8zcranyuQNgyx8I8yQZhCJRQPnnQewZC0TF5Zxh2+ZNGHXYx/u8d949Y/dBfdyUuYvIc4ZPv/vPpHdeLyKJRFUBb90MjkaQuobIchH4EIWcSckJzowuSr6Rlc1MhA8ZXTKDiroRKMXSYYdgdvFFgDMsSX8Qx7mrwkEJAKgfkixbxKkiYgikc655j4iWMEuRsROZRcl1onoRAFjSOgpz6taFs3VGIjN34aTK3pMgimXvMEyf3HfnaEnrKFUAwGPO8vKamjWyPdIuJg6dEqtKoGxYBEVrgCIkRg0iRBGOSJTHtBSBNC9VERRz3erUn02ieBAZdHXkzNX7ImGjjkql5VJbFTt+Fr0nyiNmXmgWax+P0RZa586uftXH0M1qtOVrilLgLTggKCghxqGfEgIIVjWqpD9Pb0d0l26qUy2IorqhMlJdKW0XW4eoiraWcTri1X+wjYrLYEdWg6jMwZjnWrooowGzNKdET3ADH8L3IEr9o+8kDgHpzGeks20k6bxeRxKJikGz/o2P/wpNDfUg6SxIJmuIDC/kwLa8JwePTFam27R43NY16b+1oZvjmGgQcdNY2nRYp8dyXHo1dGVcZBDQkSXOyzUJJLRg0OvH0y16G3rmHy+Bj7tumyo8EvaTA4BFpUkVj3vm5GHgxNnuNE9DBS3jdCSBhlYX1gzW/g713xHEyUQMskpJgBZbZcobYUrM9I6Ml4xrg1UV7YEasOyqyK5AN5U1LvFaExbXCNoTmliqinDVJ0618OB1w8Moi17PMsA1g6s9sDoOWN1IiMww2ZhW3UNdaUmkReNciem14WalCJPdIkZQt+aIrxZa13xMqv0Q8fJRTZQmUbqptog9gwCAVG4d1R+IREgJDc2BK0waSam9LAIluxZEU9hawhAxVfaKZvLcmi9i9NEn9Xkk6t5J+/VKJOqkNa8mkaheRBKJqgKSykiTy8CDCDxFpupk9MmLVWNocThQFoUijoNlY44BALRsXoFlo6bVtP855N8QBfUwV2aQhEqhsmlmzAMgKBlxuyFsVDqI6woe08A4ok0JCZGZqVMqGywLjkWlSYbEhS7sKRCtEUtlgGoTMEITAjUIICs6SZRUQ6WA1hTNgKwjGsbMsQKBMlEoCIAz0FK7JFBqu5R58t5w02F7n3i6h/kgTsrSGXV/QOiIPEhbCjVZ0B8hEvWiYSqHMyzdMkxWRQZ1qsI0E2kKLQsErCpLHoBARqUWt+8MtAPyZuheRGL5W3m0jCcgqbpIqq6SI3kkpShCV3Nb8A/IdCAJSiBBURpFllpNSiveX6/iMa315XlMZaUWz5xPtX8KqbNUpMOQEB6Y4ojmXWTKVAvZ+wPx6FzLBCei84pH7YEYgTKRehqJdgqvGGpU9d9QUowKdiMJdhwkJKoDEDctZxyWTYEIPGlvoITltlO5LRwn6sbSBApAzQQKABaLvcIxRgBzxD8By5ZA3/hGn8WYjHbJ1SFYTh2XPM4l9QfiOOd1wImlXewHCQujXXPq1mFRYXL0oHxJ7kgqA+Fm0TwxVfkBWSncn6DfEKZPqg+WekC1B+2O0kOhM7dK0ymTUVuPR3hgNFDwtdZEVnAZImcul77zCYv4fCkdkSZ0UY2O9vmCRYYklm6U52f28K3lfmpNm+XnQYDZw7f2SBs1a3RBTmwCNWinGyIRqOZJWYBQs0yTR014BXVkayKISJNjIHTpNj081X1Za4sWbbMAu/UJUBbRgyp60KRkTv16LM6PQ+q918HrhqN50s41tafpTWgCZ2ilEDB2GjyQdiR+obzvKXWAQDYUF5Wq7iiVEgo3FU6eg/4x24RDzbjSbZAk8dTbSCh0FYjAjxAo/Tc4N5EhU6GnxeZqZvvYpOMjqbzewGKyDxb5U7CoNAmLixMlgdKzI8ZMRaBgUqPF823y+L2iZcPAjfBXlKR4VhRz4LlW8G2bwLe+B1HKY1FpEggPZCQqfhxiLyzyJpsUYFnptsLM3ZrMa9MmJ2HjwYblb5ew/K18h15INh5ftQ1PvLlNtpXRkSYNXc2nm13rNI+6H+SLHGAMi9t3rmrj0BdY/nYJy9cUsfztkkxNdRFxAgVIXdqS1lHmc2gCNbtpc9XtzJgyHDMnD0PzxBRaxgkT6Vq6qU5G79y0JJ8VTC6Xv5Uvu884cfDY6nYwVZHIhTT+tLF8rW/kAHpbRHAsey8VibRVg47iVKye5IEx+tV6MtNJwXExp26d3GVQ7H8CNTFlIk2h/k77dqhigaAkU7mBLwtpOIdwXOnrpjWlll+fPVEldQ3SRFnrW/spEkUokbqonvz0UFOVoByJJioGWxPVWJdRKSwnKiQv5AyB0RCcy3XdFJZPPK5fjnWO+KdpNRNJKVIHS7IfBgDMav+zsU6gSiS/iO2B2d7LWJL+IGa1/xlLhx1Svm3ybxkN6wTVtBYzpgzvki4kwdDBtMlNSIsApLBNDkbMC3VEekAJZNWb8EsAZ1hM9hm4A+5HNO+SkVqrYhsID8AzDRCZRhNJ0tHbWaML8n51UqaaUjhpqatSBJUyX5IY6nR4L+lJSjwS1TKWheTH1koqgbzINnZKcEybGCBM6QGhTjLwZPeCCoUClQhoX6FlnKio37P90kyaLiiCFttAvEJ51JzoVi/WxDNGouCmZc9N3wcoRWt7DqOPnNvnmqj73rc/GpyeTcxzjOGT/30l0UT1IpJ0XhWQVAY02yB1UTqao6sxdAqNqwqPdFam+AK/fCbZh1hM9gHSwOzgeandUnYINBtWFDojdzbHtIjtYZYvSX8QACoSKAA1ESig3P9GI6Hm2y/0YN2863CpyWOe6a9oDAmt6IXwPczmL4IXc1g24siBPPQ+RfNEleJRGqIlW5vQMk56L+nJhk5/60bbc4ZtUO2c0pJwpeq6NPnQNhC80g2nI1C6jN/hlpjfAdB5hEinP1vGibDIxUkDTkoKyqlFzuyqyz6GbsdkSGHc7gIIDYS9vCT7Sg+ldWLxylCbCIqYpYFgDCSVVn5+ktiKICe7UPQTqENAe2g5TmuMPCeoHQmJqgLt7SSKeVWJUahIknQqDQCMG3k/Y0n9gWjZvEKJHn0sGXEkWjavAK1vApxGAFEC1deQPlFJFGp7x/K38rKlCEtJg1HlsUR8LtsKCQegLmgqA1FoA/GcLhVXDDVIgqRFX1KzJPVp1bVm5anNaDSps6q6x1dtw8zdmvBEhdYxy9YJNE9MgbiQxNZoOx0TMau1SnLZeoJZY4KwRY+lk5LWJzxCpCq58fcWWsYJIChF7RYqETf1mWl+i5nVRVJ88UpODVKexjMvpbPha/0MQnuuiYo3707QcySaqCrghTx4vhW8bYskUFxWqQnOzY+5kbT2gzp4fM9PD8jxCt+X+XrHwczVD2HZqGng+VaIwO93ApVgx8Fjb7aCuxksX+tj2Tqh7gPVd5ExOaunrjX4cDSvXTSwBz2EUEuVa7VKxZax2jQ3oyJdwyBSWbSMk/YUumqyVpuJpRszWPaug2XrSVjlRqUjP5SpqyYgun9mb6NlPAmjnX4RxCtIchh4qlIwJEbEL0oLA6v5OmEehFeA8EsQxZz8KeXDbANTP9rvjzogqbSMQlEnfP5rQ+LAg/D6tw9ogsGFJBJVBTzfBsFckyIrm3lYppqCyf52fUmgZrX/Gc7InSGctBSWx14TmSyWjTgSs9r/DKorAwdgxr+jOpXvyLDTT0u3DMPsEa3SKsPLmeVs2ybjjda8dhGa1y7qN+3gjoAZU4aDMt/YJYAHquWTLAQwVZjckWk4Lv29OjLC7KiNjLDE6uD9U53WMkGmSo1buh1R0u70XgnUz4OUpG51MdkHc9hbQDor7TUAZVXgYUn6g5idf14uU+22BBAWDjHZiou4qWgVNmdS2qEyEzzfP61tknTe4ERCojqCm5buz9oTxLY28K3SWLsHXg2Y8ca9eHz3k7p0KEuHHYJZW/4MZ/hozCH/NjczSWfB01mjbaqmcUqQoKeYI/4JAJ2KxJdsbcIcsh68kANJpbDYmQoMC6OhCXnqfeg2N827ZLDs7RJaxlHT6Fk7eBNFNqQGq3OLAxKU0DLBKWvd0jJOyL6Q1JWkhgUqehNEolE9hfbJahmvjFTjBMrSQhE/Dzhp0PwWBBvWAIDR3y12pmJ22/NYUn+g+mAAlJRpSf2BmNX6rCy+yUidGqHUNIwPrQy0g7kT61DRf3YuusKuR9tISFSvI0nndQBTiaFnJtrGAFD+S2F7gCf2Pa32DXOGmasfwsw1j6B53dKa3yaKeTkwUS3YlelFLRJPkKAvsZjsA1AHc8i/MUf8U5L5GObUrcOcYRukWS3kNTqr/c/9fag7JJa/LSsldRpPtycxpEOvo3RBnbVjWb7WB/xipFl2y06+9P7yi0qw7YV6KCCiLZo9fGu3P0vLBBn9bxmvjtHXYnChhOHyb1rYBrL5bfDVr4L/90UEG9aYvqTN7z5mnq+GQFXA0qbDwi4NkbZcVprTNJm3LG1ieqkEOyaSSFRnUPl2E4FSqTsA5sZ7Yv+za97cjP/cA5JtMERo+fhZtR8LpSCOIzVOBJiT+adqeVH7JhIk6C6Oc14HaCoaaYh5FQpXiswp56CNI8BzSXq3rzFrVB4ikA+BZesEACfS+ifShBm64i5T07aXvZfCrJElWWWYbgAKYepWEyeiolBh54OeDSvNE1OAlwfVbXt0iyrmgRbbwDatBw88440XbfYO44u3fOzMmvdJ6hrks15p9wTnRgMFq+E8L+YUkeJhtCrVeVSvNyAjUT0UliMxQu5tJCSqGizxYBzC97tFoABIAtXNCo9lo6ZhVvufMadBkqfFztQuvT9Bgq7iuMwaWX3FGSAyKkVEIBwpHp9D15o+eYK6ECQT9uUj1OhMZq55BLxtixyQADOwPzH1jIH5YNsRaGEbBPMAjDDLlq0naBkn27AINyvPt1WZ1TJOgPhFY7XQEZZuGYaWnXzTY9BokFQ/OhJY6S1luNmTrgUyylSKVPvRUg68dTNY4EmvPusZDOqYbg36uU0cB83vPgZw1ulE9TjndQjuhBEmSCsb4jjhGMC5NF5WNjcAQsE575+2NokmanAiIVFVoFN3uiovErrtSXmrDhsrIXhXYTRPvWeGniBBVegm03OyayWZ0iXWdi9G3eRYcBC/BDiqbYZfMr3GTApa+asRmqRBeoLjMlL3IyvVKBZbxpYt4wkQeFi2PqX+9iCEJL3NE1Nhg95UFi1jWU3VecveS6FlrCJLQnlGIWwhVdbkXGH2iNYuNyMmvqp2U9ujxTaIQpskMSojQFIpCB9Rw2Pfk6QGiEyAm999rGJUanbxRZBUCrzoqx6pvhSSZ+uVsbKKhLkp48NnIl/aH0pFo/oDhPTccZzwhET1NhISVQWilAdPESkm960eYQpdjUDN+M89crvUwWNdCDMnSDAYQPwCREpFLYQAYTLNYkelEHCQoAhR9LFI7IU57O9W6sMxUSnuBfjDoRcM6OcZyjgus8ZEaETgAw0jMDu9EUvaxkj9UokChKBlnIoIBRzElam+lglqI1rDRF20TFDVvJaAvGLHAdUyykQaVd852eg61tC8m9GolrEMpCg1V7rfoSi0QZSKINQB1623KI0QKQGEaUvjnh+Sw9nFF2XKDoDISesXpLMQJWltwNu2yI/YODIkYr4yMA5807GCpFJAKiVNNrURs99/DZYTDD4kJKoatH2BXdqq0FUCdcxLPwMamgDOBsxHKkGCnoAXckAhJ9MmDSMBAMQrSJ2MAtEaFs4wh/9dLnRlKpBksiDZBjy596kDcfjbFQR1QbxcWDXslwAnhTn164GiTNktLoxXVhOyeo5nhmHWKAoUuEntCV2hR3UUKYxSPL5qG5p3rZfpsLdLRmNFS+2mobEhS8rmgABhdZ4SmwsnjVmjCzWlDQGAsECmJ0uyTQ5XE1hhkXGbHJEUIHyEzddZ2BSemHWk07goFYDAV/Y1DBRQ22XGykZYldcklY70HoWbAjWaKSvN108+UdShoD3URFGR1JL1NhIS1Rn0zYuukydAEihap3RQA+BymyDBsf+4q2vVowrHpVZBZBpUv7Gd5cAdhLoYEfhAioME1kzckb0mTVskVlCO/0U8NvnjvfipdkzMGbYBCLiJgJBUCtD6ISXoXlSaJLVsJdfYG1A/D0GocRKfPaIVoA6WbsyYHnstE1SfOerIps2q359uREzzKlojlNiaKIUND8zfptGv6gcoU761aQ9advIlMS/lIQo52eQ3lgEgbsoiVZY2ypH9QcGYsaIx/UzTWUmcfE8SJUU+OST5itrVqMmzikDp9CGoI3uo6kb0CsL3TESur9ErFgciSef1NoYULV27di0+97nPYfTo0aivr8eHPvQh/PWvfzWvCyEwf/58TJgwAXV1dZg+fTpeffXV7u/QuNbSbhEoQLYJ0GJyIyhPkKAPMOONezFz1f2Yufohs+zYf9wVim5rxKzWZzG7+KIUCavIgkjXQWSGAXVNof6lTmldBJdpvVQGIl0n36f6SgIAcdMmlZKg+5hTvx6klAMKrcarSLCw3F6n6HS6j6gefouLE2VDaBaaYi7Z2oSlG2WFntFE8UA2k2Y+mnfJoHlSFs27ZCSJ9vKgRWUqyZhaTzU/D2KCcyHMvogiGC07dZ7yIsyXn081TI+0W6GOTOHpZvCBH+rtUmkT8QSgCA81ESbetgVs0zppihl4sn2Km1JNhCWx0s9mScpCTyjipkCzDSYCxXOt4IWcTPX5Hni+DbyQ79L3mGD7wpAhUVu2bMERRxyBVCqFxYsX4x//+Ae++93vYsSIEWadhQsX4nvf+x5+9KMfYeXKlRg3bhyam5vR1tZNR1m7c3dPUMl3pBMc+4+7MP2Fn/Rsvwl2GMxc84gxBrQjPsRxunTdtWxeIQm/XbatI09OGLiOCImtZfrH3j9xU8a7J0H3MCe7VqbgVFSvKngQ1SIRijl16+TvHfRNW7ZOhO7ftgM5IcawM7IN+ztW7yOKTBvYxKoW6G3wGp+5ej1NoHQaT7VoAWREyUSOLJJlIqU8JhTnLBSwUxqm7ewUoi6SUMVHPR4faoSORPX0J0HvYsiQqBtvvBGTJk3C7bffjoMPPhi77bYbZsyYgd133x2AjELdfPPNuPLKKzF37lxMnToVd955J/L5PO6+++6u79CVg0hXB6FKsGdFNb8nUwearZd6qgQJOkDz2kWSqGQbJJHSy999DHDTNevw5rC/wxm5M8iInUHqGmVkwi+Bqv5kkbQdUCYcJiwACSzhMSBd/+saQBsaMdt7udufEQCOfeXnPXr/UAdhHniuVVaKGeNHbkrzTUTKOv/akqIWF3ETqWKBtBlgvvRnUlWYcoM83C7CSJMWlmsxODiT14PeluCYNaa6dqhlJ1+mHovtMsqjo1BW9ZuJQtnERl3vwg+tB+CmjDicuCl5DaazFSezESIVS9eJYl4aHOfbTEZCRr3SYSsw6xj6GloT1dOfBL2LIXNGf//73+PAAw/Epz71Key888748Ic/jJ/9LCQYq1atwvr169HS0mKWZTIZTJs2Dc8880zXd2jl4juc+dUALXQU8UGoA+jZDvf7py9VgqGJ5rWLzEOdpFIgdQ0yHZd/HrSuoWp7oZbNKyJ/z2F/DwcHAGB+9HpVg6NNkIgeXAmVKZxSO8S2DeBtm+UKds9J1ci1u5i28tZISn3aylt3mEjtcalVgPJJsrsklOmCbM2lJfA2y0nHUQjdYBiAbObrF6Uw3ctj6caM1Mel6yBcy3DV2qdJ8XHpT0WCkvzxS2a9WWNKmD18a3mDYseVzYG1qNtxKkd4TKpNepBJwXgx+tktOxojoVApPp1mNuJz3RePKy2VivTxghTu80JOidUVUdUWB9oSIdsAWtfY4XlNsH1jyAjL//vf/+LWW2/FJZdcgq9//ev4y1/+ggsvvBCZTAann3461q9fDwAYO3Zs5H1jx47F6tWrq263VCqhVApnSK2t0mGZ51ohHFlRx0rdr754Yt/TMHPV/RBuGoRSHPvKz8EDH0995DwAcjAQjIMVPfi5AohDkW5qwGOHfxnTVt6KFQd9sdv7TrB9Y+bqh4BsgxTgBr4RvwJygNUNfzVmvHGvJOduGsJNYVbrs1jadBhm558H5wzOcKULKbTKAVpvy0nJVFJJtRxKWZVWdtRDuzsDQCpMj2hT2NnFFzHLk/vsqtidpqKPqhUHfRHTVt6KaStvBXEoCKV48kPn4thXft5t/eJghUnhqWgIOFcaISf07QLk36rizrYbkAtqtxsgPIg0GCZCTuR4tlG2ewlKEGkXpKgmeLqHHWeAk5LVg8yDKOaU3oiD5rkkYE5aWiJQF7ObNmNJ6yi5G68g9VCViJNJv6lUm1kuP7tMPdsRqdCIU0fo9KRUb0dv1/gBuumoqFxFmIhuTFzMywiZ5R+IwIMAILx+muj2RjouEZb3OoYMieKc48ADD8SCBQsAAB/+8Ifx6quv4tZbb8Xpp59u1iOx2ZYQomyZjRtuuAHXXHNN2XJdYcQDH4JxTH/hJ4b4dBUi8EHcdGiXAODIP34fgnHwtCv/ZwzEofjz7K+ZdRIClQAAZq66HyTbAFHM4bEpc81y/YAHIAeUwIeAnC3b5oIz3rhXrq/6ghGlIRGcYVb7n8G1maxXlASrkDMtNAgPIKD+DzxwxkBd1TIkKIE4qdAjyE3JKAXnkYjCHPZ38EIOLNcG4RUxY93dkXuhI8x4TaXiG6SIfdrKW0FTUrhOYsRq+gs/AYdK+1EHIvDw5IfO7eLZHnzQBErY0RYgTC8B4fdaLW2n++jVABKUILJpGfUR3AjQ7W2LeGsXi6wRv2CMKQnU80/17xO0JAsQ3CyEm8WsMSUIxwVtaw3JCxBGltTkIB7VjIrIlTVBIRe1ptHRI98zzYUlAVURKVjkSkWWwko91XPQTckJtbaT0Kk7HQErFcGL/eRYTghoD802aSfRyARdx5AhUePHj8e+++4bWbbPPvvgvvvuAwCMGzcOALB+/XqMHz/erLNhw4ay6JSNK664Apdccon5u7W1FZMmTYJQBIpQCuJQCFb5oX/Ikm9FiE9F6PBvqQAe+OBeAOJQPH3URR2/L8EOgxmv3R0OhG407aUjPDo1YYTCu+wBvm2TqlrKqr5evMyd2TRVtXQcJJWWpMdUdnGwtq3yDXpflAJ+CeB5sFyrrLJLpWTkQUeqmA+44SBLh40IU4FqoBGBbwYi4/pMa1cSCMaAUtGKOtkiXzmAEuqA+wEE4xCMm3t2e4jmmuhLNeKpz4ct9tZCcJ3SE7xm4kqUt5RI10dE5svWCcweXopqpCzSI7/zsGrQEPzAg9BRUkJBfJXiU21jAEj7DPvzUEdWd2rSEvjln9+KuopS0ZAwnZYDEBolG18nBkEtW4NMXUiqDHGTFXs8V5BeUbZvlCJhev/cK4IVCzWd1wTbJ4aMJuqII47Aa6+9Fln273//G5MnTwYATJkyBePGjcPy5cvN657nYcWKFTj88MOrbjeTyaCpqSnyAwCsJMkO9wOwogdWLPcCOezx73TaEPLYv98JQFdy+AhyRfOwT5AAkJEmPXDY+gz9sCZuCrRxBJyRO2MO+TeIl5M/qQxo4wjpQ5bJgrhp0PqoPmPGf+6pMLv3ygcXyIiH/ClAWFVHopCLFkVoAqUrnOyUEaGAm5EkzGqNIcXlTaryT/YcO/bvdxpbBgCVhedaS0Ud0JRrnZN0mNICIlEa7gfgVorl6Odu6cK3MfiwdNghWDrsENUyR0daohogYgwzIYmPFoRbrXkWi71q2t/i9p1B/ALAPCxbH4tc6Eq8oCiJmVc014HwPXn9KOsBnVrTom9RzEmC5uWAYhvQthFi2wYgvzXU39mkTG/HK0qncv26dg9XVZ+aQOltGHsNE62iRjMWaVjMubzWvaK8J5SOSvi+ueZNFEpHV3UqT2kQNWnvDxCH9spPgt7FkDmjF198MZ577jksWLAAr7/+Ou6++2789Kc/xQUXyPYRhBDMmzcPCxYswAMPPIC///3vOPPMM1FfX49TT+26S7IWdHM/MBfeocsXmtcPe/w7oJ2Uth77j7tMqXiY3qAIiiUwz8dhj3+ny8eVYPvCzFX3m4EIQFQgq/+2IkiiVABv2wq2bZMhLzpCtbTpMCypP9C8dcZrd0fSD/Ht8kLOCJUjg4ublm0t3DBVRLMNctAoFRFsWg+2ZQN4rk0ONoW2UHvDA4AHYYTLTYE2NMEZuTPosBGgDU2g9Y2ykjCTBQIPvJDDsf+4C2zT+sgh6jQkHTYCJJMFrWsArWuIpnMUBJfRJyeblmRL3bOCyQjMUCdSAEDTWUmSlV8SydRFqjENmbXL961m0KbfXg1Ysm1ExZ56RsNktVaRmq2C1R5F+TipfnOa9BitUsRxPIz0hAQpdBEXxXxImNxU6A9le0ZBpbY1wabUVOORTF1ZP71IY/kgJHpQlXki8GTGwJpAc68IXszj8b1PlWnDwJPvY7zfin90A+Ke/iToXQwZEnXQQQfhgQcewK9//WtMnToV3/zmN3HzzTfjs5/9rFnn8ssvx7x583D++efjwAMPxNq1a7Fs2TI0NnavekLwcJZBHAonlcKhyxfiiKduAgBwdTPa5CoCXUXD1AOBM9CUi+eaLwcAOOn+KY1NMDgx4417w4ofNbCYwUJHpWIQXlESioYmE3kQgW/E2zYe3/vUcDBVqcLIttXsWzAWGmM6DmhDI2hDI0gqI3/qGkCHjzZtMRD44Lk2sG2bwNsloePbNhpiw3Ot4Ns2mVm8NJqtk9upb5QDmxroSLZBteXgERI1c9X9EKUCHt/z01g+flYYcfJ9U+IvU+OypxpNZ0EVodAidDtCsD0QKVLXoM5dKHo2UT/qqD55sgjGrjqz/Z+Oc17v8XEsaRsjrQ8IBUmHWiM7Oibs9JtFjswxqZRZSLC8aPQIkBEkfZ3YxCuTDa9FwGybZFVvPB5LXZroFg/TgjrdbFU1Ro5fkSO9nac+cp7RxD4x9Qx5bwUeaLr/FDGJT9TgxJAhUQBw/PHH429/+xuKxSL++c9/4txzo6JRQgjmz5+PdevWoVgsYsWKFZg6tXxwqRVBQUaMBOMmPeBYJoTPzrgUAKqGc7mqqrFTIVqf4dZlyiqOEuw4mLnmEfmLFVEwKTDLh0YWJaRA65uk+V8xH5IuweUA05FPjTVwicCPaD90pVEkpcfUoFYqSm0TdUFUVZXcHjeNWWXrEQ+8bSt4u5WSQWhyqPVQCEqSOGWy0o1aR6oQinWfmHoGABlBE17RVO/NeO3ucOav0in2BEdXbZUJrytgKHtNLSb7AIFnoo3CSYNnGkI7AyAkm/r8OinTIBhARWLeHQhVhSeclBG+E6s6NAJL/yZKBWkboFPHvg87UiV83yw3KVtARYJyYRSOOuY6FbFUn46MiZLUKmlNoI4w6WulYmoUKh1sSS5o2q1op2Ffgwl2XCSjeBX4bTkE6ZRVySFvRuo44IwZAqVx8KML8JePfr1sO+GNGr3h/nj4l/vw6BMMZjSvXQSks6HzsRKrkkydmn07MrVAHQChLgSUmlYTyLfJCExDY8UolMbje35aWiEYQoaoRiQAQJUOSz0NROCZiJWc8UuxsT3YRFybVWqQ+vJ9JCXNDQVnKg2YDnUquppKVzulZVRME6iZqx+S1YDprIzUlQqWz5oX2beNeNQ4JFjlg9xs72UsSX+whm9q8EF/10vSHwSKwBxqpUDtijmr0oxkKUQqA3AXhDKgc67ZKYTjmhQuyWTDFJlO6SF89kVMWq3XjR2GIkahjYEfdbnX6UHGpDxC2TzodKFevywVyDkcxwHqm2QKDohomPQklvsBRNEzKWC7QAEAuBdUvI4IpQhyxX7XRPVoG3xIxU2GBBISVQXae0ZftIRSM0OxL2RWlL2Y7LDusa/8HEG+AJKVMyltk5DMWhI0r1sapu502bXWI2ktBxAODGqg4JyZ9UWpKEW62YYyLygbM9c8YtLIJpXHGQR3IikWo7fS/kNWg1cSlCAKbQjathryYzQmWpzupqVWyQJJS70TqWsI92tHKaz9a0PQ5nVLjT8VyTYAWvBrxPZWNZZthqsIlH1/xQcbE73SVg7d9/0cVFicHyfNOIHQaoK66vxy8FwrKHWwuDQpNFTtDWiHcsFBGkaCqnYzopgD/ND12/7OiKpmA3S6Mbz2NExVnSL3er1QsxdGXY0JMmfyc3EGnmsLhe6Mhz0G9X4dakiRruLUhQiapBjyxBjAGATjZWm7Y/9xF5ghW73ASmuAnNP00OIgGYJ6HQktrQK7mkGLUzXsyh9CKf7y0a8jMyLUXbFSyTy0NYECULHCL8GOg5aNT5rKNNPzSzsvq0EPCJutAjBkg+dDDRJv3yoHq84QMSYMq+kieiSdQqRW01ZNjgCASf0T37YJbNsmmSKhVGpylNjbGT4aJFsPIBr5IbpM3YouyGOh5hgemzIXzWsXyQiUXaFlVd6Z6BzkYByPFJiPmHbL7EiIIyc4dtSBvbfWVARuD1jkT8Eif4rUQxEKnq4DSWXCSE2pgFntfwbbtqnmCr3OoAXmoK4x0TTp2UzWkHaSzhrDSyNvKOQi1hpG0K2q4MqqRot5SaIz4QRDeEXwfBtEMWcmFTzfJi0HSiXzrOWBD17IGX2TLQTXk2LuBeCKLOkf5vnhOoyZ6KcuBnpi39Ow4qAvyvd1wcg0wfaHhERVAXVTYRSqwqxW4y8f/boRmh/x1E048o/flzYGnqzs0JYG3A/A/P4xZUsw+NC8dhEEY1g25piQhFgkgTiOKgOXvboirSwqRHBsMXg1lKUgNFFy03Kgs9uw6Nk750o7FZ1dm0GxrgF02Ag4jSNkBZ8W/7rKnFFrrOxB0Gp7pNMqj02Zi8cmfxwz/nMPuBokbbGxKOYiZeemylVV4RGHgqZcUEXezL4Yj6Q9IuJyNYD6G9+Fv/FdANi+yBTbA4sL47GkbQwWeZOjPeA6a1zcDSxpHYUl20bIaJTuoedK/zHS0KSuCaVXK+Qgcq1huq2kCBOlsrhB6aBMoYPWMOXbZBUpAJptgPB9sE3rJaEv5BQh80zFqvEJU5kDms5CcG6q7DS5IpSCeb7UvfpSK6iJFGfyXtBk/dkZl+IPh16AaStvLZNxCM4jk+q+BKGkV366ghtuuAEHHXQQGhsbsfPOO+PEE08ssxoSQmD+/PmYMGEC6urqMH36dLz66qu9+dEHNRISVQXxEK09S+HWg/ngRxeAM4YgV8Sfpl8M5vlgvvwJCiU8fdRFCAolBIWSqcpLsOOBF/MQxZxM5yGMNpFYeoW3bQHbskHOsC0tiZ2OI+ksSKauw16Ms1qflb/EolHSpym03Yg0YA28sErPqg6kjSNAh4+W/+sKKGY11Fb6FO3tI3wVdVBkT+RajZB4Sf2BIG4aLZtXSAsDHa1CGGEwmhblrWYsGKB0iUpPRhuaZKPudDZSpGHfqxr24CkYB025mPHa3eCFnPTS2h6h/IxE4GHZqGmyyrEPsKRtDISbgUjVySKEzDCQVCZ6HHFS7sRa1tip5cCLeJbpKJQIfBmFzbUaQqZTu1ovF49O+q2t8FvzAGShUFAsGcd7u4rPTuHZEStb57rioC/iyD9+Hwc9fF142F4AwQX6A5T2QgPiLpjcAsCKFStwwQUX4LnnnsPy5csRBAFaWlqQy4WR8IULF+J73/sefvSjH2HlypUYN24cmpub0dbW1tunYFAiIVFVIASPEic/kDlwddMd8OC1AGQkivsB/jT9Yvk+dQM+13y5mbU8O+PSshlMgh0Lj+9+Eh6b/HFV0eZjadNhKs0hBwwt9o54RgFhWktX7Gk9larKM2TJwuz88yDprIzSxFtmuGlTAQXOpFGnFpHrtJ4mbHr/gKqya5ORgXybEbpDk0EtQrciUTqqxlT1HjjDrNZnwYs5Y6QYIXlctu6QPkCh0Fiu5yttV1qSucaRIalURqO2mFynbypFpIgTJa+mSe12BlO5WalirpchUlnZzkX30DPVgCwk60BYGaqqQG2CpUm0JkvhdeZIYt62xUQyAYTXpn4+Fz2TqtMRIq81Z3z5DGFSr8UJV7zqc+UJV0VeP/KP3ze/f+S++QDk89+ty2B7xZIlS3DmmWdiv/32wwc/+EHcfvvteOutt/DXv/4VgIxC3Xzzzbjyyisxd+5cTJ06FXfeeSfy+TzuvvvuAT76/kFCoqqAEBqKDv0A3OTKA/z1xKvx1xOvNuvabV+ea7688zYwCXZYCK8oCQWAZSOOlPYArZuMTqSSSNV2L6f1jXK9Yk4OBoVybZQkOq2q2k+nDKNpspBUKd8orVmyrBW0a7PRsRRzYXl64IPWN8nqO03sUinjWSR8aW3A27ZKgXm2HiSTlfqULRvkMpXKMQRRHWcYKVNES2ttLDJofJD0Z1NFIDQdupoDMM29tVbKDLZeEY/vfSpYrr3DiN5QhjNyJ2MT0LL16b7dmbJZIDyQbuciWj0nlFllGGH05PWRazWaKVjrR7R09gQDurBApgl1oY9O7zrZtCFJtnzC1tHp9FtcpsG9wHSpqFQExDzfFBy98Mn5Zvlfpl/YBye0HL3pE9Xa2hr5KZVKNR3Dtm3bAACjRklN3KpVq7B+/Xq0tLSYdTKZDKZNm4Znnnmml8/A4ERSndcBpOAwjEa9ePK1A31ICYY4Ht/z05G/g03rjYnfzFX3h/3GgHCGbv1OMo0galCye4RpzPjPPeDKh8kZubPRDJmBCgCoA5qpA8+1gsSjXvCN1QJv3wqKEWq/WRMlI45j0pE8L0P2NJ0NPX/clHQ3z6uIlJuW+1YEietGs24atEGmGMEZkG0AHaZIXTEnI0/pbDRaoQZWAKpRsmy8rAs4NJGqNhjazb6P/OP3wR0KUchh5qr7I82dtwcsYntgTurvkmD2kj9UNSzZKttlzSEbJUFOK9LrpqU+qaT60AHm+zQVc5ZJpu3OH5kAWP9r0s5KJal7ghsxWDW6Juu7D4oeHOVkHxRLkSo9bWOjZRrVqqh1xKmSlU1/oFcsDtT7J02aFFn+jW98A/Pnz+/wvUIIXHLJJTjyyCON/+L69dJiI96fduzYsVi9enWPjnWoICFRVfCX6Rdi2pMyfMv9AC995rpO3pEgQddR3LQt/MNNy7L+OGyiwzloXQO4HoSsVE3zuqUQbqzNUEOTfH9JpUWUbQAvKEPMQs6UvetBjTaNAnEccISC7oh2S1UVsi3vgbdvlUSncYSptqJNo5To3OptV8iB26lJqAhbQyOIm5aEzpW2D7aDO61riLirE91X100BqZQUGpdKFVMzgIweOOlURDBMKEVQKIE6Dp4+6iIc/dwtcLuoFRkKaN61Hti8M2gpV0a2+wqiVJBFEsYHTLVfcayUsop82u1bygoSLAf/CGyTTCUgj1vOBMVoVCUoevL6SMFkFRyli2LK2kDECFQ1U1KvtYaq2CGANWvWmD6xgIwedYYvfelLeOWVV/D00+VRTUKignUhRNmy7RUJiaqCDz1yI3hWPuz7q/oiwY6HuO2FNBQMe9bp/425pSZHbgpAKur7Y+mfTEQr8CXpAaxoDje9z0TgGz8mUGqiAqBOxPuJpLOgjSMiFV46Gmbabrhpk8KRpCgF2jhSRo9yreBtW8Jj175UsdYggsmUoyjmjF8UUZEpYqd3AKnvKuSkUNiJVknZwnJNoKjjgNm6GABHPfNDcMbBi3nMeONe41m1PWD5W3nMqVdNoamjQpp9DM7lbpSGjeoqUDcd6t+0jQYQeo4pc9DQC60gf7cjj6pYAUCZ/klfE6bDhF9+LWhfJ/0atciXbWVDKI1Mmg9Z8i3QlAvuOAgG0KbGTuv3ZBsA0NTUFCFRneHLX/4yfv/73+MPf/gDdtllF7N83LhxAGREavz48Wb5hg0byqJT2yu2v+lXL8F2q33l9G8N8NEk2F4RfygazyjrR9sSRAwyAflaxhJFK4sAnRaRpeOFaOWTFn3r1AmiFgQAEOl5Zn6kGNsQPL2OOa6wGbJJHWqRejVhM5fHZyqrOA81NDo1qM5JRwJpe/s2eTIO1IxVjCzoBuJmAC0VZIuZ7QlCMqeeDr5dQqyPnjGRtTVtjtK+Wd+dTBMrUm5624WpP1Eqhn5PXHo5BUVZ+eznCmBFr6wzhF1Jbad4tVQDsFKAFimzockV8/2IFra/0ePKPPXTFQgh8KUvfQn3338/nnjiCUyZMiXy+pQpUzBu3DgsX77cLPM8DytWrMDhhx/eK597sCOJRFUBD5TPU2KQmaAPkWqowxFP3YQ/Tb9YDiA6/aGE07rvl4bg3BAKWz81c80j0h2cUnAVVRJ51QBYtcAwKTEnTJUYh3TAEvOqKIEmaNoUUXlCiVJRWhjoaJGbMn3KQKkRpOvWL8IaDOPpGl7My5mc1eKDUKpSdQhTlm4aIq/cqD0WrTiMIVKVZ5Wwc8oqkgmTEgp8IJUue30oY3FhPI5Lr8Yitkef7mfm6ofw2OSPyz8sd3JeyMkqQd+PVp7aEwR93Wl38ZI0zNRXt3BT4MW88d6ziwQiPmAVmgHbpJoVPXDOQSkFR2D+TtVnI35PNO3iI/fNByt6oCkXPgDRJm0xDnr4OhQ2tcLNpvtf4tELmih08f0XXHAB7r77bjz00ENobGw0Gqjhw4ejrq4OhBDMmzcPCxYswJ577ok999wTCxYsQH19PU499dSeHesQQUKiOkCig0rQr1CVVDoiZITj9mxdpeaM4zlnaNm8AtCpN2WWaYtzBecqIhWaG0b6kun/jU2BjCRRbQJaCo9BN3wVgR8Oemo9YuluiHZit/62ReFEfV5w5VStTBpBs4acgVriY906RpNAu2IPocmmMVuM6VyIQyMiYsE4GHxwxuDWZVS0T1o7NK9b2meeSgOBRd7kPt3+sf+4C5rKiMAL02+lIhD4sjJTVW4Km0irogOp0cvBb8vDyYb6Ni0c1w7iOnIYFEuRvpM0FXWqt0XiNphVyQfAECo7esU5B2EcjEkdFUdg3ku9AG62CX8/c2Hvn8RBiltvvRUAMH369Mjy22+/HWeeeSYA4PLLL0ehUMD555+PLVu24JBDDsGyZcvQ2NiIHQEJiaqCv33y/6G+89USJOgRtFZH/SGjP7YBpfbSgU7JpCIRIuH7kugwBpFvNdsVpaIkBTaR0W0zfMvc0tKTEFXVh5ISn3MGWt8kq+mUhxNX0aD49qSDelj9Z/cAtJcb7ZNXBLHWk1EqGka2vGLo4u57IZkDAMcidCrqoQdR4lDTZFULj21iZSPSYDYr9Vki8PHYdkSg+hrHvPQzgDp4Yv+zZeuehiZj0yHJccqYahJKI7IsSeblNcz9wOiZiENN25V4eo46TqQhMGccnMnKO0CSHaBcxyrJmDouq4Ec5xzcyjZIch3IaBXnRu/ipGQFoK7MO+DBaxHkiiAORb4nJ7ALiIvou7uNrkCIzoV0hBDMnz+/0+q+3sJdd92F2267DatWrcKzzz6LyZMn4+abb8aUKVPw8Y9/vF+OwUZCohIkGGBw9XBfPn4WWrY+DeJw8Hwx1ofOEsHaBAVSkGsTImNIqJelLK0VlJjXiuroxsBaZC6KOQjfA+VcisVzrdL40O6pp5zDO/hQkvxADpamtQtnUrxOo1EqICp4twXy2gGd+wEcXUVEZSSOIAVwLgfjWPSBOFQ2d0ZImAxh1KRLC5KLHrgXgHpFHPvKz/HE/md3+J3tKJi55hHwLRsQ5GW61oiyVfQHKTeMUnpFsMAPLSsACM8qlFBtYKSPmFUgwRmIR+GkVWWp8vZifqygp2iRJS9sBC8Yh3BkpR2Pv0e9Hmi9lOV+T9MpcM/qCqAmIwDAdDSMcbjZNJxsGsShOPjRBXK/2bSp8KP9JPnoTWH5UMWtt96Kq6++GvPmzcP1118Ppr6vESNG4Oabbx4QEjW0z2iCBNsBIg/+SjofrVHSzYIhLQdofaP0Y1LmhDpVVYa4a7n5Xw4oOtqj3cJFISeNEfOtYJvWyVYbuteZOU4eCsjjx6zF64EvheO6D54y6tSRKvNAt/yEtLhca8FItgG0cQRIOisJlBbMq+iUJoTaFDdeqk4dR/bYU3qZCDHVKT6d3vED2evSMt88dPnCSJuPHQkz/nOPsRTQBOTpoy6Sra1UdVyQL+KJqWcAkB5oj+9+Eh6bdHzYvkc1AJYEXBEri4wLzkHSWeMgThwKzlg5gUIo8AYAJ+2a3qRBrmgIFPcCBIoQ6/cERQ/cMt5kRQ9+rhghUDa5CvfHwH3fWCSkG+vLmtIzL4Cf7x/7iATAD3/4Q/zsZz/DlVdeCceKsh944IH429/+NiDHlESiEiQYIBz86AKItIs/z/4ajnrmh7JUf9c9JTlIZ8MKJU0yGpqUa7d0g6Z1DTLqpHUo1JFExSI1BIhWtakUYPh3tK+ZCMIWHbyQA7FSZja0YzQxESELlt5KqIpBkm0IW32o18J1AJLWRophyse0n6EOKGfS/dy0CPHkOUnBGG3K44o1HFbpUg6YgZqmo332mDWY6mjIjDfuBR02AsubL8dhj3+n8hc4CHDEUzfByabxh0Mv6NXtzlx1Px7TxrBKUjVt5a044qmbECjC6iKMopZBC8cB402mCbB8nYb2Bpyb6jrqu/Ba8xCMw61LS2F3TuniHArmBXDU92f8nwBAraPJF1OEzM8VjKs5oHsvupHogT2Jibjda6+xYgm+Q1G/80ikGurgteXAFOF++bMLkG9vA278RVdPcZchCVzPWvgQp8r3NUSwatUqfPjDHy5bnslkIv38+hMJiUqQYABBKMWhyxfCGT1cuosHHuBIrxzbvZlQClovhZpabM3atirvHC4jM9agpLcNIBoB0H/He9Mh6rejYUdlbNh9yChCCyIt+hbckZYI2vyTc3l8SvNkytcB41EV2X4QamJotl5F4WSVFnXV9jiDYNRoRfRgaKq31IDNGSt7LfIZ/WgbEO4FcAIPopjDzDWPAHu9v+I5GGgc8dRNYL4Ux+sKz97AnOxaLI65tx/93C1SP6Tc3qXvkl92LjUe3/0kzFx1f6SdkAh8cw0AkC2MvCJ421aUtrbLSFSRmlSeHSE0KV/VegsAuOcbUqHXt6tPg6IniVk6dDPXqBa1NfeO44Aqo1kOH6UtbSg01mPYxJ0GrJF8bzqWD1VMmTIFL730EiZPjhZLLF68GPvuu++AHFNCohIkGAAc9vh3wNXArx9stEGa30nvpKhPDgBZ6VTXAOI4sqnvtk3h64EvBdc0JAnU7oXHQjE3AEOgTO8xS5ekYYt6qwmzZUqMgXC9bxVtYspOINtghOSAGrx0bzRAWhdoLZYmccq5XW+LKx2VGTCVQznVwnnqgDhhuw8nnYq4k+vPUcsAosXN2LIFTjaHJz90ble/2n7BAQ9eC9aQNaJ56jj4yH3zIz3duovFxYnl+xrRGCFN+v9qfUKPfu4WsGyYeiZ1DSYaBajroKgiB+r69tryVoUli/S7E4yDQuqwNMmyCY9g6hrnPLxOiiVwJqvtAKmjooqI6IKDSv3zZHECB02lQBwKx5E6vNLW9iFPQoY6LrvsMlxwwQUoFosQQuAvf/kLfv3rX+OGG27A//7v/w7IMSUkKkGCAYDW4gjG8Vzz5Zj+wk9MBCdiiAmYWTwv5uCoJr7GgNAWewNK52QNDpxBlELCBITibNtDKd60t0PSFHtde1AZghZP/QU+RK41dE5Xtg3SiFOm7wTnMhVJKYhTDM02rWo+oYhZxBvItIgJI2a67Uelz1UJtkAZAAJfNq8luQKOfu6WXk+V9RQHPXwdAi+Aj6JVleabNFdv468nXo1DlkjDYR21c7JpCMZxyJJvqbRZ0Rg5rjzhKvzh0Asw/YWfKG2SB9dYaMhIEWcMQWsr3Po6wE0h1ZCF15ZHqj6L4mbZCikoeqBWIYD2iLL1UjrSFGkqnEIoHlcpQKr0bxyAo37Xy/X7jAEn43DSLjh8wIckU5SC+z4KG7Zg359ejFRDHV7+7II+Od/VQCk156Mn2xjKOOussxAEAS6//HLk83mceuqpmDhxIr7//e/jM5/5zIAcU0Kihih2uep0EIdizTV3dOl99Z8+AQDAfIbS/Yv64MgSdIZDlnwLXLWh0A9x0wzVdh2HEpNbM3heyIHn2ozbc+ijlJZ95Ap5K9UWprG0EFYwbpq1aoLBvQAcctbvZNOmdNsW0ZptxLRHNpGydVM6bSNUs2Qe+KBU2RToyFpdQ8SFXQSe/Bx29E2RQJTCz+nYJM1qPqyPw0Qu0q75/HrgjbT6iKcQLXI4WFs9HfzoAvgFqVv764lX44AHr4WTkjqivoySBFZlHGccxAsidgKCc3B1Pg96+Do42TR4Y0NE7E8cCqeuXhlbFk3LI7ceRrhtg3s+mIomphrqzHGYqlKL1GtfKDetPaOi2h/9OrUmAXo5jW0DiBJuxmTDYppKgRVLEYF7f2JHT+cFQYBf/epXOOGEE3Duuedi48aN4Jxj5513HtDjSkjUIMbeP7gAr114i/l74hWngTMhb/A6t8sEavQFJyPHxIA8ABKEMF44bR6EjiQUPbilgnTMtnxspHO5jMAQnfriDEIFXsLoD5WpLzsFolyYnWwapa1tcLOZyIzeyWQi14KZ6Stjw0pRHFt7FPfwEZSZYzYaGBqaK4YkSZI7xyp119ouonujlaJNZDUpEqxkjkNGB6TzdEV7A4R6GurQMgPGeKWe/bt+32C7V7RPkUa8Dcl+/3cpXj2n94Xw3AvMvj7826vx1xOvxv6/+JoUaWtSbpERB2HUijMG1iZTdxlIewTbRdzuDOG15StGDKPXn19WQGAfp74uIu83BqvR5XEiXek60dvVxJqpJsb73HYR/vmF73dw1noXOzqJcl0XX/ziF/HPf/4TADBmzJgBPiKJhEQNUkz6xpkopSh2X3gugmKA1VffDuYxMF8+pDjvejdRoQgUZ/3RiTRBRwjUwOEwbiqswDlEqRi6Owd+qBtBSlakcS6XaauDTFamvgIffnsOQaFkBiUdUcmMHAavNQ+acuGmXfi5Aty6DJy6egC+IidhtIk60rzS0Q24Y81cg0IJ1HHgZNNmAGVFz7g7O27Y4kVfadRNSZG6SvsRR0YjNFhRWjRoTYqJJOkohyph159JRgbccHD0/YixpuAchCkPKOv47QFSR6Uq9UrTy6ulAAcb9vjuefKXEY340G+ugteag5vNwMmm8eLJ1/Z4+y+efC32/sEFMnXXUId9f3oxAoQDiE1G9Hllng8nLdsX6RYqehAPckUw3zeVd/n1m0LBuiIrbp26xh0HzA9MJCyazuXmNeYH4ACIFf3isahRGdnW0VgVkSIOjVTuhbYLHKxoF1kM7Sq3oYpDDjkEL774YpmwfCCRkKhego4SrVv4y17ZXlAIIBiFn/Ox9oa7AADrvyubo46+4GRsuOnXNW9r9AUnAwD84uBMUexIOGTJt6Tmxsy8c+BsFFyHGssA4YeaDlHIAW4KTrZBkSVPRXiknYEmItwLUNrSBsE5vNa8HFBU9RJxZFm3W5eJpCJIKgUSeCaaA8AQJ+LIyBf3ijK64Aeyk70W9GoSVdcgU4x+YGRJNOWG0SfOQNw04KZkFZ8StNuCbw274s8WusfTicz3QVgYMeNMGm1qwsWsVJyt4TKfy4kOnPa+9e+cDR0Ctdt1Z8NpqgPzA7x6zncw9Q5ZPcb8wOjDeoLmtYsQvLcWT1pR8f3+71I4FinScOvS5hrSZFxHp9x6ZU2QL4KmXRS3tqF11TpQhyK/KQcnFTbI1eSHUAqqvs8Aoc2Bfs0Qa0v/ZqfmJAFnIA6BYCLyvzxGdT0osmR/Hr0dCsDPlSC4MJmAgYjoENILZptk6EaiAOD888/HV77yFbz99ts44IAD0NDQEHl9//337/djSkhUL2HtDXdh3FdOxS5XnY63r+uZZ8jEK04DYxyCEXAmMO4rp2L9d+/GThd+Rj3cuxZJEkzIKJbHwDyO4JElPTq+BN3DwY8uALcG69KWNgDAszMuxbSVt0qyodJyLNduDfwlU4FE6xqMcaHWlQQF2WPMa5NNWrlFPPTsnSrPHABhxEb5RUnzwQJoShoYCs7h1tdBBJ5JlemqNc4YHFW1BAAs14YgVwy3rSJEkfSYVSWno0g2yoTqOorghTot7gfwWnMmHWlHwOwWIPb7dTSqknWDhk2k7GV6O2yQaqNsOGlJaHXq/+9nLsQ+t10EP1csi7J1FTNXPwRkGyJVih/+7dVgVpsVynQExzXRRI2gWJLGln4AOqIRhQ1b4OeKcLNpFDe1ori1gFTWRSrrgjgEzFPpXJ+DOkxGLK0AUMSl3DwLY95gMVcOSYQk0XLTqcj6miTp99r/62uj1FoA8+2ejAKCMTCHoD+xo6fzAODTn5beZRdeeKFZRgiBEAKEEONg3p9ISFQ3sdOFn8F7P/iN+XvUFz4FlpZpip5AR7QAgDgEFLJzxU4XfsYQIcEFms78BAgl2Pbz+zvc3qgvfEql8eQ2EwI1MDh0+UIIhxqDQJNyUoP7ioO+iGP/fqcxv7QjRtKNe5MU347UWpI8fCUmFpyjuKkVXlvOPOilqWAqTI0pHYpOkwXFEsTGzeZ34kjxrjkm6oDlC+Y92hGcOBSOEvl6W9vldmyRvA94CNMkbl0G8KOtXeLpQVu8HqZ0LANMlTbU0S5JcpQ+xQsipMnepj53lUCccp2UJnp6OXEoXBVVGcyoNDAGBRlhfOPyn3Vrm81rF6kCB4blY2cCAPb/xdfAOYfHYu7eaRVldLiKgAaR74L5AVzVNqW0tV2SqoYsWFHr24j5DE4a5nnlF4NIdEpGkVTDYX09OVHiwzxWRooBHdkSketNXwOV1qXW9REUAzNxJQ7g1rmJJGKAsGrVqoE+hDIkJKobGPeVU0GyboRIbb7td9j54lMQFAPsfPEpXUq32dAzsbA6Cir0HJgHBAcH8zlQw428+bbfYeS5J5ntDj97bqfEK0HfwCYkWqdjRwp0+4wjnroJmVHDAQDetjapQ1IDjlPIg/sB/FwBfq6I+p1HglBqhLl6PzSVkh3qmexI7+48EsShkfJ/r5gzgxFNu2FLjWwaIvDgteXKfJbs3nOcMbNfwbiZ31MWRp6CQincbipljC+NV48VLYIRy9NQIM/D9i325wusaEeclHHOTXTEhtFSQRHKePpGpfGclAuhnLGHwsydewz/+J+bzN8TrzgNfGS2jEBp3ZRgvENyNf2FnyCgFLSuAXSErHz64K++Di9fiIjtw0pGH77S4Gmy6zbURdqqcCrTr76q/LQRFAM4qfD7lak5AuExMMhIm4z+CElwUm6ou4pZelBHRLYTRzxyZa/DGYejyJPUBGbAfR/ZkTIlCMiq5oEiUEkkCoNKC6WRkKgaMP7yz4H5DBtu+rXUF2V1E8xo6HDDTb/GqC98Cm6di4lXnAaadrpcQQfYzsnacVnArVPlxVyAUoJSqwe/GKD+0ycgf8/DHW6PMw7m6QdfZQfqBH0HbWkQqH5j+Q1bwIp+xVQSoBy2Ax/cU53tOYefKyKlzBWDgkyRsKJndFBMRZOAsDks5xyUSl8dTYiMRkhph/QMPoUseCqQjtSKxNjVSADgwIVwQmJj65XCazYAt1IulSwSNGGKHI9NmHTUTP0d5GUvPZ1aE4ybfmVuNl3WZ417PoTjwKnweJNkz2oDoqINdlTKtPtQlY1DAZOvPQurr74dgJQWTL72rMjr77vh81J0rTRB1XDUMz8Ep1RdL9tQTx0c9Jfr4MGqkLO1R9pbCYDwAwiLJIXXY8qkZGFtx22oQ7qhiFJrCZwJUIcYzZGTdhRBY2CpMCrEfA5a9MGtVJqcXAoV0SImWq+3SSiB4AKEEpPak8cXdffX96KTTYOmUyoKma1agbfLVad3/sX0InR0rKfbGMr4xS86lsqcfnr/fidAQqI6xaRvnGmKYkdfcHIoRIR8II2+4GRsuuW3Zv2gGMBJO3K24nU9P2vPFPQDRebjte6Aw61zwXwuZ0UAMnOP69TziTpErU/RdOYn0HrHA10+tgS1YZ/bLoJgHP+64Ic44MFrwR2KoOAZp2U/V4Kf80HTDt686ueR99WPGw2eTaOwYYtJvdmDFiAjLzqVl1u/GUDUx0c43IjKA88H9wOUtrSrwSFM6/n5oiRfup+YL4mb7h+n+4QF1sCoBx03mzFNaAGYKJJgskaPKmKiozsAQHlIhHQVlB2J02TGjqppCC8Uv9ukjFtEUC4LTUq5IWgMNJ0ypM6JiYftKBog4xQ07cJJuQPW4qMrYH75c0YTKkBGpjyH1KTV9FpzpoFvZuQweO9tAIBIZIb7AZgXmImAo/oeap0aALS9vRWNu4wATblINWTNck2ac+s2qe0wQ5ZonatSufoac83zj/mWFYfPwIvCpPoEF2CcgTBijkVHizgToeZJSRo4Qm8ofUzGydyR/encbBqZEcOqOrID6LH2NUHXcdFFF0X+9n0f+Xwe6XQa9fX1A0KihjYt7QdQh8gfStTsiFivVYoiKBG3CvvqyrhaMPqCky3BpCRJ+uFhSBMXCAqBCXlrZOYe18FnoCB6lqcsDna6cGDcXXckfPBX0tNHd5hnfmC0JJyJilFKwWTUSf9oywE7WsP9AL7SK3mtOUOEmDXTF5wbUgUobxutV9HbUekVpgZNrV+xBxdbZK2PTVoolEwky45QaI2WjlBw+3r2om08uPUDRO8nmyBpewMbVPfL41z6BtltPygFMeeMdWhVENdTaWgNz4zX7q7hmx5YcCbKUkw7X3wKACk96NK2VKWmviaCQglufUiCIho5Sy+ko1tOSpLPYmvJkGFNrrgfqBQzQ3FrAaXWUoQcAYqspaNpK+6xyPenJ5cy2sTNMuZzE4XqamVlRBsXK3AYLCCUyGu7Rz/9K4bvbWzZsiXy097ejtdeew1HHnkkfv3r7kloeoohS6JuuOEGEEIwb948s0wIgfnz52PChAmoq6vD9OnT8eqrr/ZoPzqVlhqWRirrwknJh7O2MqAOxchzTzLrt9/1IIpbivDbfXg5D4IJjPrCp7q0T78YwC8GhiyFg5F8WMnKFWrIkZNyIpqCOLb87F4AMA86rgTqCZHqfex50xdDkavq9K59mwLVqR4IH9B73vRFvP+WLwMAHBXd0T+lrW0obmpFUCwhyBXhteWRW7cJ7WvfQ35DK0pb28CKvin55h4z/lO6Si802CzBzxVQ2tqmtrsNxU1t8lrwA7MvvzUvo09q/UAROUB6+wRFD6Ut7ShtaQ8/lyZhOv1W9ODni+a9WpRum3TqwdqOJNkDmX0e9H7MAB7z/TGVf4oAyn350l3a6HfCaI0mioKHP2Z7VkpRu2QPdgSFoIyQb7jp19j54lPAfI61N9xVc9SEK6IcFEvw2vIovLfVpJO5rys0JXliPoeX883zyWsron1dK1rf3gbBBNrfaUNpq7xOvLY8Slva5T78AKXWkrJx4QgKgSmaAUIS4+d82HYE3GPmRzA5mQz0c1It93O+2U5I1sOolP05bfIHIFKJqScUgwkkEi3r/s/2hj333BPf+ta3yqJU/YUhmc5buXIlfvrTn5Z5QixcuBDf+973cMcdd2CvvfbCddddh+bmZrz22mtobGzs1r78ds/MjjS00SVxCIJCAOIQDDvtRLTf9SAAIH/Pw+AnHY+6kdlKm6yKTbf8FuO+cqrq98TMMhsyWhXe+PKm6HzGlLv798jMPQ6cCRAqo2U69J2g9yDJgY9Ug+xP5+cKKpXEyqI8GjTlYv9ffA2OmvELzpVZpiTspa3t4Fw2Ui1s3QKvNQ8AZqbPir5J6RBGADAzCKQasiqVKNOHQcE3Ql0AoGndrNWLRGxk1Z5nolzEcUw1FQBQLVDXfj0OBRRx0+vZwmINPbDZs30KVw7EnjJLdMKoGgUi2i4NxkJypCNf8f3E/yacgyJVZtoYT1Vqc8h0UwPi7UMGIyp50+104WcggEgFcWfY7/8uhRgxDNz3kaqvQ2bEMARFD21vbTCaO30N23pQP+ejbkw9Sq0l5DcWQNPSBsDL+cC7uUhBAvcDeIocgRI1KdSkJxR9Cyu65jgEzAuvG1s7pf/WaUFqZQrC5yQHrxAv0KSdMBJJmQvGIejgikIl6BiO4+Cdd94ZkH0PORLV3t6Oz372s/jZz36G6667ziwXQuDmm2/GlVdeiblz5wIA7rzzTowdOxZ33303zjvvvC7tp+F/TkGD46KUdZUGSab0NIHa6cLPgKZohNDYRKp47yNwTzsxUqJbC7ShprYmiEOTqtEXnCyjUIzC91in4nIAcFIOOLONCEmij+ojMD+A4/lh5Eml1wLmGW3G+Ms/h/8s/CXef8uXwdMpEGVoKVhIRBzrby0iD4oBCCXS14lJAhUUFOlIO+AeQ6lV9SWrK8lZOhPINKXBfG7S0rbjN1RvYKmVKgB5GDdpbaqoSZuTcsERGB2WTuHpYTUoeEZjwlQKx/au0noo5lvO4yqCFE3j+IDSZ+m0nSZ0OioCRCMIGvF7Tq/r1LtwsmnT4sZ+TQ/KbkMWqYY6+XowNAsxukKe9v3pxfL6rK+Tou5sBq4qYvBb85C96ija121DfmPeRMAplZNIv90HZwJ1I7NSNuBZRIgLFDbmUTemXl2XJWNdINPFwqyr/ycRIiT98mziDUiZhU2MTGEDE3Bi/k1ym9bfehJspbb0ZECngBmAzCCL2iTVecDvf//7yN9CCKxbtw4/+tGPcMQRRwzIMdVEojQp6Qpuu+22PmkMeMEFF+CjH/0oZs6cGSFRq1atwvr169HS0mKWZTIZTJs2Dc8880yXSZRgAnDkbEWn1XSFHBCSmeFny3OjZ0c2KdGESq8TR9OZnwAgyc2Wn92LnS78DJwUxfrv3o3Nt/2uw+OLR6hqAVH6LkBqrLprw7AjQn+HHdlDTL3jcpQUsQkKPpyUFJLrCIqe7Xoq1Rv/DjWp0F47UoAuU2JezkeptYSUqgxNNaQsk0mtw+Mgliu9k3IMuQqKAdLDUrJaKRZ50QQpFSEwWr+kBhwW+k3Z5IMhMO1VzEDEpVCbIiRCenAynzX+t2WgqQXvcnkp2sNPp+DikaZYqTtJK3dsS3APSDKmx1PdLsQmd1pkHBRLUtRfP7QHnc6wx3fPA0u5yjpA+oo5ynS18J40xiSUori1gPZ3ZDrO931kR2bltapsV5jPkN8oI6TMZ8g0ZUAcgtK2EtrfaTeR72JryVTe6WeRYASgJEKeNDTRstfXFYb6mQsATpqaaJVg4XY4E9EsgjUxpQiJlEkpQ7aNgR+YScRgQeJYDpx44omRvwkh2GmnnXDsscfiu9/97oAcU00k6sEHH8TJJ5+MurraNAJ333032tvbe51E/eY3v8ELL7yAlStXlr22fv16AMDYsWMjy8eOHYvVq1dX3WapVELJanba2tpqfpeDhFXV4XFTRmvW4WG+nXuyWq7h1I8hd/fvUf/pE+Q6dS5GfeFTEWKkCRRnAo6KAnRl9tgdeDnfVOkNtsaqgxmjLzgZPhcdRuz2/sEFCBwKVvRNex2pFwqiD26HwMt5ZrYOaBG1b8TeOnolZ/UMXs5DUAhAKVGzeEcVGpSMvs23DAHdOlfqPWhY1cQ8Bq/dNwORm3WNPw9xCDylJXHSjhxE1HsEF6BpJ6zKq0tbInGhohSSvAQF30QpZGQpPD92KTlXTumEygE7FN1LvZPfmlNVX8qqQZHLoOBFtmVHwbjR0wCphmzEz0inbRylDTMu7pQiHo0CAK81L1NZMVH19gg/5yGg4Rfltebg50qgDjWaTgAobCmC+QyEhq7i+Y15U43svevBVVF7rvRKxCGS2DsE+U0FOCkHNG3ZI4AaUk8VMQojU7FUq7U+s+4dMym0lsW3wTzAraNmfZ36k5F5bhl0Rp+Jg45EOU7EL6272xjK4INw3Ko5nfeDH/ygZlJ07733dvuAqmHNmjW46KKLsGzZMmSz1R9shMRCucoOvhpuuOEGXHPNNRVfs8PA8saMltHq5XoGTNQNzoq6jFvNnKwHjzlO5V3ipCgyTf3vRcM8Dn7sDNAnHu/3fQ8ljDz3JCBN4aoIUMOpH4ObdVHcWjS2EuO+ciqKwzNh1ZBKSXg530SCdKl2pdk2ZxzED+C1Fow+RJMcGWWSDaedlAMKWaWpBwPOZRRKkzKj83CI0hnJ9Z2Ug5KKAmgiFhQDU5ggGEfgUBNtdVLlM1ZZih4SHq2xoqAIqw45HMexRMJhio55gYpaBGHftWxGicYZmFXVpyNLWshs90DTgx6hFMIPlDiemeIKarWloSk5QwlyBbPMa8uZ5U42bfRjhFNQpuwe0jIaQ9LbN4nSZAcAchvycFLUeNFpLahODXvtPtw6F5mmjIlKEYcgOzKL1jVtSDdQJQbn8IsB6kZmUZd2UNhSNB5NKZWeZT4HVwSMUpmaYz4DVZEhLZtIpeXfvi+Uk7+UVAgmn506pRc+g6N/a2i/qHg1oPafCv2jeFn0sjPUnfnpLp3zBN3Htddei0svvRT19fWR5YVCAd/+9rdx9dVX9/sx1RTbe/LJJzFq1KiaN7p48WJMnDix2wdVCX/961+xYcMGHHDAAXBdF67rYsWKFfjBD34A13VNBEpHpDQ2bNhQFp2yccUVV2Dbtm3mZ82aNQAqz2yclBPRWgw77UQrJB29OTNzj0Pu7t+r9IwcQBtO/VjZ/utGZuGknS6XIncX2oCOeQy0A3KZAKZXoR5oRn3hU3Cz0i0505Qx6zGfo7StJEu2PW6IT6m1JKNIqpLJ6Ee8sKxfw88V4eU8eO0+2t/NoW1du1rfM2XkzJczaC3a1SRNOzkDMjLq5Xz4Od8QKG69riuhdHSLeUySNVUWrqucAjURkFEF33JsDhAUfPO6XMbCaI92l+bClJrryJXt1M7VMj9fMFWLxvbAtyN5UcG7jo55OQ/FrQX4OS/iIm1sDWLnVxNAk7ZRtgh6v0AYmaIpd9BFIXoTI889CcPPnoudLvyMqQJue6cdpdYSClvk55Yp3gBbV7eaayzTlDYTPlmVJ8mMtH8Jn4vphjSoQ+REoBCYZ6T97DRpQDURiEeeKFUaVJWq1n9Lzzz5Xet+dramzYb9d1CQ96C+jqmaZFTy2NLH8eo536npfNJ0/6TIkuo84JprrkF7e3vZ8nw+XzUY0teo6YxOmzYNrls7Mz/yyCORyWQ6X7ELmDFjBv72t7/hpZdeMj8HHnggPvvZz+Kll17C+973PowbNw7Lly837/E8DytWrMDhhx9edbuZTAZNTU2RH6DcN0bfdBrDz55rZjdu1oWTdgzxSmVdlO5fhPpPnxC5wXN3h6K4bT+/X6VSZM5fC8r7EnqAZB5HwWPIBYO/8mig4MwJtXXaTsLuQZi1Ki/f+8FvzOxY+3sFxQClbaVI+bb0/WIqnRqm+Ly2oiFEWiQeFGQVU2FLUZGzsGxbEzutk9KEhvmqt6Iq69ZEiVtRUB2d0kROEzCtqQJCzUm4XQ4v58HPeREX/aDgm89h/q9QDKE9qpgpT+emilFHtmxH92jZOZMpp2JgCKkhjipFqT8z85l5L/d9BLmCNI/MFSSJYzGvKi7b6TA/6mDupCVRTjc1QHhFtGx9uusX0CDHtp/fLwm0uo70eWU+R3FL0VTgCcaR35RH27p2OGmpsctvLJjzzZlA27p2MI+bNDZX119+Yz6svItdHyT2PAVgIomcC/OjJyCcS2uX+HvsyBK3SLteX+9fpxi1vkr7SsX9tfQ93BXkfto/2tKERFXPLL388stdCvT0JrpVncc5x+uvv44NGzaU5SiPPvroXjmwOBobGzF16tTIsoaGBowePdosnzdvHhYsWIA999wTe+65JxYsWID6+nqcemrXozwdCfh0dRQgHw5u1g0HOc6BCnlnwYRxFrf71wXFAG7WxS5Xnd7nDricCbCAg4kABcbhcYGGPt3j0AVbvAxtJx2P9LAU4MiZrB4k3CyJRKIAu+dhaHsRn3nHU7qANEUMlJbESTsmxSFd77lJpehZv9Q+cRURI2BMvaa27aQdEErk4ONxc30BMAMlTTtGlKsjR1rrF2quZHosPcyxiCCHWyeUfoUjYNy48+v0iV35JBSxDIpe2NYDHLBOg/FsskTsgCL8KgWq03hArPQ9TQEV9dPRVSflqJ59ISFjkFWLjhJQM9UXD1BieHW/6lJ8zjhSDVnTqkSUtq+oVNw3ziYaFPJa3/jaZmRHZs35DgoB2ta1m2sl1ZCWJDsVbsdusWKngwkNJRDhZCC85mzY14Em+bIRe7RZtE47at88J0UNCatobxGzRrDB9PbU9SaPvYgP/urrePmzCzo9n0k6r+8xcuRIEEJACMFee+0VIVKMMbS3t+MLX/jCgBxbl0nUc889h1NPPRWrV6+GEFEWTwgBG0BflcsvvxyFQgHnn38+tmzZgkMOOQTLli3rlkeUdM0l5sGgc+d6IHV07l7f5A5F8d5HzPuzJx1v2hjYhm+AnAVm5h4HpipYdCSrryEJlIDHBRxCACSdyDtC8d5HwD4+B/5Di42hqq6US7d7kUrMTbf8VlVXyu/RSTkInCCSMpPkWz7MtSWFrrYrbSuZB3i6IWUMVaU1grIt8JgRgKeHpaxBIxwEtX2AJkxANKqqRd9w5DbRIDUqOtIWOpRLYbomj6msa4onhOXboyGjsNYgl9Yl7EGY0kk7UnXCwkFWi9G1aFn3ONMRBn3v6PfpZTqtaY7BkZFglmbG4VwXUhBKAC98n+0TpasNqfYJ4vK8u9lMaN65dQNmtN6Dx/fcfgbLYaedCJ4KbQEA+Z0VtxTh5X20BxzD8j7qRmSMybBMJ+vUXJjCIw5B2qpc1t8jEEaX9KRAG1xW0gbqSKqGbYbJmIwy0nQYMQQPdXiSaEV1UMakkws4upF7hcgTwIGYBlCT/8EE7Tre020MRdx8880QQuDss8/GNddcg+HDh5vX0uk0dtttNxx22GEDcmxdJlFf+MIXcOCBB+LRRx/F+PHjOxRt9zWeeuqpyN+EEMyfPx/z58/vle0TRwqKNUmKRxJa73gATWd+AtzjoGnZk455DLm7f29m64AcYPRsT0ejZGWI7aDb94SGPvE4vOnHAgAcAkWkEnQEnb7Ss/f6T58gXbtbXaQaUhEi5WZd1I+pQ35jwZAYL6dEucZ9WaB47+LIPvxigNy7OQAwpeGANDGU7VxCksRst+ZCYITguhrNWBqo1IWefUsRObVm+cIcl6P8zsLKKWEGJq70WMQhcFSaj0UqC4Uy7LRIjx5A09H0jQ1NkuyIhVAieXvbpn+kWqy3TSGX6b91n8rStrDSVp8fKReWETAnDXDKTf884jgRETGhFG698kjKFeS+tmwBTQ85S71OoYkOdQgCTxh9FADUOQRMyOvMSTlw0qHFgG4zowdk5snIKPND5yabKOvUnSZFnHG4addcG/p7ijuIx1PDJs3sBZHt6nWlrYaKOoHH0tMczOJE8W2HpM9qdlwsYdI3zkR+Y76ipYyusN5W4/nuKXZkn6gzzjgDADBlyhQcfvjhSKnCkMGALj8Z/vOf/+Dee+/FHnvs0RfHM2iQrk8h5bqd+jW13vGAiVLolEv9p0+QszblnxMXL2bmHgekdAqBGMI18YrTUGwtYdMtv0Vx+rFwCJB68gnzvty0Y1BgAmOefqrbnyv7VLi9JJXXOdjiZQDkd5ZqSINDDhqFLUU0jK2P2B6sW/hL7Hbd2ca5WXDZTNVJU2N4KZYtj2yfs7ASSjApRgdg9CeaGMVn2DZBAuTgAcD0RjQd7GMPTb0+0QJrpXtxs650blbpSEAONJqk2YSGW3ouO36q04taCGwPWjLlpgY6K50ojykUvfPIIBpWNNopHupQE/PSBE+ndgBJpLhFEHQETK/vNEQfe/FzJDhH4AcmEuEOsohEb0CnP/MbC2CBTO3XpSVZIkwgpb4frooYNAnW6VINQ951oYFjpdQsgmxXj9qpPZP+jaW/9brRfoqS6FErDRg15hRgTIDwkKzp93MuDMES1v0R7kuRKEqM1kswjlTWRSrrYqcLP2MsaHTXCEZDC4cE/YNp06aZ3wuFAnw/aoarNc39iS6TqEMOOQSvv/76dk+itv7wLnjDOk8D1n/6BPhpBw6LPgDk4BkSK2LN4gCAUAHCOPycbMPhpBwl3vXhzGlBWqUL/WOORYEJ83dPCFSC7kOnsqR4WUYW/ZwfcakHgPymAlrfbouUjmvECZSNupFZ5DfmI7NzvyhF4X6JgZKQTOj/OQCiSYQ1KJgZfQXNifYJ0wRHp910pFWn04yQ3opc2QRKWPuFOS+WTsHngDXA2PdA2iHG88f2WbOjUNwaCLWGyhxLTFcFFpaqy21x41cFqGiiIm6AbLOjvac0edUeVYD0wjLfmanmC3D0c7fgD4deUPU7HErQurnNBR8OIRjmhpEmJ+2oyFJY5OCkacQvTE8OAJgCGaA8oq6/v3h6j3u6gbDW2Alw8AiJ1+/XeihdjUdSbmhzUYHAxAmUiTpR7SnFjLicGoKuJiGWbqrUWoiQPADY7bqzkVcTHL19wvqHRBFaPinqzjaGMvL5PC6//HL89re/xaZNm8peHwg5UU0k6pVXXjG/f/nLX8ZXvvIVrF+/Hh/4wAfKwmrxfnbbO/L3PBypwrMHOk2g5GuhxgrQM0EZ4mYNYYqGq/RIWj3cqcfBBEeaElhZlAT9CGdOC4TS7ehUlo6k2AQKAHLv5lBQKTxHEFCifY0qP7xKrSW0rWtHuiFlNFMmmuQxFIuB0bClhRrkEBIT+3/78tCeZdq/TA8UxCGAD6O1khohGlohKBG3FqhrA854ubhO/1EaRp8YQm2V1rAYwqcGNZqmEFkXgkltVaQSL+bhE0+fG31MBYF+mabQgSmRN07XyhVbWyjQVApUtfrgyuhUbj8UnmvDT3lOh2YqpBKoQ1HYWoJDCJqU4WqEiHMp1pfFABIylcZqPg92BaopvKChSJzQUKMUSePF2rLYgnJjgaCuJQ19fdkFHpFIlKWbCs9BeZ892+ut1GrbX8h1tWmoTqtv+/n9yLe3AQfvWdM56Ql2ZE2UxmWXXYYnn3wSP/7xj3H66afjlltuwdq1a/GTn/wE3/rWtwbkmGoiUR/60IdACIkIyc8++2zzu35toIXlAwWdurM1A0aLoiISjqNm4ykn8qDK37sIecgQsZOWPlShJ490g84+sgSkpRnpIGFR/Q1nTgtSDWnpR+RZTsqUlhGjpjM/gdZ384b0pJ6URqbSpjW6TeJIk9UtGwsoeAzpNg+UEGSGp41oWxM2hxBVEACkaYx4WI2kNWH3S+r6EQJQUQSPCVPRp0XCsmItfKhKbVTYSobGts98bkTygPTHsdNomjzp4wornWDWp3bEwrwvahRqR8DiqTwgOsjq30PX6XL9lf4sgHIzdyhoSjYi1vYG2vJADzKEUkAJz5nngzoOuB9g2spbseKgL2IoQ0fP2wOOOiUQNxFyO4Jnpb3kOeTmf13JWMknz45K2dFRQH13TjxyKECoNGmNkym7CtqGfV1osq6Juw0ecyE3qWgeRk6jLWi07YcwlhnEIaaZvN0qS8s4EvQfHn74YfziF7/A9OnTcfbZZ+Ooo47CHnvsgcmTJ+NXv/oVPvvZz/b7MdVEolatWtXXxzFk4cxpAXMo3KyuMKLGCZo6BEXGkQU1lUFxNJz6MVm5knJUywSOlKrOAuQDpuHUj8Grc8Hatj9txmAHW7wMdaedaOlAaGRwAOTD1Mt5KOR8+JzDISSiPXPmtIAtXia1cAA8JsBKviHYdelw8GCeToFR+DyA5BrqNUWkHCIMsXJEmIIx/lBcgAmZAvY5BzyAODqdpnUvYTpNR6CoOg6qSJNdlarTLFrfF08L2KLhiI5FWYDo6iztIRSp7NPXuscjkSt5tqOl7Xpg1WaeNpGqFHnQbiOCcQiTzktBMIbAmvARR54TosiS3dJY9wKEB9Pfb6gie9LxYJyj/T3Z584hlq7OFMPIeI1g0hKFOg7i+iHH0eeFGjsM6pBQ7wZq0qh2dbKOtmtyrbVZOoqprw9TVQmYaxSIaq0iOrmY5WElUbqOHgHyfmFMmOiUSS8ze19hOnn11beXnUtdbNJfINQBoT1s+9LD9w80Nm/ejClTpgCQ+qfNmzcDkN6UX/ziwExuaortTZ482fysXr0aEydOjCybPHkyJk6c2GGPuu0ZxCEmBVOtJ52pMlJmixr2TWtSHjpkHYkwJHYEAwXuSXKcHZE1g4VfDOC1+xh+9lz4xQClVg/51hKYCMX7qY/PARBNA5kUrhCScFlpKE1USm2eHFgUgbKCNuZvj4vwR2lX/BIDs6KVkkzJ34UamLTYXAvWtQGmXEeTGG1GGY142c7gGnqgEWrmHhRDPy3pvRP1/AFkhNVX65m2NYpg6d9NhMkyJo1HIyLHwUWEvIV6mMqeQYJz2VxXsSxKKWg6ZSr1dMrPmOUqY07uB5h6x+VVj2Owg/nSoNTTwntCDFmKur6rikw3TGWG8gRhIqVaN1XtuRcUpLWHbhwdPgd5JH2rW8XYTviaKNtGs+H6wlwzNuxldkWgYMKI20VMf1e+7aiTeX/Yz9QE6vTOzxDG+973Prz55psAgH333Re//a2smnz44YcxYsSIATmmLidIjznmGMP+bGzbtg3HHHNMrxzUUIKu3tIPmPggk42JH/U65SXfoecJoDQ3SkvjF5XZoUiI1EAgf8/DxjnZV/3suMdkFd6mAlrXtmFbW0ig3ONnY+S5J8F/SFoZ6Ae2FukCISkKCgE8n8HnIcnQxEgTJkBaUmjI5WF0qsAEcgFDgXEUmPQCk5EquX78WtPHUdhSVJ+LQXtMAdFZvC0M14TLvsZ13z4dQZDrRgdJvY4ezHREQOsAzUBnXKb1hMSKCsTTOTT0b9O/6+OtZOIIQKUxAwTauiCmddKaqND8U7qos6JnWsZ4rTlwz8cuV52O8Zd/rmwfgxnu8bOly7vPVMo5/H6ZiNsLaJG9K9O+ad0sOEz16etBG64CcsKhr3GdEtNpQT3JFOr+qdRkWL+mUcn6RV4X1cmT/tteXm0SKljojm6sGxxqNFBO2omk8AYUlPbOzxDGWWedhZdffhmAbNn24x//GJlMBhdffDEuu+yyATmmLsemq9mub9q0CQ0NO2bRvF15BCDyoNGoJCzW+gvtg+Nm3UgqQ2/DhKATX6cBQ1AIwBtCt2XjIP7QYhSmycmD/oqDR5YA2vbi2BmghMA/5liAUnAhQAkxPl1cESWHAFwIOfNniESfKiH+Wpxsye3DVHVq4TChwgjkuRCRKqtKuhabRJnScISkxkSiTBUTRVn0hwujTaGoNKnQFVjlPdQ04inUzkApiVgxmMhFQZGDbBrMD0B9H6lUXbgfzgHOpbu5akoMKIE5pREDxq62BxlIOHNaAIfCLzG0B6HWDgB8zuU1KISxrOBMwDWC/GgjX53qA2Qxg92goaNovL0OADhOmEqMNqkmZeTJjo4BUb2UWSemlbP/t2GT7I7sCXRz7gSDBxdffLH5/ZhjjsG//vUvPP/889h9993xwQ9+cECOqWYSNXfuXABSRH7mmWdGeuMxxvDKK6902KNue0bwyBKTurEhmIiINqWYlkX67Nnr2k1fgTA6FRQC8CQKNeDQQlMdSfE5hzftGDAhzQnTKQfO8bMRPLIE+U158GNnqJSa1Ek5QqDAuCE2AFTUCCpFx9GgBjYZUZIkyCEw6RcgFJpXPEYBE4XS+2EBByXE9NEzkdBAwMv7SDGpx2MeooRKCX21P4+tnZHrhARKl40DUQKkJwgm2sDDij17QGS8PL3CGCJRDqB6iXbcT4hzYUUTlDt6UTu4hxEz7gVgqQBOypV6KM8HcRwIat2fqgBZcI5ApQAzTZmye3gwQ5//du0J5VBTpKCvLSbMRwUQE4bzUKMpmDDPI8o0wQGYjmp5dlQyOsHUzvZOmkIwAsGYJVuIptSIQ01UKy5Ql8cUreIz+/A1YbfWc6LkKX69RExfVSQ105Tu81ZcXQFxHJN+7sk2hip830dLSwt+8pOfYK+99gIA7Lrrrth1110H9LhqJlHaZl0IgcbGRtTVhbO3dDqNQw89FOeee27vH+EQgU7dANKYsWIYWvkEBQCcuceVzXK04FJXRdkPLI+LiFg5Qf9Ck2GTchAiojkCgILHkFXfcfuWonldjyE6PVdgwkSKQgIlTDRKa50kSGQ/YaQpTMPov+OvxeH5DE6gBhFFxApMwGEcI9IOHKpNMUOBra6y0wOcY5WV26/pCJT9P2DbMDBVQQXl1h96PVWzMgBQRtziiJa/h9EF7aNFKwjgARgrB+YH4K05pBpk9ZXupcc5B6XSR8pJuyolJH+clAuakv0Ox1/+Oaxb+MuKxzZY4MxpAWMCBSUJqKtQ4KLJt3mPLnZwiJk8RNK4KmVsvMIAQyq1OF3/Llg0ZWdX72lyVt5DT+D/s/fm8XIVZfr4U1V9zu2bGxKCYd/D4siigmwBsiIBFFQyCA6CooAbDigCXx0VGGVREBFEUWZURGXkx+YoIwgSCCTsm4AoSIAhw2ogJOTm3tvdVef3R5236q06p/vezt0l7+fTn+4+fU6dOkufeup9n/d5BZHXdQapKizpwIM7yh71cgihx5JCvmG7wrVFEwGrVO6PRSVyTAEoAEPDaRrHnKgkSfD444+PapWUMhswiPrZz36GLMuQZRm+//3vr1E9ureK9V33e1QOPtB9LxsA+q77PQCbLeNGyKjkhVWA9tyXtTZ6pm+8GXq/97qairpuAo+QzsJrRCCIwnYElpSwIKqT3RP00QIpz3dKm3hd+HY0+PH9cJN5yJD6WDPWE0Y1FGl535s1dKyTBsWHM22gAUciJmFOwBc95oKVAJMrqPlSNa4v8Po9cdmX2GPhhRB9bTygPGTDB0lSvg7D63wAt1laQgpU0iRv00D31iDTvNaltMclUwuWCEAJJaGqKXRvLdBRGtO233uhASyvNdx95z2befYm7L1kNc3s92Siyr2WBDY8V1PrcHIAeM6cz34LAbDIOZ5kXIwYCCVifJv+XtJKQIF5rFTooeT8OSD0TsUZo3b/urCMb59MTLHWxp597GMfw09+8pNR04Qqs7Y4UVmW4corr8RXv/rVtSBqAMZTe5s9bHnRYkqBNzpzywmMreVDjb6RXABxSLhxANU7e24ujloEvkoIdKoQIFnwYwe10LMk2GfudaJ9NgdaBPDqET+FQjnWE2VcWz3aINUZMlXMZqNQs0rTIG2dvAV2PR+y5iFsbjY13gJQ8gRlSvgSNzzsDa/vFAtBAiHRvMCxgkESSRFIJQoDb6OnjkpnAiFlzssqF9TMtIGpNyDzxyUpmwspkHT5ANif3rMv3vXgosL2o2nk2VzVCIE7EPLqlLByLCSNkcBnBwO5llLOa7P3f+4dzflVlOVn8qQH02e5f46Lx+8PCq1J32aZ8bAg8fkAy6UiwMY9Ye6Y6b6RPnRXVO4PpTPcecjDjB2TOgq/jbpJOQSeqPFNLK/VavjP//xP3HLLLdhtt90KPOzvfve7I96ntkCUlBLbbbcdXnvtNWy33fArtI5na9xwEwBAzNt/wLPVvut+7woU83YkgOpwdHKttWVpoqAbJvA6xZe2Ny/wrBkxPJUEgjMkObncrhPynKwsJ9gyRN89qCIuFQ/rla1PHifbh5xjlaetKwMnDKozAv35PhIEnB87uOTZS2zw4ZwVysai8I9KpSugLPNBk5sn6Hu+DeD5N/H6caKG0RmSKCTuPVHFwcKqZXuTqqgALaTViiK+VKat4Kb1UNk0fSkl0nUmAFgNU9N4x49Owl8+cxFSKbBkz5nY5t47CvseLZNCoIcEUPMQnPVEhutxjyqfsIXCrsatA4DdV97bSWFiKYQrFdP3Zs3dD8E+uYyA9OE9KmPcjKBelrzgjteR4YuJPvx4TKBcLlltPaumPxaVvdcqlgOPP/44dt11VwDAU089Ffw2WmG+trPzzjvvPJx66qm49NJLsdNOOw1Hn/6hLLv5FoicbDwQ4wBqrY0d6509FxMnpoEOU1k4TwlLMifBy4Bnks/M0YjBkzc/iJV7sew7APDPHrQRsIr3TV4rGsekElAN7+FSAs5jkGmDOvyAU6lWXJgPAHQtBE1571z6OhmpW/PPmRbOe0WALBA4ZAMnDah5ADE4FySO6NbVWVAGpMzKdKZof6QPZQFUntChNWSaOIFN3VtzXiiZhwJ1XcPUcl0sUQS+w2lUpLxH23ttyp23l65HfDuyHu0nABw0kReKkhBIwJUI3nVjCjxAwAInEpkliz0/5MUFLFhv9BiXjapSBc00/cu8U5mOWO+5UVgwKNDNPFCtjHujqJpElmuVrbWxabfddttod6FgbYOoo446CqtXr8a73vUupGkaEMwBlGpIvdVtoABqOO2pPWZAZ8A77r9ztLsyLq16+wKrYj13PwdieOitZjxHqkd7MAPQzD0feSIQxo28QmQxKGq1nO8rBlKcc9Us/KczSzxPYbP50KchhUAyMfHK1DUiAWfIjM+WIrHZMqPkCAq7KDYQWtCV97seDlxFfgwL8SkOxIwrQGy9HaowgJuardNHA23albgixO74qfyL1DD1hucApQlMvQFdb0D39hUyyEgclCyVAq/sMwsbLl5Yej6G0kjBnq4zgaqaydC10A42xpUL8iHiGGDHZrIMUnvCv4RxIWyaLNB9pjMB5OAqlf43ALZwNvNm9mobPjZ9foJBXCoCbDLKxgR8KRoqy5PFwFtnIJBtIKFKkgl4mRh+f1CoT7FyXJXOMapKL4aAWC7GL7Gc29NPP40lS5Zg5syZ6OzsbCq9NBLW9t3yve99bxi6sdaG057ba6bLAHt8t32x0wNji7cxXkwdNA8Q3svkQU+Wc50EdCbc8liagCwke8feKvrkyehAFgIx9rvf1nvEfFveW8VJ5ApMRiPzx1AzGVRJfUbuUeJlQei7iLhGfMCCW49xWxhXsGwdCvsYnYGcCTFJ2S3LQRX5rEhzKpM+U5C8WZQhKFxVAPv4s2DO5Os28hR3K3sgpbQZfKw4sV8/P6Z6A+/40UnAfXdi2b6zhzwJZPmM2QE4nnSHBUgE3smagSOOKblXimeP0uWIyeImy5Bp4cBTLLXBgbn3xgrohsGqhgkkOsgbWuD2NUIPJl03V34o4MJZ4E2hP1frMCo1BNiQnVeuZ5IaOvxdSuHuq0xnqHRW8LcvXtr0eoyavcWz8wCrR3n44YfjtttugxACf/vb3zBt2jQcd9xxWHfddXHBBReMeJ/aBlEf//jHh6Mfa20Ybat77sBfdp8RzBLXWvtmGHGWzqMdELy3hwaUqpJu5g0MLDGAewr8Ml7yJfRw8QGxlXZUbKRxxe+FTiWdtAIdg2Eq1gYW3OiaB0kESCh7y3kMAg8B7dOntlO5kPyovBcgIgnH2W+ZsVlZpeTvXGtKKAGRssysnOtit7PLGz310n6RCSWhUIFMKzDGyztQH7wnxOSabxqNnhq2OuuTwKLbsXzG7P4uwYDtlX1mIZUiz6qzoIXa56r0za69XHArsPesIEOU1uf3Fd1b5GENPZ+hQj5PdKA+xfc5TTS89yoEaPS/4WaynICuyQNWbmFWngnVPgvrUlahLGSAZjSjyM3eB6apFtlaG3374he/iCRJ8Pzzz+Md73iHW37EEUfgi1/84qiAqDVimWmtce211+Kss87C2Wefjeuvv95Vb19rQ2+UtTcY05nVzRk/8oBjzwKSbYm0Af9s3Gy7KDsQC6dySQMa6MoGRc9/8p4wDoQSKd06Mh/MpCiSiE0JmKb1iRQshSWgByrmsqg2bt+9l4qnw5dZZozXHappB6jIo9AqCYNI6gU5BV2shWZMFoQIufJ/o7eBRk893792/db1hvU0BcdjHEeK+hD2Kc82rDdcjTUlBJbtO7vpcQzUXtx7VgBCCOT2aJttRyV+gBC0xBZmgtp33i4H50FNRvai9bj50F7xfiZVdOq3L0UUcgXj/0Km4/IzDMgz3lx/quh2Pc7P89wnDqb4u0okOiZ14Lmv/bTftkfDiFg+2Fc7dscdd+CQQw7BJptsAiEEfvOb3wS/Z1mGM888E5tssgk6Ozsxe/Zs/PnPfx7Cow7t5ptvxre//W1sttlmwfLttttu1Gr3tg2inn76abzjHe/Axz72MVx33XW45pprcNRRR2HHHXfEkiVLhqOPb3kjsnl3Xl5kTWynBxa5gffeXd6ayvKDsZUz7bnns2ueLcfNDxR2AEvYgyue4bfyUPEQSziL98vjdhMpXWo5EX6btWlBmx/M+HeRe4E474QGrjA0kheirfnisjzjLibq6ppx4IWLNHJFbJ7W3qzocQykvJfL1+VzYoqG94sGYv/uih7nUgZUb83WzeuD5vXzjPdC6bpxKuiVqtcVoms/FECKh95sbcSiRpPfb3n4mMB5WbscVMWAiT57gObv1zKwxicTnN/H/yt2n6G3CvBgKtAKi3Tz3PIm7nQZ3bOxR4nX16OwnedJSTz3tZ9iyWn/Udr2mLBRKEDc3d2Nd73rXbjkkktKfz/vvPPw3e9+F5dccgnuv/9+bLTRRth///3x5ptvDsURl/ZnwoQJheXLli0LqqiMpLUNok488URss802WLp0KR566CE8/PDDeP7557H11lvjxBNPHI4+rjXAiuYNQSiOZok377TX4Bt7C1lnzpno0XYwA0LPEA9pcJDFPUKSaT+RtcOfKfMG8H3WjSUAGzYwxfuj9QnYEUDjwA8Iy2zoHPRwLSfuHXDp7fkAxqULAuDiiNi+Dc5vaqYtRZ4HXsw27gf3YNFgyQdMqqPHtzV5f0j4E8hBWL4/U9Ood/ei3t2HencfGr21gKtjs8y854oGYMqSGww3aun0WVFygiWIe69O3t/MZ9Vxb1R9ztwB7Sf0pIb99YkSYfg6vld0hvx/4T1XHPjT/UWljEJFfm9WFkE5AB9brJoOhICK7g1fqiZzL9dGXrxY17RTsxdKIu0qSf0ba0Y6UYN6tTfkH3TQQTjrrLNc2TduWZbhe9/7Hr761a9i/vz52GmnnfDzn/8cq1evxpVXXjlURx3YzJkzccUVXkleCAFjDM4//3zMmbPmTobBWNsgauHChTjvvPOw3nrruWVve9vb8K1vfQsLFw5/Rspb1chTMBjb8+G7ArLxrTuHQOrOd00fVPv/qNY7ey7SxJbBiMm4PE08kRJpokpn/iazOjlcRwcIOSpAODun3zl4iknB3Ph6ZaFHu30M4orb8xBLwIuKQnW6pp3kA9+mnntrdM1ANyyoCzOprMUhFQ6MqPwM7ZcTy3kox7UhhfM8cC9UmfnBtqhb5dqVEvXeBmrdddS6a+hb2Ydad92H/4ztI63T/eqb2OxrHyuc11f2mVXah/4s5r5RFp79LbyGBK4A5KE+42QMaPvwHio+R0IvUxgujr1U8THSuhwcFcG75/u1ApeZtvcMLyHDX9yElAy4F9eh62yBeOa8jkDugawbB9i4J/GtYCtXrgxefX19bbfx7LPP4uWXX8a8efPcso6ODsyaNQt33XXXUHbX2fnnn48f//jHOOigg1Cr1XDaaadhp512wh133IFvf/vbw7LP/qxtYnlHR0epq27VqlVI07fWjTjSpoTN1GmmBzNQI7E9nWW4/Z3T3bK1qujlRoVaKTRG58qqf3tiLT2QySvAgZRkYTOdAYplKJXpQtH1KSOmx+Vl4rR1DtLK6u7ZgS5zHoJQfypfloMQ2pfMIys8N895gfLt630RLykfMMnr5bxWDasPxMMvFLrJ8iZisneZZ6K4jszDcr4+ml1PBDX04sE40waNnGBO+5EqrKVmdAbUtA1F5orrZH0r+tzgvPFpR9nswkW348W9Z5WG3QZi3jtYXA6ERG3KfvMgJQzrec9QmLjAJwDcqG2q8UjL+D5tvzLY2o52Gcl0ef5T2XGFEwzepiOWwwJxocPwXEH2gjS7VChf4AE7A1TwWXxSSRgYd1/IVOHJE39Q7OwYs6EsQLz55psHy8844wyceeaZbbX18ssvAwA23HDDYPmGG244bPykHXbYAY8++iguvfRSKKXQ3d2N+fPn44QTTsDGG288LPvsz9oGUQcffDA+9alP4Sc/+Qn22GMPAMC9996Lz3zmM/jABz4w5B1ca9bkgluhB+iib2VKAHs/cnfudfIP1B6dYWJlfKvZDpcRt4gPRgANcsINTkDO48my0sFT14zzNNHAwwfLgYR/4kHPD2ahxYWMCfCFoccicKZB1pfw8O1LEQ5qMSm4R3vBxQTF48ncuWH9rxkX9osHSa4xRd+58rmpaR9aM7bci0rDQSYkwpeV+bDyDFZc0iaGGd2HtKu4rq5pm+2XAynKRFSpgkoVVi/rQaOn4XSGeDr/YIz4a6Q/FgMauicprAfYc79s39mYuuj2CDwX247vvTDrL1yH/8YV8eOSMmUcLN5n3m8+wajVtcsQ5SFlXj4mqIsoZSnIynQI9Lm8BQB3n4ybUB6Qh/MG+YzOt1+6dCkmTZrkFg+GTxTrMw23ZtNGG22Ef//3fx+29tu1tq/IxRdfjG222QbTp09HtVpFtVrFPvvsg2233RYXXXTRcPRxrTHT2ZqHCIBYANJaj86w32P3QGfAA7vug+f2molX9plVIMYmHzwIADDl+MPWeP/jzah2IfFCLP/DOH4HASYlfBiJE8k5P8kEA1VMUrfL13TQJe8D90Rw/gon/TYzGtCojEdMFDZZloOeLC9/44+tNwIovOixYaCMD5pAWF+STDBtH9ce++y8Vzxk6TxZPiTIPxvjXwDy4ro2nd2HgrwHI9MZ+41xanSGek4ml1IEoUiVSDR6G+hbWQuOZzD/V8ATw2MAEq5TLt5K2/PQG38vkyIgYESlgmh/BNDoMxfdJJBk2w49qXw7338R3AtChYCzZjIIJQvXnawZuTxMOsiCkJ5dRokIVmCz0lkZ22TyYbJJkyYFrzUBURtttBEA75Eie/XVVwveqaG05cuX4zvf+Q6OPfZYHHfccbjgggtGVeS7bRC17rrr4r//+7/x5JNP4pprrsHVV1+NJ598Etdffz0mT548HH1ca7nxWeGa2m4PLc7b8unSBz9xr/s9ESIvD2K1aZbPmI3uWXNQnzMX9VV1VA87GLXuGrDfewd7OOPCdE2jbowTOCQvEueY2OVwQII8ESH3yYOSZhlO3MsVDzgt+9jCixVnEJaBqfhYwvVCEEZgkHu4/DrF7ctCmtx4CC1cLoKQHLdAJ4jxYHTduHAevRMACjIE655Qbj+XCYxa3hMNxJJ5MQgwkUYWke5Ji4jqCU5ddLsL/bYLpAhkWO+hX17mzYmX0/WsmQxLp89yyza5a2HpvcKBEPWXgyraT3wp6DfuheJeWM6jouPxr7CtWl3n4UMfhgZCIG2/h5wnzo/jSQf8mmbGBPcY1VdU6TjyQgGjkp3XyrbeemtstNFGuOWWW9yyWq2GhQsXYu+9hycDfOHChdh6661x8cUXY/ny5Xj99ddx8cUXY+uttx41TvYa69tvt912a4sQj7BVb1+Anly9eDB217vLb3DyjvjQj3340YO1bgzEyj7rCciyNRMZG0emDpoHre35oPAUn217Dog/d3VjoLRxxYqFEkG9PQp58bALDVplIZAhOQ7h1c1DcFTM/qJjikvKcKDEB+uY+8WNnxegCKJCJXS7cpmQpvvddsa2FYV6HMAxGbiAImXomZoXXXRlWlbVbHhOChhjQ0Uy75dQXnIh017QUSW2jpwxGZTKQ5Q5GKP1G70NV0ic+G7t/mdD3lCGVEooUSR2c05dDED4dVciw4t7z2Lte3DNNZxo3+TZikPYFNrloIrrS/GkimaAibdn8okGT6iY2FHBit4GdE07EO0KC5eJZlI5GJLJgHQinLGelFASuqZR6axApcrVRRwPJqSCGCQIanf7VatW4emnn3bfn332WTzyyCNYb731sMUWW+ALX/gCzjnnHIcHzjnnHEyYMAFHHnnkoPrZzE444QQcfvjhjhMFAFprfO5zn8MJJ5yAxx9/fFj228ravoO01rj88stx66234tVXX3UFOckWLFgwZJ1ba0Wjh+iLe8/CJnetGfLe+5G7cOvOe2He4/cU2k4iT5d9wDKdo4aBbuAtY7ZgsP0clrzwgwQQenjIc5HpsPwJD92FHqH+R9iiFysr2XcGrp5O/YwH3rjdkONV7vkioEcDZbzPYn/Dtvsz4rz4gjKy4IUSjA8VLo9J4GG5D1omtC0PQ0rVhl1PIp7zTK/YpBIkpm3BE7y+VFE7KzwXABxHaSBWfm2L5sF86MEMw2sDQ3D+XvTn3d/n4b0Tl3FpFyTG90aceVwGzJsB7Fbmy8KUgO+1yuT92gMPPBBIB5x88skAbOWSyy+/HKeddhp6enrwuc99DsuXL8eee+6Jm2++Geuss86w9GfJkiW49tprHYACAKUUTj755ED6YCStbRB10kkn4fLLL8f73/9+7LTTTqNW9O+tapzLMBjb77F7Csv2fsSmpf5l9xlY1cgwOfGhBNI5ogy1REqYufvZshL/gNYx/33oqxlUOivoutm6q8lTQ0AoVBj3A0GtrlFV9q8Vcos8qZxCIHz2zrOryMrIyaEEQgjSyOtB/YmztIrr+218f+Lfw33xdmifMbiLSchJfm7IG8XLycThvDJOVCtrpXLOxTXj9mSLQTQO8RG4qvc2oOsaMpW2Rp/xoSMJQKUSmalYgvnBB2LSHbfl9fRQIF+3Mrqv4lp1SoTHwEndHNDyQ+U6T5zgzT1PZcTvwjmJQsHcIwlw7lMRhIXt+G0l84h1KvuMyXSGTldQWgZ8pqaeSuO5dZLVZSi7N6SSUIltZ0zWyGtmYgiI5aK97WfPno2sBQgXQuDMM89sO7NvTW3XXXfFX/7yF7z97W8Plv/lL3/Bu9/97hHpQ2xtg6hf//rX+P/+v/8P73vf4EuRrLX2jZ7tNZPhub1mYqt77hjyfbzj/jvxl91nQAlgvVRBVSR0w0BVJFQWCkjW58xFcts/lvdxwhGHoK5taG5CV4IG4LglQMwB8UCIL6v36UK5C4ADJb8+DYRxCCdUfA77SJ6eokfKy1dw74RfP8zm4iEgvzzcXwzYW3keyjg7zdaNPU2FFPZIjbzZ9mWZfc3W99sYxmsiTpX2qfL5MVvyeK6GXjeo51pRQF7yxekO2ULHKicsN3oa7reJFYkVdT1gjxAQ8txiMEXL4s/cq6kzYPO7raf6lX2s1ILVjgo9XECYjWe/F3l78bsH6B6I+W39OmVG7fNC3PTZRPc0UA6EeMYeX69VIWyhJFSigvDveLLRCOeNNTvxxBNx0kkn4emnn8Zee1mdw3vuuQc/+MEP8K1vfQuPPvqoW/ed73zniPSpbRCVpim23Xbb4ejLWhuAbX73QjegD1Z8s5WlUmBiRWLiRKv9xTWBeAFalQn0zp6L6u3jH0gt23c2UilQmdThBkB6KJM8QJniOAEQLlvgs/mywsBifysOqGVggw+k3HsQ/hZylXx/aD/FsIkHQj4E6AEh7a8YYiEvV3+hOs6FofcyUU3uabDrlBQXzlXCW2lFhUVpM8eLIoI4D904snndIE2VlTXIhRjpNyt9YKDzzypRwfa1VXWo1GbjufCtMWj05l6pVAE1Db3fewOy9uO77YudHljU9LyR0fXhmm48HMzvJ3+t7bJN7lqI5/aaiaXTZ2Hzuxdiw8ULHbGdy1vY/QBl4eSQb+X3xcFcfL/y9WNxzTItsrheI30GSL1cotJZcTIYsdEzqBmA5kkBdl27nLahkj1rbfzYv/zLvwAATjvttNLfhBBOYmGk6vm2DaK+9KUv4aKLLsIll1yyNpQ3SjaQdPXB2jb33gHs9143yKlUQtdMMLsj3k/1dh/SWzlzjstkGyrrnjUHXQuHtk1uL+49CxMr0g1OjZ6GmyH3Lu9Ffc7cfAAJt4s9MvEAZdcBijyTYsiFe5ZiawZeaiYOz9C+qA8eZNF+/XjDQ4ehUGNZmI/3kR8/tVUkQpeT5cmIUEzZVCoNvULNjJOHoTOoXN83BlNCGqdQLZSE4p7CmnacKUsil8jqDZdh5zxW2pe9oXfej0avLfti/x/K/Ud0TSOdmACpcqE+AiCdbXhAKGRM6uOxtwiA03bzwFzgqT1m5Pv06xOQonu4zJNF++OeTAJodM95EB56n+y7CIBU6O0q7lOx33nYW+UTNem0nIQTYeVldwAEumFxFh4VtvZhPtrGfvq/s0aHQ7PGRmVfBtvGOLZnn312tLtQsLbP6KJFi/CrX/0K22yzDQ455BDMnz8/eA2XnXvuudh9992xzjrrYIMNNsCHPvQhPPnkk8E6I11RerSMQniD5UW1ssmfnI9KZ6W0+CsZ/TbQOl0DNZo1d8+a4/gkQ2U0wJAt2XMmgDCjqVcbJ/+wMk+9tr+FbRW5QUWgEXp+MresOKsvygT438qPpQygEAgKlcpjj1JxQwI+RdJ7uE6zNmIAGJ6PsHwMmcmyoCxMMwBVBEgyIAiX1c+j9TMW6st05rL0bCjI5CE8E4T5Yo0pwALrRp4xVtQe8nUCCXAZnaG+qu76QpIhnUrgub1mlh4nNw60y6oJTE4U1ksVJnZUHDDj4qrb33cndAY8t9dMt78NFy8MtJ/I4nChB9O89EsoVRAb5/XZ/hePJTYvPGvr6gX3bO555Nca8PcCqd3HvwMoJB+o1K+j66GHeVwZiW0O9jWObcsttxzwa6SsbU/Uuuuui0MPPXQ4+tLSFi5ciBNOOAG77747Go0GvvrVr2LevHl44okn0NXVBcBXlL788sux/fbb46yzzsL++++PJ598ctiyBUbLOAF4uI10V7hYpBQ+dV9nVqEaGHxaPpXKWDlzTt526MUZjP3pPfsilQIP7LoPdntoMf6y+4yC1EAza8XtAUJeVDGtWyCelfuMJ++1IWsWNvTclfKOcI8UeRAoDBl7nJoBcB6C4W3yfRT5NEVeVjv3AZGJXV5eEw5MvkOXvk5mPRXGlfbItEGWD7JZzpNRUhRCe1kOdGQqnXeCFyO28gU6X64dKCNvWJZ7sSqdNm0eOYASSqDR00CvNkHYTWfA5ERiVaO1t40bBzS8xBCFzzPYmXBtr5luH6kUroAx2VN7zMD2992JDRdbntSLe88qDcfxennxdSfQEwtt+u1bg3X+H+Lbc08Y/QZ4sKwNnJcy0wYqrQRAifSiuEeqGU9O5PfB6mWrm53yMWtDWfZlPNsLL7yAxYsXl6oDnHjiiSPen7ZB1M9+9rMBrbd48WLstttug5KT53bTTTcV+rHBBhvgwQcfxMyZMwsVpQHg5z//OTbccENceeWV+PSnPz0k/RhLpjPrSdnm3qEll0844hDo3GUulUAjD2MUCJ+510ZnmeVFDQFZk0IKNoxh3LLBhvSe2mOGC9kRqZtr2tA+y8JpPAuvZkwJ6OGfCUSIAlDxoRIOipqXfIk9U+WZdc3WF2xQ8v0qA0/e21EkEJcdXzzolfPEwt8d10UXQzcU2ou1oMjKCOZlKuexUnW8DW0nwXlROTFcZbmnyQCoWDHO/GV0hnp3DSpR0HXNwtqe/6RSFYb7tAcbnCc00Aw9Oj+8kDC/ntyWTp/lriGQMYFOCvvaPhCQAjxviofpWoVfdYZcpb8Yiub8pzikx7en4yqE9ZqEA4msTyYo1MoAVKwDxevpAXBhYrCMvd7lvWv5UOPUfvazn+Ezn/kM0jTF2972toBSJIQYFRA1bL6Mgw46CC+88MJwNY8VK1YAANZbbz0Aa15Ruq+vr1DRerxYMw7NYCz54EF5SQQZZL/wTCoilwslCrPHwVqnkgG4IBus990S5SmkIvHUHjMCwEb74C8gTP8ucoaK5jkn4eAXZu/Z8IUN8cjg+LgQJ7dm+40Hs7Ct0CvWOquuCNiaSStwYjN9b2Z8MNUs+4qDyXg/HCDF5V349zCkZ3I+EgEpE7wavTYcZ1w4zjjRTV3XDEDZkjC0vq7ZYsO6ZlDrrruwo4kAk+VZicL/hI6fE6cHMhmgIuP8ujcLs/r7uDzcRvd4fF9tdc8dLgTYzDMZ7j98j/8/obin73N8/3myefi/oG0toM6vY+5V4pmVzhMYqZVzmQMhKRPPh/LouvYu74WumSGnIQy7jTHF8tGw008/HaeffjpWrFiB5557Ds8++6x7PfPMM6PSp2GTa22lLTEUbZ988snYd999sdNOOwFY84rS55577pgqZjhQoxlcj86CGeZgbeIGNjRqdBiyyGqN0pkqV2SO66e1a92z5kRgw7gSKwDWOAvwqT1mBLySbe61IQ3iinCQVOZdoVBGj84Yd4qvR4Nb8xAZ4HknZSDNr0v7zKLt+xc0tNv6/lA7HKDR/mPj4T5al2fqNTuugXBfyjwTfDk/Vhoo9Y03Qx1kJ0RxWKaM+wQWZoNSRf5VHt6hLL9Gb8PypaiAsTZBijwRxnVdQ9dDjSIK67HWrTJ9lHghlEDCttF1YwngA7yP6b6j+zMkfYfnMdzOZ4Ry4KOEcJm9FLoDEHiyX9x7FhNUjUE6D0P7ezcOdXupjaKQaxzGC71QwmXlxR5ElagAJMUhOwoHc6I5eQtFrkpO94mlJujxJ80yFCBonIOo1atX4yMf+QjkGOJ2jZ2etGGf//zn8eijj+K//uu/Cr+1W1H6K1/5ClasWOFeS5cuHfL+DocpYb029SwLXP6DtQlTO3PCrXEza5XaOlOAf4DTw4tm25xPsSbWPWtOwWtBbQ2WQE+DQZnWDh8YyDPkZ9S+L7wGWOix8qAqHFgEG2DCQsBF4BQCtvgcFgfN5vdzKyDHBz2/vGlTA16Pt8/XL89CzILfyUNj4mOMAFQcyqNBtKx+Ggli0u+6rt36JLLY6G2gnnumAEtktoDJvuq5Jwooq99mv9eNQd0YR5qvG+N4gvZ/oyxoy4Earze4fMbs1icUtvYe/Q84gG+mDUf3H3mH4msSg6sYwAK+vh4HWYBv1+qZiWBSQr/H+4q9t2WeUH4/EIAC4LKCqeA1t9g7Cfii0QACzhoA1Lvr9np319C3ss/VfuyeNaf0PK61sWvHHnssrr766tHuRmDjp3BQbv/6r/+K3/72t7jjjjuw2WabueW8ovTGG2/slvdXUbqjo2PIeFsjafRAW9XoZ3Rrw7a78LN4M3d5ZzpDpVphZTMyqN5GU48CeUDWFETFACrOFnIio2sgoUDbc84TLwhLM2bPYQlTuZuJTcZaSDVj152c+MEh9h5wbxTN+JvVn2uWKk7vZeeaZ0fxvrfyQnlPHMC9WFyEMfZmhX0pakJxjwU/b3EbBJ50lkFVQpXqGEDZEE9YDoYTioWUkMjDejqDUL4NSy63GlKuPExNo6YziN4GkqrXI8oCqQWWGag1FEuv9x4VAtl07wBJXqONrFbXgYcHGFgZmO3vuxPP7TUTNgQMTKyEN8or+8xiHisb0oszP/11KePJFXmV29x7h2sX8FmbnSrkDbb6r4f3DefANfNKWm5chYFl7tHjFoCq3HtY4MtpjcwIKCjU8+eZ0Rl6atoBvnQMeTMGYkLK0rJH7bYxnu3cc8/FwQcfjJtuugk777wzkiQsIP3d7353xPs0bkBUlmX413/9V1x//fW4/fbbsfXWWwe/84rSu+yyCwBfUfrb3/72aHR5WG37++7E8hmzMTmReL2mXcbZYEz31lFnhEsiyxJXJIkyYtx6LqRVTszuz7gXig+0SoTFT9eUd7XTA4vw1B4z8sHOppjHXCh6sHJCNA+50WC3ZM+ZrohwpwJ45mDNZFjVMKgZGegB8dm4DU/aAa9HZ4xEnwX9iLWmCNiVeQjikEu8HfWBn8dm3qxmbVkTwfKydPZweQis46SEujHBulIJGLSXfs7r7alEgbAPAZhKZ8UBKedZcjwb6TTB6qvqqHRWgsHYhuesl8kpa+fe2VrdA6TQy2IBu6wZd3wEsuLQVn/ePd5+M4HOYsjNn09/nT2A4cKbOrM6UzqD+09wU8J6vWzGrPdC0WSB9yHejr/ThIOOnQOxYiZrCJpsGDUsJMwFNmPOpsug1AZIFQDLVav1NNw1s/8901YZnjFhYgjCeWJ8h/POOecc/OEPf3BlX2Ji+WjYsIGooT6gE044AVdeeSX++7//G+uss47jQE2ePBmdnZ0QQox4RenRtil33g6972ysqBtX025NbauzPolVr/Wg3l0PvE+U0k2p27phgkwqoQQUBNAw7sHYTqFVwD5k6YG2quE9E8QDAQY+4DQz4vjUooE79tyU8Ti42QwlwINGfwx+nQyAwcSKLKiT88GWzA4q1L8QOPJjj8Fd/Hv8PfQClXuTyqwZKPKDcbknob/++L6E7SghoCqhcjnnuHCjQRUoEouFzMDVrd09KiVMTw31Ppttx71J1B+dZUiUcCRyyjpVWgT3BvosACRQFPLcOJAKw7ZlZOtUCqycOQdKoCXZvFX27SZ3LcSLe89CDHD5Z37d7f4I3HoPbwygCPjEUghl90bR4+h/o234/5lPEvi9bj2R1ttoQMBIunvBq8lLJ38gZBaW68l5UFzhPuawkSZV5/jGE29J++53v4uf/vSnOOaYY0a7K86Gzbc31MTySy+9FCtWrMDs2bOx8cYbu9dVV13l1jnttNPwhS98AZ/73Oew22674YUXXhjWitJjwVIpMDmxPJ7Hd9t3jdtZ+X9vom9FnxvISIQwNl7vKhZQLOP7tLJX9pmF5TNmByER/uLeF9t+1OdcS2ogRgNRrwlFLanPfp/WK7SiboJ1uE2sSExOVBDu4nwj640qZhdy0U7vmYpDl95bxQdbzsUii8FV/Nkv416t8tCKF0v02xR1fsp5MHywLB9kW3soJWsz00VRTru8WBC40dNwBHAATgyzNw/fCAJFOT+qZjLU6tp5qcgLReeW2upuaHf9YgmKYsZiCBr4deXb0T3Ow2LcBsKRKjPyKnGuE58MUJg61EMLPZhlod7QixTuMw4vxxxC3p+y7Dv+exKFlyj70RPGw+seh/Zi41mTPEmAjtNzxcrlPsa0CWELCA/qNc68b5F1dHRgn332Ge1uBNa2J6qnpwdZlmHChAkAgP/93//F9ddfjx122CGQF3jzzTeHrpcYGCgb6YrSY8FW1K3H4/WabvuhsMNlX8TqV1dg2ZOvo6GEqw+mEgmzMgtm8kKxB2fOXXFp28wLBQy8ph8np5LHppiV1nqQbsfiMBi3Hp1BibJQg0D1du8l8OTacADlIYuasSCM1qdloXfND8p236FHjFsMQsJwWla6XTz4+UHci2kSJyQOAcX7LjtfsfE+ccDRn9eLjEAPWRzSiWUNDAszm7y0Szzg8nWpjyr3ojZ6GpYInlEYNwNqGl2dlWDd2Gtm6TYkMpsVfudGWWplZX9C76T3+mxy18IBna/YQq5S0dtZdj8QmKMwdmy0vm87vE+a3RPNlpcBMl6AmOuE0bXVNQOVktCkcBmUEl5DSioBXQq8rQeLiqdLjcBjP+7qfRIQGmwb49hOOukkfP/738fFF1882l1x1jaI+uAHP4j58+fjM5/5DN544w3sueeeSJIEy5Ytw3e/+1189rOfHY5+rrUmtqKuASikUqC7DYmBzc84Bt1KYPWyHjvIpApC+u15GCUzxqYYB+EWg3pfyAshGwiIemWfWYFGUlnojHtamnmh2qnVt9MDi/DArvuUauYQIKIBxQsWZm4fxA2Jj7c4C/fckVhV3gMLEfxGx8jb4V4FDoBoH3y9eP9criBcXgy9lYw//VoY8vRej3idst/oM4FwkgUg7hEtbyZtEJQeyjIInTkB8ywHpByElXGsehkQIs9fzQDVmkER5GSFZfHxE7COw8Je3TvUGIu9nHRPkmeJlMWB1uHx0KNaFEyl76Re7z2P4X0T33e0LATsoZHnrWaM+x63w79zr3J8DrmHm64nLwIu8k65sJ4SQRiPG/HaqJZhzWRQdc08hUOvr7fWRsbuu+8+LFiwADfccAN23HHHArH8uuuuG/E+tQ2iHnroIVx44YUAgGuuuQYbbrghHn74YVx77bU4/fTT14KoEbbuPL4fq2j3Z/VVNfStrPlaUrlYIJlgAxZ5qGiw4wVB44FlIA8nUg8vej2AgZDTB5uazAETGQ0qZeEaAmmU9VR2nik8wNPLY40lGmR6tFeV5uR2fw39RrEulW+veM3LBqh436G3yg+8oZcu3rbcK0OfWxGlW3minBdCh9/LLAD1zDOlswxo2PAPcZlSGZaR4V4u0r6i5jjRXwkEYqDxdSgLa9H9kEofFqT7uMzDF4Od+PxRG6/sMysPGdv74rm9ZpZKG5R5rnyIz3sRudeXe1F5Rqrtn2+HAywbdo7vA+9B5t4qvp2qSKQNE3i6+H3PjZINZN6JeNJmvY05mHLrGFcAuhD6k1ap3P/n/CRpTSYOo22ZkMgG6Uka7Pajbeuuu+6w1uhdE2sbRK1evdpxjG6++WbMnz8fUkrstddeLUUt19rw2J4P34Xb3zkdU5KBsyTX+8yHoVNK/TWo9zacECE3Xj6Dk3hpeew94mn84fwgtHg2DoQz+LL16UEdP8Tbtd0eWozHd9s38JDwh7oNrYX94p/LZ+QhWbqsGCvniPQ4ABDW3AvbtN4kDk7KAJ7ff3n/eL9Cjo4otEPLqZ2Bhoe5RyHmX8VeJ6AcLPGwDhASy+NQnvud8ZV0b6Po0WRJCirzx08ZmPx8EAgIuUwxGZyfQ89lI6Vwey74OezvvJV7kqyJwvkcqG24eCGW7Ts7b9d7VcOkiWag13+O/6f2Xs2iey0UaOVhvyQnf6s0QW1VLTjn/t4teoQTeC6UyTIkSgbhWi5/wbPxZKocYPbyGAKJlKgZzfq9Zs+OUbe14bwBl50bSWv7jG677bb4zW9+g6VLl+IPf/iD40G9+uqrmDRp0pB3cK31b7MfvXtAD4WuIz+ACUccgpX/96YrwMnF7Ig7YlglegCBUrDdhofxilwmnQEd89/XtB8xsbYslMdLVRD4iEUEO5VEV6X9FJvQY+DNh884AVe48hBlgJHa48fWDGz5+mQedMTZe3E/uQchBk18UCzzksT9894Qf86bAVdqc6CDTTMvlCw5DzICWhxU8c9U+Dr2PsRgPy5d4sESD6OFiQoEYPs7ZlKqp88rctVxAltURigmb9Pxx0R++r0IXLkHp/j/AJBn4bVv8X+L30e8D3RvxkAqlGcIwXqzkjL0nYji3DvFy8Twd/rdZPbZE4PtWH5C16y4aZ2Ja3JvFHnZK52VSM6kvLTSmDchhuY1zq3RaOCPf/wjfvzjHzvu9YsvvohVq1aNSn/aBlGnn346TjnlFGy11VbYY489MH36dADWK0X6TGttdKy/MFit2+pA6ZyIC6Cgv0LGlaDLOCUu3biZZ6aMqep+94NNcyKzKDxklbCp8PQQpxp+7ZqfjYYApFlfyAYSqiz3BhUHspi7Umbt8jaaeS2akZ85VydWoG5nH/1dgv6uU3ycJisOoECRC9Xs/HCQ0ipsU8bXarUdAQqvXl/MamwGKgAU9hUCp6J3MP4PDIX3pBUZvswDGwO/2DsWhwGpnwEIrHnOVNwXILw/3PnPk1UG8h/QGYEq7YVUnYcqK9x7cf/W2vix//3f/8XOO++MD37wgzjhhBPw97//HQBw3nnn4ZRTThmVPrUNog477DA8//zzeOCBB/CHP/zBLd9vv/0cV2qtjbw1E+MD7Ax26fRZeOm1Hqxe2Wdd7InMX3ZWH3MMyByQqpWTOIHygZXSisvXL25fxuchT0LZAK9E/+nOzfcfergodMVDK1xmgDwWnOzLQzY+JIT8vVg2hnu5yLvBQYxdr7y/zcBd7EUaGMgrerfoPJTtp4ww7n9v3td4m/je4ee1mYcv9krx76TXxQdxfi5juYzY8xMfBwcJ3FMTgxg6V9wDRV4cWq9TSXSmquQ+D8N9Ybt+P3RfcI8NeW9f2WdWoLbfn3Egws8Bv0eLx1icBKxqWCFZvm3ZsTlvcUU6UdK6MQUpA9ofkAPihkF3Q7v7kLScaiZzAImeTc4zye6HujFOTDPTWcErlUjpgW6ikLZBfxgzJuXQvMaxnXTSSdhtt92wfPlydHZ2uuWHHnoobr311lHp0xqJbW600UZYtWoVbrnlFsycOROdnZ3YfffdR00xdK1Zi2dXlMFGXo8enZckqdmq9kJZgcNKtYLMmMB7JJWAS3mCzrNijKuKXpZSTKaEzbRp9nctG/xjr5Dnm4ggLKPg+TpUp4z288o+swKg07x/Re9TK48FtV0WFmnGR4pDaB4w0KAmggGT2rbXMB5QfZ95aCoGBtRWESQ08zj4QbO/4/fHHIZ2ir9zsnxWGs7jXCae+s/7qrOsMPC6Ons1ne87K5xnz13y11UJuLI/tE5MpNdZFnGH/PESqO5UAut32P8EBzi0rhQCKj/mSi6VoGsaFLb1YaTwuMtAagws4xBbf/d6XPqFt+H7TI3GwNf2jwPLWKKDO5optE4ZdnTuM505VX7VBOATmbxHe5BGRv3vzDJIDWidufY5Z4/65rJ98wmfUCKX7fRSHjrLctV5iebTvLFpa4nlwKJFi7B48WKkaRos33LLLfHCCy+MSp/aPqOvvfYa9ttvP2y//fZ43/veh5deegkAcNxxx+FLX/rSkHdwrQ3c9nz4Lty7y94AgN7Zc9GjTT6j84PBy70aK+safStraPQ0kBkTVD6XSgRhPF7sk4MsPgvkYRF6QJcNntya8TRCL4D3EjjvDdOkomNqN1uPcyLIOxTzZWIwQgNWzJmJB7uiN8e+U0kYzq+JeWRly3kfgXJl6dagNMwM4+cgPI6s8N7KsxWuFx5DM28S/x6CnnIvGoX1eBtCSfT2th7+igDEezZ9aZ6wH6m0BORqPhD7MjwiaIeKVCfSvmQeVqbiuaoSPlI5r49f2/44bOSRkSIUiOQA9pV9rIe5zDhgovXLvIrN+HtxO+WyIL7Pqxo2M9J5j6Lv/JyXGZ9sWM+XYYAtc8Wey/5fPOEk05nzfumGcSr1dWPc+See1lobf2aMgda6sPz//u//Rk1Uu21P1Be/+EUkSYLnn38e73jHO9zyI444Al/84hdxwQUXDGkH11p7lghb2iEECX6g69EGqfT1p7SBrVxfM7bwKy+4mpvJuQZWody61GU0uJCRdyEBMOmYQ7Hy8utL+8nDMP2F92gZDeyJlIDxiuK8ZMZABQtJZoDCJFwc02fPFR/Y1N9N7loYDGCU8UWDTbOixbxeVxiW8/u20ghFxfPQGxX+Rv1rxjtp5qGy/SzfF9++eI1j4IaWRiWDgGJRZH8OQrFT3m9Xr66nwYr9kk4RT7MHyENVfm+WXwvAA7xUCkysyABA2P56hW33/8knFhRaVqmyyue5N0RG/aDsz7h/1G8eaqUsV3ud/P3pw822f8tnzMaUO293x/HKPrNc/3kok+5R7sWxemVeaZ3f4zxsx3lg3KitohSHB4y+1mSYIUr3OWWo0v+eTyi4545+S2UOWkXITasZn7Hp7x1A6jAbMNNZS0/6mLW12XnYf//98b3vfQ+XXXYZACuwvWrVKpxxxhl43/uaJzPtuuuube1HCIHf/va32HTTTftdt20QdfPNN+MPf/gDNttss2D5dtttt1biYIzYqoZxD8Z4xv2O++/Ei3vPcoVUK6qCWncdgK90T14pErMzzAOktBdFLAuh0GAA9MeLCoFGzG2hUAMNjjyEIJQATBnIsX3or3YfHxy7KlYJWTV8TT27Pw5sDHr2nV3oM2+Pc13KPD62bR9y6GEZS0UvlAjS8Mm81wmFbf06xRBXbPwalf/uz38MpvqzmGMTWzHEJIJBjwNEv88MyL14OiORTH8cvJwO/eY9MV7jiQMXkiWIvXG0jIQpOYik4ylTVqeUel3TXgA0zesBGt8PaisGimSJlA7M8b7xSQTfpowv6O8Re8/FYDXWL0ulgFywAL2z56J6+wLonAYQe824Z86fE99OXPeRzvOKur1upA3H6w7S9Y89vPE18Vp49t4ktfl4ssEBdnCNtL836fyuakOod0zYWhCFCy+8EHPmzMEOO+yA3t5eHHnkkfjb3/6GqVOn4r/+67+abvfII4/gS1/6EiZOnNjvPrIsw7e+9S309fUNqE9tg6ju7m5X8oXbsmXL0NHR0W5za22IbdeHFmPp9FnB7JDet7/vTgDARtUKVKLcrLksg4WKDhO/wD2c8gLEMVDwn/2DisBZbETA9rPe4vYEnkLRwnyAaIQKyb2z5zqgNZDBfr1UufVMlkFBMPX0zA2wfJDXWeZCes/tNbPghbKzbPuAD2fCdjkNIBMrIveCcU8BDQQi2F+Ylu1Dm+E5b29GHQMzbtwT4b05fjvab9k5LgMjtB6V9GgWIix6ZIr9qkUFtvmgS4M3AU/aJgRjoZcjBh8xSFF5iI4DKx6ilgw8Ucg7Jr/HhW/LjpG8KGXHTf8j72kBAxP+OAA4AMTPKffucGDNQXunEpALbsWyfWdjYh6KnHTHbUFdSg8sQ16ZD6OZkvvSG5HEV9R1sD3dZ7E3iU8W+Hni14nMe9EyN+HpZFII5HlyoqJ5ySqhBDqzrK2KB2tt9G2TTTbBI488gl//+td48MEHYYzBsccei49+9KMB0bzMTj31VGywwQYD2k87EbW2YenMmTNxxRVXuO9CCBhjcP7552POnDkttlxrI2V8pplKge3vu9MBKADoXLcDSVcCIT0BFiiW2ci0YVIG/gHWSlmau+sBoHLwgYV1asyL1CrVmEIAtl0/MPdoAlF2nertC9gM3W7btKDrfu91D/8eneH1mkZPLYyx0wNXZ0By2wLHj+HHuPndC91ATqBQZ3AaQvFxTKzYY4nDHuF6RS8BN35N+aDFwzF0rug33gdqI/RwlO+DtxPynlpf+3hbwHObwkEx9JbF3oPYwxF7qzxoLvahZrySdpnCfBHw5aRw5xUJ9a04COFCjkAY9ua8G93wGkYxGCi79nQ83MNLfUikLNVhmliRhZAk7SMOvxFA9OfRnicCEFMX3V6oJUfAxu4PWL9DoauzEgGdUKWfn1/Oh6L9lXnNeAYlf37EvC6+zJ/Lcq8n53BxMjpgr6FKVcGTNuZt0MWHh8CTNcp2xx13IEkSfOITn8All1yCH/7whzjuuOOQJAnuuKOo6E/27LPPYv311x/wfp544glsueWWA1q3bU/U+eefj9mzZ+OBBx5ArVbDaaedhj//+c94/fXXsXjx4nabW2vDYP1lqFXXrULXDUxNWyG6rgR9K/ugumzGQ6wdRfXI4kGVBgTOaYgBRDMCp848J4UeZnHokdYrm7XSdnw9DlBSKQKuiDrIisJ2a+NASHlBYh/K01kWpJMT3yp+yPM+U0kR3mcOeuIZtj/+MOxH68bWqSgkYtv2HjN/HloNDAMZNMqOi/cn3hcP//FjikNWfBCPvSP8vRmPqZzTFWoQ0X0Qe3h8qKnoldEZXFZdXOuQ2g4U1/NGOZjSjRAsxWEmHurln2OvHRmVpwHKNbF4HTz7v/C/b7h4IV7ce5a7x3n75O1pFe4GEHpnZs2BEhLV2xdAHHwgdJY5ygDJPdhjRrBPwIJZA4ALCvDQPwEoJQQmJyKYIPFzSe9lnD++Lv0/gKLQK1fDB2A150yG+py5SG4b+8WIMyGGIDtvPKHGos2ZMwcvvfRSwaO0YsUKzJkzp5R0DmDAgIhs8803H/C6bV+RHXbYAY8++ih233137L///uju7sb8+fPx8MMPY5tttmm3ubU2CpaZDPXuWk4ot0Cq0lkJwRNLL48f4sXBIfSE0IOu0dMoiG4+tceMYBC263uPCl8eh388cPODIAEhChl4j5ndhjxSK1fX0Z2Tklc1DFbUvc4QZWTxWW1ZH6l/2993pwNXfGbPs6jic9HMePshKOGepxCwcvBX5mlp9b3sc3gdyvvtQRADHiK8Vrzd2HsVg8fi+gjaDbcLM+y8hyk8F3wQJ69gDF7DDMwiqKTsOp4VGA/GrlhyfkA8VBnff0Hbpd7H2IsYHgedBz9RoX77xui+I2V92hcvYUOeID7ZGKh1LbzNeakaN9zkPEt0PNxTxvdJ+5EI7x/uJeMebu6NonND54S+8/vdaj8J8HuHr8+NsifJaHI4UJHZtTY2LMuyUiml1157DV1dXQNq46abbsKiRV5X8Qc/+AHe/e5348gjj8Ty5cvb7tMa60R94xvfWJNN19oYsNoqz1WiWVnSlaJvZV+uq+K9UX6AKCvC6r0mcQiBsr6UQFBHT2c2s+3FvWcF/I7QC8E9REX+VVV5IT/ert+eHvDeM7aibtyMmXusPO/EA7MiKAzDA92zbPbjlDtvd6U4OKeDp7KnUrLZdeg14mYH+PAY/HHwYwxDMjGYIfOZTeUhuzLPVQjoshbbFHW9ysI08XYxr4V79FqDuxD40P69DEEIPP29mDlPSQEslXikAF8MOQ5HBjX96Le8Nl9MqObH1CxsS33lnikgDCVzDx+tU5b5ybc3c/eDXHArNly8EK/sM8vdAxsuvh3P7TWzAGbXxMjTTdIiPIxpjytDj6ZQX5HrRObBoD+PdH6srld5dqU75lRC6Ay6r1EKhCiU6sJ6fdqBqaRacc++Rk8D3bPmBFm+Y9LewsRyKjoshMAxxxwT8K+11nj00Uex9957D6itU089Fd/+9rcBAI899hi+9KUv4eSTT8aCBQtw8sknt12fb43O6J133omjjjoKe++9txO4+sUvfhGgu7U2Nm3i0R9yAIm8TVw3hWpSOY2o4MEVz/h4anOYml3GR1my50xHXg3bZMR1EfKkeOiQ1q90Vmx6OVtO4Yl4cJ66yAKd2EPAB1fNBkkCQdSeV3bOQdR+74USIkgpp/X49jRAxNwlfhzFgV0E584eT9FbRct5O7HXjrfZDJT5cxy3hcKAF7fVDDz5NssBUpHoXLp5wTg45Z4LGqT5PeOvre8rv47xOWnWD36fc82qolelPP3fH2/Ra5QmKug3rSOFcB6W+JyRx4eD43ifUgiIefsHy+g/sNU9d0Bnls83FMavIQFanhVMmlpl/3n+HodQmwHq+HnCifshwA/vP9+W1ZsSSrr6iyqVUKkMyOhj1oR4y9bOmzx5MiZPnowsy7DOOuu475MnT8ZGG22ET33qU/jlL385oLaeffZZ7LDDDgCAa6+9FgcffDDOOecc/PCHP8SNN97Ydt/a9kRde+21OProo/HRj34UDz30kEsDfPPNN3HOOefg97//fdudWGsjZ42eBoSUQeiOCORSCdR6GjnXQ7L6VXa90IPgH+RlQIevqw6aB33jzZichERY790KPQ1kIQ/Lb0PSCTFHgs/QabBaPmN2MIjSQ54DFoDPpm0m2KocePG2lQCS2/4IzcQ9+XHH++czcPIgOQVnN8CHvBWKfnLAxY8/tuI5KwNnxXVagRcO/Frtlw9W3ksZAuA4NEr3Dh/kQrAZ9qEcGPq+kSejjDgfejjDzLIYpPB7OgxF0lq+H829cuGJ59fBeyFzcU4loBq0Qvkx0nkKwWuxXAsphdN7rWZQhfcYLZ/hM+8G64XiVr19AbpnzfH/8xKwzr24zbxy8X1W5sX018Rep5rJgJoOzoNtr/wzv6Y2lGeQaQNdswKuUowD8c23sCeKvENbbbUVTjnllAGH7sosTVOsXr0aAPDHP/4RH/vYxwAA6623HlauXNl2e22f0bPOOgs/+tGP8B//8R9IEh+o2XvvvfHQQw+13YG1NrJGZFjOeXK1qNjMTtc0AxVhiMrPCuPv/qHIH54yVTBz9wu8BSSISeUeSISwSEb2facwTXdDu8rtNZO5dOw4pEfLOJeCD870mThSvp4dgvZofQJJZW5/3jbgJQ/C0BsRaKXzgnHvHU/Rj/cf7idelhW8MbScn7vYWxavE7fPPS7xOYuvDQ/5lrVJ+4w5XXF/Q8mH0DwYDsuz8PvNn9fwXuSewDCMF+6Il6Th3qYwgywE9tQ3IORPuRBhBK6EEoWi3nRv1BlRnq6XFMJxtVRFoquzEqil831I4WU/KNzGyd9D5YUio/8CnwiR0f+uUwlMTlTp/9Aeuz8H8Wd+PwzkHvPXzZ+3Mk4bcTVdTb4sCzhla21s2hlnnDEoAAUA++67L04++WR885vfxH333Yf3v//9AICnnnqqoH85EGsbRD355JOYOXNmYfmkSZPwxhtvtN2BtTZyNuGIQwCEpV0ABDo39J20mGgQIeJ2K64MENYUS6VwCs/phMQpFnPz4ZVwcAOK2Xbcq8H3T+tvc+8dmFjxRWHD7DtRGMgp/OAHgIy16T0t1Mcpd96O3tlzA/mEiZWi9yHm7/AHO2+fHxsddwxg+Pq8PVrO90vrcDXruE06F8XfwnMZgzU/kPH9hBeT3yf0WzF93ScBxNevzLy3yV9HajdeL16HzkuxzRDIeWAWgyV+zv22ZZ4h+o2bEnl4TQknoQB4YnoZ4Ar6XpHBNtzKBD/rxgTh904lYebuB5WHCIcLJND/KAa23HjILg5VF73NIVCn9angc3z94vA3N8f5lNKBaF3TaOSlg3iCwFgnmFPtvMG+3up2ySWXoFKp4JprrsGll17qVMlvvPFGHHhgUZKnP2s7nLfxxhvj6aefxlZbbRUsX7RoEaZNm9Z2B9bayBo9cIX2fCgSDCReFJHJgXAQKfeMZOCFTP06+Sw0la5sjAVWflsquaKzDFPSCurGYFWj6NEivgIfnDnfpWaApdNnYfO7F2JiRbpCpp4f4b1YZKRVZb1ClvzNZ7NxeKhT2dAgEcoBBNwTvg0dk/euheeLE/TpOGlZ+JsoDCz82MPrULw2fF2eds7PAQeKZZ4/aoMD6DDMWQS/HJjFgx1f5gF4+eDlB2QevvNeTytaGvbTn08/cNPgSWn5/JxRmIuuU8y7GujA2owAbTJbPDeuGVhWW5IAF+AJ7mVeFANA56K3sUgutc+9WFUlnMr/cBh5Qula9pcBabfx1zf8XgTM9BvP3rXrZoF3lf+XOpX16vGQJ7WZ6QyNnkaQrefO837vBW794xCenSE0IQH51gznDaVtscUWuOGGGwrLL7zwwjVqr20Q9elPfxonnXQSfvrTn0IIgRdffBF33303TjnlFJx++ulr1ImxapOOOdR9blYDbjyZ0RmUEoVZbbBOIZwWfuf8Fc4h4WDBqQML/9Bf1dco8CKI/FszluDZ2+PBTyplSbgrw6oGkc/9A5QXN63evgCv7z0rD18Ip2Js2/CD8KqGyVXDrZfAelHsPra514q2UXZTpxKYNCFBvU9jRV0DeSYP1wmKycOrGn4wozAhB0uxh8Met38vG3j4fmIujveclW9H59CuX/ytzIsyEPPHw4+Fp+MXCcfUDyKFcxFS2xe/HT+mMu9D7Mnj9xiBdH9MwvXFAawJCTJtoHSGFb2NghekjHMTh51p/TiMTOeizAMoC2AhC+rvUY1KwKfjx/vTWQaVFUECfTdZ5sRB4/DhUNqUO2/Hyplz3Lnh16AsNGuvgf/Mnxv2/xl6EmOvMBkHvGXewBiokblnHJNfCcr35BzOtfaPac8//3zL37fYYou22msbRJ122mlO2Kq3txczZ85ER0cHTjnlFHz+859vt7kxaxv827GoVCuB6/cfweKHMQGBzNiHdlk4J/zMvQjh7A/wAxV5YQCDBJ7UWlXSEs3ZA8y62MNpMgcd3INRxhmi38gbtcldC7Fy5hwH0no0V7CG8zrRA79XWw9YGV/HFimWqHRWoGsWrE2shMcQz5DpmEjfaWJFBCE2klvwBWGbXy8+ALuBs8TzQ8dSBFPhoMI9BOF+wlBkbLFKOt9/HErh4dRWnjQe8ouX8/PCrxdvQ4kYWPj7hjhiHGDxGnvVagUyVTnAEBA6Q1rTgWxCfP75vvnxJFI6FWwAqHfXSs5rzmvKvaSx6j9v3w7oEtC6ELajBBDVEAxEsDBjXtZEpTIACa0mTkNhcekUM3c/95nuKV7uqRhuhwv38+sahqkzxDIg9rCK91Yrzy2dKy5dIZVAvU9DKmUB51j0SL2FieVl1tvbi2q12vZ2W221VanWFFkzwc5m1tYZ1Vpj4cKF+NKXvoRly5bhvvvuwz333IO///3v+OY3v9nWjse61VeHdd+qhx08Sj0ZGqsedrBzX8chgFbWDEyFYKb4gC7ymuzAI1RONGczyE4lA0HP2PsUezCUsITWFXWN13MCPBCSZmP+Ex+wyRvhQzZ+Zv+O+315nA0XL/S6PTXPN1FCoLungV5tAqAQD/p0zsp4X/H5bXUOyWIuU3g9RLDP/qyM2FvWL74u5wJ5YBt7E/w2IYHdAz3yEIUCjeHAyfvAAShdNwK33AvBz68jkVckkg7luHm0n0pnBUm1EnABO1NVkKGg4/bH788RAb1KZwUdkzqQdiWoVCtIE4V4EC8L38VWBnQy7fmJ3OL6ldzi/3csVTISJhfcCoCXjbHXi148Yy/UkireBxxQx8ArDOV6TxgQP7c8NzH21gFAvU9DZ1ng/RuoTf3KJ9s4M4OwtWVfYIzBN7/5TWy66aaYOHEinnnmGQDA17/+dfzkJz8ZUBsPP/wwHnroIfe699578aMf/Qjbb789rr766rb71NYZVUrhgAMOwIoVKzBhwgTstttu2GOPPQZUGXm8WaazYZ+9jaRJJSCUbOrWj4ullj3MuJV5M8q3teJ29GCj8xoMzCz9Og6JlLnjaZ0NFy8Mssye2mOGW2fqotvZw7MIALnXhYOD8uMBNKuvF4MD/s4zx6hf/FhjnZ/4mMpsoLycZtejne0Hck1j7pPfT/9t8nPf3zgV34N0nfgAXAZM/TbCEYdN1GcRcUsybSCVYOC6+XHFoJK0htz6qQq25d6OOKOuUJokBkBZ80G9GTDnbYz2cywGoMVX/4rhza5z8Xu4P748toDUzwqaA+z87ffewnZTjj8soHls8MV/GdisZa0NiZ111lm4/PLLcd555yFNU7d85513xn/+538OqI13vetdwWu33XbD8ccfj+985zu4+OKL2+5T27B05513dujvH9l0Q6Pe20BmMog8nDOeTSgBleRgJQqdxRXoeRoyD0/F4Z7YY1AGWpSwOixJh01x7m5orHizL3juVDorUJWiKF/I+wlT9MlIQJD6wa1HG8TFg214zc+GyVsBICjSDNg0cdpfre4lH1a4z1nkTQnVme3+igOyHzzQ1DigLPM4hJwjLg1Q7tGKw2Eh0AtfvK/8d74tv4XKABH3DPh1/ABHnomisCoP49KxUlg1HIg554nuD9pfKi1AqRuDWl0HGYHcpBIuocLoLMjior7G55F/l0JASBlMUETuJeNW6bThw0pnBcnEBKpinykq9VIFIp/oAB7U0W9S+cLHBAqVgJM64GZ0FvzHhRJIOhRG2uSCWwvXn3uh4lfRsyiiVxkYK/5HBgLSCZTSfwfwzwF+Hanm5vonfgRTjj8MJr9XJh1zKNb7zIehazqYYA2rrfVE4YorrsBll12Gj370o1DK39PvfOc78de//nVQbW+//fa4//77296ubWRw9tln45RTTsE3v/lNvOc97yloNkyaNKntToxF0zVjk1nYrHLCEYeg3ttAo6dhZ3djLWbexN52wuGopwpSSaQTE9RW1Z3EgYF0NfQAeigVs8oAz2vwA7B3m4fZM1nw0COSrM4yV7POD4gSKlEwNY1M89mjf5hSZhlxjGrGFgaOCy03e2jSAEt9JrDmyM51Xaqf4wFh5ojiPMQVhhP8cfPQE2+Ln5My4rTvU3lR2tgbRGFOu1357DsGT8VjLJ4rvjwEUkVvVEjcDt8pdEfgkoAhJQ7480bbhRy4sJ3iw5/uRcuVCcM5FKqxnDgTkPvJhBIQ2gIgAi0GgDKhVAf3hvrrmC9PrXBtpo3jFQJA0qGgcy6lSiXSrgQyJ4yTd0ilMhd7tDwnUtGWSiDLSxv5vto+qjT0Jpsss1IIWdGrFa9bM1lQgmkkLLltATBjdn6Nw8mFPTzv1SPj69jvGbtviiHVsuxOPokreOrY90RKwJhgGXnu6Px3zH8fGm+bAF3XLpuZ1htJT9/aAsTACy+8gG233baw3BiDer1eskXRYkHNLMvw0ksv4cwzz8R2223Xdp/aBlGko/CBD3wgIGdRYcB2SVlj2YzOIPKHHplKVC7WpqEOPhCNG24axR4O3Ozs1BJeVSpR66YiYdqRVXUDhQE8HvBJGiAkdqLw3T4w80GxtxEMyiQs6bRl6uE9Q4DEf/fcKSUy6Mx6FZ7baya2uucObHPvHfjL7jMKYpN8UCXPBh/oKSynBDCl5JzxkB2RkgmI8dky956sqJsA2JQZ92jEwIOfy9hiYNXMU0TLimGo4r7K+1e27/Lf4v3EfZ9YkQ6A0TmPAVkIUAisFwF1mv/3qCYaAf7Yc1TGebH3gfWCVKsVF96WyoMZ8kgR54ra6G7ooB9lHCd6RthB1UCmCqrPbkdlRhp5NQACNkZnjpAulEBSrUAokXuRLKhDShMMW67EAj8fEq+ZDCmTO4jb55l+PTrD4GQK18zKJgtkMX+JngmheUAbe1O58WdQnMmZSBmERqUS0AR4JXn/fIakyTIomiTWDHqW90LXNVSiAo+gSqTzTq214bcdd9wRd955J7bccstg+dVXX41ddtllQG2su+66BWJ5lmXYfPPN8etf/7rtPrUNom677ba2dzIeLdMZMpMF3hEy+hO2Qz4cLZt0zKHoZp4nAO5B4KvQN38IcG8MH8RjkMOTgXSWOcVuDz7CGmf0AOzRBtVVdTejnphJkGgjH1yLpULCAfsd99+Jv+w+A0v2nOkkCrwHKswEI88FKaVzMjkZqaCT9EH4wM4Cbxr9xvlZcRgv1ifixkOVYTiNl/0oeqz4Onyb2FqBombLyj6XgWven7JMtmaTdO4lKBLo43Xy5TkQic9RDEQJ4NCgSV4q8lDFoXkbjsuQMW0m2taw+54DOTKjMwgpXQiNAAvh59JQW13nHikLsCpVG9YTymqqZcY4jhV5xwhA0eDPdZ8oDEXAEGwi2+q/PdLGvddAfM8UJ2R+G7h1+O8cdPP7JJwshaAaYOcJxj3D6ZpycMWNnp+6rpEZG8I1PQ1IlSAbKdL+2uw8nHHGGTj66KPxwgsvwBiD6667Dk8++SSuuOKKUu2nMosxjJQS66+/PrbddltUKu3TdtreYtasWW3vZDyarmtAKei6Dkuk5H8mmY48x2BNrBYBKACBi59CB/HDlrwbPnxV5MUA3GvktXdUyR+VwBgHC/SgW5lzjCaaDFUlc0DmH5Rl4pT0AF2272xXLDiWQOBhl+JxZdjqnjuanrdJd9yGZfvORs34cBE/7lYWAyY6R/H54wMAHRsXxQyBa1lZjZAL1IpnVX7tuLeH97+4fRk4i/kpcd946LMZcPRE/DIvaLjfTBtWFqV4fDqzEhqxrpLrJ/GQkuJ/l7w+IvcyS+YcpbBhmihHGqd1pBK5J4tqseVh8ppmPCc/eFM4qJG/p10JKp0VCCnQ6G246gEqUb5QuPKeEgNf61IJgURGbcP+1qsN0kwEk0D6n4y0TV10e15jz36PQU2zLEO/bgjO+f1B7zHw4lzK2AiQEnDVNV3w4qmKdGBLKAualLTPf157VNc09EgBVSEGX0B4nIfzDjnkEFx11VU455xzIITA6aefjl133RW/+93vsP/++/ffAIYew7QNoh599NHS5UIIVKtVbLHFFujo6Bh0x0bbjM5g4OPf9AcT0s/04kyasWZdR34AmRIwUf6AVALa5OnTfLCpyCC0FpdYCD0NoYp5zfh6cXxbepjRb5zfRFYWZor5K3ZbPzgTsOFu+3c9uAh/2X0G/rL7DLzj/jsZeGler62V+XAfzyAK+Rl0PqznLLwfQqDZOsTW3GMThhF538JMPw9oykJuZB64CfbZ/0Zt0T4J+PJ1y66X56yJwr5i40Ri6p+9PqF3LfbA2TR0FNbhnCU3GAIBEAKsJ0slinkf8gmREoBSEDJDpkzwGwAInSFRIpg4qVTlg690Xg1uNpQm85Ch7xNgPV9SWY9YdUrVhZHq3fW8JJNwfeqY1IHVr60OwBmFARMVEqHpeaRSiWrNetG4FtJoWhlwB+C0s7hXKdzOP3Oa3U+ureA/WgRrrlqDe895efl1FUp4DyKtI2UQdXCgNJ9g22VrPVEjaQcccAAOOOCAtrb57W9/i4MOOghJkuC38kIphwABAABJREFUv/1ty3U/8IEPtNV22yDq3e9+d0uhqiRJcMQRR+DHP/7xGglhDYX98Ic/xPnnn4+XXnoJO+64I773ve9hxowZ/W/YxDJjAJYJQIBqOFWAB2tdR37ApXfzGD6Z9a4Zx7WIJQ6A0DNQxgWyHqM43AcQcXhVI3PrxO3SQE7fUymsvk6Day95wEXEYMArjpMng5PM33H/nXh8t33x1B4zsP19d2L5jNkupEg20CKsfDOuUWXPgReUnHTHbVi19yznSSrTqSlrt+y9VUYeB5Y8G9D3qxjmoN+48dAH37ZskCqGSLxngG9bJMH7zyEnLdbyiQdJ2rB1f2gbfo8mUpaGtIh3xMNmgAUkQduphE1YboQcqZyzRGCHQj5SCXRMSh1IkqlyBHDah1ACHZM6bPKEzmB6GsiMsVl6XSkqnRXUV1lCrGSDuQsvpRJJVwqVaBcKlIDzVOmagYQBz+pzAI6dvNGWayEvMXnnOP+IT97CiVR5aLgshE3bSeFrdpYpvQfyE6l0IMnozHmZ4slx3E5cOusf3YZ6PB2M3X///TDGYM899wyW33vvvVBKYbfddivd7kMf+hBefvllbLDBBvjQhz7UtP014XW3fRdcf/312G677XDZZZfhkUcewcMPP4zLLrsMb3/723HllVfiJz/5CRYsWICvfe1r7TY9JHbVVVfhC1/4Ar761a/i4YcfxowZM3DQQQf1K/VeZk5jJn94AQj+aPX/vnGouz8kNuGIQ4IYf2wcWAE+PECE3Vikkns8AO/did3o9jfvWfCDs3/ROlRihZdbWdXXyDOpTGn4i7fdazKsbJSnre/0wKICyZxrCw3UNr97oWvH86xsOwTEqL1N7vLAjKfncysDM/bYYoBGvzfvLPceEZjk1gx8+PBbCL74e9n+4/PJ12l2Tvm+YvK39z6F/SvrO7dEyqBf/jhCjiJ5D8oAFJc1iL0TsYkoPMgL1iZdKSpVG4qTuZdLpTZkSPuWSqBSrViJg3wfumbyDF/7v6t0VrwSeSIdaKP9pV0JOiZ1oGNSmr93WG2qfH8u5MSOQSjbjlQiAA6jZdS1WPeKzkl8XWmboueWg25RvGdTadtKvQeJdLzc90T5Vyqdcr0/nwSI/TUg4xPRmCYx3DYaBYiHcjwdCjvhhBOwdOnSwvIXXngBJ5xwQtPtjDHYYIMN3OdmrzVJjFsjiYOLLroocKe9853vxGabbYavf/3ruO+++9DV1YUvfelL+M53vtN2hwZr3/3ud3HsscfiuOOOAwB873vfwx/+8AdceumlOPfccwfcjlQCAj5OXsaLGi8WgyZaxo0AFA8f0SrEUeKDPgEhMg6MyEND6zYbID1pnYfr7Mo8qysGSkpYtztdhdjTBFj9qFf2mVXwsLQCJrEtnzEbgAdQ9A6EZS0AW2ePH58jIjcJhfF1Oe+J+Dd2OcAJ9dyaHYfPgmsO2mi9uJ1mJN9iO6E3KjyGYlgw3q4ZUCsjERdkIioSCgLahYBEkJlGgAKQUMqH98h8sW2/L5IeAHLwkXuNAOIKsv++NlBpBZWuBGmXF/vLDMvyMzazTuSDOYE4rylkH7tpVwqjDaqTOiCUgFmR90Fa4OPCdlW7fr23gUonLABTAo2ehiPF07EhVUBNM3CoxsRkj65zjzboBAqaTM5zFhQP90CflsWhad62vQ8kVOpDdeSli0EbB9R0nu1y5Yuyg8jnnjMqEYIqDqqH3UYhnDdU4+lQ2RNPPIFdd921sHyXXXbBE088scbtvvHGG1h33XXXaNu2r8hjjz1WSC8EgC233BKPPfYYABvye+mll9aoQ4OxWq2GBx98EPPmzQuWz5s3D3fddVfpNn19fVi5cmXwAhC4dSmbbaxzoABb3qXsT+0y8YzJM0w8ENQ1X5usLDQDkMcj1CPq0RnT3wEL2YRcpNgtT+0RgAKQ17TLXMkU7zkSwTb0imuivbj3rNLzET+Mm3lUYuueNcd9XrLnTCzbdzZWzpyD3tlzUZ8zNyhRsWzf2YUwnH8PhSmbnVfahtal9uh8kzeHr8szJ/2yVvvqXx2a94tbDJC4LhMt76/t0DPp9ZxUpfwxpITIEw18v53HpiIt0bvCvQzea8Q9QYKF+SyA8uKa1J7nNllQlVQrTtuJc6iEsuG1jhz4APDejdyjIaQFYpXOCiZMnYBKlUBTguqUKtKJCTqnVHOxTdt+55QqOqdULW8rB10yP5ZKp/VkpV0ppJKQSjrvFxHlVeK3Ic/KWHlmLdt3NibdcZu7V5rxE7m4KIFj/lKCBDnhQnaJlJYEzkj8dM3IK0j3B78XyAy7/ipV9rwq4d5Vfi9w3hSnclAYcLxZPOb19fUV1lmT8XS4raOjA6+88kph+UsvvTTgzLpvf/vbuOqqq9z3D3/4w1hvvfWw6aab4k9/+lPbfWobRP3TP/0TvvWtb6FW80U26/U6vvWtb+Gf/umfAFjX2oYbbth2ZwZry5Ytg9a6sO8NN9wQL7/8cuk25557LiZPnuxem2++OQC4PxzNJunPM9at7A+dGeNeTp08H0xoFlZlYoZ80PbL/HJSiiZAE9fC8mE3OEDkZ5PFAZkAQY+2oparGmGB4IkVGRDRqR8S5AErD+uR8dDjQMeUOPxHPCzuYaPbgbKeuHp5HNLjgNGfz+JsulkmIW0TEsmFWy/UxSlynsLzwdsvltXhbfDrGXrIioCqrN/F8Au7lyqhoGR4bvz9x4nRJvMVBAhwEACKQ3MUouFClpRBp+vav2o6AB0qkQy4JO6VdKX2vVpxWnGkESRTD5wo7NY5peoAlO2XRFKtoFLNVcsTmYMxC4qSiamrwUcDOg3elWoFE6Z2Yp2NJ9pt88E9yUOFNoRo+5BULbAiMDfaRv+ProW3uWXNvDkuBFsphigJcBNw4uV2yu4jen7zz82kaWKwmZkMQuZgKiUZCpWDLRnwqTompYX2hsOs2ObgXwCw+eabB+NemVdpTcbT4bb9998fX/nKV7BixQq37I033sC//du/DTg778c//rEb52+55Rb88Y9/xE033YSDDjoIp556att9ajuc94Mf/AAf+MAHsNlmm+Gd73wnhBB49NFHobV2Og3PPPMMPve5z7XdmaGyMiGtZmT4r3zlKzj55JPd95UrV2LzzTe3D0XIfFZLIzjL2JGDdKsOg1UPOxhaZ1CyfIbEwxj9EU2VKIbJ4nALnxWWEao5SLJhKd4W3xcvBOy3SaV0IS3Ak8sJmOnMzkxX1DV6dIal02cFpHEOxGibgRof8AHvZZuchP3XGXmi7PeJFRnwo5ZOpzCfPQe8TdqPfS8Lg3qV7/icxcfo22tOKOfhU75t3EZ5yLH4nQsjxoAp3m8ZcZ08RnQv0rUmDxWAoHBu0uI/F/OhAP8ftfugrDvmQdA2O1UlWSHkLQisRnwiIYUDThldq5rOy7r4/dlMwFA6hLwdqfssXSkm6rdKJTLty79QUWOVKiRdVQgl0bO81+0301nQRtBXbZB2pVjd9KyNvBGQqs+ZiwQhUIqlV2hZfG0NQtDjrjcLzwGev+q2a/HME7L1tSdvo9ENF/KrdNrr18hGxhOVZfY12DYAYOnSpUF1kVYZ9e2Mp8NtF1xwAWbOnIktt9zSiWs+8sgj2HDDDfGLX/xiQG289NJLDkTdcMMNOPzwwzFv3jxstdVWBcL6QKxtELX33nvjueeewy9/+Us89dRTyLIMhx12GI488kiss846AICjjz667Y4MhU2dOhVKqQJKfvXVV5t6xjo6OkpvIGMltUv+wP5POdaslVuZz/QoTZpnyAgloDIB4qz06CwYOPngSQMoH0h5eIt7MIg43snOlxW6zPLPHhABCMQ5yciVT6GtVQ0DC6wkOpXAqkZ5CHKTuxbixb1nIfSAIBDkLLPe2XMdMNxw8UJsGP0Wc4KmLrodK2fOAZc9INv87oVYOn1WfjwZuEwBv4W48CBZHIqMz7NdHnqABnJb8uxI3q/WAKy5R6v4mQPAcBvucSuUKSnhWvm+eo8UF6r04MiuL5R0g2xmDAxk4G6nyQUpi9My1DRkLsKZtfBqxr+RsKYt46KAlPqRgwC+vtGQqhIMzuTxADwXStc0lBJQaejhsF60hhfizLcznRX3WdcNjDYwNZsB2LXBBCxvejSjZ8ltCwAA2X7vLfUMNQNUZSZUc3DtS/HophNfG7rzvxltIJUMQH4M9rzml4Tpa7Q+2DFokyZN6rdE25qMp8Ntm266KR599FH86le/wp/+9Cd0dnbiE5/4BP7lX/4FSTKwokZTpkzB0qVLsfnmm+Omm27CWWedBcCCwxEhlgPAxIkT8ZnPfGZNNh1WS9MU73nPe3DLLbfg0EMPdctvueUWfPCDH2yrLclSoTn5kP5qY02tvHrYwcjgHzgE+JoBK8rGS5UvY+CF+TJfkqVE2A4oCjxyjwbXa6HnHpcI8OVbwAZz/zsPBcWcKAoddSqvGL5eqvIQYPEhSxIEK2fOCbg4rYzrYy2fMRtT7rwdAPDi3rOwXqpyUOfXX57XBkulwJQ7b3PlaMg4f2n7++xyAlb8vPhzXt4vJeLCv/3fgzHHrSwsVwbw/LrlXqQwFFjsRxmgjI/LZBnQyAqii83EF10Jl/x7AILcTvLQHFMljwdfP6HIZQGYhElZEkYry7QFarqmC14rAjTcKAOM9m/yCxJ7SrhXJTNZrknVcLIM6cQkJ6obJKnnQZF3yugMHZNSTNhg8oCPZVTs1j82BVJl1tKb1AKMkRApl6oB8nuoiSfP/h567lUi0ehtQGs4PptsAeKG0kj3a7BtDNSGcjwdSuvq6sKnPvWpNd5+/vz5OPLII7Hddtvhtddew0EHHQTAerTK6vL1Z2sEon7xi1/gxz/+MZ555hncfffd2HLLLXHhhRdi2rRpo3pyAeDkk0/G0Ucfjd122w3Tp0/HZZddhueff75t0Jd0VJDkRDVd14VsDQCYePSHsOoXvxniI1hzK9OE4uq6QE7Mpdh+9IAXSkBq4qOgkGlH1iyjinseCEyR1AEN/jWToVMRIAh1qLgG0qoGABhMThTqpsh54gBuclLuiQJ8lt7Eig89Tqz0/8Amj8/URT40Z4GEf5DxcBgdZ+/suZicSCydPgs1k2Gbe+/IPWdWeoFs87sX4rm9ZhaAkAeRxRBbp6JrUfRm8b7w5Xz7ePzhoUUPpMLr26y8TGxcr4m3URaq5dvEn71ie+yR8v3j803DBjk+iDoBShjEmbVxgdl4m2bLVCKdJ8oEg6uBBjw/KvdimKjupl3f5OE6EYT6DLxXjQCUbUsEoSajjRcNlQJCGcf98iEnA13PvSnjgPRssgxS83JaXvMKCD2OQDEKEF/HUL4lvNbkOaTzLyIPFP9cBo5kHpIF4KQrRGNkPFEZ4n/FmrXRjg3VeDrU9sQTT+D5558PuNnAwIQyL7zwQmy11VZYunQpzjvvPEycOBGADfOtCQ2pbRB16aWX4vTTT8cXvvAFnHXWWc79NWXKFHzve98bdRB1xBFH4LXXXsM3vvENvPTSS9hpp53w+9//vjSjsJXJVKLSUXF/LKMNlBTI8odaZsaO2GbH/PeV/jmkEoXivjx8J5RyYQ0SKDRNBrwyU8IrdVtyufc80aBPgygPQxGg0TmXwKuCg2X7Wa8MkcY9SPBhPyUy5pkSqBkUeFG8r8ltC6Bnz3VK2c2MvCgEBCj8t+HihXn5Cj/gcyFJOvZOJTHlzgWuPc4X40beqmX7znbnzJ4HrobOAVJYuJjv0/POvBeRtqG2uVepqAlV/OzfywEU8dZij2FsvrxLGIb0wJgfV3NvGIBcRDEcVLkIJhl5bLI85d0t175AMOATSHi9Ox6uoXbssiRogzw+Kt93o6eBdGIa8Lwsab3I/YnvwExTsWLhvFuABW60fZYDKK8BJ91AL5SATCqQVQldbwCoo9ZdQ8/yXmx11ifx3Nd+2vT6jLbJBbcCsAO8mbc/shtvQuXgAwcAnqS7DjGvqowD1Sycl5kMUPZ8lgGpQhkhAqypgmTk/39EG6rxdKjsmWeewaGHHorHHnsMQghXt5A4WgMJxyVJglNOOaWw/Atf+MIa9UlkbVZP3GGHHXDOOefgQx/6ENZZZx386U9/wrRp0/D4449j9uzZWLZs2Rp1ZKzYypUrMXnyZNy63wx0CRX+qWqhQJ/OH7ArfnrdyHeUWcf897myEJQ1AjBNHFfnyfc/IGAyfoiuGZjMSw1wnSbvVaCMOeGUw8l8ZlqGyXlmUI82WNXI3AC/6cQUmc6wvNZwXhziTL1es6Bp/Q7lAArxs7isgQcsHuxYwFVUJF+27+yCsjd5jlIp0KMzTKxI9zBfOXNOvty4UB5Z96w5ATCccuftrn5f7+y5qN6+APU5ljdF7Q3ESFKBgGPRa0PvxfAa5w0BCEAU3z4EUWH75V4k/1tZ6Z8QeInSfvD1+DHxkj3FUGFWup0SFkTxAsKaqY5zLyyvUxcU781r3HEQBfiBEUDgCdE1w4jLuUwCA1aZMS4rDwCSPLOOsve48jgNumTGZJDSe174fggY+LT7oseEBn0a6GVSgUoraPTW0OipY/VrPVi9rGdMecsHahZEcZHTokeNe5G4N4qDKg6weaYiv9Ze0iAEWWXeKOoTJRGoVGG11pjzxzuwYsWKfnlGa2I0Jj3/4suDbn/lypXYYpONhq2vw22HHHIIlFL4j//4D0ybNg333XcfXnvtNadL2UxJvb9SL9yGvezLs88+61jx3Do6OtDd3d1uc2Pe6E9ktAcg9HADgEbv2CEVugdHlJWijQdQJBYY8i8EgHDW50Mq9p2HZyj9X4oQmHgpAQSFe+0rg87y7ZTNsAlJ6Xa/MQeLTGdwEgMTI10hGnTLyNmAJX6TcCZ5oSYybRmd+YF46fRZOYHdKij3zp6Lv/dpKGGJ6jyslEoBM3c/dCq7HmCzjjiQIGDVn1HWUvesOVGZFA8iigWWY8I/gcwiuVvl3CX6zAneRcBVrFvI37nF23LgxdfhbfJ9cm9aq3Ak/04DWZxxp6OQXkDg1r54L+cblXGgyjL5ABJa1ME25MWyRYMlTM0E3iE/iOfPkZiYbjInCFmsJJCh0dOwAE35Z5ALKcJYjzgMlPISDpm2y6X0Qp3jzRo3WG9UM+NldbgFIqpls4WojVAzKgRN3AvFQRkBKJkXLzZyZCISWZahTZ9HaRvj2e6++24sWLAA66+/PqSUkFJi3333xbnnnosTTzwRDz/8cOl2rUq9cBuRsi9bb701HnnkkcLyG2+8ETvssEO7zY1daxLPcjNLWa43MtI24YhDBhxWJCE6soHW04rJ3eFv9p0DGbKiTpD3JlEVeq8t5cnX/fWjmZeGjGQFyEhN3PfD69BI5T0e9TlzmZilPwZuk+64rbDPWOOJ2hPz9g/0t9qxsnAbD7PFYKNMAyvsI28n9DQV99v8vo7PdTt/AX4/DHybtlZvafH9zoFQWZ212Jr9zyzPqjn3iPhRAAJPVNn3gfC0/H75RCjkP5Hu1PL/uKbp9uPFyAPYKguPrxt8LwnhtXpux4kAZet7cD2yfDOTDc1rPJvW2nGYpk6dihdffBGAFft+8sknm27XqtTLYMu+tP2EP/XUU3HCCSfgqquuQpZluO+++3D22Wfj3/7t39ZIqGo8WNmfxRib3qoShbedcPgo9Crvh/ZSBc1KEAgpvZoxm1EF67AHBWWflQ2mMWDgGWWkIs1FN4nvxOvvUcjQtsc5Mx4skPeCe7eUIGHPUNG8LMTEFcypODEdGwBXy0woK94XKiKLoHbg5ncvhBJw3iZ+6ih0GcoRWJBGIoiVgw+EOihU/W1mXQtvK60zR5+3uueOQg1ADlBjUNXKc8WPJdYAo9+4p6jMykBXs8QDvr/m7TGgWxIyLCOPu+9ZlnuovJgslVqxoTXvjXVtJirwRpDHVtdM0D6J1ZLaf7OBVSiRZ9KxNusapmaCCRh/pz5Z4U/OySmeLOJimjxcqGvagSmR88Uq1RQqVZi0xdTiCR5H1rjhJveZc8r6A1PNQFJ8PvvTjuqvbc5JW2sjYzvttBMeffRRAMCee+6J8847D4sXL8Y3vvENTJs2re32ent7B92ntn29n/jEJ9BoNHDaaadh9erVOPLII7Hpppvioosuwkc+8pFBd2gsGWXXFJWQPelzDRMch8z604YKBQT9bLUso8XAhyAonEeDczwYWnBE2XuWw9MJG0JRNR2AK54KrzPLhQIsILKFRz1YIgHPmEQdZ4wRIODgwetNhR4t4kRRZp0UlgQMALqvjqRDucGLuFl8/7wGX33OXPc7B3A8NNlVybOzcj0uZ/u9F73aDCi8R8aJ9oDdP2XpcdDJPU38nayMHF6WBed/iwsEe++Vb0uUrNf8WJqNVxxwx55Mvk+vE5W56weAZUvmIEUIFr7Lit4JkhYAAK0BKKgISFFGLuBDdgBKJyH0eyt9KV236uacz4WcI8VDfJS9RyBQ5CEju58QdMX9yIzVkap0pkiUxIQN1m3an/FiBKQ65r8vl5kJQUvZ9SVr5YWK5WtUE9kTDo45T423J3WLm36IbZw7kgZtX/va1xxt6KyzzsLBBx+MGTNm4G1ve1tQyqWVaa1xzjnn4Ec/+hFeeeUVPPXUU5g2bRq+/vWvY6uttsKxxx7bVp/WCEYff/zx+N///V+8+uqrePnll7F06dK2dzzmjQEnB5qoJlPiyylUqpWmisEjZSLoqwjAEgdSDkAxvhSZ0Vb6wJbSsJ6ZRMoAoHA5AgJHMvIYUAmZOBuNZ4Vx47olqfQlZQDiVYVeFdpPp5JuXepbImVQgmblzDmOC0V9qBkLpHTDQLMyLlRqgjL9aJ+dSmJyogp95x6isuMzWWYH44Zx3pGBhn+7Ft7mAOjmdy/EVvfcgU3uWph7xHzfNr97YQknyZ8P7hmLrcwj1YwEzrchsOOX8RqJIZhpFhJt5eHyXKkWgKSmnWZOme4NLSvwY3JzXtuahqnpwANEGa3cq0v/G/pvAa3lEES0L9fvukGjp4F6d92+r6rbdiOyeb23EWTV6ppBbVU94F8GpGoXIjcw9QZMrQGZVNDoqWH6rSNfBH44rO+637uSLc3+R2Uq5mS8Zh4nk1ONPG6tQnr0rpKcDtBGFYTB2ls1nPfoo4/C5P/BAw44APPnzwcATJs2DU888QSWLVuGV199FXPnzh1Qe2effTYuv/xynHfeeUiZoO3OO++M//zP/2y7f4Ma/adOnYoNNthgME2MaXPFPvPZRzwLseuIwuxoNCwgpBoTvMcP/NL6ejpjsy46ZsmAVFgXj4BUPW9LCQHdMDB5KIM8SjyE5EnmHpDZTLSwth197lTCCWpyYKCEDx3y8GLdmGgfftCfdMdtbrDnLwCo9+kg1GmPxwKors4KOlMVyCJwMBcDqVT62l+kb8UH+gHiKExddLsDguT9ogw+OhfL9p3trgOvZRi+wmPyXj7v4SpelzLgU3z68mvL9xUTyMsAEw/V+mU+yYBvw48hHvD6E+Z036NQd6DRVNNWQDGvpQd4oEXbZjor6E3xd1ss2LiMvLLySlZFPQ/F1U0Olkypd4VnpdErDjFSP2MCva43XPjx7v2Kqdz/CNZKG4pPGinJJv49LvOSmaInkScTxSWKKLNyrQ2/7bLLLi7rf9q0aXjttdeC39dbb722ytBcccUVuOyyy/DRj37UJWQAwDvf+U789a9/bbt/A4pF7bLLLgPu5EMPPdR2J8aiqYqCcrW34odcCEKkEqOqxeKqkyP0NHGLAVV/fACX+p1KoAZolnZPoMZ7m7wHQunMPdQVUxHnmkKdSgYgxncj9ErRvrhHww3yDYOkQ6FWD1XRu3LpBe4toVp2JEdARs/VmgEU89hx0AfYgYnCgeSxifsbDOYN4zx0AbkeAmmisGrWnKAYazObuuj2XJcK0Dkfi3S5yLa6546A/2WPqzzMFmozFY+zLIQXc6V8CFEU1i3zNPZnzTS0bP9syJBnhwI5UMjCc889b3E5mVhHSDS573XNFKQQ+DyTZ73ydx7i03XD2tMONHGhTjL7HywPx/OyMVwGodHTABVUdh6VKNXf1DRM0kCmDfa86Vu498Avl+5jvBk942KPX8bcsYG0RdlzMAfTZeE7kjngEhJl25M6/UjLmL5Vs/PWXXddPPvss9hggw3w3HPPOa/UmtoLL7xQqkxujEG9Xm+7vQGBKJ4e2Nvbix/+8IfYYYcdMH36dADAPffcgz//+c+jWnR4qI10RWJeEY/L0zsVIB0tix/srSwOK4V6UaZwbFYSQUL1ksfJAygpRC7O6fkqbkbeMMxzZQdDXgqEe3N8+C70SNn1vHo6GQ32urfhwkgEroQSSCBRM9p5aLoZaKGK8rHV5sxFoiXrjz0mXTPO2xYqrPu+cFK815+yg3kqfdiz3XqLDkBlWXQuPTC1tQFjj1DId4rDfc2sLPxWXL94Dvg+4vBg3F6QiMA8hc2SGDgfzGQZwK5H2PfWgp9lgpzFdSxoEokC2BDJPVJKem5h/H8jQcxGrhhO/6ekakV7VaKcp4sDr0wbXwevn3gLCXGKvO1Q+8jKlJj81eitobZyNfa65Tzcs/9pLdsdrxYnyJjoWgFF7yXpfJFHisDtmpDEMz34UiwDNQMMGriNff36ov3zP/8zZs2ahY033hhCCOy2226BB4nbM8880297O+64I+68886CYOjVV19dKt/Unw1o5D/jjDPc5+OOOw4nnngivvnNbxbWWbp0adsdGKtW6VSoJJWAwNrMxkI4j4w4HfxBzwsnC9W8Nhg9hPk7mQU24YzfZdhVCHD5BxgHTD78V8y2su8eKMS8IyWswGLNaMb3IVFP35bzFOUlVnjtv1QKqIPmQaYK9f++sXDcy/adjU4lQArq3DNiAsDkPTOxMKU/TqBr4QKYuftZ8AlA1nw2l66ZAXmh/DkoAg0Ch5YvFq7nf4/b8YCm3CtV9EBxz1MLp2WQFUh9C0N1RY8Wrevfy8OFdlu/jYkALD82MkoecHtXpCtlyeb0/PWgI3Ne3DiDj2pmuvBaCXgqM9recWeQq5ZrW3/ThZB0FnqbjHZcG/pOxv/HFhTmWWs8zJirmgOA7u1Dn9aYsMGUfvs7How078qsWfkfbmFYLqyjJ5p4Q6lN2r6YpDCyxPK3ol122WWYP38+nn76aZx44ok4/vjjsc4666xxe2eccQaOPvpovPDCCzDG4LrrrsOTTz6JK664AjfccEPb7bXtPrn66qvxwAMPFJYfddRR2G233fDTn47d8gLtmKuszl3GTaxdD8NQW/xgb/WQ5zNXyeYlFAYAygcSKYQDJnS4JFZJledpXcACH+MGbJ9lVnYaOSDgA6MSQJqnoKd5BiD3sngw4NsJpQYA5CE0suSDByHtSlCpVpzSPHmnPJjyfeuJntq8D814QsRhUuzhSyGHujFoVmtcHTTPzqBThcYNN6Fr4W3onT03B43+eAAfXvT79Z4ny/0qcopioMq9Wxws+f2Ug7SyY45lDUKw7NuLt2sFzvi9Fm9Hx9WKE8Wz+Ypk71id2qucN3obYUIGC4EDzTNimw3g8TOE/oMm+P/lyR7uuSPdulzJnPe6WX9Iudx6rRrQ9Tr2vfMiLJpxUmm/x4tZEBqG9MhiQUwAyFT+/KISOqookVH2pGzlkaJEI5epLQXE4KjFA7Yss6/BtjEe7cADrfDqAw88gJNOOmlQIOqQQw7BVVddhXPOOQdCCJx++unYdddd8bvf/Q77779/2+21DaI6OzuxaNEibLfddsHyRYsWoVqttt2BsWpUT4mrGwOAKCkqqmsaMlWjwouKCwzTg9ZERFj+ILZ9Dh+8/QkNCiWQKuU8PXy7TBsnkUAPMxMRhz1huTgwhnpQfsCvKoV0YgKjM1Rhr0Wjp+FCiN6jYflWqiJd/zzYAau2nmcu5tyVyZ+cbwm+3TUY7ZXQk9uYBEHMX9rvvQCA7obGpDtuB+D1owgs0ODOH+wqZWn1edX6TGfArX/01yhVQK79w00JX96Gc6I42d+vy3WzwjaaARkCYDz02gwoNg9nlnvmePtUPJnzy3g/+fWMPZLFfhf7RuFl+kwWlwTp71639e7Kt28Wymtm5G0iwc0yRWzftyLJnDLS4r4IJa03S2fItA68LJKF5Bu9NdS7e1Gpdgyov2PdmgFYnj0Xy0/QdlT42a7nsyzLMjdjQFZ2DQjwthJaHUobiuy68ZidR9ZoNPDLX/4Sp5xyCnbaaadBtXXAAQfggAMOGJJ+tQ2ivvCFL+Czn/0sHnzwQey1114ALCfqpz/9KU4//fQh6dRYMF0zgZw/yRhkSgSDHE+NHi1ieejOL5JXgeJA0m+b/GGfz/ykEtB5dJO8UPG+CEjFFod4+AAbax4BdjmFKiQMMl7EtZEFgzfxs2TuYch0hmr00KPZP39gNnobLuNJJQrrTO6wGlnz32dT0Pu0zTI8aB50zaC7odFVUTBZ5rxEYTmTELiYLIOCr0wvYZDCexYMAMzbH9nNtyD54EH+vGttwdqtf3S1+JL8GscgyQMpC1DoXPN32o6AUngN+Dox8Cl6seLj5Os18wrFAKsc5IWeLM5zi0F3ed8G5g12oZzceBjIIJZCKEqBlAEoX6OvuK1ru0naPA3aGvaZopQF3FSzLx70qe9SRSRoCheqMLSXaQPdG1a6/0ey+LkWA16aAAee+pLrGrfZSsF+bVbe6FilUsGWW265RqriALB8+XL88pe/xMc//vFC3cAVK1bgiiuuKP2tP2vbD/nlL38ZV1xxBR5++GGceOKJrl7N5Zdfji9/+R8jCyQ2IX0asci5CirPjgEwqqTy3mvKY7g8ZZ8/XJvxt+jhHD+EuVFYjwAU7YNKMvhsIZvib4U0vd6UJ5VbLakk9x7Rb10VFWwDIBcptN4uw8ArHzRTaeUYZKq8Snj+UmmU3pz6YrGU1m5Tz+2gRR4jXbOZhXLBrb64c+7paFVYmA/w5A3hZNeya8TVzFVeqFYxUlNy2wLn3eMAx+7Hvvj5Jc8Zly2Iv3NuW3w+AQoJegkKd56j9Zy3jwG65uekPDxH+yvrC/dOuWV53cMy4/cn57DEySGx5EHBgxEU/G0ymLL/QLPfAeQq5/0Rxss9ZM20rmy/Ig90UvGeFwJXSQWm1hgxb8lw2YQjDgm+S3ZdC5pQ5EUypnQdApexmRKJCn4fcS9fuL+RCudlQ/Iaz/a1r30NX/nKV/D666+3ve0ll1yCO+64oxQkTZ48GXfeeSe+//3vt93uGl39ww8/HIsXL8brr7+O119/HYsXL8bhh49e6ZPhtviP46t+exChaxrbXvDpUephUcIgHkTssvLLXTYIZMEDWrJjFa5kStxmOEu2gIRq1CUdyuk6SZH/RoU8hddXEsr+7oBOT8MKItYM6n3aheuaDqLKt83T2vkD1WireE36P+SNavQ03P4Ay8dSB81zITfOQzJz9wNQ9AxJIdwgzwnNFPKkFOuyWmBcVkKmynmnACvpEKf1c+MaW5ZHFYb8/Hr+vWzsjxXDOQHda1HxtsP9FAFe+XUqA3JxH+P1m5lqApzIYo0gPqiWD8JhcVsKA9OrGWhqBoS8qKNvlw/KlE1HpWnKwVQ4yeEK6dJ5Vug3v65UEvXVPah392CvW84rP4HjwDjI5WLBoYcpnDgCRQHUZtcn3lfZvTTaJV7MEL3Gs1188cW48847sckmm+Dtb387dt111+DVyq699lp85jOfafr7pz/9aVxzTfu1Jsdnie8RNqEEKtUUMrHibY2euv1DKbgH32hn6AUq5ZA2AyiafcV95NvIVLHZl5/N0naO6Ko8MTeezZXpacUDWKZFDnCkyyTSNQ2p/WBH5WdcllFNo14gllujZ6LRGVDTkJ0VJF1WhbZvZV/ejwyqWoFQIq83ZoLyN2UlWuiBbHRmM+0qElLnop5z5hYI0QQ4TJZBarj9UltFImzz68H1cKjcRX3BrUgOmofe3kaB38S9Xqn0IdLktjxLkJHO7fphGFCJYmiP1qP2qaZgnEUXe4p4OZxYoqCZxaFA6ktTr1Wj+VDQDBABcSKF11WLB9pCBlagdl0M85Cnt9Rz64BYueYQWKa2UHkJGErSgHSaVRz0mQIp3kApFegb8f9svbsX9e5eVKvthSnGinUd+QH3mcu5cH5UGbCNAW/ZhJLAbbOMPqlklABQcn8NUrdooJZhCIjlQ9KT0TMut9SuLVmypMDl5rbddtthyZIlbbc7IBC13nrr4amnnsLUqQMraLnFFluU6jCMJ+Nxc8FmegaWqCyTCjJjoOqqQAQeLRNS2vAUfPpuUFtL+8KohYweJYJZSqaLdaqA4kMk1JbyGX78IR6TNWVKfYPzbFmlcw+syvZFFqfLKxGqNjv+muO7hJo/vKSG719Jhk/JgEnkbp2FXhvAa0TxzEEAQCMLOGSOf4NwEIjFHPnv1cMORtZZQeKKN2eBByYI+wirT0XeMup3XO+Pnz/+eCXPEwdRABe1ZKKnAakdbj1uZaRzvk0zADcQnlMzj2TsTcrXLnhYbQd1U+9S2SAsUwVRIrhrUJQGCftUDtLs9v6eNSjybkKPSN4OFTKmbfP7JxTftH2qvbl63EodlAFUMpI94ARyWu7WSVVwXWhyF3sH6bN2OlJensKtE2VPSiWgxNiRuPlHNy631K4ppfDiiy9iiy22KP39xRdfhBxgwgi3AYGoN954AzfeeCMmT548oEZfe+21NSZ/jSUjwU0ALrNGpZX8NwltTCAZYMYImLJEyswVVS3LNBFaFkKA3FoRNv06svBwzyL1ZP5ZKgGkyp2zIHXcgSAZ8IFiI2+UzjIkUgahQX4c9ADMdK5bVddA3feTQnnufCgJIAyl8PZi7wcPi5FXqGYydC1cgOUzZruyN9xCQJtB5+c1u/kWJIcdXBgADKTjatFvXHuKn1cD5IT7PLyWZyqWeYLKuFAxUIqFT8NsulgHyl8bfm74cu/1KssoLJc6oPUp644DJi5w2IoEDLABVQnomt8GsNehLDTtvJDaizbydcq01LiXqD/Zk1ZZeqQRxb1PVDQ5rtNZpBoUtd4ynaHR3YNGb1/LPo1Fm3j0h4LvXJHcad/J+BwI54Xy/w/mlVIqEimNJ4ZZIZSnElko+TXS1qxWZLttvFVtl112wW9+8xuXEBfb9ddfP3ximwDw8Y9/vO3Gx7NJRSRy4cJaUqX5b5bH4AX1VMG7MZIWu7V1zSBTvho8PWJkqgK1Xhqk+bYmGuiLvAAfcqPv5AEDQl4CEOrvxG0QWFKJgpDeQ8RnlS4kUvecJJeplnOH4v3x/WR52EYz0EHHFlvZw5Qb96jEtefot5Uzrcp4jzao3n673ziXRnD9pIdZw14fqQSgVIGEHheTJuAqU4VGT8N5LsqMSNb8O4ERE4Eg76GyXqkyHapWSuYxWLPdb+bRQrCeBWso/MY9bVJHwCfavwvLojmAEVJCpWFGrWbn1J2nfgBQWRJGvC2JacZ6c6EEQbgfKW04jydocHHIeH/xoJ5pg1iEzG4noOsN1Fauxsx7foA79jqh5fGNReOTnPj6BBI0UZgPYNmT7Jq4+0UbVNIKm3R5mQinIo88+sA8WsRdk6mCGiHdgAyDD8eNdwglpWxZgq6V8+bzn/88PvKRj2CzzTbDZz/7Wad6rrXGD3/4Q1x44YW48sor2+7TgEDUYGvVjEcLXb0Rd0VJZPVG/tmThf/39PYrQA+HEQdHSEuoJk94pbOSSzSwQYRd2ma1qQrtR+tRW/zdkT9RdK9bQUkJBeVDJAAyY0dTF5aQebo/cpJ3zp+i8J9MFZKqvYUpy85+No50G4ZvRAEYxsRvbpo8ZSWAASBgAcShsNLSMjk5Xczb34EA7l1ZfdXvXAZSocgsP5fMi8ZDsGFmWQhSXQHdHIzEs1EVgC0fqoukxIIsu2LZF//bmlgMpuJjaXov9gt4QmBlw13c+1QWJstBugyX23NcBFAxcLLLLJeGe4piAFUM2ckCb0so7jk1yJT3jsdhrrLnFABUqnbyV3tzNWQ6vmiw8QQMQPDMoGcJtJeZ0CWKDq4uHrsmQglAFz2Bfj/hM4yW8QmPVAKiRH9trQ2PXX/99cH3er2Ohx9+GD//+c/x7//+7y23/ed//mecdtppOPHEE/HVr34V06ZNgxACS5YswapVq3DqqafisMMOa7tP4+sfNcJGacOVzjRIGQaANKmg741VsJl5dTeYjwVzD30Gfo3OsPLy6zHx6A9BKjbgMu6Nc5EzNO88T242Fw4ecVmZeJuCKKHWDvAYneUqwhKZ1m5w4PXFMiPcTJAy7kjFWdeMK3FDxwLkYdVU+eVNQowEPCitOfaiFUKEOQDh4ScCE/bVBEDlVjn4QAtidWu3PB84/MDASvhom7JO4pz2tGaB9ERw3EyMEUDBOwWwEj4RGIoV4OOQHl+Xmy/5M7i5b2mtx5LlgL+2vIwLhbM4B43uWwqVAmFISKXSTYx4+KisP7HxTC8+OHMAVdiG8Wso7BRmBgooKdDIS9QIyYEAu7eldLQDT5yWDjiZeh2N7l7MffSnWPDOTzY9hrFik445NPhOoNKbf+rE54xvI5Unj0uEzwIS4i1bxsPqQMT/lL58D0YoCPFWF9sEgA9+8IOFZYcddhh23HFHXHXVVTj22GNbbn/22Wfjgx/8IH71q1/h6aefRpZlmDlzJo488kjssccea9SnsTPyj0GjFOFCzD21PnMCVFJJqGqzYh4jZ2WeodhsiKsY0ipTN4+3a1VaJhj4c7c3SvqjmxTJ5p6hsjRyQYANxnnQbN0zgXhsMjorEH/jgThWbKd9x+Ggspkwmc9IKz+mMqOwRH8WcHKih3zcng8vheCJHvrUVgwgYw9b/N0Wfg775cFVSApvFeorA2G8rfgzb78/DxQH7O1aMzIyAShusbJ1sa0WvzUBe9xC/lOzY14zAjM/znp3D1TumRrvxv9L4b1vl3lJhNbXhsKo8TL3udm2uXdL6hEilmdDULZlnIOoZrbnnnvi+OOPb/r7o48+ip122glSSuyxxx79AqY///nPePvb345KpX+ItDatoIlJKaGSCmRagVAKMkkgkwSVagcq1RQqqSDpqto/UarQMWXNa/kMpTXTqikrvEtWSAVmmjixl0eyGRp95gMaaUjFxFggHDy4UjRAniaVzwRDjSeqVs+J/nbWnYfiSjINOQE4BlA2pON1YKgSu8lsAWPOS4oJ6DLSN+Kp+P1lkzVuuMkdXyudq1bLuQwFL/hM60h2XK3a5uR9Civy804Wi6TSy4t2lh+7EmGGnV+v/5BfM3mDsnMTH3tsZerkJrpn+P0fcAJLaAyC3VvN9snXtesVPaGuwHDUN9vn8P9rE1ps6DomlvNj8G0ZBqwVhPL/mXp3LxrdvU37PJbMZx9GYF+FWl8F8eNqpeBNAoolXGQ+SQbs9aCXSvyzSOTPd8naj7dda6NrPT09+P73v4/NNtus6Tq77LILXnvttQG3OX36dDz//PMDWnetJ6qJxX8aIPdMpRXIpIJGrTdfz57CyijO7vqu+z065r+vsJxmz33X/T5Y7o/LBFyCWB2ZltE4xJfFwMg9cCKviUSYPaUSZetYsXT+uKI6mQv7BX0XDjhxVzyFcGz4QkElEo0e5O1nwXr8sjoQ2AgHMQoZ8WVCiUIYrnr7AgBA96w5BckDbskHD7IJCMgJ/joDGjlpOF+nlbdDpgomFwiNzwUvAE3gSuSAlvPfyLyERFYysIhSLpgSzNNUsfsgqQO/DoXwwJaFx6EzCvVl0TZxOFE0BZr8eNbEA8WN7sNm596U3Ot8/8SDIsJyLKhZ2vcIQMUyIfZdulCe0caFoWJSug9L+lAeVzK3siZ0vRV0bw21N7vbPU2jZnR+m13vZoK1QD4xS8oz6uLnFr8GcXYwJ6XbcGpI+u+PlzdUZpDBDNKVNNjtR9umTJkSEMuzLMObb76JCRMm4Je//GXT7bIsw9e//nVMmDBhQPup1QZeKmktiGpirQqMZtpAE7E85xw88pGzRqpr/RoRy5sZD1GR8KU1E4WOrGtcoVy3ic/Kqd3wd8th4N6ASqetLq9rJti3I85GgAfwwAtKgfhTlGnFjQAScSAIIMUP4NjDoAKhUa8yHmZHMbmDfMDnhYm7Ft6GOAOPG82cM+M5NpkOzxeV8JlwxCElWZL5vqMsSO2uI8lGGKfD5Y+nGPYLvGv9cDqEEkjyQdzkhZWpCLQUAnVjIk9U8d7zv4cZjkAxjNhsGZ03Csf2523j5kBw5GnioS6RVhxZmc5zkhTr1xXu80ivqZXFACrm69F1ooHb9i0rEqJLjoFMpRXXTqZDaU7K0hsvFotd0rG4cx6sywBUEnKdWklg8LA3t6IYrsgzacsJ/MNt2RCE88a7wsGFF14YgCgpJdZff33sueeemDJlStPtZs6ciSeffHLA+5k+fTo6OzsHtO4agaglS5bgZz/7GZYsWYKLLroIG2ywAW666SZsvvnm2HHHHdekyTFnRM7kacMyD2+ZegMkJmlqdSQTBnayh8uqhx2MDLnUAkJSeOyF4hanSMdKyJSFIqRAo7fhlntwEZPMfXYSLWsGBqhGHLc4O5WTvbn+TqYEVA5CKDQjlUClWkGaq5WbHEwQU83oDFmt4QZS68EJycT22GRL8VRVsXIO5IEKLM/AK7O+636PCUccks+MNTLlQWC8NzqmIERT017qIM9QBGxZHCLD6ppmYMpLH8TXqSAgygj0lO1E58hkGRIlXVYgB1ySeY1aWTOvUrPlcXHrmNxt/3vlHolWNeL6I4UDoaeDBuKm4pmU8aVDgNNqwG5mQQichHKZRILvn3HFhluZkB5EZcpAJjmPU0roegPv/vXXxtTErz9zwEUhkJNpxnfioXr6zi3TGUSaT65MhiQtlsjiky9FXsZIYV4oWXxwrbVhs2OOOWaNtrudy80MsbUNoRcuXIidd94Z9957L6677jqsWrUKgCVuDUZNdCxanD6sqilkWoGqpuhYdyKSCVVU3zYZHVMmjmIvQ9I3cYdaASghfSV7q9FUzjkQMkynDt9bP8SbewR8GRmnoUMzbucet79XmHwBmZdfkEi6Ejfgk1Izd68TR8sdt4oHJP+AJe4DhcF4CIfztlpxYPqz1Vf9DkSQdxpXJQJ+nEtGPCXOIXPHK722TZlEAzehhAtR0zly3JKS43JePCEKy8jqRMjOwRDVDeRGACsARWx9d63YMtpXGeeI+k8curJjdveX4l5WuPMHlMtIcPCTVCuloq/cQ1Tcb1nh4zgMF3IFm10zvg8O1oJjLCR3eP26mPNFZoxx4Gr33419EMUBKpBnzyXKcZLiF+CzIqUKuY+cd8m5aWRx2auyvlAf/DYjJ/9D2XmDfY1nu+mmm7Bo0SL3/Qc/+AHe/e5348gjj8Ty5ctHpU9tg6gvf/nLOOuss3DLLbcgTX08Zc6cObj77ruHtHNjzShbT6UVRzrvfNvkMZXtQoCqlQcqM8WSLjxUAqCUS1AckGJCtwVGYZo3+8wGPpd2XOCR+GLHPNVcpTIARHEGnUolVCKdXAGAAATG2/mQSTHsF69LPCgCIsltJV6oAVr3lb91XjOVqJaEf133FeXt8dljiT14cbiJzK8vc1Iy0+Ui8JS3RQArJusCnmBP2wllwVIifaHnwKsnhP1NeIBE/eTAqQyI8wEuBkJlg1sMlHgiwUC8TrEMCD9GapvfF4bdW2Rx6RAasIthH5FnlGbBf6dZRl4cJiSgEHhMpAwAli8fw9pPE1AY3NTqyLSGrjfQ6Klh12vPbHmORtOyJiN+GQ/JTwxCAEXGARUHXJS00soGM3EaSqNw3mBf49lOPfVUrFy5EgDw2GOP4eSTT8b73vc+PPPMMzj55JNHpU9tg6jHHnsMhx56aGH5+uuv3xb7fTxZprn7WDqvR9JVzf+EoydvQMU5Y1BRZlOOD4XE7OBoPH+IMlPyh0pYmiLMhikb0HxbsjBbJ5DC90EPNCAclDx5UzoAQKBDJXkYlROsWb0wPqDQQ5h7XQAK00jnEerPuP5SK9AzUFt91e+c7lWZ8dCaruuAB5V2JahUKzm/yrjjqnRW3KARh61UooLzReCRey1j4MCBiFQC6cSkcM15qIv2T9IJ3ItFIDQGCxws88zAovcprI1YJizq+xP2O/YOlYGVZoVsm3kZygb3eMAu608r40Ty8t9btxNoQzE+FGBDeJn7T1gvlanVUXtzNUy9gem3fqdl30bDJn9yvvscEuXjMC4niAvIVIInnJSJm1pvllUkj72BZTyoGMz2B+yHy4hYPtjXeLZnn30WO+ywAwDg2muvxSGHHIJzzjkHP/zhD3HjjYN/Nq+JtX0HrLvuunjppZcKyx9++GFsuummQ9KpsWLxg4gIm/THSbosF6pjvckj3rcpxx+GScccWsioA+wg3cqE5DIF+QxNhgNVSF4N9+EH3SIZU6Z+Jujbki5TpmnJCyWRdqVIuxKoRLqMnEq1gkqnfdED0nmTWImMVrWtqGSDDV1yr4EIwiJF3o10AGWo62apRDn+VmxEMKc+ecVxmffFhzDp3AQaXuzcJlUPrijbkbxv9rz580LAtpCdlCqYklCH80rlwqZSCSQTE3duVSqhKlbOgYewOMhz5zn3UlowFoZmORjixxgPoLxf8XHScrI15S2Vhw/5BKBcFqG4rPmjN+YWGpZwwZ8/cYJEmXq5UDIP4dksvUDyoV5Ho7eGxupevOtX/9a0P6NhMR8sPq9lQFoqP+GK1eBdPcJcxoB7Wm37oVRGTOyPjSZuIxnOW2tAmqZYvdomRvzxj3/EvHnzAADrrbee81CNtLVNLD/yyCPx//7f/8PVV18NIQSMMVi8eDFOOeUUfOxjHxuOPo6a8Xg8L32TaeNCeDKpQHR2jUr/dE33O8PlFnAqchVk5z3ohwfAtyOjLTggCwZIyj5rQu7kfCOZ+lBFpbOCvhV9+eBcLKVhB/2c0+VmkzJsT1kSqNHGZdVkSrA+V5wUAlBxA5IraZOvp1iZjFYZm+3a8v+4puXvVPKGk1sFk4LIjMk5Y5IdswVMuhZxYpQlsRNZXRbAiARq2oZNEwKpGlACjRtuQh1WbZ3WV7mYquNS5e2F/LPcMwhj1dTzWn+xN0ql0qXpG1jQV+9tsGMKARC/GzkXkOosBuePvQeq/E0I5mVhtUybQsIF90z09//jg7mJBmNXBYBd47I7rOy/GdfS4+E8e238tdBR4eH4PjYs23isWBkPjKwsYxYIPaOxGZNBKTuhis87ACfF0qwvTfupJMQIxcjWZucB++67L04++WTss88+uO+++3DVVVcBAJ566qmWOlHDaW2PCmeffTa22GILbLrppli1ahV22GEHzJw5E3vvvTe+9rWvDUcf8dxzz+HYY4/F1ltvjc7OTmyzzTY444wzCloOzz//PA455BB0dXVh6tSpOPHEE9vSeygzoWw2nk3Lb9jPxkCliQ8jmZHNzljvMx9mIZ5QaA7wIb7+jEAPWVkmS+BRYoOHVNKF2GIeFC/iqXKgEhdipXY46ZNc7ipRSCdar1Q6MQ04C+StqHRWHLiK05mtAGoOqiikRzNR2o/jZpEnSzkAwT0YfDDmHqLhNg50XDkcV0TZnnvulSAAQaE+Mu5xq1QrEbgSzrNHHiiXpZiHrTvmvw/Vww52v5OHiZPR6Xw5j1ak3xWHU3340Wdcxtw0wdqOzwu9iCs3kFA2F4/lfSmTvegvXMM9E808WsRlI+AUAyjv8Qw9upx/VtZmmcV8KH4cAGBqDUc2FyoHrAw00e87XX5aafujYZzbRNbMyxcTvTNtYEyGOKzdyjgAi88/56IRry2o7zlCRoLAg32NZ7vkkktQqVRwzTXX4NJLL3XRrxtvvBEHHnjgqPSpbU9UkiT41a9+hW984xt4+OGHYYzBLrvsgu222244+gcA+Otf/wpjDH784x9j2223xeOPP47jjz8e3d3d+M53bDxfa433v//9WH/99bFo0SK89tpr+PjHP44sy/D973+/7X3aFHnLdXJ/rlzaQCV+AMi0QdbXi7lP/AILdjh6iI64uU3+5Hwgn025B33uaYlnzGUWz6KbcQyC7/Xm2wklkNW9AB1vg969uKMvAsrbL5tpczCga34dKfNaekqh3l23bv/UhyIzFbr5g/Tk3DSYZ4M8VaxCO2raFRi15ywktY+ECRWGjqjoMpGSOQAhD5tQArrusy5tO9LdH1ChHhb39Nn7WnpBwXzA4sVcuWq9kL6uHBkHcgCgoQMhUJkqmJp2oEEwcCyVlbGIw9Nuee5p4sBWIhxUY1BHfYr7SdsniQhrL7bh1W1loVcoQzz0O7AYbFMMy1Mb/P8WZrf6FqyOmgyeS+4eyb1S5PFz22jLjarD8j5VMnZkA+NJUTMAxSUm4nNNkzINOP6TYP8VHiK1+xHOQz9QW6taPrK2xRZb4IYbipPZCy+8cBR6Y22N/zXbbLMNttlmm6HsS1M78MADA5Q5bdo0PPnkk7j00ksdiLr55pvxxBNPYOnSpdhkk00AABdccAGOOeYYnH322Zg0aVLb+xVKuvp4gJ2xUTZMo6cPKk0gkwp0Xx+GljHT3GLvEQA38MWz61ZtDMS8NyDMduEEZvq9bB+BSB7bntSX4/Rl23YcbvLeLAIItG8PFCwnypgs8ILEyupKecI8fyhLlYMHUDFlBIOcTBVW/eI3AzpnQ2XdV/4WXUd+IAhrZe5YvMIycdlII6rR03B9BuC4Yo3eRqC0DHjuTTxw2BCdBZGVTmkLOkO5bMng3KiisCst46E+JzDqgL8MtrXXJwfdUDC64SQcJOBU80lQ1faFOEKtQIj3fsWTBqEEhC7y+uJjiY3u97L7tz8ryx6MQfFAxDtjDwgVH1YqVN+O1+dAirxSje6e4Dk31oz/d/kylwlZUu0A8DyohJWBseelKFUQA9eyPvjPId9zpICUNv5/MJg21trQ2oD+Oe2kDn73u99d4860YytWrMB6663nvt99993YaaedHIACgAMOOAB9fX148MEHMWfOnNJ2+vr60NfnOQNETpOORB7qJNkZsXFhvUR58c3htredcDgyFZZdIaOHb7O04Ni4aF9ZmIDP1Lgr2+7LAyQ7yEmYPNRkFckzvzzSViFPEuDBVCsj0njcRj3ng7mwkQm9IADQ0A0HMny6vnFgI+aIQWfQNe0BSC7G118K9HBZ95W/xcSjPxQsy/L+a517QWn2nHuV+PVUSfEBT6nu/Dw53h955dw22gq4KuFAGk/Pp305Inp0X/IwX723AVKZ58AJzsOSOY5aZrxiOAFE0+vXQwI3GNL+uKcuPN6QyM6X22NvzXexx9E8I67Ynj+XwbqsyC3vj+f3eFBc2s80JIXHfXAZqTr0NPH3wHOlzZgGTnTdY8AJRFnD0v//YzI5TcgMvOwE0ERUGM2vswWnkV4eB7EjBKKGIhw33sN5Y9EG9C96+OGHg+8PPvggtNZ4+9vfDsCSupRSeM973jP0PSyxJUuW4Pvf/z4uuOACt+zll1/GhhtuGKw3ZcoUpGmKl19+uWlb5557Lv793/+99Lf4oQPHqbDASanUzgBrDZja8BMzuaeBD3Y2JNGaFzLpmEMBWQydlT3QyQhAZar4xyMgxcMNVCS13ttwYImrK9NDznF84DWdAgJuNBhXOiuWlNxiMIv77vk11hOTdiUBANC1EOS5TB0GPPojf4+ErfrFbzDpmEMdpyscJCPCfa5NxMNJjnPGZCtMIt055Vw1V58tDcGB9Qx5j5jWPhxoFdNZqRLyJjGvGQDIunYlf8pqNPrvEtpoVmg65231NgqEcA5yyJPG727vkeGemShRoklYh9+DcaZY7MksA2llA70b8HXGzo8/T60AXXzMsaI97xOf0IV1+RSoZJJvT+VcKRUkz4ymbXzaUdDRpA0IPX988sSfC/zYCdwrFYaubZuh174MvLrrGpdNKvECrrW3rg3o6t92223udcghh2D27Nn4v//7Pzz00EN46KGHsHTpUsyZMwfvf//729r5mWeeCSFEy9cDDzwQbPPiiy/iwAMPxIc//GEcd9xxwW+ipIRElmWly8m+8pWvYMWKFe61dOlS25YrjqudTpRMrcCmKfkzmXoDcx/9aVvH366pRAUDJw2QBKjoAbPy8uv7bYseuhxEWKVu6X6nz62kA/jnGCxZkniYVkyDhSdzS+ZpCkm/3GICvVTSSQ9UWHX7WLnbSS6w9PmY5MvJ7R2TO7D8P64ZEwAqNjpGEhQl2QYAzttGpPtYK4eORyjhrjMHXc3KYwDIMyfDxAGyphlNDJDQtab0cytXoZz0RBDKUj57znlBpd8+zVXqy8IvnHROIRypPHme+hUTx+Ni4wS2wzp7mftPcB5fTGzmy/yrXFeN94fvp+z3shCd7WscMi+Kj8afhfLHa+p1u1+tx0y6Pl2rWGE8oATI4nsZEC2cD+JGuZBpeB+VeReB0KtHWlt8+UiYyTLoQb7WeqKG3tr2515wwQW4+eabg2J/U6ZMwVlnnYV58+bhS1/60oDb+vznP4+PfOQjLdfZaqut3OcXX3wRc+bMwfTp03HZZZcF62200Ua49957g2XLly9HvV4veKi4dXR0oKOjo2UfgvR3JaFrDUBJyHwWp+t1KCTIRiBLj8JRPGxDgIK8VO1a2Syae6eM9sVey1SY3XaSBkD/0Jd5KKhUU0oJiNSG/yww8Cn8vH1K0QfgCPQV1ja57GG0GxQzbRyp1O1LCphaWPg39qS9euF/rdE5HE6rVCs+RMfCHFZ4NPIc5iE9e178tdrgi/+CRnT+K50V25aOEgUikBSLp1K4k7xEjZ6Gb4t7c+AV6U3sNWO6ZEIJ1LvrLhypEolGfp/LVNr+Gc+Bq3XXnPeJ82J0TSMzmQtViqjAM3mrCKjweoycgO69ZSZYJ7ayUFM8yIfrs2SAfjLHmsknlJV6KQNXZcDLAwENmdhMTVqHvFGjbZt97WOuqHYsD0H3t+UsWimSAvdLiYJnIAZKOn9Oc05gM/AEIJi8lXmdYr2u4TJbtmWw4bwh6sxac9Y2iFq5ciVeeeWVQqHhV199FW+++WZbbU2dOhVTp04d0LovvPAC5syZg/e85z342c9+BhndzNOnT8fZZ5+Nl156CRtvvDEASzbv6OgYsjBjOKPJZ3J5erBG3XqjHv85Fuz08SHZX2wvnfdLTP7kfDewaU0eCeaV0uUPZspS40YDU8yr4OExzm1q9qDhPCeePUSeBQuCyIviPUXk/eEFf+PQYjyTFgow+aBN/CACkJn2QpEiB5ZERndZeqnl5/D9Emj4+8W/HuilGFF7/UdXY/0TPxKAWTvoF0OzBj5cGvNFOiZ1oG+l5f9RiI/WpQLTPIzBgRgBHsuLMmj0NHK9qMyBd5tRyUIvQODdJOMAgTyJJAlAEwL6jfbB+TFcpDQOBRrYc0QcPVoOWI8a7QcAhDSF8I7PEmw9ISrj6Lj/jyzqFXESfRyupt+sTtfAiMrNMtZc/xiRXCgFU7flXlxIL58AjnXjemP0XcKDv9bgNvKgmgxQYegu+FwSKm7mAXQSB0quLUA8wnb//ffj6quvxvPPP1+QMLruuutGvD9tg6hDDz0Un/jEJ3DBBRdgr732AgDcc889OPXUUzF//vwh7yBgPVCzZ8/GFltsge985zv4+9//7n7baKONAADz5s3DDjvsgKOPPhrnn38+Xn/9dZxyyik4/vjj1ywzr2TGERPIdb2OoFr6CLh2fSqvcQMeDy2s+Gn5TUQkZBKgLCOg9/dg5mZDi+GDzZgMSbVSELOzJT1CTooLc8gw3MHXc8TQ3EsEkDs+L7OjlJtFkheEb0Np+3T8yEOHUgpACjcwZzrD6z+6ekDHPVrGvU66pt1sm4NOAoVpVxIMMoLxmTqnVFHrrvswiAMmifcWVf1+AO/9NNpAJdKBJaNNDlQ9Ud0B/DzkSEr1BMq4R42DQv5d5VIMKlXWmxh5xtKuBLpuAvBNv3kCsG8nTohw+9LlSRWAtoR9dv+QybTIv3PH3Q87oln2rJMo6SdMSp5w357PyCusG3t0pfc2UThPIkEmdYFfNZpm79kMQFhc2gJb473OQDBh4s+ipm0PJOux4NkKPVAqreQe85E/X2uz84Bf//rX+NjHPoZ58+bhlltuwbx58/C3v/0NL7/8cmk5upGwtkHUj370I5xyyik46qijUM/j6ZVKBcceeyzOP//8Ie8gYD1KTz/9NJ5++umCKmmWuzeVUvif//kffO5zn8M+++yDzs5OHHnkkU4CYU3MZ+YpxxmgFyn8Jl2dCB7lI/wwIhIwDTpTjj+swOeZ/Mn5aIBqqBWJtXwg5stjbxQtl9J6fBo9XgUaSkGw9PfYi8Rn+nwZyQs4EmienUUAyXrLiEzrxTXrvQ0k1VAhu9Ipg/0Q+CKARa57oaQl46uibtVYtZcvuBIbn3YUAEa0Z9eeXyu6FzjJmw/8HBhwwjiXMCBw7om1/h6w60nnzeqY1BFIUPB+ZDrLQZkFRPXeBtKuNL9/Gm7flWoFDaZUHnONQi+ohMjlLMpkBnjImwMtWtcdi/LL+XEreA8d9SXohyoup++xFyqU6yhm1kpVJDuXAihV7qFqJrBpP/uMMhvCS6LfrebdWFErn3buceirUVam54LROXNZdszTBPhkh1YWFzpvlVATbldyzglIjbCtzc4DzjnnHFx44YU44YQTsM466+Ciiy7C1ltvjU9/+tMuAjXS1jaImjBhAn74wx/i/PPPx5IlS5BlGbbddlt0dQ1f6ZNjjjkGxxxzTL/rNRPiGgrjMzviEmSqZPYzwi7ygWs+eUI2AMcL4NlxlE1H32MPAC1vNtvzD77wicZTiANRS2o7IoUKaUUjlRSMU8OKCqtwwAn0oBjvhbSVHIk2CmlykDAezHN3PKmevJI0EJAnsKy4MZ0HApaZ8zCVP1gJFGRs8AmI2cQtycOynLBf1AmzA510YV4ZCnE6L02ZdlixNp6uh7+XicZS31uGvShcXaIdxMOCZYAJKHKf+MDeypoN2qUaRZII7UWPy0AHc+d9ktJl4cWUiNGwLb/xiQDgOMHWNASAZeCpzHjYNHjuqNZyLrxd57VrcX4452ykvHhEDh9sG+PZlixZ4hLYOjo60N3dDSEEvvjFL2Lu3LlNM+2H09ZYKKSrqwvvfOc7h7IvY8q4IB03KpfAl1eqHTAEHEboD1Wd1BHUGLO7Lq9SD9DDhaUI514el5kVcQOEkkDdczz8bwzs5A8SPmhLJYCSbL5AkgEA135SShUecrxenlAClTTJdYCMa88P6mw/eRvaaEd8znKuSWZ8WNCF9OrtCyaOlr1w7i+w6VesKj55c3TNQNdtmKw6qcPVqCPz2k7aF3burAQZaGE2ow/TSkb+JuPK7WFmlAVwzvMjBYwOZ/4Esvg9akzmwo1kZaExrj9GAEmzcKHOkXCcrSVMFrTFyeAk2JpJkr3woDDIBFPF7fk+Ymsm7EnvpUTwfjTe4m1agaeyQZ28TgAAYyCltJnGNS9R0QqcDJeRd5xkWkgfTCo+4QqfN/Q7P2fNvH/2e/n1523GYTuvzl/kg7p2k8q44JX9I9l6663nuNebbropHn/8cey888544403XGHikba2QdScOXNaSgYsWLBgUB0aS2bqdUh4FzifBVLpF/7Htr8Nb4aL0QaVtOIGLQJSZZlCZLHODQ1SIi1uY7k3DOCwsEb84LaDOAJQBYTcDxkNRBS+8651z4GSSQVa1+1+EYYehZSQKRxxPlYp9hljEgaNgGBPnhLAPvgs4MtnvqbehBczNq1jUofLSCTita7lMhIpv1ZeAsHoRl7rzl7zTGdIJyIAWzS4U9hEpSI4byS2GYbtih4j7l3yfCgJ4sJxjhqBIb59QgO99PeUUvn6VNsw92JxDp6re6gEdL0GnsxAIInao/s4LhFC4UH6DoTZm7y/odetxPuRg/vif0Y5T6vbNx0reVH7ydzjJtOK85z455MqXBvyOgklIbX0pWCUHHHvOQC8/eITAMBmjGrk4WnlREnrvQ3kzEcWdisp/ZIDqWbK8lLJwPtdKJUDFJbHoWOlZACY4vI5I2UGg8+uG++Qb8aMGbjllluw88474/DDD8dJJ52EBQsW4JZbbsF+++03Kn1qG0S9+93vDr7X63U88sgjePzxx/Hxjw9PVtpomCtYmrvAgTAWTsU8da0efB9O2/QrR6M3z3biD3X+x2im6WQfJlZZnA8YUsmi5op7IKmAvBkrQlPqbwAi2aDIU8oDoJaTSjjwoT4aGrxSBeSJF6RSTf1wadk6fKj52l8V119ttPNGUR94FhknZI8HU9UEycQUpqbdLJ4yEXmqPgfV3OtHgEZBMW9kWF+O1qfzRJwyyrQjDhtl6InUP0YSJmqaVCtIuuyFq+fnmMKQQHiv2JBsJfCEcZ4SlHJeMNKRUonK7xPNjo1K3cgcSAGNHkayV8IBfwXGCcs9W7G0gM0ctMG+wPNkykPWdJ7LjBIp6ByGpWrKvV3xb/wZFA/+9J0/s2IBzdjjJBPbnh5Bjs92F34WIq1A10JPen2V/cMTkHLnh93TZRl5ccg/zpb0hac9eOTc1maeO/5Zpkm+jXYT5ZEuQqxNBj1IFDXY7VvZ2Wefjf/5n//BI488gjRN8cYbbxTWef7553HCCSdgwYIFAW85TdNigyV2ySWXoLe3F4DVeEySBIsWLcL8+fPx9a9/fSgPZ8DWNohqVujvzDPPxKpVqwbdobFmpFQOIMjE0zVbNqQCG86L9Y2G2jY+7SjonMPCvUMqH0SA/M8Og41POwovnfdLAMBWZ30SrwNIJiZQiUINNZf1ZLcJlbBjtzgfmAArL8AHLE7qzLSBrFZ8+EaHHgD/uWSGnlSC9ZznScqg4ryQ1gvIH5CW7Ou9gip/UGrZKHXF0+yUQOFohDHW1P72xUuxzXnHo7emoesWSDl5glw7Kc4o8xyoDELROfalLLikATcub2BFMpPgd12z2XmhErR0iQYEulzWXaI8MKtb+QTK6uNgTiSVILRFywk0ZjmoI+0w7qkQSiKZmDpQSF4rIAxVulCwNq7IMv2rKARq+2g9c5Ri71TMtf8PxP8hvh4vMRIALcnrD4Zhz1YmpIRMkmAwt+ePUu4VA32eA2WM9WA7L1yt4UpbEbAYKcVyB3LqDZcpTOeQS6EAvswRqby34prFaubEdeQipD5LMdTXigFYmamkMl7ok6NitVoNH/7whzF9+nT85Cc/Kfyutcb73/9+rL/++li0aBFee+01fPzjH0eWZfj+978/oH3wUm9SSpx22mk47bTThuwY1sSGrHjSUUcdhT322GNQ2XBjyeyfTEEllUI2RqYNdG8Nla6qBQ7MNZ7V682aXGPb7Gsfg4YNIahEBZkrktUzy7SVGVDKgq5MG/Qp6fSASMk55jVRMVddC0tz+JCGz5Jr9HheFA9L8Jm+C9/kTxzqH585x5wDd97ZrI5CppRWbAA3mzQ9Nd9W5G7nn7kXitoiUGa5RBYIbHfhZ/G3L1465NduOIykGWwYK+aKhJ4U0nryGjk56EyARm8NnrjrQQltI5Sw4c9qEszuZZoDh4iwq+s6kC0QUoSK+FVPhnfCmnnoyRY5DnlstD8S5iQxTXf/5iBCVW3H670Np7NktHF1+SRTLLfk9pDjV+nMj41I7qmCoP8Tu3f5/c1D1TwMWmbERYtLx5DciG2jGFrn/xf3/MlxLHlGHJDTvs5nmWW6nCjt7pu0AjEC3qh3/OgkIPXPGJ6RqVLpNMB0aic4Jn8mcSHXGLTzc0hUC6MN47j5QvJcH0swXlhML4gpHDwcSu+mVocNnY4MtMqGIDsvG0ZiOZG6L7/88tLfb775ZjzxxBNYunSpq3F7wQUX4JhjjsHZZ589YCmiJUuW4Gc/+xmWLFmCiy66CBtssAFuuukmbL755gX9ypGwIZuC33333ahWq0PV3KibSiqoVFPHORBKBiE7mVTcIB8ArEatWZNDYuQdimuQGZMV/vhCSdS6a0gm2icv97oIJfLQinSlOOwDyH/358KGfpKuDqQTEyct4CQHcq5MyLvK3ef5AJNFoQv3SiOBRlVM5VbVDrceXY9iiQYFmSQOQAkpUelMkXRVbcmXahqGPqR0dd/GkyeKTLBzRjw2Dnwq1dQtA+BCXw5ophU2sIiA40eeOgKdlc7UeyTTivtvVDoTt57MuT6u/AzzXBEPqNLp+YX0GwEF4m8p1h6VhuHbidzTRhMDOi4OlAB7j1lAFZb5EBHIpN/pPFA7/D9AIMmVqsn/O7Rfex2yoD3hMkt9QkUzbTbAZ8n2dz8S38kBu9zbJNPQSyil977QZ8A+t+jFuT3WwzX8BYllkjiPPiW16IgmYO9p5cLBdF/QdZfKvxM1gQMo96wYwP/ahT/zkl7cYyXYeTPGhv5sJQQfLh1J09nQvEbL7r77buy0004OQAHAAQccgL6+Pjz44IMDamPhwoXYeeedce+99+K6665z0a9HH30UZ5xxxrD0uz9r+18TC2pmWYaXXnoJDzzwwKjFJIfD3AOIPVg4mZD+dDa0V4dKE5fp8t5nr8Mft55f1uwama4ZUBkTAI5QDhZioFImtE6mDeq9DTR6rC4Pd4s7cm7CQYVwZGU6fl3ryT97EcOky8/6JePb8AcWnyHTAzHIyMpDbnwWzGeD1F7gYUnyQZc9+Al0lRJOlXIDi72OCXRvHzRlIxl/7gCMGy8U4Hlvum6c6jz3CFY67fUWWkJVw4ESQC40ac8dnTkb2iLuH4KQKRAXsvXeDzKZDzwqrUAmjbyfFTR6ci25zsR7H1PPUyGrVFMbfm3CUXH7iPkwKryH3bqpgtDChTqd0Ka0sheFbXQs6CpzPlQ930/MUwrbcFliUQkREsWlRAdOdLbntZixyM8N/Q+4ETenbBLngFUagiQuyBnzfeLJ10hYo7dmS/R0Vpj3Gi47Dyp87iiwWpBRyZrYaLmqJr7GHZMsiMnlMbcMADjvCQBMrY7MGP8cUkXgOp5s5cqVwfeBlD8brL388suFEmxTpkxBmqZ4+eWXB9TGl7/8ZZx11lk4+eSTsc4667jlc+bMwUUXXTSk/R2otQ2nJ02ahMmTJ7vXeuuth9mzZ+P3v//9qCHB4bTwIR3OTpo9dIYjcyOO33O+Ev1Oyyi7JdOZIxz7sh3xTDycsTnujLSudRf+i2apfHZPg1ugIyTjQq1lDyo/41O51y8+3vgd8LNHlQNZwGZSmrp1r6tqh+NYZTp88PFr0zGpw4Uvx5PZDEPveeFZeWTu/LB7NTMm+E7ruNm481rZ86pKrgd9tn2wXiq6DklXFZWuTvuee68qnYkDCnz/knm5PPfKe8fovgwABTvO2GNjAZwKjyGpOC8qAe5KZ4KkKw3uXfsuAhDm+sC8HNzDxF+2n9zb5YsPl2lehcfgkwDIO0TnRnHPCDteGsBjDhN5Yvh65GEqAxu0D8W86iNhFgB50EkFxGNF9/DYvSex0pmGx8nuEQ78K50pKtU0omLwElMq2NaruavgOebWL3n2S8mkI4bZSGxzsC8A2HzzzYNx/Nxzzy3d55lnngkhRMvXAw88MOBjKMvsz7KsZcY/t8cee6xUmXz99dfHa6+9NuB+DKW1ffWbxTv/0Sx+oPAHEx8M7MNVBetkfT1D3h+pBOr1DAo2LOBUuPPYv64bl0lEatOqajOq0q4Uuq5RW1V3gnUUZnCzwFqkAaQkZFdHkL3CPRdU78zzEYrk7czk3KjcHLeJ8aO4qrLlGESzZPaQyhihVsI+9FRSQR3+fPOwlO7uRaY1ZGq9UBZM2cwOR1zPCdXTzj0Oz3zlPwd7mUbEiFxudOZCq1QWhmcsAsgzoCJPRf5ZMqBJv6nA+8dAVASAZZr48786vN85N6dSTdFAzXPico9XswGb3yMEpKw3M08WAJHofUamrjdy4FG1CR91S5pGreHu4UZPPQ8ZVvJyNVZ3TFUTmO4+5y2NPUNO8oFxrWJNszJdK38uilpT4e+hThF5nso0iII0/JwwTteKzg8PZ8eemszkQDrPXo2v6UiAAaEksl6vC0XnlBILVCJdVq/jgzEahSKgmYZeOBNxvvgEzYBLeajCOeckffqNi5IKFi5VlM3ISoCNFPgcyuy8pUuXBhykZl6oz3/+8/jIRz7Sss2tttpqQPveaKONcO+99wbLli9fjnq9XvBQNbN1110XL730Erbeeutg+cMPP4xNN910QG0MtbX9r5k2bRruv/9+vO1tbwuWv/HGG9h1113xzDPPDFnnRtOEKIanVBqGOOI/kak37MDTGFpyeZw+rWvapZcDcKEccoVTiK1jcofNhnIDR8RzIs8RAxScUM4fTJnxxG738FEGqMFxjnjKsFASChVoNBypVSYViKothkoAyg0eUiLLwREZ1frixP1Gb54GnSaO66GqHY7kqappkM0HhKRaGnylktBMJybpGl5X9lAb55gFWWH5IAOQd6ZSCAnFiRKx58Kwa8YHFzrfVCaEeFfKdED32sLGUnqgbUuNVFCBDd/wRAEH4IxPzOB9Ii8MAIgIDFA4mI7XyTx0dUJVDXRvn/euJd5bWckJ6BKASCvIklympNdqk8mkgkzlofMcjFhPlvHSIdoTmH0dyPhzUUqgLCOVrhG98ywy/nsMpnjGsLtuDBSVgWM613Hf+Ps9+49MlpO9tyzHUiqJendfnvRQBKiAPzcmT+Khe5KyFE294ScG9Kzg3qWSyEBLT3fsbUoTBzDj54tQEiIbeX7UYG3SpEkDInJPnToVU6dOHZJ9Tp8+HWeffTZeeuklV6Ll5ptvRkdHB97znvcMqI0jjzwS/+///T9cffXVEELAGIPFixfjlFNOwcc+9rEh6We71jaIeu6556BLChX19fXhhRdeGJJOjQUjTkFhuZLIEqtxErvJM21c9szcx3+OBTsNXjdry298Appms5KLH3q16TTX4ql118HDBQSgVJoPCKnnYVgicDFUGZSyiR76NLBRDS5TazgCt0wSG1IjD0JSyUUvPdmzUu1wDyF6kOt6wz+gUAEYz4MG64Dbwc65THymnUwTN6gLw0NAlMWk3DGQPAXN1t3xjiPzId080cDY8K3qsoMMza5V5OkjXkcm87I/hZCQygv3anfu/G8+rMuvTaWawtTquXfK+mR0Hj6k7RyAqnqwyq+LDcWyUhrsPnPehnodqppCwXsUTK1uwzvVDgfg+P1B4ZmkC+4edYAjIRCXD8q5pzUANrnAK91r3KNUqabufqfJAnm6uEeQwBFNAIBo0C4BUPy68IkMmVX995MLnqkaXk8vAZKxa8I96c0y94bLyBPIeZGucgHdXzkXzYVbWfZgoaxUDn65x8iul5PvkRS2ARB4m/h3Io2rpAKjZBAStN7aNHgmyaFLcm9pY7123vPPP4/XX38dzz//PLTWeOSRRwAA2267LSZOnIh58+Zhhx12wNFHH43zzz8fr7/+Ok455RQcf/zxA87MO/vss3HMMcdg0003RZZl2GGHHaC1xpFHHomvfe1rw3ZsrWzAV/+3v/2t+/yHP/wBkydPdt+11rj11lsH7NYbDybZgBEbPXhi0UeVD+KQCiJJhgxI0T65RlSlM7PidEoh6UoC0i2BJJp5A3BhMZthQqUVwtk9ED6YFfMQGMANgBzIKOZREloWeDQEsNzASBpO2qbXS+0f5pzjkCnjwhV8MCbgSiEbAmSVauqEA2kdOn4KAZlaHZWuTgA90LWG89I0ehvQtQZ2/Mkp+POx40Oig1LkAbq2BK4bYRguHlRlOFibXCxWsIEDsIN06FWyEwQCqVLn/wFVnK27dWBBi/3dD5i86C0fxLmgIZlKKk5x3HHeWMi2rg0qefZmpq3IgCnh3lHlAeHuNx9yTLqq7hj5lk47KCFuWcUdb6YNRNWrWRMop8kHvwbcO1IW1uPg1IXi3D3fWn+OA6i4VBX/P/F+0LKybYfTdr32TDTYfebCtsyTHYNI/nwNwSKbKLD7ie4NU2tAsBAwv6d4tqLKATAHVPReqaZNScPO+6ckKv1VPx4iG4rsuuHMzjv99NPx85//3H3fZZddAAC33XYbZs+eDaUU/ud//gef+9znsM8++wRimwO1JEnwq1/9Ct/85jfx0EMPwRiDXXbZBdttt92QH89AbcAg6kMf+hAASwyLlcmTJMFWW22FCy64YEg7N5oWk0ztsvwvVQgvaKg4U0MqiI7BCXBud+FnUYMFRSq1WUUksKgSCZNaQcOOSZ05QPFZP0DolnYzXS0hVPFhK9iAQQ9yImSTqaQCY2h2B6DaEaRam3x7CrUZUwRmBb2tegMKPN0+nBm7bdmDLxwMfdgmbt+FZJBzxZRyD1A6H6ragaTegO6tQ6d9g7peI2lhnUGDJOf+WC5aOACH9wTVDpTRAEWDUuQNyrfThfBUeK4JsNIy+l7v9pwTg3qQGk73E+1fJRWIqvXY8D649XNvEwcDKqk4nSjql4jqW1qRRO+x5P3kWZymVrfe0/zYJOBEXPl/hLYnTxcQCjryiQQQhpCDqgdEE+DeuTyE7cUzy7mZdB6595v/Hm8nWXiUn1sbskx87c9hst1/d5YTqsyMgaD+1BqQnakLI/PnDx1HHAale6WhvQ6Ugn828bAm/f+l9F5vd+z5RJiSENBbCzxRjqzO+E/BuXPhvrWeKMDypfvjTG+xxRa44YYbBr2vadOmYdq0adBa47HHHsPy5csxZcqUQbe7Jjbgq08Pu6233hr333//kMVJx6o5NziALH8wuj9Srwn/VJErPWvUACkhOjoH1Qdf7DgXtqzlIpisJpRKlBtERB5ec2RNTublD5doMKSHOIVkAP+QNqycCj30+Cwuk5xfoZwHSEiZk+D9gBGfX/4OwOm76Foj6INgAyd/cEklgWrq1Jd5ezHBmh6WdB7oPdM6X0ej3t3b3gUaRbMPcTuImJp2YTVV7UCmdYGMy8MWxKmhMJvJ32OCOX127VTTQHpC8/BUxN3hxG+Re2gbvWz2nodEpGHlN/JrUsmvaXyPVFTqBj4aIPkARiG3MoI0HR+11cg9oYAHlFJKR0Hm3DDJgLw7vqoK7jWZVvJz7z125FWjxAYO9tzko2TywENQHHQahF4Udy3Z8VNbsYitu5YsjMmXcwmE4bBGTw2ZMWj09tn7tcvfU453Z4x75hFvzimws/shzkzMtAlI4PF9SNdSmBCAu/YSptzOCjJzo3Yt/8pP2GKwutaG177whS9g5513xrHHHgutNWbNmoW77roLEyZMwA033IDZs2ePeJ/ahtDPPvvscPRjTJrzhqR2tusGhpKZBz3c3XaDdI9vfsYxaLDSFbpuvMgf/flzTgyFtABPAOegj1u6ThcavaHHhVzpNMsPiKf8c/QA51wEAFDazwQ56DFsgOTb0rvjNUWzPcCCJRsSzLNiUL4ufW/UvBeCgFajpxaAgUq1Azr3vDgPQVdHwFkZy/aOH50EwwZ2gwYqnX6AruSgmM+8lcoHTzbgABTqyq9HEoaT+EDvQ1o5IFEmuOf4PVLQUysBNw4s5BphHEDw7Xg4l/c5Dvvwdmkdeo95b87LJsPv5MXiGaA27KwcELX3czTZkD6DVFC2IONnSSmROR5hPeJceTcSgVrBrlUQBuX9z8+VYV43SnzhMhJk/n+Se8eVgtEasqRY8VDb7r87C7V6A43empuo+Akey5bjXkrmnat0daLR7UPwZd52gHlX8/vR1BuodFVRqaaorVxt10k8BYALjtJ9zidpMVDi/wuyTBtkGFh6/mDNmCwofL2mbYxnu+aaa3DUUUcBAH73u9/hmWeewV//+ldcccUV+OpXv4rFixePeJ8GBKIuvvhifOpTn0K1WsXFF1/cct0TTzxxSDo22ha7bMuIl7reQCWvlWG0hshnKQYNKKmAQaiX82KygK1yXp1iHwg23BGWkbDbSIA9aDkxl2bEduDyIQ03G06isA970POHSSWt5hwpRizO3fGVzhSNnlqgQg62bcBt4CDI5F6vfABwJPIqKY5XHFhQKKZ+O24FG4DpfFQmWL5LAzmJmB6UdQRAYbzNKsmbU+nqzL0cNkOOjqFMQ4i8EMjBIuf1xQCDX2NaHn/mgJu3AcB5FN3vOhyI4nNNgxYR/+MQCb9WSVfVZeSRN4zvP87QomPl56FSTQuAT0jbdr2719VJU9XUJSyg1rDASIcAjN9DNBkhi3Wb/CCduEmLqYXn2YW0onPEJyJ0ruJnFG3Riuvk2tW8lMrw3fveG2wz6VQ1CUKhvE90XripqtWFavTWXBao3Ybx4yg0SpM36cF3peonSEJJIE+eLisgXKapFU8eYw+pqY8MJ8oMASdqnGMoLFu2DBtttBEA4Pe//z0OP/xwbL/99jj22GP7xSbDZQMCURdeeCE++tGPolqtNi1ADFi+1D8KiMq0cYRWLwCooNlM3all55NJ/6dquBn+fkuuwa3bHNbWvrf8xicAwGkA6bqtlZZOmuCAUW1lT8DrIdkAmSYuLOdc/0nolZBaujCdm5WzQY8/SGLgE3shAn4KhRVl+MARUWiGiODkWZLEWdIGIvEeiEqnF+CkQZSrb9NAE+83Ju9WJlQh84ewVBKNXD/KufoZKXUwNuMuW0RTJhUs3P2zg2rr/2/v3cPsKsqs8VW1L+ec7nSHQIAkkoTbgMPAoKJgBETuICroeBsZSMRhfnhBHS8o6kiYx9sIqJ+MzuBcEHz8Bv1GkBEEuSMMgoAIqICgxMSYCEIgTae7zzl71++PqrfqrTr7dHc63enupNbzdNJ9zr5U7UvVqvWuems8oPsBmIzKXUKmgAs7j0UUbSgIsPfFfsdCo/T807eUGJOOQfeYnjseXgrVQ0XPliHLXOkt2fEodMzJQslJRZb6s0tpm6YflgP8zpJIDCf/ti71HAkzPUsA0swyrVLIPBWVXTdvfU1zbcL3pGO2b+m3P+HAju8b3iMiuJWz/Cj8mLtlkqYKh1z/BTuQorLq5Zga3jIq1E7RNhS+o580ryPtraO1cZP1LZVssMXrSESc6toaHPKuWVLPLfkOc2qFgwEqC/3eQf4TCdGc/PVSI6qx66674le/+hUWLlyI66+/Hl//+tcBAJs2bbIzkbc2xtVr8BDe9hTOA5jHxoTJwhEbycdJ5qaD26nzW9AnJ1licxcJyo2UZTa7MADbUKT1HK2iQFqv2fCBpxLITu8FmITNpzvT/6Gngnd69Dd9Ro2/kNJ2OFWNkj1GIpH390IV2iOhGzot8yfWP9P0Gzc2auersMsM2hdliCuF/qjxk0mCwkxrp7Jm/T021YJIJFqDwzo9Q9PPLzVeHPnzf0Mx3HQkQZY44l69jMxUkCneUbcGhyCSBHl/L5obB1E2W0h6Gzb0w8PM5NUhyCxFUehny1tuhd0nWibHyw9WuM5dyFE69EQbfgGjWDISQ+ezRKZwKqE3fZzIWeaURI60kdv3APCJvCUHLPM3Bx2bnvWst65JdZdwEb0vgJ7RRws4l5TgM0utMZ1mmHptApmWpcv4XnAPTtZ5Pv5/YghPCV99rQph2s8Kv85e/StUl8lGWq+hLAq0h0escpTUa3ZQo4rCpjWxA6MK5cfWs78HhZl4wEueMDJI96g91ETZamPE3KcweWzoCwvBST4n/jzMPJ6ByWRhphvLtwbe+c534q1vfSsWLlwIIQSOPfZYAMA999yDF7/4xdNSps3u5v/xH/8RH/nIR9DT0+N9PjQ0hAsuuACf/vSnJ61w04mw0eWNIf+OXq6yKGy2Z9sZyQQoN0/q3f0zZwBS2IVdRVKdhYQaIiIfXuLKihxXXgObaDUqrKNMJIqielSqitKFCisaOd0ZJd6UeFueRHrhNgCuw5FSzw5qtc02Jp9TUA46dlWyOwBWoqeOgZNaW366doY4ts3+REI3F6+++2v62LlbywvQSUi3VsNqs1Bnc0zYQoc7QlXEMyAHJvwQoULS8X3QuYfHp+9C1cR7Z7gfqZA2J1nHPlJ2PLs8fEbpBez3LDzj9m3bRLGU/TxUX6R5ZkKFLLwu/Np55Sql+5+dH3BqB9+v6r5QOQCe5z+YCEIqXFi24J7Q+1KlXIX7TWUom9Q7wM/vNN4UDoSyKJEY7xkpi/ZYRECZOh2Gcvl1sNcqIFLh9rwO9veq0N5WEqIKpVBsIQna0v2nGytXrsT++++PNWvW4C1veYvNtJ4kCT7+8Y9PS5k2m0Sdf/75OOusszpI1KZNm3D++edvOyRKyA4plxp/Gl2RysFBXpIkyXVWYbl5EmOSJ3pEbM6d1GtI6jWkvQ07agP0SFi/7In9m2aphR0P/W87hyztIIPu/P7SL6RGdJST5bWh/3lzxBuyULHgITkKKaTGLyESk3vHXFs+/VqajOSq1BK9PRdrMLPehq+UJBIJMiADyiy1x1VFiRROzZN5tllhjcPvutgk7Swgh7VJt2NWUCJxxL3/Mqlq1IHf/gSK3oZNnEkoW21k/fqd5J1G1t+jFb/BYRuCS/p6vP2q8kpVkdPw+25E3fPoMM9PVadF23APUHj/AJh3Idf3j/VaRIJtnUu/w7Qzr+zfncSCK1xh2DNUpfiajFxtlfDXGrTKRc5C1dKFnnkCR5qgQefjy92E+er4+8rDkCFEIq3nKSQQYR2ncoq+e14SvQB4q42k2YLoqdtwb1mWXuiTiEnVfbK/s2s/FmRwX7zyyc72sTCLoduJROb+lNxOwMjn1howRWi8+c2d9pgw7dLWxGa/Pd0WC3zwwQex4447TkqhZjqooycFitQAerEKswacGN6EZDPSHLz4a2ejnUiTEFLDrtQuSxTQhmHyUwjpVKrO0Xd1DB+At3wNjcq5lE778lBaEYRfOKyhNk+RZBmQJP4070A2L5ttFMNN71hpo4aSZdfmZZfQxv204WbshB0yhRHJ76CK0ubuouNkpGK16B7mNmSoihKoj2/pl8Pvuhhls21CabKjcS+lm2QgEolX3/01/PiV7wWALU7ASh4SCi1TBvL2cNOFVRPdWZfNts2RRPeiLErkxmwPAOQm4cR2LNhZSux5AWCVsFCZtGXKM/s99+KEoXB+//1OLrGkmA9e0nrNEm4iyHwfJAlKWXjEnJ7P9vCINopnqX2XbXmT3JKvkIQAwYCDKaScuHB1lxZppjoXrRbSMrchPerIXUqFThWPriu/D3Q8PtiQWarbIboP0s3E81Q0KSE2c6A3Xhz10H+iYCFOOh8lRwXCHGadoVMl/ZAloJ9VWrC8imTZOg53Kn4hCQqf4aoBKJFsYczqZCmgyQ2jKX2TiTg7b2Zi3CRq3rx5dtXmffbZxyNSRVHghRdewFlnnTUlhZxO8JeQv+Tca1I19bU9NKI7sb4dxjzHK2/8Ioaeeg6Dw023vpeUkD06iWbBwleS+Zs6Rtt59UygjjpJiYQ1wGH4QY/uazaJqCpKyBZrkIk4jtIAElkKk/glWeYTvkARs4bSoDOXgDciTxs1OxIvi0J3IrJwjW9SdtSf19d2KL0NyDxFc+MmNAc2VV4vADj0Njehok3rdRnS6AhK4XXkpTHNE4761beAcZCU8cBOIMgypkpq8mTXlaMZb0iB3joKs34ddcJlUSDrbdh7xGe6AS5JKyEMa3DymPIp6ex32sOGaTNHbItmS3f4eVrZEMlRQj3Wd2iOlfCMk6buvBwUak+yzKqZXE0igk4KpyUrmb5OnAh45fDIvj8rUCUu3Eh5j0gpDYkMHQugDOlOMfXaIGYcRxN2/UcA9l0Vicnoz64fTwZM75w+XrLZavm4kWZIYNRO8oEZ36atA4P3fBUuZUNS95ddyft67LZtZhDn9eODWt4ekfKp1+wbduSqMKlhpFOk6DoCLgWIXbLKhFW3pgpVYBIylk9KSSI4xk2ivvKVr0AphTPOOAPnn3++t+xLnufYfffdsWzZsikp5HQhnM1CDSt1mECnxMwJhkwSlIMbcfRj/xc37/sOAMBhd/wf42Uasi/kyOAwNj21wcj9NS+hHknb9DvPXxIu8+CFJLqQvyqlIRx5UUMjikAVoOOwxptICwBvpGuvSYUEnwTbEHieFipHSNYANrWeOhQylJrZZPQ9T5ZYttou/MEXNTbHIPWqCstuvtDrrOiY1PHaddXgh1I7UJZbpEIdfO3nUPT3oGy2kSad4QSe4oKHoexyRAjCu+z/tLeOkdIlNaTRdmjG1edxuX3sd4lEOFWfrlWSO6LJVRoK5QJ+hyqKinQYLFsIlZkmdFQ9v3RODq9DZbmC0kbNKZlZhgItL39SeC4qG73rpALxCRyAS5ZLSxJR2Yi80fnCdzLJM6S9dYjBYbSHRzoyiofvc5XCVPUsh4PApFazvs1b/vKMju3Hiyp19ejf/DeQ5VBwYceUEahw9l3JQmi8bkkYMpYSWW/DqogdsykTp3jS+8A9czQD1FPdGSEnbxV9XhWypm3TnrohqkOI2H4xbhJFMcc99tgDr3rVq5AFS4Jsy6CGttvsLXrRqhSa9qZhyFZbS9sjIygAm/m2PdzEyHMvoG1Gv3l/bydhgZ9tmb/w1AnQ76OpUGEDZT8PZHXqKKgB4fl5bPjI7FOaRWx52MxT6IxCQL4YCsFU5cEh8kP14Qk6eRl10lO9hAjvmOl8ACBTvcAu+X1ojT3ysaVsrTRV6rXXUqPmvPS7n8YDb/1HAMBB3/9Hm9GbL0dBaoaXmJS8QwHJJRL5mp9dAqRb9s6IREKWEshTL/8Qn1nHR89Zb92qGqp06wuWReGNoun/tF5zGbsZMSeiAJh8aGw/rhqGipAl44ZYEqm1+1YQTiJufFueFJEjgU+gaDvBnp0wlMzPJ/MUicw9Akf3lT+H3EMkM700DeCIN5E6fo6QsFNZ6HicFHFlkEJxMs0gszYSGsAVWrnj5DCp53YAIaSfeDMEv5Z2m0lSoG7ZfzmOfvw7gEwg6BnP9UzHYsPTWskzMxPtO0x1MGqTMGQnMdeZ8u8RKlVARlpD3xj5z4R0ucSQuUk3ZavthWqrwrUySVDaAYq5R2yb0Ac61Yiz82YmNtsTdcQRR9jfh4aG0AqM1eNdjXmmgxJScvMz+Z3sNmw2Ggd13u3hEciiAIZGkDbalgAVzZYmT8NNncE4kajN6/PWw+Ivsyf9hx1Y8Lcul5+Th8BntnlT2uGP0u1otuzs8Dy1qiw7OsUQnlJll3KQnicqXOIjVDh8c67zg9C+AJD2aB9Z2W4BaQbRhs20bY9D65wxP45IJERdIjOpFohIAWZqc1KaEJkOlRABs6NnIglSdr0GdH2VLLbIEyUzHXYUplyEsiiBorRJIbUiZkgpWxw6VJKoHlQ+maW4+/AP4JU3ftH7DnDqH0iBLWipE7dEi2QL9IbeJk855IOCCsIfEmwKz9K95veuynQt4Uh6N88L78jD/UUikdRqUGVh6xkqYYDz4YVmdkv8m+6Z53Xk3iV+fekcMk/1c8zrmDGimLg8SnyAoYYD0zRXrILf7TUpiykJ54k0A2SC9gsvAHDezqy37qVB0fmiWjZFiJf9nrU14QQWCXf9iKjy68/Dl/QMWC9Z4tS7stlGu2ia0HzaQeA9UmXIbJJnaG4c1O1BvWbbnqlGnJ0HvOY1r8EZZ5yBt7zlLWg0ts51HwubTaI2bdqEc845B9/97nfxzDPPdHxfbKUVracaMkuR1jJP7eGqjx2RB7OybEPPwm3STMuVeYqi1cLIhhfQGhw2jUrDLhNRVQbbeDDFxRpa63nnPhUdA6lQaUMrDXzNM2oIgOpQX4iQ7IQNDv8/vAZV6gCvqy1D5od3ZJoBqSFIlkQlUG23nIvo7YcaGYKglBIyQdLoAaSEag77SzzIpCMUmvf1Iu/rRXNg0N4rTu7awyPIehvasMt8GHbWWLcZUuxa3fqSM3Hkz/8NR/1Cr3S+OWTq1Xd/DUWSoDZvjl3CAoBNcUEeIC/sw4gMkUD6vmpkTyB/GTeP0wDA6/gzP5UGJ7v8HFYZhL6uMs2gysLch8KpOVnqpa9Qo+SgsucPyAvfjnt/ws+pDPrvxJVHuudHmDrRPS5b7coEm3YwYN4FGkSlZpZtOCjgqjbtb5Wvphvc2Mz7bCDAjeAyzSAavVBDg9XKLAtb8e/sdaT6T0ZUgRExkWYQWY5iw1MYelrbFGo7zNGDxR369KmNIpf21iGGKV0FOu5nmFy387SJI6qSkWs45ThFZwhU1CVkK0Vb6hmDad1fxJr+F4XzdtJEkaSe28F0Us+RbCViUpYKxXZuLD/ooINwzjnn4Oyzz8Zb3/pWvOtd78IrX/nKaS3T2L1mgI9+9KO45ZZb8PWvfx21Wg3//u//jvPPPx+LFi3C5ZdfPhVlnBbILLFKBoVo+Egw9Fx4nQf5bJptbz02mpXWHNBqQlpBgng4Ieut2wSA/Bzc7yLNcWzm6nBUX6EUFSzMpWV0bYhO2HIw1MhVqWGd18pXfOizhHlBANPoy8TzGji/mSFHaQ7Z6IXM6zqkkWYQtTqQZpB1P62GSPXxZb3HLrEj8jpEkgBSQjR6vTKmPQ09xZzKwK5J2tNA2tNA1ttAY5d5aOw8z46YiTSlPXVbTq7khctHUJjBEjxzrlff/TVNEspiwgZzL5xbunUJaYSf5JkeHddr3iwuut9po9ZxH23YttRJQpN6rn1Cxq9D33EV1qpIgWrE1SciK/p6J450mb/1uROr/Nj7aX5CckrvHylgSa3mfedNHODPWhLej8SEnnJ4M9Pos9S9lzLVodu0p+GRRp6riNeXqxbhNaGyJSYLOr0fdExSx4jo03GqZs/RdURZOMXMXBu6fvx6kWrFn3kikeTX3BLcvNebXZnSHEgzFAPPoSz04tJZb8N6ojihK4ab3ozNSsU7SXR6kwr/WKhGhvcDcO1Tx75Gsarv0GcHkp6RHLDvi7U1mGcryTOkjVrHuSOmFhdddBHWrl2Lyy+/HE8//TRe/epXY7/99sOFF16IP/7xj9NSps1+An7wgx/g8ssvt7La4Ycfjr333htLly7Ft7/9bZx66qlTUc6tDmUYOx/9lcb4wlfxpqVgqPEsWm1PDWoPDrsEeoXO18P9LADcwpmFM0UneWqzehdNvQJ5lVlUryuljZRo+UoULcvBO3UyxnuSPlxjVLbadtaUSLQPg4yc9toU/oiPK0+u8TMdFVPSVFnYjiupu7CNVpoyiFKTH8gEIgMUy7YsMt2xqVZTZ1uv1TUZKfVisarV0sSJiENmltVITKNeFpqIpZkjWRQykYn2K5Wl9VEAOucUzUZM8szVKels6L2OzpyjHBp0Spw5tzKdnsDmj/7T3rp+nmjWklE7st66UxOpM68Iq1nyJTvXC7Sz1WRp0zEcdsf/8cN3PBxSEUbj74m9JlyhoL+DBLRCSusX4wQGgFMW+TFoOykhysJTXPh5FBFrUxZPyaBnX0rAPAc2tMW/A+xzmfZoNTT0cnEFjJSKjhAiD9UzrxifJZg0emySWaeSObLEr6kw5VVs0gkvAy9XeO0IajMTAY+JNIdIM8hGL1S7iZENAzZlQ9bfg5ZRUMuW8UfSZTdKHyl0JXyfGK8fr1HVwK5K+esGar9o1p3nezQWDpmnyJifTM/sLLx3QKZbZ7mRYhKUqC3dfyYgSRKcfPLJOPnkk/H000/jkksuwT/8wz/gE5/4BF772tfi/e9/P4466qitVp7NJlHPPvss9thjDwDa//Tss88CAA477DC8+91Tv17Y1kTViB2gMIYJRZRlR8JNTynKUrsmnd7WrWEXep8AeASHj6AptxHge54AOMN2QKCElDYTdNlqu2SWbKYhJ0C04Cz3E1RNM+9QHnhIh8IkgXfJg5QQaY5yaJNuiAyB4SQIAESt4TpcOiZtl2ZQbWgyZY6JstSkSSYQ9V67j8gA1YI+NhGqgnWYpU5aqtpMaZGJVSCKkRFHAmXiZjVRudzF0qERprJ0fNdq6X3a/jMzFtKeBlRZ2ISaPP0EPUOU1kEGJL2KMAPVM7hCIzYNEvh+QOArqxjh2xCZV4mAONL94Z+ZZ8Bmt6b7ExbUqHmC7icYSWPEiBM5IYsOYkflEm34BMpegwTK/I8kgTTkzJ+1SF47/TcpZP60+wQygyW3VqEDUDZ1aB9lgaRWc34oql/lO5S465XmEGVhQ5H2uTP/E5n0rg1TAycLIs0ge/she/vQWv1rjDz3ggnhuQS4qijRHhrxCDyt45fN6UXZbqG1cZMdTFLNw1CkNwCgcDAzjVc9/3xBbfrc/l5KLw8dtx/kc/s6yD8lTa0K8U4VIony8dOf/hSXXnop/uu//gu77LILVqxYgXXr1uH1r3893v3ud+PCCy/cKuXY7JjCnnvuiVWrVgEA9ttvP3z3u98FoBWqHXbYYTLLNq2QqQs7hfJ+2PgkWeYk86TTg2FXFjfqAYHCMNQxAs4rULTaaA9pmTvv67FhPd5wqKI0SR+H3VpkPKyUSJtMU5vYnVTdbVo0b5wAeLmnAH9UzUGhE6SZ1/BzI7i9bpQgsFaDbPTqDop5meh/kWb2B3QPQqKV1/UIOMshsgyqKHRIL6+bTkMTJ9HotcfUapJRo8x+MGqUtOV35UhqOjmgrZcJMdr9eOddRa5Mub1tZIIjf/5vHdfxuD/d6v19zO+uxtGP/V+trFDqjNxNy+9mkObKBODnyAqVE06ywnsr8xR3H3uOFyIazTtHamNHJ22uOV1vCtHa69Ru2efCr4t/zYBOtcqeyxBVTZYzu53IMv2T63PabczxRabDT+GzBbClSuj4tboN+XnlYCFL2lby5ynV55f1HvZsSoha3Yau7X55Xb8X7Phe6FFK+yMSUyazveDPI+1LYcrQ+0THmQQc+8eb9DXI61BFgXJwwLZPIpE2rxofzHGkvfreJL19nvG8CnyQ4E1gYHXp9MElXmgz3JeHWClULIn0m2cDqRsg2Xs7itIVMfl46qmncNFFF2H//ffH4YcfjqeffhpXXHEFVq1ahfPPPx/f+MY3cPXVV+Nf//Vft1qZNluJeuc734kHH3wQRxxxBM4991ycdNJJuPjii9Fut/GlL31pKsroYWRkBIcccggefPBBPPDAA3jJS15iv1u9ejXe+9734pZbbkGj0cA73vEOXHjhhcjzTu/RWBB53WuEVSG1rA9YHwIRHsCZcQG98KXNR1L4C6qGYTE9ojUKEBvdiEJaibk2rw9JnqFobuhoLArKf5SnQOFn903NavPNgUEIZnjvFoqg/z2/Evc05XVb93B/umYegm258gMpIXv7IOq9WgGikR7veMtCEyAzelbNwqkU7ZYjRIDpDEjRMqoPV7EAAKYjLQuoNIeQQaio1rA+Kl0macOIcmTYV5nSDLTsvCoK09mzzsuED22I0isHXbtEm8ylxC37naaPNeJyzhzzu6uhmsO6vmzfKh9GaK4FOhWnMOdTRzgXPmG+41VnA9ALLMNkgifwLPeqLD2jtr2PocIYEGQdcmvZz+CVh5EmAKCQrQmVqpHCKir6mSo8UiukLoMaGbLPFt1Lew573sSpnjKBMNPk7H2l7XMXQiZypT8rXR0qnnd7DK4Qtd211OQmc8e0z5L5m1Y9aDc7ysSPK7JMh/eqBjmcQHGCNc6160bDsX+8SV/fRi9ErY5ycCNEoxe9C3fCyHMDaA+N2PBY2WzbQZyXzLfeY5Vimac26SkN9sIZtWg5fxnQqaCGBnuueHZtA811KdstlO0WZF6HCK9RkkDPfDGEd2gQsrl1JlPpSbhbqkRNUmGmCbvtthv22msvnHHGGVixYgV23nnnjm0OPvhgvOIVr9hqZdpsEvX3f//39vcjjzwSjz76KO677z7stddeOPDAAye1cFU455xzsGjRIjz44IPe50VR4KSTTsLOO++MO++8E8888wyWL18OpRQuvvjizT6PHqHSSIR1uMaHoF/ItjZFMvOjM+G2tdk3T+2SKVzSpv9HnnvBnjNt6AahPcTmUxvILLVGdFKwSLEixUnmeuYYNShpb91M1S7RMgnheOiRQkBVZk2RVMjfppFW7VZHQ2RhOk0ANtxpR3S2MtJd11odIsv1yvRNs5iylPoc7aZuyBq9QKsF1W7p0XzaZZ07mViPDPmmPC8VKVBlATSHAXMeXW7q+M01Nv4Or+Pnigj5sUxDy6GIyFWFS1rVYbyjfvUtXYxaA0c//h0TrmxZD5itIutM+PlC75PvU5K2Top33qx80nHCSnQLW3iz3Ci0xjtpIjbmetnvKAQFONLrHdhXsTwzfkDQ3GehMqQnF9jON3gOVZn4zz79ntf1NaXWscI7JLLcu0dE7gWVNc2qyROBrpUZKMCEPlVh/m43vfpp9UqOHgaWOnTtXTPAdPzwn8lQ+Z0Ajl33IxdKrTUg670QtR6dgyyvo7boRRDJOjQ3DmqyxNIUyEYNEswET0SRDxZYSpK0vx9ot9DeNNShoNtwpgm3A44Y2WeWlLs2IBLun/N9dBomnGoGz951IkJu1ERL0rcCYjgPuPnmm3H44YePuk1/fz9uvfXWUbeZTGzx1IIlS5ZgyZIlWLNmDc444wz853/+52SUqxLXXXcdbrjhBnzve9/Ddddd5313ww034Fe/+hXWrFmDRYsWAdBO/hUrVuCzn/3s5uev8jrUDJAmQWNz2JptRcKyNBPBMZ1WMezUqNaGFzzvE3WE/P+0L7frvvGp4u1Nw7ZTJKM5qQ5lq43mxkET8utFOmcOmhue040WJVY0hEcVpVXKAO2pKVttgK11ps3TzvcVohgcsPWjY3oEqaKB12blojMEQw1qq6XDKya0o5rDtmOleyDrvVBpC2rTRsi5O0H29KHc+KxTaCTlbkoM6dBKge00TYjEkqZW091b6M6UN95ElhTr+K3qRY0zf07MPqosXWcI1mmXLrs9hRwtMSJyQH8btaFDkYO/7AcHjci9tduC0bVVRahe4TFMqJIUMcLRj/1fL1s7DynbEBrvsLnaCLAwLOu8w9+rwqDhdoCnJIks9+6ZQtBx0nU1CkR4vwA48luhgvI62X3NoIDCVlpRaumyGAVLAZrAU1mtl69TvbUEMq/r+x4qGhRu5oOO8DpR/bkaFt4Pe50DYtruHKyNB8f+8SZ3PczARtR7IGp1KJkCjX6gLCDn7IDk+Wcgh1wOtnyHOVZhJ+Va9s3TZZEJ1HATQvppIJJ6jmTuTiiHNyGFM/eTjzMJwsfhoMZ+bnyP3qSHCjJJijsNnr3BFH+urMIaQ3pbC2MRqOnApM3PfPbZZ3HZZZdNGYn64x//iDPPPBPf//730dPT0/H9T37yE+y///6WQAHA8ccfj5GREdx///048sgjK487MjKCkZER+/fGjRsBACKrOfmeNXSQEqAQD2DzyPCpsWkjR8E6MlqlXBOhHqQ9dZStts3rw7Noj5CSVZR2nS3KVJz19YDPJJOZW3SWFJvM5E6ifEY6M7quH88+zvNPqcJlEaYO0mZqZn4DIngyryORCYqREa8hsrl22k1LmqzaRReYRtdSQm3aCNUcdr4n1rBRJ0UNnyoLiJ5+yHqvZy63oPtkQ2cl1IhRtmoJZG+fGTkOo+QdGzWo1EEaFYEaTR3WKyF7+kw5Knw7bFSr7GcJws5ZAFDUqZvjlO2WMyZKZ6hWI0OQjV7bUdl1yJjp2J4/IXNxkC+Jd5xMHayEuRakgt20x5v8OgbhPsGJT3gPjAnbJyU0onehTUX30ZCQDsWnIzTmH0+x8HrnkugOduZeSCIqfid1ybtvrAPl95jvA0CHiNHsqDudo1PJLD2iD8CRJmYn4CqeqPeacOaQH8JqN9mzJ/V9NqFw1Xaf0/UA4Ct3mwGtSJvnMK9rM3mjV187IQFV6nflhefMYNItMJ3M2wVJcG0EqZk0+MnrSAEUsmkUQe1pFGUJtJue2VwVpb02qt30Bw2lm0hgbQAU1iPyDqDaCyc98umFn0ntpu+yiV3HzcX2qkS99KUv9dbqHQ0/+9nPprg0nZgVSS6UUlixYgXOOussvPzlL7fGdo7169dj11139T6bN28e8jzH+vXrux7785//PM4///yOz2VvH2SjRysbAXiHn9ZraDadGTyFHjnVduhDe1gvQpz3adKX5CnqO81FUs/RHhxGPrfPdopkLM2LEk06xo5z7fdJPdcjPgojmHBU2ps7j4YhH5lpSJrPD9iV3GnZDh6ykb369reHRpA2akh7jNpWln7SUMrlRGqa6dxklgYj7MQ1UtDqBqUy6Jh1VZa60W8NAlkG9OjRK3mNqLOAlCgHN7rOuSxQUtiPmYcpFEgzwFS7BZC/yPhpRAYd4jOhEgWjaEhNQlRz2MrzIkmgqD7mulPHT7moVKvpzehzz0bdkZ/Q5wWtvjnS5xNQasztdUpzwPhgFOA6EDJwU8chffWJz5D0vEbSJZasBPv86N/8t/4odSE5CtG67Rk5sgS5M3xlQ2q5f20sgQq271BSEJjeeWdYMkJF25FawM3rIQljx/SUKp7ks+I6uec7A5gPkO6DT9rctfMUDQTKJiM9woQTZaNXH29k2CkomSNdlmS1m5rAebPw/DqEqRKojCFZHhdkApGUUDDheJr4kZo0G0qTw+HVq2zb4e3e2+e9A75SS8SxRDon7yA4qii0GV8mKIb8BcO92Zll6dJmcIIUqkZ0/NRFElRZajLMB2VU7xRQbSLmpm0ogmNOEbbXZJunnHLKdBdhVEwriVq5cmUlgeG49957cdddd2Hjxo0499xzR922iq0qpUZlseeeey4+9KEP2b83btyIxYsXWw+C9dRUZGK3xnFmfNRTevtsOKxVlGjspBdrFonUCRvTHJltZFuu86vVkUrKM5NANHohR4aRFHqxUG5eFvVeZ5QcHtSNRllY5QZAxywWb4mIokQ6Zw4AIKkPWyVLjQwBZsq1N32ezZYhOd3Ck8X90Z2dMWcaKgEKV0nPzGvvF4UHKA+U+QxoAXldEyhj+uZeIRtuyzKokWGIPNGhzJEhqEKHCV2jXTIzOJtGnmaeYkHhBvt/rWFN7B1Tz1nIAFKa/D2MYHmqirTlJx8RkZqb930Hjv7Nf1tjtGeqNmUEYKbkS6dMwvckCXYurxOidAFMXVGGfMtGL27a40045ndX622HBh0pojKHISdOkLuodPQ8CnN9dagThvz4oUKrmFHKAYYORYmrBERY2ecAzDPH7lGgDHI/ki1HmtmyhZ4p53eTdls/q7b25YXqliVNtbp9fkWWOzM5L6PdB25yS63uiGyrVamuKE9ZajlDNb+ONFGDBh3jxDFrrsFNi1+n/2i37Ptj37s006E8VQJl25afrAlZX4/OD7XhKcjefmum16lOBp0CSETPzqbMzYCRERqpvV+JnONbCNLMM+Fb3xntY96pjjAmXRN6nqy/yhFxem/CMK3I65By6yhR2yvOO++86S7CqJhWEvW+970Pb3/720fdZvfdd8dnPvMZ3H333aixDMUA8PKXvxynnnoqLrvsMixYsAD33HOP9/2GDRvQarU6FCqOWq3WcVwP1JgBQNJwki4AyAS1HeeiBt3ItTbo2XNJ7xyIRC/FqorSS2FgVYNcN6bO75DZEJZOVmc6nlodCWA65pYJPUnX+PPRcOr8E6ookM1zDa/93tSnHDRhy1oDSa1uZiNmKI0vCUDHTEKRSL2UCoF7UgwRoLKroUEb9hRslAdTbwB+BnKZ6LxPsvDCF/wa2WnpVN8wRCTNdSHztvlbE8umUW/MVPaKpS44IbH1ag53kC0KLwKsUQ1SX6hWNYGi66xMaEKNDFvyR7h5rzfb30kNolAF5cWyuYtYo66VNZox6F8zusaUM8uWk9WDVAk5dydW9mCZEzI9B/WyoaQk8b+jsGtlCCfRYSge1rLXiYdTE+c54wSJOjro68qVP9sBJgkUcqt68cEQqZAoE+avcwSNElp6149dL0tgmAKkiVnm3l9Wjo7nlcOoHPS7De0ar5Al2oGh3pLsotDl4IZ1ft2oLOz4m4WywDFrrjEqmbkmmSZBmuAZAmXuWTm8yWVQTzPIebtADg/qLOZDg0jMMyZMyglLWjhp6jE+Vrq+ZjUDkddRDm9CssMOQLuJ8oXnbDGtt5LautIpcNQeVIW07eDC3ovMay/dDMyKsLAcX6hpS1GoSQjnzfK182Yixk2i3vSm0WXf5557brNPPn/+fMyfP3/M7b761a/iM5/5jP37D3/4A44//nh85zvfwSGHHAIAWLZsGT772c9i3bp1WLhwIQBtNq/VajjooIM2u2wQFJ4wIxH6mL6nRsp4AZDmSMmDQwkfU7O0Q173G2OYRhiwaROsOZUUiDQYeZeFJiZlAT2VnxOj3L3w0kjT5DUiwkHhAlJKmsN6VpFVBlgupi6QWaqleNNBqFZTj0qpI6T8TACKdkt7H1j4QB+EhRpYOEJfcumNpoVMoNByjT4pL9zzY0atllTw+2PvhfPhiNQsBVOWdqaaYp2xd488xYE1qLLsaIhtuUZLvGfr4Ua7YSjr6Mf+r78MBw918A4+2I9USKtk8DBJOC2eldMqYH/2Nq+ox677EQqu2ljVwzen24SavIPm9Q0QKk88pNaxH/eeAL6Cxn+3dQ6OV7GtnUXH80+ZY/PuxYZVww7XnlM6JbgM7gW9x/T7eM3HXL3yQt/aP+WIRtah4NIECQr7ekSy4vje4GpzwAkaZY0nLxSVRUr7Tsu8bqwRvVBpZn2KHfU27Ravnx0QAHowlSRAvVdbGtotTd6SBGAkajQfHUDtnDlut3eVE3FeJ/qdrvFWxvbqidpxxx3x61//GvPnz8e8efNGjSxR8u+tiXGTqLlz5475/emnn77FBarCkiVLvL/nmDDUXnvthd122w0AcNxxx2G//fbDaaedhgsuuADPPvssPvKRj+DMM8/c/Jl5gBlV8Q7UeGKk3yBK7OD8Cr39HVJxOmeODU1ZM2ZiYul106HTaNPbUU/bFXnddoilTLR6Qw1/rQ45ZwdjNDWNE207PAiR5pr0FIUORTEvhGq1UPxxtamf8w6oVtOGJQF4ngaR1yF6+jUBMApBe/AFGxqUvf36GgCMfJAnpLQmbRpxWkLXblpFh6Z5E2lRZaFJKMBIVGK9URT2tK8Vmf/NfVNsJG+JmFGmKtURQwqJPNsknTTFvCwBq5YF06elDiGCqRCKh2dkoK5wPw2pU0HHRp48mfvJPT1iSqhSGHgYgxFLmkWmn7VAfRvhoU8qD3tGKjOIMz+Up1CWnaTGqAKqLD0vCm3vgamrvqEv6eww4YfFrIIIPxxvFU1SJdg19dImkPIV7OfOaZ4zbiymbZKG76esIjBS2nexYxt2Pns/TH407vdSLAuJ9fdJWX1tSD3j3ikEobqxQM+Q8ULpSQTm2VClJlPmuEk9RzJvZ4jefktekp0W6DqZySdkKKcEqFpRbGrVnaXkUK2mS1li6q/DzYltR1Vz2KX7kNJ77lTTEKOatgqoVgvYtNHLd+ZBJs7UTrN+CRT2N7aACZHRCWB7JVFf/vKX0dfXBwD4yle+Mr2FqcC4SdSll146leXYYiRJgmuvvRbvec97cOihh3rJNicC1W4CjT7deRkSVA6SodmFdWx4xSR/1J2TU6l4ZySyTrWHq1xe2MdI0eSFsB4pE7ZQZYGkbwcbxhC9/YaoaRKRzNtFf5fkkK0hIK1BCQnRMknsevtQUEdO5uxWU4evKHTFysQTKdqGKM2QjAxBJAnkDrvo7YYGra8JgO4E8zpEWaDcNOA+I/8LNfA8UWe7yTwhJmQQpAZQ7ZbuXEwDZ0fuYWNY8bcKVBi6pxRW0P4yNpUdYOdnhnFuWqZrVBZ+h031MF6NcKKCVbfSHBge7PDe2Y47nMFmngk/WWUVgWI+ow411CSRZSTg+I0/QUHPACVvpGPZ4/pG9SoFThNhF87yRvaczJeOVGulUIcLK1WCbkqpTFiiSXrXcoRKk1d2yQhW4KWiGaZAd+JU+Vl4f9j39KxZU78l1E1LaivVQtPxUyoQG/5Nys77HVyTKiLFTfp0jcdFoKQJ1VO+NWoX0xxKphCqBBT57XS3kszbBbJvnq5j3qfrw9pEOyvPQBjVyhIk9rmXz43aq2FHomSjF+XABruPHgyZwYyZlGPvr2lTyrJwA8IwbE3PJlvZwPdCZnbwjPYsz2A5w7F8+fLK32cKZsXsvBC77747VEVsd8mSJbjmmmsm5RzC5CeSvX06NcDIsPXU2BlOaQYEUr5oNz0Sodot3SkAOqZvlCNAT2PvCHdR3L/eAzW8yVMLyEMkAL2ArR0tZXo0qFzDKvIGVKaJE4zcLliHK3v7kez8IiR9O+jvm8MoB54zM4J0Y2OzZ1PDb+oj+3bQ1yDN/ZEhk+qlSXJoZxSVjJBQpwlY1cZeTxBJdR2ZvSdkmq8KE9FsH3YvwAgE1YNmNbrwiK8QiDSHSpmnispD5+GdIPlpzD33QoioCPNQPazyY/wblkj4pOyY312tlSweXgjSOoTEpPI8pT+jzqZRMGEtCuWdsOk+lO2mCwPVewE57JmnbdgwnBJuiKcaGTJLu+T2PntT+1no1v5PqpFZroVChN1Cc/b6Bn87XxmbEUfPcqC+8CVUPIJVRd64QlXx7PEZj16rxO8V9zBRSLTtnjMetrehVlI/jQFb5HWUgZpnQ4qdpfYIBzeh030QeR3H/vEm3LjrMVV7+3WkiTY0qKPcTFnNmslBIT2lFRpp/FOq1UK5aUBP+DDL5thJEqQQWbXXkCs2A1n2zUOx4SmoZqHbnryuvZs8cSwl5SWwxb/58+oWsM4g+3YAyhLl0KA12vMJKuChR6b+kS/N3vfm1iFR7VIh2UIlqT0LlahuGBoaQitIXjyhqNMWYlaSqK0BkWRGOaoBwy9ANYd1jiIpdXzeLPfgjVil1NP1TYfuScemMZO9fbZTLmGIFGXcbcMSFCETKCldw0PT7GUCZEE2bSFtAybyBpRgYaSiDZWkgJBQaQZANzQCQLZod0u+Smi5nxQltJsozf82lGNM0c7gWmiyR0ZyHhqhGVNEvoqALAKgMB+gQxZqZNiMRP1whEemqIGTEgkbySqTtsCbQs/PQ8ciTwfg6sIhpU/mzGf2ubAEiikJNDKmDpB7Voh0eOdgRvKy1GEa2j7NcfTj39EdP6CJTNBZeKNyXr9Q3WGkhbYPlS7uv7Ijcio3z9/VblnDL31nw4+mQwdcqNrWs8rvFPh5II1PiZKukvJCihIqfF2Afw35/QIswfVmQdrPS18douNxEsSuKS9naIB3584q1IxRlKLwevC/g884aZd1lzvMlpc6dMCSMDLU82vkpc+gZ3A0Dx+vS63u+RFZ4TSBYlCtEd028hmApQ4jCpO2wWUWTyDqbKZrWejBhwn/84k4IjOD0CxnarAedAIsPGuuo5A6h5PI61phJyJo1D2bqsJ8z9OkiFTnwlJF4RFfu+wQfVYmENLlGZxKbK/hPI7BwUF87GMfw3e/+10888wzHd8XFbPopxqRRI0FVboOhdZVs42UaeDMSwgwFWVoEKrVcguJNnpdLqAsQzHwnJbGjW8JgFaeYDrmvG4ydZvv7VR4CWQ1N+qjMgJ6irHwGzmVpPBmzlAnIARUomV40RoBLdoq6zqhZzk8qJPb5XXXMed1q1yFYTXbSBHS3HXIMoFs5FBlXY/u2k1GAJgSYeBm87nOxJKkeo9ZX8sQspEh2+BWhda48mBnJpKXyiTxQ7upR6NAh7/BzXbjIR/nmfGXi6gwItPnbH+d76q0o3GRZlCUC0sGaxNWhHu9mWpUJsB6n0J1jcpKISYqC89OfsLwAyjJT0bn5ykTckd+vOV5qJzhNYJTmVS75XuogmsG0CCEVAIiQ1nHsTr8J15dfbKr2OfefQrIJzesu2VboFXGQK0M82x1ELBQ3eR1DEiaTfPAfU1WPUyYaZ/Uoxa7RlnHMW1iTSJ2ZvacU+Gkr9hy/9cY4O8PHYsM5d69Ne2MnLuTe3YSo1zVKkLtMkiDwu6xYM9DMm8XZ4egdrRvniVYNIASMN4oc1xvJi8jQvwZtKH8NEM5PKgHDGAknSllPFWLrm4M5W1NnHPOObj11lvx9a9/Haeffjq+9rWvYe3atbjkkkvwhS98YVrKFEnUKFBFAbRG7HILIs0AIR2pgJueTY0VeaNQq7sRL81iMSN3u8ZWlkP29FnjZTm40ZmSM520sWNGUqLLQLNhyIug/zANohC6wRQSkKnnWQAAlEadAvQ2xgxKCpio1bWlnlQVACBFjLxXQ4OmQYJtdCyRMX4ha3AtC92oygRqcCPzV5UoaUajIW8AYHMbmQZVjQybc2mTZ0f+m3YTEr268axYyoLuHXnUBA+jWB/bgD9yJh8R5cPJcus36wY7pZpChWzECvKS8NF/hQ8D5N0AWPiRdZzMm8b382a92YWiWXhXFq6TTxJ/BiCgOw9S8hrw7z0dl5QMKf1rBejzFIUbuYf1Cj+jrNdWvfQz0IfLBNGAxcsIz89NnwWdcGf4tXS/2/2DRLDmOkFKL9Eoncszr4f14ikIeCoCUwb+jAOGwNk1+vwZmHYZmIAsh8RRsGWL9GzWirAkU3roGDfMPxLHPXcnxsIJm+7TzwKrm30/qf1g7YtIM6S7LkZ77W98ZZKUY0NS6Vp5153aWdaOAGCzlzUZorAeAKuEE2kqrdKc23aZq8UiSHRqnweZQJDiWhZuEXpTX0qC6pW1lkDUJrZ8zuZie022yfGDH/wAl19+OV7zmtfgjDPOwOGHH469994bS5cuxbe//W2ceuqpW71MkUR1AzVElHvFQMkUQkg9E8WM3CmbNe8YhMnADUNKnN+BPmtYhQtJpg3gvbCpByo7I5qaSzNgpNQkz9uI7VWlTBlCJcq2m5YsE4j6HEgieGbmoDXNj5iRXb3HeiB0FuWmF1rSjVrmq0IUXkgzqKwByRQFktAV4EZ5HffBGGsLP7s1kVUhJVDvBVLTeQy7EBsZV60MnxpiavxtXe87XSvKBh4u68Bm0XlKBSk9nNBYvw7LjM5VMkNIVXPYmfDhZvB56hq4n6rFysDOz8O8YYNvjhESqONfuMeEDntcpxGoKV46BgrlUSg7dSN2Hj70EntWXG9tlK4Kd7I0CsEkgKqQUmeGdqYc0S8s5GhJALs23rZeWgzyQjFiwstgwvuWUAWEq+McXNk0g4yOdBXmd49U0sQGW5/Stj1qZFiTDRv+Mu8I+aY4IWWk5bhnb+8gqyFOLH5hrQHetSMCBej/C+ZVFNJ6IrVdIXPvqhlguMkbMlChdVso6m4A46V6SDNAphB8MMknVySZSbpJFghNyErTJtFMX282aNYAsgTICsiyQEkhP1p2qSiMPzAFmkM2jKg9fzWIUdaEnkwUSm1xnqfZnifq2WefxR577AFA+58opcFhhx2Gd7/73dNSpkiiukDO2QGikWujbAo70w1GuRBWoWJmTZi4vJmxBkkz68iQyuXwVDcAZVsfVwhP/lYtIymb1AQAQMsq6P1lp5TOvgOgvQqGSFnFiQzoZARVJVRW1yZxmUK2h6GSHCqrQSQ5REHLHyQQecOY11OIHXaBbA2hHBxA8fwzer2rBToVRbHhKU0meRoBanTt//BIAy3DYhvfoUEALS8JpTXQFy2rCupFCaVtpEsAaEpjzu91ioktR6obx5ZZ+mV40F4znv+IoMpCb2vKqP+v8KuUbuZe2KF7ExHgh48gEz/MQc9Aio5Rr/c7/7vd1I08JWG1ZWOEMFCmPJSlWaDZKEKkHNCahUwJoxCTl1+M6gnY8G8H+HXiJC8oD10r520JVBWm7KjwPnjnY6oTD+uyEI0uQ4XaUxY+oaJryMsZZIH3lS1WFqa0ISDX1ujtXROuzPmePI/4hcpZxfVB2/8MgCYY5tcbdjyic3+GE4tf+ASGE56q50ifWLc3ZQlp/JKi3XJpCHgonxNbOqZpI5SoQ9RabnKL2V5P2nGDQ1G29XPY6LUDPFFr6HVNTVuCwqjPRsGy64byyRZJCiQpxJydkPTodD6UgV0WTdteh8+9kilUNkqy5ohJxZ577olVq1Zh6dKl2G+//fDd734XBx98MH7wgx9ghx12mJYyRRLVBSqrA/VerZwYpQhJ4nxHZQmRsRBZCMo1ZIzegjxJRGaEAJTSxyOPDOBCETWaWu/8T1w50tK/edGZ58mSK1VqtaxsQ7DwH2wul9SX4WUKRXwlYY0Zcoia1MQqSSBaI1BJBpXmUHkDImsggW7EVN98iHYTaZpZcuWFfYRwdTFhKr4wsPU2EcrCTbEvaRZbGLpk/6cp5BxNspDoZShETUK1RlwIVpUQNZ1ri3xrenejVrU71SVvaQmOoHOkzt/bl4zNVZ0OdXj1HmvQLweec5MITE4fChnza2OXEiEjbkisAvWH73/M767GTUtPBqDVCFKhvDCjRwhN/Vi59aLIlBW6i0+Jf85JJXvebe6r0RB6nbqR2FH28xSUKngdu9mODwJKp5h1hJ/Me+Pl3mLfc7XaqkQt51PqKG/wv0dcgrBiR8oMrsLZsC7zQIXnHAtMdUVZ+osrm3ZMCekrQ9AkW87dCeXAc7q+FWF2+yyweimZ6gFd2daDtlKnbaF6ihS6vaK2iwZUMoVKMoii5VJrJBmEyUuniHQmGQT8RbwVtC1CyRRlvU8PHOn4QkKVNYii7dpWo+KLsu3a062AaCwH3vnOd+LBBx/EEUccgXPPPRcnnXQSLr74YrTbbXzpS1+aljJFEtUFKkm92WzKvKiOdGhi4XYobbI5IVPdUKU1lHlDv5Am9GcJTNk222dAkkO0h7XKQmZLNtIhAiaMeqTgRvJULlE0dafLUZZA4kiVp0DRyMqU3f4kiV2JHUqZ0E1iPVTIalBp3W6v8gaw82LbkKgkBRr9kEY1K4cHtUE+a3SMOkWaaZM8YBMK6jw4pLxl1otEsjyQ2eR+3vWn22COJ8q2VgvNxIBwWRZ9bj+Dsp0swCcbhcTI3m6WqbubIlLVQVbM4KLwBqlpNgRIM6zstl1ICVDdwfO1w0xdaL/jnr3dhnZoYgMnEuHCyn59Sy8cacOSZefyLaOCqybm2ozWxFtfEat3h7/JHLdDKaq4BhiNgNH3Fb8LRqy8ex+uH0j1ozB0QMhsuKrL/pWzOjmZJiXcHFMFAzHuu+J53iAT3LDDYdV1ZnCLYDOfl70G0g6m9HHb+hkuWs5c3ttvn+ty04BV13hItsO2QOSk3TKDoB5DpFr+feYeT+j3XiU5oJTeP625wWFiztkcZoPNClVU6Dbc83kBtq3U7WYJRaPNFjrsElOJSKKAv//7v7e/H3nkkXj00Udx3333Ya+99sKBBx44LWWKJKobjMKjMjciAWDJkn7phJ39JlrD+p2TCZQ0hCtJgCR3pASwf5M/xSpbSQ7k5rxgs36YgiXM/ygLp2aZRgKqhDDJJgWI5KWaoNG5+QjOyuZSEzBzLs+wTudLmJJG5afRGv8xU52VCRuKHRcibY8YFSvV6RZkqhvlJIeiGYJFW/ueDJGyKlyu1+RSrWc1ITChAEUeJSJ87PqqxHRYRct4RDSp88KXREzNOnvceErL8diZUMa4q1NVNDtDegHZCBMI8un0/HNvqZmydGWwyfzM8QCXFZmyvNtnlPt0nALAiZo3s48RASKPgmaPAo6QSBYmNoSSk0PFiZMpYyVCgkJqA3x1xeVcK22na9f0I+WmyvPECdRohn++TiIRMR7qpO1Cgz7PjwWmXFTNyGLEhft4BE+SGpRfVBE4RgBDHyCpK0Ri+TI3eoZfkPmcE5/gPMc9d+eYROr6XHdKJ4pfdy7aKxOXOsW0QbK1CRgZAU+xYfM3bRpAR242KhNT6UTZBpraIyh65nokRecfq7n33aqGKVRaN37V4YD0mHKmGQR5twA9qFPKtn0AXPtkFf9g8g1g1SeYnHx6cLl1UhxEdGLJkiUdK5psbUQSNRrCmSdVxIJIDKBfSArtsDCcKG1P5KTfjlQEecc5hUlaZ9MSEBmiZIkJu33SvMzU0DO1yVaHnduToDnJo/LIVM8mZN9TA+ON1vixDIERRctuq7K6O7ZSesSY1iFk0ylrSQpZn2OVJhuGSPLOkZ5MrPTecR2pbIW5V2mGUkiotA459Lwb5QrT+ZCXYcgdW4dncudHsykhXGfkLS7M1QWubHBDsi1e4kiDVyfpPg/CGzTLUbXgZjpxgy4QeIYS7zOemDKc3SdqDeOFqiAg3L8FQ/qY3yqZtwvKgQ3OZ8VJIS8H1T1cb8z6BOHKG14rOg5d24AIdhjMK8zinfsQKWMdPbveVUuAhB6vjhQTPMRGn4Uz/cL9+d+sbB2/G8LXseagyd9m65DCfzbDUKYMVK6xQqi8fOHAQCb+e0d/txzBVO2WF2qkcLWFUR1p5qxqwyYlViNDUM1hJMZHZZNw5nXvvRfmf8WV/SS1qVtQmr/TOlA07YBSZQ3dLgFAE051F0K3c2ZQageqdJ6QSEnp2pytgO1diSrLEt/85jdx5ZVXYtWqVRBCYI899sCb3/xmnHbaaaOuqTeViCSqG/hLY/72oEooT9GpaeLR1iN8S6woFKdYqEJIl4kacDPlAq+SAgBhzOG0TZJDZUwJCqDY/rwuNr7PPVll4QheGNsXZjFgaqQYYeIkyjueIUQwahkRFnt+o8xBJoBK9fVj15pmwKispnNXmWtgw1t5XTeIgDP88vQO1MAWTdOg5lBpTdejtckogtR5JFDIgLwBmWZ2CQkAusEmAmXqTwZ7jVZn2I6HSwJ0ZEWXfjZ2myoCzI9lyyJhs73TSJ6fM1Rn6HeuRvFknqTCpGwpDEb4aFIDD6m68J15HyivTrsJNfAcUDqFxguZJv6sOUrvYJfnCdQtp/SE12D0Dr8q7OV5m0KyA1jywfexy4Sw7yrVotFA+1XNNOVlZn4cvl94LJdWpXQKNK8T1WsUcllVvh/1LxurJv7xq+pAbZRSgCqghIQ0k0/U0IDdTg1u1GQpdwMEnkhTe5dc/jGbasO0ewCs74nDvtuqhGgO6XuY1R2pgiZOtp0UQitWeY85gGmTCriBKh+cCeFIG79+Rr0i4/l4E5ZuKQpVotjCcxVbifBNNpRSeMMb3oAf/vCHOPDAA3HAAQdAKYVHHnkEK1aswJVXXonvf//701K2SKLGAU0iDMulKaL8YSSCkusXVjZf8MJH7hjSjtq8mXXtthvxByTIepZI8SKyIpyx0YIM4Ux+dgQngVLm/FUvUrCPNVDKFBT2IzN8B0FjZbINijGc2s1M3TSRUUbp0tdIGNIDmWoPGcxorywguO+C1ZOHHa0fiz6TqR8qlSnKzDScRdORVvJLCAnJQpJeRnAJfc1ahRsx806Kz+7iISiuSnmdunTbsP3cWoVOkSGDuQ0jlgVUs/CUrHCpkY6wIVsg1c3yZGFBTnJ4x8+mnyv2GU/cKHv6UQ4853KjlQUg6y70E4Ye6Tz82lWQh47EmJUEowtRqCJeFccICV+HssLv61joCNOZAUhwjMqFmAHnfwxTUhBRTujdpOOl1epa4c+gq1pLcnM8ayfW1+p3pVVRLnrXE0CYGb0QEmWtV/sRi5Y2mwNQI5tcOY1xu/jTH+xgRQ92MohaL1CWkJkekJZZTU8EaQ6xEFpq2yWV5va8ImxnafBH9SarQa3XGwhaxZwGZ97Fkk5t4rMK6R6YVDFbC9tznqhvfvOb+PGPf4ybb74ZRx55pPfdLbfcglNOOQWXX345Tj/99K1etkiiuoH7oCj2bWZ36e8FI1QKKFv6ZcxqUO1h2PQCgHuZGYGCkZ2tlEygGWx0msT5VTyDOOBm4VEDkeR+mIvNhtOfoYMAceM6HdOOwvj1CMmXbYAEfvSMJj7H7Woabes7UjYsqY+RutErV47o3BQubI24xT2LFkRWgxoa0OpdVgJILHnyiJo5r6JUEHRdy7ZL7VBAlzHLbflVWkdpiKscGazuaGi2H91TynAuEzfDjIVTbI4tNguLL5JsPT90bckTws/tzYyqNrhz/5LNC0ThorLQYSWZuHObBW9hO26TsoBP/TdmZZ7jyhqh09wkI3TmYVqyRatSXAGS/vWh408yqpaE6QBdXx4ao7Ja8l1BzKpUmCAE2DV1BFflQgIlJCDhhe+4OmeVF3rf6TmndytvWJXGlj+YfUi+S338YLHlccAbpFWQNiqPaDddG2SS+6LR77yaaQ00qUZlPZDNF/QkilodIm+gzBtQaQ0ltUVFyxElQKdaaQ5pNZjee5qwY8pT1vr0+27aKZrgYwebZlBg3/kSTinnpLRLHiUbIoRRwGQK2Rw0g7FRlL+IScF//dd/4ROf+EQHgQKAo446Ch//+Mfx7W9/O5KomQQdymIKC6CJT2HkZfMPvUSiOaRfqkSPjqz3hpScNNcvKxkZ+cyPhIX82OjH/m+2F0XbNepGXfIa2TC8VxHu62gkqH68oWY+AOdnYkQr8UnG8fO1sVKBEbjENIBl23mU0Km02dmKGXxCxOR73WnUofJeXTbjdXCNKJveXLZd+ZgaRuRQCGnyYhmiZcKOigz4YsgSUduJlIUbscoEqOmRKRl/ef4qADYRn2q3dFJVwM93A6a2BDO8+JI6AFAODerwWa1uiZtdPsgL+TllxYUHdfJXuxI9ACQNfykMuqeFI3Ud2bsBjzjYzPClXobHqmLko2r0ulANJVXknqeAcPDZeQDcckq0bWCW3yxwpa1bZxcSBa4esvp3gFTELj6qrnm++LuauHfP86wJaZ9j0R7peA/tLGD6nSZKBGX2cpIlCTBaotkQquyon72GZOym/02okSa/cD+jDbHRYZMcct6uVm2y2yapDcWh5WbNKgCqMReiPawVIdYu0qBMZXWgaLMBm1Heqaz83gsJCNcO8nZHJRkjS75PVWX+86PSGlCmUOnWyVhelApyO/VEPfTQQ/jiF7/Y9fsTTzwRX/3qV7diiRwiieoC+2KXBQQKoBS281dpDiVzF2ZLa7pDGWlCFE3zN5kPWXoA8jHJFKK5SXdItRQg8zVrOGBm/ZHPyhIoUoSI/AjpZwsGYE2S9CdrcFBlvqMRHME2KqUmapxkUVSTSej2HELqlAoAaMYMyjYw8oLXOUAIZ1qnbanxpFGmySVkl6fJdrSSuzbws9l2FPITEqI15Ihi2AFLqe8NC1fqUWrbmu6VkEylSfSxksQZhck71OjT07lJyRDOq+ISULKFgK3SxDrYdhNqxOXxETAKFilaTHkSjT4k9V4Uz6x315x8RBX5f2w6gFpFmKJScWEEhsJBxhtVte6cWyuO3UdD9mRedx21IQaq1bLXUNTYVH0zw8+WOTzmlo7yw+VjQjIQhvrGIk4hWIjSmtUNvMWg9Qed/zNPoj0elcE8e3ZQRse1EzIY6aL9K4z0lChYFE1NqqHXSry+/tKu1TqxvtZ43boY7gNLAA+rW9LBySK1IcarWDbmupUX2EDRtql5jz2HGBnU73iSATUa3Lh3nNoIz+AtJACt8lvrBFcMhfDsERZm8KePbY2K/tJZlK4mzSHaTZRZxTs2BWiXgNhCEtSenZYoPPvss9h11127fr/rrrtiw4YNW7FEDpFEdQNNy6fRFtxLqWPoNTv6KmSGNKtDtUesl4e/mJYAqVLH5A3JEu2mVapE4U+V5+Ey17h0hhUp0y41UqJosxgBPLlZwXW4tkEIiJH9jsoQkCUOb3YgKzc/lm745rBG3nQGZeF8CVR2aIJEIQEBZ0wnczeZxVGa0F/Zdgb4NHflLQvfo0Vl5t4jSnYqUx2uM0qVvZZEhIWEKIdtygiUbSBvAEXuDP5lO+iAU4hMWnVK5PWOzkU0TUiQqQM2iSagE42yTlJlDSTzdkb76bU6u3te13m8gnXsnDE7WL6Fk5TQmxXexiQByFzPw1ZmQWy37p25z8ObjLfLLbXjGcSNoVxkGaSZdWXzQpmO3ypsYQJPPsuRJwQNlDSdxLPay9RVheoIj25GuNFTetnsxCCkVrkPnxBB4ERKldprpMyC5kwhAQCUbT3YSHPIkUF/Xxa21CTepBVRpV1qZywCJdggUJ+P1Y8RIy8VitKhdmqvbEoWqluHAp3Y7/QgqgTQ1u8Ynce0tTTzDkkOxd7L8Nq5CTpSt4WKZjLnumhEuEw76YXjytJvb4JwqSVjTAlTWR1IZ6e6M5tQFAXStDtdSZIE7fbW86dxRBI1GoxqovXiEpAZADOSSmuQLZ11u1AKSVrTCd7aqCYdqvR8PILCeFWjNrN9xyEo9AUTIrNllP42HGHnwZWLcD87O6rLtajYFuH5aPPA8G07E2pIZeLqAHQQKq8uhtAQiSLFyza+VGgKCRRtCFHahpSIpx9SkkZdTCwBA+Dl56JMxjYcQOSOMhYLV+YwYaBthPlImxNjmpWUm1Bak2WWTjJAtgBZ2PX7dIbwun7GpFsompfZA/mgRgmFeQSKKRh20WW+tA51opKM64YcmhCSVwZDtjxPDiUSpTxYVhFyKlfVkjubMxV/NFTmdgrDdxzsOez4O/wuPFb3QvjPS3iMinNon19mJ2R42bIBhL5Ca/xmoTzFzklh2hOaD9o8UONCGN7k7zZTqjvasW7Xwft7DBLCbBT23GywYxVpPriEdO8oWGJk2pYIYJAKwr6jMrGzh0PFXfD6CQm1labWb8/hPKUUVqxYgVqteomdkZHpy9W1hVr5tgtFMq9wYR/RHtG+m6KpFSrjuSkV0BQpVGMuVN6wSoqWoF3iNy53q7QGlfdakyKNnjqy8paFGyEZxUVL+UyBMse021BHxT1Vo3hKPB+WkB0NCydDYxopiXTY35VtmCwJlKnzSViJP9PXIuuBynqMOpSz62CMpnnDzMpJbWPnnRtw3gpbN3OtAl+EynvssUDbZXW9f6oVrzJruMNzwsavXZrpUCMRAn69yOxvOxhhSYRKcqi8V6/zR2pN1rAJQ0XCfE9loZWr9ghkvRdy7k52PTLyR3X4pEAkhRFHCkd6niNOpkpjPM/9ZwsBESHlLNMLvoIWPg68T3oh6Bwyr0PWe22qBlKtRF63/8t6r1tAmdeF+6oIxqhPP+7zgMyEaQ3Y//YeVtTLA++07TuS8gN416lrSDAciPCfquMQSaBQMi07lWYoa71WAe1KXMxSLIAbDJBHDwBeW1vTuQ+A64Zf5NeTl5vCvjLFdUML9e90z1ibSfUR/IfaURpE2frToCK1yYirBkf2O+M7te2qaTuQsHeeBlSpXgdU5Q2oeh+bqBPk7BNukKSMKg1qkyq24xBbaVFfyhO1pT9TgVWrVuFd73oX9thjDzQaDey1114477zz0Gz6frHVq1fj9a9/PXp7ezF//ny8//3v79imCsuXL8cuu+yCuXPnVv7ssssu02IqB6IS1R2G6GhZfcR5nACjgCRmBkkC1S7RKgEkKfJan8tSzht0LzSkCUEJgVIpJFLoRGGU5I22YyqIQkVDG3RyXmNMBKVy1Cy90J5Httg23vYhBwu37zb65A1mCZTG0C3aI0AOiJFBpwTxY7SEDfmprEcT1jRHWeuDbA3p65n4pnirEiU5hGzbbey14vJ8qAiE16nid2HInFUUKUdN0QZ5LJziZlQuuo6tEXMOZUOJNmWEIQ2ytw5V79O5xsogcSKpUYA2bptUEHwR2w7DOZi6U+GX4vfXhuaMb0SY8I/XYZQFVBt6xmFwHrvqPfca8ZmGXloI80zQ+ciQniRQhXRELCTrPFkkGfoBnd2aiB+dm7Yj0z/gjP+sPpW/V4GFj7xcafQd/V+l7lkfDrsHTG3l4fNKGViVuk1RJSDdeUXTTVbQnieWsZwpNaJs6+sqpH5uzKSIUavL/Faurr7/6sSe9bhuYAFOnPOUG4iEChFtzy0CNNOVrkGa+20mkRLeHvBwJX1XuoEKVAkh9QoTdpavnbXsyKT2j9JsaXZsIm5GVfLtDlQfM9HIhCq7tq/bIR599FGUZYlLLrkEe++9N37xi1/gzDPPxODgIC688EIAOiR30kknYeedd8add96JZ555BsuXL4dSChdffPGox7/00ku3RjUmhEiiuoBedBglQQB6VGIy4Bal0i9tQOz1NN4GSqHDfAJAkgoI8gDZDUuU0CZspZzKYRtC6uSrGtiqhioE/1xITSbMeS26heSqjhl+xEhLJbgnQikoKXWRZaJHbkmmQz05a6h4bi0hAaGgan0ewSICZWfTsWsFMjuTXF9VL8FGoIBtzL1rTcSIlDRAJ+kTbOkdytsFANjU0Zh66pYq9RI0lHeLPEZZw3joUogsg+iZi9IodVwpkr39Ost70YRqjdgy6mvmlB+awi4olFdwMpF3EgWPKCfMb8RmDHKyTibqJLE5oOysPlKjKJeU9BUiu13CDOmUiypj5IcTJTZlXxM3XV+RZS4ZI2CX3rEJLKmcnMRxlYjM/vR3N1SkGPCenSoyxd8L/vgFz6IXdg/Dhl1gj1u2/baEZnTaWamyc3uuWKU50Bp0g4oAJ/Q/q9dsbI34M1T5vTHHO7GxDmibpXpGG0ix+qmsrpddaQ6acrt0I/p5A9yMWD3Q8HKLkX9RInjn3CLIQplkyDJBmdbQLBQSAWSi6LiXdgUEIlCUo66LpcL6JvnPVsBMDuedcMIJOOGEE+zfe+65Jx577DH8y7/8iyVRN9xwA371q19hzZo1WLRoEQDgoosuwooVK/DZz34W/f39U1K2qUYkUV3QhkQbEmlaMy+ncCEo6qyFRMFYVCIEAImWAgrj9xFCQCroqfVAQIq6n9+TkHlagC6jnjCxpTtHQLS6Ea9wRBVuw/cLG5CxRtJA4JESUEkGSSNsUvxarn42XBnK+qE/gRJ2qlJPaabRdxfy6TX0VJ6wsCzXlT03JQ7ko1OaKUmjaJBaFZSRkomqUi8HZBQeMrVTw1zmDWtUpxXsRV63CQIB8xw1h+yMTB1Oo3X/alCtEajBjT6BsqpPl8zTwZIsamRYL0zc6HX1J+WpLCxJ8RSfWt0RJS+E6Lw0RJZ0qgVHkOwadWXh8lWZNBH2+ME6drZcoUJhtrVqDN1H4xHqzLNlvENEQIJnpcq7ZJ9leqdpm7JwxKnqXah498a9ZEjRtN4jTfBJraFZZm07AOMqkkoyl4JC0VIrEmW7CdVu4bXZk/hhaw/vVNdv3BEnzH3OldkQKDvTlJ5FMygQSvuRIJgiZytYTTCUTCGSXCtr9tq4mcfeLGKZaHsFT/TL2zajtnnvtx0Q6etUlAoy0cf02lZ7PD4bx1gQKLecadftPpTJnAh+1QSbKcBkJtvcuHGj93mtVuvqN5oonn/+eey4447275/85CfYf//9LYECgOOPPx4jIyO4//77K3NAzQZEEtUF7VKhXWoFJa/N0ekJVGkSvqXIzAK6QikIIZBLQFawItnNc6hKJDLRipbnwA02Y+qHR47Y/yr8mx+Ad+4hEarYrnIbThyCOnSoUaxxc+USHb4Nq74J6atwfGHjsq0XdjZTiL3FQem4cI2580SZGWKUk6sLeeKNvdeZSalzXiVpx3YQEipl051pxGzKQftTHdwsSn9ZCW/2IqWDYMcoa72aFLFtdaZ2AdQMOWgOObKR1jQJS2v6eTF5qQRTj1S7hSqztiU/lNPKbG89NbzjkgBKNxvQqkiAM5JzdYnOVRRQrab+nMpMubWIoJGR3TwTSrnJGDbMo9isyXDmIy8n/W8Jr4SSNaDMtLLR9mc0hs+Efa6J8AYKlN2WD44or1O4kgDbtgNjEQ4aEFA4mPu/yEsUlosIMy2Qzq6baI/YJVfUyJBHVF+b/w4qreG6TQvMYr6iuky8vPRucVWbK3KM6ApVokx1Pic5/LwhKiwFRZCaxbsmpFAptxSL984zBcoSWkN4ZNFCnqSQPP8dO35H2yDctXRtrv6shICUqR7MyBRKCGtRmE1YvHix9/d5552HlStXTtrxf/Ob3+Diiy/GRRddZD9bv359R5qCefPmIc9zrF+/PjzErEEkUV1QKv2TAHokpNwyJdp46F52IkomUo4kTBROvYvwaZZQCqkAuAfANgysoa5UT6pIgW30kg7VwY6YA3XKSt9E0vhxq8gT+91bD5CXie9jyiRUidKQRim0F6yEhJSJJp9WMXDERZgGzi3lYKR9Ik2Apwr6BDBIlBoqA3x0yT+nY0j3uUpSF97zro9yHqz2sK4DyxpPoRRNvHIXgqSOUUgoGEVG6WenNNmdUZYQRUtnd26NaFMsYJbYMIlMZQoMD2ivlDHAqySFzN3CyWp40CpLVnUhUCiwLHX2aLtOmyYt1lvCE8RWpBCwKpFMIGRhvUAuR5Z51kz2dm9RZxu2TDuXV5ImYSIZqgGz/IYhqxS+qTD8h6FzlML6rEgd7OplCYiDHQAEKogOAyXwVIqgHN4x2YCmIxTYDYHqo0Tm71KWgAyUV8AtgE7tSQF7vb017Iy699raGqAscd2mBQCAH22YgxPnbNLrypGZvDTZx+macF8bYEPcoj3slBq656wd06RQk2dOotx7Hdw7Xi9DXCzfEgkEG8h4pCrJoGQCWbSQokRp3zV+fL5aRECoqJ50fmUMGEKiNM9tUaoxJxdOFopSbXGeKFKy1qxZ44XPuqlQK1euxPnnnz/qMe+99168/OUvt3//4Q9/wAknnIC3vOUt+Nu//Vtv26pFgpURImYrIonqAikYOUoy3aeaWLwyZADQ5KRUetvSvE1SCDvqKYM3TMnENgB2VoengpgO1TbIzmBtj9GF1HiqDh3XNv6uEwgX1eSz7zgE/56pKlUI1bBwRKmE1A0O9DWh6yMENEExdafORbSNh4PNjqMdyqwRJNZjyTWpIbTXT3U0xPxY3lqIPDwUkC5ONu3fonQJ+0xnZf8G/BQJ/Dh0vXh5jYfKJlYsDXEpS4jWEFTe0KZ6piiqXI/0RdH07h2tPwgAsiygRoYZYQqTSxqPEV/glUbW4fViBMomy5QJkNZcfjQpoUpGoIQEEgmRZCxTehCipevBCRSFd/g6iWEONo8kG1Jsrz1TrlSpby2tGlC2UTbm6u/aTZ2g1T4T/uDF88kp5p1RdA/N9mWXd5IlZPUGLKEyPAr48+zlZQIgyhZEa8SVL80CdceFq8jbCQAiN2pOcwgnFr/AD0f27zjvdS/sopNuAnB+MzbII0Iq0akS8/AoKU5GDbMLj5ew4WufBPkj0BvXDOPYJT3m/IlHWpSxSuhr4t5DIrhFqf2XOmIA/56a43vXWVc2uHbuc5oMZL2S6GzjpwpKKagtJFHKlLW/v39cHqT3ve99ePvb3z7qNrvvvrv9/Q9/+AOOPPJILFu2DN/4xje87RYsWIB77rnH+2zDhg1otVqjJtKc6YgkqgsSKfSsOejQHgSfpaRQei+yQqH0PgA8n5T+HvZlJSKRQAAmHGi3Y6NTT04Wyi2hEr7o/DxC2hBjZ/iv9OXvEKEChc5RGG+AOsIbYXmqpHl+Ov5V0bJKkwA6Tc1Fy5lJTeOooBvTpGx5qpMd3VOoUZWwylzHItL6f4/ohIoDXQ8K8XXk2SrhL6jMCHAiXYdB52IGX6emSVdX+klSY6DXJnM5PKDTH6Q13ekzxUHVKHmlmTloTPAQEiobAeSAM4sHKRAAaE9VkunzpXWorOYWfQ1BSoYwClbKkpRKc02y1CeQRhXwr33ZQdIt6LySEWJDfrRRmC1SDQBF4fxAMu1QrrRXTq+RqJIMsjmIst6nBwYjg7rLllIfx4Ti+LvmvXdVKEvPn+cNOoIlkrqar0cD34fIMD2nlnxKF/rlRN+qzMF7a1QkAUC1mzih+SBkb3+HP+q64RfhtckTet+8Vy8UrEqddqEszStg/FB0vyn8SbMl6f2ueseKtk4rQlWlgQprII5d7L73PEE2qZsZkLFyKyG1mGlUK1j1yn/W+DWiSS/UhnYqksJ6ivggeWtlXipLtcULCG/u/vPnz8f8+fPHte3atWtx5JFH4qCDDsKll14KGcyuXbZsGT772c9i3bp1WLhQp8e44YYbUKvVcNBBB21WuWYSIonqAtvAQytNahyjjSrTnzCxPMFIlkAnvwhVHj4CDuP+lYqKHal2KaeQIE+B95kqHeEZbWoxVww4qkbTVJ4gvCJl4hFMmrFowyKBCkAhJQE4GR/GzKl0A0aaCjf6KiEg4IhfWCU21WdcdbagGY4gUuUIlW6IK6RqL7SnU13YhVFVsAYg3yfRioIEUAq9NiPKQpMoId0ajEE5Kc8Nfa5qvRCNXpQDG1yiy7ZZzoUykptQGmVQV0kOIUZ8r1tAbJWQEHlwfSgkR+pR0WbT7v2OHYXrAzVpZLMD08wpG6TuyUTXOZGWDFFmetl8Qfun7Cw0oTv1JNfrnZl6UPJTb5HuJENZm2P+bAJNF2oNF/jVFTBKSRUZElwZk9XvRrA9x5iz2/g7SKQN8J9hfgwTDqX3RxRNm6XAHier6Xxjw4NQ7RZOrK/FdcMvwolzntIkqT0CCJ3LTmU1TUqTFCKBm2HJq6QcoSzTPv28Dg/o45gyATDrYLLBhGKDPCE8tZy3jWQF4LB/mzZWwClGUoiOtjZU8q26rAAFwch9oKYrOFsEMKqXdXvDH/7wB7zmNa/BkiVLcOGFF+Lpp5+23y1YoEPExx13HPbbbz+cdtppuOCCC/Dss8/iIx/5CM4888xZOzMPiCSqK4g8AeMjUGDbE6TQ+1qvFNwIZtwJ2tiIKByhWd8Ia7iVHZU5/1XowfAkbVJTmKrik6DuhK3je2oghUQpnNeJtqfGTsHMlhGJ3jthIQhVGlUjccZNSSqGVvkSoWsnpNCdsU1macgTDJFSsCEY34vmN/yeaufVlXWEfJ+EdcJ0KdjI2gsB2ZMoQ5ry6rAjV6bo2IlEWe8HGjtYzxVtR8kL7ZqDgJsqbs5H6qOo90G2m3aBWgXoPEt5w8xAcuFQUTSt6VplNZ2awdwjFK1OQs/KS8ll7fPK8zYVhSZKXKmxYVwKabJrkdYdsacwL/PBIavra65KlEJApC1geACiNWQUMGWfKZfF2lya1ChtXJUBdEhOSBuStQpUOICgZyJhqh4PHQZKkEeC6Du6bGOF9cyzx4/rbUvXiEzmwT0BSm/BcFGY0CU9jyaNi6hDG86LJl6bPQlVuMkcKqs5JZAWJKb7RWTOvoOkkimIooUy74VIUqNGGcU47/GVSa6oUXZ2Vo9Sat8TAPveK9MWhO+tUuj4rCgpFx+/8K6d0PdBuUvZpW0ulY5AJDzqjM52f6qglBp3XzTaMaYCN9xwA5544gk88cQT2G233SrPmSQJrr32WrznPe/BoYceikajgXe84x02BcJsRSRRXaANg6M/cGO9POSVouM0yVJipCjyRVX5ndy6TYFyZA9euO1HG+2yY3Z+4XeIRqD2OnZPrQlB34fnEdIYxwEpEit5hyFQIYBESCRpDe2SyBGsIbQolUfhSqVMfi59DQUzz5cwPhUzkqSGsKvPwSt/YPhnHUKHD6xDdas4fuGM+vZ+itLlHuMhwbADtQRMj8alKk0Yy5EllTeAIgPaI24NR1Xq34GOdRhV3oDsmWvVCEpAqaTO6GyTNlKH3Xb7ez4gNtvKfk7nENIRKH7NGMFQIvOulwstpZ33hQYHLHSls7m7tBDUgavaHK3W1Xohhwd8Izx1lknusnxTGW1KAH3dZDEASuqqSR5LGWAmEdBxNXkVzhck2PXgqm5YV36P6fkY6x0WZgYgLXvEfUYJbH073nNak9DeFwUhhh3pKgq9ELg5lmDPmOdVSnKT5qWhn4HWsD6cWYJJURk5yQWA1rAlviozi7Sz5xRm9Qc7sCCyK321OYVy+eWg3+1O+mSqbOrGfZcA7IQWsIEWtRnaK+U8ml1nSkO3WwWEVdQng9iMF6qcBE/UFDG+FStWYMWKFWNut2TJElxzzTVTUobpQiRRE8DmPIfetrZjByC1L4o6Wp57BoA/PTgYCTsVibxA45/Z4I2S6bMKo69FlULFytxBTkwHJU2y0cKM3kZraIqSjfCEZIQIHY0hoD9vK03QpGBmT8Db1iZdDAz8leSIZ/m29Xb14f9X7s+PTx0989KocAo44PuSOhQEONWptcnvaM3nylPEpO2kuCIojBHbqkRJAhTO/A64DpOOz2c/6iU1mFG5bJtwIMsFxUM67Fp5z2nCjOtUB7uembAkxYZxqU6cqJGC4akXUi/Pk2QQWQNlfa4O65lEjqLQaw5SKgnar6zNMZnhS60sqlLXS0hHWBUtzdNj6i2csZ3VXxjPnIeSkXN6tsJ3gNQXehbCPFjeMRMoGlepUj9bFD4N19EjogvzLLM8RnamqeftM54qIqYquJ9l24XUZapVQBYStZNYYMgSYFVGUbZ1Yk1ocq9Y2M4awjPnceOhNT3IMhNrmMJM5KoKCnBtTkC1SiMdcT8TeaZ4E1OiIgSoNj8yEbF9IJKozcRkEPlSQYeazDBIClk5+KkMM9Go1C5+K/xBr2VGnSbOKqO4DYMZMzonRR0hP1ausJxcHheQHeb6Kihj4gTcTEgyb0pjMuceCF1vN/OtMGpXuyyt38yVSXi/c4m+U10KQpRhMklOpKr2B7tXhhhU3jt+PekSmk67MlSjSpRZXfu128NuhhMdJ8mNT4jybI04JcVObW8ZlUqrBqVMIbEJdv26tp9Ly+sQhQRsNnHmjyLPEmAJBz8OPx5UaX1MNvTD1S1GShVTgdy9cYMKl0DT5QCy6p5BKRKUUiKrSV33sm0yqPvvgUprrjxFU5efZzinMHBm1k5L654aWAkijza8mgBw5Nwt91OhOlll0oXmwnCvYNsKlDp0bJfqMelA2DUm8oPCDCbCTOehT42In5AuIz2VgSYtyFQrgnTP0hxomfBvmuvM+oYMqYzWETXXIK1BKaBVKmQy0a+ZEGZAZPIvlW3ATAQgkzdZAxQjPzY0C3gLXXNfKp/sA7Od+07ZY3Eixeec0N/jGQhuDUyHsTxibEQSNU5M1rNnyYKRhZWJ8YtRjh96ngQC/0wVGKmhXCpctQpHdsp8ooQwHoKE8yavAbKNKZXHHJsUpEKhI3QHuPAmh042SmXSIT3b8Cl/pmPV/io4TsK+dyE94fulWD06VD7AkR06RxBuqZqhaMltGJYKPTEclsRSSKfa3K9MCoGOpKJUft65h2WiBJBhPWhdQiRWCbCHDMtYNHWIz5RPpZl33QSpRlRfbtwmmOzPNsyZZJ7SogTbJyT+IcFkfjlr52LPSWK8crTkh2AhMEtCzUxKJSRkoRXDojHPmtWFKqFqlLuKETmWgFRwjxgrn96n03DdodzZwoeqUDVUWjflZlnLiZiFaiD9X7b1SgD884oFxClVAR2HhxntNWAZukXRtktggSYz0ODMbpfb9oTQ9lRnncKiKJXxOgIpU6IKHT9DQe990I7Y8aL5v6qNduln3D6l8VLRcW0bQ6+e+dXdpplBPHhTsiXHiJhcVAyJZi6uvfZaHHLIIWg0Gpg/fz7e9KY3ed9PdIXo0UBJNycDRACINIy6qjZrwLyZazCkIPisNB4jvk1bsZEZU62U0pJ1CWFCafqHfEim7dKpBJgJmv+U0MdXCrYcrVKhVepGj7wCyoziqBhV15MaqUK55HUup5T74cfiPxylUraORJ7sdzB/M/JiR+/UuXpqUeJ3IPxa2ASg5juuZgEVx0rdT0DK9EUoYdMwBBnFSwi9bqNRYzwCzVUs2s8SpbYN73mz3XjnyBf6NSqJncBgFAgAesZdkmoCFRJ4Ia0/hhMJR7QdKdIeHUagApJkQ0b82tIPXY8ks8+2fXaZp0WURUC+KJyYeNevI7dRVrchQ71OZm6JqP3Je1DW+90SUNxXaJ8V7SOie+2ZwgF3zblamqTm+ub6p+r5MPcbxsumsppR7gz5pvtNZWDPAa2fZw9H9yWEZN42fg2N6qTSHCj1rFKV90IlGcqsYZPM6jBzbkkuoTDheRogtUuFZlGiWZS2nSgUMKIkRkrdlthVI4wXkn7s38q1GaN5WOm7UpGCDdtG0b7UltBxqb2ZKQQqYuZi1ihR3/ve93DmmWfic5/7HI466igopfDwww/b77dkhehu4KOYyUbCDqwU9MyoihfWjrYZ8QK0/M2n44axfZo5YgdwTAq3xzb/21i/J4XrtAz0SUKz7UyZYBskZWdN8wZnc6+ZJVKBabPbdt2OoYSws3Yk8zbY62bycwFOjesYnjEiEHaAmhyNohZQaMSaZIMZd6rsVHrouIDOacTN/QZlklkPibeYNBEUYTq/svQ7QO5L4pMYEpfYlNQMmxU7q9mwpM243jH7imVdr+qM6ZzwyYIN3xklwysnHygE4T5v/+ARCD1znCyGaqMAzEuhlSTRHnbbtYYByfahw6a5u59kgib1RbGZc14I2a0AoNhn3MsFwdRDTkAFyxIfXFvPv0gDKb49nZN8R/QsUhn5+QE3qzRU/ipSDJSGVArRdJn5hQzIkjQz5CQkE3holnIigCwRaBXUjrG6jaJYV6FbW8D359sQUavcHv529Hk3cHVra2Emz87bnjErSFS73cYHPvABXHDBBXjXu95lP993333t75O9QvTWCB0LIaCUVm9Iag7zmvAYPXkBSJLWX3R2IqHxMjRUdpAnajQgQCn4tczNvhNAJoVRelwjU/VSjnXtRmt4tvQlp7AeZZCXxnTu6qw/A+CRKd7BcJN/h/8LsNt45IvMzoCf1ZmzWkM+O9QLTtQ6FC3GjGkfYabfg0IsCctf03akhBOTqs7SmN+FNH+39fntOn5hh+uVMYES/qK9pFJwVKWT8I8lXaJSu5PwzqmYCsXfA9g6w5vabkPYtB1dM/L9hapjmuvtyrZXfmvcp8+lISulUeiMIV3ZZJLMVyiEvvyq9Jb7saodoGe60YxLQ1qsIsqIPF830IKnyWDPmxcaZs/1aKsNePuacKy3BA99Z2d00tIvwl57wAyozMsvzGBGCjeAIQuDFHoQ2e1dr2ofeJtiV5IY47Nw33BAzP/e3PZ+NGV9qhA9UTMTs4JE/exnP8PatWshpcRLX/pSrF+/Hi95yUtw4YUX4i/+4i8ATHyF6JGREYyMjNi/w9Wtp+KZC0dERanVHN24oKs/ynoD+LHg+4YSRhpCz0DoLwqVI6s0mVEjSeDmQ0uwxjNSm0zwRnA8oPKT34HqysmV3pCOa4grrcNlO3BDsvhSI3QOwYy+LFTlZjGy0JoqXcgFTE0IFJbR/DCUVwuAS54Y+HH0orFslhWgM0Lb4wNKNvTUchYeUtRxMmJTZZ4IZ5B6Zaf/U3+GGApO2vzQnVO4RFc1qxSJvU9lhZLgKRmhGkv+wQqlyiVxbbhrSakihNQz9zwCqushWm7hYpWYpKle+NUQKJmyyRrCKIyw3wHQyh8YcQphz6+Cv0tzHrD1PHO3TVV9q64vVxNJYaOQMimboSfMgPyPHFU+yEL530l0V4OA8Sn/oxEl/nfYXlRtExGxpeiiw88s/Pa3vwWgF0P81Kc+hWuuuQbz5s3DEUccgWeffRbAxFeI/vznP4+5c+fan3B168kEf2m7vcCF8QHYeL8Nm7ltFPvhsfxSadJAnyPYhp+7KvRW5T8Ky8/9AxPF5uwflntz9+VeidAX4a5hhTctDCEJ30/Vsa31HYUsNzQRuxAMH+n78mOo5hBppXpA+9W4qmN8P4q8P9bXY3xJqZ6qX9bm6JQAWcOZgQ2pUGndqlDWC2S8WC7HVeKOycNvgbJkO96EpWLg15OOSWXgfi7hfGeaOCnrkeFeO7qfhfFF2bLwZwb+7NWwDJ6qyLxTKq27cBWlOTBpJWxd2fI/zsfFsm3LxC0ELIT7znqi/GeJZg0qk3zWC91R+QKlktenyptn96X97TbCGfTpXuQ9UHnD5g9DkqPMe92zQsfjpzWHGu/6cVXv8FSQGU6gtmbIbSpBeaK29CdicjGtJGrlypUQQoz6c99996E0jdUnP/lJ/NVf/ZVdm0cIgf/3//6fPd5EVog+99xz8fzzz9ufNWvWTH5FA4xHQuYdhTdtt+wkNyFJ4AQqPG83gtStjFOJLSFjYxGq0fwDY16DwOfBZ4FxMuWZ7asM46GSYD83HZj11/hGcr8ifqdljdRh2Xkoh5+fOm0b+knMWnlpB+HxymI6fJXmLlcUN6jba9M9kaQ+ZuqVoZKE2rImTpUi4oqx3xMixsq+V8r73ZW1wjsFuOvmKT2ufnxSAYQEiBgaMkQqm3f9pVNyvOOHM+NMfb38WIx0eWXtdt3CcH5Qj65KF+1vcl4pXkYi0bze7JqFlgMiuFuKqWh3thneMBkEapu5GDMH0xrOG+8K0QMDAwCA/fbbz35eq9Ww5557YvXq1QAmvkJ0rVZDrVabaBU2G6NJylUSNCE0SFK4aqxzjdawzbT3aUsI1eaMNjvCmJ5tySTvNIUJsx7bz1jIrmMRaf47N3YDlsy0IQEFSJnZGWVdOzoTvqGzkCdOUBoKwbJGC9mRWZsMzuTb4UZ0Xj5lCILN+ZTm2s9DuZ14RxqG5vhMRAqX0XlY6JErNrZ65OkJwkXcvzHWhIISQuddC7+DWSqoIoGiPTfge+LKNmwuKpso04T5aDtSoZLULn8CtPV6iuQpMkvlCNnWYU3aL1zEWsKFz0o/ZGqLTPfWKEpKpmYZH5ajy4tl+s+kB06CpbSE2nqxjApWpjU0C+1rSo0SZf2WXUzahPG8k1PZ/sy0tm0yUCo1/uXCRjlGxORiWknUeFeIPuigg1Cr1fDYY4/hsMMOAwC0Wi2sWrUKS5cuBbBtrhBd5QXi3oLQt8SXmAm3n8mYjDKGxxgPGeXblQo2+Sk3Lletz6WPw/4QLJmnkH5XLowXKRjJp4BbJBUmzKJYHi/FVpNXOpmoTT9BZSsVAIlE+HnGvJxXkp1bJnapE/13CiXJC6RACSlD8qeSzC0gS3VgSUV1eUtL2nRdBBRye96y1ueWiuFKj0zM7FG9PBD508rSddKhB6/KIKyUQls5NVqZRb8r751wiRzpWvN7o8kSI7RloQ3lgTmfMqp7swAtEclQJpmW+oum76ETUicgDYin9ii13SxL8523nE5J+5vZd9bzZuotU62UUfnYsT2ljfZLUm+NQQqvKiHRLJT1a1LZ+WQTjqp3eDa0PRERW4pZYSzv7+/HWWedhfPOOw+LFy/G0qVLccEFFwAA3vKWtwDYdlaIHq3h6RbGG8++2xvGMxLmi0MDTrUgBY86ZJ7Akzp52++a3xXcWohcmXFKhz+TSQjYNAyAW9tL0DbhjLwKD0kiYFNb2ESIhpDo/RJXJjoUNHEhRUokpSN9vNxp7tY4o46YTMyiM/dRGEpULCeWEgLtUl+XsgSk2a5UgGqbkBMjP+Ah6YpJDFVqbjilvTCEiq6RK6dPoDqgfPIESuDBZzsaEsRnsWmBSHr70l8qreu0ANzMH5BPfu2IGKkktcqW+5KFTwuzTEpWd+Urzf9GRXQmd/q+MAsGU8gu1/45Id1agkIvIK4MkZNCh+tCVA3yIqYOSk3C2nlRiZp0zAoSBQAXXHAB0jTFaaedhqGhIRxyyCG45ZZbMG/ePADb7grRQBzlTRShWlEFTpbCjpu+o1mRNkzH/Tb8HBAm8ztTpVhnTekKTDTEm0WpzPES4ZMq2r6bDM/N5lQHm9QV+sB8zyQIHyqZACkjWWUbkKULuxUtAIULZfF8UTyNQ+DDocStMIS0xWI/BTohoWwixjAMPZ5nvapD91YFAGzesHAZILdDRcJVwIQ66z7Bou/ZwrkeETIJLq3XKWWWAQqpwpFPSoUAAKDwHJ/FSdtndVtWSBN6IyWsbNvQoqJFg2HUPiSQRQtCtWzolEKOVh20s/4kWjZ03f06R/K0dTGTFyDenjFrSFSWZbjwwgtHJUXb4grREZODsfxmVgkJDOdEiMiDFiYrFfCVDgB2ar0+HvvCkjWet8qcx8wYD2cJUgiPn4EIhhe+4qTDlFWhioDoMJcUiQ2hcSRZHZKF/GyYLq1pIgF4Iatw+RVSvqwRH65+VkGTnWXm12JLkrZWhflIbaS8RQJA6l3QLukFBPuuKm2FUppkWh9YsNCwIWWamyTMG0ZkhWTM0veyUYgtJGXcF6VKvdiyUZe0eCnBlSoKyYrCqYY8Az8ty0LqKc//JEVFmhN2XUNUWQ4iIrYHzBoSFRGxpRivcb8qCR950LiHyv1u1CB7MHhBQvpcBMSCzuWVg7aFT7ZC0lVVbj4LlROSys+JHAahy6JQkCK15DBJoTvstKbJVdGyhKAUiQ5/MtVCsItQRRTDMnerS1VdNxf83tm6CnediMwJ+GZ8Wx5SiYJ1CV1yUEaG2PeOfDF/nFKByiUcUSt4gk+2zh8zifNwqQJ0+gGRQMgE0iyU3bGMDRE9ZWhkkqHM6lBKL6uiCn+pKEDqZ79wSux4CNSdawbwqt36ojI1xShLQGzhS1FWjBcitgyRREVEVKBbBmT+N188GXBkJFS2CGGqjYmM3quOPVoKj7B89FmoeFWFNQulUIgUOqmjApIMwoSY2kpPKvPJpF+vsWaHckykbxjvkkwdfiqloITLvaaT3LIwp1n+hhQsKZ2qQ+tGSh6GCyYN2Fl+qjSsjRnW6XtCB2kzihfNaizbhpGbRJiMYHmTEkr4vi2TLsFmtgdQJhlG2qV3PcjvZ7OKj/JM8uf1zjUD9vdX7dZXuX3E5CIu+zIzEUlUxHaFbmpUN/9U1dpeHOFn3E8VHjuYt2fNz1UIs8NXnWM08sS36VbGbvvwY/Prokp/piIpcGEYbrSp7xyT0elOdG1LIlO0vFEpyPcmAZlbH1oioFNJKLeAd6mUZ97vgDH0KyTWxG6PlySWqFmliKeIMCBi1hJ6pl0mDJGTmd02FYY7kYk/yAdlczwZYtUufWUpkcJev/EQ+jvXDOCwxX2WQB22uC8Sp4jtHpFERcxKbIkHY6xZRZPVMdDx7/q9DndUHTckVhxjjRqnclRZOY29ImHA5pZhMjvdbsR3c85htzXqFAdNKigsK3RhS5rFyeE9T/w77qNTzrvkESduUqfZixBol6UhtNp43lZAKrVHSpRtSO5JEwmkUZ+UTO2sUe5946STL+/UcT26gAjU4Uv6O7P8R0wpeDR4S44RMbmIJGo7xmw1g4bkp9uCpN3qtDW8G+M9x3hmEG4JJpNobemxZltyxa4Z77njLTD0jwVSt5IkcwlW+Uw9Q4qKUtnVCSQUWkJCKM3N2gqASL3FyikUCWhlqq0AzuTG408b7zU8fEl/DAtNA8pSTYInKt63yUYkUdsp7vr9gPf3TJDmJ4PUhfUiv0bVObivo2rbqn04qgjQllzD0YzvEyFb3cKBo52fY3NJXTeFb7qfq/FivHmPxmuMr4IwObMKBSRCIklcONCmqSiVl5epVPofMsJTwsuSZhsKgUwKm22fFhqvqkbV4GI894e/V5FATQ9iioOZiUiitjOEJINAhKIbkZhqhB0XhcD47/Q/eTMI9HdV3arIIu3Tbdtu14BmId31e/98fPtu17fqc16HzUFlWLCixxzNVzXa8cYihKGPZiKd8kzGWOUfjehuDgHzQ4XV29C1LpWeNZdIP+2AVarsOtc6/DdZS67w5zbOwIuI6IRQcVjhYePGjZg7dy6e/P26WZXpfCzwDr9bR08YL5GaiHI0ViNcRW5mA8ZzXceDKmI1UVIy1Z6v7R1huouJkq+JoNusSP57twXZN1d5ApxSPVstAFOJjRs3Yo/dFuL555+fkj6D+qR933MFklrPFh2rGNmEx77+9ikr6/aIqERt4wgbw/F09KNtU0WwJtp5zFbCVIXJIFAAOlS2LUFVyoGIyUOVgjfaNR5vuHA8GGuGKc0+DLcf7zPABwXdnseJzoyMmBjiAsQzE5FEbWOYrM58c48/XvVqWyJOUwV+jSaDUMWObuoxoRmBDJvrhZvojNTNASdS8RmKiKiGHHuTiJmAscjRXb8fmHICNRrGM7qOBGrzceeaAXtvab0yKWD/jtg2YH1PwU+3bbYm4ns7M0DG8i39iZhcRCVqFoDIETdbV30/XSC1ZDR5PzbEW47wGvKkh4TYRkZsLqTwJ5ZUkfOxQnsRUw+lJmF2XgznTTqiEjWJmAploMrTNFsUCFJQIoGaWty5ZsD+zJZnI2L6Qaom9+FRe0PPUwj+WSTsERFRiZoUhMuEbEnjwkeF3cBHjdOtQnXDTC3Xtg5KwxARMRp4mxWqS6MtJxQxfVCl2uJkmTGcN/mIJKoLqJHptmo5rSEV5isaDbRt+BxPlHBMN1HpJu1Pd7m2d/DrPxOSqEbMHIxHqbxj9UYcvqQfd6zeOPUFmoUI1butpf7GBYhnJiKJGgWjqUL0+eaEqra1sFaVJycSqJmFbs9cVKsiwkEgX1x4cxO0bkvoNnAG9DUipS4qdhFAJFFdcffaF9DzfHxJxkI0ms5OdJukELFtg+eq2hwVnYPI17ZIpGg1Ak6aqn4Htr6qE5d9mZmIxvKICSMkUNua0ratY7rTYkTAS1vBU1fQz1ShVO59FULg8CWd2au7DZC2dhhra4Cud0iUuv1Of9+5ZgB3r31hq5SxNJ6oLf2JmFxEEhUxYfCQZiRQsxNRjZo+jJbJn8+2nCqyQveevE9HLNVEqopQheXbFrA1yOpkQpXFpPxETC5iOC9ii7CtNKgREVsbpXLhIwL33AAuZDTaBBc6VjfQvnx7/js/PydQo73bk7k80dbE9rAEVcTWRSRRERHbKaIKVQ2+WPdEEXbW3UjOlobE+fbdykuEZzTSo5TC7avHf+7Z5onaFsjTZChJUYmafEQSFRGxHSESp7HB1RrAXbPQP8avJc8PV9Vhd8sfR2rUZKCqfDx5ZojZRCAmA+H96WYYn6lQZTkJJKqcpNJEECKJiojYThAJVHdUEZ9QuaG/hRDezCzqnMPQ3HhDXlPViW/vkwb4Pa26FyFZjoiYCCKJiojYxjEe38z2gNFIxWQRGZ6INwR16lX3YbZ06LPFBxWS4qpyz/RrHUIVBVSxhUrUFu4f0YlIoiIitmHMlk5vshB2nuPtKCezQx1tWvy2hNFI4XRiPLPtZuN9UWoSPFEqkqjJRiRRERHbMGZaBzdZII9RGLKJmHyMRcSrSMt0PHdjkaf4fERMBSKJiojYzjFTOsHxgK9bdtfvB+Iab5uB8WQonyzlcksXYp/I+YBtmyjF2XkzE5FERURswxirM+s2eh9rVL+1SRYvT1V+o4ixEeaG6jZbcLKST24tIrW9GOgjiZqZiCQqImIbRrd1zsKOMlxMdax1wcabB2ksjMfDNJopOBKpzUOYtqEKm3svxyJdU0WmthfyFDGzEUlURMQ2jvFMtd/SxVTHS6pG63C7hWLGypwd0R1VZClcM3FLU1+MRZB4fqaxtu32fPA0EtsrohI1MzFr1s779a9/jZNPPhnz589Hf38/Dj30UNx6663eNqtXr8brX/969Pb2Yv78+Xj/+9+PZrM5TSWOiJg54GQjVJ2mAuHCuuNZo4yyavOfiC0DESZOnF61W5/3s7Vw55qBjvLwBZdHQ1ws2yXb3LKfqUu2+YY3vAFLlixBvV7HwoULcdppp+EPf/iDt8222EfPGiXqpJNOwj777INbbrkFjUYDX/nKV/C6170Ov/nNb7BgwQIURYGTTjoJO++8M+68804888wzWL58OZRSuPjii6e7+BER046o2kTMRCISn8vxoSwLYAuVpHIKlagjjzwSn/jEJ7Bw4UKsXbsWH/nIR/DmN78Zd911FwBss320UFuq428F/OlPf8LOO++MH//4xzj88MMBAAMDA+jv78dNN92Eo48+Gtdddx1e97rXYc2aNVi0aBEA4IorrsCKFSvw1FNPob9/9JXJCRs3bsTcuXPxnZ8+jp45cSQcEREREdEdm14YwNsO/jM8//zz4+5nNgfUJ+100mchs/oWHatsDeOZaz85ZWXl+J//+R+ccsopGBkZQZZlk9ZHzzTMinDeTjvthD//8z/H5ZdfjsHBQbTbbVxyySXYddddcdBBBwEAfvKTn2D//fe3NwcAjj/+eIyMjOD+++/veuyRkRFs3LjR+4mIiIiIiJhJ2PJQnvNUhX3eyMjIpJb12Wefxbe//W286lWvQpZlACbeR890zAoSJYTAjTfeiAceeAB9fX2o1+v48pe/jOuvvx477LADAGD9+vXYddddvf3mzZuHPM+xfv36rsf+/Oc/j7lz59qfxYsXT2VVIiIiIiIiNhuTSaIWL17s9Xuf//znJ6WMH/vYx9Db24uddtoJq1evxtVXX22/m2gfPdMxrSRq5cqVEEKM+nPfffdBKYX3vOc92GWXXXDHHXfgpz/9KU4++WS87nWvw7p16+zxqgyzSqlRjbTnnnsunn/+efuzZs2aKalrRERERETETMCaNWu8fu/cc8+t3G68fTThox/9KB544AHccMMNSJIEp59+ujfzdyJ99EzHtBrL3/e+9+Htb3/7qNvsvvvuuOWWW3DNNddgw4YNNm769a9/HTfeeCMuu+wyfPzjH8eCBQtwzz33ePtu2LABrVarg/1y1Go11Gq1La9MRERERETEVKEooOQWGsPNAsT9/f3j8iCNt48mzJ8/H/Pnz8c+++yDP//zP8fixYtx9913Y9myZRPuo2c6ppVE0QUfC5s2bQIASOkLZ1JKlGbK5rJly/DZz34W69atw8KFCwEAN9xwA2q1mvVNRUREREREzEYoteWz8zZ3AeLx9tHV59IKFPmtttU+elZ4opYtW4Z58+Zh+fLlePDBB/HrX/8aH/3oR/Hkk0/ipJNOAgAcd9xx2G+//XDaaafhgQcewM0334yPfOQjOPPMM2et6z8iIiIiImKm46c//Sn++Z//GT//+c/xu9/9Drfeeive8Y53YK+99sKyZcsAbLt99KwgUfPnz8f111+PF154AUcddRRe/vKX484778TVV1+NAw88EACQJAmuvfZa1Ot1HHrooXjrW9+KU045BRdeeOE0lz4iIiIiImLLMJOTbTYaDVx55ZU4+uijse++++KMM87A/vvvj9tvv93aZbbVPnpW5Inamoh5oiIiIiIixoutlSeq/4iPQKRb5t9V7RFsvP3CrZInanvBrFCiIiIiIiIiIiJmGmbNsi8RERERERHbK1RZAlsYjpvKtfO2V0QSFRERERERMcOhJmHtPLWF+0d0IpKoiIiIiIiIGY5IomYmoicqIiIiIiIiImICiEpURERERETEDEdZFhBRiZpxiCQqIiIiIiJihkMVJSC2kEQV0Vg+2YjhvIiIiIiIiIiICSAqURERERERETMc07F2XsTYiCQqIiIiIiJihkOVxZaH86InatIRw3kRERERERERERNAVKIiIiIiIiJmOKISNTMRSVRERERERMQMRyRRMxORRAVQSgHQK3NHRERERESMBuorqO+YMhQtbPEZitZklCSCIZKoAM888wwA4J1HvWyaSxIRERERMVswMDCAuXPnTvpx8zzHggULsP5X352U4y1YsAB5nk/KsSIAoaacPs8uPPfcc5g3bx5Wr149JS/EdGLjxo1YvHgx1qxZg/7+/ukuzqQi1m12ItZtdmJbrhuwefVTSmFgYACLFi2ClFMzV2t4eBjNZnNSjpXnOer1+qQcKyIqUR2gl2Du3LnbZOMAAP39/bFusxCxbrMTsW6zF+Ot31QPuOv1eiQ+MxQxxUFERERERERExAQQSVRERERERERExAQQSVSAWq2G8847D7VabbqLMumIdZudiHWbnYh1m73Y1usXMXmIxvKIiIiIiIiIiAkgKlERERERERERERNAJFERERERERERERNAJFERERERERERERNAJFERERERERERERNAJFEMX//617HHHnugXq/joIMOwh133DHdRdpsrFy5EkII72fBggX2e6UUVq5ciUWLFqHRaOA1r3kNfvnLX05jibvjxz/+MV7/+tdj0aJFEELg+9//vvf9eOoyMjKCs88+G/Pnz0dvby/e8IY34Pe///1WrEU1xqrbihUrOu7jK1/5Sm+bmVq3z3/+83jFK16Bvr4+7LLLLjjllFPw2GOPedvM1ns3nrrN1nv3L//yL/jLv/xLm2By2bJluO666+z3s/WeAWPXbbbes4jpRyRRBt/5znfwwQ9+EJ/85CfxwAMP4PDDD8eJJ56I1atXT3fRNht/8Rd/gXXr1tmfhx9+2H73xS9+EV/60pfwz//8z7j33nuxYMECHHvssRgYmHkLLg8ODuLAAw/EP//zP1d+P566fPCDH8RVV12FK664AnfeeSdeeOEFvO51r0NRTO9q5mPVDQBOOOEE7z7+8Ic/9L6fqXW7/fbb8d73vhd33303brzxRrTbbRx33HEYHBy028zWezeeugGz897ttttu+MIXvoD77rsP9913H4466iicfPLJlijN1nsGjF03YHbes4gZABWhlFLq4IMPVmeddZb32Ytf/GL18Y9/fJpKNDGcd9556sADD6z8rixLtWDBAvWFL3zBfjY8PKzmzp2r/vVf/3UrlXBiAKCuuuoq+/d46vLcc8+pLMvUFVdcYbdZu3atklKq66+/fquVfSyEdVNKqeXLl6uTTz656z6zpW5KKfXUU08pAOr2229XSm1b9y6sm1Lb1r2bN2+e+vd///dt6p4RqG5KbVv3LGLrIipRAJrNJu6//34cd9xx3ufHHXcc7rrrrmkq1cTx+OOPY9GiRdhjjz3w9re/Hb/97W8BAE8++STWr1/v1bNWq+GII46YdfUcT13uv/9+tFotb5tFixZh//33nxX1ve2227DLLrtgn332wZlnnomnnnrKfjeb6vb8888DAHbccUcA29a9C+tGmO33rigKXHHFFRgcHMSyZcu2qXsW1o0w2+9ZxPQgLkAM4E9/+hOKosCuu+7qfb7rrrti/fr101SqieGQQw7B5Zdfjn322Qd//OMf8ZnPfAavetWr8Mtf/tLWpaqev/vd76ajuBPGeOqyfv165HmOefPmdWwz0+/riSeeiLe85S1YunQpnnzySfzDP/wDjjrqKNx///2o1Wqzpm5KKXzoQx/CYYcdhv333x/AtnPvquoGzO579/DDD2PZsmUYHh7GnDlzcNVVV2G//fazRGE237NudQNm9z2LmF5EEsUghPD+Vkp1fDbTceKJJ9rfDzjgACxbtgx77bUXLrvsMmuU3BbqSZhIXWZDfd/2trfZ3/fff3+8/OUvx9KlS3HttdfiTW96U9f9Zlrd3ve+9+Ghhx7CnXfe2fHdbL933eo2m+/dvvvui5///Od47rnn8L3vfQ/Lly/H7bffbr+fzfesW93222+/WX3PIqYXMZwHYP78+UiSpGNE8dRTT3WMvGYbent7ccABB+Dxxx+3s/S2hXqOpy4LFixAs9nEhg0bum4zW7Bw4UIsXboUjz/+OIDZUbezzz4b//M//4Nbb70Vu+22m/18W7h33epWhdl07/I8x957742Xv/zl+PznP48DDzwQ/+f//J9t4p51q1sVZtM9i5heRBIF/XIddNBBuPHGG73Pb7zxRrzqVa+aplJNDkZGRvDII49g4cKF2GOPPbBgwQKvns1mE7fffvusq+d46nLQQQchyzJvm3Xr1uEXv/jFrKvvM888gzVr1mDhwoUAZnbdlFJ43/vehyuvvBK33HIL9thjD+/72XzvxqpbFWbTvQuhlMLIyMisvmfdQHWrwmy+ZxFbGVvdyj5DccUVV6gsy9R//Md/qF/96lfqgx/8oOrt7VWrVq2a7qJtFj784Q+r2267Tf32t79Vd999t3rd616n+vr6bD2+8IUvqLlz56orr7xSPfzww+qv//qv1cKFC9XGjRunueSdGBgYUA888IB64IEHFAD1pS99ST3wwAPqd7/7nVJqfHU566yz1G677aZuuukm9bOf/UwdddRR6sADD1Ttdnu6qqWUGr1uAwMD6sMf/rC666671JNPPqluvfVWtWzZMvWiF71oVtTt3e9+t5o7d6667bbb1Lp16+zPpk2b7Daz9d6NVbfZfO/OPfdc9eMf/1g9+eST6qGHHlKf+MQnlJRS3XDDDUqp2XvPlBq9brP5nkVMPyKJYvja176mli5dqvI8Vy972cu8acuzBW9729vUwoULVZZlatGiRepNb3qT+uUvf2m/L8tSnXfeeWrBggWqVqupV7/61erhhx+exhJ3x6233qoAdPwsX75cKTW+ugwNDan3ve99ascdd1SNRkO97nWvU6tXr56G2vgYrW6bNm1Sxx13nNp5551VlmVqyZIlavny5R3lnql1q6oXAHXppZfabWbrvRurbrP53p1xxhm2/dt5553V0UcfbQmUUrP3nik1et1m8z2LmH4IpZTaerpXRERERERERMS2geiJioiIiIiIiIiYACKJioiIiIiIiIiYACKJioiIiIiIiIiYACKJioiIiIiIiIiYACKJioiIiIiIiIiYACKJioiIiIiIiIiYACKJioiIiIiIiIiYACKJioiYZKxatQpCCPz85z+fkuMLIfD9739/wvvfdtttEEJACIFTTjll1G1f85rX4IMf/OCEzxUxOug+7LDDDtNdlIiIiAkgkqiIbQorVqwYkxhMNRYvXox169Zh//33B+BIy3PPPTet5Qrx2GOP4Zvf/OZ0F2O7QLfnct26dfjKV76y1csTERExOYgkKiJikpEkCRYsWIA0Tae7KKNil112mREKSKvVmu4iTBsWLFiAuXPnTncxIiIiJohIoiK2K9x+++04+OCDUavVsHDhQnz84x9Hu92237/mNa/B+9//fpxzzjnYcccdsWDBAqxcudI7xqOPPorDDjsM9Xod++23H2666SYvxMbDeatWrcKRRx4JAJg3bx6EEFixYgUAYPfdd+9QIV7ykpd453v88cfx6le/2p6LryJPWLt2Ld72trdh3rx52GmnnXDyySdj1apVm31tBgcHcfrpp2POnDlYuHAhLrrooo5tms0mzjnnHLzoRS9Cb28vDjnkENx2223eNv/2b/+GxYsXo6enB2984xvxpS99ySNrK1euxEte8hL853/+J/bcc0/UajUopfD888/j7/7u77DLLrugv78fRx11FB588EHv2D/4wQ9w0EEHoV6vY88998T555/v3b+VK1diyZIlqNVqWLRoEd7//vePq+5j1euZZ57BX//1X2O33XZDT08PDjjgAPzXf/2Xd4z//u//xgEHHIBGo4GddtoJxxxzDAYHB7Fy5UpcdtlluPrqq234LrxmERERsxMze6gcETGJWLt2LV772tdixYoVuPzyy/Hoo4/izDPPRL1e94jLZZddhg996EO455578JOf/AQrVqzAoYceimOPPRZlWeKUU07BkiVLcM8992BgYAAf/vCHu55z8eLF+N73voe/+qu/wmOPPYb+/n40Go1xlbcsS7zpTW/C/Pnzcffdd2Pjxo0d/qRNmzbhyCOPxOGHH44f//jHSNMUn/nMZ3DCCSfgoYceQp7n474+H/3oR3HrrbfiqquuwoIFC/CJT3wC999/P17ykpfYbd75zndi1apVuOKKK7Bo0SJcddVVOOGEE/Dwww/jz/7sz/C///u/OOuss/BP//RPeMMb3oCbbroJ//AP/9BxrieeeALf/e538b3vfQ9JkgAATjrpJOy444744Q9/iLlz5+KSSy7B0UcfjV//+tfYcccd8aMf/Qh/8zd/g69+9as4/PDD8Zvf/AZ/93d/BwA477zz8N///d/48pe/jCuuuAJ/8Rd/gfXr13eQsG4Yq17Dw8M46KCD8LGPfQz9/f249tprcdppp2HPPffEIYccgnXr1uGv//qv8cUvfhFvfOMbMTAwgDvuuANKKXzkIx/BI488go0bN+LSSy8FAOy4447jvi8REREzGNO7/nFExORi+fLl6uSTT6787hOf+ITad999VVmW9rOvfe1ras6cOaooCqWUUkcccYQ67LDDvP1e8YpXqI997GNKKaWuu+46laapWrdunf3+xhtvVADUVVddpZRS6sknn1QA1AMPPKCUUurWW29VANSGDRu84y5dulR9+ctf9j478MAD1XnnnaeUUupHP/qRSpJErVmzxn5/3XXXeef6j//4j446jYyMqEajoX70ox9VXoeq8gwMDKg8z9UVV1xhP3vmmWdUo9FQH/jAB5RSSj3xxBNKCKHWrl3rHe/oo49W5557rlJKqbe97W3qpJNO8r4/9dRT1dy5c+3f5513nsqyTD311FP2s5tvvln19/er4eFhb9+99tpLXXLJJUoppQ4//HD1uc99zvv+W9/6llq4cKFSSqmLLrpI7bPPPqrZbFbWuxvGU68qvPa1r1Uf/vCHlVJK3X///QqAWrVqVeW2oz2Xl156qXd9IiIiZg+iEhWx3eCRRx7BsmXLIISwnx166KF44YUX8Pvf/x5LliwBAPzlX/6lt9/ChQvx1FNPAdBm7MWLF2PBggX2+4MPPnjKyrtkyRLstttu9rNly5Z529x///144okn0NfX530+PDyM3/zmN+M+129+8xs0m03v+DvuuCP23Xdf+/fPfvYzKKWwzz77ePuOjIxgp512AqCvzxvf+Ebv+4MPPhjXXHON99nSpUux8847e/V44YUX7HEIQ0NDth73338/7r33Xnz2s5+13xdFgeHhYWzatAlvectb8JWvfAV77rknTjjhBLz2ta/F61//+jG9aeOpV1EU+MIXvoDvfOc7WLt2LUZGRjAyMoLe3l4AwIEHHoijjz4aBxxwAI4//ngcd9xxePOb34x58+aNeu6IiIjZjUiiIrYbKKU8AkWfAfA+z7LM20YIgbIsux5jopBS2vMTuMk6/C4sJ6BDfgcddBC+/e1vd2zLScpYqDpXiLIskSQJ7r//fhuCI8yZM8cep9s15iDywY+9cOHCSq8Q+anKssT555+PN73pTR3b1Ot1LF68GI899hhuvPFG3HTTTXjPe96DCy64ALfffnvHPd3cel100UX48pe/jK985Ss44IAD0Nvbiw9+8INoNpsA9GSCG2+8EXfddRduuOEGXHzxxfjkJz+Je+65B3vssUfXc0dERMxuRBIVsd1gv/32w/e+9z2vo7/rrrvQ19eHF73oReM6xotf/GKsXr0af/zjH7HrrrsCAO69995R9yFfUlEU3uc777wz1q1bZ//euHEjnnzySa+8q1evxh/+8AcsWrQIAPCTn/zEO8bLXvYyfOc737Fm7Ili7733RpZluPvuu60it2HDBvz617/GEUccAQB46UtfiqIo8NRTT+Hwww+vPM6LX/xi/PSnP/U+u++++8Y8/8te9jKsX78eaZpi991377rNY489hr333rvrcRqNBt7whjfgDW94A9773vfixS9+MR5++GG87GUv67rPeOp1xx134OSTT8bf/M3fANDE6/HHH8ef//mf222EEDj00ENx6KGH4tOf/jSWLl2Kq666Ch/60IeQ53nH/Y+IiJj9iLPzIrY5PP/88/j5z3/u/axevRrvec97sGbNGpx99tl49NFHcfXVV+O8887Dhz70IUg5vlfh2GOPxV577YXly5fjoYcewv/+7//ik5/8JIBOlYiwdOlSCCFwzTXX4Omnn8YLL7wAADjqqKPwrW99C3fccQd+8YtfYPny5Z4Scswxx2DffffF6aefjgcffBB33HGHPRfh1FNPxfz583HyySfjjjvuwJNPPonbb78dH6Up9H8AAARySURBVPjAB/D73/9+3Ndszpw5eNe73oWPfvSjuPnmm/GLX/wCK1as8K7LPvvsg1NPPRWnn346rrzySjz55JO499578U//9E/44Q9/CAA4++yz8cMf/hBf+tKX8Pjjj+OSSy7BddddN6Z6d8wxx2DZsmU45ZRT8KMf/QirVq3CXXfdhU996lOWhH3605/G5ZdfjpUrV+KXv/wlHnnkEXznO9/Bpz71KQDAN7/5TfzHf/wHfvGLX+C3v/0tvvWtb6HRaGDp0qWjnns89dp7772t0vTII4/g//v//j+sX7/eHuOee+7B5z73Odx3331YvXo1rrzySjz99NOWZO2+++546KGH8Nhjj+FPf/rTdp3WISJim8I0ebEiIqYEy5cvVwA6fpYvX66UUuq2225Tr3jFK1Se52rBggXqYx/7mGq1Wnb/I444whqpCSeffLLdXymlHnnkEXXooYeqPM/Vi1/8YvWDH/xAAVDXX3+9UqrTWK6UUv/4j/+oFixYoIQQ9ljPP/+8eutb36r6+/vV4sWL1Te/+U3PWK6UUo899pg67LDDVJ7nap999lHXX3+9ZyxXSql169ap008/Xc2fP1/VajW15557qjPPPFM9//zzldeom9F9YGBA/c3f/I3q6elRu+66q/riF7/YcT2azab69Kc/rXbffXeVZZlasGCBeuMb36geeughu803vvEN9aIXvUg1Gg11yimnqM985jNqwYIF9vvzzjtPHXjggR3l2rhxozr77LPVokWLVJZlavHixerUU09Vq1evtttcf/316lWvepVqNBqqv79fHXzwweob3/iGUkqpq666Sh1yyCGqv79f9fb2qle+8pXqpptuqrwGIcaq1zPPPKNOPvlkNWfOHLXLLruoT33qU+r000+3ZvFf/epX6vjjj1c777yzqtVqap999lEXX3yxPf5TTz2ljj32WDVnzhwFQN166632u2gsj4iYvRBKjcMMERER0RX/+7//i8MOOwxPPPEE9tprr+kuzpi47bbbcOSRR2LDhg1bJdnmmWeeiUcffRR33HHHlJ9rNuKb3/wmPvjBD864jPYRERFjI3qiIiI2E1dddRXmzJmDP/uzP8MTTzyBD3zgAzj00ENnBYHi2G233fD617++I2nkluLCCy/Esccei97eXlx33XW47LLL8PWvf31Sz7GtYM6cOWi326jX69NdlIiIiAkgkqiIiM3EwMAAzjnnHKxZswbz58/HMcccU5nde6bikEMOweOPPw7AzT6bTPz0pz/FF7/4RQwMDGDPPffEV7/6Vfzt3/7tpJ9nvLjjjjtw4okndv2ePGrTAVqkOpwVGBERMTsQw3kRERHbNIaGhrB27dqu34822y8iIiJiNEQSFRERERERERExAcQUBxERERERERERE0AkURERERERERERE0AkURERERERERERE0AkURERERERERERE0AkURERERERERERE0AkURERERERERERE0AkURERERERERERE0AkURERERERERERE8D/D8Y5rmpIy4iFAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can check that it gives us the same thing:" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ds.sst[0].plot()" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "" + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc'" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pattern[key]" ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAHFCAYAAAD8Jo2EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACjyklEQVR4nOzdd3wTdR8H8M8lnXQxCh2MUrZlD4Wyyt7bDQqID8rDXiIIQkGWbETcylIf8RHBATwUGZUtUxCxMgpUpCIIHYyO5Pf8kdz1Lrkkd8klTcr3/Xrl1eZy97vfXZK7b36TY4wxEEIIIYQ85HTFnQFCCCGEEG9AQREhhBBCCCgoIoQQQggBQEERIYQQQggACooIIYQQQgBQUEQIIYQQAoCCIkIIIYQQABQUEUIIIYQAoKCIEEIIIQTAQxYUHTx4EMnJybhz547Va+3atUO7du08nidPWbFiBQYMGID4+HhwHGf3WHfs2IFWrVohODgYERER6N27N86ePWu1Xl5eHhYvXox69eohJCQEUVFR6N69Ow4ePGi17owZM9CrVy9UrFgRHMdh6NChqo/hxo0bGDp0KCIjI1GqVCkkJiZi165dVuvl5+dj5syZiI+PR0BAAOLi4jBt2jTcv39f8b6Unq+1a9eC4zjZR2ZmJgAgOTnZ5jriB7+Ps2fPYuTIkUhMTERISAg4jsPevXut9n39+nXMmDEDiYmJiIyMRHh4OJo2bYoPPvgABoNB8bFeunQJAwYMQOnSpREaGorOnTvjxIkTsut+8cUXaNSoEYKCghAbG4vx48cjNzfXK/fljKpVqzr12fQ2as6znBMnTqBTp04IDQ1F6dKlMWDAAFy6dMnhdpcvX5Z8pr/66itXDsNp8+fPx5YtW4pl3wCwZcsWyXk4duxYseWFqMQeIosXL2YAWHp6utVrZ8+eZWfPnvV8pjykdu3arEmTJmzYsGGsfPnyLCkpSXa9LVu2MI7jWL9+/djWrVvZ559/zmrXrs3KlCnDLly4IFn3+eefZzqdjk2fPp3t2rWL/fe//2VNmzZlfn5+7MiRI5J1S5UqxVq0aMFGjBjBAgIC2JAhQ1Tl/8GDB6xevXqsUqVK7NNPP2UpKSmsb9++zM/Pj+3du1ey7oABA1hQUBCbP38+27lzJ5szZw4LCAhgvXv3Vrw/pedrzZo1DABbs2YNO3TokOSRn5/PGGMsIyNDsvzrr79mANiYMWMky/nP39q1a1lMTAzr0aMH6927NwPA9uzZY7Xv7777jlWuXJlNnz6dbd26laWkpLAJEyYwnU7HXnjhBUXHeePGDRYbG8vq1q3LNm3axLZu3cpat27NwsLC2G+//SZZ99NPP2UA2L/+9S+2e/du9t5777GIiAjWuXNnr9uXs+Li4lR/Nr2NmvMs59y5cywsLIy1adOGbd26lW3atInVrVuXxcbGshs3btjdNj09nQFgM2bMYIcOHWK3bt3S6rBUCQkJKdb38Z9//mGHDh1iM2bMYADY0aNHiy0vRB0Kih4SBoNB+L9u3bo2b/K1a9dmDRo0YEajUVh2+fJlFhAQwAYOHCgse/DgAdPr9ey5556TbP/nn38yAGzs2LE29+/MBWv16tUMADt48KCwrKCggCUkJLDHHntMWHbo0CEGgC1dulSy/fz58xkAlpKSomh/Ss8XHxSpuejxN47Fixc73Pd///tfm0HRP//8IwReYqNGjWIA2NWrVx3m5ZVXXmH+/v7s8uXLwrKsrCwWGRnJnnrqKWFZYWEhi4mJYV26dJFs/9lnnzEAbNu2bV61L2eVhKBI6Xm25cknn2SRkZEsKytLWHb58mXm7+/PpkyZYndb/rO9Zs0ap/OvBXcERYWFhezBgweqtnHm+kCK10NTfZacnIxXXnkFAIQqEXG1hGX1GV8MvHjxYrz55puoWrUqgoOD0a5dO/z+++8oKCjA1KlTERsbi4iICPTv3x83btyw2u/GjRuFapDQ0FB07doVJ0+e9MQhS+h0jt/qW7duIS0tDd27dwfHccLyuLg41KtXD1u2bBGqZXQ6HXQ6HSIiIiRphIeHQ6fTISgoSPX+7dm8eTNq166NxMREYZmfnx+ee+45/PTTT7h27RoA4MCBAwCAHj16SLbv1asXAGDTpk2K9udqfl2hdN9lypSBv7+/1fLHHnsMAPDHH384TGPz5s3o0KED4uLihGXh4eEYMGAAvvvuOxQWFgIADh8+jOvXr+OFF16QbP/kk08iNDQUmzdv9qp9WbJXzemo2jw7OxuTJ08WqmMrVqyI8ePH4+7du8I6jRs3Rps2bay2NRgMqFixIgYMGKA6z85Sep7lFBYW4vvvv8fjjz+O8PBwYXlcXBzat2/v1Lnn8dXIp0+fxpNPPomIiAiULVsWEydORGFhIdLS0tCtWzeEhYWhatWqWLRokVUaSt4LjuNw9+5drFu3TvY9zszMxMsvv4xKlSohICAA8fHxmD17tuS88Nf/RYsWYe7cuYiPj0dgYCD27NkDo9GIuXPnonbt2ggODkbp0qXRoEEDrFy50ulzQ7zHQxMU/etf/8KYMWMAAF9//TUOHTqEQ4cOoUmTJna3W716NQ4cOIDVq1fjo48+wm+//YbevXvjxRdfxN9//41PPvkEixYtwg8//IB//etfkm3nz5+PZ599FgkJCfjyyy+xYcMG5OTkoE2bNvj1118d5rmwsFDRgzHm/IkRyc/PBwAEBgZavRYYGIh79+7h4sWLAAB/f3+MHDkS69atw5YtW5CdnY3Lly9j+PDhiIiIwPDhwzXJE++XX35BgwYNrJbzy/g2T7aOgX9++vRpTfPF69WrF/R6PcqWLYsBAwbgl19+cct+lNi9ezf8/PxQq1YtyXLLm8P9+/dx8eJFm+f1/v37QjsS/ngs1/X390edOnWsjteT+1KiZ8+ewneefyxbtgwAULduXZvb3bt3D0lJSVi3bh3Gjh2L7du349VXX8XatWvRp08f4bv3wgsvYP/+/Th//rxk+5SUFPz5559WAZ4lo9Go6LvuqK2YmvMs5+LFi7h//77N7S9cuIAHDx7YzYMjTz31FBo2bIhNmzZh+PDhWL58OSZMmIB+/fqhZ8+eQlD36quv4uuvvxa2U/peHDp0CMHBwejRo4fwXr/zzjsATAHRY489hh07dmDmzJnYvn07XnzxRSxYsED2mvXWW29h9+7dWLJkCbZv3446depg0aJFSE5OxrPPPoutW7di48aNePHFF2XbqhLf41fcGfCUSpUqoUqVKgBMv+qqVq2qaLvSpUtjy5Ytwq/3mzdvYvz48ahTpw6++eYbYb3ffvsNK1asQHZ2NsLDw5GRkYFZs2Zh9OjReOutt4T1OnfujJo1a2L27NnYuHGjzf1evnwZ8fHxivK4Z88eTRqJR0VFoWzZskJpC+/OnTvCjejWrVvC8uXLlyMiIgKPP/44jEYjAKBKlSrYvXs3atSo4XJ+xG7duoWyZctaLeeX8flKSEgAYCoxEp+//fv3W+VfC9HR0Zg+fTpatGiB8PBwnDlzBgsXLkSLFi1w4MABNGzYUNP9OZKSkoINGzZg3LhxKFeunOQ1vV4PvV4vPL99+zYYY4rOK//X1rqXL18utn0pUb58eZQvX154npaWhnnz5qF9+/ZYvny5ze3eeustnD59GkeOHEGzZs0AAB07dkTFihXxxBNP4H//+x+6d++OQYMG4ZVXXsHatWsxb948Yfu1a9cKHRDsGTZsGNatW+fwOJKSkmQb3fPUnGc5js49Ywy3b99GTEyMw7za8tJLL2HixIkAgE6dOiElJQVvv/02vv76a/Tv3x+AqeT++++/x2effSaUsil9L1q0aAGdTofy5cujRYsWkn0nJyfj9u3bOHv2rHA/6NixI4KDgzF58mS88sorwjUEAIKCgrBjxw5JieyBAwdQv359JCcnC8u6du3q9Pkg3uWhCYqc1aNHD0l1xiOPPALA9MtTjF9+9epV1KtXDzt27EBhYSEGDx4sKZYNCgpCUlIS9uzZY3e/sbGxOHr0qKI81q5dW9F6juh0OowaNQpvvPEG3njjDbz88svIzs7G+PHjce/ePWEd3rx587BkyRIkJyejTZs2yM7Oxttvv43OnTsjJSUFjRs3VrV/xpjVL2E/v6KPqLhKzxL/Wvfu3VGjRg28+uqriIqKwqOPPorDhw/jtddeg16vl+TfshpBr9fb3Yecbt26oVu3bsLztm3bomfPnqhfvz5mzpwpCZzd7cSJE3jqqafQokULLFiwwOp1W9UmSs6ro3Utl3tyX2plZmaiW7duiImJwebNmxEQEGBz3e+//x716tVDo0aNJMfUtWtXofq9e/fuKFeuHHr37o1169bhjTfegE6nw+3bt/HNN99g7Nixks+xnOTkZIwePdph3sPCwhQdo5rz7I7t7eGrsnmPPPIIfv75Z0ng6Ofnhxo1auDKlSvCMqXvhT3ff/892rdvj9jYWEka3bt3x+TJk5GamioJivr06WNVRf3YY49h69atGDlyJPr27YvExERJVSPxbRQUOWD5i4m/gNpazhct//XXXwCARx99VDZdR+1GAgIC0KhRI0V5FP8id9XMmTORm5uLuXPnYubMmQBMAeALL7yAjz76CBUrVgQAnDt3DjNnzsSiRYswefJkYfvu3bsjISEBEydOdBj4WVq3bp1VNQNfJF6uXDnZX7j//PMPgKL3IyAgANu3b8fzzz+PLl26AABCQkIwf/58vPHGG0L+AVhd7NasWaNJd+yqVauidevWOHz4sMtpKXXy5EmhFHLbtm2yVaCWypQpA47jFJ1XvtTp1q1biIqKslpXrmShuPZlT05ODnr06IGCggJs377dqk2cpb/++gsXLlyQbbsFmEqOecOGDcOmTZuwc+dOdO3aFf/5z3+Ql5en6DNVpUoVVKpUyeF6jgISNedZjvjcy23PcRxKly7tMJ/2yF07S5UqZdUOMSAgANnZ2cJzNe+FLX/99Re+++47xWnIlYhNmzYNISEh+PTTT/Hee+9Br9ejbdu2ePPNN4USLOK7KChyk8jISADAV199JWnwqFRxVJ8Bpl9oy5Ytw5w5c5Ceno7IyEjExMSga9euiI+PFy7cP//8MxhjVkGfv78/GjZsiNTUVNX77t27t83Ssfr16+PMmTNWy/ll9erVE5bVqFEDhw4dwrVr1/DPP/+gevXqyMrKwrhx49C2bVthPct9KT3fSjDGPNZY++TJk+jUqRPi4uKQkpLi8EbPCw4ORo0aNWye1+DgYFSrVg2A6fzzy8W/pAsLC/Hbb7/h2Wef9Zp92VJQUIDHH38cFy9exL59+xQFIZGRkQgODsYnn3xi83Ve165dERsbizVr1qBr165Ys2YNmjdvLjkGW7SqPlNznuVUr14dwcHBNrevUaOGVfDiKWreC3tpNGjQQFLFKRYbGyt5LheE+vn5YeLEiZg4cSLu3LmDH374Aa+99hq6du2KjIwMlCpVSsHREG/1UAVF/K9nNYP4Oatr167w8/PDxYsX8fjjj6vevjiqz8RCQ0OFm9OJEyewa9cuLF26VJI/wNRTKCkpSViel5eHEydOKLrhWCpXrpxVOxhe//79MXLkSBw5cgTNmzcHYLpJfvrpp2jevLnVxQwAKlasKJQMzZgxAyEhIXjxxReF1931qy49PR0HDhxAp06d3JK+2KlTp9CpUydUqlQJO3fuRJkyZVRt379/f6xYsQIZGRmoXLkyAFNpytdff40+ffoI1T7NmzdHTEwM1q5di6efflrY/quvvkJubq6i3lWe3JecF198EXv37sX27dtlGxLL6dWrF+bPn49y5co5DJr1ej2ef/55rFixAvv27cOxY8fw/vvvK9qPltVnSs+zHD8/P/Tu3Rtff/01Fi1aJOzv6tWr2LNnDyZMmKDoeNxBzXsRGBgoe53v1asXtm3bhurVq6v+rsgpXbo0nnjiCVy7dg3jx4/H5cuXFQXBxHs9VEERf5NfuXIlhgwZAn9/f9SuXVtxPb0aVatWxZw5czB9+nRcunQJ3bp1Q5kyZfDXX3/hp59+QkhICGbPnm1z+4CAAE1v2seOHRMaqGZnZ4MxJow2++ijjwqlWXv37sXRo0fRoEEDMMbw008/4c0330S3bt0kF+3WrVvj0UcfRXJyMu7du4e2bdsiKysLq1atQnp6OjZs2CDZf2pqKv7++28Apm7KV65cEfaflJQkaQQrZ9iwYVi9ejWefPJJLFy4EBUqVMA777yDtLQ0/PDDD5J1Fy1ahOjoaFSpUgV//fUXvvzyS2zZsgUbNmyQVJ9pcb46deqEtm3bokGDBkJD60WLFoHjOLzxxhuK9mXp3r172LZtGwAIVXCpqam4efMmQkJChHYTaWlpQuA1b948nD9/XtL7qXr16pLz6ufnh6SkJMko4JMnT8aGDRvQs2dPzJkzB4GBgVi4cCEePHggaUiq1+uxaNEiPP/883j55Zfx7LPP4vz585gyZQo6d+4saVfl6X1xHOewBGXx4sXYsGEDxowZg5CQEEnVZnh4uM0b2fjx47Fp0ya0bdsWEyZMQIMGDWA0GnH16lWkpKRg0qRJQpAOmD6nb775JgYOHIjg4GBJUGdP1apVFXf+cETpeQYgdIi4cOGCsGz27Nl49NFH0atXL0ydOhUPHjzAzJkzERkZiUmTJmmSR2eoeS/q16+PvXv34rvvvkNMTAzCwsJQu3ZtzJkzBzt37kTLli0xduxY1K5dGw8ePMDly5exbds2vPfeew5/0PXu3Rv16tVDs2bNUL58eVy5cgUrVqxAXFwcatas6YlTQdypOAZHKk7Tpk1jsbGxTKfTSQbFS0pKkgzQZ2uAvT179jAA7L///a9kua1BurZs2cLat2/PwsPDWWBgIIuLi2NPPPEE++GHH9xyfLYMGTKEAZB9iAdaO3DgAGvevLmQ33r16rElS5bIDhJ4584dNn36dPbII4+wUqVKsQoVKrB27drJDq6XlJRkc/9yAxPKyczMZIMHD2Zly5ZlQUFBrEWLFmznzp1W682ePZtVr16dBQYGstKlS7Nu3bqxH3/8UfG5Ykz5+Ro/fjxLSEhgYWFhzM/Pj8XGxrLnnnuOpaWl2Uzb0eCN/Otyj7i4OGE9/jOnJJ+MMQZAdhDKCxcusH79+rHw8HBWqlQp1rFjR3b8+HHZvH3++eesQYMGLCAggEVHR7OxY8eynJwcq/U8ta+cnBwGgD3zzDOyafDsvZ/ifMoN3pibm8tmzJjBateuzQICAlhERASrX78+mzBhAsvMzLTaV8uWLRkANmjQILt5ciel5zkuLk7ymeIdO3aMdezYkZUqVYqFh4ezfv36WY1oL8fe4I2zZs1iANjff/8tWT5kyBAWEhJitX5SUhKrW7euZJnS9+LUqVOsVatWrFSpUlbv8d9//83Gjh3L4uPjmb+/Pytbtixr2rQpmz59OsvNzZUch9x3dOnSpaxly5YsMjKSBQQEsCpVqrAXX3xRMlgmjwZv9D0cYxoNckMIIR62bds29OrVCz///LNQEkyKD98W8uOPP8bgwYOd6tFZEjBzT9r169fjxRdfxNGjR6kRto94aAZvJISUPHv27MEzzzxDAZGXefHFF+Hv7694BPmS5ptvvoG/v7+kDSPxDVRSRAghRBP5+fmSUeO1atDsa+7cuSNpp5WQkEC90nwEBUWEEEIIIaDqM0IIIYQQABQUEUIIIYQAoKCIEEIIIQTAQzZ4oxJGoxF//vknwsLCHsqupIQQQpRjjCEnJwexsbFum9rnwYMHyM/P1yStgICAYpuqxRdQUGThzz//FIbGJ4QQQpTIyMhwanojRx48eIBywaG4B4Mm6UVHRyM9PZ0CIxsoKLLAT/mRfuowwsJCizk3hBBCvFlOTi7iG7Vwy3RRgGmYg3swYDAqIsDFFi/5MGJ95jXk5+dTUGQDBUUW+CqzsLBQhLvpQ04IIUR7jNOu+opjRnXru7m5RQB0CHD1+GgAHocoKCKEEOITtAx6vGlfSug5DnoXAy89OAqMHKCgyAbG6YQvhdpfDIQQQrThbcGJJU/lT8cBehcLo3QABUUOePenzUuIAyRCCCGeQddd4mlUUqQC43RUakQIId5MTbd4o+9czzWrPiN2UVCkElWpkZJIyS9y+swTr+TK2EBy23ppoKTXoPpMr01WSjQKipxEpUakJFBTPUE/CIhXcdNAiVbpemmQRNyDgiIXeCQwciZ9qocnCjjbXoOCI+IpHDPKf05tBURKPtNqP7c6nVcERlR95hkUFLlIs8BIyxuMOC1nLhIUVJV41IDVOXLnjYJD97IKjCwDIrWfZcv1lbx//D6LMTii6jPPoKDIRV4XEMmlbeuiYWu/FCS5n61z74FzrVVA5FNVyBqcb1vnzafOg1mxBndqf7ShKG+SfFtuK5eWkmNyJkgCigIluj6WKBQU2cLpiopN7RSfOn1B9ORF1NV92bqIFWfwJBfs8flRulwuTZ67j4UupJ7F6ZR/DpSwuCZ4e5Wio0DYZr7t/ahSvHM750Tle8IxY1Fy/Cb2thW/746oKTEqBlR95hkUFDnCfwmcqVe2d0FR82WV29bRft1FyQUOKJ6gwt65djZNUkSmAardYMCTnwd7LPOm8EYsBBLiqhPxObBzPsS8IVByOg9avG9KrnX8tdK8XkjXOU7vLnfXXFNarlar8fnyEhxcH1iQQiLHKChSw0avBJs3BkdfSnuvu/ILTYsLmcVFyqnt7bFX4iS3jod4201N66oZp6vOHPwokM2nneompZw+dnvbqcmXvSDI3roOsiI+LvF+tayOdyWwELu7Y6aQ1t0dM2XPn8OSMtE2IV2SNcmXLaEdZyB35xzrKjd77x+/jtrvhwevDVRS5BkUFNnCjIpLhsRfPrUXNVsXE6aTvjWeujELx6DkIuFKnpTuw9nknajOsNlmRO/n8LPgrvfHlXQVBR9qqgMcNDZVHXA52rejkijZTDh/vmTbrVgeqzg4tJd/8XYyAaXmgRCKgg1xEKNJuqK0xP/fTUkW/rc6BlFpnLuDIDmhnWdKnt9NSQYMMu8vYHp/ZK5Hks+e+Pi8qPSIaM9ngqLCwkIkJyfjs88+Q2ZmJmJiYjB06FDMmDEDOvPFiTGG2bNn44MPPsDt27fRvHlzrF69GnXr1lW/Q3GbIks22hMA5huoJbmLqEVRPHNQMCq8bpmWKB9KLq4Oe3Ewo/W+FKatmpZtPGSIe604yr/d8yK3zAM3OVfJ5cOrep1ZVkdZEn3PHP7gcKZBrWUSos+K3dIFpcGQaJllwOXKZ8RRkKFlQCQnd6cp/RCLwMNX8Oc+pEsycnfOQWjHGQBE1W6SlXVgEFU7yZXge+g7Rb3PPMNngqI333wT7733HtatW4e6devi2LFjeOGFFxAREYFx48YBABYtWoRly5Zh7dq1qFWrFubOnYvOnTsjLS0NYWFh6nbI10nrzR94yy+Dn5+wnlCqw4yA3t/0lzGA40zbGA3gjIXSC6LeXBrEjJJfIkwfIKQlLOersZjRlB9xtZa4FspRjbP4lxCnk9xoQttNkayau2chwBXlK6Rj0QVQ/AvRKm1bnCxBs8fejYV/TVUwxHOx262tvHtDsGRVbaOk1AOQBjCWwb2z+7ZMV44o+HcYeLpwc5L8sOF/EInTdfTe8cfhoDTN1c9AcZS68HJ3zRX+5wMJX2HrvIlLlCyPKSd1SdF1WXTttCo58hBTUORq9RlxxGeCokOHDqFv377o2bMnAKBq1ar4z3/+g2PHjgEwlRKtWLEC06dPx4ABAwAA69atQ1RUFD7//HO8/PLLqvbH/ALB/INNT4QLuAHQmT5WTNSQL7zlKIfpZR9cLQQ4DABnLDSn4y/5gjGdH8JbjkL2wdVFkxmzol+afMDFGQuLtpMrcZGpmuIDn5wflwEAwtpOtJnf0PZTZZfn7poLZr7gq/l6Wv56lQRW9tpPiW5Oti7EskGaC2wOGGdnfUty23tLsOR0IKig1FT1fvl0VVTjqQ2I7L2XtoJnyVPx5vaO1dUxbGS+x8UZBFnytUBIjZz9K4ue8D9qZT5nnOV7xOnA9P4eyCHxFJ8Jilq3bo333nsPv//+O2rVqoWff/4Z+/fvx4oVKwAA6enpyMzMRJcuXYRtAgMDkZSUhIMHDzoVFIW1meBSnrMPrpY8D281Rlhu9cvUAh9o8WlYFrszTmc3KLEV1ADSYCj7wCqEtxoj7McywMvZv1J6kTAWmkqQDIVWv9zt3XzEDR+tuBAQ5e6cUxQ8QkGAYRGA2VrflXZilts74qhKReuqOSX7UcxOda6Eq3NMqalKs2Dvs2nr3EreP5l8ahbIyqVj/oyqDYj4HzvQ6RHWepzTWcrZtxwAXL7++Yrsg6vBxMExpwNghBANi3+UwrKqXW+qHfAAqj7zDJ8Jil599VVkZWWhTp060Ov1MBgMmDdvHp599lkAQGZmJgAgKipKsl1UVBSuXLliM928vDzk5eUJz7OzswEAFTtPAsdXZSkgDoD4kh4AADMKwZD4davtzcGJOL3wlqOkaQGSL6xVXbfwuqn6yzIwytm3XNqI0Px/9oFV1vnmk2VG8z6M4IzGomo8C2pu/oDCm4r5ZmTZaFIstPNMU7G+0husihu/UwGRTNAl27DTksJGxe5su2Sr3YviYMlWSZLl685Om2ARGInz6IijY1ESHDta12aJp70fA0qq5hzI2bccYW0m2C35VSOszQTk7l2kSVrejC8dkgRENkohmfVSj7Ul4lHvM8/wmaBo48aN+PTTT/H555+jbt26OHXqFMaPH4/Y2FgMGTJEWI+z+NAwxqyWiS1YsACzZ8+2Wn5t51JU6jZNdhtJ4GAOeiwDHSVVapL17QROttLiq9gc7YvPb5iCPInTyj6wynShMBqKgiFmtH9Ds1UNItMw2V6JhZobvrgUyW6JlEq2qsXspi9zobQKjMTVRfxyUds1xvkVXZwddIO3lU9XWKZnN6Cw1WXdKJN/PqixVV1mrxpNo+kVrKrJRD8SlLRRc8jRepzO/nqic3w3JVlRaZEWJTq5excJbSP5qvncPQtNLzIjQju85vI+vEXuzjmmz1nBfXOHGr59qPk+wWRCIMvg1Zs6LBBNcYzJfQK8T+XKlTF16lSMGlV00547dy4+/fRT/Pbbb7h06RKqV6+OEydOoHHjxsI6ffv2RenSpbFu3TrZdOVKiipXrgy/+oPslhQJbYRgHdA4Yquqypvwx2e6QIraMPEXBoOpTZTdX/0KSgSU9hAT35BtlRzl7pwjeY3vJaNF0OD0iMBy21s24pX7K2woUzrn7l6BDmjSg008WrxSKoZFcMuchBp1JlDTvo4/1/ZKS52VfXA1OEM+OEOB9DMmCsjdsd/idHeH+XjMHU2g0wHm67y49Fxgr/0ax4Hp/BDW4mUUnvkMWVlZCA8P1zzP2dnZiIiIwKKw6gjmXKsAu88MmJJz0W15LQl8pqTo3r17Qtd7nl6vh9F8oYyPj0d0dDR27twpBEX5+flITU3Fm2++aTPdwMBABAYGqs6PXFWT2u29mVWbJgSCKywKHqE3Co3FgULpxkpLkiyqjBxVUfDL+JuIcFHjbxwWv2b5C7qWpUcCmeOw2eBaLgiSe873ZOR/sZp/nUpuWjLtXjzNZvsKNcQlSRpNnSD+LCkNsPn1bVJzfDINpIWbsGgd/vPLr2OrNEgo0XBTqYQu/y6M5s4kD0P7Iav3QnRuhc+ErSBIHKyaexUzTqf6B7ErqPrMM3wmKOrduzfmzZuHKlWqoG7dujh58iSWLVuGYcOGATBVm40fPx7z589HzZo1UbNmTcyfPx+lSpXCwIED3ZInPjAS9ywTvyYmLh3y9oBIzGbV3YFVgNH8q8XoV1QfbyyUVpOYCUGPnVIOW1Ubtm5yRfMgSX/RCl2Hxb+4LUpa1AYUNquQ5MarErqu+xX9IrVKUFcU/Jify/1S5YyFYHr/osAI2gZDfDDnSoNytT31bJ5DJSNGK6hGkwt63DE+k+T9NkqH1lAygOLdlGQwTmdVGpO7ay5CO85waylN9sHVCPWh65AWmM5P+hk3Gk1tqc3tJmVLigCL0kJT6ZAngyHiWT5TfZaTk4PXX38dmzdvxo0bNxAbG4tnn30WM2fORECAufjTPHjj+++/Lxm8sV69eor3wxdVOqo+s9rOTnWareoyvjG1LxOq2YRqtQKA04Ez5EuL443WPThkSxwU9lKyGmBPXP1k0QZC3DZC8tcifdW9sixLgMwPobRH7tcnVzSulaK2YPy5NRSY23cVmkuPCu1uW9yUNEx22EZJRcNsJQ2plUzhIvs5tLNvy+pfuVIfyyEjQrokS0o7hRJNmTm77PUidYb4OmXvR1xJJX4vmN5PaFMkCYhslMYw848cHn/OmCHfI9VnKyJqaFJ9Nj7rAlWf2eEzQZGnOBsUAebSE0730Fxg7Mk+sMpUvWY0FAVISqrVxBcn/pe35S84ueBG1BBSrvt+7u75ttvrAI7zJq7m4f8XbqDmi6pOD6YP0PT9F7ft4gwFQlDkTGmXp6htAO5qKY7NwEbFtg7nxxJ9JuU+X0rHyrLaj2UDXnPArHUwxPOF9oyeIBm9WucnnVZJXH2NovfMVumQp4KiVaW1CYrG3KGgyB6fqT7zBSW5SNVyyAFHhDGZDqwyjeNhUdJhEycNjvhgg+8RwhkLpXX8fGBjKLRf3WBez/KGlrt7vukfPz/5fAkXTtFzPSTr8iVD/MCb7sJ0fqYWAcZCgD8FTgQeiraxdy7411UGM1pXYTnTtslyG9kG8HI9jewE3I4CIr70SGgjBAD6ABj9gxHeagxy9q90aVwhNex9PktCybUjuXsWSkvKxJ8Bi+ps8f/ecF6oTZFnUEmRBVdKih42ai+iQukRYN3jRVyEbfFLDQBgKEBY0mTk7l0kjMydu3u+Zl2Fc35cJiqV4oq65fLVYOILKTNCmMbFvMydAZG4Go0rzJM2upYrMZKpHnGKOPBUkZbDAMWFbveK2gc5mKdO8XbiaiyLz5mjKS/EgZJVUMTpHH5uc/cuAuN0CEuaDKBoLCJ3U1qS5MsBlGVgJFSL2Wjj5+g4PVVS9E6ZmpqUFI28fZ5KiuygoMjCwxwUefJCl7NvuSkwAgBmtL4wGQ3CDcET+MAjvNUYYTBLNdO4eErO/pXCuFGSqV7MbYw0rVKz0x3dXhWZojZYjlhWVyqhZqJWGxMqS3oLWpQWhLafKhlkVUlQbqvBNd/OTUk1mfiz6U18MTDK3T1fWiXPWff4VPsDx1NB0ftlaiJY52JQZDTgZQqK7KKgyMLDHBR5mjCFCCApgdFqZF6lfK2dheUYUuC4ohIkQDZA0mzcHgu2hlSQJRdsyCZqp1u0mK1ARw4fZDmYssNymAer9mz8en6BTld5iYMpIciF/bkIvZUvBkaAOTgSl06bgw1n3lNPBUUflq2FUi4GRfeMBgz/53cKiuygNkWk2C5s/AWoOIOS7AOrfO6iLhl13HKsLKMBnDmAEIYhcHLOMCUcTgViq0pKrtG7zZ1YbCNUueqgqju/5XoWU4YIwZDOzzQhtPl8Wd4oc/avBAwFRdNEcMrHq8n5cRkYRO+becgFbysFUooflsRXvkPi6UvEAZGnxxwi3ouCooec3AXNExc5y0DIkxfXnB+XgTMWCg1dfZnVtCyihqOm3n+Fkkbkro7XJMeqsbJcoGIZ2FgGOHIlQeL1LJcxG8GQXC9FW2nqLUqB+N5GOj+7JQZyr+WkLgHzC5R8nnL2LTc1jje3oxPPT8ZPuqpVb8Xi/GHhC4GRuHRO0v3ehwIiTSaEpXbWDlFQ9BCzdSFz58WNH7ZAvB/Lv27HcUJjbXvketx588U/vNUYU575m7vev6i3nrmKRgiU1ARDahpaW45QbRl0cDKDVIoGpWScrmikdDWlR+J8ihvw28qbKADiq05gNJjy58Ss52FJk4VZ6vlG+6YhFAzy62vcaFrpZ9Idn19XRvb3lNAOryF3z0JpZw43d5DQmia9z1zc/mFAbYosUJsidcQNTxWtX0xBRc6Py5xqsyFc8M03XF+5gIrxDceFeewM+abACHCptEi2PZG4CkocuFjuw7K3jxgfwInHqRIHZpa96yzHrbIoDZOwHF9KFBRp1S2e70TgUrsjUS9LX+DN7fJy9yyUBsHm4TO0+j57qk3RusjamrQpGnIzjdoU2UElRcRptn4hii+QcusUR2DkbCNWb7zIK5Wzb7m05MRoUDy6tFWgA1jPeA+YAgshEdHwCuY2OfyNJ/vAqqJ9ywVIYnysw0RBj7iHkCTjrKhkidNJgj1JPsX74m+Q5sBM69ICJaVAjoJ0XwqIBF46mKh4FHlfnqaDqs88w8WBTEhJobYIXOkvQ3HVmDDvGzMKVQ3EPYRqNHFAZCwE+FIifm46nc403YFfAKD3MwUROtEM4n4BpnT0AYB/kOm5f1BRaZA+wBQA6QOKHn6Bwo1HeP9bjQEzl8xIRg82Y5wOYa3HmR5tJpjT8jeV4oh/HZtvcGFtJpjW8ws079/f/H+QKa/C8fgB+gAw/1LmR7CwDfT+TgVEuXsXCW2CnFU0mbI2nP0+aVX1Fd5ylNeNsJ67a27R4KyApITIF/HVZ64+iH1UUkQAaFsiosu/K/mla5m2L/5KU8pb2hzxeeB7SAEGIZARJu0Vj9XC90zjH3rRGC46PThDAULbTSka+E7cLojTwTRQrt7mgHdWc+TJDI5na9LknP0rAU6+l5dVTzy+ezXfsNwcnGn5vhgDQlxOQ64kyDKPtkqT5I7FG0pC3THpriv4QTWLvgMl+9pDtEFtiiw8DG2K3F3/72z7HeI+kjGhGDNXSemt2+VYVLHxpTqW72dO6hJhrjdA+fQRliUT3hBAOsLn35vyLtdhobhZdkzISV3i0QFY7eHb1bkjKPJUm6KNUY9o0qbo6b/OUZsiO7wrtCceYesGpRUKiLxPWOtxRaVCen9T1ZE+AGGtx0mrtMxVSsIyUU+u3N3zkZO6xFRVo9MLVU9KqlCzD662Kgmy1ebMG/GBkfh4hZHP3bQ/u8wlbN4SEAEypXY6vVvPkT2y1ZteVpKlFqfnNHkQ+6j67CHlC13MibbEPaEk77u5OozpA0xVXJJ7h6kqKid1CSRFyjZGerZFbsBJb7up26J02Aq1PTFd5Y0lst4wZlH2gVWAoQC5u+eD+QcjrM0EZSOuezmdnoNO51pQo6M2RQ5RUPSQc1TtoXRdMU9NXkmUsSp1YEbJeym+kWcfXI2wVmOEG67QHkOnF6YU0aI7s1vHwiqmm7KWAZGj/PPTukgmNzW3F9NqkmRnWJ773D0LFc3vpiXL9yFn33LNhlsgJR8FRUSWrRuL+AbLGfJlgx8KiLyLrRtszv6V4AruS25a/Lp8CQR/M8nZt1wY/deVaghPBCyyjbxtvObtbP3ACGs7UZhUlh+ywBu68VuWFDH/4GLLC9+OrsRcj/Q6cGomVZbDqWtCXLVqVVy5csVq+ciRI7F6tXUV7969e9G+fXur5efOnUOdOnVU7bu4UFBEZNm6eShpj2Q55UHurrlCTxDiPcJaj5N2Wba3rvnG4moboOKahsIT7JWQiqvWcvavVFxyYSu9nH3LEWp+LXfnHIAzSqayKE5CWzFbI4u7Wc7+laYhHkpYTzNO53qbIA7qtj969CgMhqJR2X/55Rd07twZTz75pN3t0tLSJA25y5cvry6jxYh6n1l4GHqfFYfcnXMQ2nlmcWeDaESYDNWHpknwBMuBSzljoWwAZNl7zHI78ZAKjubmyt01FwDc8sOjuNsHqVFco2p7qvfZpmoNEKJ3rffZXYMBj1867XRex48fj++//x7nz58HJ9M+iS8pun37NkqXLu1SXosLBUUWKCjShi9dTInz+Ju2ozZGD8PnIXfvImEkb8uJYZVW4Xhrezw1758nghNvqhL1VFC0uWZDTYKi/ud/RkZGhiSvgYGBCAwMtLttfn4+YmNjMXHiRLz2mnyJJB8UVa1aFQ8ePEBCQgJmzJghW6XmrSgoskBBkeu89cJO3IOfDd7RuDnePD+WL/N0KayjAOlhCIDFPBUUbandWJOgqF/aSavls2bNQnJyst1tv/zySwwcOBBXr15FbGys7DppaWn48ccf0bRpU+Tl5WHDhg147733sHfvXrRt29alvHsKtSkimqOA6OHCFeYhrH1RmyNbN0VfGpfIl3i6WtphwONl030Qa3IlRY58/PHH6N69u82ACABq166N2rVrC88TExORkZGBJUuW+ExQ5NsDNxCvkbtzTnFngRQTy95rjnp/5aQuQU7qkqLeU8RlubvnI3fvIk3TFE+PoYa7xmpSOxCkZQDOP88+uLrYBpV0hU7PafIAgPDwcMnDUVB05coV/PDDD/jXv/6lOt8tWrTA+fPnnTrm4kBBEdEENaImcmTn6UqajLCkyR4fv6YkC+3wGpjeX9OSuLDW42TTU7IPZwMqW9QOjCn3uZNMTu2DPdOKc0TrNWvWoEKFCujZs6fqbU+ePImYmBin9lscKCgihGhK/IucqlI8J6zNBHDGQpuvOxMwKR3N2yovNgIqpfhqWKEdmsog5mFq0+RuRqMRa9aswZAhQ+DnJ21xM23aNAwePFh4vmLFCmzZsgXnz5/H2bNnMW3aNGzatAmjR4/2dLadRm2KCCGaEv8iBx6+hrfFyd74R66+B558H+nzYs1U0uNaOQYH9T9SfvjhB1y9ehXDhg2zeu369eu4evWq8Dw/Px+TJ0/GtWvXEBwcjLp162Lr1q3o0aOHS/n2JOp9ZoF6nxGiLW/qPl1SqQ1YPNVt/mF4vz3V+2xb00cRonetHOOuoRA9jh91W15LAiopIoS4la2G1w/DDdNdLANNJedSbiJedwYu9P5qi+M4cC5OCMsZaUJYR6hNESHEo5TexIlt/Dm019NPbkJnW42PLdfN+XGZltklxGdQUEQIISWAXBBk+XrO/pVCd3R7DaH5CYG16M1GY1NpQ6fXafIg9lH1GSGElAByQZB4mfh/uWozubZfVKLnPVzpUi+kwaj6zBGfChuvXbuG5557DuXKlUOpUqXQqFEjHD9+XHidMYbk5GTExsYiODgY7dq1w9mzZ4sxx4QQUjzsBTRy1WiWbY20GuCQRjInvsRngqLbt2+jVatW8Pf3x/bt2/Hrr79i6dKlkpl4Fy1ahGXLluHtt9/G0aNHER0djc6dOyMnJ6f4Mk4IIV5AaWAiBEitxmgaGBHXFOfgjQ8TnwmK3nzzTVSuXBlr1qzBY489hqpVq6Jjx46oXr06AFMp0YoVKzB9+nQMGDAA9erVw7p163Dv3j18/vnnxZx7QgjxbnJBk5YjP/vi1BrehNoUeYbPnKFvv/0WzZo1w5NPPokKFSqgcePG+PDDD4XX09PTkZmZiS5dugjLAgMDkZSUhIMHDxZHlgkhxGs4Kq2x1RNNs/2bS55y9q/UfBoQQrTiM0HRpUuX8O6776JmzZrYsWMHRowYgbFjx2L9+vUAgMzMTABAVFSUZLuoqCjhNTl5eXnIzs6WPAghpKRRU33mzHaK0m41BmGtx4Hp/KjkSC0tqs6o+swhnwmKjEYjmjRpgvnz56Nx48Z4+eWXMXz4cLz77ruS9ThO+qYzxqyWiS1YsAARERHCo3Llym7JPyGE+CJ3lCCFtxwFcDpqgK2CjuOg07n4sHMvJCY+ExTFxMQgISFBsuyRRx4R5l2Jjo4GAKtSoRs3bliVHolNmzYNWVlZwiMjI0PjnBNCiPO0ChycmQbEnVO00CCexBv5TFDUqlUrpKWlSZb9/vvviIuLAwDEx8cjOjoaO3fuFF7Pz89HamoqWrZsaTPdwMBAhIeHSx6EEOItiiNwCG85CtkHVlHQ4kU4vU6TB7HPZ87QhAkTcPjwYcyfPx8XLlzA559/jg8++ACjRpm+tBzHYfz48Zg/fz42b96MX375BUOHDkWpUqUwcODAYs49IYT4Fls9z6jKq3jo9JwmD2KfzwRFjz76KDZv3oz//Oc/qFevHt544w2sWLECgwYNEtaZMmUKxo8fj5EjR6JZs2a4du0aUlJSEBYWVow5J4QQ7bgSlGjR64tKj4oHjVPkGRxjjBV3JrxJdnY2IiIi4Fd/EDh9QHFnhxBCZKmd4T774GpwxkKEtR7nxlw9fJghH4VnPkNWVpZbml/w96R9vTsg1N+1mblyCwrR5rvdbstrSeAzJUWEEEKK8O1+1GA6baa7pCo0z6M2RZ5BZ4gQQnyUqqk4mNH00GK/VIXmcTq9Fu2KivsovB8FRYQQ4sP4BtGOSm84Y6Gm03YQUhJpU5ZKCCGkWNkrvck+uBphVLrj0zgdB07nWkNpV7d/GFBJESGElEDuHHiReJ5Op8GEsDq65TtCZ4gQQgghBBQUEUJIiSU3XYdWcnfO0TxNYhuNU+QZFBQRQkgJFN5ylNDbjDMWap5+aOeZVsuoq777UJd8z6AzRAghJRXn2Us8tV0ivo56nxFCSEllLiliHg6OiPY4nQ6ciw2lXd3+YUBBESGElFDhrcYgZ/9KhNH4RD6P70HmahrEPgqKCCGkBOPuZxV3FogWtGgTREGRQ3SGCCGkBJNrEE0IkUclRYQQQoiX43SulxRRmyLHKCgihBBCvBw1tPYMOkOEEEIIIaCSIkIIIcTrmQZf1LuYhkGj3JRcFBQRQogPshw9mgZOLNm0GJGaRrR2jM4QIYT4mOyDqxHecpTw4JcRQlxDQREhhPiQ7IOrAWakIOgho9PpNHkQ++gMEUKIj8jdOQfhLUeBK8xDeMtRFBg9RIpjQtjk5GRwHCd5REdH290mNTUVTZs2RVBQEKpVq4b33nvPlcP2OGpTRAghPoIfiDEsaTKAonZE1J6o5CuuNkV169bFDz/8IDzX22nsnZ6ejh49emD48OH49NNPceDAAYwcORLly5fH448/7lSePY2CIkIIKQFy9y4CjIVg/sFg+gAKlIgm/Pz8HJYO8d577z1UqVIFK1asAAA88sgjOHbsGJYsWeIzQRFVnxFCiA/LPrAK2QdWwRgQgtAOr4HpA4Q2R9kHVhV39ohGOE4nDODo9IMz3fKzs7Mlj7y8PJv7PX/+PGJjYxEfH49nnnkGly5dsrnuoUOH0KVLF8myrl274tixYygoKNDmRLgZBUWEEOLLOB3A6SRVaeGtxgDMaHqNlAhatimqXLkyIiIihMeCBQtk99m8eXOsX78eO3bswIcffojMzEy0bNkSt27dkl0/MzMTUVFRkmVRUVEoLCzEzZs3tT0hbkLVZ4QQUkJRFRqRk5GRgfDwcOF5YGCg7Hrdu3cX/q9fvz4SExNRvXp1rFu3DhMnTpTdhuM4yXPGmOxyb0VBESGE+DDLwCd35xyEdp5pKi0iJYaWDa3Dw8MlQZFSISEhqF+/Ps6fPy/7enR0NDIzMyXLbty4AT8/P5QrV059hosBla0SQogPyz64Gjn7VwrP+R5qpGTR6XWaPFyRl5eHc+fOISYmRvb1xMRE7Ny5U7IsJSUFzZo1g7+/v0v79hQKigghxIdxxkIwajtE3GDy5MlITU1Feno6jhw5gieeeALZ2dkYMmQIAGDatGkYPHiwsP6IESNw5coVTJw4EefOncMnn3yCjz/+GJMnTy6uQ1CNqs8IIcSHMZ2fqVE1KdE4HQfOxRGpOZ26dj1//PEHnn32Wdy8eRPly5dHixYtcPjwYcTFxQEArl+/jqtXrwrrx8fHY9u2bZgwYQJWr16N2NhYvPXWW5p2xz99+rTqbRISEuDnpyzc8dmgaMGCBXjttdcwbtw4YUwExhhmz56NDz74ALdv30bz5s2xevVq1K1bt3gzSwgh7sKMsu2Hcn5chrC28o1hie8pjsEbv/jiC7uvr1271mpZUlISTpw4oWo/ajRq1AgcxwkNuB3R6XT4/fffUa1aNUXr+2RQdPToUXzwwQdo0KCBZPmiRYuwbNkyrF27FrVq1cLcuXPRuXNnpKWlISwsrJhySwgh7iMXEOXuWYhQCohICXXkyBGUL1/e4XqMMdSrV09V2j4XFOXm5mLQoEH48MMPMXfuXGE5YwwrVqzA9OnTMWDAAADAunXrEBUVhc8//xwvv/xycWWZEEI8KrT91OLOAtFYcU3z4W2SkpJQo0YNlC5dWtH6bdu2RXBwsOL0FQVFfJChxnvvvYcKFSqo3s6RUaNGoWfPnujUqZMkKEpPT0dmZqZkNM3AwEAkJSXh4MGDFBQRQgjxWfyI1q6m4ev27Nmjav1t27apWl9RULRlyxY89dRTiqOtzz//HLm5uZoHRV988QVOnDiBo0ePWr3Gj40gN5rmlStXbKaZl5cnGeI8Oztbo9wSQggh2uD0eujsTMaqNI2SLDc3F0aj0akxmHiKq8/eeustxUHOV1995XSGbMnIyMC4ceOQkpKCoKAgm+vJjaZpbyTNBQsWYPbs2ZrlkxBCCCGe8+uvv2Lw4ME4ceIEOI5DQkIC1q5di6ZNm6pOS1FZ2p49e1C2bFnFiW7fvh0VK1ZUnRl7jh8/jhs3bqBp06bw8/ODn58fUlNT8dZbb8HPz08oIZIbTdOy9Ehs2rRpyMrKEh4ZGRma5psQQghxlZZzn5U0L7/8MkaPHo3c3FzcunULAwYMkIyfpIaiM5SUlKS4jz8AtG7d2uZcKs7q2LEjzpw5g1OnTgmPZs2aYdCgQTh16hSqVauG6OhoyWia+fn5SE1NRcuWLW2mGxgYKAx57uzQ54QQQog7UVBUpG/fvrh27Zrw/O+//0afPn1QqlQplC5dGj169MBff/3lVNpO9T4zGo24cOECbty4AaNROmhY27ZtncqII2FhYVZd60JCQlCuXDlh+fjx4zF//nzUrFkTNWvWxPz581GqVCkMHDjQLXkihBBCiGcNGjQI7du3x+jRozFmzBiMHj0adevWRVJSEgoKCrB7925MmjTJqbRVB0WHDx/GwIEDceXKFavBkziOg8FgcCojWpgyZQru37+PkSNHCoM3pqSk0BhFhBBCfBqn06D3mYvbe4unnnoKXbp0wauvvormzZvj/fffR0pKCvbu3QuDwYCpU6fi0UcfdSptjikdFtKsUaNGqFWrFmbPno2YmBirRswRERFOZcRbZGdnIyIiAn71B4HTBxR3dgghhHgxZshH4ZnPkJWV5ZbmF/w96Y/3piI82LVmKdn381BpxEK35bU47N+/HyNHjkTnzp3xxhtvoFSpUi6lpzpsPH/+PObPn49HHnkEpUuXRkREhORBCCGEEOJOt2/fxvHjx1G/fn0cP34cYWFhaNy4MbZu3epSuqqDoubNm+PChQsu7ZQQQgghynE6zvWG1ionhPVWGzduRMWKFdGzZ0/ExcVh+/btSE5OxjfffINFixbhqaeecm9Da/GstGPGjMGkSZOQmZmJ+vXrw9/fX7Ku5XxkhBBCCHENtSkq8uqrr+KTTz7BM888g+PHj2PYsGHo06cP6tSpg9TUVHzwwQdITEzEpUuXVKetKCiSm5V22LBhwv/8a8Xd0JoQQgghJVtOTg5q164NAKhevTru3bsnef2ll15Cv379nEpbUVCUnp7uVOKEEEIIcR2n04PTuTjNh4vbe4shQ4agZ8+eaNeuHY4dO4bnn3/eah1npxlTFBTFxcUJ///4449o2bKl1WCOhYWFOHjwoGRdQgghhGhApzc9XE2jBFi2bBnat2+P3377DUOHDpVMBO8q1eMUtW/fHtevX7eKwrKystC+fXuqPiOEEEK0ptOZHq6mUUL07t0bvXv31jxd1WfI1gSrt27dQkhIiCaZIoQQQgix9NZbb+HBgweK13/vvfeQk5OjeH3FJUUDBgwAYGpUPXToUMncZgaDAadPn7Y7xxghhBBCnMPp9eD0LrYpcnF7bzBhwgQ8++yzCAoKUrT+lClT0KVLF8UzWygOiviBGRljCAsLQ3BwsPBaQEAAWrRogeHDhytNjhBCCCFKUZsiAKYYpGPHjoonqb9//76q9BUHRWvWrAFjDIwxrFq1iuYTI4QQQohHzZo1S9X6ffv2RdmyZRWvr6qhNWMMn3/+OaZPn05BESGEEOIpOp0GJUW+39BabVCklqozpNPpULNmTdy6dctd+SGEEEKIBX5Ea1cfxD7VZ2jRokV45ZVX8Msvv7gjP4QQQgghxUL1OEXPPfcc7t27h4YNGyIgIEDS4BoA/vnnH80yRwghhBAAnAYNrTnfb2jtbqqDohUrVrghG4QQQgixiXqfeYTqoGjIkCHuyAchhBBCSLFSHRQBpsEat2zZgnPnzoHjOCQkJKBPnz7Ql4CBoQghhBBvo0VD6ZLW0NpgMGDt2rXYtWsXbty4AaPRKHl99+7dqtNUHRRduHABPXr0wLVr11C7dm0wxvD777+jcuXK2Lp1K6pXr646E4QQQgixg6rPrIwbNw5r165Fz549Ua9ePdkpyNRSHRSNHTsW1atXx+HDh4UBkW7duoXnnnsOY8eOxdatW13OFCGEEEJEaJwiK1988QW+/PJL9OjRQ7M0VQdFqampkoAIAMqVK4eFCxeiVatWmmWMEEIIIcSWgIAA1KhRQ9M0VYeNgYGBsjPO5ubmIiAgQJNMEUIIIaQIPyGsq4+SZNKkSVi5ciUYY5qlqbqkqFevXnjppZfw8ccf47HHHgMAHDlyBCNGjECfPn00yxghhBBCzHQ616u/Slj12f79+7Fnzx5s374ddevWhb+/v+T1r7/+WnWaqoOit956C0OGDEFiYqKQgcLCQvTp0wcrV65UnQFCCCGEELVKly6N/v37a5qm6qCodOnS+Oabb3D+/Hn89ttvYIwhISFB83o9QgghhJhR7zMra9as0TxNp8vSatasid69e6NPnz4UEBFCCCFuxOn0mjzUWLBgAR599FGEhYWhQoUK6NevH9LS0uxus3fvXnAcZ/X47bffXDl8u/7++2/s378fBw4cwN9//+1SWqpLitwxWBIhhBBCvEtqaipGjRqFRx99FIWFhZg+fTq6dOmCX3/9FSEhIXa3TUtLQ3h4uPC8fPnymufv7t27GDNmDNavXy/EInq9HoMHD8aqVatQqlQp1WmqDorcMVgSIYQQQuzgNGhozanb/n//+5/k+Zo1a1ChQgUcP34cbdu2tbtthQoVULp0abU5VGXixIlITU3Fd999JwwJtH//fowdOxaTJk3Cu+++qzpN1UGROwZLIoQQQohtzlR/yaXhiqysLACQjFNoS+PGjfHgwQMkJCRgxowZaN++vUv7lrNp0yZ89dVXaNeunbCsR48eCA4OxlNPPeWZoMgdgyURQgghxDOys7MlzwMDAxEYGGh3G8YYJk6ciNatW6NevXo214uJicEHH3yApk2bIi8vDxs2bEDHjh2xd+9eh6VLat27dw9RUVFWyytUqIB79+45labqsjh3DJZECCGEEDv4aT5cephu+ZUrV0ZERITwWLBggcPdjx49GqdPn8Z//vMfu+vVrl0bw4cPR5MmTZCYmIh33nkHPXv2xJIlSzQ5DWKJiYmYNWsWHjx4ICy7f/8+Zs+ejcTERKfSVF1S5I7BkpRYsGABvv76a/z2228IDg5Gy5Yt8eabb6J27drCOowxzJ49Gx988AFu376N5s2bY/Xq1ahbt65b8kQIIYR4hIaDN2ZkZEgaQTsqJRozZgy+/fZb/Pjjj6hUqZLq3bZo0QKffvqp6u0cWblyJbp164ZKlSqhYcOG4DgOp06dQlBQEHbs2OFUmk6NU6T1YElKKGkFv2jRIixbtgxr165FrVq1MHfuXHTu3BlpaWkICwvzeJ4JIYQQLWgxTQe/fXh4uCQosoUxhjFjxmDz5s3Yu3cv4uPjndrvyZMnERMT49S29tSrVw/nz5/Hp59+Koyb+Mwzz2DQoEEIDg52Kk3VQZHSwZIOHDiAZs2aOYxAlXLUCp4xhhUrVmD69OkYMGAAAGDdunWIiorC559/jpdfflmTfBBCCCEPg1GjRuHzzz/HN998g7CwMGRmZgIAIiIihKBj2rRpuHbtGtavXw8AWLFiBapWrYq6desiPz8fn376KTZt2oRNmza5JY/BwcEYPny4ZumpDoqU6t69O06dOoVq1aq5JX3LVvDp6enIzMxEly5dhHUCAwORlJSEgwcP2gyK8vLykJeXJzy3bIBGCCGEFLtiGNGa770l7t0FmAolhg4dCgC4fv06rl69KryWn5+PyZMn49q1awgODkbdunWxdetWzXqsf/vtt+jevTv8/f3x7bff2l3XmflY3RYUubMhtlwreD6CtWyJHhUVhStXrthMa8GCBZg9e7bb8koIIYS4rBiCIiX38bVr10qeT5kyBVOmTFG1HzX69euHzMxMYYRtWziOg8FgUJ2+T06Za68VvOVgkowxuwNMTps2DVlZWcIjIyND8/wSQgghxHVGoxEVKlQQ/rf1cCYgAnwwKOJbwe/Zs0fSCj46OhpAUYkR78aNG7LjGPACAwOFRmdKG58RQgghnsTpdJo8SpL169dLmr/w8vPzhTZOavnMGWKMYfTo0fj666+xe/duq1bw8fHxiI6Oxs6dO4Vl+fn5SE1NRcuWLT2dXUIIIUQ7nKtjFOlNaZQgL7zwgtC+WCwnJwcvvPCCU2m6rU2R1nOiOWoFz3Ecxo8fj/nz56NmzZqoWbMm5s+fj1KlSmHgwIGa5oUQQgghxctW85g//vgDERERTqXpMw2tlbSCnzJlCu7fv4+RI0cKgzempKTQGEWEEEJ8G8epntBVNo0SoHHjxuA4DhzHoWPHjvDzKwplDAYD0tPT0a1bN6fSVh0U3b9/H4wxlCpVCgBw5coVbN68GQkJCZLu8Dk5OU5lyBYlQRbHcUhOTkZycrKm+yaEEEKKFafTICjymRYzdvG9zk6dOoWuXbsiNDRUeC0gIABVq1bF448/7lTaqoOivn37YsCAARgxYgTu3LmD5s2bw9/fHzdv3sSyZcvw73//26mMEEIIIYQ4MmvWLABA1apV8fTTTyMoKEiztFWHjSdOnECbNm0AAF999ZUwDtD69evx1ltvaZYxQgghhJgwTqfJoyQZMmSIpgER4ERJ0b1794Q2OikpKRgwYAB0Oh1atGhhd5BEQgghhDiJqs+sGAwGLF++HF9++SWuXr2K/Px8yev//POP6jRVn6EaNWpgy5YtyMjIwI4dO4R2RDdu3KAxfgghhBB34DhtHiXI7NmzsWzZMjz11FPIysrCxIkThYIaZ9sWqw6KZs6cicmTJ6Nq1ap47LHHkJiYCMBUatS4cWOnMkEIIYQQosZnn32GDz/8EJMnT4afnx+effZZfPTRR5g5cyYOHz7sVJqqq8+eeOIJtG7dGtevX0fDhg2F5R07dkT//v2dygQhhBBC7NDpTA9X0yhBMjMzUb9+fQBAaGioMJBjr1698PrrrzuVplNnKDo6GmFhYdi5cyfu378PAHj00UdRp04dpzJBCCGEENuoobW1SpUq4fr16wBMTXtSUlIAAEePHkVgYKBTaao+Q7du3ULHjh1Rq1Yt9OjRQ8jQv/71L0yaNMmpTBBCCCGEqNG/f3/s2rULADBu3Di8/vrrqFmzJgYPHoxhw4Y5labq6rMJEybA398fV69exSOPPCIsf/rppzFhwgQsXbrUqYwQQgghxAbqfWZl4cKFwv9PPPEEKleujAMHDqBGjRro06ePU2mqDopSUlKwY8cOyQz1AFCzZk3qkk8IIYS4AwVFEgUFBXjppZfw+uuvo1q1agCA5s2bo3nz5i6lq/oM3b17V5jiQ+zmzZtO1+ERQgghhCjl7++PzZs3a56u6qCobdu2WL9+vfCc4zgYjUYsXrwY7du31zRzhBBCCEFRSZGrjxKkf//+2LJli6Zpqq4+W7x4Mdq1a4djx44hPz8fU6ZMwdmzZ/HPP//gwIEDmmaOEEIIIQDjOJd7j7ESNnhjjRo18MYbb+DgwYNo2rQpQkJCJK+PHTtWdZocUzL9vIXMzEy88847OHHiBIxGI5o0aYJRo0YhJiZGdQa8TXZ2NiIiIuBXfxA4fUBxZ4cQQogXY4Z8FJ75DFlZWW6Z1YG/J938/STCzVNsOZ1WTg4iazV2W149LT4+3uZrHMfh0qVLqtNUXVIEmMYpmjNnjjObEkIIIUQtamhtJT09XfM0nTpD+/btw3PPPYeWLVvi2rVrAIANGzZg//79mmaOEEIIIaC5z2TMmTMH9+7ds1p+//59pwtuVAdFmzZtQteuXREcHIwTJ04gLy8PAJCTk4P58+c7lQlCCCGE2EENra3Mnj0bubm5Vsvv3buH2bNnO5Wm6jM0d+5cvPfee/jwww/h7+8vLG/ZsiVOnDjhVCYIIYQQQtRgjIGTKf36+eefUbZsWafSVN2mKC0tDW3btrVaHh4ejjt37jiVCUIIIYTYpsXcZSVl7rMyZcqA4zhwHIdatWpJAiODwYDc3FyMGDHCqbRVB0UxMTG4cOECqlatKlm+f/9+YVRJQgghhGiI07k+y30JCYpWrFgBxhiGDRuG2bNnIyIiQngtICAAVatWRWJiolNpqw6KXn75ZYwbNw6ffPIJOI7Dn3/+iUOHDmHy5MmYOXOmU5kghBBCCFFiyJAhAExd8lu2bClpyuMq1UHRlClTkJWVhfbt2+PBgwdo27YtAgMDMXnyZIwePVqzjBFCCCHEjLrkW0lKSoLRaMTvv/+OGzduwGg0Sl6Xa+rjiKqgyGAwYP/+/Zg0aRKmT5+OX3/9FUajEQkJCQgNDVW9c0IIIYQoQEGRlcOHD2PgwIG4cuUKLMeh5jgOBoNBdZqqgiK9Xo+uXbvi3LlzKFu2LJo1a6Z6h4QQQgghrhoxYgSaNWuGrVu3IiYmRrYnmlqqq8/q16+PS5cu2R1emxBCCCEaopIiK+fPn8dXX32FGjVqaJam6jM0b948TJ48Gd9//z2uX7+O7OxsyYMQQggh2uInhHXtUbJGtG7evDkuXLigaZqqS4q6desGAOjTp4+kqIofRMmZOjxCCCGEEDXGjBmDSZMmITMzE/Xr17fqhdagQQPVaaoOivbs2aN6J4QQQghxAVWfWXn88ccBAMOGDROWcRznUiGN6qAoKSlJ9U4IIYQQ4gItJnQtYdVn6enpmqepOig6ffq07HKO4xAUFIQqVaogMDDQ5YwRQgghxIxKiqzExcVpnqbqM9SoUSM0btzY6tGoUSPUqVMHERERGDJkCB48eKB5ZpV65513EB8fj6CgIDRt2hT79u0rtrwQQgghvkrt/TQ1NRVNmzZFUFAQqlWrhvfee8+t+duwYQNatWqF2NhYXLlyBYBpGpBvvvnGqfRUB0WbN29GzZo18cEHH+DUqVM4efIkPvjgA9SuXRuff/45Pv74Y+zevRszZsxwKkOu2rhxI8aPH4/p06fj5MmTaNOmDbp3746rV68WS34IIYQQV7ne80z9hLJq76fp6eno0aMH2rRpg5MnT+K1117D2LFjsWnTJi1OgZV3330XEydORI8ePXDnzh2hDVHp0qWxYsUKp9LkmOUwkA489thjeOONN9C1a1fJ8h07duD111/HTz/9hC1btmDSpEm4ePGiU5lyRfPmzdGkSRO8++67wrJHHnkE/fr1w4IFCxxun52djYiICPjVHwROH+DOrBJCCPFxzJCPwjOfISsrC+Hh4Zqnz9+T/srMdDn97OxsREVHK86r2vvpq6++im+//Rbnzp0Tlo0YMQI///wzDh065FLe5SQkJGD+/Pno168fwsLC8PPPP6NatWr45Zdf0K5dO9y8eVN1mqpLis6cOSNbjxcXF4czZ84AMFWxXb9+XXVmXJWfn4/jx4+jS5cukuVdunTBwYMHZbfJy8ujsZYIIYQ8NCzveXl5eVbrOHM/PXTokNX6Xbt2xbFjx1BQUKDdAZilp6ejcePGVssDAwNx9+5dp9JUHRTVqVMHCxcuRH5+vrCsoKAACxcuRJ06dQAA165dQ1RUlFMZcsXNmzdhMBis9h0VFYXMzEzZbRYsWICIiAjhUblyZU9klRBCCFHMNHij6w8AqFy5suS+J1fq48z9NDMzU3b9wsJCp0ptHImPj8epU6eslm/fvh0JCQlOpam699nq1avRp08fVKpUCQ0aNADHcTh9+jQMBgO+//57AMClS5cwcuRIpzKkBcv5T/gxC+RMmzYNEydOFJ5nZ2dTYEQIIcSrMGZ6uJoGAGRkZEiqz+z1GFdzP7W1vtxyLbzyyisYNWoUHjx4AMYYfvrpJ/znP//BggUL8NFHHzmVpuqgqGXLlrh8+TI+/fRT/P7772CM4YknnsDAgQMRFhYGAHj++eedyoyrIiMjodfrraLYGzdu2Cy5CgwMpCEECCGEPDTCw8Mdtily5n4aHR0tu76fnx/KlSvnWqZlvPDCCygsLMSUKVNw7949DBw4EBUrVsTKlSvxzDPPOJWm6qAIAEJDQzFixAinduhOAQEBaNq0KXbu3In+/fsLy3fu3Im+ffsWY84IIYQQ5xkZg9HFoiI12ztzP01MTMR3330nWZaSkoJmzZpZTcGhleHDh2P48OG4efMmjEYjKlSo4FJ6To3ktGHDBrRu3VoyLsDy5cudHhdASxMnTsRHH32ETz75BOfOncOECRNw9epVrwziCCGEECWYRg81HN1Pp02bhsGDBwvrjxgxAleuXMHEiRNx7tw5fPLJJ/j4448xefJk5w/cjvT0dJw/fx6AqWSLD4jOnz+Py5cvO5Wm6qCIHxege/fuuH37tjAuQJkyZZweF0BLTz/9NFasWIE5c+agUaNG+PHHH7Ft2za3jHxJCCGElFSO7qfXr1+XjFkUHx+Pbdu2Ye/evWjUqBHeeOMNvPXWW8IcZVobOnSobE+4I0eOYOjQoU6lqXqcIneMC+BNaJwiQgghSnlqnKKrf2ozTlGVWOXjFHm78PBwnDhxAjVq1JAsv3DhApo1a4Y7d+6oTlN1myJ3jAtACCGEENsYY1BZhiGbRknCcRxycnKslmdlZQm1WGqprj5zx7gAhBBCCLHNyLR5lCRt2rTBggULJAGQwWDAggUL0Lp1a6fSVF1S5I5xAQghhBBC1Fi0aBHatm2L2rVro02bNgCAffv2ITs7G7t373YqTdVBkTvGBSCEEEKIfSWsoMdlCQkJOH36NN5++238/PPPCA4OxuDBgzF69GiULVvWqTRVN7QW02pcAG9CDa0JIYQo5amG1hczriPMxfRzsrNRvXJMiWlo7Q5ODd7Ii4yM1CofhBBCCCGq3LlzBz/99BNu3LgBo9EoeU08hpJSioKixo0bK5635MSJE6ozQQghhBDbqPeZte+++w6DBg3C3bt3ERYWJolTOI5zX1DUr18/4f8HDx7gnXfeQUJCAhITEwEAhw8fxtmzZ4t1ElhCCCGkpDKaH66mUZJMmjQJw4YNw/z581GqVClN0lQUFM2aNUv4/1//+hfGjh2LN954w2qdjIwMTTJFCCGEEGLPtWvXMHbsWM0CIsCJcYr++9//yhZJPffcc9i0aZMmmSKEEEJIEca0eZQkXbt2xbFjxzRNU3VD6+DgYOzfvx81a9aULN+/fz+CgoI0yxghhBBCTLQYfLGkDd7Ys2dPvPLKK/j1119Rv359+Pv7S17v06eP6jRVB0Xjx4/Hv//9bxw/fhwtWrQAYGpT9Mknn2DmzJmqM0AIIYQQotbw4cMBAHPmzLF6jeM4p6b6UB0UTZ06FdWqVcPKlSvx+eefAwAeeeQRrF27Fk899ZTqDBBCCCHEPup9Zs2yC74WnBqn6KmnnqIAiBBCCPEQ6n3mGaobWhNCCCHEsxg0aGhd3AfhBqmpqejduzdq1KiBmjVrok+fPti3b5/T6SkKisqWLYubN28qTrRKlSq4cuWK05kihBBCCLHn008/RadOnVCqVCmMHTsWo0ePRnBwMDp27Cg071FLUfXZnTt3sH37dkRERChK9NatW041cCKEEEKINSNjMLrYJsjV7b3NvHnzsGjRIkyYMEFYNm7cOCxbtgxvvPEGBg4cqDpNxW2KhgwZojpxQgghhLiOwfXqr5IVEgGXLl1C7969rZb36dMHr732mlNpKgqK3NHCmxBCCCHEWZUrV8auXbtQo0YNyfJdu3ahcuXKTqXpVO8zQgghhHgODd5obdKkSRg7dixOnTqFli1bguM47N+/H2vXrsXKlSudSpOCIkIIIcTbaTFNRwkLiv79738jOjoaS5cuxZdffgnANG7ixo0b0bdvX6fSpKCIEEIIIT6pf//+6N+/v2bpUVBECCGEeDkjGIwuFvW4ur23OXr0KIxGI5o3by5ZfuTIEej1ejRr1kx1mjR4IyGEEOLlXB64UYvqNy8zatQoZGRkWC2/du0aRo0a5VSaTgVFFy9exIwZM/Dss8/ixo0bAID//e9/OHv2rFOZIIQQQghR49dff0WTJk2sljdu3Bi//vqrU2mqDopSU1NRv359HDlyBF9//TVyc3MBAKdPn8asWbOcygQhhBBCbON7n7n6KEkCAwPx119/WS2/fv06/Pycax2kOiiaOnUq5s6di507dyIgIEBY3r59exw6dMipTBBCCCHENqo+s9a5c2dMmzYNWVlZwrI7d+7gtddeQ+fOnZ1KU3UodebMGdk5RcqXL49bt245lQlCCCGE2EYNra0tXboUbdu2RVxcHBo3bgwAOHXqFKKiorBhwwan0lQdFJUuXRrXr19HfHy8ZPnJkydRsWJFpzJBCCGEEKJGxYoVcfr0aXz22Wf4+eefERwcjBdeeAHPPvss/P39nUpTdVA0cOBAvPrqq/jvf/8LjuNgNBpx4MABTJ48GYMHD3YqE4QQQgixTYvqr5JWfQYAISEheOmllzRLT3Wbonnz5qFKlSqoWLEicnNzkZCQgLZt26Jly5aYMWOGZhkTu3z5Ml588UXEx8cjODgY1atXx6xZs5Cfny9Z7+rVq+jduzdCQkIQGRmJsWPHWq1DCCGE+BojY5o8iH2qS4r8/f3x2WefYc6cOTh58iSMRiMaN26MmjVruiN/AIDffvsNRqMR77//PmrUqIFffvkFw4cPx927d7FkyRIAgMFgQM+ePVG+fHns378ft27dwpAhQ8AYw6pVq9yWN0IIIYSUDBxjvhk6Ll68GO+++y4uXboEANi+fTt69eqFjIwMxMbGAgC++OILDB06FDdu3EB4eLiidLOzsxEREQG/+oPA6QMcb0AIIeShxQz5KDzzGbKyshTfZ9Tg70l7z15BaJhr6efmZKNd3Ti35bUkUFRSNHHiRMUJLlu2zOnMqJGVlYWyZcsKzw8dOoR69eoJAREAdO3aFXl5eTh+/Djat28vm05eXh7y8vKE59nZ2e7LNCGEEOIELaq/qPrMMUVB0cmTJyXPjx8/DoPBgNq1awMAfv/9d+j1ejRt2lT7HMq4ePEiVq1ahaVLlwrLMjMzERUVJVmvTJkyCAgIQGZmps20FixYgNmzZ7str4QQQghxjzt37uCrr77CxYsX8corr6Bs2bI4ceIEoqKinOoRr6ih9Z49e4RH79690a5dO/zxxx84ceIETpw4gYyMDLRv3x49e/ZUtfPk5GRwHGf3cezYMck2f/75J7p164Ynn3wS//rXvySvcRxntQ/GmOxyHj/wE/+Qm0eFEEIIKU5GxmBw8eGukiKlnaEsDR061Oqe36JFC8X7PX36NGrVqoU333wTS5YswZ07dwAAmzdvxrRp05w6FtUNrZcuXYqUlBSUKVNGWFamTBnMnTsXXbp0waRJkxSnNXr0aDzzzDN216latarw/59//on27dsjMTERH3zwgWS96OhoHDlyRLLs9u3bKCgosCpBEgsMDERgYKDiPBNCCCGeZpqmw9XqM40yY0FJZyhbunXrhjVr1gjPxTNlODJx4kQMHToUixYtQlhYmLC8e/fuGDhwoPoDgRNBUXZ2Nv766y/UrVtXsvzGjRvIyclRlVZkZCQiIyMVrXvt2jW0b98eTZs2xZo1a6DTSQu5EhMTMW/ePFy/fh0xMTEAgJSUFAQGBnqsWo8QQgh52HTr1g3dunUTnlerVg1paWl49913HQZFgYGBiI6Odmq/R48exfvvv2+1vGLFinabzdijepyi/v3744UXXsBXX32FP/74A3/88Qe++uorvPjiixgwYIBTmXDkzz//RLt27VC5cmUsWbIEf//9NzIzMyUH3aVLFyQkJOD555/HyZMnsWvXLkyePBnDhw+nVvaEEEJ8msGozQMwFW6IH+LORlqx7Axly969e1GhQgXUqlULw4cPx40bNxTvIygoSLZzVFpaGsqXL68qvzzVQdF7772Hnj174rnnnkNcXBzi4uIwaNAgdO/eHe+8845TmXAkJSUFFy5cwO7du1GpUiXExMQID55er8fWrVsRFBSEVq1a4amnnkK/fv0cRqmEEEKIt9Ny8MbKlSsjIiJCeCxYsEDTvPKdoUaMGGF3ve7du+Ozzz7D7t27sXTpUhw9ehQdOnRQHKT17dsXc+bMQUFBAQBTu+KrV69i6tSpePzxx53Ku9PjFN29excXL14EYww1atRASEiIUxnwNjROESGEEKU8NU7RtycuIkTUbsYZd3Ny0KdJdWRkZEjyaqttbXJyssPe2UePHkWzZs2E53/++SeSkpKQlJSEjz76SFX+rl+/jri4OHzxxReKap6ys7PRo0cPnD17Fjk5OYiNjUVmZiYSExOxbds2p+IS1W2KeCEhIWjQoIGzmxNCCCGkGISHhysK4LTsDKVETEwM4uLicP78eUXrh4eHY//+/di9ezdOnDgBo9GIJk2aoFOnTqr3zVMdFLVv395uF/fdu3c7nRlCCCGEWDPC9d5jRpXra9kZSolbt24hIyND0jRGiQ4dOqBDhw6q9ydHda4bNWqEhg0bCo+EhATk5+fjxIkTqF+/viaZIoQQQkgRg5Fp8nAHJZ2hAKBOnTrYvHkzACA3NxeTJ0/GoUOHcPnyZezduxe9e/dGZGQk+vfvr2i/Y8eOxVtvvWW1/O2338b48eOdOhbVJUXLly+XXZ6cnIzc3FynMkEIIYQQ38R3hrpw4QIqVaokeU3cbDktLQ1ZWVkATJ2jzpw5g/Xr1+POnTuIiYlB+/btsXHjRsmYQ/Zs2rQJ3377rdXyli1bYuHChVixYoXqY3G6TZGl5557Do899hj19iKEEEI0xjQYkdpd878PHToUQ4cOVbX/4OBg7Nixw6X93rp1CxEREVbLw8PDcfPmTafSVF/pZ8OhQ4cQFBSkVXKEEEIIMTMwbR4lSY0aNfC///3Pavn27dtRrVo1p9JUXVJk2U2OMYbr16/j2LFjeP31153KBCGEEEKIGhMnTsTo0aPx999/Cw2td+3ahaVLlzpVdQY4ERSFh4dLep/pdDrUrl0bc+bMQZcuXZzKBCGEEEJsM2pQfeauCWGLy7Bhw5CXl4d58+bhjTfeAGAaIuDdd9/F4MGDnUpTdVC0du1ap3ZECCGEEOdo0XvMXb3PitO///1v/Pvf/8bff/+N4OBghIaGupSe6jZF1apVw61bt6yW37lzx+k6PEIIIYQQZ5UvX97lgAhwoqTo8uXLMBgMVsvz8vJw7do1lzNECCGEECmqPjNp0qQJdu3ahTJlyqBx48Z2B5M+ceKE6vQVB0XisQB27Ngh6QZnMBiwa9cuyXDfhBBCCNGGFr3HSkLvs759+wrztPXr10/z9BUHRfzOOY7DkCFDJK/5+/ujatWqWLp0qaaZI4QQQgiVFPFmzZol+79WFAdFRqNp1pT4+HgcPXpU8XwohBBCCCG+QHWbovT0dHfkgxBCCCE2GI0MRhd7j7m6/cNAUVD01ltv4aWXXkJQUJDs5GtiY8eO1SRjhBBCCDExatCmiGIixxQFRcuXL8egQYMQFBRkc0JYwNTeiIIiQgghhPgiRUGRuMqMqs8IIYQQz6KG1p6huk3RnDlzMHnyZJQqVUqy/P79+1i8eDFmzpypWeYIIYQQAhgYg8HFoMbV7b3RH3/8gW+//RZXr15Ffn6+5LVly5apTk91UDR79myMGDHCKii6d+8eZs+eTUERIYQQQtxu165d6NOnD+Lj45GWloZ69erh8uXLYIyhSZMmTqWpepoPxpjsCJI///wzypYt61QmCCGEEGIb3/vM1UdJMm3aNEyaNAm//PILgoKCsGnTJmRkZCApKQlPPvmkU2kqLikqU6YMOI4Dx3GoVauWJDAyGAzIzc3FiBEjnMoEIYQQQmwzQIMRrTXJifc4d+4c/vOf/wAA/Pz8cP/+fYSGhmLOnDno27cv/v3vf6tOU3FQtGLFCjDGMGzYMMyePVsyzUdAQACqVq2KxMRE1RkghBBCCFErJCQEeXl5AIDY2FhcvHgRdevWBQDcvHnTqTQVB0X81B7x8fFo2bIl/P39ndohIYQQQtSh3mfWWrRogQMHDiAhIQE9e/bEpEmTcObMGXz99ddo0aKFU2mqbmidlJQk/H///n0UFBRIXg8PD3cqI4QQQgiRR73PrC1btgy5ubkAgOTkZOTm5mLjxo2oUaOG3TEV7VEdFN27dw9TpkzBl19+iVu3blm9bjCUtFpLQgghpHgZjQwGmuZDolq1asL/pUqVwjvvvONymqp7n73yyivYvXs33nnnHQQGBuKjjz7C7NmzERsbi/Xr17ucIUIIIYQQJe7cuYOPPvoI06ZNwz///AMAOHHiBK5du+ZUeqpLir777jusX78e7dq1w7Bhw9CmTRvUqFEDcXFx+OyzzzBo0CCnMkIIIYQQeQYNSopc3d7bnD59Gp06dUJERAQuX76M4cOHo2zZsti8eTOuXLniVEGN6pKif/75B/Hx8QBM7Yf4yKx169b48ccfVWeAEEIIIfbxQZGrj5Jk4sSJGDp0KM6fP4+goCBheffu3Z2OR1QHRdWqVcPly5cBAAkJCfjyyy8BmEqQSpcu7VQmCCGEEELUOHr0KF5++WWr5RUrVkRmZqZTaaoOil544QX8/PPPAEyjSfJtiyZMmIBXXnnFqUyokZeXh0aNGoHjOJw6dUry2tWrV9G7d2+EhIQgMjISY8eOtZoLhRBCCPE1BqMWpUXFfRTaCgoKQnZ2ttXytLQ0lC9f3qk0VbcpmjBhgvB/+/bt8dtvv+HYsWOoXr06GjZs6FQm1JgyZQpiY2OFwIxnMBjQs2dPlC9fHvv378etW7cwZMgQMMawatUqt+eLEEIIcRdqU2Stb9++mDNnjlBjxXEcrl69iqlTp+Lxxx93Kk3VJUWWqlSpggEDBqBs2bIYNmyYq8nZtX37dqSkpGDJkiVWr6WkpODXX3/Fp59+isaNG6NTp05YunQpPvzwQ9lIkhBCCCG+a8mSJfj7779RoUIF3L9/H0lJSahRowbCwsIwb948p9JUXVJkyz///IN169bhk08+0SpJib/++gvDhw/Hli1bUKpUKavXDx06hHr16iE2NlZY1rVrV+Tl5eH48eNo3769bLp5eXnCMOEAKIAihBDidaikyFp4eDj279+P3bt348SJEzAajWjSpAk6derkdJqaBUXuxBjD0KFDMWLECDRr1kxo6C2WmZmJqKgoybIyZcogICDAboOrBQsWYPbs2VpnmRBCCNEMDd5oW4cOHdChQwdN0nK5+swVycnJ4DjO7uPYsWNYtWoVsrOzMW3aNLvpcRxntYwxJrucN23aNGRlZQmPjIwMl4+LEEIIIe5x5MgRbN++XbJs/fr1iI+PR4UKFfDSSy9JaoDUKNaSotGjR+OZZ56xu07VqlUxd+5cHD58GIGBgZLXmjVrhkGDBmHdunWIjo7GkSNHJK/fvn0bBQUFViVIYoGBgVbpEkIIId7EwDSoPishc58lJyejXbt26N69OwDgzJkzePHFFzF06FA88sgjWLx4MWJjY5GcnKw6bcVB0YABA+y+fufOHdU7j4yMRGRkpMP13nrrLcydO1d4/ueff6Jr167YuHEjmjdvDgBITEzEvHnzcP36dcTExAAwNb4ODAxE06ZNVeeNEEII8RbUpqjIqVOn8MYbbwjPv/jiCzRv3hwffvghAKBy5cqYNWuWe4OiiIgIh68PHjxYdQaUqFKliuR5aGgoAKB69eqoVKkSAKBLly5ISEjA888/j8WLF+Off/7B5MmTMXz4cISHh7slX4QQQognUFBU5Pbt25IaoNTUVHTr1k14/uijjzrdFEZxULRmzRqnduAper0eW7duxciRI9GqVSsEBwdj4MCBst33CSGEEOKboqKikJ6ejsqVKyM/Px8nTpyQdJjKycmBv7+/U2kXa0NrZ1WtWhWMMTRq1EiyvEqVKvj+++9x79493Lp1C6tWraL2QoQQQnxeoZFp8nCXqlWrWnWUmjp1qt1tGGNITk5GbGwsgoOD0a5dO5w9e9bhvrp164apU6di3759mDZtGkqVKoU2bdoIr58+fRrVq1d36jh8oks+IYQQ8jDzheqzOXPmYPjw4cJzvqmLLYsWLcKyZcuwdu1a1KpVC3PnzkXnzp2RlpaGsLAwm9vNnTsXAwYMQFJSEkJDQ7Fu3ToEBAQIr3/yySfo0qWLU8dAQREhhBBCXBYWFobo6GhF6zLGsGLFCkyfPl3oyLVu3TpERUXh888/l53olVe+fHns27cPWVlZCA0NhV6vl7z+3//+12FAZotPVp8RQgghDxN+8EZXHvzgjdnZ2ZKHs2P6WHrzzTdRrlw5NGrUCPPmzbM7IXt6ejoyMzMlJTqBgYFISkrCwYMHFe0vIiLCKiACgLJly0pKjtSgkiJCCCHEyxkYc3mcIX77ypUrS5Y7231dbNy4cWjSpAnKlCmDn376CdOmTUN6ejo++ugj2fX5mSYsxxGMiorClStXXMqLKygoIoQQQh4iGRkZkqFqbHVISk5OdjgN1tGjR9GsWTNMmDBBWNagQQOUKVMGTzzxhFB6ZIvljBOOZqFwNwqKCCGEEC+nZUPr8PBwReP3KZ11Qk6LFi0AABcuXJANivi2R5mZmcKAywBw48YNu7NQuBsFRYQQQoiXK47eZ0pnnZBz8uRJAJAEPGLx8fGIjo7Gzp070bhxYwBAfn4+UlNT8eabbzq1Ty1QQ2tCCCGEOO3QoUNYvnw5Tp06hfT0dHz55Zd4+eWX0adPH8mMFHXq1MHmzZsBmKrNxo8fj/nz52Pz5s345ZdfMHToUJQqVQoDBw4srkOhkiJCCCHE23nzOEWBgYHYuHEjZs+ejby8PMTFxWH48OGYMmWKZL20tDRkZWUJz6dMmYL79+9j5MiRuH37Npo3b46UlBS7YxS5GwVFhBBCiJczMCMMRqPLabhDkyZNcPjwYYfrMYvecxzHITk52eWeb1qioIgQQgjxckYNSoqMbh7RuiSgNkXESvbB1cWdBUIIIcTjqKSIWAlvOaq4s0AIIUTEYGTQeWmbopKEgiJCCCHEyxUaAc7FoKbQPU2KShSqPiOEEEIIAZUUEUIIIV6Pqs88g4IiQgghxMtRUOQZVH1GCCGEEAIqKSKEEEK8HpUUeQaVFD3EaDwiQgjxDfzgja48aPBGxygoeojReESEEEJIEao+cxJfykKBBSGEEHczGJnL4xRR9ZljFBQplH1wtRAAZR9cDbhpYr2SLPvAKnCFeWB+gQCno4CSEEIUYoyBuRjUWE7ISqxRUGTDtZTFCA8PBzhzDSMzIvvAKuF/AOAMBaYbPTOCmdcLbzVGWC+81RghvewDqyTPH0YcM5oe+XfB/IOLOzuEEOJQzv6Vput7Mf+QM2rQJojaFDlGQZEjMiVCnLGw6K/5Rg+dHzhjIXJ+XAYYCgDA9D/HAUYDYCgo+nIBD12AlH1glem8GAsBHX3sCCHeQVwLYCln/0rTNR4AmFFyDRe2z85GVMxn7s8o8Qi6O9nAFeaBMxQUBTWiEiPOWAim8wOMhaaACABnyDcFRoUPTIGUzq8ooDJvyxAADgZTmg8JviQNhXmmvwZTQAmjn92LESGE2GPVpMFMfE0RSvf5H6Pi1/htzLUAlj9Uc/avNF37mRHgzCUsHGe6jomqoTgPNaVgjLlc/UXVZ45RUGQDV5hnCnAASUAkVJ0V5gM683Ij/6UoLErAWGhartOZv1Q6oYSJcTrhF0dJLjHK2b8SMBSYAkbzsfPnjDMWAgbO6mJkL1CSraqkwIqQh4a4gwtnLDRdE4yFpuuLoQAwX1vDWo8zrWduzsAZ8k3bH1hlup6Lr+XmaxNfKgROZwqGzAERZ16XcTpw/LWe357TgSt44JFjZ0YN2hRR9ZlD1CXfHv6Dz3/pLH8R8F8QnU4aIPEP8XNDIWAODsTVbiVtrKDsg6uRfXA1cvavNJe25RcFiPxDOK8GU7ssi3Mg/LqzWGa6+BnAmc9hTuoScIV5yNm33FOHRwjxAP4awv/P/+UM+UIwZPrBVWC6JhTmma4LhnxTUwXRNYErzBOuNZyhQCjt558Lj4L7pr98Wvy12mi6dgvXMv6v+P5ASgwqKbKFGYtKesSMosBIp5M+t2T5utFYFIYaDWB+ftaBlq8TXXCEC4fcOTIHhQwQfsWJl4tLkCQBEf+LTfRLDShqv8V0fuCYUfilSAjxHULJr/lHU86+5YAh31zqnG+6rgBCGx/ZNp+GfID5CUEVV3Df9ALfNoj/n7/uiEuO+P/Fy0XbAJD+GLaRB3eghtaeQUGRI+IvgPl/oQrHXkAk3pYnCrBM1Uc6hLWdqGVuPY6/iGUfXG36hcVfgOwFRIDwC4szX3iERumGAlNQBRT92uOr4PjibvHFSlwEzukAnan9F1WrEXeiz5dyttr78PjgJaz1ONO1hP8RxIwAK/pum6655lIZ8f+yP14LAaOf6ZoiDlzMJU0ApNcnfntDofR/exxd/zWmRfxV0n6Du4NPVZ9t3boVzZs3R3BwMCIjIzFgwADJ61evXkXv3r0REhKCyMhIjB07Fvn5+TZSU0nhF8BhoztxzwUf+oTy1WLZB1YJF7mc/StN1VjmvwAkVY2coVD+fIjr5SVF0wZJsCMUa4uLqvmHQWYZX0rFF3sT4iYUEDmWfWBVUTW6ve+j+Xufs3+lqNq9oKg6THyNsKyysmymwP/PXwsK84qCH0lThkLrUny5tMz44UQsl5n+8anbKHHAZ0qKNm3ahOHDh2P+/Pno0KEDGGM4c+aM8LrBYEDPnj1Rvnx57N+/H7du3cKQIUPAGMOqVdZtVJwlbugrh39NvJ5kG50fmM4PTO+vWZ60JDQ2ZAxM71/UUJEPTDgdwLfj4dsFiUtthN54Ni6Clo3T+ed8cTbfa8/yZ5G9YmwhbdH/RoP6gyeEOE08qC3HN3wGzD9iTEGFuBE0IOqMYZT5fstdA8SlQkZpoMKX3puq5c0lSXZK9CVV8YDsdd0yfav9eRD1PvMMnwiKCgsLMW7cOCxevBgvvviisLx27drC/ykpKfj111+RkZGB2NhYAMDSpUsxdOhQzJs3zzQQowaUfBGEbvrmL514G9MgYKaabXu9p7IPrpb0VnNHLzWhyynHgekDTI0Y+V9WorY6XP5dUz50fgAM5l9vFj3yZC48skGhCMeMpmueqIcexEXbPMsASo7la+Z2SXy7ALl2RjRVCyHaELf7sywBF4IOIwCduVrcYogTYQVbP3jERM0Y5PYjrKNDUZBmo1RevNwySLK3ruQ5tSkqUXwiKDpx4gSuXbsGnU6Hxo0bIzMzE40aNcKSJUtQt25dAMChQ4dQr149ISACgK5duyIvLw/Hjx9H+/btZdPOy8tDXl6e8Dw7O1tRnpSOTSH5ZWEsGvARRgNyUpcABfeRs285wtpMEOrWAZh7OJhLYfT+RTd4aHMTF36h8W17CvOkvSjEjZktLyx2Ll4Oz4vM+sImljGP5YVR7kJpJ1Dix5PizG2SxCPT8sdRkodEIMQThN6ifFU3UNQGiMeKurZLiKvCALvBkN1ri+iHnGVaasYRcmbMIU+NU0Q8wyeCokuXLgEAkpOTsWzZMlStWhVLly5FUlISfv/9d5QtWxaZmZmIioqSbFemTBkEBAQgMzPTZtoLFizA7Nmz3Zp/CX40bKDoS2zUCSNhCwNDwnLEbAOg0yOszQTZ0iU+aLIXMPHF23y3U1Ndva1qLsiUAElLwHhyFwXLX1z2iqGLknfi4iJTDQeYAyIAOnMXXACm86vTm7cznc+cfcvB9AFUWkSIszidqR2QRVUXJw5UhB9R/HhlfhbLrb/7qoMNmcCoJAUsNE6RZxRrC7Hk5GRwHGf3cezYMRjNX5jp06fj8ccfR9OmTbFmzRpwHIf//ve/QnqczEjRjDHZ5bxp06YhKytLeGRkZDjMt+UXTVXdsmXdOd9AuPCBMBq20KjPMqhgzBQ8iZZnH1hlquIS/0oTyT6wSjLuj9B4Ue5Xm3hf5saGdouo+cNwUBevlN3GjGpZtkXgi+n5Qdk4HcAYNZL0UULD/xI2zpdPkvuOiq8vctVMdq4/gBPf+2L8HnusbZE5KHLlAQqKHCrWkqLRo0fjmWeesbtO1apVkZOTAwBISEgQlgcGBqJatWq4evUqACA6OhpHjhyRbHv79m0UFBRYlSCJBQYGIjAwUHGexY3yxG2HHJGUjhgs29gYpdVA4uCGv3iItzf/zdm33NQF3vw6g3m8Hp2+aH/GQlMwtW85UHC/KCDiGyTaKLWxVcojXmav/t0eR6VG4nNsecGxtb+iKjjRCOL8OCTiYyl8IDR2588TlRL5DqGtnWiMGZps2bOE94D/XvG9y8TXJ75BNN/Y2bJESAfJD0RXridFidgvvdaERWmUJxtbGxkD52JDaSM1tHaoWIOiyMhIREZGOlyvadOmCAwMRFpaGlq3bg0AKCgowOXLlxEXFwcASExMxLx583D9+nXExMQAMDW+DgwMRNOmTTXJr6NAQem2ls+FMY90oosHpyuq2rIYJIwDkLt3EZjRIOqaWljUe8uoK5pWxPIXmUU9uysXD7Xb2guAXN2HVWNu8Xm0XGYuNWKiqVfoxur9JDdjxoreQxQ13mU6Pwpy3Shn/0rTjyvR900Y9Zkn7touUw1vmgPRheoy8XpqghK5awIhFnyiTVF4eDhGjBiBWbNmoXLlyoiLi8PixYsBAE8++SQAoEuXLkhISMDzzz+PxYsX459//sHkyZMxfPhwp3ueeao+WtI7Q2AdyBQpLCo5suiiCqNpTjbOYjtVxyLXaFHN63KbOBjGwFFplWTfwgoK82A5Mq0kLXN7Lj448oFB+Wz2WDTPDRfWepxPHIfT+A4IonYr5rdSOjo60QRfRSn0TjWX/ohHhwbfgcFYKB3J33LAWyXUXF+UBjpqAy5b48nJlFx7dEJYV9sUUUmRQz4RFAHA4sWL4efnh+effx73799H8+bNsXv3bpQpUwYAoNfrsXXrVowcORKtWrVCcHAwBg4ciCVLlji1P9U9HTTg6MIhDZ5sl/7I/QqzSe4i4OjYLBtPOlhf3DXf1mt282bvdYsic9PNUSZNfj3L/QnHoDf1TvPQBc4ZtgIdoddiYR7A6Uy9Gg35pkbkOj+rEjBhFHJz6Rg/NhXT+TlsrF+smBH83HdW3b7NLwvHr/enUiMNSKbY4avebZTImqqk/cwl1qJEjCoDIldeV7oPW/mxdX3QOg9OoIbWnsExCh0lsrOzERERgZsXTiM8LMx6BU8P2GWjntzl+ndXqAgK5fKpuGG2kuPjS4HMaUrS1okCIZmgr2hATb3kdW+eN42fFNPyxsTPCSXBl6JwOtMxAuZq2QLTc/FccqJej2FJk92Sb1cCFKHqzGgwtQsTT8cAFL3H4vdWp5cNCol9QuN1JprH0KK0xHJoC44ZEdpuCnL3LpL2apWZH9Kylxqfpuxzy/XsUVNa5Ey1mw3ZOTmIrNEAWVlZmo2HJ0nffE9q+MpX0AeGuJSWIe8ufl78hNvyWhL4TEmRV3AlILJXqmLnNaUDibmVZf6cqDqTa49lrwTJ5oVIbt+2Ake+1IgPmiz+8lUwjNMBrGjQuZwfl5lGHOeKxoWynL8pZ/9KoSSCr7bij0eLm7D4xiSMKs6MpgbGjJnya35d9ibDtyXjqzmM0iCKb3cGQCgB4KuicvcuKmqIbg6U1AY0Vo1xzTObqz03kglCxQ9AerPl266Yb9ZC9ZqhQOh8wG8X1maCqjw8LIRequZgyPQ5M0q60fOfBx4/d2PurrnI3TUXKHgAAEVzERpsfNfFP6zEARH//VR7fVNzTZILuGxt70Ulx0YjwLk8eKNGmSnBqKTIgt2SImfrxC2/WHIXAYsSD6e4qVrPbtru2qflrzqL/TC9+eIsM2yAJBlOZ12dZplfvi2E+LlQHaA33RyAooa9ooBDsh+Yq/Asx2CRpGtqiRHWZoJVkGA5TQJnKDANPmk5yre9z5Z4ub3PneVzuXPCl7rozBNrip7zwSAAIWgTNhWCFnPgxnHCOQRgGm/LXBrHH7M4DX6kd3FeTQGheWJgR1PIWJYKio6TryIUSs6Akt8Gyw7xcQsTMPNVlIB19Zj5uyhXmng3JVn+86ikfaJWwYfltcLyf8s82bvOKMyTp0qK6k38L/SBpVxKy5B3D78se5JKiuygoMiCw6BI68BF7UXE2d0qaKtke2MHxyz3ur2SMbl17OXBMvjQSW90oR1nmC7I4qTt7ddy/jVYl14BAPQyA8zpdOAMhbJDBQh5k5Rg6Ioaw1vcrJk+QJThonMh22tQXB1hq7RMrsRICblZxsXpiv7yAR/zCywqTZA5Brn/hXOk9xemrpGM4m5OQxi8VPSemAYcfWAuuXBwbEqCYItlkiEaHrLqNqHdEFDUiJ1vsM5/NnR+CG0/Fbl7FyG03RTJ9rk758iPVi2mpmpLa5bXW6XXGwqKHkpUfWaLzIVTWO5qupbPLb987izxAaxuGszoIDByFAzau0krqQZzsG+rQEXnJ1yYc3fPR+7OOUXVYIDV8YknpxWGPxDT6YqyIApquELrnkzMaB1wSbonG4rmq4PeNLltaOeZkqCNmZdzlqVT4p3InQrGT4lilB6nrXPtaFoUy1nCLY9HZ/3ZFNozFRatKyEuWRAHeOY8mhpEG8BxxqJJhfnASgieWFHpknkb4XUl5f+WQam90jRzXoX5/HR+khIrLVhWvRYnyxIxoVoWAD/Mgex5Nn9WLQMiALKDxlrx0I8/2X3Y+oza4kVVZmLO1CrKpUHso6DIG6j8ZWKTndIZyY3O8nXxD3t7edAqWLMTbNqqnjLl0zrvoR1eQ+7u+WDmEiOx3F1z5eda0/tZl45YBlLikiNx6Y9MiQozQgiAhNOn95OUBkkG+7So/jEFVEbbAYstlmNbKaGwUYFVTz6LagWrG6FMVbDkfeTbmKCoGlLYlzhwAuRLvcw3alVdu/njlZks2FbexXmRTFzKr6qwJEncjR2F5rkVOU6YJV5N+yrLoMreJNJyr0sCH9HQE5L3kQ+IjIWynxHL7xYvd+ccadWzGp64Q5egKMBoZBq0KXJPxdDevXttzi/6008/4dFHH5V9bejQoVi3bp1kWfPmzXH48GHN86gUVZ9ZEKrPLv4i3/vMFlv12PxzMS2r39RsKgqKQju8ZvW6UAwO6U3cqX3b+WXIpx3SJRl3d8w0LdP5AXo/Sb740hVJCZC5XYPcL1Z77qYkW5UkyQZRgKSdEl/iw+crd9dchHacgdzd82XfV2G93fNNAduehaZqh51zTKuItrFq7yT3q5ZfZtF2ylapmNW2ogDM0Zx1lq/J9uSzTF8p/rOj5AeAOF2hWsfiPVHK3vmR259cSS6KPrOW7auK8mluqK/3lxwbxwdEzGhqqMzpJO3UwHGStjqy2RMXEXC6orZaoobwQhBqJvQOEwen4hI5vb/QdkhSoieupjWzFxApKiUq4TxVfVZn9EZNqs9+e/tpzfOan5+Pf/75R7Ls9ddfxw8//IBLly7ZnGpr6NCh+Ouvv7BmzRphWUBAAMqWLatZ3tSikiI1xBctpdVgjtKRS8vR+nIlQvbyJmLrAgfAupqH/2Uvsz/hxmQuIbHZ4NnypmKRt5Cuc2zmh183tPNMm+soFdIlGUBRUCOHX567a25RlaKNm6o4eBOCKZnXQ9tPNf2VOYbcXXOtgwS5G7TMeZWMWSVuIyVuwwSY3h+LwMgR8WjnwvslWxUnyiefrs7BJcXRTVTue2S0EQxZvjeWA5nazINFqZ8k4Cia5V1SvSYOMOS+X0IVlLhK0qKxsrFQSEfYjNOBExqk84Gu3jRsgkU+LH+wMHF+mLEoWAJM+xFNfiwuneOY0VR6xU9OLeRPdP74757Mj6cSzU5wanebh1xAQACio6OF5wUFBfj2228xevRou3OPAqaptsTbFjcqKbKgqKTIUUmQWva+VOKLnpLtRRdycSCiNrAQl6zIViXxpTb8Pi0DI9E5EvcUsywZeeguugoIpVD8+2ooVD+lirn6zvTETtAq3sYyCJZ5zYpco2adn3xwIOaovZOohEzRfm1xtB9X2Pte2nqN/87Yel28XC5QtlhX8p7ZWp///ur8zKPgm98PfqwnyzZYKr6XfEnvwyw79y4iq9dze0lR7ZFfaFJSlPbOM25vaL1p0yY89dRTuHz5MipXrmxzvaFDh2LLli0ICAhA6dKlkZSUhHnz5qFChQpuy5sjVFJki/giA9gvYtdiX0p/fVqyUdwPuFbCwpesWOKrgST5clBCJFSbcNJzSgGRDfbeb0c3SjO5HnJ2x4Wys1z8mlVwZHlDBaxLSOTWlWM57pA4TSXb20tPS0K6FumLfzCIS1/41wDr74zlNUb83FFwxESN0C2WW/3PD+0g+gEjPZYiqr6XzpSslDQeOn4tJ4TNzs6WLFc7MbojH3/8Mbp27Wo3IAKA7t2748knn0RcXBzS09Px+uuvo0OHDjh+/Lim+VGDgiJH5H51Kak6U7sP8YXPXlWYnf04UyKklq30c3fNFXpxWZUsibe3U31HTMTnSFI1Z27TIplR3E6QpGQkcbVk2zXx+AlAbZGr7rJ8zV4go2QdR5wtYZIZmVlR+pZVm0oCXrm8WA5CqobRCKG7oIJj4D9zSr6rxTqyPnGaZbAya9YsJCcnW62XnJyM2bNn203r6NGjaNasmfD8jz/+wI4dO/Dll186zMfTTz8t/F+vXj00a9YMcXFx2Lp1KwYMGOBwe3egoMgRy5uOZVWVeLmzFwe5X3Yy1V93U5JlG3PbKtXxJLkLqGWpEpUMqWfvxsT3rrM7Qrjoc+LMzcutNz25AIUPPlSVKtmp2rPqWm5RcuMob5YlKvaCI3vjPdnbzl5eJDPO66TXHMvSKHsc7VvmuqJEaOeZVIXmIVrOfZaRkSGpPrNVKjN69Gg888wzdtOsWrWq5PmaNWtQrlw59OnTR3X+YmJiEBcXh/Pnz6veVisUFClhq7TIsuGxXP2+E/sS93gSNwwO6ZJcdCMU79dLhXaeacovs+4uT1wnW6Ikd/NTeaMTNrNoJK+YveBAa3L7cTZIsBekiV+3bMyuhOWkzWa2xs2SpC+3H5mAyFHJoGwJrkWD6tzd801tiswdBBx52AOikK5zwAzW45m5A2MaBEXm6rPw8HBFbYoiIyMRGRmpKv01a9Zg8ODB8Pf3V52/W7duISMjAzExMaq31QoFRbaIghyrwEP8XHRxsSwJyd05RzoYICuafFMuLb5xrDgdy2BC6CFlLoVxd3WZqygY8gzxeRZ6ENoogVTCVnskh+y0VVEcRCitJnM2IIK0Z52kJ5/cPiyrwFzctyIqAiI1bcQcDcuhpjT3YQ+IqNeZtd27dyM9PR0vvvii7Ot16tTBggUL0L9/f+Tm5iI5ORmPP/44YmJicPnyZbz22muIjIxE//79PZzzIhQU2cBEPTtsjSUj7sIte4ExByzCmDXmX/MMRdMYiPehJoDw9mCIFJ+QLsk2q1qF52Keuri7uwRJZVBiGTQ4HBhSLjhSsU9N2ng5UU1vOd4U/VBxga37ggcwI3N58EVXS5oc+fjjj9GyZUs88sgjsq+npaUhKysLAKDX63HmzBmsX78ed+7cQUxMDNq3b4+NGzciTM0YgRqjLvkW+O6PfvUHgRPPTUWIDxK365IMlyBm4+Yse9N2pTeYXBq2KE3bQX7kGoYrHZrAYT4V5FHxCNxybY4U7t/hhMji9Mwl4EwfIMxw7yybE8D6MsuSe0Ay/pfcj1FmyEfhmc/c3iU//sUN0AW41iXfmH8P6R8/T3Of2UElRYSUYLZKFC0n0JUje0O3rEJSGxipDIgUjZlkIw9yJUHiNOxVOzkMZBwct+rG6XLpKWlMbmZ5PHZHI+fMc71ppaR0y+dLgVSO1URKFgqKCHkICSN8i6Z2kaOoSklhCQ0A21VoMnPUKcqTwoBISf6strHVU03rgMje3Hpyvd8s8iA+vzbfK2F7AIZ87arQSkJAJGo76s3NErTsfUZso5ZihDzEQjvPFNrPSdrRicgGC+KHxbr2Smhkt5cJMuzlR0l1lL3tbb1ucxtxHhWUjFmeT/6cWJ0bcyPu0I4zTDdjvR9CO84A8wsS5viD3s+6itBGHhwGRKLt5aamUcube74qwlclcjqEdEn26oAIAIzmNkWuPoh9VFJECAGgbERrpWzdMFXPcg9p1ZCtOfScyYtq9rrVqyDOv7jEhq+uCUuaLCzL2b8SXP5dQG/Rdd5igEXJmGCWbLS74ufec7qayGKwVp/AlwqZA1BfwowGMNH8ds6mQeyjoIiQh5gnGss6LDkyUzIekt2AyIlG4JLRwWF7bB97+ZOtKhTlxZXAIaz1ONnlVjd0i4l/BfaGDNk936k8WbEcTJJf5kXBEtP5UVshoggFRYQ8pJQ0tnaWM0GA4l5hcmQCIlvtmhwFaeJqFMsSGKXzxzEUBSPQmZ5zoqCFY0ZNYwahBEk0fpl44Fd72zi9z44zpJ8hufHcvCEw4oqqKX0ZlRR5BgVFhDxE3BkIucTefH/8YnulRA4aaispnZKdq09hOxN+pHmrMc0greISD4sgO5mri8T5dXcQkLtzju2gx8lR1DVh2fC8BAREAMCMRg2CIi8IUr0cBUWEPGwUBCAeJy5VsHWjVVC9pnRKEqFNj0aNa23ddCVVVOI2OOb9OyrN8WZ2z7Ojz5W7SpEsBlf01XNLig8FRYQ8BIRqIP6GbPFL3l7DaMvXbd4Mi7F0QNKLTO9nVXJUXD2LLKfsyd01F8woGu1eg15gxcF0HDYGj3T0OZALiLQMkkpo2yFmMIAZXCwpcnH7hwEFRYQ8JOxVIdlqpGyrS7xsWloHROIbpaOu+Zbj+5gnVPY2tuYy9DVCleDu+WDmtlKc+L2S+58n99lxNSASjzXko+fUEcY0aFPEKChyhIIiQko4oS2LktGhAdsDCIoGDlRaTaWYrdIFmfYh4pIubwx8Hibi8y+UehnN7aVsfOY0Z/6M8AOSEuIKCooIKcHsBUSK2ZhiQsvAiOn87E/pYadrOfEO4gmyGUyjdNucb89VPjIKtZao95lnUFBEyMNAPJaM6IYCQHZuLGFdOaJpKRS1NbJDnAehG7utXlwUDPkEy+orvmee5PPhTJAk+qyFdElG7s45D01ABFBQ5CkUFBFSgvE3Db4rfkhXU4Pr3J1zJKUvAsv/bQZG5r8udPGVVIeZ9xfafqrT6RHvJA6ShJJLhdO3WDb0lww58BAFRMRzKCgi5CEQ0iVZ0tNJzQ0ld89C0z9Wc4IVCtNPgBmLSnok6xT1UGJ6i8sNp5OkSQFRySf0urOclkRnPe0JkaKSIs/wmaDo999/xyuvvIIDBw4gPz8f9evXx9y5c9G+fXthnatXr2LUqFHYvXs3goODMXDgQCxZsgQBAQHFmHNCvIOzNxy5YCV3z0JpkKTzK2r83G5KUSClgzlgQlE1GAU/Dz0q5VGPBm/0DJ8Jinr27IlatWoJAc+KFSvQq1cvXLx4EdHR0TAYDOjZsyfKly+P/fv349atWxgyZAgYY1i1alVxZ5+QEsVRYEOBDyHaMhoNgItBkZFKihzykuFs7bt58yYuXLiAqVOnokGDBqhZsyYWLlyIe/fu4ezZswCAlJQU/Prrr/j000/RuHFjdOrUCUuXLsWHH36I7OzsYj4CQgghhHg7nwiKypUrh0ceeQTr16/H3bt3UVhYiPfffx9RUVFo2rQpAODQoUOoV68eYmNjhe26du2KvLw8HD9+3GbaeXl5yM7OljwIIYQQb8K3KXL1QezzieozjuOwc+dO9O3bF2FhYdDpdIiKisL//vc/lC5dGgCQmZmJqKgoyXZlypRBQEAAMjMzbaa9YMECzJ49253ZJ4QQQlxCDa09o1hLipKTk8FxnN3HsWPHwBjDyJEjUaFCBezbtw8//fQT+vbti169euH69etCehxnPe80Y0x2OW/atGnIysoSHhkZGW45VkIIIYR4t2ItKRo9ejSeeeYZu+tUrVoVu3fvxvfff4/bt28jPDwcAPDOO+9g586dWLduHaZOnYro6GgcOXJEsu3t27dRUFBgVYIkFhgYiMDAQNcPhhBCCHEXgwFM52JJD00I61CxBkWRkZGIjIx0uN69e/cAADqLkXd1Oh2M5i6GiYmJmDdvHq5fv46YmBgApsbXgYGBQrsjQgghxBcx5nrvM5oQ1jGfaGidmJiIMmXKYMiQIfj555+FMYvS09PRs2dPAECXLl2QkJCA559/HidPnsSuXbswefJkDB8+XChdIoQQQgixxSeCosjISPzvf/9Dbm4uOnTogGbNmmH//v345ptv0LBhQwCAXq/H1q1bERQUhFatWuGpp55Cv379sGTJkmLOPSGEEOIafvBG1x40eKMjPtH7DACaNWuGHTt22F2nSpUq+P777z2UI0IIIcQzmAaDN1LvM8d8oqSIEEIIIcTdfKakiBBCCHlYMaNRmGDZpTSIXRQUEUIIIV6Oqs88g4IiQgghxMtRUOQZ1KaIEEIIIQRUUkQIIYR4PaPRAI5KityOgiJCCCHEyzGDEeBcDIoM1NDaEao+I4QQQggBlRQRQgghXo/mPvMMCooIIYQQL8eMBterz6hNkUNUfUYIIYQQAiopIoQQQrwelRR5BgVFhBBCiJejoMgzKCiywBgz/TUUFHNOCCGEeDv+XsHfO9zGUACX90D3NYcoKLJw69YtAIDh1y+LOSeEEEJ8RU5ODiIiIjRPNyAgANHR0cjU6J4UHR2NgIAATdIqiTjm9vDWt9y5cwdlypTB1atX3fIBL07Z2dmoXLkyMjIyEB4eXtzZ0RQdm2+iY/NNJfnYAHXHxxhDTk4OYmNjodO5p+/SgwcPkJ+fr0laAQEBCAoK0iStkohKiizwH+qIiIgS+WUHgPDwcDo2H0TH5pvo2HyX0uNz9w/ooKAgCmQ8hLrkE0IIIYSAgiJCCCGEEAAUFFkJDAzErFmzEBgYWNxZ0Rwdm2+iY/NNdGy+q6QfH7GNGloTQgghhIBKigghhBBCAFBQRAghhBACgIIiQgghhBAAFBQRQgghhACgoEjinXfeQXx8PIKCgtC0aVPs27evuLOkWnJyMjiOkzyio6OF1xljSE5ORmxsLIKDg9GuXTucPXu2GHNs248//ojevXsjNjYWHMdhy5YtkteVHEteXh7GjBmDyMhIhISEoE+fPvjjjz88eBTyHB3b0KFDrd7HFi1aSNbx1mNbsGABHn30UYSFhaFChQro168f0tLSJOv46nun5Nh89b1799130aBBA2HAwsTERGzfvl143VffM8Dxsfnqe0a0R0GR2caNGzF+/HhMnz4dJ0+eRJs2bdC9e3dcvXq1uLOmWt26dXH9+nXhcebMGeG1RYsWYdmyZXj77bdx9OhRREdHo3PnzsjJySnGHMu7e/cuGjZsiLffflv2dSXHMn78eGzevBlffPEF9u/fj9zcXPTq1QsGQ/HOFu3o2ACgW7dukvdx27Ztkte99dhSU1MxatQoHD58GDt37kRhYSG6dOmCu3fvCuv46nun5NgA33zvKlWqhIULF+LYsWM4duwYOnTogL59+wqBj6++Z4DjYwN88z0jbsAIY4yxxx57jI0YMUKyrE6dOmzq1KnFlCPnzJo1izVs2FD2NaPRyKKjo9nChQuFZQ8ePGARERHsvffe81AOnQOAbd68WXiu5Fju3LnD/P392RdffCGsc+3aNabT6dj//vc/j+XdEctjY4yxIUOGsL59+9rcxleOjTHGbty4wQCw1NRUxljJeu8sj42xkvXelSlThn300Ucl6j3j8cfGWMl6z4hrqKQIQH5+Po4fP44uXbpIlnfp0gUHDx4splw57/z584iNjUV8fDyeeeYZXLp0CQCQnp6OzMxMyXEGBgYiKSnJ545TybEcP34cBQUFknViY2NRr149nzjevXv3okKFCqhVqxaGDx+OGzduCK/50rFlZWUBAMqWLQugZL13lsfG8/X3zmAw4IsvvsDdu3eRmJhYot4zy2Pj+fp7RrRBE8ICuHnzJgwGA6KioiTLo6KikJmZWUy5ck7z5s2xfv161KpVC3/99Rfmzp2Lli1b4uzZs8KxyB3nlStXiiO7TlNyLJmZmQgICECZMmWs1vH297V79+548sknERcXh/T0dLz++uvo0KEDjh8/jsDAQJ85NsYYJk6ciNatW6NevXoASs57J3dsgG+/d2fOnEFiYiIePHiA0NBQbN68GQkJCcKN35ffM1vHBvj2e0a0RUGRCMdxkueMMatl3q579+7C//Xr10diYiKqV6+OdevWCQ0HS8Jx8pw5Fl843qefflr4v169emjWrBni4uKwdetWDBgwwOZ23nZso0ePxunTp7F//36r13z9vbN1bL783tWuXRunTp3CnTt3sGnTJgwZMgSpqanC6778ntk6toSEBJ9+z4i2qPoMQGRkJPR6vVXEf+PGDatfRr4mJCQE9evXx/nz54VeaCXhOJUcS3R0NPLz83H79m2b6/iKmJgYxMXF4fz58wB849jGjBmDb7/9Fnv27EGlSpWE5SXhvbN1bHJ86b0LCAhAjRo10KxZMyxYsAANGzbEypUrS8R7ZuvY5PjSe0a0RUERTF+Wpk2bYufOnZLlO3fuRMuWLYspV9rIy8vDuXPnEBMTg/j4eERHR0uOMz8/H6mpqT53nEqOpWnTpvD395esc/36dfzyyy8+d7y3bt1CRkYGYmJiAHj3sTHGMHr0aHz99dfYvXs34uPjJa/78nvn6Njk+NJ7Z4kxhry8PJ9+z2zhj02OL79nxEUeb9rtpb744gvm7+/PPv74Y/brr7+y8ePHs5CQEHb58uXizpoqkyZNYnv37mWXLl1ihw8fZr169WJhYWHCcSxcuJBFRESwr7/+mp05c4Y9++yzLCYmhmVnZxdzzq3l5OSwkydPspMnTzIAbNmyZezkyZPsypUrjDFlxzJixAhWqVIl9sMPP7ATJ06wDh06sIYNG7LCwsLiOizGmP1jy8nJYZMmTWIHDx5k6enpbM+ePSwxMZFVrFjRJ47t3//+N4uIiGB79+5l169fFx737t0T1vHV987Rsfnyezdt2jT2448/svT0dHb69Gn22muvMZ1Ox1JSUhhjvvueMWb/2Hz5PSPao6BIZPXq1SwuLo4FBASwJk2aSLrZ+oqnn36axcTEMH9/fxYbG8sGDBjAzp49K7xuNBrZrFmzWHR0NAsMDGRt27ZlZ86cKcYc27Znzx4GwOoxZMgQxpiyY7l//z4bPXo0K1u2LAsODma9evViV69eLYajkbJ3bPfu3WNdunRh5cuXZ/7+/qxKlSpsyJAhVvn21mOTOy4AbM2aNcI6vvreOTo2X37vhg0bJlz/ypcvzzp27CgERIz57nvGmP1j8+X3jGiPY4wxz5VLEUIIIYR4J2pTRAghhBACCooIIYQQQgBQUEQIIYQQAoCCIkIIIYQQABQUEUIIIYQAoKCIEEIIIQQABUWEEEIIIQAoKCJEc5cvXwbHcTh16pRb0uc4Dlu2bHF6+71794LjOHAch379+tldt127dhg/frzT+yL28e9D6dKlizsrhBBQUERKmKFDhzq80btb5cqVcf36ddSrVw9AURBy586dYs2XpbS0NKxdu7a4s/FQsPW5vH79OlasWOHx/BBC5FFQRIjG9Ho9oqOj4efnV9xZsatChQpeUUJRUFBQ3FkoNtHR0YiIiCjubBBCzCgoIg+V1NRUPPbYYwgMDERMTAymTp2KwsJC4fV27dph7NixmDJlCsqWLYvo6GgkJydL0vjtt9/QunVrBAUFISEhAT/88IOkSktcfXb58mW0b98eAFCmTBlwHIehQ4cCAKpWrWpVStCoUSPJ/s6fP4+2bdsK+xLP0s27du0ann76aZQpUwblypVD3759cfnyZdXn5u7duxg8eDBCQ0MRExODpUuXWq2Tn5+PKVOmoGLFiggJCUHz5s2xd+9eyToffvghKleujFKlSqF///5YtmyZJPhKTk5Go0aN8Mknn6BatWoIDAwEYwxZWVl46aWXUKFCBYSHh6NDhw74+eefJWl/9913aNq0KYKCglCtWjXMnj1b8v4lJyejSpUqCAwMRGxsLMaOHavo2B0d161bt/Dss8+iUqVKKFWqFOrXr4///Oc/kjS++uor1K9fH8HBwShXrhw6deqEu3fvIjk5GevWrcM333wjVJdZnjNCiHfw7p+yhGjo2rVr6NGjB4YOHYr169fjt99+w/DhwxEUFCQJRNatW4eJEyfiyJEjOHToEIYOHYpWrVqhc+fOMBqN6NevH6pUqYIjR44gJycHkyZNsrnPypUrY9OmTXj88ceRlpaG8PBwBAcHK8qv0WjEgAEDEBkZicOHDyM7O9uqfc+9e/fQvn17tGnTBj/++CP8/Pwwd+5cdOvWDadPn0ZAQIDi8/PKK69gz5492Lx5M6Kjo/Haa6/h+PHjaNSokbDOCy+8gMuXL+OLL75AbGwsNm/ejG7duuHMmTOoWbMmDhw4gBEjRuDNN99Enz598MMPP+D111+32teFCxfw5ZdfYtOmTdDr9QCAnj17omzZsti2bRsiIiLw/vvvo2PHjvj9999RtmxZ7NixA8899xzeeusttGnTBhcvXsRLL70EAJg1axa++uorLF++HF988QXq1q2LzMxMq6DKFkfH9eDBAzRt2hSvvvoqwsPDsXXrVjz//POoVq0amjdvjuvXr+PZZ5/FokWL0L9/f+Tk5GDfvn1gjGHy5Mk4d+4csrOzsWbNGgBA2bJlFb8vhBAPKt75aAnR1pAhQ1jfvn1lX3vttddY7dq1mdFoFJatXr2ahYaGMoPBwBhjLCkpibVu3Vqy3aOPPspeffVVxhhj27dvZ35+fuz69evC6zt37mQA2ObNmxljjKWnpzMA7OTJk4wxxvbs2cMAsNu3b0vSjYuLY8uXL5csa9iwIZs1axZjjLEdO3YwvV7PMjIyhNe3b98u2dfHH39sdUx5eXksODiY7dixQ/Y8yOUnJyeHBQQEsC+++EJYduvWLRYcHMzGjRvHGGPswoULjOM4du3aNUl6HTt2ZNOmTWOMMfb000+znj17Sl4fNGgQi4iIEJ7PmjWL+fv7sxs3bgjLdu3axcLDw9mDBw8k21avXp29//77jDHG2rRpw+bPny95fcOGDSwmJoYxxtjSpUtZrVq1WH5+vuxx26LkuOT06NGDTZo0iTHG2PHjxxkAdvnyZdl17X0u16xZIzk/hJDiQyVF5KFx7tw5JCYmguM4YVmrVq2Qm5uLP/74A1WqVAEANGjQQLJdTEwMbty4AcDUOLly5cqIjo4WXn/sscfclt8qVaqgUqVKwrLExETJOsePH8eFCxcQFhYmWf7gwQNcvHhR8b4uXryI/Px8Sfply5ZF7dq1hecnTpwAYwy1atWSbJuXl4dy5coBMJ2f/v37S15/7LHH8P3330uWxcXFoXz58pLjyM3NFdLh3b9/XziO48eP4+jRo5g3b57wusFgwIMHD3Dv3j08+eSTWLFiBapVq4Zu3bqhR48e6N27t8O2XUqOy2AwYOHChdi4cSOuXbuGvLw85OXlISQkBADQsGFDdOzYEfXr10fXrl3RpUsXPPHEEyhTpozdfRNCvAsFReShwRiTBET8MgCS5f7+/pJ1OI6D0Wi0mYazdDqdsH+euNGx5WuW+QRMVWxNmzbFZ599ZrWuOOhwRG5floxGI/R6PY4fPy5UefFCQ0OFdGydYzE+mBCnHRMTI9vWhm+PZDQaMXv2bAwYMMBqnaCgIFSuXBlpaWnYuXMnfvjhB4wcORKLFy9Gamqq1Xuq9riWLl2K5cuXY8WKFahfvz5CQkIwfvx45OfnAzA1rt+5cycOHjyIlJQUrFq1CtOnT8eRI0cQHx9vc9+EEO9CQRF5aCQkJGDTpk2SG/fBgwcRFhaGihUrKkqjTp06uHr1Kv766y9ERUUBAI4ePWp3G75dj8FgkCwvX748rl+/LjzPzs5Genq6JL9Xr17Fn3/+idjYWADAoUOHJGk0adIEGzduFBonO6tGjRrw9/fH4cOHhRKz27dv4/fff0dSUhIAoHHjxjAYDLhx4wbatGkjm06dOnXw008/SZYdO3bM4f6bNGmCzMxM+Pn5oWrVqjbXSUtLQ40aNWymExwcjD59+qBPnz4YNWoU6tSpgzNnzqBJkyY2t1FyXPv27UPfvn3x3HPPATAFUufPn8cjjzwirMNxHFq1aoVWrVph5syZiIuLw+bNmzFx4kQEBARYvf+EEO9Dvc9IiZOVlYVTp05JHlevXsXIkSORkZGBMWPG4LfffsM333yDWbNmYeLEidDplH0VOnfujOrVq2PIkCE4ffo0Dhw4gOnTpwOwLsXhxcXFgeM4fP/99/j777+Rm5sLAOjQoQM2bNiAffv24ZdffsGQIUMkJRWdOnVC7dq1MXjwYPz888/Yt2+fsC/eoEGDEBkZib59+2Lfvn1IT09Hamoqxo0bhz/++EPxOQsNDcWLL76IV155Bbt27cIvv/yCoUOHSs5LrVq1MGjQIAwePBhff/010tPTcfToUbz55pvYtm0bAGDMmDHYtm0bli1bhvPnz+P999/H9u3bHZauderUCYmJiejXrx927NiBy5cv4+DBg5gxY4YQVM2cORPr169HcnIyzp49i3PnzmHjxo2YMWMGAGDt2rX4+OOP8csvv+DSpUvYsGEDgoODERcXZ3ffSo6rRo0aQknQuXPn8PLLLyMzM1NI48iRI/9v7/5dUu8CMIA/DWrmFyerL5UgRtLWVEYKESTRENbSUuiSY9RUSxRENEhTQYOT/QM5NOQQJEhLNDlUkpMRQT8IcwgqeN6p7/veW733Xm731r09H3A63x/HMz3gc45YXl7GwcEByuUyNjc3cXl5aYUmn8+HQqGAYrGIq6urT30MgciH9k5dJpFfIh6PE8CzTzweJ0nmcjl2dnbSbrfTNE3Ozs7y4eHBur+3t9cqFj+JRqPW/SR5dHTEUChEu93O9vZ2bm1tEQCz2SzJ50VrklxcXKRpmqypqbGeValUODo6SrfbTa/Xy3Q6/UXRmiSLxSLD4TDtdjsDgQCz2ewXRWuSPD8/ZywWo8fjocPhoN/vZyKRYKVSeXGNXit+V6tVjo+Ps66ujo2NjUwmk8/W4/7+nvPz8/T5fLTZbDRNkyMjIywUCtY1qVSKzc3NdDqdHB4e5tLSEk3TtMYXFhbY0dHxbF63t7ecnJxkU1MTbTYbvV4vx8bGWC6XrWuy2Sx7enrodDrpdrvZ1dXFVCpFksxkMgwGg3S73XS5XOzu7ubOzs6La/C1b32v6+trRqNRGobBhoYGzs3NMRaLWeXpw8NDDgwMsL6+ng6Hg4FAgGtra9bzLy4uGIlEaBgGAXB3d9caU9Fa5OOoIb+jTCAir9rb20M4HEapVEJra+t7T+ebcrkc+vr6cHNz81sOb0wkEjg+PkY+n//l7/oTpdNpTE9Pf7gTz0U+I3WKRH5QJpOBYRhoa2tDqVTC1NQUQqHQHxGI/qulpQVDQ0PPDiH8WSsrK4hEInC5XNje3sbGxgbW19ff9B1/C8Mw8Pj4iNra2veeiohAoUjkh1WrVczMzOD09BQejwf9/f0vnv78UQWDQZycnAD4d3fVW9rf30cymUS1WoXf78fq6iomJibe/D3fK5/PY3Bw8NXxp47Xe3j60+Cvd72JyPvQz2ci8le7u7vD2dnZq+P/t5tNRD4XhSIRERERaEu+iIiICACFIhEREREACkUiIiIiABSKRERERAAoFImIiIgAUCgSERERAaBQJCIiIgJAoUhEREQEAPAPbWfxk+B/Oc4AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 3: Create storage target\n", + "\n", + "Here we will create a temporary directory to write our output dataset to. We could also write to cloud storage." ] - }, - "metadata": {}, - "output_type": "display_data" + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'/tmp/tmp3x0x1m53/output.zarr'" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import os\n", + "from tempfile import TemporaryDirectory\n", + "td = TemporaryDirectory()\n", + "target_root = td.name\n", + "store_name = \"output.zarr\"\n", + "target_store = os.path.join(target_root, store_name)\n", + "target_store" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 4: Write the Recipe\n", + "\n", + "Now that we have a file pattern, we are ready to write our recipe. A recipe is defined as a pipeline of [Apache Beam transforms](https://beam.apache.org/documentation/programming-guide/#transforms) applied to the data collection associated with a `FilePattern`.\n", + "\n", + "First, we'll import the transforms provided by Pangeo Forge that may be used to transform a `FilePattern` collection of NetCDF files into a Zarr store." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "import apache_beam as beam\n", + "from pangeo_forge_recipes.transforms import OpenURLWithFSSpec, OpenWithXarray, StoreToZarr" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define the Recipe Object\n", + "A recipe pipeline contains a set of transforms, which operate on an `apache_beam.PCollection`, performing a one-to-one mapping using `apache_beam.Map` of input elements to output elements, applying the specified transformation. For creating a Zarr store from a NetCDF collection, the recipe pipeline will contain the following transforms applied to the file pattern collection:\n", + "* `OpenURLWithFSSpec`: retrieves each pattern file using the specified URLs.\n", + "* `OpenWithXarray`: load each pattern file into an `xarray.Dataset`:\n", + " * The `file_type` is specified from the pattern.\n", + "* `StoreToZarr`: generate a Zarr store by combining the datasets:\n", + " * `store_name` specifies the name of the generated Zarr store.\n", + " * `target_root` specifies where the output will be stored, in this case, the temporary directory we created.\n", + " * `combine_dims` informs the transform of the dimension used to combine the datasets. Here we use the dimension specified in the file pattern (`time`).\n", + " * `target_chunks`: specifies a dictionary of required chunk size per dimension. In the event that this is not specified for a particular dimension, it will default to the corresponding full shape.\n", + " \n", + "Here, each input file will correspond to a single `time`, so we're going to specify a `time` chunk size of 10. This means that we will need to be able to hold 10 files like the one we examined above in memory at once. That's `16MB * 10 = 160MB`.\n", + "\n", + "To avoid retrieving all of the collection files here, we initially prune the pattern." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pattern = pattern.prune(nkeep=15)\n", + "pattern" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<_ChainedPTransform(PTransform) label=[Create|OpenURLWithFSSpec|OpenWithXarray|StoreToZarr] at 0x7ff8b511a5e0>" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transforms = (\n", + " beam.Create(pattern.items())\n", + " | OpenURLWithFSSpec()\n", + " | OpenWithXarray(file_type=pattern.file_type)\n", + " | StoreToZarr(\n", + " store_name=store_name,\n", + " target_root=target_root,\n", + " combine_dims=pattern.combine_dim_keys,\n", + " target_chunks={\"time\": 10}\n", + " )\n", + ")\n", + "transforms" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 5: Run the Recipe\n", + "\n", + "Execute the recipe pipeline using Beam" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" + ] + }, + { + "data": { + "application/javascript": [ + "\n", + " if (typeof window.interactive_beam_jquery == 'undefined') {\n", + " var jqueryScript = document.createElement('script');\n", + " jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n", + " jqueryScript.type = 'text/javascript';\n", + " jqueryScript.onload = function() {\n", + " var datatableScript = document.createElement('script');\n", + " datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n", + " datatableScript.type = 'text/javascript';\n", + " datatableScript.onload = function() {\n", + " window.interactive_beam_jquery = jQuery.noConflict(true);\n", + " window.interactive_beam_jquery(document).ready(function($){\n", + " \n", + " });\n", + " }\n", + " document.head.appendChild(datatableScript);\n", + " };\n", + " document.head.appendChild(jqueryScript);\n", + " } else {\n", + " window.interactive_beam_jquery(document).ready(function($){\n", + " \n", + " });\n", + " }" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/derek/anaconda3/envs/forgerunner/lib/python3.9/site-packages/xarray/core/dataset.py:2081: SerializationWarning: saving variable None with floating point data as an integer dtype without any _FillValue to use for NaNs\n", + " return to_zarr( # type: ignore\n", + "/home/derek/anaconda3/envs/forgerunner/lib/python3.9/site-packages/xarray/core/dataset.py:2081: SerializationWarning: saving variable None with floating point data as an integer dtype without any _FillValue to use for NaNs\n", + " return to_zarr( # type: ignore\n", + "/home/derek/anaconda3/envs/forgerunner/lib/python3.9/site-packages/xarray/core/dataset.py:2081: SerializationWarning: saving variable None with floating point data as an integer dtype without any _FillValue to use for NaNs\n", + " return to_zarr( # type: ignore\n", + "/home/derek/anaconda3/envs/forgerunner/lib/python3.9/site-packages/xarray/core/dataset.py:2081: SerializationWarning: saving variable None with floating point data as an integer dtype without any _FillValue to use for NaNs\n", + " return to_zarr( # type: ignore\n" + ] + } + ], + "source": [ + "with beam.Pipeline() as p:\n", + " p | transforms" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 6: Examine the Target\n", + "\n", + "Now we can examine the output of our pruned execution test. Here see that:\n", + "* The `time` dimension matches the pruned pattern length.\n", + "* The `time` chunk size is as requested." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+              "Dimensions:  (time: 15, zlev: 1, lat: 720, lon: 1440)\n",
+              "Coordinates:\n",
+              "  * lat      (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n",
+              "  * lon      (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n",
+              "  * time     (time) datetime64[ns] 1981-09-01T12:00:00 ... 1981-09-15T12:00:00\n",
+              "  * zlev     (zlev) float32 0.0\n",
+              "Data variables:\n",
+              "    anom     (time, zlev, lat, lon) float64 dask.array<chunksize=(10, 1, 720, 1440), meta=np.ndarray>\n",
+              "    err      (time, zlev, lat, lon) float64 dask.array<chunksize=(10, 1, 720, 1440), meta=np.ndarray>\n",
+              "    ice      (time, zlev, lat, lon) float64 dask.array<chunksize=(10, 1, 720, 1440), meta=np.ndarray>\n",
+              "    sst      (time, zlev, lat, lon) float64 dask.array<chunksize=(10, 1, 720, 1440), meta=np.ndarray>\n",
+              "Attributes: (12/34)\n",
+              "    Conventions:                CF-1.6, ACDD-1.3\n",
+              "    cdm_data_type:              Grid\n",
+              "    comment:                    Data was converted from NetCDF-3 to NetCDF-4 ...\n",
+              "    creator_email:              oisst-help@noaa.gov\n",
+              "    creator_url:                https://www.ncei.noaa.gov/\n",
+              "    date_created:               2020-05-08T19:05:13Z\n",
+              "    ...                         ...\n",
+              "    references:                 Reynolds, et al.(2007) Daily High-Resolution-...\n",
+              "    sensor:                     Thermometer, AVHRR\n",
+              "    source:                     ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pathfin...\n",
+              "    standard_name_vocabulary:   CF Standard Name Table (v40, 25 January 2017)\n",
+              "    summary:                    NOAAs 1/4-degree Daily Optimum Interpolation ...\n",
+              "    title:                      NOAA/NCEI 1/4 Degree Daily Optimum Interpolat...
" + ], + "text/plain": [ + "\n", + "Dimensions: (time: 15, zlev: 1, lat: 720, lon: 1440)\n", + "Coordinates:\n", + " * lat (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n", + " * lon (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n", + " * time (time) datetime64[ns] 1981-09-01T12:00:00 ... 1981-09-15T12:00:00\n", + " * zlev (zlev) float32 0.0\n", + "Data variables:\n", + " anom (time, zlev, lat, lon) float64 dask.array\n", + " err (time, zlev, lat, lon) float64 dask.array\n", + " ice (time, zlev, lat, lon) float64 dask.array\n", + " sst (time, zlev, lat, lon) float64 dask.array\n", + "Attributes: (12/34)\n", + " Conventions: CF-1.6, ACDD-1.3\n", + " cdm_data_type: Grid\n", + " comment: Data was converted from NetCDF-3 to NetCDF-4 ...\n", + " creator_email: oisst-help@noaa.gov\n", + " creator_url: https://www.ncei.noaa.gov/\n", + " date_created: 2020-05-08T19:05:13Z\n", + " ... ...\n", + " references: Reynolds, et al.(2007) Daily High-Resolution-...\n", + " sensor: Thermometer, AVHRR\n", + " source: ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pathfin...\n", + " standard_name_vocabulary: CF Standard Name Table (v40, 25 January 2017)\n", + " summary: NOAAs 1/4-degree Daily Optimum Interpolation ...\n", + " title: NOAA/NCEI 1/4 Degree Daily Optimum Interpolat..." + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds = xr.open_zarr(target_store)\n", + "ds" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total chunk size: 331.784724 MB\n" + ] + } + ], + "source": [ + "print(f'Total chunk size: {ds.isel(time=slice(0, 10)).nbytes / 1e6} MB')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\ud83d\udc40 Inspect the Xarray HTML repr above carefully by clicking on the buttons to expand the different sections.\n", + "- \u2705 Is the shape of the variable what we expect?\n", + "- \u2705 Is `time` going in the right order?\n", + "- \u2705 Do the variable attributes make sense?\n", + "\n", + "\n", + "Now let's visualize some data and make sure things look good" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHFCAYAAADSY6wWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9eZwcVdn1ubeql5nJTFbIRgiRTSDiwr4mkMwkQVCMiIKyy4uCQkBAET4MCEHiAi4I6vsKiKIoq0BWtigCGmRTVBQMIYSEkHVmequqe+/3x13qVnX3TM8+k9T5ZX6Zqa6uqq6uqnvu85znPEQIIZAgQYIECRIkSJCgS6ADfQAJEiRIkCBBggRDEQmJSpAgQYIECRIk6AYSEpUgQYIECRIkSNANJCQqQYIECRIkSJCgG0hIVIIECRIkSJAgQTeQkKgECRIkSJAgQYJuICFRCRIkSJAgQYIE3UBCohIkSJAgQYIECbqBhEQlSJAgQYIECRJ0AzsUiXrmmWcwf/58bN26tey16dOnY/r06f1+TP2Fm2++GXPnzsWUKVNACOnwsy5duhRHHHEE6urqMHz4cJxwwgl49dVXy9YrlUr49re/jalTp6KhoQFjx47FnDlz8Mwzz5Ste9VVV+H444/HxIkTQQjBmWee2eXPsGHDBpx55pkYM2YM6uvrcdhhh+Hxxx8vW8/zPFx99dWYMmUK0uk0Jk+ejCuuuAKFQqFL+/vhD3+I97///chkMpgyZQquueYa+L4fWeftt9/GvHnzMG3aNIwYMQKEENxxxx2RdebPnw9CSKc/+jt59dVXcf755+Owww5DQ0MDCCF46qmnyo5v3bp1uOqqq3DYYYdhzJgxaGpqwgEHHICf/vSnYIzV/Dn/+9//Yu7cuRgxYgSGDRuG5uZmvPDCCxXX/c1vfoMPfehDyGazmDBhAubNm4f29vZBua/uYLfdduvWtTnY0JXzXAkvvPACZs6ciWHDhmHEiBGYO3cu/vvf/3b6vjfffDNyTd977709+RjdxoIFC/Dggw8OyL4B4MEHH4ych+eff37AjiVBH0PsQPj2t78tAIhVq1aVvfbqq6+KV199tf8Pqp+w9957i4985CPi7LPPFjvttJOYNm1axfUefPBBQQgRJ554onj00UfF3XffLfbee28xcuRI8frrr0fWPe200wSlVFx55ZXi8ccfF7/73e/EAQccIFzXFX/+858j69bX14tDDz1UfOELXxDpdFqcccYZXTr+YrEopk6dKnbZZRfxy1/+Uixbtkx8/OMfF67riqeeeiqy7ty5c0U2mxULFiwQy5cvF9dee61Ip9PihBNOqHl/1113nSCEiCuuuEI8+eSTYuHChSKdTotzzz03st6TTz4pxowZI2bOnClOOeUUAUDcfvvtkXXWrFkjnn32WfNz//33CwDiy1/+cmS5vv7uuOMOMX78eHHccceJE044QQAQTz75ZNkxPvzww2LSpEniyiuvFI8++qhYtmyZuPjiiwWlVJx11lk1fc4NGzaICRMmiP3220/cd9994tFHHxVHHnmkaGxsFP/6178i6/7yl78UAMTnP/958cQTT4jbbrtNDB8+XDQ3Nw+6fXUXkydP7vK1OdjQlfNcCf/85z9FY2OjOOqoo8Sjjz4q7rvvPrHffvuJCRMmiA0bNnT43lWrVgkA4qqrrhLPPvus2LRpU299rC6hoaFhQL/HzZs3i2effVZcddVVAoBYuXLlgB1Lgr5FQqJ2EDDGzO/77bdfVRK19957i/33319wzs2yN998U6TTaXHqqaeaZcViUTiOIz73uc9F3v/OO+8IAOLCCy+suv/uPOBuueUWAUA888wzZpnv+2LfffcVBx98sFn27LPPCgDiu9/9buT9CxYsEADEsmXLOt3Xxo0bRTabFf/zP/8TWX799dcLQkiEbNufa+XKlRVJVBx6oPn2t79d8XV7m7/73e+qkqjNmzcLz/PKll9wwQUCgHjrrbc6PA4hhLjssstEKpUSb775plm2bds2MWbMGHHyySebZUEQiPHjx4uWlpbI+3/1q18JAGLRokWDal/dxfZAomo9z9XwqU99SowZM0Zs27bNLHvzzTdFKpUSl19+eYfv1dd2Z/dAX6MvSFQQBKJYLHbpPbfffntCorZz7DDpvPnz5+Oyyy4DAJPSstMk8XSeDkt/+9vfxo033ojddtsNdXV1mD59Ov7973/D93187Wtfw4QJEzB8+HB84hOfwIYNG8r2e88995i0zLBhwzBr1iy8+OKL/fGRI6C0869606ZNeO211zBnzhwQQszyyZMnY+rUqXjwwQdNmohSCkophg8fHtlGU1MTKKXIZrNd3n9HeOCBB7D33nvjsMMOM8tc18XnPvc5/OUvf8HatWsBAH/6058AAMcdd1zk/ccffzwA4L777ut0X0uWLEGxWMRZZ50VWX7WWWdBCBFJE/T0c1VCrdscOXIkUqlU2fKDDz4YgEw1doYHHngAxx57LCZPnmyWNTU1Ye7cuXj44YcRBAEA4LnnnsO6devKzsmnPvUpDBs2DA888MCg2lccd9xxR6dp1GpobW3FpZdeatLDEydOxLx585DL5cw6H/7wh3HUUUeVvZcxhokTJ2Lu3LldPubuotbzXAlBEOCRRx7BJz/5STQ1NZnlkydPxjHHHNOtc6+h09qvvPIKPvWpT2H48OEYNWoULrnkEgRBgNdeew2zZ89GY2MjdtttNyxcuLBsG7V8F4QQ5HI53HnnnRW/4/Xr1+O8887DLrvsgnQ6bVL19nnRz/+FCxfiuuuuw5QpU5DJZPDkk0+Cc47rrrsOe++9N+rq6jBixAjsv//++P73v9/tc5Ng6GKHIVGf//zn8eUvfxkAcP/99+PZZ5/Fs88+i4985CMdvu+WW27Bn/70J9xyyy343//9X/zrX//CCSecgHPOOQfvvfcefv7zn2PhwoV47LHH8PnPfz7y3gULFuCUU07Bvvvui9/+9re466670NbWhqOOOgr/+Mc/Oj3mIAhq+hFCdP/EWPA8DwCQyWTKXstkMsjn83jjjTcAAKlUCueffz7uvPNOPPjgg2htbcWbb76Jc889F8OHD8e5557bK8ek8fe//x37779/2XK9TGu2qn0G/fcrr7xS074A4AMf+EBk+fjx4zFmzBjz+mDFE088Add1sddee0WWxweTQqGAN954o+p5LRQKRgejP3N83VQqhfe///1l56Q/91ULPvrRj5p7Xv9873vfAwDst99+Vd+Xz+cxbdo03HnnnbjwwguxePFifPWrX8Udd9yBj33sY+beO+uss/D000/jP//5T+T9y5YtwzvvvFNGCOPgnNd0r3emdevKea6EN954A4VCoer7X3/9dRSLxQ6PoTOcfPLJ+OAHP4j77rsP5557Lm666SZcfPHFOPHEE/HRj37UkMCvfvWruP/++837av0unn32WdTV1eG4444z3/WPf/xjAJJAHXzwwVi6dCmuvvpqLF68GOeccw5uuOGGis+sH/zgB3jiiSfwne98B4sXL8b73/9+LFy4EPPnz8cpp5yCRx99FPfccw/OOeecilrbBNs/3IE+gP7CLrvsgl133RWAnDXutttuNb1vxIgRePDBB010YOPGjZg3bx7e//7346GHHjLr/etf/8LNN9+M1tZWNDU1Yc2aNfjGN76BL33pS/jBD35g1mtubsaee+6Ja665Bvfcc0/V/b755puYMmVKTcf45JNP9ooofuzYsRg1apSJ5mhs3brVDFybNm0yy2+66SYMHz4cn/zkJ8E5BwDsuuuueOKJJ7DHHnv0+HhsbNq0CaNGjSpbrpfp49p3330ByIiUff6efvrpsuPvaF+ZTAYNDQ0V91fLNgYKy5Ytw1133YWLLroIo0ePjrzmOA4cxzF/b9myBUKIms6r/r/aum+++eaA7asW7LTTTthpp53M36+99hquv/56HHPMMbjpppuqvu8HP/gBXnnlFfz5z3/GgQceCACYMWMGJk6ciJNOOglLlizBnDlz8NnPfhaXXXYZ7rjjDlx//fXm/XfccYcpuOgIZ599Nu68885OP8e0adMqFhlodOU8V0Jn514IgS1btmD8+PGdHms1/M///A8uueQSAMDMmTOxbNky/OhHP8L999+PT3ziEwBkZuCRRx7Br371KxPFq/W7OPTQQ0EpxU477YRDDz00su/58+djy5YtePXVV814MGPGDNTV1eHSSy/FZZddZp4hAJDNZrF06dJIxPdPf/oTPvCBD2D+/Plm2axZs7p9PhIMbewwJKq7OO644yLplX322QeAnNna0MvfeustTJ06FUuXLkUQBDj99NMjYeJsNotp06bhySef7HC/EyZMwMqVK2s6xr333rum9ToDpRQXXHABvvnNb+Kb3/wmzjvvPLS2tmLevHnI5/NmHY3rr78e3/nOdzB//nwcddRRaG1txY9+9CM0Nzdj2bJl+PCHP9yl/QshymbarhteonaKMQ792pw5c7DHHnvgq1/9KsaOHYuDDjoIzz33HL7+9a/DcZzI8cfTGo7jmO3Usq/BhhdeeAEnn3wyDj30UNxwww1lr1dL43Tls1ZbN768P/fVVaxfvx6zZ8/G+PHj8cADDyCdTldd95FHHsHUqVPxoQ99KPKZZs2aZeQAc+bMwejRo3HCCSfgzjvvxDe/+U1QSrFlyxY89NBDuPDCCyPXcSXMnz8fX/rSlzo99sbGxpo+Y0+v3768/nVqXWOfffbByy+/HCGarutijz32wOrVq82yWr+LjvDII4/gmGOOwYQJEyLbmDNnDi699FKsWLEiQqI+9rGPlaXMDz74YDz66KM4//zz8fGPfxyHHXZYJPWZYMdCQqI6QXxGph+41ZbrUPe7774LADjooIMqbrcz3Us6ncaHPvShmo7RnvH3FFdffTXa29tx3XXX4eqrrwYgCeNZZ52F//3f/8XEiRMBAP/85z9x9dVXY+HChbj00kvN++fMmYN9990Xl1xySadEMY4777yzLO2hQ/SjR4+uOIPevHkzgPD7SKfTWLx4MU477TS0tLQAABoaGrBgwQJ885vfNMcPoOzhePvtt+PMM8/E6NGjUSwWkc/nUV9fX7a/Aw44oEufqz/w4osvmijnokWLKqZk4xg5ciQIITWdVx3V2rRpE8aOHVu2bqXIxUDtqyO0tbXhuOOOg+/7WLx4cZmmL453330Xr7/+ekXtGSAj0xpnn3027rvvPixfvhyzZs3Cr3/9a5RKpZosE3bddVfssssuna7XGYHpynmuBPvcV3o/IQQjRozo9Dg7QqVnZ319fZmOMp1Oo7W11fzdle+iGt599108/PDDNW+jUsTtiiuuQENDA375y1/itttug+M4OProo3HjjTeaCFmCHQcJieojjBkzBgBw7733RgSetWIg0nmAnAF+73vfw7XXXotVq1ZhzJgxGD9+PGbNmoUpU6aYB/3LL78MIUQZSUylUvjgBz+IFStWdHnfJ5xwQtXo2wc+8AH87W9/K1uul02dOtUs22OPPfDss89i7dq12Lx5M3bffXds27YNF110EY4++mizXnxf+nxrLdTf/vY3HHLIIeb19evXY+PGjZF9DQa8+OKLmDlzJiZPnoxly5Z1Sgw06urqsMcee1Q9r3V1dXjf+94HIHpO7Jl6EAT417/+hVNOOWXQ7KsafN/HJz/5Sbzxxhv44x//WBNpGTNmDOrq6vDzn/+86usas2bNwoQJE3D77bdj1qxZuP3223HIIYdEPkM19FY6ryvnuRJ233131NXVVX3/HnvsUUZ2+gtd+S462sb+++8fSbnamDBhQuTvSqTVdV1ccskluOSSS7B161Y89thj+PrXv45Zs2ZhzZo1ZROvBNs3digSpWfnXTVd7A5mzZoF13Xxxhtv4JOf/GSX3z8Q6Twbw4YNM4PZCy+8gMcffxzf/e53I8cHyEqqadOmmeWlUgkvvPBCTQNUHKNHjy7T8Wh84hOfwPnnn48///nPhtgEQYBf/vKXOOSQQ8oefgAwceJEE3m66qqr0NDQgHPOOce8Xm3WOHv2bGSzWdxxxx0REqUrvE488cQuf7a+wksvvYSZM2dil112wfLlyzFy5Mguvf8Tn/gEbr75ZqxZswaTJk0CIKM1999/Pz72sY+ZNNQhhxyC8ePH44477sCnP/1p8/57770X7e3tNVWf9ee+KuGcc87BU089hcWLF1cUTlfC8ccfjwULFmD06NGdTmocx8Fpp52Gm2++GX/84x/x/PPP4yc/+UlN++nNdF6t57kSXNfFCSecgPvvvx8LFy40+3vrrbfw5JNP4uKLL67p8/QFuvJdZDKZis/5448/HosWLcLuu+/e5XulEkaMGIGTTjoJa9euxbx58/Dmm2/WRJoTbD/YoUiUJgXf//73ccYZZyCVSmHvvfeuWWfQFey222649tprceWVV+K///0vZs+ejZEjR+Ldd9/FX/7yFzQ0NOCaa66p+v50Ot2roeHnn3/eCHJbW1shhDBuwgcddJCJlj311FNYuXIl9t9/fwgh8Je//AU33ngjZs+eHXnIH3nkkTjooIMwf/585PN5HH300di2bRt++MMfYtWqVbjrrrsi+1+xYgXee+89ALLse/Xq1Wb/06ZNi4h+K+Hss8/GLbfcgk996lP41re+hZ133hk//vGP8dprr+Gxxx6LrLtw4UKMGzcOu+66K95991389re/xYMPPoi77rorks6rhlGjRuGqq67C//t//w+jRo1CS0sLVq5cifnz5+Pzn/982UNSfw5d9fT8889j2LBhAICTTjqp0/3Fkc/nsWjRIgCSpALy/G3cuBENDQ1G9/Haa69h5syZAKQ+7T//+U+kOmz33XePnFfXdTFt2rSIy/ull16Ku+66Cx/96Edx7bXXIpPJ4Fvf+haKxWJEOOs4DhYuXIjTTjsN5513Hk455RT85z//weWXX47m5mbMnj078hn6c1+EkE4jNN/+9rdx11134ctf/jIaGhrMeQVk+X+1gW/evHm47777cPTRR+Piiy/G/vvvD8453nrrLSxbtgxf+cpXIkT77LPPxo033ohTTz0VdXV1ERLYEXbbbbeai106Q63nGYApAHn99dfNsmuuuQYHHXQQjj/+eHzta19DsVjE1VdfjTFjxuArX/lKrxxjd9CV7+IDH/gAnnrqKTz88MMYP348Ghsbsffee+Paa6/F8uXLcfjhh+PCCy/E3nvvjWKxiDfffBOLFi3Cbbfd1ukE8IQTTsDUqVNx4IEHYqeddsLq1atx8803Y/Lkydhzzz3741QkGEwYEHeqAcQVV1whJkyYICilERPDadOmRQwoqxkiPvnkkwKA+N3vfhdZXs1U7cEHHxTHHHOMaGpqEplMRkyePFmcdNJJ4rHHHuuTz1cNZ5xxhgBQ8cc2xvvTn/4kDjnkEHO8U6dOFd/5zncqmjpu3bpVXHnllWKfffYR9fX1YueddxbTp0+vaIY4bdq0qvuvZCRZCevXrxenn366GDVqlMhms+LQQw8Vy5cvL1vvmmuuEbvvvrvIZDJixIgRYvbs2eIPf/hDzedK4/vf/77Ya6+9RDqdFrvuuqv4xje+UfE8VPtc1W6vzsw29euVfiZPnmzW09dcLd+rPs5KJquvv/66OPHEE0VTU5Oor68XM2bMEH/9618rHtvdd98t9t9/f5FOp8W4cePEhRdeKNra2iqek/7YV1tbmwAgPvOZz1TchkZH1799nJXMNtvb28VVV10l9t57b5FOp8Xw4cPFBz7wAXHxxReL9evXl+3r8MMPFwDEZz/72Q6PqS9R63mePHly5JrSeP7558WMGTNEfX29aGpqEieeeGJZx4JK6Mhs8xvf+IYAIN57773I8jPOOEM0NDSUrT9t2jSx3377RZbV+l289NJL4ogjjhD19fVl3/F7770nLrzwQjFlyhSRSqXEqFGjxAEHHCCuvPJK0d7eHvkcle7R7373u+Lwww8XY8aMMc+Gc845J2JuqpGYbW7/IEL0kslQggQJEvQzFi1ahOOPPx4vv/xyma9Xgv6H1nL+3//9H04//fRIxeuOBKEqjX/xi1/gnHPOwcqVKxPR+XaKHcZsM0GCBNsfnnzySXzmM59JCNQgwznnnINUKlVTh4DtEQ899BBSqVREg5lg+0QSiUqQIEGCBL0Cz/MiXQF6S8A91LB169aIzmzfffdNqva2UyQkKkGCBAkSJEiQoBtI0nkJEiRIkCBBggTdQEKiEiRIkCBBggQJuoGERCVIkCBBggQJEnQDO5TZZi3gnOOdd95BY2PjDlmamyBBggQJaocQAm1tbZgwYUKnPVG7i2KxCM/zemVb6XR6wFr3bI9ISFQM77zzjmmVkCBBggQJEtSCNWvWdKvdVWcoFosYXTcMebBe2d64ceOwatWqhEj1EhISFYNuAfPqa//pk3YwCRIkSJBg+0FbWxv223vPPhsvPM9DHgynYyLSPVTgeOD4xfq18DwvIVG9hIRExaBTeI2NjWhqagIA0BqyejwxikiQIEGCfkMtz+WO0NvP7L6Wf6RBkSY9TBcm41SvIyFRVUBJ127SjtbVNyslCdlKMDjR2bWeXLcJBgN6Spz6Ylu9eUwdwSEETg+JmgOSEKleRkKi+gH2TRa/4ZLBKcFAotYBwF6vP6/ZWo9vIO6jgTonOyr6i6wMVlACOD08BxRISFQvIyFRA4wkOpVgoNDdQak/yENXj60/CU2lY0smRwOLWi6X5CtJ0BdISFQNqPV53t2bNCFSCYYqNHkYTNdvX95PXY3cDabzMpRR6bx3dQ4QX3+ofTW9ls5L0KtISFQVEPTsJu3qDbq9EaneasmYeHX1DXo7NdKb129vHFtfkJjuHNdQu68r3beD8R6MHxGt4Rh57LNVesdg/qqcXkjnOb1zKAksJCSqRnR2k1a7QQfyphyIB2Jv97Pu6vYG0wO/o2PvjeOMb7+3Pnt3Z+yDkTAMhmPqyTH01Xfclfuqr46hu7D3Hn8uVzs0IaLrxp/XlbbdneNJsOMhIVGdoJYZjr1eLbMdoO/JVbWHpL28Nx+GvU2euotqx9FXD/7ufu6OBib9WqVlXT2WWj93R2sRDI4Zek/IHTDwZKpWdPRdd+X+7at7ciCjVXov9nM5vmsSOz5BiFlHv1QLoRpsSNJ5gxMJiaoCSoi50Wq5buM3Z2c3ZqWBqbdmzbU+PIUQPX741bKv7nym3k439QV57M1BqtK2emP7lQhZ/NzWcjYGMrJa7fgGQ7S3VtR6b3c3QtRVwt3b6OhZ0tvR5ErP5ThxguDha7ZBZeQ8RbcHDG5ClaTzBieSBsQJeoS+moEOhajBQKc1uouhcG41BssZHuzl9UII8zPQsI+lO8fTX5+j0u1ba+YhQQKNJBLVB+jJbKan0aiBeIgSQqrudzAN2D0lPZW+m0rbHAwDWRzxSAEXITEQqJ2s9GVqrzsRMr1eX57xagSq1khYrffAYLxuuoK+0EMSE9m307Kic7JTo7M3IWFESiMemepsX/1FvJJ03uBEQqI6QVdSeUA5gdJ/deXSrUXD0V3dTLXtVILedk8ejoNB2Fsreaol2lCLH9BAp1ZqRZxI2ehMI1XpPUDt33dn57rSy/HByr7XOiJSPbn+aimt76t9JwD++FZrl9afuVtT1ddEledAfLF9yw6myBRBz1NHg+fTbD9ISFQVEFIbgerRPtT/XXnOxgflvhykB4IA9HbapDcIVFzMag/e1d6nB8/eIKK1ojPy1hUNXC3kv9JrAh0TKft8dbTtgR68uhoVq0SkukKg+vL6eHpNG46c1AgugGfebou8dvgujWXL4jhyUnlj3d6YKDy9puP9dgePvSlJ14wpwwGEWikOUntk01pRiPJlHa3fl0giUYMTCYnqY9Qq2q31MdSfg/JgPoZa0NP0XbVKIIqQTFUjwvFoYkcpz94AISSyz77eX9XjQHUipY+v0nkt206Fgay7sI8l/r3UQtoH47BTiaA983YbDt+l0fxuoxph6YxAVXvvUbuGEZ9arjW9DU3I+oJA2Xh81Tbz+1G7NsEhAlA2B/rassXotUapEiSIY8gIy4MgwFVXXYUpU6agrq4O73vf+3DttdeC87AKQwiB+fPnY8KECairq8P06dPx6quv9vmx2VErXdVn/9jLq26jwjLdBNn+CfdJyn5657OUb9fedvz33tx3b0aheotAdYQIuaplmzUZAlb+6QoMWanwXVXaX9Xj7dI+rWpW9VPp2o0TKH3vxH8ix9HBa7UfX3kPy94gUML6qbbPzvYVJyC1fPfPvN1W9mMv7wscu9twTJ/chOmTm0CJTLXpn6fXtHX4o2H/rbfVF4hHz5jkUOBCGFKuo1bdARHC/PQXdHVeT3+6gltvvRX7778/mpqa0NTUhMMOOwyLFy82rw/UmDuYMGQiUTfeeCNuu+023Hnnndhvv/3w/PPP46yzzsLw4cNx0UUXAQAWLlyI733ve7jjjjuw11574brrrkNzczNee+01NDaWh6Q7QtkNYpXMyhXK+We165MSQKgXK4VjO7sP7fSRvglE5HW1/9i2a0nf2LP0P77VGnmoRfYBOdusFGHobBZaaQCpFqXQiB93fL/6s/WVZ40tttbnnxJivqtq2jcbfaWHqRZF6eh76ehaqLS9rp7BSsUUXYqw1uKDZREvbZ5Yi5VI1e3VsE6Hx9PF9StdwzZquV4GqiJ0xpThkefUitXdJyAaT/XCNqrBJm6UVD9em0hNm9xUkeTHEb9W+4tISRLUs++/qxYHu+yyC771rW9hjz32AADceeed+PjHP44XX3wR++23X6+OuUMVRAz2nIzC8ccfj7Fjx+L//u//zLJPfvKTqK+vx1133QUhBCZMmIB58+bhq1/9KgCgVCph7NixuPHGG3HeeefVtJ/W1lYMHz4c7657B01NklAQwWsiUQDkevqU6vcQClAHoqOKEes1M1hUM8xUg7keQPRalQZRO82j4cQeEHboW2sJ9PafWt2KY3cbjifelOscu9twcCHAOhgMOoLWZ+jjrVr5ZCJ46m9UfujqtIJNqro70HQ1MtFdMbFdFNDRuesNgXYcHZ2bnpCojmB/jGqDFKl0z1TbnkknR8lbpf30Bbr7wOyIQMVf16gUVZo2uQkOIeaeBIDmXeux/K18N4+sMmziZO9re4J+flBSTvodK/VnI/5cbm1txdhx47Bt2zYzZvQm9Jh0bf37kCU9c3oqCoar8//t0bGOGjUK3/72t3H22Wf3ypg71DFkIlFHHnkkbrvtNvz73//GXnvthZdffhlPP/00br75ZgDAqlWrsH79erS0tJj3ZDIZTJs2Dc8880y3v1BDoMoeempZnFwBIDxQ7+EgLIBw0wB1ASdVdXAwWyc0MqCQCtvXpIwiOhOPD6iuI/elSdLMycPMzuztNu9ab35fbq3rCI7mXeshBDPrCAiAEAiIqhGwip9PHacdZu8KAehs1qrJIo8Nn11pWVGLGLqzgbqWAbZSerTSoGrvt9KxVYtEdSV1ZB+D/X47EtdTdGs7gpffK2qZuT+U0LYSD7Wjh5XQFRuSWtfsqZlmrfeDjqrMnDwMj61uN/dm86RseM4Ex/I1xdo2aEFPojS2V/IEyHSigCRLFPJZzokDNkCRps7Qm2abra3R52kmk0Emk+nwvYwx/O53v0Mul8Nhhx3WZ2PuUMOQIVFf/epXsW3bNrz//e+H4zhgjOH666/HKaecAgBYv349AGDs2LGR940dOxarV6+uut1SqYRSqWT+jl9cgtAokYkoXnlImOwHPg/U/xzgDMvWEwBM/VSeNRqCY4NQOZhZ+9fRLCIkmdFESub7y7UnQIWyXyGPS38WQeVl8NjqdsyYMlxuW+9TRGmJIKSmUaW3hNUdRasAmYKcZqUgO9tvd5zL48fQ0bsIOi/zr5jerLDVzohVV17rCHG7DP15e5NI1QxCI9eeTQrKVtXHrf62I1Qd6Q9rIVBdvVL7InXblYhq/HnSPCnb8/0LISdR1O2Rfmgwwo6yEQIQJp/ZhDpykqmX28/CGr2n+gq9WZ03adKkyPJvfOMbmD9/fsX3/O1vf8Nhhx2GYrGIYcOG4YEHHsC+++6LZ555BkDXx9ztDUOGRN1zzz345S9/ibvvvhv77bcfXnrpJcybNw8TJkzAGWecYdbrqi7ohhtuwDXXXFPxNROFIhQANw944hcAFoDwAIT5WLK1CfqxO2tkO0AdLN1UB8BBy05Ayzj5miRT5Q+8mZOHgQhuCJI9GMibOnrz6nQerHSGHrx1SFoA8JgoI1Wu/kULS8yHpXJGy/zyyJvWYVE3kkKpVOkUT9c4BCHJ64QodKTZ0WH3Sr4xemZ+7G7hLFrGyjr32qpFMxZus3Po3VXz+opvLxRjh6nZWqJOldCT9CAl0e+CmQGmPK0K1KZH0uvJ7YTLKr1NEGJFmMoHK0HlHLpSVEC/1yZVXE0uKrX06Arfsc9ZV0hqrROGSt9Z/JxXw2Or2wHI58nMycMAQg3Z6UoUSgrFSUga9HHwAILQqpVrQxGyUk/+TvWVoIqThIpyulReT1wAAkQ+gxEjVMCAk6qeYM2aNZF0XkdRqL333hsvvfQStm7divvuuw9nnHEGVqxYYV7vjhZ3e8KQIVGXXXYZvva1r+Ezn/kMAOADH/gAVq9ejRtuuAFnnHEGxo0bB0BGpMaPH2/et2HDhjKmbOOKK67AJZdcYv5ubW3FpEmTyiNMQoDmN4H4BRC/JFNajgsQitlNm7GkdRQAYOkWGVFq2cnHsvdSWPZeCgDQvEsGzRPD9JygrtRJUTcy0+EghhzpAcB+iAkBcF6uSYo6+oavMQAOJUhRld+3ByrBJCkMSiFBjOu/CIVQx2lHoexbpLPSdT3gxkPRAgAI6dIs/qhdmyoSqemTm4yGS69nPkIH5KLaDV9tAIsPNnF9TlxXUS0qRSC/F70dWXwQbkuv5fPKLTAqkbOeuMZXIwt6m0xEH5YCoiqpjH//HT1PVUBV/m4TKSByHer+Z/F7Qb5mra8HfSHPr15PE3mg61FCuQ1Rdg6qrd+Zga19/errtNqgY4udO0ppC+qACIGZuzXVHDUyUWe5BfmPEDCur205PKywNJNDHYwLCPUYc8y9HGYcuCJM+hqyq/nkpMeJ6PgIl5Pp/gDthXSepn262q4WpNNpIyw/8MADsXLlSnz/+983OqiujrnbG4YMicrn86A0yvwdxzEWB1OmTMG4ceOwfPlyfPjDHwYAeJ6HFStW4MYbb6y63Wq5YMICQAgIKm8uEhRBS21m1gIhpN7JqXwKNXnSWP62TBm2TFACc8EBxkGYL/cnOEB8OE4K3EkB1uBChJADDGfqRqaRgYoJIB2rXDLvVWk7wn1JlvQNT6ghcvrzAOphov4XbgYgFIGQ3kg6xF1Jh1JNg1IpWqHTRHrNShWH8r1lbwUQFYPa27QrcOyBavrkpsjg251IT7WX9XdTad14VEq/VjHVJHjYKNV6PUXDM6UF/dWqJOU6HX8OG11N/8UJZ3xX+pWy71xE14+Tbft6LUOs4CKSgrG/f0IA4oTRKCvQah9PZ5WllYiS3F71KGm1df/4VmtFo0o7qmpfp0dOaoyQLK3Z6ewrnTFleKQ4pFYIgTClrwjDU9upBsr+Hsq+S50BgBWJExyEUJAYEedCwAVAghII8+R6pfZ++ASDx2xTCIFSqdTtMXd7w5AhUSeccAKuv/567Lrrrthvv/3w4osv4nvf+x7OPvtsAPLGmDdvHhYsWIA999wTe+65JxYsWID6+nqceuqpXd4fKW4DzanIDA9AAs88lQkPJBkhVGmLKOYM2wBBXRORiqNlJ0mWlr0DAAwtEzR54RBOWpIWJwVOHPPU1DNCHbGQ+2UgPABVZEik6kHdDICQaFG9HvOsD0QlcXJDrYRwM5IgqRkZDUogzDcEygcFYzLK5VA56LrqoUJjj3Zijch2yq8aMepKi5VaiIEmUNHZtToeFeHQgzCxjqpWzqGJHxdCmm1aAzq3DtA286sEovOwgsPMC2OaOsKZWjdMM0A/0LkAQ/l30Nk5qiRC70xvVgmaSFX6Hlk3thduVxEfPRmQuWz5Wmyg11YTZZV91rpAecZawyagtVYr1nJ+9TqamB21a1MZ8dTbdAgpsxNZsVrq+6ZPbsJTq1tN5OnY3YaDCYFpk5vM/WeTdyJEl4lUxNFbcDy+un+IwEDBoaRMMxr/6gV1zDXmUEdNWmV2gBA1WAoOWmwD8Yvm2U/8Qj9/mv7D17/+dcyZMweTJk1CW1sbfvOb3+Cpp57CkiVLen3MHaoYMiTqhz/8If7f//t/OP/887FhwwZMmDAB5513Hq6++mqzzuWXX45CoYDzzz8fW7ZswSGHHIJly5Z1z6/CSYEwD8RTNwihgKNCvVCzaSUsF9QFOAGo1ETplJ7GrNEFgEM90WWEatk7LFJNo/VQVMgb0zzABQcJpPYKzJNVfqrqD4JDuNkwBK9mSZpAkcALt+2mIdwMGE1FBp+UCGR0zcr3E8GBoIQ0dRT5kulHjjDUH0lrqSiKHSnQ0Omt+ADDKgxKXc2j2w9FrevQs2shZGWRTarsSF6cuMRtI4DyyIkNexC3Z4fyfMRXjglTVdpUVFoHIXnS2jQCJiOGhIISB1B6L/scdkY446SnkiFntTRUV76XrnpOVdp0pVSpjjyVnetOQAgiDvNO7PPHj7vSa5Vgi/G1FlATKdujSEdAwnWIuS4d6/MBiJAqre974s1tpkIuXjmnodN3ulqvIxy723B5TpgPMB8kKIKwALPGAGB+2bNre8EKZdWiSTiFMCQIUBo6LhBwAYfK55yr5BVUMBC/ZCbPtJQDICehIpWFyFSooO4D9GZ1Xq149913cdppp2HdunUYPnw49t9/fyxZsgTNzc0AennMHaIYMj5R/QXtybHx9VcwvD4LEhRNlZ1JfaloEFQqDtQBqAueaYBI1UFQ16TzZo1WJEyNBCIzTJIaJyVTZzwIn6IijHzJKJciOG5avh54AKVGvyT37UoS56QgqCvDzEERRN3ocFIQaWVP4KQixyJTkl5UA6WOA7YTfLYR3M2AcQHPGrkdSuAQKVbXItSI2FIRFQ4CJkQZkYrDLvfvSKdEIsvsNJ3cblw7Mn1yUyior4K4HsmOYtiHEh/gzTKjdXOiKSd9rVTR+gCIaioixI6GywiR59JJIeBK9FqDVspG3PE+jlqNSzsTjtpRmUrfWbgeKUs/Ax2c407QkQC6GkEGOhb/VzufZelia/14qtU+By5BeJ/rY1F6w7IJiH6fikxqvZedptSkrDPEq3+19pH4BRVll4R96eb6KlvYfmBPrOLXDFMkClD3LvPVZDovxwDIcyeoC5HKQKTq0draip13mdznPlE/HLEH6nroE1UQDF/e+nqfHeuOiCETiepvkMADmBrEKDUickARBkZNNArKIoB4BblOiqJlJx/ULwBBGPEQTgpgHogVCTECdgBggSRJgAwXCyHF5yqiJCNEsQE3UNGpVFZ+m4RAOGkga0U9CttkZE0fLxB6V1UqJyc0VCDqzyYEXHCZ10OUqMycPCyMrlA3JHmKQHGLQAGdRzYqGYSa19T/oSg7fBg6hFRMaTyl0iQE5QSreZcMQAiI1ohpcbOwI0Iw1WGVBmpBiNQzCS5n+IBFtD2A80hqLpKmA8LKTErl+baJqEWgBKGKDISEpzul9dVMSWslVtWW2xYJ5vgs+hSPTulIpoxWWhGxCsehUypAOaGqtH5cq6YjUrbAXB9r/LjsyKl93FxEyZNOodkEyv5fR5/09ScAlT53QKgT+RyPr9pWFmkiQkRE4jMnD8Pjb7Z3STyuof2k9ERHV91RHUlmAUBUJTF1sewd1qXtD2bYFi+ahAqQisRdklz1TKEOaEml7hDep8LNyPHASYMwT2pl+wGDRROVIIqERFUBYR6ISId/66o1xqLEx4oKkaBkKu5IrPxVismFrOwTHMLNgMb8muSKFpEBlyF3nVaLQxMfTbwK2+SxESrDzK4UzAsnLY9fpfjk7MqPRI6EkwJhJWv6Kz/X0k0OgKL6icKYdGpbBCiSo8+J0hZQ6sKh0Zl23NCu7PzbHzP2e1z/VMuAUq3tgxH8jxMg1A2jdWqg0Q/OiKaKWAO5TYY1ceKBtMDQVY80nD0SwbF0YybUyL2XwqwxoU9ZtCIN4aCnyawO6ROCgFcXmMcRr7jrjMjWEpWKr1Npu3EPKgCmMjGy7Qq6pniEyv7b1gNVEvebSr/I5ICUpVrjZF3EluuXNfnWeqXpk5sgRHVR91G7NlX8XiRBkyQ9Tujt7WjC07xrffiMUNfGY2+2ymufMxW51pEqK3yqQUj4OmcghJtriXLlc8etiRQLFGmoQ/NEaQ68/O2S8YvSpJiitvtuMMA+Tk1UjbZRo0rUUzhpeU7s5yXzwypczsOMRIIdEgmJqgauUlqURiIGJFBkwprR6dcAgJTa4ajBUzgp8MywyCCqo0sRKwG1LLr/MIRv/o4TN0JBggKIDyV+l2SG8AAiXQeeHgaRUpWH1FWpP6Wz4UFEl0P9gtmm9L2KQs9QdbRGpiBoWOLLPDmbVceptWLCzYC4aZnmtEgbodG0BBBaIegUnSZajIuKXd+7U5FUFZpkKt2ZoC6ItnawfGLk9xa+LSw8CCsftV7N3vbSTXXG9gKIVm8KQkMrjInRqk67XVCkvB8hMXFI9YhRHB0Roa5UpcVf6yyyZZMSuwehjgjYJFUL9StZJVRL61VKz+gIoe2rFkel9JsNrUGZPrnJED/dBineT86GXZl35KTGCInX2idNwCIdA5SHnCY68p4kkWcNIK99HQG2CYCeFGg07yLv/7DzAgcRhfD6tNL2sKKks0blgaK8z1vGUsAvgBAqA9RqO7PGeABnQyoFqCOfhJKywh1D3tX/NCiZ5yQIgUjVKRIlSRXRz+B+UsQ46AVNVCLe6XUkJKoKRLoeIpWNDobK1VZ4RZB0NowO2FVwAMB8SRq0/YEVmTEPPJsUATAdigFDcgxBY0HEmkD/r0kK9IyUEBCuHpZtm+BkSzJvTyjgpMNZuR3tUORncX5cxfMwa1ReDuRMp5pUBICFhA2BZ2ks8sb6QRMsoSNVTtoIpEGoidbZhEo/0PpzltsyngA8JD+CchCHQ5AOXJ+tVCxhvjwHKhoFhKRaf4ezxpQqDuJAzA7DGijlgChnuc271puog6PTf8oOI+BCCmBjZKBSk+aekK1aCZX+Ox7lsf+MtCtS1Y7yfdWbrEaMIKtEn+IfjwkAVgovvuWySFRsAwzh52A8JPg6CqrTkNMmNxmyr6NVlYi/hu5JOX1yE5jaZlzbFL8H4rqmzkTkQNRaJfyQoebRpKhiKWQzKeSBLIpBWJ2so1uEeQChmDWSDwlBevOkLITgeGy1TIm6xCLdgoPojxefrOoCD78URqoBeT64329mpLQX0nkdOfkn6B4SEtURdOREkQ/hcICnoVNbJq3HQ/2ACJTvk5uR0QIei0oAkb+FrYFR5AnMA1VVgcIiLqAxYwFFpAih4Ok6c6y0lANxc5F+fNARE8HLomeVptOzR7SqFCQkwXNUVaBOUemoS+DJcLYWtjtp+bkDXx534IOgAHjtivRlJSlLZUOfKvUZ+js90DKWGc2XSd8BgDo2nsoiUF4ALiURLyJJWmhIHoOSSZnq7Zn/BaCf0C07+VK/ZtLDihzrgoGgaK675okpeX6EkCkEnSrkHITKdR0nDepmwJ2UGuTl5rgIiU2cSHXWqLkS+eoIHVWzlZMWEok8Vnum27vm1uBtR6OqiYPL3lfhmLTuya5WtM9ZdDt2WlJZfaj0GiUUM3drQiBCAvuUlW62P4u9af2a9lzjQuDY3YaDQk2gBDcu5HbVrE7zPba6Hc2TsjU5kzfvkoHQEx4jAQDAdaq6XKOHDp4NBvreoU4kyjpYsXxNEc2TsoZMxV3wzfPQKiISevIJmMyEaRFjIvBJOm9HRkKiqoAERYCl1QPHshUAQDL1agAMbx7BwxtQ+D6ImwLSddbDyIr+aB0CDQdaQagUKRbbIPySHHdNKk7NFPVxaFsFvW8lchSEggRFFZ2ynHT1QzE249S/L2nfOfLZDYFSomahqwMFl6RJaX+M67rSXtlpPZFpkKTKRKbSUpvl56MEw3FBlXBz1miodjl9i+ZJWRmO90pA4IWfDwjJnSYgUIM9Z/BBkZLTcjiaUCobDMIDeR5UZFBeL1Z6UG1fvkdeN0s312N2U5shw+Z86winJlb2jFhHELTRKw9AfCloJ27GVAc6YXBHjYOhqFpqrao7xVciXUD3DUk1qNlOuUi8IyKkj1mjo5m//ZKetbMqH7Sjz6PTJtVcwqdNbsIK1WtSHpSs6jpq16aw/ZLWz+l0JUh56kdETR2la3i5/vGx1e2RSNTM3ZoAHphlRhulCzys68ZU4LIqkyh9HPHiEkB9EItQCS6j3eo90FpPwTFrVH7Qpva0viuiL6xGEE1aT0XLCQUJPHnedKU2YCalZZPkPkKvWBwkgaheR0KiqkBQN3zgMC98SOnoDw8ggqLUN1GqyJMHBD5E4EOkUqBOTg6s9s2qH2pqtiOykhwR9RqYH96k6gYVJBVWbek0niqxtQdYWyQqnJD4mCo8ezC29Ek2Zo1sl+0eTBgbxiNFOOpBRB0IixyS2MOUMB+CeYCbgUg3gKestJjgoH4egjMs26yd4vueOAG2lxRTM/jQqV5GpSiWrRNonkSgtQ52axaHEBC/hOVrJQlq2ck3JdDCScsUsKrYAQ8AD+Z3GhHwCsBxMGdYOxa3SgI7u3GjfI26UrhACHSRgRlUqSoi4Dw60Jq0KkJhP4CIlkYRNL1YfiRRE5GqFrWqFGWKg0fIGEKxd1z/DBr723pT7NeOqvPiAnWl4TafUw8iRhiMkGxpE1ZbI6NTc3FojZPW5c2YMhxuXMcIIb9zEvaf09HW5klZQ5w5CJ6I6fu0Tmq5lbKz03czpgwHp6lIqyP9PiG4iVA1T0xh2TqBlgkulq0nYVqPBxB6UmiTACVilxMkea2ZZxMhgGXxaqfwAajI1OAkUcvX+mF1Yhz6/rFlF9yX5JZ5AAvCiB2PFhYJJw04/dP2pVeq85J0Xq8jIVEdQLdnIToCQKg03OQEopSDKBVBUimZ8WIMwgtD66JUlBGpTExXoy0LqAPAB/GKMmqlcu2CcwjfA3EcmRp00uahrHUw5nfAzC5NWkiDUCmENAckyvoBLtk2IvKW2cO3AoKGaUjzXm5C97oUn/qF0M+KuliytQktO/mSTNhRMkWghPocJPDAUd/vM9Zqg6HGsndDzYidImmelDUhBYfowgK5rkxfpKAHjpYJqhKPIbSG0E738YeXIlRz6tdL/Zh+KJuZLQWghas8nAVr0PLBwFRmAhGCrAsIqEkbQ6bGRHk0RqeuCCER36547zhKEIkQVYou6fWATqJHgkdTz4AZpKi59qOCcfO7kMdghOlWVR4BBbPSbGX7VaeCKrd/xpUtgX6/AJ7qRHekI0+aTE2f3GTYGSVh81r9urYnEOZ+kiaPZddnTCZgo3lSFmB+WSPzGVOGY3mMjGnCry0Llr3D0LxLJjQL1sUgep+QJ4XE961JuEppy2OnofAaCCdWgwgzJw8L74sqE8dIxB6IkkL1vCN+2OYlTIm6lUlZgh0KCYmqBju0rR8OTthnjih9kigV1SosjAJxBuExEDdlPJ4AgLjpcPDzrVSgbwnT7TSfFm/ylCEhRuQIJgdrO2djIkzEGohhRalUBR8A4Ub1C7MbNwIkHSmpj4f7dfrNmPMp6Go+SSpGmKjK0o2Z0GyUSH8VnlE6jy3RKqK+RkcEqiOUa046MLvzi8rLS5miOqlocYLg5vzr6OTiwvjIJuYM2yB/sR74Oq0gnFQkBWxgP8zjD3UtdCc8uj11bVQSWmuRun6tGgHSqU65fSvKVOE4IiQn1u5GSsbC6JqwBuq4/qna8Wg3fQIVSYJuRFxO6MK/zScEEQKMC3lLOcS4VVfDzN1kP8Z4hah9nU2b3IQVb0oBua7oM7o/M0ETFa/N5WuKaJngoGU8kdFRO4piG/0qNO9aX0ag7GPVhSqPrW6PEgEgnCgilkq0I5pAJDolTyAFAhJubxDBnG+VBo10AbAnGNoIV4vlIynzopzgMEsaYXvrqQizqdjuYyTpvMGJhERVAfFLkX55ABBvjwLACMkliWIREiRMQZ2jHj5yHWGtR6gTETKadQBJtFSrErgMSFkDVJzgaYJl6570w1GnI81BW4O5homcqAeC0lgBsBoSp8sHSVp+CYlUPajXHjkukaozM+eZk4fh2N2yNTktDyVQvwBh2gApUqDTuVrLllbniwdY0jambBuLY/o0jdmNGwGRhcg0lM+ATZQgRk5i68QjOICIkCBTIakjSrEHrhbU28Jwk9wRqDwwW1EOAhgfNfsajmh4EBKmeMl5vCJPH6+teRKIuk7L40RIruz717q1ieDIuinVN00OqE9UiUI1T5TR584sNnTK74k3t5k2LuGBhvdjNb+z8Jz4xuMpPODaIyDx7Zp09DiYKKi5rW0yZaf17GeOOg7tOVdJ9znQiLR80hGmSp0B7BQsBcA4qJcD8QoQ6TqQIPo8BQ+MNjac7PaXJipJ5w1GJCSqCgjzZWNJHXanrtFEyYdOOEBECBQgB1DGAPgm3SeJUuxm41YagzNJqNwUiONIUqVE6qBFEOpCCEsbFX9wWbPByG2i/aH0665K5cUH8AqRjIi3DACUEPoiqQfS4ljD5eZJWXBSj6VvyRQXzwyTD+1NYeqhltLsoQrhpiHcrCGvAq7sW2iR1GXvOpg1smvnwFT+BSkIF6GZq3UtRNIVgsmXrO9TV4FpRPsfIuLZBCAqhLbTa9b7ytr9KLIYqVjSpK4C4UaMQNnrR6JP6vggwvQbgIglgm6Hk6KyEMCkNs05FOVpasAcl8N9OABIsQAEHmaN4RV9kGipHSi1w9bUdYb4hCESeRPSikGK1SXh0cJxk7LTOjKlSVy+JprKW/5WvqbeeTaWrScAHLTspDWZIkoYIgccI+26KldUJnbNu2SQQxrPvN0/bt6VoElu8671JoIfdW8Nj10XidBim9SLpTLhdci8iN7UNi+Vlcrbj7t7gq4j6Z0Xg+5TtOWFx9DUoPQ8ymRN9tFjMvqkCI4IPPm3jkgx6wYDpPA8lTK/axD7d51ac1MgmToQXdXHfKmzog5Idhh4trHs4RZ1HBaVH36ERGdNStgMziP+ULObNqsKO0UO3VQ0YmU9gKr5SgHoVluK7QUtExwE6WF9FmWb3bRZpnaV35bWqBFLE2daFGkHdksPUqnnX1kqJ05oUE587RSJsKpGQahpbGuistRV1ZmxEnh7MgAY4qW9jbSZZWTcE5BNuiu83/58NCghYmKrB1G9HVcOkkRbRwguiwJ4IPukMT9MualBVNipHPWZuqvta56UNedOUEemEkUYNdM99uzzrlsU2WSUCF6mjeouIn0+ARPdFI4bjTiLaJVuxMNOkWWRygBOekDax8zcranyuQNgyx8I8yQZhCJRQPnnQewZC0TF5Zxh2+ZNGHXYx/u8d949Y/dBfdyUuYvIc4ZPv/vPpHdeLyKJRFUBb90MjkaQuobIchH4EIWcSckJzowuSr6Rlc1MhA8ZXTKDiroRKMXSYYdgdvFFgDMsSX8Qx7mrwkEJAKgfkixbxKkiYgikc655j4iWMEuRsROZRcl1onoRAFjSOgpz6taFs3VGIjN34aTK3pMgimXvMEyf3HfnaEnrKFUAwGPO8vKamjWyPdIuJg6dEqtKoGxYBEVrgCIkRg0iRBGOSJTHtBSBNC9VERRz3erUn02ieBAZdHXkzNX7ImGjjkql5VJbFTt+Fr0nyiNmXmgWax+P0RZa586uftXH0M1qtOVrilLgLTggKCghxqGfEgIIVjWqpD9Pb0d0l26qUy2IorqhMlJdKW0XW4eoiraWcTri1X+wjYrLYEdWg6jMwZjnWrooowGzNKdET3ADH8L3IEr9o+8kDgHpzGeks20k6bxeRxKJikGz/o2P/wpNDfUg6SxIJmuIDC/kwLa8JwePTFam27R43NY16b+1oZvjmGgQcdNY2nRYp8dyXHo1dGVcZBDQkSXOyzUJJLRg0OvH0y16G3rmHy+Bj7tumyo8EvaTA4BFpUkVj3vm5GHgxNnuNE9DBS3jdCSBhlYX1gzW/g713xHEyUQMskpJgBZbZcobYUrM9I6Ml4xrg1UV7YEasOyqyK5AN5U1LvFaExbXCNoTmliqinDVJ0618OB1w8Moi17PMsA1g6s9sDoOWN1IiMww2ZhW3UNdaUmkReNciem14WalCJPdIkZQt+aIrxZa13xMqv0Q8fJRTZQmUbqptog9gwCAVG4d1R+IREgJDc2BK0waSam9LAIluxZEU9hawhAxVfaKZvLcmi9i9NEn9Xkk6t5J+/VKJOqkNa8mkaheRBKJqgKSykiTy8CDCDxFpupk9MmLVWNocThQFoUijoNlY44BALRsXoFlo6bVtP855N8QBfUwV2aQhEqhsmlmzAMgKBlxuyFsVDqI6woe08A4ok0JCZGZqVMqGywLjkWlSYbEhS7sKRCtEUtlgGoTMEITAjUIICs6SZRUQ6WA1hTNgKwjGsbMsQKBMlEoCIAz0FK7JFBqu5R58t5w02F7n3i6h/kgTsrSGXV/QOiIPEhbCjVZ0B8hEvWiYSqHMyzdMkxWRQZ1qsI0E2kKLQsErCpLHoBARqUWt+8MtAPyZuheRGL5W3m0jCcgqbpIqq6SI3kkpShCV3Nb8A/IdCAJSiBBURpFllpNSiveX6/iMa315XlMZaUWz5xPtX8KqbNUpMOQEB6Y4ojmXWTKVAvZ+wPx6FzLBCei84pH7YEYgTKRehqJdgqvGGpU9d9QUowKdiMJdhwkJKoDEDctZxyWTYEIPGlvoITltlO5LRwn6sbSBApAzQQKABaLvcIxRgBzxD8By5ZA3/hGn8WYjHbJ1SFYTh2XPM4l9QfiOOd1wImlXewHCQujXXPq1mFRYXL0oHxJ7kgqA+Fm0TwxVfkBWSncn6DfEKZPqg+WekC1B+2O0kOhM7dK0ymTUVuPR3hgNFDwtdZEVnAZImcul77zCYv4fCkdkSZ0UY2O9vmCRYYklm6U52f28K3lfmpNm+XnQYDZw7f2SBs1a3RBTmwCNWinGyIRqOZJWYBQs0yTR014BXVkayKISJNjIHTpNj081X1Za4sWbbMAu/UJUBbRgyp60KRkTv16LM6PQ+q918HrhqN50s41tafpTWgCZ2ilEDB2GjyQdiR+obzvKXWAQDYUF5Wq7iiVEgo3FU6eg/4x24RDzbjSbZAk8dTbSCh0FYjAjxAo/Tc4N5EhU6GnxeZqZvvYpOMjqbzewGKyDxb5U7CoNAmLixMlgdKzI8ZMRaBgUqPF823y+L2iZcPAjfBXlKR4VhRz4LlW8G2bwLe+B1HKY1FpEggPZCQqfhxiLyzyJpsUYFnptsLM3ZrMa9MmJ2HjwYblb5ew/K18h15INh5ftQ1PvLlNtpXRkSYNXc2nm13rNI+6H+SLHGAMi9t3rmrj0BdY/nYJy9cUsfztkkxNdRFxAgVIXdqS1lHmc2gCNbtpc9XtzJgyHDMnD0PzxBRaxgkT6Vq6qU5G79y0JJ8VTC6Xv5Uvu884cfDY6nYwVZHIhTT+tLF8rW/kAHpbRHAsey8VibRVg47iVKye5IEx+tV6MtNJwXExp26d3GVQ7H8CNTFlIk2h/k77dqhigaAkU7mBLwtpOIdwXOnrpjWlll+fPVEldQ3SRFnrW/spEkUokbqonvz0UFOVoByJJioGWxPVWJdRKSwnKiQv5AyB0RCcy3XdFJZPPK5fjnWO+KdpNRNJKVIHS7IfBgDMav+zsU6gSiS/iO2B2d7LWJL+IGa1/xlLhx1Svm3ybxkN6wTVtBYzpgzvki4kwdDBtMlNSIsApLBNDkbMC3VEekAJZNWb8EsAZ1hM9hm4A+5HNO+SkVqrYhsID8AzDRCZRhNJ0tHbWaML8n51UqaaUjhpqatSBJUyX5IY6nR4L+lJSjwS1TKWheTH1koqgbzINnZKcEybGCBM6QGhTjLwZPeCCoUClQhoX6FlnKio37P90kyaLiiCFttAvEJ51JzoVi/WxDNGouCmZc9N3wcoRWt7DqOPnNvnmqj73rc/GpyeTcxzjOGT/30l0UT1IpJ0XhWQVAY02yB1UTqao6sxdAqNqwqPdFam+AK/fCbZh1hM9gHSwOzgeandUnYINBtWFDojdzbHtIjtYZYvSX8QACoSKAA1ESig3P9GI6Hm2y/0YN2863CpyWOe6a9oDAmt6IXwPczmL4IXc1g24siBPPQ+RfNEleJRGqIlW5vQMk56L+nJhk5/60bbc4ZtUO2c0pJwpeq6NPnQNhC80g2nI1C6jN/hlpjfAdB5hEinP1vGibDIxUkDTkoKyqlFzuyqyz6GbsdkSGHc7gIIDYS9vCT7Sg+ldWLxylCbCIqYpYFgDCSVVn5+ktiKICe7UPQTqENAe2g5TmuMPCeoHQmJqgLt7SSKeVWJUahIknQqDQCMG3k/Y0n9gWjZvEKJHn0sGXEkWjavAK1vApxGAFEC1deQPlFJFGp7x/K38rKlCEtJg1HlsUR8LtsKCQegLmgqA1FoA/GcLhVXDDVIgqRFX1KzJPVp1bVm5anNaDSps6q6x1dtw8zdmvBEhdYxy9YJNE9MgbiQxNZoOx0TMau1SnLZeoJZY4KwRY+lk5LWJzxCpCq58fcWWsYJIChF7RYqETf1mWl+i5nVRVJ88UpODVKexjMvpbPha/0MQnuuiYo3707QcySaqCrghTx4vhW8bYskUFxWqQnOzY+5kbT2gzp4fM9PD8jxCt+X+XrHwczVD2HZqGng+VaIwO93ApVgx8Fjb7aCuxksX+tj2Tqh7gPVd5ExOaunrjX4cDSvXTSwBz2EUEuVa7VKxZax2jQ3oyJdwyBSWbSMk/YUumqyVpuJpRszWPaug2XrSVjlRqUjP5SpqyYgun9mb6NlPAmjnX4RxCtIchh4qlIwJEbEL0oLA6v5OmEehFeA8EsQxZz8KeXDbANTP9rvjzogqbSMQlEnfP5rQ+LAg/D6tw9ogsGFJBJVBTzfBsFckyIrm3lYppqCyf52fUmgZrX/Gc7InSGctBSWx14TmSyWjTgSs9r/DKorAwdgxr+jOpXvyLDTT0u3DMPsEa3SKsPLmeVs2ybjjda8dhGa1y7qN+3gjoAZU4aDMt/YJYAHquWTLAQwVZjckWk4Lv29OjLC7KiNjLDE6uD9U53WMkGmSo1buh1R0u70XgnUz4OUpG51MdkHc9hbQDor7TUAZVXgYUn6g5idf14uU+22BBAWDjHZiou4qWgVNmdS2qEyEzzfP61tknTe4ERCojqCm5buz9oTxLY28K3SWLsHXg2Y8ca9eHz3k7p0KEuHHYJZW/4MZ/hozCH/NjczSWfB01mjbaqmcUqQoKeYI/4JAJ2KxJdsbcIcsh68kANJpbDYmQoMC6OhCXnqfeg2N827ZLDs7RJaxlHT6Fk7eBNFNqQGq3OLAxKU0DLBKWvd0jJOyL6Q1JWkhgUqehNEolE9hfbJahmvjFTjBMrSQhE/Dzhp0PwWBBvWAIDR3y12pmJ22/NYUn+g+mAAlJRpSf2BmNX6rCy+yUidGqHUNIwPrQy0g7kT61DRf3YuusKuR9tISFSvI0nndQBTiaFnJtrGAFD+S2F7gCf2Pa32DXOGmasfwsw1j6B53dKa3yaKeTkwUS3YlelFLRJPkKAvsZjsA1AHc8i/MUf8U5L5GObUrcOcYRukWS3kNTqr/c/9fag7JJa/LSsldRpPtycxpEOvo3RBnbVjWb7WB/xipFl2y06+9P7yi0qw7YV6KCCiLZo9fGu3P0vLBBn9bxmvjtHXYnChhOHyb1rYBrL5bfDVr4L/90UEG9aYvqTN7z5mnq+GQFXA0qbDwi4NkbZcVprTNJm3LG1ieqkEOyaSSFRnUPl2E4FSqTsA5sZ7Yv+za97cjP/cA5JtMERo+fhZtR8LpSCOIzVOBJiT+adqeVH7JhIk6C6Oc14HaCoaaYh5FQpXiswp56CNI8BzSXq3rzFrVB4ikA+BZesEACfS+ifShBm64i5T07aXvZfCrJElWWWYbgAKYepWEyeiolBh54OeDSvNE1OAlwfVbXt0iyrmgRbbwDatBw88440XbfYO44u3fOzMmvdJ6hrks15p9wTnRgMFq+E8L+YUkeJhtCrVeVSvNyAjUT0UliMxQu5tJCSqGizxYBzC97tFoABIAtXNCo9lo6ZhVvufMadBkqfFztQuvT9Bgq7iuMwaWX3FGSAyKkVEIBwpHp9D15o+eYK6ECQT9uUj1OhMZq55BLxtixyQADOwPzH1jIH5YNsRaGEbBPMAjDDLlq0naBkn27AINyvPt1WZ1TJOgPhFY7XQEZZuGYaWnXzTY9BokFQ/OhJY6S1luNmTrgUyylSKVPvRUg68dTNY4EmvPusZDOqYbg36uU0cB83vPgZw1ulE9TjndQjuhBEmSCsb4jjhGMC5NF5WNjcAQsE575+2NokmanAiIVFVoFN3uiovErrtSXmrDhsrIXhXYTRPvWeGniBBVegm03OyayWZ0iXWdi9G3eRYcBC/BDiqbYZfMr3GTApa+asRmqRBeoLjMlL3IyvVKBZbxpYt4wkQeFi2PqX+9iCEJL3NE1Nhg95UFi1jWU3VecveS6FlrCJLQnlGIWwhVdbkXGH2iNYuNyMmvqp2U9ujxTaIQpskMSojQFIpCB9Rw2Pfk6QGiEyAm999rGJUanbxRZBUCrzoqx6pvhSSZ+uVsbKKhLkp48NnIl/aH0pFo/oDhPTccZzwhET1NhISVQWilAdPESkm960eYQpdjUDN+M89crvUwWNdCDMnSDAYQPwCREpFLYQAYTLNYkelEHCQoAhR9LFI7IU57O9W6sMxUSnuBfjDoRcM6OcZyjgus8ZEaETgAw0jMDu9EUvaxkj9UokChKBlnIoIBRzElam+lglqI1rDRF20TFDVvJaAvGLHAdUyykQaVd852eg61tC8m9GolrEMpCg1V7rfoSi0QZSKINQB1623KI0QKQGEaUvjnh+Sw9nFF2XKDoDISesXpLMQJWltwNu2yI/YODIkYr4yMA5807GCpFJAKiVNNrURs99/DZYTDD4kJKoatH2BXdqq0FUCdcxLPwMamgDOBsxHKkGCnoAXckAhJ9MmDSMBAMQrSJ2MAtEaFs4wh/9dLnRlKpBksiDZBjy596kDcfjbFQR1QbxcWDXslwAnhTn164GiTNktLoxXVhOyeo5nhmHWKAoUuEntCV2hR3UUKYxSPL5qG5p3rZfpsLdLRmNFS+2mobEhS8rmgABhdZ4SmwsnjVmjCzWlDQGAsECmJ0uyTQ5XE1hhkXGbHJEUIHyEzddZ2BSemHWk07goFYDAV/Y1DBRQ22XGykZYldcklY70HoWbAjWaKSvN108+UdShoD3URFGR1JL1NhIS1Rn0zYuukydAEihap3RQA+BymyDBsf+4q2vVowrHpVZBZBpUv7Gd5cAdhLoYEfhAioME1kzckb0mTVskVlCO/0U8NvnjvfipdkzMGbYBCLiJgJBUCtD6ISXoXlSaJLVsJdfYG1A/D0GocRKfPaIVoA6WbsyYHnstE1SfOerIps2q359uREzzKlojlNiaKIUND8zfptGv6gcoU761aQ9advIlMS/lIQo52eQ3lgEgbsoiVZY2ypH9QcGYsaIx/UzTWUmcfE8SJUU+OST5itrVqMmzikDp9CGoI3uo6kb0CsL3TESur9ErFgciSef1NoYULV27di0+97nPYfTo0aivr8eHPvQh/PWvfzWvCyEwf/58TJgwAXV1dZg+fTpeffXV7u/QuNbSbhEoQLYJ0GJyIyhPkKAPMOONezFz1f2Yufohs+zYf9wVim5rxKzWZzG7+KIUCavIgkjXQWSGAXVNof6lTmldBJdpvVQGIl0n36f6SgIAcdMmlZKg+5hTvx6klAMKrcarSLCw3F6n6HS6j6gefouLE2VDaBaaYi7Z2oSlG2WFntFE8UA2k2Y+mnfJoHlSFs27ZCSJ9vKgRWUqyZhaTzU/D2KCcyHMvogiGC07dZ7yIsyXn081TI+0W6GOTOHpZvCBH+rtUmkT8QSgCA81ESbetgVs0zppihl4sn2Km1JNhCWx0s9mScpCTyjipkCzDSYCxXOt4IWcTPX5Hni+DbyQ79L3mGD7wpAhUVu2bMERRxyBVCqFxYsX4x//+Ae++93vYsSIEWadhQsX4nvf+x5+9KMfYeXKlRg3bhyam5vR1tZNR1m7c3dPUMl3pBMc+4+7MP2Fn/Rsvwl2GMxc84gxBrQjPsRxunTdtWxeIQm/XbatI09OGLiOCImtZfrH3j9xU8a7J0H3MCe7VqbgVFSvKngQ1SIRijl16+TvHfRNW7ZOhO7ftgM5IcawM7IN+ztW7yOKTBvYxKoW6G3wGp+5ej1NoHQaT7VoAWREyUSOLJJlIqU8JhTnLBSwUxqm7ewUoi6SUMVHPR4faoSORPX0J0HvYsiQqBtvvBGTJk3C7bffjoMPPhi77bYbZsyYgd133x2AjELdfPPNuPLKKzF37lxMnToVd955J/L5PO6+++6u79CVg0hXB6FKsGdFNb8nUwearZd6qgQJOkDz2kWSqGQbJJHSy999DHDTNevw5rC/wxm5M8iInUHqGmVkwi+Bqv5kkbQdUCYcJiwACSzhMSBd/+saQBsaMdt7udufEQCOfeXnPXr/UAdhHniuVVaKGeNHbkrzTUTKOv/akqIWF3ETqWKBtBlgvvRnUlWYcoM83C7CSJMWlmsxODiT14PeluCYNaa6dqhlJ1+mHovtMsqjo1BW9ZuJQtnERl3vwg+tB+CmjDicuCl5DaazFSezESIVS9eJYl4aHOfbTEZCRr3SYSsw6xj6GloT1dOfBL2LIXNGf//73+PAAw/Epz71Key888748Ic/jJ/9LCQYq1atwvr169HS0mKWZTIZTJs2Dc8880zXd2jl4juc+dUALXQU8UGoA+jZDvf7py9VgqGJ5rWLzEOdpFIgdQ0yHZd/HrSuoWp7oZbNKyJ/z2F/DwcHAGB+9HpVg6NNkIgeXAmVKZxSO8S2DeBtm+UKds9J1ci1u5i28tZISn3aylt3mEjtcalVgPJJsrsklOmCbM2lJfA2y0nHUQjdYBiAbObrF6Uw3ctj6caM1Mel6yBcy3DV2qdJ8XHpT0WCkvzxS2a9WWNKmD18a3mDYseVzYG1qNtxKkd4TKpNepBJwXgx+tktOxojoVApPp1mNuJz3RePKy2VivTxghTu80JOidUVUdUWB9oSIdsAWtfY4XlNsH1jyAjL//vf/+LWW2/FJZdcgq9//ev4y1/+ggsvvBCZTAann3461q9fDwAYO3Zs5H1jx47F6tWrq263VCqhVApnSK2t0mGZ51ohHFlRx0rdr754Yt/TMHPV/RBuGoRSHPvKz8EDH0995DwAcjAQjIMVPfi5AohDkW5qwGOHfxnTVt6KFQd9sdv7TrB9Y+bqh4BsgxTgBr4RvwJygNUNfzVmvHGvJOduGsJNYVbrs1jadBhm558H5wzOcKULKbTKAVpvy0nJVFJJtRxKWZVWdtRDuzsDQCpMj2hT2NnFFzHLk/vsqtidpqKPqhUHfRHTVt6KaStvBXEoCKV48kPn4thXft5t/eJghUnhqWgIOFcaISf07QLk36rizrYbkAtqtxsgPIg0GCZCTuR4tlG2ewlKEGkXpKgmeLqHHWeAk5LVg8yDKOaU3oiD5rkkYE5aWiJQF7ObNmNJ6yi5G68g9VCViJNJv6lUm1kuP7tMPdsRqdCIU0fo9KRUb0dv1/gBuumoqFxFmIhuTFzMywiZ5R+IwIMAILx+muj2RjouEZb3OoYMieKc48ADD8SCBQsAAB/+8Ifx6quv4tZbb8Xpp59u1iOx2ZYQomyZjRtuuAHXXHNN2XJdYcQDH4JxTH/hJ4b4dBUi8EHcdGiXAODIP34fgnHwtCv/ZwzEofjz7K+ZdRIClQAAZq66HyTbAFHM4bEpc81y/YAHIAeUwIeAnC3b5oIz3rhXrq/6ghGlIRGcYVb7n8G1maxXlASrkDMtNAgPIKD+DzxwxkBd1TIkKIE4qdAjyE3JKAXnkYjCHPZ38EIOLNcG4RUxY93dkXuhI8x4TaXiG6SIfdrKW0FTUrhOYsRq+gs/AYdK+1EHIvDw5IfO7eLZHnzQBErY0RYgTC8B4fdaLW2n++jVABKUILJpGfUR3AjQ7W2LeGsXi6wRv2CMKQnU80/17xO0JAsQ3CyEm8WsMSUIxwVtaw3JCxBGltTkIB7VjIrIlTVBIRe1ptHRI98zzYUlAVURKVjkSkWWwko91XPQTckJtbaT0Kk7HQErFcGL/eRYTghoD802aSfRyARdx5AhUePHj8e+++4bWbbPPvvgvvvuAwCMGzcOALB+/XqMHz/erLNhw4ay6JSNK664Apdccon5u7W1FZMmTYJQBIpQCuJQCFb5oX/Ikm9FiE9F6PBvqQAe+OBeAOJQPH3URR2/L8EOgxmv3R0OhG407aUjPDo1YYTCu+wBvm2TqlrKqr5evMyd2TRVtXQcJJWWpMdUdnGwtq3yDXpflAJ+CeB5sFyrrLJLpWTkQUeqmA+44SBLh40IU4FqoBGBbwYi4/pMa1cSCMaAUtGKOtkiXzmAEuqA+wEE4xCMm3t2e4jmmuhLNeKpz4ct9tZCcJ3SE7xm4kqUt5RI10dE5svWCcweXopqpCzSI7/zsGrQEPzAg9BRUkJBfJXiU21jAEj7DPvzUEdWd2rSEvjln9+KuopS0ZAwnZYDEBolG18nBkEtW4NMXUiqDHGTFXs8V5BeUbZvlCJhev/cK4IVCzWd1wTbJ4aMJuqII47Aa6+9Fln273//G5MnTwYATJkyBePGjcPy5cvN657nYcWKFTj88MOrbjeTyaCpqSnyAwCsJMkO9wOwogdWLPcCOezx73TaEPLYv98JQFdy+AhyRfOwT5AAkJEmPXDY+gz9sCZuCrRxBJyRO2MO+TeIl5M/qQxo4wjpQ5bJgrhp0PqoPmPGf+6pMLv3ygcXyIiH/ClAWFVHopCLFkVoAqUrnOyUEaGAm5EkzGqNIcXlTaryT/YcO/bvdxpbBgCVhedaS0Ud0JRrnZN0mNICIlEa7gfgVorl6Odu6cK3MfiwdNghWDrsENUyR0daohogYgwzIYmPFoRbrXkWi71q2t/i9p1B/ALAPCxbH4tc6Eq8oCiJmVc014HwPXn9KOsBnVrTom9RzEmC5uWAYhvQthFi2wYgvzXU39mkTG/HK0qncv26dg9XVZ+aQOltGHsNE62iRjMWaVjMubzWvaK8J5SOSvi+ueZNFEpHV3UqT2kQNWnvDxCH9spPgt7FkDmjF198MZ577jksWLAAr7/+Ou6++2789Kc/xQUXyPYRhBDMmzcPCxYswAMPPIC///3vOPPMM1FfX49TT+26S7IWdHM/MBfeocsXmtcPe/w7oJ2Uth77j7tMqXiY3qAIiiUwz8dhj3+ny8eVYPvCzFX3m4EIQFQgq/+2IkiiVABv2wq2bZMhLzpCtbTpMCypP9C8dcZrd0fSD/Ht8kLOCJUjg4ublm0t3DBVRLMNctAoFRFsWg+2ZQN4rk0ONoW2UHvDA4AHYYTLTYE2NMEZuTPosBGgDU2g9Y2ykjCTBQIPvJDDsf+4C2zT+sgh6jQkHTYCJJMFrWsArWuIpnMUBJfRJyeblmRL3bOCyQjMUCdSAEDTWUmSlV8SydRFqjENmbXL961m0KbfXg1Ysm1ExZ56RsNktVaRmq2C1R5F+TipfnOa9BitUsRxPIz0hAQpdBEXxXxImNxU6A9le0ZBpbY1wabUVOORTF1ZP71IY/kgJHpQlXki8GTGwJpAc68IXszj8b1PlWnDwJPvY7zfin90A+Ke/iToXQwZEnXQQQfhgQcewK9//WtMnToV3/zmN3HzzTfjs5/9rFnn8ssvx7x583D++efjwAMPxNq1a7Fs2TI0NnavekLwcJZBHAonlcKhyxfiiKduAgBwdTPa5CoCXUXD1AOBM9CUi+eaLwcAOOn+KY1NMDgx4417w4ofNbCYwUJHpWIQXlESioYmE3kQgW/E2zYe3/vUcDBVqcLIttXsWzAWGmM6DmhDI2hDI0gqI3/qGkCHjzZtMRD44Lk2sG2bwNsloePbNhpiw3Ot4Ns2mVm8NJqtk9upb5QDmxroSLZBteXgERI1c9X9EKUCHt/z01g+flYYcfJ9U+IvU+OypxpNZ0EVodAidDtCsD0QKVLXoM5dKHo2UT/qqD55sgjGrjqz/Z+Oc17v8XEsaRsjrQ8IBUmHWiM7Oibs9JtFjswxqZRZSLC8aPQIkBEkfZ3YxCuTDa9FwGybZFVvPB5LXZroFg/TgjrdbFU1Ro5fkSO9nac+cp7RxD4x9Qx5bwUeaLr/FDGJT9TgxJAhUQBw/PHH429/+xuKxSL++c9/4txzo6JRQgjmz5+PdevWoVgsYsWKFZg6tXxwqRVBQUaMBOMmPeBYJoTPzrgUAKqGc7mqqrFTIVqf4dZlyiqOEuw4mLnmEfmLFVEwKTDLh0YWJaRA65uk+V8xH5IuweUA05FPjTVwicCPaD90pVEkpcfUoFYqSm0TdUFUVZXcHjeNWWXrEQ+8bSt4u5WSQWhyqPVQCEqSOGWy0o1aR6oQinWfmHoGABlBE17RVO/NeO3ucOav0in2BEdXbZUJrytgKHtNLSb7AIFnoo3CSYNnGkI7AyAkm/r8OinTIBhARWLeHQhVhSeclBG+E6s6NAJL/yZKBWkboFPHvg87UiV83yw3KVtARYJyYRSOOuY6FbFUn46MiZLUKmlNoI4w6WulYmoUKh1sSS5o2q1op2Ffgwl2XCSjeBX4bTkE6ZRVySFvRuo44IwZAqVx8KML8JePfr1sO+GNGr3h/nj4l/vw6BMMZjSvXQSks6HzsRKrkkydmn07MrVAHQChLgSUmlYTyLfJCExDY8UolMbje35aWiEYQoaoRiQAQJUOSz0NROCZiJWc8UuxsT3YRFybVWqQ+vJ9JCXNDQVnKg2YDnUquppKVzulZVRME6iZqx+S1YDprIzUlQqWz5oX2beNeNQ4JFjlg9xs72UsSX+whm9q8EF/10vSHwSKwBxqpUDtijmr0oxkKUQqA3AXhDKgc67ZKYTjmhQuyWTDFJlO6SF89kVMWq3XjR2GIkahjYEfdbnX6UHGpDxC2TzodKFevywVyDkcxwHqm2QKDohomPQklvsBRNEzKWC7QAEAuBdUvI4IpQhyxX7XRPVoG3xIxU2GBBISVQXae0ZftIRSM0OxL2RWlL2Y7LDusa/8HEG+AJKVMyltk5DMWhI0r1sapu502bXWI2ktBxAODGqg4JyZ9UWpKEW62YYyLygbM9c8YtLIJpXHGQR3IikWo7fS/kNWg1cSlCAKbQjathryYzQmWpzupqVWyQJJS70TqWsI92tHKaz9a0PQ5nVLjT8VyTYAWvBrxPZWNZZthqsIlH1/xQcbE73SVg7d9/0cVFicHyfNOIHQaoK66vxy8FwrKHWwuDQpNFTtDWiHcsFBGkaCqnYzopgD/ND12/7OiKpmA3S6Mbz2NExVnSL3er1QsxdGXY0JMmfyc3EGnmsLhe6Mhz0G9X4dakiRruLUhQiapBjyxBjAGATjZWm7Y/9xF5ghW73ASmuAnNP00OIgGYJ6HQktrQK7mkGLUzXsyh9CKf7y0a8jMyLUXbFSyTy0NYECULHCL8GOg5aNT5rKNNPzSzsvq0EPCJutAjBkg+dDDRJv3yoHq84QMSYMq+kieiSdQqRW01ZNjgCASf0T37YJbNsmmSKhVGpylNjbGT4aJFsPIBr5IbpM3YouyGOh5hgemzIXzWsXyQiUXaFlVd6Z6BzkYByPFJiPmHbL7EiIIyc4dtSBvbfWVARuD1jkT8Eif4rUQxEKnq4DSWXCSE2pgFntfwbbtqnmCr3OoAXmoK4x0TTp2UzWkHaSzhrDSyNvKOQi1hpG0K2q4MqqRot5SaIz4QRDeEXwfBtEMWcmFTzfJi0HSiXzrOWBD17IGX2TLQTXk2LuBeCKLOkf5vnhOoyZ6KcuBnpi39Ow4qAvyvd1wcg0wfaHhERVAXVTYRSqwqxW4y8f/boRmh/x1E048o/flzYGnqzs0JYG3A/A/P4xZUsw+NC8dhEEY1g25piQhFgkgTiOKgOXvboirSwqRHBsMXg1lKUgNFFy03Kgs9uw6Nk750o7FZ1dm0GxrgF02Ag4jSNkBZ8W/7rKnFFrrOxB0Gp7pNMqj02Zi8cmfxwz/nMPuBokbbGxKOYiZeemylVV4RGHgqZcUEXezL4Yj6Q9IuJyNYD6G9+Fv/FdANi+yBTbA4sL47GkbQwWeZOjPeA6a1zcDSxpHYUl20bIaJTuoedK/zHS0KSuCaVXK+Qgcq1huq2kCBOlsrhB6aBMoYPWMOXbZBUpAJptgPB9sE3rJaEv5BQh80zFqvEJU5kDms5CcG6q7DS5IpSCeb7UvfpSK6iJFGfyXtBk/dkZl+IPh16AaStvLZNxCM4jk+q+BKGkV366ghtuuAEHHXQQGhsbsfPOO+PEE08ssxoSQmD+/PmYMGEC6urqMH36dLz66qu9+dEHNRISVQXxEK09S+HWg/ngRxeAM4YgV8Sfpl8M5vlgvvwJCiU8fdRFCAolBIWSqcpLsOOBF/MQxZxM5yGMNpFYeoW3bQHbskHOsC0tiZ2OI+ksSKauw16Ms1qflb/EolHSpym03Yg0YA28sErPqg6kjSNAh4+W/+sKKGY11Fb6FO3tI3wVdVBkT+RajZB4Sf2BIG4aLZtXSAsDHa1CGGEwmhblrWYsGKB0iUpPRhuaZKPudDZSpGHfqxr24CkYB025mPHa3eCFnPTS2h6h/IxE4GHZqGmyyrEPsKRtDISbgUjVySKEzDCQVCZ6HHFS7sRa1tip5cCLeJbpKJQIfBmFzbUaQqZTu1ovF49O+q2t8FvzAGShUFAsGcd7u4rPTuHZEStb57rioC/iyD9+Hwc9fF142F4AwQX6A5T2QgPiLpjcAsCKFStwwQUX4LnnnsPy5csRBAFaWlqQy4WR8IULF+J73/sefvSjH2HlypUYN24cmpub0dbW1tunYFAiIVFVIASPEic/kDlwddMd8OC1AGQkivsB/jT9Yvk+dQM+13y5mbU8O+PSshlMgh0Lj+9+Eh6b/HFV0eZjadNhKs0hBwwt9o54RgFhWktX7Gk9larKM2TJwuz88yDprIzSxFtmuGlTAQXOpFGnFpHrtJ4mbHr/gKqya5ORgXybEbpDk0EtQrciUTqqxlT1HjjDrNZnwYs5Y6QYIXlctu6QPkCh0Fiu5yttV1qSucaRIalURqO2mFynbypFpIgTJa+mSe12BlO5WalirpchUlnZzkX30DPVgCwk60BYGaqqQG2CpUm0JkvhdeZIYt62xUQyAYTXpn4+Fz2TqtMRIq81Z3z5DGFSr8UJV7zqc+UJV0VeP/KP3ze/f+S++QDk89+ty2B7xZIlS3DmmWdiv/32wwc/+EHcfvvteOutt/DXv/4VgIxC3Xzzzbjyyisxd+5cTJ06FXfeeSfy+TzuvvvuAT76/kFCoqqAEBqKDv0A3OTKA/z1xKvx1xOvNuvabV+ea7688zYwCXZYCK8oCQWAZSOOlPYArZuMTqSSSNV2L6f1jXK9Yk4OBoVybZQkOq2q2k+nDKNpspBUKd8orVmyrBW0a7PRsRRzYXl64IPWN8nqO03sUinjWSR8aW3A27ZKgXm2HiSTlfqULRvkMpXKMQRRHWcYKVNES2ttLDJofJD0Z1NFIDQdupoDMM29tVbKDLZeEY/vfSpYrr3DiN5QhjNyJ2MT0LL16b7dmbJZIDyQbuciWj0nlFllGGH05PWRazWaKVjrR7R09gQDurBApgl1oY9O7zrZtCFJtnzC1tHp9FtcpsG9wHSpqFQExDzfFBy98Mn5Zvlfpl/YBye0HL3pE9Xa2hr5KZVKNR3Dtm3bAACjRklN3KpVq7B+/Xq0tLSYdTKZDKZNm4Znnnmml8/A4ERSndcBpOAwjEa9ePK1A31ICYY4Ht/z05G/g03rjYnfzFX3h/3GgHCGbv1OMo0galCye4RpzPjPPeDKh8kZubPRDJmBCgCoA5qpA8+1gsSjXvCN1QJv3wqKEWq/WRMlI45j0pE8L0P2NJ0NPX/clHQ3z6uIlJuW+1YEietGs24atEGmGMEZkG0AHaZIXTEnI0/pbDRaoQZWAKpRsmy8rAs4NJGqNhjazb6P/OP3wR0KUchh5qr7I82dtwcsYntgTurvkmD2kj9UNSzZKttlzSEbJUFOK9LrpqU+qaT60AHm+zQVc5ZJpu3OH5kAWP9r0s5KJal7ghsxWDW6Juu7D4oeHOVkHxRLkSo9bWOjZRrVqqh1xKmSlU1/oFcsDtT7J02aFFn+jW98A/Pnz+/wvUIIXHLJJTjyyCON/+L69dJiI96fduzYsVi9enWPjnWoICFRVfCX6Rdi2pMyfMv9AC995rpO3pEgQddR3LQt/MNNy7L+OGyiwzloXQO4HoSsVE3zuqUQbqzNUEOTfH9JpUWUbQAvKEPMQs6UvetBjTaNAnEccISC7oh2S1UVsi3vgbdvlUSncYSptqJNo5To3OptV8iB26lJqAhbQyOIm5aEzpW2D7aDO61riLirE91X100BqZQUGpdKFVMzgIweOOlURDBMKEVQKIE6Dp4+6iIc/dwtcLuoFRkKaN61Hti8M2gpV0a2+wqiVJBFEsYHTLVfcayUsop82u1bygoSLAf/CGyTTCUgj1vOBMVoVCUoevL6SMFkFRyli2LK2kDECFQ1U1KvtYaq2CGANWvWmD6xgIwedYYvfelLeOWVV/D00+VRTUKignUhRNmy7RUJiaqCDz1yI3hWPuz7q/oiwY6HuO2FNBQMe9bp/425pSZHbgpAKur7Y+mfTEQr8CXpAaxoDje9z0TgGz8mUGqiAqBOxPuJpLOgjSMiFV46Gmbabrhpk8KRpCgF2jhSRo9yreBtW8Jj175UsdYggsmUoyjmjF8UUZEpYqd3AKnvKuSkUNiJVknZwnJNoKjjgNm6GABHPfNDcMbBi3nMeONe41m1PWD5W3nMqVdNoamjQpp9DM7lbpSGjeoqUDcd6t+0jQYQeo4pc9DQC60gf7cjj6pYAUCZ/klfE6bDhF9+LWhfJ/0atciXbWVDKI1Mmg9Z8i3QlAvuOAgG0KbGTuv3ZBsA0NTUFCFRneHLX/4yfv/73+MPf/gDdtllF7N83LhxAGREavz48Wb5hg0byqJT2yu2v+lXL8F2q33l9G8N8NEk2F4RfygazyjrR9sSRAwyAflaxhJFK4sAnRaRpeOFaOWTFn3r1AmiFgQAEOl5Zn6kGNsQPL2OOa6wGbJJHWqRejVhM5fHZyqrOA81NDo1qM5JRwJpe/s2eTIO1IxVjCzoBuJmAC0VZIuZ7QlCMqeeDr5dQqyPnjGRtTVtjtK+Wd+dTBMrUm5624WpP1Eqhn5PXHo5BUVZ+eznCmBFr6wzhF1Jbad4tVQDsFKAFimzockV8/2IFra/0ePKPPXTFQgh8KUvfQn3338/nnjiCUyZMiXy+pQpUzBu3DgsX77cLPM8DytWrMDhhx/eK597sCOJRFUBD5TPU2KQmaAPkWqowxFP3YQ/Tb9YDiA6/aGE07rvl4bg3BAKWz81c80j0h2cUnAVVRJ51QBYtcAwKTEnTJUYh3TAEvOqKIEmaNoUUXlCiVJRWhjoaJGbMn3KQKkRpOvWL8IaDOPpGl7My5mc1eKDUKpSdQhTlm4aIq/cqD0WrTiMIVKVZ5Wwc8oqkgmTEgp8IJUue30oY3FhPI5Lr8Yitkef7mfm6ofw2OSPyz8sd3JeyMkqQd+PVp7aEwR93Wl38ZI0zNRXt3BT4MW88d6ziwQiPmAVmgHbpJoVPXDOQSkFR2D+TtVnI35PNO3iI/fNByt6oCkXPgDRJm0xDnr4OhQ2tcLNpvtf4tELmih08f0XXHAB7r77bjz00ENobGw0Gqjhw4ejrq4OhBDMmzcPCxYswJ577ok999wTCxYsQH19PU499dSeHesQQUKiOkCig0rQr1CVVDoiZITj9mxdpeaM4zlnaNm8AtCpN2WWaYtzBecqIhWaG0b6kun/jU2BjCRRbQJaCo9BN3wVgR8Oemo9YuluiHZit/62ReFEfV5w5VStTBpBs4acgVriY906RpNAu2IPocmmMVuM6VyIQyMiYsE4GHxwxuDWZVS0T1o7NK9b2meeSgOBRd7kPt3+sf+4C5rKiMAL02+lIhD4sjJTVW4Km0irogOp0cvBb8vDyYb6Ni0c1w7iOnIYFEuRvpM0FXWqt0XiNphVyQfAECo7esU5B2EcjEkdFUdg3ku9AG62CX8/c2Hvn8RBiltvvRUAMH369Mjy22+/HWeeeSYA4PLLL0ehUMD555+PLVu24JBDDsGyZcvQ2NiIHQEJiaqCv33y/6G+89USJOgRtFZH/SGjP7YBpfbSgU7JpCIRIuH7kugwBpFvNdsVpaIkBTaR0W0zfMvc0tKTEFXVh5ISn3MGWt8kq+mUhxNX0aD49qSDelj9Z/cAtJcb7ZNXBLHWk1EqGka2vGLo4u57IZkDAMcidCrqoQdR4lDTZFULj21iZSPSYDYr9Vki8PHYdkSg+hrHvPQzgDp4Yv+zZeuehiZj0yHJccqYahJKI7IsSeblNcz9wOiZiENN25V4eo46TqQhMGccnMnKO0CSHaBcxyrJmDouq4Ec5xzcyjZIch3IaBXnRu/ipGQFoK7MO+DBaxHkiiAORb4nJ7ALiIvou7uNrkCIzoV0hBDMnz+/0+q+3sJdd92F2267DatWrcKzzz6LyZMn4+abb8aUKVPw8Y9/vF+OwUZCohIkGGBw9XBfPn4WWrY+DeJw8Hwx1ofOEsHaBAVSkGsTImNIqJelLK0VlJjXiuroxsBaZC6KOQjfA+VcisVzrdL40O6pp5zDO/hQkvxADpamtQtnUrxOo1EqICp4twXy2gGd+wEcXUVEZSSOIAVwLgfjWPSBOFQ2d0ZImAxh1KRLC5KLHrgXgHpFHPvKz/HE/md3+J3tKJi55hHwLRsQ5GW61oiyVfQHKTeMUnpFsMAPLSsACM8qlFBtYKSPmFUgwRmIR+GkVWWp8vZifqygp2iRJS9sBC8Yh3BkpR2Pv0e9Hmi9lOV+T9MpcM/qCqAmIwDAdDSMcbjZNJxsGsShOPjRBXK/2bSp8KP9JPnoTWH5UMWtt96Kq6++GvPmzcP1118Ppr6vESNG4Oabbx4QEjW0z2iCBNsBIg/+SjofrVHSzYIhLQdofaP0Y1LmhDpVVYa4a7n5Xw4oOtqj3cJFISeNEfOtYJvWyVYbuteZOU4eCsjjx6zF64EvheO6D54y6tSRKvNAt/yEtLhca8FItgG0cQRIOisJlBbMq+iUJoTaFDdeqk4dR/bYU3qZCDHVKT6d3vED2evSMt88dPnCSJuPHQkz/nOPsRTQBOTpoy6Sra1UdVyQL+KJqWcAkB5oj+9+Eh6bdHzYvkc1AJYEXBEri4wLzkHSWeMgThwKzlg5gUIo8AYAJ+2a3qRBrmgIFPcCBIoQ6/cERQ/cMt5kRQ9+rhghUDa5CvfHwH3fWCSkG+vLmtIzL4Cf7x/7iATAD3/4Q/zsZz/DlVdeCceKsh944IH429/+NiDHlESiEiQYIBz86AKItIs/z/4ajnrmh7JUf9c9JTlIZ8MKJU0yGpqUa7d0g6Z1DTLqpHUo1JFExSI1BIhWtakUYPh3tK+ZCMIWHbyQA7FSZja0YzQxESELlt5KqIpBkm0IW32o18J1AJLWRophyse0n6EOKGfS/dy0CPHkOUnBGG3K44o1HFbpUg6YgZqmo332mDWY6mjIjDfuBR02AsubL8dhj3+n8hc4CHDEUzfByabxh0Mv6NXtzlx1Px7TxrBKUjVt5a044qmbECjC6iKMopZBC8cB402mCbB8nYb2Bpyb6jrqu/Ba8xCMw61LS2F3TuniHArmBXDU92f8nwBAraPJF1OEzM8VjKs5oHsvupHogT2Jibjda6+xYgm+Q1G/80ikGurgteXAFOF++bMLkG9vA278RVdPcZchCVzPWvgQp8r3NUSwatUqfPjDHy5bnslkIv38+hMJiUqQYABBKMWhyxfCGT1cuosHHuBIrxzbvZlQClovhZpabM3atirvHC4jM9agpLcNIBoB0H/He9Mh6rejYUdlbNh9yChCCyIt+hbckZYI2vyTc3l8SvNkytcB41EV2X4QamJotl5F4WSVFnXV9jiDYNRoRfRgaKq31IDNGSt7LfIZ/WgbEO4FcAIPopjDzDWPAHu9v+I5GGgc8dRNYL4Ux+sKz97AnOxaLI65tx/93C1SP6Tc3qXvkl92LjUe3/0kzFx1f6SdkAh8cw0AkC2MvCJ421aUtrbLSFSRmlSeHSE0KV/VegsAuOcbUqHXt6tPg6IniVk6dDPXqBa1NfeO44Aqo1kOH6UtbSg01mPYxJ0GrJF8bzqWD1VMmTIFL730EiZPjhZLLF68GPvuu++AHFNCohIkGAAc9vh3wNXArx9stEGa30nvpKhPDgBZ6VTXAOI4sqnvtk3h64EvBdc0JAnU7oXHQjE3AEOgTO8xS5ekYYt6qwmzZUqMgXC9bxVtYspOINtghOSAGrx0bzRAWhdoLZYmccq5XW+LKx2VGTCVQznVwnnqgDhhuw8nnYq4k+vPUcsAosXN2LIFTjaHJz90ble/2n7BAQ9eC9aQNaJ56jj4yH3zIz3duovFxYnl+xrRGCFN+v9qfUKPfu4WsGyYeiZ1DSYaBajroKgiB+r69tryVoUli/S7E4yDQuqwNMmyCY9g6hrnPLxOiiVwJqvtAKmjooqI6IKDSv3zZHECB02lQBwKx5E6vNLW9iFPQoY6LrvsMlxwwQUoFosQQuAvf/kLfv3rX+OGG27A//7v/w7IMSUkKkGCAYDW4gjG8Vzz5Zj+wk9MBCdiiAmYWTwv5uCoJr7GgNAWewNK52QNDpxBlELCBITibNtDKd60t0PSFHtde1AZghZP/QU+RK41dE5Xtg3SiFOm7wTnMhVJKYhTDM02rWo+oYhZxBvItIgJI2a67Uelz1UJtkAZAAJfNq8luQKOfu6WXk+V9RQHPXwdAi+Aj6JVleabNFdv468nXo1DlkjDYR21c7JpCMZxyJJvqbRZ0Rg5rjzhKvzh0Asw/YWfKG2SB9dYaMhIEWcMQWsr3Po6wE0h1ZCF15ZHqj6L4mbZCikoeqBWIYD2iLL1UjrSFGkqnEIoHlcpQKr0bxyAo37Xy/X7jAEn43DSLjh8wIckU5SC+z4KG7Zg359ejFRDHV7+7II+Od/VQCk156Mn2xjKOOussxAEAS6//HLk83mceuqpmDhxIr7//e/jM5/5zIAcU0Kihih2uep0EIdizTV3dOl99Z8+AQDAfIbS/Yv64MgSdIZDlnwLXLWh0A9x0wzVdh2HEpNbM3heyIHn2ozbc+ijlJZ95Ap5K9UWprG0EFYwbpq1aoLBvQAcctbvZNOmdNsW0ZptxLRHNpGydVM6bSNUs2Qe+KBU2RToyFpdQ8SFXQSe/Bx29E2RQJTCz+nYJM1qPqyPw0Qu0q75/HrgjbT6iKcQLXI4WFs9HfzoAvgFqVv764lX44AHr4WTkjqivoySBFZlHGccxAsidgKCc3B1Pg96+Do42TR4Y0NE7E8cCqeuXhlbFk3LI7ceRrhtg3s+mIomphrqzHGYqlKL1GtfKDetPaOi2h/9OrUmAXo5jW0DiBJuxmTDYppKgRVLEYF7f2JHT+cFQYBf/epXOOGEE3Duuedi48aN4Jxj5513HtDjSkjUIMbeP7gAr114i/l74hWngTMhb/A6t8sEavQFJyPHxIA8ABKEMF44bR6EjiQUPbilgnTMtnxspHO5jMAQnfriDEIFXsLoD5WpLzsFolyYnWwapa1tcLOZyIzeyWQi14KZ6Stjw0pRHFt7FPfwEZSZYzYaGBqaK4YkSZI7xyp119ouonujlaJNZDUpEqxkjkNGB6TzdEV7A4R6GurQMgPGeKWe/bt+32C7V7RPkUa8Dcl+/3cpXj2n94Xw3AvMvj7826vx1xOvxv6/+JoUaWtSbpERB2HUijMG1iZTdxlIewTbRdzuDOG15StGDKPXn19WQGAfp74uIu83BqvR5XEiXek60dvVxJqpJsb73HYR/vmF73dw1noXOzqJcl0XX/ziF/HPf/4TADBmzJgBPiKJhEQNUkz6xpkopSh2X3gugmKA1VffDuYxMF8+pDjvejdRoQgUZ/3RiTRBRwjUwOEwbiqswDlEqRi6Owd+qBtBSlakcS6XaauDTFamvgIffnsOQaFkBiUdUcmMHAavNQ+acuGmXfi5Aty6DJy6egC+IidhtIk60rzS0Q24Y81cg0IJ1HHgZNNmAGVFz7g7O27Y4kVfadRNSZG6SvsRR0YjNFhRWjRoTYqJJOkohyph159JRgbccHD0/YixpuAchCkPKOv47QFSR6Uq9UrTy6ulAAcb9vjuefKXEY340G+ugteag5vNwMmm8eLJ1/Z4+y+efC32/sEFMnXXUId9f3oxAoQDiE1G9Hllng8nLdsX6RYqehAPckUw3zeVd/n1m0LBuiIrbp26xh0HzA9MJCyazuXmNeYH4ACIFf3isahRGdnW0VgVkSIOjVTuhbYLHKxoF1kM7Sq3oYpDDjkEL774YpmwfCCRkKhego4SrVv4y17ZXlAIIBiFn/Ox9oa7AADrvyubo46+4GRsuOnXNW9r9AUnAwD84uBMUexIOGTJt6Tmxsy8c+BsFFyHGssA4YeaDlHIAW4KTrZBkSVPRXiknYEmItwLUNrSBsE5vNa8HFBU9RJxZFm3W5eJpCJIKgUSeCaaA8AQJ+LIyBf3ijK64Aeyk70W9GoSVdcgU4x+YGRJNOWG0SfOQNw04KZkFZ8StNuCbw274s8WusfTicz3QVgYMeNMGm1qwsWsVJyt4TKfy4kOnPa+9e+cDR0Ctdt1Z8NpqgPzA7x6zncw9Q5ZPcb8wOjDeoLmtYsQvLcWT1pR8f3+71I4FinScOvS5hrSZFxHp9x6ZU2QL4KmXRS3tqF11TpQhyK/KQcnFTbI1eSHUAqqvs8Aoc2Bfs0Qa0v/ZqfmJAFnIA6BYCLyvzxGdT0osmR/Hr0dCsDPlSC4MJmAgYjoENILZptk6EaiAOD888/HV77yFbz99ts44IAD0NDQEHl9//337/djSkhUL2HtDXdh3FdOxS5XnY63r+uZZ8jEK04DYxyCEXAmMO4rp2L9d+/GThd+Rj3cuxZJEkzIKJbHwDyO4JElPTq+BN3DwY8uALcG69KWNgDAszMuxbSVt0qyodJyLNduDfwlU4FE6xqMcaHWlQQF2WPMa5NNWrlFPPTsnSrPHABhxEb5RUnzwQJoShoYCs7h1tdBBJ5JlemqNc4YHFW1BAAs14YgVwy3rSJEkfSYVSWno0g2yoTqOorghTot7gfwWnMmHWlHwOwWIPb7dTSqknWDhk2k7GV6O2yQaqNsOGlJaHXq/+9nLsQ+t10EP1csi7J1FTNXPwRkGyJVih/+7dVgVpsVynQExzXRRI2gWJLGln4AOqIRhQ1b4OeKcLNpFDe1ori1gFTWRSrrgjgEzFPpXJ+DOkxGLK0AUMSl3DwLY95gMVcOSYQk0XLTqcj6miTp99r/62uj1FoA8+2ejAKCMTCHoD+xo6fzAODTn5beZRdeeKFZRgiBEAKEEONg3p9ISFQ3sdOFn8F7P/iN+XvUFz4FlpZpip5AR7QAgDgEFLJzxU4XfsYQIcEFms78BAgl2Pbz+zvc3qgvfEql8eQ2EwI1MDh0+UIIhxqDQJNyUoP7ioO+iGP/fqcxv7QjRtKNe5MU347UWpI8fCUmFpyjuKkVXlvOPOilqWAqTI0pHYpOkwXFEsTGzeZ34kjxrjkm6oDlC+Y92hGcOBSOEvl6W9vldmyRvA94CNMkbl0G8KOtXeLpQVu8HqZ0LANMlTbU0S5JcpQ+xQsipMnepj53lUCccp2UJnp6OXEoXBVVGcyoNDAGBRlhfOPyn3Vrm81rF6kCB4blY2cCAPb/xdfAOYfHYu7eaRVldLiKgAaR74L5AVzVNqW0tV2SqoYsWFHr24j5DE4a5nnlF4NIdEpGkVTDYX09OVHiwzxWRooBHdkSketNXwOV1qXW9REUAzNxJQ7g1rmJJGKAsGrVqoE+hDIkJKobGPeVU0GyboRIbb7td9j54lMQFAPsfPEpXUq32dAzsbA6Cir0HJgHBAcH8zlQw428+bbfYeS5J5ntDj97bqfEK0HfwCYkWqdjRwp0+4wjnroJmVHDAQDetjapQ1IDjlPIg/sB/FwBfq6I+p1HglBqhLl6PzSVkh3qmexI7+48EsShkfJ/r5gzgxFNu2FLjWwaIvDgteXKfJbs3nOcMbNfwbiZ31MWRp6CQincbipljC+NV48VLYIRy9NQIM/D9i325wusaEeclHHOTXTEhtFSQRHKePpGpfGclAuhnLGHwsydewz/+J+bzN8TrzgNfGS2jEBp3ZRgvENyNf2FnyCgFLSuAXSErHz64K++Di9fiIjtw0pGH77S4Gmy6zbURdqqcCrTr76q/LQRFAM4qfD7lak5AuExMMhIm4z+CElwUm6ou4pZelBHRLYTRzxyZa/DGYejyJPUBGbAfR/ZkTIlCMiq5oEiUEkkCoNKC6WRkKgaMP7yz4H5DBtu+rXUF2V1E8xo6HDDTb/GqC98Cm6di4lXnAaadrpcQQfYzsnacVnArVPlxVyAUoJSqwe/GKD+0ycgf8/DHW6PMw7m6QdfZQfqBH0HbWkQqH5j+Q1bwIp+xVQSoBy2Ax/cU53tOYefKyKlzBWDgkyRsKJndFBMRZOAsDks5xyUSl8dTYiMRkhph/QMPoUseCqQjtSKxNjVSADgwIVwQmJj65XCazYAt1IulSwSNGGKHI9NmHTUTP0d5GUvPZ1aE4ybfmVuNl3WZ417PoTjwKnweJNkz2oDoqINdlTKtPtQlY1DAZOvPQurr74dgJQWTL72rMjr77vh81J0rTRB1XDUMz8Ep1RdL9tQTx0c9Jfr4MGqkLO1R9pbCYDwAwiLJIXXY8qkZGFtx22oQ7qhiFJrCZwJUIcYzZGTdhRBY2CpMCrEfA5a9MGtVJqcXAoV0SImWq+3SSiB4AKEEpPak8cXdffX96KTTYOmUyoKma1agbfLVad3/sX0InR0rKfbGMr4xS86lsqcfnr/fidAQqI6xaRvnGmKYkdfcHIoRIR8II2+4GRsuuW3Zv2gGMBJO3K24nU9P2vPFPQDRebjte6Aw61zwXwuZ0UAMnOP69TziTpErU/RdOYn0HrHA10+tgS1YZ/bLoJgHP+64Ic44MFrwR2KoOAZp2U/V4Kf80HTDt686ueR99WPGw2eTaOwYYtJvdmDFiAjLzqVl1u/GUDUx0c43IjKA88H9wOUtrSrwSFM6/n5oiRfup+YL4mb7h+n+4QF1sCoBx03mzFNaAGYKJJgskaPKmKiozsAQHlIhHQVlB2J02TGjqppCC8Uv9ukjFtEUC4LTUq5IWgMNJ0ypM6JiYftKBog4xQ07cJJuQPW4qMrYH75c0YTKkBGpjyH1KTV9FpzpoFvZuQweO9tAIBIZIb7AZgXmImAo/oeap0aALS9vRWNu4wATblINWTNck2ac+s2qe0wQ5ZonatSufoac83zj/mWFYfPwIvCpPoEF2CcgTBijkVHizgToeZJSRo4Qm8ofUzGydyR/encbBqZEcOqOrID6LH2NUHXcdFFF0X+9n0f+Xwe6XQa9fX1A0KihjYt7QdQh8gfStTsiFivVYoiKBG3CvvqyrhaMPqCky3BpCRJ+uFhSBMXCAqBCXlrZOYe18FnoCB6lqcsDna6cGDcXXckfPBX0tNHd5hnfmC0JJyJilFKwWTUSf9oywE7WsP9AL7SK3mtOUOEmDXTF5wbUgUobxutV9HbUekVpgZNrV+xBxdbZK2PTVoolEwky45QaI2WjlBw+3r2om08uPUDRO8nmyBpewMbVPfL41z6BtltPygFMeeMdWhVENdTaWgNz4zX7q7hmx5YcCbKUkw7X3wKACk96NK2VKWmviaCQglufUiCIho5Sy+ko1tOSpLPYmvJkGFNrrgfqBQzQ3FrAaXWUoQcAYqspaNpK+6xyPenJ5cy2sTNMuZzE4XqamVlRBsXK3AYLCCUyGu7Rz/9K4bvbWzZsiXy097ejtdeew1HHnkkfv3r7kloeoohS6JuuOEGEEIwb948s0wIgfnz52PChAmoq6vD9OnT8eqrr/ZoPzqVlhqWRirrwknJh7O2MqAOxchzTzLrt9/1IIpbivDbfXg5D4IJjPrCp7q0T78YwC8GhiyFg5F8WMnKFWrIkZNyIpqCOLb87F4AMA86rgTqCZHqfex50xdDkavq9K59mwLVqR4IH9B73vRFvP+WLwMAHBXd0T+lrW0obmpFUCwhyBXhteWRW7cJ7WvfQ35DK0pb28CKvin55h4z/lO6Si802CzBzxVQ2tqmtrsNxU1t8lrwA7MvvzUvo09q/UAROUB6+wRFD6Ut7ShtaQ8/lyZhOv1W9ODni+a9WpRum3TqwdqOJNkDmX0e9H7MAB7z/TGVf4oAyn350l3a6HfCaI0mioKHP2Z7VkpRu2QPdgSFoIyQb7jp19j54lPAfI61N9xVc9SEK6IcFEvw2vIovLfVpJO5rys0JXliPoeX883zyWsron1dK1rf3gbBBNrfaUNpq7xOvLY8Slva5T78AKXWkrJx4QgKgSmaAUIS4+d82HYE3GPmRzA5mQz0c1It93O+2U5I1sOolP05bfIHIFKJqScUgwkkEi3r/s/2hj333BPf+ta3yqJU/YUhmc5buXIlfvrTn5Z5QixcuBDf+973cMcdd2CvvfbCddddh+bmZrz22mtobGzs1r78ds/MjjS00SVxCIJCAOIQDDvtRLTf9SAAIH/Pw+AnHY+6kdlKm6yKTbf8FuO+cqrq98TMMhsyWhXe+PKm6HzGlLv798jMPQ6cCRAqo2U69J2g9yDJgY9Ug+xP5+cKKpXEyqI8GjTlYv9ffA2OmvELzpVZpiTspa3t4Fw2Ui1s3QKvNQ8AZqbPir5J6RBGADAzCKQasiqVKNOHQcE3Ql0AoGndrNWLRGxk1Z5nolzEcUw1FQBQLVDXfj0OBRRx0+vZwmINPbDZs30KVw7EnjJLdMKoGgUi2i4NxkJypCNf8f3E/yacgyJVZtoYT1Vqc8h0UwPi7UMGIyp50+104WcggEgFcWfY7/8uhRgxDNz3kaqvQ2bEMARFD21vbTCaO30N23pQP+ejbkw9Sq0l5DcWQNPSBsDL+cC7uUhBAvcDeIocgRI1KdSkJxR9Cyu65jgEzAuvG1s7pf/WaUFqZQrC5yQHrxAv0KSdMBJJmQvGIejgikIl6BiO4+Cdd94ZkH0PORLV3t6Oz372s/jZz36G6667ziwXQuDmm2/GlVdeiblz5wIA7rzzTowdOxZ33303zjvvvC7tp+F/TkGD46KUdZUGSab0NIHa6cLPgKZohNDYRKp47yNwTzsxUqJbC7ShprYmiEOTqtEXnCyjUIzC91in4nIAcFIOOLONCEmij+ojMD+A4/lh5Eml1wLmGW3G+Ms/h/8s/CXef8uXwdMpEGVoKVhIRBzrby0iD4oBCCXS14lJAhUUFOlIO+AeQ6lV9SWrK8lZOhPINKXBfG7S0rbjN1RvYKmVKgB5GDdpbaqoSZuTcsERGB2WTuHpYTUoeEZjwlQKx/au0noo5lvO4yqCFE3j+IDSZ+m0nSZ0OioCRCMIGvF7Tq/r1LtwsmnT4sZ+TQ/KbkMWqYY6+XowNAsxukKe9v3pxfL6rK+Tou5sBq4qYvBb85C96ija121DfmPeRMAplZNIv90HZwJ1I7NSNuBZRIgLFDbmUTemXl2XJWNdINPFwqyr/ycRIiT98mziDUiZhU2MTGEDE3Bi/k1ym9bfehJspbb0ZECngBmAzCCL2iTVecDvf//7yN9CCKxbtw4/+tGPcMQRRwzIMdVEojQp6Qpuu+22PmkMeMEFF+CjH/0oZs6cGSFRq1atwvr169HS0mKWZTIZTJs2Dc8880yXSZRgAnDkbEWn1XSFHBCSmeFny3OjZ0c2KdGESq8TR9OZnwAgyc2Wn92LnS78DJwUxfrv3o3Nt/2uw+OLR6hqAVH6LkBqrLprw7AjQn+HHdlDTL3jcpQUsQkKPpyUFJLrCIqe7Xoq1Rv/DjWp0F47UoAuU2JezkeptYSUqgxNNaQsk0mtw+Mgliu9k3IMuQqKAdLDUrJaKRZ50QQpFSEwWr+kBhwW+k3Z5IMhMO1VzEDEpVCbIiRCenAynzX+t2WgqQXvcnkp2sNPp+DikaZYqTtJK3dsS3APSDKmx1PdLsQmd1pkHBRLUtRfP7QHnc6wx3fPA0u5yjpA+oo5ynS18J40xiSUori1gPZ3ZDrO931kR2bltapsV5jPkN8oI6TMZ8g0ZUAcgtK2EtrfaTeR72JryVTe6WeRYASgJEKeNDTRstfXFYb6mQsATpqaaJVg4XY4E9EsgjUxpQiJlEkpQ7aNgR+YScRgQeJYDpx44omRvwkh2GmnnXDsscfiu9/97oAcU00k6sEHH8TJJ5+MurraNAJ333032tvbe51E/eY3v8ELL7yAlStXlr22fv16AMDYsWMjy8eOHYvVq1dX3WapVELJanba2tpqfpeDhFXV4XFTRmvW4WG+nXuyWq7h1I8hd/fvUf/pE+Q6dS5GfeFTEWKkCRRnAo6KAnRl9tgdeDnfVOkNtsaqgxmjLzgZPhcdRuz2/sEFCBwKVvRNex2pFwqiD26HwMt5ZrYOaBG1b8TeOnolZ/UMXs5DUAhAKVGzeEcVGpSMvs23DAHdOlfqPWhY1cQ8Bq/dNwORm3WNPw9xCDylJXHSjhxE1HsEF6BpJ6zKq0tbInGhohSSvAQF30QpZGQpPD92KTlXTumEygE7FN1LvZPfmlNVX8qqQZHLoOBFtmVHwbjR0wCphmzEz0inbRylDTMu7pQiHo0CAK81L1NZMVH19gg/5yGg4Rfltebg50qgDjWaTgAobCmC+QyEhq7i+Y15U43svevBVVF7rvRKxCGS2DsE+U0FOCkHNG3ZI4AaUk8VMQojU7FUq7U+s+4dMym0lsW3wTzAraNmfZ36k5F5bhl0Rp+Jg45EOU7EL6272xjK4INw3Ko5nfeDH/ygZlJ07733dvuAqmHNmjW46KKLsGzZMmSz1R9shMRCucoOvhpuuOEGXHPNNRVfs8PA8saMltHq5XoGTNQNzoq6jFvNnKwHjzlO5V3ipCgyTf3vRcM8Dn7sDNAnHu/3fQ8ljDz3JCBN4aoIUMOpH4ObdVHcWjS2EuO+ciqKwzNh1ZBKSXg530SCdKl2pdk2ZxzED+C1Fow+RJMcGWWSDaedlAMKWaWpBwPOZRRKkzKj83CI0hnJ9Z2Ug5KKAmgiFhQDU5ggGEfgUBNtdVLlM1ZZih4SHq2xoqAIqw45HMexRMJhio55gYpaBGHftWxGicYZmFXVpyNLWshs90DTgx6hFMIPlDiemeIKarWloSk5QwlyBbPMa8uZ5U42bfRjhFNQpuwe0jIaQ9LbN4nSZAcAchvycFLUeNFpLahODXvtPtw6F5mmjIlKEYcgOzKL1jVtSDdQJQbn8IsB6kZmUZd2UNhSNB5NKZWeZT4HVwSMUpmaYz4DVZEhLZtIpeXfvi+Uk7+UVAgmn506pRc+g6N/a2i/qHg1oPafCv2jeFn0sjPUnfnpLp3zBN3Htddei0svvRT19fWR5YVCAd/+9rdx9dVX9/sx1RTbe/LJJzFq1KiaN7p48WJMnDix2wdVCX/961+xYcMGHHDAAXBdF67rYsWKFfjBD34A13VNBEpHpDQ2bNhQFp2yccUVV2Dbtm3mZ82aNQAqz2yclBPRWgw77UQrJB29OTNzj0Pu7t+r9IwcQBtO/VjZ/utGZuGknS6XIncX2oCOeQy0A3KZAKZXoR5oRn3hU3Cz0i0505Qx6zGfo7StJEu2PW6IT6m1JKNIqpLJ6Ee8sKxfw88V4eU8eO0+2t/NoW1du1rfM2XkzJczaC3a1SRNOzkDMjLq5Xz4Od8QKG69riuhdHSLeUySNVUWrqucAjURkFEF33JsDhAUfPO6XMbCaI92l+bClJrryJXt1M7VMj9fMFWLxvbAtyN5UcG7jo55OQ/FrQX4OS/iIm1sDWLnVxNAk7ZRtgh6v0AYmaIpd9BFIXoTI889CcPPnoudLvyMqQJue6cdpdYSClvk55Yp3gBbV7eaayzTlDYTPlmVJ8mMtH8Jn4vphjSoQ+REoBCYZ6T97DRpQDURiEeeKFUaVJWq1n9Lzzz5Xet+dramzYb9d1CQ96C+jqmaZFTy2NLH8eo536npfNJ0/6TIkuo84JprrkF7e3vZ8nw+XzUY0teo6YxOmzYNrls7Mz/yyCORyWQ6X7ELmDFjBv72t7/hpZdeMj8HHnggPvvZz+Kll17C+973PowbNw7Lly837/E8DytWrMDhhx9edbuZTAZNTU2RH6DcN0bfdBrDz55rZjdu1oWTdgzxSmVdlO5fhPpPnxC5wXN3h6K4bT+/X6VSZM5fC8r7EnqAZB5HwWPIBYO/8mig4MwJtXXaTsLuQZi1Ki/f+8FvzOxY+3sFxQClbaVI+bb0/WIqnRqm+Ly2oiFEWiQeFGQVU2FLUZGzsGxbEzutk9KEhvmqt6Iq69ZEiVtRUB2d0kROEzCtqQJCzUm4XQ4v58HPeREX/aDgm89h/q9QDKE9qpgpT+emilFHtmxH92jZOZMpp2JgCKkhjipFqT8z85l5L/d9BLmCNI/MFSSJYzGvKi7b6TA/6mDupCVRTjc1QHhFtGx9uusX0CDHtp/fLwm0uo70eWU+R3FL0VTgCcaR35RH27p2OGmpsctvLJjzzZlA27p2MI+bNDZX119+Yz6svItdHyT2PAVgIomcC/OjJyCcS2uX+HvsyBK3SLteX+9fpxi1vkr7SsX9tfQ93BXkfto/2tKERFXPLL388stdCvT0JrpVncc5x+uvv44NGzaU5SiPPvroXjmwOBobGzF16tTIsoaGBowePdosnzdvHhYsWIA999wTe+65JxYsWID6+nqcemrXozwdCfh0dRQgHw5u1g0HOc6BCnlnwYRxFrf71wXFAG7WxS5Xnd7nDricCbCAg4kABcbhcYGGPt3j0AVbvAxtJx2P9LAU4MiZrB4k3CyJRKIAu+dhaHsRn3nHU7qANEUMlJbESTsmxSFd77lJpehZv9Q+cRURI2BMvaa27aQdEErk4ONxc30BMAMlTTtGlKsjR1rrF2quZHosPcyxiCCHWyeUfoUjYNy48+v0iV35JBSxDIpe2NYDHLBOg/FsskTsgCL8KgWq03hArPQ9TQEV9dPRVSflqJ59ISFjkFWLjhJQM9UXD1BieHW/6lJ8zjhSDVnTqkSUtq+oVNw3ziYaFPJa3/jaZmRHZs35DgoB2ta1m2sl1ZCWJDsVbsdusWKngwkNJRDhZCC85mzY14Em+bIRe7RZtE47at88J0UNCatobxGzRrDB9PbU9SaPvYgP/urrePmzCzo9n0k6r+8xcuRIEEJACMFee+0VIVKMMbS3t+MLX/jCgBxbl0nUc889h1NPPRWrV6+GEFEWTwgBG0BflcsvvxyFQgHnn38+tmzZgkMOOQTLli3rlkeUdM0l5sGgc+d6IHV07l7f5A5F8d5HzPuzJx1v2hjYhm+AnAVm5h4HpipYdCSrryEJlIDHBRxCACSdyDtC8d5HwD4+B/5Di42hqq6US7d7kUrMTbf8VlVXyu/RSTkInCCSMpPkWz7MtSWFrrYrbSuZB3i6IWUMVaU1grIt8JgRgKeHpaxBIxwEtX2AJkxANKqqRd9w5DbRIDUqOtIWOpRLYbomj6msa4onhOXboyGjsNYgl9Yl7EGY0kk7UnXCwkFWi9G1aFn3ONMRBn3v6PfpZTqtaY7BkZFglmbG4VwXUhBKAC98n+0TpasNqfYJ4vK8u9lMaN65dQNmtN6Dx/fcfgbLYaedCJ4KbQEA+Z0VtxTh5X20BxzD8j7qRmSMybBMJ+vUXJjCIw5B2qpc1t8jEEaX9KRAG1xW0gbqSKqGbYbJmIwy0nQYMQQPdXiSaEV1UMakkws4upF7hcgTwIGYBlCT/8EE7Tre020MRdx8880QQuDss8/GNddcg+HDh5vX0uk0dtttNxx22GEDcmxdJlFf+MIXcOCBB+LRRx/F+PHjOxRt9zWeeuqpyN+EEMyfPx/z58/vle0TRwqKNUmKRxJa73gATWd+AtzjoGnZk455DLm7f29m64AcYPRsT0ejZGWI7aDb94SGPvE4vOnHAgAcAkWkEnQEnb7Ss/f6T58gXbtbXaQaUhEi5WZd1I+pQ35jwZAYL6dEucZ9WaB47+LIPvxigNy7OQAwpeGANDGU7VxCksRst+ZCYITguhrNWBqo1IWefUsRObVm+cIcl6P8zsLKKWEGJq70WMQhcFSaj0UqC4Uy7LRIjx5A09H0jQ1NkuyIhVAieXvbpn+kWqy3TSGX6b91n8rStrDSVp8fKReWETAnDXDKTf884jgRETGhFG698kjKFeS+tmwBTQ85S71OoYkOdQgCTxh9FADUOQRMyOvMSTlw0qHFgG4zowdk5snIKPND5yabKOvUnSZFnHG4addcG/p7ijuIx1PDJs3sBZHt6nWlrYaKOoHH0tMczOJE8W2HpM9qdlwsYdI3zkR+Y76ipYyusN5W4/nuKXZkn6gzzjgDADBlyhQcfvjhSKnCkMGALj8Z/vOf/+Dee+/FHnvs0RfHM2iQrk8h5bqd+jW13vGAiVLolEv9p0+QszblnxMXL2bmHgekdAqBGMI18YrTUGwtYdMtv0Vx+rFwCJB68gnzvty0Y1BgAmOefqrbnyv7VLi9JJXXOdjiZQDkd5ZqSINDDhqFLUU0jK2P2B6sW/hL7Hbd2ca5WXDZTNVJU2N4KZYtj2yfs7ASSjApRgdg9CeaGMVn2DZBAuTgAcD0RjQd7GMPTb0+0QJrpXtxs650blbpSEAONJqk2YSGW3ouO36q04taCGwPWjLlpgY6K50ojykUvfPIIBpWNNopHupQE/PSBE+ndgBJpLhFEHQETK/vNEQfe/FzJDhH4AcmEuEOsohEb0CnP/MbC2CBTO3XpSVZIkwgpb4frooYNAnW6VINQ951oYFjpdQsgmxXj9qpPZP+jaW/9brRfoqS6FErDRg15hRgTIDwkKzp93MuDMES1v0R7kuRKEqM1kswjlTWRSrrYqcLP2MsaHTXCEZDC4cE/YNp06aZ3wuFAnw/aoarNc39iS6TqEMOOQSvv/76dk+itv7wLnjDOk8D1n/6BPhpBw6LPgDk4BkSK2LN4gCAUAHCOPycbMPhpBwl3vXhzGlBWqUL/WOORYEJ83dPCFSC7kOnsqR4WUYW/ZwfcakHgPymAlrfbouUjmvECZSNupFZ5DfmI7NzvyhF4X6JgZKQTOj/OQCiSYQ1KJgZfQXNifYJ0wRHp910pFWn04yQ3opc2QRKWPuFOS+WTsHngDXA2PdA2iHG88f2WbOjUNwaCLWGyhxLTFcFFpaqy21x41cFqGiiIm6AbLOjvac0edUeVYD0wjLfmanmC3D0c7fgD4deUPU7HErQurnNBR8OIRjmhpEmJ+2oyFJY5OCkacQvTE8OAJgCGaA8oq6/v3h6j3u6gbDW2Alw8AiJ1+/XeihdjUdSbmhzUYHAxAmUiTpR7SnFjLicGoKuJiGWbqrUWoiQPADY7bqzkVcTHL19wvqHRBFaPinqzjaGMvL5PC6//HL89re/xaZNm8peHwg5UU0k6pVXXjG/f/nLX8ZXvvIVrF+/Hh/4wAfKwmrxfnbbO/L3PBypwrMHOk2g5GuhxgrQM0EZ4mYNYYqGq/RIWj3cqcfBBEeaElhZlAT9CGdOC4TS7ehUlo6k2AQKAHLv5lBQKTxHEFCifY0qP7xKrSW0rWtHuiFlNFMmmuQxFIuB0bClhRrkEBIT+3/78tCeZdq/TA8UxCGAD6O1khohGlohKBG3FqhrA854ubhO/1EaRp8YQm2V1rAYwqcGNZqmEFkXgkltVaQSL+bhE0+fG31MBYF+mabQgSmRN07XyhVbWyjQVApUtfrgyuhUbj8UnmvDT3lOh2YqpBKoQ1HYWoJDCJqU4WqEiHMp1pfFABIylcZqPg92BaopvKChSJzQUKMUSePF2rLYgnJjgaCuJQ19fdkFHpFIlKWbCs9BeZ892+ut1GrbX8h1tWmoTqtv+/n9yLe3AQfvWdM56Ql2ZE2UxmWXXYYnn3wSP/7xj3H66afjlltuwdq1a/GTn/wE3/rWtwbkmGoiUR/60IdACIkIyc8++2zzu35toIXlAwWdurM1A0aLoiISjqNm4ykn8qDK37sIecgQsZOWPlShJ490g84+sgSkpRnpIGFR/Q1nTgtSDWnpR+RZTsqUlhGjpjM/gdZ384b0pJ6URqbSpjW6TeJIk9UtGwsoeAzpNg+UEGSGp41oWxM2hxBVEACkaYx4WI2kNWH3S+r6EQJQUQSPCVPRp0XCsmItfKhKbVTYSobGts98bkTygPTHsdNomjzp4wornWDWp3bEwrwvahRqR8DiqTwgOsjq30PX6XL9lf4sgHIzdyhoSjYi1vYG2vJADzKEUkAJz5nngzoOuB9g2spbseKgL2IoQ0fP2wOOOiUQNxFyO4Jnpb3kOeTmf13JWMknz45K2dFRQH13TjxyKECoNGmNkym7CtqGfV1osq6Juw0ecyE3qWgeRk6jLWi07YcwlhnEIaaZvN0qS8s4EvQfHn74YfziF7/A9OnTcfbZZ+Ooo47CHnvsgcmTJ+NXv/oVPvvZz/b7MdVEolatWtXXxzFk4cxpAXMo3KyuMKLGCZo6BEXGkQU1lUFxNJz6MVm5knJUywSOlKrOAuQDpuHUj8Grc8Hatj9txmAHW7wMdaedaOlAaGRwAOTD1Mt5KOR8+JzDISSiPXPmtIAtXia1cAA8JsBKviHYdelw8GCeToFR+DyA5BrqNUWkHCIMsXJEmIIx/lBcgAmZAvY5BzyAODqdpnUvYTpNR6CoOg6qSJNdlarTLFrfF08L2KLhiI5FWYDo6iztIRSp7NPXuscjkSt5tqOl7Xpg1WaeNpGqFHnQbiOCcQiTzktBMIbAmvARR54TosiS3dJY9wKEB9Pfb6gie9LxYJyj/T3Z584hlq7OFMPIeI1g0hKFOg7i+iHH0eeFGjsM6pBQ7wZq0qh2dbKOtmtyrbVZOoqprw9TVQmYaxSIaq0iOrmY5WElUbqOHgHyfmFMmOiUSS8ze19hOnn11beXnUtdbNJfINQBoT1s+9LD9w80Nm/ejClTpgCQ+qfNmzcDkN6UX/ziwExuaortTZ482fysXr0aEydOjCybPHkyJk6c2GGPuu0ZxCEmBVOtJ52pMlJmixr2TWtSHjpkHYkwJHYEAwXuSXKcHZE1g4VfDOC1+xh+9lz4xQClVg/51hKYCMX7qY/PARBNA5kUrhCScFlpKE1USm2eHFgUgbKCNuZvj4vwR2lX/BIDs6KVkkzJ34UamLTYXAvWtQGmXEeTGG1GGY142c7gGnqgEWrmHhRDPy3pvRP1/AFkhNVX65m2NYpg6d9NhMkyJo1HIyLHwUWEvIV6mMqeQYJz2VxXsSxKKWg6ZSr1dMrPmOUqY07uB5h6x+VVj2Owg/nSoNTTwntCDFmKur6rikw3TGWG8gRhIqVaN1XtuRcUpLWHbhwdPgd5JH2rW8XYTviaKNtGs+H6wlwzNuxldkWgYMKI20VMf1e+7aiTeX/Yz9QE6vTOzxDG+973Prz55psAgH333Re//a2smnz44YcxYsSIATmmLidIjznmGMP+bGzbtg3HHHNMrxzUUIKu3tIPmPggk42JH/U65SXfoecJoDQ3SkvjF5XZoUiI1EAgf8/DxjnZV/3suMdkFd6mAlrXtmFbW0ig3ONnY+S5J8F/SFoZ6Ae2FukCISkKCgE8n8HnIcnQxEgTJkBaUmjI5WF0qsAEcgFDgXEUmPQCk5EquX78WtPHUdhSVJ+LQXtMAdFZvC0M14TLvsZ13z4dQZDrRgdJvY4ezHREQOsAzUBnXKb1hMSKCsTTOTT0b9O/6+OtZOIIQKUxAwTauiCmddKaqND8U7qos6JnWsZ4rTlwz8cuV52O8Zd/rmwfgxnu8bOly7vPVMo5/H6ZiNsLaJG9K9O+ad0sOEz16etBG64CcsKhr3GdEtNpQT3JFOr+qdRkWL+mUcn6RV4X1cmT/tteXm0SKljojm6sGxxqNFBO2omk8AYUlPbOzxDGWWedhZdffhmAbNn24x//GJlMBhdffDEuu+yyATmmLsemq9mub9q0CQ0NO2bRvF15BCDyoNGoJCzW+gvtg+Nm3UgqQ2/DhKATX6cBQ1AIwBtCt2XjIP7QYhSmycmD/oqDR5YA2vbi2BmghMA/5liAUnAhQAkxPl1cESWHAFwIOfNniESfKiH+Wpxsye3DVHVq4TChwgjkuRCRKqtKuhabRJnScISkxkSiTBUTRVn0hwujTaGoNKnQFVjlPdQ04inUzkApiVgxmMhFQZGDbBrMD0B9H6lUXbgfzgHOpbu5akoMKIE5pREDxq62BxlIOHNaAIfCLzG0B6HWDgB8zuU1KISxrOBMwDWC/GgjX53qA2Qxg92goaNovL0OADhOmEqMNqkmZeTJjo4BUb2UWSemlbP/t2GT7I7sCXRz7gSDBxdffLH5/ZhjjsG//vUvPP/889h9993xwQ9+cECOqWYSNXfuXABSRH7mmWdGeuMxxvDKK6902KNue0bwyBKTurEhmIiINqWYlkX67Nnr2k1fgTA6FRQC8CQKNeDQQlMdSfE5hzftGDAhzQnTKQfO8bMRPLIE+U158GNnqJSa1Ek5QqDAuCE2AFTUCCpFx9GgBjYZUZIkyCEw6RcgFJpXPEYBE4XS+2EBByXE9NEzkdBAwMv7SDGpx2MeooRKCX21P4+tnZHrhARKl40DUQKkJwgm2sDDij17QGS8PL3CGCJRDqB6iXbcT4hzYUUTlDt6UTu4hxEz7gVgqQBOypV6KM8HcRwIat2fqgBZcI5ApQAzTZmye3gwQ5//du0J5VBTpKCvLSbMRwUQE4bzUKMpmDDPI8o0wQGYjmp5dlQyOsHUzvZOmkIwAsGYJVuIptSIQ01UKy5Ql8cUreIz+/A1YbfWc6LkKX69RExfVSQ105Tu81ZcXQFxHJN+7sk2hip830dLSwt+8pOfYK+99gIA7Lrrrth1110H9LhqJlHaZl0IgcbGRtTVhbO3dDqNQw89FOeee27vH+EQgU7dANKYsWIYWvkEBQCcuceVzXK04FJXRdkPLI+LiFg5Qf9Ck2GTchAiojkCgILHkFXfcfuWonldjyE6PVdgwkSKQgIlTDRKa50kSGQ/YaQpTMPov+OvxeH5DE6gBhFFxApMwGEcI9IOHKpNMUOBra6y0wOcY5WV26/pCJT9P2DbMDBVQQXl1h96PVWzMgBQRtziiJa/h9EF7aNFKwjgARgrB+YH4K05pBpk9ZXupcc5B6XSR8pJuyolJH+clAuakv0Ox1/+Oaxb+MuKxzZY4MxpAWMCBSUJqKtQ4KLJt3mPLnZwiJk8RNK4KmVsvMIAQyq1OF3/Llg0ZWdX72lyVt5DT+D/s/fm8XIVZfr4U1V9zu2bGxKCYd/D4siigmwBsiIBFFQyCA6CooAbDigCXx0VGGVREBFEUWZURGXkx+YoIwgSCCTsm4AoSIAhw2ogJOTm3tvdVef3R5236q06p/vezt0l7+fTn+4+fU6dOkufeup9n/d5BZHXdQapKizpwIM7yh71cgihx5JCvmG7wrVFEwGrVO6PRSVyTAEoAEPDaRrHnKgkSfD444+PapWUMhswiPrZz36GLMuQZRm+//3vr1E9ureK9V33e1QOPtB9LxsA+q77PQCbLeNGyKjkhVWA9tyXtTZ6pm+8GXq/97qairpuAo+QzsJrRCCIwnYElpSwIKqT3RP00QIpz3dKm3hd+HY0+PH9cJN5yJD6WDPWE0Y1FGl535s1dKyTBsWHM22gAUciJmFOwBc95oKVAJMrqPlSNa4v8Po9cdmX2GPhhRB9bTygPGTDB0lSvg7D63wAt1laQgpU0iRv00D31iDTvNaltMclUwuWCEAJJaGqKXRvLdBRGtO233uhASyvNdx95z2befYm7L1kNc3s92Siyr2WBDY8V1PrcHIAeM6cz34LAbDIOZ5kXIwYCCVifJv+XtJKQIF5rFTooeT8OSD0TsUZo3b/urCMb59MTLHWxp597GMfw09+8pNR04Qqs7Y4UVmW4corr8RXv/rVtSBqAMZTe5s9bHnRYkqBNzpzywmMreVDjb6RXABxSLhxANU7e24ujloEvkoIdKoQIFnwYwe10LMk2GfudaJ9NgdaBPDqET+FQjnWE2VcWz3aINUZMlXMZqNQs0rTIG2dvAV2PR+y5iFsbjY13gJQ8gRlSvgSNzzsDa/vFAtBAiHRvMCxgkESSRFIJQoDb6OnjkpnAiFlzssqF9TMtIGpNyDzxyUpmwspkHT5ANif3rMv3vXgosL2o2nk2VzVCIE7EPLqlLByLCSNkcBnBwO5llLOa7P3f+4dzflVlOVn8qQH02e5f46Lx+8PCq1J32aZ8bAg8fkAy6UiwMY9Ye6Y6b6RPnRXVO4PpTPcecjDjB2TOgq/jbpJOQSeqPFNLK/VavjP//xP3HLLLdhtt90KPOzvfve7I96ntkCUlBLbbbcdXnvtNWy33fArtI5na9xwEwBAzNt/wLPVvut+7woU83YkgOpwdHKttWVpoqAbJvA6xZe2Ny/wrBkxPJUEgjMkObncrhPynKwsJ9gyRN89qCIuFQ/rla1PHifbh5xjlaetKwMnDKozAv35PhIEnB87uOTZS2zw4ZwVysai8I9KpSugLPNBk5sn6Hu+DeD5N/H6caKG0RmSKCTuPVHFwcKqZXuTqqgALaTViiK+VKat4Kb1UNk0fSkl0nUmAFgNU9N4x49Owl8+cxFSKbBkz5nY5t47CvseLZNCoIcEUPMQnPVEhutxjyqfsIXCrsatA4DdV97bSWFiKYQrFdP3Zs3dD8E+uYyA9OE9KmPcjKBelrzgjteR4YuJPvx4TKBcLlltPaumPxaVvdcqlgOPP/44dt11VwDAU089Ffw2WmG+trPzzjvvPJx66qm49NJLsdNOOw1Hn/6hLLv5FoicbDwQ4wBqrY0d6509FxMnpoEOU1k4TwlLMifBy4Bnks/M0YjBkzc/iJV7sew7APDPHrQRsIr3TV4rGsekElAN7+FSAs5jkGmDOvyAU6lWXJgPAHQtBE1571z6OhmpW/PPmRbOe0WALBA4ZAMnDah5ADE4FySO6NbVWVAGpMzKdKZof6QPZQFUntChNWSaOIFN3VtzXiiZhwJ1XcPUcl0sUQS+w2lUpLxH23ttyp23l65HfDuyHu0nABw0kReKkhBIwJUI3nVjCjxAwAInEpkliz0/5MUFLFhv9BiXjapSBc00/cu8U5mOWO+5UVgwKNDNPFCtjHujqJpElmuVrbWxabfddttod6FgbYOoo446CqtXr8a73vUupGkaEMwBlGpIvdVtoABqOO2pPWZAZ8A77r9ztLsyLq16+wKrYj13PwdieOitZjxHqkd7MAPQzD0feSIQxo28QmQxKGq1nO8rBlKcc9Us/KczSzxPYbP50KchhUAyMfHK1DUiAWfIjM+WIrHZMqPkCAq7KDYQWtCV97seDlxFfgwL8SkOxIwrQGy9HaowgJuardNHA23albgixO74qfyL1DD1hucApQlMvQFdb0D39hUyyEgclCyVAq/sMwsbLl5Yej6G0kjBnq4zgaqaydC10A42xpUL8iHiGGDHZrIMUnvCv4RxIWyaLNB9pjMB5OAqlf43ALZwNvNm9mobPjZ9foJBXCoCbDLKxgR8KRoqy5PFwFtnIJBtIKFKkgl4mRh+f1CoT7FyXJXOMapKL4aAWC7GL7Gc29NPP40lS5Zg5syZ6OzsbCq9NBLW9t3yve99bxi6sdaG057ba6bLAHt8t32x0wNji7cxXkwdNA8Q3svkQU+Wc50EdCbc8liagCwke8feKvrkyehAFgIx9rvf1nvEfFveW8VJ5ApMRiPzx1AzGVRJfUbuUeJlQei7iLhGfMCCW49xWxhXsGwdCvsYnYGcCTFJ2S3LQRX5rEhzKpM+U5C8WZQhKFxVAPv4s2DO5Os28hR3K3sgpbQZfKw4sV8/P6Z6A+/40UnAfXdi2b6zhzwJZPmM2QE4nnSHBUgE3smagSOOKblXimeP0uWIyeImy5Bp4cBTLLXBgbn3xgrohsGqhgkkOsgbWuD2NUIPJl03V34o4MJZ4E2hP1frMCo1BNiQnVeuZ5IaOvxdSuHuq0xnqHRW8LcvXtr0eoyavcWz8wCrR3n44YfjtttugxACf/vb3zBt2jQcd9xxWHfddXHBBReMeJ/aBlEf//jHh6Mfa20Ybat77sBfdp8RzBLXWvtmGHGWzqMdELy3hwaUqpJu5g0MLDGAewr8Ml7yJfRw8QGxlXZUbKRxxe+FTiWdtAIdg2Eq1gYW3OiaB0kESCh7y3kMAg8B7dOntlO5kPyovBcgIgnH2W+ZsVlZpeTvXGtKKAGRssysnOtit7PLGz310n6RCSWhUIFMKzDGyztQH7wnxOSabxqNnhq2OuuTwKLbsXzG7P4uwYDtlX1mIZUiz6qzoIXa56r0za69XHArsPesIEOU1uf3Fd1b5GENPZ+hQj5PdKA+xfc5TTS89yoEaPS/4WaynICuyQNWbmFWngnVPgvrUlahLGSAZjSjyM3eB6apFtlaG3374he/iCRJ8Pzzz+Md73iHW37EEUfgi1/84qiAqDVimWmtce211+Kss87C2Wefjeuvv95Vb19rQ2+UtTcY05nVzRk/8oBjzwKSbYm0Af9s3Gy7KDsQC6dySQMa6MoGRc9/8p4wDoQSKd06Mh/MpCiSiE0JmKb1iRQshSWgByrmsqg2bt+9l4qnw5dZZozXHappB6jIo9AqCYNI6gU5BV2shWZMFoQIufJ/o7eBRk893792/db1hvU0BcdjHEeK+hD2Kc82rDdcjTUlBJbtO7vpcQzUXtx7VgBCCOT2aJttRyV+gBC0xBZmgtp33i4H50FNRvai9bj50F7xfiZVdOq3L0UUcgXj/0Km4/IzDMgz3lx/quh2Pc7P89wnDqb4u0okOiZ14Lmv/bTftkfDiFg+2Fc7dscdd+CQQw7BJptsAiEEfvOb3wS/Z1mGM888E5tssgk6Ozsxe/Zs/PnPfx7Cow7t5ptvxre//W1sttlmwfLttttu1Gr3tg2inn76abzjHe/Axz72MVx33XW45pprcNRRR2HHHXfEkiVLhqOPb3kjsnl3Xl5kTWynBxa5gffeXd6ayvKDsZUz7bnns2ueLcfNDxR2AEvYgyue4bfyUPEQSziL98vjdhMpXWo5EX6btWlBmx/M+HeRe4E474QGrjA0kheirfnisjzjLibq6ppx4IWLNHJFbJ7W3qzocQykvJfL1+VzYoqG94sGYv/uih7nUgZUb83WzeuD5vXzjPdC6bpxKuiVqtcVoms/FECKh95sbcSiRpPfb3n4mMB5WbscVMWAiT57gObv1zKwxicTnN/H/yt2n6G3CvBgKtAKi3Tz3PIm7nQZ3bOxR4nX16OwnedJSTz3tZ9iyWn/Udr2mLBRKEDc3d2Nd73rXbjkkktKfz/vvPPw3e9+F5dccgnuv/9+bLTRRth///3x5ptvDsURl/ZnwoQJheXLli0LqqiMpLUNok488URss802WLp0KR566CE8/PDDeP7557H11lvjxBNPHI4+rjXAiuYNQSiOZok377TX4Bt7C1lnzpno0XYwA0LPEA9pcJDFPUKSaT+RtcOfKfMG8H3WjSUAGzYwxfuj9QnYEUDjwA8Iy2zoHPRwLSfuHXDp7fkAxqULAuDiiNi+Dc5vaqYtRZ4HXsw27gf3YNFgyQdMqqPHtzV5f0j4E8hBWL4/U9Ood/ei3t2HencfGr21gKtjs8y854oGYMqSGww3aun0WVFygiWIe69O3t/MZ9Vxb1R9ztwB7Sf0pIb99YkSYfg6vld0hvx/4T1XHPjT/UWljEJFfm9WFkE5AB9brJoOhICK7g1fqiZzL9dGXrxY17RTsxdKIu0qSf0ba0Y6UYN6tTfkH3TQQTjrrLNc2TduWZbhe9/7Hr761a9i/vz52GmnnfDzn/8cq1evxpVXXjlURx3YzJkzccUVXkleCAFjDM4//3zMmbPmTobBWNsgauHChTjvvPOw3nrruWVve9vb8K1vfQsLFw5/Rspb1chTMBjb8+G7ArLxrTuHQOrOd00fVPv/qNY7ey7SxJbBiMm4PE08kRJpokpn/iazOjlcRwcIOSpAODun3zl4iknB3Ph6ZaFHu30M4orb8xBLwIuKQnW6pp3kA9+mnntrdM1ANyyoCzOprMUhFQ6MqPwM7ZcTy3kox7UhhfM8cC9UmfnBtqhb5dqVEvXeBmrdddS6a+hb2Ydad92H/4ztI63T/eqb2OxrHyuc11f2mVXah/4s5r5RFp79LbyGBK4A5KE+42QMaPvwHio+R0IvUxgujr1U8THSuhwcFcG75/u1ApeZtvcMLyHDX9yElAy4F9eh62yBeOa8jkDugawbB9i4J/GtYCtXrgxefX19bbfx7LPP4uWXX8a8efPcso6ODsyaNQt33XXXUHbX2fnnn48f//jHOOigg1Cr1XDaaadhp512wh133IFvf/vbw7LP/qxtYnlHR0epq27VqlVI07fWjTjSpoTN1GmmBzNQI7E9nWW4/Z3T3bK1qujlRoVaKTRG58qqf3tiLT2QySvAgZRkYTOdAYplKJXpQtH1KSOmx+Vl4rR1DtLK6u7ZgS5zHoJQfypfloMQ2pfMIys8N895gfLt630RLykfMMnr5bxWDasPxMMvFLrJ8iZisneZZ6K4jszDcr4+ml1PBDX04sE40waNnGBO+5EqrKVmdAbUtA1F5orrZH0r+tzgvPFpR9nswkW348W9Z5WG3QZi3jtYXA6ERG3KfvMgJQzrec9QmLjAJwDcqG2q8UjL+D5tvzLY2o52Gcl0ef5T2XGFEwzepiOWwwJxocPwXEH2gjS7VChf4AE7A1TwWXxSSRgYd1/IVOHJE39Q7OwYs6EsQLz55psHy8844wyceeaZbbX18ssvAwA23HDDYPmGG244bPykHXbYAY8++iguvfRSKKXQ3d2N+fPn44QTTsDGG288LPvsz9oGUQcffDA+9alP4Sc/+Qn22GMPAMC9996Lz3zmM/jABz4w5B1ca9bkgluhB+iib2VKAHs/cnfudfIP1B6dYWJlfKvZDpcRt4gPRgANcsINTkDO48my0sFT14zzNNHAwwfLgYR/4kHPD2ahxYWMCfCFoccicKZB1pfw8O1LEQ5qMSm4R3vBxQTF48ncuWH9rxkX9osHSa4xRd+58rmpaR9aM7bci0rDQSYkwpeV+bDyDFZc0iaGGd2HtKu4rq5pm+2XAynKRFSpgkoVVi/rQaOn4XSGeDr/YIz4a6Q/FgMauicprAfYc79s39mYuuj2CDwX247vvTDrL1yH/8YV8eOSMmUcLN5n3m8+wajVtcsQ5SFlXj4mqIsoZSnIynQI9Lm8BQB3n4ybUB6Qh/MG+YzOt1+6dCkmTZrkFg+GTxTrMw23ZtNGG22Ef//3fx+29tu1tq/IxRdfjG222QbTp09HtVpFtVrFPvvsg2233RYXXXTRcPRxrTHT2ZqHCIBYANJaj86w32P3QGfAA7vug+f2molX9plVIMYmHzwIADDl+MPWeP/jzah2IfFCLP/DOH4HASYlfBiJE8k5P8kEA1VMUrfL13TQJe8D90Rw/gon/TYzGtCojEdMFDZZloOeLC9/44+tNwIovOixYaCMD5pAWF+STDBtH9ce++y8Vzxk6TxZPiTIPxvjXwDy4ro2nd2HgrwHI9MZ+41xanSGek4ml1IEoUiVSDR6G+hbWQuOZzD/V8ATw2MAEq5TLt5K2/PQG38vkyIgYESlgmh/BNDoMxfdJJBk2w49qXw7338R3AtChYCzZjIIJQvXnawZuTxMOsiCkJ5dRokIVmCz0lkZ22TyYbJJkyYFrzUBURtttBEA75Eie/XVVwveqaG05cuX4zvf+Q6OPfZYHHfccbjgggtGVeS7bRC17rrr4r//+7/x5JNP4pprrsHVV1+NJ598Etdffz0mT548HH1ca7nxWeGa2m4PLc7b8unSBz9xr/s9ESIvD2K1aZbPmI3uWXNQnzMX9VV1VA87GLXuGrDfewd7OOPCdE2jbowTOCQvEueY2OVwQII8ESH3yYOSZhlO3MsVDzgt+9jCixVnEJaBqfhYwvVCEEZgkHu4/DrF7ctCmtx4CC1cLoKQHLdAJ4jxYHTduHAevRMACjIE655Qbj+XCYxa3hMNxJJ5MQgwkUYWke5Ji4jqCU5ddLsL/bYLpAhkWO+hX17mzYmX0/WsmQxLp89yyza5a2HpvcKBEPWXgyraT3wp6DfuheJeWM6jouPxr7CtWl3n4UMfhgZCIG2/h5wnzo/jSQf8mmbGBPcY1VdU6TjyQgGjkp3XyrbeemtstNFGuOWWW9yyWq2GhQsXYu+9hycDfOHChdh6661x8cUXY/ny5Xj99ddx8cUXY+uttx41TvYa69tvt912a4sQj7BVb1+Anly9eDB217vLb3DyjvjQj3340YO1bgzEyj7rCciyNRMZG0emDpoHre35oPAUn217Dog/d3VjoLRxxYqFEkG9PQp58bALDVplIZAhOQ7h1c1DcFTM/qJjikvKcKDEB+uY+8WNnxegCKJCJXS7cpmQpvvddsa2FYV6HMAxGbiAImXomZoXXXRlWlbVbHhOChhjQ0Uy75dQXnIh017QUSW2jpwxGZTKQ5Q5GKP1G70NV0ic+G7t/mdD3lCGVEooUSR2c05dDED4dVciw4t7z2Lte3DNNZxo3+TZikPYFNrloIrrS/GkimaAibdn8okGT6iY2FHBit4GdE07EO0KC5eJZlI5GJLJgHQinLGelFASuqZR6axApcrVRRwPJqSCGCQIanf7VatW4emnn3bfn332WTzyyCNYb731sMUWW+ALX/gCzjnnHIcHzjnnHEyYMAFHHnnkoPrZzE444QQcfvjhjhMFAFprfO5zn8MJJ5yAxx9/fFj228ravoO01rj88stx66234tVXX3UFOckWLFgwZJ1ba0Wjh+iLe8/CJnetGfLe+5G7cOvOe2He4/cU2k4iT5d9wDKdo4aBbuAtY7ZgsP0clrzwgwQQenjIc5HpsPwJD92FHqH+R9iiFysr2XcGrp5O/YwH3rjdkONV7vkioEcDZbzPYn/Dtvsz4rz4gjKy4IUSjA8VLo9J4GG5D1omtC0PQ0rVhl1PIp7zTK/YpBIkpm3BE7y+VFE7KzwXABxHaSBWfm2L5sF86MEMw2sDQ3D+XvTn3d/n4b0Tl3FpFyTG90aceVwGzJsB7Fbmy8KUgO+1yuT92gMPPBBIB5x88skAbOWSyy+/HKeddhp6enrwuc99DsuXL8eee+6Jm2++Geuss86w9GfJkiW49tprHYACAKUUTj755ED6YCStbRB10kkn4fLLL8f73/9+7LTTTqNW9O+tapzLMBjb77F7Csv2fsSmpf5l9xlY1cgwOfGhBNI5ogy1REqYufvZshL/gNYx/33oqxlUOivoutm6q8lTQ0AoVBj3A0GtrlFV9q8Vcos8qZxCIHz2zrOryMrIyaEEQgjSyOtB/YmztIrr+218f+Lfw33xdmifMbiLSchJfm7IG8XLycThvDJOVCtrpXLOxTXj9mSLQTQO8RG4qvc2oOsaMpW2Rp/xoSMJQKUSmalYgvnBB2LSHbfl9fRQIF+3Mrqv4lp1SoTHwEndHNDyQ+U6T5zgzT1PZcTvwjmJQsHcIwlw7lMRhIXt+G0l84h1KvuMyXSGTldQWgZ8pqaeSuO5dZLVZSi7N6SSUIltZ0zWyGtmYgiI5aK97WfPno2sBQgXQuDMM89sO7NvTW3XXXfFX/7yF7z97W8Plv/lL3/Bu9/97hHpQ2xtg6hf//rX+P/+v/8P73vf4EuRrLX2jZ7tNZPhub1mYqt77hjyfbzj/jvxl91nQAlgvVRBVSR0w0BVJFQWCkjW58xFcts/lvdxwhGHoK5taG5CV4IG4LglQMwB8UCIL6v36UK5C4ADJb8+DYRxCCdUfA77SJ6eokfKy1dw74RfP8zm4iEgvzzcXwzYW3keyjg7zdaNPU2FFPZIjbzZ9mWZfc3W99sYxmsiTpX2qfL5MVvyeK6GXjeo51pRQF7yxekO2ULHKicsN3oa7reJFYkVdT1gjxAQ8txiMEXL4s/cq6kzYPO7raf6lX2s1ILVjgo9XECYjWe/F3l78bsH6B6I+W39OmVG7fNC3PTZRPc0UA6EeMYeX69VIWyhJFSigvDveLLRCOeNNTvxxBNx0kkn4emnn8Zee1mdw3vuuQc/+MEP8K1vfQuPPvqoW/ed73zniPSpbRCVpim23Xbb4ejLWhuAbX73QjegD1Z8s5WlUmBiRWLiRKv9xTWBeAFalQn0zp6L6u3jH0gt23c2UilQmdThBkB6KJM8QJniOAEQLlvgs/mywsBifysOqGVggw+k3HsQ/hZylXx/aD/FsIkHQj4E6AEh7a8YYiEvV3+hOs6FofcyUU3uabDrlBQXzlXCW2lFhUVpM8eLIoI4D904snndIE2VlTXIhRjpNyt9YKDzzypRwfa1VXWo1GbjufCtMWj05l6pVAE1Db3fewOy9uO77YudHljU9LyR0fXhmm48HMzvJ3+t7bJN7lqI5/aaiaXTZ2Hzuxdiw8ULHbGdy1vY/QBl4eSQb+X3xcFcfL/y9WNxzTItsrheI30GSL1cotJZcTIYsdEzqBmA5kkBdl27nLahkj1rbfzYv/zLvwAATjvttNLfhBBOYmGk6vm2DaK+9KUv4aKLLsIll1yyNpQ3SjaQdPXB2jb33gHs9143yKlUQtdMMLsj3k/1dh/SWzlzjstkGyrrnjUHXQuHtk1uL+49CxMr0g1OjZ6GmyH3Lu9Ffc7cfAAJt4s9MvEAZdcBijyTYsiFe5ZiawZeaiYOz9C+qA8eZNF+/XjDQ4ehUGNZmI/3kR8/tVUkQpeT5cmIUEzZVCoNvULNjJOHoTOoXN83BlNCGqdQLZSE4p7CmnacKUsil8jqDZdh5zxW2pe9oXfej0avLfti/x/K/Ud0TSOdmACpcqE+AiCdbXhAKGRM6uOxtwiA03bzwFzgqT1m5Pv06xOQonu4zJNF++OeTAJodM95EB56n+y7CIBU6O0q7lOx33nYW+UTNem0nIQTYeVldwAEumFxFh4VtvZhPtrGfvq/s0aHQ7PGRmVfBtvGOLZnn312tLtQsLbP6KJFi/CrX/0K22yzDQ455BDMnz8/eA2XnXvuudh9992xzjrrYIMNNsCHPvQhPPnkk8E6I11RerSMQniD5UW1ssmfnI9KZ6W0+CsZ/TbQOl0DNZo1d8+a4/gkQ2U0wJAt2XMmgDCjqVcbJ/+wMk+9tr+FbRW5QUWgEXp+MresOKsvygT438qPpQygEAgKlcpjj1JxQwI+RdJ7uE6zNmIAGJ6PsHwMmcmyoCxMMwBVBEgyIAiX1c+j9TMW6st05rL0bCjI5CE8E4T5Yo0pwALrRp4xVtQe8nUCCXAZnaG+qu76QpIhnUrgub1mlh4nNw60y6oJTE4U1ksVJnZUHDDj4qrb33cndAY8t9dMt78NFy8MtJ/I4nChB9O89EsoVRAb5/XZ/hePJTYvPGvr6gX3bO555Nca8PcCqd3HvwMoJB+o1K+j66GHeVwZiW0O9jWObcsttxzwa6SsbU/Uuuuui0MPPXQ4+tLSFi5ciBNOOAG77747Go0GvvrVr2LevHl44okn0NXVBcBXlL788sux/fbb46yzzsL++++PJ598ctiyBUbLOAF4uI10V7hYpBQ+dV9nVqEaGHxaPpXKWDlzTt526MUZjP3pPfsilQIP7LoPdntoMf6y+4yC1EAza8XtAUJeVDGtWyCelfuMJ++1IWsWNvTclfKOcI8UeRAoDBl7nJoBcB6C4W3yfRT5NEVeVjv3AZGJXV5eEw5MvkOXvk5mPRXGlfbItEGWD7JZzpNRUhRCe1kOdGQqnXeCFyO28gU6X64dKCNvWJZ7sSqdNm0eOYASSqDR00CvNkHYTWfA5ERiVaO1t40bBzS8xBCFzzPYmXBtr5luH6kUroAx2VN7zMD2992JDRdbntSLe88qDcfxennxdSfQEwtt+u1bg3X+H+Lbc08Y/QZ4sKwNnJcy0wYqrQRAifSiuEeqGU9O5PfB6mWrm53yMWtDWfZlPNsLL7yAxYsXl6oDnHjiiSPen7ZB1M9+9rMBrbd48WLstttug5KT53bTTTcV+rHBBhvgwQcfxMyZMwsVpQHg5z//OTbccENceeWV+PSnPz0k/RhLpjPrSdnm3qEll0844hDo3GUulUAjD2MUCJ+510ZnmeVFDQFZk0IKNoxh3LLBhvSe2mOGC9kRqZtr2tA+y8JpPAuvZkwJ6OGfCUSIAlDxoRIOipqXfIk9U+WZdc3WF2xQ8v0qA0/e21EkEJcdXzzolfPEwt8d10UXQzcU2ou1oMjKCOZlKuexUnW8DW0nwXlROTFcZbmnyQCoWDHO/GV0hnp3DSpR0HXNwtqe/6RSFYb7tAcbnCc00Aw9Oj+8kDC/ntyWTp/lriGQMYFOCvvaPhCQAjxviofpWoVfdYZcpb8Yiub8pzikx7en4yqE9ZqEA4msTyYo1MoAVKwDxevpAXBhYrCMvd7lvWv5UOPUfvazn+Ezn/kM0jTF2972toBSJIQYFRA1bL6Mgw46CC+88MJwNY8VK1YAANZbbz0Aa15Ruq+vr1DRerxYMw7NYCz54EF5SQQZZL/wTCoilwslCrPHwVqnkgG4IBus990S5SmkIvHUHjMCwEb74C8gTP8ucoaK5jkn4eAXZu/Z8IUN8cjg+LgQJ7dm+40Hs7Ct0CvWOquuCNiaSStwYjN9b2Z8MNUs+4qDyXg/HCDF5V349zCkZ3I+EgEpE7wavTYcZ1w4zjjRTV3XDEDZkjC0vq7ZYsO6ZlDrrruwo4kAk+VZicL/hI6fE6cHMhmgIuP8ujcLs/r7uDzcRvd4fF9tdc8dLgTYzDMZ7j98j/8/obin73N8/3myefi/oG0toM6vY+5V4pmVzhMYqZVzmQMhKRPPh/LouvYu74WumSGnIQy7jTHF8tGw008/HaeffjpWrFiB5557Ds8++6x7PfPMM6PSp2GTa22lLTEUbZ988snYd999sdNOOwFY84rS55577pgqZjhQoxlcj86CGeZgbeIGNjRqdBiyyGqN0pkqV2SO66e1a92z5kRgw7gSKwDWOAvwqT1mBLySbe61IQ3iinCQVOZdoVBGj84Yd4qvR4Nb8xAZ4HknZSDNr0v7zKLt+xc0tNv6/lA7HKDR/mPj4T5al2fqNTuugXBfyjwTfDk/Vhoo9Y03Qx1kJ0RxWKaM+wQWZoNSRf5VHt6hLL9Gb8PypaiAsTZBijwRxnVdQ9dDjSIK67HWrTJ9lHghlEDCttF1YwngA7yP6b6j+zMkfYfnMdzOZ4Ry4KOEcJm9FLoDEHiyX9x7FhNUjUE6D0P7ezcOdXupjaKQaxzGC71QwmXlxR5ElagAJMUhOwoHc6I5eQtFrkpO94mlJujxJ80yFCBonIOo1atX4yMf+QjkGOJ2jZ2etGGf//zn8eijj+K//uu/Cr+1W1H6K1/5ClasWOFeS5cuHfL+DocpYb029SwLXP6DtQlTO3PCrXEza5XaOlOAf4DTw4tm25xPsSbWPWtOwWtBbQ2WQE+DQZnWDh8YyDPkZ9S+L7wGWOix8qAqHFgEG2DCQsBF4BQCtvgcFgfN5vdzKyDHBz2/vGlTA16Pt8/XL89CzILfyUNj4mOMAFQcyqNBtKx+Ggli0u+6rt36JLLY6G2gnnumAEtktoDJvuq5Jwooq99mv9eNQd0YR5qvG+N4gvZ/oyxoy4Earze4fMbs1icUtvYe/Q84gG+mDUf3H3mH4msSg6sYwAK+vh4HWYBv1+qZiWBSQr/H+4q9t2WeUH4/EIAC4LKCqeA1t9g7Cfii0QACzhoA1Lvr9np319C3ss/VfuyeNaf0PK61sWvHHnssrr766tHuRmDjp3BQbv/6r/+K3/72t7jjjjuw2WabueW8ovTGG2/slvdXUbqjo2PIeFsjafRAW9XoZ3Rrw7a78LN4M3d5ZzpDpVphZTMyqN5GU48CeUDWFETFACrOFnIio2sgoUDbc84TLwhLM2bPYQlTuZuJTcZaSDVj152c+MEh9h5wbxTN+JvVn2uWKk7vZeeaZ0fxvrfyQnlPHMC9WFyEMfZmhX0pakJxjwU/b3EbBJ50lkFVQpXqGEDZEE9YDoYTioWUkMjDejqDUL4NSy63GlKuPExNo6YziN4GkqrXI8oCqQWWGag1FEuv9x4VAtl07wBJXqONrFbXgYcHGFgZmO3vuxPP7TUTNgQMTKyEN8or+8xiHisb0oszP/11KePJFXmV29x7h2sX8FmbnSrkDbb6r4f3DefANfNKWm5chYFl7tHjFoCq3HtY4MtpjcwIKCjU8+eZ0Rl6atoBvnQMeTMGYkLK0rJH7bYxnu3cc8/FwQcfjJtuugk777wzkiQsIP3d7353xPs0bkBUlmX413/9V1x//fW4/fbbsfXWWwe/84rSu+yyCwBfUfrb3/72aHR5WG37++7E8hmzMTmReL2mXcbZYEz31lFnhEsiyxJXJIkyYtx6LqRVTszuz7gXig+0SoTFT9eUd7XTA4vw1B4z8sHOppjHXCh6sHJCNA+50WC3ZM+ZrohwpwJ45mDNZFjVMKgZGegB8dm4DU/aAa9HZ4xEnwX9iLWmCNiVeQjikEu8HfWBn8dm3qxmbVkTwfKydPZweQis46SEujHBulIJGLSXfs7r7alEgbAPAZhKZ8UBKedZcjwb6TTB6qvqqHRWgsHYhuesl8kpa+fe2VrdA6TQy2IBu6wZd3wEsuLQVn/ePd5+M4HOYsjNn09/nT2A4cKbOrM6UzqD+09wU8J6vWzGrPdC0WSB9yHejr/ThIOOnQOxYiZrCJpsGDUsJMwFNmPOpsug1AZIFQDLVav1NNw1s/8901YZnjFhYgjCeWJ8h/POOecc/OEPf3BlX2Ji+WjYsIGooT6gE044AVdeeSX++7//G+uss47jQE2ePBmdnZ0QQox4RenRtil33g6972ysqBtX025NbauzPolVr/Wg3l0PvE+U0k2p27phgkwqoQQUBNAw7sHYTqFVwD5k6YG2quE9E8QDAQY+4DQz4vjUooE79tyU8Ti42QwlwINGfwx+nQyAwcSKLKiT88GWzA4q1L8QOPJjj8Fd/Hv8PfQClXuTyqwZKPKDcbknob/++L6E7SghoCqhcjnnuHCjQRUoEouFzMDVrd09KiVMTw31Ppttx71J1B+dZUiUcCRyyjpVWgT3BvosACRQFPLcOJAKw7ZlZOtUCqycOQdKoCXZvFX27SZ3LcSLe89CDHD5Z37d7f4I3HoPbwygCPjEUghl90bR4+h/o234/5lPEvi9bj2R1ttoQMBIunvBq8lLJ38gZBaW68l5UFzhPuawkSZV5/jGE29J++53v4uf/vSnOOaYY0a7K86Gzbc31MTySy+9FCtWrMDs2bOx8cYbu9dVV13l1jnttNPwhS98AZ/73Oew22674YUXXhjWitJjwVIpMDmxPJ7Hd9t3jdtZ+X9vom9FnxvISIQwNl7vKhZQLOP7tLJX9pmF5TNmByER/uLeF9t+1OdcS2ogRgNRrwlFLanPfp/WK7SiboJ1uE2sSExOVBDu4nwj640qZhdy0U7vmYpDl95bxQdbzsUii8FV/Nkv416t8tCKF0v02xR1fsp5MHywLB9kW3soJWsz00VRTru8WBC40dNwBHAATgyzNw/fCAJFOT+qZjLU6tp5qcgLReeW2upuaHf9YgmKYsZiCBr4deXb0T3Ow2LcBsKRKjPyKnGuE58MUJg61EMLPZhlod7QixTuMw4vxxxC3p+y7Dv+exKFlyj70RPGw+seh/Zi41mTPEmAjtNzxcrlPsa0CWELCA/qNc68b5F1dHRgn332Ge1uBNa2J6qnpwdZlmHChAkAgP/93//F9ddfjx122CGQF3jzzTeHrpcYGCgb6YrSY8FW1K3H4/WabvuhsMNlX8TqV1dg2ZOvo6GEqw+mEgmzMgtm8kKxB2fOXXFp28wLBQy8ph8np5LHppiV1nqQbsfiMBi3Hp1BibJQg0D1du8l8OTacADlIYuasSCM1qdloXfND8p236FHjFsMQsJwWla6XTz4+UHci2kSJyQOAcX7LjtfsfE+ccDRn9eLjEAPWRzSiWUNDAszm7y0Szzg8nWpjyr3ojZ6GpYInlEYNwNqGl2dlWDd2Gtm6TYkMpsVfudGWWplZX9C76T3+mxy18IBna/YQq5S0dtZdj8QmKMwdmy0vm87vE+a3RPNlpcBMl6AmOuE0bXVNQOVktCkcBmUEl5DSioBXQq8rQeLiqdLjcBjP+7qfRIQGmwb49hOOukkfP/738fFF1882l1x1jaI+uAHP4j58+fjM5/5DN544w3sueeeSJIEy5Ytw3e/+1189rOfHY5+rrUmtqKuASikUqC7DYmBzc84Bt1KYPWyHjvIpApC+u15GCUzxqYYB+EWg3pfyAshGwiIemWfWYFGUlnojHtamnmh2qnVt9MDi/DArvuUauYQIKIBxQsWZm4fxA2Jj7c4C/fckVhV3gMLEfxGx8jb4V4FDoBoH3y9eP9criBcXgy9lYw//VoY8vRej3idst/oM4FwkgUg7hEtbyZtEJQeyjIInTkB8ywHpByElXGsehkQIs9fzQDVmkER5GSFZfHxE7COw8Je3TvUGIu9nHRPkmeJlMWB1uHx0KNaFEyl76Re7z2P4X0T33e0LATsoZHnrWaM+x63w79zr3J8DrmHm64nLwIu8k65sJ4SQRiPG/HaqJZhzWRQdc08hUOvr7fWRsbuu+8+LFiwADfccAN23HHHArH8uuuuG/E+tQ2iHnroIVx44YUAgGuuuQYbbrghHn74YVx77bU4/fTT14KoEbbuPL4fq2j3Z/VVNfStrPlaUrlYIJlgAxZ5qGiw4wVB44FlIA8nUg8vej2AgZDTB5uazAETGQ0qZeEaAmmU9VR2nik8wNPLY40lGmR6tFeV5uR2fw39RrEulW+veM3LBqh436G3yg+8oZcu3rbcK0OfWxGlW3minBdCh9/LLAD1zDOlswxo2PAPcZlSGZaR4V4u0r6i5jjRXwkEYqDxdSgLa9H9kEofFqT7uMzDF4Od+PxRG6/sMysPGdv74rm9ZpZKG5R5rnyIz3sRudeXe1F5Rqrtn2+HAywbdo7vA+9B5t4qvp2qSKQNE3i6+H3PjZINZN6JeNJmvY05mHLrGFcAuhD6k1ap3P/n/CRpTSYOo22ZkMgG6Uka7Pajbeuuu+6w1uhdE2sbRK1evdpxjG6++WbMnz8fUkrstddeLUUt19rw2J4P34Xb3zkdU5KBsyTX+8yHoVNK/TWo9zacECE3Xj6Dk3hpeew94mn84fwgtHg2DoQz+LL16UEdP8Tbtd0eWozHd9s38JDwh7oNrYX94p/LZ+QhWbqsGCvniPQ4ABDW3AvbtN4kDk7KAJ7ff3n/eL9Cjo4otEPLqZ2Bhoe5RyHmX8VeJ6AcLPGwDhASy+NQnvud8ZV0b6Po0WRJCirzx08ZmPx8EAgIuUwxGZyfQ89lI6Vwey74OezvvJV7kqyJwvkcqG24eCGW7Ts7b9d7VcOkiWag13+O/6f2Xs2iey0UaOVhvyQnf6s0QW1VLTjn/t4teoQTeC6UyTIkSgbhWi5/wbPxZKocYPbyGAKJlKgZzfq9Zs+OUbe14bwBl50bSWv7jG677bb4zW9+g6VLl+IPf/iD40G9+uqrmDRp0pB3cK31b7MfvXtAD4WuIz+ACUccgpX/96YrwMnF7Ig7YlglegCBUrDdhofxilwmnQEd89/XtB8xsbYslMdLVRD4iEUEO5VEV6X9FJvQY+DNh884AVe48hBlgJHa48fWDGz5+mQedMTZe3E/uQchBk18UCzzksT9894Qf86bAVdqc6CDTTMvlCw5DzICWhxU8c9U+Dr2PsRgPy5d4sESD6OFiQoEYPs7ZlKqp88rctVxAltURigmb9Pxx0R++r0IXLkHp/j/AJBn4bVv8X+L30e8D3RvxkAqlGcIwXqzkjL0nYji3DvFy8Twd/rdZPbZE4PtWH5C16y4aZ2Ja3JvFHnZK52VSM6kvLTSmDchhuY1zq3RaOCPf/wjfvzjHzvu9YsvvohVq1aNSn/aBlGnn346TjnlFGy11VbYY489MH36dADWK0X6TGttdKy/MFit2+pA6ZyIC6Cgv0LGlaDLOCUu3biZZ6aMqep+94NNcyKzKDxklbCp8PQQpxp+7ZqfjYYApFlfyAYSqiz3BhUHspi7Umbt8jaaeS2akZ85VydWoG5nH/1dgv6uU3ycJisOoECRC9Xs/HCQ0ipsU8bXarUdAQqvXl/MamwGKgAU9hUCp6J3MP4PDIX3pBUZvswDGwO/2DsWhwGpnwEIrHnOVNwXILw/3PnPk1UG8h/QGYEq7YVUnYcqK9x7cf/W2vix//3f/8XOO++MD37wgzjhhBPw97//HQBw3nnn4ZRTThmVPrUNog477DA8//zzeOCBB/CHP/zBLd9vv/0cV2qtjbw1E+MD7Ax26fRZeOm1Hqxe2Wdd7InMX3ZWH3MMyByQqpWTOIHygZXSisvXL25fxuchT0LZAK9E/+nOzfcfergodMVDK1xmgDwWnOzLQzY+JIT8vVg2hnu5yLvBQYxdr7y/zcBd7EUaGMgrerfoPJTtp4ww7n9v3td4m/je4ee1mYcv9krx76TXxQdxfi5juYzY8xMfBwcJ3FMTgxg6V9wDRV4cWq9TSXSmquQ+D8N9Ybt+P3RfcI8NeW9f2WdWoLbfn3Egws8Bv0eLx1icBKxqWCFZvm3ZsTlvcUU6UdK6MQUpA9ofkAPihkF3Q7v7kLScaiZzAImeTc4zye6HujFOTDPTWcErlUjpgW6ikLZBfxgzJuXQvMaxnXTSSdhtt92wfPlydHZ2uuWHHnoobr311lHp0xqJbW600UZYtWoVbrnlFsycOROdnZ3YfffdR00xdK1Zi2dXlMFGXo8enZckqdmq9kJZgcNKtYLMmMB7JJWAS3mCzrNijKuKXpZSTKaEzbRp9nctG/xjr5Dnm4ggLKPg+TpUp4z288o+swKg07x/Re9TK48FtV0WFmnGR4pDaB4w0KAmggGT2rbXMB5QfZ95aCoGBtRWESQ08zj4QbO/4/fHHIZ2ir9zsnxWGs7jXCae+s/7qrOsMPC6Ons1ne87K5xnz13y11UJuLI/tE5MpNdZFnGH/PESqO5UAut32P8EBzi0rhQCKj/mSi6VoGsaFLb1YaTwuMtAagws4xBbf/d6XPqFt+H7TI3GwNf2jwPLWKKDO5optE4ZdnTuM505VX7VBOATmbxHe5BGRv3vzDJIDWidufY5Z4/65rJ98wmfUCKX7fRSHjrLctV5iebTvLFpa4nlwKJFi7B48WKkaRos33LLLfHCCy+MSp/aPqOvvfYa9ttvP2y//fZ43/veh5deegkAcNxxx+FLX/rSkHdwrQ3c9nz4Lty7y94AgN7Zc9GjTT6j84PBy70aK+safStraPQ0kBkTVD6XSgRhPF7sk4MsPgvkYRF6QJcNntya8TRCL4D3EjjvDdOkomNqN1uPcyLIOxTzZWIwQgNWzJmJB7uiN8e+U0kYzq+JeWRly3kfgXJl6dagNMwM4+cgPI6s8N7KsxWuFx5DM28S/x6CnnIvGoX1eBtCSfT2th7+igDEezZ9aZ6wH6m0BORqPhD7MjwiaIeKVCfSvmQeVqbiuaoSPlI5r49f2/44bOSRkSIUiOQA9pV9rIe5zDhgovXLvIrN+HtxO+WyIL7Pqxo2M9J5j6Lv/JyXGZ9sWM+XYYAtc8Wey/5fPOEk05nzfumGcSr1dWPc+See1lobf2aMgda6sPz//u//Rk1Uu21P1Be/+EUkSYLnn38e73jHO9zyI444Al/84hdxwQUXDGkH11p7lghb2iEECX6g69EGqfT1p7SBrVxfM7bwKy+4mpvJuQZWody61GU0uJCRdyEBMOmYQ7Hy8utL+8nDMP2F92gZDeyJlIDxiuK8ZMZABQtJZoDCJFwc02fPFR/Y1N9N7loYDGCU8UWDTbOixbxeVxiW8/u20ghFxfPQGxX+Rv1rxjtp5qGy/SzfF9++eI1j4IaWRiWDgGJRZH8OQrFT3m9Xr66nwYr9kk4RT7MHyENVfm+WXwvAA7xUCkysyABA2P56hW33/8knFhRaVqmyyue5N0RG/aDsz7h/1G8eaqUsV3ud/P3pw822f8tnzMaUO293x/HKPrNc/3kok+5R7sWxemVeaZ3f4zxsx3lg3KitohSHB4y+1mSYIUr3OWWo0v+eTyi4545+S2UOWkXITasZn7Hp7x1A6jAbMNNZS0/6mLW12XnYf//98b3vfQ+XXXYZACuwvWrVKpxxxhl43/uaJzPtuuuube1HCIHf/va32HTTTftdt20QdfPNN+MPf/gDNttss2D5dtttt1biYIzYqoZxD8Z4xv2O++/Ei3vPcoVUK6qCWncdgK90T14pErMzzAOktBdFLAuh0GAA9MeLCoFGzG2hUAMNjjyEIJQATBnIsX3or3YfHxy7KlYJWTV8TT27Pw5sDHr2nV3oM2+Pc13KPD62bR9y6GEZS0UvlAjS8Mm81wmFbf06xRBXbPwalf/uz38MpvqzmGMTWzHEJIJBjwNEv88MyL14OiORTH8cvJwO/eY9MV7jiQMXkiWIvXG0jIQpOYik4ylTVqeUel3TXgA0zesBGt8PaisGimSJlA7M8b7xSQTfpowv6O8Re8/FYDXWL0ulgFywAL2z56J6+wLonAYQe824Z86fE99OXPeRzvOKur1upA3H6w7S9Y89vPE18Vp49t4ktfl4ssEBdnCNtL836fyuakOod0zYWhCFCy+8EHPmzMEOO+yA3t5eHHnkkfjb3/6GqVOn4r/+67+abvfII4/gS1/6EiZOnNjvPrIsw7e+9S309fUNqE9tg6ju7m5X8oXbsmXL0NHR0W5za22IbdeHFmPp9FnB7JDet7/vTgDARtUKVKLcrLksg4WKDhO/wD2c8gLEMVDwn/2DisBZbETA9rPe4vYEnkLRwnyAaIQKyb2z5zqgNZDBfr1UufVMlkFBMPX0zA2wfJDXWeZCes/tNbPghbKzbPuAD2fCdjkNIBMrIveCcU8BDQQi2F+Ylu1Dm+E5b29GHQMzbtwT4b05fjvab9k5LgMjtB6V9GgWIix6ZIr9qkUFtvmgS4M3AU/aJgRjoZcjBh8xSFF5iI4DKx6ilgw8Ucg7Jr/HhW/LjpG8KGXHTf8j72kBAxP+OAA4AMTPKffucGDNQXunEpALbsWyfWdjYh6KnHTHbUFdSg8sQ16ZD6OZkvvSG5HEV9R1sD3dZ7E3iU8W+Hni14nMe9EyN+HpZFII5HlyoqJ5ySqhBDqzrK2KB2tt9G2TTTbBI488gl//+td48MEHYYzBsccei49+9KMB0bzMTj31VGywwQYD2k87EbW2YenMmTNxxRVXuO9CCBhjcP7552POnDkttlxrI2V8pplKge3vu9MBKADoXLcDSVcCIT0BFiiW2ci0YVIG/gHWSlmau+sBoHLwgYV1asyL1CrVmEIAtl0/MPdoAlF2nertC9gM3W7btKDrfu91D/8eneH1mkZPLYyx0wNXZ0By2wLHj+HHuPndC91ATqBQZ3AaQvFxTKzYY4nDHuF6RS8BN35N+aDFwzF0rug33gdqI/RwlO+DtxPynlpf+3hbwHObwkEx9JbF3oPYwxF7qzxoLvahZrySdpnCfBHw5aRw5xUJ9a04COFCjkAY9ua8G93wGkYxGCi79nQ83MNLfUikLNVhmliRhZAk7SMOvxFA9OfRnicCEFMX3V6oJUfAxu4PWL9DoauzEgGdUKWfn1/Oh6L9lXnNeAYlf37EvC6+zJ/Lcq8n53BxMjpgr6FKVcGTNuZt0MWHh8CTNcp2xx13IEkSfOITn8All1yCH/7whzjuuOOQJAnuuKOo6E/27LPPYv311x/wfp544glsueWWA1q3bU/U+eefj9mzZ+OBBx5ArVbDaaedhj//+c94/fXXsXjx4nabW2vDYP1lqFXXrULXDUxNWyG6rgR9K/ugumzGQ6wdRfXI4kGVBgTOaYgBRDMCp848J4UeZnHokdYrm7XSdnw9DlBSKQKuiDrIisJ2a+NASHlBYh/K01kWpJMT3yp+yPM+U0kR3mcOeuIZtj/+MOxH68bWqSgkYtv2HjN/HloNDAMZNMqOi/cn3hcP//FjikNWfBCPvSP8vRmPqZzTFWoQ0X0Qe3h8qKnoldEZXFZdXOuQ2g4U1/NGOZjSjRAsxWEmHurln2OvHRmVpwHKNbF4HTz7v/C/b7h4IV7ce5a7x3n75O1pFe4GEHpnZs2BEhLV2xdAHHwgdJY5ygDJPdhjRrBPwIJZA4ALCvDQPwEoJQQmJyKYIPFzSe9lnD++Lv0/gKLQK1fDB2A150yG+py5SG4b+8WIMyGGIDtvPKHGos2ZMwcvvfRSwaO0YsUKzJkzp5R0DmDAgIhs8803H/C6bV+RHXbYAY8++ih233137L///uju7sb8+fPx8MMPY5tttmm3ubU2CpaZDPXuWk4ot0Cq0lkJwRNLL48f4sXBIfSE0IOu0dMoiG4+tceMYBC263uPCl8eh388cPODIAEhChl4j5ndhjxSK1fX0Z2Tklc1DFbUvc4QZWTxWW1ZH6l/2993pwNXfGbPs6jic9HMePshKOGepxCwcvBX5mlp9b3sc3gdyvvtQRADHiK8Vrzd2HsVg8fi+gjaDbcLM+y8hyk8F3wQJ69gDF7DDMwiqKTsOp4VGA/GrlhyfkA8VBnff0Hbpd7H2IsYHgedBz9RoX77xui+I2V92hcvYUOeID7ZGKh1LbzNeakaN9zkPEt0PNxTxvdJ+5EI7x/uJeMebu6NonND54S+8/vdaj8J8HuHr8+NsifJaHI4UJHZtTY2LMuyUiml1157DV1dXQNq46abbsKiRV5X8Qc/+AHe/e5348gjj8Ty5cvb7tMa60R94xvfWJNN19oYsNoqz1WiWVnSlaJvZV+uq+K9UX6AKCvC6r0mcQiBsr6UQFBHT2c2s+3FvWcF/I7QC8E9REX+VVV5IT/ert+eHvDeM7aibtyMmXusPO/EA7MiKAzDA92zbPbjlDtvd6U4OKeDp7KnUrLZdeg14mYH+PAY/HHwYwxDMjGYIfOZTeUhuzLPVQjoshbbFHW9ysI08XYxr4V79FqDuxD40P69DEEIPP29mDlPSQEslXikAF8MOQ5HBjX96Le8Nl9MqObH1CxsS33lnikgDCVzDx+tU5b5ybc3c/eDXHArNly8EK/sM8vdAxsuvh3P7TWzAGbXxMjTTdIiPIxpjytDj6ZQX5HrRObBoD+PdH6srld5dqU75lRC6Ay6r1EKhCiU6sJ6fdqBqaRacc++Rk8D3bPmBFm+Y9LewsRyKjoshMAxxxwT8K+11nj00Uex9957D6itU089Fd/+9rcBAI899hi+9KUv4eSTT8aCBQtw8sknt12fb43O6J133omjjjoKe++9txO4+sUvfhGgu7U2Nm3i0R9yAIm8TVw3hWpSOY2o4MEVz/h4anOYml3GR1my50xHXg3bZMR1EfKkeOiQ1q90Vmx6OVtO4Yl4cJ66yAKd2EPAB1fNBkkCQdSeV3bOQdR+74USIkgpp/X49jRAxNwlfhzFgV0E584eT9FbRct5O7HXjrfZDJT5cxy3hcKAF7fVDDz5NssBUpHoXLp5wTg45Z4LGqT5PeOvre8rv47xOWnWD36fc82qolelPP3fH2/Ra5QmKug3rSOFcB6W+JyRx4eD43ifUgiIefsHy+g/sNU9d0Bnls83FMavIQFanhVMmlpl/3n+HodQmwHq+HnCifshwA/vP9+W1ZsSSrr6iyqVUKkMyOhj1oR4y9bOmzx5MiZPnowsy7DOOuu475MnT8ZGG22ET33qU/jlL385oLaeffZZ7LDDDgCAa6+9FgcffDDOOecc/PCHP8SNN97Ydt/a9kRde+21OProo/HRj34UDz30kEsDfPPNN3HOOefg97//fdudWGsjZ42eBoSUQeiOCORSCdR6GjnXQ7L6VXa90IPgH+RlQIevqw6aB33jzZichERY790KPQ1kIQ/Lb0PSCTFHgs/QabBaPmN2MIjSQ54DFoDPpm0m2KocePG2lQCS2/4IzcQ9+XHH++czcPIgOQVnN8CHvBWKfnLAxY8/tuI5KwNnxXVagRcO/Frtlw9W3ksZAuA4NEr3Dh/kQrAZ9qEcGPq+kSejjDgfejjDzLIYpPB7OgxF0lq+H829cuGJ59fBeyFzcU4loBq0Qvkx0nkKwWuxXAsphdN7rWZQhfcYLZ/hM+8G64XiVr19AbpnzfH/8xKwzr24zbxy8X1W5sX018Rep5rJgJoOzoNtr/wzv6Y2lGeQaQNdswKuUowD8c23sCeKvENbbbUVTjnllAGH7sosTVOsXr0aAPDHP/4RH/vYxwAA6623HlauXNl2e22f0bPOOgs/+tGP8B//8R9IEh+o2XvvvfHQQw+13YG1NrJGZFjOeXK1qNjMTtc0AxVhiMrPCuPv/qHIH54yVTBz9wu8BSSISeUeSISwSEb2facwTXdDu8rtNZO5dOw4pEfLOJeCD870mThSvp4dgvZofQJJZW5/3jbgJQ/C0BsRaKXzgnHvHU/Rj/cf7idelhW8MbScn7vYWxavE7fPPS7xOYuvDQ/5lrVJ+4w5XXF/Q8mH0DwYDsuz8PvNn9fwXuSewDCMF+6Il6Th3qYwgywE9tQ3IORPuRBhBK6EEoWi3nRv1BlRnq6XFMJxtVRFoquzEqil831I4WU/KNzGyd9D5YUio/8CnwiR0f+uUwlMTlTp/9Aeuz8H8Wd+PwzkHvPXzZ+3Mk4bcTVdTb4sCzhla21s2hlnnDEoAAUA++67L04++WR885vfxH333Yf3v//9AICnnnqqoH85EGsbRD355JOYOXNmYfmkSZPwxhtvtN2BtTZyNuGIQwCEpV0ABDo39J20mGgQIeJ2K64MENYUS6VwCs/phMQpFnPz4ZVwcAOK2Xbcq8H3T+tvc+8dmFjxRWHD7DtRGMgp/OAHgIy16T0t1Mcpd96O3tlzA/mEiZWi9yHm7/AHO2+fHxsddwxg+Pq8PVrO90vrcDXruE06F8XfwnMZgzU/kPH9hBeT3yf0WzF93ScBxNevzLy3yV9HajdeL16HzkuxzRDIeWAWgyV+zv22ZZ4h+o2bEnl4TQknoQB4YnoZ4Ar6XpHBNtzKBD/rxgTh904lYebuB5WHCIcLJND/KAa23HjILg5VF73NIVCn9angc3z94vA3N8f5lNKBaF3TaOSlg3iCwFgnmFPtvMG+3up2ySWXoFKp4JprrsGll17qVMlvvPFGHHhgUZKnP2s7nLfxxhvj6aefxlZbbRUsX7RoEaZNm9Z2B9bayBo9cIX2fCgSDCReFJHJgXAQKfeMZOCFTP06+Sw0la5sjAVWflsquaKzDFPSCurGYFWj6NEivgIfnDnfpWaApdNnYfO7F2JiRbpCpp4f4b1YZKRVZb1ClvzNZ7NxeKhT2dAgEcoBBNwTvg0dk/euheeLE/TpOGlZ+JsoDCz82MPrULw2fF2eds7PAQeKZZ4/aoMD6DDMWQS/HJjFgx1f5gF4+eDlB2QevvNeTytaGvbTn08/cNPgSWn5/JxRmIuuU8y7GujA2owAbTJbPDeuGVhWW5IAF+AJ7mVeFANA56K3sUgutc+9WFUlnMr/cBh5Qula9pcBabfx1zf8XgTM9BvP3rXrZoF3lf+XOpX16vGQJ7WZ6QyNnkaQrefO837vBW794xCenSE0IQH51gznDaVtscUWuOGGGwrLL7zwwjVqr20Q9elPfxonnXQSfvrTn0IIgRdffBF33303TjnlFJx++ulr1ImxapOOOdR9blYDbjyZ0RmUEoVZbbBOIZwWfuf8Fc4h4WDBqQML/9Bf1dco8CKI/FszluDZ2+PBTyplSbgrw6oGkc/9A5QXN63evgCv7z0rD18Ip2Js2/CD8KqGyVXDrZfAelHsPra514q2UXZTpxKYNCFBvU9jRV0DeSYP1wmKycOrGn4wozAhB0uxh8Met38vG3j4fmIujveclW9H59CuX/ytzIsyEPPHw4+Fp+MXCcfUDyKFcxFS2xe/HT+mMu9D7Mnj9xiBdH9MwvXFAawJCTJtoHSGFb2NghekjHMTh51p/TiMTOeizAMoC2AhC+rvUY1KwKfjx/vTWQaVFUECfTdZ5sRB4/DhUNqUO2/Hyplz3Lnh16AsNGuvgf/Mnxv2/xl6EmOvMBkHvGXewBiokblnHJNfCcr35BzOtfaPac8//3zL37fYYou22msbRJ122mlO2Kq3txczZ85ER0cHTjnlFHz+859vt7kxaxv827GoVCuB6/cfweKHMQGBzNiHdlk4J/zMvQjh7A/wAxV5YQCDBJ7UWlXSEs3ZA8y62MNpMgcd3INRxhmi38gbtcldC7Fy5hwH0no0V7CG8zrRA79XWw9YGV/HFimWqHRWoGsWrE2shMcQz5DpmEjfaWJFBCE2klvwBWGbXy8+ALuBs8TzQ8dSBFPhoMI9BOF+wlBkbLFKOt9/HErh4dRWnjQe8ouX8/PCrxdvQ4kYWPj7hjhiHGDxGnvVagUyVTnAEBA6Q1rTgWxCfP75vvnxJFI6FWwAqHfXSs5rzmvKvaSx6j9v3w7oEtC6ELajBBDVEAxEsDBjXtZEpTIACa0mTkNhcekUM3c/95nuKV7uqRhuhwv38+sahqkzxDIg9rCK91Yrzy2dKy5dIZVAvU9DKmUB51j0SL2FieVl1tvbi2q12vZ2W221VanWFFkzwc5m1tYZ1Vpj4cKF+NKXvoRly5bhvvvuwz333IO///3v+OY3v9nWjse61VeHdd+qhx08Sj0ZGqsedrBzX8chgFbWDEyFYKb4gC7ymuzAI1RONGczyE4lA0HP2PsUezCUsITWFXWN13MCPBCSZmP+Ex+wyRvhQzZ+Zv+O+315nA0XL/S6PTXPN1FCoLungV5tAqAQD/p0zsp4X/H5bXUOyWIuU3g9RLDP/qyM2FvWL74u5wJ5YBt7E/w2IYHdAz3yEIUCjeHAyfvAAShdNwK33AvBz68jkVckkg7luHm0n0pnBUm1EnABO1NVkKGg4/bH788RAb1KZwUdkzqQdiWoVCtIE4V4EC8L38VWBnQy7fmJ3OL6ldzi/3csVTISJhfcCoCXjbHXi148Yy/UkireBxxQx8ArDOV6TxgQP7c8NzH21gFAvU9DZ1ng/RuoTf3KJ9s4M4OwtWVfYIzBN7/5TWy66aaYOHEinnnmGQDA17/+dfzkJz8ZUBsPP/wwHnroIfe699578aMf/Qjbb789rr766rb71NYZVUrhgAMOwIoVKzBhwgTstttu2GOPPQZUGXm8WaazYZ+9jaRJJSCUbOrWj4ullj3MuJV5M8q3teJ29GCj8xoMzCz9Og6JlLnjaZ0NFy8Mssye2mOGW2fqotvZw7MIALnXhYOD8uMBNKuvF4MD/s4zx6hf/FhjnZ/4mMpsoLycZtejne0Hck1j7pPfT/9t8nPf3zgV34N0nfgAXAZM/TbCEYdN1GcRcUsybSCVYOC6+XHFoJK0htz6qQq25d6OOKOuUJokBkBZ80G9GTDnbYz2cywGoMVX/4rhza5z8Xu4P748toDUzwqaA+z87ffewnZTjj8soHls8MV/GdisZa0NiZ111lm4/PLLcd555yFNU7d85513xn/+538OqI13vetdwWu33XbD8ccfj+985zu4+OKL2+5T27B05513dujvH9l0Q6Pe20BmMog8nDOeTSgBleRgJQqdxRXoeRoyD0/F4Z7YY1AGWpSwOixJh01x7m5orHizL3juVDorUJWiKF/I+wlT9MlIQJD6wa1HG8TFg214zc+GyVsBICjSDNg0cdpfre4lH1a4z1nkTQnVme3+igOyHzzQ1DigLPM4hJwjLg1Q7tGKw2Eh0AtfvK/8d74tv4XKABH3DPh1/ABHnomisCoP49KxUlg1HIg554nuD9pfKi1AqRuDWl0HGYHcpBIuocLoLMjior7G55F/l0JASBlMUETuJeNW6bThw0pnBcnEBKpinykq9VIFIp/oAB7U0W9S+cLHBAqVgJM64GZ0FvzHhRJIOhRG2uSCWwvXn3uh4lfRsyiiVxkYK/5HBgLSCZTSfwfwzwF+Hanm5vonfgRTjj8MJr9XJh1zKNb7zIehazqYYA2rrfVE4YorrsBll12Gj370o1DK39PvfOc78de//nVQbW+//fa4//77296ubWRw9tln45RTTsE3v/lNvOc97yloNkyaNKntToxF0zVjk1nYrHLCEYeg3ttAo6dhZ3djLWbexN52wuGopwpSSaQTE9RW1Z3EgYF0NfQAeigVs8oAz2vwA7B3m4fZM1nw0COSrM4yV7POD4gSKlEwNY1M89mjf5hSZhlxjGrGFgaOCy03e2jSAEt9JrDmyM51Xaqf4wFh5ojiPMQVhhP8cfPQE2+Ln5My4rTvU3lR2tgbRGFOu1357DsGT8VjLJ4rvjwEUkVvVEjcDt8pdEfgkoAhJQ7480bbhRy4sJ3iw5/uRcuVCcM5FKqxnDgTkPvJhBIQ2gIgAi0GgDKhVAf3hvrrmC9PrXBtpo3jFQJA0qGgcy6lSiXSrgQyJ4yTd0ilMhd7tDwnUtGWSiDLSxv5vto+qjT0Jpsss1IIWdGrFa9bM1lQgmkkLLltATBjdn6Nw8mFPTzv1SPj69jvGbtviiHVsuxOPokreOrY90RKwJhgGXnu6Px3zH8fGm+bAF3XLpuZ1htJT9/aAsTACy+8gG233baw3BiDer1eskXRYkHNLMvw0ksv4cwzz8R2223Xdp/aBlGko/CBD3wgIGdRYcB2SVlj2YzOIPKHHplKVC7WpqEOPhCNG24axR4O3Ozs1BJeVSpR66YiYdqRVXUDhQE8HvBJGiAkdqLw3T4w80GxtxEMyiQs6bRl6uE9Q4DEf/fcKSUy6Mx6FZ7baya2uucObHPvHfjL7jMKYpN8UCXPBh/oKSynBDCl5JzxkB2RkgmI8dky956sqJsA2JQZ92jEwIOfy9hiYNXMU0TLimGo4r7K+1e27/Lf4v3EfZ9YkQ6A0TmPAVkIUAisFwF1mv/3qCYaAf7Yc1TGebH3gfWCVKsVF96WyoMZ8kgR54ra6G7ooB9lHCd6RthB1UCmCqrPbkdlRhp5NQACNkZnjpAulEBSrUAokXuRLKhDShMMW67EAj8fEq+ZDCmTO4jb55l+PTrD4GQK18zKJgtkMX+JngmheUAbe1O58WdQnMmZSBmERqUS0AR4JXn/fIakyTIomiTWDHqW90LXNVSiAo+gSqTzTq214bcdd9wRd955J7bccstg+dVXX41ddtllQG2su+66BWJ5lmXYfPPN8etf/7rtPrUNom677ba2dzIeLdMZMpMF3hEy+hO2Qz4cLZt0zKHoZp4nAO5B4KvQN38IcG8MH8RjkMOTgXSWOcVuDz7CGmf0AOzRBtVVdTejnphJkGgjH1yLpULCAfsd99+Jv+w+A0v2nOkkCrwHKswEI88FKaVzMjkZqaCT9EH4wM4Cbxr9xvlZcRgv1ifixkOVYTiNl/0oeqz4Onyb2FqBombLyj6XgWven7JMtmaTdO4lKBLo43Xy5TkQic9RDEQJ4NCgSV4q8lDFoXkbjsuQMW0m2taw+54DOTKjMwgpXQiNAAvh59JQW13nHikLsCpVG9YTymqqZcY4jhV5xwhA0eDPdZ8oDEXAEGwi2+q/PdLGvddAfM8UJ2R+G7h1+O8cdPP7JJwshaAaYOcJxj3D6ZpycMWNnp+6rpEZG8I1PQ1IlSAbKdL+2uw8nHHGGTj66KPxwgsvwBiD6667Dk8++SSuuOKKUu2nMosxjJQS66+/PrbddltUKu3TdtreYtasWW3vZDyarmtAKei6Dkuk5H8mmY48x2BNrBYBKACBi59CB/HDlrwbPnxV5MUA3GvktXdUyR+VwBgHC/SgW5lzjCaaDFUlc0DmH5Rl4pT0AF2272xXLDiWQOBhl+JxZdjqnjuanrdJd9yGZfvORs34cBE/7lYWAyY6R/H54wMAHRsXxQyBa1lZjZAL1IpnVX7tuLeH97+4fRk4i/kpcd946LMZcPRE/DIvaLjfTBtWFqV4fDqzEhqxrpLrJ/GQkuJ/l7w+IvcyS+YcpbBhmihHGqd1pBK5J4tqseVh8ppmPCc/eFM4qJG/p10JKp0VCCnQ6G246gEqUb5QuPKeEgNf61IJgURGbcP+1qsN0kwEk0D6n4y0TV10e15jz36PQU2zLEO/bgjO+f1B7zHw4lzK2AiQEnDVNV3w4qmKdGBLKAualLTPf157VNc09EgBVSEGX0B4nIfzDjnkEFx11VU455xzIITA6aefjl133RW/+93vsP/++/ffAIYew7QNoh599NHS5UIIVKtVbLHFFujo6Bh0x0bbjM5g4OPf9AcT0s/04kyasWZdR34AmRIwUf6AVALa5OnTfLCpyCC0FpdYCD0NoYp5zfh6cXxbepjRb5zfRFYWZor5K3ZbPzgTsOFu+3c9uAh/2X0G/rL7DLzj/jsZeGler62V+XAfzyAK+Rl0PqznLLwfQqDZOsTW3GMThhF538JMPw9oykJuZB64CfbZ/0Zt0T4J+PJ1y66X56yJwr5i40Ri6p+9PqF3LfbA2TR0FNbhnCU3GAIBEAKsJ0slinkf8gmREoBSEDJDpkzwGwAInSFRIpg4qVTlg690Xg1uNpQm85Ch7xNgPV9SWY9YdUrVhZHq3fW8JJNwfeqY1IHVr60OwBmFARMVEqHpeaRSiWrNetG4FtJoWhlwB+C0s7hXKdzOP3Oa3U+ureA/WgRrrlqDe895efl1FUp4DyKtI2UQdXCgNJ9g22VrPVEjaQcccAAOOOCAtrb57W9/i4MOOghJkuC38kIphwABAABJREFUv/1ty3U/8IEPtNV22yDq3e9+d0uhqiRJcMQRR+DHP/7xGglhDYX98Ic/xPnnn4+XXnoJO+64I773ve9hxowZ/W/YxDJjAJYJQIBqOFWAB2tdR37ApXfzGD6Z9a4Zx7WIJQ6A0DNQxgWyHqM43AcQcXhVI3PrxO3SQE7fUymsvk6Day95wEXEYMArjpMng5PM33H/nXh8t33x1B4zsP19d2L5jNkupEg20CKsfDOuUWXPgReUnHTHbVi19yznSSrTqSlrt+y9VUYeB5Y8G9D3qxjmoN+48dAH37ZskCqGSLxngG9bJMH7zyEnLdbyiQdJ2rB1f2gbfo8mUpaGtIh3xMNmgAUkQduphE1YboQcqZyzRGCHQj5SCXRMSh1IkqlyBHDah1ACHZM6bPKEzmB6GsiMsVl6XSkqnRXUV1lCrGSDuQsvpRJJVwqVaBcKlIDzVOmagYQBz+pzAI6dvNGWayEvMXnnOP+IT97CiVR5aLgshE3bSeFrdpYpvQfyE6l0IMnozHmZ4slx3E5cOusf3YZ6PB2M3X///TDGYM899wyW33vvvVBKYbfddivd7kMf+hBefvllbLDBBvjQhz7UtP014XW3fRdcf/312G677XDZZZfhkUcewcMPP4zLLrsMb3/723HllVfiJz/5CRYsWICvfe1r7TY9JHbVVVfhC1/4Ar761a/i4YcfxowZM3DQQQf1K/VeZk5jJn94AQj+aPX/vnGouz8kNuGIQ4IYf2wcWAE+PECE3Vikkns8AO/did3o9jfvWfCDs3/ROlRihZdbWdXXyDOpTGn4i7fdazKsbJSnre/0wKICyZxrCw3UNr97oWvH86xsOwTEqL1N7vLAjKfncysDM/bYYoBGvzfvLPceEZjk1gx8+PBbCL74e9n+4/PJ12l2Tvm+YvK39z6F/SvrO7dEyqBf/jhCjiJ5D8oAFJc1iL0TsYkoPMgL1iZdKSpVG4qTuZdLpTZkSPuWSqBSrViJg3wfumbyDF/7v6t0VrwSeSIdaKP9pV0JOiZ1oGNSmr93WG2qfH8u5MSOQSjbjlQiAA6jZdS1WPeKzkl8XWmboueWg25RvGdTadtKvQeJdLzc90T5Vyqdcr0/nwSI/TUg4xPRmCYx3DYaBYiHcjwdCjvhhBOwdOnSwvIXXngBJ5xwQtPtjDHYYIMN3OdmrzVJjFsjiYOLLroocKe9853vxGabbYavf/3ruO+++9DV1YUvfelL+M53vtN2hwZr3/3ud3HsscfiuOOOAwB873vfwx/+8AdceumlOPfccwfcjlQCAj5OXsaLGi8WgyZaxo0AFA8f0SrEUeKDPgEhMg6MyEND6zYbID1pnYfr7Mo8qysGSkpYtztdhdjTBFj9qFf2mVXwsLQCJrEtnzEbgAdQ9A6EZS0AW2ePH58jIjcJhfF1Oe+J+Dd2OcAJ9dyaHYfPgmsO2mi9uJ1mJN9iO6E3KjyGYlgw3q4ZUCsjERdkIioSCgLahYBEkJlGgAKQUMqH98h8sW2/L5IeAHLwkXuNAOIKsv++NlBpBZWuBGmXF/vLDMvyMzazTuSDOYE4rylkH7tpVwqjDaqTOiCUgFmR90Fa4OPCdlW7fr23gUonLABTAo2ehiPF07EhVUBNM3CoxsRkj65zjzboBAqaTM5zFhQP90CflsWhad62vQ8kVOpDdeSli0EbB9R0nu1y5Yuyg8jnnjMqEYIqDqqH3UYhnDdU4+lQ2RNPPIFdd921sHyXXXbBE088scbtvvHGG1h33XXXaNu2r8hjjz1WSC8EgC233BKPPfYYABvye+mll9aoQ4OxWq2GBx98EPPmzQuWz5s3D3fddVfpNn19fVi5cmXwAhC4dSmbbaxzoABb3qXsT+0y8YzJM0w8ENQ1X5usLDQDkMcj1CPq0RnT3wEL2YRcpNgtT+0RgAKQ17TLXMkU7zkSwTb0imuivbj3rNLzET+Mm3lUYuueNcd9XrLnTCzbdzZWzpyD3tlzUZ8zNyhRsWzf2YUwnH8PhSmbnVfahtal9uh8kzeHr8szJ/2yVvvqXx2a94tbDJC4LhMt76/t0DPp9ZxUpfwxpITIEw18v53HpiIt0bvCvQzea8Q9QYKF+SyA8uKa1J7nNllQlVQrTtuJc6iEsuG1jhz4APDejdyjIaQFYpXOCiZMnYBKlUBTguqUKtKJCTqnVHOxTdt+55QqOqdULW8rB10yP5ZKp/VkpV0ppJKQSjrvFxHlVeK3Ic/KWHlmLdt3NibdcZu7V5rxE7m4KIFj/lKCBDnhQnaJlJYEzkj8dM3IK0j3B78XyAy7/ipV9rwq4d5Vfi9w3hSnclAYcLxZPOb19fUV1lmT8XS4raOjA6+88kph+UsvvTTgzLpvf/vbuOqqq9z3D3/4w1hvvfWw6aab4k9/+lPbfWobRP3TP/0TvvWtb6FW80U26/U6vvWtb+Gf/umfAFjX2oYbbth2ZwZry5Ytg9a6sO8NN9wQL7/8cuk25557LiZPnuxem2++OQC4PxzNJunPM9at7A+dGeNeTp08H0xoFlZlYoZ80PbL/HJSiiZAE9fC8mE3OEDkZ5PFAZkAQY+2oparGmGB4IkVGRDRqR8S5AErD+uR8dDjQMeUOPxHPCzuYaPbgbKeuHp5HNLjgNGfz+JsulkmIW0TEsmFWy/UxSlynsLzwdsvltXhbfDrGXrIioCqrN/F8Au7lyqhoGR4bvz9x4nRJvMVBAhwEACKQ3MUouFClpRBp+vav2o6AB0qkQy4JO6VdKX2vVpxWnGkESRTD5wo7NY5peoAlO2XRFKtoFLNVcsTmYMxC4qSiamrwUcDOg3elWoFE6Z2Yp2NJ9pt88E9yUOFNoRo+5BULbAiMDfaRv+ProW3uWXNvDkuBFsphigJcBNw4uV2yu4jen7zz82kaWKwmZkMQuZgKiUZCpWDLRnwqTompYX2hsOs2ObgXwCw+eabB+NemVdpTcbT4bb9998fX/nKV7BixQq37I033sC//du/DTg778c//rEb52+55Rb88Y9/xE033YSDDjoIp556att9ajuc94Mf/AAf+MAHsNlmm+Gd73wnhBB49NFHobV2Og3PPPMMPve5z7XdmaGyMiGtZmT4r3zlKzj55JPd95UrV2LzzTe3D0XIfFZLIzjL2JGDdKsOg1UPOxhaZ1CyfIbEwxj9EU2VKIbJ4nALnxWWEao5SLJhKd4W3xcvBOy3SaV0IS3Ak8sJmOnMzkxX1DV6dIal02cFpHEOxGibgRof8AHvZZuchP3XGXmi7PeJFRnwo5ZOpzCfPQe8TdqPfS8Lg3qV7/icxcfo22tOKOfhU75t3EZ5yLH4nQsjxoAp3m8ZcZ08RnQv0rUmDxWAoHBu0uI/F/OhAP8ftfugrDvmQdA2O1UlWSHkLQisRnwiIYUDThldq5rOy7r4/dlMwFA6hLwdqfssXSkm6rdKJTLty79QUWOVKiRdVQgl0bO81+0301nQRtBXbZB2pVjd9KyNvBGQqs+ZiwQhUIqlV2hZfG0NQtDjrjcLzwGev+q2a/HME7L1tSdvo9ENF/KrdNrr18hGxhOVZfY12DYAYOnSpUF1kVYZ9e2Mp8NtF1xwAWbOnIktt9zSiWs+8sgj2HDDDfGLX/xiQG289NJLDkTdcMMNOPzwwzFv3jxstdVWBcL6QKxtELX33nvjueeewy9/+Us89dRTyLIMhx12GI488kiss846AICjjz667Y4MhU2dOhVKqQJKfvXVV5t6xjo6OkpvIGMltUv+wP5POdaslVuZz/QoTZpnyAgloDIB4qz06CwYOPngSQMoH0h5eIt7MIg43snOlxW6zPLPHhABCMQ5yciVT6GtVQ0DC6wkOpXAqkZ5CHKTuxbixb1nIfSAIBDkLLPe2XMdMNxw8UJsGP0Wc4KmLrodK2fOAZc9INv87oVYOn1WfjwZuEwBv4W48CBZHIqMz7NdHnqABnJb8uxI3q/WAKy5R6v4mQPAcBvucSuUKSnhWvm+eo8UF6r04MiuL5R0g2xmDAxk4G6nyQUpi9My1DRkLsKZtfBqxr+RsKYt46KAlPqRgwC+vtGQqhIMzuTxADwXStc0lBJQaejhsF60hhfizLcznRX3WdcNjDYwNZsB2LXBBCxvejSjZ8ltCwAA2X7vLfUMNQNUZSZUc3DtS/HophNfG7rzvxltIJUMQH4M9rzml4Tpa7Q+2DFokyZN6rdE25qMp8Ntm266KR599FH86le/wp/+9Cd0dnbiE5/4BP7lX/4FSTKwokZTpkzB0qVLsfnmm+Omm27CWWedBcCCwxEhlgPAxIkT8ZnPfGZNNh1WS9MU73nPe3DLLbfg0EMPdctvueUWfPCDH2yrLclSoTn5kP5qY02tvHrYwcjgHzgE+JoBK8rGS5UvY+CF+TJfkqVE2A4oCjxyjwbXa6HnHpcI8OVbwAZz/zsPBcWcKAoddSqvGL5eqvIQYPEhSxIEK2fOCbg4rYzrYy2fMRtT7rwdAPDi3rOwXqpyUOfXX57XBkulwJQ7b3PlaMg4f2n7++xyAlb8vPhzXt4vJeLCv/3fgzHHrSwsVwbw/LrlXqQwFFjsRxmgjI/LZBnQyAqii83EF10Jl/x7AILcTvLQHFMljwdfP6HIZQGYhElZEkYry7QFarqmC14rAjTcKAOM9m/yCxJ7SrhXJTNZrknVcLIM6cQkJ6obJKnnQZF3yugMHZNSTNhg8oCPZVTs1j82BVJl1tKb1AKMkRApl6oB8nuoiSfP/h567lUi0ehtQGs4PptsAeKG0kj3a7BtDNSGcjwdSuvq6sKnPvWpNd5+/vz5OPLII7Hddtvhtddew0EHHQTAerTK6vL1Z2sEon7xi1/gxz/+MZ555hncfffd2HLLLXHhhRdi2rRpo3pyAeDkk0/G0Ucfjd122w3Tp0/HZZddhueff75t0Jd0VJDkRDVd14VsDQCYePSHsOoXvxniI1hzK9OE4uq6QE7Mpdh+9IAXSkBq4qOgkGlH1iyjinseCEyR1AEN/jWToVMRIAh1qLgG0qoGABhMThTqpsh54gBuclLuiQJ8lt7Eig89Tqz0/8Amj8/URT40Z4GEf5DxcBgdZ+/suZicSCydPgs1k2Gbe+/IPWdWeoFs87sX4rm9ZhaAkAeRxRBbp6JrUfRm8b7w5Xz7ePzhoUUPpMLr26y8TGxcr4m3URaq5dvEn71ie+yR8v3j803DBjk+iDoBShjEmbVxgdl4m2bLVCKdJ8oEg6uBBjw/KvdimKjupl3f5OE6EYT6DLxXjQCUbUsEoSajjRcNlQJCGcf98iEnA13PvSnjgPRssgxS83JaXvMKCD2OQDEKEF/HUL4lvNbkOaTzLyIPFP9cBo5kHpIF4KQrRGNkPFEZ4n/FmrXRjg3VeDrU9sQTT+D5558PuNnAwIQyL7zwQmy11VZYunQpzjvvPEycOBGADfOtCQ2pbRB16aWX4vTTT8cXvvAFnHXWWc79NWXKFHzve98bdRB1xBFH4LXXXsM3vvENvPTSS9hpp53w+9//vjSjsJXJVKLSUXF/LKMNlBTI8odaZsaO2GbH/PeV/jmkEoXivjx8J5RyYQ0SKDRNBrwyU8IrdVtyufc80aBPgygPQxGg0TmXwKuCg2X7Wa8MkcY9SPBhPyUy5pkSqBkUeFG8r8ltC6Bnz3VK2c2MvCgEBCj8t+HihXn5Cj/gcyFJOvZOJTHlzgWuPc4X40beqmX7znbnzJ4HrobOAVJYuJjv0/POvBeRtqG2uVepqAlV/OzfywEU8dZij2FsvrxLGIb0wJgfV3NvGIBcRDEcVLkIJhl5bLI85d0t175AMOATSHi9Ox6uoXbssiRogzw+Kt93o6eBdGIa8Lwsab3I/YnvwExTsWLhvFuABW60fZYDKK8BJ91AL5SATCqQVQldbwCoo9ZdQ8/yXmx11ifx3Nd+2vT6jLbJBbcCsAO8mbc/shtvQuXgAwcAnqS7DjGvqowD1Sycl5kMUPZ8lgGpQhkhAqypgmTk/39EG6rxdKjsmWeewaGHHorHHnsMQghXt5A4WgMJxyVJglNOOaWw/Atf+MIa9UlkbVZP3GGHHXDOOefgQx/6ENZZZx386U9/wrRp0/D4449j9uzZWLZs2Rp1ZKzYypUrMXnyZNy63wx0CRX+qWqhQJ/OH7ArfnrdyHeUWcf897myEJQ1AjBNHFfnyfc/IGAyfoiuGZjMSw1wnSbvVaCMOeGUw8l8ZlqGyXlmUI82WNXI3AC/6cQUmc6wvNZwXhziTL1es6Bp/Q7lAArxs7isgQcsHuxYwFVUJF+27+yCsjd5jlIp0KMzTKxI9zBfOXNOvty4UB5Z96w5ATCccuftrn5f7+y5qN6+APU5ljdF7Q3ESFKBgGPRa0PvxfAa5w0BCEAU3z4EUWH75V4k/1tZ6Z8QeInSfvD1+DHxkj3FUGFWup0SFkTxAsKaqY5zLyyvUxcU781r3HEQBfiBEUDgCdE1w4jLuUwCA1aZMS4rDwCSPLOOsve48jgNumTGZJDSe174fggY+LT7oseEBn0a6GVSgUoraPTW0OipY/VrPVi9rGdMecsHahZEcZHTokeNe5G4N4qDKg6weaYiv9Ze0iAEWWXeKOoTJRGoVGG11pjzxzuwYsWKfnlGa2I0Jj3/4suDbn/lypXYYpONhq2vw22HHHIIlFL4j//4D0ybNg333XcfXnvtNadL2UxJvb9SL9yGvezLs88+61jx3Do6OtDd3d1uc2Pe6E9ktAcg9HADgEbv2CEVugdHlJWijQdQJBYY8i8EgHDW50Mq9p2HZyj9X4oQmHgpAQSFe+0rg87y7ZTNsAlJ6Xa/MQeLTGdwEgMTI10hGnTLyNmAJX6TcCZ5oSYybRmd+YF46fRZOYHdKij3zp6Lv/dpKGGJ6jyslEoBM3c/dCq7HmCzjjiQIGDVn1HWUvesOVGZFA8iigWWY8I/gcwiuVvl3CX6zAneRcBVrFvI37nF23LgxdfhbfJ9cm9aq3Ak/04DWZxxp6OQXkDg1r54L+cblXGgyjL5ABJa1ME25MWyRYMlTM0E3iE/iOfPkZiYbjInCFmsJJCh0dOwAE35Z5ALKcJYjzgMlPISDpm2y6X0Qp3jzRo3WG9UM+NldbgFIqpls4WojVAzKgRN3AvFQRkBKJkXLzZyZCISWZahTZ9HaRvj2e6++24sWLAA66+/PqSUkFJi3333xbnnnosTTzwRDz/8cOl2rUq9cBuRsi9bb701HnnkkcLyG2+8ETvssEO7zY1daxLPcjNLWa43MtI24YhDBhxWJCE6soHW04rJ3eFv9p0DGbKiTpD3JlEVeq8t5cnX/fWjmZeGjGQFyEhN3PfD69BI5T0e9TlzmZilPwZuk+64rbDPWOOJ2hPz9g/0t9qxsnAbD7PFYKNMAyvsI28n9DQV99v8vo7PdTt/AX4/DHybtlZvafH9zoFQWZ212Jr9zyzPqjn3iPhRAAJPVNn3gfC0/H75RCjkP5Hu1PL/uKbp9uPFyAPYKguPrxt8LwnhtXpux4kAZet7cD2yfDOTDc1rPJvW2nGYpk6dihdffBGAFft+8sknm27XqtTLYMu+tP2EP/XUU3HCCSfgqquuQpZluO+++3D22Wfj3/7t39ZIqGo8WNmfxRib3qoShbedcPgo9Crvh/ZSBc1KEAgpvZoxm1EF67AHBWWflQ2mMWDgGWWkIs1FN4nvxOvvUcjQtsc5Mx4skPeCe7eUIGHPUNG8LMTEFcypODEdGwBXy0woK94XKiKLoHbg5ncvhBJw3iZ+6ih0GcoRWJBGIoiVgw+EOihU/W1mXQtvK60zR5+3uueOQg1ADlBjUNXKc8WPJdYAo9+4p6jMykBXs8QDvr/m7TGgWxIyLCOPu+9ZlnuovJgslVqxoTXvjXVtJirwRpDHVtdM0D6J1ZLaf7OBVSiRZ9KxNusapmaCCRh/pz5Z4U/OySmeLOJimjxcqGvagSmR88Uq1RQqVZi0xdTiCR5H1rjhJveZc8r6A1PNQFJ8PvvTjuqvbc5JW2sjYzvttBMeffRRAMCee+6J8847D4sXL8Y3vvENTJs2re32ent7B92ntn29n/jEJ9BoNHDaaadh9erVOPLII7Hpppvioosuwkc+8pFBd2gsGWXXFJWQPelzDRMch8z604YKBQT9bLUso8XAhyAonEeDczwYWnBE2XuWw9MJG0JRNR2AK54KrzPLhQIsILKFRz1YIgHPmEQdZ4wRIODgwetNhR4t4kRRZp0UlgQMALqvjqRDucGLuFl8/7wGX33OXPc7B3A8NNlVybOzcj0uZ/u9F73aDCi8R8aJ9oDdP2XpcdDJPU38nayMHF6WBed/iwsEe++Vb0uUrNf8WJqNVxxwx55Mvk+vE5W56weAZUvmIEUIFr7Lit4JkhYAAK0BKKgISFFGLuBDdgBKJyH0eyt9KV236uacz4WcI8VDfJS9RyBQ5CEju58QdMX9yIzVkap0pkiUxIQN1m3an/FiBKQ65r8vl5kJQUvZ9SVr5YWK5WtUE9kTDo45T423J3WLm36IbZw7kgZtX/va1xxt6KyzzsLBBx+MGTNm4G1ve1tQyqWVaa1xzjnn4Ec/+hFeeeUVPPXUU5g2bRq+/vWvY6uttsKxxx7bVp/WCEYff/zx+N///V+8+uqrePnll7F06dK2dzzmjQEnB5qoJlPiyylUqpWmisEjZSLoqwjAEgdSDkAxvhSZ0Vb6wJbSsJ6ZRMoAoHA5AgJHMvIYUAmZOBuNZ4Vx47olqfQlZQDiVYVeFdpPp5JuXepbImVQgmblzDmOC0V9qBkLpHTDQLMyLlRqgjL9aJ+dSmJyogp95x6isuMzWWYH44Zx3pGBhn+7Ft7mAOjmdy/EVvfcgU3uWph7xHzfNr97YQknyZ8P7hmLrcwj1YwEzrchsOOX8RqJIZhpFhJt5eHyXKkWgKSmnWZOme4NLSvwY3JzXtuahqnpwANEGa3cq0v/G/pvAa3lEES0L9fvukGjp4F6d92+r6rbdiOyeb23EWTV6ppBbVU94F8GpGoXIjcw9QZMrQGZVNDoqWH6rSNfBH44rO+637uSLc3+R2Uq5mS8Zh4nk1ONPG6tQnr0rpKcDtBGFYTB2ls1nPfoo4/C5P/BAw44APPnzwcATJs2DU888QSWLVuGV199FXPnzh1Qe2effTYuv/xynHfeeUiZoO3OO++M//zP/2y7f4Ma/adOnYoNNthgME2MaXPFPvPZRzwLseuIwuxoNCwgpBoTvMcP/NL6ejpjsy46ZsmAVFgXj4BUPW9LCQHdMDB5KIM8SjyE5EnmHpDZTLSwth197lTCCWpyYKCEDx3y8GLdmGgfftCfdMdtbrDnLwCo9+kg1GmPxwKors4KOlMVyCJwMBcDqVT62l+kb8UH+gHiKExddLsDguT9ogw+OhfL9p3trgOvZRi+wmPyXj7v4SpelzLgU3z68mvL9xUTyMsAEw/V+mU+yYBvw48hHvD6E+Z036NQd6DRVNNWQDGvpQd4oEXbZjor6E3xd1ss2LiMvLLySlZFPQ/F1U0Olkypd4VnpdErDjFSP2MCva43XPjx7v2Kqdz/CNZKG4pPGinJJv49LvOSmaInkScTxSWKKLNyrQ2/7bLLLi7rf9q0aXjttdeC39dbb722ytBcccUVuOyyy/DRj37UJWQAwDvf+U789a9/bbt/A4pF7bLLLgPu5EMPPdR2J8aiqYqCcrW34odcCEKkEqOqxeKqkyP0NHGLAVV/fACX+p1KoAZolnZPoMZ7m7wHQunMPdQVUxHnmkKdSgYgxncj9ErRvrhHww3yDYOkQ6FWD1XRu3LpBe4toVp2JEdARs/VmgEU89hx0AfYgYnCgeSxifsbDOYN4zx0AbkeAmmisGrWnKAYazObuuj2XJcK0Dkfi3S5yLa6546A/2WPqzzMFmozFY+zLIQXc6V8CFEU1i3zNPZnzTS0bP9syJBnhwI5UMjCc889b3E5mVhHSDS573XNFKQQ+DyTZ73ydx7i03XD2tMONHGhTjL7HywPx/OyMVwGodHTABVUdh6VKNXf1DRM0kCmDfa86Vu498Avl+5jvBk942KPX8bcsYG0RdlzMAfTZeE7kjngEhJl25M6/UjLmL5Vs/PWXXddPPvss9hggw3w3HPPOa/UmtoLL7xQqkxujEG9Xm+7vQGBKJ4e2Nvbix/+8IfYYYcdMH36dADAPffcgz//+c+jWnR4qI10RWJeEY/L0zsVIB0tix/srSwOK4V6UaZwbFYSQUL1ksfJAygpRC7O6fkqbkbeMMxzZQdDXgqEe3N8+C70SNn1vHo6GQ32urfhwkgEroQSSCBRM9p5aLoZaKGK8rHV5sxFoiXrjz0mXTPO2xYqrPu+cFK815+yg3kqfdiz3XqLDkBlWXQuPTC1tQFjj1DId4rDfc2sLPxWXL94Dvg+4vBg3F6QiMA8hc2SGDgfzGQZwK5H2PfWgp9lgpzFdSxoEokC2BDJPVJKem5h/H8jQcxGrhhO/6ekakV7VaKcp4sDr0wbXwevn3gLCXGKvO1Q+8jKlJj81eitobZyNfa65Tzcs/9pLdsdrxYnyJjoWgFF7yXpfJFHisDtmpDEMz34UiwDNQMMGriNff36ov3zP/8zZs2ahY033hhCCOy2226BB4nbM8880297O+64I+68886CYOjVV19dKt/Unw1o5D/jjDPc5+OOOw4nnngivvnNbxbWWbp0adsdGKtW6VSoJJWAwNrMxkI4j4w4HfxBzwsnC9W8Nhg9hPk7mQU24YzfZdhVCHD5BxgHTD78V8y2su8eKMS8IyWswGLNaMb3IVFP35bzFOUlVnjtv1QKqIPmQaYK9f++sXDcy/adjU4lQArq3DNiAsDkPTOxMKU/TqBr4QKYuftZ8AlA1nw2l66ZAXmh/DkoAg0Ch5YvFq7nf4/b8YCm3CtV9EBxz1MLp2WQFUh9C0N1RY8Wrevfy8OFdlu/jYkALD82MkoecHtXpCtlyeb0/PWgI3Ne3DiDj2pmuvBaCXgqM9recWeQq5ZrW3/ThZB0FnqbjHZcG/pOxv/HFhTmWWs8zJirmgOA7u1Dn9aYsMGUfvs7How078qsWfkfbmFYLqyjJ5p4Q6lN2r6YpDCyxPK3ol122WWYP38+nn76aZx44ok4/vjjsc4666xxe2eccQaOPvpovPDCCzDG4LrrrsOTTz6JK664AjfccEPb7bXtPrn66qvxwAMPFJYfddRR2G233fDTn47d8gLtmKuszl3GTaxdD8NQW/xgb/WQ5zNXyeYlFAYAygcSKYQDJnS4JFZJledpXcACH+MGbJ9lVnYaOSDgA6MSQJqnoKd5BiD3sngw4NsJpQYA5CE0suSDByHtSlCpVpzSPHmnPJjyfeuJntq8D814QsRhUuzhSyGHujFoVmtcHTTPzqBThcYNN6Fr4W3onT03B43+eAAfXvT79Z4ny/0qcopioMq9Wxws+f2Ug7SyY45lDUKw7NuLt2sFzvi9Fm9Hx9WKE8Wz+Ypk71id2qucN3obYUIGC4EDzTNimw3g8TOE/oMm+P/lyR7uuSPdulzJnPe6WX9Iudx6rRrQ9Tr2vfMiLJpxUmm/x4tZEBqG9MhiQUwAyFT+/KISOqookVH2pGzlkaJEI5epLQXE4KjFA7Yss6/BtjEe7cADrfDqAw88gJNOOmlQIOqQQw7BVVddhXPOOQdCCJx++unYdddd8bvf/Q77779/2+21DaI6OzuxaNEibLfddsHyRYsWoVqttt2BsWpUT4mrGwOAKCkqqmsaMlWjwouKCwzTg9ZERFj+ILZ9Dh+8/QkNCiWQKuU8PXy7TBsnkUAPMxMRhz1huTgwhnpQfsCvKoV0YgKjM1Rhr0Wjp+FCiN6jYflWqiJd/zzYAau2nmcu5tyVyZ+cbwm+3TUY7ZXQk9uYBEHMX9rvvQCA7obGpDtuB+D1owgs0ODOH+wqZWn1edX6TGfArX/01yhVQK79w00JX96Gc6I42d+vy3WzwjaaARkCYDz02gwoNg9nlnvmePtUPJnzy3g/+fWMPZLFfhf7RuFl+kwWlwTp71639e7Kt28Wymtm5G0iwc0yRWzftyLJnDLS4r4IJa03S2fItA68LJKF5Bu9NdS7e1Gpdgyov2PdmgFYnj0Xy0/QdlT42a7nsyzLMjdjQFZ2DQjwthJaHUobiuy68ZidR9ZoNPDLX/4Sp5xyCnbaaadBtXXAAQfggAMOGJJ+tQ2ivvCFL+Czn/0sHnzwQey1114ALCfqpz/9KU4//fQh6dRYMF0zgZw/yRhkSgSDHE+NHi1ieejOL5JXgeJA0m+b/GGfz/ykEtB5dJO8UPG+CEjFFod4+AAbax4BdjmFKiQMMl7EtZEFgzfxs2TuYch0hmr00KPZP39gNnobLuNJJQrrTO6wGlnz32dT0Pu0zTI8aB50zaC7odFVUTBZ5rxEYTmTELiYLIOCr0wvYZDCexYMAMzbH9nNtyD54EH+vGttwdqtf3S1+JL8GscgyQMpC1DoXPN32o6AUngN+Dox8Cl6seLj5Os18wrFAKsc5IWeLM5zi0F3ed8G5g12oZzceBjIIJZCKEqBlAEoX6OvuK1ru0naPA3aGvaZopQF3FSzLx70qe9SRSRoCheqMLSXaQPdG1a6/0ey+LkWA16aAAee+pLrGrfZSsF+bVbe6FilUsGWW265RqriALB8+XL88pe/xMc//vFC3cAVK1bgiiuuKP2tP2vbD/nlL38ZV1xxBR5++GGceOKJrl7N5Zdfji9/+R8jCyQ2IX0asci5CirPjgEwqqTy3mvKY7g8ZZ8/XJvxt+jhHD+EuVFYjwAU7YNKMvhsIZvib4U0vd6UJ5VbLakk9x7Rb10VFWwDIBcptN4uw8ArHzRTaeUYZKq8Snj+UmmU3pz6YrGU1m5Tz+2gRR4jXbOZhXLBrb64c+7paFVYmA/w5A3hZNeya8TVzFVeqFYxUlNy2wLn3eMAx+7Hvvj5Jc8Zly2Iv3NuW3w+AQoJegkKd56j9Zy3jwG65uekPDxH+yvrC/dOuWV53cMy4/cn57DEySGx5EHBgxEU/G0ymLL/QLPfAeQq5/0Rxss9ZM20rmy/Ig90UvGeFwJXSQWm1hgxb8lw2YQjDgm+S3ZdC5pQ5EUypnQdApexmRKJCn4fcS9fuL+RCudlQ/Iaz/a1r30NX/nKV/D666+3ve0ll1yCO+64oxQkTZ48GXfeeSe+//3vt93uGl39ww8/HIsXL8brr7+O119/HYsXL8bhh49e6ZPhtviP46t+exChaxrbXvDpUephUcIgHkTssvLLXTYIZMEDWrJjFa5kStxmOEu2gIRq1CUdyuk6SZH/RoU8hddXEsr+7oBOT8MKItYM6n3aheuaDqLKt83T2vkD1WireE36P+SNavQ03P4Ay8dSB81zITfOQzJz9wNQ9AxJIdwgzwnNFPKkFOuyWmBcVkKmynmnACvpEKf1c+MaW5ZHFYb8/Hr+vWzsjxXDOQHda1HxtsP9FAFe+XUqA3JxH+P1m5lqApzIYo0gPqiWD8JhcVsKA9OrGWhqBoS8qKNvlw/KlE1HpWnKwVQ4yeEK6dJ5Vug3v65UEvXVPah392CvW84rP4HjwDjI5WLBoYcpnDgCRQHUZtcn3lfZvTTaJV7MEL3Gs1188cW48847sckmm+Dtb387dt111+DVyq699lp85jOfafr7pz/9aVxzTfu1Jsdnie8RNqEEKtUUMrHibY2euv1DKbgH32hn6AUq5ZA2AyiafcV95NvIVLHZl5/N0naO6Ko8MTeezZXpacUDWKZFDnCkyyTSNQ2p/WBH5WdcllFNo14gllujZ6LRGVDTkJ0VJF1WhbZvZV/ejwyqWoFQIq83ZoLyN2UlWuiBbHRmM+0qElLnop5z5hYI0QQ4TJZBarj9UltFImzz68H1cKjcRX3BrUgOmofe3kaB38S9Xqn0IdLktjxLkJHO7fphGFCJYmiP1qP2qaZgnEUXe4p4OZxYoqCZxaFA6ktTr1Wj+VDQDBABcSKF11WLB9pCBlagdl0M85Cnt9Rz64BYueYQWKa2UHkJGErSgHSaVRz0mQIp3kApFegb8f9svbsX9e5eVKvthSnGinUd+QH3mcu5cH5UGbCNAW/ZhJLAbbOMPqlklABQcn8NUrdooJZhCIjlQ9KT0TMut9SuLVmypMDl5rbddtthyZIlbbc7IBC13nrr4amnnsLUqQMraLnFFluU6jCMJ+Nxc8FmegaWqCyTCjJjoOqqQAQeLRNS2vAUfPpuUFtL+8KohYweJYJZSqaLdaqA4kMk1JbyGX78IR6TNWVKfYPzbFmlcw+syvZFFqfLKxGqNjv+muO7hJo/vKSG719Jhk/JgEnkbp2FXhvAa0TxzEEAQCMLOGSOf4NwEIjFHPnv1cMORtZZQeKKN2eBByYI+wirT0XeMup3XO+Pnz/+eCXPEwdRABe1ZKKnAakdbj1uZaRzvk0zADcQnlMzj2TsTcrXLnhYbQd1U+9S2SAsUwVRIrhrUJQGCftUDtLs9v6eNSjybkKPSN4OFTKmbfP7JxTftH2qvbl63EodlAFUMpI94ARyWu7WSVVwXWhyF3sH6bN2OlJensKtE2VPSiWgxNiRuPlHNy631K4ppfDiiy9iiy22KP39xRdfhBxgwgi3AYGoN954AzfeeCMmT548oEZfe+21NSZ/jSUjwU0ALrNGpZX8NwltTCAZYMYImLJEyswVVS3LNBFaFkKA3FoRNv06svBwzyL1ZP5ZKgGkyp2zIHXcgSAZ8IFiI2+UzjIkUgahQX4c9ADMdK5bVddA3feTQnnufCgJIAyl8PZi7wcPi5FXqGYydC1cgOUzZruyN9xCQJtB5+c1u/kWJIcdXBgADKTjatFvXHuKn1cD5IT7PLyWZyqWeYLKuFAxUIqFT8NsulgHyl8bfm74cu/1KssoLJc6oPUp644DJi5w2IoEDLABVQnomt8GsNehLDTtvJDaizbydcq01LiXqD/Zk1ZZeqQRxb1PVDQ5rtNZpBoUtd4ynaHR3YNGb1/LPo1Fm3j0h4LvXJHcad/J+BwI54Xy/w/mlVIqEimNJ4ZZIZSnElko+TXS1qxWZLttvFVtl112wW9+8xuXEBfb9ddfP3ximwDw8Y9/vO3Gx7NJRSRy4cJaUqX5b5bH4AX1VMG7MZIWu7V1zSBTvho8PWJkqgK1Xhqk+bYmGuiLvAAfcqPv5AEDQl4CEOrvxG0QWFKJgpDeQ8RnlS4kUvecJJeplnOH4v3x/WR52EYz0EHHFlvZw5Qb96jEtefot5Uzrcp4jzao3n673ziXRnD9pIdZw14fqQSgVIGEHheTJuAqU4VGT8N5LsqMSNb8O4ERE4Eg76GyXqkyHapWSuYxWLPdb+bRQrCeBWso/MY9bVJHwCfavwvLojmAEVJCpWFGrWbn1J2nfgBQWRJGvC2JacZ6c6EEQbgfKW04jydocHHIeH/xoJ5pg1iEzG4noOsN1Fauxsx7foA79jqh5fGNReOTnPj6BBI0UZgPYNmT7Jq4+0UbVNIKm3R5mQinIo88+sA8WsRdk6mCGiHdgAyDD8eNdwglpWxZgq6V8+bzn/88PvKRj2CzzTbDZz/7Wad6rrXGD3/4Q1x44YW48sor2+7TgEDUYGvVjEcLXb0Rd0VJZPVG/tmThf/39PYrQA+HEQdHSEuoJk94pbOSSzSwQYRd2ma1qQrtR+tRW/zdkT9RdK9bQUkJBeVDJAAyY0dTF5aQebo/cpJ3zp+i8J9MFZKqvYUpy85+No50G4ZvRAEYxsRvbpo8ZSWAASBgAcShsNLSMjk5Xczb34EA7l1ZfdXvXAZSocgsP5fMi8ZDsGFmWQhSXQHdHIzEs1EVgC0fqoukxIIsu2LZF//bmlgMpuJjaXov9gt4QmBlw13c+1QWJstBugyX23NcBFAxcLLLLJeGe4piAFUM2ckCb0so7jk1yJT3jsdhrrLnFABUqnbyV3tzNWQ6vmiw8QQMQPDMoGcJtJeZ0CWKDq4uHrsmQglAFz2Bfj/hM4yW8QmPVAKiRH9trQ2PXX/99cH3er2Ohx9+GD//+c/x7//+7y23/ed//mecdtppOPHEE/HVr34V06ZNgxACS5YswapVq3DqqafisMMOa7tP4+sfNcJGacOVzjRIGQaANKmg741VsJl5dTeYjwVzD30Gfo3OsPLy6zHx6A9BKjbgMu6Nc5EzNO88T242Fw4ecVmZeJuCKKHWDvAYneUqwhKZ1m5w4PXFMiPcTJAy7kjFWdeMK3FDxwLkYdVU+eVNQowEPCitOfaiFUKEOQDh4ScCE/bVBEDlVjn4QAtidWu3PB84/MDASvhom7JO4pz2tGaB9ERw3EyMEUDBOwWwEj4RGIoV4OOQHl+Xmy/5M7i5b2mtx5LlgL+2vIwLhbM4B43uWwqVAmFISKXSTYx4+KisP7HxTC8+OHMAVdiG8Wso7BRmBgooKdDIS9QIyYEAu7eldLQDT5yWDjiZeh2N7l7MffSnWPDOTzY9hrFik445NPhOoNKbf+rE54xvI5Unj0uEzwIS4i1bxsPqQMT/lL58D0YoCPFWF9sEgA9+8IOFZYcddhh23HFHXHXVVTj22GNbbn/22Wfjgx/8IH71q1/h6aefRpZlmDlzJo488kjssccea9SnsTPyj0GjFOFCzD21PnMCVFJJqGqzYh4jZ2WeodhsiKsY0ipTN4+3a1VaJhj4c7c3SvqjmxTJ5p6hsjRyQYANxnnQbN0zgXhsMjorEH/jgThWbKd9x+Ggspkwmc9IKz+mMqOwRH8WcHKih3zcng8vheCJHvrUVgwgYw9b/N0Wfg775cFVSApvFeorA2G8rfgzb78/DxQH7O1aMzIyAShusbJ1sa0WvzUBe9xC/lOzY14zAjM/znp3D1TumRrvxv9L4b1vl3lJhNbXhsKo8TL3udm2uXdL6hEilmdDULZlnIOoZrbnnnvi+OOPb/r7o48+ip122glSSuyxxx79AqY///nPePvb345KpX+ItDatoIlJKaGSCmRagVAKMkkgkwSVagcq1RQqqSDpqto/UarQMWXNa/kMpTXTqikrvEtWSAVmmjixl0eyGRp95gMaaUjFxFggHDy4UjRAniaVzwRDjSeqVs+J/nbWnYfiSjINOQE4BlA2pON1YKgSu8lsAWPOS4oJ6DLSN+Kp+P1lkzVuuMkdXyudq1bLuQwFL/hM60h2XK3a5uR9Civy804Wi6TSy4t2lh+7EmGGnV+v/5BfM3mDsnMTH3tsZerkJrpn+P0fcAJLaAyC3VvN9snXtesVPaGuwHDUN9vn8P9rE1ps6DomlvNj8G0ZBqwVhPL/mXp3LxrdvU37PJbMZx9GYF+FWl8F8eNqpeBNAoolXGQ+SQbs9aCXSvyzSOTPd8naj7dda6NrPT09+P73v4/NNtus6Tq77LILXnvttQG3OX36dDz//PMDWnetJ6qJxX8aIPdMpRXIpIJGrTdfz57CyijO7vqu+z065r+vsJxmz33X/T5Y7o/LBFyCWB2ZltE4xJfFwMg9cCKviUSYPaUSZetYsXT+uKI6mQv7BX0XDjhxVzyFcGz4QkElEo0e5O1nwXr8sjoQ2AgHMQoZ8WVCiUIYrnr7AgBA96w5BckDbskHD7IJCMgJ/joDGjlpOF+nlbdDpgomFwiNzwUvAE3gSuSAlvPfyLyERFYysIhSLpgSzNNUsfsgqQO/DoXwwJaFx6EzCvVl0TZxOFE0BZr8eNbEA8WN7sNm596U3Ot8/8SDIsJyLKhZ2vcIQMUyIfZdulCe0caFoWJSug9L+lAeVzK3siZ0vRV0bw21N7vbPU2jZnR+m13vZoK1QD4xS8oz6uLnFr8GcXYwJ6XbcGpI+u+PlzdUZpDBDNKVNNjtR9umTJkSEMuzLMObb76JCRMm4Je//GXT7bIsw9e//nVMmDBhQPup1QZeKmktiGpirQqMZtpAE7E85xw88pGzRqpr/RoRy5sZD1GR8KU1E4WOrGtcoVy3ic/Kqd3wd8th4N6ASqetLq9rJti3I85GgAfwwAtKgfhTlGnFjQAScSAIIMUP4NjDoAKhUa8yHmZHMbmDfMDnhYm7Ft6GOAOPG82cM+M5NpkOzxeV8JlwxCElWZL5vqMsSO2uI8lGGKfD5Y+nGPYLvGv9cDqEEkjyQdzkhZWpCLQUAnVjIk9U8d7zv4cZjkAxjNhsGZ03Csf2523j5kBw5GnioS6RVhxZmc5zkhTr1xXu80ivqZXFACrm69F1ooHb9i0rEqJLjoFMpRXXTqZDaU7K0hsvFotd0rG4cx6sywBUEnKdWklg8LA3t6IYrsgzacsJ/MNt2RCE88a7wsGFF14YgCgpJdZff33sueeemDJlStPtZs6ciSeffHLA+5k+fTo6OzsHtO4agaglS5bgZz/7GZYsWYKLLroIG2ywAW666SZsvvnm2HHHHdekyTFnRM7kacMyD2+ZegMkJmlqdSQTBnayh8uqhx2MDLnUAkJSeOyF4hanSMdKyJSFIqRAo7fhlntwEZPMfXYSLWsGBqhGHLc4O5WTvbn+TqYEVA5CKDQjlUClWkGaq5WbHEwQU83oDFmt4QZS68EJycT22GRL8VRVsXIO5IEKLM/AK7O+636PCUccks+MNTLlQWC8NzqmIERT017qIM9QBGxZHCLD6ppmYMpLH8TXqSAgygj0lO1E58hkGRIlXVYgB1ySeY1aWTOvUrPlcXHrmNxt/3vlHolWNeL6I4UDoaeDBuKm4pmU8aVDgNNqwG5mQQichHKZRILvn3HFhluZkB5EZcpAJjmPU0roegPv/vXXxtTErz9zwEUhkJNpxnfioXr6zi3TGUSaT65MhiQtlsjiky9FXsZIYV4oWXxwrbVhs2OOOWaNtrudy80MsbUNoRcuXIidd94Z9957L6677jqsWrUKgCVuDUZNdCxanD6sqilkWoGqpuhYdyKSCVVU3zYZHVMmjmIvQ9I3cYdaASghfSV7q9FUzjkQMkynDt9bP8SbewR8GRmnoUMzbucet79XmHwBmZdfkEi6Ejfgk1Izd68TR8sdt4oHJP+AJe4DhcF4CIfztlpxYPqz1Vf9DkSQdxpXJQJ+nEtGPCXOIXPHK722TZlEAzehhAtR0zly3JKS43JePCEKy8jqRMjOwRDVDeRGACsARWx9d63YMtpXGeeI+k8curJjdveX4l5WuPMHlMtIcPCTVCuloq/cQ1Tcb1nh4zgMF3IFm10zvg8O1oJjLCR3eP26mPNFZoxx4Gr33419EMUBKpBnzyXKcZLiF+CzIqUKuY+cd8m5aWRx2auyvlAf/DYjJ/9D2XmDfY1nu+mmm7Bo0SL3/Qc/+AHe/e5348gjj8Ty5ctHpU9tg6gvf/nLOOuss3DLLbcgTX08Zc6cObj77ruHtHNjzShbT6UVRzrvfNvkMZXtQoCqlQcqM8WSLjxUAqCUS1AckGJCtwVGYZo3+8wGPpd2XOCR+GLHPNVcpTIARHEGnUolVCKdXAGAAATG2/mQSTHsF69LPCgCIsltJV6oAVr3lb91XjOVqJaEf133FeXt8dljiT14cbiJzK8vc1Iy0+Ui8JS3RQArJusCnmBP2wllwVIifaHnwKsnhP1NeIBE/eTAqQyI8wEuBkJlg1sMlHgiwUC8TrEMCD9GapvfF4bdW2Rx6RAasIthH5FnlGbBf6dZRl4cJiSgEHhMpAwAli8fw9pPE1AY3NTqyLSGrjfQ6Klh12vPbHmORtOyJiN+GQ/JTwxCAEXGARUHXJS00soGM3EaSqNw3mBf49lOPfVUrFy5EgDw2GOP4eSTT8b73vc+PPPMMzj55JNHpU9tg6jHHnsMhx56aGH5+uuv3xb7fTxZprn7WDqvR9JVzf+EoydvQMU5Y1BRZlOOD4XE7OBoPH+IMlPyh0pYmiLMhikb0HxbsjBbJ5DC90EPNCAclDx5UzoAQKBDJXkYlROsWb0wPqDQQ5h7XQAK00jnEerPuP5SK9AzUFt91e+c7lWZ8dCaruuAB5V2JahUKzm/yrjjqnRW3KARh61UooLzReCRey1j4MCBiFQC6cSkcM15qIv2T9IJ3ItFIDQGCxws88zAovcprI1YJizq+xP2O/YOlYGVZoVsm3kZygb3eMAu608r40Ty8t9btxNoQzE+FGBDeJn7T1gvlanVUXtzNUy9gem3fqdl30bDJn9yvvscEuXjMC4niAvIVIInnJSJm1pvllUkj72BZTyoGMz2B+yHy4hYPtjXeLZnn30WO+ywAwDg2muvxSGHHIJzzjkHP/zhD3HjjYN/Nq+JtX0HrLvuunjppZcKyx9++GFsuummQ9KpsWLxg4gIm/THSbosF6pjvckj3rcpxx+GScccWsioA+wg3cqE5DIF+QxNhgNVSF4N9+EH3SIZU6Z+Jujbki5TpmnJCyWRdqVIuxKoRLqMnEq1gkqnfdED0nmTWImMVrWtqGSDDV1yr4EIwiJF3o10AGWo62apRDn+VmxEMKc+ecVxmffFhzDp3AQaXuzcJlUPrijbkbxv9rz580LAtpCdlCqYklCH80rlwqZSCSQTE3duVSqhKlbOgYewOMhz5zn3UlowFoZmORjixxgPoLxf8XHScrI15S2Vhw/5BKBcFqG4rPmjN+YWGpZwwZ8/cYJEmXq5UDIP4dksvUDyoV5Ho7eGxupevOtX/9a0P6NhMR8sPq9lQFoqP+GK1eBdPcJcxoB7Wm37oVRGTOyPjSZuIxnOW2tAmqZYvdomRvzxj3/EvHnzAADrrbee81CNtLVNLD/yyCPx//7f/8PVV18NIQSMMVi8eDFOOeUUfOxjHxuOPo6a8Xg8L32TaeNCeDKpQHR2jUr/dE33O8PlFnAqchVk5z3ohwfAtyOjLTggCwZIyj5rQu7kfCOZ+lBFpbOCvhV9+eBcLKVhB/2c0+VmkzJsT1kSqNHGZdVkSrA+V5wUAlBxA5IraZOvp1iZjFYZm+3a8v+4puXvVPKGk1sFk4LIjMk5Y5IdswVMuhZxYpQlsRNZXRbAiARq2oZNEwKpGlACjRtuQh1WbZ3WV7mYquNS5e2F/LPcMwhj1dTzWn+xN0ql0qXpG1jQV+9tsGMKARC/GzkXkOosBuePvQeq/E0I5mVhtUybQsIF90z09//jg7mJBmNXBYBd47I7rOy/GdfS4+E8e238tdBR4eH4PjYs23isWBkPjKwsYxYIPaOxGZNBKTuhis87ACfF0qwvTfupJMQIxcjWZucB++67L04++WTss88+uO+++3DVVVcBAJ566qmWOlHDaW2PCmeffTa22GILbLrppli1ahV22GEHzJw5E3vvvTe+9rWvDUcf8dxzz+HYY4/F1ltvjc7OTmyzzTY444wzCloOzz//PA455BB0dXVh6tSpOPHEE9vSeygzoWw2nk3Lb9jPxkCliQ8jmZHNzljvMx9mIZ5QaA7wIb7+jEAPWVkmS+BRYoOHVNKF2GIeFC/iqXKgEhdipXY46ZNc7ipRSCdar1Q6MQ04C+StqHRWHLiK05mtAGoOqiikRzNR2o/jZpEnSzkAwT0YfDDmHqLhNg50XDkcV0TZnnvulSAAQaE+Mu5xq1QrEbgSzrNHHiiXpZiHrTvmvw/Vww52v5OHiZPR6Xw5j1ak3xWHU3340Wdcxtw0wdqOzwu9iCs3kFA2F4/lfSmTvegvXMM9E808WsRlI+AUAyjv8Qw9upx/VtZmmcV8KH4cAGBqDUc2FyoHrAw00e87XX5aafujYZzbRNbMyxcTvTNtYEyGOKzdyjgAi88/56IRry2o7zlCRoLAg32NZ7vkkktQqVRwzTXX4NJLL3XRrxtvvBEHHnjgqPSpbU9UkiT41a9+hW984xt4+OGHYYzBLrvsgu222244+gcA+Otf/wpjDH784x9j2223xeOPP47jjz8e3d3d+M53bDxfa433v//9WH/99bFo0SK89tpr+PjHP44sy/D973+/7X3aFHnLdXJ/rlzaQCV+AMi0QdbXi7lP/AILdjh6iI64uU3+5Hwgn025B33uaYlnzGUWz6KbcQyC7/Xm2wklkNW9AB1vg969uKMvAsrbL5tpczCga34dKfNaekqh3l23bv/UhyIzFbr5g/Tk3DSYZ4M8VaxCO2raFRi15ywktY+ECRWGjqjoMpGSOQAhD5tQArrusy5tO9LdH1ChHhb39Nn7WnpBwXzA4sVcuWq9kL6uHBkHcgCgoQMhUJkqmJp2oEEwcCyVlbGIw9Nuee5p4sBWIhxUY1BHfYr7SdsniQhrL7bh1W1loVcoQzz0O7AYbFMMy1Mb/P8WZrf6FqyOmgyeS+4eyb1S5PFz22jLjarD8j5VMnZkA+NJUTMAxSUm4nNNkzINOP6TYP8VHiK1+xHOQz9QW6taPrK2xRZb4IYbipPZCy+8cBR6Y22N/zXbbLMNttlmm6HsS1M78MADA5Q5bdo0PPnkk7j00ksdiLr55pvxxBNPYOnSpdhkk00AABdccAGOOeYYnH322Zg0aVLb+xVKuvp4gJ2xUTZMo6cPKk0gkwp0Xx+GljHT3GLvEQA38MWz61ZtDMS8NyDMduEEZvq9bB+BSB7bntSX4/Rl23YcbvLeLAIItG8PFCwnypgs8ILEyupKecI8fyhLlYMHUDFlBIOcTBVW/eI3AzpnQ2XdV/4WXUd+IAhrZe5YvMIycdlII6rR03B9BuC4Yo3eRqC0DHjuTTxw2BCdBZGVTmkLOkO5bMng3KiisCst46E+JzDqgL8MtrXXJwfdUDC64SQcJOBU80lQ1faFOEKtQIj3fsWTBqEEhC7y+uJjiY3u97L7tz8ryx6MQfFAxDtjDwgVH1YqVN+O1+dAirxSje6e4Dk31oz/d/kylwlZUu0A8DyohJWBseelKFUQA9eyPvjPId9zpICUNv5/MJg21trQ2oD+Oe2kDn73u99d4860YytWrMB6663nvt99993YaaedHIACgAMOOAB9fX148MEHMWfOnNJ2+vr60NfnOQNETpOORB7qJNkZsXFhvUR58c3htredcDgyFZZdIaOHb7O04Ni4aF9ZmIDP1Lgr2+7LAyQ7yEmYPNRkFckzvzzSViFPEuDBVCsj0njcRj3ng7mwkQm9IADQ0A0HMny6vnFgI+aIQWfQNe0BSC7G118K9HBZ95W/xcSjPxQsy/L+a517QWn2nHuV+PVUSfEBT6nu/Dw53h955dw22gq4KuFAGk/Pp305Inp0X/IwX723AVKZ58AJzsOSOY5aZrxiOAFE0+vXQwI3GNL+uKcuPN6QyM6X22NvzXexx9E8I67Ynj+XwbqsyC3vj+f3eFBc2s80JIXHfXAZqTr0NPH3wHOlzZgGTnTdY8AJRFnD0v//YzI5TcgMvOwE0ERUGM2vswWnkV4eB7EjBKKGIhw33sN5Y9EG9C96+OGHg+8PPvggtNZ4+9vfDsCSupRSeM973jP0PSyxJUuW4Pvf/z4uuOACt+zll1/GhhtuGKw3ZcoUpGmKl19+uWlb5557Lv793/+99Lf4oQPHqbDASanUzgBrDZja8BMzuaeBD3Y2JNGaFzLpmEMBWQydlT3QyQhAZar4xyMgxcMNVCS13ttwYImrK9NDznF84DWdAgJuNBhXOiuWlNxiMIv77vk11hOTdiUBANC1EOS5TB0GPPojf4+ErfrFbzDpmEMdpyscJCPCfa5NxMNJjnPGZCtMIt055Vw1V58tDcGB9Qx5j5jWPhxoFdNZqRLyJjGvGQDIunYlf8pqNPrvEtpoVmg65231NgqEcA5yyJPG727vkeGemShRoklYh9+DcaZY7MksA2llA70b8HXGzo8/T60AXXzMsaI97xOf0IV1+RSoZJJvT+VcKRUkz4ymbXzaUdDRpA0IPX988sSfC/zYCdwrFYaubZuh174MvLrrGpdNKvECrrW3rg3o6t92223udcghh2D27Nn4v//7Pzz00EN46KGHsHTpUsyZMwfvf//729r5mWeeCSFEy9cDDzwQbPPiiy/iwAMPxIc//GEcd9xxwW+ipIRElmWly8m+8pWvYMWKFe61dOlS25YrjqudTpRMrcCmKfkzmXoDcx/9aVvH366pRAUDJw2QBKjoAbPy8uv7bYseuhxEWKVu6X6nz62kA/jnGCxZkniYVkyDhSdzS+ZpCkm/3GICvVTSSQ9UWHX7WLnbSS6w9PmY5MvJ7R2TO7D8P64ZEwAqNjpGEhQl2QYAzttGpPtYK4eORyjhrjMHXc3KYwDIMyfDxAGyphlNDJDQtab0cytXoZz0RBDKUj57znlBpd8+zVXqy8IvnHROIRypPHme+hUTx+Ni4wS2wzp7mftPcB5fTGzmy/yrXFeN94fvp+z3shCd7WscMi+Kj8afhfLHa+p1u1+tx0y6Pl2rWGE8oATI4nsZEC2cD+JGuZBpeB+VeReB0KtHWlt8+UiYyTLoQb7WeqKG3tr2515wwQW4+eabg2J/U6ZMwVlnnYV58+bhS1/60oDb+vznP4+PfOQjLdfZaqut3OcXX3wRc+bMwfTp03HZZZcF62200Ua49957g2XLly9HvV4veKi4dXR0oKOjo2UfgvR3JaFrDUBJyHwWp+t1KCTIRiBLj8JRPGxDgIK8VO1a2Syae6eM9sVey1SY3XaSBkD/0Jd5KKhUU0oJiNSG/yww8Cn8vH1K0QfgCPQV1ja57GG0GxQzbRyp1O1LCphaWPg39qS9euF/rdE5HE6rVCs+RMfCHFZ4NPIc5iE9e178tdrgi/+CRnT+K50V25aOEgUikBSLp1K4k7xEjZ6Gb4t7c+AV6U3sNWO6ZEIJ1LvrLhypEolGfp/LVNr+Gc+Bq3XXnPeJ82J0TSMzmQtViqjAM3mrCKjweoycgO69ZSZYJ7ayUFM8yIfrs2SAfjLHmsknlJV6KQNXZcDLAwENmdhMTVqHvFGjbZt97WOuqHYsD0H3t+UsWimSAvdLiYJnIAZKOn9Oc05gM/AEIJi8lXmdYr2u4TJbtmWw4bwh6sxac9Y2iFq5ciVeeeWVQqHhV199FW+++WZbbU2dOhVTp04d0LovvPAC5syZg/e85z342c9+BhndzNOnT8fZZ5+Nl156CRtvvDEASzbv6OgYsjBjOKPJZ3J5erBG3XqjHv85Fuz08SHZX2wvnfdLTP7kfDewaU0eCeaV0uUPZspS40YDU8yr4OExzm1q9qDhPCeePUSeBQuCyIviPUXk/eEFf+PQYjyTFgow+aBN/CACkJn2QpEiB5ZERndZeqnl5/D9Emj4+8W/HuilGFF7/UdXY/0TPxKAWTvoF0OzBj5cGvNFOiZ1oG+l5f9RiI/WpQLTPIzBgRgBHsuLMmj0NHK9qMyBd5tRyUIvQODdJOMAgTyJJAlAEwL6jfbB+TFcpDQOBRrYc0QcPVoOWI8a7QcAhDSF8I7PEmw9ISrj6Lj/jyzqFXESfRyupt+sTtfAiMrNMtZc/xiRXCgFU7flXlxIL58AjnXjemP0XcKDv9bgNvKgmgxQYegu+FwSKm7mAXQSB0quLUA8wnb//ffj6quvxvPPP1+QMLruuutGvD9tg6hDDz0Un/jEJ3DBBRdgr732AgDcc889OPXUUzF//vwh7yBgPVCzZ8/GFltsge985zv4+9//7n7baKONAADz5s3DDjvsgKOPPhrnn38+Xn/9dZxyyik4/vjj1ywzr2TGERPIdb2OoFr6CLh2fSqvcQMeDy2s+Gn5TUQkZBKgLCOg9/dg5mZDi+GDzZgMSbVSELOzJT1CTooLc8gw3MHXc8TQ3EsEkDs+L7OjlJtFkheEb0Np+3T8yEOHUgpACjcwZzrD6z+6ekDHPVrGvU66pt1sm4NOAoVpVxIMMoLxmTqnVFHrrvswiAMmifcWVf1+AO/9NNpAJdKBJaNNDlQ9Ud0B/DzkSEr1BMq4R42DQv5d5VIMKlXWmxh5xtKuBLpuAvBNv3kCsG8nTohw+9LlSRWAtoR9dv+QybTIv3PH3Q87oln2rJMo6SdMSp5w357PyCusG3t0pfc2UThPIkEmdYFfNZpm79kMQFhc2gJb473OQDBh4s+ipm0PJOux4NkKPVAqreQe85E/X2uz84Bf//rX+NjHPoZ58+bhlltuwbx58/C3v/0NL7/8cmk5upGwtkHUj370I5xyyik46qijUM/j6ZVKBcceeyzOP//8Ie8gYD1KTz/9NJ5++umCKmmWuzeVUvif//kffO5zn8M+++yDzs5OHHnkkU4CYU3MZ+YpxxmgFyn8Jl2dCB7lI/wwIhIwDTpTjj+swOeZ/Mn5aIBqqBWJtXwg5stjbxQtl9J6fBo9XgUaSkGw9PfYi8Rn+nwZyQs4EmienUUAyXrLiEzrxTXrvQ0k1VAhu9Ipg/0Q+CKARa57oaQl46uibtVYtZcvuBIbn3YUAEa0Z9eeXyu6FzjJmw/8HBhwwjiXMCBw7om1/h6w60nnzeqY1BFIUPB+ZDrLQZkFRPXeBtKuNL9/Gm7flWoFDaZUHnONQi+ohMjlLMpkBnjImwMtWtcdi/LL+XEreA8d9SXohyoup++xFyqU6yhm1kpVJDuXAihV7qFqJrBpP/uMMhvCS6LfrebdWFErn3buceirUVam54LROXNZdszTBPhkh1YWFzpvlVATbldyzglIjbCtzc4DzjnnHFx44YU44YQTsM466+Ciiy7C1ltvjU9/+tMuAjXS1jaImjBhAn74wx/i/PPPx5IlS5BlGbbddlt0dQ1f6ZNjjjkGxxxzTL/rNRPiGgrjMzviEmSqZPYzwi7ygWs+eUI2AMcL4NlxlE1H32MPAC1vNtvzD77wicZTiANRS2o7IoUKaUUjlRSMU8OKCqtwwAn0oBjvhbSVHIk2CmlykDAezHN3PKmevJI0EJAnsKy4MZ0HApaZ8zCVP1gJFGRs8AmI2cQtycOynLBf1AmzA510YV4ZCnE6L02ZdlixNp6uh7+XicZS31uGvShcXaIdxMOCZYAJKHKf+MDeypoN2qUaRZII7UWPy0AHc+d9ktJl4cWUiNGwLb/xiQDgOMHWNASAZeCpzHjYNHjuqNZyLrxd57VrcX4452ykvHhEDh9sG+PZlixZ4hLYOjo60N3dDSEEvvjFL2Lu3LlNM+2H09ZYKKSrqwvvfOc7h7IvY8q4IB03KpfAl1eqHTAEHEboD1Wd1BHUGLO7Lq9SD9DDhaUI514el5kVcQOEkkDdczz8bwzs5A8SPmhLJYCSbL5AkgEA135SShUecrxenlAClTTJdYCMa88P6mw/eRvaaEd8znKuSWZ8WNCF9OrtCyaOlr1w7i+w6VesKj55c3TNQNdtmKw6qcPVqCPz2k7aF3burAQZaGE2ow/TSkb+JuPK7WFmlAVwzvMjBYwOZ/4Esvg9akzmwo1kZaExrj9GAEmzcKHOkXCcrSVMFrTFyeAk2JpJkr3woDDIBFPF7fk+Ymsm7EnvpUTwfjTe4m1agaeyQZ28TgAAYyCltJnGNS9R0QqcDJeRd5xkWkgfTCo+4QqfN/Q7P2fNvH/2e/n1523GYTuvzl/kg7p2k8q44JX9I9l6663nuNebbropHn/8cey888544403XGHikba2QdScOXNaSgYsWLBgUB0aS2bqdUh4FzifBVLpF/7Htr8Nb4aL0QaVtOIGLQJSZZlCZLHODQ1SIi1uY7k3DOCwsEb84LaDOAJQBYTcDxkNRBS+8651z4GSSQVa1+1+EYYehZSQKRxxPlYp9hljEgaNgGBPnhLAPvgs4MtnvqbehBczNq1jUofLSCTita7lMhIpv1ZeAsHoRl7rzl7zTGdIJyIAWzS4U9hEpSI4byS2GYbtih4j7l3yfCgJ4sJxjhqBIb59QgO99PeUUvn6VNsw92JxDp6re6gEdL0GnsxAIInao/s4LhFC4UH6DoTZm7y/odetxPuRg/vif0Y5T6vbNx0reVH7ydzjJtOK85z455MqXBvyOgklIbX0pWCUHHHvOQC8/eITAMBmjGrk4WnlREnrvQ3kzEcWdisp/ZIDqWbK8lLJwPtdKJUDFJbHoWOlZACY4vI5I2UGg8+uG++Qb8aMGbjllluw88474/DDD8dJJ52EBQsW4JZbbsF+++03Kn1qG0S9+93vDr7X63U88sgjePzxx/Hxjw9PVtpomCtYmrvAgTAWTsU8da0efB9O2/QrR6M3z3biD3X+x2im6WQfJlZZnA8YUsmi5op7IKmAvBkrQlPqbwAi2aDIU8oDoJaTSjjwoT4aGrxSBeSJF6RSTf1wadk6fKj52l8V119ttPNGUR94FhknZI8HU9UEycQUpqbdLJ4yEXmqPgfV3OtHgEZBMW9kWF+O1qfzRJwyyrQjDhtl6InUP0YSJmqaVCtIuuyFq+fnmMKQQHiv2JBsJfCEcZ4SlHJeMNKRUonK7xPNjo1K3cgcSAGNHkayV8IBfwXGCcs9W7G0gM0ctMG+wPNkykPWdJ7LjBIp6ByGpWrKvV3xb/wZFA/+9J0/s2IBzdjjJBPbnh5Bjs92F34WIq1A10JPen2V/cMTkHLnh93TZRl5ccg/zpb0hac9eOTc1maeO/5Zpkm+jXYT5ZEuQqxNBj1IFDXY7VvZ2Wefjf/5n//BI488gjRN8cYbbxTWef7553HCCSdgwYIFAW85TdNigyV2ySWXoLe3F4DVeEySBIsWLcL8+fPx9a9/fSgPZ8DWNohqVujvzDPPxKpVqwbdobFmpFQOIMjE0zVbNqQCG86L9Y2G2jY+7SjonMPCvUMqH0SA/M8Og41POwovnfdLAMBWZ30SrwNIJiZQiUINNZf1ZLcJlbBjtzgfmAArL8AHLE7qzLSBrFZ8+EaHHgD/uWSGnlSC9ZznScqg4ryQ1gvIH5CW7Ou9gip/UGrZKHXF0+yUQOFohDHW1P72xUuxzXnHo7emoesWSDl5glw7Kc4o8xyoDELROfalLLikATcub2BFMpPgd12z2XmhErR0iQYEulzWXaI8MKtb+QTK6uNgTiSVILRFywk0ZjmoI+0w7qkQSiKZmDpQSF4rIAxVulCwNq7IMv2rKARq+2g9c5Ri71TMtf8PxP8hvh4vMRIALcnrD4Zhz1YmpIRMkmAwt+ePUu4VA32eA2WM9WA7L1yt4UpbEbAYKcVyB3LqDZcpTOeQS6EAvswRqby34prFaubEdeQipD5LMdTXigFYmamkMl7ok6NitVoNH/7whzF9+nT85Cc/Kfyutcb73/9+rL/++li0aBFee+01fPzjH0eWZfj+978/oH3wUm9SSpx22mk47bTThuwY1sSGrHjSUUcdhT322GNQ2XBjyeyfTEEllUI2RqYNdG8Nla6qBQ7MNZ7V682aXGPb7Gsfg4YNIahEBZkrktUzy7SVGVDKgq5MG/Qp6fSASMk55jVRMVddC0tz+JCGz5Jr9HheFA9L8Jm+C9/kTxzqH585x5wDd97ZrI5CppRWbAA3mzQ9Nd9W5G7nn7kXitoiUGa5RBYIbHfhZ/G3L1465NduOIykGWwYK+aKhJ4U0nryGjk56EyARm8NnrjrQQltI5Sw4c9qEszuZZoDh4iwq+s6kC0QUoSK+FVPhnfCmnnoyRY5DnlstD8S5iQxTXf/5iBCVW3H670Np7NktHF1+SRTLLfk9pDjV+nMj41I7qmCoP8Tu3f5/c1D1TwMWmbERYtLx5DciG2jGFrn/xf3/MlxLHlGHJDTvs5nmWW6nCjt7pu0AjEC3qh3/OgkIPXPGJ6RqVLpNMB0aic4Jn8mcSHXGLTzc0hUC6MN47j5QvJcH0swXlhML4gpHDwcSu+mVocNnY4MtMqGIDsvG0ZiOZG6L7/88tLfb775ZjzxxBNYunSpq3F7wQUX4JhjjsHZZ589YCmiJUuW4Gc/+xmWLFmCiy66CBtssAFuuukmbL755gX9ypGwIZuC33333ahWq0PV3KibSiqoVFPHORBKBiE7mVTcIB8ArEatWZNDYuQdimuQGZMV/vhCSdS6a0gm2icv97oIJfLQinSlOOwDyH/358KGfpKuDqQTEyct4CQHcq5MyLvK3ef5AJNFoQv3SiOBRlVM5VbVDrceXY9iiQYFmSQOQAkpUelMkXRVbcmXahqGPqR0dd/GkyeKTLBzRjw2Dnwq1dQtA+BCXw5ophU2sIiA40eeOgKdlc7UeyTTivtvVDoTt57MuT6u/AzzXBEPqNLp+YX0GwEF4m8p1h6VhuHbidzTRhMDOi4OlAB7j1lAFZb5EBHIpN/pPFA7/D9AIMmVqsn/O7Rfex2yoD3hMkt9QkUzbTbAZ8n2dz8S38kBu9zbJNPQSyil977QZ8A+t+jFuT3WwzX8BYllkjiPPiW16IgmYO9p5cLBdF/QdZfKvxM1gQMo96wYwP/ahT/zkl7cYyXYeTPGhv5sJQQfLh1J09nQvEbL7r77buy0004OQAHAAQccgL6+Pjz44IMDamPhwoXYeeedce+99+K6665z0a9HH30UZ5xxxrD0uz9r+18TC2pmWYaXXnoJDzzwwKjFJIfD3AOIPVg4mZD+dDa0V4dKE5fp8t5nr8Mft55f1uwama4ZUBkTAI5QDhZioFImtE6mDeq9DTR6rC4Pd4s7cm7CQYVwZGU6fl3ryT97EcOky8/6JePb8AcWnyHTAzHIyMpDbnwWzGeD1F7gYUnyQZc9+Al0lRJOlXIDi72OCXRvHzRlIxl/7gCMGy8U4Hlvum6c6jz3CFY67fUWWkJVw4ESQC40ac8dnTkb2iLuH4KQKRAXsvXeDzKZDzwqrUAmjbyfFTR6ci25zsR7H1PPUyGrVFMbfm3CUXH7iPkwKryH3bqpgtDChTqd0Ka0sheFbXQs6CpzPlQ930/MUwrbcFliUQkREsWlRAdOdLbntZixyM8N/Q+4ETenbBLngFUagiQuyBnzfeLJ10hYo7dmS/R0Vpj3Gi47Dyp87iiwWpBRyZrYaLmqJr7GHZMsiMnlMbcMADjvCQBMrY7MGP8cUkXgOp5s5cqVwfeBlD8brL388suFEmxTpkxBmqZ4+eWXB9TGl7/8ZZx11lk4+eSTsc4667jlc+bMwUUXXTSk/R2otQ2nJ02ahMmTJ7vXeuuth9mzZ+P3v//9qCHB4bTwIR3OTpo9dIYjcyOO33O+Ev1Oyyi7JdOZIxz7sh3xTDycsTnujLSudRf+i2apfHZPg1ugIyTjQq1lDyo/41O51y8+3vgd8LNHlQNZwGZSmrp1r6tqh+NYZTp88PFr0zGpw4Uvx5PZDEPveeFZeWTu/LB7NTMm+E7ruNm481rZ86pKrgd9tn2wXiq6DklXFZWuTvuee68qnYkDCnz/knm5PPfKe8fovgwABTvO2GNjAZwKjyGpOC8qAe5KZ4KkKw3uXfsuAhDm+sC8HNzDxF+2n9zb5YsPl2lehcfgkwDIO0TnRnHPCDteGsBjDhN5Yvh65GEqAxu0D8W86iNhFgB50EkFxGNF9/DYvSex0pmGx8nuEQ78K50pKtU0omLwElMq2NaruavgOebWL3n2S8mkI4bZSGxzsC8A2HzzzYNx/Nxzzy3d55lnngkhRMvXAw88MOBjKMvsz7KsZcY/t8cee6xUmXz99dfHa6+9NuB+DKW1ffWbxTv/0Sx+oPAHEx8M7MNVBetkfT1D3h+pBOr1DAo2LOBUuPPYv64bl0lEatOqajOq0q4Uuq5RW1V3gnUUZnCzwFqkAaQkZFdHkL3CPRdU78zzEYrk7czk3KjcHLeJ8aO4qrLlGESzZPaQyhihVsI+9FRSQR3+fPOwlO7uRaY1ZGq9UBZM2cwOR1zPCdXTzj0Oz3zlPwd7mUbEiFxudOZCq1QWhmcsAsgzoCJPRf5ZMqBJv6nA+8dAVASAZZr48786vN85N6dSTdFAzXPico9XswGb3yMEpKw3M08WAJHofUamrjdy4FG1CR91S5pGreHu4UZPPQ8ZVvJyNVZ3TFUTmO4+5y2NPUNO8oFxrWJNszJdK38uilpT4e+hThF5nso0iII0/JwwTteKzg8PZ8eemszkQDrPXo2v6UiAAaEksl6vC0XnlBILVCJdVq/jgzEahSKgmYZeOBNxvvgEzYBLeajCOeckffqNi5IKFi5VlM3ISoCNFPgcyuy8pUuXBhykZl6oz3/+8/jIRz7Sss2tttpqQPveaKONcO+99wbLli9fjnq9XvBQNbN1110XL730Erbeeutg+cMPP4xNN910QG0MtbX9r5k2bRruv/9+vO1tbwuWv/HGG9h1113xzDPPDFnnRtOEKIanVBqGOOI/kak37MDTGFpyeZw+rWvapZcDcKEccoVTiK1jcofNhnIDR8RzIs8RAxScUM4fTJnxxG738FEGqMFxjnjKsFASChVoNBypVSYViKothkoAyg0eUiLLwREZ1frixP1Gb54GnSaO66GqHY7kqappkM0HhKRaGnylktBMJybpGl5X9lAb55gFWWH5IAOQd6ZSCAnFiRKx58Kwa8YHFzrfVCaEeFfKdED32sLGUnqgbUuNVFCBDd/wRAEH4IxPzOB9Ii8MAIgIDFA4mI7XyTx0dUJVDXRvn/euJd5bWckJ6BKASCvIklympNdqk8mkgkzlofMcjFhPlvHSIdoTmH0dyPhzUUqgLCOVrhG98ywy/nsMpnjGsLtuDBSVgWM613Hf+Ps9+49MlpO9tyzHUiqJendfnvRQBKiAPzcmT+Khe5KyFE294ScG9Kzg3qWSyEBLT3fsbUoTBzDj54tQEiIbeX7UYG3SpEkDInJPnToVU6dOHZJ9Tp8+HWeffTZeeuklV6Ll5ptvRkdHB97znvcMqI0jjzwS/+///T9cffXVEELAGIPFixfjlFNOwcc+9rEh6We71jaIeu6556BLChX19fXhhRdeGJJOjQUjTkFhuZLIEqtxErvJM21c9szcx3+OBTsNXjdry298Appms5KLH3q16TTX4ql118HDBQSgVJoPCKnnYVgicDFUGZSyiR76NLBRDS5TazgCt0wSG1IjD0JSyUUvPdmzUu1wDyF6kOt6wz+gUAEYz4MG64Dbwc65THymnUwTN6gLw0NAlMWk3DGQPAXN1t3xjiPzId080cDY8K3qsoMMza5V5OkjXkcm87I/hZCQygv3anfu/G8+rMuvTaWawtTquXfK+mR0Hj6k7RyAqnqwyq+LDcWyUhrsPnPehnodqppCwXsUTK1uwzvVDgfg+P1B4ZmkC+4edYAjIRCXD8q5pzUANrnAK91r3KNUqabufqfJAnm6uEeQwBFNAIBo0C4BUPy68IkMmVX995MLnqkaXk8vAZKxa8I96c0y94bLyBPIeZGucgHdXzkXzYVbWfZgoaxUDn65x8iul5PvkRS2ARB4m/h3Io2rpAKjZBAStN7aNHgmyaFLcm9pY7123vPPP4/XX38dzz//PLTWeOSRRwAA2267LSZOnIh58+Zhhx12wNFHH43zzz8fr7/+Ok455RQcf/zxA87MO/vss3HMMcdg0003RZZl2GGHHaC1xpFHHomvfe1rw3ZsrWzAV/+3v/2t+/yHP/wBkydPdt+11rj11lsH7NYbDybZgBEbPXhi0UeVD+KQCiJJhgxI0T65RlSlM7PidEoh6UoC0i2BJJp5A3BhMZthQqUVwtk9ED6YFfMQGMANgBzIKOZREloWeDQEsNzASBpO2qbXS+0f5pzjkCnjwhV8MCbgSiEbAmSVauqEA2kdOn4KAZlaHZWuTgA90LWG89I0ehvQtQZ2/Mkp+POx40Oig1LkAbq2BK4bYRguHlRlOFibXCxWsIEDsIN06FWyEwQCqVLn/wFVnK27dWBBi/3dD5i86C0fxLmgIZlKKk5x3HHeWMi2rg0qefZmpq3IgCnh3lHlAeHuNx9yTLqq7hj5lk47KCFuWcUdb6YNRNWrWRMop8kHvwbcO1IW1uPg1IXi3D3fWn+OA6i4VBX/P/F+0LKybYfTdr32TDTYfebCtsyTHYNI/nwNwSKbKLD7ie4NU2tAsBAwv6d4tqLKATAHVPReqaZNScPO+6ckKv1VPx4iG4rsuuHMzjv99NPx85//3H3fZZddAAC33XYbZs+eDaUU/ud//gef+9znsM8++wRimwO1JEnwq1/9Ct/85jfx0EMPwRiDXXbZBdttt92QH89AbcAg6kMf+hAASwyLlcmTJMFWW22FCy64YEg7N5oWk0ztsvwvVQgvaKg4U0MqiI7BCXBud+FnUYMFRSq1WUUksKgSCZNaQcOOSZ05QPFZP0DolnYzXS0hVPFhK9iAQQ9yImSTqaQCY2h2B6DaEaRam3x7CrUZUwRmBb2tegMKPN0+nBm7bdmDLxwMfdgmbt+FZJBzxZRyD1A6H6ragaTegO6tQ6d9g7peI2lhnUGDJOf+WC5aOACH9wTVDpTRAEWDUuQNyrfThfBUeK4JsNIy+l7v9pwTg3qQGk73E+1fJRWIqvXY8D649XNvEwcDKqk4nSjql4jqW1qRRO+x5P3kWZymVrfe0/zYJOBEXPl/hLYnTxcQCjryiQQQhpCDqgdEE+DeuTyE7cUzy7mZdB6595v/Hm8nWXiUn1sbskx87c9hst1/d5YTqsyMgaD+1BqQnakLI/PnDx1HHAale6WhvQ6Ugn828bAm/f+l9F5vd+z5RJiSENBbCzxRjqzO+E/BuXPhvrWeKMDypfvjTG+xxRa44YYbBr2vadOmYdq0adBa47HHHsPy5csxZcqUQbe7Jjbgq08Pu6233hr333//kMVJx6o5NziALH8wuj9Srwn/VJErPWvUACkhOjoH1Qdf7DgXtqzlIpisJpRKlBtERB5ec2RNTublD5doMKSHOIVkAP+QNqycCj30+Cwuk5xfoZwHSEiZk+D9gBGfX/4OwOm76Foj6INgAyd/cEklgWrq1Jd5ezHBmh6WdB7oPdM6X0ej3t3b3gUaRbMPcTuImJp2YTVV7UCmdYGMy8MWxKmhMJvJ32OCOX127VTTQHpC8/BUxN3hxG+Re2gbvWz2nodEpGHlN/JrUsmvaXyPVFTqBj4aIPkARiG3MoI0HR+11cg9oYAHlFJKR0Hm3DDJgLw7vqoK7jWZVvJz7z125FWjxAYO9tzko2TywENQHHQahF4Udy3Z8VNbsYitu5YsjMmXcwmE4bBGTw2ZMWj09tn7tcvfU453Z4x75hFvzimws/shzkzMtAlI4PF9SNdSmBCAu/YSptzOCjJzo3Yt/8pP2GKwutaG177whS9g5513xrHHHgutNWbNmoW77roLEyZMwA033IDZs2ePeJ/ahtDPPvvscPRjTJrzhqR2tusGhpKZBz3c3XaDdI9vfsYxaLDSFbpuvMgf/flzTgyFtABPAOegj1u6ThcavaHHhVzpNMsPiKf8c/QA51wEAFDazwQ56DFsgOTb0rvjNUWzPcCCJRsSzLNiUL4ufW/UvBeCgFajpxaAgUq1Azr3vDgPQVdHwFkZy/aOH50EwwZ2gwYqnX6AruSgmM+8lcoHTzbgABTqyq9HEoaT+EDvQ1o5IFEmuOf4PVLQUysBNw4s5BphHEDw7Xg4l/c5Dvvwdmkdeo95b87LJsPv5MXiGaA27KwcELX3czTZkD6DVFC2IONnSSmROR5hPeJceTcSgVrBrlUQBuX9z8+VYV43SnzhMhJk/n+Se8eVgtEasqRY8VDb7r87C7V6A43empuo+Akey5bjXkrmnat0daLR7UPwZd52gHlX8/vR1BuodFVRqaaorVxt10k8BYALjtJ9zidpMVDi/wuyTBtkGFh6/mDNmCwofL2mbYxnu+aaa3DUUUcBAH73u9/hmWeewV//+ldcccUV+OpXv4rFixePeJ8GBKIuvvhifOpTn0K1WsXFF1/cct0TTzxxSDo22ha7bMuIl7reQCWvlWG0hshnKQYNKKmAQaiX82KygK1yXp1iHwg23BGWkbDbSIA9aDkxl2bEduDyIQ03G06isA970POHSSWt5hwpRizO3fGVzhSNnlqgQg62bcBt4CDI5F6vfABwJPIqKY5XHFhQKKZ+O24FG4DpfFQmWL5LAzmJmB6UdQRAYbzNKsmbU+nqzL0cNkOOjqFMQ4i8EMjBIuf1xQCDX2NaHn/mgJu3AcB5FN3vOhyI4nNNgxYR/+MQCb9WSVfVZeSRN4zvP87QomPl56FSTQuAT0jbdr2719VJU9XUJSyg1rDASIcAjN9DNBkhi3Wb/CCduEmLqYXn2YW0onPEJyJ0ruJnFG3Riuvk2tW8lMrw3fveG2wz6VQ1CUKhvE90XripqtWFavTWXBao3Ybx4yg0SpM36cF3peonSEJJIE+eLisgXKapFU8eYw+pqY8MJ8oMASdqnGMoLFu2DBtttBEA4Pe//z0OP/xwbL/99jj22GP7xSbDZQMCURdeeCE++tGPolqtNi1ADFi+1D8KiMq0cYRWLwCooNlM3all55NJ/6dquBn+fkuuwa3bHNbWvrf8xicAwGkA6bqtlZZOmuCAUW1lT8DrIdkAmSYuLOdc/0nolZBaujCdm5WzQY8/SGLgE3shAn4KhRVl+MARUWiGiODkWZLEWdIGIvEeiEqnF+CkQZSrb9NAE+83Ju9WJlQh84ewVBKNXD/KufoZKXUwNuMuW0RTJhUs3P2zg2rr/2/v3cPsKsqs8VW1L+ec7nSHQIAkkoTbgMPAoKJgBETuICroeBsZSMRhfnhBHS8o6kiYx9sIqJ+MzuBcEHz8Bv1GkBEEuSMMgoAIqICgxMSYCEIgTae7zzl71++PqrfqrTr7dHc63enupNbzdNJ9zr5U7UvVqvWuems8oPsBmIzKXUKmgAs7j0UUbSgIsPfFfsdCo/T807eUGJOOQfeYnjseXgrVQ0XPliHLXOkt2fEodMzJQslJRZb6s0tpm6YflgP8zpJIDCf/ti71HAkzPUsA0swyrVLIPBWVXTdvfU1zbcL3pGO2b+m3P+HAju8b3iMiuJWz/Cj8mLtlkqYKh1z/BTuQorLq5Zga3jIq1E7RNhS+o580ryPtraO1cZP1LZVssMXrSESc6toaHPKuWVLPLfkOc2qFgwEqC/3eQf4TCdGc/PVSI6qx66674le/+hUWLlyI66+/Hl//+tcBAJs2bbIzkbc2xtVr8BDe9hTOA5jHxoTJwhEbycdJ5qaD26nzW9AnJ1licxcJyo2UZTa7MADbUKT1HK2iQFqv2fCBpxLITu8FmITNpzvT/6Gngnd69Dd9Ro2/kNJ2OFWNkj1GIpH390IV2iOhGzot8yfWP9P0Gzc2auersMsM2hdliCuF/qjxk0mCwkxrp7Jm/T021YJIJFqDwzo9Q9PPLzVeHPnzf0Mx3HQkQZY44l69jMxUkCneUbcGhyCSBHl/L5obB1E2W0h6Gzb0w8PM5NUhyCxFUehny1tuhd0nWibHyw9WuM5dyFE69EQbfgGjWDISQ+ezRKZwKqE3fZzIWeaURI60kdv3APCJvCUHLPM3Bx2bnvWst65JdZdwEb0vgJ7RRws4l5TgM0utMZ1mmHptApmWpcv4XnAPTtZ5Pv5/YghPCV99rQph2s8Kv85e/StUl8lGWq+hLAq0h0escpTUa3ZQo4rCpjWxA6MK5cfWs78HhZl4wEueMDJI96g91ETZamPE3KcweWzoCwvBST4n/jzMPJ6ByWRhphvLtwbe+c534q1vfSsWLlwIIQSOPfZYAMA999yDF7/4xdNSps3u5v/xH/8RH/nIR9DT0+N9PjQ0hAsuuACf/vSnJ61w04mw0eWNIf+OXq6yKGy2Z9sZyQQoN0/q3f0zZwBS2IVdRVKdhYQaIiIfXuLKihxXXgObaDUqrKNMJIqielSqitKFCisaOd0ZJd6UeFueRHrhNgCuw5FSzw5qtc02Jp9TUA46dlWyOwBWoqeOgZNaW366doY4ts3+REI3F6+++2v62LlbywvQSUi3VsNqs1Bnc0zYQoc7QlXEMyAHJvwQoULS8X3QuYfHp+9C1cR7Z7gfqZA2J1nHPlJ2PLs8fEbpBez3LDzj9m3bRLGU/TxUX6R5ZkKFLLwu/Np55Sql+5+dH3BqB9+v6r5QOQCe5z+YCEIqXFi24J7Q+1KlXIX7TWUom9Q7wM/vNN4UDoSyKJEY7xkpi/ZYRECZOh2Gcvl1sNcqIFLh9rwO9veq0N5WEqIKpVBsIQna0v2nGytXrsT++++PNWvW4C1veYvNtJ4kCT7+8Y9PS5k2m0Sdf/75OOusszpI1KZNm3D++edvOyRKyA4plxp/Gl2RysFBXpIkyXVWYbl5EmOSJ3pEbM6d1GtI6jWkvQ07agP0SFi/7In9m2aphR0P/W87hyztIIPu/P7SL6RGdJST5bWh/3lzxBuyULHgITkKKaTGLyESk3vHXFs+/VqajOSq1BK9PRdrMLPehq+UJBIJMiADyiy1x1VFiRROzZN5tllhjcPvutgk7Swgh7VJt2NWUCJxxL3/Mqlq1IHf/gSK3oZNnEkoW21k/fqd5J1G1t+jFb/BYRuCS/p6vP2q8kpVkdPw+25E3fPoMM9PVadF23APUHj/AJh3Idf3j/VaRIJtnUu/w7Qzr+zfncSCK1xh2DNUpfiajFxtlfDXGrTKRc5C1dKFnnkCR5qgQefjy92E+er4+8rDkCFEIq3nKSQQYR2ncoq+e14SvQB4q42k2YLoqdtwb1mWXuiTiEnVfbK/s2s/FmRwX7zyyc72sTCLoduJROb+lNxOwMjn1howRWi8+c2d9pgw7dLWxGa/Pd0WC3zwwQex4447TkqhZjqooycFitQAerEKswacGN6EZDPSHLz4a2ejnUiTEFLDrtQuSxTQhmHyUwjpVKrO0Xd1DB+At3wNjcq5lE778lBaEYRfOKyhNk+RZBmQJP4070A2L5ttFMNN71hpo4aSZdfmZZfQxv204WbshB0yhRHJ76CK0ubuouNkpGK16B7mNmSoihKoj2/pl8Pvuhhls21CabKjcS+lm2QgEolX3/01/PiV7wWALU7ASh4SCi1TBvL2cNOFVRPdWZfNts2RRPeiLErkxmwPAOQm4cR2LNhZSux5AWCVsFCZtGXKM/s99+KEoXB+//1OLrGkmA9e0nrNEm4iyHwfJAlKWXjEnJ7P9vCINopnqX2XbXmT3JKvkIQAwYCDKaScuHB1lxZppjoXrRbSMrchPerIXUqFThWPriu/D3Q8PtiQWarbIboP0s3E81Q0KSE2c6A3Xhz10H+iYCFOOh8lRwXCHGadoVMl/ZAloJ9VWrC8imTZOg53Kn4hCQqf4aoBKJFsYczqZCmgyQ2jKX2TiTg7b2Zi3CRq3rx5dtXmffbZxyNSRVHghRdewFlnnTUlhZxO8JeQv+Tca1I19bU9NKI7sb4dxjzHK2/8Ioaeeg6Dw023vpeUkD06iWbBwleS+Zs6Rtt59UygjjpJiYQ1wGH4QY/uazaJqCpKyBZrkIk4jtIAElkKk/glWeYTvkARs4bSoDOXgDciTxs1OxIvi0J3IrJwjW9SdtSf19d2KL0NyDxFc+MmNAc2VV4vADj0Njehok3rdRnS6AhK4XXkpTHNE4761beAcZCU8cBOIMgypkpq8mTXlaMZb0iB3joKs34ddcJlUSDrbdh7xGe6AS5JKyEMa3DymPIp6ex32sOGaTNHbItmS3f4eVrZEMlRQj3Wd2iOlfCMk6buvBwUak+yzKqZXE0igk4KpyUrmb5OnAh45fDIvj8rUCUu3Eh5j0gpDYkMHQugDOlOMfXaIGYcRxN2/UcA9l0Vicnoz64fTwZM75w+XrLZavm4kWZIYNRO8oEZ36atA4P3fBUuZUNS95ddyft67LZtZhDn9eODWt4ekfKp1+wbduSqMKlhpFOk6DoCLgWIXbLKhFW3pgpVYBIylk9KSSI4xk2ivvKVr0AphTPOOAPnn3++t+xLnufYfffdsWzZsikp5HQhnM1CDSt1mECnxMwJhkwSlIMbcfRj/xc37/sOAMBhd/wf42Uasi/kyOAwNj21wcj9NS+hHknb9DvPXxIu8+CFJLqQvyqlIRx5UUMjikAVoOOwxptICwBvpGuvSYUEnwTbEHieFipHSNYANrWeOhQylJrZZPQ9T5ZYttou/MEXNTbHIPWqCstuvtDrrOiY1PHaddXgh1I7UJZbpEIdfO3nUPT3oGy2kSad4QSe4oKHoexyRAjCu+z/tLeOkdIlNaTRdmjG1edxuX3sd4lEOFWfrlWSO6LJVRoK5QJ+hyqKinQYLFsIlZkmdFQ9v3RODq9DZbmC0kbNKZlZhgItL39SeC4qG73rpALxCRyAS5ZLSxJR2Yi80fnCdzLJM6S9dYjBYbSHRzoyiofvc5XCVPUsh4PApFazvs1b/vKMju3Hiyp19ejf/DeQ5VBwYceUEahw9l3JQmi8bkkYMpYSWW/DqogdsykTp3jS+8A9czQD1FPdGSEnbxV9XhWypm3TnrohqkOI2H4xbhJFMcc99tgDr3rVq5AFS4Jsy6CGttvsLXrRqhSa9qZhyFZbS9sjIygAm/m2PdzEyHMvoG1Gv3l/bydhgZ9tmb/w1AnQ76OpUGEDZT8PZHXqKKgB4fl5bPjI7FOaRWx52MxT6IxCQL4YCsFU5cEh8kP14Qk6eRl10lO9hAjvmOl8ACBTvcAu+X1ojT3ysaVsrTRV6rXXUqPmvPS7n8YDb/1HAMBB3/9Hm9GbL0dBaoaXmJS8QwHJJRL5mp9dAqRb9s6IREKWEshTL/8Qn1nHR89Zb92qGqp06wuWReGNoun/tF5zGbsZMSeiAJh8aGw/rhqGipAl44ZYEqm1+1YQTiJufFueFJEjgU+gaDvBnp0wlMzPJ/MUicw9Akf3lT+H3EMkM700DeCIN5E6fo6QsFNZ6HicFHFlkEJxMs0gszYSGsAVWrnj5DCp53YAIaSfeDMEv5Z2m0lSoG7ZfzmOfvw7gEwg6BnP9UzHYsPTWskzMxPtO0x1MGqTMGQnMdeZ8u8RKlVARlpD3xj5z4R0ucSQuUk3ZavthWqrwrUySVDaAYq5R2yb0Ac61Yiz82YmNtsTdcQRR9jfh4aG0AqM1eNdjXmmgxJScvMz+Z3sNmw2Ggd13u3hEciiAIZGkDbalgAVzZYmT8NNncE4kajN6/PWw+Ivsyf9hx1Y8Lcul5+Th8BntnlT2uGP0u1otuzs8Dy1qiw7OsUQnlJll3KQnicqXOIjVDh8c67zg9C+AJD2aB9Z2W4BaQbRhs20bY9D65wxP45IJERdIjOpFohIAWZqc1KaEJkOlRABs6NnIglSdr0GdH2VLLbIEyUzHXYUplyEsiiBorRJIbUiZkgpWxw6VJKoHlQ+maW4+/AP4JU3ftH7DnDqH0iBLWipE7dEi2QL9IbeJk855IOCCsIfEmwKz9K95veuynQt4Uh6N88L78jD/UUikdRqUGVh6xkqYYDz4YVmdkv8m+6Z53Xk3iV+fekcMk/1c8zrmDGimLg8SnyAoYYD0zRXrILf7TUpiykJ54k0A2SC9gsvAHDezqy37qVB0fmiWjZFiJf9nrU14QQWCXf9iKjy68/Dl/QMWC9Z4tS7stlGu2ia0HzaQeA9UmXIbJJnaG4c1O1BvWbbnqlGnJ0HvOY1r8EZZ5yBt7zlLWg0ts51HwubTaI2bdqEc845B9/97nfxzDPPdHxfbKUVracaMkuR1jJP7eGqjx2RB7OybEPPwm3STMuVeYqi1cLIhhfQGhw2jUrDLhNRVQbbeDDFxRpa63nnPhUdA6lQaUMrDXzNM2oIgOpQX4iQ7IQNDv8/vAZV6gCvqy1D5od3ZJoBqSFIlkQlUG23nIvo7YcaGYKglBIyQdLoAaSEag77SzzIpCMUmvf1Iu/rRXNg0N4rTu7awyPIehvasMt8GHbWWLcZUuxa3fqSM3Hkz/8NR/1Cr3S+OWTq1Xd/DUWSoDZvjl3CAoBNcUEeIC/sw4gMkUD6vmpkTyB/GTeP0wDA6/gzP5UGJ7v8HFYZhL6uMs2gysLch8KpOVnqpa9Qo+SgsucPyAvfjnt/ws+pDPrvxJVHuudHmDrRPS5b7coEm3YwYN4FGkSlZpZtOCjgqjbtb5Wvphvc2Mz7bCDAjeAyzSAavVBDg9XKLAtb8e/sdaT6T0ZUgRExkWYQWY5iw1MYelrbFGo7zNGDxR369KmNIpf21iGGKV0FOu5nmFy387SJI6qSkWs45ThFZwhU1CVkK0Vb6hmDad1fxJr+F4XzdtJEkaSe28F0Us+RbCViUpYKxXZuLD/ooINwzjnn4Oyzz8Zb3/pWvOtd78IrX/nKaS3T2L1mgI9+9KO45ZZb8PWvfx21Wg3//u//jvPPPx+LFi3C5ZdfPhVlnBbILLFKBoVo+Egw9Fx4nQf5bJptbz02mpXWHNBqQlpBgng4Ieut2wSA/Bzc7yLNcWzm6nBUX6EUFSzMpWV0bYhO2HIw1MhVqWGd18pXfOizhHlBANPoy8TzGji/mSFHaQ7Z6IXM6zqkkWYQtTqQZpB1P62GSPXxZb3HLrEj8jpEkgBSQjR6vTKmPQ09xZzKwK5J2tNA2tNA1ttAY5d5aOw8z46YiTSlPXVbTq7khctHUJjBEjxzrlff/TVNEspiwgZzL5xbunUJaYSf5JkeHddr3iwuut9po9ZxH23YttRJQpN6rn1Cxq9D33EV1qpIgWrE1SciK/p6J450mb/1uROr/Nj7aX5CckrvHylgSa3mfedNHODPWhLej8SEnnJ4M9Pos9S9lzLVodu0p+GRRp6riNeXqxbhNaGyJSYLOr0fdExSx4jo03GqZs/RdURZOMXMXBu6fvx6kWrFn3kikeTX3BLcvNebXZnSHEgzFAPPoSz04tJZb8N6ojihK4ab3ozNSsU7SXR6kwr/WKhGhvcDcO1Tx75Gsarv0GcHkp6RHLDvi7U1mGcryTOkjVrHuSOmFhdddBHWrl2Lyy+/HE8//TRe/epXY7/99sOFF16IP/7xj9NSps1+An7wgx/g8ssvt7La4Ycfjr333htLly7Ft7/9bZx66qlTUc6tDmUYOx/9lcb4wlfxpqVgqPEsWm1PDWoPDrsEeoXO18P9LADcwpmFM0UneWqzehdNvQJ5lVlUryuljZRo+UoULcvBO3UyxnuSPlxjVLbadtaUSLQPg4yc9toU/oiPK0+u8TMdFVPSVFnYjiupu7CNVpoyiFKTH8gEIgMUy7YsMt2xqVZTZ1uv1TUZKfVisarV0sSJiENmltVITKNeFpqIpZkjWRQykYn2K5Wl9VEAOucUzUZM8szVKels6L2OzpyjHBp0Spw5tzKdnsDmj/7T3rp+nmjWklE7st66UxOpM68Iq1nyJTvXC7Sz1WRp0zEcdsf/8cN3PBxSEUbj74m9JlyhoL+DBLRCSusX4wQGgFMW+TFoOykhysJTXPh5FBFrUxZPyaBnX0rAPAc2tMW/A+xzmfZoNTT0cnEFjJSKjhAiD9UzrxifJZg0emySWaeSObLEr6kw5VVs0gkvAy9XeO0IajMTAY+JNIdIM8hGL1S7iZENAzZlQ9bfg5ZRUMuW8UfSZTdKHyl0JXyfGK8fr1HVwK5K+esGar9o1p3nezQWDpmnyJifTM/sLLx3QKZbZ7mRYhKUqC3dfyYgSRKcfPLJOPnkk/H000/jkksuwT/8wz/gE5/4BF772tfi/e9/P4466qitVp7NJlHPPvss9thjDwDa//Tss88CAA477DC8+91Tv17Y1kTViB2gMIYJRZRlR8JNTynKUrsmnd7WrWEXep8AeASHj6AptxHge54AOMN2QKCElDYTdNlqu2SWbKYhJ0C04Cz3E1RNM+9QHnhIh8IkgXfJg5QQaY5yaJNuiAyB4SQIAESt4TpcOiZtl2ZQbWgyZY6JstSkSSYQ9V67j8gA1YI+NhGqgnWYpU5aqtpMaZGJVSCKkRFHAmXiZjVRudzF0qERprJ0fNdq6X3a/jMzFtKeBlRZ2ISaPP0EPUOU1kEGJL2KMAPVM7hCIzYNEvh+QOArqxjh2xCZV4mAONL94Z+ZZ8Bmt6b7ExbUqHmC7icYSWPEiBM5IYsOYkflEm34BMpegwTK/I8kgTTkzJ+1SF47/TcpZP60+wQygyW3VqEDUDZ1aB9lgaRWc34oql/lO5S465XmEGVhQ5H2uTP/E5n0rg1TAycLIs0ge/she/vQWv1rjDz3ggnhuQS4qijRHhrxCDyt45fN6UXZbqG1cZMdTFLNw1CkNwCgcDAzjVc9/3xBbfrc/l5KLw8dtx/kc/s6yD8lTa0K8U4VIony8dOf/hSXXnop/uu//gu77LILVqxYgXXr1uH1r3893v3ud+PCCy/cKuXY7JjCnnvuiVWrVgEA9ttvP3z3u98FoBWqHXbYYTLLNq2QqQs7hfJ+2PgkWeYk86TTg2FXFjfqAYHCMNQxAs4rULTaaA9pmTvv67FhPd5wqKI0SR+H3VpkPKyUSJtMU5vYnVTdbVo0b5wAeLmnAH9UzUGhE6SZ1/BzI7i9bpQgsFaDbPTqDop5meh/kWb2B3QPQqKV1/UIOMshsgyqKHRIL6+bTkMTJ9HotcfUapJRo8x+MGqUtOV35UhqOjmgrZcJMdr9eOddRa5Mub1tZIIjf/5vHdfxuD/d6v19zO+uxtGP/V+trFDqjNxNy+9mkObKBODnyAqVE06ywnsr8xR3H3uOFyIazTtHamNHJ22uOV1vCtHa69Ru2efCr4t/zYBOtcqeyxBVTZYzu53IMv2T63PabczxRabDT+GzBbClSuj4tboN+XnlYCFL2lby5ynV55f1HvZsSoha3Yau7X55Xb8X7Phe6FFK+yMSUyazveDPI+1LYcrQ+0THmQQc+8eb9DXI61BFgXJwwLZPIpE2rxofzHGkvfreJL19nvG8CnyQ4E1gYHXp9MElXmgz3JeHWClULIn0m2cDqRsg2Xs7itIVMfl46qmncNFFF2H//ffH4YcfjqeffhpXXHEFVq1ahfPPPx/f+MY3cPXVV+Nf//Vft1qZNluJeuc734kHH3wQRxxxBM4991ycdNJJuPjii9Fut/GlL31pKsroYWRkBIcccggefPBBPPDAA3jJS15iv1u9ejXe+9734pZbbkGj0cA73vEOXHjhhcjzTu/RWBB53WuEVSG1rA9YHwIRHsCZcQG98KXNR1L4C6qGYTE9ojUKEBvdiEJaibk2rw9JnqFobuhoLArKf5SnQOFn903NavPNgUEIZnjvFoqg/z2/Evc05XVb93B/umYegm258gMpIXv7IOq9WgGikR7veMtCEyAzelbNwqkU7ZYjRIDpDEjRMqoPV7EAAKYjLQuoNIeQQaio1rA+Kl0macOIcmTYV5nSDLTsvCoK09mzzsuED22I0isHXbtEm8ylxC37naaPNeJyzhzzu6uhmsO6vmzfKh9GaK4FOhWnMOdTRzgXPmG+41VnA9ALLMNkgifwLPeqLD2jtr2PocIYEGQdcmvZz+CVh5EmAKCQrQmVqpHCKir6mSo8UiukLoMaGbLPFt1Lew573sSpnjKBMNPk7H2l7XMXQiZypT8rXR0qnnd7DK4Qtd211OQmc8e0z5L5m1Y9aDc7ysSPK7JMh/eqBjmcQHGCNc6160bDsX+8SV/fRi9ErY5ycCNEoxe9C3fCyHMDaA+N2PBY2WzbQZyXzLfeY5Vimac26SkN9sIZtWg5fxnQqaCGBnuueHZtA811KdstlO0WZF6HCK9RkkDPfDGEd2gQsrl1JlPpSbhbqkRNUmGmCbvtthv22msvnHHGGVixYgV23nnnjm0OPvhgvOIVr9hqZdpsEvX3f//39vcjjzwSjz76KO677z7stddeOPDAAye1cFU455xzsGjRIjz44IPe50VR4KSTTsLOO++MO++8E8888wyWL18OpRQuvvjizT6PHqHSSIR1uMaHoF/ItjZFMvOjM+G2tdk3T+2SKVzSpv9HnnvBnjNt6AahPcTmUxvILLVGdFKwSLEixUnmeuYYNShpb91M1S7RMgnheOiRQkBVZk2RVMjfppFW7VZHQ2RhOk0ANtxpR3S2MtJd11odIsv1yvRNs5iylPoc7aZuyBq9QKsF1W7p0XzaZZ07mViPDPmmPC8VKVBlATSHAXMeXW7q+M01Nv4Or+Pnigj5sUxDy6GIyFWFS1rVYbyjfvUtXYxaA0c//h0TrmxZD5itIutM+PlC75PvU5K2Top33qx80nHCSnQLW3iz3Ci0xjtpIjbmetnvKAQFONLrHdhXsTwzfkDQ3GehMqQnF9jON3gOVZn4zz79ntf1NaXWscI7JLLcu0dE7gWVNc2qyROBrpUZKMCEPlVh/m43vfpp9UqOHgaWOnTtXTPAdPzwn8lQ+Z0Ajl33IxdKrTUg670QtR6dgyyvo7boRRDJOjQ3DmqyxNIUyEYNEswET0SRDxZYSpK0vx9ot9DeNNShoNtwpgm3A44Y2WeWlLs2IBLun/N9dBomnGoGz951IkJu1ERL0rcCYjgPuPnmm3H44YePuk1/fz9uvfXWUbeZTGzx1IIlS5ZgyZIlWLNmDc444wz853/+52SUqxLXXXcdbrjhBnzve9/Ddddd5313ww034Fe/+hXWrFmDRYsWAdBO/hUrVuCzn/3s5uev8jrUDJAmQWNz2JptRcKyNBPBMZ1WMezUqNaGFzzvE3WE/P+0L7frvvGp4u1Nw7ZTJKM5qQ5lq43mxkET8utFOmcOmhue040WJVY0hEcVpVXKAO2pKVttgK11ps3TzvcVohgcsPWjY3oEqaKB12blojMEQw1qq6XDKya0o5rDtmOleyDrvVBpC2rTRsi5O0H29KHc+KxTaCTlbkoM6dBKge00TYjEkqZW091b6M6UN95ElhTr+K3qRY0zf07MPqosXWcI1mmXLrs9hRwtMSJyQH8btaFDkYO/7AcHjci9tduC0bVVRahe4TFMqJIUMcLRj/1fL1s7DynbEBrvsLnaCLAwLOu8w9+rwqDhdoCnJIks9+6ZQtBx0nU1CkR4vwA48luhgvI62X3NoIDCVlpRaumyGAVLAZrAU1mtl69TvbUEMq/r+x4qGhRu5oOO8DpR/bkaFt4Pe50DYtruHKyNB8f+8SZ3PczARtR7IGp1KJkCjX6gLCDn7IDk+Wcgh1wOtnyHOVZhJ+Va9s3TZZEJ1HATQvppIJJ6jmTuTiiHNyGFM/eTjzMJwsfhoMZ+bnyP3qSHCjJJijsNnr3BFH+urMIaQ3pbC2MRqOnApM3PfPbZZ3HZZZdNGYn64x//iDPPPBPf//730dPT0/H9T37yE+y///6WQAHA8ccfj5GREdx///048sgjK487MjKCkZER+/fGjRsBACKrOfmeNXSQEqAQD2DzyPCpsWkjR8E6MlqlXBOhHqQ9dZStts3rw7Noj5CSVZR2nS3KVJz19YDPJJOZW3SWFJvM5E6ifEY6M7quH88+zvNPqcJlEaYO0mZqZn4DIngyryORCYqREa8hsrl22k1LmqzaRReYRtdSQm3aCNUcdr4n1rBRJ0UNnyoLiJ5+yHqvZy63oPtkQ2cl1IhRtmoJZG+fGTkOo+QdGzWo1EEaFYEaTR3WKyF7+kw5Knw7bFSr7GcJws5ZAFDUqZvjlO2WMyZKZ6hWI0OQjV7bUdl1yJjp2J4/IXNxkC+Jd5xMHayEuRakgt20x5v8OgbhPsGJT3gPjAnbJyU0onehTUX30ZCQDsWnIzTmH0+x8HrnkugOduZeSCIqfid1ybtvrAPl95jvA0CHiNHsqDudo1PJLD2iD8CRJmYn4CqeqPeacOaQH8JqN9mzJ/V9NqFw1Xaf0/UA4Ct3mwGtSJvnMK9rM3mjV187IQFV6nflhefMYNItMJ3M2wVJcG0EqZk0+MnrSAEUsmkUQe1pFGUJtJue2VwVpb02qt30Bw2lm0hgbQAU1iPyDqDaCyc98umFn0ntpu+yiV3HzcX2qkS99KUv9dbqHQ0/+9nPprg0nZgVSS6UUlixYgXOOussvPzlL7fGdo7169dj11139T6bN28e8jzH+vXrux7785//PM4///yOz2VvH2SjRysbAXiHn9ZraDadGTyFHjnVduhDe1gvQpz3adKX5CnqO81FUs/RHhxGPrfPdopkLM2LEk06xo5z7fdJPdcjPgojmHBU2ps7j4YhH5lpSJrPD9iV3GnZDh6ykb369reHRpA2akh7jNpWln7SUMrlRGqa6dxklgYj7MQ1UtDqBqUy6Jh1VZa60W8NAlkG9OjRK3mNqLOAlCgHN7rOuSxQUtiPmYcpFEgzwFS7BZC/yPhpRAYd4jOhEgWjaEhNQlRz2MrzIkmgqD7mulPHT7moVKvpzehzz0bdkZ/Q5wWtvjnS5xNQasztdUpzwPhgFOA6EDJwU8chffWJz5D0vEbSJZasBPv86N/8t/4odSE5CtG67Rk5sgS5M3xlQ2q5f20sgQq271BSEJjeeWdYMkJF25FawM3rIQljx/SUKp7ks+I6uec7A5gPkO6DT9rctfMUDQTKJiM9woQTZaNXH29k2CkomSNdlmS1m5rAebPw/DqEqRKojCFZHhdkApGUUDDheJr4kZo0G0qTw+HVq2zb4e3e2+e9A75SS8SxRDon7yA4qii0GV8mKIb8BcO92Zll6dJmcIIUqkZ0/NRFElRZajLMB2VU7xRQbSLmpm0ogmNOEbbXZJunnHLKdBdhVEwriVq5cmUlgeG49957cdddd2Hjxo0499xzR922iq0qpUZlseeeey4+9KEP2b83btyIxYsXWw+C9dRUZGK3xnFmfNRTevtsOKxVlGjspBdrFonUCRvTHJltZFuu86vVkUrKM5NANHohR4aRFHqxUG5eFvVeZ5QcHtSNRllY5QZAxywWb4mIokQ6Zw4AIKkPWyVLjQwBZsq1N32ezZYhOd3Ck8X90Z2dMWcaKgEKV0nPzGvvF4UHKA+U+QxoAXldEyhj+uZeIRtuyzKokWGIPNGhzJEhqEKHCV2jXTIzOJtGnmaeYkHhBvt/rWFN7B1Tz1nIAFKa/D2MYHmqirTlJx8RkZqb930Hjv7Nf1tjtGeqNmUEYKbkS6dMwvckCXYurxOidAFMXVGGfMtGL27a40045ndX622HBh0pojKHISdOkLuodPQ8CnN9dagThvz4oUKrmFHKAYYORYmrBERY2ecAzDPH7lGgDHI/ki1HmtmyhZ4p53eTdls/q7b25YXqliVNtbp9fkWWOzM5L6PdB25yS63uiGyrVamuKE9ZajlDNb+ONFGDBh3jxDFrrsFNi1+n/2i37Ptj37s006E8VQJl25afrAlZX4/OD7XhKcjefmum16lOBp0CSETPzqbMzYCRERqpvV+JnONbCNLMM+Fb3xntY96pjjAmXRN6nqy/yhFxem/CMK3I65By6yhR2yvOO++86S7CqJhWEvW+970Pb3/720fdZvfdd8dnPvMZ3H333aixDMUA8PKXvxynnnoqLrvsMixYsAD33HOP9/2GDRvQarU6FCqOWq3WcVwP1JgBQNJwki4AyAS1HeeiBt3ItTbo2XNJ7xyIRC/FqorSS2FgVYNcN6bO75DZEJZOVmc6nlodCWA65pYJPUnX+PPRcOr8E6ookM1zDa/93tSnHDRhy1oDSa1uZiNmKI0vCUDHTEKRSL2UCoF7UgwRoLKroUEb9hRslAdTbwB+BnKZ6LxPsvDCF/wa2WnpVN8wRCTNdSHztvlbE8umUW/MVPaKpS44IbH1ag53kC0KLwKsUQ1SX6hWNYGi66xMaEKNDFvyR7h5rzfb30kNolAF5cWyuYtYo66VNZox6F8zusaUM8uWk9WDVAk5dydW9mCZEzI9B/WyoaQk8b+jsGtlCCfRYSge1rLXiYdTE+c54wSJOjro68qVP9sBJgkUcqt68cEQqZAoE+avcwSNElp6149dL0tgmAKkiVnm3l9Wjo7nlcOoHPS7De0ar5Al2oGh3pLsotDl4IZ1ft2oLOz4m4WywDFrrjEqmbkmmSZBmuAZAmXuWTm8yWVQTzPIebtADg/qLOZDg0jMMyZMyglLWjhp6jE+Vrq+ZjUDkddRDm9CssMOQLuJ8oXnbDGtt5LautIpcNQeVIW07eDC3ovMay/dDMyKsLAcX6hpS1GoSQjnzfK182Yixk2i3vSm0WXf5557brNPPn/+fMyfP3/M7b761a/iM5/5jP37D3/4A44//nh85zvfwSGHHAIAWLZsGT772c9i3bp1WLhwIQBtNq/VajjooIM2u2wQFJ4wIxH6mL6nRsp4AZDmSMmDQwkfU7O0Q173G2OYRhiwaROsOZUUiDQYeZeFJiZlAT2VnxOj3L3w0kjT5DUiwkHhAlJKmsN6VpFVBlgupi6QWaqleNNBqFZTj0qpI6T8TACKdkt7H1j4QB+EhRpYOEJfcumNpoVMoNByjT4pL9zzY0atllTw+2PvhfPhiNQsBVOWdqaaYp2xd488xYE1qLLsaIhtuUZLvGfr4Ua7YSjr6Mf+r78MBw918A4+2I9USKtk8DBJOC2eldMqYH/2Nq+ox677EQqu2ljVwzen24SavIPm9Q0QKk88pNaxH/eeAL6Cxn+3dQ6OV7GtnUXH80+ZY/PuxYZVww7XnlM6JbgM7gW9x/T7eM3HXL3yQt/aP+WIRtah4NIECQr7ekSy4vje4GpzwAkaZY0nLxSVRUr7Tsu8bqwRvVBpZn2KHfU27Ravnx0QAHowlSRAvVdbGtotTd6SBGAkajQfHUDtnDlut3eVE3FeJ/qdrvFWxvbqidpxxx3x61//GvPnz8e8efNGjSxR8u+tiXGTqLlz5475/emnn77FBarCkiVLvL/nmDDUXnvthd122w0AcNxxx2G//fbDaaedhgsuuADPPvssPvKRj+DMM8/c/Jl5gBlV8Q7UeGKk3yBK7OD8Cr39HVJxOmeODU1ZM2ZiYul106HTaNPbUU/bFXnddoilTLR6Qw1/rQ45ZwdjNDWNE207PAiR5pr0FIUORTEvhGq1UPxxtamf8w6oVtOGJQF4ngaR1yF6+jUBMApBe/AFGxqUvf36GgCMfJAnpLQmbRpxWkLXblpFh6Z5E2lRZaFJKMBIVGK9URT2tK8Vmf/NfVNsJG+JmFGmKtURQwqJPNsknTTFvCwBq5YF06elDiGCqRCKh2dkoK5wPw2pU0HHRp48mfvJPT1iSqhSGHgYgxFLmkWmn7VAfRvhoU8qD3tGKjOIMz+Up1CWnaTGqAKqLD0vCm3vgamrvqEv6eww4YfFrIIIPxxvFU1SJdg19dImkPIV7OfOaZ4zbiymbZKG76esIjBS2nexYxt2Pns/TH407vdSLAuJ9fdJWX1tSD3j3ikEobqxQM+Q8ULpSQTm2VClJlPmuEk9RzJvZ4jefktekp0W6DqZySdkKKcEqFpRbGrVnaXkUK2mS1li6q/DzYltR1Vz2KX7kNJ77lTTEKOatgqoVgvYtNHLd+ZBJs7UTrN+CRT2N7aACZHRCWB7JVFf/vKX0dfXBwD4yle+Mr2FqcC4SdSll146leXYYiRJgmuvvRbvec97cOihh3rJNicC1W4CjT7deRkSVA6SodmFdWx4xSR/1J2TU6l4ZySyTrWHq1xe2MdI0eSFsB4pE7ZQZYGkbwcbxhC9/YaoaRKRzNtFf5fkkK0hIK1BCQnRMknsevtQUEdO5uxWU4evKHTFysQTKdqGKM2QjAxBJAnkDrvo7YYGra8JgO4E8zpEWaDcNOA+I/8LNfA8UWe7yTwhJmQQpAZQ7ZbuXEwDZ0fuYWNY8bcKVBi6pxRW0P4yNpUdYOdnhnFuWqZrVBZ+h031MF6NcKKCVbfSHBge7PDe2Y47nMFmngk/WWUVgWI+ow411CSRZSTg+I0/QUHPACVvpGPZ4/pG9SoFThNhF87yRvaczJeOVGulUIcLK1WCbkqpTFiiSXrXcoRKk1d2yQhW4KWiGaZAd+JU+Vl4f9j39KxZU78l1E1LaivVQtPxUyoQG/5Nys77HVyTKiLFTfp0jcdFoKQJ1VO+NWoX0xxKphCqBBT57XS3kszbBbJvnq5j3qfrw9pEOyvPQBjVyhIk9rmXz43aq2FHomSjF+XABruPHgyZwYyZlGPvr2lTyrJwA8IwbE3PJlvZwPdCZnbwjPYsz2A5w7F8+fLK32cKZsXsvBC77747VEVsd8mSJbjmmmsm5RzC5CeSvX06NcDIsPXU2BlOaQYEUr5oNz0Sodot3SkAOqZvlCNAT2PvCHdR3L/eAzW8yVMLyEMkAL2ArR0tZXo0qFzDKvIGVKaJE4zcLliHK3v7kez8IiR9O+jvm8MoB54zM4J0Y2OzZ1PDb+oj+3bQ1yDN/ZEhk+qlSXJoZxSVjJBQpwlY1cZeTxBJdR2ZvSdkmq8KE9FsH3YvwAgE1YNmNbrwiK8QiDSHSpmnispD5+GdIPlpzD33QoioCPNQPazyY/wblkj4pOyY312tlSweXgjSOoTEpPI8pT+jzqZRMGEtCuWdsOk+lO2mCwPVewE57JmnbdgwnBJuiKcaGTJLu+T2PntT+1no1v5PqpFZroVChN1Cc/b6Bn87XxmbEUfPcqC+8CVUPIJVRd64QlXx7PEZj16rxO8V9zBRSLTtnjMetrehVlI/jQFb5HWUgZpnQ4qdpfYIBzeh030QeR3H/vEm3LjrMVV7+3WkiTY0qKPcTFnNmslBIT2lFRpp/FOq1UK5aUBP+DDL5thJEqQQWbXXkCs2A1n2zUOx4SmoZqHbnryuvZs8cSwl5SWwxb/58+oWsM4g+3YAyhLl0KA12vMJKuChR6b+kS/N3vfm1iFR7VIh2UIlqT0LlahuGBoaQitIXjyhqNMWYlaSqK0BkWRGOaoBwy9ANYd1jiIpdXzeLPfgjVil1NP1TYfuScemMZO9fbZTLmGIFGXcbcMSFCETKCldw0PT7GUCZEE2bSFtAybyBpRgYaSiDZWkgJBQaQZANzQCQLZod0u+Smi5nxQltJsozf82lGNM0c7gWmiyR0ZyHhqhGVNEvoqALAKgMB+gQxZqZNiMRP1whEemqIGTEgkbySqTtsCbQs/PQ8ciTwfg6sIhpU/mzGf2ubAEiikJNDKmDpB7Voh0eOdgRvKy1GEa2j7NcfTj39EdP6CJTNBZeKNyXr9Q3WGkhbYPlS7uv7Ijcio3z9/VblnDL31nw4+mQwdcqNrWs8rvFPh5II1PiZKukvJCihIqfF2Afw35/QIswfVmQdrPS18douNxEsSuKS9naIB3584q1IxRlKLwevC/g884aZd1lzvMlpc6dMCSMDLU82vkpc+gZ3A0Dx+vS63u+RFZ4TSBYlCtEd028hmApQ4jCpO2wWUWTyDqbKZrWejBhwn/84k4IjOD0CxnarAedAIsPGuuo5A6h5PI61phJyJo1D2bqsJ8z9OkiFTnwlJF4RFfu+wQfVYmENLlGZxKbK/hPI7BwUF87GMfw3e/+10888wzHd8XFbPopxqRRI0FVboOhdZVs42UaeDMSwgwFWVoEKrVcguJNnpdLqAsQzHwnJbGjW8JgFaeYDrmvG4ydZvv7VR4CWQ1N+qjMgJ6irHwGzmVpPBmzlAnIARUomV40RoBLdoq6zqhZzk8qJPb5XXXMed1q1yFYTXbSBHS3HXIMoFs5FBlXY/u2k1GAJgSYeBm87nOxJKkeo9ZX8sQspEh2+BWhda48mBnJpKXyiTxQ7upR6NAh7/BzXbjIR/nmfGXi6gwItPnbH+d76q0o3GRZlCUC0sGaxNWhHu9mWpUJsB6n0J1jcpKISYqC89OfsLwAyjJT0bn5ykTckd+vOV5qJzhNYJTmVS75XuogmsG0CCEVAIiQ1nHsTr8J15dfbKr2OfefQrIJzesu2VboFXGQK0M82x1ELBQ3eR1DEiaTfPAfU1WPUyYaZ/Uoxa7RlnHMW1iTSJ2ZvacU+Gkr9hy/9cY4O8PHYsM5d69Ne2MnLuTe3YSo1zVKkLtMkiDwu6xYM9DMm8XZ4egdrRvniVYNIASMN4oc1xvJi8jQvwZtKH8NEM5PKgHDGAknSllPFWLrm4M5W1NnHPOObj11lvx9a9/Haeffjq+9rWvYe3atbjkkkvwhS98YVrKFEnUKFBFAbRG7HILIs0AIR2pgJueTY0VeaNQq7sRL81iMSN3u8ZWlkP29FnjZTm40ZmSM520sWNGUqLLQLNhyIug/zANohC6wRQSkKnnWQAAlEadAvQ2xgxKCpio1bWlnlQVACBFjLxXQ4OmQYJtdCyRMX4ha3AtC92oygRqcCPzV5UoaUajIW8AYHMbmQZVjQybc2mTZ0f+m3YTEr268axYyoLuHXnUBA+jWB/bgD9yJh8R5cPJcus36wY7pZpChWzECvKS8NF/hQ8D5N0AWPiRdZzMm8b382a92YWiWXhXFq6TTxJ/BiCgOw9S8hrw7z0dl5QMKf1rBejzFIUbuYf1Cj+jrNdWvfQz0IfLBNGAxcsIz89NnwWdcGf4tXS/2/2DRLDmOkFKL9Eoncszr4f14ikIeCoCUwb+jAOGwNk1+vwZmHYZmIAsh8RRsGWL9GzWirAkU3roGDfMPxLHPXcnxsIJm+7TzwKrm30/qf1g7YtIM6S7LkZ77W98ZZKUY0NS6Vp5153aWdaOAGCzlzUZorAeAKuEE2kqrdKc23aZq8UiSHRqnweZQJDiWhZuEXpTX0qC6pW1lkDUJrZ8zuZie022yfGDH/wAl19+OV7zmtfgjDPOwOGHH469994bS5cuxbe//W2ceuqpW71MkUR1AzVElHvFQMkUQkg9E8WM3CmbNe8YhMnADUNKnN+BPmtYhQtJpg3gvbCpByo7I5qaSzNgpNQkz9uI7VWlTBlCJcq2m5YsE4j6HEgieGbmoDXNj5iRXb3HeiB0FuWmF1rSjVrmq0IUXkgzqKwByRQFktAV4EZ5HffBGGsLP7s1kVUhJVDvBVLTeQy7EBsZV60MnxpiavxtXe87XSvKBh4u68Bm0XlKBSk9nNBYvw7LjM5VMkNIVXPYmfDhZvB56hq4n6rFysDOz8O8YYNvjhESqONfuMeEDntcpxGoKV46BgrlUSg7dSN2Hj70EntWXG9tlK4Kd7I0CsEkgKqQUmeGdqYc0S8s5GhJALs23rZeWgzyQjFiwstgwvuWUAWEq+McXNk0g4yOdBXmd49U0sQGW5/Stj1qZFiTDRv+Mu8I+aY4IWWk5bhnb+8gqyFOLH5hrQHetSMCBej/C+ZVFNJ6IrVdIXPvqhlguMkbMlChdVso6m4A46V6SDNAphB8MMknVySZSbpJFghNyErTJtFMX282aNYAsgTICsiyQEkhP1p2qSiMPzAFmkM2jKg9fzWIUdaEnkwUSm1xnqfZnifq2WefxR577AFA+58opcFhhx2Gd7/73dNSpkiiukDO2QGikWujbAo70w1GuRBWoWJmTZi4vJmxBkkz68iQyuXwVDcAZVsfVwhP/lYtIymb1AQAQMsq6P1lp5TOvgOgvQqGSFnFiQzoZARVJVRW1yZxmUK2h6GSHCqrQSQ5REHLHyQQecOY11OIHXaBbA2hHBxA8fwzer2rBToVRbHhKU0meRoBanTt//BIAy3DYhvfoUEALS8JpTXQFy2rCupFCaVtpEsAaEpjzu91ioktR6obx5ZZ+mV40F4znv+IoMpCb2vKqP+v8KuUbuZe2KF7ExHgh48gEz/MQc9Aio5Rr/c7/7vd1I08JWG1ZWOEMFCmPJSlWaDZKEKkHNCahUwJoxCTl1+M6gnY8G8H+HXiJC8oD10r520JVBWm7KjwPnjnY6oTD+uyEI0uQ4XaUxY+oaJryMsZZIH3lS1WFqa0ISDX1ujtXROuzPmePI/4hcpZxfVB2/8MgCYY5tcbdjyic3+GE4tf+ASGE56q50ifWLc3ZQlp/JKi3XJpCHgonxNbOqZpI5SoQ9RabnKL2V5P2nGDQ1G29XPY6LUDPFFr6HVNTVuCwqjPRsGy64byyRZJCiQpxJydkPTodD6UgV0WTdteh8+9kilUNkqy5ohJxZ577olVq1Zh6dKl2G+//fDd734XBx98MH7wgx9ghx12mJYyRRLVBSqrA/VerZwYpQhJ4nxHZQmRsRBZCMo1ZIzegjxJRGaEAJTSxyOPDOBCETWaWu/8T1w50tK/edGZ58mSK1VqtaxsQ7DwH2wul9SX4WUKRXwlYY0Zcoia1MQqSSBaI1BJBpXmUHkDImsggW7EVN98iHYTaZpZcuWFfYRwdTFhKr4wsPU2EcrCTbEvaRZbGLpk/6cp5BxNspDoZShETUK1RlwIVpUQNZ1ri3xrenejVrU71SVvaQmOoHOkzt/bl4zNVZ0OdXj1HmvQLweec5MITE4fChnza2OXEiEjbkisAvWH73/M767GTUtPBqDVCFKhvDCjRwhN/Vi59aLIlBW6i0+Jf85JJXvebe6r0RB6nbqR2FH28xSUKngdu9mODwJKp5h1hJ/Me+Pl3mLfc7XaqkQt51PqKG/wv0dcgrBiR8oMrsLZsC7zQIXnHAtMdUVZ+osrm3ZMCekrQ9AkW87dCeXAc7q+FWF2+yyweimZ6gFd2daDtlKnbaF6ihS6vaK2iwZUMoVKMoii5VJrJBmEyUuniHQmGQT8RbwVtC1CyRRlvU8PHOn4QkKVNYii7dpWo+KLsu3a062AaCwH3vnOd+LBBx/EEUccgXPPPRcnnXQSLr74YrTbbXzpS1+aljJFEtUFKkm92WzKvKiOdGhi4XYobbI5IVPdUKU1lHlDv5Am9GcJTNk222dAkkO0h7XKQmZLNtIhAiaMeqTgRvJULlE0dafLUZZA4kiVp0DRyMqU3f4kiV2JHUqZ0E1iPVTIalBp3W6v8gaw82LbkKgkBRr9kEY1K4cHtUE+a3SMOkWaaZM8YBMK6jw4pLxl1otEsjyQ2eR+3vWn22COJ8q2VgvNxIBwWRZ9bj+Dsp0swCcbhcTI3m6WqbubIlLVQVbM4KLwBqlpNgRIM6zstl1ICVDdwfO1w0xdaL/jnr3dhnZoYgMnEuHCyn59Sy8cacOSZefyLaOCqybm2ozWxFtfEat3h7/JHLdDKaq4BhiNgNH3Fb8LRqy8ex+uH0j1ozB0QMhsuKrL/pWzOjmZJiXcHFMFAzHuu+J53iAT3LDDYdV1ZnCLYDOfl70G0g6m9HHb+hkuWs5c3ttvn+ty04BV13hItsO2QOSk3TKDoB5DpFr+feYeT+j3XiU5oJTeP625wWFiztkcZoPNClVU6Dbc83kBtq3U7WYJRaPNFjrsElOJSKKAv//7v7e/H3nkkXj00Udx3333Ya+99sKBBx44LWWKJKobjMKjMjciAWDJkn7phJ39JlrD+p2TCZQ0hCtJgCR3pASwf5M/xSpbSQ7k5rxgs36YgiXM/ygLp2aZRgKqhDDJJgWI5KWaoNG5+QjOyuZSEzBzLs+wTudLmJJG5afRGv8xU52VCRuKHRcibY8YFSvV6RZkqhvlJIeiGYJFW/ueDJGyKlyu1+RSrWc1ITChAEUeJSJ87PqqxHRYRct4RDSp88KXREzNOnvceErL8diZUMa4q1NVNDtDegHZCBMI8un0/HNvqZmydGWwyfzM8QCXFZmyvNtnlPt0nALAiZo3s48RASKPgmaPAo6QSBYmNoSSk0PFiZMpYyVCgkJqA3x1xeVcK22na9f0I+WmyvPECdRohn++TiIRMR7qpO1Cgz7PjwWmXFTNyGLEhft4BE+SGpRfVBE4RgBDHyCpK0Ri+TI3eoZfkPmcE5/gPMc9d+eYROr6XHdKJ4pfdy7aKxOXOsW0QbK1CRgZAU+xYfM3bRpAR242KhNT6UTZBpraIyh65nokRecfq7n33aqGKVRaN37V4YD0mHKmGQR5twA9qFPKtn0AXPtkFf9g8g1g1SeYnHx6cLl1UhxEdGLJkiUdK5psbUQSNRrCmSdVxIJIDKBfSArtsDCcKG1P5KTfjlQEecc5hUlaZ9MSEBmiZIkJu33SvMzU0DO1yVaHnduToDnJo/LIVM8mZN9TA+ON1vixDIERRctuq7K6O7ZSesSY1iFk0ylrSQpZn2OVJhuGSPLOkZ5MrPTecR2pbIW5V2mGUkiotA459Lwb5QrT+ZCXYcgdW4dncudHsykhXGfkLS7M1QWubHBDsi1e4kiDVyfpPg/CGzTLUbXgZjpxgy4QeIYS7zOemDKc3SdqDeOFqiAg3L8FQ/qY3yqZtwvKgQ3OZ8VJIS8H1T1cb8z6BOHKG14rOg5d24AIdhjMK8zinfsQKWMdPbveVUuAhB6vjhQTPMRGn4Uz/cL9+d+sbB2/G8LXseagyd9m65DCfzbDUKYMVK6xQqi8fOHAQCb+e0d/txzBVO2WF2qkcLWFUR1p5qxqwyYlViNDUM1hJMZHZZNw5nXvvRfmf8WV/SS1qVtQmr/TOlA07YBSZQ3dLgFAE051F0K3c2ZQageqdJ6QSEnp2pytgO1diSrLEt/85jdx5ZVXYtWqVRBCYI899sCb3/xmnHbaaaOuqTeViCSqG/hLY/72oEooT9GpaeLR1iN8S6woFKdYqEJIl4kacDPlAq+SAgBhzOG0TZJDZUwJCqDY/rwuNr7PPVll4QheGNsXZjFgaqQYYeIkyjueIUQwahkRFnt+o8xBJoBK9fVj15pmwKispnNXmWtgw1t5XTeIgDP88vQO1MAWTdOg5lBpTdejtckogtR5JFDIgLwBmWZ2CQkAusEmAmXqTwZ7jVZn2I6HSwJ0ZEWXfjZ2myoCzI9lyyJhs73TSJ6fM1Rn6HeuRvFknqTCpGwpDEb4aFIDD6m68J15HyivTrsJNfAcUDqFxguZJv6sOUrvYJfnCdQtp/SE12D0Dr8q7OV5m0KyA1jywfexy4Sw7yrVotFA+1XNNOVlZn4cvl94LJdWpXQKNK8T1WsUcllVvh/1LxurJv7xq+pAbZRSgCqghIQ0k0/U0IDdTg1u1GQpdwMEnkhTe5dc/jGbasO0ewCs74nDvtuqhGgO6XuY1R2pgiZOtp0UQitWeY85gGmTCriBKh+cCeFIG79+Rr0i4/l4E5ZuKQpVotjCcxVbifBNNpRSeMMb3oAf/vCHOPDAA3HAAQdAKYVHHnkEK1aswJVXXonvf//701K2SKLGAU0iDMulKaL8YSSCkusXVjZf8MJH7hjSjtq8mXXtthvxByTIepZI8SKyIpyx0YIM4Ux+dgQngVLm/FUvUrCPNVDKFBT2IzN8B0FjZbINijGc2s1M3TSRUUbp0tdIGNIDmWoPGcxorywguO+C1ZOHHa0fiz6TqR8qlSnKzDScRdORVvJLCAnJQpJeRnAJfc1ahRsx806Kz+7iISiuSnmdunTbsP3cWoVOkSGDuQ0jlgVUs/CUrHCpkY6wIVsg1c3yZGFBTnJ4x8+mnyv2GU/cKHv6UQ4853KjlQUg6y70E4Ye6Tz82lWQh47EmJUEowtRqCJeFccICV+HssLv61joCNOZAUhwjMqFmAHnfwxTUhBRTujdpOOl1epa4c+gq1pLcnM8ayfW1+p3pVVRLnrXE0CYGb0QEmWtV/sRi5Y2mwNQI5tcOY1xu/jTH+xgRQ92MohaL1CWkJkekJZZTU8EaQ6xEFpq2yWV5va8ImxnafBH9SarQa3XGwhaxZwGZ97Fkk5t4rMK6R6YVDFbC9tznqhvfvOb+PGPf4ybb74ZRx55pPfdLbfcglNOOQWXX345Tj/99K1etkiiuoH7oCj2bWZ36e8FI1QKKFv6ZcxqUO1h2PQCgHuZGYGCkZ2tlEygGWx0msT5VTyDOOBm4VEDkeR+mIvNhtOfoYMAceM6HdOOwvj1CMmXbYAEfvSMJj7H7Woabes7UjYsqY+RutErV47o3BQubI24xT2LFkRWgxoa0OpdVgJILHnyiJo5r6JUEHRdy7ZL7VBAlzHLbflVWkdpiKscGazuaGi2H91TynAuEzfDjIVTbI4tNguLL5JsPT90bckTws/tzYyqNrhz/5LNC0ThorLQYSWZuHObBW9hO26TsoBP/TdmZZ7jyhqh09wkI3TmYVqyRatSXAGS/vWh408yqpaE6QBdXx4ao7Ja8l1BzKpUmCAE2DV1BFflQgIlJCDhhe+4OmeVF3rf6TmndytvWJXGlj+YfUi+S338YLHlccAbpFWQNiqPaDddG2SS+6LR77yaaQ00qUZlPZDNF/QkilodIm+gzBtQaQ0ltUVFyxElQKdaaQ5pNZjee5qwY8pT1vr0+27aKZrgYwebZlBg3/kSTinnpLRLHiUbIoRRwGQK2Rw0g7FRlL+IScF//dd/4ROf+EQHgQKAo446Ch//+Mfx7W9/O5KomQQdymIKC6CJT2HkZfMPvUSiOaRfqkSPjqz3hpScNNcvKxkZ+cyPhIX82OjH/m+2F0XbNepGXfIa2TC8VxHu62gkqH68oWY+AOdnYkQr8UnG8fO1sVKBEbjENIBl23mU0Km02dmKGXxCxOR73WnUofJeXTbjdXCNKJveXLZd+ZgaRuRQCGnyYhmiZcKOigz4YsgSUduJlIUbscoEqOmRKRl/ef4qADYRn2q3dFJVwM93A6a2BDO8+JI6AFAODerwWa1uiZtdPsgL+TllxYUHdfJXuxI9ACQNfykMuqeFI3Ud2bsBjzjYzPClXobHqmLko2r0ulANJVXknqeAcPDZeQDcckq0bWCW3yxwpa1bZxcSBa4esvp3gFTELj6qrnm++LuauHfP86wJaZ9j0R7peA/tLGD6nSZKBGX2cpIlCTBaotkQquyon72GZOym/02okSa/cD+jDbHRYZMcct6uVm2y2yapDcWh5WbNKgCqMReiPawVIdYu0qBMZXWgaLMBm1Heqaz83gsJCNcO8nZHJRkjS75PVWX+86PSGlCmUOnWyVhelApyO/VEPfTQQ/jiF7/Y9fsTTzwRX/3qV7diiRwiieoC+2KXBQQKoBS281dpDiVzF2ZLa7pDGWlCFE3zN5kPWXoA8jHJFKK5SXdItRQg8zVrOGBm/ZHPyhIoUoSI/AjpZwsGYE2S9CdrcFBlvqMRHME2KqUmapxkUVSTSej2HELqlAoAaMYMyjYw8oLXOUAIZ1qnbanxpFGmySVkl6fJdrSSuzbws9l2FPITEqI15Ihi2AFLqe8NC1fqUWrbmu6VkEylSfSxksQZhck71OjT07lJyRDOq+ISULKFgK3SxDrYdhNqxOXxETAKFilaTHkSjT4k9V4Uz6x315x8RBX5f2w6gFpFmKJScWEEhsJBxhtVte6cWyuO3UdD9mRedx21IQaq1bLXUNTYVH0zw8+WOTzmlo7yw+VjQjIQhvrGIk4hWIjSmtUNvMWg9Qed/zNPoj0elcE8e3ZQRse1EzIY6aL9K4z0lChYFE1NqqHXSry+/tKu1TqxvtZ43boY7gNLAA+rW9LBySK1IcarWDbmupUX2EDRtql5jz2HGBnU73iSATUa3Lh3nNoIz+AtJACt8lvrBFcMhfDsERZm8KePbY2K/tJZlK4mzSHaTZRZxTs2BWiXgNhCEtSenZYoPPvss9h11127fr/rrrtiw4YNW7FEDpFEdQNNy6fRFtxLqWPoNTv6KmSGNKtDtUesl4e/mJYAqVLH5A3JEu2mVapE4U+V5+Ey17h0hhUp0y41UqJosxgBPLlZwXW4tkEIiJH9jsoQkCUOb3YgKzc/lm745rBG3nQGZeF8CVR2aIJEIQEBZ0wnczeZxVGa0F/Zdgb4NHflLQvfo0Vl5t4jSnYqUx2uM0qVvZZEhIWEKIdtygiUbSBvAEXuDP5lO+iAU4hMWnVK5PWOzkU0TUiQqQM2iSagE42yTlJlDSTzdkb76bU6u3te13m8gnXsnDE7WL6Fk5TQmxXexiQByFzPw1ZmQWy37p25z8ObjLfLLbXjGcSNoVxkGaSZdWXzQpmO3ypsYQJPPsuRJwQNlDSdxLPay9RVheoIj25GuNFTetnsxCCkVrkPnxBB4ERKldprpMyC5kwhAQCUbT3YSHPIkUF/Xxa21CTepBVRpV1qZywCJdggUJ+P1Y8RIy8VitKhdmqvbEoWqluHAp3Y7/QgqgTQ1u8Ynce0tTTzDkkOxd7L8Nq5CTpSt4WKZjLnumhEuEw76YXjytJvb4JwqSVjTAlTWR1IZ6e6M5tQFAXStDtdSZIE7fbW86dxRBI1GoxqovXiEpAZADOSSmuQLZ11u1AKSVrTCd7aqCYdqvR8PILCeFWjNrN9xyEo9AUTIrNllP42HGHnwZWLcD87O6rLtajYFuH5aPPA8G07E2pIZeLqAHQQKq8uhtAQiSLFyza+VGgKCRRtCFHahpSIpx9SkkZdTCwBA+Dl56JMxjYcQOSOMhYLV+YwYaBthPlImxNjmpWUm1Bak2WWTjJAtgBZ2PX7dIbwun7GpFsompfZA/mgRgmFeQSKKRh20WW+tA51opKM64YcmhCSVwZDtjxPDiUSpTxYVhFyKlfVkjubMxV/NFTmdgrDdxzsOez4O/wuPFb3QvjPS3iMinNon19mJ2R42bIBhL5Ca/xmoTzFzklh2hOaD9o8UONCGN7k7zZTqjvasW7Xwft7DBLCbBT23GywYxVpPriEdO8oWGJk2pYIYJAKwr6jMrGzh0PFXfD6CQm1labWb8/hPKUUVqxYgVqteomdkZHpy9W1hVr5tgtFMq9wYR/RHtG+m6KpFSrjuSkV0BQpVGMuVN6wSoqWoF3iNy53q7QGlfdakyKNnjqy8paFGyEZxUVL+UyBMse021BHxT1Vo3hKPB+WkB0NCydDYxopiXTY35VtmCwJlKnzSViJP9PXIuuBynqMOpSz62CMpnnDzMpJbWPnnRtw3gpbN3OtAl+EynvssUDbZXW9f6oVrzJruMNzwsavXZrpUCMRAn69yOxvOxhhSYRKcqi8V6/zR2pN1rAJQ0XCfE9loZWr9ghkvRdy7k52PTLyR3X4pEAkhRFHCkd6niNOpkpjPM/9ZwsBESHlLNMLvoIWPg68T3oh6Bwyr0PWe22qBlKtRF63/8t6r1tAmdeF+6oIxqhPP+7zgMyEaQ3Y//YeVtTLA++07TuS8gN416lrSDAciPCfquMQSaBQMi07lWYoa71WAe1KXMxSLIAbDJBHDwBeW1vTuQ+A64Zf5NeTl5vCvjLFdUML9e90z1ibSfUR/IfaURpE2frToCK1yYirBkf2O+M7te2qaTuQsHeeBlSpXgdU5Q2oeh+bqBPk7BNukKSMKg1qkyq24xBbaVFfyhO1pT9TgVWrVuFd73oX9thjDzQaDey1114477zz0Gz6frHVq1fj9a9/PXp7ezF//ny8//3v79imCsuXL8cuu+yCuXPnVv7ssssu02IqB6IS1R2G6GhZfcR5nACjgCRmBkkC1S7RKgEkKfJan8tSzht0LzSkCUEJgVIpJFLoRGGU5I22YyqIQkVDG3RyXmNMBKVy1Cy90J5Httg23vYhBwu37zb65A1mCZTG0C3aI0AOiJFBpwTxY7SEDfmprEcT1jRHWeuDbA3p65n4pnirEiU5hGzbbey14vJ8qAiE16nid2HInFUUKUdN0QZ5LJziZlQuuo6tEXMOZUOJNmWEIQ2ytw5V79O5xsogcSKpUYA2bptUEHwR2w7DOZi6U+GX4vfXhuaMb0SY8I/XYZQFVBt6xmFwHrvqPfca8ZmGXloI80zQ+ciQniRQhXRELCTrPFkkGfoBnd2aiB+dm7Yj0z/gjP+sPpW/V4GFj7xcafQd/V+l7lkfDrsHTG3l4fNKGViVuk1RJSDdeUXTTVbQnieWsZwpNaJs6+sqpH5uzKSIUavL/Faurr7/6sSe9bhuYAFOnPOUG4iEChFtzy0CNNOVrkGa+20mkRLeHvBwJX1XuoEKVAkh9QoTdpavnbXsyKT2j9JsaXZsIm5GVfLtDlQfM9HIhCq7tq/bIR599FGUZYlLLrkEe++9N37xi1/gzDPPxODgIC688EIAOiR30kknYeedd8add96JZ555BsuXL4dSChdffPGox7/00ku3RjUmhEiiuoBedBglQQB6VGIy4Bal0i9tQOz1NN4GSqHDfAJAkgoI8gDZDUuU0CZspZzKYRtC6uSrGtiqhioE/1xITSbMeS26heSqjhl+xEhLJbgnQikoKXWRZaJHbkmmQz05a6h4bi0hAaGgan0ewSICZWfTsWsFMjuTXF9VL8FGoIBtzL1rTcSIlDRAJ+kTbOkdytsFANjU0Zh66pYq9RI0lHeLPEZZw3joUogsg+iZi9IodVwpkr39Ost70YRqjdgy6mvmlB+awi4olFdwMpF3EgWPKCfMb8RmDHKyTibqJLE5oOysPlKjKJeU9BUiu13CDOmUiypj5IcTJTZlXxM3XV+RZS4ZI2CX3rEJLKmcnMRxlYjM/vR3N1SkGPCenSoyxd8L/vgFz6IXdg/Dhl1gj1u2/baEZnTaWamyc3uuWKU50Bp0g4oAJ/Q/q9dsbI34M1T5vTHHO7GxDmibpXpGG0ix+qmsrpddaQ6acrt0I/p5A9yMWD3Q8HKLkX9RInjn3CLIQplkyDJBmdbQLBQSAWSi6LiXdgUEIlCUo66LpcL6JvnPVsBMDuedcMIJOOGEE+zfe+65Jx577DH8y7/8iyVRN9xwA371q19hzZo1WLRoEQDgoosuwooVK/DZz34W/f39U1K2qUYkUV3QhkQbEmlaMy+ncCEo6qyFRMFYVCIEAImWAgrj9xFCQCroqfVAQIq6n9+TkHlagC6jnjCxpTtHQLS6Ea9wRBVuw/cLG5CxRtJA4JESUEkGSSNsUvxarn42XBnK+qE/gRJ2qlJPaabRdxfy6TX0VJ6wsCzXlT03JQ7ko1OaKUmjaJBaFZSRkomqUi8HZBQeMrVTw1zmDWtUpxXsRV63CQIB8xw1h+yMTB1Oo3X/alCtEajBjT6BsqpPl8zTwZIsamRYL0zc6HX1J+WpLCxJ8RSfWt0RJS+E6Lw0RJZ0qgVHkOwadWXh8lWZNBH2+ME6drZcoUJhtrVqDN1H4xHqzLNlvENEQIJnpcq7ZJ9leqdpm7JwxKnqXah498a9ZEjRtN4jTfBJraFZZm07AOMqkkoyl4JC0VIrEmW7CdVu4bXZk/hhaw/vVNdv3BEnzH3OldkQKDvTlJ5FMygQSvuRIJgiZytYTTCUTCGSXCtr9tq4mcfeLGKZaHsFT/TL2zajtnnvtx0Q6etUlAoy0cf02lZ7PD4bx1gQKLecadftPpTJnAh+1QSbKcBkJtvcuHGj93mtVuvqN5oonn/+eey4447275/85CfYf//9LYECgOOPPx4jIyO4//77K3NAzQZEEtUF7VKhXWoFJa/N0ekJVGkSvqXIzAK6QikIIZBLQFawItnNc6hKJDLRipbnwA02Y+qHR47Y/yr8mx+Ad+4hEarYrnIbThyCOnSoUaxxc+USHb4Nq74J6atwfGHjsq0XdjZTiL3FQem4cI2580SZGWKUk6sLeeKNvdeZSalzXiVpx3YQEipl051pxGzKQftTHdwsSn9ZCW/2IqWDYMcoa72aFLFtdaZ2AdQMOWgOObKR1jQJS2v6eTF5qQRTj1S7hSqztiU/lNPKbG89NbzjkgBKNxvQqkiAM5JzdYnOVRRQrab+nMpMubWIoJGR3TwTSrnJGDbMo9isyXDmIy8n/W8Jr4SSNaDMtLLR9mc0hs+Efa6J8AYKlN2WD44or1O4kgDbtgNjEQ4aEFA4mPu/yEsUlosIMy2Qzq6baI/YJVfUyJBHVF+b/w4qreG6TQvMYr6iuky8vPRucVWbK3KM6ApVokx1Pic5/LwhKiwFRZCaxbsmpFAptxSL984zBcoSWkN4ZNFCnqSQPP8dO35H2yDctXRtrv6shICUqR7MyBRKCGtRmE1YvHix9/d5552HlStXTtrxf/Ob3+Diiy/GRRddZD9bv359R5qCefPmIc9zrF+/PjzErEEkUV1QKv2TAHokpNwyJdp46F52IkomUo4kTBROvYvwaZZQCqkAuAfANgysoa5UT6pIgW30kg7VwY6YA3XKSt9E0vhxq8gT+91bD5CXie9jyiRUidKQRim0F6yEhJSJJp9WMXDERZgGzi3lYKR9Ik2Apwr6BDBIlBoqA3x0yT+nY0j3uUpSF97zro9yHqz2sK4DyxpPoRRNvHIXgqSOUUgoGEVG6WenNNmdUZYQRUtnd26NaFMsYJbYMIlMZQoMD2ivlDHAqySFzN3CyWp40CpLVnUhUCiwLHX2aLtOmyYt1lvCE8RWpBCwKpFMIGRhvUAuR5Z51kz2dm9RZxu2TDuXV5ImYSIZqgGz/IYhqxS+qTD8h6FzlML6rEgd7OplCYiDHQAEKogOAyXwVIqgHN4x2YCmIxTYDYHqo0Tm71KWgAyUV8AtgE7tSQF7vb017Iy699raGqAscd2mBQCAH22YgxPnbNLrypGZvDTZx+macF8bYEPcoj3slBq656wd06RQk2dOotx7Hdw7Xi9DXCzfEgkEG8h4pCrJoGQCWbSQokRp3zV+fL5aRECoqJ50fmUMGEKiNM9tUaoxJxdOFopSbXGeKFKy1qxZ44XPuqlQK1euxPnnnz/qMe+99168/OUvt3//4Q9/wAknnIC3vOUt+Nu//Vtv26pFgpURImYrIonqAikYOUoy3aeaWLwyZADQ5KRUetvSvE1SCDvqKYM3TMnENgB2VoengpgO1TbIzmBtj9GF1HiqDh3XNv6uEwgX1eSz7zgE/56pKlUI1bBwRKmE1A0O9DWh6yMENEExdafORbSNh4PNjqMdyqwRJNZjyTWpIbTXT3U0xPxY3lqIPDwUkC5ONu3fonQJ+0xnZf8G/BQJ/Dh0vXh5jYfKJlYsDXEpS4jWEFTe0KZ6piiqXI/0RdH07h2tPwgAsiygRoYZYQqTSxqPEV/glUbW4fViBMomy5QJkNZcfjQpoUpGoIQEEgmRZCxTehCipevBCRSFd/g6iWEONo8kG1Jsrz1TrlSpby2tGlC2UTbm6u/aTZ2g1T4T/uDF88kp5p1RdA/N9mWXd5IlZPUGLKEyPAr48+zlZQIgyhZEa8SVL80CdceFq8jbCQAiN2pOcwgnFr/AD0f27zjvdS/sopNuAnB+MzbII0Iq0akS8/AoKU5GDbMLj5ew4WufBPkj0BvXDOPYJT3m/IlHWpSxSuhr4t5DIrhFqf2XOmIA/56a43vXWVc2uHbuc5oMZL2S6GzjpwpKKagtJFHKlLW/v39cHqT3ve99ePvb3z7qNrvvvrv9/Q9/+AOOPPJILFu2DN/4xje87RYsWIB77rnH+2zDhg1otVqjJtKc6YgkqgsSKfSsOejQHgSfpaRQei+yQqH0PgA8n5T+HvZlJSKRQAAmHGi3Y6NTT04Wyi2hEr7o/DxC2hBjZ/iv9OXvEKEChc5RGG+AOsIbYXmqpHl+Ov5V0bJKkwA6Tc1Fy5lJTeOooBvTpGx5qpMd3VOoUZWwylzHItL6f4/ohIoDXQ8K8XXk2SrhL6jMCHAiXYdB52IGX6emSVdX+klSY6DXJnM5PKDTH6Q13ekzxUHVKHmlmTloTPAQEiobAeSAM4sHKRAAaE9VkunzpXWorOYWfQ1BSoYwClbKkpRKc02y1CeQRhXwr33ZQdIt6LySEWJDfrRRmC1SDQBF4fxAMu1QrrRXTq+RqJIMsjmIst6nBwYjg7rLllIfx4Ti+LvmvXdVKEvPn+cNOoIlkrqar0cD34fIMD2nlnxKF/rlRN+qzMF7a1QkAUC1mzih+SBkb3+HP+q64RfhtckTet+8Vy8UrEqddqEszStg/FB0vyn8SbMl6f2ueseKtk4rQlWlgQprII5d7L73PEE2qZsZkLFyKyG1mGlUK1j1yn/W+DWiSS/UhnYqksJ6ivggeWtlXipLtcULCG/u/vPnz8f8+fPHte3atWtx5JFH4qCDDsKll14KGcyuXbZsGT772c9i3bp1WLhQp8e44YYbUKvVcNBBB21WuWYSIonqAtvAQytNahyjjSrTnzCxPMFIlkAnvwhVHj4CDuP+lYqKHal2KaeQIE+B95kqHeEZbWoxVww4qkbTVJ4gvCJl4hFMmrFowyKBCkAhJQE4GR/GzKl0A0aaCjf6KiEg4IhfWCU21WdcdbagGY4gUuUIlW6IK6RqL7SnU13YhVFVsAYg3yfRioIEUAq9NiPKQpMoId0ajEE5Kc8Nfa5qvRCNXpQDG1yiy7ZZzoUykptQGmVQV0kOIUZ8r1tAbJWQEHlwfSgkR+pR0WbT7v2OHYXrAzVpZLMD08wpG6TuyUTXOZGWDFFmetl8Qfun7Cw0oTv1JNfrnZl6UPJTb5HuJENZm2P+bAJNF2oNF/jVFTBKSRUZElwZk9XvRrA9x5iz2/g7SKQN8J9hfgwTDqX3RxRNm6XAHier6Xxjw4NQ7RZOrK/FdcMvwolzntIkqT0CCJ3LTmU1TUqTFCKBm2HJq6QcoSzTPv28Dg/o45gyATDrYLLBhGKDPCE8tZy3jWQF4LB/mzZWwClGUoiOtjZU8q26rAAFwch9oKYrOFsEMKqXdXvDH/7wB7zmNa/BkiVLcOGFF+Lpp5+23y1YoEPExx13HPbbbz+cdtppuOCCC/Dss8/iIx/5CM4888xZOzMPiCSqK4g8AeMjUGDbE6TQ+1qvFNwIZtwJ2tiIKByhWd8Ia7iVHZU5/1XowfAkbVJTmKrik6DuhK3je2oghUQpnNeJtqfGTsHMlhGJ3jthIQhVGlUjccZNSSqGVvkSoWsnpNCdsU1macgTDJFSsCEY34vmN/yeaufVlXWEfJ+EdcJ0KdjI2gsB2ZMoQ5ry6rAjV6bo2IlEWe8HGjtYzxVtR8kL7ZqDgJsqbs5H6qOo90G2m3aBWgXoPEt5w8xAcuFQUTSt6VplNZ2awdwjFK1OQs/KS8ll7fPK8zYVhSZKXKmxYVwKabJrkdYdsacwL/PBIavra65KlEJApC1geACiNWQUMGWfKZfF2lya1ChtXJUBdEhOSBuStQpUOICgZyJhqh4PHQZKkEeC6Du6bGOF9cyzx4/rbUvXiEzmwT0BSm/BcFGY0CU9jyaNi6hDG86LJl6bPQlVuMkcKqs5JZAWJKb7RWTOvoOkkimIooUy74VIUqNGGcU47/GVSa6oUXZ2Vo9Sat8TAPveK9MWhO+tUuj4rCgpFx+/8K6d0PdBuUvZpW0ulY5AJDzqjM52f6qglBp3XzTaMaYCN9xwA5544gk88cQT2G233SrPmSQJrr32WrznPe/BoYceikajgXe84x02BcJsRSRRXaANg6M/cGO9POSVouM0yVJipCjyRVX5ndy6TYFyZA9euO1HG+2yY3Z+4XeIRqD2OnZPrQlB34fnEdIYxwEpEit5hyFQIYBESCRpDe2SyBGsIbQolUfhSqVMfi59DQUzz5cwPhUzkqSGsKvPwSt/YPhnHUKHD6xDdas4fuGM+vZ+itLlHuMhwbADtQRMj8alKk0Yy5EllTeAIgPaI24NR1Xq34GOdRhV3oDsmWvVCEpAqaTO6GyTNlKH3Xb7ez4gNtvKfk7nENIRKH7NGMFQIvOulwstpZ33hQYHLHSls7m7tBDUgavaHK3W1Xohhwd8Izx1lknusnxTGW1KAH3dZDEASuqqSR5LGWAmEdBxNXkVzhck2PXgqm5YV36P6fkY6x0WZgYgLXvEfUYJbH073nNak9DeFwUhhh3pKgq9ELg5lmDPmOdVSnKT5qWhn4HWsD6cWYJJURk5yQWA1rAlviozi7Sz5xRm9Qc7sCCyK321OYVy+eWg3+1O+mSqbOrGfZcA7IQWsIEWtRnaK+U8ml1nSkO3WwWEVdQng9iMF6qcBE/UFDG+FStWYMWKFWNut2TJElxzzTVTUobpQiRRE8DmPIfetrZjByC1L4o6Wp57BoA/PTgYCTsVibxA45/Z4I2S6bMKo69FlULFytxBTkwHJU2y0cKM3kZraIqSjfCEZIQIHY0hoD9vK03QpGBmT8Db1iZdDAz8leSIZ/m29Xb14f9X7s+PTx0989KocAo44PuSOhQEONWptcnvaM3nylPEpO2kuCIojBHbqkRJAhTO/A64DpOOz2c/6iU1mFG5bJtwIMsFxUM67Fp5z2nCjOtUB7uembAkxYZxqU6cqJGC4akXUi/Pk2QQWQNlfa4O65lEjqLQaw5SKgnar6zNMZnhS60sqlLXS0hHWBUtzdNj6i2csZ3VXxjPnIeSkXN6tsJ3gNQXehbCPFjeMRMoGlepUj9bFD4N19EjogvzLLM8RnamqeftM54qIqYquJ9l24XUZapVQBYStZNYYMgSYFVGUbZ1Yk1ocq9Y2M4awjPnceOhNT3IMhNrmMJM5KoKCnBtTkC1SiMdcT8TeaZ4E1OiIgSoNj8yEbF9IJKozcRkEPlSQYeazDBIClk5+KkMM9Go1C5+K/xBr2VGnSbOKqO4DYMZMzonRR0hP1ausJxcHheQHeb6Kihj4gTcTEgyb0pjMuceCF1vN/OtMGpXuyyt38yVSXi/c4m+U10KQpRhMklOpKr2B7tXhhhU3jt+PekSmk67MlSjSpRZXfu128NuhhMdJ8mNT4jybI04JcVObW8ZlUqrBqVMIbEJdv26tp9Ly+sQhQRsNnHmjyLPEmAJBz8OPx5UaX1MNvTD1S1GShVTgdy9cYMKl0DT5QCy6p5BKRKUUiKrSV33sm0yqPvvgUprrjxFU5efZzinMHBm1k5L654aWAkijza8mgBw5Nwt91OhOlll0oXmwnCvYNsKlDp0bJfqMelA2DUm8oPCDCbCTOehT42In5AuIz2VgSYtyFQrgnTP0hxomfBvmuvM+oYMqYzWETXXIK1BKaBVKmQy0a+ZEGZAZPIvlW3ATAQgkzdZAxQjPzY0C3gLXXNfKp/sA7Od+07ZY3Eixeec0N/jGQhuDUyHsTxibEQSNU5M1rNnyYKRhZWJ8YtRjh96ngQC/0wVGKmhXCpctQpHdsp8ooQwHoKE8yavAbKNKZXHHJsUpEKhI3QHuPAmh042SmXSIT3b8Cl/pmPV/io4TsK+dyE94fulWD06VD7AkR06RxBuqZqhaMltGJYKPTEclsRSSKfa3K9MCoGOpKJUft65h2WiBJBhPWhdQiRWCbCHDMtYNHWIz5RPpZl33QSpRlRfbtwmmOzPNsyZZJ7SogTbJyT+IcFkfjlr52LPSWK8crTkh2AhMEtCzUxKJSRkoRXDojHPmtWFKqFqlLuKETmWgFRwjxgrn96n03DdodzZwoeqUDVUWjflZlnLiZiFaiD9X7b1SgD884oFxClVAR2HhxntNWAZukXRtktggSYz0ODMbpfb9oTQ9lRnncKiKJXxOgIpU6IKHT9DQe990I7Y8aL5v6qNduln3D6l8VLRcW0bQ6+e+dXdpplBPHhTsiXHiJhcVAyJZi6uvfZaHHLIIWg0Gpg/fz7e9KY3ed9PdIXo0UBJNycDRACINIy6qjZrwLyZazCkIPisNB4jvk1bsZEZU62U0pJ1CWFCafqHfEim7dKpBJgJmv+U0MdXCrYcrVKhVepGj7wCyoziqBhV15MaqUK55HUup5T74cfiPxylUraORJ7sdzB/M/JiR+/UuXpqUeJ3IPxa2ASg5juuZgEVx0rdT0DK9EUoYdMwBBnFSwi9bqNRYzwCzVUs2s8SpbYN73mz3XjnyBf6NSqJncBgFAgAesZdkmoCFRJ4Ia0/hhMJR7QdKdIeHUagApJkQ0b82tIPXY8ks8+2fXaZp0WURUC+KJyYeNevI7dRVrchQ71OZm6JqP3Je1DW+90SUNxXaJ8V7SOie+2ZwgF3zblamqTm+ub6p+r5MPcbxsumsppR7gz5pvtNZWDPAa2fZw9H9yWEZN42fg2N6qTSHCj1rFKV90IlGcqsYZPM6jBzbkkuoTDheRogtUuFZlGiWZS2nSgUMKIkRkrdlthVI4wXkn7s38q1GaN5WOm7UpGCDdtG0b7UltBxqb2ZKQQqYuZi1ihR3/ve93DmmWfic5/7HI466igopfDwww/b77dkhehu4KOYyUbCDqwU9MyoihfWjrYZ8QK0/M2n44axfZo5YgdwTAq3xzb/21i/J4XrtAz0SUKz7UyZYBskZWdN8wZnc6+ZJVKBabPbdt2OoYSws3Yk8zbY62bycwFOjesYnjEiEHaAmhyNohZQaMSaZIMZd6rsVHrouIDOacTN/QZlklkPibeYNBEUYTq/svQ7QO5L4pMYEpfYlNQMmxU7q9mwpM243jH7imVdr+qM6ZzwyYIN3xklwysnHygE4T5v/+ARCD1znCyGaqMAzEuhlSTRHnbbtYYByfahw6a5u59kgib1RbGZc14I2a0AoNhn3MsFwdRDTkAFyxIfXFvPv0gDKb49nZN8R/QsUhn5+QE3qzRU/ipSDJSGVArRdJn5hQzIkjQz5CQkE3holnIigCwRaBXUjrG6jaJYV6FbW8D359sQUavcHv529Hk3cHVra2Emz87bnjErSFS73cYHPvABXHDBBXjXu95lP993333t75O9QvTWCB0LIaCUVm9Iag7zmvAYPXkBSJLWX3R2IqHxMjRUdpAnajQgQCn4tczNvhNAJoVRelwjU/VSjnXtRmt4tvQlp7AeZZCXxnTu6qw/A+CRKd7BcJN/h/8LsNt45IvMzoCf1ZmzWkM+O9QLTtQ6FC3GjGkfYabfg0IsCctf03akhBOTqs7SmN+FNH+39fntOn5hh+uVMYES/qK9pFJwVKWT8I8lXaJSu5PwzqmYCsXfA9g6w5vabkPYtB1dM/L9hapjmuvtyrZXfmvcp8+lISulUeiMIV3ZZJLMVyiEvvyq9Jb7saodoGe60YxLQ1qsIsqIPF830IKnyWDPmxcaZs/1aKsNePuacKy3BA99Z2d00tIvwl57wAyozMsvzGBGCjeAIQuDFHoQ2e1dr2ofeJtiV5IY47Nw33BAzP/e3PZ+NGV9qhA9UTMTs4JE/exnP8PatWshpcRLX/pSrF+/Hi95yUtw4YUX4i/+4i8ATHyF6JGREYyMjNi/w9Wtp+KZC0dERanVHN24oKs/ynoD+LHg+4YSRhpCz0DoLwqVI6s0mVEjSeDmQ0uwxjNSm0zwRnA8oPKT34HqysmV3pCOa4grrcNlO3BDsvhSI3QOwYy+LFTlZjGy0JoqXcgFTE0IFJbR/DCUVwuAS54Y+HH0orFslhWgM0Lb4wNKNvTUchYeUtRxMmJTZZ4IZ5B6Zaf/U3+GGApO2vzQnVO4RFc1qxSJvU9lhZLgKRmhGkv+wQqlyiVxbbhrSakihNQz9zwCqushWm7hYpWYpKle+NUQKJmyyRrCKIyw3wHQyh8YcQphz6+Cv0tzHrD1PHO3TVV9q64vVxNJYaOQMimboSfMgPyPHFU+yEL530l0V4OA8Sn/oxEl/nfYXlRtExGxpeiiw88s/Pa3vwWgF0P81Kc+hWuuuQbz5s3DEUccgWeffRbAxFeI/vznP4+5c+fan3B168kEf2m7vcCF8QHYeL8Nm7ltFPvhsfxSadJAnyPYhp+7KvRW5T8Ky8/9AxPF5uwflntz9+VeidAX4a5hhTctDCEJ30/Vsa31HYUsNzQRuxAMH+n78mOo5hBppXpA+9W4qmN8P4q8P9bXY3xJqZ6qX9bm6JQAWcOZgQ2pUGndqlDWC2S8WC7HVeKOycNvgbJkO96EpWLg15OOSWXgfi7hfGeaOCnrkeFeO7qfhfFF2bLwZwb+7NWwDJ6qyLxTKq27cBWlOTBpJWxd2fI/zsfFsm3LxC0ELIT7znqi/GeJZg0qk3zWC91R+QKlktenyptn96X97TbCGfTpXuQ9UHnD5g9DkqPMe92zQsfjpzWHGu/6cVXv8FSQGU6gtmbIbSpBeaK29CdicjGtJGrlypUQQoz6c99996E0jdUnP/lJ/NVf/ZVdm0cIgf/3//6fPd5EVog+99xz8fzzz9ufNWvWTH5FA4xHQuYdhTdtt+wkNyFJ4AQqPG83gtStjFOJLSFjYxGq0fwDY16DwOfBZ4FxMuWZ7asM46GSYD83HZj11/hGcr8ifqdljdRh2Xkoh5+fOm0b+knMWnlpB+HxymI6fJXmLlcUN6jba9M9kaQ+ZuqVoZKE2rImTpUi4oqx3xMixsq+V8r73ZW1wjsFuOvmKT2ufnxSAYQEiBgaMkQqm3f9pVNyvOOHM+NMfb38WIx0eWXtdt3CcH5Qj65KF+1vcl4pXkYi0bze7JqFlgMiuFuKqWh3thneMBkEapu5GDMH0xrOG+8K0QMDAwCA/fbbz35eq9Ww5557YvXq1QAmvkJ0rVZDrVabaBU2G6NJylUSNCE0SFK4aqxzjdawzbT3aUsI1eaMNjvCmJ5tySTvNIUJsx7bz1jIrmMRaf47N3YDlsy0IQEFSJnZGWVdOzoTvqGzkCdOUBoKwbJGC9mRWZsMzuTb4UZ0Xj5lCILN+ZTm2s9DuZ14RxqG5vhMRAqX0XlY6JErNrZ65OkJwkXcvzHWhIISQuddC7+DWSqoIoGiPTfge+LKNmwuKpso04T5aDtSoZLULn8CtPV6iuQpMkvlCNnWYU3aL1zEWsKFz0o/ZGqLTPfWKEpKpmYZH5ajy4tl+s+kB06CpbSE2nqxjApWpjU0C+1rSo0SZf2WXUzahPG8k1PZ/sy0tm0yUCo1/uXCRjlGxORiWknUeFeIPuigg1Cr1fDYY4/hsMMOAwC0Wi2sWrUKS5cuBbBtrhBd5QXi3oLQt8SXmAm3n8mYjDKGxxgPGeXblQo2+Sk3Lletz6WPw/4QLJmnkH5XLowXKRjJp4BbJBUmzKJYHi/FVpNXOpmoTT9BZSsVAIlE+HnGvJxXkp1bJnapE/13CiXJC6RACSlD8qeSzC0gS3VgSUV1eUtL2nRdBBRye96y1ueWiuFKj0zM7FG9PBD508rSddKhB6/KIKyUQls5NVqZRb8r751wiRzpWvN7o8kSI7RloQ3lgTmfMqp7swAtEclQJpmW+oum76ETUicgDYin9ii13SxL8523nE5J+5vZd9bzZuotU62UUfnYsT2ljfZLUm+NQQqvKiHRLJT1a1LZ+WQTjqp3eDa0PRERW4pZYSzv7+/HWWedhfPOOw+LFy/G0qVLccEFFwAA3vKWtwDYdlaIHq3h6RbGG8++2xvGMxLmi0MDTrUgBY86ZJ7Akzp52++a3xXcWohcmXFKhz+TSQjYNAyAW9tL0DbhjLwKD0kiYFNb2ESIhpDo/RJXJjoUNHEhRUokpSN9vNxp7tY4o46YTMyiM/dRGEpULCeWEgLtUl+XsgSk2a5UgGqbkBMjP+Ah6YpJDFVqbjilvTCEiq6RK6dPoDqgfPIESuDBZzsaEsRnsWmBSHr70l8qreu0ANzMH5BPfu2IGKkktcqW+5KFTwuzTEpWd+Urzf9GRXQmd/q+MAsGU8gu1/45Id1agkIvIK4MkZNCh+tCVA3yIqYOSk3C2nlRiZp0zAoSBQAXXHAB0jTFaaedhqGhIRxyyCG45ZZbMG/ePADb7grRQBzlTRShWlEFTpbCjpu+o1mRNkzH/Tb8HBAm8ztTpVhnTekKTDTEm0WpzPES4ZMq2r6bDM/N5lQHm9QV+sB8zyQIHyqZACkjWWUbkKULuxUtAIULZfF8UTyNQ+DDocStMIS0xWI/BTohoWwixjAMPZ5nvapD91YFAGzesHAZILdDRcJVwIQ66z7Bou/ZwrkeETIJLq3XKWWWAQqpwpFPSoUAAKDwHJ/FSdtndVtWSBN6IyWsbNvQoqJFg2HUPiSQRQtCtWzolEKOVh20s/4kWjZ03f06R/K0dTGTFyDenjFrSFSWZbjwwgtHJUXb4grREZODsfxmVgkJDOdEiMiDFiYrFfCVDgB2ar0+HvvCkjWet8qcx8wYD2cJUgiPn4EIhhe+4qTDlFWhioDoMJcUiQ2hcSRZHZKF/GyYLq1pIgF4Iatw+RVSvqwRH65+VkGTnWXm12JLkrZWhflIbaS8RQJA6l3QLukFBPuuKm2FUppkWh9YsNCwIWWamyTMG0ZkhWTM0veyUYgtJGXcF6VKvdiyUZe0eCnBlSoKyYrCqYY8Az8ty0LqKc//JEVFmhN2XUNUWQ4iIrYHzBoSFRGxpRivcb8qCR950LiHyv1u1CB7MHhBQvpcBMSCzuWVg7aFT7ZC0lVVbj4LlROSys+JHAahy6JQkCK15DBJoTvstKbJVdGyhKAUiQ5/MtVCsItQRRTDMnerS1VdNxf83tm6CnediMwJ+GZ8Wx5SiYJ1CV1yUEaG2PeOfDF/nFKByiUcUSt4gk+2zh8zifNwqQJ0+gGRQMgE0iyU3bGMDRE9ZWhkkqHM6lBKL6uiCn+pKEDqZ79wSux4CNSdawbwqt36ojI1xShLQGzhS1FWjBcitgyRREVEVKBbBmT+N188GXBkJFS2CGGqjYmM3quOPVoKj7B89FmoeFWFNQulUIgUOqmjApIMwoSY2kpPKvPJpF+vsWaHckykbxjvkkwdfiqloITLvaaT3LIwp1n+hhQsKZ2qQ+tGSh6GCyYN2Fl+qjSsjRnW6XtCB2kzihfNaizbhpGbRJiMYHmTEkr4vi2TLsFmtgdQJhlG2qV3PcjvZ7OKj/JM8uf1zjUD9vdX7dZXuX3E5CIu+zIzEUlUxHaFbmpUN/9U1dpeHOFn3E8VHjuYt2fNz1UIs8NXnWM08sS36VbGbvvwY/Prokp/piIpcGEYbrSp7xyT0elOdG1LIlO0vFEpyPcmAZlbH1oioFNJKLeAd6mUZ97vgDH0KyTWxG6PlySWqFmliKeIMCBi1hJ6pl0mDJGTmd02FYY7kYk/yAdlczwZYtUufWUpkcJev/EQ+jvXDOCwxX2WQB22uC8Sp4jtHpFERcxKbIkHY6xZRZPVMdDx7/q9DndUHTckVhxjjRqnclRZOY29ImHA5pZhMjvdbsR3c85htzXqFAdNKigsK3RhS5rFyeE9T/w77qNTzrvkESduUqfZixBol6UhtNp43lZAKrVHSpRtSO5JEwmkUZ+UTO2sUe5946STL+/UcT26gAjU4Uv6O7P8R0wpeDR4S44RMbmIJGo7xmw1g4bkp9uCpN3qtDW8G+M9x3hmEG4JJpNobemxZltyxa4Z77njLTD0jwVSt5IkcwlW+Uw9Q4qKUtnVCSQUWkJCKM3N2gqASL3FyikUCWhlqq0AzuTG408b7zU8fEl/DAtNA8pSTYInKt63yUYkUdsp7vr9gPf3TJDmJ4PUhfUiv0bVObivo2rbqn04qgjQllzD0YzvEyFb3cKBo52fY3NJXTeFb7qfq/FivHmPxmuMr4IwObMKBSRCIklcONCmqSiVl5epVPofMsJTwsuSZhsKgUwKm22fFhqvqkbV4GI894e/V5FATQ9iioOZiUiitjOEJINAhKIbkZhqhB0XhcD47/Q/eTMI9HdV3arIIu3Tbdtu14BmId31e/98fPtu17fqc16HzUFlWLCixxzNVzXa8cYihKGPZiKd8kzGWOUfjehuDgHzQ4XV29C1LpWeNZdIP+2AVarsOtc6/DdZS67w5zbOwIuI6IRQcVjhYePGjZg7dy6e/P26WZXpfCzwDr9bR08YL5GaiHI0ViNcRW5mA8ZzXceDKmI1UVIy1Z6v7R1huouJkq+JoNusSP57twXZN1d5ApxSPVstAFOJjRs3Yo/dFuL555+fkj6D+qR933MFklrPFh2rGNmEx77+9ikr6/aIqERt4wgbw/F09KNtU0WwJtp5zFbCVIXJIFAAOlS2LUFVyoGIyUOVgjfaNR5vuHA8GGuGKc0+DLcf7zPABwXdnseJzoyMmBjiAsQzE5FEbWOYrM58c48/XvVqWyJOUwV+jSaDUMWObuoxoRmBDJvrhZvojNTNASdS8RmKiKiGHHuTiJmAscjRXb8fmHICNRrGM7qOBGrzceeaAXtvab0yKWD/jtg2YH1PwU+3bbYm4ns7M0DG8i39iZhcRCVqFoDIETdbV30/XSC1ZDR5PzbEW47wGvKkh4TYRkZsLqTwJ5ZUkfOxQnsRUw+lJmF2XgznTTqiEjWJmAploMrTNFsUCFJQIoGaWty5ZsD+zJZnI2L6Qaom9+FRe0PPUwj+WSTsERFRiZoUhMuEbEnjwkeF3cBHjdOtQnXDTC3Xtg5KwxARMRp4mxWqS6MtJxQxfVCl2uJkmTGcN/mIJKoLqJHptmo5rSEV5isaDbRt+BxPlHBMN1HpJu1Pd7m2d/DrPxOSqEbMHIxHqbxj9UYcvqQfd6zeOPUFmoUI1butpf7GBYhnJiKJGgWjqUL0+eaEqra1sFaVJycSqJmFbs9cVKsiwkEgX1x4cxO0bkvoNnAG9DUipS4qdhFAJFFdcffaF9DzfHxJxkI0ms5OdJukELFtg+eq2hwVnYPI17ZIpGg1Ak6aqn4Htr6qE5d9mZmIxvKICSMkUNua0ratY7rTYkTAS1vBU1fQz1ShVO59FULg8CWd2au7DZC2dhhra4Cud0iUuv1Of9+5ZgB3r31hq5SxNJ6oLf2JmFxEEhUxYfCQZiRQsxNRjZo+jJbJn8+2nCqyQveevE9HLNVEqopQheXbFrA1yOpkQpXFpPxETC5iOC9ii7CtNKgREVsbpXLhIwL33AAuZDTaBBc6VjfQvnx7/js/PydQo73bk7k80dbE9rAEVcTWRSRRERHbKaIKVQ2+WPdEEXbW3UjOlobE+fbdykuEZzTSo5TC7avHf+7Z5onaFsjTZChJUYmafEQSFRGxHSESp7HB1RrAXbPQP8avJc8PV9Vhd8sfR2rUZKCqfDx5ZojZRCAmA+H96WYYn6lQZTkJJKqcpNJEECKJiojYThAJVHdUEZ9QuaG/hRDezCzqnMPQ3HhDXlPViW/vkwb4Pa26FyFZjoiYCCKJiojYxjEe38z2gNFIxWQRGZ6INwR16lX3YbZ06LPFBxWS4qpyz/RrHUIVBVSxhUrUFu4f0YlIoiIitmHMlk5vshB2nuPtKCezQx1tWvy2hNFI4XRiPLPtZuN9UWoSPFEqkqjJRiRRERHbMGZaBzdZII9RGLKJmHyMRcSrSMt0PHdjkaf4fERMBSKJiojYzjFTOsHxgK9bdtfvB+Iab5uB8WQonyzlcksXYp/I+YBtmyjF2XkzE5FERURswxirM+s2eh9rVL+1SRYvT1V+o4ixEeaG6jZbcLKST24tIrW9GOgjiZqZiCQqImIbRrd1zsKOMlxMdax1wcabB2ksjMfDNJopOBKpzUOYtqEKm3svxyJdU0WmthfyFDGzEUlURMQ2jvFMtd/SxVTHS6pG63C7hWLGypwd0R1VZClcM3FLU1+MRZB4fqaxtu32fPA0EtsrohI1MzFr1s779a9/jZNPPhnz589Hf38/Dj30UNx6663eNqtXr8brX/969Pb2Yv78+Xj/+9+PZrM5TSWOiJg54GQjVJ2mAuHCuuNZo4yyavOfiC0DESZOnF61W5/3s7Vw55qBjvLwBZdHQ1ws2yXb3LKfqUu2+YY3vAFLlixBvV7HwoULcdppp+EPf/iDt8222EfPGiXqpJNOwj777INbbrkFjUYDX/nKV/C6170Ov/nNb7BgwQIURYGTTjoJO++8M+68804888wzWL58OZRSuPjii6e7+BER046o2kTMRCISn8vxoSwLYAuVpHIKlagjjzwSn/jEJ7Bw4UKsXbsWH/nIR/DmN78Zd911FwBss320UFuq428F/OlPf8LOO++MH//4xzj88MMBAAMDA+jv78dNN92Eo48+Gtdddx1e97rXYc2aNVi0aBEA4IorrsCKFSvw1FNPob9/9JXJCRs3bsTcuXPxnZ8+jp45cSQcEREREdEdm14YwNsO/jM8//zz4+5nNgfUJ+100mchs/oWHatsDeOZaz85ZWXl+J//+R+ccsopGBkZQZZlk9ZHzzTMinDeTjvthD//8z/H5ZdfjsHBQbTbbVxyySXYddddcdBBBwEAfvKTn2D//fe3NwcAjj/+eIyMjOD+++/veuyRkRFs3LjR+4mIiIiIiJhJ2PJQnvNUhX3eyMjIpJb12Wefxbe//W286lWvQpZlACbeR890zAoSJYTAjTfeiAceeAB9fX2o1+v48pe/jOuvvx477LADAGD9+vXYddddvf3mzZuHPM+xfv36rsf+/Oc/j7lz59qfxYsXT2VVIiIiIiIiNhuTSaIWL17s9Xuf//znJ6WMH/vYx9Db24uddtoJq1evxtVXX22/m2gfPdMxrSRq5cqVEEKM+nPfffdBKYX3vOc92GWXXXDHHXfgpz/9KU4++WS87nWvw7p16+zxqgyzSqlRjbTnnnsunn/+efuzZs2aKalrRERERETETMCaNWu8fu/cc8+t3G68fTThox/9KB544AHccMMNSJIEp59+ujfzdyJ99EzHtBrL3/e+9+Htb3/7qNvsvvvuuOWWW3DNNddgw4YNNm769a9/HTfeeCMuu+wyfPzjH8eCBQtwzz33ePtu2LABrVarg/1y1Go11Gq1La9MRERERETEVKEooOQWGsPNAsT9/f3j8iCNt48mzJ8/H/Pnz8c+++yDP//zP8fixYtx9913Y9myZRPuo2c6ppVE0QUfC5s2bQIASOkLZ1JKlGbK5rJly/DZz34W69atw8KFCwEAN9xwA2q1mvVNRUREREREzEYoteWz8zZ3AeLx9tHV59IKFPmtttU+elZ4opYtW4Z58+Zh+fLlePDBB/HrX/8aH/3oR/Hkk0/ipJNOAgAcd9xx2G+//XDaaafhgQcewM0334yPfOQjOPPMM2et6z8iIiIiImKm46c//Sn++Z//GT//+c/xu9/9Drfeeive8Y53YK+99sKyZcsAbLt99KwgUfPnz8f111+PF154AUcddRRe/vKX484778TVV1+NAw88EACQJAmuvfZa1Ot1HHrooXjrW9+KU045BRdeeOE0lz4iIiIiImLLMJOTbTYaDVx55ZU4+uijse++++KMM87A/vvvj9tvv93aZbbVPnpW5Inamoh5oiIiIiIixoutlSeq/4iPQKRb5t9V7RFsvP3CrZInanvBrFCiIiIiIiIiIiJmGmbNsi8RERERERHbK1RZAlsYjpvKtfO2V0QSFRERERERMcOhJmHtPLWF+0d0IpKoiIiIiIiIGY5IomYmoicqIiIiIiIiImICiEpURERERETEDEdZFhBRiZpxiCQqIiIiIiJihkMVJSC2kEQV0Vg+2YjhvIiIiIiIiIiICSAqURERERERETMc07F2XsTYiCQqIiIiIiJihkOVxZaH86InatIRw3kRERERERERERNAVKIiIiIiIiJmOKISNTMRSVRERERERMQMRyRRMxORRAVQSgHQK3NHRERERESMBuorqO+YMhQtbPEZitZklCSCIZKoAM888wwA4J1HvWyaSxIRERERMVswMDCAuXPnTvpx8zzHggULsP5X352U4y1YsAB5nk/KsSIAoaacPs8uPPfcc5g3bx5Wr149JS/EdGLjxo1YvHgx1qxZg/7+/ukuzqQi1m12ItZtdmJbrhuwefVTSmFgYACLFi2ClFMzV2t4eBjNZnNSjpXnOer1+qQcKyIqUR2gl2Du3LnbZOMAAP39/bFusxCxbrMTsW6zF+Ot31QPuOv1eiQ+MxQxxUFERERERERExAQQSVRERERERERExAQQSVSAWq2G8847D7VabbqLMumIdZudiHWbnYh1m73Y1usXMXmIxvKIiIiIiIiIiAkgKlERERERERERERNAJFERERERERERERNAJFERERERERERERNAJFERERERERERERNAJFEMX//617HHHnugXq/joIMOwh133DHdRdpsrFy5EkII72fBggX2e6UUVq5ciUWLFqHRaOA1r3kNfvnLX05jibvjxz/+MV7/+tdj0aJFEELg+9//vvf9eOoyMjKCs88+G/Pnz0dvby/e8IY34Pe///1WrEU1xqrbihUrOu7jK1/5Sm+bmVq3z3/+83jFK16Bvr4+7LLLLjjllFPw2GOPedvM1ns3nrrN1nv3L//yL/jLv/xLm2By2bJluO666+z3s/WeAWPXbbbes4jpRyRRBt/5znfwwQ9+EJ/85CfxwAMP4PDDD8eJJ56I1atXT3fRNht/8Rd/gXXr1tmfhx9+2H73xS9+EV/60pfwz//8z7j33nuxYMECHHvssRgYmHkLLg8ODuLAAw/EP//zP1d+P566fPCDH8RVV12FK664AnfeeSdeeOEFvO51r0NRTO9q5mPVDQBOOOEE7z7+8Ic/9L6fqXW7/fbb8d73vhd33303brzxRrTbbRx33HEYHBy028zWezeeugGz897ttttu+MIXvoD77rsP9913H4466iicfPLJlijN1nsGjF03YHbes4gZABWhlFLq4IMPVmeddZb32Ytf/GL18Y9/fJpKNDGcd9556sADD6z8rixLtWDBAvWFL3zBfjY8PKzmzp2r/vVf/3UrlXBiAKCuuuoq+/d46vLcc8+pLMvUFVdcYbdZu3atklKq66+/fquVfSyEdVNKqeXLl6uTTz656z6zpW5KKfXUU08pAOr2229XSm1b9y6sm1Lb1r2bN2+e+vd///dt6p4RqG5KbVv3LGLrIipRAJrNJu6//34cd9xx3ufHHXcc7rrrrmkq1cTx+OOPY9GiRdhjjz3w9re/Hb/97W8BAE8++STWr1/v1bNWq+GII46YdfUcT13uv/9+tFotb5tFixZh//33nxX1ve2227DLLrtgn332wZlnnomnnnrKfjeb6vb8888DAHbccUcA29a9C+tGmO33rigKXHHFFRgcHMSyZcu2qXsW1o0w2+9ZxPQgLkAM4E9/+hOKosCuu+7qfb7rrrti/fr101SqieGQQw7B5Zdfjn322Qd//OMf8ZnPfAavetWr8Mtf/tLWpaqev/vd76ajuBPGeOqyfv165HmOefPmdWwz0+/riSeeiLe85S1YunQpnnzySfzDP/wDjjrqKNx///2o1Wqzpm5KKXzoQx/CYYcdhv333x/AtnPvquoGzO579/DDD2PZsmUYHh7GnDlzcNVVV2G//fazRGE237NudQNm9z2LmF5EEsUghPD+Vkp1fDbTceKJJ9rfDzjgACxbtgx77bUXLrvsMmuU3BbqSZhIXWZDfd/2trfZ3/fff3+8/OUvx9KlS3HttdfiTW96U9f9Zlrd3ve+9+Ghhx7CnXfe2fHdbL933eo2m+/dvvvui5///Od47rnn8L3vfQ/Lly/H7bffbr+fzfesW93222+/WX3PIqYXMZwHYP78+UiSpGNE8dRTT3WMvGYbent7ccABB+Dxxx+3s/S2hXqOpy4LFixAs9nEhg0bum4zW7Bw4UIsXboUjz/+OIDZUbezzz4b//M//4Nbb70Vu+22m/18W7h33epWhdl07/I8x957742Xv/zl+PznP48DDzwQ/+f//J9t4p51q1sVZtM9i5heRBIF/XIddNBBuPHGG73Pb7zxRrzqVa+aplJNDkZGRvDII49g4cKF2GOPPbBgwQKvns1mE7fffvusq+d46nLQQQchyzJvm3Xr1uEXv/jFrKvvM888gzVr1mDhwoUAZnbdlFJ43/vehyuvvBK33HIL9thjD+/72XzvxqpbFWbTvQuhlMLIyMisvmfdQHWrwmy+ZxFbGVvdyj5DccUVV6gsy9R//Md/qF/96lfqgx/8oOrt7VWrVq2a7qJtFj784Q+r2267Tf32t79Vd999t3rd616n+vr6bD2+8IUvqLlz56orr7xSPfzww+qv//qv1cKFC9XGjRunueSdGBgYUA888IB64IEHFAD1pS99ST3wwAPqd7/7nVJqfHU566yz1G677aZuuukm9bOf/UwdddRR6sADD1Ttdnu6qqWUGr1uAwMD6sMf/rC666671JNPPqluvfVWtWzZMvWiF71oVtTt3e9+t5o7d6667bbb1Lp16+zPpk2b7Daz9d6NVbfZfO/OPfdc9eMf/1g9+eST6qGHHlKf+MQnlJRS3XDDDUqp2XvPlBq9brP5nkVMPyKJYvja176mli5dqvI8Vy972cu8acuzBW9729vUwoULVZZlatGiRepNb3qT+uUvf2m/L8tSnXfeeWrBggWqVqupV7/61erhhx+exhJ3x6233qoAdPwsX75cKTW+ugwNDan3ve99ascdd1SNRkO97nWvU6tXr56G2vgYrW6bNm1Sxx13nNp5551VlmVqyZIlavny5R3lnql1q6oXAHXppZfabWbrvRurbrP53p1xxhm2/dt5553V0UcfbQmUUrP3nik1et1m8z2LmH4IpZTaerpXRERERERERMS2geiJioiIiIiIiIiYACKJioiIiIiIiIiYACKJioiIiIiIiIiYACKJioiIiIiIiIiYACKJioiIiIiIiIiYACKJioiIiIiIiIiYACKJioiIiIiIiIiYACKJioiYZKxatQpCCPz85z+fkuMLIfD9739/wvvfdtttEEJACIFTTjll1G1f85rX4IMf/OCEzxUxOug+7LDDDtNdlIiIiAkgkqiIbQorVqwYkxhMNRYvXox169Zh//33B+BIy3PPPTet5Qrx2GOP4Zvf/OZ0F2O7QLfnct26dfjKV76y1csTERExOYgkKiJikpEkCRYsWIA0Tae7KKNil112mREKSKvVmu4iTBsWLFiAuXPnTncxIiIiJohIoiK2K9x+++04+OCDUavVsHDhQnz84x9Hu92237/mNa/B+9//fpxzzjnYcccdsWDBAqxcudI7xqOPPorDDjsM9Xod++23H2666SYvxMbDeatWrcKRRx4JAJg3bx6EEFixYgUAYPfdd+9QIV7ykpd453v88cfx6le/2p6LryJPWLt2Ld72trdh3rx52GmnnXDyySdj1apVm31tBgcHcfrpp2POnDlYuHAhLrrooo5tms0mzjnnHLzoRS9Cb28vDjnkENx2223eNv/2b/+GxYsXo6enB2984xvxpS99ySNrK1euxEte8hL853/+J/bcc0/UajUopfD888/j7/7u77DLLrugv78fRx11FB588EHv2D/4wQ9w0EEHoV6vY88998T555/v3b+VK1diyZIlqNVqWLRoEd7//vePq+5j1euZZ57BX//1X2O33XZDT08PDjjgAPzXf/2Xd4z//u//xgEHHIBGo4GddtoJxxxzDAYHB7Fy5UpcdtlluPrqq234LrxmERERsxMze6gcETGJWLt2LV772tdixYoVuPzyy/Hoo4/izDPPRL1e94jLZZddhg996EO455578JOf/AQrVqzAoYceimOPPRZlWeKUU07BkiVLcM8992BgYAAf/vCHu55z8eLF+N73voe/+qu/wmOPPYb+/n40Go1xlbcsS7zpTW/C/Pnzcffdd2Pjxo0d/qRNmzbhyCOPxOGHH44f//jHSNMUn/nMZ3DCCSfgoYceQp7n474+H/3oR3HrrbfiqquuwoIFC/CJT3wC999/P17ykpfYbd75zndi1apVuOKKK7Bo0SJcddVVOOGEE/Dwww/jz/7sz/C///u/OOuss/BP//RPeMMb3oCbbroJ//AP/9BxrieeeALf/e538b3vfQ9JkgAATjrpJOy444744Q9/iLlz5+KSSy7B0UcfjV//+tfYcccd8aMf/Qh/8zd/g69+9as4/PDD8Zvf/AZ/93d/BwA477zz8N///d/48pe/jCuuuAJ/8Rd/gfXr13eQsG4Yq17Dw8M46KCD8LGPfQz9/f249tprcdppp2HPPffEIYccgnXr1uGv//qv8cUvfhFvfOMbMTAwgDvuuANKKXzkIx/BI488go0bN+LSSy8FAOy4447jvi8REREzGNO7/nFExORi+fLl6uSTT6787hOf+ITad999VVmW9rOvfe1ras6cOaooCqWUUkcccYQ67LDDvP1e8YpXqI997GNKKaWuu+46laapWrdunf3+xhtvVADUVVddpZRS6sknn1QA1AMPPKCUUurWW29VANSGDRu84y5dulR9+ctf9j478MAD1XnnnaeUUupHP/qRSpJErVmzxn5/3XXXeef6j//4j446jYyMqEajoX70ox9VXoeq8gwMDKg8z9UVV1xhP3vmmWdUo9FQH/jAB5RSSj3xxBNKCKHWrl3rHe/oo49W5557rlJKqbe97W3qpJNO8r4/9dRT1dy5c+3f5513nsqyTD311FP2s5tvvln19/er4eFhb9+99tpLXXLJJUoppQ4//HD1uc99zvv+W9/6llq4cKFSSqmLLrpI7bPPPqrZbFbWuxvGU68qvPa1r1Uf/vCHlVJK3X///QqAWrVqVeW2oz2Xl156qXd9IiIiZg+iEhWx3eCRRx7BsmXLIISwnx166KF44YUX8Pvf/x5LliwBAPzlX/6lt9/ChQvx1FNPAdBm7MWLF2PBggX2+4MPPnjKyrtkyRLstttu9rNly5Z529x///144okn0NfX530+PDyM3/zmN+M+129+8xs0m03v+DvuuCP23Xdf+/fPfvYzKKWwzz77ePuOjIxgp512AqCvzxvf+Ebv+4MPPhjXXHON99nSpUux8847e/V44YUX7HEIQ0NDth73338/7r33Xnz2s5+13xdFgeHhYWzatAlvectb8JWvfAV77rknTjjhBLz2ta/F61//+jG9aeOpV1EU+MIXvoDvfOc7WLt2LUZGRjAyMoLe3l4AwIEHHoijjz4aBxxwAI4//ngcd9xxePOb34x58+aNeu6IiIjZjUiiIrYbKKU8AkWfAfA+z7LM20YIgbIsux5jopBS2vMTuMk6/C4sJ6BDfgcddBC+/e1vd2zLScpYqDpXiLIskSQJ7r//fhuCI8yZM8cep9s15iDywY+9cOHCSq8Q+anKssT555+PN73pTR3b1Ot1LF68GI899hhuvPFG3HTTTXjPe96DCy64ALfffnvHPd3cel100UX48pe/jK985Ss44IAD0Nvbiw9+8INoNpsA9GSCG2+8EXfddRduuOEGXHzxxfjkJz+Je+65B3vssUfXc0dERMxuRBIVsd1gv/32w/e+9z2vo7/rrrvQ19eHF73oReM6xotf/GKsXr0af/zjH7HrrrsCAO69995R9yFfUlEU3uc777wz1q1bZ//euHEjnnzySa+8q1evxh/+8AcsWrQIAPCTn/zEO8bLXvYyfOc737Fm7Ili7733RpZluPvuu60it2HDBvz617/GEUccAQB46UtfiqIo8NRTT+Hwww+vPM6LX/xi/PSnP/U+u++++8Y8/8te9jKsX78eaZpi991377rNY489hr333rvrcRqNBt7whjfgDW94A9773vfixS9+MR5++GG87GUv67rPeOp1xx134OSTT8bf/M3fANDE6/HHH8ef//mf222EEDj00ENx6KGH4tOf/jSWLl2Kq666Ch/60IeQ53nH/Y+IiJj9iLPzIrY5PP/88/j5z3/u/axevRrvec97sGbNGpx99tl49NFHcfXVV+O8887Dhz70IUg5vlfh2GOPxV577YXly5fjoYcewv/+7//ik5/8JIBOlYiwdOlSCCFwzTXX4Omnn8YLL7wAADjqqKPwrW99C3fccQd+8YtfYPny5Z4Scswxx2DffffF6aefjgcffBB33HGHPRfh1FNPxfz583HyySfjjjvuwJNPPonbb78dH6Up9H8AAARySURBVPjAB/D73/9+3Ndszpw5eNe73oWPfvSjuPnmm/GLX/wCK1as8K7LPvvsg1NPPRWnn346rrzySjz55JO499578U//9E/44Q9/CAA4++yz8cMf/hBf+tKX8Pjjj+OSSy7BddddN6Z6d8wxx2DZsmU45ZRT8KMf/QirVq3CXXfdhU996lOWhH3605/G5ZdfjpUrV+KXv/wlHnnkEXznO9/Bpz71KQDAN7/5TfzHf/wHfvGLX+C3v/0tvvWtb6HRaGDp0qWjnns89dp7772t0vTII4/g//v//j+sX7/eHuOee+7B5z73Odx3331YvXo1rrzySjz99NOWZO2+++546KGH8Nhjj+FPf/rTdp3WISJim8I0ebEiIqYEy5cvVwA6fpYvX66UUuq2225Tr3jFK1Se52rBggXqYx/7mGq1Wnb/I444whqpCSeffLLdXymlHnnkEXXooYeqPM/Vi1/8YvWDH/xAAVDXX3+9UqrTWK6UUv/4j/+oFixYoIQQ9ljPP/+8eutb36r6+/vV4sWL1Te/+U3PWK6UUo899pg67LDDVJ7nap999lHXX3+9ZyxXSql169ap008/Xc2fP1/VajW15557qjPPPFM9//zzldeom9F9YGBA/c3f/I3q6elRu+66q/riF7/YcT2azab69Kc/rXbffXeVZZlasGCBeuMb36geeughu803vvEN9aIXvUg1Gg11yimnqM985jNqwYIF9vvzzjtPHXjggR3l2rhxozr77LPVokWLVJZlavHixerUU09Vq1evtttcf/316lWvepVqNBqqv79fHXzwweob3/iGUkqpq666Sh1yyCGqv79f9fb2qle+8pXqpptuqrwGIcaq1zPPPKNOPvlkNWfOHLXLLruoT33qU+r000+3ZvFf/epX6vjjj1c777yzqtVqap999lEXX3yxPf5TTz2ljj32WDVnzhwFQN166632u2gsj4iYvRBKjcMMERER0RX/+7//i8MOOwxPPPEE9tprr+kuzpi47bbbcOSRR2LDhg1bJdnmmWeeiUcffRR33HHHlJ9rNuKb3/wmPvjBD864jPYRERFjI3qiIiI2E1dddRXmzJmDP/uzP8MTTzyBD3zgAzj00ENnBYHi2G233fD617++I2nkluLCCy/Esccei97eXlx33XW47LLL8PWvf31Sz7GtYM6cOWi326jX69NdlIiIiAkgkqiIiM3EwMAAzjnnHKxZswbz58/HMcccU5nde6bikEMOweOPPw7AzT6bTPz0pz/FF7/4RQwMDGDPPffEV7/6Vfzt3/7tpJ9nvLjjjjtw4okndv2ePGrTAVqkOpwVGBERMTsQw3kRERHbNIaGhrB27dqu34822y8iIiJiNEQSFRERERERERExAcQUBxERERERERERE0AkURERERERERERE0AkURERERERERERE0AkURERERERERERE0AkURERERERERERE0AkURERERERERERE0AkURERERERERERE0AkURERERERERERE8D/D8Y5rmpIy4iFAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ds.sst[0].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAHFCAYAAAD8Jo2EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACjyklEQVR4nOzdd3wTdR8H8M8lnXQxCh2MUrZlD4Wyyt7bDQqID8rDXiIIQkGWbETcylIf8RHBATwUGZUtUxCxMgpUpCIIHYyO5Pf8kdz1Lrkkd8klTcr3/Xrl1eZy97vfXZK7b36TY4wxEEIIIYQ85HTFnQFCCCGEEG9AQREhhBBCCCgoIoQQQggBQEERIYQQQggACooIIYQQQgBQUEQIIYQQAoCCIkIIIYQQABQUEUIIIYQAoKCIEEIIIQTAQxYUHTx4EMnJybhz547Va+3atUO7du08nidPWbFiBQYMGID4+HhwHGf3WHfs2IFWrVohODgYERER6N27N86ePWu1Xl5eHhYvXox69eohJCQEUVFR6N69Ow4ePGi17owZM9CrVy9UrFgRHMdh6NChqo/hxo0bGDp0KCIjI1GqVCkkJiZi165dVuvl5+dj5syZiI+PR0BAAOLi4jBt2jTcv39f8b6Unq+1a9eC4zjZR2ZmJgAgOTnZ5jriB7+Ps2fPYuTIkUhMTERISAg4jsPevXut9n39+nXMmDEDiYmJiIyMRHh4OJo2bYoPPvgABoNB8bFeunQJAwYMQOnSpREaGorOnTvjxIkTsut+8cUXaNSoEYKCghAbG4vx48cjNzfXK/fljKpVqzr12fQ2as6znBMnTqBTp04IDQ1F6dKlMWDAAFy6dMnhdpcvX5Z8pr/66itXDsNp8+fPx5YtW4pl3wCwZcsWyXk4duxYseWFqMQeIosXL2YAWHp6utVrZ8+eZWfPnvV8pjykdu3arEmTJmzYsGGsfPnyLCkpSXa9LVu2MI7jWL9+/djWrVvZ559/zmrXrs3KlCnDLly4IFn3+eefZzqdjk2fPp3t2rWL/fe//2VNmzZlfn5+7MiRI5J1S5UqxVq0aMFGjBjBAgIC2JAhQ1Tl/8GDB6xevXqsUqVK7NNPP2UpKSmsb9++zM/Pj+3du1ey7oABA1hQUBCbP38+27lzJ5szZw4LCAhgvXv3Vrw/pedrzZo1DABbs2YNO3TokOSRn5/PGGMsIyNDsvzrr79mANiYMWMky/nP39q1a1lMTAzr0aMH6927NwPA9uzZY7Xv7777jlWuXJlNnz6dbd26laWkpLAJEyYwnU7HXnjhBUXHeePGDRYbG8vq1q3LNm3axLZu3cpat27NwsLC2G+//SZZ99NPP2UA2L/+9S+2e/du9t5777GIiAjWuXNnr9uXs+Li4lR/Nr2NmvMs59y5cywsLIy1adOGbd26lW3atInVrVuXxcbGshs3btjdNj09nQFgM2bMYIcOHWK3bt3S6rBUCQkJKdb38Z9//mGHDh1iM2bMYADY0aNHiy0vRB0Kih4SBoNB+L9u3bo2b/K1a9dmDRo0YEajUVh2+fJlFhAQwAYOHCgse/DgAdPr9ey5556TbP/nn38yAGzs2LE29+/MBWv16tUMADt48KCwrKCggCUkJLDHHntMWHbo0CEGgC1dulSy/fz58xkAlpKSomh/Ss8XHxSpuejxN47Fixc73Pd///tfm0HRP//8IwReYqNGjWIA2NWrVx3m5ZVXXmH+/v7s8uXLwrKsrCwWGRnJnnrqKWFZYWEhi4mJYV26dJFs/9lnnzEAbNu2bV61L2eVhKBI6Xm25cknn2SRkZEsKytLWHb58mXm7+/PpkyZYndb/rO9Zs0ap/OvBXcERYWFhezBgweqtnHm+kCK10NTfZacnIxXXnkFAIQqEXG1hGX1GV8MvHjxYrz55puoWrUqgoOD0a5dO/z+++8oKCjA1KlTERsbi4iICPTv3x83btyw2u/GjRuFapDQ0FB07doVJ0+e9MQhS+h0jt/qW7duIS0tDd27dwfHccLyuLg41KtXD1u2bBGqZXQ6HXQ6HSIiIiRphIeHQ6fTISgoSPX+7dm8eTNq166NxMREYZmfnx+ee+45/PTTT7h27RoA4MCBAwCAHj16SLbv1asXAGDTpk2K9udqfl2hdN9lypSBv7+/1fLHHnsMAPDHH384TGPz5s3o0KED4uLihGXh4eEYMGAAvvvuOxQWFgIADh8+jOvXr+OFF16QbP/kk08iNDQUmzdv9qp9WbJXzemo2jw7OxuTJ08WqmMrVqyI8ePH4+7du8I6jRs3Rps2bay2NRgMqFixIgYMGKA6z85Sep7lFBYW4vvvv8fjjz+O8PBwYXlcXBzat2/v1Lnn8dXIp0+fxpNPPomIiAiULVsWEydORGFhIdLS0tCtWzeEhYWhatWqWLRokVUaSt4LjuNw9+5drFu3TvY9zszMxMsvv4xKlSohICAA8fHxmD17tuS88Nf/RYsWYe7cuYiPj0dgYCD27NkDo9GIuXPnonbt2ggODkbp0qXRoEEDrFy50ulzQ7zHQxMU/etf/8KYMWMAAF9//TUOHTqEQ4cOoUmTJna3W716NQ4cOIDVq1fjo48+wm+//YbevXvjxRdfxN9//41PPvkEixYtwg8//IB//etfkm3nz5+PZ599FgkJCfjyyy+xYcMG5OTkoE2bNvj1118d5rmwsFDRgzHm/IkRyc/PBwAEBgZavRYYGIh79+7h4sWLAAB/f3+MHDkS69atw5YtW5CdnY3Lly9j+PDhiIiIwPDhwzXJE++XX35BgwYNrJbzy/g2T7aOgX9++vRpTfPF69WrF/R6PcqWLYsBAwbgl19+cct+lNi9ezf8/PxQq1YtyXLLm8P9+/dx8eJFm+f1/v37QjsS/ngs1/X390edOnWsjteT+1KiZ8+ewneefyxbtgwAULduXZvb3bt3D0lJSVi3bh3Gjh2L7du349VXX8XatWvRp08f4bv3wgsvYP/+/Th//rxk+5SUFPz5559WAZ4lo9Go6LvuqK2YmvMs5+LFi7h//77N7S9cuIAHDx7YzYMjTz31FBo2bIhNmzZh+PDhWL58OSZMmIB+/fqhZ8+eQlD36quv4uuvvxa2U/peHDp0CMHBwejRo4fwXr/zzjsATAHRY489hh07dmDmzJnYvn07XnzxRSxYsED2mvXWW29h9+7dWLJkCbZv3446depg0aJFSE5OxrPPPoutW7di48aNePHFF2XbqhLf41fcGfCUSpUqoUqVKgBMv+qqVq2qaLvSpUtjy5Ytwq/3mzdvYvz48ahTpw6++eYbYb3ffvsNK1asQHZ2NsLDw5GRkYFZs2Zh9OjReOutt4T1OnfujJo1a2L27NnYuHGjzf1evnwZ8fHxivK4Z88eTRqJR0VFoWzZskJpC+/OnTvCjejWrVvC8uXLlyMiIgKPP/44jEYjAKBKlSrYvXs3atSo4XJ+xG7duoWyZctaLeeX8flKSEgAYCoxEp+//fv3W+VfC9HR0Zg+fTpatGiB8PBwnDlzBgsXLkSLFi1w4MABNGzYUNP9OZKSkoINGzZg3LhxKFeunOQ1vV4PvV4vPL99+zYYY4rOK//X1rqXL18utn0pUb58eZQvX154npaWhnnz5qF9+/ZYvny5ze3eeustnD59GkeOHEGzZs0AAB07dkTFihXxxBNP4H//+x+6d++OQYMG4ZVXXsHatWsxb948Yfu1a9cKHRDsGTZsGNatW+fwOJKSkmQb3fPUnGc5js49Ywy3b99GTEyMw7za8tJLL2HixIkAgE6dOiElJQVvv/02vv76a/Tv3x+AqeT++++/x2effSaUsil9L1q0aAGdTofy5cujRYsWkn0nJyfj9u3bOHv2rHA/6NixI4KDgzF58mS88sorwjUEAIKCgrBjxw5JieyBAwdQv359JCcnC8u6du3q9Pkg3uWhCYqc1aNHD0l1xiOPPALA9MtTjF9+9epV1KtXDzt27EBhYSEGDx4sKZYNCgpCUlIS9uzZY3e/sbGxOHr0qKI81q5dW9F6juh0OowaNQpvvPEG3njjDbz88svIzs7G+PHjce/ePWEd3rx587BkyRIkJyejTZs2yM7Oxttvv43OnTsjJSUFjRs3VrV/xpjVL2E/v6KPqLhKzxL/Wvfu3VGjRg28+uqriIqKwqOPPorDhw/jtddeg16vl+TfshpBr9fb3Yecbt26oVu3bsLztm3bomfPnqhfvz5mzpwpCZzd7cSJE3jqqafQokULLFiwwOp1W9UmSs6ro3Utl3tyX2plZmaiW7duiImJwebNmxEQEGBz3e+//x716tVDo0aNJMfUtWtXofq9e/fuKFeuHHr37o1169bhjTfegE6nw+3bt/HNN99g7Nixks+xnOTkZIwePdph3sPCwhQdo5rz7I7t7eGrsnmPPPIIfv75Z0ng6Ofnhxo1auDKlSvCMqXvhT3ff/892rdvj9jYWEka3bt3x+TJk5GamioJivr06WNVRf3YY49h69atGDlyJPr27YvExERJVSPxbRQUOWD5i4m/gNpazhct//XXXwCARx99VDZdR+1GAgIC0KhRI0V5FP8id9XMmTORm5uLuXPnYubMmQBMAeALL7yAjz76CBUrVgQAnDt3DjNnzsSiRYswefJkYfvu3bsjISEBEydOdBj4WVq3bp1VNQNfJF6uXDnZX7j//PMPgKL3IyAgANu3b8fzzz+PLl26AABCQkIwf/58vPHGG0L+AVhd7NasWaNJd+yqVauidevWOHz4sMtpKXXy5EmhFHLbtm2yVaCWypQpA47jFJ1XvtTp1q1biIqKslpXrmShuPZlT05ODnr06IGCggJs377dqk2cpb/++gsXLlyQbbsFmEqOecOGDcOmTZuwc+dOdO3aFf/5z3+Ql5en6DNVpUoVVKpUyeF6jgISNedZjvjcy23PcRxKly7tMJ/2yF07S5UqZdUOMSAgANnZ2cJzNe+FLX/99Re+++47xWnIlYhNmzYNISEh+PTTT/Hee+9Br9ejbdu2ePPNN4USLOK7KChyk8jISADAV199JWnwqFRxVJ8Bpl9oy5Ytw5w5c5Ceno7IyEjExMSga9euiI+PFy7cP//8MxhjVkGfv78/GjZsiNTUVNX77t27t83Ssfr16+PMmTNWy/ll9erVE5bVqFEDhw4dwrVr1/DPP/+gevXqyMrKwrhx49C2bVthPct9KT3fSjDGPNZY++TJk+jUqRPi4uKQkpLi8EbPCw4ORo0aNWye1+DgYFSrVg2A6fzzy8W/pAsLC/Hbb7/h2Wef9Zp92VJQUIDHH38cFy9exL59+xQFIZGRkQgODsYnn3xi83Ve165dERsbizVr1qBr165Ys2YNmjdvLjkGW7SqPlNznuVUr14dwcHBNrevUaOGVfDiKWreC3tpNGjQQFLFKRYbGyt5LheE+vn5YeLEiZg4cSLu3LmDH374Aa+99hq6du2KjIwMlCpVSsHREG/1UAVF/K9nNYP4Oatr167w8/PDxYsX8fjjj6vevjiqz8RCQ0OFm9OJEyewa9cuLF26VJI/wNRTKCkpSViel5eHEydOKLrhWCpXrpxVOxhe//79MXLkSBw5cgTNmzcHYLpJfvrpp2jevLnVxQwAKlasKJQMzZgxAyEhIXjxxReF1931qy49PR0HDhxAp06d3JK+2KlTp9CpUydUqlQJO3fuRJkyZVRt379/f6xYsQIZGRmoXLkyAFNpytdff40+ffoI1T7NmzdHTEwM1q5di6efflrY/quvvkJubq6i3lWe3JecF198EXv37sX27dtlGxLL6dWrF+bPn49y5co5DJr1ej2ef/55rFixAvv27cOxY8fw/vvvK9qPltVnSs+zHD8/P/Tu3Rtff/01Fi1aJOzv6tWr2LNnDyZMmKDoeNxBzXsRGBgoe53v1asXtm3bhurVq6v+rsgpXbo0nnjiCVy7dg3jx4/H5cuXFQXBxHs9VEERf5NfuXIlhgwZAn9/f9SuXVtxPb0aVatWxZw5czB9+nRcunQJ3bp1Q5kyZfDXX3/hp59+QkhICGbPnm1z+4CAAE1v2seOHRMaqGZnZ4MxJow2++ijjwqlWXv37sXRo0fRoEEDMMbw008/4c0330S3bt0kF+3WrVvj0UcfRXJyMu7du4e2bdsiKysLq1atQnp6OjZs2CDZf2pqKv7++28Apm7KV65cEfaflJQkaQQrZ9iwYVi9ejWefPJJLFy4EBUqVMA777yDtLQ0/PDDD5J1Fy1ahOjoaFSpUgV//fUXvvzyS2zZsgUbNmyQVJ9pcb46deqEtm3bokGDBkJD60WLFoHjOLzxxhuK9mXp3r172LZtGwAIVXCpqam4efMmQkJChHYTaWlpQuA1b948nD9/XtL7qXr16pLz6ufnh6SkJMko4JMnT8aGDRvQs2dPzJkzB4GBgVi4cCEePHggaUiq1+uxaNEiPP/883j55Zfx7LPP4vz585gyZQo6d+4saVfl6X1xHOewBGXx4sXYsGEDxowZg5CQEEnVZnh4uM0b2fjx47Fp0ya0bdsWEyZMQIMGDWA0GnH16lWkpKRg0qRJQpAOmD6nb775JgYOHIjg4GBJUGdP1apVFXf+cETpeQYgdIi4cOGCsGz27Nl49NFH0atXL0ydOhUPHjzAzJkzERkZiUmTJmmSR2eoeS/q16+PvXv34rvvvkNMTAzCwsJQu3ZtzJkzBzt37kTLli0xduxY1K5dGw8ePMDly5exbds2vPfeew5/0PXu3Rv16tVDs2bNUL58eVy5cgUrVqxAXFwcatas6YlTQdypOAZHKk7Tpk1jsbGxTKfTSQbFS0pKkgzQZ2uAvT179jAA7L///a9kua1BurZs2cLat2/PwsPDWWBgIIuLi2NPPPEE++GHH9xyfLYMGTKEAZB9iAdaO3DgAGvevLmQ33r16rElS5bIDhJ4584dNn36dPbII4+wUqVKsQoVKrB27drJDq6XlJRkc/9yAxPKyczMZIMHD2Zly5ZlQUFBrEWLFmznzp1W682ePZtVr16dBQYGstKlS7Nu3bqxH3/8UfG5Ykz5+Ro/fjxLSEhgYWFhzM/Pj8XGxrLnnnuOpaWl2Uzb0eCN/Otyj7i4OGE9/jOnJJ+MMQZAdhDKCxcusH79+rHw8HBWqlQp1rFjR3b8+HHZvH3++eesQYMGLCAggEVHR7OxY8eynJwcq/U8ta+cnBwGgD3zzDOyafDsvZ/ifMoN3pibm8tmzJjBateuzQICAlhERASrX78+mzBhAsvMzLTaV8uWLRkANmjQILt5ciel5zkuLk7ymeIdO3aMdezYkZUqVYqFh4ezfv36WY1oL8fe4I2zZs1iANjff/8tWT5kyBAWEhJitX5SUhKrW7euZJnS9+LUqVOsVatWrFSpUlbv8d9//83Gjh3L4uPjmb+/Pytbtixr2rQpmz59OsvNzZUch9x3dOnSpaxly5YsMjKSBQQEsCpVqrAXX3xRMlgmjwZv9D0cYxoNckMIIR62bds29OrVCz///LNQEkyKD98W8uOPP8bgwYOd6tFZEjBzT9r169fjxRdfxNGjR6kRto94aAZvJISUPHv27MEzzzxDAZGXefHFF+Hv7694BPmS5ptvvoG/v7+kDSPxDVRSRAghRBP5+fmSUeO1atDsa+7cuSNpp5WQkEC90nwEBUWEEEIIIaDqM0IIIYQQABQUEUIIIYQAoKCIEEIIIQTAQzZ4oxJGoxF//vknwsLCHsqupIQQQpRjjCEnJwexsbFum9rnwYMHyM/P1yStgICAYpuqxRdQUGThzz//FIbGJ4QQQpTIyMhwanojRx48eIBywaG4B4Mm6UVHRyM9PZ0CIxsoKLLAT/mRfuowwsJCizk3hBBCvFlOTi7iG7Vwy3RRgGmYg3swYDAqIsDFFi/5MGJ95jXk5+dTUGQDBUUW+CqzsLBQhLvpQ04IIUR7jNOu+opjRnXru7m5RQB0CHD1+GgAHocoKCKEEOITtAx6vGlfSug5DnoXAy89OAqMHKCgyAbG6YQvhdpfDIQQQrThbcGJJU/lT8cBehcLo3QABUUOePenzUuIAyRCCCGeQddd4mlUUqQC43RUakQIId5MTbd4o+9czzWrPiN2UVCkElWpkZJIyS9y+swTr+TK2EBy23ppoKTXoPpMr01WSjQKipxEpUakJFBTPUE/CIhXcdNAiVbpemmQRNyDgiIXeCQwciZ9qocnCjjbXoOCI+IpHDPKf05tBURKPtNqP7c6nVcERlR95hkUFLlIs8BIyxuMOC1nLhIUVJV41IDVOXLnjYJD97IKjCwDIrWfZcv1lbx//D6LMTii6jPPoKDIRV4XEMmlbeuiYWu/FCS5n61z74FzrVVA5FNVyBqcb1vnzafOg1mxBndqf7ShKG+SfFtuK5eWkmNyJkgCigIluj6WKBQU2cLpiopN7RSfOn1B9ORF1NV92bqIFWfwJBfs8flRulwuTZ67j4UupJ7F6ZR/DpSwuCZ4e5Wio0DYZr7t/ahSvHM750Tle8IxY1Fy/Cb2thW/746oKTEqBlR95hkUFDnCfwmcqVe2d0FR82WV29bRft1FyQUOKJ6gwt65djZNUkSmAardYMCTnwd7LPOm8EYsBBLiqhPxObBzPsS8IVByOg9avG9KrnX8tdK8XkjXOU7vLnfXXFNarlar8fnyEhxcH1iQQiLHKChSw0avBJs3BkdfSnuvu/ILTYsLmcVFyqnt7bFX4iS3jod4201N66oZp6vOHPwokM2nneompZw+dnvbqcmXvSDI3roOsiI+LvF+tayOdyWwELu7Y6aQ1t0dM2XPn8OSMtE2IV2SNcmXLaEdZyB35xzrKjd77x+/jtrvhwevDVRS5BkUFNnCjIpLhsRfPrUXNVsXE6aTvjWeujELx6DkIuFKnpTuw9nknajOsNlmRO/n8LPgrvfHlXQVBR9qqgMcNDZVHXA52rejkijZTDh/vmTbrVgeqzg4tJd/8XYyAaXmgRCKgg1xEKNJuqK0xP/fTUkW/rc6BlFpnLuDIDmhnWdKnt9NSQYMMu8vYHp/ZK5Hks+e+Pi8qPSIaM9ngqLCwkIkJyfjs88+Q2ZmJmJiYjB06FDMmDEDOvPFiTGG2bNn44MPPsDt27fRvHlzrF69GnXr1lW/Q3GbIks22hMA5huoJbmLqEVRPHNQMCq8bpmWKB9KLq4Oe3Ewo/W+FKatmpZtPGSIe604yr/d8yK3zAM3OVfJ5cOrep1ZVkdZEn3PHP7gcKZBrWUSos+K3dIFpcGQaJllwOXKZ8RRkKFlQCQnd6cp/RCLwMNX8Oc+pEsycnfOQWjHGQBE1W6SlXVgEFU7yZXge+g7Rb3PPMNngqI333wT7733HtatW4e6devi2LFjeOGFFxAREYFx48YBABYtWoRly5Zh7dq1qFWrFubOnYvOnTsjLS0NYWFh6nbI10nrzR94yy+Dn5+wnlCqw4yA3t/0lzGA40zbGA3gjIXSC6LeXBrEjJJfIkwfIKQlLOersZjRlB9xtZa4FspRjbP4lxCnk9xoQttNkayau2chwBXlK6Rj0QVQ/AvRKm1bnCxBs8fejYV/TVUwxHOx262tvHtDsGRVbaOk1AOQBjCWwb2z+7ZMV44o+HcYeLpwc5L8sOF/EInTdfTe8cfhoDTN1c9AcZS68HJ3zRX+5wMJX2HrvIlLlCyPKSd1SdF1WXTttCo58hBTUORq9RlxxGeCokOHDqFv377o2bMnAKBq1ar4z3/+g2PHjgEwlRKtWLEC06dPx4ABAwAA69atQ1RUFD7//HO8/PLLqvbH/ALB/INNT4QLuAHQmT5WTNSQL7zlKIfpZR9cLQQ4DABnLDSn4y/5gjGdH8JbjkL2wdVFkxmzol+afMDFGQuLtpMrcZGpmuIDn5wflwEAwtpOtJnf0PZTZZfn7poLZr7gq/l6Wv56lQRW9tpPiW5Oti7EskGaC2wOGGdnfUty23tLsOR0IKig1FT1fvl0VVTjqQ2I7L2XtoJnyVPx5vaO1dUxbGS+x8UZBFnytUBIjZz9K4ue8D9qZT5nnOV7xOnA9P4eyCHxFJ8Jilq3bo333nsPv//+O2rVqoWff/4Z+/fvx4oVKwAA6enpyMzMRJcuXYRtAgMDkZSUhIMHDzoVFIW1meBSnrMPrpY8D281Rlhu9cvUAh9o8WlYFrszTmc3KLEV1ADSYCj7wCqEtxoj7McywMvZv1J6kTAWmkqQDIVWv9zt3XzEDR+tuBAQ5e6cUxQ8QkGAYRGA2VrflXZilts74qhKReuqOSX7UcxOda6Eq3NMqalKs2Dvs2nr3EreP5l8ahbIyqVj/oyqDYj4HzvQ6RHWepzTWcrZtxwAXL7++Yrsg6vBxMExpwNghBANi3+UwrKqXW+qHfAAqj7zDJ8Jil599VVkZWWhTp060Ov1MBgMmDdvHp599lkAQGZmJgAgKipKsl1UVBSuXLliM928vDzk5eUJz7OzswEAFTtPAsdXZSkgDoD4kh4AADMKwZD4davtzcGJOL3wlqOkaQGSL6xVXbfwuqn6yzIwytm3XNqI0Px/9oFV1vnmk2VG8z6M4IzGomo8C2pu/oDCm4r5ZmTZaFIstPNMU7G+0husihu/UwGRTNAl27DTksJGxe5su2Sr3YviYMlWSZLl685Om2ARGInz6IijY1ESHDta12aJp70fA0qq5hzI2bccYW0m2C35VSOszQTk7l2kSVrejC8dkgRENkohmfVSj7Ul4lHvM8/wmaBo48aN+PTTT/H555+jbt26OHXqFMaPH4/Y2FgMGTJEWI+z+NAwxqyWiS1YsACzZ8+2Wn5t51JU6jZNdhtJ4GAOeiwDHSVVapL17QROttLiq9gc7YvPb5iCPInTyj6wynShMBqKgiFmtH9Ds1UNItMw2V6JhZobvrgUyW6JlEq2qsXspi9zobQKjMTVRfxyUds1xvkVXZwddIO3lU9XWKZnN6Cw1WXdKJN/PqixVV1mrxpNo+kVrKrJRD8SlLRRc8jRepzO/nqic3w3JVlRaZEWJTq5excJbSP5qvncPQtNLzIjQju85vI+vEXuzjmmz1nBfXOHGr59qPk+wWRCIMvg1Zs6LBBNcYzJfQK8T+XKlTF16lSMGlV00547dy4+/fRT/Pbbb7h06RKqV6+OEydOoHHjxsI6ffv2RenSpbFu3TrZdOVKiipXrgy/+oPslhQJbYRgHdA4Yquqypvwx2e6QIraMPEXBoOpTZTdX/0KSgSU9hAT35BtlRzl7pwjeY3vJaNF0OD0iMBy21s24pX7K2woUzrn7l6BDmjSg008WrxSKoZFcMuchBp1JlDTvo4/1/ZKS52VfXA1OEM+OEOB9DMmCsjdsd/idHeH+XjMHU2g0wHm67y49Fxgr/0ax4Hp/BDW4mUUnvkMWVlZCA8P1zzP2dnZiIiIwKKw6gjmXKsAu88MmJJz0W15LQl8pqTo3r17Qtd7nl6vh9F8oYyPj0d0dDR27twpBEX5+flITU3Fm2++aTPdwMBABAYGqs6PXFWT2u29mVWbJgSCKywKHqE3Co3FgULpxkpLkiyqjBxVUfDL+JuIcFHjbxwWv2b5C7qWpUcCmeOw2eBaLgiSe873ZOR/sZp/nUpuWjLtXjzNZvsKNcQlSRpNnSD+LCkNsPn1bVJzfDINpIWbsGgd/vPLr2OrNEgo0XBTqYQu/y6M5s4kD0P7Iav3QnRuhc+ErSBIHKyaexUzTqf6B7ErqPrMM3wmKOrduzfmzZuHKlWqoG7dujh58iSWLVuGYcOGATBVm40fPx7z589HzZo1UbNmTcyfPx+lSpXCwIED3ZInPjAS9ywTvyYmLh3y9oBIzGbV3YFVgNH8q8XoV1QfbyyUVpOYCUGPnVIOW1Ubtm5yRfMgSX/RCl2Hxb+4LUpa1AYUNquQ5MarErqu+xX9IrVKUFcU/Jify/1S5YyFYHr/osAI2gZDfDDnSoNytT31bJ5DJSNGK6hGkwt63DE+k+T9NkqH1lAygOLdlGQwTmdVGpO7ay5CO85waylN9sHVCPWh65AWmM5P+hk3Gk1tqc3tJmVLigCL0kJT6ZAngyHiWT5TfZaTk4PXX38dmzdvxo0bNxAbG4tnn30WM2fORECAufjTPHjj+++/Lxm8sV69eor3wxdVOqo+s9rOTnWareoyvjG1LxOq2YRqtQKA04Ez5EuL443WPThkSxwU9lKyGmBPXP1k0QZC3DZC8tcifdW9sixLgMwPobRH7tcnVzSulaK2YPy5NRSY23cVmkuPCu1uW9yUNEx22EZJRcNsJQ2plUzhIvs5tLNvy+pfuVIfyyEjQrokS0o7hRJNmTm77PUidYb4OmXvR1xJJX4vmN5PaFMkCYhslMYw848cHn/OmCHfI9VnKyJqaFJ9Nj7rAlWf2eEzQZGnOBsUAebSE0730Fxg7Mk+sMpUvWY0FAVISqrVxBcn/pe35S84ueBG1BBSrvt+7u75ttvrAI7zJq7m4f8XbqDmi6pOD6YP0PT9F7ft4gwFQlDkTGmXp6htAO5qKY7NwEbFtg7nxxJ9JuU+X0rHyrLaj2UDXnPArHUwxPOF9oyeIBm9WucnnVZJXH2NovfMVumQp4KiVaW1CYrG3KGgyB6fqT7zBSW5SNVyyAFHhDGZDqwyjeNhUdJhEycNjvhgg+8RwhkLpXX8fGBjKLRf3WBez/KGlrt7vukfPz/5fAkXTtFzPSTr8iVD/MCb7sJ0fqYWAcZCgD8FTgQeiraxdy7411UGM1pXYTnTtslyG9kG8HI9jewE3I4CIr70SGgjBAD6ABj9gxHeagxy9q90aVwhNex9PktCybUjuXsWSkvKxJ8Bi+ps8f/ecF6oTZFnUEmRBVdKih42ai+iQukRYN3jRVyEbfFLDQBgKEBY0mTk7l0kjMydu3u+Zl2Fc35cJiqV4oq65fLVYOILKTNCmMbFvMydAZG4Go0rzJM2upYrMZKpHnGKOPBUkZbDAMWFbveK2gc5mKdO8XbiaiyLz5mjKS/EgZJVUMTpHH5uc/cuAuN0CEuaDKBoLCJ3U1qS5MsBlGVgJFSL2Wjj5+g4PVVS9E6ZmpqUFI28fZ5KiuygoMjCwxwUefJCl7NvuSkwAgBmtL4wGQ3CDcET+MAjvNUYYTBLNdO4eErO/pXCuFGSqV7MbYw0rVKz0x3dXhWZojZYjlhWVyqhZqJWGxMqS3oLWpQWhLafKhlkVUlQbqvBNd/OTUk1mfiz6U18MTDK3T1fWiXPWff4VPsDx1NB0ftlaiJY52JQZDTgZQqK7KKgyMLDHBR5mjCFCCApgdFqZF6lfK2dheUYUuC4ohIkQDZA0mzcHgu2hlSQJRdsyCZqp1u0mK1ARw4fZDmYssNymAer9mz8en6BTld5iYMpIciF/bkIvZUvBkaAOTgSl06bgw1n3lNPBUUflq2FUi4GRfeMBgz/53cKiuygNkWk2C5s/AWoOIOS7AOrfO6iLhl13HKsLKMBnDmAEIYhcHLOMCUcTgViq0pKrtG7zZ1YbCNUueqgqju/5XoWU4YIwZDOzzQhtPl8Wd4oc/avBAwFRdNEcMrHq8n5cRkYRO+becgFbysFUooflsRXvkPi6UvEAZGnxxwi3ouCooec3AXNExc5y0DIkxfXnB+XgTMWCg1dfZnVtCyihqOm3n+Fkkbkro7XJMeqsbJcoGIZ2FgGOHIlQeL1LJcxG8GQXC9FW2nqLUqB+N5GOj+7JQZyr+WkLgHzC5R8nnL2LTc1jje3oxPPT8ZPuqpVb8Xi/GHhC4GRuHRO0v3ehwIiTSaEpXbWDlFQ9BCzdSFz58WNH7ZAvB/Lv27HcUJjbXvketx588U/vNUYU575m7vev6i3nrmKRgiU1ARDahpaW45QbRl0cDKDVIoGpWScrmikdDWlR+J8ihvw28qbKADiq05gNJjy58Ss52FJk4VZ6vlG+6YhFAzy62vcaFrpZ9Idn19XRvb3lNAOryF3z0JpZw43d5DQmia9z1zc/mFAbYosUJsidcQNTxWtX0xBRc6Py5xqsyFc8M03XF+5gIrxDceFeewM+abACHCptEi2PZG4CkocuFjuw7K3jxgfwInHqRIHZpa96yzHrbIoDZOwHF9KFBRp1S2e70TgUrsjUS9LX+DN7fJy9yyUBsHm4TO0+j57qk3RusjamrQpGnIzjdoU2UElRcRptn4hii+QcusUR2DkbCNWb7zIK5Wzb7m05MRoUDy6tFWgA1jPeA+YAgshEdHwCuY2OfyNJ/vAqqJ9ywVIYnysw0RBj7iHkCTjrKhkidNJgj1JPsX74m+Q5sBM69ICJaVAjoJ0XwqIBF46mKh4FHlfnqaDqs88w8WBTEhJobYIXOkvQ3HVmDDvGzMKVQ3EPYRqNHFAZCwE+FIifm46nc403YFfAKD3MwUROtEM4n4BpnT0AYB/kOm5f1BRaZA+wBQA6QOKHn6Bwo1HeP9bjQEzl8xIRg82Y5wOYa3HmR5tJpjT8jeV4oh/HZtvcGFtJpjW8ws079/f/H+QKa/C8fgB+gAw/1LmR7CwDfT+TgVEuXsXCW2CnFU0mbI2nP0+aVX1Fd5ylNeNsJ67a27R4KyApITIF/HVZ64+iH1UUkQAaFsiosu/K/mla5m2L/5KU8pb2hzxeeB7SAEGIZARJu0Vj9XC90zjH3rRGC46PThDAULbTSka+E7cLojTwTRQrt7mgHdWc+TJDI5na9LknP0rAU6+l5dVTzy+ezXfsNwcnGn5vhgDQlxOQ64kyDKPtkqT5I7FG0pC3THpriv4QTWLvgMl+9pDtEFtiiw8DG2K3F3/72z7HeI+kjGhGDNXSemt2+VYVLHxpTqW72dO6hJhrjdA+fQRliUT3hBAOsLn35vyLtdhobhZdkzISV3i0QFY7eHb1bkjKPJUm6KNUY9o0qbo6b/OUZsiO7wrtCceYesGpRUKiLxPWOtxRaVCen9T1ZE+AGGtx0mrtMxVSsIyUU+u3N3zkZO6xFRVo9MLVU9KqlCzD662Kgmy1ebMG/GBkfh4hZHP3bQ/u8wlbN4SEAEypXY6vVvPkT2y1ZteVpKlFqfnNHkQ+6j67CHlC13MibbEPaEk77u5OozpA0xVXJJ7h6kqKid1CSRFyjZGerZFbsBJb7up26J02Aq1PTFd5Y0lst4wZlH2gVWAoQC5u+eD+QcjrM0EZSOuezmdnoNO51pQo6M2RQ5RUPSQc1TtoXRdMU9NXkmUsSp1YEbJeym+kWcfXI2wVmOEG67QHkOnF6YU0aI7s1vHwiqmm7KWAZGj/PPTukgmNzW3F9NqkmRnWJ773D0LFc3vpiXL9yFn33LNhlsgJR8FRUSWrRuL+AbLGfJlgx8KiLyLrRtszv6V4AruS25a/Lp8CQR/M8nZt1wY/deVaghPBCyyjbxtvObtbP3ACGs7UZhUlh+ywBu68VuWFDH/4GLLC9+OrsRcj/Q6cGomVZbDqWtCXLVqVVy5csVq+ciRI7F6tXUV7969e9G+fXur5efOnUOdOnVU7bu4UFBEZNm6eShpj2Q55UHurrlCTxDiPcJaj5N2Wba3rvnG4moboOKahsIT7JWQiqvWcvavVFxyYSu9nH3LEWp+LXfnHIAzSqayKE5CWzFbI4u7Wc7+laYhHkpYTzNO53qbIA7qtj969CgMhqJR2X/55Rd07twZTz75pN3t0tLSJA25y5cvry6jxYh6n1l4GHqfFYfcnXMQ2nlmcWeDaESYDNWHpknwBMuBSzljoWwAZNl7zHI78ZAKjubmyt01FwDc8sOjuNsHqVFco2p7qvfZpmoNEKJ3rffZXYMBj1867XRex48fj++//x7nz58HJ9M+iS8pun37NkqXLu1SXosLBUUWKCjShi9dTInz+Ju2ozZGD8PnIXfvImEkb8uJYZVW4Xhrezw1758nghNvqhL1VFC0uWZDTYKi/ud/RkZGhiSvgYGBCAwMtLttfn4+YmNjMXHiRLz2mnyJJB8UVa1aFQ8ePEBCQgJmzJghW6XmrSgoskBBkeu89cJO3IOfDd7RuDnePD+WL/N0KayjAOlhCIDFPBUUbandWJOgqF/aSavls2bNQnJyst1tv/zySwwcOBBXr15FbGys7DppaWn48ccf0bRpU+Tl5WHDhg147733sHfvXrRt29alvHsKtSkimqOA6OHCFeYhrH1RmyNbN0VfGpfIl3i6WtphwONl030Qa3IlRY58/PHH6N69u82ACABq166N2rVrC88TExORkZGBJUuW+ExQ5NsDNxCvkbtzTnFngRQTy95rjnp/5aQuQU7qkqLeU8RlubvnI3fvIk3TFE+PoYa7xmpSOxCkZQDOP88+uLrYBpV0hU7PafIAgPDwcMnDUVB05coV/PDDD/jXv/6lOt8tWrTA+fPnnTrm4kBBEdEENaImcmTn6UqajLCkyR4fv6YkC+3wGpjeX9OSuLDW42TTU7IPZwMqW9QOjCn3uZNMTu2DPdOKc0TrNWvWoEKFCujZs6fqbU+ePImYmBin9lscKCgihGhK/IucqlI8J6zNBHDGQpuvOxMwKR3N2yovNgIqpfhqWKEdmsog5mFq0+RuRqMRa9aswZAhQ+DnJ21xM23aNAwePFh4vmLFCmzZsgXnz5/H2bNnMW3aNGzatAmjR4/2dLadRm2KCCGaEv8iBx6+hrfFyd74R66+B558H+nzYs1U0uNaOQYH9T9SfvjhB1y9ehXDhg2zeu369eu4evWq8Dw/Px+TJ0/GtWvXEBwcjLp162Lr1q3o0aOHS/n2JOp9ZoF6nxGiLW/qPl1SqQ1YPNVt/mF4vz3V+2xb00cRonetHOOuoRA9jh91W15LAiopIoS4la2G1w/DDdNdLANNJedSbiJedwYu9P5qi+M4cC5OCMsZaUJYR6hNESHEo5TexIlt/Dm019NPbkJnW42PLdfN+XGZltklxGdQUEQIISWAXBBk+XrO/pVCd3R7DaH5CYG16M1GY1NpQ6fXafIg9lH1GSGElAByQZB4mfh/uWozubZfVKLnPVzpUi+kwaj6zBGfChuvXbuG5557DuXKlUOpUqXQqFEjHD9+XHidMYbk5GTExsYiODgY7dq1w9mzZ4sxx4QQUjzsBTRy1WiWbY20GuCQRjInvsRngqLbt2+jVatW8Pf3x/bt2/Hrr79i6dKlkpl4Fy1ahGXLluHtt9/G0aNHER0djc6dOyMnJ6f4Mk4IIV5AaWAiBEitxmgaGBHXFOfgjQ8TnwmK3nzzTVSuXBlr1qzBY489hqpVq6Jjx46oXr06AFMp0YoVKzB9+nQMGDAA9erVw7p163Dv3j18/vnnxZx7QgjxbnJBk5YjP/vi1BrehNoUeYbPnKFvv/0WzZo1w5NPPokKFSqgcePG+PDDD4XX09PTkZmZiS5dugjLAgMDkZSUhIMHDxZHlgkhxGs4Kq2x1RNNs/2bS55y9q/UfBoQQrTiM0HRpUuX8O6776JmzZrYsWMHRowYgbFjx2L9+vUAgMzMTABAVFSUZLuoqCjhNTl5eXnIzs6WPAghpKRRU33mzHaK0m41BmGtx4Hp/KjkSC0tqs6o+swhnwmKjEYjmjRpgvnz56Nx48Z4+eWXMXz4cLz77ruS9ThO+qYzxqyWiS1YsAARERHCo3Llym7JPyGE+CJ3lCCFtxwFcDpqgK2CjuOg07n4sHMvJCY+ExTFxMQgISFBsuyRRx4R5l2Jjo4GAKtSoRs3bliVHolNmzYNWVlZwiMjI0PjnBNCiPO0ChycmQbEnVO00CCexBv5TFDUqlUrpKWlSZb9/vvviIuLAwDEx8cjOjoaO3fuFF7Pz89HamoqWrZsaTPdwMBAhIeHSx6EEOItiiNwCG85CtkHVlHQ4kU4vU6TB7HPZ87QhAkTcPjwYcyfPx8XLlzA559/jg8++ACjRpm+tBzHYfz48Zg/fz42b96MX375BUOHDkWpUqUwcODAYs49IYT4Fls9z6jKq3jo9JwmD2KfzwRFjz76KDZv3oz//Oc/qFevHt544w2sWLECgwYNEtaZMmUKxo8fj5EjR6JZs2a4du0aUlJSEBYWVow5J4QQ7bgSlGjR64tKj4oHjVPkGRxjjBV3JrxJdnY2IiIi4Fd/EDh9QHFnhxBCZKmd4T774GpwxkKEtR7nxlw9fJghH4VnPkNWVpZbml/w96R9vTsg1N+1mblyCwrR5rvdbstrSeAzJUWEEEKK8O1+1GA6baa7pCo0z6M2RZ5BZ4gQQnyUqqk4mNH00GK/VIXmcTq9Fu2KivsovB8FRYQQ4sP4BtGOSm84Y6Gm03YQUhJpU5ZKCCGkWNkrvck+uBphVLrj0zgdB07nWkNpV7d/GFBJESGElEDuHHiReJ5Op8GEsDq65TtCZ4gQQgghBBQUEUJIiSU3XYdWcnfO0TxNYhuNU+QZFBQRQkgJFN5ylNDbjDMWap5+aOeZVsuoq777UJd8z6AzRAghJRXn2Us8tV0ivo56nxFCSEllLiliHg6OiPY4nQ6ciw2lXd3+YUBBESGElFDhrcYgZ/9KhNH4RD6P70HmahrEPgqKCCGkBOPuZxV3FogWtGgTREGRQ3SGCCGkBJNrEE0IkUclRYQQQoiX43SulxRRmyLHKCgihBBCvBw1tPYMOkOEEEIIIaCSIkIIIcTrmQZf1LuYhkGj3JRcFBQRQogPshw9mgZOLNm0GJGaRrR2jM4QIYT4mOyDqxHecpTw4JcRQlxDQREhhPiQ7IOrAWakIOgho9PpNHkQ++gMEUKIj8jdOQfhLUeBK8xDeMtRFBg9RIpjQtjk5GRwHCd5REdH290mNTUVTZs2RVBQEKpVq4b33nvPlcP2OGpTRAghPoIfiDEsaTKAonZE1J6o5CuuNkV169bFDz/8IDzX22nsnZ6ejh49emD48OH49NNPceDAAYwcORLly5fH448/7lSePY2CIkIIKQFy9y4CjIVg/sFg+gAKlIgm/Pz8HJYO8d577z1UqVIFK1asAAA88sgjOHbsGJYsWeIzQRFVnxFCiA/LPrAK2QdWwRgQgtAOr4HpA4Q2R9kHVhV39ohGOE4nDODo9IMz3fKzs7Mlj7y8PJv7PX/+PGJjYxEfH49nnnkGly5dsrnuoUOH0KVLF8myrl274tixYygoKNDmRLgZBUWEEOLLOB3A6SRVaeGtxgDMaHqNlAhatimqXLkyIiIihMeCBQtk99m8eXOsX78eO3bswIcffojMzEy0bNkSt27dkl0/MzMTUVFRkmVRUVEoLCzEzZs3tT0hbkLVZ4QQUkJRFRqRk5GRgfDwcOF5YGCg7Hrdu3cX/q9fvz4SExNRvXp1rFu3DhMnTpTdhuM4yXPGmOxyb0VBESGE+DDLwCd35xyEdp5pKi0iJYaWDa3Dw8MlQZFSISEhqF+/Ps6fPy/7enR0NDIzMyXLbty4AT8/P5QrV059hosBla0SQogPyz64Gjn7VwrP+R5qpGTR6XWaPFyRl5eHc+fOISYmRvb1xMRE7Ny5U7IsJSUFzZo1g7+/v0v79hQKigghxIdxxkIwajtE3GDy5MlITU1Feno6jhw5gieeeALZ2dkYMmQIAGDatGkYPHiwsP6IESNw5coVTJw4EefOncMnn3yCjz/+GJMnTy6uQ1CNqs8IIcSHMZ2fqVE1KdE4HQfOxRGpOZ26dj1//PEHnn32Wdy8eRPly5dHixYtcPjwYcTFxQEArl+/jqtXrwrrx8fHY9u2bZgwYQJWr16N2NhYvPXWW5p2xz99+rTqbRISEuDnpyzc8dmgaMGCBXjttdcwbtw4YUwExhhmz56NDz74ALdv30bz5s2xevVq1K1bt3gzSwgh7sKMsu2Hcn5chrC28o1hie8pjsEbv/jiC7uvr1271mpZUlISTpw4oWo/ajRq1AgcxwkNuB3R6XT4/fffUa1aNUXr+2RQdPToUXzwwQdo0KCBZPmiRYuwbNkyrF27FrVq1cLcuXPRuXNnpKWlISwsrJhySwgh7iMXEOXuWYhQCohICXXkyBGUL1/e4XqMMdSrV09V2j4XFOXm5mLQoEH48MMPMXfuXGE5YwwrVqzA9OnTMWDAAADAunXrEBUVhc8//xwvv/xycWWZEEI8KrT91OLOAtFYcU3z4W2SkpJQo0YNlC5dWtH6bdu2RXBwsOL0FQVFfJChxnvvvYcKFSqo3s6RUaNGoWfPnujUqZMkKEpPT0dmZqZkNM3AwEAkJSXh4MGDFBQRQgjxWfyI1q6m4ev27Nmjav1t27apWl9RULRlyxY89dRTiqOtzz//HLm5uZoHRV988QVOnDiBo0ePWr3Gj40gN5rmlStXbKaZl5cnGeI8Oztbo9wSQggh2uD0eujsTMaqNI2SLDc3F0aj0akxmHiKq8/eeustxUHOV1995XSGbMnIyMC4ceOQkpKCoKAgm+vJjaZpbyTNBQsWYPbs2ZrlkxBCCCGe8+uvv2Lw4ME4ceIEOI5DQkIC1q5di6ZNm6pOS1FZ2p49e1C2bFnFiW7fvh0VK1ZUnRl7jh8/jhs3bqBp06bw8/ODn58fUlNT8dZbb8HPz08oIZIbTdOy9Ehs2rRpyMrKEh4ZGRma5psQQghxlZZzn5U0L7/8MkaPHo3c3FzcunULAwYMkIyfpIaiM5SUlKS4jz8AtG7d2uZcKs7q2LEjzpw5g1OnTgmPZs2aYdCgQTh16hSqVauG6OhoyWia+fn5SE1NRcuWLW2mGxgYKAx57uzQ54QQQog7UVBUpG/fvrh27Zrw/O+//0afPn1QqlQplC5dGj169MBff/3lVNpO9T4zGo24cOECbty4AaNROmhY27ZtncqII2FhYVZd60JCQlCuXDlh+fjx4zF//nzUrFkTNWvWxPz581GqVCkMHDjQLXkihBBCiGcNGjQI7du3x+jRozFmzBiMHj0adevWRVJSEgoKCrB7925MmjTJqbRVB0WHDx/GwIEDceXKFavBkziOg8FgcCojWpgyZQru37+PkSNHCoM3pqSk0BhFhBBCfBqn06D3mYvbe4unnnoKXbp0wauvvormzZvj/fffR0pKCvbu3QuDwYCpU6fi0UcfdSptjikdFtKsUaNGqFWrFmbPno2YmBirRswRERFOZcRbZGdnIyIiAn71B4HTBxR3dgghhHgxZshH4ZnPkJWV5ZbmF/w96Y/3piI82LVmKdn381BpxEK35bU47N+/HyNHjkTnzp3xxhtvoFSpUi6lpzpsPH/+PObPn49HHnkEpUuXRkREhORBCCGEEOJOt2/fxvHjx1G/fn0cP34cYWFhaNy4MbZu3epSuqqDoubNm+PChQsu7ZQQQgghynE6zvWG1ionhPVWGzduRMWKFdGzZ0/ExcVh+/btSE5OxjfffINFixbhqaeecm9Da/GstGPGjMGkSZOQmZmJ+vXrw9/fX7Ku5XxkhBBCCHENtSkq8uqrr+KTTz7BM888g+PHj2PYsGHo06cP6tSpg9TUVHzwwQdITEzEpUuXVKetKCiSm5V22LBhwv/8a8Xd0JoQQgghJVtOTg5q164NAKhevTru3bsnef2ll15Cv379nEpbUVCUnp7uVOKEEEIIcR2n04PTuTjNh4vbe4shQ4agZ8+eaNeuHY4dO4bnn3/eah1npxlTFBTFxcUJ///4449o2bKl1WCOhYWFOHjwoGRdQgghhGhApzc9XE2jBFi2bBnat2+P3377DUOHDpVMBO8q1eMUtW/fHtevX7eKwrKystC+fXuqPiOEEEK0ptOZHq6mUUL07t0bvXv31jxd1WfI1gSrt27dQkhIiCaZIoQQQgix9NZbb+HBgweK13/vvfeQk5OjeH3FJUUDBgwAYGpUPXToUMncZgaDAadPn7Y7xxghhBBCnMPp9eD0LrYpcnF7bzBhwgQ8++yzCAoKUrT+lClT0KVLF8UzWygOiviBGRljCAsLQ3BwsPBaQEAAWrRogeHDhytNjhBCCCFKUZsiAKYYpGPHjoonqb9//76q9BUHRWvWrAFjDIwxrFq1iuYTI4QQQohHzZo1S9X6ffv2RdmyZRWvr6qhNWMMn3/+OaZPn05BESGEEOIpOp0GJUW+39BabVCklqozpNPpULNmTdy6dctd+SGEEEKIBX5Ea1cfxD7VZ2jRokV45ZVX8Msvv7gjP4QQQgghxUL1OEXPPfcc7t27h4YNGyIgIEDS4BoA/vnnH80yRwghhBAAnAYNrTnfb2jtbqqDohUrVrghG4QQQgixiXqfeYTqoGjIkCHuyAchhBBCSLFSHRQBpsEat2zZgnPnzoHjOCQkJKBPnz7Ql4CBoQghhBBvo0VD6ZLW0NpgMGDt2rXYtWsXbty4AaPRKHl99+7dqtNUHRRduHABPXr0wLVr11C7dm0wxvD777+jcuXK2Lp1K6pXr646E4QQQgixg6rPrIwbNw5r165Fz549Ua9ePdkpyNRSHRSNHTsW1atXx+HDh4UBkW7duoXnnnsOY8eOxdatW13OFCGEEEJEaJwiK1988QW+/PJL9OjRQ7M0VQdFqampkoAIAMqVK4eFCxeiVatWmmWMEEIIIcSWgIAA1KhRQ9M0VYeNgYGBsjPO5ubmIiAgQJNMEUIIIaQIPyGsq4+SZNKkSVi5ciUYY5qlqbqkqFevXnjppZfw8ccf47HHHgMAHDlyBCNGjECfPn00yxghhBBCzHQ616u/Slj12f79+7Fnzx5s374ddevWhb+/v+T1r7/+WnWaqoOit956C0OGDEFiYqKQgcLCQvTp0wcrV65UnQFCCCGEELVKly6N/v37a5qm6qCodOnS+Oabb3D+/Hn89ttvYIwhISFB83o9QgghhJhR7zMra9as0TxNp8vSatasid69e6NPnz4UEBFCCCFuxOn0mjzUWLBgAR599FGEhYWhQoUK6NevH9LS0uxus3fvXnAcZ/X47bffXDl8u/7++2/s378fBw4cwN9//+1SWqpLitwxWBIhhBBCvEtqaipGjRqFRx99FIWFhZg+fTq6dOmCX3/9FSEhIXa3TUtLQ3h4uPC8fPnymufv7t27GDNmDNavXy/EInq9HoMHD8aqVatQqlQp1WmqDorcMVgSIYQQQuzgNGhozanb/n//+5/k+Zo1a1ChQgUcP34cbdu2tbtthQoVULp0abU5VGXixIlITU3Fd999JwwJtH//fowdOxaTJk3Cu+++qzpN1UGROwZLIoQQQohtzlR/yaXhiqysLACQjFNoS+PGjfHgwQMkJCRgxowZaN++vUv7lrNp0yZ89dVXaNeunbCsR48eCA4OxlNPPeWZoMgdgyURQgghxDOys7MlzwMDAxEYGGh3G8YYJk6ciNatW6NevXo214uJicEHH3yApk2bIi8vDxs2bEDHjh2xd+9eh6VLat27dw9RUVFWyytUqIB79+45labqsjh3DJZECCGEEDv4aT5cephu+ZUrV0ZERITwWLBggcPdjx49GqdPn8Z//vMfu+vVrl0bw4cPR5MmTZCYmIh33nkHPXv2xJIlSzQ5DWKJiYmYNWsWHjx4ICy7f/8+Zs+ejcTERKfSVF1S5I7BkpRYsGABvv76a/z2228IDg5Gy5Yt8eabb6J27drCOowxzJ49Gx988AFu376N5s2bY/Xq1ahbt65b8kQIIYR4hIaDN2ZkZEgaQTsqJRozZgy+/fZb/Pjjj6hUqZLq3bZo0QKffvqp6u0cWblyJbp164ZKlSqhYcOG4DgOp06dQlBQEHbs2OFUmk6NU6T1YElKKGkFv2jRIixbtgxr165FrVq1MHfuXHTu3BlpaWkICwvzeJ4JIYQQLWgxTQe/fXh4uCQosoUxhjFjxmDz5s3Yu3cv4uPjndrvyZMnERMT49S29tSrVw/nz5/Hp59+Koyb+Mwzz2DQoEEIDg52Kk3VQZHSwZIOHDiAZs2aOYxAlXLUCp4xhhUrVmD69OkYMGAAAGDdunWIiorC559/jpdfflmTfBBCCCEPg1GjRuHzzz/HN998g7CwMGRmZgIAIiIihKBj2rRpuHbtGtavXw8AWLFiBapWrYq6desiPz8fn376KTZt2oRNmza5JY/BwcEYPny4ZumpDoqU6t69O06dOoVq1aq5JX3LVvDp6enIzMxEly5dhHUCAwORlJSEgwcP2gyK8vLykJeXJzy3bIBGCCGEFLtiGNGa770l7t0FmAolhg4dCgC4fv06rl69KryWn5+PyZMn49q1awgODkbdunWxdetWzXqsf/vtt+jevTv8/f3x7bff2l3XmflY3RYUubMhtlwreD6CtWyJHhUVhStXrthMa8GCBZg9e7bb8koIIYS4rBiCIiX38bVr10qeT5kyBVOmTFG1HzX69euHzMxMYYRtWziOg8FgUJ2+T06Za68VvOVgkowxuwNMTps2DVlZWcIjIyND8/wSQgghxHVGoxEVKlQQ/rf1cCYgAnwwKOJbwe/Zs0fSCj46OhpAUYkR78aNG7LjGPACAwOFRmdKG58RQgghnsTpdJo8SpL169dLmr/w8vPzhTZOavnMGWKMYfTo0fj666+xe/duq1bw8fHxiI6Oxs6dO4Vl+fn5SE1NRcuWLT2dXUIIIUQ7nKtjFOlNaZQgL7zwgtC+WCwnJwcvvPCCU2m6rU2R1nOiOWoFz3Ecxo8fj/nz56NmzZqoWbMm5s+fj1KlSmHgwIGa5oUQQgghxctW85g//vgDERERTqXpMw2tlbSCnzJlCu7fv4+RI0cKgzempKTQGEWEEEJ8G8epntBVNo0SoHHjxuA4DhzHoWPHjvDzKwplDAYD0tPT0a1bN6fSVh0U3b9/H4wxlCpVCgBw5coVbN68GQkJCZLu8Dk5OU5lyBYlQRbHcUhOTkZycrKm+yaEEEKKFafTICjymRYzdvG9zk6dOoWuXbsiNDRUeC0gIABVq1bF448/7lTaqoOivn37YsCAARgxYgTu3LmD5s2bw9/fHzdv3sSyZcvw73//26mMEEIIIYQ4MmvWLABA1apV8fTTTyMoKEiztFWHjSdOnECbNm0AAF999ZUwDtD69evx1ltvaZYxQgghhJgwTqfJoyQZMmSIpgER4ERJ0b1794Q2OikpKRgwYAB0Oh1atGhhd5BEQgghhDiJqs+sGAwGLF++HF9++SWuXr2K/Px8yev//POP6jRVn6EaNWpgy5YtyMjIwI4dO4R2RDdu3KAxfgghhBB34DhtHiXI7NmzsWzZMjz11FPIysrCxIkThYIaZ9sWqw6KZs6cicmTJ6Nq1ap47LHHkJiYCMBUatS4cWOnMkEIIYQQosZnn32GDz/8EJMnT4afnx+effZZfPTRR5g5cyYOHz7sVJqqq8+eeOIJtG7dGtevX0fDhg2F5R07dkT//v2dygQhhBBC7NDpTA9X0yhBMjMzUb9+fQBAaGioMJBjr1698PrrrzuVplNnKDo6GmFhYdi5cyfu378PAHj00UdRp04dpzJBCCGEENuoobW1SpUq4fr16wBMTXtSUlIAAEePHkVgYKBTaao+Q7du3ULHjh1Rq1Yt9OjRQ8jQv/71L0yaNMmpTBBCCCGEqNG/f3/s2rULADBu3Di8/vrrqFmzJgYPHoxhw4Y5labq6rMJEybA398fV69exSOPPCIsf/rppzFhwgQsXbrUqYwQQgghxAbqfWZl4cKFwv9PPPEEKleujAMHDqBGjRro06ePU2mqDopSUlKwY8cOyQz1AFCzZk3qkk8IIYS4AwVFEgUFBXjppZfw+uuvo1q1agCA5s2bo3nz5i6lq/oM3b17V5jiQ+zmzZtO1+ERQgghhCjl7++PzZs3a56u6qCobdu2WL9+vfCc4zgYjUYsXrwY7du31zRzhBBCCEFRSZGrjxKkf//+2LJli6Zpqq4+W7x4Mdq1a4djx44hPz8fU6ZMwdmzZ/HPP//gwIEDmmaOEEIIIQDjOJd7j7ESNnhjjRo18MYbb+DgwYNo2rQpQkJCJK+PHTtWdZocUzL9vIXMzEy88847OHHiBIxGI5o0aYJRo0YhJiZGdQa8TXZ2NiIiIuBXfxA4fUBxZ4cQQogXY4Z8FJ75DFlZWW6Z1YG/J938/STCzVNsOZ1WTg4iazV2W149LT4+3uZrHMfh0qVLqtNUXVIEmMYpmjNnjjObEkIIIUQtamhtJT09XfM0nTpD+/btw3PPPYeWLVvi2rVrAIANGzZg//79mmaOEEIIIaC5z2TMmTMH9+7ds1p+//59pwtuVAdFmzZtQteuXREcHIwTJ04gLy8PAJCTk4P58+c7lQlCCCGE2EENra3Mnj0bubm5Vsvv3buH2bNnO5Wm6jM0d+5cvPfee/jwww/h7+8vLG/ZsiVOnDjhVCYIIYQQQtRgjIGTKf36+eefUbZsWafSVN2mKC0tDW3btrVaHh4ejjt37jiVCUIIIYTYpsXcZSVl7rMyZcqA4zhwHIdatWpJAiODwYDc3FyMGDHCqbRVB0UxMTG4cOECqlatKlm+f/9+YVRJQgghhGiI07k+y30JCYpWrFgBxhiGDRuG2bNnIyIiQngtICAAVatWRWJiolNpqw6KXn75ZYwbNw6ffPIJOI7Dn3/+iUOHDmHy5MmYOXOmU5kghBBCCFFiyJAhAExd8lu2bClpyuMq1UHRlClTkJWVhfbt2+PBgwdo27YtAgMDMXnyZIwePVqzjBFCCCHEjLrkW0lKSoLRaMTvv/+OGzduwGg0Sl6Xa+rjiKqgyGAwYP/+/Zg0aRKmT5+OX3/9FUajEQkJCQgNDVW9c0IIIYQoQEGRlcOHD2PgwIG4cuUKLMeh5jgOBoNBdZqqgiK9Xo+uXbvi3LlzKFu2LJo1a6Z6h4QQQgghrhoxYgSaNWuGrVu3IiYmRrYnmlqqq8/q16+PS5cu2R1emxBCCCEaopIiK+fPn8dXX32FGjVqaJam6jM0b948TJ48Gd9//z2uX7+O7OxsyYMQQggh2uInhHXtUbJGtG7evDkuXLigaZqqS4q6desGAOjTp4+kqIofRMmZOjxCCCGEEDXGjBmDSZMmITMzE/Xr17fqhdagQQPVaaoOivbs2aN6J4QQQghxAVWfWXn88ccBAMOGDROWcRznUiGN6qAoKSlJ9U4IIYQQ4gItJnQtYdVn6enpmqepOig6ffq07HKO4xAUFIQqVaogMDDQ5YwRQgghxIxKiqzExcVpnqbqM9SoUSM0btzY6tGoUSPUqVMHERERGDJkCB48eKB5ZpV65513EB8fj6CgIDRt2hT79u0rtrwQQgghvkrt/TQ1NRVNmzZFUFAQqlWrhvfee8+t+duwYQNatWqF2NhYXLlyBYBpGpBvvvnGqfRUB0WbN29GzZo18cEHH+DUqVM4efIkPvjgA9SuXRuff/45Pv74Y+zevRszZsxwKkOu2rhxI8aPH4/p06fj5MmTaNOmDbp3746rV68WS34IIYQQV7ne80z9hLJq76fp6eno0aMH2rRpg5MnT+K1117D2LFjsWnTJi1OgZV3330XEydORI8ePXDnzh2hDVHp0qWxYsUKp9LkmOUwkA489thjeOONN9C1a1fJ8h07duD111/HTz/9hC1btmDSpEm4ePGiU5lyRfPmzdGkSRO8++67wrJHHnkE/fr1w4IFCxxun52djYiICPjVHwROH+DOrBJCCPFxzJCPwjOfISsrC+Hh4Zqnz9+T/srMdDn97OxsREVHK86r2vvpq6++im+//Rbnzp0Tlo0YMQI///wzDh065FLe5SQkJGD+/Pno168fwsLC8PPPP6NatWr45Zdf0K5dO9y8eVN1mqpLis6cOSNbjxcXF4czZ84AMFWxXb9+XXVmXJWfn4/jx4+jS5cukuVdunTBwYMHZbfJy8ujsZYIIYQ8NCzveXl5eVbrOHM/PXTokNX6Xbt2xbFjx1BQUKDdAZilp6ejcePGVssDAwNx9+5dp9JUHRTVqVMHCxcuRH5+vrCsoKAACxcuRJ06dQAA165dQ1RUlFMZcsXNmzdhMBis9h0VFYXMzEzZbRYsWICIiAjhUblyZU9klRBCCFHMNHij6w8AqFy5suS+J1fq48z9NDMzU3b9wsJCp0ptHImPj8epU6eslm/fvh0JCQlOpam699nq1avRp08fVKpUCQ0aNADHcTh9+jQMBgO+//57AMClS5cwcuRIpzKkBcv5T/gxC+RMmzYNEydOFJ5nZ2dTYEQIIcSrMGZ6uJoGAGRkZEiqz+z1GFdzP7W1vtxyLbzyyisYNWoUHjx4AMYYfvrpJ/znP//BggUL8NFHHzmVpuqgqGXLlrh8+TI+/fRT/P7772CM4YknnsDAgQMRFhYGAHj++eedyoyrIiMjodfrraLYGzdu2Cy5CgwMpCEECCGEPDTCw8Mdtily5n4aHR0tu76fnx/KlSvnWqZlvPDCCygsLMSUKVNw7949DBw4EBUrVsTKlSvxzDPPOJWm6qAIAEJDQzFixAinduhOAQEBaNq0KXbu3In+/fsLy3fu3Im+ffsWY84IIYQQ5xkZg9HFoiI12ztzP01MTMR3330nWZaSkoJmzZpZTcGhleHDh2P48OG4efMmjEYjKlSo4FJ6To3ktGHDBrRu3VoyLsDy5cudHhdASxMnTsRHH32ETz75BOfOncOECRNw9epVrwziCCGEECWYRg81HN1Pp02bhsGDBwvrjxgxAleuXMHEiRNx7tw5fPLJJ/j4448xefJk5w/cjvT0dJw/fx6AqWSLD4jOnz+Py5cvO5Wm6qCIHxege/fuuH37tjAuQJkyZZweF0BLTz/9NFasWIE5c+agUaNG+PHHH7Ft2za3jHxJCCGElFSO7qfXr1+XjFkUHx+Pbdu2Ye/evWjUqBHeeOMNvPXWW8IcZVobOnSobE+4I0eOYOjQoU6lqXqcIneMC+BNaJwiQgghSnlqnKKrf2ozTlGVWOXjFHm78PBwnDhxAjVq1JAsv3DhApo1a4Y7d+6oTlN1myJ3jAtACCGEENsYY1BZhiGbRknCcRxycnKslmdlZQm1WGqprj5zx7gAhBBCCLHNyLR5lCRt2rTBggULJAGQwWDAggUL0Lp1a6fSVF1S5I5xAQghhBBC1Fi0aBHatm2L2rVro02bNgCAffv2ITs7G7t373YqTdVBkTvGBSCEEEKIfSWsoMdlCQkJOH36NN5++238/PPPCA4OxuDBgzF69GiULVvWqTRVN7QW02pcAG9CDa0JIYQo5amG1hczriPMxfRzsrNRvXJMiWlo7Q5ODd7Ii4yM1CofhBBCCCGq3LlzBz/99BNu3LgBo9EoeU08hpJSioKixo0bK5635MSJE6ozQQghhBDbqPeZte+++w6DBg3C3bt3ERYWJolTOI5zX1DUr18/4f8HDx7gnXfeQUJCAhITEwEAhw8fxtmzZ4t1ElhCCCGkpDKaH66mUZJMmjQJw4YNw/z581GqVClN0lQUFM2aNUv4/1//+hfGjh2LN954w2qdjIwMTTJFCCGEEGLPtWvXMHbsWM0CIsCJcYr++9//yhZJPffcc9i0aZMmmSKEEEJIEca0eZQkXbt2xbFjxzRNU3VD6+DgYOzfvx81a9aULN+/fz+CgoI0yxghhBBCTLQYfLGkDd7Ys2dPvPLKK/j1119Rv359+Pv7S17v06eP6jRVB0Xjx4/Hv//9bxw/fhwtWrQAYGpT9Mknn2DmzJmqM0AIIYQQotbw4cMBAHPmzLF6jeM4p6b6UB0UTZ06FdWqVcPKlSvx+eefAwAeeeQRrF27Fk899ZTqDBBCCCHEPup9Zs2yC74WnBqn6KmnnqIAiBBCCPEQ6n3mGaobWhNCCCHEsxg0aGhd3AfhBqmpqejduzdq1KiBmjVrok+fPti3b5/T6SkKisqWLYubN28qTrRKlSq4cuWK05kihBBCCLHn008/RadOnVCqVCmMHTsWo0ePRnBwMDp27Cg071FLUfXZnTt3sH37dkRERChK9NatW041cCKEEEKINSNjMLrYJsjV7b3NvHnzsGjRIkyYMEFYNm7cOCxbtgxvvPEGBg4cqDpNxW2KhgwZojpxQgghhLiOwfXqr5IVEgGXLl1C7969rZb36dMHr732mlNpKgqK3NHCmxBCCCHEWZUrV8auXbtQo0YNyfJdu3ahcuXKTqXpVO8zQgghhHgODd5obdKkSRg7dixOnTqFli1bguM47N+/H2vXrsXKlSudSpOCIkIIIcTbaTFNRwkLiv79738jOjoaS5cuxZdffgnANG7ixo0b0bdvX6fSpKCIEEIIIT6pf//+6N+/v2bpUVBECCGEeDkjGIwuFvW4ur23OXr0KIxGI5o3by5ZfuTIEej1ejRr1kx1mjR4IyGEEOLlXB64UYvqNy8zatQoZGRkWC2/du0aRo0a5VSaTgVFFy9exIwZM/Dss8/ixo0bAID//e9/OHv2rFOZIIQQQghR49dff0WTJk2sljdu3Bi//vqrU2mqDopSU1NRv359HDlyBF9//TVyc3MBAKdPn8asWbOcygQhhBBCbON7n7n6KEkCAwPx119/WS2/fv06/Pycax2kOiiaOnUq5s6di507dyIgIEBY3r59exw6dMipTBBCCCHENqo+s9a5c2dMmzYNWVlZwrI7d+7gtddeQ+fOnZ1KU3UodebMGdk5RcqXL49bt245lQlCCCGE2EYNra0tXboUbdu2RVxcHBo3bgwAOHXqFKKiorBhwwan0lQdFJUuXRrXr19HfHy8ZPnJkydRsWJFpzJBCCGEEKJGxYoVcfr0aXz22Wf4+eefERwcjBdeeAHPPvss/P39nUpTdVA0cOBAvPrqq/jvf/8LjuNgNBpx4MABTJ48GYMHD3YqE4QQQgixTYvqr5JWfQYAISEheOmllzRLT3Wbonnz5qFKlSqoWLEicnNzkZCQgLZt26Jly5aYMWOGZhkTu3z5Ml588UXEx8cjODgY1atXx6xZs5Cfny9Z7+rVq+jduzdCQkIQGRmJsWPHWq1DCCGE+BojY5o8iH2qS4r8/f3x2WefYc6cOTh58iSMRiMaN26MmjVruiN/AIDffvsNRqMR77//PmrUqIFffvkFw4cPx927d7FkyRIAgMFgQM+ePVG+fHns378ft27dwpAhQ8AYw6pVq9yWN0IIIYSUDBxjvhk6Ll68GO+++y4uXboEANi+fTt69eqFjIwMxMbGAgC++OILDB06FDdu3EB4eLiidLOzsxEREQG/+oPA6QMcb0AIIeShxQz5KDzzGbKyshTfZ9Tg70l7z15BaJhr6efmZKNd3Ti35bUkUFRSNHHiRMUJLlu2zOnMqJGVlYWyZcsKzw8dOoR69eoJAREAdO3aFXl5eTh+/Djat28vm05eXh7y8vKE59nZ2e7LNCGEEOIELaq/qPrMMUVB0cmTJyXPjx8/DoPBgNq1awMAfv/9d+j1ejRt2lT7HMq4ePEiVq1ahaVLlwrLMjMzERUVJVmvTJkyCAgIQGZmps20FixYgNmzZ7str4QQQghxjzt37uCrr77CxYsX8corr6Bs2bI4ceIEoqKinOoRr6ih9Z49e4RH79690a5dO/zxxx84ceIETpw4gYyMDLRv3x49e/ZUtfPk5GRwHGf3cezYMck2f/75J7p164Ynn3wS//rXvySvcRxntQ/GmOxyHj/wE/+Qm0eFEEIIKU5GxmBw8eGukiKlnaEsDR061Oqe36JFC8X7PX36NGrVqoU333wTS5YswZ07dwAAmzdvxrRp05w6FtUNrZcuXYqUlBSUKVNGWFamTBnMnTsXXbp0waRJkxSnNXr0aDzzzDN216latarw/59//on27dsjMTERH3zwgWS96OhoHDlyRLLs9u3bKCgosCpBEgsMDERgYKDiPBNCCCGeZpqmw9XqM40yY0FJZyhbunXrhjVr1gjPxTNlODJx4kQMHToUixYtQlhYmLC8e/fuGDhwoPoDgRNBUXZ2Nv766y/UrVtXsvzGjRvIyclRlVZkZCQiIyMVrXvt2jW0b98eTZs2xZo1a6DTSQu5EhMTMW/ePFy/fh0xMTEAgJSUFAQGBnqsWo8QQgh52HTr1g3dunUTnlerVg1paWl49913HQZFgYGBiI6Odmq/R48exfvvv2+1vGLFinabzdijepyi/v3744UXXsBXX32FP/74A3/88Qe++uorvPjiixgwYIBTmXDkzz//RLt27VC5cmUsWbIEf//9NzIzMyUH3aVLFyQkJOD555/HyZMnsWvXLkyePBnDhw+nVvaEEEJ8msGozQMwFW6IH+LORlqx7Axly969e1GhQgXUqlULw4cPx40bNxTvIygoSLZzVFpaGsqXL68qvzzVQdF7772Hnj174rnnnkNcXBzi4uIwaNAgdO/eHe+8845TmXAkJSUFFy5cwO7du1GpUiXExMQID55er8fWrVsRFBSEVq1a4amnnkK/fv0cRqmEEEKIt9Ny8MbKlSsjIiJCeCxYsEDTvPKdoUaMGGF3ve7du+Ozzz7D7t27sXTpUhw9ehQdOnRQHKT17dsXc+bMQUFBAQBTu+KrV69i6tSpePzxx53Ku9PjFN29excXL14EYww1atRASEiIUxnwNjROESGEEKU8NU7RtycuIkTUbsYZd3Ny0KdJdWRkZEjyaqttbXJyssPe2UePHkWzZs2E53/++SeSkpKQlJSEjz76SFX+rl+/jri4OHzxxReKap6ys7PRo0cPnD17Fjk5OYiNjUVmZiYSExOxbds2p+IS1W2KeCEhIWjQoIGzmxNCCCGkGISHhysK4LTsDKVETEwM4uLicP78eUXrh4eHY//+/di9ezdOnDgBo9GIJk2aoFOnTqr3zVMdFLVv395uF/fdu3c7nRlCCCGEWDPC9d5jRpXra9kZSolbt24hIyND0jRGiQ4dOqBDhw6q9ydHda4bNWqEhg0bCo+EhATk5+fjxIkTqF+/viaZIoQQQkgRg5Fp8nAHJZ2hAKBOnTrYvHkzACA3NxeTJ0/GoUOHcPnyZezduxe9e/dGZGQk+vfvr2i/Y8eOxVtvvWW1/O2338b48eOdOhbVJUXLly+XXZ6cnIzc3FynMkEIIYQQ38R3hrpw4QIqVaokeU3cbDktLQ1ZWVkATJ2jzpw5g/Xr1+POnTuIiYlB+/btsXHjRsmYQ/Zs2rQJ3377rdXyli1bYuHChVixYoXqY3G6TZGl5557Do899hj19iKEEEI0xjQYkdpd878PHToUQ4cOVbX/4OBg7Nixw6X93rp1CxEREVbLw8PDcfPmTafSVF/pZ8OhQ4cQFBSkVXKEEEIIMTMwbR4lSY0aNfC///3Pavn27dtRrVo1p9JUXVJk2U2OMYbr16/j2LFjeP31153KBCGEEEKIGhMnTsTo0aPx999/Cw2td+3ahaVLlzpVdQY4ERSFh4dLep/pdDrUrl0bc+bMQZcuXZzKBCGEEEJsM2pQfeauCWGLy7Bhw5CXl4d58+bhjTfeAGAaIuDdd9/F4MGDnUpTdVC0du1ap3ZECCGEEOdo0XvMXb3PitO///1v/Pvf/8bff/+N4OBghIaGupSe6jZF1apVw61bt6yW37lzx+k6PEIIIYQQZ5UvX97lgAhwoqTo8uXLMBgMVsvz8vJw7do1lzNECCGEECmqPjNp0qQJdu3ahTJlyqBx48Z2B5M+ceKE6vQVB0XisQB27Ngh6QZnMBiwa9cuyXDfhBBCCNGGFr3HSkLvs759+wrztPXr10/z9BUHRfzOOY7DkCFDJK/5+/ujatWqWLp0qaaZI4QQQgiVFPFmzZol+79WFAdFRqNp1pT4+HgcPXpU8XwohBBCCCG+QHWbovT0dHfkgxBCCCE2GI0MRhd7j7m6/cNAUVD01ltv4aWXXkJQUJDs5GtiY8eO1SRjhBBCCDExatCmiGIixxQFRcuXL8egQYMQFBRkc0JYwNTeiIIiQgghhPgiRUGRuMqMqs8IIYQQz6KG1p6huk3RnDlzMHnyZJQqVUqy/P79+1i8eDFmzpypWeYIIYQQAhgYg8HFoMbV7b3RH3/8gW+//RZXr15Ffn6+5LVly5apTk91UDR79myMGDHCKii6d+8eZs+eTUERIYQQQtxu165d6NOnD+Lj45GWloZ69erh8uXLYIyhSZMmTqWpepoPxpjsCJI///wzypYt61QmCCGEEGIb3/vM1UdJMm3aNEyaNAm//PILgoKCsGnTJmRkZCApKQlPPvmkU2kqLikqU6YMOI4Dx3GoVauWJDAyGAzIzc3FiBEjnMoEIYQQQmwzQIMRrTXJifc4d+4c/vOf/wAA/Pz8cP/+fYSGhmLOnDno27cv/v3vf6tOU3FQtGLFCjDGMGzYMMyePVsyzUdAQACqVq2KxMRE1RkghBBCCFErJCQEeXl5AIDY2FhcvHgRdevWBQDcvHnTqTQVB0X81B7x8fFo2bIl/P39ndohIYQQQtSh3mfWWrRogQMHDiAhIQE9e/bEpEmTcObMGXz99ddo0aKFU2mqbmidlJQk/H///n0UFBRIXg8PD3cqI4QQQgiRR73PrC1btgy5ubkAgOTkZOTm5mLjxo2oUaOG3TEV7VEdFN27dw9TpkzBl19+iVu3blm9bjCUtFpLQgghpHgZjQwGmuZDolq1asL/pUqVwjvvvONymqp7n73yyivYvXs33nnnHQQGBuKjjz7C7NmzERsbi/Xr17ucIUIIIYQQJe7cuYOPPvoI06ZNwz///AMAOHHiBK5du+ZUeqpLir777jusX78e7dq1w7Bhw9CmTRvUqFEDcXFx+OyzzzBo0CCnMkIIIYQQeQYNSopc3d7bnD59Gp06dUJERAQuX76M4cOHo2zZsti8eTOuXLniVEGN6pKif/75B/Hx8QBM7Yf4yKx169b48ccfVWeAEEIIIfbxQZGrj5Jk4sSJGDp0KM6fP4+goCBheffu3Z2OR1QHRdWqVcPly5cBAAkJCfjyyy8BmEqQSpcu7VQmCCGEEELUOHr0KF5++WWr5RUrVkRmZqZTaaoOil544QX8/PPPAEyjSfJtiyZMmIBXXnnFqUyokZeXh0aNGoHjOJw6dUry2tWrV9G7d2+EhIQgMjISY8eOtZoLhRBCCPE1BqMWpUXFfRTaCgoKQnZ2ttXytLQ0lC9f3qk0VbcpmjBhgvB/+/bt8dtvv+HYsWOoXr06GjZs6FQm1JgyZQpiY2OFwIxnMBjQs2dPlC9fHvv378etW7cwZMgQMMawatUqt+eLEEIIcRdqU2Stb9++mDNnjlBjxXEcrl69iqlTp+Lxxx93Kk3VJUWWqlSpggEDBqBs2bIYNmyYq8nZtX37dqSkpGDJkiVWr6WkpODXX3/Fp59+isaNG6NTp05YunQpPvzwQ9lIkhBCCCG+a8mSJfj7779RoUIF3L9/H0lJSahRowbCwsIwb948p9JUXVJkyz///IN169bhk08+0SpJib/++gvDhw/Hli1bUKpUKavXDx06hHr16iE2NlZY1rVrV+Tl5eH48eNo3769bLp5eXnCMOEAKIAihBDidaikyFp4eDj279+P3bt348SJEzAajWjSpAk6derkdJqaBUXuxBjD0KFDMWLECDRr1kxo6C2WmZmJqKgoybIyZcogICDAboOrBQsWYPbs2VpnmRBCCNEMDd5oW4cOHdChQwdN0nK5+swVycnJ4DjO7uPYsWNYtWoVsrOzMW3aNLvpcRxntYwxJrucN23aNGRlZQmPjIwMl4+LEEIIIe5x5MgRbN++XbJs/fr1iI+PR4UKFfDSSy9JaoDUKNaSotGjR+OZZ56xu07VqlUxd+5cHD58GIGBgZLXmjVrhkGDBmHdunWIjo7GkSNHJK/fvn0bBQUFViVIYoGBgVbpEkIIId7EwDSoPishc58lJyejXbt26N69OwDgzJkzePHFFzF06FA88sgjWLx4MWJjY5GcnKw6bcVB0YABA+y+fufOHdU7j4yMRGRkpMP13nrrLcydO1d4/ueff6Jr167YuHEjmjdvDgBITEzEvHnzcP36dcTExAAwNb4ODAxE06ZNVeeNEEII8RbUpqjIqVOn8MYbbwjPv/jiCzRv3hwffvghAKBy5cqYNWuWe4OiiIgIh68PHjxYdQaUqFKliuR5aGgoAKB69eqoVKkSAKBLly5ISEjA888/j8WLF+Off/7B5MmTMXz4cISHh7slX4QQQognUFBU5Pbt25IaoNTUVHTr1k14/uijjzrdFEZxULRmzRqnduAper0eW7duxciRI9GqVSsEBwdj4MCBst33CSGEEOKboqKikJ6ejsqVKyM/Px8nTpyQdJjKycmBv7+/U2kXa0NrZ1WtWhWMMTRq1EiyvEqVKvj+++9x79493Lp1C6tWraL2QoQQQnxeoZFp8nCXqlWrWnWUmjp1qt1tGGNITk5GbGwsgoOD0a5dO5w9e9bhvrp164apU6di3759mDZtGkqVKoU2bdoIr58+fRrVq1d36jh8oks+IYQQ8jDzheqzOXPmYPjw4cJzvqmLLYsWLcKyZcuwdu1a1KpVC3PnzkXnzp2RlpaGsLAwm9vNnTsXAwYMQFJSEkJDQ7Fu3ToEBAQIr3/yySfo0qWLU8dAQREhhBBCXBYWFobo6GhF6zLGsGLFCkyfPl3oyLVu3TpERUXh888/l53olVe+fHns27cPWVlZCA0NhV6vl7z+3//+12FAZotPVp8RQgghDxN+8EZXHvzgjdnZ2ZKHs2P6WHrzzTdRrlw5NGrUCPPmzbM7IXt6ejoyMzMlJTqBgYFISkrCwYMHFe0vIiLCKiACgLJly0pKjtSgkiJCCCHEyxkYc3mcIX77ypUrS5Y7231dbNy4cWjSpAnKlCmDn376CdOmTUN6ejo++ugj2fX5mSYsxxGMiorClStXXMqLKygoIoQQQh4iGRkZkqFqbHVISk5OdjgN1tGjR9GsWTNMmDBBWNagQQOUKVMGTzzxhFB6ZIvljBOOZqFwNwqKCCGEEC+nZUPr8PBwReP3KZ11Qk6LFi0AABcuXJANivi2R5mZmcKAywBw48YNu7NQuBsFRYQQQoiXK47eZ0pnnZBz8uRJAJAEPGLx8fGIjo7Gzp070bhxYwBAfn4+UlNT8eabbzq1Ty1QQ2tCCCGEOO3QoUNYvnw5Tp06hfT0dHz55Zd4+eWX0adPH8mMFHXq1MHmzZsBmKrNxo8fj/nz52Pz5s345ZdfMHToUJQqVQoDBw4srkOhkiJCCCHE23nzOEWBgYHYuHEjZs+ejby8PMTFxWH48OGYMmWKZL20tDRkZWUJz6dMmYL79+9j5MiRuH37Npo3b46UlBS7YxS5GwVFhBBCiJczMCMMRqPLabhDkyZNcPjwYYfrMYvecxzHITk52eWeb1qioIgQQgjxckYNSoqMbh7RuiSgNkXESvbB1cWdBUIIIcTjqKSIWAlvOaq4s0AIIUTEYGTQeWmbopKEgiJCCCHEyxUaAc7FoKbQPU2KShSqPiOEEEIIAZUUEUIIIV6Pqs88g4IiQgghxMtRUOQZVH1GCCGEEAIqKSKEEEK8HpUUeQaVFD3EaDwiQgjxDfzgja48aPBGxygoeojReESEEEJIEao+cxJfykKBBSGEEHczGJnL4xRR9ZljFBQplH1wtRAAZR9cDbhpYr2SLPvAKnCFeWB+gQCno4CSEEIUYoyBuRjUWE7ISqxRUGTDtZTFCA8PBzhzDSMzIvvAKuF/AOAMBaYbPTOCmdcLbzVGWC+81RghvewDqyTPH0YcM5oe+XfB/IOLOzuEEOJQzv6Vput7Mf+QM2rQJojaFDlGQZEjMiVCnLGw6K/5Rg+dHzhjIXJ+XAYYCgDA9D/HAUYDYCgo+nIBD12AlH1glem8GAsBHX3sCCHeQVwLYCln/0rTNR4AmFFyDRe2z85GVMxn7s8o8Qi6O9nAFeaBMxQUBTWiEiPOWAim8wOMhaaACABnyDcFRoUPTIGUzq8ooDJvyxAADgZTmg8JviQNhXmmvwZTQAmjn92LESGE2GPVpMFMfE0RSvf5H6Pi1/htzLUAlj9Uc/avNF37mRHgzCUsHGe6jomqoTgPNaVgjLlc/UXVZ45RUGQDV5hnCnAASUAkVJ0V5gM683Ij/6UoLErAWGhartOZv1Q6oYSJcTrhF0dJLjHK2b8SMBSYAkbzsfPnjDMWAgbO6mJkL1CSraqkwIqQh4a4gwtnLDRdE4yFpuuLoQAwX1vDWo8zrWduzsAZ8k3bH1hlup6Lr+XmaxNfKgROZwqGzAERZ16XcTpw/LWe357TgSt44JFjZ0YN2hRR9ZlD1CXfHv6Dz3/pLH8R8F8QnU4aIPEP8XNDIWAODsTVbiVtrKDsg6uRfXA1cvavNJe25RcFiPxDOK8GU7ssi3Mg/LqzWGa6+BnAmc9hTuoScIV5yNm33FOHRwjxAP4awv/P/+UM+UIwZPrBVWC6JhTmma4LhnxTUwXRNYErzBOuNZyhQCjt558Lj4L7pr98Wvy12mi6dgvXMv6v+P5ASgwqKbKFGYtKesSMosBIp5M+t2T5utFYFIYaDWB+ftaBlq8TXXCEC4fcOTIHhQwQfsWJl4tLkCQBEf+LTfRLDShqv8V0fuCYUfilSAjxHULJr/lHU86+5YAh31zqnG+6rgBCGx/ZNp+GfID5CUEVV3Df9ALfNoj/n7/uiEuO+P/Fy0XbAJD+GLaRB3eghtaeQUGRI+IvgPl/oQrHXkAk3pYnCrBM1Uc6hLWdqGVuPY6/iGUfXG36hcVfgOwFRIDwC4szX3iERumGAlNQBRT92uOr4PjibvHFSlwEzukAnan9F1WrEXeiz5dyttr78PjgJaz1ONO1hP8RxIwAK/pum6655lIZ8f+yP14LAaOf6ZoiDlzMJU0ApNcnfntDofR/exxd/zWmRfxV0n6Du4NPVZ9t3boVzZs3R3BwMCIjIzFgwADJ61evXkXv3r0REhKCyMhIjB07Fvn5+TZSU0nhF8BhoztxzwUf+oTy1WLZB1YJF7mc/StN1VjmvwAkVY2coVD+fIjr5SVF0wZJsCMUa4uLqvmHQWYZX0rFF3sT4iYUEDmWfWBVUTW6ve+j+Xufs3+lqNq9oKg6THyNsKyysmymwP/PXwsK84qCH0lThkLrUny5tMz44UQsl5n+8anbKHHAZ0qKNm3ahOHDh2P+/Pno0KEDGGM4c+aM8LrBYEDPnj1Rvnx57N+/H7du3cKQIUPAGMOqVdZtVJwlbugrh39NvJ5kG50fmM4PTO+vWZ60JDQ2ZAxM71/UUJEPTDgdwLfj4dsFiUtthN54Ni6Clo3T+ed8cTbfa8/yZ5G9YmwhbdH/RoP6gyeEOE08qC3HN3wGzD9iTEGFuBE0IOqMYZT5fstdA8SlQkZpoMKX3puq5c0lSXZK9CVV8YDsdd0yfav9eRD1PvMMnwiKCgsLMW7cOCxevBgvvviisLx27drC/ykpKfj111+RkZGB2NhYAMDSpUsxdOhQzJs3zzQQowaUfBGEbvrmL514G9MgYKaabXu9p7IPrpb0VnNHLzWhyynHgekDTI0Y+V9WorY6XP5dUz50fgAM5l9vFj3yZC48skGhCMeMpmueqIcexEXbPMsASo7la+Z2SXy7ALl2RjRVCyHaELf7sywBF4IOIwCduVrcYogTYQVbP3jERM0Y5PYjrKNDUZBmo1RevNwySLK3ruQ5tSkqUXwiKDpx4gSuXbsGnU6Hxo0bIzMzE40aNcKSJUtQt25dAMChQ4dQr149ISACgK5duyIvLw/Hjx9H+/btZdPOy8tDXl6e8Dw7O1tRnpSOTSH5ZWEsGvARRgNyUpcABfeRs285wtpMEOrWAZh7OJhLYfT+RTd4aHMTF36h8W17CvOkvSjEjZktLyx2Ll4Oz4vM+sImljGP5YVR7kJpJ1Dix5PizG2SxCPT8sdRkodEIMQThN6ifFU3UNQGiMeKurZLiKvCALvBkN1ri+iHnGVaasYRcmbMIU+NU0Q8wyeCokuXLgEAkpOTsWzZMlStWhVLly5FUlISfv/9d5QtWxaZmZmIioqSbFemTBkEBAQgMzPTZtoLFizA7Nmz3Zp/CX40bKDoS2zUCSNhCwNDwnLEbAOg0yOszQTZ0iU+aLIXMPHF23y3U1Ndva1qLsiUAElLwHhyFwXLX1z2iqGLknfi4iJTDQeYAyIAOnMXXACm86vTm7cznc+cfcvB9AFUWkSIszidqR2QRVUXJw5UhB9R/HhlfhbLrb/7qoMNmcCoJAUsNE6RZxRrC7Hk5GRwHGf3cezYMRjNX5jp06fj8ccfR9OmTbFmzRpwHIf//ve/QnqczEjRjDHZ5bxp06YhKytLeGRkZDjMt+UXTVXdsmXdOd9AuPCBMBq20KjPMqhgzBQ8iZZnH1hlquIS/0oTyT6wSjLuj9B4Ue5Xm3hf5saGdouo+cNwUBevlN3GjGpZtkXgi+n5Qdk4HcAYNZL0UULD/xI2zpdPkvuOiq8vctVMdq4/gBPf+2L8HnusbZE5KHLlAQqKHCrWkqLRo0fjmWeesbtO1apVkZOTAwBISEgQlgcGBqJatWq4evUqACA6OhpHjhyRbHv79m0UFBRYlSCJBQYGIjAwUHGexY3yxG2HHJGUjhgs29gYpdVA4uCGv3iItzf/zdm33NQF3vw6g3m8Hp2+aH/GQlMwtW85UHC/KCDiGyTaKLWxVcojXmav/t0eR6VG4nNsecGxtb+iKjjRCOL8OCTiYyl8IDR2588TlRL5DqGtnWiMGZps2bOE94D/XvG9y8TXJ75BNN/Y2bJESAfJD0RXridFidgvvdaERWmUJxtbGxkD52JDaSM1tHaoWIOiyMhIREZGOlyvadOmCAwMRFpaGlq3bg0AKCgowOXLlxEXFwcASExMxLx583D9+nXExMQAMDW+DgwMRNOmTTXJr6NAQem2ls+FMY90oosHpyuq2rIYJIwDkLt3EZjRIOqaWljUe8uoK5pWxPIXmUU9uysXD7Xb2guAXN2HVWNu8Xm0XGYuNWKiqVfoxur9JDdjxoreQxQ13mU6Pwpy3Shn/0rTjyvR900Y9Zkn7touUw1vmgPRheoy8XpqghK5awIhFnyiTVF4eDhGjBiBWbNmoXLlyoiLi8PixYsBAE8++SQAoEuXLkhISMDzzz+PxYsX459//sHkyZMxfPhwp3ueeao+WtI7Q2AdyBQpLCo5suiiCqNpTjbOYjtVxyLXaFHN63KbOBjGwFFplWTfwgoK82A5Mq0kLXN7Lj448oFB+Wz2WDTPDRfWepxPHIfT+A4IonYr5rdSOjo60QRfRSn0TjWX/ohHhwbfgcFYKB3J33LAWyXUXF+UBjpqAy5b48nJlFx7dEJYV9sUUUmRQz4RFAHA4sWL4efnh+effx73799H8+bNsXv3bpQpUwYAoNfrsXXrVowcORKtWrVCcHAwBg4ciCVLlji1P9U9HTTg6MIhDZ5sl/7I/QqzSe4i4OjYLBtPOlhf3DXf1mt282bvdYsic9PNUSZNfj3L/QnHoDf1TvPQBc4ZtgIdoddiYR7A6Uy9Gg35pkbkOj+rEjBhFHJz6Rg/NhXT+TlsrF+smBH83HdW3b7NLwvHr/enUiMNSKbY4avebZTImqqk/cwl1qJEjCoDIldeV7oPW/mxdX3QOg9OoIbWnsExCh0lsrOzERERgZsXTiM8LMx6BU8P2GWjntzl+ndXqAgK5fKpuGG2kuPjS4HMaUrS1okCIZmgr2hATb3kdW+eN42fFNPyxsTPCSXBl6JwOtMxAuZq2QLTc/FccqJej2FJk92Sb1cCFKHqzGgwtQsTT8cAFL3H4vdWp5cNCol9QuN1JprH0KK0xHJoC44ZEdpuCnL3LpL2apWZH9Kylxqfpuxzy/XsUVNa5Ey1mw3ZOTmIrNEAWVlZmo2HJ0nffE9q+MpX0AeGuJSWIe8ufl78hNvyWhL4TEmRV3AlILJXqmLnNaUDibmVZf6cqDqTa49lrwTJ5oVIbt+2Ake+1IgPmiz+8lUwjNMBrGjQuZwfl5lGHOeKxoWynL8pZ/9KoSSCr7bij0eLm7D4xiSMKs6MpgbGjJnya35d9ibDtyXjqzmM0iCKb3cGQCgB4KuicvcuKmqIbg6U1AY0Vo1xzTObqz03kglCxQ9AerPl266Yb9ZC9ZqhQOh8wG8X1maCqjw8LIRequZgyPQ5M0q60fOfBx4/d2PurrnI3TUXKHgAAEVzERpsfNfFP6zEARH//VR7fVNzTZILuGxt70Ulx0YjwLk8eKNGmSnBqKTIgt2SImfrxC2/WHIXAYsSD6e4qVrPbtru2qflrzqL/TC9+eIsM2yAJBlOZ12dZplfvi2E+LlQHaA33RyAooa9ooBDsh+Yq/Asx2CRpGtqiRHWZoJVkGA5TQJnKDANPmk5yre9z5Z4ub3PneVzuXPCl7rozBNrip7zwSAAIWgTNhWCFnPgxnHCOQRgGm/LXBrHH7M4DX6kd3FeTQGheWJgR1PIWJYKio6TryIUSs6Akt8Gyw7xcQsTMPNVlIB19Zj5uyhXmng3JVn+86ikfaJWwYfltcLyf8s82bvOKMyTp0qK6k38L/SBpVxKy5B3D78se5JKiuygoMiCw6BI68BF7UXE2d0qaKtke2MHxyz3ur2SMbl17OXBMvjQSW90oR1nmC7I4qTt7ddy/jVYl14BAPQyA8zpdOAMhbJDBQh5k5Rg6Ioaw1vcrJk+QJThonMh22tQXB1hq7RMrsRICblZxsXpiv7yAR/zCywqTZA5Brn/hXOk9xemrpGM4m5OQxi8VPSemAYcfWAuuXBwbEqCYItlkiEaHrLqNqHdEFDUiJ1vsM5/NnR+CG0/Fbl7FyG03RTJ9rk758iPVi2mpmpLa5bXW6XXGwqKHkpUfWaLzIVTWO5qupbPLb987izxAaxuGszoIDByFAzau0krqQZzsG+rQEXnJ1yYc3fPR+7OOUXVYIDV8YknpxWGPxDT6YqyIApquELrnkzMaB1wSbonG4rmq4PeNLltaOeZkqCNmZdzlqVT4p3InQrGT4lilB6nrXPtaFoUy1nCLY9HZ/3ZFNozFRatKyEuWRAHeOY8mhpEG8BxxqJJhfnASgieWFHpknkb4XUl5f+WQam90jRzXoX5/HR+khIrLVhWvRYnyxIxoVoWAD/Mgex5Nn9WLQMiALKDxlrx0I8/2X3Y+oza4kVVZmLO1CrKpUHso6DIG6j8ZWKTndIZyY3O8nXxD3t7edAqWLMTbNqqnjLl0zrvoR1eQ+7u+WDmEiOx3F1z5eda0/tZl45YBlLikiNx6Y9MiQozQgiAhNOn95OUBkkG+7So/jEFVEbbAYstlmNbKaGwUYFVTz6LagWrG6FMVbDkfeTbmKCoGlLYlzhwAuRLvcw3alVdu/njlZks2FbexXmRTFzKr6qwJEncjR2F5rkVOU6YJV5N+yrLoMreJNJyr0sCH9HQE5L3kQ+IjIWynxHL7xYvd+ccadWzGp64Q5egKMBoZBq0KXJPxdDevXttzi/6008/4dFHH5V9bejQoVi3bp1kWfPmzXH48GHN86gUVZ9ZEKrPLv4i3/vMFlv12PxzMS2r39RsKgqKQju8ZvW6UAwO6U3cqX3b+WXIpx3SJRl3d8w0LdP5AXo/Sb740hVJCZC5XYPcL1Z77qYkW5UkyQZRgKSdEl/iw+crd9dchHacgdzd82XfV2G93fNNAduehaZqh51zTKuItrFq7yT3q5ZfZtF2ylapmNW2ogDM0Zx1lq/J9uSzTF8p/rOj5AeAOF2hWsfiPVHK3vmR259cSS6KPrOW7auK8mluqK/3lxwbxwdEzGhqqMzpJO3UwHGStjqy2RMXEXC6orZaoobwQhBqJvQOEwen4hI5vb/QdkhSoieupjWzFxApKiUq4TxVfVZn9EZNqs9+e/tpzfOan5+Pf/75R7Ls9ddfxw8//IBLly7ZnGpr6NCh+Ouvv7BmzRphWUBAAMqWLatZ3tSikiI1xBctpdVgjtKRS8vR+nIlQvbyJmLrAgfAupqH/2Uvsz/hxmQuIbHZ4NnypmKRt5Cuc2zmh183tPNMm+soFdIlGUBRUCOHX567a25RlaKNm6o4eBOCKZnXQ9tPNf2VOYbcXXOtgwS5G7TMeZWMWSVuIyVuwwSY3h+LwMgR8WjnwvslWxUnyiefrs7BJcXRTVTue2S0EQxZvjeWA5nazINFqZ8k4Cia5V1SvSYOMOS+X0IVlLhK0qKxsrFQSEfYjNOBExqk84Gu3jRsgkU+LH+wMHF+mLEoWAJM+xFNfiwuneOY0VR6xU9OLeRPdP74757Mj6cSzU5wanebh1xAQACio6OF5wUFBfj2228xevRou3OPAqaptsTbFjcqKbKgqKTIUUmQWva+VOKLnpLtRRdycSCiNrAQl6zIViXxpTb8Pi0DI9E5EvcUsywZeeguugoIpVD8+2ooVD+lirn6zvTETtAq3sYyCJZ5zYpco2adn3xwIOaovZOohEzRfm1xtB9X2Pte2nqN/87Yel28XC5QtlhX8p7ZWp///ur8zKPgm98PfqwnyzZYKr6XfEnvwyw79y4iq9dze0lR7ZFfaFJSlPbOM25vaL1p0yY89dRTuHz5MipXrmxzvaFDh2LLli0ICAhA6dKlkZSUhHnz5qFChQpuy5sjVFJki/giA9gvYtdiX0p/fVqyUdwPuFbCwpesWOKrgST5clBCJFSbcNJzSgGRDfbeb0c3SjO5HnJ2x4Wys1z8mlVwZHlDBaxLSOTWlWM57pA4TSXb20tPS0K6FumLfzCIS1/41wDr74zlNUb83FFwxESN0C2WW/3PD+0g+gEjPZYiqr6XzpSslDQeOn4tJ4TNzs6WLFc7MbojH3/8Mbp27Wo3IAKA7t2748knn0RcXBzS09Px+uuvo0OHDjh+/Lim+VGDgiJH5H51Kak6U7sP8YXPXlWYnf04UyKklq30c3fNFXpxWZUsibe3U31HTMTnSFI1Z27TIplR3E6QpGQkcbVk2zXx+AlAbZGr7rJ8zV4go2QdR5wtYZIZmVlR+pZVm0oCXrm8WA5CqobRCKG7oIJj4D9zSr6rxTqyPnGaZbAya9YsJCcnW62XnJyM2bNn203r6NGjaNasmfD8jz/+wI4dO/Dll186zMfTTz8t/F+vXj00a9YMcXFx2Lp1KwYMGOBwe3egoMgRy5uOZVWVeLmzFwe5X3Yy1V93U5JlG3PbKtXxJLkLqGWpEpUMqWfvxsT3rrM7Qrjoc+LMzcutNz25AIUPPlSVKtmp2rPqWm5RcuMob5YlKvaCI3vjPdnbzl5eJDPO66TXHMvSKHsc7VvmuqJEaOeZVIXmIVrOfZaRkSGpPrNVKjN69Gg888wzdtOsWrWq5PmaNWtQrlw59OnTR3X+YmJiEBcXh/Pnz6veVisUFClhq7TIsuGxXP2+E/sS93gSNwwO6ZJcdCMU79dLhXaeacovs+4uT1wnW6Ikd/NTeaMTNrNoJK+YveBAa3L7cTZIsBekiV+3bMyuhOWkzWa2xs2SpC+3H5mAyFHJoGwJrkWD6tzd801tiswdBBx52AOikK5zwAzW45m5A2MaBEXm6rPw8HBFbYoiIyMRGRmpKv01a9Zg8ODB8Pf3V52/W7duISMjAzExMaq31QoFRbaIghyrwEP8XHRxsSwJyd05RzoYICuafFMuLb5xrDgdy2BC6CFlLoVxd3WZqygY8gzxeRZ6ENoogVTCVnskh+y0VVEcRCitJnM2IIK0Z52kJ5/cPiyrwFzctyIqAiI1bcQcDcuhpjT3YQ+IqNeZtd27dyM9PR0vvvii7Ot16tTBggUL0L9/f+Tm5iI5ORmPP/44YmJicPnyZbz22muIjIxE//79PZzzIhQU2cBEPTtsjSUj7sIte4ExByzCmDXmX/MMRdMYiPehJoDw9mCIFJ+QLsk2q1qF52Keuri7uwRJZVBiGTQ4HBhSLjhSsU9N2ng5UU1vOd4U/VBxga37ggcwI3N58EVXS5oc+fjjj9GyZUs88sgjsq+npaUhKysLAKDX63HmzBmsX78ed+7cQUxMDNq3b4+NGzciTM0YgRqjLvkW+O6PfvUHgRPPTUWIDxK365IMlyBm4+Yse9N2pTeYXBq2KE3bQX7kGoYrHZrAYT4V5FHxCNxybY4U7t/hhMji9Mwl4EwfIMxw7yybE8D6MsuSe0Ay/pfcj1FmyEfhmc/c3iU//sUN0AW41iXfmH8P6R8/T3Of2UElRYSUYLZKFC0n0JUje0O3rEJSGxipDIgUjZlkIw9yJUHiNOxVOzkMZBwct+rG6XLpKWlMbmZ5PHZHI+fMc71ppaR0y+dLgVSO1URKFgqKCHkICSN8i6Z2kaOoSklhCQ0A21VoMnPUKcqTwoBISf6strHVU03rgMje3Hpyvd8s8iA+vzbfK2F7AIZ87arQSkJAJGo76s3NErTsfUZso5ZihDzEQjvPFNrPSdrRicgGC+KHxbr2Smhkt5cJMuzlR0l1lL3tbb1ucxtxHhWUjFmeT/6cWJ0bcyPu0I4zTDdjvR9CO84A8wsS5viD3s+6itBGHhwGRKLt5aamUcube74qwlclcjqEdEn26oAIAIzmNkWuPoh9VFJECAGgbERrpWzdMFXPcg9p1ZCtOfScyYtq9rrVqyDOv7jEhq+uCUuaLCzL2b8SXP5dQG/Rdd5igEXJmGCWbLS74ufec7qayGKwVp/AlwqZA1BfwowGMNH8ds6mQeyjoIiQh5gnGss6LDkyUzIekt2AyIlG4JLRwWF7bB97+ZOtKhTlxZXAIaz1ONnlVjd0i4l/BfaGDNk936k8WbEcTJJf5kXBEtP5UVshoggFRYQ8pJQ0tnaWM0GA4l5hcmQCIlvtmhwFaeJqFMsSGKXzxzEUBSPQmZ5zoqCFY0ZNYwahBEk0fpl44Fd72zi9z44zpJ8hufHcvCEw4oqqKX0ZlRR5BgVFhDxE3BkIucTefH/8YnulRA4aaispnZKdq09hOxN+pHmrMc0greISD4sgO5mri8T5dXcQkLtzju2gx8lR1DVh2fC8BAREAMCMRg2CIi8IUr0cBUWEPGwUBCAeJy5VsHWjVVC9pnRKEqFNj0aNa23ddCVVVOI2OOb9OyrN8WZ2z7Ojz5W7SpEsBlf01XNLig8FRYQ8BIRqIP6GbPFL3l7DaMvXbd4Mi7F0QNKLTO9nVXJUXD2LLKfsyd01F8woGu1eg15gxcF0HDYGj3T0OZALiLQMkkpo2yFmMIAZXCwpcnH7hwEFRYQ8JOxVIdlqpGyrS7xsWloHROIbpaOu+Zbj+5gnVPY2tuYy9DVCleDu+WDmtlKc+L2S+58n99lxNSASjzXko+fUEcY0aFPEKChyhIIiQko4oS2LktGhAdsDCIoGDlRaTaWYrdIFmfYh4pIubwx8Hibi8y+UehnN7aVsfOY0Z/6M8AOSEuIKCooIKcHsBUSK2ZhiQsvAiOn87E/pYadrOfEO4gmyGUyjdNucb89VPjIKtZao95lnUFBEyMNAPJaM6IYCQHZuLGFdOaJpKRS1NbJDnAehG7utXlwUDPkEy+orvmee5PPhTJAk+qyFdElG7s45D01ABFBQ5CkUFBFSgvE3Db4rfkhXU4Pr3J1zJKUvAsv/bQZG5r8udPGVVIeZ9xfafqrT6RHvJA6ShJJLhdO3WDb0lww58BAFRMRzKCgi5CEQ0iVZ0tNJzQ0ld89C0z9Wc4IVCtNPgBmLSnok6xT1UGJ6i8sNp5OkSQFRySf0urOclkRnPe0JkaKSIs/wmaDo999/xyuvvIIDBw4gPz8f9evXx9y5c9G+fXthnatXr2LUqFHYvXs3goODMXDgQCxZsgQBAQHFmHNCvIOzNxy5YCV3z0JpkKTzK2r83G5KUSClgzlgQlE1GAU/Dz0q5VGPBm/0DJ8Jinr27IlatWoJAc+KFSvQq1cvXLx4EdHR0TAYDOjZsyfKly+P/fv349atWxgyZAgYY1i1alVxZ5+QEsVRYEOBDyHaMhoNgItBkZFKihzykuFs7bt58yYuXLiAqVOnokGDBqhZsyYWLlyIe/fu4ezZswCAlJQU/Prrr/j000/RuHFjdOrUCUuXLsWHH36I7OzsYj4CQgghhHg7nwiKypUrh0ceeQTr16/H3bt3UVhYiPfffx9RUVFo2rQpAODQoUOoV68eYmNjhe26du2KvLw8HD9+3GbaeXl5yM7OljwIIYQQb8K3KXL1QezzieozjuOwc+dO9O3bF2FhYdDpdIiKisL//vc/lC5dGgCQmZmJqKgoyXZlypRBQEAAMjMzbaa9YMECzJ49253ZJ4QQQlxCDa09o1hLipKTk8FxnN3HsWPHwBjDyJEjUaFCBezbtw8//fQT+vbti169euH69etCehxnPe80Y0x2OW/atGnIysoSHhkZGW45VkIIIYR4t2ItKRo9ejSeeeYZu+tUrVoVu3fvxvfff4/bt28jPDwcAPDOO+9g586dWLduHaZOnYro6GgcOXJEsu3t27dRUFBgVYIkFhgYiMDAQNcPhhBCCHEXgwFM52JJD00I61CxBkWRkZGIjIx0uN69e/cAADqLkXd1Oh2M5i6GiYmJmDdvHq5fv46YmBgApsbXgYGBQrsjQgghxBcx5nrvM5oQ1jGfaGidmJiIMmXKYMiQIfj555+FMYvS09PRs2dPAECXLl2QkJCA559/HidPnsSuXbswefJkDB8+XChdIoQQQgixxSeCosjISPzvf/9Dbm4uOnTogGbNmmH//v345ptv0LBhQwCAXq/H1q1bERQUhFatWuGpp55Cv379sGTJkmLOPSGEEOIafvBG1x40eKMjPtH7DACaNWuGHTt22F2nSpUq+P777z2UI0IIIcQzmAaDN1LvM8d8oqSIEEIIIcTdfKakiBBCCHlYMaNRmGDZpTSIXRQUEUIIIV6Oqs88g4IiQgghxMtRUOQZ1KaIEEIIIQRUUkQIIYR4PaPRAI5KityOgiJCCCHEyzGDEeBcDIoM1NDaEao+I4QQQggBlRQRQgghXo/mPvMMCooIIYQQL8eMBterz6hNkUNUfUYIIYQQAiopIoQQQrwelRR5BgVFhBBCiJejoMgzKCiywBgz/TUUFHNOCCGEeDv+XsHfO9zGUACX90D3NYcoKLJw69YtAIDh1y+LOSeEEEJ8RU5ODiIiIjRPNyAgANHR0cjU6J4UHR2NgIAATdIqiTjm9vDWt9y5cwdlypTB1atX3fIBL07Z2dmoXLkyMjIyEB4eXtzZ0RQdm2+iY/NNJfnYAHXHxxhDTk4OYmNjodO5p+/SgwcPkJ+fr0laAQEBCAoK0iStkohKiizwH+qIiIgS+WUHgPDwcDo2H0TH5pvo2HyX0uNz9w/ooKAgCmQ8hLrkE0IIIYSAgiJCCCGEEAAUFFkJDAzErFmzEBgYWNxZ0Rwdm2+iY/NNdGy+q6QfH7GNGloTQgghhIBKigghhBBCAFBQRAghhBACgIIiQgghhBAAFBQRQgghhACgoEjinXfeQXx8PIKCgtC0aVPs27evuLOkWnJyMjiOkzyio6OF1xljSE5ORmxsLIKDg9GuXTucPXu2GHNs248//ojevXsjNjYWHMdhy5YtkteVHEteXh7GjBmDyMhIhISEoE+fPvjjjz88eBTyHB3b0KFDrd7HFi1aSNbx1mNbsGABHn30UYSFhaFChQro168f0tLSJOv46nun5Nh89b1799130aBBA2HAwsTERGzfvl143VffM8Dxsfnqe0a0R0GR2caNGzF+/HhMnz4dJ0+eRJs2bdC9e3dcvXq1uLOmWt26dXH9+nXhcebMGeG1RYsWYdmyZXj77bdx9OhRREdHo3PnzsjJySnGHMu7e/cuGjZsiLffflv2dSXHMn78eGzevBlffPEF9u/fj9zcXPTq1QsGQ/HOFu3o2ACgW7dukvdx27Ztkte99dhSU1MxatQoHD58GDt37kRhYSG6dOmCu3fvCuv46nun5NgA33zvKlWqhIULF+LYsWM4duwYOnTogL59+wqBj6++Z4DjYwN88z0jbsAIY4yxxx57jI0YMUKyrE6dOmzq1KnFlCPnzJo1izVs2FD2NaPRyKKjo9nChQuFZQ8ePGARERHsvffe81AOnQOAbd68WXiu5Fju3LnD/P392RdffCGsc+3aNabT6dj//vc/j+XdEctjY4yxIUOGsL59+9rcxleOjTHGbty4wQCw1NRUxljJeu8sj42xkvXelSlThn300Ucl6j3j8cfGWMl6z4hrqKQIQH5+Po4fP44uXbpIlnfp0gUHDx4splw57/z584iNjUV8fDyeeeYZXLp0CQCQnp6OzMxMyXEGBgYiKSnJ545TybEcP34cBQUFknViY2NRr149nzjevXv3okKFCqhVqxaGDx+OGzduCK/50rFlZWUBAMqWLQugZL13lsfG8/X3zmAw4IsvvsDdu3eRmJhYot4zy2Pj+fp7RrRBE8ICuHnzJgwGA6KioiTLo6KikJmZWUy5ck7z5s2xfv161KpVC3/99Rfmzp2Lli1b4uzZs8KxyB3nlStXiiO7TlNyLJmZmQgICECZMmWs1vH297V79+548sknERcXh/T0dLz++uvo0KEDjh8/jsDAQJ85NsYYJk6ciNatW6NevXoASs57J3dsgG+/d2fOnEFiYiIePHiA0NBQbN68GQkJCcKN35ffM1vHBvj2e0a0RUGRCMdxkueMMatl3q579+7C//Xr10diYiKqV6+OdevWCQ0HS8Jx8pw5Fl843qefflr4v169emjWrBni4uKwdetWDBgwwOZ23nZso0ePxunTp7F//36r13z9vbN1bL783tWuXRunTp3CnTt3sGnTJgwZMgSpqanC6778ntk6toSEBJ9+z4i2qPoMQGRkJPR6vVXEf+PGDatfRr4mJCQE9evXx/nz54VeaCXhOJUcS3R0NPLz83H79m2b6/iKmJgYxMXF4fz58wB849jGjBmDb7/9Fnv27EGlSpWE5SXhvbN1bHJ86b0LCAhAjRo10KxZMyxYsAANGzbEypUrS8R7ZuvY5PjSe0a0RUERTF+Wpk2bYufOnZLlO3fuRMuWLYspV9rIy8vDuXPnEBMTg/j4eERHR0uOMz8/H6mpqT53nEqOpWnTpvD395esc/36dfzyyy8+d7y3bt1CRkYGYmJiAHj3sTHGMHr0aHz99dfYvXs34uPjJa/78nvn6Njk+NJ7Z4kxhry8PJ9+z2zhj02OL79nxEUeb9rtpb744gvm7+/PPv74Y/brr7+y8ePHs5CQEHb58uXizpoqkyZNYnv37mWXLl1ihw8fZr169WJhYWHCcSxcuJBFRESwr7/+mp05c4Y9++yzLCYmhmVnZxdzzq3l5OSwkydPspMnTzIAbNmyZezkyZPsypUrjDFlxzJixAhWqVIl9sMPP7ATJ06wDh06sIYNG7LCwsLiOizGmP1jy8nJYZMmTWIHDx5k6enpbM+ePSwxMZFVrFjRJ47t3//+N4uIiGB79+5l169fFx737t0T1vHV987Rsfnyezdt2jT2448/svT0dHb69Gn22muvMZ1Ox1JSUhhjvvueMWb/2Hz5PSPao6BIZPXq1SwuLo4FBASwJk2aSLrZ+oqnn36axcTEMH9/fxYbG8sGDBjAzp49K7xuNBrZrFmzWHR0NAsMDGRt27ZlZ86cKcYc27Znzx4GwOoxZMgQxpiyY7l//z4bPXo0K1u2LAsODma9evViV69eLYajkbJ3bPfu3WNdunRh5cuXZ/7+/qxKlSpsyJAhVvn21mOTOy4AbM2aNcI6vvreOTo2X37vhg0bJlz/ypcvzzp27CgERIz57nvGmP1j8+X3jGiPY4wxz5VLEUIIIYR4J2pTRAghhBACCooIIYQQQgBQUEQIIYQQAoCCIkIIIYQQABQUEUIIIYQAoKCIEEIIIQQABUWEEEIIIQAoKCJEc5cvXwbHcTh16pRb0uc4Dlu2bHF6+71794LjOHAch379+tldt127dhg/frzT+yL28e9D6dKlizsrhBBQUERKmKFDhzq80btb5cqVcf36ddSrVw9AURBy586dYs2XpbS0NKxdu7a4s/FQsPW5vH79OlasWOHx/BBC5FFQRIjG9Ho9oqOj4efnV9xZsatChQpeUUJRUFBQ3FkoNtHR0YiIiCjubBBCzCgoIg+V1NRUPPbYYwgMDERMTAymTp2KwsJC4fV27dph7NixmDJlCsqWLYvo6GgkJydL0vjtt9/QunVrBAUFISEhAT/88IOkSktcfXb58mW0b98eAFCmTBlwHIehQ4cCAKpWrWpVStCoUSPJ/s6fP4+2bdsK+xLP0s27du0ann76aZQpUwblypVD3759cfnyZdXn5u7duxg8eDBCQ0MRExODpUuXWq2Tn5+PKVOmoGLFiggJCUHz5s2xd+9eyToffvghKleujFKlSqF///5YtmyZJPhKTk5Go0aN8Mknn6BatWoIDAwEYwxZWVl46aWXUKFCBYSHh6NDhw74+eefJWl/9913aNq0KYKCglCtWjXMnj1b8v4lJyejSpUqCAwMRGxsLMaOHavo2B0d161bt/Dss8+iUqVKKFWqFOrXr4///Oc/kjS++uor1K9fH8HBwShXrhw6deqEu3fvIjk5GevWrcM333wjVJdZnjNCiHfw7p+yhGjo2rVr6NGjB4YOHYr169fjt99+w/DhwxEUFCQJRNatW4eJEyfiyJEjOHToEIYOHYpWrVqhc+fOMBqN6NevH6pUqYIjR44gJycHkyZNsrnPypUrY9OmTXj88ceRlpaG8PBwBAcHK8qv0WjEgAEDEBkZicOHDyM7O9uqfc+9e/fQvn17tGnTBj/++CP8/Pwwd+5cdOvWDadPn0ZAQIDi8/PKK69gz5492Lx5M6Kjo/Haa6/h+PHjaNSokbDOCy+8gMuXL+OLL75AbGwsNm/ejG7duuHMmTOoWbMmDhw4gBEjRuDNN99Enz598MMPP+D111+32teFCxfw5ZdfYtOmTdDr9QCAnj17omzZsti2bRsiIiLw/vvvo2PHjvj9999RtmxZ7NixA8899xzeeusttGnTBhcvXsRLL70EAJg1axa++uorLF++HF988QXq1q2LzMxMq6DKFkfH9eDBAzRt2hSvvvoqwsPDsXXrVjz//POoVq0amjdvjuvXr+PZZ5/FokWL0L9/f+Tk5GDfvn1gjGHy5Mk4d+4csrOzsWbNGgBA2bJlFb8vhBAPKt75aAnR1pAhQ1jfvn1lX3vttddY7dq1mdFoFJatXr2ahYaGMoPBwBhjLCkpibVu3Vqy3aOPPspeffVVxhhj27dvZ35+fuz69evC6zt37mQA2ObNmxljjKWnpzMA7OTJk4wxxvbs2cMAsNu3b0vSjYuLY8uXL5csa9iwIZs1axZjjLEdO3YwvV7PMjIyhNe3b98u2dfHH39sdUx5eXksODiY7dixQ/Y8yOUnJyeHBQQEsC+++EJYduvWLRYcHMzGjRvHGGPswoULjOM4du3aNUl6HTt2ZNOmTWOMMfb000+znj17Sl4fNGgQi4iIEJ7PmjWL+fv7sxs3bgjLdu3axcLDw9mDBw8k21avXp29//77jDHG2rRpw+bPny95fcOGDSwmJoYxxtjSpUtZrVq1WH5+vuxx26LkuOT06NGDTZo0iTHG2PHjxxkAdvnyZdl17X0u16xZIzk/hJDiQyVF5KFx7tw5JCYmguM4YVmrVq2Qm5uLP/74A1WqVAEANGjQQLJdTEwMbty4AcDUOLly5cqIjo4WXn/sscfclt8qVaqgUqVKwrLExETJOsePH8eFCxcQFhYmWf7gwQNcvHhR8b4uXryI/Px8Sfply5ZF7dq1hecnTpwAYwy1atWSbJuXl4dy5coBMJ2f/v37S15/7LHH8P3330uWxcXFoXz58pLjyM3NFdLh3b9/XziO48eP4+jRo5g3b57wusFgwIMHD3Dv3j08+eSTWLFiBapVq4Zu3bqhR48e6N27t8O2XUqOy2AwYOHChdi4cSOuXbuGvLw85OXlISQkBADQsGFDdOzYEfXr10fXrl3RpUsXPPHEEyhTpozdfRNCvAsFReShwRiTBET8MgCS5f7+/pJ1OI6D0Wi0mYazdDqdsH+euNGx5WuW+QRMVWxNmzbFZ599ZrWuOOhwRG5floxGI/R6PY4fPy5UefFCQ0OFdGydYzE+mBCnHRMTI9vWhm+PZDQaMXv2bAwYMMBqnaCgIFSuXBlpaWnYuXMnfvjhB4wcORKLFy9Gamqq1Xuq9riWLl2K5cuXY8WKFahfvz5CQkIwfvx45OfnAzA1rt+5cycOHjyIlJQUrFq1CtOnT8eRI0cQHx9vc9+EEO9CQRF5aCQkJGDTpk2SG/fBgwcRFhaGihUrKkqjTp06uHr1Kv766y9ERUUBAI4ePWp3G75dj8FgkCwvX748rl+/LjzPzs5Genq6JL9Xr17Fn3/+idjYWADAoUOHJGk0adIEGzduFBonO6tGjRrw9/fH4cOHhRKz27dv4/fff0dSUhIAoHHjxjAYDLhx4wbatGkjm06dOnXw008/SZYdO3bM4f6bNGmCzMxM+Pn5oWrVqjbXSUtLQ40aNWymExwcjD59+qBPnz4YNWoU6tSpgzNnzqBJkyY2t1FyXPv27UPfvn3x3HPPATAFUufPn8cjjzwirMNxHFq1aoVWrVph5syZiIuLw+bNmzFx4kQEBARYvf+EEO9Dvc9IiZOVlYVTp05JHlevXsXIkSORkZGBMWPG4LfffsM333yDWbNmYeLEidDplH0VOnfujOrVq2PIkCE4ffo0Dhw4gOnTpwOwLsXhxcXFgeM4fP/99/j777+Rm5sLAOjQoQM2bNiAffv24ZdffsGQIUMkJRWdOnVC7dq1MXjwYPz888/Yt2+fsC/eoEGDEBkZib59+2Lfvn1IT09Hamoqxo0bhz/++EPxOQsNDcWLL76IV155Bbt27cIvv/yCoUOHSs5LrVq1MGjQIAwePBhff/010tPTcfToUbz55pvYtm0bAGDMmDHYtm0bli1bhvPnz+P999/H9u3bHZauderUCYmJiejXrx927NiBy5cv4+DBg5gxY4YQVM2cORPr169HcnIyzp49i3PnzmHjxo2YMWMGAGDt2rX4+OOP8csvv+DSpUvYsGEDgoODERcXZ3ffSo6rRo0aQknQuXPn8PLLLyMzM1NI48iRI/9v7/5dUu8CMIA/DWrmFyerL5UgRtLWVEYKESTRENbSUuiSY9RUSxRENEhTQYOT/QM5NOQQJEhLNDlUkpMRQT8IcwgqeN6p7/veW733Xm731r09H3A63x/HMz3gc45YXl7GwcEByuUyNjc3cXl5aYUmn8+HQqGAYrGIq6urT30MgciH9k5dJpFfIh6PE8CzTzweJ0nmcjl2dnbSbrfTNE3Ozs7y4eHBur+3t9cqFj+JRqPW/SR5dHTEUChEu93O9vZ2bm1tEQCz2SzJ50VrklxcXKRpmqypqbGeValUODo6SrfbTa/Xy3Q6/UXRmiSLxSLD4TDtdjsDgQCz2ewXRWuSPD8/ZywWo8fjocPhoN/vZyKRYKVSeXGNXit+V6tVjo+Ps66ujo2NjUwmk8/W4/7+nvPz8/T5fLTZbDRNkyMjIywUCtY1qVSKzc3NdDqdHB4e5tLSEk3TtMYXFhbY0dHxbF63t7ecnJxkU1MTbTYbvV4vx8bGWC6XrWuy2Sx7enrodDrpdrvZ1dXFVCpFksxkMgwGg3S73XS5XOzu7ubOzs6La/C1b32v6+trRqNRGobBhoYGzs3NMRaLWeXpw8NDDgwMsL6+ng6Hg4FAgGtra9bzLy4uGIlEaBgGAXB3d9caU9Fa5OOoIb+jTCAir9rb20M4HEapVEJra+t7T+ebcrkc+vr6cHNz81sOb0wkEjg+PkY+n//l7/oTpdNpTE9Pf7gTz0U+I3WKRH5QJpOBYRhoa2tDqVTC1NQUQqHQHxGI/qulpQVDQ0PPDiH8WSsrK4hEInC5XNje3sbGxgbW19ff9B1/C8Mw8Pj4iNra2veeiohAoUjkh1WrVczMzOD09BQejwf9/f0vnv78UQWDQZycnAD4d3fVW9rf30cymUS1WoXf78fq6iomJibe/D3fK5/PY3Bw8NXxp47Xe3j60+Cvd72JyPvQz2ci8le7u7vD2dnZq+P/t5tNRD4XhSIRERERaEu+iIiICACFIhEREREACkUiIiIiABSKRERERAAoFImIiIgAUCgSERERAaBQJCIiIgJAoUhEREQEAPAPbWfxk+B/Oc4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ds.ice[-1].plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Postscript: Execute the full recipe\n", + "\n", + "We are now confident that our recipe works as we expect.\n", + "At this point we could either:\n", + "- Execute it all ourselves (see {doc}`../../recipe_user_guide/execution`)\n", + "- Make a {doc}`../../../pangeo_forge_cloud/recipe_contribution` to {doc}`../../../pangeo_forge_cloud/index` to have our recipe executed automatically on the cloud.\n", + "\n", + "Hopefully now you have a better understanding of how Pangeo Forge recipes work." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.13" } - ], - "source": [ - "ds.ice[-1].plot()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Postscript: Execute the full recipe\n", - "\n", - "We are now confident that our recipe works as we expect.\n", - "At this point we could either:\n", - "- Execute it all ourselves (see {doc}`../../recipe_user_guide/execution`)\n", - "- Make a {doc}`../../../pangeo_forge_cloud/recipe_contribution` to {doc}`../../../pangeo_forge_cloud/index` to have our recipe executed automatically on the cloud.\n", - "\n", - "Hopefully now you have a better understanding of how Pangeo Forge recipes work." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.13" - } - }, - "nbformat": 4, - "nbformat_minor": 4 + "nbformat": 4, + "nbformat_minor": 4 } diff --git a/docs/pangeo_forge_recipes/tutorials/xarray_zarr/opendap_subset_recipe.ipynb b/docs/pangeo_forge_recipes/tutorials/xarray_zarr/opendap_subset_recipe.ipynb index cf594694..ce0bba0e 100644 --- a/docs/pangeo_forge_recipes/tutorials/xarray_zarr/opendap_subset_recipe.ipynb +++ b/docs/pangeo_forge_recipes/tutorials/xarray_zarr/opendap_subset_recipe.ipynb @@ -1,279 +1,279 @@ { - "cells": [ - { - "cell_type": "markdown", - "id": "9de6a449", - "metadata": {}, - "source": [ - "# NARR: Subsetting and OPeNDAP\n", - "\n", - "## About the Dataset\n", - "\n", - "This tutorial uses data from NOAA's [North American Regional Reanalysis](https://www.ncei.noaa.gov/products/weather-climate-models/north-american-regional) (NARR)\n", - "\n", - "> The North American Regional Reanalysis (NARR) is a model produced by the National Centers for Environmental Prediction (NCEP) that generates reanalyzed data for temperature, wind, moisture, soil, and dozens of other parameters. The NARR model assimilates a large amount of observational data from a variety of sources to produce a long-term picture of weather over North America.\n", - "\n", - "For this recipe, we will access the data via [OPeNDAP](https://earthdata.nasa.gov/collaborate/open-data-services-and-software/api/opendap), a widely-used API for remote access of environmental data over HTTP.\n", - "A key point is that, since we use using OPeNDAP, _there are no input files to download / cache_. We open the data directly from the remote server.\n", - "\n", - "The data we will use are catalogged here (3D data on pressure levels): \n", - "\n", - "Let's peek at one file. Xarray should automatically do the right thing with the OPeNDAP url. But just to be safe, we can pass the option, `engine='netcdf4'`, which is needed to open OPeNDAP links correctly. (We will need this again later when writing our recipe.)" - ] + "cells": [ + { + "cell_type": "markdown", + "id": "9de6a449", + "metadata": {}, + "source": [ + "# NARR: Subsetting and OPeNDAP\n", + "\n", + "## About the Dataset\n", + "\n", + "This tutorial uses data from NOAA's [North American Regional Reanalysis](https://www.ncei.noaa.gov/products/weather-climate-models/north-american-regional) (NARR)\n", + "\n", + "> The North American Regional Reanalysis (NARR) is a model produced by the National Centers for Environmental Prediction (NCEP) that generates reanalyzed data for temperature, wind, moisture, soil, and dozens of other parameters. The NARR model assimilates a large amount of observational data from a variety of sources to produce a long-term picture of weather over North America.\n", + "\n", + "For this recipe, we will access the data via [OPeNDAP](https://earthdata.nasa.gov/collaborate/open-data-services-and-software/api/opendap), a widely-used API for remote access of environmental data over HTTP.\n", + "A key point is that, since we use using OPeNDAP, _there are no input files to download / cache_. We open the data directly from the remote server.\n", + "\n", + "The data we will use are catalogged here (3D data on pressure levels): \n", + "\n", + "Let's peek at one file. Xarray should automatically do the right thing with the OPeNDAP url. But just to be safe, we can pass the option, `engine='netcdf4'`, which is needed to open OPeNDAP links correctly. (We will need this again later when writing our recipe.)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "56b4633d", + "metadata": {}, + "outputs": [], + "source": [ + "import xarray as xr\n", + "url = \"https://psl.noaa.gov/thredds/dodsC/Datasets/NARR/pressure/air.197901.nc\"\n", + "ds = xr.open_dataset(url, engine='netcdf4', decode_cf=\"all\")\n", + "ds" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "ce43c11e", + "metadata": {}, + "source": [ + "This is just one file.\n", + "But it's a very big file (several GB)!\n", + "We will want to break it up by specifying `target_chunks` when we write to Zarr." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "62bdc5d5", + "metadata": {}, + "outputs": [], + "source": [ + "ds.air._ChunkSizes" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "df877352", + "metadata": {}, + "source": [ + "This tells us that we can subset in the `time` or `level` dimensions, but problably should avoid subsetting in the `x` and `y` dimensions.\n", + "\n", + "Also note the presence of the `Lambert_Conformal` data variable. This should be a coordinate. So we will need to write a custom transform to make that change.\n", + "\n", + "## Define File Pattern\n", + "\n", + "We are now ready to define the `FilePattern` for the recipe. There is one file per month. So we start with a function like this:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "23de17b4", + "metadata": {}, + "outputs": [], + "source": [ + "def format_function(time):\n", + " return f\"https://psl.noaa.gov/thredds/dodsC/Datasets/NARR/pressure/air.{time}.nc\"" + ] + }, + { + "cell_type": "markdown", + "id": "c7dd39e3", + "metadata": {}, + "source": [ + "To keep things short and simple for this tutorial, we will just use one file, and subset it into many chunks.\n", + "But we could easily add more months to build up the entire dataset.\n", + "Since each file is monthly, and the number of days per months varies, we cannot set `nitems_per_input` in the `ConcatDim`.\n", + "\n", + "```{note}\n", + "It's important that we specify `file_type=\"opendap\"` when creating a FilePattern with OPeNDAP URLs.\n", + "OPeNDAP is actually an API, so there are no files to download. \n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1dcaf511", + "metadata": {}, + "outputs": [], + "source": [ + "from pangeo_forge_recipes.patterns import FilePattern, ConcatDim, MergeDim\n", + "time_dim = ConcatDim(\"time\", [\"197901\"])\n", + "pattern = FilePattern(format_function, time_dim, file_type=\"opendap\")\n", + "pattern" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "977bcb43", + "metadata": {}, + "source": [ + "## Define the Pipeline\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9c33246c", + "metadata": {}, + "outputs": [], + "source": [ + "import apache_beam as beam\n", + "from pangeo_forge_recipes.transforms import OpenURLWithFSSpec, OpenWithXarray, StoreToZarr" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "26e6808c", + "metadata": {}, + "outputs": [], + "source": [ + "from pangeo_forge_recipes.transforms import Indexed, T\n", + "\n", + "class SetProjectionAsCoord(beam.PTransform):\n", + " \"\"\"A preprocessing function which will assign the `Lambert_Conformal` variable as a coordinate variable.\"\"\"\n", + "\n", + " @staticmethod\n", + " def _set_projection_as_coord(item: Indexed[T]) -> Indexed[T]:\n", + " index, ds = item\n", + " ds = ds.set_coords([\"Lambert_Conformal\"])\n", + " return index, ds\n", + "\n", + " def expand(self, pcoll: beam.PCollection) -> beam.PCollection:\n", + " return pcoll | beam.Map(self._set_projection_as_coord)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "69e978e1", + "metadata": {}, + "source": [ + "We now define a target location for our recipe. Here we just use a temporary directory." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "898329cc", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "from tempfile import TemporaryDirectory\n", + "td = TemporaryDirectory()\n", + "target_root = td.name\n", + "store_name = \"output.zarr\"\n", + "target_store = os.path.join(target_root, store_name)\n", + "target_store" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "b04aaaa5", + "metadata": {}, + "source": [ + "Now we put together the necessary PTransforms. In this pipeline we're adding in the argument, `target_chunks`, which is a dictionary describing how we want the output dataset to be chunked. In this example, we are specifying single time chunks (`{\"time\": 1}`)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e6f2acde", + "metadata": {}, + "outputs": [], + "source": [ + "transforms = (\n", + " beam.Create(pattern.items())\n", + " | OpenWithXarray(file_type=pattern.file_type)\n", + " | SetProjectionAsCoord()\n", + " | StoreToZarr(\n", + " store_name=store_name,\n", + " target_root=target_root,\n", + " combine_dims=pattern.combine_dim_keys,\n", + " target_chunks={\"time\": 1}\n", + " )\n", + ")\n", + "transforms" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "16262be0", + "metadata": {}, + "outputs": [], + "source": [ + "with beam.Pipeline() as p:\n", + " p | transforms" + ] + }, + { + "cell_type": "markdown", + "id": "a7abe582", + "metadata": {}, + "source": [ + "## Check The Outputs" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cce52842", + "metadata": {}, + "outputs": [], + "source": [ + "ds_target = xr.open_dataset(target_store, engine=\"zarr\", chunks={})\n", + "ds_target" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fce7f2cc", + "metadata": {}, + "outputs": [], + "source": [ + "ds_target.air.isel(level=0).mean(\"time\").plot()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ae6f405c", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.9" + } }, - { - "cell_type": "code", - "execution_count": null, - "id": "56b4633d", - "metadata": {}, - "outputs": [], - "source": [ - "import xarray as xr\n", - "url = \"https://psl.noaa.gov/thredds/dodsC/Datasets/NARR/pressure/air.197901.nc\"\n", - "ds = xr.open_dataset(url, engine='netcdf4', decode_cf=\"all\")\n", - "ds" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "ce43c11e", - "metadata": {}, - "source": [ - "This is just one file.\n", - "But it's a very big file (several GB)!\n", - "We will want to break it up by specifying `target_chunks` when we write to Zarr." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "62bdc5d5", - "metadata": {}, - "outputs": [], - "source": [ - "ds.air._ChunkSizes" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "df877352", - "metadata": {}, - "source": [ - "This tells us that we can subset in the `time` or `level` dimensions, but problably should avoid subsetting in the `x` and `y` dimensions.\n", - "\n", - "Also note the presence of the `Lambert_Conformal` data variable. This should be a coordinate. So we will need to write a custom transform to make that change.\n", - "\n", - "## Define File Pattern\n", - "\n", - "We are now ready to define the `FilePattern` for the recipe. There is one file per month. So we start with a function like this:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "23de17b4", - "metadata": {}, - "outputs": [], - "source": [ - "def format_function(time):\n", - " return f\"https://psl.noaa.gov/thredds/dodsC/Datasets/NARR/pressure/air.{time}.nc\"" - ] - }, - { - "cell_type": "markdown", - "id": "c7dd39e3", - "metadata": {}, - "source": [ - "To keep things short and simple for this tutorial, we will just use one file, and subset it into many chunks.\n", - "But we could easily add more months to build up the entire dataset.\n", - "Since each file is monthly, and the number of days per months varies, we cannot set `nitems_per_input` in the `ConcatDim`.\n", - "\n", - "```{note}\n", - "It's important that we specify `file_type=\"opendap\"` when creating a FilePattern with OPeNDAP URLs.\n", - "OPeNDAP is actually an API, so there are no files to download. \n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "1dcaf511", - "metadata": {}, - "outputs": [], - "source": [ - "from pangeo_forge_recipes.patterns import FilePattern, ConcatDim, MergeDim\n", - "time_dim = ConcatDim(\"time\", [\"197901\"])\n", - "pattern = FilePattern(format_function, time_dim, file_type=\"opendap\")\n", - "pattern" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "977bcb43", - "metadata": {}, - "source": [ - "## Define the Pipeline\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "9c33246c", - "metadata": {}, - "outputs": [], - "source": [ - "import apache_beam as beam\n", - "from pangeo_forge_recipes.transforms import OpenURLWithFSSpec, OpenWithXarray, StoreToZarr" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "26e6808c", - "metadata": {}, - "outputs": [], - "source": [ - "from pangeo_forge_recipes.transforms import Indexed, T\n", - "\n", - "class SetProjectionAsCoord(beam.PTransform):\n", - " \"\"\"A preprocessing function which will assign the `Lambert_Conformal` variable as a coordinate variable.\"\"\"\n", - "\n", - " @staticmethod\n", - " def _set_projection_as_coord(item: Indexed[T]) -> Indexed[T]:\n", - " index, ds = item\n", - " ds = ds.set_coords([\"Lambert_Conformal\"])\n", - " return index, ds\n", - "\n", - " def expand(self, pcoll: beam.PCollection) -> beam.PCollection:\n", - " return pcoll | beam.Map(self._set_projection_as_coord)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "69e978e1", - "metadata": {}, - "source": [ - "We now define a target location for our recipe. Here we just use a temporary directory." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "898329cc", - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "from tempfile import TemporaryDirectory\n", - "td = TemporaryDirectory()\n", - "target_root = td.name\n", - "store_name = \"output.zarr\"\n", - "target_store = os.path.join(target_root, store_name)\n", - "target_store" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "b04aaaa5", - "metadata": {}, - "source": [ - "Now we put together the necessary PTransforms. In this pipeline we're adding in the argument, `target_chunks`, which is a dictionary describing how we want the output dataset to be chunked. In this example, we are specifying single time chunks (`{\"time\": 1}`)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e6f2acde", - "metadata": {}, - "outputs": [], - "source": [ - "transforms = (\n", - " beam.Create(pattern.items())\n", - " | OpenWithXarray(file_type=pattern.file_type)\n", - " | SetProjectionAsCoord()\n", - " | StoreToZarr(\n", - " store_name=store_name,\n", - " target_root=target_root,\n", - " combine_dims=pattern.combine_dim_keys,\n", - " target_chunks={\"time\": 1}\n", - " )\n", - ")\n", - "transforms" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "16262be0", - "metadata": {}, - "outputs": [], - "source": [ - "with beam.Pipeline() as p:\n", - " p | transforms" - ] - }, - { - "cell_type": "markdown", - "id": "a7abe582", - "metadata": {}, - "source": [ - "## Check The Outputs" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "cce52842", - "metadata": {}, - "outputs": [], - "source": [ - "ds_target = xr.open_dataset(target_store, engine=\"zarr\", chunks={})\n", - "ds_target" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "fce7f2cc", - "metadata": {}, - "outputs": [], - "source": [ - "ds_target.air.isel(level=0).mean(\"time\").plot()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "ae6f405c", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.9" - } - }, - "nbformat": 4, - "nbformat_minor": 5 + "nbformat": 4, + "nbformat_minor": 5 } diff --git a/docs/pangeo_forge_recipes/tutorials/xarray_zarr/terraclimate.ipynb b/docs/pangeo_forge_recipes/tutorials/xarray_zarr/terraclimate.ipynb index 3b49a4d3..08b493e4 100755 --- a/docs/pangeo_forge_recipes/tutorials/xarray_zarr/terraclimate.ipynb +++ b/docs/pangeo_forge_recipes/tutorials/xarray_zarr/terraclimate.ipynb @@ -1,1026 +1,1026 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Complex NetCDF to Zarr Recipe: TerraClimate \n", - "\n", - "## About the Dataset\n", - "\n", - "From http://www.climatologylab.org/terraclimate.html:\n", - "\n", - "> TerraClimate is a dataset of monthly climate and climatic water balance for global terrestrial surfaces from 1958-2019. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time-varying data. All data have monthly temporal resolution and a ~4-km (1/24th degree) spatial resolution. The data cover the period from 1958-2019. We plan to update these data periodically (annually).\n", - "\n", - "## What makes it tricky\n", - "\n", - "This is an advanced example that illustrates the following concepts\n", - "- _Multiple variables in different files_: There is one file per year for a dozen different variables.\n", - "- _Complex Preprocessing_: We want to apply different preprocessing depending on the variable. This example shows how.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import apache_beam as beam\n", - "from pangeo_forge_recipes.transforms import OpenURLWithFSSpec, OpenWithXarray, StoreToZarr\n", - "\n", - "from pangeo_forge_recipes.patterns import FilePattern, ConcatDim, MergeDim\n", - "import xarray as xr" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Define Filename Pattern \n", - "\n", - "To keep this example smaller, we just use two years and two variables, instead of the whole record." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "text/plain": [ - "" + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Complex NetCDF to Zarr Recipe: TerraClimate \n", + "\n", + "## About the Dataset\n", + "\n", + "From http://www.climatologylab.org/terraclimate.html:\n", + "\n", + "> TerraClimate is a dataset of monthly climate and climatic water balance for global terrestrial surfaces from 1958-2019. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time-varying data. All data have monthly temporal resolution and a ~4-km (1/24th degree) spatial resolution. The data cover the period from 1958-2019. We plan to update these data periodically (annually).\n", + "\n", + "## What makes it tricky\n", + "\n", + "This is an advanced example that illustrates the following concepts\n", + "- _Multiple variables in different files_: There is one file per year for a dozen different variables.\n", + "- _Complex Preprocessing_: We want to apply different preprocessing depending on the variable. This example shows how.\n" ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "target_chunks = {\"lat\": 1024, \"lon\": 1024, \"time\": 12}\n", - "\n", - "# for the example, we only select two years to keep the example small;\n", - "# this time range can be extended if you are running the recipe yourself.\n", - "years = list(range(2000, 2002))\n", - "\n", - "# even when subsetting to just two years of data, including every variable results\n", - "# in a dataset size of rougly 3-3.5 GB. this is a bit large to run for the example.\n", - "# to keep the example efficient, we select two of the available variables. to run\n", - "# more variables yourself, simply uncomment any/all of the commented variables below.\n", - "variables = [\n", - " # \"aet\",\n", - " # \"def\",\n", - " # \"pet\",\n", - " # \"ppt\",\n", - " # \"q\",\n", - " \"soil\",\n", - " \"srad\",\n", - " # \"swe\",\n", - " # \"tmax\",\n", - " # \"tmin\",\n", - " # \"vap\",\n", - " # \"ws\",\n", - " # \"vpd\",\n", - " # \"PDSI\",\n", - "]\n", - "\n", - "def make_filename(variable, time):\n", - " return f\"http://thredds.northwestknowledge.net:8080/thredds/fileServer/TERRACLIMATE_ALL/data/TerraClimate_{variable}_{time}.nc\"\n", - "\n", - "pattern = FilePattern(\n", - " make_filename,\n", - " ConcatDim(name=\"time\", keys=years),\n", - " MergeDim(name=\"variable\", keys=variables)\n", - ")\n", - "pattern\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Check out the pattern\n", - "\n", - "The following cell demonstrates one way we might iterate over the contents of the file pattern created above.\n", - "\n", - "Note that each item in the pattern includes a dimensional index key with a corresponding source url as a value.\n", - "\n", - "By using `curl` to check the sizes of these files, we see that the temporal and variable subset we've selected\n", - "results in a total of about 500 MB of data. This is an small/efficient scale means that you should be able to\n", - "execute (and experiment with) the notebook yourself locally in a reasonable amount of time.\n", - "\n", - "In production settings that capture more meaningful temporal and variable extents, the scale of data would be\n", - "orders of magnitude larger." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "{Dimension(name='time', operation=): Position(value=0, indexed=False), Dimension(name='variable', operation=): Position(value=0, indexed=False)} http://thredds.northwestknowledge.net:8080/thredds/fileServer/TERRACLIMATE_ALL/data/TerraClimate_soil_2000.nc\n", - "108.193531 MB\n", - "\n", - "{Dimension(name='time', operation=): Position(value=0, indexed=False), Dimension(name='variable', operation=): Position(value=1, indexed=False)} http://thredds.northwestknowledge.net:8080/thredds/fileServer/TERRACLIMATE_ALL/data/TerraClimate_srad_2000.nc\n", - "138.559588 MB\n", - "\n", - "{Dimension(name='time', operation=): Position(value=1, indexed=False), Dimension(name='variable', operation=): Position(value=0, indexed=False)} http://thredds.northwestknowledge.net:8080/thredds/fileServer/TERRACLIMATE_ALL/data/TerraClimate_soil_2001.nc\n", - "107.922421 MB\n", - "\n", - "{Dimension(name='time', operation=): Position(value=1, indexed=False), Dimension(name='variable', operation=): Position(value=1, indexed=False)} http://thredds.northwestknowledge.net:8080/thredds/fileServer/TERRACLIMATE_ALL/data/TerraClimate_srad_2001.nc\n", - "138.840558 MB\n", - "\n", - "\n", - "Total: 493.51609799999994 MB\n" - ] - } - ], - "source": [ - "import subprocess\n", - "\n", - "total_mb = 0\n", - "for key, filename in pattern.items():\n", - " print(key, filename)\n", - " curl_info = subprocess.check_output(f\"curl -Is {filename}\".split()).decode()\n", - " n_megabytes = int(curl_info.split(\"Content-Length: \")[-1].split(\"\\r\")[0])/1e6\n", - " print(f\"{n_megabytes} MB\\n\")\n", - " total_mb += n_megabytes\n", - "\n", - "print(f\"\\nTotal: {total_mb} MB\")\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Specify Output Directory\n", - "Here we will create a temporary directory to write our output dataset to. We could also write to cloud storage. \n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import apache_beam as beam\n", + "from pangeo_forge_recipes.transforms import OpenURLWithFSSpec, OpenWithXarray, StoreToZarr\n", + "\n", + "from pangeo_forge_recipes.patterns import FilePattern, ConcatDim, MergeDim\n", + "import xarray as xr" + ] + }, { - "data": { - "text/plain": [ - "'/var/folders/tt/4f941hdn0zq549zdwhcgg98c0000gn/T/tmpnyitlkv9/terraclimate.zarr'" + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Define Filename Pattern \n", + "\n", + "To keep this example smaller, we just use two years and two variables, instead of the whole record." ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import os\n", - "from tempfile import TemporaryDirectory\n", - "\n", - "td = TemporaryDirectory()\n", - "target_root = td.name\n", - "store_name = \"terraclimate.zarr\"\n", - "target_path = os.path.join(target_root, store_name)\n", - "target_path\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Define Preprocessing Functions\n", - "\n", - "These functions apply masks for each variable to remove invalid data.\n", - "\n", - "Although we are only running two variables in this example, mask values are provided for all variables. Therefore\n", - "you should not need to alter this preprocessor if you'd like to explore additional variables on your own." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from pangeo_forge_recipes.transforms import Indexed, T\n", - "\n", - "def _apply_mask(key, da):\n", - " \"\"\"helper function to mask DataArrays based on a threshold value\"\"\"\n", - " mask_opts = {\n", - " \"PDSI\": (\"lt\", 10),\n", - " \"aet\": (\"lt\", 32767),\n", - " \"def\": (\"lt\", 32767),\n", - " \"pet\": (\"lt\", 32767),\n", - " \"ppt\": (\"lt\", 32767),\n", - " \"ppt_station_influence\": None,\n", - " \"q\": (\"lt\", 2147483647),\n", - " \"soil\": (\"lt\", 32767),\n", - " \"srad\": (\"lt\", 32767),\n", - " \"swe\": (\"lt\", 10000),\n", - " \"tmax\": (\"lt\", 200),\n", - " \"tmax_station_influence\": None,\n", - " \"tmin\": (\"lt\", 200),\n", - " \"tmin_station_influence\": None,\n", - " \"vap\": (\"lt\", 300),\n", - " \"vap_station_influence\": None,\n", - " \"vpd\": (\"lt\", 300),\n", - " \"ws\": (\"lt\", 200),\n", - " } \n", - " if mask_opts.get(key, None):\n", - " op, val = mask_opts[key]\n", - " if op == \"lt\":\n", - " da = da.where(da < val)\n", - " elif op == \"neq\":\n", - " da = da.where(da != val)\n", - " return da\n", - "\n", - "class Munge(beam.PTransform):\n", - " \"\"\"\n", - " Apply cleaning transformations to Datasets\n", - " \"\"\"\n", - " \n", - " @staticmethod\n", - " def _preproc(item: Indexed[T]) -> Indexed[T]:\n", - " \"\"\"custom preprocessing function for terraclimate data\"\"\"\n", - " index, ds = item\n", - " \n", - " # invalid unicode in source data. This attr replacement is a fix.\n", - " fixed_attrs = {'method': 'These layers from TerraClimate were derived from the essential climate variables of TerraClimate. Water balance variables, actual evapotranspiration, climatic water deficit, runoff, soil moisture, and snow water equivalent were calculated using a water balance model and plant extractable soil water capacity derived from Wang-Erlandsson et al (2016).', 'title': 'TerraClimate: monthly climate and climatic water balance for global land surfaces', 'summary': 'This archive contains a dataset of high-spatial resolution (1/24th degree, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. These data were created by using climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim version 1.4 and version 2 datasets, with coarser resolution time varying (i.e. monthly) data from CRU Ts4.0 and JRA-55 to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity.', 'keywords': 'WORLDCLIM,global,monthly, temperature,precipitation,wind,radiation,vapor pressure,evapotranspiration,water balance,soil water capacity,snow water equivalent,runoff', 'id': 'Blank', 'naming_authority': 'edu.uidaho.nkn', 'keywords_vocabulary': 'None', 'cdm_data_type': 'GRID', 'history': 'Created by John Abatzoglou, University of California Merced', 'date_created': '2021-04-22', 'creator_name': 'John Abatzoglou', 'creator_url': 'http://climate.nkn.uidaho.edu/TerraClimate', 'creator_role': 'Principal Investigator', 'creator_email': 'jabatzoglou@ucmerced.edu', 'institution': 'University of California Merced', 'project': 'Global Dataset of Monthly Climate and Climatic Water Balance (1958-2015)', 'processing_level': 'Gridded Climate Projections', 'acknowledgment': 'Please cite the references included herein. We also acknowledge the WorldClim datasets (Fick and Hijmans, 2017; Hijmans et al., 2005) and the CRU Ts4.0 (Harris et al., 2014) and JRA-55 (Kobayashi et al., 2015) datasets.', 'geospatial_lat_min': -89.979164, 'geospatial_lat_max': 89.979164, 'geospatial_lon_min': -179.97917, 'geospatial_lon_max': 179.97917, 'geospatial_vertical_min': 0.0, 'geospatial_vertical_max': 0.0, 'time_coverage_start': '1958-01-01T00:0', 'time_coverage_end': '1958-12-01T00:0', 'time_coverage_duration': 'P1Y', 'time_coverage_resolution': 'P1M', 'standard_nam_vocabulary': 'CF-1.0', 'license': 'No restrictions', 'contributor_name': 'Katherine Hegewisch', 'contributor_role': 'Postdoctoral Fellow', 'contributor_email': 'khegewisch@ucmerced.edu', 'publisher_name': 'Northwest Knowledge Network', 'publisher_url': 'http://www.northwestknowledge.net', 'publisher_email': 'info@northwestknowledge.net', 'date_modified': '2021-04-22', 'date_issued': '2021-04-22', 'geospatial_lat_units': 'decimal degrees north', 'geospatial_lat_resolution': -0.041666668, 'geospatial_lon_units': 'decimal degrees east', 'geospatial_lon_resolution': 0.041666668, 'geospatial_vertical_units': 'None', 'geospatial_vertical_resolution': 0.0, 'geospatial_vertical_positive': 'Up', 'references': 'Abatzoglou, J.T., S.Z. Dobrowski, S.A. Parks, and K.C. Hegewisch, 2017, High-resolution global dataset of monthly climate and climatic water balance from 1958-2015, submitted to Scientific Data.', 'source': 'WorldClim v2.0 (2.5m), CRU Ts4.0, JRA-55', 'version': 'v1.0', 'Conventions': 'CF-1.6'}\n", - " ds.attrs = fixed_attrs\n", - " \n", - " rename = {}\n", - "\n", - " station_influence = ds.get(\"station_influence\", None)\n", - "\n", - " if station_influence is not None:\n", - " ds = ds.drop_vars(\"station_influence\")\n", - "\n", - " var = list(ds.data_vars)[0]\n", - " \n", - " rename_vars = {'PDSI': 'pdsi'}\n", - "\n", - " if var in rename_vars:\n", - " rename[var] = rename_vars[var]\n", - "\n", - " if \"day\" in ds.coords:\n", - " rename[\"day\"] = \"time\"\n", - "\n", - " if station_influence is not None:\n", - " ds[f\"{var}_station_influence\"] = station_influence\n", - " with xr.set_options(keep_attrs=True):\n", - " ds[var] = _apply_mask(var, ds[var])\n", - " if rename:\n", - " ds = ds.rename(rename)\n", - " return index, ds\n", - "\n", - " def expand(self, pcoll: beam.PCollection) -> beam.PCollection:\n", - " return pcoll | beam.Map(self._preproc)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Create Pipeline\n", - "\n", - "We are now ready to create the processing pipeline.\n", - "\n", - "Below we chain together multiple processing steps.\n", - "1. Initalize the pipeline with the list of input file patterns\n", - "2. Use Fsspec to open each file url and create Fsspec file objects\n", - "3. Pass the Fsspec file objects to Xarray to open as Xarray Datasets\n", - "4. Pass the Xarray Datasets to our custom preprocessing function (named `Munge`) \n", - " to apply our preprocessing and cleaning logic\n", - "5. Pass the cleaned Xarray Dataset to the `StoreToZarr` method to combine and\n", - " write the Datasets to a single Zarr Dataset\n" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "<_ChainedPTransform(PTransform) label=[Create|OpenURLWithFSSpec|OpenWithXarray|Munge|StoreToZarr] at 0x1a18092e0>" + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "target_chunks = {\"lat\": 1024, \"lon\": 1024, \"time\": 12}\n", + "\n", + "# for the example, we only select two years to keep the example small;\n", + "# this time range can be extended if you are running the recipe yourself.\n", + "years = list(range(2000, 2002))\n", + "\n", + "# even when subsetting to just two years of data, including every variable results\n", + "# in a dataset size of rougly 3-3.5 GB. this is a bit large to run for the example.\n", + "# to keep the example efficient, we select two of the available variables. to run\n", + "# more variables yourself, simply uncomment any/all of the commented variables below.\n", + "variables = [\n", + " # \"aet\",\n", + " # \"def\",\n", + " # \"pet\",\n", + " # \"ppt\",\n", + " # \"q\",\n", + " \"soil\",\n", + " \"srad\",\n", + " # \"swe\",\n", + " # \"tmax\",\n", + " # \"tmin\",\n", + " # \"vap\",\n", + " # \"ws\",\n", + " # \"vpd\",\n", + " # \"PDSI\",\n", + "]\n", + "\n", + "def make_filename(variable, time):\n", + " return f\"http://thredds.northwestknowledge.net:8080/thredds/fileServer/TERRACLIMATE_ALL/data/TerraClimate_{variable}_{time}.nc\"\n", + "\n", + "pattern = FilePattern(\n", + " make_filename,\n", + " ConcatDim(name=\"time\", keys=years),\n", + " MergeDim(name=\"variable\", keys=variables)\n", + ")\n", + "pattern\n" ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "transforms = (\n", - " beam.Create(pattern.items())\n", - " | OpenURLWithFSSpec()\n", - " | OpenWithXarray(file_type=pattern.file_type)\n", - " | Munge() # New pre-processor\n", - " | StoreToZarr(\n", - " target_root=target_root,\n", - " store_name=store_name,\n", - " combine_dims=pattern.combine_dim_keys,\n", - " )\n", - ")\n", - "transforms" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the next step we will create a `Beam` pipeline and pass our in of transforms to that pipeline." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ + }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" - ] + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Check out the pattern\n", + "\n", + "The following cell demonstrates one way we might iterate over the contents of the file pattern created above.\n", + "\n", + "Note that each item in the pattern includes a dimensional index key with a corresponding source url as a value.\n", + "\n", + "By using `curl` to check the sizes of these files, we see that the temporal and variable subset we've selected\n", + "results in a total of about 500 MB of data. This is an small/efficient scale means that you should be able to\n", + "execute (and experiment with) the notebook yourself locally in a reasonable amount of time.\n", + "\n", + "In production settings that capture more meaningful temporal and variable extents, the scale of data would be\n", + "orders of magnitude larger." + ] }, { - "data": { - "application/javascript": "\n if (typeof window.interactive_beam_jquery == 'undefined') {\n var jqueryScript = document.createElement('script');\n jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n jqueryScript.type = 'text/javascript';\n jqueryScript.onload = function() {\n var datatableScript = document.createElement('script');\n datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n datatableScript.type = 'text/javascript';\n datatableScript.onload = function() {\n window.interactive_beam_jquery = jQuery.noConflict(true);\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }\n document.head.appendChild(datatableScript);\n };\n document.head.appendChild(jqueryScript);\n } else {\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }" - }, - "metadata": {}, - "output_type": "display_data" + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{Dimension(name='time', operation=): Position(value=0, indexed=False), Dimension(name='variable', operation=): Position(value=0, indexed=False)} http://thredds.northwestknowledge.net:8080/thredds/fileServer/TERRACLIMATE_ALL/data/TerraClimate_soil_2000.nc\n", + "108.193531 MB\n", + "\n", + "{Dimension(name='time', operation=): Position(value=0, indexed=False), Dimension(name='variable', operation=): Position(value=1, indexed=False)} http://thredds.northwestknowledge.net:8080/thredds/fileServer/TERRACLIMATE_ALL/data/TerraClimate_srad_2000.nc\n", + "138.559588 MB\n", + "\n", + "{Dimension(name='time', operation=): Position(value=1, indexed=False), Dimension(name='variable', operation=): Position(value=0, indexed=False)} http://thredds.northwestknowledge.net:8080/thredds/fileServer/TERRACLIMATE_ALL/data/TerraClimate_soil_2001.nc\n", + "107.922421 MB\n", + "\n", + "{Dimension(name='time', operation=): Position(value=1, indexed=False), Dimension(name='variable', operation=): Position(value=1, indexed=False)} http://thredds.northwestknowledge.net:8080/thredds/fileServer/TERRACLIMATE_ALL/data/TerraClimate_srad_2001.nc\n", + "138.840558 MB\n", + "\n", + "\n", + "Total: 493.51609799999994 MB\n" + ] + } + ], + "source": [ + "import subprocess\n", + "\n", + "total_mb = 0\n", + "for key, filename in pattern.items():\n", + " print(key, filename)\n", + " curl_info = subprocess.check_output(f\"curl -Is {filename}\".split()).decode()\n", + " n_megabytes = int(curl_info.split(\"Content-Length: \")[-1].split(\"\\r\")[0])/1e6\n", + " print(f\"{n_megabytes} MB\\n\")\n", + " total_mb += n_megabytes\n", + "\n", + "print(f\"\\nTotal: {total_mb} MB\")\n" + ] }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:apache_beam.coders.coder_impl:Using fallback deterministic coder for type '' in '[7]: Create|OpenURLWithFSSpec|OpenWithXarray|Munge|StoreToZarr/StoreToZarr/DetermineSchema/CombinePerKey(CombineXarraySchemas)/GroupByKey'. \n", - "WARNING:apache_beam.coders.coder_impl:Using fallback deterministic coder for type '' in '[7]: Create|OpenURLWithFSSpec|OpenWithXarray|Munge|StoreToZarr/StoreToZarr/DetermineSchema/CombinePerKey(CombineXarraySchemas)/GroupByKey'. \n", - "WARNING:apache_beam.coders.coder_impl:Using fallback deterministic coder for type '' in '[7]: Create|OpenURLWithFSSpec|OpenWithXarray|Munge|StoreToZarr/StoreToZarr/DetermineSchema/CombinePerKey(CombineXarraySchemas)'. \n" - ] - } - ], - "source": [ - "with beam.Pipeline() as p:\n", - " p | transforms" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Check and Plot Target" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Specify Output Directory\n", + "Here we will create a temporary directory to write our output dataset to. We could also write to cloud storage. \n" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Dimensions: (crs: 1, lat: 4320, lon: 8640, time: 24)\n", - "Coordinates:\n", - " * crs (crs) int16 3\n", - " * lat (lat) float64 89.98 89.94 89.9 89.85 ... -89.85 -89.9 -89.94 -89.98\n", - " * lon (lon) float64 -180.0 -179.9 -179.9 -179.9 ... 179.9 179.9 180.0\n", - " * time (time) datetime64[ns] 2000-01-01 2000-02-01 ... 2001-12-01\n", - "Data variables:\n", - " soil (time, lat, lon) float32 dask.array\n", - " srad (time, lat, lon) float32 dask.array\n", - "Attributes: (12/49)\n", - " Conventions: CF-1.6\n", - " acknowledgment: Please cite the references included here...\n", - " cdm_data_type: GRID\n", - " contributor_email: khegewisch@ucmerced.edu\n", - " contributor_name: Katherine Hegewisch\n", - " contributor_role: Postdoctoral Fellow\n", - " ... ...\n", - " time_coverage_duration: P1Y\n", - " time_coverage_end: 1958-12-01T00:0\n", - " time_coverage_resolution: P1M\n", - " time_coverage_start: 1958-01-01T00:0\n", - " title: TerraClimate: monthly climate and climat...\n", - " version: v1.0\n" - ] - } - ], - "source": [ - "ds_target = xr.open_zarr(target_path, consolidated=True)\n", - "print(ds_target)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As an example calculation, we compute and plot the seasonal climatology of soil moisture." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'/var/folders/tt/4f941hdn0zq549zdwhcgg98c0000gn/T/tmpnyitlkv9/terraclimate.zarr'" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import os\n", + "from tempfile import TemporaryDirectory\n", + "\n", + "td = TemporaryDirectory()\n", + "target_root = td.name\n", + "store_name = \"terraclimate.zarr\"\n", + "target_path = os.path.join(target_root, store_name)\n", + "target_path\n" + ] + }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "/var/folders/tt/4f941hdn0zq549zdwhcgg98c0000gn/T/ipykernel_22660/2916827166.py:2: PerformanceWarning: Reshaping is producing a large chunk. To accept the large\n", - "chunk and silence this warning, set the option\n", - " >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", - " ... array.reshape(shape)\n", - "\n", - "To avoid creating the large chunks, set the option\n", - " >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", - " ... array.reshape(shape)Explictly passing ``limit`` to ``reshape`` will also silence this warning\n", - " >>> array.reshape(shape, limit='128 MiB')\n", - " soil_clim = ds_target.soil.groupby('time.season').mean('time').coarsen(lon=12, lat=12).mean()\n" - ] + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Define Preprocessing Functions\n", + "\n", + "These functions apply masks for each variable to remove invalid data.\n", + "\n", + "Although we are only running two variables in this example, mask values are provided for all variables. Therefore\n", + "you should not need to alter this preprocessor if you'd like to explore additional variables on your own." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "from pangeo_forge_recipes.transforms import Indexed, T\n", + "\n", + "def _apply_mask(key, da):\n", + " \"\"\"helper function to mask DataArrays based on a threshold value\"\"\"\n", + " mask_opts = {\n", + " \"PDSI\": (\"lt\", 10),\n", + " \"aet\": (\"lt\", 32767),\n", + " \"def\": (\"lt\", 32767),\n", + " \"pet\": (\"lt\", 32767),\n", + " \"ppt\": (\"lt\", 32767),\n", + " \"ppt_station_influence\": None,\n", + " \"q\": (\"lt\", 2147483647),\n", + " \"soil\": (\"lt\", 32767),\n", + " \"srad\": (\"lt\", 32767),\n", + " \"swe\": (\"lt\", 10000),\n", + " \"tmax\": (\"lt\", 200),\n", + " \"tmax_station_influence\": None,\n", + " \"tmin\": (\"lt\", 200),\n", + " \"tmin_station_influence\": None,\n", + " \"vap\": (\"lt\", 300),\n", + " \"vap_station_influence\": None,\n", + " \"vpd\": (\"lt\", 300),\n", + " \"ws\": (\"lt\", 200),\n", + " } \n", + " if mask_opts.get(key, None):\n", + " op, val = mask_opts[key]\n", + " if op == \"lt\":\n", + " da = da.where(da < val)\n", + " elif op == \"neq\":\n", + " da = da.where(da != val)\n", + " return da\n", + "\n", + "class Munge(beam.PTransform):\n", + " \"\"\"\n", + " Apply cleaning transformations to Datasets\n", + " \"\"\"\n", + " \n", + " @staticmethod\n", + " def _preproc(item: Indexed[T]) -> Indexed[T]:\n", + " \"\"\"custom preprocessing function for terraclimate data\"\"\"\n", + " index, ds = item\n", + " \n", + " # invalid unicode in source data. This attr replacement is a fix.\n", + " fixed_attrs = {'method': 'These layers from TerraClimate were derived from the essential climate variables of TerraClimate. Water balance variables, actual evapotranspiration, climatic water deficit, runoff, soil moisture, and snow water equivalent were calculated using a water balance model and plant extractable soil water capacity derived from Wang-Erlandsson et al (2016).', 'title': 'TerraClimate: monthly climate and climatic water balance for global land surfaces', 'summary': 'This archive contains a dataset of high-spatial resolution (1/24th degree, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. These data were created by using climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim version 1.4 and version 2 datasets, with coarser resolution time varying (i.e. monthly) data from CRU Ts4.0 and JRA-55 to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity.', 'keywords': 'WORLDCLIM,global,monthly, temperature,precipitation,wind,radiation,vapor pressure,evapotranspiration,water balance,soil water capacity,snow water equivalent,runoff', 'id': 'Blank', 'naming_authority': 'edu.uidaho.nkn', 'keywords_vocabulary': 'None', 'cdm_data_type': 'GRID', 'history': 'Created by John Abatzoglou, University of California Merced', 'date_created': '2021-04-22', 'creator_name': 'John Abatzoglou', 'creator_url': 'http://climate.nkn.uidaho.edu/TerraClimate', 'creator_role': 'Principal Investigator', 'creator_email': 'jabatzoglou@ucmerced.edu', 'institution': 'University of California Merced', 'project': 'Global Dataset of Monthly Climate and Climatic Water Balance (1958-2015)', 'processing_level': 'Gridded Climate Projections', 'acknowledgment': 'Please cite the references included herein. We also acknowledge the WorldClim datasets (Fick and Hijmans, 2017; Hijmans et al., 2005) and the CRU Ts4.0 (Harris et al., 2014) and JRA-55 (Kobayashi et al., 2015) datasets.', 'geospatial_lat_min': -89.979164, 'geospatial_lat_max': 89.979164, 'geospatial_lon_min': -179.97917, 'geospatial_lon_max': 179.97917, 'geospatial_vertical_min': 0.0, 'geospatial_vertical_max': 0.0, 'time_coverage_start': '1958-01-01T00:0', 'time_coverage_end': '1958-12-01T00:0', 'time_coverage_duration': 'P1Y', 'time_coverage_resolution': 'P1M', 'standard_nam_vocabulary': 'CF-1.0', 'license': 'No restrictions', 'contributor_name': 'Katherine Hegewisch', 'contributor_role': 'Postdoctoral Fellow', 'contributor_email': 'khegewisch@ucmerced.edu', 'publisher_name': 'Northwest Knowledge Network', 'publisher_url': 'http://www.northwestknowledge.net', 'publisher_email': 'info@northwestknowledge.net', 'date_modified': '2021-04-22', 'date_issued': '2021-04-22', 'geospatial_lat_units': 'decimal degrees north', 'geospatial_lat_resolution': -0.041666668, 'geospatial_lon_units': 'decimal degrees east', 'geospatial_lon_resolution': 0.041666668, 'geospatial_vertical_units': 'None', 'geospatial_vertical_resolution': 0.0, 'geospatial_vertical_positive': 'Up', 'references': 'Abatzoglou, J.T., S.Z. Dobrowski, S.A. Parks, and K.C. Hegewisch, 2017, High-resolution global dataset of monthly climate and climatic water balance from 1958-2015, submitted to Scientific Data.', 'source': 'WorldClim v2.0 (2.5m), CRU Ts4.0, JRA-55', 'version': 'v1.0', 'Conventions': 'CF-1.6'}\n", + " ds.attrs = fixed_attrs\n", + " \n", + " rename = {}\n", + "\n", + " station_influence = ds.get(\"station_influence\", None)\n", + "\n", + " if station_influence is not None:\n", + " ds = ds.drop_vars(\"station_influence\")\n", + "\n", + " var = list(ds.data_vars)[0]\n", + " \n", + " rename_vars = {'PDSI': 'pdsi'}\n", + "\n", + " if var in rename_vars:\n", + " rename[var] = rename_vars[var]\n", + "\n", + " if \"day\" in ds.coords:\n", + " rename[\"day\"] = \"time\"\n", + "\n", + " if station_influence is not None:\n", + " ds[f\"{var}_station_influence\"] = station_influence\n", + " with xr.set_options(keep_attrs=True):\n", + " ds[var] = _apply_mask(var, ds[var])\n", + " if rename:\n", + " ds = ds.rename(rename)\n", + " return index, ds\n", + "\n", + " def expand(self, pcoll: beam.PCollection) -> beam.PCollection:\n", + " return pcoll | beam.Map(self._preproc)" + ] }, { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.DataArray 'soil' (season: 4, lat: 360, lon: 720)>\n",
-       "dask.array<mean_agg-aggregate, shape=(4, 360, 720), dtype=float32, chunksize=(1, 360, 720), chunktype=numpy.ndarray>\n",
-       "Coordinates:\n",
-       "  * lat      (lat) float64 89.75 89.25 88.75 88.25 ... -88.75 -89.25 -89.75\n",
-       "  * lon      (lon) float64 -179.8 -179.2 -178.8 -178.2 ... 178.8 179.2 179.8\n",
-       "  * season   (season) object 'DJF' 'JJA' 'MAM' 'SON'\n",
-       "Attributes:\n",
-       "    coordinate_system:  WGS84,EPSG:4326\n",
-       "    description:        Soil Moisture at End of Month\n",
-       "    dimensions:         lon lat time\n",
-       "    grid_mapping:       crs\n",
-       "    long_name:          soil_moisture_content\n",
-       "    standard_name:      soil_moisture_content\n",
-       "    units:              mm
" + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create Pipeline\n", + "\n", + "We are now ready to create the processing pipeline.\n", + "\n", + "Below we chain together multiple processing steps.\n", + "1. Initalize the pipeline with the list of input file patterns\n", + "2. Use Fsspec to open each file url and create Fsspec file objects\n", + "3. Pass the Fsspec file objects to Xarray to open as Xarray Datasets\n", + "4. Pass the Xarray Datasets to our custom preprocessing function (named `Munge`) \n", + " to apply our preprocessing and cleaning logic\n", + "5. Pass the cleaned Xarray Dataset to the `StoreToZarr` method to combine and\n", + " write the Datasets to a single Zarr Dataset\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<_ChainedPTransform(PTransform) label=[Create|OpenURLWithFSSpec|OpenWithXarray|Munge|StoreToZarr] at 0x1a18092e0>" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } ], - "text/plain": [ - "\n", - "dask.array\n", - "Coordinates:\n", - " * lat (lat) float64 89.75 89.25 88.75 88.25 ... -88.75 -89.25 -89.75\n", - " * lon (lon) float64 -179.8 -179.2 -178.8 -178.2 ... 178.8 179.2 179.8\n", - " * season (season) object 'DJF' 'JJA' 'MAM' 'SON'\n", - "Attributes:\n", - " coordinate_system: WGS84,EPSG:4326\n", - " description: Soil Moisture at End of Month\n", - " dimensions: lon lat time\n", - " grid_mapping: crs\n", - " long_name: soil_moisture_content\n", - " standard_name: soil_moisture_content\n", - " units: mm" + "source": [ + "transforms = (\n", + " beam.Create(pattern.items())\n", + " | OpenURLWithFSSpec()\n", + " | OpenWithXarray(file_type=pattern.file_type)\n", + " | Munge() # New pre-processor\n", + " | StoreToZarr(\n", + " target_root=target_root,\n", + " store_name=store_name,\n", + " combine_dims=pattern.combine_dim_keys,\n", + " )\n", + ")\n", + "transforms" ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "with xr.set_options(keep_attrs=True):\n", - " soil_clim = ds_target.soil.groupby('time.season').mean('time').coarsen(lon=12, lat=12).mean()\n", - "soil_clim" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the next step we will create a `Beam` pipeline and pass our in of transforms to that pipeline." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" + ] + }, + { + "data": { + "application/javascript": "\n if (typeof window.interactive_beam_jquery == 'undefined') {\n var jqueryScript = document.createElement('script');\n jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n jqueryScript.type = 'text/javascript';\n jqueryScript.onload = function() {\n var datatableScript = document.createElement('script');\n datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n datatableScript.type = 'text/javascript';\n datatableScript.onload = function() {\n window.interactive_beam_jquery = jQuery.noConflict(true);\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }\n document.head.appendChild(datatableScript);\n };\n document.head.appendChild(jqueryScript);\n } else {\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:apache_beam.coders.coder_impl:Using fallback deterministic coder for type '' in '[7]: Create|OpenURLWithFSSpec|OpenWithXarray|Munge|StoreToZarr/StoreToZarr/DetermineSchema/CombinePerKey(CombineXarraySchemas)/GroupByKey'. \n", + "WARNING:apache_beam.coders.coder_impl:Using fallback deterministic coder for type '' in '[7]: Create|OpenURLWithFSSpec|OpenWithXarray|Munge|StoreToZarr/StoreToZarr/DetermineSchema/CombinePerKey(CombineXarraySchemas)/GroupByKey'. \n", + "WARNING:apache_beam.coders.coder_impl:Using fallback deterministic coder for type '' in '[7]: Create|OpenURLWithFSSpec|OpenWithXarray|Munge|StoreToZarr/StoreToZarr/DetermineSchema/CombinePerKey(CombineXarraySchemas)'. \n" + ] + } + ], + "source": [ + "with beam.Pipeline() as p:\n", + " p | transforms" + ] + }, { - "data": { - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Check and Plot Target" ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABlgAAAMWCAYAAACdmov2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZxlVXUv/l17n+HeW2NPdAOCgIoDT9HnFMUJGrq7fprnU6NxSDT6wIDGCIgMIqOMQYZoTHyaoIQMvjwTk/eSdDcIzqhxNhok+hyRsenumu5wztl7//5Ye+9zzq1b3XR3dVdVs7+fT32q6g7n7DPtvdb6rvVdZIwxCAgICAgICAgICAgICAgICAgICAgICAgICHjUEIs9gICAgICAgICAgICAgICAgICAgICAgICAgOWGQLAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBATsIQLBEhAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQsIcIBEtAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQMAeIhAsAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBe4hAsAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBOwhAsESEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBCwhwgES0BAQEBAQEBAQEBAQEBAQEBAQEBAQEBAwB4iECwBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQF7iECwBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQE7CECwRIQEBAQsOxw6aWXgohARIiiCKtXr8ZLXvIS3HTTTej1erXPvuxlL8OZZ55Z+999t/pTFMUBPoqAgICAgICAgIAAtm2f+cxnzvu/w9/8zd9ASonTTz/9wA0uICAgICAgYJcIBEtAQEBAwLLEcccdh/vvvx+//OUv8bnPfQ6vfe1rcfXVV+OFL3whpqend/nd0047Dffff3/tJ4qiAzTygICAgICAgICAgD3HzTffjHPPPRef+tSn0G63F3s4AQEBAQEBAQgES0BAQMCSx6c//Wk8/elPR7PZxKpVq3DyySdjdnbWv/+JT3wCT33qU9FoNPCUpzwFf/qnf1r7/nnnnYdjjz0WrVYLxxxzDC666CLkee7f/973vocTTzwRIyMjGB0dxbOf/Wx885vf9O///d//PY477jikaYqjjjoK119/fW37Rx11FK666iq87W1vw8jICI488kh87GMf209no0QURVi3bh0OO+wwPP3pT8e73vUufOELX8APfvADXHvttbv8bqvVwrp162o/AQEBAQEBAQEB+x/Btt07/PznP8ddd92F888/H095ylPw6U9/erGHFBAQEBAQEIBAsAQEBAQsadx///14wxvegLe97W24++678fnPfx6vfvWrYYwBAHz84x/HhRdeiCuvvBJ33303rrrqKlx00UW45ZZb/DZGRkbwyU9+Ev/xH/+BP/7jP8bHP/5x3Hjjjf79N73pTXjc4x6Hb3zjG/jWt76F888/H3EcAwC+9a1v4XWvex1e//rX49///d9x6aWX4qKLLsInP/nJ2jivv/56POc5z8F3vvMdvOMd78AZZ5yBH/3oR/Me11VXXYXh4eFd/nzpS1/a4/P1lKc8BRMTE/iHf/iHPf5uQEBAQEBAQEDA/kWwbfceN998M17+8pdjbGwMv/M7v4O/+Iu/2KftBQQEBAQEBCwMyDhLJiAgICBgyeHb3/42nv3sZ+PnP/85Hv/4x895/8gjj8S1116LN7zhDf61K664Av/6r/+Ku+66a+A2r7vuOvyv//W/fCbf6OgoPvzhD+Mtb3nLnM++6U1vwsMPP4zbbrvNv3buuefiX/7lX/DDH/4QAGf5vfjFL8att94KADDGYN26dbjsssvm1Yfevn07tm/fvstjP/zww9FsNge+d+mll+If//Ef8d3vfnfOe+effz4+9KEPedmEl73sZXjmM5+Jm266yf9/1113IUkS/53f//3fn5O9GBAQEBAQEBAQsLAItu2js237/9da46ijjsKHP/xhvPKVr8S2bdtw2GGH4T/+4z/wxCc+cZf7DQgICAgICNi/CILzAQEBAUsYxx9/PNavX4+nP/3p2LhxIzZs2IDf+q3fwooVK/Dwww/jV7/6Ff7H//gfOO200/x3iqLA2NiY///Tn/40brrpJvzkJz/BzMwMiqLA6Oiof//ss8/GqaeeiltvvRUnn3wyXvva1+IJT3gCAODuu+/GK1/5ytqYTjjhBNx0001QSkFKCQB4xjOe4d8nIqxbtw4PPfTQvMe1cuVKrFy5ct9OzjwwxoCIdvmZN73pTbjwwgv9/+Pj4/tlLAEBAQEBAQEBASWCbbt3uO222zA7O4uJiQkAwOrVq7FhwwbcfPPNuOqqq/bbfgMCAgICAgJ2jyARFhAQELCEIaXE7bffjs2bN+NpT3saPvzhD+PJT34yfvazn0FrDYClFL773e/6nx/84Af42te+BgD42te+hte//vWYmJjAP//zP+M73/kOLrzwQmRZ5vdx6aWX4oc//CFe/vKX484778TTnvY0fOYznwEwmKwYVPjoZBcciMiPbxD2p4zC3XffjaOPPnqXnxkbG8MTn/hE/7N69eq92ldAQEBAQEBAQMCjR7Bt9w4333wztm/fjlarhSiKEEUR/vVf/xW33HILlFJ7vd2AgICAgICAfUeoYAkICAhY4iAinHDCCTjhhBNw8cUX4/GPfzw+85nP4Oyzz8bhhx+On/70p3jTm9408Ltf+cpX8PjHP75WrfGLX/xizueOPfZYHHvssTjrrLPwhje8AZ/4xCfwqle9Ck972tPw5S9/ufbZu+66C8cee6zP8NsbnH766Xjd6163y88cfvjhe7zdH/3oR9iyZQsuuOCCvR1aQEBAQEBAQEDAfkSwbfcMjzzyCP7pn/4Jn/rUp3Dcccf517XWePGLX4zNmzfjFa94xV5tOyAgICAgIGDfEQiWgICAgCWMr3/967jjjjuwYcMGHHLIIfj617+Ohx9+GE996lMBcIbeH/7hH2J0dBQTExPo9Xr45je/iR07duDss8/GE5/4RPzyl7/Epz71KTz3uc/Fv/zLv/gMPgDodDp473vfi9/6rd/C0UcfjXvvvRff+MY38JrXvAYA8J73vAfPfe5z8YEPfAC//du/ja9+9av4kz/5E/zpn/7pPh3XQsgoFEWBBx54AFprPPLII/j85z+PK664As985jPx3ve+d5+2HRAQEBAQEBAQsPAItu2e49Zbb8WqVavw2te+FkLURUhe8YpX4C/+4i8CwRIQEBAQELCICARLQEBAwBLG6OgovvjFL+Kmm27C1NQUHv/4x+P666/3+sunnnoqWq0WrrvuOpx77rkYGhrC05/+dJx55pkAgFe+8pU466yz8Ad/8Afo9Xp4+ctfjosuugiXXnopAJZpeOSRR/DmN78ZDz74IFavXo1Xv/rVuOyyywAA//W//lf83d/9HS6++GJ84AMfwKGHHorLL78cv/d7v7cIZ6OOH/7whzj00EMhpcTY2Bie9rSn4YILLsAZZ5yBNE3957TWiKKw3AUEBAQEBAQELDaCbTsY/fZq9f+bb74Zr3rVq+aQKwDwmte8Br/927+NBx98EGvXrj1g4w0ICAgICAgoQWaQ4GhAQEBAQMBBgqc85Sk49dRTcc455yz2UAICAgICAgICAgLm4PTTT8e9996Lf/7nfx74f0BAQEBAQMDSRWhyHxAQEBBwUOKhhx7CLbfcgnvuuQfr169f7OEEBAQEBAQEBAQE1DA9PY0vfvGL+Id/+AecfPLJc/4PCAgICAgIWPoImikBAQEBAQclNm3ahB07duBDH/oQnvWsZy32cAICAgICAgICAgJquPjii/HXf/3XeNWrXoXTTz8dF1xwQe3/gICAgICAgKWPIBEWEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBCwhwgSYQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAXuIQLAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBATsIQLBEhAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQsIcITe77oLXGfffdh5GRERDRYg8nICAgICAgICDgMQZjDKanp3HYYYdBiD3Phwr2bEBAQEBAQEBAwGJjX23agIDlgkCw9OG+++7DEUccsdjDCAgICAgICAgIeIzjV7/6FR73uMft8feCPRsQEBAQEBAQELBUsLc2bcD+wys2DKPZIPzv/zO92EM5KBAIlj6MjIwA4Id/dHR0kUcTEBAQEBAQEBDwWMPU1BSOOOIIb5fuKYI9GxAQEBAQEBAQsNjYV5s2YP/gjjvuwJe/3oFSBl/96lfxghe8YLGHtOwRCJY+OBmF0dHR4JAGBAQEBAQEBAQsGvZW3ivYswEBAQEBAQEBAUsFQbJ26cAYg/e99+U4950r0OkavO+c9bjzy7PhGu0jggBeQEBAQEBAQEBAQEBAQEBAQEBAQEBAwEGM//N//g9+cW+Bd506jrNPH8f37+7hs5/97GIPa9kjECwBAQEBAQEBAQEBAQEBAQEBAQEBAQEBBymUUrjwvNfhwjNXYqglMDYqcd4frMT73vubMMYs9vCWNQLBEhAQEBAQEBAQEBAQEBAQEBAQEBAQEHCQ4m//9m8xM6tx6ptKCeF3/N4Yfv1Agc985jOLOLLlj0CwBAQEBAQEBAQEBAQEBAQEBAQEBAQEBByEyLIMl7z/bbjkvauQpiUd0GoJvP+slXj/+W+AUmoRR7i8EQiWgICAgICAgICAgICAgICAgICAgICAgIMQH7/xcUgTwu+8ZmTOe297wxh6mcFffuTwRRjZwYFAsAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQcZGi327jyxu24/LxVkJLmvJ8khEvOWYnLrnsEvV5vEUa4/BEIloCAgICAgICAgICAgICAgICAgICAgICDDB+++kgctjbCq/6/oXk/84ZXjWBkWOBj1x9xAEd28CAQLAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEHESYnJ3Htn+zAFResAtHc6hUHKQmXn7cKV960HbOzswdwhAcHosUeQEBAQMByw8ZnX4J8ZRPJw22o4RSqKUHK+PdFpvl3r4CJBFSDp9p4exswBhACqpUAgmAkwRBABjAE3PH59y3KMQUEBAQEBAQEBDx2sOn4i5AdMgQ5W0BOdqDGm1CtqG7TdhVEJ4eJJdRQDABIHpgClAYiiWJFCzq2OZt9QZs7PnfBATuWgICAgICAgMH44GXH4PinpTjlpa3dfva/bRzCtR+O8aGrHo8Lrtx2AEZ38ICMMWb3H3vsYGpqCmNjY5icnMTo6OhiDycg4IDjpFOu4T80QNrAiIqzNKjmTdvXdfn+nbefv38HuY+YWHM61M6dEM0m6JDV0CMtiHYPppkAxoDuexhopEAcQ48NwTQi6EQCAHQiQMrADNCt3GNUzx0AMgYwAAgw1kklY3DHncFBDQgICHgsYV/t0WDPBgTswqbts2dJGba7rE0mcgUqDEDA7V95/wEd855g0+q3Q09OgZIEIIJYd4i3aXUrBQCI+x4CRoahR1rQzRgmFjAEmHgB7dlB0JW/l4l/EBAQEBCw8Ag26eLioYcewhOOWYctnzocL3hO81F9584vt/HaU+/HT3+2DStWrNjPIzx4EAiWPoSHP+BgRtXR9BB9/wMgpWFiUSNNas5pH6FS3aYoNKjQMJGw1RlzHTcypnxd7B+Ha+PQm7F19i8BABuSNwIA5GFroR9+BNAGFEegleOAkFCrR31WniM34skuV5804/KYDzTcdalcg0HjCA5rQEBAwMGFQLAEBMyPee3Z/tdQ2rSeTNidPVvZhiNaTDzXpiXnQjtP2hhA0H5JitnY/F1s7dw6vz07OgJEkm3aQ0ahmnWbNmrnUI1o8ezZPUCwaQMCAgIOLgSbdHFx5ttX4P/9Isc/3XLYHn1vw+vuxfOe1cBVf7x9P43s4MOyIViKosCll16Kv/7rv8YDDzyAQw89FL/3e7+H97///RCCLUVjDC677DJ87GMfw44dO/D85z8fH/nIR3Dcccc96v2Ehz9gucA5l1QYiFxDR+Qlpwaiz+FccAdLs7NJyrCTSQQjaP4KGF0hWiqZbetPuhpUaOhYgpTmY6pUc1Bh5be6CpAE0clB7R6Q58iOXoP4Wz8GHbYWKBT0r34NSAkoBZAABEGMj8HMzIKSBKbXAx2+Dtm60aXjdA4iv+zvfmKqH8EpHYyTTrkmnJuAgIBlhUCwBDxWULVn4x0dqOF0rk1rbSBoAyP7DKD9YbtVbFpSBkaAbVq37/ns2QruvKPPpq18pmrPyk7B5E0kIae7oG4OZFndplUa+lf3AUaX9uyKcZjpGa5ekQKm3Vl6Nu186E8gGoBgt81FsGcDAgKWI4JNunj45S9/iSc/+Sh89V+OwDOelu7Rd//tO12c/Fv34if/7z6sW7duP43w4MKyIViuvPJK3Hjjjbjllltw3HHH4Zvf/Cbe+ta34oorrsC73/1uAMC1116LK6+8Ep/85Cdx7LHH4oorrsAXv/hF3HPPPRgZGXlU+wkPf8BSxPqTrp6TIWeIfPZclaQYRFzsKSi3FSz9rxcGpJlAMVIAxLIK0Y52+SFjYNIYOol4nNYphSAvf+XHDAACXoaBx8/H5/8GWNO5/3sAZE8BxkC0c6iRhN+PBGCAaKoLMd2FaSbQzRiqGZdEFBFgDJJ7fs1EzOPWIl/Z3H/O6KAMy73ZRuW7joyqXmfKNV8fCyMIpA0++8ULcfJLr4Ih+OuQ/PxhwBhs/vmNezmggIMBJ51yDagwSH58P3pPPYz//s/7sPnXH659bsPzLkcxxs8YFSboqgcE7GcEgiXgYMX6E6/mPwbYs8CBsWnns2dlOwd1s/JzykCnMUwqYSLpiR9nk89JIrLVMQNt2j4J2CpkT0E1JWS7gOjmUEMs+eUIpmiyy0TNPPZsvLMLengHkOX736bdVwyogHdkVM2mLcqELQCAMbjj8+8r7x8CYPgapD9+AACw+Zc3HaCDCFiKOOmUa/zzToVB8qN7sfn+j9Q+M/HUC6CHG8jHOdAYbNqAgP2PYJMuHv7Hm8bQ6Rj81Z/uHUHy6rfehyMOj/DhP9+5sAM7SLFsCJZXvOIVWLt2Lf7iL/7Cv/aa17wGrVYLt956K4wxOOyww3DmmWfivPPOAwD0ej2sXbsW1157LX7/93//Ue0nPPwBi4X1J14N2clZXksIiF4OFBrU7gBZjs2//jA2vOAD3GiSCLoZV5y2UqaACg0yBjqW0ImoNZwcmNGmWT5B5Boggo6IHbdUzq2GsU4RV6nw90gZlgMjK7kQ2R04p7JCqlQzD8mUus+kDERPwUQCOhJzpccGjdkSCSbqy240mKOx7bW1HSyp4797MKBC4vheLv4F+6vQEJmC6BagqTagVSBYDjKcdMo1SO+dxOa7r57z3sTaM2DWrQbtmEZxxOryeQMHdyhTUEMx4u/+P9Ahq4FOF9kxhyCazbH1G5f47ZzywitgYgE5m0Hc+xB6Tz9yWWZUnnTKNRCZRrSzA/z819gyeXPtPaCcm6LtszAPP4It2z62WMMNeIwhECwByxnrT7waoqcgsgImEhCdHNAaNDmLzb+8Cae88AqIrAAA6EYMM4AMIA2WwLIkiK6QJPPas5Y0EUVZdTLQpt2FPQtjfIKKS9pxZFD5fWtk2dccSeR+i56CjgXbvLuSea3as9VjmsemHWjPWvv9oLZpKzBEELmC7BSgHvtNmOFEr0CwHDzYlT0LcD9Nc9ga0COTKB5/SM2mjaYztme//WPQ2jVszz5hLaLZHPjBT7C1c6vfjrdpZ3oQ9z6EzQ/+2QE5voXGSadcg+SBaZif3YutM7fUXnfwNu1DUzAPPowtU59YjKEGPAYRbNLFwT333IPjj38qvv+5I/HEo5O92sYPftTD8yd+hR/96Gd4/OMfv8AjPPiwbAiWa665Bh/96Edx22234dhjj8X3vvc9bNiwATfddBPe8IY34Kc//Sme8IQn4Nvf/jae9axn+e+98pWvxPj4OG655ZZdbL1EePgDFgMTTz4fakULgHX2tIZuxNCxgOwWkDvaQJYBJGCGG6BcQbcSmCSCIYJsZ+zUZQUgANNILOlhswKVAWnrrRgDIyVMJLzT4mQKVDPy1Sa7kqLaHaiwzqmVVxC9wjuFaij2TqDItNe03tcMxQDUAwaADUzwn6JXQLQzvtZKY/M918y7mYMVVScD4Cqg5SK3MHHMOeg9YbX/X2RMlsEYFCOlwVQNvohc4bNfvBAAsOn4i2CEgBpNB5KY0gaD4odmkB3GFZ8+61cDybd/guw5TyyfWRuoSn/84H4n6VygzsQC0WQXW757+X7bV/89UoXIuL+U6BUQv3gAmx/+6H4bR0BAIFgCliMmnnoBrzVj3ESVtAY0YBIJHQsO7j2wk23a0WGg3YFeNQqdctKQnOb+dyDihCNJbOtWqkCczUrGJvjY90gbUK58oo9Oo11L1Q5CX+9Bt12XqCI7BWBtrKo9Szl/uJZEFGzafUOfRK4jwmSngNg5y6SXUtj8sxsWe6QHHINsleVi004c+k70/ssRtdeYjFUgZZCPpnPIxKo9O3H4u2BWj/M8M5JAx3KuZJ82SB6cRu/wUZ9I6OxZUWhE3/0JsucdO9emveeB/U7SrX/ZVbzfiNim/d4H9st+dmXPAnzOqTAQvRz0418GsiVgvyLYpIuD171yBOOjAh+9bu0+bect73oAUgKf/NTUAo3s4MWyIViMMXjf+96Ha6+9FlJKKKVw5ZVX4oILuKTzrrvuwgknnIBf//rXOOywsnnP29/+dvziF7/A1q1bB2631+uh1+v5/6empnDEEUeEhz9gQeEzpbfNgozB5v+4yr93yguvgMg5UGpiCSMFjAB0Kv1nqDCQ3QLULSC6GVeCJNL3OzFCAJEAdCXlSwOIJVQr4SaduSrfakRWEoErVgbJge0OssNjplzDJBKqyeN1hv3JL70KcjaDiSU31oxobuPR/uw8h+CQ7hlcEEDpeiYkEUSmcPtX3r+Ig9u/cA6Eu++q/+/Oudgb9DuutX1UAjP7y8Fdf+LVMBGVzXpREiGkDOKHZ5CtKyUx4x1dFKMpZ3w6cqDN8ifFihYMwTudUTuH6LA0iU4loumMJRSsfMfBio3PvcxLRewO8Y4uAICyAtnaYQBBJz5g/2BPndFgzwYsFDYOv6WWAd2P9S+7CvHDg+1ZR6hAMNngKpyrdqbscMUk5QqkNSgrYGLJyUC9DKaVwiQREymaqzPcbxPLUjbMkS/Wbubfe05qiB4HdinXgF1XVSOC6CncfhfbT+tPuhpyJocajnntnceeHSgBFmzaPYcjVfz/7Afd9rWLF29MBwAnrb8GZAzuuJPjG+tPuhp33HnBAbFngfmJm0GfWwjbZ5BN60iP5AFLkFg4e1Z2ChStGCJXEF0FMcvrXrGqxX5tIhBNZ2zPDqdsz071kK9oABpI75u/Kma5Y0/sWQCIt3f4WcsKZIeNBHs2YL8hECwHHt/5zndwwgufjXvuOgqHHxrt07Z++oscT3/ZL/Dtb/8QT33qUxdohAcnlg3B8qlPfQrvfe97cd111+G4447Dd7/7XZx55pm44YYb8Ja3vMUTLPfddx8OPfRQ/73TTjsNv/rVr7Bly5aB27300ktx2WWXzXk9PPwBC4mT1l/js7BEofHZL7yPCYhv3QP9jCchemQGphEDhYZpJb6SxEhRk9JyIGUQTWesE22z/ADMzZYjAoSw2TmSHV9j+LWIpQt0RHMlDNzX+5wb0oarU2LhZRegjXdAd4eTX3IlZxoBweFcIFCuaxVHLtPSOWcHC/aHc7knWOpOh3N2q+dpT8c8qMJnMXCgx+Hn5z3BAKmXpX6PBCwv7KkzGuzZgAOFk065pmbPrn/ZVYi+8SPoZz0ZcqrDNmYsuRo7jb1cbb98K2D7nnQ4gYj/5+QdaDDZ4cgKl0AkJXTDki+VimwTkU8s6Zfa8vsylepezRXWOrbVMkrbviz6UQXxXWB4oOxXwN7DXa9K5cpBZ88OsjkqpCFQqd7YD/fWcrFVgj27F/vbG3sWGNjnMyBgIREIlgOPifVDeNqxCa67ZM2CbO8PLngIDz6s8Pf/PL0g2ztYsWwIliOOOALnn38+3vnOd/rXrrjiCvzVX/0VfvSjH+21RFjI+AvYF2xacSr/YR0/oxRICNDqVYDRvnfKIPRnCG4cerN3JElYhy+x0j+RBKII6PaAJAaUApTmv7McGG7BTM/AdLr8vUYKarHkGIzh7ycJ0OkCnS5MUfjGmLWqFzsdmOprfdhVViMAbEjeyMcOwFQarotGCooiQARPdMGgtb/ntkx9AptWnApqpHMaOh4M8M/aAFASA80GzMwsPxcLhC07/nze95aDDMNyxkmnXOP7JB2o87yre+zRYMuOP593G7u6lwICBiFUsAQcSPTbswDYJpQStGKc/y+KgfI5c+zZ4bfU3icheDtpwttMU7ZHk5g/kOX8d1EAcQw0UpjtO9mmFWwL0/BQ2W9wqMW2bLsN5AUgZWnPClvNvQD2LMC2uckLez40jDYQzQYojnf73YA9ROVabZm8GRNrzwDiGJvv/dAiDmrhsWnsbeU/A3wiSmIgTdmmXaAwze5skGDT7j8cNPasm18RbNqAPUcgWA4svvSlL+Hl/9/L8JOvHYXVq+Tuv/AocP+DBY59wc/xhS/+G57znOcsyDYPRuxbrdABRLvdhugzQqSU0NYYO/roo7Fu3TrcfvvtnmDJsgxf+MIXcO2118673TRNkaaPvpQy4ODGxLp3wGS5dSoFKE0BonmNe2eAmKLwrxmlQFoBQsL0eti08jRAKZiigMky3JZ/ip1PY2qkCoiwdeYWfk9Kfj1NSnIlto9rswF0ezDtNqgo+P1mg0mVqRkgjmBGh2CMAWWKDaKiANodIM/9viiO2Gl0z5XWvF8AJOVA4qWqz7px6M3l+8rKj5EACQJkYvt/aCCKPGEUyJUFhFIw9rwbpdhhi5fNlL5H2K2j0GpCj49AFApmtr1H296Vk+D2mz3niXu0zYB9x2I4+vPdC4/KUdV6l59z7wWnNGB/IdizAVVMrD2DqzkepU3r7Vml6m9obe06CXQ6mFh7BvRsGybLcVv2N55M6SdVAJQ2bRRxM/gk4b/TmMfUajLRgpztVCFsQlAMWruabVohYFaMwCgDygugUMDMLH8eYOKm3551JIsQbM/a4wCwe3u22ryeCNAGopEyUVMUEM3E28oBC4i++25izel8DZZHHuijxsbht/A9aUwpfdfvG7WaMGPDIK0XzKYN9uziYSnZs8CjsGnns2cr92mwaQMCli6MMXjfORtw9unjC0auAMChayO8823juPC9L8XWz80u2HYPNiybaNxv/uZv4sorr8SRRx6J4447Dt/5zndwww034G1v4ywQIsKZZ56Jq666Ck960pPwpCc9CVdddRVarRbe+MY3LvLoA5YiNq04FSDClu0fx8S6d/CLRKChVunoCbF7416yA2dcxhwRZ9SR4t/u+0SgNC1JlX6NZljDWwhvsEysPQOm24Xp9kBC8D528GfFyDDQSFkuocWVLkIbILONzLMcppWyg7lz2pMrxlhZhSyv77xq4PeRK1VHdNPoW9kBJ2LiBPCEEDXS8rxleY14ClgguKBBmgJFAZPn7KxJyc3rtx181SvueRhk8JPNgKWsAOLIZ8i6+5uiiO9XY+oZWVKAogibVr8dUHqgkxAch8cuNq041V//Xd0HPlgC1LOnd4GT1lvJiP3crycgIOCxgYH2rDZAJPbMppUCpHk+qxEtRcFJHd2yQoqS2NuswOBKkU2jb2WbdvvHAdgkJkuOsD27E4C1Z9OEE5OGG77PilAtIMtqvVlACajdLm3oQfYsMK9NWyNWbLJT3Z51B0igZsMnB1GwafcPpACR4OuvNEyWeQLLdHvYMvlnizzAhYWrmnK+FFVtBsF2KYxhmzaSbMPa+25eexbYrU0b7NnHLqr2LLALEq5aWVXFIJu2ct86yUiIYM8GBCwFbNmyBXf/OMP//avDdv/hPcS571yBJzz/5/jCF76Al770pQu+/YMBy0YibHp6GhdddBE+85nP4KGHHsJhhx2GN7zhDbj44ouRWBklYwwuu+wy/M//+T+xY8cOPP/5z8dHPvIR/Jf/8l8e9X5C+drBiaoRWjNKiTg4liYl6dGwGaBaA70MxX0P4Hb1v+Zsc+Jp72MnsNCgXobNP7mO9zX6VgB1Z9OTI6hLErjPDoLRGltnbsGG5I21LEEXzNsyeTOP43F/CL1mBcRMB2bHTiZ1AFCrCbNmBR/j1CzQ7nCGn5MHm49Q8QNgp9Ptpx+DJCDYkVcwFZkSdywkZahgWQgoBRofA9KEr7c2TPAZDRoZhlozDlIKW781V4v/YMOmFacyodJsAGTvrTwHsqwkWJIYmx8sHfSNz7oEYrrNkiQAf7aX+feDE7q84PSt99Wp29vtbFpxqidWtuz4c3ZQhYCamoZoNvznvJyM1vPOqQEBVeyrPRrs2YMX1ezhee1ZV5X8KGxab88aA8pVrQH0prG3DSRlnI26u8+5sQFst24cerMPIldfB4CJI97N2fvNBDTbnWvTrh7nvx/aPr89644VqI3HaO3lVPvRL9HrPluzaSuETqjIXjjQ+CiKw1Yi2jYD7JxkYlAKlnsdG4FaPXLQN7Z32DT2Nib1Gml5v820S4Klz54Fdm3TBnt2+WEhpNr2yZ61qK4tptPhpD6gnP+k5AozbTyBHhCwKwSb9MBAa43nHN/Cm14zgrNOX7Ff9nHljdux5XOz+PLX26ABCeOPdSwbguVAITz8yxc+86L/lnaOHMBGO4At2z5WZvkBLJkwoG/FxJPO5T+Unld7GgAmjjkHZtsjvG3rvO2KPHFwTtweIYpKaQQ79mqVTC2DejfObk0ezH5vd8G/9S+7CiDCHZ/jppMb4teD0hQmyyGsU0CtJtBs8hc6nVrWY8BeQmvQ2CjU4avQW5miaAqM3LMD9PAO1isfaoEKhc33LG4z+MXCoOqWvXEuFypg/1jBo5HPWo5O/iknXAHVipB+9+cAuPIvO/4YiJyr9z77hffN+c7EUWexfE0v8yQzOZKl1QSyHHpyyn+epOSqKycJ6X5HEhDsvJo0ASKBLd/7wH4/5uWATStPQ/bsJwA4+J/RQLA8duGJ20GIIw5C24bxNXvW2nbz9WGbeNK5/JlCYfNPPzj/Z2ZmYdod3r61CefNbt4TVO1dSwiZ+ezZXWG+jOrqe4/Cpl1/4tWAMbjj8zyfb2y8iaVuY64UcH0QqdXkOdwYmEd27H58AbsFrRhH/rgV6K1KMbtOorFdY+Q/pyB2TAHNBvRwAyg0tn7n4E8WGoRNo2+tEXnBnj0w2J1Nuxzt2fUvuwpGCqQ//GXt9d5xR4K0AQi4484Lau9NPOlcjjVkuV8LvEoFwH2wuj2YnZP8v6v4c3asEBxzcb1XpYCRbOeaSGDrNy/d34e9LLBpxanInvPEx8QzGmzSA4O/+7u/w9lnvgn3fOXxaDb3TyLIzKzGE5//c9z8yX/EK17xiv2yj+WMQLD0ITz8ywsDSQzroBmtIVxTTFedMijLzRh28Gz2jyNIJo46i4NcRcFZ8VrDdLq+mbiTBtv84J9h4qizoLdt32OyxCiFrbN/+ajImIHfn8cBr2bguc/1yzh4WZsKIbO3mdUbkjeyRncUMRllz02V+OnX9fbnaj7mO2QHzgGNj0KtGYfICuhGhN7KBsgA+bBEPF0gnilw+5cvXOxhLjomDn8XNv/6w3v13eCQwldhLASWizM6se4dPE/lOQcvbcNkShKWVQRYxsTp8pOd76SoBTsB8P9ZVlZEkuA1pNvjbeUFB+/i2PfDQpLwZ6TkBtAAbzuOYIiAWMJIWpaVaRNHnslZtUUBIoHND3+0DB7tplJyb3CwNOsNBMtjC/MSGJUG7lXJqjlztLHzVpazzJKFrw456ixro7F8rZltc5byytPYXoskNt//EUwcfTbMzqndSh3OgZWTndPAu0p4PFrMt+9+EqWaXDQAezuvuJ4sotVi/0Apvg7zJS8FO3aPQatWoFg7Bso1RDdDMd5EtiKBEQQdEaKuhsg0Prf1vMUe6qJiYt07sPmBP92r7wZ7dt+bvXsso+rjicPfxXOS87ur81UU1V+jik3rqh2JSptWG9snC6wW4Gzgbga0uT+QyXJWV2ikvP0k5spDIWrfMZLXLiMEV0wCuO3fll912sQT38vnxFZQVlUQgIX1ew4WexYINumBQFEUOO4pLZx9+gqc9jtj+3VfH/r4DnziU1P4zr935vRJf6wjECx9CA//8oIjJrZMfaLUgpasWQtBftEHbAZakgC9nm2GSUwGAHOaKwLg7QwP+T4Xrp+KIyuM1l72ZcuOP6+RJAMJjQGTz3wVLFXiZVffr26j+tvBN5d36K9YcX9j7x3RXcFlA8JobO3+NcuKKY2tnVvn/46VaqiNPUzcAMD3Y7MBPdLA1JNH0R0XSGYM0p0KySQThIMy6wMCdoeFcEIPNJniggcOu3JCJo4+G2a4iS3/fiUmjjmHX5ydZeLXESpAGfSvBgWddExFEgGCgDjmahP3/aqEjNuWa+7cy8ptd3v8vTQptxVF7LDFETukyvb0iiN2SolgpFwW2bwnv/QqxL/eAT3WAoSA2DYJs32n15c3Ss1dc+PIO+TUSIFmE5t/+kF2ZAEvwflYQiBYHltwxMSWyZvrJEUceXkW0+uVklkrx3kuKfhZMkbXyOE5cDat1kCez60sdvKzVu5lnytWKo3mTZ5j68wtNUnF3WJQT6vdfa9CgAySAttXOOJl6+xf1v7e5XeqfbqAYM9a0PAQ0GpCjzSQrWyiuzpCd4WAyIBkRiPdyb1GPr/lsU2wBOwd9tWmXYzkoKpNu7ug+hyb1iYCIbeEcNXHr4b63FxU7QXr7FdbpTevPSvZHjZEIEcqaAN0OmzDRpJ9/khaezaGaaYguw0TCRgpuf+g7dmy1JOG1p94NZJ7dwBFAbV2HEYIRNumYbZtBwSxTdtHsFAS+6RSajTYvpUSm39yXbBpg026X/HnN67FtR/egR984fGI4/0r3dXtajzlhF/gj66/Fa9//ev3676WGwLB0ofw8B988MSHlLzodXu7lSCokRqVLFtHsJQfNOxo2X4kVT3q/v0PIlN2JRH2aEiWXUqMPRqN6ErvgKUIf+2C3jUAJgn1oaswe+Qw2odIqBRobDdIpxREZiB7ClRoiK5alllBAQcGm1a/vdTr3sNnaynNFetPuhpG0q6JladeYDPNKgF9Y5g4r5Ir/UE8peoEr23EW6tmiWTprLrt8pvl91yVC8CkietP1WzYfetSUsF9P478500cAZHw2X9L3RkFWI4iuefXpcOtNJNIeQHjMiEr55yShDMes5x7SaUp0GywM3rMOYBWZTKEO5c2SzJbOwIjCHfecXBk+FURCJaAQXAkBbWabM8+2kqTau+QeXqUbJ25pZYsNIik2C3xMkiqCwCUKivAHfqTfSqkzF5jCWea98s+PZZRtWezUYG8RSgaQDIDxLMasmcgcwORGXx+87mLPdyAJYxNq9/uiWcAy9emPfFqL789CBNPvYBtWWdXVUmQQrGtVKh6jMMRLIPkxPvfb/T1WQGYMBGl5JeJKklHhQbaHUAbmJEhUKFKG61CqlT3bSJr0wIwREveVz1p/TVIf7md/YgksUlVdm0rCpYEriQrUGSTpPKcjzlJfKKVJ1ic7e/OrZQwaYRs7TCAg7fiLNik+xfdbhfHPmEE11y0Gq//7yMHZJ83/+0krv3wDvzHPbOIXa/RAESLPYCAgH3FxJrTOVAmCFu2fWzO+/0Ooq90wfwSWw6e2IhjUJpwRUyWzWmUOYhYqe5/0+hba1UmtYqbeVDLeMNc2a/qGEkIr/XvF3pjAKXKBvMOLkN4eAiYnvHaqksR7twBmJv5/Bh0UE27A9HOIAqDZMZAd9gRBQAjgKIhEc8aFGPJIo90aSHIJNSxZdvH5mbVOljJKmNlZPZXJvCeYtA17NeMBoBTXnQldEQgbRBvm+UXqxUqwOCKxWrQ0TWHBryz6OTBiKzZVHVQXWafrmYJ2vecnILbf1IxQCMJ6EqGkXNoi1LWgYyBsWPa+t0r5o57CcL1MwB4vRVjozDjY6CZLkgxWWKyrDwnkZVFS2IQgM0/u8F/3/WJmDj6bP68GHDPBgQcJJhY9w4f3JpPFqgaEKzJOe6q9x5V5iGlgIh7P7nm7VVCYnfzfX+FTe3/KkHSP65+Ga1BRErlNbLBvjmVNm5+tsfp7VnXN2Yp24b2GgR7tm7PRh0DGED2gKgHkAZABB0BoreHUnUHOYI9Oxdbtn2sPgc5EIGSmG2OolhS5Ov6k64GULdj+8mVU064ggkKYxA90gZiyT68tc0B1O1LV/kMzF0P+udhl0RUtWOdjSUrldr9hLAGEFG5PZssRMbARJJ/E8HN9lTo+rZIcVW2MrhtGVRk9yfvbBp7G2jlOPTqMYjZHh9bdY1qsC3rfICqPQuUlSsTR5/NL4iK9HBAwD7go9cdgRXjAq/7b8MHbJ9vfu0oPviRHbj5jx+H3z/nwQO236WOUMHSh8CuLm1sWnlaWfpqNUKJBEyvx2TILvSY+0kRB1d94rArsmQh4PSuna6zG1O/xNggVLML3ffc+MXqlUAUQT/wkP9sPxypM58DvVS1PjetOBU0NsIZ0NMz/OKg4PBBBIoilhBySBKYoRRqrIXO2hSdlRLJrAYMELc18pbAV//2PYs34CWM4JCW2LTyNCZQqjIC1V4jSoPGR+c4BUsVXlLB+Y7aILlvkp0bY9j56fXqWX1urXDvV+CccEqSUoO6up64ahP3I4XV5jf1fTq5BhL1jD63v8huR+vatgwRSPN10CMNkLJZf0Rz5ME2PudSmEjgtq8tnQzAk9ZfA9Jm11mY697B/VjSdK97JT0WECpYDn5sWnka27FuXpGSq7xchdcuen0MChRuGntb/TsL3N+oHxNrTud5qyiAvKjta06lSh+2TN7sq3Hc96rEDa1aCaQxzH0P+s9X4cilXWWgn/ySK/HZLy6tvnSbxt4GGhsFlIKenLLSkwc/wUJDLfsHy2uaoRTFyiG016XojQoYCcjMQBSAyLnx9lf/Jti0/Qj2bB2bVr8dlKalfGKVoNUaGB/D5nuu2c1Wlg5OfsmVIM1JcwAQPzjtbUgjiQmLwlb1msq86uzLagKRqwqO4zqR4j5fJU+cVK3739mt2tTJGWf3um0APJaor+8qkZcCI62hWwnb6ZL3b4SYU71yyguvwO13vX8vz9zCY/1JVwMGSH72EDb//MZ5Pzdx+LtYAuyXNx24wS1DBJt0/2F6ehpPOHoF/vzGQ/CKUw4cwQIA//v/TuM9l2zDj//fFJrN5gHd91JFIFj6EB7+pYdNK071DtSm1W9nQsU2zPXBqmozNodqsMt9xvX2wO6z9Bw2JG/EbdnfMJHhJMGav1sPoAmao8NclfZyICnZaQRgHtnOjY7nqWjZVXVNlSTpJ4hISt9obvOvP+z1Pn2TTilhEittoxRopsMNTR2WUIZPFRNPfK9trNeDmZrmFw8mp1QKNoKtpJAZakGPpKBcwSQRiuEYRUtCS5YKUikh6mh8+e/PWeyRBywDTKw9w1elUMLEnckyngfs/EmrVi66I7q74MHEk86dE0CsaUm7ZprOuSPrkLqMvyr5YQz3RjGmbPyZW+m0qK/AtyoV6TLOAM72c31ZrD41tK6vRYOc4CSeI0GmWwmMCw4YAxQaVBQwaQydRAABop1DzHR4nI4kc9t1PV8iuUtncMPzLmcSB1YTO5LQiSV3jIGRfP4+d9vead/vVubiiHfzPK4UaOU41OoRf9xLyblebASC5eDEptG3evttYt07WL/dVhsDdSlY47KMjeHEnGpWcqVX3Z7YbBubv4utnVv9OFwvEd55GXybY9M68sPNNVKC1qxi6dxt23ku6m90399DZQCMUj4haKD8mJRcoW0DWBNPe5+XHTSx5GbJRKCsAE23OQlHVfa5BG3aiWPOYXmZLOOqm4NRNqzPplWHrgTlCtrbswI6FlAJUDSJK1hy4Ot/efZijzxgGWDiyDOBThcmyyyZYjguILnXmz50zaL3rFt/oq1S2ZU95KpzXaX1gJ4nPlHHJeYYU69WqdrEM7PcH9CY0p510j1u7nbbMKaWsOoJFldJGMm69FqVnKna08b4noTOljONCCaJvF3JlSycUKTTiG1PAmRPQcx0QZkqJXSd/FmaAELs1i/Z+KxLQErxepBEUCknYIpc834E7fIa7ArrX3YVQLv+/sTh7wK0hlk5jmL1EJ8qZXD7l5cWub/YCDbp/sMHzluNLZ+bxRf/6XGgA1wNpbXB8zb+Cm96zQjec+nDB3TfSxWBYOlDePiXNibWvQOm0/XNw7wT5QKENguwRr5U3q8SLA5V2S1PWgxoXrmx+buWELHZF9awICmBKCodRJe1p3U5zgrEyhVAFMHsnPSkx5btH/cEy+5ky9x++okVB5IStO4QJlFsY2TSGig0EAnoNIaJBSjXEFkB2jkNMzk9cFtLSZsWsCSLEEC7w05ptZHfcgQRyBqQkBIYbnGQNZbQCQc9e2MRQMSGoiRoSRCF8TJIX/l0IFgCdo+JY89jZ3SGZbMoinxTZJISmx/+6P7b95PPr8kV9Dd3nHiqdVzsnN07chxASbJMPJl/b77nGiZYXOYeidrcXqsEkX0BK+sQkqo4sNoAWWaz76LSUXTrStVIrWpSO/RXuLgs9L51CUqVzjBRSa64fiSOsEkS+/3KulF1fgGgl7PTXBRzq3A86SNKnW4hfJWImz/V+BBEN+Pm05GATiPomMfgiCkjCLKrQLkGFXrBdLInjjqL70PXALTVgl67AjqW/hiCU8oIBMvBj00rTi3Jleq84TTuY54rTGab6FaCbzVbtl9fH/WKD5fwU61s3tj83TIRCfD2KEkJk2XY2v1r/u7K08r9FPVgG61ayT2jtu9k+9iuJbvt02IxqHJlDqQEjljHRAqYFBad3M5dFXu2k0PsmBpsz9r1ZykRLROP+0P+o5eV13c527PAvDatTiIUI7G1ZwFRGBjBEmAgcOKQYGmwr98aCJaAXWPiyefzPDnTrtm0npAYGcbm/7x2/+z7qReUc7W1webYtC4h0Bhkj1sBMsBnv/C++vvaYPNPP8g2UZUscehP5PGys/b16hiqvztdnpPdNqsyhIN6XlXt2uo+o6i0Z6tJrIJ4HaiS2HHMr2d5mSSYxGUze8BLh0FyXMKBsgKU5bw9rer7cShsooHte+hltux9oBsJKCt424klb4QAiKt+3LUQGfcppUJjy3cvn3Nt9wYTR7y7XBeHh1CsGfVjNwJLroJyMRFs0v2D7du34+ij1uAfP3koXvrC1qKMYfMds3jLux7AT3++I1xbBIJlDpb6wz+x9gxsfvDPFnsYi4KJI94NM9v2WXKDiAjnjPpAllJ1ksNpNleaCvvt2KbH/J4rf9VMpFT3Iaj2Pkhga+dW/75rtmeUYtkdG8CjOPKyVlRtJGcDZCbL2CjK8oHHVnOM5yFXAFi9+1GosaY3aEQvBykD3YigGhFMLCAyDZEpyPu3w0xO+6oXZBn3mnHHm8RL6p6bePL5ZWZOlnO24nKVCyMCjQ57Q9Y0E5gk4oBnIqEaEu1DIggFRB1tq1cAUQBf+d9BOiFg93CZXdRj6SvOms39PLo/n+1Nx11Y14rua7DpstI8wWLn5M13X11/HfDZfZv/89oy4w8oK0hstp13pipVLcYFK53sjjKls2fhx+md1gFE9yCSpXpMjvAZVL1SdaDdGqV1vRF0EvM2bF+E2r6qAVTnNFcqZcyA8fp1zmVHE7E+tH3NxDbDMJVcxRJzpp+xVXJRu4Bs81qw9RuXzD0f+4CJx/0hVw8BfNytJkwS8/zXjKETXmOr/Vwea3gsECyPaZv26LNhHtlRl7cFSnJFCFCalnOKoFLa0Rhf3eKqWHwTYUfWGE7yoajUg58jK1OxhV0VXr+87MTaM9gm1BrUSLkniuAscQCswQ+Uc5pSLHMmJSiJuUKn2kgZfeTPbsgYWjkOvXIEatj2ZCEgmsmgkwi6IaEjwVnQvQLygR2eYJlj09qA4lJKHJo48kw/l7tKJgDLl2iZz6ZtxMjGYnTWRCAFyJ6BTgiGANIGX/vrYM8G7B4bn3sZV/YqBcpt4kqh2K61FRj9ZMdCYdMz3s9VGP19Tir9RTb/+I8AlAQKUOkjd0xfMpydhzf/7AZMHPrOuZJdVRvQVSe7xCJZmR+qlSQk+LeTxB3Ub7Afbv2o7sv3SxEl6eHIlkG2qxB1+1YKJl2I2Fd3Y67up2rPurEWfeOtVvS4fVXHKCTHTXxVpSgJlkjYJFMBHfHnZTuH6LBNu+V7H9j9uXmUqJEsaWLt2cgnMLlqnX6i7bGG5WCTLkec+wcr8b0f9rD5bw9ftDEYY3Diq+7FSS9u4dLrHlm0cSwVhCb3ywyPVUd00+q3l9qijiQZUIniM/CiCBgf5VLZdocrWoB6pjEA0+lUvm/mOKKmKidDfQ6PM2ZQlzHbsu1jAPpIEKPLZvNaM1EkZZnppRVo3SFArwezY9J/bVAflWqvln64gBoVijVPE4loZwe0cwZopJBZAVIpiuEEpDjAqFePgcaGoZoxSBmIB3dwALaCiSedCz3cXPRyawAwKTtu5DIvk5jHuxwlFoyBmZoBtZrAyBA7DERAI0Y03YPssqatTgSKhvAOqch3XeUUEAAAm555MUwSAZEATbfZQWs2+Hcv2+96wdTLyuaPSVLOmZGoZadtvvtqJmOsk+QqVuZIPxrDjquVN/SfcY5Vv1yYWytqgyIAA/JK3HecjrR5lCXW1eBkdax+7NbhFcQj0RUntNoIGrBOcTHXAXUYJAdRRV8yAMgAsM6/c0C7PX++yDDR5GYTEgBpglGATiQ7hLnymeP7iolD3wmT5yC7bhpTronodEFKM/HViDhgOtvD+hOvRjYWIZ5WMBFBpQJUGMQzOeR0tiTWpIC9x2PVpp1YewZMXgwkV1wls7GEOFnZP7N6nCWwpmY4IacaEAPKZCL/ugClke/xYfK8ljRErncUqsE5g02r3+7tWKC8RoNkv4xSwMwsb8vbsyzJtekZ7wfavdKeHCBltttKF9vMnrICpBLoRCDa0YVo9yCkgB4q7Vk4e3aUJVpUK6nbtHauXUr2LJoNvv6F4utsDFdnF8VBZ9Om23uc6JWyPWsEL7Oi2P1mAwK8PRtLiHaPE1GSBGa4ASfNuuXfr9xv+6dOxkkhrvKjmkwjRV1WtijtuIkjz7TkgiirpCtyYBPr3sHfMSxxNjAxBijlvkgDus8+VXUCu0aADLIXBxE5jsQBmFQxBlB9CVKOXKmi+r/fvykJB5+QauYmClVtZ/f9KuHSP34nmSkEl4dUq17s+DmRSgLGxkNyBTRiqKY9l4UGFtCm9dXiQHn+shwEwBCTTKohEc3kkNNdrD/xauSjEaK2gpYEnQokO3PIdr7giUwBBz/uv/9+fOTmnfj8Zx63qOMgIlxxwWq84nfuw7vOfwSrVq1a1PEsNgLBMg9efdQfIjryyAUrIQzYNxAJGKi52Qu2UgSAz+jbOvUJborumqG7zzsY48vxq44mSdjMD12+10eukOtX4AN+7JSavE5IAJgrxVAU0NbRJCm9fj41G0wSuGBgq8kBwb0pLutrlmkiAeoVMJNToA43sRZpiuiw1VCtGCYimCiGnLX7zhWQxKDhIa7o6WUweQGKIxTjDdYihYvbsdzO7V85sJr5W75/BTvuhWJ5o0YDJss5U7MvQ36pgxKri+uMs04XNK0QtTlDVA+niDoSBREo5Uw/mRnIPBQeBuwaG553OYQxIK25VF5pwOSlkyZo1xvYB0wceaaVEVCljJ9WVkaAe34AYC1962CRI0qqzpe24xyU4e2y46oyXf2PPFGtSoXlCggUWYpFa99EvkaA9FepuPH0o0aEVGTF3I9SlYxDmrMOVRMGaqjKIxCV87rWZdWHP6bKejTomnoCquK0S8GZfwBXV2aFdUrtLo2BzjTUEFeTGKI5zaInnnpBraoIsFUprlLTyZRZTXSQANKknKMBkKlcc1eVaDQEEbLDRhAXGrKTo5EpkDZQqYSOCPFsgXjbLKB0TWrjYMNrnrgwUjmvecJZiIZGYcZHgk27lCCorLqu2LNV0sXkObbs+HNsWnkaaKYDCJbwgquCdhV3LsilDc9zXp5Qw1QynGt2rSglYNgWViARAXmBTStPw5btH68Nt0qObGz+bpm4BK4SpKLgwHoUcbZ2k6vlfHPzvbBp2eaWPDfZ74vZLsz2HYA2EGmC6PA1UEMJy+FKwcuA4vmMsmKOTYuKPUtuSMaACnPAe0Btvucalu/010SAmg2Y6ZnSpnXrxhK3aSmKKvJCc21aPdqE7EoYQUADIGUQZYDshYShgF1j0zP4uSQXYHdVelnGz0gkMSfBZIEwceSZ/IdL4gTqlWZODi+S/Flnz1RtG9/vUJSV5P3jFTSXXHGozgMVW22OTK2zK/vlI2v7mec9QWynu6b2tepsl0hkd1yNNbhkx2pljx+XqFTDVJKhYu7VQkUB6ub2+30nvtq/q7p29BM9plKFackOQlo7T7LQMCKFIZYQgyRseMEHcNtXL/KbnTjqLLYlbeLZxNozeAxO/kzIUprXVeOkCYDMJwIAsGsyr40CYNu/FSEbS5AQgZRGPF1wNVQsoRMg2j4LUsbb1YvdC3N/4TVHn7nYQzjocPfdd+PQtRGefXxjsYeCFz2/iZFhwn/+53/iBS94wWIPZ1ERCJb5UBSgqTY2vOADKIbjeRvuLiYm1r2DM52kBI2N+KDMrprbLiYmnnz+Xi8a/f0BJtacznIJfVUtzmBx1SQTa04HJUktg9kY7RuoURSxdIDTy3SB66qEgiNXBJXBrL4G97uDkxDb2HjTnNcmjj0P2DEJDAF6xSjEbBdodziz5fB3ef18hy1Tn5i3ioVGh2FGh3jhtoaTHmlAqFWcZWgISFN2OptRafBoQHSLsiIkjqzxowBByNcMoxiOWI9fwwclBek5RsoBgao7nZSmXP1TMcZIyqUtHUbE2YuuxBkomwkWBRt1Gogmu4BJUbQEAAIZQBwAh3R3zcYPNkw86dyBr2/+8R9xEBdYVoHc2/7tYmx8zqXcHB2AGR8GtXtWSoGdwU1PvxAmihYsk9efJ6AkV/ohqC7PpWymnRF1J9E5lP0VIqLyGQAAMYFUjT1Rvcm9e41/GxiIssm75PmvGvgf6LSifM017fSoOlywwUZ3TG477jhU37PrXneEh2ti6qA1Z69bshyNtJT5cXJBZHhun3OuRb1KpnpOK8dHWsPkgLAVoEYSREdz43vrPFNRHu/EMeewI26v3cSh7yy3ryyRVu3t4OTXKlmdtfNShdKg2Tbi7dxs1a1lOuZjEAVX9Bki0GzbZi1KbDruQuiRFKoRzZEV23T8RaWciLTET55j889umHvOlgAmnnQuzI6dC5ZlafIc6PZAs/GStWknHveHXu6TVq2wz4TYbzr6C4GJo87aa3u7Wrkzceg7LQGawbTb9cCb5OfDkR0Ta04HgLL6JBIciG82mEBwfZ18cE+zXWvKxKGazG1FMmwOyb0LbO3cyr0Krd/hEoomnnw+MDnFz/pwA2rFMEQnZnLIGEwceWatcnLL5M27rmIZbsGMNEE5k6wwgB5qQOwQgASTtlkBasQsbSjAtqtSED0buIujmk07rz0LhQ2/wQTkbV+7eLfnYMFgjL0eyt/3SGKQkxq2FU1kzNK1aV2wMZKDbdo8B3QT0SRXtBYtAdg+grIb7Nn9gYkj3s1/VJ7nzfd+iBMhbIB68/0fWaTR7Rm2fP8KbHr6hTZgbmCaCatY9HqcdGJiIIk9EbPl+1fs8z4nnvjeMr4wqDdqVVqrKEp7d9BnHSnkEm+AuXKy1c+6gH1/VXb1e6L6uint5vmI2P5+K25fLunGq3QoS2rbsXlVD/JSvD724foLOjiiy0n32nm3HEP1GAlQLCPI0muSr2f19LnzUD2ntURb+7eTTwN4PN1ePQZgDKIpcDW24P8pL/2Tam/ATWNvq5FL1LLbr16rvCirhKKKRJmD+2yhIKa7SJSBGk2hI+6hikLDuCrywsBEEWhmGk5KbdPxF0ENpTCxGCgptuF5l1sfw65d7cxLKy9FeJvWJZUGLCiWUu6F2I/Jm8sJoQdLH5w+4Pqx30W8Zp3X01xMTBzx7lLX2GWMVSo3SLIx62Q3eFGLeeGLIqAoakaUa8K+lHSIq9g49GZAKd9gc1/gAz81GZYCJst9k2cza2XCKg2Ja1l+AECidEr7jSIpSrkyK12zZeoT/u1NY2/jypoBcl9ujHp6BuKQNTDDDdAjk3y947KqZfOv/njO92pGgJNFW7MS+ZphiExBzHS5pNkdy0wbGGpCHbqypklqiBDNZr7xGxQ3gUOPs4mRJDCR9EFRPZJCNWPIDvd1Uc0IslPYpnKcnUHKHJBS143PugTCOu5QCuj2WB/c9t7x2UDA0lqBADbckpilk9KEj6HbgxkbASSBZrrY/NMPYsMLPgCdSOSjMVRCSHYWiCe72PrNS/fLsJwjChzczqhvQtmPaoCp+nfViag0WN9fes8LjY3PvQzUzriZZCRh0pjJF8lzgIlon5oxThx7HgeupbBN2FX9PFYrJ2zPlM3/eS0H5PolBvwzy+SJb4DZT3xHEiZmCbQaKSNsk3u3PaBCwjOhAK1LIrpfpmAQrDNr5IDMQlvN51HVka7KIDh5iNq9VHHMqjIT1rE0sZU8MIadOksoeO1xoN7wvkYUibpWN+D7LPiKljiqSYA53WoqNHQjKs8XACjD8627Ru0OXzsp2XEqCh5TldCpVupUnf/+jMxqpY47F0kCPdJgDWvJWtoi10wA9QrIyQ43UE5jiF4OE0uuzCRCPNnloGyuWB6oqlGuFQdl3P3qKqKkQH7EKhhBiB+exZYf7j+5kV1h4qkXADsmUQiNz97/P/e5B8vJK9+KKG4AY6NLIjPSE3Q594MyReGrgClJyspOF0AZapVzSpqwTVshNvolrZYSNq08jUkPoxfGpnVZtYCtEitguj0mWIyBnrKV2zYb2vVjMa6aDiXJQklS3zhRGZRyQS3bLLnqLwyqbvHjO+LdMFPTTI6uWwPdSCAemeQ3G6ldF/QccnMOyeJ6vKxZiXz1EPcLnOoC3YxJo+kZUKsFtW6l1dsnrowggsg1RK/gXg1al7+tTWtazV3as6S4GbLr50U5z19bv7UwiQjzwfcXdD9FAfQy35vFOLk4e36WFIi4zyQR27TuGe72gNFhmEhgy/evwIbnXQ7djJCNx1AxobE9R7ydfbD9VV130inXgAqDOz53we4/vIzhpaZcULlqS1UrKhz6X7PB/+VAumx65sWcKNjNyv4rrSZ0Gvsg/r48rxNPPt8mhugyCWhgwlCFZCHC5l/exMH6/l4i1c+7CpZBdqcUPE+6KhL3nUFBy4p0Lv+v67b0rqrf3NrqKjOq/VH6+mX5bQ2yYft9JV99Y3+7+apSYWQi6a8RZcpXtEBr/t9VJ7lqmv7qdUH1ys3qsfjkIVHutzI200z89oywBMdsl7/vpBmjiO2MXsaVR1E02KZ1Y3A2tqzvy5PNrkekFDBpDDWcQqXSJwQIZSAyDTnVg2lw/1XRK2CkQD7CFa6i0JAdxfGVorKm2X3RdIfJKXeOIgmzYxLquGM4gSqSiB7YuWj+6sRTLwCmZlAgx2fv23ubNmAu7rzzTpx+2ib86CtHLfZQAACPf/bP8Hef/uJjvoIlECx9WOwGTBOHvpNlmbJsbhZZf6AIqAcNgJoD1d+kt79Z+0JCxNEc53FD8kbINau41N1JclUNFKdHav8mV5FSgZPkco4iSQkaGQZGh3kxJOKsgywHxdG8et4Tx5xjS3J12VBSKRAJrmhxWVbGzNXEro5pkJFTMUKomllRQa2hp60+qVZbAPDGmxgb5QXdlUK7xd5BqYGZtxuH3wKxYhym04E56jCooQTx/3sAMAbqiDUwkYToZIAQyMdZXkJXgpCu2aRQHCykgrP7YAzkTA80OQMzM+uzgGl8DHqkBT2UQE5xoMtEEsKW+7qg3f7MBDz5pVdBdAouG7dZ6NTLgelZIM/r2ZzA0nNKpSgzUV0VVbX/DRFozSoUq4ehrUFGyuCOOw9uR3Eh4DLZAMCVipMLUvvXKpUHzlB394qt3qqVqbt51Rncg8roiZZEEHNv8ZJXXgfR05BdBZFpiFx5MsIIlroyEVc29MsDbnrG+zkYVVjnIy8bC0OK8j63Ga6lPIo9h32EgG9O75r/Kl06Uc6Z6a/4AOokiHN4Cs1OnRClc+IcpELVKjI85pNScPdKJEtSQNqmmu7jyjqhzkkHBjvqFVLIB0bcOYokijUj0CnPEaQNZKcA9XKuZnGfdcfgnHagcm9XjqHqRAt7HaOoXv3jnhN3zgBAgJ06baBHm5wx/sgkj7kSNPWEhdOkdkECJxumFI/H3RfuXFafoWqygiOcnNyMO3/VaiZH3lSf2yrZZtf7OQGAKPIBCR/cd73ZfCaqJc/cGGpzgS4bjle+47dhq3Uojn1Q1FSzXB2iCDQ2Ar1qFMVwUqu+We5N7ieOeDcnDfR6fH4GJK7UUK0MrnzO24UHyKYdZM8C1qY9bC3M5DQncgAwxVx52DnHVXuLE3XE6DDboKOjfJ/PzAKFgsmy8t4RopasU8XEundY+a9KADC2WbZ9PQeNz8LuO49S1pNQgHqWczVwV8kEBpEnWDatPI1f91KQ1gdxEjiCIFauKANWlXFBCkDpeXuBbRx+C8T4GFfqH3koitGUbVqloI4+FKKdwQiBYpylMUxkt6vhg1ekAVFw0g8pPgdyugOanOVqoQH2LBUKop3NsWnd3LS/koc2Pvcynm+Kco7xlXfTMzxPOfsFWHr2rF1X5rVpiUCrV0KtGoYRnKywGLJsyxG+Lx1QrkFK19d8t8a5Ndgltbj5wTUir/qc1eSGQTEGYI6KwnLC+hOvhuwWbLPkqny2Kj1LTCS5EjCWtcS1iSefb+1O149E1wP6QMV+Y5ti80+uKyXFZOUzQHl9qtet+p777SqAq9uvBu+r87i3aUS5zagyV1eJGkeaOwK92uPEz8nWzkmT+pxfKCYbqt+rnof+bbntVI8vjoE05nk1ifxcxz6DBhXKky+c7KnLc1SNdVX72FRjMlWiyI/D/l+9dn2kY7FqGFRoyO3TMK20nHPznPfnjrvVLPcbR5x46rbpYg2OWMvz8vy5cx5HQBTBJDEfvwDflzbRy1fGV234qi0K8PFmeZ0ctclI3rdwfS8riRImz8tz4Pr/RlHplznSz9kUbp2RElu2f5x7ChtWBqE0ZbvfJgHUiH8pgeEhFKuGoZoRimGJL/5TqWyw2DbpwQhHsPzHV45c7KEAAI5+9s/xd5/+0mOeYAkSYUsIE0e8e+7iVTF0SFSyW6uOD1AL9hmtQUUBU43hPBpHtL/fiDOO+0mRAdB5gQ3x6wESkGOjMJZJVw8/Uvkq1R3nqrNsNIyeu22jFAgShvjYKLEl6F3b4LNQdhHLYbK83kyuInew+acfxMTRZ/N7sV3YtQHyHFQAptI02ZXjl4aTO4AB5MqcU1geE8UxKIlh8gITx57Hmda/uo8X0uq+HJFCAls7t2LT6rfz2BopjzdN5+zHNwuW0pNKXqLh2PNgjOEezUMtoN2BmOXGxtTjTJ9IEm772sU4ceO1+NzW8/CyiT8CaYPPbzkPL/3N68r+zmQd1OEYcryJaOcwZ0oUnHkq2j2Q1jaLOEK0swPq5lArh6BjbkZ8yglX7Lc+LZ/9wvtwyguvsDrVBlpI3Pbdy8vqhLwvoOWcjKUCpWH6JYOqMAbo9XD7V5ZvwP5AYdPxFw0kO3hONaXhWnUenRNjM/mdkcsv2fkv5TmXs4YUQFFZxebm62qPDUF10qAS0N4fJdwbfuNyLqmXZQbv7V/e+0oUKnjeu+Pz/Gz5gI+dC40Q/CO5LwcV5bkV4PcJNsBuNEsROwcNACB4Tq06fe4c2evhCRJ77fy5rmaouV4DlUCCJzioIhumwU6Qy5DrlE1KfXVIZHtiUcEyCG5cg0gABykByHoGo903iGCgQRDgJvf2fvGC0LL++f41K5J+/DqV0JGAKDRgwMdorB2gDMs4Vu9tT2JRuV5XNbDdeRI2a9CRi+482b8hUMqgFZaYlJId4emOPy9m2/a63WKPjcbH7PkvKxX8/OuIj6qT2J85addpf0x5wdtywYQq0VbNCnUOYzUw0p+JCZRBaMnVmex8GhsY1nODxUqVyR5K1YlalMQKhPA9Mzy5Y6uKSRCgI87udk63DYZQJ0cErso0sUTnsCZ6oq/fzjLCxJFnAllWJ1f6Iah0zIG5wSZjbCIMB1f2yKadT+YVu7dpq/bsbdnfsHzZbBsAoO570G/bX/P59j1g20YbkAQTNELADKX87A0PcZDGsBSUswsn1p5R34A9N5sf+FNMrD0DBJZrqREtqNuiHp68tlXXu0o86fcxrHwgWUJ109MvBO59sHyW3faM4c8lCUyWYevsX2Li8HfxsbmqhjiuEc0Ta8/wCU9VOWBv0x59NnwuYKsJtDuQkx1uJExsz2795qVYf9LVuOPOC3wVrlAGd95+Pl428Uc1m1YORRArWmyvTluSpWLPgmhem1bku7DX9hFbv3EJNj3z4vJ8a15Pt9x9NSaOPpv9hSyvrIFLzJ616/W8Nq1SQLuD25aw7N9SwqbjLizXYC/TVLFFBKGakOJhjLVn3TqpACd/HVdiCP0BcLeOV20dpVmWMJJzCQFj5k1q3Bc4MskkvLZv+d4H9npbRhDLhn71IvYRgNIWlcInDfGHDTY+51K2OQEI31vEqoGQYvuw349wCTFV4hgo53/nG9iANH+nkqxRRe2aCIDs9lyFhtLwdiRZGynLAV2UJIb3T1Q5NmdDV32jaoypapvVCHcCQHWCzn0eqN8v3sasnItI2nNn7eJYQqfc/9VXfSvj+yKyLeYuXuU8S2tH8z/l+CrH4pQ2atU12oC3jHKurPY4SxOQ1pDTHU5ievCR0r6zaxmkADWbJXFl7VFyFSNCcsKvG4/drykKkJX88ufFGJvcpUCzeS2Rj+x3TRz5z3h7vlrNU733vM1uX2+kQKw9KWRmZn2CBUlZJu+6c2Clzky74+Uoq8QZ2fli68wtvsrUFAVIx7wW5zkoHq7Z7UayRLIoNGSXcMoJVwBE6K1K0KPla9MGBOwJAsEyDza+8UPQK1r4+q1n75ftn3TKNVCxAGmDdFsHYvuMX7AoSdhBcxOmy0AhKrMjjWbH1DkqVirA6d4bgCd229RSxOWCWa1uqTmp/VUwgypcq9Uyg2A09PQ0b85nP/AY/L769lPb9qBNKoAMByNMUYC6PV4kkgSI+RhJqXrmv1bg4BfYST32PD5X/ljd4h8B7TYIbIg5B5WqDct2AVdVYwYEcnxz0tVv54yCuP649Ve7UBLzAiYEkEb8HVv2DHBgTbcSlklQKWcg9LK58hhucXQLvc2yNhGXp1Ku/D4/t/U8AJzh52y2L/zf9+Ilr7wOupIBaISAlgSVDkOsanFmeycDKcMyQxqAMVBDKagZoxiOoSX50tf9CuKALOUaEFYKKU1Armx8nkrtpY6lKuG31LDp+IvmBLfLwKxtYu6M5WrGUxx5OaT+bDRDBMS2hNv2MOGsJksmOBk9U5kLXRabywZy+/LzguCqGsEB7kcj8XbSKdfYwHfpHM2RuSACROngVMmV9S+7yp4T+7bi7fBv931AxwImFhzI1wYi10yeEOoBcEc429drslgAdIOdFdOMQZ0cJAXLsrigtYPRgLKVhVLANGKukCEqnVEbcHd9oHg+p9r+/LVzwXZHNEkJ04i8ZCF6/DoM8TXsZbYiATD25BCsEyjd2muvr5O8GlTZojQgNUya+LXGz+e2gsU04pK8aCSVKhZt1yl4iS0jiStKIuHlaURWlzLzPVFyAmDvMWUq58ONsc8Jtb991UrV6Yd1bG0W4cDAnf2smOnwucsAMzVdr/awtwaIYKamQI0Gf6+RcoC1mhDin0dwJUgVgkpZsqrD7xx1CZ7Xqxrb1YzJvgx+KOWDKqbfzsgrdoMqg75+m9UxESe52DMPIuHlrbxjqjVXqSYxSCalrKvLgASAJIFaOQQjBXorE15HY0LU0Vyl1C6QTBUgNaA6Yi+w6bf/GKLVRNEU+Npf7R+b9qW/eR2oMEgfbkNsm2RyxQamqJLAAqB08oVgOTBtykCMI56UKnXtFWdgDrJpnT07h3Cp2pm7sml3BaOxIX69rfIQEE1bKVEUMHlhyRJZJ2zcmAAAypM6tfcVgJ4GoghichZIE9ahjyQH0dEGupptRtdDqU/+ZeLQd5bPaGR7SsXwEqk0z/NbD571rV9A/XjcPOD+Lwps3v5xrp4ZlHDUt31qNnzPGKQJMNNm32XVSl5/04TlH7UGxSwxuGnlaZw4VO27aO1Xvw8pYZKI7dlKX6dqZW+VCPn85nPx0pf/USkjBrb3dTwMWsXyY6Kbl/YssEubdn9iy3cvZ5JFSr+ubzr+Iia2rB+4XFGt5A+YH5uOu5DXcWefaNQThKpSTdV1Po5KG4kqcqaFBrk1NpJl3znfR8KwLeJsHTfnujgE7LperYC1QfSJo86ymfByt5XbG599Ce+3KLy/CUlz+6U4O5qoRq5sfM6lXtbJOFlYi1p1CgCTREyQKg0og43PuoTXbSIfyIbSICI+xxXfwZ1rE1nyJY1420IwyeKC3X7n5M/7xLHnsb1ThXtmHbHjCbIKyV0lKaqkmRRWCrdMJKFepdG6NoAsCSMAFT9HlnEVAa5IrpFnlXnejSeSlqRhu9oIu7b4ni8CoLi8/5xvUl2f3Hakiz3Imr0pejmQlXadiSWgnA1aJa76CEB3nirnG4BPGIL7vrC+QLWqu7+6xW6TjIGc6vIYHniY42fOPhfk+/eaqWmOPY0M83PW4PUMSgFpvfqrWrFnoGyMStuKGEumuPFG0iY0yTIB2B4TuRBtp2ufc/ZBEUk+Nhcj0gbGWLKn02E7SZCVJi3Pp9EcK4Mx0LNtTgJucDUKuQSg2Q4nSFvbzWS5V12hZqOehFQUMEMt6KEUxUgCHROKIcl9EiX3mjECMBRDZhqyq5H02/oBCwIDAzVPDPVA41GETh8TCATLPEimcqhU4wVvuJ4DUJIWjGw5ceO1ABHi2YIJeZdtYjSQExCxAWJ6mV9ATW5llwAmVoQApCNgJC/oeQ50uqyt7OQ1AF8CD1jmOS84q9Bl0lW0mXeJ3cke9H/WV5BQmYE4j9SDg2/AWX8RgF3AlILpZWVWj8vSabVADVf5I1Dtam+SGKYZe4NTpxE7VFNdG/Ti4A9pASSc6WGUYsdfSl5EqhmYlQwOV4FCTt5Firla4FkOo2eB6RnfDI3cdhxpViVb7DF6ws1qalMkgVaCfM0w4ocBTE4DBWf9TRx9NsxwkwNnVsIlebAHTE2zjn0jQjHEC6DM9ECJqTvv4Kyhl/7mdZxkrgxnnxMgeqx7r2OCjiUolZCxgOhx8FNOdUBKoremZYN4hCIlxDMKUafAhuddDtWKoBps3H/hXwY3FN8bcCCydDJMJIAWyzzQbAdz5vqllvWHQKbsKap9YhJYp6n6Aa3LEnPnHEgmLh2pYhJuvmgSyTq4uS4D1QLQgkkHF5ARUoAyxbrPQsBEZTDZzwnVzM0585jh7QsmLE954RUwET9P7tnrx523n4/1J13Nc4Y2MBHNadZ621cv8p9f/7KrmFSxRjcZ3q8R/ExynyXT16AdEJnm6UjZ5vPO/7DHY1Imp10fDCNLEovcua6SMGAHl9q9SiCgEiBTmoPkJLgk30qwkNuGzSwk77iZ+jrgzrt1mEyFlDFCwKSSNY5jAco1pIvV54qd8zRhh68imWEi/j4VilllBY6E+qadlTm6v3rCyks4B99I8sfkJLi0Ddb78+Xu01zxvRgJJmWEPc+i7CtgYuc4A7KnQD3lyRQDTtQAUa1fVi3T1WbemSpJ5q4FMUFjiEB9QYuac+ucOmNYrsZmvNUqZpSCyQtQEpdJCk6Sc/U48KsHODHAVXBoVXeiHeyl9mNw94/LziwKdjjtNfGa3lT2SwBQXqeqNMp8Qfb+gImDfY6d0wrbw4haTc7Un22zrRBFZa+Qmba/N8lKhyBNuVrBZTHmCjqRSLdznzQ1xOtjkRIwFiGZVijSeSok9hAy0xCkAQOc8FsfBBlAJYSv/u17FmT7L3nldYi6iqvfjOGqW22fZ2djEsFkmSdbXBDCZBn3XXHBjzSFaaagTo+fD0u6UFUq1VVMAECWQ8/MWlKBoKuSfLvDPDZt1QZ1PUl8r0NHsGUsQdpPrvR/fyDcXGYM66YrxUFHe39TmtarY/qD6knCdmskff8hTM8CRQFKk5r96MZubHUXExmqFjwtx2VKebJGyrZ2HGHzg3X7xBQF6P5tQCO1voko7SobNKQ4glF2P1kOuEomALRzkj+zchxmqAGyvosPTEWSA7dpyuvzSAuUK8QPz7AdHcfIxxvcJFjpmqweAL4PAZ+M8LKJP+KG6oUBwSBqK6hUwCQ8L6hUsD2baRtUBFeuzGPTOntWpxJaEr7wrwtnzwJ2nhYAtCOWeX0RSgOTfR9egvYsEGzaPYVPpjEGiTFl0B8AYOrSlzbh0Aev7dpnJAeyvS3h7o3YeEkiB+oWFXvNlOukTTjwiQgu6agSJyBHkDspOIuJp73PJyUN6n+y9VuXMXloE05c8/ONz7oEiISX3nOV3pueeTE2PfNiL41MAAja9tdjG1H08tL+BEqSJCvgqtC9veuq+5yNBGfTskRYCTMnocYkgm1/b1ugtPH75lGTRN7+g0saAuAlT6uxhCpZUJXQ9VUP/OybNGbfu7BS6XZNpVyViSbVxEreYElYuKrequxXP3lhq/dMM/GJYCCCMVydjkL48+GOxxDNldtNY/6uS3iyldLcp9USZBUSiTJVymRFgpOgAJ6f+5rcuyQxv31hr48QnGjrbFgitinyyjVzx+jPc+mT0PYp6Lx6zQSTjOBYEDVSG7/RvhpTrxkD/eJ+XqubDZtIG/M+++1GtzZW7kMAZeKvI1uU9nK0uhFBeLWWiqScSzSqSnpV7z+juWLNkUWmvN9cvIosWWe6PbbJmw2YRDLRkudMrgw1uOJ/cqqcKyLBsag0gRluQjdTQLBfYmTEiUEFr6kmFtCCSRfVlIhmFff+DQh4DCAQLPNAdgqIGQUZsWGdDQs8/803cE8KYJ+yAF3VAMBkSyEaUGtaiDoK0SQzzjQ1C2q1fJkfucxHgHtLdHscyADgsiZdgKUMJKiyKSgRkGXc2N1KfTjSA5DzV6s4VBzRXTqP/ZIkbnySOENBWANngBwYUIuTDxiPKYN3SpVZ3bGt5PHlm3bctnmvkdL+FtCJQD4SwYgEDUGIttvFp9molZWWgT02UJ2T73q3cIDQBsxcJgkAKM1alf1jzrK5/Vn65SWkYG3LouDMA3es0zOcOaAU5L3bIMZGgCkOcNHIMMz4MLZ8/wrO5BdgObDtO9k5tkEJ0ckREbFslwZOfsmVtYbW/c3MScMGNe1hiDLoyhnvxE61XbijXIEemURzirObOXsohpjtgdodmLFh5CtS6ETACOBFr/4gSBt86R/fi32FiQTH32CHFAnAAHGu/Hkb2JzwACM4nAsPd99ufNYlbOj7yhJTk0tBJGEaMfRQCtWMuKm7dXqqRSju/mRigl8jZSBynmsEJIwN0nuDU8Bnu9aebdcU3TkgLlu/4vQZ8Prykv92na8W++L/qT8TvfEY8ayd7wBP+ADAiRuu5b5DVkbLfwb2GOznjQsuaQAEX7XhxkFag3p2braBfZFbbWQNDvBEonbe2KEHKIf9HM+JLjjkGzD6IH9FWs1VbgjOUPSN7p3cmjEgYdgRjmSZ+WX364kVt7ZYyTLnFBr7vpYEEpKbRhYaVEjoZsx9ZfqD+sqASPN1KMiPj2+Mvs9GLO3krqX7vhpKIHd2ICY7dm2KoVsxxy8ckQMb2BPgqh3r3BsimIT8OsU9bwjFUMTXo6chleZqo1HOkKRCc38AVcnwVnbtt/edbiR+++wIM1lhnDMLgOyz4wlGL41hSoe90HMrQxzxpeCTJ0ja4LNSoEbK0gp5zgGHsRGY7TsBR84A7Li6Kt0q+vW1vdQWZ767e9dfAw34h9Y5s8aUY7bVvj4ZAij1o+PYV014rWp7/b3EA2CJHmtvdbpsN0QRMNxC+5gVYAk3QvNXM1bznYPaJolK0rdXlEGgJIKJBQdrY0LREDAExB0mQiO9MOuWyDVEZLgqAoAt2cULX3e9/8xdf7f3ZIvT2H7ZxB8B1IBe3UI0k0NOdTiY1umxDTQ8xDYtwGuzJSlNu8PXAWCywT3vaWLJcXboWcopA4aGeMfttg1GEEvJWpJlPvtyV7JhA0HCExTUarJ97d6yyTLodGC0qG1nUKLQQEkzIiYV8gLo9XibLlAWxyWx6Kqs0pTJScFVfyaNOXM0aiF9QIB2TDPJEkU14sfL0GrD5IuTunNso3/WLDEvpZegNVk+2KYVgisD3fPXF+T3z3eawgC1fnh6ts2k2iM7QEND3NsvL/j+GB4CZtvY/PMbMfE0Jk5E29q0WcbXo9VENJtzwNEYnPLCK2p9PAY2M1e8PpLhdb56LEaA+1yB100jWE53PpsWsUS+IuUgkgBOeO31IGXw5X84Z+5+9wbS2QgaJhJQLa5ujPMB1ZSLhGDPLhxOWn+NJz9c8tump19oA8soq0rdcxrH3p7Via20rtqiAr5KuWhyRrmzE0VXQXTsfOIy/R2qPq7bV8UvrfUGrdp22gDC/c927ykvvAIiK+ZUaqtWAjnbgylQEj4Vu3jD8y6HcESGC6qb8nk1lUpV0S3KHhj90Bqi06sF310fOeMqQoCaRBjbti4RqQz4e1JACBCVCatOypX6bMmaTWsJFCMEy9Q6KShvS4nSzqnOpS6RyalPRDbhKxZAw85VhWFb1lXyOcLBElg8RlctCl5D86Kcq90aVq1csWPQSYRiLIGcLRDtmPV99Uwsff8U/iB4+05uttC++t+fPysvx0ma0icOiYwrO0hIn+gm20xyaCnL+1hrkJXuNVAwdg1094RPXJNV6dwBvYmqiTfaALoAMl3GrYwjJcrrSZAwsx0Y0S3tgNERa9MWoPExmEd2+CRoMTLM0vCu31hVJaF/rXRSxZHkZ9wmRVGmgY62CgBZeR+5n57tCeNiUKiM31UDxzHbDbaiFQBXsHhyTMIn+M52gG4PNDrCw1o1ivaRI5zUR0C6YwwiU75KzBDBpNITwrCy0q4SG5HgZNyIKz5VIrinZ6ERFYsfiwkIOBAIBMs8UI0IwrhAMyAzwAgDHfEi/Pw338BNwV0gjoCv/+Weky5VsuU33nQ96PAURhBG/zOGbkaIdrSZQXZ65E5uxQXwgLLhstdZtw5ZmgDVSlVLvlCrydkjeVFKMACYI7OwKymwAZ/xDiUJn31HI8PsEOYFzGybHSRbOeP22d/QdJeoLlIOSgPKlke6hdQ6k6QNkAJG2XJ7zdlrRUsiH4kheinElIYvs9aVBbm6H5etbAw7/9LMHYexFUaIy+/4MVYkxLzGZSXISaIsK45jNmi1hul2S613IVgHfLZdVmUYzkyaOOos6ENXckZfrkCjIxxDaSacWZ1z5r0w0maO7CaLQJmaFEL1PgWA9SddXWZDE6DGW5BE3BtHsdEkuzkH0mbboCyHGG9gdl0MlRBL400ZnLjxWsRTGajQe9041Gfla82VOk0JzspPIOQYhFLcJLVavnyAEZzRhcNJp1zjiZVNT7/QVxCQMmXVCsD3Zhx5x0a1EuiGRD7MwUwt+d51pLmOgSLlYIsoAJmzg8pNcg1EIUC5QQJwxlUli9qTJi4DjKjmdBlNdYNYKUABwkjoWPp52pMXVRBQtCQfn2EJP79d2ySWA/jlsYAA7WSm3EtGc/aQIzDc8AoNp23sxuwz0QFfUeG3o0tSipyBTSxtZWJ2BslJsxHZSgMnVWDXLRnDNBNs+f4VmHjqBeWzWXV03L5hCW6fQSVL6QtL+PB+JZMPgjxRZqrXmJhIkFrZjEjUyCLEgFFWH1lqdozcsJxz5tYH6RxeS+Bb55cKDT2UglociNWJrJEr/F1iB9Cdn6hy7m0VldCGicDIEloGEMpAu0oWa3MYkpCptEQLO0AAOHiQWGfWEisuaGCkCxoQjw8ARQTRha1gMj57muPwFYmIBlcmoNPlzDgnwUiC13RXxaINSAqWK8pylsua5WA4rV3DWejtTv2cKsV9W2yPB7TbdRJMG2C2DawYY1mhCtHmA0vuWkalg09dAkj5sTHpYiuTkgSUZZy0kudcnRBFAJVBJiM0qOoTOjvLkTIAMNNG81ccPFHDKfLVTVDu5L7ySoAn8/eObiTQqeRgrs3IjLoaKiFu2RMTlFqgtcpYksXG1dw9Ja0MqIrZphUFO9RG0l7Zs5/fXGbyv+CN10NkDRhBaD3QRTTVg25EkDvaTJIkCVwzZqoSdy7Y4+aCqELKNlK2a6ufN4bJmrwAlCXqbOP5eWXD5kOVdKlWYbvkJSmg1o5DNSLIdgH50A6+b4Fa375B1hVV7nWKozLYUSUrgTKxxz1zgM9Q9dt1SVMARE9BxwL5qiEkuQKmZgBpM4CdXT2I3NEGFMd839v+Y/6cggNLfp/VrGj3Oec3DJK5ccdsA3aUpiwXaJOHjFJ8Drq9sjmw3aZJJChPMLHuHTBrV0GnMaTqAsMtkGnaTNsI1MshtCWo40FnvA6hjK9s6a8YXX/i1XCyl0YAMIBa0YKUgsfXZ9NCa2/PamvuJ9OcMCe7ioNR+2DTwq1DxgBg0lVHgs9FEvN58wcW7NnljPUnXQ0QlTatkwdzc5u7D+x93m/P6pgTMnREPjtcWPtNR4SiKSAKg6ijIRQQVXIQoAxg/UNfIQPwGlgU5fxje02QJ11kmbhWzZDXGqQlTBR5QmIOBDFRaTKb0GGw9fuXlW/3ch8Mp8lZn5hj0oTHqhSQWTJewEuqokK0uCpzfzxVuVFJZdC7gnqiBryUqnHyT4XmOdVVbzt7QxIMWVs0ltj6jUuw8VmXQDiJLn9gvE0vT1aJ2fh92217Wzp2CUPkSTSXAEaFgSDtORVo9wZ5u9mRD56gs0k/NbsLsHJenAiihmwiZMxJOLohka0dYdmnWEBkqm7TarY3/f+u6sURT/bYVCPy9raO2P4ALLFt/3ZEN+UasluUld5Wopz7TCb+XvQ2rbUbdCzZzlfaVnFXb3aU5CDf/HwOHKnU6fj4Gbn1xCVAACBjz//MLKjHySLU6fG5O2wt6N77ffKtsYk64tC1MElcnv9KkgEfsAFmZkFjI1zJKmRJ/hgNWHue7aGKTVJ5NmsV4E7eryisrBhZCVZOuKDqmu3u+8ImNjQbXqpZ7JhFUzLppZoSOhFQqeSkO20gMmVVI7hCSidczakanJwHw9dY2PXWkb2GCDo68OvVYwV6rl5LwCIiECzzoLM6QRxFPInbzCe3CLKmIK9lNs4BGHgHVWQGonj02fkveOP1nGUsCV/7y7PxvLfcgPYRLeRDAo2hCPFM7ssp40dm2Q+IOCgwVydd+OxalynoJ22n0y8Fs9UAjDHwzZzzAiQGaFnPA98wywzWofYLmZNYcNmhtSHLvt8W8ziEZVkyOPBRlNmgRikekzZM6hhepFgyjccmAGhBiNr8v27EbIBkRbkIurH7bAPn4LOePinDRILToXTVQrCGaVwheQC4/jjGlo1SHLOD7K5LNTOh3eHshKEmkDZAQy1g5yRn/w0wVs3MLEQjhTpkBYpWDJUKiFYEkWvff0D2VGnoEr9m5mvOinoAtx8nv/Qq3gw4YMuGFKEYjqEakT9unbDRLzKN5JEO0OF7WCVsIMYdQPY0G2q2t8XGZ18ysKx8dxBd5QPbouBqAx0T8pEYMRFE9bwdYGd0y44/x6YVpx6w/VXlo05+6VX8bCqD27/y/t18c/ngztvPZycU8P1QUNFedmXrrNHOGWY6EV7OQyUElbLcnYq5CoOJc/CNrYGoa30VxVUfhsDPE7GTQQLsSFpHuEpmiMpYyAXSnaNXzdK35L3IFUQuoBOCS7w+4bWcWf6V//0efPnvz8FLXnmdzawFXvzfryud75idOyGM7/9IBtw/KeZArch5PVLNyAePAHBViwEHgg189QvAzhspKmV7YJ2iqvSYfc2ICBRL78SaiKAF92XiyoiodJTcvKhYR9o1My0rfyqBPHuOyAYXXMNT4yS5XIacIBtksJmcggkpbXuSakvoUiEgM83zUiFrmZvuurjj4utWSp8Z52C7Y7RZjya2AQ57b8kuYFpcISWs8+eri5y0gfsuSiLOER2clan8fUQ9Y+8zgmpIRNM54p3d8lxqzfd5wgENF6h3cmXULUAuG7qX8zHHCZQNGji7QxBgEuujk6u4KgMWvjrG6bkT+eAsXJNyY5igGB3hcWV5qRGuNK9rSAChgPFRtj/y3EpoWmJ0egaUxNArh2EOGeVG1lb6yN8bk9NsAzjSzQWjIuL9aktYNJIy4D3b9bryaDYA9GymH7Gsl1Lcl8fNJ4L4obdjN9BlM3btCCiu6DEjLeSrh5nA6BUQ3RxiNgMkeUkR3zvPZrAyQcjZxdm4RDyrWbMaJcFhRNkvYl+RD0eVXlIGsqchcw2jOChHEdVJU23wgjdeDyocuWzmVNbNhxf+9vWe3PzKp9+D573lBvRWJuitTKBSgcZIgmgmh2pEUKlAsrPH1l8t0O4mRwKEleUA+B7K81LLHvD64ZAZfFPYTFgSRu3ennUJPiSYaNAGNNQsyRApy+poF0iTXHUkxoaZ0Khc43lhbUXjnisXNK3Od+7vSgUVAJb7MAYGVvbG2rcuyUV2Fc8RI01OdMlZOoR0mRVbS8Jy+4pjJnmyzH5HlcFThzTxlUUeQnDSCtkATiMtA0D+WLiiEZ0uTKfLtmyrxcGcR3ZwFUt/1Uu7A5pOoVeMgkaaUMMp3yetCCJrcSVfV3EQVjABLoocKu7redCHKvFXhbeR3AtUPnfFUALViEB6yFcV6oggcoPGvZM1ezaZ0Yg62q+t+2rTUlbJzBc22GjAa2AVB9Ke1RpbJm+uVzMdAEysPcPu3/jqjc33fuiAjmF/4o47L8Cmp1/YZ9PaGINL2EkjH+z39mwibcIMyz2qxEo4RwCMndcN90KQGSB75KuUPfqD0ELaBcASysRrKrnPOskx1yfLz2OVuUVrXvcAXxmy4QUfgEol7vj8+3D7ly/EpmdeDJpu+zFMHHlmaVsCQJpAjzaB8WFOMI3KKl+RK590aFJOIHQVL64qxR+ek/6qBOqrZIZxCSh23nVVQCpKAEKN3OBqCxvvcLZh9TwCgNbcZwbwElY1cqf6FXdMQsDLXFlpWHd93TqqbGWrUI6c4DVZKMmVzT0BSmRpw1ekjkkZGEe0OIIB8Ekf7jy55KhiJIZqCGvPalvxz36EzDS0lbYUBZ8HTlwtbUSujC4JCpfUA4DJGZu8YKx0VDxTsHKLgyVKuIehsdUQskwSMqU8GGU2BpPG3v7ne9KOx9gqDZdUU60ccbLRFelbX91s12lqpBBrVvH7eQ6T5d5GQLdnY0xse2PFGMiudcbZho/sAK1bAzXWgm6yHySnu3zv50VZQTQ1Uyac+OdGlESY0Sz/m1obrog5BmU0j83JkwkC0iZ/z41PKU5AFMTLk3uOAS9rj4wTfwiAHmuhd+QYX+9ugWgmr0sfW5+IyFUnCZ8opBOBbERA9kqbRihjnyWCKQjGOaoBAQc5AsEyD4ohdtijDoCK88nZBjxva7KBG80LH2l4h5QMZ6YM6nXxotd80Gco+ubDmqma3/idGzhZosk77KyJ0F0VQSiDeEZDJyPQchTxbAE5m/nFmQoNMdWBiSOYBl9W0ZFl9YNjwItKpgpRGTSII1Bke430epgXzgklghgeqpWYkltUXGWMlFxxMTXNZZXOKR6UDdcPd76rzrFzNn2JsoCxTR/JaWQ7I9xl1tiFRGjDRmouIXoFtAtIOSOpErDz17nabNkaKLoZw8SCK4tmuqUuZn+Zss+SAP9OEg4CCOEbmvqmdfZciOmuP06zY5KlU2xTVbdNstIoJs9LI/ORHRCNGJEkqDTlZrlt7e9ZzjRgo6Qqo7CnOPmlV9WCxYANSsMGOVPywV3VEFANDv5moyPQMZC3+H5PZjTSHYoJFhfUMaYmW7QnqOrril6BWGmvzS1muqW8xgI7o5RyAM/rhvfBZfktRLbf+hOvLjOdiR2pz285Dy955XX8AWODww0JKIOT1l/DcUfN7218Ljv5e51RuYSw6fiL+nqImLJXSCRhmjF0I4ZqSi9tV3VU8mGBosGOqImYXFEN+ExUkfPf2s7/7FgYWyVlCZaozCbjHhm2IgaAI4tdxqyvVKg+N4JLp6uNeN2a8II3XO+nkhe84XpeX2xWkK+4MAZk+BgoIm4X4gLN9n0OngMi5ux1XW3wK1HJdhQ+Q9/18iDFGY+kjCctXBWFy04y1rknDV/xJnJLmmrDTkIOmDSGia3TrdmBJZTzXi0Ty46d1xT+rKEyE86TEzbIqWN27F1/KOcYqgZBxdYhlYBq2Mx0JRC3DZJpS3wA9hh47RBFKbMGLSFyVVYFpdWxkiecdMTVMlw1Y3urWXKbCgOdSoge+AG1+3ROJ9kMQNnOS4kPwXOamM1gYgk5a7ykmZjtcX8Pd+6MAY2NQDnJBmN4Halk0yOOvGNkbIDBzdPcDwhQVjJHKm2JDDsWxeNx0m96KIGYzUBDLXZGe0yg+OCy65GhNQdeK8kPxpEYgK+wpRVjHFifnmEZhm4PeGgbaOckxCGrWd6skfBa3e7Vg+uu7wtQW7chDHQUW5JVAkkEEbF+OmUKJo1s9iuV9x8Rr7VZ5oPppE2ZpGIbnvr71PbjcPrZsluw7IpSZR8jSdy7yAYGuGmpsEGMFL0VMYomIW4bdFeUhCAARD0DSQL5Aq1Z2Sj3JCJlkMxoqGqWiyNy7D3BgZOSYHZZiC969QeR7sgHyi+96NUf9POJq6QzlqSRAIoWB4hAhNl1CUjHXCWYGXTTJmhVA8lk7mUSRa+AeHBHuYNGygEDrSpzg2D70yW6wJIhEmXCT5bV7Nl+soUElaRKErMd7PTU/T1lCRj7zMlt05DGwAw3vf69Ty5yyTju79rOyAcmHBkJrct9Ava7pmwQDLDkV7XCRAjuGdjLIEeGeO4bSpkUzgoOLCUN3keufACx1ggY4OfSBqbkVAc00ynXqf5K8b7KFABsnwrhe+a4YKEPKBrDNrJrqrt9B1eyDHFPExKCK9tIwGSZ7/2CHZMQeQG0mCxSrQgqiSDbXZCVFTIxB5pv+7eL54zr0cLbs45IM9wXgIOJmjOuI+nXXdVguwEEdFetQj7Ef6fTGsnO0p51a+y+2LRAhYy1wUTRKTgg2r9eLhB8H6ks52sBlIE4wN8DW2du2ed9TTzpXDgZJDXc4D4a26ew+Vd/jInD31UGOVeMAGtX8fju3wZX3TZx9NkACWz+6Qf3eSyLjU3PYJ9sfptWQI212J6tJnkKa+/ETK4UDX5PJ2zDFg3YRAEAYJtIFATZMV7+CgA/twU4Gz2NyyAvUM4HljgBwBWpqZX1dAkWFTvDkQiix1KbE08+HxKAVIobwAO2z50o50tXpUjaX3sx04NJI+jhZkkM2ICub/4tqazadRXNRIBNJnAJMKQB0cm4QjiNoZoRSIPtR1PO1zoWZSIR4G1+ZxOSlWj1jqt7PCyRUXteJKtmGJsrUFaWkO/34u1Z+1sntlogEVApX1tnq7vKeq5ms+PTgFAS8axE1Fa+v6KOhI1vuORg+GQqNyWVZITxtrSOCDoV0JITk4yUiGcUr8uKbVUd21hJV3G+gTIgm5nk7Ajn1xhR7iNq5/xdAKKnmLAyBmKmy2uPI7lGh1huzN2C7QxRlRAxxvfPrCXWGbs/wXEHKgTIFPXqcftssQQnJ0LpkRRy+2yZtGOTYAng5Bt3zw8PgWZmSyLE9XZxv+MYZmyY7cwdk9CT0zDtNnDv/ZDNBmSaAsMt6DSGWTXK93gnrzerryb2OggDRAkTKk3upwsiUDPmffUKtmnd2u6OtZHyuB0hZAkUZHkZG/OSpAS0mp6gjDrKS4JBGX8OyT5Tbm4wNmmjaEoUQ5LnIAP0RgX7VcpAurZqbZZ5U/uwJgYELCcEgmUeFA2CbrLR4h1ON5cTbOYY/82Ln4HMbJCTCAYGd9x5AdafeDVkt0BnXdMvdBAc4BAF/MLFAQ8O7BF4QZI9FyDlYFk2KlGkEqSB1kOwGVVuESYkO1NEO7u+3wg0OHuVyiZjXAqs2WGrNAN1jUepUDCTU7bUUXktaUoSlq0aanKWS56XDWermXtag7o2EKI0G+rGeD3KWpafy+Zzp7VatugCRP061pUsOnIZNMI2moeEsXrwvsGuMUAGW+If+2odGrLEhWt6HAmr7Vo6bzXyy2p8UqHLpnpAWUVUzUR02T2AdyJYTsRlP9rgQP+CKGyQp9UEuWxO+5tGR8o+M1JwpsTktNXsFsD2KchMQQ7HUIlAMRSxEZNz1jUZg9v6yJWJtWdg84N/NvD+HwQqtD8XrvGaGmlYOSDte5+YtJrND6iU8LW/OhvPOOtGxLNs/JM2EIVmsjKWc3R69wjOAVAs30Y9+5oGaHp2XgJkb0FRBIwMQ48NsezL/du8Q7o7MqUqb/VocMoJV/gsEZXy8yFswP4lr7zOZxaRMqwrTnzOAXgnzRlJgG0mKbBXWZVLARufdYk3z/xz5GDnuWIoRtGKoBrCV2a4ChSVEHpjhHwENtPPBuFjQKU2rizL19Gt75+zWwGAA6hawpbu8/59cN6glJAkmjeDFuBqFR3bfbu4hlMZ1LxGOMJd5NbR07zG8HxiK3AcwWKYrHdj1RFAVl/eV17a131ljiOhyD23TCDIzGZQElecOac+b7kMyZKAMjYQK7vKB4OoKEBtVTokQEn268rc5+B6f7h50s6juiHhmrfytRfW0bPrXyyQN4UPernjMpqzpwrXwsw6YYYEZM7ruhGwVT5McMkez00Q8Lr8PAi7iYj89lEhn4wATEIoTMTVJwreRjAxO4OOUKmR+bDOi3tP2Ob2KTtSrkImmuGECgLK/mqCgJk2ZDcrx5llJfFvCX1yTqElVajQkMogH45QtFhWQSgXYCQIWMe04IaVBuCmlwLIVzYRC4BaadnI1X7WV5n2Zwq658L106lm7tl7gIaatpF4DNPtwjy0DYIEjNHcjy5N2PkuNEszuMA48fh8cJcIVBQQk7NAI/ESZb7SQDU4OJ4VZcKJk11wfZsqa4ZvBl7YoLhLjLCggol8liqJYFLyY3EVLEZKa19wtVIxHCEfZlnDomkDZE1A9uxclBBkalC4XkD7iKJJUEMEKvi5clUqbi0mzfYrAEtW2ufaPh9uHr3jcxdg/cuuQjTZQ/uokZpNK5TxWbZ8zARd6/UEPie6nIOKJiFvCaQ7NWBin/kq8hiNrODKI4CvSxzD975rNoCE+1LQTKfeyJaIpei0AWUxP0/O1nV9B22iECUJqNWE6fXYvgU4qOLIOW2DgU4Ox2jABoMIgJPNc88Kj8/eMwCoUtFhhOY5pL+HRpbDIPe2LKVJGbR0QRD3PBOVSUyw55MIwsnXtlmyRDdYJ58sqeJlOVxiVaGtNKSBaOcl2ewShaqNhasSQO78EvnzBNefAOD53hGMAJ+vRgpqNtgvALjfCgAaG/V2MXV7wNS0TfSybmmnC4pYLgaRgBqOOShnE8T6yZWJY87Zo4A7VxeyfUQ5B3DVUArZVjZb2tlUBCVEGdRUwF3/6z3enqWibs+SWQCb1kFrUM+GpGw2vKnOrwuwfdfTBs0GijWjiB6aBB7a5n2zXREqp7zoStz+5Qvnfb8fE+vewQHKZoODgr0CcrLNa10jZeLEEtemESNbM4xk2yzff7ZKyowOeUmriSPeDTM6jC0/vHKfT8ViYNPxF/EfzrboS/IDAJNEyEZjrsR15DU5G46rsbMRQtGwldc2yTPq8ppS66Np52r+XwAJlbaHsbZjVAZQywz6Cuk6FPkm9PNh4knn8nbcvCEFIKKyms7ZgMbAlw0LAFQhkqVLiimrLlzVn06iiq0LluB10qdEgDU1i+GYkwZyAx0z6awTWfPtqYC1sVxFmo2/ZJw0JHsKosdyVZQVkDZZojoe/79GvRpGEnxZetV+rfZ/sXa6kWz3qUQwmdsUKBqwEq+O4AFcD1Qd2/8Nb0dLK2sMfs1XY+caIrc2XCJstYn1D4j/dpVQLjnJ2bM6AgDu4SO7uiR7IgIpYWkmXdrrgK1wgB8HnO/ViPx51xFX6EQzFRUWaztSJ0PkpLGUZnvR+Q4W1EiZEAZ8jxw+r4IlwgGIjO81X6FUjbW4hAxBoJ6CGh+CBFhq1BEOhb3vCsWEorISpUqX1SFEZVN7bUqpU4B75UrJtme3x4keec6KGkrxPDjUhB5qsC1tCUkvG1chK8nGwmj7FKTtK2uaCUvoGQMyqbWtVVlp6qpgnf2SY46/7KVWG63y5VxBzujys5L4tGl78Vy/G2K/i5Nr2SfkZC3ihMUIEIqQa+fH8mdVvrCJAQEldK2hVsBiIxAs84AMeDEBGz3f+chZeO7bbigz7FSZFQDhsoW5R4sogMZD7ExUs/1e+pvXsRHhMiZt9YsjWEgZCOWyouEzBwFYY5+QjfL7jZ2CyzcbAt0VAtNHEmAkWg80YCJgzbdn4KUzKiWhJhUQZDP+XANVa8xCg7Ul3WJiKiWlThc7Zu18qJQdnWrGHgDfnNNlgVZlt5K41D4nAWgFmu2UVRpuAXSyIbZpGIDBlSwAO2TEBIvPgHMXUFBp0FUzehPOKnVVNy7zhbLClw27bBaumbTluL2CgzvOke50ym1Gst77wf24LF6ru+5gqhntNktNO/kVrQFXCtqO/XE6mTIozRUxw0MlcWNsQ2hVGliyXdgFUJQVWBX0kysbn3sZdBpVdP4r95/mvgBsaIMzE9ttiGgNdDNB/Mtt/MFWE8XKIXZKG6LMfAHw/RvPwgt/+3rEswrxDEuyGSlw21cvmju4PcDWb16KDc+7vAzlWAOAjdu+4MBCQBDU2rG9GveekCv1fQKQhCIlWy1nQDlfE5lZDVprUYtMc+Z9UWrUVvvP7EtW5WJiw/MuB0WCS4ytw2dsVptrnMg6sE66y/ZUkS57mufVbBTIxjnwHs0QNIAfXXKW38+TrrkRRqImueWC587B9cSKm4u8UwUfQCTryHRWSrzwt69n2bomOzLf+li5Pyc5yf/AB/152zy/aAkfyHdEv69GEfAkj6soc2Os9pjxfSSc46UBE7FBDPddAy8pFnc0B7Q0y0zoVKBIhA0IwxIwphy8ASgpJxqROW8K3DPDBRb7S/WBkmxWupROiETZTLM6X1aqC03ERn7REChapXPojs870lZyQ8d8nEWDiSkmU+xQIvJkm44lO2iAD0gbgq2eKa+PjshLy7nroSONyKpfyI6taBAE3YhKiTiXoGEdUNc/iOzxu7WHlIFqSBRNgWw8RutegB7hddEYzdJBVnpyTlN4d/g2ucGMDrF0mDIANIqhBDoVlapDyeM1xicZCEcKgY+dlAEJDTWUwESCSfxuDifXQL0McKSAl3GyJ09prlDRGkCvzNxPU9CKcXb2uj1gZIgdXXcMeQ798CMcpMU43wdxhGLVMKL7dgCwGX3QfJ9Vm8dOzfDa7BxiIYDZNo9zuAXTSlmCJC+sTWJtD9Vn2wgCkSx7vjRSG5ws+/DAE+GsVQ1Nvv8ZbBKHSm1mtiX1dMRzQtECP1OSn0mKee5YKIKFlMF3PnIWjv/DG21wBPj2R8/G83/3BgCEeJaDMGR4HAA/YyrloN3Qd3+NzT+/EQBwx+ff57frbFpSPEcIbe1WZQDJf3tS2pI05ZjYDspbhHQnEHUV8pEI2bDA7FqB6JiVGLm3QG9UYvhXXST37uBrktsAhzYg20eHAxy6TFypSt1EEctZ2F4pNSLGZl77Js6uQjiNajKq5BKJKtUfTK4kXL0BGwSZaQNDnEzlbTXNVQeUZZzs0d+g3NmscQRqNsvmtJ1ueb8pXb8n3TgUy4OwTEcESeT/FpmCE+jnXlA8jxoCKBagwkBOd8q+ZS6gRGRtZ1Pa/lVU5GYB+OeAfYpKYNEYtu2dDW6rvXxiVJpY4gosVTY8xFnFQy34qrm4Uk1mANHlfkaDJG4HkSsbn3sZn49E2rWZfS7osioQQoCmp4FOF+Jwtmfl9i7EtkneSKuJYgUHoLgqll+ez54FsM827ZYfXolNz7zYa/C7ymUT90nK7S2c1GVRcGJbs4HNP/6jPd7MnpArAOBJwyzzPbkgJPfBsjAjLWuzcmVgMc7ZEZENTFJuq3iKgufhQX3rlgEmnvY+IIlsRYbiy2orRZ1NC0FWzpO/oxJhg97wNkeREnpj7n8gngXymPDdP2Eb8/gzb6wQCjYAbmMDRoH9TeujeUUMp1Tg5jHnwwqB3uGj2PTMi8t70Wa4b/nu5eXBUWXttP+zkgJ8Nr0PfDubyJh6EqKUnK2vwfLi7pl3/TFsQgoAPh7DFXuIWU5WW7ICAJQgm0TAktk6YjJDtgsvLaUtecBVzPD9mnj9ElzhY+diygvu8xYJTtK0vaDIVM+XtVFTJwPGEkpONtgRtjx+KmVBJZNmRcpECtuIZCvhrY1gbUcXK9I5kA8J6NxA9kyN5CYhoBqAyOz3k4o/ZO8hruTnc6DSMgbl/Ih0kuNPomereWwykk4jiJ7223J2usx0eZy2IgcAZKahUgkdE4qGQDYWoXUfEG2fKuM0loDn8zIgcEHk138z2rL2uQblBpntY2sEoJoR5Cwno/rG71U/whgYIW1SgIJppXy/2X1QoUHtrCIfaZOS3TZcP78sszEZe082Upg1K/h6tTvQ4yOgosnJSC5OlOcsH9bpMhFDVJLbspSxq8XPhOD5Li84KWGmw69Hkm2FkSFOHJq1qh22FQAKxUlKJDji65KeqnKhUtjkEPIS/GxPoaxYcY+prY5yid9FS7LUtuB7QjW5ek4nABWcNESGfXFRAHqBZG8DApY6AsEyD7504zsxOjpae+0bN5+N/3r6jaW+IMFXthjibNiv/u17Bm5vw/MuxxdsxtWL//t1PhDH7HO50HEwzKCadeKc8SJlVlj2ABUT1KoYvTGB3ji/rhNg6hgAwkD2hkAKaD1YwESE6cdFGL5foXXvbKlFDvDvyFgtRgCF9KWExvbY4IGY0sH0GS+mLNF0jpkxgNF1ssFLHVSZdcvUOxkstz2lYVaPs+bpI1MwUzMwWVY6bHabvhImy20FNO+HnKakHbMxGqSZzPELTR5zIKaRMlkEeGLDRJGXUgGssxiTZYYjkLT9PnrtUoPWSSX09WOpOfK6lCOrlVhaQ0zHgiV2nJFhYdIEvsGwlWCrGaR5Dtimb1t+eCU2PudSiIybqonZHkwrYZmIWOKUE66whpoe6AAaIsipDoSU0ENJrbEeyJU6s5FmRpogYzN6bDaZ6XZBsx1ESkNOSphGgnw8hWpIvOjVH4QoDNIuG163f/lC1qpdIMLdZTNuesb74dVPlFm4TL8KHk3Vz55WqsyH27/yfm7AClhHxs4HmWEpIgIH/7SB7BScaTTdBU13YIZS6GZqg48WtrphOcLEAsgtYSQEtJXw0LEtp0/ZkHeOAeAy/ODlkIom0FtpoBMDURDuufis2j6ecMMNHExzBImwQXkSMJXV0meOSf5bWEe1Wg0ClNWPRYPQG+eguuwBz33rDfwdZbhxKdnKJLd9uya4KhF/DmTp/DjyhMkelPIRliiBqBA+GiBh+8lUz6ngTDgvAVYAUQ9IphSijvKyVSYW6I1KDgJXpC11xPee0TazTRIoYbm0SBCE4LlaxNI6ohXH2znwQEn2SwEyAsZm/etYlD3QXLafc0Qj3k/REMiGWSIMltziY+PrHvUMog4Hjgnl+fDnWlfIEQKvg87Jt06EJ0GMPU4CdEJw8jHaSs0ZQciGJKJhgXhGIxEE2Sn89kwkvSPqKmF0xGMXufG9wQCgGJJIpgrE0zlkT/Dz/eAOrgZ1QVAHtyb4gAOfZ+MK8nsZqB0BrRQgDdOMAQFEbQU5W/CcLgmqKSHbNrAqAWMSaLtGeUk24nuNqvdrTdNZstNZJegr/dpcI1Ao2+9NKQ6w2QAstu+ErwoFgDiCOGQ193LYtp3vkTRl49VVChSVNVdKW7Vig+9alQSee19rYOdUGXA3Bmg1OVNRc9+22tpRlUxyVVZJzCRgGnuClwdDKIZsMNkYGEr83yoRNpjDQZTeOHlnVDXKZ1DYauhH2Q5vt/jCR/4AAPC9D9Xnu6/fejae93s3+AxWslVdAP++6+8G27MAVwx8wQa1X/zfr6s9d6XsmK0eJEBoZ+MaP08WDZ5/ZM7VVL0x6aVEixSYOjICKaC7JgVoJYwgJNtmYSKB7mHDaDzQhpjqlNewKtUaRUBs7TpXcVK1yYDyGXLScJa8c+/73nzV7yZJuZ9uxiSP22YU+SAlIK1NmcI02J6Sj8wAU9NlVa1L9HGNnGfbfkxcVV5OVBRHZQW3m+t7GVewTHWAkQbyFRyMFrnmAK1rlCzJrmHOngdEpiAaCYzNzKZoyNqUjqCs2OvVahaAn4fcVt34psnkbS8fDNVFGXR047ZBME8UqaIW7KlKa239xiXY8LzLIXscWBftDDqNQUrhlBdewUPp5fNX5BoDMdWFiCXUcFoGDmGzyV027kiL14autWdn2pwl3OsBM7OI1ErIqdKmrdqzotA1e3ZfZMuqcAHrWm+OfIHa2JqyF9CjlbDd+KxLsPU785znR4nN938EE2tOhyM2kdg+Wbavg0li6KG0vL8jwdWWUx0m71oJkNlEN5HyPaQWaJI8wDCOXHFyXUJA29dMLKAaVi4qLm1AHcP3DTQEFC1CNgrkI2xXGgH84Lr6HF80ANlln0HbJCQAfg4WmV3rHOEIcP+JStP76rMpuyyx3T20iXRbjwPu3YIJI0eY9JOASntCwgf/Bfg5J7fO234oLunRViboBvfMq1ZIOCUF6ncgrU/tgviukoNcJUqm+PuJhE4k93dqcM8TGFNPatVchams7UCFAJGGSSSoqPj0jqgyBVwFi5dllBIsn6WhkggqEZzIQLpuy7pkKUt8cGIY2fhSSfRoyQlBZAzfB67PoCRImwhFEtxvwyfqsn0qImPvISolx2y1qesl5SpjjAQX3hCv0SqVSGYMEsPyUcbY2BQMVFOUCWLE2+40uBI8ni3t2XxYIpksEE9lUK2IZYjbCtHD07z+ulhRRWKytt5UExOEADodttNaqX+e4qkccjbz94FuJZBZAfRyTxC6fjcwZc8e15+Or3NlPzGT/D4Jx/U8qd7f7u8st3a35gSeJGYif9vOsoI/tvuJItDqVUCvB7NzEiQloqha1WTv5UjC2xFWRg4q4mczigDYeBARMDVTxsUs0YPUAMjY76omSzjT1tm1eVESK8LZ//Y7Gmz/22eEE/5E6YMlAirl5LZ8iJUgVIN/l9LTTLYUBVAsU0J8qYO57uW5Fh6sCATLHuLbHy2Nl+f8jxv4D7eI78IbrhrdX/rH92LDb1yO2752se+h8KV/5AaiL3r1B8sycyoDZE5jXihA5sDsoQLZGMrPRgDIcNmoBiafyItzPhyjvRbIHpdh9r4E8bGjGPu5xugPtnNQJAJP+r6viWWmbTUI2QXBKOV7WZA2rNXqQJUJUwqgEDxJ92tRu3XLkyk22JEX0CuHueG8YXKpGImh1w6h8XAH4v5HmPF3vV2iiEvac8409TIMlYbMvgTUOX8VR9XkOQecej1Q1mAH0VaheHkwG1RzAU0SEhDa9/CUeZOb71YXLRcwdJOc07esZCSUFTKiLGd251CWWT41mQUAvnlrocoMXYC33+1h870fwsSx50FIdhpdNjF1eizzIgVEI+V+CJHAKS+8AqQ1bvtaeV86nXsSArrJGqS+ebcANLivCSnDTu7KEZZX6GQwK0ZAswlX9fR6oKkMVCikI8Oc5ekCUSkH2TY873Lctj9kqiqEIBUsTURJvGAyYY/WGV0IcsWhWgV34oZrAQCyp9iQBEqiDtYJL2xGqZW8Y3KyJAyXkzzYhhd8gCtQJFcqSG1AmZWfSSSKVgSdCmTDAvmQ8GS0zN28abPzU54jeysANWp7F7XLLNgnXnsjAEC4Mmjr6GjJvTzIynBxlYOVg7SBQsBwVQ3/ydsmlKX34CoRkbPh6RwZ78xZo1XFBLKyZVyVUiFInIMdVYgfG6An59TJcv9cKWmndBdUUtxEu6yAKX88iMejUoF8WHrJLD8eSyYYweeT5VH4i875J2MQNbjiRWSSs9nyCLJtG/faTMNa43sAnqRXmpsyGtaQdpmaThIMgCfUqlUpMByoZQeUCRUvwakIMofN2ARcxp2XWnDxP5eBDVgJTyo/b+d5V9EDAlTMGX8qtdfIHZJ95ly1mbb3L6zT7u6LosVOi44ISW4QT+U+s1pmKajg3jlUWKm/4RZf647NXnMZ7f0BY4cqyVIUoB6vR6LQiAAYKRDtbDNBbvuCUaFhYgnVipkgj1mywldDGYOorTlDXpJ1Tu21FeSz5mrJFc6ucAFiKcpMdrc2d3uc1e56U+Q5B+DsPI7hIZY6y3MOfLY7PLePtGDSGOKRaV8tgNQ16FWlQ5zE5b56PZ/F59YGimPen6+CKB1KL5tiCSSTSC8Nwusj37uu0adKhSfCnV2oY4kiJRRNASOBzipCdw18zyeVGkRtfqbzYeA/rjwLU1NTGPuzsmJkf+DfPnk2ACZ9kxl+zVVp7wrVigFnv7rkoZo9K4CvfPocnPBb7vNWTswGlpJpoL1aojfOz1rUdYEfeOJ3dq1Ae00DRgDD90dor5HoHAIM/XoEcWcY49/QlV5rsnK9RCnhAZT3pAve5AVnfyaJrUqeAZoNrmipVNKhsNVRQCkp5+Q8CisdZnsKUF5AjQ9BDcW28oLPYz4SQx/aQuOhUUS/eKhuv9qKKHJjdL9r7LrxPWY8tGF7dvsOiOkYSXvU23i+D5mtlvOyhs5Edr0UM8UmbFYAYOkXH8zqJ1fcMyuFlzEzLmhk1xwfvLFNhg3AGd/VYBnAz6YP5AigGfv5gAxh879fiU3HXwThst8tMSusRFtUaF/h6MiNOQSAMbZSIgI1Y0CTbcjLRJrrk2XSGEaOcDbzTJePbbgF6sR8f3S6oKnc27TJcOPA2LP2vBrtgstq3+3ZSqByT/qp7Cu54rD54Y/6v31z84T7UoIIcqrL9l4acx87V6ngAvBE/Cxae2E5yYPV7NnxBmS38BWOIJYlLFoRVzsPS+RDvB7EbeP7bxjJ9qSRQDYGdFcbVs+ICcnOcv1/7ltvgGoQaMTaQhKgnin9cOKYAsviWrkn5ze7qjT3/Ht/XSDa2YGJJZIdGbKxBMlUzm2qHFnks+FF6Q/LMrBt3ACq0lr2GTcx+/CuiTxp7eVqRabZJk8kEyWuwq5C3roG69zfjs+X6Gluvj0eQ3YlZKfwwWFXMcLV3oKleQ0Qt7WXPnLbBvgYRVYAUpeJlNUkVHdqXUWL1kBuYGTEZJYjdGHlwNJSXcIl07KsMKyiCbwsmIpNzVZ3a6NbJ1VC9coYa68VthhY2CoDV42tIyAfIpDhILqTJc5GAG2D4y6BOOeFCSIXLBXsDtnuy51HQyz7qSO+Z5OdWSkrXqS+J6FyiVNKQ480+N6bdWXflSq9agykSrK4ZNYs99Ly1OU5QTwyxXN2s8Hrepbx+qJ02deoEUO3EghLFhopfCKFl5q1PXWom9uKGbcm9iVcALUEAdPrccJEltnkWyvx6b7nFGJIsK2RWPtk2w62UYeb0M2Ye9M4uzkpEzdIFWWybZKUkrxWghNO+SWSpTpM9Tl2tq17dqqJQ4LPLVeW2XNu5fPZVxQsO69cfJJ9MJUCeZPVIUC2GjsxkB1rewgmgb/3obPZpv3L/WvTBgQsBQSCZR/wzb84e85r60/ibPPuyhhf+fQ5837XBba/+E/vrb3+5X84By/+79fhS//4Xrzo1R/kYIog1pY3nInitPqjWUA1beasNFANA9EjiJyQ7ASSadhFHaCZCNmhOdQxBYRqYuQnrrm91TOVZLP1NDAyDJqZZZLFBiE8M17pgQKgblxozZOyQ7UEkT809zvNBvRoE6rFfRP8JwnIxiV0OoRGIhFtmwG1O763iwu+uObHtf24hU/rkjiyWacEycdUdVJjm1lryQ9vANsfl7GtE8HlsAAw2oAgAk3P+pJNuAwD2ACRK0kFSuPSamL7bByXmWBY/x6NiPs+CG3lyKx+ZlUf3jZoY1mHgrPCjjmHz3eeQxQKenwIphFBTLYt8SS8NA9nLxMMBDuGjvzTmstkh1KA5i//3/AbnFlHyvgqEZpucyBjZLi8HnkBMzUF7OBzJkaGgUPG/XZOWn8N7rxj4YgIANjyvQ+wrjERIE0ZEFiIbS9As/p9hQs6ix5rsrvGimT/NpJgmjHUipZ9Xy+MFvgBxMbnXAqf8e8ryeybzkgkq+falOiNCWQjZaDcVa34KpCEDb6iBeQjPDdQIfCzd70HR330g6CcIAXx3Fnw3Eq5dWAEz69sNPI8IDrwvQb4nFvnxJCXfNSxczxKAsAIIOqgRqD40n+UFRAyM54YctsQiokRFRFMCu9YuSoVAyqnV81BfdeomnutkG9Q7500ww6UtM6VSuxxppxdn7dc5iSTQwBXALmKGfDubZ8y+CAeKdb+NoIQddgJo5ylqGAswZMa70BXM1Bd9p8nmzVLZhVDUdl8VBuf2WksIRV1rIxjYbP4jAtcUxksVkwAVQu43LnQEl7Wzb3uHG9j+0s4KbG8yeSPSsmft3yE35MdXqNdP7aiSYhmXfCd1xB3vtIdBWSPe1LInoKcySEf2uGdoWRnCtNK2bmx67QaSiBbCcSDqJMs7vzZniU1OJJF2YByOwdJAVkoqBUtqLGm79Mkpm3PCx1Bag1KYyv7FsHExBUvHQXRySrSVxHLa1oHjJoNbsjpyA7nyGW5T7ogKeHlRB1clp8L5DrZJl9lYHupNNKyGqGXgbZPsR0wNsL77XW4uqSZgKask6sNMDtb6+EGpUFRxA6uk5wBynFpVQaKXGWOG2dlfjKCnXPKAEgOQmgZwyQcoHESgDI3KJoCvTHiOSm192jEzqiJTGkXLEIi2jc+MdeePfmlV4FyjWw8ARnsspcUUBIrDl/+h3Pwold/EC9+1Qfxlc+cgxe95oP+2IomobldsT68AOJ22URc2z4wTl6CCg56xbMc+BIFk1E7n0woViiM/SABRRK6kUA3Y56nMwXqZqBOxo3VJ6e4+ssFJJyd6KQ3uj3b70QBvenStnQVF444bKTlPbBzhmW9IgkYDT0yAjWScGZ0U5QyM/a6ZiMCKmmiFa1DfP8k27RFUfY0dMk+DnMywfuzynVp0xYK6OUwjcQGh3gudZr5Ijc1iUMQQVUkZYUQXO2cAjTbKwkkUElMOVvSnTdXLe7ikLb6hKstnAQXrDQKleu3g7PPnK2sNDbfcw0AsESWPWYSwpIgkv2USrDLJCznRlDY9Iz3Y8v3r/Cbp0IDrSZ0K4Gh/5+9P4+6LKvuA8HfPsO99733DTHkyCAGk2DAkqAZJEDNlOTwVcnWai/La7WqlmxXWW1bbsvKFGIUU0JmQgKJuqpVsqilll3dZXdXWavbLldFAgKBjFAZyRosIxmBmMk5I+Ib3nDvPefs/mPvc+59X0QmmWREDuI7a2VGxDe8d999796z9/5NhE8cyiEEgGte+T5RzOf8glpBlcVyqGnzMkZr2rNSz166Xd6vi1HPAsAdf3yzKLPz0OzR1LPfJbhy0ZYhza3S3i8TMAIDSXoZWIM0rZBqB+rTuhXVk2Rd9+J3CeDotNcrREAM5AOtEWJj0G1ZUeU6qTN7YCDWVGLRGkd7CCdCqhh/+t4b8aJ/9BGYIC2uW0qWq1HCEQXJCqLAagtl4NrhnkJdKPWoWJdB9uQ8mPauDGcpsIAr2YqwqAhz/83yvka575S+l0Z2hRpCn7wdwGgiyY5VG0MKUeop3btJGfuFTGYgirnitkAwfUKshRjCjoR8RYD1BGzaQT0OIDRGVdzynojtrYIHWq/mjBQYHvJsgUNqCwz5K073Bx1QZ/Iq9UmC7KeS6RR9ngPI6869hm3leXNOr/wMFdvfrGDPFrPQW2tm3CY39AOA1OuZyJGtm0S9JI8VpgMYEzaAfjPB9AS7JKlnV0Jci5VYQrlFLATg5MU2mBJQnw7wS4I7CHAHndgsaj1rdydIm41k1s3yHunQb3q4zRrVnZB77oPNc4BzlSyA7MvZYnDWIJ3YBHVqyZXtxioB1/P8ivoediWqFptz3lhA99RUgyWdMeDG637WD4BhBiZyjcBcrPFLbVpVCnpozTCboFhxauYxQv49JwrqvpecFWs0b1DVN5UDpYQ4qWFXQcBo9iWDRUDNuH6Ocr3iRoSTrMYlue+W2tq7cu1QSMBCSFfwDticSm/AovrKmZDJiho5eZlPpmr02YT0lqbHYE19tI7W99gi5iNN0Xjt7e1he3sbu7u751iEPdL16r/2QfzWv/75h/yZl/8tsYoxPRfve0A3s0aY2d2meHQDsiFKyJkMhcIGECYMu1LffR0yuqUMe/wc8HMuw69uS4aP9RmG0zDw6iBh+vV90P1nwYulDD82N9B93wnYRYA9EEaR+OLyOks2by69IvQhDtYBGSnPN3dgAAnyxgSAT2yJlHN3OcgdAXAtm11/vBY2tZXGevb1fRkEZcnxSn2tEw9DkRDK14r/5DmAjy7vxce68aUIZG9LwZRDs0WeKYxUea+ExWsfOECWtxf23ljZAuggypSvFbZOvvoIoD5JEZkgxWJmLLQRZtEW25Xshf5w1/UvfDtgCXFrIh7W3p7XIuy6l757GNoz444/eu/wvZe8q/z9sAJi57lvloa0KHfUDsa7otZBEkZSLjwBrD3+xVjXv/DtAlDNF2K98QgXNTUwmQDz+cOyBTta3/26/gd08EGDz3hm0mdmnASbCugYt6eIGx7LSyqsThqxf0oAOLPBZegday4ZGV/5WRkgPvNXPgQ0Edwb2IWB2zcwvdxbi3XUaFckBSKyksQtoMN8DCw6XVHBFPmePG8JoM8DfB0gFiszkt+JXpueMPxs9l3Ox5QVNPI69T6ZHWoSgAS4lktROx7UxkrBGDs0chQHdmMujE2QvSU2+ncnj2Nb+XpSgMe2w/lmK02biUC26TJBGnxp8hmuHQ5m8LfWL2jgpqhAuPw7gxxhaoqCqChI8vF2+l7o84I1vHsEZGWAzgQByrI1UTlven7zuaM0WHf2U1MUOyX8s8osLQWdatmDTasASy/NhT/QsNQgwBUT0JyJmP75WWFW589OHuRntSVz8ZhPl2zLNaFsXnYGZtmD7jsDXq7OVa2cZxEZVYdYwFjwlgKw/WADR10cGtXDDEJmUQbkPTRnS+T9fGwfRCT76cZEGrY2SH3Q9+th3ZOJKgwc0lSsYqgLwlxedIPyJB9DtnDKjV8+V/mYjQVvNPo4cSBX5MZYMzCo0obW2cEaAZDj904GyNqUltDh0V5eshCKhZyRa0mbb7YGsXFKzCBVSUmQfbdpsDohxJiS5TMamlAUcC6qc2larfCVm972XdejF7KeBYDX/Oe34TP/64ODLC//W7frYEiu+Ry6S0HqpljLuQo5ny0B/iBKrbtpRMUSgWpPrr9+QkUZURjJkeFWAygaagGl/YIVlGHUD3TwZ5agXZXkxARsTLF6+jH4vRZmpSHxGgrPOvikyALkdcoC7ToB5ca2hkTyGTpc4+lKV55Ev93An12WMPkMCHAln/X2eI1uW3ICjv/xWTnOqpIcvWULcBquwfFQ53yZcof/7b34sauSRT6TYhVm2gBa9kizGnHmy1CREkueUiffp5yVlRmvuSav5FqhTgbfrLlMnK1URjZDct5HdsIKSiJnDS6FcftIgunzuu7F7xqez5xbk+ZV7LV0sLQG3uhxHq5Dd577ZnntGSAuKjataVW1slbPEl30ehbQ3I7dffBi+ch/OSXQ8W1gvlxTkRyti7Ou/34lqI3A3MxEpxhHNa0MQdO0QpxVWJ2s0B4TAkkm1oQJoZ+ikH7YAn/yvhvKc73wzR+B7aX28AuGWzBcm8QWzBOsEgOzbSOIxHYvsgLRoRyTWCENg2OeipIWmqPHXoa94wEzK8sdlgbihbfidMBc7jMDICD/FlvZnOkgBBRgqNdsKz029WnorXWx7s9Z3Zy8EHAoyOwkWQGjTA+02wK+uJbLvuGWCqRYJeJELvbvmVSZgQiKXILe7SoUq7G1+mR0LuRep6/FQBUeYkWWLbrCZFAQ5b0tgyZ+zgV0KY8NBdd8PndAsQl26/VsfiyjSnuj/QsbIRkljzJHyucgKvjSHWckL2RdtwawANWB1PND7yC9RHM2YfblM0K0BNbnROP9a2OGNK0RjjWItdiiI0HycJYB/s6zMks4vA6DKnlPqaphb9qeCTEg16jqVLIGyhzOfswAfyb6ZHLSWPEBiBJEQQgKcchdyapZq2oRY8S2elYL6bHtkZoK9mA1gB15Xw1BnjfPzDT/DVmd6Bx4a4qk4Aq1+vUMgmQws22HY87XJZE8fq5tx2rsscKMTKnBEaKAMoaQVcBcO7BzxXklk4+TG2y5223JgBbXBv3sjUCWaldJRDqbDGGFL9323de0R+vc9alPfQr/l797HX7vs1c83ocCAHjhS+/Cv/z1f4tXvOIVj/ehPK7rSMFyEdd3Ald+5K9/CM4NDU7x2rSE4AhhatBvCDJsOhlecWZUM4qNAvFooLVQcEXvuWEKrE4QUg10Wwx2CRtfN2jOJrh5hImMfmax99xtbDphsOGeBxAv28Lq0hrVrhRNsbaIE6fsZoPJvR2qO3eVwhyFKaANJ2e1RW5ER6H2ZWMpw3gHrhzCZgWz6GQTUZYyMcNERhUj3IFH2PBYnXRYfN8m/N4EFBPcvC8M6BLGmzesPNSJEJAly1YyG89lNYsCAKteislVAK0CWFlTqbbg7OeaawYv0trkDdKV2+InenouTHIzMFzlh1E2veI9m2Wt5Zi5NOHEXE6PqFoIpx6FPJ9CBBsLe9CCifDx3xvAlZ2n/2OgrnDqyx8U2569uUi3NyYSZEgktgkJhYlz/Q/8ggJNCaf+9Fac+rMPDI/3rBvlvdecAALAbr3wBIDustl3/Xoe7rrjCzdj53lvERku8yNuSrnvccddv3SRju7JsV5/zfvX/n0hrc+u//63D4WfMsAAvQ6SfG6pj0gTX6z7yEWgF/aaaSPq3QC2Thg0bvAPjhOIoq8nfOmNN6w979f+3hvxrP/XrUBrYNoBpEha3+bBXwk/NwoeBPlTQkZJQR0qUv7SPGIADnJDk4EW241ABX1esXzI4Ic8hun1Xp6Zhwq09JMMIsgQM9u/5EwYQAvckTMTgEGdYRQkycIBC70fDUBNyseve01h8CmwcLghzMBWadgy847kPhn1/mdCLMcOR+cB60Whk5wpjWZufvup/JxttVl0yvDTUE+TVfuZQVUaUzmXObgzZIZgz2rhJj9WwLL8OtxgDZbPHxJK1krKfUsL+AiklpCZhGEDwFz24GxXxgalee83DFbft43mWxAGWn6jDmc9AMK+bvyQAxESTB+RGgc7nQzN1fnW2KLT0LDv1sICRx9EAVJXQg4AZMhbWSEtLFdFOTmEZNpiDbTWgI5tB7Rh5WwjGlmIA4VFF3TIGgBbAasORtUpbAlm3g7Hnm071Qoou4usDXgmFagLSBsNwmYle3JlMPnGnvzsUmyMaGEGJS4wgCttOwxQV63sf7NNGVCrXcTHfu/duOZHbpZ7UhSQi50Mc/JwqGSsGVUktVLLxcaq0oUK+NrrNZgmCRREPceG8eU33Yi//O6PFHvDP/i5f4jtm544dgoPBa4crmdN4HKNCyklodu0CBMZrLglw3RJA2/FitC2cl8NjarGIiNaAixAPeT6mqgVyQwS7myAS/4owa4STGCEmcXesxtM7vcw3Qaau+eg3QN0l29ieakTtcyesDDDUzbQHbNo7g+o79obhhYZbLMNaNUONS0gn6GqkmuqHWUNEYF7IbCEDQu3cKDVSuyxFAykmGCYUUeGW3l0Ww4Hz95CfWYCSgy714r9EdNwDwP09+NgETsGMw+ThoiAVuysoKQhs7ccBjpOrGtMFweLnvw0xoiKOiuTiyULj8DVDICTDMey6qo/n3UKxN5K696s4iYinPrCIwdWykvMTGRm3PHvB0XDzhU/La+xqXHqS7fJuVwsZTg2m0o9yJrwop78Oy94m9wLjMGpL75/rZ4F1MYqWxZaA2qDDJ6UyQ5mdJdc/HoWAE79yS3YedaNwrBuu+/8C+NlzCMmZ/1FWyXPUNfYfvdCrOu//+2jJlH+yJ9VhAhqA9K0HrIfjFwLAIQlvgyoTwOUvOR1REY/NcAERSX8H25fr2cB4AsfuAEv+kcfKeCKCVzqQdOJpZPpGeyBOLGq3rCwrRAsSC1N09QB0UvPp4TKzOSHM4V4WGwTQ86XG9kpZmDGGcSZE5tpA82YC2L/lcPC4ZDM6H7BAyCRLXiTNyA35HxkwCMrQ3O9lsPbc6RLtqCMlaqDrNazSnwqdlmjTAip1ajUr1kYThhqcLZGs094vQY6z0reFCsyOSaown4AV2zHBSShxHArsWDNP1+cNKwcuyEuFmjJDD1PqZetKqiV6AAoGaHU69IX5do9+vJRERDlDCFVVBQqhdyrvcj4vcq1dz8zWD59G5OvQ1w9mHG+bKQ0rbF8+gZMl4oFKcUkBKTGwc0aIR6N14OdX6Ihu2XSDMqLqhKwI6tPq0pqvFU7qJQz8TaM6tJsaZf/fojckzOT0JHu6XGwM8sq1KoC9QH2bCiEXaNEgqz2ZO/E7tAZdY2xwKjWhFqG8bRG3KhF9T6x8AdhsAWPvbYmLHVrJhPVtdi0Ayg5aRk8qitwXRUy1akvvh/X/+A7JF8mxAE4BeQY8mlmBlMmoAh6R5rflBwh1KqoaxhxKpZ+ZmnAlvHnbxRS4wvf+hG5Tivg9978D7F92xOnpj1aR+tirScVwPLtb38bb37zm3Hq1Cksl0s897nPxa/+6q/iJS95CQCAmfGe97wHH/3oR3HmzBn80A/9EH7pl34JL3zhCx/nIz93vXbnNnGe6IdBUx5iZYZBspBhVZ83t8FfMyoDQZgFBNNJOHFzmtHcHwAC5lc6rC4hdE9vcfKSfRy3EXfftw3+ZgPbSbFjugjTCniyeNoMqxMWJ39PBhkbX96TIVvjxTezyVkHBDYVYnMC1QMr2N1F8YLkzD5ICRwjuOukWJtMhmbQucF/ensL3YkJwtTANRXsUhtWRfplyBpgFh3MooLpGwlDPe7QbhtQarD5jU6CTwHQfCUMgL4vofZl0yQWkMDawlTlbQkFpS6oz6aGLFpC2PAIE7s2NCWmUozEysDoBkxWg+1WvWyspJWeMwLOqCoFgIIsNBQOzAVoKcHBCkjY/ZV4Qj+KlVl7513OrrMw1UaGALFmiEk278oPstY8XACw87y3rD3+qa/efs5TFCYXUF7zhRzUP9Q69cX3CyNxOhGbifniIQvi8Vobxn2Prvw+vf6a91/w90wCIodroMjpkzRgpRC1Ik2mBCBgAOsYMG1EtUugZNFuScCj+ABrs/Eg77UMfUb/HoESgAIfygSjJMycaCEZKUab3aLUoGHeVRQqKOzDrCzMYfKlSaGB7ZMbJIoD04dYPJIFRJCDbc6mUXYIITkGgvw72wZEQwIgZJAn2ykAxXZsrYHk4VjGtgSpGkCXfFzl/BhVsuj3xueRayBOAQq6PzXCImRjRflzyD6+5MCQsNFjPeS8ZHUPk9oFRf2ehTSiKy7h8/K+0ejcQC3feLCY0+eTkGfJZhG1UA40Vf9tr7k9NJxXNqKMSk4+D0jy+twBisKpy1Zhnbz+DH6tWccx0G1a8NO3MY0M7B2cO0zdmCFtNmBvJeD30OeYWgJXHlTXkkcyXoez4LJF2GQCNLVkrVgrQ5VpvdYMcy0MewOAlisBV9SWiC0GkgIw7OdjZpzaB6VZI8BQF+V5Dt9L8+vJ6hJrBDgNNHzfu8KMXWOFJoZp+6IeK5YdfYTba0uQbppWMMtebdYIxCM/6r6XgPByXHrx1ZU0pDlw2Etj+eof+yBcbQVDyqBKtsXLNxJV2plOfL1z0DsbAX9zkGwG/VIlyqev/czPrZ2a//TuYYC2t7eHJ8uybRrqWaAAe8kRkoa1miCKacmnScPwiQRgcgsuZCKKQLUf1S5FbAHnl1nMn0porwiAZ8AlmPsrNA90os4ICW7hYVqPftNi+TSHftNh46sGbr/Fsf8wBzuHNPEy/PKEbsMA7BCbY/B7PfwDc1DtC3GIu14D5qUWSn0vbO+6ks9LEvCD2xZ08gTaSxp0Gwb1fcN9V0BHVT4sO9g2wO4Cbq/B/Ps2sDrp0W0ZmNBg82sV/N36vmeb28xOHfv+n09llpmrOkiilRM1WeXVNs8jbIllnm0jjA5sskqUnQHD6g2LiiVZHrZSGwagZQRkD/lUGZDBOuM8K8FIrYi7R+cbMrYBW1tjRWBeMYpXf7bbBcrQiYDBAi5G7DzrxnNq2FPf+MVzniarwjNj+GJYgz3oUrY0WfvdKVm+h1cGVK5+3a0XHFwBZHB52OGBvZW+1KoC1ED2FQCUxOIuX0vUR9iWUO0SwsQi1QZ+kbA6kVGDB3/uohReJZguqU1qGgDQmEDWaiYJFfss4wyIXVEZUp8k+N4mHe7LfABQ0MKpGmQRpCjM+RvKbDd9UtBDiDJhKsCHM4zOedkn2uHmYNqITEgkzebK9VgiEhJTGOwzM/mm1LQKEhdAHyhEokxAzfVacgTDXMCqoiDR20Vo9FyloW5LHuhrg9gQ7IphK7EuM7WF6WPJEslKVqlBrWSsNAahMUXpISCPgiK5ptVDThbwS8Cu0mDTRoPaJVY0/Kwb1aZan+bPBwGFuMVGiAvZ+rd8hmj4LGV1ASuZyh8MxxQmQFarZ8JZtlMUUjAQ1Sqq37TAs49h+gf763sSAGzOEDcnSBMHvx9gl+fJkGLJGqGH6s8Pf09zVngiOa+GjsnX+yC1aFNJHWhoUMYouHLO447r5rFiO0akpkI43sAeKLDh1V4r555YOyha9HepJRxWl2cFZ7G/rhzSVIjN5qCVczCpFISMsLsLWGPgmRE3GslAUSULWwLBDM+xWA6Eq8Qy3a1rmd1UXj4vjV7HlcPVr7sVzluAvWTvqtpHbADlYcQGXu3IASE7qhIrTMQajtXhgD2AacRX/vabz3nbvnDrk7OmfTIt6fIe3mzraD0260kDsJw5cwavetWr8LrXvQ6nTp3CZZddhj//8z/HsWPHys/cdtttuP322/FP/+k/xXOf+1y8733vwzXXXIMvfvGL2NzcfPwO/jwrb06FzRyTFOxqg8VOAu3disuAiTh7c+pmzWIBJpufDK78XFh8uaEPM8bm9hKXTOcIyYCISxixzYOJyLDLANMZuEVCd/kG7DxImFtgmFUPHxP8HqH2wlJJ3siQyDSonIHdtaD9uQQwKquPjJFg+q6XPX0y0RdPMqQ/sYX5M7fQT6WI7I/VstHsL6RxKbkmakUQggxQLIGCSG0XlxmceV6N4wao7lsMctQ1Ft2h4VXxWNcAM23AUHlw5RBnAqykKvusk9p/AAk8MI4gw0xAhqn9ZRuo7t6TJpQIvKF2CkGKr3EQeTJSOMr7L28uhTQMQ+n8ftEXeo2byTv+6L3Yef5bxfPTGDkvWQK7XJVMHppOBoYIM3auUlarynIPN6h3/PEQQrkGtjxG69SffQA7L3ibDiSrIUxPF49ZqICwFHXIdrQu4sqWfvmaVPsUWukAxlukJlsqaMOhrFMAw6AHKDkbScPm2Urw51d+9ufO+9TcWVCgQZZPAqhktQGpWmEUbSK/p8CDbWWAzkbsoLKVQGENRm088gxMG7aiiND6niv5nQx42A4wByh+8DxS0riV3INcx+BO7HbEi3sAAYptjtqA5WMiCWqR59HXkr9XAA6DEmwJjIATBTmyUsV08rO5STQY9jEqyhUgTRlhKjksMlAmUBSwRSy9BmbhOQAGScHOClDYVr4fZsM5lsG1KZYI4wBn+QH5XwaV5DMClJwwZsQKRf1COsi1K5YIA2UUBrUpGjyn5fhz1krxy+4loDvbO2VVkeTAMOCoNO2cK69sFzCy5MB0gtUzjiPVBtXpdrCiyRZhpNk0Ew/YbdDpPfDqPCD84QEsIOGeTQX2BuzqwqwUooUOZaMOVI0B6mpoeLPd5zjXKh93/rf+GY41ha2PQijQ/dwdKjszmJIzzFjzpDJjUI8J0D1Shz4wYilG7UjFmhKol8dIVYM4qwpTPxEBsxq06M4bjHz997+9qFDyULk7Wev5kXNPCUiVKUxXsLCF2QDUD/lBZdBSGYSp/BcrGaz88YdvOOe5/yKsfB4AyKBA/0pJgF0TGdTrZ9hI1oDtZBAQKwGqbc9yv4jyGfD7sQyxuu0KsSaEDQY8g3wEWRmWhamDjwxWVXK118MtAprTBskZhK1ahiMpKDgXYZY94Az8rkeqLPpNi37bg/0m/NlW8uuaej3nL5NMspqkltcKa5Ge8zTsXrWBfkbwC0Z3sobdXwLOS51pCKChDoQBaNnDz6MOvQjzyw36509xAoC/72C4hsc17bhWGbNsx99TNXmxrckq0BFLlw0JKBgHW1hq46DMMAyGqN2KXW2+/+hrLs+ZwXyo3Y/hwuAvh+bMg1p5Xah16pDi+NSXbhMFyug94xAG5VFKoH4y2LMkxs4zb5B+bGRtfE5Nq/ePnRe8rZAQHqt16ssfFNKQc9KLZEtmQK67XgG2/BkApM/Lr/FordcJF3LFONQXeVip9S3Xrtj2mZX2WBmkzHu/gShZughHAPcJsTKwnUWsgT/6xQffO8SONcEfaJ/G0nvGqZP7L7LVKZVaqZ8Y8KaoK90yIdvQ+nlURaAGmquSxHSS35IagzCVYXjOvMszijC1xUI7NHYgHTkSJSIbHdJr6Liy4+WcyR9sBchJBAFYqkE1PK6zs3VXUZow5BpgAGRK3W3bEckm1/sEBQoEiAKENMmqFGGr+34gcAV0jYFpGH4uz0mNASV9fZnkw0rUUUAmNGrpZdRSVt1HQFrXG6DbGOpTAGAzyoTV85HzGQEUpbsQPoe6vKjJoYTcrKzN9+Ecc1SN5k7I5xulLs8EKBOl1s/nI3+djfQcmTyW1baxIs2YPLRPzaZYPvM4Yk2oz/RwZyW8PVtB5z3KECFOHMykEbDgYa40ayR3zRDirJJjCrq/A6KsXLXDdUYswETez80IpMhkn5wzpgSDuFUj1hb+gYU8Xs4UJCq2u0hxzZKLnUW2Ny1LM/uQAEJUArU8DlcW1AZRlOS9KQy1teXlGlGJK1GaSr5mOsfGfOdZN8rrIBL1LAD0hP7kDCDALoO4lrQBvDEpfQV1QWzBQhqICmrHaZjBtkGYWoSJqFeSB774jr+YNe3ROlqPZj1pAJYPfOADePrTn45f+7VfK1975jOfWf7OzPjFX/xFvP3tb8df/+t/HQDwz/7ZP8Pll1+Of/7P/zn+3t/7exft2F5/zfuBhEfEYvrNjwnK+7rrRI7OhZUhzSV0oGQIg+e+U+mmEUZzcmIH5hdpzbc/OUKcGIQpkByj7Ry+/sAJxGiQzlawSxn6xMaAQy50pKiz837wix6Hs7VRbAXU5sq0PZpVh3DFMSyvaFBNHPxEWWFdAB2swHt7IKcFZh/E76aqRN2yvYnFM7YQaiMgEgFxYtBfMoE38hgA1ofcylxnI/ZpeXPvtoHdZ9XY8AbTg+W5AMvYiiYXstlrMjciapOSaleYQ3loJzY5uaDgIScAKIV6ljLLMFjYhmah7EBvkTaaoloZ7EJImAo5j0Cl2szAx373XQ/7s3Qh1nUvfpc00N4WAIm9k8BiPV/U9cKWViksAGQ7N3DCOAg4W0sdVj3c8cc3F1/sx3Kd+pNbAADX/+A7xFJmHOR4sBqYHxl8swanvnTbY36cT9T1cNQr17xqYJV+4rcfBjhoSIrPpDe+kARcSQncDAOhHKzHGtBre2HoSdC5+MBmCyhAhvQggB3jGb96G6g3+Nrff2N52mf+kw/BBFMss0SGz8UijAJgOiogCzseBuIA7FK+53qAeultWMNIS7MzbmxGtzDboShfxPNZ7h0yUMSarD8/1tDgJFR7AaZLCDOnwIjR4aTsEXBU2GuAqmHy/C7pbZHlNebXXkCfUY5JGn991LQBKHZoY0WOBHVjyJ9hAJD3K9byX5hiUHMEGagWdQiNjgd6zPn59blSblAxNIKxUUUhDb/rF9nDGkU5ksGiPLjNwFcsORkjoKRN8HOGW1oB1LwMN/Lz5+wZ0gbUdvn9zvdxg9iMPgMEgEkBGGGZUhDGvwxpa6QTG2WoH2c1Um1gFwJ6cN6Dx0AMIM2Vt6CmBvW9DNYOM/zGw9euAxIQp64ABKyM2uA9jDfFY9lVFji5AXd6PvhRjx/vQfLMeDToy6xTImHrEVAGtWsATYIq1YaBIKvFiHyIBTjJr50CFxBmsBo15fxlkCP7tjORZKJsVTB9wicfZG/lyoEr+bzc8Yc3CcNvrohkYcsOwzBhrWZrEmGtjlm1qVYfeB2U/P6vPDma0Gyj80gZ3r/5sTefU88CELav/kl6nVAWZFRCBLIt69ANcKtUBlYZ1AozL2zgidx/TedhV+JtUu1DrUwcqjMrCbZXG6dcj2RQQDIQgBJI3PZwIcGsOjSrFvGK41heMUGyBF9n1rZcK/6+Oej+04PVR4yi8koMvvISHHzfDMkB1X4Sn3oAcXsqwKUxoLYXQHniJftIAUWxjDHl/rG6BDj9/Ck2Nzya+5YwD+xjmNrqyp/7xCgTnDHQOQZBrRnAFaAMQ9mS2K4VhYo8Tr7WJD8Pw/UaeWDgjoGWbBFkRZ0iN800KEL1OC42uHJ47Vz1pnPvh5UHqTq+KPNW7brSKK/sYa9fe/3V7wfMei106k9ueXzqWbUx27nqTTLgy576zokl1aqV98CYQbF/GNj+Hl6f/NTDu7ftXPUmgOgc27gHXTrMzFkOAiZbAVp0v2IicO3lOtP+mHpRcaTal17VdAnJiWbU9IxYE77/5z4C0wN/9N+s7yWv+vEPY6K1IYBir9Ufq4A8U0gA1HI1TCTTLlYDyYjJoN4T2/CcFWJbA9vKvWesTDEhifUXck+rfTVLLVqG+4yiVJTjQvk7R1Wn9JJRlWqnhJvB7gvAGsGUDZX6jWloP01kmDYXqvJSKYlCWciRYledFdpikwXYLoF6hlsJiJ+cKUqZXgmStktynJrFF2tRlAAY1C95fqOKF1GdYKih4+hnoGWPG/6T86uzmwYD8Qhq+d4xktVfJiqgRn5sMwLNiblYhMnxcanrxaoNRSUuxzrU9oDU92PFd3KiSBdV6Yg0FtU5ZSVZazmbFrMpwiWbSnaJiBs1Yk1wiwSzzDIY6ffkM5GGDLTAQt5U+9qsNKEMeJSD1L1u1YJiRGrUIozU9vfQvc6ECbA5FfLrYln28HOUNiUrKK3tHaaLsJYE/ABkb3BOfs7nPDaV+CcewBUlAhWl58g2PuezlYy5TLYaH9coU4VC0l6Hil0fe8DM24e+PznZw079yS249uU3yYyvj2XGxo2QjU0bAGuQmgrFzlPzX3LGWtgUy7Jse/Dv//snR017tI7W47GeNBXXv/7X/xrXXXcdfvzHfxyf+cxn8NSnPhU//dM/jZ/6qZ8CAHz1q1/F3XffjWuvvbb8Tl3XeM1rXoPPfe5zDwqwtG2LdmSx8V3L18zDs9F5w2tu0cZfvUVNDn6kMmgarFpk+J6ZJLGx6GcWlKiwmm0nIbrjYsYExmpqlGlLaM82on7Zt9j8NmF2LxeVDCe96TNksK43e3Yy2AQAs4qCsockhZP6x2K5hPtmj82zM6SJx+qKGbptCzaEai/CH5xEe8xj48tnga/fCQ5BlAHeobtiE/MrHOrdhH4q1h9ZecM0FfuCjLBrUQoAbA36DYvVCQvbMTbulOlhrAntCYfJrBFf2F4Yg5QM4EeNZ/aJzxv0KNA2D3nYCeskhxrn/ATTQx9HABsmrIU1F8a3MnJzkxqOT8sQxqjVwprFA6C+1gDb8wfQX+z1Mc14ue4l75JmGZDj0e9T5YRRseyGEDagMDzKOpg/5PNc9+J3gcy51mKP1TocRHrdi98F3p4BUA9tK4XMHX9402N+bA+2Xn/1+x9bC4rvYl3zqvedd+D6UCt7sQMCcpLaeHDjkWoPrqyAKLXVpkaKYrckmMYWRltypLki0pzIgwNcJ7hZD2MYf+n/fQviyuLZ/yMDPy4dm6gkWAAUBVnAEEsjAKYnzQ8SoBo+AZFgVnYAChKEhTSef/FosM9j0IA0oJkLoxsKtJS/8/B7hWnsRkGYOpAzfYKxAgyYqA2lDiT7nBfFEAAo7yf94PcsDPJRsR91/8g+y7oPGVXnAAIwmH4EvihQQxCggTQjTCQtgN+XJjDWQL/Buj8RspJmzaI5AySMoeHg/DkZ7q0FdDIDuFOaSYtir1YyVfSxTdSweQ1NBYkFh2VpdNgL2JD3z9iYsge4pVqJQZrdrFCxrTxuqAmb3+rRfGtXj9chTcWCCKqyMSFhcXmF5UkDvxjyWJAi+NgmDp65Adsz7DIJkPZAK4HTWVGR9+mkg2JABmkR4Fkjffe+BnonFpY2IDYynITosDFDPD5Fqtcp17HWocLMlsFrty15a/W2R3WmEya+ApJrapXDA8xsrWUNUk16DSU5Vhbgg0csPEoKgqiFUAFonIA9YhdKYltUhjY6EFbfaTY5JHcAW9gZhO0K7bYTJmZgfOZ/eehMvPEA+OrX3qIfPoidS6IyAAdQBjGZRcoEfPoOIc28duc2Ia8Y4LO//kY8luuC1LM6NH+4Njq5pk21Paeezda3wKimVYWUXUWxYGUBMm2XCvM5AyBmFUVxUgtj0nZyX6n2ABDgDzKQysWaxS4gtnAZAFBwkvNQwhhRZ+eg4gxMLFew37wPG2clIH6p+SyhEdvC5rIafr6N1UmHY3+6D/ryNwXUNITu8g3MrzRwy9H9PjHakxWo9/DzAOor2HmrvusJcAxEUfKsjhuYHti4K4LvBsLEYH6lA2iCBoA5c7CuvC177aHrDxhq3FznRgGsUqNDLM7vC8nm0bNcSxnIVCJTOc5eBzF1pWpsIG3WiI0TRnseAuXnjnHtWJio1JeP5coEmZ1n3YiikgUKEYiYRV2fLdiANesYyv76k+acx87r+h8QIsnjVc+ejwS08/y3yvDPGHBlwQq6PKit2mO8rn79rQ8b4Hg8V1HmP5Klw8xyE+h6UExIW5PSD7Lmu7XHGx3wJxgNbCcFMXNPLqQ9eajogX5LHvp57/0I6jPAU//Fl+WaftWz5YcIsv8bAntT7o0UND/Byx6fnJBLshICQLEntx3DLqMMyw1UQZPKvdKkqP16GtwdwEUVwwoCwAzDfR5bX2vtFmu1KNM+vfy+05/RmjfbojMPNaEEwKOAR6aNZX6ARLDal3fbrgTWizWnZvYFBYYNwWRCqRHCY1aPm5D0/IubiO0i2EoeYD81iDVKLiPboQ4QlRAQ1HlwsDTT85w/KzpbKEpyN9TxtsVg3TVSq+TMFTk+qWuyijo5oNe8FLuSZ8mEhmRpcEwhBWVIntP2WSEDcAS6DWDjLsbm14SsmrxBnDgBxtTJQxQ4jMVlHqsTBLuSzw0TEE/MsPec6WBX1yZUZ/uiEoKlonTMVlli95pAHMXSi2d6/Fyuo3J95fw+AGhqxM1G9npAwLpst5+JEDrLihMnCvXFhliv782HmnHNVpdVxaJ7mt7/zUpzSgoQogQp3U+yNW22gh8+tLkmMgKoWAKMEG0pDdeVZAIOpOayXzlbiElpo0GYepg+wvTpIWdFY9XldS9+F65/0TtB2Wq3FkLEOL+YG480rUpmYt6zr/mRmwvoCQzk8KP1xFvpCWMR9kQ5jsd3PWkAlq985Sv45V/+Zdx4441429vehs9//vP4mZ/5GdR1jZ/8yZ/E3XffDQC4/PLL137v8ssvx9e//vUHfdxbb70V73nPoyv+H0k2AQVpSHJo1Kc+KYXma3duGzZhBkhDwEwb1U9VChhTG3BmzEZtSjsugWF5YMdWNumv/OMb8az/+4fh9g02vwE0pxNsm8pmnxc7wid+c2BiXf3aW7TRIvzGbw1fv/773y6KjNrDMgMHC+BgAdNXaADY1QT9pkW7bbH3DIfFFcDus0/ixJ9uodrtEaYOqTboJwbVfoJfJCQrDWU/JXQzg2QJ1T7B9+JnDkCYfrVDv1UhNJl9QXBLgl8k1Gd72IUg83BOFBbWAMYCXQderQa/dWsGZppKPFkHJnYZYGYevCHM08xAyT7gwkBCKYZL8RQZdhWkIHDamMWEtDkZMbFlsJBBmfHX8sabww8fi/WGV9+sg+DRRq3WEOXvZZimoFA1ss5iVmLlwC7G5gaA818TO899s2TWqPx159lvxKmvfPdBpxdifewP3oPrXvruNSuacejhE2E90cEVQBQrb3jNLQDz2v3iodYdf3wzrn/RO9XLHEPB7UwZuiZv1MdYgAViacx6ryBIpwWisrViJR9VtyBRvtQRm8cWWLUeKRAAEiClSUDIoK10RmItpAdH8nUKVNSBiY38WzOxTA9t8OTPAqwwrykKh0B4LvZXbpnK4DevDNjaPhU/7OSESche2PDRG4jED+Vzmi0DkrLe8vFIoCYK4AHKLDQutmLjcHvTD0BGBq/sSo4/qi1WqlDyZOTJ5ffcEmv2YuUc6nPI+aAC1pzvZ4Bh/4ORzJu8/IEMVd1iaK7H2TJMBOoYZk/OqclqHG2c7CqV94a1ac6NvEkMe6BNtlV1JAP+IAIkTMYShjoG2414ds/ujph88V7wmbNyHrc3kaYnUd25C5zZLWw5f99xNE/ZwuIyj8VlBhvfjMB8CUqM6V0VwoYXNWniITDdSyA1sm1XEFCBeg3RtBbdpVP40wam8sLOW66G+/bmBrA1RSJCmlXoN70wUhMLCOJpZBGkb6mel+QNzj7Hw88dmtONKG4Mwe33cAedHFMZTqgyBUDYrNBvWj3n+qAm25OYQaWig6gxq09UTKYwCQfgJb+fMmSAN6K2LOxZlGE6O4swczh4ihe7pjnjd3/tRjyc9YbX3ALxLY+iTslglIGwdVUR85sffzNe85/dBhDw6UPB758+9Sa86sc/jN/+n89vT3gx14WoZz/56UcWQJprWrA5p57NZJL8GcuDPrm/RVglulCSwHvTxcJoBlFheBLn7BbCH/63N+KHfvJ2UREuE2zHqHY7Gfq1vbAuY8THDg2Ur3nl+3SAZ/Cxz727fP36F70TcaOBjVsCYhwsQH2F5h6CWzYAAd2WQ7dlcfBUj9VJYH75Fk485XmozkpNCwBbX5ebW6zEHqafDRY17AnuQO3OFmIBwrVYk8VKAJx+BgAGfsFoTgf4gyCM35CEsDOZDLZVqxa8WEhNa4ZrSt6QDHZo/dZ1MCuH1NhyLZX3LQ7Xp0iKlDHch4GJn7/Wib88bUyLNY/pY2EiFzuUPDSKCVzZx0w5cc0r31c+Nw86eDoMDjsBBQEAiQtTumQ3jvKjDtdhO89+IyjF8pg7z7zhCREif+pPbxUrXgXaKKU1UPvxXk8GcAVQe7nnPrJhYjn3WVSWNJsDkFwuQFWiQHWmQ9gQIhFI7m2Go1haZqBaldt+wUXd0J5kuLkqd60FQlAFtwyQReU9ImZWBqgMAFsUmKaXWhSREBoUckwGNIgNkr4ImTHI9UCsClHtEZOjcwgboHXgxvQsCgsSYoKosgnsxQIsqfoNyAAFld47mWHfz8NwNnJbynZPeY2BbQF+oLl3MlPI5KJ83MVWuBK1aQaLRGEtGbU2xjWlb7KEZC0oq7Fzxl/Kg4L1elaOR2txC2SrWUBqWbdE6RWKmlz7BYqikgdQbG7zezTuN5ikDhXl+tCvUxzIVCYyzAGXPBcwI4FAfnS8LHV9cwY49h/Pgu6+X57z0uMIT99G860DmLvuK+8xmFFfcQmWT9nA8jKHxaWEzW8k2Hv3MN2uhQzcD0APiJAaC4pGPuMhFYsqsNaS3qF9yjacMTCVAy1aqWezVEnzp3gq6JVkghD86aUQaw8rUkiAjezG0h73mF9ZwR80aO6fyCyGAHt2CdrdH4AN5rJvxa0G/WaF6syq5CVRC6nFAfCkQg67ZyUgZbstZCX2iDhEfRzmR/mz6wyoqfTa0kMPIjljbxE3mwJ09TMDtzT4zP/6nQHgnee9RdQ0jQMnAbO4skJkNEYmwAn42OffiWtf8V5QSOe4p3zis9LPv3bnNnz61HcBOh+to/U9up40AEtKCS996Utxyy3CLHzxi1+ML3zhC/jlX/5l/ORP/mT5uXE+BgAw8zlfG6+3vvWtuPHGofne29vD05/+9At89MN6MOucwzeubDsGQIZrhhAbKZBY2Qi2sDGSADF9KlZVtmP8h9vlddX3CbPOLWWI8m//fw/O5MwqnAdrssd5GoBaSwEFiXf7HWAqDXIz2PgmIVbAvS/xYPLFzsH0wOyeBDcXlpyvLdyGQ/QaAOd0qFg5YTCGBNTKUq/k/RQbl+ExqI8C+FReM1YisFyCc5CuN8DGTLxwc1HHLF6dajkiw8AE0xmxr9QBgciEpUhiDXWjyKKS6YWNaTplwkUZYMHJcMx0Caw/b7p1GWixf0mpvN+P1bIq1/3Y774L17/w7UhbjVwrattCaTQtXWMIj7y3SRhDJfvG2vOy+XaedWNpBhB1eGLNeUNFH+v1sd979+P6/E+WNbZ9y/eJ/DW7jPiNzz4yq4xrX34TyBnFMCOYspWJMHaSU3BlIoqyDA4kB3Sb8lvZrknsE1EaFEAUKDEaWKND4CBdxNf/6+Fe+4xfvU3BFYAdgzRom1QOn5sYuyS4BSnTOjd8Q3NUAu2zzdfIlopH9XVmvOXGKFlpQCny2rUHgjR+mgElrMPBOzvfi4DcwA2WAuPnLbksZnSs/aD0KEzBNIBByULYdNVgt5Y0ADMoQ45t/jlRd8RGwBg3H9Q8bKVBZgNhuK2AYnnGI3sEHs5bVp+wAShn4JDYAFV7DNcy3JILWzFZ6H2UYbsEuxqxEZW9R4FHzfEQyAooeNQYkdp34jduV0n9yyWU3nasQ9DhWAFg486AyZ0LmPvOgnf39eTrwHh0jytNXi02R7HKYBYXWxd28l4bysMHA9Yu3fYR1HYS5NlUgDLyTBs0YyShvXQqwOL+FO6BAwVlEsIVx0qOiASL65DCm6ISkhByKp+l/LPZOmR5CWF5qbzhrgWqXYvmrDyv3+8RJw6rE06uk1YIH5QAu4pDfgywJlnKX0tkBvuQDDbqZz2zTOW64WG/yTYiNQ33oAzO5O95+U/sK4BX/s0PoznTPyQZ5rU7t8Eqi5W6oEpdUeTmzzMwKFU+8789eLP5eIArwGNfzwLnr2kP17Ovu/YDavc1YkxaU6xlTJdgVwFm2UumDoBimZOkVomVwb/7f0rtKrWsZLTU9xyco0zN67qXvacMDB4s026sVr3+B3Uwr/Ym7qBDqh38flSFn8H0PsLyEsK9/wcHv+tgElDtMja/IfYhVZRrItYE0zHCzA73HSfAIMOC2h6kikSxOmM0ZyPsMoMcCWbZgg6WUs9m4s5iKYzexMDxzWFzsUaGPsuV7iM8KM6iqIFY99vCnAW0Dh4BDzFKRkkGuQ4pUtAHmHlbrNjyPS4Ph4rqJWld+xhFf2S7sgyuXP/Ct4OWrZyT/Fryn2PlXTl/VM4b0QDyYrnCznPfvGbDsnPVm0Qln/NPFMzYefo/xqlv/t8emxf8EOtwn3a0zl3X/MjNMPNuUO/rvWLnuW+Wz0zX4dS3/ptH9Jg7z3sLUI1AebVoo7YHaleIC36/g91dwrQeYbtRdQBEmbzsZXCcrbi8LTki/kDA2Pos0JxloO1w6r5/snYMr73+A5pTKjl9YTKoLYV0oxa3K1E8EA91QL5nCfEk98KalaIuCwQUuzMb8u+aoq5mR8i2qBTEXpdZn1+JQmK9Ldkq2WKsqL2VDJSts3KtXEgXBgUMMTzcukA0BN07AqnyJChAf7jWsR2XWmNYUkdTkOOyqyivXa1FWAEvt2I47T3knA6kn/wacp8wBliSB6C1dFaUixIFSqhSNb6TPLKczVjyDpXEZOLwmOxyPT7Yd3UbBNsN1sNZ/ZMJWJlYlXNhMiC28W3GJf/uAdB9Z0anRB837yUjMD9VToihJEoY0uyqvN+JWkV6GdK8ELJCsrDzHOois5I0aWCWPfzuCmGjQtiu4A4q2F21mQ8RMAbx+BTtyQaZkFydWUnwe1aWjBQf5fGZQX2CW4rtXrdp0B6byHXVM6pjFaqzE7gzC6RphdVlUk9nFxnTKxiU81Gmk7IHZ0JztvwsJNkwEE9LhmKMkhfDubGUfB+2FlxZfOKzb8frr36/zGa0NqJecgfDpke3YYTsGxmv3bkNbhHwG585/6zu+h98B8iqUkjrY/m71F4l70jnad/JOeUIXDlaR+uRrScNwHLllVfiBS94wdrXnv/85+PXf/3XAQBXXHEFAODuu+/GlVdeWX7m3nvvPUfVMl51XaOu6wf9/uO2CqPbqG0WVFrMxc7FrlJRt1BgyS+wBJCHnye84v/8YYSGMJkS/uCXbnhYT/tI1DgA1qT/1//AL8gm1Ce1CItFWtg/IAMPYMSYABAmwmigBPi9gIpZGDeQAZRpe9CqBzsLO+/gvYTFynlRpsleCzNvpalbroTZp962vBrsMnLzSVyDZxLeScsOCEGKRmuBuoIjAU2yLNa0UW17dDiV2QeMMhygDNQAwjYEwLVm0hSlB5B086UR649hADd4yl/3svcUBsTFHP5/7HffhZ2n/QwAIG5P5LiAwSriPL7UxctcJbmDlDYOhZch7LzgbSjZOznYOKYBiAEKG/toPTlWdec+7vjCzdh5wdtQeYvrXvpuOG8RNnxhuTyS9fHPvxPXvvwmwDIoM8C0GE2VQZxahEZBBgthQynDLQ9/c/ZK8iLJz5L6MGHEmkFWrrO66vGf/vY7gb89PP8zf+02kGdwACgaBVMGcIUCCphRckgKm254nLV/K6mOcoh7tj3QhtAfpHLviNr4JmUVC7jLYKOvU8MyQ5MbVpS8KjJQYJbhVvK6I1EBJLJdlgAQQxOaz1UBNbTRKvZe0IZNv95vKbiiwAwbIFVc7BsoUvnd5PPX9PcBwACm02ayHR4bSUmLet5SDQU3UMI/s22B6YHJ/VyAjzwEMy3DZsZh5GI/tHbf0gYnzFyxfyxK0cSa40MIDrCtMDtzdgg3QKhNGUDYTgYSG3clTO/qUN25C37gtDJJ9eQlBu8fwOzuy3tOBqg84lMvxb0v30S/KcxFsTZi8MnjOHjecfQbBm6RSlOXKiuWCollKGh00OkcqO1huyBM/V6JDZA9hZiRtiZItUOsrfit14R+Q0gXXo3Yi/1GRYiVKQBayc1Qj/LmNCM0hH5DVEyhBsJlhMVlFjAWft/D9ECYAfVZRqws/DwVtYvYyMleIs0dARDfczYGZAEkGXr8xue+uyyDXLO87toPlPeYIuPff/Th1TwA8LrrPiDZTn0SCwgiYf4BZeBjRgDRE3U9UevZXD9l+5hsP0tJrfu6KEP7ZTfUBMwgVUunSlRkr73+A6IwcoTf+tcPbfkGPPIsuzFQc/33v13qWWdAkeAOpOZmAvyBQX+fKQCs6bgEQps+wXSd1LITV0KYKbIMJvsomUFEoD6iOhCWeawJ1DPqe+cykA2apdF1QFoUgIVb9YFPSQb8zoGntVxnq3awTyEqSm3qA0xnwVEGuaTWrmXolYdTKQm4kh8j6T0oq2Gy8pvlomDNqRF1kvrOZJJRiECSAc/O899aQNWLNfz/+O+8A9e9bOhHKEQ5Pymtg0SHa84x6zkziNMIoIoR2NvHzpX/EKgroK4FxAqhDO/G2VhPFJDlaD30sv/p67jj/o9KD+QsTOLSD8HZRwyuAMCpL75fwDdlimcyADdV6Rv9vqg/sVyBnFpHd5KBQH0EYgTbujglAEAm+khGFRAmwO/+P85VZb7mr34QcarqURZni1hnMhKjn5lCcBFbJMnRyGSUcfYGW5L7RV4ZMDLD1wYrL7mPpFrnFaO6UizMWe21hDDFJLWuzarp8T0/19gKVsTRvKA4fBiG7fLzqB1apz2rIeQsuawQHwMVyWu+osfQdwDrOX1KvLFtVuEykjVI1XAuc30fJlqf6/tke4CjvEc5HL4ouSOAHmrrNdTKMR+L9htuNdgGGyUdjY+RnRKu7KBuyeBKckDcILGw7UgzceR7QT8Lpb62QNgAJvcAG9+OmH1jAbr/7No9ku47g8m9p9fvm0SIT78U9750A/2GqnEW8p6efellaLeNkiAItgciDAwpGbiLkk+7XGk2rwU6wCxXgHMwc4ZTJQkTIc1qJC920ZQYSa3cw8TAL4SYylZUV4iqGMt2oKoYybMkHxLc3CJMRZGa7eOWlzgsLnOo98QObHXMoNqXz5ifR9hFAFIC105qlOVK9kJnhViQ0lpeFxvCx7/LHN2slLzmVe9TIpEH0ne2uB2vnRe8TVSozOBJVWZQnJIYGrhMbsGao8rRenKvyEfv5RNpPWkAlle96lX44he/uPa1P/uzP8MznvEMAMCznvUsXHHFFfjEJz6BF7/4xQCAruvwmc98Bh/4wMMMqHsCrfPZAr125zaYKAqUzNqkmLQ460ExCjOui3AHkk1igsHmt7rH5Jizx++1P3wT3H4rzZu3CDMPvzeEeMpg1CJMDFYnHap9KYz8vmyE/kDYb6YLoFUPtC1oyYA1qLoA205guwbLk1aHRA5mdyENT+WleQTEWzkP/WOUgPauAxYOZj8HkmWmsQVsAnU9bB9guhqmq8DeqDJF2HjU62Pr44ryRB+DCGmjHgJDk9IGorIYvCmF5cCW05NHBKSog9wI0uLiuhe/66L5V+887WdKE/GJz/0Crv3hm8ogbE2xMlpjT/MClqhyBYAUt8oeoQj5egZrxsFxo8d+IqhYjtb51/U/+A79LGPdDzez0vHIQdnx+vjn31lyf7i2autlxRrLET73/1lngv/QT94uFlsrLmy8pEqJ3LwED2VbMb76Xwx2FM/8Hz6Ar/3kyPLBaLfGUmiadmiUspojS/HLIlF2lIY3AxNEytjN/9av0dAA2R7FZioDNqEZWGdMMvA2joslVWjkPzbCtOrVm1vsWfJzakaIH44RQLEwY93lB09nUXJEtftip02sDt0zeCWsSVGxjG0EkAhxM4Iiwe+LMiV5lKBMad61MVwK2GR6FIufbC+WVTnEAC9RbBEoyTlmBWf8QsAV1+Z7DspeYvqBFV/eIrW0yR7brOqVkjWCPEyggdlJYlNJlagiTS+BnVXH6LYs2i0JLQ0zoNqNqL58t7DcrcWaf7M99CcAVB6rKyboN4DJvYzNb/VojznsPXsKYAoTgK0/XyBseHRbDm4BwEtxZudieVRemwYXZ0tLYkaaODAB/YkaSCzWI1OH9phYhoSpKY0+gJJxIYQNUWf6A1Z1GKldhrzX9W6EWxDc0qDbJHTb8n7mz0M/A+pdoHlAsoUy0z8TD0wfZc9kGS4TIM2vMSCIdc13A86eb/3mxx+ZncvVr79Vc20Ak5Sl2MnxpqlHcoRPfuqteN11HwAlflT3ue/19WA2l2949c1ir7q3BM1bIFsuVRWy4sC0vfw3rVQZYlHft7rox5yBgGt/+Caxf9VBTalp97WmJeh+ZdBvOdSnO7H76RPMKsKyDjqsAcUog4/9FrAG5D2a+yqYUOHgSoc4MehPTFB9cyXggDWiXsmARw4z18V7B6DKg1atXGNjcCVbnQBA34MWKOSfPHxB25XZoDx+HHL1skXsxkRUMwDQtjJgVWZ+sWmMAexsUZHk8G4keQ50PaiuAGdx/Qvfjju+cOFBlute8q61HKVTX3w/dr7vZ4fXc2ifKLYzwJC9UiwN8z4xYkIDMlibL9eGzPoA8t4Y+cwegSxPzLXzvLfIZxgAZSA6f85dVtjHR2X1dupLt2HnOT8PkCt22gDg7p+f87m//kXvlD0yQcmJkulgVr3gfLUD4BAm4kLx+X82gCqv+hsfwm//y0MZX1qDiu1uziYR5YyogxlRFQcFE1BhHJxYb9tWSSaOkJgkO3B0Echg3xTF6Fi1EiaEfjLUXZInwgXQkCxFKSPdapRhlu25oljymsglK0YOUlUepT4lJC+qb2IBfSTX0JTahglAZNS7UYAlAoiF1ZPrvkG5y0iNAC9+gfIzyZtyL2Qrihi0g8IZhmCC2MomC4BZQJjcWmSViJealiKK6gfQ1wMASorKWa5ZpZNV+6bnAjgJMEJFVT1kPI4eh4DQAMaLetyoGsZ2ajVXQUgzEyDMGM1pYOv3vn3uPfJ8A1u9VpaXN+g2gek9jM1v9lhd4rD3rAlAwPEvrtAe8+i2DHjBsEYsQU2X4M4sBHzPoH7UuYAXEmbamgAJ6I/VMCHB7rUgZxCmDm4VRZ3sCG6VYBcROTdVMkws4C36Y00BO9JWDb8vezL1AmQaR6h3Gd2WQ7tl1IJP+jE/T5jdHUQRvwjrJKFWHTiyNSez7qXyb2a+YBm6D+Z282Drmle+D+5+VdKHKLWUsRhbuhOAO373XbjmR25et4Y/WkfraF3w9aQBWG644Qa88pWvxC233IK/+Tf/Jj7/+c/jox/9KD760Y8CAIgIP/uzP4tbbrkFV111Fa666irccsstmE6n+Imf+InH+egvzBpL9Ow86KCORYmhQwxiYci5Ra8sVPuYDwbMvFWQgYHewndhYL3phm2bCnS8RpgQ5ldYGfCwFANuvxeriBiHBnOpDWeIsMxoAPgDp3ZdWf7PYg9WzaSIPjhs+A+Ra1sryhYikHdAUw8WDPMlsGpBkBlZUj9v6kJhR+fhEIVMJ2HJeZlNhyH0iD0t/wZKwOhoZX/9/DjZu1qGDBKedrFAlgyuXPey98DccwYf/8YvAtCh+shff43hl4uhww1rtsPJK+nPZ1/vDK4c9khlBshg5zk/j/ZZJ4+GWI/ByvZe3+lngMHdg1SinQNj2YpXFBvC1a+/tYRBfjcy4jwUed21HyiMtLG/7Iv+rx9Rhh3w+//DjXjZ37l9NCwWFh7xoMwAAAqEr/20NJ/P/GcfgPERWK57ldCebH+2kybyy2+6AVfd+pE1xcpYmQJgCLHUJiZl0lKSbzJJEct2+N2cCWI7eVBpcAQ4kZB2saDKeSRG7ZHGgZmxQlFfAABFtRDoqTDuABQ7hQLyaGOdlCUnjQnWGjZAAY2xioHF7ssvBiUMW2XHNUBqDNgwwkQaNjfXvBbNfyEApOGbrpU/i4WlI31NVBpou+ICWEUvf/p5BlwYfp4KC56i3nuyvWJuuiHgSmZlr4Ecdji/yVMByHJujDSnXN4fsVOQBw0TZaXpOTh7lUf9wEnYbz+gyryR7ePhpfe75t4lLgkN6vtXMPMWbj5Fe6ICBcbk2+L9vLiy0ffCwARGt+3gKgO/24KCQZxVsPNs3WPLIMEsZf83nQSNp8rAHfQlzyVMZdhpW/n85bBRDsqcVWABBkiVBa/UUoQI7qCXYYUziLUtrL/ogdgIuElRhyeJQFODaj8Onu2dZEgM+ShmYBjSQ2QlXMR19WtvUU9wfX8UTGIDGGY5D7VF8gavvf4DAAG/ebQvXZSV87p2nnmDDOKVFSoMUQNKrgx0zKIrWUSP5efm4//7O0XN8hA1bWqEjBNrg/lTa1T7MvyxKyUL6bEDkNdnjahNVi3spEIFYCOyWggaYZ1mhURVgbc3QZqvRBFCZEksAC+RnLv82HUl9yUiqb36XmvKKNtYPu6s7hjXZOOaL//cciVDmtlUyBWj11185lVxnX3pC9CTH7fv5T5Z16DaXxSQJdcR17/onbjjD2+S59CadueKnwbAQrqCnD/0IxKRAtdlZVKUSUDEkN8IAWNobXM5tPQ5dp7+j9FddcWTJnPkybpef/X7H1ZO4dWvvQXVUoFZawDvsPP0fyz/dk5yjfb25euX/4NyXZy6+797xMd06ssfBCAAMojWbHyufflNpWf92B/ehOt/4BcQtyboLpnCLgPsoi8D/RxQ7pap1MSv/rEPotu0cOcpOWwnDB/2UkN+4rNvxw//l7cDzIgNFbtLqT2HepItNNdE6qPeWpjAcCGH2GNU41AhCgFCCkpelNb9lAqhJ4e8m4aK7WuxKfNAAOAIg60WkSpe5L9cx44tbxlSpkWnYImX53fLBJsGNXi2G8tWaVYJWcQMU1NRdsdKa0Xkf6vCJRKa0wlxYoZ6kAAksUUroIsCRBQZcCTZW1N5rAx4xAaar4jBPtcMJKFC5AIKuamAJplANFK5l3ORa/IMzDCKu4npMbw/Xl5cVqLHbP2rjwEAe88ibHz7MlRfuVf24LHi73wrMSZ3LnFp36C5ew7zwB782eNoL20w+dY+QIT5U2pktbgQE0yx5yXtPzCbyv4yWrQKoJTg90zZj8zeCo1m3PqUELcmQi6et8P+BYArUa24g05BOAvTxuIEYxigtoc/swQtO9TOYrrRgCuLblssfI1ax7G6KeRs34E4G7X5G/ZzVovMx8tu/LqXvhtubznsv4CAK02FkgkDgJ3BNT9yM3ABgaCj9cRYymt8QqwH6Ya/5xYxP3k0Rf/m3/wbvPWtb8WXvvQlPOtZz8KNN96In/qpnyrfZ2a85z3vwa/8yq/gzJkz+KEf+iH80i/9Ev7KX/krD/s59vb2sL29jd3dXWxtbV2Ml/Go1nUvfbf8pYRTAkiDVVf2kGZjkKYeYeYfMbPzQq2Su2Ht+vAdAFcOYatGbBz6Ddnl/YE0pGYVBdTQ8PfsJ49s9+UceFYjbk6QGguzinBn5sD+fGj+jAH6HrxYSgOoGzUp8w5RmEI0mwrAokMy3jsATRpge3MoKPNjjpjRxZ6hD0MzCgyvM4Mkk6ZIxWFUtppZf8Dw+nLDmgEWZXSwH8lOxxJdgzW23qNZ177ivTCLDmxM+RztPP+tw3EAA6CSmX6H7cOck3M+CgwtypXDA8hxwa4DhGxBcepLt12Q13S0Lsy6/gffgYG5E2XAAoBPbAl7beoRNjxiLR67Dyd47+Gsl//t2xE9od+Uf5fBfVJFQ6v+xBaImssUJkC/KcwsthKM7hbA/GmMdKJfU688+xdvBwWxhcoDdttiTYFSFB9maIySB5AAvy/MfYooVgiU1E85Yh1M1cbHdkmAKNKBdEWqVJHXkJsyE1iUMdpQddvCOMu2AjkzJdsfuKWoB8JE8j3CRH5+DObGSsGThOIdnSq1JogKsIwYdLYTxqDfZ2WMoTSZbCSLpT0u58m2ag/Qin1Ffg2ulXNiV6IKsasogaOOZJBYE6qDhOpMh35D9gHb5yBstUhQEaDphsyAIchT7ssFMNAhXw6PLD8HoDveIPkhvF38rDX7Js/Y7NAw54E7JWB1XI41NhnoAmZ3Mra+2sLffwA6s39+kCWzyK3VXDBXMoYAlPs+tQGrZxzH3jMqVHPxiG7OREQvIFpz90KtApyGgMfB5zmK0jPbDnHl1vyeS3g15L3Pg50CdADngB/l3/r35A3YyvA4TmzJIYv1OHxeLMVsn7PGEqrTrXhjj8+LkSb7Qu1d3816w2tuQbYiSZVRlirgFkHCP51YSLAdhjWPl//0o61HL2Q9e/Xrb70ow+KdS/++/KXywKQBQigM8p3nqC2GgixcOcRZ/aB5Khd7PVhNK8dVIcw8wlTs/gDAzXux8cskncy09W7IS9mcIU0rhK0GYSLZgNUDLdxdp4cnzuqIEAuYksEC8g7cBwEBZhM9h3o/ajtRbVcVsDmT5851LKehfs3ql1w7Z6CrWLxaISHNF/K7mfHvnLwWIqkNQhhqv7yI1OaM5dhUyZK/l+vhU39yywV5j659+U3y0Mwwd58uSpKdS/8+eAz8jI9xvDLQQgRkm8ecfxOTACzj0PhimTb6d2Y4W/OECL4/WrJ2nvYz631KHkg2tYKn/fDD2rucuuuXHv3zXvUmwDvE7cnAhg9J9m0AaVajO9nALgP8WRk4MxHgDOLUIzmD6r4DUB/RX7qB9mSNf/v/XVevvPqvfbD8nRiaaxXRHvcIE1PU0qYX27DkJOA+5/FVe4zJ6VSyQEwvpAx30OtgXBj7ojAnrSFFGSxWpFAQR4f4jSiQbS/gQj6ufirPaVdSi44tw7OC2S3FPkwyQuiQ3ZgoYWR4r3lvbe4JpJ4zbRqG+aW+k8eOtdHXL3W3CVI/J0dYHRfChW2F9ONWXOpZq48JoOQm5qzEbMMatKZtHgg485erkrcoOStal+prlRqbi9pH3nPpH0wn2TWkxKyiCMrK96lBP1WCkgJD2ZrYhKEvyUSvDDhRBKr9hIOnGqSsrPFA8ozpnYTtrwZs/OGdcl3kmnZMjATOub9hnFelM4LFC67A3jM9mjNimzm9t0f0Bn4e4M4sxJnESi5htsPkaS3zkE4IATypwRO1WVc7d268Wm3q3sVpeP5MNJhNpLZVK7F8P2dnBLwJYXg9Wo/CyHXWz9yQ3agKMEoAhSik3y7I8+bzkOsSS49r7tXO8986WK7nvchZpFld7jWc+wN1VnikCpkLtZ7oM9Yn4/rUpz6Fv/t3r8Vn/+1lj/ehAABe+rJ78Ou//lm84hWveLwP5XFdTxoFCwD86I/+KH70R3/0Qb9PRHj3u9+Nd7/73Y/dQT3EGodCP9p1/Q/8AmA0EHrcGLBZC+lkY2TIxPy43UCHg+GBCXF4k44RdtHDdBF2JSCCWQbNnSGwkWaaugCsAlB7kLNDsFgbYKpeGqCcZ5KLAe9ko9cmk0d5IpwtECCfF14spWnMzVS2tDpYDMeafaVHChyxUkjDxk6kKphM31HLhvkC1CpI4pw8p3fF9mVNJVLUMQDSwKzJDWj2uc1hc9e95F0Fsn40Cpcw9bCGxAotr1UrhQuPP2uHQJXxyoASGWVLZCo9y+NgBNYUewVlgYzO4cNRVxytx251l81Q3TuXQjrbijCDFi0wFYpa0nDLzz4MT/yHu9Jo2B+mw7D7C7fegB+44SOYPCCAelF5GAEJ2hMM9gyzMvjTm24AAHz/z30Ef/yzA7jyzF/5EGwwcAuC6aGB4xhswaBMMh7AFgoDyGN6aQxNr8GZoNLosQESAZRIAt5JGh6r9kv9VJtFVWuMPa/la4MiIzdPmfFXwt9VZWJbDcnU4zCdsB1L8KaeP8LQ4LIDOrXoMr0+Vm74VkNDhoTSHLqVKGxMz4MlmoaB5vMxvZcxvacvll0UNZw1MdxBJ/fxXOhbadDYGWF27x3AVRWaWS3NU1gHK3jWCKBwGBzI/goKJpAZGHLiyyyDcwoJbq6sUJKvl3spUEAEcrIHmC4hZ+T0M4PmTEK3JU15fs3tMcIDf6XB7O4Km38CscxjlnDQcp8zKMq+yqN96hbmV1QCNnVcrB/qe+fwZ1vQ071kOXSM6NUyIzBS7UAhws67Mpwpg9Awuq8mCWenlgcAZsTMpiBqEgByvqxFqpyeL7n/FoCKGURcMsMEyJJrCxD2vPiT5w+v/phmDmXLk3we8mDi8QRWrvmRm4v1huxh+vlhwLZRLM8UiLMrPa/OHLGxdH3yU2/F1a+/FUiMT376/MGqj2TtPOtGqeeskfohBPDZXdxx/0eHH1IiTB5uP1iY/WO2HqymjRFm1cP3CXZl5dpeDWoPinK9psbBZFuqaS01bR9AnVjRmsqIMiXXrNn2pNKbdtsNKgxVnJR/Wyt1W7awKsxsrcMOMYVlMDVY4KxZe+XfmzRA5aWma7vh5zPhiJR0wSzvYx7yjIlO+U+kYYAdXQGoSAfeO89/aznmRwO2mE42O3YG8WmXDN+o1GrtoYCVMnjTvYF0iJg/g4DaDI3Oa/77aGhXHovoYSssjtbFX7y9Cdo7AFbdoD4FZDCblWX5M+zdd5XDct4VE2CSENkqASTZW3zsD2+SvIQYUZ1t0W1XsI2TYW5KMvTd8qjvXxUL7p3nvaUo//J61d/4EFAJ6aE5HeEWAWYZhM2/yJanQy6JCaJiyOoM0wF+yTDZ/qoXgovp02DZ62nIHwXAXnIwYi0Ep2zxOqiJBzVKtsvKXycLGK2Xsxpc8ucULOlU0dwT2AjJp1jIlgG49B5CfCGYCQsw08ken+24xzV2dv3IeYsmcAmaT05tfLU0OP6f5sNsISSkqdyDzULeG3YGOc+KrRXyjDew+yvQ6T34g8tFvdiPgAoA3SVTtNtOQ+xZM1io1KeS1RiRKjNYu3UJYWoAfU2mY9S91i+kr1/fl6z4idVgLZxBqVCLimlyH6PbJMlYtIDphMz2wAsdpt/cAlsLSgnmW/fKg52v97cG4SknsHjKBLZNkvsTGfW3zqI+3cJd5iSHBSi5umwJcaOB1TqeQgJ7q4r3UAALeCc91f5K7N0nFXjWDMRWQOcyGBQl3oOPbw427mvOGyNHDmuRJl7zjhhcObGmdgZupeprXWIhJ9cCdWGYcyi4xEQXxe7y4a7rf/AdA+iTGLw5UftgzZ9Jcs9JTQVYyb4jvaaP1tE6Whd3PakULI/FeqKgq4U53seBZZNv6udBy5/Ig+md5791ndWWmxGrXvJeipM48ei3HIKym4sP/J7mzPSDRYzba6X43BRZZ326R3XPvjSRZGTTXbXgrgd3wvij3PTkhnLcUGW2hnMDoKKgS1k5c+RQEwYA5BwwnQogESJKBsvaz4+ZcUaeS4v6zC6Q51kHXsagCoBhyKbZGLBUWNGADAzHoNtDrWte9T6wM/B37+HUFwUQLKzRxIPVQ2Zrkv6ZDkmIFVyBs8N5O/yejwNTxyuEQQEzsp84UrM8cdZ1L3232rOIVV7caBA2K2Gv1RIUzhb4nX/xc9/xsR7OesVPfBgUgH5GWF5CCFOIdY+XRqg+DRnqKkDQHgO+/OYbHvbjP++mwQqMooAJVuv2bB+QAZUcXA+gMM2kEYQO8vVYRj+TVRAmoAATuTEChPnXT6kcQ7dBhUlY1DTM2pgK07AcbwL8nMWKKaIowkxghKlFu22EiQdpbt1Cnj/bH2TQJ1aSoREnwzn1C/la8vKaTAtU+wKybH5jVYLTU2XgDwKqe+egffXnz9d8DmTv+vUBm6FBhQgMtozKtOa+B3kdJJY9bzS48l6Ypnov4bpCPDaRZoFRQuGzAqPfqgePb5L3AQYwbYTbXUlYZYjCQKud2A7ouQwbHtFLyKkJCfOn1ji4Qlh/IAGjAMAtgc1v9GjuXSDOKmnS5h3smQUwX4BPbGHxzG2wJcwvs2hPSA6L7eWzPbk/odoNCDNhhfr9gPr+JeJM7OyoT2r5pSAVANbQ79hIE2qXQZh5qvosjaWlophhb8rjUR81Q0syULJdl5xvAaCGEEwumSpsqJzrsdJ0PMjNQdbZUiFVDh///Dsf5lV5cVchJORjXAlglZoK4VgjmTR6DXXbFqYHfvt/vjD3s+92PZEULI9mrWV5hSgDgWxRFQJO3fPLaz+/89w349SfPXGzE9dq2vPVs9YizjxSZWBXEbGxYEPoZzLwrHY7+VkCYAj+9BL98QnaEx7dhkG9lzD91hwAxAaFeVC89L1Y3I7rJWuEHKQEH25bICapS0fqC3nAESko16dZsZKXcwKC1wK40KofFC7A8LtjlXP+ej4nzgJGh9ZjBXQBdA7VksqaZlXoUFYJZdDlYSgJrn3Fe0GrgDTxsLvLMvzaufTvg1WxwwrGl1DiURZLWVm5chiocm4doBmDW4eV7Pm8AvL41hzVtE+QtfO0n1n/rMYITCZAU8le6C3QR1CIpS96VM93xU8jWyLxpCrXblGN9hGmlbw19hbUhTVHgYezrn3Fe9FtVwKi9KzkxYDYyAC5qE5tJprQAFyw1EcCbHD5GhgIjRHbL4ZmqWgfGjWvTmvQMDFYHbeItZCHSs06qmcze54tZC9gAXpyTesWCt7oZVPtRcTaoN8wSE7r7pXknIQaJdMvE4EAVZ6rcmXzmz36mYTTx2qwBqMEbHxLCJ6s9sbJEqrdDu7bD4AP5N5LZAq4zW071KfOiSJwuQLv7g/3i7oSUDom8NldccMAwMvV+e8pTQ3emslztQFxe4rF06ZF3U2qzrZdwvzKSsAsT+Uc21Z6BL9kTO7p4XdXoC4gTSu0JxqpX/uIOHFi5buMcPsdUu1w8PQG8yuMqPRJbdkMcPJPejR3HSBsSbi8XQa4swvggTPgy06gu2yzEGZWJx3aYwaT+6LY2m5aTO/p0W9YsAFcy6hOt0iV7EGmS8jWrGbZgVZa0zb6uY9c6jLZD9K6OgaQf48VpDHJ9ZvVJJoBW1xDMiFLv5bVHAAKsEKJYZe9EL5GKwNNZQ5HBK5dATsf77XzvLdILVV7IVVFlnuX9gJpo0F7skGYieWfXabHzdEmrydKTfoXaWUFy2f+7aWP96EAAH7oZfceKVhwBLCcsx7Pi//al980hIiPg2Gz+uJxliE+2rXz3DePGroRuAFIGODEo9+qsbjco59qgJsD6rMMf8Bwq1SGZcSAOwjStG4NQqxqt4e/5wA0X6gdgm6KY+k3sN5QGRrY+Rn8ANbZGrkJy0w9aPEFDAy3kVKmPE5uxkaMtjXQpVglGKTjs/WfObziiNkIaNOq3xuFjpdzag59TQuMwz6hO1e9SYIZn/cWlMyUFIeGvLyeQ8y9fD4O/0xunsc/Xw5q9NqzLUVMg91E/l6xtZHHP/WVD517Po7WRVvZipCNEeaLl8+v6aIOXkUaD0MIE4t+w5Yw9t/9tRsf9fOPAZbViYFplWoJI/T70qhlZUbyktnxhVu/M8hy1a0fgVsMDaRtURQsQ/Kn/FeyTZQ5x0b9iyHKDRmQoTSfWT2SQRe3RLEzMz3DL1JRuvRTg3bLoN9Un2YjTELTyWO6hdihjY8jeiBMJVh+6xsd/G4rdpDKSMr3w3bbiOLAEGzHYAv0U1IbNEY/NVidAFaXMuKEwXVCfY+D35N7rgSSAtO7geYMY/btDtW9+0gbjfgZewM772HPzgU0Gav8nB28/6tKvrZqpfkcD6ScBep6YFeHUOwbue+H+2sOVT58b608eHNahhJx4tSeSp4j1qKgYUMIU4fYCDnBzSMm394XYCiNCAxNDZ41iJsN+k1fwkqTJ7RbpthfjH3BmzMJk/vF/oASo75nIbZY2oztvuhStFsCzMRarOX8kotN3OSBCOoZcWLEpuNsDzvvETYrwAB2GQU0SiOLNL0m+60KyVIBgSgyTBsGBp8zSI0MBDJTlUICRR10Mw9Aiv68DCzExg0ji6yS1ZJt1WIqFp6wCqyUfQGljgHJQCdV9hzW7WO9xorPkh1RObFgqYXZZ1uxsVte3jwkuHIh1ckPtZ7MAEuxs80KjgzsLVfDtZwYpzQn48m4dp6rw4rD9awT+5NsO5IB+Pa4BTHgD/Ra0r0ARmzBwqZHt+XUmpJgOobtEqbfPIA5aOX+mUHsVTvcT3Otl+vdthvup2MQIQ/58sq1awZE1PIrD2uoD8P98ZDN7/g9LMDJ2BrWmAFEHxFnyu/l2g8QsFeHmpnotGbDNR5KjutEZ3Hqq7evHdb1P/iOonQqwIoO4XgEjtDY5ia/jvEaq1jyv7M6Ja882DPr73953MPKfV2Hj/loXfx1/QvfPthNAyXTE94DhoQhT5mUQIgTLxagbXjUYO/Olf8QOceIawfOTgduYPabRbd2HbNzoPTwVHvXvPJ9MF2QY9fA+KzsTbUAvewl3wlmyPPIIe9JLWpLTUtC2KGEUtezqqMBqSFFnZKENMSMVBu02xbLk0KIyja9thWwxbZKSiKxAMvZIqEB+g2paTfuDPAHAbG26GcGtmcFFCTHBZDjipXUZCABVvJx9jMgzFDImcf+PCGqxW2/QfAHQjaa3Bcw/dN7gdojHtM8SWtg95agB3YFEAFk78oAS9eDNgQM4flC8lu9l89RJkx6D96aipr4vjPytb4voHG+F9Ph/jjfE2czhCuPod/06DcsTATcXNS13ZYDaxB7t0mw3aD0r/YZW19r4c8sZbg+b8EbDeLWBKmS/Lys6DEhodty6DatWN6awYINAI5/cYHYyJ5V37Uv9tB9AJzF3g9ehnabChgTPaGaJ/h5QrKEMCHUZyPCVDN8FhF2GUQJbQC7CAoAJpwv5zVO/ZpSW1QmAyjPeV5ihvOWFVXZASQr8rNKPtfLJSdsPNYY1alISQAfg3XywugY42ZTalq29Ljna+284G3lfib5M26oba2c8zSp0G17sCP81r86v8tEzmV5LFxvjgCWC7+OAJYn5npSWYT9RV0ZWCllONEae+X675fBRHfZ5uNzgBdosXfSsCmIULJImIGQYFYBzhjY406ChZVpkpyALSADvx9hGIiNQXfMw7QJbhG1YCSsTngkvwXwFvzZVuwCYgSdPRAf6Nz05aJnDFKMGWf5uIrFSgYYRg2qs+t2ALl4t0ORvAbYYPQ8eeVi3xmY/RW48YOSJf8sD8XyGqAxUrpwtpYeMTdo3MwCkBDuc9+XtDXB9T/wCyA7AoQOgyeHz9P46+OvJZ1MQ5knuRkegyrn+92o1PxxI52HB2Sw82zxGz4CWh6blZnwRIxkDGIjVkJUW5g+CaNemUAOUI9naXhe+l/fjt/71UcHsrCR5y7BmLnp66mAKjlH5M/eLqDKC9/6EQDAX3nTR8TeKn/USH7/jz98A57zwdtV8QW4A/3IdVizOspD5fI8wOCfbKkwvg7bG2TVS1GvdCjWYqQWYaE2JfvDdvJfn4RZlzNWoH0sRQFlMsswWxmE6eDZbJa9DLeNqEriVBrT5nQUz2gjLMVYEawl+EWCXSbxzJ4R/AFh41uEg6cRuu9rEe6v9HkJk3uBepdR70ZU9+6D5i1sFPsp4614J/dqD2OcsJVDGIVVu+H+WVfD0A1Q8JnlngygsIOzDYu14D5IM5pGjLS8cn7JsgO1AWmjBnmjbE0Duwhwu60MGJoK/ZZf89CWxxhUjjSdgCcVUu0RppIHI1Zn6kceADNXj+8g75Fk9BCoT/BdEnCDGWlWg7qA/uQU3Yac854M/Fze72o/iUozQRUTYkU2u7uHv/8AaVKDYoJ/QFQ24eQG4sQjTKzYcikTlAlgT4jWgjsdBta2fD8roCimMsxI3gAKBgEKwjgzWGdZYUjm3B1AP5ckrNDcoIONPi7UI11JB8xrIFfyZri2IKG/jxvQkptvZjAM4AzCzItlnHq3ZyDZrRJe/WMffNCG9FOfeAtef837C9Ay/vr3+rrupe8+P0EEg/XTzrPfCHACH994DI/swi/2Yt+3Vs/GP/amEwABAABJREFUpGHyAcYZVJHRb3p0WxZuyehnMojMNjf12Yjoge5YBbeK8PtBr1Xx9W8nFmw2wWYT1V7U6w/w9x8ACYjHJrAH7ZAFlcHow+AKC8hVspfGtRkRUFWiWLGSEwg7GkBlBeLYAizXufm9zqB6XtYI8BIgYbtq71uOJ0TwfDHUnIePOZ9jTmIFo4tyzXwY8Mnf3z3AzuX/QPaP/LjnsQXLdsGU8tBuBJIcHoImBY9yEZz3qkysGp+Hw7XueVjYO8+8ASA6Aloe45Uzyigk6Xfmqr6NEbR7INfupBH7o80KXPtz+7fvZo36yrg5AQzBtGEYCuvwNjPrf+MzYsF43ctGMwBVa+fP6R1/eBOueZUw6dkbcDIw83ZwOFCFDFUOpk9iPRgYrKBKrMwoV0/C6ZNDqQXYQLNDoLUAlyB1sOas1BZGVS85C8WtJA8xVkCVRnWyFWAmTORe6fXU2w5oLZCmko/i94bHa7dEEeMXXOqIbBXml4zQCIHIzxNC7dAeB6pdYPNbCfMrDQ6eYkp9Xu2KSt30jMm3D0RhsjGD1XsSOyNgQq4tZ1OZE3Q9yDm5X3Yd4L18RtLoXgDI/ShF0IG+MO/L+0DOiaqQCIiZJGN0lsCj+0OEu/8AoE2EmcXqmAFtG1R7CZN7W5g+YXlFg9UJKxmJC8mIcSupuWjRyj3YOYTjU1W/W7AXtXwiSL6cGaziTNAcQ1JLsWUQMo3a+qaNGrSy6C/fQLdBmNwfFdAysFasY+0qAY0BJUK/YdFtEKb3JfgzLdgbkElwux2o7ZE2GnnciUNsrOacaPZiL7Z4plvPE8m2tXlRH4v6jKvBDjdbtRWQhUg/26oWJd13g6qDRuRl9h4mq8rUXnh4QgUYSfqs8br2Fe993ALj5Zgkt41rsfIEGyRvRZGdZL+0XUKEwWv+89vOm5P6ic++HW949c24+rW3FLU7cFTPHq2j9WjWEcDyOKxrX3EeRgpzURZc97L3rEmDn8yqlfG64ws34/oXvRMAiiXJHX/wHvGgZclKoZDgFwnJyQYOoAxZuw1Ct+EwuyvArsSTdHWJsJbrvQR3EGD7hOgN4sQAqOH3CbQiKYhCECVLBlZiXD/AcWOk3tZUGEWjpi4DK4ftAOCHQvo7rcNNKyegi6CuAx/fKp7+5dAK4IP1r2nDRhiqT/GQ1ZyZ7CE7tjmAWFyc+tNb5WvGAIgyIMjNuXODJcRhlcrhc5X/PbZayH/PHuqHm/HEA+tnvApAg1FjOrzonef8PE59+YM4Whd+XfPK9yGjvFS54jOcRrZQFFl9gT3sXguxXALcwsJsm8KIezQgy8v+zu0gK4Pb5Emk8N1gJUBRslZMD1AgPOcDH4HtAGqA57/zIyAP2GxLECCsrxp4/js+AtPIsLzaFYVICYvXATIgTaDJihYMfyYLJDCQCGb0MYVe8tEDVGwMsBZYTwzJZLEAVM1CLZdMENsLg892jOQlqN6t5DVGcYuC6cSGodoTr2k3lwESRbkPZOsH20rTY1pVMhgHSlTAI7eKqPYM/IFFfRY49qUV/H6N+zfkWtz6KqE5kzC9s1VAIWrjKbZfFNPALCMZ2Mt5MDJMG4PTKQ0g6xggzuBzPMT8LaAqFVUMW4DYDAB4vm9WVclvMItOhhSNQ5haxMbCNg5uIQBQbkjB0oz3J6eo1HKLiISR2PewsxmIN0GxLn7jkzuXw/EZeb9yo9VvOnTHK0y/tg+zkiBnaoUggcSY3R3U59tpgKmA5ZN72wJQdls1/ILRfOk+8NYU3ckGzbd2QSEhnNwAe3mefmZgggCcbIbw1qzSkfs2gSGZSOyEAU/RFJYfsXwuzKqX4exmBRsS4sQN4LuCR4MlHQOjtyj5PLSQJlQy0/Q6YdZQ0KTfMwhTg0/f8WZc86r3wXYR1/7wTeiO1fj0HYNVwUt+6iMwgS+I+u2hluSDAUAGoSBDtQw46T71mf/lO+dJHTWfw7r2h2+SvyT9qKQhFy7XfGOv8r8oRIk7vnBzsT+jKEHtO8/Tz0Vh4DJMsLCdAJluxeg2hDGQnILerQw++w0J2bWLKCHLc0JsjFg/bknmgV+o3/2JGfzde3D37onF4mLx4KpjYKhpFRjgGGXIPFIPUxQmes5y5MoBOXdhpD5nZ9a+xmuknn6oA5mBGIDdthxDUXaHqAoaGTRmCy+qqnNPdLbsBcBGXiOVKRrOn3OSwabR+SBjioqlWAab0f51WNmeh3zj83i4HnZu/XcNCdkAkLo+FwpjS7nIgDVH9exFXjvP+Xl5f3sZkqNlYFJJrbA9gY0J2D8QAgggPWLtBFgBELZquDMr7DzvLY/OKsxrn0MEe7Aq1pyyXybESYV+w+mwOuCaH7lZ9mhmAVmc0/oC4FoA0De8+makxpUwbjNvQfNW6jStlShaGGPOsZlmY2AmMmhPGWjpFXjxBHbymU1eVC025/sBJesj1kaBF80yDAl+kTNFVF2yGECbXEdHDVe3vZIzDOBWQ/2QVG0BoCgrsrrC9AmxUlsrIz1BHwluKfWy7QgbdyZs//u7UT/7Etzz0gqzuwQYmtwXlNiUhBw0ncj1uFzJPUjVJjAG1NRSX0YZ5HPOIu3UdjEDq/3oXpfD00lJQ6rGlgPX8x7CkPMKgEkVMlrL8uZUCEzLDnblES+xCDOg3bZYnWjQnJZ9xu+LLTIlglPwKWx4mEUDc8DA2T34/QNgYwZ7YhOpsUUtafpBDS3neCA1sjVYXTHF5CtnJXMLECtda4HEmN4TUO12ovhlsR0DSx9Tne3hd4H9ZzQwAZjcOUeqHboTNZq7JM8mbk6k7q0swtQhTAxMbWQ/0/mG6WOpwyQHVvak5ExRalO2w0Keg2geoCXNxHFCloGChX6ogcuyBIbmMRpVeHmx+c21f3aPEaLVkPGYKlGDvOHVN4OswdWvuxWf/M1BzfLD/8WHYVvGb//LNz74PeFCLCLA8GARb4CogCqivLemlXN2PmBlvB5vhfnRenSLUS6Jo/UEWUcAy2O0Xn/N+2FakUtK8UMPinp/7Hff9Rgf3WO7WDND6DDzK0pD6g4CmBxiJfkLdiWSYqdqlTC1IC34Qi1DWGGiG9T3zGXD1wawMDqCDPopRDBGQ7wM7GRgIWeO5JWVKdqUkrVDmL0hAWty88c8FNLAwPYDRsqQNPw9N3iTBjAG8fh0KHSIShFUGMk52Dn/TEpa+EBYlIX9bYD5amAtZrahtQUwKuAKMITLWYCNBQU9ZmeFsXO46cxr/HVV2azZhJn89cFignMTbgCAhsHr4efIw9i8Y+THDUHCca09akwv8KKUiv0TKltYO2FiSzP1O/9ivWB8w6tvlqall+YqNNIUJUt4yU99BP/+v7/hYT33y/6OMDnZAOyETZeVK1lJYjqx3GIC6tPS1LEdAFgou85osKafq+KjlsBHioCbS6bI5IEEt5BmLYdEslEWXidD5aQMIH8QC9MvVuLnnFeCNn+kAEwOkLf52Kg0qSYCk/t7ycFI0kjajtCc1qkky+W9uESk+24l9zyQ0eNi7D5Lbb6UbW90ECZKFoIlBVIyEKDnxc+H18AktlLbXwGq/Qh2hI07A/j3PeqzCVt/dlaaqvIiB0bkGihtaN3fPwzsv3IfJRLmMiCM4Wy7kkODD1uo5Jym8qGk4T6Wc5ryACs/b98DvbzUigh9rBE2LMLMoj3hBayvCaunirVctsECtlB9I4D3DsBLAVFoEkFtD9tK82hXAXZ/KXY8eSDohdXKlYVd1Fg8ZYrl921g8u05zO5C7ll1Bbffws17pNrBdKkwR/39S5gHdoG6Qjo2w/Z/nAv73DvJDmhlMNg+ZRMUBfzotiz6SWYdKguPxY9ccma4AC6pEqCznypIF4RhWN2r9mW6mAh2KfuB1UBctmInYWYWYWJgc2aQk3FmIrk+87WRgQnZf6MAsGqhYLoItx9gOrdmYZJVRq/4iQ/jd/652HA1ZxNiBbzyb34Yn/ufLk7uSRkyhXzMqQQBp0pe+1EY9cNfV7/2FthVEDYocI71aF4PNw/uSbuIZCPoR7Vjrl0iAw6gPsG0CXEyZAlIZoAoWhylMhDqNgj1LqE+28OfXcIDYG8xqSzYGmH8hiSKZkOA+vQTGTDSAF5bC161g9UW8wAq5GP0HqhrYQETSXZSF+Tnol7P2V4FGOzCvFWQlZFqDxiUjKhS+1kLrivxhM/ASq71FXwqd34iUabMF8NQs+vlfpvPq3dFPc7Zkkwfb3zdpuNbUl7qvgMiGZgSyYBzrM4eE4MOZyzmczQmFY0JRzljJg9fx8rzsW2aGZ3v8Z4XExA77HzfzwLO/YUBHZ9QK7EQQHqUc87OCTFo3p7X+mvn8n8Ams3g9X02+wuAqFgpP9y186wbR58VVz5f1AZgYoAuiMWmAWxkmGWQGtwPtRFFBkOv9ZVmMTkj9k8TAVfsIsAcrARc6bqhRmtqoPJyPQMClvahDI3tgXwtNQ6mdaKCIVE659VtivWvWwFJQ9MjqBCT/ILhFoN1aPIEtyJM70+Iu0JgWFxG6LaBeldAlQymUBKQYHWJkKHcAeDnRqyllgl+HmXQnUbqFb2WTA9kS7NUEUIjP7f1NWDj60ug8qjv3sdlv7+J6nRbbFMpqTIjROnVc15qfp+MBSoaatj89V7sFqny8vWuB+d697CleFa/hSj3qazaU0V3mTcAg82YNQroMIgD6GCJxkhdsrjUivVZQ9h9tlXilpy/xeVAcz/B9ox+wwKYojlYIi0WoKoCVRXMsgWxZPPYZQ+EBOr6waLRULFyZGMQrqhx8JePY/rNBeyZg2I16c+u4M9CP5s1XOKidnC7HezZOXhS4VgbYc8uJNtu5oEoAEZ/soHpI2As4sQiTCVrNwWpJ01UFQurWwdQZjlshWjAQT8PUVRodtGXGQFn9SMzzLwVNYoxgDOIE4c4cQADNohNWc4TBLNksdS6txBAgeFU4cLeFFKRW6oyuzMCgoYooBAzXvNXP1iIOfVZ6ate85/dhs/8bw8NbDyaxZUbMhX7KOS/hKLqOQJNjtbRevzWEcByEVcOns82EpRkYEkh4WOff/fje3CP07rjD2/CNT9ys/rYZ4aBKWALpQS7CmAnTWZyFv0m4O5OqB/oQCHCn45qjzUFyCF50mwDBSL6CLPMKpWk1gQDsEHWDowU3cjXvJlz8ZPZ0mNW9XjIqBYDhVXNDEwaBPV0dXefHV74uFjLjDdAbBkajzStsLq0keDARRSJrM0NnYIfUFZhPr78eBZgCHgEQINQDwFF+fVZi52r3gRuZEhIfZQGeCTHLY+fgSM7ahDzzx0ONz1sj0AGa3KbUsBisHtYA2iUDZ99q0eN+PC8maX9MFVCR+uRrQTASV5C8lSY6bE2Ytk3erte81c/KIGRJ2uYwCU43UQRJUiQ4UM/3cv+q9uVAbWO22WwoqhpGKjOyt9NFPDAqld0bjTESxiFKZfZWsnJ4+ScFRPFr9gtxDuaDUuRn4GRXofGOry2PRcLBFENJPgDKt7FVhUySPLRbafK0FOAxa3Uh1qtCew8wM7FKiBVDtQ7hKkrzUXYEO/iyf0oFl9uKYzlbkuCI00mxbURXFugBcxcwi3p+BRsvRyvvn8mShC6O+hVjSRN7MbXDkBdQDg+BQXGif/YwS46scoY++4TybVJRtiR+b6XrRIzmGKGe0hpKpmHe+3o6zzOElj7DJ5nyDVqAMviJMOJrOIrPvoS6un3peFfXlrh4EqL7jjQXhJRnRHpfLULVHumALlU19I81zXStBKVjrVFHVQa7mSGZnsJ2DZgFhJWl03RXjKBm3oJnW97aXz6DrQwsDmjJEYJjJ404NrB3Hk/+GBeLCNw6THMr6xgLqlQ7wZkr4Pm/h4NIIqZDQIxwR/IEKKcpl5UIxksqc4w2pOVAHeJEY41MJ1XgE/D7lfdsK8lA3gLF+UcuqVVMC6KnYIhxNoiNma4zSt4Y9sIiknuHY1BtE7OQ0iwQcC61DiEDY9uUyxAkye8/G/dLtZ3zHAjodDFWB///Dtx7SveK/UGsfiCE2Twag3YUanZLsa6mI/9WK1s8XbtK94LqmzZ4seM2O+1FWeVsMjnelHkGgZSz6IFbP6M+cGmtdqVYScFYaCvLqtBDDRnMKgmaw+7v4Q5aGHciPUe0sA8rr2CBGlgUQNDbZuV2FmtkWu4PFjsOlBSxXKIIGcLYxkAeHuG/sQEAFDfuavZMpWA+gDSrJJ9pnIwSetnQ0hNhbhVyz7dyT0F6oEv+U/CWM5CFIKR4Gg9PjpYiIUYsEZcKvuJ3rd2nvqP5PvOAV0PU1fD0FLr1Gw3KfmCaTgPY/Dj0OIYZVCaz7MZ9phyzzSEImEd1dAFXMl759oeOCJYFZLUITX90bowK9cmOZzcOxneBl6zYt556j8CtjfRXzKDP3kc2N2HOQPES7aGxzrPZ+TwyuQvAFozQXsbZdAoEYW6bu1zQQDgHLjyBQzI1zmI1IZQhsX5c2jaKNfVspeaoti1CpkOkwap9mvDagpau+l5od7Ddg7Uegkat8rS19rNVYTVcTfYoUaGX4qCWkLuI9xuJ+QJZxA2KgVfDBAZq0tEGds8IPVvJg7ZDlieJBz8pQi2jLQvxD7bMmJlYCLQ3HkA8BRxIgoHQHoRE1hqYwL83EqO4ZRge2Drywu4u06DpxMgMpo7RxkiKQ7Ksvz+WB5l8gz25WtWi3ll4uCDWRRmUmAe7APDtc6jmQIg9aN3gwpbf59yba19r4BNXAhji0sN5k8d+pt+K+l7ZlDtM/x+BA7mCq54yRVsKiAkcOWl9rE85CQmrTHbDogOBGD2jQVWV06wumICe6yGO+ilZ9HgdCSGTQnGOfk8qvNI2pogVQ7uq3cB1sKsWtitGvMrG4TZDPVZsTNO+vny+xHVWel5Qq2Kp270mdd7N8UEdhZVlxAnVkhxLJ+xnJ1ngpwvO+/K8TCRvNaU5Hiz8rtPxToexiBNKyGjRZZesWe4RQCFiFQ7BG8QGwPbJrXEi0Is6UWBDiUcJUd41d/4EFwrKil0AyB4sdbHfu/dYskaWdQ7IYmiRZVgh5U1F3pd86r3PSa5LUfr4a0nShX+nXfK7411BLBchDX25R7//ROfPUKTATkPV79WvLjf8Oqb8RtqHXH9D4qih7oAuzTwRtjYtpMNlZQtQKsAWixRxwg3nyB5sVAQKagFhQBu/GBjU9dSyC6WYE4gMgKyAAPoogXRGGgpTeiIAVjC70ZsutJIOWHE2P2lKFIu39YNOcEerERNc8iOgBuP/rh68napyK/Z6YbPQmuXAYY27apoyY8lWRlJchuyosaMjg0Yjk//Tith95360m249odvgpm3Q+NLVGS3ANZtJzBi4eWVVT6lcQcwVgkleQ3yvRFAM/790bGd98+xEkZlsUfrwq6Pf/6deO3ObZq/IOdd8hXk+zzuTfoEA4PlSWHk2g7SP2o4r1uJN/DL/qvbEVXx8fv/5Ia158uhi4MVETT8m8vzMinrbcnDrk0S2C7BlUB9Rq0I/HCcJTwYKOoPo+wnu9K8hWoI74yVgCYmMBKy/RIjaYq9CTkPhtRSTBQvnHswhrKr5DjCBkABcGeAejfBrRKoZwEwlMlPMcIEC7eSYO2sNpneH+HmQVhThhR0DUiOcOwrEtKeM2EocrF+oD7ArHrJTSUq9mNGmV607GEtlWBvRAaterizS6TawygoADJAaCVovq51uJUGUDU3hKGXRq2EGus1nIHTrG4oA4cR2JJBi3wbGA38CsOv3OMONbbAMNwyFnBUGmPqIygM95swMVg8lRGOB1BrECvG4gqCbQl2FcEbE2BzChiDfqtGd0yGhX5fmigAwMF8sLTJ97WcuBojTNdhes8Z8PFNdJdvyOdfGdpYrgbgW72xUdcCgt+1X6wyaTZF/5euUMYmUO8GuHmAaYMwVQPD3bsL99TjAGpQYsy+MQetOnBTwcxb8ZfXgF5zdon+5Az+IKLbtOi2KlGx7Jviw26XoahOqFMlgg7KjapQ2FtQG8uQxtQeFD1SJeCTbaN4yYekn2m5TuPEIK6cjB51oBknHtGLTVLyoj41gSWbpudy/V/UxdKIMgMgFM/7i61cyXXguB58soAtb3j1zTKcsAami7j+Re8EWYJb9n/x1SkPY33it39BvMvtRPzYNWem1LMpAV2A1eElJQN3fzcoJ4hg95doCIiNg99dyf1Z6zCu1L5rfzHYLWYQpJOBUlGtAOcC1Hnle2y+t3oHXixliFWNsiZSAtDLzzQ1KAT4s0uwtVg+4xj6TWHOT+6RwS8biK2PIdC0Age1e7EyzMpHws4ALPsZp1Rsf8rhFdACAAi0OZPfVRU188iqBxgNskmGo33AqW//t2KpxAyzfwDuV4PqcbwKsDGqj/W8lf3q8BoDI3mNz/l4jR9jTA4aE4dGg+81stHRumDr1Dd+Ede88n2wB9q3ZcLcGDAD5FpQVnt32Qa8ksrs2bmqm4Ttv/PsNxYA9bwK+vFnShX36/0TBtVtPp7RnwSAXQ1a9WBnSy/GzgLODpZFfYRlBrVRmOuZDJeBSOeQppWoZ1daJ0ZV4I4dA5T4Z0IEB81fcmIBCCLEVj7HYSpEqMlZRvNAL7WRDsHNsgV1EXAWjggpMCJbJCfK6+m9YssaGyM2ugkwWo/7Mxa2Bfy+kKDYiMUtIMfs91rYlRWlAjPirAI7A7OKcl/dJfg9jzi16DaFJIEoCg2u5B7KzoIO5uDFUnJVqmoAQEcB6uWadG79flo+Nwmc+hJ6T1F7IgVteQSwZMvzcm0rOEMKfhXyZqmdR2COKrWp7VHftwSbCaInuEUCLjXotxLSJIF6gunELm1xBWBXBLcI4MtPIjUOceLRbct+4fcCrBKyzANLqT/z+w+svVZ7/x5mp/eRtqdYPWUDnatQaWYQ7S4EhI8RBFVLeQ+e1qBlD/ft++RBmhrLqy4VkG7FqHYD7CKokrNH2G6kpj0zh7lsE3zcw0Sgvm8h+9EqiEpSP4tm3iEcEwKqCYx+ZtF7yd9xCwHp2CpZr48Ad/KZ7LVfCUaUS9YCfdQ5ida0IUm9niQzx6pClDPBlYDYCGjm1eWBEwMQgEfsmQXkM70ouU0n1/zFBljKe+c0O8ZbUB8fE9Dj6tffCm4crn6duKFcTCDnaB2tJ+M6AlgewTocaHq+lZvmJ0vz/HitT376beXGfPXrb8UnP/VW3PFH7x2a0hBhegPbGTRnZWhm5i1ody4NFxFo1cItWqDysBsN2ksahO0KtpJNzyx7kLdid9NHKayWCrLADkM+rAMrpTACSrFUCnJjZPDILGwjGhXpOnzkpkLYqCTglxnttoevLbw+HntbrLLEnkQK5wKuZCa4JQ0UlAKu5LCwWD0UBiORFBJOKfu50EujRjuz93JzrQXldS99N+xCGMYSnHyeJn2crXIYXBmv8dfH2S85XS9qsGReo6b2nOFAthAaP+/496z5C8EIfqKs11/zfpFnewOuNUSdaLDDYhQP5h/56x9Cs5DBb/QOsR4Go9naywTBwDJwQYd6zJf+3dsBZGCGi+etSSj5EsHL42XVCljAFkqMfibZLG6uTC7NSvZzwC6lOTMRBZSR4a0AK+yAoLTZbDEmQZGiPDEAoP2V+EkL4CQAjL5OM37c4e9uCQQCYgNUZ4BqT9hV1AvrDswjdpve5yDHK5J3ZRYmBkU7eAHHhOa+JdJZaXjZK3srJZiFWBWw2kHYKPeCfH+gXmyvaCk++GQItKxAfQBWrdx7iOSaXXWD2i57xucm9PB1z7xug5gHCdk27LCqTe9nawzk/DiHQoglH8AOAG1uBMf3Ylix/3BWG2lpMNgb9BsO7TGLfkqY3gWk+z26bSA2DH8WqHclFDQcnxZmG4gw+faBAPjLFmgVENehRdo/PTTITa3vYSrniR7YRb3qwZOqgB00nUgz2ym44p0wKdtOXuOkkceZTuC/+C2gqVF9mQeVUFODjm2C5ivgYA7/5RX8XdPB9rLrxK4CAtLQ1gbSxKM/OQMICFNbLO7sKom9EAO0FDBlDUgPomxBTHJOKwcgDkpJBWIsKciYw0LbzJwF0AHGG/QbVhQi+X1mRqyFCZgbYbZAdITQiTLTtXFQS17MpcAeIQ1s3Yu88j6Va8jxvjXexw5//0d/7PaLelyvv+b9g4pACRZl8dA0P14hrk+W9clPv03sMgPj2pffhI9//p1DPUs03Os7Kl7w/v65EF0UQHC7c9jNmajLQpIh2dTDdUHsTzbEvx4hitVPr8NbK+pCXh4AMRaAOtexGTDgEUGlANiaE8CrJNkneQA7AgjYOcRZhfZkLVabCWi3DKqzVuaCev2k2iIQwfRJQFeg2I7KA+kfRCWnh5JsoGxpUIro/YJTAm3OgN0k2V/jWjsrdgooI8PKa1/xXtj7zgrw7r3cd7NlD3QgmuvOQzUuWW2Htc5fsw4qJ4PXh6+5sDl8DxnXtPnf47zBcR7ZUT17UdY1PyLEPXYSAC02QBbVN06DZw1I+56d572l2DSbLqGfObhdp/fCoFbJY2tUc069AgA7V71JB/G9kFTyZ2CknoE1Ug+kQyCeXsMAhKzgLOKxCUAEs+zKPaP0qZFBHAeb7fzY+pzcqFohKYmljwPRI2dfmlFt5STLFKEHegM0Wr8kIR21G4TmDKPaCzC9Oixo7lQhyViScG2rZMEuYdolUb7kUnGioeMWqM8m2FZqAbcSUpXYkTHqe5agLsDECLs71IsUWSzUVIELZlTzFmwt3LFGLaOiZu5YEQ/1YXCwyOqdAn7kmtUNvTEw9J/GlEyoUrfm69YQCBY8dnPQ318DVzgJLyffU6NkjFCidaW4c4NKO59bAGAgTA3aY2LZevwLBv3MwHZAexzoZ9L3uJYRpg7tyQpuIcSZ6dcPJLtnvhzAdVW2wBjw6TNyb6z8cH/SWtjsLTFZBfDEIzVy/WDWDDazfRAHjtqBiWB6ybilpgHPGkz++FvApMEk2wfHKHaUsxp2v5PHmS/hv76Cv28ijxcCeP9ATuV0KorGiUfYlnqbLSHWBn4eERsD0ybYlarQl0pEzYAVVDHZ96CsgA+9WjMOMxLqepiFXjeGBIhJAMEUwlAmAwhpjZBgYUhUMvD6mTaEMB0IwW7erwXGX6yVQdic6Zjqx2as+8lPSW34htfcgt/4zNvK18d5aFe/7lZkq/HHqqY9WkfribKOAJYHWT/6Y7fDueZBv/9QhfBRkfzw1id/863nNBV3/NF7ce3Lb5LQsVysEECWsHraNuylG9KYnj2QzXMl0lXLjEnbY/+qbbhGVCNOWRcyZHTAqpOGr23LAI/HjU4uhooyRVkIZNYZKLn50wDmItYAgOUKJkRUByuwt1g+fQv91KA6y4ibjVitAOiP1aISKPQ+0jBhKqx99En9SLWIHUlfgQSC+ILCqKLFEkBeCukQ9N967DHK68lWCdqUUtsXBg4BQ4FXmD06eTEYAJsiaT63sFxrKsdNLGsxn2ho7HMDktnoh7MXcsGXm4DC9qIjm7ALvJgIto/KVPZSRBoAzPjf/8f1TISkigFKwk7KIGTyhFgrxlfrtQsABPzxh28ov//Sv3s7XCYU9qxgjh5HtgZTICQ2CnLUMpyf3J9KwUsR4EZ+PvvaZ7VKOVbtbSkOsxA2BIIwoRDke6aX4092AHMSCLBiscWADKaTqGeyTRm4OJwAPcPPNTNqxRJG3yYBhxUkkTDGBIYBLIoSwCylWaa2LyCsYfEGLqGULIGoFEUCDkDUBVmF18nvkkvgZEEk1z1pMywvXpo96oMM9tRWgrK6QsFcEIHqCiXMc5y9Ms7OGvkeF1uF8w0gCjBCcr8cD6Qil98pjWkBbeL64+XnGjGxZXji0B+rsf90j9gQFpeLJdixPwGu+J057v6hGZr7AD8nbH6jh1sE2NNz2LyH9P0QQOoceLkCd10ZPpjZFGY2FasZZrDuO3A6iNmYyc/uH4D2hnBM1DV4ewZaObFhABCvPAEmgrvrNNJ9D8jjffsu0KQBRS/vCZEMfbwH3X8WPF/IcwLA6bOANWX/Iu+FVUnSsLNtwEYaUTePRZHjFkGsM4mwloboFKxzUYZOKUE+nHmPIc3vykBoBK1Gn4EM9kOAP8lrkueHAaiXHBlA7BdAgIkyqI0NEGvAdgp0XGywI39+gAJ0fvLTb3uo37ig63y14fm+9nDIPI9kPWQ9qzewB1PxHPl4P7z1G7/19gKu5HXHH70XAMTGA7KHJB1E2lkNzGpQSKIgZpb7cl5J9uWsLoSqrolIgINVK4OyrIJrGhn2xSh1rd6zUx9Ah64r2ZcNyPMAvBgDghMCUgZuOiP2k0n2MfYG+9/XINaEMLNwS4i15UTqsVQZUJ9gVQFrggxOYcS+xPQJlDRDJoO5JJaHbIywMkbXKAAZ/h0GJMZ7jh47iGC/db/ch+tKzk9eOfsryb6bh6UFxHdueLzDZJ7z2aqVAZ3uQ5pxuFYHH1a35Ocxdhjy5mOvqnNDmI/Wo1vMMKteCCptL+7Em5NzlSd9AGoPmq9gtb8zi3Z4bwFRnQLlc3Tqi0MWy85Vb0LJsgBQrL+YhmwLb6X/iwnGy78BwDywNwzZU5TrhKWfi1Ptf9iXrLOyb+cWVRWmohaLw3EQyfWVIPt1OPS5rr3klIYERCvEQEui/s0FrQIafiFZhvVegulzP6oAR+QBuNHHDxML2ybYeQ/bi2oiNg6mMqBAMPpzyWkeS5TMFdNJbeDmQe6HUVVuzGAluVDbiwLcUgF2SNUodt7L72WbxPlSBvQ5f3U6KYDyWj3Lo/5y/J4XQEJAZ+LRNZ3P80gBN1a+8fjx82cCA0Am99dsF6b3lwzcph7p0m0cPHsLp/+yQayBfjshTSMu/R2Hyz73AA6ecwzzKyzqM8D0LmDj7iCKkIMe1QM9zL1nwctlAU94sSzgOwCxEJtNQZsb8vmPStYJQerOqpL9aL4A7YuFK4jksepKyJx+AKHay6cApmgmFfhr3wb29oHpRB4v72mqhqdlB+rmYo3btusKH1X2UCVqEup6cCOKyazo9/ui7neLCLuMMKt+uD9nopUzIGPkOu56bRZHZM0MqDGDa1UMaZac9F9KgM3Av2y8UrsGISrFxolaBihkon5KsJ1Y3PHqMahnAVFkFwCIHnPLrjG4AhyqI0cv/0LXtEfr3BXxGHzejtbDXkcAy3dYR2DJxV3nO7/sDeLUITkZ1HSbWpwQECYe1ZUVNr45ESnmfityTwA0X8HPN9Eelylpw4BLQ3FAzOI3nQGU7JVdmH0DsMLZ3ma8QbJ6OQNShBap+aiRUqsCGANyFpNvEeppJVkH2w1QWfjTC4BqGQx7KqBKzmEAdAg8BisMgERlkJWXSJGlCGBjwBYw0YOCHWTjgBZwQ0PH3hXGINckKp+scMmvxxiZCJRqntcfay2YfgR+AOfa+ZTf179n2zA3qHlkcn4IqMlFbAaJtDAqKoCjdUHWb378zQAgdgptxKdPPXgw3+f+p5/Dq3/sgwi1fN7AEsAYJkCqgVhBWStS11oFU178Dz8ib7En0CJJ3ok2jMSsQ1ktZhXMoKhACyScPrPfwiQ3ZwKI1GfFWsBl+y8nIEiyUhRbDQXPoYa2Z1WWJLA3CHUOWsTaoKMMxEZKmjAZLMRsNwA6bimNk9gexQKm5ubY9EkYyzGJiiQlGW5XIoWnNkoAa/bZjyxWCBpiKEwlDSEm9dvNLOY0sn1wTq5/YGD5Aljzec/Kk7qS31uu1v2gi3pE2WeJ18HovPTnS3N5KKQ+WzIyS6YJEg/3X71X8EhJWJjXwwMM9gsAKIOuWS04rdFePkO35dBP5fFiLZYTgIXtUGxqjn05YPrVXQHnAWC5QjqYD49tCOycHIM24TkrJoW9cqx5T6DpFDCEdHYXtFyBThwDt12xkMhWE6T+1+Sd2P0wwx6swA+cET/2upbmX1UxvLUBOCNZOPOFNKIhlH2JFKRiVfUwIL+fErBYwqYE6qeoYkR/yQxsCe6gh8ngScJ6rlYy4IlHmNagjVp8rIHCECUIA4313l084pUEwdnKYTxUJCDVRsDJyirAyOBen48Abwx+/5/cCAB4xU98GOzld1/9Yx/Eb/2rn8fFWKx7PpEMc55o4MFhZcu/+Vc3Ynv7PRftOY7WhV1jcGW82BlEzThInsTS1hsktbOszjoZ2IQEt98JAHOwQrykAeDATpUhcwW7vYZmt52qzSr5M4fE5+fNOSqje/K4phXAWEhFrMBuzigkaC0YImhvLkqa2mN2p0GYWVWnOviDKJltBKknJwa2kSGTaUdMbEODegXys9kqt6wEFPtXAzBIGOQ5jDr/HjCAHFbt0jJxiGggEjHJnpGJAll5aqthLxuHXeefG4Mu5yMPHT6Ww68JGGrgw7+f57BJ7HVgjNhBPRbqve+hlQeNO89+IwDg1Fc+dN6fO/WVD2HnmUIAYm/hHliUzwA7u2ZVlMGa8ri1FzvqNgyfFWukWdW/p1mNsCkh4/7+rtj40KKVnjOz3GuvLP4INF4y87w8b2isAJxaz1IQwg4lBlkDilb2d2NAQWpEJo+S4wmUzx/XDnFrIiQhDQkvttNWa7EEUVSvAqZ3D4Np04nFkyhXlaSjYCxFC5sFNhOHNHEgL/c9ignUJ3jIsaeKQIlKJsvknpU4TnRhqGmBAj4UwkpieU1Z/abgDrGFWXXyHp08Lkrs+VwAFkODLVgGE1S9UELo9fXl80T5fpJJgg/xs2Xl30m8bsOW692k4JWCKdzpt3UMx6zWuBsz3PfyY+in0jtRBNxS1L+5R441IVXAsT/r0dw1FyDBGrFBP30WKd//nCvqkVLTjjIF11SORKCNGdLd9wnZ5/JLBjVzvj8uVyAFYVizW9lb2C7BLgPw7XsERJlOpZ5NSfJwnAHtL4GFKGl4sZT9RvsKUhsADppvWPlCADNtB1qJspOdQTgxE3vaZZDPTLYWtlbAe6CE26fNRm75GcxPsSiF2AkoXhQgWteyt6LGIqP5aAmmotKTmk6Uz3YVhGSruTYmMv7gv5N69v/4f/pQyTN67fUfwKfvePN57z0XYrFVYgIDn/jcEysPJatc8rpYNe3ROlpPxHUEsDzI+jf/6kZsbW093ofxPbdef837EU+IFUFoVHZZE2IjQ1W2QHIGthM/TkoTVLsB/swStFxh8vWzAG9jeZlHe0w+3m4hXtFEBJND/gBpbhSckcHVeLBXdM/y9zQaCiYtuChpKB0G2fWY4RYCiAwMEbpLp1gd95jc14GNQXX/AmlSIcwcuk0rVkwr7Q9ZazMvEu8EgKIW7NGMiuFhoJWHtGwIaeJgD9pBLgto+JkUwjwKSpTXqizkRgeDCcp+T+cG+ZWCMqAEUBxuMoH1xrkwu2gY3CrrLw/noKwoRGHpC+gkv3fHn4rUf+cFwpQQVsmRguVirIdToP3wf3k7nCV0m4R+UwYr/aaoRdgCyXPJTzEd4YvvuAEvfPNHULFmqUBVMGBpyBT0iBWhm5EAKjVk+JSxzySPvzpBYtNFQLchqpVqX4Ig6z1pgNgRoieEiSlZLKTACSVRq1BiIHIZahALQGOCgC8Z1IueEDdJPHg7hmsFUElWMyoMwy5keEyMIlnPPr7yYpVJmJlyzAAs0AeY3QUwa6QB6aMU92rdxEQwKZV/l6tssRyuucxMHA+3QxAVRB4UZX/nzNIjkhNqjdwDc/BvsXIZNZEhDKqNHKIKrA/FMns3M3mBNYCVkzzvGJqhcdOJtW+cH2Tp82PIPTU/DxOh37Botwn1LsMfRNivRjBlhnWEaXtc8bl92Hv3pOkmkubv+LY0i6tWwA9l8DHWB5KmqaXpm03B8wWSBi+TIZD3YAD9i5+D6ltnZIjYdmKV4DVHAQpA9T3QdjDlnOpAzyubLgPzqpAEMGR+HVqcFYlkJHNs/2C4t84XoPseAFUVvHrOlwFQHib28r5x5aQZTQIEhplHmFj4gwDbBflMOiOWmnq+19jcXhpURAaBkRqr15Iy05OAmFmdSWBwEIuxnCMkD6z/EUA9n+8lP6qVLRChAalPBr/oT33iLdjb27sgj3VUzz4+67qXvAvdySmwXSNVQhhKVkD6fmYRPaE6SDCdg9+TwS0raYdCwvSrZ8Deoj8xLQNUbjxoby6Du6zGqh3iZgO3WIJXqtDOQHAGsnPofTLytazWHmcJhiA/l0GLpFMlZqDtRbU6d4h1g+WVDtWci40QK2FoeamB6Q2aM0kITrLVAzBgDzCPlB4Z8DVYs+iRcwAdcjuQs4Nv/mGFiT1cy5IopZ0bbM/KPetQTZr3P4cRqcesP+b5iET57/n5syVUHtwxSw1dFNxcato7NHNy53lvkXuw1vIULvx972g9OLCS186zbixqebPqwI0TcM+5gbhWZeuriI/97vuw8/y3ymeoD6BAxaYUwNrnM2d8mVWE1Zw06oQYkY7N1I5IQMg0q9GebERduwxiIxUZsbEQS00qrgc2sSiRdd9GgpA3IouyAFASoNomqRqDG4/+5BSrEx5+noSkmO1XgVJ/ygEmmFXS/Vsy1vL+T70O3CkPd+Xaoj7AnZkDNCs1KcUkWW19kvuAIcRabLFDY1HtdrB3nR5qxgxq+NF4agTkwEkYe8m3IQKiEyWNd0i1B1kagOTcK+d+OGqWU0xS0wKj51aw2Siwe/g9HVkwltoaOLefBoZ7zBqALCBLURiOlSte5gfceCwuAza+zZg8kMTuK8nnwB0EUBdw7N/dha0TG6LYWa4kB2VSAdUmaL4E1bU4dYze27zMbCoWt3UFbM1Ap/eQzpyVU6V99erlz8Hkq2ekZu3V5aLy8p63nYDu3ikRLKH6VhDQJEaYzY0CzA+vW8/vqpVzbw0o2YEkVIAr6eHSwXzoBQ7mwOkzUoOfOCZDy4SinOLKAgkwoS/vLyk4mmY10tYEZm8px51fCwAiL9eTM+IIkPMsASGxAUiNVzAnIU4UYA1RlCtG7d1HBLG1zwCLHbS5CPUscFTTHq31xTi3nT5aj+86AliO1hNqfeoTb8Gr/9oHiyc+WxTGentchrexIZGIKrtjfoUDpQYn/qSGu/ss/H4P0zNWlwjIkmoDu4hw1CNhInto2wGVB9WVSGnP8VA+j0LCiuyUc8PJg71CyUcZr6yYOSDUXYA/7WEOWgndS0lYRmaKdMJhdcyg3k0gFiskSzKUirUFqe2C6dW6IUp2S6wzywZgRzL0NQTbJlDtQRUXSfma1/64GEwJIAtMBks2YrUgGsmwyzLQYG1zLsNvPHwl+dm1oa0WpBLYaEpmAojAkUXKbrjIXUGEO/7D+wAA173sPaBKmT4KyhwxcR/79fpr3o/01Ko0e6EGvvCBGx7yd17w9o8UcIASAAKi1yEKyzWcPCFMCGEm17pUt8oYCvIfkqhITCdATawIfsGY3i2hm6YX+7xUGfz/2fvzeNuysr4X/o5mzrnavffZp60WqoCiExVREQRpyqLq6Hs1mpubm3jVa2Ji9yYINnQaAQsKEKrQxDTqTWOaa64x5iZvPFWFIKCigiBIW3TVV512t6ubzRjj/eMZc6619t6nqY6qA+v5fM5nn732auZaazbPeH6dbknorkvlMaYIMeg+qsQCUxa/k+B7E2RQVGdy+EShlYRI1rZ9Jg/oEglVVKBLsCNZQAKSu+RjaHhtpRAXdvViG23mpON6UsywcqfnEGXFsqA5t9RASK0+qQc3MF2URnA3RNXJXGBvzcibBV1mQ35ryz8/XWCH2hfZual6b0ep4MWaRke2cB0kC7IYrVnB9euAsHhrVmB9+8y2NuerncM0Hwg6squdsCmzMwW6TFBVkOD6+N3ZocOOZAFt1kfQSmWhnhcCZgzHcn7SilAU+KKmFOoZgB38JJf3YDSq10WDDDEHQ3xUlCQf+0IEZqYAewABYKINQgPgzKojlUK1xWu9sQbbGsg5OJ+xuKkZiLPXpcZ2Qq4zsxWit7S677h8J/X3MsmprR5Q0W9aayEK6BSdyXegigjK+LhYjdY9NYtwjpVdD0Ljbbr0WOSYaYDHqMQKWRxUWUUynH7GduyxY4e3+lEPum+sCeLzXgwL0UV9ddRtHxWm5suuf3tUVNKA+j7aYeYrmmASXEuTbpSUBzNcomglmvT4FrhA1U+afC4AEwfC4cCKKN20qL7N6hJsbMquHnY0bzPnjlBfG8zMdcAHQu13W2dgZWpGRYwMXccl6Zahd7wGQ+LTRzJD0JAvQ1Calp4SGkwuP30q2VkGpmQCowTsnSXmRGBG7NHiOYtkep2yviFCNPa+9Xupe9xZ6y4XFSyzqugQH9cAJYrGVjd+Do09bv18ML021fePIeSz58agYNepLH7313/zG1GtZEq+KN3ivPQ41NHDPwEry/I950UzNL71k28562NuePYbBDxrVFGakCXChK+zPkDY8ZGIoyMg4RMjxIWtoSjFMslrU/mEYDXZ6bHYhk1ydBzi2zTFHV6m7KcNiUdXMUPNx0BwkMF9Ulu6BgEaKk8oNKSa0LJU/YzhJSneKslmc0HyWep9uSYSRgu/YDWkcc2nZBjd9KiJRYh2ftq7RaWDXRvGDBg/95N4nOu8gspjjUKNy3miEDS9Hr5qhvoheCGt1H3ojE2sEJfkXKZr+y5j5q3RZnrjUJaEotzz+1VaCJVhkjdrfmBqrzWb1TJrBaaUbEPd89bgt5o5L9V5LPJE8p3VgI3zoBxqOGHpLiF62aFDLJA1dlBhNybyPOMxestIuLzzQhKyBgYjUU1tbuPzyfR1mpdUkkNblqg8RVlLWF2SnnY0xq+tQ/C0PvQ5/GyODIiqJUunqvdSiFxhPGmU3mgldrkQbcqN5Bl6J72n0WI7W1WEopzvaWevV/X6gdjfxn0snDqD2kyn25EkqLFrwG2G42Y/Uq0MFVLZT8pKMhXra4OPQIwTC92QWkiYIcURSW8eQ4WuNHasMMNSemUPqqowo0L2Z61It6fbb/KAicflY5HDsuhpF7WoJ34tAJZFPeHqg/9d7EFe9P3vFK/nlqJYhvJIiUodk5EVa4JtGbyWPciPVGw8o81T/+9K1BulxyxZYcX3NTqToZtpWxLnCEsSGKqKsvFlnWUtA9JsRxaF3DCzXJoFFbxkNFCU0Y5gRwM2HMEQ9DrCvslSua/RJJXHHMio2qCCsB3sBHQlg2JVrzWtxqcSzKwC+FTjUt1IxpvNqoIwJWsP1Zo5XxN0aol5ZBbrwk8ZTiBsrRpEmWXe1xUCQYXGxmjqgxvm2Xo+CJASn+vYZ97aPMUrvvXNhNTg2lGe68JZ/d9BhhM2syirRXYbv45rX3ZTE7B6rscv6tGpOi/pm//+zfzp705zWZ7+5lvwCVQ92Rnu/Efyt6f+ys3oUmGDgBNBQ9GP+SU5jS0YCZRtkbwHDclAgIuiL0ObdEuAj7ITwccykAwD3obGnktVAiYqHahpSKbwJCMt1mHjev9GBuq6VtEwtZEKsk3KS3McjKbqWrKNeO4opkqVoJCfNRBTxWBP72SYXE2VJ1O/ZqbDm/o4qf9eW4TUx5vzjbpuDkjJi+njZgGIGXCzYcfVAPAsoBrZ0UDjdzz3d+capmBwbh4UaMCQ+QWDLJKC+OjP2jk0dwjT565B1tnF1M78pb1qL0tA72EwIgXsdiIWAaWTRVOWUOxrTRdM44m8pxkFitm/D3fiDAD24AH86bU4pJsfTIYa3CgK1OYWyiYQ/BwjPEzyCJgIOCOghyzida9LKIrpgrJ5XqJlxRqq20ZlmWxjvyM+1c7J4jVmhjWPm/0uZp9rR4XKw0RDGkRNaa0od2ZDR8tKrm/WyuyxzgSqmZHx+1OAz5Lp9xeBlWBNk8kkNg2iwNG5sC6Vi9esmvFaAt5S2y3UZcfia61cwKX6UbNV2CtUflGL+krXH90m+/JLvusduJbGWyhXBUy0Iyh6CpcYJqsyqBzvV2xebVj9nEUFaD04pOpnVD1LupZTHV5GFQ7fMiR5SbWUxeuLMK9Dnosd30ypeugYc6Ya0BZ2s62NEhVMXgDRfix40NITm80RrcpR7GvhWho7rIT1HUA5jU+h6kAe5PqbDH3MOZs/j+tCgOgQldUuArw6nrfNuIoKF8mJqi2PlAtzw00J6HaRfDADftRKHJgnF+iZ62b999nh7ixhqmbAh9AoXo7df0vz2kef+TpCavHtCFrHnMSz2cW9/Nq3YVKLDgG9OWk+8ybLA3CHlrj9z/d+/KIenTp68Mc5dupfcvTpr92Vy3LdC2/EZ4YQe8T3vee1XPftN04zVErXZFY2eaFR7aIq4rUw2mcajTm9iV/pYoY5am0rqj9F5aRy6bHMg2uyLxTFnPJA5QXGGtSkhVvK0LmQd3x8brfSktB5FVXVSmyMUDLcDakocmrHhKAVdhwwhZ+qVULMUqmUKAKshknM7wNUXklofOxR6wwZFdXNAoa4qRKk7jeihRnOS86fUvI7TDM26552JwGwVpd4P7Xnqpw4MdTWh6GcKpqVmgbFzwTKN/13WU37qVnFROxn5+3A4+3OC9lwpgefU1fX39FOZdvMfRpFtkYArMbq1UdAKxIaIzintgesfHYgThRbOfr0BvQ65JcuS8+VWTiwghqMUWMFm1v4rQGc9OhDB6lOnsJeegnhxMk5pbNsewAEDAl5DtvbEUjPZJ8tStm+8RiUnqoffRAlyWCIbmWodks+y7IiVOUcacg/cBy9b0WyXAC/3BELMyfPK/mFnlCV0896toKfZorMrQtcjbkLmau+ud2KquxZECWucTIr14/Yf8v5WU33sXY6Rw5q9usaSIyqNUblPHjqkdlGBO2Ut3PkODOWY9TkDqfVXPD7I61FT7uoRV0cpULYOQ352q6trS2Wl5fZ3NxcWCo8gepJv/UrHLpsnWftP8ElrU3uHq3ysQcuJx+mpJ2SLKnY3uhw9b8LpGdGwmTvpkwOZhQ9zfigomqBa4s///KXHemWsEPsoMR+8X7c+mbTjDQWC3WTMTs4O0upxEZWoNllkaWSZLpomwVntIZ+j+pgn41rOsJWiSy3ZCwLyZp5T6iHusSg1Kjw0QpdZ0rMXOS1AzNx8yqU+FixSoqKmFjNArn0wriqg0jVNPslGNPI5ZULwnSuMyJmvPirfoLOHXZYTlmKVuMzi88MPtHN0OFsdd2L3iJZGolG567xC6Z+njjYC1bsFRYsjq9cPfcnBVTxiWSulH0oDpcoHTCnE5QXdUoyYAoABvm/LqFzIkytu7zMXKuO5LgkQ2ite1koVjJ8FasEke7bkSPZLqNtmI7hh6BdEJavUhT7Usb7jQTYu4CqwE4EUHQtCeKu2rIYzbY8JoZ2KxdItkp0UeG6KVUMGpXXFjZumF1LlRHEdKFhFeqi9jVTjeVdnWcxF6AJDUjZ2P7BNPy32jH8AqjzOOJxO2fbVb9mw+JVu2+v/88ME69hH85YRdSMtDkgYfe5b25RqvTUu7quWTCg9nmeBaxn1C6z58Wdi9j6vForcpqQ4hji2bAYlYJ2W/zM6+ebRGuAEAjDEW5rW/JWIktbGTNVr5yr9lA1nlX5OBOi7Gs7sD3upxPbfC663YYslUD72e919vPf+TzAnnlhsXSnI57YNcu6XvxXETyD6eukiXhn9zq4pRbBGhnmRKswgtiY1IvQOnTUp0b8wev5ZBkk5DZ36GGBHk7kNawhZAnVcouqbRoA5cXf9050IcdgvQh96dF3nDMH6kLqq2Eh+kj70UU/+8Stq2+5mXAoJ22X2A/3OfjxAtc2bF5lmOyH7Ay01gPd4xXZ6TFqUlCtdhkfypossLoXrEOOzcRRLlm6nz6Jv++BacD9jp4W5Hwxd06fGcTVf0dpIRqlSZOhVQ8ww/7l2H/pqTrTQ7GaMT6UULVEQZqMpr2rHQVsLoHWZlw1JIWgpY+rrZBcS+xY7NBhtwt0XgoDXjNnfVu/fg24SGi3bwauobbRrcO463NpJ5th4pupjWLd76aJvFYRB3c+gjf1+TpeO0MrwcfA8AuxVz36rNdT7eugRyV6Y1tA7BBkMDyrSu20YTTm2H2/9sh3tEWdt44+6/U0KuPYl/h2Qn6gJRl/Zwrwkp1W23DV/RpGlKCStRZV/bNrnq4Mr/UwR22PZCBcM+2NbiyXSBPodmQgvTWWXi/uHypLJUekVm30OvL6VkPlxdbMi9rLZwmuXw+OiVkRohwrlkUFo7wQiZL1CWpcTo+N+nyQJfJeKi8gitGQl9JjWTs9V8za7znf9FmA3O79HNlH7SAYhRoAmemHZ8kkKrokzNlywXwfPbum1joqdmOfmBdCqJrkNAqWs/RRczW77p+tnfmssz3tLAFzpicPO5Qgs881+3po1YDfqtcVsECJIiS0U8mws1rOU3lO6HbkHLUxoHrgODqx+KJAZy1Rr+xQYu/1Hve+WU2z/naqS2qgxrn522f+pluZ9NVZBmlC2B5M1xM7PsNdz8HufnY29xClxbI3TabKbJDvtSyn37OKn2ViZTt6XTlXd9IpQO89alIROqmoKgOyr0SQUo4RxF6+dNPZShmJB16O39BK8L0Wt//ZLwLwkv/lVzATh85dk/H30qPvwA7LR5T5NxsS/7Xc0y5qd73vfe/j7/3oK/iDDxx+vDcFgGuff5z/+nt/wgte8ILHe1Me11ooWBZ1UdTdPyqqluf891/i2y8reO7SvWwVLT4zvoTnXPIghTN8vjKg0+YxqnLoKsgg2MLkcMB3HGAlTBtI1nOqfopd6qO2BvjCMdXwxsFePWTcoxGYA2GQZkqpaJWTqIZRHmprFq2mvrH1a/gtsYB+WgeTB8o2uJai0ApTgihOZIgbFLhERe9d4iJWoRMwpcKOPaaIfthWQSqqGBWDDKnAFjF4NDYivlbCeKSRmFG0NOyOWfuwOmgQhJVjNV6pRpVCDd4EhNFuFF7H4LjUNIO585aXQR2jSoIV6yE1oEYaYxTBGFw/JWjFtS99K+99/+svbIda1MOub/xHtzSKFB0AL8ClHhmCCehKNeGMupyG0btUABlCBPlCaIaypgSzGUi3okJlIGAI0Kiwai9bXbhpEHdlUM7gEyP7cTeJzbMMdXQVRAW3pFBOkw48yVD2/2QQ8IlYnalEYSZiDVb1E+xQAEQzESa+rjRVJ7JrHY2CxRTiUV1bm+hy5rjRKsrDDbqQEHt5AqYDFZB9uqjiY3QDxAobskKNiykTbxZMiYvO+QXczOLRMbOICjMDtJr9Nz/An81NqZ9jr5Dk3Yy4meF+8A1zul6o1YsxLTeyi9Ox18Jz1qZlBgQKTryfFUbYcyEqMWqGYlXB1nbjn61M9Hmu36O1mG5H7M52vIdz1l7gyuw2nQVomR0W7PybiiGk9XfoRyNUnovaxc9/hrvUQzu+n9n/zy5Gm+2sw04rYa3P2Y/VA4KiJBSboiw70KXsJyQDhbY6htqWTU6Q2RhhQKxREtOc130qihaX6ThAnWF/zgxDZ32p//j3f5bv+J5fwSfTz/CRgitwcS9CF/XVX19+1asBeNZ/eyPjI4HRkYRsw8l10kKwAk607t9CbQwgTbDrisxqtq9MqdqKfB9kG8SAeTDDkrJvqQ4tY06dkXNizVqOtTOTpa6GVT17rptVtvTbM6HJHrW+LZYvlYsWWfK39mZKst1jfLjFeL/B5MLmr1r18a1J86pRifqWFcvRCKwUSxpv5Dpr22Izlj6Qo0xkF8GUrBDCtC/0RBBGgJiGOFC6JgiZWXDfMM3+05qQ2WaIpio3tU8zEZxOIriUl9SspaAzIS2lew8rd1ZIDGZYyDV91nKzGVjG63i0vDn61J/bpa5Y1KNb1z/vl8RWKq7dQFT6KjGYkZNA6+2JgA112HflIK2t56agnxqLGiNklqDEAllVHtdJMOsjwnJPVCP9bi20lgHwDMBQgyvEXifEvqbJ9DFiBaWg2W8UxG1xokTdyHAHV0BD1ZfhvJ44WieGkuUUh8MNiady83kbw7iGrSvLpOfwUeEbAlQlVGpqw2e0rL9rAlAENJrMi0Qs8WqgZZfSGqaEnLp/qkk/PjRKErXDghZoeihVP1ehpkSdGXuuPdW/Mz3UbB8L0/5uxwPi80QVRd3Tqj3WtLPWYLNVZ1/NARRKtrcoYCCPDWUJ2wPpY+v7JKIMYiA2cyz1sQf3E/ICPXvuPh+ItEcpY+YIVap27a23NexeIzR/Rz4/ZQzBe1G8GD1ni3tB21aTXHc+piZwqSkQRVlKL+9co76p1zghhClpbGWJcl8bn5pGHUkAnUVr59SQrI+j4myP73EmF1LPrl8SS7DR2jLWB/7Hz/HSo++YI7Y+Gv0sLHraRS3qYqoFwLKoi6omecLHT1/OmX6P7zz4Ob7n8Cf43PgSEuWw2rNVXY7aHEhzmFuS1JB0Woz3K3zqSVZy8kLjMkW6PkFvjXHdhJAmEvxWFHPMjVCVc43QOYdxtU81sSnbaSZfN29GT7MRfGhkzUGLVVK+LHZJJgdfqmZNaUfSxFVtTdmt1SsQDKhK4XNZYHorw2UUuNSIAib3kckfB6ZGNfeBqJoxAEasW2Lmxa53q+Uxc+oV76lWOwKcGIWuPHrkZKabaLy1uJah6hhRJbiw64m/43t/BTtycw2EqAEqVB49el1s8IyRJrsEZYW9tdN6YlGPXX38n76Kb/7Rm4EI9CEAit2W78AUojwh3q4LGRhpR/O9BwuqlN+Dkftka5UAahpUFQSgiBJtXQdlgyxkY8ZJmFToxOBTS0g0ZT/adHhRplStGHjfATOh8YgXFp9YkXgrxxRIngoKXGZItnJ0Dj4xKDMFYHThCXZqxaAqD+XMwRLXZj7RhETLe7Fx+AOgVaPMkjyYgK6SuHiXZt9lBpM7zJabB2J8kMWpQRarOxaQdc2xvnYuinYFzM8sPnfW7O3nWVzVr9ucK3etS2XQp8IOReCO7Z4+rZqzs2mUGDXgUoqXttKywG8W7CAWByBDjtqKIG5rw9CL5+ALUq/MWknUShqt4oBghmlnpvff83Ob+T14LUzEmW1rcm7O8hnOP80ewMvs+0xsBJckFLbJ06lfQ0/3qznF0GBIcnwLWBLA0AV8ZjF5iRrlmNriRClUmaG0Fg/vdkq13CJ0LNoFUUEGsYpUQeM7KT6TYeqsXcIL//a70ImaHh+PQtV2hota1BO9Rusd7KUjqmsmDD60HzsE1/FMtKJ/H6jtEWF7IMOqtUBWeYJZZnQkYXi5wo6ln2vfP0CPCpKoulRLfRnUMjv4mmeInxdc9gEMqDSRc2yaiKKlPockFqL1SpNzEgJ6UqKrDBSUXY3L5O7Kg0+V2MNuS27MZF9CsRQJCUby2XScY0uOkwXfB8AOi4YI1AyoXZi3poy2mMFqISnUTPrashPiucvJ4yrfKF1CrYrupAIoF15yDsqoZJnkcq5NRZGuB2PY9Biz+9x19Fmvh/GEY3fePL2xtiWeBZ61FtVlEYkU7VRUDoMRVPmu513Uo1t1TtLRq15NrbpQxkDpSDYnTb8JRJvLUogRBdNMnrKKmSTT/asGV9TpNbhkP6GVyDWuE1UuNekgtahJJSBgfCxLPUAAOTXKCWfWCdQW1DOEibpm7WKdh/EEsz7AL3dk83pW8MH1oezD9f3q/dB76Q1idh+OeQu+WrkSiRjNdkIEW6J6uCYOJUl8DQfLfflsxhNR7pRV0/MENyXNyQ1+/uds/+MFOJ1TQ4CoDmqL6zll+ExG6l69MLvPf7uILbj5HqtWJteqwFmrL80u1feuavo0N/c8TR4U8hyhKKYAVfycmm3Lp3OFAGJBDmLLVuf5FcX5AZaZnlanaXOO99vbuz+bs4BTc8+F9LR+PJ7213sQU8+9SbuvR/V3p4yRntYJ6Y28iFkuxXwWTl01OWySo7cGmKWWEN6iur/qGLJJhR7m2OMTCF7sNa1BlZWApK10CrgYuWbIB6bBO3w7wXVTfDLNj/z2v/UudKbEIv1Rqln1yqIWtaiLoxYAy6IuqvrC3/oFnva7N9KyJd9w6d1suA63j57Npa1Nzkw6dNZG0gCWFbgUXbTQZcAUgAlcvn+d01mJ+9QKemNIWN8gNRoGo6i2MDsswc7Ncq4brOD1dLgGsTmaYbXUCpC6mZplByWWkFq2rlLNQtTU9vcKfKIouwoz0QSLWJ21ZLGaDCDZDuT7FMGCyxTaiRpFVwFTyuONib9PPMrXA175SQA7kkGuy2SRqUtpRGof/eZtxYWo5LdUzcIjaCWT9tqnNlpG1NYPPtW4RO4TtGxTPQR7+XVvw/ct73vPa3nJd78D5QLvv/U1Z/WwPvrM180N41RRoYOZY5Es6rGtv/wtYd9+3c/fIkCfEUBQFwKw+ARcJiBKvgJVV7zmzUTULgqwXpHEDBUz8diJ2MDV+1st2zbDXPazGYCFKAVXAEZj0pTQyfCpAHnic6/Il8QP3kyEDWwnAe2gSsQy0BSiVLFjsS0BsNvldN9WCu0j6JJqXCsy810EaWpLsDoUVGuwWlw/hqU03orGNqy2tvOZoWqLkktXATt2mDHgJUNpulibYd3OlFKakMTBuZtBruq/zypK/M6/7V7wnE2yP3f72SwHmvPkOdCAmecV0OAstmOzr+3i+dUHML4ZnMkCPg4RaxVJbU1RAwu1uieGaE4XvG4KWsQFpnxW5uyLYubvX2ey1ItwnVhQGt1uEUajeNf4eZyHqTcHoKgdCpSzbQN7fC/Nf/d4bFESVDVV8uwEY2piQO1DXZaozS1sYikP9TDjEj0uUBsDeX+17zpI4Ge7Da1UBppGFJNmEo8f70XhmBjZ91Ozp5VjUKKGe/Hf+BX++L/93Nnf/wXUYjG6qIupzLrFDQxrGxmd2NMBmLGidaaE0ViGSJF1rja3yazGtZcpljXeatqnNL21bcmkGo4lAJhoQQhCSrFWAN2obNybma1nrg8y0FLtlgxMfWjsgkIraRi6zRnHe3ldI8z98X7D6LBc+3UJ6SYopyTo3mrypQ5VSzW9Akp6hNZGwFtRaruWolCaspuiq0DrjCIZVJJ3oWKouJLrrk/k2qAKh87j9UBDyAw4jVJOWM0x76C2WPJRKdrYiMVSlcf3OwLK5BOx7DEGUiMB4kWFih9vaKccvfKnOXbPuwE4euVPQ5pw7M6bOfrUnyNkKbd++i3c+und4elHn/5a+ewSK8BKDVrF7IpFfWWqBsKOPuv1sm94jx5VU5WHjYqVdkvss7wooUNixDIsMWK3Nc5BRytND2q5jyoqQiaggxoV0+ySGmSbVX3AdL1YFI3jgbgiJDGzrlbSzPTFdfaIiT1jVaG3xiQhYNqpEPWUillF1dTqbjbjzU+PDxxTy61ZC1YQRU2jwo4/s0TOCzqbAolRUSZqbCfWrlGBMveas6rbsw3zVZi2mDOgh8I0YGtT8fGzNoh7qrHPUg1wMn/jWe8LTrbtvETMebWznIuDvAejReWj1PR8H98jWqEzIcyEGcvZpj+uazyWPL3E7m1Nu3vj5VpQlfhILq3teHW7RRgML+jzmn2+Jj9l5vJyzp62eeh5Xqe2loOYo+Mly2Wngnwn6ch5wnCE3pqgU0PZtdhRRbpZYk5vw/agARZVtyNE22gFWa9BVVnGfja+RDuVa04rwWdmF5lHBcAFXvLd7+AD//MRWt1e+zbQC/XKos5fjvMfZ1+JCk+Q7Xi8awGwLOqiq0Mr2zxr33G6qqDUhis7awyrjPs/cQnXnL5TmkNjpAlVamo9UilWW2OW0px71EoToheOnxLLlNnclXpIVwfknSN/pWnGghImywzzpMkZgIbZ3rD9IDbX0izboYAPYokkQ+qgZYEajHhyqwD5PlEEtM6I7dJkVWFHxIEx6NGUKehTUBW4RGOKQNXW6Co+b0vhba04CBH8UNJDBI0KoHMvYYiB+awLJ7YPGHl/ygdCUNPgbyu3NedZJxkx3sbsGA3DS1K+9f+8mQ/HxuGF/9u7MIna1Svv+rytbgatt378zdzw7DfIZ9tanNS/0vWpd7wKgGtuvIV0WwYponCS/S5YQIMdyz7pMgm/rbNX0Ipsw5NuSTi8nkwVS7o+jopyuribPW5qplySCHt+KaPsW/IVQ9GrF2yipkm3AyYX5VRQNBZ6wUD3wRIzdrIANGKHpEfRFzsuqlUpx0GITb6qF71eLEpUERfI1hCwYss3LtBamIy1PRJA1bVUbQFrAJKhj8eMZCmZUYnKJawdmLLbqmo3468uHc89sOtctdMSpgaNmzpHrsf57jf3tz38qud/3ePInrmPgCVm+jxzbEZD4+NtrSyaalBlht3XlNFTq63a2mDH9jWKmlrRYpM9rSBl43ZbJNSDyjrnIAwcupVFCwxREF3QInfHZ1E/79k+pwuuWZ9zaD6nhghQDxxcVBWZKUMgOIcqSnyi0bnGrG9BngsLvoz7oZJssbDUwXXT5njQpUdPyobt51N9TnClyRaLh+zDUZ/MgvWwWIwu6uKpYCC0PKSeqgeb+wJmoli6K9D69P34wTD2kch5bzRGZRl20BMm7kqFS2eyqUYj2NxqwOXG2z+xAhaUFSqxuJr5DLtA9blrxiQXFUiTvyDh3HWIMSDXSR+m9kkI2Ud5Guy/7Erf6lNFlUlPYHIolmJ/uyE/x/sVrbWAVqJiNXkkRpQBn2l8rsFKr+lNVAl4IsAiFi7BT4Pra2UMqUE5P81wyWJ2TAgCyBSl9BvGQGVw/bbkp42i9UytkNRKcqVqy19r5FzXbXPDc97ArZ98SwO03PDsNwhINRqf/fu3BuUl9+XWT7+Fo898XRxMm3ki1qK+InXsM28F4IbnvEHy27yT76Imu0T1UxOeHm2UJausIrQzXFeY73aYQ+VQkwI1yuUYipkrjboimbGLrVUgRSE/05QwGgnIOasSq6YkhxB8JO5pOQ7bLXw3EwXWYIxedw3AE2pr3tkQeB/m7erkSeMAO1rlVX5etebDFGTxHjptyaJoZwSr0XWui9YwGkcAU7Yz1FPqGdsutdPtAXYTevbqU2dC3OeAix12qXvagM3evoeF1/mBhd3WsHu+zs5+dtebkP5WzX4n0a2h7teUMQIq7JGHOAswhBnlkU7TaQB93f/uVJ7HnnYWFAlxf1BFgUpTVN2cqSD3e4j9rPz3IfSzZ8mGkTel51TYe5Gipt/9rPIooPIC5Tri5OED9lTMwDImApzxs+1kuG5kukYSXWOdXmdfdlJcJ8G17a4sWXFbmP5+7ctv4r3ve2j5sE0/e+2in13Uoi7WWnRvi7ro6pqVkzytfRKHIlGOly59jg8PriZbiw1NLU9OU8aHW9iJZ+WLDjtK+GjvSl789C/KgstalLWEvEBlGWE0mlGkxAtptJeZW3Tu1bzVcmEDczJlmAbfhxCbYTNtqCMrWw0m7P9MRdXSuJZieETFUG3wKTgN+X4wYxqLI9eKIIyBUCAL2YAMuH1AlTJcDgrKnqJyqrFIcvXaOCC5F4WAJ95OLclQcrsdCbvfp5FVNfLyPOk0mLNWutQBcSFRKK+m4d1G1QTtmHshrx00PP+HbsbHvLrgFCHAS77rHXzgD/Zmftz6yXkW4F6swEV9Zevzv/AqvuknbgGmg9KgYHIQXNtjB5pkKEoSe1p207Ir/+xYHmBGBWownloQNEw6N/293YoLXSNgRjuVUM9eQrGcUPQ0+ZKiWJKHmBySkTxWRZCvVsi4VPZPbzW2itYjKmYV1YvXmknoPXa7wIwUVT+FGTDx1o+/WewlkkQYtVVkOkVFlSqdKFtSy3v+5A28+PveiU/qY2YK9iivoQrS0NfnjnphWweBVhWzvtP1z3qhudMCBmTRJN7Fu0GCnbUnMHOhDLYLYcvtVdFbeVfeSP23ZEebUu8X0QaiCXKO26qMwY8nu19vL1uz2cVldY7tP581QmQi+vF4ulBGPsNz2Xw95NebPvEeN+0YUtTs553kgL0W29AMFxvv9Ukudo/jcjrwyTLUUh81GArA1W7hehk+0SgX1VxueoyF1DYA417gygv/t3eBEovKD/3ez/Liv/HQ8gZ2qlUWC9FFXWzlM4/pl2jjqdoJfn9Bel9G7/6CMBrLcVmzxTUSeN1KyR7cov3gQfJnjEGZ6XXTxwFqUTY2hgFQzkjo8Hjc9LXNOXcPi0FgHrw2ZmovZKL1ltFTRr9zKBevSZWnf3+FnZioRIHRYYRwoaT/rLqQbEv/KgpRAWBUEHAmGXqyLRkAB6ua63ewCj9jv6KsWNMGLUQhsfDUDcCM0pLPFq/lOqpOfbTotGcGsLUt58uVJWHhzw68y6hiqK2Uykj2MAZM0pzfKOU+N3z9L0iv30qFJKKEtHX0Wa9vhveztbN/PfbZmx7WfrSoR7du/eRbOHrFK+UXH0An+H4L103R40oC7ysnwElihaCTWEI7wSea9L51ASOGoylw55yoEIbjqcVorzvvbNBpA21CGhUwdRZQU0osnGfDvCORL/Q7+G6GnkQwxImCVA1zscKzEYQpK1G21vl1s9lEIXDr+m9xffeHpvt/XVrL78aglObY8X8OiKsAxqCca3rXkBrUiGnOSvBNHxu8n+tLGrAp9k7T7NO9+8/dIMnUqnW2gp/pc3bknpwVXJm97VzDfvbetnr7GnX1DMBR5+4BU8LUbDknxKDZ24MSMHwvcGSH08bs9jfPsVfey+x73P2m4g8tlunRWvIR1YWAMuf5rKmzbPew3xXlpdq9nfX6QSkoSvSkxBiF3coFXAFIEwEwxxPI0ng+R8BIF6b5XdCoM8V+Uu0CV170/e8UC2gCf/w/fp7v+J5H2M++d9HPLurCKqDwewHVi3rcagGwLOqiq3/zLf+Gf3XHS7i/2ocPmpd3HkDj+d32i6M3fwmtjPLIEpN9huUvT7DrI8ykR9HP+NDJZ3H4RJTkxyA5pbUALpGlp4yR0LRY80OzGTZ0lCHX/w8O1CxbOvrDqlrJMifBnjKLKUu6nzkpNkfdjGTQxrUUkxWNa0OxL+ATj6qMACITGkWAqmRRmm0EXEuBh2QsQfe6gqqtGjDDy2yYqi2LXVVJwLgbK1wiQAxKbhclgiJJFMkoYAqPGXtMDOsOs4153VRrYrA3BBeEyaFUoxoIRhbRLo2swgDJWGzLmsG8VsKaWdRFVR/7F6/iuT95C6aQYPnRZQHz5CHdrGBzvYu+K6N1BnoPVIxXDWUpQEjRU3QVEhBaVdDKot1XZNx6TzCGkEoAoR5X6KLC9TImB7O4PyuKJU3ZFguy2nLEpxGQdBpd1TkuKjbQgJf8FTNJ0KV4sesQCFmCGheEdiID42iFp5QiHYtc3HfSxr+7sZe44pVyrHfbMnSSB3Hrx9/cfE5lpx70RHDUMbVIoAZVRFFDzM2gLAn1grhelM5YTDSqgvPVzhDMHb+flXX3cBQUF1J1cCXTheiu/JhojTN9jJIFUVES8lwWs2kqAz4TQfFzgDkPdfv2XNjuVfVA4EK+h0dY57VcCF4Aoz3e7172FzUwpaJtiIqsP7s5kWtiuzXH2KXbEWCvlTTnfuXjvhuBqpBaCbC2hvf8yRv23MwP/T8/w7f9wLuazKYLtQdbACuL+mqpu378Z3nq/3Mj1fE2vfsVg4OBZBOy+7amd4rHnu51YXVFwJOipPtAID+QsXR3QROUPcOMr1V8OjWoNJEBVZMlVQ8Cpy+zF3lIaS9sdaAJ2YaoAE8a4AKl8Fm8ZitF674BrQcVrptSdSxmkuCTqFjRUC4FlBf1tSmmfayKpKCqJVa1ZVSjZpseNXRUXcNkn8GUM5lpqShdwONT3aigfaJxLSE36TLgE4VrWZJtUYrqkxsCHgO0Mjn3OQFx9CTmIMz2uDXIUmc8GIVvi12aSuR1VF7KebCo5G+AqoHmRV1UdezeXxW7N63wK10GT+6RL2vSQaB7nxYW/HAEK0ui1EgSsJpkPQKjufS0oSjFesiK/Vsz9E1TKCt8fcymKardarJTVOUbUlHQWo6tGuyrgb56+JulBGtxLStgZFERVnrSv8b8oLDSl5yJwXCGtCNqFaU1pAm3nv5NAG4b/jYA17d/ULa3Pu615ta135z7nGolmHJClmi6k7i9jfLaOcLswBp2gxl1/uleyuRz1NlUKnPPXd/3Qnu0h9FHzmW4zhGeBASqwbTgw7TXDbXVlYAhyk4tHPdUQc/27udTO5+vfz2X9e9XqJ+Vzdib0FV/RrIdD3FbjBbgL0tjblKFrbyci/tdAU/yckpK0Bpqd4762KrJQtH+2XdSUWO///W7Xu5P/uvP8sK//a4G7Pvgf79wu9vZnnbRzy5qURd/LQCWRV109Zl7L8Ooq/kPD76Ap/dP8Ld6m/zp4Br6d8U7dDsi82xZsf/ZyvHdDNeRRdnyFxSdExNpOMeT6OMpDY7Zv0+a5e0hKob+heF42tDUg76qQnysoWGF1wHKTgIaam9/YAqqAKGKFkN11RZAwxHKOcz2iP7aEN/LSC7rgbIErXAtI4vRXIaz3iIh4g6SoQy1g4ZsO8giNZXXyTY8ujJM9olyJN0W5UuZAlYyMpKBLGiLJfmbLuU2W8niVTtItj2mZkYpBYQpW8kIS1C2QUmQvVLgEBbIDLLuooJFVzEXY+SjXZM89k9+72cemx1nUY95jQ+BruT7DZdOePaR4wB83hlKlaEc5MsG7cS2q+zEfWtTMlXCck+CA9sJrmWmoJuNSpIAJtXYbTj+rR2KfVOwMd8H1ZIDBTpXqEJhCoXzkCvZR9NtFfc3eUy26bEjR7AKp03DWnIdjWrZKA2PipQYmqs3tiMbKpl770ef+nNyfigryEtCK228oV/xbW8GpVh/Rhff1bTPOFGWdTUqVbgskCowY1mIqsqJ57sPDbhSg7LNAsTNMJDPAYDMLjbnmX+6uW2WxTxnD6M0dcbUY1E7t63JAJhlGjqHWerJZ9HvEZY6sLEt59AIrISiiOfjc+SePBzbrT0Wqw2j77ECnc5Ts2C/bFLgvIBL/djZ+82GtsYAUWpWepYKiBJZ2aHbEnVZVYl6LLFThZYP0XrHzWUR1R70ZwNXXvB33hXziOS69e3/6zv50//ys+fc/sUidFFfbfW9f/L/pRpdwSV/BkEHJpmTjL3tIT6fUYy0MmG3R9sid+kqZVex71OK9MRABq9OwBCAUFYoYzCH9uGuOIge5oTUYkYF4f7jMvSth7dFIcB1Vc0N/hr1YK2CmT33xMBvFa9NMgCuZEgVwtRGywXsxpjslKFcbrHx1Exy0cZKrEIdECLpR8dLpoZQKsaZQlf1ddqDEhvN9hnH8LBtrG+lHxbVdGktZuyxowqfasqeoWoJAJNtVNhxhRlX6I2hXGMBul05nxUFoSdB0WoSCVaj8TRQvB4MRwWtfA7Tz0NNKjkPGhnElX3Jvnj/rfNM50VdPBX6XdAwuaTL9pUGl4jNXfc+CJlFFRaVF9FKqxKCgaYBQUPwUyutKipG0vnesQYv1eqKWM5FAk/VF6uiet01tSqy8rO25XNCGPSdSBSyU8WWKqvG6lavbwlTv85zsjbmT8QBfzH/3q/v/pAM2ssIsEa1zNHDPyHHeZYS+h05XrbHsu2JkYwkbVHWgDONvV4Druw1tG/UxLttsOY+qwvM85gNR6+Bjl0EorM/wbnJNBdau2xy5VxbgzA6seiVZQHNt4eEwRAFU/vGC3j9OWDi4ajInwA97YUohWaBq/M/nWqIsspamQn12vjUggbXTqCbYLdzlNbNMRISAcKDqRXZlYAwWhNSseELSvGHH9gNrrzob75TiKOJXKNe9P3v5E/+67n7WWCRsbKoRX2V1gJgWdRFV89IupxyJ1jP2xzaLyy/3/mrb+HpH9uQOyiFqjzZ8W3UYALjMeHQKrpIaZ/2kdEeBGCp5c81e3upT7BxMZsLEyeABMAZg05k8RWaPITpgKpuPhUzzaEX364AkZ2iZBGsQsNaV8pOw5tr4GU8QTtHW2uUa9M5aRgd0mKlNY7MdxWDw4tA2RVwRFfy97KjCQaSemgabVR9AuODEZiJzbRPoOiLjUPZA5+FmKUhTH9dgM3FS79SCXZURZWJgCIAZd/iMtk+FPhKwrvrftalCpcpXCK3m6IOHRf7MV2GRxwGt6jHv8peECu4oPC5oWVK+jbnnnSF0bKnammUg/EBhc2Fudo+5dCjArfSxXUTXCb5JMWSZKm0Njx2HC2+co9rGYp+h0/e/Cqu/tWbcZkotHzLQ6dC6YAPiRxO7YBpKewg2uMpGcL4RMJ1vQXXNlQKTO4xE1m06qhYwcd/Gqa2IXKs1qqVuo59UeTgL7/ubRR9y2Sfpn9fiR2UvOdPfwGAZ/6TWwgGiiVD1ZE8mnQdWmtKgoA1skB3ThbjM8AszCyiZhhyjWT+XLYGdZjl7MJzx0J1DmjZadOlz55B9VBr5yK3WThphbIzjMwIJulWhrv6UszmGLfUEsBWSyh9mOQzDL+vDNPurIy+R2NBfqGvf76Fppq3TNhzKDF37YrXn1q9YkUx5pbamK1xzEWqxH7TGmHzaWQxqhWqillENbiSySK13u/3qj/7vwVIf/4P3ixDUseeoaALtcqivppr4iwERbrh2LgmoRwnHP6Uw59Za5i1KknkOJ0Z2prjsHxnm3zZUO7vkp7ZJIzHDfNWGYNe7uMuPYBrW8KMClAZg8+3sQdWBWCZ5EBoriPKJjKArdWFTd8a1dgQr4NCAMB5sTLSmpACQRM6GaqomsB5VVSklaff0qASyp6QHOwQgpVrsYk9QTBiGRaUEILsxOMTUZvWmU1JJOZULUUyDg0A4w2oROEyg8s0VVtRZXK911W0IHIBf3gZ005R69sCGIN81oOxAPe1WiDeTsydQmtopfEzUNIreC9KAe/BaNxSi6qX8Ee3L4CVi71CO5HrnQ+4TBRYNodiNaOzPoI0xXdbqBBQw4nsA1sjUddaOyWXxUGvGo0hL6aWWSoqcJEe8oZnvwE1KdEu4DNLsZKIWwCgvI0/A7pwMSswkhtAhsKTCrU5mO67dVYdNNkpTS8LNDZjIXDr1r+Ze++3DX9bwJR2S9Qvp9YJec6xE/+iuc+1L7uJoBW2m1F1ElxLkwwqzKgkdDsokL6gVrHMhs3vtC/d9eHv7mkfcuj6jE1YAxzvZSc1W7PqkIfZ050LINK9HqrTBmMIq0tyOxAm+bkV2Du270KJNXs+fi5PcI+e9ivUz8oGnJ3EdS5gZa/3PwuuYMQWk0TU1OMjbbQDM3KYiSMkBt9ORfWYO5TzAr6EgBlXDcHIpzZmv6qzEob+5PcETPn2//WdaAe68Fz7spv2tMatjxlgAa4s6lGrJ0rI/aKkFgDLoi7KWtFj/vfL/5IfX74fgP4nU/SpB2VQFH2rlbWEyUQk2ac1aWop+l25+E1KaXhry5OgpPEbjVG60yxSQzWV5wbnxGM/y+akv3WzpjO7u1EJvpFWB+fmrcZqRUwdlln3MtbGYEXdXNR9AiYP6FKRDoTN5xMtgWoBJvstxYosUJWXcFHlhdWnC7CTIJZgTtQpysf7OgFkqo4salWIzMLafsxB4sGbGiTRjde1vHfwmVg2ED/GOlicCQ2D48Xf905UJDfqShiHduL54P+7t4T24QQdL+rxL+UUvu2xA0Xv0ykfPv0M/CU52gRCz1H2NSooXEf2w/aaDEZCain3ZQwuTdi6WsCQ1mnYusZB17H/4BaawMbHD9K7FyYH5PW+/MpXc81bbpH9dKDxmxkuRUC+NIKbNlAui697sGDyGHwbQRMzcXHBKgotNYmspRheiokDq7xEOc+xL7/znJ/B+97zWp7+y7eQ73f85f81P2D57JtfBcCT/8U7SQ+NObQ04P7j+6juyvAPatItiz3DdJhTL8SjVUkTBA/N4nQX82wXa05f0EJslxJiJjg0uAtYzJ0N2Nnj73OLptnBn555DmOkXbRWZPrOo794nwwYIQ4mEsG+0gR16WHCidOE0Wi3rcJDtQZ7OPWVZP/NgGy7VCkzt+31t12fSz1I1fF6lCaElT7lSgu7maPyOEBMZKEaUivHhUYGTyBZW/E5gpJr2Xv+/OzgSl0v+DvvIh17dBkggHahCfZkj69scU1Y1Fdb+aDQ24bREcXmsyrMyYT2gyPwAdXKUFkqhJ6ibM6PYSx9rR0fjpO5IMPbwTBa0cpAMxSlKFesJliFGRbozRE+2mK54ycwhw5KjznJ587LqpVJD12Hvze2jaJODsGj0HFgGvtea4S8VNuqqJhz1pEBsm+nFEvSKyov/WU6DCQDh0s12kmw/Xi/kHV8KnyDfNmgyxAzBEUhbSehUaKawqPKgCkdOncyvFIC/OoykE2C9ARWUXUNZd9gJh6bGtK8IrQSYeBXFWG5iyqcqBPqLylLmmH4sTvextFrXiPnyhAke8VqQtty61++8azf83XffuM5AedFPUErBEKiad+3zaGyx/iQqE+8AZ8l6LKSa9Uk9mzjiYAaZQXtNvS7+HaC3hpTHezjk2W2rm4RNOz/6Cb69IbsRy1Rq9z66bdw9Kk/hxrnJPcX2LWUarVL0AqfSN6QTxU6N5jMYIclapiLFZfWqOFEtmF2DVtXrXjRWizsvKgXbt3812d9+8dO/Ate9oq3M9lv+bMZq9u66gHy83/wZoolRdkFM0nonMroPpBjobG7VSEQfDX3+LMGxZ+tp73AXm7WfmvutZSeW7vPveYe23Wh6u355zoP2ad2sxiNCCdPTbfVGJRN0O026rIjhOOn8MPRuZXZD6cejnr7sa4dlsXnUxtdCLiiOm3otCkO9ymXE4q+oX2qRJdOrolG4TMjSkijUKW8Z136RpUZWhYf7anPF1b/4r/xK6QjL9dALYDnK77tzajS4bMEn8m1b3YOvuhpF7Wor85aACyLuijrOWmb56QCrpx0A9qngtiabA8IeSEy3DSVUDLvYTRGrw9IV1v4VHw2sWbq5R+9qinLKXMcpgzC2aC3an54N9dQhTDXrNXB9wB1IDwqWi/YGeVK9OYFhE3nanm3ZC64JNop+EC66Ug3S1wmC8XRAUPZh2AD3imqtoAmAKqCbMs3eQ/FksIOZZDljcJOAsnQM7jMkG5CuhnDRqOCvbEkcyKLd6nCJ0ZUJ86gfKDoaYolYeArJ8O2v/jtV89/YSFgSgFwfAIf+s9ntwHbyVhe1ONTP/mx/4N9dkSiHZpAGQwbZYeBS/k33/Jv+LbbXsefXz8NZH3GG29BtWThqRws3ePZ/xnH4NIWm9cEsqcMqJ6bM7m3S+9e2Q+Vg3yfYXxoieElinw14C8f02oX/PXfeGPz3Mfvv5Q7yh7//uAL+eN7rsZ9oc81N96CncDnbxTQ4hv+8S2yn1rZ16uWouoIqFJ1Pa4TmLRBF1rs78YBO/aYcSW5Qi5ISKf3EkyfWrE6wMSFIWAvbLF1xy++6px/v+snBHj8ttteh0k8xYpHVRpdpQS9TLrZxp4UdZ4qChluh6mtA9HSkPHkgjyS63PU1IZrt3oFaFR4oKc2hjuzWs5Su5hmNXDi/HQYVZ8b6wFYff7bq5KYheUc+gv3ELxvcmjUDGgdnENVJfr4KdSBVbjkEHZzuwnFDJO8GSjqOMQIZXXuUPuLoXYuSG0yDc5lD1uFPby3G2/12u4rBtkHozCjOBBpR7Z2Gfez2q+9BtlrMNIoXJbslTV71jKFKN5M4dGFAIn1cJRAo5CExUJ0UV+ddf/GMj4JnH4u7L9ig+2PHkB5j+51G2CFeJ4D5P9lRSgr0pNDwpEeygcBCZb6EmJfFI2tlx6OUEstfA1eOydZD9Eey29uiQXQbJZg5WGsUL1utD2qphkMsZpwbaC2FqxzIoJScq2MQ17XTUU1kurGEsyl8lOU2J50q6JqG4ZHLK4VCT8V4KHKFDZeOkweyDZlSFu1NelWhS5EzWKHJWpS4Hstqk4CJvbN8XVU7KUhqlxaBr/cwXUSbD2QTi3lgRQzLtHG4NsJk4OteT/9EGIujnymt37il8/5HV/37TfCIlbwca2vf/UtlD35f1CimjJjIYN96h3Sr33r/3kzH/6307XLDd/wi4QswXUs9uQWrU+u0ep1cft7jC7tsPF1yyzfYSTwfjSWfSIEGfIuL0Gvg88SigMd/ijm9dXbYscwenIfe6hDdmKIyksB7irXkHiOXvFK1CQnGeaEboZvZ4REUy7JNbnqiDIt8R697TCb40ax0gArPlpy1Rlrxghpx3vJjDHn7+0uRIn1F/9ePrdn/uIt8fjVJKME5Tro1KJHHdjcivkviCraMUfkkTpP9sps33OBvSlKyzr8LKDBWUGeqN6u/39exc05N2Hai/nRCEaj+dfCgK/i+Tf2s/v3YY4chI0t+U5Hcm735RSkqtVPlNXUsvxirRmr9UaBsiOLZy9gpf67bmUSWm9jX9vt4Pst0Aoz8XTG8tlUHbHD1YWAIQYvYHzhUZVHRYKb70imkWvpC3LY0NES3Q6LKUEPhBznPTqnAVlUCOcFbBa1qEVdvLUAWBZ10dfNp7+ddODnmsrG89ZNwZKwsUnr0znu8gMSYDmRjIM6TK9ZMNYDwQiE+MGwuYDXg8omeG0WTKn9nBs58nRBS+0FaowMwbSeMoZ1fN04qCLPo8+9RpWObC0nGMX4gBHWfd37hYBrck/AJwGdy+A6GU2VIpJvIioWbxQ2D5g8SOB3CLiWsI7sWPIsir6AINmm3Kbie/RWNfkpxKBubxQuE7XLp/7pOYbKcfGqK/jT3z23L+likPb41o9/9Ad5ZvdBLstaXJWdYr/Z5mQlMvbttM2nhpfxd/78H9KyS3zLsdczKlJCgOSbAiYoVGXIdZu1ZxjapzXJIGDGiqX2hJP372P/5xSmkH2q7CgGT1KUfY/vVNz99+eb2L/5oZ9kI29xVf8VdE3Odtmi2ypYW3Jkp40Ma2J94tdexcuvexujQwn5ssZlYCeymNalJihwnUC+KoMbOxY2bEh0M/dXzqAqCZsMiRFmoo1M3MQ0Ad6PVv359TfxlJtvJh0o7FjAoXxVgB2f7hNgclTJAr6IfvfWQoi2EM6hY0DmWYGWOSsAZNoUVTC7WGI16AFNLtWu55ld0M7eVtt81edRPT2HkiSE4Wjqw01Uq6TR+sYHkfI7Nz3/rq5QrXSwp7cJa+uoThvlHKEGlZyff29lidrYktfQCpVl8phWhhqNcdvb+PG42d4avNmz4mL6nPd5AtTc92e07Le1zc/5FEcxALQBV4wRFm20v1HeUy1lKA96XEASF/KVRxUxayA1jdJSoVGVx3XPb43z0qPvgBBIPIgNpRdLEaUIqSHoMGdptLgmLOqrtfJJCh0H25aitNhJJNYYTRjVPq7RTidmpNTnJu66n9b2qmQsjMaEyUTsvqLVo0pTOQcXFTr+JE3nelqKcvfQEgGh/dZguqE+yDWwDv/Vegq6NFa0AZ8lhEzyl5TVhCCB8iExBKWwE0/nVGCyKtdXl4Jra0KO2INm0ebLi4LFbEE68CRDAWF1KZlPPjUSbO8DOq/QwzgY05qyn1L2IghvoWwp0m0hE0nPK9vrMsXosg4u0+j9qViEqqjQVgm3//k/2fM7Ky5bwW7moOG2mcH52WqhXHl867k/dQv5EVmngKxzXCvgUkW2Ac/5mVskE9LA83/oZghQdhX+xauSRzkKVJ2DtE70MOsjyenLFL37cszGUNZueTxWrSXs68csB8PtH57uQy97xdsBWDWKqqPRVUBVAkBqo9CDfK6nOXbvr3L04I+Lgto7TARadFEz8LVY4fUyGQwPJ2Jvl2WSKxGB1ka1EtVtChOVwf6CAJaHUp/95Vfxwr/9Lsmj0IqyZ0lCAKtR7RS9lhIiuKBqUmGs4H0k9zvgHL3XXuqWswEtO+xSZ3ujvSxUZ8GV2eeof+pkmnu4k0w591w7tke3W6iD+2FzG7e51ZzDVWqmtmkzYEIoCtjYlPNzDGpX7Zb0tUUhjhqjkdhCzr7Pvdy+Yh+rbCIWZE/gaoAoa+sbOJ8iqFFst1uy/wO0MiEHRcv4+tsoliTT1o69ZG5WYj9NCOjSTRWaVuMTjU/UBYEr1337jaT1Lx50UTZEgxC3gWS6ny3AlUU9miWTya+AU8MF1IJLIrUAWBZ1UdfLP/093P2ZS7h6rcCt9jE+ELa25nILGuWI8/j1DdTGJh6mdjTRg1aliTxuNALnpQmivnjPN3s1g1onqmmKfFmhE9sM5+ZyD2pQJglxqBW3rw4MDkEag6qa5rA4CTvU3tNygXTTSiPgJVxeOUUy9ujjgbJrAE26CdmmZJzYiYAougz4RNQnyThQdBWTFSX22T0Z6qabsqBFwf7POoq+pugpWWw6YiC3ADW6ElAlqOljzHl6tj/+/fOHvS3qiVFXtNY5aLfp6pzPT47wp6dfyOe/eCm9L1m6DwTSbY8deyarhslhTTqBlS8V6NxR9RNwAZ9B2fHky5rxfkW54skrS7JmOfDXA27/s18873b88If/Ps9ZOs3vffkbmfzzy5isaNa/LtC7W8HXF+RPcoR7Ur7hlbdw4K8n2D//DAmwb7nPseP/vHmep7zrZnwWCJknPWkbdVcSrUmUEz/rYMT+Dq3xS5ZghIFUdae+7cWy2b2hO+qZv/8mPvt9vwTAk3/9XehS8eWffvVZ7/+lV8//7Zt+7BbKjoVgaW14sg1NtSwMYFV5zHaB3tiWhfFVl4vi5u4H8OMJwPntBGqGMrERmlVB1OxGZhaMxshj6vOf2sNOwSAD/jSdV+e1MspLV1h7ZpvDHzgJgxGq36Va7VIsJaggAK7ygWRtjH7gNCGXbCx/6gwAPrHofSuE7QGq20GtrsjwACAvZJFZFFBVUwClkuHgWReTTaDq2T+j5rN8olYEtVRU+ghAJQOKEBU7Z/XRtlZyHdKkAasCxKB6h5ooVOXQmyO5JlmL77Xx3ZT3fGRvD+oLqZfeIAMm7UJc2Hr+8INv4LoX3iibGwK3n8XjelGL+qqs+1vQ9dhtTed3l0lGDr22De0Wut8jrG+IJZiv7f+iX73Scs6/974pC7zOCgFUuy09bVGiT26gQ8CfPoNvcghsY6UooLiAtLVKEOQ6omwSB4rl1CasVmKbGPauo4IlMYSWWAiGTE9zImK4tTEaXQlreDVk2LGX30vfqGH699eqaE3ZnipNdeHRrlbNyTUbpag6lqpj0VWg6mhcqkm3HclQPgc7gm7MDXQtyYwKRlF2NKYIDaADCt3TmEnAlAE7OvtX9t737w45XtQTt1wq+0HnQeg9UNF+YCzAyGg8v+ZqZdDriL3X9iAOpW1UaBlY6uF7GdtX9Rhcquk8GGA84di9v3rebXjR33wn1aGE7gM56d2bTVaPnlSoU+tUVx3Bt1Ps2pCjV70aBiP89jYAt03+Y/M8R5/+WlAlVAbtHHaUE7JUyEBai5JtawhpSmj3UWsb06EzQKctx2xZQWI59tmbOFc9/4dubhwJXn7d21BV2DNXYrZmHQqe/4M3o13ADAvJhikKUcalqQzAQ0CNC7Hn9l6IMtFVAthtgXu22mkjFjz1un2212vAll3EI70n0Dz3/zj4N72u9Lh50WTaqG6HsNIj1ASV0klmzWBIqCrcYAiDoWRjtVuoNMWPx+huB9ot+T68J+QFbnNL3n8N5DgHg/P0o+foaevHPdHBFZQWACmuI4Jz4jCyw9KtrllQS7XFDqxR+2vdkGv1xKGCfL52E7FjtxrXSajahvff+vCzsq574Y1xHiO2YLf/+T/h+m9+Y2OPeetHfulhP/eiFrWoi7cuWoDlpptu4vWvfz2vfOUrefe73w1ACIE3velN/MZv/Abr6+s8//nP59d//dd59rOf/fhu7KIe1Vr3I/bpDgB33nmY1c9pzLBEj3PxSoap9RYIq61ugtKUEEM5g/PTBWP9M0lEhpvnTWMT9pIj1+DJLOii1bSRieHMYUbKi1bC0KkZ3iY2dLVyxWjQiTRViSXYOMz1oPNSGBWpZFjgAkGBmTh0rmitaXSlsCPINj0metqrQPQV1XirYqg3jI4QLceEzVVbKzkNZVcLgzBEuyUtQEvZpbFa8BqqrtiHyWcM1778pgUr46ug3vDs/x+/+rnv5Iujw/zB55+NvqtNVkG2Af27J2Id5D2ENqhEPM5PDFEnzmC3tiXYc98yYalLSAyjK/u01zTD+/dheswx089Vd26vopXnk9/zJvie6e1X/dN38X3f+Fd8fO0y7gyHSLdkkaYvOUw4s4Y7szb3PF/6GVkcPun/egc+Wqlna9A+maN8EA/elrCalA9UXRNVYQJC5suafPncagB//BoAfv7EcxlvfRPXvOUWqk5Ao0i3FFe/+2Z8Erjrp85ujVdX1ZXjqX0m0DojiywzqTBbE/LLlpgc7JOdyTCTCj0qqFbaJPkh1D33E6ryrCy2s9bOhebOPzs3v7DZwytZ/umpesRaOZ9ZQ7GcMLoEisN91MEew8tblO3IU8wU/fsrOndtoc5syrlZKXSviwptOU+Xpdg+OkfY2kbN2n7tDOqsgYWv9qptFKJiKHgvSsN6EGTtvJXlrL1PVCkpK0CYUopANc1hqRyqDsatnAxj8gI9ybntr84/SDrnZoeoGlOg1FSl8p4PCcP7FS84t9XOohb11VZ2qHAHHWrN0L97THJqAAPx3VdZGnMTducSBOcEzK5V18E3ypX6XKhsVA+Ox3LOjIBKOAvbO0RG+Ryje2Yo1yj6gjB+JYfFCFHISlC2qqZgiSolFwKtCanFWyV9cMxR8akSJcpYoStPsl2iT5Sk/ZTJgYyyp0mGnmQo2SrKI9f6wuE6iQTfdzT5ihaL2iAWYgTpjyWvIioyTcwQNEpUM6mospWHYKDsKUwutwetyTYVR5/5uvMOoBf1xK+/vuVVPP+HbqZ/9wR7eij96yRvVLV1KaB2EwjjCX6SNyCjSixsbaOzjOX1If0vdCWf7wLLjjxVa3eOw3d+x1vw+y+j6hqxyaSLPRMIm9uihtmh8jh2h1go3/CN/ySy4i2hZdHbE9jaRo2sACohCGFiqS+uCLV9mVL4XksGwOXZG8Wr/++34rcTekcs3/Rjt2CKgD2QkA48L3vF2wmaCxpMJyMvuUg2Zr1FYILhGDVKpwRIYwgrS6jhaPreo3XhQ+pnYZ4gs+NcN6dQ2cM2da/71qqKxrqqlUUFkEO1MgFIQIAiILRS1FokehqD7rTRnY6AMVFlVxNb/NZAetqinOtpg3uCE3weg2o+3/p3pQnWolK/6zhobN+0zHVUmjRrziacvmUjga6C0snxoJW4E4SAHive/4FHBpbXlpg6eIKX88FtMYvr+ucuwJVFfeXKPxR/5kU95nVRAiwf+chH+I3f+A2+/uu/fu72d7zjHdx8883823/7b7nmmmu48cYbue6667jjjjvo9/uP09Yu6tGuGlwB+KZn3oV+VuCvL38aT/6fBntiE0AWlsQGJcqi96xoEaZMVJJ02jDTdDfMvuCb7AKVZQ0zIhRFI2HdKREOZTUdTqpkyvirg+2raW4LSSJsnsjQw2qqlTZmVKJysVeQcDRF1dISCqyRYNAy0Fr3tNaF2WfygBlXEtSGeH76TEujUQFe8lJMtASzOeJ1HfuaKoNkLKGgQUHZVxFokcEvWizEgoVKT0Gaxm90URd9/cGJr+OLxw/S+qs2vQcDZVeRbUYW6TCHRJighED7RC4Li0rygvx4gtYauh2KIx3M2GFaikN/VYp10PnFK1z1z96F7xzk+AOX8rzfuIWP/ubUfu7Of/Qz3PLZV3DlJWvcap7FHZPLaZ1psa/ah2lnmLzghm/4RVwvm7Pm0CODzwLVPke2bgmJxmwWKBcol1KKvqHsqSZI19uprV7VgqoH5VLgBbe/lm8/fCdXZGd4RvYA17Ur3j9RfGL8JP7LJ76JfR9OWf5yiWtpxvvFmqx1SoJJj37wlWgC//M7fo0n/davkO2b0Gvn5KVleLyH2dYkfcXKlwIrn9oQxl8rEzvD8YRsa0C63MettKm6KSaGCpeH+9hTLcJ2+bA9ooE5pt55LaZmSvKujJxnfSCsLhHSqLhToEtkYaMU/S8OyQ+0WHtWwvggtNY1apQTtgfTjJV60JcmqDRtLBUAqFUqXyt1jgwV+RevK2H6vaskafIB5AbVDFcaa0prGuBFwdSSwUf7tUkug4M63PkCWLoX/p5k4Knc/L56Icq2RS3qq6le8l0f5y+OX8nk7lU2n9rGXNlm+XMZ6q4HCHkRwYyz9K/1cR3taiTXYGaoWA//xpIPUWdw6ZodrDS6152eG6J1jy/nj8ua9T2njKvzwJJIavJBcsxKB4mh6lpc16KqgE80rqVxqViz2LFDlYGybwhGrrfJlijadF4SWpZk4Ei3K1TpGzKBqrwANS3bnD+Ul77UTgJ24jFjjy49wSrKdrTVhahwket61VLUQcPKExXekh+nneQ/2bESVvmivipq6ctj7PENWd8liWSV+FllrpJdwnsh2UUlcGgyTKLlXgxO16c3Lvia+IpvfTO2bVk6M+GG57yBWz/5luZvf/hBUWx+x/f8Cq5t0GVAd1J0py2vm8L1vR9GJQm3rv9W8ziVlwSt8cttGfBuT+Q4zgt5b2kKnbYoWmpS02AkSpFWgltpE3oJLz36DsquJl/W+FRR9GHwnJxQWMzQ0D0eaK07VBUwuZN1ngaC4oX/27sYXK6xI/jYv3wV177sJsq+xSeKzScbWuuB/lYloPF4Mj2evBel8mAowFWaoJSWzz9LReEyGErG4CPpZ2FXT/twnq/Jt/NRGVHvE94TxmPUJAdrCKsr+G6G2ZoQNjZj1l+JygUoVzEjJAzH8wShfPLI3uPFVHtZDNe3q2hjFz/rEPzUdjit77ajr01EjY21uG6Gqmcz9f0iGUAVpRwX7VZz26x938MuF9DBi3Xujj/d9lfnt49c1KIW9dVZFx3AMhgM+IEf+AF+8zd/kxtvvLG5PYTAu9/9bt7whjfw/d///QD8u3/37zh8+DD/6T/9J37sx37s8drkRT2G9XtPeQ8Ab1+5i9+/4zvZ/8X7UfECHqpK5MZRMhpiJouqGXXONeGhyhhUkuD7LfS4K810XFCGoqQOu1NZhu73oHL48RiVZfL3udD7OsPA7R5SxteRHIUQ5elOfldKQA6lCFqj80q2OzH4zOJTQ9UxshhsK2EDArr0olSJw6oQgRhAPERjMHfVEZClfcZjck0wEjJsCsnCkLwWWWwyCmIx5uR3bcRSqV6cag1M4NM3nSN3ZVEXba2kE5b7Y3I6tNYddiRM0aqfYEYF40t7YBTd+3NUgOpAD5vnqODR7Ta0WxQHu8CFsdx21b6Cr7viQQ49Z5sP3fr1u/78T2+/AZ949EpBemDMqRe0yPd1OPhXhvT0EN9OqHoJL/nudwDwgf/589ihxrUD2MBkFSb7Evqnx+hxTrCaqq1xiUYFGcZ4q8SHO14lq27gy698Nc/8/TfxB3c+k6fsP8O/OvMiJvf0yU5pkgFcdq+jfWqMKj3pGU/rlAywy56l7Bnu+PiV4BXP+w+3cKgyeNNj4+ldgoWVLyl69zvaJ3PsPacgF6UGIUhgapKI3cDGJvrLHru6wvjrr6Bqi5d3srqCGo1ABYKbV9Q95KrtBs4DtDR/SxNUpyPnNGvwrZRgNZSO1skJBz/RIv3MvfiNTbCWzoFV7OQQJ57XkvOYUrL4BKjU1B6izpa5mIM7H606V5hrVA/VTFBljNi/RWseebyAK6JcMTJkqpVGwU5BfxfkcdaIIqi+z6NQf3Tba3j5tW+Ta4wW/+trX3bTeS1HFrWor9a6bt+nGLuEPz64zHpmsGPQRZ/lMz3C5jZhkp91KBiKchoG7KuZPMEIelsjA9alJdTSEnhH2BoQxhO5T6cjuQBlJdeVfn8ezK5fJ/a0vhSlmzII8JoosSY0hpBGho5z+G5K0RcQRJdebGaNwieKMuYQVpmiailMObVXwYPvpLi2XHRV6QmJpkpSLKC35XqIR7JXSk/rtMeORIFqSmHLA7hW0qi2dalJBhXJtliFVS1L98ESO3aSYbGlGVxi+di/XPSzX63lMoOtr3EhWjUnUYVgTBMWHoYxHyQqFECUYkJaUBw78S8e8muHRFO1DW41pX3/3vdp3z+QtV9iqJZa6NYh7Kk2nF6TdaLRHD38E0J2OP7PoazEAtAFFIGQWJS1QlTxkkekiD1aJEmQikOCmpSoqsUffvB1vOR/+RV8ojAlVB1orQXa70uZrCq6JwIrn1yX7KayEvCm0ya0U8p9bUzhqdqabD1w/XN/iaSoqNrLbD3Fojws3ZWT3rMGm9syLI/boXpdyccbjfHDEQyGYl04Gsn6upVJdt5AMqCaPNNH0gdGkuTs7+cqlWWoOtM19qbifuEI2wPwHh/zAFVUUegQ0HofPkvkfQyGYp2Y56IsHI4W/eysAv5s5CFm1Dvxs22UZiFMCbP1cZkk0OtMwZU481CVF6u2qGipyQDKBcJDUJ+dq27/sFiCYUQRdsPX/wK3/vWN533coha1qK/uuugAlp/6qZ/iu7/7u/nO7/zOOYDlzjvv5Pjx47ziFa9obsuyjJe85CV86EMfOivAkuc5eR1ODmxtbT12G7+oR73+27DLfzzxAt79pN/n/T9yDdyKMKXLKg4n/TRsWWsBWWoJqp9e6EMlNjRoDVkKwxFhNJphN4m8WbUy+bsXxonYqlTzoU47LHQaKbJjGjgYG7cmZFBrgtYiXfcepRT5SoZ2ATsQe7CqZ6lakhOhPFRtWTx6Y0FFawQFugI30tiRvG+fCCMvaJrgQZ+InYIdC8BSZQrloGpLMLidBGH8ZYp028vjlIQ9/uVvnT1PYlFfHfUtK3fypM4Z/tvyCxkdMIyOKCYHA6pKWfl8woG/3EAVFb6dUBzo4LIEwn7svV7UC1aTnBpy66ffsufz3/DsN5z1bwBpu+SyTlSj7UEi/fIr5/fBJ/+rdzJ4kmeyP2P/pxL6d0/wRhGsYrJi+IafvgV/hdjmhSDhuQC+k2A2KsxWTpqKfcif/u7P8E0/dgtbVwdCAurwBJtW+HHCVf/hJswDS3QfgHtYZul04OCmAzxm4jDDCjPMoaqZaXIM6nFBumm57I/a2FGFHZSYrTFozYGPafGpzyNQG+1hGrZwCDAcScjlch+lDeHMGv7MGq0/HUiwY7tF2BqIHUFmI7hccb5wyPPWebJKGnA6ywj7RCUq4ZAGPS7RwwlUjvYd91BtbqFbWbMgUpVn5UuOdLOaMqiJyr/GI/tryyLh4VRNFKiJA2glw4wZReGtm/+aG5Z+JAbb66k/dVnKojNaJqC0KFjKklBVjTLm2F23PGrbq3xAyyEjr/kQlFKLOnct+tmLr0Y+Q6sAHce+v9C0zziGhy2Db7yU3kfvww+GcsedbN8dNWulE5wTclFZieqjnaFOr83lUiljJDegncow1hhhj9fqlnMFSWs1HXL5AMqjnJxTfCvFdWy036qP9QBEdahRMdNP4y0kI0i25SIfUoNLE8YH0mj3JaoXFcAlGtNPxaLUiZrWtwwuM/g0WpKNRL1SrGQEJeQjl2pM7rGbE6yHkBnsRAbNunD84SO0iFnUxVH5akL2oJX1W6eN77ZQ3qPXt0UpkedTN4NU8skwBsaTxlr6tvV/t+dzX9/9IQBuG/723i+uxKouaJoh8M667aPzbPfrv+VNVAf76OUO6o675EYvYfFHr/xpCfFWShRfqZW1Y8xLoygEELElxz57E0eveQ2+38KnFteeqr9edv3bwSiSoad1akIwQuzTW2NCalDDnHBmjVD3Z4lFTXJUu0XiHD5Zon9PIBl6ASOMIhlW7PuiItksSO49I2BEGcmC0aKQEFAHVqHbRa8sw3iCP3WGUBRCwqnX6PF8owzn7UUvqC40yyWu90O9PofmfFfPFppz5IySuCa4+G6KjuSWUJTTDKtF7U0Umr2tnpFEpXVtqa5Aets4k7l1/be44cA/lP41qy3xPD4RAF+VvlGqzP2rxNXk1o+/+dF7S5XHpxZsmFeOL2pRX8FyuzRUi3o866ICWH7nd36Hj33sY3zkIx/Z9bfjx48DcPjw4bnbDx8+zN13333W57zpppt405sWMr6LtW6847sZfnQ/az9sOfb0P+DoFT+AfvAMYTDE5xO5OJeVDCGJze0sq7u28/KBMBqhBxOxRqmqqcentY0vqDIGqqh6iT63TYO1cxEan1fN2N8H50QqXbOjIpNKFQX0W6hcbgtKYUcVrm0p+ymupSl7YjfkrSw4J/sUxTINeJJuSwZLMJAvG5Kh2IfpSpQqQcN4vwTVm1wep5Y0Jg9oF3CJwk7kviCgS83yyPdJsP2nb1qAK4+krnvRW3jPEzzE+QW3v5ZvO7SPL24fJNmS/SHdUriW2GiUXYXaGsFwiO52sVmCzjX25CaUJWpzIEP0ST73vDd84z9h/TkrDC9RXJae+9KTP9jlj9zT6LRzDv71+VdVd/3Yz3LNjbdQPCnnRC9h42kdPvfGV3Hty29iss/wiXe/iif/9tsxWcWzLjnJHa3DbGy0yTaTZh83o4o/fc9reenRd2APWdonFYNnFTz3ivvxQfHZE4fJ11skBaRbgaUvT7DDEjUpUHk1tWup8yt8gG6bYDU697A+pHdmMBMGnKLyUsCV7SFhIhYKdWgm0KgPQp4L6/jqKyXUvjn3KAGSo6WWXupDt4MqSvyZNebC6R/DEoaewnUEudJ5iZ4U8j6yBLV/H/qqS+W+HtQox26M6Z0ZofICf/ykBNPXC/AnYp0rBPXRfI1z/nlHA11n38yWD81+c+vmvwZkAFTbZuIik1THgUBZykDDGLFP8FquUc5z7PRvPCpva65CQBcxqwEB5L7zJW9dDDofhVr0sxdfrZgRma7I7k5ZumtCcnLA5pMPcO/3Oa4Il9H94DCSfWhsvZShyQVoyDtKC2smhtOHXGwXVStDIWoXjEaFyNaPyjRVRGZ6rSA8m9Xr7HnPObEg8h6Gw+lQyRjJ2s5TVIi2uKWT7CUTsBPpVb1VETgJVC1F1bNTa04D+YrGpZCMFO0zjnzJkC/rGHhvSLYdPlEMLk8oOwo7BhQkPY2uRJHdOS2vK8PfOPhSAT2pyPe3qDqGP/3d82eiLersdfSKVz661pGPUb3kf/kVkipInxR7NFXZKaEuzxtLZ3yIuWTIOlAr2d/d/PX+6OGfmIZqn6f0sCALgaqboDdHF7TNt33kl7juhTdSrmRkRw5x7PNv54Z9P4qyhmP3vJujz3o9JAbfTnAti04MdjwBN5RjPl7vj1750wKcFhVuucX4cIIuAumW2H7ZwqOcx2yMYG1DrJmi+wNaT0ERY+Q8klgBZAdjWnc7spOpbMNSGwLocUX79BA1HMFwPAVXfJ15asQZ4r4H0QdWKZ60Hztoo7YHhKFrCCPA1KIbRJVt+Ir0s/J6bqqqjuCSjionum1CvyPgda2WGOa4Q0vocYk9sYk7s/6EV6s0mVqPY087vVvt2aimKhUzdSMBUF5za+xJr+/98NSyr84Xqjy6BjDrn1os3OucsmN33vyovbW6glKS9euFQPCKb3szt//5o2A/tqhFLeqirYsGYLn33nt55Stfye23306r1Trr/dSOxUEIYddts/W6172OV796OjTe2triiiuueOQbvKjHrPSRzzeh0letrPG54X6+/0M/wRde+m+57+VLXPnfJ4STp4EIcARPKIqGjRtq5t0so6auwUj8d4tCHptMs1xUK5OLv3NihzOe4Eej8zclTX6LLIRDbB6awZj30oRqjVtuy0OMlkBPwLU1ZUfAFRVEhVIsweQg+CRED2kolyBbk9BOl8n9dClgDEFC6n0KKAjRDkwFAFHCuITGJmx4xIAHmweqtiLfJ+Gfi3pkFfboNa99mYSoPhFscp70r98BrPL7x1fQZ1JWTwWSUcCOHbowbF0NgysCxZP3k96Rw2iEPSmD2nDqjBwnuQzWb137TQCOXv2z4B1qkrOiFOmgf35v2n5JCOA+sErvE2fxVNhRn/+FV3HVf7yJF33rZ/nk6Ut4yjtv5kszgaJ3/dBr+O4P/mP+90s+zOmDS/xqdS0bGynZVoLJA+2TOdc/75cIl/ZorTs2nm4hKD5/+iD7uiPKsUXl4jetq8jEH+awNZAhdb1Yr5lsZQHrRWM9gXOwXUIrw11xkGJ/hhk5imVL+2QPe88pwmgkSruyziBJoy2BACXqgROQpcJqNhrd7RAOrBJacp7yiRy3qnToEAibW/jx+NFdlO4RBBomOb6bsnV1h9aZis7nN2VoB9Bu4Q70GVzZIRk4dBnwWY9Tz7Ec/GRF++7N5r0+EUPqJUQ+oBMrSp2qitkDVkJKB4NH/vlewCK0tqHwEbiU60nM/qqZfjXzb9YaDKb3q+IQyZiGbXvD8t+Tz74ljMGQWVSeSdbYY1ByPQqoGghS6lGza/har0U/e/HV9179cTrqmfzh0jfgMk1aOZbvqth8huHEtxiefOJK9GfunCpZ6lK1V31UpcUBUxOSXOcLxsc1iu46n7AoZG1UlIT9y6itEWF9Q47NncHSO0hDqICaza+Ig2lCQFmDGWWkmxbXFlWoN9HSNoiqxCcaFAKMAONVg0/EfjbUWYAdyFcVBIOdBCb7NcqBSw3j/WKVWyxN8wBdKja4JpcslXF8omQY8GlgdFkHM/FoF5jst1TZ4pzzWNXRS34KtObY/f/08d4Urvv2G8mcR49L6Umcg7FDOU9Y6eGXO+h6QDoYyj6d+wjGTMPSb5v8R0Cul/W1VUUl6FmVK3Vp6RfTUyPYvHBV4Xs+9Atc+9K3Mn7KflF9z2SwHPvMW3nFt70ZlxmqnsXtS+gWy2gfogV1va4UEoXf10OFQLrpptZ9pUdVLn42pYBMtS02RBJGJBDWdtqRFBjGE6gqVKeNWV4ipIaQJfhWQnAWVaYCsFADw2pqw1YUBOfwp06TRtWNH48h+CmoErM36vW6ikDXVN38GFbcDtXtTPv5+JmGTpvi0r702fGc51qGfNVy5lma1c96lj8nam0XLc6eaKVsIt+lTdC9XswYMihrcRsbj24/uwfxdHo3+Y59VK0r7adEAGNk3QMCjnjPsUgYAlBJIvOZsgIlqpTb/upN3PANvyjXQStENp8K6E9iCMbs2oZHo0Jm0JOoxA+asFASLGpRX/N10QAsH/3oRzl58iTPe97zmtucc3zwgx/kn/2zf8Ydd9wBiJLlkksuae5z8uTJXaqW2cqyjOwxGiQs6rGva/d/lo9d/hTsnW2++9KjdF92Cv+HKSpNpiGF0Yt2jo1TL05hTn3i1zeE+edD09CpVIamYTiGdkvUMHkurO29GpE9LMJmmce15BVj5Lm0lnyFyIQJceBUtQ2ubciXNGVPLLx0GXAtWXx6K5ZgAL7l0UsFo06KGUu+ik8VuhYR6Olwv1a52AlkG6JsmawqJgcCyUAR1hSuBXYobIx8HxQrnjv/0YLt90irDrSs69qX3zT9/xMgi+Duv/fzPOVdN9M6pTCFqFeUF7u4ZKRINzWjywLjgynpvW2xEuq2UKWb+gxTorTm+u4PcdvwtwlbW6hWS3yjL7QUVJsZyRCOffmde96lthm79uU3UbUNo0OWf/hzf8zXte5jLX8pn8lWdj3mf37Hr/Fbn38xT0pP8byn3s1f2cvR97bp3acYXNJm+e6EZKvivX/0Op79mlso9muG9/cYtjskJxKyMzIU0mUgWBkeKRVl60UpIGySiMVgBBhUbTNQ2yH1uwQrHvRbV2ZM9kPrdIfWlVfQ/+Iwqj9KqgM9zCBH3Xtc1Cta4YcjCdQMnlA4fBii05Tx1Zc3AKwdCkpq7SraGvQZcMMLAIIfas3mTuU5ZmOMKdqkGwV+pQuqx+RIh8ERy/By2HeHp1gWJvJkH+z/TEXnY/fEob8nVBWm38dtbz+62/kIq7ENQVjgev8++S6LEjoZppURRmP8rKXkuWpW7Vj/fq67z7IMZ7IYgg8EX8kiNZiGRX7r+m9xw9KPcOvWvwHg+tYP1A/gtuF/3P38rUweayMBwRgZuPrHZojhreSbeZDshRD4ww88sVV9F0st+tmLs65tO9SRMcVyi1YroX3vgEMfXmbt2YHtqzqs3NtDjUaSIRA8ErRnmoGjCjPWt7Gac9ZojK8tbZChoKqtGkdjWF0RRer2QGwp9yKk7ehp6+euLW6V0oRQTYeRQaxt7QCqXkKZaVxL7Gl1GXDR0isZyDZNVgUw0RWoQraxainKLkz2K9qngQD5igAwVRuqLkICGguhSEdlqbcKLOTLivEhyM4olu8OjPcbsk1P0DA6oPjkzYu8lUdae6lXjl72j5pr0dFLfopjD/76V3qz5uo9f/oL3PD1v4AaxCBxFe3tyhI1LgipJXQy1DAjDMdCXIgZmaGYKimub/0At03+I348Qbey5vp6IRWMkTyIojpnhkvdMx+9+mchsfhOxslrV9j3+aoh0cxWzZJ/2fVvx1vD5FAH20vRVcBsTyR7Yn2TYw/+Otc/95dQzpKuF2KNtp0LGSoSNGpQIUATBt84MAQ/zYFyrsmpAcRCLQSU1qgsRbdbspa1oohVINZirZb0euOJgC1aiWJ5fUPOXSoqDUDs2eI+VJ+Nantv5QOhepR7kz0UHKGqBEzqdqIKp54bILbdRuNTzdZVLcb7FWUfVj8X2PdnD8JYQuxNr/eEBFlCVU6vD5McfXB/7GkLzIH9hOHo4ROzdvazO37XiW3A/51/FxJQCU5DKo4jt67/Fjfs+9FGjQ2inKv71p0grhoXkj1Wk3esxiWpOHacxZ7vkZbsC2LTF5RaqFcW9RWvEBRuLwbv41CPzVF28dVFA7Bce+21fPKTn5y77Ud+5Ed4xjOewWte8xquvvpqjhw5wnve8x6e+9znAlAUBR/4wAd4+9vf/nhs8qIew6pVLC/ufIF3rua07mzzuU9cyX/73nfzk1f/NEsnlgGaELrga8Zs3UDF7IC6yai9q4sZn1Slp9YpzsWmT0mTWMvJYW8Z8MyCtLFygOiBb1BZtGjodsB7QiqZBMEoXCehXLIUfU3ZVlQdcK0aIIl5KhZMoaaKiE6FzRx55mGk0ROFLsAUwuzzCeAj897Jz3QzYPNAvqzJ9wfsFUOKicWlLUwhShaUvO4CXHls6/EGVmbLTGRJk24GkpGn6Bt8nKfoCsxIM1mF7qElzPaE0ZOWSAYV9k6NLwrZ341pGH+3Pgybobt+8LXn/PsL/u670M9a5RUv+GVUotm+vMXwcvjw+lWwDzaL1ln32YlP+MDwGQAcPrDFgxspk/2G7v3IEGdVLB98CnqiBcisFFXP0zmuaZ/xJCOPcgG31EZbi17XhMFwGqA6a3GQSdgw2kjjH/2vVYDugw470owOKSb7NetP65NsQ7YVWLq7wK5FRqXRqLRF2N6Wc9WsT/TmFmbiGB1K0KUAo2gldhTpKrbdwtx/fBdwUTMF6++rZhWet2Z9p2fY0ur0Gq21PsEq9EaB67XIlzQbzwwsP2ON5GPLpBsl2Zph3+c86b1rcdgR8FG5YtKvgExuJ8Bxvrsbg+73JZugrAiTiShYjJbQ2BBQWYpZXpIHjCe4za0m62BXzby2Oh+jLm5rzfQDWaD6chpM1DDK4+/X9354x8sFbi/+09lfw0arFCeMV5UYfCvF24Tv/I637AKFH069/Nq3AeBTjTJKAq2VFvZsvvAmX9TXdukjn8flb2d0SNO7O8Gc3KJ/d4vx/haTFUV15SFsVeE3NvHxPN2QgABfSn/b9LMzfwtF0ZxzlFbT830ZCQGDkfS0VRVVKG7v68AsyLLDqnBn5hNehlmq8uhCo52mSDVVW6Eqha4k2N5bhR17IXPkHl1Jv+kTsf0K25BuQWvdEZTBW0XVBpSot3VeW2kK0KIcVD3pd/N9UFyZUy4l6MqgPBR9hcsW4MpXop4I6pWmXLRu9VMFl/RpHjUuJYMsTVCtjFAUElAeAu7MWgQWHLeXvwNw7mvpWer2D5974Hr06p+F4NGHD3H0ileKkrTVplppoUtA7c5oqeval92EsgozdoREU3WsKM5Ti5qU0n+CqGgqL4iFR97zdimq6UQAjeCc/N8YUbbVJMX63BJtRdXMujg4J31DmkgPsbElyp4sE9vBVgaJWACqtS3pl4wMwFX9+AjeKJugum35XqyV80rdS8cM1VlXiV193CyZUemz92A7aycpEqTXy3MZmteq4U4bupJ9oyqHKRxLd4KdpJhJoHv3dkOm8mX1leln4RH1tHgBVjCmUeGrJMH0e1CU+PEYP548bILWdMbiojJyem1RNhElfjzuZkG92uHjhtV/IEqi2SrLcxL2glKEJL6uVQSjCVqhnH/U7Luuf94vyRqwlwmgqBRUEBYZLIta1KK4iACWfr/P133d183d1u122b9/f3P7T//0T/PWt76Vpz3taTztaU/jrW99K51Oh7/7d//u47HJi/oK1F+Mr0I90CLbDCx9IHDbtV/Hk3/2c5z8mSdjv1CKr38TFj3DTolNs7Ialdhp8+ing6vakqVuytXKMn61R9VNMYMcPv3FGf/Ssy9IGxaQ0SJr7bRlMJem+F5GSGt7H02xkjLZZyi7iqIPLvYV3oDPAtWSF5q6U2ADQQdUKXYLrtKoicaMFemWLDiDkcWmqgRsMZMIsJSyiN1eVeSrwGVjksThKkN1SUE1NJiRxkzEPmxRj0299317Aysvv/ZtoOF97zk30PBY1Off8Cqe8zO30D4jdk4bTzGMLgvoQlRTyUCyWPIDGVkAXXj0JAKQcfhTL0YfSb30vT/L+6/dW73irWK8XzHZ16NYgrIHBPj4x67mr9KruOvHfvasz3tFusayGXFZtsFar8vvHF+h80nD6mdH6GGBPrPJ0Steif4/niwP6JfgFV7B4EpF60ydS5Qw2Sf2Je3TbdIHtgVgGY5kEdppQ7tF/uRVTnxTRjqA5S+XuJZmcImhasHy3Y7OyQqfJLgMJquw/cyKQa5RPiV9QKOW+jAeiz3V5hY6UdFyUMmCU2uStTHVlSnGwOhwSueEMJF9aigP9rD2UviUqDwbYLkOj9RalHTpPrGS2NzG55OzfzGzwDGmYTb6zS2yv74bv7mFB0y/z77jLXR5BZsn93Pg5AC9NcEaxeTSfvTEV/jxONo3elHaPBYVwShljLy3h7AgDc7ht7fFJiyNIdCAUlpyhtptyJKGLae6bUy7RRgMcZtbZ3+dekG/l51Cvc2JlQEp86xObYo5e0uV2On3GbO9bjjwDwmDIUorrm//YDMcuW2wI6i3qkR1NaPKCamJg07Dy17xdv7o9tcAorg72zlrZ738OgFV3vee16JirpiuBJgMRlSaqvJnHRwtalFfS9XuT0iGidj1lCXpl05wKBxi7VltNp7eYV91BD2eRAb3dHDYMMuDB0w8z9HYGdZDK0DOKVkGzqHbbdwVh8EozOltwvoGvqymOQN7VT2I9EEsEmFOVaeyFNIUVVWokSfEUO3RQUPZk57WjqF9WhQnwyMGFQy6ABX965ULmFJyAv0IyQgsAr37S4JRjA5Zqo4i2VYyfI6nTJ/CcFmyAst+wC05QqnRTjG8TPrfdFOIR4t67OpswMrRgz/OsVP/8iu8NVK3fvotHD3yk/JLr4vvZHKdBMnPizkhylpZ73kvWSzGEHz1qPSz5yQr1Nf9RKxHQ2rwWYIuPStfrvjA//i5sz7ve//odbzs+rcTErGRJlHoTSd5ooMh/swa17d+APX0q1E+4DKDDhCCQfU60sflhdh9dTvTLKb1DZjkhKKU+2iF7nUJRw7g24nY0J7ZEhVM5QS4Umpqb+scdDqEflveS1EJiNVpizoEGqKiTqX/EzszsctGKxSGkNJkDO4CWWolSw2szPamxqBb2YUrMXbk6wXnJMu1BrNjVqoGrAsywPce5Rxd5xle1pK1fGIJozFKq8eun515z8qY6YzjAmtXT5smsgYIQYhgqRHQJbHoNBEr4vHkoalx6s9zDxCsBlt0r9vYKofxmBAt+lRiZeaSpdKbWsvRa17Dsc+/vTmOj17+j4W4ptR8rkoIkcAj/XjQ4gaighAEHZZXvOCXuf3PflGe5yHkSN3wDb8ISnHrx9/cqK/1pCRojW8ZlFK850O/cOGf0aIW9SiW54kC7i0s8uAiAlgupH7+53+e8XjMT/7kT7K+vs7zn/98br/9dvr9/uO9aYt6DEof+Tw/egTekr2L7Ss12Qb8h998BYe/9x6++OOaZ7x5SYadM2zf+uJe56JQlcKaSRNUmor/aFS6SCC9eMiqLIOqQp9YRycJfrmL6nXxa+uYXhs32Jsp0zCPtRJwpZVNVTFRwuoyQ9WRQ3GyzzA+KCy9sgchEQsvFPjlkrRXUE4soTToVsXK8gilAusbXVxuUE7hU1lsllp++kQAlWRbfpo8hth3FOMjgWrZsdKdMJ6kuI00MpwUdqSwQ/j02xZsv690ve+9r21Y349HVR0IWtieZgLJlmqAuc6JyDbzsHlNh3TL0/7SGXwuLK/3+N99yK/3q5/7Tj64JrlKV3bWuOUbf4d7T63y7P/3jQzv79H/oqF/vzTqH/rPP8Nf/Paredkr3i77aoCqazATz/uP/fx5X+t7r/44//mL30KiHA9Oljl0aAu9tb9h04fBEJUmLN3lCUYzIcWvlGQrEw49eZvtuy/BjhVFX3PqBY5gA6sfzdifO+xWjiorYSB2Mu7/zlW2v6HAtoboVsn2/1ihf29B94R8vsm2I1+xmDyQbgfSbYUpLKNLPWuvmHDqeat07j/Ayhc9y584hW5lceFPVDaIIk7ffwr7jCVcpiAoRkdSdBEwZUCVAZ/2SL7ciWqLTAb3k1zUdImVRYxSsLyEXurDA8eFtQbTBdIORV69iJ1dKLu19WYx69fWMUt9lj9+knRrFVVUqNEYkoT2F09DXuCPrEpWzL4+alLi7r5vqtB5FEpnLRlGKi0ARVXtXvRdQMBn857yCUTbxfq6wda2nOPTBHVwPyFLUEqh2i3scp/qnvv3ZloaMzcU2HMIEFnhKstQ+1cJ7Qw1GqMmOX57IEOROrBaixqoyWApyoatqyKYBYjdwqyXe7QsOfrkV8njXWhe27UeQcMeWezXvegtTduvYlCwa1lQj51lw6IWdbHVZ7/vl+D74IZv/CfQ78KZddIvn+RAdZD1p7cZXtmhP7kU9YW7Z9jbUQFX97NRmd2o0pg5rwRPcDQWuFopzP2nZKhbZwwUhTCwzwFAy3k/giw6BhLXFXvdkNop4OxjTqARgk+tUlE+/nSgnViCFX1QQZGtCznI5qCrQNnVmDJQZZqir/AJtM7Q2GJ6K89VdpHzilPgFWZkaJ2W+1dtUYInTzzHnq+JerzAlV1VVqjCoCon+/skl33YGELwqF5X1BvxOHm49dKj78COKoKC977/9ZhxxXUvvBEzzFHbY1HUIDZr9YD46BWvBEANA2ZbiDrv+ZPzh3L/0W2v4SXf9Q45jMeSsUJZTRUmSqO3xxIA7lJCovGZgJ9mnKFPbQjI0spwB/q4zJAqBafOSM9kDHr/Kv7QCq6b4lqGoBWtyqNOnBF74BhEjnONxRrbA1RVYdot3HKHcFnss0cFam0LVT9mxuJQhu9i560SK/aDaTLNeFIz55yortGJnT9nzZCIdK9HGI+nqt9z9ZZ1BkwkDvkZEktwcu7zG5voohRAwlpR4rVTlj6/hao85YEuyWgFYw/g7rn/0e1n03SqXoy9eyjP0tOe5zXne9oJbEsfq7YGTf6NWl6aOnh0O5g0EdDpQgGdeM1ptmlGka17PVhZiu4dDhUD7VVRyrwlSwXsqxUhlePoVa+GdsxgrhU30IAvAMe+8A4ArnvRW5p+Mxp/ELTCt8y82vIcGc2734/sgzc8+w0QLd1V5VF4QmqmvfOiFrWor/m6qAGW97///XO/K6V44xvfyBvf+MbHZXsW9fjUi771s3z8Pz+bYBSX3n6a8R2XEL5Xc/y6Ixz+z+uooiRUZbzQz/h+1otS5whjh6rtwWaUJ7XHvR8MUeNJo3bRoxHsW0EPhtKEnCvjIDKHAWH6AHTb+E5K1c+oOoaqYyh6itERRdkDnwYBR2wgtB22U3Fk3zaTyrL5YAc7UVSHAkoFWrbCb6TgJdA+6EDVEfsw1/F4GzAjjaoU2aY0GUFD2ZG/q0qxed+y2CwMRLVicsjWWbD9vkbrs78soNqLvv+dfOLXXsU3/+jN6BK2rlJsPkWRboIuDemWp/PAiHBmHYD3uP+867left3bGB1KGB3STA5Csez5By/9I/7bPV/PqEh51TPfy/35ET51/AghKOylnn91x0sI4XrCR5Y5clegfbIABVVb8/Jr38b73vvahlV/9FmvZ3LFMjq/cL/gv/3Uj/DjH/1BRlXKyXv2sXxQs+99J0DrRtK+8tGTbD3pCL7tUNbT6+T8rcs/xq896bvINjWT/YrLrz7FP3jSn/C2fdezkffpnkgJqs/gUsvaNzhWn3SGZa8YjTMmecKRz46wa0N8O6FcaYMGU3gBV85MQEP/7oStJ2ecfJGldckQfwncf3UbOMhyHAiEST71y4/nln1/dQbfSdHDnPzyZfJlizfR6zpVZJccho0tQlXJ+SxNpwvw2hoiLmR1r4vSWhh4M4u1OVDA6Ca0VFkbn2eGtaa0MEKLgtbxIWo4gcoRlrqE1KLyEp8YwhUH2Xh6l/1/cQq91AMfxKcb5HmsxY8eGhOwBlZ8UUy3uZoH2mufcZ1YAdcfold2qMpmQR4ABoWoWg7thzPrshDcOaCZYVqqxMow4ix5LLXVhVlZEcBuqSP3L8T2Q/sOYZILaB9Z6SHPgTgABWG771wMn43NmYg1HkasFLyNxIBq+h4uVL0CgAY9jkxg71G5E0sQYzBOWIa3feSXLvz5FrWor4EaX9Gn89mTAlCMRtgv3s/BtRVGV60wumqZ7qkl/MnTwA5QdgZkwTlhnqdJ87f63FKfE91g2AwKVZYKmzgEdLs9Bdf3KqWpw70pYu7KjH1QsBrXTVEeyn5C1dGoaE9rx1GRUgUmqxpTQP+eElN6xgcSfKIJGpJxwJ7xDRCDEtVqvqIpVqDYF0iGitaZgHYCsFRtyXAxE3lMNTYC3hSRZFSAeQwJ5Yt6Ytex4/+co4d/gmNffqfkxFQVdNrQ70VrVy+8Wx/VC3Egv7OnvWH5702JKZ02odemWu1StQ3JQB4zuqSFVaALR1CKF/ydd9G3GntqC8YTuQZH0sPRS35Ktu/BX2+Y9EcP/jgSQnHhw98P/MHP89Kj7yAYhd2uILG4tY2m5/APnkA99UqI6lGfGFxL41qW1kCG1qHbwrUsVc9iVrqYSS6q2OU+7uAKITWo0mOIWWprW0L0iCBOrSyBqcUW4zG63cYYje+kEjzeSjFpKiCFyhv1UHM+877JTFXGCMhSr93rbJbYp6vaRWLWrpbY19ZAi7W7lH+7aodF2E778DkyTFGgrJG+zMo5q+pn6EJIWdXlB7BnBnJOhd397EO03Gr62bKa2jzGz3h2+5uett16yD2zvNf4PWLwZY7yG3I92N5GdTrntREWxdd5QAal0e2W5OS24vWplOuI6nQgc9DrCmDhkSxAH2JGYLSyrS0pY5+7q89Grhc6iPIKrfBWEVxAlwGfTL/rY/e8+4I+mxu+MdqKhSDgSlRPqSB5nMr581oBLmpRi/raqYsaYFnUogD+/fN/i6/7vVvE17ms6HzmQa5ZX+XMc3qo/auwNZhrwHSaztuGhdisVP6czUHDGjQGtdTHP3hCFpben7VZmvendQSjUSYlZAmum1J1jPjS+8DwUk2+L1CtVtiu2BKlqSNLKnqtnKVswol7D9M+rvEpVIVme9iizErMWAAU1/ZgoqVY2+ONsPmUi+GgGdCGsi/3aZ0wogDoyOI3GYAdQToIECQ8dFGPT73vvV95e7Cd9Sf/Vay2/vK3Xs3TbrqFy771ftbHbT7x//nl8z72O7/jLeiJI/GeLNVULYUuFd37NP/h+LUs3RXoWHjnx7+fZBP6WwGXKT5+5Ol8pH8NT/kvY+ypEzAYSjOd2HkpeKzyQJc/uu01D/m9/cvn/Xuu/rV3sfxFjcmZC2O94et/Addr4Vpg1y1V5pkUln/xme8gu3qLk+0etDxq3OKHn/Yhfvhp8OStt3N6KCqy9LJtnr5/jdte8m4A/tUdL+Gmv/gu9HBESC16VJCtbYPSJPu6oBT6xDq0MnSasG9S0V5r4ZIOxZLGHFQMLofeXSuYjaEAF2MJF8bGc9DWAD1JIbFkf303GQhYcWQ/1WoX/8Bx+b1W8M0szlRhCCZHlRJ+GYpSwJXZvJC4sGsUEyCLF+eZ89U2yXTBXFWyrWVclEWljL7rQTAae1IWn/vvbMHyEmrfioBcW9v4rW2IjGtlk8Yuq1YYNts1u6iLt89anIXKo+ICdTabQKUpOrIcVZpglMJFSy1lEwh+jsG4F0vQPPlKCAF/3wMCyOe52BOsrsjnsrk1t426laE7HbmfUgLMxCGKTpJmuFM/BiKjMwbQAzLM6HbEiqcfF5+NVVg9UI2M3PFEBhRpen4GsfMxK0jjU0NIhKVuJo7rv+VNe4IhszZgs/Wi738nrcKjCicLZBAF0zhHtVJcZhprn0UtalHT+sD/+DmOPu3nZeDUahFGY3jwJJ1JQXHl6tTCJ5YyZk6lMrVtdKgws8Sbzc6qb6pKKCSc2g+Gctt57HSCcwLaGiPn9trOx1rI0sbytuwnYufVEgWJT6A0ArR4JVZdvQcrWg8OCZkhbRnKjqLsKaoWtM54dOXJly1BK4q+YrI/9q2nFOmmADUqxJ5129M6I6rbfEWJJe44KmBiVotykkm4qK/NqtWax+7/pxy95jWUR5bQE4fZHnPsszed87HX9364uQYrhKimRmNUUZKMCxJjGnvYpbUuTApRyFjDUrGMvu+kHGPOCzmllZ09n1Arjt33aw/5/b3/2M9z/be8CT3MwfkmL+b67g81ZBw1qVAqQePQlecPP/B6rv+WN6Ey6R3MsGwyIW94zhskl6adElLDe/5ELM5e8HfexdIXtvHrG9J/GCO9Zb2u9tIThggI+NEIdb8AuzraY6OVKBXKmP8U1QE41wSUKx2zM4yBKjTPS61iiWoOQjm3dm9AkQiyyG1nOa/tDGXf9WfVPHdwDmWizdnh/fJW2wnKBZI7TwqppiwJG1tw6ABqdUXOkzv6WbPUxw9HZ+1pd6qq5/pZx9TutraP3dHTqnarAdHP2s/Wr7Ozp33S5fh7RXUdihJW9zW2s7g9ZiRKN8H1QKOub9SV9d1m8sGCcygQu9gkgvNpqzm+gtUEG0Pjg0KVbtovGi0zG2vOecz61OBTARF9IgCLriAYhS48L7/ubbv61qNXy3r32Jfnramv/+Y3CpBijKiuqpnPzHlIjOQbLWpRj1PFju/x3oxFzdQCYFnUV0V96h2v4nn/8BbM0/bTOj5Ef+ZODj0oQfc7WSs75a2zDYPpdnYNFmcbmhAZ3+7ESWlatKI6fnLvjarZLpWEBepWhk46+COr+MxSrKSMDxiqlqLswviIJyxVHD68ySW9LVbSMUtWGquPnLqSz33pUpJTidh/9QUAKSeWMreQBkwVA09bnpDI/7M1TboR/axTsUnwFuxAblNBGH/9+0qCAtfWFD3NZEWyV3zGoxYKt6iLu6qe59SgR1karn/uL6EHY8KJU80CwVx2RPb5PCfkObasGmZr+/Mlrch+mj2OlDGsZhm628EPR43KoG7Cqx3hk69I/nduL3+H6/TfaqzIHkkI95f/8c80/3/yb7+d7vIYoz2D13VQOvDkfzWJ2vLAe9//xnM+V+cLKXYInZOefKXPl67sw0vkb9u+BU6hHzyFHwzxUVWnbAL3ResBa5thuD7h6dwRF6zOs885zOWX8uB3XUY66LH6sTWR1I8nhLwQNthoLAt8IyyvUBTy+M0tjFa7F1czuVGhEmAFJww8nJdF04zFRGOlGK0RJDRWVH4oAV5Upy3WY74GJRRsbssCMMsEeFnbgp6ES4WoqKEoUcMRYWu7AX70wf2E1SXUfccl1yXaNaI09rJLoZUR1jdEzXMetl5tE6YThep1ceubUBT46EFdb69ZXpLA57KaWk/UQfQ+SCBnuw3LfRgMCSdOoZb66CddQTizBpccZPPrVik7ChTo6jD7Pr3dsN68NVRWUS4ltO8doDdlqIk1hHaKOrkGwxHBewGnGhuIErW+DdYSDu8nJEbCNI0Su43NQWM50liEKcWta795zs9l/kPyYBJ8S9pCu1lgjQwy9gJXnv+DN6MPJOgy8OK/8SuoGA8GYKuAGRZin1DI8CTEQaxbapGvtvjAH5zfzm9Ri/parGNfeIdY9sU8k5AX+BMnSTY2d4U77xwcNrmAMSBat1tTxvSs3U098MpzXF77Hmr8JD87u3pGBWNW94k6rd0Sm7GOZC0EY/CZoVgyuFT6UJfSZPkNLxW/loN/XZGu5WCFRR9UVLmMRI0yvMRiJ4F8STcEoO6DYjcG0DpdkZ2eSLaD92LPYhS+m1H2U1xbU7U0ZVfhDZRLQoC240fjG1rURV+Vw25OpEfZHnLD0o9MlSs1YcEK6LCTnOFj6HldzRC+Vu5G1Wxt58S9D8h8eJasMZ40/Sww19PWQNDDqdlrdZ0ZoZ5ypRA6vnQPIByQ2Sy2sylJ1fYIhmPUMMGO2s3trbUKlZdNxhPRBqs598QeTj4XDa5owJd6va0Ti2q3Ub0uyvsIQMTPyxXiIhF8Y9NdP7YJsecCwGCvpT9t3tBuQKEBJ4yZKrNry9xZUgtMb6sc6vhp6PcwmwN5v0s9AQvWRM1PWRHOrEUyjZ7rZ936pvT8Z+lpXf0cZ31fQezN436ml5eoTq81Pa2JxCF7YJVQlJKL44Rc2oDh0IBVqt8TW8rtIUxy9OWXEk6eRi31Ka4+hE8NdlhiBjl2XBBOnJoCXVGJpTvtpn9XSQZpQhhPmn6+/u5UYkV1ba2AE6mlOrzc5KUo5zHjSvrGSD4SEEauPbd+/M3n/Gzq8olcZ4IGb+T/LpW+XCWGD/zP3f1nceUqKkzJgcpFYEcDlUfXyF3lICqyqDSumy2yVxa1qEXN1QJgWdRXTX30N17FN//9mymWluDpz6Z3zwR7x70X/HilFaGs0K1slxS2ZgTOgjEqePxk59ByR9V/m2GM+8xS9hN8onCpourExd9yRWdpzCW9LVazIZdmm5wpu3zizGVsDNvSLJhAvhpILxvSMh7vFUWeYDa0eFEnCt9x6HaFHySAFv/pjjQawdIoVkwOySDQOSkDsHLJUvRlm3wq9//0TYv8lUXBC//2u9i3qhlsLVMueYZXBbp3A/dVEoyb2BiQ3SZsD3bZEs0thFS0MYm3h9Ho3HL2mUVpffw9nJyX89XSx1PyfSnDKwqCV2THEwiThs133oqKr6KnSbcD2k0XgoYAlZIFR1E2n0cN/gYQpZsxYlUYpkqGetHqHzzBvs8fZHQkwS21MS5IrlNeQJ5HNUmINl1q+lgc4QI9mc+q4At+zhKMqmoWbvWgTm53U9sxH8DMsBHLSgA0a1FLPcJKH3pt9MageU6i0g/ncMdPojc2USvLhNkFZ/BU9z/Q/FoPQXZWc3t832bfsnz+k1wWpe12MyhR7ZbYptVZJVqhguQSqDr3Jk3kPec54cHRdLhoDcEaqmc9ieFlLcb7I7BuhWi39bQeduRJhq6xsctXDCbv0JpEm7dJgTqzScgLQs3SBPmbl9wcrIVWim8n+HTGR9olmHqxCqJCiYGzF1pHn/pzkKYCggBmkKMmlYRU9+cp3y/+vnfiUoVKxGrERfzTjrwsXj2yQB6XYLX4waMIrRTfz8j3t/Zc3C5qUYua1rG7buG6F96ItUaY8gCTHL9xHuuXmpBQhwkjw8ydAPuc6q+2l9lpWbhX1SDNYIhqt+V8bYycw1Ir9kNGUfQUZV+uifmK2NGGJGCGmv5diqqlUUspPlEMLrN4Kxlvugq01gLJKOASyX4LQL4ELlG01gPptqN97yYhtVRLGbr0mM0xjApMXqEqz7jdYbJPi+WulfOSt4uedlFww+o/ELKIn8kLMUaG4vUxoMQ+ek7BsEd/NDvwj3cSN4RzbcCMDXVdj0VPq0a5gJ8g9qzMAysXVLW96ozFqvIBVb/HGWsuZn6X/057/Z3nFf//Z++9w+y6yrP9e621y+nT1btsyQXjjg0GDDayJPhIviQQiAkQCBACIWAHCMEQSsCm2uQjlA8IBEj4QvlBCEkk2zQDNsXYGBsX2ZYsySqjKZpy6m5r/f5Y55yZkUbSqLd9X9dcmnLOPvucGe3zrvW87/NEMULXbB651xQ0hGxOQEx9zScLWGb/mspUpsm+m/z5ZNsvhG0AsSc36X7GTNRkrQnwZg0p6g3bICQEMkmIzloA3UvxdtgGHlEqYkYSiOMp9ayCqSLKHjXtdEjPm3hN4gjhZJBzZ2NGx+w0jBSo7i70eAVRLGDGxm0uoOO0p4JatsCilWPiOBCEtjmrXMGEEbKvx9qzLV9E2J0lKjnIUBMXXGTYnK7uKNlp68YkK0nHOntQrtj3nXAaOzZh62vh+5DNYJymyK8E2pPW0lhLVH1SU46rrPiiJCKc2S//6ufehClZ0T7xZfv6v7/ba1eic45tOg3susm+8LSnZ4wQoJq2zErYhoK8QPtqX4dOSTlmJObECLlPk4gsqcCSckqhItv9pgJDVHRhxQJkONfa7yQJ8c7+ve80uUteiqYntW+taXwfU6tNKoQnFqAH6p6ZbhTXRBEi0oQlhzhnp0TiHEQFQ1/fGLPyFeZmx+jzKnQ4NSKjqEcuUeggAolTF0TzGizqHqF/vIRUhmJnhaFCBqdmLZi0Y/CzEfVxDyNoZroABmubEIIMwK0a/HGNjAy12S7VuaLdQfjAx9JFaMoE2V0Bha0JXY84REWHzGADuWOIOAxtV5Rqds2Pju81ATa5SwyaE2SHEPo4Xb7LkeT+m6f5m3/nzO//0Af3/X/mc49cQfc9Dkmluu/n3lqYT7fJZTQ6aJDZMkJU6AWw4/P5jBUFWh3Ik6dXJvszH+zrPc3tTRDYBY/nth/DLjh1O+y4lefSvl42J0eAtq+/kAIRBEgh0N1FK2BIiXEUYnTcHjuKIIxsh1+9jursJBkbt4vM1jH3cR2ePCHlzJlFMjjc/p6Y1Uu4tAcjBd5ADbVzsJ1JQxxjEt2eLBLZrD03pex0SMa3i1Uh7GZnZDs4CULiRb2MnJUj6LDvQSK2djTGhco8iTdu1e3MSAJC0OgWJK6LU8njDJahVrMTK54L82chGpENnZUCMzJmH891MEJYj++8S6uWtl7v2bY4ZHynbdMz4+nDlhjjSDt1EiU2I+U37+N5V94IWDuwKG/Dbdt30wanptGOIMlIVEPj1GK7EHfVXt2Gz7vyRmSclt8pKTPh9rvexepL3wc5z1rsSYUUAqk1phGQlMt732mSYNKua5VCMiHW71W7tvNbDsCk9wUdxUjqoPVE8HSUYHIe2rfdyHEO6rM1JqPB00gvIfEd9LamHVGQUJ3jU+8DbxQQEOWF7WTWGqHBrWm7SeaC0wAVWsG+Mb+E9uw1R9XqVtxvWaNFCVoJ6rOsNZlThYffn9a0KRYThnayoFKdmOSK43au2hQbvenqsck/39PeaYYc7XoWJgK/D/n+m2+Z9vvergqMjLUnzffJAZoPTcJElmDr9kqBlmDsBv1kgeuw2eN8bFh8UyQz2j4upml1O8larG1FNvn6Z6ZM6mhjENoQdHt4W2JoBFAsIOMCplrD1OvtelbmcjOraZvTUK38FWfubPTIaDPDxDa+JGcvpjY3g9CQGQpwnxiwexZJArU6uhG0J8+F709qzElsM47w29dv0QggiogX9DK+PEdYFPjjBqXArSSEXRm0K3C6c3jbRhD5nLVwdh1MMWeFiEaj2YAV2mn87q7mVHizGcv3mxOHCSKKMUogEoNWAu3bvC47MRMgagG6q0DiK2SkkWHM8579wQO6FhhpRX6bNdR8vsLw869Zx4Jn/PHHAXjOmg8jE2MzWlxhm4MaCdqTmA4PVYuRtci+92qNkZL1939gymNd/ZwbEWm4fUpKyh6kAkvKKYUKDCqAu75u30ivufz9toPWcWy44L5oLjDFpGJROI4tSvI5TL2Oqdan2C/MuOhrWYVpA2GEqjQQJm+781qHUAbPSfBUwkhog/Eio4iMoidXpVzJIAOJaO6ZVkKfSjmDm4lZ0DlKfZlLteKjY0mxs04UK7zdCqcBYclaL6CtNZhXthkrTk0jEkOjxyHxbLe1jODez6YL0RTL1VfdhFECdyxAVhsoR+H1GyhXMdWanVwxGl0PJ4Jxp9ucP8RF6GRWyRcDR6fT72jytPXvJHyil/kP12f2GuznNmZwmPwTvr1OJdp2dhV8u8Feq1vBg2YmihQH30myx+bCXj9OEmhMmrBo3SeZNAGzx7VRyAnbjPZUThiiB4eRUWzFC9+HjjzJwj5U/wh0FhGbnrQLUiGtAGL0JHFu8nXaxcQT5z05j6AlqAulEN1dRHNKVOd4jK4QZAY95twlkDuHrZBeb1iBQ6lmWDzgeyCb9gSO0/xctEM3hTHovk5GV2SpzrNdckKDW7dBzY1OQZK3Indm2G4MOrUEb1xQmy0QOodaksWt9eGNRYjEoGqRPYdCFuMrlOdZL3ffR+f9drecjA2JL4lKLk45QDjKdnR3ZGysmLQLzKufcyM/+PH+lcLWRszqi99DXPL5wQ/f2/7Z9+94J1dfdZPt0owMYKezIiVb8WV20xNwqzFqPEAkyV4L0daxrrr6Q/s9l5SUlKloz+H2X78XgLVLr7cWNfurPycH3qNsV7iQIMyEfdGBNkf3x57vEc0ObxE3r+9SIBODbGafGAFCtnIMBEE3dD2ubSi0tIK0VzZoR6CzEOWbIdoG0JBkQCaQGdHISBOWFHGfIjOiye6sIcdqVuDP++18Q2HAG7eT2NM2T6Scdqwpvcp+0grKxgorYGtUo83E33az4WVaDrOWhZO3nrX2wI12TXZYtJwdhJiYwAXb6Dg5W+posKcQ3bJQFHLC+rZ1jntO4Bs9ETTf+rsJQ9wN2xBnzLc2ybO6QWt052yEMchHt9hJ/abAbZq2jdPVtEA7t69tcW408Y6d7XNQHQo9q0TQ61ObpajOB3c8xxw5G2/TgLU5c12U51oRBGxzlOs2xeikWc9Omr5QEt1VYnx5jvLC5vSgFOT7IfPkODrvU12cR3sS6MLbNmInpJo5POGsHKorh0i0nYBWAsLm6ygESdYK67IaIIIYk7HT+HHO5mzJ0GAcgRqvw1jZ/l3EOVTDTiUaIUgyzrT5KZNp5Zc+448/joxMez+oxV3f+Bueu/rDqNBOXWNARoYkIxHNRgOtBAqQDWvTTJywfo9sFoAf/Pid7SaklJSUlBapwJJySnHX1/+GNb2vY03v6xCdHcicb31kjbG++btH9ttBrqMYWW/YgOYgsIVVHCNyOYTrIFsFUfP20vP2ynSZ7ritDUY814ZcRxqvQvPNXaIdSSN2yKiISuQjRZasiuhvlHCkRilt1wQO6MBhdyWHqTkEgWIgV6CQCShlG3RnauSciMdGehnLGDACGdluarcM/hj4oxoV2cVsvVcSlkS6AD1FWbvyHazbcPAbmquu+AAyTHCb+Qki1hjXweQ85K4R4p27Zr64OgKL0SnnNsmr+mRg145OZt8P7vYR4gPffL/ochn55E5EId+0VMgR9mRReQ93VxnGm3knQqDL5b09p2fCPkLdTZLYjf49N9dmcPwpdostkToIMOWKtRtQEqT14q9fMI/Cg4MwZxayf8DmocSR7fRLkr0sIiYvQCfTXqC3OrZrdZwRh2zOwSiXsCgYuKyD7gc9vK27bSjovG5kPbJZKNmsPS9HgW+ndtD2/UD3doAxyPE6lcV56n3NxagzYUcjI4Nbg+p8gTcGwkCjS2J6JG7VkN9hyA7FqFDbjjtH4pUbiDC2ntOJQTZiTM5HOArtu+isnWKRoW5vsCa+RGc92z3YzEwxjg33lLHNjZkpxlXIxsQLfOULPmJDQX2FjO20o3YEqqFJvKadWGBwqhFGSb5/hxVyVl84vad7SkrKwXHr3e9hTddrWNP1mrZ3vWkGJO/3+j45b0VOdIibZl6CUAqMmLieGj0hVh+I1v3VhDc+SQJaI+sR3pgiznioQKAaApEotAFRSkAYwi4N2l5LrCWLvT46DStCa8dOnmgFSdZmB7oVm+US5RVBh8AfM2SGQ0QtBCnROZ+oN0tYdDAS7vzWWw/rdU858VidfTm31r96aPfNv8J+MrnZRylbX8zEGu8ocbLVs7LawIyP26mEIzBZYutK+3k7D8Wx2XemmQd1RKdYpjy4XfO3r49iYnIGJkQOe9OJEPc97RVbgnYyvBsnmyFcOQ8Ra6KiS+JLMkMBzqK5yJ2D1qLWdTFBsM+atv26TEI4rp3CltZiy4QhariCL23WVOJLwhLselqWhVsdUJJ4Xjci0qggtM1CrekV3wXctnBAFKF7OxFaU11apDK/KR4p636hXUHSaW3Kg5Kg0S3p3mBwClmE9tG+CxJEU2TXvgOutLWk59h61hjQ2KawjGev2VmXJKswEivIRxo5niBGyta2TAjkztjaiZXyJHn/oKZFMiN725Q9+/c/ihGgpM1jAUgyVmQSiUEGCaoWYzzF7XfaXJU1597A+kc/vM/HSSdYUo4/Ap2G3J9QpAJLyinH+qHPAU2f3arHup2fYu3cNwIgM/5EsNx0GI1uBEjPtDuZjTaI5mblXoGiMyz6pOs0Q6BzRCXfbsDFtgtZ5m2X3bzCOCsLuxiLswTaocOpU3ddNuyeRTDuI3KaJAs4mjhSGGVACxqhS7EQECQO5dBHG0HOC9ndHSF2eTg1+1j+GPhjtmMjLMrmYlUQZw94+iknGdc87f222PUP/hK/+tL3oWoholpr2hRJ26WUz9nN23Jln5vwx4prvGuRTR9h3RyHn+kiddUzP0iccxDG4A7V4eHH0WF4VBa55/zHexFJnszuZKKL7DAwSYIeryCbmSBy3EN0+pSXZPG6PXJbfOTQKMJxkHFMUqkcxoNNM4mU2A2yyd17sLcP+XRfT3ft1PUGUilEqWDtrVxJZZ6DW+7Gf3KE+IIzcDftQg8NIzwPXa0h/Ux7SqYtrkx3+pMmWYS0m5LU6mQHR3BWzKe8OEtttqC8JEO2OBt3LMTdOWYXnRl/QphoZdoYY/8fGIX2HUSkiWeVqPe0JkqsxiG0XZgGJWtrozOG2tyIuODhlsEba173Y2zouyvxhxqoip0A01nrRy6S2Fp1TcpSEZGmJZcYASI2SKGJ8w7Ss52XCDu5grEWXkjrMT2TLKE97cQSv9lFHhkr6kQa7VubMG8sJslKZKz3smy49Tfv2+djtLoLU1JSZsb6kS8AsKbj1aAU63d/3jYRKXVgQWTyJuKUGnaazK2DeC8XSjVFFiuO43tQbyClRBQ9EFYkMRJ0Z4T0EjwvxuQEzi4X7RlC17XBw0CcEbg1g4yN7WaOrPAiEytaJxmo90hUCBjI7E4QsUaXMhglSbKKOKvQrtirYznl5Gd14ZUTGRkHe9/8K6baPLUa3mBicuE4skq+eOL/E7QtTmdak7auC9CcDm5ORxzpmnb1he9BqtaER3NK+nCHTJqib+tYAmz2ne9bW8MwpJWBelRouVfsUaNOyX2ZXOe2BJ9J9eXEoQx6cBinu0h1cZGgQzK2XNCxMUvHRgiXnUn+wQHM8Ii1ofVcdKU6o5q2ndeYgKnVUIUCBCFO/yilSgO3UqK8yCXohPKFc/CHQ7zto7Z+dd1JNmxmak3ru3ZyJesiw5hGt5zIKzG2OROgsijbzGcVhB3Q/zSHzu4Ocrtia1drmiKJo5BBjGjmDRq3KV5E1roRgMTYqR5jcJqii4g1IklsuH3UfA2SBBMY2+TqOAjfRSQa7Smes+bD/Hj93+73VzvdlEvL4lZojYi1tbM1EOcUIjEYV3Lbr6bWwesf/OB+H+f2n+3fsiwlJeX0IxVYUk5Z1u/+fPtz0wisJ2prBPxAwfR7BNibBNtit6eH6342+NqIZji050I+236DV4EmLEoaPRDOjsmomJwM6cpUGYnzdKg6+DA6lsMddsiuHKMrX2OkmsNzY2qeRxg6OCqhHPqMjuVJyi74CSaW9j6D1vYL7OSKE2gSVxD7trs5O6T57T8e28Xoqmd8gNvvetcxfczTjVaBuObcgy/8ZDWw/srVGiaKEa6D6O5ExAliqDZlYmtGGzxHARNH6NqEX7FQitX5V3Br9Sv7vd+a7tfizOlDjUvESBk9ONR+Pi3LBjhytg3BxhL5QUF2x5i1VDgCmNgGrSObWSDaThFU5zgkXomS1oixCiKXRYZhe7F+xGh1QU9jJSYcd2JBOtkqbJpMmdZ1WFeqyDhGBCGe1uRLDrU5LtV5sxEG/OICcvfZ4zilYvPvMkLEsRXBZ/LcWqHvcYyuN1D3bKDrtw7ds3oxOZ+xczoJCxm8oot2bQZAZijA3TlG5Zxe62892EANVzCugzNUgTCk+tS5REVrcWMUyNBuCBppNxcTH3TGPvc4Z/CHBcXtMU4tsV1v2nbtoQRJR9ZmrLh2olEkrvWAboR2iswYZJTYvE0pMI6wIqq2/2pHWrsd6+JlvaXBdg1KwdVX3cQPfnhgkWUyP/u27QJ/1h98DBlLnHqMbObttLr7DpYD2TukpKRMz/qxL0580RRNzEyaHIwG1JRO/Zl0Te8TIe1HcyMU37eTfq6xGVBNcVpG9loovQTpaBItyecDzGiWsSWKOAtO3U6pgBWpjRDI2KBCcOoGjEEFdpMuM6LJDEUkvkQmxvr1u3byUcYadzziJ/95EMFpR4A1595wwA24lMPn1sqXWZ19+aHdOUnQUdyuO2Qrl+FoTEUcIm371Eki0DXetdwWfm2f91mdeZn9RCk7QRbHE8+TI29DJkfLzamHeGp9d7hMEjns19a+UPg+RmsIoyMj5uzv8Scfe5JNnP1STFiBTfr+nsdASJvdumEzfukstOvhVgTjywRDF2WQoaCvMIeuuxJbuxszUdOG4dSadn/XddHKQrRT5WZgkOwWRc7zMHN6GL6khyifwS/1YZTACNr1bDy7g0avtVDMDDRQQ2WM5+IMV6DeICx22OtwK74rtLm2iWebMb2yIcmCUxOEBQE4eGVtLcdjgwgTm1fiKhsQL2w9jeeABhm0Js6tM4KsBhNPyxgYt01hojVxY0x7UtLmchlkrNGO5LmrP8yPbt2/yDKZq597Ez9tNhpd+YKPIKXNfxGJRkaSH90282NNZtUzP5iKLCkpKVNIBZaU04L1I1+w/rsH6oBqdTYpNRFgp6YuTA+W9tizkBBEOJUQoyT12S5BpyToMWR66uSckIZ26XXKVESGcpIhaVY5cUGzevEjzHLHuWPoTKQwbDcdBHWX8dEcjp/Y+q4hUSOOtQMbBX/UIAzI0OAEGhEZ4g6F9uxi9hf/duw7/VJx5dhxsAv/tUuvhyhGj5dtOKIUNpdCG2vpNF6ZMgE2I4HxKLGn7ZRpBAe2W0gSzPZ+TJKQNLv8pqPdUehYz+B92VKsLrwSjEHX63s97vOuvJG+hRlKGyuIjdvaXt9HAhPFyILCOApVjyk+Wief96jN8WnMLZCNEghCRDYLk39fRyALZ9LB7L9CTtgohOHU6ZYDhZxq2bRc0BBFiOEx8koxfnaJyhyBkRBnHHKPZqFcAddFFAvWWXFsHGGM7diM4qblzYRf9hSLsCDAhBEy41thqmlBAdjXaygi8ST1Poc4K4iyEBazdCS2m7o6W1GZX6DrEQdvx1i7C1BEdpPPCeyCNPGtjY1sapBxHkQoyGzz6HpUk9tZR1WbP9S2u884EiMEOqOai2Eb9pm4DqLTJbfdbjIa106OGEfa2ym7cDVS2GMJ2t8jsZ3gMmxupjZvf6hox1qYJXn7/2Em0zD7IhVXUlIOn/VjX5zxhrNQaqr9zZGYPG0KrbTe1/zmFKLnkGQUsS9sbsqwoO76RNkE4RgSX5GPYfyCEKTB3eYjI8gMQWa3RhhIvOa1PytwaobMbo3T0HhjEbIeoxqSsMMjKrpoTyADazl2oKypo0Eqrhw7DsUe7BrvWvvJpM3y9rRHyx7sBGHKuTQ3/fdX07ZrrGlC2CezSr54Im8EuC36932ewzXete06avLjrul+LcJzMfUGuhEc2VrSPhkQzQw8rSEIwPdtc2Ki99nkeLSYdjp7BkK20RLCCBkmOA2NCiT1OQY5q4HvR4zUOnBr88htLlvByvcQzTw/U6kiopikUp1k4bh3PSukQI+N2ymYbMauVQp5K7gAuaGE2BfUZikrjrgQdGTpTEy7Rqz2KSrzmjVt/zjtXEUBqmH/TTyIctjzkBAVbS2pAvB3Q3ZY44/EqMBmcLWahYyUaE+18wK1Y/P6vPGm8B5EGClhco+WaE4wSQn5PCbrW8El0e0JG4xB1WO0qyDDQde0k+vWJCNRDUlc8DBSHLK4AukES8rxx874zdwOOuXokwosKacXM+i4aY1pS9c5/O7vVvByGIJSiDBsjsJqvLKm1icRiSCKFH1+hcgodid5hqICAKNRFh1LepaMcFXpQX44fi4aQTX0GB3NYXb7yEAQZe0OW2ZYkhm2nX/+qMapa5ACdzwizirqfS7lRXZD7jefuv7Qn1fKqUkjsNMBvo/yfUQ2A1pjxsbbVlwnOq3FZGsxNHmR2LL8m4lgarSBpufxNe5L28/9dv1NrnFfOmG3ske3YAuVzdL5YMZ23/k++gh2S5o4Qo+NIx0Hp2aD4OXOQXLMJ+xwibtyOI0QEScYpdq+40elC7A1jTLlWzNfCJskQcQCErt4lwO7KWYc3GqGRqey2SVLe3DHCzYcsx5aq67uEmK0jKg3YGx8oruwdc1tTitOtrIRs3oRYQT5LDrnkWQ9nHpC4ivccoRxBOWcLYsaPYI4l8epG+I8NLoBk6HTEQSdLk41wbgCoa2wohrW0ibxm13bEcQZKG6S9N4f4G8btQtgIUBKjNfs8JPWw1kYYzu/jUHHCrKKKK9Isk67C9A0hQ4jQHtWNBGJnWKxz735j6YZHt0UWKSy/mWHwBUv/jh3fvNveNb//ijGcexmZkpKysnBZDukVqbA4WxSTtqoRduNWCEElKv2uuxbEVYYO8UnIhCxQNbsOSTSQcQwf95utu/swjgGYju1ol2BCg0yMoRFiXbsItUrJzYDqh7b6yQQ5yRBp8RIQWFbdFzElZSTgJawMtmC6zjnrhwsq9RLpq9nD+Y5tDb/9zhe65jXuC+dOGbrcSfVtMJx200sR2uapJUx0rIfI47Bs1ZaBHaNa/QxsCWeVNPud2plX3dPEiuwVBLyuyRBlySOs9RKHq4D44sVcaZEdiCLU4uQtdDWeF0l5GgZGUYTv4c96lnp2qlBkyTWdnxOH4QRppBFZxySnL3+euO21kx8e61udAmGLrD1rBEQFSDoAsjQKQVBt61poVnPhraGDUu2GVMFNgtLu+APQeemGH8wsBMpwooqrQxANMhIW6sxYxBeU2jxJLJKcyrF1sEYg1EKkSQYzyFe0tduOlJBYp0TomQi6yvWyFjbqW330DaUn/37H+Vn330bz1n7EfsSn0CTbCkpKacGqcCSctqwfvxL7SKy1Q3SKlbbhWTTHkwoDyOEnTrhMDq/W13angKtbbBbxkH7iihnvU6FBh1JfBExGBbY1uhEG4krE+4fmgfjLsV5Ab+rL+Q3u+ezeaCHZNxD1iWqLvHGwK3YzbrEtVY1UU4QFRQyVPhjGhHZ0OMoZwNE3cOIZkg5dTFBaEUFz7MTF2FEMjZ+XCdVZszk/5+TPp9skzDZ3mwmxzOxZs/Se2LRuf8Vpq7X29MjshnUfiTRYQijY8hC3lpgJRpnsIyRRUSibQdYvT5lU4FmOPERF8qmmWY5mPvpKEZSt52lxqC2DeGLPrTKkPiCLc93yW/16HnIRyamaZ0VQUcB4XnIfB5qNfTomJ2Imeyl3d4UcKxNpKPQhQxRyScqOTS6rK9/nHGJs9Zf2i1Dvl8TZ6w1gnYAgfW3XuiBgSjvkDStRmQEmVFN0CFxy3ZBGpbsInXOnWXUzmF7/RfCfvgeYEUPEVkRzAbd20Vn4isSX6IiQ5xzSDLS/kxYu4eW/ZdWwh6yKagYKax1TtP6YPICVBjDc6/5MKoR75WZsj/80Yhn/tHHEEKglcFk0y6plJQTgfZ7SrOhYK96FtpWPsJ1bD07OVT5cGpasLYtStlrWpJYmzAmNqyiPAQ9BqMMIrHXSn9Y4DRg+85unJ0emWG7eWeEIPGs2OwEhsxoYifnlCAsKhCKZK6HaFpiRnmBdgX+mEZFJ8dGecrxoZ0XMsPmmhOG1nnuo5496OexvwmXA901jtrXm5YV7BFnUl6UnQQJ7XVGCDvJEobY7KipFl5HhWkah2Z8P0Bu7cfPZVFBD1E2S2WhsNewjGHs/Jigo8HIb4v0PuAg4wxOPUHVE5BFpOtCuYIeGd2rnm1biBl7TSeKrZCS9wg7PIIuhXYEccYh8SEq7VHP+raGTHwbYN/ogvGl9roalBwM1uZWNQyJL1ANW1s2eqxo7o1B1+MxmYF6u4GnJZgYJZFB3J7EtjWpbNeh3mANWW3AeBmR8TH5HMZzms1FCuPbhiIjsLWuI5Ch3T8RGmup23q8xCBNwjWXvx8RJPvN/dsTbzTiyhd+tN2QdDjT3SkpJwotx5vjjkn/P0EqsKScZrSzAfbYX7xdf7NdZBpt2t1OhgghPbu5VKsd+gMLgchlSeZ0U5ufI+iQJK4gKkCSMRgtebQymx3VEuP1DI3AJRr1yexw8AXsGOngm+GFDI8UYCCDX7YhxjK2Hta5QY12BdXZgkYPBItCTCJwRh0KWyQychDa4FUNYodIOzZSpkVXqnZxEzYDFQlOiqmVmTCTReTRQgeNo3PcZq6U7Chay5bdo7hS2ImV0TG78eU4tsOYCZHliFjETMdhLEp1FCNaEx6VKs4OiZefzeASH4whM2KQicEIwdgZOYJOQfHJxHpLP/yk/dv1PNs9mMvZaaUotpMrylqLUcyj8z6NviyV+S5xvmmjmBiinCTototOI6D4pEH4gr67R+h/Vhe1eYb8DoE/qlGB7c4LOhXCNEUYJcjvjAk6FLVZdhMxv9OgBkasuKKbr7frTnhKG4MRkiTn2EmVJokviHMSGRmMVER5SdzsRHQaBhM3w0dbjeSODR8FIAQhjP2dt37vjiBxbYehCg6u+P3h7e/gqlUfmvJ1SkrK8Wdf782T69kWdoqv+XlzAuWgGg6mPLAV6kU+Z6dWWu8nngdOsympaZmIAW9EogJwq5Ad1Bgl8Dd7eGPgjYMKDYhmfhQ0s6kMIhbEXQ5RTlDvtddmGYFbsTY1aPDKGlU7cvabKacWbfvSVlD6ySKuHIDjWc8e1YarVui905wQj2Jb27ZySYRByOZk7tGeZjnUehaIh3YjlMIBusNOnKDAyEqBOafC+XN3UIk9Hi0VmtdJyfhihzgLxSczdN45hh4d36uepZk3abRG5nLWSiufQWddgh6f8kIrqmSG7dR10GknTrSCwnYDQiAjQ9cjVXZdVqA+V+Nuk3jj1kLcSEGctVPjwlgnDCMFUdFee91xKG3RuOUY4yhMMxellfMHNIUViXHtdKHNyJIknsAdVVCrg+tiijl03kd7ylqLGWOPFxuMa+vZ9mQ20mavBAkmttmTxlNoz/5unIPMAf3+He9k1RUfQDcnaw7H8jYlJSVlOlKBJeW04vbk61MK072K1NbEShQhXBfhunZjzHWQxtgNzUPtGvI9jCupzFVEBTAOBN0G7RrUkMvd1eWIRCADuwlWGrKTJlEeyjtzDLpZZCDtz+t2g82rwG8+dd2Uh1v8hY8i6gpvRJEZhtLWBH84QDYSok4fp6iIM6nCnDKVlm2AaVqAnCrCyimN0Va8KQturX4FgLVz32gXK1E8MY1kDMJxJqZXoniqyHykvbQP8X5GS5v1E0bIJMHfqMjNnUfQK8iMJshQWzEk79Hogb77QmSk0YvnILcNoMsVK2a7Tvu5kyTgOphaHZHxAR9vLCSTk7jbNE41wu0fx1/ew8BFLtqz9glD5ykbwOx1Mr7coH0bFO3UNTLUuKN1hM4RdHq2G7DRnCCJ7aLUHzXkBmLrIQ3W4kBK+z7gqeYiVFlxJaNs048SaAWJJ9EKwHYcJt6E9Zi1fBDICGRsF82JJ2x3YdlmbtlsFmvJgLECjHEEh9PglAorKSknFnsKKdNuujbFD5Mk9j0gnwVtEJ6LHhg87HMwxVzb6kVnXbSnUI2E/A5IfI/EFajI5gBmRjVONSEqKDK7Faphr2Gta6bQhju/9da9HuOcd94CsmnDGNopbbD3teKyOuznkXLqsacVVsrJg0kSbk++3nadsNaEeko2iRWK1VQbrz0C6g//RA6jnk0g2bYDtvfTNTQPoefS35mj1ueScyK0Zxg+r5UFGEMsKG0RxAt7caIIPV6eqGdbGSla25wSwIyO2WllR5IZbJD4OZxqQvbJMepLOtl1kQMeRCXD0PmqbfM1trxA2NfMdtHgNGxN69QTxhdlSRwQicCtGWQCrTF+p2EnmlUjxrSad1pZKsI2dumsM2Fn28oKVLY+1VkH2dtJkvdsRosrJ2pSYa//2rHuG0aCV9Fg7ISJbk6ZCG0nt5NMM5NQgKodfGFrlEiFlZSUlKNGKrCknNJMFxA4XXffZEySWL9XQGaztnsGELkcJAk6DA/OZkdITBihB4dx4oTZjS4ac/KEHYpaWVJe1hRLRhQygEfed91eh1j5/luIcwYZ2849GdvNtj3FFYAtr3nbXt9bffF7kLUQnVGEJduh8sw//Bg/+/bei9mUU5tr3JditOH25Ovt7+1lKZJqKycVLXEFgDix9m7QnkRqb+43baqEUlNEtGPiaz0T9gy+Hx2j+26X8qJZDFykSDIZ8tsFIoHuhzWqGmKkJOrI4DILUe+CbTsx9Ya1GAhDO83TnGRhYAgxOIySktLOTvt4Y2VwHbKPRCwY7mTk3ALV+YL6bE0UCqKiICnEIA1hUdHoccgMReishzdUoySsbVjiCZKMIOiQxHl7jU78ph1YYD228Vzb8a0UOusSF1y0a6cRtW8Xm4nXnIhxAYGdXBG2EzHOQZKx134V2E5ukdgwUotA+tbiwakZtGcnJRETYsz37zi4rILJ0yspKSnHlz1r2gPVsxPBy6EVWHI5ey10XeTomJ1iOYSJRhOGUK7YIOJcFqREao328wAkWYVbMXQMRPzo1r0DhC9+7S3WzrClP8eGn/+/v5n2sR66ce8697zrb0F7grBDUdoMz7vyxoO+tqWc/EyxzJrm+yknJ5PXJ9birVkbygk72na+TjuIfpLYcrSmtA+GSfUsQUBhS52ebI4NtaXEcwOWnruDZ/Q+wUPlueyslOjf0o12BPU5GXLRbGS1c0o9i2la3CUJJgxt89TwCLJsPb9Lu/J2v6JaI1cNWDRYYuScApUFgvrcBJRBlSJ6Ois0IofxkRxhhyLoUHgVO92S79dU50q0C1FWEBYhzlthI85Cda5H4Uk7TULTyquF9lW7WSjJyrbVl30tDImv0H05jBDIWKMdQdhpGz61Y5uT/DFNlLPNQEJLRMZOr6iGRiuBLjQtc12JjA1CG277xd8f1K/lec/+4JTzTkk5FdAnSMh96o9jSQWWGXD1VTfxgx+mSvfJyJ5FN0wtyPcqwpsFmUmAMEIDsq8H01GwHdFGI6uy7Wu9vwKuHSzaPK6u1+2idGCI7GM+uY4SpTnd5AYK1GZLfvuJvReRLTb8/b5/NhNuved9rD3773B3juEMu0R9+bTr7xRldeGVALZ7H0AKTL2BbgRtH+o9J7lSTgAOo/Nu8qbbusHPArA68zJ7uCCwx5aTFhTNzr/2NSqKMQc5Zn80sH7+EpnNIHJZ+81qndxOQ2ZEU52jqM4DJFTnSZxGgfzjI/ij1aZns4LF8zDKZlKFvTncsQA1MA46sUKHUhBFRAu62H1OjtxAgj9qhSh3d53EE6gaZPslYQcEvQnOmELEVvTYdZnBZCR+f47Ox7J4ZU3QRVMQkUQF6NhkKG6qEfb4hIu6cQcriCDG+A4662McSZJ30L7NVtGOICgJwpK1YzASELS7+7TTtJJ0DMY1yEAitM2LwdjbigSiBBwp0DHNjUu7CMVAnJHc9fXpNzBnwlWrPpROsZwirF3w16zb9n+O92mkHAL72kjer9DSbJrQtRrSGMzyRQSzc2THyzA61sym4KDee3QYWkvHWs2GLWcziEwGtxqA6/D9O/YvzN7z+cOraU0zFytxYXS5YtbYibG5kHLkaU8xNNmzue2AImPKSUerpr0t+nf7tXoJkExp/hKTatqWsNL63kFlAR4Nmk4ACGlzEnNZRKLJDSUEHQ5h6NP/+AK+XlhAPDegu6fCCy+5j9t6V8LvinBBEaOKoHvxxqCw0+DUNZnBAGesgQhj2zhUrYGUmCAgXtDF8Hk5SpsjtCfJ9tdJfEF9WcjTz9rIwuwIyzMDlHWGR6tzuN+bx864i9qZxoovgx4991vXDN1cPoYdtn7MP2lf17GlgrCQobgtxq3EVjRx7ZRKq5kn8QRxRhBn7XXaqQEGarMUCJvvYqQgzkGcgSRr3TpUQxBnJvYlolZGrSOQsUSFZsoUduIJfvFvB98kKhsJQmtWX/webr1n5tktKSkpKTMlFVhmQCqunFq0ivHpCvIpWSxxZBem5YoNB8141jtUBTCDzci2ADPJw9UkCUI1sxMag8hKlY7GbH7+/z545J7gvgjs8xGuY0OiQ82qZ36Q238288DjlBOb1flXgBDcWvly+3trOl4NzXH7Fuli9ASjeY1oWR7ApE2EGQove3Zytv31mws94bhTRRZod3EJKY5v10nrHH3fWjNm/LYQQr1BfmdMvc/BaRhm/zrBKMGuSxTDZyvCQg9exVrPIEAGCe5oAzFWJzM8ju4qoXuK1OfmCEuK/LYG2re+z07dUJulUIEmzim2PztDZthOgNRLEBcSMrsUYac1pY7zAlWXyLIkyRjKiwT5HZI4B90P2d+PN279q2U9whsRRAUHlfeRUmI8B+Pa7jutRDOMVBDlBY1uQViCJGewyr7NgtGeAdnqygTjakwsiEqAsYtSjM3iQlq/ba9uO8NVZO13wqLk5187eHHlqlUfAg0//EEqrJxKpOLKqcP+6tnJPwf7nqLrddTgCJkwtpkpSoE+tAwT08oECENMFCOqdWSpwLpdnznk5zNTnPrE5pxTgajksPrC9xxU2HHKiY/dWJ+YaGh/PUloTOvZU5Mp03pm0uQKrW+ZtqAi9qht7YT2MTnNaRFKIQt5RD6HntVJVPRtrkklodAvqYeSRo8VH7K/9Wn4Pv/z1Cw9HVXkZXXCROGphEbsMLKrSNjp4lYUckkOGeVsBpV1iyWzW+NWEirzXSoLYfQshQwESSmD6qjx9MVbuLxzE3kZ8NvKIh4am82iwghP7dlBI3ZwZULWixgsFKjuKpFkILvLTkzHOdvoI7W1aETY626jSzWtu2gLLNqxt41ytlEoztIWwRHW3lEriPLW2gtpp6+1Z0WdKD/xGEKD9gSqYXMHhZkaRm8E/PKr1x/072X1Je9FGJMKKykpKUeVVGBJOS3ZV8dTq6CbsiAdr1iL0cjaIAjPs3Y70QEWpa2CcI+NUaONHRkGTCPg1geOgbgC1hbCCAgjZN0GIOu83/7xmt7XAbB+6HPH5nxSjjhTrKKarB/74nE4kxSY2ATY7wbAFHHFfi2UQjjuHmGiB2FLyN4bEHt29Akp7LVMm+OXt7NHgKiQ0k6ueK79meeB75J7fBjt9SIM5B4fpbqiC6OsdcH4EoFbUWSHbIebdhz8oos37KHKdWS1AUqS25rglXx73VOCOOeiIoN2IMorgk6JDKE2FxLfkBkS9D4gqXdDo89AMSIOFU4hQvkR4VgGp+YhEuh6VJMdCnFGGoSzclTnuNQXFchuq5DdXbXCipQYYUM/TfMjLEiCDjuJEhUhKiU2hyuy1l9CC3QhwSiDCCQkAhUqtGMwHREkAlN2kJEgdG32ij9ig6BVYG0VMIbEPfhpxeddeSNCHj2f6tTSJyXlyLC/Dv7patpkYAgVx1AqIgt5+72RsUN67MmbnCZJjom4Anaqz3ZDg2q+TcYd/pTbtKY4b2382zE5p5Qjz+TGoOm+Tjl2zKiencyeAfGHYdm1L0GtbW+7Rx19XCdYmvZkIpeldsECRs50cOp2+S1jkJHBHzfEOYGMwR81lBcLlKPpyNTxZEIjcZiVrbAwO8LDpTk83tVLdVceZ0yBNIhEkPgGndF2ujorcIo1CvkGnrKCycU9T3Jubjs5GXLr7qfw08eXo0NFR2+FZ/VtZEWmn8XZYVZkdrLcHeRrI0/nv39zOdkB8McMXgWioqAxP6IiHApbBJkRY2tTYydIjLL/ascKLUEJ4gLEWUOS0zYfxQjcCsgQjGdrXe22joEVYTKGuJSgKlYcMsrgVgXemH3NVGjFGyPt62ecg7P4uuZp77efSMltvzo4S7GZsHbF37Lu0Q8f8eOmpMwEgyAxqe3diUQqsKScthxIZGl9bpIEU6lCGCG6OxEdfVCuIrXGBMHMNif39INtFYTH0CN23WMfYe05dkNL531ElCAie+5rul/bvt2a3teBNqzf/fljdm4px4602+/EZPJG1T6ZwTTLTHOnTGIF3uPmU90SkpSy56BUMyhTW/FaCMhmSDqyqKEy2f66vdvwCLltHk61RH1hTPZJh+yQITsUYxxBrVdR61MY6eM5AlWLMFKiM4ok61iP6z6HoNTMNnFsp5xTN2SGBYEBtyzouy9C1WP6r3ZYtGiQvBviyYQ/nftzZqkyH9j8ArY/vgivopGxwR2uYRyJjDReRSNigwhjzMCQnczJ50g6rUd2klHUexRhwQbY23Owi2aRCGQgrMWXAFlTYKwFGMaKLmQ0WgsIJTIQyNh6VhtF21rMCLvgFUbwqy8fXKffqmd+EI5yCOhkceWap73/qCx6U1JOF6atZ5s15nQ1rR4dI1m5gMZ5ffjDId6DW0lGR4+f2H6Q3H/LdTzl7bfYDT7XbvKJSXuqa7pfC44DcWwne5MkFVpOQdJ69tTmgPXsHo2MxzU/Ukik61jLxNl96I4c1dnNTBIfgg4bOC8SQWGrFQ5EDLnBhKDToRopuv06v96yiLjisq27TjxH0enVOWf2Lh53eyiXsihXk0QSx0so5hvkvZDlpSEWZEZxRcK2Rhc76yUGgiLz/RwP1ubz4wdWosoOi87byRsX/5jfyw/hCxcKI82Tz9Dd8xP+S1yOUbZBJ84JvFE7Hag960WbHUpw6gmJJ0l8SeRJawmWtRMoSdaKJsYzYGw9qwIrhBvZFEpqE5mCRtnplCSjUbkIHdg1jlGGUIEMRdueFwANpf6IH6/fO9drX7TFFThqdeZkcWXtsreybtPHjsrjpKSknBykprWHyapnHqPpg5Sjwu36m+0P2CM3pflz61+dgOMQz+9h/NweTGcB2VGyC9g9u3SmoW3RA1M3NGdw3yNJUsgwdl4PYysKJAUfkokVaVtQ0Wav1yHl1CBdjB5b9hXAui9Mc5rEJMke0yt7cIDrxv4sY1q0rm3Hhaa4IjM+wnXAcew1R0pMFFlrMK0hTlBjdZLuIghBknVt1/WOIRb8qEbHQw5u2QoLQaciLErirKDRJajMcajPzlCflyfoyxAVXJKMJG6Gb3plQ3ZIU9ymyezW+KMJnZsCMkOAhvFFLv2XZ1myaIDzu3bw8nm/4P2Lvssf5cs8KwM5J8KtQGYoJLutgogSdNYj8ST5LRWyW8cQsRWLTL1hQ6aNQbuSKCuJMwLjWDsyax0hcMsStyxw6s2uvQaomsCpCdyKwKk3hRctEOMOzoiDUxfICJyqDb7H2NdDxobElwSlg3uPuerqD9mA0eZ7w9VX3XTEf/17koorJwZrlx28n3nKicOe9eyeFrWt27Rq2vLiDENPUUQdLmb+rHYG1oyYJPYfr25x7UKjx1CfA/VeSdhpa+zVhVcilJqwSj3eeQwpR4W0nj22HGw9i9FTPw5xvTtdPTvdOcz4vI4GrZq2qxNRLJD0Fgm7szgNO6GiGuBWwakJ4mJCeakh6IKgBypzHArbNO6GLPftnEcSKoSriRoOG0d7GArybC93EIQuhWKDp87fwcoFu1jYM8K8wjh92Solp8FgWODukcU8Nt5Lf6XILzYv4Z6xxWgjWLxkkCue/hBvW3orLy6MWXFlD+aqLE6tmZkisDWqgsJmQXGjxKmBamhUNcapxsjEWIHbt3Zgcd7WnkYZRCRwqhK3YkWkxLe2X0ZZS7AkO9EQFOc1ZDWm2YFvHNMWy+MchJ3Q6IIoa6/540u9Gf9aphNXrnn6Pxzqb3lGpOJKyvEgQZ4QHymW9JU4TPbMr1h94XuO05mkHC6362827btU2+e3hdGmGRZtR2EbCzqgVEB4zSJlf4WjkKjOTlRHCelnpt72GG9w3varv2d0uaTRJcAYhLaP3xZXjAFzHC2DUo4a6WL0BGWaa8Be+SuHyOSF6f7CkY84LeF5z/Nvfk9IYad1nKa44nnguQjPbQsteC5kPIyrkGGMGqvjlAN0Rw5yWdyN/cz/r37m/WQMoWH4XEllriTKQ9gBlUWw+yzJ2DKHRrdDnFdEeSuw+OMaFUG9T9LokgQdkkaXYnyRR3kJVBcnjJ5lqM3XXNL7JOcXtnKut4PzvGz7qWwYmEVuQKOqISLW6KxLWHIxUiDqkbVfTLR9LmA/1xojBYlvp2dU3U6mqIYN+XTH7eLWqYA7Zn/u77b/umPgjTTDQOsCGTY7A5sfbhn8EZtN4FYMmaGAO7/5N/zi3yayV65a9aH2v63P9+SHP3gH3//JDe0w0T0z6K66ev/h1SknL3tuDEyebE05udhTZNlrglEb/NGE7BDUuxWNOXlksQjs3Wi0F0IiPa8tyBxw8vIo8dAHr7NTfpH19g+L9rxlIc+6wc/az/t6bfZY2jR0SpHWs6cfewotx6SmnVzLTlePT65pPRfT3Yme20NtXpbxxR5xxjbQRAVo9ECct8qBjES7/qvOs7Vo90OazB1FSASdvRV0LBmvZNhVKZJoweKe3czvGKO/WqQeuXT6DeZmx5mXGWNztYexKMtTO7bjSI3nJMzvHeWFvb/l1T0/4y1Lvs/angc4zxvc51O9P9LNrBMISpKoABgobLdrFKENRglrzyVs9h/Gih5J1lrrJp7BOFZMkbH912nWqIlnr9NGQlQ0aNfYYygQXoJ0NEhj81m0rXG1a1877YNx4L5/uo57P3Nd+5xbdey+mp1v+9Xf79XAc9vP3z3l69WXvHe/fwIpKSkpB0sqsBxh0oDFk5z9deMlCc6WAbyxhNEzXHZdOct2qyi13wWmkAIyPsnyeci+HmQ2M2GNc4wnWAAeuvE6VABhp0cyOYOltZkirPiypus1x/zcUlJOVfa76Gt1+E363Giz7+vRQQize1rH7Kvzb0rn8xFCSLHX4rQ1zScKeYTr2A/PRWQykM9DLtu0C2tZBSiIEmvLuLuC9hThgi6Cs+ZTfkoftQV56r2COG/QHjgNyAxDZsgu8IIOCIuC8gJJdY6kOsfaiI0vFoydH1FebO20nMAQdArC+SGiFGEcg1GGl3T9ktX5x0kQfLPSwYNRjU+OLkI/VCQzHKMzLo25BcKeHChBVFSMPbWb2rwcJushfPuBkqAhyUga3cLaKfiAsKKKUU2xJbD+124VssMGrwz5ncZ+r94UWBp24Qp2csUfgeJ2TWlrTOdjDYqPjeOM1Nq/h4tefwsXvuEWRlbY6/0Pb38HP7x9/8H13//JDdN+/0gG3q++OG1IOZFJbUJPEfbxfpHbPIY/Zqj3CrY91yNesQDpeQesS4UUiGwG4ftI1zmuIsvGv7meWfcmdGyOKTzZsN9M7PNdc94NmFIBceYShFKsKb3quJxjSsqpxiHVikegoXA6K8T91bRHnGkEFyEFslDAPGU55bO7GDm3xOgy1RROhM0qaV5StWcQpQgVQG7A4I1B2GUYW2HY9TRBZaFB5SIagQt1h2RXltFHuxl6vIcNT8xl83A3Owc7qEUejtDM9se5pvMBLu7cystn38U/zPodnV6DeuTylK6dPCOzldkqYTTJk5cBi5ziPp/ap3c9l6gIlfk2izAqQNANQxdIGj2QZISdFO/yiIqOnXRuiUdzEpLeiCSn0Z4mzmuSjM04FDFWCJ/Ut+nUBEILayUmDMpNyGVDAGQsUHXRzF2x6x8jmhMvTS76y6k17Z7NznuyvynpW3/93v3ed6akQk1KSkqLNIMlJWVPmh1/17gv5bbo39tF2jXetZixcXKPuIyumE+YhdoFC8j9OkaPjLY3RPc6XJKQ7BpEdpcgn0UmCaZWB62PaQD5mo5XM/iS81CBwREQZyU/uetd9mddr7HCihB73ScNST/5Sbv9jh/TeUjvkz1ymow+/JDQPX/30309+fwOZ1E6XZd0+5xbmSueiyzkbYC9aYpHworQLXGXREMcQy1BOBIciZ7VifZdwk6PyjyXoNMu7tyybYLzd9trlwrAaRjijPXk90esGBF02i471WjaFcTgb3PJDEJ+V4xT08QZl0rFwRRiVCTQXSFnOgkFmWe+ksxT2/lhfSHf2X4B3phd9IVdHpW5DjI2RDlBkrFPKbfLkOR9nEIek8+AEMSdGRqdtjOw0WdQdRv+6Y3RDKc37a6/3FCMVoKgw/4NaKfZMYjt2HbHRXvyJTOqcWoJ/nADESSIOG5bfD1nzYdxZrvEOcG9n57o/IOm/VdTwPvBj4994LwsN475Y6aknK60rvWta/ya0qvoBCpze0AannxenoXiLNT9j6Prer81LcYgPA8DiKagcVv41WP2XNYuegu6pwNZCygaA1HEuiduBkDX66w98+0I17Ed165CFguYSpXVmZelWSwnOWk9e/yYXC/uK8f0aD/+nuexv5r2sOvZPa3NJtWzADLjI2fPYvziuYwtlcgIENbWqmXX6pbtZLGMoJIVaC0IOw1DvQa8BKcjoKNYpzdXZVelSKXqE8cS42hkoBAJ6IyBSFLflQdA9WoyKiIyitEkR1E1KCdZ7gkrbBnvYrySYWO5l1qfJCMMkVFc5g8AhX0+3/EoS6MvQXaFhKFCOBrpaHQsYbdHPGqtbeOMIvEFIoGwBI0+TWneOHNL42we7iao+FB2kKFAJnZyxQls1mDLRgwDSVajsxqhDEZLolhBPkZLx7qFxNaiTIQGhODBm2z9evHrboFm79bkmnbNU+1+hlHquDQ7G5n2rKccHwygzYnx95caslpSgSUlZTqMRiiP1flXcGv1KwDcFn6Na7xrUUGAVhBcWiXcliU7uwdRqyOSxG6I7mNBKkbKkM1AHCMcx1rgHEP2J5SsH/nCxARLa9OzaVO0uvBKZHcXGMO6J//xaJ9myhEmXYwefw5KZJlMK7hzT6HlEM9hfz87Et1+t+tvtu0VJzqaFUYbaymT8e0khxCYYh6Tcewme+uaE8Wg7eYdjm1XE0GMLmZIcq71cHYEYQeoCDofi/DGIoIej1qfQgXWxqDlHZ0ZNuQGIqpzXYRpBsE3w+DdKrg1cOqGoENRme9QnQeyt0Ey7qJdQ0dXjS0xbE8ydMoal/sFFjrDlEOf+mxDZbeLWzMkHpQXC5IzaiQNB3eHh2oIkqyDyvkkBZ+ww2N8iWs7A0sGnU1ASoSR1uJr2JDdnaDqmuo8lygn8Soa7QpUaJCJIZECEYNXttM5TctqZGxw6okVV8KY9Q9au4S1Z7yNTD5D0N1JktgbT7YGExy8sPK8K2+cElB/OBj/6JWga+e8gXX9nz5qx09JOdHZawNUSK7xruW28GsA6EaAGh4jM9KNf9UwQ9s76b8sx4KBWbD5SYTU+65po8hOYbeu3erYLu7Xbf3EPn/Wyl5Ze8bbENog+ocxRmPiGKNNe5Jl/fiXjsWpphxB0nr2+HOk6sUjcR77+9nhnmOrnhVK2azAJia0kxaqpxvT10Uwq0ijS1JZliA7QpwnsojYCisqsMJKnLcbj25ZEOQVujvEy0XEoaKrWOMZc54g0A6bBnqJqx7UJf5uhfYg6o7J9dSoj2YhElBIMEbgy5jZ7jiBcZFCsyns4/FgNgtLo1zU9yTP7niUs9w8j0UV5rkjzFL7FlcAfq/vPu7vm0dnocZZ3QO8qO/XPNSYx/d3ncUm00c0lMGt2No6LEBcgGBxyPKFu1heHCarQnbXcgzVXEQocMt2KjvsgjiytXfYYUDayRSd1QhXg4AklOjYxctFhAISRyJiCbFg05snbG4veNMtuJFBJhBlbU3bElYA1t//gYP+PV9z+fu57RdHIAdQHd0pzrUL35zuwaSknCSkAktKyiSmdMQIuxG4uvDK9oLttvBrrDn3Bgo7NONlj4GLBCLpoGN4DBEEGB3vfdCmfYIeGER2lMB1IZcl6dl/sXMsOOddt7D4/25g3eBnWb/786zpfR1CKNYNfpbVhVcC1o/b1GoI3z/A0VJONNLF6InD/jruDsgxyGo6kI3YwSCksJtvTrPECAJrKeM6NpMk45N0ZDGutJMWWiNqgZ1a0c3cEsdpT7SIIMIJY4zvoh0fDER5GLjYRSQubhW0tOGZKrDZJF7F4JUTtCMIOgRB94T3tTBWoEh8iPKC+iwQZ5fpK1YJY8VgvROTiVjZPcibH3sJO8dK/MEZ93P5rPvJyJiS32B4Vsh44ONUhQ3sXFHl2Us28vDuOfQH3SSDDjK2z0sZgyhaQT3s1JhCgqgoZEMimh1+MgG3bCdP/FGJdiVxRlrfake0w0RbvtdCgwoM/qgmMxigyg1ElLDuoRsBWLvgryEIIevh1A2m6Sl2IGuwA3GkxBWA9Q9M75t9JEjFlZSUqTVtK/uqNcVxW/g11p7zTjo2BTx5by9nPXMLG4KFVM/qJdc/gIni9mbinpgwAtd2Fgt30rX+OPLMP/oY+fX3t5ui1j3+Udb2vR4Tx6wf+QKrsy9HZnzb8JRmspx0pPXsicOe03An4u/mSGSytGpZ4XmIvh5wFMnjm1FdHcTL5hH0+iS+nUoWhYhZ3WX6Gw75DbYulVEzBD5ns0pEDGpMkRgIqw74mrwXUnIaZGTEXzzlp/xocCWbhntolDwQkM1GaCPA0RgfHD+mL1fh4uJmcjIgMg6BdqnEGXrdCn8zfz2XT2peKUq41B9if9MrAM/Pb+HOpY/R6db48+47OdMtcJl/HwD/r1IgcDLW0rZuAEFcAKE0Z5YGOTu/k4GwRBA7mEihoqYtmmg2FHVE9vV0NUYLSATKS3AzMVIYkkQSBQ5JIiERiMRObG9+oxVXznnXLYgE/BhUaGwN37QcOxRRZTJHRFxh72yXI00qrqTsjxMnYP742MWeaBz/ijgl5QTkdv1NVmdfjphm5HP9gx/kihd9DOFqvOVlMuus8CB834bAxZM2Q1ve1ELaXIFsBhyHcF4Hjb5jJ1gs/eTHQYBxDCIS+EMS1QAnhOHnr5h4bkOfm3I/4Xk2IFQb1m3/ZGoZlpJyiOxpw3UiLgEuo+8AAQAASURBVEhbHE733+3J1wFrL9gKeBeeh8g2vbOEwJTyaN92P8clH2c8sD/L+FZgAYznYjIOaJBBhM65RCV7zfTGbUdcnLN3Uw0wOQh6DNmdgsKOmMSzgfa6KKj3QTI3wMQSGXrIiAlLryyE8yKePm8bAA8NzYbQjrrUYpfy1+cj5kFxpbWzyouITr/B01dsYnxJhoeenItJBM9dspGz8/08vHsOJIKwC8qLM3SN+GAMMjJkRjSFzZKwQ9rFdvOtQnsQFgRGCVQ9xq1K6r2SOCtsrkwNEM2g0Nbgo4HcYII3GiHCBLRuiyuAnQASPklHzopUJi16U1JOV27X3+Qa79q9vr/uoRtZdcUHKD1h4JngjUqM1LBwHrJWx2zv36umbSG7uyCKIJfD5I9tA87Z77Y2MUGXAWWQDUlhriL31DOn3K4Vdg9MmbJZP/4l1pRelU6xpKQcAnvWhydyTXs49ext0b8DNs8p6s6jHYnsPZcw79LocdDK1pKVhYZCqUGkJT1zxmg82kttzsSkcVwwxEUNyqDGFLKm0B0xxZ4qrkrYGXTgyZglmWGWFYZZXNjNRYUtPN6YzS8GlzA3P85QI48nE2qxy8L8CN1OhU5Zo2Z8toY9JEgWeMNTxBWAUS2IjGRWU1N+1dZn8azOR3l1adeU2/XIPDfN+wFDieZM14oxHdInI2JW9gxy9+IcMvLJ72jmBTZADPn8cPMKHuqcQ4fXQEqD9GPigkQkChmBdjXZjgaukyClodbwCEYyaAlKhrhOgp9NiHOS3UNFu1chYcvr3to+t7BoX0u0bZKyNfwh/UpTUlJSjjonityVknJCYpJk2gXYnd96K2hBY3uBseU+4Rlz7CZiS0xp0rbJMRrZ2cHg1QuJ53QS5xxkdPS70pd85mMs/eTHcccl2X5JdrvCH5bQDKcDG8L39D/5OM/+vY9Oue+tlS8jOopWdIljm9PiOnbjNCUl5aDY7+LzAKHCx4PDXSyvH/uinUBR0oornmtFZkeR5H3CDoeg2yPOu4jQrpRMxsXkfIzvYTyHqDNLY16epCPbFCkS/OGQwvYIFYEMaU+zuGXoegg6tiQkvqTRJUl8QeJDMDciWwhs95yEKAeNLkFUsuKGLCt2Vkssyw0xq1ABQAaS+x9dSN8vhnHH4bmFh9gYV/inwedSiTxe3Hc3/7z8W1y+/AkyhZBQ20Xt3MI43YtHSVZWGT1DUF9QIpxTZPQMn8pcidA2N8WpNReoif3QLoRFh7DDo97rEuUFiSsw2AW8VzbkBjReGbK7rVjjjseoWgRK7DUNsm7zLVDME3R7IAQjK068v7GUlJRji9FmrwyS2+98F0LDI4/PI1leZ/hch2BBCVrWONO8P6mOEltesYT4jPkks0okpewxOf+zvv1+Vn77/cR5K67ofILOaOKumEYPVBfkeN6zP8jale9g7cI3T7nvrZUvY6IYtGF15mUYrdPg+5SUQ+BEFVP2xWHXsw98ECMg8SXlxVnGlrpUZwnirG2M0VnNWb0DPGP2Zi7s2w4agr6E+ryEOGdFFqe7wdzFw+RWjGF6A4gEtbrHtpFO7h1YQD2xVl9PK27kksJmulWFDqfGhT3buLhjC2eVBlhWGOZ5szfwyp47We4OcplfZZ4zyoW5Lfxex71cntmx17krDMM6x4NRjQvufim/+/xT+ODdz5/2eXbJHEucTPtrX7j8aceD/PW827nszM00VjSoLLBNS9WlMWJOHaMFI9Ucu6pFpDBkciGiFBGVNFHJQFYjpSFOJGGkEMIgAokadKnuzlGrW3E+60aQCKSbsOU1b5tyXo//7XU8esN1BN1QmS8IOgWV+WnTUEpKyonJSTPBctNNN/Htb3+bRx55hGw2yzOe8Qw+/OEPs3LlyvZtjDG8733v43Of+xwjIyNcdtllfOpTn+Lcc889jmd++KxSL8GZPxcyPuse/fDxPp3Thlvr+w/s3PzKv+Wp3/t76gskI1tKrHwiiwhDO8WSTM4gAOG4EEbU5gqKTzrIxBB5R9ei4NJ17wS68UYluZ12EzLJQmN+DKGkOC7xxwz1HkHQKZGR4WmvvJlfffn6iYM0w0tFsQBJYm0hlGJN92tZv/vzR/X8Uw6Pk20BlHLqITzXWsd4XvM7GhKNqoU4dZc4KzECjCMRIYhGZCdcfIek5BN0OQSd0oa3RwmNXp+xpQqjoNELUW+E9BKENDS2ZslvFxglGV8q0A6UNtlrsFcKKWUDav0FtG8onxUjawp3rDlJEgk0gkX+MOOlLJs6+ogdh/wmF7F7nNm/znLtj/6CUk+V8lgWNxOzfNkQs1SBa2f9AikuY2V+F7PdMZ7Ts4Fal8evRpby2x3LCTsVtT6X8jKDdjUoIJPgb/Fw6hB7NhNGO1CbpXDqVoRRIUhp7FRLYO3AVKhx64I4A7/6l7/Z5+veQud96r2Ku794PUv+Ja0dUk4MVqmXoEpFRC7Luu2fPN6nc9rQyl6Zjru/eD1nfOMDfPySb/GNpZdyX3wOfaKXbLmCCcN2DlirrjVhSGOWISy5ZHaFxEVvn8c+Uiy/+WbiUpZCX5VaXmNcA1rgDSl7HTcwfI5EnZGja4NP8f5drF16PeueuHnKcYTrYPREg1M6yXLik9azJx4nShbLsUJoQ9DtMLZcEBUN3pho2oAZOh5W3Nu1gFVnPMJYmKVjs6a0VaAdgTCGwYugo1jHVzGljgYbhvOIQLJi7gBX9z3CSJTn4vwTvCA3hisctidlalqw0B3hQs8hMZqbjaISZ0iM5Gw3oSAz1E3AfBVysVcDHCp672zXM90Cm2PFS+99Dd1fylO4ZzOdj83mz1dcwT8vvHOv27ti6tZgj8xzRQbu7Xqc+/Nzqc91cboaPHPxFrrdGr6yDVL/88TZdOXrOFITBC5JMSaJBEJYcUU2uzqlMJhMgkkUIrE/V1Jz56oD16hxd4xZEvLIS25gyVc+dMDbp6ScDhgESepScEJx0ggsd9xxB2984xu59NJLieOYG264gWuuuYaHHnqIfD4PwEc+8hFuvvlm/uVf/oUVK1bwgQ98gFWrVrFhwwaKxeJxfgaHTstypcWa7tcishlMuYKY3ce6xz5ynM7s9GbFB27h0Xe9nxff9Zf8elsR3VVCJhopJSaKbPinNpg4shkKjmL+D6uMrcghEigvFJz97lt4+B+uO6jHXdP9Wmj6wg6+8EwGL0/4yHO+wdf6L+O7z/yn9u3uXjthF7P4ix/BycVsfOne/vmXvOZm/DHD+BJF4sP5b7mF0paEsCAZf+VigPYmyNr5b7Kd6E3hZe2Zb4dEs27Txw769Us5eqSL0ROTyQvSE9lSAQ4/hwUmcjDWnv13ECcQJOA6iHqIjLIoKfBGGojd4zZ/xXXBdRFaI/M++W01SveVqa3oo/8FRYIlAbP6djP4eA89vxEE/S5hl0uSMSy67EnWznmQnw6fyeiOOXi/zVNdYMUL54E8v3j/u/Z7ri//5Ws4x9/Oazt2cnZ+B5965Eq6/6sAUqJqEaX7cyz/o61sdzvIuBHnebZj+wW5Bi9YfEf7ON+r5fhdfQGxlqi6ILsrxKk7GKkIOxUiBpEowk5ozI/aSfUb3v02rnzBR/BGQ0SkEVqT5Fy+/5MbDvn1v/Xu97Q/X/ZVA392yIdKSTli7FXTdr0GU68jCvm9bEpTjg3Pe/YHefwn70L3f4XBrkf4+flL6c9m6Sksp/BEGTU8jh7aDcbYXBYpWflP/Wz547l0PVrCSHjGH3+cu75xYOF3Mu0JEqWILlzO+GKf3EBM/+Uuxc2GX//zRMPPxusnPj/3Hbfw4If2rp3Pe+stdD4eox3BY6+dR64frn7uTXjbRkBKxMqlrL/v/e3H3lNoMVq3MxdTUlL2z8lS0x6JerZVi535zQ/gOQnhxiLdD2mCTklYgk9c+nU2BHP5waaVnPGbAXRHjqAng4wMpcd9Grt6yT6WMDpf4T67ylufcTt/WtpMVvj0JxW+MHIJc5wxLvdhviraZpwmO3WV3y/+lshIflxbya31Pl68/B7yQH7SOZaa/+r+FUxmVTaGuzrI3/EgRmu8bR4//dFT4RV7Cyz74hx/O7lMSM3JYrRkoF6gv1Yk0vZEn7ngCWb74wTa4SNrvsmSz30Up6wQGqJxB11M2Pyqtx/CKz/B5tdOTLYs+yrwisM6XEpKSspR4aTxjFi/fj1/9md/xrnnnsv555/Pl770JbZu3co999wD2OmVT3ziE9xwww384R/+IU95ylP48pe/TK1W42tf23fX1snI+t2fZ932T9pR90bA2jPfzupL3nu8T+u049F3XcctD1/D6+b+GBELa3PjuoiMbz8cx9rjOC4IianVcbbsIrM7ISwKuh7TbZuu/bFnwSo8F9HVCaUiTgP8rgYvLozxnTNu2+cxtrz67dOKKwC//sL1eGMx3RtisoNQ2hyT3V6jtLGGU4UlX/4wZ3/nffbGWoOQrNv6CQDWPfaRVFxJSTlcjkGI/cFwpLsS1z18k80EkdIKshs+RJxVBJ0KNJha3U7HCWEzn6II1T+CGhgHbfBHArIDkC0EuCrBeJqRc6H81JDojDragY2Pz+U72y5gR7lEVLbhoIWtUNpkEDPwav7qZV9gUzSL/65luCCzhbP6BqxIriRJ3sMtw4M/OoPBx3pYXBjZ53GWuUO4ImF+bpRoQUCj10Ur8EcNhScNXRs0uV0Gfxgy213ym522HYLQoH1F1OmT5L0Ziytrul5zwNsIM4M3m5SU48D6kS9gkgSimDW9r2NN7+uO9ymddnz/Jzew7Jab2Z6UAdCBQ26nnaqrLi4SLe5D9nbbrEHHxUQRZniE3gdidj4LRGJwGjN7H5tS03ouLJ6H6OvBCEGUFwxc5DLvim2MnbnvjszpxBWABz52HSowZAdDFvwoJPGg3ueR9BbRBZ/aoqLNb2kipGwLKuvHv5SKKykppxhHup597MXv4ozeIZJSQr1PkdmtefgfruMFuQZv6dpINhNihnYjogRvNMDfMcacHw8y72dVZGxQAUS7M2wLu8kKa481RxX4y+579spPaaEQfGf8Qr44/ExckbAt7NnvOco5j+71vUafgSSxdbjnImO4s6Gp6MaMnvfV2YQ/WfJrli4ZIJ9vUA4y9I+X2LpxFlu39fJEpZv7RhfwkfObr7cA7RninEH7ZsbiylWrTr3JlFVXfOB4n0JKSsox5KQRWPZkbGwMgO7ubgCeeOIJ+vv7ueaaa9q38X2fK6+8krvuumufxwmCgPHx8SkfJwu31r/Kuif/kXWPfQTZv5u1y9564DulHFHe1LWJq7MJZ1+02eYE+C74nl2EZnyE6yJcB9lZQngeenSM/P076Hw8pDJP0ugxLPnK/sdi9+oKKuQxGRfdmaf4RI1g1KdugsN6Hj+67W+543tvo/c343jjMfV5WaoLszgN8LZ7dOQaLPn0x1i381Os2/QxLvrLWw580JTjxu36m6fV6P7Jyun0O1r38E32/erJfwRAuwIVGmQ1aC76hP233rDTLnECOgEg8RXagTkd4/yv+Q+wYNkgPecMcemKzTheQm6HwBt02L69m0rDLlhVAxIfooLgoRtnNiX4yjPv4q33vYjHwjl8avF/MHqGA45DbbZPdT54YyBiwe/1/mafx+iUCQu83azM7eLMhbvYfZakOleh3eZmobD2X5ndsOHvr6O4dUL4+PG6t1vhqcthZOXMMw3Wj3xhRre76uqTZ+G6Z35CyoE5mevZ26J/Z/3YF+0ESxTbSd2UY0ppxQjzVZE/KW7FJII4Z0XfKC8JO1ySOV2Ini5kbzeyswNTb5C/Zytz7oSh8xXD5zqc9d4D14ZT3vcWzEFnfXQpizvWwB83aA+evHsB8YKZbfztyY/XvZ3v3/FOfrz+b1l46whCGwYuLjB0USflBQ71uQkXvvEW1o9/ifXjX2Ltir89pMdJOXacTrXSyczp8nv63rM+yebXvY17P3MdP/u23XvRaH7egMrGToTvYZTAOIqkM0c4q0BtboZ6r6LRDeRiIjPVJrxH2lmUjXFlr8erGrgwt5lnFB8nIyKuO3vfDZUt9hRZnn/VPYjODgCSjixx1rB+/Kk8fhBh8dd3PcGNZ3yb5y9+iIXFURyVYCQQSDbu6OPB3yxp33bza9+GzmrIx6jOme9R/PD2d8z4tieLGHP7ne9i1TNSkSXl6KGRJ8RHiuWksQibjDGG66+/nmc+85k85SlPAaC/vx+A2bNnT7nt7Nmz2bJlyz6PddNNN/G+973v6J3sMWB15mWIXA6RzbB25TtYt+HkeMM5FXDmPM7Kb78fKQxLRmu2AzubIZ6XR9VCRD20XdBhCIQIpTC7R/F35uhr5MjszjKy0uOiv7iFe//vvjcBW0Xr6kvfh8har2sRxuA7FHprjOmI/Px9/53vi7Vz3whas27XZ+w3jKHR7VKZryg+meCPafK7DAN6FpvfZc/vqlUfouhKLvnzm/HKhpGzJMlTKySJZONLDt3OJiXldEQ4LhhtO7iPM8dycawCgzdcR9TqGNVcaMbNlZ4QNrdFKsh4aN967M/KVvnb7sf5047f8IZNL+LerQthRwbtgTirzKVzdnLf9vkgoLJY4++WyPAgz+veIo1zXWapAoVrdhH/vMTIWZJrX/QjfrhrBZFW/FG+POU+b991Ib/fcQ9XZCSDiUunqrI7zluvaQfiplbij9rAeiPhns9bu5tffsX+u/ri9xD05Wj0udT7BIlv7W4e+NjBWUjuC6MEIjmJplhE6id8sJwq9SxKIT2PtXPfyLqdnzrep3TacN8L/oHzru/mBX92J12/dcjt0gQdkignGF3h4I0W8cpFwhIUtms6f53BDI+Q6w9wGi5jix2qS5Kmfe6Br1sX/cUtlObkyewoIyoN8F0SD4LFIdnHPB7/0787qPNf2/d6TBxPFZy1nRQPuqBjk8Yf18QZh998yp7f2nPeSTyrxKorPoDQhkZfBu0KhAYZaO74n8OztElJSTk+HGux5ycNxQ2P/gGZAQHGIHeXkRkfnfHQJY/qHEXQBUGfJl9qEOjpt+C65d6blMudAsudkM3xMMsW7JzxOY3oGl0yB8A/zrubZ1/6Ooq/2ML48jz3veQTFGQGyOz/IHtwphtwcf4J6onLb4N5qLJCZzSbrp1wyTjnnbdQn6cRRY2XD8lmQi7473dz3wv+4aAe65QiLWlTUk4bTkqB5a/+6q+4//77+dnPfrbXz8Qei3JjzF7fm8zf/d3fcf0kX9/x8XEWLlx45E72GHBr499Y2/d6SDTG2zvgLOXgWaVespdP+L5Y0TfIpv9ehs6OIkeqJL0lxlbkMCJH4gm8iqawLcAZrSPqBduhXQ9xB3aTzS+lMs+lMoM/Od2/gg2vfS1nfTJExBqEQYQJpWyDOapwUM9v7ey/ZN2uz+y1eXHrr997wPv+8PZ3sHbBX5Pd0cnu8zvRDoRDWUQhYum/3oS7JcOjNxyZTcGUQ+dE9UI+3VmlXoKQgtuifwds8PDp+LsyEnRGoVzXitCJASHtJItS4DjguxjPQTsCfxQcaUWo+aqINoKedRmcumH0DEEcOuyqF4gGsuR3SoKn1HnkTdPbIu6Phz5wHW/+za+gYyf/ds6XedFT307flTt4V+8jvKv3kfbtNsYVVt3+Foo9VZZ1D/NQZj5XZHbSKSMapkZRNRip50gyBqEFKrQhqVoJfv7/9s4pMMpOrtT6BEnWht4/eNORuY5efdVNCKzIcrLQsqE8kTmYOuFYcKrUs2s6Xm2/UGr/N06ZMQcTSP2d715BFnDrGqNAxjC2UhDMTsjNqiIE7NpUYmz5XIpb5qACQ8dvBxlfNBuyCckZIVf/6Hp+8Nyb9/kYun8FY1e9ko4vOohaYJuQpCDOCpQfE3TPfC3TaixbN/jZvX62/v79dw2ve+hGrnna+0lyDvXZPo0uSfHJiLBDEcx2ufxlH6fzwbF2bkvK8eF0rJFOFlq/m5Mhi+VokhjJouIov8nNxtTqdj89TmyTkCcRBsIug+6MMQZ+NzoX5kw9xod3n8GLSvfRNUljed22Z/CHPb/m+Ut/x7KDPKeeedum5LE85Z2/5edfvYjg2eWmuHLw9Mg8l/o7+KU8g2AkQ88jgnv/71QHFa8MNdfgFwM8J6HghzMKsZ8prcmVk6lp6PY7958Debw50erZlIMjMSfG9MjJ8z/y6HJi/DYOgje96U3853/+Jz/60Y9YsGBB+/tz5th3qdYkS4uBgYG9plom4/s+pVJpysfJiEkS1m36GOsf/ODxPpWTnmvclyLkzDeivvesT/Lgh65j91M7GH7WPMpn5FGBofOxOv64ptElGVmRpbyik2huB2R8GCujqzUSXxBdWoGzK3xz48V8e+OFU479T49cxQ83r2wXSF+85gsYx8E0O1wqS/MoefD5De2JlT1Y8ul956mc885buOgvbmHNeTeA5yGCiI7Haiz+nzJo8DZlKPwmgzcKl7zGLqz3ZSW2ds4bDvqcUw6O02VU/6TD2Byja7xr29+6XX/TTrKcRmhPYhzZFFcS0M0pHiEmpheEwCiBCjX5/pg7Nyxv3393I4d2QSaG7BCIrVm2bpxFZkDSsVHvM3NqJtQTOyW4xCkyutLwX2fvvej4o4+/jbNvGqbrnwts/O5ybnnw6vZ9LvcdXlYc4GVLfsXFz3yURl+CWzFoR1Dvm77sqi3IUZkvCbuwm5rRIZ/+FHT/Cm7/2pf488/9B2v+8Y4jc9BjxNolJ7ZQf6ItRk+ZejaMWDf4WdZt+z/H+1ROCVapl1jxegY8cPN1bHj3dZS2xsS+YNflgp1XCPJPCpZ9PcH9UQfV0SyXXv4otTNDooKg+EQFRq1t8++fdx+/d9b9aCN45a/+nLf/dupG62Uvv5lzbrB14R+cdT/uSABBCI4i6SvhlQ1mR5bM8Mxr8P1N7T/v2dOviS5+3S1cfdVNrL70fRhHIrTBqWu6H65jlKDeLVGBofRYFVFttGvW6WwWJ7+Xpxwd0nr2xGeyqHI6/r4WOWPMyYyR2Q1Ga1u/dhaIOzM0uhRBByQZDRhquwps2tXLnXvkVrki4Z8Gr+Rv+i/iHbvO56J7XsId3z+f5y/93RE5x0/P/yWfue6TPPSMf93rZy98dA1n/ezlXLfzYgKz/wJ0kVOkoBogDU6w95aqUzMYR6OkJooVlcA7IucPtqb9/le/yJ9+6r/o/sDWI3bcY8HzrrzxeJ/CPjnR6tmUlJOZk2aCxRjDm970Jr7zne/w4x//mKVLl075+dKlS5kzZw633347F15oN6nDMOSOO+7gwx8+cqr5icr63Z8/3qdw0rGvjr5WZ/nBMvjciL4fuZQ2jCPCmHBOkdEzJdkB0B6EBYFTdXA8124oGkN+4yhC+qzoG+QTm57HGR1D/Kr6Iqqxz7zMCJdkd7LEGQeKADwnY3jk33/Cx9a9kPyTgre//uu8rLh72kC7g2X5zTcj54Ys+fKHwYBXDHn0j97NmvNuYP0DH7QBzC40FnSQ2T6O8V3iootTjphzl8RIQ+nxGrV5GYIOyaorPoC7LMeFb7iFxIckA4u+9NiUx1w7/02s2/7Jwz73lJSTCSHF9BteQh6XwPvjsRiu9Sq0AneXawWVltCSKBAJBAEoCTkPERu80ZDuO3OcMfx6fv+5v2K0miVZJogGFEZAZhC8JxxUYKadEDkYPnfJl9uitqrvvdH3ydFFzP+fXaA1+QcHyD8keKx3Ljxj4jY/b8DPdp9JqBW5eRWCxzso7NQEjmDJZz/G5tdP7firzlXEOcCAU4UHPn744sLXHr+MlzaHGxc6wzze2HezyQlJtX68zyDlOHBr/avH+xROOvY3oXIoGyc/+e7bOP/Nt5DfCiqA3IAGCeNnakTZ4bGRXkwkye1KkJt3YsKQ3vvt/9c3997BX4y9hDt/9BTk8grf2/Q+5C9K5AYMA8+JWbxkEICrSg/y7ZddRt89BURi2PV0kL0N/AezPPSBw7/+rfyHW4h/L8slf34zbt0wskLyyHvtcRvdMLIyQ2G7g1uO0a5ExAYRa3Kbx4AO8o+PwPBIW/Bf0/1akqefyXPWfoQkI8nd/sCErSWwOvtyMJpbG/922OeeknLSsWdNe5zqWTg+Ne2ZboHnd/6W9V1PA2MwUYRoRPbakhiSjCA7t4qUhnB7B0kjy7s3/m9iI/nJU/4DgOcXfsfrd1zLli19ZLe4ZAfhsU8f3rVQznl0yhTL5f70W3+bbl+KX4VbH3gaK6/t5/Ud2/d73Nd33c0dS87gicZclv2fj7Ppryfq7vxAQv0xl3qlhHYMj7zx8GryFpOfx1eevJy5+ZMnZy4lJeX04aQRWN74xjfyta99je9+97sUi8X2pEpHRwfZbBYhBG95y1u48cYbOfPMMznzzDO58cYbyeVyXHtt2l2UsjdHugDb/Iq/hVfYz9cuegvxsk7qC2IuecEG7v/auRS3hcRZRdKZxal3IKpVCGIEPi+acw/v+cXvUfIbjIZZHu6fjZCGJxb1sTQ3SH/QwS1z7wHg9R3bef1LP8vtdYdV2YNIpzsAG6+/nmWfuJncgED7UF9oF5XrH7AdgA9+aO8ib+0576SxsINf/Ov1e/0MrHUD1RqUCvQ/t491/Z9m7Zw3sK7/0/YGORtOsKb7talImHLaYJIE4U21vzleVmHHq9Pwns9fxznvugV/pIi3rekpLSUmjq21gjKQaEgMQhtUNaRjs0NY8vj2vRfh77QTP+WlhuJGQXbU4JU1d37rrft8zIOhtSiVMbhi6u/qTZ1b+dwfvIBF39gOSjLytNkY1/D7j63muoW38Z3dl/C9X19A130OUQFq5wWIpRqvIvHHDLltipX/cAsb3j1xTW1lAhwtflQ5h/7w5JxoSElJ2T9H4zr+23+cuCY9/dqPU+91yS4o84/nf52//Mbr8BMYWQHZgYU4m3fhDFXpb3SwyCnyrsX/xfW1P2ZJxwgPDsym0WeoLtZcsHIrL5z1WwDWZEMef8ln+cX/jnnzQy/lLUt/xa/HlvDLTecekfPf8O7ruOLFH6f04DA666IaxfbPpqtn15z/bqKuLLfvx1Zs7aK3AFA/Zy63Vr7M6szLuC38GgAin8U0bJjz6szLUqEl5fRhuoah00hcAVszrupfAeeWEU17SzMwhNeRI8nkcSuSymgWOerghSAjwa7xItcseYRHoiqPhLPYEJzB1g2z6XxU4Y0b7v7i9GvrQzm3yeLEdKz5o19yx2cuw1s1NK24Mqyr3BeUuDprrXpnqQIvX/BLPjq2inBTkWf+0cf42f9n6+87vve2I3Le+2N3LUfePciQxeONSQ2UUo48BtBpyM8JxUkjsHzmM9bS6DnPec6U73/pS1/iz/7szwB4+9vfTr1e5w1veAMjIyNcdtll3HbbbRSLRVJSjiUt//gln/8oP71/JbkibPpjBb7GxB7ZJ+cz+9cxmR0V1C+LvPwZQ9x33n18fM69AHyydxEPV+fylPx2cjJkOCryjl3nc33vncxq5q1MFleuedr7ue1Xfz/tuaxdch3rNk9v1bUnm95y8MXcj279233+bDrrhra4AlCuACAK+YN+3FOd1YVXgjHcWv3K8T6VlCOM0QaRJKzOv2LK7/d0866uz9Y0elw8KW0YseNg4tiKLMpaCogkQY0HCK0RscEfg8agi/YM2jdox+A0FP64bi/ujjQ3Dl3AAm83r+2YCBd9zSvXcds3noouZRl4mqC4fIRd1SI3bX4+m369kK5NgvyuhLAmMb/zqc811OZAdpcgOwC1ObDkKx9i8yvecVTOGaBHlQH4Xi3Hbf1nkXUizvvP9/DA750kQegHYdWZkpJy9Pj512wH8lnvvYU3xtfynWs/zgrH45Eo4gO/97946Hsr6P1dzPZv9sLbf8gVGckvL/yWvfMyeMPCy5DC8Cfdv6BH1dkaaxY5dm12ue/wzfO+xIaoi4tmb+anC85g7Yq/Zd2j07sPrJ37xr3yA/fFnd88iM7pWPODH+/fWnLPbKg9RRSZtU1Dwvdn/rinCdd417bFqJRTk8k5DqdbPdviGQufoL+jRLKgF/nIFuS2AXJhN0Z1gnHxR0GFhqggGJmT49GeWXzHu5Bep0wlztD5kKK0NeYn/3n0RYrJfHzOvZzXeRkvmDfVEePuIOKbo0/DFxFPK2wCau2f/VlpgF8s3MT3Gysx4sjZgB2IH9QVGTemGnms/Pb72fCH0+9/nHDsJxM6JSXl1OGkEVjMDFRfIQTvfe97ee9733v0T2gGrOl6Dcl4OfU1PI3Z/FpbIF39o+t579L/pEfVOcu1YsKLVz2PLf98BvN+VuX8+C+pXNSgHGf46f+cTzAroWfxCPeKhTx/wYPMcsdZ138OV248j6wfcc2CR7i69CA5EZKR8RRxZdUzPsDtd02Eqc1UXDkU1j10eH6i6/o/zZoL/p71Wz/B2kVvOSmCjY8VJghASFZnX962TDmYoNqUExuTJIhm19817ksP2ZrwUDhR/obkrAa12Tk6OkuY3aM2g0VJ+7oI0e6AlM0QZCfr4lVcsrskwgichiDKwT2fO3rTH2Gn5qt3XYGIBA9d8ev2JOGbuzbzf1++luwgGKkZ29qBP6yIt0HRhTgLYVEyeqYgyRjcskA1wDjgVAxGCPr6xrl03Tu5e+2+r6NrF70FwnCqMD1DflQ+h5Xunbz5p3+OGnJRi6s8+qJ3H+pLcexxT69cohOd1dmXo8MwrWlPY1oWW7c/8TXOdRPO8xy+vuwH8OYfcMm9f0zn5zq45L1/yci5Gn9IUnr6IPpbvdRmCfQlZa4sbeCKjOTfK13cMPxUZvll/nfnvZzpCkLj4IrEis6vmHjMlk1ti5mKKwfL4WZYrh/6HABr+17P+rEvTqndUmzNM7nWSevZUwchBUZP7NMc68DsE+nv6Po5t/PWkatRjoKOIlTriPEq/u4cuUEbLN+xsQ7aIKM8GxqL2L60A9dJ2L27wBP/dPyy515w7V0A/Ec1T2Qc/mXHM9hZLpH3Qp7Wt4XzvF20LMtbvLD7NzzUN5snn9/L1VfdxA9++Hf7fYzVF76HpOTz/TsOPSfxdXe9AjHo4yw4uWpak+orKSmnBSeNwHIysn7kC8f7FFJOEH7w3JsBG/we7FyGKxy+uez7/NUbx/nBf19Mx0ZDbr3P7/7nPLqEob8Xhrd1ktvs8NXuK+k4ezeVmk+0M4faJflWz9P5z8XnceG8bTyluINLmfAmvfXbAO/a16mccKy/7/2sOfcGhJpZCOvpQmsRujrzskO6/zXetVPH9vc3rn8cvZJPO4RESGEtBJRkdf4VxyTg/kRagLZ46oId/Hb5cnoX9uAKCfU6xIkVn6SARCNiDdUaptFAGUMpMWhVBAFd9wyji0evU/jy+16EcQwyELhjkq21bl7w6Fr+e8U6AB76y89w1p0vR20sUNgKs385jhypUFvZx+hyFwzEOYPuDck85FPcpjECjBT4IzC4uZvi/DIX/Pe7ue8F/7DvE8nlDun8v/3o+fyHfCrOgItTFYQ7Du04xw1HsfaMt7Hu8Y8e7zNJIc1GSZlg1dKHAXjV3a9iaXaY8STLt5/6zzz3xX+N/5jDsm+HxDlF9EgP26+JWbBomDn5Mr+rL+A/hy/gzPwAv96+kHhzgW93XsS8Bbt51uyNnJWdmBJc/rGbEYkgeV338Xqah8S6wc+ypvd1x/s0TjhuT77ONe5LD+m+17gvnXk9m3JsEbJZ12qMNqxSL7H121HkRKxnW5zr5qhecx7Fe7fbxiGtkUriDpQpeJJGlwva4GwbokdrtFtkVHSAgM6HJBzaku+I8KHZv+VZD/wB33roQvSoR+kxRXmZJrtikHKcYVj7LJl0+0eiKg1TZHlpmL6VVR567hk8Z82H+fH6fTtbyGoDnTv4NU9rj+PfK12w28MbE4Ty5KppjStZ9cwPcvvPbjjep5JyKmEEiUn30E4kUoElJeUY48/dBMCmbXP5n/vPw1OAge5f9LPusY8A8I77X8TF+Sf4+OPXEH+jD/FgN+ElGlyDiCG/XVAPi/w6WYReIHngyQXMUYavj6/kVR0byfavYFhX+WZ5BfeWF9PtVvnI+SduQSq0xhRPrkLpWHGoPt5CKYRSdirAaBBue9FjtGl+b/KCdeqCaHI3WvMbkw4up3aspYvdg6f12guBSeKjOsVyoi5GXz33p3zlaZoNW1Ywf1cZJmWamzCyjrJhCMa0p1pkpYF2iwyfB7/8yuF1HB+IXdu6EECS01MCPHX/uvbnly7Yyq8eO4ewBNWFedzuDMYR5Ps1CPDGJJHxkBGEeYlbNzh1jZNR5DcryqaIP6fGM7//dn72vI9Mefw1593A+sOY6jt7zi42fnc50VxD2GmmPIeTgaM5fZmSknL4fOnSLwGw9N9u4vu/uBy52BD0aLQryfRXueMea0c42f//grtfylApj9HCiteDLjt0Dz9IFHf7i/jI/7uFoFvjLK5T/GGe8WWC/u3zeDLx+Mi2tTw20rt/QfoEQCgF2czxPo0TjkOtcWw9a+tSkyT29W3VUMZu7O9vU39KPTtdvZqKN4eFUAqRL5CMjAHTrB+OICdqPTuZsWWK4v0ORmu7DgsjRL2BvzHC7SkS512IItRwhb57IM4UGT875jefPnY1mpwzYQU2+fqccSKSqovTHVC+WKIbip27OgkTxb3FxVzsTYjgix2H/qTCgswIFdfn8fNHkT/OsvrS93Hr3e+Z8ngtu/J9WT/OlHXD52FKMWHinnQ17Q9vP3qWwCkpKScOqcCSknKcWLZgJ5v/bPqffeip30L3r2DRWf/OSy/4K878Wo3Cdo+g08GtxSSewKkrRkoZfhUs5oWP/xUvPf/XxEbxX9UyLy6M8UBY4BvbLma0kaWUaRzT53awrHv4JlZfepLkAhxj1nS8GoxBN4IZLyzWznkDwnPtxrTbLPKlBM+dyLmo1hGufQswWttAcfuF/VfsuUBS7YWs9Lzm7ZLmXeTU+x6I6QIxW5yqi1sh28GXQimbL2EMCGF/R6ENazzSvtUn8mL0hcvu5wW5FXzvTT/n5kevJXevzQxBCkw9sIHBUiALechnSWZ3Yhx1xII/D8SW1xzYA/vpHRv5lTmHfL8hyQiqcz2yQ9p6bOcECNCeIegS1GdZizBvVKHqYBR4uxVRp0Pf7CqvuvtV7Q1LYIotzqHwF/N/zFs6lmMcg3YNSz/5cZ5408mzIN1fDkNKSsqJwxMv+7upnddvmvrzySHL9176NVb+6xtw6gK3AmEnCC+hO1ujFnmEK+p0d1Z54cLfsWHhbBbndjNLFfjcyFncu3UhSUMds+d1qKzb9RnWLnzz8T6NE47WRLaO4oOqTUQ2a+1Do9ja5ypla6eMj1AKXa3Zerf5fZMktqZtiy+T68pmAHlTBGhNFLfEm8nCzUFzukyDtyaxPQ+RzSAyGUx3CRXFJJVq+2Z71bOt5qwkOaSHPZHrWZi4zlUuaMB/N9dXSQJBgAkChOchazW8UhHiBGp1VL3BAx8/+hkikwWV/bH5NwtYeKdm4OIcZz3zCX732ALEmEvUqRiKi8CEwJIVPs/JGJ6T+R0/bW4zfPcPL2HZf7CXyHKkGmbmZ0dBGnRGn3Q17aorPsDtd548DiMpJw8JJ8YEiyH1wYNUYElJOWGRcx7lMsC4H+PRP82BNHQ8Iul4QuOWE2oXKDoWjhGELt7Pinx76xXMf/o23tz7E+4LXX5dO5cdIx2ENZdGwd0rmwX29rY+rmjN6ovfw633pELLZNaPffHg71QqYub2IYPILjIdhcm66IxLnHMQicHfMmxvqw3CUXazvxGA1u0PE0b2c2nfuE0UWXEFMPUGorXP0RJjJk3B7DXdMo2oIpTaazHaFmsmvnHwz39/NBd4E4ffz6TO4TyGUhML0FbgraNsroTWmEZzNdJakBrdXohOWZROnhY6wLmd6IvP6ZBzHuWF/SuY95lP83d/+lrcDdugEdsMltY+RxRjFpQYvKhI0HX0z2lN92tZv/vzM7rtx366lkwI40sFQbfh7PM2Myc7zr27FhDf2c1z/te99LhVzsru4E+KQ8jmk/pquZf33Pn7dN7jMTLH5ZLOLazI7DzAox3k88iGfPBP/pW//e9rQQu8Uck5N9yCkfDwP1zHVas+dMJ21K1d+Y5UXElJOYVobfDd/sQ5PPann2V93eNTT17FQLXALy/8Vvt2Xxyfzec2PYt/+emzmLV0Nzct+B7r6z38Zmwhcc1BVRRrz/471j1805Tjn3CZJ77H2mVvZd2mjx3vMzlhONSJ7OBpZ+LvqiJGywhtMMU8SWeW6oIs9V5JdlCT629gpEDVYoynMBJkI0FECXJkHKp1TBzbmrbZ7EKSgOtAFEMc26ajZq1lJv/b4gDTL7a2VPue4DgK9ezE47Ye4sC14sE+hpAChER1dUBHCZRE5zwas/PUZjsYBbnBBLGwRO7hAeLNW6atZ4UU1hJXyInp+n1wMtazYK9zG5+3gmXjr+Psjwbo/kGgWcdGMVRriHKl2TiUO+rB5wdT5715x6V0PwBxRhAuDPjGmd8lu8LnP6p53vqrF5OT4T7v+6wM3JsZ5n9+72b+ZPGr6fqnwpF6CsCEeHXjrPv5hnMROpla0869K+CHPzgx61lIxZWUlNOJVGBJSTnB2fz6twKw7BM3ExVgZIVDba4hKcWEYzlMxcV0QZw3XDnrcYrCoSwSHqzMI5cNiQKHKHS4/a69A+VOGHEF2pv4KYfPukc/zJUv+Agq1MhQY6RAe5I4K9GOQCbg9JVsvoUxGCntItR1rNCSaIgThNcUWJqIpCmuxDEo2RZUhKK5KBWTugJb95u62GwvBNtCh5piWdYWbcwe99/Doqwl9Ojm5McBbR9ajz1psQjYBXbzvodsazBZtGkteF0H4TiIXBYyPjQCTBQhfA8yWYSxj2WaXZaTmdzx1z5XE+3z4U/WhWgLOedRLu5fwZPPy7FsA6AUMpuxmyBhBBmfqOgTdEKj7+hZT0Bz+kvNvENajSucClQX2d/h47v6iPskHdkGAx58ev4vJ9164u9xdW4z75GG4raERo9DQ7sscYeP1NNoU5J1xKwAU3WIigKnJhAxnPt3t8DFRy+/5nBZt+FDx/sUUlJSjgKrlz6E7l/BBd5uvnXm9/DFVD/+V5d2seys/49XD76KWEu+MX4BDe2ijaCjr8K4KOwlrsAJmBEkBKi0m/NIsPssj8wsl9yuPE4tJuxwifKKsChQgSEqCMaWZzESnIZBaJAxyEijHYFXzuGUI5zRms15y3qEvXm8gTIisKKLCCNMrWbrXyEQSdKeHm9PXOxn+npyXSmknlILmihu1nnT1LPN406paWdaz076mVDKPlaS2McDTLzvuvGATKqVrQVYlvDshQTdHm41QQYJMjYkvqDRDUIrZAyZ7gJsnjjMnhMsKGkntk9BcWUy33vhJ7j+X1+P7B8Ex0FKOeEmIAQ4jm1+O4rXiKtWHVwd9cMnz6R3V8zoGS65YoNvVebz8uIQ/ztf5W3S8PkNz+DNl2/e5/2/u+Op3FtYhKcObUJpprh+TOC5xPmJmnbXpSduPbvqmR9MxZWUlNOIVGBJSTlJ2PSWCVucq390PVuHusnnAhpZF7mlCAj+9aFL+ftnP0zNVFiU3c1Gv4eyymL22JNcc+4NrH/wBBJXmrTGidc89V2IetjOpEk5eHa+KiAY8/H7fZw6uE33pTgLMoSwkLdZEDWNMCBjjQw8RGKQYYIIIkTgWIGlJQLE0towGIMo5O0BE40xzdtoDXFsxRYmTacI057CENIuLNqLDLADpcZYq7Lm55O7CK1Yo9r3F46L7CiC5yGjCNMIMPX6VNuBPYUUsLZcrcecLOgZAUohtNn34vYATPEEl2JCXPE9K7AYg8hmMYUMojFpMkjv/7H2trewnAoL0D151vN/y/av9CG0gYyH8RxELUB35Gj0+UQl0Lmju3DDdUHZ13tfkyyT7W6uvvK3/OrLF1DYLNEe1OMcjw1kUXWB6TS8fdeFvLX3p8xSE918r9/2dG578By6fuXhjTaQoeKZhQ1c3NxgOZIUZYPVKx7i/t3zGBgrElUKZIbtn7w58Z12UlJSTkHknEeZ1/x8sv9/i1/WltPTW6Z8by8P9Mzn6Z0bWZIfZriRo5qbupG2duGbWffkPx6Dsz5IpGwLxWsXvQWMOTHP8yRg2R8/ztbxTrY80oNb9nDqgIYkY4WUOIctJDVWHNHg1MCpSxIXnIYiO+SQzTuoemIbjvIK0ZNHRk1BJU5Q4znb1KENRBFEEUJrRDJhkYvRE/mGLRHFc21N2bIucx1b3/keaIOpVK21mRAIY+w0Q7NebVmUyUIefA8Zx5h6A11v2LyZvZqSaH/NpK+F79vHjWJr21UsEG/dfshWZ60cR5REeB7Mn02j16PRpYjyksxuwcgKl+p8Q2ZI4DSaC839TGSYJEHEYtpzOtVq2nPdHEMX5JnzRMnagRULiDC0f1dNy2bjqqM+wdJif5MsrZr2Q+d9m/8z/hJ674/ZeE6BR5fNgeIQAF+7/Au89v6X81c7nsY/zfvVtMd5Ysss9GLB4EAHfv7oFJiBibh6yaP8tjifwbECYVggOwA6rWdTTlMMoE3azHEikQosKSknIT947s1Tvl75u1twx8H5TZ4PP+UMrso/TGQUUhik0v8/e28eJ1dVp/+/zzl3qb33JftGwhLCDsqiIBCSuH7VcXR03NdxmREERVFElEUF4oyOOuroqKOjvxmdUWdMIIgiiCiL7IQAIWTtJN3ppfa7nPP741RVdyedkIQOSaCe16te3X3r1q1zq29VPec8n8/zEJZHKwSXHf1JVk5Q/fdssLT9vQjPZUXf1/f7GHKw0Ph95QNfmIxhvaBx04vt/+KOykyeDjq4ZduRDFeSOEYwsC1H8LSHN6RIDEmEBhUYnLKDjAyqEuMUJMJzIDZ2ghlEdpJgjLW6krUckThGRLEVVqJ4tBNJjWaONCaS2lihwXPtfvWbMfY4WtvJaF2wiWOk72OMtpZkteOYWmUh6SSELiKKMUqNOn86zmgXgusgGnYEZlTYUNLaoynVEDlMFI2+gLvz4d5TfkxNwBFKIZIJ2/7vueiUh25Lo/JlRKGCGRyyr08yOWpVsTsYjalpCs9mArpYvqHhD36oTmS/Nf0OFr3+75h+0xBIiDM+5HyqHT6D8yVBZ8SsOdsO7CBcGz4K7NYmbOyC4D9O+z2ncwL+sGFktoDuCt1tBYpVj3LJ4+aNC8ioCpd3Ptp4zO/WHYHT54GB0hSP0oyYY7xBIDv5pyM0Z+UeJ9IKYwR98yVROYUMrLPfCR9ZjtDwl3++cNKfu4kmmmjimbBzNsA1j7yc3/fPZ2B9Gy3b4cH+KcxM7iA0iqQTkkiMVuUvm3PRAREtliTeAkI+u66YUrnx64r1X3n2g3oB42fzVgFwzcwFdDp51lc7WF9upxK79FdSSGEYqiQJI0WsJWGkKAz7qBEHGYKbFxghiRIeKhhbceZaYcaAU44xjkJEMSLSyFIAhRIyWeOAUjT4qVAKE0ajeXqpJHgecXuaOOGgPQkGtCNQocbJB8hiFZPwkENFGBrBVGudMXHcyH8Rnmf5dRCOz+xT9W4Yt8FdG4hjWyDke+B7iLQC18H4lgebaC8Elt3xWiWRySS05ihNy1JpU5S7oDzFFlHJwJDaLOi+t0KUcSj2KMJWH6cuQO0Mo0e7ztl/TrtzTuGhymnf/fe/4n/vOAuxdcBeJ8mEnYckE5hMEuNIjPPcuDfsySaszmlfkapwQ8rB31bEuA6f736osc+pvsvfzLub/3jyFH6YXctba8JLHU9GBVJtZbQRuFs8yh0H5jx84fLKtvvIORXulLPZPB/CUgandOjy2VW3X3awh9BEE008h2gKLE008TyAcaA4S2OU4ds3nc9/zDsFgJGhFKaqELEYzTfZXxuknbA09047wUj4tgLHGBvqWVssX7Hln/f6WEtO/Ky1p2pi0jDTsYu1MzODwCCfaH+ClWWPb28+m8HBNGGrtTDQnsApgVcArQRCG1xHgAZVrYkQkUYKURNEADz7P48NIoxsq3tsF6ZFpGzVnufVslwMwuhGOzw16wI8104sYoMoV0eFjFhboaUWAI/nNYQTU6lagcaxIZmiXGmcr6g/n5R2ounUridpq/xEFNvjhWHjeiXWjQpAU6tatJ02YyY8O9sy1LJVGtWDtYmx0QYhDCibu0IygUn56LRPmPMIcg6ZtSGs32LHrvaunf3ZThzHTUQPYXGljne+YyU33v4SnB1FZDkk7EzTf6yiclSFI6ZupzNROrAD8F1wHZZ2vo+V/d965t2Fy9BJIenVLms+PTqpe+dd72RzqYVIS27bPo8PB1m+NvXPhCbib4+6i1nH9/O99Wewfls7F8x/jLyWrNZFjpnk03k86KGiXXwZkfMrbJNZqu0GpyTwB0GGICPDye9bzj3fOrQmpU000cQLD5885td872efxxlSFKeAvK+dnxZPIpOuUij6RFVn0vOjlqTfZheqdxJVliTf2vh9X8SWZUdc8pxVpr+Q8MmOuhhn88o0mv7YcoIHgxbuLs/hqVIX26sZ1vrtlLI+YcFDxC7agWq7wB8SqIr93ovrWS0xuAWBSipURSNig+MqpFsrlgF7fVCz/HIVxAajBDrlEScc4oQiyDlUW6TNiVECI0FVDSpwETpNlBD4w2myqx3EwKA9pjaN4iGqtRxEY2w3Sl3gUNLyVSVrfDse7YCuc2XXtYVProPOJRHhBLZmO1ntAqh0yp6jELYjPY7RtaB6oRS0t1Ke00Z+lkthOpgFRRbPeRxfRvzvH06i5+4KqlAlSqYxQiAis1u73Unls5N0zAOJD7Zu5PsntdL5f9sxQ8OIRAKSCXQ2hU579v88SXPyPWFfPi+f+hvB1JUtPP3ujwEfB0YFmE+0P8En2p+gakJgvLXjPCfDilO/yRSV5HXeK8nfMWMyT2FcYdNJ3g7+gKYrWaRvOEe1w+AWRJPPNtFEE4cEmiuaTTTxPMCaT13I2//8bh4a6KV8Wyfuw21UOiAlrfjy6JUXwvvtvs/W2/6ozy2n6y8RmelTEAOD6EIR2d6G6WihMDdH7Av++B8fs2JLFFn7piDgxuIPACvMxIXCOFIsK8GEntpN7D/G2hjVsTlso8svcOT0rTy5bjYA2gNKIDSNiaZWECckRglkqJGAMbZDxAgB9YorrcGtdWAYgwg9CCNMwrX2TnGtMyWI0dkEUc63lYIjFeK0R5R2EbHBrVX3ibGVdrEefY5KFahV72HtGBDCbs+kob3Vtt7XBRPPsxPRaq3StVY5Zlxl/baNgSCAcsUKjvXOE9exYkwcN6rvds6PkfXJNtjukziGekFevWtH1gQcY9CeIkwr3HxElPVxXccKRrG2Y6jbTExCKOlEVX2H6uRzadt7WDn4ncbf9ev1oran+NfzljLrfyqIHSO4QNCa5LS5T/Mfc27Zpdp5MrHsmE/Z60Hr3YorS9vfy68fGb/t8jN/ybveefu4bUkVcmLbRv4yOJ3VT07lSaeHtwQpPtD7O/6+/S/kZJIlR/2YO2b38ES1l1/kj2cwTPOlSZyTjugybz5iDbetO4JELmRqYpBK5PBU2UVt8NCOnYyKGGyTeRN1LOv6ACu2f3PX7b0ftFY/W79xEEbVRBMvDKx5/WeY9d0vIQSIgsJ9PE0+mcIpCqSAW1bZxbMVT93wDEfaM5aecDkiiCyHLRRtEQcgUin7XV7rtl2x4R+t2GLsAvRN4U8AuMB7MyYKd/2eLRSfVUd3E+MxEZ8FkMiG/eZ8d4i0XE2Xk+fPI3MpZV2qyTJbnSzlikREwtpTCYFTBKdsBRCtIDFkiJKSOAEiLZERhDkHWfXxB2vcNNIgwXgOle4EYVoSpgQyAgxESUGYhqAFjBKI2NqXgUAG9m+nDG5JEHRncB2JKAe28AhGC38AUeOHQttuB8B2RNU7yOudLrUiJmCUQyoJkUZUQ2QygS5XRu3Nxogt0nWQLTlob22IgaZmYSb7sNy9vZWwJ0ulwyHIQjA94PQZ69layTIzNYg7pUTQmsAVtgMoMaRQ5RCkaHRe7y8OJz4L40WMcTayH72Dex47AXn/4wCIdArjKqK0Q5yQ/P4Xlxyw8dSxJ3Hl3MXXcvMY7Xjtsu8g37lnnv1AAG+9+62sPnO86Fwv7Ft912zmDFcmeuh+4/y3voubf/hdOwfYNJXTMmtpccqUIpdHSi56U6LJZ/eAZb0fnPA7adnci1mx9rqDMKImJhMxz00nXBN7h6bA0kQTzxN8/7R/ZcHPPk/yjB0MbGwhvU6R2mYI08++iu5Fb72Boz7yMN+beRt//6ZpLPdfTY9sJ9mXwlm/DVyXsC0JAoKM5NhLlvPQbmwbVo58jwvcN40TWuriyq/WHsc//79XNy3CDhDWlHt5fcddrM5M5YdrZ6FdQeyCWzI2hiQ0yBCMFDWLA00jmFsKK6YI7GRMG4QW6IREe3aCKKsxsmr9hbVrhQbt2OtP+6P7VKZmiD1BNSeJPYGMXdKbffz+iu1eAdvZEkWISr2ar5aNIaUVVaIIYo1uSaF9F1kOrbd1PVhWCEStyhBHov26OGNtz2StWo8wrOWjJGz3SxhiqoEVP7QZrVqUNqelYelVE1Aar03NGowx2TIIQZh2iJICL29QpajxWBOGCMcZtVTbDRbLN0w4qZyoku9ww+5Elgc/+M8cF3+IWd8dhCAk96Qge/bkTtYmwopHrq7lU+1ehF6549u7LPS8I7erbdnXT/p3Tvr1pxnY3ILf5xDMCHhquIOvxItZ3PkI56UeY76b4YlqL9+8aTFyaokZnYPPOMalx3+Glfd//hn3W3bkpcBbgEu55EbFDGcAV0TcLI7Cz1SJEi66KIgSAqfcnIzuArmb700hWNH3dZZN+8i4BbEVm776HA6uiSae/3j6XR9n1ne+TNcRAxQqPvrxHMltED/LLONl8z/O5mVTGD42InduG72351GVAJFOAbC05V2jNqL1x8y+cMIOlpuCH7NYvXEXoaW+kHXlQ6/mjr89gZX3XfnsBt3EHhGaiG/uOJOsqpBRFaTQdCcKjIQJwoxiUyqBjgUikIRaoh1BmLE2mWgQRuAWqHFIafPJDLhliapqK3gIgXYlpR6XcqdAO6B9iD1Qgc01q3YY1LQSPW0jbBloId7hgxaoqsDNC1QVtCsI2jyMK5GBJkpaTqmq2uYAOhKnFCIqESiBkRKhNVJJ2wEuBMZ1QDJalFTnqnFsu8CDyBY59XajRvKYYqmR+1LPQZQtOWjJolOePY7WtS7vGJHL2G6WTJI44YAQxD50dQ9zYm4Dfxycy21b5hJsTRH54AcaGUTIFgftOyjPw5TLu/yfdsdn6/cd7phIZLm6+wEW/L8zmHd/bafYzpNiP0mQPXDBIbesunSvOlduWXUpuu+7e9xnZ4HzybCbYCDB659c3LDvq+PUz/wdcx4roUrhzoeZEOedew2/ueWTe9ynLhad/9Z3Addy8w8zzHX7ycoytzKfRDpAu4kmn90TdtNRuWLtdSybc9Goq4MxrNj4T437ly34BCvWfPG5GmUTTTwv0BRYmmjieYQ1r/8Ms//5erzeEuUgRXK7wCnDoouW8+AN+94uu+TUzxGlXYJjkvxxw2yYeRuvyqzmBvFq0k/nLYlvyYIjcQq2jD/2BFFasmz+xxk8rYehBRIj4LHLL2TZEZew4okvIxwX0ZJjx5uO49QVn+L9827jXbmtHOUVmuLKJGJnUnxtj2X47eoJvpsSqAC0C4VpAi8P2Q0GFWi0Y4UREdtg+jih0K5Ehhojhe1siTSqRmRNzVJMexLt2dUPo2wHTJhRVNpsRWB2QxUZakZmOCDsQkmYhjghCLIuuYTELcaIyCBijVOs+U7XbL6I7OTRpGsVfVpjXIVxJRoX4whrO6YNMjLgKkRNCDHK2jagAUdiEq7tJNE1iztH1ewNYkQYIapVCEKby1LPbQHb4SLk6HbXQSbGrPgIYUPtU0nC9hSVTocgK0jskKjBArguJgjtOYHtenmGar/6pPT5MAEFK6wArBz8zoRB8hJJaUbcCIz1CoaBavqAj2vJiZ+1otwk4d6Xf4GFn1iOcSByY+a0DNBfSfOzzSdyW3I+nV6RX69ZSOd9MDyS5reXf/oZj7k34grA/936c15x9usA2BB28Nr0RnZUYoqBj44lprY4ZByIfbGTL30Tu+tQqVtfNgWVJpo48Hj6PZdw+k2Xcv6sNfxq+DhYXws4308s7XwfoqOdlqcj/vKpbzMv9U56bwczNGx3UKP5bCaKLEeoFU0s6/0gtLVgfJeV913ZsJGUroNIpSiccyQnv3c5A6fEZKfk+c7xP+CIRDeXN8WVScHuulgAXOEwxRtiMEoz2+vn3PRqHg+6+MXASQRaoab3M1BIUy56xL6DLijcEWnr3A1EKUDYrhYZGiJf2L+rtpNFxAYElDoVQ0eB9gzekEBEUO2OLa8EvO4yL5rxNMfnNtDfneWeHTPYms9SDR2qm9KIyNryYhROWeGPGGKXRkC8keAWrdAihcC4EiMFMqgV+gSyYQlmRREzahFWX0A1BpN0ibI+CFDtaeRIBVksWQ4tBPgexvdqRVOi1t1tRZY4k4BcAlmJ0AkH7QqqLYLSnJCX9aznNdn7WVfp4N7HZpHcJgkzBu1JhFEYKYiSCsfzYAKBBZ5/fBZGBYDdiRqvWvxnVl/fbv9XNWs37QjC5IGzERzbwTIZqL//VodFKrqbby+2osy6KM9MJ41E8oa159P5l2FksbrXrhTPJK4A3PxD+1xWYLFY6KYoOxVyXoU4logmn90j9mTbvqdO0Ka4cjhAoE2zg+VQQlNgaaKJZ8DeevEfKhCtAcnbMqgKpPojIl8S5Pbvg3fdq3KoACpdBp33mPdf78cI+Kuld3Lr6hfR/uDIaHVV/zBewWdwQTexBwNn9lLqEoRpg55S5bR33EC779lKiaPmsvZ1rVSmRKT+2MXxCzcA3uS+EE0AowGyYyemvapK52s3sHmoBdeJWdjRz92rZ+ONOHh5iXYFkQ8yVngjAqdUs8tyBFoJorRChjUhI9SIyE4+qYkvRljrhSitKPYoghx2EptIkNoeE6atJVmUhmqnRivQjp2g+YMSf0TjFGN0ZJDGjNqNSQlKEKdq1X/VCCOlfWztebUnrdVZZMfWQI1vO5G2XS6eMxouWW/UEQItfVsZWOvGEZVg1MpLSnAdiGpVgAC+bzNnwHbVCAkJj6g1Rdgy6lEcpiVJUeuCqXloG1ObIAsJ7NlP4fk0GUVrVg5PXDFXn8T97pXX8/6j30jhq91sPS/kH3ruPuDDuvEvn5vU483+4bW0lnyMhNKIR6QVU1Mj/HHDbJ4sdiOGXZ76yMfgTXDcRcv36piNLK09oP5eH2sHee/6mfSFLfQPp4kDBdKAse/TOiY712AiLDnxs5P+Oj/XWDbzo+A4u9gqXHCaXUi96c+Xc8FpV3LTny8/CKNrook947l4n08mPnXEr/nahnMReQe3ZFDV/V8803OnY1yJNxiw+M3vZF5s6Dsry7TtWcxw3nbm+h4mDG01b2uakRN6EBpSW8qUpiYpdSqWHvdphFIsbX8vYsEctpzbwfB8Tcvj0H6v4oIPPUyrrFLR7jMPqom9xkR8to6PtK4f81eKhW6RvH6U+4ozAejPZFi9o5v+HVmML4gTAtFomLZ8zinXulGkvQltO1OMKwjTkvxsQdQdgDBUEg6qIBGhQCc1Mhkxr7uf43MbODX5FIlUyEuzq7m7OJe7BmfxSOBQ1QmqGmRg8yKilC1O8kdsBqJbMsjQ2C5y3woW2rViDwbbeR1pa2MrhOWhcb2TWtocFiXRvkOYdQiyEqE9VDWJU25BxAYZ2YyZeqe6kbWCqZLCOJIw4xAlJU7VIEJN7EuqLXDEnD7mJrfTrgTHpzfwu/YjqIzkqOQFiVaXRL/BLcTIqNYJM9b6tm5NVvv7ecVnAVWOJwwyr/PZ63vv5cTvvJGpl0SEXRmCVo8gJ591N96esL+f8f9ZaOGNE2zXfQsY0EVuLCxkOE7y8vTamj1flku3Hs/PVp/Ak2+8DO62XQ97i/Nedg2/+e3uRZax7/XRc7oU3beApPDZVGwhjhSuYZTPmr3rjJkMHG7fpztj2dyLwehdRJZlx3zKzpWBlQ9fxZJTruDGu684CCNsoonDD025q4kmngGHk7gCkMlWqLRDYQaUuhT+UETswZyvXs/sH+xaifCrtcfx/cfPmPBY7/6rm3jow9/g+FOehFDiDUpEa8Ci1AYGFlfYsLQFnXQYWZBlyytn8PTruhk4NaLcYyj2CFQILU8Kum7yaV1dsN0EgBwYZuaKIi0PO7ScuY3jXEnVhLhN39QDhrHZFS3CZdXR/8vDp/+In534HT4w5bectfBx+k80DM2TFHsE1TZBqUtQba19TQiIkoowowgykjAtibIu2lN2AtbqEqUdtCOJUpJKh0O53QaIpvsM7Wtiqu1QaZPWmzq0NzWlDJmIqDWm3AVBztru2G4Z0J6DTrj2Zy5B2JkmaPWIkoo45aITygaNOtIKQK4gTCuqrY71OPYksSfRbu1+30EnndpPz1qHqZpYEo+5/hxJnEkQd+Yw7TnIZaEli0mnIJWElpy9JROYpIdJ+ZhsCpNNotM+cdpBVjVuUYOBcodC55LgeTZDxnUQwlYjmnoOSx1CgqjluewnDmWv6rHiys7dK3XMdLIs7n4Up6QRIw5X3P9KwE621m2c8pyMc1+w+IxdO+8S6YBKJ4QZSGxV3HP3Edz62HyqQz6UHSuu1PDAXnYY7q24Mvb9/r67385JM9dzw8PnoSOJKTuoku0q08pWz6oASj0HRuRefNZVo+NL2QXHxWcemp2K1lptz1ix/isTelbf9OfLG58lTXGliUMVh9ti0CtSFf5h5s28/WW/Z2BxBadimP2N65jzo10rpKO+I+jbNJW3/uk9Ex5r4+IsA4vSGClw+4vECUW5C6pzuxGd7bW8tiSiu5Ntf72Qp946lU1LDH2nS7acmaHUpUgOxOiEB9kMIplAhDHdd5fIPSEZnq+pvnyYZbkHGNAJWlXxQL88L0jsbRbbW7P9fKLr95yUXsei7CZmtgyh3BjjGOJcTNgRof3avKSWpSc0tgLe2N/LnYpSl6IwRVCdFdgcwT4f/Jg4YfD7JULZYwSx4kh/C72qwLGeZmkyYKo3yIz0IFM6h4gzEfRUiKYE6AVFRo4JCVusbZgKDG5RowKb9VLnrMaVRAmF9pW13q1Z4Nbtw3AUxlMY30GnE0RtliOHNZ5ebZGUuhRD81wGF3gMzk8wPC9BfpZPfrpLpcOh2upa8bDXp9LhUOpRDM1xqHS6VNol5SmalBPiihgXyWsyj/OiaU8jp5YIcxBkFUHORTsCWYkx5QpCWttc4bg278XzduW5Y3/uAYcynwXGiSu7+3x9Ua8VAEVsRbTk9oj2R6ucd+41nP/SqyZ8zMHA/w4cz9L29+6yfVOcp2vqJmIEoVb8ujiXVWWH/ysl2BGmcd3RIrF96XrYk7jy2IapgH2/j33PD2yejuxdwwc2nk45cInLDjIY5bNOFUq9B65oc+fuoMnuFposLD3hmXnoirXXTdjBsuKRq0EJdNaqgE1xpYkm9h5NgaWJJp5nePDVn+Oxyy9kzWUXUu4Q9B/r1YIZDUJpzvnNxQBs3zyNkc0zeaLay3yvD923YFylyM+fPJFOJ8+vSikWdz6CyoZUpoa8eN5T3LzjGHItZaIUVDo8+l4eIJcNMGvJOjqmDhN3hZSnGoKstYHKraugNu+otadLiGOcp7bQ+UCVUEtc4eALl61xYnen1cQkoE5QM3L0dZ7nZMjrBDOSg7jdZYwCt2hvVlQRBC0OlXaHaqui1K1IDMVkni7jFCO0K1GBxinFaEVtH4f8DElhhhX63KIhc99mptxRpuXJCp0PBbQ9HtL5UIR5Ko3yY1RrleqUkGqrPUaUcTBKohOKoN2nMCdNcXqqJuQotC+JfUWUVERpRZyo2YnVRJLYE4SpWnVebOx2DVHKsVZmTj0nBbTv1B4bI8IYma8iR8rIILLvHdeKI1F7GpPyMEnP2iokPeK2VM2mTBFnE8RpnyjtEmZqDaK1SboKjX2ehAeuW8uUkY2MF5lMoLJZVDaL9DxrG6ZfuILjndWIf197Gn5/hSm3g3wgwwl3vYnFj76SHw2ffMCed8kpV+zX4278+Q922bb6dZdTmR3wyFUXktlg6LxH0HKPj7/VZd37L36WI90V966fucu2ZXMv5lunfB+Ax153OTrvQWQrYh/5woU4ZfDyBi+vURW9y+MnA2O7ZFb94dPjfh5qGNv1sztccLq1aVty6ue44LQrG50rADf98TNc8OKmJVATTUwWZO8aXj7nIa449hd0thXYdI7AuAblxiz+nRWm6/xVIkkIxV93/ZmRzTMpbpnVOM6cf7+G0lFVCucX2HpakqFFbay/wMU5aoTtx/vodAKRShHM6uDRS1tY9O6HeNcbbuLUhWuRc4vkF4aUerGiv7b5FKRToA1qsETLuphkn2Ru+wAvScCLfYculT9YL9vzHnsrsigh6I9yVLSLxJDLVPBbquAYZFHhDUrSmyC3XpMY0Hj5GC+v8fMaGRgKM2B4viF+UZ6XHb0akXfovF+TfswjuVWS7Advs4valODJx6fw84GT+XNlJklhFyZfnn6S49MbSDohfmuVtrYiC2dv4iPH/Y5MRwmwXTIqMKiqteHVjkT7Eq0ERmA7t30ruDTswOoii1vLBqx1eOuEotjrUGmVBFn7/StjQ5SESheUe6AwXZCfISh3CsrtgkqrJEoKqi2SSrvNW0FCpVVQaRN0zR+g3S9R0h4VE7M1VmRUQE9bnmqHptImqHQ4hBllebPRiOOPQi5cgOrqsF3bRo92tMDo7+bA8I5DDb9fPw+KZZxNAySfHiK5fhivL487UEJW9tzBvr/Yn4V/X0W4v9h1Lj5j2hbOXXwtCRFy1XE/52tPnMMnH30d/9Z3FptKLax+3eQWlbzqto+wsngM3x3pGbf93MXX0jF1IwDfOuX7FCo+CMMjV43yWbdo37vPBW5ZdekhW7SwN9lfy462AteyYz7F0oWXsXTRqFi48oEvYKRscN4mDk0YIEYcErcX7qrFeDQFliaaeB7j4S9eSOX0IrEPqfUKsd2nGjv855Mn0yHTZGSCYxIbSYvRMLr6RHWGO8iaSi9F7fPy9GpeOu9xOqaMMC05zH1bpzG4NUuY0wRZyYwpO1BCk1AR5057nPOPeZTOI/vxX7wDZ0k/a1/vUzxhWiPrAs8F38N/eoBwVSen/uUNvHvDmawJerh3/Uz+88kDt4D6QsdEk9IZ7iA97giuG+EUIbMlIt0X4+WtQJafLin2SkpdNqw99cQQztNb8TYO4W8r2p/bSxhpJ2jFqVCcFxEfVcSpQHJbFaIYd+1WvLXbSDyxneSTA4jIYBzDjK4dnDRjI8nWCuWpMf0nGQaOdijM8BmZ7TN4hMPgAkl+uhVGjMB2pXjCdqXUxBIZaJxyjJeP8UdiVGCQNWHFKNvdEqVsR4tRkjipiDIuccJB+y467aOTLibh2ErWMEaWQxvwmXQIWtxRv+s4Rqc8glafOO0RtCepdCcIWzzCnEu5XTK4wCM/Q1GYAVFC2AwYqE2MVSMgW7XkkNkMIuGDUpg4tuLKC2TiuTNk7xqeDLoZHkqhduS546cfY/XnLqTyQBsb7phBSga79WJ/tjC1bJy9WSTviwt8c3gaD4cl7qxGE+6z7u3WKiHIWjuS+79yIWs+dSHzrt+95/H+4LIHXsfjQQ9/qOhx7/GdOy3Wvf9icAxRJubYjy9HBbWKyqpGHpg5Pjf/flfrjMnAeS+7hvNeNr6K/dzzDnwloVF2wnnjXZ+1nSo7Memb7rycxWddxflnX33Ax9JEEy8k/Hnp1Zx3+oOIQBCVXbQR/PqpY8ftk5NJXpGqkJEJksJvcNq3n3An06fsYPVZP+Td71xB3/kx3Yu24SiN1DB8TI5gXg9bzkzwD6f+houn3Mg/tD3Gh6f+hnce/UfOXvgYRy9+go3nOwwemyNsTRB3ZAimthD2ZNAK0lsMDzw2kw9uehE3DM5BIxnaPIPtm6cdpFfs+Y29EVl+nj+CO4fmsj3IEmiFp2KMFoiCIvOUpG21pu2xCumNZfzhCHckItEf4OU12oWgTRN3hExpHea3jx5FZp3ELWra1sS0rDWoiiG9CdKbQY0oHuqfwoOlGRR0BYBeleGk5NMc27qFl856ksXTHuOC7kfYFuQo9mWQIQQ5qLRLopRCe5LYF+haA7MMDSKqcVkslzWuwngOOuGhUx466aKTLmFbguE5PoUZgpF5huJ0Q2kKhGnRsD4LWgzlHk25V1PpMlQ6regSZATlTqi0W94fZKE4HUozNC2JMhf13sQbc3+hW2XYFmfYVs0SRArjGGQM2gGnqhGRRp90NBiDGCmhdwxhqlV0EByw6+BQRv0aDQMHUyhiBodZ8cjVrHzwKkSxhBguoJMOL/7byeWEY7EvQssbO/7E6r6eCe+7ZdWlfPioWwAYHkmxY1uWn53xdVa89B85ecXk8bxj/ucKWr0y/7nxJN6z4LZdxjAWj772s2AEx3xqOTI88Hx2ojE8E/bm9T938bUHpTNGp32WnPxZe00+fNVollMNq+74NDf98TOW0x5CnVZNNHEoo5nB0kQTz3OEBQ+VNKiywB8QbNnUzk8yLyI95fec6g9yjKfZHu/qE32y5/GfRlDSHnmjaHXLDA2leDA9heJTLbQ+JcjPNvSfAB2By5tn383Z6dWc4NnKl21TCrRIH1+4cCLM73k7C64QgABRa92Vgq77KsSP5Lj3qE5O+MAGTvAS5HWeo//7c5Y4NXHAMd+JWecNsKinj7tm5EgOKOsFHRhMSqA9EDEktxtaHxpGjBSsQFCuIPIFwK4xyjhDnIBqh8Zrq4CAjoc07tqtDTEhmtXNyJwkYUqw48SYl592L7MTA6RklUArHtU9aC0otitK03zb9u1rdEJTqUrcoiTdFxElJGFKIrTtELFija38A5CBQbs0qv+0LzECSl2O7dIpGYS2gaLuSGTDRGtjNMZBC9EQU4yUyFDbjp2Ei6xGCG0a/rSADaxMCYKsDbWvtkKYBTG/QEe2SL/qof1RB7VD22q+ahUcB9HZAcUiphpYu7Aw5NniULdTqGNP+Vb3FmfTfmsCqqOT8sxGeMn7/sw/tK07YGO66c+X75W4otGsLM7lxu0L2ZRr47jUBm5ZdyTnzn5swv0fWD7eAuzJj100KeMF+Js730fWyfLG4+7a435H/vxKqttT9s2aiQkzimS/zU8yjmh0f+0v9taLen89q3d+3M7WEucuvpZbfjN6/zN5e+8vxtqBnP/Sq5BYy7OxXTmrbr+M885pCixNNDHZ2F7JQCrGywQc07KVF/lDQOoZH3d556O8LPMoAMcmNjB9Rj+b+trwnkqQKUH/CYK+s1xaZ+5gSeZhjnLTALwkAS9JPAHtT9gDzVvF4hNfycDPZuAWDaL2sakdCFOC3GqHOx4+iZtmGf739deTk2lCE/GBe97KN0/+4QF4RZrYE96YXcvvhxYghcaRmpGyT9SXJLlFkt2kSW+qgDaUpyQwUuDvCJHVGGJDmJboRISXDpHC4K/zaFkXoyqaKKVs50YnRAmIWmI6Zg1y1pS1LExtomAiMrUxnOx5nNx777hx3RME/HfPcUTbW3ALUG0FkLhFgYxAVQ1GGWRkuarRtmvFOKrGyWvd2imHKKWIfEmlXRLkIE5AnIvB1VSTiiglUWVB0B5jEhqhDCaUxEIQp0FWJW5eEKXBKNAhxEmIZ5XJZCrMy/ZzhCtJiiwAZyRK3N/6FFtLGQYq9jn9YYh8ycBJrbQ/MIJYuwkdBJgofFbd2IcLn4U9cxv/oaT9ZSfr3/6XzaD7net44rEZkz6eW1Zduk+L9H+oaG4cOZGoqpj9b19k3Tt2n6Xy5Js+Ne7ve5ZNzuL77G9eB8kkP/x/33nGfc/5zcWs29SJMZI4aTu1nms+uzfY3XHGPsfO+0z0/Aci72Ws9deSUz+HkJIlp36OG+8av/6y6vbLOO/cXW05mzg0cOiE3Itn3uUFAGHqK0pNADAyMkJLSwvDw8PkcrmDPZwmmphULPzFFVy2cAVvygwCsKrs8Pv8UVx13M855zcX8/QjU0hsl2jHBj1qByrTIggk2aekDWVMQrnH8A/Lfk27KnBvcTYtTpmMqpCVFc5IPclCd8+T3fdtPIOzW1Zzf2kWD/3tEWx9aSdDR2nSGySpbQa3oKm0K4rTwM3Dg9ftXT5BE3uPegfAoC7xX/l5PFKaykNDU6jGVnfPV3xGhlKYogsxyEAyY1VE6t6nrUAghO3y0MYKEfUbgBBsWzaHkXkw70f9iG07ANj+yvlMecdTnNr2ND3uMMNxit/2LyAf+Hxw9q10qRF+OXgS9w5Mp29Hjrji0NE9wsfm38z2KMtP1p9C35ouOu+1E1C3oBtBpCo0EBu0J4iSNl9ChtpW/9WCSmVsCHIO5XZLxjHgDxlS2yKcUjQ6/to5iNggYo0RAhnGEGmi1gQi1rj9RYhidDpRU5ck1Q47QU+tG4KRAqUTZ7D+TRGJVEBlY4b5Py6htg5DqWTDSB1lLfMc281iBgYxpdJoJstOHSx709VyuExGl7a/d7f5K7vDuo1TmOlkx23bW5uQfcUFp3+em/74md3e/+CG6SyasZFb1y3gjtIRDIRZMqrCFcf+4oCMZ0+Y99OrkNLw+Bs+3ZhM7zwJe/GNn8RRMX07ckQVl1SuTPRIC+mN1lLBH44RkSFOSG7/+b7bl+3ueZ/tceoTyp0nlvsy+dzdvpMx3rE4/6VXjevWOfe8a0Hu/3M8Wz7a5LNNPJ9x27ojODOx66JC/TvhwQ3TuejJN/D441NRIwoZCOKUwZleJNqUQrsGf7uiMi1k9cu/YYuBniWO+MkH6HgAdlxQ4c0L7+JnTx5P8HgOb0gQ5EDPKLP2zZ965gM1sU/Y247W2yrwlU2LWTvYTvHRNrr+Yuy8JiGIPZuFImLLJ4WuiRhC0H+c4G+W/Z6bvvwSck+UCHMuGy5wefsFv+M1ub+wyEs2nuNXpRQDUYZ35Lbt1Zhe8/gSHt3SQ1jwkCWFiAT+DoFbsDmFiUGb2aECg6roRkg9gBGCaptDpV1R6YDizJijF26gHLpsHGhFKoMUBq0FQclDDFt+L6uCOKMR2RCpDPGQR/pphayC9rFd3y6UZsQkNypSW6HyimEefNGPAVgf5fnY+tdyz0NzyK52aH/cdvCGKYk/GKEqEc79T6LLFUwcI+TooltdbGnY4O6B0x4ufBbg/LOv5uZb9+29fdkDr+Pz3Q8Bdl68odjKjWd/ZdLHdsGLr+SmO/ds4VV/D317eApfXPEaWlcL7v3mcz/3XvSx5cQJeOSqC601lTETjv21f/gQnox5tL+bYslHrEuRXV/js0OHJp+tb9uZ0+6rmDIRH56M8Y7Fzny2vg0h9vk6r6PJSScft9xyC29816u45NcvPdhDAeDq837Hip/fwumnn36wh3JQcajIXU000cRzgIdfcwVvPuJPjcC4JXMe4arjfg7A7867jim3Q9d9EdNurTLzVzuY9X8jTLlF0v6QJLHD4BYMqW2Gzvvgn+5/Gcf5mzg39wgbK23cNTSH3w0eyTe2n7OLZ+rO+Nb0O3hLdgdf6vkL617XiQxAaEGUstkZ2hOoqiG1xba0L/jC8ufg1Xlhob4I8VjosTFo54l8F4PlFNXQwVcRLckKfipEpEPIRujWkChpQ9mJItDaiitAOLeHcO6Y/7kxdNyfZ87P8w1xBaxoFxnJSJzkoeJ0toU5Wr0yPakCj5ancnd5DiNRgnLoYmKBkwxpTZQZilP8z+bj2fZQN4ltEoyt7pORrR41ShD59rox0oovQhu0ay0X4oT1s44TEqcU4xU0MgAZ2Wo9sBPp+oR69KYhNoioNgGUVrTRviJqS0EYIofyiCBClAK8HVVUVRN2ZSCXIfXQFtp+n6C6Pou/Q9rjRBGkUsTTOykdO4VwRjuUKzCShyiy4grYSWct7N4OUI6bpE6Ew2kyihQTBmnuCW96+B18cNOLDtCAxsOIPb/Wi2ZYD+hbC0cx1R3ipPQ6Tk8/zr88djZv+dO+ndezwdx/uh6zOUnUl2TuP10/4T4Lf3EFg8UkWwdzPPHXn2bd2z5BFCmCrojCTChOEYRpSZRW+zUZrWMyJnc7+1nvrrpvT9i5YnNvHjsZlXk7T0bHdtM00UQTk4uXzH6iwWXH3upYNGMjff87k2k3SWbeFDL7f4vM/mWAe3eGxDZJcrPCH4Tcwy6X9r14Usb0xJu+Sfj6QeKKYl2pAyUN2rOWSyoAXXU4c9Xuq8Kb2D/s/L/fHWY5eWamdnBc1xai1hhVtVxPRtbmSmgwDmx9acS20yy/dMqazAb45b++lJY1BUSkMUqgZhX5dOfqceIKwKtSpb0WVwAunHETMzoHQQtkRaDKwnZDZUC7tisqSghi1xYPRSlFmHEIsw5RWln7Wweq7YbTT1zDUbmt7CiliKoOYcUhqDgEZRdKClWSOAVpi4wFYEBHAhEJoiR4echuMGQ2G7LrDcmNijALlQ5wbmnh3IdfzQ/znfxg6FRybhmv3yGzRRO7gq0nOQzPlQzP9XD7RjBRLYulzltrfFZIYbc9Q7j9YcVna9jXrtUf3fciznvkVfyk0MaizEY+NevXB2Zge+E2LHvXsD7Kc276ca555X8w522PM/tbX+bIzz938+9jP77crjUU4ZhPLcfUOrZ2xuk3Xcr6kVaeGOrggVddyZNvvIyoO2RkjqEwVRBmDk0+O/a4e3v8iTqQnumxk2EtNpG1782/v2x8IWITTTQxIZoWYU000UQDd/z0Yyw7+pMYR4IGGVTIPQFBW4Iwo/AHQ4bmJ8jPBSEM39h+DkkV8sRwJztKtmtlWsswMxI7eDh8alwny6Au0SZ37Wy5+m0/4NL7Xocueqg+D6OsyAKQ2hYTphVBR8zJKy6jM1U8INU9L1TI3jWcAfzfA6+jr5ilUPZRUhMbSRRLqmUXXVUIT6MSMXHCbXSqRPOmMrAoBRqGjja0rhb0rHes6BLHqKc22ywRKRCOA46DUzFsHskRaUkYK1wVU40dioHH+uFWkl7ISCVB2gs4aYGdLD80MIUv33UBanOC1FbbVVVtFcSeQKUFGHAqBqdsq/xiX9RCta1llzDgFm31H7HBKUWI2KAChygpcMq1bUGMcUZDREWkrYe0MaBHKwZlOQDt2pDbbMoKMLGBMEJFMbJYxXgOcS5BOKOFOAmpjYL0VoMIrDAVzGwnPytBui/EXb0BXSgilEJXqo3/jdEGIccHgjbEl+cJhNp14rQnbNnUxkjZ5yU7pvLNo370jJ1yzwar7ti7EPZC7PPjzaeRcQPmZ7YxFCZZO9zB/P/8Ao+/4cAGuR/9meUkQ4mRtvJWu7DhPJ/HL7VVh+effTUYw9TYsSmIAniDfeyav/oMs79+HWFLjBEKIyWJgf0fy3Md8jnR8+3LxHXnfX5zi7USe7YWDM+VrcPhhBf6+Tdx8PDgdRey7JhPYZTNPVPFgLbHHKqtksSgZuAYRblXk1TP3pqzjntP/ilf3HEET5c7GNmexq3aog8AKpLedJ5frT2OMxI7GmHNTUwO6iKL7lvAiC7zYOCTk1UWeUnKpsqwdpib3M6RqT5u8+ejyqM5fttO15x/8kMMBilWzf4lf79hGU/8+WhkYOj6SwlZDNApl7DNo9rm0Nu6/VmN9cGgTIuMeGkizT/N/ylvKb6LkSCHHFHICJyi7WAxNX0iTghMBCas2R+JmiCkbCGae0QeR2ju3Dabkf4MlBQmF2IQUFbIskQFEHsgIoEIBCa2PrpWSLJcOrk9RFViRGxIDHoEWUmpWzJyWoVXdz/JL7efwD1rZpHIVWl9zNDyyBAbL2inMidg+q8U2dufRI8UxvFV27UyvpNll9D7wx3GIPbRHsfd7LE26OXqlW8izMCj7/vGARnaTX/euwD6Ye0woFNkVZkXtT5F35wsfSM9HHnlch67/MB3s7gFe51rxxbAbX1xmgduGH3e88++GiMgJVpI1rI3WVa7MxLELXZOOSIkif79H8fhzmf31BmzL5ioM8ZIwXnnXM1vftfsxDxUUA+5b+LQQVNgaaKJ5wGWHv8ZVt7/+Wd/nPb3IlwH4XmQSWGkJE7aj4k4ISh3eSQHYspditJgghtXH4PjWRIdBQrHiymnXB7JT+VIfwutso/VQSu/HDyJP/TNYWFHH6/suJ+TEpuY51h34puGjiXoT5Jeq0gO2IVyt2QwEqKU7Vbwusq8bc6f+FDrOnTfr3k8LNCuBB0y3Rj7gbIKeiHgquN+zv+u/wxKaqQ0KKFxXE2YCihrHyEMUmkGFwhaHu5m2+mt5GdD5/HbaEmUOTO7nVu2nGIPVutwMfWJU6xZ0f/1XZ5zzo+ugR0eIhIgIM7ECC9Guppp04Y5Kr2FqnZZtfEYOu90GZkL1TMKxKHCTwSU1rSQWytwi6MTTRlZuwEVWpFFO7ZST4YGpxAhgxhZCXGKElVx0Z5CO4IoqVBSIEMrpBhHoH0F2mavyADbeSIEIoxRgf0dIcCVUKpCGIK2goxQEhyHKOuR2RiT2lJBVkLEjhFwHYSBlifLOJsHa3ZgAl0uj7NOAMb7Vj9PrMHqEKnUPldCPf2uj7PwF1ewaUs7ixY/NwtT311zFllV5g3z7pnw/i8db1/32d//Ivfo2fbfJAAtmP0v19lQ+QOEuiAitBUejQNawrGXLOehL1+IUQIRWYsTjBmXEQKw7oMXM/ufr7eLOBLu+faFz5vF8H2xVxiL/T33+jEnmug+F0GlTTTxfMJkfQ4t6/oAKIlwXcimMZ5ju1uVoNitcPMQn1xkQaIPjUZOgrHDk1GB/9t8LBvXduENOLgFu3gtNJTnaF7U+hSvSFWA1B6trZqcdv8he9dw/7oF3JxfyECY5uzcY7SqIikRMNvrJyvLvOmEu/iftWcSZgwvfsmj/GrGijFFYCmyTgUjLa80EoyvkEHM71Z8fMwzfbnx297alH11aCavyTzMIm/U7nShm+K+U3/ChdNP5hd3n4R2FbJqg+lFnfoZiF3LbVXVCiVGCgpTBUErhPkEf3hyruUfSmOSQK1ACtegE5oQiXENsiIQsUBoYR0EIgEahLFd2mqkiohjUgMFklKSSzhU2lv5/5InYlZn6XnU4BUUmYf6QEranojpegAS6/oxoVUT6wLLRPZgjQ7t5xFkJUYn9q1o6PFLL2TO167Hy8NDX7oQOPAixhFfXI6qMqFgcvzMDQAc/d+fo1LyMCUHshqdEMz52vW4I5I1nzpwY0wMabRTa68y4I9oznjj9dzx049xwWlXIhwJrs3TFLFpFMYArHvvJcz+9peRse38er7xWdh3fjrZfBbgN7/7VDNfsIkmngFNgaWJJp4HmAxxpQ4ThAghIIoxOY9Kp49RgkqbpDgVtGeQVVB5SaxdQmU/RoyEUAv6hnPkA58NhfMItSJf8QlCh0pfitu2Z3m8t4uedJ5jc5sBuOn2E+l42HYSGAlO2eANBgRtHmFKUJpqOG5KHx9pXU/d1XC+m9ll3PXJTXNSun+4/5WfZ/YPr4VIUvJ82tsLHNOzla3ZDP0jGXwvxDm1zMZiJ+5LdxANZNjan2PeEf38bccd/LrrZAhHrcN2F15ex1Nv+SQLL12OjGrhsBkH7TlEXSHrBtv5n+B4OhIlRNWKJOHUgHcceTexkby65S98wH8L5qlO0n2BtXMSIKsxTqARxmCkwHMsEZehRpZCRBxbewchcCJNtSdFpcNev/5wTGJ7BVGJwJFEaddagaUcVFXj5AUijkEo+xMQYa1CL4obnTtEkZ1gGoM3NIyvFCaMbIdKoQhS4AyNQByjtUYohQlq1bM1EcXETJjBMuG2wxWe9btfdsQlrHjiy8+w8ygefs0VB2hAE2N1eQqLcw/xyIZpfGP7OTw4OIXBcpL7Xzn+MzexzkOV7e9xgpotzIFppT/lPTegXYFTNTU7PGuJR+3pqq2ShZ9cTq8BhGDV7buvNFv3oY9xzKeX88jVdtK8L7YFh+vEdV+tGfangnB/nu/5ihf6+Tex75isa8YYDdXI1nYGIcZ3CdOSMAvDx0R0TxukM1GhwymwJS4yTdlF76oJkQhcMfE0+b6gwi3Fo+ly8sx1t3GKH+MKxf+VMnzhsb9i6L4uEoHdV5WtwKIVTJs+wIfaHgH8Zxx7k9M+O5w9ew2X3nQphYpPvifBKS3rmOEOMM0Z4gRPcE73A0x50xBZWalZeo3viD0ytZX7ImtBO5Fdzs6QvWu44+m55HWCVlnmCDecsGt/S9C6S5bcuONkQnQqotgloaBw8gpbRQQ6oSEWuAVphRdju1yS20FVPCpzArp6hgm1YmQ4iVqfJE4YdDqGhEYnY/xclcpQAllUtrgpATIA7QuENshqjKyGltcODkMQIIxhzj9tQbS3AUXIFzDVAF0qgZCkt/VDHGOEQHgeOo6fkc/aDJbnD6eV1RDjyn3OYnnqwx87gKPaFVFvQGfvEK/4/d/z5C1zSG4Dt2T4879d1NjH3J8jXQQRQ5S2xTtRkr2yGtsfvOhtNxB70LqpStDq4pRtcVtiW5Uw5/Kit91Aaxhb54BI7rYjZ917L+GoK5bz6JX7xmdfKNhbTvtM9ze7V5poYs9oCiyHAZYd8ylWPNJUi5s48Fi549ssbXsPOA4m6aGTHtUWSewJZAhhi8btLRFtSKOTGgSovEKGgiitMZ5Ga0EUS9Zt6kL1u8QdIQiDKknksGLrSCfbOrI8ke4k5QUYaexi4aDBG4kwUlCcniDICvKzIHPUIEdmt+71Oei+Bc0J6X5i3VsvZfbXr8MIQxRLUirgjK6n+IsznXLkMlxK8vAXx1cvLbn1o3xz2znE3SErNn11n57PLdpKPO1a7+fYh6DsUixnKLX4BB0OvfMG2NaWZUrHCL4MaVFl7irPoVD2aSkb3B12Vdt4DiKMEdVwNABUjbH7CkJQytp91ULl46QiSgrcosYpxnZbzkdWI9yhCnHao9rhU005GEfgDlYxvkREyj5XpK2o5CiQAiKBKVesyBLY1RUj5Hhrr0hbwcV1rMgShKMTzN2IKvUwUCHF6GSV0ZDQVfFP9+l1PyQQhOC5+ySuHAysXH80m7pbWdr+IJsrLWweaiHIe8y/dnnDigsgs8GKHZEvMMpORqO0YMFVy1lz2e4r/s479xow8JvffnK3+9Rx2jtuQGhwNIiSRobUbOxsla0ITcNbvZqzwuTeTPR7/zRqTTdZE7CDjcnyz94XHM6i03OJvQncbaKJycDK/m+NclrfwySsNaiqQtuUEZZOf5SEDOlSI4QG7gkCNketxEYwwx1krjNqbftwWGJFfhF/23I/txQXsWrb0URaknEDpiSH6XCLFGKf2EjihMEfFHjDlt+Uu6DaYfi7mXeSFM8sroxFk9PuP/54wbXM/Y+rGQqSVLVLrzNMl6rgCitw/MNRN+/ymLqw9Q9t67jw3y/a5f494eb8sTxV7kAJgyNipvrDfKj93nFCy9XdD+x+vFvnoNYlrfCRNMiqwBuxBWzaAxlJRAT+UK1rVVgrpditdZ94MRm/yuahFswOnyitEVrg9jtEWTt/m9s5wEAqzdZNrYhIQioiCiSq6lJulyS3O8iKiwglBIHNUoljTKWKKBRHg+nrHSgmhAqIhI8plzHV6uj9ExUJ7Qm1+w9HTiuKFYTv7tIpfMihKulIFnl1z/3864sz9K/pwBuUHPHlG3jiEnu999wTEfk2yyTO23xUmbHX4TGfXs4jX5iY0y455QqM3L0AsjPOev11iNjgSoFb26YqGlnVOGUr9KmqIvKFtWuODDfed8Uejzn1D6N8tm6TuzcC6aGMyeKV+5pl2OSzhwsE2hwaHYHNiB6LpsByGKAprjQxmTjvZdfsdjFvadt7EI5DNLObsMUj9gVR0rak+8OGZJ8kKGUQ0iBCgTck8Yag2gbGMRALgrJLUPKQgy5+v0Bs9zDCVvAZAWFVElYTlHyfQjqm+4gB+tuyyFsTZB8ZwSQchua1MrQoJjd1hFN7N9DjjrAtLtCtdu1cmQjNCen+Y90HRy2NPnLvW2hzi6w6Z/chh41MnFP3/bnu++qFnPb2GwCBDA1CC0QMqz97MXO+ej1bq62k20vM6e2nFHqs2LKQWZlBtlUyVAYTeJ0Cb1aW1OaSzYXJeEjfQQ2VEeWqFTGUhEpgLbwcBZ6HziSIsva6VFXLBuKERLs+QYtDYofEH6ng1KzAKl0+YUYhQxdVCBFagwTjqppNmEInXWQpQFQDjBR2ojnG4muXgHptaoJPxG4xJth+XFAotfwSow/LiWgD2rBswSdYseaLB3sku8UDr7qS2T+4lrvSM3FUTLQxTbpPIKtwwoeXc9/X7ETz7u9cxIv/9gYSJY32avYbhkYl3e5g1N775rpFm3+kQoMMDELbTq16Bovx7bWhHbGLELov2JtJVXPytSuar8feoSmuNDFZeKbPoTqnjad3EmU9tLL5bVrB8LpW7stN54yOJwmNw33VXv5cnMdIlGBucjuuiMnrKgkRMqRT3DJyIrf3zWXVtqN4eqCdYMQHaZBuzKNeDy3pMsd0bOUVMx7mifYu/vSno8huNFTaJOGxRd5xzJ95b8uW/TrPJqfdf6z9G1tk8J01LyEhIuZO3/P/4Nm8zpcf+0vOuvnjGCPQRrAh0cblx/6SVU8dTbcqsMhL7vaxDwZlpmRG2NbbirfFRVYEcVpjChJ/EMK0LUJKDICXN2gXMBDkBEEbhG0xShn6CxmbX5+JSLeVKQ4lSWz1UBVJOZFgpCVBV6rAcFuCyo4kcthFhpZ7xx5U2l1EZMjP8mnHWjHpNU9itLEFPtT4aL1DRZuG+7/wfXS5MvEJjuGzo5tqXSxjcNhy2ihClqssOfVz3HjXZw/2aHaLde+7hNnf+xJrtnajtcAZkcgQ/B2j/5tbf3UJS065gtL0NNqVBLGt3Ik9eOjLu+eWIoj2KQlCRgYRGWSkURWb2YkB40kCTyIyDkGL4p5v7z2fVcXxc6rDXVw5WGjy2Saa2H80BZbDCMvmXMSKp2442MNo4jDHniqlVw5+hwtO/zw7jk0TJa2lQZgFpwSZLZrEgCJMA0bgDtvqPFELT3byCvIKhEFEtkLQqdjQOhUYRM0XFWm7CuJQECrDq2Y8xP0t01lz33yq03LESUnQAqcuepJlnQ+yKLGR0EiUaAZ4Pdf46kk/OuDP8efvT1wh6OYlcVVQLmV5ciRJ3f9oWyaL50YI15CfF1NtVWQ7szhlY8M7NaT7PPztJYyrrB3Y9ggCG0SvO1soT0kRe/Y6dMqG2BdUW1XNagnQoFMeIoyR5QBvSBJmHWJf4Q6UMFKCIzGexPjCCi5A1JrE3eEgpESmUsSFoj0ZoxuTyIZg4jogRMOvehzGCiuOresyUdh4vFCqNtk9jEPvnZr4dRiUu6x726UsuHo5lbTBHRGk+mzXSJQUnPaOGxrWCqpq8HeERGmFkQrtTt5n1jlLv4gjRa1bRSODWl5QbW0izLiEGckd/9/+2U3sq2ByuEy+mkLQoYulCy9j5cNXHexhNHEY45ne2ysHv8MFp13J8IIMkS/Qrl2kVlVQFUHGrRJqh9uLC9hQaWMwGM316wtaGQqTFCOP/kqazcMtFPpTbBtxUBVbcR0nDDqhCBKaEWlIO1Xe3XYnpVbJO47sZFvcie6u8E+n/H+13JUmDhbes+C25+R5bj//S7ts+/ftZ7Ck/SE2xUXmuzsAUBhmj7EKKxqXN/bexczUILd2zqMSuGQSAUOZDPFmjzhhC9vUZmvpBLZordQrCHtCnHSAcjRhpEgnq6RqHnVFAVEGZBX8bQ4bRQeFnrwdQ1Hh91ueEvsQtIFYbzthU30hYWcaJx+gpk0hWr+x0ZWysyhi4lrEcq3wZxzGdFwLz7O8NwjtY6QY5bRxfHhzWrA5NtXwYI/iGbHunR9nwVXLMRmDjCG73s6fTnn3Ddz9r5bPijDGHwwJ0w7aVbU5056PK0KbKbk3eNkFX0TKWn5mqBGRRmB/D5VLmFX7zWcXn/EFVt3x6cNifrGvaHLaJiZCfIh0sDRhsV8Cy7ve9S7+8R//kWx2vIdosVjkIx/5CN/97ncnZXBNjEdTXGniQGPpCZdTnp2l0m7FkKDNIANBYgdECUHs23Z0qHn2OoCBVB81uxoa5EpGBhXYgHEV2FBRFdjjaGXJvElo3tl2F27b3XzsDa/gD4uOYN7MLSyfvZLFyfrCs1f72dSDXyg48vPLQcGTF1/EwkuXAx5R2l5v1YxLORVb+wIDUdqQnylwKgKnBN6IodKu0F4aoUFVYlQpgZCWfERZjygh0S6oANxCjFMRGGU7AYSG2JeYjiSqHGGUJGh1iZICp6TRSRcjJTKMIdIIJWzVVhAhi4DvWa/3nSeKO4V6mjCy4btKgRGj+4+1UBCy1oWjIBCNLBekgDg47ILtd0E1sK/XIYyjPrec1Z+9sBHseeIHl+OPaDDglAVCw0teex23/ffF/OE/P8biM74AEsKMREa7TjQnsgSrB6FPNGk679xrEJFGSQFSYISoCSy1HKAYiA2OFLAP3TC7w/Nt4naonM/is66yXv774M3+fEdTXGniQGPposuozmyh2mKtGysd4A9a/hlnNENBkgdHpiGFQRtBKXIZKKf5S2EaQdGDskKEwgaOVwTJ0BYNGWmPIUNriRt5moQXcmSqr5GvcecJ/8WmRflGrksTL0y84Y6/Q+Pz5iP+xKtu+wiRkeTcKr2JYY5JbabXHaaofYbiFKFRdHgFTpuynoFqmsFKklLGI5hiLWidIWULglrsd70R1r4JadCRtLdQUS25SMegnBjlxQQzqpB3ELFAJmKMEfaa9zRxwhYXuXnwhyH72CAohelKUZzqk1mvEcP58dx0rK1t7W9dKOxqASbGFxbJbMba9ZXK1k4Xay2G1uhC8fDmtKmkjQk9xIsBG5z2slFO6xa0FYx9wZl/dR1/+K+LWXn/57ngxVeiPIkMpC2U1Lue25KTP4tRipv+fDlhV4abf38Z57/0qt12jpx3ztXIyCAdy2kBRKwRsa5ZOsc4SmCc/XwdBY08wudj98qhwmn3JaOwiSZeaNivFcvvf//7XHvttbsILOVymR/84AdNgaWJJg4znLv4WptlIQTVFkXQCkYZ4rS2eRNxTWDxbDeLUwYt7QK1Uzak+mNEZBmNqPFu7dpqFxHZ8GXhCWJf4hYN2hNEoeWhnTKBL1x+OOtWmHXrpJ1T01Lh8MVjnxltB+941AptQVYRpgRBTlJtHZ3E2eonK/ipqr0mVYAl2DULpaglgcj4tUURZcl9bEVAtxhZCwRXYhyBkQKtBNqTGOkSpSRRUhJk7fYomcYraBJbioggAiUwSiEiexxqQg5xLcA+GlPNVqv8E6r+t6lNMBRCSITRo/7WjYdoqHXI1HNbiOGm8CcH4JV/DhHVBNRqcHDH8QyYenuVRR9bjgqspV3rE0HND12iqhqh7WLb2a/6Mrf+6hKMK4lSijAp0A4sumg5Ru1kq7CbeePOIsv5Z1+NjHTDCky7EoFB1Kr96hlDyFonYbz/1XoTTZKalXKTh1W3P/8m+k00caji/LOvxhksARCmFUEW4iSEGYNTELaiPxcwUk3QX0wjhP063jGcQW/38XdIsiO2C1uGtlDISFvZL2LbvSg06ABELNAJ+6WeEOOr1ydTXGly2sMT/3nGNxq/P/b7uWgHomyMbAv4U/tsulIFHDnK+YJYUYpcioHPSClBMJhAVCUiFqAF1TasZVNd21AgRhyMcDDSIAOJiG0weeBpSMYIV0MuREhDJlvBdyJcJybqVAQJD2e7S3ojdi63bQd0tJGfYS31jCMxlSrS89DVnbqwaoVDo3a4tcKPWmfKOAhZ63AxCNdBKNstZuIYE0WHrzVYDaYurBziXRM7c9qWp+xnVsPK2xGc/fIvceuvP472FFFS2SwW13YAHnfRcpwy3PuNXW276vN/oyTnnnctt/xmlD8uPvMLCG1QxoAQSGM5Ldh1AhEbOwcTAhnEOIX9E1jilDMhb1266DIQgpUPfGG/jtvEeDTnBk08W1xzzTX8/Oc/Z/Xq1SSTSc444wy++MUvcuSRRzb2Mcbwuc99jm9961sMDg7yohe9iH/+539m4cKFjX2q1SoXX3wx//Ef/0G5XOa8887j61//OtOnTz8YpwU0vp73DiMjIwwPD2OMIZ/PMzIy0rgNDg7y61//mu7u7gM11r3G17/+debMmUMikeDkk0/mttuem7bg5xpL0m872ENo4nkCJx8gKhGl2VmGj6h5+vsG49ggZRFDmBGWgBXBGzZktmgyW2LSfRH+QIA3HOINBrgjAU4pwinHqIpGBdr6rBrbgRB7AlUGpwBUJGsmskiaJNTDKps4fOEOh/j9VdtpUjZ4w5DcBsntkNhhq1G9vBX+VNXUbhoZGmRoxb3YV8RJhXbtIoiqatxCjDcY4AyVUfkKzlAFZ9hev95wgJMPMY71a489CFMwPE+w7WRB/7EOle4UJuWNTqaUgiiGIIA4RnguQinbcTIGjYmn0TaHRdQWyZUEx6lZh8mdqgVrz1GbxN5YOfDWbU1Y3LLqUh68/kJkBKe+6wbCjMJIKxZHKbtYIEMDseGlr/4ylQ6PwhSHMFPPzAEZj1Z7GSX4zS3ju1cAClM9Sj0eL33Nlxv3ySBGhLohnAhtap7V2i5SxPZ5jZRoRxInJae9/YbGcz0bvOhtzY7ZycayI5sT0t1haef7DvYQmngeQY1UEZWQyvQWilMkQkOYNeikxjgQ5gxCGraPZNi+vYVt69sYWNOJsyZJdq0k+7Qht16TWxeSWxeQXR+Q3RiS2RSRGIzxR4zlHGGtsKMsqAQuFeM+8+CaeMEiswFanoT0BgV9CbZsauPBddO4b9107l8/jQc3TWHN1m7Wb+tg2/Yc5cEEzg4HJy9xCtYFQLs28N7UKvVVGbxBid8vSfYpklsEya2CZJ/A71e4WzzENh9TcjBaUK54lAKPfDGBkAYvV8Uog1M1jQVyRgq0PVrESDs/lJk0wnWQ3piO490E1u8irIzdt1YshJQ2E1EKiGNuLP5g0l7jJvaMnTltlJQYAVFaoaoxqhIjDJbPdvoUpjpUc7Zg0jj2uosStQB5IM74jVD7eiFJYYZPpcPlvHNGM4TrXLbOW2FXTktsbCd2bJDVmHOWfpGlC/etOMXtL++y7bxzriZqSx3y3UWHG5bN+IeDPYQmqNWTIg6J277g1ltv5UMf+hB33nknq1atIooiLrjgAorFYmOfL33pS9xwww187Wtf46677qK3t5fFixeTz+cb+3z0ox/lv//7v/nJT37C7bffTqFQ4JWvfCXxQbSc3KcOltbWVoQQCCFYsGDXhUshBJ/73OcmbXD7g5/+9Kd89KMf5etf/zpnnnkm//Iv/8KyZct45JFHmDlz5kEd22RiSebtCN8/2MNo4jnAksRbDviCapxwkJWIwhRFmDF4IwLKEgYkLWsNXkFTbZGoisArGtxCjKraYDoR1oIOJbW/Y9CglLBZFcpWqWi3liWhbJCiUSAiwe9KR7LIW3/Azq1Z9Xf4YPFZV+1S6V3u8dEOlDskRtlqUrdkanZ0NtC73kWAsYGcMrDCHga7EF3/GRuEURglEJFBlSNEqWrb0pWEqq2ewlWIpGutE2JJpU1QbYcwp3F6y1RIEWYVyU0RCIFOuah8BeM7iCgGESMSPiKZQOcLmLIl/EKpcdV+Yoz2UrcwA6yQUu9iMQbhOGAMK4vfO2Cv/XONFeu/wrKZHz3Yw9hr1Kv1znrdddz664/zktdeR5QQlLtcK+qF9dD5euaUaOSjGDkqpOyu6uvP37+Ic5Z9CREbawsWG8u3FHbiWbu2hTYIY2rb7D5GSOKUIsjaTqtbvr/3C/kLP7EcceJ4LvHiv70BYQzV1uZi4WShKa7sHst6/g6R3H34cxPPLyzJvJ0bC98/YMc/86+uI+0rTORQbVOoiuWc3qDtNk1ut0J3RSbQgDcicYrgFsEtGNySwS1q3EJkOUIQgcZ2q0pJnHJqnEMRIIhd+xkvgKo+sJ+ZTT57eOGC065sLD6D5QZG0LCcQynQ9nrC2NxLoyxnldpyW2+YBscV2ha81YU9tF301qrWzR2DU89nUbbTKkpCmBboskOYlYTKEKbimkKDzW6pCJLbQ5Lrh8H3IZ1EbR0mMZii2pkkOdwCSQ/Z14/e3j96grsRWXa+ry66mEoVM3eazdsoVVnx+K55NYcrVj58FUuP/wzGOTyyECbitKUezxanxYzjszIEI21xpHABQcPudCLb0z/94CIWn3UV6DF81ql9SGqzW04rtEa7DlHOCnlGin2yEj3rddchZo/vGjzvnKsxroTIELan9u/FamIXHE7ztyYOTaxcuXLc39/73vfo7u7mnnvu4aUvfSnGGL7yla9w2WWX8brXvQ6wLlo9PT38+Mc/5v3vfz/Dw8P867/+Kz/84Q85//zzAfj3f/93ZsyYwc0338ySJUue8/OCfRRYfvvb32KM4dxzz+VnP/sZ7e3tjfs8z2PWrFlMnTp10ge5L7jhhht497vfzXve8x4AvvKVr3DjjTfyjW98g2uuueagjm0ycSAnJ00cWrix8iMWqzcesPbp0998PZlQU5qZJU5Aot9mWaS2G/zhGG9HFe1KZOQSe6JB4lU1tkHLUYxRElWKENUQEcSWPNWq8o0jEZ6DcSSxL9GuQbvCVmBJ+OWW49hUbeMd7XdwlJt+5gE38bzFzuLKnK9djzrFtqXrRIwIBW5e4g0JVKVm31G3oNPWJkkYUEHNQkmKWnWUFf2EHrVbglogY6Vqn8yx4oeoBa8LV4EQBLnRa9W4hqgvSXKHIPNUgTibID8rQW5tCZ3wMJ7CCWJwFCbZgk55qOEyPL0RXakiUyl0eYzFgtGNSa7RelRkURIhndFqKylZOfidA/raHwysWP+Vgz2E/cJLX/1lnKqm3O5SmiLACLIbDInBGKdshbHYt51JYdJevxPZbY31MD538bWo2DS6mowAXAnR6DVifaprk1MNwhhr4ZB2qeasEBgl4ZhPL+eRL1zIUVcstx2Ida1OwCNXj9o6HHfRcoSiIQTVxyjDMZWsO+Fwsw07/+yrD43ck1rmUhO7YsXWbzzzTk08b3Ag5y8vW/JFEtUYUY2J2tN4wzFhSuCUBdmNGreoiT0rtMjAdra4RXCLBrdocCoaWdU4pQhZCSfktEJ7IAXaEWglCdO2ultrwaPFXv4vsakZaN8EwDhx5ejLlyO7bBaQ9iFOGLRj+auqCmQgUFWQkWCs05w/ZH9qz4orTsXmW6qq5QJG2WMCiAjcoq3atR3YtuhCBpaHeIOSKANRQmGUIdEviH0XfwicUoxO+phcEqe/AK6DPxwxMstjaF4vURLSfW20rzREOwZtN4sU6DqH3g2EFODUlpuEQITx89amaeX9nz/YQ9gv1DntwNEeCMbxWaFtIRvCNDr6tSc479xrxnVjwyg/PO+cq20jPsJaNdf4rIhNrRhuYk5rXCtgBzmnUTR3+t9czx//w4bdH335cmQAqa1WBMLAn354EQBnv+JLkJDEteyWBvcTtqDOSDGhb88hwxH3Ejtbrx00OE6T0zYxIYIgYGRkZNw23/fxn6ExYHh4GKChLzz11FP09fVxwQUXjDvO2WefzR133MH73/9+7rnnHsIwHLfP1KlTOfbYY7njjjsOD4Hl7LPPBuwJz5gxAykPrTdWEATcc889XHrp+A+eCy64gDvuuGPCx1SrVarVUXKw8wUxFsvmXNQMmm/ioOEC900YbRBSYLSZFMFl4aXL0fMkhanpWmA49NwV4o4EdnIZG4yrbBtvoG07t66189baeEUYo4aG7AJSvR3PceyCteeBIxvtvk5J1kiTxCnbysGn4mk8mevhd73zWTx1NeflHuZ0P8AXk1cJ2Kz6O7Rx7uJrQbMLaXzyr/6F1WGRO8pziWurwOurHdy2fR79+TTDI0nkkINTkDbgfhjcYo24a1uBJYIYYUwjiJ64tnJcE/8aWSB1Gy5HYVI+UcZWUDllg4gEiX7ouduKN4VeyfBRGdyCxstrNp+VobAoIP2oR3J7krZHS8hSSJx0MCqNU+qA/h0wcwrFo9rJ3bURvX3ATjzGWuTVrRWcWrC91qwcfn5mmi2b/3H7ixCsWPPFgzuYfcDtP78YgHOWfpHc+oDWJzRh2kH70vpIa4NT0shYYqQhdiUta3efM3PLqks57e03kK4F2GP1GisWRsZGrIS2U1CEMULXOwYlUUuCcrfPyAxJtcMKJY9/clRACbOG9EYr1mjPHvPoy20mDBpMm7VtrD+mLpwEGYFTBRkYznr9dVak1KAqB6/den9xqEycV6y9jqUt72Jpy7sO2Ht6X/gswNLjPv28Xehq4tDGBd6bwWiE56Er1Unhs8d8ejn+PI+WtQFRKk1+lkulHab8sYIqhMiqXbUOutOo0JDuE41uVxFqVDVGVCJkJbCFF7vjtDvxWaEliUGo9GX43ZZjubVjPp9tLXFK9wbe2vkHzkxM7ly5yWcPfSxdeBlIWPngaPX9y/7fPWwotrG5kMOVGkfFlEOXIHSItaBa8Yi2+/gDEq8EqmK7tVN9NrBSe8IWE0WmZsEc2SKhevaaqnHfSFtuKwREmqDbVu3LQBMlFYVpLjI2tDxRxhmpopMuxWnJ2j4RYkeZuCvH5pdkyK3TdNyXJz8vzcAim1OYOXYW3qMSPZxHtrYgWnOwYTO6XB6TxWIhpO3Skckkulxm5Y5vPwev/sHB0uM+DdLOK268+4qDPZy9xlhOO/UP5V34rIhjjDv6WYcQ5NZVbQbgTqjz2YySIA26nhEYG9u0ouwawjhOO8bGJ2xPUpjqEaYFqmq4+18vaty36GPLMVnbuRUlRUNsPOON1xOmBGaKXdK8+zv2MXXuF7Q41sUAiHzJ2a/4Uq1zxhaKHm44JMQVapy2/b0HexhN1FBfIznYMAh+8IMfcM4554zb/tnPfpYrrrhi948zhosuuoizzjqLY489FoC+vj4Aenp6xu3b09PD008/3djH8zza2tp22af++IOB/Qq5nzVrFgClUon169cTBOMXD4477rhnP7L9QH9/P3EcT/iP2N2LfM011+y1rdnBElcOdDt9E4c+6r63wmh0OHlhgG4BYh/yR0W0POyQXW/sJLNeVYIN7jNKNqqchcESpjC2tyCCILQL1boW2m0MOA7GUdZrVwkbbleJbTWJhigl0S6ookQ7iuFSgo2VNobSKWByg68HdJEdG6bSqSQdUzdO6rGbePaoV/BPhKPcNEe5W9kWFygZwwY/S2gUT6c62JTJMdyapFT2qBZcKiMO1VZJNZcgORDjlGLcAohKaDsBYj3aseJ7iDDChCFCSOsNLQSkkiAEqhiCMfgjgnKHxMsbgozEy2u6/ryDTee10z6gSa0dJMh1UZrhUJqqiZKSjvtjxLpNeH0+wZHTMC0ZxHCeTYs7caqQ832E72NKpVErsLqdgpC2kyWOWTny/LEE2xkrHv8Sy468lBWPPfu8kIMBYexn4823forzX3oVofII0xIVGlvZ7Aj7GSqwVXMTdITUBY0/f3+0Aq8+abUWYaBqVg3CGJBgkOBI4qRDucuj0mat8+rWIWPhlAQPLLfiyZyvXo/JxPgbXR77zK7hpGMRpezn9Z3//jHOet11VvDRphE+CrDkxM/aMQEr77uy8djDrcPlucSBFkv3hc8CB01cWbrosnELj0288CATPiYIJk1cAUgMgD+kyc/wKPdAcivknrbFQSKOLQeQtQXqUtz4PJOBtgvLdT5bqe6Z0+6Gz3p5MJskQTHJjrzHH0IHR8bQfucBEVmAptByiGLlw1ex7Ojx1f3v6fw9fW05/liYz0CYphj5bKtkqEQOlcilqDQjFUUVB+1I3AJoV+AWHZyKtra2gUaV49Huqmo0PtdECAgjK2wIgUn5eNtKyEqAcRUq4REnJU5Jo31FZUoGdzgg98enieb0IkZKkC9gulsIs1DqluTWRLTe9jQtj7ay9Yw2Kp0eXiqFbMmx/axuWtZWcTfX8wbjRiEgUOsKV5hq9Xm/jrHygS+w5JQrDitxZSyEYZTPCrcm6Fkuay3Aa50mTNwJUkedz56zdLRwSkj7mYkGaYxdY9DacshaDqX2HMKswqkYYl80nAbqcMrgD42KLguuWk6UAbqrrP2b3RfSaEcgjO0q/+OPP8bZL/8SpjYeaxdt3z9LT7jczrvGcJNDplvkEMXzWTBtYv/xtre9jeXLl4/b9kzdKx/+8Id54IEHuP3223e5T+yUnWRq9th7wt7scyCxX4xv+/btvPKVrySbzbJw4UJOPPHEcbeDjX35R3zyk59keHi4cduwYcNzMcR9wvOdlDSxF9hpEXZJ5u0sybz9WR1y2ZGXMnRcRP6IGHfAIchCqi+0k81yCGFcy6+wtjUitlUnMoiRlQhRDu3CdXXMRLQxXjPmsdauidg0qkgQNcslYUmTrErCisOOaoqi9ie1ewXg18VZ/KZ0JCnhovsWNG5NHDrYeVF25/9Pt8ow28lyil/lzOzjnNr6FFNSeRJuSHuuSGtPHndWgcpRFYaONORnKopTXEpTEkQ533ZSRTGEoa1KrQaYHUMQRpgowsTx6HVbDpDVsHa9a1Rgr9dyp8DLR4wc2YoKwN9eQad9Sl0C7RiMY72K45SL6OogmjMFGWq07yISPh2PhqS3xIQ9WUQuY7tUoCaqCPvTtXUPz2dx5fkCWZuY3fz7y4gSkigliXxJlBBECVtxGvuCgYU+24+35HJPAfTakw1xxji1CaawP40SGFehky5R1iNo8yh1KwozIMzZbCIx5iN44SeXo6pw7CXLOeZTy3EKEuHGnHD+Y/z0iVP3eF5G2snoBaddye0/v7jWDWbPV1UiK67UO8KMYckpV7D0hMsb57anc9wXTNZxDhSW9X5wvx63tO09kzwSi8OBzwJNcaUJRDqFzFqv/Hpn17PBsrkXs+PFAf3HS0pTbAhzkIX0pioiipGloJaPJpDVGFWKcAohqhShSsF4PhtGe+S0u+OzYKurvWFwhhTFwSQP7JjK7aUF9MWFZ3V+Y1E1ISPa5rqN5bNNTntoYcWjo7bkum8BJ3gJzkuUOCX9FHOT25mX2k53okBvKk9nskjKC0GCKtuiiSgFYQbK7TVe4EmipLKdBEFkr9dK1d6qta6rkTyUy41tYqSI3LIdKlVEGCOrIU4xRkaaaotDfrqLrIaY1hyyHEC+AJ5LnHTwhiG9Vdu5oOtQmpUlsznCG44gCCge2UHnXTvw1m23OYHOmJrdmrAiM9b2uclnDx/c/PvLiFKKKCGJPUGUtDxWu9JyWg/LaRftmdNqT9rOF1XjsELYz8949HPVKIFxJDrhEKddRmY5lLrsh6kZczkd/9HlxD5UOgTHf3Q5x358ue1AmVrii6f9jD89PWeP56SVIHYF5599Nbf++uM1fg0Y2yFe57QIwdJFl7FswSc479xrQNrzeyFw2mWzJy682t32OppdLIcADGgjDokb2NiQXC437rYngeUjH/kIv/zlL/ntb3/L9OnTG9t7e3sBdmmS2LZtW6OZore3lyAIGBwc3O0+BwP7JbB89KMfZXBwkDvvvJNkMsnKlSv5/ve/z/z58/nlL3852WPca3R2dqKU2uM/Ymf4vr/LRdBEE4caGiH3RttqoCB8VsLbksRbiFtSvOqU+zh+0Tp67opt90oltpZKQWStaGoCiQxjZDVCVCJEJaj5UocQBHbBGmyVnxSjVVRxbDsGjK18RlIjWXb3+qKdKoNTFsRlh63FLE9WeyjoyfOvXh/l+a++k/lF3/HcXkmMu68+Kb1l3ZGT9nxN7Bv2lXAmhc8x3jbm+1vZUU2ybUsrA4MZjBFkklWyuTJqdpHhhRFDRwpGZkkK03zC9hQm7VtRQ4hdqv6EkPZ3x4oexpFEaZdKh0O5GwaPgUonDBzjU5wiaVsTgBIMHpsjP1djfHurWzzpFmvLoIbK1nJEKdzhAH9HgAx1I2sDGC+uHMSKi+cah2v3CsBvb/yEDfB8mV1EcSqaxGDcqIozEsJkza/agQdvuJCjPrt8j90d1dyowFIXWbRnr8Mo7RGlPaqdPuUuj2qLAgFu3n6GygBWf3Z0IlTpMmhlc4r84ZqQ7WpOaFnPMf4Wfvj4i3c7Dq2gntW8+IwvWLuy2CArcWORRlQDKFcQlbAWAj2+RWfZMbaicOcq3j1hrECzN50w55999V4f+0BgRd/X9+txKwe/w9LcO1na9p7GbTLQ5LNNHC4wYYguFFHpFBjzrLq7LvDejG5J84uXfY25pz9N+6Oarvs1Xp5G1XSjEwUafFaWQ2S5uiufrVvW7IbT7pbPRlZgccrglICiQ/9IhgdGpvNg0PqsXq+xuLTvxVy8+TwGdHGX+5piy8HHsiMu2e19rnBolwWyskJChsxJ9dPilvFUjDYCOejS8jikN1uLMIBqK4zMUpQ6FdUWRZRy7DUZRfZ6jWyhA2Fov4eNqV2rcS37q8ZppUT7LkHOYXi2T5iWOFVDtTtN1JFCbh+2/DeXIfYlqa2GxECAKFu7vPQDW8j8aR2JB57GlMqkH9yC2D4IpfJogRKjgfayow2SCfAmt2DuUMbh2r0CltOO5bNuPkZo+zmnHUGYFgQZiXYtv30mThvkFLEnGvvbosqaUOM7aN/BeA5R1idKe8QJhaqCqeUC3vuNUT5b7oRqzQHILRiS/cZ+xgIznR0c7e7e6qvcpai2yIYgfv7ZV1tOq0EGo5yWcsV2hAnRmAeOxb5y2p357DNx2oMtvqxYt3yfttexcse3ucB9U+O2JPGWAzG8Jp6HMMbw4Q9/mJ///OfccsstzJkzXiidM2cOvb29rFq1qrEtCAJuvfVWzjjjDABOPvlkXNcdt8+WLVt46KGHGvscDOyXRdgtt9zCL37xC0499VSklMyaNYvFixeTy+W45ppreMUrXjHZ49wreJ7HySefzKpVq3jta1/b2L5q1Spe85rXHJQxNdHEZOHG8g8n71iVH7HsiEv41QPH8ZKjH6eyvoiZnalNJsfsWK/WqzOT2AowDfIe61FrJbBEvj4ZrUMpcCTGURinbq2gwYARNiBUxCBiQRArBsMUJRORmaRz/a/8cWzKt1Ao+3xFLObuzif4+7aHSYpRNf1MP6Rv01R6p22epGdtYm+xO8Ipe9fsdpFgjpMiNNvRRuBud5GxSz7nI7sqtGTLLJzSR9QjeejpqVRMAhELVNVDhimcfMkuthiDSKdsSJ9UllArifEcOwntSFDqdqh0CKpthtYjd1CuugTlHG4etC+pOrZ7xXga4dkF5igFlU6PdNWSdpPy0J5Crt2A7GpDBgI5MGLfS0phal1pIuHXPLOjZrXf4QIxamNw668u4fyzrybu9Ihr6wnaE1RbbaDtnK9ej+dIFnxhOXHC8OTFF4071HEXLke0iIb3tFMVSGWIfUnsC6KEtTqotlnxw82DjLBhtxW4/5/GV5k5RWHt8Wo+1U5REK5Psnl+G//LcbSoMreuW8DjQQ8/3XwK8VW2COWWVZfSc3cJoyRCa26643LOPe9au6DoSkQ+sp1gwoqCxDGiyriwS3/9EGhtF5qkZNnRn8RIuYsn/VjsafJ57nnXIrThN7/ddWJ7uAWU1rFy5HsNYWXl4HcO8miaaOK5xcr+b03asW4Kfsyyrg/wpnvewylTN8DaEZtDcVSrtVyUjOabGZsbCOyez8KeOe3OfLZsLXVFLImSglAJZGTDysPAYSRIsC3KATue9bneWY24u38mWwezvK+a5tqZ/818d2K23MxqOThY8cSXd9k2ls/2OiU2RFY9SckqoVYUI5+UGyCrgvTWCBEZglZFpU2Sn20ou5DeIHBLhjghidMeTtW338WVKhhb6Gbi2BYLAahaEY/vYVJJdNonynqEGUF+trUQzWwytYzNGDIpKFcwUuIWQmRsUOVaRmAY2i4Zz4VMGvO07Y4UroOJY0wQWKcDpewYXId4aidq+9CkvtebOLDYhc8mPHRtpVC7gjBjuwPjJMz9yg24jpiQ0x7/0eWIVoFKWssvp2KQkUF7tvNPq5pALSHMSIQGp6RRVYMK4K7vjufHTi2TyKnWea/ltMX+BLcWj+JBp8DWh1/JI4Up/OGBBRz1lSHAWvW1PVrGKNlY27j51k9x7uJrrdjjKVS+UuO0EoIAEUZQz0SkxmdrHYw7c1phDCse2bXQZ2c+u7MNdv33nTnv4Wqxe1P4E5Yk3oIOI24Kf3Swh9PEYYIPfehD/PjHP+YXv/gF2Wy20SDR0tJCMplECMFHP/pRrr76aubPn8/8+fO5+uqrSaVSvPnNb27s++53v5uPfexjdHR00N7ezsUXX8yiRYs4//zzD9q57ZfAUiwW6e7uBqC9vZ3t27ezYMECFi1axL333jupA9xXXHTRRbz1rW/llFNO4fTTT+db3/oW69ev5wMf+MBBHVcTTRxKWCzfgNPRAaITR8ZselkOpwRuXiKrskEcgHGVySI2jSqlBsZOPuuVH0LWQsQVOuEQpT20W6vWN0BsbFZB1U4AjAJ8TUeqyIzEDrrV5Mgrd1VDtgU5ejJ5lNBo7BjGiitgq8q6VQbdt4ABXeTn+SN4/5G3TsoYmph8SCRHuWnm5/pZl5qKHJG4Q5Ig4zB/Zj/H5TbyUH4qfiqk3K0QxsWpSJyKhxpMWQJtjF1QqYVwGkdhki5xyiVs8Sj0OpR6odqlMe0B07LD9Dtp+pM5VAXClF34diogyxLtSShLVLV2jdda4cOchztQhISPqIYYz7FVhVqD6yAi27UiavYKK5qetocN6gv+5yz9Ir9b+Qkb5FlflwshTtjrR7RXUY6mkvYQVQmO/Qyd89XreeojHwOg3AOPX2pFkuMuXA55g1SCMCMod0LQatCpmFRPgbntO3j46akk1/ggIPZ2HZutgDUELYJyRlDuMTz5MTtp/cA9b2VGYpDeVIEj0wXec85tnHvVtY2cmJt/f9kux6vbOtQFkmVHf7LhnY0UEGv89UONrqRlsy8c970ghMEgWHLiZxsT3RvvGc0L2XkyWse5i624g8FWVxrDb343XlA5bEWWwe8cMLuwJpp4oWCxfAMqm6WcTzA7NcBjxx5Dqdt+N3vDE3DaWofKM/JZmJDThjl/HJ8VkV00NNLYam1huxaNNDhuTMYN6HWGJ+VcH6lOoz1RYsBJs72c5s7KbOa7/bvdf2yRSlNsOTQwz8mQ97awKWplKE4Rug4Zp0K7V2RdrpcoKXELMd5QTOwKopYYWZHESUG1xV6fquIigwQyii2XrNvchhEGah0uIHwPkgl0LkG1zafU41BtFWjXFmqowFo/I6xVE6mktSkrBqhSrTu1fmxtEG4SCkVrB1YXLXWNSwMoZWPnujoYmZniD3++/CC9yk3sD275zaXj+GxtyoyMLJ+NkrXu6LYQ4WgqOTWO09ZR6h3lsyd+aDlG2m5qsHZj1RZBlLTXYLXNELVH+Jtdktvsc+yMzGaDP6yJEoIgK6m2CIpTYd3fXQxczKUP/BUnpp5mQWILP3rvt1n6tc/Yoh7YhS/ujHoW3bIFn4CImiW7wl+/gxWPf8neN/Oj9nofy2mxuZ7LjvkURghWPjxaPDQRn63/fCah5XAVWW6s/IjF6o0HexgvSBgE8f6ZUh1UfOMb3wDgnHPOGbf9e9/7Hu94xzsA+PjHP065XOaDH/wgg4ODvOhFL+Kmm24iW7OYBVi+fDmO4/DXf/3XlMtlzjvvPP7t3/4NpXbtRHuusF8Cy5FHHsljjz3G7NmzOeGEE/iXf/kXZs+ezTe/+U2mTJky2WPcJ7zxjW9kYGCAK6+8ki1btnDsscfy61//mlmzZj0nz79YvXHSAhubaOJAYZX+T5Z1fYDemxzu75pGcYam9dGaV6oS4CrM2M4UUw+8r2Uc1SehyuazoGsVzfVqPyWtr2rSJ2zxCdMKYWxInokNKFHLLLBEP/YN0ovpThY4Kbluv89Lo5FjvmTmugEnp9cxO9FPaBQz3AHOTfYDEzC4Gjpkmve2bEH3LeC7Iz184ebX0HmPJNUf42+vsuqOT+/3+JrYN+ypiwXgvNZH+N3UI6imfGRJ4WUCjkhvIzSKvlIWz41ITx1mwMlRqnqI2MEdSaMqka04DW3QLY5EuwrtK6KUojDFoTAdqrMDFs7exGt7/8IZybV8ZsNr2NLZQdgJ1XYHf8C2smefEuRnO/iDgtQWUBVt29+VRBVDS8Z934ouQc3WwXEaFX/Uqv6agYGHJ2RsOPvlX+LW2y/jrNddhz9iiJKCagvQFpDJVsgmqrgdMZXIpX84zewfXovUHvNuuMFm94jRz60oBSqwC3XVNivSyM4qvW155rX248mIx5MhQYtnQ5t3ckc49pLleAbihEA7UJpmED0VXvqbS/j9eV/mmyfv2g2584SubhVhal2NWkp+e8snAFhy8mcRrv2sF7XKvsaNmrii7ec8Uo4uxIDthFEKEcYsXXRZQ6RZef/nd/v63rLqUs4795oJO1jqOP/sq63AVa9SnEAkOpSxtO09h1wnS5PPNnE4YJX+T5Zk3s6snwqeWNBF/8kGnY1ou9udmNPuDZ+tW4o5zq6cNmsn7TI0ENv94oTtXqlbQhoHjDIYLWhxy0xzRoB0Y8wjukxG+uP46t6gxxnmxe1PMSM9yOzEAC9PPz3uuHvCWC71gY2n88fNs3nw1Z/bwyOamEyM5bMneAlmOAOsDkq0qhKhUUx1h1jRdQyl7gy+L3DKhighEFWJMyJtF2uP7WRVVQcZ+7jGIIWoZayEmLG5QbUFYZ3wqHYmGJnhkJ8FZlaZTKZMeGc7ANVW13YaJB1k1ZIJla/Y7+mhgq3qFxIjNZRt541QClOpQsIftQZzHYzWCM8j7m3jD/918XP46jYxWdiZz3p5TZyQVHNQ6TbolhAvE5DwQlpTZYLIaXBatd3blc8mrXVirC0fDdOCoAWCHMQpjclFKCcmTjkELaIh6tRxwoeX4wFRop4FYwWcaGqVc35zMb877zquPe6/xj1mZz55+puvRwYGp95tKGz3TJ1TLjn5s0glazx2/LpHI4NkIk5bEyZFGFuBRtnvkom6Wsai3tGy267tnezCDjfBZUnyrZPqutLE8xNm5wKXCSCE4IorruCKK67Y7T6JRIKvfvWrfPWrX53E0T07CLM3Z7cTfvSjHxGGIe94xzv4y1/+wpIlS+jv78fzPL7//e/zxjcevgrmyMgILS0tDA8P77d/dXNS2sThgmVHXMLTfz0Vo6DlKYM/HOOOhKhSzcu3VgGC1qAZzWWBWj4LiHrGSo14NBasPWUJU84h9gUYWy0FliiFKUmUgnI3BG0xbleFE6Zt4m29f+AVqX3LYCmbKndUUiREyJmJyVXx37n+Jdz1i2OZfksBEUREuQRBi8Nt/7N7n+UmJhd7Elku3HIyK586mspQgs4pw7xtzp8oaY/b+49g40gLWku0ERS3ZEhsUbQ+oXGLthVdxAYZabQrrRWTZy2f8jMkIwtDTjryaS6ZvoIX+7YW4X+KaS5a+be0zh6iGjiU8z5qm1cLJhVkn6Zh7yBDW83qDYfIYmCDRnNZGyIKoDUmCBudLE0bhcMbZ7/K2oI4hYjYl5R6XArTBdXjSvh+yMLurZzR9iSPl7t5dKiHTYOthJtTVhBwNeveN/7z5Ph/WI4KoDgVqu2a5NQCXbkCbX6ZwWqSDVva0RUHmYh46m/HCw/HfHo5IrbiTJzUmJaI+TP7eHHHOgA+v+i/dxn/S/7flxmc7+DlIdkf4xZi3HyIcSRGQJxQhBnVWDRZevxn7APrljtRzYM9CO1PIexks7ZAaRxVs+qxC5Ui0lZsxOYdmYSHdq3tTpR2+d2Kj+/T679zHsvNt36KC158JQjBTX/8zD4d61DBs+WjTT7bxAsJy6b/PeveNccW7XjQ+eBuOO0z8NnGtnpVf+0zy7iKKOVS6XStf3+ord2NI4iSkiAtbDB5FsKsIUpryETMmb6dN027m/e2bGmMdVOcZ5rKTnAWz4xBXUJj6JB7J6xMhIVf/zvCrCFzzCCvmvnQhN8JTRwY1Pls1YQ8FQW4wtAuJXkdc+3W81l164m0PipIDMaUehT52YbkFoEKa/kUAvwhQ3IgxhsOUSNVZLFircKCYLQzW9au3c5Whhe2suMoSXRkibPmrKXVLbFixWnIADofiG03dlljlLDf/SMBshwitmy3C8tg7cFq3V86X0B4HiKTxhSKDeHShCGyq4PSsVO49VfNOdLhirF8VnuSUrdLYZqg3GswnVUcP2Zudz/ndK1hQ6V9lNNuSWFcw7r3jxfXTn7vclRgCHK1Dj/Pzv3jpMY4BhEJ/B2SoNWw9h/G24Md//c20D5KYS3KMoY4pZk9v4/FvatxRczHj1kx7jHHfnw52rMFcN4IeMO2A8YtxLZjC4iSiiit+MN/2i7ypQsvs98JUTzakVXPNzKmIbSPFd0bXDfW9r1R63isW00bTxFm953PTpTHMtZm7HATXOqYDE7axHjccsst/NU7X8N7frn0YA8FgG8u+T9u/O/fcPrppx/soRxU7FcHy1veMhpgdOKJJ7Ju3TpWr17NzJkz6ezsnLTBHepY1vUBVmz/5i7bV8U/5QLvzdwU/Pg5H9MF7pu4KfzJc/68TRx+WNb1AeJ5UynNisGPyWxykUEtlF7ZbpQ44djOk2ptIUyrhr2LiI1dJBaCOO3ZSsFax0u9atBW9Uki31ZCC2MwUhD7EKYhSltxReRCOlsKzMtsp9cZITQSV+z9x9PWOCAky0w1DJOW3mLx9u7budM/FtU3CMbgaChOzXHKe27g7u9c9MwHoFnN8Wyxp06W17Xdw192TGdT4GCMQBuJwtBXzDK8vgWhBd7UIonuEhWVpFi0nSZewdhg2pr1kTA0vIExkGit8IaeuxviCsBJfh/ZGSNIYZDSMGf6dp6iC2erR2Y9uCWDDIydnAYxUdpFBDEyXwLPg8Fh6+0bWL9s4hjh+xN+jxxIHO4k/VBEfTHhJa+9zmZMCRs+H1cVKhnQ5pU4I/U4070Bvn7Svz/j8e7/xwt3e9+lD/wVW3P9/HHDHHITiNFRyi7CyHkFou1Jcm1Fzuxcy2tz95KVEb9YewKvmXvfuMfc9j+XcMq7b0A7Au0JopQi+fQQKx61nSxnvf46qi2S4z+6nPu/ciEr7/88i8/8AiLWqJHK6CSzHrZbn3gCOA7CUY2/611baF1bDPIxQiC0JnY9gty+t3XXLcKWLrSdK+effTU339m0J9lbLOv5O1Zs/cYu21fFP2XZ9L9nxcZ/es7H1PzebGJvsazrA5jeDipdmrtfv5zTbvs74seSE3JaVdkDnwWQtqOVWkYAgFHSFmLUOlWMABnbzymtIEoKgqzltFHaEGc0TluF9lyJebkBYuQ4UWWayjKiy+RNtIvQMqLLbI1jhrTPqf6uAeFtMvWsXqsRXWb6zUWCDp+Nqo0FC7bsU17L0hMuZ+V9Vz6rMbyQUeezvnA5ynUp6AoZmaBNwktb1vCbGUcSbEzjliUiAlURJHdYQcVIKHY7tetNIgOFKtUWeusdWjsFdItiBX9HBHgopSlEPjuqKcKsRoaCUrciMWgXlIOMtF0zkcEfKDRsx+wis67ZgdmFZBMEMBzXhBfdEF+CWZ3PubiyrPeDEOvnnEs/XzGOz5ZjENbiyykIghaFSEa0+yXOSD1Bn9fyjJz2nm9bPnvCR5bvkhcIMPsH11JpEZhI7HIfEmIHijM17pQS8dYkyZ4iS6Y8wt+2/IWUUNy1fjanzlzXeMhDX7qQYy5bTuzbQiNVFsQJgVsc7Vo58w3XE6YEp77rBu767kXorG8D7/MVK56M5bN10XIMp20UoMKo+BhrkAkwBhlEaCBO+Jz5husbQs7eoD43W3rC5fb7y1WHrXVYE028ELHXK5gXXbR3C4kAN9xww34N5nDDzl/k9Uq/JYm3HBRxpYkm9haL1RtxOttRIxWSm7KUe+12GWiEppaLItG+JepmTEAo2PtFrcLDKEnQ6qKdUWJkBLVsAEGYEoRpW7Gi3VHv3zitiTMxXjags6XAi7vXsSz3ACd7EwQKjMH/z957hkl2VWfb994nVu443ZPzjHKWAAkkoTQzYMDAi42NAYMNH8Fgi2SRMSCBSTJgg7H9GgMvTjLZMCONAkJCAgWUR2ly7Bwqnrj392NX9+TR5KCp+7r66u6qUyfVqVNr72etZ4U6xhPbB52xTphuZeixKmTE4RVXGjrk7Tf9JZ3PNjNYwghZbaCtEt6Yeu4VNGlNEh06exNZptlVlvQ+yc2cylg9wy/6T2dKpkqSSqxAYgWCMO/hFUNkPqY+1Wo2V5wo8QY0k9lNcdYmaoc0kfTHJWB0clubkhyOnTJeyTBnyjC92Qrlbp/hejthm0WSE2bAG5jqrbDNISz5ZIaz5J4ZNdlRjunBohsBIuMfnZO3KwpOQLvWEwIt4JfLP8SFb/kKTh2sIZeKEvxGzKbDPZ+p7tghb6PLqfDq0oPM8Md4ptqz2/PPfMQMYK+8433c9tqP8+pfv5u53iBzbUFW5oD+Pa73gf+75zhv7te/zLofmIzEMz50I4tuuJFnPnKtERC1Juz0ya5tfk6aGX+TIiKY5rjNXi1C7JAF2LQHE5FE+DZBd45Gt03iCy595Rf51U/3f5Jm2UKTIShgcoLpqkuvP+Gswo4Vu4orE/HssrnvOybiCrCztVyLFnvhavk67CndiFST2yT542f/D+mw6bO3x5hW7DmeFYqmwGyZXio7xrRNsUXZgqhgrG60aFYU2MYGJy5plK/AVfilgPldQ5zZtpWLcmuY7wzhN21z1iRVxpTLqnAmq4MeLsit42y3nxHlsCnpALK0yTpZGR2R8/W29b+HjFO8/gbtT+SZ/ppR/nZkAf9612d59nXPbYHbElcOnR3j2bz0aeiQWxvt/LYyj/ZCnYH5GRASpwr+oLGjs4IUkWp8VxIWTQyb+pI06yDqDiJJTHwJzYnhxFzrjo1TiSlscBjN5/hdMBMdW+S2SBq9ps+GU0lJM8a2OXUFMnZwRnxk2UanRrgRjgNtRbPekTF0GE4+ruMGOk4Qi+eSFHYXBY84rrt7P6UWh4wW8MsVf81Fb/4KVgO8UUh9mygWPMhM/se9kJwdsr++NQ9/fS+JQ6FFsbdCtbr7mOiRvzOvOe8XH2N6YZyfvfbrvOPBN3JBZt2kOH3+HqYNVl2/9ySl+V/6Cmuagsd577iR0z98I70ZBzIOqjOLv37ExJET8WyaQrLD9bVrTBvH260mowg8m6g7S5y3CUumCvwlr/4Sd/1o/2zzlp36YWMhDWjXQjTD6ZbI0qLFicF+CywPPfTQfi0nxMkxIFra/ufGN3wHz3zRbKZzc/D9Y7VbreqVFvuHVqQjo8goZsqDbYwuckBr06hbAKo5GLWFeSxrGd/SpOlBimnsCZB6gqDNLDvhnaoFxrffhrhpmZDkNSqjwE+xvBTfj2jPNejK1FhYGOS83Hpm2hVg77YJo6pOf6qZYaXkpU9ZNShK00/FObiCvH3ysf4XUVwrsCJlJgTjBBoB7Y+YapZlM/8SomiPmb8tDj8Tg9K+tEqvlWdU1SkIeHv7Q/Q44/z9s5ezfrCTRruDbSnT2ycUiIpNGElkPibtigmUQ+oJZASIpuDnSwqRQjkQFzUqtPnvTecxwx3mtbkKADEWc9tGeKxheo0lysKRikxPjUbRQY25pK5F2OYjY9NgPCpC6lnIsET2mQhqdUSp0Cw5F8bD+qifyKO/yZOFu39oBlD3f/t9vPg1X0LZFrXQpRxarJCncnb31kPexgdOvRmALWvO3au1y9sfeDMdnsl0fl3PA7RZNeJmj6qaPrAKkbk/jbnip2Zg9/gXrjUVUB+BO2756z0uv6znnYhc1gw2d2zAmyo0yjQSTRITMwkBaWp85HtyoE0lmBUqLl/6twgNd9y8+3Z2q8IKo+0ZhlJy650f4apLTdPRa170mUmbsKsv/uxufbT29NjJxrI517J8/Y2T/1vtJQCWrzt2CVM31757zLbd4sQiGRzGShJm/k9E8MhUOuZa22NaQFgCZUuUJUiLthFdJpo4a5CpWW7CKjT1xKSoAsZqBmF+T1SqpBmNcjTaN3Gtl4tw7RTXSZhVHGNWdoQup4IvY3yRUlGa+0OXTdFChpIC6xpdSDRr7SkArI+6qCuXktWgZnl0W2W2pGMHbSW2J746OodEG8uzsMMjM6J497++A6EgU4NL/vvLFJ4enWz83OLIIXuf4UOPvI7/eeJcLpm/lqs6VrG+1kl7po67OGGT103n/Tb+mG5WVwusVGPXUmQsUHZTZPEsZMFD2hISZeI7IRD1EKIY7TmIWFFaGyJTj9pUn7BDIyPIbRLEGVO9LWONFWrshtm/qDuLX8kh7ObYyvdQOQ+RGDFHxD66EaDrDUR3JyKMiDoyxNljEGBKYRKHWhxWJuLZ+77zPl7y6i+RVAR2IKlNt4nDLLeIxXTk63DWoW1n/dv2nUyz8KbPcsHMAWZnRwB4Q+e9WEJxkEY8zPtRnWv++9Pcct8n+N0/XrvPGHBZzzsRnmuqrneMaePEJMsBaNsILdLEs2Y+ME+cFQgFTkNjBYrLXvYFhGY3y7BrXmR6xkza2TYCkJZJRmpWWu5oEbaj0LKr6NISYU5O1HEysG/J3Ib9vjPdcccdR3I/Tjj21Iy0VbXS4kRCpymqWsXvq9F4cRvlc2Lqq1yKG01/Cm2Zhp2pKxAanJoGV5NkJVqaYFxoSJ1mRp/btFdqDkKRZuI6yWqSthSrEFPMBRQzAZ1+nTa3QYdbY5Y3wjxvgDn2MLPs5/aU7rbAa9qHTYgrh8q1287n0dFpFN2Qp2+bz/RLN/HqqQ9zy3+9gI6+FH8gaAY8JkNFVBomsyUI0UnCkvybkfkcdLQ9Z3O7FofGpe96O9M/uJr/mHs7oVYMphZZmRIoB9dKOX3WBqb7Y9yy+RRkbIJbuyqRY5IQENmEpDsmzdhYDQHKXN9CQZy30MKUk6uqzVg+wy9GzgIe5bW5CnPsMvNzg6zPtmNLRaTMRHXeD8l4MSOJpDHNfABK6zRWpMn2mybkSc5CZz1EGKErVYTnopMENaXtqJ/DYxl8nyz2ZOe//UYe/OEHeOEbvoxQkvGsJIot1pQ7gYOvrtjx/L1m/kO7PQ7wrW9/jVNzZ7BWdgPwxwt+S7htHo4wgsvpTpZrXvQZtCVZefee92HJhX/Dzfd/cnJbe9uPta+2Wf+uD3DW+25ERvDw3187KTgvPf2jiCiGMEKkKaQpOkmadiLKNOSVwujyjYDMhnHcsQzakaS+hfJM5t+VV3wOlEZGChkliDjFVQoRJqZyJQi3Nyd1HJY/bfbt1l991JznHXqw7HEQLQVXv/j6vZ6Lk4EdxRWg1ROqxYmFVuhqDVEsYgUpYQmqixKCVS7FDSlW1IxpHWOBaDcUaGHiWYHpyaabMatnBJbUNRUqE4jmLSbs0KTdMXYmJu/H5P2QrBPhWwm2VBSdgA63RrtjqlB8EVPTNoGyWRtOYWPYSX9YpJ64lNwGBatBX1xiKC5gCUVdpFRTnyfTadRz63C8AaZYB1adfe228yknPguyg9z84cv4h3/4Km99/E0MbGknv8ZmZm0Y1ZtBS8hv0rhVjR0o/M1VRKXOsqnvZnjJfKa/bQ0/uuQfDvOb1WKCx14xncWqj7s+fgpf/L1f8L/ybIaDLGFsIyITv9Z6BYVN2iR6KY3dSBFVRZK1J21uk5yLZVuIKDV9hJRCOLZJPEhTZATakWT7E7Sw0UKgbRAJZsxmC0SqcSsamWiE0ihPotrzyHEJ5Qo0NLIRTFbFYFnbJ55dh3B2J0Ib690jzdLSW1kx/q+T/+/6/XU0WdbzThN3HKtKz6PABX/+FR5oVl+88A1fBi0ZXyRIYouhcXNv2ptt/nOxbLGJLyfiNmhWcDR7oaz66BRE6uHOTrmy8AQAL5mzejdHg6VnfpQVj12/x23samu48tc7x4FWPWLpWR/j2Td1sOYD7+Oc95h49nffunanBMqdYlrb3i60pArd/IKYiGe9LWWsWhbtTIj3RiixQsXVF38WkShkaEpTpFLmvjvrr7Zb/QFYkhVPbD+mCZFlx5h8b/H5832M1aLF8czxIXe1OGSW+G947oVatNgFnabILYO0P6XxNrrUZyq2Xa4ZOtNibJ6kOl0StAvinCDKC8KSpNEpzE+XpNEpCdsEcdH4nIZdmmCKJujRNHoUwbQEPTOgY/o483oHOXPKNi7s2sglHWt4QWktF+bX8YLsas52+znTzSCf45bULrPkhYs6TBr5RR97By/863dw9zcvYvRHM1j3g/nYNVi9rpe/++kr6LkvJLuxgj1QNv6qVnP/kgQ813h0x7H53/dI2g/NG7vFc3P3Dz/AA79exC8DQa+VxxGKH5XP5t7x+cwsjnFBcQMlu0GlksEbFmS3QWmNprhOk1tnhLlsWwNdjFEuyNgIIFGbptFpqrCsEGQoCeoujw5N4+/WXsUfrr2Srw9dRtaKmJKrckH7Rl7X8wBT82UAqo1mJUoq8EfAG0soPVOl7ZFhcpsbZLc00I4FGd/4WGezqHkzuPnBvzkq521PTROPBbevvO6kCPxL60IAfvP992M3NDIQaC1IleTKO95H9MkxPvTI6wBTbbIjV1z9+Z3er13fuz2dvx3P68IZWylYDc7IbaZvyzQAvKlrJ5eVvc8Yi7x9WGroXaqR93r9FEw/g6hofnZkxRPXs/zZL5j7pmOD4yAcB+E6CNtGOLaxHRHCVLTUG1iVBlbZnLs4K0ldibIlVpgiEjXZcFQkygxEJ/q9AAjB8rVf2mkf7LEGS8/ct3ByrIWVZT3vPKbbP95Y2vG2Y70LLU5AdJpCFGGP1Oh4JqXwtEPUBtsukQyfZjM+x6I6XRrb2qwkKpr4NugUNLpNPBu0SaKi6acStkPQCVGbaa4cFSHsAGtOjd7eMRb2DnJWz1ZOae9nVn6U6dlxpmfH6PKqTPfGOCuzkZnOMA4pgbapKJ9Y25QTn2riIYWmlrisC7rZHHXQUC7jSYbxJMsjlRkMxzkGkwL3h130pVXAVHHHOtnt2N/fdx4vu/p1vGzJH7Js2R/x5P93Kpv/aj63fOhSlCN41V3vou2zWRb9W8SMW8tmci/RyFiTHUonq9BV1oFGgK7VqfUK/mr6yqP7Jp5kLN/4dwD03iV58+o/4JRCH45MGdjahj9oERWNvbJTV9jlEGewhttXxtk2jr+ljDdQQyYK5UpTrWUJSBQiUWjXxLsiSpsiS4pTiSmuD5nyUExxvUImYEVGVIyKFmHJiJBaCkibvYviGB3FqPEyamQMXamixyumub1tmyrsegNv4wiNbveAek0cCktLbz0q23kulvd/83ktrgCU1oSTf0/GtKHAshRJaDH/K19h9fsWA3DmTz+502uXLb5uUkSZfGzhzhUcO4orAMuf/JyJHaOIDX/2IYglA4ERctZuNg4CO/aMkr3PmOv8AFhy/id3eyzNNXsRFXaPZ2GXmNayTEzruTvHs1Ka2LQRTMazspEgE4WMNUnGmvysasdC29LEs/YOOe9ag7TMtnbBGWnscd8nONbjq2te2LKQbNFCaN0yrdyRcrlMqVRifHycYnEPd9cWLZ4nXC1fN/m3uuw8hNJEJdPofuhMl9rZAXOmDbFuczdi3MFqSLTUKE+jLY1QYjJTSRUT3EJEW65Bzg3J2jF5J2JmdpSFfh8z3WF6rTLdVswUmTmgBvYHwq79WfaHNUmVdzz7ejY8MIPcFkFum8JuKIQGf2sVWW5AvWGyr7vbiaYUcMbMZLm1dQRdqYIQpKfNIej2aHTIvfYyaHF4uPrF1xPnbbb8WczTL/kuP6/79Ccl3lrc3lvi2m3nc8uPLqKwUeOWFVFBEucFoy8IyRYDgrqL3OKT6RdYoZlAiQvNapOsRvWESFuD0ORzAUlqEccWf7j4d9w3MptabEx/tw21YbsJwZiPSAT+VpvuhxO80RhlS6I2Gy0FYUnQ/mQd5Vo4wzVEIzKTzlHM8tVfPFan8qhysmdVLbnzrzil2M+9/XOZ3zbE9+f8cvK5YVVjbexSVj45GfJUOI2hpMCri48ww/LwhMNVbzQTCjtaBUz8vyMTz8lIoWzJ7beZ56+67IbJZvB7Y1erqF0rjva23bnf/xwA697w4T2u96XX/C0i1WaQGSaTYolINSJKTLbiDtQXd1GbYpEZTsmtHQdAWxY3P3TgguSyBR9Eey5pW4Y0a4Ni8pwczxxqPNqKZ1ucLOwYz1ptbSazHiCfQ7sOG1/dReaSISyhGX68CysQpnmyp02Vijbf/WB6qihPoT0T4MqahTMuUZ7Gnl/llfMfY1Gmj4WuiTf6khIpklQLLKFps2rMt0eYYTt4wmFjUqMvzRBohzsqpzEWm0QcW6ZsrrezuVoi60QU3ZAgtYlSC6UFfeNFwoaJZ69a9DS/3/kg3972EmbnRnhBfjVb43aervdyRm4L7yhtYUta4a7GLG4eOYOH/uMMen9TRcSmIbnybESSImuhiT2EIO3Moy1Jo8enOt0ity0lt7GOtbEPXJen/3YKt77k60y3MjsJ9C0OL8tm/qVJMtCaNe+Yw01v/ApvfuxPKa9pY8bpffSPF/B/WWDqL4cR5ZqxKrYsY0dk2yRTSiQFB6uRYI81zPubJOA4YFtoS6D97T1KtGNNfvfGbR61qS52w1StoMGppaSexKkkOKMNRN8QOjT9gITnmongQs4kCtXqpv+JMh8eXcpTn108oP5pJzLLZv4lyzd99VjvxjHj0ts+SE+myrOjXcwsjvGThTfzn9V2buq/gC2VEo6VUgk8KutLaMvYKXrFkHOnbyFrh/T9iekhuPzpz7Ns3gdAit3GQ8umv8css+Xru1W7LFv4oT2KEJOvXXzdbuLNbuvYQwXN3L//MtpVrH/73q/jK67+fNM6XWGP1hFpczo1VTtXoQCq4BP0mh6DmYGEzGaTmKc9Z7JS/EBYtvg6tO+QFnzSjHXCjKtaMenh5/bbb+e1b3kVf/qTlx/rXQHgX5b+lFt+dBsvetGLjvWuHFOOzCxnixYtjntWqpsAMzAdOtsnbIMpv0uI8xbVeSn/33l3MRAVGalnqfkeSdjs6ik0Qmi0MhnZSE13V5kZxXHm54fodcfwRUxWRkx3RphjjzHDdsgIHziyTb0PVFy5P4wZSLu4qucp/n1xAbWtDW8sweurmiywWt1M/CUJZDMgJWGHQ+pJrFBhxbEpxXddlGusJhpdJ0cfqmOJvb4fO5uh+3+m8IL8/+GGU35EpLd/nT0YRbygsJaV5y1m3CmR6bdIshCVgIZNvZHHGTV2YFEJ7BqkvrG4m+x/qwRCpuSyIZ6dUsoEODJlVWUqF7Rv5Edrz8K2FNJSRA0HtxCRxpJgOgwnNvnNFtm+mPyaMknRQwufkdNylNaGJG0ZLMtCKGXsHI4we5tYv/qSz+5WKn8k2Ztn8MnCzZf9HR999DUMDhVw7YT/rLbzqlwfGeGxKbHosEIWOwmPRR515dJlV5hv51FNc/Fbv2csMa64evs69yR87Pr4FVd/Hhmp5xRXwFhtTAxad32fVN8ibv2e+XvH7EGAOVOHiNWee7uc+b4bcWe7NKYYy53clu2WNM54jD0e7lS7qC2BDBX+mLHy0Z65rx/MQBRg+eovsvSsjyHSZkaA3OF8HUdiy7Led7G87xtH/XPZosWJzo7xrPBcypfMxR+JcdcNovMZ6rMS3jf/V9xXnsctPUWS0EKoid4qJmEIbf4XXoqfi/C9GEemhIlNreYjpGJh9yCLMn3MdIYpyICcSMjKiIrysND4IqbDCumQkowwVa1z7AI1XcfXCdXUI2NFlOwGm4J2qonLcCXHqMhC+xgAWTvGlgpKQAmk0AyGeT751CsB8K2YHwfn8Wj/NCr9eZZnTue73WUqgYfWcOWsZ+n4vS1s6JhO730J2dUjiLpEhM2J91RBxke5FqOLs0RFk1ySOhaF1c3ncxlOn7GNNXEbJVnhGHSKO2lYvumrLJtzLSCYek/MdS95DbNLozwRtjPe8NFPFkBAMK2An2pEIzQZ9LZlrDMbMW6UIBqx8SWZaHTfFG1EClopI6yI7f01tSURsSLbH9PosvHGlLHR80wvzqjNQdsCly7EWMVUNiWJsUZKFbVTukjdLgpPjpprK4rRjmVefwTZ1R5sf587EkyIK8sWfPCkSZTakV9d+UXe8eAbuX/9AvRs+HndZ6Y9zOJCP6cVtiGF5p6huZT9AmiYOWuIeuSyrV5gfjHkyh8/xEKvn2WLgTiePJ9Lu94OmN7GOk0nLUuXP/357RUxcbJbxfKuTCw/8XvisQlU3yJ+fufEfzvE0G0RqL2P5V/wpq/gFG0anRZWpCk9o5FhjAgSYxEmhPmMCmGqwKRExibZTybaVJcJcfAx7dOfZ8m5n5wUTfeVcHWs2NEG+YorP3/cxNktWhwNWgJLi4NiSeaN3Nz43rHejRaHiam/HOX87z7O93suZtodgj+4+Df8dcdqvj42i2nFHsbcDEkqCRObIDSTXVqb4CPjR5w/ZRNn5LZwmr+FOXaZgpRIBHnh4ogD844+kqhmk2eAjUmFgpSkVJnhjCCExi1rrEZimkOWK+C66FodHcdIpRGNgIIwZb0kCh3H6DRF1+s4Iw3igj3ZIPJ45Gr5usmJiBOaOIZKSunXDaL+Xt73vj/gjQvu4+EoYHnlLP7pt5eS66gzvW2cNQtcUjeDcjWqM4aahVWTiBTSgiLNQeqbZrZCGWuktJgiHUVvR5mBsQJ1LSjkApQWZO2Y0SRLqiS+m3DejM08sGEWcdUFS+F3NmgEOay6xK1YVOcXaXRYjC3WJO0xQpnMWqfuI1Iozz7yTp17m1g/VpO4x8sA4Fhw/Vk/5PpmQ9BLb/sgK4tDXFJaTY89zlWZCp5wmGJVeUF2Lee75lrZ1TpxT+dPNO08dn1ub+d6154jy077iMmMDSN0KcfSsz7G7c1Gx1dc/flJcWdv3HHFl/f4+KmfuBHLhvGF8ILLVnFNxxP884YXs/nZKWS22uS2WuS3WHhDDUQjRmddlGuhmp7wQm0XIA+lT8pE0+Yrrvz8bua4+2oYejRZ3veNfTZbbXFk2LVqq8WJTTo8iluZxbo/10z5xQza79nK/3nBU7y12M/qoIe2jhppKgkjmzi0m8kUJnHI9lLacg06szXydoRvxSgE9cTFt2K63BoFGSDR+CKlJKGWKsbSLDkZ0iYbOGgsdp6c65aKQKdM90bpi9qopCbZSGmBVoIUQawsck5E3gkpOQ1mZUfIWyGLMn08XJvF2tEOxvqKjFayJOMeVtnCAsSYRf9YF9pTZLrqbG600ZOtsrGokaERlUWcQBRDGKJT06fD6YNsh0t2SJC6An8kRlQbpjKi1mDV1l78mTFDqaLzaL+J+8HzJp6dQFpkV/Ux/g+z2HqVwo0EldXtLPxxmSTvkmQt0lLGOBULYSZpU41QCiKFUAptWWjXCClCa0hStGcb4cO3kXHTZrN5fWpLIpTGG0uxIkWct03l6IjCHU9IXUmac7FDY20rPBed89m0rJ13vvlnfO3xl2J/uwTS2O5VZkgq845sE5Z9CShHU1zZkZNRXJngH8//Hpxv/n7RLTGvnPEojkjJWiEznBHuSBfitgecO30Lpxa2sabWTY9f4Y/b78URin8ZesluVSYT7Nj/ZPKxvSy7I8u63wGFPDrjIdi9kmXZqR/m53f8YK+vX/cne67EBnjhn3wFAdS7LYYvjMl11oluLZEdVPhDMc5YA9mIIVWovIvyHbRtRE2h9PakOq0PKaadqObeNbnqeIlnJ8SVK6/4HLffvvfz2eJwIFC6ldx7PNESWFocHLL1QX6+sFLdxJLMG/nRf76E05euo3zzTJ4Ynwo9j9BtV7igfSPV1GMszrCm3EVf5KCV8V713JiuXI2LCuu4PLuGOXYBKBzrQ5pEobgvVLzQs9mSVgi0YL5tBJ9ZdoGBtMo9jen8qO9c6k+1URhTRG0u9qiDqAjU6JhpYqc0aRQjLAsRxQgpzGQkJsNGuC5pxqE2xcYfPX5dF58vg9Hl/d9kWe+7wLFxB6qUB9tIFwh+Wj4XT8YUu2oEoUPRDTl/9iZ+J2aiIgs0YOtJYUUUYnQiSazmc1qAm+J3Nsj6EY5MyWYievIVuvwaz452k7VjHhmejmunBJGN0gLbTbDWZEh9TZpJkJFAphDnJP0vUlx14SNsqxdZ9ehs6r2mz0vqCiPGHYWGoC2OT3515Z4H5d7mqZzvuHt93a7NPQFW/vvEc/ueYLjmD0y/FwF859mL6bbLfGvL5Tz7p/NRrqZz8RD/esZ3eN8fvmOngZvsfWZyu7tWr+yLxoIQnUjmzennizN+Tq+V541n/JjG6SGvX/1KHls/nfEtHp2PO/hDMUGXw2/+n7FYvOwVX9xuuwAoR3LZy7/AnT/f7t99wJl7u+qZzf8vfdUXEYkG59i2JhQ7ZCT++AfvOqb7ctIgWvHs84WV6iaulq/Du381/oWnMXiepv2XETdvOIUv9DxEl1Phop6NhMpm1XAPw1EerSVCKBw/IZ8JmZov0+1XmeWP0GFXkUITKodA21hoClaj2U+litX0ya0pD0uYz+6zcRu+iDnbDchLI6RYzWqCHnuc0TjH6toUgtQmUdJUhDcnR3wrwbdiinZArC2qqcdj9ZmsrnRTb3jk1ttEJQsvEMgI4mKzsXIM2oMwcHiir5c0tmh7SuD1V43Hf5yYnhlJYqoZghBRrpCvN0BKdL1uKhMch/CM2aSeJJ+rMKayKCSLj83buU+eL/EsNCtHF3wQpEPpoQFqU3tpdEN+gyDNOsgwhYxF1O7iKdNjheZ3o5YS4QiUsMGWpvreEugU8Gy0a6OlJMk2e7IojXIlMlJoKVCuwAqadnihwq1J7HqKO1gn6s6ays9m9efgpb20v3ETb+n5LdOcUZJNOarTBMqB8YUabW+31mtx8nHvNbuLH19b/RGWzHuKZe2PUFMeN289lTanwTmuz6iq8+bOX+8W0/7icfN74vHHogZnupk9bvPlF78SVErj/1o4Vsq6gU6SzyzgFRc9xFen3W+Wuew1u/WBOdiYtjJTIFJo9GoWzOvjJd1r+GVhIRsfn4Y/6OGNeLStjrCChKDb4+4ffGDytZe94ovIMDW2uFKipbHPveOWvwYOXyXK8RLPAky0zG3FtC1OJloCy2Fk6Vkfm8ySPKLbKb4FLIsVo/9yxLe1N26ufZel7X8OSqGThJtr3z1m+9Li0FFhwKx/epLhDYvJjUesemQ2jYUhW+M2Snadkl1nLM4QJSbbTymBbNop2VJxurelKa4cX1RVSF/SxRqrnx7pMN3a2aJsipWnpjxGgiwiFSRZSepp/LyPNSQmBxVo81tFpokqgJACq60NbIvwtJn0X+gRtsPqv271XzlqWBZJWxbppTxemc76cgcz8uPkvIhiJiBvh5Rjn+72CvXIoTycwypbpDmFKMa0t9eIE4tazZvMYvX8mN5SmRd3r2VjowPXSrm8+xkGoiJrRBfV2EUIzbLZq1iU6WP50JmEVQ/b1STtCTPaKmwZ84hzNlYoOPesdfzTjHv4w7VX4o5KUs9YkvkV01zUH24NRlvszJwZ23Z7bE+iyqFw8/98B4BzvvBOLn7D7/jRm7452cPqiZg9VlEcyCB0gvVv2nGQaKpcVN8iMsLjJwtvZs3cKs/GHXzkzFczsLp9sg8CwJ0/+yBnvv9GajM9Zv8iRtmCsN3m/LffSJKBR7567U7b2p/B6Z7611xx9ecRicZupMbO4Rhyy70fP6bbn+Caiz7NLfd94qhs61j72C9f9xWWnvlR0xjalqx47Ppjti8tDp0JkWX2f/cRzWiDOEbd28boBXUGoiKeTKgkHrXQJW3YiMBCSYswMnUnUc6ixy1zQW4t8+0RUgTDaYZNianjOM0ZZlzZFGRCVriApmgF9FrjpAieDqdSsAJm2uvwhE1CytrYJStjilbAVHeMZ6o99NcKpErguQlRYiHR2E3BxpMJSklGohxjUYaN421EZZdsFUCQusZuUaRGaLFCQZgx1TDRsI/Mx8Q5SHMeIlFYUToprkwkDak0NT00MPGsLBUJzplN0GmT+bOt3Lz4P7izMZ1XzHv0WLyNJyeWBKWxa+DZkN+qTHWqIxHaVKoqz0ZYClmPEWlqGmXLZq8VSyIsASEIodBSol2bsNsj8STeuEkMS3yJLUBZAplqtBRUexyigiC/LcWpxGAJgk4bBKZ3j9Zk/3gbN5/yc34ZCN5611vofNJUf/tjCvmkJMoLMsMC/vwYn8cWxw33L7thp/9fN9/8vvbh15O3Qi7NPwXsu0H97H3NVmoFccKrpz/GT995JfEbLdb9/j/ttMjeql4OJqZ94nPX7vaY6lrEV6fN4YnaNMajDPc/PJ/cJhe1i2v5nT/7IBf/4ZdpnJGl+yEjfqe+5IVv+DK/+f77EbHp3aKl2G+xZceYdk/x7KWv/OIx7Yl02x2t6pUWJx8tgeUwsuLRz3LlSz8HAm47kuVw7oH1mThipCkryt8GYIn/Bm4Ovn+Md6jFoaDKVQobAkSqmHanw+mld/IHZz9Iu1PjgbE5bKmUGKtliANz27AshdaQKEmbDIHj5LrcgaLMYAnNmHKZZu25siRUDpf1ruYH8/OEm3Pk+jWyGoBtI3IZdBCaZo4ApJNiC1jge4SnTGX9y11kCJmBo3JYJz1Li29BZJqZobUQb3UHD2RnUsoGjIQZ+gZKUHaozXGZ3z5Me6ZOIy6C1FiBIM2D4ydknJiiF7Coa5CsFaEQzMyMYqFQWtDh1nh8uJfvPPVCvnruf9JIHaTQZK2Yl5cewREJq/M9PJHvpRELvFLIwFgBEUrqiyJEe4MfzF8JwJ/03ssHxSJkCtkBTeqZrD+ZHljF0xL/DQD7vN+aTEjJ8mf+9iDPcIvjjX0NBHcUX3bMytvT62791cRrjMDiXD3EytWn8NSU23ki6uV18x/kzMO433tix32cb+eZb0csPf+/eEfPi/inC76z07KPfflaFv/w04wtLJDfmhKWBGEJZGyeHzjXY8pD4W7Cyb6sEXZ8/IqrP0/Q4WBFGhop+jipzr195XVc+tJPHbPt33LfJ1hy/idBbbeieD4jUs3yJz8HmKa6y7d8/RjvUYtDRfcN4Hg22Da99za44pK38IZ5D/DDvnMYrWUIRn2cERsrEGgB2rIIAostTsLM7BgAntCAxrLq1LWLLxJm7ZJMNM2qsj4WDKscBRHQ44wzyx4BYFgFeEKyJu6lrlxGkjxSKNrdOutVO9XAQ0qNSiW1yGVqrkzRDihYAVkr5MnxHtYOdxJFNiKUyBjsOpP9YqwQrDpoB2Rkkp+ssoUuxMR5UxEnw9gkBrkOIk5QYbjDSVIgJLJUJDp7HiOnunT83hZuO+1nhNrDn7jRtjiiLJvxXtNTRUrQmtLakKDLwRtLkI0IESTIok/Y4ZG0O7hjMcKzEIFpsq1diZbNng+2hXKtyf4PypGkjsCKFO5IgBaCRrdDkLGQicYOTCFnkjGV10IZ67A06yBSqE53qE7rpDZN8PjpxrLpPLeOGHeQicYKNYW1NerTssR505PiQFhaeitoPTmfsNvzxbcA7PX5FicmN57zn3t8fE/xbFGa6pVn4yqLZ27dafnl67a/7htX+OSfAV62/fVHizeVVhEXH2eKlWf9rB9z1a/ew9o/3t2e+Z7/ej+n//WNpBkb5UiCDovUNXHn4LkZuh8OuP223eNZ2Hfi0MRyQbuDFW+PZyfWfaw51jHt8xkNKH0cVCsBcHxcb8ea4+XdeN5w2x0fPmziyrJZf7XHx1cM/dNkw68DZWJy7nAwEews7XgbIrPn0s0WJwYr1U3oJAalSfIOxceGWPAvKcu/dzG+SHhmqJvRWoYotCEV0Gxwn6QWSgsCvefmxscDm6IOAFKtUSg2JhW+X+ngsahBVQV02RUKVkBcd7AbmtzmOiIy2TRC7HCLnBBWhDS2YLaDrtVxxkL8QYG2NY99effMlhaHn8mBlmUhhsboeiwlrHo0IodG4jCluwyuYmwkxyn5Ps5r28SijiFAEBcV2lHYVkqQ2BTckFd2P8wnpv+Cr81czg1THuX17feRtSJCZaO1wPdifJFwRm4LN/TeyV90/oqFTpU2GTLVHWNq2zheKWR25wi/t/BxuhcM4xVDvnfudrumec4QcZtC2SbzVDlmgiTxDz4Y2dt3BNASV04iZO8zkz+7ctGKfTe2v//cm2hfmeG0mVt43fwHj9Qu7sae9vcfZ9zLF1Yt281T+unXmEqKxBeIBOwAgm6Y880voS0jsuwoqNy+8rr9tle4feV13PNf70cLiEoOYcnebfv74kCWPVD+9yfHthry5gf/5rCKK8tm/uUeHz+U6pW9rfNAWb7KZNkuPecT6K62w7LOFseOleom0lqdcGqRxpkzcJ/dRteXs3xrxdUMjhYIRn3sURu7KrBr5p5iN0A2JLWaz6Z6G2vDKWxKcqxNijwcTmdL3IHcg6fnFMvYzt5ePp0V5bPotKpc6DnMsgtkhUVdpwwmBVYHPdw7Oo8fbDqXX2+Zy8DWNqK1BeobC6SbswwOFhkKcozFWTYFHQxERYYbOYKaqbRBgFMzTctFCjIBbxRyfRp3DDLbJJlnPJyKwF6TofMJhawGiErDWNoqjU5MBYOeSBoSErujHWb04g7VaF+dMFLPAsZi91XzHj4ab9dJz/LNXzMV80kKcYw7UCEzEGHXEpKSD7ZEBAnaEtSn2ISdTQtRvYOY0UwOULYg7PQoz/EZn+dR73GwQ407FqOFQNsSLSDOC8I2Sb3LImizsAPThFsLUK5E25LRxZKBi1NqUwW/9wf3TG4q0ClWQxDlxWTVZ5IxlVUHPKG7wzFMiCm70hJXTh72Fs8+Fdf4ZX0hX33qqr2+9n/f8kV67g/3Gg8fKWTvM3RO28zaxCT+VZTNxy74BfP/8waWTX/Pbss/8bfXIlKNMxoiY01lFpzyyRuxQui/wDdN4VdeB2p7PLs/Me3tK6/jnv9+P1puj2eTrNzvOPVIxrNw7GPaFi2OFi2B5XjGdVg27wPPvdxxwLG0K2tx+LDH6mghIAxx+it0PBnzXxvPJ4xNM1AVS5AaYSmUEqSpRGtBWXlHbR9jnVBW+9dJvqwaOCKlojwcYSGRPBu38ePB8/j05lewLtH8n/xG7hudg7PVJWwXVOZmUdnm8UiB8M3fwnWRjj0prgjHRjg2yrUQCax5fytwOJqoWh09MAS5LNteJPHyIUoLxusZXDvh1MWbOXX2NqZ7o3xmyuN8ZfaP6ewuk51VYdG8bZw6ZYB5pRGWdD/BxZn1zLfztEszsXC6k6Vk1VlT6SJJJXkvxBEJBSugKDPMsgv0WnlmWBbz3AHmF4eZP2WI3kyFiwvP8qY5vyEOba7f/HusaJiB8D31+eRnlQmnxtSnCJIMJFmwA81lr/iiqX7cD24Ovr+9ekXvOVNw+eovsmzhh/b43K4sOf+T+7Vci8PDNS/89BHfxsTg8nuVLnKuyVa+6tLruepSY320q93YA/9y7O5duw6CP3Ta8j0OJB/6h2tJfIEVa9xxM8noDltYIaTN2/UVV3/+oHsa3f3DD3DXjz7APf/9frOuK/c+0Lzyis9x5eVmQv5YNRA9UTlcgsgke7kHHvTqhGDFI585rOtscYzQCnekQZy30GGI+9Rmen6jUalARBIrEogJF1hpfoSGNLTorxZ4tDqT9XEXY2mW+2vzeKg6m05r77HnhloHK7acyqpg+uRjRZkh1aZSeltQYvVwF8PlHPWKhzPkkNssaH9CUnpW4GzxWLOtm2fGullb7eS2TYvo29iBtc3D3erijFuI1FStgEnSsOuQHUhoWx1RXK+wAgi7FYUNkF9dNvdDS5rKiCQxvr5CYs+chj1rOvb8OaRzp5HmXJK2DJUZNp6dUFUBuakbjuCb02I3lII4RheypIUM2haknkleizuyJCUP5ZgKzkanqVJRGYekLUNtZo7aNJ+wwyXo9gjaJcqBymxBnBOIWGEFCSJNTf+VVCMjQJuKldQVpI5A2aL5WRAkGYuoTSMzCZkh+O/fXsS/lnsA+Pb4OcQdCZV5mspMYbY/VRLnIb854qXX7H+Cz4ryt/cpoKwof3uvwsueWFp6634v2+LQWXrOkbUSnYhnX/1vH+DusYWETd+tpaW3Tr7XO1ZE337bsYvJLp69loYOKcmETrvKmtd/ZK/VsLfe+RHSvGM+f75GOSaWTX1AwpUv/RxWIzmo/bj7B9vj2dw2Y2u+N/Hkiqs//5wVMi1atDgwWhZhx5B9WViAmSQ73BwJG68VI/982NfZ4uizUt3ENe4f4xRPQbUXkZU63khI+SdTsK8Zp9AWMNxXQvoJQmp0KkiEsTWIsZjsZHaEcYTNLY0853iDTLd2tmp4Iq4Ta8lZrktdRfSnKedlNjCWZtiYhCx0HOY7Y/TVCozVM3TPTsnLPOe2beIJaz6pD3FGGOlZKfREI3vXQViWOcI0AmlsJ3RPJ0nOQR5cDNTiELi5+h2WTX8PQy/uoffsfgbLeQp+SMaJqEUerl/nC7N/yELHZJeOpDYzCuN0eDVe0/kgdeWxKe7gZfknd+sftDGpEGub2blRfCuhx6/wbNSLL3a2y8hLn9PdQYpd9/C7xhx+NbKQr6y5mhn5cTLZiHVjHdycOZNUP0FdeSjdbHCfAdXMQLVrTe/hg5go3Ffm9/Jnv7Bf67j5wee//c/JypsX3sObF5q/hYKVd3/0oJp67o2rLzE951b+evd+LfvLvuzMduX+b+8sBL3gTV+h3i1Q7g4PyueOrQ4VcYC2fgfDidYQdNni6/bqcz7Bkeizsnzz1w7r+k4GO7SThZXqJpb4byAvFkFPNwyNkN9UZ9qUKn12EYazaBsS14grE7ZbaEiVYFujyO/sOczyRuh1xzjT38QpTm6P2/r9XI1a90N8atMr+NG2c7gs9wynOyZho03adNhV+hoFHDvFd2KsgqYvlaSjLtkBRZyVpBmN6yW0+Q22VYsEj7XTvsXYISa+iRdSD2SsseuCRgGSDFiNBBkpkqxFkgXtGtsvMBZhaG0m7tMUhEAW8+i2AqJch0aAKGUJSy61aTb1HqDhU9UJxaPzNrVosnzL11k251qSjhz1Hg+3nKAyEm8kQjmS8fk+I2eY9zQ7aESQNOsQlRzqPRbKBqdqLIGUCzIy/f7cskJomr1bJMqzUFYzWaGmSTxB6gm0BdoSCCWJ8+b6mfprxfDpPrWpkNls84VHr+G+OasZDPM4hQgx6ICGqCBQFvjD4G0dJ23LHtQ52JvQciAVLCvG//W5F2pxwvH0x3d3iFgx/q+HLaZd2m4aBx1KwvBEf8FZtsecGQ8/5/I7Ot5c9Oav0Ogyn12rkSKaPWCvvPwGnNHGCZ/4caLFtCca6XFizXV0ZgKPf1oCyxFgfwf3R0spXrbgg0dErGnx/EMnMfaGfnRHG4QRVv84Ms5z4bRN/HbzbObMGsCSim3jRYKGSxLajImDC6QPhZdnA6Cw2+NPRT2sDnt41h2k2y5ziRczqgL6kiIDaZaFDsyxC5zduYXbKosoSZMJ8welB/i3KReT7XNxK5qoM4uXKGOtoFJEEKIbgaleadrhCcdm26WdPPz3LVuwY4ZSODVNNXSJ6g5DaY6FvXXOaOsjRUyKKwBnuhl6/AqPjUzl76pXMbcwwpn5zXTI3b8Guy2XN5VWMV54jL40Q6Ad+pI2fBlPNgKfYI5dYI4NfckoWyolBgZKbKt1MXX+EDPy45yW3cqGqItA2zh2imiYjERtgVUBhMBqJIg9RCVLz/oYKx797GE/bS2OHbf85ug0Dt+VlXd/dPLvgxmI7lr1AnDzDyb+2l1gufqSz+6X8LJjPxbVt4glr33Tfgs2v/3u7pU3V1z5+UmRBfY/zrry8htACG6748PP+Zpb7/wIV112A1dddgO33rlvC7aD5faV11Eul4/Iug+EZad9ZNI+a188l7hyOFm28EP7LSC3OLlRUYS9sQ862tBpirVxgOvm38n7y68jmh1Cw0JEcnJWQKQmwaa3UOGyrmfwRUyHXeNif+NuvVd25Q2FEf6xo8zqNVN5e/wnvGvuL3lDYYSizHCev4G/r15OFFvUxzJk2xo42ZhgikOSk0RtCmdanXOnbWZ6Zpx1Q52IBNyKxqkqlG16tkUFid3QOHVNA0HYAXHJwR8IsGKNTEEGkrAEKusgK3UIQlAK4boI24ZSAWoBemwcYVnIcgM1Pcvw2ZqZp23jV1d+ETg231MnPUmKbCTI1MWKFDLWhB0uItU0ugRdpw4yOFQg6PBxqi52XeFUE4rrUuK8RepLUh9SB5yqxhs1VSm1XgehnUkRMckKZKxxqhqdMRXVVgjKhvoUQdgJuc1QWh3SYfn0XySwGiZB6NHhaTRim6Th4GhwK2BFIFPI9RubM1kOdju0K6/43JHtT9vimLDi4SNflb3H7e4gpB1MTHvTmvOZYlUoyIBA2/zNw5qHg1l7XHZp19sRQrJ88B/3uc5d49mXnXH5flv63/edHeLZjze3e/bHscYStJRcefkNaEvuV4XOjvHvc8WzE/0Lj3Ri0vES07ZocTRoWYQdAQ7kBnWk/Q7hyFTCtHh+slLdRDIwhN6w2TTFbDRoWxPwwA/OYNm8Vdx++k9Zeer/srBrCGkpqNvEIz6/a8w56G1WVUBV7R6MHwyvzo1TTXz+s/8i7q0tZEA12JS6VFQGf4cyk0/03M5pPf2sjk2GyClOjs6eMjKGOCdQniRuz6BzHngeuC6ikEerpp+E61C/YC7lS/bPqqzFEUJrxhZKsm4MGpIRn1XPTufxsV6yVkxDhzstflFxLf1DRTb+diYrHz2Nmzafx/1hfrfVZoRHu8wyxy7wQs/GQtNm1Zhmj6F28CAaSKuTf99ZXkw1cHGzEWefuZ7XznyIkttgKCmwLWpja9BO3gshnxAXTDm4FUHqCZDbfax3OjzXZulZe55sXtrxtp3+n6gmaHHkeD6c48NRubLrOlTfIlTfIoa3zpj8e3/ZddlDqYYBuP2263bqxbK/aEuCYNL667k4UsLK8cb+iCsT7K8t4aHSElda7C8r1U0kQyOo9ZshitGNgL+44094y6n38rPL/563XXInsisEYZrEy1CgY0GbG/CawqO8q20zr8+PPqe4MsGp7f3YZYvhB3r47GMv48HI2LOc7tjMbRshimyQGq0FaSyxa8JUpUwJmFKqMDs7wmWFJ3nBjA2EUxManQKhNJmBEG8sxQ60aWCswamCFlCZYROVXOxqgj8MdkWSZiAuONCsWkEIsCR6WjfB/C6SnhIAOopIS1k2LRN89xXf5Jen/+SIvRct9oM0BUugmvGgUw6RkSL1JVYM43WfUnudoAOCDou4YOGMBmSeGaTw5CiFtXWcqka5JolHaAhLgrBNUOs1v4WG1IU4K1CuQDmCoMtYE1khNHo1cVHhjyrCTpehsyRJb4Q7BlFflr51nYz1FdGJIM0p4iwE7QK7DrktIaQKEe+hrF9prrlo75Pxy2a89wid1BZ7Y3/jneOZg41px9MsZeWTIrl49loWODG9zjivveddLPqfzzDnW19i8Q8/ze3rF/O9R3+O1s/tP7trPHuw/ZInX//IZ1j+5OdQRR8ZqQO2P9vfOcaWNdiJj9LiuPhpYWgJLMeY1k2txXGHVujmQFSHEe6qTUy/o8LPVl7E2zdfDMCPFtzC4t4BUOCMWPx4y9kMq9pBbS4vffLS3+/lPzt0Cv9WnrLH54bSOu1ODVsoRpMct9fncmv1NEaSHEURTS43xcrziu5HGEjN5PpdAYw+1YlMwIrBrhrLBcD4ImsN2Qwyk0F0tFG+cjFbLrdZ+0cnxyTb8ciy7negZvbQOCUgSi1sP0E7Cn+Lw/onprGm2sXaJJ1cPtQxby324/oJMgK332HbcGk326890WHVWZqJON91qaiYWCfEOplsbvuNsRn8tn82WgsWThnkrdPupiADclZIyapzZfEJ/qDjt5zVsZUpPeNoW+MPgD+qUbYgdeUebYdufuBTACw9/aMsPf2jOz23ozXjhW/5CkG3x9Uvvv5gTmWL/UTEB9ng4zhjybkH3ndnx0Hs3gSUP3j6Dyb/vvkH3z3wHTuMHGhsdftt13Hb7R/mtl/u/z19V5FlosfNwbCjD/aJSkv4aHFcohU6idFxgg5DFv9LyP/936t55Z3vJlAObzzjt4hEICOBFYE9ZvNo31Qei3p2W9X6pMLP6z7/OD6dvh0SLCZY0v4Y7twKUVeCa6f0JcZoS6F5Y+899LRXuOq0pzitpx817lLYoCmuhTSyOKN9G4v8PnwRk7NDtDC2YMqRph9gqvHGUqxQgzCN7t2ymSyPSjbaFojE+Pl7o+Bvq5rG6crE9MQJYrSC11fFHqwgXAe9aDYbroNvXPNvXOLLo9oYusXOLJv+HmgrkuQdrFiTehbaEvh9NaxAIRIIhzLUGy5IqE2H8mxpxLMkQdQbWLWQJCOoT1dUZguSLCCNzZyMjVWolhC2Q3W2pjpVoqWx9tKYdarpAfm1En8koTrNJnf+MHLYxQ7AHZfIUsTMOYOctWgTqi0hagO7oel+oIKzccj436rdY6XbfvkRZC1k2cy/3GMvrh3tHpctvo5lp7XGV0caq/788Lc+mL47f77oLgBG0izfevoyhlLFA7W5vLzrUaKGQ++vBPO6hrnc13TKHL94/JeHea/3n1vu/Tgr79n/5KOJypUDiYN3XfZQ4tHnQzzbosWh0BJYWrRosRMr1U2Tg1HR0YbubMfaNsyC743wzKdPZ+7/msz562b9AgR4o7BpfTf/Xj51j+v7fqWDH9QKfHV0DmuS3QekB8L9YcyPN57FY/UZe3z+vyqnMRAVKbkNPBHzcG0WqyrTqKjtAk5ZNaiqgEA7jDQFlpf4cMnFq2h0gVtJkVGKbMSmQahs3iYrVXAdBq6exdZLQSQtpf5YsbT0VnSSEPRmsb0UickIFYFFmtHoUsKVnU9OeqADk7Zep/b0o21TPdJZqnGJv+evwR0rVXZczxQrz4MRbEu3Vy99d/0LSVLJtLZxEi25q7KYbrvMadmtvK20nst9zSW+5IL8ev5o9gPQFiETCNoEYZvEihT2aH2P+7Hi0c+y4onrWfHE3idvh87TDJ9uE5WcvS7T4tC55b7nh23KwfSZ2J+qlJd0rzmY3Tng7Ryv3Pqrjz73QnuhlWzTosWRYaW6CZ2m6DRFTunCWr2FhV9+hlM+uJkVX3kJD47OYtaZW5EJuGPgDwkaAznuqiwm1DEDaZUVDZe7Anj/htfwlz/5U77+/VdyyY/ez2vXXM1/VttZk1RZk1SZbo/ypsW/ZeqcYVwn4dbx01nRcHkgtPhNdQFTslUWZfuJUovMNov8lgSnrnEzMb1emenOCK5IqcQ+/jab/NYUu5aim1UobjlBxhqRglMDb1Tj1JoT56LZV2NMEOehNq8EvgdRbJKEtIYwRK/ZiNqyDYDV73d4+EXfJtWSm6qlY/tGncQsm/puSBK0LUl9C7RGKI1IFGnWpT7FJug29m/RcIbU0wS9qbGIa/PAkpAq0oJPZRa0zx/FPXuM6iyNskw1i7KNsNLoFDhlkLGgsiil3gt2AwQQn1rH9lLa1qUoW4CGkQ1tqGxKoxt6X7CV1S/9N351xo95Ycc6nExM1BPjjWuswTFzMBMVU3tgxRPXs3zTV1m+6av7nBQvn9mFyrp7fb7F4eH5EtMeTN+dl//qvfzTlsv47sAlrKpPY0XtNNbWu5jpDHPh/A1suyLl54uWH9J+ncjx7KHEpK14tsXJTqsHy2FiV6W2dXNpcSKzUt3E1fJ1iOFRRKkAGR+kJLOlyin/KFj2zT+iMr9Ibr6kelpE/mmXrxVeytpFj3NBfh2hdsjKiBufvZL6nd1YEdSnav6u8yrsXMx5MzfzgekruNDb+4Twdf1n89j4NJQWzC8McePUe+ixAk7v7OP+oVl81Rvh9wqP8+X+K/nlhoU0xnzsbEI+32Be+wj9jQLrRzsoZgK6vCobkxJl3QAs+pIiNw+ezpzcMPdU4I87fsNpha3cL09n+FQbf9im64ExU+aulBm82B5pdxtRCbSf8uy733/03pAWOyEyPuOXzmd0sSQeFAw2HLx8SPeCIc7p2swbOu/do3CiUHx+1o/4s4v+hKG7pzJ+fzcfmnouX+h5CIBRVefW+lQAzvO3MN/ebh/2cBQwmObJigiQPBL18N2xWTxd6yHnhswsNqjGLmsHuuivFqhPdXhRYTWOMF+zw6rGnxYH+NuRBZwyq49gms261b3IQOKWXexyuNv+PhcTwbtueyvekx6NLpsXv+ZL3P3DDxzwulqc3Hzj6ZdioXhZ/hmmyAze1LWTz01cZ1UV8D/VWWyMOnlR7lkWO6P8LuzlB0MX8OCWmaSp5MkZUzmntJF/e+qFPP2afW/zRB58TjBRtXIo4soEx0vceNWl16Nlc4JMipZvfosTnomYVg0OI6ScnADu/OHjxD+ETLvN7CkVtry0gN2AabcJ/sc7j+qZLr1emQ2NDgAeenwup3x7hLTgk2ZtBu+Yy+dnL6A6R7H4nI28dfrdxMpmQWkIhWCmP4IvYj6+5vcZ/dl03LLmO1MWUDs9RHQrar02/pgie2ee/1h1OTfVLqewRZPfFDCnPAaA9iyUZ2OFKSJJ0ZbAqUvsUKOlQKQKfyhCRim5bZDbBo1uB6GaVbFtRUQjQI2NQyMwFk65DMNLF5COKv547cv40SX/cCzelhaYhCGR8dE9naisi99XR7kWyrNoTMsxfKpNY7pCC41TkSTavK/5NRZxAfrP8+hNunHXDWBvHqK0ZiYDvSWEqyhtNCJJ0AFRu7GWywwI3HEorIek30JLqE0zdnPeI1n8EdAyJc5ZtD/VwB/xGFtoEbVpXjntUQCueOKVOFbKnRd/g5f+6wepd0NjyUzanzKJR+625+61sKdJ8f9afSF3lhcT585jzR+UmPO9z7P+jcfH92KLE4fTPnIj2ga0qfRbdcPOvVKf3jSNmbkrueXX5+D3mx5c8bk12vJ1bqi9jHWbpuC17TwmW9mwWbKPbe4Yz5ZVg6LMHMYjOjocaO/CfXG8xLMnAxpQ+jipmWh1uQdaAss+OZCGTxPLTdycdhRcTqSbzJILPoWWEqHUpD3Nriyb+m6Wb2sF4ycD6fg4MgiRvd2AZx7UGpFqKjMlURHkuENtXoLvpIxEOXrtcabbZR4OZzBayeJhStJlLJA1i+7po/xJ7707iSsTPtXnuyZjaX1S4abHzsPa6pNmFM+099AfFDm7uJly7DNcyfHPT1/MN9OXkG7IgQZbg8hHCAHDgak4SFJJkNj0BUWe9qeSlREV5fO78mzWj7UzUM/Tm6tAByzJP8635l+K3e8ilABLgG2hXQ/SFBHE9L+wQOOiGp35w9MzpsVBIgTeWIJMXKyGJM2mTGsbZ1Z+jJn+KHXtsjEZJSclT0UZLvEloY55PNasCudwYddGfjSnE3+9y28GZ3N/230sdhJWxw731+ZRjn0edWeytPgoF3mKJ+KEJ8Jp3DW+mKITcFpmC3eMnsLmWonRRhalBOd3bqZoNRhtZBmrZpiXGcSXMc/GVRY624WaM/zNLJjez7/3vZDzz1jHSJBh/IkZZAreAZ8GheLXgUSMO8Q5CDoFQluH80y3eJ6w5NxP7rFy5WdrzyLQDvPdBh1WHQdBVUc8s2kGZ87cvNOgMS996srlrsH5/HTjmbRn6tQij76NHciahXI0v23M5UF/Bgv+pgHPIbDs2BB0R1TfohPHqqY5UXskG94fLq586ee47Y7nFksmxKIrX/o50NuP7XAOvo8GSzveZnoaAGjNivK3d1vmGvePuSX696O8Zy2OFapeR2azCGvn70nVWSQpueS3avpfqEldiT3ocM/WufzhvN/xktKzbIvbuCMRxB1Z0zdNCmq9FuWFKb3zhnnHjDt5RbbOZxtw10OngKWxz1bMcwdYv7qXuU9GWI0Et+whlEdcMPZeaE1pTUz7MxpnPEQGiYk5U43KeaBARs3rWIGMFE5doQUgwK6m2FUTQztljRYCPcWh3mWRKWURYYxIlTlmy0IIAUoztkiw9KJHGI9PvInA5x2WhQgTZLP6Q1iCqOQTFiVWhJkEFpD4oGyNW5MIBf6gqT4J2x2ckTxivEpxfUjQ6VM5K0LG4FY03jg0qoLUB7sOVqTxxhRWrKl3W8RFQbYf/DGFN5oiE8XwqR5W5OAPx6RneDgLKvx2dB4r/C0EicOGbZ1c672SJKupzIXiasHA+RkqC1Jm/6zjoE7Dxx56FUlkMTXQ6NkNXOv5Ycva4vCztPTW3US606+7EZmAcEDEpk9V6sEZH7yRx79oRBbVt4gnoh5uX78IukIa0iO3UeI8kmOkPcsIkB0R1E/RPBHXJx0MbjzvYpaM7n1/doxnV8UOd9YWcF5mPem6MyiIgJfMWX1EzsOR4Eg3vG/R4vlOS2DZBwdzczmRbkhXXNkUgeT2/VaejYgVsrb3bOo9iSvLFv01y5/52yOyny2ODZMZf2GAGBlD+B44lplQ0hqZQJrRZDcL6tMsgjjLr4N5/HnPrzjFyZEVG+ko1hmY5yHzMSqVkArO6tzKK7Lb7ZAufOh11H7bhRXCBa9+nG/Puosnom5K7XXGyg4UElCC362byQPhHKyKjYhBKIE3ApYDYYdGtSVMKdaRQjNWzxDFNpalSJVk1VAPtlB0uDU2N9pZPdJJeTyL21Hh6q5VXOg5fHboTOxtHpkByG9TpDkXEcZE3VncwTqqaFNZoHjR7A18/wX/vI8z1+JooCVkBjROVVAPXPrbCvi28RMeivP8KDUC3rPlbpb0PAlAimBdvZuMFZFtaxAWHEZrWb6ydQklp8FolOWpoSkIoZFS099T5O7sAADr6t08NjKVDr/OY2NTqUYecWpRq3tcNGsDVxcfY1Uwgxf1rOOpTA9P1aZSkAEf638V/2fKA7wuD0/FNS7zA/LS57tKUnQD5hQa/C4zw/gzHAB/9Ju3s7HyWrY+NYX8eomyIehRreyRFntkb7ZgdeWRIqkpj7E0xy1hD56MqaY+gZ7DTCtiipXnsajB7bVT+dXIQmqRRy1wGRksoBOBcBQytI3/vyNRttynpd3+MDFQPZ6FlgVfuBFelmH1X197SP1Xjhb7I67sa/njOb5dNuuvjAWSUizf8nXzoBSsGPnXfVrR7ElcWdr19kNuTtvi+GMipiVJ0GAqWQBch2BanlqPRecjFUpPC4bOLSATQVRvZ3VvN+3FGudm1yPaIrZemsGuGouu8UWal5z3FB+etpxTnJyxxP2Xl3LKyiGE1tz7hjMoLgtAm6oSpypRjqkgcKrg1jRuOcEeDZBBBEEIGR9tS5Rnk2ZsRKKRUQKpRjsWVj1GC9COREYKqxYhogRtWWBLojaXqCDIb0vNWC6KoV4HKU3flVAjinnCKQlv6Lz3hJr4e94iJSiFqDTAkkh8ZKKRicatQHYQ0JrEF8QDRmxBg1PXODWNcgQq42DVbOyxgK5HJU7NJduf4lYSRKLxxh2ivIkV3arGLafEBSM0Os2CE6emsOsJYwt9xk9LCdttSussMgMwNpbhwU0LuL99NufP38jgWJ4H7l1E2hlT6qrC6g7iPPTOG2Zs4Z77ZO6LS1/5RaYlLt5IgAgDttZzpC2BpcVe2JstmFCmN5VT03jjiiQjaHRKTv3EjTSmpmj3z8l2NExypgC3KlBOU3gMBMrCNFCo2Hxo3Wt538xbuHruk6zYh7gywURC3Qs9mxd6q/nk4OnE2uLKwhPHfUw79+tfRv++w/p3v7/VP6VFi0OkJbCcxNx+23W7V9xkbaxawvInP3dA62qJK89PJgakaaWCXB8jZ06DJIVm9Ym2NHZD0HO/RtmSgQs9fteYw0v89cyyC/zmnP/h3+ZNYVvcxi+2ns5gOc9wlJtc/0BaJV7ZhR+ZZp73bJjLu6yIddVOFrYPsdWNaMQOI4MFrM0exS0mW6veC8o1r0E3G4Fa2vhaOzFB5GBbKd35KmNBhkolw9P2FOa3DRGlFklqYbspF/eu4xX5p4ACdeWSZhX16QKEJLtNEE4zDUqTkk+cs8lukqxZ3MVZP/sEj77i08fgHWkBQJIiU41QEOcgyWui/jxPDuZY0x7QXapSCTyi2CbamOcbbT0IW+FkEkrZBuP1DNFQBjpjHDvlkW3TiAIblUjjkwBYfsKTbg9PjPSSpJJq4CGl5tUzHuEnW85i8L5e7NPHedmCJ/jDjt+yKpzOv6+/gOHRPIVig9NKffyw71yk0NxdXsRYupm3lbZNHsLvTXmU/rjE9568iN71CTJI9/vwX3fPO3lmpIfaqg56H1LIOGX4DMtUclWPkzLhFsc933r6Mk7zRnmgMY/bhxYTKYuheo564BLUXGZcNMJ/NabxwNBMPDvh6Y29kJrPh5s3GdMilmihSNoT0yy3o0FPqcLfP3UFf3HK7fvcfrht3qSF3p44XgeiE4gUlKe56rIb9uo53+LosHzj3xmRhYl+BilCSJZ2vR0sixUj+58U0RJXnr9M2t8qDa6JY0WqaHRajC0SFDb6uKMBPbdvA9ui/9IprCt38oqOh1maifj5pX/PmzvezOC6DtwRC5VJObOwhVOcHB8ZOItbv3oxU39jxBVShT8EP/vtueTXWtR6wM3YOA1NZkRhBworSJFBapZXGoQ0MbYQ4AqEojmZrsGWYAlEIzETgdpGpM3eKlKifZuo5BJ02UQlYKsRZHBtRJIgUoVOEiOy5LIUnrb5yYXn8z8P/RFfPfc/juXbclKjk8S8/0KYyqisR1L0sGvmfW50O7jjabP3jp60fkvyNnHG9PBzx2JkJUR7LtqzcCoRnY8lJDkbGZrY0q6luOMxKLOO1Lcpz7IonxuSedZjyoMNonaXLZdlSM+uYiWS7MNZooIg6ITOex3iPLDeY9WzC1HdCnpCCoWAF01dz/KLCghXMbCqm1nPxAd0Di5f9gXceoI9UkMMNmey60VzzbdosR8s/vSNxD2a3GZBYXOCXU2RcYorBSL1iEpGmHSGHMQ6h2wD/BFN0A5pxtjoycQI30qCDCUbR9tZWTqDf7znXQSJzc8v/dpetz/vP26grfRWLurZwKWlZzjd3Uo19bh980JuuMBY6x3PMa1IBdpWLXHlhESgDjRLs8URpfXNtRd+71Vf2ePju954jrcb0cHsz+0rr9uemaggzdjbq1t24MqXbhddrrno0yw5/5MHvZ8tThxWqpsAUGGA2rgZtXUbjI4z9dYheu8LaWdHAAEAAElEQVSBzIhCRpqgTeCOSf7xpmW8ds3Vk6//0+IAF2TXkndDppQqJEpONrt//+aX441q/DFNZijFWpVjxarTeXpjL7/bNIMt67oY3lZExxKZmsbkSQ5S38yDpy7I1DRwlHZKFFsMV3JENYe8H+HZCXFixJTh8RxPDvcwWM+TpJJcNmReZpCtic+KhktWRuRnl5l+9jbqF9ZJ8mbiz2ok1KZ7RCWL7IBm25Z2yqPZ3U9Ui6PC1fJ1qHod77GNZIZT4oKxTMhsschstIkqHlsH2hgfzBNuzVF6VlD6nUv+IR/nvjzDT3ehn8mT2WxhDzqMbisSDGSh30cOu4iyjajYpKMeW7Z0MF73SbUkji0cO+X7ay9gy9puhILo2SI/v/VC/uSHf8H1N/8+g4Ml8vdniH/Twb39c3n68Zk829fNQyPTeaoxdafjKFgBllDEDQctBTJ87gHpBx75Q668431sKLcTRg4IjbYEMtFYIbijEus53Ov2lc3d4uRgybmf5PLbPoAlFOvjLn41spDHN0zj6aenM7K6g2hdATHk8e0NF3PLxsVsWDWVp5+agRx2sYYdLD/FcxOkm2K1RQhbIesWIhJYUrGoNMi2qI3rn/i9fe5HWe+5UvYHtcKROOwjgnI0t975kQld9rjk96/cewLMlVdsj+uuvPyGo7E7+83Ssz52YC+QguVbvm6qrC0JUiCE+b206+27Lb5s6rvN7+nvMXZiLU4adBKjwxDVCNBRROeK1cy8NcIKEkScQhyjHYvC5pjoW1N5312vB+AUJ8fFvetwexrEcwLIpKyum2z9/3z4ArrvGTST5XECYUjnExFdD0hK6xWFzYrcQIIWYIUKbyjAqiUo30I7Ftq2wLaaggloWyJShQwTRKJQno2WAuXbiKT5eKpAgXYslGuhHYkVaLL9xuYsKfk0puVJp3ag0xRSBaUiSMgMae4bmkVf0Gpuf6y4Wr4OHUXocgXKFbAs4s4sSdYIIzJMccdS7FqCU4lwB6u4fWXcvjKZtWMU1lbI9DVwhmuIegOhFAiBtiQiShFKoxwLbUvsekLiWwTdHknOoTbVwRvT5J706HgyxR4P8QdDen8T0fsdn+6f+rQ/E5DrS4lLmuL6iI5VEZkhjbagZ9EQF8zdyLyOYcbjDG4xotReI7dZkNkw9pzH/oI3foUXv+ZLvPSav8UZj7DqMSJM0EmCDiPccYmInvuLdYn/hsPwTrQ4kVlaeitxwdw3nRo45QQrSJBRihUkOJUUpwzuiIVMwa5Brl/jVjWZYU3qQdymCKakphfRGOQ2CRobCtyy+RQe2zqVNUNdnPbjT+11H9SIx9hYlt/0zWH58Jk8E0+hkTqMDxbYmFSO2rk4WLSl0a46riuVW7Q4UWhVsBwgu954jvcb0TUv+gykmlvu+8Qen99x/29feR1XXPl5MziA7X/vwXLmlvs+wZILPnUkdrnFccikXVizV4oaGISBQYprfcTiuYyfWsIKwRuF9mcTNm2cz/0f/8Vkn5WrMwm/7VzLs7UptDkNflE9jfe0bSRRFl5ZYddShAZn3CJIJFgKvS2DPyqI2jXK0aAgKkBUYrKcV7kmixhA2gqtBUlokSmEdGeruFbKlEKFaugxPJZnbDAPAiwvxc81GE1y3F47ldP8rbw4/zTl2RmWFB/l83IZgTcN4ViknjQT4LGm0WX6yIikdes8pqQpaE1ma432p4so2/glBO0Cb7ODjB3suikVz/Wlk5OfQkNhiyTKG4uxbL8gbLPRFlihEe2SnEDZRszTwqI+3SLuDLBtRZpKKlsKYGniksKqSbLbzPUYdAuouojUXJuDj3dT2CqIRnIkF9X4cu/vuCsAX8T0pSV+PnwWQeoAmvIci7t/uGcLJ4DhrTNol1l63blUwvkMDhfQVYf8gMAbiVGexApBJEz6DO+NvZXVtzg5WPCFG0muzTJfVvj1+AKeHe9m87NTsMsW3qixVkgyELXB2G29iBTa6tDoAm8cEg+SeobAyWArc62HHSZIcMoWDVXgV+l8Lp29hoyMWXjTZ3n2dWaifMm5Jiljwq7sO+NnMNsdoihN/5eciHkqmsK/972Q185fuV+9WK6+5LOs/PUBTsQfJp798LXM+/cbTEKKc/jylRZ+/ka0ABUcnl5fqb/376sdG9jf9svjrIeM3j34XHrmRxGpZvmq3cWg5etv3P533zdY1vsukCCwQGmW9bzTZIlbFihlbHmA5Vu+vkcBpsXzk4l4Vjf786hGA9Vo4NwxgtXRju7qANdFBDH+1hrZwVHyG7t41fwlfGveD/h8728AWFvtIlIWz5a76EurWF6Kdm1Eo2n1pRR2NQYcUk+Q7Y8QibmmZaRQjiTscM2EXyUyFrxKGRGkOUkOpoAlzXkkWfM5lonCqsbIemQ+I5aFsgRagAwVDiC0sYJKMzbVGQ5YguzqZt+ZJEUXfJKsYLzhk3Oio3n6W+wBHTfFsijCLodIzzb3KiHwt9VMAk6qjHCnUlOFojWijFnObt7jGwHSsdCegwgiLFuibYFVN9eLcgpEJYv6FJvaVEHb6pTcthTlStKCi10Osdf1gesgzphKkjPrLT0tsOsJMkwYPMfl0pc/zHic4cFNM5jROcamchvptgzjrk9Bg7b2Lows+MKNaKnJdQmsUGDXYqxaCImCRmCOUUrsGjzzkfc/57m7Ofj+4XgLWpygXPBnX0H98ZnYNcj2Q2ltZMTJyIjlynOQqaa4MSEzYpG6YIXGVs9uaDKDKXZgUZ0myQ5qogLEGcgOatyqJNrYgShCMDvCzUfM+caXWP+uDwCwtPgWAFaUv012iySqZigPedw1mOfhjulUKz6ZtQ53NWbzhsLIc8a0x9KedN173s+8/7jhiCSOn/YxE5vFaat/7RFBQ3qcZHm1XMoNrVnC5zm33Ptxllz4N1zzwk+TZhxuu+PDLD3nE6x4eM/2Rrffdt1kRuOE0DLh9XrbHR/eqUnqzQ986igcQYvjhYlKlqvl6yYfU2GAWLUaZ/a5yFgTh5IoL+l8pMK7rn8v4/NBuZrvvPobvKX9fv5Jv5AOu8aWsJ2vj8HD26YxZ30F7dokeYeoDWbNGmTbSAkdm4GncjTkE6KsIJqlAY016OKNCtMgFOObGo17UNqeEb2lUsKSCkcq6lFzQQE6luClxEpSTX0ckZIVIfPsMq8qPcglvmT6gv/iVRd8gK5HFMoW1LsFtemQFk0/mHXvee6gv8WRQyuNqtURa7fQlmqCqTmCThunZiqaJqs4BIhU41ZStC2QkcIT4BZslG3sNzLDTP6tHIgzJkiRqRFhrMAiGskhAqPr2CVzTYoU4vaUsR6Fv8VBxqaSKskaEdAfEigXwq6UN80xEzK3Vk5nqjvGQFwkSm3WjXUgHcWjX9m3KFJRKRYN1ja6GatlYMQlt1nS+VSCW46pzPaNp7yGs997I498bd/rey6WzfxLAJZv+uohrafF8cVFb/4KzmxBUreoRR73bZ1NbSSL32fhVMAra+wAEAJVh/wWjbLNdV3YCG5FoVyBU1NEBQstICoKlC2QkRG7naokquW5z53FxdPWsahngJfe/n7Koc+Mr4/T45tMvmW/+ksSdRphalNyAxItcWXKpnIbI5tLMH/fx3L1i69n5d0fPebWXPO/oUEnpL59yI3ur7r0ejYuzRpRQJnP8+FAxieoj31TAFl61sdY8ehnAVjx2PUsO+0jLD3742gp99pbCIzIAhhhRe5wnaQpWNb2Xi20bMFONvYUz+o0JRkawYoT9NQpiEaIrAVgW8inNxJcN4fXd15L9R3jfPP07/MDeQGeTLhrYD5vfOb1iPVZRG0MKqZCGylpTPUZPQ3ymwSZAYHyBGHRQlsWScZFS8hvSRBBBIrt97NUI6PUVK04lolfYoWWwtiCyeayqQYLUEa00Zbpy4IvibMChM3YIk1tqs3c+8yEfTqlyOD5BcYXK4oCll/a+p4/ZgiJVhqhm/ZtjQA5IhF539i7AbLa2Pk1SkMcG3FtwlosTcGxjfBSriFs87fVFGlEI4I4xhkSFCsO2pYUNjpG1AF0JM33vmsjpnQg0hRlC8KiJCwJcv2KOG8TTfOpzU1pc+rc+sxiGPSJ2yt0ZmsM54tkNjko19yn94ZJjjPXuR00K7EaEdQb6EoVnabIjA/AaR+9kVXXH1o8uyT3JgBurn33kNbT4vhj2akfJregg9EFNpkhyPUZUduqm75UpArR/Bw5tRRvNEa5kiRjoWyBW0mQkcIOUtxxid1IqU3zEKmxE/PGFd4YyFQzErnUFwLZlHlf+zLOuCT92FlYISy64UbcGHJbwdycXZTj0jmmKa0N+Kz7h7zhbd/c+3HM+wDL134JZvQehbO2d+b86/ZEoUNtdL/k3E+y9Yo2M4ZwQdvA/jtht2hxQtMSWJ5n7OlmePP9O1t57SuzBEALYfqzXPl5I7i89HM7ZRLuKLLsyJILPtUSXU4Cdh2Y6iQm9+QQ4ex27NBChook59D92xEyQyUaXRbv3PZu6uc0+MlLvsHpTpaPDJzFVx+6Amd1Btm3Ft1RJO7xCXtSXti1nl+reWzzMqSuAKEpdVa5sHcT41GG322agUgFVgBuWZNkzER26lskjgNa0Bh3CUOJyiisthDPi+lqrxImFuWxLK4X05Wt8cR4L7ZQrGt0cV5hA6d4WwHNKU6Ocy59hk2PLaA8S1KfqVC+mfEScctZ8ZijFToM0VGMFUTYDR9vXCBTSZwItBRoC9CQZCXueILWYlIstuvbozyRmv5BYO6NdkOaBrISUk+gXIE7BoVNisQ3GXdJRpD6kHYqpJOSZGz8QUHYAcE5DRCa5Jlsc9JZ8J+bL+DXYwu4oLiBUDlsDtoZi3yybsTv/uizezzEJRf+DTff/0l+svYcuq0MGxKb3/bPJl2fI79FmOyqkRBtmworOzQC0aGKK9ASVp6v1HsEqQfOqMXQ+BQzgAzNhIdbAW9cmyzoSOBUwSunhEULBXhlhTcam8k7pbECB2UL7MDCCo1AqSXEeYGIIfpdOyuG8hS7qkipGRvMM7y5DacthAtg7VAnWguimovtx6hEolIJFRt/0KKsGhRlZq8Zfyvv/uhOv48VE9u/5kWfQR1CFcuiG25ELzPWk6Ip7h4utNxBkDqBWPHIZ8zvR3e+R+6pemVvLJv3AcjlWL72Syybcy3L199orME8zzzf806W9+8+8bFs5l+27oMnAbsJLVqRjpexHRuKBag3IE0Rvoe1aj25UgH/0+287eL38vF3/z9em6tw5eA8Nv16Jp3PaKhUUdUawvMQne2MzbMonDJCNe0gv9nCijWV2YL6oggqNu2rJG45QUQpRJHpwSIFIknRiQJXo4WpQBCJIs25aEuQ+jZaSqx6ZAQY10JbAquRmMSSRCMTm6ggSfOKwqnj8C2B7mwn6MmQuqZiN06sY3j2W6DVpMhCHIMlEY0GIgwRQoDrmp6Xzb4rpGqy5w7pDrOVaTpZ8UKqQRkBRjSMcGL6+kji7jwiUThbx7CaggyWRFsC7doo30G7FlYlILupSvUFJZQDTl2RZC3qPRJ3GP777hciNMiegKwTkSiJiCSpC099cvcYdEn+zdxc/Q6n//WN2ArcbZDvS/CGQuR4Hao1dBxPVpXhOFghPPalQ49nW8LK85dwWomwKHHLmtxAil1NkHFqxJVmJdQEWgpk1OxHhBGkrapJytSWhfAthAKnprAbysyV6aad43CAXfcZrbjUe43DgT9oYmaAWq9AaJPcJxON3XREyAwluH0V5vw44JIXvIZfn/XDPca0y9d+CWCvyc9Hi4k5xKsuvR7lHfx3w5kfuBG1tM1UVngw0R5EtASWFicJJ8RM4fr16/mzP/sz5s6dSyaTYf78+Xzyk58kinYua964cSOveMUryOVydHV18d73vne3ZfYXq54cjl0/rpj02pbSWIex554tt9923U6/ARCCKy+/gdvu+LCpZNnBt3uClrhycrFS3TQ5OE1Wr8XbPI431CwdEAIRp/jDEdqCzidi5v6z4E8/837m/fDtrPjnSyjek8EbBd0IECNl7IYiu8Hi5k2nkHdDivPHiBc0sDpDSpmA4TDHQ5un4zyVpbABnIbGG1fGWqwKVkMgqjaiauGMW2T6BNmNFum4i+8mzG8b4rSufvxcRNaPyNoxo40s60c7uHvjPL634QX0JW2Tx3dV5ypGTpc4l46gbY07ZCMkkE2Z8929e9q3OPJMDMJkPge1Bu7mUXLPjlB8ukxxXUR2MCUzmJIZMv7VMkxxxkJEohBKI8MUuxJhj0fIIMUKU2TTr9oKFHY9xQ41QoGMTNBsxD4zGe2PgDcCmXUOuuwgUoEdQNIb8anzf8opU/uJ2hVRm0Y7mo2buni4bzobww7WNrr5lwv+jZWX38jdV31hr8c4IYwPJ3libRNoG0totEmsQqYmsFe2bO63fs7+Ky1ObmQC7jjktkBxPbQ9rfGHjWe1W1NYkcIbT8j1J+T6FM54jDee4o+muGOJsaUJYqzxBu5wA28kJLulQX5zTGYobf5ovHHIbYbSQw7ej9pgRQcdv3XJrbWxnshxxgdvJF1dINmSxVvvYj2Vw9qYwd3k4Q9YeMPgiBMiPN1OqpHBwY8en/nItZMilbJN9cpD73v3Ydu9wynYHC9M9AG8+uLP7vT/jixf+6XJyYtJCzHLgjBk2fT3sLz/m8ZKbNfXtcSVk4od41m0IhkcgrHy9koBqznZpDTWmq1M+/YT/MvrX8m5N7wT/cUept4T4w8n6Cg2k91JAo5NfqtibGsRNaNB38WSoTNs6rPN+LJ9laT7/gruptHt1khamW01K66E0iZuiVNELUCGCdqSpBmbpOCgXBvlWk2bVBDKVAQ4Iw38gYDEE8hSxDUznkJN7aZ8RgdagD+qoT2i4IdcftsHjvr5brEHtIZUGaGhWc1BrWZEEK2b1rhq56rNyYonZa7VeJdeflIa2zmtwHNMMpEQaM9FSzlZBSMShawEWGMNZC1CxClyYIzxBRqZAEoTFSS16RAXFNgaZ2qdtlKNwVqeO674Muvf8QGe/fCeBZGbq98xuxMbO15/TGEFCpGo7QmcTRFJSLOPdv1wntwWz0dSXyJjKG6McEdCrCABpdBCmH5WloRUYzUSnPEQESWI1IwBrWqIbMTIRoxVaWDVY+zBCt5IhF1XeCMxTq0Z0wmBN1BjyoN1Zt4eMvWeiI6nQ/zhhPymgFy/xhvTeGWFP6rM68spdt0IPSJKmFUYO6bn6kCwahHOSOO5F9wLj33pWtDGxn3yx4YHPnb4YtoW29GA0vK4+JlU005yTogKlqeeegqlFN/61rdYsGABjz/+OG9729uo1Wp86Utm4JSmKS9/+cvp7u7m7rvvZnh4mDe/+c1orfn617/+HFvYHaE0V1/8WVbes3dv70Mtn9sTRzLLcMJre8eKlv3Z/4lqlYkGqDs2u98TSy74FKR6n9YNLZ4/TPpZb+3HCjuQjawpbU8V9lgDf8SjOs0hOyjo/s0wU+5MQAri7rxpvthsMuo/upFZfR1Unm1j24wOkizQrUkKCZvTdjapDvxnfDIDJptaC1COAGWySbJ9kI7IyYkku2ECeeXYVDs9qrFHpCzi2KKS+gy7WVIlkFIRVDP0bcnxaO9MXp8fBaDXGaf3BVupRS7ZTRZhu8YrBTz9mj33M2pxdNFKmyqWeh3humBZSNvGG8nitBVQWccMJCUgBbIRIpSxRhCJQoQxIojNMo4NjoVybbRtMkjTjIXlismGnk5NIVOod1kIrZGxwKkZCzGr6Ux3+twt9CcltlRKKF+hPeicMcbw5jaqQ1lufNV/HvBx3jm2mErR5yXZZ7h06hp+MFQgHvVJfEGSdwg6bOKsxIo0D/zfQ8/2a/H85JoXfYbi1AxxzghyTl3jjUQEXS4y1lihwq4lyCAmzTqk/vaJO5kYv3ftSERTRJD1yGT4WebzoJtZsHZD4ZalyaBONXYtQTmSJG/jVoytWJwTxk6sJrEDTeKbijC7YSz2kJAR3rE9YQfI3vrcHQg72oLNuCOEvzjkVe7ElZffsNc+K/t67mBZeuZH92kVc6jc/KCJMSfi9In/n4vlm78GmCqVZTPeC46z12WXLfyQmbSU1qRQ0+L5y0Q8C5COl5G+t71vT5oaIaSQR9Tr6CfXMvVpMxksfA9cFxWEJgEkiqBvkPbfxmQGuxifm0HbzV5W22ycKky5r4wcGodoh0nxVJntSBtZqUOtWYGgNYQRsiyQno1yJDJRiDQ1919bGuuwCUuoJMYeChE6S7HYYE2tm+qCIgCZ/oBGV45sIeQ3S/Y9nmtxFNAKnYKQwoghSplrSGto6GZ82xzYTIgtSYJOU0QzEUFrZex3lDa2X7a1vcolMVZJKI07GoBSiKgpxtg22rPNtRPHiChCxO6ksCiUydIPOm2qMwXuqeMkmwogNY6d8uCyA7y/S8gOKVJP0Oiy0VLg10JEGCESY90oshmiBT089I1WPNti7yyb+ZdkOop4noNQatIuTzuWsVtMEjPWSxLscWV6/DgWIknNvTNKJkVNANGI0a5lBOokNZ8JMPfWKEFWQ2QlwE5SsC10xkVlXUScku23QGMqZKRA2RIZK+OQkM9QnV/gj7ruOIZn68DY31hqX2jLiCpgqnlm3dKA9xzyalu0OCE4IQSWpUuXsnTp0sn/582bx9NPP803v/nNSYHllltuYdWqVWzatIlp06YB8OUvf5k//dM/5frrr6dYLB7QNn9821/z2qVf2+vzE5Uf+xJZDkaA2Zu4ctWl13Prr46tvcNtv/yIOaZd7MGuuswILxPe4zc/8KnJZrYtTh5UI8AKQ9hcRlomuBeRR36ji9PhYQWKpC1jskeCGHu4jhgrk6YpQitUuYKo1SkOj5PvbkdlHeKiS6PbpjLDoT4rxQrADjQy0pNWd9mhlNQTyNhYJKWOIHWNbZi2wSlDY22Ox4Zmoy2NiAQ4mgGpmdkxSjXyGIsldl1SS7ZP6j1Un00jchjuL+J5oB2MzVSLY8rkBIhW6IkKxThBCIGOIkRdIC0LWTdZoNqxzIRDtYGoNozlQpxAvW4Ca9tCOA7YNhYYuwTXQaQ+qSNxLIEVKdMU0RVYkelLYTfMBLJQErthrOqe6Z/ClkqJseEcIhKcf85aXtC2ju9EL6A2ljmo41013EPRDrgi9xS97hil9jpjcy2ikk1UcE3Wu2UmZ1u02Bupb2PXU6xAIZsZfVYlIj9UMxN0rm0mXsIELSXKsZqVUQKhtt9vzYA1NbY5QoBMkVqbiSHLwqqZwahuCi8AltbYVRu74qA8y1j4NTOutYCoIElSgRZGeNECXvLYq7nrzB8B7Fez++OBJRf+DVqIgxZbnv74tcy78SvISHD7yuu47CWHJ4766YoP8ppX/P0+e7rIRD9ngs+EbeH+si9xZcm5nzzmSTh7qlJZtuCDoPT2qpdnv7D98RYnBZNJQ2mKjiLTI0MKY98FCM9tevs7CNcxywUhulpDJ0Ys0UpDGMLwKH4U4w0UoSmE1GcVqMywzARf8146WYmQJEacge39NZrxNABRZKoM6jFCmcoWbUuEY6EdiXJtrEZiKlxjUylTqfo80D+HWbHJrNZC4FY0lUdL8Kqjempb7MJO8Wya7mz7JQRaKUQQbu8h1bxOdGoa3WuaQoxqBoBSohNTCSWENNdT83HSFFGPEHGyvdJFaWNPB+ZaTBIj4igFjk12iyB1TAXk9Ks28qHZK/hax1VUIo+NAx0HfLy5Po3d0NR6JG7FxNTatxE6B56LUJp4Rjvjc0+sBIsWxwDPiBsyUQilzH0wTIz4YQnzdxwjXBdtY2wXAakUpNqIMklqPgupQiROs49RhEyMUGL6HTUrC5N0e7VVIhFJihWnaMfCHdhebqU9C+FayChFS0nS5mPXFZ+8/TW8/pXfwBISToCYdtnc96GzGVY8cXBJMquuv5aFn7+R1Dc9S2/75Ue4/OKPH+a9bDGBas1PHVecEALLnhgfH6ejY/uX+7333ssZZ5wxKa4ALFmyhDAMefDBB3npS196wNtIc3s/PYe7cuW5mBBXjrWP9u0rr9tNUNkTx3rg3OLoo5MYNTZuBgVJMjkoFdv6ybguzJxG3JMHoVGeg11uoKs189rmwEJjfAtlHCMdB6tUAF2kMtPFHbbIb1H4IynKEaY/hgPuUALS9A6KimbyTtYVaSqIs6YXhz8o0EMWutmwOXUhiHLQMUqSSoStSQop1dQFYH1S4dnaFGJlUeioU9ECGpJwvBX0H0/o1PhKix0bGCttfoSCWCFqje3NQMMIMgrC0FROKWXsCGwb4dhmEColIoywtMYVAis22X1aCLRtGTEla7L67UBjhSnecER9qkc8kKE2BcS4g12VtLt15noDXDB1E9951f89qGO8f9kNLP7hp3lsdCoz82OEkU2xq0ot61EVGTLbBFYISaYVXLXYM0vP/jgy72E1jI8/qTZWCWEEgSm/Er5nrv84xhoHGUSonLnfadtUCooJ//eJrFgAaZmBKkAaIpLETORMbDybMZmwFY2d5MCWJpPQMuJn6lmIxMZuSGSiSV1BkpVE/97DBf47eeN7l3NVfhXvvPVDbHmqh3V/8f7Dem6WnP/Jw5KtB6Y6eMmFh7auuT8JJitJJhoQHw603Pf9YX/iSi0O3z1mIkY8nOf/YFhy/ieR9YjlT5pMfp3zd+o5OMHy1V882rvW4lgzMekN6BQgRSfNLH/XRWR8Ey8IYQSVZjyCVpMJIDqKTD/6Zoa1KBVodEgywwoxPI4OAjMRPlFxkKTodLtFtXCM8D0pwlguot5A1Nku+FgSC0jaMmhrez854di4ZU065ONUJYiUuGCRZCVoyAwc1bPZ4jnQaYpuBEjHBttuCicarRVCSVOlMtGLZcd7lNp+nYpJuy2Fhkm7OTEhsITRdhHFts21OtH7Z6IKII7NZLLvYYdN+9BAo7QgJ0P+fPpdvGrewwd1jL/5f+/jmhd9BnfcVGGJxOxvmvdRmTwiVlRnZfaZDNCixbKFHzL3w0ZgEn4AYVuTorKwm5aOsRGxJ/4Xyjb3WjAJdmG0/XoPQtMDybK2C97NeFcnO96TnZ1ETRGb74CJKjOdSGRDIirGYksXMlhZl3n/7XD5L9+N8+d9TM+N88BdnyUe8Vn//x0+i8ZlM947WaF7qCxf9xWWnv1xli344EHHP7NuNr7Ve+rb3KLF85kTUmBZs2YNX//61/nyl788+VhfXx89PT07Ldfe3o7ruvT19e11XWEYEobh5P/lcvk5t79j35J9CS1HQoRZefdHufKln0Ok6ohWtOzLHm1CWJkQe/YltLQ4uVBBiHRdM1BoCiaAybrbtBU37EJnXDOQDKPmxPf2wQFAWqsj4wThOohinjhvYQWmOdrE5JsWJsvZCjUyMc3ohNbYDdNsWSiNnGxGb4QYZYPVMP00ECC0ZP1gJ66b0DmljCMVPV6FUMcEWlJyGswujVKNXSxLmaqE6gl5y3x+oxU6TkxQbNsmyI1jUBKk8dqfzPaLIqjWUFFkltcKLSTCStCRNINQy0LYNqQpdhBhew7Kd1FZB20LhCcQqalkkaHCqSXYo3XysUKoDElfBn9Q4lTh1idPQZ6q+c5FByeuTND+wzybzsmzobcTrSSRl5A2TMWNUMYK73ffOjQ7hWte9Bluufe5s4uWdb+D5YP/eEjbanFkWdb9DpN9J2Uzyy/BLjuTg09E04okSdCNwFzzcWyquyYGrQ2w6iGilEX5DiJVyEaMqIdmIDrRUJfUfOYcG5IAGgFaK3StYe7hSkEmY54HI+w0moNay0JmXJwxY88HTTsGpQimmGrH//7MEr7+gqX4s8uIVLDgvz/LIy/5Z3JTNxzyeVp6zie4eT+aii49/aP7ncWnheCaiz590FUsO9p0/XTFBymVPruPpXdmX/Hs3nrngYlprVqyT0tcODw2aLty84N/c1SqWZYtvo7lT+/ec3BC3Flywae4+YFPseKRzxzR/WhxYqHTFGFZRkDRavIxOWEZNnFPbU5i6x1eN0FarmA1BRI1sxsrBivQ6FLBCNETk3VpaibRJybJRTODmh0m1q3U3NetZnVCc70CsDxnsg9UWsyY7bnC9JGLIGiXzabDAjvQ2PXWLPbxwI62dGhlktNS1fwON9eAlk2xPUnQahfhPVWTMa3WyiQdTfTxSVNzXTZ7tExOHk/0FIJmj6Htwo2OYmOvFLi4FY07luIP1Nl4x0y+7C3lBxf//+zdeZhcVZk/8O85d6mq3rMvkA0hQFg1OEzEEUjI0uDOsAhiWEQRETUgq4SwJGRkU5lhZtRh86cDKuoMS2eRgBgEBiKbRFkkSEISsvXetdx7z/n9caqqq7qru6u7q7uqur+f5+kn3bXcPlWprnrPfc9537sH9XitLTtgjalFUFcB2R4HAg1dacGrsqFcCS8i4ESH77W5uGppukcMlZ76/S813wgBeB6070NEIiaJmFykCSkhbBs6Ff+kXuMZ76XCSvZkiYTNdb7Z4aJTSUch0u+tIpngTCfY29rN35VjQwPm+lSC0gtMgiaZZBHSApQpJ6mDAGhqhjVuDERVBHZ7Ah13T8KmD0+FN8mH1S4x8/5/wbtLrxz88zTz23knV/JNxGhbApXhAce0XRMr/Y1picpVUc8WrlixAjfc0Puk6oUXXsAxxxyT/nn79u1YsmQJTjvtNHz5y1/Ouq3IsbpOa53z8pRbbrmlxzH0lSAZ7l0sKcORCc6caPdU6iy14vGkT5gTD8UuYUYlQCuoeO5O20FbG2QiATmmDnAc6I6OzlVXyWBfK50OgkQkDG0JRHYn4LSZkkjQgNMWABrpxuTQ2pS0CVuQvoaV8CHjpn6qcs394nUW/LAwvQY8s4MlvFcg+lYlohUa7SEFUe3hD/JDmLf1ULR3hDCxrhU1oRgumPYMwiKBW/+2GM8u6n6ChoZf1oQUZvdU0B7Aqqo0deFicaiODqhYvPudUydJ/NQkNUiX9cgiJGQ4BBEKQUbCEONqoVwLFds9aFvAr3TQPtkGhI3wPgdepUT1Fgm7A3DaNULNAZy2EJ595WjgmO6Hz9fHT70N7TMsOO1A6IUwAKB1lgOM8RDe3dkjpj9Sq+xT5X4WHndzZwmKPjC5UhqW1JwHoLNUSGrlndkNqExyY2wddHNrcvdW8m8huStCx+LmvTp5MkZEUyVIOruh6yCAjIRhpSajQpjGuKnJqkwmWVLHrK2CsG2IllZowKz6i8WBjqg5URkOmTF6PoJmc/JfphIvtg0ZSZbRcx1U7o1AR1xEtgnUbjYnioLqDrx5fggREULT9mk4s/7cXk+ILznyu1jzas+TuTV5JFcAYM3rK3HqHy/G2ZOeRbsK4ZyDnstqqJ65A2MokhD56i2eXfixm/FETwkUhT6TK0NpOHY8ZyZXcsW0a19cAcAk3RAEQ9o7hspLZrIkRUWjEJ5verS4jmlOrhSEFFCezopp0+9xkTCsfe0Yu7EF/uQ6+OMrYbk2ZEccaG4xye5UWTCZPElum5OEWgfp/izp997U7obkiUTpeaafkG1B2xKqMoRQo48Za0xT55YDwmiZJeDValS/I/DKDwrb44KLLwYuM6bVvmdi0mQMCq2hY4n052y6dFHqtqmTwL3FtEJCOja0SJ5ADocgwiaeND2mpJmXja0xr73mNgQTx6D63agp59zcihn/q7D7lVnA/wz8cdZP+TpQXQUoDWvbnvROWMuvhhOx0TIrjHBjkC5Jmq8lYy8EtMaaxp+Y3zP5YjTszC8RxORKaaif9DWT3FPKvAZDLnQ8AZ1KDAIQ1VVAwoOORs37X2o3FoAg3tyZXEwSMploEQI6tfu6rb1zJ3bnDdNzIGFZ6SRKKl4VrgvtmeSm8HxoL9m/xXUgbBv+7r0AOuNZ2LbZ5WhZgCOg9+yDbLKBqgpUN3ag+i/SJEarQnjjK9Xwdx6IT837NBq23NH7c3TQFemypV01vHtn3s91w7Yf4pF3jsQpFTHIyW+aHUHJhVMN730/fbti7i6m/lFsLl9SippgueSSS3DmmWf2epuZM2emv9++fTtOPPFEzJs3Dz/60Y+ybjd58mQ8//zzWZc1NjbC87xuO1syXX311Vi2bFn655aWFkybNq33gReh1n0xe7D0lUjqOq6FHzcT01SAxB0ulKKDADqegKiqNIFPwkuv+BOWBWFLCNcxdYTjCYimNthSAjpsAiQB2O1+ekuwjPlm90qyAYXwFayOZONyW0IEpuY0ANhu8sShALwKCT9k+rPYbQIisOBXWni/bQIQUoDUeL9pPHa0W1i+cwI+Ov09JldKTNckC7RKntA1J3ZzJlf6K9VQNGFW7ruNraZHS1017OYYRFCFICJhdwSQARCvkwhCQMUuBS1NOToMYiHekqOXI/7hOrTPVIASmPBSgNgYC0GNDyE1wnuBcFOAp/+nf/0BRNwzvWmS1j9TvJOr1H+LK7+UTnKYhDSgVfL1n5w0qmgMcl8TYFlmMprcmZVqnqvSdf4VtK86X6apsjNSQNimv0B6dR+QPsGnAQjL9C5KS50cFKY8jfZ8k8hJJExN+HgcsqICKhpL/+7UOITSUEBnKROlzCreVIkcz4Pd3I4Zj+wHfBKokRF85dePYslhasA1ovvj4Y/djRv//GmcUfsiHt9yOCbe/Y/46bE/weK516eTLcWejPYaz/aSQBU5SmINtSVHXVe03SK9xbS5km71c66Bdqx0P6/+9KGhkUsHAbRSkBUVQCQMsa8JqrW1s2SpkJCOSDYpt6CjMbPgLxIx728JU6oRQWB2D/q+2RGTTGKndyEmvKzSUDrz/RgAbNHZoyWeADzTN8tqjyPsJU8iCoExm32EGyvQPNMqeHIF4OKLwcoV0yIIoJMN57u9h3fZ/d8XU7ZZme3/gYLuiKZX+IuQCyQSEG3SxACeD9keR3S/MXC2NwG2haAqBGUP/CTekvFfgaiqhKqKQPg+RLMHnfBMrBBxEYRNCV63JcCT6/q3ol9YlkncJOWbXKHSsKTmPJOUSMaTWqvOZEugoJKvE7S0mvl9Rzwdq2b9DSTj2TTLMn2GMnpoIVnCPJOQCoDVmZzpcj0sCwKpcxhxqGRfFmFZkFVV6d+dGc8CSO6IScbevg+Rjn1NbxfZEcX+66qx55MduPB3T2LJ+K9gzZ7s85tZChirfeqAV6F2zobaORu/ftpDZMoW1M9aZvrNWVbOHb9ElJ+iJljGjx+P8ePH53Xb999/HyeeeCLmzp2Le++9F1LKrOvnzZuHlStXYseOHZgyZQoA0/g+FAph7ty5PR43FAohFOpfX4UNTwz/zpWuSYyeEi497TYptIXH3Zw+KXfSJ1ZCqM4dLes3Xpve1UKUSQcBhGND1UQggrCpBxyNpq8X4ZAJRBLJ8mGxOERHHJadrNUrABn3k30EzJZc7bqQCR+WFweSze7SCRbHgrYk7ChgxRSUK6EcU97JSgjIZHUHKwbEBOC3SwQAIAB3t4WKDwDxViXejh4C/GNRnjLqBxWLQ8hE52qnjAlp14C6T6nJa8KsoEJyK7pKJCC2W7DG1iHsBUhMrkaixoaWAqFm8zvidRKxsQLxusE9HhFNILI3QGiPDSsKRHZGYcXDsFpsQAChZpWuYd0fva3qp9K1yD0LQMaqPMD8m0yaIAg6e19ZFnTCg/Y7dwrKSCS56s9L7+TqKjURTZXQg6+SE1Od3rGik2VHIIRZYR1PAC0J04zX6ozNUomVFK00glRJh66SE2qdvL1IhEwz0lCos5xZwkPl/72L45Z9FW1ntkA9U4fpiR2on7Ws28q/+tlXYs2b/zKQp7lHyw//X1y06Rx8uOo91I97DQ+9/VGs3fQCFh+zoqC/Z6B6i2d767HyxIbhr4+dmVxZ/NEbciYtMuPMobTgxFvSO8Pr51wDaJ3uyQIADZtXmZ0tQEFPcFCZ05093IIxFbASyXg284Sfbaffo7VS6X5Vsj3Z+8rz0+/fIhIBbC+r3j8SXX4GOhuaA8nm5QqwVGevOU8lV4ELiIQP7ZpyN9YHTaja147Kd9yhekaowJTnm3J0QpjeD8nXESSA/HMryb5AAoB5Lar2DggpkklCs+NKRsJmDbTrQk8Yg6DCRWRHB4Kx1UiMC6NluoNEzSAejOcD8QRkLAF4vunVmZzriY44rGgIjisHlPBncq88LY6cY77RyiSfXSe5UEh1Jhat5O4rz4dWftauLWE76bJ6uaSSilol/2C6xr2pJI3SEHZyR7bWnecghEi/n2ulzMK9rjFtS2vu352KZ5OlxdKLj1K/I7n7pvr593Dcxq+j8vkK7Cfe6LGcaf3BVxW8F5yc/CbUztkICQdq52w0bHkT9QdflRXHE1H/lcVf0Pbt23HCCSdg2rRpuO2227B7927s3Lkzq7fKokWLMGfOHJxzzjl46aWX8MQTT+Dyyy/HhRdeiJqawUQEnVI7M0pBT7tZekquLDmssLtfMie9PY3ld7+/hrtXqLuaajQfUoOmw2qhx9YlawInV3m4jtkhkJqgSmFqASd8WB2JdHJFxD2IVKIFMAG6F0AkPLPN1fPN9QkfMhFA+Boy0BC+hhVTcFsUQk0aVszsMkhUA0HY9LPQjkLl5DYkxgbQFhDep+C086RKKVqvfpl9QTIpohKJ3MmVHk4q90TI5OpT34eKx0xJpVQDW98HojG4O1oQ2R5FxfYOVL4fR6jRhx8WiE4w1coie4CPntfHtu+Dc79v64iL8K4oqrZquK0AhIBMKIR3CYR3CUhfw6/oZ30wKl+ZK1ZVsj60Mj2IUk1rZWUFYFnplXSZq/tUNAoVj3Vf9SokhO2YyWpqlV9y0pruPSCFKZngupCRiFnxatuAH0A1tSBobIba1wi9rwk6GkPQ1tb97y35t5P+yrwqCNITZx0EUNEYgn2N0E2mEbSOJ6CjMaimFtQ++mdM/p6L6b/9ALoyjMSM7IU6i+dej4YCJ1dS/mPuT/HVg3+PDU2HIoDEOc9/GWtfXJEuMZVp0T/emPVvqZm/oDRWKPa0I6S35Eoh4/HMsrsNm1flvI0Wosf/ZxrFbBvR2RPQvr/ZxSIjkfT7qLAsEz8kk9LQ2pTwsiREIuishpAq/WRJoKICoroKIpkoTb9XZ+5YSSVSAPP+7/tml4vnmZOBjgNUVpp/pUTbATXY/Q915v06ZhYiUWnKGdMmEiaRp0wZOtOzR/dr9wqAzj6FMKXFVCKRfF2qzr6ZybhWRBOwG9th7WpBUOlg3yEOvCqgcqfGvLNu7+M3JXfZdiUldCwOtLZn78pSyjQiT87R4nVOvx4XlTGt0uXsUokVJJPOwnEgKyogpISKRrNeq+m7p5ItuRInGcmT9LwtFdMmbyOk2W0tI+F0qUUVi0PH49DRqPk3CEzJ6Y6O3mPazIuTZf5Sca2KxaGiMajWVqjWNrM7J+GZmHZvIw68zcd+j+6EmjEZTR+ZkHWs+v2+AQBDtqNETn4z/b3aORsNb6zuMQ5acMKqrH+pdCgtSuKLZ8uMskiwrFu3Dm+//TY2bNiA/fffH1OmTEl/pViWhcceewzhcBjHHXccTj/9dHz2s5/FbbfdVrBx9LYCsBTNX9j5ZjzUJSC6Pjfsx0I9UXWVaJ8i0TJDwptUZRIrqRXXnp9dhzpZ318EunPHip06AWi22IpUg9DUazxZgxpadyZgJBA4Epan4LR6cFsCuK3K7GSJw+yM8QC7QyCy1QGerUXFdgvCB57978vwx4cuK8pzRQOTakqrU5PQHAFwn8ewk+WPgiArWBeWBWvyJCQ+fAASsyYAgYK1qxHW3jbYLTFYsWRJug6g5m9A9dYATh/NZHsKnLUt0Ty7Ch0TBcL7FJRrQWiNmr8r1Pxdw2kN8Mwv+docLVITw3QyIm4mbemTJQlzgk1WV0FYVo/9sLoSUnSfIOZaEZhxYs+svjM7CWVdDaxxYzpP+hQo3tDKrCTU0Zj5N5V8icUhX3oDeucuQKnOcgxJw1Gq6yfH3IfVf1mM57fNwOIPmwTBkiOy4551zy3P+rfUFGM39mBk7ozWQzh7ydy9kjIcfWKo/AjLgldlwauUUJFk7JmMZ4Vjd66GTr1HucndI8ldCNqxO3tZCQE4NnRFxDRirqyEqK02CZdI2PTVSjVXTp4MND23zPsiZLKBM2Dezx0bKuJAegqVOwOo2go0vPf9YSmpSIUjQqF0aSIky4Cmdp7kfYzMxRMZ8WzqZ6uyAnLKJIiKCrPqfl8T0NQCtLdDJgK4LRrjX0ugZksUbmvfsfTa9gdyDEJAVFUCFRGTDNTaJI4AoL0dVlscTnOCMe0oojw/PU/TiQRUayuCtnYE7R0mweH7JtksZDrO7ZPoHhxkJVbQmXTRSneWgobZpSLDIchIJOu6fldA6D6Azt/r++nETSqWx5/fht65C9qW3foPNbx/1+B+dx5SSZafto5H/QGXAzA9DLt64qlrsv4lotyKWiIsX+eeey7OPffcPm83ffp0PProo0M/oDKRuZslMxtdP+eabpcNlcx+LNzNQgCgHAuR3RrhpgB2Szxdz18rBSTrk6b6sCCVPIklIMKuuY1INnj0fbMCJe6ZRIrSprlnyIFybchoHFCmFqrwNXSFgIhqWFEfyrEgNBBqDmB5ElAS0IDTDtS866Nq8x58sGBycZ8oGrD0iqWBSm3pBtL9JGRyR4ysqoQ/bQICRyLUGjOvR9c1J3pjppSHHdWo+TtQ8YGPICSyFp/263FIieh4AekBVVs7oIWAsm3YUQ1A97sRKI0Mnauas8seaF8haA8gYvH+1WZPNU7u6XqlIZA8iScktOWldx5qbd57hWUlT/bB7KgZrGRpBTPJ9dM70tKPK1mfXmzfBWdfGPWzrwT8AGhtG7ZyIa9+Krkz5VTzDxujD63MhTuZ3w9lj8L5C1ZnJaKWHHUdtJTQIatkE2c0OFl9MPqgJ4+D2xKg+q1mszMk5JqGyImEiVdT74WpkivJxT8IlNnBIpHcCegDtg0ddjoXEdky3fcHSkFGPbPSvyMKxBOduxkAk6TRGmjrAKqr4E0bCxFoWC1RVG1uBzwP/n7jCvYc0fBJnYwFkF51nyZk37Fu1xPOUkCmEn1amUVuY+vSrzOR3PmUWtRmtScw7hUfsqkd/qRayMQgYutI2JywTjYvN8OTyV24qij9wKj4Uq/vzLmbSphScunYMu+DqZxJlkzpvyGtoFOHziyLlVz4qX0vv7+xfowrK6ZNJXmSu13km1sxZmsY9YdeDX9sJex3PxiWBAtgkixLJwNL3zE/s5R0+dAQUEO56oj6rSwSLFRYXRMrCz++csh25+Rz3EX/eCMnqqOENXYM0BZDzRZhkit7m6FTK/e07gyMpEyXChNAug4rQg5goXMyKQDR0g5ICzoSgo44UGHH9FqJ2JBx3xwfgPA0hNLwq1x4NTYCV8Bp19AC+NN/Fr7hJxXRIIPh1I6qdANvKSDgQAgJuC4SY1zY0QDWzkYgFIKqDEMkfKjKEIKQRGRfAJHaPOVpyP5Vckhb93/LcfzJ34MMNKw9rWZFqluF2BgJ5Qq4LUywjBaL3LPSNdPTE75cr/OuTT7zZOqwd048e1yxZ0kIx4H2POiODnOZ0oDrQEiR3wrDgUr1Z8lMtrRHTT33pmZTHm1s3dD9fipJWcmW41cVdDFP110+mb1jchmuvjFUfDISgQ67Jg6Neemd18J10iePU4TjdMa5QOfJvGQT5NTJbPjJk8yOBeXa0LaEciWCsEm0hLc1QyACuC5ER4fpWTi2BirsIqiwIT2FRK2L3z9+xTA/GzRUujXxHkA82XlCOVkdwEq+FpXppaYrKyCUaXwvQi5QWWF2mTgORFsUQgjokAuhNGR8YAHtmn0/Rv3ki01/jUSiszSelBAVEQSREDqmRAZ0bCo/mTFtOomSowTXQOLZ1LkEIUVWLJuVnMy8LFmOHMlKGqlbmb+9AU7g+hhbtxhbK+iODvO30dQMe18l1HQu9CQqR0x3UdFLn3VNrpRKw1gqvOCQGRAxD1bUh2iLQicb3KcaJouKCsiqSnPjZF+BzhXLGkJraMdCUFcBXVsFXRlKJ1dUdQhBhYMgZCFR6yA+xoFXE4Jf7cCvsqFCEvGxLmLjXfgRAS2B2FgLz/2M29EpN2FZECEXIhw2DWirKgAAkffbAABqQh38cVXQYRv++Er41S60LaAFoCxAuQLaEvj9I98Z8BhCjXGE39lryjW0tsPd1oiKPeZvgq/dUaiPlXkD1iVhkzkRTX8vTHJFhJJ9iaLRdF+XoLV1aJIrmRPuzJraqauTpdIAmM+LXXtyljag0aHYO6VzJVdOOp71ykciceAMyL2tCL/baBIkyRXXACDCIdOvamwd5IRxJo6wLHNSOVDJxIqAijjwJ1RDja2GjrjmxDdMzx9YAtoxyZX4GBuxcTa8cZXwJ9bAn1yHYNYUJA6cjNjUasTHh5Goc9AxJczkCuWW6qPmOObLtk2iT2uIPfvMboFUbzWloCsiZkdVVQSqrhKqJowgZA2qPJBOxg060dlvTScS0LEYhNbY+OvLC/iAqaSlYrtUsmGIYttU/JoruZL6/cK2oRIJ0yslbnoIDtVioVT8KqTo9pjN34PpT6QTHsQb75ZU/2ciyg93sFDJ6a2J6JKjl2PNy6XZMJZ6Z1VVwbeEWe0fS5hmm0GyxEGywb2oMCew0dZugv7UqhY/WWYh2QNAhWwALrQUkLapMx1EbChHQIUkAteUVVIhiXitKX2jLNPEPlWvnyenR4b16pf9KunRb5ZlToYkG3HqaBSixYGaVIn3ltSg5l2Nig88KFtAOwLC04AtzGswAGR8cLtprN0t0Lv3mr+D5IrV8I5qCD9coAdIZSFVSiD5/dD8Cg0InZ74Cavzd2mlIaQpy6WjMSjPL1zphD7GJKQCkOzVJe1u5SLSOx2lgKiuQgNLG1AJKXbShwpPRiLQrm3eK6Mxs9of6NzFEg6bfirVFdCWBdnYAt3WDqECs+MveWIbQsCvtCFtAemZflIi4UO7NoKwDW0LsyPbFpC+RsfUEJQtYMU1nA4FBBraEXj6fwa+iINKy5DHtEKYhGCqp5rSUO0dkKEQYkdMR+iDNoh2k/DQGgiqQvArbEhfwYoOsvyn52fM51KxhYRIeJB7mgf5wKjcDGlMqxW0SvbOTCVZbKfzvTeV4AsCIIFhiWdzjs2ysn9vcpeaUAoiEsb6jdeifto30bD1B8MzNipLSrOiRSnhDhYqCYv+Ib+kCZMr5UvF4nC27AIAiGjC1M93k2UTAFN+yfOARMIEHK4DrZXpheG6gJSmNrUCZNSHlgJBhQ2/NgS/ykFQYUooaCkgAo1Qo5c+ue2HAKGRbGqvmVyhXgnLMlvFg8C8JlNfsTiEkNCREBoPchEfrxG4gLJNYq9jvIVErQUrruC0K/zhN5cPejVpw9u3mkbm8bhpAtnRAWvLdvz+Ma5SHS0Wh88eup0rfRGdE1StNFQ0iqC1FdCq5xWBQyCrqW/XJr2p66MxQGss/igbklPxzF+4uthDoCGmEwmIv20zJ4u1Nv2flIJO/Zz8EjEPst30aks3qA+56X6BWoj0SesgbMOrceHXhOFXOfAjFrQUgADsqEJkjwctBZQFaAsIXAFtM7lCvUvFswDSC9bSJ5Yz6LoqBJHkPMuyoB0L8Sk1EIGC05rAExuuxrpnrxvUWNY039O5cyXVeFwraM9Hw5Y7BnVsKh+L3LOGLabN2o3t2OndW8J1ze6ZIICKx4ZlLFkyd413fS60Sv99Ljnyu9j5qZnDOzYiGhTuYKGSsO7/2INlpNO+B93cAj11LHQQgvB9MylNllRIr0K2TP8VoUXnBMBxzFZ1y4J2JERgmt17VTacNh/SU5C+ArQpyySTFVSF1gg1+rAiEtoyiZdnfsUt6NQ709Q7+b3nd65KjYSBSBj++EoEIXN9xxQBO2bBimsoW+DZ/15W8PGsS/wcALDQOgPrg4cKfnwqfaYhZnY96YLTCkLa6e/Tk750kkVBeRnlufrTeHSA40klU1K7Gbv9zoyJqVYKQgi0T6sc2nER9WLD+qv6vhGVtVRCV6RK2qaa1yevE0qbXa+B6uy3kurDYltQFS786hC0LQAFKEcgUWND20Bon2/6rnkKSLWpCJBcOOQjCEsoy5Qiffp/mVyh3pkdqSLdTF6ne58ko1xLJlfRazitPrRlpftcPrnuyoKPZ533IAATz2b+TKNP1x4pBT9+5u4QIU2MmFGVwDSyT14/HLtXMuLqnH1nUrtoRHKXjW0jOq0GYohDbSIqLO5gIRqkJWO+XOwhDNji8NlY5Jw5bL9PVEQABQgvAKTVeUUQmO268Xg6qIBrel/oiWOBkAPR2gGZ8KFCFoKIY+7mCChLQCYCyFhgVvtpQCaSzZADDelp2HHzL1E+dBCYJrXJ12W6nEIQQFeEoKVA7bsBat8wE1Q/ImAlNCL7hjZAZ3JldFob+5n5ZhhW/KVXlWZKNQFFcsI6zNKJlYxyZZnjNKXDzAkkVEbQPmX4x0g0EtTPLvwJ1eGyuGrp8MazkbBJniQSJpmSLLcEz0/2lYibPoN+siyYnXxfChSEryACBa/KRqLO9AiMTpCIjpNmEZGnIBMKOplIkb6GFgLS07ASGtJnPEt5SPW30LrzMzTrhG7yc1NKiD1NcN9vTve6FDFvSIe2PniIMe0olVo0NpyEFMkeWIFJdEuZczf0cNCZ/WWRHXcLy0onRREKoWWGA7D6E/VBQZTEFxlMsBD1oX6/b/R6/ZrGnwzTSApvbexnBV89JCwrZ8BiTxgPhEOwtu8BWtqAjg4gnuisg5ratp7woGur4c+YiPihUxGfWoOgNgKEQ9COBb/SRsusEFpmRZCoFvArLAQVNlTIghUPEN4dQ2hvDEJps2tFawhfw/I4KR2p1qtfFvaAWkF1dCBoazfluTzfvE59H6KpDXZbAlZUofp9HxNe8lD7dgxOq9lJRTQUUkkWYVmmjvQQTQq170H7nmn4mUiYn1PNP5M/DxshO8s7ZJwUSiVUAJN8UZ5vvmJx6N17Mfb1KOZ+5c7hGydRGVl4XM89ihre/JdhHElhrW27f0hWw+eKae3p+0OMHwu9r8nErJ5vmhOnYtmEl1ykkXzfqqqAqquGP6EGqiYCnSx560cEmmda+OAYGx2TAeUA8RoJv9pBELYgfQW3yYPTnIBI7pARvollBcONEatgMa1W5vM8Fjefj6lSm1qZpF+g0vEt/ABoboHcvgeiIw5VzT5/NHRSSRYhRY/nDQYrXYoufZ7B/C3ojg7oaLT/u7AHO8asHdfdFzNlxrM64UE3NmHSHxtR91Ych1zPmJaoXDDBQj1aNO+mYg+hJDS8f1exh1DSujZjFK6bc6utjsVNM1DfN/0kfD/9lV5VApjeLPuaYDV3wGmKw2lJmPu7NqAU7HYflrkIlbsChPcmYLX7kPEAwg8gox5kzIeM+7A6zOXQGlqaPixEeUtNThOJ5CRUAa4DEUvAbUoAGvAqLUQnhhCELdhRnvGgobMu8fPOZp299T8p1EQ1WQe6WxmDYZSagPZURqJz90ry+fB8uO/uZjKdulkw/5ZiD6EkrH/mu8UeQsnK1Vw8Z0wbjZmv5M5WBMkeLEFytwpgerDYtlkp7QcQSkE7En6VC782BG2JZFlbwIoD1X/XqN0SILLHh93qwYoFyV3YCtIzu16kp6AFzH2J8pXcuZL6LM886WyuTvYPAkz/y4qQqTRANITWeQ/2vWBosPFsaudzZpIlYwFRn7Ftxu+Xjp1/MijzNn3cPjOuz1xUpD0PYuceAEif9yDqymyeFSXxRQZ7sFCPBtvMjkaZZO1QFYvnvFp1dECmalR7fregxvS9CKAB6NY2iHgCMuRCj62DjjjQUgJCQMYCVL/TYUosaA0RS5g61al2Ab6ClhIyCAApEVSHIT0NoRWeXFu+5S+od+vVL3OeHCkYmWxS69gQiQB2Yzu0LWCFbchEAL/ChlfN0kQ0dBZXfgmwbYhAQSWCnI0xi1HuoGD6GHtmSbBc1wkLEDXV6DhiKhoPHZIRUhl7YsPVxR4ClZNeYtqgsRkyHOpMqCRPWpvSLqk6+na6lwX8ACKagB4TQRCxAa2hQhLKFqjcoeG2KLjNPqQXQPgaws/YsaeT5cF0gCAsIJSGCDT+wP4rI1rBY9oun6/p/hfJ16j2zO5UM6+KA9VVhfvdRDksjpwD4TpAIKGjQed7Z0qBkiuFohIJSNeFVn5etxeW1bk4qIfHkv7c6HZnCVlbg+iR0/DuFzSsUMdAh01Ew6yMZ+JEVGypJoUAkKuUSyYdBFDRKFQ0asrOpLaqC2lOGroOYHXpy+IHEAnPTDYlAK1htcVg72mFta8Vsj0OEfMg4gmIQEPbdrK2qum/AqUgYx7sDg9Oc+7ED40cBS8VliQdG8J1zWvWtYF4HIjFzYkQbSaoQmk886vLh+T3E6Wsbbu/syktuiQbyjm50g9ZpRUyGobKygoE+49HokrCrxi+HSz1U74+bL+LiIbGIvesrJ97i2m175lYNrUSOmNnAKSAcF2IcMj0E7Stzkb3UkA5Al6VBa9CwulQqNzuIbw3AREo00dQmhhW2xIqYkM5Vjqmlb7pJyi4Q29UKGRMm97taVnpVfjW2DqzcCjZpwUi2fvBssy/RENsTfM9kLU1kOGQuSDVF6VU4tmM938ZCpv39lQiva+dKbbTWQItdZllmTllRuzeNckipIBwHfizJqNlpgO3IoEj999ewAfVs0X/eOOw/B6ikaxE3r1KVzk3fCQaaultrXlumU1v0c1s5lYZgaysgIxETOBiJ7fgSgmtlTmRHfcgArOqT8Q8UytYSjMhkBK6IoTYtFq0z6pGfL8a+GMqoCpDUJUhU1ahLYZ1zy0f0ueCSkOhkyzCskyJEGFOfIiEDzWhDomZExAfH0LgSmgh8NQaflbQ0Frb/gCA1GvS6VZWIKu8wAjR02NKP17HhqyogKysgBhTh7ZpFbASGu9+/bLhG6Qsn1B6/sLVxR4CUUmSlRVZCds+d9RllFiCkBCuCxkOmRPWrgPhOIBjm5PVjg0ddmB1mFhWOQLSB5y2ADIRQLkSKmRBOxJByEJiTBhtMyJonR5G+/4RxMeGoUI2lC1gxQP8/vErhvrpoJFCZCzISL2uLfOl2tpNg3vXgayogKiqBJLxbsMb/KygobU2+lPzjetA1tV2SzIAKFp52m6Sfzfa87PL5ub6nEheli7BFwTpmDWdSMq6uUh/hgjXhQiFICsr0L5fGG6rBv5ahd8c929D9tCyBzOy5hCjRbFLg6W+NBvdA2CJsD6Vc8NHoiEnJERyYYawrH7V6peRCEQoZJIoAGBbEEBnHWClzAe9UkDcg1BmRwpS12sJKA0dsqEqXDMGpU1j0HgAnVqJBWDNaysL9YhpNMkIkoVlAQnTh8WrC8GvsCA8DRlobHjiqiIPlEYVyzI7p1LvuSNUupF9xuq+zJ4s6Qm4ZUFURBCfNR5BSMBzhjfAL6c+bRvW872KKBcRMgkSJBcBCSmgu5asyXU/KSAj4Z4TrZYF7ZgdASIeQHoaToeCjCvIRLI/gBRQlgAsARWS8ColvAoBZQOiSkDbgHYErJjCE09xMQcNQMaJYCE7TxQLKSEiYSAUMrunlEbD1h8UcaA06ghpXn/IUQI2j/fgYaGV6R+bGXP3MK5U+b1UYiVFRiIAAOX5kI4NCJ1edCosmOS8ZUE4NoIZU8xux4iAGMaHz/YARINXPsvuiuCk41cVewhEpS0ZXAjXhaiM5B0ECctKlwMTQnZuT7etZKkwmQ4yTJIl6Gwq6vnJxqLKfB9oyI4E3L1RuC2+KdsUJEs3BRprXuZ219GmkLtYtOpsYitCIVOeKdAQyiT02NeHhp0UpvRM1xIFyZ9H4i6WXJcJ24GsrjKfEwCkF6B9ssCeBSwHmQt3rxD1TCc8834SiZhdgpH8YtrUjmsAJnYVojOmDVR6EZBybeiQBekpOM0e7A4TyyrXxMKWp0x/FaVhdyi4rQrSS64lsgUCVzLeGIUGHc92fQ1LAa2UiWVTn61Oct6lNBre+/7gfh9RP6kxlVDjqk21gAyZpbVKhbAd0x/FdXvevZKZzAyFzG2B5N+dKRFmbtpZBUS4DkR1lTkHIgSE1mjdT6DxxCjiMxnTUu+KvXMl3eSe1UsBMMHSq9/9/ppiD4Go9AkJYdvQ7dH8bp5KnCjVZSVI8l3ZtrPKhAEwiRTPMye6hTBb2B3bTAhsCe1YUCEb0IAVTe5w8RVkLFHAB0qjTsbEVFREgLF10LZJsMi44lZqKoo1e34EEXIhHDu7lE3X5qClUsMayH8sWgFadZ74yXE/YVnJkpIOdDzV/0DD2d4EKwFY28IFHPjIwd0rRL2QAqiqhBg3xpyEztHcvqt0CVGlAKUgHMecIEstAtIa2rEQhG1o14KWElbUg9Xhm1JhrgWv2oJXaSEIW/CqLPghCT8ikKiWUA4gApidLAHPXNDAaKUzShoJiHAoXUUAlmVer37Q2SuIaBit3XQD4uMjpkxYlyQLgNKIZ4VMx53SdSGqKntc/JN1biNIJjNdF0JK81kBZO1wkZUVps9newd0wgOEgGyPI1EH2G4AKzRyd6oTjUT8JCWiQRFSQB08E7K2Op8bJ08IJsu9JBJQHR3QiYRZ8ZdKqOiMiaRO7iBIBiWorkQwthI6ZJvrtIZ2bShHQnqm5ILwFGBLrHn15gI/WioXg171l7EbQKvU68wCFCDjPux2D081sA46FYnWEKGQWfWWXOWXeRKltwRFyeq60jZVGiKj6WnmSj9ICe155rahEKIHTUDrTA2rn4v96ve/tDDjJ6KyJUIh6IoQdFUEcsoksyu71zuYk2ap3djQurO0bbLHBSJhc7Is0XmCTHgBhGd+btvPQfMsC/FaCS9iSoPFxkhEx0t4lQCESbCIAPAjXNAxWq1Xv0x/BkrXTa+Iz0uOXa2iS1yg43EgkUDDljsKMVyifvMrJPwZkyCrKtO7RKCViflS77EDTLQIyzIN51NfyWOmj93LMTNvrz0fOuFB+55JnOSQKpXerbm9bUMHAVQ0Zip0ZIwJ0yabpL7nQVgW1OTx2PrJCdAfakfI9VERyX+x6PwF3KlMVGxlNPMmolKTKvXVMa0CqK7qczuvSJW2QTIICZRJnmhtVg8CgO93Ng9NrgpMSyZgZMyHiCaAeAKiLQbZHofTFIPVEoXd2A6hFNa+cP2QPGYqH5mT0n4H5V1O9mrPh9jdCFVt6gSvf+a7hRomUb/pcWOA2mqzs8pKJh4yT6IMZWIl829qKFYWZu7IyXVsraGjMfO4wyGISATetLHomGSj+u8CTmt/fx9PXBKNepEwVNhFfFIlgvHVJonb24m3zBN/UkIrBR2NQccT5vJwCLoyDAQaIrmbBTLZG1AC2paI1wkkaoEgLBCETa195QLaQjpRrC1AOcBzP7tsGJ4EKlXrg4cgwyGT1EuVCO1LD7fRQWD6XSYXLABAwwf/XsjhEvVLEBJoObACqKuFqIykExRCCgjHhnTsAZW/TSUxzN+Ok24on16wY2df1k0yyQMAKmF2TAvbSffq6kl6F4tO7mRMeIDSnSXAHNuMx3UgogmICeMgJ0+EnjoB759Uh+hHoqiIJDC+qg2vffqG/B8wz+yOOhrFLw2WLhFGANjknogGQ5h6035YoOOg8Qi9+17ft8+kTT1S2Lb5SjZeBGAmolKayzMTLdEYRBRmO3vyGCLmmZ+Tgczav9xS0IdJ5S29C6V/d0r/K1zHlLUbU4tEXQhPrWEddCouoXWyTKJlGtYKCQjdfRdIT7tC+vwFEuuDh3q8eqF1Rs779Ph7C9SkVKRPUJrJt47FoRGFV2kjOk4gvE/D6ejf3zob+hJRKtGqLAFtSfhTxkK8vxPaz+f9UpjyL0DnLm3XhRYCQiloWBCBglcbgghZkF4AbQnYUUC1mD4rXqUAlEmoQJt/tcnF4MX/WDZ0j5vKhtkxJSFS86S+5FqkoDWQSq6EXCDkYs27dxZ+sET9YEc1WqZLqJoIZLwSSHid5wOEMOXs4nFoledrP0lIke6Ntbbt/h5vl45pM3dOAxk7XILORIwlTeWNPuJa7XvQQnbmPFLlz1OkmV+qqghgCcgPOiCURsf+GvNmbUG1HevXYwVYCpaoFDDBQkQDJsIh00tFCrTOcBCpqEDQ2svy4WQCRFhWutlbut+KEEDIhfC8dM1Scx+dLLmQDEo83/ycuty2O0uKaY0GThQoaZF7VjogFlJB97OMbboBoesCNdVQFS6TK1QSGjavwknHr4JtS6Cl1SQctOj9Nd7Hitf+lNVLJV9Sk9KuuxezxpFvUieXdN14md4BKVzXTLaFgEgm5ive2gNtT0DrNBsv3MuTkUTUP96UWtMXJSTRNj0CEQA1f61E0NSU+w6p96ZUrOo6EI7TuSjIkvDGR6CFgNOaAAJtkjdhCRk3iWIRANI3iRRtm3+V1ZlcERp46YffHpbHT6Wtfvq3TEIkfcK3Pf87pz4/U2WaU6VFLYtzJioJf/jN5Zj1r7dj4ibblMBLvo8Kx+wWEa5rdoFkytV/MKm/ZaLXBw9hoXVG8u/EyT6uJSF05xxSuK7ZAZYPraA83/RtkdLcT2lz/kQIIBSCPyZsypxXuVCuhQkvAn8/bAxuPPB/MH/mG/16HERUfEywENHACbPLRDkw9aJ1/1YOpxuEWrJzVVUkbIIm3zerVTzPBFi5WBa060Aok7hpeIcTBepkEiRmEgmlsxt95nPf5GRUJxIQHVGsfet7Qztgon5omxZGFQD7PdH5+k7JSEyYfwRkRQVUNNaZ/NBq0L2KUomWxeGzO39/avVf8l+TfLFM3ep8aAWtOk8IpRrfA2a3jnBs89kTCZtdPNEYVF0l3GYPL/3vdwb1eIhodArCNkSgkaiSiNcKSA+oraoEekqwJAnb7lwEVFlhdl/7gWlu70p0TLLhtlgI70lA+tqUDFMagSvgRDWkD0AAgSPgVQGJWtNzxe4AXruVyRVKcpPJO9sCQgFkWztUPL8V7iaZIiEcU5IIrsudm1RynCkdACTgeeYcgO9DA8mysFGzkCg5r0vtLNG+B61kYePZyDnmAmkDSkNGIul+sTLimqoGkbFQO3bmd2CtoBIJSGlidWgFHYubv0VLwquyIT2N1hlhVL8XR/sUgda/j8f8k5hcofwosDxXKWGChYgG5IT67yF0wH6QHQlUbfNQsVOYLbO90MpMLDWC9Oqp1NZdyOS/sbiZRFRVmOuaWqC9aLr/CkSycZxtmVUt7R1cgUU5rY39DEvGXgjh2NCeDwlTQzdFSGFWw6fK1EkBBCbwhRRY2/5A8QZP1IN/+txtkL5G9b447F0tpta/75sdLCrZpyocwpqWe7Gk5jysabkX9RMuMpNT30+XzFuX6LkEWL/ZNta13Y8lNecBANa03IuF1hmQjm3e961+JFiStNIQ0iSKhO2Yv0/LMjWwHQc64gJCIDZ9EqSnseGJ0iyNUD/9W+kSlw3bfljcwRBRN//zztFo/Oan0LSnCmhXGPeyhfGbmkyMaTs9v3el+jdZlolRgwCwHGjXAaRE+IMOOK0OEnUuds2NYNKLUbNLxhawAIT2+QiSze1FoCGUgPSBV37AxApla3j7Viz82M2ITwjBbUzA8TyIllYEbe1ZC4JkVaVJxihlyi7H4xCWxR4rVLL+843j8bfYROg3P4bWmRp1bVUQ0ZjpY+L7kGPqzCLKnXejfs41aNi8Covm3QTlSDhb9wLRGBp23l24Ac05AGs33YAFJ6yCFfOhN2/B2vYHsMg50yxUamqGnDwR0nWz5pQ9Si50UjHztygc2/ydOg7U+FpYMQW/QqJil48PPhpGbDzw9wuuKNzjKbD5C1env2dJMqLuhNb9XHI+wrW0tKC2thbNzc2oqakp9nCIStbxJ38PlqfgNMXRNqMSNS9/gODvW3veJZDcoi7sZD+LZFkw4didvVYAIBaH1ipdAgZx01QuXRJMCgghTYJFSjS8f9fwPnAqS0vGXggdjzNpQiNG/f6Xml0c8QQQTyamgwA6GoOIhAs74czDkprzzImdQJkTjUKY9+5AAVJAxeJ5939Jf5tscgrbNqtvk58TWpvSEdGjpmP3h128fktpn5Cc8907AQUEYeCN5fmNdbDxKONZovy8tW0qNicm4v/tnIfXd03CuPurUPFuK+T2XVAtbTl3CgjbgaysgKisAFzXxKRKmfc914EO29CuDW1JaEsgNt6FFVOwEgoi0PDDFrQjoGyBeI2EsgW0Dfzp30v7vYyKb/ExKyCbO4DWtmH/nCcaKgf+y50I7QOqtykoW6BqewKhv2yHHleLNa/cNKxj+afP3gq/QiK0z0fkpXehJ4+HiCbMOYrWNmDGVGDLtt7LoqdkxLRWZQVEJAzU1UJVh+HVhuHsi0J2xLHnYxPRdHIH3jrtu0P4yApjzm9XQAjg9c+syPs+jEkLb8OGDfjU0lPx8f+3tNhDAQD8/rT/wpP/sw7z5s0r9lCKijtYiKjf6md+G5GaSmjLAmyJmtf3Qu3c1ef9UtvUzckys/UWSpsunqm+KgCEMKuukFnyxpJYs+dHQ/SIaKRbs+/HxR4CUUE1bPsh6mctMyf1qqugK8OAEFjz8o1FGc+alnsBAIurlpqyjpY0m9alND23gBwNd7skXLpcn5VcqaqEHlcL0REH9uwz1yvAbR6CB1Ngm2/+Nj50+x3QNvChO+6A2L8Db59e+pNoopFu9qo74Rz2FUyoasOkijbYloL0NUQQAKmSSl0TLMKUKhS2DTg2dGUIUIBImB6CQilT2VCaBAqkQKjRAzQAAfhhC79/vHRXKFNpW/viimIPgajg3FbA8oDmAyTi4zWaPxTCG+uLs+v3D7815WbrD70aiIThjYkAYyJw//YBEh85EE5L3Cxmsqzs8rhddY15hQCqq5CYUoOOqSHsO0TigP/XCO3YsBIa+t2KIX5khbH5sytw2P+swKG/uQEA8JfPXV/kERGVDiZYiKjf/KnjYDd1AELAj7iQ21qSO0x6aCaeqsOfbkiXDEZS9Uil7H5ZptSuFSIiSmvYckexh9DN2rb7TUkyADqVSI/H0+XC0pK9Vnra1ZIq3SfCIYjqKnjTx6N9agg1b7ZAtrpAyEVoZyteWnfzcDysQdMWoC0NLQHnrUosPmYFT5QRFdmxC17Hxrc+hEYrwPxJb+L5Vw7EmEBBhxxTQrQiYsrVpMqECQmZSq4Apt+KbZuEjBCAbUE7FmBl10TXloDwFFSO64iIRrvNN5fe7r2Gv9wCAJh31u1QloA7Zhq0BNy9HZCTJwIAdGsbdCJhvjKreHQ5byEjYYixdUhMG4vGg8PYd1SA2mn7oB+yAcdC1bY4nvvZNcP6+AbDDyRsS8GSCvMXrma5MKIknrEkon7zqxzAD+CNicCrddNlEUzzuS5SpcEyrtOeB+350J7feTulTEO7IDDlX5JJmdQXLIn6KV8fhkdHRESDobUy5cFgdo+tbX+gc9V36st2zPt76t9UOTCYHjIyEoaMRCCqq+BPGYuOSSE4HQpy5z7ADwBpQbR2FPNh9ss731oGd58Ju/0Kjbe+WIP6OeUzmSYaiT5e9xZ0m4P5+7+Fj1e9gdBuC3YsMImQkGPi1aBz1ZCwLPON1tC+D8TikI0tZmedENAVIWjXJF9kzIPV4QNKQ1kCKmQhCEv4IYF5Z91ejIdLRET9JBMaVlzDjwhsfPhyrHn5RujqSqgJtRBTJkLW1UJWVJjYNRSGTPb3FFLAqqqEPWUSxIemo+PQydh3aBj7PuJj8gF70fz3OoiEB20JOLvyKDdWQt74/HJMrG5F2PGx9St+Vm8WGl5Ki5L4IoM7WIgobwd8/w6ocQlMGe8g/HeBxBgX0k+uSA7MCbXMiSiAdPPFdMPiAGaXiu+bySgA4ZtdK6n7pvuyKNW5m0WYBsdERFTacpVzXBv9KZaM+XK64Tu0NiUjU7sXk+/1QgqzcryqEnpsDeKTq9A6zUHF7gAV7zRBt7VDVESARML0Pigjbyz/NmbdZU6sOi0Cfzt7AuZceyc2ryy9lZtEI5naORsAMCekAAF8vu5FPNZyNNwmQAQaMu4Bjc1QzS3Zu+y02aWtY3HIcMjEsPGEiVEdG1AKIh5A+CZ+VRUhCN053RYaUK5A4PJkBBFROXjmV5d3u2zN6ytxwpJ/gRULIOsqYO9ugfA8E8umYtuKCLRjwauLoPlDYTQdJCAOasPBE/bijb9PwdjXJFRNBDLqIagrj/JgmaZWtmCnqMa+lgq8c5bErH+9HVsuuazYwyIqKiZYiChvi/7pJTzxzsGwOywkptTAjwjUvNEK1d4B7XvZ5V+S0okVIZMJlMBsm00GIEJraJ1xP5GcdKaSKSowtxW68zoatPrp30LDe98v9jCIaBQR4ZBJngNAEHQ2rY/FTO8C2wZcB3BsBBPHoG1WJdqmSlRtV6h4twWiPQ5UVZrPB0uaz4dyIwDpA6FG00Mm1Nz9c5OIhsdWfxyWHPMK6qwYHnzlGOz3noLV4UG89R6CaLTboqHOODeAisU7e7Ekd2SLGDqTxq6brhUhNAANCF9D+EBQyXi2UOYvMCunNzzBEjVENHzapzqQvgM7qoGpYWhLILI7ARFo+BELsfEOrJhCdIKFlgM0ps3dhv0rm/GHlw/BlKcEQo0JtM2qhlBAeG+i2A+n3yaGWrGzoxp+zIHVaIObGIjKsERYPB7H0UcfDSEEXn755azr3nvvPXzqU59CZWUlxo8fj0svvRSJRPm9WRGVqrv3ex4f2X8bAleiZVYYjbOTbyG+nzO5AiBZZ1+nd7foIEiuAAzMLpbMXSlKmbILQQAEQeeJOAAIFBq2/mDoHtwow+QKlQOWBRxZGnb8G/T4OgTTJ0JPGAOEQ4BtmR5bljTJlSBAYuYEvPvZajQeLDFxUwdqN74LsXOPWUkeCgG2DVgWGt69s9gPqd+2XHIZRCBgx4DIHgUtgONOux3Hf+pWHLHsTvzjF0uvrw7RSGVB4dsTn8BhTgXQZiPyQQyysQ1Be0fuuFar9Jf2TblbFY2aJHEsDgQqq4+gCDSEpyC9zl0wdlxh04+5a61QNjxxFZMrVPJYQmnkeeGeZdj9EaB5pkSi2pyzEL6CtgSCiIWKDxKo+dNONB6mcN7JGzB33Da88uBhOOTuZtS+ug9BxELbfhbaJ1v43e/Lr2TsnUc/iKZYBNoXsKICdrvAwTfdiYNvuhMfuu0OzPzRrZj5U77uh5IGS4SVmrLbwXLFFVdg6tSpeOWVV7IuD4IAp5xyCiZMmICNGzdi7969WLp0KbTWuOuuu4o0WqKR5cY9h+L/3pmBWXs97JsTgjiqBcGTIaRTJNrsVEn/mylHI2OtdGdj0JRU+RgRAJZON71v2P0fQ/KYiKh0Nez4t2IPgQpszSs34cRF/wI34UNEEyZh4roQsTgQj0PH4gCAym1A1Y4Azru7odvaoYMAaz/49yKPvjDcJkALQNnClAxygHjIgraA5/7fsmIPj2jUePCDf8BpH1oPAHDGx6ClBBLJhvZaQViWWfSTimlzxLLQ2iRWRHK3i2UBSJa59QLIhNndoqokhNJ4+n+uGOJHRUSlhk3ARyZV5yHR5sJtFVCOQHR8BewOjYpdPtydrWg/fBKggT/uPQBv7JyI/d70IPa1AAD+8JuVRR794O19bwysuIBQgBUHoAAIID5RoXpyG1779A3FHiLRsCqrBEtDQwPWrVuHhx9+GA0NDVnXrVu3Dps3b8bWrVsxdepUAMDtt9+Oc889FytXrkRNTU0xhkw0osSUg9pnw7DbWxGbbEPGHMhEkL3KL1dyJSV5ebpsGGBKLFiWSaQIAZHsvaKDAAIApGByhWiUqp/0NTSMkJPq1OnJdVdm/bzoH26ETIQgEj6waw9kQmHMG3E4+6LQHR3Qvo+17Q8UabSF9U+fvRWhSTbsmIbTrmAlNLQlEKvj6i+i4fRwezVeem0WXp4Ww9Fu2ORJwpbZQZ2UlVwB0t8LKTr/VTodtyIIIEIuYFuA65iG90JAKAURaO60IBql5i9czSTLCPTuudnx7OxVd8JpFQjCDoSqxdP/+x3M/I/b8Ncdk2C9XQG3uQPwPDTsvLtIIy6cw666E+GIBSjA7gCsBAANtE3XmDxzLw4ft6PYQxz5NLh7pMSUTYLlgw8+wIUXXojf/va3qKjo3gTq2WefxeGHH55OrgDA4sWLEY/HsWnTJpx44onDOVyiEWn1kb/CbybdifeWVOPgQ/+Ot3dMBAJtJphaQKfmpBlJltQkVKvspItONzQ2DUPXRX8+bI+DiMoDkyujw7r/W57z8iWHXQsxpg4iEh/mEQ2NY790B2REwm3XcNoC2B0KKiRhdQQISeCFe7s3UiWiwpOT38T6F5di8qy96cu0NqtwEQpBui5UPJa8wuxkAWD+Te3UzqCDwCwQAqDjCazh7ksiysDkyujw5jXdyz++e5GJ7eZccyd2H12B2tqZwzyqoWElTE9BKw64LRpepUB0AuCP8TGhog0/Oea+Yg+RaNiVRYJFa41zzz0XF110EY455hi8++673W6zc+dOTJo0KeuyMWPGwHVd7Ny5s8djx+NxxOOdE/eWlpaCjZtopDnhicsROroCcc/G+HA73mhxYLW1md2gtgMAWQ1BhRTpiWhnoqVLTWshsS7B5AoR0Wi3ZMyXASGwZt+PAQBrXjflE5bUnm+uA7Cm8SdFG99ghff6CEISsbECMiHhNnlo29+BHZWQ3uCa3TOeJcrfv/51PuZWB5hVsRt10sNbng/x9wqEPtgH2Bbk5AnAjg+gPD+dTBGu23kA1SXJorXpIwVgzZ4fDedDISKiEpPquZOZWNu8yiRfFs+9Hid9YiVEoLH+me8WZXyFEISA2DgNoQQqdgi0zVIYc9A+WAkHj/wTWzTQ6FTUJvcrVqyAEKLXrxdffBF33XUXWlpacPXVV/d6PCG6b4/SWue8POWWW25BbW1t+mvatGmDflxEI9X2xlq0vluL+N4IfGXB3W0DLW3mSkuaJIuQ2eUUupQME1Kkky1UOhacsAoLTryl2MMgotGsh3htTfM9nf25ytjvH7sCG399OV78yTJ0TJJoOSCM2BiBtv0knvnV4HavMJ4lyt/zzQfgqcaDsT02Bk3Kwb2NH0Pdmxrig72AbUGNrYaoquzcsQIASqd3ssCS2fGu0t0a3FPxzF+4mk3Fiajocr0Prd10A6yobzqUl7HXb/k2/nb5MlTO2YeWQwLUfKgJH5/8Dl7/zIpiD20UEdC6NL7IKOoOlksuuQRnnnlmr7eZOXMmbr75Zjz33HMIhUJZ1x1zzDE4++yzcf/992Py5Ml4/vnns65vbGyE53nddrZkuvrqq7FsWWdD0ZaWFk5KiXpgvVoFaQGxSRqbd0+C2wRTWzoUArSGDjobggopOneraC99jPXql1goT0tPSrl7pTQ88dQ1xR4CEY1yqZ0rhy6/E1YUCDdq1L0ZhbOnHZi1P+AFfRyhtJx0/Cp4NWZ3p7KAwDWfe26LD2u6i1idgBUHXv7X7iUl+ovxLFH+Nv7foVAVAaZO24eIdSxeadoPAKD2m4DEOFOK2lVTYO1uhG5phfZ86CDoLBuGZDxrnQHAlA7T7R2MaUsEyzERUTGl3oOOW38ljlt/JbzAgtbA3r+OR+U2AX1CDcKN5ZVhOaH+e/ArJKLjLMTGAl4N4DQDbQdX44QP/wVTws1YfeSvij1MoqIqaoJl/PjxGD9+fJ+3++EPf4ibb745/fP27duxePFiPPTQQzj22GMBAPPmzcPKlSuxY8cOTJkyBYBpfB8KhTB37twejx0Khbolboiou8OuuhNWAPiVACyN9vYQqhMAnIzSYFIAAbKTK10slKdhvfrl8A2ciIjKigjMxE1oYXa1RGOAFYGIlk8vloXH3QxYAk6LB7/ChpACkd0JOHvasOa1lThi2Z3waoHXrh98cgVgPEuUr4NvuhMuJBICaI+7aPIqELZ8JKoFYpMqIZSG2xSHCALTrN4yje+FFlkLjhnPEhFRb7zAwq5dtUC7BVHtwY4JVG1XiNdJhPeVz87sBSesgiUFtADsqITTJiAC4M+3fhuf+sM3cPLYV3HGgS8Ue5hERVcWPVimT5+e9XNVVRUA4EMf+hD2339/AMCiRYswZ84cnHPOObj11luxb98+XH755bjwwgtRU1Mz7GMmGmmcNkDbADoAEZPQsRBq/u4DiQR0EEB7vrmhzhEsdGkIulCeBgCcmBIRUTcTNyXgVVkINftw3tsDeD5Ec7tJtJQJESiI5ObNUIcHbQkEESd9/Wt3FCaxQkT94zYDygG0kIhNcbC5aRJ2NVWjwgdUSMJp8WHtbATiCeh4AsjsLZjcpZ3CeJaIiHryf0tW4ehL7oQd09AyDLdNwW0OEGr0EdrdUezh5U0mFCAAx1eQgYayHfgVpiwU+60Ul0JplOfSJTKOYiuLBEs+LMvCY489hosvvhjHHXccIpEIzjrrLNx2223FHhrRiBBq1lAOkKgSCO82ZU5CjXEgnoCQEjojgZLavZLZ5F53bQhKRESUg9PqwUooaEtAV1dA7G0GEgkg5PZ95xKw5MjvQkoJbUuokA3ZFIWQgIz5WPPaymIPj2hUCzVpBCEBLYHo9gq8H7Uhd4ZQ8YFC4ArYtjDJFc8zzeuBznK4vg94PrTv9f5LiIiIAET2KUgPCFwNZQvIQAMa8GvDxR5aXhZ/+HpIS0C5NmLjQ+iYaMGrAP78PS4UIuqqLBMsM2fOhNbdyw9Nnz4djz76aBFGRDTyOe3mZJf0ATtmMtRWe5fdKzDJlXRiJYMpG9aZZOFqPyIiymX9M9/Fgvm3IF5rw6uqQ1XMA2JxwHX6vnORLTnyuwAAEU0ArgXLCyD8ANq1sOblG4s8OiJy2jXsGCA9ASsuEW8Nw24HrEQApz2AsycKHYsDSpkEi2VBuI5pcB/tnH+mkiyMZ4mIqCfP/vwyHHfa7UjUSMRrAC0c2DGT6C9lSw67FnAsCJjdCfHxIbRPtuC0l/7YRwsNQLHBfEkpywRLMdQfdAUgJVR1GGtfXFHs4RANq+P++TbYMQVYAtIztTeF0pDNHdC+n06a9JRcSe1iEVJgnceJKBER9e6JDVfj46eaXcg6ZGPNm/9S5BH1rv7gqwCtITwPuioCHbIhGlvNiveQC6FKJzk0f+Hq9PdsBk2jybyzbofTbkqdWHEJ6QlIX8BuB5zWAO6edog9TWbxkFImqWJJiFRca9vpIhhsaE9ERPl45peX4chv3wnlAn5E4P/uX1bsIfUoHc8CgFJITKpGbLyLICQQbjT9YwK2/CPKiQmWPOmwA5EIIHyWOKLRJ9TsQ0sBBCaBIgMF4SlTQkHl+JvQChCy12b3REREvdn48OXFHkKf6mdfCVjSrHbviJqESk0lRHMbkEig4YN/L/YQiSgpvNdHarGnUAAgoS3AbdWwWxNmx0pGjxVoDSQ8aNeBELbpwQJACK4YJSKi/L16Z2mX1MqKZz0PcBwE1RG07x+GUBpOu8IffvudYg+TqKQxwZIn1sym0Wr+gtUQgYLlJRMpQkC50jQ780x5hMwkSrr/ipVxuVadu1uIiIhGgPqDrgACZcqXJRJQrW2QUyZBNLdBt7VjzZ4fFXuIOXHXCo1WMqEgk/GstgQQ2NDSgpXQkLEERNw3f9NJOlkmTMABtIZOmNK4wi2PflBERER9Scezqd5jgQJcgcQ4k1ypfb0Ja165qdjDpBx0qZQI45pqAIDs+yZENJpteOIqOE0xWG1x89Uag90cg4yZD2Ahe3gb0cokVoKAu1iIiGhEqT/gcrNbJRo1q/0CBWHb5jIA4OceUclxGqOwWpMxbUscbosH6WkEjoCqcIEgSCdRMhMtCBR0LJ4si9tllwsREVGZSsezKjCfbwAQcqErQvAqJZw2ZeJcIuoTd7AQUa+WHL0cUCpdHk8LAaEUtG0DQgC2DehoziSKVhrrg4eGe8hEo9b8hau5Op1oiNXPWgb4gSmlIKUpl6kV4NiAtAApsGbfj4s9TCLqKhnPaiEgHAvQplmvHxbQtgVEY9C+D+2ZRKkAAEtCJ3dsr21/oHhjJxpFGM8SDb10PGtb0NUVgGVB2xLKteHVOEjUSAgFPP2/rOZTqtjkvrQwwUJEvRJxz6zElQLISK4I3zfJlfYOs9IvfQdujCMqBalG1pygEhWY55vEiuMASkPrOEQ4DD2uFmhsRcN73y/2CIkoBxH30/GstgS8ageJKolwYwD7/b1Qe/dBJZMrAACtIGSyHBh3pREVBeNZoiHi+YBtAeEQgtoKKMecx4lOcJGoEYAGXrhvWZEHSVQ+eCaUiHq05KjrzDfJyaYKOdCOBdHSDigASkEnEp13yEiupHa0LLTOGK7hEpW81CRxqGROPjesv4qTUaIh0LDth1ATatHw1vcQ7DcOYkwdoDX82jCTK0QlasnRy9PxrA7b0I6FIGLBjmtUv9EItXO3Sa4kS9wKKSBsxywusiyzY42I0oYypmU8SzT0TDxbh4a/3AK/0jYJFgH4FQIdkwRe/C8mV4j6gztYiKhHqWZm9QddAS0lVMSB1epDt7ZBdESho7Hs3Ss9WGidASEF1nkPDvWQiUoaJ4hEI8PaTTdgwfxbgIgNjKnCure+V+whEVEv1rx8Y0Y86wJaw4opRGIK2LEb2vdMcgUAhDTJFUumew0Ky8KSmvOgg4ClwojAmJZoJFj7wvU4Ycm/AFJAC+DJdVcXe0jUDyXT5J4AMMFCRL2on/6tztJgAKx2Ce3akGPHAO0dULG42amS3LkipIBWGkKKzt0smk3RiIho5Fg0zyw+eOLZ64o8EiLKV/30b5mECQAZTSA2tQpNs2xMeqENuq29s5egkGbHikyetHAdCMcBLAvwPAjBkxlERFT+UrvQnmKylKggmGAhop4FARDANO51bHjjKqCFQKixPV0yIXMHS1aje61MkkVIrEv8fPjHTkRFVT/z20AsDp3w2PCbRpR1TKwQlZ8gMEkTx4ZXF0G8Jrk4yDNxrFkkJM0ioSThOBC2bXouAWj44N+Hf9xEVFRLjl4OKAXhKzRsXlXs4RAVDHehERUWEyxE1LPkhBK2DRVx0DHJhRXXCHke4HkAuuxaSRES0IqJFaLRzPOBQAG+jyVjL2SShYiIikfKdDwbneQgCAlUbQ8g4h4QCgHxOCCS8axlQbguhOsAtg0EARp2/FuxHwERFYFoiya/EVhy2LXQYRtrN91Q3EER0ainAagSKRGm+77JqMBufUTUM9sCQi50xIVfE0ZsjITdEQCJBHTCS5YP6/I20vVnIhp16id9DfB9aN8HLIvJFaI81U++uNhDIBqZbKsznq2TCBwBp11BBBrCdU1SJbVYSAhAKbNLO49eg0Q0MtXv9w0gngASHuD7EPEEkytEeUqVICMaLbiDhYh65rrmXynhRywoF9COBJSG9jwz6eypxwoTLUSjFsuo0Eh20vGr8LvfXzMkx27YefeQHJdo1HPdrHhWSUALANGYWQyQ6imYSrJoDXi+2aXtcMpMNBo1vH9XsYdANGTmL1w9pGXCWIJsiGkTqlDpYLRIRD3SrgURaEApWJ5JpOw91EbFSy7Q1m5uJCSENNdppbE+YFkwIiIamRbMv6XzBCwRlQ3tWlnxbGIMoG0BRGNAEHRLouggwNr2B4oxVCIioiHF3SVEhccECxH1aM1rK7HoH26EUArCU7BigPQAVFZAtLRCJxLmhsmeK0IKLHLOxDrvwX7/rsXhswGYJE0mkSxDtjb608E+HCIiokF5YsPVxR4CEQ3AmtdWYvExK9LxrJZA+2QbFePGQGhtdrAA0FoBgYIQAktqzsOalnv7/bvqD/yO+SYIOpeXOg5gW2j4yy2FekhEREQDwt0lRIXHBAsR9Uo7EsqyACkQalaIjZVQNRGIvQ6QSKSb3KcVqjSYVp3H4mphIiIiIhqEoMJJx7NepYQfARKTqxGKxgHfB5QyyZZkyTDdUxncvlhmtwy0BgJlvhcCkCyfS0RERIUgoMDzZKWEUR4R9UpbAloKQANum4Id1dh3eDWixx4I8aGZpjEoYJIhyYTIIvesQf5Slf6XJRqIiKgcLJjPlelEpSwzng03aigH2HNUCM3HTEEwdazp0+I65l9LQlgWloz58sB+mRDmSyUTLAkPDW+wJAsREZU2lg8jGhjuYCGiXv3u6Wux4ERz0kjGFUJNAh0TLew9zEFN1VjU7muC8PzsZvcD2MWyNvazrJ8XVy3F2rb7BzV2IipdqeCdW9RpxGCjSaLSJsxKz1Q8G4QstE0D2qcKCFWB6qhndrHEPCBkFhAJ1f8/7K6JlPoDLkfDO7cNfvxEVJIY0xIRERMsRJQfAUhfwWkHQs0CQUhi3xwJoQ5AzfNboVvbMnqyDH6rIpMrRCNXaiIqAp6RppHjiSfZn4Wo5GXGs00CfkSiY5JA63QLTns1EtUWwns9OM0xCC+jh8ogMLlCNHJxtT+NNEwUlg+tWSKslDDBQkR9Sp00WnDCKghfw20JoCUQuBIt0yWAaXBbfITf2g20tkFrhSXjvwIAWLPnR0Uc+eDMX7i6xwCDK5WIBo5/N0RENNx6imeVJeGHgcaDHQQu0LZ/CFXbHLgtPqSnseCEVdCOLNvPrnziWYCfzUQDwb8bIiIC2IOFiPrhiaeugdAa0tcI7wtQuyVAZK9GbIxExyQHbUdNRvzImdAzpkBMGAdMmYAlR12HJUddV+yhD0g+AfP8hau5cqkf+FwRUamYv4DvR0SjUa54tmq7ht0B2B3mNu1TJVpmuIhOdBCbEEK8zsHxn7q1uAMfoHxPADOmzR+fJyIqFXw/Gp00AKVFSXyRwR0sRNQvT2zILoFy0vGroAUAaWpZd0xx4c9yYcWB8F4fdocPmVC5D1bGelsJyJVMPeNzQ0SlYsMTfD8iGq1yxbMA0jGtH7EQHW8jOk5C+kCoRQGxIgx0iPUWlzGm7RmfFyIqFXw/IioNTLAQ0aD87vfXAACWHHYtrMoQtAwDY2wIpeFVWYAAfv/UFUUe5fBhgENERERUXlLxLAAsOeJaWFVhaFsAwoJQJvHy+0e+U8QRDj/GtERERET5YYKFiApizesriz2EssUVgkRERESlYc1rjGkHijEtERHR8NC62COgTOzBQkRUZBvWX8XaqURERERU1hjTEhER0WjEBAsRUQnghJSIiIiIyh1jWiIioqGntSiJL4CN7oEyS7A89thjOPbYYxGJRDB+/Hh8/vOfz7r+vffew6c+9SlUVlZi/PjxuPTSS5FIJIo0WiKi/uOElIiIiIjKHWNaIiIiGi3KJsHy8MMP45xzzsF5552HV155Bc888wzOOuus9PVBEOCUU05Be3s7Nm7ciAcffBAPP/wwLrvssiKOmogof6xZTURERETljjEtERERjSZl0eTe931885vfxK233ooLLrggffnBBx+c/n7dunXYvHkztm7diqlTpwIAbr/9dpx77rlYuXIlampqhn3cRET9xQkpEREREZU7xrRERERDx5TnKj6tiz2C/IwdO7ZftxdC4E9/+hNmzJiR1+3LIsHypz/9Ce+//z6klPjwhz+MnTt34uijj8Ztt92Gww47DADw7LPP4vDDD08nVwBg8eLFiMfj2LRpE0488cRiDZ+IqE+pMgqcjBIRERFRuWJMS0RERKWmqakJ3//+91FbW9vnbbXWuPjiixEEQd7HL4sEyzvvvAMAWLFiBe644w7MnDkTt99+O44//ni8+eabGDt2LHbu3IlJkyZl3W/MmDFwXRc7d+7s8djxeBzxeDz9c0tLy9A8CCKiXnASSkREA8V4lohKBWNaIiIiKkVnnnkmJk6cmNdtv/GNb/Tr2EXtwbJixQoIIXr9evHFF6GUAgBce+21OPXUUzF37lzce++9EELgl7/8Zfp4QnTfHqW1znl5yi233ILa2tr017Rp0wr/QImIiIiIhgjjWSIiIiKi0UNpURJf5UIplXdyBQBaW1txwAEH5H37ou5gueSSS3DmmWf2epuZM2eitbUVADBnzpz05aFQCAcccADee+89AMDkyZPx/PPPZ923sbERnud129mS6eqrr8ayZcvSP7e0tHBSSjRKpEoYpHDFHRERlSPGs0SjV9d4FmBMS0RERDScippgGT9+PMaPH9/n7ebOnYtQKIQ33ngDH//4xwEAnufh3XffTTebmTdvHlauXIkdO3ZgypQpAEzj+1AohLlz5/Z47FAohFAoVIBHQ0TDqRD1nTn5JCKikYDxLFF5ykyODDQuZTxLREQ0yujyaS5fqt5//30888wz2LVrV7pyVsqll17a7+OVRQ+WmpoaXHTRRbj++usxbdo0zJgxA7feeisA4LTTTgMALFq0CHPmzME555yDW2+9Ffv27cPll1+OCy+8EDU1NcUcPhHlKdcKvJSuk0dOJomIiIioFPUU0zKeJSIiIique++9FxdddBFc18W4ceOyWosIIUZuggUAbr31Vti2jXPOOQfRaBTHHnssNmzYgDFjxgAALMvCY489hosvvhjHHXccIpEIzjrrLNx2221FHjkR9SbfCWjm7TkZJSIiIqJS0Z9FQqnbM54lIiIiGn7Lly/H8uXLcfXVV0PKwrSnL5sEi+M4uO2223pNmEyfPh2PPvroMI6KiAplw/qruk02e5qsFqI8GBERERFRoeUb0zKeJSIiooHQAHQZNZgvNR0dHTjzzDMLllwByijBQkQjU2oSmppk9rYCsOv9iIiIiIiKLRWX9jemZTxLRERENLwuuOAC/PKXv8RVVxUuDmOChYiKIt9ESleciBIRERFRKWA8S0RERFRebrnlFnzyk5/EmjVrcMQRR8BxnKzr77jjjn4fkwkWIhp2/ZmMZq4I5GSUiIiIiEpBX/GsCDS0Zcp3MJ4lIiKiwhEsETYIq1atwtq1a3HwwQcDQLcm9wPBBAsRDYt86kxvWH8VFpywCpAC2hJZt+VklIhKVeZJNp5EIyIaufLtm7Jh/VVYcuR34Y2vTCdZ8rkfEVGx9BTPQgEbnuB7FxGNHHfccQfuuecenHvuuQU7JhMsRDTkMoO13lb7zV+4GhueumY4hkQ0KvT098YTPN0Votmw8BROOn4VlCsBNbgkS67/O/6/EREVTz7xrIwHUCHLvP+/evNwDY1oROtt/sjYKFsh4lkrGmDhx1ciiFgQvoa2xYBjWs5FiIaOLvYAylgoFMJxxx1X0GMywUJEQ6bfdanV0IyDaLTI92+u6+1G2iRn8UdvAACsfeH6vO+T6zlITSZTz5cINJ7YcHX659BftiN+6FQ4+6Lwa8PQjuwMdGXnMfr1OxesTt8313h6u+9AdP19XY/b23jyVW6vr0KcnCCikSXfz1cVspLfDOFgiEa4/swhR3JMWz/nGkBrNPzllrzv01M8m7ouHdP6Gk88aWJa9/k3kDj2YIS2NSMxuQZBxErfV9ui23Hy+Z0nfWJl5/thDoWOafN5HQy0Z1Zfxy1ljGmJcvvmN7+Ju+66Cz/84Q8LdkyhtWbSK0NLSwtqa2vR3NyMmpqaYg+HqOykAxeFPk/KpYI8fuATDUzXycmAkpqy8/4jRep5sDp8BBVmLUlmLfySksd7Za77CGUmxgs/vhLrN17b7SYLj7sZEALQOv0c5HvsVBmIhcfdDOVaWZPrIVUiJSiGIpHVX4ONRxnPEg1evjFt5ufvSPosJRpOuZIA/ZL8Ox1Jf4PpeLbdR1DZGcuVZEw7kHg2qbdzAoNJimQeb8GJt0BLMehFQ3kpkXgWGBkxLXW3YcMGLPni6Zj1r5cWeygAgHe+cjuefmQN5s2bV+yh5O1zn/scNmzYgHHjxuGwww7r1uT+17/+db+PyQRLF/zjJxq4rAColyBrJAW+RMNp0AmVPFjRIGvlWup3lbKcz8MgJnqlTvgaEOg+uc54zKmSDuWoFF9vw70YgAkWouLKJ6YtxfcqonIx1DFtqlxfplL/m831HJRkMqWQ8ojXy/k5KMXXXLnFtNRdKsEy865vFnsoAIAtX72t7BIs5513Xq/X33vvvf0+JkuEEdHQkN1P8FnRAEEvW4WJKFuvPYsKULopl67Jlb7G0asCrybs1zhGaHIFQM+JE5nHbcpAX2XLiIiGlcw+wSc8Be2M4A8ZogLrK34bigVDucpTlUo825+xlGtiIW95vJWW83PAmJaoNA0kgdIXJliIqGC6BgwL5mfXi808cTt/4Wo4e6JY+9INwzI2olLX70lfOZzbKcAYh2LSTSUu83Wj8nsNZH7+DEU5BE6IiUaX3mLazOTK/IWrYXX4kHEfa19cMVzDIypZIzJuS/7Jn3T8Kvzu99cM6BAj8nmhvvUzpu3WC5ExLVHZYIKFiPqttwZ3C05YBUhhVpr0sNokdX9vfIQ1q6ksLTnqOkAIaFti7YsrsHju9fDqIv0uIcLJVjY+H9RNnkm6nl47/U3OENHo0dv7w4b1V+Gk41dBS2F2BOaIaVP3DypsqJDFmJbK0knHr4IWJnHYW6muvl7XoyGGyze5MhqeCxqAPGLaXqsX9DM5Q6MAG34M2N69e7F8+XI8+eST2LVrF5RSWdfv27ev38dkD5YuWB+QqFPXD/HUh/b8havNVmlg0CvUU2XERKDxxIarB3cwGtWGsolf/bRvAo4DXRnCmtdW9vn7eyMCDS2GqclisfXQ5LF+9pWIzxjTvabyCO6bQqWvlCam7MFCVFjzF66GjAdw/rYTDe/flb5MBBrQhSmrmPpMY0xLgzVUybolR10HLSV02IaWAuuf+W6vv5+SemlavuSo65CYWJkd0zKepSIqpXgWYEw6FNI9WH5YIj1YLiq/Hiz19fX429/+hgsuuACTJk2CENlx4NKlS/t9TO5gIaK+dQkSsxItg6SlKOtmzKPFScevgnJlzv/70Kt/R/zIGbm3NGdMSHK9XnI1VAcAmVBQbueLzm5NwNrbBv9vWxAsmNvneFO/K7NOemp8iyu/hOCYQ3I+nm6PLzn+hq0/SF8+2Nd9OdcR7pcck8sF82+Bs7cD3v51AHI8F5yMUhHNX7gaVruPoDIZHme8hkttskpEg5frM38wn0NaMKYtdV3jWaBLTPu3PYh/aHz363PEs113e+SKaYcyngV6jml7imfXvHJT1rGZSMlTjveF+QtWw2mJwx9XAaBLTMt4looo/b7RdSFbEmPakUPr8ow3nn76adx6663YtGkTduzYgd/85jf47Gc/m77+3HPPxf333591n2OPPRbPPfdc+ud4PI7LL78c//3f/41oNIoFCxbg7rvvxv7775/XGDZu3IiNGzfiqKOOKshjAriDpRtmV4l6SZzkWL2z4MRbCrrqL/TWB2h4985BH4/6p2uCoX7S1+AdMi1rUph5fU+7m3o7dlF0OVki4wGs9gS8sZGs2widDEC7nFDlxHPwMl8bC05YxcbANOIMxUSVO1iICiPn5/gQxrMAY9piy4xp62ctQ2LG+G6xR08Jlq7X5TpuUeRI/vUa02bslGY8Wxjd+jIV8D2DqBQMVeKFMWnhpXawzPjBt4o9FADAu1+7tV87WBoaGvDMM8/gIx/5CE499dScCZYPPvggqxG967oYO3Zs+uevfe1reOSRR3Dfffdh3LhxuOyyy7Bv3z5s2rQJltV9AW9XH/3oR3HXXXfhH//xH/N/oH1ggqUL/vET9T2B6Gk1RNoAVgCmVmZxRcXwyKeGa9Zt8vw/TZfH4ApOQu8nMIhGqkJ8jjHBQlQYvX329BnPAoxpy0BfvXQGEs+mMJ4loPfG40QjUeq9sxRiWuqu3BMsmYQQORMsTU1N+O1vf5vzPs3NzZgwYQJ++tOf4owzzgAAbN++HdOmTcPjjz+OxYsX9/l7X3jhBVx11VVYvnw5Dj/8cDiOk3X9QF6rLBFGNAQGEnSV0iSsr5OiWhR+oqEtCeGpvm9IhdXDRLPb/3uek9HUiQpORke3zBMaC+bfMnrKohEBBZuQEpWC/sa0pfba7y2mHYp4FmBMO5z6Sp4MNJ5NYTw7umXGs/MXrGbpLxo10q97xrQlrVS2SwzFMJ566ilMnDgRdXV1OP7447Fy5UpMnDgRALBp0yZ4nodFixalbz916lQcfvjh+OMf/5hXgqWurg7Nzc2YP39+1uVaawghEARBv8fMBAtRiRjKBt0F1zW47DKhEVrjifVX929SLgEE/BAvpJ6eyyU15yE0ZRLi0+tgxXP3QCEaqKzJ6MLVAJMrRESjRn9KiBZdrpOljGlLTo/x7JgvA8ccCHd7KxJTqxnTUkF1i2eZXCEi6lEikUBLS0vWZaFQCKFQqN/Hqq+vx2mnnYYZM2Zgy5YtuO666zB//nxs2rQJoVAIO3fuhOu6GDNmTNb9Jk2ahJ07d+b1O84++2y4rouf//znOZvcDwQTLESD1FOjw0z9bQrfrxUyOepI52PB/FsAAE9suLrnceSYJM9fuDpru3yqeaNMKDhvbEPDzrsH3jRRivTv5YR0YJaM+TLWNP4k5/OfvuzYg9OXcSJKhcayCTTa8fOLylHXXmy9xbT9eZ/vz20H8rez6B9uhHYtrN94bd7j6C2ehTTfO3/dioYP/p0xbREtGfNlJI45sNvl6f+P5HWJqdUAGNNSYTGeJWJMW9J0CTW518ADDzyAE044Ievi66+/HitWrOj34VJlvwDg8MMPxzHHHIMZM2bgsccew+c///meh5HcfZKPP//5z3jppZdw8MEH933jPDHBQiWrrFbA9aHfAVp/VsjI3Mfv7fla+PGV0CELQuucCSK7zYNflV2DECoj8SNMTWKZCKBtM1jlSsSPmD6gYDRVA1sLMaBa19RpTeNPsn7m5ICIaOiIQEMEGso2J2bLOVahoTOqY9oCHLun5+uk41dBVznQQuRMoACAFe2yq6FrPBtoyHhnPAskY9ojZzCmLbLMBUOMZ4mIho4INKA0tCXTn1vlHKvQ8PvSl76EO++8M+uygexeyWXKlCmYMWMG3nrrLQDA5MmTkUgk0NjYmLWLZdeuXfjYxz6W1zGPOeYYbN26lQkWGp0G09ckV/mtQpXkyrxvf1f1DaWexiECDTjmg1ND5Lx9EO7+1iC0TteqTvVTCOzCvIWk+zPw5FTe5i9YDfvpl7HOezDn9VaHDxWy2PuCiGiIyITC735/TfrnUvn8p9JXiJh2KOPZ1M+l8prOOQ4FCEvkjHMyb6/cnjMc6Xi2onBTYsa0/TN/4WpAAc5zm7G2/YFu11vRAEHIYqKKiGiICE/hiacYz9LguK47oMbw+di7dy+2bt2KKVOmAADmzp0Lx3Gwfv16nH766QCAHTt24M9//jO+973v5XXMb3zjG/jmN7+J73znOzjiiCO6Nbk/8sgj+z1OJlho2PW126KvZMhgf1fOyxasxoYnuk8k+zMxyqdUWCnI54R7roaOQ32iPrXij3q3uPJL8I89FBACwceP6nZ9+rVXwJMFRESEPkty8mTq6DJ/4ers2CXH62MoY9qeYtyefs+Ii2m7LBTqSbfYchhO1DOm7Vv9hIsQP3Jm+v/D/4dDu91m/sLVAMt+EREVXG8xAePZMlIqJcLyiMcytbW14e23307/vGXLFrz88ssYO3Ysxo4dixUrVuDUU0/FlClT8O677+Kaa67B+PHj8bnPfQ4AUFtbiwsuuACXXXYZxo0bh7Fjx+Lyyy/HEUccgZNOOimvMaTKkJ1//vmdj0IINrmn4kglJbpdPoCJWE/3GbZJXa4yW6p/hyjllX+lLlX3mh/mfcu1ui+FrzciosLKOlHKFdQj0uIPX4+1L92Q87q+PlezTqL3ULI132MVSiF+D2PagWNMm5+G3f/R6/V8vRERFRaT/1QqXnzxRZx44onpn5ctWwYAWLp0Kf793/8dr732Gh544AE0NTVhypQpOPHEE/HQQw+huro6fZ8777wTtm3j9NNPRzQaxYIFC3DffffBsvJbmLFly5bCPigAQmutC37UMtbS0oLa2lo0NzcP2famcrNg/i2mNJTkBIsKJFWTuo/VwNSzslhdSkRUxop5gnSw8Sjj2dwW/eONCMI2tMNsGRUA49mCYExLRDS0yjmmpe42bNiAJWefjml3Liv2UAAAf//69/CHRxswb968Yg+lqLiDZRTqd+Bq5e7TQZSmACseQDkS2hYQngJkdl1sruTLVqi/Jf5NEhHRaNXvz8Bqd2gGQiNHHzEt49lshYxDGdMSERHlRwPgdon++d///V/U19d367fSk8cffxwnnngiIpFIXrdngmUUSQetqdJX0jQO1MkGkVoIiEBxVR/1mxX1gedfgwSwPnio2MMpSZw0EhERFUbXz1ThKUAIaGlOggvNMhg0MIxpe8d4loiIiMrR5z73OezcuRMTJkzI6/ZnnnkmXn75ZRxwwAF53Z4JljK08OMrEYSsnmuBKzOxhM5oVp7cwp6quygTCtoSUK45iLYEoMDkCmXJVaeTK/f6xsknEVH5yyxbk+vyXPgZ2T/zF6zuu7dNxsKgrpcLraGFgLZk521UjsbmNOp1jWn5t5ofxrREROUvV0zLeHYE4A6WftFa49xzz0UoFMrr9rFYrF/HL5sEy5tvvonvfOc7eOaZZ5BIJHDEEUfg5ptvzmqM89577+HrX/86NmzYgEgkgrPOOgu33XYbXHfklAOo3/9SYPrE3iejEtAQ3S4DzIRTBBq6S/mmzNsQpeQ6QTF/4WpY0QDrN15bhBENzKJ/uBHW1g8QP3xaj7cpRBDBSSgR0cgzf+FqOI0x6FffxLrEzyE8BaE0VCi/JoqUW/3MbwMHTer7hj3FpxLQSnS/nvHs6JXqiZJD15h2pMazAGNaIiLKbf7C1bDbPKx79jqIQANKc5E1jRpLly7t1+3PPvvsfvUNKpsEyymnnILZs2enkyff//738clPfhJ/+9vfMHnyZARBgFNOOQUTJkzAxo0bsXfvXixduhRaa9x1113FHn7BNGz7IeYvXA3hZZfyEr6G9BSEHyCIOJ07V3Lgqr5RqKfVnz3IbDIpfJOQE0rDivnwq5w+J6PzF66GjAdw3tgGf/cerFe/HMTgBy49Oax14df2Phmdv3A1RKDxxIarB/57iIhoRPLGhIHjj8T8BasReuN9wLIQP3QqAK7yG6iGd+/EghNvyYpZRaDNl6+gQlbfMSvPCVCmHK+HrMbpChBKQ8YDBJV2XsmVzJi24YN/L/CA8zd/4eq84tnUbRnTEhFRLn6VY+LZbU2A1ojPHAuA8SyNfPfee++QHr8sEix79uzB22+/jXvuuQdHHnkkAGD16tW4++678frrr2Py5MlYt24dNm/ejK1bt2LqVDPhvf3223Huuedi5cqV/co6FcOS2vMBKSGmTERQFUZQYUM7MuebXOZl9RMuAiwJPWkctJQIqt1ekys0SmVMOHOV/UpLTjwB8zpb5J4FAFiX+HmPh+5pIqZtieCAqVhfpMnoQnka5MePzm+FccaKx8Vzr8faTTcM6diIiKhMdF2gIJG1epyT0WxLxl4IaA0xeQKC6gi0a0HZoseY9oknzQng+v2+AVgW1IRaaMuCithcEES962W3Sur6zJh2cfhsrI39rMeb95ZYSMW0xbJQngYsmJvfjRnTEhFRT1KfERKIzxiTvpjxbHnSmrFyKSmLBMu4ceNw6KGH4oEHHsBHPvIRhEIh/Od//icmTZqEuXNNsPnss8/i8MMPTydXAGDx4sWIx+PYtGlTVimxUiRcF96c6emeKCldg/2ub3wNu/8j/X39hIsgtIKYMA6JKTXQloDdnEgna4gAs4PJbvPgVzndr5SAlsKUTejwIZB/ckUmFJQtYcUD4I8vm98FMyksxg4Wq6oKCSfP8i0ZJfT86hDqD7oCDW99L6+7LrTOQOZvkZEw5JRJ8CfUmNW3THgSEZUdTjQHRoRceLP36xbPAr3HtA3vd+42rz/gclhaQddWwa8NQ9kSkIDV7vNzlTpJwOrwEVT0MJ3tGtOqnguVd31t9hTTFotVVYUg3xsPIqZdXPklZM4ORCRs5pWTa/h3R0RUphjTEg2PskiwCCGwfv16fOYzn0F1dTWklJg0aRLWrFmDuro6AMDOnTsxaVJ2HecxY8bAdV3s3Lmzx2PH43HE4/H0zy0tLUPyGPqSSpQsOexaqJpw7pPfMBOAXG+QS8Z82XwjBPQHe+Ds3gsAWLPnR1n3BZI7GESOmtU0avT0+sqkHIl8q8tbHT6s1/6GNS2dW+4WytNyfp8r2bJQngad3G0i4wGcrXvRsOWOPH97tvQk+diDB3R/bUnAzr+u/vrgoV6vX+ScmfWzrK6GqKyAHleLxISKAY2RiIgKz25NYN1zy4s9jAEpmXh2x78BABZ/+HqoCqfnk9/IHdPWT7go/b1o64DzgQVICSiVPnbqvgD63sVAI1pvr69MypGwtOr7hug9pu0rnk3dplxj2rXtD/R43ZKa87J+FpUVQCQCNaYS3tjIgMZHRESFl1pMy8QK0fAqaoJlxYoVuOGG3rctv/DCC5g7dy4uvvhiTJw4EX/4wx8QiUTwk5/8BJ/85CfxwgsvYMqUKQBMIqYrrXXOy1NuueWWPscwnNa8vnJg92v8Sfr7JWMvzEqspC4L1dUiPms8Sy5QXrQlof7xMNTvfykatv0w5216+9BOTTznL1wNpykO+Are+EjOEgzuEYekd5uokAVEwnnvfEmtTAzCNkSggEHu1gq9ty/vlX758E84uttlwtdcCUhEVGL8arfYQxiwUotn1740sLFk7sxeMv4rED7QsPvfsm5TP+EihGqrEZ8xjskVyou2JNS8I3q8vq+TUKl4dPFHb+g1ngUGHtOmjmdFAwQhq+Ri2kSOJA/jWSKi0pPPYloaIYq5vZa6KWqC5ZJLLsGZZ57Z621mzpyJDRs24NFHH0VjY2O6l8rdd9+N9evX4/7778dVV12FyZMn4/nnn8+6b2NjIzzP67azJdPVV1+NZcuWpX9uaWnBtGl9Nw8sZWv2/bjHyxbNu4lvuJQfCSjHQjB1PBbMvyUrMRfa1gy15T2oRAIyFIacNB7xgyZhw/qr0qv7UhPJrOaiSV37wCQmVnZeLgT0zt39KiuWWsGoZY6JaB+rW/Nd2bHQOgPB/A+bcfoaIlAQz7yavqw/OBklIqJCGpHxbJfFQimpJAxjWspbMqZdcOItWTFY13hWRMIQNVU9xrReXSjrsLn6Gg40pk0dK4iY5Ey3mDaP3Vr5xLSL3LPgH296mqbiWRWy4Gx8Hd7HD+vz/pkYzxIRlSb3g7ZiD4GopD3wwAM444wzEAplx3aJRAIPPvggvvSlL/X7mEJrXfI5r0ceeQSf/exn0dzcjKqqqvTlBx98MJYuXYprrrkGDQ0N+OQnP4lt27ald7Q89NBDWLp0KXbt2pV3k/uWlhbU1taiubk57/sUSo8roV58O+fl/pEH5Kxx3aOujVqJBivXZE8BVixHTezkbctpq2pmCRIRKPYyIiIaBUrhc2qw8WgpxrMAEHr171k/6yCAf9jM/sWzAGNaKqyekhe5YlrGs0REVCZK4bOqmDHpSLVhwwYsPut07Hfr5cUeCgBg27dW4w+PNmDevHnFHkreLMvCjh07MHHixKzL9+7di4kTJyII8u5+l1YWPVjmzZuHMWPGYOnSpVi+fDkikQh+/OMfY8uWLTjllFMAAIsWLcKcOXNwzjnn4NZbb8W+fftw+eWX48ILLyybP+JcK/0BIHHMgdiw/iosrlqadbm16Q38ru3+rMvmL1gNpymKoCrUfbLKWJoKLddrSvZQE1uaeqD1ky+Gv2t31lX92a2Sj95O7mTKFXDkvK/sYXcMERGNOJmfA6UwMS03PcWzABA/cgY2rL8KS8ZeCCTXeNmvvpNV6hZIxrPNMQgvgF8XYUxLQ6un11OumLaXeBYo8ZiW8SwR0ajCmJYot57aiWzbtg21tbUDOmZZ7GABgBdffBHXXnstXnzxRXieh8MOOwzLly9HfX19+jbvvfceLr74YmzYsAGRSARnnXUWbrvttm5bfnpTDtnVxZVmq1JPjQjzDcSJhpNMKGhL9NoDSPga8vd/yrtO9WC5L76NxDEHAgCcPVF449mkk4iIejccE9Ry3sHSH0tqz8ea5ntyXsd4lkpRPvEskF9MW7DXuALcPzGmJSKi/A1XwqVcYtJywh0sA/fhD38YQgi88sorOOyww2DbnQtpgiDAli1bsGTJEvziF7/o97HLJsEyXAbyx9+tv4Rntl47e6IQSkHs2gfV2gY5eSJUdQWE7wPbPoBOJDLuJNIr+VJSCZQlRy9HYkLF4B4YERERERWc8BS0JXOugh/o5LUYCZZu8WxGA2unKQ4oBbm3BWiPAmProKrDEL4C3tvRGcMq1XmAjLh2Tcu9ABjTEhEREZWi3uJZoHgxLXWXTrB8r0QSLN8unwTLDTfckP73sssuy2pD4rouZs6ciVNPPRWu6/b72GVRIqzU9fRGM3/hasiEguPVQkwYA/3u+8BOhfR0UwjI6fvBG18JFbKy7is8hQUnrDI/jOEKJCIiIqJS1Fs/g8GU9xluvY1h/sLVEJ6C41dBj6mB3L4LYu8+QGmTSNl/EvwxFd3jWd9cz5iWiIiIqHT11Z8rn5i2FOJZot5cf/31AICZM2fijDPOQDgcLtixmWDpwSc/cwdsu/sT3Vtd6dT1ub7vKnUMuzUBZ8suAIAaX4eg2oW2JZsPEhEREY0S8xeuhgg0tBCABHw/VpDj9hTPAr3HtF1j2L5iWrvNg7N1LwBAja1GUJmMZ20BoPdSSkRERERU/lJx5VDEtESFtHSp6XGeSCSwa9cuqMxd+ACmT5/e72MywdJPfWVt+1tL16924R8yZTBDIiIiIqIy11dPh0LrLWbtdzxb5cA/cOJgh0REREREZW64Y9rRiYuYBuOtt97C+eefjz/+8Y9Zl2utIYRAEAT9PiYTLERERERERERERERENKKde+65sG0bjz76KKZMmQIhBp+sYoKFiIiIiIiIiIiIiKgc6L5vQrm9/PLL2LRpEw455JCCHZONPoiIiIiIiIiIiIiIaESbM2cO9uzZU9BjMsFCREREREREREREREQj2r/8y7/giiuuwFNPPYW9e/eipaUl62sgWCKMiIiIiIiIiIiIiKgclEqJsFIZRz+cdNJJAIAFCxZkXc4m90RERERERERERERERD148sknC35MJliIiIiIiIiIiIiIiMqBFsUeQdk6/vjjC35M9mAhIiIiIiIiIiIiIqIR7w9/+AO++MUv4mMf+xjef/99AMBPf/pTbNy4cUDH4w6WLrQ2xeN8P17kkRARERHRaJSKQ1NxaX8xniUiIiKiYhtsTEs0FB5++GGcc845OPvss/GnP/0J8bh5nba2tmLVqlV4/PHH+31MJli6aG1tBQA8u3F1kUdCRERERKNZa2sramtrB3Q/gPEsERERERXfQGNa6hlzVgN388034z/+4z/wpS99CQ8++GD68o997GO48cYbB3RMJli6mDp1KrZu3Yrq6moIMfLq2bW0tGDatGnYunUrampqij2cUYPPe3HweS8OPu/Fwee9OPi8F8dIf9611mhtbcXUqVMHdP+RHs8CI/81UIr4nBcHn/fi4PNeHHzei4PPe3GMhud9sDEt0VB444038IlPfKLb5TU1NWhqahrQMZlg6UJKif3337/YwxhyNTU1I/YNvJTxeS8OPu/Fwee9OPi8Fwef9+IYyc/7YFb5jZZ4FhjZr4FSxee8OPi8Fwef9+Lg814cfN6LY6Q/79y5QqVmypQpePvttzFz5sysyzdu3IgDDjhgQMdkk3siIiIiIiIiIiIionKgS+SrDH31q1/FN7/5TTz//PMQQmD79u342c9+hssvvxwXX3zxgI7JHSxERERERERERERERDSiXXHFFWhubsaJJ56IWCyGT3ziEwiFQrj88stxySWXDOiYTLCMMqFQCNdffz1CoVCxhzKq8HkvDj7vxcHnvTj4vBcHn/fi4PNOfA0MPz7nxcHnvTj4vBcHn/fi4PNeHHzeacA0AD0y+ywOl5UrV+Laa6/F5s2boZTCnDlzUFVVNeDjCa11mW7oISIiIiIiIiIiIiIa+TZs2IDFXzgDU1deUeyhAADev2Il/vBYA+bNm1fsoeTt/PPPxw9+8ANUV1dnXd7e3o5vfOMbuOeee/p9TPZgISIiIiIiIiIiIiKiEe3+++9HNBrtdnk0GsUDDzwwoGOyRBgRERERERERERERURkQrEfVby0tLdBaQ2uN1tZWhMPh9HVBEODxxx/HxIkTB3RsJliIiIiIiIiIiIiIiGhEqqurgxACQgjMnj272/VCCNxwww0DOjYTLERERERERERERERENCI9+eST0Fpj/vz5ePjhhzF27Nj0da7rYsaMGZg6deqAjs0ECxERERERERERERFROWCJsH47/vjjAQBbtmzBtGnTIGXhWtMzwUJERERERERERERERCPajBkz0NTUhP/7v//Drl27oJTKuv5LX/pSv4/JBAsRERERERERERERUTnQotgjKFuPPPIIzj77bLS3t6O6uhpCdD6XQogBJVgKtxeGiIiIiIiIiIiIiIioBF122WU4//zz0draiqamJjQ2Nqa/9u3bN6BjMsFCREREREREREREREQj2vvvv49LL70UFRUVBTsmEyxEREREREREREREROVAl8hXGVq8eDFefPHFgh6TPViIiIiIiIiIiIiIiGhEO+WUU/Cd73wHmzdvxhFHHAHHcbKu//SnP93vYzLBQkRERERERERERERUDkpl90ipjKMfLrzwQgDAjTfe2O06IQSCIOj3MZlgISIiIiIiIiIiIiKiEU0pVfBjsgcLERERERERERERERFRPzHBQkREJW3FihUQQmDJkiXdrvve974HIQROOOGEbtdt27YNruvikEMOyXlcIQSEEHjuueeyLo/H4xg3bhyEEHjqqacK8RCIiIiIiNDe3o4rr7wSBxxwAMLhMCZMmIATTjgBjz76aNbtXn/9dZx++umYMGECQqEQDjroIFx33XXo6OjIut3MmTNzxrPf+ta3csbHREQ0QhS7uX0ZN7kHgN///vf41Kc+hQMPPBAHHXQQPv3pT+MPf/jDgI/HBAsREZW8KVOm4Mknn8S2bduyLr/33nsxffr0nPe57777cPrpp6OjowPPPPNMzttMmzYN9957b9Zlv/nNb1BVVVWYgRMRERERJV100UX47W9/i3/913/FX//6V6xZswannnoq9u7dm77Nc889h2OPPRaJRAKPPfYY3nzzTaxatQr3338/Fi5ciEQikXXMcDiMK6+8crgfChERUVn6f//v/+Gkk05CRUUFLr30UlxyySWIRCJYsGABfv7znw/omEywEBGVkF/96lc44ogjEIlEMG7cOJx00klob29PX3/vvffi0EMPRTgcxiGHHIK777476/5XXnklZs+ejYqKChxwwAG47rrr4Hle+vpXXnkFJ554Iqqrq1FTU4O5c+fixRdfTF//8MMP47DDDkMoFMLMmTNx++23Zx1/5syZWLVqFc4//3xUV1dj+vTp+NGPfjREz0aniRMnYtGiRbj//vvTl/3xj3/Enj17cMopp3S7vdYa9957L8455xycddZZ+K//+q+cx126dCkefPBBRKPR9GX33HMPli5dWvgHQURERDSKMK7t7pFHHsE111yDk08+GTNnzsTcuXPxjW98Ix17aq1xwQUX4NBDD8Wvf/1r/MM//ANmzJiB0047DY888gieffZZ3HnnnVnH/OpXv4rnnnsOjz/++JCOnYiIaCRYuXIlvve97+Ghhx7CpZdeim9+85t46KGHsHr1atx0000DOiYTLEREJWLHjh34whe+gPPPPx9/+ctf8NRTT+Hzn/88tDb7Ln/84x/j2muvxcqVK/GXv/wFq1atwnXXXZeVdKiursZ9992HzZs34wc/+AF+/OMfZ03Czj77bOy///544YUXsGnTJlx11VVwHAcAsGnTJpx++uk488wz8dprr2HFihW47rrrcN9992WN8/bbb8cxxxyDl156CRdffDG+9rWv4a9//WuPj2vVqlWoqqrq9SufrZjnn39+1ljuuecenH322XBdt9ttn3zySXR0dOCkk07COeecg1/84hdobW3tdru5c+di1qxZePjhhwEAW7duxdNPP41zzjmnz/EQERERUW6Ma3ObPHkyHn/88ZxxKQC8/PLL2Lx5M5YtWwYps0/XHHXUUTjppJPw3//931mXz5w5ExdddBGuvvrqIWncS0REJUYD0KI0vsrQO++8g0996lPdLv/0pz+NLVu2DOiY9mAHRUREhbFjxw74vo/Pf/7zmDFjBgDgiCOOSF9/00034fbbb8fnP/95AMCsWbOwefNm/Od//md61dt3v/vd9O1nzpyJyy67DA899BCuuOIKAMB7772H73znO+m+JAcddFD69nfccQcWLFiA6667DgAwe/ZsbN68GbfeeivOPffc9O1OPvlkXHzxxQDMysI777wTTz31VI+9Ti666CKcfvrpvT72/fbbr8/n55Of/CQuuugiPP3005g7dy5+8YtfYOPGjbjnnnu63fa//uu/cOaZZ8KyLBx22GE48MAD8dBDD+HLX/5yt9ued955uOeee/DFL34R9957L04++WRMmDChz/EQERERUW6Ma3P70Y9+hLPPPhvjxo3DUUcdhY9//OP453/+Zxx33HEAgDfffBMAcOihh+a8/6GHHoqNGzd2u/y73/0u7r33XvzsZz/jQiEiIqJeTJs2DU888QQOPPDArMufeOIJTJs2bUDHZIKFiKhEHHXUUViwYAGOOOIILF68GIsWLcI///M/Y8yYMdi9eze2bt2KCy64ABdeeGH6Pr7vo7a2Nv3zr371K3z/+9/H22+/jba2Nvi+j5qamvT1y5Ytw5e//GX89Kc/xUknnYTTTjsNH/rQhwAAf/nLX/CZz3wma0zHHXccvv/97yMIAliWBQA48sgj09cLITB58mTs2rWrx8c1duxYjB07dnBPDgDHcdJJkHfeeQezZ8/OGktKU1MTfv3rX2dNPr/4xS/innvuyZlg+eIXv4irrroK77zzDu677z788Ic/HPRYiYiIiEYzxrW5feITn8A777yD5557Ds888ww2bNiAH/zgB7jhhhvSyaDeaK0hRPcVwxMmTMDll1+O5cuX44wzzhjw+IiIqDyIMm4wX2yXXXYZLr30Urz88sv42Mc+BiEENm7ciPvuuw8/+MEPBnRMlggjIioRlmVh/fr1aGhowJw5c3DXXXfh4IMPxpYtW9Lb/X/84x/j5ZdfTn/9+c9/xnPPPQfANMQ888wzUV9fj0cffRQvvfQSrr322qxGmCtWrMDrr7+OU045BRs2bMCcOXPwm9/8BkDuCVuqjEOmVOmFFCFEr+UIClUiDDBlwn75y1/i3/7t33D++efnvM3Pf/5zxGIxHHvssbBtG7Zt48orr8Szzz6LzZs3d7v9uHHj8MlPfhIXXHABYrEY6uvr8xoLEREREeXGuLZnjuPgn/7pn3DVVVdh3bp1uPHGG3HTTTchkUhg9uzZAJAzZgWAv/71r1k7dTItW7YM0Wi0Wy8bIiIi6vS1r30NDz74IF577TV861vfwje/+U38+c9/xkMPPYSvfvWrAzomd7AQEZUQIQSOO+44HHfccVi+fDlmzJiB3/zmN1i2bBn2228/vPPOOzj77LNz3veZZ57BjBkzcO2116Yv+/vf/97tdrNnz8bs2bPx7W9/G1/4whdw77334nOf+xzmzJnTreTAH//4R8yePTu9ym8gClUiDAAOO+wwHHbYYXj11Vdx1lln5bzNf/3Xf+Gyyy7LKv8AAJdeeinuuece3Hbbbd3uc/755+Pkk0/GlVdeOajHSkREREQG49r8zJkzB77vIxaL4eijj8YhhxyCO++8E2eeeWZWH5ZXXnkFv/vd73DLLbfkPE5VVRWuu+46rFixImdteSIiIjI+97nP4XOf+1zBjscECxFRiXj++efxxBNPYNGiRZg4cSKef/557N69O12DecWKFbj00ktRU1OD+vp6xONxvPjii2hsbMSyZctw4IEH4r333sODDz6Ij370o3jsscfSq/gAIBqN4jvf+Q7++Z//GbNmzcK2bdvwwgsv4NRTTwVgtkl+9KMfxU033YQzzjgDzz77LP71X/910KvgClUiLGXDhg3wPA91dXXdrnv55Zfxpz/9CT/72c+61c7+whe+gGuvvRa33HJLt9WKS5Yswe7du7PKThARERHRwDCuze2EE07AF77wBRxzzDEYN24cNm/ejGuuuQYnnnhiOg79yU9+gkWLFuHUU0/F1VdfjcmTJ+P555/HZZddhnnz5uFb3/pWj8f/yle+gjvvvBP//d//jWOPPXbA4yQiohLHEmED9sILL0Ap1e1z8vnnn4dlWTjmmGP6fUyWCCMiKhE1NTV4+umncfLJJ2P27Nn47ne/i9tvvz1dsurLX/4yfvKTn+C+++7DEUccgeOPPx733XcfZs2aBQD4zGc+g29/+9u45JJLcPTRR+OPf/xjVi1ny7Kwd+9efOlLX8Ls2bNx+umno76+HjfccAMA4CMf+Qh+8Ytf4MEHH8Thhx+O5cuX48Ybb+y2E6TYKisrcyZXALN7Zc6cOTkbk372s5/Fvn378Mgjj3S7TgiB8ePHw3XdQg+XiIiIaNRhXJvb4sWLcf/992PRokU49NBD8Y1vfAOLFy/GL37xi/RtjjvuODz33HOwLAsnn3wyDjzwQFx99dVYunQp1q9fj1Ao1OPxHcfBTTfdhFgsNhwPh4iIqOx8/etfx9atW7td/v777+PrX//6gI4pdK5CpEREREREREREREREVBI2bNiAxWeegf2vu6rYQwEAbF1+E/7weAPmzZtX7KHkraqqCq+++ioOOOCArMu3bNmCI488Eq2trf0+JnewEBERERERERERERHRiBYKhfDBBx90u3zHjh2w7YF1U2GChYiIiIiIiIiIiIiIRrSFCxfi6quvRnNzc/qypqYmXHPNNVi4cOGAjskm90REREREREREREREZUCw4ceA3X777fjEJz6BGTNm4MMf/jAA4OWXX8akSZPw05/+dEDHZIKFiIiIiIiIiIiIiIhGtP322w+vvvoqfvazn+GVV15BJBLBeeedhy984QtwHGdAx2SChYiIiIiIiIiIiIiIRrzKykp85Stf6fU2p5xyCn7yk59gypQpfR6PCRYiIiIiIiIiIiIionKgRbFHMOI9/fTTiEajed2WTe6JiIiIiIiIiIiIiIj6iTtYulBKYfv27aiuroYQzAYSERER0fDSWqO1tRVTp06FlP1fD8V4loiIiIiKbbAxLVG5YIKli+3bt2PatGnFHgYRERERjXJbt27F/vvv3+/7MZ4lIiIiolIx0JiWeqGLPQDKxARLF9XV1QDMH39NTU2RR0NEREREo01LSwumTZuWjkv7i/EsERERERXbYGNaonLBBEsXqTIK/5+9Pw2z5KrOROF37R3DGXKoKlWpkIRAMggM+sDQgEEIIyipVJluY3fbtz8w2KjBzFwmGSRAoAlNIJBku7G5Brcb09Dt6/762t2PXSUJZAtjG9NgBj/NfJkMaFZV5XCGiNh7fT/W3jt2nMysSVmqrFKs56mnMk+eEyciTpzY71rvu941MzPTJqRttNFGG2200UYbbRyzOFJ7rxbPttFGG2200UYbbbSxUaK1rD0K0XawbKhoDfDaaKONNtpoo4022mijjTbaaKONNtpoo4022mijjTYAvPvd78aWLVsO6bktwdJGG2200UYbbbTRRhtttNFGG2200UYbbbTRRhttnPDxiU98Aueeey5OPfVU/PCHPwQA3HLLLfiLv/iL8Jx3vetd2LRp0yFtryVY2mijjTbaaKONNtpoo4022mijjTbaaKONNtpoY4MH8cb5dzxalf3BH/wBLr74YvziL/4i9u3bB2MMAGDTpk245ZZbjmibLcHSRhtttNFGG2200UYbbbTRRhtttNFGG2200UYbbZzQ8Xu/93v46Ec/issuuwxa6/D4M5/5TPzzP//zEW2zHXLfRhtttNFGG2200UYbbbTRRhtttNFGG2200UYbx0Mch50jGyW+//3v4+lPf/qKx/M8x/Ly8hFts+1gaaONNtpoo4022mijjTbaaKONNtpoo4022mijjTZO6DjzzDPxla98ZcXju3fvxpOf/OQj2mbbwdJGG2200UYbbbTRRhtttNFGG2200UYbbbTRRhttnNDxjne8A2984xsxGo3AzPjCF76A//Jf/guuv/56fOxjHzuibbYESxtttNFGG2200UYbbbTRRhtttNFGG2200UYbbRwP0VqEHXG84hWvQFVVuOSSSzAYDPDSl74Up512Gn7nd34HL3nJS45omy3B0kYbbbRxmLHrmVei3NxBdt8AZiqH6WqQYTARiBlUWZAFqDDgRMF2NMBAuncIWAsoBTOVwyYEEDW2/Zm/ftcxOqo22mijjTbaaKONNh4pMffU96DYPgW9XEHvH8Js6sL0EpCpKzZqZKCGJZAoVFMZwIzsnkXAWHAvD3iWGGDtMK17eYtp22ijjTbaaKONjRZVVeGTn/wkXvSiF+HVr3417r//flhrcfLJJz+k7bYESxtttNGIHTtvCD+T4TpZOlhYhKlOd9z+zvXfsXWM+W2vg9m3D6rbBW3fBjvThVoag7sZAIB+ci/QyYE0hZ3tgzsJbKYBADZTwGwHAFBs64Vt+vPEILCW56KrG+8bP3/VsMCO8935jyZkbfTz2UYbbbTRRhtttLHRwmNaMiJ+Ya0Awgps6wkFdqIXVVmwkp83Mkkwt/U1sPsXQEkKaAV18jbY2T7U0jBgWvz0XtD0FHh2CrabwmYaTABrBdraBwCYfgLTnw7bjc+P/C0uGRDGj55dsS8NEa2V/87fcX29PQvc8ZkWz7bRRhtttNFGG8c2kiTB61//enzjG98AAGzdunV9trsuW2mjjTaOiwjkiY0eVGiQI7AAGQtOVUg0fVDF4GQNwkXVz7ngvOvAitZ+7kQcDQJhV//luHX5TwAAF2YvBQDoU7fD3vcAYFnIlS2bRIGXahSn1ckin3QG0oUxOFEwnWTlcSgcnVhjuzHptVq0BEwbbbTRRhtttPFIiTXx7ORjqDEtoEKnsSosWFPAuQ28qxwhwIAeVdj1rKtgUy24WBFAEDaBWbo2CIAiUGVhc310MG33N3Hr8BM1nn3UyYJn2YLyHGp6CkhTwBogUShO21Tv29YzoZdKmF4CKHfM7lwxDlFEdbixxvYPhmeBFtO20UYbbbTRxqEGtRZhRxzPfvaz8eUvfxmPfexj122bxw3BUlUVrrzySnzyk5/E3XffjVNOOQX//t//e7znPe+BUoLimBlXXXUV/vAP/xB79+7Fs5/9bHz4wx/G2WeffYz3vo02Hlqcv+P6ZjLnkkJiBhiS8HmCI1bhrUUETD6uJn42azwPAJW2aQNgGcn+cf18C+n4SJVkdj55VbK/IYmNtr3j/BvCa+PnEB/4WFRhAWboQSm2BRBFHgCkT/oZzD/xnbC9HPzMJ8N2NKxh8M+cHLaff/MnQDUCVVMr1IzlpnyVE7dx4o7b34nzd1wPJmoUGshGqywBsIzP/M27cf4LrxfVprtusv/9I8Aydt/3kWOy/21sjNix8wZQaZF9926Mn3QqqGJk3/4pdv/k9xrP2/Wsq8J3gire0IreNtpoo402Nm4ETIsIv06QIquSJath2kN5zGHauNMYVjpalPWYGlClhV4ag4YFwCz4tTLgbg6VJUCpYPNE7LAsi5BI1VjYptK1vPN519bbLDy547rCFerXRKSOKi1MrpEsFlCjArafg4nCa5Mnnon5J78b9JSzYLsZTGXAp2+VbViGun8RWFgEVxVougeeycHReahms1VO1MMcUZ4SY26PKXbsvAFkOOQEyVIJGAa0nGcyFrd9/nLsfO41oQtJCC8K2PfTd777WBxZGxskPKblVAme/eaPsfuuDzeeM/+kd8FOdVpM20YbbbTxCI83vOEN+O3f/m38+Mc/xjOe8Qz0+/3G35/61Kce9jaPG4Ll/e9/Pz7ykY/g4x//OM4++2x88YtfxCte8QrMzs7iLW95CwDgAx/4AG666Sb8p//0n/CEJzwB11xzDXbu3IlvfetbmJ6ePsg7tNHGsY3zX3Ad9KAClaI+o1EBKgywtIx0OMKeBz+KC59zNdTyGCCS5EtRoyefrAVVQjpwqmHzRNRrRPKYVisTTytWCFRaSVgSJSo8RStIB0mESRIeOMsFw6hm88Z7xMRIg1TxsQZZwoSQTAI+CV79+fBJsVawuQ6P+e2XmzvA5k79uEIzoTOM8ZNPW2XDx0fs2HkDMGnf5hP3qCBByhNYBD02UMMCalA8vDvbxsMWO3begPzH+7H7G9ev+Nv89teDH7UV9MB+VI89GZwoIFFgrVCdsR3J/gKmn4KXljH/xHcCgyGKx21Hslzi1v91RdjOzudegwvOuw56uYD68b0YP+Uxx6XidMfOG6AKi+TBZfD3/iV0vPm/AXKfUCOD5L4F2Lvuwa1LHz9Wu9tGG220cdzE+TuuhxobwZaaBNsyg0qDz3ztGux83rWgSpgPm+mabPDEhvuZLBy2pGDvBawhvHEiHbB0rYBq4mQS07JW4NSJkixDVQwyFma6A0zlYE2gigVfMguholXYP/mdgvDJJjW+ZgXo5QK2k8J0k5XEQoRrqeJ6W3BEyGwWusk9kVNu6QqmNlZwuO+mUYKfi1NnwY/dvL4f4lGKFblFQsEeNwisDKPqpTLX0AvHEiUd8pkK5yVsg1oV74kWB8KzgNg986nbQPfvQ3XGdrmuUg3WqsazywPMP+FSwbOPfxSSpQL4wY9x6/ATYTsB0y6NoX58L3bf8wcP1yGua+zYeQPSB4dQP72/QSpNWn+rwkLvHYD2LawQU7XRRhvHW5BrVd0IsVH249DjxS9+MQDgzW9+c3iMiMDMICIYY9Z66ZpBzHxcwJFf+qVfwvbt2/FHf/RH4bFf+7VfQ6/Xwyc+8QkwM0499VS89a1vxaWXXgoAGI/H2L59O97//vfjta997SG9z8LCAmZnZ7F//37MzMwclWNpo43JmD/rEpjNU5IYVhZkLUw/B6cKelBCPbAIDN2A9NkZYHEJvHUTuJOBEwW9fyjJ4LgCtILtZfUcEABkTCi6kxVLLE5cdmfd3wGYfiYJaWSbcCR2WH7gu/xsoQobiBbb0SG5otLWpM9aREobhx7uHIbhpFYSd6oYemkE2rso15Ax2H337x/TXT0WMWlNccft78SOnTccF+TA/ClvxPj/c3r4XY0NVGFAhlHO5M0CjveQLw0+/dnLAABzP/desFIw05mobOPvmhUbFJtpZPcsYnzaTMMqEBbIvvhtFD//hNpWxX2H82/djd0/uuWoHvv5L7gOemxgU4Vk/wh7vvq+o/ZeB7IvUWMDqliG/X7nBy3Z0sZRjYeKR1s828axiLmnvgdQKuBJWBb8pxVsqqAKA700BisF7iRBmOPXFD2swIlYeanShC4O1hSEPB7jeNKDFYSIAUCVcUSIm5lH1OjyPmhMWOYC0TwWZiSLYxEyAag2deU93BoKeLIIgF1D1NTGYQcZrsVkUSc2AIA39oycoxWrYZXjBdPOnX0ZilObwldVWOeQwKimUgATeLayoTtp/jFvBW+ZAWuC6a+OacnymnhWVRbJV7577DDtC4V85lRBL4xx65evOirvczA7PiqtEMuVgb57L3b/4Oajsh9ttAG0mPRoxB133IG5F78Ej3nHxlgDf3Dd1fjb3X+Fc84551jvyiHHD3/4wwP+/Uisw44bguWGG27ARz7yEdx22214whOegK9+9au48MILccstt+DXf/3X8b3vfQ+Pe9zj8E//9E94+tOfHl73K7/yK9i0aRM+/vHVCyHj8Rjj8Tj8vrCwgNNPP7398rexrrFj5w1QY4P0/mXAWOz+Vg16LjznfaCiko4M5/EMIphoQDpVDL1cQo0K0NIIYJf1JQlQVfJ/mgBODRhsuRIN7qaAYXkPQLoc8lTeyyWuNjv8DFAPTbBY4EyH/fXA/oLzroMelLCprkmVqMMEwMrf2ziy8IUFp3aUX0iUSsMCt37p6ID3jRA+gfDXXfz7oXh9H25MJq6N94gKM0crwT3/hdeDE2pYbKjCwmYKZBjZ3S6hdJHuHaGayUOxSo2MdMEpoNoibbC+QJQsF1DDEmYqh801koWxdIKd4INpdz3zSjnOQ4j0waEk6OMynOeNXsxo4/iMw01GWzzbxnrF/PbXH1DFff4Lr0e6dwgA2POVq8PjO593bU2okHQ8e6usuDtZD43glVIwK6dafiaCTbUQK4kS7MosXSOAkDKZli4OF56c8XNQDmiPu0aosYgVfLcNE8F0E5CtrYMueP610IsFqtl8Rac2EOEv1zXjySCs0g3exkEiIrbAzorNXT8n+nq7GqZ9uPBs/P6H8rz1+Cw8pm10dZXSpZU+OESxrReem+4bo5rOoEYGpptAVRZ6UIJcV351Uk/uIZkSq7018Gz+07W7Yo73uPCc9wWC6lAiWZRzR5VFublzwn+/2jh20RIs6x8twbIx47ixCLv00kuxf/9+/OzP/iy01jDG4Nprr8Wv//qvAwDuvvtuAMD27dsbr9u+ffsBmanrr78eV1114hYf29ggYQGba4xPmZGEAZKIqi9+HXj6z0LtXRaP5+UR7HQHtpsFVQ0g7fPBNmDbFMgykn0jqFEhxEpZCbkSuk5cwmctMCzFBihLJCG0krD4xM/v32p+15IsQuwWHJlClmEzDZsQVAVAE27/3GUrDnk1H+QLnn+tKI38+7XEykMOsXYThabMn5EZOSeaD/XBksvJv693MrpW0vFwJyNrKTV37LwBn7njXY3jPtx927HzBmC69mm/9YtXHtE+PtRYrdPoaEY5e2jkCgCUW7ryg+2GxyYLIm20cSyixbNtrFcczCKHE0JxUi8QHee/8HpkX/8R+ImPhh6WgkUTBSoFL/p5CN7SSQQ5GkAabBiJhNhQRSVdKiMLJE2QSMyAsbCpanY1RLZixAy2q9uHNbbjbMFsqlxHtwVYgazF7f/w3hXH7LtBfew89xqYThLIJE6VaJ8a79sSK4cbvrjOrlBOhvGZOzZG8Wi94lDwafychwvPHuxvR/K8g8WBuo9aPHv4UfUOnVwBgMqfI3d/bPFsG20ch3FctEtszPiTP/mTA/795S9/+WFv87ghWP70T/8U//k//2d86lOfwtlnn42vfOUreOtb34pTTz0VF110UXgeTcx68P5pa8W73vUuXHzxxeF3r/hro41DibnNr5IfnMUWW0Eo6uRtgDXAaIzdd//+qupv9aVv4tbRJ8Pvu7q/GZJPRQRSSjpTAFCaAEkCHo9BiVgqwDKQpfJYrwdeWgaPZT4LZRmoJwVAYgaUAnVyYDQGD4egsgJp7bZjgzowPob4saDEIzqoLc6F2UtDhw1HA9dVJ0eSJIBqWZV1C2vBxoCUwp6FP8bclleDup0T0lM3++J31/wbZSnQ7YCXpENsvWLP3o+t+beNZsPg9+Wh7NNGOR6v1qSKRdl4tN/P3Z/D/fwhxFrbONC11EYb6xEtnm3joUS4d9mJNVQp0ElutkdVYfcPbl6xVqT/9B3s3v8f623NvCLkXhqAVgrQCtTpCJbMUmA4ArJM3m9cyGPWAp1cHt+3H3Z5AFIKlOfA9JRsnC1UrwsaF8DSsgx1JwU2polbJ4+F6+5e//OehT8+6HnZ1XmZbBs1plWdHDrLoA/0wjYOP6yVz1NrwbQzrwi5zIkUB8KzwNHBtAfDIBsN0wInGJ6Nus6P6vsdTTxrbcjhW0zbRhttnAjhZ7n7KMsSg8EAWZah1+ud2ATLO97xDrzzne/ES17yEgDAU57yFPzwhz/E9ddfj4suugiPetSjAEgnyymnnBJed++9967oaokjz3PkeX50d76N4ybmH/UGcFFK8qVdUkeE3T/+3VWfv2fvxzC3+VXgsmr+oSwBrcDjAnOzr5TkzFjYosDt5k+xqy9f1l3d35Tnu+Hxty7/CXb1Xy7kCpGA7CSRhDNNQEsK6HaA4UiIkqIUoiTPQHkGWlqW50/35RgqeV9UlSSzZSnvpzUoTWS/PeHhgBP52S1RYsrGrCBX/DEAAJcVSBFASv7XmbOJsECShONpyZV1DGMCGcbWYm7zq4R8myyOnABx0ESh14XdNA1VGfDy4LC2faAkwb9v8czHH9Y223jocSyS47WuhUNKVN13cK3wf2uT0jaOVrR4to045re/XrpbDxHTejy7JkmRJsBwhPlT3ggeDAFmKYLPvhJgxtzMK+ouavf/nv3/UbBJ5lTVWQZoBSRa8KnDs1Ak75OImMhO5aDuNqh9i/L7JrGzpKKSTurBUDq3fSgCVptDOok5/bFo3bgX75q6qHncxgCkZLukQHniZr8YUJbVx9nG+oQTerER62G2lVxPWXrCnetDwhNHAdO2ePbYxUbCs8AhXINr4dnoftpi2jbaaONEiL1796547Dvf+Q5e//rX4x3veMcRbfO4IVgGgwHUBFDWWsM6sHzmmWfiUY96FG6//fYwg6UoCtx55514//vf/7DvbxsbP+Y2vwogwp4HP4r5R71BHiQC9XtCSCgl/w42pkgrIStcYgBFQmSUAHtCg2vV267ubwZCZTJ29V8u++RUdXNbXwOMC/DefSCtpaDu7gNqqg+kqRA5PSmqEDNQlEKqjMfgfg/QJMPNy1L2z4o9GBdl883j79eE6q9BrPhE1HfZAELKEEmXjD9vRQmuJoinNh56eCIsz+U6NQZw598Ohyfk4G0P4FcD/L5wQ0UlJGSeNa5vSpKgbA0FJEC+t0ki3zFjV00S2sThkRtzm18VPv8DXQe7pi5qktJKHZTk3HG+s4w4yvN62mijjUdGrIpnLYtN1+FgWh0JbiLbLfjC93gs2wUAIiFX3M+rCWj8eustx+Yf/WagqsDDkWx//4K8fHYGmJL5CWaqA87knqqtBY1KUGlApYHtZbAdBb2wVL+JseBDVfkr1bifi0CqrEVAPly3dcC0QItpj0b4NTNNZB0djUMHC4hApLD7rg8f671c1zgQngVWwbRZenA8CxwU07Z49pEbMZ4F1r4WjgTPAk1M2+LZNtp4mIMB2iAWYSeKHOKss87CDTfcgN/4jd/AN7/5zcN+/XFDsLzoRS/Ctddei8c85jE4++yz8eUvfxk33XQTXvlKAfdEhLe+9a247rrrcNZZZ+Gss87Cddddh16vh5e+9KXHeO/bONYRg9BJUDq/7XVA7hRpRNItAgTbguqnd626zfknv1sGc247CVgeYs+PbgEgAMUuLa9MYh2hcuvwE+GhmKyIwz9+6/KfYKd+sXS9TIkVnk8Ed9/9+7Ifp71JlHVLI/C+/ZJI79sP6nZAvS7YQLZvWZJD142yglBhBlsLUip0RnjrqTh8AX9X/+WhsyXeLy5L8GgcyBdAOixI67aDZT2CGTTVl+t07z5JQrUGGwO1dQt2PeMKqEFxQg5wnEwKfFEJAGg4FsVpmgJFUT9JEfbc99HwK59xGtTiQIhIuBFDpmjVWMdprJdf9OR2DvU6oDQNieievR+TgqNSMAuLUN1O83kA5mZfiTsiK5022mijjcONeL1aE89qK+KLCUxr7rl3xfbmn/xucJYAj34UYAz2/PO1jffifQv1NiIctye2BTvEDr5mUViKebv/5XdkP868GCrVMImC3j8E3f9gLQaangJPuXuqExM9VMIjFLtnXrHSQswXFosy2O82ntPi2YcezKDpKVSP3orkvgXA2xd7AdpUDzufew1u//v3HNv9PAqxGsZYFdPGMYFn9+z9GHY9/Yo1MW2LZ4+/WA+rtvXGszwcBsvyxnPRYto22mjjxAytNX76058e0WuPG4Ll937v9/De974Xb3jDG3Dvvffi1FNPxWtf+1pcfvnl4TmXXHIJhsMh3vCGN2Dv3r149rOfjdtuuw3T09PHcM/beLhjbvOr1lZcKNVQ+sUxf8bbAKWl04PEL9onfavF7q9fh53PvQa6siBmzG19Dfbc/4eH3UFw6/KfBPIkDspk8Nzt5k+xU78YqtupSQp3fB78EAAeDOuOGQAoStCD+4RNNhZcFMFHGnDdLkAzacQhelL3Xx5ULmxMUJvxuBBypd8F9XpiY7W4BC5KUKdNRh9q7Nn7MczNvAKjJ50KVkD3myV4YQlcFKBuB0gS3PqlR9iQY2OBwVBUtVrVdiguVgzr1QQ73YPau+Beo8N3oE1GT/y44LzrAqmtv/StcL9eK6G94LzrwCTqIJuoFfO0/DUzv/318oDW4KJokCsApLOKCHZxSVSCSgFaw5x9JlgTPn3nu9f5SNtoo43jOXZ1XoZbR588OHGxFp5NtGDZQ8C0u79+HXaeew3AgF4eY/7x7wCWlrH77t8/rHWxQaDEODwmZXzhLktldoojSea2vgYAQGWFZCEBBkPwaBzWcx4MoO92GylKcENIsTa+PNj+x9ZmHiOT1nIvHxfg8Riq15MOG2bYe+6vLc/aOOIIePZnT8HCGRmmf5SiW5bg/YtAUQmmJXVCkisHjNUwrYsVeBY4IKZt48SP819wXVCvJ//8fex58KMHJGguOO86+YEZNtUNTLsWng3zYGMB5iqY1jz18S2ebaONYxHt7f6I43/8j//R+J2Zcdddd+E//If/gHPPPfeItknM7Qocx8LCAmZnZ7F//37MzMwc691p4zDC+0DzBLkSFBmAAE9F2HP/H4qNgu8eIVq1DX3+rEvkh6oCKrNmcjp/xttg738QQNThEZEmMShpxCrdKwf7G6Vpg0jx227MOZkYVL/inKz2XBd7DqJEueD514IV4TN/IwDqwvQloCyTIn+WgbQWS4quG0w5dElyGw8trAXNzsCcugXjkzowHYWpb+8F3bcX6OTgfg9UGez+1g3Hek+PSaxWhDoSwmS9OiIeKXEofuLHI3F1wfOvhc018q/8AADAbFH83M9AldK1t1oCOX/G22SugCvKAZABvcxArwsUJayzxAFcEc9boxDVhZFEC9mvCJxnQKKw56vve1iOe6PHrv7LUT73yQBO/O/oQ8WjLZ49fuNA91VKEjBbkFO3777vI5g/5Y2N56xlqzR/1iVyj6kMdn/vg6s/5wmXCrnhZj8czNLoiMN33/ouFOs6brwQaJ06RA60/uw4/4aGrc2F2UtBigTTlpVYhMHdx929nB9Y6dfdxmGGx7OnnYTxlhxLp6bo7DWY/pbDtN0OuNdtMW0ULZ59eOJg97njEc9e+JyrUfUz5F/7AZhdzm8ZxdMftyamXRXPxsKh1TBtJz8gnoVS4DRpMW0U86e9CeMnn/aI+I62mHT944477sDc//cleOxvv+tY7woA4Afvvxqf3f1XOOecc471rhxyTI4gISJs27YNO3bswIc+9KHGbPdDjZZgmYj2y398xaqdH57MYIaa6tcdFsBKwoI5WGd50sITJPOPeav4UVcGcASBn3ExN/MKGRSfJJLcPuatsA8eQdJlLG4dfqJ5HAciXR5CeMsub+u1wnMaBydX1oqd+sVhyD0AUJrIwPXYdsxMTCCN9yG+Dfl9au0XVgRtmoHZtgmqqGA7CcZbOiAGyimNdLFCulTh9s9ddqx385jH/Glvwu6f/N4RvbZNSNe3kHa8JKPzp7xREsJxIQmom1VFWVrPHFBUW0m6DpTGLC1/72IGxk5d3e3Kc8aF+MuzBcpK1qVUBvhSmsjw57KUbfpB5Vq86VmT2PcohVv/1xUP30lZp5h/9JvlvLq1ePd9HwmKR28feaRrz2qxHhYbGyFaguWRFWvedyOMFGaC+MJVfG/yc0jKEjyuuzuCKvnMi0WJbCxgDXhhCXse/Cjmtr5G8FqSYPePfxfzP/N2sZs9AqJjhQXY4UQk9mFjapvZSTy82rzANfbxSNcfPytR9Xq1ta7WK8RLQGSBOxkthj1geDxLpYEajGG29DHekgMMVH3BtMmgwqc/+8jGtC2efWgROtTW4ft4vODZuS2vFvLad/nFjhWexFYqzNwiUrKGOOeM8Fz/2qKQ37NMXuM7IycxbZatjWcV1e9JBE7k/+ORaJk/6xJgOBLxLbDCOWE9r5MTBc8CLSY9GtESLBszWoJlItov//EVnpi4denjYUA8KQX49n236AOA6nbFm3pcSMJEFBLIFcV/iLqYpqckWS2rJlBxCa9PqvYs/PGqZE8D1KwW0bbi5/B4jNvK/7r6Ng8jVpAocceKB5vu9/UscPm4MH2JgDzLuK34lCStbHHr6JNrvsYntuGzBIJP9yM9aKoPdDuw/Q4WnjSD8axCuszo7DVIFwTgPdKT0TaOLNaDVHm4k09fPPBxoCRk/syLwTN97Pnq+yQ5MhYYDNyAZFPfg32h0s8acI+FBNQPiSaSeT9JArBdacdh2T1fS0I5ijz8R2MpjuZZ/bwkkYQtTYBuR/aBGZylQKrBROBU47YvXL76AW6g2HnuNUh+dB/4pFkwEdQD+6Vg65N75noWmD9vSSLJKpEUkft97P7eB8WqCMDu7954DI/o2ERLsDyyYsWcEn8P0gqU5/J98fgVAJ20We4lvqPZcoMcXhFaCYYAZDujcWOmCjkbmN33faSxPwcjMQ41wnGtNgcwfh//XvGQ5Unh0SHsy9FYj3b1Xw5ArH3nZl4BtvagtsCNAu/EDJtHcgQ8O91BcVIPo60JRpsU0gEj32eQ7a8A5tAt30YbhxPeQvtI41iQKTGmPVhRff6MtwF5jt3fugHzp79F7OQWlprzo6L7Z7D2ivPp+PwQie3Xan9zfw8EiRMjrcC0SSJ/Xw3Pxpia3Rql1IbvUNtx/g3I/2UvQASzuQfWCsn9S+D7HpDcIE1XuHRQltZ2k52OnAetsfu7N7aYtsWk6xqeYDnj4o1BsHz/A8cfwXL11Vfj7W9/O3q9XuPx4XCIG2+8sTGO5FCjJVgmov3yH38xt+XVIZk8FEDkiZhVYzKJc7+T1mIZUDmiheiwZq1MEiWBEAIcAbG6fdha81lWC+WU0jwc1ZuIhtXHnSGUZ8D0FLC4BLu0fNhzYx7OCMRZJ2+CtEdo0CknY/nxm1FMK9iEkC9YkGFQxSAGkuUSNtcnjOJlPaJV8a2MNVV9rqOCjQFKKXAcylymox2H+hleeM77YDoJyDKS+5cBADQYyrH4MAawjlhZqxgJhHt/6FJRqk4QQycL1fYHwMpul0SDlZKZVyYiYrSqn++fOxnM4DwFp5IQH4/dK7umLoKa6gNbNgFLA2A4kiKw85Vna6H6PbGbcLH7+zet2M78mRfL+QufhQbyFOXJ06vOxjkRoiVYHnkx/+g3u5kphN13//5Bn98gxq1t3MuCdSzQVCMTBWtCHo5ERXyYApuYAIqHIR8swnN9xK+ZIF68PRcPhiutb303iVLyvKk+sLQcnrtRleb+8woFOL8uPUIxrcezVUfBZgSbAOkyQ1UsuJaBZKnCZ/56YxSPNkK0eHb1CLNBY1y7QfEscGif4/k7rgdVFlQxkvsX5Z5njOCnWBjq3Ti8WAho3i8n7/9xTJIsnoBRFOYArXiNf47fB2uFVPH36Vg8M0mcKyXioqrC7h/cfKBTtCFjbvaVoM2zsNs2QS2NgKUBeGk5/J2m+nJ87tyshmcBh2lJCTGlFThLUJwsAogT9bvdYtL1j5ZgeeihtcZdd92Fk08+ufH4Aw88gJNPPhlmFRH+weK4GXLfRhtAPWelAaC0AooKbG3d/eBjAhTcuvRx3Lr8J43HGgTGYRInhxrxNuc2v0radxMBfR7srSBSiFYnZqYuCuRL43V5BmSZLPRrHMeuqYsAY9ZMPs9/wXUbTi126/KfYG7zqwS0VAZ2334pVp7gXS2UJPKZ+sgycD9HNduDTQllTyFbsqg6hHSZUWzS+IdP/fax2+E2jouY2/oaSaCSpJGgeV9/GAv0+9izhj//sYq1Eo6g+HM5HHUSZHcv1KSGjzjh8wU8/5iNipJVJf7wnbzuuIjDEy5EdXLk1xmt6u1NkDZMBIr+7u0RYBhQsk+sFKAAMqJANNMdUGnl76vEhee8D6wIt//dxhkCfP4LrwcI+MwdAvZXW4fmH/UGMOSa23MIRWRg7SS1jTaO55jb+pq6Ow6Q+4BTw/oOCZoogAEIhcJJLOdfEz//aHQnx8OQ5097UxAgxfuzgvxBE+feuvTxRteO3/9AFPV7cr9dHgDWrjgO/9y15s0AG89eZc/ej2Fu62uAPAcZI93xxoCAE55koX6kDnV4ttzcg8kIxTSBNSEdMGwKqAoop1SLads4aMxtfhUoSUBZVhfz43lOM1PYswEL+QfCtGRq/JjevVDjV48tvcAnxpmKQNB1F6M/fl8vmXw+EAkvXZe2jp5HJNgz7ojxsZooyZjQhQygxs5Kyd/8/BZyvycrS5BzT7sce75y9Vqn7GGPHTtvAJUW2f97T5jBu9p6Orf1NaBeD7t/dMshb7vFtG2sa2yUdomNsh+HEcws9YCJ+OpXv4otW7Yc0TbbDpaJaNnVjRe7pi4KRZq5za8S786icGpgX1VziQlHIEBH/tRs5TmR9dShqlh26hfjdvOnDWLDW13F733r8BMr9nsySGvQ5lnZpb37g9rkcDpVgNpCbLX3IeXsJLTC7rt/X1QSgJwv37qbJqKKtha0NATvq4fUrZbIboSYf8KlziJjDN67Xx48kRJSrWQmg2ux5n4PdjoHlQacJaimUlQ9DVYEqwGTE5Ih43P//e3Hes/bOA5ifvvrw7wpP1ckWCX65GrrZuz+xvXHdD8PpuqbP+uSlTOb/D8g3OOZCNAUkjsqTF24iwgVDIfyWJrK/95uJ02b2wcalj2N5FGroPRjIlA1oXaJ99dbIzgbS7+frDVsLxXihRlkATIWNKrAnQQmFyJHD0vo/UNgXIovtk9+J2zL1hpgDQgx49+bE/HCZk2wmsCRQOHOv7pkzW0cKM7fcX0gWFaL+dPfIt7dxoA2zcJsnZHPCsBt//DeI3rPEzHaDpYTM+bPugS7v/MB+fmUN8r8v8jOdtVwlrQcqZJjtfbhdGzMzbwi2NreuvTxlXjW3UMnydFg7+UjSUDbTpLduff+ZkeL75AEmjZfq4XWTYLFH7Inl7SWIfNpgt0/uBnzT3pXwLOcarDWgCZQUYEWB+DFpXoeDbAhMa239EFZSdeNn/FyIsUEpjWP2hzwbDmdwXQVrCbYhFBOEVQFJEPG3/1ZS6q0cfCY3/56cFkBVQXK8zALxJMJtO2kY24/dShdKiswbcNxosazFMgjrsmMUOOI/q+q+l5SVfUc2klB0Wqd0/51sZ1X3BXjYxJHA3VXtid0et3aUjd0cLtj6OS1oGhciZ2YjTqb2daEj9YHnUE097TLQeNSsGyWwHZSkGW53yQiXrr9749MiHTBedeBCQcUn85tfQ1gLGjrFlQnz4Tz2s5EbUaLSdc/QgfL2zZQB8ue46ODZfPmzSCicD3GJIsxBktLS3jd616HD394bRHPWtF2sLSx4SNO8ihJYIfDZvIUh1dE+KGU4YWqASbY2pqYiFpm/Xvt6v6m/D78BG43fyrPc179uzovA0fEDWk0EiNvf+AH+MbBxkjxzflxHkknRtjHAxEym2eBRGPu7MuAmb4QKYZlWLKznKHSgKpVFC1KhWPYSEnp7m+/X0iWbgdkWTp1jnd+2Hve+oHZUz3YbioAMdOwmUIxk4AJUBWHIqguGSgAPoH4pTaOcszOSBKzbMBFKR1SjhggUsF3/2jE/FmXhGGQwErl1vyTHDC0jBzA+DGbGsrj+SfK/yFZthyR5mgq+iwcsYL6fp8l9eyPyjY7WwDZNz/MPk0AT5BMJp9xt0pILm1D3UcqVv+55xqut6nEnoeJQMsDkGUpVCoCVdKxRlWUSGsFLqra8WJUive1MXXi623G/DBSY4RQc5YNXnk3/4RLxbJscw9qVIKUgoUGa4CVI1dI9pEV8MJd74cqLFRpDytRPCC5csbbAolFWgPWgJhhSTqOdp57zYbqyGmjjfUOT64AkPuCFS96Appz+QD3HaZgb+Nj0gqnMS/FPdboJnHd33sW/jiIi7gosavzsvActgxSFqSzBtkzt/U17k2piWmLAlQUQurG/vxhg+5YJnFw1JUz2cHtH2+8j7XgTTNAqrHr6VeAp7tQrphm8xScKlBpoQzXVoxxKLWiU+ZYx+5/+R1HsmhQnsmQ5CB4OI6B3WqYtpeBU41qKsV4NgGIoCqG1QBrAlkgW5TOlRbTtnEoMf/4dwCzM6DhCLy0LKLLtMZ5pPVRI1fmnnJZ3THtyINJYdL8k961Jp4FDoJpYVfFsxzmpkK6oWMyBIiwoKq7qbWu1xUfMRnjI+78iWNyjmxsQRkJWv38Lq4q+dkYYDBc3fqWCBiO6mJm5cki29guswUZAMaKFbyisO55+8xAVM+Iw4VssYI2LOIl5fC0AnY96ypQUUkOYO0hi8k+feeBXT3mH/1mOe9EwGgMNSqF+FcKFzz/2nYuahttbNC45ZZbwMx45Stfiauuugqzs7Phb1mW4YwzzjhioqjtYJmIjc6uzm1+1YZJEB7umD/tTeDBUNR+q6knosU3TlI5Vs7512jVJECYRQnDtjEAjic7YOAKaHHHDKlG98rcllcDxgiZkqayv05tJ37+qh4k5+1ivCe9G/S72kyWmGg6ELmiZmeA2WmYGd+OS6BRBbIWnCUw3QQ211I4G1bQ9+4F718UhaDW0iHiVCSAeEXvvucP1ny/hzs8cMV4LINalwfHr/KPCDQzJZ87EbibCbmSJ7CpgukmGJycQBkgGVjYRAqgZNGq/No4pJh72uV1B4fv0HCqPxh7dImVJ79b3ssXvHxC5u6Du7/9fnmeJ1jcPdsnPuFxIFgj7P72+6UrL9h96Xr4fKLBmlYUqVh7UgSiArRWElf/FAshvq1dua+T4e/93p/a/7xaYSx+TrxtreTnqmomsG7mANxchIbd5cR5CF7cq6yFDfVfbA+hlNg0eFVklsB2HJmbathUbFo4ESI3XTZIlmQexHor8XwXixBOKdDrgjtCLpteCnaF2key9/4joYNl1zOuwK1fuupY78YxifmfeTt4wXUPx0rkqChFqfO1r4wQn2W1UlE8WWiDkCdgK6SJ1nXBzZga1yLCs9G9edJGd/5RbwA7UpfyHHY4FCLEFdWo123ayDBLV4abncfD0QpMe6h4FgDUplnwSbMw04JpWQF6UMJmCWxH7vmqsFCFgb7rwTDomfJM9rEsG5h2I+VQ80+4tFadl5V030zaIB9PcQBMW8xmGG5zeHYoeJY1QBXw9/93i2fbOHjMPe3ycJ+hsSvKl0504h4/Wvnq3M+9F1QK8cxEgVwJAhegiV0PhGeBtTGtn2US49nVLMHC+3tcW+9HmPd3IDwbY8d4XspqJEtM/E/OegFWEimKAukSZuc1Os2je1tE7oS5iJPv79/Dd9v74ySqhbVpAqQpOE9qy113/nwOoIaliJSAdSXgQicqHNnUycUGMU3AnUQ61DviQLHRbNgfzjgeMOnxFqGD5a0bI1f6/o3HTweLjzvvvBPnnnsuklVsC4802g6W4yw2UmLwcIZvv2x0pUzOWnFkCikFZCloekoUFMORJKXRa4JKziVd5B/XeuXwtklg4hd3y6HYNjf7ytDtsefBjwKYSBrZQtoQxCqBB0NRlmSpJL6VBT3qZLFN2b8Q9nE1G7PYQmEyAjnkQBUnGnphCNq3JIW1ykIRBRsaThXstk2gTdMw3RRUWah79oY2XR/zZ10CO9XFrV8+9oUQToVEI0A+gyyV/T0eE1Jm8MKSFCim+wLeiYBOimRxDD02IMuwmQpDQJkkOW2jjYPF3NMuh80SEGvQ0n5JRLodIKmAcXFYfsFHFKNCkl92nSE+4kQLkpTOnX2ZJKxEou5jbg6CBwBmUS56b2mgTtycPddqiShNOu9YUR6ynUgKiaRLhVnu15NB1Pw/6pJpJKGx9YL2+zLhga1cYhivL/5c+ecZbr5frDxsDA6lmqiHf4pT/8UdNcyyJjqrSEI03sXdP9kCbBjIFZgAKi04Wx8Ce/6UN4ZCcfhMvQXFcCRFAmZQnoCMgV4usGPnDSimE6TLRuxkMoIqGNlCCb003lB+3W0cfjxiyZVtr6u98hVFmNIXyKSAxcxSsEk0eOsmscBaWq4xDxDuk1wUUTebK0K6YfYAZN6HV0oDDaGQdK/IPsxve12DePdqYY89vTiJ3H7ywmLoxPD35j0Lfywd1ONC9tXdryZtxw5Grvh9p6ICGQubKiT7hqBhAaUU7FQOM5XLrCpm2JNmQNM9gAimk4Gshbp3XwPTbig82xGrSKoSgAqxEF4eCokFnFCYNt87buBZk4lgKClbnWcbB4+5p75HupFJQy2PRWTnxBlIEmA0xu4f/+5Re38ajAU/wRPf0TB46Gb3XoQVfbdKo2ZxIEy7Gp51z20Q8N5+ixgMBSLXtQFIZ3SMhVfDs/G+cCREDURKszOG2awkZFaLmOTxa1sck/h1rW3Fz/PHagFWFmS90Al1d7w7P8QMzlJQSkDlt61hM113VCbrhGm3v17qSN4NwHfKu5oTAeAsAXcU9HIBNSiw89xrUMxmSJdKsCKYbgI9rJAsl7j1f12xLvvVRhttHHpMT0/jG9/4Bp7ylKcAAP7iL/4Cf/zHf4wnP/nJuPLKK5Fl2UG2sDJagmWN+LUz3wp1xumP2ORvowWRApNrd40L6a5TJISzQJibeQWwNKgf9+o9T8RMqiRIidUX1yROSESpBk1BCTgx/2U17+yGQq/7m7Kvw2GtKHRKRMpz8Sl2IIO6HdBEgfCQw7flu7CZQlIa8OISaDgCAdB5Bpy6FaafijVMoqCX3XtVFsgzEKZE9TcuwGUFShNUmzo4/wXXgfxuMYMMP+x2Lnu+dg3mnvoe+ZwUgTodcFFKx9Ak+NzgQW4OQwB7wxFo0SAZjAGlYKcAPdKCjXMCGUCXDFW1CWkbB44Lf/5qKGbpXHOEqnSvuEKTPnrfj/kzL5b7pu/Q8N/JVAhlb3UQSBWWAXMhOYw3RgTYVdRywZYmIj0mDynaJgD5uyVQApnD56wT5W8k7xwXOXni5/j9gXrmSqwU1KoeYO+sCAAhu8M+APK+wZd6Imk1ptkp49SMqIyzALP14NBorSBSDZKloRp0XUP1uaoV7WoEIZ2MBiuALGDHClVPw/QEJk5aXMw99T0h4d3zv68FIIr80DWjVW394CPPAJYB3khU8/xaC4wLkGVoAKPTZkDGQi9X6BTyOZlcg1ONZGiQPCBzFuYf/w7A8gFnzhyv8Ws/e2QzcCbjVx/7JqSdKfCWTeGzauPYhidXpKvZqWy9TRQQOq8JwG43GJ32LcmLjW3el4pSnu+6Uwi6vn9EGLlBrgD1e0d/Jw3weLyCZAHQEPzs6rwMNhYoucHF1O8BaYr5My8GdTtyjJ0c1MnXxLQUYbXYPgyA3Lf8vZMZrBVoWID37gMsQy1kwKO2yvwqt7YoR6ATs1jCJAloql93skR4FoBg2mOJZ3/uvXUXiyLB4EUhn5sx9fnY4CIi8nZ2QC2oGI5ASxbJYAw70xU866woiQE9YuhxKxhq48Cx6+lXOJzFgIbDFi6PL8smblvnmD/tTbLtspR82JMhWovAj5KABcN8KKAu5geM5gltrv/5mMS0Hs/GpAdRbRPmQ5NgNyVkfMC0OnovYGVXiA9H0IAj0YudIFe81ZZVYOWIe4rJJYTXefy5osskvnf5nxXJubJ13SVsM3SHr0JahWOf2B5RsOIlZsAm9fGUGgqZYPMsBTRh7mmXNwQ68495KwAE4dn8o95QdxMpEkKtdGIBXwvKMiGzlLuhBXLJYXMUImrNNUw/AxmGGpXIS8kNZIaYQnbvUk22GbPCRvlEiV99zP95rHehjTZWxGtf+1q8853vxFOe8hR873vfw4tf/GL86q/+Kv7sz/4Mg8EAt9xyy2FvsyVY1gguC6iFIXY+9xqYfnLAAWXHKua2vgY8GstQ85lpV3BWBx0Gdqxi/pQ3Yvddhz8oCMCKRM/7cQb1qwMRXBQA6kRwfvvrhbAAIlUGh4STjJFBzz7MyiTUB3klRgA8bnE/hEKltxDb1XlZ6Jbxj82fdQl47z5ROmyeFpXMcCSL7SrnLBBIaCajbC1oekq2UZoAxOxUB+qkzYCfWZJlMn/FJuK7T5DkclQJKEmTekaAUxuX26ZQTSWg0rrhy3IOFFlceM77HvbBxL5NO8w1yFKQI1n850weGG3UIHJ2PbpORn2nVVUBaQoyLGpN00HVc0pOBvT46BMshzKc8USK+bNWL2bu/s4HBPQCx1Uh97YvXI5dz7oKNnfeyJumQcujegCm1ph72uXgVK+bamr+CZfKD6SEFAHqYrub+cJJlBQxAwZu1kiUPEWEOGuSWVHA6gU6igba+9/d8MzwPvH7aYjazxMfPkFdxWqr0UEzQarEZA6DQiJWKwijbhK/Pxb1fBW/Xb9vLrEO5Iy3fmB2Q+g1FLPcM3xS6m0xrIVnvgmqPk/OpqVxH/SfRZysM0MVFbg00iGoCbowMLmSgqZlUYi7mH/CpTWpxFbmqnjrssqdC39vjkkkP2Mg+uwmP0tYA1oaIr9PbBWUMbAE2NRZdFYs+5Uo0OIyfNfR3FMug5npwnQS3PGZ5j1r7mmXA6Wbf+YFEmW1Yb/L80+4FNi7H0jXaYNVJVhxcRm7nnklys2dDXdfn3/MW8FLy6IM3jQrD2qF3V+/7tju2AHiocwL2nP/H4af5095o4iHjIV1GDYUtpxgxj9/bsur5e8TFiuUue6RuPvYdaZ4POutwWiyKBY/rtyclbUsEl3cOvpkPb8lssmdf9K75NotCnCvC7t1BnopAxYFf84/+s0NlfmtSx8XPOvvmxN2rzQzBZ7u1UQ4M+xUF2phUQqteSbdLR2xVSULIW+LCjQupSDrMC10H1SZg+JZAA87pgUJsQJACKGqAgZDsLUNm2M6AiXlwxJ+/xO9Nqa1QLpvBOIOqn5Nmqni6BMsjzQ8C7g5JRNrbMCz7ju/UdfAybj1y1eJqMORDtzNRIg4HAULbqgkYFBvP/tQYv7Mi4NIhKMZWGxMLQKqagxFvsgf2YI3CA4/N8VyjY8Bh/9U1I0t+XewsfXkSoxz/esgz2FrQ6d2A9NGndQBt/q/TYaxgKEgXgw4NHTBMCgQBwjHjdWws19jlKrJj7ijZjXxjxMUwLIjcprXLsXnaFL45GePkSNn/Bxeh3WpKF1nS1Kfwwijz5/+ltBBPr/99VGnjrNuZ4WGGKoogliXSDXt2eJzYywwGEJbC9XvSF3FMEA25EKqcttdWAp4ff6J74Tt5eBc47bPX77io5o7+7KmLdzy8Og7EjyEmP+Zt0uda6OuXydA0Cpf6TYOLb797W/jaU97GgDgz/7sz3DeeefhU5/6FP7u7/4OL3nJS46IYGlnsEyE9wc8f/Y3kW4/9agNSTucmH/0m2WhsLa2uopUaaQdmI19lTPXEeG8m2OCYlf/5YDlxtyQjRS7pi4CjF2X/Zt/9JtXgoSqkiHPWoPZgoej+gVEYZh9CNfFEtR+E9FICCN7hMbxMK/wtQ77+Kg3wC4tQ207Cdzrgh7cF4gQr37xQ4rjaFiFEck1sH0bym19qMJCLw7Fa9SplLE0AKZ6qE7ZAk7Iqf3kePSwgiqNKK6NkSJg4VRBaQJOtIATItjpHKaXQg9KURW79lZOZHtkLGClwHu0Y9fTr4Badp9fZYDhEDwa1zNwNjLJQiTf0ywTRQ0gFnGz04Am0OIAu79/Ey58ztWwmUY5lcJ0FPJ9JZKFMW794pVHZbd8Igqc2MnoaskngEhtNvFzPDg3DFgn7P7ujUd/Z9chLjznfVDLYyFfEwXuZKFlnrX8O9Bw8oNFsPXypHdVNZMuX9hXdZK0++vXyZyW6Hw3yAuXbEihbMIb2hXWOUskUfE+1O54Vnzv3dwV8rYDhmsSxJMDBwvffeNIkAaZEr/eDVte4dPt3zvujozterQKhalg45gkYZ9pLApnTrXcoytTExc++Yv3ww879e/j//dWmFqJgi6N5o4lcoxUWdiOI3VdxxxVsq6AhAiiwVje23lNU6TAl/Ngo2N2P8fzIsLQVlsn4p7UUhroZLD9HKYrYgAoAlUWrBX0qILeP4TtZbIeDStYN0gZBGQPjoSIL43sl+869efA76t/3ywF71tA+fTHAQxkP9m3LkWaI4m5sy8DPbgPlTL49E//r4c8g+X86Zch0R3Q7DR2/+Dmo7DHhxfzZ17sSK4yzKjzs/Uoy2RdJKoJwm6nts/LMsG0UWFw/vS3rIqRNkLMP+ldsN//Edgybis+9ZC35wfOkxP4sL/XZilgGXZpWf6uKBTzxC9/JclCScTgRWtaA9O6gcXeAtfvQ0wQNY739LeIzS0RaPs22H4H6r697rNLg23M5HXoh9CHIBKybcsmVFv6UIUBDQrQcCz7ujQAuh2YU7cIlk1qPKtKCzUq5R7p8ay73sAslkJAjWe7KfSwxrNkGKpw6yTJPYeYj7p9y66nXwE1Lut7k1Pn87gIsxlDEXej4Vr/eRHJdzTP5FyPxsDMFDhR2PO1a0S02E1QziSwCSF/sES6fwRW6qjlDI8UcmX+zIvlh7gQPRlrdTQcZ5h21zOvBA1LuR+UZVgngp2pUtjz1fcd8fbnz7pErl2i0DXc6A52hW0/V9W7R+z+0S2SW4zG9XNjkY8XeNgIG012dnQ7UecINWeJ+J/jcN13HteuRaJ4PBq6uv0tJMJhYVZj3FVSRfWQGMtNXEvB8tKHn8Pia1FAs5Pab89h+UBIxO8RR9ypEudm/n/f6e3f0z/mO4m8gHQyxxuO5Nofj2tSJk3qWZV+tq9/L2/f6Wtwcbe5Px++83ySXMozcL8D20mc8EpqJlQaqIWhzCHMU9C4lLktPcFCZCzUsKzXM79v/r2Go9qqDBBXlE4Oe9IMbCY5RXLfAnZ/5wM4FjH/hEvBD+6F0YxP3/uxdgbLOoafwXLmWzbGDJbvffD4m8EyMzODL33pSzjrrLOwc+dO/NIv/RLe8pa34Ec/+hGe+MQnYjgcHvY2W4JlIjbCAKb5M94mhVZfNHELQ7C1mvTxjG/qkzFRxFnNymqtCJ7MLm4r/+sRHc+BYlf3N5tKuYYPqQJ1O2Gmyfxpb5LEI88O22d1/vHvqBcjY4RU8Qsn0LBaYT+MeK3ZKxNB8eIL1MDI/72Tg0/ZtqZXfDgH5BfGBDQ7U2/LR1kCed5QKQSSRWuxYEhTIM9QnroJyf3LwE/vkWKFG2DPeQYz24XpJ7CaRO1HkpBSJWo+WIYal1ALMr8GgAyTd4UzyjPwts2ye1mCYmsPnX/ZL4WufgYqrZA1EEB3tJImr87X+wcCJsuqLl4Oh+DBUEiWSUC3gYKy1M3EiJoJh6NA+lGegbdsgtnURTGbgRNCtq9Aetf+YwaUjseIragaynqgvjZWI1V8eC/hWHmmasL1eEhIV4vzXnQjqJLk7K9vuxS/8G8/CDW20K5bgSo+rCHjYYhnZdzaFa1ZXqWn60L67q9f1/hsVnSeuH80LmsyAQhJCzuCBYmS5NB3tiklSUWcaFZWlM4xSRP7Sft7R6wsVLq2vPL7NFG4aCSt/v3i96gm1twoQQuki18znIVa3NFiZrtiL2alywTMcpzMkmg5UQBi20u2tYIysrhs2Hd5Yi1LhGCxqFWOEDKFjGmQL1QakGHYbgoaVVCLAyHgPenk96mUGT/hvE6qF711nD8HQbmpG4kotJaCiapt5fxn6Dt9WGsgUVJ8tVauB2trcYG3EGmoOVWz4GpZEvNNM2Eg7eGGVz3uvu8joqJddhalM1NHvM0TYcj9/BMulWKTtcFipVGgiK9ZoL5eo4IfgAbWJa3roenGSmEXouJFVdU412FfTyroqT6MIyAA4Hbzp+t6rBdmL13x2G3Fp3Bh+pKwP5SlwT52ftvrpKB5BEOZ/Twjrqrm7BUgslepf18N+wdrLx/uezhp2eW/O36wPXU7a3bK75q6qCZZXaGLsgw0Ox1Z0FgpYBnbxLMxyaIVqNMJxTezfRP0/iH47vukaDfVAzo5zGwXVT+TTkdfXARApYUem0B207gELQ4kt/L3Jkzg2SRBsa0HPaqQ3r8cyFtV2nDPhVJHhWjZ9ayrYFMNPSgAt46RV82XJVBW4PFYBESAfBYT3T7HPDzJsgamXQ3P5g8WSO5p8ezhRAPPNrpDfRF7It+J176428DjhNBtoAPOPV46WybjgvOuC4SD6SRI9w0F2wCAOryZX/M/83bBg+NC7rUTNQFvyRpyzDzD7h/cLDWccbHy++nFRa4OEXBgg4DRMiAdqK1iEw1OkwYhwko1cSZzLRoKJMUqeBaoMXj83v4aKKuVa4nH8ZPYzYe3BpsUKvlif0xApKnrJtS10Mjvf7S9xu+T+Zjfd3/OvH2XdufK5RHBhjc+3+58BtLHnQPby0UIkGVhO+F1VeXOS3ReJzppeDzReapIjttjbjdHzZM3rN1nzSxY1XfGpxqsCWrgrrksrbvFy0rOV2VWYlpmIViMESI+TUG97hE72sxteTXAHOY+zz/6zbUVX7dzxN0yGwGTnmjREiwPPXbs2IHTTz8dF1xwAX7rt34LX//61/H4xz8ed955Jy666CL84Ac/OOxttgTLRBzrL//8KW+UuRexTYCLMKjSTixI/mY/aQUwAQZ8kgmgaRGwyt8PN0jrFeq8C7OXQm87CXb/QiAsOPaWn9zGKvsUFHVekUAkdmh51GY4HIHHY5DWayaq82ddIvtQVbUyI/JGDe2/nsyaVE9MElsxWJ1ISBvqMvdZxeq/MNQz7qoBArGkpqcbntMCSJzS0Pllr+bPuav/cqgtm2XOy5mnoZrKkH33bsBamMecDNYKalgASqHcJADOxrY6BLGCsQJMyNjwu14ag/YtynBVV7ijTbOw0z3Yfga9IEpiTjTUSCwqfPvrau2t6xXnv+A66FEV1DtUWdCwkOJWVQlRsRHVfj6064yKri+OLT6IQNtOQrV1CjbXsImCquxD6jR4pMTcUyPrFua60O67AD3w9gA4LgQD9TBuperOCX9f9Z0Y8X0iKiJvhM7HI41z/92HoMcWemyhCivKYWODtRUrP2MEK+xx5p52eVMx7Gdw6KgY5L6PnGjs+d/XhmJBsD+IkidfVFejYlWCpTHvJIoVRE1ESvjPLexjUM0ZrOiSWcv/2e+HT5jc8SAiI3wSSu5+uOJ94ud50mMiAeZEo3jUNExHAQwow9AjI92Do6KxX1Sa5jlaJQkMHThKXif+zzr8HvbHkUSesArJPDPMdAeqMFD37689yCu3nlaVHIONZsNUpk6oY0Vkg+iyTaUfIGueU+H7+TXkX7ciGa8FCmGN9+fGRp9pSH5VSG5DATP+vP29wHWzUpbW3RT+b1W1QgQTfx7s7NAoy6ToaNk9f8IaJE1AMzMwJ8+g6mcNe7PjnWCZP+1N4PFYZoTEx70KARBjV48FG5j0YH9fx9D9XqML2ceF2UuhT94KHo3AS8tr2skCWIlzvTe9vw+6ArSangJvPwl0zwPynR+Pa4x1IEz76DeL8GWyUMerkylY5VyuIFfCvjfxbdjvcN9LgvDJF2Li63pSpKQ2b5LvW6wG7nbkyVW1pt/8rqmLoLZukXN9+imw/QzJ9++Wlz12uyh6kyaelXkqACtIR7VlqJKhKnfPZ0h39/5l8GCwKp6lykANiiamZZZ7JY5ed/YFz78WVInAiYoq3KPJMGhhIMKh5UHdybIBCZag6l8N0xKBtm5BtXUaNqvJ0xbPHjzWxLN+zY+Jk9iaKsxas1hBwHosEheA/XN9HCcdLWvFjvNvgB5V0tFWVLVFqz9u38WbJbCpxu1/X5/n+Se9Cxi7brJSRD7sZ3+GTlyuSRYngJw//S0rhSVAjcc8jonszWtRjaq7LIBaZBA6QCK8a6xgo0TV8/6sy3EOhmf9ewJ17QMAckfu+E5nj+OMqfd7ArvJGlTXUxprhg+/32kK9LsihPGkUGVqIsNjYE/++ZgkgwKm1bXgKqt/bmB8v7+xqNb/rjTsbF+cO/YuCrnlSaTKBKwHZiFf/HfNY38/i8cLauJccXIGjbNJlv8jcW+8Xk8e82rdPJMuK1GNjI2pc9zJY0VdP/TON41O2HimcXRd3rr08eAsE94rsoDkeE6Y1qCpPnjzNGw/x3hzjjv/qrbfPtaY9ESMlmB56PG1r30NL3vZy/CjH/0IF198Ma64QkQ0b3rTm/DAAw/gU586/O7zlmCZiGP55Z9/9JslaR8XgYVeQbDEqiBgJbPvF7tYxYe1E1FSVP9ttaQrfny1v01syyv0ViwAk+81GXEHR5TohYHwDjCqXk+Ua37h8AWO0Vhu8ptmazASLca7v3F9c8aCT/5KAU4BIIRhn2ss7I3jUSufG/9Na1CWih3ZyVsFCP3LTwUIuAUpVgd6W7S5La+WY+52whC1xufsrbDKctUEfP4Jl8LOdFFN58juXgCWBuDN07JfzmLGTHdx2xcux/k7rsdn7ngXXjD/AZBl/PWtl+K8FwmYZgJAEMKltNAjg3TvELQ4rBWK3Q64k8J2U9g8kXkhoxJmS1/8sJ239dEcHLrzude47hsbbAbmf+btwHgMHgzr4t1xGhvF1mWjRxgUCzQVYb57IRRTIwujcI9QAbTXCn53L8hdshMnMJMqtLgzww9uXJE40REr2Q8U3jOe3fwOJuAzf/PuI97e83/lRpAF7vyf78D5L7hOSJayJqT9UEabSDGLyvrc0thIYb6onM2UqVVXPjw5FXWwAAjkSugE8Z7MnjQNqvSJpCWeieJFCESAt3dxRIEnCWhYhHsCp0lto+Bb7n2CEyedq9kVJIncm9NotoxSokwjCsppGOn6qIeyTh7HxLVD1NjWaHsfNiOoUlSZunDE17iqk0jfORITLMDK69qdI7GE02A/18RyUD+GAoT73sh2hHTnRMH2c+h9Ayk8sAUGw5o8IKqtNGemVybmPhnVuj6ncVIeEyCdvEGihWQ5Sq795xu6eOLvtidNJomc+Nz4aygiZbis6sQ4HibuiyqeePFroN9mZPOx58GP1rMyAMFEaSpWI/7a8a9xxBpPdcC5WLtyqjE4tYuxGuOL/+09xyXBMv+Yt8oaPBytFAW5oPhaiP8eqzJ9lwvbFZ0pwAFIllVwaxApVeWKv02Gx6G3lf8Vc0+5DPTgAsy9900+aW2CZfJ50T6F4wagTtpSryfeMs0Nrac0BeVZ/Z3w1yszdv/4d6WrG6i/Sx53T4qFgJWkJNDsCJok/lZJDYN9m2Vg2xbYH/1EXuu/+0rJEGjfUVRWuHX4Ccxve50UIfNcjttjW1/EGgylO10r7L7791e87/wTLoXtd4RguXdBZpNsmanx7GwXt33+cpz3ix/AnX91CV544fvB7pT/zR7BtOwhPAF6aKFHleDVxUF9z3d4FkSwnWRVTKtKe1Tns+x83rWS64yrQOrc9oXLQ7GXH3gwfK4bkmQ5SLR49tAjYNoD4dnJNd9HEBK4L4JbG9nZEYeitn9uLCzyAgl/37JGCt+TbhM4Ot3bu555pbMCpXD9H2nsOP8GEDM+c8e7MPfU98g9w82r5TwJeMjjrtApay30/mHdjQvIXClfKwAaaz8lCZCl2P2T36vvyxFGbZAZ/jObxLRuW2GAuscbXsCjgLhD2ncX09B15DkxShCSrYVn/b5PXjdEQLfbJOL8z7GYJJ7DYm3TKismgybtsRSJnWwvrzsO3X4EjBxb6E4QffU5jTtDdJhRyLl0YpMxQqYV0TUefxd897KxYg3b74AWlmXddfNvG5+NUrIOe+s2n/v586k1eBRZzTdOaXROvEjHkyx+H/y58efcd1jH7+HOywobNv8+fh1wrw3rubOWbGAr5hrL+jqW74iJrwVILcuLTeZmXxmeQ3kuJFNlamLWk11aAXkutaE8hRqOwUmC8fYehnmJL/yP97YEyzpGS7AcvRiNRtBaI03Tgz95Itoh92vEhb/xu+DZHv7xExcfle3v2HkDbCLDY7P7B1B7a9sCylKwUTLey9t8+IUmIh+EgU5rAObsF0gpMMuwMK+wmxwcuWpyOpEErhqxUnSt8FZS/j2dRcNBE+FgYxb9jZSQEU5NwUUBGjgVRJY51Q2k0FREr4sVsYD4/PukzxeaLJw3uxtYRwrsXttQ64V9iUDQJPEVJTx+KCUB2H3Px6TQUhRA0l2xvcb7aC0LmAdXY+fh6pR+jeIWS/KNslzph03R8GJj3dBJ51Gdp6JK1k3lmIoGL9/5P9+B5//KjbCawEoIFqXE39rmU6CtfeixgRoWYheTJYCVc2L6OaiboppKYTVBmYdhgKUiOR4LQInVAnVzGRI62Sp/HIVvzW3jwDH3c+9dWXQPij4rwD10qEUJQ5rU3Q+xTZgvRrtWbc6SMFuIvArWd2lwdH3FINm/vw9mAMoN6ZTv4qHM0Nmx8waXUHHYt0nLLo6PHU1yZcfOG8BEYTd1YQEGGmCbAJsq2MyRJgBgGDt23hCGHvvnep/7cNgTgJxzDYYGehnU8hisE5BWcv4nkyVmuS8TgTsJ4oGecZLbSJD8OY66MxqDP5mDXZXNE7l/GSXD4f1280S6SlzCypB7R/CP11GCx8p1MqnVlYBV1UjwoKN9ZwMYwHbzeu4LhKgIpIs7J777hbUjsBINm8jxqYrl83fXtk2lm4WMAlUAJ578QH0fjEPV+8vKqTUTFT6DcG0Bzt7LNEkLoC6GMkMNCiE8xgAvLoXvFvukO8tA0MDSsnSaWpb/nXAktuMM67QnKyYLPa5jk8qICPXXvDsuq5L6WsmdKtJCrjsvpIhVjCv+r4vNdTeAK5gkauUakiQAKnmO1kLIxF0zcNadWdosXDMD/b78nKeotvTBicJ4cwqygE0IyVAS4WRQIV00IFNhPWLuxb8Dmuqh6tBRw7Tn/esPAAx07htKd5O3k8jSMLgWgFxzWVoXZXx3sld1clRgsGJTFwituAjgCwCAKOQjKzD5Q4RnPbasJr8ca4fvlLkwfQlAqjGzJMw0WQUrr45z3bF6Rb8jjSh1RZYkCR1blCSyjaJodG4HctId+/zpb6l/9zMYmUFFIdektx+ZIEvY2hUe/uy/74jIllWITy4K7Nn7MSFM4oJhvB3/PSKZMTc3+0rZbpaFTnOe7su9Mk/F2s/Y4Hk/v+11QKKx+64PN0+hghRCnXqYs6TGs25fglKWIIS027dJTAtWYJUEPKsK28SzwAEx7dGM2z93GS48531BEMCpws5zr4HqZFBm4npbRfi1kaPFtIcWKzAtcHA8C9R2nQ5HNdZTb6npr+8yKt56gYYXMHC0zdAJwTUO8F0GSmH+Se8KgpCDzTw5/4XXB8xB/q014dN3NgVBrBRAvIJcufA5V4f5cNAERJaAalgG4snjd9tJkLoifiCrFMntJm3t5QABAABJREFU2MpMO04BUAIkDruRw9sWsJ0MlGogz0COZKGicHWV5n2AjQHGVu5fvoDui+mTXRlRzh8+Y/9YEMXUgg1OtGBkpUT0UtXdbbAAJVoELynVmJZSufevhmf9+6yGaa0BtHfMcH/zXRGThBCzkA9uW4KfIO/r7W7TtLbtAmoxlnE4LpwDU+Nk/xn5682TKnFHdmxz6zqQWCtZS4w7t8oCfqaMmrByj2pitDyS+tLi3oagwxM5xCzES1GCuh2EOTnLgzo/8OHJF49VURMo5DFtnKeGTiiqP3t/nbLLedznDQWQVYBGLaTw159/juuwCkI/CEkyKaAIBD3kPBPc5+W7jSNi17uuUJY1tgsA6HeBLIOd7Tk8m0MZhs0U9MCANUF3E6hhhWRQobsQzSZqY33j6EKTR2R0Op0jfm3bwTIRXvH3gmddBmyeFkCeEMopV3xy95XP/+f1SVJfeOH7oUorN6NhhWRhLIvPohuoU0Q+5i68ws0X4kNniy8UerbadbFQngcCBoAoCp2q2BMwqyaFa3SurLDyigfoArWC1SvaYgXdGpYKk/Ne/GON90yS2uvUL1h5LolZmjYXLUA8S90AX5tJUclmCmVfClmd+wskDy5Lsc23gAI1AJpU1fpFJ1YHRMU+IiV+2GW5ortlhYUYsEJ5RqlTRFeV+CxHnzn1uuG4eXYatH8RvDwATU+BN01hz9euwdzPvVcKX6MK9MBe8Ngl6JtmZKhaN5WuEoezPv3Zy1Z8DgBCB4t8VnCWCxwGiIIATgiqYOihFICyexaBhSWZ9eKSX5unMlR7MATPTmG8vQ+Tq4Z1w9/++TtW3YfDifN3XA8woEoLVoBNNcgykoUR1AML4IWlFWD4WESbXK5fTA4t3fX0KwBAlEtVreaNFWbcSeuB2Q6YA02OxGZyfXqbEdmmsxgpDFTFUMtFsEsK7zVpeQME8A+i8DxOFDhxMy+0FMtNNwnfC7LAZ/9H8zvxvF/9INJlI0kfEL6Hf33rpXjhhe93SYlPXCDfz6C6hysq1VYptEpySDEX5AbeBw97ZhkiHIZs1skVMaDGlSS31sqx5ToUh9SoEqsTb2XgkmJf+GJN2PPP14q1WFTY90PqWSn5TIdF/Tl6JZ9Szed6ckMRbELgVMFknqgRElnmQ4nt2Yp7gvev9l0ck3ZbccQdJ3AFgVTD9DLo5XF9zGmCclu/PsfxfRSAquTa4cSdVxK8YVIlSYomlFManAB6xNClPN/fw8kCeixkDbv5KWSdvWMlx2Mz6TgKn7Wxcj2wu5aYhcSpjHQgVVWtkgxzXOrzDEA+j737ZSbApMWBW9fIzWpAlolYYHZGLDYWFuR5rkjkE1Z2+ESIDbcW+vUVkMLtVDes535t9laU9fHV30eqpHuJqqpZmPJrb1kJxsoyIdzKsh4WCtTWYN6P2133ARN0chG2TPew/LhNck4J6P14WWY+FJLscp42rysicJ7ATHWE2Mw1bKZQdeQ+kAwt9MiiMiN87o4rH3IHywuf+W5Qvw+ba5hcsGzZV2CNgGn/8U8eOqY97xc/AFUxbEpIBtLxGubhFIUUOYr6uyz/E3hhSfCPV+8mUTEkLiR65Wm3gzCUVinwwmKwX+M15o3Itg4R00YRW3o18Cywaqf2AWPi/SlNQHled2l7643IfgZAjU/zLAgDOE9heinK6RSsCd27BlAPLEqBzN+7Yuw9WZD13zm/Tsb2eDFejW1D4kJgpHBdNXxnkpu1wkURcgIQCabVGpiZAhaWGniWxhV2f+sGwbRKiUXkg/ukGzxJgNlpmG0zh4RngZWYVli56Akk92I1NuG+mP10v5DEq2BapBrj7X357mp5vjKMz/7FQ8ezwCqYNhebsGTvCPTDn9YW0n73j0Bd+VCjxbPrFx7PAmtg2tKsjmd7mROSOPzgOeWA0QDTVaCKw/XuRW/Kdxu7NTKsT76QHneLenvP2OYTqIvnQbShYFMd1hmywF/fdmnjWM970Y3QA7GdDQIft4b/9W0O0zqLam//HLodHLHihVE0qoSAB5p4zuMXIAhuqIysk9Kkni1HJKSqpoCT1LgSC1aH3ZlI5iGNxisG3vs5LDFG3PPgRzG39TW1/aAXD3gi3HcmKFUr/lVUD0iTYP3FUQ3DZqrG9pD7g8d6qpzAtGvh2bgDH6jXAzfvLs5Pql6K7IEBaN9i3anQ7cBOdWqyL+qiDqIc31XuOoI41WFunhcPsVZQpRGcyixkGSD3ekfcNMRyYfsM7qZyXsh1MFtIfaej5b5ZGPkMh6V8bloFAUJ9jbjPzHeUj8aw+xcjQYzUtAI28Hb13Q5oqi+Coc2zghcfqIkZwbPUsOmKa2Ih/GfRyev9iyOuO03GpMPKBPEeLOsmsVCMCSZrUopA3a78vdtB8ZgtAEtOnO4d17aVjlDiTNciMeb6fpRp2FS+/1VPQRkRD6VLBnpYoTJjfPZzV7cdLOsYoYPlzRukg+VDx0cHy5YtW/Dtb38bW7duxebNm4UYXiMefPDBw95+28GyRthMQbFTMhhAFRzUolYTnv3ym+SJrgDNhCNSBsbg45yXfghkOmANzHwnCQO8yc3NADNQlm6hcgUEUrXyzxdRslQSMq8cjFVuzFL4qCrpdjHGKQNrG5dAbBysUyV6jrQb1mrPkERNT8mCMy5c4SJKDJzqlbR23TYR224FOLgdqvfFgZHQdmltPVBZToh7nl943TH7oqFh6JGF6WqUUwnUOIf2ijSvdl1tsVMUEkWUpahjV/kyhkf8guV/nwDH4Rji7Xc7QZlBnVxeMxzJ5+MLkssDYHlQ54bM4DzF/Blvgzn1JEARdGmA2Rk5p91MSJdSWmYVkkaxbc0w3FDq/fWtTZB8/o7rXcFNjrDa3EdCJMTfuHTguBQrh+UBqCihNnWw/KgUJpMiYLbIeMHc+5HtL0CVPeLBodJV4IqJnUTmFQAA50jUJqiyEquwYxhtMrp+sWPnDSEJnXvKZfJ9SsSOLqjwAPkueUWfK37bjnzvbUoyf4jqAqNNgSoXhauqIMVs9sV5hqoUqGRkAKgwcu/08yv8/dkr6vzvbj9YR8o6wKmyAcUCRuFtj/UqCzwBVU8Hu72YgLEJQXvSBHDvSYB2xIqO7oe+CJ+QW7fcGmK4zjvYF/CjbbpjkEKWK+5T/HyXxCoFzl3xGwCVdScQ3OBxOHWldd0ut33+cux6xhWyLwpgTNybNIGhQV4B58kUb+Wg4GbCSMJmUyFabEqOaKqLX2CCskoKsJqcYgz1fTwF2Cel2ori019KcYHSq7kdYeSHrFuXsNs8BWWJO9caqvTrGBrXmxDNaCZeLDhDEcO4YrsvBpJlWI0wTF4IFcB05Nr3M3PkWtZyPEldaPHJOCshn2xEMlrD0CPIWmjk+mFIF23o8nLqVyaCXh41EzdneUVK1Wt8kojqr6oEHwyGQKJBJ22RdcEO6uTRWcnRSVuA3FkQ+WGr7vqFMaDBGHZTH1Rap2hXzsoyKvz6a5wIyDX0UD4/m5CoUV1BgFMN7uVQg0QK9UPX1dTrgWgYCB8Rq6xipeJJgCQBLQ7Q/4EIN6rpHMVJXagyBxhIlgrBHpUFlWN4z3fbyWBzDU4ofLZ6bGEyd+1qgq0RxEMK00mQeDsowwLVChZ4pAisgZ//9zc1is5f+Pjh49nYa/vZL78JeHQO1kD/rhLp/jFML0WydwS1PAL35KZH4xIUz0qb6CYU5an70uRZ3RWlqO7S6Hbk2vZdLgWwqnDoYJh2NdIlWNe64tumWSHkikJwxdBZg6xmsbtCTKRXiokmSHmxBolUzv5cAM4zXoX1hQwjWa5Q9RJU0xnSQQ5aXK63FZMmRC5ZqbdLnY5Ym0ziUQDxQGfy22s+ofk+Mb4NAihnb+utgwERd3krXodnQ1gL1hqkLebPeBt42ybYTAtBOj0VYdoENKqgjLc5PITvSYRpV8Oz/lik65FhZnvQWsnna2wD08LagGdtKpdnvt9ix84boMZG7rXrgWkrC9tLaqFAlSHtdRuk1wp3gochWjy7fjEpFloV0/oOVo9nEwXby2A6iXQf5womFWEJgIDdbEqoOiR4diyCGDIMnSmoTIgXVbk5e0UFKLfiKAWQqe9NMdHruwk4EiK6exFbK+YQ7nr1+xMHK8D0dN2VCrHxCxHfDo3ftuAQX6gXQZHHANFsNED+VlWCX4JAxpEkXvgYze2TPBbNjjwnwpCivQokDnmSQrvOSo+hoQEt5233XR+uLcLi+6pfyzzmi9cmP6Dd7183g80S2I6z482U5CuaBAPC3co1QY+FTFqBaQ+AZ8P59XUFT4akGtWUL5JL93S5pQuayYXs1c7218LZl0ky4OdEIe6OdJ8JAdLJ3UlrkVZUg+DUOYd4XJ1KFwqNTU2eOQFVjf1dDuOxnMsBrJsNKdeOlaU4dLzQSicY4nre7Ug6K+p1P+pWBUDKAtAifi1KEfcuDeQzPmU7cNc9YLhropS6mtqyuZ7pUhkh5xqdaQweDoWw8QSmvzZCLateT+Va5mZ+aUyz0wcAsWyD2YbXhVkrvls8XATOScXjWa2B0RjZXQtyXntSQ6pmOyGXUcNSPgcj88Lke5LB9NLwPeKEkAysiHGBIBQw9uFfr9poY7W4+eabMT09DQC45ZZb1n37LcGyRgy35UiTxKlBBZgwfMEGddHDPUYWeM5v3CRK51KUpnf+z0NTMz3nZR9yRQ/CFz51MZ798psweHQfVZfQeSBBsliG90seWAIAUGajpMndfD3BkYoXqFeg+EJUYJuzTBa+ohSyoDKiRPX+ogcIP2cl2I45CwPK3NB5T0747SRaPF87KUgr0LCZPFOc7E0O4XQelA2LDa9wVlZaJRGBvFidl2UAnFUZEShRcpO3cKoH2abNE1AvA42pwcbHnqns99NY8Ww1LO3C3pOUue5uyVLnUW3rhdF1D3FRukF4Wa2YDZ+dUx8vD2Sh7/WAfg5M9UAP7pO5PKsELy1D7cthTtmCciaFzRXUVAJlpJgrhTcD8u3h/vM5gGLzQNftBeddJ+cUkgR6RbvpJ7Cd6VCgsZmCyRX02CJ7YAgMS7BWMJkksMlI7IqI3XYqi13PuAK3fumqNd97rVCjWvmuKvn+2Vyh6sn3V62lsHwYYs/ej2Fu86setveLk7ULzrsuJD5HcwbOwx133P7OMLfDz7hAbP3i1FNiISKF+aAS1wSTEUwuRXiTSnHRJgBryIVt5fr0yagnFFgRiFhUs5rkBe76l86XuoAZ1gffrcFA6BTw9wwr76VKA1UqmLy23jr3330IAPB3f/bb+Nz/7+14/q+4uUia8Lxf/WCdhHaEdFCFDe/PJODWk0jKyPtWXXcPIDnO0L1gUFs2+K41K7M+TDzvwh+fI1/8ObHdBORIFVaSvNpEgZWBcsA/JoA80QMAF/781VKUTwAyEfsAR5woBYIF56lTv6maUAmt9qKAtKkU1q0mmE7dtWMTuQ+qjoIuGGqsoKpEPie3hHgy33fyeAWlFDdccu5+rgu/KuyTzYVQUWMjKjqgPp/ktu8PLVJKemLAJiqoT/31QxVDVxwU1SZTSJcM8r0j9znLumQ6CaquDtdYnByr0oqlGIRggWXYrobp6NBJCACqsCAj+60BUXuyEcJL62DDZiPVJ3U7YvmDtLZz6uSg2Rl4MQiSpD5nPrFTlaxrgKyLrkDNVQVaXALSTTCzPXCmoZYLqMG4Tj6thd63DE4TsTrp+E4cue4CWciMakrWalaE1Kl1UVnY6VxU6IaBFDCbe6Ayh1oa1xgjTes13xNE3o41+txgLXiqi/HJfajCQI8N9KBCsjgGa12rMROZ9cN5XWSAAkxHY7xJI12OCuCuyMvENUH2EGO4NUOSZu66dN95IxSayRDuCaFjFcCzXnGTdEiVUuD6+z/97UN6r+e++ENyL9ViR/bM37oJxbTGaEsfZZ/Q2ZsiW+jCdDSsBjr3jZFURgrZXs0b+4N7DAsI7oqtsvzQWK0EN7ECkRwnFyVIrdGdHYUvqDTw7ORMkvBkt0+JBnRHPlNv5YrVCgfRY76ryj/kCQxjZSkxgLCrqhYONYgYj2MKZ3/niHAGkqGR++B0LvU172Ufd417UZIPY4BODur3HIlgahwbd4+7jjJmWxcLFUmhyYuF0rSJd2MyxomEqJPL96DXBe9frEUvET7j5QFUJ4ed7QF5KveyXIO39EFlV4o1I6fohyuwFQzTPXAquxamjfFsKPApckRpBttNAO43ipy6tMh/stDAs/nAQg9rYYd0HPC6Y9pyKkXqrkGKO/Eepni48SzQHO7OWQKbJY1B5Md73HH7OzH3lMsOiGk5WOJp1xGgYHJnKaoQMK1JKVyTnKC2hh25+74vJZCrW/jtayUiGFRglQVBie9Eliet0bHtxRcRaeGL8SaX33/h334QTMDn/vvb8dm/eAfO+9cfaHSJv3DX++XYPQ5VgE00ylQ5MUUtBtFDIzULS6Kad3ORwNoV5xlUyBwSqdk4saVhwQz+dqOU6+6tnUmktqNgKQ3HKGKNBNphICpT1/laInRVeoKHGfOnvDGsISsiuucH+yx3D427ts10FvIVThXKrsfICJ+vF37psYIeWehSNwRBXpAl+BsinKps+Ds7O1lydo42S6R7upug6gqe1mMLO5OASd4rXTZQhRAgcs4pYCLpJHZF/OieTt4uy4l8mFzBnZzwY7mEXhyFffW42rsEQGvYLAn4jSor9QxASEEA3HUzEH1OkiqowmFXtzSQtx6zXA+vdx3x4V6q3TF4oVmaQG2aQW1/VgtwuapEGJJnAClZR8tS1kX3HeaFRVCawm6ahu2mUOMSamEoJL0jRghKBMip65aeJDV9LUzpetaJx9MmqjNNCh5MRFD5cwuEGWpxB1awJWMGuh2Yk6ZElDsuQaNCrjVnxVY7RAiGtb6bSCtU/QTjGYV0wCJUhOBJq4TsBYvwr42jEBF2b+PQ4qKLLlr15/WKlmBZI6oeASkhGcAVRKLaD0lBDpDHyEIWD+OG0Dobj/NfeP0Kv3wAeN6vCdjwKlsC5GbOhGf/5k0AQewbFDDYnoK2JlAlkC1UsPksWBH0sBLm2A2qpdJCL41qL0oH8v0NVvzhHXCzLgFzXTBIEvHwzFJJUscH8Eh0tgYAoKb69bDWPJeFoDKBrWe2wPJQFqGZaWe1scYlF7HvUoQzALnC1mRbsvNIZ2Lx2nT2XGHx1KpOLh34IQ8mKhkO7AtFYbFQbntZNKfFLeIBiFgL6wBduncovp0om62nfqGLk02tAJ1LEppooJPD9rIw28GDTL04rIuZe/eJ+q/Xq099kogaAgBG46BE4L37oHo5Uq0w6mQwXQ29vwSB6/kLrih5IBuFg8UF510XFEXhY9MA4LoB3EwhKXAqmA6hmNEoZhKYDKi6crFnSxb5XgM9FgUSmB0YPrKFN1YpqXGF1FjwwIHApVE97Hidw6szvZ3MZHiV33qo/c5/4fXO1kc+U5sS/mbPpSFxIVcUp44GDGPH+TcIuHH3pl3PkiT/SBWVGynmfu69DWJW7hdyc+ZEg7spbCeF6erw/WIl32PTUSinFKoOCamSyL3cdKSDBQBUKT/LTAQIYV6w65JyBAtL4dZbSFr3z1/CPgECA8nINouXvtDmBpYDkmzYRPbvOS/7ECiR15/z6x+SNSaVQrJN6uTKv49NCeiK3U+wN4NLNDRAVoo0HKnfwusAN+PD7Z+tiaVkaKFMXXwlCzfQ3h1vSsFqKhA1pQ3Xov9sgk2auxf78wfftWJFWWg11R7MFm7+hesQccm+J1Rkx2VbXtlnUikysJaisZBLCISLrNFAuqyQLlmx53LnQhlppw/zTgDAarEw8IlqhrrYEBXiPNFjUyH2vG0iVTasGV6tBsBZpBmQJ9VZ7Oc8yc6pgmIrc2P8oZayTiVLhZADPiyDT5oCunUyny4WIZFmTaDMfQ8csS4kFNz+yneA/HpobLDcku+YO15ny1FNpVCFAfdyES7EMzPcvA0QScKYO+uDsqrncRgnFCilW4RnpkTosbAIXqpgBwNQVUHvS8EnbwF3MpjNsgaqYVkXeXweHKlQ2V8bGrCuAM0JwWgNqG5QlvsOq0lFvp3pgsZuxkeegWwXGI0jQtTW67nrXEHqOnpGFfRyEcQCAEDaiDVYZRvdbpxqmE6CYnOGqkNIly3Gs1qU8Ea+a7oANCmU6yQOKKcINpdCUjJytyBXZJOdle8JeQslD2es7BNZ4Nz/44PI91dBaR3H837tg+HeJGu64OHnvOxDMiIvE2JXF0AxrTCeERJEl0DV7SLZliPbV9Zqy8oi2TuoiyCelALkegHCuaeyCgUTsdoSsoSd3aodjbGiO9sftrOZJaVA01OhI0aO3brZOs5mo5K5Jry0DCwuicWVV3TH+G+tiD9KywidLh6jEwf/9GAZFguHYiGPHYIqA2Ut1FDBdv3gahtmOYFIrkVHIjdsFV3RUQrWGsleJWpcwCnBraiy43OF6HtDJIQJkRSGPLaNj585qIIBwC4ugbJMzpsPl0uEgb4A+MF9UOMC6DoCK+mIUnuhrNXZ7nweyhyztWIFnmW5F/p10OYKJhHi2iYkop2u3GCGW09C2Zf7Tb4oeFYVcq6DEOEoYdqAZ9eZXAn5xvLympgWWB88e8Hzr5X3tCLG8u4Cn7njXTLgfFjKmj7Vgd0i9//0QbkfEPMJh2cBHBDTmk1dmF4S8ILHnqajQpdK1SHY1GFa7TBtInqGJJWidzpkqCUh7ADAzzVigtwDddbsrCAES1lPagZCxX8PE9c1nNezCgHBEmQJ573oxlBQf96vfVDWBk0wrtDq8ZUISwjsOsK8cAkupwEQuiOo9HjYWcM6EYkv3qpSN3IlskAyqECVgc0T2a5F6B4F3PslzumCETreyAr2t5kTLmYJqEpBRdq4bzUK3hzdVxqdfVExOxBTzgosUeF+bHIN03GWoYl01stxSH5tvSgCBF2ugmm1m93n8SyjJl38xxvYtVSwrMthTEfV+F4rJEMOBAsrQjUlhEuybGqLLzf7pr52o2tFCS5Ww1KG0BPVHVMWIqAZDOvz1e+Bp/L6EhwW0Mujup7ivhNhBo8n9txxMsl1YnMNNVa1bbSNPg9PahHB9nOoogLlOVS3K2u9v4d7e31rQR3nxOLWZXbiXz+bB3kG2jQDGo3Bi0vg5aEIl++9D7SwgCTP5dg6TnBsWIQNvmamyP1zx6PlXKJ0pI6fKZvE63AlOuI0rYkYwO2/ro83mrHm8ToZ1F2qSVILR9xn5W2OJWdQ4Ttq87TufHKPF5tylFMaVZegx4zBVh1EI3LdAOmQoRWvG6Zto431DmMM/vzP/xzf+MY3QER48pOfjF/+5V+GPkKs1RIsa4TJCHaKUOVeAYywMIn6w4N8uXmQgrTlgZ0KQoYRX/D8a5HsHWD58ZuD6heuKKWquBDHoqROKXTKyALpAA4RxlsSZ68E5Ps0gBxVR4XktXtfjvyBEWwqpItSAMYISb2ocLUkXYkCMg1YZ9NgrfNgL2Af3BvssoKdQZKIOnV6Sm7Gw1GdULn5J0EJ4Ia+hsIEUBdYgDpJ9Ew7UC+eXgniChkEyILnh336cJ0fRDK8i2FWJIDhZ2bQuApFJwBAJ6uVQj751NGQ4chfH8wgcmoeY5GMq/oYSpdge79pH3Fbpy/EhC4S7ZQqBN/mGsBWrwtMdUG+iDYUlR9tmgHSVObKaAItpcDefaJGUAp4YD90ZaGnU1RdQtVPgs+tL8ZOkitzM6/AnoU/PqTvA+AKhk6JrZw/rZnuALACwrQrZucqqI1UyTA54fP/+WI89W03I12WAjZZaU1nkmvzoSTK4VoyDCpL0Ng9ZgFaPHCyeCRBSQJMT8HO9gW83XV/ILsOlnzG9laHEjvPvSao5E3ulOguEfmFf/tBNxdKgLQUyaSIDCAkaV5NCThfZ4UjUlVuhNj19Csi1V10/wBccqZR9VNUPbGK88V+321hMsJ4llBOO0KF4ewHAJO7+65GKMZj1Hz/esB7k1jx5Ibfj0AsMKNMFP7hU2urv8956YdElUb+sxPyR8h7WU9sR9RZqkIg1ILi1r23XUGwILrHAPFslqBwpPo5obXeFVVZSXLlQ1fSJVM5ksqkCOuYqhiqYCSWoEbOO9uym3/hiHKnZAtKxzgJhST4YeilRl2sIlEqyrH6/Rc7AFH4yWdQ9qQAFtT4BLHBUkDZg7sW5BwwqaDMZyX3KVXBqfbk3gQF2DxSBVoGSDf2gZUrTrg1mjMCsXbkCkIFWwj7Zsdm6DgCuU4nsVNgrmfeeCGGTTSSQVWTTKZOmvSgQMf7b7tCiC+GsFKgThLIfJtQuH5UaVFOaZSO+BaFq6yhigiKGTS0MmiddZRMSTFX9XOoogvflYRSlKUI63WU8LkiNflh906JRwtL4TujPLZINDAuQPfvC1aj6OTgPIPt53IOKykOEzPY3euRICh6lWGkD4xgMw1VGNhUQ+8fCs7pZWJ3MDKSWBeua6Cqag96Xxj2w+ud4i/MgHPCACF8KuhFh7F0bfdH1gph4+5LXuXHmlD1EpR9BVUwqo6CyQDTIahS7kOqIOicUVVHVqCdDJMTbE9wp8lJGiVMPWhYdhjhegYDyZjFVsZ1STCJ2nrHzhsAC5QzSRPTehs+V8QJJG50X9FjG659mxHKLqGcIvTuBcim4fOzmtDJNbL7Bm4mlCMAE7lxeb9/9sIOotrmlqRQQK6LSi8PQ3c2eRtYZ1lF3Q4wPSWf8ySO9QKdyoBK6fYGc7C48p0rlKZB0BPPZ5mcTdKYRRh1krDz4w/XuvLqrbDSOZLFvdba0G1CpVxfivtSfB67OYtuJgIBoXAHIBRoqbLCOVUW2vuqe1VsjJ/jCDlP/Z1cMXjYH18ceSa5g58B6Ypp1OvWsyPLUh73fvVFId31ZQnVScQKqZcKge+EY3u+fE3jbS58ztW47fOXr9zvNULu0SyFVI9np/K6YOgG9cq1rGr7JdfN5fEsVXLMHs8SH11MezTxbLGth/zuziFj2sPFs7ueeaUo5TPpwiA3g8wXznc980ohxt1A72JTFrqzfPffCYln/a1hDUxbzGawuRR2Pb6z2nWt5ITxDKGcEUxLleRYIPk9FDpLgMcO+xFAcKKgBHLtOrwpOxIPoo/IYyJQUWH3N64/4HF5C2llZN00HSegiY/TiXJ8x7SIexiwHjOhrhm4NYYVYFIFRKQc4PGqYEHBtHKeyr7cq1TFwUqVPQaykO86AZwKmeE7bryoCmOLpHR41s9yGzhLpspEA+Ndnk+m7mgBmtZNWtcWUFnasOXyXUl+zkrV0yh7bk6aw7JiXUyCS1PAONMQYz0WVTJj0eU0ITe0cB3KkPej6HxSnSd4EVrZp7B+w4knkxEDFYfn24RQ9bUI0MgV4f11U9omziVy9m51XcBqDXQSJEtFbW0fEVTKzy8BZN0N3c/yeVLmZ5HpkEuo0sJ0dLAIJ8Oh44ItQFVZfxZubScAZAzMVA7NLC4rXtTg37Msa9IsIlfC55ylNem9uOxqSgzqd0X4m2fg0ai2E/Vip25HrodODhhPkBjXdSMEEo2j82AtsLhUE+txzSkmaMLxmVogEluVxnbS3pITKRrrd2nkusxTEVf5e5IntSC4wrqOsbKvUEwJ1jMpoeoBVUfEPOEzT9cX07axSvDBn9LG6vHd734Xv/iLv4if/OQneOITnwhmxre//W2cfvrp+Mu//Es87nGPO+xttgTLGqEq8cS2GcCW8MWPvQ3PeuVNUsAycBZMqO0pVLRQEWPqH78PoFnUPu9FNwJKFnXpiuCoA4YBZ9vgPbGVA+6AezxXGG8S9akqxe6knCKMNxEGpzDUOEP/rgxWAyf/k6jRiBlsSYB5KmBNAcCoksGjflheloEKIUUoyyKlnFdj6toqoN+RjpfK1AuPe69QUPFgAmjYhcEaUa1RtKhOdrVwvWg0FgYfEbkCRSCfkHo7Eu8nCaBhVwZ3PhMdlMjB5gouOQ2JOyL/WKcGKQzIGpfgcW2rkKY1SPDv4ZWuPmlXqqE4Y3KFT19MSxRYdQScOGUhACg3N4c7Kbx6l6HA3Rxkp2vloGWZdYC6wKqHVVD2rGYJNkmuXPjzV4MdwPN2M+GUW4YKbeEALY2AwQAq2QbbzZD8+D75W6+Laosk+36GgAfBX7v5bXjuiz+EdNkgXRI1ESuF2/7hvSs/48OIW794pVgN+Qe89Y+mupNpPUMRzPbZI9rvw0lGm+8JQHvCF8G6UJtIpeQAkipsU1nkrY0AubbXydf/4Y65n3uv7H/qVMa+IO/mX3AiqiVvfwRyM1V0M0kpZoBikxAXeiRFzW9d/rbwPo9//82wJWA99+vv8RmFIr3vALAJMHk65R7uE1khdf7Va28WZWEKwAJf/d36/ayurcF8+NeTrUErK0CTsywDwufNBEeyNLfDGiGRBEgSLHc8otCDqP1d545/ri5EbZQtykwPr5qr+homF6WkyVxXZwXAsTNkEEhAYh3mgcBIETq0rbtulNCt4u+PVjyTQyE6EVuW2uoA4d7KTi3vyZWqK+RK1UGwniDrPhpPTHkSSgNVR/ZfyBT3OSSu4yUFbFrvP2dRYcBfR7pOSH0XgJBBgB4TkqEclxpX9dwTLcRO2I5qekb7c12rCeW5ximnx1sS9O4qoPe5GQu+wL80lAKz+07EinoiAkZygGa247qHAFUwimkdknRWUoxIhhaqcspRlUKXRggf5QsVFnokxFM5k0KVmXTTuvVRjUvAOj/uUQGw9yxXANt6rsmgANKk7srsig8uigLc74ly0N+3KwPetx+U59BVP9ilFLMZ8nsGUJAiLRuEOTNy/RP00hggQrI0ChafammMtKhgpzqopjLogYJyVhMoSiFXPP5xw2yJ3KBan4TmeS0EcbOB4iKCKiys0uCpLFLAKjcnSD5fPZYZKFWXUHUJJgcol2uU3Pyc9UpGieWe83NvvVmcHRTwpQ9fjGe+6iawcvjGWeH62VQ2kf1IRlJw8rOf4jXMY1owRNDgu8AcIaNMjYulCM3helOGYVIl3eJE0CMh/MazCouPJcDmmPpJBlaE/j0Vuj9eqq8Jv8a7AiQVjlxhliJSJ62vf8ugRAve8KSfF7+kKbjfceRC1O0hL65xnXsu2NY+/ICzonXBFjQY1rP04s4na4FxsWI4ef1aua+Rf21lwGVRF2OAICAKVl1hH9LGefCECpViM0REsK7bz+NBcvaBev8AVJjaH94Xu2PFXiwcCgQjNXF7LEhCRLb0u/V56Mh3Oih+Y5Jdazl2r6SN3o+8itwy1HDsyOKVisLVyJVdz7zSKdZ966acs9CpyLwCz5p+Br1/DLrXdfSsgmmBNfCsu16OKqY9zvHspC209bMhrKwz3NFhzSTLMLkUjm3qOkpPEDy76xlXhA7d0O00gWmhSDqxHSlgM485KWDEqkMoZoFiVs5ruiidLN94n2DMJ159M3y3Ilkn4tEESx4HutmACWBdPq9KAYmsGNqnz+4eM3jsDHaee418H7o6dI3Ec1R8Ryl5oqZ00/W4xtM+Arnir3H3emgR8/g1xfrOkjQ6ie7+yKmS+3zF4EzBdEX8UvbIEftAWrm1qbCuC0RBORK17KqAbZMRB9ESp4QK2nWpirWViEkcEZ0m9bUYSOaoKE5KXDF8jp/XNqPxDEG4bh3rhHRlX6HsESrf7OfwLGuHYQPmhOQVheQ6SgPJWO7vgFvLNWCTeoZjEFL4dRuyDZnhA9jMdzjL+yRjn18IPiQreIA1oZhJAqkjb8jBmtbPkeJUBQtcKq3Y26UKpqtQzCbo/pSg9+6vr51BPZPLD2qvP2/XfeJdVtxcFzk2Gzp3WDsxkRLrM3LXIgpH1nhhQCrrpEIhc/E2TwkW9B1b3gYu3gfrcLqG4EM3k4t8p2nubDeNESzZ70m357gQOzEAcEJmShKx1LUWdttmqH2LjijxJyOqqXkxs8f5HptYKwRPnsn66Ykqcmu0MXW3Snwc2mFarQSzWBbSqpPKGpuosJ7Z1OUpTmyjCi/gErGQdfmpTYRcMR0nWEwkR2Tt0je9fpi2jTbWM9785jfjcY97HD7/+c9jy5YtAIAHHngAv/Ebv4E3v/nN+Mu//MvD3mZLsKwRd374/8TMzEzjsf/1Hy/Gv3rdzTIIlp0IoKqLLmSBv/+/V1cqz29/Pe685w8AAL/wb26MCl+oi0bKP+aUI0ShkKNKRtUR1QIZoOwTxjNKioWzQgRVfYNiC1zBpgdiYOonBqwJC6crTP/Eov8vw6AqDjduwKlTE7H/8u2FHPmI+mKCG7gufue2Ji/iZMnYmv1vRFTsdqoHAAJSovZS7ktLOC2PJGGNbRqAeiCXK9iFIgeR88OMmPjYWiEeSucWIM5EoUyF/I2IgKKS9Y287Q8BcMdcukR8MHSLnHZKBFWrir0Cwu+DU0VwaWThjBJTr2i1mZJiOUc+t0Rh5oso2URpSNbUCbwtpCoDYM9XrsaF57wPppNI8rw8hu2mQsokChecd10gBT9957tXfjwK0IsjKKVg+5lTjnrrFRYViC8WTndFcV1U0KUk6DwagZaHSIyF3q/BnQzlphymo/G8X/0gVMXIRzJQ8fbPXeYSjFW/Locdt31Bkuu5p76nBieGm8n6OsVu9z0+UByusm+tuP3v3oPzX+jUYkZsBFlJgTRdqkKhFkAAt3pxBFocgvs5bFdanAOkYSmGH4/hiRWxCFKwHVEw2VSSEpsrmExF91EBfCZ3iYYCqi4w3sKwudgXfOdtFzfe42duvkluJUxQ1r0+c4m/r9FE927fMUJVXcwPySN7MkOSw2IKrgAP/KvX3uwsJSHDKONtuvXEFzpDd4mSzkq49/F/C90zUfIad3GwS878GsWotymguN6WWAgxsv0GydA49ZkUlsazbpBqVJQnhWhHXILmyC49lO+6IoIqVSj2iQrTFR6NsCEyQBL1fdwXBXWd1ApJoeoE0c1bqTqSSPthw7GVp/+uaC1/D1ZnUc3Q21EATjypEe79vlAsc1QmC9CO4HJkvNXyvGJKQxca2ZJGuqCE6E7qJDNYyzlySMgqKSapok6ATEchWzRQFSMZAcnAILt/WZIpP28trDWMoICL/1ZKcRmjCjotgZ5UJ0yuAQLSZUY6MI6kI5RTkgmpisEpA+i4Y/TWa/L5MFiIXOOS6dI6cqUmN4htbdeptSj9g0o+Ksj6gmvqiuKLTQIJWQbavEmS1YVFEXtkGXJnKWeJRJhACEQzlaZW7ruOXSI3R0cRqDDQDyxBB8xiwFNdcDcTMjDgFAKpNPws1yjJMSVuCG6eNtSZAFDMpsGCjxjQI/ni2ZSEhCQhVkab3P0pk3uTJ3BVIT8fZHzIIcff3vxGAMBXb3lb4/EvfuxiPP0NNwdrMjIQazoSbPv5T67deff8X7kRn3WzLX7h39wIZVHfgwImlhsNE4fOymBJE/CvI/xmNIoZEREBkpwvnSY/mzxBlc+ALKNzfwFOFRYfnaF3T4XOXcsRmeFOmO9ucR0AMApIIIR1wLQcCXGc6raKthGLZiyLOGjyca8cBRz+zOtiBSB4Nk3AXZkhpR9YAu/dBxSldLR4jO32iQe1Tax/jNKkLt5ZC7hiCVkFHo6kUwoAel2YWanIUVE5fOvmNmi5d5pUOeEJQ1UKsF1QZaHv3RvEQNKZrmrCKrbA9eHxJ+CweE2qBBU+O9waY2GP0f35jC26ImLYP3f3d2/E/JPfHWz2vCiMSoMLf/5q+ahHBfZ8rdnNEodeGEIlSQPT2gRQkWcbT3dluSwNkv0jmYV4AEwb41kyXONZW2PRhxprYtp1jkPBs8D6YNpbv3hlKM6zIpRTkm9SxVAFZH4ZSVEUDOiRCZgW1p54eNbKNRcwT4Rp/RzLGvO5+YEZQl2g6olgqJxhmFzwyTff3sS0psvS+UBSPwgzWrwNkmUY1PjGJ4l6ZOReHrow5Pusx2KzufToHNmis2Y0jBfMfyDYUXnr1MSte9paWK6xOfm3sRys1W1E/gYBC0lnpxcayd8dVjIQW0W/7obOYqDsCRFFDsuky4JnAUiR2A3Cqnpia+TPsTIcusetdtbXuWybYkxQJgG/kq3zLzlP7t7pcZgXC3XcTCdAcnJn4xjuSc7qzKaEou9wdrSeshZ86ruRQoeSjfC+O37rjsd3tctaTGF7gMP9Uc5gtYiO5BpB6H6qpqTelC4R8v1i8Y3oNUGI6r6KNpFrLBmxPNfd/8spjWzBINs7gsoTqEq6svX9C+CyFNGAljwhzL+Bq/mQcuIIhyk0A0UBGmqgm0l9QidIBgZ6WIb7i800tGUwNNiv8W49DR1EoSucoarKERJckxRpWg+p96EIZBWQJ0KyGBlqD3KWc0UR8Cz27Zf10M9FAwCtobZsFqv3ffsBonpWrLeZU1I7Qiev39vPYAlrr5J1lMgJg4Zh/0T46207K5n1Enemhr/Jz9wV4ZLcf7XMJ4qs42TekHxfq14SSF/jHEvEEl6IFZPLfYeMEL7hGlxHTNtGG+sZd955Z4NcAYCTTjoJN9xwA84999wj2mZLsBxm/NNH6gT1mb91EwC3QAG1r+kqEYPYv/3zd2B+++ux+54/wC/8Gxle/Lf/z9sBuGFwgFsAEACJFDcI3iN/uLW2uWHNsKkVTkQLObPwBFkEixmN8UkMnDrE4Mcd5Gf1Mf2jHjZ/bR8QKShoUhlURQoNvz9lKQQAM9DrgtMEVJQyxB6IPDjLZhLqu1Wsy+JtVFxzdgD2pBnYvL4cq34Km0whf3AEfe+CsxwzoYUS3Y78XFJdRFcEeGUbW/k5Hhjmu2H8ELI0AcFXCzmAnZigIY4+B4YsylkCqvK63TOyEgNQF7kSIYLCNp1SOx5UCCBYzsWqn1Bc8qewrGqlgldEKiX/BkPs/vHvYv5J74JSClS5bqRhAT0Yhy4h1c3CsOjzX3AdyHKjw4oMgwZjUTx2U7k2yF0jrp1csQAIzhLwlmm5boYFePM0aDkTS7PxGLRQgCqDfHoK6GRBvWNzIdN2Peuqo9PWH392lbRyU5aum63CofpPrwe54iOe4/TCC2UYpB4b6OVaCeqtn7x9ThgUHFSP/lqj48pOYdczrnB2Jxrcz6CGFah0aqNMi3omVyimVJhbpUqGLv19E85KQYB/sRkwM478HdXs3lnX3wwQkNi6I8GHny1gU4Q5Bbqsi/6SsLknR2QGXDeCTzxUCZgunO2TUxL61xGcFZTbjOu0ANxx+I/QDy6lKKniehsU5QBhloJy22L3dhxtI7IVC/+sgOZySqPquMQ8JadyqwkZv80EcHNZEI43GRHSTEEXCmpsoQstRIMnuCvrul9i0p3C37wdoy7qe6NNVBj6bdJ65k08l8bblQFyPtkVipWpE8vaLs2d87RZ7JUT6c6lS5jkXHt5JYduFZvA2XS48+tz+AQgVuFDtKnrCiE5RyaVZFY8/eW6ypYZ2YIJiu1iNpFEP3EWYobFygCQ+V++YJm4AgjX60woxgJCypPMagCJkj1xHbicELIHxlDjEqafBZUwJwpVV6PqavF476pQECELJEMLPXb2dZmGYoA5kcJuZWW9IiWfr1+f/UwLQNZGn4CWpRNljARvKCDMUguiDqeyq4zgiLKEumevWIfNdlD1EmR7R0GlaXricU1j8ZImdt7R3o+7LF2B1wbRiNg5uCJzNIsjqAWJwrrurTo5rYfp+uvXJspdVyp4nttMAYaDOtUmwGgLYbRV7gtiUchIBnLNllPA1699GxYWFjD7B6uIIdYxvvz7gmmf8eqbwcQBzx7MbuCzf1EPDv/bP5efz3uR4Fnf7fIL/+ZGsAL+7r+9Hc//lRuD/Ri5e6LJpYNw+RSF8Sb5nqoxpPBoIarXChhtkdktZICpXgdLpxIGj7bo3p0iXdqEU26/vy6zBtLE/a41gLIeGu87kSoZVEyDsXyeMZngyQKl6u4wjx+jv4dr1V8rrrPbbJ6C6aeBXGACqn4Cc2oPnQc2If3R/SA//J3cte2x3QTBEn73BRzfPWVlTgqXpVjqDYbQ4ylwnsk9P09heqnrBiSY1NkJO2tDmxKyTEkh1cxA3buvvvYBwCqA4wUF9ffAF2ciL/tQ6HT7LF2KVX3Oor/B2555u7P4OB3G3/2jWzB/5sUAKSH9KiPHORoD1kIPhkJoKRISghl7/vna5v4yg/Yvg/JMbKfgiO6UYJXsA1mG7WWgVAueHYyls2m6tyamzaY6DTx74XOuxm1HC1dNYtpjgGeB9cO0t/9dPaB+x84bAEj3phpWaMw4m8S06fGPZy98ztW1Y0EngR4bkBNViNDOYdpMbFiLvmCGZMhBNW8TKb6bVPDseIsFd9x3KMK0P3vVzSL6yGobWSaCTeTm64kWZRy5UHCwdxQrSenwkE5e8s5dAAPVVIJkaFH2lXQBg8CGQyekYDY0bLzAUnAVQRIDvqhPDm9ZFgGHWytVwVBa9tWmcFhQyANVwmHJaPsAvDDGi5ysFr2Mx7NgmWXrw5M4NnHnxglYlRFOvuq4NT0TzKbHGrpwnd2+S8MTLR5bqDg/p9p2PFUBN7ITmBhnleexqMkcrvTzICuPQ2vCw2PMeC1l5S3D6hxCNuCPDWGeYrAQjnKP0AVPQNUX4g6I3kvJz7og6DG584xgQwby8x4RZgHpgpEsVdLtwADZDKqwMN00XFtghp3tQ2mpY8BKdyYr16W5SjA7uzMSHEhaSBLl1k61OAaVFbiTQnmLsFTD9HNQL3PH7vG4nzvnhEKOnAHYCWlQkytxhzjgviQ2uKyQ707x5IcnWbyzirK1Falf57sdsXkvSvDSsogp8kwIvdLjU1MLGGKCxZr4pAjBE2z4IZajfn99Z6iimjjKs7B+214WOlakW8XNt0zEytXPawSAZBwRbKlyVnaE8ayIF4lFMGQzCz2sZ4M+nJj2ERsteXXEkec5FhcXVzy+tLSELO5UP4xoCZaHEF/8o4tXPHb+C68HCBhtSfF3/+3ta77WEy4+MfXxt//P2/G8X/0gPvfffxvn/h8fDIr1su/ApokWVoO64KYATi1opKAKhWRJBjT74cVmfwZsK1E8psRS2cfsNxNxdnCFShBBDQuxUtg0C+xfdN7QvDqJwNKYzR03A8RasSIDap9yHyFB0DVx4Betbgd2KoftpKJmcsksK0KxScPmPeR5gmTfUBIf3/5YuJZIn+jRxP5BNZM6RZIwwtbPNxaciSotDKL1PuoKQYVjM3+CpbCtFGB1pwYF4zKoIqRw5FQNia6VZ+QsRLQjV5Jofx2pwppEwQUEn+ngCe+P2x9T1Gq6+64PY/6sS9z1UYLKCtXWaVA3hX5wOZwjKsXSzfRS19kjMz7ihMdOdYVcoZUzW3x45WCwnyICLQ4EOExP1ee3rMALC8BeARxqego4eVPYzo7zb8Adn1k/IgIA9nz1fWIlRSQql1il8VC3vQ7DPR9qSIcTQ41dUdBwUN+SccqvbiqDoVlmsDwkL/BjEHNPfU8o0Ija1t3jmDE5ZNx0xVKmmK4L5b5rxSu/rFNkVT2gnHIsAwM/eONv44yPfBCqICSsRDVeuaQmbsBzyYcviicjeb3YTnFNNkyEJ3hCdwhQ35PJkxEcEh+buATKHW/cCeP3wybR4y4x8qS7nyXlh1J76yufOHnVW4Og4Xh/5F+VAyZTKPvUeD8ZKlrvp3hCO5zP9fOUQSBmbKKgnTLPe20DACW+uGXrQqgPhdCa7j2zq64OhEoYOpzVxIoUICSp8wpEFrcqhEHd1crPKU7EPbnkHydFTgHobSrkbyaTF1mn8jMZUDqHq2QgHUqqkm2WfRVskkwmszZ80t7ZZ8P6nC5VSJcrJPcvu3PCSBZyIT1yLa/tKJRTHSTTKTp3k6yHIdnzBV+qkyxPsvj/rQWNKiQLFaAANc5RbO6g2JRBlwmotEj3y9AhmydIXJGFWMEmLKrEIYtKcCRDnYkZNhPLTU4UmFJQxsAIUpgOA2CdOMLPMvHJXpaJQs9be3oRASDFU2YgcXihLF3CmgXRAlUW6X1LSDTBzPZARmaqUKZhegnUuJK5LaWBWh7VNkgeg/gk1FqxnSidOMRbLYTzqmvRyMQ550SubVVIx1dSWrB2qkrllbBitVF1CcU0BZVfTK5wyq5gURdBHs740kfftuKx83dcD1jGeIvgjc/997UxLQDc+T8n8OyfvwPnvehGnPevP4DP/uUleP4v3xg6+sq+nM9sAa4TimA69T3NZnUnjxoB+QKQLVg3P4igh4TB6QboVTjldriCfz3vxts/gQjo9wAMHI6qFeMNQmPye2OMXMNAA/cGog0ATFUXYqwF97phIHXV08GqxSuyyykF08nR6WxHfteiWFMtu660rvODiWeaOJGIvH8uuNd7wgMA+S5IfzwshWjXZc5aOesZ14mYKREKuHtpaV3hZFMXKRHU/fvd90LLjV1FGJZt0zosJldUdI7iwrjW4Jzqjnnf4c22Fgr5ApA757vv/n0AwPxj3uoKQrLI8HRPClB+IHJlACrA073wHZ47+zLs+d81yUKjCsgz2NkeWBFu/9xKTLvzuVH3CxE4S0HD8UEw7b6VeHadupYnYwWmPYHwLICAZ/1g7LUwrc2T4xLPAsCuZ13VICFDcXtCTMfKdwvrBqaVbhMn9Inx7DSDc2et6jDtmb/3IagxIVEkA+6HEZ51uDPM8IjxI+Cs81zBPVfOtYCj2Rn1EHRWQnSEgn1C4MrXKRgwcM4MTZKWHYyjioWLSAmm460AHSbzFmZOzKQLDgJWWzbFHo1ubwAi8GHpbO5LF7K34dQjRtlPkYzczL1EMJpNI5xrIpzt8KZJAXQJApxE7KMKC+VmNUmupd19joPYtGFh7Oz9OFFiY5w6oY3vnnb3ZbGuRejSsbo+cZ548d0AVNWYHKjzh5BzmPr5NkGwyAUQ7OKY3LWg6uuqmjaABtRAQY8INJb3qzoE3VNIBhZkSGzlEnJCCUZnn0G6TNBjK5j27oWA+5J9mRDZlYXupq5LS6OaSpH0UiT3MLA8kO6QeJ5uEK66Y7EsBEwFWVPKSrqOiUB5KnjPJCDDUEvOSsxamSHpBUmJCsQUVdJpT0UVOp9r8ZKr5xTRDGF25JnHqR5PxjN2/L77rhWtnZWnqrte/XqYpU7sC6n1DIYiIujkdd0nS52wx9mh+vDb8LU6oHadARx+1s11m0yw0ee0Ps9ipamCNaOqXEIJgNiiyuV7UniiEGKxbFNgvFlswQCXFyXsBLr1tXksMG0bbRxq/NIv/RJe85rX4I/+6I/w8z//8wCAf/zHf8TrXvc6/PIv//IRbbMlWNY7CEF58wv/9oMAgGx/ic/c8a41X/LcF38oFJ+UkbXxvF/8ALRTNFQdScqD530iSXl4v4RBFQHGFeet8812yWnvJ6KMIaPBOkMyBIan9Zz/LSHbVyF9cChAoJ+Dky5o85Rj0I1wEmUlxQlALLx0tIiE/6MCKFAvUkCdhPpQWpJC7fyijUV+zyB4mVNlke+V4X7DbRnopAz53hJ6uYReGgGVgZ2RhFT5gfBAvdi5ItVqs0fCvmkl1mCqEqLJkRbSMho/FwEcGWe34FXWSjtygZ2q1XE4SLQkBVkCvTSqB9w7X30BknJ+4mKi96H1RQKyFlQowKTyGZQldn//phWHs/s7Hwg/X/gcR4C4wcf84D7sefCjuOD51wbS5Pwd14MV4dOOXPHzV5AnopI7QBLnrQt2PfNKBFXd8hDIKgcWUqDbAfdICmk+gUgSmXOj60HRRyN8Qso6ev8jCO9Pyt7CZgPEZALvlZtUidKFjFqp4lwjzt9x/QHvS8cidj39CrET8glKKm3KaiSzO/wAb9vJYDM3CLJHQdnlEzSTIcw8MW7otE0BTlkSA0M44w8+CKoIakxQ4zoRja9MkyGASd+x4VVgeizFPm9LBkgC4m0JyADKvUC6KiIbSAc8FQgWch/2CrXgi0xNUOq7aGLfZDkwh/mj+2v8Oq8ajBxR3B/kX8NizCDsS9V1pIvvfvGqpQkiyHcHUeXEe7426AttnhPr6MguBuFExx1DsRe39RYKiXhxc4JgY+DtuELHzFjUl4FAIbiE3J9zl4wbR5SRFAQo+jxhOVxDPjFVECUjK6qvo6Q+bmmFB6qeS24M1YktE5IRMNqkw/uYXNbmfG+F/MGx+1xJLFDitVQBamkMtThCdfIMqq5sQ5fiaW16GZLBeJU1NirY+L85ZT4Zt2PO1gpW5nT5+QRhJgGRWLuNK1GgKYVsLwW1ovKDpks5SWrJyjrqO0xJiZdzLhcKFaau8JhorfakBRE4zcT+x9i6U0W5QnZ8jNaCtYgZyFlTQilwnruiTwLK4mSSZIA1IM/1w1O9vWdV1XMlfLeutzLzVp5xwuyK+PXMFR3W78lxcX6ejidRfQJsOkDZdwWVVPCbzDCpi0SspKvuS2/8LRzz8FYyXGPadKlas5h87r/7UDhm301GVgrQKpEuCuMxrRKbOhM8vF2izkCyJPc4PQbSJchMqBKoeiIe6txLoLs0oDRGj5FODJsqpIsF9P6hYC1HoNmpHOh3XBe0K4A5i9tgwzrptQ44UUvUuRIH25qIi4QyvnMpf6Bw30ME69fOfRrjk3IMTk4x3LoZnQcNuj/YC4zGsLN9KfyMarxBvhunrMRKzxd1fCe3idStRIA1oOWRkASuE87bfAjpLl3ZxByU3qzFto63dJERSWcY2fr6D0UuKRJxqoXcjcmVxvWiVnRisytWSVcf1wRRmqyKZwFg949uCT/Pne2IkcoASYLiZ05GsneEW798FQA3LFwp7Pna1c3XaAL3hKhVg9W7Pm7/e4eBn3O1KOeZ624iQO5TiW5iWmsfNjwLTGDaI8SzAKSTZwPjWeChYdqjRXI9lNj19CukqAvAz2KLbTWDnZ+zmiz7CuWUdAx7PFL2pHDJSU2MmAywucUPX/UOPPY/fgBUKpzxBx+EMgpkhPxIBmhgGum4RXDFICsFUiEcZFaKOBQ44lUBlcNtvvvCR+h+tnJ/k2KqkDqwjnBJCNaq2rrTzfMTu9ZaFe+JaF+o92uOKgR4hjm1ANTYuroH1d3Xbvt+e1VX5lX6uRAmg+tO8eyO2Fh50sZ3lZPx9liRjSUBXErHH2sGDwUDsVLgisK+rxYhj/EWYEqsYcueCvde3wkSz/LVjtCwrgtItuUwuMfjtv5cTacuZAvWcM83dR0IQDgPHn7HFmIyfwUwPQvuiOUqxjWxxxDhUNklVLmWWSuuuThbtOjeXyK7byDX97AMNRM5ARZYWIJ6UNZKfdJm8OYeyJjQ4SJ4zNRdkkAD+wXiQKOu7TC7NVCIECpENEP+cT9rd8wAKhFMKBHvKYVAzJNxhL23YK9MY11HmgrhkTjBpp/NgkK4LE+6JM5iP01EeEvWzeszIiZydSd30buLVYTGGI3rdTzRYldbunPia0cet/hOcE+uMIv4wJ+XJHHd4BrI3ZpdWXetZ2FerydYbJ408jCZJR3lTgWgXUtx6KSyHsOKmw5rDgI/xQQYEcIoP4NlI2HaNtqYiN/93d/FRRddhHPOOQepc1eoqgq//Mu/jN/5nd85om0S80NAaydgLCwsYHZ2Fvv3718xg+Vw47x//QHc+ZeXHPA5P3/RTSHx0a5IBAjgMB1nfTNFKPvyfL+geZBV9YFy2grBAke2GEK6SEiWRPWXLnuLE2A8I4WifJ9Lfkn+3rtrhPSeRVEQMIO3zGB02gySQYVkYRxIhdD66tWbfvGrKimkADWb7hO/uDXRLxA+2MJumQZnCfQDS43ki/MEtpOh3JyjnJIBy1QB/Z8MoReG4I4oWdXiuCZ2fII8OQvFvVf9c/S3bgdmtgfbTeoh89qBQsMw/RRVVxYi5QduVtIdoAojXSKAdPP48+LV9/69AOleSfziCilsRao/NZaOFd/N4okeNa6ERBrLgLY48TyUmHvqe8Bao5rNoUdSUFutO2XXM690n58UIPZ8pU5Wdz3jivDzZEv+/BMuBRaXmmDEqTI41TWIcbNg/Dna89X3HdZxHG7MnX2ZI38G4OXBwV8wEdTJRVW6vHzIPtVtHFnMnX2ZFGqUch0D8v31w/aosvXQ3srAzPZgplIMt2YYbVENmyebShdGOQ3YvL73/b+/fTEA4IyP3ihWikONZFkhXQLUGNCu/hLV/sMDvkOEWLolVCWqOrFJaiZ2NpFtqZJDgher63w3TLAJg7PeyhAsC/zgaN/h4Ae3e4LFd5P4ZBFwibSpO3BCAub23Wb1tn1i5bfjf1al/LPa2Zl5goXkHHnLAf8+4JrooXJlcpcMgXQgVl967JIdBoKXfKzopPrYausGKUh4Ek0s2ur9kn1mUVJ6Isd3m7h986RMUMa7pCB0t7hz64kaKUg4qyRFKLsuwXSe1UFFmktiW3UB27GOqCPpYCnkGkgGcp2AJaHnBMgWGLPfXYZaGCEMLfZiMVsn5TAWdirH6NQpmJTc2iOfjR5ZdO5aqrtYfBE0VtpPBHel45MThXJzRxR+45pMp8LUZATcZ+T2L6hYXTHRq4zFg9y6DhVXjCYF7uaw07mznSxAfrhoUdbF4VwSVu6ksM66wds5qEEBGhaSWHrCxHW4+Oc0LIXc38tNHXCqnKe/kWtheQwaO4GIFw94O1HfseKxgEuQvc2Svx81Pht3X7Kpdt8/T/5wwA6mk4QZLKxd90BKKKYVRidRTV4maBRWlJHvn3ENqnY0wveufvcR49H1xLOAECzezna1ePbLb5LrqoRYqThiyauTpQtLYTytUPbd/XRQFw6rvlzf6aKQtcbds5Tvyivl/psM64LfeJaQ72eky3IDSAYW+f1D6cZYGtQ4dGYa48duRuIImDVFJL47wrhuqomZPF79CaXleo+H3gOw2zejms6RLBWuA9kEfMpZAjOVo5jNMN4smHbTtx2e1Rqca9DY1ESQFwoZIwRLVTXFQ6t1b2cZ0O/CdjJw7gopiYbJZXi4qhjFTIqqrwPxrCqZuaCHBsk9++XYFWFFJ3osWCJnqethdUwyeGGL61CkQLJ4JYKVOSdKY/f3Prjm9bRWzJ91CexUVwpqiVoTS8497fJwnwIQulsOiGef+M46f4jV91rXmBZ42PEs4DDt/sUjwrMAZJZVi2cflph7qnMGoFo0KIIhtdKhINGw/RzVVIbR1gzDk3Swq5K5boJnTUdydlbA96L5gQ1Mu6SQLgN6VNtqqSrGR/KYHnPAfHrMIt6gJlkRuhYKDlZcvntFtlXP1gL8e7l81wlTdMlhDfD1DQ55MoJinixgc1W/h9sXVQj5I0SAw9rOMl2sc31HjqwHuhASwKZA1UHoVLG5EBfs1vJ0IOfWpILjyNTEhp9BQq47W7m1R48Y6VD2SZdckyue5EG0jw7PAo4McvNKPKFi8giHOjLFk9V6WJMijfmMrgtFOvXlMVUhdCT5PEg5LK4KuM+ufg8/xD7gD7icpCP/ik1iOaeGGmpESIYU8oJ0CUgGsvYqI8IIAOg+aDH1vQWoRemAFiI8srMCBH9lmWDDmU4QIgjJp6AHpdhU+g7NQHBHPwN1nUEpqTM4gQz38tDdwURBkBrWxUnBrbFN61e/lsdrLCCv6XbA/Z7MKFEAjSo3H9jUZEe3G2zhbU/IFCrFFUUNS/me+2Px66rvTnVCocmwU7kQRuMyCJrEwaWIusIjcsd3rARxkAp2toGkcQII+dmRkLkO30NPBPrvJLl6kE1UjWUzsQ2uOkA5RVh6tD9X7rtgCDZjcYdYRhA7AoAdPjRM28bKuOOOOzD3716Cx71xYwhmv/s7V+Oze/4K55xzzrHelcOO73znO/jmN78J/v+z9+fhllzlfSj8e9daVbWHM/QgqSUxCiM5hnCxwmAmowkN7Y/c5NrX5IvDYzu513FMvuuAjMFADJIMQgIkkcfXdh7utU0S3zhPbmxntARitIE4xNgmMY6Fwcxo7O4z7Kmq1lrv98f7rlW1T59utaRuqWWf9TzQR+fsXbt27dpV7/v+JmY85znPwbOf/exHva0nlYLlW9/6Ft785jfjzjvvxHw+xyWXXIJf/uVfxgte8AIAADPjxhtvxAc+8AEcO3YM3/M934Nf+IVfwHOf+9wnZH8fDlx5xfe/D851hUoOH7MEOLFQaMdyI7a13Oz7di+pUKBAMA3BNoBpSIqrGgAL82VxkNTGhMEuYvwNg2orws0jyDPaVYvN7xhiZeBg2nUUD0zQnL+KxUGHSi/MobIIAwnd8wPC6IEW1X0T9fRnUF9Fkuw8rJVmz9nuZtX3jlSf9Tgo0K6VGMwa0JZaWkW5qJvAKEOA2y7QrhVYHHSYXTCAWy8BAtzUwyw8OHu9aEMXSbZPcZmFmFbypFRGgWnE/5cLaXANe4RRiTh28CtO2C6ec8gcGcqgVrxgHRQYdksCxhK4ws4sN5dpmNgvUBkqMRZgJ4U/SyAZIxYWkd1jksUn5oLblmHcR37v7flvh5/yfwDDAe780ntFIrs9A5xDXBkK8woKnkVIc0zqdx1EuXLnPbfgzi/e2m3vouvlxj9fALFSNpTtbu5aWDfnjR/1+znVddcX3iXN8nAgn8Fs/oiez22Lu+79hTO0d0+OdeVV4pGdBoyn09Ltuue9rfsOGv0ehABY/Q57aUDjsOgaUxeAVlicpg6oNjxADl6H4H7Q2SiwAxAJX37zG5Ze96s/Jow/4wl2oc2L6RqWpOYwHgKEJvuokBobUpCbYAZpuM/ZYqoDLSgz0LptKnM45ZjoYDXL9xOrXZlAdgHNFek1Wul1qBvQppUZgdQDWGLXVLPaCSRwpm8hkOXc3O1XAldSs82945AIWGnbMCKiTA0eRR2cVtL4JjsJBkA9YCUx86JBDlTssscEjApqq2UVAIkOwqpqEjGh++xYh96s788wIxiS/Su7zyIpghJYlI8xSeOb3xe69862a2bFXkBApOhN3l6sGHZOoO3uM6Yo6pPIhHaFsP3MEVa+TvmekZdBZ7UJwK9Wkr0WuuGHCTKoDitVp2LpAys7Wfg6iKXaAzaCi0H2vDeLJmc1kIF6MVuYeQNT18BcPeB8EOb2oMo5KckaQ2yJnFh5Qe5/PHAIw0IICI0BvDaAyf85WXRZA9qewc4bGV4SSZOe2IlqbxAHnX1oDgZOAMjAgdqAMC4l56IyCBVhdF8D00rzGUeVzC4oedqh88Pu24KlL48qSBOIcven/zFe9cp37VAFaMaK1iqZIWjEStTW0PBPi6BBtvJZdt9Dv8KgVrzNo2V88c3X46/ccEc+9//wp/4h1m86e/yqTwauvOL73we7s56NYvEHI5Yv7VhyBWIplmmppg1lb4hk5fqNNg3/dECow7l2TJgfFDuxdl1q2qfdHVFstTC1hx+XmD59jGFpQWGfEHdmc4QDY7RjC9M4mNIhjCvE0qA+WKI60qC8f1t2IERgMu2IRDGCW7UWM0a81pPaKakd0vfPOcSqQLteSL7CXCxb098JgN1mVG2EWxRo1gtsPnuIaqOEaVhCf7XWSkNIADKMXZQy1JkvwByAAFHZAp0VamLI+gAzqxFRAcoothOSmraynUWtvodkZUeFQfOUfTCe4R7cRrbwIsqKlSX7GyAPb/Lx6Nu6EAGGwdABjxHVF5W8ZOX1iBezgMFEuLMHbBx++uvle1wVuPN/vFts3rYFyOFxlclGlOwBe/UsIDXjnffcsvRSh5/1RrlmxN419gmoZ9P+Hb74TY+qngXwqMCsv0grZb6kdbrVLks1bSJOgNVOWWyIWBnlbEkm973vjq0DqmOiaGlWKGfEyfCbwSXjz3/yp4573a/+2E/jGb+sNa1yJLLSV+tR2+iAfaBEGKIMsqTZg2TCUa53AamFJNuwy1UBlBDQolNAI9Vs1ClCWLZpPOAWEWYSOlstQOwLi450SF7rHIMlRXZ0ovxIZKacp5fuMdZkQkMo0Cl9tLZOmYahQGbUh0pe0w/kX0DvywY5g0yy9AD2qT4m+AqwhgBEKa1iV9em9yFyD6n/MyCldWUolWCl5AHb9Op6JQy5eaqluvycqGC20ToUkPeXlNW27dXsvRIwHzO9J5uGQb0MwVh0dbutgeqoWcrcCAMGRYKZ9uxvVXXrFrLNdkSYP3UFw68DZmNb74vphs5CRiACrw6xuHBV7o0+ClmnjbDeSw26OgZtbCETGdJ9ZCfIkn6X6siyBFqdO1irao7Y2XY1DdA2GfBhjhlgEacKvX8mQD2RapKFbFEI2W8galcyvqtnkxI6BoAc0HqYTZ/t82mh9/9ENLYuEwelTyF1KpF7UgZjnRGL4NIg2gGK7VZyV4O4OaAohHShdQlY6/D5ArC+IySp+jIOSlGuq1L37s/8Y1xx7a0gr6CKle9pykgyTZD6meWcliwm+X6bgQAyvqL89zBgYBSAxsAsDNgwvvQmAYG/8+fuyD3X2VbT7q291V8XX3wxLr744tOyrScNwHLs2DG8/OUvxxVXXIE777wT5513Hr785S9j3759+THvec97cPvtt+ODH/wgLrnkErzzne/E1VdfjXvuuQerq6tP3M7vsi4//B7JoW4pI+uJzSFFVcdsSOyB7OmPbhjoFoDxBNPIz4OjjMFR8RmbHnJYnAP4py9wzoFtOBtx34Pr4G8OUMwi3MSDQoRtI9zCYnHQYX7Q4IA2X2tfngIRiAOb5ax+KL6mcy4QqjWUGw3c5kLCYVsvMkdAmtK6AaYz0MpYMkNS0DxRZjXEA6tYnFvJ8GHcGxhpk0hRClMzb2HqAqYdol21aNYlewFcYO1rFtWDMx0ixY71t5s4i4xsOwXQVYXc4EKAmXmE9SH8egUQwa84tCOTixU2BLI6OGD1hE0gl2UJH268SDIDZFjmTLYJ6QpTyk1oHtBkmWpibcjjins3wfc/+JjOtTv/5OYT/3Ena6JpgfkCJoFSaqORmSJBpa6ay3P4kjcvASy72T1c97yeWkY/k8dLxn/nPbeIwmY0BBkjzL9TFO0teZn+JV0JUDkTeTmS37NjaFFoUaisPi6dKr+02E4stl7uQblFoGjRjqVAjFHUF9IYnODFo3RpAsTqLqSZU2q2jP6sIAtKyPWw6IEMgboBIAPJQkzk8fLc1NjBANFT/l3cuf2EEaefWQeNkNdN7DzuAx5AZrOlxjRZdOVMEW3clnJeGDKgS8cnbTMiqySjgh6p2e5bhQG6b9zbRi60xcfZeKgySENJjdgKkO+2kY5z+p8ExlM+XoA2vFbubxQIsOm/WRq80JETJLxSBtnRdcz3HPLaA41ybo3uQyjlc6M5C9ilDMm+l3AYKIjSYw+aWcYW4MdyME2NrLTJxyadYwzUawbxWSOsfo3gjs3ye02AfFgfol0tESuDYrtHEYX8ndjIoHRQiNIjn9fphXonfgBABrw6RBhXCGOXs3H8arkEDsTKwY8cnCWYWYPM6ktNXN4JOi5HrG8N5NcGiKUBBWV5OwtqWe4jKX/NkDSIaRgVojT+ANBKs5itd7QR5cx6FFY6hQAm+TDsrBXrDrVgSIz9qKxDjoVsP9gu5D4q05K0JnBWXocIYegQKwtEAQ+KgZOm03N37+4Pm7UxNo3X1+wGQrEQq9d87gUgqvLpq/9oGbT40xs6QHhrawtPlmXruFzPErJyJ4f72mQzJ/YswqrVYZNFl4PVyLVueESsR6iN4MJgcmGJxblA/bQG6+dMsOYCHnhwDW7KsJMatPAoFx62rtCuFpifV2BwbIjh1zZBbcDKPUfBziAO5XvQji3mByzYVIilFXuxo1OpV1svQ2zvMzuUmwbcNEI6GQ6R80PaFhwC6MA+LM4TxXWx5WCmBPjuHAbkvmcWjeQC1QHNygjzgxbNGoFigdVvBAzvX8j9rW6FLVs3Ulu3rYA9qYYpqFPUAJJHEiGKsbqGYQYPS4RxBXaEdqVAu2KzrU5SFuVshlKU28EC8YI1AZ3qVrYfogQK9wEVfV9Z5QUskYqyTZiqXdhaxKFcfx7LuvNL7939D6lOzbaJCoJ4D5rLuUkK7B5Xz0LUKzsBlt1AiaxOeJzrWQDyfh5FPbu3us/pTFmJ7axp2Ri5L8wbubeoraTklul9M/WFOlA2rdS0YItmTfJO/AgIw5N/ztSYrGImVfD267U8KNV8OBRAQgNCQTBam1IEGIyQ7lcAYmVyPkuXBUigBIyn16CuHkwATChV0e0J7aqFXVBWMyMy3KTNfXKaf1DNiJW8d2iQfSxMV7+hA4CSXZFtpG6DJXnr6RKgAsOoKnEYub+kujyTiJQgs3TMYlf3kReAIajtkR0YIbW2STHdfT4JGAmVWpW5rq6PStIB5Pjk52iN6xbd72Mh2Xeh6vJ4kgo+AznU/ZwVSwGZuCW5hFqv9XqC9HO0EKKW1veDB5FJWc0aIECczqACSx/SItfysdSab2CwuHCM0TGtWZIqhAi8MkBY3YdYWiGfTFqp4fokAs/gUQna0nvDbte1/u9iFJChcOBBId81DOWe40Mm/vCgUEeEhYArSaGSSQB6LiYwJq0EiJDYTPr1SmzRGlWmMisRSO/BmgeTrEMpMDhGneWY/Br5GtDLMgEAuzDo1KAMBKlprB6jWDrE0sHUnN1SiEjqAgXc08yCvQcVatdeluAqnXCUv1OJEENGFelgJW8zkhWwUVca+X5C7/Xpf8h20mLxxqAy4Ct/93hi+T0/++SsaZ9062wpBc6W/XgEi5nxb/7Nv8HHP/5xPPDAA4g7AN3f/M3ffMTbfNJYhP3Mz/wMPv3pT+N3f/d3d/07M+PCCy/E61//erz5zW8GANR1jUOHDuHWW2/Fj//4j5/S6zwaS4WrLpcB9kc/8chR2SuuleF0krrCJna0yTLTzPYoKEtLQyUDJLFg6QLgTCvSVT8w2LzIYPr0CHveHMYwfGvBD1VY+arByrcjimmEXUQJbs/2Xtw1RUAGArJdgQ4fTN0Ciwb+/H2YXzBAsR3gJm0OaXebC5F7piBLQNmv4m8ezlnF9jNHiI7g5t2J7GYRgwdmWQ7JvaEOMSMOHNr1CvU+h3ZMqPeJfVp1DBjfF7D6pS2xZEi2DRls0deg7qaZ/DSFSSRWIH7/AIuDJULyb9XBnOQqQG+w3LOW0Z+9qG2q+6fCpDDIDIzERABR/izZppBAZTYlyxVtTvv2XI/Huu75PysKAe+X9jHboswXQNOC61pu4uPkWacDlRSIag3u/LP3ZKbYrh7LO4JIH8913fN/FtlzFVI40GQhAcdAZquk97G3Tn1liznm42w3dlvZikOZRFwWOaAXgNjwlNKMpuZK8iEkXFLCe42ywqQJ8QPC4iBhfh7D7wswAw8OBl/9kTfn173o52+DXYjqL4HXSfUCICswEpgSSyCWEp4OyxIgOhXpc39IT9rgkF4nEqiRGH2sIEgOmDcKYOhrioIDy02kqigoqOXUXF5P7AV6TSOAHDRP3XMBZJuD5I+bwKHUZAHI9ldGbRJCCbQrXSNIcVlNQ0FBI32tZMGQmtNQSlPKlnMuiW26fZFmDbk57FuXAV2DmECfDOqo8sa06Tjr/psOzHAzuSem95YHiDu2lbaflEo5dyWISiYNxIVJ2h3zBKSZRskPPaULU2e1kPyxsxd2YuO38nrVRsTql8Vesj5noE0Nw69YLPZZuDmj2vRLNl5gyWBJ+TRgRnVkAbMxFbBCH5Mfb013zzMGzVP3YXao1GNJebCQbIKi1h/ldgQIGN63QMqQkPeXTi4s7VM6/9Lf5ocGKDc9TBtgFkHqBR8zQJpXsh8rXb4P5/eZhrARSJaB/dfM90wgHwtqQx72xmGVh1d+pUAoZUj08Q9114L+uvoV78pkhw//3ttx5dW35CGxgCndsU15NaxEg2yVqsciOiMDIiu1nB8RPvvB63d93ZOtx2rx9Wief7J798OtE9WzOceqV9MSJyYvCeDoxP6rmHUDK9sw7EKUve2Kw+ZFFtsXRZhz6wxW41iJp3yMUUzVEq4O+fMyrVpo7AAE+jUtG7NUzy4ODVButnDb8n1KGQm0OQFvbnd1JSA2osaAD+zD1nMPoF2hPByjyCgnEW4SpMaufadkTsNXQ5gfqoQsBGB6vviZDx4C1r4eMXygRvHAtlidNQ042e8mRUxZLCuv0lCoKOR+6gz8+gDN/hKhlNfoW0LaBWfrwbwi5+s4RcbgG5tdWG9SszgLv28kj1dgRmyEe/vWq48TY/bxXEsKbB87q5qkOmr9ievZ9LOeK3d+6b0n/F6cbfUsgL2a9jStq1/+TgCiYDyVdfi73tLZC2pNy6XL7gixdFlBlu7hpolynQLEsaAgxMrAD8Qtwg8ImxczwloABhGYWHz1dcug/Hf+3B3iWhF79SuJfWmyjE2B6VFrs7TS44sJUEy455SRMlo0Q7B3fxd1h1xT0/Wjn12XlBh98ktnNwRRLTQRJs0eVKkeK4swsBo8rzZgFrkuYdfVtcnJw7bd6wcNio+lvPekygi995z3MSCHvCd1dbKkJAhJKIEQbFXpkgiVPdAq1Xi5pkVXw2dljxIuc2A9df/mmrftPqtEwgKJXZite8/Z8TmkuUS2SNaaR+xuOefr+IGRY+kk/yxUyFmVpPcs2wCDY5x7AUDs1lJuT7+WBuS1k70cAAyOeAy+vgG/X66n5CPCSoHFwVKC77e9qCKiADXJhp2dEQCIhHBE2zMhewI7wJDefVxz9PjAGtp9Uj8nyzZiFuUI5LibuW6raTtST1pLtTJJvQx0138ihIMr8KMCxeaiyx9MRIfCdXlvOsNJCuglxafVvF0iUIgdSJN2I1nw9/epd89NwIwQlFlmbSR5iR/+zz+Lnevwc2QemXLS7vrv78KrLrs5W32lz9EEXtrPpZXqAq3hQiXP9QOxbf79X378a9q9dfzKFmGvO4sswj705LII+8mf/El84AMfwBVXXIFDhw4JeNlbv/qrv/qIt/mkUbD8+3//73HttdfiB3/wB/HJT34ST3nKU/C6170OP/ZjPwYA+MpXvoL77rsP11xzTX5OVVW47LLL8JnPfOaEAEtd16hTIYpHia4qm/NUQqNfddnNoDZKU1IYkEkD/u6Cl3xM0w3DNhKIFwZWfZMpD5ZsowN/HfrYlmGaCL/fCrOjJfijA4AAt2UwvI8wvp9zPkD2ui+t5I8YBrzc8FL4rVkEmFYGJCJN1IpgPof7RovVjTHisMDi/DEWBx3aIaHaKlGdN8bigMXKN2sUX7q3u5kUDvNDA8wPGgyORfihycVIu2LAxViAn7nejJMHJBFiadGsOczONSAGhg8xhg8BviLMz7UYHB3CbS5A2z2WnyEAalOW1Cvpc0vMW2UaAejYzGnWY0glw6xDQalsmGS4llgdAMT+oM9kKSzCqMis2txwJgVM7A2KiABHuOu/vuORn4OPcSX/6Gtf8I6O/Jx2GQAlZcG86QofQKWxnAdP8d6Tq20kjHR3puDjsXb6ZF976TvA62MA2mBr1tDjDXCdbF11+c2PCrx9PNe1L3hHN3w51WVNZo6CSHMagmQyVAW4tIilEXvCSoo7AHALUaykIj/ldAQNT2ZlilEZMFqt4WzAc/7tDZhtDXDJLzbAa8e5i8r2AQnU4N4AXe0PhMHGOYzazE3XDO3SWJI2JzlAU7cdvdplAaLCSLWzgjQGECuCdHwS+GDSwFL2JYEEfbsw7m2nn0eTQQbFmNOgPzHX8qfVbxJj97p9azR2APeBD+6Ol1ExQGLp2QZqxUDwA0hwphNQC+gAnbT6wBDSjKu375mpp68XNe4qKW6MF4Aq9pQvHdtSBgSJdWdazrkuhM6jmm36TIU1mE/TpttH45GzctL7aAtgdD9j5Vs+AyB+YLLKBZBzYX6uxWK/MhTVFoLagObcEbYuKmBr1r8xBhtBFB/63ZDX1xMiAgacB4FhVAB+CJNDOU2XNZJYhKZAXBui3lfkwUh6D6HQ70zvO9GsWoQSWOwbYXgkoDra5H3plF4KanBn2yEAkwyJwkCADvIMNDpYNjusj2LM6th8PwbEIin5UzsCQ4FXBXtkYCrvkVOoaQJgnNzP231CxJAwVsbv/PufxsnW3Z/qlJZXXn2LHOco521uQBObMPlRm+59f+IuAW4uP/wehIEAwp/6jRNbap2JdVrqWV2nyvJONW2s7Anr2WRRYr2cD0LqifAjBz+22XLE1pzB6VQjmSYgVjbnW5En4JsDcdtYEIYPAkBAdGK/Rk7qSVEzEYjTNecENW36nmo9u9KrZ5t1m68Fg2OrcJPzUB8osPqnR4GvfRvctKDxCPVT1zB5iuR5hUqug7YRQpQdGbiFg507FBPJKqQYAQcwDJpVg3qf2FWufV2/0yWw2GfgZg52WsEsaqABiAyQ7WF2gEbGdFZ3zsqQJzHDSS1zErhEhGgAi25wygp8ZeUleoNEH0Slrpavi6esIVamC8VOnu2kpKEEQFoDdnjYvuhMrA/94Y0ANIMwWb0kgLcsdAhXdR76wHLmCmx3XE+wzrZ6Nu3T2VzTno1B9Lutq1/+zkdWz0KuMTKY8bmmTZmBXIjqdLd61jSqzlCVgQTBU0egIQBVxHB1Abcv4pLf+Dk0Dw5x8a/ptf7aUUekgdRBmaxDgNE6kZJ6w8h1KuXdRatzAEswzFrzpNwTzgQfoLdNzUUR+y/O2XzJ9jpfx1OubFyuZ/oqtmQZK8dQGfI6BM62rqkWNh3JJ+XtJSVeqm1SXd6vZxPJJ4W+JyVyDuGmrt4FADvrQA5EoEzHbQi0K5wzJkwrdrJLdTeQHUj6lmb5PfZq3b41Jkf5rJLCJitqtOaPtutTuhxIwM2jWDYN5fNLr2u0R2hHJoNVTBDATT930yLblZlWiEWr32gx/PpmBgvCqAQXJiuKo5Oaa3aoxPwcgp2TKogIYX2IyTOHYp9biw29kG0iKOXw6ueRCCpys5F7U1gZwDKDNpNKxHTX6JQzQiQkgpUB2gND+IHVHDGfyRyUredIrLYKC+PFGtduz4HpvNtWAlOSgiX1stbkzC1bK3nHcTcLA8T2UkkOBAgYkbIVU01rZd6XSLaxtEBpswpaZn0x17PQ7aRmhq2VvmIsCtQ05zsRWQhYdi655qU/h6tf9k7AyX2ae+AoIsAFwGS0npfP5RN3ihLl8sPv6ZTIlvDp//enTviae2tvPVnXr/3ar+E3f/M38X3f932nbZtPGoDlz//8z/FLv/RLuP766/HWt74Vn/3sZ/GTP/mTqKoKP/zDP4z77rsPAHDo0KGl5x06dAhf+9rXTrjdd7/73bjxxhsf07599OOn3jyQ1xB1vZh97KPy3MsPv2dpuEdNhNEQWtPoxVyZYrZXCNg6Sghc6A0f1K/dzSUI71n/5Ha4bcLKN4HBMc1eCbI9o/8yAx/pMcyuuvxmJOCoH4h+3fPeJkycqoBlFmbdZAbTlhgAsIshmnWHdsVg81kFphcC208bYvWpz0Q5kUoiFIRmzaCcCMOPTYeI+xGBjUUxNSgsoZi0MBzAIMTKoVkvUK9R9le1C6CYM4aTCDcTtiyMAQ/L7HFpZg0wmyP5gMJ2hUK+kRqIMmcRYOuIes0tDf1ysQhk64t0zAEp8OzcAz7mG2RiLclr6OcaWNgL6YBGyM1amZS5eX4cVmLsmsZ3GS+k1Xj6OTOWOTemfZaxrCBFNBnx6cfu7NfDl7wZJjX4MeLwRdfvain2eK4P/eGNuPaFN3TMvxTmfBatsx1cASQo9poX3wRiPuW8oDv/5GYJoe1nFaXsIi1SY2Ekb0KHXKyM8My612GONEXUWTfVhLCwCCsG561u49h8hBlpMUxAHESwT4W9NmvJyiUBDHngDlA0iBWDWpHL20XHeutUIR2TzjacLXCYWGT0KqdOGSAE+VdCO5GbrWxrpfuQPZgTKEG9f9H9nJrPzDTDjt/1m7wdz11SlUCBEm24kjKGWFQqPjV5uoyX45GyTFJ+DKANrAViIMkK873XxfJ+513j3u/0WmQXBDfp+VWn/Y/ddqTRRw6Vz+8r9DJaLKEtkyKF8r4UM8lySYGbphXmHxux8wJT/iwAZEAmOqA6Cuz7swWK+7YAZvhzV+EvHGL8Lf0dERAjRofWMbtggNm5BotzhKFuNrZRMWO8IqxNUUf22IjKOicv9w3TaFaXejSzNajPqVACkrWQ7nXp8KyP4fcJwaJdcQgVodwOeRgRHWX2oZwvyTdcft76DsLskMPgqINtpK6othjVRpvZgqI+IkS9VzTrDvWakdokWeK5hMp19xQm+fCXrreZ9JC+7wl46c7raAgoDEjJDKwNescUNPBjh8mFBdoxoZgy/uuvnhrT7vLrbgUbQjmTAVk6/jCQHAmtEz7+4Tfjsu97D0DAJ3Zk7X3izjfh5T942xPSiJ6OevaRDj9TTQs2J65nPWeVr6lF0QHWAVVl9LsHYTX3ApUBINlaRCvX3j9/g+TUmBYYPgAMNqRWZpdyk+Sc6wNmwIlr2mtfeMNJ61k/lryE+QGLxXc4LM4DNi86Bwe/sI5yo0F9sEI7Nhgck2uIBMAS2hUJgHVzgl8wKgLsIsDNFRh0Fn4k+X7RAnEs169ymzF4yEumzLxVSysrVlbWyAW1acCLhdiAWNsLtRVAgDMAaGBnHnbo4EcCQqeBVrrepcFd3y6SghK7EstWLXsBIKyv5u+cbYX8lYYyAorJIC0NknLGwhleV13x7nxfOA7Q2XGNgWGxTqyKLowZ0CnzjvpXr0U7vxfH1bPPeuNZkXFytte0TwZwBdDcrctu7vU5D7/u+u/vkpq2p/4XwFnugf16NtU4vjJAJYAIIAQLAApcGoRC6p8wcYirhHNWJjg6G6Gh4dJr5wxB/S6TB1xPNZyBiZ5CIg3xbSLYKFkw1aiSs6G1bc/aNddnCsowobNr9d3xksyPDnCFAicJQIkwHdBCWn84tYmtuuB6oAcuEDobLPVcpdABJjl/BbvUs408L1RdXRz18bHsagxKavEe9iofjmwn7RcFylmE6B8b6vazsw3eUdPOCcV2T9mdWu2oj/Oixu6rZUyAEKUYqhCSnxOhQ/oLygpkENCsGSTyLfuUs7PcI0TXKX1GD0aMvvgQ+KGj8rh9a+C1gygenADHNpFC5WEIxcY+lNsjTA85TC8gjO8D7LEZhg+WaFdcRwLT8ypWVs8RAV4SsMBEMG1ALC3m5w8wNATjHMx0sVTPwlnwaIiwT859Py7gxxZ2Ltk+yTpaFCKcrSpBADlGu1agPVShmA5QHhtn5RjNGrHhVHvTNCcCgDgoEQZOlOSWlIyWgBkjwfcpM61fz0Yg24P11JD9nMj0uYrLQanXC9Ndc0i/DwMLP7JoVg38kOAWjM9+8OSEIQC49kU3dveBGIFgVAXWq/kd4RN3vRmX/fX3IlrC7/7b5e0moOWJqmn31qktwo4ef289orW+vo5nPetZp3WbTxqAJcaIF77whbj5ZkFlL730UnzhC1/AL/3SL+GHf/iH8+N2ynqY+bjf9ddb3vIWXH9913xvbW3haU972mne+26dSGqcLmJpJQYlAGG+GAmaT2xtUoa0WHzF3NSwKmNsw/j8++V9De8TT/hyO6KYRXzyP5z4wpzY8ica6t7135el8FmGr0Mft93oTUV8lle+LnLdjWfLMKjc7Aq98f1in2B8RFEaOA2T7zNWpFAU8CH5sworURgmxZxRTGNuzt2RifhTMkto+1R8q+E9MBwi7BtnJgYbZTZvzTPLEZbEJqfhPHiVQSN34bTF8uDRtNI4y2cQsuKGlTlGJJUWefHXPU7umorxGMHZyPrMLzupwUT40B/eiMPn/gOE77hQ95V1f3psvr5tnPp9Z/ZHTAcKoPPPw+Gnvx53fv39S6913frfAx08IDT3FHRszdkBspwiIPCXfb3qsptBgXH3p96GV112Mz7yybcKSMcMs2jx4VOwBeuva194g7Ar2QAQ0FnCPyXQPjppRlNwvagihCXVjmWY5uZSUCcP4f6wnmqDtrVoo8VsUQITB/INvvoPuyLxWXfIuUeR8nXJJMAkqVKS5cJEcz0SsBK7/xkvdjYJkEkKRAFPKDcZpu1YdglsSU1YaogIXUOWA+lN9/gMsKB7/QzE6FcxZ4ekubYCKH0rq6S26ZR4WGbJUdeYZvVG0TvOljtFzZjEP3q6o4HXz8XUJA1rD/jIDWfal2QfljJgnBT/bIWlZzWXIQXdZ+sh3b8UeA90vxf2H2fbCGngO7YhBRmC+iGhmDHcTMkK6TPQfUuDiFh2n8PoXmD0QMDwwQbuoWluyPrstfQ7wPRs7gBT9xROCYBPZQpJ4HkKjyZPsGojmWw6Y+Ukl6IyKLY9mvUC2FfATQYoNsucT9KcN8L8HKfbVDvRACAybJAMokDdwKdv52HVAq0+wFicBx3KEsoNQnWsgm0Yg40IPyTMDxq14+BsWWFrziqCWLoluybWhpSBbA0hw1zkgbrxnO+RKfck2yUow/djH/2ZrlZS8CP9LRbSiNoWeNlrbsPgWHvS4d4r/+f3whDBtlHsnJwBys4nO4FrSanyyd8+3ms6rSeqEX2861lg95p2Zz17xTW3ylAiA4c2W05EBUbcIsIugtZJy/VsAko//0/kvRUTOTedft9/59/tXtP22fInqmn79//d6lnTWsTKIloHkEExk0yE+15SgEKRbf9G9zOKWUS1wfBDozY3yDVtdCQM9ljCLIIoWSqbr0XlFjA8EnJNbOYtzGQuHutF0dVd83nnMb+2Ci5l4JWIPWbRSP3mO3sR00TYhYExHVHILvS7aeWehyDXHJOsexLj2Aepn0MUgk1k2DqCFsKiTYAE6f9RFKs+8lHY1NkX5wwvku9/yoq7+mXvlAwbBbiPy4ZJy/Zq7qDTy74dIcT66c7/8e7uvy9+E3LA8llWzwJ7Ne2prJ2Wb+lakX5v5wEf2QHSPty65sU3gZzRW3noatod9SxI7BBz7pzaYdlWyCFCflhWopiWUE8qbA0H2Dw6RnFMMsZ22gM99813gAshvYQB8pQn1XdQtYKb9WyzVNEcHXV240khotkbKTMm1auiDlH1Wm+Izo50uA3k3ETGUs6KgAEEKNE0bSOFuYslF2XQA0h/03pS69tOxcJ5LoJenkiuZ52GwfdqZaM5NWHY277rtpsIO6meBaktLgPFFMCUct2RAOpMPKKuh0gKmVzvWwFliolsx9aiGDKB83uPun+25Vyz5po9JvWQAvMJKHNdndKsmvw5pjpf3qOqPPW9tKvpGMrzVr7NWP+D+4GNLQl/ByRPJMrnR4VaUqoTiF8p0awY+EHvcxqWCIVBKLQOtvJhZctIQ1J7+gDWOiCpWcgHFNOA+aEKFCsUW0OUD5UdCbV0aM4ZY35ekffZzeW8DKW8Z8mEMUuWYQKKmXwuzM91mJ8j6mY3ZxSTAYrtBmayAA9KNPvli5FySCjEbDsmuX8EcjarpxnIJJzkVkJI99/uszEBeX6VyQtas4ax7a4/GZzpcolSPqVphbz3cDXtVVe8G9Z1YE3KWQRsV9P2RqMnmwsCT1xNu7f21uOxbrjhBtx44434lV/5FQyHw4d/wimsJw3AcsEFF+A5z3nO0u++67u+C7/xG78BADj//PMBAPfddx8uuOCC/JgHHnjgOFVLf1VVhaqqzsAeP8aV2S/SgCbVRGJrEwNuJmoLuZEEmIUOBahAOYl4xfe/D2FAGA5P3SvxkbLlkwwfECm++FNGlFsBxSTIzaEyGByVmwSwPAQNAyPs5ggUWx4lM0JllRETYOYNzKwR660Y880qJhuIhlEdaWCmEjyK6Qw0YaBw0vg0wkpgjiDnYKY1eFTCjwuYNmowqmifyVnECLiJx0BZKhSlyMnMhvSvFpwmMOxcb8ALnwsKudEKM45Y2XIERJWb5pudgQAUTlmbRlgHcg7EU8qyeLTrrj+6Cdet/z35HL7jQikWQshgz26+p6k5ZRJ7nexbCiAHio6H4kUcIvjBI6BzDoDOO0c+j55/eLax2VtPilV84yju/PP34fCz3oiicLjuuW+DLSzCuHxU5+mHfv8GYVomix8gD19jaRBGNqtVoiO4RewG9IDanmiYZEGZlSZ5KsnSizBvCxhifPUn3gj8RPf6z/ont4MLyQiRghfZZisHhabZS2ps2g60SGHx/SI1q9TUxz5Zl6W8i5wtYrvGL9sfWAVHFLyNDggj9X6mTinSb7QYXWMjx6/bZgJcgA7AYKczbmWWJSAmAR6I8pjMvusBVxJEzd3+9t43F4zABKt57ZyaZc1wsbWwB/uZLsQAvGwnATdGH5fZkQBMI9ulZEFWUf6sSNUpqelMn5NkeMhrJUAunR/peKSGOWXj+CHBjUg9pbvPwA/V5mwANGuMwUOE8b2M0QMe1YMzuZZbUYEmD+m1h6Yy7HcSyl4/dR0PXlqhWQfcRNiRFBjh0D4c+64VNGtiEQQI8MJksmpSBp5efJ+J8r9cWAHwAwkrHlIz+JVSbLoqaXJjIerQZOUhL5KaccrncQIU03lKkTG8n1CMCM262ORFJ2DL4hx5XLlpQR7wK0CxCdiSZHAw5zyIEaZizENOIMp3K7H+tMH8yCcfXUZDajCvuOZWVcCJDcPnPvCGU97G5dfdCquKOFPLgeBMJEjH5Oynh52t9WxSpBxX01r5rGxkuImHXXgBVKIOMywBVMB4RjGJeNnfuk3A0AHhD/7pw3++j5Qtv1s9a5SMk2taK8qm9n4l/OhQkKKERbMqwwcbAoIkew3S74JZBJhG8ljctEG1WYJJVHWmjigfmooVa9sCixqs2UpUONle03Q7XNcgLhHHAwGFZrUEugOAtZIvYg0cie97GDpRX9eSY5br2TT80nBbAEBgmLlaEDkHOCCujzKIwkr6SpZ9OQfEkLx2+r4w45qX3JTv87v5xZ+O9dGPvSUPx4EewATkfgrMSmCgpZojL2vQt7zt27AlT/sMqJygnj1bQJa9dfJVfnsbd33hXTj8nLeCiVA6g2tfeANcYeFXiuMUcKeyPvzZt+OaF98EWCEvAEBSQoaRFbUKyfXC1AGxJCUPqlWpqnNDKQCET1l7JUvt1RhsbI5BhvFnP/MGYMfl7XlvvAM8ABDF0osAtGNkZXQCAqyShFLN2c/jS6rDfl5WzhQ03A2II6t7RleX+5Fa9zrKCpEUaM9WAPWsoEh5LKF7LIDu5wRoABngSEpWNgA1vf2E1E1OyTYMAqWfXQeehH1Sx8h+SR25pEzW2j/VoKZNYAZyDW8bgHrAS6gAlF09m45jqDqle36ckee5hWarJHv3/N6kni0UvJID0tUdGeQynRKlq6lZ/5vQrABW1faZcEUk2YA9KznbSFbN+NvAyrcDRt+YiGKk1I3GCEymcJOpqla0gDYGi2fsxwMvKNGuCljnprKvR5+/D+2YBPiA1LGxVJJq7PJHKEZQqltTTVs6FFsNTOM6FeRIFCR+aOUeOxTbzmZVXsO0ABViBRos53yjbDMa5L7LpASgEBGdkKqiJfgh0I4L8AUFyu0hTGA0qxblVshkqWRVLx+szNvkOOgH44XkKzMQqXE+/Htvx6NZS/Ws6erZ//zrpw5wXHnVLfK9TJnKmn/YWdXjSVPT7q1HsPY+zke9fvAHfxC//uu/jvPOOw/PfOYzURTF0t//4A/+4BFv80kDsLz85S/HPffcs/S7L37xi3jGM54BALjoootw/vnn4+6778all14KAGiaBp/85Cdx6623Pu77+1hXYmH11+WH3wPrgd/9tz+Nqy6/OaPgFCKoFnYoecDUHm5qgIHktYy/1e7yCqd/3fXfJBDwmpfcBLddizS9sPDjAsWW6QoGAkJl4YcG83MdwEA5iSg3JGC92G6lwfYKWrQeNF+AiFBOK5hmBcZXmJ1nQQz4kUO1NZeGqiylMQ1R2GXqf0lMQNOANrZA8wrllnp5tindTaaIpm7htgDTlvAjJ82jNpzGM6hZvrGK1LUrIHlQIgeVAUiBZDIQM9m7NgWddhY3BMSgRabanBHh2kvfsdT0n8513frfw12bvwIA+PDvvV2AnQQI9RUrvZWbVOauuWTuvEuNeogagIhA5x7sHsM90Ka37b2G9Oxd1z33baAU5pdWDIAp8nfgVANAd1sf+v0bcN13v11UK5UG2lc2h1ruZM287DW3gU1iLUmjGnsNUrb8ioCbGHzpJzrA+Jm/cNuSeiU/vgee9K2zxD+6azTT0D+UvdeDPDeAOmaZpfy1lgE2ZcuC6Cir4FLYaB9gQewUMtGpYmKgO7MwIL3nc3+f02uZHfuaGjcrwIMwBpeb6tTIUk/p0rcqADowiQtWsIXBpWzT1EZBGQYHCHssdvvQD6N3C4AVZOlbiBG6xy+pRfRxOTSau/cp+QWQzId0LS4T0IIeI1Mb+4EAVQlMyZZhvcbel6kpJri6a+TbkQSe+jEQ1gKKrzrs+x+TZRZ0lvvrkDHbXhAYEfNDBZp1YHg/sPqtgPkBg61nlmoLAKx/xaNZs9o0IpMo7CxkG4MUopkCNZMFpgykAT+WxrPa9IiVQb1mdUhB2avbqHczoEPhABRTzrZMwrIXpp9Rq4lQEdpjhHaV0Kx1Aw1h5wNFAwweFNConKQhrdgHmUaGyeQj0Aa5ZlgLRgQCAQXhI588PRaIH//wif2od1tXXfnu7CVu1bbCLCTANI4kq+ajH3sLrrj2VlDkJ421zdm4dqtnAQG2KDDcXIg5CAwT5DOgEMCwoCbAAaCg5JRosPKtZtftnc7Vr2ftwp+4pu3Vs/W6WN8mQMY0MthwOuA3TYRZNKBZLde9mcXK1y3cvMLsHLEii6MSdmsqWXfGSJC9BrRzCN2QKwTw5rYQh2bqJ6+5RFByT6qBLTOoLWXY5Qi2Dlpfd9lKycqwD0wwEXhUZQZxJjuFiDCQmxEFhkm2hpqTlNRkS/WxZiNd85KbHvXw6WRrZ7bHhz/7dsmG69ecUUhMS6BK+nu/nt3phJBq2jSQivGE9SyAs8YubG8tr+ue/7NLaiYAQNOCrF2yUXss1/p03vVr2jAUy+nP/Ovl+vMVPyDniKimZdgeim4/TACi1jPlMYN7/o/u+d/1s3fgf/zcDpA5KjighBw3Z/iB1mQRMEp8UdG4kFuSwiUCsVVHhp5CmI1c45bOcO5qqMTOT44O7SjVPvr3QnMnCrECD0mRXqc6TR7YD2rPKumi93pJOb6DDCIWSt2+pM8xgTOpJjYtYBaA8Z1avQ/m+JUIagnFttRgptF6yWudajpiTMpYlOwVQjukJSBnyTqYkbMJyXdko5QLuLSIBEQ38uYoaIC8qgsli1GK9ERMSsBPUudE3Q8/0PpsKq9nW8n4S6Sher/Uu34cUfwZYfTVbZi6FXJqmtXYJBfqrcIhjirMzi/Qrkrtt/rNiMV+qWlNy9j35QbNqkWzZuSYRQJxhNv2sLNWBv1Jka3vO9XMsTCgENGuKrFiq1HwzsC2icQgtWZSSbtpEPBFQ9iTDX6qZ1mfY1uW3DCSz8GvEZp1AzdL55zB4FjA4IgX1efc5+sERXEoIa9K7ELmQ9wGIYJEAhd02ggEj6aelQMoJIKseE/Eh0KucXs17d4629bv/M7v4L3vfS8+97nP4d5778Vv/dZv4W/+zb+Z/87MuPHGG/GBD3wAx44dw/d8z/fgF37hF/Dc5z43P6aua7zxjW/Er//6r2M+n+Oqq67CL/7iL+KpT33qKe3Dj/7oj+Jzn/scXvva1+4acv9o1pMGYHnDG96Al73sZbj55pvxmte8Bp/97GfxgQ98AB/4wAcAyDD39a9/PW6++WZcfPHFuPjii3HzzTdjNBrhh37oh57gvT89q2+74KZ6Z/bpop9GehEIAdbKjTp6e9oGGKe6zLSW/YkMtBZFo0BHb2hvByVon3hX1+sq6QwWbk5wE/WeToGThZPGsRU5viPCwBJMW+hQTppeagMwKBH3j2G21btzZ0ha+tIkX8+iAA8r8LAAOwO7tRAfewAu2XwFCVpNwWacfDiTxJMFeOGRpgb2mtW8CEgBYv3VvwGCU3ivNrilBaw9YyBLAleuvfQdoD//Bj6k/33d83/2uOIn7R9C955zEZYe07dayM12ek4nh83b6v17+Nk/jfoZB084iNlbp29dedUtD3ucX3WZWDEWiakDABxx+Omvz58jNQE8kIEJa65R39v+VFcKX73y6ltUIk/4ZC/X4AU/dgdSLsV//dc/hZf9rduQrJ8oNSIs7CjWoE07J9zzdmk+L/o/bwMXDDs3S69bbEnnlWT8f/LON+A5b7sDyaZK3rP2LsmCS4f/UPAgqURsD1Sgnawg7oLAk1VBKMWaIDW7oeIMWEVPebjPhvV/ACpR2+z0ajZ9Fl56aWXEQZtjacSUuTcnCTFVMAMEwAGUQkqTuE69oY3O93yvWmDLoDIiVlE8oVsD8pQBo7QNCoDpA0HcvW4a0APobNmiHl9SNYsyAhNokoEvdMeuU+sQbKssTZaGPlms+VEKedbX5uX3mo+bKnWanjWFHyujdCCB7NOnArN7Rxh/fXrcYC3f5/o/G4Phgy0OhgKDh1oUG3O42QiLgw7kgdH9whKfHnIZ9LKNejWrfRZbsRcxmovAGpjJBprT5mHrAu2KAxtCsdnCzmMeQABpWCCNJ5MAKFiIQoaaoO/dghedL7qbtGLT5gz80ObQ7+iAdkQ5JDaxXqMFioUMBcjLfZPasJQzJqCjBcxjA2cf7UrklMTOTWG6lFjtBgLyFgaXX3crQMDH9xrRM7KS3dq1L7whf28ocA4bJ2agDXJ9D1HBO/u4DgY+/Htvx3XPe9tJa1o7KEH7K4QBYXauQTFl2FouwpIrIyo0xCj1qLXAXBBnd8xiGAE3le8uJ4AErQ5yCmBtIFZhakHbZeNJ3cWzOWBILFwGlTwn1WPzBbCoJS/EQLKL2iAWuk3Qx2mdlpTL3gPGgpyFBLdA673kaU/HX/sg9+TMmjUA2phrWrIGcViArTsjIEs6J6668t346MfegmtfdGNW1h5+zltl/6NMlZfY4bvVs5plk2+2QFfTRumxTljPstxzDz/7p1FfdHBviHWG105g7WSP03JDWd0Bhy+6Xj6vwgmY2XiwMXjVZTfnQf1xeT6nsNJ5Jyz05d79xT96e65l/stvvBEv+1u35cwzqXW4u7e3QhxxU8Kf3iD17HfedAfCkDFYHD8AcouOnGJrxn/9levxnLfeAUBqz2SnG1x3z05KX1YLWbYEP9Bg+0YtRVmvywxYz3KtaSNMy+JCUZqcowqIQsZXSV0OmECZqBNSVooRVW1WFjNlBUl3f9Z903rWxK42l7oZkPofua4BFJjSOjtts5gBTnNG2Mhj0s+xhNQ8JGqLdlUsYBOgkxS9ttWhvoJB0QKxlXxBP1CltJ5kKS8whd3bGbLamlKPke556bNIYFZWGjGMKoAQuLNXI1FJxkBAsh9TgpTYbaJTgUuple18JeNGNpmU/huXGAyOrWD49QmMDzlvS95Ir28iAlcOsIThgx4UHYYPtnDbLYpJicUBi7UvT4EITC5cyS4DtmU0KwZMDiUgRJYYEYcF7NZCZjvDEmAP18h90jRpJwF3bIHxrM3/7ddLUWnNvSgylZxB0YEm/rh6VjJOSAk/Ua2HDYqJQbtps1VfsqD3Q9KsYws7a7PlpRCFvKo+9Z7hbJ75PFHWjK+67GYsXQ0S0SH9Z6HkxcLiimtvBe/VtHvrLFrT6RTPf/7z8Xf/7t/FD/zADxz39/e85z24/fbb8cEPfhCXXHIJ3vnOd+Lqq6/GPffcg9XVVQDA61//evyH//Af8K/+1b/CwYMH8VM/9VN49atfjc997nOwiQB+kvWf/tN/woc+9CG84hWvOG3v60kDsLzoRS/Cb/3Wb+Etb3kLbrrpJlx00UV4//vfj7/zd/5Ofsyb3vQmzOdzvO51r8so14c//OH8AfxFWNc9X9Dx5MWe2Gx3/okMRA9/11tkqLXQBnAn++BxWCmn5fBF1wvr0NvlmzQgA6GFxeh+oJjKye9mEXbhhcloAEQCDEsuyWgozIFWFC1ucyG2LqsFQmFgq0IsJZgFXAHkxtcmFYvV5jR0mSzWAlUBHji5gdYtsD0FBlVm6ZlGG0qgU28EIGW8ZJsrIpD3YP1KUZAqkK0wX9LnlYr2PIRNQMbOZjVGUDBgI2yE67777Xk/5ADitNmHUQig0RDXfffbcdcf3YS7Pv9z2eLrOPYfx+6/gV6DqdYKhtQOJjWzjCWmnyFpVPuAm0zJUX396Gl5P3vr5OtUQKwEyh6+RFk06VxQ0I0VAOTSIVaSt0Qhnmhzp7ZfvYLvpX/7NkRHaFdI7lJBuocX/d3bUUCaHeOlK6FIiEFsnCQ8UxrTS//hHbA1o3qqQX0w4stvvD5v/6/ceIdkRTTdcP/S192BQWKbKbMveR8n6y2vTDk3F2ZYygIRBUCvOUR/+E+58Qvlsi0Vk4ArsUrDRQJRaqR61wTLoqYx6VoELAW5Nx3QECoGFwzEFPoMxCIKAJX2zXaB89n2zACUvKmV7Wi8Hnqr+xaEARhaQjgYQWUAvHz3Q8VItmimFYZYapJtLXYJsRABlNfeaXAUGBxh1OuEdg2gFijm+pno4J6VbSZ+1LqvREve4qz2Z2wAWIhFY3IzSNi6DjXS6jfz6XNMn1v6vBGTXYd+Pg2h3R9w5DkW7XgVo/taVA9Mu2Fb/3rZG4IWD81RHFuI/V1VoNhqUByrs3x/8uw1tCvA4KgSEOqo9gTd5wUI4EJM+bOXXB8BMawXoCQxAa1aXSX2I5hBdciEhFh09j7ig240/8LDpv9mlnB3HWDYRcoR6gDGBHpREMsBtiRzZCUlZNtM55QJbvDhz55+Bvuprr51RDSM4IxkkNa678NSLEgNdaquvXXKg8xHug4/561iK0gEqGd4qiGve/7PynekDoC3MCmT5XFeD1fTmsbDzi0GDwF2sVzPZnuRZJHHDB4UIEPAfAFqAuz2AmwGCAMnSueqBE1nsvEYgelMakznwK3Utxyj1pxQQMqKlVdRSF3atlL/1o3UtJakRl54ra9lX/K9vWl0eGS696avm9UxzsEB4EEB05Q5SyfnLfRYsykIONvJquUL6zXymhfftHSMT+c14cqrbwH2VZmcdOef3NzlpiwpVk5Qz0aVU56wpj1JPZtUMgCqr+7VtGd6neo16WN3/4z0z0RyLseYlWFpsbXgwuS808dqoZNY6C/9odvEqnSFQIXkixkviuyOMLMjw0+xVD8g2LkAM27OKJ4uA+M/fu8bll7ruW++A2YEJItbPySpl1eVaFKhUy9DAYpS6pykrCi3OVuJ2YazRRYA9C2yWQkJYST5bYkYlerRdiRDfKkRCMydZWhScCeQgTyAngKdnZBrim0p/kKFTsmiSpwEQHS5LbI/yb7QzaVm8UPZZlIF21q2GV2P1KM1oJsAzT4lozTI7wUQckrK95OMKek/DFShE3WIv5CQ+MFRj81nlVLD6ueaVdP6eVtVDUuQeToHFAyaRznGrVo5AprdkgpCwFgDxwpmeeR60SjQlNTySVnEJOfd4FhEu2JU7SSOE+1qxJHnOKyN1rD+hQBqu35edozyPqTrfPXQHOWGZOtyYeCmLdY2alAdMH3WKhYHCNUmIxZ6/KnbjmlDVjTGqgA5A64KwIvCEz5ITVAVct+LEeZYnfN1y2nd2XRZk1Xd1IZcQ/TrWfTqWTl8lD8LAduFdEYsvVe2yWQBaQxRlpJRVXQK9UzQYtz1+Z/b5QrwOC2Wc6mvnCeOWXkpucNd9vDe+gu40kzgSbgOHz6Mw4cP7/o3Zsb73/9+vO1tb8P3f//3AwD+2T/7Zzh06BD+5b/8l/jxH/9xbG5u4pd/+ZfxL/7Fv8CrXvUqAMCv/dqv4WlPexo+8pGP4Nprr33YfXja056GtbW10/em8CQCWADg1a9+NV796lef8O9EhBtuuAE33HDD47dTJ1lXXn0LKPCjYsDsXMknNltThUR5CEvhiwCkaGwDPvxHNx23ncd1paYs/dwHCEKAnbUwTZCGlAhG5ZhyE5DhrbDsPLgqEE0FM69BtfzOLnyWXrPTYxMArpwcnwbda4YeK8MHKRysBaZzmK1JBknk7x52a5GPNwFdA5Wk5SF2dgzpvRkDrpTNsFDgwmvDSolB0QNaIpZVIqkIAEQm3LNpIOacfZIsDq59wTvyDf6xKFzag2MUxoh/d1rTuTTr3GtAdjah/ZVUN2S0odbJbgZQdoAssqGuiNPjf6aGOHvr0S1/zircQ9tyHiQLjRhBdQOuSj1nhfnziY+ePqVcZnk1DD8icAlQJPzRz78BL/zfbsdgowvGTMGbfiBZEbEQf+M//AVpQF/0927Hn97QWStccvMdsF6KftOmMO+O8UMmNWoACAiqyDANYBS8sTPk8M+UjyLMQ21sjP6rChex/BJ2W2p05cXkf2JHRjBtB3yI9H+5YuJC9zMIiCFWA/I303b1fnQy9SZP+TW4YLCLiCOAvIGZGZiWOmuyoDWazpbSxigi25FlFUkAUBtR2wRCdb/D+NtYaijbsbyXaiPC1VGzOKDKEvlfMQkYPDCDX6skqJ05Wy9IJgBQ73fZZiKFo0bLgvxAQQYWm7akLkrAUlpu2g0WombMyAHt+ujUtBuvQJDVJnwT8GNCawE4BjyhWWdsXExoVkscaIURhwiUD2z3PoSY79dcWCwuGGJyvoOrJVjTeIabRZRHFqiOtqjXSxRTbaaNKidT4GwbM4sOAGIpLEKZwCjznCSfJSlFSO3E4sDK+6o9UhYKhQDbWsTS6b2IciMrTFUGEefMsPS52Jaz+sctuJe7AAU35cDaOsIsWtkHazXo9IkNX776Fe/K+yn3MPkuGVXasAGaAwPEkuBmer9y5snas5z21Q9gPR1K0+ue9zYdBuo5SQS0wJ1f3GHpm4gtzE+I4um4fdmtpj1ZPet0yGG0NlTLvDiuQMaAGmHIGgVH+wpIblsJG1Y/aPY6LNJBP6dBMWu2yHwOTKZI5CqiNAiKoMm8ex9k5J7uQwcMJEvdGBVg0G2nsOP0mK1t0LyAXQxgrQzIeOC6XBMiAbkZAAiU6t1Uv0boNTpd6+T4XPuiG+VahsdWz6bcJxDQHtgRVtpXnpysnuWouYknqml7z99Zz1rT1bTMp6QY3luPz2rOG6N8YCqfUbK+ZRagM0RgVOU6kAvCx3/7TSff4CmupDxAlKG/CTIM/8N/cT1e8trb86A31YXZjrYS4km1AXz2g0IQeukP3Yb//N5lq7HnvPWOXNLYRsGSaSrgREUQohCEErEoqZw5CvnFLQBXC7BjrIIubbKrglh56ZCevGRdtEODMKBsx5Utv/T2mgAailiy+8r5hXmeofteI4NPKeepfwM2qjanVnqDBCL4EWXFjSiPGbYldOCVPi+IbVoKC09qYZ3+5+NvArDvS7Woe1WFFwfyRzttOuVrlD5fgDkB5+z2AnRsG8Wxg527SI9A2R4YoV0rRNUYUpaVyZ+H5NG2OX8j5WNxYUDoLF4lF0f7r9KIwkXVysmOLTpSNbEco3pNSFfVhoJXA4iFMIB6H3DkuQaj+8Y596O4f9Jdpy3lWQYMwM5gfv4Q00MWbq5WZgysfGOBYhLgFhbFrCPk2Fr2PTqDWFpQIJi6zQRTWjTSyxkDKuTYmmkNhAgeFOCh2K+nzNxMDmghoIdh8FiZW4n0uqOeldmSyc83LYMLKX8RGEWtLiNRrG7DwMLWAAeFZAoLzictAeaJBVauftk75Rzv2RsKEBfB1sCvJsJvutd137m9tbeeDOsrX/kK7rvvPlxzzTX5d1VV4bLLLsNnPvMZ/PiP/zg+97nPoW3bpcdceOGF+Kt/9a/iM5/5zCkBLLfddhve9KY34Z/+03+KZz7zmadl359UAMuTbT3WQfFS/gERyJpuahQi7rznFlEa9BcRYAl3feFdj+m1T8e686t34PAz39D9IqluACk6jAAU5IXxFUZOAlCLDuwwTQG78MqOIcShk8a1DeJtWxHasUG50YCdeNxQ7ZWJZ4GCgNkc3CZdsTRAFE1nG8YsTWQIwHAIHleg7VkHrFjba6Rj11Alpp+yoOKwQKycDLL6ihQFTvIxAEBslkEdZvU7ZbAHKNPgjwdW8sAhsSKNedQ2Yq965bsAa9AcHKHa2Mbhp/0j8HwOOrBftt3ErlnsvZ8ldkv/94AUX1CgKFlFwC43t6nxT+9Jt1997dgjfg9768ytuz8jA63Dz/5p+UUfECysDoQiPnHXYweR+8vWEbYRwMEPOysiANLQVcrEYc4h3s26NpBt17ABwH/9leuXtk0aFp/sp4DeYF1VK0nFki2pdPbkSMAVm9j7yu5nywilAqJJAaEgS7KaigUyQy2pTcBi/xAqkkZH1SvkobZaAhqwKijYsShTNBw+2z3oe7ILKKhiEFZkaEwNgTwhjgKojKI4YdlWcIwAYbKZSQfuJFsxtvIaxNr8tvJ7T4CdWAzvIwwfYowe9BjcN+vUfjGi3T8AIlBszBGHJdgAxUPTfC1H75pY3tegvJeRgOgcHhkBuxghFhZhZFGvW0BZe2hZFEEVLX1WqXmPZQ9kIRk8xKTQIeRMkqSSiaU03W7O8EM5p2wjDfn8oPp899RIbIH5eUB9b4HBkQZ+aDF/+jrcPMDOPcxEmeZWLLYmFzpsXMIoNwjllmxnfD/Bzh1CZTA4pveGwAroRbi5DF6p0ZB7ZrnPWUIsZYppYxQyARhkWC6xPaAFULCOrVxuG6+gTJDhZw9EkRki9QLokQcWMHLdpyCDFzsXdn76PHOjD7EWozaAe2y/U/GmTirKM7HIBzlNnFWVVQTNdWBdWLRrpdidqAe+CSff3l/G9Zhr2v/pH8uAJKkaUs0QIu788/d1isneYmvPWA7dI10nqmlPWM8WqoTq1Uq2dmJTYgDjDOyRNitB/dgBQ8bo27XUeClLZVELmJLqpyXmvQ71mcELIclQUQBtkGFVVQJVBcxmy6BQAmgAAWLSPvoAIEjQcbIaW9RC+mF9fE/JYZwFhgPEQSnXjQTYpjmWlSFkGvJQ6MkF07ai9gS9ehZ45EDLVZffvHRYUJD0Ucw6HDRA8EsDqV3r2VSfnqimtSepZ9N29DPaU2afPStdv6573tvE/o6j9IoKjMWBAwzB+IiP/7tHloFwskWBYRPBQy02rfLZQpG+I6q+1mwQP9DMMyOEobT+8788PuyaothfJdtTo2pTu4jgA07U0HMZWif1CGtNJ5mGWttZgmHOtVS0EDtSAMm6igU/lSyMpPCG1DmR5HnFlEEV5TpXMktkG8lSNCm4k81tAmNMQK47qs0IVxOaFUJUuy+3EABGlOWMoGrsdH2JVh4brexH1PyNfs1dzITcAiLYWkLPQ2EwaIHhQwHlpkfxwKRzzfAedlBlMA5lCawOpZbamiz79SsJzX7j/u5aAeTrbll7FBulXJ9LB79voMdbgKtYiOWaaSLMXPaNGAgDqduNU7vYOqKYeISBg51JBkmyi/UrJdzQIZaEcqMVRVbhUG0KoFRMI5gcFuek805U7xwJzb4C1ZEaflzAP2Md5VYLO6mF6IrYvR8A0/MtNr6TUR0lFBPJw6yOObQrFsOH4lJejV1oPTv3MI3Px4kCA60HlwVQGNBsDoQAKgpw4YDCiiJyIffEnAmWCLMhAnULsgZUuoetZ9P3ZbeatthqjqtnozMwqvxGjJplIqShh6tpzzRhNEcDsBCqzEJYdlxY+NUSYWgQSqOKOO4UUHsqlr11hlfTNNja2lr6XVVVqKrqEW3nvvvuAwAcOnRo6feHDh3C1772tfyYsiyxf//+4x6Tnv9w67WvfS1msxm+4zu+A6PR6LiQ+6NHH3kdtwewnKXruudploE10vCkhkZv0onll9QrV7/iXbj7U2/LVmFny7rzq3cICLQzQDJyHhgZvWmhKCSotzLih6ny1mJW5BsECKC1AnYWcgMXC8LkGUMMjhRw2y1ooLk0Cw9qWqAohAXYt+JKAz4jjSnaFqw3ddpQzW1ia/jkU52W7UCHqEPB0qokVZpFdgYItAy0AN1Qsb+SbNUKiyaFGaf9XAJXgMzIyJYTWvSkphQ49ca0eGiKOK5gvn4f7rz/lwBIQCeSJQKgzQctN5LosTih+xAgAFcgZDl5OtbZemEXYCaBVlq4Hb7kzQAz7vyz95zSe9hbj8Mq1dfKOSlyxwOElQqxMAiVwWV//b1gA/zOv/vp0/JydhG1wbNdxogB/upP3wFeBUxrFMiQc6kdA1949xtOvlFd97z9Dfju/98dIp8nVTSAwD21SLLgIka2quqGzcjXJiW+gSN1wInpzY9S85kbT4AX4h2d1DbMQKxYck08gYyMcpIKwy4IpjWQEEVpBoqpgClMACf/5V5jSgGg2ihLjBBLFtm/Xu5SfgsKGfRxQXAzC/KSDZMzXKjb95VvCIAVnQAy1Saw/uVGLLJ6bzcOC7AxKO+fiMQfADUaBNl6AYCsQVwp4MeFWDpsLkDTBXhlKEq/6QIpX8BtzAFjEBZlDm2xbUSz5tCOrdhAoAPgklQ65+YoGdsP5PcmAMWEUcw42zSwJdRrRsPgldAQOiYlMcHNCLxYDkg1NdCuGBQTq8N5kxlkBqIOnD5FCspQAIMjhMERYfP5gQwG2rVCwDkiuGlAudkIeAIAzAgDB+dVRqSACFsDP3L5fmpVvYIYVXkloA47VU9ag6BWCsbpfcp3CptsGWQgVgJqkSUAP/IQ0ngGWhbro4UEkfet0BKYQq2yOk+hCe2vMwWupH0SxqkOeheNMlNLhFUHiozqWAs/kqwZ0wKf/n+PH2btrUe+rvvut3e1Qqpp02LOgeCprn3VK9+Fj/zO255Y240TrONqWuDE9ezIysDPJRAdoOBQbQaxL/EOfrVEcWyB6MRuxw8tzLPPxeCbm7JtzQukEEWhEnskn1QTaq4LJbWJ92IhBojqZWurA2V2DgOJwAgg2A5AsTaDHWjarh5NTwsB1DTIdkshSkCyAqrsnKhaFPiBJWEB9y22lCyUGd6png0hi54Pf+fP5FryzntuedjPhq3JzPfyoWk+fzJBpK/IPlk9y3pdO1FNm8kBO+rZyPl4SI6LAGSHn/VGwJq9mvYsWQL8O5B3mt1BiOMKflwiltJ/vvx/lWvSp//NGx/z65lWBs3ZPrVhFBOxvA2VAvosygo/7FS0p1rTfuGWN+AFf/+OrMCIKUeiJbW2IlU105K1VuafsNR1bIEIymAKRQFSurqSc1aF8UAxiSgZQGTE0qBeM5r3h5zzARBMJgxK7WW8gD0Uu9dxC84K3qyA8Qxig1CoTWwDFDN5TChJlePdMY4FIQ67XBezJYqhlFESLcEtALSMwZFWVUNiO2nrCDcLKI7OxM3BaZ9fKcg8X3S9LGv95HvXDSLJ8knX4MlUgBgjda+8LxK1VK1AeO1QpBoqRsRhBX9oKKBXBAwkdywNxkUVTwilKjFsCSbATQOKY3PQXGweXRgjlhZuEhFLg3bFghiotuQ9+qFBqBSMa+TztZrp06wYuKmTelbBHWoCbOPhD4xRHyjhh6TnGTB4kMQasxViUr3fwQ8JxVT2uTwm9WzK/wvjAmHk4CYNaC4EHR6NEEsJjTfMGUChpl0iBIBZPhslt7KzakmpKpgQtIa1u9ezup0T17S919tRz8pJJvX0qdpZnmk3jgRUcbSgutVc1AJhUIIio9xo0Y4d2lWx8rQN41O/8divZ3vr7Fxnk53xP//n/xyXX3750u/e8Y53PGqHqZ2h88x83O92rlN5TFrvf//7H9V+nWztASxn0br20nfkgQcB8rMG3gkYQMfbgem6+1OPPFz68Vppn9PgHEBuSlJwGGdggtCsWfiBeMiGAmhXSNg4DbIND1YMyolkpBSTiFgSZucVsOsOo/sWMK2yEIYFsDKUgV0Kp+wHtQMKaCiLrZGA+6W/E4llQgJcNHgYVlkRGtprZ03XsFoBRTg3cLKdSLaTxGphT/39AHQIustF4UR5LYFBtNw898GWvHTz/eyWO//kZly3/3/Hncf+b2lmUyPt/TJLMjWM3Buo9QcMgFRrMWXS9BiRSXWzAyjKdhshSlFKcelvh5/907mhTQOYvfX4rOue97Z8PrIxgEqvUwgoFzI4MGqP1A5liPSy19yGz/zr0zeUTNkOSRGS/Jvbce9vCoQ8//V34PPvf/iG9PmvvwOuBjgz6jjbYEX1qCZVOVAScEV5HbbIQe5RwywZysBLp64O9qMqWbINFQM2gR/6v7AeEcYBVEQABJ5amJbQjiPMwkjTw4CbCYATSoJfi2iZUG4Cbib7045lfyg3mwSrYICoeQhxzDDbQkEM4wC3WmM0lOtd3To07QhAAq6AUIqXtfHA4Aiwcq/H/KBVz2sSduG0lXNCQQWEqAxIBs0bxFEJWAv70DbivrGw1CyBqwJhVMCvFkCQ88hAmFekHswABKQOFjwoYKcNBrM2Xy+pHSC6CqYhxJLQjuVY2xrZa5yifk6ma+TtDKi2GFZty8rNRo9xiXbF6vHjDFTVawYUgXJTP2x0AFW5zSi3I+p9ThrYoy1sHUAhIqyPcOyvDOGHer44oNwA7EIaPNtwF2ZvxMoh+Z2zkWslBcDUQe4npZZrBvm6GCsDD0gGUmIwajMYC4swludEK41yVISNDAkzMNl6pfuWZlxER1mtQwxQG2GbCLsQJjqFqIw+iB2QAjmJNZjUpjCEqy6/GWzN2WOT42PORIvjCmFUiCVGG/Nn50f2pODKlVfLsHfPzvLE65oX35Rz69Crc7IFiK7dSEEf+Z2zt54FdtS0wO71LCCA69gilpIl4Af6OLZw8whuZcDXrK6g3PSw8wg2hMVBh3rfQRTzCFOvC9gymYkyxTm5nzRtV1eltYtChfq/S4SiXRZz7JQs6XFJOdN7jwA667H0mt7n/5EhkLFAXcLvG2mgsGSLSehYun6HpXqWAi/X5mkf9PGHL3mzDDrT4MsImN2vZz/20Z/BtS94Rxdun2rayFKbppr2VOpZ4MQ1rRyE4+vZ2LMiTl6VUY+V96J+IsKdX7l9189gb525de0Lb9ChNCGOhPhhWieK4TZmNbatGWyE6MdWLbl2UY08kpUHX8yqlCb4ERSo6NtBd/+rNhgv/8HbTgnkf+H/fruoetPXPCmgA6vVKACQ1hzymJhy+BRcSYHoUPW2qEI6FQqTKHpF2amMeK0NjKpuXUFYDAzadQE53EK+AvU6iWpkLtcit4i5hhJQSexzhw9JTcnWIAys5mMA1SYJQEUyyI8W2eqzmIqdkx8a1GuExbkKsFiW2rCQGtCPgOH9AuSM7m9RPDABnEEYV2JdVRhYrWfFAjwKkOJcd10qCvndfCHuIr2AczjJwOKBkopquVYvOWUA3eMBuV5utHpdM7CBUTqDMBSAg1uCXUhzYRcRlgWkC6rSaFaNWg8Tik2j19MI8+AxDKYLhH1jNAcqqelZwLK4atGuyLldbqTzkzIg4RaM+blSz47ubSRLD4DfN8Kx7xyiXekua+zEvi7Zg6UMRiEhJWs407N+h9SOKS9kKAyzZGkbRtIPkAvg6EDeK2mVAWeXMkZSvckRkrsSgb6FWSytOqIs17Pp+7hbTXuyejbNesCMay99B+KoeMItS9lKX5jukXFUIY6KTDQwtUehBAdf0QnBlb16dm+d7vXDP/zDuOOOO5Z+90jVKwBw/vnnAxCVygUXXJB//8ADD2RVy/nnn4+maXDs2LElFcsDDzyAl73sZaf0Oj/yIz9ySo+75ZZb8A/+wT/Avn37HvaxewDLWbCufdGN0gTYXqGOXrDmd70FIEJz3soTtYunZXHhpCjRm2MGF5SxYMjDTg1MU4BHUgDEEmgKwFQyIHJzKRKZgFBalJMIN4ugqYAzi/0Ws/PVR30eYbxIU6v7WTyoB5UU0otWGCm5mSMQbO+m2rNDICPflFREKeDFapHESTK7w5aFfMzNYCrs2RCYTQ43BjMY8rfMGOyvtD9B2Rn9BjCi80dN7G0DIOW4AMuP584jf+lzeeZTxLrD9pQzO5vNVGikfdq5/X6TCpadM6TASa+g3LlNQBtdVcD07chSY09GGIDYA1oeryXgH6uvsEUYyK3ClFYaqroFamSgxY8s/FDO3Ze89nb83q9d/5hePwc6KtMuqiqEgqi6g6oRAGHvAcDz3ig387/243d0VgNC3gMbsQp73k/dIfbzVmwCJFtEX8cB5AgxWSRoA5htG0gBliqBp/p3ktdIA3FAfo/eV1mC5uV/3TGGKFYcoxy18I1FJIvoGFxEcCsbDkMNipyRNueMuBbgj1qU2wxuCDSQBpJHQBgw3JQ6YIqE+ec9wcwN3BxYDAgH1qY4urkC85UhmnM9yvPnqO1Awuy9SP5NI4366jcDiq1Wrouan+KmAaZWBpUrwAMjqoDtOTAogcLBbNeI4wpxdSRNQFJUOANqI9zE5+tAHBad5N1ZYW4rkE2AsNXSQItIGFpbAW5OWBywaIeEMJJ7hpsB1WbKcBFWqJsLe9LWgFtEuO1W7g8bc8S1AcJAmpKojaCt5fnlVGwqAOTwWQCaJQMUEw+nwZjC8LQwnlAfKBEGsh9JrWJrAWRiIU0xBYYfGPgRoXgwoNhu5L4YGW5jATNv4feNEIYF/NDCLYKeq6TnH0kjbuQYmsKA2GVAhUnsQlJYL1tCNLaz03CmyyXRBjSx7WNBeu4w3ELuXeKPLl8MijJkEVal3vP03kmq7IylMAfToOSqK96Nj3789NoJnvLSrId8z3UGfqzNqJdhUSxMHgC98m+894SKvJRHkhrT/u//sq8ErOQqgUgu2kxZUZDyV/zB0RO2n6djceHEqmS3enbh4YzRMGkCj0y2yRGGt3ynikmAHxm0a8Kmd7PuO94ODXjFgO0+APtQHlkIazVG0MZE6rVBJSqT+ULUKoBktBCJsmUHoYVjzIqXDnghUb8kMhegtWcLBIiiBQLCLK0+cBMj0LbKLmZgHuFaj7gylGt7VlzLdYJCyIOh/v5lVchOsCOFGfceS3EXIhIRrr30HaJiP1FN+3D1bP/3u9W0PR//vIIOApeOd5RzPy3d1uGnv14Ic19dHkDsrTO4guaKGYNYibLMNvKZGQaMZpyxM3AA/NCgHfVkHo9hpXug5G10xBe34M7qqqCc+/eHvyg17Ut/6DYAwCt+4H1ZPQ3Iff1Tv/lGvOjv3Z7v3xQZxSxmpUk/d4ECw3nOagWxIOudvgng0fzBBPIY09U7Nmiwe8M5UzA6gnWEqCoL20S4BcGPpUa2iw5ckrwTVbYosYkVyPED6U2ZALMIYCfHql1zaEeEaivC1DGr1okEsAml1HJ2ERCqAu0qwc2A8beA6VMI80Pdaw8fEEJMMYkoj8xB0xl4PIKZt1K7N1aUCn1HhdaLPaI1UpN6L9//QbX8fU8ALLNYlAOi+u+7OKSMq7QULO7mPgLq2O05gCFiWYqjx9Cg2PKyzz4ijEssDgxBLMRTKqA2lEZeY74AigJxfSRqkaEVIE9VVNHJDKXakJdNQAigf6uj2Odq1ku7WsA2EfNzStTrwOCY9EdhQOBGatpiKsomYqAdCZnAPMAYPLhA0Fxat12D6hZhdQgYgh+LJatdqEonipoxrBQwTbIhExYbJYArna6qRoYlwGj+V4yIpUMc2BzmHl2y+doBrkSGMea4mtZYc1w9S0Ey+hJwk51KdHeufeENT1y2oNYXiBE8KIUsZKkjYJWaB9dEOJgT1rR79exfkLU7d+YJWWVZnpbQ+Isuugjnn38+7r77blx66aUAxH7sk5/8JG69VRTvL3jBC1AUBe6++2685jWvAQDce++9+OM//mO85z2nVzV888034zWvec0pASzEfAI601/StbW1hfX1dWxubp6WkyOtq658N8xC2KUJCX8k1hl/UdZ13/32LizNR3zoD2/MOTJsTPYkbVcd5gct5udq/kIrvvspMI1CYqkAxQQYPRhRbbQojspQLg4KYVE0QZhyrTRzVDfSjCbWXc8Ka6l5TM2YNR2rryyB0RBxbZgtXEzTfZ4IEkQHFukmzVugsAijUopcfZ0cVFw5KbQjZEi9InY5di5NZnqcSGB76pXc+KWqCNLk9y04kq8wRyn8rAEKCTROwF1ahy95swTIJeZ5GnKGKIqe2LtE7LRD6GdypH97AZ8ApCC1Nit+8hAibSM11f3XCH0mYG+76WdrceeX3nui02xvPYp13fN/tgcaqnrFEvy40JwLwu/+1jID5toXvAMwBn6lRH2g0Kara/h+7/85NebfK37gfbk4SEwnIAEchGa1uw6ARLEBqGOUAUwtA3S3ELaeWzCKSci2Ac26RTuS84eChHm6mSjgTGCEyqAdy4u6hQYc9rIYUhMbKkK9TjmjJX1/2fZUJOo3nfye07/GiwoiWTSEUprcMOoBLxFozvMo9tfgr4xRbAPtiuyDmwH1X50j1BaYWQzvtXCzzke7PiCbMC0yMJV9pwE0+yNAQHnM5L+t/TkwetCDGNh6uoObM4ZHYm6uYAimjjBthJ23uanJQeFRMqLSoMwsGtDWVL7PZSGWCek6UTfdtSGB0tYKcJIHk0lhqAzCVq/VwwF4ZYg4rBAHAviJtYMAPTDA7LwC00MG9QEgjBjUSsNnWsCPGbFgDB4wGN0v4Fq5HTC4fw57ZAI+tgFaXUH79HNQ7y+yosRN1Is73TcMCYvRWXDpEMYVFocGMHXE8FvbYl/ADK5KxHElTLrKCZDhBIQpHpqCjmzK9XjfqgDzG1vAeITmKfvQrjlUD9UII8lqCAOLxQGxXRBLjA4AtHXMeS1pkBEqo7lERkEiUcpURxuxGSIdolgSm7HEBLSU/yeMUmnE07mbbDrZKBCRmOcsf3OzoICLgfExX+tDaXKTFwsBhPzQwA8p5yO9+EdvV3YqHjM4e6J1zYtvkkGKl/spNPCUnXien1UqG12PtR49U/UsIKxHU0veED8C24y/aOvaF7wDbEWZ/KHfv+G4epYHDmHgck3brBPKTUa1GbMi2y6iDHTHBs2qweBoRLXhUWzVMAsFTawAsskGBjGIwiQxpFu/lNNCxkj24M56rDfko0ElqpgExLTtEjs4K0kArdn98t/7Kyvttd50DlyVMpRyTgkIqe6LnTVYX3FjTHcv6AMiRFKLht5zStnvZCuXP48X3iD1fs8C8YQ17Ynq2f5x2q2mrard69m0f0GVL/0V4u71Mglos0ceOv3rmpfclFnsSa3phzZbcu6mDrn6Fe8CmBFGDov9Rde3MR6Rvc5LXns7kh0Rm27ACwig4GqxI2WrygIndV4opPZIhB4mwvBoQLEdYHxEqCzasYEfSa8pBIiI6kgDU3tl7hNiYSXLQ90hYmkkN62J+ZyNpe3UEulr2GP6t2MBmNyMEUvKhKKUq+EWEcVmC9PKwDmWYl3KSaHIwPwci8U+wtrXA4pJECILA6aOmJ1fYHauKGPKbcbKt1oUW40Gths0+0rJxgtS40hWnhAiWJUbIEKx7UXNWxlUmx527hEri2bNYfz1Kahud79u9a5xrASMlAVFTZBrRdMuf7CJ+JeuUTtr2j6o3Xec6P+cwO1Ce+N0zUxAfdOChyXC2hDN/hLt0MAERjsyuc5rVgmLg9JTVBtyLlUbHoOvHEH8xrdAVQVaXwNWRgjrQ1HoaH4tzRt5b8n+XO8BXFoc++6DCCWw+s0W5UMzOXdGBfyK1MUUGH5kMhgHBgZHGhQPbCMOSnBhYR/cAAYV6gvXEUuD8tgC7XoljgdECCOLxT6LWCS1FWeXgGIS4BYhX1ujE9DDj60o3QMEzFuoLVrOc2HpJVJujoJicVAijks06wVgCG7qxdp6IMr0PmksKcgpIitbums8xD6u8aK0V3IZrNznm3PGuX581SvfhTB0AAMf//Dpy3LauZZqWuCsr2eBM1uT/mVdH/vYx3D4f/3/4tl//wkir+1YX/zFm/A7H/ptvPSlLz2lx08mE3zpS18CAFx66aW4/fbbccUVV+DAgQN4+tOfjltvvRXvfve78au/+qu4+OKLcfPNN+MTn/gE7rnnHqyurgIAfuInfgL/8T/+R3zwgx/EgQMH8MY3vhFHjhzB5z73OdhebtRjXaurq/j85z+PZz3rWQ/72D0FyxlcKeDqqivevRRySSHgQ5+98Qncsydu3fVHN+HqV7xLBpPZDsVkJQbFKKH2jlBtEqKzaNZliOhmIm+mKEPU+TkGYZBC71IRA5Bv4WZNzi7JmSUhdo1ZYp60rTRChkDRgJsmF0jknLBWlA2YPFmpbkEknvfUeLFuYWHK+dUS9X6V135rJgXswIn/qHqQcs9fPxbyFWRLaFesFBpeGRPJukVTBRlmWSGTizWAYbvQNw3l6xrXKM2mswAZXPe8t4EHpWQd1C0wqvL+pM8DUNbIEsOGuwJ1B6PkuOY9mWjv/LtBtrteAlX6QFD/8T2LEek4WN7H3jr9S49zLC1iYWU4bGUgGnqWLgBwxTW3SoF6aAzbRs1rQA8kAR6O+veyv3VbBz5orQ493aMGq4Ol+K42eSkTwjQCdiRwQRpNZKsvitCGWv41DaNgZFVHUrik5tcPDPxAfYP13Esh18KuQrZ5sjXAA2UhKoDCkL+3K/JcW4vntWkJbq5MvgAMjokFRSwlRN14gm+7955AkvaBIaqFbLvckucvzgVWV+eYuRJNrEDBZiXP+H7G8AgwPY/gVzQUlQSENl6eb1qDdhXwQ4ZtCOtfYqx9tYEfi6LhwJ/W+XN0E7Hiihpwmh0IUyBx+k4SybUFEHVKGqD1lWhNg+x1H1muAcnX31lQa7thVH+ABnR+1sMB4rACLKnqKAI+Hdco5ytJcLZpAbNNsHM5nvX5Xj6gQUQdChifzh0j7MW6Aa2ugFdH8EMrjWgTVUHFWRWY9y82QEugBcEtWgx9RH3OAPX5Kyg2C5iZZHvYyQJoPWzhZNBKJGH105k01lUFuu8hxMlUVIfew5y7inqtgq+GqDa8WHRFxvAB+TyaNYdm1QIk/ucS1CrfGVFhiE0YFwblBrA4pxDGHgPN/lLs2AJ3ypa2+9KmeQF5hkM3vDFtepy8Dgpl45KG3SuDlNqojR3BFxZOiQJ2Iew/P7TwIxkM+UoCcl/wY3fIawT9nu2YSZ7O9eHPvh3XvPTnpN4g1nMGMtSwAoCdyVDSMx14+nislI2SmI4CLlM3wP5LuOKwVEa6khJ21LNYeFgg17SSn0QY3yuqQDtrgBBgzlmBaSxszWoXqLVeCKDa520iMqAe/mDWvBQWJXXovkDZ2itdc/WaSsaIwiXVWD6I4iTEziasv6oCvCqMBjq60Q0Es3WY1m0aFI6iAA8KxFEpyleiHL4sloPcDRIBZdzK75N1HwDZVrL0quvjcntSNuDhS94MrkRVQo0HaQgxme6c3LWmPVk9m14D3XFbqmlPVM/uHOBmZnvv+9HPrQLkeO4EY/bW6VkRgCNwIZZTTIAfmBz0ntbl192aCRt0sIRR686kxKSeCvRk68U/cnuuC4l6r8EMt5BfGs+otrTP85JdElNLQ0LeMQGaIScB5Nk6NNl2RrEaNapUcZMggIAOgtkahJGVDI2ZfP9J8yZM3ea8KKodzCLAlRahSsx/ZIIUMTA9JIBUKJXoM9eaQN0h3LSFmSwAAGF1qIHsVm27pDgeHmG4WgiIqV6oD5SYXCg9um0VuGmi5HXUHnaygKssvHUCqFAHMts6gmYRTt9nGMj3e3TfAna7QRyXsPOA8UYNM627DBRnM5CSFgUGxwjD3VB/KVulv6h33dD5Qv59uqb2QdpE4NxpLdgHV9LjEsERUOIhg5oAN/GSw1gH8HkVtp5pEUrJSmz2CzAfC1KgBaK4cS7nwcRhIddFW+r+RLkGtV5IT87Kv0UBmgP7/rTE7CkjzTdckfvR3MMugswlAsNNTQ6DN02AmbeIKwOEoYP7k6/J+2pa4MJ1bF5UwF7oMHowiO2efj8GR6Uub1cs2rGQocqtKCptALbW+pEFECm3WoShzd9jEODXKpjGySwmqEtJsjf3BAQH03qYRQM7KTQbl+V4xAguHdr9Q/ixk49Fz+lkFRtLiziQ/MJiqsBKGzK4woUDCos4LBAqg+/9m+8V4p6hXIefydWvacXWTH7/eNSzwF+MmnZvPfHr93//93HFFVfk/77+eiHZ/ciP/Ag++MEP4k1vehPm8zle97rX4dixY/ie7/kefPjDH87gCgDccccdcM7hNa95DebzOa666ip88IMfPK3gyiNdewDLGVh9md1VV75bbpqBcfdnnli/xrNl3f2pt+Gqy28GnDbsXxBFxXXPF0UPNR52blDo1NU2yiyfa+PZRLh5gG0LLPYZtQISpgFXwoZmitl/NjVyufAxaTJqgGAAE48vlgBpNtl0Q75FDTQCrthUHKk0FUSIwwK2Dqg2gVAYTJ4xRrMiA8FyO6KYqOUYIwfX5aI+MKxamgHIhYAUc0lVkphU6tmbMjKIQBTFDSlGafjcjq92ys1QKwdaNCCIDd01L74JZiGsobRt6heK/SwWcAd6pJWKy1R8RiB3ncpyl+PNQOw1tP3np/3tF7C9zyLbR6TfmR2F7956zOuu//ZOXHnVLVo4S5MVy/Q5QMPgZRkfEdlgcY5ah7UyHGVVr9hGrARe+rdvE/ULA5/9Z8cz003bARjJ1oA0BCSF0FMUVhOMNJ/EgK+s2GURYBoBIlJYPcDwIDDpoDwq+15nyZI5IUzBNDdvVjUUtGGkC0FmLhKpx7AAvNHJayS1TizlZY3mqnDJ8GMJrC82gOqYyOjBopwwnvM8RQI6KavyyAODex3KzU6hRz6xvIBj963CzMWCSqwf9DFRAkKbsctqF0DUL2zEC7uYAOW2sCf9WPbZ1rIj7ERh0I4l7Ns0HmZjCtq/glg5UBDLm2xj2Gc3a+YHw3Wgb7JECFGUf4A0mU2rKpXQNXrWdo2pD92QT1nQcDY3NggACgujioswdIhOBgOmYQyOyvUwVAKEUQTK/Qv4xiIsHGLBmD6VMf6GQXTA9KI10DOERRULUl9yUWOYWoKoQSRWQEn1mKwh1G/fNg1G9wbwgTU054xhnYXdmsv+LmpgUcscPzHNqxKYLxAfPJK/BzQewX/HhYiFgVswqo0WbrsB1QE8cCAfYR7ahLnwAEDi7TH6xgS08OBRCTNZIA5KQIPtzcYCzbkjFJOAep/F/ICF8Zz9ykHUA5FECWOamG+B3EbYhVEQJfbIEITIwvxLLEK7EFYkOyOWPSyDlVAZFNOQ73NcqO2YQQ7CNXpu2lotTU6OyT72xTKUZYZc49Ry6Ewz/VJN2K8NnyyN6ateuax47b+Hszn77/FauZ7FCerZGIEdNW3U4RTFKCSd7SnKwHDDAhQY7f6hbJygdWZQBUmQ644Sc45jV6e1mzFBAjaSRRgAXtRSN1qbh32cEQOACicAz3Qmzz1nH+KwAsUIc3TSAenOCkBTOFHuAXmYnAFcp4PNpMhOYEWEqFzS1cfoG48QAL5pj7feAjoyDpBtee784q245iU3Sb3coMv9OWFNe4J6Fjh5TZtVNrvUs2nf0rEh6h6XVt/uN2VA7q3Tvj782bfj8sPvyQx1qd0AECH06lkuxLLUGLGZFpIO5/q0mAYwKSnISD12omwU20J6/oiOMKCgifFRXqdlmDbALALi0OUMtVgazM4rMDjiQVpnAsgEB0CIEagjKFJWr9q5DowLCy5EsdMOjdg2RQYpIBIdwRgDBPm+kGY0cYxZ3cqOMiGUC7HqbgYQIGQTKKastlJSO1AbgLpVtXMrx9LLgBcEVd94RB0Am0YG2G4eMb7P5HD7VGNIHSCvb+ft0vcmllZ7ZS9ZcyzD/lg5+JHTzy1mJU+aC5D3AigMKrmmMWVbKUQWK0FmISkmW8G+VWI+UbirZ/M1IC7/d3qoTy4S3fVK6toe+ShlkO5wZ4AVkN7Ma814NUokIswPMfw5HhwI1BBCxZgdIrg5wU1aYGUE2r+KsDpAfVDyV4rtoFkuBrS9Dd6eaM5MABqdJbQtyFqYhzax8uAG4v41zJ+2glhKDqJpI8zWQtTc6XrVNKLEXh3BbNagrxyT97i2iulzzpX7HESdZFqGm3nYrRrtgaFY/H57E/VT94FdAdMC429MgRhhJnUGzdkS3JZH2DeEnUs92a461PsL2HlEMYFaYQK2DSAiINTyuTRN7kVoUYta06syKQSQtSh8BPEYobJwMy+2x16+S0LOhai3FqS9gBUyGSA1txFFd7tqlZDUqcnhH4fruta0j2c9Cxxf0z5Z6tm/0OtJWkZcfvnlOJmZFhHhhhtuwA033HDCxwwGA/z8z/88fv7nf/4M7OGjW3sAyyNYV159S24GTrTSRWbvYnPy9dFPvBVXXSFBoVdd+W589GNvwV2f/7muKfUBppWQ54EOgUzLsHWAnbXC2tlcoNgawo9tDnszvhCZaIhS+CWVifpkZ2WHs6JeaVpRrSQrm4R2Ji/r1meGHikIwLO5KFkGAym2QpTnGyPy7RWH+UENViPAD4HouqI9sYNMAKBFtV1E2DbJPCnfNCXEWyXLqYBjFhai7TVwLctwzSP7ZWegIqdvKzCjdhYgwnXPfRuoF57MkZafC8jzU0G1sxntr/7vE6OVdEIeCQhRCtm0drKB+q+bh658/LaJAGv22BOncb3qle+S87NQebERICKUAlL0/Q0u+773oFwEGGcQChluWyPNZFQxl5lDbbBIgIwdheZL//Ztqjbowi4FpGEAEdFZtJUoUNycYbzJdlwpjyUpSsiorzOAYgpAA+pjAVAUcEQUGDpgAtRnF4hBbaRCstpKjEFkn+nEuOqCNeW1ZChM3Wt5yUnxBojDiGLLoNgWAMjNVX2XsjCMADy+IlFcNKqqaQkpy0VC7eW9gASooSiNiB8AzaoAJsMHZBBQr1sUM8ZgQ15DLCcoW04UEwaOSbOw2E9wc2HIGQNECDMMBFEeBM4gCIUIWvgc/smqIBM1HXcqwSBh7DQadt9dldBLE6lDp4hl25kEnjKD1RqMEUFGAjDhxe7FRL0ml6IICaMCMQHUEUuM1DAEmnVVs3xhBcMFsDjICGsBZmbh5vK4Zk0Y424hahA3bWVYsRAVCmuYKJwBNhedB7ezyIq6dE0+solq0Qp7e1CCKgY5I3YMdaNWiTJM49ZLgzccIuUouD/7JlBVKL+MzhqtLMGrY/ELn0zh/rzGygNjDZQO8rhvi1rTjIbg9VVgVKI+NAaTvL9ixoiOs5UI6XAk57IkpacCKaYNYm+Q/gYB4PLzGlEPUSugDC18HmQaks8i5dmYYEBtOh8pf2+JBYz1DjCDFL7LS0rfM7Z0YEqI2av7TK90n9qtGb3yqltyQ7zz76/+G7ef0f3a6bmdVlJvffQTbwVw9ofOP9HrpPVsUo6kmrYxsNBh07EZcHRDNrKoYQZyIyvnDfzBFfgVDeNWwo2p225ApGA0ABlq+c4qZalmS+d3yhIxJOoWUhuxEMAhLOe19JcxQFkirg7AWiu2qwNUM0nLTrai6bFx6HIwMhQIpySzM5J/lAa7okjt5RBmQCJ2JBpnAW+695Zq2p0KE2Zc/fJ3wm0tlq27dvy8tE5Wz6a/p9WvaRVU2bWeTT/3c1pMImr57vF9kMWapevA3nrs68qrb5F7VmEQSyHnhBI55D2t7/2b74UJ8n0MQ4dQaq8WJLcilb5GM0iEMHT8OfPiH5Vr9VKmHwNgRhgY1KXUwYOjLKz6NoqVdIzAWLMmPGNw1IMiY65OCOV2BJJlawRMkII5WUubVogJXIgKJVZqDRYYaCBf+UReitoDlj3Lvt53QEgkAJQoBR0whxFQbAHFTHJQogXICEEplg5GQdV0HTA+giOJehXIg2ohBcl7KY8tUGxJH0tRhtSxECDBTCXc3CTyhrWAkl+gBCCpR0XxYaY17Kzs7MABkCXQvBWANn1eIeSak4Du933gNV0n+s4VsXf9SN/zpayqHtDS325/20SA1dcgfzxAk+0VbXbRgOaE+LFDuyJKovG3CM12AdNIjRsrRnUEGByJMG2APzBGIpKNvrYlx2O+6MB4a2V2AYC3trvPPmVw6bXNPLSBcd0iDgvEgdyHeCj/UozAdC7HpiwF0J7N5TVWVxDXRxj/wTeBlRFWv8Byv2q9KNFXhnDTRpRF0xmqL85RfXPY3dMmUzlVRkNgZQxUDnG1EgDQCHBXHW3gx04IPtNGvztRMn5DlDo72aZ7L19GYwC/6M4D/RvVDeyWA40KqYFrPV8MgAYwhYEJYgfJlsDDIqtUxY7PaN8IsfGtrVxPJu0ZV7DkpSTux6ueBZZr2qV6tvffuxGKznRNu7f21tmy9gCWE6xX/43b4dxg9z/GkyPEe0PfU1sf/fhbjrs43/X5n8M1L75JbqTaSDGJyIQdoR4VoDUHNxfWjp17YXa4En5ImJ9TopgGlSFLA2m0UKHW6zRWC6eiAIwG3be+Y5zstqyRaZ1VyzDPyLY3LAUEDQoJl44MCg6xIEwPWSkWmFGvm8z+adY0w8UrS6rUBpQoe9GjjTlkDRFIvtUy9IogqG+uScCJhP8tvQPbKwiZO5sJSDEcR6XY5BBlBcuSZUKyRTDomtvUVPZtFXYqTtJxSUUpa8MfqQNQUrGaGub+se+rWqIWSXkoS3s2Yad5sSGYxsP6TtEQSgMKfHwonrKSjI8o5hI0KQ2SACqi6tDBrAHAwOf+r0698rK/dRtcLSwfapNHte6HZkAA0KBtYfuGSs6NYiKPlyZZ8lXAHVOQPLKNoHzxkuWCAppITWYCU2To6+YMN9dGI3SWDKk8jk72pQu2JxhO3xcBQsW2ASAmuIlFudnbF0CHSd3xjoUoTGwNlBMBdcpJFPl/RUgBvqZNzxEghjxQ1hDwaSaqGAoMN+9eyw/l2lBMGIVeEVwt3/0YCKUzwhoMAaaVbJDFuQOxXmjl+87rKzKcanw32Iuxu4akAZM2oBQiuNRhW7pu6eNyY9sfPCUWdtsbOvVDQXue+Ok18yBPLRdNYEQyWOw3mF5AmF/AiEUAVj2qcQP7uVVc8JkFHvhrAwyOEMy3HVbuFQVkudGKFYBXRd+ixwZv5f2S93KtGg6A0TCD8qgbcNvKYJML+Zv3wGQK2oqw6do3HIDXV0BlASwaIAb4p54Digdgv300q1j4vgclD6HfvA8qwDnQkWPg2RzcejDmwMaWAP5FIftQlrJ9J8B5KCXANwwN3FxAhHISYecRbtY71mkVRsPuSfzPvWTuUBCLOC6MKHsgoIpdhG5YwiwDViTArVOpMMk1xOXPUJi/0UHuZyyHLlSiqrLNsk/9GVm9IWiyDUogwuOxdqsNd6slTwR8PNp10no27ccJ6tY9cOXU1onqWQDLNS1kQBlLg/b8NRQAMJmqbYvWmHUN92AE8apa9xQCehmAWiPXCRdAbSvXBfZdbYoEbkdwZPQEKbKCDEdBRliDGXgJvW1AhntBXkMGuS3gHNoL90nOk6ptACCMS8TKCnnId0ApRVVpkxIJ2giKATlPUIetBAjIYnogiLVa18q9RY6N7HfO6UtLB6F2a66qSQtodk0G9vs1reGT17Npm/1/gWVA5kT1bJ/YtFtNa3jZwlcBrL11ehcTwbZB7ETJISrx7DjlSRp8k/RuTmewpmWtSwmLA0kdITXgp/9Nl8XyktfeLux8/e9UO0bq7LZCCdTrBGKS/JWFBTGw+qUpTN2K4qISlWzOQRsIoBCtDHk5MuA66y6wfs8Mq61W0EynVJ8RTAo314wUAJo9Zjsrw6h1lSEh08QogKaTunlwLKLaUkJO7H+3u5fKrg+2s8Q2dYBVq26urLSQjrq6kLrtIIq1qWkjyAeQDsCp8fKdLwFEEjJHrj97/WoEkKzPWiF8mDRwT9+1stTvZMwEyqVzIF2PogGM2vYRyc8IyI7XO8G1nYBL335xqQfmbNtIO/8GLF3P4koFvz7AxncM4IdiD9zsj9j/3wmH/ssEW88aYXbIYPAgMNgAVr9Wwy48zLEJTAjgzW0hjpYlUJWiVGzbLt/QOZjhEFRVObeLFYgiY7p6dmsCcyzApP0cDsGrQ0TnhDykNfP86evgYj+GX90Af+3boO0JMB7J9a8VUhKvDMHOSS+xPQM2txFnM7VM1PMvkUOdKCcxX4DsqCM7EVAcW4CdQXEsSObjXG3dY+zUQLaQz61tu8+jr0hMYBIAFE76oFn6Apvcg7ISDqMFqDSI3sHUAv6FcSGqoDYiFgamLVCvi/UwzWJHgD3TK51bT0A9CxxfN56ojjzdNe3e2ltn+9oDWE62HgZI2VuPfe12MebCIIxcDjdrVjsWQDsm2AVj1DJYA3rFYohRbURsP7VAs0ootxmDI4CLrdyYrQIQCyB5/3NhQRtbwibOL66DvGQPZG1my3GytEkMwaaRRjUVA8ygOqBYeJhG/acBtCNhE9XrIrceHOPsuctqexQLA0fIqhY2ApbkZQDEbviclsi7qQvstcLcycWg/p5C6ILQnIavWikkoilhtxdL4Iu8plKN05i5D6Ykm5z+Y4GOLbnTAiw/X39OtmHqiSsM6F6xuVM9kxpqp7Jh050Te+uxr1SUXfvCG2DqgLs/fmI7w0/+h5/GFdfeinasSoagQ9KhNJKxRA5XJ4+sFnjxj9wuH/9QckmM+swn//VYGPiRBRsZuKZtswVilFDQMKBO8RJUeu6BUMjjxBaKNWheG2SZ3khDFllmOJERCoOonsASlilAi9iUIedfxILQrEizbHUGL89XJZqXr5ut9fW3ZZBMXh5nW6gtoNgjRCv2TOW2XN/akViUlVuMdr/JXtcpV8a0Al4BArBUG5I75RYM20SYRgfGrgO1bC1NdbKWoAjYuVznkjohOsL8qStws4DywRlsrSxKVj9/wzJsr1tpkhYqu08NWQjCerM2gyXUWrmGZm9pGfRlVhmgAKnrVIMJgIFcb1MTyiw2GDBGXpsMYCoBeRCBUYF2xWLrGRb1fvn8iy0CkwVvWbTDEuUcag8CjL/NWPvKHG5zATYGZlYDm1vguskqktx4qdqR5zpt2Z7k3AJK1pBDGVjHI0dBkwp0YB94vgBVOixTO4IUiolxBS7V7mtagzc2l5pdlPohj4bgQQHamADzCXi+kHtU8vEnAbB4UcvvjJFmNkRgvoB7iEFxDHogYH7hGADDzSTbLA0zllSNGZSzCOcNUGwre1QVKhxFiQNAg+67oUwsDFAIKMkwGQCj0Ck15aRjmMii1GoNiA2ICZ/7wBvytSHq8Oh7/5f34Xd/69TDhB/J4mQFQgzQ2Qce7FS2/Md/dz3W1288Y6+xt07vOtGx3a2mDZUQGJr1gxjcNwK1MjDCfCHXoUUNMy0BLhFGBcLAwEGrMRYLyg6M0Gtriy57Jb94xFIOSCYGRSBIrUuqaiFgaShEeq1B3WT1XnHfFtywRBw4cEmSv5CBI62zdQDctzaSoG/qXAD7ymX0alnDAq5YAlsBb00IAuYnclQfvLBWcg0VwOeqlwm0cxiaalq9DuT92FnP9vdtt5o2b/v4elZIUnTimlZz4ZbqWWdxMmeEvfXIVwqXvvpl74RpIz71m7uHTf/ub70Rl/1/3oN27CSPTutHsZ0ltEMCVCUtdaU8L+WtoESuNykiK0ONZ4TSZOtRMFBuik1XKIG1r9WSS+QMEIF2rYCbeJhWQsSHR0K3nYI0l0XOIbuISJkq8p0SG2kh5BnJgxo4qTXrkJUqoi51olZmVnU6dEAchTQUOIMsdhEw/nbMpCQYEqWJqkmK7QZmXsugnUiY+waIlRNypCrcESHKFCYh8KRlSJR9swa7EvxSvQUgkQDT9yTZe2WVWqu9udaVNJ9JDQboUF2vH953dWzsvvdZDZjA0qzo6M8HErgaO8JQWok8pHZb+XfpMX1yIzMQtMdJdTAgQMSwxOzpq9myOAxI1esyR6AEHDNw7h/XqL52DJjOgBjBdSP1Ygh6TY/gupaZQgj5HkCAgBupPleAw4xGUs/OhqCD+8Gb21LnJivfpgFtBtBoiFgV4BUnFrYRKI7UwDfvF1LQ+ip4dQQYA39oVQCRIzOpuVsv9bTmiEn9GUBMiK0HWQtyTuryugHVNcxcVfHGglflZzOp5V6ZzpkEsiTVUVHIuaDKmCVL4nQP0fODFi3IBjlfSyf/ZgCQ1S4biI2BacTuNlvjGgMy8l36/f9byIiX/fX35hyUy77vPfjkb79p12vP6Vjcu5edzfUsICDLmahp95asvovD3joz63u/93sxHA5P6bF7AMsJ1n/8d9djbW3tid6Nv3TryqtvQThQIZTC4GEjNjphIFZbbIDCEvxI/DGjI7XyAUZbDQYbFpOnGLWNERm0m0iCHhcWVDrQXJhwYaWCW10B+iyK3Hy23c/ZagF6Y9aHhCBs5taDykIKPGUTGPWEtnPxwW1WDPwQcEwIJaHairlYblYJ3hgdlEqzGxlAob68gFoRERBMl8HSY0hEZY6LvZgTJlNm0ei+KzODNbMgs8wT+6EqumLFmU4+3l+5oPQ6ReflIjOtFHoKdA1qn+mntmvZXiIowyQV99qkAsBd/0M8zQ8/R0AAttQNcPfWaV0f+v0bHvYxr/j+98E6Qjs2aFblM2pXBARgq/8qsGEa4L/d/AZc+ro7UABwM2X3FfK9lYEKgAhtPCWAPBTIqpBkcRCd/qyzDF9KQ1dMI6o6ik+uke2mPIeoirCUe2QC5wZvaWgc5TluGnIQLhtCqAwW51rU+wm2BtzRKIqzguAH8h5t01mFAcje3em9AALCSI6NgiAkrzc4FsHW5GyZZLGWWMe21vdMKqCrGavfbDMjMdktxMKKJ7Oy+UrfdjYtQAZ/YUWtYryTgXpJ4LEFMEK0KbycQIYBrwzCRQM0DXgq18kckJzYjKTMs8J1gEusl+0WiQAU+kZ6FggpjCYxpw3ysK+/71jI9sh7oCzAQwEx2rHB5OmMsBIw+rrD6tcZg2MBoUhB9mJ7degPapg6wB2Zic92acHDEnQ0CmAzlFwTrmsQGWm2E8i+uiIKyPEQ2JogHt2QwUAGYwzav3Yxym8claHCopb7SVnIcZnMxPu5aUB1A/Ze2IV6z6E0BOip9FJgLS9qOd6GOiY6R3BvcImmAba21VqCgMkU5sEjoLLAoLhABi+NFwBe81zSgIDV+x0ArCE0aw7hQIFq02crTmk6kdVeYo/WvX6yvoScqvI9WrAOpBgILDkubWIQyvdgSa2iYGayPTndK9nFoDQAi9rgbF8f++jPYGtr67Rsa6+efWLWlVffglAaYJeatlmV71O1yTDtQEN9K7jtUoZHMYIePAZblaCDa4jDEnGgymcAIPGQpyLVWUaU2NiRy7IztB49ApEhIQkBcj1HZx22q52W9woAWdQXrqDcEPaw21wgDhxoWKDZV4gqdBo6QhDJXrNjcDS5Ts72XYCG9Mr9JJZO6tlCato4dLCTWtXc3ZAQpEPcHuGGEsBRuE7xqAO440hEJ6pndwbTA8fXtCerZ4ET1rR3fWGvnn0818Nln37v//I+sZNisRDzA4JtAV9JDqAoioU4ZBrgj3/+DXjB378DFqIe7quvU3QQkAazQDuU/rWYCwnJzaU2nTy1QrG/yBZfzarF5AIHN2cUswinmZwCTMpjyFAm/tgm5txCAEKmC8gKE+Pl73bSZuAiDgrU+ws0q0asx4BszStkIiNtripZqOHOdot6gImCHXaykOuBEmjIB9imBa0MBdCIUYhGfQeCXs/I0YLqFrSd5AO9ZazaywbQvEdszGqT0BF3kqpNwUoK3DkgJGBUVcloW6kvQxRVR1+RBjl+ZC2oqjqnhKXges6kyyVF9m59sCG5roRuNgBAXhcQi8Z0HexdSxb7DEb3exSTNhPK2tUCbuphpgvs//QW9q2NQUc2c82KqgStr4rtVeGkxuyB6PqCoMJ1qufhAJjOEbe3c33JkdG86GIMvqLq6tk8g8FkLRBEsW7aUo7pooZpWnBdgyPD7FuT16k9WDNzpAEjOVeU4Apvl9TrmVgVII9LOUBNA2xNAGtgVldAHDtFYz8rp5/nmJwYRkOQHcj2Fr4DWpwDYJeVhCHKOUsK0BMhDgRosYuIMOiu62YhyqpYOYgdoFm25oryfQ2FQTHdRTV+GtaTsqa9+/TVtHtrbz3W9UjOxdQ//fZv//YpP2cPYNlbZ9X62N0/g1f+z+/Ngzu2UG9LoNknA8gwVMXHXIajsSDUa0C9PsDoQbmxhhJYHLCIJaHUHAmxviHQqICde/hxAVywD3ZrS9nAvUKLjDSeqcmytgsCTUNGoPs5BNDa6tJwyDQBbhHAU4KtGeWEJLA6MOwiwkUZtLYrDvUa4GoBNUwLWBLWUKgsqNQAxlYLi8BgZ9Q6QgZk7IQllVjDMaIbWgUGolmyJ+qCxWV7sBIKnllDgcGkf+svo0Oz5CndB1iWjp88NjMre8UoO5vDmEX2S+DAorIxLAUWABDhrv/2TgDAtS+6MWfFpCZ2j4n7+K+rX/EuhKcNYHwX8P7597/hpM95/j+6o8PY1JYjVHKuGgUW2MjwyQ/lfxKiLc+xLUveSQ9sAQC7ILg6otj2EkjeY6DG0qJdKzKj0DSd7RG1UbxxWcM6NZTQNGJrYFRx0K6WaNYtFgcIYSj2X7aRQHCxOpD3YBtpTv1AhmZQUCcHebeqUhvrcFktlJLCppiKoo0Co9xWkEqVaCkQnKKoVoqJ2j2oTUSycRJQJ2jD3QukB5TtrAMeZ4SlGOV929Iqna0LMyefmmsPms2B2Rw8XyAu6m4Yl5eVYVxSVFjfKVOUZZxVgFEveIBYq7QJzLXIUwplLqZtZjZj/zriPaixMLMW1WbA4AGHpk2+6QrUVQTbANUxL0wzL5J98gGYzkBzI8CEbjNubiOmhjRd+/VfDkEaUmuA9VWYGAX42FIbBgDFH/yZOHAkG4ioHt/DlPXVyHOaVgCSDK4QaFAhWTRQWYhdECAMPmsFUG8a2Y9dBnEcWf21k5ecqk6shf0KslqIigKYyPePBwXYAqYNaqWiQ5mRbN/Og/iXswD8sCSfGdBZAel1niPDoGPRiZ99FA/7oPe7qdjMcelkiOM5K9sAAV7tIi5ZBJ6ula0JdLNPhkZ0b/3FWKlG2bWmrYBYQcDgwqGYSUju4twKpo0Yf6UAPbShVoURdnMGPjDOCkRDJEPANGSyFlQGkDKDAeTrTF69n8noYD+xmDmKPQ4YzCxAhSFQ7D1fB5s0nWH4TZIhmpNrlAkB7CyiI9TrhNIJwA3IPd7Uck2ImnFhAGEA6/4nUAWUCEPUMfabKMxiILPYsyK7D65E8eknEluyzuNT/xbRTcCBE9ezRB3gAhxf056knk2K7BPVtMAu9aylvXr2CViveuW7EC4YSH2pdrW2Bf7LP7/+hM+59HV3gCyQlNEU1c7WivLYtFqHFFLLRs19cTPG/ByCCYSVb3lEJ3/nkUG5LfVrtckYPtigODITG1QNrg+rA7RrpQAmTYStI0wTuqzRVOpVVurZFuBCajwz1aD00iGWBvODVgCfaQJjGG4m9lopc47akGtGAEK0IQJCkPo7ZfHNFzK0TvVZDEAMMBMg5+ullVQDvYE2NRo+n0CQBEJYBThbBVESEJJto/XxfdUCUQ6Hl8cwEHtZJ22Qmsp7sVVMio6dAHRAp6hGhZxZldQy1sg10aDbdr5mdP+dMlthGRwUnNW8q6XnJLILR5D3oHmD8X1if25nLWLlwNai3Gxhpo0cm+lcypnxSP5tWnlfiwVgLeJ0BvZJRdNTLPZJo0ED4cdDEEtNG7e3AQDlp78gp1S6N6RjXhRy36hFPcJNA27arJgBGclN0XOFgoF7aCLvN9Xbxui+1sfvo+4nByxbW3IEgkHc2gbN5qBk95b2K2XX7FAOUeoffJB8lxBAsN05AwCsVmrpHPYxO56YNgLwMIbgZoCdebmmK3Bu6xZcFYimQHmsC3eyTYSdtNIH7JyhnIa1V9PurV3X6T/V/kKvffv2LTsF7bJSLRx2KsNPYe0BLHvrrFu/8+9FZvmK738fQiWD12YdqA+1AAG+NoiFhZsAxhP8GJg/rcW0iOD/XGH4EKNeIzQrQHQGzVgGOuW2DHBswwAqhEIYR240EuZfXatkHyBYke6WhTSxTSsZLbpIm7rM5gZkcMdDcFkIY7gqAAaKzTbfzP1IQ8EXUeyRAICdhDKvKkseDBMIsexAEXIGsWQpqhmIpUEoTWZN5cUQz1tDORScImtAcfewFFZsOIX9KVskh5WyDNQsMsNQHsDCptKchVTYL4WIJna72h5QYNz5JzfnTVzz4pvApUUYCjuEAp/Uiu+Ka2+Fq8TzVQLl5PdXXfHuzBrZs/I78+vql78Td3/6H+Mlf+e2/B0FgL/yjjtkUDSQ8+TL10tz+p033SGNpVGwhAA/ErWGbQE26jeNTu0RSkK1yXDziPkBYT9VGwEmAF6Ds+1cGsyUT5SG54Ay74IoVQoAobIwjXhTpwBAHljJnLAKAER030VD2Ss/OlGesQXsvGcf5hnWMyiKiidUBDeLYgumsn9XM7hF/g62Y8lckaZWGnAToO9BGvRksRCJYCNgJ1HBFlI2lBTuyc4hhe5K8KdkklAQtiHVvmsiUpMRpaGiogAXDjRw2SpQGkMZuFMjz6VpLV7Os45dmOxk5GB310AyJgcmU7oOJEac5q8QsOx9DKBjC4dli5bUOLME30vGjjb5OvAzAIbfNthfjFHvS9ZqjOpYC+wrEB3l92MmOnTc2ETcFNaKOXgA/oEH5fM6dB74oSPdIKz3fqHsPGxvC8ChjXMCS0BGrMFSgylPBDcN4qKGPbhfmlAvNl8xs/a02dawe8lRceD9q6B5I/Ob2TyDKyDTMRF3sKvZL/+3HHcBaYhZGs/Cq7d2AC0AggA/RCRWCcxwQ2HkmWkDmssxMyGCY0QYVx2r0BLYdYGaUTOP2KYMMlGWkVdv9VrUMGiDMGuj0UwkWW4R5dx2BsEAr/wb7z0+++lRrN1C5ffW3nq81241bbsK+JHeEyzBj/S75IB6v8HgGQdw/qctzKwBbU6A4UDubRwQxjIsLdqhZKQMB92gM5OAdnTbZDqweycppj+EA+Qayyx1ceGEIQ10A8G6AR0RMJ1iAbQtyDm5bx0s4dWeyNUE45OlkZFbktaNbACj9kGsAdfJViU6ub5QBEg97mNRKnu/tw29NybCgGk0Q8J07z0DtkHvKen5+v5PWM+m47NLTXvXf39X3v61L7oRsZRwcSYFnplP6IW/s55Nr3PV5Td3nwsBH/3Y3tDsTK6rX/EufORTb8NL//Zt+N1/u3yveclrb0copW4DA3/0f74Bz//JOwAVSpDOcaVu65THEZBeqhAljOQSAge/0GDzWSXcHFj7aotiu0WzX3JDE3mo3F4mtFHKvIOS9aYtYmWF/OB7eR1VIUSJZNkJwCyCKJj757mS8lzNKOZCXDKqXKHGgxYeZtYgjitxe/BKHGyCDMcT8STtX8q80O+GsIfS4FrymvpEG1Ho9q49SSWWVAVLKpEEBMjvxSJVrkdLttGAXJvSfiWgNH9nY6ce8SEDAnJMYvevXt/S++OUHZJUav0VIhgxA0ZLr7/bUnUKIwCwUtelYV26vqTjFiMwnWHwrUJq5nkD81ANGAt/4X55SulA5+wHJjNR48zmiFOp0e3+dfijx+AOHoQ/eqwDztPxTq/NEbFpQPM5kqol24gBQhzaCTzVtahlqkpIQU2ba1OOAiKTIcRv3isqlpWx9FEHxjDzVs6X7Um2MMvgSv+zSMf+uOAwgEzs7NxVMZjrcf2c82dLarHeCMiBts1kKE4zD+D4LFcjwBkb/TIbFiW3Zt9SIhj0QRMf9fzvzgE3aWEaAWNiVeDql73zYZV0p7r2atq9tbdOz/r4xz9+Rre/B7DsrbN2feo334gX/+jt8EPAjxnjgzM879B9OFoP8cUvXwBAAIxmf8Bo/xzGMKKr1PdZWOf1AYCVRe5mFn4khfDwQbHfaVcK+OFTsPJ5Axw5tmRNw62X4qxpc8HG/SIQyKFxDAAzYZUQgOTF6jYWgAEW549lv/r34cxiEel5dABFgmYkwhrK0m0ypIx+qww/8fKWMOEOSAFJQxk0ZNy0+lx9TApdNEE9dUmYgKTFYhoIg6K+XhQbp7Sc5p9YEuuDVgIJGcrOTDYPySuXCPAR133322UoV1jEgUUsLMLAaiAqjguH3bliaWDqBOJI8JzYocl7uPKqW/ZAljO87v60FIi/9/8sh4SmvJIwjEAkXHLzHXIeWWlEKUDAlSoNQ4BqK2QxQzoPo9qLUWAUkwA/NLA1o5gGOU/IydDcC+MuF7wKUqThSCwsYinNQT93gtT6rj5QSmi9E8stsLBeTVAPeCdDHj8yqPcB7aqoV9oxoZhTFyavCpZ2TGhHNntwJ8VN7N1dqZSQXz80MC1Lc+v1O8h6DBMg6oVJ6RaagWFIQutXDcqNVtUqqjDxMTMdM8Oul5OytII2sSGC2hbUOHBZgEsFlRsvzbQO0Hg22+GTjPxzVvcpky+Hd1qbAZfu8dqop0YosabT4CsGbZwTuNuBK7uudI12DlS3cLOYPcvdVIAa2wpIZ5ogntUxdtYQZMC+hb/3vm6T/Wt/YtBR5/+d3j9Hn20N+iqX/F59z1qyt+10bOLOLBV9H3IcWAaWjQBSrHZi3XHdHVw54WJtOlu1n/DifS3ZMN0xScCW8QGFAm7EDB5WEhLLrMH3AWHoFFhZvgeljKFooeqUCGoi7EyUKx3YR5kAsLSrBnk4SZF2ezd7a2896Ve/pm32MfjcGm1tsfYnRR7GNvuAdl8AW4v5U8YYfcWDjAWCqlgGJdgZ+JEDMIQdFrCbcwFCIMoWns5ENbcTMA7idb+TMbz0mMj/f/b+O262q7zvhr9rrV2m3u10dYRErwbTDQYB0rHfxzbEjmNw7NiPwcbOGyyKqabYdJAOTuw4D05iO3FJXBKX940a2IAppgtEEwh16bT73HXaLmut549r7T1zt3OOGpJgrs9HH517yp49e2b2vtb1azLMmghk9nEElmAR45j0r6+Z2Hkh5yklZITKDhPkuofy4uZThJ7W63FudKRr0oOL5T+xA/UQa2w4z+jSo3NPNSJziar7X1PZVdoQpB16QwF92b6n3amf9eP35cPQrRqqeaW45PG/WQ+KfaPKNAsDTCN9yUXPffeOzOKN/ayqFTsVaHSq50/rntc1n5C8gk//+au33OfVWIkC8ORfuhwdejgT1nFVzwaiLta5xzZ0/X2UDJZwrYyE2KcL+c4K8cdhMiX9YlBvKueFZNBtoKtsysKiRjk6fI8rElH13fGRouwk0kPH1XdQByWzlZ+6MfjIYBtCNjSjoNipMtWq73I15DdBiVU6USs4H0h3jEkxtXetGfeeVQWFhPQO4b4y9BKmsoh19fq6yj/ZknMEG5TYwBigqdo1GKumCcBPRYDMxqoCynIcbr9DD7UBlPahB60JQ5t6aqUAg9dOzo2T2XbVMajIS5vIQ2ri3/V7DOpnBZJpUwaFjZNzYHR0dZyDaEyw2bLjz85ayuOLcmhWVra+xwkgadzPCpgxOffYTBTacowC0LLhmNXZtRodRzWxR3XamBPSa/qllRpc2ZILtvnYV/ux3WdiLb4oUCqRPKu8GB/nSXcRP85LxHtUkghZaxIQc16yDyNxxXAtsR6u1paV6rTOB7KbyGtai8oKxmB5eG0fabmeGDde60xrWtN6wNRznvOc+3T7U4BlWg/o+uwfCRv+3P/8ftppTsMUPHH+BPoCzzf9mSLpnsnR2jMaxXRD05uuerIFRXagoDkvQcWjwrAw06c3Sul/e0aC40pF0Y5oHp1HHVusmRsbJK+VzUKwXtm2XGC7DEBZK1LaXl+YIXFMakztw1xZ9lRetjM3K5L1hN6BELidCoMvGklAtslk6CqB9OOG3SZjOxUJDKf25K2CGPWEckUshcBRLT5DzolWEFHnV1Rs+Hpwq8av47XGJ6LCmWRxKO9r6y6vFGU3lsyD/sQgXKnAUJQB9sf+/uQM5Rc8651ixRRLo6+zUoCbSKOsDNurBYba6XOZ1n1ST/6/JZTaJRAFKyyfyhdNLekQ8C7WCCiwDQJzVMBEk3vKVNUWXsoTQuNlwFC0DXHfEQ0EXNG5JV7zeKOJBgV6TYBLn04MeUC+u9bi0gZl08j330uuiC7c2DLPyAJaB7WLKoPNXiIWWqIAk/1JT8h+u1hAIsFu5PWSdWGl5V0ZCkn2EWQzmngoVkk2VTSW5bWLthYffiOWEdoGBYr1EhxqZaGuc1G4+RAqakaOds8SrWdiCWE9Ki82DMhrL+pqeD5Z1RCssm0oxI9YgJZwDKvFWxjQVT7R29X4PBgGdiDnTeVqJYt8HhOLrzxHkYwXrcTjx0yqWqrwUevGCyKY8NtW9eNU6UiXM5KVHLM6BKModrXrY1LMpOhGRHy8Lz7gzgtzr2I/RmJ54CrG3uSC0ruxMmSHHAMZRE4e5412DJXFmHd+WzsEHU9YXkQyvPTHT9Rsu/rxJwFVJvMUtlQST1hVmPGgILAPNwwMvMM4i59pUyy0cInBjMSqovJhV0nF0g7XGi2DRRts7KqyqQ6/t2ADUrG/Y7lW6NLXrP6nvfQyIiPXvCoM9Nk/9v4d3+/p1pTpN60HYk32tLt39Tijs8Z1xbns/4So8LJ5hY+kbxMAPpxDCwdxVPdePlLk8wnKxjRDzhJxBFEHVVrcKBsHCGs1AdAqxn6xm68TegwwB5tBX5Y1acgXZfC5V6KcgbGPfhgSdr5xgsauDtmelLwj52sXQx4rknWN1nJ98yqQGUJ/Kf3cmCBUnU90GZSjVs45Oh/vs9h0hoF2ZaGLADaE6/h2PW2l1K76WQDlrewPjPveYJmE97jqcdYKUGwULo2FzKFVHap+snrBs96Japq6n1Vl2BcX4cK0XgLW9bSn/S7WU//15fKPqpXxIBayEkgP0rOaTP4vGZ++VhebTHo9H8LfdSG9nmxMUXQNyZoTZbNCAEQljzVDR9Qf91ouMQKUtBP0qED3hvg0wTaiOpPFteJgG20x6yN0EtXXcpdGuNRgGxEuNiR5BSpIxmCyEob5RqOLoHQJ6yq8hKirvKzZ/PLmJ4ACo8ZqlPD+CJmek+H0Y3u9TYSfqr/zXggkFfGnIjBOAhKTrzuhftngIAFjxZlSkmlS2z3JutyH3m/H2g5IcFryVavXmdx/qO1bK4WLr5hmMN7fSt1QEZ92qopURFia9wcCHGgl9lUVOBWLWpAsEzVyLDl/41B76r9P+T636Wnrh1Xzj821SQWz430hN1D1B2EtUZ7ytTdco+rd9ZsfJMc9vG9AjpF1Y6V3BR5RiKtIlTUTxzKPseH7WGf4mJoYWtnk+UjVID4eURs6J/ZikYfhhGVdJOfziuB50Q+/C23E7v3KL/+23Pa8d3Pxk97KVV94+47H/FRV24Ix7WmntX09YELuHyj7cYr6yle+wmMe8xi01nzlK1856WMf97jH3eXtTwGWaT0o6pZfkmHMY//urTzzzBt54vztLJ7ZZvHwLI864wjOK25dmScaNEmXLbapaSwaRnsMZz90mQtnjnN2YwnnNR8++nBu2tPExRHNo4rBPuid02L2pg7l8RNMylNrBvM2DUXN5J5kMTsnC9JWC9I4sIAsZrknzWFkQuOkoZmAUkTrOUmk8WcnEkhnoGwI0BKNFLGW5l2HIaxNZJhrY7FWkqBtUenEAyeZEL5q/seLaReYxjosngFpJKpG0TH23q2awQqEqRpb76XpqRgZGoi0hIkH2y+qxa4PTBCjcNpIKFxYPGxmMG9bzouHd2BBq2LcpKuBxhjZd9tN8Fpx0Q+/a0dbhmnde/Wklx8iCvZXJgtEtAzMeoQ3MhgS+z65P1kXAKVMBRjU1gc1i8g3KqarhHuKOkMXnrhX1pkiQBisuLAADCGRuQ2D23G4rLIeMyzq71jZNrW9WJR5UEhGRJVjUgqjVg8tthFRdGNhkypoH/UBRIEy1URZWEQXDjOy6MKRrGrKpjTl1RormzW1VZmzKoSSyqCsbIq3fNnURKOxR6/YnHgJO/ZQzMSYkSXqFfhYYwYFen0kC6xJX+oKcKjW6NVCFzYugiu7g0mv6KIIHtgWPxzVn3HtEz0xvN8RXJ4oVQ3hJplp1WJvgsGoKkZjtb/hd12FjwLjRXL17+pxURR8nC2s9zHr/WBx5WA4Ijm8SJLKuZVY2GnVsVJpgmm35HXCYPAuK0NC6TgK1ggbF6Pyb1GcVP9tt22llXhJh8/Drfe2P36Tz1d6A4izWVlUv/7kNanKDguAii/KMbgyObDIC9ziEtp5/J4O2VxEYzlsM41kIBiUYPHyCJQwZ23DjFVoia4JADUAH37nlQ88EFSmUv/8p6/mmT91GS4ZH8NJC8K7W9NF6LQeyFX1tD/1qVfQ3NdnuDDD3HcK1h4S4zsFZTsQWbKgmosMKi9QRYRrJ3gNg92GxrLYA6kceVwjgUaK6o0HbZvPDeHGel/G949ZzhsGbN4LUBvsebx3gUWs8b6oQXBfFKg8J8oylJvHJm2xL+qakK8mfUHkFdEgnM9juZ7q3FO2IkZzuiYr6EIR9x1m5AR8qUgQZZWn5sMgfDyErftLzY497eZ+VjLZ5AkKjffBKjRkwsibC4PcQkAgtMbH4b/T6WcBnCdazTf0syoDNSzqfrZSeXuteP5z3sWHPzbtae/L+sFfuJwoAHg2UTW4UgEgykGy5oNyRdTJPlLSw8bj7dhUMod04SmbWvrgoSdZl3VMNLS16l5IP4FkkweQI5A5JCuUMcCXxCgvfaHuZwJYthJZW41yVG5R/VHdR2jApwnl7jYAxXyzVqlEvUKC6UFswColTKUELx30h+NhPmxUF8ME0DDxe6qIL0ZP2IZVqpTQ/wUQobbanlC5bABWJnulKmfJ+bHyrspEqbYx+XcgkCg7OeyfIPls2v5OPW197vMON8o23Fcr+6wN7LLwuWm9QT1RV/Uak/Zo4fF1fkjVm4fBvw8ggLxWfyNJpjpm/YFY87aamE5b7LFq4OKu5wVU73tS3bLlerFTjzx5zajcPvpDvB5t7GdPooypq7LdnfhsakJUtX2jwWh5z9VxKsuN1zkL3gppTHU7uJmmzDoKO5HTI8ffpTFmNVghe4+2prYKU96PVZDh/trWuLqOTIBnH/noG3n+s985tlvn3rN7nPa005rWvVdPeMITOHLkCHv37uUJT3gCqgLoN9U0g2Va3xc1ymKuXTyLs7sr/Mx5n2f1rBa3DhdYSPqc2Vrlq73H0bp5BZ9EtG/RwCzfnt1Pcp7lx+e/yBnRGotFh5vu2EPnVkVjyTPYJ4CF3zMPx0+MB1+VT+gEg/ikQ0YrVmEqjmqGz4ZQ4qDewCT4NJbm2XqxzEo1ZQuKNrhEhtZmBD6SxZxXYpfkEkXeVtiG2LFUDCM3UpIR4cbBoIAsDr0MeCfD7UHVaHcV9I0BkABSSsSuYPN71LJNZb009qFZKRdawUNboUuHHsiQ2McaF0XYhpH8GSWqgc0bfvaPv59oYDc0EKp04mOaBbl0sGPDhGDtAlTk8I2olsZP676vL3zoUp72s5ePQblgX5esyJTVDCRjBQLIEhh/upLRKyjaGhMstVzwWk9XSpKlIbYl4fRilYQwi2obLMYZH2FRVtkYeRXjGxFqkKMHORFgWzFFW5N3NdHQYwpbW5SgFHpU1plGXktei0tjylQHJZwl6suCMF6V59lGJIvdwEDVIzAjE4BI2d+4pyk6orKK+7ZWtjijiQei+HGxgDG2oXGxsCB14Vk/J6VoKdJVR7tXYtaHY+XJRDA7zo0XkBMMQT+x4NugDIkjOYaTOShRFM5z4RhW26+AmO2oKJsXSxP/3hYcmHhcZYHgQ6g6pQz7t9gDGFN7LHutwar6trqck+dbUeLgPb5aDFeh8NUxqL4zEyqOKo/AjbIN5/hta8JeQceR2JOZAJZPvreK8DzhZ72tVQPgncb2BxszbTYwzbdnCFb3bQFe2DQUjSIZjhgzHmzkxYSP9cRxmdy99R7pbcsoOytgn/WU3QQ9zDGrGeb4mjzQGOLCEsWyaLWthHwuwSVKFJXBA97HAoC6Ziys2kjz0St+o369p/7c5egYavbnvVCnspyc1rQeKHXj6gL7Z9fY/a+O8KVPPIx4HRrNnP4ejYuEsexHowBiDIXTYgzepGRz4LWheTzCHF2R81EayzUzicfXC8I5ddOQbNt+dmLApbQDAkBbD7eUWCdVllyTv9tqDRoyIsTySFF0RAkglksKm4wVGmWsKeblxFk25bGiSlHonPG5LWzLxgpTSI5hlS3oEjVWQgZ7Fi84NyftaSuRQelCOLj0s64Z15Yv1fW+HswZhW0nuEiGbzrbfuH9wqf/NmpUctWXxqxlVTq5np+kn3VINo2L9QZV4LTum/rcH4qi7Ide9AHw1PbJ0pPJWiwahWy/kCnmUoPROtiEqbHdK2G9FtZgyaolXc6wjSjYDUmeSqWmlieINR2F5Nf5vBQyQmzwSUS+r0u82BOFbrheq1Epa6Mqv2QiH1RyBT1mLcK1YspuDMpgRhZTKVOq1/SB4FP1MVUvObnNKu8lCueBYuK1YGN/VZ0jqtvKUhQYWkmeU0XoCeUn+tYKCNlyTpoMZ/duK3ZgqXunDUSdyR5sYls7nvNg3Mc6jzJsqwTZYAlbZegZI6DIpr5sC0gwkYPlnZN/B8uvSnlS98jWjnu1oILeTHTygJp03ai2PZlvslNtyp4ROy0N4bmbrbl2IgptOH4YsRCrwJkdH3fXS1VEISuqIJ/lwS6sHINeG0gB4TPIC3ETaTdwaRwUjBEuMehBgR5kmOV1AWJcA1UpyRtxbRmmAqBPtd7SCrzCJ7EovybqOT/6PnQzwsX3Ho1/Ur0yrWltW55tl+vT2rluuukm9uzZU//73q4pwDKtB1V9+6fezNOvfj270h6Pb9zKLcVuThRt1ssGn7j1fB7yyVsgy8E7tNLsywoaKwt87eAZ2LM1j45bXLb/i3zktoex+yuQHFlnIdKotT6MMkynLYPIOJYL+HAkwEiWbduY1YFsXoXhWmigimLMTkmDr2eQcfskouymwsgL9gjZjGZwtkV3c1ypYWTQQ4POJTzca4jXteQ4tDw+AjOQht3FnmRFUXQVqpRQ0SpvRWyQkMF01UMGsMUFglLc9zSWAQW2qSiQ/VQedCbhw3gCM1AWIGYYFpxhMVCVsrJt24g2ZMI4I17ZLpIwc69lsOa1WGZ8/G9fyzP+5WX80E+8H114Pvb//w2u/uxbtv0OXPLYN9Wsnyuv/S0uefSbUElUe2FP676vf/6TV234+1FvPET79hDuHsig8llD/4AGJ4tVgKIjwb7KI0G4Q0e6XBIvDdFZgV4bbmS/5cXGBWRVkwoFM7YzyPe2RVGi5btnMs/MiVyC4cP3umhHomxpamEdll7CvI3GDCxmYLEtUwfn4n0I2jWkh9fEi7r2bS/rgGHfiHHNFJNb4hMDYRuG76U3Gm8ShnsMeUeRzyJWYX1hSCoPJZrGsqVzh0VnEqbok0iOSa8voeeTi75Ni1MYL4z85MIUYODqUMh6sVIFhlbKkjQdL3r9pgXV5OLUO8R4WtfhlttaDkwuXCs2tbUCgGwCEuoF3gTTr17Aai02Xt6jO22Ym5XPfCRBnfViy1pUI0U1GjAYile0tXWw/MZFnyxIq8GjMsk4gH6TR/Sk7YLL8/HgctMCVbdbwuL2ssB0m4cR2xybscWYHffHm49ldby3qx2sHlQYpLj+gLE/tR8HXUP47C1+wpfa5zksLpEUBeWZu9CjnPQ7R8VCTikJi7UWFUcoPUc526BoNwG5NkSrFjMs0AM5Rq6VYFsxNjUbgJWqTBZsLS380E+8n7hv7zI4UgEqU1uwaT3Y6sRil2E3ZnXUxLYc5f4C3U+Y/+eU2c/ciltckr4xDHaUtZgsR9lZ8tmE4QFPazEh/laGH4TrRFnWg7/63DzhU48K51PYBLiMGdA6jsbnFucEvK6Y7EqJXYrZOFBVUbAqiiNG+5oM9hjyLnVP6hIFyjOa15TNBtHQM9yjKVNoLIfeIVwTbUN6BR8pbKzH24jk//FgrFhFUeddmJy6Z93S0zpC9oWrVS6ieA02iOWYre8SE4bnLuReSDaWi02tWPFKwpS9EmsY5akVJ1d/+jd57gvfy3N+5H3o0vOPV79u2552Sz/72Deh1sppT/tdrn/636/Z8Pczf+oyokAUg2DlCpRtySFTIUvPpbomtWnra3u7ZLUkXs/RwwKzuD7+7U32s5vIDSiFimPJhWilsmZUMHjIHOlS6H+yUpQsxYTtVSyh6Bgt4GAgPZi1IXpQCGCjtViBFWKFh9ayfivKsGauekkn1/jKarYiCVbni4q0UgW8Gy0gShSJRSEEC9qgWM6yCSXJBABi3bYAhjxg4yBegIdwiDZlc8jfdgsBJdy5LaC80TLRbX0ek33ZyWqip93mtTeAMZvyTqQPC9+DoMquyFGTqplxbz1+bg12hP57vM9ja/O6Zz2Z6mSiBx2rgDb2tBVJSgAndt7epuOw5fidJPfrtKp6T67EDwZhM+PjUH+mE39Xr+WzHLU+xM82yLtNon5JdGxNMgkBP8rwRYHWGt+ewXZSecnSCglvmG8EBptp7Zpw1efftmE3XaJxsVxrnv1j7yfq27ucDzvtZ6c1rfu+zj333G3/fW/VtHub1oOuzp89wbnNEwB09Yjnzn6Dm7K9fOTOx+IHt6GaDVkMAfn+LoM9moVPpvza6i/wp//X7/G0NMJ7JbJpDWq1B9bh1nuyCAPx60xiXK9fMzq2b+ykaqWK98KYSGIZtFUMlVYTSodvxhSzDcq2hBxWQEg08jTuNNhmExoeN1vinNzpNZA4ii7Ea4HVFgIYfQTKqgBkhMF2UMDgwabhdlOxBwEC095LHoayIUQ7DMX9RB8UjbSwtwpfW7jodVt78fqGsOGrbIs6qyUsQER9E1iPVf8eS8A4XvbrqT93OU5I4Xir8B6e8yPvq/34N9eV171z499fe+e2j5vWd6++/q5Leca/vAyQ76RXAp4M98igJFkDvQxm5ElX5fuZdwSAaR1TMuDISwE0K8ZctSANSo06sDD43hLH+LAILdsxLjVivdUWOxK8gInRyIuqKrPy1Xce1YooWgJuto6PbRpsSxj2OndgJbQ0Xpf7TV+G+KKCcCI3tyVXfOu9HNz/q3LOsA6TVYsmsXjRfRsWyoqPXvEbPOnlh3CJgJ/VIsQlitJDOvLE6yU6k/1RhZXmPsvxRSGS+GpxUqtMAMZWVBuB4InFHIwXurqsWXOTtcUDmwnAZjsG24Qa42S2BEq7ieHdpvuqfahYfJMKnChCtZrC4M6LCVWIh+EIv7o+truq7LqMwa4e27JgnHwv47/HipsNj9+8MD/FIMBbQHlcr4eK4jEwE3yx73KdagE6sQjeKYPFT4JFTLx378QvMvy7Zqo7vVF1OcpkmDPKx+BKswmNBDXKoShw7ZSyFeFjNc4Oym0YeoolmEsjfPjub65n/MvL5NqlFf/0V6/mh37irmWvbGb2TRei03qwVdwomW2NaMU5y/Ntztm/xC237KF9xMrgswqVB2GnpwmkCXppnc4dc6xewFj8FWxnVBSNfflrJYoMRiUTagL4PakfvmRs+eo6EzINlNYVfhHsWswEeKPAOlo3rJCstHGRWH71zoyp7GzLBvQPKKKhougKaIIWCzHlg50t4Rqp5ProJfpFFAYGRnMhBJyg2taAh2TdCWAcykfUNqTKeqJR6FFjGTin6yP0eja2MAwD5EphoErpBSrVrPI6KMFFtVApFlQh9qHPe8F7UKUXVWzoe5X1XPS8d29rFbOln71u2s8+EOqTf/lqLnreu/EqOBwYRdnSZLMC9jVOlJiRI1krsE3pPfOZiLyriIehpxwWqLXBGGwIeSTVtVm1mjUwgtLSMzYTXBpjOzFlO8ImQkpTPiFaL1CFFgAF5LocAE3fTChnG7hEE63nwRYPWXtlhSz5okhUL1kuQE/dzwb1RwBArjj+n7i48/PSg20Od69+4zriiuP/CYCDD3mVvIeKGKXVmLAxCa5UqusKXJnoTSZJOtVgf7u+q3psdY6azAOsasNwfUJNsW1w+k51d9UWE+9hcjv1PtRKjI1EKV/lDm45LlEgF22zP9uoyWsQpjzF/p9CjVL39CfJarlLdZo97cme77chZo3v3qy4EUBGxZF8N4sCXThsA8lzHWWylmykqJmu5N60m6JOjDXKii17/f2vyGiRCdcavwVceeZPfgAfi6rzk38Z+tm7cPim/ey0pnX/1Xe+8x0++MEP8o1vfAOlFI985CN55StfyUMf+tC7tb0pwDKtB1396VP/gN/95vO4Md/Lkm3z0zNfYqns0LkpyHsHQ1QSUz70TI4/PiVZhXTNsetaxb858Av87MM/R/aVOVAjaUBHGVgnqpU8l6Z3bgZW1kIomt0wjKwaIQlXs2N2YAjS84UALEppYRY1UvHPdg4fQIgqn8HGul6A7fqaJZvVFB3FaLfIS8qWhxi89qhEmBlRX2FGMqSuABQXyWLUNuRvk4Mq5d82BZd4GThXPYgTpYuOxM7JDiXTpWgHEKVShzcVcV+yXXQxHv4q72t/UjkoYQg76eATa8arcMJiVPbVhgUzHuKBQzk1lthrhXrApHVN63TrU3/xap720sswmQATvXOguGBIFFsGSw3wEZ07oHtLRj4bkc8YBg1F2VT4WIsSxDpIE3y7USu+VB7CYI2SBWKwRrCzLbI9DfFlD4tfGxMWw/JdVKXCG48uIxIbrPBsCM114ptdNDVmpCjSuLZx8CErJmsbomFMevtQ9s+52k5BdVpc8fV3AXDFkf8IwCULL5PzRLMBzUZtn3LldWObEJtS2b3jY/Dht2ZyiIZOFsdZyAwZhSD7PDCoJhcVAeTE+9pa4LSqWnxUjLhJoKYakhkTtm9Q2DHb+STbrGunQHiz5eYNQZU1uFIFFVsnp46yDPYSZVjE+3GmShXC3GrJudto3HC0lVE4wWjbvBA75Xs52d+bnreBCXgf1tbMl+33ZceaeA8bnj9p7+EceqVPrRSr7Nm8l3yxblOyH5yc5AVkF6sdAJ9E2KYAljsx+D71F6/m6S+5rAb//+lvTi97ZboQndb3Sn37p97Msz78G9x0ZDfxzQ3YL3lm7VvXhWzgHb4IQ8VOG797DtUbwmBI9/YSm0Q0j+f1ebw+/0wO8YINlZ9U8p1KcVjfFHLQqgFTdZevAO1JRk5UD6NUf0Bc5Q0aTTRo42JDNh+Rdw3D/Z5kVaEzUaxIdt/YlkkX0Fh2jBY0zkCUy3adEYtcr0GXQqSogu69gVzpYJcrt4uiwKMLcGkYVjuIeyXJ0R5qkEES40y04TqoinD9mchzwSH9R2Dw+0RjU1HL0pBrpi59DfbUQMxkaPK0HjT1kX94A8+76D0oD9mMYbBPk82LfTNENI8VJMeHlO0u0dDiUk3eFYWT8sh3qyyh3RS7oWB3W1lnegKAV1jJqGynZLsbOAM20RRthYsUUeYpWprJ0BftM1G7KIVPI1wjErJDpNB5JIHdlcVRYVGDDD8TRoVYc6sAAQAASURBVD6r62MlRRzVoIeKxqDJVb0/BuDi9s/Jfk+Qca5c/a8bD1QFsDq/0cYVts9aOcmwfRIc2VDbWdPuUDtaVLEDUeju1o7qYbWV2FLdZ+oH1b0pgGqkcqyGI1mYO4/yGwGX0339k+7vdtazO/TB0kPe9/3sqap2CrkLpbQK4IoZWw7nJfFaAPq67WA7HcCTVrPOCBQiHlBZg1VzDqPxsYDwVYD9ZH3yr17D0156WT0/Od1+FpiG2E/rntd0bHa366qrruLHfuzHeMITnsAzn/lMvPd86lOf4tGPfjR///d/zwte8IK7vM0pwDKtB1197tbzsFzAH3z7mZw1s8rrFm7g9nyBuRtDwzg/R3nGPCsXNklWoXW8ZLAnoncONNOc//qlZ7Dveo/pF6j+YGwvk+fw6Avon9UhGljMQhvTW0CdWJVAuW5HGNVFge/J4MkPR9KcWCTYXsttfpQJUFNJpkth/ai8JOoXtUd0VIqllo8Mcb/E5AaOQ+cORd7VDPYrsjmFs5K5olxQrhjxCHaJ/BsHZQtQsjCt1C0+MAZRMmj2auOi1EeQzUHcg7KhKGZkuzqT26JheJ1IkayVmFEIhlbBEi0X2wSvheFVDaiVA49nO5zEBgWLLiEeeKKBE+VMeP4n/vrV34Vv0bTui+qdKTZ2LoLs3IzHnnUY5xU3ml24O2YkAH4+FtXW0KOdfBfNIPj+znWE9Z5EArpYD41YFhulG3umO8eJJ3QpOqLC8hqyBSg6HvDEfRncxAMEvJuXRW+8VhL18wAQyvcPqL+/eLEXceH32TpWkBwfCLgSmmvV649D5ifq4L5XjAf+w9HYMsFoLn7y23CNmBOPaeFa0DzucTEMd8vwpmjK7xbAxQYzylH9DJwVcCGoNzawt1S1cN3BVzrUyRaaqhqaMcnQClaGZVHbdtVWAfdCbdif2vtZiTVjXoiXdbWPRYlfXUe1m+gkgT0LlAttzNoQtbwubDKlRWkIp7UY3clbe9vaZpFfH4t7a5F+F2uz6ui0n7cBSBkrWOq/jRbGqtaS3xDHYw/1RioL/+Az6TsNCdqtcr2KoF6pwBWl8Ins507gyjN++jIB2hMB+5/1Lz7AJ/76Nds+tqrpInRa32v1pq+8mF72aDqfbQqwgMdrj+6NcMEKRcURKk1RMzPSc+UFLMzhIsXMLSXx8Z6oHPO8th/ygfxj5meh24HhCBXytnx/KL/9Kjy5BrXZFnz11o5DpquqLHCtQwJOQlXnpwnCBMMR8WAISSLWZt0GUV8JaKGkD7XN0DfmcmmLhp5sVmNTiNeDsiX0wMm6ZzQvCti4L5sRwKUiMCjivsfGirwjwEq8Ds0TQhSKBpbkWF+sgbXkQ6GUDKXDkE2VLvQgrlaxVDlwNBirtYMVqbJerMkcKO9xRpQ7AB//u9MftE3rgVVl24CCbFYz2hWyWUby/fSxxs40Uc5TNg2qFKtLZb0onkHINla+F64Z4dtB2VRKhpApc4hElXL8BzqSVRTWZ/mMfJ+bxxTJGnit8UrU2qYZoYelEPe0DjkvEPVLIatpjVdKMn9C6aPL+NFI9ieAJr4oaxWw39TTXtz+uTGRpwJRgEt2v1wIhEks708pUcVoFXqyoDQnC0REtlVHwxiAqJR2FTFkS7+5CUw4VT86qXSZfLwoX7axYD2dAPa7UiEXZXO5osQkCTTDuqbTxs+2UcvrNTnUDQbj59+V/TnVY3ciFN3b7/2u1qTF19147pabjJEcXaXEtrLVxHdbuEYclIYGNxfLOiIPeT3xGGCvM2bLsv6tEIU8SKO2BVee/jOX4SKFCxboz/zJD/DJvzp5PwtMbcCmNa0HQL3+9a/n0ksv5T3vec+W21/3utdNAZZpfX/Uk5KEI+UxBsOUsw8sA/Dfv/g0HvnZWwL7PcUbRfOEJVktiFZHoGbonWNYX2vCyJDNBVZaf9x8qiRh7YIZshlN0tOYLKIRaeKlNezaOqo/wDz0XBmarq3XTBzvPCrRcGCv5CUcPi5e2M7JIjMvIE3leVrkqd4GuwalcKkw35xRmMyBh6jviQYaiIgGCmc02cKY2ecS6gyVKpfFJaJa0YUEinqDLF4VQSUj4IdNPbqEaCDNhIsg7worsGiL2kUngYHlwReSY2ETjZtNMFnwpC587VdtG0a8R6MAsFiPtgpvBWSpZO42lkBIkwdwZeTEWibkrkzrwV35XPiHA19o5pIh+xrrrBcpt+3p0DqiKdqa4W5FsuYxGbSOW3Q/w861xbZDKVwiIfGDPYbmkiNZKTDeowc5PjaUC22+8KFLedSbDxERmKoNsLMWrz2oCBPJdzpqQDRS2NjQ1MIqtYnGpgo98MRDh001uvAhvN4SVQvQvET1R2NmK8jgmYIrDv/ehvd+xdHfB+DiJ7+N0e4maw9JmPtWRnJiUEvJH/aOQ9iWp2wpig6UHUe6qElWRU2TzRl0GaGLRNQrwUsfEAbyBjDFbhyan4zhtx0bcHJRNflvr8Z5KbW9DHd/AcQOw/2qKoClCineXEaTP/58okFRh8UapcSianV9Z/uEydcPWQQ1qOTV3Vaa7Pi8k6lb7sWqBqfykjuwojf5f0/evu1tWmx/6uMfAC/fbaHWB2NP9U67tuXzRs73XimikcWMJMfAR1ryCyK9rSVOVZ/6nwKkP/0ll8l1q/Q894Xv5R+vft2Gx03VKtP6Xq6j+QwgQMH6udCyEQtf0fiji/IApceqsuEQ+g4fwJJkdQabyHAW74KFl66BYNVsCrgSR2BjsEYyQxji8hyTite8L8sN5/bNCpfqGlCVd07OF27MsFYTOU5oA81I9icXtSGlA3Li4306iaHoJBRtIQC5aiY7lDwybUVNnc0FdUopIIaLK9KPgLJlA7JZ6YvjfiBbKHl8HRCvpcctuqCtJhoEdcuBDmls0EeXAygSrnNZAYHkoQqHcm6soA0Mj8oWzBtRwygnvYMqq2wX+bw+/nfTnvbBXi6StZApvHy5fPiulR4zsuSzMaOFCG9AF7K2aiyV0qs2kxqIzPe06J8R01i2RD2LdqAzyer0SYSPDV/6vUt50ssPMZoPoGMKxYwjWdOUpViV2VQRDTRRqokSjSqDwqwKmXeeeGUEhSXKC1hb30jOCVlCk6W0DPMr1UpVV/X/Gwf3vUJIFq2m5DtlGVcufqh+zCWPe7Nsr93ANWPKTowZSv6LygKZqVKxnKK2DbjfuKPbP+6ubndzTapJTjcr5DQsrbbrmXWSoPbtwc210Yur+E4zAM0BCKoya06l2Nhwfr77vXm1r/dr+Z0thGHienQKpTwgFr0mXDODcoU4xqcxoz0pJvMkKxl6VIiteSq/PZQSVVmwe9RZIcA6CPgS8sa2A1cAPv3n0s8+9V9fjsnlGvacH33ftnONaU87rWk9sOob3/gGf/EXf7Hl9l/8xV/kgx/84N3a5hRgmdaDsmb0iB+54GscOvAFlt2A5g0JfjjCPuo89KggWhmKWiMrUUtrdNYGKLePW86IULGTgWwzxjRSVGnq4F5demHFWwnfNr1MLMQAXxa4m25FH9gHxmBX18YhyYBrp5hlyXOpLXbKMgxkCXkSciFXNtgGRJIFo0tdW2S5VJpmlwYj6kqdmgWWXi7qkjprxUkYqGtZ2UbQIItNkkeViqgfABMHPlMSBDoSpUsF2HgtgIoZymNtQ+6PfAgsb4hSxSWOqG9lWwEgyuYljBGEPaisx2SeT/y9MPd+6CfejyoVWsvCRJcQjRwf/9vtmX1VyNu0HlylrKhIooFi9msxn1p+FPrcAdo4fLek6CREmTBNdSl+6XGvxCtFMZ/SOzNm7TyFstA6AiuPdrgUWvsynNOYzy0w+x1HNifN9dffcSlP/NVDKCu/ifxEhG0GT/fAjC3bou6KGmBTgy6F2Vq0hQlrBlaAz9wJI9CGDAmQ32ylqBiOUGW5BVjZXFd9/m089PLL8QeGfPH337jhvm+9+VIAHv6/fou55giH4kR3hvJoQrwOLtJEQ4MZRqhmIgyqauGsVFCThI1tCZ1n67+hXrhsGbhXVmFajRnKMM7u2O7z3WmgL3du89q+vm/Dc6vAZeeFPQlbmI31Zo1BFxazOkR/e1EGdsZIDkGnjcoiYVKesRfuPIbv9SVcfjMTW2lhSE7s0726sPxuLlInQbHJOhnwstPgYFJFVPnBd9q4bgu9Pqgt8Wpmut/4OalgueeVgtgIuGLUScGVqp75U5eRjITJC6BLx/Of/U6x72tuVepMrwnT+l4rjafXT2nMQn52zuFbdnH+zZmAKHGEaqXiPV8U8tu0wYveWvQohHB7j0pTUVQDYMbWPFkeckU0uFK2E37/bjBAN5tUeQcbchCC+to7F8CRUFX+nnNb1XQTAdgbKo5FjRlJcLsAs9J7RkOI+x5n5P+m8GQzmqIN2bzYbblEegJdQh5LD1yF3itL3Seb3NM+ZqVPjSqltiJdlvOLSxT5jLxHr0EXDdLVVIZnWSkqg5mGZK5oJYoVkOBwJX9f/c9v4QXPeEcgcih0dWyc58Mff9OOn/O0p33wlnKe9p0F6arBJkqIYZnDDKvcNvnuyfC2IDkxEMVn0qGcbzHak5J3NMsPVygXkZ/lgIiZL7eYvckSDSy2Ib+7L3zoUh536SHUENIVKFM9diwIbgI2UdihAHxm5DBDjy5kXWsGJWplvSb31WH1kxX+9qG/vHLtD3d871cc/X0u/sG3U3YSPvKP79ly/5VfeQcAFz3v3aydl7L0GDADxfy3mix8pqwVdRWIs+3xvav2rXfBGuu0gYeT9FNb9ucuvH7di4UeWCWxWIbnQR1x62EBuEO2lUoSTJKgztyPP3Ic1x9sVbLcm+DKA6W26Wknj93EjTtuorYFC+CKiiVjxe7qkO1u4I0iGhSoUSnAX+WWkASbx0rB4gWw9FpDMibDXvWlt5/0LTz9Zy4jGYpKEi95Yc+76D1io6tkXrI5k2V6TZjWvVUPFBPSB8p+3JXas2cP1157LRdeeOGG26+99lr27t17t7Y5BVim9aCsH2rADx34AgAGRdkC+8hzie5cHrN4ANUf4VfXwHva18HCmWey8owRLoZ8NsIc2CWgyMoaPstoHh7RO6MtoZmAHuRinWKM+Os7D72BLH4ng6OtxfRG+OUVsQebHEbFsXjWaw2xMHsr9q9LDMr6+vU8ovYw4bnRyFO0FLZFaABkYZmueWwij81nw0spUKnFthQ6VzgjapZkRTJbKuuuuAfRSCySopEMyHpn6joXolq0RgOxWDJZyKsIKhQXyb5rK5L4om3IZjQml8eh4LN/stHmq2KAKS+LhIq9vF1tZndM6/6pl37mZczGQ1qmIFKWWFnWygZ9m/Kfn/xH/OAVb+RzB99VP/5Rbzok1hmRR1nFzM2WXV+19M5ssXqBInlEj+zpOcVXO+z7bCFKKC+ZRL2Hz7N+jiGbhezcHBU5vvn28YD2qpsexddHZ/F3c4/lpkfuoXNdyuMuPUTchy99SECLZ/2LD9A+Kt/TsqnIuwKi+EgAyEIL2KJcRLrmBVzJvAzvB4GtFNiqFCU+ieX32mnIAKvPGCw9RX3nVa866f3Xv/gtADz+//eb6Nhim45oqHERDHcbbNKg0TRE7RRzZLlmAaoJGTvey36ephJjgy91BS74SUuGsACsz12b2qTTUMZMWompOJK5V1FuVdpMbnunxaFWIvMHzBe/hSvH71UZI0PGEHqphgoNqL274cx9RCdWxfZxlMl/gRGokhitdXjezkDSg6K8A8YDzs3hqZuDY8fPqZ4wYQs2Aa6oRgPiKLBrvViAVJZo1WMDo14XHgpRXaIVZRqJkjE5vRZblx6sxwzLkFcwcV/ucMl436cL0Wl9L9ZnjpxD2U/on+NozQyx180SrQ7RnTZuOISK0WwtfhhA6fB3dHwNu7tLFXStmg0Zqk6EAauiEIu/6hzs/Aamtt+sAKyuCXmOSlMBdLbJNKjsBGuANhK/e8ksEXUL1UApMuIiZgzemNp2yRvQuSfuyXC4aGv6BzQ2EcWJj8ElDrwmGig5BRWQriJWSg7inscU0scm6450MZPsp0STrAb7IaNwiSKbNWQzleoEAW86TcqZlGhdzmleKVzLoPMAriQR+VzCx/7PRiayLpxYk7FzxlRVz7to2tPe33Xe73+AdN+AsjDYUSQ5lKsROlPc8LpAfPntQ1z/m5fWz3nWiz+ATRW+gOYdQ9I7CiERNGOKmYT+mQ0aiwUz3xlIHpn16KHYbbldMxTzDfJuxGhe8/n/PO4JL/zLd1AMYwb7YLRg6NxhiHueZ/2LD2CGjq+E79rTf+Yy4oEjmzWUjeBMoGG0IFbPedcQ9zXtI55ofUDjqMWsCrjji5IqU69WnFW9XaWIq/59irrqc2895WMqQsVD/uTd2FKz2Igxoz10bm6JTVlvAP0BPsvAVWQX+f+kfeupLG831E5Ek4mg9pOSgk5SW6zFTsMmd0uQ/eR91W3O4e84gndOgJWqf1dauJRh3/WdR1ELc5gDe2F1PZz/R/gsE9V2dcyiuM5q8e67o6K+z2oiL7E6XjXha6fPeqJUmo4zV7QS5VWa4pUiXitISulVXSvGG4XOJ9ZOIR9JLG+tgCHNuLYFu/rTv3nK3Te5zDhM7uT64cUCPrwASozT68dPe9ppTeuBUS972ct4+ctfzo033sgznvEMlFJ84hOf4L3vfS+vfvXdiy2YAizTetDX14sY5SRU3a+syoW1KOEEeGOE6ddswmDA/r+9ke4d52ATsR1ShRWGjVaoNMU2IxrLAj6kyzJgchOBgN5a8fv3Dt1IpakJDYC//bDskHXjbHetg4olgtQIW0KrYKelg+2Bqj2c0WKhVXlNx30XwuE1wz3UAIaNg3okFhm53C4Sdj3SxOuqthPTuQAmFXBiMk/c82grLIuyJd7Cyot9mI8gWVLEfeqwUBBbhio/pWiN81ZsKoqBL/4/Ow+VfbBM0CV88i9P7ks6bTru33rpZ17G+a1FzmxEnNdYpKuHrNoWs2aAQ/ON4Rn80uf/DZ10F0+64k2M8hitPI1nym/E5BGDRpvjKqJ5zJCuenQO3daQpa/t5sDnChrHBqAUthWz/PAG2Zz4TX/7DZdu2JeH/6/fohhFzM+/iN2tPsMiwSSO0R5oHgkD2lCf+OvXcMlj3yRBoQsN8BFmpARUKWVh6lLonwV2UdE65ik6mrLVJBqkxD2LLgVgMX2xInOJGbPrG4nYh9yL9eX/z29zwXsPEY0k6DcaCugZjeRHl88mmMYeorURqrDo48th0ew2BbmfxPJqYsHlLbWSY9vHqXg8iLPjxeUGtcfJgj2r/ytdAye6IYseP8rqxbPCjgf84Ryt4hgVRWMQZfcC5e4u0XIf7jiCmp2RIV5e4L2T/0/uQFHC0orYZQAkMardQrWaom5cWcGX8vlVykNf7rAYnbDZ+W6E1t/jUnpstVbt+05B1lVVtmBhEKCiCNpNaDbEKiE2kMai6OqN8J0mrp0Km89INoGokBDSgB4PMndSJlb13Ivfi3KepPSBNODRowKxBzQbB0BMrwnT+t6t1eU2ZJp4VTOYazCzjPSlWkFZ1ue4ClSpS2nc4aOYwVD6zFG2FVypAPmyHP/OjcGVxYQtS2VBuZlFbgXc2TxUDL1cDbTCBoBWgJYAsIRrFXkO2uAbMRhFvF7iogQXh3NGsJYtOmKd6aIqY9Chc03UVySroZ+11HkrKheLsbjvRHGeyXHzkaJoazmvFEICUl5639ZxX+ewAOR7WxQdg000cU96eV040Kq29txcriEAjC4913z01OemUwEw07pv6xFvPcTMk9c4e3aFkY24fXmOIotwQ028bnjkbx5ClyJkevTrDtUKfh5j0Dk0Fz367A7JSkG0noH32FTTvm1IdGxVXiSO8JEQEIqFltgmp5pP/K/xeucHfvkQSd/T3Num5cSVQBceZWUdFQ1FLVPVp//81Rx82Osw5y0w2h0JyJIqXA5oKJugvKLoGJITCnN0RX5zSSLkFhuyP60dg5+EYb/z+Mra716sm372DTz8tw+hCxjtUri4TWOpQbzaRg8L9PIafnVdzg9B3VJf753HW2rwZUewYDvF9jY5IpsJRTsBJJMgzJZQ+on7NgAoSJ7KhvuUFmJRBTh7X1vEqdkufraDWlqTTFdrUe2WfEYhYxFrayKnzzIBVk4sS/ZrmqCaDVQjRQ1HMosYDnHZaOP73/4NPvj62SgKNpR+gy3u+CFblTsqSSZsKsP1SCt0XkIm16x8oQkKzMjio3GukM7KsXMB1EoTH2mu+dSbT7nLP3zJe4nDfEbnDjMo6izCihzrJ75L0552Wvd6fQ8I2e6v+s3f/E263S6XXXYZb3iDkAXOOOMM3va2t/Hv/t2/u1vbnAIs03pQlTvysC23fW54PrqA/lkN5r8ZS2g9oDpt3OpaDaDQbOCOn6D54evkQhyaznqgN9MlGogMXOeO+DtH8Os99NwMrPdwwX7Bl4U0UpEwtLEWlSTjxkUrGYB6h9LxuMly4ueMBWU18TAnm08pW3IBFka/bEK5sIgsPPHAY9fG+QQmC1gKISh+PVgoZBrd0yTLYgEWDQRQ8UYWrMoGxYoTVr93Ev6ZzcjjdSGKF2UhWRkvZvGyDRsr2ZaW/4sFmZDRr7ts42B8c/3T/z512Nu0HhjVjUZ0zQjnmySqZOBS/vbI41kdNVkbNBgdb2HWNbpUqLC+cDGs7S5ozI/I1lNwimyvJZ9TRH0ND+0z0xjB16F10wpXfP1dG17zUW8+tAVcefZHXstj9ve5dXWO7Jo9fPvJbfxSSucmTf8sz+AsyVZ56s9dzmf+m4B7KisxuUXNN1BOVFO2VJhMbMJ0Jv9lcwgooaB91FE2FcNdCS6BxrLDZKkAlLmrg2tdw/CR02Dy3dWq2JNP+LeHMJmvm3GQhrzsRNhGGxcr4l1tol6OXumj1nvjjUyoFk4n6HLS73jD4tJaFCawmDcuajYM3iZqcjC3ZahvNKrVhJkuankVn+dig9BpS/BkGgaAsYHCQn8EK6tid5NG6MLCKEN1O6KkyAt8OcQXBcoYzNycLKK6HWGLHVsUxUy7KYHOeYEfDCSLYAIkOqXH9YbHPUCrOs7Voj4EVns4pX13netQ/aeV2KwpJbYJaYweCcioViRom2BH6ZMQ0mvDbRoZamq1JT9lu3rOj7wPE3zjdenl+hhsjkAGTF6D13q6CJ3W93y1Z0b0fQNdGrrXpqQrXgaizQYacGu9+lwsoHAh51oDLjCaN7CrKxawMcLo9R5Ksbr06z18WcrtYag3ydCugVkQRvXEAKvO46quHd7XAKuoKQtRqkSBuW2MDLnyPKhmnAygvSfulUSjRAgFQy+/eaPQhSisy6b0FMoqop4iWZHeNVn30oMauTaaQohCYjsr5+yiG1N0DHlH3ke66ohGDjNy5LMRXkGyXjUuUHZMIAspynZE1C9RhePqz75lx8/sdOwPp/XAqaLrmYlL+kXCiX6b8sYO6ZqidUQyAPE+KPWFce6VWDVnM5oykMkGe0SpHw8ShrtEsd/+dh9W17ni+H/a8po/9KIPbFj3PP7XD+HaoJxiz5dGDA4kxD1RXKnSke1rsnpeRPswXPTcd/ORfwzfseGI5PgAb9qoGbEoQwkAZMLvp3l4JOQfpYVFUwhZQTUaY1C2UpWBDP+V4spbP3ifHO9KBfSUf3N5TSJEK2w3wcfz6Jk2qrBC0hgMJbO0LPFYlIkD8GJrdfVp1cn63p3AlQmly9a7wnlxU3+rjEHPzsDsDHq9J/sO0uc2m2P727yA4SgE1ivUKEPFcQCbFSpO5TMJJM3KolElCWamC87hVtfk9iorK8/lfB9to6Q/xfuHB3g/C6A0Oo5kPpPE4DxKKcg2fn7bqZJUHI0tNL0LsxkX/vNitwwky6oGvcp2LK9ZOLG6zUJeWMgo2ilvZXM950ffR5S7OrNFWZn5KC37g5eZCR7+4ZrptWNa03qglVKKSy+9lEsvvZT19XUAut3uPdrmgxZgefe7380b3/hGXvnKV9YBNN573v72t/OhD32I5eVlnvrUp/J7v/d7PPrRj75/d3Za91rp/d+qQZbClzznKz+N84pdX5VMEHf2PvRtR8NgbRikoqF5Go4ECBmO6gGdaqQCyHgPjRSVl7S+swzW4ZZXZFiXF2PmTxgg6oY0PKrVxBcltj+omyPColVBDaxQaBSgSodrxpBG5LMJtqklrD7knESZD3YsoEKAphk5GiugSx3C61XIS/GBAaWwTbCJxuQBLMmpbRDifmWTIIehbIl9knJineQjaB4j5LeMH++i8DpOFrRlS+5XVgCbmkWo4LGvOsR1l58cZJnWg6O08mjl6EQjvtw7h08eeQgr315g7puKAzfmxKsD9Kgk39Ni9byUpO+Y/foqapBJqKfPca0EHxl6ZzfIu7CctjiSlPgDil1ma3P89Xds/e44r0h0yeJ3dnH+F4fM3RBz4tGa5qJncAB84rENRXTcc/BRb8TddBsAqpHy0evHlhyPfc0h8hlZkKbLomYxI+jc4Rjt0qRrjmxGo7xn11dH6GGJa0bh96AouhFeQ7xu+eFL3stHrzz5EPn8P3sXN75Eslce9g5h8n3z7af+bVz7u/KYJ73sEHa3QXlDuuJIlwtcorGJptyT0IgUcelgtiVAS3+AW1uXxYgJKpXTAFnG/xwz/5QBX7oNYEq9mNlBwVIvPCcft8EzWZGfMUvcSlGrPfxMm2xvm8HeWIYFodpHSpq3WJTS+PUe9sgxlFa4NEXvXhA2XyNF7ZqvF0uMMvxgiDuxJOfzJAGjJYfF+VqxQpXz8r1WYZBaM8irAcrkZ7VNLo4y1H7f9UBUqZp1qXOxFxGLzCqBWuMTwzWf2Dln4FT13Ivfi/Zy7arIBNd88s288Om/Lfvv/WlZMUxrWt8r1V9t4AuNyWDuRosZWtRKT37LaYpqFDAc1jkpsFEtKOfqAMBoNT6fGy2DJgv4PDCeR1vPz4wZ2RXDWYD6oh54jQdzZmIoGYZYVd5gMrGcLIU5jwsDLu8FbB+VIX/Q0Vhy0j/aMNj2EA98TfQBUF4Trwm4YnJf97DxUFTeugz2tanY1mazmrKpxPqzFCtcbT3NwwPKdozJgy2aUtimRufy2rrwuFieh/P4WHPxE996Ss/9aT04ys5aVnpNjg1niI4kdG9VzNxa0rp5DbU+lHwg5yFNsLs64MAsrtHxDt9p4qMIIo1tRkERkjDYY7CzTczy6ravuYVUJmJNWouW5I4V4sUIO9vC9DPUsSX0/DnoEoqOpnncc/DM/y/2+AkArr7td+rN/MAvH8IbASHjHjSWLbqwqGEOWSa/O+sC0c/iszzYLXn5rSaxXOet4+Aj38AV33j3SY/dJFD0gme8A13Y07IMA/jsH72KH/jlQ7jI4KKUxokc0xuJ2hjwlcq4kcJ6D/IClSbgPW5NCESnRRraoU5q6bVZBbODSnuLSiJNseefQbaQ0roxWKx22tj5FrYZh2G9wyyu43v9oMAoKY+fgOMnBKBpt+R8PhigOm30nl3y2QF+lFEeWwQQsMEYsQWrzt08CICSe1IB/FNK47WD0m/5DDZn9agoll62IgsVXsC6QG7Vo1yuSd7L78R5SGOMUthOfM962he+V8ZDweL2mk+8adrPTmtaD7IaDod472m1WnS7XW655Rb+y3/5LzzqUY/ihS984d3a5oMSYPnc5z7Hhz70IR73uMdtuP1973sfl19+OX/0R3/Ewx72MN7xjnfwghe8gOuvv/4eI1HTeuDUdfmQxyZNYhVx/Lo9zN6gmL2zT7QyEN9MJUFnvgpDrpjMRYGem0XNdsWjNstroMUNh7Cyij1zHn10WZh+IUi0Zr9UodAmLC69x61Ic12x/3wIV1bGCOu6KMdB2dpJYrzWMjBt6CBJVXXAmosEtPBKLLmM8/UC1CZioVA2hLlvMgFDkp6lCCw8M5Km2+QBpPEQZSJBLxuKoqMY7hVGlxkKyFIpXVwiYIuNA0MqkX1QVv5dtAVsiYbCLizbAuSA3L6BdTWtB239xx/4Ey699l9x62CBz3/jPDo3xHQyaB63NG5dESsS74mVohtpTGZRiyu4lVV8XqC0QicJKk2Z+47B755j9qYua+fMULSplVinqtsPL8ABuOnfvhr+7fj2R7z9EA97ys3ctLiLdd0mWVNQWlRbrKBcr7dhO9d9QICLC953CIBiBtp3Qvfba3RuNoz2NzG5fMeXH9ZEeU/rmBULkEKsIPr7NMpHNfi4ua677SwSHP80fCjn7HsqD/vr38aWmvKMmPhExMPeeQiXeG547cmzWWBs+6ALAVNtw2AyS/db62T7u5QtAwtN8tmIeKFJ44bj6NLi1tdrFtzdZf5tJ8Xfskjdzgu5YjvXHsoTj2mk9M5u0NEKe6DDcHeEi+U8N5pXRCPo3FmSnBjJIC4yqNndRFkurMYsFybgcAjDISqO8XmOC5ZjG/b9exVI2VyVT7VWY8ueAK4orfFVFss2AwNlEKZfEosqyGhZfMax5A5Zj6pIB6WFNIb+ENXrc82Xf++e7bevVI9KLk4BbK0WoS98ym/ds+1Pa1oPtsoMulVik5h0KSda6kOey2A0TbZeLyfys8TqcIdzdFkCKURizzjZz9bo5qZz+eTgbjJjcIM6sTqneE8ddF/lrlgn/YHSY6uWNKjFo0iyxLxH5SXpcoltGnQmvvcu0aTDkmhksYkmW4jIZjXRwJOuyWNsLNuMMi85gLmjbBl6ByQI3CuIMgFWlBMAxiso27FYDyLEIZXqYHcrPbBXMJrXxH0BanykSFY0B8/6d1xx+7+/dz7nad1vdfPLXstD/sNldG4Tgk6yZonXSlR/BH0Zgkt2p8Mcc0I6yDJ8r48/fBQ9NwtKct6Y6RItGtq3RMGGyJzq5QFI1jw2VVuAlxc88x2U+89h/eyYbBZwwS7aSmaczzfa0n7x/5F+9vGvPERz0aEzh21G6EUragozQbrwXs4hMM5PiyJ8uyGh6m5n4OKnP/0rfObLF3BmpHjuC9+L8h4daygsF//g2/FGcfU/76zyqsqmkPQ8zSMjouNr4dhKT6ciA+0WPk1Qekb2Z5RJBpxSlMdP3PV+drJOYWt7Vx5bW4DNzrB+XksU5esd1Hwb24wo2wYzcmTzMelKgakU5kajE3GyqOYDk1aPvj+srR1ddX8o9/3Sz4aqs1f82L7ORxEqcfXacuLBG/O/QP5flgFQ1PJdc16+U9aNbSvDb9bASZWKp7XP3uOCArIiANT97NOm/ey0vnulToInT+vk9eM//uO8+MUv5ld+5VdYWVnhKU95CkmSsLi4yOWXX84rXvGKu7zNBx3A0uv1eOlLX8of/MEf8I53vKO+3XvPBz/4Qd70pjfx4he/GIA//uM/Zt++ffzZn/0Zv/zLv3x/7fK07uV6bNKs//0jz/sCMy8c8ucffSYX/neLGuTi9R8upL5qIPNCAkDjaCwbDbfXgXHOM9ybEt8avFOVgCmTIXLKGPT+vfLcKMIfzqVprb2qqwGnxa+siUy0IYtc0hjXSrCtGFU4zEguyi4mBBjKotBFsvAbLmiSniIaesqWMPPKlihJfIyoSZwiGopNWLriMbkoXiqfapsqyjRYeilZTIZkTrEXW5Uge1QAWIKKRZdiSeY1FC25T0x9gz92UgEwcls0DPdP63uiPnzrw1k/3GXXlwzd2wqKtiFZD0BhXoSFpUKXjuTwmiyYSlkceIsAi0mMarQk02RQsvvz/dOWXD/69YdoNFN6nznAD/3u+/mnvxlnOnzzrZfyU596BU8843Y+m59H/4wmM2fPkwaw1OcJB/f/KiQJV0xYIDSPiYolW3B0bxFGvh5mtG7OsTNN3NkNyqYAjPmMwUWG5rGSuGcxc5p8FvpnKB71N2/jkXuPsa+xxvnN47xi7puMfMS3i3n+8vCTuOmWvTRvi9FAWkDli+pHihd98tfoFQnX/PAhzv/3l+FmS5JOjrMKd7iF155kt2bmJk/rWEk0lLBFPbKopTUaR09At4NPE1wyK/lJF+6hcZOB4bBWz92jCgs8NTE4ONk2J9Ur1UJYVVYJVgZ40VDk840TA5o3l9huk+M/2GVwhmf2BkXr9j762Ap+ZRU3ylDrPVFYpCkqjigXl+42i/FBX9t4i9e3q3GGzZjdHm7b8NgAwkAdHqrSVMKvnZMFZyztoKpUl8MRdNvy/HaTK77xwXv+VrxHZ36DF/Vk3dPF7rSm9WCr5z/xa3zi1vNxcYOVCxso12DmxjbJtw/LtdZvYvCeJJdgQ26B0mJJ00jDgMnWCpeKEAQTNmIwDhRm63XEO79hMKgiNR5kwYR6TuzAaDfxaSxgKoiVoFK1XUu8VmByR9kI+SgjIS3pkQUP6VJJ4wTSqxYOMxJVnTca24og0bWVLkC6KkSiaOiJMkfUs5JvGGvJUrMeF7IOi6aWftV6TCl/ey0EJh8ZITfo8TlzWg/+6tyimb3R1opgnVeZF6JeUZgQih3Del/IHWUZlAZDIczNduX7HBv06oArbnj/ab32RT/8LtrNiKhfcPBRb9xgkXvNJyXf4UkvlxwYm8JwX0pnbQHtPd5kXLLwMlQSc8WR/1g/b/56WXu6RGN9RFxlHxUl3joBWtIUgr0URkufHgbNvpXgTMxFz303+WzEaMGQzyiGu6HzAydYuulC2rdqWnf0JaS+sgMNpbTmoue9m95ZKXlX8aXfu5RHv/5Q/Xt0T17HfK5LZ9nTvTlk1QxH0mfkuQC+vUKss1pN2c80HgNWjRR1Yume97OwIylow7n0JBkfypj6b7/eo3GiJJ+RfMbo8BLRKCPtdug9ancN1PrBUKy/SiF6eudRSYwysVg7ThJgsnv+Fh9UtV1PW91WOY44UaGInVosSqH6sWr8uHD9USHTEaeFzFopK6nWrfnYbs0LGexU6q3TfjsOUGF+MlGnA0BOa1rTuv/ri1/8IocOCQn3r/7qr9i/fz9f+tKX+Ou//mve8pa3fH8ALL/2a7/Gj/7oj/L85z9/A8By0003ceTIkQ1SnjRNec5znsOnPvWpHQGWLMvIsvHVbW1t7b7b+Wnd6/U7Z3wOgNZFOX/zpeex+4obcEVg/ITQvCrozA8G+DxHt1uy6FzL8UWJK0ph3Lea2FSRn7eHeKaNGebiD9sfyOIUUHOzZBfuQ1lPcscq+oz9uNsPb2D+VRYNdm1dABkdFrqlFXZxN5WQYA84j8kcRdugQxC9V7LvSc+BUpQtRdFS2Eaw6SKAJ4nkpAx3meBBLVZeKg5ICMHmy1SMYdC5p3lcYTJRpphcwBSbyvadkdskw0U07c4odAmNZY+LIO8K8GIi+ObbprZg34s12xrS76bgmyQrOdHAUDYNbqaJHmW4ffMApDcvye+s0xLbpuFQmKpxLP7PcLea2GyXx501ovHkIWvXLGy5//q/fJiovRbksXc+O2V+75nMXbuIWpRQSJoNLnn0m8AorvzKO2gd8wz2KrQV5UTZSUjuXIS8IBrN0vGe4f6GAJSFxzY1ZduIF7zz5LOKb73pUh7392/hppUFkoWSPz/6ZH5/7dkszPRZXm9hrm8zfxRaxx0mc0QDR9E1lE3NcLcit4bbluZ5zG8cojvS9M6NWdi/wqiMWKNF605N9zbPzHf6Emrfz/BpzPCMDtnus2l/7mbckWNQljQOt7CPOJdsd0pxYJZoaTmwvILSTp8k+P40ajs1y7aPcx7dFMWSD9dS1Q4nqqKALGPmukXcHYdxmbCbdafNvuFeYLeAxp2EZCmCRIApN8pAK9wo27gQ/X6u7T4L74REsCkUvs5W2W5AaIywWqvBy8TCVQUbBUCGTZnkKvjGNp7fd6P+4ZrX84JnvRObCutdZZaLn/y2HcOkp3XXatrPPvjqsZ3bObqny1dn26yfI4P/otVk//Ic6ugJfC/b8fxXZ7MElvekhZh40gu7V7VbqEisvnyeCyteaVQSo7sdKCUwWSWxnMO3ez2lxzkB1RDUGMl+CrYuonorod3CtUNuQD0IkywLnVt8WHp6pcZiGg04hW1GuETU3bpw+EjhYo2yGjMsxZo2d+QzEWboSFdKkjUlVl+5Q2cWH4ecKKegcGK/WzqigUUXHmYUyXKOyeR8FzUiIOVTf/Hqe+tjndYDrCpb46iXSy5IKj2iCtmadAKZYGVNfjfttvQi/QGq28EvzOA6jbtl+TPcm1I2FRAxPyi2fcz89UNcpBntjsm7mt4Fc7TTGH37MblGJzEHHyIK6CtuuhwzsqLKSuR3Zec7mOEIN1oVQmH1+6+u80rJujdYgvpI7D4vet670RYaSxZdGNp3euJPz9DFkqwMie48IYSpSfZ/HEGrSbSWEQ0TGsuW5z/7nRxALP9WL2wx/ESXA5/uYY6vwXqvDnMH6Q9VqynAQ57jl+Scozpt/LkHcM0EnEcbA8qPFSz3pA/cDLJs3tam+1UUQzk+TwIo6/B5TuMbd9JoNnC33UmZ53JOXFunMxyRPHSfbCCKhGDpxzmvPstw98Dy7HuytrGxFSDegtYoZSAx+GJrj6uMwVfPrdQqWkMcjy0qHbKtYDtW5a/cW/UP17ye5130HlwkoO3zn/1OPvzxu285Nq1pTeu7X4PBoHa6uvrqq3nxi1+M1pqnPe1p3HLLLXdrmw8qgOV//I//wRe/+EU+97nPbbnvyJEjAOzbt2/D7fv27TvpwXn3u9/N298+9dl9sNb5V/8i859J+dibDvGGd3+Lg199Ker6m2UwF5ojnSTCHOl2hJEUbLtUItJpZa2oWBZP0Dx+pizu+iOxEev1JZC53YLIYGcaqMIRrWa4bgNVOvRsF3c837lpslaYQ40U5Rzx8T6unUqQKeBjQzRMKFuGaGBxRokNEAK2aCvKFrwi6ovyRJdC1ChT0DFkqQo+1ZDNq5rEgQ+AycgzmlcM9ylc6tGZPF5Z8bsuWrL40EUAV0bSyOhCQkJ7Zxj6BxRffd8UULkndckT3sKV1z6wZcMP++vf5klnrrA2bBBlDWwrIp+JGC4Y1s6bpbnYZeYfrsf3h+KhPNOFNJFBSxVOCPi1da5c+8N6uwfP+XXKs3aTzyU0P3sDVy5+aMd9aN+hGBZNlvfGPPS6rfSurxza+j189OsPcfQpe2ge28vMzY5P//mrOXj2K3H7BaAZ7lIUXWBPRs+kzN8Qk3TaNfM2OrbGJz75Zi559Juw8y1GuxosPk5z/jNuoRPnfOWOMzjvD9+HXp9l9nrN4rUNdueWvf0+9AbsNiNQK+KXXxQCqs7NkHQalO2YdDni6B+fR7SgKGZgtAviNUX2d3tpLTrm1kqS5RFmeSD7VJZQlKg1T/P2I5AXHPvpxxGNPAv/dBvu6CLq81+nQWDbQWDImbEdAdwzv+bTyXKpBm+RQXV3yW2NdGy7EYLTyyc/HB/YZrp05LMxczfkpIfX8Tfehg2hy7XP9N3f6/umqoXgdgvCe/M1Tnr3dnZBE+GfE7Y+AFf1/xsAFzdeKsNQY4S9GhRnyhhZjMYRlHqcx7Lew2c5Vy7/53vpjY1LjwpUafFaco9cGnHxk97KVV+Y9mH3tKb97IOv/q/O17hxuIevch6zN3oWvnCCxafu4pu/OssZH5lj9uPfwS6tTNh76bFdVyjvfG3NWGW12P4A7ZyQzr0Xi8XAyFexACK6OVaDV/mBRPEprxneefG3txY/tLX9kAC3CXZ3l9Fe2XbjyBA9DPkCaYxLIpRR5LvC4DdkDhbdiOGCxjZFNe0jsa9NV4QAhE9I1zxm5DCFJ+pbBvtilId0xeKNJgJcLPa7yUqO9uAjhRpZol4uC97A+i9mYz7yt2+89z7I78O6ZOFlXLn0B/f3bpyynvLzl5N0FNGwUncJ0OeasQSWr63jjy1Kz2QCIa4/GPdxnTZqVHD1de+st3nwgtfi5jvYVkz89Vvx3u3Y07bvHAVSAejF7TNbPvyxrd/Fi3/w7fSfch7xeslH/uENHDzvUvxsB4B8PiHvSC5nlIFyKWa5gVrvjUGQapgfRfhmQr67zWiX/GbinuWiH34XuvQko4xoZQBLK/jQd/qQc+cqBUmVMaoUDEENR+glxczRZekhQq+Hdey69TgUBT7Lg0NElc8XzhnB+kp12qhzzxLV7OIybjjEf+V6tDGoZhM1OyMAUZ6HcyD3HGTZqbZRVVTh8rV6osp0zXOIY/TZZ6C9uD2Q55CmJLcuyf72+g94clClflZBYfNd72ur2zdf0ypwJYqEHGuDkkUZrjj+nwC4uPPz8r0LawpfFPI5VUC/UmKBG9QrlCVEhisO30Ob2+3ehnWYUVi3RHoKskzr/qkH3KL5wVMXXHABf/M3f8OLXvQirrrqKi69VGZMx44dY2Zm5m5t80EDsNx222288pWv5Oqrr6YRmNHbldrkV+y933LbZL3hDW/gVa8a++Kvra1x9tln3/MdntZ9VpNB92ceWKZc28fj//EVfOeiP+T6l7d45Pv24G+cANW0qq3BpKEohJ2CDKKqIGTvPOnhdRkIHlvEO4demJfwueVVmJ9FDwuU9ZTzDaLlEWpRGlJlDL7c2px4a3GjTBrGEdBpgVES9GfFi9W3UiKgbDaxDSMWYbGoRlzksYmibKrApBfQpWhV7w2sF8uuYgaSFQFNynaw7SJYiilFPgdl26ELJcqVIrh+GchnAQWRg7IBZUNjcsl4KRuawX5RzEzrnpXf5lx0yRPeglfqARGoeuG7D6Fch8/e/AgaxxTNYwVmUNIclESDhNWHxKyfrZk5sAd1y53ChF1dk99M5RW9abh7ycLL6tsjo9FZ96TgCoCN5Xu859OG9Nt3nNa+f+09l3Lhew6x5/l3cPMde3jSyw7xhYlw0K8cupTzf+dyztm7xK5zB3x16ULitTmU95hBgTnR4+DZr4S5DmZtiE2bRAO4/htnceD8RYp+DENNckKTrHn0qECfWMOvrst7TmJZjDsnC4PS4o+fQNt5jGkTLw2I15usPrSJcopsHkb7LLZpUE6HEN8gcw+2hX6+Cw7UWg/XH7LnU4u4doo7KiGYKolRjVRerwopryyeshwyJZaJ9+bCafNiqcqeaqSMLtxD2dQ0FnPJ2og0o4WY4R7DYL9YGSZrcg7rnQu7v+xIjhmxtWo2sOvr995+3ktVLT6VMagkLNiMrgeStte/58f3NJRCSitUFNe+3EqHi4GlBk/8pKf6BPDigwJzMk/hqtGfAvL7VDMdwIEL18ooOmnfdI9LKSEn5CUuicYDmGndo5r2sw++Ov+sw8wsvwidSc+nSsfct0cM9jZZfji0jpxJdO0QW2WLBWsvGNvYbLBonDwXWSe5DN7X12dVW6cEdbf3QorIHD4rtweRN4E5SodhUgXEVP/3HhVF6PWMBohKAISpHvKWdGHxRmFGFhzYlmE0Zxju0ox2ByWLhrLlyXZ7yqYmGoq9py4VecegnBB/VLCszbuaoq2JB1qsxhwUs4korUcOUziK2Qa6sOjCkXdFmTqte1Yq3n6EcPCsfwfwgMiveeZPfoDEQXPJkyznqMKiRrl8J2OD66Ro5wT0L0rJ6wx5DzJ09qi19Xowe/CcX5ffzCgT17uiWQ99dypRU3mSO9fwa72TPnayrvrcW3n2j72fwb6Ei374XXzk5kP1ff/0v1/DU37+cvkNGCg6hjioWIgMaCND5UDCsO0UHylMLr9dnTuxgvYenZcbbLPrrJBgu6S0xjtRb1QWo64/kGOTJMEGO5Ict6bYumITIXFE0bgXUUrWQGUpvchaD20FALKrorZUaYrevQCtJj4O57nldXQj3Tan5D4rI0prIGSoBluqZhM338Y1YnxU5aiCbRqOPSFlz1dy0tvX0Gvr43P2A6xUANFVkqDTdEw4jQxueeWeH+PNYNXkNWVSJTTR01YW6/V3jKpvDdcr77lieWLdGMC6WlkVRVxxx3/g4J5fkc8qTUFrfCMO4E0D30rv/ns62dv14nJQATv+1O38tKY1rQdQveUtb+ElL3kJl156KRdddBFPf/rTAVGzPPGJT7xb23zQACxf+MIXOHbsGE960pPq26y1fPzjH+d3f/d3uf766wFRshw4cKB+zLFjx7aoWiYrTVPS9L456U7rvq+fPOtL/MG5B+l+ocHPnP88fvmZ/8hVF/ww6eGjuOFIhn/VBbvVxPX6sugsCmHv2fGFXxmDWlrDLa/U7G93/AR6bgZm2vjFJdTcLMV5u9Aji15ek8Xr5trcRFSBg5ERyxWtcc0YlYunl09jbDMmXitwqcHGBm/EmssmkM8q8hkBV5IV2aaLwaUyhDajsMicc3itiXvi42ubcr9teFwCLnaS2dJTmNEEOzBR2IannC8pBobmUfGjVmuQdxSjXZDtsdz8K6/Z+l6ndZdqM4hy8ZPeWg8XL37iW+93kOXbb7iUx77qEK3jYHKHttIwqtwSDUoaK4b1tsbONDGVBD5N8d7hBwNhInlhIl3c/NdcNfzv+MEA1Wxy5ep/Pe398FHIFVp1G3JUJuuS3S/nysUP8cKn/Ba2FTHcl/Kyt36YffEq71w5SD6zFRG88ZWv4rF/91Z2NQc0nrjEzbNzdG/QzN1gMO2E9PAaqjfkipsu59k/9n5GCxH6JsPx9b3M3KnEJs94CeVNY7RStfUKwXYFHcCmshTGW3+AKYWBFVnPjFZ0bxfgYf1sQz4D2Ry4yGDjJq1Io4oW+VxCspoTLfYk+L3ZwN98GzqohCqGoWo28TMd0GLPQF6Ip3hg3WnnZSh/by9KJ7z+vbWi+NOK0YLBRSlxz5ItRKydo+k/xGLWNXglYC6w66uO2S8cgV6/XtCZbvcBB7JUDD8VPlezZ5cA41mOajaIGimu1xdbs7tzjE+lWgksw81DT+883pWySGUM3l7V+2Mubv9cDXC+MP5X9fu4uvgfW7cfFGeS6RIGtbNdsQu7D8pHWiwyKzujwt7v573vlZr2sw/OenL7Jv4kfRY2VtjZJtFinz3XxSw9PKJ/ZoO5m2ZQw+HYasZ5dFwNgCcsISfyCmrQJQsB99V93tVMdJ/lqIZYO/qQ07JtbQqAri3CwkCpPkeF29RgiBkMMYHx7dMI4gSXRgK8G42NNdGgxIxAdWW7JqMOq6cFbrYkszEsK1wkqk8cIWNQoyzEQ0/ZUEQjT7oqeRou0eQdzXCXpnnC0emXlB2DGYqCO+8qPv9fXsW07lldcfT3t9x28OxXyj+U4uBZ/+5+B1k++Vev4Tk/8j7ifilAQmHl2ma8XDONkiGsGV9fxwNeITP4/qC+pvrBABXHpwRVJksVDlNYKMqTKn4ubryUq0Z/ysEDvyaARSOl+MF9KBsGuJvqs38s3+Gnv+QyvFYUcyk+2SegyUgAVb3c54ob3s8Ln/JbSF6mk/+v56Isc0AAP2trUa3EIgFRb1Q5NYDkYriJ42StnDtUjoojsQpOYlEgdNqS/1QNnvMi2DVpQPJvXH+wUXmbA6OM/Py9KOsxvQy6bVHM9Qfo4eje72e3ywSpAKdmQyzSQj/vOw3KbirHCCjaEcO9Ef19il3fLGl8+RZxyshzTKfzgARZfBlIps6Lbfr8XG2ppQ/sExvolbXTPs4bzv9q4lpUKVOq13VagLKinLhebNy+G2Vird5IwYhiRdZ649/NJbO/WH9ntqwrjR5/h0HAwDkBynx03yAfLhIQswLbpuqVad0vNVWw3O36yZ/8SZ71rGdx+PBhHv/4x9e3X3TRRbzoRS+6W9t80AAsF110Edddd92G237hF36BRzziEbzuda/j/PPPZ//+/VxzzTU12pTnOR/72Md473vfe3/s8rTuw6pULD8z81X+w55LOONjjs9/6mH8+Uv/gT96xgs47/hDMDfegV1dG9slVCFnxuCzAmedeFADLpfmsMpbAcY+1u0WfnkFDuzFJRHR6ihcwMMisyxrFUxdk1YORtesHwDlHB7wUSRNo3Po3KJCQ6dahqKlyLuyqLRNWXS6WJQmcU8swlBjS698RlgUEnwvt8sbEwswF3t0odEjsQbTuQAsykHRBtt2zO7tkRURQ9XG9DUuomZHTcGV+6hCcOQDyR7HyJqSZM2iM0vZivCdCG09Ovck65DPJrTmZmFtDXfOPtSohLXgs+wVKM/V+Z8B1Ez5u1Jfe/fJregueu674XEP4ZLHvgltDOsPbbP6EM2X18/iMV2Fd4rrLtt+G1kR8eXbz0Abj+tabKopuoZkNSymO8E2RUGy5inaCtsTe7GZWxzJeinB81mB77ZQzQZqdR1fWwKIRF01GyJhj2RR5pMIvTog6uXkC03wsOtrBT5SDPYYyoaif0DTO7OJDeDp3msdkXMQx6g0EYA4DNVUkqAW5gQwbkS4RiwL+VUHBEVNWGhowGWjjQciBKRX0nxfFqdnJ7aDl7Xr9UkXh5gsIbn5BAD6obtZuSCFVknr+hRTiDqpfdQx+/XV2hu5UmWY5Lsgk9spNH6nhxuD7nQESCtL/HA0DndupFBa9Pwcuhp+Doa4weDuW7NNHF+llXzWE7kHOo4EkKof7kF5qmXsxc1/vWWT2wErdbUm8nJcsPpREvZ88OGv54rr33P33sdEXfzkt4H1+NRgmzG6cKCpWe3Tmtb3c/34+dfyqvxybKoEfFzv07g9oj0zQzarsQd2YfIcu7wqvaZ3G84BINcdGXSFmwIg6wu/MSi6AlKtg0RBGUKAq6D7u2Jro5QA+ZX9IMh5pKqilEGr0dg0ItuV1OHxyoNLjLB9PcQDTzSSnrfoIHaeI0O6rGgeg7IJ0Uge6430rqYQskM0gqTnMAMruWmRIpvRDPeBbWiiYXjdpsYmegqu3JdVlhDHOxJj7o/SpSdaHqCGYlflU1FNqiqjAUKvJgCB7rSFKLO0XOcWVX3sqdTX29U1n3rzSe8/uP9XZT/n5zi47xXy+4xj3Iz0iSZzOw5tn/azl+MSRTSw2IbGxTG68BijMP0c36xC7lWdaeSVwjUMpudhvQ9pMl73NhuSNZJlMgivVLFhYK2qXCdjhORTPa/6/Q/FXpskWI92OzW5UNmezABrOyg511TKO1EJx7heHzMsyedSVOFQSYRKInSzgVpdg7Xe9sP/zQP90+3Btjnf+VIszpR1Yq8IohbPWujC4WJN1MuJlxxxL2X2BojuDPmPeSHZrtEDc8QmPW17rEArS9lvrcXmuZGiux2xlywK3PETuMFgx+1Ngiu6kcpvK2TgqjiS71Bwk/F5sRHINAZdrT8mSAAV4HPJwsvGYMnE613V++Od32AU7PHyXPJbmjEulp763rLvet5F0he7RKOMwmHQ6oFrBzetaU3r5LV//37279+/4banPOUpd3t7D8yz/zbV7XZ5zGMes+G2drvNrl276tt//dd/nXe9611ceOGFXHjhhbzrXe+i1Wrxkpe85P7Y5Wl9F+p/9R5O6w5F3LOc/78zPvJiw7//2T/gzTf9ErtXB+gsE2Yx1CzgyiYFa6EUEMU0UtRsF7+8Om4WTILat0cGmOedwfpDu2LRpSFZLWnceAeu1x/LiDdXxSz0IYsgkmBfYd55CVpM4jqXwBuNbYoP9WhechpsImCKcgFg2WUZFYp4XVQmLvKYXJHPWWhZXBaDV6TLMigvW5AriJyEiZqhgC9eywJ2cIYiW3A09/dpxCVFaVC7Mso0xg2M2BNNUfH7rHZibl/85LeB9/cL8HLt717K03/mMuLVHOUc/TNT+vu0DDcYW3P4bhNVFJCXqMFQGmkrrLRr3EkGuqdZD738cr7zqh0GIQqy+Zh8Zo5szjBcEHuVz3z8kXw6fiQ3/vrOA5Q0Lul0M7TyxHOrHPv2mTSP50R3LsEow6/3uLjz8+hnPQpdiJWILuX3t36OYdd1JdGooFhoMtwTU6aKhesS9FIK/X4IEBY7AXv2Ho49qcNwn+AuZ/5Tk2i9wKUaU3jSY328MUT9GJtoBvtj1s9RDPdb0kXDYF+CKueJ1jM5vscW0TOdoJZRYSGboEqHbUWo0oNpYxbXZQEbGVRlqVkBLJuAFRAVg56bgTjGHjm2FTDeXJMgS5WZkmXoG27D9HpYQCUJydoaB9z5LC2lRENPuiq2FN7IIl9FEb6/HHJjHLa/8yLuHlX1nuOovh6cbnlrcb1eYI2HQOckEdudXh/VbArQohQ+jlCdNmYwxPf6d12Ns83AoL7NVKCWlgXpxCBUPs9wHQkL24s7Py+B1YQMlqCuqpQtdRWFMFLD9ZAkEaaf9/hGvAFkOfiw13HFt06PsHLxk94KTs5xqnS1wkbnYhGkoL5/WtP6fi9/YATfaqIHhTDQjywyq2Ht4TOsX9BmNtuN6g/CQHLr4FBsDMeDTrHp2QiWKK1Esea92Evu241PItQwx996O64IuUycRMkyqWJRIZch+OQrpeX8CALYxBF+tkM526CYTRjuEkClseRQ1jPcG+MiIfHYRMAVbSFZF0VeOTA0Tsjjo5H43LtYMdwTEQ29BNYr8FqCvgcHEsoGFC0hRJhMiApr50boQixvo+G0ob0va6eMg4MXvJYrbnj/d3lvpP7x6tdJQHxeQKct5DZroXSoLK8tiFQcC/nNO7CBme/Ku0US2lwveNY7ueYTpxjsVkS8SDJUVOloHc35yD+8Ycen/POfvIof/IXLKZui6FIe4vUSnVv0+giWV8U26aFngALbMKjC4SNNOd/CRFqAJ4BmE9IQ6N4fwmCAH1Z9oxKAYW4WnyaiXu8PIc9rNXWt5E5iGI5QNISIGEfynpIY5d1YHeLdhBpvIzhiTvTIz25RtBs0FnO0VrhWjGkmaJC1emXLPUlImfi3SpK7riyugOmgrvEThEvC+4yyDN8VYooaFcRZwejsOaJKNRiOmRuOtnmBe6kmcktO2a9vKm8tbn1djn2zIWQtkHO30fgkkn5NgypitNLofp9ycemkx1IniQB0SstvqALYw3pIRRE+jrFr6/L5NJtiIQdi/xZcR1Sa1pZlePltHjzvUq64+RCXzPwCSmsumf8lIa8qvb2aLDwPJ7MV6WkBBc+9+L3841WvAxDrvY+eXhbX814gffA/XPN6lBcFnC7lWmYTjTeGf7z6dXflo5jWtKb1PVoPGoDldOo3fuM3GA6H/Oqv/irLy8s89alP5eqrr6bb7d7fuzat+6D0/m/xq/vh37cOsfSIhP2fGvKaQy/nBf/3P/OIX/46d970UOLlFZEoT1Rtq1D5VacputUEbYR5XIW95Tnu9sPyWnlOvK+FLj1FW/ykVaeNX11DtZqoXn/bJkeZYO0TPPCpGCPOobzCJ+AiRdkShYCLlQwfo0CEj3ydR1F2HcnuIdlaSunBzRU0OjlaO2wW450M+Mq2DJu9ESagi8VGLBoCQnbGRpB1Id9XotsF+2bWWRk1GZwITSOgStC54ttvmAbbf7frqs+/jYPn33+qoaIVGEhAsi5DDZN5kp4jXRwJG6h05BfuJ17s49d7ta3eNe4v7/LrPeRP3o06keK1x3dLbv43ryNdVDzsXYdoHoG5GwrSRVmsXP3Zt/CRf3hDPcBt3+xxzRis5+rPvuWUr3Xdj72dH7xCGuo7FufR+x3Rei6ZKUWBz0Sinh4fAC2UixnsUZRtWH18QeeOmMaix0WawV5N7xyPi2bZ88+FAE7WoppN+j9wFscfFzHa5/Cdkrk9PaIrG0R3niBaDIuH4UgWahqiVUuyGpGuNllfMqw80nHk4gJ6MY0jDfZeW9L8ToQfZeh2S9iFowwVRaj1IXquKecMrbC7u5IXlUtgqVIKnfTrgOPK1qxmH6dJPRgzZ52BP7Ek2SKw0R5mGw9lVFyD1nZtfQy4BI/y9Gu3sndwgP5ZLeKexWSOqJejBxnl3hmiLEfPd1GjAnvTrfc8yHSidBrOvWGxXX1Ht80XOMlrVotsl+fCihuIrYWKYnyvL8cwilB7duFbKSoomKKZLuUdd+68g9sogbZ9WBTyfYyWYVBlpeEld6cGV1xg/mnqzLH6NQJAc3Hn5zew/64IOUUHD/yaMBgn33ekIZ1oE83G+09aDpT3XPLoN4kFSTX4LRzKyqJXmSnjb1rTArjxJW+ElwjDVtku6sQq+o7jzFpP7/wZRmd0aa4u4I4c2xB4v8E2MAyFa1taxv2u/FvLADQwhNXispz72y0BivNVVJyeVMWyIYx4MoPDOojkekKa1EoGn0TYRoRXYDIfwBDZvC7k72pzRUf61nRZ1CrxQFSkKvStZUsUKCAkp6pcorGJYrhLtl0RoaKhKL5dIn/XXvnT+q7X/QWu1FVZXmYZ2jn5fpa2HppX2XV67x4YDnHrvbuvQgWe86PvIz0+QlnLVV94O9FSn0se92bUIIP+oN6fK47/J6448h8BBAgB/MihRhlqEPORL//2KV/rc3/4Kp72s5cDHjMSAosqrJAksgyUQq8HOzBPUG1H2IWYuBvTONJH9YYQR2RnzIKG5Fgka9a8kP6m3cIvzGAbiQyXEftZsgw/HIkypVLGOSdg1WCIygvI5Rzj52ZkXTEcoXoDnLXAOBcOqDPu/JFj2HQfoOifmRKNPGbkiBJD7HehrcWtro3z8SYsEutzlFKYdgs3yna0pNq2JkCWDedO5SHYjKssl35JKWikNL59FIoSt28eXRToVhN7+53yvHurn02SWrlY5Zf4sthyHdjy9zZV97SDAQR1ik4bqF5fetlGip/vSg5OtwnNlGhhDtZ62OMntsw7dKsltuvNhoCVxYQiJY4EfE8TyDKUVuhmE7VrHt9uoEYFajAUxYzWck2auIZVmUcH970CVVmg6mBn5z0H972itiusf0vnydxCVUALCMCY6LuvnA497Que9U6qTrhyHrFJAndzs9Oa1j0uPyVDP9DqQQ2wfPSjH93wt1KKt73tbbztbW+7X/ZnWvdPPfz53+HIh87HpRFnXHmEL37jidz0bzz+5wyPfGsLtdYL9jdQM/OqBiosOO2JJdTKqtwXFq6+8ieNI8rDR2ksnkC1WqRn7SM70KV4yF7i4Qh3YBccPbbtvtXWLjoMxtb7MuhrhybBe1xiKDomXPyFxedVsPDyirLpKecs3X09itKQ3hljMhi0DK1GTivJuf3oXvCgnVzhy6YAK2XHY1MvNmHrimQlACcKaAMeXBZx+4k5yn5CvBShc2Hsx2sQ3TWy97Tuzborw8x7uSoLjYuf+FY+/nev5QXPeAc6Kxie2WHtoW3SpRI9SomXhqiVXq0KuMb+zy3bOnjg16SxbjYYnT3H+tkxS88foW9vgFNc+PSb0dE+4hVhoZZ7S170yV/DpRew9wuW1p1DzOowZDcYDj7qjVzx9XfV6p6D512KUjNi93Ca9bmD7+LCv3wHAN0bNPl8g+SrS1D9XpVG3XAb7Hk4Radq8mFu7zrDhQV0ETHcbRjtAnNOn7W8Q/PEPM0jTczqkOUnLLD0aI1tePF9dxHrzQYHbrhDcpuMQbWaspjISswwh7V1cJ7OrTGt/QvYdI7BGQnlrGW039LfG9E+sA+/3oNuR7yuR1lYZDjim45Bs4FPI3wSWGFGocJlXrVaAg7AmHFYiMWDD7frVktYho1UFrDD0Xixtl1AZXWsqgVtWJTWi94QcGqW+kS7GxJsrBRlO8YohYs1xXl7WL2gya7PnBB1jvNj1qSXANST2RNsVzptyDm/LMb+3nk+3v8Jn2gdR6gkucte2Rs8p5XHDUfoE8sotYA/toia6W60y9lUwo7dZN2ziW0OCJuvYv/ZMBBSYyY6lV2ZdeP1XVh4ejfBFq13fIcuPPikS3ioByNB9JOPv+Ib7z7dwyPlHL6VSLCwc6i+7LtPIrzWXPX5t9217U1rWt/jVcwmxEfXqTJSuPUw3dUe5Zm7sAcW0Mur9Xl82yGad8Lstnps2wP1ua8ayPnhSMK8kxhdFKhuBz3K0DPd01L5eedQeSGk4FZT8haMrm0xAXwzIZ9vYJvy2vHAAzLwymYlrL6xbPEaRvOGoq3ENbWAeNWjS1GpmMKjCodtRuQziqKtSNYMyWqJixUocLHCGYj7YHJPNFR4Bdp6TE+GD8l6CPae1vddXXHb78gg9o7/IJZc1kG7Cc2O/J5KK+Bbvx/6Iul3rrF/tmE7B8+7FNJUbMa0hsJi51u4RBMvDaGwlLtaJNZj1ofgZCBrIo06sSqAh/O17dElCy8D4MqlP6iZ+JfM/mL4vZ6+MuGf/+RVPPMnPwBANLR4Y2BlTe70Ho4eR519AIgFrEw1o3lNNquJhg3iYY5rJBQzEYM9hmY3onOjqIyJDK7bwFXqliLksKyt48L6ulIJA5LbUkgOoVcalWVC2kuSoGaRbaokEZWDd9LHTOQ4eWtZ+PB3ACgedibZfIyPFGXLgG+RlLvReVHnS03aS3kn9mPKO3wFOO+g/NtQk0oYwjlsG4DE57moJyKxmvOtNCgBQ8bqWXvRa0N0IPdW/awEy8e1UuN0q+pnN9pCshHkmOhpTbt1t7JfXDYS4CC2+KEAHn73HKo/qvtMv2nfdbNZE0lJ0/FnONmjwpi8k8SYmS6UJW62JY8b5tBIZQ2nFLRb8v2q8nvC9qrviC9LlNNC3Kl61s1VPd57sbxTkZBXYy0ZX6FOV73y7B9/P5EGPXRifeYcKrMoa/FpjHJM1SvTmta06npQAyzTmhbA3z7rd3n8Xx6iE2soCtKv38HDPribm39shsHjzyQ9fGTD8Eo3m7WnqgwOK+bLRPMV/GC98xBFkmFQlKheH3NsCb2rTXzjUWmy8hK3AyvOFSX0+tJ8jLI6UFhFBp9G4kFtFCZ3DHcbbKooWiF3RUlAfTlnSedGGOPo3zzD/K3C9NMjTX+UkEYlpq9RhQR4egM+EoAFwIwUqlSo2ptbWILKQ7QS4SOPW4loLiuSVbEWi4Ye5aBsTCkZ91dd8e333d+7UNv3XPOpN/PMn7qMYz+gidfh63/yG6d87sE9vzIhr9cQlaSH14hXUpJem/btA3ykOfGNczlzyZKe6GMbEWs3N7lh9gIecsUxWFyWBVQcoRoNrtwuMLXVvFs2Q9/+qTfzA684xOyNOSazXDX87/V9l+x+OcoYbNPQXHTYMzS6gPzTC/i94JIIPEQ9+NpP/iYAj7v0ECsPbdNYapHNKWzD1xZnb/rKi/mrv/0hsQ+LxLrFr8sCSIVhmVvryfkky9B5wVl/N4TIYOda9M9sYhse32kKI0upoGRwYHzNGmR1TWwcmg2xD8vCIC6KZGFf2SPWrLwJxh9gi7L2UN5pEVgBKxv8kqEORlWJkUGFVrIQai9Q7OtiBhYzKrHNmOTWJYgMZtHCeo/d34lhpgPzcwI6ra3j1tbFojvLgoIjGoc1TwIRUbyFnTiZN+OtRTeb4bnlGLhIEnSw5FBRhAFsf1AzA+ucg80KnvGBwJx7toQq33lYFvAhy0vtmhdrybzY8FzxGJ/wOzfjz0BqPBDdMBwFfHVNKkthBFZWPNaJHUO1oJxYcCqCK4IxW8NAN5UvRem0AZBxDpWVHDzwa9tav1z8xLcCW22+nnvxe4laMaowEizsvSyi+wOY6YQF6VS9Mq1pba6P/f1rufjJb0P3B7VtrTt+gigvZNjV7cCE9eDGgPlquAhgN55DKoB8MoS4sutRCndiKZzD3cnVfEFBp7wTq6U4FlClkdbACoDrNMn3tsi7hryr0RYJrc6DyjJVdW6KSzS68MR9RRkyB03mMbmjbGlcrLDzhtG8wmTQWPZEQ0fZMYzm5DWTdcfCNwswkr8CYAoJ9dZFsBMDfDTtab9fa5LlfvC8S3F75lB5iSotV9x+6KTPPfiQV4nqJAyB62/RYEgUejff66OUJl5dD9mcJUppojzHr6zVSooqa2THa7LewfboFPXJv3oNF/3wu4h6OVg/Bmzmf0k2mxWYvsHrRNTEueOf/ua1POdH3ofa08XFGp07vvAhUc8/94XvJUWIOi6N6yyZ5178XtLb16RHm1grb+7DxJY7OEYsr8hxq3ogrcRKzDkoZWhdPUd5Iey4lTVUHBFde4MMq7xH7d0tFmXHlzbYf23sRys78LFize+wRgc2KonDYyftymoSkXegYiG9dDvj52mNvuWIELScl/nCgX2ouVkBktZ7uLV1ca3IMsxMF9cf7NjTblZVb85PrNTTdQ5N2L+qp1XtFsYYXABZtu1nq9fZ9Lc++wzcbXfKZ9brw+453GxLSDJr/ZqopFPZpp7pwkxXgDJnAcno8e1UFB+D4Xj7Vd5XEdZBDnwa7GjbDWjEdVA8IIB99ZurrmXeixpGq1qtsuNnqsSS3SVG3EG0gPDKC2Dy8b997YanTFqATdazXvwBosyhc4fKhSzktQ45t0qU3tPLyrSmNa2JmgIs0/qeqC//zqU86eWH2HusAUWJvu0oe65tE69tDW6uwZVQk43X5LCuvr0Kn69yApZWSO7o4sMCmJvv2HnHwuDLrfUwC3PQaYsvtdb4RoKLg8coitGCwjYgn/PYtoOGJenknD23ytKgxfKRLt3bAgtRgRkq8kFMP06wTUecmdoaAYIKZV2JPVgmwfY2lfurkNBkTZh/rTshGok/tfKS/VKpaS553Ju58ivvuPsfzrS+J6poiQKqdXznhcol878kQ/wQXg7I78dayDI4XqLygu51YfCtFfOfCU9WGm00uz4jz3ETizRZ8KzxwuQlXJ3/GS+M/1Ud3O2V4pJHv4krv/bOu/yevvj7IiN/wTPewdNeehk2VXzuv76qDjI9uO8VAMwoxeGfvJBrf3dnu7yvHNp435NefohHv/4QX3vPpfzpF57GnhvHUnVflsKS9E4Als0LvCzDHz4qqgSt6F6f4h9yBsOzZ0kXU8yxZVn8lGEbcSwWZ2UpbK21Xq1KETZhuTVEcvL13Jh9WO+XVuPAZNnQWLViDCqSBZ1KJRRzA4ssisT+rNfHN1PMsMQMS7xRxCf62H2z6H6GWi8EHMgy1KKwEVWS4PfuQu2ZRw0y7C23yUK0KNGzM/gJVpsvSnSzsWPWSWWhUB2L6n3gXR1aXytDokgyVirGYxRhyrIOuVVRLAvoKELNz+IWl/BLK/jzz0Tnu3CLJ+S7H2nKs3cRH15FpQuYSk1SFLXNl4pjfH+Adw6ttbDBtR5fqyY/J6/kcY1GyFSIBVyZHJ5WSpNJNl8AXFQSn1Yw75WLHxKLkixDpbFkhZVuvMDdpsr5BjjP85/zLlkYey/AowKdlWJRZ70E2jdilJPHixrt/lPoTWtaD+S66vNv4+DDXw+razVr162uoZUag+ahtrCyJ5SGLs+33gc1COOdhxDmjPOoRopdXj35znlHNURTcSyDxmYD10rlfOBBZxbbjshmI1wMRVtsb3UhAy4XQ3PRE/ddyOMSYo+qLIwakHcV0UgY9lCBLtC9Xa4jUb9gMNOgsWxRpScaWsywwDZjXBSTrgWmcRjYuURyC72eTsKmBSiF7mcwHHHFTZfv+LCD+39VlF7GhGwWhypLscXtDzfZSG0azIP8FldW6j9rICLPN/SxLzA/vUEBfsn8L3Hl8n++y2+rYuQffNjrOPjIN3DFN95db+eS2V/EJAlGK4pHnM2H/4889mP/Z3vC1CQj/+DDX88lT3gLV177WyRLI9R6f4NdFUyciyqJgJo4z9igngYYjoTIE4l62EMdfi5ggxr73WghE1VWr/6OIwIWVMdxJzB4wkLxdMGVDRkusQSl159mpYDRSv4bZdL3jjI4sSQgQ1ni80xIL4tLdT+rDuzd0M/atXV0sKzdrqfdKVOl7mcrolTY/5o0FEXyXfVyLldFIeQ2pSCOMEU5nm9kmexb1c/PdnGLS5S7u0T5btyRY9LPpkYU/ssjfKeBabdQlQVdaXGdJr4R4WItykuj8bGhnGuihyUaxCZuMKzt6ip74nJWyFxqpolrJrKNpYHY6BWFrB0nFTDey//1zllPVV1x4wc4eMFra6tr5QNQGInqxeRbvzfZnChufugn3k+VV688GCtgvx6WQhgK6wUiDbgA3EyvK9O6n2sqzn1A1RRgmdb3TKWrjnxvh6Qo8ccW6X5BgI/yFM+ryjuP2be7Zm9Mskd02kB3GvjBAJTG3nSLNDsTwWxbqlrkhucQFse+lUror/foUiTMNtXYVBaeLvaQOBrdjLn2EKMdpdXogaHohrD7WShnZPi2ttzGDHXNDHSJNKi6FB/rZNUTD8SXF6XIu6CssO+VhUYfFr4xwBtN2RK7srKpxHIhhm3lt9P6vqvmkqVoR+RdxcF9r8DnBX44rNlXuiX5PX6iiQdZtLjhCAYTXvEVY6saZhsjg/2JhUX9mIlFmtITzLhQdwdY2VzXfOrNPPbVhyjb8Og3HCLqy0DnzHpn/EnBFRCQRhcWvdLHt1K6Bzp84UOyQJ3ds85g7wILwXqlWiQpY0QZVy3srA2ydsckq82NMsy3S6LZh1HMp5jDTkAH76Eow6Is2H4FALnOmoLA5juJPULIpFJajYND2cSODtsh2AGoOBYpfxxsElTI7SlleEAcoRbmYJihnGN43jy6dESArRZk6wPx/jca327B0eNyvryxj96zC78wg56dEa9ta7FLy6A00Rn7oZHil1dkcbrT29pkoaBjyc6yy6t13paujrlSqDQV8CvPJd9GVyBFIqCHC5Zc2qDbLVyvj77jOHTaqE4btWcXq4+cp2wq1HlN4p6j+7kMyrK2hEMp/GwbVR0nRE2j4gjfH9Se8LXNWgV8DYbydxykiRXoUQGZzo09wcM5+64MaC7Z/fLADBTWoCqtqKC8r5m/k/VDP/F+dDsC61FOFI/K+tqTWmeyb8o7vFP4xEAzoZxvUcwmfOzvX7tlm9Oa1rRCDUfQaqFMuGYMBvi1dbH9O53yTpR/Wm0PtEwMFqvQYd/bSkjaUiFUWSUxVf6Ab8SU8w16Z6XYWMASk8s5wWSedM1TpgKyuAaUbXCrULQ0zihsQ5F3NGVzrLorm5JHaFMh/OhC9H3D3QZdgE0axOsWHc4/eE/ZTVClJ13K0VmJj0SFahuGsqlxEVOf8mlJFaVYIXWaHDz7lbil5XqQX/VdZtdCUKLmeOvq3Ac/yjaoB4AN4GUNOEw6I2yjUNgw+J+4/+4AK5vrim+9l0se92YuecJbUFkhvUuw3qL0fPhjp7ZGOviQV0FvIEqCJOHK698zvrORbnjPk7lQY2X0pp6//qPAjUDFVtQgcVyrfSt1ndKuBqOq4+kKv/HYnobN1slsWDdYglVARdULxnEALHLZNyXqbADyAl+UosKtesKyFOVG0RMiTktU064/QN14C3rvHvx8Fz07g11erdcA2/W0dml5+/dSjhXRNZCnNHqms7Gn9aJq15227HtZ4vsTxFItvW5FylGtJiQJen4OfXwN322h+138GXtYe2gbmyp6Z3RQDtK1BumJHOXBRRqbalyqyTuajlbEKyOK+SZlJ6KxlqHW+1AU0qcrNX5tpUiO9XBpTDmbSiaf92K1NshkHeF9UFSKahKtTwmsVHXwwt8AY3DtFBcHVb31KKfwhi3qFQAXyXWm/nr4if87sc31RtxAlLW41EASUXbiHUHKaU1rWt+fNQVYpvU9U5/6n6/mMb9xiPaRBrrcx8y31lHfvvW0n6+0wi0uES3MUy4tb2jEXJ6j63yBwNrxDjfMT97kVfd5h1teQc/OCPNDKWH3thNsU5N3FMWMp2x50gN99sz0eMTcMY4Ou3zzyD6c1biWlVzj1DF35hqxtqwNG2RrKemiNFs6gqLlsU1HtD5mOOddjTeQzUK2AHhoH4bmcUf7Tll8l52IoiVhoS4WVuGXf2cacD8tOHj+a2i2U6Jeh6IbSZBhHphUNsjxQzZEtdCq2HzeMrHgqhhigUVVPf9kNWHRVG3nGveX9/p73PW1nKIbkc1KA91cCiGk2wyXty2tsM0INYpRg4xo2KzvyvKYZo+aBVe9j5pNZhl389taHojyLrnpOMXZu8SKxUUopeoFFJOsNsavJXUaYa0BZKlrk6pGGTNmHcaxMLjCZ15bZngvzLPKK9o5yZzRmmZR4o+fAGMw7Ra0mth9cygrigbbiEi8h8PH8KMMe+QYemUVNTeLn1xwerchOF5F8bZvpw54D99FM9+R72wATlSaSoAroDttsWirAIrqO2qMPM5aAZKKAL4cFXafajbFHieOKB91Lv0zGwx3hUW7kwVoesF+ol6OPrE+Bk+SCDU3AyeW68WjL8sN9lyqYkrCGETRaryP1fF2E3aWFVsvisbPPY26ZP6Xxs8JIbSijhKLzMl6zo+8D9vQ+FjjYrHgMLnH9EtU6QLQIhYKPtXCoDQK24rxpkE+F/NP//s1p71v05rW92NdcesHueSxb0IZLUPIhTlYXcetrp38iRM5U5VlWK3M3qZXra7fsGkYudO2q22UpQRfpxGulVA2DXlHUTZEPa2cIh54XKQZ7ZJcwLLtUVYR96DoCCjvZ2G4dwJECeH20dDjtRJVdgx5R0hBuhQbnuaxfJzJAMTrktMS9XJU6bCdlNHuhLIp9i02kZ72c3/4qrvyMUzre7BqMgGgog50WujQq9S2V1FcK1fq63Yx0bdtAikns+r8qdqtSdvRUPdFT6uW1yX/EGCU4YuSq9b+8PQ34L3YeOXFBhWrj3SwStsaBj95jhnbFbLl3DP5HBVFgcwT9ltveuxkvspptLI7veZ2tdkKTJ43oTSftF8sNpKWVFluyNNh7wJqroNaXJHzY5rWoJ09fKTuZw1sBFE29bTblU6S8bqhLEDFmD27REk1HKG0Qne7QgJNEnHYgHEYPNSZKKrZkNuSRMCP4QjWe6KU3rsHH0UUjz2Xwf6E0fxYQQhgG4ai1SAaeUzmUNbjDIzmFco36Hjp/xqH++j1gSjZ81yAsjhGKQOtJr4R49MYl0bYhlilKwc6M3WA/AbbW6PH64pT1MGHvEryKJXCJUZIP06hAsDuNrXGz/jpy/AGXCQKF+WFGIAXkkBUOJTzeKPxjRgd1DS2EeFjTT4zHaVO6/4txQOIPPJA2Y/7uaZnhWl9T5VNYe08RbKiSFZaNNS5aOfQx1YAtm9iJhvlMOCqPVKTWGStSJO3Ib/gdAfDUDPIXX+AjmP8rllcGuONomxoirainCvp7uvxmL2HeXjnKGmgUnwn3kXmYlTkMSNFcnafR+8+wjeX9hIZRzQ/pGglRCNZ2HrjoV3i+wKWjBYUZUusx1zTYQaadEmRrHrSFWGJDPemDPYKMzAeOL74+9NF6LQmqt+HlVWSIydIklgCcofDejijgowfbzeoBgQ42GR/dTJZ/0lq0j7hvqiPXnnPAgqv+cSbdrxPf7HLwteGW5nEkzVp37LDIMyvrBG1mrJYHmWoVCT+dRj9BFvylMOyU9V2C+L6jwCk5F4sa+J4vMjMRP0hgE/YhrXYmwTsVlqhhiP0bBdTlKJeaQmbbnT2LI1RDieW8EMrdo7DIWZuDru6JovMEKi603m4Ut1454n278IeOy7WX86jdu+iOG8XLtakR3roI4v4osT1+mNg0FpUFKPbLbE/M0YGDI0U4lIAAxBWoLVgLcXuNsuPaJHNCntbFwKw2FSxcsH/y957h0l2Vffa7977pModp3vyjLJQAhSQABMkJhljc425cMEifYCxMRjJgMlBgMgajMH4AgaDQTbm2r6Ya2YkISERhCQQKKCcw+SZThVP2vv7Y1dVd8/0zPTkHs15n6efnqo6dc6pqp5Ta+211u8XUHpCIvoC/I12cTQpByilUK3QSoWl9josXMdO0bRvI4RNfpXsSogJKae/3+1Ov67fghTdosjuvFN2YapcV6dbsD25suY4WwxZs+wSWicPY3xpO8vbC6JuPSUNJEmg8EdtkcUIAUpw9S8/OO0wL1z5aVRzX1ZIMjKOXdbf+QnWnPpeu8AUx+B7yHLRLtqF4S5yt0A3np26cChcx0repCnC87reBbt4t+zte3nq4mm7OUK0Yij43WmVNBBoD7SyRZS4BNFgArkUIQ0mUqiWC9pOuTSGBGGfwa3aCZewD7QPRli/FRXaqW3VgMJW672imhqELWAbYa9BqhHbAm9iZceiXo+x4xxkCv6Y4ZZ/ymLajDZRjNYaGg1EvT2hEcXd/xfdyVFj7BRCZ2F3Dz4Z+8qhKKjszLon/vbAnv/o2hnvl7UWjFd3auKZgb00HxotrUm4mHKtkmJyIma2+zpYGD0ZQkdRO6eZ3hQ1SdqNRYUUkKbIKCGt5FDb6RraYwxEUVvtwsazMpebdUzbiWd1nODMH0LvGO16uZIkiIXDhEt60EoQbGsiN2630rxRZNc523JWopBD5POTcWOqbUzruYhioSt9h05JegNGTgmISlZeXCTthiEXopKVfHSrAmGkLYQr6wub+oLiE+CMt2xxD9BLhhBRgoxS+//MGAjttdo4VlJWGEh8WwiXkYPKeYiObJrr2EJQezp+zZJ3sO7xL+z5c1QK4yqM55AGDkjQSnD9Ojtl8uz/+XkAnvMnn+s2h9kCy2QBxhb3Bf5ogluzPk3aU/z4px+YdqgXrvw0bnW2OikZGRnHCsKYTP9nKhMTE1QqFcbHxymXy0f6dDL2gzWDb7GGwH29Vo5rx7jt+BaS5LEn9hyoCYlsG/CZtnSP0QYZ+N3FtKmLpNLz9rxoOmW/QgpkPo/o60EPVLo69FHFpTngsPU5KYOLRxECenMNzujZRJg6pAjuHh3m0fuHUQ2JWlanlG+xfUMPIhX4gw10KpFK01toMlSosqVeYttdgzh1QVwyIA1OVZLbCoVNGq+aEhckrT5FVIQ7r8gmVZ6KrC6/nvX70rHWed7AmyeN0zuyAu2xedMKdzFdPNwcjuT0YPGs11xB7+2j8MiTpG3Tyf1GyK5PCGA7m/M5m0Rpja43rKRFZzLoYCelwnq1dKUUYNIvpO1P0vl76Zph5oKudAEwbQFQeJ6VGxMSBnppnNDHxBKH/JaU0n2jsGkbphVavehO4WRvhe3OqXbkzdrnrIYGMX1lmgtLNIYdoqLtmOu/q4X32A5IEtIFfchmjNg6Am3psq5xc9r2IzEaPVABY5BjdapnDTF6kkI7YBy7EJjbbsiNaJKcYMfpkuJjUHkkQkYpqpUgqyEm5yK3j9v3rzM9Um9MSn11MMZ6xSjV1p+e8piUk0agbQkFpixWdAslezIDncKaZZeAEF1N+ue/5LMAuOMRMtYkeRftSURqiMrKdvo1NW4txijJtT95L0BXq30mLlzxqV1MRDNm5kDj0SyefWqwuvKGbje5UMoWXR2HdHxi79f49neG8DzrCeD7tjPfddCdJonOpjtLQu5pt46LDHxEpYzpKWI8Bx24JEWXVp9Ds99KfoV9YCQkvQnBQJOw6aJbiqGfOajQUFsoaQ2A07ALXEnBoD2DjIUtwoQCbxzyWwylx1p2MS6nkKnBqcV2ElwIjKuIKh6tfockEPz6H7OCylON1X1vYv3I1/bruatyF0+bDhbtRgTTnsQ+LAv4u+FoimfXLHo7plpDN1sH533bSe7Kxjlt35U9+AYeNHbyYJk2bU/n0GbGbXY+J6EUqqcHBvtsfu+7aFfhbJuwcdxW29AjXIe03uj6us7mmjvVH1Z6HhiNHOjHVEqEi8rUFrhEZTt9P/9HGyBJSBYNWNniLaN2kqk9bT5turmd5yXzKgitqS0tMHKK9TkxApw6BCPg1TRxQdDsF4R94NYh2AFhD7ZAXhOoBhQ3GryaRjVTnEZiJ1w8ZVvs2++baiTIZmgLIAXPTkQZOw2d+org0RHM9hHbOOS5UCpicp7102o3FK174DN7fc9e9LxPTItLwRZXhAEZa1RL24KKEmhPoF2J00hRLQ1y0ux+1bkf5apffXi3x8li2tmTxaQHn+uuu47f/+NXcuqr37v3jQ8Dd33rMm645kdccMEFR/pUjijZBEvGU4512/4BsMG48D3Wbfoyaxa+DVwHGfgzd/11MBodRd1FxE7nkp7qazBt89nVJzsdUSLwMfkc2rcd1bIVo3yFkSDyCX35BgNBnYKK6HXq5L2In4+ewIaRHgg0iWtwhSGKHYQyEAviloMbJBgtqLZ8Sn4LR6UkPQkice3YbVOS3wRe1ZDkBUnOwSgry6C9fX+PM+Y2axa+bVK+aR9ZXXnDZAd9J/AXEuG2vSBmuQBzKFnpvcp25AphDeHTdNZJaudagDaYRqPr73EoktwzL12L74Cotya7IA8Eo61nS0d+LYpsAlIsACBzAWa8ao0391VOYZbHNyk282p39U0abLYTwHQyYbTn2DaITXcyZ9a2s6+j4y/GJsg/CI3BQZymJhoukS7rIf+7TejN2xCeaz1PcrnusXdnBgpM684W0vqbiDgmP15DxUNMLPFoDgrGj/PJl4dwx2O8DWOTnX2dqY5U0/U1cW0BSXsKEWuSoQqNAfv/QrYVtWRqu/2afZLUF6SBYfR0g3E8yo/EVsLGGGjGtrCiDTQaXQ8d0ZHk0u33sWtm2m71m+rBIMR0I1DoTr509auFYM3wX8yqyLJzx2rq2s9WuQqRGpx6RJo6aF/hNDXGsZMqP/7p9Omt3RVXgCwRzcjYR9aPfwOAVcXXglKsn/imlfVTappn1oy0vzOkkOA4kwujs2kM2gPCdWxxPxe0F740ztYJVD0ACqS+a6dZfEOa18hiTCnXwnMTajsqpJ4gCewkHFgJMTv9JzCusZMpDYE3YSflUl8Ql12cZmpN7sdCRJhiAock75LmFVFJElYkv/37rGHoqcbqgTfvk+zlVFYFr97Fs8No6/nQkfU6kqyQL58sLjA55T3bmHRV8bXdyVqTpt1JnIMd06457p3TZIAPCp2YUkjru5KCkM6UKY24vdksJuz28/jANAni6Q/vJuefacpcG3S1ivQ9kuOHafV7jJyiGPidT+GebeinLUc9uhldq7f99GyRuytzu4diy9RYV4ctO/nSaEKrRTAyhlOdT21pjsaQpHHKPLyJGGfLuI0POzGl6cjIym4RC0dBKkCAkZJmv7QG7+2wVxjbOBSW25KwBnRgaC0KadYd8DRy3MWpgT9mFTC8sRjVjKEt0QUgwxQZpYg4tUXxVNsCOmCUmjSjj7VtjO3vhVodE0aIag1BcdLoXgjWnPQ3rLv/03v8aHeOS7vvpbBxuowNqpWgPUUiFAiDcQTXXTs9Rt1TcQWymDZjjpCNS8wpsgJLxlOWqZ1OJgyhLfW1i9HdzhhrHq/jqXJgMz9vTwt8XTqBs2p3H3cmy11J4nmEfS5hr8AkkjBxyKm2L4DQDDgT3L99kHRjnvJxY7hOyth4ASk10k9IUxedSsKaj5hwSBLBA5U8hJJgm6LwJBglCHut1ILTNGgX4oLEadku69u+9Nezfk8PBmtOfS/r7vnkYT3msca6DX8HtDtf9xFrgpl0x+LtpEGni//Idvp16P6/60g6KcWq4NVc1fruHp+3KncxopCDMOxORnQSmhXy5d3tDlZi2ntfjIo0dGSgDgbt65PRku5yQ5KA7wMgigVMHCPM7LuR9/X4U6XfukWWjrzCVO+qmaQ1Orc7z4/idlFDIyZq9N/qEM0rsPlcn7gEg/mFVH5j/V6cSrkrf9AxU59q/Lm7v03hee3FyARGmni3jDNwq0IM9qOLPuOnlImKPnF5EKOsVn+wPcTdNE7taQMIDcG2FmpHDeM6OCN1aIXUzppPXLISCkaBiO1ioFHYxUMftGvwxiRu3eA0U+R4A8LIGqROKWKKdpGMJJ3UzI7jrvmrMRqRMt2XpVNEnTrVAlMKo6L7+JpFb2fdk1+c5Yds+fl/WHmw33upnWRxqhEyMSA1P7lq/7qlsm6/jIz946ratyZvTGl+mK20l2629rjtrL8vhLQ6/vk8xnVACUg0JnDRgYN2BKbdAZ0GGn9eA89JEQJ68k0azV6qSyEpaUQsSAv2t2lKjDTIUBBsE/ijEIymaFfgNDXeWISqRjiBY+XAjCEJHMJeBxUbvPGUX155eOPZFz3/8lkZhmccGOu3f9UWWfaDjll6d3q23UBn4uTApVQPFlMbYtrnudJ7FVdHV+72KSu9VwHtRpa2DPXU4kcnpj1ohZaGnZAm1bsUrA4GRhtExzq0M72AjfE6fo6HjJ0lvac0D+1x250fSlP0jlFcz0MkPXgLC4wvd6gPz8eravL5xbi3PYzM5TBpipPPoxuNdtOQbFc09j6V2J16jmLbeDRRpXKXQ89gP+NnDxMXFV7JJfWtMXuwzcazyVCF1qCPSA3+9hBne3Uypg1j4kIBGdFdpxCplXvUgW3IFAZ0LqWvt05aEYxvqFB4whbCVWRw6umkX4kjSX3rr2IcG4tKrcGRiFQjkhTRNEBsZeIkqFjZ5qLARThlRL1pv+vaeSmiLYHrOqw+4/2sv/MTs/6IL1zxKW5sx57P/ePPIZVAxBqhBDKW3PDf++cNmMW0GRkZO5MVWDKOCdZv/2q342+PTA2+22b2U80L94eOWbFod1+IVoxSIVF/ntSXNAesRILRgk3jZVyVEqiEauLzmNtPdSwHjuHs4SeoxQG/GS/QrPsw6uGPSbTrYByDSKx5qNjm2vHdEUOwPUEYaI0rZAIyMdb0E9tlfbiTUSArrhxGOp2vs6Ujo6DjZEpnl2u76tvSJHNhggXYyevFFoNWyJfvOZk02pqZ72Usf4V8+aRJOuw2ye10Rpok3uW4a5a8g1ylgBivo8dmIeWyDxhtkJ6dijNRbBfsnWZ38sJOjLSNWmdTBN6/k7C/28lo53rZlT3YWwLe0eBW7X2lqZUCG6/heg799zhse7pi9GRJ8fESsh5amTrPtQnc6BhCa0ykulOHGDE5PTNFIkw3m4g4scU1IewkCoAUtBYUCXYkaE/SHFDEedtVHZVzVFJrtFwfUtQWFum918HbPNHW5jbIyJpgus32YqJvk1CnaeXH4hJ4o5KBO1JKD4wjRiasl4Ix081RHQdTKZIWfGQzxvj2e0qNNhAjY91z7dIpnHS+zzr/nqqv3fHJ6Ty+cxFmH9COQLuCtOCCgGuv2/9R9CwRzcg4cNZPfNN+/+zt63iq7E7nrn2QApt5l+3u5zhGtGUUdd7DuIo075LkrP+f9kBG9rqjlCZMFCW/hc5p+k7aQd6NeGJbH0QKMeagQhCpQCZWgsY4gBB44yluPUHV7fSfMYa4107OVJf4NPsEwag5Igb2WXHl8LF++1f3+Tkr3Vfaf3QM1aWYXDifA9Mr05h6Lu2Cyx5j2k7hNN6zjFZnQqbDnvwMO+/XzlPdq8uvtzlAFB2amNLYeLVzbTFpZBtjXGdaceywebHsPNEym+N2vKzSFHSKGmtS3Biw7SxF3KMpPC5RoYvXns4giqzXR1smVzesbNhkPDslT+m89vbnqJstRBTbItSU6SfSlGB7TFJQNIYc4rwgCSAqtePZdgNRfb5DbaFD770Kb+O4jReTBJGC0wIjJxUuhG7Ht3l7v5EwsqFC/jGHgU1WEkwmBhnbeBjoHke0j5nkFWmgcByBU4tsPNppMurQnrw2SoEjMYlGajNZYOnEtZ1p8n2MaafGntqxhae06GKE4CdX778HZxbTZswF5ozJfQaQFVgyjjGM3nuQ1AlUbBJ6gAfsdGnHSbfjWMQxxC7uREg6nCf1IPUMwtWEdY/HTB86tQlAGiv8x3zCeSmu0NyxeT56uw8Gclsk3riVpolztvvDHzX4EwYVadxqggxTMKBaiiSviIuKsMcu/t361UyjOmM6nUTGFhnbuu1piolidFSfW8nobugmk+1znZokTisc7QU7GdPep3rFtP11k9ApRYSpEzBgdZLF2Dg6bZs7HkwfxLaUob26xNYzqtlEGI0oFmx3cUf+4gAX02ZzLlOT9+77uw/vc0dyTERganWk65I3hnlpgcY8RW1xnmCHi4xTVEeqbqCMGq0hqjUYG59MhqdM1nQL5p5rk/V5AxAnmEKAzrmkgYNTT0g9iTsRox1BkrP7b/YJ4rMKOE1DUoBWH2ACehxB2OPi1FMQNvlMctZDwKsamoMC7YBbN9Q9wcDtmvJtWzBj45h0J3kvI+z3TZIgJuo4sf2ctBKQGnTRR060/wiVaheHXPv35DoYz2knxjtpgceJnYRJDvyP7rkv+xy/+Pd38rw/+ixGCTvBkpGRcdTQWbTsxLQH9H3QWXhMEiszFtjJSdmMSac0MKWevS5iwFEaJTWBk9CIPYyA0/o3ccf2BaSxhLrCHW/Hs5GVb9GOvbamnvUB0J5EKmWlbXMujXku1UWS+nEpJII733r4m4Uyjg5M+28fsH+/++DldkSZIbacGs/u0xTJlDht51j1Gv19G+NOOebO23VkrjtxVdcN/iBiPxMFpm36Hic2dnMdm0OTHvYiy349tS3tKpohhUerJLkKrR6JTOwiaDJUQfQWUbUWtCKo18FxkJUhGK9CVe8Sz3b+3ZEW6zToyIE+CCPrGRh46LyHMAZvPMZIiPN2ma/VJ0jOtPGsEUzGtDqg1xhagz5uLbUTKq5VvDASEt+G58JAEgDSEGxyKD4OxQ3xtHhQGIMMU0RiurExSWqnzY0izSnSnIPQBhlrSI2d5G5PbBshMO7k65XGYBxlt3Gc9t9EPOmH6O6lYXY3POfln+fG7/81v/fSz2Icx55vRkZGxkEkK7BkHDOsH/16d2G008HXCVa7gWS7o0m0je7tWHK6//qv7Y4W2dayF93RXvuwiDUyBrcuSI019YxGAkRoTd/8HZLiEwbtKq657xTUhoD8DvCq4LQMKgKnYc3atCdIPYmMNUZAq99DaIPTsFr5uh2LyNg+NyNjd3SNHKNon4oSR5Sduv86TJNJ2MfXMVMSvnNyujt0FHV17mW7UHVQ6RRZXAd0W9IgiqHe9pjy3HYnnZVdOORFFtitjvXenme0tO+VsvIAYmwCKQSBq3AnFA+93KfwuE/f/Sn0ecjYym0Zp4zyXGSpCLU6enRs+msV0iajYDu4WxE4irTgEZdc4pJDs0/iNgxJ4JHkIC6DW4XCZt2W+bIFEySEvVBd7IGxiat2bfIpY8htT2kOKvwRK5XQ6hM4Naj88gnM+MSunXpTp08CH3IBOm+NSK1BqsAZbUwmzr6LcRUogUhsJ59xFUYKZJSiPYV2O9OJBhmlqI1tYxglQQhWnftRRCvaJ1kFfyTmuX/8OXtNcLFSDxkZGUecrgRje9Fxl3gWutOEQk1ZJO2YR+9nTGuv89pOZUt7bTFK2IUwbdCeIC5DNJCSG6pTCkKEMGgj2LS5B29Ccv/YPLZv6MHf6iAjW6CWifVhcRvGmiO7gqgkiUoS7UCS81ERqJadFmwNGlRPSFJzD8K7mfFUpBOPdCSfjrSh/YFyIPHsHidc9vbUKUWpznTFQcd0PFhE998kdlq3E8d1ppIPW5FlP59jxsYRvo/UKeUHFebEImGPoD6sGDs+T6sfSo+X6L+zgYjKqGoTwhgKOWQugDAkHR1HupNesEK2G3K6n4NniyuAKfikpRxx2SWqOMQFQZwXRBVwa1PiWc/6raQu3Zh2YnkAQFyw77GMwa0ZKNgpFLDT2AjwRwSVhzX5zSEySq20F2BciXY66w/2MzMdOXQlMa5EtCe/tavQrvVdEWn7J7GvyRreW58VbRykMdC+T8Sp9Yxpy+iKVsyap9kJwnV3Xz7rj8gfi3nuyz6HEAKt9iAFl5GRkbGfZAWWjGOKTlK582TKNfr73SCz0+0khMAAAhCqvWC6fwdtL/S5UMyjK3mSku36i4sKYWyHnphwUA2JW7W3/QlDfqsNrOKSQ1QPcOuQ227wx+1kikgMKtY44xE659Aa8IjKitpCYSdXIghGJN6ERqYGt5bitDQizgosGbvSSaA6ck9mJ0+No5nZFkYOBft97dgbnSKL5yGkQLfCTu3Wdvy1EzKTcuiLLO3z2a+uv460AikC0M0mUgqk7xD1VOi9W1J+PMGpxsRll4mlLmGfS+lxQ36zS3DXk+iJKsL3MWmKzOcxUWQnQ5QCz0Xk85higC74hAM+tQUOSQDBqLHSiXlB2Ee3aFJ60iCMYODWMTY/p4ckbyhsEPhjGhXa/xNRWdkJlnYhpvJwRNjjUJ8v8ccMg7e3vb+M6U5PdhclpbDSe4GP7i2T9AZdQ3vtK7RnE1JR8InLPnHJFlNUbNqFeWvIKbQh6vOJ29KPKrZJrNBQGA1sMq4UOu/v10d67U/ey0UXfhKjbBKaySFkZMwRdvPdPDWe7W6n3K4RtvBckJJ0fHy/jyuLBfTwAGnJQyQGkWh0ziHs82j1SsI+Q2lBFYBtoyWSmoszoShuEggDG++dh1+VuOOTvlUi7fwYnJYhNXaSMOyDaGmIl4sJJ3yCDS5uFVRLEG8N2I9vnIxjhZ2M7bN49sA51M06Nl5V7Cz3ahfC1ZR4kUP/eYr9O05abyBaIQpQm6EiBDtOL7LjmSnBUIO45qMecK0cmiupntpP2CMpPxri/vYhO5HuuWAMKpez0mztmB5tG4dEqQi5ADyXeKBIbbFPWBYUtmjigqDVbwvRRtp4FgRuQ1O5r8rm51RoLjDkNwq8qsYJDaSGJOd2CyPBqCYqSVq97dvbofJwSm6rLa6I1CCwRREtbGOPEdZvxahOF6mdPkx8gUztJEzqS+vbpa3ahmoktmkoNUhsQUZ7ElyJMQ7GtUUYpJVfE44iLQekgQOiLTm2D1x3zXu4cMWnpt3OyDjqyZb15hRZgSXjmOKa9HvTAtNdgtSupFeMkG0vg3aHhhTSLpTud9eflXeJ+3LEBdtt3OyX1lB5h8Ebl8jE4DYNKjT4IzGqHqMDRW6bxK3aLkEVdrT/7TjutddP14A+451rUS3bEeg2DV5V4+8IUc0E7aqu2VxGxlSmymBlHF3oOOnqaq8KXj3lEWU9WdqGrsKZXGDYZ33p2bK/+5pSZEEbtKkjhcAt5whGFd5IiKqFuKNN6kN9JDkoPmGLF8myIZwnFKZas8Vx37NdcJ79LZTCNBqIwIfAw98eknoSp57i1mLcjWP4Jwyw9RwP7UJchB2nKVQTkqCH6gka7RlA4TRSW6weCxE6R1h20R4YKUgDaTuvHSg9HuFtGLeSXnGC6Mh1qfZn4jhQKpL2FklKHshOF6D1OzFSEFU8krwiyUuiorDFH4UtnrfACe2x4ryVffQn2t26yt5OK3lklNiuQCHQvoMK910/3SiRJaEZGXOMnQspMy66dhYIU92+9rQlcHsqsL8FFgDPQ2hNa8AHAaqlicqKsCzRLjh1QXVDCRlJnLrAa0Gww8ooJr4g2Nou9hhQMZjEytLc+rVLdjnUcVdejh8khHUPNe7gTkB+q/UdFEYSl7KVhYxd6cpedcji26OGjsLESveVmGRy0tlO10uE1FPkyjpP0vtdENn9iRxAPJtCOjYG4xOoepN+FtIcKuItiUlTSep6NIcDhDaML1ekAVQe1LBgCLFpK6bRsM2ZjmMnux0rCWuElcwyjaYtmnsu7mgTv+xQ2JTiPzqCe3w/W8se2oO4bNj2dIUKIfUF1SUVGgu19W41CqepUZFt1Bw/3iVtS4Q5LevbihCIxCpnBCMxMkpB0zWm1267YSg16KBtai87sl+gPXvbmOkesALQjoS8g3YlMtIIY0gDB+0KnEYCqQHVKdoIRCzsBIzv2CKOpLtGs69kMW1GRsahIiuwZDylmckgcJfuvp0waQqhtgmk53WDGpRGtjvG99Uk1KQpNBowIvCTFK+cR+dc3KpHfb6L0ODVNE5L89MfvGuX5z//JZ9FxtJqnMbadopIsUtxBeDOz+2aoK487zJEnCKUwKAQsWb1WR9k/e0fm/VryHhqME1iYKf7Mo5OdjYt7cgoCNJJKaoO7QRUyCmFlsMlubA3phrfA7pWx3lsK87gYhrzA5JcnmAkwR/XVK6P8TZP2ImUwTwsHkBNFBBbR2wy6nuYJMG0IkwrBCUxGzcjN9vXX97Ub483XgWlyN2Xsmikh7GnFaktFLTmGWRLEJdA9yRg7MRKa8Al2JGQ5l28sZBKaqgtconzAqcpCHskcRFUK8F4ClEzk98XUtriiu9DuUg0VCIN7BRjXLCJaepbOUejIC5IksBKLcQFK9OQBqA9g2oJ3HFrCB0X7UKlkQIVClsAahiSiod2Aitj1tbFvubnH9+nj2Rqp19GRsaRZeeYdm/xbLdwncSgJDKf65oDC8e1htX7cv1v+wDobTuQYUipGZH2FEgLLtqTTCyz1yntGrwRu6h3z2W7xqSnv3utncJObYe1duDWL+66HcDDr9o1zn3Oyz9Pq1+QeiBDwUkfX8v9H5j5+RlPXVa6r8Ros0sMlMW0Rzc75+3A9MmVmdhPz5RDxpR41qQpavMowze7bI36SJZoxi9sIMoNdjzeizNhyG2xhYh4sICnB2wB4vEN6Fq9PbliupKPJoqtN81ojBifACEojJTtWkUrJHdvzOIdPYycUaK6WNBakII04Gl0PkYZSBouYUUR9jr44ykycihuTKnNV6SeIM5D2CNICrZhM85BY9ijsMEgm4ktbrTlZ600pCT1pC2wKBu3Gim6U+FgZddF2vZgkYKoKEk9BxUZnJbGHY/RnkS7gtQ4aF+BBtW0PrYmkKR5xxZmAIzh6ls+tE8fSxbTZmRkHGqyAkvGMcluk9IpngBCtzs38jl7X6tlJWectt6zmL2GtfVxMcha3XYzRxEqnyNoeLgTPo2FOeKC4Mbv7VpcAbjhh7ve/4I1n5nVsQGuvuVDrD7rg8hWgmxE0/0AMp4ydDyGro7/1d72XsXV0ZXdx2f6m88S0acWV7W+y0rvVZPJqN6N0fmUQsucMXztnpOwRQgAY3CrKVHFwWkZ4qJChRqnGkGcIDdMkJso0jihH5V3MAvKeNsbyGaMqDXsPuIEpER4ri22GIOZmED099lpF9eFKEY2Q9xanqisUAsayHsLpD7k7/NoLEqJyjCxVDCx1KXnQUV+c4g7EaJCq3ltpEArQWEDRD0eriNxx+ugUuvr5bnguZhKkTTvEVdcO/niCuKCIA3sgqGRWJPQxC48ah+SPKSBIQ0MJtBWZgGJaoJxrBkpxuptq1CgIohKDtqxkjwiNajWvhXRLrrwk1YCIpt4zMiYs8y2yCJSDVKiFwwQl33cTVumxbyziWdVuQRAOlGF8Qkrg9Nswfx+TJ+L04Cwz5CUNDIS3P/+mc3nf/eZ6cWQM965dpav1pL6ArcKgYI0Z6+TGU89Vve+EbAemqt738j60a93H1vpvWpGL6Espn3qcHX8r90immWOxKqzoRPPug6iXMRUioCdvtOupGkCRhLJuWc8RKQVt9+xjNz2gNLjIY0T+pChRiyo4G+agFoDU6tjwhB0YveplJ1kido5/biNaTEGwgjRiPCqhqgP5i0dQUlN4MTsqBeo1azvSthvGHMFMnEoPa4obIyQ8xRxzkrfxqXJa6v2obZA4tZd/KTd6OlMFlRSV5L67eKIZwsrWgmEMXbqWoGMDRI77Z36oiuvGzqCYFQgQ+snm/iS1BM4TY1IDcZxrb+Lsl6zgC3Q7+NSxopnfxzpSlsgysh4KpEt680pspB0Fqx49se55sYPHOnTyNgPZuqCmdrBv9tA3Gjb2RdJuwCXy9lR3DiZ7CLZ1zjP2IVM02wh0hQZRoiGh0pKFIzh6l9+cJ92d/26d+/T9iJOrTlcHO/a1Z7xlKCTjKx0X9kN7ld6r9rF2HOvCzIZRxU7dzVfHV1p/wamLjzsTkpByMPjzzILhBT2vBzHduwBJAkyTik83iIpekQ9LsJA2B+Qa0SIVgjNFt5YRFpwENqQFqxZfOv4XtyJGHdr1RqINpuIcgnimOiURYyemiO3bQB/PMFIgbe9QatP0XufIdxcoDEfcqeMUa/7MOYB0FigMUFKUnCp5AOCMU1tgbSSB9rghIbK/Q2cjTswPSWrkQ026Q18dE+BNO8SFxxSV3SnVuKCTWbjopVP6BiAGQWpZ0hzBhwDfopJBSoWaAdM3m6vQpBR+7nCJsVJvp3gpwYcwc//Y9++M669zvqvgO36yyQVnhqsfvqHWH/bZUf6NDL2g51j2lnFs9CNafX4BLJSQpQ8ZLmIHp+Y9bVflUp2oruzvzS10otJggLcXh9/3C643fGud+7T65pp8npPxDmB2zT2uyAVyDkwgJlx8OkUVjqFltW9bwStSWt1KwcqBVfHWTw7JzmAyeipMe3V8b/uKvd2CI99sOjEs8Kz8aiIEpxqROL7YKD8gKQxP+BWuZhiscXzz7mHG+SpgG+n+pSDMAZ3qB9/tAeMwd/WQLYSRLXenVYRhTwmTkhPWcrIaQV6HmphhMDb0aDZL9HlmLwbMZirsyg/Stjj8ES9l4d29NNoKpIejXANYa+Ldjxa/ZAE1hsrKdjf3jggICpDfZ6DjAxOI7HTJo6059uZPPEFcU7YwrcCFdlYPm5Psbh1g0xtcSVpF8f9cVt8iYvKvlfGTl3b+FgiU6vaYUQ7ngUQguvX/80+fSbX3PgBVjz746AEK8+/jKtv2rfpl4yMjIzZkBVYZkFWXHlq0UlEZwrIp5ndpymEIcZ1250iCuG1ZWf20yTepKldzIxi0vaIr0wSrr7r7w/oNc2Kah2SpC1TYwPPNYv/inVP/O2hP3bGYWGFekU74fzX7n2dqZZMEuwo4AD0o3eWfusumk2VBJtSVNn1uEewwCKstrZwXCuh5dliBnGCiROciZC04CFjTeHRKkYJmguLxP0FHKVs4jrWIClWSAoK6UmMkng7QtKCQ2tJD60+hyQQFDYnGAlOM0WFhupihXat78nG5/ZQfAJSV1BbYlCLGlRH83iFiKiYkCTtxK+uSIqa6hI7RZIGMP/GEBWmiFTbiY92Qm0C13bwCYEuBaQ5hySnSHOSJCdJPYhLgrAXoopBF1JEKBGpAGHQOY2RVt5LCBCutscsJ+hUIBsKkVrPg05hRYUg2w16Qhu0K7j525fu88dy0QsuB+C66997cD7njDlBVlx56rCneHbq4zAZ07JjFC9JrUfVPlz701odTLU7xd2RoiSKSLdsIwBkOMQt/7SrpNfBxml7EeqCRMV2EfCst6/l9t3IjGUcnayuvAGA9ePfsLfLr8dM8ZyDLJ6di4huE5/9Pc2wfoapo5mY1ji0u2ahOYpQClksIgIf09eDzrnIeojaXqXvHsXYSTma/QKnAcGvcqR+jrufl/CMMx7ht7kliAkHMMhQkN9svfmchibsLZMEAn+8F+0KkpwgvzlGRZraQp+wFzY9O0C1oDHfI+mNGZo/xgmV7fS5dR6ozeOx8V4WlsY5dd5W7jYCKQ2+mzDu56iP5UlyVhJMaCtJi7BSjk5oixypD2GvspPWsiNpK7oTKXFeEBdAe/Z5QttGIRnZfSX5tnyYak9ou3ZCW7sSt2ZjXTudovCqGqeRWtN7Y5DtRibtyH1uMgVYef5lyDjlqls/enA/8IyMI8l+THNlHFqyAkvGMcnuuv06Ad3UhFTXG0hAeDap7Cz+7W/Ht9Gm6zFAmrJu82EoroAtrhhjfwNoa5TXYVXhNQBcVf/24TmfjIPOzjrUwLRiS8bhpZMczmoBYGrSuLsEch8KLzsX1LoG8t1DiINvCLqvzPA6RaegrdqTLI4D20aRqg80iB3j0F+xCo2OIC37yMhBNmP8zVU838U4krjsoV1rOo8Ap2WIipKRU1yr259a7yutsL4peVBNGD/RoF2QkcD7dQF6IV2WUqo0aXgppWKLoh+yaXsPZjyHimHgzgR3IkRuG8MU8uiSj+4pIWtN22kY+BjXQXtWU1r7trgSlQVRCaIeiHtSZDlCAtq4EEqEFhCkKKXRscLEEtN0kLmESqVBGLk0VYCIJdoTaFfijbYNRNsfqRH2Ne4rF73QTq7M5PN1MLjowk9y7XVZ4SYj40DZ0/TKTDFtOjKK0gYKOUQuQBjfSn7tjY6cWBLvdJ8Co9GjY1x7/eFr2DEO1mvKCFRkSIPpUoYrnmP9pq75RdYkd7TSKax0b0988widScas49mdGnmEFJOFFTr+f+3CyyyLLbNqEJsrhZfO6/Y99KJ5NBfkEbFBJjnb3NNIqDzYIs7noAnFjSnbz1IsqYzx3N4H8U5KuXvbEGHkIKShWskRVRyC7Qq3Zkh9QRoo4rydMKkPeyQFa2afFmOEq1F+ynFD2zmlvJWy0+TG7cu55uHTEJHAG2qybHiEE/JbWJIf4cTcFpZ52/j+9nO58f4zcWt2YkVoSHIQzk+o4VB6VJDbrhHtNEK3pbpS18qBJYHoerZo1xZPvAkbgzpNUC2D9gRxzj4ujC3CYCDOW6lHb0zgtCD1wJswtogDyEgjO42tsuPpMntWndsuqAhxSIor2YR3RkbGVIQxmRnDVCYmJqhUKoyPj1Mul/e6/apzP8pVv/rwYTizjEPNCvny7ljxzsGcUAqZyyHmDWCKOcS2UUyzha7Vd5FfmpGdFjKFUt2u7ata3z1UL2kX1ix5B6ZUAAlivA5xzLpNX2ZV4TVcVf+2LbIIAcZkhZanIFmn3+Fnn4ossOckcR8LIXtKSo+oTFzbKFm4TldyESGtLJiwyTiuY+VoXBf89kSL68DYBCaMEH09xAt6EBpkM0Ik9r3RORfjKESSIpsxaE1rYZlWv0OSs9rQYQ8kxba2tLCG8f4IFDZrGoOSsNcmhHEJyudsY1lllKdXnuD03JO8JG99Xf7XIxdy5w9PZt5vIivbMN4ApdrG9k17vo6D2TFqX08hRzrcS9QbEPYqasOSuNzu3isatK9BGURL4tSk7e5zDcYxGM9AImxBqJDil0OU0rTqHjpUdtollrYoNGG9CVTLFpUAfv312U+vvOj5l3f//eMb3pcVQo4g+xqPHujz15z4btY9MHtvt4y5SyeeVcUCutGY1mjRiWm3v/FZjD5NM+8WQeW+GuKO+9BRNKv9q75e0tHx7rW7cz0/nHHjKR9eS3xqE8dLMPeUCLbDHWsvYeX5l2GU5JpffIBVZ3/YFtmNYf3tHzts55Zx6Mni2cPPrOLZdm678327MCWenU2hZXfyiFMfP9Ixreqt2Nu+P+m5pwTGcUjLPq1+j4mlChXZxpekAJWHNbltERueF3DGyvsZiwJGmnmMESytjDLo17h3fB5PbuklbTmoIEEntkAl3RTXTxgo1dFGMNEMiGNF3HIwVZf5x29nUXGc+3YMsrgyxsuGf8OrSxtxxa791VvTGqs++y5UE1RkqC0SxGWDPyJw6pAbMZQfqiPrIcZziPpyhD0OUWlS4lakkPp2olDG4NXaO9fg1TTasdtq106wdCZdjLQ/wQ5bPJGJLfD4YwavqnHrKU4txjiSNFD85KrZSYO96PmXI5sJIk656re2sJJJgx05DjSmzdiV6667jt//H6/ktFfMjTztzisv44ZrfsQFF1xwpE/liDJHyv1HLzsXV1afmXVKHa10gzchdwnSjDbWSE4ItOdAuWg7/zpj0HtaFBUSGfjIwO8WVqbu93Cy7vEvkPbkML477f5uUizEpDxPxlOKLBk9SjD6oE2UTJWO2ZN2/0FHyMmfGe4XUnS7GlHSekIpiXDaxp1KTRZXlLRTd63Q/uRy1qx+ZAz3/g04j28DDdG8AkklQPsOaU4Rl33ivjxpOYe/pUHpsRb+uL3eunVwJyDuS4j7E1oLYyZO0IwfL6kvgnBAU1+siYuGnlyTSCvyMmJQTQDwQFzjN08uorDJ4E7EiERjfA+T86wEY5Ja7xVjJl+jVN2FPrAJpGphfVakAQ2kAhkLZGxlvlQobPEEkIlARmLSm8UIjBF2yiUVqJbArQnQtnAkE1tYmVpc6RRPXvT8y3nR8z4x40f34xvex49veF/3PHcurly44lMH8peRMYfZubjSkefJOPq4Rn/f+qREMbJUYlXw6mmPG20QCaiWYPx4QXNhHpHLzXzd3hkh0cctwhmeN7mYajQmPrzGwfd+9BJWnXQ3S/pG7YJdp9u5lUxOrbQbhsh6CZ9SZPHsHMboGXPbbtGlE9/u48TJzlKIhy2m3V08O+UxIYVtGMrnoFCAYh5TCDCOfY4ueLT6PeKCRCbgNA35bRp/DKqLJI1hjwU/C3nkH08kTB2uOPX7rFl0NycWt3Je+WFes/gmXn3GrzjnlEdZMjTC4OA4+XKTcrlJb6HJjmqBMHF42uAWAj8mKESUFlb5g4W/40+Hf8nrT7iJFw7ex2n+hhmLKwC/ifq68WWnYIIR5LaZrtG9UbJ7TZUdo3tlZcM628gUVAROyxZc3LrBr2qMFMjUNv5o1x5KhXYbGwdjp9RNuzhTNW3ZW4HQVmb3xze8b1pxpSNju7u49Mc3vI+rb/kQxp8c4965uNKdbsnIOJoxc+QnA8gkwg466+/4+JE+hYwDYQ8Lm0YbzOgYMucRDZeRvQVU27B+T3Jh1lvAQeQCTLOFCcO2TJg6ItI81/ziA6x6xodtV/iUpLMjEWbCsHs7m2LJyDg47HN33VQj+oNw3E7SOdN5HCp/HiFFW5ps8jbYCb5OIbdbpFaqK8NokikLdULYgkUY2UJLqQjlEkIITOCC1uiCR+pJRGKQsUaGKQiBkQLtK0SsEakm2BYSVgKSvPU8qQxVcZRmfCJPYiB5eoNFvePEWrF1rES8NYcjNfNz4zzQnMf1O06ix2vSSDzkPQVyO+x56rxnJ2iMwbgKcv0AyIZERLEtsLg23DJSEBWtb4t2J6UOjNe+Fpu2xFfa6QIU6JbVu9auQYSSJFIEuQghDSaSqKbAG7d63sJY/ezO9ArAOf/fFRgp4OQcYJPOvfHjn75/xvsPpgzCyvMu4+pbsk7CucrO8jwZRx86bCGZuZmn7+469QUFWseHbD0zYsmWZcjf3GPN6/eggCuUYtPzSvTdlyN/m0SPjELHj+Uw8/fP/A5n/vBDJOWUqNX+LtE2rl55wcfAkRgpka2I1Wd+IMvRMjIOAnuNZ43eKfbTk9eUnRQdZisTNvW4U2PWPcW0BxzPztQktFOBSEgxqXDRbrJJSwFJ3kFGKc54iHasR17qQVSC/BZDYWMLt+Gx5RyHLYsFGI+0kvC/Bh9hsVMlryLumFjEY41+EiNZEIxzTs+j3CaWoHOC4cA2/JSdJndX53NOz2O8ufe3/GHtYrY2Spy0cBMXFB4gEDG/04vodeqcu1Nz5VS+tvH5xCVoDNsGHaMMaU6z4+kC1QR/AqKyi6smp5OEgbgIrUEwjoFx2yCU5Ns+gAbcmsYogWpp6xsTCLyJ9vQ21pvFKBsDy1QgWxCMady6fZ9lZBCxnrZe8ayLryDOT8a0e4tL9zSxcrBUaDKZsIyMjA5ZgSUjYzd0grhOoLbSexWm2UJuHYGBAmnBwRkeRG4G02ig42TGINGkKbrRQHkeIvDtne0FxKvqh08ebFXuYsRJy2xXNYDrdDtWO8WVmZ5zVfOfD9s5Zhwasm6/I8fOyeA+sZ+dfjsff2+3d05WD9axuot6U4pFQimE7yM8DzPleil8v9sZJ1INqQYTgQpsgaKYt5JbgYsu+GjfwQhQYYqRoFpt+cVUIyKDcdpdhVGK0BrtuWhf4Y9pUk/htKD+QA8iBeNaRfAQ0L02eUwihcmleDJlcTDKkDtOXsX8Ystyto6WKI6ASAw6UCQFBxlpUt++RhkbVCtFJNqanAYuxlWkeRfjClIPmsOGNNCThp6JQMQCkdgpFRm3O/pcEAnonJULQ4COFC3jYVKJ0LYLXej2VEwEKjRdnezzXnsFQtnGolu/Ot0Aemc5sMONqjYP+zEzMo41dNhCKMXqvjexfuRr3Wv86oE3s8hZxiOnQuDFPPTyXk4MT0Dc+wimZRttZoxpkxi3CmFF4R43hOu60GyybtOXD9trWv30D3HvmyrIRKDzJZCG+z7Uvr5JaaXBpMQIAZ0FQWNYs/xS1j1yxWE7z4yDTxbPHjn21qwzjWkSYJPFiMn7Zl9YmXr8nc9jTzHtAcezOzc67RSTS89DlouY+YNEPQEy1hhHElVsIUM7AtVIUK2E3BZDXMihQmv0vvWZecJ+aC2MedoJGzin93Ga2sMVKT9rLkcKzdZmgc3jZTw3gT54vNHLk9UKS8pjnJzfxKBTZWPcS79fp5F6/KB2HFtHS6TjHo8Wehmbn2dQVWmkHi8q3gXsvsAyFga0Bg1iqEUcS9wgoZQPiRNF44kSSU6S5iTa90gCgUyg1Stp9UEyHOHlI6InC3ijVqbWmzA4Leuj4lYTtCcJK7IrI5b4oNs/1qfFTsKoyPq6OKLjJ2jziM5U4ornfgK1MCDJiWkx7YrnfLw7gXNEfLeOkJVlRkbG3CMrsGRk7A4hWem9iqujKwG4OrrSFlmSBO1KagtdvK0Kkc9hwtBOsmg5c0LakRhzHduF0fEZOIzsqVDS9V+ZSjuoWRW8GpHPA7B+5GuH7PwyDg1ZMnrkOaAiCxyUSbc9/R0c8Pm1uUZ/nxXqFbs+MEWjXyhlZbQCH+G6EIbdjmOSZLJLre3HQpKC501eO6UkDRxkYnBGG4goRuY8O0XSluDqyDLIeoRshLar0Bg74ZIYVGhwaraYYZTttkvKKbneFgU34p57F6FqClNKkcJwb22YR9QApxU24qvFJDWXJICwz8FMCJJAEg0pGkO20FHYaAjGBKqVYHwH4yqSkk/Y79HsV0Q9kOY0FFLb2ZlI5KhrJb6wutwd80/tG9AC047WRCowDYVG2eIMtosQY6deVGj41TetLNiFKz6FV3aIC7JrdD+1qAL7Xlg5mF16aSV3UPYzE6tPez/r75pZBi0j41hgZ3N74bmsWfIO1j3+BQD0RA13a5U0qvBvZ/0jayb+kq3P6mF4cwWzdZt93m5i2p4HQ+oLPVQjxhR89MDh1VNff9tle31s1dkftgt07WI3rQhaIWuWvAOg+z5kHD1k8eyRZ7/ixc60Sopt+NiP4spM57Gnxw40pu3Es0Kpafm6SWIAZKmEKBYg8DGuorYkoNkvKD+eoloap56gQtvgkwYuCIE3kaIdRVwQtAbs5Ib0Us6obKSW+vzXfWeglObU4S1srJZpxS6D5RolN2RDtcLmLT0oL2VBcYIUSUk18dMiBRXyeLOPx5t99Ffq9A5v44L+Rzg/2MKt4QDzvIk9Tq8ArBy+h//95CCVYpMzBzfxp/Nu5M7WYn6y7WTumghIAh/tCLQDUUkSF6C+xOAsqjOv0ERJzaZ8gKk6uE3I7UiRoaa2yCUNJCo0xEVBEtjCSdoprsi2pFjDTsPIxDYcpZ7EaelpkmCrzvkI0hiEDpCJzRU6Ma0Qgmt+MfPk9Z5Y8ZyPH5SCjDjEku9rjnsn6x7+3CE9RsbRikHMGRnUuXIeR5aswJKRMYWpHTFCKYQUrApe3TWivzq6kjXLL0U1E4R2qZ1QoSAlotFs60/vXldBN1uI1LX77SwuHmFeuPLT+Dfdy/qJb04rslxV/7adeHEdjNZ24fMwF4QyDpwsGZ077Knjbi6wJ23r/aHrsSIkJokRntstrgjfs1rVqr14Z4yVAEs1xmiEkLYII6V9LEnsj+PY4rSB1FekC0qI1CAjK0FglECkVk5AhjEiSkAKdOCQ5m24I9NJA01rJA9JQTO4dITjekZ4YHQAVbXXOqMMv7lnGSIWlBdNcNLxW+jPNXhUGaIKNCJBVHTsRMo8CBfEqKqDUQKZKvzt1hMFTVeyLOyBqAwylGhlMDmD0dZ7RSS2WJLkDFFfe7olFcjUoB2DCbQd8tEgmwoRC5ymwKmB07RTL7/6hi2urD7t/bieA+Qw0kWFNug90EmVgymBcCiNRrPiSkbGTlI5SkExz5pT38u6ez7J1dGVvOh5n6B4p8+3n34+lz7zx3y2sYaeBxfh7RhpTyDuGtMKpfB++xBOYwlJySNcXKA5cOTjw+Xf/SQnfinh6l9+EICrbv0oq8+y/1539+WsWfi2yY13NuHOmPPMxbjpWGVnhYd9+Wz2JKl9MDkYniydOFZ4rlWgEIJ0ZAxZLCB6KpiCj3EckqJHc0DQ6genoeh52E6tiDjFKEVScNGe9SDxJjQylqgQmgMC46doJMcHW3n/M9Zxe30xRRVyXu+jPNHqpZl6bG0VaUQuXj7C9xJOKG3j2fkHiY2kJO0kcCt16fdrvPm4n/GG8pb2KyjSIxucm3uYvS35/X7xTm45fjn9fp0/m3c9Z3seJ7t3sD0ucf+WeYjU7zYoIdpm9Y5hYe8Y83J1HhnvQ4R2QkWkoJoaYQxCQ6vXxudxAdLAHk+7kAYGzJQp7Mh6EzotgzDw0/96FwAXvfCTiFSjUoMJHCsFHNvvnAONaQ/WtMu1Pzm0JuNZcSUj4+ghK7BkZMzANfr7rPReNV1vtc26R65gxXM/QeILkkBRfKhtWhz46GZzunZ1xwCUdqDmeSCFNRPtyIUdBs5/9ecRxur/G2klbGRscByBPmV5d7tpnivtDnIhJUZrrpr4ZldiIiMjY9/Ym2b0XOJAuv+uSb8HTJcd7EiCAfa6kgswnrKGloFvzesBPBfRmWbpmNwbbadYXBcCuw8ZJohEoj2bYIlUY6Qk9R2cemylp6S0+vvCSnNFJQeh7XVPxQaZ2GthGhhMLiVKFfdsn0d1IofbFDgtAIe+u6DVJzALBUXV4pTiZn6dLCdeGBEPSJwRB5lCvLRFT6XBeFom9RzqwwIZ5yimGjSYtlGnV7Wde1EPEEvwNMLRpHmNW5M4DUg9QVoA42qEEohxhTQC7RqMMghlMK7BG5G4VZvMCg2/+d9TJMAciUgSUlfiNFK0my0oZmQcq1yjv8+a+W/FCMHUK8GPf/p+znrHWu6uzufS5bfwxa0vQTsxcqAf02iiq9VdY1qlwBjiskfqSyaWKsLew/t6XvzTt9PjNxnwasRGsalZIV8c5IFXl6Ztt/72j03eSJJu0X7do1/oFpoyMjL2jZ3jw7kc0x5IPHt1/K8ArFn8V+DYeFMtWoDJ+ejA6V5Paot8ooqNw+qLoPd+Q9TjoyKNdiRhr6LVayervQkr9Rr2COqLNTkn5YHqII3U5bjcNkaiAuV8izWlO/j39Bz+4/ETqORb9Bfq5CsxZa/FisrvOLsdU7fMKL/QJwKwwB/nfxYfA4LuaxjTeWKjwK8DsOreF7Nq6G4u7X1k2ms9w8vxiSX/l21pobtvAG0E83qqbFqaR6aKwmbbFKUigT8iefiRIZ4sRxhjfViSvG0iiksKt5YiNIQ9dlI8zRtEDMEOK5WLEWjfkOYMRgkKG+0xjYJffP+vu+eQ5BQylWhfEZUdksDG7xkZGW2ywZE5RXZ5ysjYE0Z3p1emcs3P349MDMWNCcZViL4ecJxux3aHqXqzIp+HhfMQ5bL1ExCHfsHrWa+5gnNffwUyBqdprFmctrqwRrVN9/IOq8/8AGtOnt6ZfFX922AM6ye+CalmVe5iSFNWD7z5kJ93RsZTjbmafO6OAz3fq+rfttc4YQvLHXkwoZSVVPBdTN7DeI4toICVAfO9bnHF5HxM2UowdAotohmhJlqIVCNjW4zRrkS2UvxtDZyxJiiF9l2MIzGOJC46pIGVHLBTLnaKRca2c87d5jK2uUwrdNGhQoUQ7ICeewV9vx2nsNlwysBWYqP4/gPPQDYlSxZu5/ln3Yte0iQuaZSbUgpCgv4m0fEtJp4WM3qypLakQDgYMHaCz/hyRZxvd/e1BKopEDUH6u1eF2O7+rRvI2URSdB2SiXYKvA3OzhjDqLqoKoSbwzchp3Kue1L0/1V1t/+se7UoVtLGDkl66fJyDimSVLEeJV1d0+XCbz9C5cQpYrbowL5s0bYfL5LsmTepKTjTh5gJk1h8TCPvS6lushBO8Bhqt/+7b0v4uKb38iGagWJoey0GPYmGPRrlHMt1Lwmy77yOU76+FpOe8/aac9dt+UrdkFUa9Ysb0/6nXkEtPozMo5y9hofHoBv4KHgQOPZdU/8rY2nXBfdVyTpzxP35KwXoKto9QpaS2Li45uEQwki1YR9Do0hj6isSAJBdSmMnhOz5dmasRMFWoGMBM1NBe58fAH1xGc8yXNGaQNPtnr47MbVXL3hFPpLdZ45+AQDQYN5uSq/338Hq3NR99yGVY3zSo+wauB3PKvwICM6nnbuSmjG0gKPJ1Ve8fBFbPrREq7a8rQZX+cpboGlTrV7e4lT4tW9N/GWZTcwdOpWxk9OqS6WNIYkE8cbwuEEkQqiCY+k4UIuJe5LaA4Zxpcqxk7wmFgqCAcMad7YaW5pfQWDHeCP2lhYRgIZ2wkW7cEt/3TptPO64Ufv5idX/Q0TSz2qixVRWVJdkjUNZWRkzE2Omoz7k5/8JP/xH//BvffeSy6X49nPfjaf/vSnOfnkk7vbGGP46Ec/yle/+lVGR0d51rOexZe//GVOO+20I3jmB84K9QqceQNQyLPuwc8e6dM5Zuh4r+yOX//jpVzwqs8Tn1DEG8+Rv7WGcWyXtEmnF1fsJIwhLeVwQmtw3+mGOVSc/ea1OAZUDE5LkwSSNBBERYHTMnhVjdNM0b5CF3xkalh91gendfyZdje5yAVWqqd9e/XAm1m//auH9PwzDoyjbUE/46lHd2JvqrygNhAnkHrWWR6sVJiW1theiMniSs5Few7ORB2SFFMukFRsZ16Sd0jyykqDCfAmEtyJGCkEUW8AAryRFhhjzTk9gd9IMRLCskS7VorASPsb4RB5Lqqm8KpWxqGwMUJu2kYFuPPqk/jV8mU4mz2EZxjK1fjTwRsZCfPc581jQc84/bkG8/NVim6LR6t9PFZdyMRSSVKQNBcl1ivF1zhBjLq3gNMURIEBCbIpSAN7iRWpQLYkKDPZpWdANW1xXLuGh945PQGdCR04oAQ/vuF9LP3HzxzETzYjY//pxrS5XCZ7cRhZt+0fdvvYfz/vi+jNJ/Gbs7/Hv59S4rKJP2W+no+8L0akta5JNWCnWKoNjp9fZ3N+CV4Vwv5Df/5680kc5wXcqRZxav8WLuh5iD8tPcQWnfClbc+nEbn0lRukpSYjpSLyoYCTP7aW+z44pfisNWawt+v1ZVzFqmd8mKt++9FD/wIy9pssnp17HCzvvqMGpdClgNa8PGlO4tRTVMsgEk35iZTmPJfkuAQRSVQ9ovRginGtZ2B1iY88rsbx/aM0Yo+R7UM4IThL6rz2lJspqhYvKd7FMsdO4E30/I5vjp/KPL/KJYPX4wnBJ7e8kBRBVU/3rhtSgteVt6LR/DZKdjntM7wd9Ms6X9rxPO7675NYeGODkdElXPM+hxW5hKYJyYlJRY0lTmmn5+c4wxvh14OP8YPNvTSGJUlfwnHLtlB0baHHkZo7nlyAEAadSpJI0Jwvuz6HCOslKIw1tE8DuzZhhI3BdaB58N1/zd5ozBM0Fqc8+ufvZOk3spg2IyNjbjK3Wgz2wA033MBb3/pWbrrpJq655hqSJGHlypXU6/XuNp/5zGe44oor+NKXvsSvfvUrhoeHWbFiBdVqdQ97ntt0pgX02AREtithVeE1rFn09iN5Wsc8F170KQC88RSZ2FFYHAfhulYKbCd9ZyEFwnGQcQqNJsQJaTngRc87MJ34NcsvZc0J7+KFqz7N7710evHNbRiENjhNTdijiErWnyAY0wSjmp/933eRFBy0IyA1JAMFwqEiK5798a5u9VW1bwHW3H796NdZP/4N648ArBl8C6sH3szq3jce0GvIyMh4arJ+5Gv2etGe1jNG2+7nWh3ZCBGJRsSpLawkiZUKi6K2lAuIKMEZa9jEdqiX5sIS1aU5WoNWesGrJvgjMU6oaQ24NOcHtIbzhL1WoznNu4SDeZymRqQQFxWtPkWSt/UcFQIC7vnYJbbI0lJtCUVbyHBHGpgwQtZbDNyZIiYcknKKLqT8r6GbuCiXcnbv47xg6YP8wYI7uaD3IZYXtlNUEX1BE6MMwaghyYFwNbIY09NfQwiIS4ZwKMFbUIcgxakL3Anb1Vd4EoqPC/ztEtWQYKy8gvbs5M0jb9t7IgrW40Q79r0/+WutQ/QpZ2TMnjXDfwG0Y9p2/L7muHceyVM65jn+c1dMu/2yQhX1whHGTyzC0gXIfL7rSSikwKS22P34SC9uvS39sqTJid//+AGdx5qFb2PNorezZsk7OPGTa1n2T5/eZZvzgx30uE1eN/RzVhTu48EErqqdwt8+41/IuQklv0XJC+nrr9Fz/lbEaVVOvmwt577evsZ1m77M+js+zvo7P8H6Oz+BiFNEkrBmyTtYs/ivrBRQRkbGgXGABvZzkXX3fYq4EmBcYRteIo2qR4gwJtjaItgBadPBG5XIagu1bQw11kQYGwNGNY8NNyxm5OYhjIDSH2zilgu+ynv77+dtPY/zRFLizsj6qZRljr/qfZS1829liVPigbjIc8v389r+X/Boa2DaefXKPAASSVlELFu0adrjC1WJBU6LGzYez7xbI5wdNYobY/7shtcCTCuu7Il+tw4YdGDI9zYZCBosLozy9J4n6fEaVEpNTh7eSpCLEKkAbadSvDHwRiSq2Z5UiQSpD60+SAp23w+/fXYx7d2XX0Lf0jEATv5aOKvnZGQcCwgzN34yqTLLUTPBsn79+mm3v/nNbzJv3jxuvfVWnve852GM4Qtf+ALvf//7+eM//mMAvvWtbzE0NMSVV17Jn/3Znx2J0z5gdjclYBpNVgWvRlbKduw947By3bXv4Xl/9Fl++t/v5pw3XkFhU2LlbZS0hZbOeHRnQRG7uChHa6QLBpCtCOMoVHPXbpO9sbr3jXbBUgr0cYsYP6XIlmcZSo9Mr5fe9J3JDudnveYKhIGbvjs9iLnhh+/iogs/iWxFJCXPdktLAcaw6hkfJukNuPa6SeO2NYNv6f573bZ/YHXfm7pTLRlzh6zbb24yteNvLmtWw8Exugd7nViz6O2QphAnCNcBx8E4yl474gSiCJOmCMexMgzGdgWiDdQbmN4ScW9AmpMIbVAtjTMRogOXNKeQkSHxoT6k8CbAH9eI1Go6y0jj1FN++l/v3+N5yhhkS6IrCa1+DxWCaMUYZa+rqS8IFtVo1T2METw/tw3Is9zfxovLt3O25/F4UuW6xvHc3VxII3ERqcCrGvruhsZ2j6gHGiaHNJD0aJyeEGME+UqTuz/4N5zz/12BV7Omn9oTtGLBPZddssfz3hs/+0+7eC0b0V62zMg49Kzb/Pe73hlFrO59I6JUZN3jXzjs53Ss89A7L+Wk//Mx7v+T+9GbT+KuuMHYjiKlQUGxL4dX60fVG5h6A4C03kDUW5T/Xy87zjKopiBtOuh032PBVYXX2AlHz2Xrn5zK2MmGyoOCy//nd7ixeuK0beXw/QwCn1sA2zYuZHCBFex/Zvvxm1Z9klP/86M0x3IIL+V5Jz7I5qDE/b0FeERwwas+T1SU3PpVe01dde5HQSlElLDu8S/Y4orJVgcyMmbLbmPaGfxLjyQHK5697tr3cP6fXkFUtDLbzmgLXQqIKh615RqMwKkB9Qb4PiiBu6NBz4MehU0uPffWaSwI2PCSlK+e/F3KstDd9w/Hn8Gzig9yhrdrU/CEDljmbicQCcuC7dwZNTlryRO7bHfyLvdYFqoS27ZWKLdSkt4CYY+i3D++T6/dlQlCGWQoaG4pcLccQslB4kSRasmCnnECJ2F53wj//dKPcMqH1+JWrYStboEo2GamA+U3v28L+UnePeB9ZWRkZBwKjpoJlp0ZH7dfDH19fQA88sgjbN68mZUrV3a38X2f5z//+dx4441H5BwPFVfVv836ka9htMGkqe26yjoADzs//cG7OOGzV1CfbydDSFLb5ee6dhFRiklDULATSONV1HiDeKCAs3XC+qDshV0WYZVEeK6diGlFxDnBX114FY1zmrvdx83fvpRffWNmSZlrr3svIkzwttdRoUa22vqtSpAUHM59wxWceanVsjbtgLlT+Fs/8jXWj39jr68hIyPj6OFgyz6se/KLdiFLKUya2tuOxLgKkgTTCiflwYSwhZdq3SapqfVdcWqx9Y6SNrENB/O0Bn3CHhcjILcjJRgxOC2DE9rrlDPawtvRQMwiz7/nY5fgjUq8Jz3igjWaBxBCYnzHSkH8uoz3cIDy0m7X4MWl7V1D0CVOifNzjzDsjbG0MIK7uEZzwIZZ/jgUn4Te+wz5TeDvkJjH83BPkbtf+hHASiYAmHbry86+KrtjauF7dxjvqOmnyTjGWPfkF9H1BsQxa5ZdwppT37v3J2UcVO7/kw+iN58EwEiah4Yiv83Q6vdIB8uYgR5EXw+ikEcVC5iRMQZ+sRWnKkiKmmCjiwlnJ3s7NaaVxQLRuScTn76MsBecxXWSVWO8rFDl88O/2e0+BhdsmPH+e/7HhyGUuI8F/Pxnp7G9UcA4hqgiSD3rg/CKX06/Xq6/y06Sr3vib+13U0ZGxoHxFCyudLjpO5cS9lhpK+MqZCvmhh+9GzEv5PSTnkB7YKo1K4+baMREncotGxj45TZEolGxwd3k8bPGCdP2+5mh3/KywsyKK7FR/MPWF/DlrRcy7IzxaLJnTUY5fP+udwpbPI7LLvX5Ni79xsQQt0Wzm25+a8/vOO+4xxCLG5BPCEOHidE80SMlos15dtQLPDrey38/z15DjYI0bw3u49LsiytPRV+sFc8+sOnOjIy9YubITwZwlBZYjDFceumlPPe5z+X0008HYPPmzQAMDQ1N23ZoaKj72EyEYcjExMS0n6OFq6MrWb/9q9Z8rdnsmjZmHEaWNkjPqlFd7NkJFsexXdid350iSy4HQqBrdRgZw3t8hGhhDzvOKO1ixLkzO3e6d/aP5yEm6qjY8L/veS5PX/Lkfr+Mdfd9ivW3fwx3Rx3tO7QWlgkH81YuJ4EkZ6dg1m//Kuu2/UMWLMxxrtHfP7a0kY9SjqXPaN2TX2Tdtn+YnMoUNvkkirtTfiQphJEtRocRxLHtKJYSoyRJTtDqFYQ9ila/Q7NfYiS4tRinoQnGNCq0EyAi1t0izjU/3/P0Sod7P3wJffcYnBaMn2hIBoogBSbw0I4gv9ngj4HnJWhmXkDYkVp97H63zinztjJxvKE+LIiLoJXNcb2aofS49VFZfN1kcnvzty+1kzdSkAT78N7uwVuhg5GSledfNvudHmE6UlIZs+doj2fXbfoy6x5dC2MTmQzuEeT3AlC9IdUlgjgviHp80kqeZGH/ZKFleBC9YRNLrm5QfESS5A1CGU76Px/b6/6nfu+1nr6MxrBLdWlAfoshHPcZLk/wuZHj9/v8H33LO7n/fZfw0F9fSuErPeSfUNQXGnacCZxS448Hb+W89e/jql9Z75UzL9lzDJ5x5DmWYqWjmWPlc7rrU5dw4/f+mqtv+RBX3Wr9mwZ7bXEktw07iZ0kdkLb8zClPGlPnjTvEBUlcTll0Jn5+/n6liA209UttiVlFvjjnFbcQFXn+KPjbtvrOe5cZHn+KQ8QV1zSQFI9MeUVx/2G+5vDxGZ2hfGiDFi75L94/Wk3ceqyTRTyIdLRGGWnVKojeXZsLXe3v+9DlxCVIeo1tBbNXq1j/R2zXF+QcOGKT816v0eSa278QLZukpFxDHFUtjT+5V/+JXfccQc///nPd3lMiOkTAcaYXe6byic/+Uk++tGj39zQxDHC91hz0t+w7v5ddYsz9o3Zmvc9+D8/wCkfXUvl4dAuBEYx9JTRvUWEsRI1IkwR1QYkCSKM7CJirY57+xjzNg8QDZW46AWXc+3179vtca7R3+fv73sh//KeF1MUVsKLNAUUcUEQ+DH//uwZpDd2w5qhP59RWm62gY2zeYw1J7+HcEkPE0s93IYhCQQygfLDzVkvaGYcOuay/NSxTOdzmYtSYYc1OY5Tez1M7eQfelJOESkQrmuTVEdhAheRahJfUD2/yYQR9P/Ep//WcUSakvTkiIuKJCfIbU9w6gmNhTl+8f3Z6TpP5abvXMpZb19LdFKL+1/vc9I3FrL5/AJXXvJ57o2G+I9tZ/OuBeu58K5XsPmXC0jKGl1OGJ4/xh8vvo3YKGKjOC2/gVtGlmIUtAYN3rig/9GUwhN1rvrVh7vH60gwrj7j/UTDJdJ5LqkHehbTjbNl5XmXWU+b9OhpL5pRSmqOsUK9gmvS7x3p0+jyVIln0RrKpcx8/CCyKncxVzX/eY/byOH7+dw9q9gQ9mI22UKxdmFiqUvy4hquk3JS7zZGwjxP/miQ3PYBCpsTihs1i364lSf/cJjK6u186d4L+aPSPSxeuGm3x9KbT+L7tQoTS15FcWNMsKVBY3GRP3zG7fztgl+xIa0ih3f//Km86Hmf4Mc/nTnm/Ol/vWuGez/IK6Y0j5ee1Jz3uisYO0kQDsX03uYSlaE5X4OBRddaz8KMI8dciZEydmWuxrSHu9gTODH3PDlMjwATRTBeRQQ+pq+HuC9Pa8CjulhRW2rw5jW4eux0Xlq4edo+/nLjeby2/xe4YlL+6vu1Cm+qbEIO37DP5ySH7+9OJn5zyc/4X+9x2VAv8/Dp/3fKVrOX2ioKhxcV7yIvI36kT2N8RxEhzS6+gE97/1oaS1LUkgjHTcn5B1ei9mgprEzlmhvn9mTOXItnMzKOZo66CZa3ve1t/Nd//Rc/+clPWLRoUff+4eFhgF2mVbZu3brLVMtU3vve9zI+Pt79eeKJXTUtjwZMK2Tdo2uz4spBYIV6hdWPnSX3fvgSrrv2PSQL+9FLh9HFHMIYZD20Uyt5F91TwPSUoFS0C4bNFia0j29+Vo7WgGdNPb863aj+6X+5ljP+ei0nXW477LacrUC2z01K0oX9GAWNprdPr3F3vj3P/p+f3+1znvuyz3HRCy638h1KYhyFDFP67qihlaD4ZEzl/hoiSVl9mk12dzfquyp38T6db8a+c6x0kh2tTE1Aj8nPSonutcykqS0aG2OLKztff1N7Pc2NaNgSYMZda1AvsZIL1Qh/NCbYYYsrarSxX8WVDmE/zOurcs7THqG+KEft7BanuXleVqjy3WXX883tv0ft3xaw9Ed15v/UUPmtx9Z7B9kUVTgz9zhrSnfwyuIob19yLX+z+geo5XVkbKdX4p7dGIoqRZJTVte7ZQjGDo7Exo2PHcdHvv9PnPD399P8VO2g7PNwsWb+W4/0KeyRuZaMPmXi2WaLdfd9KiuuHCRW5S62/oCz4J2nXsXap/8rujdGnDfO0jc8CH+4g4nRPN4/93HzzafwjN4nyb9gGzuebmj1OfTcvgOzZRtawQuHHuAvep60mv8bF/KzR6fL4Nz5xKLugt/Li+NoD5KcpDW/QHWh4qYtSwEoidn3/+2uuAI2hp6J475wBad8ZC3P/LO1JIHASPB3QN+tLklgiyuqKei9W5Lb0mL1wJsBZpx2Wem9atbnmrF/HJMx0lHGsR7TnlDZTq4Q4danNLIU8uAqtKeIi5KkALqSEI0EXP/YibvsY9ib4N/HzunevjWK+NwDK2aW/NoP/mX5dVx72v+Z8bG/2PAsTvrpa/j0yAkzPg52iuVc3+U1lbtJtES6KfTuWjwJew35oRo9lTquk2LMwWsY0ptP4sf//A3e+JX/5CVfvO6g7fdwcNGFnzzSp7Bb5lo8m7FvHGlz+67JfQZwFE2wGGN429vexn/+539y/fXXs3z58mmPL1++nOHhYa655hqe8YxnABBFETfccAOf/vTuiw6+7+P7u1nwOIq4qvatI30KRx27m1LZ3y+ZkdMK9N9RRW0dsd3YlRJJ0cWpxdZrQAjwHUSz/d9OGxgZIykOsuM0xcAdmrDH4YxL1+JVrSxXYxGkgUG7hodb8+g7dysPeMcx+FtNMJLw5As9xAk17v+TDx7IWwHAOW+8gnCx5JlvWYvQ0OqHuz55CWvmv5V1m75M6guiHhfVyiGrIcZzrB+CKyk+0cLdVkc0QyuVpiRrFr4N+sqseM7HkWGC9hzk7ffb191mVfG12d9uxrHJTEXcI2QMeiSSYR14SEDUFUJKjNZ0UjAj7ISe8FxwFEJriDWFJxssvCGgtsBBhZq4J4ejFMIYnFqEO5KAMV1N/f3l3g9fwj8/cD5n+ht4Y+ESSuXp/la/3r6YvnubCK3Jbw4JtgviYo6K0+QUbzvawPu2ns1jjT7O73mY5yx5mOs3no7TVLh1yYmfWssD75muR22EwK0lyNggE81117zngF4DwLKvfZY7XpxQlAFvfPwEhsoz63vPWfTc0XE/GniqxLPrJ755pE/hqGNPU9d7m1yZiUdf+zd84q4/4P9tOJ3abf2Ut8P4cnjLiqsZSQo8rX8LPxsrIhMfRsYwacrQr0MmXhmg0Ugkd0ZFxtI8n7tnFeNJnkXeCH9cmp6B3/rBr/A/HlzJ/dsGueuC73bv71lw4MXBk/79Y/S9pMGyr30WEUrc4UY3Vhap9QiIKuC0IPXtt4/bMFQeSXDrLvmtKeXfbIZGAwOsrryB8J1n8LT3ryUNYNmnb7MyQG1Wl1+PiSKuan13hrPJyMg4XByJmPYV/TcTa8Vv5p1Oj26rTEQxRuSRUYp2XMI+g1uMSDbnCDcU+ODW03lr/00MqyIAHxi4l6+Nz+fOqMm/jZ3L9VtO5FdrLj+g85o6xQIwqlvMax9vKr/4l2dSbMG//nwFL3rn3V1vwZnolXleOO8BvjPaQ1T3OO7Ky3n4VZMqHGklJefH5NyYVuRyx0sOjjzt1NdxvLuVx6I9e9HMOXS2Ap2RcSxw1BRY3vrWt3LllVfygx/8gFKp1J1UqVQq5HI5hBC84x3v4PLLL+fEE0/kxBNP5PLLLyefz/OqV2XdRRm7crADsFu/OrlgtnrgzdBfIS46jJziM/ibOqoe2kJLLrALhmEIgY8/Cotf+gi13ywm9QUiFeRGUlo9Eu2B7otR211++NBpXHbmD3n5WeO8+nkv4OZbTsZZWMPog9MZ8uuvX8r5f3oF5QdrpIFDdZk1AVi36csA/PLKXTvCV53zEZKy35W52Zk1i96Os3kHOArZW2Fd/dvTpCpEu4N9NvIVGRlPGWYorhwpWYUj1Wl49S0f4kXPvxy3EWLGJ+y1QAiblIr2dIsxNiFJNUQRaqSO70qEAaeWIrQhLbq4I00rOZakrLvv4EgHXHziTejNJxGVBH35BrdFLZ7u2WviL878D55+9p8zdHMdI2FieUBSgH+5/2weWTTArzYuJrmrgtOEXy4+iRNP3kDluDEaE33IjYLSY9bT6uZvT/qmHYpufVmMKUp7zo3NRdJS/aAf45CSJaMZGbPiUFzH33/a/+P9pwEr4YJXfZ6NF6W8s+8hAI5b90aEmzJ6sqSwYSHu/RvwN45zYm4LAI8nVVqmn5G0yJ3VRfx602IAHlo2j/OLD/LSwuS16D9PuBp23zS939z/sg+y9OufpXK3QxpAo3cy5X3or3f1rPy9l36W0RMdbvmnd+92n2uOeye6t8ADF1e4qvYtVgWv5uroSgDEvAHYMQrAquDVWaEl49hiH5QfDiVHKqZdsfweLsqdxHFnnWj9Vx0H02ggi3lk4iFSELEgHglAGXKbFf/+4NN5ceU2hqfYoCz2dvC5Tau4ddMi7n7pRw7KuU0tsuyubeVlr7ueH3zlBQQv3srJzq5bXTG6nF+NLedPh27kxfkWHxi4l/vqQ/zyoeUYLTj+e5/goVfYacJH33ToJRXvCheyNSrvfcOMjIyMw8xRU2D5ylespNELXvCCafd/85vf5HWvex0A7373u2k2m/zFX/wFo6OjPOtZz+Lqq6+mVCod5rPNONbpGDk/+xWfp7BZo31F9ZQ+EFZb36um+NubiHpIz4MJm+slkuMd1Mod9OYaPPy7hehcytCiUfrzdR7KD9AayXH5vatZP/Qkzyg/wV3Lh5kYy+PlY9YsfBvrNvzdjOeyuvz6WXeE3vSdXZPOPSGihGuv+8huH1/35Bd3uW9qIcV0OpRnKV9xLLEqeDVAlqQ/hdlZ83auaFcfLpKcwvFtl5zR2vqudOTCOhhjze5Te62QrRSnkVqPK9kuLmt9UIsrU4l6YPN4mU88+Qd8/7gfd+9f/NJHaP1mmDTnUJ8viEsaM+Fzw70nUbjHo3eDQWiQoeKRicUkAwmyYNCOIBgx5LYnnP/qz3PTd/dfymyvtN/Gb0wMIRLBWCPHsn/6NI++7m8O3TEzMjKecnQabJ7YsJaFqsTDa75uH3gR/PvFJT7w3T9l+FcJV6z/A/7ilf/AEqfEEieC3BbeUN7Cv/b1MpIUWFG4l7pxuDdOOcUt7PZ4F134yd027qw87zKuvuVDszrvx964Dwt9QvC7z16yx03WPfy5abenxWe1OmLQdlTL/r7ZH/cYYc0J72Ldg5/d+4YZRy1TY9pjLZ7tcMayDSTFAvT3wug4NJrInItX9fHHFN64wm2AllBruvy8fjLn+w91n79u9Cx+dsfJh6xIsbts+0MD9/AvQy/gv0//FkU5fcLla+PzuWG7LdDcVDuB492bOcUt8NbhaxkJX8L9G4cQh1Ef6Nqm4vubzwbgzB9+6KBNyBxy9uAJnZGx3xi6+V7G3OCoKbAYs/e/HCEEH/nIR/jIRz5y6E9oFqwuv5603sh0DY9hbvyeTUqf/pdriXqsYWjYr1FNB39HmYG7EvKPTaC/1ktjCBo395O7u5fBvCCsONQeGWT7aUWEMjhjivCJPm5Uffyk/3QoJdBURKmYVlxZs+jt0wobh1JuY/0dHz+g519V+xare99oOwEzubBp6DhBSMFK71XdDsk9yYBkHF0IKTDtDv2V7iu5Ov7Xw3bsufI3lBQUuuCjcjnrSdWZXgH7u/MTxVaKxVHIyMOpCUSiIdGgxAFfh3bHZdtPJeox8EiRW3cs57XqeXxr6U8B+OFJ63naC/+c0mMGFULxUYlRHv4YqMigQltgMY5AhgJvg4uaIlVdH3aoLRac/LG13PfB3S/qra68AZOm+3Vt1OMeW9MaH7/+TeQ3Sqo9uaOquGLS9EifQsYUVve+kXSimsW0xzAd4/qpUi0vK1R52Zu/wotfsIahryzhaWN/Tu+zt1APPX55zrd42n//JU8/5TH+/YT1SOzC3T9XB/jExtPocxv8z76bOcMLidGUhY8//2GunSKtf+GKT02TTJxtcWVf+dl/vvOAnr9u898DsObU97Juw9+x5rh37lKQOZYxO0a7ksOQxbNPKXaaXjnchtlz6e/ozQtv4MvNsxGtCIrtIrIGp6lxa4rUhdITKU5DkxQC/k//M1jqbWfQmeDO1mL+7pnf5e+eeejObyZ5sA4v+aObaBmDRvOLluR7I+dxemEDTw8eY3tfieX+Nl5ZHAXs63KF5qyeDWyplRDC8IpfvoXvXfAPezz+hRd9CplofnzD+/a43Z548y9egxjxcBY0DopE+mEjq69kZBwTHDUFlqORTEc6o8NtX5pcQFv+d58n7k9IKoKo4jCY7yG3NcIfi+m9F1JfEhVdgjFDbgTymwMmjheoJngTkNuuiYqS5jyPqGIQ43a2+LQffIQklSSfGz5SL3O/WD/6dVb3vrErF5Zh6SQn+2ugutJ71fSkZ0/eHkfI++OYREiEnIyyV6hXTLt9qJhLCWiHsCJx6j657UVbcIqTyQmWKT+m0cTEMSJOEHGC7LVTqWL7GDiHLoz59h3PahdJQDYUm5slXv3oC/jususB+LvXfJU/+683UbkPglGN09R4EwmtPtfKPWowwhbWvSoE20DodqG9R5DkQLXgvNdewS3fmnl60KTpfl8bvVHFs2/4S1RVYRwQ248ufw6h1D5NYGYcWtaPfv1In0LGHKFjujy10PLfJ63j0x88ga/f+RzE1wdRg5LTH307zzvvHr659Hokkg1pFRfB/c3T+fWGxSSPFvmvnrNYsGiE5ww9worynaxq76++aSktk/Ljf84DB+5JdbhYd88nWX3G+xFZTDWN9aNfZ83wX+zXc1e6r5yMU7N4dW7Rjmk7DUMr1CsO+SHnYjzb4cX5Fp9ecRrFB8cRo1UwBikl3riHP+6QBAJvIsHfMME82cOmYJAf9Z1JTkX85L+fyV8dmvrxrPjM0G/5bnUpb9t0Hvf+ehnlBwXXrzyBj5/xA1yREojJLqHQxHxnxwWMxXn683USLXFkyqtvfhPffdbX9ngc7ex7TNv5rvnb0WWIEQ9vVBKR3+f9HEmMEHuczszI2F/misF8VkO0ZAWWjIzDzCNvs1Mty778eSoPGWRiFxG9ezd0O7uO/9wV6OEQsd1nyfoYr+owerIkyYGRgmBUo2JBqylIfVu0Ef0ezqM50p6UC65+D9vGiuRuLuBVAQO3fm3P0gdHHKX2vs0xSGd6ZV8RSk0mPUaDcKdv0ElUu7fFTg+bXbfv7nx6QpUluweG0eaQdvzN1WS02S8w0sWd6MF5uDFNGszEsTU5j2JreN8pMsSx/dVf4No7D8zMfm+YER9d0Bhf89gbJnX5O4neRbmU8gmjxE/24TQFRkrCHt8a1ceAABWB07SFFOMACcjQTnNrz1B6XOBPaC541ed38blaXXnDgU31nVRj4IcFRk6HsNfw8Dv2TQLySLNu2547ITMyMo4sUwstP2zkeVHxbp44sY+bK2dT2Jzy2y+/s/s4wEJV4vWP/x5P1isYbaf73G0uG3U/vwDKqsm9976IV5XvoV8W+NOHV/CJJf+XUzafxIRu8p2JE7mttoSvn/NPR+gVzxIp0QOVI30Wc47OlM++IpRCOLawYicbp+cLnVh0arPKLjHs5AMzHGCWzUgZMyKUQvgOutk65Meaq/HsVCaWKAoPS0TQbmpptlA1j97bmui8h0gNRghkYqg8ZHBXpfz9wpuRHzp8XqSdazdML5QXZEjgJHjLq9SXSJQRfOWJF3BieRvL/a3d7cZ1yDOLj3FbfQlbW0X6/CYTUYAjNa+95f/jW+f947TjXfTCT3LtT97LddceWLH8R1tOIy2kRFrw8NsPocTuIeBAX3tGRsbRQVZgycg4Qjz61t0HBg+981JeffObuDW/mI3PKzH/FzFDv7ZyKaqVkgYKUKS+wK0DQlLPO+iKxniGnqDJlg3zKGwxGAl6jv9PXz/6dVb3velIn8acZFXhNQCYKJp1YrG6703W18YIRCcPFcJ6XLSNxE0UWyNGISbNxNuJpdFm8nldlE1utUF6Xruz3t7uJqf7kpjuzhDzqZrcTp1c6f473aVItYtudaeYtZ9ySXM5Gf3dZy/h+O99gvqCAsu+X4Et2625vdaQanQUI6RAeB44DqItt7D+EBdWOjzyl3tP3p6/4EF+kp5HYVNM2OtQHxbkt4Lb0CQ5gVb2+pv6kAaQehAdF+I9HICA+gIQqQIDz/yztfzmf08WwtePf+OAzv+CJY/yO+90RAJCGU74zFoefPccL7RPIZteycg4OpDD9/NH7X+fuwT42q6PdxbxPrdoPc/55jsR2k72RT0gPE1f0KChPWqhz71RjucE8O/HX0NHjuY3UZ5/23A2E63gcL2s/Wb97R/johd+8kifxpxjzYnvhiRBb9uxT7GJyOdtvKoNhKGNZz3PxgTGoEfHwBiEUiBsvCRS3Y1Zp8eVNridVpRpT8V049mnahx6sGjHpUIpUArhODZOSxJ0nHQ3mymeBfb7/Z3L8SxMXuei36sirtPdhiAzPgHjEwjPQxVypPP70JUcUdlBaA5LwXhqQWVP3FI/nt/85nhMJeYlp93JugdP5bHtffR4LXp6G93t5qkiF5e2c3FpO7f1tbittYQbJ05AYtAIXv+r1/PNcyfjt2t/cnCmNhYVxnhAzkf7muV/9/lu0+rRwEUvuJxrr99/abSMjIyjg0yTJyNjjvLdZ30NrQVJwbD9DJf6sK2SyFjj7WgRlQS1RTB+vLELaLHEnbD/pR/Z3k+wQ+DWrM7rVO3/uUxWZJnOqtzFNqGcWsTYC2uG/hzhuchcDuH79icXIAt5RLGA6OtB9FYQrk2IhOva34E/uZDtOt0JmE4SZRNXiQx8hOd2b3e36SSpU392R/uxGaWxZvk6D5jDcBzbdekiPQ8Z+Mh83v4Evp3Y2inZ7CSiU5PIqUWZ2XKN/n73Z67z0Cvez4tfdhOjZw8i8rnu4kjnR8cJRmtELsCUCpie3etHH0zWLJtdIWIszttxFCFIAkHYb2gOCKKiRCuBaRcq0wCaQ5riudsxWqA98LcLVAg7np5SXQ7RQW54fmb5MWqLwa2CDAXyKPkeOFpZVXwtq4qvPdKnkZExJ+ks8PXLAs5p4yQFg0hBpPCip93Dv534A943cAvzvAkeiHaVuv1l/UQef3yQsW2H5zvgYJAVWSZZs+Qdtpkn1ciON8UsWD3wZuIzl8OCeYieCrK3BznYjzl+EVt+fylPvmIZ6TNPQvb2IMolRLGArJSRA332d7HQjVen/ggpkK5jY+R2zCtdZ9dYdrbsHP/u6/PnOkLa98jzkJ6H6ulBLlmEWLYYMTQIvocslex7bfSM8azdzb6JyBxN8SzY69zdz/4OW5/dB40mZscoutkirdVJRkbRW7Yjay2SksvEEsnoKYdeVGfl+bM3gb9p2zKcqmR43jiDXpXTFmxmsFIDYKEzMeNznu4FvK68lZPyW3jlwE28vP8WhvzqQTn3Dp3vj08suAqUBgkizQSJDhWrnvFhVj3jw0f6NDJmi5kjPxlANsGSkTGnuf9PPsgz3rqWJICR06DV7xKMOPjjmvoCQbQwslMKW1x6fqdoDNtO5eixIoGBqKRwWtZwec2it7PuyS9O2//qyhsOuEs649BxVXPfx8XXbfkKaxa9HXIOotNJ5ihwXXAdjCMh9RDhlNVWpWzi25ZjAtqJcGoXtzuPA8Jx7JRBpwNtSpFgmmxY57Gdt9uJXZ6z87YHu5NwyiSJ0VMKHAeza7GdiAoput19gP23UhijEZEtwJgoQkeTn8VMxq9CKSDF7GWI5WhJQHfmL/p/yn897Xx6b/SgbjvkOgse3c9ESkzgYA6DlOCaZZew7tG1s9r2+jtPpjeG+nyHxqBg4MytVIIm9z02n/6fezSWphhHIzzNM457gqFggtGeAo/M62P0t4OUH4awRxL1pji1g/vaXlG6my+e/EL8m/PEJfBH4fR3rUW7cPfll3DhRZ+as5IFR+P0ygHJuWVkHAN0Orx/d/6V/PNpA3zxwRdC7PC5BdeSEzkQsNTbzq315VwW9fOhgXsmnys0bjEibjozXrtWnfMRrvr1Rw7zK9oDJlttmMq6x7+wX89bv/2rnPVXa8lv88lvjpCtlKjXozHkUFsEcY/GaebpCRYC4NRitK8wUqCaCTKMkTsmMLU6xIn9XDqT22B93NIU075PKIXQxk4NGz09TtwfDrX82JT9T5MFPpiH6DRYFQuInoqdJpISXQqIe3KIVONtkRD4yCQhHR8HZo5nu+e8l3M8WuPZDiPPSBhan4NWaJvSjNOdsBLVBkaUCXshGowP6XmsPP8yrr5pdsYuNd1ipJHHe9o4f33C1bysUIWBewF4y5MXcIq758LoSFLgRHeCharEQ9GOAz73mRhWRaSj0YnArQqe9v61GAnzbwq57pq5Gc8C1nvlKJpeueq3Hz3Sp5CRcdSSFVgyMuY4v/2y7aR+2vvXoloQFwTVpYqoZzJ5a80z5LYItAtEEpmACq0sjdM0qMjsUlyBA5egOZgIpWzQnnHArHvyi6w+8wOIRFuTcEfaBWrPwSiBSA0iKkxKgykJSQJSIjrm4mkKbYmFDp3kgDRtFxGY8riy0mJyetLUTU47+9hFJgvrzrabZGvG5FZIpOcBTBYn9qar3Tn21OmZ9nGN7njKHECRZWcJMKVAyfaEkGsN3JMEXAfh+JNFpRmkv3aRVFDKPn83HO2J6HGLNpEsv5zw+AG8W0YA7DSVEPY9cxxwXYznkPqHtsCy5rh32uPOkuIDLoUtmuaAxDiw+dF+9NIRvHyEdjzyQzWKQcRQocpLBm/n3uZ8trTKFLyQiRYUN8SAy8iZAn2QPei3pArXTZk4XuPUJWkA3jjoBE77m7Vwztw1vT/aiisZGRmzo1Nkubi0nT8461v0yjyQ6z7+skKVlxXu4Gc72TnkZcRQ7wRbRYnrrv3gLvudU8UVyOLZg4hatYMtY3m8+3Lkt0LYA1EZ0oJGNQWNIYjKHiIFp+mBAZmA2/DQCoob8ngjTWS1ZYssjsIELqIR2hg4iqDVsjEvgNYIXFtkiWL7ey/TKFOlxtp32F9KdYs1nTh5lzhTSKRrl2R0nOw+Dp0ppu382/PsseJksji0n9KynWN1XpNQClHIoY9bRGt+Dn97iDNSR8QpaV7R6vEoRxoZp8hWCO0CC0yPZyffoz0XFY72mBbgR2u+wDu++RZUK7T5QLmI8drFPA1hr0NSMrilQzdavOI5H7cNcbPkl2GRWi3gdWfcxP8ojDNV6KbstrgpTDjf3/3S4fonTmWJv4O3VDZwvLflQE59j7hBQitwiEsC1bTT2VvOnrvxbGZsn5FxbJEVWDIyjhLu/sSkZM1xf3sFaKClEMUY1XJJPSg/AiNnWr9yq/0vMFKw89zenJxcUbJrgLm6942Qptki2wFQPakHFRtUSyO0QUba/l20F6hdJRCJRkTtjj7tIpLU/jtJ7cK21rbgotuFGtqL/CnWvLHTBdiZdOkUZqYg1K5mo8J1pi1ii04n4RQ/kkl97I4vzGSgLz0PWSmB5yHjGNMKMc3m9GRyasFjyn1TFz2EMJjUnmOn4GKS/SiwTEmOu8dRspvw4jgIbcB1oK1T3e2i3AvW60bsknA/FRLQqXzp/Ct55+/+P5b+LofQ2k5cCWEXPvI5TM5HewrjHgbJjfYixu4mWab6CURn13Hu9Cg9qQnLDsbVRKki8GPGTtW4v6uwdUnEaadu4nXlrdybe4Tfv/3t5B7w6H1I403EOAMOwkBr4OB2nd7UPI6LT76FexcOc+umRTQ2lCg9IYgL7QmuQz8MlJGRkbELXbkwphssT+U5gWZ9M2B1zi5ADjvj9AcNRt38tO3mqq69EaI7ZbPyvMsQWs+9ItBRwq+f+W/2HxfCtU3FT2unMJEE1FOf27ctYFF5nChVbK6XiGKHJJU0qwFyzMEIaPV5lJ5wyG3zUc3YSpEKgXRVOw52EaXCZOybakhTRJqia3WE6SyMm10nnoW0EwpS2pilI6nb9owxRiPiBJPY+LkzHdOJV7tFjHwe4XvIJMWEIbrZnO4T0znWVNlYJbuTOLJUtNPozRYiTRGBT7J9ZP+ahjryv+0YVvg+Zrif1vwctQUOWgkKUcrECUWqiyX+KMgo6TZz7Y6ZmrA6PNVi2lPcAtvPKjKYzCPNOWw/M49XM3hV+/onlkp0JcJ1DqHfj5jM//c0ydKJaVfkEsSmgG/Ez+HU52zgwtyWdgEcPjrvJm5s5YHdF+1GN5W5b8EwVDZwojt6sF8NAKGJuWjZ/dxRXsC2iSJRWCK/xa55zFXMPjRtZWTsKwLbL5oxd8gKLBkZRyEP/9Wl026f88YrUCHIxLBkvSHJmfbkgl1EE6lhzcK3sW7D3x204srq8uttV73qTARMD6r3pTiyZvAtmCkySetHv37A53ess+m5krSYIkIHGQuCbQJvHIIxgzeRYnp8ZGwQqUYmxhZXtC12iDi1hZdkilxYkthtOoFix3C0XXwR7YkXk6a2gOJ59nmdAo1SNvFKU3vbcezfTto2gpxSZDHGFoUAhOfaU2g07d9bO1k0YYRwXbtf2t17YM/Pdaws1xSJDpOmCCG7SS5gE+jO/pMEQWqnRXaWLJvCzlMwnYTbJo5iMtkOfPB98FyM72E8B7l9DD0yCtpYCax8bsYJlqlck35vr5/1npg2DcPcTWJPcXfwq7/8AqcteRsn/0MVuWPcvjeFAslwD1GPR5KXGHVoExVTtAbKa5ZfuluZsKkLgvf93rc5RVyMd0uRuz59yfRtzoXjrn4DcsTjJ7eczmW5EZZ4OxgeGsNZkBI+2+GhB/phsMX8gXE23z50UF/L3Y0F3LJtKcOFKvMrE4x6CVsrBbxHApwaOC04+01rEcZgpODWr87OdyYjIyPjYDGT+bLefBISyepcxL/XSzwWDXDttlN4aOsAUdPlwhWf4rpr3mOlwg5CcWVV7uJuM8NVre92vZRE4Ns4x5h9iktXXvAxvMZkTHv1LbOT6MnYOxflUi7K3TV5x6Jdt9FoftmCzWmF8TTPZ+5cSXVLDtX0yW0JcGsgY5CpQSuB0Aan1f6p2zhXtVJUPe42AInY3m9chfGUjeMSjXElcdElLiqioiTJC7wJjTDWX8itpahIY6Sg1e+gWobSPTtgZKwb7wKI9rQyrotwFCoXYJotRLlkm3OUwuR90nIOWW//bUlss50jSZUADcaVaFfijjYRo+N7bhpqNwd1J4bbeZxphfb/g+ch5g0QLuphx2k+409LWX7Sk6wcvofNYYX1/+88jrtyK1TrmP4KUV8ONRrsVgLsYMezMHdjWoBff+QrnP6lP2fhdXV6748YO8Fj/HiFObXGqcNbmIh85CFcGdWuLcCteO4nuGYPMmFTY9oVz/8t161/Ji8//tZpj+eEz0W5PecrP169luMd65H1N4+/lO/P8H9zf+mcoy9cPjR0HX/nnM/9+SHuBGpBkeJjgme+ZS0ymXvx7FyV4s3IyDg0ZAWWjIynAL/++qWceclanJZAJlB4solINUnJI/UkN/z3u7vbHmhx5Xl/9Fn8bSHO0CBibALdaNjOKc+DYh7jKtbf/jFbgElTm0CkKVdHVwI2kdVha1pQbKJo7k3UHOU8/I5Lee6P383WsRLRSID2HFRoH0sCSa6atNse2tMRnVzIGNtt40hbsOhMtAgJynQ79ID2wkP7icaBJLXJqFLge93CDEkKgY/J+7YYU2va254DibZ+MFFsCy8weVwArTFxW05ACmDS08TU6ojARxQLtkiTalu06UiZdYopQthijKMmfWmiGNMuDiHEZOehaBeBpkzRdOh09E3eIezidJxMFl463YXtRRmbMCtkGIPvIXzfbhMnNpFWCqoHxwxypmLKXE0+1wz9Oeu2fKV7+7hFm3jgyQWce8ZDbDjpBCo3T2CqTdtB6vUR9SiqiyS/+8yhS5pWnf1h+zeQpqx75IoZt1l5/mWs/7/T77v9Od8g9yePzLj9u591FX/3nT+kuAG+U38BL7jwdv548W0s8ka4vzXMvOMmiI1i7c0rKG0+uMWjkajAL1d+ivff8ccMuDXG0xw/9k7midYguSccZGy7aYWGzJ1wOquKr53RU6Wz8Jr5rWRkHDqmTgkGIuY7D5/H+CM9eKMST8B119jvgQNduLpwxafwttSQPWVMvdGV4hSeh8gFUC6CNqy771OsHngzxAm60eDq+F8Bez3QjcYu37Oy1mL9nZ84oHPLmGTq38NsSI2mZXxUO7A9ed5WNuQqjI3nabg+7rjEqYFxBUke/B2CSAuEBhm3m3aMi9P0pxRLDAirDFAfUsRFSPKgWoCAsBeS4ZBCpcXIpiK5jQqnAUJLuw2gIoPT0KSVHNKRdp+OtEWbdvNSUvQwrkRGGtWIaczPk+QkuW0RGIhLDnqeT1yU9nwjg0zttLpbS+xEjgGMQZaLmFrdTsxMmRDvGtYXCzZ+VhIcx8qmRSnsGLHpQblM2lcg6nGIS5AfrvH8eQ9y1aanMb8wQWthjC4GSCEQUYI7EUIY2uajA1Ang6MrnoXpEyJT/14vfc1/8LXH/wc9d09Q2iCpLXHACAaDGqsG7+IvTv7JITmfCy/6FEj7N33Nz3dfhN45pv37hTcj3793/89R3ehOt3ToFFcufuz5/Or+ZfDs/TnzmXnRxW/gx//8DVuQ37CA84oPU3GaNBKXuxsuekNgmwVTyOLZXdmd52KnWSHjKCfzfJtTZAWWjIynCHesvYSz37SWVq8kCfKUHmuiGgnoA/9vvurcj/LoH5bpPW8rm1/cx8JrchSbMVIIZGdB2fe6JpGrzvkIV+1mguWq5j+z0n3ltEJLp7hy3JWXc9JbH84mWA4SO6oFSoUWVUA8UcQJDVFBoFwo39+0SZ0jITVdKTCRtgssQrT9WrBdbUKAkdNlrYSx+lpOu+ASt6UV2gaYKInJeXafTnvqI9GYShHjSLTflgrTOVS1iaiHk/vWaVemAWgXP+x+Rad4ow3kcuC7EP7/7J13mGRHefV/VXVTx8kzm5O0yjkgBCggadldA8bYHwYHogFjbIwS2SADSghJC8YGDBiMMbYx2BiDWQWUAIkglCMrbU6zk2c631D1/VHdPTObtLvaKPV5nn5mpvv27eo7t/ueqvO+50ST1g1gxxDW7RPqk0d7/5TgdKPta2hthRMpJjtqEo1oiCyNCakUk++/2Z1jposrU6oAAYyj7HE0BuN7CN/D1EIrvAS+7QxqeHTvBLsKCd1ZJd8RBSGaXXUNLJ6zhbdHJ3HpH87CH5uB/+uCrSStJYQZSeGYXefQ7A/c+sAnWfLyq7n93l2HO972y0+g+/912n2+cHfYTs5YxdvvfzsDlRxxGrQSpLbBXfecwq+PGWNx1xDHZfu5Z+RYVn/tGHqT+gLOc2B7YWqX2y26EmhnOVfS/e+dXJh7ipEky91iMU4uRHsORkESCFS1Rcz3BrcWv9kUWqbe10ILLew/NBYpX52u8rM5T/NfT59LasBmCz4fnPEXKzj1HY/yT3PvRX/4dxn47my6H/FRQwUYGmFZ2zts50o6ZXlQymXpmVdx69BXdtjXrcVvskS9kaXBn6DDsHmtbogrw1vm8Id//N7D0sLshYYvj8/mRH8zi90iG2OfCMVgnGdr1E5fqkA5dokTSRGoZhxEVYFjMK4myilkTYCwXf860BjHoIqK/LPK5lvWrZfLswzMqIABHUt6eyfwnJi+dJG3zfg5F6XG2ZJE/NXqP2TVY3MRkcAp2w5yZwiEhijvIwMHoyS1DocoI1GhQdUMxVkKGdv8TAgo99p8zWpngIwMiWdFoTAPKgSMwKmAPyZJKYFbjJGhJu5Io9yZyOEJzEQRU6vVBUTVzFQRuSwmnbIij2P5vYg1IrCdvLg29y4OBHEKzpyxhYX+IN+vnML6/i78rS5GVaEaWi6bDeqfG8nOrKR2GXrPC4DTsnOR5R35bfz9G0eRl4VkyiGd+W4KxQxPtffR500csLHceYft8Lvjrt1nf+yM026P7QXOH5bTQJrXpss7bLto5TvJrHLJ1XZ4aKfYkwX+i5ZcD1iRBa7nJ9/KssgdIicr3MNigkyIdgPiQNQ/Ny3sKRqdoEAzcmfq/+OS86/hJz/92CEYWQstHLloCSwttPACwgNfvYyz334zlR6BW/ZJbbMM55VLP8Ndt35or/e3fPb7wHUwMzvJrzX85Zvu4tOFVyOjANk/ZBeSGwvXtRCRaAg8jC9YPu9S4jndlOamcKqan/7gA80FVeG4yHyW8LSTOOFjKyjPS1hwdD+5fKolruxHPPX6q1h6z6VUQ5coBcWZVhzwJ4SdTBmDUZI476CqCc541dpmNQQVITAC2/nREBQAI6XNyahXe5p6Jwey7r8sJwUa47skgYtINGqsDHFC3Jur70egXWv7pD2J4ziIOLZWZVpb0QQbEgo07ciYYtuBFHY8vjtFFDJWKAnkpBAiZf35uhkcL3y/2TXT7HrRGpF4mDCy4k6STMtLaVjhNbqzUBKhpiywS2k7bDzXdumkXOKcjyMlohxCex4xMgaeZ6sFq+xWYIHJSekLYQIKViTA91m54XM75Jyc4Y1wzpz1rOo7AV+I5vdLnIK+OQfG07mBpWd/ckqk5/PHN87+Bm+//+2sOW6CMT+HDAWZTQI2dfC018Fj+cW0P2PofLJIknb2aBFuT8QVgM/d829cesEfA7Cp1MZvazNxRYJo2FE0Gq0cwBeosDUpnYpdCSaN+1uCSgstHHg0FvZOTG/mP7siWOvhVPZ9f+e8+WbCmYJybFWaO0/8XxY9/ee0P+OiKlVELmuv3XEM5YpdcA588D3bwTKrFx143PbrT7C85z2sHPyytVhKpQgvOpWz3nkzQ+dHHL9gC/93zEo6ZLolruwnPFcXy1x3mAkd0CZrzPBdaqbE1YVj2FDppNsvEqiYwI1JdxYoZTzKZR/Hi1FS4/YmVKoe4bY0xtdke0okiaTq+YydIsE1IA3t3UU+f/wP0Eg+8NAfUKs6XHr0Hbw02IAE5jk5wOcox2flsT/mirYzuG39cVQrHuWtAUYIorSDkeBUQEWGSreg1o7lrhq0Z/CHbX5mmIfybNuRUusUqFq9yyVtQBmSmgBtxQ/t2A7vMK/AGOJAIOMAfzxLMGhD6SlVLJ91lOW8novO+BhPIcIEGcbEHRnoyiIrIcZV1Lo8JuZLglNHeXPffcxQE6S9iPKGgNw6CNt9UsMSjBVpdMp2Zpt450H2LzQ+C5Y7IgS3/foTLHnZ1dx+399Me/yLJ32bT5v/B4USqtaFOyHYtLGLXzo7P0b7AxctuZ79SWgbn79vFzpZXevjE91P7bDNE1GZ7JMubgke+uKedZvvSffET75lizCtwGJxopum4lTJe1WSRCJ8a6SQtPjsTrG7bs/dPdYSV1poYe/RElhaaOE5cKS1T1Y7Balh08zVEJ6kMNt77ifuBNFRMxCxIWrz8Mc0X3v/79Obkmw9V3HUxm7ktvqCpxBQqYKShPM6SVIOrqcI2+zrFuY4vOqln0JJyfIZ70X2dTN84VxqbYLOpxPKxyREWhEnh3FK3RGKWy/4HAALRm4g7JD4gwq3BOPHWpEjzEniFKQHNLnEIKt1wi/qdlxhDA0P53owqPEcK0TUM1hEQ6SY0uFhlN0uSbtoX4FWGJlBliO0IxHGoB1JEkiMBCNtNZ/dD6hKYieERgNqilVZfdFdysm/pRV9AOtTrbDjmuo93RBJGkJGIwNmu7DSxnsQcQxRjIjr4aSJtvfXxRAB4EzJe2m8BtiA9sDHpDyMIzGOIM56uNUQwgRSgbVTK9jqr92JKw28kCajpIJd5pvMmL2F2cP/j6f/aIhnTjmeo/9jgtKcNNVuOKNr6wEd1q33X7Vf9/feB/+UsbANIQzarVsXCEHbmthWovqSn//3lQAsednVe7TP5TP/kpVb/2G32+j+Y1jsZlm55sbmfR9+9P+xutjDcCkDRqAdm8FipjSkHYxr3dKzP7nfj/PBxrL820GIHWwtl3W+C4BbRr7Kss53ccvIVw/F8FpoYbe45IJr+ck9R9aif2IkouDglm2V/75i2ys0qr3Gs2NdvH3Dedy/ZS43L/tXbvjFm/E3BJjAJe7M4K4dsPkXvkfx5D7ilCDdn2X0mIAksHaSwmiWtb0Dc/pxbLwoS2WGpv0pQed9Hq8951HALjievL8OQgvNvJ6dCS2vTtd9uLDimS9cTklvpKw9Tk5vYkEwxC/HFrF6rNs+HoRk/JB5bWP0BRNsLrfzWDgLXXKpVl2EMCg/JttZxVMJR3cM8ak5P2raIC04+yt8beh8ZjhjLHByOx3vTTMe5K+0wy/7FzBScahqh1oiUDVwipCkBGGHQXeG5NoqFAsBpuhipCRJCaKcwZ1peWJY9ohjAQaEa3CCiLjmwISLjIQtNlKibgUsSHxrYQYObsEhGEkTjGi88RgZJRhHEra5JJ5ARgavEGOET63DodYmccsp3JKm2iEpz094ee9WStrHdTQL8iMM+L1o1xZHmUyAKFUR1Rihbd7MDjksU/5+QfFZQI6VWPnMDfaPKZyqIUq81Hc4+Xtrue+T59D/Cug+ZpAuLfHU8/RR2w32N5cb3DKbJ8MMvygcTagdBpIivSo7bZuT527i8c/abL89xXPxzqmf9cntPtzMhdlcaiOJFa6xJgsAGLj4wmsPirh9pK0RbY8lr7Ddlrf/fLqQcvGF1wJglLTdUEf4+3yhoxVyf3ihJbC00MJz4Ei7oER5kJEgzDnEQYbshjJxKuDYT68gThlWX3n5tO0XrbiZ7EbBozfvWG0yeLpd2GxbbUj3R7iFiGJ7Cu0Zhk9vo/0ZH3ftANHCXsJ2FyMFtTaJV9CIxEXVNE41Id1vUAMTkwvQpQpdvxigfHQnwye6ZNqLjJVTLQvJA4h1b/8gi1bcjJGQeND/MhBtIabkIiuSOCVBpPBHXJxKYruRAAWIOGzmshgpMb6CxHaHiPpEzXiOFTS0Bmn/1q4VzJxCiKxEhN0ZRKLtTRskUEs51kKsPjkUxi76jh3tkx7wyT05bIWURENQD/psdNQIMZl5Ak1xR3tO/fF4MtclwVZzKTXFwqsu3CTYiZ/RoKXdTsh6p4yHiCJb0VrvpBFxbKtcG6/pONPHUO9gMZ5jc5BcSZKTyDCFU42sTVngWLGnWtsh68Xupz7GqeJPo/tmJ+Gh2+Nw9qqeKq7sTGi5tOs+Xt/2AG/s/wuMI0l8QWYL3Hv7KRx7ywpUBZ689vAJsARYdvLHdvDcD7XDROgTJ4rUVok/Bl7BLhCKxHDP/13Z3Hb7isdd4bnElfs3LOBMz5sWHL3w29ex9k++x4JvXU8mXyWpOARla7XjlMGpGmQM5b59E+KfC1MtBpK0/dy86iWfOiyDn5e1veM588Bu2YX9ZUNYafzeQguHI440cQVgSWY17rLv8re9r2Xmf/os+OKNiHzE2j+dbn8zdTFu6ndgA1991T+hhOaftp3Pk8N9nNzXz0WpIT54KoS5mXQ8XUW7Ejm7i+GT5zOxELrP3MZoMU3/5gz+MOTXGpKMh9vbDRNFZLHKnNsNw6fmGD3JEMyf4OL0b1kdw1iS3mEMLTx/7Gkmyxuy4yxN30vBxKSFIiNrrB1/BYEbMSNbYHZ6jFOymwDwZcxwb5otA+0EQcSc9jG2TuQ5qaefc9tWc3ZqLXOUz/+UMnyr/2X811G3c3p2Pe/42dtZs+TrVEyNlNjRv64U+xRKAUhDkk8wypCUFLUeQ8/8Eebkx+kLJhiPUqz1uxj2MsQZRbVT4WRCzp23jpQK+e14LyPldLMQLZ+qUg5dKimPOFKEBZc4o5AhqIqwVmcuGGnQjqDSBxhJMOTjFWz3apy2NFnGILRCaGuRFuZtR4w/pgjbIDezwOqxbv6HM/jLGXfw2u5HeGjBHErVHMGYJMn6SCEwrkIWQnQjy0ipJpcVUtj7t+e0e4DDmc8Ck+IKcPu9O+dyf9D+Gx4YOZ3U1hRDuhunJKhUu1h83wpkBL/9+OHBaWsm4nXnfprbfvHxafdviSUXLFjFD8ffSKwV/108lgvTqzjOzeywjwe+uufvZU/Ele2/y/s3z2LG7C28+zdvpRK6JBUHP7QCi1syqNBQ6XueXpK7wfZiw+EqPuzJuLYXVhq44+6PcvFF1+3UNqyFFlrYPVoCSwstvMDw9FWTxObst99MYYGd4CWBQfuGBf94I+v+/EqO++9P0Z6pIJIeKr2w+Lu2gvqZN1hyeOKHVyBd6xdc7RCkhiVR3mPsaImMDeU+QTDi4Qxl2HJeCqdkF7GdKkRpCQZkbJChJrV+DArFZlaHSRIYHCblKMwp3bzhqIf41cgC1g13HtyD9SLDmssuZ8E/3kg4N2HZSY9zVm4dtw6dxAPr51JOeSAVWeWQ6Tc4JY2RoF2FDOqh8kphXIkq1hClqrWPc2S9UyS2nS3SCis6UGhX2uyJLTXElkH8srWsU45qdsMkfhthXtUng4IwK3Bq4JQNbiFBB/VF3zrJa2bEJPXuFSWa9l8i1hjH2osZR4KrELV6J0tDxHCdSXsxrSdFmrhuK6aM7TJpBNQ3Ol3clD1/o8g+J7Yh9XjuZFeM6zbtF5K2FEngEKcUUVbiVAxJ4KA8147ZGESYYMZtwL30A4Tr2DDSKLafkamTz6m5MS9w/KC4mA21LuSEgyzUyK2VJIFDpl9Ra1PU2vdvGPxULF/8wWmT5efC1yf6ONbbyo9u/w4wXWD52ln/zCk//ASr/uDjnH7nCtKDGqeU4JTjA7LI+cFH3sCCYCHfHe3mhhn2vuWLrmRtvZNl3Zs/zIIv3wgatAeP3XgZZ7xnBV7Bdjzqg9BA2Hjfh6O4AjynuAKwrPvd3DL0FWsZVP9eaQgqre6VFlrYv5AzVjEXeDPwD2s+wuYLA4yncbyEJXdfxu0Xrpi22F4zEb5wd1ic0/3HcHHKbqP67mFzVwdznWE2JoaeUweInu4lyjuU+hzC15T5+mmf50zPY1iX+Mro6Wyc38Etj55M1+MSGWmqc9pwJwLURBU1NEFuo0+Y9+g6qchi11Z298cv/Ov1ocKeiixjOuZnlfksy2xksbeN82c8iysSZnpjHOtv5be1mfzr+nPYtqobk00glBSrDquKPl4q4i9n3MFLfQewxQHfHTybLf94FIsunodQmrb7fU7O/zEZPyTnV7n9+B9Ne/039vyKsTDFU9v6UFJzyoytvKzjWSKjaFdl0jIkJys8VF5ArBWzc+Pk3QopFbG+2MlpuY0AzE8Nc9/wUWwp5km0RElNd6ZEvmOEYuSxOdVGeTyFDiVRl8EZdZChwBsTOFUo9wnitoSqkFRm2JwZNMhIosqCYMgKLlHOCi5GQnmmIW5LOGfGJlaN9VBNXDbHHQzGOTKpGsMdaSqdCq/g4bi26EoN1nn+cUfbQqfxAnp8wtru7ozTvkhw9YbX4G0YYd4WRTQjb+cHGUWpV9U7jfY/9mXh3xcu//K9LwHTBZZT523kkguu5fx/qHDjqd/h5P+9in+Ur+Dcmev43c6H+J2Fj+/Hke+8Sw3g4ouu4447twDwlbO+yfHft5mJT15jc2i9grXUa3azHGAczsLDnoytUQB1yfnXNIsUGzz9jjs/wkVLrj9sBaQWWjhc0RJYWmjhBYz7v3E5x398BcEIZNcLwrygPFtzxo//hqULVzM3GOEfVr0K7Rs8pVm28Cke3DCP9zz5p9S6uklvEcgIivMM2nUIhg2VuTGqoPBHodKtSA2kUVXwxwyJb72Ew5zAKyhkbEg8h2p3D+2POYiBEWBKpsbQCL0P5vl224WE3TFOLuTlt3+IREt+ufS6Q3fgXsBY9+dX0r95Fr+q9fLadJkzgvV8IziPpyd6eSY1A1X2CEYlqmpFAONKEte3v0uBU4oQw+OYahWRTtvA+UrVigNdebTvEKcdwrwi8QWpoRhRqmKMhtExoFHVJhCd7VZUyQm0ErgVgz9hxY/URIJTjNAp11oQuBJZS1CFELBij6iHaBohbFd+vTuGxCAagZ2N4PC6/ZhxpH08TurdLGJSfJl6RYzq3S86qYssCuM7iDBsZrXguZiUZ4UST2F8t2lFlviK0mx73MK8rdTzRzQ6HyAnqvb1S2VMrYbqaEMIiWnsu9FN8yLFnx97DxfecSXemECMTXD7E1a4uPii63DKmrFjPV7387/iB6/4+/3/4vU2uuXHfIiVqz7znJs/VprDyf4mvl2YyVtn7Pj4o6/9FGAFQxkb7vnxBwHblr+ryrF9wbt/81bOzA3wUHEeXz7zW837p9qEAax7z5XM//oNhO1w8pUr8BIrWsqaBv/AzEgPlIfzq176Ket7PqXScn8f112hIbLApDVYA7eMfNWKL9DcpoUWWnj++OXS63hn19v4ya9PIq64aCP48dqTWJaa3MYX7rTn7Gyh7rwARvVmfht5fH34FfQPtuEeJQjzDoVFmtUv+XfAFnd0yQwf6apXUM/+FS+f/ftsuK+PttUG2eWQGvCQUYIw0Pl0RH9+NueE/48TurZxVHqQwtqT+NHoaXzxjN0HSbew99gTkeVHxeP5z81nwryfcWawkfd2/ZyaEUgBN227mJUPn0zb4y7znwqZmO8RZcArKEqzXOITk7q4Mon7Hl/MnIph1v85GAdi36BWtlFNQXjJyA6vvywVsuzo2/jZHOhRpWkV//9R7KCQBORkhdPT6wCoaYcT05t5ojybh6pzeHBiHhmnRtYJCbVCYsgEVfpSReakR5nnj7Cm0kOsJeQL5L0aQ5UMm5NuEmPtd2UEXsHa/ejAILtrzOycYHgiQziQQrgSryAozTXQWyUe9SEX4WdD5rRN8M7eeyj32M/DklTMl8fzxIlERrZTxkjQnsSdCCGKkcctQqc91GgZPTaOCcM9ssJ9IaJxjsZGQqUCUvKTn1pueckF16IqiuIcl1Pfv4JHPn9gulj2ZoG8Ymr8+8RJXDZ7x8emFgYVCwG6qvjyayzffP9Df8TnT//3/TLeFU+9igsyVRY5hvZZG6c9dsed07sWn3r9Vcz/pxs44aMrSNVrr2RNow8Qn4W9F1X25PhftOT6HfZ9sISNqV3ml1xw7bTHGq+/s/G1cBjhcHGAOVzGcYjRElhaaOEFDhlZyyWvaPAK4FQkhYkufvxIF1F7gjTQtXiYa4/7Pp5IOM0LuO+0/+QDM87iB3e9BJQhu3Cc8VwO9yEHWVRkNglSQ5pKt2T0uBT+mKE8QxC2QZzRyEhQq1jLp6gtwe8rY2QHnbfXJx9qkvgEG8ZY+D8pxo7LEr6hyieO/iE3rFvGUTffzOrLL9/Fu2rh+aBXZXlt2vo6n+YFfH7W/TzRU+Zq/zU80H8s6SFVtwkzkwH2GlQ5Rg6O2e6Lrk4rOMQaokkbgMRXRDlFmJf2vBsoY4Ynw8lFZzu6I4t2FeXZKcYXSIyynVKN6hmMIAkkTq5uWSDsBE6FiiBMkKUaxnEwdQsyNJBMBt4DNjdGieb4jarbh9U7YkSSgLZ2XyJMJm3DjLGCiqgLTLn0pDVYLbKPxfGOB1UpdOBilLDZMr5EJIbR4yRx2pDZKEkNSdREDZ0PUGNla0F2/CLEpgFMeUpyr5CThqr7ILQc7nYKDeyuW2Tjw7OYd28I4WQIqBGCTe+K+O15/3TAxrTy2c+y/OgPTJ6Lu8ETUZm7Nx9NTTvMTw3zqcd/l0+c9L873fb+b0z/LtufIsDZKz9Ke6qTr5y1++D1C++4knWbuwEJ2YSwTeGPGhBgnCli5D5iTyeDtgLxI8+53fbYPjvitl9O74K5aMn13DnluO4sbHZ/YKposnzGexFKsXzGe1nZ/8Vp2yzv+4v9/tottPBix2A1C+kELxtyQts2zvHHgL0vAb+z0seq6kx+uOok3PUB8cIKzmllXta1bbfPu/eU/6Zyco3zPnUpIhbEgYdTMzgVgxHQvkrjPdjBo3N6mPnn97IsFZKYR1n079ey5o+OPHu2Ix1/lF/F/w2czOpaH8f5/XTKkJqBfxw+j7t+fAbzHogRJibKKjIDCW6xzu+Ez9jx0xdplzz1Gub9n2jysk3nSV5ylhXfTsxt4W+6n97lOM4LAKbbKZ2X2sA1/Zew1u3h9PR6zsqsAaCkfYajDHm/iiMTSrGPKzRSGFJexFH5Ibq8MnP9YX4n+yRB3vBwew+RUTxQWsjPakchMxE6VsTtCWVPIhJI0hrjGUxVMVJME0cK1VUjwQej0K7BcTRaGJwg5rVHPcHvt99fF5kmee9rs0/z1KxZ/HDoFGTsEeYU6WJCnHYpnTuf7JoJ1Nqt6IkiJo52boO7hzhS+CzAxa+8jjvu2jm3eWr9TI5XW6bdJ2sxhWNSlJYXiJ/deY7P88Gdt3+4uTC+J3g4rLI66mFdtYu3/vrP+OZLds211/7J9Pe5v8SVV955BbMy87ns+Nuec9tzb/swW/s7bFFbCpsLup/47P7MKtsVL57KmbffZmd8+kAILlMLoC6+8FoQcNHF1+8QfL+351ILLbyY0RJYWmjhBY4nrp+siDn+Eyuo9mpoDxHKkH4iRa3TcP/ya9H93+OXtZg/23gBp2Q387LcM2w6p4ONhXY8J2YiyiNDCIYE5RlQ7ZLIGFRZIGPr5y9iMI7BdNcwjqY9W0YjyHghm87IUm0/mu6L0MehAAEAAElEQVRHK3irt6F720EI5EiR0eN7mFgkqK1v42/k7zHyZDfBkOCkD6zg8c8eHr60L3TkRMLRmQF+M28exZEURnq4RY1T0cjIklZ3tAJSYbqzJBkfpECECbIeei8LVbwwxh1RmKNyFGcphNbNrgDR3cnoS/oozJVEeSucOBVwShBnoBKAHhWoKghj0I61motT9VDuikFGAX4tsTZbYMUerSczWRw5xbYMkKYupDT+BuMojJYIYxAVAyRMCwCSsimwiEq9Y8b3oBaB70JsLbxEktj9JglECSJMENSjXqqSkeMyvPUNt/OVB89DbwuQtQRZi6BQhkqV6olzULUE6bqg6t0r21f6ie2qsJ5DcDmSJqO7s+JafcXlcMX0+9b8gcOa8yYtnHT/MTv12d8vSHZ9nOWMVQxvmcO3Rs4l7UUU4oCHx+fxnXO/fGDG8hyoxQ7bCs89Oe9KldmciokqDtK178+xbh5Wz0sM5/3eZ/nZ/3zgAI52xwrEXWH7irmpk9098pauiysHMtS7Iaosn/0+li+8nJVrb558bNuXDshrttDCixk/eMXfwyvg75++iPe2b2J7cWVXQegVU+PBmotGcv2G5VRjh8RI8tkqR124mdf0PMKbc0N7NIaU8PnNVV/izesv4Kl/PoHBV0ZQUcxdafAKhoEzHaKc4T8eeAlrj+vmV08vQg23ptyHAh0yzTULvm8tuWSIBtLS8P2nT2HOr+OmNWbDVkg7EiMh0x9TezDFkr7XcOvx/4tEsnG4g9nlBCNg/asdfv0HN9Mld8yg2FPMVjlOyW4iI2v0OBNUjYtCs7bWy3AtS96t8ftdD/BUdTaRUYxEacJEMVDJMVTNQh50BmY7OWamyxR1jS1RB1GiEMrgOBEyYzlsEimIJEQSNeyi+z10R8LCxVtZOzwTf0LjlAVx2cWdUMRJiqdm9PHxkd+jN1Xk2wvubo47EJLISKgptAJ/NMYdqTD4knZUZJCVqJlN2BRXpnLZRp5g4/dd4Ejis8AuxRU5YxXr3oz1OZyCzRfm+Ou3/w/vatvKyeqPOfbTKw5JFkujy+ZYV3BrsY97thzNw6/+9EEfB0Cx5vNM2LNH22a9GtJN0NTzPqv2fhEbhDZcuPwG7l75wQM11L3G9px2anfInggne7v93uKOuz/a3P/OXqPVvXKYwtSLVFs4bHCQHApbaKGFwwFGguyu8bLFa5jXO0KYq4d/A0f95O287dvv4/7vnsKXv7ecj3/rT3nk7mPo39bO+rW9+IOKahcEw5DaBucueRx12jhhB0R5G5hoFMhQkpRcpNKc0LWNo9uH6UmVeMsl93DfRz5H9PFR1rx7Aav/sJ31r2kDKXBqhqhNk9qq0N/voechCIZAJnDa+3YMwW7h+WHqovQdFcXXJ/q4tXQMxcRn0YxBSseFjB4nmJinqPQ4VLsdyn0utb4sJpdCpz2MI9COwHgKHTi2M0RJxGgB2T+EU9G2M6US1q22NHFfG6PHSSozDGFHQhIYVMX6PccpqHUYwrz9XSuBVhDmBcW5UOmDKCuodqopGSaxFTjqHSpmStdBs5MFrHBRf0yWQ2Qtrm8j0IGDCVybzeKoSXGl8VMb0AZRrmByKbvw7roI34dqzYougIjrgosxyKp9jcw2zddWXoJJJJXe+uul6pkt+Sx+fwERacLFMxDteXt/HCOkQChlf065vZCwNPOWvX7OPy5/7nyM/YGVz352511KU/Cj0jxuOPW7nN69idnBGBORz4J/OTTVXRNbc4wPWs//i195HRddvOM4Xvfzv8IRmlQQovyEXK5C4kGtTRBlbLcZ2HN0X7C/KtsaEzvY0Sphf2Lq6+wPrNz8hR3E0GUnf4xlJx94u7IWWngx4tRgw24ffyIqs/TpV7Poh+9i8bffw2n/fClv/d+/4F0PvJmnH5nHmnV9bFjTy3ghxXcW3bHH4spUfGv+Pfzmqi+x5lX/xJrXfYVtZzu4hRinBEkuIfO0y/p/OIY5P5K0rxK89E9vfu6dtrBX2JMii9O8gLN9l6OcLDNUltnKFiSI2CAjg9A2M9IIiDKSJJAYJeh6IqL2hVm8/pnljOoy3q+yqGqCqibMOm7geYkrDbw89Sw9zgSDcZ67J47nF6XFlLXHjGCCNq9CQafIqiqjcYYwcch7NfJeFW0Ev53o5QeFU3kgDKmZCImg0ynRnSqBEcQ1hzhU6ESgY4EJJcLVJCmN9gykY4aKWcjFFGZLsusFwToPtwD+kGRzoY0td81l7ReO5eRf/XFzzGPa8MxED7IscUsGpxRTnZkhPZgQjGpGzurGlCvNYqEdeKyQLzxOe/Yn9/o5X/+Lv+NdbVsByKeq1OZEz/GMvcfeLIqnhM8r0qvI+jWO+a9DI7AMP9PFwFqbx7o7nvaSWz5KLXFwvATlx2jH2pNHaYlMTNMEYF+wvU3WvmL78R8oTru/+ezuOm5aXSwttPDcaJXTtNDCiwhP/+12lTEXT/669k8/wsveeBOqpnHKGneiRhI4TCwMqHZYIiyAYFST25hw96PH8eozHmFl8UTMpqCpnquKAK2oeT4TUcDi7ABnZtbxeGUOKeFz94k/IDoh5j+LvXQ5Rf5m65+hQmObCJS9aQdkYvDGodIjOP4TK3jqU61Olv0JOWMVT26cza/Lp/NkcSbFyEcKgzaCdHuFckUhQ4UwAqEFiQ8ydvAH6tZZSqI9ifahNDOF0NC2CqSrENUIbzSk5xHbGSKyGQgjjLSCnnEMSNCeIewQ9r66K1acAmkL7ogzgjgFcU4T9EvcokHW5x+2c8RAI5hbTtpqNVrDjZQIITCi3kWjBSJKbDaLEmhPgVAYmYDS9nFhJrtZNFPC5Q1ivGiD7F0HMmkYn4By3eorjpGATvsYVyHLIe2PjVLt7GLCcXGL9XGHMbo9R2WuXRBPPEH+kQFMoWiPa6N7ZfsKPyERUmN2Y2N9JFX7CaVY1vFObhn92h4/5/0PvYmTZ2zlnxf+mJTwD+DosNk8u8FbF98HQCVxOTbdzxsW3E9hns97H3ycZyZ6uP3CgyMMH/3Zm/EiB+0ajv7szcynbpMwBWeu/BiJ7kAK08yEOf77nyTujZhQDsGQQMYSGRru/d6V+zyW/VHdtquKub3Z9/aVd3vSvbI/KgK3z7u55bFrWgJLCy0cIJy34NndPn7y3E30f34Fs9drvIkIpxiRpB22nZVFemDGpLUg3erw0eNP4dreR5/3mJ7+sy+xqPdd5J4GQkkSQOKBSARu2RAHcMrlK3j05haf3Z/YVdfS7qAcywudsgYBiScxQqIdwdZzLfeac49BVTXP3raI88wVzL63hIg1xlMkev/UqE5on7Ekw7PVPrZW2+gLCmRVlS6vSDnx2BR2UkgCyolL2gmRQpNSEYGKGKpmeWB8Pq5ICLJPApAYwWgtRRJJTCTRWqClxNQUsmrvQ4B2DRhBqeRDVRF2QOeTmuxWQxxY/jOU7iSaFyMSh2BlGxfnXsvb5v6CwXghp3RsYWN5Lv6EpjzLZ/gkSdgd4/c7zP9RAVOt7didUuexe4Ijic82sPTsT3Lr/Vft8fbve+qPOKNnI5f13oGvYtId5QM4ut1DzljFxs0zOcFTfOXYb7Mu7uDNv1rPM2M9By0T9agbbyY1LIkysOjzN7NgF9sd81+fJokzYASr32T53YKvfpZi4hAMC7yC/W7/6f/uezf2/uh63hmn3FtOuy+dJPtqw/tcr9GyCWuhhT1DS2BpoYUWmrjvO1ew/ISP2rwKpRC1hLbVBq/XJ8xJ0gMxxdku5R6JrGp+tukojBYkaY2s2YV47RuSXIyXitBGUEk8/mH9hfSP5RmL0swNRpjjjXCMt40zfcVX3/IsD/52PiKSqG12tdwI29WgqoZKr6DaqznqO9fQlqvw4O9cfWgP0gsIJ8zdzAnA0nsu5ZktvXh+THumQlu6StyrqJkUMrb/k7DN4BWk7VbxHUaPCRg/pu53O6OK3JgiNRhAR4A3VsMZK9tuD0dBNgNJgnYVqgIiEuh0gkhrIu2iKhKnDCYUiBjCdgi7E/A07jaX1GaJPwZu2aAiQ7U3jT9aa3avNG26NFZwaXSyOBJjDCLUVnRJ7HZCG4SU9hZra2PW0FGc+qQ5MQgHK7bE8aRllA4nBRi/vsivje3SSSrIMLQijKMI+7LEAfjDguxGmxEjKiFjL+2i3Cvo+G1E/udr0YUiCIGZmjeizfSJqNEvrJBQpRCZvfPNr23O8JvKPE584q/45pKv1j3NDwxWrtszgWRdoZOsCjnO30JJ+2RVjW2FHPO/fgPr33FgrQmO+9sV+FV7rtvsH9h8YcDTV9nFu4svug4jBG0yZ89vCfyOfe5Tr7+KBV/9LElbQlXYDKVg7wu4mzjY1gHPd+K6qwnr8xVaXvWST3HbryezYYzjsPT0q7j1ob2vbn2h4GAFtbbQwvZ47MbLWHbix+q+nQpZjWh/1qXSKQnGNMMnSeLFFdqc/bewuea1X+Xl83+f0lAeM5yy3YHCFn4YKSn3wcJvX4fjJTzzhv2fEfVixlShZUJXeCz0ycsaJ3spKqZGYgxZaYlDHCrciQhVqqHTHpvPy5I+Z5g4kXzxpO9xzZpXE90/A288ZsH3BqBQsoU82TRhX45y6D6vsa6LC3RKh5M9mO1soF2VmO/bi/CmsJP1lS7GoxR+NqaiPbrcEmkVMRym2VppI0wU/aUcUawYqaXYUOtktj/KY4U5bB1qhwkX2R4ipEFHCpEIhAYRCkQoLHcfdQEXXE3jI+AWE1LbYmQ1IjWYotrlUJgLExeV+L3eZ7hl+CQe3DKHnnyR9FbIriuy9nV5gpNHCe7sYPa/rUKPTzStwYQUU37fTlzZh4zBwxYNm+K9wMDWdn5a9bjtp6eTXyNoe+3u85/2FXt6/R3TimeSDApDVbvMS42wttDJ0f95Nc/+4YH/rgqGBBjrmExBsPFin2c+PClGv+qltkBoAQD1+dCb7A9RlcR5TVSTFOY4BGP73sJyoCxld4X9zWcb4srz5V67CrZvcbrDEK1w+cMKwhjT+pdMwcTEBG1tbYyPj5PP5w/1cFpo4aBiWee77IK170E+R9KeoTw3TbVDUu0QGAfi+pponDYY13YFyMh2niQpjWwL8YKYdBBSrnpUxwOcAZfMVogyUO3TJNmE7pnjpNyIwV/MJLfOoCLbueKWDG4xIU5Jyr2KseM1LznrGf594Z3TxlrU1eZEaSoOWCbDiwAL/uUzoMHNRMzrHuGk9q30V9t4aPNswqKHSsU4v03zR79/N2vL3QC8o/dnnBfAWQ/+Ibm/z+NUEtyhIrc8ds1zvt78r9+AiAWiJhFJfaG4u0ZPd4ETu7ZydHqQrz30crIPB0wcH/GyE5/l2dFu5uTHefQXRzHr5wnpTSVrFRYlEFvCbQIX49mgeu3bOgJRF0hU/6jdzvMm7c6EQGiNrMa2i8SR6JSHdm2lH4BTCJGlGlRD0IkVXLS2E25dF3gSjTHaCi7GWMu0dBo8F2ohemjEiiy+b7dXCuG5JCNjOwooQu60+m9XE9Ijrdpv+eIPgqMwjtyjc+VQ4bT/+zivnfc4RwfbuO6xZZgncgTD8MjnplcgL75uBW6x7uHu2kwq4xpWX375Lva87zjrnTejXYGq2u9NsF0rMrKLeNUOSa1D0PubCjDpq7wr7Ivv9+E+wdof49vV5PJg4fny0RafbeHFjmXd74ZET+O0I6dkqXQLSieE9PSMkw+q/PX8OznD39a0jmrYLbli53WI91Y1dxVPoNstcJS3jVO9MVwh+UFxATc9dQnxI204JVso5I8bUkMJTkWz6UKPMy78LV+c/yM6ZBqN5vulNh4tz2O+P0RVu1SNS3/YzgPDc1i/rYs1f3RwF/teSDj3tg9TrPqc1reZCzp+y7HeVnpVmU4lSIzhdx97G4kR/M8pX+fO8kJckfD6zAC+cHn1quXo97cjh8ZYufHze/R6//bsORSSgJyqcrK/mblKkJepadtcNXgin+x5YqfPv3roOL696ix8NyZwYybKAdWCj1AaPx2hlKZc9JFbfVRNYKTNMTQCwg5D+zEjXDDrWWra4f5t8xh5shvtGURXjVy+QtqLGC8HlAcyyIqy3v0xOGWbfZjbaMhtqOL2T0AUY8bGJzMHPc8WxUQRJort/WFou1I8d9IOzHXRpTImnmJ3tSs+Cy8YTnvJ+ddglMQ44rDmRm/8xXs4u30tPU6BL689vykUPvKaSUuwxdevwC1M4bOBdRwAWHPpgeO0qcGEJJC2CC4Bp6KJU5Jqh6T74UJz+9t++Yld7uuUy1bw6IoXVofg/uKiRzqnbWFH3Hnnnbz6dW/k9OWHx3fOAz/6NHffsZJzzz33UA/lkKLVwXIEYMnLr+b2e1tVTi0ceNwy8lWWdbwTHAeT9knSDpVORa0DvAkYO0HTfvQoI5vbIBLISDaJeZyGuE2jXE1HtsxYKUV1IA2ZmKg7Ih5xETEEA5KKgOH+NoSXoHxIfIFX1ASjmsQVlPscm70xx9B3zBDndewomuxMXIEDHHz9Ase6t3yIBf9wE5GE0UqaWt5hYWaIDfl2howgGvVZ/YnLgEny+q1nXsrdjNKTKXLrj/euu0hUlLXokDbUHiPQocJzYnq8Iu/peJh3X/QQnzvlHLL19MLT8xt5pDAH4xlkAqISIaJ4MjfFGFspWu9mkaHtnBG1BOMqTFsWUaiAFBhHYqSok/m6sOI7toNLCBJfkqQU2hE4GQd/UCAdacWcag0iA1E0mfGiJNRiSBJMGNoulFJlunASWwFGBD6mXMaUmZxg7mIS2qgAFFJYi7Dtsh5uT76zV8f9cIBJeSAltzz8qUM9lN1ibHOeh/NzOH7mFk6c0c8DQylSAw6v+IMb+fl/Tdpp5daBUzPEvkB7EKUhSQmOuXoFq/5m15O9hm/3nthKnPPmmxHGEjdR1tYuz1ivaRkbZGiFPc8RVDutMvhc4grA7J/Wmr/v6QTscF5AgANjV/ZcONxFp8MFy0/4KCuf3D8e5y20sDvcMvSVSU6b8kjSDrV2gapBZ3eBZXOeIpARPWqCyMADYciWuJ3ECOa6oyxwSuTrdpS/rDn83/ip/EnHL/lp6VTuGlhMYiQZN6Q3KNLuliklvrVk8sAdhPSARmiodCu066COLXBibgsFndAhITIJ85wRnlV9PFicT1bVqGmHSuLhSE2QCjnuvz/F07+/6wXFFnaNX7zqehb9+7WMhSlK2qdXlelWEoWgYGJ+vazxPXQNb63/NrhlNr5weWX3Kj740Mq9e72Jo9lUaSfthNwuT2CWP85fdv2SGSrb3GZX4grAvcOLSJ7NUXQNE9kEUZVkNkmQkHgBsQOpCvjjEAeWO6vI/i4j6MkUWRAM8ZvxBQyPZknaEmRFotanGO92yS4Y4tieQTb5IQObOxCxgHRMUnLwhxRhXhBlHER3FlmNEEPDmMgKLCaKoVSezlcBTARGIzwPE4boMJq0uN2VqML0zhawtrGNfdwW/cdeHffDASI2IAx33P78rJkONJ4c7MORCa/uepQ52XGeHOyjUvJY+IWbWPu+K4A6n63uyGeNsuLL1K6SqdjbBfyXvO1mhAZHW04rjBVVVGhQ5QRVS5BZh1qb13QZmNohvDN0P773fPZwx/4a//Ox2m3h8MbzyRxqYf+jJbAcAWiJKy3sT+zOI3ZZxzsRjkM8r5dqr49RgrDNiiepIYNTlIwM5CC0/qbuhMAbt7kZSVqT6qiST1cxxmZZGE8jSg6qJonabJWVWwJ/RKILkjjtkMyuMpp14XFFZmOFOOcycryidFTEzNmjLJv9JGen1gJ73o7fEln2Hev+8orm72/+1TtxheYXr9q15+qbF/8SgIsW7NtrHXXzzSS+7YRCgJpw+PklN/DmX72T7xQWc2awjo/2PMCaOOHJ2kxcEXPrtuMxAgqzHUTchjdabQokIradJSIxaEdhpESVQ4isyJFkfcj4yEpdGDGgXYnxFcaVRFkHrcAr1Lf3BGFWEGYVkCLYlFj7MKVsJ4xS9ua5tnOlHo5ukgSjzbSQzyakFWSE76Mr1V0foClBoFPDQafiSBRXmtCaZSd/7LDuYFn37g+w4J8/w6rBHhylETVJHEC1XXLOW27mV/9iq/ke/MfLeNkf3oRTNmhPIGNBFMNjN+2+ki5J7TkNc8t2htkQU4Q2GCnqVYaCJLDnRhIIHv/svlfw7cmkqjX52hGt47FnaIkrLewvPNf30FROG3b5aEegXXAiGFnbwcO5ObysazWRcXi4NoNfl45iIg5YlBrEFQkFXcMlYTDJcdf4Cdzbv5CfbTuKwbEscckDYRCOZpWryWaqnNC9jVfOf4Yn8zMYmJhNzwMVkpTDyHE+4YkVXn/UE/S542xJUniiyJgWDOsOFIasqhEZxUAtx1A1QznyOL53gG3lLKf+6OPTKsxb2HM0OoD+7dlzAOiatQmA9l1s3zNrMwAfnLH3r/WFM77N2Ss/iqM0xggGUjlmnbKFe9YdwwxVZLGb3eVzNycF5mbGeGZOL3JTCkqKJB+DkKQGDVFWEPuQGja4ZUOUspZfYV4Q5SHqSKjELk8UZxMbSSoT0t4zzuZNXQRrJd64w2bdg14omJEtUOzyqYyloOIgaxIj7Vyu3OeQpCTFWRlmjhQQiSbZ2j9NDIFJuy+jDaKehSg8D1Ot7bBt/QnTeHBzm/r9Mp3GxPERKa4ATRvAS86/hp/89PDNXnvsdz/Jgn+5nt9k5+IoTXlDDn9YNvMtAR788mW89E9vJijraXxWe/DEdfuvO8Qt2aIgFdULhLCiIdIWuBlHEKcVD3zlwPLZFnZE67i10MK+oyWwHEFYdurHueWRFsFu4flhd5XSt4x+jVed+2mGT8kQZS3RqcwwOCWBWzKIRGASgTSgyhKnZJ+XBKAVCGGItaRSc6kUAtS4g1OxIeaqChhwqpC4IDzQSnDUnG0MdWYo93czvjhNlBXUOg0vPX4NS7qe4Hcyq6dVf7Vw8PCtc/Y8gHxfsSsLpSdH+qgmLgP5PKuDfhIjqBmXsSSNNgLZU2PkVI/SLJdg2MWpgFfUqJoNJXUqCXGgkLFBlUOE1ohaRNSZotrt4k14OOUYUyfy2pPEKUmUFiSeIMpIZGwXsLVr8y2qsSLYhM12UT7CdaAhkEiJSbuIUslOGH0f03jMaEw9EFVIgYliRCoA6UB5J/YIU4UVz7O7iGJbJSgFQikr4BzJmSwNa7W99Kw+FFj3tg9xzLUrKOc03pgkGLFdI1FK8NI/vZlf/qs9h92KRpUT4oxCK4VWe/De9vD9X7Tkepx6PpCMNbKeK2TqeluUdYmykvv+84rd7GX3+9+bCdWRMvlqCUGHL5Yf/QFWPvvZQz2MFo5gPNdnu8FpR49PkwTCWjcq6/GvqoKsWyPSDj8vHcPGagejYab53P6wnbEoRSn2GKpm2DzWRmkogyooVFXggs0c9A2xrykJQ6Ai/qjzlzySnseNs2cyclKGMAfO2WN86sQfsSQ1wJZEozCsiwNcoZmhJlCp9Qx7OTKyxpPeLJ6WM6kmLr1+gQ6vzEODsw/wkXzh44+P/tVBeZ37l+8oIH976Fwubn+S/mScE7xS8/4uOXm+FbTkjV2/YuGpQ/yg8xRKNY/eXIE19JGkXBIPhIbUEMjQ4Ee2aK00S1CbEeFmQ0ZLaVbLLmakCxzXM8BINQXCEOXtHCzoV2xRXVRmukhpoCLxxhRGQJwxxBk7LxNGktmaYLIpRC1GdXYQDw5NdqUIOU1EMdogPBchpO3ungoxyX2F59m8wVptysMCmUphkgRdqeyvf8NBh3alrSI/Apz3173lw9M4bXajwSjBme9e0RQzVM3gj0TT+ex+fGsXLvsMjhT1DmzLaRvHLk47xGnFPf995XPsZed4IfO+F/J7a6GFFwpaAssRhJa40sKBxrLTPkFlQY5ah61kitq1bUEfEpR7JdoBEUlEbHNXtGdvbgEwkrCWI0pARoIgAhnWbzHNLAtVtZOEyLWerq+b8Qjtqsy/Z1/Cbwd6OXvOBv56xk842290rLTElRcbjvqPa8nlJN992Ze48I4r+Yk5lg6/Qta1k7LxagrXi6EDasolyiucksAfkWS2GeLAVj3ZjqkE7TkIIazNQiAxCirdDsEIqKptS0dYQdGKKxC2CVTNdtVEaWxILoK4PUAkGme8ajtYGnkr1RqiWrPCgTA7TrKmTEqF1OiJ4g7v21omyKl3IHNZa29SKmMqFZvfYgy6VD7iPKqnoX58jKsO8UB2j+M+uYKnr7qMVR+1k87T/3IF/oTtHkl8m4PSmPDc88MPsORlV4MElZXIeEfx5JILrgVjplU4/uSej3LJBdfuNFjzkvOvQUYapSTCtYKfnYzWO6MSIDE4UsCeCDrPgRfaxO1weT8vFKuK/YmWuNLCgUaT07bbTr9aF/gjEKUgyWrGwhSPTcxGCoM2gnLsMlzJ8FBxNmHJg4pCRAJZE6iqIBXV+a5oZBMIRCyIXY3vxyxMDfPyQPLyYBOdS/+T219yAu/o+RkvDxrX9RT5+q9+XKBdOuRlioopEZkCBRPjiphIO5S1R1qGaATrUx2H6hC28Dzxxl+8Byl83nj0/fzJr96FNoI2t8Isf5zjU5uZ7YxS0AHDyRwio8iqKufPXM3Wap6BShYvF1KZLRCRwCko4pRoihZGCOI0CGVIIkUplqyvugwEOTw3Jk4kbiaiepRBjLkILZCpGK0FjkognRAaAcpYK7GaIBiBYNTyi7gzgzNSsqLJ1O7pKdZfQlkOZypVcBwrtMQCHcXTxBUA4fs2r0WpSZFFKUQ6hSkUj2hOa1x5RORMb89pT/urBqfVJL7gZW+8ifu+cwX3fveKHfis2Qldv+ji60FOD2XfnQhw8UXXIWKNksJaNYvpnJbE4ABGtvjsznC4vKelZ16FcdVu83BaOIg4AoTdFxP2SWB5xzvewec//3lyudy0+0ulEu973/v4+te/vl8G10ILLRwcXLTketyRCghBrU1Ra7cBzUk2sTkZST202TGossQbta3pMrLiiapa6y8ZC0RMvfKfesu0fY3EFySeDbLHgIjs48f5W7gwMLxp8a2wuDGiPbcD2xVaNmFHLla/aXKhefOvZ2Mcw6asRuQilJegY4mOFSTC3oQ9D2VSby83Au2auggoCTt9RGM+KOvh4MLY89AY0NY/WWh77goEiWMrXeO0rRJMAoMMBeWZHt5YUhdY4skuDMcBndifYQhJYjtNpgZ9Tqv8S6bbhtWxw31KWTuxdApRtyHT5fKRbQ0GNotGYi3dDmPM+nmNk69YgarBw39/Ge3Phs2uJqfRfaThlUs/w123fggExClFlLJdT6dcvgIjJq3CjGCnXStGCi6+8NppmSlLXn41MtHWe7ou2onEICKNiHUzK4i6pkey7wR7Z5O2XYk+Lew9DpdJcQstvBgwldOGeUXYbq/n2rMiddgNMh8yUQsYKmWsW6iBkfEsetDHH5HkJmzHtYxARgYjTZNrJJ7ls07FPp6kJMaAEpPXszdlR3lT9l7q1Rk7YJ4zOYdOCZ+UgDyQ88fpUY/SH+eJjCJBMtqW5rT/+zgPv7pVaHek4Tvnfrn5+y9/fjzGgSQXk2qvMrvjaGalJ3BkgjYSbQShdihGHuNhwGgpTTTmI6sSkdgOgloHhIlonlZGgZhwrOgnDVpAQQYYVyO9BKEMyktI2gBlyOUr+E6M5yRkZ4+gjWBgNIcaTuONQ2YgJspIijMkuc2S3EQNajWk66DDcIf3Z7RBuqLJa4Tngesi2S5/UNiMRFMLLZdpdGcnCbpQ5NbSvxyw/0ELk2hy2hAe/sJltK+2cxTtClRFY1zBBa/9LPf88AMYVxKnJ/mskXDy5SuQMTzyd1Nsu3ZC47cXWS654FpEYpBm0t5WuxLBFE7r2LwhoUFF+z432BWfNWLPcglbeG7c+sAnD/UQWmjhsMXOWd9z4Jvf/CaVnbRxVioV/uVfDv0F8otf/CILFy4kCALOPPNMfvaznx3qIR0QLJ936aEeQgsvEDiFEFGNKS/IMX60wCiD9gzSS2zVigvVLtut4hQFbgmCYfAK4I0b/HFNpl+T2xCRXx+S2xCS2xSR3RyT6Y8JRhO8okHVRRUZWYsGGQr64/YD9r50/zEHbN8tHBykt0FmoyAYUIgRj2QgBYMBcthFTjioksSdEKiK7ZYSGoQ2zVZ2rSBJKZKURPsSkrqFWCnBqSRNqyWw4p8w4JTALWIFQReSlEEHhkqvoTBbErYrdNrD5NL2RRxlA+7TKUy+3nHlOE07rz2GkNNuop7V0lyQFwITxy+IiWhD2OIwF1juvP3DPHbTZcgEzn7HzUQZ2xmV+JIoI+25hhVOLnjtZ6n2BpRmOMRpa31ghD0nL77oOrtDKaZN8BoCRmmWR6XX58Jln2k+JiI9OXEV9ryWsbGiVF1sITEYKdGOJAlsLsxFF+86M2mn2Mm/4Nw/vsmKQS3sNyw/tiWy7ArLF+w/X/cWWnDHapbTzs9SnGUXpuOMwQjLY+OsRkjD4ESWwcE2BjZ0MLyqG2dVitwaSW69Ib9Bk18XkV83hdNuikgNJ/jjGq9ocEqgyuCUJGHoUEiC5z32vExxpufx6nSVlwbbONPfQkpFlKvefjgyLRxKZDcKcmsEqQ0utc0ZVm/o4751C7l3wyJ+tWk+D2ydw2PbZvDsUDdbh9opjaVwxhROSeKUBCq0nFR79WINA6oC3qjEH5KktiqCfoU/oPD7XWS/D/0BeiCAmuWilapHNXIRwrAoP8zr5zzCKXO2EOU1SQAiMngFjVuxQqJxFSKbsZzWmVL8Vu9Oka6D8DyElLaDGxCOg0il6pZgU5aadJ1s1AuH7H3mBcFpjxQ0OW1sOW2ckk1OK7RBVTQkhvN/97NUuzyKMx2ibGMOYm9GTXblIuHOOya7VwCKszzKfR7nv26yS1WGCSJOLK+tz7m257STfFZgpOC819/I0rOf/0L+y954E9Xu1vfn/say/NsP9RBaaOGwxF4JLBMTE4yPj2OMoVAoMDEx0byNjo7y4x//mN7e3gM11j3Cd77zHS699FI+9rGP8dBDD3HeeeexfPlyNmzYcEjHtb+xfNGVmI7cc2/YwhGPZR3vPOCvkaRdcBXFmYqwXeOUBe6YxN0Q0PZbQTBkK/VUWeAW7O9Cg4jBK1oyHgyH+CM1vOEy7kgFb7iCN1zFG6vhjUV4EwluyXYVxCnbEQPwaHku/cmOdkn7Cy2R5chBk7BPhbFk3kiaeRPuhMAbE3gjArckcMoNYaVB2G2VqdAGmdifIrLkXcYGVdOomkYkUxaqjc1wcYsGv6CRCaiavTUqB7VvKM+yFmQi1oiJEqQCdHsOHEXcnkZnfMhlEYGPzOV2OiHdKbZ7rNHJYgpFqAstK/u/yC2jBz4X52Bg5ZPXWpFln8o8Dj4e/NJl3P91m7Vyz48/iIwN2hVUelxqHQ5JStmweWW7oFS98tmeP3DHnR8BJn9uj19++wqC4QhVTbj4wmtZ8oprrOWXqleqGhugKhJtj5sxoDVCaxCQpBVhXhJmRXOyuyc4+YoVDJ7mT7vvZW+8CZFA2NGakO4vLD/mQ60W/l1g+bxLj4gsphb2D5Zm33pA9798wWXIoXFwFbV2hQpt0YQ3KnALgtQAeMMSPRAQbUnjbfRIr3PIrRHk1hsy/ZrUULIjpx0q4w9V8EZq+GMxblEj4/pn2oAxgkri7lc+O0NlWeDk6HRKdOVKHP/9VtXwkYQlr7hm2t+q0uiIsgVmouCgBwPC/jTV/jTlrVnKAxlqg2mSYR8x4eBOCNwJcMr25hbAH7NZLMHQ5M9gCFKDkB6AYLD+94AgGLL2ue6wgxnziCoOcWKJV6gdsqpKmCgQ0P6MRmhDYY5DZmsMAsKuAJHLIufOQmYz096PnNKFYrS2AooxmDi2ndeOY4uMGpZmSYJoyyEyaUQ6xS0T3+DWyrcO/D/iIOBI61LdGaet9LjU2h1bjFa3TVahwSnbc9apWE4r4+mWYNvj19+8nGA4RlU0F190Xb17RGCU3C2nbfDZOOMQp2zH0+5yY7fHiR9awcDp0/nsuX90k/3FQNj+/N0xWrBoiSuHF4Q5PG4tWOyVRVh7eztCCIQQHHPMjouWQgg++clDS/5uvvlm/uzP/ox3vtMuSn/uc5/j1ltv5Utf+hLXXXfdIR3b/sTKNTce6iG0cJBwy+jXWKLeeMAsgRZfv4L5iaE8L0echmBA4pYgNWhsaHhVE2UtQQ5z1oYJYwPw3LLBKSV4ExGyGiFqESJM7EKSEKAkxpGIyAEp0I5AK0mcEsQZMNJwT//RlGKfd/fcw4lu+oC8xxaODGxP1Bf+/U3IubaDSqcSSCVIpYlrAU5ZNBexRVx3UJLWaknVNELXF7u1QYa2Jd0KLboZRCkjjal7gziVBFMTqKqm1uagqgY/EcQhdZFHoD2DWxQYaZDFKiaXJuzN4ZRCkiBNrcdakYlOHxl1oSoxzlABNm5BhyEqkyYplZvvz+axTF9YnBZuL4StCIxiVm7+woE+/AcdK5/cMQz2SMD5v/tZnJqm0ulSnmnL+XIbDcFoglOxFZqJX+88MgLt7TyYstHVcsedH+HiV16HrOf5GCkwSmCkrIt/9XMiqXdbNWztjEF7ijjjUstLam3WtuakD67g8Rsu46QPrkA7dkKMASQ8duNkp8Cpf73CssC6yNUYo0isXd7OOliOtIDNS86/ZlrezSHDRAG8lmC1M6zc8LlDPYQWDiJuLX7zgO17+dz320VeKYnzPtnNITL2qHYIslssp9WOzbBQNYnQ1t7WLRncksGpamRN45Tj6Zy2UXkvBCJlr83asd/TUaZeDKEFqwq9fMM7g1dmn+Sl/v6LOZ3pjpL1apTD1gLhkYTbfz557Vl8/QrULNspHacNOqUxrkZoAaFERtJaLEfWarlRNBSMYAt83IYls8Gp2TkYxoaTN7IxRAwyMWglrC2zb7tQtAtxACKRhLhUjGDQCDZt7uLh3CyqYwE9DwmiNGw7x6XtGah0WXGyNNOhOGsOlR5BZmsPXT9eRTwyikwFyFRqWjC9SRK7WA62SwVAyUleK6UtFtr0dwfj8B90HEncaCoanHb4RAVG7JLPamXPX+0KLrr4+h2KeRr88KIl16MSYzMqhbBc0rV8tmHjDDtyWuNKy2fbbYeTU9ac/7rP8tMffACAEz66AkSd02I/H4/ebDntGX+xApWCxJ0+FpHYz0Sj23x7XHzRdbssfDocsfT0q7j1ocNAaJ/ahdZCCy1Mw16xv7vuugtjDBdddBH/9V//RWdnZ/Mxz/OYP38+s2bN2u+D3FOEYcgDDzzAhz88/Qv/Va96Fffdd9/z2veytndwy3grW6aFQ4OGuLK/hZaL77ocs6iTsN1n67kOUWdM388VwVCMP1QFIMm4aE/gTYCqClQETkWjQoMqJ6haghovI2oxRNFklW49l0LgADEydFGRtQlToa3CMkqwdWsHd1d9ionH23ru5bzn77DQwgsEf33xrfxk8DhGqml8FZNxbeDrar+b2oSPHHPwxm0Hi6yBW560/wKQrrTZKokVU2RU71qpQ8T1DoBIEmc96wtsBDI2OFUQZUOclmgPEOAPSbqeSEh8QemYTryxiFqHQ5xRRFmJjMAtxAgDYbuD6XTJj5YQmRTSaEQmjQxDjDbTvam3h1L2pjUkyQtSXFk+56+bQuyRNNmWsUGGmrtu/RBnv+Nm/BFIgvp8URtkZHC1RibSLmho7ALKdmhahjVQ38Q0gj+had3VrPKLrbVCo9rPeA6V2WlKfYooA0mqvn1sf8Ypa3UnGo55xoovdp9gAnvf45+dbs9kpLCfBbXnk6fDVXg5LMQVQI8Xdv+ZP8hYln87t0x841APo4UXMfY3n1169icR+SyiVLZCSGKodrikBiNSA9Y2DKA6M7VbPitrMaIaWk4bhjCFM6AkQgikq3BciXEEbtl2CZRSAWv8LiqRy6pcH890PMVrMhvokM+/cKhmXOZkxhivpp73vlo4NDjt/FU8PdRLLXTwlSblR2gjiGJFGDpEJRdRcJChaNooO2VIDWqMskKJ0LajwHZh1zPZjLGFQtD8WzsSowRxSpIEgsQVqMA+HyGJjEM86NKxRqBdD7otj4lTkOQjCvNckND7G4OqQWmmpDLTkB4AUgFCKVsElAqQUthrWxjZTpaoTkD0lM9NvZDJJAm3rL35oB/7g4Fmt5Ix3H7v3xzawewFpnLa09+7Yvd8VorJKvXtus93cCAwWHFF1n3FGgKH2TWnLc/OUZqhSHxrP+7Vi30AXvLWm2GOaBYMGdtkwxl/vsLmGtW/Gp/4zHZ8VgH1U3JPBYHDOX/wsBBXGojj596mhQMPQ9MWvYXDA3slsFxwwQUArF27lrlz5yLl4eXtMTQ0RJIk9PX1Tbu/r6+P/v7+nT6nVqtRq9Waf09MTOx0u1vGv87yRVe2OkdaOCR4lfumZibD0sxb0NXafpmYaiMQAjafp0jSCaqgSA3GuBOhXXimbrNU03jYhTcZalSoEZFG1RJENUYUKxDF0FhAchybSyFtB4tRyrb/RhpVFXgTsm4zJkgCl4k4w6PuLH4SnEiP+jXHuZldD3pf3mcr8P6wRoOYb79A+/6OdSzNPsF9lUUkRuKKhJEkQ6c/j83FNvrb8lRGUqiCwi3YbgEZS5yKboaBq1CDNvZcDWNEWCeEStlARWGrUFUlQg0VwHUw89tRkSTMSkvmNXhjgu7HEmRsiDISWdOoiRq58Srjx7ex9QJD0K9wih7taxIwUG2XePPaCRINYQS5LOVzFpC9dzXJ2NiuD0i9+4skeWEvgtarGY8k/PR/bSXdhcs+Qy6xE9MoYy0V7OLFZOeHCq2dXPuztR32c8edH2lWzr3krTeTVY2uFVvtJwyI2AD1Cj+NnYjWv5eNlCRpFyNtVlCUtxPO3358cnJpVL3jsP67MKClrYQV2lYimikssPH5SwIB9UnsK/7gRuuRrUFVdy0QHI7iyuGEWyvfYol64wHtRt1TPgtwy8Q3WD7v0lb3SAuHBK9y34SQgld5f4xJkv3ymTBCWJ1aG0x7Bu0rjAPueK3+HapBiOfks7IaQrVmr9l1q6Nm0UN9oVhUIqTnIGsStyjrlqSCosmyrstnS6aNTaU2nu3u4yWZ1ZzmDzJb7but87HeVi6Z+SwfSV7LS275KL9edmR2f75YsOQV1yASzW2/+Hjzvtf3Psiz+T5+W+rDERopNBNRimLkUYldxlMBE26aSHoYJTFOvTu7YXsbWctbGdfFwGpsO7LrtlxT8/q0q0AKVE0SBwrtW2cCFUm0J3BKkvx6gz8eE6UkRkmitO2Q6f6FS7UbqqdVKG1M0746wh8XVAqCiYXQtqAHp1iCOMa0Zyktmk328QHMyBgkiRVbjIa6DZlwHYTjvGDyA3cHESfWBusIwlRO21VJds5njWl2jWglaF+9I6dtcMCXvPVmMlJgXNF8vjBYkUNgu693wWlN/XEtIcoI7v/GB5r7dyoGf8x2Yxlp15NVFdKDCeUeRZJlmujT5LOesF0s9anfBa++ARVqZK2xXrHj/+twFVcOJ9wy+jWWpt58qIfRQguHJfapf3n+/PkAlMtlNmzYQBiG0x4/5ZRTnv/IngfEdgs2xpgd7mvguuuu22Nbs0Mlriyf/b4XZAVzC3sO4fv1ALhkv4krAGs39EIkWXzWRtb8Zi5tzwg7yaxXlhghkGGCkgKZmObfMtTIMEZEdtG6ORHVxuZFGAOOg6mLLChbEa2qia0s1NjOgBKIWCBiSTV0GYvSlMyBsUBoZLG0hJbDD42W8p3hODfDce42BpIiZWMYTAJq2iXnVEm5EUOpDIVKQLXoE3Y41EYkqW0uwZjGqZh6aL0VVmQlgnLFTkJd114XajVboVrvvNK5NG4hIgkc3LoHcZiXuAWo5SVOxdB122oGXnM0/mAZMTBOnGrHuAnVhQkUFV1PatK/HSTTlqY0P4eXCxBDDptfM4Ng2JCVAuG4mDiyb1JMWiggpPWsDqMXtLiyctPfsfzYD7Pyt3sZyH6YwAbYC35yz0e55PxriJRHlJGoyFgrRMdWULMb/ahhS/Drb1of7AtefUOza0QkBontNBHaNPNqDBIcSZJyqPR41NokSGuVt30Fk1uARz5nBZdFf3cTui3m2AVbufWCz+32vUUpO4Zf/cvlvOL3b7QTZD35/Q/WpqBhBXLLw59qPvdw7WQ5HHCghJUG9obPwqGz5moJOy0Iz7N8Nor32+dCGIMII0x7ltrMHEIbUoOR5amRta41joOqJsjIfnfJWNuOlfo2IkqgUoVaCHGCMfVCIyHAc8F1IYoQxiArju1icSUIiVsSpLYJwppH2K7YUO9cHIvSjOTWclF67T6LLC8PJJCjwytTCV0W/du1CAmr39RaCDwccfvPP7ZD/sqbsqOMpjdzT6qHLVEHZe2zudbOiMpQTjx8FWOMoKQMUcohKSm0K6mOK7yCtgJLqHHKCaoU2TlYGNviNpgszBEC4SqMlMiqQFatRXOSUshYEWYdnIq1UirMdkgNa7oeDxk43SO/PiG7epzi0W1smRkgNKRXDZF+oEhXZzv9r+yhOC9Fx7oMuqeNree3kxoyoBTCczGVqhVX6hD1/MAXg7hy+88/xqvO/fQR1b0yFcIwjc/GaWmzBut8tlFo81zYFZ8VworQMkx2yWkTX+CWDdrbkTgbB3Ib46YgtOjvbsIIkLHiwX+8bIftG0h80RSL7vvOFVzw2s+ilUA4VqWRoX1Ty0623c63PDb5uT2cO1kOB7xQ8pNaaGF/Y59k9sHBQV7zmteQy+U48cQTOf3006fdDhW6u7tRSu3QrTIwMLBDV0sDH/nIRxgfH2/eNm7ceDCGuldoiSstkGhkOo1IW6uB5T3vYXnPe57XLpcf+2Hecda9vPyUVYxU0ggD+Q2RFU8qEUQJQluhRdYSVDnGKUaocowqh4hKhKhGUJsirjTQCKxrBDE324Drj9cXro2wFjayLKmUPNaVOnm6NuN5va/ngu4/pnlr4fDB9ouy2/9/euthryd5mlNSGzg+s5V2r4IQkE9Xae8qEswpEh1bYXyxoTRDUumU1Nod4rRjJ59RPHkLQ5uLUKrYatUogiRB1iLURAWnFKJqGrekccq24r84W5AaqFE7YS7+hEZOVDCdeSYWiObitqz7uuuOLNVZWbsQ7zkI36PzqYiOR8etxULgs0PovZCIVADGvKDFlSaO8NBvGduJ2U9++jHiQBKnJbEviQNBHAi0Z33Qh0/0GTzZBm/uSkgE0J5sTmaNI9BKNC0WjBIYV6FTLnHOI+zwqPQoivMEtbZJW7AGTrl8BUZaS7DjPrkCEsGc2cP86+LvPvd3n7SLLxctuZ6f//eVTS94Gdsq76WnXzXZDWYMS8/6W5ad9onme9vde9wb7K/9HCgs7/uLfXreEvXG/TwSiyOBz0Irc6UFbPh1PZNoaerNz7sSdvnc9zNyco5wdjtJLiDKKCrdLu5YzQonxSqiGiG0/Q5Tldhe44s1ZDlElkNEpd65EifT7I2EkE1Oa++QtnDIkWhHNnMJTD0bwC2AU5CEBY/+iTwbyh2sqszgybDjeb1HgPEoRWE4gxn2yeUqfPyx1/O3j7+O9z/0R1z35O887/23sP8wNX+lcc3tkGlO8/uZ7w2x0B9gUWqQBelh+oIJ2r0qQhiSUCGUzWiJs5pKt63mj9OSKKPQnqyLiTFUQysG1kLLaStVqNpzWdYiZDlEjVeQldB2a1U1TsV2wYQ5QaUHnKqm1uGQGjZk1hZsPmFscCYkbWsjiCJMVwdjp3aRXxvhj9jrfmV2lq4nQ1JDMXFXdpLXQrNoSPj27xe6uNLAkda9sjM0+GyUmeSziS9IvPptDznt9nzWNIvIds1pSzMl1Q7bcTIVJ1+5gmqHZOwoh1MvXcE5b7mZzDqJNyYZu7jMaf/38R0HMHUsrj3Pl536ce754QdspqZjv9dFmLDs1I9bS0gNy079OMtP+CiXXGC7BC+54Nrm788XhzOn3VVo/XOF2S/NvOVADKeFvcShDrdvhdxPxz51sFx66aWMjo7yy1/+kle+8pV8//vfZ9u2bVx99dXcdNNN+3uMewzP8zjzzDO5/fbbef3rX9+8//bbb+d1r3vdTp/j+z5+nQC00MLhigNRJZB0pPlQ1+O43U9z4TXvwmnDdq/ESdNGyWgQYYyK6mwnSWzgZ9K42YwIWzlVt1Fo2P4kCSQKPAfjKoxnJwYYm5NhPSNt4L12BbWMy8aJdn6TXciS9AZ6VXa/vM9RXeY9617LuvEOLpi1mhv6Hmo+tv1CY6u75fCBnLFqpwvBKeGzPF1mlfsU/7PlVEYe6UEmEOU1sqdKW77M/Lmbic+SPL5+Fs7GgNSAR26jIr3FwdlU77hMtLWyc11b9ec4TUu7JBtQ6/apdipq7YLiPEPbcSMQOmxKtSEjaFutqc3rZPB0n1pfgnAts3DKwlbITlRIj5VIOrKEXQH+RIHUM4PWp7pQtJ8lpTAJCKWQM/swKR9RrrDyBepRvT1WrvrMoR7CPuOuWz/Exa+8rhn0ee93r+CSC66l2u0R5uwkO05Lyr2gfYhymmM/vQJzgc9RN97M6isvn7a/Uy5bgZirbIhtzYbYytAQZxSJL4gD0I6g1mEX87wJ293iD1sbsIf+YXoFX9gG7jg4VUgPGMq9gk1dXTx4VBudqoxev5AEwa/KR/O9TaeTuroNI+COuz+6g6WZU0msx7sBWapZYd0YSDQiFLbjasrCgr9hjOWLP2i3kRKUxEjbaTO1OnAqpna+bG8ZuCsLwV3df7CwctuX9ul5UzPVpv79fNHisy0cKdjfmZZmfAIjYdvZKeb+yypyGzyqx89C+47tBGxw2LheQGQMxBoRRpYLxHEz8wxoclqh3ElOq63IotsymMAhSTkYRyBDg0vDUlfaRQYh0K5DyQnYFuSYmcpQNR6TYQC7xoa4wK+qc7ivcDSLU9vIqSrra93kVJVf/Oo4eh6yoeYT4518a/gczlm8jq8vWElK+C1Oe5hiKp+drVIUnFFCFPOcEQa8HGvCXgDuH1xI28MuQkOUsdafpUUx5eMT1KBHMCgJhjwyviToFyhjQCf23JyaFRTZrmyT8jC+S60rIGxzqLVJSjOhMj9GVBSpfsnYIiuudD1SQBhD1J2h2q7IboTUhnErOo4XaNu4pdmposcnSN9TQPR2Y9I+YrxoRZ6GtbQUyI52TBRx64sov3aqqHak4a5bP7RTPhtlrXVXlJGEWZt1kvgQT+G0R9+wgmc/OMlBd8VnhTYgnGmcNswDBvxx8Edtl0yjC6aBsM0K2OlBQ2rYumiomkO1LJk41pDxQs697cMYIxh4uoej/72ISAy33n8VvfdsQ2d9WxRUL4pS9a4VYUBWalZciRNEFDXXMRrWZu7mUdCG5YuutJ81qcB3d8tpt+ezDZeG3XHaQ81nd1XU91zFfg3xdH/afbbQwpGOfRJY7rzzTn7wgx9w9tlnI6Vk/vz5LFmyhHw+z3XXXcerX/3q/T3OPcbll1/Om9/8Zs466yzOPfdcvvKVr7Bhwwbe857nV+3fQgsvJCyRb8BZtIC7qwFLUjGbLpHkVgtSgxJZs4thDfuXaZV8idmx6nxqjoIQNntF1BfVHIUOHOKMh3brrcIGSIy10qmZegYG4Gu60iXmBiP7TVwBWB9LjsoOEmpFSoZM6Ap5ufOg0KmT09bE9PCFRHKcm2Fxfoh16VnICYk7JgmzDsfOH+CU/CaeLs4knatR7FOAi1NROGUPZ8i3FapxXF8AFk1vdRO46LRH2O5R7lWUewW1bkPSFdGVLjEmUoz6lujHKcH4UT5OGYItClA4ZfAKICNtu2SMJm7zCLYWwfd3WMQRrr0Ey7YcSXceoTW3PLHzBegWDj/ccZe1+Lpw2We4+5YPIRIzmb8S2dDYWo9GdNZQjqaa8RA1CY79Dl34hZtY+74rAKj0wTMfthPUUy5bAQWDVIIoK6h0Q9hu0OmEdF+RBZ2jPLVuJulVPqaeqbI90ltsBkyYF5R7BaW5mnVv+RDwIb7z7Nm0qxKnemMsbnuCy46/jYuvudZ+Ftj9BO+WR68GYPnxH5n0fJcCEo2/Yaxp+bZ8wWXTrgtCGAyCpadf1eydvvWBSTurqa+5s0nn1N93JrQcibZktyffsflqLbTQwj5jiXwDMpVCJPWg4/Y2Rs/qQbuC7EYD2iAanFYyef2dymVlPSygkS26M04rBbgOcXuA9iYX4IQ2NpS8Zkg8g5GCxAOkQShD4EQsSg0xyxljWEc8FmYp6BRf2XQ+hcjnd2c9ygnBZtbUeglkRFp28ER5NqsKvawq9BKomInQx5EaZ0ISp8EtGtLbIAk8ek8qkBI7F1ZbnPbwgysc2mSFcQ1jJkXVuHSqIguCYYSXoB0XFVouaSTECyJ0rNCuIWyzhQ4qUsgowDcGqY3lmzqpd2DVOW2iMe0ZorxPmHco9UlqnRC2GaSfYBJhF4mBYCgCrTGORJUjUkP1TpkwadpTg+08M2E02X1dLNnPUbWGqXNqoZTtXHFdbtn6D4fqMLewD7jzjg/vwGeNmOSzcRpq3RrTHiGkoZp2EKFoctoGap2TeYCnXroChOWzCEGUFtQ67b4SzxB3xvhtNUpb07Q9Le1353bIbIH0QGLtxQOJzkpKMyWP3ly3wP23a1k8ewBPJvzy/dfxqv/4dNOqbpc2xPWljYZAsvyYDwGq2a3obR5j5TM32Mfm/LXdWAgrsGiDQNuOl5M/BkpNs8rdGZ/dXlyZ+vv2nPdI5LO3hf92wLqzW2jhSMM+CSylUoneXltt0dnZyeDgIMcccwwnn3wyDz744H4d4N7ijW98I8PDw3zqU59i69atnHTSSfz4xz9u5sYcaBzIANMWWthfuF1/l2Ud7+TDn30XSz7xJeipIZ9O2ZZdJcBVmHogKNAUVYyoe1E3RBVlJ6/oRheLmqxYdiQ65RO1+UQZZStFYoNJDChRt9SxgXWJb5BeQm+qyBmpdfv1vZ7oOryl4xdU2xXHuwpf7Fxc2R476574WRUuWNCapB4s7KqLpYElHY9z96yjqaV9ZFnh52u8pG0dvoyoJi69uQL5VJV+r41qMcCpOHhjOVSpZru06gH3jcB77TtoXxFlFeUZgtKCmIULt/E7M5/grPQarln7agb7QoTSDHW6eCP2vG571lDtEmT6Nen+EDVRAdfBeApvoGQrZX3PiizCdtAI38fEsY3oaMuDEtz66789KMe1hf0LmRgu+J0buOfnH+MVv38j/oQhTlnrLjpCMtka2aCG3xVTjV2GxjMs+Nb1SO1x1M03YxyDnGIXF6dBhTbsvtZhRRrZXaO3vchR7UMEKmJ1uptauweSHe0UrliBK2xYvXahPEfjzS7xxl+8h++c+2XeePT9O7yHO+6e7jN95rtWkB5KUJUEIQRGTgpKS8+8CuHa73rRsM6ZYqGzfMFl9rqg6teKhjUEWM9tpRBRYiemdZHmlkc+vcvju331385w0ZLrJ0NLsTYXRxKWdbyTW0a/dqiHMQ0tPtvCkYDb9XdZmnoznY8XKM3Ms+nVfUQ5yG0waFegattx2ql8tsFljQSp7aJc0wps55w2bLeK9lQ+m3jWwinxhbULc4BEYGJJzqsxxxvhTM/j3qrDP207n4FKFk8mzEwXGAjzrKn00OGUme2PUo1dtoV5BkpZKjWXzmyZnFejEPpoFyrdUGsTdoGyO+IludV7dJx0/zG87JE/oHhHL21rEtxiwt23fOhA/Eta2Amm8tmaEQzrNI9U5lM1DoGIqWoXIQ1JynapqhAQoMc9ZCgx0hB1xSS+QsYCjIMRKTxPIcuRrdDXZlpHtogSEl9S7ZBUe6A2v8aC2UP0pErc/9hR1tKuZIiyCrfo2ZB2R+EPVu31OwzrIqNjO2LCsP6ZEJgwspZg1RqmXLG5m0li7cECv2UFeYRid3y21q0xbRGpbA3Pjcn11Qhjh+GxLAv++TM4A1YdUVP2px0bNG9EvfMlbW9RTmNyMW46QgqDDjTVHomqTB/PKZetwDEQpaX9bpVQ7RSEHbDgH25i3V9ewZo/ns5fb/vFdMuw5cd+2NrYYa3L7Pe54Cd32OdZTutM8tkpuZzLF0zpDlfSCu7TOK2EZM/5LDw3p93eSuxIE1xe5f0xt4X/dqiH8eLC4WK5fZgM41BDGLP3/5Gzzz6bq6++mqVLl/J7v/d7zc6Vv/u7v+N73/seq1fvGdk7HDExMUFbWxvj4+Pk8/l92kdrUtrCkYLlx3yIgc87jD3ZRc9D4I8nuBMRqmyrmZrVfNpWagg9ZfJpjL3P2PDjxmKaEcJ6U3uKJO0Q5m07MMZWVAPEgSBK20q8Si+EHQluT5XTZm/mLTPu5dXp6iE6IrvG2zecRzVxmZseZWn+UZYsfOpQD+lFg92JLFf0n8GP15xAdSxg1pwRPnz0LQzGOX44cCqbCm0YI9BGML62nfRmSceqBH80QlYTe+5Kga7b12nHCi6VLsXw6Ya+4wZ514Kf87b8AACfH13A5++/iJ6eCZQ0CGHYsqELd9ghtQ3rR71+zAo3QhD1ZVHFeiDuxm0k82agBseaBN6UytZuYW4ft95/1cE5mC0cEFzw2s8C4BRjEl9S7nMpzhHUTinjeTHH9Q7w8s5nebbcy9NjfWwZayPaksZIwNWse/cHpu3v1PevQIVQmgW1Tk1qVpGefJGcW2M8DNjc34GuOsggZu2ffmTac0/88AqEhkqvIcknECScs3gdr+l+mEBGvOGoB3YY/wkfW0Fc157dEvijkNsQ4VSsaBGnrPB433/ajptlp9YnsMZY+524Xuka1u13GoG7Tes9ZavH6zZ8ItaTVpSOxASeFTg9SeIr7l75wb06/jubkF5yvq1MPNLElgaeLx9t8dkWXkxY3vMeaqctoNLtUu6R5DYnOKUEp5JM57S74LPNDu369XtXnLbS407js4kniFO2MjtOWVunOFPnum0xs+aOcF7fat7T9XM2xxl+MH4mzxR66PRLAITaYd1EJ51BmbQTUY5dnh3qprI1A8DC47YyLzvGSC3NExtnklQchDJ4uZCefJHrF/8XLw/2LPthVJc59+tXsPAHExhHUukLqHQpfvNPlz/3k1vYL1izaSY5KbmlNJffFBcyEmY4ObcZX0b8z5ZT2fDQbNJbBapmbcIqfQYZ24Vl7RmMY3AKitQABMMGf1zjFhO80SqiHNrrrFLWmtmRkBi2vSzH+PEJRx2zhd+d+SiBiLjunteAgAX/pYlyDsFwvfgnMchajKzGiMHRSctnKe31HdDFEiiJzGUx1Zr9TBmDSRKbr5TNtPJjj2Dsis9WZmhEdw3HS5jfNcJ53avZUO3kqdE+tgy0I7fZruo1l07/PjntfSuQMTYvUIP2oNpt0J5GJAKRCIIhQaVPN7u6Gzj10hVgrE1Y4lvBRiYQzgkJsjVqFZe1fzKdAy878WNU57XhlGPcwSI65ZJkPGSYoD1luwxTDmFuO067Kz47ldO6blN0B5rXioYNpXEkxnfRgbvf+CxMijKN349E7A9O2sJ03Hnnnbz6d9/IWZfs3Tl2oPDrW6/h7jtXcu655x7qoRxS7HMGy9atWwG46qqrWLp0Kf/6r/+K53l885vf3K8DPJyxK4X29uQ7LE29+YDkZjwXlrW9Y797G7fwwsTyue9n+KL5XLH4O/xt6TUkT2SQYZ0k16v6k8CxnSe1RiaLatq7iMTYlnIhSDKe7X6pd7w0OmGSQBKnJLEPRormgnbi24lDnLHiishHdLcVOSo7yAxngshIXLFPX08HDPf/70loF546Y5S/Ov2n6P5j9thy4VXnfnqHipoW9hy762R5W+e9PDwym/VVB2MEJe1T1S6bCm0Mb7ChspkZRVJzCpRkFregMAK8grX4sIsp9Z0ZoF7Mqn3DWd0bWZZZA9jKp3PSz3LiguPYNNFGzq1xQe+z/NJdwOpoFplHbfYK2kClgogivKjutx6GkGjU2i2Qy0JYsxPWOMbM7D3o4sqrXvopRJRMs2hq4fnhnh9ageS8199oM6YEqAokNYXwI7r8Emen1jLLHePLZz43N3jk85ft8rHLHn4TC3Mj/GrTfHI7EaMT39qGdZ00xMBgnpl9Y7yu5yHelB0FYHjLHLpmbZr2nCevuYzjP74C7YJRdh+qpptdKy9/w02EecGpl67gkc9dxi2PfJolL78akWjURLW+CFNfsIymiCwAjoNwVPNvm9mi6nZ5GqRvrznaXnvCvGJv0ZhwLjvtE2CMrQ48QoWVQ4Flne/ilpGv7nD/7cl3WJp9K7cWDz63b1VBtrCnWNb2DkQ6ReJJ5rzvWR64fzGpYYE/qq3VzRROq6o757Mm1rbDznPQnmrerx2BcW2gfRJIopQNabZ5Ag2BBaJ6PkGc1ZhsjHA12WyNGZkClcTj3sp8lqQ3cFH+CWZ7s9hQ62RdqYtNE21oBFuKecLIoTCaRkw4OGVJ3BuxOD9EZCSBiunoKEEHLGobwZEJ2ki6VAXI7NFx6pBpECC3DIHv46ZdRo53OOaaFaz62K6vOdsf69Y8c9+xaM5W7lu/CE8kdLhlni308AhzODW3iTmZcdbmZ8AWB6HBKYMMBU4ZnIrNrKj2GuJsQllKtCtIfEU2tue4yfjNcxrsvEsVq+Q2ppk4K2JOZpyMrLGqMgOZi9ChIso5yEgjYk0SOMi69ZEoVpriiomiyYyXRk5RHKPHJhCuY7vDTN2OL5066OLK8hnvBWP2ORethenYFZ91ipIor8BNyHs1Tk1voNst8LWz/nm3+3v4C/a75cSPrODxG3b8nlm04mbCHKjKjkKxU7b2i5VegTi+gN6YJQ4082YPMTszTn85x/Hf/yRPvX5yHnXLE9fwyld9hnKfj5txSFISp5TghUmz4GZ7Tptk/V3z2UTbrhUhrA2f49hOFuquHp43jc8iBCLRgCTKSF7+hpu497tX7PDedoXt+axx1RFrHdbCgYegFTB/uGGfVjD/5E/+pPn76aefzrp163j66aeZN28e3d3d+21whzu2n/g1Kv2WZt96SMQVANzDa1G6hcMTS9QbcY49ijgluH30BGpjAQAy1AhN3TpJon1LIEyjHXaKdYKok22jJGG7i3YmW2btwrWdeEZpQZSxFSvatZY12oUko0myCV4upLutyEt717E8/yhnejsxYJ0CjUayZ9V6+wsVU8NIGyhdeawDdQbcXRVctIfPb4krzx+7EllO9lL8yZxf8x15FoOlLN/cfC7dQYkoVsiqRNYEpVSAl4kgm1DpU8hEoV1re2SUPW/98QS3EBP6LrU2AQmsK3WyOfGYUV/v3Rh1cXRukGeHulnQPspLsmuY6Y3xlWKW0swOhPZxigEySSDwSTozjC/O4o8nZB7bCsUy+C7UauhiCdndifYOwXe2tjZNLex/GAF3r/wgZ7/9ZtwyqCGPUiy5jwVkVI0Z/vjzfo02p8KytkdpdyusK3Xu8PjTn7QT2Pc88Ga+vOxb3PDkcs4ONtIQCjtkeqf7ferTO19gW/iFm1hbnxye9MEVHHPtClZ99DLijIswhlpXQHqNFW8a2UamXukK2PDbelaLqOdz4ThNOwURSkTkUJsRUOlxiAPBea+/kZ99/8o9PibLj/9IPWtB2Kpdjlwv60OB7cWVaXz2EIgrYIOSW2jhubBEvgGVy1nf/PGIh+85hqBku6sbRUPTOK3YOZ8VGrQrSXyJ9mVTRDGCZnerdiDM123AlEB7kHiQpAxJLoFAo7yEtnyZvmyBuekxjsn0067K5FWVjYnHcJylrD1Gwgxbi3kKlYD2TIWRYppwwodIYDxDgibdUQag3a0QaodSxWdG2wTH5fqJjL2Gz1J7xoefiYosveuv6Vldf9+1Gt5QiSjj443ZqvXGwuru0BJXnj9eNn8NH3v09zk/9zRzvBG+s+Usvtl/DtWqC7EgyllBRYXg1SmDCkHVICkIwnaBcSHKgQzt3CpJuRgpmpzWKUX2HM0GBIM1vDVpHuucSagVD26ZQ+4XKSq94I/VUJWkeY7HrkIkBuW5k9krDSu9XAaKZczoGCRMZhgmCSaKUW15e20/2GjkwbWwX7E9n2UYtOcSlhUPRXPw5EvQRvLePdzfE9ftnGMGw4JahyEY2PF/+MBX7HMWfPFG0lLz2/dfzvx/uoEwdqgmLmGy8/Ptrtt2bX94zLUrWNXgtB9YwfGfWMGM3fHZJIF4ygr29pzWj6fxWRM41DpTVDsdEt/a+O4Np11+/Ecg0QitMSkPUafTLU7bQgtHBvb4Knj55XvePnzzzTfv02COJCzNvhXhedMmpTKwIYOHajIKcMvQVw7Za7dwBMFokmfW0GcMj8Un05azvtTak1YK1/XJqCPsfWlLuEVc99UH+zuQ+IJqu92WxrxVANK28kZpOwmIswad0hAkKD8hCEI6MhW6UyUW5wY5I7OOuU4ByO1y2KO6zLbEMEcpsjI4sMdoChxs14NxwBuD826/FMqK3LMrmPHrMrf/vFUpfTCwK5HlHflt9Dl3cNXTv8szW3oZ7yzgKI0ONDKUiHGXsOxAkBB2aDC2qkgk9lzVLsSBQ76i0Y719pWR5PENs/h7/2Je1/UgLw22IUWOXq9A4EVUE4fNUQe/Lc+kK1Ni3WkpwrYAkeQIhgNklFDr8ql2CqKMg1Pqxf/tFhgaRS+YiRQC05Zl8KXtB/9AtnDA8PP/thOo+79xOee9/ka0oyjPcilXs9zOsZzc1/+8X+NvT/oBAP3xy/jCGd/e6TZfX/UKXlL/Kn13++PIfaunAWDh/0Zc9L92Yvf4DZdZm4KP7noCu7zvLxCZtJ1wam07tZLE2uKhIQbi2Hay1CtkpRDQlwEDbtkga5oLXn0DQrNTe4UdrBIqVRs+qiRCiGl2ChddfD133mG3u+T8a3awDNvZfS82LMu/nVsmvtH8W9YLHQ4ln721uvNzu4UWtkdSLCGTBPX0eo5en6J88my011hsFmhBk9PGaXe3fDbxZL2TTzSLhbSivngNYR6inCFJGUwqQQUxfioil6oRuBG+ipmVnqDTK9HtFulzxul1JpAYnqzNYlPYyUCYYyIKqEQOi3sGqSYO/dvaoSpBGYwyEBjKEwG/3jaPnkyRvFejK2dtxYqJnW+6IqFsEvbEbOW9z76J/MM+2qFpcSMmSsy7PYWRAmesyvJjPwzFUsve6SDgmlP+mwVf/Sy5px2KCzXpuQWSoQCEoTojQTuK7EZwyxAH9hzEWJHFnZAkQcPeDuKUxHS5CF3vwHYFni9xSjG1nIs/WGXmLyL6dRe/mN0GniYTQtsaQ5hzCGpJXWg0yNCKinF7GiUEohbaBWXHhnvjKGQmjYliTBhiwhDh+/Z67rnWQulgo2H918J+xVQ++4rfv5G4IHAqkvIMRVJI8YviYvA1PE83oCev3n333AkfWwELDOWCnff77TUGR3NsG8rjpSJqRX+vXm/+j8ss+b+ruf3ev+Hxz162Ww64vO8vbIZmg682OG0YQZTYyIkksWJLXWxs8FkjrTDqVHbPaS9acj1omjy1yWcBbCPMdE47RWjZXnSZyndbaKGFQ4M9nnE/9NBDe7SdeJFUEOxs0nlr6V8OwUhaaGHfYJIEvWEz3sndjJwIE2eElB/3yW/QqJptN08824UijA1CxDPEaWnzQCODMJC4gjBnK/m0ommxhKwvXKcNcXuCykXkM1XyqSpdQZl2r0KnV2KeP8Iif4AFzjDznOe2OehR4B9A+7DFd7+NZy785+bfG+ICV2x4PcGwtYBAgLfFwylC9xMharTM8tnvA9chXNjbtNRp4cDgZVe+h3d+4vu8I79t2v1V4+JIzTkL1zEjmODOTYuRNevt6xQFMoKwQ2AcQ60vIcpJnIqo5whBGEOSkghtcErWVzdMOzw8MIu8U2WBO8wCd5iROEt3pkSYKB4vzWZ1oZtq7JLO1ajkfUaPlbStcWl7skIqTEj1W+u8OOuiZ3ZBbCeBteNnISJNsnfzgv2C2379iYP/onUsPfMqjKu47ZeHbgwHA2e+awUPfP9Kzv3jm5CJZDyQxIlioGK/45ad+vHnDMLcGS66+HqEMdxx50d46+L7mvdffNF11uZGwLe//fecGSj6lK0+bZ+1cQdh8uILr8W4crchm43HdrZNY6K35vUO6957JadcvgIZwsN/f1nTpmPZiR9DhBHUQkSS2CrXOLY2ConGaGMnpQCVKqn143hjKYwriVOKJLBVsxdfdB1oW40uwxgRJXhaI2oxyxd/0Fo2NKAkK5+8tjnui5ZMn2zuahL9YhdZpoorwKHrwm6hhX2B0ZOh21ojDAye5pBbr0gPJWhV706pd1JP47MCVGTA2E6VxAPt1X82Gj3rvNYoqPZqVFdtBz7b7pbxZUybU6FNlUnLkJyqMM8ZISdDSsZlfdRNVbuUEp9ARcxrG2NpzxOsrvbSP5Gn5PpWc64q5JiLdjVKarQRxFoSOBGFWsCzhR46/TLaCEJjuL3i8KPR0zk9u57j/C382T+9DxnaoqD539nK6rfNpPMpQ8dohDca2spsNwVS4IyUrOVvGEGliqnVWNbxTpg/i20v7+Chf9gz67AW9h7Hf2IdSMmW/7eIeacO8+TqPLImSTJ1NwEJ1S4QsV2oNYCsgVeDKCdwKlaASVzQSiJMff4FRInEKRhUVSOiBLcQkd3k4I07hO22AM4tQVy3vEOAjLUVUbBh4DJwrMBSv8YaUwSszadQyoopor6wnArq+UbJAT9uy3vew8rBLzf/PpSC4JGei7EnOPPdK3igLra89E9uAiOZWGQglDijdj6+fNGVrFxz417ve/miKy1ve+aGyfuO+ZDtMJSS/ov7CDSU5wmo2i/kVX/wcRZ+4SacGRUcpakVnN1aF25vgbp9UaQzWmbp6VfxzFvbWHPp5TvlszCF01Zrdr0z0XVOm4CRGG2sdSRlUuudJp8Fm2OofYmBJqd1ShGiHOJJLJ89+gP2s9ZYS3VdbnnimubrNzntlHNth/NOtkSWFyVaFmGHFfZ4lfKuu+46kONo4XliXy9sLby4YcKQ1FBIaltAyXMpHhtROloQbHJQVbvwLGJwarbS30hBmLfWSjIWzWqpKAdxqh7AqOwk1EiDCTQqF9GZL9OVLtGbKtLrF5jpjZNVVdpVmQXuILNUhXnOrjtXGuiQaWomQu+nK8lxX/sLa1nmG3Sg8borZLOV5uMLf/xOG763xSFfMFS7LOlxJ2yQabXTIVgTYYolxKw+SrN2b2/WwvPHL//1chZ8M+IdS/+ped/dVcHDpfkc2zHAK9qfYSjOUSik8EYk/qi1WpCRoTYqmTha43RViD2PRDu4BdEMUKx0KoIxjVO253BcUoyPZPlx6QTu27aAEzq38ZquRzgqN0ynV+Lc7LN8LzqLoXKGSslDBxrtKvyxBFkow6YCJo4R6RSO51I5bgZhTpHeVsPfPMGWS3p45HMHZ/Fi2Wmf4JaHP3VQXmt3eLHkvrSvttkov/i3KzjnzTejKva7oxJ5/MF976XvqzXuW7/o/7P33nFyXfX5//ucc8vU7atVr7Zc5Iq7jXG3pFACJKSQ0PIFQiCEmA6m2ICNAYND8iOFkNC+KUD4UoNsyxa4YLANuBdJltWl1fbdqbed8/vjzMzuSlr1as/zeu1rp9y5ZebOnc85z+d5Hi6e9zxPbJ7N6XPGM1GuvswSBHfd89HG/frtOrmyM+qPXX3ZzUyftQ29dSbTVK6RFTVR/SWnr0GYmxHhvnd8TmlNkLd5BmGLtSqZiPrAcPmC91orEWnVJajaJE7tMcAqWsoVlATjOCSpDHFGImLQjsQthFAPoTYGEetGJ2HD6keqSYN0AHeowtJzPrnH8+6ue6/n6pfdNOXzhxvLTr+e2584ets/1nC0MgybOL5RV8kRRqTXDdKV6aY8TdF/hoOMbLiyEXZCul7PRvlaPRuKmj1uzcLWhThjbzeU2bVstpa5o3TnikzPFJjmF+hyi+RUlZSISMmIjAyY7w6y0IlxkWSkR1krduiQDlWkX+XxZMyOKE/ODUiQtDtlFnYMst1rQUnN9o2dmO6A8xZsojtVYH5qECk09w2eSCFIUU0cXJnQ442Rl4q//s7bOOErG3iOLuAc5ouN9vrqeeAouh7TtD681R5INOGamSSIMEHnUwgl7ORhFGPimOrMHCMX75rx1cShw4rtX2H5jHfR9XiVZ2YuRGc0qiLIbpCosGY/54FXAacEbsUgY0sGBi0St2LwCrpBkogaOWKErWGdQmDJsyRBhIr8ppptmGeXj1MCp6IxSmIcgXYEMjLIWFvL6CiBUhkTBJgoBqNBqUbepnBdkMJ+9wKNyOdYsf7IuJjsTLIcLbyQiZU6WtePN7H8+j/ex3lv+RIyFiS5CFNxOfX628hfMhOAC97wJR789rjrzfIF9vbE82L5KR9hxTOfbdzfuW5bseZzdrmF7+eRf7yOl/3+F3DLipETBPP/6VY2/NX7Wf/u9zH/X27FtFfZ8K73sewjb9mvY5pUd2kQWluXDSDMg4x2fU2jpp37t5ZcVBqhpCVZYJIqWxRKjXrWuAqRUlYFWbOmdiqx/R6lHGQ5HK9noUYu7VrPwt5r2lUrP8yVV92yX+/FocSyJddPIoWaaOLFiCMbZNDEYUOTXGniQGCSBG99P92PRcz/SUz+WRdRlejTi7RctYPiwoSgC4I2qHYIKl2CoB2CDqh22b+gA4J2Q9iZEE+L0D0BckYZf1aJaXOGOWvuFi6Zvp4rp63mqvZnuKb1Sa7IPcPlmTWcl9rMqW60T+RKHb5wccWhyY949q3/xKVXPm67E11NWHEpFtOc/Ms3cPZv/hjpJThDDuk+SPfHdgCOHbiE7QlO1YDrINpbbUeLhjP/9rZDsm9NTI1ZP1Es+t5fNu7nZcDidC/XzbiT6e4oo3EaHUn8EchvSchvCskMJLQ9H4MytOfLqHSMqgrS/ZAeABnbc7zaJonTlnCRgUANuJhtacYe7eKB+0/FFTFn5DbzlvYHWOgOkFYR5aoHAz4k4I9Aqq9G0rXmEd2dkEmjO/JEWUmUFVS6PcLpeYSGs991ZM6XY4FcWXruDSw955N7X/AFgIkkyIPffi9rrr+O1kyFl05/Hk/GLMlt40LfQfcuZombIdi+sLH8Xfd8lJf/8y+47ZlrG/d3t97dob7szFnbGo9NJFZ2Xq5O5uyMSZYD19wy5XMb3mBvhx2aas/uiW+TS2Nasta/PZ+DbBZymdr/LKTT4HsgJCKIkeWAJCWptku0J3DHAkQYI4yxg8rEhunWO23r3X67q4NElCDCeK/n3dFUr5iUJeaXnnvDUduHYwlNcqWJA4LRmGqASRLMwBD5e5+j46ky2W2GSo+Bl43Ymra19lvfKQha7W990FH7a8M+1gZhuyHsSEhSBu0ZkowhaY85fdp2Lu5azxXtz3J5y7OcktrKdGeUNlUmLyu0yTKnuoZ2mSEnU0gkOZmiWyraVBlXJPRX80hhyDsBm4NOxpI03akiPdkCGTdE5iJOm7uN7lSBjIq4OvcU721fT8YJibWkHHk8OzKN+/oX8debfo+oPWHwqnkMXzaPaME0yKYtuQKQaFof2QFCQpyMk9K6RkhVbKhz1JWzpAwg0in8gSotrWWW3/ueo/aRviigNd5zvSz8QYH0Dkk4O2w0qlW7wCvY+tQvaLLbQ7JbqqSGYnK9MdntIentZdL9EW4xwSlrvILGLWmcqkEWA0TFdj6IJMEthLhjIf5AQKo/wB+24xrtSZKURHu1/CEhEGGCqEb2O6U1wnWsFZjjIFI+smYDKoS05402ECd28vkwwxh9TJArV151y1GdzD5S2JlEevjr72Xth68DaZhxVi/VJRWGXlVm8fc/zdASYS29alix/ktsfc0czvybCY9NJFf2MH9Vf+7eH32AB7/1XoKuBL+nzMK//yIAG/7y/aR/Pe58saz9rbtdz84Zc8u63o7oHx5//qmbINZs+Eur0okzEHTuoZEzm67VsBnIZBDpNCKTgUztuus4Vp1dCZHlABElaE9S7rZ2685oOLmm3cd6Fvatpj2q6pWa7eay01+8ivCjAWGOjb8mLJqJ6E008SLESv09rpGvAyDZsg2xuAehDW3rElrXC/rOyZE6f4STTtnC6o3TiUZdVEVipEH71h9aaNEgHHRLjJcPactWyHoBGSci54bMyQxzYqqXOd4g09UY3SpimkzjCg84cLXHVCH3gYnwxf75//7bnF/y2av7+dd7LkcWHIyBIJ+Q5BRiwCfTC5m+8U7vOGeIWzSkE7TjQKEEWhMtmo52BdXOAz6sJvYVQjDjPvjgy87m8z2PcI7nAds4y0txllfmlZnHCE53uGPd+XijEhkbEs9a24kYCpUUScXBjWlkPhghiLJ24sU4kKQ1IrG2CUkuRmckIhL8ungCT43O4LvROYSxw/Yt7ai07TqSgWx8J+qdSKYli3EVxYUttrAOTK1z1iE9qCl3v3j6HIyruPNXHz/au3HU0JKqUow9nhvusg90rGs8N6irbN64gJLxSImIhBMJtEv/tll0SjuAvPaP3wxYcuSal9oOMaPEJAIGJpAm5k12+Rp5YG2wdiVZJmL5qR9tWGzBrvYXE8mWiYNu07mTfGUCbn/iJq649nPW3z3WyCC2ChRjbBZCGNuJv8bKDEKDqhrcYmK7+wDj2+/K/nTH3f74Z2yugJRc89KbSNJql30/2rjjYTtQvuM3NxzdHWmiieMQE+tZHVSRUiAcB5MkuGu30fW8AjGf/s4M3fOHGAy6kIGdBDKusXWBpmEXqh3QKQ3ZBCcVkUQKEyqEmzC9e4zzW9ez0OtjvjtEXiQMaZcEiTZ2nT2qSlrs2jSUkz4uCQrD4twOhuMM64udDFcy9GQLtLhVHKnZOtxGe1uJnBuwvdIKwLpcN6e4QwD4TkwYK/r7W1B9HluZAT0hfee5OEVJcUaGaY8q/C2j9roaRXbSzhjbJW1MLUugNhuSTmEciTNWtRODSiEch42vzNOd2n6YP70mTJIgogi1dZC2NVmiMyPijId2ITqhQgTIzWlSgwI3o3CwhIjQ4BRCRJDg6BARuyS+tQlTsanZfWmrEq0rRRPTmMAVWuOUYxLtoIIEU7WqFhlraxkG40onsCSL59kufd8bDwA3E5SwYWitwg4zjpW8WaHNi9oWekbPCHkvIJevMq9tmB+deAfXdLyC9Y/N5sTP3kaSNtberksgEjj1Y9Z6y0hrub3o3zZDNWDF9q+wrONtiHRqF7u3iQqYU27tBSlY8Zy1GF7W9XaeqJ0LO9ucwq7ZcgDLZ7zLrq/3HxvL4LmTzimjDElmaoX3imc+a+tsY5CRRpaC2vUVRLRrPVufsqhnHMmKtQGr17QrVu87Sbe7mvZYqmdvf/wz9n9Tld3EixhNgqWJJl6kWKm/B8A18nWsf43CG1D0/CYmzEvMwhIfX/hTHiwvYriSYTidIao6VncuDEIYjBYYI0AaurvGmN0yyqLcANO9EVIiIiNDZrlDzHdGmO24pEUKOLyF9/6SK3V8pHMNf/jK3/Gqh9+B+6s8CAe36NCyMcKpJKhKTHFOBoD20waItEJrQWowbQeviUaGCTI2xHuPkWniIOEWYrQv+cHdF/D519t8sJEkDdii9qmozEmZXlacXqSocxilSHxB7Nfs3ao5MiN2ABnlAATaHe/AUIFVryR5jXE10k9wUwGZVMjtm07h4pnruXPNKQgB0k/QiUT1VEmqDmOuA7qFjtUpUptHEcMFaMuhXdi21ND5sEImBgqSMG/VMocbU1kQHWkpd51cueYSGy75YsPdV3yJDz72Ovr7WvGchP8odPD72W1kpMfm2KdNBpygIh4LswTaxZdRg1wBuPM73wDg6ssarjVTKlHqj1/z0pu45hI74LlrH97zFU/f3MiH2dkWTPcu5q6auGCiGgZg/gx7XdwdznjvbXhzXSrdNiQ6u9XgFQ1OVeMUIpzRYBJlbpRABprUSM2+xLfX9ToRsb9YsfoWlp79yUmTRVMRRUcT9e/FlHZsTTTRxG4xsZ4VjgPzZyHKARRrofCzBVcseZZy7NPf0YpOBEZja1pqBEvtNqkEL2cbhtrTNuekGPq4KuHUtl5ektrAHKdEt/JIiwxtukLVWBLYFZJ2uSu5MqhLlLTm6WAxJ/i9nJqKuX30DEaqafqH85QCj8Vd/bR5Zc6csY2lnU+iEbgiwRUJ2ki+MrIYR2jm5kfYONYOJYf0DmEtzzb6uEXr/1+eJhg6yacl00Fm/SiiWLIT7ElSmwQ04FjVgW5vIWnx0Y7EMcaGmRsDnkcwLaEcenSmyof983sx4/aBr7Ks420Qx7Q+1s/YvB7CdluH6kCRXuchEqh0CbTrkBqSGAfcokZWY5s5lCSo0TI6nyLJeo2JX5xdf5OF1hgpLZkSaWQUEmdcZJRQnwmWkca4EpP2EK15RKVqQ72TxIZ9xzG05BFKwvBowyLJFsWHxmFgKuzJQnJZ19uPKPlSJ1derBluv7r2Ft76mzfz7GNz2Tgfvl/K8775d/LItPks8PvpVAX+fvPVPLl2NqKqUFVBqt9mByU+rH/THNwxa/dGHDfIlWXtb0W05hvE8IoNVv2y4vlbWX7KR1h+6kdhaGSvn/XtY19vkCzLWt5iCZwJmSoff+I1RD9awLot0ya9Lkkb22A3BS7+oy/itLpU2+25nt/sWEu9MEGWrJUvQlgSxVMgpa1phwUyNramFeKQ1bTHYj070cZs6dmf5I5HXhz20E00AU2CpYkDxPITPsCK575wtHejiUOE1qcV3/3AF1g6+z1Mv0vxqZf8hMtThmeDCj3ZAnm/SpA4FAPf2iEZkNISLb4Xc860zZyW3cqpqa3Md8bI17qlcsLDF7mjfHTjqJiAtNh9qvh8J0XQnyEVQbpf0/bUKGF3BndHEVEJyApBZoekr9hN4tnASW9LLwC6XEYWAiCLDKcuyo42rlF/zMrkO0d7Nw4aqppgpGDWLxJOEO/ga6/5F8rGZ0wP8rXRU/nKXdciOgPa2soMzUmBcDAKorxBVQTeqEAGNkcnTtuOVZGAiqzCJWqFJKdJTytRKfiYxOa0VAMX10l4bHAWOlB4+ZArTljH/ZsWUu3PgKdJzSpSKrfgj7qoShY9q4WxuR6z3vI8/zH/+1xpbDeWUYauGUNc1rPxsL9fU3USHS2f3BcjuVLH58/8Hp8/096+ZOWHuLNlkMvaV9PtFDjFHSInU+RlwPmZdVycKgO7Xq92pzyZ6rmdwzzruPb8T3HnQ59o3F925sftRE2sSTpzXHXFZ1lVmzy48ppbuOvbuw8PrePnV35xt4+f+rHbkArGFgpOv3wtV3Q8yzfXX8i25zrJbHPI7FBktyn8gQqiEmEyHtpTaEdYdYseJ0WueelNUx7P3lAf3O1sd1Z/bKJC52gNUJvkytHB0tybuKP4zaO9G00cIuhyGak1vdfOoPu3BeRzW8hf3M+/zfklH+87jd94c9GJQClDEkrANg5hBNJJaGsrMyM3xrR0gU6vTE5VibTClQkz3BHmOKVJtrYtMs1IXCArJZkpmnw6ZZZ2qTnR72UwyREZRaYWWqVjQbniESaKnlyBjmwvl2fWkRGCdpnCFQ69SZHvRO08P9aJp2JGyylEItAeqGGDU7Xd0dq1k5fahcSTNkMDrJKhHsisNRgHISVIUMUABVYpGEWgNaZYIrdOwRwYC3dfMx9tXCNf1yDWXigw/YPM/pli4MJOgjaBv9lj2qMxQatibJ4gbAGjJE7Z4I1MyCOr2nNJlkNErDGqrtBSDcWSTnvIILZ9SMJgGB+rCGMQsc3QjHIObiFClWOMZ23BiBO7tJTgusRzu+m9IEPrhoT8YzFCKYzvoD0H7R/eqaU9WUgeLWXLi5FcqeNr534DzrW3X37vCK/qeYy53gDnpTbzu+os1g10oUoKZ1aZJFKUMh7kYjq7CqTdiMF7Zuxq95YkoA0rNu1qoTzRXmwqLGt5iyUCJ9yfqGRZ3vNXOP/j8O+LHuLG7qf47LTFk16/4V3vm3LdF//RF5GJIWhTDJ8siHOaxEuRGk7wR2OUK1FjNrTepD2SjIdxpa1pdY34rOFw1LTHSj1bJ1eWnfUJ7jgGLKpf0DCMK1KbOCYgjDHNT2QCxsbGaG1tZXR0lJaWlv167ZG6kC076xMYJY56WHDDX1GIhiSwieMT18jXEV17Ln3neMy8r4z6dD8rTvoZ/zo6g4JO4YqE7WEbDw/OZetwG9oIfDfGc2PaUhVuXvgDzvMPTD1yOLEuLnJPeRGn+1voVlVSQjBd5YiM7bZyxfhA4D3bzuP2O8/FKUPHM5qWJwcw/YN2UBqGkCToKG4sL6RAdXWC4xDPm8bWyzNUuwzP/+17d9mPJg49Lvu9zxN0OERpwQl/sZrXdv+W/95xPjkn4JfrFiIkTOsYI0wUY8U0UdVB9VtbuiSlMZ5B+AlUFM6wgwoBA9qDsDvi/FPWA/B0fw8ZL+S8nk08OTyDdr/CxtF2Lp3xPOfm1/Pf28/jmedn4m3zECcXuGzuOu5acxL5B9O4JcNDnxkfOLxl06UArBnpRklN3gtYs62HdX8y9YR5E03AeI7KwWLZq/4cgNt//H8BOOnrf8V//tmXazZ749hZoXIoMfFY1sVF1kYdfPTp1zD2XDsigXXvHb+Gnv7+2yjO08z/SYx2hP3OZwRxGh778nW7JUxgz118O3f7XXnNLSSexKkkGCWOCYLjymtu4Yfff+cB16NwcPXszlZxhxPHAsGxvPsdtZD0hNtH90wmNnHs4xr5OpyeadDWgtnaS/Xik7n0C79mTbGHTYU2tm9rx+nz8MZsc0WUh3BGRKa9zIldA1zSsY6rc09xggM5aZXXY7qCL5zdKqX7kiLTlG0m2poUaBVu43UARV1ldSx5OpjJ+qCbB4fms22shTixamiAl8zcwiVtz7HE38qltZcO6hL9CTxQWcg9wydx39OLwdEIaTCjLt6IItUPThlkYq0V3aIhTgvymwO8DYM2mDyM0COjoI09z6Hxvw6VzSBmzyDuyLL2T1Msu/BRnhyewf1X7xq03MShx/Lud4CSkPKpnDKDoE3hVDRxRhKnBIlnCRaMzfrrfKyAGi3byWgpwVEYz2kE0E+0JUpyviVdjGHwtAwtm2O84RDt1BRcxhIriS9tlksxQpVDovY0zkgVOTgKScL21ywkuGoM55cttK+NyWws2LyWJEGnPIynkNWoaXfZxF6x+H8+TRIr/FTINfNWc1nLs/xs2HYffXX2A6yNitxXWcSaynS+8/D5fOjSn/GO1q2T1vFwEHHDFX8ARrPhDXOY/61NDFwxh8Frq5hEMGv6MMOlDE/9/g2H9VhO//EnKWzPYxyNcA2p5z28UavSeeqW6yYte+lrbiXMS/IbqyS+Imh3qLZLfvfPB1bPwmQr353r2TituPfHHzg0B3oQuPaiT/M/d7znoGraJnbFqlWreMUr/5jzLj/6nzHAr1fdzC9WreCiiy462rtyVNFUsBxC1C9s9duHC0nGs/LDYwD1zuipLGiaOH6Qfmob6TnzAVh/3zz+efosLs2s5aeFM3hweCH9lSyDpSxhMH7Z0EYQeSEZGQHHHsGSEoaqdtkat5GR/UgSIhOzIa7SoQSdEwiWq9ue4o7kXFKDkNlexTgSkctCpYouTbBIqPkNGy1BKSpLZrLh9xUi0bgjL548jaOJay/6NKLVTgjL2PDgmgVoI1g/0mEX2JHCHRVsn+dwyqKtLG7v59HtsyiHEq/PRXsCnASpNDoNOh9hBCSRJJ0LmNFSpN0rs6Oap7wpT1lA5+xnuLh7PSNRmpSK+aOOBwGYliqyLhcS9AjmtRZYV+gkmwvIvWKUS6Y9P2m/y7HHlmIrO56ahjuvyIJZQ6zZz1S4ZUuuRxizx8nP5Sd+EIRgxZrP7de6mzh2sSfCYyJhIaev2eX+RNz5UP01lmB5ze89wGc2vYIfnHDnXrdzqDBxHxc5ORY5IcvO+Q7v6LmIr547eaL9iVuv45wV1zN0ahctGxOCVhtMLSP7fN/ZPtMeCSbVX7DnhpeJj195zS1UO1xUaKCSjHvPH2WsWvlhXnbFDUdt+yuevtnacNRuv9BhkqQRhHssED5NHDz0yBjSccBxSK/ewff/62WY88YoD2ZIb3HwR8AbM4gEytMEie9QVilG8ykio8iKmJwcV2C7Qk5pQ6vE+HVjltrVIuzBIMvGqIvnqj1UEheJIYoVQeCilEZKg1MLcOtQZcBa0vYmggcrC9gYdDESpiEWGCOhnoOYAMKSK0Zaq1O3aNAuxCmFJwWEGpLE5tLEMcS1Dup6doaQyJSPmD6NcFqODa9I8bml/8Xj5TmNfWri8GJZx9sArOVWnOAPVJCxT5RzCLOSzEBC4gpkbHNSUiPaWg/VSGGUwihhyRUl0J5jhVnaYIzNGQKQ1YRpD41SmZW1eWT1HE0liNPSKl1cgXElSdZDu5K4LQWtPklKUbqsxIyWIr0dLaiqfbHQGjFWQgJxKj3JinNfsDT9BmBqZcrenm/i+MSaP9w1j/G1jNezJ7o5TppzH99bdw7vXHY/D1Zns+jut7D+z8Yzby4AVtSGWeesuJ7wvmm0bAgYfT6N0HD/nx85ctgog/A0J83tZa0zDeeR9C7kCsB9P3g/l776C8ggtt/vvL1uA/Sf6dP92O7rWZh6bnGiYmXnejbxjo2a9s5ffZwrLnjxuhc08eJCczbwEGPVyg8fMnKl7pu+M1Y+8LEDDgquD5gPBRrkyhnNC+bxjpX6eyS9Oxg9ETZfnWHWfSFf/u6r+ObQJfQ4Y2wca2ewlKUauOhIoSNJEiniRJJoSVkfe+QKQFkL1lWnUTUeVeNQNpK7qxm+Pnwxv6hMJzARRV1lTFe48dlXkOmF1nUhaqyCKAUQxZhK1a5sYpCjkEjXwZQreKMh7ojCeJo1H9u1mGri0GPi9c8t226hR7fOYnQ4QyVwYXrVWmcMOXgy4U+mPcT5szaBsRkQRhmkZ7s3/WzIefM38ddn/oK/POdePn/m9/mz2Q/RH+R4prcHowwmF+OKhJe3PMqfdj7INZ1PsTaczoOVRWSdgO7WIqn2Kie39vHphT9k1blf428WrOKWnscm7XenXyTREhlDyovoSRWY0zW8X8cu6iG1wPJTpgjXlLJJrryIIKevafztjL0pX27peYx1P1405esPF3a3vX+e/St07+Jd8mR+u/wm0KAdgYzAqUK1G+b/861ox5IsEwmV/anDVq38MA98530YCWGrS9DqTNlFuDvsz7L7i5/+6OiqIVc8ffMhJVfqYbU742DIjKW5Nx3wayeiTq4s734HMps5JOts4uhhpf4eOgwhk0ZM78YMjTDvv7fS8Z85cusc0v3WCtYrGJyq/T2VocCEipFqmq1BG1uTPMO6TF9S5KmozNORoKiru91ei/B5IqywIS5MenxrUuDXQcwvCqdw38hiHuhfwJMjM+gt5SkXUiQDKaLtGYKtWR7tm8lokqY/ydKXFAHYHLfxbGUmmyodlGMXWVaISGIiCcZamqqqzZBRocEtGhDgFQzeqFVeE4aQ1OqGunpFGxDS1rLpFLIlD2MFvK0juCXBSJLBlQm/uOrWw/gpNVFH/fqDUphqFVkKiHK2s33wZQG9FyhGTpQMnmkYvDik/yxJ4it0PjMeKl8j+YyU6JQibPOIWjySjItIanZitRweERsSV5KkJHFOEWdkI+/CKIH2JMaRhK0OQYcLUtD3Eo8L527g6p7VaAUiNui0i5GyljXhYBzZ2I8DQZ1M2RlNcuXFg53r2SVeL3mp+G1pPjpQnP7+XW3DAO4/6z/ZuCyF91wva66/jtUfP3Lj8SdedSMb3/oB8o/5PP/APLK/seGaL33trSyf8a5dlr/vhx9AjVXx+6s4FUOlGxbfdBsimbqe3Zeadnf1bJyR+1ynHs56FuBHKz94WNf/ooY5Rv6aAJoEy7ENIbjm4kNrvWUOovDZE5rqleMfJknIb4RgRozXV2bWLwL+59GXUNApYi1JtBhvTNICHQt0ItFGMKiPXLL7b8OQ2ysev6zuvbOuN8mhjaA/th2FGaFZXZ3JnVtO5rOrl/NcHJGTKT68/XLKD3YiYwjaHXTKgyjCBEHDx1U4LkIKhFL2z/cRXR0U5mdIMoYNbz825JkvFhglUFVNYY6kOj0hiSRCGcKyi3I08uQCan6JFrfKS1MDvKLzUdyWALmoyGXnPMNrlzzGOfM3c+381VzT+RQz3WHe3vY4L89UWej1sWWslXAgjapK3GxEMfEZ0RlKxqPHGWWWO0S3UyCjIjwVM7djmKwTcKHv0CmzbI46dtnnt3Tdz+/Nfgp/8RhXzl7LNS1PsHF7Jwv/82bmf3PfCJEVz3x23IN4Cs/VFatvYflJ+zbBvOysT+x9oSYOGa686vAOYGD35MWyMz7WsPXcmXR58vNHjxjeeT/l9DW7zZh57O+vI8oKZGRwymCkwRtUOFVrwwC1weEBNlzf//33c98P3s8D333f+LqmwJXX3HJE1MovRExFshwrMHE8KQS3ieMYRkPFqpFNkmAGh8g/O4RTAadiiRXtQLVDEmfAOPb3NIoVm0vt/Kp0Io+FWZ6PU9xVPJV7Sifhi90bP2gMW5NWvjVyPuviYuPxDulRNS5jcZreSp4wdpidHWVxez8mUKT6JK1rJLn1krENbdw/cAK9cRsPB138sJRlxfCZPDQwl8f6Z7JtpBUZCGRVIjQYOYFYKRmcslUqVDskbiFBFargOODaCXKTJJZUAVRrCyqbQbW3Irs6IOVDOkXSmUMreLYygxtO+9Hh/4yaGIcxmEoVkUoxtqSTbZdK+s/XCGFI5lUonxwgugKmzxghnBlRnO1hXIVxFTrjozMeJuWQZF1r95WSBG2OJWI8hQwTm9eCVX7L2FiSrta8YOrTAwKrhvIkiS8IcxJVjuh8OuZ3/28JX//FZWS3Q5xVBO0+cVsKk88Q5zy0I5FjFaui3kfcUfn2HgmUOyrfnpJ42R32Z9kmDh6HsnF3dzh1zlY6Z27hV588H7/XbZyny+e8h+Wz3g3Ymvb3nnkt57xsNSs2f/mw7s+e8MSt1yFjSFI20/P+//d+Vmz/ym6XXfH0zei0g1s2qABUUPsu1tx6r7zqFkR8YDPWE+vZ7HabzzRVTdusZ5to4tCjaRF2FLG3zJYDDb7aEw5HqHEzf+WFgZX6eyxr/QvC3OkMvqSV9mfLZNZm+e8Z53Lh9A0MBjme7u+hrCVJJDFakESSSuRS1S4QHpH9nKNCfjiymDMym4HRSc/9d7GdQpLiZH87IzpDf5znxPQOytrn+bCbc3KjzPYGGSumiCsuc2pBkL6M7aBCgIxBlgKoBhBGoBTCdRCOA0ajoxjpCkQmTWVRJ2Fe7rckvomDxz3/+0Fe+tpbKc3VzDqhn96hFnzf+gZVSj5eLua6k3/O21q3Axm2Re24bsK5MzfzF9Puo1uVeCC9kJnuMN2qyOaoHYVgTFf48fDLiLRCtoQkvkNnvky7W2JH3EpGhsx3+2mTAW2yQiFJceKsXiKj+L8bL+DC3oW8e9EqTvR38JNyhldmxu3lepNWfBmxuKufJZmt/Ka8kOzjKcozDKT3f2Z4xeqpJ4H39NxE3N4MH3zBYmfy4vYnbmqQK4dCrbL0nE8CHFQe3J7szHbGQ9+YPDl/wRu/RLnbBj2jbVAv5ugGex4q1DNYjhcsO+Nje60FV6z/0iHf7qG28rp9+GuHdH1NHD2s1N/jWu/1KCkQ+RymVEaMFAlbutCOID1oCPOS8nSIcgbjYMO/DYRasabUQ1W7zPaGyMiAE/3eSbl9E+ELl1PdQf5h6CrmeoMsaukDIC185jgFur0CD1bmkXIjevwxfBnzVM90wi3tOBVr74WBkSDNtqiNjZUTuGfrIsaGM1BVoAUykEhAVQQYhfY02rWTcnXCRTsQpyBJS4znWLVCEGKiuGElJXwfkU5hyhVb4yYa0inirjyFBWmMgkpybKrSX8i4ffhrLOt4G3p6B1svBxwNmRhTdjCuYcasId42/37uGDyNvqe7rRrbU2gl0J5q2FvGGUXiS4y054RVrmiMlJaQkRIZWCWTCiBJKaSS1kpICIwwxBmFjA35DRXCdo8k7eIPR7StE/ijChkZm9cS2lxK4zkIA04xgkIRfG/3B7kXTEW07I+Cpal2OcKIk70vcwhw3w93amKMY1Zs/wpLfnQDrz9hMT+/8osHtf6l2TcCcEfpWwe8jhM+fxtxVwLZhA1v/NBel5/YTHTJ675IcZYk8UBE4+PBK6+6BacUcuevj+9muKtfdhP/76fvPtq78YLFfrqNHzYcG4Z0Rx9NguUwYF8H90dqAuCal950WMiaJl54SAoFZq8ao7AghwwTpv0mZN6r+vn/Zj7E54ZOoNMvsq7Qxfr+TsKKiw4cRocPzk5jXVxkkZPb+4I1TFM5Pj3tyd0+92hpLutK3TzsLaDDLXF5yzMUkjSPl9vYLDqAUV6VGeafu4d4bv10+nVCi4SXtqzhf9Pnk92RkO6tgqsg5Vs/ZLCS99rgVNYULSjFtkvcpi3YUYSqamTFpRK5JBWHctWhtbPIjJn9JFqyNLsGsOqlSzNreGjmAp4YmMEHhv+QJZ3bWZAeZKY7TJsMuT/s5kc6TWQUaRXy8jlPEcx2cURCl1vgJekNjCQZIuNwohuwOVbkZcgbW54jJ1N8r9hKb18rYtTl78xV3HLy/9tlf2c6I9wXndS4/4v+E3HKkN4hqHbtKii98qpbWHX38T1R3MRkHK3Pc+Lk94GQK7uzGlvxv/VbuxIs+1p3TMxj0b2LufaP3sRd9+5bvfLgtyYQLjXXwKsvuxkRGq668rP7FVg/sYNvb6+p+2MfTiJn1coPMzY2dljWvT9Yeu4N+xRYfCQbbZZ3v4MV/f98xLbXxPELE0eYoRFEJo3RGoolwiVl5KMZBpY4aA+qPbUJwkQgQkkUOUxPF7i49TmqxhINF6af53QvvcdtzXXyOELzgx1n44qH+b3sFtplhkVOjpNS2/nP8rlUXYfvPfES2jtK+E5MoVOTpCRRa0J2ZpFT2nfQF7bwwI75jG1rwRlRqBBEYkmUxAMVggoEYZsk8SFOC5yqsZ3dwuZThTlJ2ndwyiFojVAK4zgIpcB1MEGAiWxDiqgGkMswcFaWoXMiNv6f9x3Oj6SJPcEYRI20kFWJThycripR0aO3v5XC3BRjkY8MBV6hloESa2Ri0ClFkrZB9YlnzxcZg/YkkXQRBlRVNTYlEo2IDcKztaeMrb1c4kmSlMAfsSqodDEgmJZF1iZ9/bHadhODMFiypmZBpmrnG8GuDXfLe/6qqQ58AeJo2RHXlSHFgQzX//5P9/v1J336NmQ4rgSUf3M2TmX3y+4r+fLcB6/jw4//Ia9p/S1veHAtfVdF+9wE8svvTbju1riUa8//FCJJMK6y6ne5b3OHx1o9C3DXvdcfEzVtE00cCTQtwg4D9ucCdSTsQprkShP7ipX6e5hHn6H152uRo2VS24vc++CpPBWV+VDHc/x/Mx/ieyf+P6a3j0EikGMODHs8WZlzwNvsT1LcXVF7X7CGQV2a8rlXtj5COXa5d+Mifjs0h21ROxvDLsbiNK5I6EuKuMLhb+ator2nwB3Fk6mYgMVuH1FXhAoN2rXew6R8a6+gFCKTRnhew5JJ5nMMXTmf/DkDB3zcTRw8hAHjGjyVYLRADrsUnmtn+2gLrX6VzfG4dd1ZXoqr2p9h7Ll24h928+CPzuDfHnopvywspkNKfBnxXLWHxEgub3mGy/PP8M7Oe7kq/xTlxKdblVjkDjDdGaVTZpmuYtZFneSk9b/+8eBZOH7M9MX9XL/4Z1yV3rWr6xzP43VtD3FV5zNsC9tZu3YmMraZEqmB3fd9XHXFZ3f7+M4WYBf++aHvDm9iMg63P/GRwKFQruy8Dt27eJc/o/atj2ln4mZfyZWpcNc9H210BR7IYHFfP+PjXSGzr9gXcqWOpWd/8vDtyAQ0yZUm9hUr9fdIikWSoRFINCaK6PxZmsrpFV71J7/kFa/5NZnpRYxjkJFAlSRR0aMce1yZXctbWtbwe7k1LHZtP2LFBOg9+BD2pAs8vXUGn37s5fzN5uWNevVEbwcLugaJE4l0NS1+lawXYnIJYVdMflaB9qxVu87wRmlLVSAWIGzGij8MbgGcCsjAkihO0WZShS0Q5GXjmltXsySZWiZGJg2+Z61tc1nEtC5EZ83C1BhIp9jy8mmc9xeP8vWr/u3wfRhN7B1aU1jcBq4GA96IIip6uIMO/toU//j0y1i9tYfMDsAYgk4PIwSyGqLKEaoS14iS8d/fxJdoXxKnJUlKNRT3xpHWOk4IEk8itEFVrSoKA24xxkhJ0JMlbLEWY24xwRtJcIsaoQ1aCYwj0GnXWpAVazPUU6j6l3W8bcpDP1R5Wk3sO+q2scczNv6fA8v1cAsgQ3u9fObT1xFlIXHhvLd8iUv+8FYu+73P89I/uJUzrruNLX999j6tc/4/3UolcTnBjRgJ0wetsL3zoU9wx29vxCiJjJL9rjub9WwTTRwdNAmWo4xmd3ITxxpMkqDLZRgdQwyOcvI/DvDH//w+3rTxZXx5eD45meIXS37E/Dn9oMEbkazYdipbk8LeV74bXOg7u52Mngof334lnxk4ebfPDekcbV4FRyWUI497hk/inoET6QvyuCKhagxroyLznUHO79lE1bikhc+Pxs6m7QkXGWpkpJEjJWsRFse2GyuOoTWPSKeQnR1sfuOJiD/rt+HLTRwVXPZ7n2d4sYueFlAOXVQ6xjiG9HZB/HQr24stbIvbJ73mzTXbDrdsyG4z+NtdZngjtMsM72jdymtaf8vpqc10qyIFnWJQ+1SNiytjlriZRgfr1qSABF6esYG3DwcRj++YSWu+wtKZz/DqrJ1UqRqXigkm7cN5vsv2sI1v3nk53b9SOBWDDG2n4c5YdfeHkZFm6Tmf3CUrZaIF2Jl/cxuxD+e8bffhj00cGhyoH/KxhgPJ3ZlIquxOzQLw19vOb9y+8zvf2O9tHErcveoj+7X8/gSJTnzNRBwMATfRB/t4xR2PHLhVXBNNHE6YJLEZJHFM5z2baf95mu/efTGRlnxoyZ2ogkIGAlUVyBGHp/p6eDSYQU6mmCbTFE1Ib1Lkxr7z+f01v8c1z7yCzw4upi8p8lRU5n/LtlGoxxsjkwkQ0pBWEQ8H7QQmwhWal3auoyNX5poTnmVxaz9D5Qxy1MEddAhCh55MkdmpYRIEQeKgKgKnUguyD2ukStn+x9BoztAuRDmIU4LEF0Q523yiyrGd6K6HlyeJtQUrlKBURrgucvZMnnvnPE77w2d4X89Krpy/+mh/VC9aLGt/K6Knm8IcBYlAu9bysv13Lq1rBel+SJ7L461Jkxo0BK2SSqciybrWDg6rKjFKEGUEUdaSLDLSyNigAkuKIARR3iFos1ktCHArGqEhTkvilCA1kiCDhLgtRXGmi4oMQhtkYogzkmqHojzNIc4q4qyL0Bq1YwRGC/Z7thuCZcWOf4IkYWnuTbslUyZORi+f9W6Wz3nP4Xmjm2hAjBT3vtBxgAPJ3Xny89dhahaLSz50myWzI6i2C4SG9NYC1XZJYaEmbIe1N5+113XKUPKz55bwmb6X0uZNIYc5AKz85cf2q/noUNSzV125++a+fcELoZ497mDMsfHXBNC0CGuiiSZ2wkr9Pa6Rr0M4DpXzF1LuUsxeVWT7/Qv5sX8if/dHkvWv+FdWLfkxi7a/BW9rim2bOvmfOafznvYNk9Y1rMt8Zegl5FWVHVELf9r24F5tFvaE/y2nWLVhMefN3gRdz056TqP5xvZL2F5sQUl7kV89PI1CxWdm2yjFJMUTYTfbonbyqkolcRmOsmyKC1yQfY6vn3cRuS0u/vaCtQOLazPeLXnM4BAMjSDSKbb+4TzO/oOnmJseOuDjaOLgcOU1t+BEmijnkm+1RazRAhEJ4iyEbQmXTH+e5ZkdQGrSa9XMMsnjGVQI4bSYd7ZtaTx3lmeX3RQXqKoC3TLgnEyVs/xHeDaSnOxmuTQFPyn3cLLbx7Sa8OrmzS8n7UWc1N43aVsXp4ZIi10t9H7Zv5DOx2t3arYeTFGX7IsCMf+q7WzZ1knbQwfme93EvuHun+/fpP2xigPJ3ZmKVJmI/2/mQweyO7ts51CobI4GDqYLsG7T0EQTTRxa1GtajEDkWjBDI3R/d5RpLXke/M25rHjtqeiUJrtFYSQ4ZUE5m+Xe0ZM5x1/FU2E3/zt8CYNBjofXzCf7rIdThW91zOFf57+U+bMGOKF1gKwK0EYyv32I54c6WTfWyS/cU+iPt9If53lgcCEL8kOclNnB78bmUlzXRv55QZwBrTSdXolWZeuZMHZI9wn8EZurAtgJwNASKgm2+1pVIc7UsjaokTGBtQ0LunwyxQAi2+QhpF1ID9jaVWTTPPvubq6/9v9x38hiPrzpNfzgwMXoTRwElrX+BRhDNL3FZkFWJcJAahAyfRrtCSpdglQ/+COWTIuzlmyL8g6qEiESQ5JyCPPSkmxa4FTt+SBDjVaCJCXRjrDNIo4g6HBwKgannKA9S5xgwB0NrSJKgD+qMVIQZ1xG5/sMXWYbi3KPpnAqAu0o/AEDlSpIgdBT9+7ePvrvjdtL02+YMi/FdLUhxqZ2K2ji0OBoBsIfShxI7s6Zf3MbnrHZq0lqvMktyUClUyFMK0OnwalnbuSZLdPRhb2Pr4wyRAMphuZl+ea8e3nrb97M1879xn7v27GA/W1SmohmPdvEix1NgmU/sCd/wv3xRtwTrrryswd1UWuiiUOBlfp7XOv+CYWZDqVZ0PFojIoSZCA56WuwZNNfoc8qwLBHpRv8Xocfbz+dme4wroh5sjKHVqfMnX2n8uzD85GhIGpN+MH0Mzh/1ia+OvdufDE5RHNQl+iU2UmP/aIquMgPG8vOd4dwnYR1I10wb/I+v23zpTy2aRY6VDjpiGrgEo34GGUopAM2VzsYjdNkVMhQkmVzsY2+ao5ni9NZ3vUEi2fvoFqeiYg1KGVDGqWCcsWGgApB+cw5uNcMcEHr8/xkxxmH9TNoYmrIUFOa6aMdGBvM4mQidFUhHUO8uMolC9Zz47QHGvZdE/H+M1by5UdeTcfqBK9/9z+BGrgkJannt8xSeb5d7mJE93Kh73B1epi0GM8NKscuJ7X3MSM1yl29JzHbG+IvWnYQmd1biczLD3PvOTPoeVBgBGg1YRJlP1HZvoAres7ie2M5EB6XvvoLu4ZBNtHEQWBfyJUXIw61Z/WRtmm4+mU37bYrcul5N6JdxcoHPnZQ69/X/JYmmjjcaDQO+T66YieIzfAIbT8t0P67HuIOgRqrUF7QRnGGQ5J2eLh/Lt/yzmddqZv7nj0ROeLSskHQvjoiSUlSQxKzzmOwcxYbF8xATqsyvWOMgUKWaGOOLUErG2Z3sfXENjrcMk+umYPKRuiFglgrm5cSg1uEke1Zfu3MY3tbC0PVDP1rO2ktg1MxJB5oVyBjm8VSt3BCQJS3t23ehsGpGsQwRDlB0KpotHdIaYPtoxiMrXErF5yAN7PEQ2MLeWDjAta+7uC+700cBIxB5HPEWRe3DKl++3nnN2sSXxC0ChIXWjZptANBqwRjibWwReGNKJzRKjJykJFBBVa94pY0KtA2l8WXYAxSgFuyrgFR1iHKACh0rWHIH9WIxNolq2JEKtZErR7CGKI8nDC7j/V9nURZKM4U5LeC9h1keysMjdiViH2zCN0dXvaqL5BKu8g4zdLzbuSOh4+M9WQTLx7M//Yt5FI++S0ap2y/H8WZEpFYO8bEh6GTFUlLxPODnUhHo+O9n9MmH6P6XU7ObQdgfaHjcB/KIcOhnn9s2o418WJGk2DZD+zxYlFr2JgYLHUgaJIrTRwrMElCzx2biOZ2IeIYtERECUZK5v1oiLHVbQycLnFPH8U81MrmgXbuaTuJM7ObyaiArAzYMtZKyzobwFmcrQjiLPdXFnGdE/CJ6XczXY1PUu9Mrny87zQeGpqHNoJTW3fw5ZkP0y01p3bvYO1wF58ZOJnfb3mEGza/ikfWzMPtdVECdF6TKI1JJLKo0GlNKfAYi1NERlJMfEqJz+aBdowW6FCxo5xjy7ZO5niC8qJ2vOEQZ8MOTLkmn9Ya4XloXzL0XAd35JZwx2V/dwQ/jSYmQnuSoVMlQXeCHHaJywqRj2npKXDe9M28vutXuyVXBnWJV+bWcsuSKuE2n9bnDJ8aOIVPdD3TWObZqERkJv80ajQznWG2xu08KvrpVhHTpEJjWFFuY2ZmDFcmPDE6k6297fyXOo8L0t9liZvbeRd4OIjo9ossv+QRfuacBQZa1yhUdADvQ+9ifOHy+OgsxCN5ytMhTjd/1pvYf+xMohwJFcnxTtxM7NI7HgeTU1lOxFkXpOCqKz6LkeKArWyb5EoTxxp0fQIYAIMxBrNhC6o/jchkMKqdXG9M2/MJ69u7+G1mLmGNDAHwRw3+QJW41cMpCxACryhxqopRk6KQCYhDB90egZ8ws2uUWCt+tmYJbU86GOHw4OZTkYuKaE8Tp2yIfWarolxs5xna8Qehq8/gljQI0I6o7+640lXazmsja3Zgof1zyhpV1RjHQQXWDsqkfYTrYEbHMLoWUO44yNggHsvzC3NCk1w5iliafgPCc0nmTqPa6eCWLXsmI4MKNWFOoV1LrhkF5WkSpwJuCTC2QSdJO6iCRBVCvKJHlBEIA+5YjNAGIwXaMRgJMjSgQQWaTF9kzyNXIjRke2OrdvEURo5bjDmlmMSTJD6s3TCd9oc9Eg+KCzQdaywZE3XncHXNJqawd+up3akOTr7xNtwTHGZuTagsbGNsbrOebWL/MUk9oXe141d9Vo0iI/t9cCoxiediJpCMWkHY6hKkYtxUjDOw51SF03/8Sfy8Iqgovrbiav597sUkWzNwxSE9tMOGu1d9hCuvugWhzQtGrf9igjhW3LmOlf04ymhmsOwB+yNv29nr8MqrbjkuPQiXnflxlp/6UZYveO+UyyzNvvEI7lETRxPxpi04j61DVKOGl7OoeSwOnSwJuxJKYyl6rtrCq096gnanzOmpzfxh/nHmuINUqh6JD4kvrJ1BWdLdWeD/dN83iVwJzK6zy//x6Plsum8uGx6ZzU+fPo3/s/kSflQ8ESkM1cDl28+cz2vu/yueXnUCmedcvBHQnkEmYIoulJXt+IsE5aLPurFOnh3p4ZGh2dy7YRFmWxqxPYWzw0MKw0nztjO6wCFokYQtru0oUwqRTiFSfu2YFReet5qU2k1gRhNHDHFa4RTBG1TIUCC0YNb0YS6asYGX5DeSGElvUmwEzNZRNZrbSwt5yYLNjC4SiAS+9fgFjOlxr9zBJM3Piqfz5eH5bIptrtBTYcDmqJMfDryEH4/ZsMO7qxmu2/ZSbnj6lfxq03xOz23hHbPvob2jxLot0+hPJhOGdZznu9w07WFirXjP5Xfy/Gu/yth5VcLWA38/BqsZgi5D1KIpzZk6gLeJFy+mCjOth9LXUb8W1x+bigTZ+Zq98/1lr/7zve7TVCTO8Ui8HA+13pVX7ds+3v2Lj9pmHwHCGK66/Gb7+uOspl0+929Z1v5WlnW9fcoA5Wu91x/hvWriaEIHVavg2AkilQLPJbOlRKVDIYOEmb8wPPPAQp7v60J5CSKG9ECCKlRwhyp4I9Z6q9ylKM4Bf06Ri2euR8eC7LMeqafSbO9vZWupBffZNK3rY/u3FuSTOZwxBdJO8qUGoWUdtD9ryPYa3JLNu0j8WnB9UvszBpHYoHsVWIswb9T+x9iJ7iQl0UoQp2z4OK7CeHbmUEhpFdrG0HeWR9vFfaT98Ii9/01MASmRxSqqqlGBwStonKqxdl7GZu/UCRUjQIUGf0STHkrwRxNLoKRdRJKgqglupUamRAmqFOENV/GHI9xiglNNkLHGKYR4fWW80RAZatzRCG8kxC1aUibOKpKMA4khzjpUu1zcIvibPZtRMWDIP2+nkcJWS4QEs9sonNaN6Wg7oLehbY0m16sRsWZ0nkNl2iF6f5t4wWF3uStXXnWLzQ7RNo9IVRJEoiflicz/1udwStZ+McwJory9Nmb6IlJDCenBBHcsBmHnLfSoR1D0mPf5R/a4P0+86kaCMR8yMU5ZkPp1lsxWwWkfuI0lHz5O8jElGEccV3VeE00ci2i2BuwBB9KReDx1MV79spsQtXFG3effSIkgsZZIU+CO0rd2eWx5z1/ZALsmXjCoWyokhQKO5yFMHuN7lpYVNgRO5CNSq1NUpnn8qm8+AB/rfgRf5GmTBaa1FdhychrSMVQVxIKzurZyjjfuZfp/Nl/CQ98/A5HAF9/5r1yTtuTF7JlDbClOQ7aFuH7CI32z+d2O2YwOZ5FDHk5RkB0EJERZ0FmIWxJEKFBliYgExjGW1e/z2SbacFMxQclD9XmkhgTVHo2ZXuW09u2seGYJPX0afyQh1VcG37cB99mM7cZqzVHpMbyy6zFef8KDR/zzaGIccUoiI8htgcSFynRJGCsC7dAXtaCN4KcjZ6GNZGG6n1NTW8jLKonJ8kR5Nj2pMX7bmRBtV8jNaS5/5M18+pQfMdcZ5p93LOPxHTOpVF3unXUip7VsI6+qPFGYxRN9Mzht0VY2x2lGkiyPDc5itC/Hhac+z7vaNiCRtJ36XT6+7vf57uD5XD7rQYq6uouaxhUOo1GaLmcMgFed+jg/Kr9kv96Dl9/7N/SX/5DBp7vwBwQqbz23tbv31zbx4sPtT9y0x+d7kyJ3l+fyy7ETOSmzg/e0b9gjubImitmaZFnkDCEFtEkxyfbxzl9/4qD2t77tYzmPZcE/fBHzapcN73rfcTEg3V8lys6K6mO5vl2+8P2N2yuev9XekILbh79m8w2mqGnvDP9z13U169kXJOo1rUkShAKEBG1ACshn0RkP2TtE145h4tldpAZCZv7SZbvJkrQmkNUkniCc3tJYZ6XbYfQkQ27xMH+04BG++ewF9Nzu0/rsKCJK2DHUwZYLFdkKJJ5EaIM/pjHbJdq1FmDemLFkprZqgTgjMQ7EriVJhDZWbaKtPZhTUzhoxxIr/phBRsbmcWQEiedgFKQHNCQGkgRRjTBKITwXqgEinaI8W/PWub/lulPuPGqfSRM1CKuGSvdbsksGMWF7ijgtUaEl3ADcgu20d0saFRpkqJGRQbvCnsdSIoOEzHaD9iTOWIAIY0g0surhuAqjBCLWiEoEjsQkBlWx4y5ZTRDGEHSmCPMSozw8IXBKMVFG0rIxITWsqHQJVBXymxKijCDKKLyxmCSjKE9TpAZ2zR7cG5ad9QnatEYUqxBFxJkO4gOP7GziBY4pc1e0QcUaESfIaox0JEnG5YqlnyPKKWb4DlHa4I9a628ZG7QSqEjjVBKCVgcZ2OtuphdkpHjm0++HfegtTq33iFoN8eIywahH65MOQkO1C+Z97QuosuT5v3nfoX0jDhEWfvlLmFe5rH/3+w4q4L6Jo4TjUDlyww03cOONN056rKenh97eXgCMMdx444189atfZXh4mAsuuICvfOUrLFmy5Gjs7n6hSbBMgVf8/pe49+c37PL4zp7bh9qD+2Bx7UWf5s5ffXyflr3r3usnLX/tRZ/GpF2Mq5Cu2mX55ad8hBXP2Ivu8vnXQanCiv5/BmgORl+gWKm/B2ADQgcHkZkMxDGyrZU5Kz12jOYRBsz/7WZktqA0N+GUte/iDZf+khu7n+Le034Ip8EPS1n+afPlVGKXHdU8G+IC8508Pyln+N3/PQMvArdkePuqN3P+KetZN9JpdyAfIx1NLh0wtKOF9PMuXgqiFt2YTPaK1i81ajHIikRVBaoiCKYliFwEI57t+NuaIkwZkKACQdBuyC0YJZ8KWF/sJJUJGTwtRdQC2c2tzP1RAL4LQURw6hy0J5l1j+ajqdfx8d/exLo/3nv4eBOHHtfI19G6aAH+SCf9Z3qEFxTJZQIGhvI8UEmxqb0dbQRbh9oIxnxSW12c0rh3eXmWJt0rmb7eUOmEuDVhZCDH3/zsTZjWiHxrhTiRSGl4ZO1c1nd3cGL7AOtGOrls1jpmu0O888k/I/h1B0GnQbiGB9cs4NyhP+Xlc57iv+96KUlXxN/Ov4uFP3kbhBLVVeWM2dv4/qKVjeP4rwWrAHj7lot5+Ntnkt/1krsLlt7zt6zeOB057KHKC2h9znDCo6OIaszIWR2MLZDszSZ4afaNuyXJm3jxYNnp1/Ozld9r3P9lVfOXj76dciEFFcUKCQ+c+jzfWXh3Y5n/LadYNXYqrU6Ft7c/TIjHxf4oLTJHUVd5JEyx0C0wS9ncon0hSPamVDmWyZU6TCo52ruwV7z6yltY9Zubd/vclVfd0iBernnpTY1mm2MBy0/9KCue3v1+74wVz9/K8hM+wIrnvmBfW1NhL5/7t4jWlobydtL6F77fvq5GztSJmWY9+8LFRJIFYbvvpedhtvYi5s0EJSGKUWs24fg+XjbDoo0efRd18AfvvpuPvHoNpz7w54Qbc7bWDCDJxyyd8yz//fWrWLhyCAgh1ogopvOpCvmtLiKOQAq8wQDjCHKbNKIa2wahtjRBuwNCoB2BCqylU+ILVGga+SphzhI0MgFvzJB4AhVZtYN2BGFeoD2BUzFoA0GbBDIYlUVGhvwTQKGI6OkGY+j6neAHp57Jnf3vYcXLXhhh18cbrpGvAyFt39rGbbgjLcRzugjbfFQ1QQUJcUohY4MKEtxtI/j9advkFkQ2MFAJq7hPDMZVqFKIiCyphmPVSgCiVAXPRbgKEcbojG1002kHZ7iMGCna7ElHkQoivCEPVahgPIfyvBZanh7CpDzcMRehfUYWScYWKNwCyASKs30SF9pXV3Gf37HXY7/2wk8hggRZDSG2SgMqFUypjEkSWp+fgze698L4Wu/1uyXKm3jxYGn6DVSvPgMyCm8wxhksQpKANghAhCmMzCB9e81P74hwyhEitnZ41Wkpqp2OVYYNx6ggQST22usVJRf/8RcxEhDwq//cPUHy0tfeSltGEmYF8eYMcQaQkNmhGT0Jfrr0y5w+Z8sRe0/2FyICnbfXCqMOPEOpiSb2B0uWLOGuu+5q3Fdq/Jr/+c9/ni996Ut84xvfYPHixXzmM5/hmmuuYfXq1eTz+aOxu/uMJsGyn9iZTDmWyBXAditNwNKzP4lIEm5//DO7XXwiGXPnrz7OtRd9GhEloDXLzvx4I6hOlINJoXUrNtzG8unvPAwH0MSxiPqgVJfLAOi+fujrZ/pjKcxZixk9MYtbsD7S3b+LuOOhS/nwZ39HWlhrrVdnSzzZtY61pWm0uRV+UlzCu9s2sTbowRuznSRCG9whh2Ls4UhN38YO/D5F0O0wagREgqjFEHfFdrwwItE+GLtL1GMzZCSIWg2yJUS5mrgtJAkVYsjBH5DI2kR7nDOMDWcpuikKOR/fi6m0JcxYNMCOcBrGdzFCIDwHowTaFVTbJKoIOto136OJIwQhoVJFxhqvAKXtGYbbHaRjC+n127sQvSn8QWGJu6Il71Rouzxb1wvilLHdSX2GKK+odkpS/YJk2KfQoyClUX0uuR2CkdNzeF29XD1rNa9sfYS3/u6NpLyIysyE7CZF1+MxYavD9ktbeSg7jySjwcAXn78Wb4eDPwLxzJjvL1rJ3RXFVemEwET8oDSNEz07CNUuPHHrdVMecn0iel72IlYXZ5Pebid2sn0JslDFpFxkBE4Jnv7M1OuB3SsQm3jx4J4Ni/n+nQFgr83DuswHVr+B8lgaMergjlrrx6EgzbcLXZzsbeepYBZtqsSjQ7NYv2Ua31QXsnBmPye19rG13MabZvySk70+/mv0LC7IrOPSCZdH3bu4QZQsP/GDUA1YsXnPk3l9SZFpKjfptVPh6stu5q57PnpQ78mBYv2738fC/7r5kKtXFt9s7SSSsHpI1mfU1G7AE1UtxxK5MhWWtb8VtOb20X/f5bk6uQKwYv2XaiRLrSY2xt4X0nZ6i1rHN0wiWZp44aNez9atwnRQhQB4+jlUNoPIpBFK2Qm6cgX6B+kZLfJvJ13Jr89dwM1n/oDPppczUswQGzAFj8dGZqEdbF5fYiCKbTNSJUbkHJACpxChSgHGkXaZJCHJpxGJxi1ptCds7oWpZWYom7EiY4hTgsQHm80BbtkqYeqTgDI2uGUwVfvaOG8bkBJPUe2EdD/kpQTHgSjC5DMUZwtU7ODKY58kfqHDJAkkElGp4gyVMCqHcazCyh8OLGESJVAsIYWwRGCirco+SaztGyDKFYRrLY4JQkuYSAlRBFGMEALtOZiMR5z3cYcruH0Fez30PQhCzGAJ4TqImdMwrgIh8AcCRDVChAnxtDSDS2wgeH6TaZCCqYEY7UtLlOwBL3uVvU67KQcnSiBO7L5qjYki+14AqcGIX/7P3q/LTXLlxY1rL/wU5pyTEZHGLcY4I2X7nUhq55brQmJwR6qocozxFCJOao4tIMsRqX6Bqjh4IwHad9COxClHyCjBGxYYVxLmHRJfcOlrbuW+H9jzsm5Tdkfl27ilpEaESpKivWarEPyRGG/EY4mb4UfPn8XvL3x0ymM5mg1w697/XuZ/q2axdogJllM+fhtGHrqatokXDhzHYfr06bs8bozh7/7u77j++ut57WtfC8A3v/lNenp6+M///E/+8i//8kjv6n6hSbC8wHHHIzey7MyPs/TsT2JSDnf+6uOTlCg7485ffdwSKxpbuClhu2CEYMXqWxodfwArev/xCB5JE0cbk9QsNeigivjtM8gF55AeNKhQEuUVnQ8NcNnH38PYfDsY/MQb/ps/b3uYr5sL6XBKbA46+XahzDfXXsisR0ZIsh5R3iWenvAXs+7n37e+lL64086NpBLyuSpJOiQ1J8JRmu3b23HHxkO9VADumCBqAe0ajDKYkksiQCiDCGoTTAJEDLg2m8WEkiQWmKygM1MknKF476KV/LzrFH7z6Etof7qAdhzKPS6FOYIkDcY1rH/3sSnxfTFA1PzDnbGA3DYH7TqUZ6SIs4YQcAoCfwhkbYwnEjsZ4RatNzXCWnWELQ5CG9pXa6KslYNHaYEMa/YafdZ6wzgeD24/FeMavtN2HmhB4PogIWyBHee6OGUwbkzvWAted4V5nUOs3dSDzBvCeSHvOfmXANxdWMLFqYdJC5/pzgg/Hj2bNreyR3JlItYVOvFGFKlByG2NyGwYgShCd2TRnvXqPv29t/HEl/ZtfVNh+ax3A7Bi6z8c1HqaOLaw5EO3Mf/ly/jJ4tsbj31l6CX0bm/D6fPwRuy1NGoVRFpx8xPL6MiVmZsfoRy7rF89g8wWhT8CG+fNYV12FmQSfp3fwfPeNJ4rT+P5ShffEYZPT/8F7dLahOjexayLi/zvffXcrS83HuuNM6iaV2lehqwonM4//uYynr921wn0iWgQK7tRJhxJzP/3cfLiYBXNV11+M5uWpRuB2odM8i+O727EZe1v5fbhrwFYy6/2t9oGH89jxaa/m/J1K9Z/CWDKTMFJhEzdVqyJFwV2V89iNEmxiEwSZD5Xs5WLEY6D7h/kpH/yCLMdfOANb+BPrr6fVb2LafGrrA6ms+bxObSP1tZTqU0iGUOSdal0OTgVg1O0xJ5RCu1LtK/QrkRVY/z+MlFrCu3JWqe0QYUQpwWJC1rZWhpARpZUqRMrRlnLXqdqbO6KU1N158C0QTAtsdvM+EglCafl6L0oTXhaGUcl3H3Fl47Qu97EbmE0YOtaE4aIUgWV9dGeAwJkJbLjcVMLkB8ehWzNOyvREMeWRKkvU6naa379t1EIS7DElriQYQhC4BU8u4zW48s7DqKjDcJaFlvKQ6cUqhCCozC+S5RVqABa1htSgzFBh4MRgABvNMIoyYotfz/l4cpQWyIREHFt/6MIE4SYILCWduk0xhFce+GnDtpudGnqzwC4o/ofB7WeJo49LJ/1bmRHC3FHFqeSIEuhPXfDid8ZW1+KMEZVQoyjbC6VI2v2eQYJ+KUQWQ6gNQNpByMFMkzsOZoYjMwQpx3itODSV3/BKg2vPgO04dJXfwHHWAs/10Z3YhyBDBKc4TLTf93KCSe8mXk9g/z+wt0cx+y/YcWWv7e/O0cRJ3+pjE45JBmXq6747EGF3S89+5NsubYN44JRjNe1TRwGmN2qtI8WwjBkbGxs0mO+7+P7/i7Lrl27lpkzZ+L7PhdccAE333wzCxcuZP369fT29nLttddOWsdll13GAw880CRYjlscpznBdz60ayFy+2OfnnTfyKm7GQGSrM/KBz7GsrM+we2PfoplSyZ0NcYxy2e9e7cTb8u63s7tA189sB1v4rjBzgNTE0e0PTpI6cR2/OEYp5IQt2foXrWN/IndhC0OX/jSnzB8fsjPrvp7TnazvK+3gxsefCWZp1Kw8Smc6d2UZ3Ry+vyN/EG2wL25AZ7JzSSuuAhXc/XsNfxFx/08GszmK+svR446uCXwivYHJcrWu/XsQNMfELaLJAVhi8E4hqQlwXgSb0iS+JBkNO6wAi0olloodfnk8xUWuf38wcwCCy86i7Y1kuLcDOUeYQsEQFabVcJRRxghR8v4vkNeQna7wChBtUMStIH2bE0tEnATgwpsoS20wQhwizbAULsCMIikFiRaEQgtoRYiqhWUFkdQkXT9VhLlXbSy648zEGcNcc6gtkpannUoRHmWLNnErMwoa8KZaF/T2VVgU9DBv44GXJF/uqHqiowiJSM+ffoPdnuI9evs6s0zyUjDfZW5rFs9k84N0LIpxB0OoBrajlQhUFWNjBSPfeXgyBVoEisvVCQXFHhJ+2ZWVhy2Rh2sHDqVp/qnI4oO/hD4oxCnLHEtMVSH0vRFijBRDG5po+0phVcwtttaKcI2SZQX/O+GJZQLPkZLvGxIEil+9vjpLDv9Sf6o8yGqxuWHg9ewdqyLaekS35kO/11sJzJdPFhYiDaC0SiNFIZHts+i9Tc+1GrqqVQsddXKXfceXdVFnVA5WBXLoi9+CV6RqgVZc0gHo7IasfTsT3LHIzfufeFjCHV7sDq5UsfO9/eE5ad8BFI+K575LMtP/CAr1n6e5Sd8wE5IwpQNRxObiZp44WK3jUPVAKEUIpPGhJGtHXwfva0XkfJZ/PdjrHr4Epa87wm+NHMVZ6x/F+1PS/JbYkSxAtXA/i7ns4RtLqUZAq8g8EftORe3ehTmeMgIsr2hzb0IItwhg864NqheOySuQivb/OFWDKpq81m0gsQDTC13zbEXC+1glawVQ26rodJl6yHjGPRpRfRKl6gjTWGuR2WawXUTpDh2JmVe1DBWiWKEgHIZ2autdV3ab1iAIQS05DFDw4jAZrU0yJEkwcRxY3VCSIzRiPpjWlvFXiZtbxeK45PQUtp1OAo8r6bui5GjJaLZ7XaiOYgwUqLTLv5ozLTf1rIrarlCwtTIPiFYtWrXJoOl6TdwR+XbXHnVLShjwNi8IYyB0JIrdUsnhEQ4Ds5ouNs5jf1Fk1h5ASOXxXgOItKoYtWqvJIJfxPshowQCK0Rse1dkUEEgbVuFFo35sZElCDBfu+0JQFFqYqfJMjQXtNlaHDKMTJMrGIwZ/MHRVJTFdZUXLIcIkZLZJ4JaL1vFnd/4ies3fJfnDh726TDqBOSR7tx+fZHPwXAsjM+RtSx/zlKdZz60dvg5W2gayrMBLSyaswmXvj41re+xeWXXz7psU9+8pPccMMNkx674IIL+Na3vsXixYvZsWMHn/nMZ7j44ot56qmnGjksPT09k17T09PDxo0bD+fuHxIcFwTLhg0b+PSnP82qVavo7e1l5syZ/Pmf/znXX3893oSw7E2bNvGud72LVatWkU6nef3rX8+tt946aZl9xp45iOMSjbwVJRqD7asuv5m7fzHZXmPlAx8Dxi+0whhINMtP+nCjW7DOtk9Ek1x5cWHiwDR+di3ZZBE646Mzbq0bSuMUIwpzXLp/U6DnvoA33fM++i9KaH/MoV2DDA2mGsCOAbw5bTz56Hy+N6OVt3ffwykXbuN3hXnknSpvaH+AlND844bLGPzldNq2Q2pY45YSwlaFW4QoLXAqgLG2UP6IDQ4tzhZUZ2hUa4jJCeJqGu0bjKfBKLwCqH5JOJJGnVNmoWMHnC2zxhg+pY3hkwSpAfBHoDwDkqxm/r/cyoa/bFqKHBUYbQeOiUaGCf5QaAM6Y02qK01xpkfYIhCJJUncssFIcMoxIjZ27FiO8IMY7SpbGKckwkDiCtyyRkbWcq7SKZF+jI5cKl12EsNOYIBbgCQliDMCpwq5LQmFhfAH03/Hf207DxEJVEfA2d1baXfKVI1LXlYp6piWmZtYCizdw2HWSY5NcStV47Jq5BRkaCdbMIx3q0iJiDVeIUEcp40BTRwZtGUrPDoym++vO5MocohKLkYLnFBgJEQZrMovFGweaCe91aE6EwaHfDKbFf6owS1r/KEIYSAoSmQExcFWsol9bbXTI2lNaH1W8YsNL+Fu/yVo107AxHnNprJk8arbyJx1LZ5K6OtthUgiMjFGC8SIS270xTfpt+597+XEz1obBVP7DXrkfe+i9VMHb38myyFiN7l6xzuWdbyN24f+tVGPLl/w3oZqpY6J5MmKtZ+3N7QBacYJl5M+zIrVkwmyJrny4sIkoqWmZFFQm2yWDTs5ISRmaISWnwyx9Tc9vOKUd3PyhlF0yiPOe5BYmyNh7GSzU07wxhSJD5VuF6EzVNtdhLbkitdXsnktxiCqFUQcI7I+xpWAQibG1jJVjTeWgBAELePsq3Zso4hIrDWYUZYAl6FGxg6JL/FaA/74pN+xasYlFGcqZGzrl1w6wFcx1/ziOlZeftuRf9Ob2BV1wkEbRBAiwhBSvj0Ha1aPQkg7brJ3EK5jbbWieNJygJ1grllu4TiWREmEtU2aiCSpqVmsigWAcpmwrQd/KKypWyTaUzYHKLaqKltba+774Qf2eFj1QHJR24ZxJYl0wKRwYo3wXEtM1t8DR9nJ8iaa2AOMb89VNVpBRLElDMFet5VqKLMazyXWMkzEte9LZB1aiGNrrVepIpVEA6KaNBoxEAJRrOIFMe7AhFpKKaidp9qVdoxZu56jNSKobcMY4prorGMvTc7HCtzB0gG/9umbr2PJh29De7YZQCaAhoc//i5abz06lr5NHDm88Y1v5LbbJtcUu1OvLF++vHH79NNP56KLLmLRokV885vf5MILLwRA7KTAN8bs8tixiOOCYHn22WfRWvMv//IvnHDCCTz55JO87W1vo1QqceutdhCUJAkvf/nL6e7u5v7772dwcJA3velNGGP4h384sG7cvdk9HI6A+4mBo4ca9byViXksO5Mru0O9i3D5KVYquHzBe8Gd+tRZPvdvQQpWbGgW7C8GNPJZNm1FtrUg02kbDh9GOP0F0tNSlOdkSG+XdN25nq4VtsAxna0YR2LiCCqQemQ9i4dncPPa1zO6JMHvLnPh7I1oI/juyHlsqnQweO8MWjYaUsO1wrs26FWhIbvDkAzbgl8Ym7vhljVGOkQtkiStMLHEDUDGAu1LjDRoJfACaH3OUDrDoUXaKijrh+w4w9oxZHuh2imIc5r1f920BzuaMEmCqVQRjoPIpXDC2Mq8oxg/iFDlDEGnT+LXOusSGworq4ntWBKikSklkwRnxEVnPLTv4PiKxJMIDdoVRBmBtyaNUZAaBrekGZsnIYDMkEEMG6KMxCtqhIHuBUNsCjt5fkcX5GJOndnLm7ru53/HzmLdWDfvOfmuvR/gTvha72WkVESPP4Yzq0x1S47UsMIpKWTKQ2d9krSDDBLuv+NDh+Edb+KFgJe+9lZGl0xjoKUbGQp0ypAerSn/fIjy1nImPWCviWGUQSQgSwp3zGb+xCmBV7TWB95YjKpIkpQkv7lmXyMgNSiIsor8loTW523uUZKSlLsUQZvCLdvMofKjHYRlaC1AnIY459jAaB8qXUf73dp/HMpa0AiYd0cIh0oBr619wLIzPjZlHt/S827kjoc/eYg2aLFsyfXc/tRNh3SdE3H70L8CE7o/dyJXpkKdPFl+wgdYvvhDe7SZW77gvdaGx3GapMuLAI18FkBXKgjHHc/sSbS1cMqkoVJFb9lOest2jJJI18XPZTFjBUxobZJkokkFIV3FVoIuH1W11kheISE1rPF6C9Z+BhpEjghipAaRcvAKCW4JMKAijarYujfxnIZqBQMiMcTpei1s7yME3mhMlPVYOG2AkShDcbZCO9b6NMrDwtYhvnfxPx3pt7iJ3cBoAySWPNExglouSxAgosgSIo4CqcBzIQwxSYJw3XFyxZhG576pkySJzVQ1SYJwHKt61om15Uq0JWPqJGIcj5MxUoDn2fo5iDGeQ5L1qXZ6+CMRItKYtMM9P9ozsbIzRGwbo8J0ijgtURmF0NqqWhKNSGl7rC25405x2cSRxbKutyMyGUvO6Qm/4XXVSpzUSBVtyTut7XdIa7t8jfiw92vXU0dBXFOwxDXSUUp7Owzt97Gu+vJcq/hKElRJWUK+riir3wbwPUxbnrANHg2r3Ljp1fxo5hF5iw4YU9WJ+4W6Q6GxNe3clSVoTp8cHhiOKeclz/NoaWnZ79dls1lOP/101q5dy6tf/WoAent7mTFjRmOZvr6+XVQtxyKOC4Jl2bJlLFu2rHF/4cKFrF69mn/6p39qECx33nknTz/9NJs3b2bmTHvl+uIXv8ib3/xmbrrppv3+oH/6o/fy6j+YWqpXt4PYE8lyIATMVOTK0QxyrWPFM5/lqis/y907DWJ3JlRWbPq7KT2vm3jhwsQRplzBjIwhXAeULZyz632SnI8qhzU5r0IEMWKkAMUSRkgwGl0uIzdsZ0Y5pH1tK2FLlsc7TyPxYeykhNkn9NUCy7UdqNZC2NI7IrQrkJHBOKLR0Wdq3VX+qCa3URINWvZcBdZKIfEkSV6jqgoZ2pyOKFKsjYo8GsxipJRGRtZuzCgDGpzi8dF58kLGxAkQ2ZIf96UGqIaoEYGnRCMgFCmsHUHFhnQ2PKrrxW9FIisust7R5yiMq4hbU3g5hT9sJ5f9EY1R4BWs5NktaZvr0uKgQk2YV4yW0tzTdwJCGJSr+ceF/8MsladFPsjD1fkHdLy/2TSHztYS581fT2umwkhHjtFYUW3LkN/iIrRBO9KqeJpoYgqEeYk/At6oDd5MPIFbNuQ3RyS+pDjDwTjgVCE1BCoCb8zgjdU6txPr8a8qCU4xQsQax5EYJUl8harEGEeQdiSqHNlJvvrkoRL4Qx5RziHKKoSBzA77lNAQ5gVhJBAxiIy13/vvYjt/khsGprYJO9ZQrwsPlGxZ+5HrWPAPX0QYu46XXXHDIdmv7//uRv74wltsN+UUEGHMsjM/voul7ETsL2Gyp2XrFrRHExMzWOpYfuIHwZjGc3vLcWnihYd6jWGSBIS01zEhEVJYG6a4NpmtpM2EA0wYYvorjYBuEolONCIIcKoBaiyPCO1EuG7NEnWk7UScNuP2T8ZAGCKiCHdEoQK3Fnpf6/w3BqdkSClBnLZWpkKDSajZnVqve+0KZGhA2vuj1TS/GD0BJwJVsVYtKhCsHT4OmewXGBr1rNEYLRG1vAgThvbcM+MWYEIpqy6p2dYBmCiCcELWSg0itja4pj6xXFeyRNE4uQLjpAzUJqlrE8+1SWRvOGz8jo+clKE0S9D6vMApa9zC/itMVCls3JaJteE1jkLnUghHIsIUxlMkrQduT9TEiwPCcex5Wlc+1XOI6gqRuKZaqdkoUyPx0BPyWbQeJ1yS2vcrisbXCRMsxybMYMsJ3x+prDVkHUphHGVVM4DJ2nO5fbXhD+77K7x0xPxvfo4Nbzq2G+KWn/ABTNrj9icOrEnmqc9dx5KP3EaSstm3Kx/4GFee01SvNDE1giDgmWee4dJLL2XBggVMnz6dlStXcvbZZwM22+Wee+7hc5/73FHe073juCBYdofR0VE6Ojoa93/1q19x2mmnNcgVgKVLlxIEAb/97W+54oorDun2D7VyZW+okyuHU+GyL7h71UdYfpLdfsNSIeXv0gG4r52ETbxwYJLEBhRS87CWAlOpwPAIUilEWyt6ekdNwm7Jl8bgtFbAJFGMkoK01vhZn+xmh5GTMzgdVbZs6WTe2hhvMMA4giRlu/jckQpIiRGCJOdihMQNNVoJkpQNDE0PaFJDNvwTrK2CSATFFjsI1V5tkq/k8evqfJ4oz6EyksYxgrANwE5KumO7PfQmjgJ0pQKbtyFbctZXumY9IIyHjLTNNTQGGSbWgiOpDxyNPU8ndDyJOAYZ2EGotP7PSkr8lIOMrCUCQhCmJKlhYyXPkc108cZi3OGAMJ8jChzCxCEOHCg69CY+sxSc7qU5c+59B3Sc6/74ehbfdBu37liKcDSOgeo0G0RulEe2N66pBF54FkBNHBpc+OdfQiWGlk0JqlqbwJECpxzjjFRAa9xCjjijcEqxJU0yqjYRp4jT1oImNZLgFiLUUMl28wE4Do7rWH9rY2wn7cQJnJQPSiJLAbKSxhtViESjXWkVjELgFiWpIYk/HGEcQWm6x+f+4U+4sQueeZvtsN62dSZfH3kJ1y/56SF9b/ZGKuwPVq388EFnsSz4cXR46ssoxnjulE/v03twCPsL6uRK3abraGFnQgWYNFFZR7OmfXGiQZiQ2DbcJMFEMcJ17ATfBAsZhLTLgW0aChNEHCGp1RjGQDqFznrIKLENH1E03nFdJ1yUVdmqIEKnPHAkIogQUYLOpXDHQlRFYlx7/TTKkjBRTqIdYUkZBWFOoarQP5IjLrq0OWB8W/+qAIa373+HaROHEUajoxghhR0bGW2twlwHoZQlS0wVU58chgnd8jVypKbqN7UGoknBx2ZC1z7YZXWt9blmLWbiGAKrcBHplD1PwxgRJwhjybnSdMnjXzqwVvQ7fnsjy0/8IKnEELWnSXzbCJVkXEzOQwYJSNsc10QTU2H5jHfZcz+KGtdo4ThWZWhqcwvaNOYWhDNhurNOtmgNcdJYhhA7N6FU43uENhijbV1bh1IIlK1zwXYfCTH+XVQJIpJQqVh7spQPrkvbY4O0POez7WV5lAPnvO020kMJ93//0NmNL829iTuK3zwk61rx3BdYvvhDLJ/+zgPOhpl1dwEYz4cW2uxp8SYOAsdSyP2+4v3vfz+vfOUrmTt3Ln19fXzmM59hbGyMN73pTQgh+Nu//VtuvvlmTjzxRE488URuvvlmMpkMr3/964/2ru8VxyXBsm7dOv7hH/6BL37xi43Hent7d5EMtbe343leIyhndwiCgCAYZ6rHxvY+gzpxAL2ngfDhGCSvutsO4GWoD6ui5doLP8Wdv959uFydWFm++EOsWPM5Vqw59pnEJo4MdBQjXacxuJwIoRTSc8FxMJ6LyaYQ1cAOIiYMYpOhYWSSICtZ9KxOqu2CqOChxhyqbSCD2iSRABVoRKwxjvVplKHtRJGhRglQoUJGijhtg+39MYOqaNv5Zxzi7Q5GQHE2CCNwMxFDcY7BMIPKREQdAlmR1hJnuJbx0sQxAxNHmGpg86B9HzwX49hMknrnpxwtW3l3zf5Aj46hK1Vk3bdaSITn1opq2ehKlWFIqljBT7noXIo456KV/ckUibBeu5HGLQTI4RK5tEPvmEefl4eCQ36d4m1PvIF/Oe3/csG89Qd1nAt+OMaOC1sI2kBVbYe/jO18jzAgQ33QxPvScz7JHb/duyXDsta/4PbRfz+obTVxeLHsjI+BMei0jwxjUjNyyFDjbxqqdV7XOuyCEEYLIAXecAEv5Y93xyqJacni9uQIWxxUReMPVFEDY1AqjQ8oZQSug/B9O0itqcN0oYjwPFv0p3xMyrU5A5UQUY1RcYJxFLjKBvsCslSFOMFfHTNyyRxSw4LTv/xXdF+9lT+d/TBPF2fw/z17Je9s23JIFC3XXPIZVu4DsXDt+Z/ar7Ddg7GPnfi6n/7ovbS27rtNyp7q2RVrP8/yU3dfMy478+NgzF5tIQ60k3FPWLH2841a8nBi6bk3cMdvbtjt9mGc6DmaZE8TxyCMrhEnk8kWIYXtdk4SjNYIKTF1VYE29nVYdUlSKiNrCgTR2W5r1MRgXMfWLvXO6jiy11ApGh3WMogwsUBUQggtWUPGA+HZiT9jLCGeko0Q4SRlVdxBay1bruIgK4qwxqeEbQZVFTijzaaMYwETVdn2vFE1yzBqjWpV28AgJSaKG+dWbYFJxEz9sfptI+T4+dSw/6rZghmBEONMhqk3RtRIRLwEESW2E79coW11CSOyPPz1g1PzmYEhRJBDeQ4ykDavyBiMI0kcx+YH7UFteahxMBPITRx+LO9+h70hBSasXSNrtmD1pk6buRLbcxjGvy81otEQNMZ4wnMbJIupjQvHlYeJJbzrpHft8cZ2lLL2fYCQzrgTQt0aTAhIpF1nEDZqYpHLIqIIVQmZtUpTnpMjyghUaLjwz77Ir//j4L2zlrX+xT6TK/tKxJiUi6h6e5wT3BN2rpt/cM9HaG09uCakJl442LJlC3/6p3/KwMAA3d3dXHjhhfz6179m3rx5AHzwgx+kUqnwzne+k+HhYS644ALuvPNO8vn8Ud7zvUMYc/QorxtuuIEbb9zz4PHhhx/m3HPPbdzftm0bl112GZdddhlf+9rXGo+//e1vZ+PGjdxxxx2TXu95Ht/61rf4kz/5k/3ah9HR0T3aih2O/JV9RX3bR8I27GgrZpo4PtAYHGCJlPGBKJMel/k8oqsDk/FtANxwgXhb7+QBA6ByOURXJ9UTuhk5wUOFhtIMgT8MLZttWLlTinEKASKMMb4tmEzNskZWI0gMxlUYVxJnXbQvkYHGKdkcjso0n+IsRdAGYash6Y6YP7sfJTXPb+tGuQlSGvLZKuWqR7y6hbUfvu5wv5VN7CN2PudURztks+jWLDjW1kOOlmwXUU06bqKIZHh01wFq46ZAeF6jE0koZe93tJG0ZojafZKURIYGVU1IUgoZa9zhKiOntDC0ROANQ9gObWsMUVbw6D8c/Dmz9NwbGDm1BRnZn+ugRRJlIdNvyPaGiMRw96qPHPD6rz3/U6BEI6erieMDS8/+JHc8ciPLe/4K8jmSjjxqaz+kUyAEuiWNLFTRLVbhJftGLNHoOBDHmFK50Y3d8GFXEpFKjXu3T+uwuUVjJagGdoALk0KfcRT4nvWHNxoqVZLBIWQ6jUinrE91ysekPfuaIIbRsUZHN1FsB8z1Qa02VE6ahvYEYU4SpwTlGYLyoojvXfWPnOPZ9Rwp27DVm2cy23FJC7+xzasuvxlhOKw12NjYGK2trXutR+s40Hr2WMCRUrJcc/FnWPnAxw77dpo4vjGxvmhYNU2EkEjPswHj9Um2xDYLmSTZZXnpp5C5LGZaJ8IYklwKkSTISmSvf5UqBKHtvk6nbQ6FkuMKmXLFqg9cF3IZdNa3NqiAkZKo1SPOSIwUxGmr1o4ygvIMm3nlD0JlhkHNKjOtrcC2Z6ex/t2H1hC/OVF9cNj5nBNKWaJkwu/ixPOqTuTtMt7aqaadtM4aMShqTgIoOWHdBuE4lrgLI0Q2Y5dxHXv+ScmK7V856ONc1v5WRMrHdLQ1VJHGcUharI2zDGJEYg4qE+xQdvI3cWSxrOUt4wH1SWIbeCYSgWE4PqZrECxyXPElReM/Qo6f44mG+hivlks0ySKvvg0lx78fYN01SmUApOeNW0O6DqJmLW3KVq1CXSlTV4dJ0VBzi2ymkd1ifA+TdolzHsOnpBk6M2HDOw6dkmVvuOCNX6IwW5B7WT8PLbuZZe1vxUTRbr8ze8ru21/sb03bxN6xatUqXvGKP+KiC4+NgJtfPvA5fv7zFVx00UVHe1eOKo6qCPOv//qveeaZZ/b4d9pppzWW37ZtG1dccQUXXXQRX/3qVyeta/r06bsoVYaHh4miaI9hOB/5yEcYHR1t/G3evHmv+33lVUeXfa0TO0cik2XV3R/e6/EuP+UjLD/lwCf3mnhhYXfkSv1xU6naSTolEJGV1dbl8PU/6adsYaOt139uW0xua0zr85rUiEFVNU4lQVVjuw6AxKB9hzjjol3bnSXiGBlEyCDGKUU4hQinFCESjZHglBPcoiE1CJltAn+jx4ZnZ7Dht7Pxn0sRD6UIh1MAtGUraOf4k1++WGCShHhgCKIIkdiuOzk8BoVizaM6avzfZaLE6MafSRJ0NUBXqpggsOdsGMLoGCJKMFLgD4aoSoz2JMWZDqMLfKo9GcrTBGFXTJKB/EbI9CcIDSd84eCsZa698FOMntxC7AtSgzGpoRgEGMfmwMggmRzwuA9YfsIHds0USJrn9/GEpWd/EhlE1ipBGyiWbPim1pi+AczgsB3MlSvIgVGr5DKmEdapC0WSYhEdhjY/II4x1cB2yxaKmGqAHh1D9A7Clh3ogSF0sTQehJvocfuEep+O7za6/xpEpTaYSsV2rfYNIYbGYGSUuH+QeGAI3T+IHhrBDI3YScZqADoh/dwAqe0V8hurtK2tMOvnJeZ/Fz618ZWN92DZGXueKK/bmR4sTpqzjbSwkz+6d/Gk5666/OZDso1DgT3Vs8tnvGvK1y07/fojsXt7xJFSjqx84GNc/bKplTjLT/ygtQ1rook6dq4Zao+ZOLKd/rCLTbJQyk7YCYlwLFlijLZqgDhBVkMbSltXr0zsoq5vUwg7OWjMeO6LMRBEiEqECGrd1Y5AxhoVGkRiUIGx+YFjhtxmaH0O0gOG9A5B3Jumd7AVp3QYhv+7sdZr4gBRP7/qtV3t/DDaNP7sYrup23aqaeuvayxft+9UtZzCqPabrmyzhPB9O1HsurZ5olJtNFYsP2H/Qu13xrKOt1nLJMdBBCGiGlmrPGic37Iaj+e37SOW5t7E0uwbD2rfmji6WNb+Vpbm3mQJ6zr5YYytSYNgnEyp2XvVr5d1olGH4SSCu3G7rswyGhPV6tza+kwUj3+f6tf5eibWhOuZTPmWXKkrw5LErqca2Ma9YomkVMaUa3+V6nidXCOKTKForXWrAaJQQvYO4W0ZRoYG4+k91mh17Msy+4IHv/VeyrM0F/VYd4W6hdqylrfssuyhIleaOMwwx8hfE8BRtgjr6uqiq2vfQva2bt3KFVdcwTnnnMPXv/51pJxcHF500UXcdNNNbN++nRkzZgA2+N73fc4555wp1+v7Pr7v79d+C21sYXwEcTRD7vemYFnxzGcn3a9PahjPyjEPlb95E8c/TBxBGBJ2ZYiyeXLrRmG7JUZFfWLO921HdaWKs2WAbLkFnXYBn8QXNfl4YjM1jME4Dqhxz95JxIvWiAhUrJGqLp8X4DskKYk/qvEKNig0ykmKJQmy5nozpnCqUNrWxeDciA3vb4bcHkuYZKtQg6lUEI6iEWQPkzufpiD/Jq+kJinXsuFpasIIOThKenjMKgPa8rYLNZUnzElEYvBHDTIVU50uaH1OkniCMGfzfQ4Uyxe8l/CkHsbmCdwS+NvH0LkUUdazlncjEc5YcEBh0bptXGK7P/ZHTRx9LOt6OzKXtbZ4LXmMpxBhghyrgO9ZgqRYQm3qBSnRg8PWBs/z7KByYudfbWBah3DccZsEx7FZRxPCPU1t8Clg3K8aGoSLXYmwkzRxjC6XLYFTs8iRrS3oseL4tivWd1Ea3bAuEa4DUYwCdC5t87qqEc6QYNu3F0LtdP/Znd9l+UnxeB7cYYScvqZBrujexaz8b/vYVZffbEkWIbj750e30WSP9aw7df6KOIJ2LHUsP+nDR+Rz2x3uundqQml3RM/OhEvTRqwJsBN7wmiEl0J4LqZcmVRj1K+NwrWKAVMNEJVqQ2Eoarlx6MRe+2TNsqme52IMVEOrwtUTBp1RhFASlLWjMVKQuHayXAUGFYBr6sSLtBEBGlLDmnSfpDQrzTOfOvRq7EOhbngxY3c1LaZGvk3VRLM78m+q5Uz9vLKTzyJkPKvFdWuTwcl4gHcUQUseSpUa2acOikRb1vIWq2hNpy2ZE0W24cN1rNuAFNaVoFTl9v28xtYVBXU01SvHF5Zm39hosgTs2L6eF5Qk6DBEOG7N1tlahdWVKvZ8rq1o4m2wHspGAMm41WMcjT9f//6InQjn3RDmRugaUZOga1Z9QilkJtNYV72WFo476bUo1WjyE0JYBXkcI6KI9mfLDLzU4+nPzGN59ztY0f/PB/FO7js2vOt9nH/7R7n1maVs+bcLeeJVN7Ks9S9Y1vE2kILbB76695U00UQTu8VxESO2bds2Lr/8cubMmcOtt95Kf38/vb29kxQr1157LaeeeipveMMbeOSRR7j77rt5//vfz9ve9rZDLkO7++cfOeID6Z3Jlasv233X5MEGrO4rlp05biVzzcWf4ZqLxxnuFatvsSz/Th0ATTRhkgRclyinKM5SVGfkxgsqIS254nu2OySKMeUyon8YNVDA7y2R6g9QlcgOTI3BeJZcAZDVBHeoghyr1kIZa8HmWiPCGFmxIaEitv6+qqpxSwn+aExqMMSpGJuxUhuHpAcM+c0x3Y8mzLy96VV9zMNoTLGE7huwA0IpIZu21kWOqk1k7Ed7hZnQVRrHttO+f5B401Z45jnEjkEyz42QGowpzPEIWgXO5hSZzYriLMH2SyTVsyuk5u0912tKhBHuWER2uyG7TSNGiqjBIulBgz9iz/kDwYrnvsAdj+x7tkMTxwaW5t5kO/xKFQhCdMYn7szZJ+ukYhAic1lURxu6VCYZGEQHVZJiCV2pWLKjps7aLSZO2MS1wPp6Ryw0rEQwxl6768GilQqUylD3nTYGXanYbU7oNEyGR3e7bVNTuuhiyS5TrkCliixWEKWqPbaRMabdtZWzb/4rPtp3Bou//Q5IEq69cFeCcfniDx3yCfydLcl072Lu/kWtNjvGS50Vm/5u6ueOQo7exM9m+eIP7XaZ5bPefUT2ZdmSccJl+Qkf2KVLu0moNLFb1PNZpADXtfVr3daphvqkoal3M9fJ7NjWpQ3iRAhrzdiatwQM2OUjq741UTx+7dV6PGA51shII2ODCnVD4e0WI2Soccr2ORkb/OGI1ucDpv1mwgRjE8c06t31k5T+9fNrX8mV3a0zDBtqbV2pootW7W3i2JIvmTSkfPu7m/IRHW2YjhZrN3qgx1LPdjH2vKYaYKpVmy0URKhqjCwG4+f2fuD20X9vTggfh1ia+jOWpv6spiSpNdkYU1Ox1JQsQtrmoFoYva5UMXFkyYyaLdiUBCQTVF51VctOKrD6cxPtxEwUN9TaRuvG/ugwbGy3vu6kWNrdRu0xhaGtgatBQ4loosgqwqIYU6niPLeVlsdd5v5EYMKQZe1v3e1xLOt6+yEnsR9adjO9YRt/ufg+vrbmUm4f/ffxTNImji8Yc2z8NQEc5QyWfcU3vvEN3vKWXWVrABN3f9OmTbzzne9k1apVpNNpXv/613Prrbful0LlheQPeNUVn20QQUdTAdPECx+7dF3tAeLc01n7hiyiKyD/qzQzv7vWymmVsn7W9cJGKRtG53m2+zblWd9pJSx5EmtEENlQ80rYIPSM64AEEdbtE5S9n9TscaqB9UDNpog6MmhXEuUUUVYSZQVBuw0RTw1Casjw4LeaypVjGTufe0IpZM5OOpsJnfkAuhrs26BUSGQ9uFvKxmC03rGkeqZRXTLLEnGbRu0Ec9rDuArtKTZfnUWePUryeCvZbRC0wlOf2/+O0eUL30+woIvKNJfcxgrOlgFQEt2RR6dcRKIPKHiwieMT16g/Bmh4SwvPtYPRMMRog/Q8ZFsL5HPoTVsmKVP2iAmhuFM+r5TtsHYcRC5rr9FS2mtqraFCjxas+kQpktHRgzvYWkehdB07uK5NKjbCf2uPR2ctYmy+f9DBuwcC3buYvqTIG173TlY+8DGuuvzmccLlEOBg69EXUj0Lk1Uvy0/9KCuePnbs2Zp4YWFfa1qVy8GC2RjPQfYOYYolSzZDQ+FXnxgEkPk85HPgqPFaNajZf0mJSbkYVyGHilbZkuiGPZgJI3vNr+daQSPwWadddNojzjoIbUhciXFs2H2UkeS2WMXi0VbZNbF37HzuydpnPcnGiH1UZNfQUAfUFCyTagMhkekUsr3NEnrlCYqVJEG0t2La8ojRoh0/ue4eCfupsDT3JmQ+ZxUsYdhQJzSyK3wfdMKKDbft97qbOD4xqaa1NxrntajNAQilrBJ6P873+rr2/PT4NkVd/VQnXaQlO+rfmYmkykGhnq1UIzDqdmbCcW1NO30aSVv2qLgKvPSuD7K1t52T3r2O24e/dljUNC+0mvRYQCOD5fxjY67ql7/+fDODhaNsEbavePOb38yb3/zmvS43d+5cfvrTnx7+HTpOMLGQnkiu1NUvR4JwueaSz9iJF0cc0omHJo5fFBdkccck2WfTuEUDuSwCMHFsPf6FDaETrmMn8FK+LfbjxHb9aawSJbDdJSKoFUSuwqQ9tFcbtDrJuEZPCExikHHS6Bg0UuKMVNFZGw4qDKQHNflNCakdJQbPbiU5CHunJo4edKk8LgOfEBYqpJgsH58CjWDRuh2S5yFrajyZThMtmk6UVXiFmKQlVSPvNKIagp8hNQTxL1tpX58QtErc8oG3t0d5hYwMzkh5fJKmHCIrEdqf2vaniRcexAT/Z5jg2V8b+Omgiu4LEYPD+zcYNRoYVxLubJsgpKgpuqzFrghtp2s9EFegGoGgO5OaB4xaR6HRxlrrKDVuB1GfaEoSvCc30rUuxdLzbkRUQ0QpYMXztx6afdgL5PQ1TAdWPmDvN2ucw4uJqpeJ5MrhJFuWn/KRSTa4yxd/yOZpuKrpTf4CxX41DKVTUA4QAyO2HnUca1sbW8WJSWrXw4nWTJUKZDPgSIyUthloggWYCGOrunXGC1AjBKJUhnQKI62VrahGdju1WlkkGm+wQtSaotrlkHjQ+lyV/OMjMPb/t/fncXJXdb74/zrns1VV70kn3WkSCJvsiwaFAIokZukBxHEuV0QdcJS5DMMoizogyCaRKAFURoZxGa56nYHrV8fxqp1FwiKLCgEVwR+CBBIggay9VtdnOef3x6mqruqu7q5eP1Xdr+fj0Y+kq6qrTn26uup9Pu9z3u9uZI4/aJKOEE2nXDkiAKOeNC5p8M9k+wLlTzDbNmRjg3nN+f5AKbDcAtYghNjTaZIrtjXQFHw8LMsslMg1BRdiYLW8igDJlfOz0UC8OvDa0mH2/TJXCmyyHzO3WEea3Sa5hUsDFVhkPtaelOTKwANDRwNxdW5HmYgiyF17YHV2mV4rySTUW7umrdzdo+/L7tT9qPlnukqVEc1EVZFgoclVqtzYVCVbNj02chNawDRx5irs2cFumQ+/TkAGph60221W/ouMb+qS+gG0UmbS6pjSM7na1BACQiloSNOQO7viD6EPeB60a0FbApCA8mzAsyEiDZlroChhtv/W1yJqSCJK2JB+hKDWxq9+MrHGjVRBhBxSY1dHKCuxUnw/In/SWNi2WTkqJSAl+ue6sAIN7/UuhE0pZOZ5sHtNWQO/3kbNTgUtAeUICGV6+oxHx8vr0H7UNSa52NNrTjSnklC1CURJG1GSH+GzxUr3AgBmIipdt/ikSyGtoMfYINb8mC5a0QetBiacQL65p3Bd8z4aAiqdNokPPwBck+wre9fM2AeYn4wWJppUTy9EJgPs2QtRWwM9f87UPD5VrKlMtgzuMThaObX2wz/HkmKzhMztrs41oQfMLj/Lgo4GvQdbEkC2/E0QmJ4sTnYRhyXzCRbhh6Ysk7TyTe61Y5nFFDUeRBSZnxMCUgjo+iQy81KIEqYXi5VRyDRa3Hk9kxR+zo/3RO+gJEs+qSEFZDJpEn6ZjKkmkI13dRiauNcPzOe/Jc1OE2t81eU39HzXlD8SwvSAy500d2xTYdOxgQRXtc0WuZg2X55ruHh2Avm8cuWSOEKahUQo3GEyRQqTRvlkSzpterVECiLjQy5ombLHp5lFVEo9qkoZR8yqogcLTa24S4cNTq6sPpHJlplqz6pDUfNGiIaXNew+BXefDxEqoDYFNDUAhyyCOGSROVmX8c2kMwiBMIK2BHR2UqrqE1B1Ceika1b02Ra0a0NbFrQlEdTY8BscKEdCuTZUwkFU4yKYVwu/pQ5BvYvIk8g0e3hofen671SdipIr+QtVcR+JMggpTWKlJmXqos9pBBrrAaVQs7UbItQI59RAOSbhF9TaCJMmyRe5QFAjEKQEtAU8fc8EGsqm+6H37Yfa32VKlXV2Qe7rgVDAgxv42p11CkpnTarBfxtCFp+UKexhZNuAUlB9fYh6ehH19CDauw8q0z+5Yxo8rlyT0oKJqQ6D/K4ZHYTAth1oP+LqyR8HVYW4y4aVSq60H3j59A+EppycO8f0kujuGXh/VGbhjymVKCFSKci6uuwu2uyOQC+7KzsyfQTDOTVQDSloN9srLlJmNb/W0LaESrnoX5BEz+Ia+HNT8JsSyDQn0Le4Ab2L65CZYyNMSYQpifQ8G7/+wVUxHxmqWLlEiWVKjArPg9YK6OkFpAVRVwvhuWZBm52tIuBlE4muCyS8iZXwiiLodL8paxoGZpFEf8YkXIIw9vdvmkaDd2WNZ3dWOfc/GiFNE/psXxeV65tSai45KcPSJcemlTY9YvzA/H1aFvSbu4p6xBFRdeDyV6o46383tGFtTvviK1iftUpZc5oQJgSUJ5HcFcLp9GH1mrrQ2nMQNiSQmeNCRBqpVwDk6vlnJ6qQ0pRUcCSUZ0E40jT3BKA8B9qRJgljSyhXQAbmJJzf6EK5ZieBCDWEMtvSH+r4XGzHgibPJvXDMZX0KJdWKruqzjGvwTB7wqMvDbmnE3JOEm+8O4W6bQrevggQMDuoAESuQJgQEBHgpCe4nKM/u6pQK+ggu3q/sxu2z0a1s0quNBambpdIfgVfridLYV+WbHNQ+CbxrTOZ4VcdTsGYtMr1ibGGPKaOonyPeVFbM+nN7YkmYjz9CqiySdcdKHeUa2AvcjsABeA6kJZl+krkSyxm37fC0JRdCi1o2Ig8C1qaIo0i0qY/S20S2rWhPAf+XA+ZBgsy1EjPdxA5gIwAGWpAA1qASZUZZKpi2iLanMwV2X8BQKSS8I9og7OrB2J/j1ngJqWJgS1pXr/9mYk9rFLFuwJyzcKjCMhM7L6pik1xHAlgyA5t87DZsrNBOOWPn33A4kSSkBAWhu5Sy+6IFHW16HhuDVY3/z3W7/7m9IyRiCaMO1ioIqw8ZfikSiEmV6qX6upBy+adkBkFKxNBZgITwEcKUAoiULB7I9i9EbRlmTJhtg2kklC5yWa2DJiITJIk8iwEc1MIGj2TSPEsRJ7pWeHu8yEDBVgCOlfeRmnISDO5QiMyzRWzpQp830wq0/1AfwYi4QEA0vMdhClA2QJRQsKvleg6yEZvqwW7X8PrVHj6366YcKmOjp13QwdhvhmijiKodJon7WaRVYmPTP7qvnIIUXDSMLt7xPcRdXdD+f7AhHU6FCSYhuyuQfYETRgCQmDVO2+avnERDdJ+MMszzXQqCKH2ZntdKZ2NZaOBpt2596ogADK+2Q3ruSZ+SCUHFg1FGlZ/CBFpKNdG0FyDsG0O/Pl16G+tQVDvQNkCVr9GYk8ILQCdW/AdATLQTK7QiHL9BwFkX6PKvD7D0JxYzu5WiZrrENTZ0AnX7FpxHaCuxpzwzfjoeHkdOrZ/bUJj2dDz3YG+E9mv3Lh4Ann2yJcHm0Za6SG7ZUxfzmjKdqsMURi3DkoqFcbTuXkeogjth38O/tsPmZ7xUfXSujK+WCMMAHewUIVgD5aZT4cB9N59EHoutBBQCQcSMA0+tYYIFezeANCA0NrUBM7Wn9aOBZWwzO4UW0KGCloIBPU27N5s4+9QQ0Qa2sXAfUTa7JTxLChbQihg8yaWj6FRWJapPZ1rVhsE5kSz45gVqQkPQgF2HxDUCthpcyJaS+B3d02gHNgwNvr/AQBYYX0Im6L7J/3+qfKZGs1T0+wzTytAONn/aohImROBQgCWgACg/IImpFNYn3pgPDK/o6bk4xVMWLVSELaFrsNqp3ZcRCPo2HpH3EOgqaYVtB/kF1wgW/4rn2QR2fcrxzYlwSzL7GTJll3Snp2NbbOJa0sgqHOgHAG3K4SIFCzf7GiJkmb3igg1EvsjhJ7ILzR67P/7TEwHgKpGwYKEfNNuZGMKS2aTfilEnuk7ETR6cIMIwp+akl0bg/sAmHi28HuaZYTM7k6enhOyQxYETcMO7CEKdrCYXl1Rcf/DorGZE9aqIQURTPM4iWhCuIOFaILaF34q7iGM20r3Aqx0zp+2xxP19YDWsLt9iEiZ/itRBNEfwOrph723FzJtVpLopAuVcKE8B0JrSD8CNBDWWAhqbWhboL9RQnnZUmGZyPRccQSEBrRlAhQZmN0xItL5lX9EwxJyoA56FEEXlgDR2pwgEQI129No+IsCNKAcwO2OULNzaoNgJldmpw39PzD/mY5dLINLFQxq1pxvjjuNcpPQ/PeDVr/mVugKKaHrUth/GN/oicajfdGn4x7CuK1KfCR/0nY6CNeBENIkVJTKN6rXubghDE2DcKVMcsU1vS2gFEQmhAgVwloHQb0LbUtkGi30z7EQuRLSV7D6QmghAK1hZUveyoyCndH5ErhEI8qeRM7tgB58nZASIlsCzNmXhrc7Ay1MAm/wZ/9k2xTdz5h2lsotGptqQxIX2b+Bostj2B2e67eSG0s+ni1YUAQAcBz4c5LF5XqJBhEapgx+BXyRwR0sRBPU8drX4x7CuE1XkAOYmtU9x7fA6Y4g+31TBiyIBiag2suWUpCIGlKIkha0EJChguw3tYKhNZQFU/bLshCmBDINFkSoIX1zslv6ZieLskX+ZDhgVgI+uJG7V2aiSa1ZXVCGSyS8fG11LRVEGJqVqpaETAeo2xoh9aaTXX1qw69lEExTS1jWwE6WKVp9p6MoO+mTACKIgjrpU75rZchgss9RD/O3pRV0BDMxjSLI3gyUM22jI5pRJloCKE75RPR0EBIymcy/J+Ya2GuVLb+UXamsVWhKi3qu6a1iCYhQQTsWohoXfr1t+q/4Ev1NElECcHptyCC7g1ACVsbEtIApSQqlIUPgkZ9+dvqeL02rSYtpda5/mfm3qLG4Vub1GgQQGR9CStj9AaxuG6I/yJZ7IZpa+VhzunaTZP8mCr+fVvn+LzKfXBlyXQQIIaH7+yH9CIJ/ikRVhcv8iEbRfgi34I+FsKySK0LEkYfC7Qrhbd8HESrIvmxfi1zt/IyfbaZoQbmmFJjyJMKEKa0gezOmd0uokZ5roXuhhSjbJkPbAto2JRPsdAQrEwFSmF0sALQ0159xzm3TeSioSukwgM5koDq7oLN1cPO7WjIZ83q1JZRrmWSeIxGkJMD8Ck2RopOHU7jirrDXT+GXyvUBmk5Clvw8Kawpn9/NEkWmnnxvLxY87uOIL7JfG1EpK05fE/cQqkqp9yCrJmV2qWQbc2uVPVmt9UC/qNyJu1yvQQAq6UHVJqBSLsIaB8oBeg6Q2HukhcwcQGZbAShHQHkmvrB7A9h9odnJHer8KtF3//W6aXn+VOVyPU8G7QQVnmd6DfrZZIoloV0LyCbz4HANLk2dwgWeQoopiWvzr/fBfX9yMe40lSfLy5Xry5XsG/T4hWPUYQD4Adxte2Hv68MZf/WV6R0rEY0bEyw0rNXHXRv3ECpCx8ucxIxk8Cor4bolV4SIvgzsbt80De9LmxPVvjmRrcPQnMi2LSCIYHdl4HQHsHtDWBmFyLMQ1SWgLdNHRVsANFCzUyG5K4DdHUBmIlN2LBooCSZDBaE0tC2gXL7dUfmKTixnMqZcmO+bK8MIsqcfQpn66GHKgp1WqNkRxjtomtE2+v+RTyyM2GB+siaqWg1fXmSa5Cagw02EB8qDZRMufoDkC29C8E+RBll9/HVxD6EibHqUsf1wSu0aKBXT6nxZsEENXge/T+Xep4MACELAEgjrXAQNHpQtoKVA5JoNerXbNRq2hkjsDcxCof4IIjK9V0QYQfoK0o+KGt0TlSX7WV6Y/NPZ+Rdcx8zLunrMTinHgqpPQnncCkpTa2Nw39SXnc3vglZDY9qxxrUFyZGpUBjLAtnPme4eQAiI6U4GUXWJu7l9vsk9ASwRRiNY/yxXudEYZLecq/5MyavV6zsg/blAxofuS0P7AaCVaQCa622R7odQLkTGh4wiwHEQzq9HUGtDOQ60FFC2QM2bEezeCHY6gsyEpr+KEIA0pcC0JSB882YfJWyzg0WwpMJMNqllwnLyZRS02ZwipXmdAkBPHyxhyn04+zMIGj2EqenvT0Gzx6rkx/KNQVWgh070ChpoVqVRxl7Yc2XYu5g3F2+d0Yr573ljUodG1W/9H26JewhUTUaIabXvD5QCi4ZPAJsba2g/gOjphW5pQFhjmySJZfqr1L1merg5XaFZKKTUQEwLQCgFLSVEGAG2DaE0hBJ45KfcXT+TTXpMW9DUW1gWkN3hL4Q0uz+DEMK2IHQCIq2h6hKT99hEJaxKfswksKMIephzBxNqRj/ZC4PGEmNPQiwuPA/6gPnYeXoTLH/Cd0dE06SKZ+JEFLfChqL5k17DBDQqnUb0+g5Eu/dA9fWZMkxKQ7guRE0KorYG8FyzLd2yANuGTjgIa2wEtRYyc2z4jRaEBtz9IZyeMF+XGlpDOxJR0oFyLdN3JTJ1q4U2SZf8bWnG2qR+OKn3J6SA9BKQNSmIZALCdYCalCkRFobQlmkGqm1T0u6R/2YCj6bWhvT3i5pgxt2sMw6FDe7zhIRMJtB54nzsP0Lj4Lq90zae9pZ/mLbHIqKpsdI5v+j7kWJaHUVQvp/f5Vq4OlpIkT2BbQ38m41ro6SFyBWIXAFlAW63Qs1r/fB2ZSADBW0L0/NNCBPT1jhQng1YAlCADE2Deza5nx0mO6aFkJCuaxJ1UkI2NZrLszEtlIaWEtq2oO3ZEU9QvNZ33QvhupCOXVxCa4p3i4yHsKyRd4+XuD1QHKcP3qVSeHnu+QopzLmROY2IalwIBaTnTXDwZWpf9OnpeSCiGYw7WIho3AYaIZtAYrTGy7ka/sKyYC1sg04lAWUafkJKs6JPSjOhBACtYaVD2K5ECMDOaFh9EYTSZhWgFFCuiyAl4ddKRB4gFJDYr2D3KZNcCTQe/sXnpvpQUIWYjFV/IntiRLgu4DoQjmOSf+l+IAigFs5HWOvmt8M+8NDnJ2PoRCPakP4+AJiTdVKYkjPZE3qFpr2u9DQo7LlSeJlwXUAIyGQS/e84GPsPlxAR8N13fWfaxtbx5r9O22MR0dQQtjOwWjrb/2nEmFYr6AjmtnZBOSUr2zvKsSFs2/QWtM2iIWd3GiJKIPIs01Ow3+xYUZ4NZZsY2G8y8axfLxG5Jqb19mu4PQpWOsJD6/95Wo4HzSC5RRlCAlJASGn6Bu3eC1lbAzG3Cbo2iajGg/Js/PJhxrQ09fIxredC2DbU3n3m+8HN3yvEaOc48nLVD6KCnwNMEgmACkLzGZEr2Zf9GZnwIFJJIOFBzWtE6NmA0mh6IYPND1w9FU9piI7tX5uWx6FJVnl/LrNaZaWGK8z7zvhS3EMgqmj5ki2WBZFMlr0dV6ZSgOsC2dX/IlTZetaAci1oy5QCM/+XkL6C2xXB7gkhlGkqDiDbYwVwehUS+yI4vQMNQCEElCWYXJmFJrrqL9/3Idfc3rLMv54HWFZ2l5S5LZMrFAshhjYGza74G8sKu4o06HMkn/C0B9WEF9Ks8pPZY6CB/vkai9752jQNtLqsOJUlsoiGpRWEY2cXVzgQyURZMW1RD4Hce6+UJrliWSbBkkzkm4ZLX8Hp8mH1BBBhrvyXgpUOIQMFEWgT0+5VsNPZoVlA5AomV2ahSd/FApj4IVsmTGcTitq1ESUdJldo+iU8oCYJ6dj55MpwOz1iVVgibLjdNYXJTAzseilMGuU/Mwpv4zoQ9XXm80IIQCn0tiWw85Qa9La5U/q0iGhyMcEyAgYZRKPLBw7pdHm3t7NBhNYQQQSV9MwVkYbQ2f4poYIMtTmJLQCZiWD3hRCRgnIlwhoLYdKUZVIWoGyBKGHezux+DejsJLY3mqJnTbNCroGtlEBtCrqpzqxKjRSkr6AtfoTS9MuVVEBBuYIhK+sqsLxCWQqeQ36CnW1KqsMgf7l0XQjHhvZ9sxI3Mp8RmNePYxt3xjX6irbpcTZ5JxqJsG2IZBIi4ZkG4KP+QHFC25xMK3jftSwg4SKqTUB5DrRnQWZCyP7A9FZxJMI6B2GNA+VZCFMWlCsQuRJ+rYCWgPRNU3sZcokqjV9RjGBZEAnPfGUTLVGNiyjBPoI0/TpeuROqqR7C8/LJh6IdLBUSz+aTJZY1UNKshKKxF+yIFJY18DPZuFZIYcpQuy50XxoIArObZV8vhAa8Lg3JEuc0CqF1RXyREf+7FRFVPbmwzfRQGY2QkPW1QF2NWaERhACyzT5tCZXIlQYDRKQgQvNl9Yf5Zvb9c2z0tliIPAnlCIQpiUyDROgBMgIsX0OGQJSQeHADV/vNVuNe9SekCZxzTUAtU1JBOxa0lGblXyaC8KNp27JNVIrwvGyJLJlfHaejKL/6z9yoQsK8csZRarV4tvxObmIqpIDwPMgFLeayKIKQEqJ5Dl5blsKBLWPvvbL6eCYeiGa9bL8UtLVAH7QAsq525NvnYoVBJ8zMfUkg4UE31UF5DoTWUCnHxBChggjM7frakug8xIXfYCNMmoVDfr2F/jkSUUJA5GLaAAgTFbaam6bNJvXDgR2quRO15Rr82Zs7+ZsvTSSgk6bPw0Md3PFP8dCOBTGn0exKLlg8VLSTZSLxbKn+LuUkbgbdLtcDcNgSZrl+XCjRI7EgqVL4tyzmN+fjWUQKui6JnhNa0bXInOcIUuW/968+4Qtl35aIpkaFzLyJqBrlVnKoplqIVGrUQMWUebGBSJkJKADZmzHlvJKmmacINYQyiRUZZL/6Qwjf7GCJXAFlA8pGvpSYloDlDzyOsoFHf/SZqXzqVAXGmmQRtpOvkQulzYlbIfPbtWUmQNiUgvYsbPzt9VMwYqLyiMYGiJqU+SpIPkzfAMbYiLTM8pHDsu2ByajjAGEI0TIPsnU+cFAbXnt/KxpPfxPHNe3AosQYkyySoTDRbGcS1g7gWOhvqQHq6yC9xPC3L+hpkZfrM+g40HUpRLUetGdBOZaJIwpuqqVEf6OEXwdEnoByBWSoobLnzp1eDcvPlr0VwK9/cNUUPGuqFpui+4tXwZfzuVtwm/zrVSsgDKF938S3dbVQNR42PXrtFI6eaGT+HA/Bgc0D78MF8WVRUnGsSZaC0rmDY+T8ZaPEsvmd4rn39+zO6hHj2kHXDV78ZGLZ7GK+rm4g4ZmFqo316DqyET1tFuwMEHnAU9++cmzPmYhixSb3RDR+2YBEWwKqpQl4fccoNxem5FIUQXs2RCBMmlcIaNuCFoCVDgZSv1pAebbpw5IJoaWEDDUsX0BLgTBpkimAqVFtdr4Aj9/PiSgVyE0qR6GjCNDZ2tQFAbUII4jeDODYSLck8OiPmbyjmGll6lYH2RN8w1VDHPy6L/NvARg5QbnC+tDQCwtWck8mHUVmp0puhbklgWTCfIZoDW3b6D7WxxWLH8Wh7lvw9djKnKz/3c2TOl4iqkIFJ9+UJ9F7ZDOS20bo55RrGG5ZgAXoIDQ9XJIJwDMlHAFARBoQGggVwhoX2paQ6RCwBNzegZr+QY3M9xCUgUmsaAkIBfzmezzBRtk5lGVBIMo30B5RYc+IHMsk+4TrmtK3SRcbn+Cqd4qXlVEIkxYc14EIw/y5AnOlBZEN63KlYscil0TZ6P/HsLfJx7S5GDnXH2XwLpSsYXewFNBRlE3uqCG9WfJ3aVmAbQO2Bd3ZB+EHCGpa0dcCWP2ADMfwRAGs//0Xx/YDNDOwPFdFYYKFiMZNuA6gNcI6F5kGG7XPe1Aj9GLJNw13nfy2dO05gFLQEggaHEAK2J39EJFG7jxZ5GVrsloCQpkJq5ZAJAd2sEBoJleoyErn/OKGhKOd+NXKTFqFhPTsbJ8LU+pD1SahPYvJFaoIHVvvwMp33Wx2AO7emy0RJgFEAxPCUsmVEYxlx9em6H4AA5NSYVkDE87Bf2tjSOrkbl80EdUqn/QUtp1tHi2hUi6iuTXob3ZR8yeJ35+wCO9OvYzDF75R/mMREQEQdbVAGEH4IdJzzMKhmoZ6qF27S/+AViaetWBOWNckzU5uzzXxrSWQmetB+gru/gygAEggTFr5ybcITQkwILsj2zGLhbQUUEozuUJ5q5s+aXZySgkN5Essjyr3+ZlbxW/bZqW8YwOOg/V/uGUqh01UlgcevAbHfeZOLHw+u4hGFCcjciW0dGE8OcKinrFWMNgU3Y8V1oeylTncIQkUIdVAk3rbgfb9UnczVHZeKWw5UCZMabN7RQjAtqGaG6EdCzKVBIIQc7fsQ5icg30nhHjl7z87pudBRPFjgoWIxk0kPCBSiFyJ/jkWRqlYnadtCS0ltGMhqnEgfbNKRUuB3gUuvIQFb3c/AED6kenFojS0ZcHpU5CB2cGiHKB/rqlTLZTAU9++YoqeKVWr/NZyraDKDIh1FGWb03pAbQpRXRJRrYMHNl8zxaMlKp8/x4OntUluhGF+klky0SEkpOuaMgW5la9ajb9XUVYu0bLSOb9opV/+MfL9YcaQZNEKWsn8ikUIaSakiMxKP60BPwCQQM8iDzLUSLdqPPja4fja2/9zQs+HiGYp1wVshaghCb/eLObBCKuUc+VehOcN7KqrTZpFQ0JAuaZXYG+rjWSNhcSuDGQmyu/k1paEnVGQkYAWMLX2awT8OhPTOgp48l4mV8gQnptfXIAwhPD98naxFJRZyu/SkhIdr9w5peMlGqvut2WThkqbXiS5fiVKQquwoBTuQMLQlN6SkxrPrqr5WwiRfe/XCrAs6CAEdADpuhDJBKyEh6izs+z7zj2XXHye3/FoWfCbk4AC1BwPyb/sQVTroX5biGe+weQKlUHDLOCoBNxIA4A9WIhmrdUnDvSQaD/68+O6D+E4EAkPqT/vRu3rwYiT0RxThim7CkRraFtAORIi0vD2ZOD2KAR1FroPq4E/NwGZDmD1+hBBBBEoOF0h7D4FK9Cw02bXCgBs+SaTK1RsY3AfZMKDSHj5xolFhIT0EpCplPlKJrP/Jsxr1LagPQfakUyuUMU4c9WXccZffQUAIPqyScPBZQeytaVzCcZ8byEUlDyYSMPQQYTrFu8WKx7M2JryZuUmpLkvrbQ5MekHQG8fACA9V5hV4BmBP5zDUl9Es9Hq44r7R6xacsOY70PVelCNNcjM8WD5gNutB5rWD0cIwM4uxkh4UEkPUY0L5dmABhJ7fLg9Cv2NEvsPT8JKh7D6QshAQUQKdk8Eq19BRoDdb5rZi8hUFGPdfSrUsfNu8zqrr4Ooqy3+zM3JLqSQqRSs2lpYtbUmBnZsEwd7nkmubP9aPE+CqISPP/lxXPr0R1HzcsG678LSXJY0r2HXgayrg6ythTW3CXJBi/m+1N/CBMi6WgjXMY/peQAG+q9ASFOytqFuzPergtDEs46dT67AthDUWOg81ENfqwNICeVaePj/MblCVK24g4VoliqsO9/x/JfG/PNnrvwy3IXzIQITdCRf6YS2ZPGq6RJMKZlscgWACLKrri0BEWp4e3zIWhvdB7pQtkDijdwqEg2hFEQkIEMJ5QEQgNep8dv/zYkoDcOyIFwH2kc2AI8GdrVYFmR9nSnpYdtmVbzvQ2d8CNtGx9Y74h490RBammbIdk8AoRSQSpqEoFbINWMRtoMN6e9jVeIj2ND/A6yu/7g5GZjJ7g6RChuD+yZvUEJgo/8fWFV7IaA1Nvr/YcotZHePjXfym28qalkDiSGloDM+rH19mL/FwpvvSlX0qqlVS27Iry7b8MxN8Q6GaAZa/+yaou83bBnb39mSjmvR84FmpHYCdlpDCyD1ZrYPwDAxrUn8SrPb1TXlbrUtTRJYAgIC0ldI7fAR1NvYf4gNLYSJfTWy5W4VhJLQAoAwjw0Av/0uY1oqIZlANLcWsqsfwnUhlc7vzM4tqJCNDUBdLSCzJ4I7uwHbQseOb8Q8eKLSHKHwQud8ePuAcGEz7Jd9aN/Px4+yoR5QCh07voHVx12L9c+uwcpTboaWEnZoYsRN6e9P3oBsG+s7/x3th33WlCV7azc2RfebndqODZXuh5XwzPmM0ZLwQHHvliiCALI7Hy0gmYTdp5DcHSH5Zj/2njw/34urUq1658Dn64Ynx76YgWimE1qzK06hrq4uNDQ0oLOzE/X19XEPh6hivefc2yACDStQsDt9WK/vgursgs5kSgcc2VXM1ry50POaBsqE2RLayU4wAYhs3Wm/wYG2BLy9PmTGTHSVZ0PbEsqVCGptKFvgsR+y5wqNbnX9x6F9Hxv6fxD3UIgmRfsRV5tG7/0BkO43iYd0P3QmA+G6WL/v29M6ntVzLjarDoPQlCwDzK5GrSA8D1FPb3llwgrrbmd7sQys9jMlwnQQQLgu+k8+HFv/B/DqJz43Rc9qchzxxTshItO0+oXry9ttOdF4lPEsUXlO2/TP2NVVC/VSLZxewNsHtDy+H3juJaggLJ1gsSzIujqIxgaohhrohJ3fna2lBKTpw2KyKQL9c114+wNI3+xeUa4FZUtTGqzWgrYEtAU88R+MaWlk7UdcDXR1Q/elsb7z3+MeDtGkWPL3dyKxTyH1RhpRyobdE8Da9haiRfOw8dfXj34Hk6j96M9D1Xhml/hrO0zfIgDwA6h0GrKpEWrX7vJKTxfEtNJ1TTybTAA1NVANNRBhCNEfYO8prXjzNIVXLqn8Xp8H/59bAQBbP1p+dQfGpJNv8+bNOOevzsPpx30q7qEAAB7+/R148OH1WLp0adxDiRV3sBDRmK0+/jp4dQkoz0JQZ8N7pQfwg/xqvuFWdAjXAWpSJkni2RCRgvRDKOlA2ybDoqVpWu/u983qvtBMbJVrY9Nj103bc6SZZX3XvXEPgWhSdbywdqC8Y12NWR2dSmL9i1+JZTzr934LALAq+THTkN6yoIWCSCQHbjR4J8vgE5elyotlyzSIZAKorwXS/dC79wJaw8pEaPxDYgqezeR64QtX4NA77kDkaRx81+2wWtJ46X/y84wobqeddzv2H9oKmQRUEsjM0ah5HZBv7oPKLgzS4dD3KeF5EKkkdH0KwZwkhNKwe3wgVBC2NouHLAtaCkAIJPb4Zse2AKKEjQceZNlRGp+OF9bGPQSiSef0KshQo/OwFPpaBLTw8NyXvxDLWHKVPdpbL4V2bCCZABwb2Lsfsq0VCAJzrqMwZi1nAZE0cToa6tF36BzseoeDg+57A3BsyFDDe2vs5XTjsPWj1+Cw/3sLDv4/t8L2Irx4HuNZohwmWIhozHoOa0TqtT70tyXR2ypR8/sAcB0gioAgHNJcWUgBYTuQdbVAEEDuVxApz0w+HbNyTygNEZoyYNqSZuUfpPm/bb5ftmItNm+6OtbnTkRUKcZT3nGqbUh/H+0HXg5kMhBKo2PXPQCAle4FA71YtMr2VBmos60LenjJXN8kzwVqa6Aaa+A3JeDX26h75CXT/6upEe72ffj95ngSSmP1lyuvxBFfvBOZOQrRW0kc9J2v4G3f8bHpcU5MieKy7yPdSP68AXtO93HogW9i908WoeEvaUAIyNoaqO5u6IKYVnoJiGTCvDe5LkQmgNPZP1AezLNMOcZIw+r1ASEQJW1ECRsiuwNbuQKn/806PPqjyl+pTEQ0HX79g8rbvdex824AwMp33QyhFNScA/KLPdvnXWL6IgkB3dcHne7P79rWSuc/M4TtmM+MxgZELQ3Y87YavHV6hJOP/Qteef4QQAiolIvGp97EE/9ZHfEsALz0P6/D8f/vevT7DhZ/fy0O/7cImx69dvQfJJrhmGAhorK9bc2dyLQGmN9oI7VDIKgRSO5WJqCIIuh0v9kuW7CKI1c3X4cB1P4uyIY6wHEghGn0ppUyDey1NiVuLAs6ZRIrgIKINESoBlYCEhFRRevY9tUhl230/wOrm/8eiJRJxue+soQFk5B3HdPAt64Wak4tgqYEeg5wUbctg5pXuqF6eiHrTbJeJ2un70lNghe+cAUWf+N2SF/A2e/g5f9h49jP3ok/3lZe2TAimhxq59sAAEfMW4FX7QYcsXgHOvuTqHstgtUXQqfTJqYdXCJMChPvZnwIAAhDSKWhPTufWBFRZHZfaw3tOUDSBsyaIQBA5EpE7nQ/YyIiGo+Nvx1aoqxj1z1YfeL1pkdsbQqipw8IAkCZ8yI6Wx4XlgVdV4POY+Zg7zES6pgeLGnbgT/tno85TzvQNQnIPh+qPlnikSvb3Jpe7BUp+D0uXvyoh8NuuwMvfZY9xKYdO35UFCZYiKhsy1Y/jcdePwRCNaD3gCTChED91n4g3W9W+UXRkC2yhauSte8D+zvNyuQwBSQ8CN8yk1QhTFNGDxBq4K1JRApQgNQwiRyaFO0HXl7yJCgR0VQRyWT2JGQE4QfmQimgfTMpFckE9NwmqKQDf24S6WYbQUqidmcId/s+oC8NNNSZXiy2BbFnX7xPaBykLyACAW8voLsEknv4uUYUlz39Kew9xcdxyW785bcH4tBXOiHf2g/V01u6/4rSpsdUGEL39QG2DdnUCKHMSmah1EDi2HEAmIb20DCxbKggQ4kgNagcIo3bylNuBoTAxifiKSdERLNTelEdlC0gQ40gNRdaArXb0pCZECrhIDPXhdMdomehh71HC7SctAOnzHsVP3nhONQ/WIPUmxG6D28AtEZibxD30xmzRq8fnf1JoM+Cu9cyCwmIZrmqi+4ymQxOPPFECCHwu9/9rui6bdu24ZxzzkFNTQ2am5vxqU99Cn45zaeIqCx3H/AbXHHkA8jUC3QeYmHPSaFp0plOQwVhUTIlT6uiL+X70L4P3Zc2jZnDMLsDxkxKRSaE7OqH3Z2B9COzg0VrSD/EAw99fvqf9AzF5ApVg5XvujnuIdAk6tj+NejGWujmRqCx3pRXkNIkXRzbJN370ug9sBavnG1j35ESzb/rQuqpV4CubsCyoBbMg55TDyQT+fIN1eTlK66E5QNOGki9qaEFcMpHbsfSD9+OY665Eyf+051xD5Fo1qhzMlh5zPP4u/m/gt0rIPd2Qw+XXAGgowg6CKH6M+Y2ANCfAXp6TUzrB2Y1aXZXNoIIMhPCykSmFG6kYaUj/Pa7XOU7WTb++nomV6jirVz6xbiHQJPs4f/3WWxfDbz5Dhu9rRJBjYDyLEQ1LvwmF05XCPeFN7BrCfB379+EU+dtxf/76Sk49NYALb/cAQDob5RIN1t4YHP19eX6r9O+gXTGgQgF7DRg9wHH/POdOOaf78Tb1tyJg++6HYvvXhf3MGe+XMwR9xcBqMIdLJ/73OfQ1taG3//+90WXR1GEs846C/PmzcOjjz6KPXv24MILL4TWGnfddVdMoyWaWTalbXzn1dOQ2qXwxooIsIjBawAARJ5JREFUN5z+U9z96w9i7uPZSahWA/1XRmj8pqMICEOzOyUIAakA2wJgmVXMSgB+CESmXr/QGut/xxOtRLNNqW35VN3W/+EWrDrpRujaJGSkzKrv2hqTaPF9oKcPVkZhzh8ceJ0Kck83dMYslln/5r/GPPrJ4XSbf4UGZAhTg9sxLWl+dxfLhRFNl+deOQB/f/ojeHcC8Bu12XVSULqwqKcgsvErMHBZpMzubG1DhBFgScCyzPsZQggpgT7AChVUjQttCTy0/p+n7wkSUUVgEnBmalzYib49cyADwK8T2HNMAsk9CsldAdw3OpE58gCoZASlJTZsPxItT4WQO3ZBhyEe/XH19FwZTv9rtbD6BaABK2N2bGoAYa2GmJvB1gu4OJZml6pKsHR0dGDjxo340Y9+hI6OjqLrNm7ciOeffx7bt29HW1sbAOD222/HRRddhDVr1qC+vj6OIRPNKE+nF2PPo62YoxRa2vbjwX1Hwu3WAxNOYGhyBRiadBFyoNxXGBasYHagHdv0Y4k0hNTQlsD6LUyuEM1GK5d+kZPSGWjDUzcWfb/qnTchrDVNCdyXdkJEGqldIZzeCMhkgCjC+s5/j2Gkk++0/7EOXpMFJ61hZTSsjIKyBdJzLbjdcY+OaPb4+LZ3I/VnF72negD6IDMCOuWNHtNmLxNSmNtmsmXBLAuwLAgru2hIOGbRkB9AaA2dsLHpUX6eEc1GK991MxcNzUC/O+uLwFkD3x++9k5ErkSQdNGUrsPmB67G4n9bh3//41K4z6Xg7e4FAKzf/c2YRjx5jr/yTiRTEiKE2cGSNpf3LARESz9a53bGO0CiGFRNguXNN9/ExRdfjJ/85CdIpVJDrn/iiSdw7LHH5pMrALBq1SpkMhls2bIFZ5555nQOl2hGuuboX+De476INw5zcM3Bj+H/vrEEid2mZqiZaGZvWDD5zE1MhbTzJcQGGt+HEK4DHQRYv+Mb0/58iKiyMbkyO2x48oaSl5+58svQc+pnTFnnd378DjiWgNuj4PQqWP0muWKFGk5aYsu3WDaIaDrI1j+j6y//COeUvVjs7MI+5UMoQGSCbJLEgg4H7c5GNn4VzsDlWpnYV2nAUmZLmudh/a574nliRFSRmFyZHV68eugu5Ff+12cAAMdfcSd2vb0GyQMPne5hTQkRAk4PYKUBr0shSAkEtQKRB9huiMdWfDnuIc4OQ6uZUoyqIsGitcZFF12ESy65BCeddBJeeeWVIbfZuXMnWlpaii5ramqC67rYuXPnsPedyWSQyWTy33d1dU3auIlmmn/5/y3DhUelsL2/CYvcPXh11xwctqcP2rIAywH8ADocSLgIyyravSJkwSeAzq74k96MKftCRETj197yDwCAjuxnwoMbTSmd1U2fRPu8S6CjCOv3fiu28U1Uck8E5Qj4tRJ2v4DQGpk5DhK7AyTfmliDU8azROW7808r8Z45wAkNScyV/Xi8vxm1rwHYux8AIJMJqDTyMS0AE9MWGlQ+DNnFQ9X8HkVERBO34tRbAACbHr8uf9kf7jTJl9XHX4dVb7+h6kugKwfINJl1BUJLdB0MBK0BRI+Flz7IhCLNTrE2ub/xxhshhBjx66mnnsJdd92Frq4uXHPNyM2fhBi6xlFrXfLynFtvvRUNDQ35r0WLFk34eRHNVL/pPAQ/e/1Y/HHfAgBAuN+D6EkDloSQBTtWsiv9tMqWDyuYhOZ2sQCADkLTBJRit2zFWixbsTbuYRARDbF+37dNnwNZ3XtZHvnpZ/Hojz6D3373SoQJgb75Dvw6gb4WJ59MGi/Gs0Tl+23nYmzcdRS29jVjj0rg/+56F+peC6F6es0OllQSMuHlFwrldl6Lwe9BBTEvFJu8VgrGtEQUKwFAinyipdD6P9wCUViKsko9e/sV+PN1V8A/Io19R2lEi9NYfOBb2PpPV8U9NKLYxLqD5bLLLsP5558/4m0WL16MW265Bb/+9a/heV7RdSeddBI+8pGP4Lvf/S5aW1vxm9/8puj6ffv2IQiCITtbCl1zzTW48sqBkgxdXV2clBIN44lXFyPM2DiwbQ9ezLRC+NI0q8+t6svVpFYaWmkIqUxCJVdeIftvPumCyCRZKHabN10d9xCIaJbL7VxZ/t4vQWjglw9/Hu2LPg0AEHW1xc2nq8S7/3odoM2J16DWgt1nFhX0LbIgA5g+LP7ET8wyniUq329fPQg6Eki3OHiy/hC80VcPLcwuFeG5gJ2dImdjVQAD5cAK+wrmdrDkL6uK4hAzHmNaIorTpsfMzpWD/8+tOPS+L0FIhZf+53U4+ro7YfUD1nvmQlThGtNTPnoHwgQQeQJ9raaxvVroQrb2I5H0se3NOXEPcXbRML2LK0B1L4GbPLFGgc3NzWhubh71dl//+tdxyy0D2d833ngDq1atwv3334+TTz4ZALB06VKsWbMGO3bswIIFZnX9xo0b4XkelixZMux9e543JHFDRKVFbyahkwp+aOP1TBOgATgOhOtCRxGEk2tcH+STLPkJaXaCukndhxXyPEBoCClYSoGIiIq82p6E2wm85/23oaY2BQQhonn1sPb0xD20MVl+5q0QdSbUVraAiDTClITbFcHp1YhcASsAnvjPia/2YzxLVD71VgI6odDte3ilvxndmQQcR0I01AOpJJDuNztZHLsomaKjCEXxrPUhADALiiJgY/8PYnxWRERUSZrndsOSGoGSOHPzVehbuAB1L1qIPMDy4x7d2Ly3/SuwUxKRKxG5gAwApxsQoUDbvP1I2gE2feDOuIdJFKuqWGZz4IEHFn1fW1sLADj00EOxcOFCAMDKlStx9NFH42Mf+xhuu+027N27F5/5zGdw8cUXo76+ftrHTDTTHPHFO+FCwhdAn+/gzUw9ZCCgXceUTPAjM/HUaqAMmB66NGOFPA+b1A+nefRERFQtlKeRbtN4y7Fx4M4krK1vwAKAnt64h1a2971nDSAFnJ4QkSsBSDg9Edx9/djw5A04/oo7oS3gmbvZ2J5oOuXj2Uag33fwRroRWgOZegHUpoAwApQyO1miCLCsbGKlGONZIiIaSaAs7HqrFuizsLcugLPPgrdfw68XSO6pni0sy9/7JVjZEplhQsBOCzg9wJZvXYElHdfizJYX8cXj/ivmUc5SFbKDxay8pqpIsJTDsiz8/Oc/x6WXXorTTjsNyWQSF1xwAdatWxf30IhmBLfTNDPTQqJ/gYPf72pDw4sCIgihowjaD/IJliKDm4DCTEoBcGJKRERDzP09oKWA261g7dpvPlv27DN9WKqECDUENITWsLsVwhoHUcICQvN5mGt2SkTTy+0ElA1AS6SbXbywdx72v16PA3dHpo9KfwZqzz7T86mwj6eQgNBFMS3jWSIiGs7vzvoi3v6Pd8LKaGiZgNuj4PQqJPcAqe3Vsytb+goQgAgVkpEGhOkhCABb2tfEPDqiylGVCZbFixdDl8jUHXjggfjZz34Ww4iIZr7a1xW0JRCkBPz9teivAebuioC+NHS6H2rQiS/TCNT0ZtFKDlyRnZhyMkpERKU8ee+VOO1/rEN/k4X9Sw9A4+OvAWEE0VAX99BGtfrE6wEAth9CpVwo14b0Q0jHwgMPfT7m0RFR3XYFZZtVuMHeJPxUEnN3A8nXO4F0P3Q6bXZjB2auKaSAcN2Ce7AKyoUxniUiouE9840rcNp5tyPdLNB9gETNmwJOj0LX2yq7ys7qY64FHHMuR1oCmfk16GuxIQON0AOe/lcuFCIarCoTLHFoP+oaaCkRNSbzTauIZoulF9wOp9esXLAyEjIQcHqFuSwIhjSqF1IM+T5XNowTUSIiGs1j/99ncNIn7oAWgK5LYf2zlb1Crv2IqwGtIZSCrklA1XgQmQB2Vxo65VVU98f3vWcNtBTQjmQzaJpVln74drh9CloAdlrAzkg4HpDcqyC70oDvA36Q7yEoLCvb6N7IxbdaSWxS98X1NIiIqIo89sOrcMLld0I5QJAS+M33PhP3kIaVj2cBIIwQtNTBb3Rh9SvUb+1HZo4L5VRQUDvbVUyJMAKYYClbbqJMNBsl9oTQ2c9RoQBAIgwBqz8qWZdaKz0kyUJERDQWT32n8vuTtL/tnwFLAkoB/RnAcaBdGyITQGRCdPz5y3EPcQjlWJBBxGrJNOskdwfQ2fhUBgP/uvt88/erNbQaKAFm4lkFwDLlwkqUvSUiIhrN779a2Ts+iuLZjG/+n0wgM9eD3RvB3dOHDVtuinuYRBWNCZYybXjqxriHQBSLZSvWQoYaMjATSm0JILIhQwmZydarHjzZ1NnJaP5bnsYhIqKZpf3wzwGR2cmJIITuS0O0zoPs7AN6+9Dx+l1xD7GkzQ9w1wrNTtJXENl4FlJARDaUIyCUBlwHuqfX/E0D+WSKjgAhJGCJgV6DBbtaiIiIqllRPBspIN0PJBMImmvgdgZwX34LHa/cGfcwiSoeEyxENKLNm642NeW1BoSAFgIi0gjqHAilTBPQEphUISKimar9kM+YE61am4UGAITrDExQFVe5E1Uae396oJyGEBCRiyhpDzSz14MWDeV2rGgFhIq7V4iIaEYZEs9qs+AAACCEaXAfDq1YQhWiUkqEVcgw4sYECxGNaNXbb4BQCiJUJrniWIDS0AIQocqfWAIwsKqvYGXfpuj+GEZNNDstW7GWPRWIplj7wVeayaYlAbsglFYutGcDtoX1W++Ib4BEVFo2ngUA7VhApKEtAWVL2EkXUCrffyVPyPyioY0B+64QTQfGs0RTLx/P2haQTJgLswtqo6YUgnoHUBqbXvt6vAMlqhJMsBDRiGQmu1VUCvOBawkoz4LQgOzsg8pkivuwsHQCUUVYtmItAHCCSjTZghCQEnAcMykFoKVE1JiE1d2P9c+tiXmARFSKyIRmt0p297VKWOhd4CKxO4To7EWU7i+KaYv6CXL3ClEsGM8STZEgNHGs60LVJgCloBIOMs0eRKghQo2HOj4X9yhpJAxNKgrPghLRsPKlwYIQAKATtlnxB8DuC4HuHmjfH/E+VlgfmvJxElWL5e/90pTef+Hkc/OmqzkZJZoCHa99HXpOPTpe/ArCOTXQngNIIErYWP+HW+IeHhGVsPrE6/NlTlTKhXZtCAWEnoDTG0J3dg30WCmVTOHiIaIiucTHVGA8SzT1Ol77OtS8RnS8sBb+nASiGhciUvBrJfYd4TC5QjRG3MFCRMNa/7ubAZjGZ1pKqKQLKA2rN4C1uwuqu6e410pu8qlV0fe5JAvLhdFs98BDn497CEQ0Cdb/7mYsX3Yr4FoQysHGJ26Oe0hENIL1v7vZxLO2BZVwIDMhZNpH44sCzks7EKX7i+JXYVlD7mOlewGEFNjQ/4NpHj1R5WHSg6j6bXjyBrx39ZcBAYQpGw89cm3cQyKqWkywENGI2g//HKA1RBhBhBGipIOw0UVqdxd0dmfLEIWr/FgyjIiIZqAHNl8T9xCIaCyy8azsCwBbon9+Cm6nDz2oNFghIcVAs3tzwTQOmIiIaGo9tP6f4x4CjYuGqJQm9wSACRYiGkH7gZfne69ACIggQjgviSAlzeWFZRSGm3ByIkpERDMI68ETVZ/2Ay8HLGni2ShCWOeif64NGWrITGbghtndK0IKs0tbSPNzkEA4zMIiIiKiKrP8zFsBwQVDRJOFCRYiGl4UAREAxwYcG0FjEn6thNujgNykU+iBREuJZIqQAhuD+6Z/7EQUq/bDPgtkfOh0Gut3fzPu4RBNGiZWiKpQFJnFQbaFoLkG/XMcQABaAiKZgPB9aDVQ6lYraXavSGH6EQqWBiOajVYffx1EqIB0Pzq23hH3cIgmzQMPMrFS1TRMfEIVg0vLiWh4Upov24ZKOki3OAgTAk5XAPT1DdxOyKLkipACgOm5wuQK0SyVTa7AD7C66ZNxj4aIiGazXDybcJGe5yKolXB6FNxOP79oSEhhvizL9GCxLLOLG8CGnu/G/ASIKA6iLwOk+4EwQvuBl5sFRERERINwBwsRDS+VBADohIP+lhr0zZeQPmDv64Pq7AaAgRIKg+SSLEQ0O3Vs/1rcQyCaEstWrOUuFqJqk0qaeHZBDXoXSFgZoOHFfliv74EGTEJFF8S0WgHINroXjGmJZquOl26LewhEU4LxLNHkYoKFiIalXQsi0oBSsALTayU9H4jqErAcGzoMhvzMpuj+6R4mERHRtMj1XyGi6qJdayCe1UDvAqDhLw7sXOkwSwIRICxkS4RpbOz/XtzDJiIimnSMZ2eIEgudKT5MsBDRsNY/uwYr33UzhFIQgYLVD0AAQb0Ly7ZNWTCtinaxrLA+NK4ky+r6j5tSDMokcmBZgBQQiQRgW+h45c5JfGZERERjx5V+RNVp/bNrsOqkG008mwFkAGQabSTqayH2hoDrQvu+qWeuJIQFrEp8ZFx9V1bPudj8R5tFStAacB0I20bHzrsn+ZkRERGNDeNZosnHBAsRjUg7Eiqb7PA6FYKURFBrITm3CTIMofoz+STLRIhkwpRg0BpQGlorCCHzjUWJiIiIiMYrSjn5eDZyJcKkQFSXhLV3v1nUY1nQYTjwA5Y1/gcrSK5opSAU41kiIiKimYpN7oloRNoS0FIAGnB7FBL7NboWSexcsQDR8YdB1tcWNbgHgJXO+WN/IMcZ+JICQkhorYAwRMfWOybp2RAREU0NllsgqmyF8azbrRHUCuw9vhZ97zoEYu4cCNeFcF1TLkwKQAisqr1wfA+WTaboXJLF99Gx4xuT+GyIiIgmH+PZKqJ1ZXwRAO5gIaJR/PKRa7H8zFsBADKj4O0XiDwLPQuBMJHCwl1zINL95sZKm6agYuy5247Xvl70ffuBl2P9tq9OdPhEVKFywTu3qBMR0bTIJj1kRsHrFIhcCz0HCPTNt3HAvjrYXd0QwEC5Wsc2u6nHaP3ebxV9v7r577F+9zcnOHgiqlSMaYmIiAkWIiqPAGSo4PQC3n6BMCnR1wLsWNGC1kdsiF37oDM+EEWTksXuYHKFaMZatnyt2UOr4h4J0eThiRWiKlAYz3oCUUKivxnYe1QKzelmqIQDa38aorPbxLNy4gUfmFwhmrm42p9mGsazVYS7RyoKEyxENKoHHrwGALD8vV+CCDXcrghaAsqS8OuBN943FzU7m9Dw7F6IvV1AGKK95R8AIaq6meeyFWuHDTC4Uolo/DY/wL8bIiKaXsPGs45EphHYc2IDtBSwMynUvVoDq9c0vV99whegbYkNW26K9wmMUznxLMCYlmg8+HdDREQAe7AQ0Rg88NDnIbSGDDUSeyM0bI1Q+4aG9IG+Zol9b5+L9HELodrmA3MaoVubsfJdN2PFqbfEPfRxKSdgXrZiLVcujQGPFRFVCr4fEc1Og+PZ+lcipHZpQABaAkFKYP9hCew9rh49h9QjfUAdgsYkVr7r5riHPi7lngBmTFs+HiciqhTLl90a9xCICNzBQkRj9MDm7Oq/ZbdCRBp2n4KdtuDXCvh1AkHKhTPPgdCA3adg9StYGWVWCyoNbQ3kdXMrCavR5k1XF02uRlodSAN4jIiIiChupeJZ5QpEnkRQIxAmBLQEooSArBdI7FOwMhFWvfMmQCloy8ovVdz46+tjfCYTk4vLGNOODY8PEVUKbYm4h0BxqZQSYRUyjLgxwUJE45KbmL7vjC/B7guR3CUQJi2km2349QLSB6QvIG0BpQQeeuDzMY948pWaXHFSSkRUHfheTUSF8Sx6AS2ApBSIPBPThkkBoQAZaWgJbHjyhphHPDUY0xIRVSe+TxNVBiZYiGhCfvmwSZysPu5aWLUJaFsAwoJQgLYBZQs88tN/jnmU04cBDhEREVF1ycWzQDamTXrQMoFMkw2hNEJP4pFHro1xhNOPMS0RERFReZhgIaJJsf7ZNXEPoWpxhSARERFRZWBMO36MaYmIiKaBBqAqpTZXpYwjXmxyT0QUs1L1r4mIiIiIqgljWiIiIpqNmGAhIqognJASERERUbVjTEtERDRVNKBVZXwRgCpLsPz85z/HySefjGQyiebmZnzwgx8sun7btm0455xzUFNTg+bmZnzqU5+C7/sxjZaIaGxYUoGIiIiIqh1jWiIiIppNqqYHy49+9CNcfPHF+NKXvoRly5ZBa41nn302f30URTjrrLMwb948PProo9izZw8uvPBCaK1x1113xThyIqLycUJKRERERNWOMS0RERHNFlWRYAnDEJ/+9Kdx22234ROf+ET+8iOOOCL//40bN+L555/H9u3b0dbWBgC4/fbbcdFFF2HNmjWor6+f9nETEZUrV0aBk1EiIiIiqlaMaYmIiKaBZnP5SlIVCZann34ar7/+OqSUePvb346dO3fixBNPxLp163DMMccAAJ544gkce+yx+eQKAKxatQqZTAZbtmzBmWeeWfK+M5kMMplM/vuurq6pfTJERCVwEkpEROPFeJaIKgVjWiIiIpptqqIHy8svvwwAuPHGG3HdddfhZz/7GZqamnDGGWdg7969AICdO3eipaWl6Oeamprgui527tw57H3feuutaGhoyH8tWrRo6p4IEREREdEkYzxLRERERDSLKF0ZXwQg5h0sN954I2666aYRb/Pkk09CKQUAuPbaa/E3f/M3AIB7770XCxcuxA9/+EP8r//1vwAAQoghP6+1Lnl5zjXXXIMrr7wy/31XVxcnpUSzRK6EQQ5X3BERUTViPEs0ew2OZwHGtERERETTKdYEy2WXXYbzzz9/xNssXrwY3d3dAICjjz46f7nneTjkkEOwbds2AEBrayt+85vfFP3svn37EATBkJ0thTzPg+d5430KRBSTyajvzMknERHNBIxniapTYXJkvHEp41kiIiKieMWaYGlubkZzc/Oot1uyZAk8z8MLL7yA008/HQAQBAFeeeUVHHTQQQCApUuXYs2aNdixYwcWLFgAwDS+9zwPS5YsmbonQURTZqRJJyeTRERERFQNhlsYxHiWiIiIxoVN7itKVTS5r6+vxyWXXIIbbrgBixYtwkEHHYTbbrsNAHDeeecBAFauXImjjz4aH/vYx3Dbbbdh7969+MxnPoOLL74Y9fX1cQ6fiMpUqsQBEREREVE1YUxLRERENHtURYIFAG677TbYto2PfexjSKfTOPnkk7F582Y0NTUBACzLws9//nNceumlOO2005BMJnHBBRdg3bp1MY+ciEYy3AR0uBV9y1as5Wo/IiIiIqoYIyVUSsWtjGeJiIiIZo6qSbA4joN169aNmDA58MAD8bOf/WwaR0VEk2XzpquHTDaHm6xORv8VIiIiIqLJVm5My3iWiIiIxkWDJcIqTNUkWIhoZhk80cx9P1pJBU5CiYiIiKgSjJQ4GeuuFiIiIiKqTkywENG0G0td6twElKUUiIiIiKhSjBbPikhDWwIA41kiIiKaTLpydrBUyDDiJuMeABHNDstWrC1rd4oINaAGvi+8joioEuXe3wrf49jgmIho5iknngVM3Grv64eI9JDLiYgq0XDx7LLljGmJiEbDHSxENOXKPem4bMVabH7wmukYEtGsMNzfG0/wDDUZtfClr/C+96yB8iyISE9opXKp3x1/b0RE8Sknns3tWlm2Yi02P3PTdA2NaEZjub3yTUY8a6UjrDjtFkQpGyLU0LYYd0zLuQgRzRZMsBDRlOEKbqLpVe7f3ODbzbRJzsp33QwA2Pjb68v+mVLHIDeZzB0vEWk8sPma/PfeH15F5viD4L7Vi2BuCsod2BicKwsz1pMCy5fdmv/ZUuMZ6WfHY9nytUX7mQff72S8j1fb64uNp4losHLfC/Pv32oKB0M0w40l9pjJMW37ok8DWqPjta+X/TPDxbO56/IxbajxwIMmpnUefQ7B6cfA27YfflsDoqSV/1ltiyH3U85jrjrpRgQNiWFr5kx2TDs4fh5rjF2uant9Maad4VSlBBusEQYAQutKKdpWGbq6utDQ0IDOzk7U19fHPRyiqjPW/iqsRU00foMnJ2M+Ga6Qn/jMpL/D3HGw+kJEKbOWpLAW/kwx0nvouBMjCtj8gLm/FaevgXLl9B23gseO01QkssZqovEo41miicu/FxR8VpZS+Pk7kz5LiaZTqSTAeMykv8HccbA7fYQNbv7ySoxpS45plPfO3M89sPkatB9xNTpeGPp7bz/8c4AYuN/MQU3lDWhQTLly6RcRJeyihNFUyT2nSjATYloaavPmzThn5QfxnnkfiXsoAICH3vouNj+6CUuXLo17KLFigmUQ/vETjV+5wfBMCnyJplNZCZUyJjMjkZkIyrOKLqv0v9mpOA4VrcwJa6VNvstVia+36V4MwAQLUbyKPleGec+txPcqomox4UVCo7DSUdFOjNzjVLJSx6Ca47lySF9B2bLoPTZXlgwwz19EumiXeDWpxNdctcW0NBQTLJWJJcKIaOoMnpDO5BOeRFNgxJ5Fg0o75U3wb2xwcmW0cZRj0spZjWUcM/m9poznVs2T8dHKlhERTStZfMLPSkeISnxWElFpo8VvU1FWenByZUKPk53DTmY8MuaygzNUqcRJ4S4TbYmqPgbllC4jGjful6goTLAQ0aQZUrt/+aDAsSB+WrZibUVtnyWK25gnfTM5gVCAvZxmoUGv7XJeA4WfP1NRDoETYqLZZfDf/PIzb83/v/DE7bIVa+G+0Q2xey863vzXaRsfUaWakXFbNi5ZcfoabHr02nHdxYw8LjSqouSQKlhEVObOSMa0RNWDCRYiGpeyGgqO0tSuMOBg7WqqZitPuRlhnVt0WTmv5WF3oRAATkapfMO9VvjZQkQjKfXeUer9olTd/uXLbgUsAb+tDt7uvUPuk+87VI1WnL6mKIlY7ut4NsRsstcf18/NhmNDZZDD/L/AiNUL+NlCg3EHS0VhgoWIxqzUB3+ulufyM28FRPnbmRkoUDVafeL10EJAJ2xsfOIL5sJBK5HKem0zuVKEE1CaKiO9tvj5QzQ7jZSY3bzparzvPWugLTlsU+TCWNc/5kDGtFSVVi79IrQQgBTY9Oi10MPsIuXrGtjwzE1l3Y7xLE2l4V5f/Bsliheb3A/CBkxEA/If3goQkcIDD32++PJJkKtpzXJhNFFTsYU6p731UsB1oRtqsP7ZNaM+/khEZD52q7mecNkUsPmBob+L1cddC7+1bmjjTvZpohhV0sSUTe6JJteyFWsBBVj9ITY9dl3RZUJPThNpxrQ0WaYqqdF+9OehbQnt2oAQ2PDkDSM+PmUNE88CQPthn0Xm4LlFfZoYz1KcKimeBRiTToV8k/u5H457KACAh3Z/n03uwR0sRDQOuQ/tyQi+tRTFASlVpOXv/RK0I0v+7r0/vIrM8QeVrhlbMCEp9Xqx0lHJJpTSV0VND+1uH9aeHoR/2Ypo+ZJRx5t7LBEoaMfcT258q2r+FtFJR0K5Q5/PkOeXHX/Hzrvzl0/0dT8rEis5gyaXy5fdCruzH+G8WgAljgUnoxSjZSvWwuoNEdVkw+OCEySVNlklorETWgMFSwtLfeZP5HOIMW3lGxzPAoNi2q17kDl47tDrS8SzmzddXfSzMhNBecUx7VTGs8DwMe2w8ezzXyq6byZSylTifWH5slvh7O5FsGgOgEFlBBnPUoxKvW8UYkw7Q2gAivslKgl3sAzC7CpRGYmT0Sag45ig5gIAfuBPj9F+x4MnjeX+TnM7EniCgYDhG48TzWST8TnGHSxEk2Okz54huygnCWPa6TVaCcjxxLM5U/UaoeoyUuNxopko995ZCTEtDbV582acs+KDeM+c8+MeCgDgob3/hztYwB0sRFNiPEFXJU3C4jgpqi0JEahpeSwqMMxEc8jvvczJaG4SyuTK7FZ4QmP5slt5coJmlcmakBJVgrHGgZX22h8pptWijM+mcSwaYkw7fUZLnow3ns1h/DK7Fcazy5av5c4UmjXyr3vGtERl40cEUYXIbdOuihUxg985Bs0hhdZj/yDO3mdVPP8qMdyxbD/gn+Du7AYAyCCaziHRLFA0GV2xlicniIhmkcJ4tuJjulIzYca0FWe447iq5m8BAN5rnQBMfx2iyTI4nuWZMyKqLBpaq4r4IoM7WIgmaLg6vIXG2rNkOlYLltM8cfA4cs+xsPxTrgyC9BWcF15Dx867xz+pliL/uFwpMT7ti69Axyt3ljz++cuOPiB/2eBa0UQTxRNKNNvx84uq0bC9yAYZKd4d6X7LMZ6/neVn3goIjNpUvnAcpeLZfK8MaXppOH/ajo5d9zCmjdGqmr9FcOrRQy7P/z6y12UWNgAAohRPbdDkYTxLxJiWaCwYhVDFKnVyv1pNdYBW6v5HOl7Ll90KWAMTv9ztc/8f3JARAKAKtkYLU5NY+graEqa/liuROe7AcT3XXH1jLcSEG4zOdh2v3Fn0PScHRERTR0QaUBraMidmqzlWoanDmHZi9z3c8Vq+7FZoWRzP5m6fj2kHNx4fHM+GGtKPoO2B4FN5FjInLmZMG7MNvd8r3kFARERTQkQaItJQtsx/blVzrDJrVEqT+woZRtyYYKGqMZG+JoMnXcNdNh6FPzvWVX1TadhxKAAlak4X3n7Ykj6y+PooOTm7H/KPx5NTZVu2fC2cx5/DhvT3S15v9YWIEjYn9kREU0QECg889Pn895Xy+U+VbzJi2qmMZ3PfV8pruuQ4cvHsKH3kChMng+XjWXvypsSMacdm2Yq1gAKcx57Fhv4fDLme8SwR0dSSvsIvH2Y8SzRRTLDQtBttt8VoyZCJPtZwl5WaSI5lYlROqbCKUMYEpWSCZYonNrkVfzSy9gP+CZkjTYmv8JQRyiawTAIR0eRSwOYHho8LeDJ1dsmdGC6Mjwa/BqYyph0pni11/YyLacuMS4fEltNwop4x7ehW1V6I8F1H5nfUh0uPHXKbZSvWMp4lIpoCI8UEjGeJxocRC43bcDWFxzMRG+5npnNSN9HHquSVf5UuV5KMH+aj63j9rmGv4+uNiGhyFZ0o5QrqGWnVkhuwYctNJa8b9XN10GtipNtP12f0ZDwOY9rxY0xbng093x3xer7eiIgmF5P/M5Bmba5KwgQLjWq4msaDr5uJJvL8ZvqxmZDcis9RVgPT8KpidSkRURXjCdKZZ+UpNyNK2NBOQWZkTnJWfI4ypp0CjGcnBWNaIqKpxZiWaOoxwUIAyp84MeilCSsop8HJ6FBj/Rvj3yQREZHRftQ1AIDMwgZzweAm43XutI+JZijGs6NiTEtERDSFlIp7BFncSQMwwTIrMXilSacAKxNBORLaFhCBAqQo2oLKVRPF+HdIREQ0MUM+S3OJlRyWdaOxGiWmZTxbjPEsERERERMss0qpAFhEGloU1BYfvNKPqAxWOgR+8ywkgE3R/XEPpyJxAkpERDQ58p+p2bhVZiJACCjbBLFCaWibdcZp7BjTjozxLBEREdFQTLBUofe9Zw2UY42cCFGA0CWaWBXUCoaEuX7QZUQ5pRqhceXe6Dj5JCKqfoV9AUpdXgo/I8dm2fK1w8ee2bhURBrQGEiYFF6uNKAFdDaxkotnmVyhwQbHtPxbLQ9jWiKi6lcqpmU8W+U02OS+wlRNguXPf/4zPvvZz+Kxxx6D7/s47rjjcMstt+DMM8/M32bbtm34x3/8R2zevBnJZBIXXHAB1q1bB9edWfWWlWdBBApaDsxIRaghIgURaSjPgrYENEpMLuWgf4e7jGaWMSbPck0mtSUgQg0tBYTSsPpDLFuxdtQP3GUr1kJmIjgvvIZw125sUj+c2PjHaayTQhFpPLD5mil/HCIiqh5F7/EK8J7bBlgWMkcfAICT0IkQ0dB4VgYKUNl4dlC5UQD5eEZbAhh8XcH1NENNIKaFwpjiWaA4pu1481/HP+4JYkxLREQTVbgD2Ht+u4lnj2oDwHiWaKKqJsFy1lln4W1ve1s+efLVr34VZ599Nv7yl7+gtbUVURThrLPOwrx58/Doo49iz549uPDCC6G1xl133RX38Ee1uumTAADROg9RXRJRyoZ2ZMk3ucLL2lv+AZASumUutC0R1bhDJ6JEBRPRUrtS8rITT8C8zlYlPgIA2ND/g2HveriJmLYlokPasCmmyegKeR7k6SdCedboNy6YrK9acgM2bLlpSsdGRERVItc7smAxSua4A/NXczJabHXD3wEARFsLVG0CyrOhbDFsTPvAQ58HALTPuwSwreJ4lrtQqJTc3+JoiZZBMe1K9wJs9P9j2JuPlFjQtkR46AFjH+skWSHPA5YvKe/GjGmJiKiUwphWApljF+WvYjxLNHFVkWDZvXs3XnrpJfz7v/87jj/+eADA2rVrcffdd+O5555Da2srNm7ciOeffx7bt29HW5vJwN5+++246KKLsGbNGtTX18f5FEYlbBvB0QdCucUzhcHB/uA3vsKVVO0HXg6pNfScevjNNYAErL4QyrU4SaU8bQlYfSGiVIk/fwloKbBsxVpYfSEkyk+uSF9B2RJWJgIe/515LJhJYRw7WKzaWvhOGckVoGg1bFjnof3wz6Hjxa+U9aOrEh+BAwAiW/c9mYBoaUY4p4Z/e0REVYoTzfERyQSCIxYOiWeBkWPajl335P/fvvBT+Xg2bErly+LanX5+ARIRJGClI0TJYWK9QTGt0Kr07TD0tVkqpo2TVVuLqNwbTyCmXeleUHRyQCYTEC3z4B/QyHiWiKhKMaadqTS0Gj62mU4sVGZURYJl7ty5OOqoo/C9730P73jHO+B5Hv7t3/4NLS0tWLLErOZ54okncOyxx+aTKwCwatUqZDIZbNmypaiUWKFMJoNMJpP/vqura2qfzDByE8vVx1wLVZ9AWOuUvN1w29nb511i/iMFxBu74O3pBLRGx+t3Ff0sAPZaodLJlUGUI/Mr/0Zj9YWwnv0L1nfdm79shTyv5P9LJVtWyPOgs7tNZCaCs30POrbeUdZjD5Z/nZ98xLh+XlsSsMtMzGDkBBQArK7/OCAGJqWitgZIJqAaaxA0JcY1RiIimnx2t4+Nv74+7mGMS8XEszvvBgCsevsNUClnxHijVEyb29ENAOhLw94xELCu3/3Nop8FwJh2lhs2uTKIciTKjexGimlHi2dzt6nWmHakHT65Xe05sq4OqElCNdUjaE6Oa3xERDT57G4fYZ3LxArRNKuKBIsQAps2bcK5556Luro6SCnR0tKC9evXo7GxEQCwc+dOtLS0FP1cU1MTXNfFzp07h73vW2+9FTfdVDlbp9c/t2ZcP1e08m/eJeh47etF17cf8E/wamuQWdjIiSiVRVsS6pRj0L7wU0NeTzkjfWjnJp7LVqyFsz8DhApBc7JkCQb3uCPzu02UZwHJRNk7X5atWGtWMHoWRKSACa5s9bbtLXulXzn8EpNiEWquBCQiqjBhXfX27Ku0eHbDM+Mby/p9387/f3XTJ4FIFV2Wu9xrrEfmkPmMaaks2pJQS48b9vrRTkLl4tFV77xpxHgWGH9Mm7u/So1pg3cPPX6MZ4mIKk81x7M0RmxyX1FiTbDceOONo04Gn3zySSxZsgSXXnop5s+fj1/96ldIJpP49re/jbPPPhtPPvkkFixYAMAkYgbTWpe8POeaa67BlVdemf++q6sLixYtGvb21aAw2ZK/LLuTZcWptyCqqYq8GsVNAsqxELU1Y/myW4v6tnivdUJt3Qbl+5BeArKlGZnDW7B509X51X25iWSuuWihwX1g/Pk1A5cLAb1z15jKiuVWMBY2ys0bZXVruSs7VlgfQrTs7WacoYaIFOSvn0N4xvFljzOHk1EiIppMMzGeHZxYGXz5ylNu5kkEKk82pl1+5q1FMdjgeFYkExD1tcPGtEGjV3S3pfoajjemzd3XsDFtGbu1yolpVzrnI3zvieYxs/Gs8izYD/9hzDEt41kiosrk7uyOewhEs47QOr6U1+7du7F79+4Rb7N48WI89thjWLlyJfbt21fUS+Xwww/HJz7xCVx99dW4/vrr8d///d/4/e9/n79+3759mDNnDjZv3jxsibDBurq60NDQgM7Ozmnv2zLcSijvd69AD64brDTC4w4uWeN6WIMbtRJNVKnJngKs/hI9XrK3raatqoUlSESkWPediGgWqITPqYnGo5UYzwKA+9RLQGG9aK0RnniYWek/FoxpaTINl7woFdMyniUioipRCZ9VccakM9XmzZtxzvs+gNOTH4h7KACAh9M/woOP/RJLly6NeyixinUrQ3NzM5qbm0e9XV9fHwBADlrJI6WEyk7Sli5dijVr1mDHjh35HS0bN26E53n5Pi2VrtRKfwDInLgYmzddjdUNf2cu0BoQAvbvXsL6zn8vuu2y5Wvh7E8jqvWGJl8YS9NkK/WaksP0eJGA3ROgvfVShG/tKrpqLLtVyjHSyZ1CpQKOkj8rh9kdQ0REM07h50AlTEyrzXDxLAD4Jx2GzZuuxqraC80FWsN6+s/4Zc93i26Xi2dFECFsTA5NwPAjmSbTcK+nUjHtCPEsUOExLeNZIqJZhTHtDFdmz+QpVyHDiFusO1jKtXv3bhx55JE444wzcP311yOZTOJb3/oWvva1r+HJJ5/ECSecgCiKcOKJJ6KlpQW33XYb9u7di4suuggf+MAHcNddd43+IFnVkF1dXf9xAChqvlio3ECcaDpJX0FbYkgphUIi1JAPP112neqJcp96Cf5JhwEAnN1pNukkIqJRTccEtZp3sIzFqpq/xYbe75W8jvEsVaJy4lmgvJh20l7jCnCfZkxLRETlm66ES7XEpNUkv4PFOzfuoQAAHu7/MR58nDtYqqIZR3NzM9avX49rr70Wy5YtQxAEOOaYY/Df//3fOOGEEwAAlmXh5z//OS699FKcdtppSCaTuOCCC7Bu3bopG1epoNju9AFpGkuN9Q1rdcPfFTUpGi6BwsQKVaNyytlpW5SciE7Vazt4+6ED/+dElIiIyjB4NeCyFWurelXgsPGsJRDWOgDGNgkvjGd1dqf5hkE7VHJKJVcYz1IlK7c8c6mYdspe25IxLRERjc1Mi2eJ4lYVO1im03iyq0MaeAemtq2zNw0oQO7aB93bBzFvLlRdAiJUEG/sgg7D4jrUhbTOJ1JWvf0GBspEREREFUgECtqSJcsMjXeiGscOluHiWQAjxrR45fWBHyoxrdBK5RMsq0+8Hv681JifDxERERFNnZHiWSC+mJaGyu9gcc+JeygAgIczP+EOFlTJDpZKN9wbzbIVayF9BeHXAc2N0K/thNhlEir56efCBQjnpobUlhaBwvL3fsl805SYopETERER0USM1DB6Iv0TpttIY8jHtGE2pt22A+LNaOAGw8WzoQa0Hohp53DBEBEREVGlGSmeBcqLaSshniWKCxMswzj73Dtg20MTGyM17sxdX+r/g+Xuw+4J4GzbDQBQTfWI6lxoW4765kZEREREM8OyFWshIg0thCk1G/ZPyv0OF88CI8e0g2PY0WLafDwrBNScOkQ1LpRjQdsCwMi9KoiIiIio+uXiyqmIaWkQDehKaXJPAJhgGbPRsrZjra0b1joID2+ZyJCIiIiIqMqN1jR7so0UszKeJSIiIqLxmO6YlqgScJsEERERERERERERERHRGHEHCxERERERERERERFRxdOAVnEPIoulygDuYCEiIiIiIiIiIiIiIhoz7mAhIiIiIiIiIiIiIqoCbHJfWbiDhYiIiIiIiIiIiIiIptTdd9+Ngw8+GIlEAkuWLMGvfvWruIc0YUywEBERERERERERERHRlLn//vtx+eWX49prr8UzzzyDd7/73Whvb8e2bdviHtqEMMFCRERERERERERERFQNtKqMrzG644478IlPfAKf/OQncdRRR+GrX/0qFi1ahH/913+dgoM0fZhgISIiIiIiIiIiIiKiKeH7PrZs2YKVK1cWXb5y5Uo8/vjjMY1qcrDJ/SBamyZBYZiJeSRERERENBvl4tBcXDpWjGeJiIiIKG4TjWlpqGQyiTR68YTeGPdQAAA++mFZFrq6uoou9zwPnucVXbZ7925EUYSWlpaiy1taWrBz584pH+tUYoJlkO7ubgDAE4+ujXkkRERERDSbdXd3o6GhYVw/BzCeJSIiIqL4jTempaGWLl2KR371CHp7e+MeCgCgrq4Ov/jFL3DyyScXXX7DDTfgxhtvLPkzQoii77XWQy6rNkywDNLW1obt27ejrq6u6n+5pXR1dWHRokXYvn076uvr4x7OrMHjHg8e93jwuMeDxz0ePO7xmOnHXWuN7u5utLW1jevnZ3o8C8z810Al4jGPB497PHjc48HjHg8e93jMhuM+0ZiWSjv99NPjHkKRJUuW4Morryy6bPDuFQBobm6GZVlDdqu89dZbQ3a1VBsmWAaRUmLhwoVxD2PK1dfXz9g38ErG4x4PHvd48LjHg8c9Hjzu8ZjJx30iq/xmSzwLzOzXQKXiMY8Hj3s8eNzjweMeDx73eMz0486dKzNfqXJgpbiuiyVLlmDTpk3467/+6/zlmzZtwrnnnjuVQ5xyTLAQEREREREREREREdGUufLKK/Gxj30MJ510EpYuXYpvfvOb2LZtGy655JK4hzYhTLAQEREREREREREREdGU+dCHPoQ9e/bg5ptvxo4dO3DsscfiF7/4BQ466KC4hzYhTLDMMp7n4YYbbihr6xZNHh73ePC4x4PHPR487vHgcY8HjzvxNTD9eMzjweMeDx73ePC4x4PHPR487jRbXXrppbj00kvjHsakElprHfcgiIiIiIiIiIiIiIiIqomMewBERERERERERERERETVhgkWIiIiIiIiIiIiIiKiMWKChYiIiIiIiIiIiIiIaIyYYJmh1qxZg1NPPRWpVAqNjY0lbyOEGPJ1zz33FN3m2WefxRlnnIFkMokDDjgAN998M9i2Z3jlHPdt27bhnHPOQU1NDZqbm/GpT30Kvu8X3YbHfeIWL1485PV99dVXF92mnN8Fjc3dd9+Ngw8+GIlEAkuWLMGvfvWruIc0o9x4441DXtetra3567XWuPHGG9HW1oZkMon3vve9eO6552IccXV65JFHcM4556CtrQ1CCPzkJz8pur6c45zJZPBP//RPaG5uRk1NDd7//vfjtddem8ZnUX1GO+4XXXTRkNf/KaecUnQbHveZhzFtPBjTVgbGs/FhTDu1GNNOD8a08WBMSzT7MMEyQ/m+j/POOw//8A//MOLt7r33XuzYsSP/deGFF+av6+rqwooVK9DW1oYnn3wSd911F9atW4c77rhjqodftUY77lEU4ayzzkJvby8effRR3HffffjRj36Eq666Kn8bHvfJc/PNNxe9vq+77rr8deX8Lmhs7r//flx++eW49tpr8cwzz+Dd73432tvbsW3btriHNqMcc8wxRa/rZ599Nn/dV77yFdxxxx34l3/5Fzz55JNobW3FihUr0N3dHeOIq09vby9OOOEE/Mu//EvJ68s5zpdffjn+67/+C/fddx8effRR9PT04Oyzz0YURdP1NKrOaMcdAFavXl30+v/FL35RdD2P+8zDmDYejGkrB+PZ6ceYdnowpp16jGnjwZiWaBbSNKPde++9uqGhoeR1APR//dd/Dfuzd999t25oaND9/f35y2699Vbd1tamlVKTPNKZZbjj/otf/EJLKfXrr7+ev+w///M/ted5urOzU2vN4z5ZDjroIH3nnXcOe305vwsam3e96136kksuKbrsyCOP1FdffXVMI5p5brjhBn3CCSeUvE4ppVtbW/XatWvzl/X39+uGhgZ9zz33TNMIZ57Bn5XlHOf9+/drx3H0fffdl7/N66+/rqWUev369dM29mpWKka58MIL9bnnnjvsz/C4z2yMaePBmDZejGfjwZh26jGmnX6MaePBmJZoduAOllnusssuQ3NzM975znfinnvugVIqf90TTzyBM844A57n5S9btWoV3njjDbzyyisxjLb6PfHEEzj22GPR1taWv2zVqlXIZDLYsmVL/jY87pPjy1/+MubOnYsTTzwRa9asKSqXUM7vgsrn+z62bNmClStXFl2+cuVKPP744zGNamZ68cUX0dbWhoMPPhjnn38+Xn75ZQDA1q1bsXPnzqLfged5OOOMM/g7mETlHOctW7YgCIKi27S1teHYY4/l72KCHnroIcyfPx9ve9vbcPHFF+Ott97KX8fjPrsxpp1ejGmnD+PZ6cWYdvowpo0XY9p4MaYlmlnsuAdA8fniF7+I5cuXI5lM4oEHHsBVV12F3bt357ed79y5E4sXLy76mZaWlvx1Bx988HQPuert3Lkzfwxzmpqa4Loudu7cmb8Nj/vEffrTn8Y73vEONDU14be//S2uueYabN26Fd/+9rcBlPe7oPLt3r0bURQNOaYtLS08npPo5JNPxve+9z287W1vw5tvvolbbrkFp556Kp577rn8cS71O3j11VfjGO6MVM5x3rlzJ1zXRVNT05Db8O9h/Nrb23HeeefhoIMOwtatW/GFL3wBy5Ytw5YtW+B5Ho/7LMaYdvoxpp0ejGenH2Pa6cGYNn6MaePDmJZo5uEOlipSqhHc4K+nnnqq7Pu77rrrsHTpUpx44om46qqrcPPNN+O2224ruo0Qouh7nW1KOfjymWyyj3upY6e1Lrqcx720sfwurrjiCpxxxhk4/vjj8clPfhL33HMPvvOd72DPnj35+yvnd0FjU+q1y+M5edrb2/E3f/M3OO644/C+970PP//5zwEA3/3ud/O34e9geoznOPN3MTEf+tCHcNZZZ+HYY4/FOeecg46ODvz5z3/O/x0Mh8e98jCmjQdj2srAeLY6MJ6aWoxpKwdj2unHmJZo5uEOlipy2WWX4fzzzx/xNoNXiY3FKaecgq6uLrz55ptoaWlBa2vrkOx4btvi4FUOM9lkHvfW1lb85je/Kbps3759CIIgf0x53Ic3kd/FKaecAgB46aWXMHfu3LJ+F1S+5uZmWJZV8rXL4zl1ampqcNxxx+HFF1/EBz7wAQBmpdmCBQvyt+HvYHK1trYCGPk4t7a2wvd97Nu3r2jl2VtvvYVTTz11egc8gy1YsAAHHXQQXnzxRQA87tWEMW08GNNWBsazlY0xbTwY004/xrSVgzEtUfXjDpYq0tzcjCOPPHLEr0QiMe77f+aZZ5BIJNDY2AgAWLp0KR555JGiOr8bN25EW1vbhCa91WYyj/vSpUvxxz/+ETt27MhftnHjRniehyVLluRvw+Ne2kR+F8888wwA5IPHcn4XVD7XdbFkyRJs2rSp6PJNmzYxCJxCmUwGf/rTn7BgwQIcfPDBaG1tLfod+L6Phx9+mL+DSVTOcV6yZAkcxym6zY4dO/DHP/6Rv4tJtGfPHmzfvj3/vs7jXj0Y08aDMW1lYDxb2RjTxoMx7fRjTFs5GNMSzQAlGt/TDPDqq6/qZ555Rt900026trZWP/PMM/qZZ57R3d3dWmutf/rTn+pvfvOb+tlnn9UvvfSS/ta3vqXr6+v1pz71qfx97N+/X7e0tOgPf/jD+tlnn9U//vGPdX19vV63bl1cT6vijXbcwzDUxx57rF6+fLl++umn9S9/+Uu9cOFCfdlll+Xvg8d94h5//HF9xx136GeeeUa//PLL+v7779dtbW36/e9/f/425fwuaGzuu+8+7TiO/s53vqOff/55ffnll+uamhr9yiuvxD20GeOqq67SDz30kH755Zf1r3/9a3322Wfrurq6/DFeu3atbmho0D/+8Y/1s88+qz/84Q/rBQsW6K6urphHXl26u7vz798A8u8nr776qta6vON8ySWX6IULF+pf/vKX+umnn9bLli3TJ5xwgg7DMK6nVfFGOu7d3d36qquu0o8//rjeunWrfvDBB/XSpUv1AQccwOM+wzGmjQdj2vgxno0PY9qpx5h2ejCmjQdjWqLZhwmWGerCCy/UAIZ8Pfjgg1prrTs6OvSJJ56oa2trdSqV0scee6z+6le/qoMgKLqfP/zhD/rd73639jxPt7a26htvvFErpWJ4RtVhtOOutZmwnnXWWTqZTOo5c+boyy67TPf39xfdD4/7xGzZskWffPLJuqGhQScSCX3EEUfoG264Qff29hbdrpzfBY3NN77xDX3QQQdp13X1O97xDv3www/HPaQZ5UMf+pBesGCBdhxHt7W16Q9+8IP6ueeey1+vlNI33HCDbm1t1Z7n6fe85z362WefjXHE1enBBx8s+V5+4YUXaq3LO87pdFpfdtlles6cOTqZTOqzzz5bb9u2LYZnUz1GOu59fX165cqVet68edpxHH3ggQfqCy+8cMgx5XGfeRjTxoMxbfwYz8aLMe3UYkw7PRjTxoMxLdHsI7TOdhokIiIiIiIiIiIiIiKisrAHCxERERERERERERER0RgxwUJERERERERERERERDRGTLAQERERERERERERERGNERMsREREREREREREREREY8QECxERERERERERERER0RgxwUJERERERERERERERDRGTLAQERERERERERERERGNERMsREREREREREREREREY8QECxERjcl73/teXH755XEPg4iIiIhoXBjPEhER0WRhgoWIiIiIiIiIiIiIiGiMmGAhIiIiIiIiIiIiIiIaIyZYiIho3Pbt24e//du/RVNTE1KpFNrb2/Hiiy/mr//f//t/o7GxERs2bMBRRx2F2tparF69Gjt27Ihx1EREREREBuNZIiIimggmWIiIaNwuuugiPPXUU/jpT3+KJ554Alpr/NVf/RWCIMjfpq+vD+vWrcP3v/99PPLII9i2bRs+85nPxDhqIiIiIiKD8SwRERFNhB33AIiIqDq9+OKL+OlPf4rHHnsMp556KgDgBz/4ARYtWoSf/OQnOO+88wAAQRDgnnvuwaGHHgoAuOyyy3DzzTfHNm4iIiIiIoDxLBEREU0cd7AQEdG4/OlPf4Jt2zj55JPzl82dOxdHHHEE/vSnP+UvS6VS+ckoACxYsABvvfXWtI6ViIiIiGgwxrNEREQ0UUywEBHRuGith71cCJH/3nGcouuFEMP+LBERERHRdGE8S0RERBPFBAsREY3L0UcfjTAM8Zvf/CZ/2Z49e/DnP/8ZRx11VIwjIyIiIiIaHeNZIiIimigmWIiIaFwOP/xwnHvuubj44ovx6KOP4ve//z0++tGP4oADDsC5554b9/CIiIiIiEbEeJaIiIgmigkWIiIat3vvvRdLlizB2WefjaVLl0JrjV/84hdDyigQEREREVUixrNEREQ0EUKzcCgREREREREREREREdGYcAcLERERERERERERERHRGDHBQkRERERERERERERENEZMsBAREREREREREREREY0REyxERERERERERERERERjxAQLERERERERERERERHRGDHBQkRERERERERERERENEZMsBAREREREREREREREY0REyxERERERERERERERERjxAQLERERERERERERERHRGDHBQkRERERERERERERENEZMsBAREREREREREREREY0REyxERERERERERERERERj9P8Hj1A3P4VyqWkAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Dimensions: (crs: 1, lat: 4320, lon: 8640, time: 24)\n", + "Coordinates:\n", + " * crs (crs) int16 3\n", + " * lat (lat) float64 89.98 89.94 89.9 89.85 ... -89.85 -89.9 -89.94 -89.98\n", + " * lon (lon) float64 -180.0 -179.9 -179.9 -179.9 ... 179.9 179.9 180.0\n", + " * time (time) datetime64[ns] 2000-01-01 2000-02-01 ... 2001-12-01\n", + "Data variables:\n", + " soil (time, lat, lon) float32 dask.array\n", + " srad (time, lat, lon) float32 dask.array\n", + "Attributes: (12/49)\n", + " Conventions: CF-1.6\n", + " acknowledgment: Please cite the references included here...\n", + " cdm_data_type: GRID\n", + " contributor_email: khegewisch@ucmerced.edu\n", + " contributor_name: Katherine Hegewisch\n", + " contributor_role: Postdoctoral Fellow\n", + " ... ...\n", + " time_coverage_duration: P1Y\n", + " time_coverage_end: 1958-12-01T00:0\n", + " time_coverage_resolution: P1M\n", + " time_coverage_start: 1958-01-01T00:0\n", + " title: TerraClimate: monthly climate and climat...\n", + " version: v1.0\n" + ] + } + ], + "source": [ + "ds_target = xr.open_zarr(target_path, consolidated=True)\n", + "print(ds_target)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As an example calculation, we compute and plot the seasonal climatology of soil moisture." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/tt/4f941hdn0zq549zdwhcgg98c0000gn/T/ipykernel_22660/2916827166.py:2: PerformanceWarning: Reshaping is producing a large chunk. To accept the large\n", + "chunk and silence this warning, set the option\n", + " >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", + " ... array.reshape(shape)\n", + "\n", + "To avoid creating the large chunks, set the option\n", + " >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", + " ... array.reshape(shape)Explictly passing ``limit`` to ``reshape`` will also silence this warning\n", + " >>> array.reshape(shape, limit='128 MiB')\n", + " soil_clim = ds_target.soil.groupby('time.season').mean('time').coarsen(lon=12, lat=12).mean()\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.DataArray 'soil' (season: 4, lat: 360, lon: 720)>\n",
+              "dask.array<mean_agg-aggregate, shape=(4, 360, 720), dtype=float32, chunksize=(1, 360, 720), chunktype=numpy.ndarray>\n",
+              "Coordinates:\n",
+              "  * lat      (lat) float64 89.75 89.25 88.75 88.25 ... -88.75 -89.25 -89.75\n",
+              "  * lon      (lon) float64 -179.8 -179.2 -178.8 -178.2 ... 178.8 179.2 179.8\n",
+              "  * season   (season) object 'DJF' 'JJA' 'MAM' 'SON'\n",
+              "Attributes:\n",
+              "    coordinate_system:  WGS84,EPSG:4326\n",
+              "    description:        Soil Moisture at End of Month\n",
+              "    dimensions:         lon lat time\n",
+              "    grid_mapping:       crs\n",
+              "    long_name:          soil_moisture_content\n",
+              "    standard_name:      soil_moisture_content\n",
+              "    units:              mm
" + ], + "text/plain": [ + "\n", + "dask.array\n", + "Coordinates:\n", + " * lat (lat) float64 89.75 89.25 88.75 88.25 ... -88.75 -89.25 -89.75\n", + " * lon (lon) float64 -179.8 -179.2 -178.8 -178.2 ... 178.8 179.2 179.8\n", + " * season (season) object 'DJF' 'JJA' 'MAM' 'SON'\n", + "Attributes:\n", + " coordinate_system: WGS84,EPSG:4326\n", + " description: Soil Moisture at End of Month\n", + " dimensions: lon lat time\n", + " grid_mapping: crs\n", + " long_name: soil_moisture_content\n", + " standard_name: soil_moisture_content\n", + " units: mm" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "with xr.set_options(keep_attrs=True):\n", + " soil_clim = ds_target.soil.groupby('time.season').mean('time').coarsen(lon=12, lat=12).mean()\n", + "soil_clim" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABlgAAAMWCAYAAACdmov2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZxlVXUv/l17n+HeW2NPdAOCgIoDT9HnFMUJGrq7fprnU6NxSDT6wIDGCIgMIqOMQYZoTHyaoIQMvjwTk/eSdDcIzqhxNhok+hyRsenumu5wztl7//5Ye+9zzq1b3XR3dVdVs7+fT32q6g7n7DPtvdb6rvVdZIwxCAgICAgICAgICAgICAgICAgICAgICAgICHjUEIs9gICAgICAgICAgICAgICAgICAgICAgICAgOWGQLAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBATsIQLBEhAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQsIcIBEtAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQMAeIhAsAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBe4hAsAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBOwhAsESEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBCwhwgES0BAQEBAQEBAQEBAQEBAQEBAQEBAQEBAwB4iECwBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQF7iECwBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQE7CECwRIQEBAQsOxw6aWXgohARIiiCKtXr8ZLXvIS3HTTTej1erXPvuxlL8OZZ55Z+999t/pTFMUBPoqAgICAgICAgIAAtm2f+cxnzvu/w9/8zd9ASonTTz/9wA0uICAgICAgYJcIBEtAQEBAwLLEcccdh/vvvx+//OUv8bnPfQ6vfe1rcfXVV+OFL3whpqend/nd0047Dffff3/tJ4qiAzTygICAgICAgICAgD3HzTffjHPPPRef+tSn0G63F3s4AQEBAQEBAQgES0BAQMCSx6c//Wk8/elPR7PZxKpVq3DyySdjdnbWv/+JT3wCT33qU9FoNPCUpzwFf/qnf1r7/nnnnYdjjz0WrVYLxxxzDC666CLkee7f/973vocTTzwRIyMjGB0dxbOf/Wx885vf9O///d//PY477jikaYqjjjoK119/fW37Rx11FK666iq87W1vw8jICI488kh87GMf209no0QURVi3bh0OO+wwPP3pT8e73vUufOELX8APfvADXHvttbv8bqvVwrp162o/AQEBAQEBAQEB+x/Btt07/PznP8ddd92F888/H095ylPw6U9/erGHFBAQEBAQEIBAsAQEBAQsadx///14wxvegLe97W24++678fnPfx6vfvWrYYwBAHz84x/HhRdeiCuvvBJ33303rrrqKlx00UW45ZZb/DZGRkbwyU9+Ev/xH/+BP/7jP8bHP/5x3Hjjjf79N73pTXjc4x6Hb3zjG/jWt76F888/H3EcAwC+9a1v4XWvex1e//rX49///d9x6aWX4qKLLsInP/nJ2jivv/56POc5z8F3vvMdvOMd78AZZ5yBH/3oR/Me11VXXYXh4eFd/nzpS1/a4/P1lKc8BRMTE/iHf/iHPf5uQEBAQEBAQEDA/kWwbfceN998M17+8pdjbGwMv/M7v4O/+Iu/2KftBQQEBAQEBCwMyDhLJiAgICBgyeHb3/42nv3sZ+PnP/85Hv/4x895/8gjj8S1116LN7zhDf61K664Av/6r/+Ku+66a+A2r7vuOvyv//W/fCbf6OgoPvzhD+Mtb3nLnM++6U1vwsMPP4zbbrvNv3buuefiX/7lX/DDH/4QAGf5vfjFL8att94KADDGYN26dbjsssvm1Yfevn07tm/fvstjP/zww9FsNge+d+mll+If//Ef8d3vfnfOe+effz4+9KEPedmEl73sZXjmM5+Jm266yf9/1113IUkS/53f//3fn5O9GBAQEBAQEBAQsLAItu2js237/9da46ijjsKHP/xhvPKVr8S2bdtw2GGH4T/+4z/wxCc+cZf7DQgICAgICNi/CILzAQEBAUsYxx9/PNavX4+nP/3p2LhxIzZs2IDf+q3fwooVK/Dwww/jV7/6Ff7H//gfOO200/x3iqLA2NiY///Tn/40brrpJvzkJz/BzMwMiqLA6Oiof//ss8/GqaeeiltvvRUnn3wyXvva1+IJT3gCAODuu+/GK1/5ytqYTjjhBNx0001QSkFKCQB4xjOe4d8nIqxbtw4PPfTQvMe1cuVKrFy5ct9OzjwwxoCIdvmZN73pTbjwwgv9/+Pj4/tlLAEBAQEBAQEBASWCbbt3uO222zA7O4uJiQkAwOrVq7FhwwbcfPPNuOqqq/bbfgMCAgICAgJ2jyARFhAQELCEIaXE7bffjs2bN+NpT3saPvzhD+PJT34yfvazn0FrDYClFL773e/6nx/84Af42te+BgD42te+hte//vWYmJjAP//zP+M73/kOLrzwQmRZ5vdx6aWX4oc//CFe/vKX484778TTnvY0fOYznwEwmKwYVPjoZBcciMiPbxD2p4zC3XffjaOPPnqXnxkbG8MTn/hE/7N69eq92ldAQEBAQEBAQMCjR7Bt9w4333wztm/fjlarhSiKEEUR/vVf/xW33HILlFJ7vd2AgICAgICAfUeoYAkICAhY4iAinHDCCTjhhBNw8cUX4/GPfzw+85nP4Oyzz8bhhx+On/70p3jTm9408Ltf+cpX8PjHP75WrfGLX/xizueOPfZYHHvssTjrrLPwhje8AZ/4xCfwqle9Ck972tPw5S9/ufbZu+66C8cee6zP8NsbnH766Xjd6163y88cfvjhe7zdH/3oR9iyZQsuuOCCvR1aQEBAQEBAQEDAfkSwbfcMjzzyCP7pn/4Jn/rUp3Dcccf517XWePGLX4zNmzfjFa94xV5tOyAgICAgIGDfEQiWgICAgCWMr3/967jjjjuwYcMGHHLIIfj617+Ohx9+GE996lMBcIbeH/7hH2J0dBQTExPo9Xr45je/iR07duDss8/GE5/4RPzyl7/Epz71KTz3uc/Fv/zLv/gMPgDodDp473vfi9/6rd/C0UcfjXvvvRff+MY38JrXvAYA8J73vAfPfe5z8YEPfAC//du/ja9+9av4kz/5E/zpn/7pPh3XQsgoFEWBBx54AFprPPLII/j85z+PK664As985jPx3ve+d5+2HRAQEBAQEBAQsPAItu2e49Zbb8WqVavw2te+FkLURUhe8YpX4C/+4i8CwRIQEBAQELCICARLQEBAwBLG6OgovvjFL+Kmm27C1NQUHv/4x+P666/3+sunnnoqWq0WrrvuOpx77rkYGhrC05/+dJx55pkAgFe+8pU466yz8Ad/8Afo9Xp4+ctfjosuugiXXnopAJZpeOSRR/DmN78ZDz74IFavXo1Xv/rVuOyyywAA//W//lf83d/9HS6++GJ84AMfwKGHHorLL78cv/d7v7cIZ6OOH/7whzj00EMhpcTY2Bie9rSn4YILLsAZZ5yBNE3957TWiKKw3AUEBAQEBAQELDaCbTsY/fZq9f+bb74Zr3rVq+aQKwDwmte8Br/927+NBx98EGvXrj1g4w0ICAgICAgoQWaQ4GhAQEBAQMBBgqc85Sk49dRTcc455yz2UAICAgICAgICAgLm4PTTT8e9996Lf/7nfx74f0BAQEBAQMDSRWhyHxAQEBBwUOKhhx7CLbfcgnvuuQfr169f7OEEBAQEBAQEBAQE1DA9PY0vfvGL+Id/+AecfPLJc/4PCAgICAgIWPoImikBAQEBAQclNm3ahB07duBDH/oQnvWsZy32cAICAgICAgICAgJquPjii/HXf/3XeNWrXoXTTz8dF1xwQe3/gICAgICAgKWPIBEWEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBCwhwgSYQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAXuIQLAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBATsIQLBEhAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQsIcITe77oLXGfffdh5GRERDRYg8nICAgICAgICDgMQZjDKanp3HYYYdBiD3Phwr2bEBAQEBAQEBAwGJjX23agIDlgkCw9OG+++7DEUccsdjDCAgICAgICAgIeIzjV7/6FR73uMft8feCPRsQEBAQEBAQELBUsLc2bcD+wys2DKPZIPzv/zO92EM5KBAIlj6MjIwA4Id/dHR0kUcTEBAQEBAQEBDwWMPU1BSOOOIIb5fuKYI9GxAQEBAQEBAQsNjYV5s2YP/gjjvuwJe/3oFSBl/96lfxghe8YLGHtOwRCJY+OBmF0dHR4JAGBAQEBAQEBAQsGvZW3ivYswEBAQEBAQEBAUsFQbJ26cAYg/e99+U4950r0OkavO+c9bjzy7PhGu0jggBeQEBAQEBAQEBAQEBAQEBAQEBAQEBAwEGM//N//g9+cW+Bd506jrNPH8f37+7hs5/97GIPa9kjECwBAQEBAQEBAQEBAQEBAQEBAQEBAQEBBymUUrjwvNfhwjNXYqglMDYqcd4frMT73vubMMYs9vCWNQLBEhAQEBAQEBAQEBAQEBAQEBAQEBAQEHCQ4m//9m8xM6tx6ptKCeF3/N4Yfv1Agc985jOLOLLlj0CwBAQEBAQEBAQEBAQEBAQEBAQEBAQEBByEyLIMl7z/bbjkvauQpiUd0GoJvP+slXj/+W+AUmoRR7i8EQiWgICAgICAgICAgICAgICAgICAgICAgIMQH7/xcUgTwu+8ZmTOe297wxh6mcFffuTwRRjZwYFAsAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQcZGi327jyxu24/LxVkJLmvJ8khEvOWYnLrnsEvV5vEUa4/BEIloCAgICAgICAgICAgICAgICAgICAgICDDB+++kgctjbCq/6/oXk/84ZXjWBkWOBj1x9xAEd28CAQLAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEHESYnJ3Htn+zAFResAtHc6hUHKQmXn7cKV960HbOzswdwhAcHosUeQEBAQMByw8ZnX4J8ZRPJw22o4RSqKUHK+PdFpvl3r4CJBFSDp9p4exswBhACqpUAgmAkwRBABjAE3PH59y3KMQUEBAQEBAQEBDx2sOn4i5AdMgQ5W0BOdqDGm1CtqG7TdhVEJ4eJJdRQDABIHpgClAYiiWJFCzq2OZt9QZs7PnfBATuWgICAgICAgMH44GXH4PinpTjlpa3dfva/bRzCtR+O8aGrHo8Lrtx2AEZ38ICMMWb3H3vsYGpqCmNjY5icnMTo6OhiDycg4IDjpFOu4T80QNrAiIqzNKjmTdvXdfn+nbefv38HuY+YWHM61M6dEM0m6JDV0CMtiHYPppkAxoDuexhopEAcQ48NwTQi6EQCAHQiQMrADNCt3GNUzx0AMgYwAAgw1kklY3DHncFBDQgICHgsYV/t0WDPBgTswqbts2dJGba7rE0mcgUqDEDA7V95/wEd855g0+q3Q09OgZIEIIJYd4i3aXUrBQCI+x4CRoahR1rQzRgmFjAEmHgB7dlB0JW/l4l/EBAQEBCw8Ag26eLioYcewhOOWYctnzocL3hO81F9584vt/HaU+/HT3+2DStWrNjPIzx4EAiWPoSHP+BgRtXR9BB9/wMgpWFiUSNNas5pH6FS3aYoNKjQMJGw1RlzHTcypnxd7B+Ha+PQm7F19i8BABuSNwIA5GFroR9+BNAGFEegleOAkFCrR31WniM34skuV5804/KYDzTcdalcg0HjCA5rQEBAwMGFQLAEBMyPee3Z/tdQ2rSeTNidPVvZhiNaTDzXpiXnQjtP2hhA0H5JitnY/F1s7dw6vz07OgJEkm3aQ0ahmnWbNmrnUI1o8ezZPUCwaQMCAgIOLgSbdHFx5ttX4P/9Isc/3XLYHn1vw+vuxfOe1cBVf7x9P43s4MOyIViKosCll16Kv/7rv8YDDzyAQw89FL/3e7+H97///RCCLUVjDC677DJ87GMfw44dO/D85z8fH/nIR3Dcccc96v2Ehz9gucA5l1QYiFxDR+Qlpwaiz+FccAdLs7NJyrCTSQQjaP4KGF0hWiqZbetPuhpUaOhYgpTmY6pUc1Bh5be6CpAE0clB7R6Q58iOXoP4Wz8GHbYWKBT0r34NSAkoBZAABEGMj8HMzIKSBKbXAx2+Dtm60aXjdA4iv+zvfmKqH8EpHYyTTrkmnJuAgIBlhUCwBDxWULVn4x0dqOF0rk1rbSBoAyP7DKD9YbtVbFpSBkaAbVq37/ns2QruvKPPpq18pmrPyk7B5E0kIae7oG4OZFndplUa+lf3AUaX9uyKcZjpGa5ekQKm3Vl6Nu186E8gGoBgt81FsGcDAgKWI4JNunj45S9/iSc/+Sh89V+OwDOelu7Rd//tO12c/Fv34if/7z6sW7duP43w4MKyIViuvPJK3Hjjjbjllltw3HHH4Zvf/Cbe+ta34oorrsC73/1uAMC1116LK6+8Ep/85Cdx7LHH4oorrsAXv/hF3HPPPRgZGXlU+wkPf8BSxPqTrp6TIWeIfPZclaQYRFzsKSi3FSz9rxcGpJlAMVIAxLIK0Y52+SFjYNIYOol4nNYphSAvf+XHDAACXoaBx8/H5/8GWNO5/3sAZE8BxkC0c6iRhN+PBGCAaKoLMd2FaSbQzRiqGZdEFBFgDJJ7fs1EzOPWIl/Z3H/O6KAMy73ZRuW7joyqXmfKNV8fCyMIpA0++8ULcfJLr4Ih+OuQ/PxhwBhs/vmNezmggIMBJ51yDagwSH58P3pPPYz//s/7sPnXH659bsPzLkcxxs8YFSboqgcE7GcEgiXgYMX6E6/mPwbYs8CBsWnns2dlOwd1s/JzykCnMUwqYSLpiR9nk89JIrLVMQNt2j4J2CpkT0E1JWS7gOjmUEMs+eUIpmiyy0TNPPZsvLMLengHkOX736bdVwyogHdkVM2mLcqELQCAMbjj8+8r7x8CYPgapD9+AACw+Zc3HaCDCFiKOOmUa/zzToVB8qN7sfn+j9Q+M/HUC6CHG8jHOdAYbNqAgP2PYJMuHv7Hm8bQ6Rj81Z/uHUHy6rfehyMOj/DhP9+5sAM7SLFsCJZXvOIVWLt2Lf7iL/7Cv/aa17wGrVYLt956K4wxOOyww3DmmWfivPPOAwD0ej2sXbsW1157LX7/93//Ue0nPPwBi4X1J14N2clZXksIiF4OFBrU7gBZjs2//jA2vOAD3GiSCLoZV5y2UqaACg0yBjqW0ImoNZwcmNGmWT5B5Boggo6IHbdUzq2GsU4RV6nw90gZlgMjK7kQ2R04p7JCqlQzD8mUus+kDERPwUQCOhJzpccGjdkSCSbqy240mKOx7bW1HSyp4797MKBC4vheLv4F+6vQEJmC6BagqTagVSBYDjKcdMo1SO+dxOa7r57z3sTaM2DWrQbtmEZxxOryeQMHdyhTUEMx4u/+P9Ahq4FOF9kxhyCazbH1G5f47ZzywitgYgE5m0Hc+xB6Tz9yWWZUnnTKNRCZRrSzA/z819gyeXPtPaCcm6LtszAPP4It2z62WMMNeIwhECwByxnrT7waoqcgsgImEhCdHNAaNDmLzb+8Cae88AqIrAAA6EYMM4AMIA2WwLIkiK6QJPPas5Y0EUVZdTLQpt2FPQtjfIKKS9pxZFD5fWtk2dccSeR+i56CjgXbvLuSea3as9VjmsemHWjPWvv9oLZpKzBEELmC7BSgHvtNmOFEr0CwHDzYlT0LcD9Nc9ga0COTKB5/SM2mjaYztme//WPQ2jVszz5hLaLZHPjBT7C1c6vfjrdpZ3oQ9z6EzQ/+2QE5voXGSadcg+SBaZif3YutM7fUXnfwNu1DUzAPPowtU59YjKEGPAYRbNLFwT333IPjj38qvv+5I/HEo5O92sYPftTD8yd+hR/96Gd4/OMfv8AjPPiwbAiWa665Bh/96Edx22234dhjj8X3vvc9bNiwATfddBPe8IY34Kc//Sme8IQn4Nvf/jae9axn+e+98pWvxPj4OG655ZZdbL1EePgDFgMTTz4fakULgHX2tIZuxNCxgOwWkDvaQJYBJGCGG6BcQbcSmCSCIYJsZ+zUZQUgANNILOlhswKVAWnrrRgDIyVMJLzT4mQKVDPy1Sa7kqLaHaiwzqmVVxC9wjuFaij2TqDItNe03tcMxQDUAwaADUzwn6JXQLQzvtZKY/M918y7mYMVVScD4Cqg5SK3MHHMOeg9YbX/X2RMlsEYFCOlwVQNvohc4bNfvBAAsOn4i2CEgBpNB5KY0gaD4odmkB3GFZ8+61cDybd/guw5TyyfWRuoSn/84H4n6VygzsQC0WQXW757+X7bV/89UoXIuL+U6BUQv3gAmx/+6H4bR0BAIFgCliMmnnoBrzVj3ESVtAY0YBIJHQsO7j2wk23a0WGg3YFeNQqdctKQnOb+dyDihCNJbOtWqkCczUrGJvjY90gbUK58oo9Oo11L1Q5CX+9Bt12XqCI7BWBtrKo9Szl/uJZEFGzafUOfRK4jwmSngNg5y6SXUtj8sxsWe6QHHINsleVi004c+k70/ssRtdeYjFUgZZCPpnPIxKo9O3H4u2BWj/M8M5JAx3KuZJ82SB6cRu/wUZ9I6OxZUWhE3/0JsucdO9emveeB/U7SrX/ZVbzfiNim/d4H9st+dmXPAnzOqTAQvRz0418GsiVgvyLYpIuD171yBOOjAh+9bu0+bect73oAUgKf/NTUAo3s4MWyIViMMXjf+96Ha6+9FlJKKKVw5ZVX4oILuKTzrrvuwgknnIBf//rXOOywsnnP29/+dvziF7/A1q1bB2631+uh1+v5/6empnDEEUeEhz9gQeEzpbfNgozB5v+4yr93yguvgMg5UGpiCSMFjAB0Kv1nqDCQ3QLULSC6GVeCJNL3OzFCAJEAdCXlSwOIJVQr4SaduSrfakRWEoErVgbJge0OssNjplzDJBKqyeN1hv3JL70KcjaDiSU31oxobuPR/uw8h+CQ7hlcEEDpeiYkEUSmcPtX3r+Ig9u/cA6Eu++q/+/Oudgb9DuutX1UAjP7y8Fdf+LVMBGVzXpREiGkDOKHZ5CtKyUx4x1dFKMpZ3w6cqDN8ifFihYMwTudUTuH6LA0iU4loumMJRSsfMfBio3PvcxLRewO8Y4uAICyAtnaYQBBJz5g/2BPndFgzwYsFDYOv6WWAd2P9S+7CvHDg+1ZR6hAMNngKpyrdqbscMUk5QqkNSgrYGLJyUC9DKaVwiQREymaqzPcbxPLUjbMkS/Wbubfe05qiB4HdinXgF1XVSOC6CncfhfbT+tPuhpyJocajnntnceeHSgBFmzaPYcjVfz/7Afd9rWLF29MBwAnrb8GZAzuuJPjG+tPuhp33HnBAbFngfmJm0GfWwjbZ5BN60iP5AFLkFg4e1Z2ChStGCJXEF0FMcvrXrGqxX5tIhBNZ2zPDqdsz071kK9oABpI75u/Kma5Y0/sWQCIt3f4WcsKZIeNBHs2YL8hECwHHt/5zndwwgufjXvuOgqHHxrt07Z++oscT3/ZL/Dtb/8QT33qUxdohAcnlg3B8qlPfQrvfe97cd111+G4447Dd7/7XZx55pm44YYb8Ja3vMUTLPfddx8OPfRQ/73TTjsNv/rVr7Bly5aB27300ktx2WWXzXk9PPwBC4mT1l/js7BEofHZL7yPCYhv3QP9jCchemQGphEDhYZpJb6SxEhRk9JyIGUQTWesE22z/ADMzZYjAoSw2TmSHV9j+LWIpQt0RHMlDNzX+5wb0oarU2LhZRegjXdAd4eTX3IlZxoBweFcIFCuaxVHLtPSOWcHC/aHc7knWOpOh3N2q+dpT8c8qMJnMXCgx+Hn5z3BAKmXpX6PBCwv7KkzGuzZgAOFk065pmbPrn/ZVYi+8SPoZz0ZcqrDNmYsuRo7jb1cbb98K2D7nnQ4gYj/5+QdaDDZ4cgKl0AkJXTDki+VimwTkU8s6Zfa8vsylepezRXWOrbVMkrbviz6UQXxXWB4oOxXwN7DXa9K5cpBZ88OsjkqpCFQqd7YD/fWcrFVgj27F/vbG3sWGNjnMyBgIREIlgOPifVDeNqxCa67ZM2CbO8PLngIDz6s8Pf/PL0g2ztYsWwIliOOOALnn38+3vnOd/rXrrjiCvzVX/0VfvSjH+21RFjI+AvYF2xacSr/YR0/oxRICNDqVYDRvnfKIPRnCG4cerN3JElYhy+x0j+RBKII6PaAJAaUApTmv7McGG7BTM/AdLr8vUYKarHkGIzh7ycJ0OkCnS5MUfjGmLWqFzsdmOprfdhVViMAbEjeyMcOwFQarotGCooiQARPdMGgtb/ntkx9AptWnApqpHMaOh4M8M/aAFASA80GzMwsPxcLhC07/nze95aDDMNyxkmnXOP7JB2o87yre+zRYMuOP593G7u6lwICBiFUsAQcSPTbswDYJpQStGKc/y+KgfI5c+zZ4bfU3icheDtpwttMU7ZHk5g/kOX8d1EAcQw0UpjtO9mmFWwL0/BQ2W9wqMW2bLsN5AUgZWnPClvNvQD2LMC2uckLez40jDYQzQYojnf73YA9ROVabZm8GRNrzwDiGJvv/dAiDmrhsWnsbeU/A3wiSmIgTdmmXaAwze5skGDT7j8cNPasm18RbNqAPUcgWA4svvSlL+Hl/9/L8JOvHYXVq+Tuv/AocP+DBY59wc/xhS/+G57znOcsyDYPRuxbrdABRLvdhugzQqSU0NYYO/roo7Fu3TrcfvvtnmDJsgxf+MIXcO2118673TRNkaaPvpQy4ODGxLp3wGS5dSoFKE0BonmNe2eAmKLwrxmlQFoBQsL0eti08jRAKZiigMky3JZ/ip1PY2qkCoiwdeYWfk9Kfj1NSnIlto9rswF0ezDtNqgo+P1mg0mVqRkgjmBGh2CMAWWKDaKiANodIM/9viiO2Gl0z5XWvF8AJOVA4qWqz7px6M3l+8rKj5EACQJkYvt/aCCKPGEUyJUFhFIw9rwbpdhhi5fNlL5H2K2j0GpCj49AFApmtr1H296Vk+D2mz3niXu0zYB9x2I4+vPdC4/KUdV6l59z7wWnNGB/IdizAVVMrD2DqzkepU3r7Vml6m9obe06CXQ6mFh7BvRsGybLcVv2N55M6SdVAJQ2bRRxM/gk4b/TmMfUajLRgpztVCFsQlAMWruabVohYFaMwCgDygugUMDMLH8eYOKm3551JIsQbM/a4wCwe3u22ryeCNAGopEyUVMUEM3E28oBC4i++25izel8DZZHHuijxsbht/A9aUwpfdfvG7WaMGPDIK0XzKYN9uziYSnZs8CjsGnns2cr92mwaQMCli6MMXjfORtw9unjC0auAMChayO8823juPC9L8XWz80u2HYPNiybaNxv/uZv4sorr8SRRx6J4447Dt/5zndwww034G1v4ywQIsKZZ56Jq666Ck960pPwpCc9CVdddRVarRbe+MY3LvLoA5YiNq04FSDClu0fx8S6d/CLRKChVunoCbF7416yA2dcxhwRZ9SR4t/u+0SgNC1JlX6NZljDWwhvsEysPQOm24Xp9kBC8D528GfFyDDQSFkuocWVLkIbILONzLMcppWyg7lz2pMrxlhZhSyv77xq4PeRK1VHdNPoW9kBJ2LiBPCEEDXS8rxleY14ClgguKBBmgJFAZPn7KxJyc3rtx181SvueRhk8JPNgKWsAOLIZ8i6+5uiiO9XY+oZWVKAogibVr8dUHqgkxAch8cuNq041V//Xd0HPlgC1LOnd4GT1lvJiP3crycgIOCxgYH2rDZAJPbMppUCpHk+qxEtRcFJHd2yQoqS2NuswOBKkU2jb2WbdvvHAdgkJkuOsD27E4C1Z9OEE5OGG77PilAtIMtqvVlACajdLm3oQfYsMK9NWyNWbLJT3Z51B0igZsMnB1GwafcPpACR4OuvNEyWeQLLdHvYMvlnizzAhYWrmnK+FFVtBsF2KYxhmzaSbMPa+25eexbYrU0b7NnHLqr2LLALEq5aWVXFIJu2ct86yUiIYM8GBCwFbNmyBXf/OMP//avDdv/hPcS571yBJzz/5/jCF76Al770pQu+/YMBy0YibHp6GhdddBE+85nP4KGHHsJhhx2GN7zhDbj44ouRWBklYwwuu+wy/M//+T+xY8cOPP/5z8dHPvIR/Jf/8l8e9X5C+drBiaoRWjNKiTg4liYl6dGwGaBaA70MxX0P4Hb1v+Zsc+Jp72MnsNCgXobNP7mO9zX6VgB1Z9OTI6hLErjPDoLRGltnbsGG5I21LEEXzNsyeTOP43F/CL1mBcRMB2bHTiZ1AFCrCbNmBR/j1CzQ7nCGn5MHm49Q8QNgp9Ptpx+DJCDYkVcwFZkSdywkZahgWQgoBRofA9KEr7c2TPAZDRoZhlozDlIKW781V4v/YMOmFacyodJsAGTvrTwHsqwkWJIYmx8sHfSNz7oEYrrNkiQAf7aX+feDE7q84PSt99Wp29vtbFpxqidWtuz4c3ZQhYCamoZoNvznvJyM1vPOqQEBVeyrPRrs2YMX1ezhee1ZV5X8KGxab88aA8pVrQH0prG3DSRlnI26u8+5sQFst24cerMPIldfB4CJI97N2fvNBDTbnWvTrh7nvx/aPr89644VqI3HaO3lVPvRL9HrPluzaSuETqjIXjjQ+CiKw1Yi2jYD7JxkYlAKlnsdG4FaPXLQN7Z32DT2Nib1Gml5v820S4Klz54Fdm3TBnt2+WEhpNr2yZ61qK4tptPhpD6gnP+k5AozbTyBHhCwKwSb9MBAa43nHN/Cm14zgrNOX7Ff9nHljdux5XOz+PLX26ABCeOPdSwbguVAITz8yxc+86L/lnaOHMBGO4At2z5WZvkBLJkwoG/FxJPO5T+Unld7GgAmjjkHZtsjvG3rvO2KPHFwTtweIYpKaQQ79mqVTC2DejfObk0ezH5vd8G/9S+7CiDCHZ/jppMb4teD0hQmyyGsU0CtJtBs8hc6nVrWY8BeQmvQ2CjU4avQW5miaAqM3LMD9PAO1isfaoEKhc33LG4z+MXCoOqWvXEuFypg/1jBo5HPWo5O/iknXAHVipB+9+cAuPIvO/4YiJyr9z77hffN+c7EUWexfE0v8yQzOZKl1QSyHHpyyn+epOSqKycJ6X5HEhDsvJo0ASKBLd/7wH4/5uWATStPQ/bsJwA4+J/RQLA8duGJ20GIIw5C24bxNXvW2nbz9WGbeNK5/JlCYfNPPzj/Z2ZmYdod3r61CefNbt4TVO1dSwiZ+ezZXWG+jOrqe4/Cpl1/4tWAMbjj8zyfb2y8iaVuY64UcH0QqdXkOdwYmEd27H58AbsFrRhH/rgV6K1KMbtOorFdY+Q/pyB2TAHNBvRwAyg0tn7n4E8WGoRNo2+tEXnBnj0w2J1Nuxzt2fUvuwpGCqQ//GXt9d5xR4K0AQi4484Lau9NPOlcjjVkuV8LvEoFwH2wuj2YnZP8v6v4c3asEBxzcb1XpYCRbOeaSGDrNy/d34e9LLBpxanInvPEx8QzGmzSA4O/+7u/w9lnvgn3fOXxaDb3TyLIzKzGE5//c9z8yX/EK17xiv2yj+WMQLD0ITz8ywsDSQzroBmtIVxTTFedMijLzRh28Gz2jyNIJo46i4NcRcFZ8VrDdLq+mbiTBtv84J9h4qizoLdt32OyxCiFrbN/+ajImIHfn8cBr2bguc/1yzh4WZsKIbO3mdUbkjeyRncUMRllz02V+OnX9fbnaj7mO2QHzgGNj0KtGYfICuhGhN7KBsgA+bBEPF0gnilw+5cvXOxhLjomDn8XNv/6w3v13eCQwldhLASWizM6se4dPE/lOQcvbcNkShKWVQRYxsTp8pOd76SoBTsB8P9ZVlZEkuA1pNvjbeUFB+/i2PfDQpLwZ6TkBtAAbzuOYIiAWMJIWpaVaRNHnslZtUUBIoHND3+0DB7tplJyb3CwNOsNBMtjC/MSGJUG7lXJqjlztLHzVpazzJKFrw456ixro7F8rZltc5byytPYXoskNt//EUwcfTbMzqndSh3OgZWTndPAu0p4PFrMt+9+EqWaXDQAezuvuJ4sotVi/0Apvg7zJS8FO3aPQatWoFg7Bso1RDdDMd5EtiKBEQQdEaKuhsg0Prf1vMUe6qJiYt07sPmBP92r7wZ7dt+bvXsso+rjicPfxXOS87ur81UU1V+jik3rqh2JSptWG9snC6wW4Gzgbga0uT+QyXJWV2ikvP0k5spDIWrfMZLXLiMEV0wCuO3fll912sQT38vnxFZQVlUQgIX1ew4WexYINumBQFEUOO4pLZx9+gqc9jtj+3VfH/r4DnziU1P4zr935vRJf6wjECx9CA//8oIjJrZMfaLUgpasWQtBftEHbAZakgC9nm2GSUwGAHOaKwLg7QwP+T4Xrp+KIyuM1l72ZcuOP6+RJAMJjQGTz3wVLFXiZVffr26j+tvBN5d36K9YcX9j7x3RXcFlA8JobO3+NcuKKY2tnVvn/46VaqiNPUzcAMD3Y7MBPdLA1JNH0R0XSGYM0p0KySQThIMy6wMCdoeFcEIPNJniggcOu3JCJo4+G2a4iS3/fiUmjjmHX5ydZeLXESpAGfSvBgWddExFEgGCgDjmahP3/aqEjNuWa+7cy8ptd3v8vTQptxVF7LDFETukyvb0iiN2SolgpFwW2bwnv/QqxL/eAT3WAoSA2DYJs32n15c3Ss1dc+PIO+TUSIFmE5t/+kF2ZAEvwflYQiBYHltwxMSWyZvrJEUceXkW0+uVklkrx3kuKfhZMkbXyOE5cDat1kCez60sdvKzVu5lnytWKo3mTZ5j68wtNUnF3WJQT6vdfa9CgAySAttXOOJl6+xf1v7e5XeqfbqAYM9a0PAQ0GpCjzSQrWyiuzpCd4WAyIBkRiPdyb1GPr/lsU2wBOwd9tWmXYzkoKpNu7ug+hyb1iYCIbeEcNXHr4b63FxU7QXr7FdbpTevPSvZHjZEIEcqaAN0OmzDRpJ9/khaezaGaaYguw0TCRgpuf+g7dmy1JOG1p94NZJ7dwBFAbV2HEYIRNumYbZtBwSxTdtHsFAS+6RSajTYvpUSm39yXbBpg026X/HnN67FtR/egR984fGI4/0r3dXtajzlhF/gj66/Fa9//ev3676WGwLB0ofw8B988MSHlLzodXu7lSCokRqVLFtHsJQfNOxo2X4kVT3q/v0PIlN2JRH2aEiWXUqMPRqN6ErvgKUIf+2C3jUAJgn1oaswe+Qw2odIqBRobDdIpxREZiB7ClRoiK5alllBAQcGm1a/vdTr3sNnaynNFetPuhpG0q6JladeYDPNKgF9Y5g4r5Ir/UE8peoEr23EW6tmiWTprLrt8pvl91yVC8CkietP1WzYfetSUsF9P478500cAZHw2X9L3RkFWI4iuefXpcOtNJNIeQHjMiEr55yShDMes5x7SaUp0GywM3rMOYBWZTKEO5c2SzJbOwIjCHfecXBk+FURCJaAQXAkBbWabM8+2kqTau+QeXqUbJ25pZYsNIik2C3xMkiqCwCUKivAHfqTfSqkzF5jCWea98s+PZZRtWezUYG8RSgaQDIDxLMasmcgcwORGXx+87mLPdyAJYxNq9/uiWcAy9emPfFqL789CBNPvYBtWWdXVUmQQrGtVKh6jMMRLIPkxPvfb/T1WQGYMBGl5JeJKklHhQbaHUAbmJEhUKFKG61CqlT3bSJr0wIwREveVz1p/TVIf7md/YgksUlVdm0rCpYEriQrUGSTpPKcjzlJfKKVJ1ic7e/OrZQwaYRs7TCAg7fiLNik+xfdbhfHPmEE11y0Gq//7yMHZJ83/+0krv3wDvzHPbOIXa/RAESLPYCAgH3FxJrTOVAmCFu2fWzO+/0Ooq90wfwSWw6e2IhjUJpwRUyWzWmUOYhYqe5/0+hba1UmtYqbeVDLeMNc2a/qGEkIr/XvF3pjAKXKBvMOLkN4eAiYnvHaqksR7twBmJv5/Bh0UE27A9HOIAqDZMZAd9gRBQAjgKIhEc8aFGPJIo90aSHIJNSxZdvH5mbVOljJKmNlZPZXJvCeYtA17NeMBoBTXnQldEQgbRBvm+UXqxUqwOCKxWrQ0TWHBryz6OTBiKzZVHVQXWafrmYJ2vecnILbf1IxQCMJ6EqGkXNoi1LWgYyBsWPa+t0r5o57CcL1MwB4vRVjozDjY6CZLkgxWWKyrDwnkZVFS2IQgM0/u8F/3/WJmDj6bP68GHDPBgQcJJhY9w4f3JpPFqgaEKzJOe6q9x5V5iGlgIh7P7nm7VVCYnfzfX+FTe3/KkHSP65+Ga1BRErlNbLBvjmVNm5+tsfp7VnXN2Yp24b2GgR7tm7PRh0DGED2gKgHkAZABB0BoreHUnUHOYI9Oxdbtn2sPgc5EIGSmG2OolhS5Ov6k64GULdj+8mVU064ggkKYxA90gZiyT68tc0B1O1LV/kMzF0P+udhl0RUtWOdjSUrldr9hLAGEFG5PZssRMbARJJ/E8HN9lTo+rZIcVW2MrhtGVRk9yfvbBp7G2jlOPTqMYjZHh9bdY1qsC3rfICqPQuUlSsTR5/NL4iK9HBAwD7go9cdgRXjAq/7b8MHbJ9vfu0oPviRHbj5jx+H3z/nwQO236WOUMHSh8CuLm1sWnlaWfpqNUKJBEyvx2TILvSY+0kRB1d94rArsmQh4PSuna6zG1O/xNggVLML3ffc+MXqlUAUQT/wkP9sPxypM58DvVS1PjetOBU0NsIZ0NMz/OKg4PBBBIoilhBySBKYoRRqrIXO2hSdlRLJrAYMELc18pbAV//2PYs34CWM4JCW2LTyNCZQqjIC1V4jSoPGR+c4BUsVXlLB+Y7aILlvkp0bY9j56fXqWX1urXDvV+CccEqSUoO6up64ahP3I4XV5jf1fTq5BhL1jD63v8huR+vatgwRSPN10CMNkLJZf0Rz5ME2PudSmEjgtq8tnQzAk9ZfA9Jm11mY697B/VjSdK97JT0WECpYDn5sWnka27FuXpGSq7xchdcuen0MChRuGntb/TsL3N+oHxNrTud5qyiAvKjta06lSh+2TN7sq3Hc96rEDa1aCaQxzH0P+s9X4cilXWWgn/ySK/HZLy6tvnSbxt4GGhsFlIKenLLSkwc/wUJDLfsHy2uaoRTFyiG016XojQoYCcjMQBSAyLnx9lf/Jti0/Qj2bB2bVr8dlKalfGKVoNUaGB/D5nuu2c1Wlg5OfsmVIM1JcwAQPzjtbUgjiQmLwlb1msq86uzLagKRqwqO4zqR4j5fJU+cVK3739mt2tTJGWf3um0APJaor+8qkZcCI62hWwnb6ZL3b4SYU71yyguvwO13vX8vz9zCY/1JVwMGSH72EDb//MZ5Pzdx+LtYAuyXNx24wS1DBJt0/2F6ehpPOHoF/vzGQ/CKUw4cwQIA//v/TuM9l2zDj//fFJrN5gHd91JFIFj6EB7+pYdNK071DtSm1W9nQsU2zPXBqmozNodqsMt9xvX2wO6z9Bw2JG/EbdnfMJHhJMGav1sPoAmao8NclfZyICnZaQRgHtnOjY7nqWjZVXVNlSTpJ4hISt9obvOvP+z1Pn2TTilhEittoxRopsMNTR2WUIZPFRNPfK9trNeDmZrmFw8mp1QKNoKtpJAZakGPpKBcwSQRiuEYRUtCS5YKUikh6mh8+e/PWeyRBywDTKw9w1elUMLEnckyngfs/EmrVi66I7q74MHEk86dE0CsaUm7ZprOuSPrkLqMvyr5YQz3RjGmbPyZW+m0qK/AtyoV6TLOAM72c31ZrD41tK6vRYOc4CSeI0GmWwmMCw4YAxQaVBQwaQydRAABop1DzHR4nI4kc9t1PV8iuUtncMPzLmcSB1YTO5LQiSV3jIGRfP4+d9vead/vVubiiHfzPK4UaOU41OoRf9xLyblebASC5eDEptG3evttYt07WL/dVhsDdSlY47KMjeHEnGpWcqVX3Z7YbBubv4utnVv9OFwvEd55GXybY9M68sPNNVKC1qxi6dxt23ku6m90399DZQCMUj4haKD8mJRcoW0DWBNPe5+XHTSx5GbJRKCsAE23OQlHVfa5BG3aiWPOYXmZLOOqm4NRNqzPplWHrgTlCtrbswI6FlAJUDSJK1hy4Ot/efZijzxgGWDiyDOBThcmyyyZYjguILnXmz50zaL3rFt/oq1S2ZU95KpzXaX1gJ4nPlHHJeYYU69WqdrEM7PcH9CY0p510j1u7nbbMKaWsOoJFldJGMm69FqVnKna08b4noTOljONCCaJvF3JlSycUKTTiG1PAmRPQcx0QZkqJXSd/FmaAELs1i/Z+KxLQErxepBEUCknYIpc834E7fIa7ArrX3YVQLv+/sTh7wK0hlk5jmL1EJ8qZXD7l5cWub/YCDbp/sMHzluNLZ+bxRf/6XGgA1wNpbXB8zb+Cm96zQjec+nDB3TfSxWBYOlDePiXNibWvQOm0/XNw7wT5QKENguwRr5U3q8SLA5V2S1PWgxoXrmx+buWELHZF9awICmBKCodRJe1p3U5zgrEyhVAFMHsnPSkx5btH/cEy+5ky9x++okVB5IStO4QJlFsY2TSGig0EAnoNIaJBSjXEFkB2jkNMzk9cFtLSZsWsCSLEEC7w05ptZHfcgQRyBqQkBIYbnGQNZbQCQc9e2MRQMSGoiRoSRCF8TJIX/l0IFgCdo+JY89jZ3SGZbMoinxTZJISmx/+6P7b95PPr8kV9Dd3nHiqdVzsnN07chxASbJMPJl/b77nGiZYXOYeidrcXqsEkX0BK+sQkqo4sNoAWWaz76LSUXTrStVIrWpSO/RXuLgs9L51CUqVzjBRSa64fiSOsEkS+/3KulF1fgGgl7PTXBRzq3A86SNKnW4hfJWImz/V+BBEN+Pm05GATiPomMfgiCkjCLKrQLkGFXrBdLInjjqL70PXALTVgl67AjqW/hiCU8oIBMvBj00rTi3Jleq84TTuY54rTGab6FaCbzVbtl9fH/WKD5fwU61s3tj83TIRCfD2KEkJk2XY2v1r/u7K08r9FPVgG61ayT2jtu9k+9iuJbvt02IxqHJlDqQEjljHRAqYFBad3M5dFXu2k0PsmBpsz9r1ZykRLROP+0P+o5eV13c527PAvDatTiIUI7G1ZwFRGBjBEmAgcOKQYGmwr98aCJaAXWPiyefzPDnTrtm0npAYGcbm/7x2/+z7qReUc7W1webYtC4h0Bhkj1sBMsBnv/C++vvaYPNPP8g2UZUscehP5PGys/b16hiqvztdnpPdNqsyhIN6XlXt2uo+o6i0Z6tJrIJ4HaiS2HHMr2d5mSSYxGUze8BLh0FyXMKBsgKU5bw9rer7cShsooHte+hltux9oBsJKCt424klb4QAiKt+3LUQGfcppUJjy3cvn3Nt9wYTR7y7XBeHh1CsGfVjNwJLroJyMRFs0v2D7du34+ij1uAfP3koXvrC1qKMYfMds3jLux7AT3++I1xbBIJlDpb6wz+x9gxsfvDPFnsYi4KJI94NM9v2WXKDiAjnjPpAllJ1ksNpNleaCvvt2KbH/J4rf9VMpFT3Iaj2Pkhga+dW/75rtmeUYtkdG8CjOPKyVlRtJGcDZCbL2CjK8oHHVnOM5yFXAFi9+1GosaY3aEQvBykD3YigGhFMLCAyDZEpyPu3w0xO+6oXZBn3mnHHm8RL6p6bePL5ZWZOlnO24nKVCyMCjQ57Q9Y0E5gk4oBnIqEaEu1DIggFRB1tq1cAUQBf+d9BOiFg93CZXdRj6SvOms39PLo/n+1Nx11Y14rua7DpstI8wWLn5M13X11/HfDZfZv/89oy4w8oK0hstp13pipVLcYFK53sjjKls2fhx+md1gFE9yCSpXpMjvAZVL1SdaDdGqV1vRF0EvM2bF+E2r6qAVTnNFcqZcyA8fp1zmVHE7E+tH3NxDbDMJVcxRJzpp+xVXJRu4Bs81qw9RuXzD0f+4CJx/0hVw8BfNytJkwS8/zXjKETXmOr/Vwea3gsECyPaZv26LNhHtlRl7cFSnJFCFCalnOKoFLa0Rhf3eKqWHwTYUfWGE7yoajUg58jK1OxhV0VXr+87MTaM9gm1BrUSLkniuAscQCswQ+Uc5pSLHMmJSiJuUKn2kgZfeTPbsgYWjkOvXIEatj2ZCEgmsmgkwi6IaEjwVnQvQLygR2eYJlj09qA4lJKHJo48kw/l7tKJgDLl2iZz6ZtxMjGYnTWRCAFyJ6BTgiGANIGX/vrYM8G7B4bn3sZV/YqBcpt4kqh2K61FRj9ZMdCYdMz3s9VGP19Tir9RTb/+I8AlAQKUOkjd0xfMpydhzf/7AZMHPrOuZJdVRvQVSe7xCJZmR+qlSQk+LeTxB3Ub7Afbv2o7sv3SxEl6eHIlkG2qxB1+1YKJl2I2Fd3Y67up2rPurEWfeOtVvS4fVXHKCTHTXxVpSgJlkjYJFMBHfHnZTuH6LBNu+V7H9j9uXmUqJEsaWLt2cgnMLlqnX6i7bGG5WCTLkec+wcr8b0f9rD5bw9ftDEYY3Diq+7FSS9u4dLrHlm0cSwVhCb3ywyPVUd00+q3l9qijiQZUIniM/CiCBgf5VLZdocrWoB6pjEA0+lUvm/mOKKmKidDfQ6PM2ZQlzHbsu1jAPpIEKPLZvNaM1EkZZnppRVo3SFArwezY9J/bVAflWqvln64gBoVijVPE4loZwe0cwZopJBZAVIpiuEEpDjAqFePgcaGoZoxSBmIB3dwALaCiSedCz3cXPRyawAwKTtu5DIvk5jHuxwlFoyBmZoBtZrAyBA7DERAI0Y03YPssqatTgSKhvAOqch3XeUUEAAAm555MUwSAZEATbfZQWs2+Hcv2+96wdTLyuaPSVLOmZGoZadtvvtqJmOsk+QqVuZIPxrDjquVN/SfcY5Vv1yYWytqgyIAA/JK3HecjrR5lCXW1eBkdax+7NbhFcQj0RUntNoIGrBOcTHXAXUYJAdRRV8yAMgAsM6/c0C7PX++yDDR5GYTEgBpglGATiQ7hLnymeP7iolD3wmT5yC7bhpTronodEFKM/HViDhgOtvD+hOvRjYWIZ5WMBFBpQJUGMQzOeR0tiTWpIC9x2PVpp1YewZMXgwkV1wls7GEOFnZP7N6nCWwpmY4IacaEAPKZCL/ugClke/xYfK8ljRErncUqsE5g02r3+7tWKC8RoNkv4xSwMwsb8vbsyzJtekZ7wfavdKeHCBltttKF9vMnrICpBLoRCDa0YVo9yCkgB4q7Vk4e3aUJVpUK6nbtHauXUr2LJoNvv6F4utsDFdnF8VBZ9Om23uc6JWyPWsEL7Oi2P1mAwK8PRtLiHaPE1GSBGa4ASfNuuXfr9xv+6dOxkkhrvKjmkwjRV1WtijtuIkjz7TkgiirpCtyYBPr3sHfMSxxNjAxBijlvkgDus8+VXUCu0aADLIXBxE5jsQBmFQxBlB9CVKOXKmi+r/fvykJB5+QauYmClVtZ/f9KuHSP34nmSkEl4dUq17s+DmRSgLGxkNyBTRiqKY9l4UGFtCm9dXiQHn+shwEwBCTTKohEc3kkNNdrD/xauSjEaK2gpYEnQokO3PIdr7giUwBBz/uv/9+fOTmnfj8Zx63qOMgIlxxwWq84nfuw7vOfwSrVq1a1PEsNgLBMg9efdQfIjryyAUrIQzYNxAJGKi52Qu2UgSAz+jbOvUJborumqG7zzsY48vxq44mSdjMD12+10eukOtX4AN+7JSavE5IAJgrxVAU0NbRJCm9fj41G0wSuGBgq8kBwb0pLutrlmkiAeoVMJNToA43sRZpiuiw1VCtGCYimCiGnLX7zhWQxKDhIa7o6WUweQGKIxTjDdYihYvbsdzO7V85sJr5W75/BTvuhWJ5o0YDJss5U7MvQ36pgxKri+uMs04XNK0QtTlDVA+niDoSBREo5Uw/mRnIPBQeBuwaG553OYQxIK25VF5pwOSlkyZo1xvYB0wceaaVEVCljJ9WVkaAe34AYC1962CRI0qqzpe24xyU4e2y46oyXf2PPFGtSoXlCggUWYpFa99EvkaA9FepuPH0o0aEVGTF3I9SlYxDmrMOVRMGaqjKIxCV87rWZdWHP6bKejTomnoCquK0S8GZfwBXV2aFdUrtLo2BzjTUEFeTGKI5zaInnnpBraoIsFUprlLTyZRZTXSQANKknKMBkKlcc1eVaDQEEbLDRhAXGrKTo5EpkDZQqYSOCPFsgXjbLKB0TWrjYMNrnrgwUjmvecJZiIZGYcZHgk27lCCorLqu2LNV0sXkObbs+HNsWnkaaKYDCJbwgquCdhV3LsilDc9zXp5Qw1QynGt2rSglYNgWViARAXmBTStPw5btH68Nt0qObGz+bpm4BK4SpKLgwHoUcbZ2k6vlfHPzvbBp2eaWPDfZ74vZLsz2HYA2EGmC6PA1UEMJy+FKwcuA4vmMsmKOTYuKPUtuSMaACnPAe0Btvucalu/010SAmg2Y6ZnSpnXrxhK3aSmKKvJCc21aPdqE7EoYQUADIGUQZYDshYShgF1j0zP4uSQXYHdVelnGz0gkMSfBZIEwceSZ/IdL4gTqlWZODi+S/Flnz1RtG9/vUJSV5P3jFTSXXHGozgMVW22OTK2zK/vlI2v7mec9QWynu6b2tepsl0hkd1yNNbhkx2pljx+XqFTDVJKhYu7VQkUB6ub2+30nvtq/q7p29BM9plKFackOQlo7T7LQMCKFIZYQgyRseMEHcNtXL/KbnTjqLLYlbeLZxNozeAxO/kzIUprXVeOkCYDMJwIAsGsyr40CYNu/FSEbS5AQgZRGPF1wNVQsoRMg2j4LUsbb1YvdC3N/4TVHn7nYQzjocPfdd+PQtRGefXxjsYeCFz2/iZFhwn/+53/iBS94wWIPZ1ERCJb5UBSgqTY2vOADKIbjeRvuLiYm1r2DM52kBI2N+KDMrprbLiYmnnz+Xi8a/f0BJtacznIJfVUtzmBx1SQTa04HJUktg9kY7RuoURSxdIDTy3SB66qEgiNXBJXBrL4G97uDkxDb2HjTnNcmjj0P2DEJDAF6xSjEbBdodziz5fB3ef18hy1Tn5i3ioVGh2FGh3jhtoaTHmlAqFWcZWgISFN2OptRafBoQHSLsiIkjqzxowBByNcMoxiOWI9fwwclBek5RsoBgao7nZSmXP1TMcZIyqUtHUbE2YuuxBkomwkWBRt1Gogmu4BJUbQEAAIZQBwAh3R3zcYPNkw86dyBr2/+8R9xEBdYVoHc2/7tYmx8zqXcHB2AGR8GtXtWSoGdwU1PvxAmihYsk9efJ6AkV/ohqC7PpWymnRF1J9E5lP0VIqLyGQAAMYFUjT1Rvcm9e41/GxiIssm75PmvGvgf6LSifM017fSoOlywwUZ3TG477jhU37PrXneEh2ti6qA1Z69bshyNtJT5cXJBZHhun3OuRb1KpnpOK8dHWsPkgLAVoEYSREdz43vrPFNRHu/EMeewI26v3cSh7yy3ryyRVu3t4OTXKlmdtfNShdKg2Tbi7dxs1a1lOuZjEAVX9Bki0GzbZi1KbDruQuiRFKoRzZEV23T8RaWciLTET55j889umHvOlgAmnnQuzI6dC5ZlafIc6PZAs/GStWknHveHXu6TVq2wz4TYbzr6C4GJo87aa3u7Wrkzceg7LQGawbTb9cCb5OfDkR0Ta04HgLL6JBIciG82mEBwfZ18cE+zXWvKxKGazG1FMmwOyb0LbO3cyr0Krd/hEoomnnw+MDnFz/pwA2rFMEQnZnLIGEwceWatcnLL5M27rmIZbsGMNEE5k6wwgB5qQOwQgASTtlkBasQsbSjAtqtSED0buIujmk07rz0LhQ2/wQTkbV+7eLfnYMFgjL0eyt/3SGKQkxq2FU1kzNK1aV2wMZKDbdo8B3QT0SRXtBYtAdg+grIb7Nn9gYkj3s1/VJ7nzfd+iBMhbIB68/0fWaTR7Rm2fP8KbHr6hTZgbmCaCatY9HqcdGJiIIk9EbPl+1fs8z4nnvjeMr4wqDdqVVqrKEp7d9BnHSnkEm+AuXKy1c+6gH1/VXb1e6L6uint5vmI2P5+K25fLunGq3QoS2rbsXlVD/JSvD724foLOjiiy0n32nm3HEP1GAlQLCPI0muSr2f19LnzUD2ntURb+7eTTwN4PN1ePQZgDKIpcDW24P8pL/2Tam/ATWNvq5FL1LLbr16rvCirhKKKRJmD+2yhIKa7SJSBGk2hI+6hikLDuCrywsBEEWhmGk5KbdPxF0ENpTCxGCgptuF5l1sfw65d7cxLKy9FeJvWJZUGLCiWUu6F2I/Jm8sJoQdLH5w+4Pqx30W8Zp3X01xMTBzx7lLX2GWMVSo3SLIx62Q3eFGLeeGLIqAoakaUa8K+lHSIq9g49GZAKd9gc1/gAz81GZYCJst9k2cza2XCKg2Ja1l+AECidEr7jSIpSrkyK12zZeoT/u1NY2/jypoBcl9ujHp6BuKQNTDDDdAjk3y947KqZfOv/njO92pGgJNFW7MS+ZphiExBzHS5pNkdy0wbGGpCHbqypklqiBDNZr7xGxQ3gUOPs4mRJDCR9EFRPZJCNWPIDvd1Uc0IslPYpnKcnUHKHJBS143PugTCOu5QCuj2WB/c9t7x2UDA0lqBADbckpilk9KEj6HbgxkbASSBZrrY/NMPYsMLPgCdSOSjMVRCSHYWiCe72PrNS/fLsJwjChzczqhvQtmPaoCp+nfViag0WN9fes8LjY3PvQzUzriZZCRh0pjJF8lzgIlon5oxThx7HgeupbBN2FX9PFYrJ2zPlM3/eS0H5PolBvwzy+SJb4DZT3xHEiZmCbQaKSNsk3u3PaBCwjOhAK1LIrpfpmAQrDNr5IDMQlvN51HVka7KIDh5iNq9VHHMqjIT1rE0sZU8MIadOksoeO1xoN7wvkYUibpWN+D7LPiKljiqSYA53WoqNHQjKs8XACjD8627Ru0OXzsp2XEqCh5TldCpVupUnf/+jMxqpY47F0kCPdJgDWvJWtoi10wA9QrIyQ43UE5jiF4OE0uuzCRCPNnloGyuWB6oqlGuFQdl3P3qKqKkQH7EKhhBiB+exZYf7j+5kV1h4qkXADsmUQiNz97/P/e5B8vJK9+KKG4AY6NLIjPSE3Q594MyReGrgClJyspOF0AZapVzSpqwTVshNvolrZYSNq08jUkPoxfGpnVZtYCtEitguj0mWIyBnrKV2zYb2vVjMa6aDiXJQklS3zhRGZRyQS3bLLnqLwyqbvHjO+LdMFPTTI6uWwPdSCAemeQ3G6ldF/QccnMOyeJ6vKxZiXz1EPcLnOoC3YxJo+kZUKsFtW6l1dsnrowggsg1RK/gXg1al7+tTWtazV3as6S4GbLr50U5z19bv7UwiQjzwfcXdD9FAfQy35vFOLk4e36WFIi4zyQR27TuGe72gNFhmEhgy/evwIbnXQ7djJCNx1AxobE9R7ydfbD9VV130inXgAqDOz53we4/vIzhpaZcULlqS1UrKhz6X7PB/+VAumx65sWcKNjNyv4rrSZ0Gvsg/r48rxNPPt8mhugyCWhgwlCFZCHC5l/exMH6/l4i1c+7CpZBdqcUPE+6KhL3nUFBy4p0Lv+v67b0rqrf3NrqKjOq/VH6+mX5bQ2yYft9JV99Y3+7+apSYWQi6a8RZcpXtEBr/t9VJ7lqmv7qdUH1ys3qsfjkIVHutzI200z89oywBMdsl7/vpBmjiO2MXsaVR1E02KZ1Y3A2tqzvy5PNrkekFDBpDDWcQqXSJwQIZSAyDTnVg2lw/1XRK2CkQD7CFa6i0JAdxfGVorKm2X3RdIfJKXeOIgmzYxLquGM4gSqSiB7YuWj+6sRTLwCmZlAgx2fv23ubNmAu7rzzTpx+2ib86CtHLfZQAACPf/bP8Hef/uJjvoIlECx9WOwGTBOHvpNlmbJsbhZZf6AIqAcNgJoD1d+kt79Z+0JCxNEc53FD8kbINau41N1JclUNFKdHav8mV5FSgZPkco4iSQkaGQZGh3kxJOKsgywHxdG8et4Tx5xjS3J12VBSKRAJrmhxWVbGzNXEro5pkJFTMUKomllRQa2hp60+qVZbAPDGmxgb5QXdlUK7xd5BqYGZtxuH3wKxYhym04E56jCooQTx/3sAMAbqiDUwkYToZIAQyMdZXkJXgpCu2aRQHCykgrP7YAzkTA80OQMzM+uzgGl8DHqkBT2UQE5xoMtEEsKW+7qg3f7MBDz5pVdBdAouG7dZ6NTLgelZIM/r2ZzA0nNKpSgzUV0VVbX/DRFozSoUq4ehrUFGyuCOOw9uR3Eh4DLZAMCVipMLUvvXKpUHzlB394qt3qqVqbt51Rncg8roiZZEEHNv8ZJXXgfR05BdBZFpiFx5MsIIlroyEVc29MsDbnrG+zkYVVjnIy8bC0OK8j63Ga6lPIo9h32EgG9O75r/Kl06Uc6Z6a/4AOokiHN4Cs1OnRClc+IcpELVKjI85pNScPdKJEtSQNqmmu7jyjqhzkkHBjvqFVLIB0bcOYokijUj0CnPEaQNZKcA9XKuZnGfdcfgnHagcm9XjqHqRAt7HaOoXv3jnhN3zgBAgJ06baBHm5wx/sgkj7kSNPWEhdOkdkECJxumFI/H3RfuXFafoWqygiOcnNyMO3/VaiZH3lSf2yrZZtf7OQGAKPIBCR/cd73ZfCaqJc/cGGpzgS4bjle+47dhq3Uojn1Q1FSzXB2iCDQ2Ar1qFMVwUqu+We5N7ieOeDcnDfR6fH4GJK7UUK0MrnzO24UHyKYdZM8C1qY9bC3M5DQncgAwxVx52DnHVXuLE3XE6DDboKOjfJ/PzAKFgsmy8t4RopasU8XEundY+a9KADC2WbZ9PQeNz8LuO49S1pNQgHqWczVwV8kEBpEnWDatPI1f91KQ1gdxEjiCIFauKANWlXFBCkDpeXuBbRx+C8T4GFfqH3koitGUbVqloI4+FKKdwQiBYpylMUxkt6vhg1ekAVFw0g8pPgdyugOanOVqoQH2LBUKop3NsWnd3LS/koc2Pvcynm+Kco7xlXfTMzxPOfsFWHr2rF1X5rVpiUCrV0KtGoYRnKywGLJsyxG+Lx1QrkFK19d8t8a5Ndgltbj5wTUir/qc1eSGQTEGYI6KwnLC+hOvhuwWbLPkqny2Kj1LTCS5EjCWtcS1iSefb+1O149E1wP6QMV+Y5ti80+uKyXFZOUzQHl9qtet+p777SqAq9uvBu+r87i3aUS5zagyV1eJGkeaOwK92uPEz8nWzkmT+pxfKCYbqt+rnof+bbntVI8vjoE05nk1ifxcxz6DBhXKky+c7KnLc1SNdVX72FRjMlWiyI/D/l+9dn2kY7FqGFRoyO3TMK20nHPznPfnjrvVLPcbR5x46rbpYg2OWMvz8vy5cx5HQBTBJDEfvwDflzbRy1fGV234qi0K8PFmeZ0ctclI3rdwfS8riRImz8tz4Pr/RlHplznSz9kUbp2RElu2f5x7ChtWBqE0ZbvfJgHUiH8pgeEhFKuGoZoRimGJL/5TqWyw2DbpwQhHsPzHV45c7KEAAI5+9s/xd5/+0mOeYAkSYUsIE0e8e+7iVTF0SFSyW6uOD1AL9hmtQUUBU43hPBpHtL/fiDOO+0mRAdB5gQ3x6wESkGOjMJZJVw8/Uvkq1R3nqrNsNIyeu22jFAgShvjYKLEl6F3b4LNQdhHLYbK83kyuInew+acfxMTRZ/N7sV3YtQHyHFQAptI02ZXjl4aTO4AB5MqcU1geE8UxKIlh8gITx57Hmda/uo8X0uq+HJFCAls7t2LT6rfz2BopjzdN5+zHNwuW0pNKXqLh2PNgjOEezUMtoN2BmOXGxtTjTJ9IEm772sU4ceO1+NzW8/CyiT8CaYPPbzkPL/3N68r+zmQd1OEYcryJaOcwZ0oUnHkq2j2Q1jaLOEK0swPq5lArh6BjbkZ8yglX7Lc+LZ/9wvtwyguvsDrVBlpI3Pbdy8vqhLwvoOWcjKUCpWH6JYOqMAbo9XD7V5ZvwP5AYdPxFw0kO3hONaXhWnUenRNjM/mdkcsv2fkv5TmXs4YUQFFZxebm62qPDUF10qAS0N4fJdwbfuNyLqmXZQbv7V/e+0oUKnjeu+Pz/Gz5gI+dC40Q/CO5LwcV5bkV4PcJNsBuNEsROwcNACB4Tq06fe4c2evhCRJ77fy5rmaouV4DlUCCJzioIhumwU6Qy5DrlE1KfXVIZHtiUcEyCG5cg0gABykByHoGo903iGCgQRDgJvf2fvGC0LL++f41K5J+/DqV0JGAKDRgwMdorB2gDMs4Vu9tT2JRuV5XNbDdeRI2a9CRi+482b8hUMqgFZaYlJId4emOPy9m2/a63WKPjcbH7PkvKxX8/OuIj6qT2J85addpf0x5wdtywYQq0VbNCnUOYzUw0p+JCZRBaMnVmex8GhsY1nODxUqVyR5K1YlalMQKhPA9Mzy5Y6uKSRCgI87udk63DYZQJ0cErso0sUTnsCZ6oq/fzjLCxJFnAllWJ1f6Iah0zIG5wSZjbCIMB1f2yKadT+YVu7dpq/bsbdnfsHzZbBsAoO570G/bX/P59j1g20YbkAQTNELADKX87A0PcZDGsBSUswsn1p5R34A9N5sf+FNMrD0DBJZrqREtqNuiHp68tlXXu0o86fcxrHwgWUJ109MvBO59sHyW3faM4c8lCUyWYevsX2Li8HfxsbmqhjiuEc0Ta8/wCU9VOWBv0x59NnwuYKsJtDuQkx1uJExsz2795qVYf9LVuOPOC3wVrlAGd95+Pl428Uc1m1YORRArWmyvTluSpWLPgmhem1bku7DX9hFbv3EJNj3z4vJ8a15Pt9x9NSaOPpv9hSyvrIFLzJ616/W8Nq1SQLuD25aw7N9SwqbjLizXYC/TVLFFBKGakOJhjLVn3TqpACd/HVdiCP0BcLeOV20dpVmWMJJzCQFj5k1q3Bc4MskkvLZv+d4H9npbRhDLhn71IvYRgNIWlcInDfGHDTY+51K2OQEI31vEqoGQYvuw349wCTFV4hgo53/nG9iANH+nkqxRRe2aCIDs9lyFhtLwdiRZGynLAV2UJIb3T1Q5NmdDV32jaoypapvVCHcCQHWCzn0eqN8v3sasnItI2nNn7eJYQqfc/9VXfSvj+yKyLeYuXuU8S2tH8z/l+CrH4pQ2atU12oC3jHKurPY4SxOQ1pDTHU5ievCR0r6zaxmkADWbJXFl7VFyFSNCcsKvG4/drykKkJX88ufFGJvcpUCzeS2Rj+x3TRz5z3h7vlrNU733vM1uX2+kQKw9KWRmZn2CBUlZJu+6c2Clzky74+Uoq8QZ2fli68wtvsrUFAVIx7wW5zkoHq7Z7UayRLIoNGSXcMoJVwBE6K1K0KPla9MGBOwJAsEyDza+8UPQK1r4+q1n75ftn3TKNVCxAGmDdFsHYvuMX7AoSdhBcxOmy0AhKrMjjWbH1DkqVirA6d4bgCd229RSxOWCWa1uqTmp/VUwgypcq9Uyg2A09PQ0b85nP/AY/L769lPb9qBNKoAMByNMUYC6PV4kkgSI+RhJqXrmv1bg4BfYST32PD5X/ljd4h8B7TYIbIg5B5WqDct2AVdVYwYEcnxz0tVv54yCuP649Ve7UBLzAiYEkEb8HVv2DHBgTbcSlklQKWcg9LK58hhucXQLvc2yNhGXp1Ku/D4/t/U8AJzh52y2L/zf9+Ilr7wOupIBaISAlgSVDkOsanFmeycDKcMyQxqAMVBDKagZoxiOoSX50tf9CuKALOUaEFYKKU1Armx8nkrtpY6lKuG31LDp+IvmBLfLwKxtYu6M5WrGUxx5OaT+bDRDBMS2hNv2MOGsJksmOBk9U5kLXRabywZy+/LzguCqGsEB7kcj8XbSKdfYwHfpHM2RuSACROngVMmV9S+7yp4T+7bi7fBv931AxwImFhzI1wYi10yeEOoBcEc429drslgAdIOdFdOMQZ0cJAXLsrigtYPRgLKVhVLANGKukCEqnVEbcHd9oHg+p9r+/LVzwXZHNEkJ04i8ZCF6/DoM8TXsZbYiATD25BCsEyjd2muvr5O8GlTZojQgNUya+LXGz+e2gsU04pK8aCSVKhZt1yl4iS0jiStKIuHlaURWlzLzPVFyAmDvMWUq58ONsc8Jtb991UrV6Yd1bG0W4cDAnf2smOnwucsAMzVdr/awtwaIYKamQI0Gf6+RcoC1mhDin0dwJUgVgkpZsqrD7xx1CZ7Xqxrb1YzJvgx+KOWDKqbfzsgrdoMqg75+m9UxESe52DMPIuHlrbxjqjVXqSYxSCalrKvLgASAJIFaOQQjBXorE15HY0LU0Vyl1C6QTBUgNaA6Yi+w6bf/GKLVRNEU+Npf7R+b9qW/eR2oMEgfbkNsm2RyxQamqJLAAqB08oVgOTBtykCMI56UKnXtFWdgDrJpnT07h3Cp2pm7sml3BaOxIX69rfIQEE1bKVEUMHlhyRJZJ2zcmAAAypM6tfcVgJ4GoghichZIE9ahjyQH0dEGupptRtdDqU/+ZeLQd5bPaGR7SsXwEqk0z/NbD571rV9A/XjcPOD+Lwps3v5xrp4ZlHDUt31qNnzPGKQJMNNm32XVSl5/04TlH7UGxSwxuGnlaZw4VO27aO1Xvw8pYZKI7dlKX6dqZW+VCPn85nPx0pf/USkjBrb3dTwMWsXyY6Kbl/YssEubdn9iy3cvZ5JFSr+ubzr+Iia2rB+4XFGt5A+YH5uOu5DXcWefaNQThKpSTdV1Po5KG4kqcqaFBrk1NpJl3znfR8KwLeJsHTfnujgE7LperYC1QfSJo86ymfByt5XbG599Ce+3KLy/CUlz+6U4O5qoRq5sfM6lXtbJOFlYi1p1CgCTREyQKg0og43PuoTXbSIfyIbSICI+xxXfwZ1rE1nyJY1420IwyeKC3X7n5M/7xLHnsb1ThXtmHbHjCbIKyV0lKaqkmRRWCrdMJKFepdG6NoAsCSMAFT9HlnEVAa5IrpFnlXnejSeSlqRhu9oIu7b4ni8CoLi8/5xvUl2f3Hakiz3Imr0pejmQlXadiSWgnA1aJa76CEB3nirnG4BPGIL7vrC+QLWqu7+6xW6TjIGc6vIYHniY42fOPhfk+/eaqWmOPY0M83PW4PUMSgFpvfqrWrFnoGyMStuKGEumuPFG0iY0yTIB2B4TuRBtp2ufc/ZBEUk+Nhcj0gbGWLKn02E7SZCVJi3Pp9EcK4Mx0LNtTgJucDUKuQSg2Q4nSFvbzWS5V12hZqOehFQUMEMt6KEUxUgCHROKIcl9EiX3mjECMBRDZhqyq5H02/oBCwIDAzVPDPVA41GETh8TCATLPEimcqhU4wVvuJ4DUJIWjGw5ceO1ABHi2YIJeZdtYjSQExCxAWJ6mV9ATW5llwAmVoQApCNgJC/oeQ50uqyt7OQ1AF8CD1jmOS84q9Bl0lW0mXeJ3cke9H/WV5BQmYE4j9SDg2/AWX8RgF3AlILpZWVWj8vSabVADVf5I1Dtam+SGKYZe4NTpxE7VFNdG/Ti4A9pASSc6WGUYsdfSl5EqhmYlQwOV4FCTt5Firla4FkOo2eB6RnfDI3cdhxpViVb7DF6ws1qalMkgVaCfM0w4ocBTE4DBWf9TRx9NsxwkwNnVsIlebAHTE2zjn0jQjHEC6DM9ECJqTvv4Kyhl/7mdZxkrgxnnxMgeqx7r2OCjiUolZCxgOhx8FNOdUBKoremZYN4hCIlxDMKUafAhuddDtWKoBps3H/hXwY3FN8bcCCydDJMJIAWyzzQbAdz5vqllvWHQKbsKap9YhJYp6n6Aa3LEnPnHEgmLh2pYhJuvmgSyTq4uS4D1QLQgkkHF5ARUoAyxbrPQsBEZTDZzwnVzM0585jh7QsmLE954RUwET9P7tnrx523n4/1J13Nc4Y2MBHNadZ621cv8p9f/7KrmFSxRjcZ3q8R/ExynyXT16AdEJnm6UjZ5vPO/7DHY1Imp10fDCNLEovcua6SMGAHl9q9SiCgEiBTmoPkJLgk30qwkNuGzSwk77iZ+jrgzrt1mEyFlDFCwKSSNY5jAco1pIvV54qd8zRhh68imWEi/j4VilllBY6E+qadlTm6v3rCyks4B99I8sfkJLi0Ddb78+Xu01zxvRgJJmWEPc+i7CtgYuc4A7KnQD3lyRQDTtQAUa1fVi3T1WbemSpJ5q4FMUFjiEB9QYuac+ucOmNYrsZmvNUqZpSCyQtQEpdJCk6Sc/U48KsHODHAVXBoVXeiHeyl9mNw94/LziwKdjjtNfGa3lT2SwBQXqeqNMp8Qfb+gImDfY6d0wrbw4haTc7Un22zrRBFZa+Qmba/N8lKhyBNuVrBZTHmCjqRSLdznzQ1xOtjkRIwFiGZVijSeSok9hAy0xCkAQOc8FsfBBlAJYSv/u17FmT7L3nldYi6iqvfjOGqW22fZ2djEsFkmSdbXBDCZBn3XXHBjzSFaaagTo+fD0u6UFUq1VVMAECWQ8/MWlKBoKuSfLvDPDZt1QZ1PUl8r0NHsGUsQdpPrvR/fyDcXGYM66YrxUFHe39TmtarY/qD6knCdmskff8hTM8CRQFKk5r96MZubHUXExmqFjwtx2VKebJGyrZ2HGHzg3X7xBQF6P5tQCO1voko7SobNKQ4glF2P1kOuEomALRzkj+zchxmqAGyvosPTEWSA7dpyuvzSAuUK8QPz7AdHcfIxxvcJFjpmqweAL4PAZ+M8LKJP+KG6oUBwSBqK6hUwCQ8L6hUsD2baRtUBFeuzGPTOntWpxJaEr7wrwtnzwJ2nhYAtCOWeX0RSgOTfR9egvYsEGzaPYVPpjEGiTFl0B8AYOrSlzbh0Aev7dpnJAeyvS3h7o3YeEkiB+oWFXvNlOukTTjwiQgu6agSJyBHkDspOIuJp73PJyUN6n+y9VuXMXloE05c8/ONz7oEiISX3nOV3pueeTE2PfNiL41MAAja9tdjG1H08tL+BEqSJCvgqtC9veuq+5yNBGfTskRYCTMnocYkgm1/b1ugtPH75lGTRN7+g0saAuAlT6uxhCpZUJXQ9VUP/OybNGbfu7BS6XZNpVyViSbVxEreYElYuKrequxXP3lhq/dMM/GJYCCCMVydjkL48+GOxxDNldtNY/6uS3iyldLcp9USZBUSiTJVymRFgpOgAJ6f+5rcuyQxv31hr48QnGjrbFgitinyyjVzx+jPc+mT0PYp6Lx6zQSTjOBYEDVSG7/RvhpTrxkD/eJ+XqubDZtIG/M+++1GtzZW7kMAZeKvI1uU9nK0uhFBeLWWiqScSzSqSnpV7z+juWLNkUWmvN9cvIosWWe6PbbJmw2YRDLRkudMrgw1uOJ/cqqcKyLBsag0gRluQjdTQLBfYmTEiUEFr6kmFtCCSRfVlIhmFff+DQh4DCAQLPNAdgqIGQUZsWGdDQs8/803cE8KYJ+yAF3VAMBkSyEaUGtaiDoK0SQzzjQ1C2q1fJkfucxHgHtLdHscyADgsiZdgKUMJKiyKSgRkGXc2N1KfTjSA5DzV6s4VBzRXTqP/ZIkbnySOENBWANngBwYUIuTDxiPKYN3SpVZ3bGt5PHlm3bctnmvkdL+FtCJQD4SwYgEDUGIttvFp9molZWWgT02UJ2T73q3cIDQBsxcJgkAKM1alf1jzrK5/Vn65SWkYG3LouDMA3es0zOcOaAU5L3bIMZGgCkOcNHIMMz4MLZ8/wrO5BdgObDtO9k5tkEJ0ckREbFslwZOfsmVtYbW/c3MScMGNe1hiDLoyhnvxE61XbijXIEemURzirObOXsohpjtgdodmLFh5CtS6ETACOBFr/4gSBt86R/fi32FiQTH32CHFAnAAHGu/Hkb2JzwACM4nAsPd99ufNYlbOj7yhJTk0tBJGEaMfRQCtWMuKm7dXqqRSju/mRigl8jZSBynmsEJIwN0nuDU8Bnu9aebdcU3TkgLlu/4vQZ8Prykv92na8W++L/qT8TvfEY8ayd7wBP+ADAiRuu5b5DVkbLfwb2GOznjQsuaQAEX7XhxkFag3p2braBfZFbbWQNDvBEonbe2KEHKIf9HM+JLjjkGzD6IH9FWs1VbgjOUPSN7p3cmjEgYdgRjmSZ+WX364kVt7ZYyTLnFBr7vpYEEpKbRhYaVEjoZsx9ZfqD+sqASPN1KMiPj2+Mvs9GLO3krqX7vhpKIHd2ICY7dm2KoVsxxy8ckQMb2BPgqh3r3BsimIT8OsU9bwjFUMTXo6chleZqo1HOkKRCc38AVcnwVnbtt/edbiR+++wIM1lhnDMLgOyz4wlGL41hSoe90HMrQxzxpeCTJ0ja4LNSoEbK0gp5zgGHsRGY7TsBR84A7Li6Kt0q+vW1vdQWZ767e9dfAw34h9Y5s8aUY7bVvj4ZAij1o+PYV014rWp7/b3EA2CJHmtvdbpsN0QRMNxC+5gVYAk3QvNXM1bznYPaJolK0rdXlEGgJIKJBQdrY0LREDAExB0mQiO9MOuWyDVEZLgqAoAt2cULX3e9/8xdf7f3ZIvT2H7ZxB8B1IBe3UI0k0NOdTiY1umxDTQ8xDYtwGuzJSlNu8PXAWCywT3vaWLJcXboWcopA4aGeMfttg1GEEvJWpJlPvtyV7JhA0HCExTUarJ97d6yyTLodGC0qG1nUKLQQEkzIiYV8gLo9XibLlAWxyWx6Kqs0pTJScFVfyaNOXM0aiF9QIB2TDPJEkU14sfL0GrD5IuTunNso3/WLDEvpZegNVk+2KYVgisD3fPXF+T3z3eawgC1fnh6ts2k2iM7QEND3NsvL/j+GB4CZtvY/PMbMfE0Jk5E29q0WcbXo9VENJtzwNEYnPLCK2p9PAY2M1e8PpLhdb56LEaA+1yB100jWE53PpsWsUS+IuUgkgBOeO31IGXw5X84Z+5+9wbS2QgaJhJQLa5ujPMB1ZSLhGDPLhxOWn+NJz9c8tump19oA8soq0rdcxrH3p7Via20rtqiAr5KuWhyRrmzE0VXQXTsfOIy/R2qPq7bV8UvrfUGrdp22gDC/c927ykvvAIiK+ZUaqtWAjnbgylQEj4Vu3jD8y6HcESGC6qb8nk1lUpV0S3KHhj90Bqi06sF310fOeMqQoCaRBjbti4RqQz4e1JACBCVCatOypX6bMmaTWsJFCMEy9Q6KShvS4nSzqnOpS6RyalPRDbhKxZAw85VhWFb1lXyOcLBElg8RlctCl5D86Kcq90aVq1csWPQSYRiLIGcLRDtmPV99Uwsff8U/iB4+05uttC++t+fPysvx0ma0icOiYwrO0hIn+gm20xyaCnL+1hrkJXuNVAwdg1094RPXJNV6dwBvYmqiTfaALoAMl3GrYwjJcrrSZAwsx0Y0S3tgNERa9MWoPExmEd2+CRoMTLM0vCu31hVJaF/rXRSxZHkZ9wmRVGmgY62CgBZeR+5n57tCeNiUKiM31UDxzHbDbaiFQBXsHhyTMIn+M52gG4PNDrCw1o1ivaRI5zUR0C6YwwiU75KzBDBpNITwrCy0q4SG5HgZNyIKz5VIrinZ6ERFYsfiwkIOBAIBMs8UI0IwrhAMyAzwAgDHfEi/Pw338BNwV0gjoCv/+Weky5VsuU33nQ96PAURhBG/zOGbkaIdrSZQXZ65E5uxQXwgLLhstdZtw5ZmgDVSlVLvlCrydkjeVFKMACYI7OwKymwAZ/xDiUJn31HI8PsEOYFzGybHSRbOeP22d/QdJeoLlIOSgPKlke6hdQ6k6QNkAJG2XJ7zdlrRUsiH4kheinElIYvs9aVBbm6H5etbAw7/9LMHYexFUaIy+/4MVYkxLzGZSXISaIsK45jNmi1hul2S613IVgHfLZdVmUYzkyaOOos6ENXckZfrkCjIxxDaSacWZ1z5r0w0maO7CaLQJmaFEL1PgWA9SddXWZDE6DGW5BE3BtHsdEkuzkH0mbboCyHGG9gdl0MlRBL400ZnLjxWsRTGajQe9041Gfla82VOk0JzspPIOQYhFLcJLVavnyAEZzRhcNJp1zjiZVNT7/QVxCQMmXVCsD3Zhx5x0a1EuiGRD7MwUwt+d51pLmOgSLlYIsoAJmzg8pNcg1EIUC5QQJwxlUli9qTJi4DjKjmdBlNdYNYKUABwkjoWPp52pMXVRBQtCQfn2EJP79d2ySWA/jlsYAA7WSm3EtGc/aQIzDc8AoNp23sxuwz0QFfUeG3o0tSipyBTSxtZWJ2BslJsxHZSgMnVWDXLRnDNBNs+f4VmHjqBeWzWXV03L5hCW6fQSVL6QtL+PB+JZMPgjxRZqrXmJhIkFrZjEjUyCLEgFFWH1lqdozcsJxz5tYH6RxeS+Bb55cKDT2UglociNWJrJEr/F1iB9Cdn6hy7m0VldCGicDIEloGEMpAu0oWa3MYkpCptEQLO0AAOHiQWGfWEisuaGCkCxoQjw8ARQTRha1gMj57muPwFYmIBlcmoNPlzDgnwUiC13RXxaINSAqWK8pylsua5WA4rV3DWejtTv2cKsV9W2yPB7TbdRJMG2C2DawYY1mhCtHmA0vuWkalg09dAkj5sTHpYiuTkgSUZZy0kudcnRBFAJVBJiM0qOoTOjvLkTIAMNNG81ccPFHDKfLVTVDu5L7ySoAn8/eObiTQqeRgrs3IjLoaKiFu2RMTlFqgtcpYksXG1dw9Ja0MqIrZphUFO9RG0l7Zs5/fXGbyv+CN10NkDRhBaD3QRTTVg25EkDvaTJIkCVwzZqoSdy7Y4+aCqELKNlK2a6ufN4bJmrwAlCXqbOP5eWXD5kOVdKlWYbvkJSmg1o5DNSLIdgH50A6+b4Fa375B1hVV7nWKozLYUSUrgTKxxz1zgM9Q9dt1SVMARE9BxwL5qiEkuQKmZgBpM4CdXT2I3NEGFMd839v+Y/6cggNLfp/VrGj3Oec3DJK5ccdsA3aUpiwXaJOHjFJ8Drq9sjmw3aZJJChPMLHuHTBrV0GnMaTqAsMtkGnaTNsI1MshtCWo40FnvA6hjK9s6a8YXX/i1XCyl0YAMIBa0YKUgsfXZ9NCa2/PamvuJ9OcMCe7ioNR+2DTwq1DxgBg0lVHgs9FEvN58wcW7NnljPUnXQ0QlTatkwdzc5u7D+x93m/P6pgTMnREPjtcWPtNR4SiKSAKg6ijIRQQVXIQoAxg/UNfIQPwGlgU5fxje02QJ11kmbhWzZDXGqQlTBR5QmIOBDFRaTKb0GGw9fuXlW/3ch8Mp8lZn5hj0oTHqhSQWTJewEuqokK0uCpzfzxVuVFJZdC7gnqiBryUqnHyT4XmOdVVbzt7QxIMWVs0ltj6jUuw8VmXQDiJLn9gvE0vT1aJ2fh92217Wzp2CUPkSTSXAEaFgSDtORVo9wZ5u9mRD56gs0k/NbsLsHJenAiihmwiZMxJOLohka0dYdmnWEBkqm7TarY3/f+u6sURT/bYVCPy9raO2P4ALLFt/3ZEN+UasluUld5Wopz7TCb+XvQ2rbUbdCzZzlfaVnFXb3aU5CDf/HwOHKnU6fj4Gbn1xCVAACBjz//MLKjHySLU6fG5O2wt6N77ffKtsYk64tC1MElcnv9KkgEfsAFmZkFjI1zJKmRJ/hgNWHue7aGKTVJ5NmsV4E7eryisrBhZCVZOuKDqmu3u+8ImNjQbXqpZ7JhFUzLppZoSOhFQqeSkO20gMmVVI7hCSidczakanJwHw9dY2PXWkb2GCDo68OvVYwV6rl5LwCIiECzzoLM6QRxFPInbzCe3CLKmIK9lNs4BGHgHVWQGonj02fkveOP1nGUsCV/7y7PxvLfcgPYRLeRDAo2hCPFM7ssp40dm2Q+IOCgwVydd+OxalynoJ22n0y8Fs9UAjDHwzZzzAiQGaFnPA98wywzWofYLmZNYcNmhtSHLvt8W8ziEZVkyOPBRlNmgRikekzZM6hhepFgyjccmAGhBiNr8v27EbIBkRbkIurH7bAPn4LOePinDRILToXTVQrCGaVwheQC4/jjGlo1SHLOD7K5LNTOh3eHshKEmkDZAQy1g5yRn/w0wVs3MLEQjhTpkBYpWDJUKiFYEkWvff0D2VGnoEr9m5mvOinoAtx8nv/Qq3gw4YMuGFKEYjqEakT9unbDRLzKN5JEO0OF7WCVsIMYdQPY0G2q2t8XGZ18ysKx8dxBd5QPbouBqAx0T8pEYMRFE9bwdYGd0y44/x6YVpx6w/VXlo05+6VX8bCqD27/y/t18c/ngztvPZycU8P1QUNFedmXrrNHOGWY6EV7OQyUElbLcnYq5CoOJc/CNrYGoa30VxVUfhsDPE7GTQQLsSFpHuEpmiMpYyAXSnaNXzdK35L3IFUQuoBOCS7w+4bWcWf6V//0efPnvz8FLXnmdzawFXvzfryud75idOyGM7/9IBtw/KeZArch5PVLNyAePAHBViwEHgg189QvAzhspKmV7YJ2iqvSYfc2ICBRL78SaiKAF92XiyoiodJTcvKhYR9o1My0rfyqBPHuOyAYXXMNT4yS5XIacIBtksJmcggkpbXuSakvoUiEgM83zUiFrmZvuurjj4utWSp8Z52C7Y7RZjya2AQ57b8kuYFpcISWs8+eri5y0gfsuSiLOER2clan8fUQ9Y+8zgmpIRNM54p3d8lxqzfd5wgENF6h3cmXULUAuG7qX8zHHCZQNGji7QxBgEuujk6u4KgMWvjrG6bkT+eAsXJNyY5igGB3hcWV5qRGuNK9rSAChgPFRtj/y3EpoWmJ0egaUxNArh2EOGeVG1lb6yN8bk9NsAzjSzQWjIuL9aktYNJIy4D3b9bryaDYA9GymH7Gsl1Lcl8fNJ4L4obdjN9BlM3btCCiu6DEjLeSrh5nA6BUQ3RxiNgMkeUkR3zvPZrAyQcjZxdm4RDyrWbMaJcFhRNkvYl+RD0eVXlIGsqchcw2jOChHEdVJU23wgjdeDyocuWzmVNbNhxf+9vWe3PzKp9+D573lBvRWJuitTKBSgcZIgmgmh2pEUKlAsrPH1l8t0O4mRwKEleUA+B7K81LLHvD64ZAZfFPYTFgSRu3ennUJPiSYaNAGNNQsyRApy+poF0iTXHUkxoaZ0Khc43lhbUXjnisXNK3Od+7vSgUVAJb7MAYGVvbG2rcuyUV2Fc8RI01OdMlZOoR0mRVbS8Jy+4pjJnmyzH5HlcFThzTxlUUeQnDSCtkATiMtA0D+WLiiEZ0uTKfLtmyrxcGcR3ZwFUt/1Uu7A5pOoVeMgkaaUMMp3yetCCJrcSVfV3EQVjABLoocKu7redCHKvFXhbeR3AtUPnfFUALViEB6yFcV6oggcoPGvZM1ezaZ0Yg62q+t+2rTUlbJzBc22GjAa2AVB9Ke1RpbJm+uVzMdAEysPcPu3/jqjc33fuiAjmF/4o47L8Cmp1/YZ9PaGINL2EkjH+z39mwibcIMyz2qxEo4RwCMndcN90KQGSB75KuUPfqD0ELaBcASysRrKrnPOskx1yfLz2OVuUVrXvcAXxmy4QUfgEol7vj8+3D7ly/EpmdeDJpu+zFMHHlmaVsCQJpAjzaB8WFOMI3KKl+RK590aFJOIHQVL64qxR+ek/6qBOqrZIZxCSh23nVVQCpKAEKN3OBqCxvvcLZh9TwCgNbcZwbwElY1cqf6FXdMQsDLXFlpWHd93TqqbGWrUI6c4DVZKMmVzT0BSmRpw1ekjkkZGEe0OIIB8Ekf7jy55KhiJIZqCGvPalvxz36EzDS0lbYUBZ8HTlwtbUSujC4JCpfUA4DJGZu8YKx0VDxTsHKLgyVKuIehsdUQskwSMqU8GGU2BpPG3v7ne9KOx9gqDZdUU60ccbLRFelbX91s12lqpBBrVvH7eQ6T5d5GQLdnY0xse2PFGMiudcbZho/sAK1bAzXWgm6yHySnu3zv50VZQTQ1Uyac+OdGlESY0Sz/m1obrog5BmU0j83JkwkC0iZ/z41PKU5AFMTLk3uOAS9rj4wTfwiAHmuhd+QYX+9ugWgmr0sfW5+IyFUnCZ8opBOBbERA9kqbRihjnyWCKQjGOaoBAQc5AsEyD4ohdtijDoCK88nZBjxva7KBG80LH2l4h5QMZ6YM6nXxotd80Gco+ubDmqma3/idGzhZosk77KyJ0F0VQSiDeEZDJyPQchTxbAE5m/nFmQoNMdWBiSOYBl9W0ZFl9YNjwItKpgpRGTSII1Bke430epgXzgklghgeqpWYkltUXGWMlFxxMTXNZZXOKR6UDdcPd76rzrFzNn2JsoCxTR/JaWQ7I9xl1tiFRGjDRmouIXoFtAtIOSOpErDz17nabNkaKLoZw8SCK4tmuqUuZn+Zss+SAP9OEg4CCOEbmvqmdfZciOmuP06zY5KlU2xTVbdNstIoJs9LI/ORHRCNGJEkqDTlZrlt7e9ZzjRgo6Qqo7CnOPmlV9WCxYANSsMGOVPywV3VEFANDv5moyPQMZC3+H5PZjTSHYoJFhfUMaYmW7QnqOrril6BWGmvzS1muqW8xgI7o5RyAM/rhvfBZfktRLbf+hOvLjOdiR2pz285Dy955XX8AWODww0JKIOT1l/DcUfN7218Ljv5e51RuYSw6fiL+nqImLJXSCRhmjF0I4ZqSi9tV3VU8mGBosGOqImYXFEN+ExUkfPf2s7/7FgYWyVlCZaozCbjHhm2IgaAI4tdxqyvVKg+N4JLp6uNeN2a8II3XO+nkhe84XpeX2xWkK+4MAZk+BgoIm4X4gLN9n0OngMi5ux1XW3wK1HJdhQ+Q9/18iDFGY+kjCctXBWFy04y1rknDV/xJnJLmmrDTkIOmDSGia3TrdmBJZTzXi0Ty46d1xT+rKEyE86TEzbIqWN27F1/KOcYqgZBxdYhlYBq2Mx0JRC3DZJpS3wA9hh47RBFKbMGLSFyVVYFpdWxkiecdMTVMlw1Y3urWXKbCgOdSoge+AG1+3ROJ9kMQNnOS4kPwXOamM1gYgk5a7ykmZjtcX8Pd+6MAY2NQDnJBmN4Halk0yOOvGNkbIDBzdPcDwhQVjJHKm2JDDsWxeNx0m96KIGYzUBDLXZGe0yg+OCy65GhNQdeK8kPxpEYgK+wpRVjHFifnmEZhm4PeGgbaOckxCGrWd6skfBa3e7Vg+uu7wtQW7chDHQUW5JVAkkEEbF+OmUKJo1s9iuV9x8Rr7VZ5oPppE2ZpGIbnvr71PbjcPrZsluw7IpSZR8jSdy7yAYGuGmpsEGMFL0VMYomIW4bdFeUhCAARD0DSQL5Aq1Z2Sj3JCJlkMxoqGqWiyNy7D3BgZOSYHZZiC969QeR7sgHyi+96NUf9POJq6QzlqSRAIoWB4hAhNl1CUjHXCWYGXTTJmhVA8lk7mUSRa+AeHBHuYNGygEDrSpzg2D70yW6wJIhEmXCT5bV7Nl+soUElaRKErMd7PTU/T1lCRj7zMlt05DGwAw3vf69Ty5yyTju79rOyAcmHBkJrct9Ava7pmwQDLDkV7XCRAjuGdjLIEeGeO4bSpkUzgoOLCUN3keufACx1ggY4OfSBqbkVAc00ynXqf5K8b7KFABsnwrhe+a4YKEPKBrDNrJrqrt9B1eyDHFPExKCK9tIwGSZ7/2CHZMQeQG0mCxSrQgqiSDbXZCVFTIxB5pv+7eL54zr0cLbs45IM9wXgIOJmjOuI+nXXdVguwEEdFetQj7Ef6fTGsnO0p51a+y+2LRAhYy1wUTRKTgg2r9eLhB8H6ks52sBlIE4wN8DW2du2ed9TTzpXDgZJDXc4D4a26ew+Vd/jInD31UGOVeMAGtX8fju3wZX3TZx9NkACWz+6Qf3eSyLjU3PYJ9sfptWQI212J6tJnkKa+/ETK4UDX5PJ2zDFg3YRAEAYJtIFATZMV7+CgA/twU4Gz2NyyAvUM4HljgBwBWpqZX1dAkWFTvDkQiix1KbE08+HxKAVIobwAO2z50o50tXpUjaX3sx04NJI+jhZkkM2ICub/4tqazadRXNRIBNJnAJMKQB0cm4QjiNoZoRSIPtR1PO1zoWZSIR4G1+ZxOSlWj1jqt7PCyRUXteJKtmGJsrUFaWkO/34u1Z+1sntlogEVApX1tnq7vKeq5ms+PTgFAS8axE1Fa+v6KOhI1vuORg+GQqNyWVZITxtrSOCDoV0JITk4yUiGcUr8uKbVUd21hJV3G+gTIgm5nk7Ajn1xhR7iNq5/xdAKKnmLAyBmKmy2uPI7lGh1huzN2C7QxRlRAxxvfPrCXWGbs/wXEHKgTIFPXqcftssQQnJ0LpkRRy+2yZtGOTYAng5Bt3zw8PgWZmSyLE9XZxv+MYZmyY7cwdk9CT0zDtNnDv/ZDNBmSaAsMt6DSGWTXK93gnrzerryb2OggDRAkTKk3upwsiUDPmffUKtmnd2u6OtZHyuB0hZAkUZHkZG/OSpAS0mp6gjDrKS4JBGX8OyT5Tbm4wNmmjaEoUQ5LnIAP0RgX7VcpAurZqbZZ5U/uwJgYELCcEgmUeFA2CbrLR4h1ON5cTbOYY/82Ln4HMbJCTCAYGd9x5AdafeDVkt0BnXdMvdBAc4BAF/MLFAQ8O7BF4QZI9FyDlYFk2KlGkEqSB1kOwGVVuESYkO1NEO7u+3wg0OHuVyiZjXAqs2WGrNAN1jUepUDCTU7bUUXktaUoSlq0aanKWS56XDWermXtag7o2EKI0G+rGeD3KWpafy+Zzp7VatugCRP061pUsOnIZNMI2moeEsXrwvsGuMUAGW+If+2odGrLEhWt6HAmr7Vo6bzXyy2p8UqHLpnpAWUVUzUR02T2AdyJYTsRlP9rgQP+CKGyQp9UEuWxO+5tGR8o+M1JwpsTktNXsFsD2KchMQQ7HUIlAMRSxEZNz1jUZg9v6yJWJtWdg84N/NvD+HwQqtD8XrvGaGmlYOSDte5+YtJrND6iU8LW/OhvPOOtGxLNs/JM2EIVmsjKWc3R69wjOAVAs30Y9+5oGaHp2XgJkb0FRBIwMQ48NsezL/du8Q7o7MqUqb/VocMoJV/gsEZXy8yFswP4lr7zOZxaRMqwrTnzOAXgnzRlJgG0mKbBXWZVLARufdYk3z/xz5GDnuWIoRtGKoBrCV2a4ChSVEHpjhHwENtPPBuFjQKU2rizL19Gt75+zWwGAA6hawpbu8/59cN6glJAkmjeDFuBqFR3bfbu4hlMZ1LxGOMJd5NbR07zG8HxiK3AcwWKYrHdj1RFAVl/eV17a131ljiOhyD23TCDIzGZQElecOac+b7kMyZKAMjYQK7vKB4OoKEBtVTokQEn268rc5+B6f7h50s6juiHhmrfytRfW0bPrXyyQN4UPernjMpqzpwrXwsw6YYYEZM7ruhGwVT5McMkez00Q8Lr8PAi7iYj89lEhn4wATEIoTMTVJwreRjAxO4OOUKmR+bDOi3tP2Ob2KTtSrkImmuGECgLK/mqCgJk2ZDcrx5llJfFvCX1yTqElVajQkMogH45QtFhWQSgXYCQIWMe04IaVBuCmlwLIVzYRC4BaadnI1X7WV5n2Zwq658L106lm7tl7gIaatpF4DNPtwjy0DYIEjNHcjy5N2PkuNEszuMA48fh8cJcIVBQQk7NAI/ESZb7SQDU4OJ4VZcKJk11wfZsqa4ZvBl7YoLhLjLCggol8liqJYFLyY3EVLEZKa19wtVIxHCEfZlnDomkDZE1A9uxclBBkalC4XkD7iKJJUEMEKvi5clUqbi0mzfYrAEtW2ufaPh9uHr3jcxdg/cuuQjTZQ/uokZpNK5TxWbZ8zARd6/UEPie6nIOKJiFvCaQ7NWBin/kq8hiNrODKI4CvSxzD975rNoCE+1LQTKfeyJaIpei0AWUxP0/O1nV9B22iECUJqNWE6fXYvgU4qOLIOW2DgU4Ox2jABoMIgJPNc88Kj8/eMwCoUtFhhOY5pL+HRpbDIPe2LKVJGbR0QRD3PBOVSUyw55MIwsnXtlmyRDdYJ58sqeJlOVxiVaGtNKSBaOcl2ewShaqNhasSQO78EvnzBNefAOD53hGMAJ+vRgpqNtgvALjfCgAaG/V2MXV7wNS0TfSybmmnC4pYLgaRgBqOOShnE8T6yZWJY87Zo4A7VxeyfUQ5B3DVUArZVjZb2tlUBCVEGdRUwF3/6z3enqWibs+SWQCb1kFrUM+GpGw2vKnOrwuwfdfTBs0GijWjiB6aBB7a5n2zXREqp7zoStz+5Qvnfb8fE+vewQHKZoODgr0CcrLNa10jZeLEEtemESNbM4xk2yzff7ZKyowOeUmriSPeDTM6jC0/vHKfT8ViYNPxF/EfzrboS/IDAJNEyEZjrsR15DU5G46rsbMRQtGwldc2yTPq8ppS66Np52r+XwAJlbaHsbZjVAZQywz6Cuk6FPkm9PNh4knn8nbcvCEFIKKyms7ZgMbAlw0LAFQhkqVLiimrLlzVn06iiq0LluB10qdEgDU1i+GYkwZyAx0z6awTWfPtqYC1sVxFmo2/ZJw0JHsKosdyVZQVkDZZojoe/79GvRpGEnxZetV+rfZ/sXa6kWz3qUQwmdsUKBqwEq+O4AFcD1Qd2/8Nb0dLK2sMfs1XY+caIrc2XCJstYn1D4j/dpVQLjnJ2bM6AgDu4SO7uiR7IgIpYWkmXdrrgK1wgB8HnO/ViPx51xFX6EQzFRUWaztSJ0PkpLGUZnvR+Q4W1EiZEAZ8jxw+r4IlwgGIjO81X6FUjbW4hAxBoJ6CGh+CBFhq1BEOhb3vCsWEorISpUqX1SFEZVN7bUqpU4B75UrJtme3x4keec6KGkrxPDjUhB5qsC1tCUkvG1chK8nGwmj7FKTtK2uaCUvoGQMyqbWtVVlp6qpgnf2SY46/7KVWG63y5VxBzujys5L4tGl78Vy/G2K/i5Nr2SfkZC3ihMUIEIqQa+fH8mdVvrCJAQEldK2hVsBiIxAs84AMeDEBGz3f+chZeO7bbigz7FSZFQDhsoW5R4sogMZD7ExUs/1e+pvXsRHhMiZt9YsjWEgZCOWyouEzBwFYY5+QjfL7jZ2CyzcbAt0VAtNHEmAkWg80YCJgzbdn4KUzKiWhJhUQZDP+XANVa8xCg7Ul3WJiKiWlThc7Zu18qJQdnWrGHgDfnNNlgVZlt5K41D4nAWgFmu2UVRpuAXSyIbZpGIDBlSwAO2TEBIvPgHMXUFBp0FUzehPOKnVVNy7zhbLClw27bBaumbTluL2CgzvOke50ym1Gst77wf24LF6ru+5gqhntNktNO/kVrQFXCtqO/XE6mTIozRUxw0MlcWNsQ2hVGliyXdgFUJQVWBX0kysbn3sZdBpVdP4r95/mvgBsaIMzE9ttiGgNdDNB/Mtt/MFWE8XKIXZKG6LMfAHw/RvPwgt/+3rEswrxDEuyGSlw21cvmju4PcDWb16KDc+7vAzlWAOAjdu+4MBCQBDU2rG9GveekCv1fQKQhCIlWy1nQDlfE5lZDVprUYtMc+Z9UWrUVvvP7EtW5WJiw/MuB0WCS4ytw2dsVptrnMg6sE66y/ZUkS57mufVbBTIxjnwHs0QNIAfXXKW38+TrrkRRqImueWC587B9cSKm4u8UwUfQCTryHRWSrzwt69n2bomOzLf+li5Pyc5yf/AB/152zy/aAkfyHdEv69GEfAkj6soc2Os9pjxfSSc46UBE7FBDPddAy8pFnc0B7Q0y0zoVKBIhA0IwxIwphy8ASgpJxqROW8K3DPDBRb7S/WBkmxWupROiETZTLM6X1aqC03ERn7REChapXPojs870lZyQ8d8nEWDiSkmU+xQIvJkm44lO2iAD0gbgq2eKa+PjshLy7nroSONyKpfyI6taBAE3YhKiTiXoGEdUNc/iOzxu7WHlIFqSBRNgWw8RutegB7hddEYzdJBVnpyTlN4d/g2ucGMDrF0mDIANIqhBDoVlapDyeM1xicZCEcKgY+dlAEJDTWUwESCSfxuDifXQL0McKSAl3GyJ09prlDRGkCvzNxPU9CKcXb2uj1gZIgdXXcMeQ798CMcpMU43wdxhGLVMKL7dgCwGX3QfJ9Vm8dOzfDa7BxiIYDZNo9zuAXTSlmCJC+sTWJtD9Vn2wgCkSx7vjRSG5ws+/DAE+GsVQ1Nvv8ZbBKHSm1mtiX1dMRzQtECP1OSn0mKee5YKIKFlMF3PnIWjv/DG21wBPj2R8/G83/3BgCEeJaDMGR4HAA/YyrloN3Qd3+NzT+/EQBwx+ff57frbFpSPEcIbe1WZQDJf3tS2pI05ZjYDspbhHQnEHUV8pEI2bDA7FqB6JiVGLm3QG9UYvhXXST37uBrktsAhzYg20eHAxy6TFypSt1EEctZ2F4pNSLGZl77Js6uQjiNajKq5BKJKtUfTK4kXL0BGwSZaQNDnEzlbTXNVQeUZZzs0d+g3NmscQRqNsvmtJ1ueb8pXb8n3TgUy4OwTEcESeT/FpmCE+jnXlA8jxoCKBagwkBOd8q+ZS6gRGRtZ1Pa/lVU5GYB+OeAfYpKYNEYtu2dDW6rvXxiVJpY4gosVTY8xFnFQy34qrm4Uk1mANHlfkaDJG4HkSsbn3sZn49E2rWZfS7osioQQoCmp4FOF+Jwtmfl9i7EtkneSKuJYgUHoLgqll+ez54FsM827ZYfXolNz7zYa/C7ymUT90nK7S2c1GVRcGJbs4HNP/6jPd7MnpArAOBJwyzzPbkgJPfBsjAjLWuzcmVgMc7ZEZENTFJuq3iKgufhQX3rlgEmnvY+IIlsRYbiy2orRZ1NC0FWzpO/oxJhg97wNkeREnpj7n8gngXymPDdP2Eb8/gzb6wQCjYAbmMDRoH9TeujeUUMp1Tg5jHnwwqB3uGj2PTMi8t70Wa4b/nu5eXBUWXttP+zkgJ8Nr0PfDubyJh6EqKUnK2vwfLi7pl3/TFsQgoAPh7DFXuIWU5WW7ICAJQgm0TAktk6YjJDtgsvLaUtecBVzPD9mnj9ElzhY+diygvu8xYJTtK0vaDIVM+XtVFTJwPGEkpONtgRtjx+KmVBJZNmRcpECtuIZCvhrY1gbUcXK9I5kA8J6NxA9kyN5CYhoBqAyOz3k4o/ZO8hruTnc6DSMgbl/Ih0kuNPomereWwykk4jiJ7223J2usx0eZy2IgcAZKahUgkdE4qGQDYWoXUfEG2fKuM0loDn8zIgcEHk138z2rL2uQblBpntY2sEoJoR5Cwno/rG71U/whgYIW1SgIJppXy/2X1QoUHtrCIfaZOS3TZcP78sszEZe082Upg1K/h6tTvQ4yOgosnJSC5OlOcsH9bpMhFDVJLbspSxq8XPhOD5Li84KWGmw69Hkm2FkSFOHJq1qh22FQAKxUlKJDji65KeqnKhUtjkEPIS/GxPoaxYcY+prY5yid9FS7LUtuB7QjW5ek4nABWcNESGfXFRAHqBZG8DApY6AsEyD7504zsxOjpae+0bN5+N/3r6jaW+IMFXthjibNiv/u17Bm5vw/MuxxdsxtWL//t1PhDH7HO50HEwzKCadeKc8SJlVlj2ABUT1KoYvTGB3ji/rhNg6hgAwkD2hkAKaD1YwESE6cdFGL5foXXvbKlFDvDvyFgtRgCF9KWExvbY4IGY0sH0GS+mLNF0jpkxgNF1ssFLHVSZdcvUOxkstz2lYVaPs+bpI1MwUzMwWVY6bHabvhImy20FNO+HnKakHbMxGqSZzPELTR5zIKaRMlkEeGLDRJGXUgGssxiTZYYjkLT9PnrtUoPWSSX09WOpOfK6lCOrlVhaQ0zHgiV2nJFhYdIEvsGwlWCrGaR5Dtimb1t+eCU2PudSiIybqonZHkwrYZmIWOKUE66whpoe6AAaIsipDoSU0ENJrbEeyJU6s5FmRpogYzN6bDaZ6XZBsx1ESkNOSphGgnw8hWpIvOjVH4QoDNIuG163f/lC1qpdIMLdZTNuesb74dVPlFm4TL8KHk3Vz55WqsyH27/yfm7AClhHxs4HmWEpIgIH/7SB7BScaTTdBU13YIZS6GZqg48WtrphOcLEAsgtYSQEtJXw0LEtp0/ZkHeOAeAy/ODlkIom0FtpoBMDURDuufis2j6ecMMNHExzBImwQXkSMJXV0meOSf5bWEe1Wg0ClNWPRYPQG+eguuwBz33rDfwdZbhxKdnKJLd9uya4KhF/DmTp/DjyhMkelPIRliiBqBA+GiBh+8lUz6ngTDgvAVYAUQ9IphSijvKyVSYW6I1KDgJXpC11xPee0TazTRIoYbm0SBCE4LlaxNI6ohXH2znwQEn2SwEyAsZm/etYlD3QXLafc0Qj3k/REMiGWSIMltziY+PrHvUMog4Hjgnl+fDnWlfIEQKvg87Jt06EJ0GMPU4CdEJw8jHaSs0ZQciGJKJhgXhGIxEE2Sn89kwkvSPqKmF0xGMXufG9wQCgGJJIpgrE0zlkT/Dz/eAOrgZ1QVAHtyb4gAOfZ+MK8nsZqB0BrRQgDdOMAQFEbQU5W/CcLgmqKSHbNrAqAWMSaLtGeUk24nuNqvdrTdNZstNZJegr/dpcI1Ao2+9NKQ6w2QAstu+ErwoFgDiCOGQ193LYtp3vkTRl49VVChSVNVdKW7Vig+9alQSee19rYOdUGXA3Bmg1OVNRc9+22tpRlUxyVVZJzCRgGnuClwdDKIZsMNkYGEr83yoRNpjDQZTeOHlnVDXKZ1DYauhH2Q5vt/jCR/4AAPC9D9Xnu6/fejae93s3+AxWslVdAP++6+8G27MAVwx8wQa1X/zfr6s9d6XsmK0eJEBoZ+MaP08WDZ5/ZM7VVL0x6aVEixSYOjICKaC7JgVoJYwgJNtmYSKB7mHDaDzQhpjqlNewKtUaRUBs7TpXcVK1yYDyGXLScJa8c+/73nzV7yZJuZ9uxiSP22YU+SAlIK1NmcI02J6Sj8wAU9NlVa1L9HGNnGfbfkxcVV5OVBRHZQW3m+t7GVewTHWAkQbyFRyMFrnmAK1rlCzJrmHOngdEpiAaCYzNzKZoyNqUjqCs2OvVahaAn4fcVt34psnkbS8fDNVFGXR047ZBME8UqaIW7KlKa239xiXY8LzLIXscWBftDDqNQUrhlBdewUPp5fNX5BoDMdWFiCXUcFoGDmGzyV027kiL14autWdn2pwl3OsBM7OI1ErIqdKmrdqzotA1e3ZfZMuqcAHrWm+OfIHa2JqyF9CjlbDd+KxLsPU785znR4nN938EE2tOhyM2kdg+Wbavg0li6KG0vL8jwdWWUx0m71oJkNlEN5HyPaQWaJI8wDCOXHFyXUJA29dMLKAaVi4qLm1AHcP3DTQEFC1CNgrkI2xXGgH84Lr6HF80ANlln0HbJCQAfg4WmV3rHOEIcP+JStP76rMpuyyx3T20iXRbjwPu3YIJI0eY9JOASntCwgf/Bfg5J7fO234oLunRViboBvfMq1ZIOCUF6ncgrU/tgviukoNcJUqm+PuJhE4k93dqcM8TGFNPatVchams7UCFAJGGSSSoqPj0jqgyBVwFi5dllBIsn6WhkggqEZzIQLpuy7pkKUt8cGIY2fhSSfRoyQlBZAzfB67PoCRImwhFEtxvwyfqsn0qImPvISolx2y1qesl5SpjjAQX3hCv0SqVSGYMEsPyUcbY2BQMVFOUCWLE2+40uBI8ni3t2XxYIpksEE9lUK2IZYjbCtHD07z+ulhRRWKytt5UExOEADodttNaqX+e4qkccjbz94FuJZBZAfRyTxC6fjcwZc8e15+Or3NlPzGT/D4Jx/U8qd7f7u8st3a35gSeJGYif9vOsoI/tvuJItDqVUCvB7NzEiQloqha1WTv5UjC2xFWRg4q4mczigDYeBARMDVTxsUs0YPUAMjY76omSzjT1tm1eVESK8LZ//Y7Gmz/22eEE/5E6YMlAirl5LZ8iJUgVIN/l9LTTLYUBVAsU0J8qYO57uW5Fh6sCATLHuLbHy2Nl+f8jxv4D7eI78IbrhrdX/rH92LDb1yO2752se+h8KV/5AaiL3r1B8sycyoDZE5jXihA5sDsoQLZGMrPRgDIcNmoBiafyItzPhyjvRbIHpdh9r4E8bGjGPu5xugPtnNQJAJP+r6viWWmbTUI2QXBKOV7WZA2rNXqQJUJUwqgEDxJ92tRu3XLkyk22JEX0CuHueG8YXKpGImh1w6h8XAH4v5HmPF3vV2iiEvac8409TIMlYbMvgTUOX8VR9XkOQecej1Q1mAH0VaheHkwG1RzAU0SEhDa9/CUeZOb71YXLRcwdJOc07esZCSUFTKiLGd251CWWT41mQUAvnlrocoMXYC33+1h870fwsSx50FIdhpdNjF1eizzIgVEI+V+CJHAKS+8AqQ1bvtaeV86nXsSArrJGqS+ebcANLivCSnDTu7KEZZX6GQwK0ZAswlX9fR6oKkMVCikI8Oc5ekCUSkH2TY873Lctj9kqiqEIBUsTURJvGAyYY/WGV0IcsWhWgV34oZrAQCyp9iQBEqiDtYJL2xGqZW8Y3KyJAyXkzzYhhd8gCtQJFcqSG1AmZWfSSSKVgSdCmTDAvmQ8GS0zN28abPzU54jeysANWp7F7XLLNgnXnsjAEC4Mmjr6GjJvTzIynBxlYOVg7SBQsBwVQ3/ydsmlKX34CoRkbPh6RwZ78xZo1XFBLKyZVyVUiFInIMdVYgfG6An59TJcv9cKWmndBdUUtxEu6yAKX88iMejUoF8WHrJLD8eSyYYweeT5VH4i875J2MQNbjiRWSSs9nyCLJtG/faTMNa43sAnqRXmpsyGtaQdpmaThIMgCfUqlUpMByoZQeUCRUvwakIMofN2ARcxp2XWnDxP5eBDVgJTyo/b+d5V9EDAlTMGX8qtdfIHZJ95ly1mbb3L6zT7u6LosVOi44ISW4QT+U+s1pmKajg3jlUWKm/4RZf647NXnMZ7f0BY4cqyVIUoB6vR6LQiAAYKRDtbDNBbvuCUaFhYgnVipkgj1mywldDGYOorTlDXpJ1Tu21FeSz5mrJFc6ucAFiKcpMdrc2d3uc1e56U+Q5B+DsPI7hIZY6y3MOfLY7PLePtGDSGOKRaV8tgNQ16FWlQ5zE5b56PZ/F59YGimPen6+CKB1KL5tiCSSTSC8Nwusj37uu0adKhSfCnV2oY4kiJRRNASOBzipCdw18zyeVGkRtfqbzYeA/rjwLU1NTGPuzsmJkf+DfPnk2ACZ9kxl+zVVp7wrVigFnv7rkoZo9K4CvfPocnPBb7vNWTswGlpJpoL1aojfOz1rUdYEfeOJ3dq1Ae00DRgDD90dor5HoHAIM/XoEcWcY49/QlV5rsnK9RCnhAZT3pAve5AVnfyaJrUqeAZoNrmipVNKhsNVRQCkp5+Q8CisdZnsKUF5AjQ9BDcW28oLPYz4SQx/aQuOhUUS/eKhuv9qKKHJjdL9r7LrxPWY8tGF7dvsOiOkYSXvU23i+D5mtlvOyhs5Edr0UM8UmbFYAYOkXH8zqJ1fcMyuFlzEzLmhk1xwfvLFNhg3AGd/VYBnAz6YP5AigGfv5gAxh879fiU3HXwThst8tMSusRFtUaF/h6MiNOQSAMbZSIgI1Y0CTbcjLRJrrk2XSGEaOcDbzTJePbbgF6sR8f3S6oKnc27TJcOPA2LP2vBrtgstq3+3ZSqByT/qp7Cu54rD54Y/6v31z84T7UoIIcqrL9l4acx87V6ngAvBE/Cxae2E5yYPV7NnxBmS38BWOIJYlLFoRVzsPS+RDvB7EbeP7bxjJ9qSRQDYGdFcbVs+ICcnOcv1/7ltvgGoQaMTaQhKgnin9cOKYAsviWrkn5ze7qjT3/Ht/XSDa2YGJJZIdGbKxBMlUzm2qHFnks+FF6Q/LMrBt3ACq0lr2GTcx+/CuiTxp7eVqRabZJk8kEyWuwq5C3roG69zfjs+X6Gluvj0eQ3YlZKfwwWFXMcLV3oKleQ0Qt7WXPnLbBvgYRVYAUpeJlNUkVHdqXUWL1kBuYGTEZJYjdGHlwNJSXcIl07KsMKyiCbwsmIpNzVZ3a6NbJ1VC9coYa68VthhY2CoDV42tIyAfIpDhILqTJc5GAG2D4y6BOOeFCSIXLBXsDtnuy51HQyz7qSO+Z5OdWSkrXqS+J6FyiVNKQ480+N6bdWXflSq9agykSrK4ZNYs99Ly1OU5QTwyxXN2s8Hrepbx+qJ02deoEUO3EghLFhopfCKFl5q1PXWom9uKGbcm9iVcALUEAdPrccJEltnkWyvx6b7nFGJIsK2RWPtk2w62UYeb0M2Ye9M4uzkpEzdIFWWybZKUkrxWghNO+SWSpTpM9Tl2tq17dqqJQ4LPLVeW2XNu5fPZVxQsO69cfJJ9MJUCeZPVIUC2GjsxkB1rewgmgb/3obPZpv3L/WvTBgQsBQSCZR/wzb84e85r60/ibPPuyhhf+fQ5837XBba/+E/vrb3+5X84By/+79fhS//4Xrzo1R/kYIog1pY3nInitPqjWUA1beasNFANA9EjiJyQ7ASSadhFHaCZCNmhOdQxBYRqYuQnrrm91TOVZLP1NDAyDJqZZZLFBiE8M17pgQKgblxozZOyQ7UEkT809zvNBvRoE6rFfRP8JwnIxiV0OoRGIhFtmwG1O763iwu+uObHtf24hU/rkjiyWacEycdUdVJjm1lryQ9vANsfl7GtE8HlsAAw2oAgAk3P+pJNuAwD2ACRK0kFSuPSamL7bByXmWBY/x6NiPs+CG3lyKx+ZlUf3jZoY1mHgrPCjjmHz3eeQxQKenwIphFBTLYt8SS8NA9nLxMMBDuGjvzTmstkh1KA5i//3/AbnFlHyvgqEZpucyBjZLi8HnkBMzUF7OBzJkaGgUPG/XZOWn8N7rxj4YgIANjyvQ+wrjERIE0ZEFiIbS9As/p9hQs6ix5rsrvGimT/NpJgmjHUipZ9Xy+MFvgBxMbnXAqf8e8ryeybzkgkq+falOiNCWQjZaDcVa34KpCEDb6iBeQjPDdQIfCzd70HR330g6CcIAXx3Fnw3Eq5dWAEz69sNPI8IDrwvQb4nFvnxJCXfNSxczxKAsAIIOqgRqD40n+UFRAyM54YctsQiokRFRFMCu9YuSoVAyqnV81BfdeomnutkG9Q7500ww6UtM6VSuxxppxdn7dc5iSTQwBXALmKGfDubZ8y+CAeKdb+NoIQddgJo5ylqGAswZMa70BXM1Bd9p8nmzVLZhVDUdl8VBuf2WksIRV1rIxjYbP4jAtcUxksVkwAVQu43LnQEl7Wzb3uHG9j+0s4KbG8yeSPSsmft3yE35MdXqNdP7aiSYhmXfCd1xB3vtIdBWSPe1LInoKcySEf2uGdoWRnCtNK2bmx67QaSiBbCcSDqJMs7vzZniU1OJJF2YByOwdJAVkoqBUtqLGm79Mkpm3PCx1Bag1KYyv7FsHExBUvHQXRySrSVxHLa1oHjJoNbsjpyA7nyGW5T7ogKeHlRB1clp8L5DrZJl9lYHupNNKyGqGXgbZPsR0wNsL77XW4uqSZgKask6sNMDtb6+EGpUFRxA6uk5wBynFpVQaKXGWOG2dlfjKCnXPKAEgOQmgZwyQcoHESgDI3KJoCvTHiOSm192jEzqiJTGkXLEIi2jc+MdeePfmlV4FyjWw8ARnsspcUUBIrDl/+h3Pwold/EC9+1Qfxlc+cgxe95oP+2IomobldsT68AOJ22URc2z4wTl6CCg56xbMc+BIFk1E7n0woViiM/SABRRK6kUA3Y56nMwXqZqBOxo3VJ6e4+ssFJJyd6KQ3uj3b70QBvenStnQVF444bKTlPbBzhmW9IgkYDT0yAjWScGZ0U5QyM/a6ZiMCKmmiFa1DfP8k27RFUfY0dMk+DnMywfuzynVp0xYK6OUwjcQGh3gudZr5Ijc1iUMQQVUkZYUQXO2cAjTbKwkkUElMOVvSnTdXLe7ikLb6hKstnAQXrDQKleu3g7PPnK2sNDbfcw0AsESWPWYSwpIgkv2USrDLJCznRlDY9Iz3Y8v3r/Cbp0IDrSZ0K4Gh/5+9P4+6LKvuA8HfPsO99733DTHkyCAGk2DAkqAZJEDNlOTwVcnWai/La7WqlmxXWW1bbsvKFGIUU0JmQgKJuqpVsqilll3dZXdXWavbLldFAgKBjFAZyRosIxmBmMk5I+Ib3nDvPefs/mPvc+59X0QmmWREDuI7a2VGxDe8d999796z9/5NhE8cyiEEgGte+T5RzOf8glpBlcVyqGnzMkZr2rNSz166Xd6vi1HPAsAdf3yzKLPz0OzR1LPfJbhy0ZYhza3S3i8TMAIDSXoZWIM0rZBqB+rTuhXVk2Rd9+J3CeDotNcrREAM5AOtEWJj0G1ZUeU6qTN7YCDWVGLRGkd7CCdCqhh/+t4b8aJ/9BGYIC2uW0qWq1HCEQXJCqLAagtl4NrhnkJdKPWoWJdB9uQ8mPauDGcpsIAr2YqwqAhz/83yvka575S+l0Z2hRpCn7wdwGgiyY5VG0MKUeop3btJGfuFTGYgirnitkAwfUKshRjCjoR8RYD1BGzaQT0OIDRGVdzynojtrYIHWq/mjBQYHvJsgUNqCwz5K073Bx1QZ/Iq9UmC7KeS6RR9ngPI6869hm3leXNOr/wMFdvfrGDPFrPQW2tm3CY39AOA1OuZyJGtm0S9JI8VpgMYEzaAfjPB9AS7JKlnV0Jci5VYQrlFLATg5MU2mBJQnw7wS4I7CHAHndgsaj1rdydIm41k1s3yHunQb3q4zRrVnZB77oPNc4BzlSyA7MvZYnDWIJ3YBHVqyZXtxioB1/P8ivoediWqFptz3lhA99RUgyWdMeDG637WD4BhBiZyjcBcrPFLbVpVCnpozTCboFhxauYxQv49JwrqvpecFWs0b1DVN5UDpYQ4qWFXQcBo9iWDRUDNuH6Ocr3iRoSTrMYlue+W2tq7cu1QSMBCSFfwDticSm/AovrKmZDJiho5eZlPpmr02YT0lqbHYE19tI7W99gi5iNN0Xjt7e1he3sbu7u751iEPdL16r/2QfzWv/75h/yZl/8tsYoxPRfve0A3s0aY2d2meHQDsiFKyJkMhcIGECYMu1LffR0yuqUMe/wc8HMuw69uS4aP9RmG0zDw6iBh+vV90P1nwYulDD82N9B93wnYRYA9EEaR+OLyOks2by69IvQhDtYBGSnPN3dgAAnyxgSAT2yJlHN3OcgdAXAtm11/vBY2tZXGevb1fRkEZcnxSn2tEw9DkRDK14r/5DmAjy7vxce68aUIZG9LwZRDs0WeKYxUea+ExWsfOECWtxf23ljZAuggypSvFbZOvvoIoD5JEZkgxWJmLLQRZtEW25Xshf5w1/UvfDtgCXFrIh7W3p7XIuy6l757GNoz444/eu/wvZe8q/z9sAJi57lvloa0KHfUDsa7otZBEkZSLjwBrD3+xVjXv/DtAlDNF2K98QgXNTUwmQDz+cOyBTta3/26/gd08EGDz3hm0mdmnASbCugYt6eIGx7LSyqsThqxf0oAOLPBZegday4ZGV/5WRkgPvNXPgQ0Edwb2IWB2zcwvdxbi3XUaFckBSKyksQtoMN8DCw6XVHBFPmePG8JoM8DfB0gFiszkt+JXpueMPxs9l3Ox5QVNPI69T6ZHWoSgAS4lktROx7UxkrBGDs0chQHdmMujE2QvSU2+ncnj2Nb+XpSgMe2w/lmK02biUC26TJBGnxp8hmuHQ5m8LfWL2jgpqhAuPw7gxxhaoqCqChI8vF2+l7o84I1vHsEZGWAzgQByrI1UTlven7zuaM0WHf2U1MUOyX8s8osLQWdatmDTasASy/NhT/QsNQgwBUT0JyJmP75WWFW589OHuRntSVz8ZhPl2zLNaFsXnYGZtmD7jsDXq7OVa2cZxEZVYdYwFjwlgKw/WADR10cGtXDDEJmUQbkPTRnS+T9fGwfRCT76cZEGrY2SH3Q9+th3ZOJKgwc0lSsYqgLwlxedIPyJB9DtnDKjV8+V/mYjQVvNPo4cSBX5MZYMzCo0obW2cEaAZDj904GyNqUltDh0V5eshCKhZyRa0mbb7YGsXFKzCBVSUmQfbdpsDohxJiS5TMamlAUcC6qc2larfCVm972XdejF7KeBYDX/Oe34TP/64ODLC//W7frYEiu+Ry6S0HqpljLuQo5ny0B/iBKrbtpRMUSgWpPrr9+QkUZURjJkeFWAygaagGl/YIVlGHUD3TwZ5agXZXkxARsTLF6+jH4vRZmpSHxGgrPOvikyALkdcoC7ToB5ca2hkTyGTpc4+lKV55Ev93An12WMPkMCHAln/X2eI1uW3ICjv/xWTnOqpIcvWULcBquwfFQ53yZcof/7b34sauSRT6TYhVm2gBa9kizGnHmy1CREkueUiffp5yVlRmvuSav5FqhTgbfrLlMnK1URjZDct5HdsIKSiJnDS6FcftIgunzuu7F7xqez5xbk+ZV7LV0sLQG3uhxHq5Dd577ZnntGSAuKjataVW1slbPEl30ehbQ3I7dffBi+ch/OSXQ8W1gvlxTkRyti7Ou/34lqI3A3MxEpxhHNa0MQdO0QpxVWJ2s0B4TAkkm1oQJoZ+ikH7YAn/yvhvKc73wzR+B7aX28AuGWzBcm8QWzBOsEgOzbSOIxHYvsgLRoRyTWCENg2OeipIWmqPHXoa94wEzK8sdlgbihbfidMBc7jMDICD/FlvZnOkgBBRgqNdsKz029WnorXWx7s9Z3Zy8EHAoyOwkWQGjTA+02wK+uJbLvuGWCqRYJeJELvbvmVSZgQiKXILe7SoUq7G1+mR0LuRep6/FQBUeYkWWLbrCZFAQ5b0tgyZ+zgV0KY8NBdd8PndAsQl26/VsfiyjSnuj/QsbIRkljzJHyucgKvjSHWckL2RdtwawANWB1PND7yC9RHM2YfblM0K0BNbnROP9a2OGNK0RjjWItdiiI0HycJYB/s6zMks4vA6DKnlPqaphb9qeCTEg16jqVLIGyhzOfswAfyb6ZHLSWPEBiBJEQQgKcchdyapZq2oRY8S2elYL6bHtkZoK9mA1gB15Xw1BnjfPzDT/DVmd6Bx4a4qk4Aq1+vUMgmQws22HY87XJZE8fq5tx2rsscKMTKnBEaKAMoaQVcBcO7BzxXklk4+TG2y5223JgBbXBv3sjUCWaldJRDqbDGGFL9323de0R+vc9alPfQr/l797HX7vs1c83ocCAHjhS+/Cv/z1f4tXvOIVj/ehPK7rSMFyEdd3Ald+5K9/CM4NDU7x2rSE4AhhatBvCDJsOhlecWZUM4qNAvFooLVQcEXvuWEKrE4QUg10Wwx2CRtfN2jOJrh5hImMfmax99xtbDphsOGeBxAv28Lq0hrVrhRNsbaIE6fsZoPJvR2qO3eVwhyFKaANJ2e1RW5ER6H2ZWMpw3gHrhzCZgWz6GQTUZYyMcNERhUj3IFH2PBYnXRYfN8m/N4EFBPcvC8M6BLGmzesPNSJEJAly1YyG89lNYsCAKteislVAK0CWFlTqbbg7OeaawYv0trkDdKV2+InenouTHIzMFzlh1E2veI9m2Wt5Zi5NOHEXE6PqFoIpx6FPJ9CBBsLe9CCifDx3xvAlZ2n/2OgrnDqyx8U2569uUi3NyYSZEgktgkJhYlz/Q/8ggJNCaf+9Fac+rMPDI/3rBvlvdecAALAbr3wBIDustl3/Xoe7rrjCzdj53lvERku8yNuSrnvccddv3SRju7JsV5/zfvX/n0hrc+u//63D4WfMsAAvQ6SfG6pj0gTX6z7yEWgF/aaaSPq3QC2Thg0bvAPjhOIoq8nfOmNN6w979f+3hvxrP/XrUBrYNoBpEha3+bBXwk/NwoeBPlTQkZJQR0qUv7SPGIADnJDk4EW241ABX1esXzI4Ic8hun1Xp6Zhwq09JMMIsgQM9u/5EwYQAvckTMTgEGdYRQkycIBC70fDUBNyseve01h8CmwcLghzMBWadgy847kPhn1/mdCLMcOR+cB60Whk5wpjWZufvup/JxttVl0yvDTUE+TVfuZQVUaUzmXObgzZIZgz2rhJj9WwLL8OtxgDZbPHxJK1krKfUsL+AiklpCZhGEDwFz24GxXxgalee83DFbft43mWxAGWn6jDmc9AMK+bvyQAxESTB+RGgc7nQzN1fnW2KLT0LDv1sICRx9EAVJXQg4AZMhbWSEtLFdFOTmEZNpiDbTWgI5tB7Rh5WwjGlmIA4VFF3TIGgBbAasORtUpbAlm3g7Hnm071Qoou4usDXgmFagLSBsNwmYle3JlMPnGnvzsUmyMaGEGJS4wgCttOwxQV63sf7NNGVCrXcTHfu/duOZHbpZ7UhSQi50Mc/JwqGSsGVUktVLLxcaq0oUK+NrrNZgmCRREPceG8eU33Yi//O6PFHvDP/i5f4jtm544dgoPBa4crmdN4HKNCyklodu0CBMZrLglw3RJA2/FitC2cl8NjarGIiNaAixAPeT6mqgVyQwS7myAS/4owa4STGCEmcXesxtM7vcw3Qaau+eg3QN0l29ieakTtcyesDDDUzbQHbNo7g+o79obhhYZbLMNaNUONS0gn6GqkmuqHWUNEYF7IbCEDQu3cKDVSuyxFAykmGCYUUeGW3l0Ww4Hz95CfWYCSgy714r9EdNwDwP09+NgETsGMw+ThoiAVuysoKQhs7ccBjpOrGtMFweLnvw0xoiKOiuTiyULj8DVDICTDMey6qo/n3UKxN5K696s4iYinPrCIwdWykvMTGRm3PHvB0XDzhU/La+xqXHqS7fJuVwsZTg2m0o9yJrwop78Oy94m9wLjMGpL75/rZ4F1MYqWxZaA2qDDJ6UyQ5mdJdc/HoWAE79yS3YedaNwrBuu+/8C+NlzCMmZ/1FWyXPUNfYfvdCrOu//+2jJlH+yJ9VhAhqA9K0HrIfjFwLAIQlvgyoTwOUvOR1REY/NcAERSX8H25fr2cB4AsfuAEv+kcfKeCKCVzqQdOJpZPpGeyBOLGq3rCwrRAsSC1N09QB0UvPp4TKzOSHM4V4WGwTQ86XG9kpZmDGGcSZE5tpA82YC2L/lcPC4ZDM6H7BAyCRLXiTNyA35HxkwCMrQ3O9lsPbc6RLtqCMlaqDrNazSnwqdlmjTAip1ajUr1kYThhqcLZGs094vQY6z0reFCsyOSaown4AV2zHBSShxHArsWDNP1+cNKwcuyEuFmjJDD1PqZetKqiV6AAoGaHU69IX5do9+vJRERDlDCFVVBQqhdyrvcj4vcq1dz8zWD59G5OvQ1w9mHG+bKQ0rbF8+gZMl4oFKcUkBKTGwc0aIR6N14OdX6Ihu2XSDMqLqhKwI6tPq0pqvFU7qJQz8TaM6tJsaZf/fojckzOT0JHu6XGwM8sq1KoC9QH2bCiEXaNEgqz2ZO/E7tAZdY2xwKjWhFqG8bRG3KhF9T6x8AdhsAWPvbYmLHVrJhPVtdi0Ayg5aRk8qitwXRUy1akvvh/X/+A7JF8mxAE4BeQY8mlmBlMmoAh6R5rflBwh1KqoaxhxKpZ+ZmnAlvHnbxRS4wvf+hG5Tivg9978D7F92xOnpj1aR+tirScVwPLtb38bb37zm3Hq1Cksl0s897nPxa/+6q/iJS95CQCAmfGe97wHH/3oR3HmzBn80A/9EH7pl34JL3zhCx/nIz93vXbnNnGe6IdBUx5iZYZBspBhVZ83t8FfMyoDQZgFBNNJOHFzmtHcHwAC5lc6rC4hdE9vcfKSfRy3EXfftw3+ZgPbSbFjugjTCniyeNoMqxMWJ39PBhkbX96TIVvjxTezyVkHBDYVYnMC1QMr2N1F8YLkzD5ICRwjuOukWJtMhmbQucF/ensL3YkJwtTANRXsUhtWRfplyBpgFh3MooLpGwlDPe7QbhtQarD5jU6CTwHQfCUMgL4vofZl0yQWkMDawlTlbQkFpS6oz6aGLFpC2PAIE7s2NCWmUozEysDoBkxWg+1WvWyspJWeMwLOqCoFgIIsNBQOzAVoKcHBCkjY/ZV4Qj+KlVl7513OrrMw1UaGALFmiEk278oPstY8XACw87y3rD3+qa/efs5TFCYXUF7zhRzUP9Q69cX3CyNxOhGbifniIQvi8Vobxn2Prvw+vf6a91/w90wCIodroMjpkzRgpRC1Ik2mBCBgAOsYMG1EtUugZNFuScCj+ABrs/Eg77UMfUb/HoESgAIfygSjJMycaCEZKUab3aLUoGHeVRQqKOzDrCzMYfKlSaGB7ZMbJIoD04dYPJIFRJCDbc6mUXYIITkGgvw72wZEQwIgZJAn2ykAxXZsrYHk4VjGtgSpGkCXfFzl/BhVsuj3xueRayBOAQq6PzXCImRjRflzyD6+5MCQsNFjPeS8ZHUPk9oFRf2ehTSiKy7h8/K+0ejcQC3feLCY0+eTkGfJZhG1UA40Vf9tr7k9NJxXNqKMSk4+D0jy+twBisKpy1Zhnbz+DH6tWccx0G1a8NO3MY0M7B2cO0zdmCFtNmBvJeD30OeYWgJXHlTXkkcyXoez4LJF2GQCNLVkrVgrQ5VpvdYMcy0MewOAlisBV9SWiC0GkgIw7OdjZpzaB6VZI8BQF+V5Dt9L8+vJ6hJrBDgNNHzfu8KMXWOFJoZp+6IeK5YdfYTba0uQbppWMMtebdYIxCM/6r6XgPByXHrx1ZU0pDlw2Etj+eof+yBcbQVDyqBKtsXLNxJV2plOfL1z0DsbAX9zkGwG/VIlyqev/czPrZ2a//TuYYC2t7eHJ8uybRrqWaAAe8kRkoa1miCKacmnScPwiQRgcgsuZCKKQLUf1S5FbAHnl1nMn0porwiAZ8AlmPsrNA90os4ICW7hYVqPftNi+TSHftNh46sGbr/Fsf8wBzuHNPEy/PKEbsMA7BCbY/B7PfwDc1DtC3GIu14D5qUWSn0vbO+6ks9LEvCD2xZ08gTaSxp0Gwb1fcN9V0BHVT4sO9g2wO4Cbq/B/Ps2sDrp0W0ZmNBg82sV/N36vmeb28xOHfv+n09llpmrOkiilRM1WeXVNs8jbIllnm0jjA5sskqUnQHD6g2LiiVZHrZSGwagZQRkD/lUGZDBOuM8K8FIrYi7R+cbMrYBW1tjRWBeMYpXf7bbBcrQiYDBAi5G7DzrxnNq2FPf+MVzniarwjNj+GJYgz3oUrY0WfvdKVm+h1cGVK5+3a0XHFwBZHB52OGBvZW+1KoC1ED2FQCUxOIuX0vUR9iWUO0SwsQi1QZ+kbA6kVGDB3/uohReJZguqU1qGgDQmEDWaiYJFfss4wyIXVEZUp8k+N4mHe7LfABQ0MKpGmQRpCjM+RvKbDd9UtBDiDJhKsCHM4zOedkn2uHmYNqITEgkzebK9VgiEhJTGOwzM/mm1LQKEhdAHyhEokxAzfVacgTDXMCqoiDR20Vo9FyloW5LHuhrg9gQ7IphK7EuM7WF6WPJEslKVqlBrWSsNAahMUXpISCPgiK5ptVDThbwS8Cu0mDTRoPaJVY0/Kwb1aZan+bPBwGFuMVGiAvZ+rd8hmj4LGV1ASuZyh8MxxQmQFarZ8JZtlMUUjAQ1Sqq37TAs49h+gf763sSAGzOEDcnSBMHvx9gl+fJkGLJGqGH6s8Pf09zVngiOa+GjsnX+yC1aFNJHWhoUMYouHLO447r5rFiO0akpkI43sAeKLDh1V4r555YOyha9HepJRxWl2cFZ7G/rhzSVIjN5qCVczCpFISMsLsLWGPgmRE3GslAUSULWwLBDM+xWA6Eq8Qy3a1rmd1UXj4vjV7HlcPVr7sVzluAvWTvqtpHbADlYcQGXu3IASE7qhIrTMQajtXhgD2AacRX/vabz3nbvnDrk7OmfTIt6fIe3mzraD0260kDsJw5cwavetWr8LrXvQ6nTp3CZZddhj//8z/HsWPHys/cdtttuP322/FP/+k/xXOf+1y8733vwzXXXIMvfvGL2NzcfPwO/jwrb06FzRyTFOxqg8VOAu3disuAiTh7c+pmzWIBJpufDK78XFh8uaEPM8bm9hKXTOcIyYCISxixzYOJyLDLANMZuEVCd/kG7DxImFtgmFUPHxP8HqH2wlJJ3siQyDSonIHdtaD9uQQwKquPjJFg+q6XPX0y0RdPMqQ/sYX5M7fQT6WI7I/VstHsL6RxKbkmakUQggxQLIGCSG0XlxmceV6N4wao7lsMctQ1Ft2h4VXxWNcAM23AUHlw5RBnAqykKvusk9p/AAk8MI4gw0xAhqn9ZRuo7t6TJpQIvKF2CkGKr3EQeTJSOMr7L28uhTQMQ+n8ftEXeo2byTv+6L3Yef5bxfPTGDkvWQK7XJVMHppOBoYIM3auUlarynIPN6h3/PEQQrkGtjxG69SffQA7L3ibDiSrIUxPF49ZqICwFHXIdrQu4sqWfvmaVPsUWukAxlukJlsqaMOhrFMAw6AHKDkbScPm2Urw51d+9ufO+9TcWVCgQZZPAqhktQGpWmEUbSK/p8CDbWWAzkbsoLKVQGENRm088gxMG7aiiND6niv5nQx42A4wByh+8DxS0riV3INcx+BO7HbEi3sAAYptjtqA5WMiCWqR59HXkr9XAA6DEmwJjIATBTmyUsV08rO5STQY9jEqyhUgTRlhKjksMlAmUBSwRSy9BmbhOQAGScHOClDYVr4fZsM5lsG1KZYI4wBn+QH5XwaV5DMClJwwZsQKRf1COsi1K5YIA2UUBrUpGjyn5fhz1krxy+4loDvbO2VVkeTAMOCoNO2cK69sFzCy5MB0gtUzjiPVBtXpdrCiyRZhpNk0Ew/YbdDpPfDqPCD84QEsIOGeTQX2BuzqwqwUooUOZaMOVI0B6mpoeLPd5zjXKh93/rf+GY41ha2PQijQ/dwdKjszmJIzzFjzpDJjUI8J0D1Shz4wYilG7UjFmhKol8dIVYM4qwpTPxEBsxq06M4bjHz997+9qFDyULk7Wev5kXNPCUiVKUxXsLCF2QDUD/lBZdBSGYSp/BcrGaz88YdvOOe5/yKsfB4AyKBA/0pJgF0TGdTrZ9hI1oDtZBAQKwGqbc9yv4jyGfD7sQyxuu0KsSaEDQY8g3wEWRmWhamDjwxWVXK118MtAprTBskZhK1ahiMpKDgXYZY94Az8rkeqLPpNi37bg/0m/NlW8uuaej3nL5NMspqkltcKa5Ge8zTsXrWBfkbwC0Z3sobdXwLOS51pCKChDoQBaNnDz6MOvQjzyw36509xAoC/72C4hsc17bhWGbNsx99TNXmxrckq0BFLlw0JKBgHW1hq46DMMAyGqN2KXW2+/+hrLs+ZwXyo3Y/hwuAvh+bMg1p5Xah16pDi+NSXbhMFyug94xAG5VFKoH4y2LMkxs4zb5B+bGRtfE5Nq/ePnRe8rZAQHqt16ssfFNKQc9KLZEtmQK67XgG2/BkApM/Lr/FordcJF3LFONQXeVip9S3Xrtj2mZX2WBmkzHu/gShZughHAPcJsTKwnUWsgT/6xQffO8SONcEfaJ/G0nvGqZP7L7LVKZVaqZ8Y8KaoK90yIdvQ+nlURaAGmquSxHSS35IagzCVYXjOvMszijC1xUI7NHYgHTkSJSIbHdJr6Liy4+WcyR9sBchJBAFYqkE1PK6zs3VXUZow5BpgAGRK3W3bEckm1/sEBQoEiAKENMmqFGGr+34gcAV0jYFpGH4uz0mNASV9fZnkw0rUUUAmNGrpZdRSVt1HQFrXG6DbGOpTAGAzyoTV85HzGQEUpbsQPoe6vKjJoYTcrKzN9+Ecc1SN5k7I5xulLs8EKBOl1s/nI3+djfQcmTyW1baxIs2YPLRPzaZYPvM4Yk2oz/RwZyW8PVtB5z3KECFOHMykEbDgYa40ayR3zRDirJJjCrq/A6KsXLXDdUYswETez80IpMhkn5wzpgSDuFUj1hb+gYU8Xs4UJCq2u0hxzZKLnUW2Ny1LM/uQAEJUArU8DlcW1AZRlOS9KQy1teXlGlGJK1GaSr5mOsfGfOdZN8rrIBL1LAD0hP7kDCDALoO4lrQBvDEpfQV1QWzBQhqICmrHaZjBtkGYWoSJqFeSB774jr+YNe3ROlqPZj1pAJYPfOADePrTn45f+7VfK1975jOfWf7OzPjFX/xFvP3tb8df/+t/HQDwz/7ZP8Pll1+Of/7P/zn+3t/7exft2F5/zfuBhEfEYvrNjwnK+7rrRI7OhZUhzSV0oGQIg+e+U+mmEUZzcmIH5hdpzbc/OUKcGIQpkByj7Ry+/sAJxGiQzlawSxn6xMaAQy50pKiz837wix6Hs7VRbAXU5sq0PZpVh3DFMSyvaFBNHPxEWWFdAB2swHt7IKcFZh/E76aqRN2yvYnFM7YQaiMgEgFxYtBfMoE38hgA1ofcylxnI/ZpeXPvtoHdZ9XY8AbTg+W5AMvYiiYXstlrMjciapOSaleYQ3loJzY5uaDgIScAKIV6ljLLMFjYhmah7EBvkTaaoloZ7EJImAo5j0Cl2szAx373XQ/7s3Qh1nUvfpc00N4WAIm9k8BiPV/U9cKWViksAGQ7N3DCOAg4W0sdVj3c8cc3F1/sx3Kd+pNbAADX/+A7xFJmHOR4sBqYHxl8swanvnTbY36cT9T1cNQr17xqYJV+4rcfBjhoSIrPpDe+kARcSQncDAOhHKzHGtBre2HoSdC5+MBmCyhAhvQggB3jGb96G6g3+Nrff2N52mf+kw/BBFMss0SGz8UijAJgOiogCzseBuIA7FK+53qAeultWMNIS7MzbmxGtzDboShfxPNZ7h0yUMSarD8/1tDgJFR7AaZLCDOnwIjR4aTsEXBU2GuAqmHy/C7pbZHlNebXXkCfUY5JGn991LQBKHZoY0WOBHVjyJ9hAJD3K9byX5hiUHMEGagWdQiNjgd6zPn59blSblAxNIKxUUUhDb/rF9nDGkU5ksGiPLjNwFcsORkjoKRN8HOGW1oB1LwMN/Lz5+wZ0gbUdvn9zvdxg9iMPgMEgEkBGGGZUhDGvwxpa6QTG2WoH2c1Um1gFwJ6cN6Dx0AMIM2Vt6CmBvW9DNYOM/zGw9euAxIQp64ABKyM2uA9jDfFY9lVFji5AXd6PvhRjx/vQfLMeDToy6xTImHrEVAGtWsATYIq1YaBIKvFiHyIBTjJr50CFxBmsBo15fxlkCP7tjORZKJsVTB9wicfZG/lyoEr+bzc8Yc3CcNvrohkYcsOwzBhrWZrEmGtjlm1qVYfeB2U/P6vPDma0Gyj80gZ3r/5sTefU88CELav/kl6nVAWZFRCBLIt69ANcKtUBlYZ1AozL2zgidx/TedhV+JtUu1DrUwcqjMrCbZXG6dcj2RQQDIQgBJI3PZwIcGsOjSrFvGK41heMUGyBF9n1rZcK/6+Oej+04PVR4yi8koMvvISHHzfDMkB1X4Sn3oAcXsqwKUxoLYXQHniJftIAUWxjDHl/rG6BDj9/Ck2Nzya+5YwD+xjmNrqyp/7xCgTnDHQOQZBrRnAFaAMQ9mS2K4VhYo8Tr7WJD8Pw/UaeWDgjoGWbBFkRZ0iN800KEL1OC42uHJ47Vz1pnPvh5UHqTq+KPNW7brSKK/sYa9fe/3V7wfMei106k9ueXzqWbUx27nqTTLgy576zokl1aqV98CYQbF/GNj+Hl6f/NTDu7ftXPUmgOgc27gHXTrMzFkOAiZbAVp0v2IicO3lOtP+mHpRcaTal17VdAnJiWbU9IxYE77/5z4C0wN/9N+s7yWv+vEPY6K1IYBir9Ufq4A8U0gA1HI1TCTTLlYDyYjJoN4T2/CcFWJbA9vKvWesTDEhifUXck+rfTVLLVqG+4yiVJTjQvk7R1Wn9JJRlWqnhJvB7gvAGsGUDZX6jWloP01kmDYXqvJSKYlCWciRYledFdpikwXYLoF6hlsJiJ+cKUqZXgmStktynJrFF2tRlAAY1C95fqOKF1GdYKih4+hnoGWPG/6T86uzmwYD8Qhq+d4xktVfJiqgRn5sMwLNiblYhMnxcanrxaoNRSUuxzrU9oDU92PFd3KiSBdV6Yg0FtU5ZSVZazmbFrMpwiWbSnaJiBs1Yk1wiwSzzDIY6ffkM5GGDLTAQt5U+9qsNKEMeJSD1L1u1YJiRGrUIozU9vfQvc6ECbA5FfLrYln28HOUNiUrKK3tHaaLsJYE/ABkb3BOfs7nPDaV+CcewBUlAhWl58g2PuezlYy5TLYaH9coU4VC0l6Hil0fe8DM24e+PznZw079yS249uU3yYyvj2XGxo2QjU0bAGuQmgrFzlPzX3LGWtgUy7Jse/Dv//snR017tI7W47GeNBXXv/7X/xrXXXcdfvzHfxyf+cxn8NSnPhU//dM/jZ/6qZ8CAHz1q1/F3XffjWuvvbb8Tl3XeM1rXoPPfe5zDwqwtG2LdmSx8V3L18zDs9F5w2tu0cZfvUVNDn6kMmgarFpk+J6ZJLGx6GcWlKiwmm0nIbrjYsYExmpqlGlLaM82on7Zt9j8NmF2LxeVDCe96TNksK43e3Yy2AQAs4qCsockhZP6x2K5hPtmj82zM6SJx+qKGbptCzaEai/CH5xEe8xj48tnga/fCQ5BlAHeobtiE/MrHOrdhH4q1h9ZecM0FfuCjLBrUQoAbA36DYvVCQvbMTbulOlhrAntCYfJrBFf2F4Yg5QM4EeNZ/aJzxv0KNA2D3nYCeskhxrn/ATTQx9HABsmrIU1F8a3MnJzkxqOT8sQxqjVwprFA6C+1gDb8wfQX+z1Mc14ue4l75JmGZDj0e9T5YRRseyGEDagMDzKOpg/5PNc9+J3gcy51mKP1TocRHrdi98F3p4BUA9tK4XMHX9402N+bA+2Xn/1+x9bC4rvYl3zqvedd+D6UCt7sQMCcpLaeHDjkWoPrqyAKLXVpkaKYrckmMYWRltypLki0pzIgwNcJ7hZD2MYf+n/fQviyuLZ/yMDPy4dm6gkWAAUBVnAEEsjAKYnzQ8SoBo+AZFgVnYAChKEhTSef/FosM9j0IA0oJkLoxsKtJS/8/B7hWnsRkGYOpAzfYKxAgyYqA2lDiT7nBfFEAAo7yf94PcsDPJRsR91/8g+y7oPGVXnAAIwmH4EvihQQxCggTQjTCQtgN+XJjDWQL/Buj8RspJmzaI5AySMoeHg/DkZ7q0FdDIDuFOaSYtir1YyVfSxTdSweQ1NBYkFh2VpdNgL2JD3z9iYsge4pVqJQZrdrFCxrTxuqAmb3+rRfGtXj9chTcWCCKqyMSFhcXmF5UkDvxjyWJAi+NgmDp65Adsz7DIJkPZAK4HTWVGR9+mkg2JABmkR4Fkjffe+BnonFpY2IDYynITosDFDPD5Fqtcp17HWocLMlsFrty15a/W2R3WmEya+ApJrapXDA8xsrWUNUk16DSU5Vhbgg0csPEoKgqiFUAFonIA9YhdKYltUhjY6EFbfaTY5JHcAW9gZhO0K7bYTJmZgfOZ/eehMvPEA+OrX3qIfPoidS6IyAAdQBjGZRcoEfPoOIc28duc2Ia8Y4LO//kY8luuC1LM6NH+4Njq5pk21Paeezda3wKimVYWUXUWxYGUBMm2XCvM5AyBmFUVxUgtj0nZyX6n2ABDgDzKQysWaxS4gtnAZAFBwkvNQwhhRZ+eg4gxMLFew37wPG2clIH6p+SyhEdvC5rIafr6N1UmHY3+6D/ryNwXUNITu8g3MrzRwy9H9PjHakxWo9/DzAOor2HmrvusJcAxEUfKsjhuYHti4K4LvBsLEYH6lA2iCBoA5c7CuvC177aHrDxhq3FznRgGsUqNDLM7vC8nm0bNcSxnIVCJTOc5eBzF1pWpsIG3WiI0TRnseAuXnjnHtWJio1JeP5coEmZ1n3YiikgUKEYiYRV2fLdiANesYyv76k+acx87r+h8QIsnjVc+ejwS08/y3yvDPGHBlwQq6PKit2mO8rn79rQ8b4Hg8V1HmP5Klw8xyE+h6UExIW5PSD7Lmu7XHGx3wJxgNbCcFMXNPLqQ9eajogX5LHvp57/0I6jPAU//Fl+WaftWz5YcIsv8bAntT7o0UND/Byx6fnJBLshICQLEntx3DLqMMyw1UQZPKvdKkqP16GtwdwEUVwwoCwAzDfR5bX2vtFmu1KNM+vfy+05/RmjfbojMPNaEEwKOAR6aNZX6ARLDal3fbrgTWizWnZvYFBYYNwWRCqRHCY1aPm5D0/IubiO0i2EoeYD81iDVKLiPboQ4QlRAQ1HlwsDTT85w/KzpbKEpyN9TxtsVg3TVSq+TMFTk+qWuyijo5oNe8FLuSZ8mEhmRpcEwhBWVIntP2WSEDcAS6DWDjLsbm14SsmrxBnDgBxtTJQxQ4jMVlHqsTBLuSzw0TEE/MsPec6WBX1yZUZ/uiEoKlonTMVlli95pAHMXSi2d6/Fyuo3J95fw+AGhqxM1G9npAwLpst5+JEDrLihMnCvXFhliv782HmnHNVpdVxaJ7mt7/zUpzSgoQogQp3U+yNW22gh8+tLkmMgKoWAKMEG0pDdeVZAIOpOayXzlbiElpo0GYepg+wvTpIWdFY9XldS9+F65/0TtB2Wq3FkLEOL+YG480rUpmYt6zr/mRmwvoCQzk8KP1xFvpCWMR9kQ5jsd3PWkAlq985Sv45V/+Zdx4441429vehs9//vP4mZ/5GdR1jZ/8yZ/E3XffDQC4/PLL137v8ssvx9e//vUHfdxbb70V73nPoyv+H0k2AQVpSHJo1Kc+KYXma3duGzZhBkhDwEwb1U9VChhTG3BmzEZtSjsugWF5YMdWNumv/OMb8az/+4fh9g02vwE0pxNsm8pmnxc7wid+c2BiXf3aW7TRIvzGbw1fv/773y6KjNrDMgMHC+BgAdNXaADY1QT9pkW7bbH3DIfFFcDus0/ixJ9uodrtEaYOqTboJwbVfoJfJCQrDWU/JXQzg2QJ1T7B9+JnDkCYfrVDv1UhNJl9QXBLgl8k1Gd72IUg83BOFBbWAMYCXQderQa/dWsGZppKPFkHJnYZYGYevCHM08xAyT7gwkBCKYZL8RQZdhWkIHDamMWEtDkZMbFlsJBBmfHX8sabww8fi/WGV9+sg+DRRq3WEOXvZZimoFA1ss5iVmLlwC7G5gaA818TO899s2TWqPx159lvxKmvfPdBpxdifewP3oPrXvruNSuacejhE2E90cEVQBQrb3jNLQDz2v3iodYdf3wzrn/RO9XLHEPB7UwZuiZv1MdYgAViacx6ryBIpwWisrViJR9VtyBRvtQRm8cWWLUeKRAAEiClSUDIoK10RmItpAdH8nUKVNSBiY38WzOxTA9t8OTPAqwwrykKh0B4LvZXbpnK4DevDNjaPhU/7OSESche2PDRG4jED+Vzmi0DkrLe8vFIoCYK4AHKLDQutmLjcHvTD0BGBq/sSo4/qi1WqlDyZOTJ5ffcEmv2YuUc6nPI+aAC1pzvZ4Bh/4ORzJu8/IEMVd1iaK7H2TJMBOoYZk/OqclqHG2c7CqV94a1ac6NvEkMe6BNtlV1JAP+IAIkTMYShjoG2414ds/ujph88V7wmbNyHrc3kaYnUd25C5zZLWw5f99xNE/ZwuIyj8VlBhvfjMB8CUqM6V0VwoYXNWniITDdSyA1sm1XEFCBeg3RtBbdpVP40wam8sLOW66G+/bmBrA1RSJCmlXoN70wUhMLCOJpZBGkb6mel+QNzj7Hw88dmtONKG4Mwe33cAedHFMZTqgyBUDYrNBvWj3n+qAm25OYQaWig6gxq09UTKYwCQfgJb+fMmSAN6K2LOxZlGE6O4swczh4ihe7pjnjd3/tRjyc9YbX3ALxLY+iTslglIGwdVUR85sffzNe85/dBhDw6UPB758+9Sa86sc/jN/+n89vT3gx14WoZz/56UcWQJprWrA5p57NZJL8GcuDPrm/RVglulCSwHvTxcJoBlFheBLn7BbCH/63N+KHfvJ2UREuE2zHqHY7Gfq1vbAuY8THDg2Ur3nl+3SAZ/Cxz727fP36F70TcaOBjVsCYhwsQH2F5h6CWzYAAd2WQ7dlcfBUj9VJYH75Fk485XmozkpNCwBbX5ebW6zEHqafDRY17AnuQO3OFmIBwrVYk8VKAJx+BgAGfsFoTgf4gyCM35CEsDOZDLZVqxa8WEhNa4ZrSt6QDHZo/dZ1MCuH1NhyLZX3LQ7Xp0iKlDHch4GJn7/Wib88bUyLNY/pY2EiFzuUPDSKCVzZx0w5cc0r31c+Nw86eDoMDjsBBQEAiQtTumQ3jvKjDtdhO89+IyjF8pg7z7zhCREif+pPbxUrXgXaKKU1UPvxXk8GcAVQe7nnPrJhYjn3WVSWNJsDkFwuQFWiQHWmQ9gQIhFI7m2Go1haZqBaldt+wUXd0J5kuLkqd60FQlAFtwyQReU9ImZWBqgMAFsUmKaXWhSREBoUckwGNIgNkr4ImTHI9UCsClHtEZOjcwgboHXgxvQsCgsSYoKosgnsxQIsqfoNyAAFld47mWHfz8NwNnJbynZPeY2BbQF+oLl3MlPI5KJ83MVWuBK1aQaLRGEtGbU2xjWlb7KEZC0oq7Fzxl/Kg4L1elaOR2txC2SrWUBqWbdE6RWKmlz7BYqikgdQbG7zezTuN5ikDhXl+tCvUxzIVCYyzAGXPBcwI4FAfnS8LHV9cwY49h/Pgu6+X57z0uMIT99G860DmLvuK+8xmFFfcQmWT9nA8jKHxaWEzW8k2Hv3MN2uhQzcD0APiJAaC4pGPuMhFYsqsNaS3qF9yjacMTCVAy1aqWezVEnzp3gq6JVkghD86aUQaw8rUkiAjezG0h73mF9ZwR80aO6fyCyGAHt2CdrdH4AN5rJvxa0G/WaF6syq5CVRC6nFAfCkQg67ZyUgZbstZCX2iDhEfRzmR/mz6wyoqfTa0kMPIjljbxE3mwJ09TMDtzT4zP/6nQHgnee9RdQ0jQMnAbO4skJkNEYmwAn42OffiWtf8V5QSOe4p3zis9LPv3bnNnz61HcBOh+to/U9up40AEtKCS996Utxyy3CLHzxi1+ML3zhC/jlX/5l/ORP/mT5uXE+BgAw8zlfG6+3vvWtuPHGofne29vD05/+9At89MN6MOucwzeubDsGQIZrhhAbKZBY2Qi2sDGSADF9KlZVtmP8h9vlddX3CbPOLWWI8m//fw/O5MwqnAdrssd5GoBaSwEFiXf7HWAqDXIz2PgmIVbAvS/xYPLFzsH0wOyeBDcXlpyvLdyGQ/QaAOd0qFg5YTCGBNTKUq/k/RQbl+ExqI8C+FReM1YisFyCc5CuN8DGTLxwc1HHLF6dajkiw8AE0xmxr9QBgciEpUhiDXWjyKKS6YWNaTplwkUZYMHJcMx0Caw/b7p1GWixf0mpvN+P1bIq1/3Y774L17/w7UhbjVwrattCaTQtXWMIj7y3SRhDJfvG2vOy+XaedWNpBhB1eGLNeUNFH+v1sd979+P6/E+WNbZ9y/eJ/DW7jPiNzz4yq4xrX34TyBnFMCOYspWJMHaSU3BlIoqyDA4kB3Sb8lvZrknsE1EaFEAUKDEaWKND4CBdxNf/6+Fe+4xfvU3BFYAdgzRom1QOn5sYuyS4BSnTOjd8Q3NUAu2zzdfIlopH9XVmvOXGKFlpQCny2rUHgjR+mgElrMPBOzvfi4DcwA2WAuPnLbksZnSs/aD0KEzBNIBByULYdNVgt5Y0ADMoQ45t/jlRd8RGwBg3H9Q8bKVBZgNhuK2AYnnGI3sEHs5bVp+wAShn4JDYAFV7DNcy3JILWzFZ6H2UYbsEuxqxEZW9R4FHzfEQyAooeNQYkdp34jduV0n9yyWU3nasQ9DhWAFg486AyZ0LmPvOgnf39eTrwHh0jytNXi02R7HKYBYXWxd28l4bysMHA9Yu3fYR1HYS5NlUgDLyTBs0YyShvXQqwOL+FO6BAwVlEsIVx0qOiASL65DCm6ISkhByKp+l/LPZOmR5CWF5qbzhrgWqXYvmrDyv3+8RJw6rE06uk1YIH5QAu4pDfgywJlnKX0tkBvuQDDbqZz2zTOW64WG/yTYiNQ33oAzO5O95+U/sK4BX/s0PoznTPyQZ5rU7t8Eqi5W6oEpdUeTmzzMwKFU+8789eLP5eIArwGNfzwLnr2kP17Ovu/YDavc1YkxaU6xlTJdgVwFm2UumDoBimZOkVomVwb/7f0rtKrWsZLTU9xyco0zN67qXvacMDB4s026sVr3+B3Uwr/Ym7qBDqh38flSFn8H0PsLyEsK9/wcHv+tgElDtMja/IfYhVZRrItYE0zHCzA73HSfAIMOC2h6kikSxOmM0ZyPsMoMcCWbZgg6WUs9m4s5iKYzexMDxzWFzsUaGPsuV7iM8KM6iqIFY99vCnAW0Dh4BDzFKRkkGuQ4pUtAHmHlbrNjyPS4Ph4rqJWld+xhFf2S7sgyuXP/Ct4OWrZyT/Fryn2PlXTl/VM4b0QDyYrnCznPfvGbDsnPVm0Qln/NPFMzYefo/xqlv/t8emxf8EOtwn3a0zl3X/MjNMPNuUO/rvWLnuW+Wz0zX4dS3/ptH9Jg7z3sLUI1AebVoo7YHaleIC36/g91dwrQeYbtRdQBEmbzsZXCcrbi8LTki/kDA2Pos0JxloO1w6r5/snYMr73+A5pTKjl9YTKoLYV0oxa3K1E8EA91QL5nCfEk98KalaIuCwQUuzMb8u+aoq5mR8i2qBTEXpdZn1+JQmK9Ldkq2WKsqL2VDJSts3KtXEgXBgUMMTzcukA0BN07AqnyJChAf7jWsR2XWmNYUkdTkOOyqyivXa1FWAEvt2I47T3knA6kn/wacp8wBliSB6C1dFaUixIFSqhSNb6TPLKczVjyDpXEZOLwmOxyPT7Yd3UbBNsN1sNZ/ZMJWJlYlXNhMiC28W3GJf/uAdB9Z0anRB837yUjMD9VToihJEoY0uyqvN+JWkV6GdK8ELJCsrDzHOois5I0aWCWPfzuCmGjQtiu4A4q2F21mQ8RMAbx+BTtyQaZkFydWUnwe1aWjBQf5fGZQX2CW4rtXrdp0B6byHXVM6pjFaqzE7gzC6RphdVlUk9nFxnTKxiU81Gmk7IHZ0JztvwsJNkwEE9LhmKMkhfDubGUfB+2FlxZfOKzb8frr36/zGa0NqJecgfDpke3YYTsGxmv3bkNbhHwG585/6zu+h98B8iqUkjrY/m71F4l70jnad/JOeUIXDlaR+uRrScNwHLllVfiBS94wdrXnv/85+PXf/3XAQBXXHEFAODuu+/GlVdeWX7m3nvvPUfVMl51XaOu6wf9/uO2CqPbqG0WVFrMxc7FrlJRt1BgyS+wBJCHnye84v/8YYSGMJkS/uCXbnhYT/tI1DgA1qT/1//AL8gm1Ce1CItFWtg/IAMPYMSYABAmwmigBPi9gIpZGDeQAZRpe9CqBzsLO+/gvYTFynlRpsleCzNvpalbroTZp962vBrsMnLzSVyDZxLeScsOCEGKRmuBuoIjAU2yLNa0UW17dDiV2QeMMhygDNQAwjYEwLVm0hSlB5B086UR649hADd4yl/3svcUBsTFHP5/7HffhZ2n/QwAIG5P5LiAwSriPL7UxctcJbmDlDYOhZch7LzgbSjZOznYOKYBiAEKG/toPTlWdec+7vjCzdh5wdtQeYvrXvpuOG8RNnxhuTyS9fHPvxPXvvwmwDIoM8C0GE2VQZxahEZBBgthQynDLQ9/c/ZK8iLJz5L6MGHEmkFWrrO66vGf/vY7gb89PP8zf+02kGdwACgaBVMGcIUCCphRckgKm254nLV/K6mOcoh7tj3QhtAfpHLviNr4JmUVC7jLYKOvU8MyQ5MbVpS8KjJQYJbhVvK6I1EBJLJdlgAQQxOaz1UBNbTRKvZe0IZNv95vKbiiwAwbIFVc7BsoUvnd5PPX9PcBwACm02ayHR4bSUmLet5SDQU3UMI/s22B6YHJ/VyAjzwEMy3DZsZh5GI/tHbf0gYnzFyxfyxK0cSa40MIDrCtMDtzdgg3QKhNGUDYTgYSG3clTO/qUN25C37gtDJJ9eQlBu8fwOzuy3tOBqg84lMvxb0v30S/KcxFsTZi8MnjOHjecfQbBm6RSlOXKiuWCollKGh00OkcqO1huyBM/V6JDZA9hZiRtiZItUOsrfit14R+Q0gXXo3Yi/1GRYiVKQBayc1Qj/LmNCM0hH5DVEyhBsJlhMVlFjAWft/D9ECYAfVZRqws/DwVtYvYyMleIs0dARDfczYGZAEkGXr8xue+uyyDXLO87toPlPeYIuPff/Th1TwA8LrrPiDZTn0SCwgiYf4BZeBjRgDRE3U9UevZXD9l+5hsP0tJrfu6KEP7ZTfUBMwgVUunSlRkr73+A6IwcoTf+tcPbfkGPPIsuzFQc/33v13qWWdAkeAOpOZmAvyBQX+fKQCs6bgEQps+wXSd1LITV0KYKbIMJvsomUFEoD6iOhCWeawJ1DPqe+cykA2apdF1QFoUgIVb9YFPSQb8zoGntVxnq3awTyEqSm3qA0xnwVEGuaTWrmXolYdTKQm4kh8j6T0oq2Gy8pvlomDNqRF1kvrOZJJRiECSAc/O899aQNWLNfz/+O+8A9e9bOhHKEQ5Pymtg0SHa84x6zkziNMIoIoR2NvHzpX/EKgroK4FxAqhDO/G2VhPFJDlaD30sv/p67jj/o9KD+QsTOLSD8HZRwyuAMCpL75fwDdlimcyADdV6Rv9vqg/sVyBnFpHd5KBQH0EYgTbujglAEAm+khGFRAmwO/+P85VZb7mr34QcarqURZni1hnMhKjn5lCcBFbJMnRyGSUcfYGW5L7RV4ZMDLD1wYrL7mPpFrnFaO6UizMWe21hDDFJLWuzarp8T0/19gKVsTRvKA4fBiG7fLzqB1apz2rIeQsuawQHwMVyWu+osfQdwDrOX1KvLFtVuEykjVI1XAuc30fJlqf6/tke4CjvEc5HL4ouSOAHmrrNdTKMR+L9htuNdgGGyUdjY+RnRKu7KBuyeBKckDcILGw7UgzceR7QT8Lpb62QNgAJvcAG9+OmH1jAbr/7No9ku47g8m9p9fvm0SIT78U9750A/2GqnEW8p6efellaLeNkiAItgciDAwpGbiLkk+7XGk2rwU6wCxXgHMwc4ZTJQkTIc1qJC920ZQYSa3cw8TAL4SYylZUV4iqGMt2oKoYybMkHxLc3CJMRZGa7eOWlzgsLnOo98QObHXMoNqXz5ifR9hFAFIC105qlOVK9kJnhViQ0lpeFxvCx7/LHN2slLzmVe9TIpEH0ne2uB2vnRe8TVSozOBJVWZQnJIYGrhMbsGao8rRenKvyEfv5RNpPWkAlle96lX44he/uPa1P/uzP8MznvEMAMCznvUsXHHFFfjEJz6BF7/4xQCAruvwmc98Bh/4wMMMqHsCrfPZAr125zaYKAqUzNqkmLQ460ExCjOui3AHkk1igsHmt7rH5Jizx++1P3wT3H4rzZu3CDMPvzeEeMpg1CJMDFYnHap9KYz8vmyE/kDYb6YLoFUPtC1oyYA1qLoA205guwbLk1aHRA5mdyENT+WleQTEWzkP/WOUgPauAxYOZj8HkmWmsQVsAnU9bB9guhqmq8DeqDJF2HjU62Pr44ryRB+DCGmjHgJDk9IGorIYvCmF5cCW05NHBKSog9wI0uLiuhe/66L5V+887WdKE/GJz/0Crv3hm8ogbE2xMlpjT/MClqhyBYAUt8oeoQj5egZrxsFxo8d+IqhYjtb51/U/+A79LGPdDzez0vHIQdnx+vjn31lyf7i2autlxRrLET73/1lngv/QT94uFlsrLmy8pEqJ3LwED2VbMb76Xwx2FM/8Hz6Ar/3kyPLBaLfGUmiadmiUspojS/HLIlF2lIY3AxNEytjN/9av0dAA2R7FZioDNqEZWGdMMvA2joslVWjkPzbCtOrVm1vsWfJzakaIH44RQLEwY93lB09nUXJEtftip02sDt0zeCWsSVGxjG0EkAhxM4Iiwe+LMiV5lKBMad61MVwK2GR6FIufbC+WVTnEAC9RbBEoyTlmBWf8QsAV1+Z7DspeYvqBFV/eIrW0yR7brOqVkjWCPEyggdlJYlNJlagiTS+BnVXH6LYs2i0JLQ0zoNqNqL58t7DcrcWaf7M99CcAVB6rKyboN4DJvYzNb/VojznsPXsKYAoTgK0/XyBseHRbDm4BwEtxZudieVRemwYXZ0tLYkaaODAB/YkaSCzWI1OH9phYhoSpKY0+gJJxIYQNUWf6A1Z1GKldhrzX9W6EWxDc0qDbJHTb8n7mz0M/A+pdoHlAsoUy0z8TD0wfZc9kGS4TIM2vMSCIdc13A86eb/3mxx+ZncvVr79Vc20Ak5Sl2MnxpqlHcoRPfuqteN11HwAlflT3ue/19WA2l2949c1ir7q3BM1bIFsuVRWy4sC0vfw3rVQZYlHft7rox5yBgGt/+Caxf9VBTalp97WmJeh+ZdBvOdSnO7H76RPMKsKyDjqsAcUog4/9FrAG5D2a+yqYUOHgSoc4MehPTFB9cyXggDWiXsmARw4z18V7B6DKg1atXGNjcCVbnQBA34MWKOSfPHxB25XZoDx+HHL1skXsxkRUMwDQtjJgVWZ+sWmMAexsUZHk8G4keQ50PaiuAGdx/Qvfjju+cOFBlute8q61HKVTX3w/dr7vZ4fXc2ifKLYzwJC9UiwN8z4xYkIDMlibL9eGzPoA8t4Y+cwegSxPzLXzvLfIZxgAZSA6f85dVtjHR2X1dupLt2HnOT8PkCt22gDg7p+f87m//kXvlD0yQcmJkulgVr3gfLUD4BAm4kLx+X82gCqv+hsfwm//y0MZX1qDiu1uziYR5YyogxlRFQcFE1BhHJxYb9tWSSaOkJgkO3B0Echg3xTF6Fi1EiaEfjLUXZInwgXQkCxFKSPdapRhlu25oljymsglK0YOUlUepT4lJC+qb2IBfSTX0JTahglAZNS7UYAlAoiF1ZPrvkG5y0iNAC9+gfIzyZtyL2Qrihi0g8IZhmCC2MomC4BZQJjcWmSViJealiKK6gfQ1wMASorKWa5ZpZNV+6bnAjgJMEJFVT1kPI4eh4DQAMaLetyoGsZ2ajVXQUgzEyDMGM1pYOv3vn3uPfJ8A1u9VpaXN+g2gek9jM1v9lhd4rD3rAlAwPEvrtAe8+i2DHjBsEYsQU2X4M4sBHzPoH7UuYAXEmbamgAJ6I/VMCHB7rUgZxCmDm4VRZ3sCG6VYBcROTdVMkws4C36Y00BO9JWDb8vezL1AmQaR6h3Gd2WQ7tl1IJP+jE/T5jdHUQRvwjrJKFWHTiyNSez7qXyb2a+YBm6D+Z282Drmle+D+5+VdKHKLWUsRhbuhOAO373XbjmR25et4Y/WkfraF3w9aQBWG644Qa88pWvxC233IK/+Tf/Jj7/+c/jox/9KD760Y8CAIgIP/uzP4tbbrkFV111Fa666irccsstmE6n+Imf+InH+egvzBpL9Ow86KCORYmhQwxiYci5Ra8sVPuYDwbMvFWQgYHewndhYL3phm2bCnS8RpgQ5ldYGfCwFANuvxeriBiHBnOpDWeIsMxoAPgDp3ZdWf7PYg9WzaSIPjhs+A+Ra1sryhYikHdAUw8WDPMlsGpBkBlZUj9v6kJhR+fhEIVMJ2HJeZlNhyH0iD0t/wZKwOhoZX/9/DjZu1qGDBKedrFAlgyuXPey98DccwYf/8YvAtCh+shff43hl4uhww1rtsPJK+nPZ1/vDK4c9khlBshg5zk/j/ZZJ4+GWI/ByvZe3+lngMHdg1SinQNj2YpXFBvC1a+/tYRBfjcy4jwUed21HyiMtLG/7Iv+rx9Rhh3w+//DjXjZ37l9NCwWFh7xoMwAAAqEr/20NJ/P/GcfgPERWK57ldCebH+2kybyy2+6AVfd+pE1xcpYmQJgCLHUJiZl0lKSbzJJEct2+N2cCWI7eVBpcAQ4kZB2saDKeSRG7ZHGgZmxQlFfAABFtRDoqTDuABQ7hQLyaGOdlCUnjQnWGjZAAY2xioHF7ssvBiUMW2XHNUBqDNgwwkQaNjfXvBbNfyEApOGbrpU/i4WlI31NVBpou+ICWEUvf/p5BlwYfp4KC56i3nuyvWJuuiHgSmZlr4Ecdji/yVMByHJujDSnXN4fsVOQBw0TZaXpOTh7lUf9wEnYbz+gyryR7ePhpfe75t4lLgkN6vtXMPMWbj5Fe6ICBcbk2+L9vLiy0ffCwARGt+3gKgO/24KCQZxVsPNs3WPLIMEsZf83nQSNp8rAHfQlzyVMZdhpW/n85bBRDsqcVWABBkiVBa/UUoQI7qCXYYUziLUtrL/ogdgIuElRhyeJQFODaj8Onu2dZEgM+ShmYBjSQ2QlXMR19WtvUU9wfX8UTGIDGGY5D7VF8gavvf4DAAG/ebQvXZSV87p2nnmDDOKVFSoMUQNKrgx0zKIrWUSP5efm4//7O0XN8hA1bWqEjBNrg/lTa1T7MvyxKyUL6bEDkNdnjahNVi3spEIFYCOyWggaYZ1mhURVgbc3QZqvRBFCZEksAC+RnLv82HUl9yUiqb36XmvKKNtYPu6s7hjXZOOaL//cciVDmtlUyBWj11185lVxnX3pC9CTH7fv5T5Z16DaXxSQJdcR17/onbjjD2+S59CadueKnwbAQrqCnD/0IxKRAtdlZVKUSUDEkN8IAWNobXM5tPQ5dp7+j9FddcWTJnPkybpef/X7H1ZO4dWvvQXVUoFZawDvsPP0fyz/dk5yjfb25euX/4NyXZy6+797xMd06ssfBCAAMojWbHyufflNpWf92B/ehOt/4BcQtyboLpnCLgPsoi8D/RxQ7pap1MSv/rEPotu0cOcpOWwnDB/2UkN+4rNvxw//l7cDzIgNFbtLqT2HepItNNdE6qPeWpjAcCGH2GNU41AhCgFCCkpelNb9lAqhJ4e8m4aK7WuxKfNAAOAIg60WkSpe5L9cx44tbxlSpkWnYImX53fLBJsGNXi2G8tWaVYJWcQMU1NRdsdKa0Xkf6vCJRKa0wlxYoZ6kAAksUUroIsCRBQZcCTZW1N5rAx4xAaar4jBPtcMJKFC5AIKuamAJplANFK5l3ORa/IMzDCKu4npMbw/Xl5cVqLHbP2rjwEAe88ibHz7MlRfuVf24LHi73wrMSZ3LnFp36C5ew7zwB782eNoL20w+dY+QIT5U2pktbgQE0yx5yXtPzCbyv4yWrQKoJTg90zZj8zeCo1m3PqUELcmQi6et8P+BYArUa24g05BOAvTxuIEYxigtoc/swQtO9TOYrrRgCuLblssfI1ax7G6KeRs34E4G7X5G/ZzVovMx8tu/LqXvhtubznsv4CAK02FkgkDgJ3BNT9yM3ABgaCj9cRYymt8QqwH6Ya/5xYxP3k0Rf/m3/wbvPWtb8WXvvQlPOtZz8KNN96In/qpnyrfZ2a85z3vwa/8yq/gzJkz+KEf+iH80i/9Ev7KX/krD/s59vb2sL29jd3dXWxtbV2Ml/Go1nUvfbf8pYRTAkiDVVf2kGZjkKYeYeYfMbPzQq2Su2Ht+vAdAFcOYatGbBz6Ddnl/YE0pGYVBdTQ8PfsJ49s9+UceFYjbk6QGguzinBn5sD+fGj+jAH6HrxYSgOoGzUp8w5RmEI0mwrAokMy3jsATRpge3MoKPNjjpjRxZ6hD0MzCgyvM4Mkk6ZIxWFUtppZf8Dw+nLDmgEWZXSwH8lOxxJdgzW23qNZ177ivTCLDmxM+RztPP+tw3EAA6CSmX6H7cOck3M+CgwtypXDA8hxwa4DhGxBcepLt12Q13S0Lsy6/gffgYG5E2XAAoBPbAl7beoRNjxiLR67Dyd47+Gsl//t2xE9od+Uf5fBfVJFQ6v+xBaImssUJkC/KcwsthKM7hbA/GmMdKJfU688+xdvBwWxhcoDdttiTYFSFB9maIySB5AAvy/MfYooVgiU1E85Yh1M1cbHdkmAKNKBdEWqVJHXkJsyE1iUMdpQddvCOMu2AjkzJdsfuKWoB8JE8j3CRH5+DObGSsGThOIdnSq1JogKsIwYdLYTxqDfZ2WMoTSZbCSLpT0u58m2ag/Qin1Ffg2ulXNiV6IKsasogaOOZJBYE6qDhOpMh35D9gHb5yBstUhQEaDphsyAIchT7ssFMNAhXw6PLD8HoDveIPkhvF38rDX7Js/Y7NAw54E7JWB1XI41NhnoAmZ3Mra+2sLffwA6s39+kCWzyK3VXDBXMoYAlPs+tQGrZxzH3jMqVHPxiG7OREQvIFpz90KtApyGgMfB5zmK0jPbDnHl1vyeS3g15L3Pg50CdADngB/l3/r35A3YyvA4TmzJIYv1OHxeLMVsn7PGEqrTrXhjj8+LkSb7Qu1d3816w2tuQbYiSZVRlirgFkHCP51YSLAdhjWPl//0o61HL2Q9e/Xrb70ow+KdS/++/KXywKQBQigM8p3nqC2GgixcOcRZ/aB5Khd7PVhNK8dVIcw8wlTs/gDAzXux8cskncy09W7IS9mcIU0rhK0GYSLZgNUDLdxdp4cnzuqIEAuYksEC8g7cBwEBZhM9h3o/ajtRbVcVsDmT5851LKehfs3ql1w7Z6CrWLxaISHNF/K7mfHvnLwWIqkNQhhqv7yI1OaM5dhUyZK/l+vhU39yywV5j659+U3y0Mwwd58uSpKdS/8+eAz8jI9xvDLQQgRkm8ecfxOTACzj0PhimTb6d2Y4W/OECL4/WrJ2nvYz631KHkg2tYKn/fDD2rucuuuXHv3zXvUmwDvE7cnAhg9J9m0AaVajO9nALgP8WRk4MxHgDOLUIzmD6r4DUB/RX7qB9mSNf/v/XVevvPqvfbD8nRiaaxXRHvcIE1PU0qYX27DkJOA+5/FVe4zJ6VSyQEwvpAx30OtgXBj7ojAnrSFFGSxWpFAQR4f4jSiQbS/gQj6ufirPaVdSi44tw7OC2S3FPkwyQuiQ3ZgoYWR4r3lvbe4JpJ4zbRqG+aW+k8eOtdHXL3W3CVI/J0dYHRfChW2F9ONWXOpZq48JoOQm5qzEbMMatKZtHgg485erkrcoOStal+prlRqbi9pH3nPpH0wn2TWkxKyiCMrK96lBP1WCkgJD2ZrYhKEvyUSvDDhRBKr9hIOnGqSsrPFA8ozpnYTtrwZs/OGdcl3kmnZMjATOub9hnFelM4LFC67A3jM9mjNimzm9t0f0Bn4e4M4sxJnESi5htsPkaS3zkE4IATypwRO1WVc7d268Wm3q3sVpeP5MNJhNpLZVK7F8P2dnBLwJYXg9Wo/CyHXWz9yQ3agKMEoAhSik3y7I8+bzkOsSS49r7tXO8986WK7nvchZpFld7jWc+wN1VnikCpkLtZ7oM9Yn4/rUpz6Fv/t3r8Vn/+1lj/ehAABe+rJ78Ou//lm84hWveLwP5XFdTxoFCwD86I/+KH70R3/0Qb9PRHj3u9+Nd7/73Y/dQT3EGodCP9p1/Q/8AmA0EHrcGLBZC+lkY2TIxPy43UCHg+GBCXF4k44RdtHDdBF2JSCCWQbNnSGwkWaaugCsAlB7kLNDsFgbYKpeGqCcZ5KLAe9ko9cmk0d5IpwtECCfF14spWnMzVS2tDpYDMeafaVHChyxUkjDxk6kKphM31HLhvkC1CpI4pw8p3fF9mVNJVLUMQDSwKzJDWj2uc1hc9e95F0Fsn40Cpcw9bCGxAotr1UrhQuPP2uHQJXxyoASGWVLZCo9y+NgBNYUewVlgYzO4cNRVxytx251l81Q3TuXQjrbijCDFi0wFYpa0nDLzz4MT/yHu9Jo2B+mw7D7C7fegB+44SOYPCCAelF5GAEJ2hMM9gyzMvjTm24AAHz/z30Ef/yzA7jyzF/5EGwwcAuC6aGB4xhswaBMMh7AFgoDyGN6aQxNr8GZoNLosQESAZRIAt5JGh6r9kv9VJtFVWuMPa/la4MiIzdPmfFXwt9VZWJbDcnU4zCdsB1L8KaeP8LQ4LIDOrXoMr0+Vm74VkNDhoTSHLqVKGxMz4MlmoaB5vMxvZcxvacvll0UNZw1MdxBJ/fxXOhbadDYGWF27x3AVRWaWS3NU1gHK3jWCKBwGBzI/goKJpAZGHLiyyyDcwoJbq6sUJKvl3spUEAEcrIHmC4hZ+T0M4PmTEK3JU15fs3tMcIDf6XB7O4Km38CscxjlnDQcp8zKMq+yqN96hbmV1QCNnVcrB/qe+fwZ1vQ071kOXSM6NUyIzBS7UAhws67Mpwpg9Awuq8mCWenlgcAZsTMpiBqEgByvqxFqpyeL7n/FoCKGURcMsMEyJJrCxD2vPiT5w+v/phmDmXLk3we8mDi8QRWrvmRm4v1huxh+vlhwLZRLM8UiLMrPa/OHLGxdH3yU2/F1a+/FUiMT376/MGqj2TtPOtGqeeskfohBPDZXdxx/0eHH1IiTB5uP1iY/WO2HqymjRFm1cP3CXZl5dpeDWoPinK9psbBZFuqaS01bR9AnVjRmsqIMiXXrNn2pNKbdtsNKgxVnJR/Wyt1W7awKsxsrcMOMYVlMDVY4KxZe+XfmzRA5aWma7vh5zPhiJR0wSzvYx7yjIlO+U+kYYAdXQGoSAfeO89/aznmRwO2mE42O3YG8WmXDN+o1GrtoYCVMnjTvYF0iJg/g4DaDI3Oa/77aGhXHovoYSssjtbFX7y9Cdo7AFbdoD4FZDCblWX5M+zdd5XDct4VE2CSENkqASTZW3zsD2+SvIQYUZ1t0W1XsI2TYW5KMvTd8qjvXxUL7p3nvaUo//J61d/4EFAJ6aE5HeEWAWYZhM2/yJanQy6JCaJiyOoM0wF+yTDZ/qoXgovp02DZ62nIHwXAXnIwYi0Ep2zxOqiJBzVKtsvKXycLGK2Xsxpc8ucULOlU0dwT2AjJp1jIlgG49B5CfCGYCQsw08ken+24xzV2dv3IeYsmcAmaT05tfLU0OP6f5sNsISSkqdyDzULeG3YGOc+KrRXyjDew+yvQ6T34g8tFvdiPgAoA3SVTtNtOQ+xZM1io1KeS1RiRKjNYu3UJYWoAfU2mY9S91i+kr1/fl6z4idVgLZxBqVCLimlyH6PbJMlYtIDphMz2wAsdpt/cAlsLSgnmW/fKg52v97cG4SknsHjKBLZNkvsTGfW3zqI+3cJd5iSHBSi5umwJcaOB1TqeQgJ7q4r3UAALeCc91f5K7N0nFXjWDMRWQOcyGBQl3oOPbw427mvOGyNHDmuRJl7zjhhcObGmdgZupeprXWIhJ9cCdWGYcyi4xEQXxe7y4a7rf/AdA+iTGLw5UftgzZ9Jcs9JTQVYyb4jvaaP1tE6Whd3PakULI/FeqKgq4U53seBZZNv6udBy5/Ig+md5791ndWWmxGrXvJeipM48ei3HIKym4sP/J7mzPSDRYzba6X43BRZZ326R3XPvjSRZGTTXbXgrgd3wvij3PTkhnLcUGW2hnMDoKKgS1k5c+RQEwYA5BwwnQogESJKBsvaz4+ZcUaeS4v6zC6Q51kHXsagCoBhyKbZGLBUWNGADAzHoNtDrWte9T6wM/B37+HUFwUQLKzRxIPVQ2Zrkv6ZDkmIFVyBs8N5O/yejwNTxyuEQQEzsp84UrM8cdZ1L3232rOIVV7caBA2K2Gv1RIUzhb4nX/xc9/xsR7OesVPfBgUgH5GWF5CCFOIdY+XRqg+DRnqKkDQHgO+/OYbHvbjP++mwQqMooAJVuv2bB+QAZUcXA+gMM2kEYQO8vVYRj+TVRAmoAATuTEChPnXT6kcQ7dBhUlY1DTM2pgK07AcbwL8nMWKKaIowkxghKlFu22EiQdpbt1Cnj/bH2TQJ1aSoREnwzn1C/la8vKaTAtU+wKybH5jVYLTU2XgDwKqe+egffXnz9d8DmTv+vUBm6FBhQgMtozKtOa+B3kdJJY9bzS48l6Ypnov4bpCPDaRZoFRQuGzAqPfqgePb5L3AQYwbYTbXUlYZYjCQKud2A7ouQwbHtFLyKkJCfOn1ji4Qlh/IAGjAMAtgc1v9GjuXSDOKmnS5h3smQUwX4BPbGHxzG2wJcwvs2hPSA6L7eWzPbk/odoNCDNhhfr9gPr+JeJM7OyoT2r5pSAVANbQ79hIE2qXQZh5qvosjaWlophhb8rjUR81Q0syULJdl5xvAaCGEEwumSpsqJzrsdJ0PMjNQdbZUiFVDh///Dsf5lV5cVchJORjXAlglZoK4VgjmTR6DXXbFqYHfvt/vjD3s+92PZEULI9mrWV5hSgDgWxRFQJO3fPLaz+/89w349SfPXGzE9dq2vPVs9YizjxSZWBXEbGxYEPoZzLwrHY7+VkCYAj+9BL98QnaEx7dhkG9lzD91hwAxAaFeVC89L1Y3I7rJWuEHKQEH25bICapS0fqC3nAESko16dZsZKXcwKC1wK40KofFC7A8LtjlXP+ej4nzgJGh9ZjBXQBdA7VksqaZlXoUFYJZdDlYSgJrn3Fe0GrgDTxsLvLMvzaufTvg1WxwwrGl1DiURZLWVm5chiocm4doBmDW4eV7Pm8AvL41hzVtE+QtfO0n1n/rMYITCZAU8le6C3QR1CIpS96VM93xU8jWyLxpCrXblGN9hGmlbw19hbUhTVHgYezrn3Fe9FtVwKi9KzkxYDYyAC5qE5tJprQAFyw1EcCbHD5GhgIjRHbL4ZmqWgfGjWvTmvQMDFYHbeItZCHSs06qmcze54tZC9gAXpyTesWCt7oZVPtRcTaoN8wSE7r7pXknIQaJdMvE4EAVZ6rcmXzmz36mYTTx2qwBqMEbHxLCJ6s9sbJEqrdDu7bD4AP5N5LZAq4zW071KfOiSJwuQLv7g/3i7oSUDom8NldccMAwMvV+e8pTQ3emslztQFxe4rF06ZF3U2qzrZdwvzKSsAsT+Uc21Z6BL9kTO7p4XdXoC4gTSu0JxqpX/uIOHFi5buMcPsdUu1w8PQG8yuMqPRJbdkMcPJPejR3HSBsSbi8XQa4swvggTPgy06gu2yzEGZWJx3aYwaT+6LY2m5aTO/p0W9YsAFcy6hOt0iV7EGmS8jWrGbZgVZa0zb6uY9c6jLZD9K6OgaQf48VpDHJ9ZvVJJoBW1xDMiFLv5bVHAAKsEKJYZe9EL5GKwNNZQ5HBK5dATsf77XzvLdILVV7IVVFlnuX9gJpo0F7skGYieWfXabHzdEmrydKTfoXaWUFy2f+7aWP96EAAH7oZfceKVhwBLCcsx7Pi//al980hIiPg2Gz+uJxliE+2rXz3DePGroRuAFIGODEo9+qsbjco59qgJsD6rMMf8Bwq1SGZcSAOwjStG4NQqxqt4e/5wA0X6gdgm6KY+k3sN5QGRrY+Rn8ANbZGrkJy0w9aPEFDAy3kVKmPE5uxkaMtjXQpVglGKTjs/WfObziiNkIaNOq3xuFjpdzag59TQuMwz6hO1e9SYIZn/cWlMyUFIeGvLyeQ8y9fD4O/0xunsc/Xw5q9NqzLUVMg91E/l6xtZHHP/WVD517Po7WRVvZipCNEeaLl8+v6aIOXkUaD0MIE4t+w5Yw9t/9tRsf9fOPAZbViYFplWoJI/T70qhlZUbyktnxhVu/M8hy1a0fgVsMDaRtURQsQ/Kn/FeyTZQ5x0b9iyHKDRmQoTSfWT2SQRe3RLEzMz3DL1JRuvRTg3bLoN9Un2YjTELTyWO6hdihjY8jeiBMJVh+6xsd/G4rdpDKSMr3w3bbiOLAEGzHYAv0U1IbNEY/NVidAFaXMuKEwXVCfY+D35N7rgSSAtO7geYMY/btDtW9+0gbjfgZewM772HPzgU0Gav8nB28/6tKvrZqpfkcD6ScBep6YFeHUOwbue+H+2sOVT58b608eHNahhJx4tSeSp4j1qKgYUMIU4fYCDnBzSMm394XYCiNCAxNDZ41iJsN+k1fwkqTJ7RbpthfjH3BmzMJk/vF/oASo75nIbZY2oztvuhStFsCzMRarOX8kotN3OSBCOoZcWLEpuNsDzvvETYrwAB2GQU0SiOLNL0m+60KyVIBgSgyTBsGBp8zSI0MBDJTlUICRR10Mw9Aiv68DCzExg0ji6yS1ZJt1WIqFp6wCqyUfQGljgHJQCdV9hzW7WO9xorPkh1RObFgqYXZZ1uxsVte3jwkuHIh1ckPtZ7MAEuxs80KjgzsLVfDtZwYpzQn48m4dp6rw4rD9awT+5NsO5IB+Pa4BTHgD/Ra0r0ARmzBwqZHt+XUmpJgOobtEqbfPIA5aOX+mUHsVTvcT3Otl+vdthvup2MQIQ/58sq1awZE1PIrD2uoD8P98ZDN7/g9LMDJ2BrWmAFEHxFnyu/l2g8QsFeHmpnotGbDNR5KjutEZ3Hqq7evHdb1P/iOonQqwIoO4XgEjtDY5ia/jvEaq1jyv7M6Ja882DPr73953MPKfV2Hj/loXfx1/QvfPthNAyXTE94DhoQhT5mUQIgTLxagbXjUYO/Olf8QOceIawfOTgduYPabRbd2HbNzoPTwVHvXvPJ9MF2QY9fA+KzsTbUAvewl3wlmyPPIIe9JLWpLTUtC2KGEUtezqqMBqSFFnZKENMSMVBu02xbLk0KIyja9thWwxbZKSiKxAMvZIqEB+g2paTfuDPAHAbG26GcGtmcFFCTHBZDjipXUZCABVvJx9jMgzFDImcf+PCGqxW2/QfAHQjaa3Bcw/dN7gdojHtM8SWtg95agB3YFEAFk78oAS9eDNgQM4flC8lu9l89RJkx6D96aipr4vjPytb4voHG+F9Ph/jjfE2czhCuPod/06DcsTATcXNS13ZYDaxB7t0mw3aD0r/YZW19r4c8sZbg+b8EbDeLWBKmS/Lys6DEhodty6DatWN6awYINAI5/cYHYyJ5V37Uv9tB9AJzF3g9ehnabChgTPaGaJ/h5QrKEMCHUZyPCVDN8FhF2GUQJbQC7CAoAJpwv5zVO/ZpSW1QmAyjPeV5ihvOWFVXZASQr8rNKPtfLJSdsPNYY1alISQAfg3XywugY42ZTalq29Ljna+284G3lfib5M26oba2c8zSp0G17sCP81r86v8tEzmV5LFxvjgCWC7+OAJYn5npSWYT9RV0ZWCllONEae+X675fBRHfZ5uNzgBdosXfSsCmIULJImIGQYFYBzhjY406ChZVpkpyALSADvx9hGIiNQXfMw7QJbhG1YCSsTngkvwXwFvzZVuwCYgSdPRAf6Nz05aJnDFKMGWf5uIrFSgYYRg2qs+t2ALl4t0ORvAbYYPQ8eeVi3xmY/RW48YOSJf8sD8XyGqAxUrpwtpYeMTdo3MwCkBDuc9+XtDXB9T/wCyA7AoQOgyeHz9P46+OvJZ1MQ5knuRkegyrn+92o1PxxI52HB2Sw82zxGz4CWh6blZnwRIxkDGIjVkJUW5g+CaNemUAOUI9naXhe+l/fjt/71UcHsrCR5y7BmLnp66mAKjlH5M/eLqDKC9/6EQDAX3nTR8TeKn/USH7/jz98A57zwdtV8QW4A/3IdVizOspD5fI8wOCfbKkwvg7bG2TVS1GvdCjWYqQWYaE2JfvDdvJfn4RZlzNWoH0sRQFlMsswWxmE6eDZbJa9DLeNqEriVBrT5nQUz2gjLMVYEawl+EWCXSbxzJ4R/AFh41uEg6cRuu9rEe6v9HkJk3uBepdR70ZU9+6D5i1sFPsp4614J/dqD2OcsJVDGIVVu+H+WVfD0A1Q8JnlngygsIOzDYu14D5IM5pGjLS8cn7JsgO1AWmjBnmjbE0Duwhwu60MGJoK/ZZf89CWxxhUjjSdgCcVUu0RppIHI1Zn6kceADNXj+8g75Fk9BCoT/BdEnCDGWlWg7qA/uQU3Yac854M/Fze72o/iUozQRUTYkU2u7uHv/8AaVKDYoJ/QFQ24eQG4sQjTKzYcikTlAlgT4jWgjsdBta2fD8roCimMsxI3gAKBgEKwjgzWGdZYUjm3B1AP5ckrNDcoIONPi7UI11JB8xrIFfyZri2IKG/jxvQkptvZjAM4AzCzItlnHq3ZyDZrRJe/WMffNCG9FOfeAtef837C9Ay/vr3+rrupe8+P0EEg/XTzrPfCHACH994DI/swi/2Yt+3Vs/GP/amEwABAABJREFUpGHyAcYZVJHRb3p0WxZuyehnMojMNjf12Yjoge5YBbeK8PtBr1Xx9W8nFmw2wWYT1V7U6w/w9x8ACYjHJrAH7ZAFlcHow+AKC8hVspfGtRkRUFWiWLGSEwg7GkBlBeLYAizXufm9zqB6XtYI8BIgYbtq71uOJ0TwfDHUnIePOZ9jTmIFo4tyzXwY8Mnf3z3AzuX/QPaP/LjnsQXLdsGU8tBuBJIcHoImBY9yEZz3qkysGp+Hw7XueVjYO8+8ASA6Aloe45Uzyigk6Xfmqr6NEbR7INfupBH7o80KXPtz+7fvZo36yrg5AQzBtGEYCuvwNjPrf+MzYsF43ctGMwBVa+fP6R1/eBOueZUw6dkbcDIw83ZwOFCFDFUOpk9iPRgYrKBKrMwoV0/C6ZNDqQXYQLNDoLUAlyB1sOas1BZGVS85C8WtJA8xVkCVRnWyFWAmTORe6fXU2w5oLZCmko/i94bHa7dEEeMXXOqIbBXml4zQCIHIzxNC7dAeB6pdYPNbCfMrDQ6eYkp9Xu2KSt30jMm3D0RhsjGD1XsSOyNgQq4tZ1OZE3Q9yDm5X3Yd4L18RtLoXgDI/ShF0IG+MO/L+0DOiaqQCIiZJGN0lsCj+0OEu/8AoE2EmcXqmAFtG1R7CZN7W5g+YXlFg9UJKxmJC8mIcSupuWjRyj3YOYTjU1W/W7AXtXwiSL6cGaziTNAcQ1JLsWUQMo3a+qaNGrSy6C/fQLdBmNwfFdAysFasY+0qAY0BJUK/YdFtEKb3JfgzLdgbkElwux2o7ZE2GnnciUNsrOacaPZiL7Z4plvPE8m2tXlRH4v6jKvBDjdbtRWQhUg/26oWJd13g6qDRuRl9h4mq8rUXnh4QgUYSfqs8br2Fe993ALj5Zgkt41rsfIEGyRvRZGdZL+0XUKEwWv+89vOm5P6ic++HW949c24+rW3FLU7cFTPHq2j9WjWEcDyOKxrX3EeRgpzURZc97L3rEmDn8yqlfG64ws34/oXvRMAiiXJHX/wHvGgZclKoZDgFwnJyQYOoAxZuw1Ct+EwuyvArsSTdHWJsJbrvQR3EGD7hOgN4sQAqOH3CbQiKYhCECVLBlZiXD/AcWOk3tZUGEWjpi4DK4ftAOCHQvo7rcNNKyegi6CuAx/fKp7+5dAK4IP1r2nDRhiqT/GQ1ZyZ7CE7tjmAWFyc+tNb5WvGAIgyIMjNuXODJcRhlcrhc5X/PbZayH/PHuqHm/HEA+tnvApAg1FjOrzonef8PE59+YM4Whd+XfPK9yGjvFS54jOcRrZQFFl9gT3sXguxXALcwsJsm8KIezQgy8v+zu0gK4Pb5Emk8N1gJUBRslZMD1AgPOcDH4HtAGqA57/zIyAP2GxLECCsrxp4/js+AtPIsLzaFYVICYvXATIgTaDJihYMfyYLJDCQCGb0MYVe8tEDVGwMsBZYTwzJZLEAVM1CLZdMENsLg892jOQlqN6t5DVGcYuC6cSGodoTr2k3lwESRbkPZOsH20rTY1pVMhgHSlTAI7eKqPYM/IFFfRY49qUV/H6N+zfkWtz6KqE5kzC9s1VAIWrjKbZfFNPALCMZ2Mt5MDJMG4PTKQ0g6xggzuBzPMT8LaAqFVUMW4DYDAB4vm9WVclvMItOhhSNQ5haxMbCNg5uIQBQbkjB0oz3J6eo1HKLiISR2PewsxmIN0GxLn7jkzuXw/EZeb9yo9VvOnTHK0y/tg+zkiBnaoUggcSY3R3U59tpgKmA5ZN72wJQdls1/ILRfOk+8NYU3ckGzbd2QSEhnNwAe3mefmZgggCcbIbw1qzSkfs2gSGZSOyEAU/RFJYfsXwuzKqX4exmBRsS4sQN4LuCR4MlHQOjtyj5PLSQJlQy0/Q6YdZQ0KTfMwhTg0/f8WZc86r3wXYR1/7wTeiO1fj0HYNVwUt+6iMwgS+I+u2hluSDAUAGoSBDtQw46T71mf/lO+dJHTWfw7r2h2+SvyT9qKQhFy7XfGOv8r8oRIk7vnBzsT+jKEHtO8/Tz0Vh4DJMsLCdAJluxeg2hDGQnILerQw++w0J2bWLKCHLc0JsjFg/bknmgV+o3/2JGfzde3D37onF4mLx4KpjYKhpFRjgGGXIPFIPUxQmes5y5MoBOXdhpD5nZ9a+xmuknn6oA5mBGIDdthxDUXaHqAoaGTRmCy+qqnNPdLbsBcBGXiOVKRrOn3OSwabR+SBjioqlWAab0f51WNmeh3zj83i4HnZu/XcNCdkAkLo+FwpjS7nIgDVH9exFXjvP+Xl5f3sZkqNlYFJJrbA9gY0J2D8QAgggPWLtBFgBELZquDMr7DzvLY/OKsxrn0MEe7Aq1pyyXybESYV+w+mwOuCaH7lZ9mhmAVmc0/oC4FoA0De8+makxpUwbjNvQfNW6jStlShaGGPOsZlmY2AmMmhPGWjpFXjxBHbymU1eVC025/sBJesj1kaBF80yDAl+kTNFVF2yGECbXEdHDVe3vZIzDOBWQ/2QVG0BoCgrsrrC9AmxUlsrIz1BHwluKfWy7QgbdyZs//u7UT/7Etzz0gqzuwQYmtwXlNiUhBw0ncj1uFzJPUjVJjAG1NRSX0YZ5HPOIu3UdjEDq/3oXpfD00lJQ6rGlgPX8x7CkPMKgEkVMlrL8uZUCEzLDnblES+xCDOg3bZYnWjQnJZ9xu+LLTIlglPwKWx4mEUDc8DA2T34/QNgYwZ7YhOpsUUtafpBDS3neCA1sjVYXTHF5CtnJXMLECtda4HEmN4TUO12ovhlsR0DSx9Tne3hd4H9ZzQwAZjcOUeqHboTNZq7JM8mbk6k7q0swtQhTAxMbWQ/0/mG6WOpwyQHVvak5ExRalO2w0Keg2geoCXNxHFCloGChX6ogcuyBIbmMRpVeHmx+c21f3aPEaLVkPGYKlGDvOHVN4OswdWvuxWf/M1BzfLD/8WHYVvGb//LNz74PeFCLCLA8GARb4CogCqivLemlXN2PmBlvB5vhfnRenSLUS6Jo/UEWUcAy2O0Xn/N+2FakUtK8UMPinp/7Hff9Rgf3WO7WDND6DDzK0pD6g4CmBxiJfkLdiWSYqdqlTC1IC34Qi1DWGGiG9T3zGXD1wawMDqCDPopRDBGQ7wM7GRgIWeO5JWVKdqUkrVDmL0hAWty88c8FNLAwPYDRsqQNPw9N3iTBjAG8fh0KHSIShFUGMk52Dn/TEpa+EBYlIX9bYD5amAtZrahtQUwKuAKMITLWYCNBQU9ZmeFsXO46cxr/HVV2azZhJn89cFignMTbgCAhsHr4efIw9i8Y+THDUHCca09akwv8KKUiv0TKltYO2FiSzP1O/9ivWB8w6tvlqall+YqNNIUJUt4yU99BP/+v7/hYT33y/6OMDnZAOyETZeVK1lJYjqx3GIC6tPS1LEdAFgou85osKafq+KjlsBHioCbS6bI5IEEt5BmLYdEslEWXidD5aQMIH8QC9MvVuLnnFeCNn+kAEwOkLf52Kg0qSYCk/t7ycFI0kjajtCc1qkky+W9uESk+24l9zyQ0eNi7D5Lbb6UbW90ECZKFoIlBVIyEKDnxc+H18AktlLbXwGq/Qh2hI07A/j3PeqzCVt/dlaaqvIiB0bkGihtaN3fPwzsv3IfJRLmMiCM4Wy7kkODD1uo5Jym8qGk4T6Wc5ryACs/b98DvbzUigh9rBE2LMLMoj3hBayvCaunirVctsECtlB9I4D3DsBLAVFoEkFtD9tK82hXAXZ/KXY8eSDohdXKlYVd1Fg8ZYrl921g8u05zO5C7ll1Bbffws17pNrBdKkwR/39S5gHdoG6Qjo2w/Z/nAv73DvJDmhlMNg+ZRMUBfzotiz6SWYdKguPxY9ccma4AC6pEqCznypIF4RhWN2r9mW6mAh2KfuB1UBctmInYWYWYWJgc2aQk3FmIrk+87WRgQnZf6MAsGqhYLoItx9gOrdmYZJVRq/4iQ/jd/652HA1ZxNiBbzyb34Yn/ufLk7uSRkyhXzMqQQBp0pe+1EY9cNfV7/2FthVEDYocI71aF4PNw/uSbuIZCPoR7Vjrl0iAw6gPsG0CXEyZAlIZoAoWhylMhDqNgj1LqE+28OfXcIDYG8xqSzYGmH8hiSKZkOA+vQTGTDSAF5bC161g9UW8wAq5GP0HqhrYQETSXZSF+Tnol7P2V4FGOzCvFWQlZFqDxiUjKhS+1kLrivxhM/ASq71FXwqd34iUabMF8NQs+vlfpvPq3dFPc7Zkkwfb3zdpuNbUl7qvgMiGZgSyYBzrM4eE4MOZyzmczQmFY0JRzljJg9fx8rzsW2aGZ3v8Z4XExA77HzfzwLO/YUBHZ9QK7EQQHqUc87OCTFo3p7X+mvn8n8Ams3g9X02+wuAqFgpP9y186wbR58VVz5f1AZgYoAuiMWmAWxkmGWQGtwPtRFFBkOv9ZVmMTkj9k8TAVfsIsAcrARc6bqhRmtqoPJyPQMClvahDI3tgXwtNQ6mdaKCIVE659VtivWvWwFJQ9MjqBCT/ILhFoN1aPIEtyJM70+Iu0JgWFxG6LaBeldAlQymUBKQYHWJkKHcAeDnRqyllgl+HmXQnUbqFb2WTA9kS7NUEUIjP7f1NWDj60ug8qjv3sdlv7+J6nRbbFMpqTIjROnVc15qfp+MBSoaatj89V7sFqny8vWuB+d697CleFa/hSj3qazaU0V3mTcAg82YNQroMIgD6GCJxkhdsrjUivVZQ9h9tlXilpy/xeVAcz/B9ox+wwKYojlYIi0WoKoCVRXMsgWxZPPYZQ+EBOr6waLRULFyZGMQrqhx8JePY/rNBeyZg2I16c+u4M9CP5s1XOKidnC7HezZOXhS4VgbYc8uJNtu5oEoAEZ/soHpI2As4sQiTCVrNwWpJ01UFQurWwdQZjlshWjAQT8PUVRodtGXGQFn9SMzzLwVNYoxgDOIE4c4cQADNohNWc4TBLNksdS6txBAgeFU4cLeFFKRW6oyuzMCgoYooBAzXvNXP1iIOfVZ6ate85/dhs/8bw8NbDyaxZUbMhX7KOS/hKLqOQJNjtbRevzWEcByEVcOns82EpRkYEkh4WOff/fje3CP07rjD2/CNT9ys/rYZ4aBKWALpQS7CmAnTWZyFv0m4O5OqB/oQCHCn45qjzUFyCF50mwDBSL6CLPMKpWk1gQDsEHWDowU3cjXvJlz8ZPZ0mNW9XjIqBYDhVXNDEwaBPV0dXefHV74uFjLjDdAbBkajzStsLq0keDARRSJrM0NnYIfUFZhPr78eBZgCHgEQINQDwFF+fVZi52r3gRuZEhIfZQGeCTHLY+fgSM7ahDzzx0ONz1sj0AGa3KbUsBisHtYA2iUDZ99q0eN+PC8maX9MFVCR+uRrQTASV5C8lSY6bE2Ytk3erte81c/KIGRJ2uYwCU43UQRJUiQ4UM/3cv+q9uVAbWO22WwoqhpGKjOyt9NFPDAqld0bjTESxiFKZfZWsnJ4+ScFRPFr9gtxDuaDUuRn4GRXofGOry2PRcLBFENJPgDKt7FVhUySPLRbafK0FOAxa3Uh1qtCew8wM7FKiBVDtQ7hKkrzUXYEO/iyf0oFl9uKYzlbkuCI00mxbURXFugBcxcwi3p+BRsvRyvvn8mShC6O+hVjSRN7MbXDkBdQDg+BQXGif/YwS46scoY++4TybVJRtiR+b6XrRIzmGKGe0hpKpmHe+3o6zzOElj7DJ5nyDVqAMviJMOJrOIrPvoS6un3peFfXlrh4EqL7jjQXhJRnRHpfLULVHumALlU19I81zXStBKVjrVFHVQa7mSGZnsJ2DZgFhJWl03RXjKBm3oJnW97aXz6DrQwsDmjJEYJjJ404NrB3Hk/+GBeLCNw6THMr6xgLqlQ7wZkr4Pm/h4NIIqZDQIxwR/IEKKcpl5UIxksqc4w2pOVAHeJEY41MJ1XgE/D7lfdsK8lA3gLF+UcuqVVMC6KnYIhxNoiNma4zSt4Y9sIiknuHY1BtE7OQ0iwQcC61DiEDY9uUyxAkye8/G/dLtZ3zHAjodDFWB///Dtx7SveK/UGsfiCE2Twag3YUanZLsa6mI/9WK1s8XbtK94LqmzZ4seM2O+1FWeVsMjnelHkGgZSz6IFbP6M+cGmtdqVYScFYaCvLqtBDDRnMKgmaw+7v4Q5aGHciPUe0sA8rr2CBGlgUQNDbZuV2FmtkWu4PFjsOlBSxXKIIGcLYxkAeHuG/sQEAFDfuavZMpWA+gDSrJJ9pnIwSetnQ0hNhbhVyz7dyT0F6oEv+U/CWM5CFIKR4Gg9PjpYiIUYsEZcKvuJ3rd2nvqP5PvOAV0PU1fD0FLr1Gw3KfmCaTgPY/Dj0OIYZVCaz7MZ9phyzzSEImEd1dAFXMl759oeOCJYFZLUITX90bowK9cmOZzcOxneBl6zYt556j8CtjfRXzKDP3kc2N2HOQPES7aGxzrPZ+TwyuQvAFozQXsbZdAoEYW6bu1zQQDgHLjyBQzI1zmI1IZQhsX5c2jaKNfVspeaoti1CpkOkwap9mvDagpau+l5od7Ddg7Uegkat8rS19rNVYTVcTfYoUaGX4qCWkLuI9xuJ+QJZxA2KgVfDBAZq0tEGds8IPVvJg7ZDlieJBz8pQi2jLQvxD7bMmJlYCLQ3HkA8BRxIgoHQHoRE1hqYwL83EqO4ZRge2Drywu4u06DpxMgMpo7RxkiKQ7Ksvz+WB5l8gz25WtWi3ll4uCDWRRmUmAe7APDtc6jmQIg9aN3gwpbf59yba19r4BNXAhji0sN5k8d+pt+K+l7ZlDtM/x+BA7mCq54yRVsKiAkcOWl9rE85CQmrTHbDogOBGD2jQVWV06wumICe6yGO+ilZ9HgdCSGTQnGOfk8qvNI2pogVQ7uq3cB1sKsWtitGvMrG4TZDPVZsTNO+vny+xHVWel5Qq2Kp270mdd7N8UEdhZVlxAnVkhxLJ+xnJ1ngpwvO+/K8TCRvNaU5Hiz8rtPxToexiBNKyGjRZZesWe4RQCFiFQ7BG8QGwPbJrXEi0Is6UWBDiUcJUd41d/4EFwrKil0AyB4sdbHfu/dYskaWdQ7IYmiRZVgh5U1F3pd86r3PSa5LUfr4a0nShX+nXfK7411BLBchDX25R7//ROfPUKTATkPV79WvLjf8Oqb8RtqHXH9D4qih7oAuzTwRtjYtpMNlZQtQKsAWixRxwg3nyB5sVAQKagFhQBu/GBjU9dSyC6WYE4gMgKyAAPoogXRGGgpTeiIAVjC70ZsutJIOWHE2P2lKFIu39YNOcEerERNc8iOgBuP/rh68napyK/Z6YbPQmuXAYY27apoyY8lWRlJchuyosaMjg0Yjk//Tith95360m249odvgpm3Q+NLVGS3ANZtJzBi4eWVVT6lcQcwVgkleQ3yvRFAM/790bGd98+xEkZlsUfrwq6Pf/6deO3ObZq/IOdd8hXk+zzuTfoEA4PlSWHk2g7SP2o4r1uJN/DL/qvbEVXx8fv/5Ia158uhi4MVETT8m8vzMinrbcnDrk0S2C7BlUB9Rq0I/HCcJTwYKOoPo+wnu9K8hWoI74yVgCYmMBKy/RIjaYq9CTkPhtRSTBQvnHswhrKr5DjCBkABcGeAejfBrRKoZwEwlMlPMcIEC7eSYO2sNpneH+HmQVhThhR0DUiOcOwrEtKeM2EocrF+oD7ArHrJTSUq9mNGmV607GEtlWBvRAaterizS6TawygoADJAaCVovq51uJUGUDU3hKGXRq2EGus1nIHTrG4oA4cR2JJBi3wbGA38CsOv3OMONbbAMNwyFnBUGmPqIygM95swMVg8lRGOB1BrECvG4gqCbQl2FcEbE2BzChiDfqtGd0yGhX5fmigAwMF8sLTJ97WcuBojTNdhes8Z8PFNdJdvyOdfGdpYrgbgW72xUdcCgt+1X6wyaTZF/5euUMYmUO8GuHmAaYMwVQPD3bsL99TjAGpQYsy+MQetOnBTwcxb8ZfXgF5zdon+5Az+IKLbtOi2KlGx7Jviw26XoahOqFMlgg7KjapQ2FtQG8uQxtQeFD1SJeCTbaN4yYekn2m5TuPEIK6cjB51oBknHtGLTVLyoj41gSWbpudy/V/UxdKIMgMgFM/7i61cyXXguB58soAtb3j1zTKcsAami7j+Re8EWYJb9n/x1SkPY33it39BvMvtRPzYNWem1LMpAV2A1eElJQN3fzcoJ4hg95doCIiNg99dyf1Z6zCu1L5rfzHYLWYQpJOBUlGtAOcC1Hnle2y+t3oHXixliFWNsiZSAtDLzzQ1KAT4s0uwtVg+4xj6TWHOT+6RwS8biK2PIdC0Age1e7EyzMpHws4ALPsZp1Rsf8rhFdACAAi0OZPfVRU188iqBxgNskmGo33AqW//t2KpxAyzfwDuV4PqcbwKsDGqj/W8lf3q8BoDI3mNz/l4jR9jTA4aE4dGg+81stHRumDr1Dd+Ede88n2wB9q3ZcLcGDAD5FpQVnt32Qa8ksrs2bmqm4Ttv/PsNxYA9bwK+vFnShX36/0TBtVtPp7RnwSAXQ1a9WBnSy/GzgLODpZFfYRlBrVRmOuZDJeBSOeQppWoZ1daJ0ZV4I4dA5T4Z0IEB81fcmIBCCLEVj7HYSpEqMlZRvNAL7WRDsHNsgV1EXAWjggpMCJbJCfK6+m9YssaGyM2ugkwWo/7Mxa2Bfy+kKDYiMUtIMfs91rYlRWlAjPirAI7A7OKcl/dJfg9jzi16DaFJIEoCg2u5B7KzoIO5uDFUnJVqmoAQEcB6uWadG79flo+Nwmc+hJ6T1F7IgVteQSwZMvzcm0rOEMKfhXyZqmdR2COKrWp7VHftwSbCaInuEUCLjXotxLSJIF6gunELm1xBWBXBLcI4MtPIjUOceLRbct+4fcCrBKyzANLqT/z+w+svVZ7/x5mp/eRtqdYPWUDnatQaWYQ7S4EhI8RBFVLeQ+e1qBlD/ft++RBmhrLqy4VkG7FqHYD7CKokrNH2G6kpj0zh7lsE3zcw0Sgvm8h+9EqiEpSP4tm3iEcEwKqCYx+ZtF7yd9xCwHp2CpZr48Ad/KZ7LVfCUaUS9YCfdQ5ida0IUm9niQzx6pClDPBlYDYCGjm1eWBEwMQgEfsmQXkM70ouU0n1/zFBljKe+c0O8ZbUB8fE9Dj6tffCm4crn6duKFcTCDnaB2tJ+M6AlgewTocaHq+lZvmJ0vz/HitT376beXGfPXrb8UnP/VW3PFH7x2a0hBhegPbGTRnZWhm5i1ody4NFxFo1cItWqDysBsN2ksahO0KtpJNzyx7kLdid9NHKayWCrLADkM+rAMrpTACSrFUCnJjZPDILGwjGhXpOnzkpkLYqCTglxnttoevLbw+HntbrLLEnkQK5wKuZCa4JQ0UlAKu5LCwWD0UBiORFBJOKfu50EujRjuz93JzrQXldS99N+xCGMYSnHyeJn2crXIYXBmv8dfH2S85XS9qsGReo6b2nOFAthAaP+/496z5C8EIfqKs11/zfpFnewOuNUSdaLDDYhQP5h/56x9Cs5DBb/QOsR4Go9naywTBwDJwQYd6zJf+3dsBZGCGi+etSSj5EsHL42XVCljAFkqMfibZLG6uTC7NSvZzwC6lOTMRBZSR4a0AK+yAoLTZbDEmQZGiPDEAoP2V+EkL4CQAjL5OM37c4e9uCQQCYgNUZ4BqT9hV1AvrDswjdpve5yDHK5J3ZRYmBkU7eAHHhOa+JdJZaXjZK3srJZiFWBWw2kHYKPeCfH+gXmyvaCk++GQItKxAfQBWrdx7iOSaXXWD2i57xucm9PB1z7xug5gHCdk27LCqTe9nawzk/DiHQoglH8AOAG1uBMf3Ylix/3BWG2lpMNgb9BsO7TGLfkqY3gWk+z26bSA2DH8WqHclFDQcnxZmG4gw+faBAPjLFmgVENehRdo/PTTITa3vYSrniR7YRb3qwZOqgB00nUgz2ym44p0wKdtOXuOkkceZTuC/+C2gqVF9mQeVUFODjm2C5ivgYA7/5RX8XdPB9rLrxK4CAtLQ1gbSxKM/OQMICFNbLO7sKom9EAO0FDBlDUgPomxBTHJOKwcgDkpJBWIsKciYw0LbzJwF0AHGG/QbVhQi+X1mRqyFCZgbYbZAdITQiTLTtXFQS17MpcAeIQ1s3Yu88j6Va8jxvjXexw5//0d/7PaLelyvv+b9g4pACRZl8dA0P14hrk+W9clPv03sMgPj2pffhI9//p1DPUs03Os7Kl7w/v65EF0UQHC7c9jNmajLQpIh2dTDdUHsTzbEvx4hitVPr8NbK+pCXh4AMRaAOtexGTDgEUGlANiaE8CrJNkneQA7AgjYOcRZhfZkLVabCWi3DKqzVuaCev2k2iIQwfRJQFeg2I7KA+kfRCWnh5JsoGxpUIro/YJTAm3OgN0k2V/jWjsrdgooI8PKa1/xXtj7zgrw7r3cd7NlD3QgmuvOQzUuWW2Htc5fsw4qJ4PXh6+5sDl8DxnXtPnf47zBcR7ZUT17UdY1PyLEPXYSAC02QBbVN06DZw1I+56d572l2DSbLqGfObhdp/fCoFbJY2tUc069AgA7V71JB/G9kFTyZ2CknoE1Ug+kQyCeXsMAhKzgLOKxCUAEs+zKPaP0qZFBHAeb7fzY+pzcqFohKYmljwPRI2dfmlFt5STLFKEHegM0Wr8kIR21G4TmDKPaCzC9Oixo7lQhyViScG2rZMEuYdolUb7kUnGioeMWqM8m2FZqAbcSUpXYkTHqe5agLsDECLs71IsUWSzUVIELZlTzFmwt3LFGLaOiZu5YEQ/1YXCwyOqdAn7kmtUNvTEw9J/GlEyoUrfm69YQCBY8dnPQ318DVzgJLyffU6NkjFCidaW4c4NKO59bAGAgTA3aY2LZevwLBv3MwHZAexzoZ9L3uJYRpg7tyQpuIcSZ6dcPJLtnvhzAdVW2wBjw6TNyb6z8cH/SWtjsLTFZBfDEIzVy/WDWDDazfRAHjtqBiWB6ybilpgHPGkz++FvApMEk2wfHKHaUsxp2v5PHmS/hv76Cv28ijxcCeP9ATuV0KorGiUfYlnqbLSHWBn4eERsD0ybYlarQl0pEzYAVVDHZ96CsgA+9WjMOMxLqepiFXjeGBIhJAMEUwlAmAwhpjZBgYUhUMvD6mTaEMB0IwW7erwXGX6yVQdic6Zjqx2as+8lPSW34htfcgt/4zNvK18d5aFe/7lZkq/HHqqY9WkfribKOAJYHWT/6Y7fDueZBv/9QhfBRkfzw1id/863nNBV3/NF7ce3Lb5LQsVysEECWsHraNuylG9KYnj2QzXMl0lXLjEnbY/+qbbhGVCNOWRcyZHTAqpOGr23LAI/HjU4uhooyRVkIZNYZKLn50wDmItYAgOUKJkRUByuwt1g+fQv91KA6y4ibjVitAOiP1aISKPQ+0jBhKqx99En9SLWIHUlfgQSC+ILCqKLFEkBeCukQ9N967DHK68lWCdqUUtsXBg4BQ4FXmD06eTEYAJsiaT63sFxrKsdNLGsxn2ho7HMDktnoh7MXcsGXm4DC9qIjm7ALvJgIto/KVPZSRBoAzPjf/8f1TISkigFKwk7KIGTyhFgrxlfrtQsABPzxh28ov//Sv3s7XCYU9qxgjh5HtgZTICQ2CnLUMpyf3J9KwUsR4EZ+PvvaZ7VKOVbtbSkOsxA2BIIwoRDke6aX4092AHMSCLBiscWADKaTqGeyTRm4OJwAPcPPNTNqxRJG3yYBhxUkkTDGBIYBLIoSwCylWaa2LyCsYfEGLqGULIGoFEUCDkDUBVmF18nvkkvgZEEk1z1pMywvXpo96oMM9tRWgrK6QsFcEIHqCiXMc5y9Ms7OGvkeF1uF8w0gCjBCcr8cD6Qil98pjWkBbeL64+XnGjGxZXji0B+rsf90j9gQFpeLJdixPwGu+J057v6hGZr7AD8nbH6jh1sE2NNz2LyH9P0QQOoceLkCd10ZPpjZFGY2FasZZrDuO3A6iNmYyc/uH4D2hnBM1DV4ewZaObFhABCvPAEmgrvrNNJ9D8jjffsu0KQBRS/vCZEMfbwH3X8WPF/IcwLA6bOANWX/Iu+FVUnSsLNtwEYaUTePRZHjFkGsM4mwloboFKxzUYZOKUE+nHmPIc3vykBoBK1Gn4EM9kOAP8lrkueHAaiXHBlA7BdAgIkyqI0NEGvAdgp0XGywI39+gAJ0fvLTb3uo37ig63y14fm+9nDIPI9kPWQ9qzewB1PxHPl4P7z1G7/19gKu5HXHH70XAMTGA7KHJB1E2lkNzGpQSKIgZpb7cl5J9uWsLoSqrolIgINVK4OyrIJrGhn2xSh1rd6zUx9Ah64r2ZcNyPMAvBgDghMCUgZuOiP2k0n2MfYG+9/XINaEMLNwS4i15UTqsVQZUJ9gVQFrggxOYcS+xPQJlDRDJoO5JJaHbIywMkbXKAAZ/h0GJMZ7jh47iGC/db/ch+tKzk9eOfsryb6bh6UFxHdueLzDZJ7z2aqVAZ3uQ5pxuFYHH1a35Ocxdhjy5mOvqnNDmI/Wo1vMMKteCCptL+7Em5NzlSd9AGoPmq9gtb8zi3Z4bwFRnQLlc3Tqi0MWy85Vb0LJsgBQrL+YhmwLb6X/iwnGy78BwDywNwzZU5TrhKWfi1Ptf9iXrLOyb+cWVRWmohaLw3EQyfWVIPt1OPS5rr3klIYERCvEQEui/s0FrQIafiFZhvVegulzP6oAR+QBuNHHDxML2ybYeQ/bi2oiNg6mMqBAMPpzyWkeS5TMFdNJbeDmQe6HUVVuzGAluVDbiwLcUgF2SNUodt7L72WbxPlSBvQ5f3U6KYDyWj3Lo/5y/J4XQEJAZ+LRNZ3P80gBN1a+8fjx82cCA0Am99dsF6b3lwzcph7p0m0cPHsLp/+yQayBfjshTSMu/R2Hyz73AA6ecwzzKyzqM8D0LmDj7iCKkIMe1QM9zL1nwctlAU94sSzgOwCxEJtNQZsb8vmPStYJQerOqpL9aL4A7YuFK4jksepKyJx+AKHay6cApmgmFfhr3wb29oHpRB4v72mqhqdlB+rmYo3btusKH1X2UCVqEup6cCOKyazo9/ui7neLCLuMMKt+uD9nopUzIGPkOu56bRZHZM0MqDGDa1UMaZac9F9KgM3Av2y8UrsGISrFxolaBihkon5KsJ1Y3PHqMahnAVFkFwCIHnPLrjG4AhyqI0cv/0LXtEfr3BXxGHzejtbDXkcAy3dYR2DJxV3nO7/sDeLUITkZ1HSbWpwQECYe1ZUVNr45ESnmfityTwA0X8HPN9Eelylpw4BLQ3FAzOI3nQGU7JVdmH0DsMLZ3ma8QbJ6OQNShBap+aiRUqsCGANyFpNvEeppJVkH2w1QWfjTC4BqGQx7KqBKzmEAdAg8BisMgERlkJWXSJGlCGBjwBYw0YOCHWTjgBZwQ0PH3hXGINckKp+scMmvxxiZCJRqntcfay2YfgR+AOfa+ZTf179n2zA3qHlkcn4IqMlFbAaJtDAqKoCjdUHWb378zQAgdgptxKdPPXgw3+f+p5/Dq3/sgwi1fN7AEsAYJkCqgVhBWStS11oFU178Dz8ib7En0CJJ3ok2jMSsQ1ktZhXMoKhACyScPrPfwiQ3ZwKI1GfFWsBl+y8nIEiyUhRbDQXPoYa2Z1WWJLA3CHUOWsTaoKMMxEZKmjAZLMRsNwA6bimNk9gexQKm5ubY9EkYyzGJiiQlGW5XIoWnNkoAa/bZjyxWCBpiKEwlDSEm9dvNLOY0sn1wTq5/YGD5Aljzec/Kk7qS31uu1v2gi3pE2WeJ18HovPTnS3N5KKQ+WzIyS6YJEg/3X71X8EhJWJjXwwMM9gsAKIOuWS04rdFePkO35dBP5fFiLZYTgIXtUGxqjn05YPrVXQHnAWC5QjqYD49tCOycHIM24TkrJoW9cqx5T6DpFDCEdHYXtFyBThwDt12xkMhWE6T+1+Sd2P0wwx6swA+cET/2upbmX1UxvLUBOCNZOPOFNKIhlH2JFKRiVfUwIL+fErBYwqYE6qeoYkR/yQxsCe6gh8ngScJ6rlYy4IlHmNagjVp8rIHCECUIA4313l084pUEwdnKYTxUJCDVRsDJyirAyOBen48Abwx+/5/cCAB4xU98GOzld1/9Yx/Eb/2rn8fFWKx7PpEMc55o4MFhZcu/+Vc3Ynv7PRftOY7WhV1jcGW82BlEzThInsTS1hsktbOszjoZ2IQEt98JAHOwQrykAeDATpUhcwW7vYZmt52qzSr5M4fE5+fNOSqje/K4phXAWEhFrMBuzigkaC0YImhvLkqa2mN2p0GYWVWnOviDKJltBKknJwa2kSGTaUdMbEODegXys9kqt6wEFPtXAzBIGOQ5jDr/HjCAHFbt0jJxiGggEjHJnpGJAll5aqthLxuHXeefG4Mu5yMPHT6Ww68JGGrgw7+f57BJ7HVgjNhBPRbqve+hlQeNO89+IwDg1Fc+dN6fO/WVD2HnmUIAYm/hHliUzwA7u2ZVlMGa8ri1FzvqNgyfFWukWdW/p1mNsCkh4/7+rtj40KKVnjOz3GuvLP4INF4y87w8b2isAJxaz1IQwg4lBlkDilb2d2NAQWpEJo+S4wmUzx/XDnFrIiQhDQkvttNWa7EEUVSvAqZ3D4Np04nFkyhXlaSjYCxFC5sFNhOHNHEgL/c9ignUJ3jIsaeKQIlKJsvknpU4TnRhqGmBAj4UwkpieU1Z/abgDrGFWXXyHp08Lkrs+VwAFkODLVgGE1S9UELo9fXl80T5fpJJgg/xs2Xl30m8bsOW692k4JWCKdzpt3UMx6zWuBsz3PfyY+in0jtRBNxS1L+5R441IVXAsT/r0dw1FyDBGrFBP30WKd//nCvqkVLTjjIF11SORKCNGdLd9wnZ5/JLBjVzvj8uVyAFYVizW9lb2C7BLgPw7XsERJlOpZ5NSfJwnAHtL4GFKGl4sZT9RvsKUhsADppvWPlCADNtB1qJspOdQTgxE3vaZZDPTLYWtlbAe6CE26fNRm75GcxPsSiF2AkoXhQgWteyt6LGIqP5aAmmotKTmk6Uz3YVhGSruTYmMv7gv5N69v/4f/pQyTN67fUfwKfvePN57z0XYrFVYgIDn/jcEysPJatc8rpYNe3ROlpPxHUEsDzI+jf/6kZsbW093ofxPbdef837EU+IFUFoVHZZE2IjQ1W2QHIGthM/TkoTVLsB/swStFxh8vWzAG9jeZlHe0w+3m4hXtFEBJND/gBpbhSckcHVeLBXdM/y9zQaCiYtuChpKB0G2fWY4RYCiAwMEbpLp1gd95jc14GNQXX/AmlSIcwcuk0rVkwr7Q9ZazMvEu8EgKIW7NGMiuFhoJWHtGwIaeJgD9pBLgto+JkUwjwKSpTXqizkRgeDCcp+T+cG+ZWCMqAEUBxuMoH1xrkwu2gY3CrrLw/noKwoRGHpC+gkv3fHn4rUf+cFwpQQVsmRguVirIdToP3wf3k7nCV0m4R+UwYr/aaoRdgCyXPJTzEd4YvvuAEvfPNHULFmqUBVMGBpyBT0iBWhm5EAKjVk+JSxzySPvzpBYtNFQLchqpVqX4Ig6z1pgNgRoieEiSlZLKTACSVRq1BiIHIZahALQGOCgC8Z1IueEDdJPHg7hmsFUElWMyoMwy5keEyMIlnPPr7yYpVJmJlyzAAs0AeY3QUwa6QB6aMU92rdxEQwKZV/l6tssRyuucxMHA+3QxAVRB4UZX/nzNIjkhNqjdwDc/BvsXIZNZEhDKqNHKIKrA/FMns3M3mBNYCVkzzvGJqhcdOJtW+cH2Tp82PIPTU/DxOh37Botwn1LsMfRNivRjBlhnWEaXtc8bl92Hv3pOkmkubv+LY0i6tWwA9l8DHWB5KmqaXpm03B8wWSBi+TIZD3YAD9i5+D6ltnZIjYdmKV4DVHAQpA9T3QdjDlnOpAzyubLgPzqpAEMGR+HVqcFYlkJHNs/2C4t84XoPseAFUVvHrOlwFQHib28r5x5aQZTQIEhplHmFj4gwDbBflMOiOWmnq+19jcXhpURAaBkRqr15Iy05OAmFmdSWBwEIuxnCMkD6z/EUA9n+8lP6qVLRChAalPBr/oT33iLdjb27sgj3VUzz4+67qXvAvdySmwXSNVQhhKVkD6fmYRPaE6SDCdg9+TwS0raYdCwvSrZ8Deoj8xLQNUbjxoby6Du6zGqh3iZgO3WIJXqtDOQHAGsnPofTLytazWHmcJhiA/l0GLpFMlZqDtRbU6d4h1g+WVDtWci40QK2FoeamB6Q2aM0kITrLVAzBgDzCPlB4Z8DVYs+iRcwAdcjuQs4Nv/mGFiT1cy5IopZ0bbM/KPetQTZr3P4cRqcesP+b5iET57/n5syVUHtwxSw1dFNxcato7NHNy53lvkXuw1vIULvx972g9OLCS186zbixqebPqwI0TcM+5gbhWZeuriI/97vuw8/y3ymeoD6BAxaYUwNrnM2d8mVWE1Zw06oQYkY7N1I5IQMg0q9GebERduwxiIxUZsbEQS00qrgc2sSiRdd9GgpA3IouyAFASoNomqRqDG4/+5BSrEx5+noSkmO1XgVJ/ygEmmFXS/Vsy1vL+T70O3CkPd+Xaoj7AnZkDNCs1KcUkWW19kvuAIcRabLFDY1HtdrB3nR5qxgxq+NF4agTkwEkYe8m3IQKiEyWNd0i1B1kagOTcK+d+OGqWU0xS0wKj51aw2Siwe/g9HVkwltoaOLefBoZ7zBqALCBLURiOlSte5gfceCwuAza+zZg8kMTuK8nnwB0EUBdw7N/dha0TG6LYWa4kB2VSAdUmaL4E1bU4dYze27zMbCoWt3UFbM1Ap/eQzpyVU6V99erlz8Hkq2ekZu3V5aLy8p63nYDu3ikRLKH6VhDQJEaYzY0CzA+vW8/vqpVzbw0o2YEkVIAr6eHSwXzoBQ7mwOkzUoOfOCZDy4SinOLKAgkwoS/vLyk4mmY10tYEZm8px51fCwAiL9eTM+IIkPMsASGxAUiNVzAnIU4UYA1RlCtG7d1HBLG1zwCLHbS5CPUscFTTHq31xTi3nT5aj+86AliO1hNqfeoTb8Gr/9oHiyc+WxTGentchrexIZGIKrtjfoUDpQYn/qSGu/ss/H4P0zNWlwjIkmoDu4hw1CNhInto2wGVB9WVSGnP8VA+j0LCiuyUc8PJg71CyUcZr6yYOSDUXYA/7WEOWgndS0lYRmaKdMJhdcyg3k0gFiskSzKUirUFqe2C6dW6IUp2S6wzywZgRzL0NQTbJlDtQRUXSfma1/64GEwJIAtMBks2YrUgGsmwyzLQYG1zLsNvPHwl+dm1oa0WpBLYaEpmAojAkUXKbrjIXUGEO/7D+wAA173sPaBKmT4KyhwxcR/79fpr3o/01Ko0e6EGvvCBGx7yd17w9o8UcIASAAKi1yEKyzWcPCFMCGEm17pUt8oYCvIfkqhITCdATawIfsGY3i2hm6YX+7xUGfz/2fvzeNuysr4X/o5mzrnavffZp60WqoCiExVREQRpyqLq6Hs1mpubm3jVa2Ji9yYINnQaAQsKEKrQxDTqTWOaa64x5iZvPFWFIKCigiBIW3TVV512t6ubzRjj/eMZc6619t6nqY6qA+v5fM5nn732auZaazbPeH6dbknorkvlMaYIMeg+qsQCUxa/k+B7E2RQVGdy+EShlYRI1rZ9Jg/oEglVVKBLsCNZQAKSu+RjaHhtpRAXdvViG23mpON6UsywcqfnEGXFsqA5t9RASK0+qQc3MF2URnA3RNXJXGBvzcibBV1mQ35ryz8/XWCH2hfZual6b0ep4MWaRke2cB0kC7IYrVnB9euAsHhrVmB9+8y2NuerncM0Hwg6squdsCmzMwW6TFBVkOD6+N3ZocOOZAFt1kfQSmWhnhcCZgzHcn7SilAU+KKmFOoZgB38JJf3YDSq10WDDDEHQ3xUlCQf+0IEZqYAewABYKINQgPgzKojlUK1xWu9sQbbGsg5OJ+xuKkZiLPXpcZ2Qq4zsxWit7S677h8J/X3MsmprR5Q0W9aayEK6BSdyXegigjK+LhYjdY9NYtwjpVdD0Ljbbr0WOSYaYDHqMQKWRxUWUUynH7GduyxY4e3+lEPum+sCeLzXgwL0UV9ddRtHxWm5suuf3tUVNKA+j7aYeYrmmASXEuTbpSUBzNcomglmvT4FrhA1U+afC4AEwfC4cCKKN20qL7N6hJsbMquHnY0bzPnjlBfG8zMdcAHQu13W2dgZWpGRYwMXccl6Zahd7wGQ+LTRzJD0JAvQ1Calp4SGkwuP30q2VkGpmQCowTsnSXmRGBG7NHiOYtkep2yviFCNPa+9Xupe9xZ6y4XFSyzqugQH9cAJYrGVjd+Do09bv18ML021fePIeSz58agYNepLH7313/zG1GtZEq+KN3ivPQ41NHDPwEry/I950UzNL71k28562NuePYbBDxrVFGakCXChK+zPkDY8ZGIoyMg4RMjxIWtoSjFMslrU/mEYDXZ6bHYhk1ydBzi2zTFHV6m7KcNiUdXMUPNx0BwkMF9Ulu6BgEaKk8oNKSa0LJU/YzhJSneKslmc0HyWep9uSYSRgu/YDWkcc2nZBjd9KiJRYh2ftq7RaWDXRvGDBg/95N4nOu8gspjjUKNy3miEDS9Hr5qhvoheCGt1H3ojE2sEJfkXKZr+y5j5q3RZnrjUJaEotzz+1VaCJVhkjdrfmBqrzWb1TJrBaaUbEPd89bgt5o5L9V5LPJE8p3VgI3zoBxqOGHpLiF62aFDLJA1dlBhNybyPOMxestIuLzzQhKyBgYjUU1tbuPzyfR1mpdUkkNblqg8RVlLWF2SnnY0xq+tQ/C0PvQ5/GyODIiqJUunqvdSiFxhPGmU3mgldrkQbcqN5Bl6J72n0WI7W1WEopzvaWevV/X6gdjfxn0snDqD2kyn25EkqLFrwG2G42Y/Uq0MFVLZT8pKMhXra4OPQIwTC92QWkiYIcURSW8eQ4WuNHasMMNSemUPqqowo0L2Z61It6fbb/KAicflY5HDsuhpF7WoJ34tAJZFPeHqg/9d7EFe9P3vFK/nlqJYhvJIiUodk5EVa4JtGbyWPciPVGw8o81T/+9K1BulxyxZYcX3NTqToZtpWxLnCEsSGKqKsvFlnWUtA9JsRxaF3DCzXJoFFbxkNFCU0Y5gRwM2HMEQ9DrCvslSua/RJJXHHMio2qCCsB3sBHQlg2JVrzWtxqcSzKwC+FTjUt1IxpvNqoIwJWsP1Zo5XxN0aol5ZBbrwk8ZTiBsrRpEmWXe1xUCQYXGxmjqgxvm2Xo+CJASn+vYZ97aPMUrvvXNhNTg2lGe68JZ/d9BhhM2syirRXYbv45rX3ZTE7B6rscv6tGpOi/pm//+zfzp705zWZ7+5lvwCVQ92Rnu/Efyt6f+ys3oUmGDgBNBQ9GP+SU5jS0YCZRtkbwHDclAgIuiL0ObdEuAj7ITwccykAwD3obGnktVAiYqHahpSKbwJCMt1mHjev9GBuq6VtEwtZEKsk3KS3McjKbqWrKNeO4opkqVoJCfNRBTxWBP72SYXE2VJ1O/ZqbDm/o4qf9eW4TUx5vzjbpuDkjJi+njZgGIGXCzYcfVAPAsoBrZ0UDjdzz3d+capmBwbh4UaMCQ+QWDLJKC+OjP2jk0dwjT565B1tnF1M78pb1qL0tA72EwIgXsdiIWAaWTRVOWUOxrTRdM44m8pxkFitm/D3fiDAD24AH86bU4pJsfTIYa3CgK1OYWyiYQ/BwjPEzyCJgIOCOghyzida9LKIrpgrJ5XqJlxRqq20ZlmWxjvyM+1c7J4jVmhjWPm/0uZp9rR4XKw0RDGkRNaa0od2ZDR8tKrm/WyuyxzgSqmZHx+1OAz5Lp9xeBlWBNk8kkNg2iwNG5sC6Vi9esmvFaAt5S2y3UZcfia61cwKX6UbNV2CtUflGL+krXH90m+/JLvusduJbGWyhXBUy0Iyh6CpcYJqsyqBzvV2xebVj9nEUFaD04pOpnVD1LupZTHV5GFQ7fMiR5SbWUxeuLMK9Dnosd30ypeugYc6Ya0BZ2s62NEhVMXgDRfix40NITm80RrcpR7GvhWho7rIT1HUA5jU+h6kAe5PqbDH3MOZs/j+tCgOgQldUuArw6nrfNuIoKF8mJqi2PlAtzw00J6HaRfDADftRKHJgnF+iZ62b999nh7ixhqmbAh9AoXo7df0vz2kef+TpCavHtCFrHnMSz2cW9/Nq3YVKLDgG9OWk+8ybLA3CHlrj9z/d+/KIenTp68Mc5dupfcvTpr92Vy3LdC2/EZ4YQe8T3vee1XPftN04zVErXZFY2eaFR7aIq4rUw2mcajTm9iV/pYoY5am0rqj9F5aRy6bHMg2uyLxTFnPJA5QXGGtSkhVvK0LmQd3x8brfSktB5FVXVSmyMUDLcDakocmrHhKAVdhwwhZ+qVULMUqmUKAKshknM7wNUXklofOxR6wwZFdXNAoa4qRKk7jeihRnOS86fUvI7TDM26552JwGwVpd4P7Xnqpw4MdTWh6GcKpqVmgbFzwTKN/13WU37qVnFROxn5+3A4+3OC9lwpgefU1fX39FOZdvMfRpFtkYArMbq1UdAKxIaIzintgesfHYgThRbOfr0BvQ65JcuS8+VWTiwghqMUWMFm1v4rQGc9OhDB6lOnsJeegnhxMk5pbNsewAEDAl5DtvbEUjPZJ8tStm+8RiUnqoffRAlyWCIbmWodks+y7IiVOUcacg/cBy9b0WyXAC/3BELMyfPK/mFnlCV0896toKfZorMrQtcjbkLmau+ud2KquxZECWucTIr14/Yf8v5WU33sXY6Rw5q9usaSIyqNUblPHjqkdlGBO2Ut3PkODOWY9TkDqfVXPD7I61FT7uoRV0cpULYOQ352q6trS2Wl5fZ3NxcWCo8gepJv/UrHLpsnWftP8ElrU3uHq3ysQcuJx+mpJ2SLKnY3uhw9b8LpGdGwmTvpkwOZhQ9zfigomqBa4s///KXHemWsEPsoMR+8X7c+mbTjDQWC3WTMTs4O0upxEZWoNllkaWSZLpomwVntIZ+j+pgn41rOsJWiSy3ZCwLyZp5T6iHusSg1Kjw0QpdZ0rMXOS1AzNx8yqU+FixSoqKmFjNArn0wriqg0jVNPslGNPI5ZULwnSuMyJmvPirfoLOHXZYTlmKVuMzi88MPtHN0OFsdd2L3iJZGolG567xC6Z+njjYC1bsFRYsjq9cPfcnBVTxiWSulH0oDpcoHTCnE5QXdUoyYAoABvm/LqFzIkytu7zMXKuO5LgkQ2ite1koVjJ8FasEke7bkSPZLqNtmI7hh6BdEJavUhT7Usb7jQTYu4CqwE4EUHQtCeKu2rIYzbY8JoZ2KxdItkp0UeG6KVUMGpXXFjZumF1LlRHEdKFhFeqi9jVTjeVdnWcxF6AJDUjZ2P7BNPy32jH8AqjzOOJxO2fbVb9mw+JVu2+v/88ME69hH85YRdSMtDkgYfe5b25RqvTUu7quWTCg9nmeBaxn1C6z58Wdi9j6vForcpqQ4hji2bAYlYJ2W/zM6+ebRGuAEAjDEW5rW/JWIktbGTNVr5yr9lA1nlX5OBOi7Gs7sD3upxPbfC663YYslUD72e919vPf+TzAnnlhsXSnI57YNcu6XvxXETyD6eukiXhn9zq4pRbBGhnmRKswgtiY1IvQOnTUp0b8wev5ZBkk5DZ36GGBHk7kNawhZAnVcouqbRoA5cXf9050IcdgvQh96dF3nDMH6kLqq2Eh+kj70UU/+8Stq2+5mXAoJ22X2A/3OfjxAtc2bF5lmOyH7Ay01gPd4xXZ6TFqUlCtdhkfypossLoXrEOOzcRRLlm6nz6Jv++BacD9jp4W5Hwxd06fGcTVf0dpIRqlSZOhVQ8ww/7l2H/pqTrTQ7GaMT6UULVEQZqMpr2rHQVsLoHWZlw1JIWgpY+rrZBcS+xY7NBhtwt0XgoDXjNnfVu/fg24SGi3bwauobbRrcO463NpJ5th4pupjWLd76aJvFYRB3c+gjf1+TpeO0MrwcfA8AuxVz36rNdT7eugRyV6Y1tA7BBkMDyrSu20YTTm2H2/9sh3tEWdt44+6/U0KuPYl/h2Qn6gJRl/Zwrwkp1W23DV/RpGlKCStRZV/bNrnq4Mr/UwR22PZCBcM+2NbiyXSBPodmQgvTWWXi/uHypLJUekVm30OvL6VkPlxdbMi9rLZwmuXw+OiVkRohwrlkUFo7wQiZL1CWpcTo+N+nyQJfJeKi8gitGQl9JjWTs9V8za7znf9FmA3O79HNlH7SAYhRoAmemHZ8kkKrokzNlywXwfPbum1joqdmOfmBdCqJrkNAqWs/RRczW77p+tnfmssz3tLAFzpicPO5Qgs881+3po1YDfqtcVsECJIiS0U8mws1rOU3lO6HbkHLUxoHrgODqx+KJAZy1Rr+xQYu/1Hve+WU2z/naqS2qgxrn522f+pluZ9NVZBmlC2B5M1xM7PsNdz8HufnY29xClxbI3TabKbJDvtSyn37OKn2ViZTt6XTlXd9IpQO89alIROqmoKgOyr0SQUo4RxF6+dNPZShmJB16O39BK8L0Wt//ZLwLwkv/lVzATh85dk/H30qPvwA7LR5T5NxsS/7Xc0y5qd73vfe/j7/3oK/iDDxx+vDcFgGuff5z/+nt/wgte8ILHe1Me11ooWBZ1UdTdPyqqluf891/i2y8reO7SvWwVLT4zvoTnXPIghTN8vjKg0+YxqnLoKsgg2MLkcMB3HGAlTBtI1nOqfopd6qO2BvjCMdXwxsFePWTcoxGYA2GQZkqpaJWTqIZRHmprFq2mvrH1a/gtsYB+WgeTB8o2uJai0ApTgihOZIgbFLhERe9d4iJWoRMwpcKOPaaIfthWQSqqGBWDDKnAFjF4NDYivlbCeKSRmFG0NOyOWfuwOmgQhJVjNV6pRpVCDd4EhNFuFF7H4LjUNIO585aXQR2jSoIV6yE1oEYaYxTBGFw/JWjFtS99K+99/+svbIda1MOub/xHtzSKFB0AL8ClHhmCCehKNeGMupyG0btUABlCBPlCaIaypgSzGUi3okJlIGAI0Kiwai9bXbhpEHdlUM7gEyP7cTeJzbMMdXQVRAW3pFBOkw48yVD2/2QQ8IlYnalEYSZiDVb1E+xQAEQzESa+rjRVJ7JrHY2CxRTiUV1bm+hy5rjRKsrDDbqQEHt5AqYDFZB9uqjiY3QDxAobskKNiykTbxZMiYvO+QXczOLRMbOICjMDtJr9Nz/An81NqZ9jr5Dk3Yy4meF+8A1zul6o1YsxLTeyi9Ox18Jz1qZlBgQKTryfFUbYcyEqMWqGYlXB1nbjn61M9Hmu36O1mG5H7M52vIdz1l7gyuw2nQVomR0W7PybiiGk9XfoRyNUnovaxc9/hrvUQzu+n9n/zy5Gm+2sw04rYa3P2Y/VA4KiJBSboiw70KXsJyQDhbY6htqWTU6Q2RhhQKxREtOc130qihaX6ThAnWF/zgxDZ32p//j3f5bv+J5fwSfTz/CRgitwcS9CF/XVX19+1asBeNZ/eyPjI4HRkYRsw8l10kKwAk607t9CbQwgTbDrisxqtq9MqdqKfB9kG8SAeTDDkrJvqQ4tY06dkXNizVqOtTOTpa6GVT17rptVtvTbM6HJHrW+LZYvlYsWWfK39mZKst1jfLjFeL/B5MLmr1r18a1J86pRifqWFcvRCKwUSxpv5Dpr22Izlj6Qo0xkF8GUrBDCtC/0RBBGgJiGOFC6JgiZWXDfMM3+05qQ2WaIpio3tU8zEZxOIriUl9SspaAzIS2lew8rd1ZIDGZYyDV91nKzGVjG63i0vDn61J/bpa5Y1KNb1z/vl8RWKq7dQFT6KjGYkZNA6+2JgA112HflIK2t56agnxqLGiNklqDEAllVHtdJMOsjwnJPVCP9bi20lgHwDMBQgyvEXifEvqbJ9DFiBaWg2W8UxG1xokTdyHAHV0BD1ZfhvJ44WieGkuUUh8MNiady83kbw7iGrSvLpOfwUeEbAlQlVGpqw2e0rL9rAlAENJrMi0Qs8WqgZZfSGqaEnLp/qkk/PjRKErXDghZoeihVP1ehpkSdGXuuPdW/Mz3UbB8L0/5uxwPi80QVRd3Tqj3WtLPWYLNVZ1/NARRKtrcoYCCPDWUJ2wPpY+v7JKIMYiA2cyz1sQf3E/ICPXvuPh+ItEcpY+YIVap27a23NexeIzR/Rz4/ZQzBe1G8GD1ni3tB21aTXHc+piZwqSkQRVlKL+9co76p1zghhClpbGWJcl8bn5pGHUkAnUVr59SQrI+j4myP73EmF1LPrl8SS7DR2jLWB/7Hz/HSo++YI7Y+Gv0sLHraRS3qYqoFwLKoi6omecLHT1/OmX6P7zz4Ob7n8Cf43PgSEuWw2rNVXY7aHEhzmFuS1JB0Woz3K3zqSVZy8kLjMkW6PkFvjXHdhJAmEvxWFHPMjVCVc43QOYdxtU81sSnbaSZfN29GT7MRfGhkzUGLVVK+LHZJJgdfqmZNaUfSxFVtTdmt1SsQDKhK4XNZYHorw2UUuNSIAib3kckfB6ZGNfeBqJoxAEasW2Lmxa53q+Uxc+oV76lWOwKcGIWuPHrkZKabaLy1uJah6hhRJbiw64m/43t/BTtycw2EqAEqVB49el1s8IyRJrsEZYW9tdN6YlGPXX38n76Kb/7Rm4EI9CEAit2W78AUojwh3q4LGRhpR/O9BwuqlN+Dkftka5UAahpUFQSgiBJtXQdlgyxkY8ZJmFToxOBTS0g0ZT/adHhRplStGHjfATOh8YgXFp9YkXgrxxRIngoKXGZItnJ0Dj4xKDMFYHThCXZqxaAqD+XMwRLXZj7RhETLe7Fx+AOgVaPMkjyYgK6SuHiXZt9lBpM7zJabB2J8kMWpQRarOxaQdc2xvnYuinYFzM8sPnfW7O3nWVzVr9ucK3etS2XQp8IOReCO7Z4+rZqzs2mUGDXgUoqXttKywG8W7CAWByBDjtqKIG5rw9CL5+ALUq/MWknUShqt4oBghmlnpvff83Ob+T14LUzEmW1rcm7O8hnOP80ewMvs+0xsBJckFLbJ06lfQ0/3qznF0GBIcnwLWBLA0AV8ZjF5iRrlmNriRClUmaG0Fg/vdkq13CJ0LNoFUUEGsYpUQeM7KT6TYeqsXcIL//a70ImaHh+PQtV2hota1BO9Rusd7KUjqmsmDD60HzsE1/FMtKJ/H6jtEWF7IMOqtUBWeYJZZnQkYXi5wo6ln2vfP0CPCpKoulRLfRnUMjv4mmeInxdc9gEMqDSRc2yaiKKlPockFqL1SpNzEgJ6UqKrDBSUXY3L5O7Kg0+V2MNuS27MZF9CsRQJCUby2XScY0uOkwXfB8AOi4YI1AyoXZi3poy2mMFqISnUTPrashPiucvJ4yrfKF1CrYrupAIoF15yDsqoZJnkcq5NRZGuB2PY9Biz+9x19Fmvh/GEY3fePL2xtiWeBZ61FtVlEYkU7VRUDoMRVPmu513Uo1t1TtLRq15NrbpQxkDpSDYnTb8JRJvLUogRBdNMnrKKmSTT/asGV9TpNbhkP6GVyDWuE1UuNekgtahJJSBgfCxLPUAAOTXKCWfWCdQW1DOEibpm7WKdh/EEsz7AL3dk83pW8MH1oezD9f3q/dB76Q1idh+OeQu+WrkSiRjNdkIEW6J6uCYOJUl8DQfLfflsxhNR7pRV0/MENyXNyQ1+/uds/+MFOJ1TQ4CoDmqL6zll+ExG6l69MLvPf7uILbj5HqtWJteqwFmrL80u1feuavo0N/c8TR4U8hyhKKYAVfycmm3Lp3OFAGJBDmLLVuf5FcX5AZaZnlanaXOO99vbuz+bs4BTc8+F9LR+PJ7213sQU8+9SbuvR/V3p4yRntYJ6Y28iFkuxXwWTl01OWySo7cGmKWWEN6iur/qGLJJhR7m2OMTCF7sNa1BlZWApK10CrgYuWbIB6bBO3w7wXVTfDLNj/z2v/UudKbEIv1Rqln1yqIWtaiLoxYAy6IuqvrC3/oFnva7N9KyJd9w6d1suA63j57Npa1Nzkw6dNZG0gCWFbgUXbTQZcAUgAlcvn+d01mJ+9QKemNIWN8gNRoGo6i2MDsswc7Ncq4brOD1dLgGsTmaYbXUCpC6mZplByWWkFq2rlLNQtTU9vcKfKIouwoz0QSLWJ21ZLGaDCDZDuT7FMGCyxTaiRpFVwFTyuONib9PPMrXA175SQA7kkGuy2SRqUtpRGof/eZtxYWo5LdUzcIjaCWT9tqnNlpG1NYPPtW4RO4TtGxTPQR7+XVvw/ct73vPa3nJd78D5QLvv/U1Z/WwPvrM180N41RRoYOZY5Es6rGtv/wtYd9+3c/fIkCfEUBQFwKw+ARcJiBKvgJVV7zmzUTULgqwXpHEDBUz8diJ2MDV+1st2zbDXPazGYCFKAVXAEZj0pTQyfCpAHnic6/Il8QP3kyEDWwnAe2gSsQy0BSiVLFjsS0BsNvldN9WCu0j6JJqXCsy810EaWpLsDoUVGuwWlw/hqU03orGNqy2tvOZoWqLkktXATt2mDHgJUNpulibYd3OlFKakMTBuZtBruq/zypK/M6/7V7wnE2yP3f72SwHmvPkOdCAmecV0OAstmOzr+3i+dUHML4ZnMkCPg4RaxVJbU1RAwu1uieGaE4XvG4KWsQFpnxW5uyLYubvX2ey1ItwnVhQGt1uEUajeNf4eZyHqTcHoKgdCpSzbQN7fC/Nf/d4bFESVDVV8uwEY2piQO1DXZaozS1sYikP9TDjEj0uUBsDeX+17zpI4Ge7Da1UBppGFJNmEo8f70XhmBjZ91Ozp5VjUKKGe/Hf+BX++L/93Nnf/wXUYjG6qIupzLrFDQxrGxmd2NMBmLGidaaE0ViGSJF1rja3yazGtZcpljXeatqnNL21bcmkGo4lAJhoQQhCSrFWAN2obNybma1nrg8y0FLtlgxMfWjsgkIraRi6zRnHe3ldI8z98X7D6LBc+3UJ6SYopyTo3mrypQ5VSzW9Akp6hNZGwFtRaruWolCaspuiq0DrjCIZVJJ3oWKouJLrrk/k2qAKh87j9UBDyAw4jVJOWM0x76C2WPJRKdrYiMVSlcf3OwLK5BOx7DEGUiMB4kWFih9vaKccvfKnOXbPuwE4euVPQ5pw7M6bOfrUnyNkKbd++i3c+und4elHn/5a+ewSK8BKDVrF7IpFfWWqBsKOPuv1sm94jx5VU5WHjYqVdkvss7wooUNixDIsMWK3Nc5BRytND2q5jyoqQiaggxoV0+ySGmSbVX3AdL1YFI3jgbgiJDGzrlbSzPTFdfaIiT1jVaG3xiQhYNqpEPWUillF1dTqbjbjzU+PDxxTy61ZC1YQRU2jwo4/s0TOCzqbAolRUSZqbCfWrlGBMveas6rbsw3zVZi2mDOgh8I0YGtT8fGzNoh7qrHPUg1wMn/jWe8LTrbtvETMebWznIuDvAejReWj1PR8H98jWqEzIcyEGcvZpj+uazyWPL3E7m1Nu3vj5VpQlfhILq3teHW7RRgML+jzmn2+Jj9l5vJyzp62eeh5Xqe2loOYo+Mly2Wngnwn6ch5wnCE3pqgU0PZtdhRRbpZYk5vw/agARZVtyNE22gFWa9BVVnGfja+RDuVa04rwWdmF5lHBcAFXvLd7+AD//MRWt1e+zbQC/XKos5fjvMfZ1+JCk+Q7Xi8awGwLOqiq0Mr2zxr33G6qqDUhis7awyrjPs/cQnXnL5TmkNjpAlVamo9UilWW2OW0px71EoToheOnxLLlNnclXpIVwfknSN/pWnGghImywzzpMkZgIbZ3rD9IDbX0izboYAPYokkQ+qgZYEajHhyqwD5PlEEtM6I7dJkVWFHxIEx6NGUKehTUBW4RGOKQNXW6Co+b0vhba04CBH8UNJDBI0KoHMvYYiB+awLJ7YPGHl/ygdCUNPgbyu3NedZJxkx3sbsGA3DS1K+9f+8mQ/HxuGF/9u7MIna1Svv+rytbgatt378zdzw7DfIZ9tanNS/0vWpd7wKgGtuvIV0WwYponCS/S5YQIMdyz7pMgm/rbNX0Ipsw5NuSTi8nkwVS7o+jopyuribPW5qplySCHt+KaPsW/IVQ9GrF2yipkm3AyYX5VRQNBZ6wUD3wRIzdrIANGKHpEfRFzsuqlUpx0GITb6qF71eLEpUERfI1hCwYss3LtBamIy1PRJA1bVUbQFrAJKhj8eMZCmZUYnKJawdmLLbqmo3468uHc89sOtctdMSpgaNmzpHrsf57jf3tz38qud/3ePInrmPgCVm+jxzbEZD4+NtrSyaalBlht3XlNFTq63a2mDH9jWKmlrRYpM9rSBl43ZbJNSDyjrnIAwcupVFCwxREF3QInfHZ1E/79k+pwuuWZ9zaD6nhghQDxxcVBWZKUMgOIcqSnyi0bnGrG9BngsLvoz7oZJssbDUwXXT5njQpUdPyobt51N9TnClyRaLh+zDUZ/MgvWwWIwu6uKpYCC0PKSeqgeb+wJmoli6K9D69P34wTD2kch5bzRGZRl20BMm7kqFS2eyqUYj2NxqwOXG2z+xAhaUFSqxuJr5DLtA9blrxiQXFUiTvyDh3HWIMSDXSR+m9kkI2Ud5Guy/7Erf6lNFlUlPYHIolmJ/uyE/x/sVrbWAVqJiNXkkRpQBn2l8rsFKr+lNVAl4IsAiFi7BT4Pra2UMqUE5P81wyWJ2TAgCyBSl9BvGQGVw/bbkp42i9UytkNRKcqVqy19r5FzXbXPDc97ArZ98SwO03PDsNwhINRqf/fu3BuUl9+XWT7+Fo898XRxMm3ki1qK+InXsM28F4IbnvEHy27yT76Imu0T1UxOeHm2UJausIrQzXFeY73aYQ+VQkwI1yuUYipkrjboimbGLrVUgRSE/05QwGgnIOasSq6YkhxB8JO5pOQ7bLXw3EwXWYIxedw3AE2pr3tkQeB/m7erkSeMAO1rlVX5etebDFGTxHjptyaJoZwSr0XWui9YwGkcAU7Yz1FPqGdsutdPtAXYTevbqU2dC3OeAix12qXvagM3evoeF1/mBhd3WsHu+zs5+dtebkP5WzX4n0a2h7teUMQIq7JGHOAswhBnlkU7TaQB93f/uVJ7HnnYWFAlxf1BFgUpTVN2cqSD3e4j9rPz3IfSzZ8mGkTel51TYe5Gipt/9rPIooPIC5Tri5OED9lTMwDImApzxs+1kuG5kukYSXWOdXmdfdlJcJ8G17a4sWXFbmP5+7ctv4r3ve2j5sE0/e+2in13Uoi7WWnRvi7ro6pqVkzytfRKHIlGOly59jg8PriZbiw1NLU9OU8aHW9iJZ+WLDjtK+GjvSl789C/KgstalLWEvEBlGWE0mlGkxAtptJeZW3Tu1bzVcmEDczJlmAbfhxCbYTNtqCMrWw0m7P9MRdXSuJZieETFUG3wKTgN+X4wYxqLI9eKIIyBUCAL2YAMuH1AlTJcDgrKnqJyqrFIcvXaOCC5F4WAJ95OLclQcrsdCbvfp5FVNfLyPOk0mLNWutQBcSFRKK+m4d1G1QTtmHshrx00PP+HbsbHvLrgFCHAS77rHXzgD/Zmftz6yXkW4F6swEV9Zevzv/AqvuknbgGmg9KgYHIQXNtjB5pkKEoSe1p207Ir/+xYHmBGBWownloQNEw6N/293YoLXSNgRjuVUM9eQrGcUPQ0+ZKiWJKHmBySkTxWRZCvVsi4VPZPbzW2itYjKmYV1YvXmknoPXa7wIwUVT+FGTDx1o+/WewlkkQYtVVkOkVFlSqdKFtSy3v+5A28+PveiU/qY2YK9iivoQrS0NfnjnphWweBVhWzvtP1z3qhudMCBmTRJN7Fu0GCnbUnMHOhDLYLYcvtVdFbeVfeSP23ZEebUu8X0QaiCXKO26qMwY8nu19vL1uz2cVldY7tP581QmQi+vF4ulBGPsNz2Xw95NebPvEeN+0YUtTs553kgL0W29AMFxvv9Ukudo/jcjrwyTLUUh81GArA1W7hehk+0SgX1VxueoyF1DYA417gygv/t3eBEovKD/3ez/Liv/HQ8gZ2qlUWC9FFXWzlM4/pl2jjqdoJfn9Bel9G7/6CMBrLcVmzxTUSeN1KyR7cov3gQfJnjEGZ6XXTxwFqUTY2hgFQzkjo8Hjc9LXNOXcPi0FgHrw2ZmovZKL1ltFTRr9zKBevSZWnf3+FnZioRIHRYYRwoaT/rLqQbEv/KgpRAWBUEHAmGXqyLRkAB6ua63ewCj9jv6KsWNMGLUQhsfDUDcCM0pLPFq/lOqpOfbTotGcGsLUt58uVJWHhzw68y6hiqK2Uykj2MAZM0pzfKOU+N3z9L0iv30qFJKKEtHX0Wa9vhveztbN/PfbZmx7WfrSoR7du/eRbOHrFK+UXH0An+H4L103R40oC7ysnwElihaCTWEI7wSea9L51ASOGoylw55yoEIbjqcVorzvvbNBpA21CGhUwdRZQU0osnGfDvCORL/Q7+G6GnkQwxImCVA1zscKzEYQpK1G21vl1s9lEIXDr+m9xffeHpvt/XVrL78aglObY8X8OiKsAxqCca3rXkBrUiGnOSvBNHxu8n+tLGrAp9k7T7NO9+8/dIMnUqnW2gp/pc3bknpwVXJm97VzDfvbetnr7GnX1DMBR5+4BU8LUbDknxKDZ24MSMHwvcGSH08bs9jfPsVfey+x73P2m4g8tlunRWvIR1YWAMuf5rKmzbPew3xXlpdq9nfX6QSkoSvSkxBiF3coFXAFIEwEwxxPI0ng+R8BIF6b5XdCoM8V+Uu0CV170/e8UC2gCf/w/fp7v+J5H2M++d9HPLurCKqDwewHVi3rcagGwLOqiq3/zLf+Gf3XHS7i/2ocPmpd3HkDj+d32i6M3fwmtjPLIEpN9huUvT7DrI8ykR9HP+NDJZ3H4RJTkxyA5pbUALpGlp4yR0LRY80OzGTZ0lCHX/w8O1CxbOvrDqlrJMifBnjKLKUu6nzkpNkfdjGTQxrUUkxWNa0OxL+ATj6qMACITGkWAqmRRmm0EXEuBh2QsQfe6gqqtGjDDy2yYqi2LXVVJwLgbK1wiQAxKbhclgiJJFMkoYAqPGXtMDOsOs4153VRrYrA3BBeEyaFUoxoIRhbRLo2swgDJWGzLmsG8VsKaWdRFVR/7F6/iuT95C6aQYPnRZQHz5CHdrGBzvYu+K6N1BnoPVIxXDWUpQEjRU3QVEhBaVdDKot1XZNx6TzCGkEoAoR5X6KLC9TImB7O4PyuKJU3ZFguy2nLEpxGQdBpd1TkuKjbQgJf8FTNJ0KV4sesQCFmCGheEdiID42iFp5QiHYtc3HfSxr+7sZe44pVyrHfbMnSSB3Hrx9/cfE5lpx70RHDUMbVIoAZVRFFDzM2gLAn1grhelM5YTDSqgvPVzhDMHb+flXX3cBQUF1J1cCXTheiu/JhojTN9jJIFUVES8lwWs2kqAz4TQfFzgDkPdfv2XNjuVfVA4EK+h0dY57VcCF4Aoz3e7172FzUwpaJtiIqsP7s5kWtiuzXH2KXbEWCvlTTnfuXjvhuBqpBaCbC2hvf8yRv23MwP/T8/w7f9wLuazKYLtQdbACuL+mqpu378Z3nq/3Mj1fE2vfsVg4OBZBOy+7amd4rHnu51YXVFwJOipPtAID+QsXR3QROUPcOMr1V8OjWoNJEBVZMlVQ8Cpy+zF3lIaS9sdaAJ2YaoAE8a4AKl8Fm8ZitF674BrQcVrptSdSxmkuCTqFjRUC4FlBf1tSmmfayKpKCqJVa1ZVSjZpseNXRUXcNkn8GUM5lpqShdwONT3aigfaJxLSE36TLgE4VrWZJtUYrqkxsCHgO0Mjn3OQFx9CTmIMz2uDXIUmc8GIVvi12aSuR1VF7KebCo5G+AqoHmRV1UdezeXxW7N63wK10GT+6RL2vSQaB7nxYW/HAEK0ui1EgSsJpkPQKjufS0oSjFesiK/Vsz9E1TKCt8fcymKardarJTVOUbUlHQWo6tGuyrgb56+JulBGtxLStgZFERVnrSv8b8oLDSl5yJwXCGtCNqFaU1pAm3nv5NAG4b/jYA17d/ULa3Pu615ta135z7nGolmHJClmi6k7i9jfLaOcLswBp2gxl1/uleyuRz1NlUKnPPXd/3Qnu0h9FHzmW4zhGeBASqwbTgw7TXDbXVlYAhyk4tHPdUQc/27udTO5+vfz2X9e9XqJ+Vzdib0FV/RrIdD3FbjBbgL0tjblKFrbyci/tdAU/yckpK0Bpqd4762KrJQtH+2XdSUWO///W7Xu5P/uvP8sK//a4G7Pvgf79wu9vZnnbRzy5qURd/LQCWRV109Zl7L8Ooq/kPD76Ap/dP8Ld6m/zp4Br6d8U7dDsi82xZsf/ZyvHdDNeRRdnyFxSdExNpOMeT6OMpDY7Zv0+a5e0hKob+heF42tDUg76qQnysoWGF1wHKTgIaam9/YAqqAKGKFkN11RZAwxHKOcz2iP7aEN/LSC7rgbIErXAtI4vRXIaz3iIh4g6SoQy1g4ZsO8giNZXXyTY8ujJM9olyJN0W5UuZAlYyMpKBLGiLJfmbLuU2W8niVTtItj2mZkYpBYQpW8kIS1C2QUmQvVLgEBbIDLLuooJFVzEXY+SjXZM89k9+72cemx1nUY95jQ+BruT7DZdOePaR4wB83hlKlaEc5MsG7cS2q+zEfWtTMlXCck+CA9sJrmWmoJuNSpIAJtXYbTj+rR2KfVOwMd8H1ZIDBTpXqEJhCoXzkCvZR9NtFfc3eUy26bEjR7AKp03DWnIdjWrZKA2PipQYmqs3tiMbKpl770ef+nNyfigryEtCK228oV/xbW8GpVh/Rhff1bTPOFGWdTUqVbgskCowY1mIqsqJ57sPDbhSg7LNAsTNMJDPAYDMLjbnmX+6uW2WxTxnD6M0dcbUY1E7t63JAJhlGjqHWerJZ9HvEZY6sLEt59AIrISiiOfjc+SePBzbrT0Wqw2j77ECnc5Ts2C/bFLgvIBL/djZ+82GtsYAUWpWepYKiBJZ2aHbEnVZVYl6LLFThZYP0XrHzWUR1R70ZwNXXvB33hXziOS69e3/6zv50//ys+fc/sUidFFfbfW9f/L/pRpdwSV/BkEHJpmTjL3tIT6fUYy0MmG3R9sid+kqZVex71OK9MRABq9OwBCAUFYoYzCH9uGuOIge5oTUYkYF4f7jMvSth7dFIcB1Vc0N/hr1YK2CmT33xMBvFa9NMgCuZEgVwtRGywXsxpjslKFcbrHx1Exy0cZKrEIdECLpR8dLpoZQKsaZQlf1ddqDEhvN9hnH8LBtrG+lHxbVdGktZuyxowqfasqeoWoJAJNtVNhxhRlX6I2hXGMBul05nxUFoSdB0WoSCVaj8TRQvB4MRwWtfA7Tz0NNKjkPGhnElX3Jvnj/rfNM50VdPBX6XdAwuaTL9pUGl4jNXfc+CJlFFRaVF9FKqxKCgaYBQUPwUyutKipG0vnesQYv1eqKWM5FAk/VF6uiet01tSqy8rO25XNCGPSdSBSyU8WWKqvG6lavbwlTv85zsjbmT8QBfzH/3q/v/pAM2ssIsEa1zNHDPyHHeZYS+h05XrbHsu2JkYwkbVHWgDONvV4Druw1tG/UxLttsOY+qwvM85gNR6+Bjl0EorM/wbnJNBdau2xy5VxbgzA6seiVZQHNt4eEwRAFU/vGC3j9OWDi4ajInwA97YUohWaBq/M/nWqIsspamQn12vjUggbXTqCbYLdzlNbNMRISAcKDqRXZlYAwWhNSseELSvGHH9gNrrzob75TiKOJXKNe9P3v5E/+67n7WWCRsbKoRX2V1gJgWdRFV89IupxyJ1jP2xzaLyy/3/mrb+HpH9uQOyiFqjzZ8W3UYALjMeHQKrpIaZ/2kdEeBGCp5c81e3upT7BxMZsLEyeABMAZg05k8RWaPITpgKpuPhUzzaEX364AkZ2iZBGsQsNaV8pOw5tr4GU8QTtHW2uUa9M5aRgd0mKlNY7MdxWDw4tA2RVwRFfy97KjCQaSemgabVR9AuODEZiJzbRPoOiLjUPZA5+FmKUhTH9dgM3FS79SCXZURZWJgCIAZd/iMtk+FPhKwrvrftalCpcpXCK3m6IOHRf7MV2GRxwGt6jHv8peECu4oPC5oWVK+jbnnnSF0bKnammUg/EBhc2Fudo+5dCjArfSxXUTXCb5JMWSZKm0Njx2HC2+co9rGYp+h0/e/Cqu/tWbcZkotHzLQ6dC6YAPiRxO7YBpKewg2uMpGcL4RMJ1vQXXNlQKTO4xE1m06qhYwcd/Gqa2IXKs1qqVuo59UeTgL7/ubRR9y2Sfpn9fiR2UvOdPfwGAZ/6TWwgGiiVD1ZE8mnQdWmtKgoA1skB3ThbjM8AszCyiZhhyjWT+XLYGdZjl7MJzx0J1DmjZadOlz55B9VBr5yK3WThphbIzjMwIJulWhrv6UszmGLfUEsBWSyh9mOQzDL+vDNPurIy+R2NBfqGvf76Fppq3TNhzKDF37YrXn1q9YkUx5pbamK1xzEWqxH7TGmHzaWQxqhWqillENbiSySK13u/3qj/7vwVIf/4P3ixDUseeoaALtcqivppr4iwERbrh2LgmoRwnHP6Uw59Za5i1KknkOJ0Z2prjsHxnm3zZUO7vkp7ZJIzHDfNWGYNe7uMuPYBrW8KMClAZg8+3sQdWBWCZ5EBoriPKJjKArdWFTd8a1dgQr4NCAMB5sTLSmpACQRM6GaqomsB5VVSklaff0qASyp6QHOwQgpVrsYk9QTBiGRaUEILsxOMTUZvWmU1JJOZULUUyDg0A4w2oROEyg8s0VVtRZXK911W0IHIBf3gZ005R69sCGIN81oOxAPe1WiDeTsydQmtopfEzUNIreC9KAe/BaNxSi6qX8Ee3L4CVi71CO5HrnQ+4TBRYNodiNaOzPoI0xXdbqBBQw4nsA1sjUddaOyWXxUGvGo0hL6aWWSoqcJEe8oZnvwE1KdEu4DNLsZKIWwCgvI0/A7pwMSswkhtAhsKTCrU5mO67dVYdNNkpTS8LNDZjIXDr1r+Ze++3DX9bwJR2S9Qvp9YJec6xE/+iuc+1L7uJoBW2m1F1ElxLkwwqzKgkdDsokL6gVrHMhs3vtC/d9eHv7mkfcuj6jE1YAxzvZSc1W7PqkIfZ050LINK9HqrTBmMIq0tyOxAm+bkV2Du270KJNXs+fi5PcI+e9ivUz8oGnJ3EdS5gZa/3PwuuYMQWk0TU1OMjbbQDM3KYiSMkBt9ORfWYO5TzAr6EgBlXDcHIpzZmv6qzEob+5PcETPn2//WdaAe68Fz7spv2tMatjxlgAa4s6lGrJ0rI/aKkFgDLoi7KWtFj/vfL/5IfX74fgP4nU/SpB2VQFH2rlbWEyUQk2ac1aWop+l25+E1KaXhry5OgpPEbjVG60yxSQzWV5wbnxGM/y+akv3WzpjO7u1EJvpFWB+fmrcZqRUwdlln3MtbGYEXdXNR9AiYP6FKRDoTN5xMtgWoBJvstxYosUJWXcFHlhdWnC7CTIJZgTtQpysf7OgFkqo4salWIzMLafsxB4sGbGiTRjde1vHfwmVg2ED/GOlicCQ2D48Xf905UJDfqShiHduL54P+7t4T24QQdL+rxL+UUvu2xA0Xv0ykfPv0M/CU52gRCz1H2NSooXEf2w/aaDEZCain3ZQwuTdi6WsCQ1mnYusZB17H/4BaawMbHD9K7FyYH5PW+/MpXc81bbpH9dKDxmxkuRUC+NIKbNlAui697sGDyGHwbQRMzcXHBKgotNYmspRheiokDq7xEOc+xL7/znJ/B+97zWp7+y7eQ73f85f81P2D57JtfBcCT/8U7SQ+NObQ04P7j+6juyvAPatItiz3DdJhTL8SjVUkTBA/N4nQX82wXa05f0EJslxJiJjg0uAtYzJ0N2Nnj73OLptnBn555DmOkXbRWZPrOo794nwwYIQ4mEsG+0gR16WHCidOE0Wi3rcJDtQZ7OPWVZP/NgGy7VCkzt+31t12fSz1I1fF6lCaElT7lSgu7maPyOEBMZKEaUivHhUYGTyBZW/E5gpJr2Xv+/OzgSl0v+DvvIh17dBkggHahCfZkj69scU1Y1Fdb+aDQ24bREcXmsyrMyYT2gyPwAdXKUFkqhJ6ibM6PYSx9rR0fjpO5IMPbwTBa0cpAMxSlKFesJliFGRbozRE+2mK54ycwhw5KjznJ587LqpVJD12Hvze2jaJODsGj0HFgGvtea4S8VNuqqJhz1pEBsm+nFEvSKyov/WU6DCQDh0s12kmw/Xi/kHV8KnyDfNmgyxAzBEUhbSehUaKawqPKgCkdOncyvFIC/OoykE2C9ARWUXUNZd9gJh6bGtK8IrQSYeBXFWG5iyqcqBPqLylLmmH4sTvextFrXiPnyhAke8VqQtty61++8azf83XffuM5AedFPUErBEKiad+3zaGyx/iQqE+8AZ8l6LKSa9Uk9mzjiYAaZQXtNvS7+HaC3hpTHezjk2W2rm4RNOz/6Cb69IbsRy1Rq9z66bdw9Kk/hxrnJPcX2LWUarVL0AqfSN6QTxU6N5jMYIclapiLFZfWqOFEtmF2DVtXrXjRWizsvKgXbt3812d9+8dO/Ate9oq3M9lv+bMZq9u66gHy83/wZoolRdkFM0nonMroPpBjobG7VSEQfDX3+LMGxZ+tp73AXm7WfmvutZSeW7vPveYe23Wh6u355zoP2ad2sxiNCCdPTbfVGJRN0O026rIjhOOn8MPRuZXZD6cejnr7sa4dlsXnUxtdCLiiOm3otCkO9ymXE4q+oX2qRJdOrolG4TMjSkijUKW8Z136RpUZWhYf7anPF1b/4r/xK6QjL9dALYDnK77tzajS4bMEn8m1b3YOvuhpF7Wor85aACyLuijrOWmb56QCrpx0A9qngtiabA8IeSEy3DSVUDLvYTRGrw9IV1v4VHw2sWbq5R+9qinLKXMcpgzC2aC3an54N9dQhTDXrNXB9wB1IDwqWi/YGeVK9OYFhE3nanm3ZC64JNop+EC66Ug3S1wmC8XRAUPZh2AD3imqtoAmAKqCbMs3eQ/FksIOZZDljcJOAsnQM7jMkG5CuhnDRqOCvbEkcyKLd6nCJ0ZUJ86gfKDoaYolYeArJ8O2v/jtV89/YSFgSgFwfAIf+s9ntwHbyVhe1ONTP/mx/4N9dkSiHZpAGQwbZYeBS/k33/Jv+LbbXsefXz8NZH3GG29BtWThqRws3ePZ/xnH4NIWm9cEsqcMqJ6bM7m3S+9e2Q+Vg3yfYXxoieElinw14C8f02oX/PXfeGPz3Mfvv5Q7yh7//uAL+eN7rsZ9oc81N96CncDnbxTQ4hv+8S2yn1rZ16uWouoIqFJ1Pa4TmLRBF1rs78YBO/aYcSW5Qi5ISKf3EkyfWrE6wMSFIWAvbLF1xy++6px/v+snBHj8ttteh0k8xYpHVRpdpQS9TLrZxp4UdZ4qChluh6mtA9HSkPHkgjyS63PU1IZrt3oFaFR4oKc2hjuzWs5Su5hmNXDi/HQYVZ8b6wFYff7bq5KYheUc+gv3ELxvcmjUDGgdnENVJfr4KdSBVbjkEHZzuwnFDJO8GSjqOMQIZXXuUPuLoXYuSG0yDc5lD1uFPby3G2/12u4rBtkHozCjOBBpR7Z2Gfez2q+9BtlrMNIoXJbslTV71jKFKN5M4dGFAIn1cJRAo5CExUJ0UV+ddf/GMj4JnH4u7L9ig+2PHkB5j+51G2CFeJ4D5P9lRSgr0pNDwpEeygcBCZb6EmJfFI2tlx6OUEstfA1eOydZD9Eey29uiQXQbJZg5WGsUL1utD2qphkMsZpwbaC2FqxzIoJScq2MQ17XTUU1kurGEsyl8lOU2J50q6JqG4ZHLK4VCT8V4KHKFDZeOkweyDZlSFu1NelWhS5EzWKHJWpS4Hstqk4CJvbN8XVU7KUhqlxaBr/cwXUSbD2QTi3lgRQzLtHG4NsJk4OteT/9EGIujnymt37il8/5HV/37TfCIlbwca2vf/UtlD35f1CimjJjIYN96h3Sr33r/3kzH/6307XLDd/wi4QswXUs9uQWrU+u0ep1cft7jC7tsPF1yyzfYSTwfjSWfSIEGfIuL0Gvg88SigMd/ijm9dXbYscwenIfe6hDdmKIyksB7irXkHiOXvFK1CQnGeaEboZvZ4REUy7JNbnqiDIt8R697TCb40ax0gArPlpy1Rlrxghpx3vJjDHn7+0uRIn1F/9ePrdn/uIt8fjVJKME5Tro1KJHHdjcivkviCraMUfkkTpP9sps33OBvSlKyzr8LKDBWUGeqN6u/39exc05N2Hai/nRCEaj+dfCgK/i+Tf2s/v3YY4chI0t+U5Hcm735RSkqtVPlNXUsvxirRmr9UaBsiOLZy9gpf67bmUSWm9jX9vt4Pst0Aoz8XTG8tlUHbHD1YWAIQYvYHzhUZVHRYKb70imkWvpC3LY0NES3Q6LKUEPhBznPTqnAVlUCOcFbBa1qEVdvLUAWBZ10dfNp7+ddODnmsrG89ZNwZKwsUnr0znu8gMSYDmRjIM6TK9ZMNYDwQiE+MGwuYDXg8omeG0WTKn9nBs58nRBS+0FaowMwbSeMoZ1fN04qCLPo8+9RpWObC0nGMX4gBHWfd37hYBrck/AJwGdy+A6GU2VIpJvIioWbxQ2D5g8SOB3CLiWsI7sWPIsir6AINmm3Kbie/RWNfkpxKBubxQuE7XLp/7pOYbKcfGqK/jT3z23L+likPb41o9/9Ad5ZvdBLstaXJWdYr/Z5mQlMvbttM2nhpfxd/78H9KyS3zLsdczKlJCgOSbAiYoVGXIdZu1ZxjapzXJIGDGiqX2hJP372P/5xSmkH2q7CgGT1KUfY/vVNz99+eb2L/5oZ9kI29xVf8VdE3Odtmi2ypYW3Jkp40Ma2J94tdexcuvexujQwn5ssZlYCeymNalJihwnUC+KoMbOxY2bEh0M/dXzqAqCZsMiRFmoo1M3MQ0Ad6PVv359TfxlJtvJh0o7FjAoXxVgB2f7hNgclTJAr6IfvfWQoi2EM6hY0DmWYGWOSsAZNoUVTC7WGI16AFNLtWu55ld0M7eVtt81edRPT2HkiSE4Wjqw01Uq6TR+sYHkfI7Nz3/rq5QrXSwp7cJa+uoThvlHKEGlZyff29lidrYktfQCpVl8phWhhqNcdvb+PG42d4avNmz4mL6nPd5AtTc92e07Le1zc/5FEcxALQBV4wRFm20v1HeUy1lKA96XEASF/KVRxUxayA1jdJSoVGVx3XPb43z0qPvgBBIPIgNpRdLEaUIqSHoMGdptLgmLOqrtfJJCh0H25aitNhJJNYYTRjVPq7RTidmpNTnJu66n9b2qmQsjMaEyUTsvqLVo0pTOQcXFTr+JE3nelqKcvfQEgGh/dZguqE+yDWwDv/Vegq6NFa0AZ8lhEzyl5TVhCCB8iExBKWwE0/nVGCyKtdXl4Jra0KO2INm0ebLi4LFbEE68CRDAWF1KZlPPjUSbO8DOq/QwzgY05qyn1L2IghvoWwp0m0hE0nPK9vrMsXosg4u0+j9qViEqqjQVgm3//k/2fM7Ky5bwW7moOG2mcH52WqhXHl867k/dQv5EVmngKxzXCvgUkW2Ac/5mVskE9LA83/oZghQdhX+xauSRzkKVJ2DtE70MOsjyenLFL37cszGUNZueTxWrSXs68csB8PtH57uQy97xdsBWDWKqqPRVUBVAkBqo9CDfK6nOXbvr3L04I+Lgto7TARadFEz8LVY4fUyGQwPJ2Jvl2WSKxGB1ka1EtVtChOVwf6CAJaHUp/95Vfxwr/9Lsmj0IqyZ0lCAKtR7RS9lhIiuKBqUmGs4H0k9zvgHL3XXuqWswEtO+xSZ3ujvSxUZ8GV2eeof+pkmnu4k0w591w7tke3W6iD+2FzG7e51ZzDVWqmtmkzYEIoCtjYlPNzDGpX7Zb0tUUhjhqjkdhCzr7Pvdy+Yh+rbCIWZE/gaoAoa+sbOJ8iqFFst1uy/wO0MiEHRcv4+tsoliTT1o69ZG5WYj9NCOjSTRWaVuMTjU/UBYEr1337jaT1Lx50UTZEgxC3gWS6ny3AlUU9miWTya+AU8MF1IJLIrUAWBZ1UdfLP/093P2ZS7h6rcCt9jE+ELa25nILGuWI8/j1DdTGJh6mdjTRg1aliTxuNALnpQmivnjPN3s1g1onqmmKfFmhE9sM5+ZyD2pQJglxqBW3rw4MDkEag6qa5rA4CTvU3tNygXTTSiPgJVxeOUUy9ujjgbJrAE26CdmmZJzYiYAougz4RNQnyThQdBWTFSX22T0Z6qabsqBFwf7POoq+pugpWWw6YiC3ADW6ElAlqOljzHl6tj/+/fOHvS3qiVFXtNY5aLfp6pzPT47wp6dfyOe/eCm9L1m6DwTSbY8deyarhslhTTqBlS8V6NxR9RNwAZ9B2fHky5rxfkW54skrS7JmOfDXA27/s18873b88If/Ps9ZOs3vffkbmfzzy5isaNa/LtC7W8HXF+RPcoR7Ur7hlbdw4K8n2D//DAmwb7nPseP/vHmep7zrZnwWCJknPWkbdVcSrUmUEz/rYMT+Dq3xS5ZghIFUdae+7cWy2b2hO+qZv/8mPvt9vwTAk3/9XehS8eWffvVZ7/+lV8//7Zt+7BbKjoVgaW14sg1NtSwMYFV5zHaB3tiWhfFVl4vi5u4H8OMJwPntBGqGMrERmlVB1OxGZhaMxshj6vOf2sNOwSAD/jSdV+e1MspLV1h7ZpvDHzgJgxGq36Va7VIsJaggAK7ygWRtjH7gNCGXbCx/6gwAPrHofSuE7QGq20GtrsjwACAvZJFZFFBVUwClkuHgWReTTaDq2T+j5rN8olYEtVRU+ghAJQOKEBU7Z/XRtlZyHdKkAasCxKB6h5ooVOXQmyO5JlmL77Xx3ZT3fGRvD+oLqZfeIAMm7UJc2Hr+8INv4LoX3iibGwK3n8XjelGL+qqs+1vQ9dhtTed3l0lGDr22De0Wut8jrG+IJZiv7f+iX73Scs6/974pC7zOCgFUuy09bVGiT26gQ8CfPoNvcghsY6UooLiAtLVKEOQ6omwSB4rl1CasVmKbGPauo4IlMYSWWAiGTE9zImK4tTEaXQlreDVk2LGX30vfqGH699eqaE3ZnipNdeHRrlbNyTUbpag6lqpj0VWg6mhcqkm3HclQPgc7gm7MDXQtyYwKRlF2NKYIDaADCt3TmEnAlAE7OvtX9t737w45XtQTt1wq+0HnQeg9UNF+YCzAyGg8v+ZqZdDriL3X9iAOpW1UaBlY6uF7GdtX9Rhcquk8GGA84di9v3rebXjR33wn1aGE7gM56d2bTVaPnlSoU+tUVx3Bt1Ps2pCjV70aBiP89jYAt03+Y/M8R5/+WlAlVAbtHHaUE7JUyEBai5JtawhpSmj3UWsb06EzQKctx2xZQWI59tmbOFc9/4dubhwJXn7d21BV2DNXYrZmHQqe/4M3o13ADAvJhikKUcalqQzAQ0CNC7Hn9l6IMtFVAthtgXu22mkjFjz1un2212vAll3EI70n0Dz3/zj4N72u9Lh50WTaqG6HsNIj1ASV0klmzWBIqCrcYAiDoWRjtVuoNMWPx+huB9ot+T68J+QFbnNL3n8N5DgHg/P0o+foaevHPdHBFZQWACmuI4Jz4jCyw9KtrllQS7XFDqxR+2vdkGv1xKGCfL52E7FjtxrXSajahvff+vCzsq574Y1xHiO2YLf/+T/h+m9+Y2OPeetHfulhP/eiFrWoi7cuWoDlpptu4vWvfz2vfOUrefe73w1ACIE3velN/MZv/Abr6+s8//nP59d//dd59rOf/fhu7KIe1Vr3I/bpDgB33nmY1c9pzLBEj3PxSoap9RYIq61ugtKUEEM5g/PTBWP9M0lEhpvnTWMT9pIj1+DJLOii1bSRieHMYUbKi1bC0KkZ3iY2dLVyxWjQiTRViSXYOMz1oPNSGBWpZFjgAkGBmTh0rmitaXSlsCPINj0metqrQPQV1XirYqg3jI4QLceEzVVbKzkNZVcLgzBEuyUtQEvZpbFa8BqqrtiHyWcM1778pgUr46ug3vDs/x+/+rnv5Iujw/zB55+NvqtNVkG2Af27J2Id5D2ENqhEPM5PDFEnzmC3tiXYc98yYalLSAyjK/u01zTD+/dheswx089Vd26vopXnk9/zJvie6e1X/dN38X3f+Fd8fO0y7gyHSLdkkaYvOUw4s4Y7szb3PF/6GVkcPun/egc+Wqlna9A+maN8EA/elrCalA9UXRNVYQJC5suafPncagB//BoAfv7EcxlvfRPXvOUWqk5Ao0i3FFe/+2Z8Erjrp85ujVdX1ZXjqX0m0DojiywzqTBbE/LLlpgc7JOdyTCTCj0qqFbaJPkh1D33E6ryrCy2s9bOhebOPzs3v7DZwytZ/umpesRaOZ9ZQ7GcMLoEisN91MEew8tblO3IU8wU/fsrOndtoc5syrlZKXSviwptOU+Xpdg+OkfY2kbN2n7tDOqsgYWv9qptFKJiKHgvSsN6EGTtvJXlrL1PVCkpK0CYUopANc1hqRyqDsatnAxj8gI9ybntr84/SDrnZoeoGlOg1FSl8p4PCcP7FS84t9XOohb11VZ2qHAHHWrN0L97THJqAAPx3VdZGnMTducSBOcEzK5V18E3ypX6XKhsVA+Ox3LOjIBKOAvbO0RG+Ryje2Yo1yj6gjB+JYfFCFHISlC2qqZgiSolFwKtCanFWyV9cMxR8akSJcpYoStPsl2iT5Sk/ZTJgYyyp0mGnmQo2SrKI9f6wuE6iQTfdzT5ihaL2iAWYgTpjyWvIioyTcwQNEpUM6mospWHYKDsKUwutwetyTYVR5/5uvMOoBf1xK+/vuVVPP+HbqZ/9wR7eij96yRvVLV1KaB2EwjjCX6SNyCjSixsbaOzjOX1If0vdCWf7wLLjjxVa3eOw3d+x1vw+y+j6hqxyaSLPRMIm9uihtmh8jh2h1go3/CN/ySy4i2hZdHbE9jaRo2sACohCGFiqS+uCLV9mVL4XksGwOXZG8Wr/++34rcTekcs3/Rjt2CKgD2QkA48L3vF2wmaCxpMJyMvuUg2Zr1FYILhGDVKpwRIYwgrS6jhaPreo3XhQ+pnYZ4gs+NcN6dQ2cM2da/71qqKxrqqlUUFkEO1MgFIQIAiILRS1FokehqD7rTRnY6AMVFlVxNb/NZAetqinOtpg3uCE3weg2o+3/p3pQnWolK/6zhobN+0zHVUmjRrziacvmUjga6C0snxoJW4E4SAHive/4FHBpbXlpg6eIKX88FtMYvr+ucuwJVFfeXKPxR/5kU95nVRAiwf+chH+I3f+A2+/uu/fu72d7zjHdx8883823/7b7nmmmu48cYbue6667jjjjvo9/uP09Yu6tGuGlwB+KZn3oV+VuCvL38aT/6fBntiE0AWlsQGJcqi96xoEaZMVJJ02jDTdDfMvuCb7AKVZQ0zIhRFI2HdKREOZTUdTqpkyvirg+2raW4LSSJsnsjQw2qqlTZmVKJysVeQcDRF1dISCqyRYNAy0Fr3tNaF2WfygBlXEtSGeH76TEujUQFe8lJMtASzOeJ1HfuaKoNkLKGgQUHZVxFokcEvWizEgoVKT0Gaxm90URd9/cGJr+OLxw/S+qs2vQcDZVeRbUYW6TCHRJighED7RC4Li0rygvx4gtYauh2KIx3M2GFaikN/VYp10PnFK1z1z96F7xzk+AOX8rzfuIWP/ubUfu7Of/Qz3PLZV3DlJWvcap7FHZPLaZ1psa/ah2lnmLzghm/4RVwvm7Pm0CODzwLVPke2bgmJxmwWKBcol1KKvqHsqSZI19uprV7VgqoH5VLgBbe/lm8/fCdXZGd4RvYA17Ur3j9RfGL8JP7LJ76JfR9OWf5yiWtpxvvFmqx1SoJJj37wlWgC//M7fo0n/davkO2b0Gvn5KVleLyH2dYkfcXKlwIrn9oQxl8rEzvD8YRsa0C63MettKm6KSaGCpeH+9hTLcJ2+bA9ooE5pt55LaZmSvKujJxnfSCsLhHSqLhToEtkYaMU/S8OyQ+0WHtWwvggtNY1apQTtgfTjJV60JcmqDRtLBUAqFUqXyt1jgwV+RevK2H6vaskafIB5AbVDFcaa0prGuBFwdSSwUf7tUkug4M63PkCWLoX/p5k4Knc/L56Icq2RS3qq6le8l0f5y+OX8nk7lU2n9rGXNlm+XMZ6q4HCHkRwYyz9K/1cR3taiTXYGaoWA//xpIPUWdw6ZodrDS6152eG6J1jy/nj8ua9T2njKvzwJJIavJBcsxKB4mh6lpc16KqgE80rqVxqViz2LFDlYGybwhGrrfJlijadF4SWpZk4Ei3K1TpGzKBqrwANS3bnD+Ul77UTgJ24jFjjy49wSrKdrTVhahwket61VLUQcPKExXekh+nneQ/2bESVvmivipq6ctj7PENWd8liWSV+FllrpJdwnsh2UUlcGgyTKLlXgxO16c3Lvia+IpvfTO2bVk6M+GG57yBWz/5luZvf/hBUWx+x/f8Cq5t0GVAd1J0py2vm8L1vR9GJQm3rv9W8ziVlwSt8cttGfBuT+Q4zgt5b2kKnbYoWmpS02AkSpFWgltpE3oJLz36DsquJl/W+FRR9GHwnJxQWMzQ0D0eaK07VBUwuZN1ngaC4oX/27sYXK6xI/jYv3wV177sJsq+xSeKzScbWuuB/lYloPF4Mj2evBel8mAowFWaoJSWzz9LReEyGErG4CPpZ2FXT/twnq/Jt/NRGVHvE94TxmPUJAdrCKsr+G6G2ZoQNjZj1l+JygUoVzEjJAzH8wShfPLI3uPFVHtZDNe3q2hjFz/rEPzUdjit77ajr01EjY21uG6Gqmcz9f0iGUAVpRwX7VZz26x938MuF9DBi3Xujj/d9lfnt49c1KIW9dVZFx3AMhgM+IEf+AF+8zd/kxtvvLG5PYTAu9/9bt7whjfw/d///QD8u3/37zh8+DD/6T/9J37sx37s8drkRT2G9XtPeQ8Ab1+5i9+/4zvZ/8X7UfECHqpK5MZRMhpiJouqGXXONeGhyhhUkuD7LfS4K810XFCGoqQOu1NZhu73oHL48RiVZfL3udD7OsPA7R5SxteRHIUQ5elOfldKQA6lCFqj80q2OzH4zOJTQ9UxshhsK2EDArr0olSJw6oQgRhAPERjMHfVEZClfcZjck0wEjJsCsnCkLwWWWwyCmIx5uR3bcRSqV6cag1M4NM3nSN3ZVEXba2kE5b7Y3I6tNYddiRM0aqfYEYF40t7YBTd+3NUgOpAD5vnqODR7Ta0WxQHu8CFsdx21b6Cr7viQQ49Z5sP3fr1u/78T2+/AZ949EpBemDMqRe0yPd1OPhXhvT0EN9OqHoJL/nudwDwgf/589ihxrUD2MBkFSb7Evqnx+hxTrCaqq1xiUYFGcZ4q8SHO14lq27gy698Nc/8/TfxB3c+k6fsP8O/OvMiJvf0yU5pkgFcdq+jfWqMKj3pGU/rlAywy56l7Bnu+PiV4BXP+w+3cKgyeNNj4+ldgoWVLyl69zvaJ3PsPacgF6UGIUhgapKI3cDGJvrLHru6wvjrr6Bqi5d3srqCGo1ABYKbV9Q95KrtBs4DtDR/SxNUpyPnNGvwrZRgNZSO1skJBz/RIv3MvfiNTbCWzoFV7OQQJ57XkvOYUrL4BKjU1B6izpa5mIM7H606V5hrVA/VTFBljNi/RWseebyAK6JcMTJkqpVGwU5BfxfkcdaIIqi+z6NQf3Tba3j5tW+Ta4wW/+trX3bTeS1HFrWor9a6bt+nGLuEPz64zHpmsGPQRZ/lMz3C5jZhkp91KBiKchoG7KuZPMEIelsjA9alJdTSEnhH2BoQxhO5T6cjuQBlJdeVfn8ezK5fJ/a0vhSlmzII8JoosSY0hpBGho5z+G5K0RcQRJdebGaNwieKMuYQVpmiailMObVXwYPvpLi2XHRV6QmJpkpSLKC35XqIR7JXSk/rtMeORIFqSmHLA7hW0qi2dalJBhXJtliFVS1L98ESO3aSYbGlGVxi+di/XPSzX63lMoOtr3EhWjUnUYVgTBMWHoYxHyQqFECUYkJaUBw78S8e8muHRFO1DW41pX3/3vdp3z+QtV9iqJZa6NYh7Kk2nF6TdaLRHD38E0J2OP7PoazEAtAFFIGQWJS1QlTxkkekiD1aJEmQikOCmpSoqsUffvB1vOR/+RV8ojAlVB1orQXa70uZrCq6JwIrn1yX7KayEvCm0ya0U8p9bUzhqdqabD1w/XN/iaSoqNrLbD3Fojws3ZWT3rMGm9syLI/boXpdyccbjfHDEQyGYl04Gsn6upVJdt5AMqCaPNNH0gdGkuTs7+cqlWWoOtM19qbifuEI2wPwHh/zAFVUUegQ0HofPkvkfQyGYp2Y56IsHI4W/eysAv5s5CFm1Dvxs22UZiFMCbP1cZkk0OtMwZU481CVF6u2qGipyQDKBcJDUJ+dq27/sFiCYUQRdsPX/wK3/vWN533coha1qK/uuugAlp/6qZ/iu7/7u/nO7/zOOYDlzjvv5Pjx47ziFa9obsuyjJe85CV86EMfOivAkuc5eR1ODmxtbT12G7+oR73+27DLfzzxAt79pN/n/T9yDdyKMKXLKg4n/TRsWWsBWWoJqp9e6EMlNjRoDVkKwxFhNJphN4m8WbUy+bsXxonYqlTzoU47LHQaKbJjGjgYG7cmZFBrgtYiXfcepRT5SoZ2ATsQe7CqZ6lakhOhPFRtWTx6Y0FFawQFugI30tiRvG+fCCMvaJrgQZ+InYIdC8BSZQrloGpLMLidBGH8ZYp028vjlIQ9/uVvnT1PYlFfHfUtK3fypM4Z/tvyCxkdMIyOKCYHA6pKWfl8woG/3EAVFb6dUBzo4LIEwn7svV7UC1aTnBpy66ffsufz3/DsN5z1bwBpu+SyTlSj7UEi/fIr5/fBJ/+rdzJ4kmeyP2P/pxL6d0/wRhGsYrJi+IafvgV/hdjmhSDhuQC+k2A2KsxWTpqKfcif/u7P8E0/dgtbVwdCAurwBJtW+HHCVf/hJswDS3QfgHtYZul04OCmAzxm4jDDCjPMoaqZaXIM6nFBumm57I/a2FGFHZSYrTFozYGPafGpzyNQG+1hGrZwCDAcScjlch+lDeHMGv7MGq0/HUiwY7tF2BqIHUFmI7hccb5wyPPWebJKGnA6ywj7RCUq4ZAGPS7RwwlUjvYd91BtbqFbWbMgUpVn5UuOdLOaMqiJyr/GI/tryyLh4VRNFKiJA2glw4wZReGtm/+aG5Z+JAbb66k/dVnKojNaJqC0KFjKklBVjTLm2F23PGrbq3xAyyEjr/kQlFKLOnct+tmLr0Y+Q6sAHce+v9C0zziGhy2Db7yU3kfvww+GcsedbN8dNWulE5wTclFZieqjnaFOr83lUiljJDegncow1hhhj9fqlnMFSWs1HXL5AMqjnJxTfCvFdWy036qP9QBEdahRMdNP4y0kI0i25SIfUoNLE8YH0mj3JaoXFcAlGtNPxaLUiZrWtwwuM/g0WpKNRL1SrGQEJeQjl2pM7rGbE6yHkBnsRAbNunD84SO0iFnUxVH5akL2oJX1W6eN77ZQ3qPXt0UpkedTN4NU8skwBsaTxlr6tvV/t+dzX9/9IQBuG/723i+uxKouaJoh8M667aPzbPfrv+VNVAf76OUO6o675EYvYfFHr/xpCfFWShRfqZW1Y8xLoygEELElxz57E0eveQ2+38KnFteeqr9edv3bwSiSoad1akIwQuzTW2NCalDDnHBmjVD3Z4lFTXJUu0XiHD5Zon9PIBl6ASOMIhlW7PuiItksSO49I2BEGcmC0aKQEFAHVqHbRa8sw3iCP3WGUBRCwqnX6PF8owzn7UUvqC40yyWu90O9PofmfFfPFppz5IySuCa4+G6KjuSWUJTTDKtF7U0Umr2tnpFEpXVtqa5Aets4k7l1/be44cA/lP41qy3xPD4RAF+VvlGqzP2rxNXk1o+/+dF7S5XHpxZsmFeOL2pRX8FyuzRUi3o866ICWH7nd36Hj33sY3zkIx/Z9bfjx48DcPjw4bnbDx8+zN13333W57zpppt405sWMr6LtW6847sZfnQ/az9sOfb0P+DoFT+AfvAMYTDE5xO5OJeVDCGJze0sq7u28/KBMBqhBxOxRqmqqcentY0vqDIGqqh6iT63TYO1cxEan1fN2N8H50QqXbOjIpNKFQX0W6hcbgtKYUcVrm0p+ymupSl7YjfkrSw4J/sUxTINeJJuSwZLMJAvG5Kh2IfpSpQqQcN4vwTVm1wep5Y0Jg9oF3CJwk7kviCgS83yyPdJsP2nb1qAK4+krnvRW3jPEzzE+QW3v5ZvO7SPL24fJNmS/SHdUriW2GiUXYXaGsFwiO52sVmCzjX25CaUJWpzIEP0ST73vDd84z9h/TkrDC9RXJae+9KTP9jlj9zT6LRzDv71+VdVd/3Yz3LNjbdQPCnnRC9h42kdPvfGV3Hty29iss/wiXe/iif/9tsxWcWzLjnJHa3DbGy0yTaTZh83o4o/fc9reenRd2APWdonFYNnFTz3ivvxQfHZE4fJ11skBaRbgaUvT7DDEjUpUHk1tWup8yt8gG6bYDU697A+pHdmMBMGnKLyUsCV7SFhIhYKdWgm0KgPQp4L6/jqKyXUvjn3KAGSo6WWXupDt4MqSvyZNebC6R/DEoaewnUEudJ5iZ4U8j6yBLV/H/qqS+W+HtQox26M6Z0ZofICf/ykBNPXC/AnYp0rBPXRfI1z/nlHA11n38yWD81+c+vmvwZkAFTbZuIik1THgUBZykDDGLFP8FquUc5z7PRvPCpva65CQBcxqwEB5L7zJW9dDDofhVr0sxdfrZgRma7I7k5ZumtCcnLA5pMPcO/3Oa4Il9H94DCSfWhsvZShyQVoyDtKC2smhtOHXGwXVStDIWoXjEaFyNaPyjRVRGZ6rSA8m9Xr7HnPObEg8h6Gw+lQyRjJ2s5TVIi2uKWT7CUTsBPpVb1VETgJVC1F1bNTa04D+YrGpZCMFO0zjnzJkC/rGHhvSLYdPlEMLk8oOwo7BhQkPY2uRJHdOS2vK8PfOPhSAT2pyPe3qDqGP/3d82eiLersdfSKVz661pGPUb3kf/kVkipInxR7NFXZKaEuzxtLZ3yIuWTIOlAr2d/d/PX+6OGfmIZqn6f0sCALgaqboDdHF7TNt33kl7juhTdSrmRkRw5x7PNv54Z9P4qyhmP3vJujz3o9JAbfTnAti04MdjwBN5RjPl7vj1750wKcFhVuucX4cIIuAumW2H7ZwqOcx2yMYG1DrJmi+wNaT0ERY+Q8klgBZAdjWnc7spOpbMNSGwLocUX79BA1HMFwPAVXfJ15asQZ4r4H0QdWKZ60Hztoo7YHhKFrCCPA1KIbRJVt+Ir0s/J6bqqqjuCSjionum1CvyPgda2WGOa4Q0vocYk9sYk7s/6EV6s0mVqPY087vVvt2aimKhUzdSMBUF5za+xJr+/98NSyr84Xqjy6BjDrn1os3OucsmN33vyovbW6glKS9euFQPCKb3szt//5o2A/tqhFLeqirYsGYLn33nt55Stfye23306r1Trr/dSOxUEIYddts/W6172OV796OjTe2triiiuueOQbvKjHrPSRzzeh0letrPG54X6+/0M/wRde+m+57+VLXPnfJ4STp4EIcARPKIqGjRtq5t0so6auwUj8d4tCHptMs1xUK5OLv3NihzOe4Eej8zclTX6LLIRDbB6awZj30oRqjVtuy0OMlkBPwLU1ZUfAFRVEhVIsweQg+CRED2kolyBbk9BOl8n9dClgDEFC6n0KKAjRDkwFAFHCuITGJmx4xIAHmweqtiLfJ+Gfi3pkFfboNa99mYSoPhFscp70r98BrPL7x1fQZ1JWTwWSUcCOHbowbF0NgysCxZP3k96Rw2iEPSmD2nDqjBwnuQzWb137TQCOXv2z4B1qkrOiFOmgf35v2n5JCOA+sErvE2fxVNhRn/+FV3HVf7yJF33rZ/nk6Ut4yjtv5kszgaJ3/dBr+O4P/mP+90s+zOmDS/xqdS0bGynZVoLJA+2TOdc/75cIl/ZorTs2nm4hKD5/+iD7uiPKsUXl4jetq8jEH+awNZAhdb1Yr5lsZQHrRWM9gXOwXUIrw11xkGJ/hhk5imVL+2QPe88pwmgkSruyziBJoy2BACXqgROQpcJqNhrd7RAOrBJacp7yiRy3qnToEAibW/jx+NFdlO4RBBomOb6bsnV1h9aZis7nN2VoB9Bu4Q70GVzZIRk4dBnwWY9Tz7Ec/GRF++7N5r0+EUPqJUQ+oBMrSp2qitkDVkJKB4NH/vlewCK0tqHwEbiU60nM/qqZfjXzb9YaDKb3q+IQyZiGbXvD8t+Tz74ljMGQWVSeSdbYY1ByPQqoGghS6lGza/har0U/e/HV9179cTrqmfzh0jfgMk1aOZbvqth8huHEtxiefOJK9GfunCpZ6lK1V31UpcUBUxOSXOcLxsc1iu46n7AoZG1UlIT9y6itEWF9Q47NncHSO0hDqICaza+Ig2lCQFmDGWWkmxbXFlWoN9HSNoiqxCcaFAKMAONVg0/EfjbUWYAdyFcVBIOdBCb7NcqBSw3j/WKVWyxN8wBdKja4JpcslXF8omQY8GlgdFkHM/FoF5jst1TZ4pzzWNXRS34KtObY/f/08d4Urvv2G8mcR49L6Umcg7FDOU9Y6eGXO+h6QDoYyj6d+wjGTMPSb5v8R0Cul/W1VUUl6FmVK3Vp6RfTUyPYvHBV4Xs+9Atc+9K3Mn7KflF9z2SwHPvMW3nFt70ZlxmqnsXtS+gWy2gfogV1va4UEoXf10OFQLrpptZ9pUdVLn42pYBMtS02RBJGJBDWdtqRFBjGE6gqVKeNWV4ipIaQJfhWQnAWVaYCsFADw2pqw1YUBOfwp06TRtWNH48h+CmoErM36vW6ikDXVN38GFbcDtXtTPv5+JmGTpvi0r702fGc51qGfNVy5lma1c96lj8nam0XLc6eaKVsIt+lTdC9XswYMihrcRsbj24/uwfxdHo3+Y59VK0r7adEAGNk3QMCjnjPsUgYAlBJIvOZsgIlqpTb/upN3PANvyjXQStENp8K6E9iCMbs2oZHo0Jm0JOoxA+asFASLGpRX/N10QAsH/3oRzl58iTPe97zmtucc3zwgx/kn/2zf8Ydd9wBiJLlkksuae5z8uTJXaqW2cqyjOwxGiQs6rGva/d/lo9d/hTsnW2++9KjdF92Cv+HKSpNpiGF0Yt2jo1TL05hTn3i1zeE+edD09CpVIamYTiGdkvUMHkurO29GpE9LMJmmce15BVj5Lm0lnyFyIQJceBUtQ2ubciXNGVPLLx0GXAtWXx6K5ZgAL7l0UsFo06KGUu+ik8VuhYR6Olwv1a52AlkG6JsmawqJgcCyUAR1hSuBXYobIx8HxQrnjv/0YLt90irDrSs69qX3zT9/xMgi+Duv/fzPOVdN9M6pTCFqFeUF7u4ZKRINzWjywLjgynpvW2xEuq2UKWb+gxTorTm+u4PcdvwtwlbW6hWS3yjL7QUVJsZyRCOffmde96lthm79uU3UbUNo0OWf/hzf8zXte5jLX8pn8lWdj3mf37Hr/Fbn38xT0pP8byn3s1f2cvR97bp3acYXNJm+e6EZKvivX/0Op79mlso9muG9/cYtjskJxKyMzIU0mUgWBkeKRVl60UpIGySiMVgBBhUbTNQ2yH1uwQrHvRbV2ZM9kPrdIfWlVfQ/+Iwqj9KqgM9zCBH3Xtc1Cta4YcjCdQMnlA4fBii05Tx1Zc3AKwdCkpq7SraGvQZcMMLAIIfas3mTuU5ZmOMKdqkGwV+pQuqx+RIh8ERy/By2HeHp1gWJvJkH+z/TEXnY/fEob8nVBWm38dtbz+62/kIq7ENQVjgev8++S6LEjoZppURRmP8rKXkuWpW7Vj/fq67z7IMZ7IYgg8EX8kiNZiGRX7r+m9xw9KPcOvWvwHg+tYP1A/gtuF/3P38rUweayMBwRgZuPrHZojhreSbeZDshRD4ww88sVV9F0st+tmLs65tO9SRMcVyi1YroX3vgEMfXmbt2YHtqzqs3NtDjUaSIRA8ErRnmoGjCjPWt7Gac9ZojK8tbZChoKqtGkdjWF0RRer2QGwp9yKk7ehp6+euLW6V0oRQTYeRQaxt7QCqXkKZaVxL7Gl1GXDR0isZyDZNVgUw0RWoQraxainKLkz2K9qngQD5igAwVRuqLkICGguhSEdlqbcKLOTLivEhyM4olu8OjPcbsk1P0DA6oPjkzYu8lUdae6lXjl72j5pr0dFLfopjD/76V3qz5uo9f/oL3PD1v4AaxCBxFe3tyhI1LgipJXQy1DAjDMdCXIgZmaGYKimub/0At03+I348Qbey5vp6IRWMkTyIojpnhkvdMx+9+mchsfhOxslrV9j3+aoh0cxWzZJ/2fVvx1vD5FAH20vRVcBsTyR7Yn2TYw/+Otc/95dQzpKuF2KNtp0LGSoSNGpQIUATBt84MAQ/zYFyrsmpAcRCLQSU1qgsRbdbspa1oohVINZirZb0euOJgC1aiWJ5fUPOXSoqDUDs2eI+VJ+Nantv5QOhepR7kz0UHKGqBEzqdqIKp54bILbdRuNTzdZVLcb7FWUfVj8X2PdnD8JYQuxNr/eEBFlCVU6vD5McfXB/7GkLzIH9hOHo4ROzdvazO37XiW3A/51/FxJQCU5DKo4jt67/Fjfs+9FGjQ2inKv71p0grhoXkj1Wk3esxiWpOHacxZ7vkZbsC2LTF5RaqFcW9RWvEBRuLwbv41CPzVF28dVFA7Bce+21fPKTn5y77Ud+5Ed4xjOewWte8xquvvpqjhw5wnve8x6e+9znAlAUBR/4wAd4+9vf/nhs8qIew6pVLC/ufIF3rua07mzzuU9cyX/73nfzk1f/NEsnlgGaELrga8Zs3UDF7IC6yai9q4sZn1Slp9YpzsWmT0mTWMvJYW8Z8MyCtLFygOiBb1BZtGjodsB7QiqZBMEoXCehXLIUfU3ZVlQdcK0aIIl5KhZMoaaKiE6FzRx55mGk0ROFLsAUwuzzCeAj897Jz3QzYPNAvqzJ9wfsFUOKicWlLUwhShaUvO4CXHls6/EGVmbLTGRJk24GkpGn6Bt8nKfoCsxIM1mF7qElzPaE0ZOWSAYV9k6NLwrZ341pGH+3Pgybobt+8LXn/PsL/u670M9a5RUv+GVUotm+vMXwcvjw+lWwDzaL1ln32YlP+MDwGQAcPrDFgxspk/2G7v3IEGdVLB98CnqiBcisFFXP0zmuaZ/xJCOPcgG31EZbi17XhMFwGqA6a3GQSdgw2kjjH/2vVYDugw470owOKSb7NetP65NsQ7YVWLq7wK5FRqXRqLRF2N6Wc9WsT/TmFmbiGB1K0KUAo2gldhTpKrbdwtx/fBdwUTMF6++rZhWet2Z9p2fY0ur0Gq21PsEq9EaB67XIlzQbzwwsP2ON5GPLpBsl2Zph3+c86b1rcdgR8FG5YtKvgExuJ8Bxvrsbg+73JZugrAiTiShYjJbQ2BBQWYpZXpIHjCe4za0m62BXzby2Oh+jLm5rzfQDWaD6chpM1DDK4+/X9354x8sFbi/+09lfw0arFCeMV5UYfCvF24Tv/I637AKFH069/Nq3AeBTjTJKAq2VFvZsvvAmX9TXdukjn8flb2d0SNO7O8Gc3KJ/d4vx/haTFUV15SFsVeE3NvHxPN2QgABfSn/b9LMzfwtF0ZxzlFbT830ZCQGDkfS0VRVVKG7v68AsyLLDqnBn5hNehlmq8uhCo52mSDVVW6Eqha4k2N5bhR17IXPkHl1Jv+kTsf0K25BuQWvdEZTBW0XVBpSot3VeW2kK0KIcVD3pd/N9UFyZUy4l6MqgPBR9hcsW4MpXop4I6pWmXLRu9VMFl/RpHjUuJYMsTVCtjFAUElAeAu7MWgQWHLeXvwNw7mvpWer2D5974Hr06p+F4NGHD3H0ileKkrTVplppoUtA7c5oqeval92EsgozdoREU3WsKM5Ti5qU0n+CqGgqL4iFR97zdimq6UQAjeCc/N8YUbbVJMX63BJtRdXMujg4J31DmkgPsbElyp4sE9vBVgaJWACqtS3pl4wMwFX9+AjeKJugum35XqyV80rdS8cM1VlXiV193CyZUemz92A7aycpEqTXy3MZmteq4U4bupJ9oyqHKRxLd4KdpJhJoHv3dkOm8mX1leln4RH1tHgBVjCmUeGrJMH0e1CU+PEYP548bILWdMbiojJyem1RNhElfjzuZkG92uHjhtV/IEqi2SrLcxL2glKEJL6uVQSjCVqhnH/U7Luuf94vyRqwlwmgqBRUEBYZLIta1KK4iACWfr/P133d183d1u122b9/f3P7T//0T/PWt76Vpz3taTztaU/jrW99K51Oh7/7d//u47HJi/oK1F+Mr0I90CLbDCx9IHDbtV/Hk3/2c5z8mSdjv1CKr38TFj3DTolNs7Ialdhp8+ing6vakqVuytXKMn61R9VNMYMcPv3FGf/Ssy9IGxaQ0SJr7bRlMJem+F5GSGt7H02xkjLZZyi7iqIPLvYV3oDPAtWSF5q6U2ADQQdUKXYLrtKoicaMFemWLDiDkcWmqgRsMZMIsJSyiN1eVeSrwGVjksThKkN1SUE1NJiRxkzEPmxRj0299317Aysvv/ZtoOF97zk30PBY1Off8Cqe8zO30D4jdk4bTzGMLgvoQlRTyUCyWPIDGVkAXXj0JAKQcfhTL0YfSb30vT/L+6/dW73irWK8XzHZ16NYgrIHBPj4x67mr9KruOvHfvasz3tFusayGXFZtsFar8vvHF+h80nD6mdH6GGBPrPJ0Steif4/niwP6JfgFV7B4EpF60ydS5Qw2Sf2Je3TbdIHtgVgGY5kEdppQ7tF/uRVTnxTRjqA5S+XuJZmcImhasHy3Y7OyQqfJLgMJquw/cyKQa5RPiV9QKOW+jAeiz3V5hY6UdFyUMmCU2uStTHVlSnGwOhwSueEMJF9aigP9rD2UviUqDwbYLkOj9RalHTpPrGS2NzG55OzfzGzwDGmYTb6zS2yv74bv7mFB0y/z77jLXR5BZsn93Pg5AC9NcEaxeTSfvTEV/jxONo3elHaPBYVwShljLy3h7AgDc7ht7fFJiyNIdCAUlpyhtptyJKGLae6bUy7RRgMcZtbZ3+dekG/l51Cvc2JlQEp86xObYo5e0uV2On3GbO9bjjwDwmDIUorrm//YDMcuW2wI6i3qkR1NaPKCamJg07Dy17xdv7o9tcAorg72zlrZ738OgFV3vee16JirpiuBJgMRlSaqvJnHRwtalFfS9XuT0iGidj1lCXpl05wKBxi7VltNp7eYV91BD2eRAb3dHDYMMuDB0w8z9HYGdZDK0DOKVkGzqHbbdwVh8EozOltwvoGvqymOQN7VT2I9EEsEmFOVaeyFNIUVVWokSfEUO3RQUPZk57WjqF9WhQnwyMGFQy6ABX965ULmFJyAv0IyQgsAr37S4JRjA5Zqo4i2VYyfI6nTJ/CcFmyAst+wC05QqnRTjG8TPrfdFOIR4t67OpswMrRgz/OsVP/8iu8NVK3fvotHD3yk/JLr4vvZHKdBMnPizkhylpZ73kvWSzGEHz1qPSz5yQr1Nf9RKxHQ2rwWYIuPStfrvjA//i5sz7ve//odbzs+rcTErGRJlHoTSd5ooMh/swa17d+APX0q1E+4DKDDhCCQfU60sflhdh9dTvTLKb1DZjkhKKU+2iF7nUJRw7g24nY0J7ZEhVM5QS4Umpqb+scdDqEflveS1EJiNVpizoEGqKiTqX/EzszsctGKxSGkNJkDO4CWWolSw2szPamxqBb2YUrMXbk6wXnJMu1BrNjVqoGrAsywPce5Rxd5xle1pK1fGIJozFKq8eun515z8qY6YzjAmtXT5smsgYIQYhgqRHQJbHoNBEr4vHkoalx6s9zDxCsBlt0r9vYKofxmBAt+lRiZeaSpdKbWsvRa17Dsc+/vTmOj17+j4W4ptR8rkoIkcAj/XjQ4gaighAEHZZXvOCXuf3PflGe5yHkSN3wDb8ISnHrx9/cqK/1pCRojW8ZlFK850O/cOGf0aIW9SiW54kC7i0s8uAiAlgupH7+53+e8XjMT/7kT7K+vs7zn/98br/9dvr9/uO9aYt6DEof+Tw/egTekr2L7Ss12Qb8h998BYe/9x6++OOaZ7x5SYadM2zf+uJe56JQlcKaSRNUmor/aFS6SCC9eMiqLIOqQp9YRycJfrmL6nXxa+uYXhs32Jsp0zCPtRJwpZVNVTFRwuoyQ9WRQ3GyzzA+KCy9sgchEQsvFPjlkrRXUE4soTToVsXK8gilAusbXVxuUE7hU1lsllp++kQAlWRbfpo8hth3FOMjgWrZsdKdMJ6kuI00MpwUdqSwQ/j02xZsv690ve+9r21Y349HVR0IWtieZgLJlmqAuc6JyDbzsHlNh3TL0/7SGXwuLK/3+N99yK/3q5/7Tj64JrlKV3bWuOUbf4d7T63y7P/3jQzv79H/oqF/vzTqH/rPP8Nf/Paredkr3i77aoCqazATz/uP/fx5X+t7r/44//mL30KiHA9Oljl0aAu9tb9h04fBEJUmLN3lCUYzIcWvlGQrEw49eZvtuy/BjhVFX3PqBY5gA6sfzdifO+xWjiorYSB2Mu7/zlW2v6HAtoboVsn2/1ihf29B94R8vsm2I1+xmDyQbgfSbYUpLKNLPWuvmHDqeat07j/Ayhc9y584hW5lceFPVDaIIk7ffwr7jCVcpiAoRkdSdBEwZUCVAZ/2SL7ciWqLTAb3k1zUdImVRYxSsLyEXurDA8eFtQbTBdIORV69iJ1dKLu19WYx69fWMUt9lj9+knRrFVVUqNEYkoT2F09DXuCPrEpWzL4+alLi7r5vqtB5FEpnLRlGKi0ARVXtXvRdQMBn857yCUTbxfq6wda2nOPTBHVwPyFLUEqh2i3scp/qnvv3ZloaMzcU2HMIEFnhKstQ+1cJ7Qw1GqMmOX57IEOROrBaixqoyWApyoatqyKYBYjdwqyXe7QsOfrkV8njXWhe27UeQcMeWezXvegtTduvYlCwa1lQj51lw6IWdbHVZ7/vl+D74IZv/CfQ78KZddIvn+RAdZD1p7cZXtmhP7kU9YW7Z9jbUQFX97NRmd2o0pg5rwRPcDQWuFopzP2nZKhbZwwUhTCwzwFAy3k/giw6BhLXFXvdkNop4OxjTqARgk+tUlE+/nSgnViCFX1QQZGtCznI5qCrQNnVmDJQZZqir/AJtM7Q2GJ6K89VdpHzilPgFWZkaJ2W+1dtUYInTzzHnq+JerzAlV1VVqjCoCon+/skl33YGELwqF5X1BvxOHm49dKj78COKoKC977/9ZhxxXUvvBEzzFHbY1HUIDZr9YD46BWvBEANA2ZbiDrv+ZPzh3L/0W2v4SXf9Q45jMeSsUJZTRUmSqO3xxIA7lJCovGZgJ9mnKFPbQjI0spwB/q4zJAqBafOSM9kDHr/Kv7QCq6b4lqGoBWtyqNOnBF74BhEjnONxRrbA1RVYdot3HKHcFnss0cFam0LVT9mxuJQhu9i560SK/aDaTLNeFIz55yortGJnT9nzZCIdK9HGI+nqt9z9ZZ1BkwkDvkZEktwcu7zG5voohRAwlpR4rVTlj6/hao85YEuyWgFYw/g7rn/0e1n03SqXoy9eyjP0tOe5zXne9oJbEsfq7YGTf6NWl6aOnh0O5g0EdDpQgGdeM1ptmlGka17PVhZiu4dDhUD7VVRyrwlSwXsqxUhlePoVa+GdsxgrhU30IAvAMe+8A4ArnvRW5p+Mxp/ELTCt8y82vIcGc2734/sgzc8+w0QLd1V5VF4QmqmvfOiFrWor/m6qAGW97///XO/K6V44xvfyBvf+MbHZXsW9fjUi771s3z8Pz+bYBSX3n6a8R2XEL5Xc/y6Ixz+z+uooiRUZbzQz/h+1otS5whjh6rtwWaUJ7XHvR8MUeNJo3bRoxHsW0EPhtKEnCvjIDKHAWH6AHTb+E5K1c+oOoaqYyh6itERRdkDnwYBR2wgtB22U3Fk3zaTyrL5YAc7UVSHAkoFWrbCb6TgJdA+6EDVEfsw1/F4GzAjjaoU2aY0GUFD2ZG/q0qxed+y2CwMRLVicsjWWbD9vkbrs78soNqLvv+dfOLXXsU3/+jN6BK2rlJsPkWRboIuDemWp/PAiHBmHYD3uP+867left3bGB1KGB3STA5Csez5By/9I/7bPV/PqEh51TPfy/35ET51/AghKOylnn91x0sI4XrCR5Y5clegfbIABVVb8/Jr38b73vvahlV/9FmvZ3LFMjq/cL/gv/3Uj/DjH/1BRlXKyXv2sXxQs+99J0DrRtK+8tGTbD3pCL7tUNbT6+T8rcs/xq896bvINjWT/YrLrz7FP3jSn/C2fdezkffpnkgJqs/gUsvaNzhWn3SGZa8YjTMmecKRz46wa0N8O6FcaYMGU3gBV85MQEP/7oStJ2ecfJGldckQfwncf3UbOMhyHAiEST71y4/nln1/dQbfSdHDnPzyZfJlizfR6zpVZJccho0tQlXJ+SxNpwvw2hoiLmR1r4vSWhh4M4u1OVDA6Ca0VFkbn2eGtaa0MEKLgtbxIWo4gcoRlrqE1KLyEp8YwhUH2Xh6l/1/cQq91AMfxKcb5HmsxY8eGhOwBlZ8UUy3uZoH2mufcZ1YAdcfold2qMpmQR4ABoWoWg7thzPrshDcOaCZYVqqxMow4ix5LLXVhVlZEcBuqSP3L8T2Q/sOYZILaB9Z6SHPgTgABWG771wMn43NmYg1HkasFLyNxIBq+h4uVL0CgAY9jkxg71G5E0sQYzBOWIa3feSXLvz5FrWor4EaX9Gn89mTAlCMRtgv3s/BtRVGV60wumqZ7qkl/MnTwA5QdgZkwTlhnqdJ87f63FKfE91g2AwKVZYKmzgEdLs9Bdf3KqWpw70pYu7KjH1QsBrXTVEeyn5C1dGoaE9rx1GRUgUmqxpTQP+eElN6xgcSfKIJGpJxwJ7xDRCDEtVqvqIpVqDYF0iGitaZgHYCsFRtyXAxE3lMNTYC3hSRZFSAeQwJ5Yt6Ytex4/+co4d/gmNffqfkxFQVdNrQ70VrVy+8Wx/VC3Egv7OnvWH5702JKZ02odemWu1StQ3JQB4zuqSFVaALR1CKF/ydd9G3GntqC8YTuQZH0sPRS35Ktu/BX2+Y9EcP/jgSQnHhw98P/MHP89Kj7yAYhd2uILG4tY2m5/APnkA99UqI6lGfGFxL41qW1kCG1qHbwrUsVc9iVrqYSS6q2OU+7uAKITWo0mOIWWprW0L0iCBOrSyBqcUW4zG63cYYje+kEjzeSjFpKiCFyhv1UHM+877JTFXGCMhSr93rbJbYp6vaRWLWrpbY19ZAi7W7lH+7aodF2E778DkyTFGgrJG+zMo5q+pn6EJIWdXlB7BnBnJOhd397EO03Gr62bKa2jzGz3h2+5uett16yD2zvNf4PWLwZY7yG3I92N5GdTrntREWxdd5QAal0e2W5OS24vWplOuI6nQgc9DrCmDhkSxAH2JGYLSyrS0pY5+7q89Grhc6iPIKrfBWEVxAlwGfTL/rY/e8+4I+mxu+MdqKhSDgSlRPqSB5nMr581oBLmpRi/raqYsaYFnUogD+/fN/i6/7vVvE17ms6HzmQa5ZX+XMc3qo/auwNZhrwHSaztuGhdisVP6czUHDGjQGtdTHP3hCFpben7VZmvendQSjUSYlZAmum1J1jPjS+8DwUk2+L1CtVtiu2BKlqSNLKnqtnKVswol7D9M+rvEpVIVme9iizErMWAAU1/ZgoqVY2+ONsPmUi+GgGdCGsi/3aZ0wogDoyOI3GYAdQToIECQ8dFGPT73vvV95e7Cd9Sf/Vay2/vK3Xs3TbrqFy771ftbHbT7x//nl8z72O7/jLeiJI/GeLNVULYUuFd37NP/h+LUs3RXoWHjnx7+fZBP6WwGXKT5+5Ol8pH8NT/kvY+ypEzAYSjOd2HkpeKzyQJc/uu01D/m9/cvn/Xuu/rV3sfxFjcmZC2O94et/Addr4Vpg1y1V5pkUln/xme8gu3qLk+0etDxq3OKHn/Yhfvhp8OStt3N6KCqy9LJtnr5/jdte8m4A/tUdL+Gmv/gu9HBESC16VJCtbYPSJPu6oBT6xDq0MnSasG9S0V5r4ZIOxZLGHFQMLofeXSuYjaEAF2MJF8bGc9DWAD1JIbFkf303GQhYcWQ/1WoX/8Bx+b1W8M0szlRhCCZHlRJ+GYpSwJXZvJC4sGsUEyCLF+eZ89U2yXTBXFWyrWVclEWljL7rQTAae1IWn/vvbMHyEmrfioBcW9v4rW2IjGtlk8Yuq1YYNts1u6iLt89anIXKo+ICdTabQKUpOrIcVZpglMJFSy1lEwh+jsG4F0vQPPlKCAF/3wMCyOe52BOsrsjnsrk1t426laE7HbmfUgLMxCGKTpJmuFM/BiKjMwbQAzLM6HbEiqcfF5+NVVg9UI2M3PFEBhRpen4GsfMxK0jjU0NIhKVuJo7rv+VNe4IhszZgs/Wi738nrcKjCicLZBAF0zhHtVJcZhprn0UtalHT+sD/+DmOPu3nZeDUahFGY3jwJJ1JQXHl6tTCJ5YyZk6lMrVtdKgws8Sbzc6qb6pKKCSc2g+Gctt57HSCcwLaGiPn9trOx1rI0sbytuwnYufVEgWJT6A0ArR4JVZdvQcrWg8OCZkhbRnKjqLsKaoWtM54dOXJly1BK4q+YrI/9q2nFOmmADUqxJ5129M6I6rbfEWJJe44KmBiVotykkm4qK/NqtWax+7/pxy95jWUR5bQE4fZHnPsszed87HX9364uQYrhKimRmNUUZKMCxJjGnvYpbUuTApRyFjDUrGMvu+kHGPOCzmllZ09n1Arjt33aw/5/b3/2M9z/be8CT3MwfkmL+b67g81ZBw1qVAqQePQlecPP/B6rv+WN6Ey6R3MsGwyIW94zhskl6adElLDe/5ELM5e8HfexdIXtvHrG9J/GCO9Zb2u9tIThggI+NEIdb8AuzraY6OVKBXKmP8U1QE41wSUKx2zM4yBKjTPS61iiWoOQjm3dm9AkQiyyG1nOa/tDGXf9WfVPHdwDmWizdnh/fJW2wnKBZI7TwqppiwJG1tw6ABqdUXOkzv6WbPUxw9HZ+1pd6qq5/pZx9TutraP3dHTqnarAdHP2s/Wr7Ozp33S5fh7RXUdihJW9zW2s7g9ZiRKN8H1QKOub9SV9d1m8sGCcygQu9gkgvNpqzm+gtUEG0Pjg0KVbtovGi0zG2vOecz61OBTARF9IgCLriAYhS48L7/ubbv61qNXy3r32Jfnramv/+Y3CpBijKiuqpnPzHlIjOQbLWpRj1PFju/x3oxFzdQCYFnUV0V96h2v4nn/8BbM0/bTOj5Ef+ZODj0oQfc7WSs75a2zDYPpdnYNFmcbmhAZ3+7ESWlatKI6fnLvjarZLpWEBepWhk46+COr+MxSrKSMDxiqlqLswviIJyxVHD68ySW9LVbSMUtWGquPnLqSz33pUpJTidh/9QUAKSeWMreQBkwVA09bnpDI/7M1TboR/axTsUnwFuxAblNBGH/9+0qCAtfWFD3NZEWyV3zGoxYKt6iLu6qe59SgR1karn/uL6EHY8KJU80CwVx2RPb5PCfkObasGmZr+/Mlrch+mj2OlDGsZhm628EPR43KoG7Cqx3hk69I/nduL3+H6/TfaqzIHkkI95f/8c80/3/yb7+d7vIYoz2D13VQOvDkfzWJ2vLAe9//xnM+V+cLKXYInZOefKXPl67sw0vkb9u+BU6hHzyFHwzxUVWnbAL3ResBa5thuD7h6dwRF6zOs885zOWX8uB3XUY66LH6sTWR1I8nhLwQNthoLAt8IyyvUBTy+M0tjFa7F1czuVGhEmAFJww8nJdF04zFRGOlGK0RJDRWVH4oAV5Upy3WY74GJRRsbssCMMsEeFnbgp6ES4WoqKEoUcMRYWu7AX70wf2E1SXUfccl1yXaNaI09rJLoZUR1jdEzXMetl5tE6YThep1ceubUBT46EFdb69ZXpLA57KaWk/UQfQ+SCBnuw3LfRgMCSdOoZb66CddQTizBpccZPPrVik7ChTo6jD7Pr3dsN68NVRWUS4ltO8doDdlqIk1hHaKOrkGwxHBewGnGhuIErW+DdYSDu8nJEbCNI0Su43NQWM50liEKcWta795zs9l/kPyYBJ8S9pCu1lgjQwy9gJXnv+DN6MPJOgy8OK/8SuoGA8GYKuAGRZin1DI8CTEQaxbapGvtvjAH5zfzm9Ri/parGNfeIdY9sU8k5AX+BMnSTY2d4U77xwcNrmAMSBat1tTxvSs3U098MpzXF77Hmr8JD87u3pGBWNW94k6rd0Sm7GOZC0EY/CZoVgyuFT6UJfSZPkNLxW/loN/XZGu5WCFRR9UVLmMRI0yvMRiJ4F8STcEoO6DYjcG0DpdkZ2eSLaD92LPYhS+m1H2U1xbU7U0ZVfhDZRLQoC240fjG1rURV+Vw25OpEfZHnLD0o9MlSs1YcEK6LCTnOFj6HldzRC+Vu5G1Wxt58S9D8h8eJasMZ40/Sww19PWQNDDqdlrdZ0ZoZ5ypRA6vnQPIByQ2Sy2sylJ1fYIhmPUMMGO2s3trbUKlZdNxhPRBqs598QeTj4XDa5owJd6va0Ti2q3Ub0uyvsIQMTPyxXiIhF8Y9NdP7YJsecCwGCvpT9t3tBuQKEBJ4yZKrNry9xZUgtMb6sc6vhp6PcwmwN5v0s9AQvWRM1PWRHOrEUyjZ7rZ936pvT8Z+lpXf0cZ31fQezN436ml5eoTq81Pa2JxCF7YJVQlJKL44Rc2oDh0IBVqt8TW8rtIUxy9OWXEk6eRi31Ka4+hE8NdlhiBjl2XBBOnJoCXVGJpTvtpn9XSQZpQhhPmn6+/u5UYkV1ba2AE6mlOrzc5KUo5zHjSvrGSD4SEEauPbd+/M3n/Gzq8olcZ4IGb+T/LpW+XCWGD/zP3f1nceUqKkzJgcpFYEcDlUfXyF3lICqyqDSumy2yVxa1qEXN1QJgWdRXTX30N17FN//9mymWluDpz6Z3zwR7x70X/HilFaGs0K1slxS2ZgTOgjEqePxk59ByR9V/m2GM+8xS9hN8onCpourExd9yRWdpzCW9LVazIZdmm5wpu3zizGVsDNvSLJhAvhpILxvSMh7vFUWeYDa0eFEnCt9x6HaFHySAFv/pjjQawdIoVkwOySDQOSkDsHLJUvRlm3wq9//0TYv8lUXBC//2u9i3qhlsLVMueYZXBbp3A/dVEoyb2BiQ3SZsD3bZEs0thFS0MYm3h9Ho3HL2mUVpffw9nJyX89XSx1PyfSnDKwqCV2THEwiThs133oqKr6KnSbcD2k0XgoYAlZIFR1E2n0cN/gYQpZsxYlUYpkqGetHqHzzBvs8fZHQkwS21MS5IrlNeQJ5HNUmINl1q+lgc4QI9mc+q4At+zhKMqmoWbvWgTm53U9sxH8DMsBHLSgA0a1FLPcJKH3pt9MageU6i0g/ncMdPojc2USvLhNkFZ/BU9z/Q/FoPQXZWc3t832bfsnz+k1wWpe12MyhR7ZbYptVZJVqhguQSqDr3Jk3kPec54cHRdLhoDcEaqmc9ieFlLcb7I7BuhWi39bQeduRJhq6xsctXDCbv0JpEm7dJgTqzScgLQs3SBPmbl9wcrIVWim8n+HTGR9olmHqxCqJCiYGzF1pHn/pzkKYCggBmkKMmlYRU9+cp3y/+vnfiUoVKxGrERfzTjrwsXj2yQB6XYLX4waMIrRTfz8j3t/Zc3C5qUYua1rG7buG6F96ItUaY8gCTHL9xHuuXmpBQhwkjw8ydAPuc6q+2l9lpWbhX1SDNYIhqt+V8bYycw1Ir9kNGUfQUZV+uifmK2NGGJGCGmv5diqqlUUspPlEMLrN4Kxlvugq01gLJKOASyX4LQL4ELlG01gPptqN97yYhtVRLGbr0mM0xjApMXqEqz7jdYbJPi+WulfOSt4uedlFww+o/ELKIn8kLMUaG4vUxoMQ+ek7BsEd/NDvwj3cSN4RzbcCMDXVdj0VPq0a5gJ8g9qzMAysXVLW96ozFqvIBVb/HGWsuZn6X/057/Z3nFf//Z++9w+y6yrP9e621y+nT1btsyQXjjg0GDDayJPhIviQQiAkQCBACIWAHCMEQSsCm2uQjlA8IBEj4QvlBCEkk2zQDNsXYGBsX2ZYsySqjKZpy6m5r/f5Y55yZkUbSqLd9X9dcmnLOPvucGe3zrvW87/NEMULXbB651xQ0hGxOQEx9zScLWGb/mspUpsm+m/z5ZNsvhG0AsSc36X7GTNRkrQnwZg0p6g3bICQEMkmIzloA3UvxdtgGHlEqYkYSiOMp9ayCqSLKHjXtdEjPm3hN4gjhZJBzZ2NGx+w0jBSo7i70eAVRLGDGxm0uoOO0p4JatsCilWPiOBCEtjmrXMGEEbKvx9qzLV9E2J0lKjnIUBMXXGTYnK7uKNlp68YkK0nHOntQrtj3nXAaOzZh62vh+5DNYJymyK8E2pPW0lhLVH1SU46rrPiiJCKc2S//6ufehClZ0T7xZfv6v7/ba1eic45tOg3susm+8LSnZ4wQoJq2zErYhoK8QPtqX4dOSTlmJObECLlPk4gsqcCSckqhItv9pgJDVHRhxQJkONfa7yQJ8c7+ve80uUteiqYntW+taXwfU6tNKoQnFqAH6p6ZbhTXRBEi0oQlhzhnp0TiHEQFQ1/fGLPyFeZmx+jzKnQ4NSKjqEcuUeggAolTF0TzGizqHqF/vIRUhmJnhaFCBqdmLZi0Y/CzEfVxDyNoZroABmubEIIMwK0a/HGNjAy12S7VuaLdQfjAx9JFaMoE2V0Bha0JXY84REWHzGADuWOIOAxtV5Rqds2Pju81ATa5SwyaE2SHEPo4Xb7LkeT+m6f5m3/nzO//0Af3/X/mc49cQfc9Dkmluu/n3lqYT7fJZTQ6aJDZMkJU6AWw4/P5jBUFWh3Ik6dXJvszH+zrPc3tTRDYBY/nth/DLjh1O+y4lefSvl42J0eAtq+/kAIRBEgh0N1FK2BIiXEUYnTcHjuKIIxsh1+9jursJBkbt4vM1jH3cR2ePCHlzJlFMjjc/p6Y1Uu4tAcjBd5ADbVzsJ1JQxxjEt2eLBLZrD03pex0SMa3i1Uh7GZnZDs4CULiRb2MnJUj6LDvQSK2djTGhco8iTdu1e3MSAJC0OgWJK6LU8njDJahVrMTK54L82chGpENnZUCMzJmH891MEJYj++8S6uWtl7v2bY4ZHynbdMz4+nDlhjjSDt1EiU2I+U37+N5V94IWDuwKG/Dbdt30wanptGOIMlIVEPj1GK7EHfVXt2Gz7vyRmSclt8pKTPh9rvexepL3wc5z1rsSYUUAqk1phGQlMt732mSYNKua5VCMiHW71W7tvNbDsCk9wUdxUjqoPVE8HSUYHIe2rfdyHEO6rM1JqPB00gvIfEd9LamHVGQUJ3jU+8DbxQQEOWF7WTWGqHBrWm7SeaC0wAVWsG+Mb+E9uw1R9XqVtxvWaNFCVoJ6rOsNZlThYffn9a0KRYThnayoFKdmOSK43au2hQbvenqsck/39PeaYYc7XoWJgK/D/n+m2+Z9vvergqMjLUnzffJAZoPTcJElmDr9kqBlmDsBv1kgeuw2eN8bFh8UyQz2j4upml1O8larG1FNvn6Z6ZM6mhjENoQdHt4W2JoBFAsIOMCplrD1OvtelbmcjOraZvTUK38FWfubPTIaDPDxDa+JGcvpjY3g9CQGQpwnxiwexZJArU6uhG0J8+F709qzElsM47w29dv0QggiogX9DK+PEdYFPjjBqXArSSEXRm0K3C6c3jbRhD5nLVwdh1MMWeFiEaj2YAV2mn87q7mVHizGcv3mxOHCSKKMUogEoNWAu3bvC47MRMgagG6q0DiK2SkkWHM8579wQO6FhhpRX6bNdR8vsLw869Zx4Jn/PHHAXjOmg8jE2MzWlxhm4MaCdqTmA4PVYuRtci+92qNkZL1939gymNd/ZwbEWm4fUpKyh6kAkvKKYUKDCqAu75u30ivufz9toPWcWy44L5oLjDFpGJROI4tSvI5TL2Oqdan2C/MuOhrWYVpA2GEqjQQJm+781qHUAbPSfBUwkhog/Eio4iMoidXpVzJIAOJaO6ZVkKfSjmDm4lZ0DlKfZlLteKjY0mxs04UK7zdCqcBYclaL6CtNZhXthkrTk0jEkOjxyHxbLe1jODez6YL0RTL1VfdhFECdyxAVhsoR+H1GyhXMdWanVwxGl0PJ4Jxp9ucP8RF6GRWyRcDR6fT72jytPXvJHyil/kP12f2GuznNmZwmPwTvr1OJdp2dhV8u8Feq1vBg2YmihQH30myx+bCXj9OEmhMmrBo3SeZNAGzx7VRyAnbjPZUThiiB4eRUWzFC9+HjjzJwj5U/wh0FhGbnrQLUiGtAGL0JHFu8nXaxcQT5z05j6AlqAulEN1dRHNKVOd4jK4QZAY95twlkDuHrZBeb1iBQ6lmWDzgeyCb9gSO0/xctEM3hTHovk5GV2SpzrNdckKDW7dBzY1OQZK3Indm2G4MOrUEb1xQmy0QOodaksWt9eGNRYjEoGqRPYdCFuMrlOdZL3ffR+f9drecjA2JL4lKLk45QDjKdnR3ZGysmLQLzKufcyM/+PH+lcLWRszqi99DXPL5wQ/f2/7Z9+94J1dfdZPt0owMYKezIiVb8WV20xNwqzFqPEAkyV4L0daxrrr6Q/s9l5SUlKloz+H2X78XgLVLr7cWNfurPycH3qNsV7iQIMyEfdGBNkf3x57vEc0ObxE3r+9SIBODbGafGAFCtnIMBEE3dD2ubSi0tIK0VzZoR6CzEOWbIdoG0JBkQCaQGdHISBOWFHGfIjOiye6sIcdqVuDP++18Q2HAG7eT2NM2T6Scdqwpvcp+0grKxgorYGtUo83E33az4WVaDrOWhZO3nrX2wI12TXZYtJwdhJiYwAXb6Dg5W+posKcQ3bJQFHLC+rZ1jntO4Bs9ETTf+rsJQ9wN2xBnzLc2ybO6QWt052yEMchHt9hJ/abAbZq2jdPVtEA7t69tcW408Y6d7XNQHQo9q0TQ61ObpajOB3c8xxw5G2/TgLU5c12U51oRBGxzlOs2xeikWc9Omr5QEt1VYnx5jvLC5vSgFOT7IfPkODrvU12cR3sS6MLbNmInpJo5POGsHKorh0i0nYBWAsLm6ygESdYK67IaIIIYk7HT+HHO5mzJ0GAcgRqvw1jZ/l3EOVTDTiUaIUgyzrT5KZNp5Zc+448/joxMez+oxV3f+Bueu/rDqNBOXWNARoYkIxHNRgOtBAqQDWvTTJywfo9sFoAf/Pid7SaklJSUlBapwJJySnHX1/+GNb2vY03v6xCdHcicb31kjbG++btH9ttBrqMYWW/YgOYgsIVVHCNyOYTrIFsFUfP20vP2ynSZ7ritDUY814ZcRxqvQvPNXaIdSSN2yKiISuQjRZasiuhvlHCkRilt1wQO6MBhdyWHqTkEgWIgV6CQCShlG3RnauSciMdGehnLGDACGdluarcM/hj4oxoV2cVsvVcSlkS6AD1FWbvyHazbcPAbmquu+AAyTHCb+Qki1hjXweQ85K4R4p27Zr64OgKL0SnnNsmr+mRg145OZt8P7vYR4gPffL/ochn55E5EId+0VMgR9mRReQ93VxnGm3knQqDL5b09p2fCPkLdTZLYjf49N9dmcPwpdostkToIMOWKtRtQEqT14q9fMI/Cg4MwZxayf8DmocSR7fRLkr0sIiYvQCfTXqC3OrZrdZwRh2zOwSiXsCgYuKyD7gc9vK27bSjovG5kPbJZKNmsPS9HgW+ndtD2/UD3doAxyPE6lcV56n3NxagzYUcjI4Nbg+p8gTcGwkCjS2J6JG7VkN9hyA7FqFDbjjtH4pUbiDC2ntOJQTZiTM5HOArtu+isnWKRoW5vsCa+RGc92z3YzEwxjg33lLHNjZkpxlXIxsQLfOULPmJDQX2FjO20o3YEqqFJvKadWGBwqhFGSb5/hxVyVl84vad7SkrKwXHr3e9hTddrWNP1mrZ3vWkGJO/3+j45b0VOdIibZl6CUAqMmLieGj0hVh+I1v3VhDc+SQJaI+sR3pgiznioQKAaApEotAFRSkAYwi4N2l5LrCWLvT46DStCa8dOnmgFSdZmB7oVm+US5RVBh8AfM2SGQ0QtBCnROZ+oN0tYdDAS7vzWWw/rdU858VidfTm31r96aPfNv8J+MrnZRylbX8zEGu8ocbLVs7LawIyP26mEIzBZYutK+3k7D8Wx2XemmQd1RKdYpjy4XfO3r49iYnIGJkQOe9OJEPc97RVbgnYyvBsnmyFcOQ8Ra6KiS+JLMkMBzqK5yJ2D1qLWdTFBsM+atv26TEI4rp3CltZiy4QhariCL23WVOJLwhLselqWhVsdUJJ4Xjci0qggtM1CrekV3wXctnBAFKF7OxFaU11apDK/KR4p636hXUHSaW3Kg5Kg0S3p3mBwClmE9tG+CxJEU2TXvgOutLWk59h61hjQ2KawjGev2VmXJKswEivIRxo5niBGyta2TAjkztjaiZXyJHn/oKZFMiN725Q9+/c/ihGgpM1jAUgyVmQSiUEGCaoWYzzF7XfaXJU1597A+kc/vM/HSSdYUo4/Ap2G3J9QpAJLyinH+qHPAU2f3arHup2fYu3cNwIgM/5EsNx0GI1uBEjPtDuZjTaI5mblXoGiMyz6pOs0Q6BzRCXfbsDFtgtZ5m2X3bzCOCsLuxiLswTaocOpU3ddNuyeRTDuI3KaJAs4mjhSGGVACxqhS7EQECQO5dBHG0HOC9ndHSF2eTg1+1j+GPhjtmMjLMrmYlUQZw94+iknGdc87f222PUP/hK/+tL3oWoholpr2hRJ26WUz9nN23Jln5vwx4prvGuRTR9h3RyHn+kiddUzP0iccxDG4A7V4eHH0WF4VBa55/zHexFJnszuZKKL7DAwSYIeryCbmSBy3EN0+pSXZPG6PXJbfOTQKMJxkHFMUqkcxoNNM4mU2A2yyd17sLcP+XRfT3ft1PUGUilEqWDtrVxJZZ6DW+7Gf3KE+IIzcDftQg8NIzwPXa0h/Ux7SqYtrkx3+pMmWYS0m5LU6mQHR3BWzKe8OEtttqC8JEO2OBt3LMTdOWYXnRl/QphoZdoYY/8fGIX2HUSkiWeVqPe0JkqsxiG0XZgGJWtrozOG2tyIuODhlsEba173Y2zouyvxhxqoip0A01nrRy6S2Fp1TcpSEZGmJZcYASI2SKGJ8w7Ss52XCDu5grEWXkjrMT2TLKE97cQSv9lFHhkr6kQa7VubMG8sJslKZKz3smy49Tfv2+djtLoLU1JSZsb6kS8AsKbj1aAU63d/3jYRKXVgQWTyJuKUGnaazK2DeC8XSjVFFiuO43tQbyClRBQ9EFYkMRJ0Z4T0EjwvxuQEzi4X7RlC17XBw0CcEbg1g4yN7WaOrPAiEytaJxmo90hUCBjI7E4QsUaXMhglSbKKOKvQrtirYznl5Gd14ZUTGRkHe9/8K6baPLUa3mBicuE4skq+eOL/E7QtTmdak7auC9CcDm5ORxzpmnb1he9BqtaER3NK+nCHTJqib+tYAmz2ne9bW8MwpJWBelRouVfsUaNOyX2ZXOe2BJ9J9eXEoQx6cBinu0h1cZGgQzK2XNCxMUvHRgiXnUn+wQHM8Ii1ofVcdKU6o5q2ndeYgKnVUIUCBCFO/yilSgO3UqK8yCXohPKFc/CHQ7zto7Z+dd1JNmxmak3ru3ZyJesiw5hGt5zIKzG2OROgsijbzGcVhB3Q/zSHzu4Ocrtia1drmiKJo5BBjGjmDRq3KV5E1roRgMTYqR5jcJqii4g1IklsuH3UfA2SBBMY2+TqOAjfRSQa7Smes+bD/Hj93+73VzvdlEvL4lZojYi1tbM1EOcUIjEYV3Lbr6bWwesf/OB+H+f2n+3fsiwlJeX0IxVYUk5Z1u/+fPtz0wisJ2prBPxAwfR7BNibBNtit6eH6342+NqIZji050I+236DV4EmLEoaPRDOjsmomJwM6cpUGYnzdKg6+DA6lsMddsiuHKMrX2OkmsNzY2qeRxg6OCqhHPqMjuVJyi74CSaW9j6D1vYL7OSKE2gSVxD7trs5O6T57T8e28Xoqmd8gNvvetcxfczTjVaBuObcgy/8ZDWw/srVGiaKEa6D6O5ExAliqDZlYmtGGzxHARNH6NqEX7FQitX5V3Br9Sv7vd+a7tfizOlDjUvESBk9ONR+Pi3LBjhytg3BxhL5QUF2x5i1VDgCmNgGrSObWSDaThFU5zgkXomS1oixCiKXRYZhe7F+xGh1QU9jJSYcd2JBOtkqbJpMmdZ1WFeqyDhGBCGe1uRLDrU5LtV5sxEG/OICcvfZ4zilYvPvMkLEsRXBZ/LcWqHvcYyuN1D3bKDrtw7ds3oxOZ+xczoJCxm8oot2bQZAZijA3TlG5Zxe62892EANVzCugzNUgTCk+tS5REVrcWMUyNBuCBppNxcTH3TGPvc4Z/CHBcXtMU4tsV1v2nbtoQRJR9ZmrLh2olEkrvWAboR2iswYZJTYvE0pMI6wIqq2/2pHWrsd6+JlvaXBdg1KwdVX3cQPfnhgkWUyP/u27QJ/1h98DBlLnHqMbObttLr7DpYD2TukpKRMz/qxL0580RRNzEyaHIwG1JRO/Zl0Te8TIe1HcyMU37eTfq6xGVBNcVpG9loovQTpaBItyecDzGiWsSWKOAtO3U6pgBWpjRDI2KBCcOoGjEEFdpMuM6LJDEUkvkQmxvr1u3byUcYadzziJ/95EMFpR4A1595wwA24lMPn1sqXWZ19+aHdOUnQUdyuO2Qrl+FoTEUcIm371Eki0DXetdwWfm2f91mdeZn9RCk7QRbHE8+TI29DJkfLzamHeGp9d7hMEjns19a+UPg+RmsIoyMj5uzv8Scfe5JNnP1STFiBTfr+nsdASJvdumEzfukstOvhVgTjywRDF2WQoaCvMIeuuxJbuxszUdOG4dSadn/XddHKQrRT5WZgkOwWRc7zMHN6GL6khyifwS/1YZTACNr1bDy7g0avtVDMDDRQQ2WM5+IMV6DeICx22OtwK74rtLm2iWebMb2yIcmCUxOEBQE4eGVtLcdjgwgTm1fiKhsQL2w9jeeABhm0Js6tM4KsBhNPyxgYt01hojVxY0x7UtLmchlkrNGO5LmrP8yPbt2/yDKZq597Ez9tNhpd+YKPIKXNfxGJRkaSH90282NNZtUzP5iKLCkpKVNIBZaU04L1I1+w/rsH6oBqdTYpNRFgp6YuTA+W9tizkBBEOJUQoyT12S5BpyToMWR66uSckIZ26XXKVESGcpIhaVY5cUGzevEjzHLHuWPoTKQwbDcdBHWX8dEcjp/Y+q4hUSOOtQMbBX/UIAzI0OAEGhEZ4g6F9uxi9hf/duw7/VJx5dhxsAv/tUuvhyhGj5dtOKIUNpdCG2vpNF6ZMgE2I4HxKLGn7ZRpBAe2W0gSzPZ+TJKQNLv8pqPdUehYz+B92VKsLrwSjEHX63s97vOuvJG+hRlKGyuIjdvaXt9HAhPFyILCOApVjyk+Wief96jN8WnMLZCNEghCRDYLk39fRyALZ9LB7L9CTtgohOHU6ZYDhZxq2bRc0BBFiOEx8koxfnaJyhyBkRBnHHKPZqFcAddFFAvWWXFsHGGM7diM4qblzYRf9hSLsCDAhBEy41thqmlBAdjXaygi8ST1Poc4K4iyEBazdCS2m7o6W1GZX6DrEQdvx1i7C1BEdpPPCeyCNPGtjY1sapBxHkQoyGzz6HpUk9tZR1WbP9S2u884EiMEOqOai2Eb9pm4DqLTJbfdbjIa106OGEfa2ym7cDVS2GMJ2t8jsZ3gMmxupjZvf6hox1qYJXn7/2Em0zD7IhVXUlIOn/VjX5zxhrNQaqr9zZGYPG0KrbTe1/zmFKLnkGQUsS9sbsqwoO76RNkE4RgSX5GPYfyCEKTB3eYjI8gMQWa3RhhIvOa1PytwaobMbo3T0HhjEbIeoxqSsMMjKrpoTyADazl2oKypo0Eqrhw7DsUe7BrvWvvJpM3y9rRHyx7sBGHKuTQ3/fdX07ZrrGlC2CezSr54Im8EuC36932ewzXete06avLjrul+LcJzMfUGuhEc2VrSPhkQzQw8rSEIwPdtc2Ki99nkeLSYdjp7BkK20RLCCBkmOA2NCiT1OQY5q4HvR4zUOnBr88htLlvByvcQzTw/U6kiopikUp1k4bh3PSukQI+N2ymYbMauVQp5K7gAuaGE2BfUZikrjrgQdGTpTEy7Rqz2KSrzmjVt/zjtXEUBqmH/TTyIctjzkBAVbS2pAvB3Q3ZY44/EqMBmcLWahYyUaE+18wK1Y/P6vPGm8B5EGClhco+WaE4wSQn5PCbrW8El0e0JG4xB1WO0qyDDQde0k+vWJCNRDUlc8DBSHLK4AukES8rxx874zdwOOuXokwosKacXM+i4aY1pS9c5/O7vVvByGIJSiDBsjsJqvLKm1icRiSCKFH1+hcgodid5hqICAKNRFh1LepaMcFXpQX44fi4aQTX0GB3NYXb7yEAQZe0OW2ZYkhm2nX/+qMapa5ACdzwizirqfS7lRXZD7jefuv7Qn1fKqUkjsNMBvo/yfUQ2A1pjxsbbVlwnOq3FZGsxNHmR2LL8m4lgarSBpufxNe5L28/9dv1NrnFfOmG3ske3YAuVzdL5YMZ23/k++gh2S5o4Qo+NIx0Hp2aD4OXOQXLMJ+xwibtyOI0QEScYpdq+40elC7A1jTLlWzNfCJskQcQCErt4lwO7KWYc3GqGRqey2SVLe3DHCzYcsx5aq67uEmK0jKg3YGx8oruwdc1tTitOtrIRs3oRYQT5LDrnkWQ9nHpC4ivccoRxBOWcLYsaPYI4l8epG+I8NLoBk6HTEQSdLk41wbgCoa2wohrW0ibxm13bEcQZKG6S9N4f4G8btQtgIUBKjNfs8JPWw1kYYzu/jUHHCrKKKK9Isk67C9A0hQ4jQHtWNBGJnWKxz735j6YZHt0UWKSy/mWHwBUv/jh3fvNveNb//ijGcexmZkpKysnBZDukVqbA4WxSTtqoRduNWCEElKv2uuxbEVYYO8UnIhCxQNbsOSTSQcQwf95utu/swjgGYju1ol2BCg0yMoRFiXbsItUrJzYDqh7b6yQQ5yRBp8RIQWFbdFzElZSTgJawMtmC6zjnrhwsq9RLpq9nD+Y5tDb/9zhe65jXuC+dOGbrcSfVtMJx200sR2uapJUx0rIfI47Bs1ZaBHaNa/QxsCWeVNPud2plX3dPEiuwVBLyuyRBlySOs9RKHq4D44sVcaZEdiCLU4uQtdDWeF0l5GgZGUYTv4c96lnp2qlBkyTWdnxOH4QRppBFZxySnL3+euO21kx8e61udAmGLrD1rBEQFSDoAsjQKQVBt61poVnPhraGDUu2GVMFNgtLu+APQeemGH8wsBMpwooqrQxANMhIW6sxYxBeU2jxJLJKcyrF1sEYg1EKkSQYzyFe0tduOlJBYp0TomQi6yvWyFjbqW330DaUn/37H+Vn330bz1n7EfsSn0CTbCkpKacGqcCSctqwfvxL7SKy1Q3SKlbbhWTTHkwoDyOEnTrhMDq/W13angKtbbBbxkH7iihnvU6FBh1JfBExGBbY1uhEG4krE+4fmgfjLsV5Ab+rL+Q3u+ezeaCHZNxD1iWqLvHGwK3YzbrEtVY1UU4QFRQyVPhjGhHZ0OMoZwNE3cOIZkg5dTFBaEUFz7MTF2FEMjZ+XCdVZszk/5+TPp9skzDZ3mwmxzOxZs/Se2LRuf8Vpq7X29MjshnUfiTRYQijY8hC3lpgJRpnsIyRRUSibQdYvT5lU4FmOPERF8qmmWY5mPvpKEZSt52lxqC2DeGLPrTKkPiCLc93yW/16HnIRyamaZ0VQUcB4XnIfB5qNfTomJ2Imeyl3d4UcKxNpKPQhQxRyScqOTS6rK9/nHGJs9Zf2i1Dvl8TZ6w1gnYAgfW3XuiBgSjvkDStRmQEmVFN0CFxy3ZBGpbsInXOnWXUzmF7/RfCfvgeYEUPEVkRzAbd20Vn4isSX6IiQ5xzSDLS/kxYu4eW/ZdWwh6yKagYKax1TtP6YPICVBjDc6/5MKoR75WZsj/80Yhn/tHHEEKglcFk0y6plJQTgfZ7SrOhYK96FtpWPsJ1bD07OVT5cGpasLYtStlrWpJYmzAmNqyiPAQ9BqMMIrHXSn9Y4DRg+85unJ0emWG7eWeEIPGs2OwEhsxoYifnlCAsKhCKZK6HaFpiRnmBdgX+mEZFJ8dGecrxoZ0XMsPmmhOG1nnuo5496OexvwmXA901jtrXm5YV7BFnUl6UnQQJ7XVGCDvJEobY7KipFl5HhWkah2Z8P0Bu7cfPZVFBD1E2S2WhsNewjGHs/Jigo8HIb4v0PuAg4wxOPUHVE5BFpOtCuYIeGd2rnm1biBl7TSeKrZCS9wg7PIIuhXYEccYh8SEq7VHP+raGTHwbYN/ogvGl9roalBwM1uZWNQyJL1ANW1s2eqxo7o1B1+MxmYF6u4GnJZgYJZFB3J7EtjWpbNeh3mANWW3AeBmR8TH5HMZzms1FCuPbhiIjsLWuI5Ch3T8RGmup23q8xCBNwjWXvx8RJPvN/dsTbzTiyhd+tN2QdDjT3SkpJwotx5vjjkn/P0EqsKScZrSzAfbYX7xdf7NdZBpt2t1OhgghPbu5VKsd+gMLgchlSeZ0U5ufI+iQJK4gKkCSMRgtebQymx3VEuP1DI3AJRr1yexw8AXsGOngm+GFDI8UYCCDX7YhxjK2Hta5QY12BdXZgkYPBItCTCJwRh0KWyQychDa4FUNYodIOzZSpkVXqnZxEzYDFQlOiqmVmTCTReTRQgeNo3PcZq6U7Chay5bdo7hS2ImV0TG78eU4tsOYCZHliFjETMdhLEp1FCNaEx6VKs4OiZefzeASH4whM2KQicEIwdgZOYJOQfHJxHpLP/yk/dv1PNs9mMvZaaUotpMrylqLUcyj8z6NviyV+S5xvmmjmBiinCTototOI6D4pEH4gr67R+h/Vhe1eYb8DoE/qlGB7c4LOhXCNEUYJcjvjAk6FLVZdhMxv9OgBkasuKKbr7frTnhKG4MRkiTn2EmVJokviHMSGRmMVER5SdzsRHQaBhM3w0dbjeSODR8FIAQhjP2dt37vjiBxbYehCg6u+P3h7e/gqlUfmvJ1SkrK8Wdf782T69kWdoqv+XlzAuWgGg6mPLAV6kU+Z6dWWu8nngdOsympaZmIAW9EogJwq5Ad1Bgl8Dd7eGPgjYMKDYhmfhQ0s6kMIhbEXQ5RTlDvtddmGYFbsTY1aPDKGlU7cvabKacWbfvSVlD6ySKuHIDjWc8e1YarVui905wQj2Jb27ZySYRByOZk7tGeZjnUehaIh3YjlMIBusNOnKDAyEqBOafC+XN3UIk9Hi0VmtdJyfhihzgLxSczdN45hh4d36uepZk3abRG5nLWSiufQWddgh6f8kIrqmSG7dR10GknTrSCwnYDQiAjQ9cjVXZdVqA+V+Nuk3jj1kLcSEGctVPjwlgnDCMFUdFee91xKG3RuOUY4yhMMxellfMHNIUViXHtdKHNyJIknsAdVVCrg+tiijl03kd7ylqLGWOPFxuMa+vZ9mQ20mavBAkmttmTxlNoz/5unIPMAf3+He9k1RUfQDcnaw7H8jYlJSVlOlKBJeW04vbk61MK072K1NbEShQhXBfhunZjzHWQxtgNzUPtGvI9jCupzFVEBTAOBN0G7RrUkMvd1eWIRCADuwlWGrKTJlEeyjtzDLpZZCDtz+t2g82rwG8+dd2Uh1v8hY8i6gpvRJEZhtLWBH84QDYSok4fp6iIM6nCnDKVlm2AaVqAnCrCyimN0Va8KQturX4FgLVz32gXK1E8MY1kDMJxJqZXoniqyHykvbQP8X5GS5v1E0bIJMHfqMjNnUfQK8iMJshQWzEk79Hogb77QmSk0YvnILcNoMsVK2a7Tvu5kyTgOphaHZHxAR9vLCSTk7jbNE41wu0fx1/ew8BFLtqz9glD5ykbwOx1Mr7coH0bFO3UNTLUuKN1hM4RdHq2G7DRnCCJ7aLUHzXkBmLrIQ3W4kBK+z7gqeYiVFlxJaNs048SaAWJJ9EKwHYcJt6E9Zi1fBDICGRsF82JJ2x3YdlmbtlsFmvJgLECjHEEh9PglAorKSknFnsKKdNuujbFD5Mk9j0gnwVtEJ6LHhg87HMwxVzb6kVnXbSnUI2E/A5IfI/EFajI5gBmRjVONSEqKDK7Faphr2Gta6bQhju/9da9HuOcd94CsmnDGNopbbD3teKyOuznkXLqsacVVsrJg0kSbk++3nadsNaEeko2iRWK1VQbrz0C6g//RA6jnk0g2bYDtvfTNTQPoefS35mj1ueScyK0Zxg+r5UFGEMsKG0RxAt7caIIPV6eqGdbGSla25wSwIyO2WllR5IZbJD4OZxqQvbJMepLOtl1kQMeRCXD0PmqbfM1trxA2NfMdtHgNGxN69QTxhdlSRwQicCtGWQCrTF+p2EnmlUjxrSad1pZKsI2dumsM2Fn28oKVLY+1VkH2dtJkvdsRosrJ2pSYa//2rHuG0aCV9Fg7ISJbk6ZCG0nt5NMM5NQgKodfGFrlEiFlZSUlKNGKrCknNJMFxA4XXffZEySWL9XQGaztnsGELkcJAk6DA/OZkdITBihB4dx4oTZjS4ac/KEHYpaWVJe1hRLRhQygEfed91eh1j5/luIcwYZ2849GdvNtj3FFYAtr3nbXt9bffF7kLUQnVGEJduh8sw//Bg/+/bei9mUU5tr3JditOH25Ovt7+1lKZJqKycVLXEFgDix9m7QnkRqb+43baqEUlNEtGPiaz0T9gy+Hx2j+26X8qJZDFykSDIZ8tsFIoHuhzWqGmKkJOrI4DILUe+CbTsx9Ya1GAhDO83TnGRhYAgxOIySktLOTvt4Y2VwHbKPRCwY7mTk3ALV+YL6bE0UCqKiICnEIA1hUdHoccgMReishzdUoySsbVjiCZKMIOiQxHl7jU78ph1YYD228Vzb8a0UOusSF1y0a6cRtW8Xm4nXnIhxAYGdXBG2EzHOQZKx134V2E5ukdgwUotA+tbiwakZtGcnJRETYsz37zi4rILJ0yspKSnHlz1r2gPVsxPBy6EVWHI5ey10XeTomJ1iOYSJRhOGUK7YIOJcFqREao328wAkWYVbMXQMRPzo1r0DhC9+7S3WzrClP8eGn/+/v5n2sR66ce8697zrb0F7grBDUdoMz7vyxoO+tqWc/EyxzJrm+yknJ5PXJ9birVkbygk72na+TjuIfpLYcrSmtA+GSfUsQUBhS52ebI4NtaXEcwOWnruDZ/Q+wUPlueyslOjf0o12BPU5GXLRbGS1c0o9i2la3CUJJgxt89TwCLJsPb9Lu/J2v6JaI1cNWDRYYuScApUFgvrcBJRBlSJ6Ois0IofxkRxhhyLoUHgVO92S79dU50q0C1FWEBYhzlthI85Cda5H4Uk7TULTyquF9lW7WSjJyrbVl30tDImv0H05jBDIWKMdQdhpGz61Y5uT/DFNlLPNQEJLRMZOr6iGRiuBLjQtc12JjA1CG277xd8f1K/lec/+4JTzTkk5FdAnSMh96o9jSQWWGXD1VTfxgx+mSvfJyJ5FN0wtyPcqwpsFmUmAMEIDsq8H01GwHdFGI6uy7Wu9vwKuHSzaPK6u1+2idGCI7GM+uY4SpTnd5AYK1GZLfvuJvReRLTb8/b5/NhNuved9rD3773B3juEMu0R9+bTr7xRldeGVALZ7H0AKTL2BbgRtH+o9J7lSTgAOo/Nu8qbbusHPArA68zJ7uCCwx5aTFhTNzr/2NSqKMQc5Zn80sH7+EpnNIHJZ+81qndxOQ2ZEU52jqM4DJFTnSZxGgfzjI/ij1aZns4LF8zDKZlKFvTncsQA1MA46sUKHUhBFRAu62H1OjtxAgj9qhSh3d53EE6gaZPslYQcEvQnOmELEVvTYdZnBZCR+f47Ox7J4ZU3QRVMQkUQF6NhkKG6qEfb4hIu6cQcriCDG+A4662McSZJ30L7NVtGOICgJwpK1YzASELS7+7TTtJJ0DMY1yEAitM2LwdjbigSiBBwp0DHNjUu7CMVAnJHc9fXpNzBnwlWrPpROsZwirF3w16zb9n+O92mkHAL72kjer9DSbJrQtRrSGMzyRQSzc2THyzA61sym4KDee3QYWkvHWs2GLWcziEwGtxqA6/D9O/YvzN7z+cOraU0zFytxYXS5YtbYibG5kHLkaU8xNNmzue2AImPKSUerpr0t+nf7tXoJkExp/hKTatqWsNL63kFlAR4Nmk4ACGlzEnNZRKLJDSUEHQ5h6NP/+AK+XlhAPDegu6fCCy+5j9t6V8LvinBBEaOKoHvxxqCw0+DUNZnBAGesgQhj2zhUrYGUmCAgXtDF8Hk5SpsjtCfJ9tdJfEF9WcjTz9rIwuwIyzMDlHWGR6tzuN+bx864i9qZxoovgx4991vXDN1cPoYdtn7MP2lf17GlgrCQobgtxq3EVjRx7ZRKq5kn8QRxRhBn7XXaqQEGarMUCJvvYqQgzkGcgSRr3TpUQxBnJvYlolZGrSOQsUSFZsoUduIJfvFvB98kKhsJQmtWX/webr1n5tktKSkpKTMlFVhmQCqunFq0ivHpCvIpWSxxZBem5YoNB8141jtUBTCDzci2ADPJw9UkCUI1sxMag8hKlY7GbH7+/z545J7gvgjs8xGuY0OiQ82qZ36Q238288DjlBOb1flXgBDcWvly+3trOl4NzXH7Fuli9ASjeY1oWR7ApE2EGQove3Zytv31mws94bhTRRZod3EJKY5v10nrHH3fWjNm/LYQQr1BfmdMvc/BaRhm/zrBKMGuSxTDZyvCQg9exVrPIEAGCe5oAzFWJzM8ju4qoXuK1OfmCEuK/LYG2re+z07dUJulUIEmzim2PztDZthOgNRLEBcSMrsUYac1pY7zAlWXyLIkyRjKiwT5HZI4B90P2d+PN279q2U9whsRRAUHlfeRUmI8B+Pa7jutRDOMVBDlBY1uQViCJGewyr7NgtGeAdnqygTjakwsiEqAsYtSjM3iQlq/ba9uO8NVZO13wqLk5187eHHlqlUfAg0//EEqrJxKpOLKqcP+6tnJPwf7nqLrddTgCJkwtpkpSoE+tAwT08oECENMFCOqdWSpwLpdnznk5zNTnPrE5pxTgajksPrC9xxU2HHKiY/dWJ+YaGh/PUloTOvZU5Mp03pm0uQKrW+ZtqAi9qht7YT2MTnNaRFKIQt5RD6HntVJVPRtrkklodAvqYeSRo8VH7K/9Wn4Pv/z1Cw9HVXkZXXCROGphEbsMLKrSNjp4lYUckkOGeVsBpV1iyWzW+NWEirzXSoLYfQshQwESSmD6qjx9MVbuLxzE3kZ8NvKIh4am82iwghP7dlBI3ZwZULWixgsFKjuKpFkILvLTkzHOdvoI7W1aETY626jSzWtu2gLLNqxt41ytlEoztIWwRHW3lEriPLW2gtpp6+1Z0WdKD/xGEKD9gSqYXMHhZkaRm8E/PKr1x/072X1Je9FGJMKKykpKUeVVGBJOS3ZV8dTq6CbsiAdr1iL0cjaIAjPs3Y70QEWpa2CcI+NUaONHRkGTCPg1geOgbgC1hbCCAgjZN0GIOu83/7xmt7XAbB+6HPH5nxSjjhTrKKarB/74nE4kxSY2ATY7wbAFHHFfi2UQjjuHmGiB2FLyN4bEHt29Akp7LVMm+OXt7NHgKiQ0k6ueK79meeB75J7fBjt9SIM5B4fpbqiC6OsdcH4EoFbUWSHbIebdhz8oos37KHKdWS1AUqS25rglXx73VOCOOeiIoN2IMorgk6JDKE2FxLfkBkS9D4gqXdDo89AMSIOFU4hQvkR4VgGp+YhEuh6VJMdCnFGGoSzclTnuNQXFchuq5DdXbXCipQYYUM/TfMjLEiCDjuJEhUhKiU2hyuy1l9CC3QhwSiDCCQkAhUqtGMwHREkAlN2kJEgdG32ij9ig6BVYG0VMIbEPfhpxeddeSNCHj2f6tTSJyXlyLC/Dv7patpkYAgVx1AqIgt5+72RsUN67MmbnCZJjom4Anaqz3ZDg2q+TcYd/pTbtKY4b2382zE5p5Qjz+TGoOm+Tjl2zKiencyeAfGHYdm1L0GtbW+7Rx19XCdYmvZkIpeldsECRs50cOp2+S1jkJHBHzfEOYGMwR81lBcLlKPpyNTxZEIjcZiVrbAwO8LDpTk83tVLdVceZ0yBNIhEkPgGndF2ujorcIo1CvkGnrKCycU9T3Jubjs5GXLr7qfw08eXo0NFR2+FZ/VtZEWmn8XZYVZkdrLcHeRrI0/nv39zOdkB8McMXgWioqAxP6IiHApbBJkRY2tTYydIjLL/ascKLUEJ4gLEWUOS0zYfxQjcCsgQjGdrXe22joEVYTKGuJSgKlYcMsrgVgXemH3NVGjFGyPt62ecg7P4uuZp77efSMltvzo4S7GZsHbF37Lu0Q8f8eOmpMwEgyAxqe3diUQqsKScthxIZGl9bpIEU6lCGCG6OxEdfVCuIrXGBMHMNif39INtFYTH0CN23WMfYe05dkNL531ElCAie+5rul/bvt2a3teBNqzf/fljdm4px4602+/EZPJG1T6ZwTTLTHOnTGIF3uPmU90SkpSy56BUMyhTW/FaCMhmSDqyqKEy2f66vdvwCLltHk61RH1hTPZJh+yQITsUYxxBrVdR61MY6eM5AlWLMFKiM4ok61iP6z6HoNTMNnFsp5xTN2SGBYEBtyzouy9C1WP6r3ZYtGiQvBviyYQ/nftzZqkyH9j8ArY/vgivopGxwR2uYRyJjDReRSNigwhjzMCQnczJ50g6rUd2klHUexRhwQbY23Owi2aRCGQgrMWXAFlTYKwFGMaKLmQ0WgsIJTIQyNh6VhtF21rMCLvgFUbwqy8fXKffqmd+EI5yCOhkceWap73/qCx6U1JOF6atZ5s15nQ1rR4dI1m5gMZ5ffjDId6DW0lGR4+f2H6Q3H/LdTzl7bfYDT7XbvKJSXuqa7pfC44DcWwne5MkFVpOQdJ69tTmgPXsHo2MxzU/Ukik61jLxNl96I4c1dnNTBIfgg4bOC8SQWGrFQ5EDLnBhKDToRopuv06v96yiLjisq27TjxH0enVOWf2Lh53eyiXsihXk0QSx0so5hvkvZDlpSEWZEZxRcK2Rhc76yUGgiLz/RwP1ubz4wdWosoOi87byRsX/5jfyw/hCxcKI82Tz9Dd8xP+S1yOUbZBJ84JvFE7Hag960WbHUpw6gmJJ0l8SeRJawmWtRMoSdaKJsYzYGw9qwIrhBvZFEpqE5mCRtnplCSjUbkIHdg1jlGGUIEMRdueFwANpf6IH6/fO9drX7TFFThqdeZkcWXtsreybtPHjsrjpKSknBykprWHyapnHqPpg5Sjwu36m+0P2CM3pflz61+dgOMQz+9h/NweTGcB2VGyC9g9u3SmoW3RA1M3NGdw3yNJUsgwdl4PYysKJAUfkokVaVtQ0Wav1yHl1CBdjB5b9hXAui9Mc5rEJMke0yt7cIDrxv4sY1q0rm3Hhaa4IjM+wnXAcew1R0pMFFlrMK0hTlBjdZLuIghBknVt1/WOIRb8qEbHQw5u2QoLQaciLErirKDRJajMcajPzlCflyfoyxAVXJKMJG6Gb3plQ3ZIU9ymyezW+KMJnZsCMkOAhvFFLv2XZ1myaIDzu3bw8nm/4P2Lvssf5cs8KwM5J8KtQGYoJLutgogSdNYj8ST5LRWyW8cQsRWLTL1hQ6aNQbuSKCuJMwLjWDsyax0hcMsStyxw6s2uvQaomsCpCdyKwKk3hRctEOMOzoiDUxfICJyqDb7H2NdDxobElwSlg3uPuerqD9mA0eZ7w9VX3XTEf/17koorJwZrlx28n3nKicOe9eyeFrWt27Rq2vLiDENPUUQdLmb+rHYG1oyYJPYfr25x7UKjx1CfA/VeSdhpa+zVhVcilJqwSj3eeQwpR4W0nj22HGw9i9FTPw5xvTtdPTvdOcz4vI4GrZq2qxNRLJD0Fgm7szgNO6GiGuBWwakJ4mJCeakh6IKgBypzHArbNO6GLPftnEcSKoSriRoOG0d7GArybC93EIQuhWKDp87fwcoFu1jYM8K8wjh92Solp8FgWODukcU8Nt5Lf6XILzYv4Z6xxWgjWLxkkCue/hBvW3orLy6MWXFlD+aqLE6tmZkisDWqgsJmQXGjxKmBamhUNcapxsjEWIHbt3Zgcd7WnkYZRCRwqhK3YkWkxLe2X0ZZS7AkO9EQFOc1ZDWm2YFvHNMWy+MchJ3Q6IIoa6/540u9Gf9aphNXrnn6Pxzqb3lGpOJKyvEgQZ4QHymW9JU4TPbMr1h94XuO05mkHC6362827btU2+e3hdGmGRZtR2EbCzqgVEB4zSJlf4WjkKjOTlRHCelnpt72GG9w3varv2d0uaTRJcAYhLaP3xZXjAFzHC2DUo4a6WL0BGWaa8Be+SuHyOSF6f7CkY84LeF5z/Nvfk9IYad1nKa44nnguQjPbQsteC5kPIyrkGGMGqvjlAN0Rw5yWdyN/cz/r37m/WQMoWH4XEllriTKQ9gBlUWw+yzJ2DKHRrdDnFdEeSuw+OMaFUG9T9LokgQdkkaXYnyRR3kJVBcnjJ5lqM3XXNL7JOcXtnKut4PzvGz7qWwYmEVuQKOqISLW6KxLWHIxUiDqkbVfTLR9LmA/1xojBYlvp2dU3U6mqIYN+XTH7eLWqYA7Zn/u77b/umPgjTTDQOsCGTY7A5sfbhn8EZtN4FYMmaGAO7/5N/zi3yayV65a9aH2v63P9+SHP3gH3//JDe0w0T0z6K66ev/h1SknL3tuDEyebE05udhTZNlrglEb/NGE7BDUuxWNOXlksQjs3Wi0F0IiPa8tyBxw8vIo8dAHr7NTfpH19g+L9rxlIc+6wc/az/t6bfZY2jR0SpHWs6cfewotx6SmnVzLTlePT65pPRfT3Yme20NtXpbxxR5xxjbQRAVo9ECct8qBjES7/qvOs7Vo90OazB1FSASdvRV0LBmvZNhVKZJoweKe3czvGKO/WqQeuXT6DeZmx5mXGWNztYexKMtTO7bjSI3nJMzvHeWFvb/l1T0/4y1Lvs/angc4zxvc51O9P9LNrBMISpKoABgobLdrFKENRglrzyVs9h/Gih5J1lrrJp7BOFZMkbH912nWqIlnr9NGQlQ0aNfYYygQXoJ0NEhj81m0rXG1a1877YNx4L5/uo57P3Nd+5xbdey+mp1v+9Xf79XAc9vP3z3l69WXvHe/fwIpKSkpB0sqsBxh0oDFk5z9deMlCc6WAbyxhNEzXHZdOct2qyi13wWmkAIyPsnyeci+HmQ2M2GNc4wnWAAeuvE6VABhp0cyOYOltZkirPiypus1x/zcUlJOVfa76Gt1+E363Giz7+vRQQize1rH7Kvzb0rn8xFCSLHX4rQ1zScKeYTr2A/PRWQykM9DLtu0C2tZBSiIEmvLuLuC9hThgi6Cs+ZTfkoftQV56r2COG/QHjgNyAxDZsgu8IIOCIuC8gJJdY6kOsfaiI0vFoydH1FebO20nMAQdArC+SGiFGEcg1GGl3T9ktX5x0kQfLPSwYNRjU+OLkI/VCQzHKMzLo25BcKeHChBVFSMPbWb2rwcJushfPuBkqAhyUga3cLaKfiAsKKKUU2xJbD+124VssMGrwz5ncZ+r94UWBp24Qp2csUfgeJ2TWlrTOdjDYqPjeOM1Nq/h4tefwsXvuEWRlbY6/0Pb38HP7x9/8H13//JDdN+/0gG3q++OG1IOZFJbUJPEfbxfpHbPIY/Zqj3CrY91yNesQDpeQesS4UUiGwG4ftI1zmuIsvGv7meWfcmdGyOKTzZsN9M7PNdc94NmFIBceYShFKsKb3quJxjSsqpxiHVikegoXA6K8T91bRHnGkEFyEFslDAPGU55bO7GDm3xOgy1RROhM0qaV5StWcQpQgVQG7A4I1B2GUYW2HY9TRBZaFB5SIagQt1h2RXltFHuxl6vIcNT8xl83A3Owc7qEUejtDM9se5pvMBLu7cystn38U/zPodnV6DeuTylK6dPCOzldkqYTTJk5cBi5ziPp/ap3c9l6gIlfk2izAqQNANQxdIGj2QZISdFO/yiIqOnXRuiUdzEpLeiCSn0Z4mzmuSjM04FDFWCJ/Ut+nUBEILayUmDMpNyGVDAGQsUHXRzF2x6x8jmhMvTS76y6k17Z7NznuyvynpW3/93v3ed6akQk1KSkqLNIMlJWVPmh1/17gv5bbo39tF2jXetZixcXKPuIyumE+YhdoFC8j9OkaPjLY3RPc6XJKQ7BpEdpcgn0UmCaZWB62PaQD5mo5XM/iS81CBwREQZyU/uetd9mddr7HCihB73ScNST/5Sbv9jh/TeUjvkz1ymow+/JDQPX/30309+fwOZ1E6XZd0+5xbmSueiyzkbYC9aYpHworQLXGXREMcQy1BOBIciZ7VifZdwk6PyjyXoNMu7tyybYLzd9trlwrAaRjijPXk90esGBF02i471WjaFcTgb3PJDEJ+V4xT08QZl0rFwRRiVCTQXSFnOgkFmWe+ksxT2/lhfSHf2X4B3phd9IVdHpW5DjI2RDlBkrFPKbfLkOR9nEIek8+AEMSdGRqdtjOw0WdQdRv+6Y3RDKc37a6/3FCMVoKgw/4NaKfZMYjt2HbHRXvyJTOqcWoJ/nADESSIOG5bfD1nzYdxZrvEOcG9n57o/IOm/VdTwPvBj4994LwsN475Y6aknK60rvWta/ya0qvoBCpze0AannxenoXiLNT9j6Prer81LcYgPA8DiKagcVv41WP2XNYuegu6pwNZCygaA1HEuiduBkDX66w98+0I17Ed165CFguYSpXVmZelWSwnOWk9e/yYXC/uK8f0aD/+nuexv5r2sOvZPa3NJtWzADLjI2fPYvziuYwtlcgIENbWqmXX6pbtZLGMoJIVaC0IOw1DvQa8BKcjoKNYpzdXZVelSKXqE8cS42hkoBAJ6IyBSFLflQdA9WoyKiIyitEkR1E1KCdZ7gkrbBnvYrySYWO5l1qfJCMMkVFc5g8AhX0+3/EoS6MvQXaFhKFCOBrpaHQsYbdHPGqtbeOMIvEFIoGwBI0+TWneOHNL42we7iao+FB2kKFAJnZyxQls1mDLRgwDSVajsxqhDEZLolhBPkZLx7qFxNaiTIQGhODBm2z9evHrboFm79bkmnbNU+1+hlHquDQ7G5n2rKccHwygzYnx95caslpSgSUlZTqMRiiP1flXcGv1KwDcFn6Na7xrUUGAVhBcWiXcliU7uwdRqyOSxG6I7mNBKkbKkM1AHCMcx1rgHEP2J5SsH/nCxARLa9OzaVO0uvBKZHcXGMO6J//xaJ9myhEmXYwefw5KZJlMK7hzT6HlEM9hfz87Et1+t+tvtu0VJzqaFUYbaymT8e0khxCYYh6Tcewme+uaE8Wg7eYdjm1XE0GMLmZIcq71cHYEYQeoCDofi/DGIoIej1qfQgXWxqDlHZ0ZNuQGIqpzXYRpBsE3w+DdKrg1cOqGoENRme9QnQeyt0Ey7qJdQ0dXjS0xbE8ydMoal/sFFjrDlEOf+mxDZbeLWzMkHpQXC5IzaiQNB3eHh2oIkqyDyvkkBZ+ww2N8iWs7A0sGnU1ASoSR1uJr2JDdnaDqmuo8lygn8Soa7QpUaJCJIZECEYNXttM5TctqZGxw6okVV8KY9Q9au4S1Z7yNTD5D0N1JktgbT7YGExy8sPK8K2+cElB/OBj/6JWga+e8gXX9nz5qx09JOdHZawNUSK7xruW28GsA6EaAGh4jM9KNf9UwQ9s76b8sx4KBWbD5SYTU+65po8hOYbeu3erYLu7Xbf3EPn/Wyl5Ze8bbENog+ocxRmPiGKNNe5Jl/fiXjsWpphxB0nr2+HOk6sUjcR77+9nhnmOrnhVK2azAJia0kxaqpxvT10Uwq0ijS1JZliA7QpwnsojYCisqsMJKnLcbj25ZEOQVujvEy0XEoaKrWOMZc54g0A6bBnqJqx7UJf5uhfYg6o7J9dSoj2YhElBIMEbgy5jZ7jiBcZFCsyns4/FgNgtLo1zU9yTP7niUs9w8j0UV5rkjzFL7FlcAfq/vPu7vm0dnocZZ3QO8qO/XPNSYx/d3ncUm00c0lMGt2No6LEBcgGBxyPKFu1heHCarQnbXcgzVXEQocMt2KjvsgjiytXfYYUDayRSd1QhXg4AklOjYxctFhAISRyJiCbFg05snbG4veNMtuJFBJhBlbU3bElYA1t//gYP+PV9z+fu57RdHIAdQHd0pzrUL35zuwaSknCSkAktKyiSmdMQIuxG4uvDK9oLttvBrrDn3Bgo7NONlj4GLBCLpoGN4DBEEGB3vfdCmfYIeGER2lMB1IZcl6dl/sXMsOOddt7D4/25g3eBnWb/786zpfR1CKNYNfpbVhVcC1o/b1GoI3z/A0VJONNLF6InD/jruDsgxyGo6kI3YwSCksJtvTrPECAJrKeM6NpMk45N0ZDGutJMWWiNqgZ1a0c3cEsdpT7SIIMIJY4zvoh0fDER5GLjYRSQubhW0tOGZKrDZJF7F4JUTtCMIOgRB94T3tTBWoEh8iPKC+iwQZ5fpK1YJY8VgvROTiVjZPcibH3sJO8dK/MEZ93P5rPvJyJiS32B4Vsh44ONUhQ3sXFHl2Us28vDuOfQH3SSDDjK2z0sZgyhaQT3s1JhCgqgoZEMimh1+MgG3bCdP/FGJdiVxRlrfake0w0RbvtdCgwoM/qgmMxigyg1ElLDuoRsBWLvgryEIIevh1A2m6Sl2IGuwA3GkxBWA9Q9M75t9JEjFlZSUqTVtK/uqNcVxW/g11p7zTjo2BTx5by9nPXMLG4KFVM/qJdc/gIni9mbinpgwAtd2Fgt30rX+OPLMP/oY+fX3t5ui1j3+Udb2vR4Tx6wf+QKrsy9HZnzb8JRmspx0pPXsicOe03An4u/mSGSytGpZ4XmIvh5wFMnjm1FdHcTL5hH0+iS+nUoWhYhZ3WX6Gw75DbYulVEzBD5ns0pEDGpMkRgIqw74mrwXUnIaZGTEXzzlp/xocCWbhntolDwQkM1GaCPA0RgfHD+mL1fh4uJmcjIgMg6BdqnEGXrdCn8zfz2XT2peKUq41B9if9MrAM/Pb+HOpY/R6db48+47OdMtcJl/HwD/r1IgcDLW0rZuAEFcAKE0Z5YGOTu/k4GwRBA7mEihoqYtmmg2FHVE9vV0NUYLSATKS3AzMVIYkkQSBQ5JIiERiMRObG9+oxVXznnXLYgE/BhUaGwN37QcOxRRZTJHRFxh72yXI00qrqTsjxMnYP742MWeaBz/ijgl5QTkdv1NVmdfjphm5HP9gx/kihd9DOFqvOVlMuus8CB834bAxZM2Q1ve1ELaXIFsBhyHcF4Hjb5jJ1gs/eTHQYBxDCIS+EMS1QAnhOHnr5h4bkOfm3I/4Xk2IFQb1m3/ZGoZlpJyiOxpw3UiLgEuo+8AAQAASURBVEhbHE733+3J1wFrL9gKeBeeh8g2vbOEwJTyaN92P8clH2c8sD/L+FZgAYznYjIOaJBBhM65RCV7zfTGbUdcnLN3Uw0wOQh6DNmdgsKOmMSzgfa6KKj3QTI3wMQSGXrIiAlLryyE8yKePm8bAA8NzYbQjrrUYpfy1+cj5kFxpbWzyouITr/B01dsYnxJhoeenItJBM9dspGz8/08vHsOJIKwC8qLM3SN+GAMMjJkRjSFzZKwQ9rFdvOtQnsQFgRGCVQ9xq1K6r2SOCtsrkwNEM2g0Nbgo4HcYII3GiHCBLRuiyuAnQASPklHzopUJi16U1JOV27X3+Qa79q9vr/uoRtZdcUHKD1h4JngjUqM1LBwHrJWx2zv36umbSG7uyCKIJfD5I9tA87Z77Y2MUGXAWWQDUlhriL31DOn3K4Vdg9MmbJZP/4l1pRelU6xpKQcAnvWhydyTXs49ext0b8DNs8p6s6jHYnsPZcw79LocdDK1pKVhYZCqUGkJT1zxmg82kttzsSkcVwwxEUNyqDGFLKm0B0xxZ4qrkrYGXTgyZglmWGWFYZZXNjNRYUtPN6YzS8GlzA3P85QI48nE2qxy8L8CN1OhU5Zo2Z8toY9JEgWeMNTxBWAUS2IjGRWU1N+1dZn8azOR3l1adeU2/XIPDfN+wFDieZM14oxHdInI2JW9gxy9+IcMvLJ72jmBTZADPn8cPMKHuqcQ4fXQEqD9GPigkQkChmBdjXZjgaukyClodbwCEYyaAlKhrhOgp9NiHOS3UNFu1chYcvr3to+t7BoX0u0bZKyNfwh/UpTUlJSjjonityVknJCYpJk2gXYnd96K2hBY3uBseU+4Rlz7CZiS0xp0rbJMRrZ2cHg1QuJ53QS5xxkdPS70pd85mMs/eTHcccl2X5JdrvCH5bQDKcDG8L39D/5OM/+vY9Oue+tlS8jOopWdIljm9PiOnbjNCUl5aDY7+LzAKHCx4PDXSyvH/uinUBR0oornmtFZkeR5H3CDoeg2yPOu4jQrpRMxsXkfIzvYTyHqDNLY16epCPbFCkS/OGQwvYIFYEMaU+zuGXoegg6tiQkvqTRJUl8QeJDMDciWwhs95yEKAeNLkFUsuKGLCt2Vkssyw0xq1ABQAaS+x9dSN8vhnHH4bmFh9gYV/inwedSiTxe3Hc3/7z8W1y+/AkyhZBQ20Xt3MI43YtHSVZWGT1DUF9QIpxTZPQMn8pcidA2N8WpNReoif3QLoRFh7DDo97rEuUFiSsw2AW8VzbkBjReGbK7rVjjjseoWgRK7DUNsm7zLVDME3R7IAQjK068v7GUlJRji9FmrwyS2+98F0LDI4/PI1leZ/hch2BBCVrWONO8P6mOEltesYT4jPkks0okpewxOf+zvv1+Vn77/cR5K67ofILOaOKumEYPVBfkeN6zP8jale9g7cI3T7nvrZUvY6IYtGF15mUYrdPg+5SUQ+BEFVP2xWHXsw98ECMg8SXlxVnGlrpUZwnirG2M0VnNWb0DPGP2Zi7s2w4agr6E+ryEOGdFFqe7wdzFw+RWjGF6A4gEtbrHtpFO7h1YQD2xVl9PK27kksJmulWFDqfGhT3buLhjC2eVBlhWGOZ5szfwyp47We4OcplfZZ4zyoW5Lfxex71cntmx17krDMM6x4NRjQvufim/+/xT+ODdz5/2eXbJHEucTPtrX7j8aceD/PW827nszM00VjSoLLBNS9WlMWJOHaMFI9Ucu6pFpDBkciGiFBGVNFHJQFYjpSFOJGGkEMIgAokadKnuzlGrW3E+60aQCKSbsOU1b5tyXo//7XU8esN1BN1QmS8IOgWV+WnTUEpKyonJSTPBctNNN/Htb3+bRx55hGw2yzOe8Qw+/OEPs3LlyvZtjDG8733v43Of+xwjIyNcdtllfOpTn+Lcc889jmd++KxSL8GZPxcyPuse/fDxPp3Thlvr+w/s3PzKv+Wp3/t76gskI1tKrHwiiwhDO8WSTM4gAOG4EEbU5gqKTzrIxBB5R9ei4NJ17wS68UYluZ12EzLJQmN+DKGkOC7xxwz1HkHQKZGR4WmvvJlfffn6iYM0w0tFsQBJYm0hlGJN92tZv/vzR/X8Uw6Pk20BlHLqITzXWsd4XvM7GhKNqoU4dZc4KzECjCMRIYhGZCdcfIek5BN0OQSd0oa3RwmNXp+xpQqjoNELUW+E9BKENDS2ZslvFxglGV8q0A6UNtlrsFcKKWUDav0FtG8onxUjawp3rDlJEgk0gkX+MOOlLJs6+ogdh/wmF7F7nNm/znLtj/6CUk+V8lgWNxOzfNkQs1SBa2f9AikuY2V+F7PdMZ7Ts4Fal8evRpby2x3LCTsVtT6X8jKDdjUoIJPgb/Fw6hB7NhNGO1CbpXDqVoRRIUhp7FRLYO3AVKhx64I4A7/6l7/Z5+veQud96r2Ku794PUv+Ja0dUk4MVqmXoEpFRC7Luu2fPN6nc9rQyl6Zjru/eD1nfOMDfPySb/GNpZdyX3wOfaKXbLmCCcN2DlirrjVhSGOWISy5ZHaFxEVvn8c+Uiy/+WbiUpZCX5VaXmNcA1rgDSl7HTcwfI5EnZGja4NP8f5drF16PeueuHnKcYTrYPREg1M6yXLik9azJx4nShbLsUJoQ9DtMLZcEBUN3pho2oAZOh5W3Nu1gFVnPMJYmKVjs6a0VaAdgTCGwYugo1jHVzGljgYbhvOIQLJi7gBX9z3CSJTn4vwTvCA3hisctidlalqw0B3hQs8hMZqbjaISZ0iM5Gw3oSAz1E3AfBVysVcDHCp672zXM90Cm2PFS+99Dd1fylO4ZzOdj83mz1dcwT8vvHOv27ti6tZgj8xzRQbu7Xqc+/Nzqc91cboaPHPxFrrdGr6yDVL/88TZdOXrOFITBC5JMSaJBEJYcUU2uzqlMJhMgkkUIrE/V1Jz56oD16hxd4xZEvLIS25gyVc+dMDbp6ScDhgESepScEJx0ggsd9xxB2984xu59NJLieOYG264gWuuuYaHHnqIfD4PwEc+8hFuvvlm/uVf/oUVK1bwgQ98gFWrVrFhwwaKxeJxfgaHTstypcWa7tcishlMuYKY3ce6xz5ynM7s9GbFB27h0Xe9nxff9Zf8elsR3VVCJhopJSaKbPinNpg4shkKjmL+D6uMrcghEigvFJz97lt4+B+uO6jHXdP9Wmj6wg6+8EwGL0/4yHO+wdf6L+O7z/yn9u3uXjthF7P4ix/BycVsfOne/vmXvOZm/DHD+BJF4sP5b7mF0paEsCAZf+VigPYmyNr5b7Kd6E3hZe2Zb4dEs27Txw769Us5eqSL0ROTyQvSE9lSAQ4/hwUmcjDWnv13ECcQJOA6iHqIjLIoKfBGGojd4zZ/xXXBdRFaI/M++W01SveVqa3oo/8FRYIlAbP6djP4eA89vxEE/S5hl0uSMSy67EnWznmQnw6fyeiOOXi/zVNdYMUL54E8v3j/u/Z7ri//5Ws4x9/Oazt2cnZ+B5965Eq6/6sAUqJqEaX7cyz/o61sdzvIuBHnebZj+wW5Bi9YfEf7ON+r5fhdfQGxlqi6ILsrxKk7GKkIOxUiBpEowk5ozI/aSfUb3v02rnzBR/BGQ0SkEVqT5Fy+/5MbDvn1v/Xu97Q/X/ZVA392yIdKSTli7FXTdr0GU68jCvm9bEpTjg3Pe/YHefwn70L3f4XBrkf4+flL6c9m6Sksp/BEGTU8jh7aDcbYXBYpWflP/Wz547l0PVrCSHjGH3+cu75xYOF3Mu0JEqWILlzO+GKf3EBM/+Uuxc2GX//zRMPPxusnPj/3Hbfw4If2rp3Pe+stdD4eox3BY6+dR64frn7uTXjbRkBKxMqlrL/v/e3H3lNoMVq3MxdTUlL2z8lS0x6JerZVi535zQ/gOQnhxiLdD2mCTklYgk9c+nU2BHP5waaVnPGbAXRHjqAng4wMpcd9Grt6yT6WMDpf4T67ylufcTt/WtpMVvj0JxW+MHIJc5wxLvdhviraZpwmO3WV3y/+lshIflxbya31Pl68/B7yQH7SOZaa/+r+FUxmVTaGuzrI3/EgRmu8bR4//dFT4RV7Cyz74hx/O7lMSM3JYrRkoF6gv1Yk0vZEn7ngCWb74wTa4SNrvsmSz30Up6wQGqJxB11M2Pyqtx/CKz/B5tdOTLYs+yrwisM6XEpKSspR4aTxjFi/fj1/9md/xrnnnsv555/Pl770JbZu3co999wD2OmVT3ziE9xwww384R/+IU95ylP48pe/TK1W42tf23fX1snI+t2fZ932T9pR90bA2jPfzupL3nu8T+u049F3XcctD1/D6+b+GBELa3PjuoiMbz8cx9rjOC4IianVcbbsIrM7ISwKuh7TbZuu/bFnwSo8F9HVCaUiTgP8rgYvLozxnTNu2+cxtrz67dOKKwC//sL1eGMx3RtisoNQ2hyT3V6jtLGGU4UlX/4wZ3/nffbGWoOQrNv6CQDWPfaRVFxJSTlcjkGI/cFwpLsS1z18k80EkdIKshs+RJxVBJ0KNJha3U7HCWEzn6II1T+CGhgHbfBHArIDkC0EuCrBeJqRc6H81JDojDragY2Pz+U72y5gR7lEVLbhoIWtUNpkEDPwav7qZV9gUzSL/65luCCzhbP6BqxIriRJ3sMtw4M/OoPBx3pYXBjZ53GWuUO4ImF+bpRoQUCj10Ur8EcNhScNXRs0uV0Gfxgy213ym522HYLQoH1F1OmT5L0Ziytrul5zwNsIM4M3m5SU48D6kS9gkgSimDW9r2NN7+uO9ymddnz/Jzew7Jab2Z6UAdCBQ26nnaqrLi4SLe5D9nbbrEHHxUQRZniE3gdidj4LRGJwGjN7H5tS03ouLJ6H6OvBCEGUFwxc5DLvim2MnbnvjszpxBWABz52HSowZAdDFvwoJPGg3ueR9BbRBZ/aoqLNb2kipGwLKuvHv5SKKykppxhHup597MXv4ozeIZJSQr1PkdmtefgfruMFuQZv6dpINhNihnYjogRvNMDfMcacHw8y72dVZGxQAUS7M2wLu8kKa481RxX4y+579spPaaEQfGf8Qr44/ExckbAt7NnvOco5j+71vUafgSSxdbjnImO4s6Gp6MaMnvfV2YQ/WfJrli4ZIJ9vUA4y9I+X2LpxFlu39fJEpZv7RhfwkfObr7cA7RninEH7ZsbiylWrTr3JlFVXfOB4n0JKSsox5KQRWPZkbGwMgO7ubgCeeOIJ+vv7ueaaa9q38X2fK6+8krvuumufxwmCgPHx8SkfJwu31r/Kuif/kXWPfQTZv5u1y9564DulHFHe1LWJq7MJZ1+02eYE+C74nl2EZnyE6yJcB9lZQngeenSM/P076Hw8pDJP0ugxLPnK/sdi9+oKKuQxGRfdmaf4RI1g1KdugsN6Hj+67W+543tvo/c343jjMfV5WaoLszgN8LZ7dOQaLPn0x1i381Os2/QxLvrLWw580JTjxu36m6fV6P7Jyun0O1r38E32/erJfwRAuwIVGmQ1aC76hP233rDTLnECOgEg8RXagTkd4/yv+Q+wYNkgPecMcemKzTheQm6HwBt02L69m0rDLlhVAxIfooLgoRtnNiX4yjPv4q33vYjHwjl8avF/MHqGA45DbbZPdT54YyBiwe/1/mafx+iUCQu83azM7eLMhbvYfZakOleh3eZmobD2X5ndsOHvr6O4dUL4+PG6t1vhqcthZOXMMw3Wj3xhRre76uqTZ+G6Z35CyoE5mevZ26J/Z/3YF+0ESxTbSd2UY0ppxQjzVZE/KW7FJII4Z0XfKC8JO1ySOV2Ini5kbzeyswNTb5C/Zytz7oSh8xXD5zqc9d4D14ZT3vcWzEFnfXQpizvWwB83aA+evHsB8YKZbfztyY/XvZ3v3/FOfrz+b1l46whCGwYuLjB0USflBQ71uQkXvvEW1o9/ifXjX2Ltir89pMdJOXacTrXSyczp8nv63rM+yebXvY17P3MdP/u23XvRaH7egMrGToTvYZTAOIqkM0c4q0BtboZ6r6LRDeRiIjPVJrxH2lmUjXFlr8erGrgwt5lnFB8nIyKuO3vfDZUt9hRZnn/VPYjODgCSjixx1rB+/Kk8fhBh8dd3PcGNZ3yb5y9+iIXFURyVYCQQSDbu6OPB3yxp33bza9+GzmrIx6jOme9R/PD2d8z4tieLGHP7ne9i1TNSkSXl6KGRJ8RHiuWksQibjDGG66+/nmc+85k85SlPAaC/vx+A2bNnT7nt7Nmz2bJlyz6PddNNN/G+973v6J3sMWB15mWIXA6RzbB25TtYt+HkeMM5FXDmPM7Kb78fKQxLRmu2AzubIZ6XR9VCRD20XdBhCIQIpTC7R/F35uhr5MjszjKy0uOiv7iFe//vvjcBW0Xr6kvfh8har2sRxuA7FHprjOmI/Px9/53vi7Vz3whas27XZ+w3jKHR7VKZryg+meCPafK7DAN6FpvfZc/vqlUfouhKLvnzm/HKhpGzJMlTKySJZONLDt3OJiXldEQ4LhhtO7iPM8dycawCgzdcR9TqGNVcaMbNlZ4QNrdFKsh4aN967M/KVvnb7sf5047f8IZNL+LerQthRwbtgTirzKVzdnLf9vkgoLJY4++WyPAgz+veIo1zXWapAoVrdhH/vMTIWZJrX/QjfrhrBZFW/FG+POU+b991Ib/fcQ9XZCSDiUunqrI7zluvaQfiplbij9rAeiPhns9bu5tffsX+u/ri9xD05Wj0udT7BIlv7W4e+NjBWUjuC6MEIjmJplhE6id8sJwq9SxKIT2PtXPfyLqdnzrep3TacN8L/oHzru/mBX92J12/dcjt0gQdkignGF3h4I0W8cpFwhIUtms6f53BDI+Q6w9wGi5jix2qS5Kmfe6Br1sX/cUtlObkyewoIyoN8F0SD4LFIdnHPB7/0787qPNf2/d6TBxPFZy1nRQPuqBjk8Yf18QZh998yp7f2nPeSTyrxKorPoDQhkZfBu0KhAYZaO74n8OztElJSTk+HGux5ycNxQ2P/gGZAQHGIHeXkRkfnfHQJY/qHEXQBUGfJl9qEOjpt+C65d6blMudAsudkM3xMMsW7JzxOY3oGl0yB8A/zrubZ1/6Ooq/2ML48jz3veQTFGQGyOz/IHtwphtwcf4J6onLb4N5qLJCZzSbrp1wyTjnnbdQn6cRRY2XD8lmQi7473dz3wv+4aAe65QiLWlTUk4bTkqB5a/+6q+4//77+dnPfrbXz8Qei3JjzF7fm8zf/d3fcf0kX9/x8XEWLlx45E72GHBr499Y2/d6SDTG2zvgLOXgWaVespdP+L5Y0TfIpv9ehs6OIkeqJL0lxlbkMCJH4gm8iqawLcAZrSPqBduhXQ9xB3aTzS+lMs+lMoM/Od2/gg2vfS1nfTJExBqEQYQJpWyDOapwUM9v7ey/ZN2uz+y1eXHrr997wPv+8PZ3sHbBX5Pd0cnu8zvRDoRDWUQhYum/3oS7JcOjNxyZTcGUQ+dE9UI+3VmlXoKQgtuifwds8PDp+LsyEnRGoVzXitCJASHtJItS4DjguxjPQTsCfxQcaUWo+aqINoKedRmcumH0DEEcOuyqF4gGsuR3SoKn1HnkTdPbIu6Phz5wHW/+za+gYyf/ds6XedFT307flTt4V+8jvKv3kfbtNsYVVt3+Foo9VZZ1D/NQZj5XZHbSKSMapkZRNRip50gyBqEFKrQhqVoJfv7/9s4pMMpOrtT6BEnWht4/eNORuY5efdVNCKzIcrLQsqE8kTmYOuFYcKrUs2s6Xm2/UGr/N06ZMQcTSP2d715BFnDrGqNAxjC2UhDMTsjNqiIE7NpUYmz5XIpb5qACQ8dvBxlfNBuyCckZIVf/6Hp+8Nyb9/kYun8FY1e9ko4vOohaYJuQpCDOCpQfE3TPfC3TaixbN/jZvX62/v79dw2ve+hGrnna+0lyDvXZPo0uSfHJiLBDEcx2ufxlH6fzwbF2bkvK8eF0rJFOFlq/m5Mhi+VokhjJouIov8nNxtTqdj89TmyTkCcRBsIug+6MMQZ+NzoX5kw9xod3n8GLSvfRNUljed22Z/CHPb/m+Ut/x7KDPKeeedum5LE85Z2/5edfvYjg2eWmuHLw9Mg8l/o7+KU8g2AkQ88jgnv/71QHFa8MNdfgFwM8J6HghzMKsZ8prcmVk6lp6PY7958Debw50erZlIMjMSfG9MjJ8z/y6HJi/DYOgje96U3853/+Jz/60Y9YsGBB+/tz5th3qdYkS4uBgYG9plom4/s+pVJpysfJiEkS1m36GOsf/ODxPpWTnmvclyLkzDeivvesT/Lgh65j91M7GH7WPMpn5FGBofOxOv64ptElGVmRpbyik2huB2R8GCujqzUSXxBdWoGzK3xz48V8e+OFU479T49cxQ83r2wXSF+85gsYx8E0O1wqS/MoefD5De2JlT1Y8ul956mc885buOgvbmHNeTeA5yGCiI7Haiz+nzJo8DZlKPwmgzcKl7zGLqz3ZSW2ds4bDvqcUw6O02VU/6TD2Byja7xr29+6XX/TTrKcRmhPYhzZFFcS0M0pHiEmpheEwCiBCjX5/pg7Nyxv3393I4d2QSaG7BCIrVm2bpxFZkDSsVHvM3NqJtQTOyW4xCkyutLwX2fvvej4o4+/jbNvGqbrnwts/O5ybnnw6vZ9LvcdXlYc4GVLfsXFz3yURl+CWzFoR1Dvm77sqi3IUZkvCbuwm5rRIZ/+FHT/Cm7/2pf488/9B2v+8Y4jc9BjxNolJ7ZQf6ItRk+ZejaMWDf4WdZt+z/H+1ROCVapl1jxegY8cPN1bHj3dZS2xsS+YNflgp1XCPJPCpZ9PcH9UQfV0SyXXv4otTNDooKg+EQFRq1t8++fdx+/d9b9aCN45a/+nLf/dupG62Uvv5lzbrB14R+cdT/uSABBCI4i6SvhlQ1mR5bM8Mxr8P1N7T/v2dOviS5+3S1cfdVNrL70fRhHIrTBqWu6H65jlKDeLVGBofRYFVFttGvW6WwWJ7+Xpxwd0nr2xGeyqHI6/r4WOWPMyYyR2Q1Ga1u/dhaIOzM0uhRBByQZDRhquwps2tXLnXvkVrki4Z8Gr+Rv+i/iHbvO56J7XsId3z+f5y/93RE5x0/P/yWfue6TPPSMf93rZy98dA1n/ezlXLfzYgKz/wJ0kVOkoBogDU6w95aqUzMYR6OkJooVlcA7IucPtqb9/le/yJ9+6r/o/sDWI3bcY8HzrrzxeJ/CPjnR6tmUlJOZk2aCxRjDm970Jr7zne/w4x//mKVLl075+dKlS5kzZw633347F15oN6nDMOSOO+7gwx8+cqr5icr63Z8/3qdw0rGvjr5WZ/nBMvjciL4fuZQ2jCPCmHBOkdEzJdkB0B6EBYFTdXA8124oGkN+4yhC+qzoG+QTm57HGR1D/Kr6Iqqxz7zMCJdkd7LEGQeKADwnY3jk33/Cx9a9kPyTgre//uu8rLh72kC7g2X5zTcj54Ys+fKHwYBXDHn0j97NmvNuYP0DH7QBzC40FnSQ2T6O8V3iootTjphzl8RIQ+nxGrV5GYIOyaorPoC7LMeFb7iFxIckA4u+9NiUx1w7/02s2/7Jwz73lJSTCSHF9BteQh6XwPvjsRiu9Sq0AneXawWVltCSKBAJBAEoCTkPERu80ZDuO3OcMfx6fv+5v2K0miVZJogGFEZAZhC8JxxUYKadEDkYPnfJl9uitqrvvdH3ydFFzP+fXaA1+QcHyD8keKx3Ljxj4jY/b8DPdp9JqBW5eRWCxzso7NQEjmDJZz/G5tdP7firzlXEOcCAU4UHPn744sLXHr+MlzaHGxc6wzze2HezyQlJtX68zyDlOHBr/avH+xROOvY3oXIoGyc/+e7bOP/Nt5DfCiqA3IAGCeNnakTZ4bGRXkwkye1KkJt3YsKQ3vvt/9c3997BX4y9hDt/9BTk8grf2/Q+5C9K5AYMA8+JWbxkEICrSg/y7ZddRt89BURi2PV0kL0N/AezPPSBw7/+rfyHW4h/L8slf34zbt0wskLyyHvtcRvdMLIyQ2G7g1uO0a5ExAYRa3Kbx4AO8o+PwPBIW/Bf0/1akqefyXPWfoQkI8nd/sCErSWwOvtyMJpbG/922OeeknLSsWdNe5zqWTg+Ne2ZboHnd/6W9V1PA2MwUYRoRPbakhiSjCA7t4qUhnB7B0kjy7s3/m9iI/nJU/4DgOcXfsfrd1zLli19ZLe4ZAfhsU8f3rVQznl0yhTL5f70W3+bbl+KX4VbH3gaK6/t5/Ud2/d73Nd33c0dS87gicZclv2fj7Ppryfq7vxAQv0xl3qlhHYMj7zx8GryFpOfx1eevJy5+ZMnZy4lJeX04aQRWN74xjfyta99je9+97sUi8X2pEpHRwfZbBYhBG95y1u48cYbOfPMMznzzDO58cYbyeVyXHtt2l2UsjdHugDb/Iq/hVfYz9cuegvxsk7qC2IuecEG7v/auRS3hcRZRdKZxal3IKpVCGIEPi+acw/v+cXvUfIbjIZZHu6fjZCGJxb1sTQ3SH/QwS1z7wHg9R3bef1LP8vtdYdV2YNIpzsAG6+/nmWfuJncgED7UF9oF5XrH7AdgA9+aO8ib+0576SxsINf/Ov1e/0MrHUD1RqUCvQ/t491/Z9m7Zw3sK7/0/YGORtOsKb7talImHLaYJIE4U21vzleVmHHq9Pwns9fxznvugV/pIi3rekpLSUmjq21gjKQaEgMQhtUNaRjs0NY8vj2vRfh77QTP+WlhuJGQXbU4JU1d37rrft8zIOhtSiVMbhi6u/qTZ1b+dwfvIBF39gOSjLytNkY1/D7j63muoW38Z3dl/C9X19A130OUQFq5wWIpRqvIvHHDLltipX/cAsb3j1xTW1lAhwtflQ5h/7w5JxoSElJ2T9H4zr+23+cuCY9/dqPU+91yS4o84/nf52//Mbr8BMYWQHZgYU4m3fhDFXpb3SwyCnyrsX/xfW1P2ZJxwgPDsym0WeoLtZcsHIrL5z1WwDWZEMef8ln+cX/jnnzQy/lLUt/xa/HlvDLTecekfPf8O7ruOLFH6f04DA666IaxfbPpqtn15z/bqKuLLfvx1Zs7aK3AFA/Zy63Vr7M6szLuC38GgAin8U0bJjz6szLUqEl5fRhuoah00hcAVszrupfAeeWEU17SzMwhNeRI8nkcSuSymgWOerghSAjwa7xItcseYRHoiqPhLPYEJzB1g2z6XxU4Y0b7v7i9GvrQzm3yeLEdKz5o19yx2cuw1s1NK24Mqyr3BeUuDprrXpnqQIvX/BLPjq2inBTkWf+0cf42f9n6+87vve2I3Le+2N3LUfePciQxeONSQ2UUo48BtBpyM8JxUkjsHzmM9bS6DnPec6U73/pS1/iz/7szwB4+9vfTr1e5w1veAMjIyNcdtll3HbbbRSLRVJSjiUt//gln/8oP71/JbkibPpjBb7GxB7ZJ+cz+9cxmR0V1C+LvPwZQ9x33n18fM69AHyydxEPV+fylPx2cjJkOCryjl3nc33vncxq5q1MFleuedr7ue1Xfz/tuaxdch3rNk9v1bUnm95y8MXcj279233+bDrrhra4AlCuACAK+YN+3FOd1YVXgjHcWv3K8T6VlCOM0QaRJKzOv2LK7/d0866uz9Y0elw8KW0YseNg4tiKLMpaCogkQY0HCK0RscEfg8agi/YM2jdox+A0FP64bi/ujjQ3Dl3AAm83r+2YCBd9zSvXcds3noouZRl4mqC4fIRd1SI3bX4+m369kK5NgvyuhLAmMb/zqc811OZAdpcgOwC1ObDkKx9i8yvecVTOGaBHlQH4Xi3Hbf1nkXUizvvP9/DA750kQegHYdWZkpJy9Pj512wH8lnvvYU3xtfynWs/zgrH45Eo4gO/97946Hsr6P1dzPZv9sLbf8gVGckvL/yWvfMyeMPCy5DC8Cfdv6BH1dkaaxY5dm12ue/wzfO+xIaoi4tmb+anC85g7Yq/Zd2j07sPrJ37xr3yA/fFnd88iM7pWPODH+/fWnLPbKg9RRSZtU1Dwvdn/rinCdd417bFqJRTk8k5DqdbPdviGQufoL+jRLKgF/nIFuS2AXJhN0Z1gnHxR0GFhqggGJmT49GeWXzHu5Bep0wlztD5kKK0NeYn/3n0RYrJfHzOvZzXeRkvmDfVEePuIOKbo0/DFxFPK2wCau2f/VlpgF8s3MT3Gysx4sjZgB2IH9QVGTemGnms/Pb72fCH0+9/nHDsJxM6JSXl1OGkEVjMDFRfIQTvfe97ee9733v0T2gGrOl6Dcl4OfU1PI3Z/FpbIF39o+t579L/pEfVOcu1YsKLVz2PLf98BvN+VuX8+C+pXNSgHGf46f+cTzAroWfxCPeKhTx/wYPMcsdZ138OV248j6wfcc2CR7i69CA5EZKR8RRxZdUzPsDtd02Eqc1UXDkU1j10eH6i6/o/zZoL/p71Wz/B2kVvOSmCjY8VJghASFZnX962TDmYoNqUExuTJIhm19817ksP2ZrwUDhR/obkrAa12Tk6OkuY3aM2g0VJ+7oI0e6AlM0QZCfr4lVcsrskwgichiDKwT2fO3rTH2Gn5qt3XYGIBA9d8ev2JOGbuzbzf1++luwgGKkZ29qBP6yIt0HRhTgLYVEyeqYgyRjcskA1wDjgVAxGCPr6xrl03Tu5e+2+r6NrF70FwnCqMD1DflQ+h5Xunbz5p3+OGnJRi6s8+qJ3H+pLcexxT69cohOd1dmXo8MwrWlPY1oWW7c/8TXOdRPO8xy+vuwH8OYfcMm9f0zn5zq45L1/yci5Gn9IUnr6IPpbvdRmCfQlZa4sbeCKjOTfK13cMPxUZvll/nfnvZzpCkLj4IrEis6vmHjMlk1ti5mKKwfL4WZYrh/6HABr+17P+rEvTqndUmzNM7nWSevZUwchBUZP7NMc68DsE+nv6Po5t/PWkatRjoKOIlTriPEq/u4cuUEbLN+xsQ7aIKM8GxqL2L60A9dJ2L27wBP/dPyy515w7V0A/Ec1T2Qc/mXHM9hZLpH3Qp7Wt4XzvF20LMtbvLD7NzzUN5snn9/L1VfdxA9++Hf7fYzVF76HpOTz/TsOPSfxdXe9AjHo4yw4uWpak+orKSmnBSeNwHIysn7kC8f7FFJOEH7w3JsBG/we7FyGKxy+uez7/NUbx/nBf19Mx0ZDbr3P7/7nPLqEob8Xhrd1ktvs8NXuK+k4ezeVmk+0M4faJflWz9P5z8XnceG8bTyluINLmfAmvfXbAO/a16mccKy/7/2sOfcGhJpZCOvpQmsRujrzskO6/zXetVPH9vc3rn8cvZJPO4RESGEtBJRkdf4VxyTg/kRagLZ46oId/Hb5cnoX9uAKCfU6xIkVn6SARCNiDdUaptFAGUMpMWhVBAFd9wyji0evU/jy+16EcQwyELhjkq21bl7w6Fr+e8U6AB76y89w1p0vR20sUNgKs385jhypUFvZx+hyFwzEOYPuDck85FPcpjECjBT4IzC4uZvi/DIX/Pe7ue8F/7DvE8nlDun8v/3o+fyHfCrOgItTFYQ7Du04xw1HsfaMt7Hu8Y8e7zNJIc1GSZlg1dKHAXjV3a9iaXaY8STLt5/6zzz3xX+N/5jDsm+HxDlF9EgP26+JWbBomDn5Mr+rL+A/hy/gzPwAv96+kHhzgW93XsS8Bbt51uyNnJWdmBJc/rGbEYkgeV338Xqah8S6wc+ypvd1x/s0TjhuT77ONe5LD+m+17gvnXk9m3JsEbJZ12qMNqxSL7H121HkRKxnW5zr5qhecx7Fe7fbxiGtkUriDpQpeJJGlwva4GwbokdrtFtkVHSAgM6HJBzaku+I8KHZv+VZD/wB33roQvSoR+kxRXmZJrtikHKcYVj7LJl0+0eiKg1TZHlpmL6VVR567hk8Z82H+fH6fTtbyGoDnTv4NU9rj+PfK12w28MbE4Ty5KppjStZ9cwPcvvPbjjep5JyKmEEiUn30E4kUoElJeUY48/dBMCmbXP5n/vPw1OAge5f9LPusY8A8I77X8TF+Sf4+OPXEH+jD/FgN+ElGlyDiCG/XVAPi/w6WYReIHngyQXMUYavj6/kVR0byfavYFhX+WZ5BfeWF9PtVvnI+SduQSq0xhRPrkLpWHGoPt5CKYRSdirAaBBue9FjtGl+b/KCdeqCaHI3WvMbkw4up3aspYvdg6f12guBSeKjOsVyoi5GXz33p3zlaZoNW1Ywf1cZJmWamzCyjrJhCMa0p1pkpYF2iwyfB7/8yuF1HB+IXdu6EECS01MCPHX/uvbnly7Yyq8eO4ewBNWFedzuDMYR5Ps1CPDGJJHxkBGEeYlbNzh1jZNR5DcryqaIP6fGM7//dn72vI9Mefw1593A+sOY6jt7zi42fnc50VxD2GmmPIeTgaM5fZmSknL4fOnSLwGw9N9u4vu/uBy52BD0aLQryfRXueMea0c42f//grtfylApj9HCiteDLjt0Dz9IFHf7i/jI/7uFoFvjLK5T/GGe8WWC/u3zeDLx+Mi2tTw20rt/QfoEQCgF2czxPo0TjkOtcWw9a+tSkyT29W3VUMZu7O9vU39KPTtdvZqKN4eFUAqRL5CMjAHTrB+OICdqPTuZsWWK4v0ORmu7DgsjRL2BvzHC7SkS512IItRwhb57IM4UGT875jefPnY1mpwzYQU2+fqccSKSqovTHVC+WKIbip27OgkTxb3FxVzsTYjgix2H/qTCgswIFdfn8fNHkT/OsvrS93Hr3e+Z8ngtu/J9WT/OlHXD52FKMWHinnQ17Q9vP3qWwCkpKScOqcCSknKcWLZgJ5v/bPqffeip30L3r2DRWf/OSy/4K878Wo3Cdo+g08GtxSSewKkrRkoZfhUs5oWP/xUvPf/XxEbxX9UyLy6M8UBY4BvbLma0kaWUaRzT53awrHv4JlZfepLkAhxj1nS8GoxBN4IZLyzWznkDwnPtxrTbLPKlBM+dyLmo1hGufQswWttAcfuF/VfsuUBS7YWs9Lzm7ZLmXeTU+x6I6QIxW5yqi1sh28GXQimbL2EMCGF/R6ENazzSvtUn8mL0hcvu5wW5FXzvTT/n5kevJXevzQxBCkw9sIHBUiALechnSWZ3Yhx1xII/D8SW1xzYA/vpHRv5lTmHfL8hyQiqcz2yQ9p6bOcECNCeIegS1GdZizBvVKHqYBR4uxVRp0Pf7CqvuvtV7Q1LYIotzqHwF/N/zFs6lmMcg3YNSz/5cZ5408mzIN1fDkNKSsqJwxMv+7upnddvmvrzySHL9176NVb+6xtw6gK3AmEnCC+hO1ujFnmEK+p0d1Z54cLfsWHhbBbndjNLFfjcyFncu3UhSUMds+d1qKzb9RnWLnzz8T6NE47WRLaO4oOqTUQ2a+1Do9ja5ypla6eMj1AKXa3Zerf5fZMktqZtiy+T68pmAHlTBGhNFLfEm8nCzUFzukyDtyaxPQ+RzSAyGUx3CRXFJJVq+2Z71bOt5qwkOaSHPZHrWZi4zlUuaMB/N9dXSQJBgAkChOchazW8UhHiBGp1VL3BAx8/+hkikwWV/bH5NwtYeKdm4OIcZz3zCX732ALEmEvUqRiKi8CEwJIVPs/JGJ6T+R0/bW4zfPcPL2HZf7CXyHKkGmbmZ0dBGnRGn3Q17aorPsDtd548DiMpJw8JJ8YEiyH1wYNUYElJOWGRcx7lMsC4H+PRP82BNHQ8Iul4QuOWE2oXKDoWjhGELt7Pinx76xXMf/o23tz7E+4LXX5dO5cdIx2ENZdGwd0rmwX29rY+rmjN6ovfw633pELLZNaPffHg71QqYub2IYPILjIdhcm66IxLnHMQicHfMmxvqw3CUXazvxGA1u0PE0b2c2nfuE0UWXEFMPUGorXP0RJjJk3B7DXdMo2oIpTaazHaFmsmvnHwz39/NBd4E4ffz6TO4TyGUhML0FbgraNsroTWmEZzNdJakBrdXohOWZROnhY6wLmd6IvP6ZBzHuWF/SuY95lP83d/+lrcDdugEdsMltY+RxRjFpQYvKhI0HX0z2lN92tZv/vzM7rtx366lkwI40sFQbfh7PM2Myc7zr27FhDf2c1z/te99LhVzsru4E+KQ8jmk/pquZf33Pn7dN7jMTLH5ZLOLazI7DzAox3k88iGfPBP/pW//e9rQQu8Uck5N9yCkfDwP1zHVas+dMJ21K1d+Y5UXElJOYVobfDd/sQ5PPann2V93eNTT17FQLXALy/8Vvt2Xxyfzec2PYt/+emzmLV0Nzct+B7r6z38Zmwhcc1BVRRrz/471j1805Tjn3CZJ77H2mVvZd2mjx3vMzlhONSJ7OBpZ+LvqiJGywhtMMU8SWeW6oIs9V5JdlCT629gpEDVYoynMBJkI0FECXJkHKp1TBzbmrbZ7EKSgOtAFEMc26ajZq1lJv/b4gDTL7a2VPue4DgK9ezE47Ye4sC14sE+hpAChER1dUBHCZRE5zwas/PUZjsYBbnBBLGwRO7hAeLNW6atZ4UU1hJXyInp+n1wMtazYK9zG5+3gmXjr+Psjwbo/kGgWcdGMVRriHKl2TiUO+rB5wdT5715x6V0PwBxRhAuDPjGmd8lu8LnP6p53vqrF5OT4T7v+6wM3JsZ5n9+72b+ZPGr6fqnwpF6CsCEeHXjrPv5hnMROpla0869K+CHPzgx61lIxZWUlNOJVGBJSTnB2fz6twKw7BM3ExVgZIVDba4hKcWEYzlMxcV0QZw3XDnrcYrCoSwSHqzMI5cNiQKHKHS4/a69A+VOGHEF2pv4KYfPukc/zJUv+Agq1MhQY6RAe5I4K9GOQCbg9JVsvoUxGCntItR1rNCSaIgThNcUWJqIpCmuxDEo2RZUhKK5KBWTugJb95u62GwvBNtCh5piWdYWbcwe99/Doqwl9Ojm5McBbR9ajz1psQjYBXbzvodsazBZtGkteF0H4TiIXBYyPjQCTBQhfA8yWYSxj2WaXZaTmdzx1z5XE+3z4U/WhWgLOedRLu5fwZPPy7FsA6AUMpuxmyBhBBmfqOgTdEKj7+hZT0Bz+kvNvENajSucClQX2d/h47v6iPskHdkGAx58ev4vJ9164u9xdW4z75GG4raERo9DQ7sscYeP1NNoU5J1xKwAU3WIigKnJhAxnPt3t8DFRy+/5nBZt+FDx/sUUlJSjgKrlz6E7l/BBd5uvnXm9/DFVD/+V5d2seys/49XD76KWEu+MX4BDe2ijaCjr8K4KOwlrsAJmBEkBKi0m/NIsPssj8wsl9yuPE4tJuxwifKKsChQgSEqCMaWZzESnIZBaJAxyEijHYFXzuGUI5zRms15y3qEvXm8gTIisKKLCCNMrWbrXyEQSdKeHm9PXOxn+npyXSmknlILmihu1nnT1LPN406paWdaz076mVDKPlaS2McDTLzvuvGATKqVrQVYlvDshQTdHm41QQYJMjYkvqDRDUIrZAyZ7gJsnjjMnhMsKGkntk9BcWUy33vhJ7j+X1+P7B8Ex0FKOeEmIAQ4jm1+O4rXiKtWHVwd9cMnz6R3V8zoGS65YoNvVebz8uIQ/ztf5W3S8PkNz+DNl2/e5/2/u+Op3FtYhKcObUJpprh+TOC5xPmJmnbXpSduPbvqmR9MxZWUlNOIVGBJSTlJ2PSWCVucq390PVuHusnnAhpZF7mlCAj+9aFL+ftnP0zNVFiU3c1Gv4eyymL22JNcc+4NrH/wBBJXmrTGidc89V2IetjOpEk5eHa+KiAY8/H7fZw6uE33pTgLMoSwkLdZEDWNMCBjjQw8RGKQYYIIIkTgWIGlJQLE0towGIMo5O0BE40xzdtoDXFsxRYmTacI057CENIuLNqLDLADpcZYq7Lm55O7CK1Yo9r3F46L7CiC5yGjCNMIMPX6VNuBPYUUsLZcrcecLOgZAUohtNn34vYATPEEl2JCXPE9K7AYg8hmMYUMojFpMkjv/7H2trewnAoL0D151vN/y/av9CG0gYyH8RxELUB35Gj0+UQl0Lmju3DDdUHZ13tfkyyT7W6uvvK3/OrLF1DYLNEe1OMcjw1kUXWB6TS8fdeFvLX3p8xSE918r9/2dG578By6fuXhjTaQoeKZhQ1c3NxgOZIUZYPVKx7i/t3zGBgrElUKZIbtn7w58Z12UlJSTkHknEeZ1/x8sv9/i1/WltPTW6Z8by8P9Mzn6Z0bWZIfZriRo5qbupG2duGbWffkPx6Dsz5IpGwLxWsXvQWMOTHP8yRg2R8/ztbxTrY80oNb9nDqgIYkY4WUOIctJDVWHNHg1MCpSxIXnIYiO+SQzTuoemIbjvIK0ZNHRk1BJU5Q4znb1KENRBFEEUJrRDJhkYvRE/mGLRHFc21N2bIucx1b3/keaIOpVK21mRAIY+w0Q7NebVmUyUIefA8Zx5h6A11v2LyZvZqSaH/NpK+F79vHjWJr21UsEG/dfshWZ60cR5REeB7Mn02j16PRpYjyksxuwcgKl+p8Q2ZI4DSaC839TGSYJEHEYtpzOtVq2nPdHEMX5JnzRMnagRULiDC0f1dNy2bjqqM+wdJif5MsrZr2Q+d9m/8z/hJ674/ZeE6BR5fNgeIQAF+7/Au89v6X81c7nsY/zfvVtMd5Ysss9GLB4EAHfv7oFJiBibh6yaP8tjifwbECYVggOwA6rWdTTlMMoE3azHEikQosKSknIT947s1Tvl75u1twx8H5TZ4PP+UMrso/TGQUUhik0v8/e28eJ1dVp/+/zzl3qb33JftGwhLCDsqiIBCSuH7VcXR03NdxmREERVFElEUF4oyOOuroqKOjvxmdUWdMIIgiiCiL7IQAIWTtJN3ppfa7nPP741RVdyedkIQOSaCe16te3X3r1q1zq29VPec8n8/zEJZHKwSXHf1JVk5Q/fdssLT9vQjPZUXf1/f7GHKw0Ph95QNfmIxhvaBx04vt/+KOykyeDjq4ZduRDFeSOEYwsC1H8LSHN6RIDEmEBhUYnLKDjAyqEuMUJMJzIDZ2ghlEdpJgjLW6krUckThGRLEVVqJ4tBNJjWaONCaS2lihwXPtfvWbMfY4WtvJaF2wiWOk72OMtpZkteOYWmUh6SSELiKKMUqNOn86zmgXgusgGnYEZlTYUNLaoynVEDlMFI2+gLvz4d5TfkxNwBFKIZIJ2/7vueiUh25Lo/JlRKGCGRyyr08yOWpVsTsYjalpCs9mArpYvqHhD36oTmS/Nf0OFr3+75h+0xBIiDM+5HyqHT6D8yVBZ8SsOdsO7CBcGz4K7NYmbOyC4D9O+z2ncwL+sGFktoDuCt1tBYpVj3LJ4+aNC8ioCpd3Ptp4zO/WHYHT54GB0hSP0oyYY7xBIDv5pyM0Z+UeJ9IKYwR98yVROYUMrLPfCR9ZjtDwl3++cNKfu4kmmmjimbBzNsA1j7yc3/fPZ2B9Gy3b4cH+KcxM7iA0iqQTkkiMVuUvm3PRAREtliTeAkI+u66YUrnx64r1X3n2g3oB42fzVgFwzcwFdDp51lc7WF9upxK79FdSSGEYqiQJI0WsJWGkKAz7qBEHGYKbFxghiRIeKhhbceZaYcaAU44xjkJEMSLSyFIAhRIyWeOAUjT4qVAKE0ajeXqpJHgecXuaOOGgPQkGtCNQocbJB8hiFZPwkENFGBrBVGudMXHcyH8Rnmf5dRCOz+xT9W4Yt8FdG4hjWyDke+B7iLQC18H4lgebaC8Elt3xWiWRySS05ihNy1JpU5S7oDzFFlHJwJDaLOi+t0KUcSj2KMJWH6cuQO0Mo0e7ztl/TrtzTuGhymnf/fe/4n/vOAuxdcBeJ8mEnYckE5hMEuNIjPPcuDfsySaszmlfkapwQ8rB31bEuA6f736osc+pvsvfzLub/3jyFH6YXctba8JLHU9GBVJtZbQRuFs8yh0H5jx84fLKtvvIORXulLPZPB/CUgandOjy2VW3X3awh9BEE008h2gKLE008TyAcaA4S2OU4ds3nc9/zDsFgJGhFKaqELEYzTfZXxuknbA09047wUj4tgLHGBvqWVssX7Hln/f6WEtO/Ky1p2pi0jDTsYu1MzODwCCfaH+ClWWPb28+m8HBNGGrtTDQnsApgVcArQRCG1xHgAZVrYkQkUYKURNEADz7P48NIoxsq3tsF6ZFpGzVnufVslwMwuhGOzw16wI8104sYoMoV0eFjFhboaUWAI/nNYQTU6lagcaxIZmiXGmcr6g/n5R2ounUridpq/xEFNvjhWHjeiXWjQpAU6tatJ02YyY8O9sy1LJVGtWDtYmx0QYhDCibu0IygUn56LRPmPMIcg6ZtSGs32LHrvaunf3ZThzHTUQPYXGljne+YyU33v4SnB1FZDkk7EzTf6yiclSFI6ZupzNROrAD8F1wHZZ2vo+V/d965t2Fy9BJIenVLms+PTqpe+dd72RzqYVIS27bPo8PB1m+NvXPhCbib4+6i1nH9/O99Wewfls7F8x/jLyWrNZFjpnk03k86KGiXXwZkfMrbJNZqu0GpyTwB0GGICPDye9bzj3fOrQmpU000cQLD5885td872efxxlSFKeAvK+dnxZPIpOuUij6RFVn0vOjlqTfZheqdxJVliTf2vh9X8SWZUdc8pxVpr+Q8MmOuhhn88o0mv7YcoIHgxbuLs/hqVIX26sZ1vrtlLI+YcFDxC7agWq7wB8SqIr93ovrWS0xuAWBSipURSNig+MqpFsrlgF7fVCz/HIVxAajBDrlEScc4oQiyDlUW6TNiVECI0FVDSpwETpNlBD4w2myqx3EwKA9pjaN4iGqtRxEY2w3Sl3gUNLyVSVrfDse7YCuc2XXtYVProPOJRHhBLZmO1ntAqh0yp6jELYjPY7RtaB6oRS0t1Ke00Z+lkthOpgFRRbPeRxfRvzvH06i5+4KqlAlSqYxQiAis1u73Unls5N0zAOJD7Zu5PsntdL5f9sxQ8OIRAKSCXQ2hU579v88SXPyPWFfPi+f+hvB1JUtPP3ujwEfB0YFmE+0P8En2p+gakJgvLXjPCfDilO/yRSV5HXeK8nfMWMyT2FcYdNJ3g7+gKYrWaRvOEe1w+AWRJPPNtFEE4cEmiuaTTTxPMCaT13I2//8bh4a6KV8Wyfuw21UOiAlrfjy6JUXwvvtvs/W2/6ozy2n6y8RmelTEAOD6EIR2d6G6WihMDdH7Av++B8fs2JLFFn7piDgxuIPACvMxIXCOFIsK8GEntpN7D/G2hjVsTlso8svcOT0rTy5bjYA2gNKIDSNiaZWECckRglkqJGAMbZDxAgB9YorrcGtdWAYgwg9CCNMwrX2TnGtMyWI0dkEUc63lYIjFeK0R5R2EbHBrVX3ibGVdrEefY5KFahV72HtGBDCbs+kob3Vtt7XBRPPsxPRaq3StVY5Zlxl/baNgSCAcsUKjvXOE9exYkwcN6rvds6PkfXJNtjukziGekFevWtH1gQcY9CeIkwr3HxElPVxXccKRrG2Y6jbTExCKOlEVX2H6uRzadt7WDn4ncbf9ev1oran+NfzljLrfyqIHSO4QNCa5LS5T/Mfc27Zpdp5MrHsmE/Z60Hr3YorS9vfy68fGb/t8jN/ybveefu4bUkVcmLbRv4yOJ3VT07lSaeHtwQpPtD7O/6+/S/kZJIlR/2YO2b38ES1l1/kj2cwTPOlSZyTjugybz5iDbetO4JELmRqYpBK5PBU2UVt8NCOnYyKGGyTeRN1LOv6ACu2f3PX7b0ftFY/W79xEEbVRBMvDKx5/WeY9d0vIQSIgsJ9PE0+mcIpCqSAW1bZxbMVT93wDEfaM5aecDkiiCyHLRRtEQcgUin7XV7rtl2x4R+t2GLsAvRN4U8AuMB7MyYKd/2eLRSfVUd3E+MxEZ8FkMiG/eZ8d4i0XE2Xk+fPI3MpZV2qyTJbnSzlikREwtpTCYFTBKdsBRCtIDFkiJKSOAEiLZERhDkHWfXxB2vcNNIgwXgOle4EYVoSpgQyAgxESUGYhqAFjBKI2NqXgUAG9m+nDG5JEHRncB2JKAe28AhGC38AUeOHQttuB8B2RNU7yOudLrUiJmCUQyoJkUZUQ2QygS5XRu3Nxogt0nWQLTlob22IgaZmYSb7sNy9vZWwJ0ulwyHIQjA94PQZ69layTIzNYg7pUTQmsAVtgMoMaRQ5RCkaHRe7y8OJz4L40WMcTayH72Dex47AXn/4wCIdArjKqK0Q5yQ/P4Xlxyw8dSxJ3Hl3MXXcvMY7Xjtsu8g37lnnv1AAG+9+62sPnO86Fwv7Ft912zmDFcmeuh+4/y3voubf/hdOwfYNJXTMmtpccqUIpdHSi56U6LJZ/eAZb0fnPA7adnci1mx9rqDMKImJhMxz00nXBN7h6bA0kQTzxN8/7R/ZcHPPk/yjB0MbGwhvU6R2mYI08++iu5Fb72Boz7yMN+beRt//6ZpLPdfTY9sJ9mXwlm/DVyXsC0JAoKM5NhLlvPQbmwbVo58jwvcN40TWuriyq/WHsc//79XNy3CDhDWlHt5fcddrM5M5YdrZ6FdQeyCWzI2hiQ0yBCMFDWLA00jmFsKK6YI7GRMG4QW6IREe3aCKKsxsmr9hbVrhQbt2OtP+6P7VKZmiD1BNSeJPYGMXdKbffz+iu1eAdvZEkWISr2ar5aNIaUVVaIIYo1uSaF9F1kOrbd1PVhWCEStyhBHov26OGNtz2StWo8wrOWjJGz3SxhiqoEVP7QZrVqUNqelYelVE1Aar03NGowx2TIIQZh2iJICL29QpajxWBOGCMcZtVTbDRbLN0w4qZyoku9ww+5Elgc/+M8cF3+IWd8dhCAk96Qge/bkTtYmwopHrq7lU+1ehF6549u7LPS8I7erbdnXT/p3Tvr1pxnY3ILf5xDMCHhquIOvxItZ3PkI56UeY76b4YlqL9+8aTFyaokZnYPPOMalx3+Glfd//hn3W3bkpcBbgEu55EbFDGcAV0TcLI7Cz1SJEi66KIgSAqfcnIzuArmb700hWNH3dZZN+8i4BbEVm776HA6uiSae/3j6XR9n1ne+TNcRAxQqPvrxHMltED/LLONl8z/O5mVTGD42InduG72351GVAJFOAbC05V2jNqL1x8y+cMIOlpuCH7NYvXEXoaW+kHXlQ6/mjr89gZX3XfnsBt3EHhGaiG/uOJOsqpBRFaTQdCcKjIQJwoxiUyqBjgUikIRaoh1BmLE2mWgQRuAWqHFIafPJDLhliapqK3gIgXYlpR6XcqdAO6B9iD1Qgc01q3YY1LQSPW0jbBloId7hgxaoqsDNC1QVtCsI2jyMK5GBJkpaTqmq2uYAOhKnFCIqESiBkRKhNVJJ2wEuBMZ1QDJalFTnqnFsu8CDyBY59XajRvKYYqmR+1LPQZQtOWjJolOePY7WtS7vGJHL2G6WTJI44YAQxD50dQ9zYm4Dfxycy21b5hJsTRH54AcaGUTIFgftOyjPw5TLu/yfdsdn6/cd7phIZLm6+wEW/L8zmHd/bafYzpNiP0mQPXDBIbesunSvOlduWXUpuu+7e9xnZ4HzybCbYCDB659c3LDvq+PUz/wdcx4roUrhzoeZEOedew2/ueWTe9ynLhad/9Z3Addy8w8zzHX7ycoytzKfRDpAu4kmn90TdtNRuWLtdSybc9Goq4MxrNj4T437ly34BCvWfPG5GmUTTTwv0BRYmmjieYQ1r/8Ms//5erzeEuUgRXK7wCnDoouW8+AN+94uu+TUzxGlXYJjkvxxw2yYeRuvyqzmBvFq0k/nLYlvyYIjcQq2jD/2BFFasmz+xxk8rYehBRIj4LHLL2TZEZew4okvIxwX0ZJjx5uO49QVn+L9827jXbmtHOUVmuLKJGJnUnxtj2X47eoJvpsSqAC0C4VpAi8P2Q0GFWi0Y4UREdtg+jih0K5Ehhojhe1siTSqRmRNzVJMexLt2dUPo2wHTJhRVNpsRWB2QxUZakZmOCDsQkmYhjghCLIuuYTELcaIyCBijVOs+U7XbL6I7OTRpGsVfVpjXIVxJRoX4whrO6YNMjLgKkRNCDHK2jagAUdiEq7tJNE1iztH1ewNYkQYIapVCEKby1LPbQHb4SLk6HbXQSbGrPgIYUPtU0nC9hSVTocgK0jskKjBArguJgjtOYHtenmGar/6pPT5MAEFK6wArBz8zoRB8hJJaUbcCIz1CoaBavqAj2vJiZ+1otwk4d6Xf4GFn1iOcSByY+a0DNBfSfOzzSdyW3I+nV6RX69ZSOd9MDyS5reXf/oZj7k34grA/936c15x9usA2BB28Nr0RnZUYoqBj44lprY4ZByIfbGTL30Tu+tQqVtfNgWVJpo48Hj6PZdw+k2Xcv6sNfxq+DhYXws4308s7XwfoqOdlqcj/vKpbzMv9U56bwczNGx3UKP5bCaKLEeoFU0s6/0gtLVgfJeV913ZsJGUroNIpSiccyQnv3c5A6fEZKfk+c7xP+CIRDeXN8WVScHuulgAXOEwxRtiMEoz2+vn3PRqHg+6+MXASQRaoab3M1BIUy56xL6DLijcEWnr3A1EKUDYrhYZGiJf2L+rtpNFxAYElDoVQ0eB9gzekEBEUO2OLa8EvO4yL5rxNMfnNtDfneWeHTPYms9SDR2qm9KIyNryYhROWeGPGGKXRkC8keAWrdAihcC4EiMFMqgV+gSyYQlmRREzahFWX0A1BpN0ibI+CFDtaeRIBVksWQ4tBPgexvdqRVOi1t1tRZY4k4BcAlmJ0AkH7QqqLYLSnJCX9aznNdn7WVfp4N7HZpHcJgkzBu1JhFEYKYiSCsfzYAKBBZ5/fBZGBYDdiRqvWvxnVl/fbv9XNWs37QjC5IGzERzbwTIZqL//VodFKrqbby+2osy6KM9MJ41E8oa159P5l2FksbrXrhTPJK4A3PxD+1xWYLFY6KYoOxVyXoU4logmn90j9mTbvqdO0Ka4cjhAoE2zg+VQQlNgaaKJZ8DeevEfKhCtAcnbMqgKpPojIl8S5Pbvg3fdq3KoACpdBp33mPdf78cI+Kuld3Lr6hfR/uDIaHVV/zBewWdwQTexBwNn9lLqEoRpg55S5bR33EC779lKiaPmsvZ1rVSmRKT+2MXxCzcA3uS+EE0AowGyYyemvapK52s3sHmoBdeJWdjRz92rZ+ONOHh5iXYFkQ8yVngjAqdUs8tyBFoJorRChjUhI9SIyE4+qYkvRljrhSitKPYoghx2EptIkNoeE6atJVmUhmqnRivQjp2g+YMSf0TjFGN0ZJDGjNqNSQlKEKdq1X/VCCOlfWztebUnrdVZZMfWQI1vO5G2XS6eMxouWW/UEQItfVsZWOvGEZVg1MpLSnAdiGpVgAC+bzNnwHbVCAkJj6g1Rdgy6lEcpiVJUeuCqXloG1ObIAsJ7NlP4fk0GUVrVg5PXDFXn8T97pXX8/6j30jhq91sPS/kH3ruPuDDuvEvn5vU483+4bW0lnyMhNKIR6QVU1Mj/HHDbJ4sdiOGXZ76yMfgTXDcRcv36piNLK09oP5eH2sHee/6mfSFLfQPp4kDBdKAse/TOiY712AiLDnxs5P+Oj/XWDbzo+A4u9gqXHCaXUi96c+Xc8FpV3LTny8/CKNrook947l4n08mPnXEr/nahnMReQe3ZFDV/V8803OnY1yJNxiw+M3vZF5s6Dsry7TtWcxw3nbm+h4mDG01b2uakRN6EBpSW8qUpiYpdSqWHvdphFIsbX8vYsEctpzbwfB8Tcvj0H6v4oIPPUyrrFLR7jMPqom9xkR8to6PtK4f81eKhW6RvH6U+4ozAejPZFi9o5v+HVmML4gTAtFomLZ8zinXulGkvQltO1OMKwjTkvxsQdQdgDBUEg6qIBGhQCc1Mhkxr7uf43MbODX5FIlUyEuzq7m7OJe7BmfxSOBQ1QmqGmRg8yKilC1O8kdsBqJbMsjQ2C5y3woW2rViDwbbeR1pa2MrhOWhcb2TWtocFiXRvkOYdQiyEqE9VDWJU25BxAYZ2YyZeqe6kbWCqZLCOJIw4xAlJU7VIEJN7EuqLXDEnD7mJrfTrgTHpzfwu/YjqIzkqOQFiVaXRL/BLcTIqNYJM9b6tm5NVvv7ecVnAVWOJwwyr/PZ63vv5cTvvJGpl0SEXRmCVo8gJ591N96esL+f8f9ZaOGNE2zXfQsY0EVuLCxkOE7y8vTamj1flku3Hs/PVp/Ak2+8DO62XQ97i/Nedg2/+e3uRZax7/XRc7oU3beApPDZVGwhjhSuYZTPmr3rjJkMHG7fpztj2dyLwehdRJZlx3zKzpWBlQ9fxZJTruDGu684CCNsoonDD025q4kmngGHk7gCkMlWqLRDYQaUuhT+UETswZyvXs/sH+xaifCrtcfx/cfPmPBY7/6rm3jow9/g+FOehFDiDUpEa8Ci1AYGFlfYsLQFnXQYWZBlyytn8PTruhk4NaLcYyj2CFQILU8Kum7yaV1dsN0EgBwYZuaKIi0PO7ScuY3jXEnVhLhN39QDhrHZFS3CZdXR/8vDp/+In534HT4w5bectfBx+k80DM2TFHsE1TZBqUtQba19TQiIkoowowgykjAtibIu2lN2AtbqEqUdtCOJUpJKh0O53QaIpvsM7Wtiqu1QaZPWmzq0NzWlDJmIqDWm3AVBztru2G4Z0J6DTrj2Zy5B2JkmaPWIkoo45aITygaNOtIKQK4gTCuqrY71OPYksSfRbu1+30EnndpPz1qHqZpYEo+5/hxJnEkQd+Yw7TnIZaEli0mnIJWElpy9JROYpIdJ+ZhsCpNNotM+cdpBVjVuUYOBcodC55LgeTZDxnUQwlYjmnoOSx1CgqjluewnDmWv6rHiys7dK3XMdLIs7n4Up6QRIw5X3P9KwE621m2c8pyMc1+w+IxdO+8S6YBKJ4QZSGxV3HP3Edz62HyqQz6UHSuu1PDAXnYY7q24Mvb9/r67385JM9dzw8PnoSOJKTuoku0q08pWz6oASj0HRuRefNZVo+NL2QXHxWcemp2K1lptz1ix/isTelbf9OfLG58lTXGliUMVh9ti0CtSFf5h5s28/WW/Z2BxBadimP2N65jzo10rpKO+I+jbNJW3/uk9Ex5r4+IsA4vSGClw+4vECUW5C6pzuxGd7bW8tiSiu5Ntf72Qp946lU1LDH2nS7acmaHUpUgOxOiEB9kMIplAhDHdd5fIPSEZnq+pvnyYZbkHGNAJWlXxQL88L0jsbRbbW7P9fKLr95yUXsei7CZmtgyh3BjjGOJcTNgRof3avKSWpSc0tgLe2N/LnYpSl6IwRVCdFdgcwT4f/Jg4YfD7JULZYwSx4kh/C72qwLGeZmkyYKo3yIz0IFM6h4gzEfRUiKYE6AVFRo4JCVusbZgKDG5RowKb9VLnrMaVRAmF9pW13q1Z4Nbtw3AUxlMY30GnE0RtliOHNZ5ebZGUuhRD81wGF3gMzk8wPC9BfpZPfrpLpcOh2upa8bDXp9LhUOpRDM1xqHS6VNol5SmalBPiihgXyWsyj/OiaU8jp5YIcxBkFUHORTsCWYkx5QpCWttc4bg278XzduW5Y3/uAYcynwXGiSu7+3x9Ua8VAEVsRbTk9oj2R6ucd+41nP/SqyZ8zMHA/w4cz9L29+6yfVOcp2vqJmIEoVb8ujiXVWWH/ysl2BGmcd3RIrF96XrYk7jy2IapgH2/j33PD2yejuxdwwc2nk45cInLDjIY5bNOFUq9B65oc+fuoMnuFposLD3hmXnoirXXTdjBsuKRq0EJdNaqgE1xpYkm9h5NgaWJJp5nePDVn+Oxyy9kzWUXUu4Q9B/r1YIZDUJpzvnNxQBs3zyNkc0zeaLay3yvD923YFylyM+fPJFOJ8+vSikWdz6CyoZUpoa8eN5T3LzjGHItZaIUVDo8+l4eIJcNMGvJOjqmDhN3hZSnGoKstYHKraugNu+otadLiGOcp7bQ+UCVUEtc4eALl61xYnen1cQkoE5QM3L0dZ7nZMjrBDOSg7jdZYwCt2hvVlQRBC0OlXaHaqui1K1IDMVkni7jFCO0K1GBxinFaEVtH4f8DElhhhX63KIhc99mptxRpuXJCp0PBbQ9HtL5UIR5Ko3yY1RrleqUkGqrPUaUcTBKohOKoN2nMCdNcXqqJuQotC+JfUWUVERpRZyo2YnVRJLYE4SpWnVebOx2DVHKsVZmTj0nBbTv1B4bI8IYma8iR8rIILLvHdeKI1F7GpPyMEnP2iokPeK2VM2mTBFnE8RpnyjtEmZqDaK1SboKjX2ehAeuW8uUkY2MF5lMoLJZVDaL9DxrG6ZfuILjndWIf197Gn5/hSm3g3wgwwl3vYnFj76SHw2ffMCed8kpV+zX4278+Q922bb6dZdTmR3wyFUXktlg6LxH0HKPj7/VZd37L36WI90V966fucu2ZXMv5lunfB+Ax153OTrvQWQrYh/5woU4ZfDyBi+vURW9y+MnA2O7ZFb94dPjfh5qGNv1sztccLq1aVty6ue44LQrG50rADf98TNc8OKmJVATTUwWZO8aXj7nIa449hd0thXYdI7AuAblxiz+nRWm6/xVIkkIxV93/ZmRzTMpbpnVOM6cf7+G0lFVCucX2HpakqFFbay/wMU5aoTtx/vodAKRShHM6uDRS1tY9O6HeNcbbuLUhWuRc4vkF4aUerGiv7b5FKRToA1qsETLuphkn2Ru+wAvScCLfYculT9YL9vzHnsrsigh6I9yVLSLxJDLVPBbquAYZFHhDUrSmyC3XpMY0Hj5GC+v8fMaGRgKM2B4viF+UZ6XHb0akXfovF+TfswjuVWS7Advs4valODJx6fw84GT+XNlJklhFyZfnn6S49MbSDohfmuVtrYiC2dv4iPH/Y5MRwmwXTIqMKiqteHVjkT7Eq0ERmA7t30ruDTswOoii1vLBqx1eOuEotjrUGmVBFn7/StjQ5SESheUe6AwXZCfISh3CsrtgkqrJEoKqi2SSrvNW0FCpVVQaRN0zR+g3S9R0h4VE7M1VmRUQE9bnmqHptImqHQ4hBllebPRiOOPQi5cgOrqsF3bRo92tMDo7+bA8I5DDb9fPw+KZZxNAySfHiK5fhivL487UEJW9tzBvr/Yn4V/X0W4v9h1Lj5j2hbOXXwtCRFy1XE/52tPnMMnH30d/9Z3FptKLax+3eQWlbzqto+wsngM3x3pGbf93MXX0jF1IwDfOuX7FCo+CMMjV43yWbdo37vPBW5ZdekhW7SwN9lfy462AteyYz7F0oWXsXTRqFi48oEvYKRscN4mDk0YIEYcErcX7qrFeDQFliaaeB7j4S9eSOX0IrEPqfUKsd2nGjv855Mn0yHTZGSCYxIbSYvRMLr6RHWGO8iaSi9F7fPy9GpeOu9xOqaMMC05zH1bpzG4NUuY0wRZyYwpO1BCk1AR5057nPOPeZTOI/vxX7wDZ0k/a1/vUzxhWiPrAs8F38N/eoBwVSen/uUNvHvDmawJerh3/Uz+88kDt4D6QsdEk9IZ7iA97giuG+EUIbMlIt0X4+WtQJafLin2SkpdNqw99cQQztNb8TYO4W8r2p/bSxhpJ2jFqVCcFxEfVcSpQHJbFaIYd+1WvLXbSDyxneSTA4jIYBzDjK4dnDRjI8nWCuWpMf0nGQaOdijM8BmZ7TN4hMPgAkl+uhVGjMB2pXjCdqXUxBIZaJxyjJeP8UdiVGCQNWHFKNvdEqVsR4tRkjipiDIuccJB+y467aOTLibh2ErWMEaWQxvwmXQIWtxRv+s4Rqc8glafOO0RtCepdCcIWzzCnEu5XTK4wCM/Q1GYAVFC2AwYqE2MVSMgW7XkkNkMIuGDUpg4tuLKC2TiuTNk7xqeDLoZHkqhduS546cfY/XnLqTyQBsb7phBSga79WJ/tjC1bJy9WSTviwt8c3gaD4cl7qxGE+6z7u3WKiHIWjuS+79yIWs+dSHzrt+95/H+4LIHXsfjQQ9/qOhx7/GdOy3Wvf9icAxRJubYjy9HBbWKyqpGHpg5Pjf/flfrjMnAeS+7hvNeNr6K/dzzDnwloVF2wnnjXZ+1nSo7Memb7rycxWddxflnX33Ax9JEEy8k/Hnp1Zx3+oOIQBCVXbQR/PqpY8ftk5NJXpGqkJEJksJvcNq3n3An06fsYPVZP+Td71xB3/kx3Yu24SiN1DB8TI5gXg9bzkzwD6f+houn3Mg/tD3Gh6f+hnce/UfOXvgYRy9+go3nOwwemyNsTRB3ZAimthD2ZNAK0lsMDzw2kw9uehE3DM5BIxnaPIPtm6cdpFfs+Y29EVl+nj+CO4fmsj3IEmiFp2KMFoiCIvOUpG21pu2xCumNZfzhCHckItEf4OU12oWgTRN3hExpHea3jx5FZp3ELWra1sS0rDWoiiG9CdKbQY0oHuqfwoOlGRR0BYBeleGk5NMc27qFl856ksXTHuOC7kfYFuQo9mWQIQQ5qLRLopRCe5LYF+haA7MMDSKqcVkslzWuwngOOuGhUx466aKTLmFbguE5PoUZgpF5huJ0Q2kKhGnRsD4LWgzlHk25V1PpMlQ6regSZATlTqi0W94fZKE4HUozNC2JMhf13sQbc3+hW2XYFmfYVs0SRArjGGQM2gGnqhGRRp90NBiDGCmhdwxhqlV0EByw6+BQRv0aDQMHUyhiBodZ8cjVrHzwKkSxhBguoJMOL/7byeWEY7EvQssbO/7E6r6eCe+7ZdWlfPioWwAYHkmxY1uWn53xdVa89B85ecXk8bxj/ucKWr0y/7nxJN6z4LZdxjAWj772s2AEx3xqOTI88Hx2ojE8E/bm9T938bUHpTNGp32WnPxZe00+fNVollMNq+74NDf98TOW0x5CnVZNNHEoo5nB0kQTz3OEBQ+VNKiywB8QbNnUzk8yLyI95fec6g9yjKfZHu/qE32y5/GfRlDSHnmjaHXLDA2leDA9heJTLbQ+JcjPNvSfAB2By5tn383Z6dWc4NnKl21TCrRIH1+4cCLM73k7C64QgABRa92Vgq77KsSP5Lj3qE5O+MAGTvAS5HWeo//7c5Y4NXHAMd+JWecNsKinj7tm5EgOKOsFHRhMSqA9EDEktxtaHxpGjBSsQFCuIPIFwK4xyjhDnIBqh8Zrq4CAjoc07tqtDTEhmtXNyJwkYUqw48SYl592L7MTA6RklUArHtU9aC0otitK03zb9u1rdEJTqUrcoiTdFxElJGFKIrTtELFija38A5CBQbs0qv+0LzECSl2O7dIpGYS2gaLuSGTDRGtjNMZBC9EQU4yUyFDbjp2Ei6xGCG0a/rSADaxMCYKsDbWvtkKYBTG/QEe2SL/qof1RB7VD22q+ahUcB9HZAcUiphpYu7Aw5NniULdTqGNP+Vb3FmfTfmsCqqOT8sxGeMn7/sw/tK07YGO66c+X75W4otGsLM7lxu0L2ZRr47jUBm5ZdyTnzn5swv0fWD7eAuzJj100KeMF+Js730fWyfLG4+7a435H/vxKqttT9s2aiQkzimS/zU8yjmh0f+0v9taLen89q3d+3M7WEucuvpZbfjN6/zN5e+8vxtqBnP/Sq5BYy7OxXTmrbr+M885pCixNNDHZ2F7JQCrGywQc07KVF/lDQOoZH3d556O8LPMoAMcmNjB9Rj+b+trwnkqQKUH/CYK+s1xaZ+5gSeZhjnLTALwkAS9JPAHtT9gDzVvF4hNfycDPZuAWDaL2sakdCFOC3GqHOx4+iZtmGf739deTk2lCE/GBe97KN0/+4QF4RZrYE96YXcvvhxYghcaRmpGyT9SXJLlFkt2kSW+qgDaUpyQwUuDvCJHVGGJDmJboRISXDpHC4K/zaFkXoyqaKKVs50YnRAmIWmI6Zg1y1pS1LExtomAiMrUxnOx5nNx777hx3RME/HfPcUTbW3ALUG0FkLhFgYxAVQ1GGWRkuarRtmvFOKrGyWvd2imHKKWIfEmlXRLkIE5AnIvB1VSTiiglUWVB0B5jEhqhDCaUxEIQp0FWJW5eEKXBKNAhxEmIZ5XJZCrMy/ZzhCtJiiwAZyRK3N/6FFtLGQYq9jn9YYh8ycBJrbQ/MIJYuwkdBJgofFbd2IcLn4U9cxv/oaT9ZSfr3/6XzaD7net44rEZkz6eW1Zduk+L9H+oaG4cOZGoqpj9b19k3Tt2n6Xy5Js+Ne7ve5ZNzuL77G9eB8kkP/x/33nGfc/5zcWs29SJMZI4aTu1nms+uzfY3XHGPsfO+0z0/Aci72Ws9deSUz+HkJIlp36OG+8av/6y6vbLOO/cXW05mzg0cOiE3Itn3uUFAGHqK0pNADAyMkJLSwvDw8PkcrmDPZwmmphULPzFFVy2cAVvygwCsKrs8Pv8UVx13M855zcX8/QjU0hsl2jHBj1qByrTIggk2aekDWVMQrnH8A/Lfk27KnBvcTYtTpmMqpCVFc5IPclCd8+T3fdtPIOzW1Zzf2kWD/3tEWx9aSdDR2nSGySpbQa3oKm0K4rTwM3Dg9ftXT5BE3uPegfAoC7xX/l5PFKaykNDU6jGVnfPV3xGhlKYogsxyEAyY1VE6t6nrUAghO3y0MYKEfUbgBBsWzaHkXkw70f9iG07ANj+yvlMecdTnNr2ND3uMMNxit/2LyAf+Hxw9q10qRF+OXgS9w5Mp29Hjrji0NE9wsfm38z2KMtP1p9C35ouOu+1E1C3oBtBpCo0EBu0J4iSNl9ChtpW/9WCSmVsCHIO5XZLxjHgDxlS2yKcUjQ6/to5iNggYo0RAhnGEGmi1gQi1rj9RYhidDpRU5ck1Q47QU+tG4KRAqUTZ7D+TRGJVEBlY4b5Py6htg5DqWTDSB1lLfMc281iBgYxpdJoJstOHSx709VyuExGl7a/d7f5K7vDuo1TmOlkx23bW5uQfcUFp3+em/74md3e/+CG6SyasZFb1y3gjtIRDIRZMqrCFcf+4oCMZ0+Y99OrkNLw+Bs+3ZhM7zwJe/GNn8RRMX07ckQVl1SuTPRIC+mN1lLBH44RkSFOSG7/+b7bl+3ueZ/tceoTyp0nlvsy+dzdvpMx3rE4/6VXjevWOfe8a0Hu/3M8Wz7a5LNNPJ9x27ojODOx66JC/TvhwQ3TuejJN/D441NRIwoZCOKUwZleJNqUQrsGf7uiMi1k9cu/YYuBniWO+MkH6HgAdlxQ4c0L7+JnTx5P8HgOb0gQ5EDPKLP2zZ965gM1sU/Y247W2yrwlU2LWTvYTvHRNrr+Yuy8JiGIPZuFImLLJ4WuiRhC0H+c4G+W/Z6bvvwSck+UCHMuGy5wefsFv+M1ub+wyEs2nuNXpRQDUYZ35Lbt1Zhe8/gSHt3SQ1jwkCWFiAT+DoFbsDmFiUGb2aECg6roRkg9gBGCaptDpV1R6YDizJijF26gHLpsHGhFKoMUBq0FQclDDFt+L6uCOKMR2RCpDPGQR/pphayC9rFd3y6UZsQkNypSW6HyimEefNGPAVgf5fnY+tdyz0NzyK52aH/cdvCGKYk/GKEqEc79T6LLFUwcI+TooltdbGnY4O6B0x4ufBbg/LOv5uZb9+29fdkDr+Pz3Q8Bdl68odjKjWd/ZdLHdsGLr+SmO/ds4VV/D317eApfXPEaWlcL7v3mcz/3XvSx5cQJeOSqC601lTETjv21f/gQnox5tL+bYslHrEuRXV/js0OHJp+tb9uZ0+6rmDIRH56M8Y7Fzny2vg0h9vk6r6PJSScft9xyC29816u45NcvPdhDAeDq837Hip/fwumnn36wh3JQcajIXU000cRzgIdfcwVvPuJPjcC4JXMe4arjfg7A7867jim3Q9d9EdNurTLzVzuY9X8jTLlF0v6QJLHD4BYMqW2Gzvvgn+5/Gcf5mzg39wgbK23cNTSH3w0eyTe2n7OLZ+rO+Nb0O3hLdgdf6vkL617XiQxAaEGUstkZ2hOoqiG1xba0L/jC8ufg1Xlhob4I8VjosTFo54l8F4PlFNXQwVcRLckKfipEpEPIRujWkChpQ9mJItDaiitAOLeHcO6Y/7kxdNyfZ87P8w1xBaxoFxnJSJzkoeJ0toU5Wr0yPakCj5ancnd5DiNRgnLoYmKBkwxpTZQZilP8z+bj2fZQN4ltEoyt7pORrR41ShD59rox0oovQhu0ay0X4oT1s44TEqcU4xU0MgAZ2Wo9sBPp+oR69KYhNoioNgGUVrTRviJqS0EYIofyiCBClAK8HVVUVRN2ZSCXIfXQFtp+n6C6Pou/Q9rjRBGkUsTTOykdO4VwRjuUKzCShyiy4grYSWct7N4OUI6bpE6Ew2kyihQTBmnuCW96+B18cNOLDtCAxsOIPb/Wi2ZYD+hbC0cx1R3ipPQ6Tk8/zr88djZv+dO+ndezwdx/uh6zOUnUl2TuP10/4T4Lf3EFg8UkWwdzPPHXn2bd2z5BFCmCrojCTChOEYRpSZRW+zUZrWMyJnc7+1nvrrpvT9i5YnNvHjsZlXk7T0bHdtM00UQTk4uXzH6iwWXH3upYNGMjff87k2k3SWbeFDL7f4vM/mWAe3eGxDZJcrPCH4Tcwy6X9r14Usb0xJu+Sfj6QeKKYl2pAyUN2rOWSyoAXXU4c9Xuq8Kb2D/s/L/fHWY5eWamdnBc1xai1hhVtVxPRtbmSmgwDmx9acS20yy/dMqazAb45b++lJY1BUSkMUqgZhX5dOfqceIKwKtSpb0WVwAunHETMzoHQQtkRaDKwnZDZUC7tisqSghi1xYPRSlFmHEIsw5RWln7Wweq7YbTT1zDUbmt7CiliKoOYcUhqDgEZRdKClWSOAVpi4wFYEBHAhEJoiR4echuMGQ2G7LrDcmNijALlQ5wbmnh3IdfzQ/znfxg6FRybhmv3yGzRRO7gq0nOQzPlQzP9XD7RjBRLYulzltrfFZIYbc9Q7j9YcVna9jXrtUf3fciznvkVfyk0MaizEY+NevXB2Zge+E2LHvXsD7Kc276ca555X8w522PM/tbX+bIzz938+9jP77crjUU4ZhPLcfUOrZ2xuk3Xcr6kVaeGOrggVddyZNvvIyoO2RkjqEwVRBmDk0+O/a4e3v8iTqQnumxk2EtNpG1782/v2x8IWITTTQxIZoWYU000UQDd/z0Yyw7+pMYR4IGGVTIPQFBW4Iwo/AHQ4bmJ8jPBSEM39h+DkkV8sRwJztKtmtlWsswMxI7eDh8alwny6Au0SZ37Wy5+m0/4NL7Xocueqg+D6OsyAKQ2hYTphVBR8zJKy6jM1U8INU9L1TI3jWcAfzfA6+jr5ilUPZRUhMbSRRLqmUXXVUIT6MSMXHCbXSqRPOmMrAoBRqGjja0rhb0rHes6BLHqKc22ywRKRCOA46DUzFsHskRaUkYK1wVU40dioHH+uFWkl7ISCVB2gs4aYGdLD80MIUv33UBanOC1FbbVVVtFcSeQKUFGHAqBqdsq/xiX9RCta1llzDgFm31H7HBKUWI2KAChygpcMq1bUGMcUZDREWkrYe0MaBHKwZlOQDt2pDbbMoKMLGBMEJFMbJYxXgOcS5BOKOFOAmpjYL0VoMIrDAVzGwnPytBui/EXb0BXSgilEJXqo3/jdEGIccHgjbEl+cJhNp14rQnbNnUxkjZ5yU7pvLNo370jJ1yzwar7ti7EPZC7PPjzaeRcQPmZ7YxFCZZO9zB/P/8Ao+/4cAGuR/9meUkQ4mRtvJWu7DhPJ/HL7VVh+effTUYw9TYsSmIAniDfeyav/oMs79+HWFLjBEKIyWJgf0fy3Md8jnR8+3LxHXnfX5zi7USe7YWDM+VrcPhhBf6+Tdx8PDgdRey7JhPYZTNPVPFgLbHHKqtksSgZuAYRblXk1TP3pqzjntP/ilf3HEET5c7GNmexq3aog8AKpLedJ5frT2OMxI7GmHNTUwO6iKL7lvAiC7zYOCTk1UWeUnKpsqwdpib3M6RqT5u8+ejyqM5fttO15x/8kMMBilWzf4lf79hGU/8+WhkYOj6SwlZDNApl7DNo9rm0Nu6/VmN9cGgTIuMeGkizT/N/ylvKb6LkSCHHFHICJyi7WAxNX0iTghMBCas2R+JmiCkbCGae0QeR2ju3Dabkf4MlBQmF2IQUFbIskQFEHsgIoEIBCa2PrpWSLJcOrk9RFViRGxIDHoEWUmpWzJyWoVXdz/JL7efwD1rZpHIVWl9zNDyyBAbL2inMidg+q8U2dufRI8UxvFV27UyvpNll9D7wx3GIPbRHsfd7LE26OXqlW8izMCj7/vGARnaTX/euwD6Ye0woFNkVZkXtT5F35wsfSM9HHnlch67/MB3s7gFe51rxxbAbX1xmgduGH3e88++GiMgJVpI1rI3WVa7MxLELXZOOSIkif79H8fhzmf31BmzL5ioM8ZIwXnnXM1vftfsxDxUUA+5b+LQQVNgaaKJ5wGWHv8ZVt7/+Wd/nPb3IlwH4XmQSWGkJE7aj4k4ISh3eSQHYspditJgghtXH4PjWRIdBQrHiymnXB7JT+VIfwutso/VQSu/HDyJP/TNYWFHH6/suJ+TEpuY51h34puGjiXoT5Jeq0gO2IVyt2QwEqKU7Vbwusq8bc6f+FDrOnTfr3k8LNCuBB0y3Rj7gbIKeiHgquN+zv+u/wxKaqQ0KKFxXE2YCihrHyEMUmkGFwhaHu5m2+mt5GdD5/HbaEmUOTO7nVu2nGIPVutwMfWJU6xZ0f/1XZ5zzo+ugR0eIhIgIM7ECC9Guppp04Y5Kr2FqnZZtfEYOu90GZkL1TMKxKHCTwSU1rSQWytwi6MTTRlZuwEVWpFFO7ZST4YGpxAhgxhZCXGKElVx0Z5CO4IoqVBSIEMrpBhHoH0F2mavyADbeSIEIoxRgf0dIcCVUKpCGIK2goxQEhyHKOuR2RiT2lJBVkLEjhFwHYSBlifLOJsHa3ZgAl0uj7NOAMb7Vj9PrMHqEKnUPldCPf2uj7PwF1ewaUs7ixY/NwtT311zFllV5g3z7pnw/i8db1/32d//Ivfo2fbfJAAtmP0v19lQ+QOEuiAitBUejQNawrGXLOehL1+IUQIRWYsTjBmXEQKw7oMXM/ufr7eLOBLu+faFz5vF8H2xVxiL/T33+jEnmug+F0GlTTTxfMJkfQ4t6/oAKIlwXcimMZ5ju1uVoNitcPMQn1xkQaIPjUZOgrHDk1GB/9t8LBvXduENOLgFu3gtNJTnaF7U+hSvSFWA1B6trZqcdv8he9dw/7oF3JxfyECY5uzcY7SqIikRMNvrJyvLvOmEu/iftWcSZgwvfsmj/GrGijFFYCmyTgUjLa80EoyvkEHM71Z8fMwzfbnx297alH11aCavyTzMIm/U7nShm+K+U3/ChdNP5hd3n4R2FbJqg+lFnfoZiF3LbVXVCiVGCgpTBUErhPkEf3hyruUfSmOSQK1ACtegE5oQiXENsiIQsUBoYR0EIgEahLFd2mqkiohjUgMFklKSSzhU2lv5/5InYlZn6XnU4BUUmYf6QEranojpegAS6/oxoVUT6wLLRPZgjQ7t5xFkJUYn9q1o6PFLL2TO167Hy8NDX7oQOPAixhFfXI6qMqFgcvzMDQAc/d+fo1LyMCUHshqdEMz52vW4I5I1nzpwY0wMabRTa68y4I9oznjj9dzx049xwWlXIhwJrs3TFLFpFMYArHvvJcz+9peRse38er7xWdh3fjrZfBbgN7/7VDNfsIkmngFNgaWJJp4HmAxxpQ4ThAghIIoxOY9Kp49RgkqbpDgVtGeQVVB5SaxdQmU/RoyEUAv6hnPkA58NhfMItSJf8QlCh0pfitu2Z3m8t4uedJ5jc5sBuOn2E+l42HYSGAlO2eANBgRtHmFKUJpqOG5KHx9pXU/d1XC+m9ll3PXJTXNSun+4/5WfZ/YPr4VIUvJ82tsLHNOzla3ZDP0jGXwvxDm1zMZiJ+5LdxANZNjan2PeEf38bccd/LrrZAhHrcN2F15ex1Nv+SQLL12OjGrhsBkH7TlEXSHrBtv5n+B4OhIlRNWKJOHUgHcceTexkby65S98wH8L5qlO0n2BtXMSIKsxTqARxmCkwHMsEZehRpZCRBxbewchcCJNtSdFpcNev/5wTGJ7BVGJwJFEaddagaUcVFXj5AUijkEo+xMQYa1CL4obnTtEkZ1gGoM3NIyvFCaMbIdKoQhS4AyNQByjtUYohQlq1bM1EcXETJjBMuG2wxWe9btfdsQlrHjiy8+w8ygefs0VB2hAE2N1eQqLcw/xyIZpfGP7OTw4OIXBcpL7Xzn+MzexzkOV7e9xgpotzIFppT/lPTegXYFTNTU7PGuJR+3pqq2ShZ9cTq8BhGDV7buvNFv3oY9xzKeX88jVdtK8L7YFh+vEdV+tGfangnB/nu/5ihf6+Tex75isa8YYDdXI1nYGIcZ3CdOSMAvDx0R0TxukM1GhwymwJS4yTdlF76oJkQhcMfE0+b6gwi3Fo+ly8sx1t3GKH+MKxf+VMnzhsb9i6L4uEoHdV5WtwKIVTJs+wIfaHgH8Zxx7k9M+O5w9ew2X3nQphYpPvifBKS3rmOEOMM0Z4gRPcE73A0x50xBZWalZeo3viD0ytZX7ImtBO5Fdzs6QvWu44+m55HWCVlnmCDecsGt/S9C6S5bcuONkQnQqotgloaBw8gpbRQQ6oSEWuAVphRdju1yS20FVPCpzArp6hgm1YmQ4iVqfJE4YdDqGhEYnY/xclcpQAllUtrgpATIA7QuENshqjKyGltcODkMQIIxhzj9tQbS3AUXIFzDVAF0qgZCkt/VDHGOEQHgeOo6fkc/aDJbnD6eV1RDjyn3OYnnqwx87gKPaFVFvQGfvEK/4/d/z5C1zSG4Dt2T4879d1NjH3J8jXQQRQ5S2xTtRkr2yGtsfvOhtNxB70LqpStDq4pRtcVtiW5Uw5/Kit91Aaxhb54BI7rYjZ917L+GoK5bz6JX7xmdfKNhbTvtM9ze7V5poYs9oCiyHAZYd8ylWPNJUi5s48Fi549ssbXsPOA4m6aGTHtUWSewJZAhhi8btLRFtSKOTGgSovEKGgiitMZ5Ga0EUS9Zt6kL1u8QdIQiDKknksGLrSCfbOrI8ke4k5QUYaexi4aDBG4kwUlCcniDICvKzIHPUIEdmt+71Oei+Bc0J6X5i3VsvZfbXr8MIQxRLUirgjK6n+IsznXLkMlxK8vAXx1cvLbn1o3xz2znE3SErNn11n57PLdpKPO1a7+fYh6DsUixnKLX4BB0OvfMG2NaWZUrHCL4MaVFl7irPoVD2aSkb3B12Vdt4DiKMEdVwNABUjbH7CkJQytp91ULl46QiSgrcosYpxnZbzkdWI9yhCnHao9rhU005GEfgDlYxvkREyj5XpK2o5CiQAiKBKVesyBLY1RUj5Hhrr0hbwcV1rMgShKMTzN2IKvUwUCHF6GSV0ZDQVfFP9+l1PyQQhOC5+ySuHAysXH80m7pbWdr+IJsrLWweaiHIe8y/dnnDigsgs8GKHZEvMMpORqO0YMFVy1lz2e4r/s479xow8JvffnK3+9Rx2jtuQGhwNIiSRobUbOxsla0ITcNbvZqzwuTeTPR7/zRqTTdZE7CDjcnyz94XHM6i03OJvQncbaKJycDK/m+NclrfwySsNaiqQtuUEZZOf5SEDOlSI4QG7gkCNketxEYwwx1krjNqbftwWGJFfhF/23I/txQXsWrb0URaknEDpiSH6XCLFGKf2EjihMEfFHjDlt+Uu6DaYfi7mXeSFM8sroxFk9PuP/54wbXM/Y+rGQqSVLVLrzNMl6rgCitw/MNRN+/ymLqw9Q9t67jw3y/a5f494eb8sTxV7kAJgyNipvrDfKj93nFCy9XdD+x+vFvnoNYlrfCRNMiqwBuxBWzaAxlJRAT+UK1rVVgrpditdZ94MRm/yuahFswOnyitEVrg9jtEWTt/m9s5wEAqzdZNrYhIQioiCiSq6lJulyS3O8iKiwglBIHNUoljTKWKKBRHg+nrHSgmhAqIhI8plzHV6uj9ExUJ7Qm1+w9HTiuKFYTv7tIpfMihKulIFnl1z/3864sz9K/pwBuUHPHlG3jiEnu999wTEfk2yyTO23xUmbHX4TGfXs4jX5iY0y455QqM3L0AsjPOev11iNjgSoFb26YqGlnVOGUr9KmqIvKFtWuODDfed8Uejzn1D6N8tm6TuzcC6aGMyeKV+5pl2OSzhwsE2hwaHYHNiB6LpsByGKAprjQxmTjvZdfsdjFvadt7EI5DNLObsMUj9gVR0rak+8OGZJ8kKGUQ0iBCgTck8Yag2gbGMRALgrJLUPKQgy5+v0Bs9zDCVvAZAWFVElYTlHyfQjqm+4gB+tuyyFsTZB8ZwSQchua1MrQoJjd1hFN7N9DjjrAtLtCtdu1cmQjNCen+Y90HRy2NPnLvW2hzi6w6Z/chh41MnFP3/bnu++qFnPb2GwCBDA1CC0QMqz97MXO+ej1bq62k20vM6e2nFHqs2LKQWZlBtlUyVAYTeJ0Cb1aW1OaSzYXJeEjfQQ2VEeWqFTGUhEpgLbwcBZ6HziSIsva6VFXLBuKERLs+QYtDYofEH6ng1KzAKl0+YUYhQxdVCBFagwTjqppNmEInXWQpQFQDjBR2ojnG4muXgHptaoJPxG4xJth+XFAotfwSow/LiWgD2rBswSdYseaLB3sku8UDr7qS2T+4lrvSM3FUTLQxTbpPIKtwwoeXc9/X7ETz7u9cxIv/9gYSJY32avYbhkYl3e5g1N775rpFm3+kQoMMDELbTq16Bovx7bWhHbGLELov2JtJVXPytSuar8feoSmuNDFZeKbPoTqnjad3EmU9tLL5bVrB8LpW7stN54yOJwmNw33VXv5cnMdIlGBucjuuiMnrKgkRMqRT3DJyIrf3zWXVtqN4eqCdYMQHaZBuzKNeDy3pMsd0bOUVMx7mifYu/vSno8huNFTaJOGxRd5xzJ95b8uW/TrPJqfdf6z9G1tk8J01LyEhIuZO3/P/4Nm8zpcf+0vOuvnjGCPQRrAh0cblx/6SVU8dTbcqsMhL7vaxDwZlpmRG2NbbirfFRVYEcVpjChJ/EMK0LUJKDICXN2gXMBDkBEEbhG0xShn6CxmbX5+JSLeVKQ4lSWz1UBVJOZFgpCVBV6rAcFuCyo4kcthFhpZ7xx5U2l1EZMjP8mnHWjHpNU9itLEFPtT4aL1DRZuG+7/wfXS5MvEJjuGzo5tqXSxjcNhy2ihClqssOfVz3HjXZw/2aHaLde+7hNnf+xJrtnajtcAZkcgQ/B2j/5tbf3UJS065gtL0NNqVBLGt3Ik9eOjLu+eWIoj2KQlCRgYRGWSkURWb2YkB40kCTyIyDkGL4p5v7z2fVcXxc6rDXVw5WGjy2Saa2H80BZbDCMvmXMSKp2442MNo4jDHniqlVw5+hwtO/zw7jk0TJa2lQZgFpwSZLZrEgCJMA0bgDtvqPFELT3byCvIKhEFEtkLQqdjQOhUYRM0XFWm7CuJQECrDq2Y8xP0t01lz33yq03LESUnQAqcuepJlnQ+yKLGR0EiUaAZ4Pdf46kk/OuDP8efvT1wh6OYlcVVQLmV5ciRJ3f9oWyaL50YI15CfF1NtVWQ7szhlY8M7NaT7PPztJYyrrB3Y9ggCG0SvO1soT0kRe/Y6dMqG2BdUW1XNagnQoFMeIoyR5QBvSBJmHWJf4Q6UMFKCIzGexPjCCi5A1JrE3eEgpESmUsSFoj0ZoxuTyIZg4jogRMOvehzGCiuOresyUdh4vFCqNtk9jEPvnZr4dRiUu6x726UsuHo5lbTBHRGk+mzXSJQUnPaOGxrWCqpq8HeERGmFkQrtTt5n1jlLv4gjRa1bRSODWl5QbW0izLiEGckd/9/+2U3sq2ByuEy+mkLQoYulCy9j5cNXHexhNHEY45ne2ysHv8MFp13J8IIMkS/Qrl2kVlVQFUHGrRJqh9uLC9hQaWMwGM316wtaGQqTFCOP/kqazcMtFPpTbBtxUBVbcR0nDDqhCBKaEWlIO1Xe3XYnpVbJO47sZFvcie6u8E+n/H+13JUmDhbes+C25+R5bj//S7ts+/ftZ7Ck/SE2xUXmuzsAUBhmj7EKKxqXN/bexczUILd2zqMSuGQSAUOZDPFmjzhhC9vUZmvpBLZordQrCHtCnHSAcjRhpEgnq6RqHnVFAVEGZBX8bQ4bRQeFnrwdQ1Hh91ueEvsQtIFYbzthU30hYWcaJx+gpk0hWr+x0ZWysyhi4lrEcq3wZxzGdFwLz7O8NwjtY6QY5bRxfHhzWrA5NtXwYI/iGbHunR9nwVXLMRmDjCG73s6fTnn3Ddz9r5bPijDGHwwJ0w7aVbU5056PK0KbKbk3eNkFX0TKWn5mqBGRRmB/D5VLmFX7zWcXn/EFVt3x6cNifrGvaHLaJiZCfIh0sDRhsV8Cy7ve9S7+8R//kWx2vIdosVjkIx/5CN/97ncnZXBNjEdTXGniQGPpCZdTnp2l0m7FkKDNIANBYgdECUHs23Z0qHn2OoCBVB81uxoa5EpGBhXYgHEV2FBRFdjjaGXJvElo3tl2F27b3XzsDa/gD4uOYN7MLSyfvZLFyfrCs1f72dSDXyg48vPLQcGTF1/EwkuXAx5R2l5v1YxLORVb+wIDUdqQnylwKgKnBN6IodKu0F4aoUFVYlQpgZCWfERZjygh0S6oANxCjFMRGGU7AYSG2JeYjiSqHGGUJGh1iZICp6TRSRcjJTKMIdIIJWzVVhAhi4DvWa/3nSeKO4V6mjCy4btKgRGj+4+1UBCy1oWjIBCNLBekgDg47ILtd0E1sK/XIYyjPrec1Z+9sBHseeIHl+OPaDDglAVCw0teex23/ffF/OE/P8biM74AEsKMREa7TjQnsgSrB6FPNGk679xrEJFGSQFSYISoCSy1HKAYiA2OFLAP3TC7w/Nt4naonM/is66yXv774M3+fEdTXGniQGPposuozmyh2mKtGysd4A9a/hlnNENBkgdHpiGFQRtBKXIZKKf5S2EaQdGDskKEwgaOVwTJ0BYNGWmPIUNriRt5moQXcmSqr5GvcecJ/8WmRflGrksTL0y84Y6/Q+Pz5iP+xKtu+wiRkeTcKr2JYY5JbabXHaaofYbiFKFRdHgFTpuynoFqmsFKklLGI5hiLWidIWULglrsd70R1r4JadCRtLdQUS25SMegnBjlxQQzqpB3ELFAJmKMEfaa9zRxwhYXuXnwhyH72CAohelKUZzqk1mvEcP58dx0rK1t7W9dKOxqASbGFxbJbMba9ZXK1k4Xay2G1uhC8fDmtKmkjQk9xIsBG5z2slFO6xa0FYx9wZl/dR1/+K+LWXn/57ngxVeiPIkMpC2U1Lue25KTP4tRipv+fDlhV4abf38Z57/0qt12jpx3ztXIyCAdy2kBRKwRsa5ZOsc4SmCc/XwdBY08wudj98qhwmn3JaOwiSZeaNivFcvvf//7XHvttbsILOVymR/84AdNgaWJJg4znLv4WptlIQTVFkXQCkYZ4rS2eRNxTWDxbDeLUwYt7QK1Uzak+mNEZBmNqPFu7dpqFxHZ8GXhCWJf4hYN2hNEoeWhnTKBL1x+OOtWmHXrpJ1T01Lh8MVjnxltB+941AptQVYRpgRBTlJtHZ3E2eonK/ipqr0mVYAl2DULpaglgcj4tUURZcl9bEVAtxhZCwRXYhyBkQKtBNqTGOkSpSRRUhJk7fYomcYraBJbioggAiUwSiEiexxqQg5xLcA+GlPNVqv8E6r+t6lNMBRCSITRo/7WjYdoqHXI1HNbiOGm8CcH4JV/DhHVBNRqcHDH8QyYenuVRR9bjgqspV3rE0HND12iqhqh7WLb2a/6Mrf+6hKMK4lSijAp0A4sumg5Ru1kq7CbeePOIsv5Z1+NjHTDCky7EoFB1Kr96hlDyFonYbz/1XoTTZKalXKTh1W3P/8m+k00caji/LOvxhksARCmFUEW4iSEGYNTELaiPxcwUk3QX0wjhP063jGcQW/38XdIsiO2C1uGtlDISFvZL2LbvSg06ABELNAJ+6WeEOOr1ydTXGly2sMT/3nGNxq/P/b7uWgHomyMbAv4U/tsulIFHDnK+YJYUYpcioHPSClBMJhAVCUiFqAF1TasZVNd21AgRhyMcDDSIAOJiG0weeBpSMYIV0MuREhDJlvBdyJcJybqVAQJD2e7S3ojdi63bQd0tJGfYS31jCMxlSrS89DVnbqwaoVDo3a4tcKPWmfKOAhZ63AxCNdBKNstZuIYE0WHrzVYDaYurBziXRM7c9qWp+xnVsPK2xGc/fIvceuvP472FFFS2SwW13YAHnfRcpwy3PuNXW276vN/oyTnnnctt/xmlD8uPvMLCG1QxoAQSGM5Ldh1AhEbOwcTAhnEOIX9E1jilDMhb1266DIQgpUPfGG/jtvEeDTnBk08W1xzzTX8/Oc/Z/Xq1SSTSc444wy++MUvcuSRRzb2Mcbwuc99jm9961sMDg7yohe9iH/+539m4cKFjX2q1SoXX3wx//Ef/0G5XOa8887j61//OtOnTz8YpwU0vp73DiMjIwwPD2OMIZ/PMzIy0rgNDg7y61//mu7u7gM11r3G17/+debMmUMikeDkk0/mttuem7bg5xpL0m872ENo4nkCJx8gKhGl2VmGj6h5+vsG49ggZRFDmBGWgBXBGzZktmgyW2LSfRH+QIA3HOINBrgjAU4pwinHqIpGBdr6rBrbgRB7AlUGpwBUJGsmskiaJNTDKps4fOEOh/j9VdtpUjZ4w5DcBsntkNhhq1G9vBX+VNXUbhoZGmRoxb3YV8RJhXbtIoiqatxCjDcY4AyVUfkKzlAFZ9hev95wgJMPMY71a489CFMwPE+w7WRB/7EOle4UJuWNTqaUgiiGIIA4RnguQinbcTIGjYmn0TaHRdQWyZUEx6lZh8mdqgVrz1GbxN5YOfDWbU1Y3LLqUh68/kJkBKe+6wbCjMJIKxZHKbtYIEMDseGlr/4ylQ6PwhSHMFPPzAEZj1Z7GSX4zS3ju1cAClM9Sj0eL33Nlxv3ySBGhLohnAhtap7V2i5SxPZ5jZRoRxInJae9/YbGcz0bvOhtzY7ZycayI5sT0t1haef7DvYQmngeQY1UEZWQyvQWilMkQkOYNeikxjgQ5gxCGraPZNi+vYVt69sYWNOJsyZJdq0k+7Qht16TWxeSWxeQXR+Q3RiS2RSRGIzxR4zlHGGtsKMsqAQuFeM+8+CaeMEiswFanoT0BgV9CbZsauPBddO4b9107l8/jQc3TWHN1m7Wb+tg2/Yc5cEEzg4HJy9xCtYFQLs28N7UKvVVGbxBid8vSfYpklsEya2CZJ/A71e4WzzENh9TcjBaUK54lAKPfDGBkAYvV8Uog1M1jQVyRgq0PVrESDs/lJk0wnWQ3piO490E1u8irIzdt1YshJQ2E1EKiGNuLP5g0l7jJvaMnTltlJQYAVFaoaoxqhIjDJbPdvoUpjpUc7Zg0jj2uosStQB5IM74jVD7eiFJYYZPpcPlvHNGM4TrXLbOW2FXTktsbCd2bJDVmHOWfpGlC/etOMXtL++y7bxzriZqSx3y3UWHG5bN+IeDPYQmqNWTIg6J277g1ltv5UMf+hB33nknq1atIooiLrjgAorFYmOfL33pS9xwww187Wtf46677qK3t5fFixeTz+cb+3z0ox/lv//7v/nJT37C7bffTqFQ4JWvfCXxQbSc3KcOltbWVoQQCCFYsGDXhUshBJ/73OcmbXD7g5/+9Kd89KMf5etf/zpnnnkm//Iv/8KyZct45JFHmDlz5kEd22RiSebtCN8/2MNo4jnAksRbDviCapxwkJWIwhRFmDF4IwLKEgYkLWsNXkFTbZGoisArGtxCjKraYDoR1oIOJbW/Y9CglLBZFcpWqWi3liWhbJCiUSAiwe9KR7LIW3/Azq1Z9Xf4YPFZV+1S6V3u8dEOlDskRtlqUrdkanZ0NtC73kWAsYGcMrDCHga7EF3/GRuEURglEJFBlSNEqWrb0pWEqq2ewlWIpGutE2JJpU1QbYcwp3F6y1RIEWYVyU0RCIFOuah8BeM7iCgGESMSPiKZQOcLmLIl/EKpcdV+Yoz2UrcwA6yQUu9iMQbhOGAMK4vfO2Cv/XONFeu/wrKZHz3Yw9hr1Kv1znrdddz664/zktdeR5QQlLtcK+qF9dD5euaUaOSjGDkqpOyu6uvP37+Ic5Z9CREbawsWG8u3FHbiWbu2hTYIY2rb7D5GSOKUIsjaTqtbvr/3C/kLP7EcceJ4LvHiv70BYQzV1uZi4WShKa7sHst6/g6R3H34cxPPLyzJvJ0bC98/YMc/86+uI+0rTORQbVOoiuWc3qDtNk1ut0J3RSbQgDcicYrgFsEtGNySwS1q3EJkOUIQgcZ2q0pJnHJqnEMRIIhd+xkvgKo+sJ+ZTT57eOGC065sLD6D5QZG0LCcQynQ9nrC2NxLoyxnldpyW2+YBscV2ha81YU9tF301qrWzR2DU89nUbbTKkpCmBboskOYlYTKEKbimkKDzW6pCJLbQ5Lrh8H3IZ1EbR0mMZii2pkkOdwCSQ/Z14/e3j96grsRWXa+ry66mEoVM3eazdsoVVnx+K55NYcrVj58FUuP/wzGOTyyECbitKUezxanxYzjszIEI21xpHABQcPudCLb0z/94CIWn3UV6DF81ql9SGqzW04rtEa7DlHOCnlGin2yEj3rddchZo/vGjzvnKsxroTIELan9u/FamIXHE7ztyYOTaxcuXLc39/73vfo7u7mnnvu4aUvfSnGGL7yla9w2WWX8brXvQ6wLlo9PT38+Mc/5v3vfz/Dw8P867/+Kz/84Q85//zzAfj3f/93ZsyYwc0338ySJUue8/OCfRRYfvvb32KM4dxzz+VnP/sZ7e3tjfs8z2PWrFlMnTp10ge5L7jhhht497vfzXve8x4AvvKVr3DjjTfyjW98g2uuueagjm0ycSAnJ00cWrix8iMWqzcesPbp0998PZlQU5qZJU5Aot9mWaS2G/zhGG9HFe1KZOQSe6JB4lU1tkHLUYxRElWKENUQEcSWPNWq8o0jEZ6DcSSxL9GuQbvCVmBJ+OWW49hUbeMd7XdwlJt+5gE38bzFzuLKnK9djzrFtqXrRIwIBW5e4g0JVKVm31G3oNPWJkkYUEHNQkmKWnWUFf2EHrVbglogY6Vqn8yx4oeoBa8LV4EQBLnRa9W4hqgvSXKHIPNUgTibID8rQW5tCZ3wMJ7CCWJwFCbZgk55qOEyPL0RXakiUyl0eYzFgtGNSa7RelRkURIhndFqKylZOfidA/raHwysWP+Vgz2E/cJLX/1lnKqm3O5SmiLACLIbDInBGKdshbHYt51JYdJevxPZbY31MD538bWo2DS6mowAXAnR6DVifaprk1MNwhhr4ZB2qeasEBgl4ZhPL+eRL1zIUVcstx2Ida1OwCNXj9o6HHfRcoSiIQTVxyjDMZWsO+Fwsw07/+yrD43ck1rmUhO7YsXWbzzzTk08b3Ag5y8vW/JFEtUYUY2J2tN4wzFhSuCUBdmNGreoiT0rtMjAdra4RXCLBrdocCoaWdU4pQhZCSfktEJ7IAXaEWglCdO2ultrwaPFXv4vsakZaN8EwDhx5ejLlyO7bBaQ9iFOGLRj+auqCmQgUFWQkWCs05w/ZH9qz4orTsXmW6qq5QJG2WMCiAjcoq3atR3YtuhCBpaHeIOSKANRQmGUIdEviH0XfwicUoxO+phcEqe/AK6DPxwxMstjaF4vURLSfW20rzREOwZtN4sU6DqH3g2EFODUlpuEQITx89amaeX9nz/YQ9gv1DntwNEeCMbxWaFtIRvCNDr6tSc479xrxnVjwyg/PO+cq20jPsJaNdf4rIhNrRhuYk5rXCtgBzmnUTR3+t9czx//w4bdH335cmQAqa1WBMLAn354EQBnv+JLkJDEteyWBvcTtqDOSDGhb88hwxH3Ejtbrx00OE6T0zYxIYIgYGRkZNw23/fxn6ExYHh4GKChLzz11FP09fVxwQUXjDvO2WefzR133MH73/9+7rnnHsIwHLfP1KlTOfbYY7njjjsOD4Hl7LPPBuwJz5gxAykPrTdWEATcc889XHrp+A+eCy64gDvuuGPCx1SrVarVUXKw8wUxFsvmXNQMmm/ioOEC900YbRBSYLSZFMFl4aXL0fMkhanpWmA49NwV4o4EdnIZG4yrbBtvoG07t66189baeEUYo4aG7AJSvR3PceyCteeBIxvtvk5J1kiTxCnbysGn4mk8mevhd73zWTx1NeflHuZ0P8AXk1cJ2Kz6O7Rx7uJrQbMLaXzyr/6F1WGRO8pziWurwOurHdy2fR79+TTDI0nkkINTkDbgfhjcYo24a1uBJYIYYUwjiJ64tnJcE/8aWSB1Gy5HYVI+UcZWUDllg4gEiX7ouduKN4VeyfBRGdyCxstrNp+VobAoIP2oR3J7krZHS8hSSJx0MCqNU+qA/h0wcwrFo9rJ3bURvX3ATjzGWuTVrRWcWrC91qwcfn5mmi2b/3H7ixCsWPPFgzuYfcDtP78YgHOWfpHc+oDWJzRh2kH70vpIa4NT0shYYqQhdiUta3efM3PLqks57e03kK4F2GP1GisWRsZGrIS2U1CEMULXOwYlUUuCcrfPyAxJtcMKJY9/clRACbOG9EYr1mjPHvPoy20mDBpMm7VtrD+mLpwEGYFTBRkYznr9dVak1KAqB6/den9xqEycV6y9jqUt72Jpy7sO2Ht6X/gswNLjPv28Xehq4tDGBd6bwWiE56Er1Unhs8d8ejn+PI+WtQFRKk1+lkulHab8sYIqhMiqXbUOutOo0JDuE41uVxFqVDVGVCJkJbCFF7vjtDvxWaEliUGo9GX43ZZjubVjPp9tLXFK9wbe2vkHzkxM7ly5yWcPfSxdeBlIWPngaPX9y/7fPWwotrG5kMOVGkfFlEOXIHSItaBa8Yi2+/gDEq8EqmK7tVN9NrBSe8IWE0WmZsEc2SKhevaaqnHfSFtuKwREmqDbVu3LQBMlFYVpLjI2tDxRxhmpopMuxWnJ2j4RYkeZuCvH5pdkyK3TdNyXJz8vzcAim1OYOXYW3qMSPZxHtrYgWnOwYTO6XB6TxWIhpO3Skckkulxm5Y5vPwev/sHB0uM+DdLOK268+4qDPZy9xlhOO/UP5V34rIhjjDv6WYcQ5NZVbQbgTqjz2YySIA26nhEYG9u0ouwawjhOO8bGJ2xPUpjqEaYFqmq4+18vaty36GPLMVnbuRUlRUNsPOON1xOmBGaKXdK8+zv2MXXuF7Q41sUAiHzJ2a/4Uq1zxhaKHm44JMQVapy2/b0HexhN1FBfIznYMAh+8IMfcM4554zb/tnPfpYrrrhi948zhosuuoizzjqLY489FoC+vj4Aenp6xu3b09PD008/3djH8zza2tp22af++IOB/Qq5nzVrFgClUon169cTBOMXD4477rhnP7L9QH9/P3EcT/iP2N2LfM011+y1rdnBElcOdDt9E4c+6r63wmh0OHlhgG4BYh/yR0W0POyQXW/sJLNeVYIN7jNKNqqchcESpjC2tyCCILQL1boW2m0MOA7GUdZrVwkbbleJbTWJhigl0S6ookQ7iuFSgo2VNobSKWByg68HdJEdG6bSqSQdUzdO6rGbePaoV/BPhKPcNEe5W9kWFygZwwY/S2gUT6c62JTJMdyapFT2qBZcKiMO1VZJNZcgORDjlGLcAohKaDsBYj3aseJ7iDDChCFCSOsNLQSkkiAEqhiCMfgjgnKHxMsbgozEy2u6/ryDTee10z6gSa0dJMh1UZrhUJqqiZKSjvtjxLpNeH0+wZHTMC0ZxHCeTYs7caqQ832E72NKpVErsLqdgpC2kyWOWTny/LEE2xkrHv8Sy468lBWPPfu8kIMBYexn4823forzX3oVofII0xIVGlvZ7Aj7GSqwVXMTdITUBY0/f3+0Aq8+abUWYaBqVg3CGJBgkOBI4qRDucuj0mat8+rWIWPhlAQPLLfiyZyvXo/JxPgbXR77zK7hpGMRpezn9Z3//jHOet11VvDRphE+CrDkxM/aMQEr77uy8djDrcPlucSBFkv3hc8CB01cWbrosnELj0288CATPiYIJk1cAUgMgD+kyc/wKPdAcivknrbFQSKOLQeQtQXqUtz4PJOBtgvLdT5bqe6Z0+6Gz3p5MJskQTHJjrzHH0IHR8bQfucBEVmAptByiGLlw1ex7Ojx1f3v6fw9fW05/liYz0CYphj5bKtkqEQOlcilqDQjFUUVB+1I3AJoV+AWHZyKtra2gUaV49Huqmo0PtdECAgjK2wIgUn5eNtKyEqAcRUq4REnJU5Jo31FZUoGdzgg98enieb0IkZKkC9gulsIs1DqluTWRLTe9jQtj7ay9Yw2Kp0eXiqFbMmx/axuWtZWcTfX8wbjRiEgUOsKV5hq9Xm/jrHygS+w5JQrDitxZSyEYZTPCrcm6Fkuay3Aa50mTNwJUkedz56zdLRwSkj7mYkGaYxdY9DacshaDqX2HMKswqkYYl80nAbqcMrgD42KLguuWk6UAbqrrP2b3RfSaEcgjO0q/+OPP8bZL/8SpjYeaxdt3z9LT7jczrvGcJNDplvkEMXzWTBtYv/xtre9jeXLl4/b9kzdKx/+8Id54IEHuP3223e5T+yUnWRq9th7wt7scyCxX4xv+/btvPKVrySbzbJw4UJOPPHEcbeDjX35R3zyk59keHi4cduwYcNzMcR9wvOdlDSxF9hpEXZJ5u0sybz9WR1y2ZGXMnRcRP6IGHfAIchCqi+0k81yCGFcy6+wtjUitlUnMoiRlQhRDu3CdXXMRLQxXjPmsdauidg0qkgQNcslYUmTrErCisOOaoqi9ie1ewXg18VZ/KZ0JCnhovsWNG5NHDrYeVF25/9Pt8ow28lyil/lzOzjnNr6FFNSeRJuSHuuSGtPHndWgcpRFYaONORnKopTXEpTEkQ533ZSRTGEoa1KrQaYHUMQRpgowsTx6HVbDpDVsHa9a1Rgr9dyp8DLR4wc2YoKwN9eQad9Sl0C7RiMY72K45SL6OogmjMFGWq07yISPh2PhqS3xIQ9WUQuY7tUoCaqCPvTtXUPz2dx5fkCWZuY3fz7y4gSkigliXxJlBBECVtxGvuCgYU+24+35HJPAfTakw1xxji1CaawP40SGFehky5R1iNo8yh1KwozIMzZbCIx5iN44SeXo6pw7CXLOeZTy3EKEuHGnHD+Y/z0iVP3eF5G2snoBaddye0/v7jWDWbPV1UiK67UO8KMYckpV7D0hMsb57anc9wXTNZxDhSW9X5wvx63tO09kzwSi8OBzwJNcaUJRDqFzFqv/Hpn17PBsrkXs+PFAf3HS0pTbAhzkIX0pioiipGloJaPJpDVGFWKcAohqhShSsF4PhtGe+S0u+OzYKurvWFwhhTFwSQP7JjK7aUF9MWFZ3V+Y1E1ISPa5rqN5bNNTntoYcWjo7bkum8BJ3gJzkuUOCX9FHOT25mX2k53okBvKk9nskjKC0GCKtuiiSgFYQbK7TVe4EmipLKdBEFkr9dK1d6qta6rkTyUy41tYqSI3LIdKlVEGCOrIU4xRkaaaotDfrqLrIaY1hyyHEC+AJ5LnHTwhiG9Vdu5oOtQmpUlsznCG44gCCge2UHnXTvw1m23OYHOmJrdmrAiM9b2uclnDx/c/PvLiFKKKCGJPUGUtDxWu9JyWg/LaRftmdNqT9rOF1XjsELYz8949HPVKIFxJDrhEKddRmY5lLrsh6kZczkd/9HlxD5UOgTHf3Q5x358ue1AmVrii6f9jD89PWeP56SVIHYF5599Nbf++uM1fg0Y2yFe57QIwdJFl7FswSc479xrQNrzeyFw2mWzJy682t32OppdLIcADGgjDokb2NiQXC437rYngeUjH/kIv/zlL/ntb3/L9OnTG9t7e3sBdmmS2LZtW6OZore3lyAIGBwc3O0+BwP7JbB89KMfZXBwkDvvvJNkMsnKlSv5/ve/z/z58/nlL3852WPca3R2dqKU2uM/Ymf4vr/LRdBEE4caGiH3RttqoCB8VsLbksRbiFtSvOqU+zh+0Tp67opt90oltpZKQWStaGoCiQxjZDVCVCJEJaj5UocQBHbBGmyVnxSjVVRxbDsGjK18RlIjWXb3+qKdKoNTFsRlh63FLE9WeyjoyfOvXh/l+a++k/lF3/HcXkmMu68+Kb1l3ZGT9nxN7Bv2lXAmhc8x3jbm+1vZUU2ybUsrA4MZjBFkklWyuTJqdpHhhRFDRwpGZkkK03zC9hQm7VtRQ4hdqv6EkPZ3x4oexpFEaZdKh0O5GwaPgUonDBzjU5wiaVsTgBIMHpsjP1djfHurWzzpFmvLoIbK1nJEKdzhAH9HgAx1I2sDGC+uHMSKi+cah2v3CsBvb/yEDfB8mV1EcSqaxGDcqIozEsJkza/agQdvuJCjPrt8j90d1dyowFIXWbRnr8Mo7RGlPaqdPuUuj2qLAgFu3n6GygBWf3Z0IlTpMmhlc4r84ZqQ7WpOaFnPMf4Wfvj4i3c7Dq2gntW8+IwvWLuy2CArcWORRlQDKFcQlbAWAj2+RWfZMbaicOcq3j1hrECzN50w55999V4f+0BgRd/X9+txKwe/w9LcO1na9p7GbTLQ5LNNHC4wYYguFFHpFBjzrLq7LvDejG5J84uXfY25pz9N+6Oarvs1Xp5G1XSjEwUafFaWQ2S5uiufrVvW7IbT7pbPRlZgccrglICiQ/9IhgdGpvNg0PqsXq+xuLTvxVy8+TwGdHGX+5piy8HHsiMu2e19rnBolwWyskJChsxJ9dPilvFUjDYCOejS8jikN1uLMIBqK4zMUpQ6FdUWRZRy7DUZRfZ6jWyhA2Fov4eNqV2rcS37q8ZppUT7LkHOYXi2T5iWOFVDtTtN1JFCbh+2/DeXIfYlqa2GxECAKFu7vPQDW8j8aR2JB57GlMqkH9yC2D4IpfJogRKjgfayow2SCfAmt2DuUMbh2r0CltOO5bNuPkZo+zmnHUGYFgQZiXYtv30mThvkFLEnGvvbosqaUOM7aN/BeA5R1idKe8QJhaqCqeUC3vuNUT5b7oRqzQHILRiS/cZ+xgIznR0c7e7e6qvcpai2yIYgfv7ZV1tOq0EGo5yWcsV2hAnRmAeOxb5y2p357DNx2oMtvqxYt3yfttexcse3ucB9U+O2JPGWAzG8Jp6HMMbw4Q9/mJ///OfccsstzJkzXiidM2cOvb29rFq1qrEtCAJuvfVWzjjjDABOPvlkXNcdt8+WLVt46KGHGvscDOyXRdgtt9zCL37xC0499VSklMyaNYvFixeTy+W45ppreMUrXjHZ49wreJ7HySefzKpVq3jta1/b2L5q1Spe85rXHJQxNdHEZOHG8g8n71iVH7HsiEv41QPH8ZKjH6eyvoiZnalNJsfsWK/WqzOT2AowDfIe61FrJbBEvj4ZrUMpcCTGURinbq2gwYARNiBUxCBiQRArBsMUJRORmaRz/a/8cWzKt1Ao+3xFLObuzif4+7aHSYpRNf1MP6Rv01R6p22epGdtYm+xO8Ipe9fsdpFgjpMiNNvRRuBud5GxSz7nI7sqtGTLLJzSR9QjeejpqVRMAhELVNVDhimcfMkuthiDSKdsSJ9UllArifEcOwntSFDqdqh0CKpthtYjd1CuugTlHG4etC+pOrZ7xXga4dkF5igFlU6PdNWSdpPy0J5Crt2A7GpDBgI5MGLfS0phal1pIuHXPLOjZrXf4QIxamNw668u4fyzrybu9Ihr6wnaE1RbbaDtnK9ej+dIFnxhOXHC8OTFF4071HEXLke0iIb3tFMVSGWIfUnsC6KEtTqotlnxw82DjLBhtxW4/5/GV5k5RWHt8Wo+1U5REK5Psnl+G//LcbSoMreuW8DjQQ8/3XwK8VW2COWWVZfSc3cJoyRCa26643LOPe9au6DoSkQ+sp1gwoqCxDGiyriwS3/9EGhtF5qkZNnRn8RIuYsn/VjsafJ57nnXIrThN7/ddWJ7uAWU1rFy5HsNYWXl4HcO8miaaOK5xcr+b03asW4Kfsyyrg/wpnvewylTN8DaEZtDcVSrtVyUjOabGZsbCOyez8KeOe3OfLZsLXVFLImSglAJZGTDysPAYSRIsC3KATue9bneWY24u38mWwezvK+a5tqZ/818d2K23MxqOThY8cSXd9k2ls/2OiU2RFY9SckqoVYUI5+UGyCrgvTWCBEZglZFpU2Sn20ou5DeIHBLhjghidMeTtW338WVKhhb6Gbi2BYLAahaEY/vYVJJdNonynqEGUF+trUQzWwytYzNGDIpKFcwUuIWQmRsUOVaRmAY2i4Zz4VMGvO07Y4UroOJY0wQWKcDpewYXId4aidq+9CkvtebOLDYhc8mPHRtpVC7gjBjuwPjJMz9yg24jpiQ0x7/0eWIVoFKWssvp2KQkUF7tvNPq5pALSHMSIQGp6RRVYMK4K7vjufHTi2TyKnWea/ltMX+BLcWj+JBp8DWh1/JI4Up/OGBBRz1lSHAWvW1PVrGKNlY27j51k9x7uJrrdjjKVS+UuO0EoIAEUZQz0SkxmdrHYw7c1phDCse2bXQZ2c+u7MNdv33nTnv4Wqxe1P4E5Yk3oIOI24Kf3Swh9PEYYIPfehD/PjHP+YXv/gF2Wy20SDR0tJCMplECMFHP/pRrr76aubPn8/8+fO5+uqrSaVSvPnNb27s++53v5uPfexjdHR00N7ezsUXX8yiRYs4//zzD9q57ZfAUiwW6e7uBqC9vZ3t27ezYMECFi1axL333jupA9xXXHTRRbz1rW/llFNO4fTTT+db3/oW69ev5wMf+MBBHVcTTRxKWCzfgNPRAaITR8ZselkOpwRuXiKrskEcgHGVySI2jSqlBsZOPuuVH0LWQsQVOuEQpT20W6vWN0BsbFZB1U4AjAJ8TUeqyIzEDrrV5Mgrd1VDtgU5ejJ5lNBo7BjGiitgq8q6VQbdt4ABXeTn+SN4/5G3TsoYmph8SCRHuWnm5/pZl5qKHJG4Q5Ig4zB/Zj/H5TbyUH4qfiqk3K0QxsWpSJyKhxpMWQJtjF1QqYVwGkdhki5xyiVs8Sj0OpR6odqlMe0B07LD9Dtp+pM5VAXClF34diogyxLtSShLVLV2jdda4cOchztQhISPqIYYz7FVhVqD6yAi27UiavYKK5qetocN6gv+5yz9Ir9b+Qkb5FlflwshTtjrR7RXUY6mkvYQVQmO/Qyd89XreeojHwOg3AOPX2pFkuMuXA55g1SCMCMod0LQatCpmFRPgbntO3j46akk1/ggIPZ2HZutgDUELYJyRlDuMTz5MTtp/cA9b2VGYpDeVIEj0wXec85tnHvVtY2cmJt/f9kux6vbOtQFkmVHf7LhnY0UEGv89UONrqRlsy8c970ghMEgWHLiZxsT3RvvGc0L2XkyWse5i624g8FWVxrDb343XlA5bEWWwe8cMLuwJpp4oWCxfAMqm6WcTzA7NcBjxx5Dqdt+N3vDE3DaWofKM/JZmJDThjl/HJ8VkV00NNLYam1huxaNNDhuTMYN6HWGJ+VcH6lOoz1RYsBJs72c5s7KbOa7/bvdf2yRSlNsOTQwz8mQ97awKWplKE4Rug4Zp0K7V2RdrpcoKXELMd5QTOwKopYYWZHESUG1xV6fquIigwQyii2XrNvchhEGah0uIHwPkgl0LkG1zafU41BtFWjXFmqowFo/I6xVE6mktSkrBqhSrTu1fmxtEG4SCkVrB1YXLXWNSwMoZWPnujoYmZniD3++/CC9yk3sD275zaXj+GxtyoyMLJ+NkrXu6LYQ4WgqOTWO09ZR6h3lsyd+aDlG2m5qsHZj1RZBlLTXYLXNELVH+Jtdktvsc+yMzGaDP6yJEoIgK6m2CIpTYd3fXQxczKUP/BUnpp5mQWILP3rvt1n6tc/Yoh7YhS/ujHoW3bIFn4CImiW7wl+/gxWPf8neN/Oj9nofy2mxuZ7LjvkURghWPjxaPDQRn63/fCah5XAVWW6s/IjF6o0HexgvSBgE8f6ZUh1UfOMb3wDgnHPOGbf9e9/7Hu94xzsA+PjHP065XOaDH/wgg4ODvOhFL+Kmm24iW7OYBVi+fDmO4/DXf/3XlMtlzjvvPP7t3/4NpXbtRHuusF8Cy5FHHsljjz3G7NmzOeGEE/iXf/kXZs+ezTe/+U2mTJky2WPcJ7zxjW9kYGCAK6+8ki1btnDsscfy61//mlmzZj0nz79YvXHSAhubaOJAYZX+T5Z1fYDemxzu75pGcYam9dGaV6oS4CrM2M4UUw+8r2Uc1SehyuazoGsVzfVqPyWtr2rSJ2zxCdMKYWxInokNKFHLLLBEP/YN0ovpThY4Kbluv89Lo5FjvmTmugEnp9cxO9FPaBQz3AHOTfYDEzC4Gjpkmve2bEH3LeC7Iz184ebX0HmPJNUf42+vsuqOT+/3+JrYN+ypiwXgvNZH+N3UI6imfGRJ4WUCjkhvIzSKvlIWz41ITx1mwMlRqnqI2MEdSaMqka04DW3QLY5EuwrtK6KUojDFoTAdqrMDFs7exGt7/8IZybV8ZsNr2NLZQdgJ1XYHf8C2smefEuRnO/iDgtQWUBVt29+VRBVDS8Z934ouQc3WwXEaFX/Uqv6agYGHJ2RsOPvlX+LW2y/jrNddhz9iiJKCagvQFpDJVsgmqrgdMZXIpX84zewfXovUHvNuuMFm94jRz60oBSqwC3XVNivSyM4qvW155rX248mIx5MhQYtnQ5t3ckc49pLleAbihEA7UJpmED0VXvqbS/j9eV/mmyfv2g2584SubhVhal2NWkp+e8snAFhy8mcRrv2sF7XKvsaNmrii7ec8Uo4uxIDthFEKEcYsXXRZQ6RZef/nd/v63rLqUs4795oJO1jqOP/sq63AVa9SnEAkOpSxtO09h1wnS5PPNnE4YJX+T5Zk3s6snwqeWNBF/8kGnY1ou9udmNPuDZ+tW4o5zq6cNmsn7TI0ENv94oTtXqlbQhoHjDIYLWhxy0xzRoB0Y8wjukxG+uP46t6gxxnmxe1PMSM9yOzEAC9PPz3uuHvCWC71gY2n88fNs3nw1Z/bwyOamEyM5bMneAlmOAOsDkq0qhKhUUx1h1jRdQyl7gy+L3DKhighEFWJMyJtF2uP7WRVVQcZ+7jGIIWoZayEmLG5QbUFYZ3wqHYmGJnhkJ8FZlaZTKZMeGc7ANVW13YaJB1k1ZIJla/Y7+mhgq3qFxIjNZRt541QClOpQsIftQZzHYzWCM8j7m3jD/918XP46jYxWdiZz3p5TZyQVHNQ6TbolhAvE5DwQlpTZYLIaXBatd3blc8mrXVirC0fDdOCoAWCHMQpjclFKCcmTjkELaIh6tRxwoeX4wFRop4FYwWcaGqVc35zMb877zquPe6/xj1mZz55+puvRwYGp95tKGz3TJ1TLjn5s0glazx2/LpHI4NkIk5bEyZFGFuBRtnvkom6Wsai3tGy267tnezCDjfBZUnyrZPqutLE8xNm5wKXCSCE4IorruCKK67Y7T6JRIKvfvWrfPWrX53E0T07CLM3Z7cTfvSjHxGGIe94xzv4y1/+wpIlS+jv78fzPL7//e/zxjcevgrmyMgILS0tDA8P77d/dXNS2sThgmVHXMLTfz0Vo6DlKYM/HOOOhKhSzcu3VgGC1qAZzWWBWj4LiHrGSo14NBasPWUJU84h9gUYWy0FliiFKUmUgnI3BG0xbleFE6Zt4m29f+AVqX3LYCmbKndUUiREyJmJyVXx37n+Jdz1i2OZfksBEUREuQRBi8Nt/7N7n+UmJhd7Elku3HIyK586mspQgs4pw7xtzp8oaY/b+49g40gLWku0ERS3ZEhsUbQ+oXGLthVdxAYZabQrrRWTZy2f8jMkIwtDTjryaS6ZvoIX+7YW4X+KaS5a+be0zh6iGjiU8z5qm1cLJhVkn6Zh7yBDW83qDYfIYmCDRnNZGyIKoDUmCBudLE0bhcMbZ7/K2oI4hYjYl5R6XArTBdXjSvh+yMLurZzR9iSPl7t5dKiHTYOthJtTVhBwNeveN/7z5Ph/WI4KoDgVqu2a5NQCXbkCbX6ZwWqSDVva0RUHmYh46m/HCw/HfHo5IrbiTJzUmJaI+TP7eHHHOgA+v+i/dxn/S/7flxmc7+DlIdkf4xZi3HyIcSRGQJxQhBnVWDRZevxn7APrljtRzYM9CO1PIexks7ZAaRxVs+qxC5Ui0lZsxOYdmYSHdq3tTpR2+d2Kj+/T679zHsvNt36KC158JQjBTX/8zD4d61DBs+WjTT7bxAsJy6b/PeveNccW7XjQ+eBuOO0z8NnGtnpVf+0zy7iKKOVS6XStf3+ord2NI4iSkiAtbDB5FsKsIUpryETMmb6dN027m/e2bGmMdVOcZ5rKTnAWz4xBXUJj6JB7J6xMhIVf/zvCrCFzzCCvmvnQhN8JTRwY1Pls1YQ8FQW4wtAuJXkdc+3W81l164m0PipIDMaUehT52YbkFoEKa/kUAvwhQ3IgxhsOUSNVZLFircKCYLQzW9au3c5Whhe2suMoSXRkibPmrKXVLbFixWnIADofiG03dlljlLDf/SMBshwitmy3C8tg7cFq3V86X0B4HiKTxhSKDeHShCGyq4PSsVO49VfNOdLhirF8VnuSUrdLYZqg3GswnVUcP2Zudz/ndK1hQ6V9lNNuSWFcw7r3jxfXTn7vclRgCHK1Dj/Pzv3jpMY4BhEJ/B2SoNWw9h/G24Md//c20D5KYS3KMoY4pZk9v4/FvatxRczHj1kx7jHHfnw52rMFcN4IeMO2A8YtxLZjC4iSiiit+MN/2i7ypQsvs98JUTzakVXPNzKmIbSPFd0bXDfW9r1R63isW00bTxFm953PTpTHMtZm7HATXOqYDE7axHjccsst/NU7X8N7frn0YA8FgG8u+T9u/O/fcPrppx/soRxU7FcHy1veMhpgdOKJJ7Ju3TpWr17NzJkz6ezsnLTBHepY1vUBVmz/5i7bV8U/5QLvzdwU/Pg5H9MF7pu4KfzJc/68TRx+WNb1AeJ5UynNisGPyWxykUEtlF7ZbpQ44djOk2ptIUyrhr2LiI1dJBaCOO3ZSsFax0u9atBW9Uki31ZCC2MwUhD7EKYhSltxReRCOlsKzMtsp9cZITQSV+z9x9PWOCAky0w1DJOW3mLx9u7budM/FtU3CMbgaChOzXHKe27g7u9c9MwHoFnN8Wyxp06W17Xdw192TGdT4GCMQBuJwtBXzDK8vgWhBd7UIonuEhWVpFi0nSZewdhg2pr1kTA0vIExkGit8IaeuxviCsBJfh/ZGSNIYZDSMGf6dp6iC2erR2Y9uCWDDIydnAYxUdpFBDEyXwLPg8Fh6+0bWL9s4hjh+xN+jxxIHO4k/VBEfTHhJa+9zmZMCRs+H1cVKhnQ5pU4I/U4070Bvn7Svz/j8e7/xwt3e9+lD/wVW3P9/HHDHHITiNFRyi7CyHkFou1Jcm1Fzuxcy2tz95KVEb9YewKvmXvfuMfc9j+XcMq7b0A7Au0JopQi+fQQKx61nSxnvf46qi2S4z+6nPu/ciEr7/88i8/8AiLWqJHK6CSzHrZbn3gCOA7CUY2/611baF1bDPIxQiC0JnY9gty+t3XXLcKWLrSdK+effTU339m0J9lbLOv5O1Zs/cYu21fFP2XZ9L9nxcZ/es7H1PzebGJvsazrA5jeDipdmrtfv5zTbvs74seSE3JaVdkDnwWQtqOVWkYAgFHSFmLUOlWMABnbzymtIEoKgqzltFHaEGc0TluF9lyJebkBYuQ4UWWayjKiy+RNtIvQMqLLbI1jhrTPqf6uAeFtMvWsXqsRXWb6zUWCDp+Nqo0FC7bsU17L0hMuZ+V9Vz6rMbyQUeezvnA5ynUp6AoZmaBNwktb1vCbGUcSbEzjliUiAlURJHdYQcVIKHY7tetNIgOFKtUWeusdWjsFdItiBX9HBHgopSlEPjuqKcKsRoaCUrciMWgXlIOMtF0zkcEfKDRsx+wis67ZgdmFZBMEMBzXhBfdEF+CWZ3PubiyrPeDEOvnnEs/XzGOz5ZjENbiyykIghaFSEa0+yXOSD1Bn9fyjJz2nm9bPnvCR5bvkhcIMPsH11JpEZhI7HIfEmIHijM17pQS8dYkyZ4iS6Y8wt+2/IWUUNy1fjanzlzXeMhDX7qQYy5bTuzbQiNVFsQJgVsc7Vo58w3XE6YEp77rBu767kXorG8D7/MVK56M5bN10XIMp20UoMKo+BhrkAkwBhlEaCBO+Jz5husbQs7eoD43W3rC5fb7y1WHrXVYE028ELHXK5gXXbR3C4kAN9xww34N5nDDzl/k9Uq/JYm3HBRxpYkm9haL1RtxOttRIxWSm7KUe+12GWiEppaLItG+JepmTEAo2PtFrcLDKEnQ6qKdUWJkBLVsAEGYEoRpW7Gi3VHv3zitiTMxXjags6XAi7vXsSz3ACd7EwQKjMH/z957hkl2VWfb994nVu443ZPzjHKWAAkkoTQzYMDAi42NAYMNH8Fgi2SRMSCBSTJgg7H9GgMvTjLZMCONAkJCAgWUR2ly7Bwqnrj392NX9+TR5KCp+7r66u6qUyfVqVNr72etZ4U6xhPbB52xTphuZeixKmTE4RVXGjrk7Tf9JZ3PNjNYwghZbaCtEt6Yeu4VNGlNEh06exNZptlVlvQ+yc2cylg9wy/6T2dKpkqSSqxAYgWCMO/hFUNkPqY+1Wo2V5wo8QY0k9lNcdYmaoc0kfTHJWB0clubkhyOnTJeyTBnyjC92Qrlbp/hejthm0WSE2bAG5jqrbDNISz5ZIaz5J4ZNdlRjunBohsBIuMfnZO3KwpOQLvWEwIt4JfLP8SFb/kKTh2sIZeKEvxGzKbDPZ+p7tghb6PLqfDq0oPM8Md4ptqz2/PPfMQMYK+8433c9tqP8+pfv5u53iBzbUFW5oD+Pa73gf+75zhv7te/zLofmIzEMz50I4tuuJFnPnKtERC1Juz0ya5tfk6aGX+TIiKY5rjNXi1C7JAF2LQHE5FE+DZBd45Gt03iCy595Rf51U/3f5Jm2UKTIShgcoLpqkuvP+Gswo4Vu4orE/HssrnvOybiCrCztVyLFnvhavk67CndiFST2yT542f/D+mw6bO3x5hW7DmeFYqmwGyZXio7xrRNsUXZgqhgrG60aFYU2MYGJy5plK/AVfilgPldQ5zZtpWLcmuY7wzhN21z1iRVxpTLqnAmq4MeLsit42y3nxHlsCnpALK0yTpZGR2R8/W29b+HjFO8/gbtT+SZ/ppR/nZkAf9612d59nXPbYHbElcOnR3j2bz0aeiQWxvt/LYyj/ZCnYH5GRASpwr+oLGjs4IUkWp8VxIWTQyb+pI06yDqDiJJTHwJzYnhxFzrjo1TiSlscBjN5/hdMBMdW+S2SBq9ps+GU0lJM8a2OXUFMnZwRnxk2UanRrgRjgNtRbPekTF0GE4+ruMGOk4Qi+eSFHYXBY84rrt7P6UWh4wW8MsVf81Fb/4KVgO8UUh9mygWPMhM/se9kJwdsr++NQ9/fS+JQ6FFsbdCtbr7mOiRvzOvOe8XH2N6YZyfvfbrvOPBN3JBZt2kOH3+HqYNVl2/9ySl+V/6Cmuagsd577iR0z98I70ZBzIOqjOLv37ExJET8WyaQrLD9bVrTBvH260mowg8m6g7S5y3CUumCvwlr/4Sd/1o/2zzlp36YWMhDWjXQjTD6ZbI0qLFicF+CywPPfTQfi0nxMkxIFra/ufGN3wHz3zRbKZzc/D9Y7VbreqVFvuHVqQjo8goZsqDbYwuckBr06hbAKo5GLWFeSxrGd/SpOlBimnsCZB6gqDNLDvhnaoFxrffhrhpmZDkNSqjwE+xvBTfj2jPNejK1FhYGOS83Hpm2hVg77YJo6pOf6qZYaXkpU9ZNShK00/FObiCvH3ysf4XUVwrsCJlJgTjBBoB7Y+YapZlM/8SomiPmb8tDj8Tg9K+tEqvlWdU1SkIeHv7Q/Q44/z9s5ezfrCTRruDbSnT2ycUiIpNGElkPibtigmUQ+oJZASIpuDnSwqRQjkQFzUqtPnvTecxwx3mtbkKADEWc9tGeKxheo0lysKRikxPjUbRQY25pK5F2OYjY9NgPCpC6lnIsET2mQhqdUSp0Cw5F8bD+qifyKO/yZOFu39oBlD3f/t9vPg1X0LZFrXQpRxarJCncnb31kPexgdOvRmALWvO3au1y9sfeDMdnsl0fl3PA7RZNeJmj6qaPrAKkbk/jbnip2Zg9/gXrjUVUB+BO2756z0uv6znnYhc1gw2d2zAmyo0yjQSTRITMwkBaWp85HtyoE0lmBUqLl/6twgNd9y8+3Z2q8IKo+0ZhlJy650f4apLTdPRa170mUmbsKsv/uxufbT29NjJxrI517J8/Y2T/1vtJQCWrzt2CVM31757zLbd4sQiGRzGShJm/k9E8MhUOuZa22NaQFgCZUuUJUiLthFdJpo4a5CpWW7CKjT1xKSoAsZqBmF+T1SqpBmNcjTaN3Gtl4tw7RTXSZhVHGNWdoQup4IvY3yRUlGa+0OXTdFChpIC6xpdSDRr7SkArI+6qCuXktWgZnl0W2W2pGMHbSW2J746OodEG8uzsMMjM6J497++A6EgU4NL/vvLFJ4enWz83OLIIXuf4UOPvI7/eeJcLpm/lqs6VrG+1kl7po67OGGT103n/Tb+mG5WVwusVGPXUmQsUHZTZPEsZMFD2hISZeI7IRD1EKIY7TmIWFFaGyJTj9pUn7BDIyPIbRLEGVO9LWONFWrshtm/qDuLX8kh7ObYyvdQOQ+RGDFHxD66EaDrDUR3JyKMiDoyxNljEGBKYRKHWhxWJuLZ+77zPl7y6i+RVAR2IKlNt4nDLLeIxXTk63DWoW1n/dv2nUyz8KbPcsHMAWZnRwB4Q+e9WEJxkEY8zPtRnWv++9Pcct8n+N0/XrvPGHBZzzsRnmuqrneMaePEJMsBaNsILdLEs2Y+ME+cFQgFTkNjBYrLXvYFhGY3y7BrXmR6xkza2TYCkJZJRmpWWu5oEbaj0LKr6NISYU5O1HEysG/J3Ib9vjPdcccdR3I/Tjj21Iy0VbXS4kRCpymqWsXvq9F4cRvlc2Lqq1yKG01/Cm2Zhp2pKxAanJoGV5NkJVqaYFxoSJ1mRp/btFdqDkKRZuI6yWqSthSrEFPMBRQzAZ1+nTa3QYdbY5Y3wjxvgDn2MLPs5/aU7rbAa9qHTYgrh8q1287n0dFpFN2Qp2+bz/RLN/HqqQ9zy3+9gI6+FH8gaAY8JkNFVBomsyUI0UnCkvybkfkcdLQ9Z3O7FofGpe96O9M/uJr/mHs7oVYMphZZmRIoB9dKOX3WBqb7Y9yy+RRkbIJbuyqRY5IQENmEpDsmzdhYDQHKXN9CQZy30MKUk6uqzVg+wy9GzgIe5bW5CnPsMvNzg6zPtmNLRaTMRHXeD8l4MSOJpDHNfABK6zRWpMn2mybkSc5CZz1EGKErVYTnopMENaXtqJ/DYxl8nyz2ZOe//UYe/OEHeOEbvoxQkvGsJIot1pQ7gYOvrtjx/L1m/kO7PQ7wrW9/jVNzZ7BWdgPwxwt+S7htHo4wgsvpTpZrXvQZtCVZefee92HJhX/Dzfd/cnJbe9uPta+2Wf+uD3DW+25ERvDw3187KTgvPf2jiCiGMEKkKaQpOkmadiLKNOSVwujyjYDMhnHcsQzakaS+hfJM5t+VV3wOlEZGChkliDjFVQoRJqZyJQi3Nyd1HJY/bfbt1l991JznHXqw7HEQLQVXv/j6vZ6Lk4EdxRWg1ROqxYmFVuhqDVEsYgUpYQmqixKCVS7FDSlW1IxpHWOBaDcUaGHiWYHpyaabMatnBJbUNRUqE4jmLSbs0KTdMXYmJu/H5P2QrBPhWwm2VBSdgA63RrtjqlB8EVPTNoGyWRtOYWPYSX9YpJ64lNwGBatBX1xiKC5gCUVdpFRTnyfTadRz63C8AaZYB1adfe228yknPguyg9z84cv4h3/4Km99/E0MbGknv8ZmZm0Y1ZtBS8hv0rhVjR0o/M1VRKXOsqnvZnjJfKa/bQ0/uuQfDvOb1WKCx14xncWqj7s+fgpf/L1f8L/ybIaDLGFsIyITv9Z6BYVN2iR6KY3dSBFVRZK1J21uk5yLZVuIKDV9hJRCOLZJPEhTZATakWT7E7Sw0UKgbRAJZsxmC0SqcSsamWiE0ihPotrzyHEJ5Qo0NLIRTFbFYFnbJ55dh3B2J0Ib690jzdLSW1kx/q+T/+/6/XU0WdbzThN3HKtKz6PABX/+FR5oVl+88A1fBi0ZXyRIYouhcXNv2ptt/nOxbLGJLyfiNmhWcDR7oaz66BRE6uHOTrmy8AQAL5mzejdHg6VnfpQVj12/x23samu48tc7x4FWPWLpWR/j2Td1sOYD7+Oc95h49nffunanBMqdYlrb3i60pArd/IKYiGe9LWWsWhbtTIj3RiixQsXVF38WkShkaEpTpFLmvjvrr7Zb/QFYkhVPbD+mCZFlx5h8b/H5832M1aLF8czxIXe1OGSW+G947oVatNgFnabILYO0P6XxNrrUZyq2Xa4ZOtNibJ6kOl0StAvinCDKC8KSpNEpzE+XpNEpCdsEcdH4nIZdmmCKJujRNHoUwbQEPTOgY/o483oHOXPKNi7s2sglHWt4QWktF+bX8YLsas52+znTzSCf45bULrPkhYs6TBr5RR97By/863dw9zcvYvRHM1j3g/nYNVi9rpe/++kr6LkvJLuxgj1QNv6qVnP/kgQ813h0x7H53/dI2g/NG7vFc3P3Dz/AA79exC8DQa+VxxGKH5XP5t7x+cwsjnFBcQMlu0GlksEbFmS3QWmNprhOk1tnhLlsWwNdjFEuyNgIIFGbptFpqrCsEGQoCeoujw5N4+/WXsUfrr2Srw9dRtaKmJKrckH7Rl7X8wBT82UAqo1mJUoq8EfAG0soPVOl7ZFhcpsbZLc00I4FGd/4WGezqHkzuPnBvzkq521PTROPBbevvO6kCPxL60IAfvP992M3NDIQaC1IleTKO95H9MkxPvTI6wBTbbIjV1z9+Z3er13fuz2dvx3P68IZWylYDc7IbaZvyzQAvKlrJ5eVvc8Yi7x9WGroXaqR93r9FEw/g6hofnZkxRPXs/zZL5j7pmOD4yAcB+E6CNtGOLaxHRHCVLTUG1iVBlbZnLs4K0ldibIlVpgiEjXZcFQkygxEJ/q9AAjB8rVf2mkf7LEGS8/ct3ByrIWVZT3vPKbbP95Y2vG2Y70LLU5AdJpCFGGP1Oh4JqXwtEPUBtsukQyfZjM+x6I6XRrb2qwkKpr4NugUNLpNPBu0SaKi6acStkPQCVGbaa4cFSHsAGtOjd7eMRb2DnJWz1ZOae9nVn6U6dlxpmfH6PKqTPfGOCuzkZnOMA4pgbapKJ9Y25QTn2riIYWmlrisC7rZHHXQUC7jSYbxJMsjlRkMxzkGkwL3h130pVXAVHHHOtnt2N/fdx4vu/p1vGzJH7Js2R/x5P93Kpv/aj63fOhSlCN41V3vou2zWRb9W8SMW8tmci/RyFiTHUonq9BV1oFGgK7VqfUK/mr6yqP7Jp5kLN/4dwD03iV58+o/4JRCH45MGdjahj9oERWNvbJTV9jlEGewhttXxtk2jr+ljDdQQyYK5UpTrWUJSBQiUWjXxLsiSpsiS4pTiSmuD5nyUExxvUImYEVGVIyKFmHJiJBaCkibvYviGB3FqPEyamQMXamixyumub1tmyrsegNv4wiNbveAek0cCktLbz0q23kulvd/83ktrgCU1oSTf0/GtKHAshRJaDH/K19h9fsWA3DmTz+502uXLb5uUkSZfGzhzhUcO4orAMuf/JyJHaOIDX/2IYglA4ERctZuNg4CO/aMkr3PmOv8AFhy/id3eyzNNXsRFXaPZ2GXmNayTEzruTvHs1Ka2LQRTMazspEgE4WMNUnGmvysasdC29LEs/YOOe9ag7TMtnbBGWnscd8nONbjq2te2LKQbNFCaN0yrdyRcrlMqVRifHycYnEPd9cWLZ4nXC1fN/m3uuw8hNJEJdPofuhMl9rZAXOmDbFuczdi3MFqSLTUKE+jLY1QYjJTSRUT3EJEW65Bzg3J2jF5J2JmdpSFfh8z3WF6rTLdVswUmTmgBvYHwq79WfaHNUmVdzz7ejY8MIPcFkFum8JuKIQGf2sVWW5AvWGyr7vbiaYUcMbMZLm1dQRdqYIQpKfNIej2aHTIvfYyaHF4uPrF1xPnbbb8WczTL/kuP6/79Ccl3lrc3lvi2m3nc8uPLqKwUeOWFVFBEucFoy8IyRYDgrqL3OKT6RdYoZlAiQvNapOsRvWESFuD0ORzAUlqEccWf7j4d9w3MptabEx/tw21YbsJwZiPSAT+VpvuhxO80RhlS6I2Gy0FYUnQ/mQd5Vo4wzVEIzKTzlHM8tVfPFan8qhysmdVLbnzrzil2M+9/XOZ3zbE9+f8cvK5YVVjbexSVj45GfJUOI2hpMCri48ww/LwhMNVbzQTCjtaBUz8vyMTz8lIoWzJ7beZ56+67IbJZvB7Y1erqF0rjva23bnf/xwA697w4T2u96XX/C0i1WaQGSaTYolINSJKTLbiDtQXd1GbYpEZTsmtHQdAWxY3P3TgguSyBR9Eey5pW4Y0a4Ni8pwczxxqPNqKZ1ucLOwYz1ptbSazHiCfQ7sOG1/dReaSISyhGX68CysQpnmyp02Vijbf/WB6qihPoT0T4MqahTMuUZ7Gnl/llfMfY1Gmj4WuiTf6khIpklQLLKFps2rMt0eYYTt4wmFjUqMvzRBohzsqpzEWm0QcW6ZsrrezuVoi60QU3ZAgtYlSC6UFfeNFwoaJZ69a9DS/3/kg3972EmbnRnhBfjVb43aervdyRm4L7yhtYUta4a7GLG4eOYOH/uMMen9TRcSmIbnybESSImuhiT2EIO3Moy1Jo8enOt0ity0lt7GOtbEPXJen/3YKt77k60y3MjsJ9C0OL8tm/qVJMtCaNe+Yw01v/ApvfuxPKa9pY8bpffSPF/B/WWDqL4cR5ZqxKrYsY0dk2yRTSiQFB6uRYI81zPubJOA4YFtoS6D97T1KtGNNfvfGbR61qS52w1StoMGppaSexKkkOKMNRN8QOjT9gITnmongQs4kCtXqpv+JMh8eXcpTn108oP5pJzLLZv4lyzd99VjvxjHj0ts+SE+myrOjXcwsjvGThTfzn9V2buq/gC2VEo6VUgk8KutLaMvYKXrFkHOnbyFrh/T9iekhuPzpz7Ns3gdAit3GQ8umv8css+Xru1W7LFv4oT2KEJOvXXzdbuLNbuvYQwXN3L//MtpVrH/73q/jK67+fNM6XWGP1hFpczo1VTtXoQCq4BP0mh6DmYGEzGaTmKc9Z7JS/EBYtvg6tO+QFnzSjHXCjKtaMenh5/bbb+e1b3kVf/qTlx/rXQHgX5b+lFt+dBsvetGLjvWuHFOOzCxnixYtjntWqpsAMzAdOtsnbIMpv0uI8xbVeSn/33l3MRAVGalnqfkeSdjs6ik0Qmi0MhnZSE13V5kZxXHm54fodcfwRUxWRkx3RphjjzHDdsgIHziyTb0PVFy5P4wZSLu4qucp/n1xAbWtDW8sweurmiywWt1M/CUJZDMgJWGHQ+pJrFBhxbEpxXddlGusJhpdJ0cfqmOJvb4fO5uh+3+m8IL8/+GGU35EpLd/nT0YRbygsJaV5y1m3CmR6bdIshCVgIZNvZHHGTV2YFEJ7BqkvrG4m+x/qwRCpuSyIZ6dUsoEODJlVWUqF7Rv5Edrz8K2FNJSRA0HtxCRxpJgOgwnNvnNFtm+mPyaMknRQwufkdNylNaGJG0ZLMtCKGXsHI4we5tYv/qSz+5WKn8k2Ztn8MnCzZf9HR999DUMDhVw7YT/rLbzqlwfGeGxKbHosEIWOwmPRR515dJlV5hv51FNc/Fbv2csMa64evs69yR87Pr4FVd/Hhmp5xRXwFhtTAxad32fVN8ibv2e+XvH7EGAOVOHiNWee7uc+b4bcWe7NKYYy53clu2WNM54jD0e7lS7qC2BDBX+mLHy0Z65rx/MQBRg+eovsvSsjyHSZkaA3OF8HUdiy7Led7G87xtH/XPZosWJzo7xrPBcypfMxR+JcdcNovMZ6rMS3jf/V9xXnsctPUWS0EKoid4qJmEIbf4XXoqfi/C9GEemhIlNreYjpGJh9yCLMn3MdIYpyICcSMjKiIrysND4IqbDCumQkowwVa1z7AI1XcfXCdXUI2NFlOwGm4J2qonLcCXHqMhC+xgAWTvGlgpKQAmk0AyGeT751CsB8K2YHwfn8Wj/NCr9eZZnTue73WUqgYfWcOWsZ+n4vS1s6JhO730J2dUjiLpEhM2J91RBxke5FqOLs0RFk1ySOhaF1c3ncxlOn7GNNXEbJVnhGHSKO2lYvumrLJtzLSCYek/MdS95DbNLozwRtjPe8NFPFkBAMK2An2pEIzQZ9LZlrDMbMW6UIBqx8SWZaHTfFG1EClopI6yI7f01tSURsSLbH9PosvHGlLHR80wvzqjNQdsCly7EWMVUNiWJsUZKFbVTukjdLgpPjpprK4rRjmVefwTZ1R5sf587EkyIK8sWfPCkSZTakV9d+UXe8eAbuX/9AvRs+HndZ6Y9zOJCP6cVtiGF5p6huZT9AmiYOWuIeuSyrV5gfjHkyh8/xEKvn2WLgTiePJ9Lu94OmN7GOk0nLUuXP/357RUxcbJbxfKuTCw/8XvisQlU3yJ+fufEfzvE0G0RqL2P5V/wpq/gFG0anRZWpCk9o5FhjAgSYxEmhPmMCmGqwKRExibZTybaVJcJcfAx7dOfZ8m5n5wUTfeVcHWs2NEG+YorP3/cxNktWhwNWgJLi4NiSeaN3Nz43rHejRaHiam/HOX87z7O93suZtodgj+4+Df8dcdqvj42i2nFHsbcDEkqCRObIDSTXVqb4CPjR5w/ZRNn5LZwmr+FOXaZgpRIBHnh4ogD844+kqhmk2eAjUmFgpSkVJnhjCCExi1rrEZimkOWK+C66FodHcdIpRGNgIIwZb0kCh3H6DRF1+s4Iw3igj3ZIPJ45Gr5usmJiBOaOIZKSunXDaL+Xt73vj/gjQvu4+EoYHnlLP7pt5eS66gzvW2cNQtcUjeDcjWqM4aahVWTiBTSgiLNQeqbZrZCGWuktJgiHUVvR5mBsQJ1LSjkApQWZO2Y0SRLqiS+m3DejM08sGEWcdUFS+F3NmgEOay6xK1YVOcXaXRYjC3WJO0xQpnMWqfuI1Iozz7yTp17m1g/VpO4x8sA4Fhw/Vk/5PpmQ9BLb/sgK4tDXFJaTY89zlWZCp5wmGJVeUF2Lee75lrZ1TpxT+dPNO08dn1ub+d6154jy077iMmMDSN0KcfSsz7G7c1Gx1dc/flJcWdv3HHFl/f4+KmfuBHLhvGF8ILLVnFNxxP884YXs/nZKWS22uS2WuS3WHhDDUQjRmddlGuhmp7wQm0XIA+lT8pE0+Yrrvz8bua4+2oYejRZ3veNfTZbbXFk2LVqq8WJTTo8iluZxbo/10z5xQza79nK/3nBU7y12M/qoIe2jhppKgkjmzi0m8kUJnHI9lLacg06szXydoRvxSgE9cTFt2K63BoFGSDR+CKlJKGWKsbSLDkZ0iYbOGgsdp6c65aKQKdM90bpi9qopCbZSGmBVoIUQawsck5E3gkpOQ1mZUfIWyGLMn08XJvF2tEOxvqKjFayJOMeVtnCAsSYRf9YF9pTZLrqbG600ZOtsrGokaERlUWcQBRDGKJT06fD6YNsh0t2SJC6An8kRlQbpjKi1mDV1l78mTFDqaLzaL+J+8HzJp6dQFpkV/Ux/g+z2HqVwo0EldXtLPxxmSTvkmQt0lLGOBULYSZpU41QCiKFUAptWWjXCClCa0hStGcb4cO3kXHTZrN5fWpLIpTGG0uxIkWct03l6IjCHU9IXUmac7FDY20rPBed89m0rJ13vvlnfO3xl2J/uwTS2O5VZkgq845sE5Z9CShHU1zZkZNRXJngH8//Hpxv/n7RLTGvnPEojkjJWiEznBHuSBfitgecO30Lpxa2sabWTY9f4Y/b78URin8ZesluVSYT7Nj/ZPKxvSy7I8u63wGFPDrjIdi9kmXZqR/m53f8YK+vX/cne67EBnjhn3wFAdS7LYYvjMl11oluLZEdVPhDMc5YA9mIIVWovIvyHbRtRE2h9PakOq0PKaadqObeNbnqeIlnJ8SVK6/4HLffvvfz2eJwIFC6ldx7PNESWFocHLL1QX6+sFLdxJLMG/nRf76E05euo3zzTJ4Ynwo9j9BtV7igfSPV1GMszrCm3EVf5KCV8V713JiuXI2LCuu4PLuGOXYBKBzrQ5pEobgvVLzQs9mSVgi0YL5tBJ9ZdoGBtMo9jen8qO9c6k+1URhTRG0u9qiDqAjU6JhpYqc0aRQjLAsRxQgpzGQkJsNGuC5pxqE2xcYfPX5dF58vg9Hl/d9kWe+7wLFxB6qUB9tIFwh+Wj4XT8YUu2oEoUPRDTl/9iZ+J2aiIgs0YOtJYUUUYnQiSazmc1qAm+J3Nsj6EY5MyWYievIVuvwaz452k7VjHhmejmunBJGN0gLbTbDWZEh9TZpJkJFAphDnJP0vUlx14SNsqxdZ9ehs6r2mz0vqCiPGHYWGoC2OT3515Z4H5d7mqZzvuHt93a7NPQFW/vvEc/ueYLjmD0y/FwF859mL6bbLfGvL5Tz7p/NRrqZz8RD/esZ3eN8fvmOngZvsfWZyu7tWr+yLxoIQnUjmzennizN+Tq+V541n/JjG6SGvX/1KHls/nfEtHp2PO/hDMUGXw2/+n7FYvOwVX9xuuwAoR3LZy7/AnT/f7t99wJl7u+qZzf8vfdUXEYkG59i2JhQ7ZCT++AfvOqb7ctIgWvHs84WV6iaulq/Du381/oWnMXiepv2XETdvOIUv9DxEl1Phop6NhMpm1XAPw1EerSVCKBw/IZ8JmZov0+1XmeWP0GFXkUITKodA21hoClaj2U+litX0ya0pD0uYz+6zcRu+iDnbDchLI6RYzWqCHnuc0TjH6toUgtQmUdJUhDcnR3wrwbdiinZArC2qqcdj9ZmsrnRTb3jk1ttEJQsvEMgI4mKzsXIM2oMwcHiir5c0tmh7SuD1V43Hf5yYnhlJYqoZghBRrpCvN0BKdL1uKhMch/CM2aSeJJ+rMKayKCSLj83buU+eL/EsNCtHF3wQpEPpoQFqU3tpdEN+gyDNOsgwhYxF1O7iKdNjheZ3o5YS4QiUsMGWpvreEugU8Gy0a6OlJMk2e7IojXIlMlJoKVCuwAqadnihwq1J7HqKO1gn6s6ays9m9efgpb20v3ETb+n5LdOcUZJNOarTBMqB8YUabW+31mtx8nHvNbuLH19b/RGWzHuKZe2PUFMeN289lTanwTmuz6iq8+bOX+8W0/7icfN74vHHogZnupk9bvPlF78SVErj/1o4Vsq6gU6SzyzgFRc9xFen3W+Wuew1u/WBOdiYtjJTIFJo9GoWzOvjJd1r+GVhIRsfn4Y/6OGNeLStjrCChKDb4+4ffGDytZe94ovIMDW2uFKipbHPveOWvwYOXyXK8RLPAky0zG3FtC1OJloCy2Fk6Vkfm8ySPKLbKb4FLIsVo/9yxLe1N26ufZel7X8OSqGThJtr3z1m+9Li0FFhwKx/epLhDYvJjUesemQ2jYUhW+M2Snadkl1nLM4QJSbbTymBbNop2VJxurelKa4cX1RVSF/SxRqrnx7pMN3a2aJsipWnpjxGgiwiFSRZSepp/LyPNSQmBxVo81tFpokqgJACq60NbIvwtJn0X+gRtsPqv271XzlqWBZJWxbppTxemc76cgcz8uPkvIhiJiBvh5Rjn+72CvXIoTycwypbpDmFKMa0t9eIE4tazZvMYvX8mN5SmRd3r2VjowPXSrm8+xkGoiJrRBfV2EUIzbLZq1iU6WP50JmEVQ/b1STtCTPaKmwZ84hzNlYoOPesdfzTjHv4w7VX4o5KUs9YkvkV01zUH24NRlvszJwZ23Z7bE+iyqFw8/98B4BzvvBOLn7D7/jRm7452cPqiZg9VlEcyCB0gvVv2nGQaKpcVN8iMsLjJwtvZs3cKs/GHXzkzFczsLp9sg8CwJ0/+yBnvv9GajM9Zv8iRtmCsN3m/LffSJKBR7567U7b2p/B6Z7611xx9ecRicZupMbO4Rhyy70fP6bbn+Caiz7NLfd94qhs61j72C9f9xWWnvlR0xjalqx47Ppjti8tDp0JkWX2f/cRzWiDOEbd28boBXUGoiKeTKgkHrXQJW3YiMBCSYswMnUnUc6ixy1zQW4t8+0RUgTDaYZNianjOM0ZZlzZFGRCVriApmgF9FrjpAieDqdSsAJm2uvwhE1CytrYJStjilbAVHeMZ6o99NcKpErguQlRYiHR2E3BxpMJSklGohxjUYaN421EZZdsFUCQusZuUaRGaLFCQZgx1TDRsI/Mx8Q5SHMeIlFYUToprkwkDak0NT00MPGsLBUJzplN0GmT+bOt3Lz4P7izMZ1XzHv0WLyNJyeWBKWxa+DZkN+qTHWqIxHaVKoqz0ZYClmPEWlqGmXLZq8VSyIsASEIodBSol2bsNsj8STeuEkMS3yJLUBZAplqtBRUexyigiC/LcWpxGAJgk4bBKZ3j9Zk/3gbN5/yc34ZCN5611vofNJUf/tjCvmkJMoLMsMC/vwYn8cWxw33L7thp/9fN9/8vvbh15O3Qi7NPwXsu0H97H3NVmoFccKrpz/GT995JfEbLdb9/j/ttMjeql4OJqZ94nPX7vaY6lrEV6fN4YnaNMajDPc/PJ/cJhe1i2v5nT/7IBf/4ZdpnJGl+yEjfqe+5IVv+DK/+f77EbHp3aKl2G+xZceYdk/x7KWv/OIx7Yl02x2t6pUWJx8tgeUwsuLRz3LlSz8HAm47kuVw7oH1mThipCkryt8GYIn/Bm4Ovn+Md6jFoaDKVQobAkSqmHanw+mld/IHZz9Iu1PjgbE5bKmUGKtliANz27AshdaQKEmbDIHj5LrcgaLMYAnNmHKZZu25siRUDpf1ruYH8/OEm3Pk+jWyGoBtI3IZdBCaZo4ApJNiC1jge4SnTGX9y11kCJmBo3JYJz1Li29BZJqZobUQb3UHD2RnUsoGjIQZ+gZKUHaozXGZ3z5Me6ZOIy6C1FiBIM2D4ydknJiiF7Coa5CsFaEQzMyMYqFQWtDh1nh8uJfvPPVCvnruf9JIHaTQZK2Yl5cewREJq/M9PJHvpRELvFLIwFgBEUrqiyJEe4MfzF8JwJ/03ssHxSJkCtkBTeqZrD+ZHljF0xL/DQD7vN+aTEjJ8mf+9iDPcIvjjX0NBHcUX3bMytvT62791cRrjMDiXD3EytWn8NSU23ki6uV18x/kzMO433tix32cb+eZb0csPf+/eEfPi/inC76z07KPfflaFv/w04wtLJDfmhKWBGEJZGyeHzjXY8pD4W7Cyb6sEXZ8/IqrP0/Q4WBFGhop+jipzr195XVc+tJPHbPt33LfJ1hy/idBbbeieD4jUs3yJz8HmKa6y7d8/RjvUYtDRfcN4Hg22Da99za44pK38IZ5D/DDvnMYrWUIRn2cERsrEGgB2rIIAostTsLM7BgAntCAxrLq1LWLLxJm7ZJMNM2qsj4WDKscBRHQ44wzyx4BYFgFeEKyJu6lrlxGkjxSKNrdOutVO9XAQ0qNSiW1yGVqrkzRDihYAVkr5MnxHtYOdxJFNiKUyBjsOpP9YqwQrDpoB2Rkkp+ssoUuxMR5UxEnw9gkBrkOIk5QYbjDSVIgJLJUJDp7HiOnunT83hZuO+1nhNrDn7jRtjiiLJvxXtNTRUrQmtLakKDLwRtLkI0IESTIok/Y4ZG0O7hjMcKzEIFpsq1diZbNng+2hXKtyf4PypGkjsCKFO5IgBaCRrdDkLGQicYOTCFnkjGV10IZ67A06yBSqE53qE7rpDZN8PjpxrLpPLeOGHeQicYKNYW1NerTssR505PiQFhaeitoPTmfsNvzxbcA7PX5FicmN57zn3t8fE/xbFGa6pVn4yqLZ27dafnl67a/7htX+OSfAV62/fVHizeVVhEXH2eKlWf9rB9z1a/ew9o/3t2e+Z7/ej+n//WNpBkb5UiCDovUNXHn4LkZuh8OuP223eNZ2Hfi0MRyQbuDFW+PZyfWfaw51jHt8xkNKH0cVCsBcHxcb8ea4+XdeN5w2x0fPmziyrJZf7XHx1cM/dNkw68DZWJy7nAwEews7XgbIrPn0s0WJwYr1U3oJAalSfIOxceGWPAvKcu/dzG+SHhmqJvRWoYotCEV0Gxwn6QWSgsCvefmxscDm6IOAFKtUSg2JhW+X+ngsahBVQV02RUKVkBcd7AbmtzmOiIy2TRC7HCLnBBWhDS2YLaDrtVxxkL8QYG2NY99effMlhaHn8mBlmUhhsboeiwlrHo0IodG4jCluwyuYmwkxyn5Ps5r28SijiFAEBcV2lHYVkqQ2BTckFd2P8wnpv+Cr81czg1THuX17feRtSJCZaO1wPdifJFwRm4LN/TeyV90/oqFTpU2GTLVHWNq2zheKWR25wi/t/BxuhcM4xVDvnfudrumec4QcZtC2SbzVDlmgiTxDz4Y2dt3BNASV04iZO8zkz+7ctGKfTe2v//cm2hfmeG0mVt43fwHj9Qu7sae9vcfZ9zLF1Yt281T+unXmEqKxBeIBOwAgm6Y880voS0jsuwoqNy+8rr9tle4feV13PNf70cLiEoOYcnebfv74kCWPVD+9yfHthry5gf/5rCKK8tm/uUeHz+U6pW9rfNAWb7KZNkuPecT6K62w7LOFseOleom0lqdcGqRxpkzcJ/dRteXs3xrxdUMjhYIRn3sURu7KrBr5p5iN0A2JLWaz6Z6G2vDKWxKcqxNijwcTmdL3IHcg6fnFMvYzt5ePp0V5bPotKpc6DnMsgtkhUVdpwwmBVYHPdw7Oo8fbDqXX2+Zy8DWNqK1BeobC6SbswwOFhkKcozFWTYFHQxERYYbOYKaqbRBgFMzTctFCjIBbxRyfRp3DDLbJJlnPJyKwF6TofMJhawGiErDWNoqjU5MBYOeSBoSErujHWb04g7VaF+dMFLPAsZi91XzHj4ab9dJz/LNXzMV80kKcYw7UCEzEGHXEpKSD7ZEBAnaEtSn2ISdTQtRvYOY0UwOULYg7PQoz/EZn+dR73GwQ407FqOFQNsSLSDOC8I2Sb3LImizsAPThFsLUK5E25LRxZKBi1NqUwW/9wf3TG4q0ClWQxDlxWTVZ5IxlVUHPKG7wzFMiCm70hJXTh72Fs8+Fdf4ZX0hX33qqr2+9n/f8kV67g/3Gg8fKWTvM3RO28zaxCT+VZTNxy74BfP/8waWTX/Pbss/8bfXIlKNMxoiY01lFpzyyRuxQui/wDdN4VdeB2p7PLs/Me3tK6/jnv9+P1puj2eTrNzvOPVIxrNw7GPaFi2OFi2B5XjGdVg27wPPvdxxwLG0K2tx+LDH6mghIAxx+it0PBnzXxvPJ4xNM1AVS5AaYSmUEqSpRGtBWXlHbR9jnVBW+9dJvqwaOCKlojwcYSGRPBu38ePB8/j05lewLtH8n/xG7hudg7PVJWwXVOZmUdnm8UiB8M3fwnWRjj0prgjHRjg2yrUQCax5fytwOJqoWh09MAS5LNteJPHyIUoLxusZXDvh1MWbOXX2NqZ7o3xmyuN8ZfaP6ewuk51VYdG8bZw6ZYB5pRGWdD/BxZn1zLfztEszsXC6k6Vk1VlT6SJJJXkvxBEJBSugKDPMsgv0WnlmWBbz3AHmF4eZP2WI3kyFiwvP8qY5vyEOba7f/HusaJiB8D31+eRnlQmnxtSnCJIMJFmwA81lr/iiqX7cD24Ovr+9ekXvOVNw+eovsmzhh/b43K4sOf+T+7Vci8PDNS/89BHfxsTg8nuVLnKuyVa+6tLruepSY320q93YA/9y7O5duw6CP3Ta8j0OJB/6h2tJfIEVa9xxM8noDltYIaTN2/UVV3/+oHsa3f3DD3DXjz7APf/9frOuK/c+0Lzyis9x5eVmQv5YNRA9UTlcgsgke7kHHvTqhGDFI585rOtscYzQCnekQZy30GGI+9Rmen6jUalARBIrEogJF1hpfoSGNLTorxZ4tDqT9XEXY2mW+2vzeKg6m05r77HnhloHK7acyqpg+uRjRZkh1aZSeltQYvVwF8PlHPWKhzPkkNssaH9CUnpW4GzxWLOtm2fGullb7eS2TYvo29iBtc3D3erijFuI1FStgEnSsOuQHUhoWx1RXK+wAgi7FYUNkF9dNvdDS5rKiCQxvr5CYs+chj1rOvb8OaRzp5HmXJK2DJUZNp6dUFUBuakbjuCb02I3lII4RheypIUM2haknkleizuyJCUP5ZgKzkanqVJRGYekLUNtZo7aNJ+wwyXo9gjaJcqBymxBnBOIWGEFCSJNTf+VVCMjQJuKldQVpI5A2aL5WRAkGYuoTSMzCZkh+O/fXsS/lnsA+Pb4OcQdCZV5mspMYbY/VRLnIb854qXX7H+Cz4ryt/cpoKwof3uvwsueWFp6634v2+LQWXrOkbUSnYhnX/1vH+DusYWETd+tpaW3Tr7XO1ZE337bsYvJLp69loYOKcmETrvKmtd/ZK/VsLfe+RHSvGM+f75GOSaWTX1AwpUv/RxWIzmo/bj7B9vj2dw2Y2u+N/Hkiqs//5wVMi1atDgwWhZhx5B9WViAmSQ73BwJG68VI/982NfZ4uizUt3ENe4f4xRPQbUXkZU63khI+SdTsK8Zp9AWMNxXQvoJQmp0KkiEsTWIsZjsZHaEcYTNLY0853iDTLd2tmp4Iq4Ta8lZrktdRfSnKedlNjCWZtiYhCx0HOY7Y/TVCozVM3TPTsnLPOe2beIJaz6pD3FGGOlZKfREI3vXQViWOcI0AmlsJ3RPJ0nOQR5cDNTiELi5+h2WTX8PQy/uoffsfgbLeQp+SMaJqEUerl/nC7N/yELHZJeOpDYzCuN0eDVe0/kgdeWxKe7gZfknd+sftDGpEGub2blRfCuhx6/wbNSLL3a2y8hLn9PdQYpd9/C7xhx+NbKQr6y5mhn5cTLZiHVjHdycOZNUP0FdeSjdbHCfAdXMQLVrTe/hg5go3Ffm9/Jnv7Bf67j5wee//c/JypsX3sObF5q/hYKVd3/0oJp67o2rLzE951b+evd+LfvLvuzMduX+b+8sBL3gTV+h3i1Q7g4PyueOrQ4VcYC2fgfDidYQdNni6/bqcz7Bkeizsnzz1w7r+k4GO7SThZXqJpb4byAvFkFPNwyNkN9UZ9qUKn12EYazaBsS14grE7ZbaEiVYFujyO/sOczyRuh1xzjT38QpTm6P2/r9XI1a90N8atMr+NG2c7gs9wynOyZho03adNhV+hoFHDvFd2KsgqYvlaSjLtkBRZyVpBmN6yW0+Q22VYsEj7XTvsXYISa+iRdSD2SsseuCRgGSDFiNBBkpkqxFkgXtGtsvMBZhaG0m7tMUhEAW8+i2AqJch0aAKGUJSy61aTb1HqDhU9UJxaPzNrVosnzL11k251qSjhz1Hg+3nKAyEm8kQjmS8fk+I2eY9zQ7aESQNOsQlRzqPRbKBqdqLIGUCzIy/f7cskJomr1bJMqzUFYzWaGmSTxB6gm0BdoSCCWJ8+b6mfprxfDpPrWpkNls84VHr+G+OasZDPM4hQgx6ICGqCBQFvjD4G0dJ23LHtQ52JvQciAVLCvG//W5F2pxwvH0x3d3iFgx/q+HLaZd2m4aBx1KwvBEf8FZtsecGQ8/5/I7Ot5c9Oav0Ogyn12rkSKaPWCvvPwGnNHGCZ/4caLFtCca6XFizXV0ZgKPf1oCyxFgfwf3R0spXrbgg0dErGnx/EMnMfaGfnRHG4QRVv84Ms5z4bRN/HbzbObMGsCSim3jRYKGSxLajImDC6QPhZdnA6Cw2+NPRT2sDnt41h2k2y5ziRczqgL6kiIDaZaFDsyxC5zduYXbKosoSZMJ8welB/i3KReT7XNxK5qoM4uXKGOtoFJEEKIbgaleadrhCcdm26WdPPz3LVuwY4ZSODVNNXSJ6g5DaY6FvXXOaOsjRUyKKwBnuhl6/AqPjUzl76pXMbcwwpn5zXTI3b8Guy2XN5VWMV54jL40Q6Ad+pI2fBlPNgKfYI5dYI4NfckoWyolBgZKbKt1MXX+EDPy45yW3cqGqItA2zh2imiYjERtgVUBhMBqJIg9RCVLz/oYKx797GE/bS2OHbf85ug0Dt+VlXd/dPLvgxmI7lr1AnDzDyb+2l1gufqSz+6X8LJjPxbVt4glr33Tfgs2v/3u7pU3V1z5+UmRBfY/zrry8htACG6748PP+Zpb7/wIV112A1dddgO33rlvC7aD5faV11Eul4/Iug+EZad9ZNI+a188l7hyOFm28EP7LSC3OLlRUYS9sQ862tBpirVxgOvm38n7y68jmh1Cw0JEcnJWQKQmwaa3UOGyrmfwRUyHXeNif+NuvVd25Q2FEf6xo8zqNVN5e/wnvGvuL3lDYYSizHCev4G/r15OFFvUxzJk2xo42ZhgikOSk0RtCmdanXOnbWZ6Zpx1Q52IBNyKxqkqlG16tkUFid3QOHVNA0HYAXHJwR8IsGKNTEEGkrAEKusgK3UIQlAK4boI24ZSAWoBemwcYVnIcgM1Pcvw2ZqZp23jV1d+ETg231MnPUmKbCTI1MWKFDLWhB0uItU0ugRdpw4yOFQg6PBxqi52XeFUE4rrUuK8RepLUh9SB5yqxhs1VSm1XgehnUkRMckKZKxxqhqdMRXVVgjKhvoUQdgJuc1QWh3SYfn0XySwGiZB6NHhaTRim6Th4GhwK2BFIFPI9RubM1kOdju0K6/43JHtT9vimLDi4SNflb3H7e4gpB1MTHvTmvOZYlUoyIBA2/zNw5qHg1l7XHZp19sRQrJ88B/3uc5d49mXnXH5flv63/edHeLZjze3e/bHscYStJRcefkNaEvuV4XOjvHvc8WzE/0Lj3Ri0vES07ZocTRoWYQdAQ7kBnWk/Q7hyFTCtHh+slLdRDIwhN6w2TTFbDRoWxPwwA/OYNm8Vdx++k9Zeer/srBrCGkpqNvEIz6/a8w56G1WVUBV7R6MHwyvzo1TTXz+s/8i7q0tZEA12JS6VFQGf4cyk0/03M5pPf2sjk2GyClOjs6eMjKGOCdQniRuz6BzHngeuC6ikEerpp+E61C/YC7lS/bPqqzFEUJrxhZKsm4MGpIRn1XPTufxsV6yVkxDhzstflFxLf1DRTb+diYrHz2Nmzafx/1hfrfVZoRHu8wyxy7wQs/GQtNm1Zhmj6F28CAaSKuTf99ZXkw1cHGzEWefuZ7XznyIkttgKCmwLWpja9BO3gshnxAXTDm4FUHqCZDbfax3OjzXZulZe55sXtrxtp3+n6gmaHHkeD6c48NRubLrOlTfIlTfIoa3zpj8e3/ZddlDqYYBuP2263bqxbK/aEuCYNL667k4UsLK8cb+iCsT7K8t4aHSElda7C8r1U0kQyOo9ZshitGNgL+44094y6n38rPL/563XXInsisEYZrEy1CgY0GbG/CawqO8q20zr8+PPqe4MsGp7f3YZYvhB3r47GMv48HI2LOc7tjMbRshimyQGq0FaSyxa8JUpUwJmFKqMDs7wmWFJ3nBjA2EUxManQKhNJmBEG8sxQ60aWCswamCFlCZYROVXOxqgj8MdkWSZiAuONCsWkEIsCR6WjfB/C6SnhIAOopIS1k2LRN89xXf5Jen/+SIvRct9oM0BUugmvGgUw6RkSL1JVYM43WfUnudoAOCDou4YOGMBmSeGaTw5CiFtXWcqka5JolHaAhLgrBNUOs1v4WG1IU4K1CuQDmCoMtYE1khNHo1cVHhjyrCTpehsyRJb4Q7BlFflr51nYz1FdGJIM0p4iwE7QK7DrktIaQKEe+hrF9prrlo75Pxy2a89wid1BZ7Y3/jneOZg41px9MsZeWTIrl49loWODG9zjivveddLPqfzzDnW19i8Q8/ze3rF/O9R3+O1s/tP7trPHuw/ZInX//IZ1j+5OdQRR8ZqQO2P9vfOcaWNdiJj9LiuPhpYWgJLMeY1k2txXGHVujmQFSHEe6qTUy/o8LPVl7E2zdfDMCPFtzC4t4BUOCMWPx4y9kMq9pBbS4vffLS3+/lPzt0Cv9WnrLH54bSOu1ODVsoRpMct9fncmv1NEaSHEURTS43xcrziu5HGEjN5PpdAYw+1YlMwIrBrhrLBcD4ImsN2Qwyk0F0tFG+cjFbLrdZ+0cnxyTb8ciy7negZvbQOCUgSi1sP0E7Cn+Lw/onprGm2sXaJJ1cPtQxby324/oJMgK332HbcGk326890WHVWZqJON91qaiYWCfEOplsbvuNsRn8tn82WgsWThnkrdPupiADclZIyapzZfEJ/qDjt5zVsZUpPeNoW+MPgD+qUbYgdeUebYdufuBTACw9/aMsPf2jOz23ozXjhW/5CkG3x9Uvvv5gTmWL/UTEB9ng4zhjybkH3ndnx0Hs3gSUP3j6Dyb/vvkH3z3wHTuMHGhsdftt13Hb7R/mtl/u/z19V5FlosfNwbCjD/aJSkv4aHFcohU6idFxgg5DFv9LyP/936t55Z3vJlAObzzjt4hEICOBFYE9ZvNo31Qei3p2W9X6pMLP6z7/OD6dvh0SLCZY0v4Y7twKUVeCa6f0JcZoS6F5Y+899LRXuOq0pzitpx817lLYoCmuhTSyOKN9G4v8PnwRk7NDtDC2YMqRph9gqvHGUqxQgzCN7t2ymSyPSjbaFojE+Pl7o+Bvq5rG6crE9MQJYrSC11fFHqwgXAe9aDYbroNvXPNvXOLLo9oYusXOLJv+HmgrkuQdrFiTehbaEvh9NaxAIRIIhzLUGy5IqE2H8mxpxLMkQdQbWLWQJCOoT1dUZguSLCCNzZyMjVWolhC2Q3W2pjpVoqWx9tKYdarpAfm1En8koTrNJnf+MHLYxQ7AHZfIUsTMOYOctWgTqi0hagO7oel+oIKzccj436rdY6XbfvkRZC1k2cy/3GMvrh3tHpctvo5lp7XGV0caq/788Lc+mL47f77oLgBG0izfevoyhlLFA7W5vLzrUaKGQ++vBPO6hrnc13TKHL94/JeHea/3n1vu/Tgr79n/5KOJypUDiYN3XfZQ4tHnQzzbosWh0BJYWrRosRMr1U2Tg1HR0YbubMfaNsyC743wzKdPZ+7/msz562b9AgR4o7BpfTf/Xj51j+v7fqWDH9QKfHV0DmuS3QekB8L9YcyPN57FY/UZe3z+vyqnMRAVKbkNPBHzcG0WqyrTqKjtAk5ZNaiqgEA7jDQFlpf4cMnFq2h0gVtJkVGKbMSmQahs3iYrVXAdBq6exdZLQSQtpf5YsbT0VnSSEPRmsb0UickIFYFFmtHoUsKVnU9OeqADk7Zep/b0o21TPdJZqnGJv+evwR0rVXZczxQrz4MRbEu3Vy99d/0LSVLJtLZxEi25q7KYbrvMadmtvK20nst9zSW+5IL8ev5o9gPQFiETCNoEYZvEihT2aH2P+7Hi0c+y4onrWfHE3idvh87TDJ9uE5WcvS7T4tC55b7nh23KwfSZ2J+qlJd0rzmY3Tng7Ryv3Pqrjz73QnuhlWzTosWRYaW6CZ2m6DRFTunCWr2FhV9+hlM+uJkVX3kJD47OYtaZW5EJuGPgDwkaAznuqiwm1DEDaZUVDZe7Anj/htfwlz/5U77+/VdyyY/ez2vXXM1/VttZk1RZk1SZbo/ypsW/ZeqcYVwn4dbx01nRcHkgtPhNdQFTslUWZfuJUovMNov8lgSnrnEzMb1emenOCK5IqcQ+/jab/NYUu5aim1UobjlBxhqRglMDb1Tj1JoT56LZV2NMEOehNq8EvgdRbJKEtIYwRK/ZiNqyDYDV73d4+EXfJtWSm6qlY/tGncQsm/puSBK0LUl9C7RGKI1IFGnWpT7FJug29m/RcIbU0wS9qbGIa/PAkpAq0oJPZRa0zx/FPXuM6iyNskw1i7KNsNLoFDhlkLGgsiil3gt2AwQQn1rH9lLa1qUoW4CGkQ1tqGxKoxt6X7CV1S/9N351xo95Ycc6nExM1BPjjWuswTFzMBMVU3tgxRPXs3zTV1m+6av7nBQvn9mFyrp7fb7F4eH5EtMeTN+dl//qvfzTlsv47sAlrKpPY0XtNNbWu5jpDHPh/A1suyLl54uWH9J+ncjx7KHEpK14tsXJTqsHy2FiV6W2dXNpcSKzUt3E1fJ1iOFRRKkAGR+kJLOlyin/KFj2zT+iMr9Ibr6kelpE/mmXrxVeytpFj3NBfh2hdsjKiBufvZL6nd1YEdSnav6u8yrsXMx5MzfzgekruNDb+4Twdf1n89j4NJQWzC8McePUe+ixAk7v7OP+oVl81Rvh9wqP8+X+K/nlhoU0xnzsbEI+32Be+wj9jQLrRzsoZgK6vCobkxJl3QAs+pIiNw+ezpzcMPdU4I87fsNpha3cL09n+FQbf9im64ExU+aulBm82B5pdxtRCbSf8uy733/03pAWOyEyPuOXzmd0sSQeFAw2HLx8SPeCIc7p2swbOu/do3CiUHx+1o/4s4v+hKG7pzJ+fzcfmnouX+h5CIBRVefW+lQAzvO3MN/ebh/2cBQwmObJigiQPBL18N2xWTxd6yHnhswsNqjGLmsHuuivFqhPdXhRYTWOMF+zw6rGnxYH+NuRBZwyq49gms261b3IQOKWXexyuNv+PhcTwbtueyvekx6NLpsXv+ZL3P3DDxzwulqc3Hzj6ZdioXhZ/hmmyAze1LWTz01cZ1UV8D/VWWyMOnlR7lkWO6P8LuzlB0MX8OCWmaSp5MkZUzmntJF/e+qFPP2afW/zRB58TjBRtXIo4soEx0vceNWl16Nlc4JMipZvfosTnomYVg0OI6ScnADu/OHjxD+ETLvN7CkVtry0gN2AabcJ/sc7j+qZLr1emQ2NDgAeenwup3x7hLTgk2ZtBu+Yy+dnL6A6R7H4nI28dfrdxMpmQWkIhWCmP4IvYj6+5vcZ/dl03LLmO1MWUDs9RHQrar02/pgie2ee/1h1OTfVLqewRZPfFDCnPAaA9iyUZ2OFKSJJ0ZbAqUvsUKOlQKQKfyhCRim5bZDbBo1uB6GaVbFtRUQjQI2NQyMwFk65DMNLF5COKv547cv40SX/cCzelhaYhCGR8dE9naisi99XR7kWyrNoTMsxfKpNY7pCC41TkSTavK/5NRZxAfrP8+hNunHXDWBvHqK0ZiYDvSWEqyhtNCJJ0AFRu7GWywwI3HEorIek30JLqE0zdnPeI1n8EdAyJc5ZtD/VwB/xGFtoEbVpXjntUQCueOKVOFbKnRd/g5f+6wepd0NjyUzanzKJR+625+61sKdJ8f9afSF3lhcT585jzR+UmPO9z7P+jcfH92KLE4fTPnIj2ga0qfRbdcPOvVKf3jSNmbkrueXX5+D3mx5c8bk12vJ1bqi9jHWbpuC17TwmW9mwWbKPbe4Yz5ZVg6LMHMYjOjocaO/CfXG8xLMnAxpQ+jipmWh1uQdaAss+OZCGTxPLTdycdhRcTqSbzJILPoWWEqHUpD3Nriyb+m6Wb2sF4ycD6fg4MgiRvd2AZx7UGpFqKjMlURHkuENtXoLvpIxEOXrtcabbZR4OZzBayeJhStJlLJA1i+7po/xJ7707iSsTPtXnuyZjaX1S4abHzsPa6pNmFM+099AfFDm7uJly7DNcyfHPT1/MN9OXkG7IgQZbg8hHCAHDgak4SFJJkNj0BUWe9qeSlREV5fO78mzWj7UzUM/Tm6tAByzJP8635l+K3e8ilABLgG2hXQ/SFBHE9L+wQOOiGp35w9MzpsVBIgTeWIJMXKyGJM2mTGsbZ1Z+jJn+KHXtsjEZJSclT0UZLvEloY55PNasCudwYddGfjSnE3+9y28GZ3N/230sdhJWxw731+ZRjn0edWeytPgoF3mKJ+KEJ8Jp3DW+mKITcFpmC3eMnsLmWonRRhalBOd3bqZoNRhtZBmrZpiXGcSXMc/GVRY624WaM/zNLJjez7/3vZDzz1jHSJBh/IkZZAreAZ8GheLXgUSMO8Q5CDoFQluH80y3eJ6w5NxP7rFy5WdrzyLQDvPdBh1WHQdBVUc8s2kGZ87cvNOgMS996srlrsH5/HTjmbRn6tQij76NHciahXI0v23M5UF/Bgv+pgHPIbDs2BB0R1TfohPHqqY5UXskG94fLq586ee47Y7nFksmxKIrX/o50NuP7XAOvo8GSzveZnoaAGjNivK3d1vmGvePuSX696O8Zy2OFapeR2azCGvn70nVWSQpueS3avpfqEldiT3ocM/WufzhvN/xktKzbIvbuCMRxB1Z0zdNCmq9FuWFKb3zhnnHjDt5RbbOZxtw10OngKWxz1bMcwdYv7qXuU9GWI0Et+whlEdcMPZeaE1pTUz7MxpnPEQGiYk5U43KeaBARs3rWIGMFE5doQUgwK6m2FUTQztljRYCPcWh3mWRKWURYYxIlTlmy0IIAUoztkiw9KJHGI9PvInA5x2WhQgTZLP6Q1iCqOQTFiVWhJkEFpD4oGyNW5MIBf6gqT4J2x2ckTxivEpxfUjQ6VM5K0LG4FY03jg0qoLUB7sOVqTxxhRWrKl3W8RFQbYf/DGFN5oiE8XwqR5W5OAPx6RneDgLKvx2dB4r/C0EicOGbZ1c672SJKupzIXiasHA+RkqC1Jm/6zjoE7Dxx56FUlkMTXQ6NkNXOv5Ycva4vCztPTW3US606+7EZmAcEDEpk9V6sEZH7yRx79oRBbVt4gnoh5uX78IukIa0iO3UeI8kmOkPcsIkB0R1E/RPBHXJx0MbjzvYpaM7n1/doxnV8UOd9YWcF5mPem6MyiIgJfMWX1EzsOR4Eg3vG/R4vlOS2DZBwdzczmRbkhXXNkUgeT2/VaejYgVsrb3bOo9iSvLFv01y5/52yOyny2ODZMZf2GAGBlD+B44lplQ0hqZQJrRZDcL6tMsgjjLr4N5/HnPrzjFyZEVG+ko1hmY5yHzMSqVkArO6tzKK7Lb7ZAufOh11H7bhRXCBa9+nG/Puosnom5K7XXGyg4UElCC362byQPhHKyKjYhBKIE3ApYDYYdGtSVMKdaRQjNWzxDFNpalSJVk1VAPtlB0uDU2N9pZPdJJeTyL21Hh6q5VXOg5fHboTOxtHpkByG9TpDkXEcZE3VncwTqqaFNZoHjR7A18/wX/vI8z1+JooCVkBjROVVAPXPrbCvi28RMeivP8KDUC3rPlbpb0PAlAimBdvZuMFZFtaxAWHEZrWb6ydQklp8FolOWpoSkIoZFS099T5O7sAADr6t08NjKVDr/OY2NTqUYecWpRq3tcNGsDVxcfY1Uwgxf1rOOpTA9P1aZSkAEf638V/2fKA7wuD0/FNS7zA/LS57tKUnQD5hQa/C4zw/gzHAB/9Ju3s7HyWrY+NYX8eomyIehRreyRFntkb7ZgdeWRIqkpj7E0xy1hD56MqaY+gZ7DTCtiipXnsajB7bVT+dXIQmqRRy1wGRksoBOBcBQytI3/vyNRttynpd3+MDFQPZ6FlgVfuBFelmH1X197SP1Xjhb7I67sa/njOb5dNuuvjAWSUizf8nXzoBSsGPnXfVrR7ElcWdr19kNuTtvi+GMipiVJ0GAqWQBch2BanlqPRecjFUpPC4bOLSATQVRvZ3VvN+3FGudm1yPaIrZemsGuGouu8UWal5z3FB+etpxTnJyxxP2Xl3LKyiGE1tz7hjMoLgtAm6oSpypRjqkgcKrg1jRuOcEeDZBBBEEIGR9tS5Rnk2ZsRKKRUQKpRjsWVj1GC9COREYKqxYhogRtWWBLojaXqCDIb0vNWC6KoV4HKU3flVAjinnCKQlv6Lz3hJr4e94iJSiFqDTAkkh8ZKKRicatQHYQ0JrEF8QDRmxBg1PXODWNcgQq42DVbOyxgK5HJU7NJduf4lYSRKLxxh2ivIkV3arGLafEBSM0Os2CE6emsOsJYwt9xk9LCdttSussMgMwNpbhwU0LuL99NufP38jgWJ4H7l1E2hlT6qrC6g7iPPTOG2Zs4Z77ZO6LS1/5RaYlLt5IgAgDttZzpC2BpcVe2JstmFCmN5VT03jjiiQjaHRKTv3EjTSmpmj3z8l2NExypgC3KlBOU3gMBMrCNFCo2Hxo3Wt538xbuHruk6zYh7gywURC3Qs9mxd6q/nk4OnE2uLKwhPHfUw79+tfRv++w/p3v7/VP6VFi0OkJbCcxNx+23W7V9xkbaxawvInP3dA62qJK89PJgakaaWCXB8jZ06DJIVm9Ym2NHZD0HO/RtmSgQs9fteYw0v89cyyC/zmnP/h3+ZNYVvcxi+2ns5gOc9wlJtc/0BaJV7ZhR+ZZp73bJjLu6yIddVOFrYPsdWNaMQOI4MFrM0exS0mW6veC8o1r0E3G4Fa2vhaOzFB5GBbKd35KmNBhkolw9P2FOa3DRGlFklqYbspF/eu4xX5p4ACdeWSZhX16QKEJLtNEE4zDUqTkk+cs8lukqxZ3MVZP/sEj77i08fgHWkBQJIiU41QEOcgyWui/jxPDuZY0x7QXapSCTyi2CbamOcbbT0IW+FkEkrZBuP1DNFQBjpjHDvlkW3TiAIblUjjkwBYfsKTbg9PjPSSpJJq4CGl5tUzHuEnW85i8L5e7NPHedmCJ/jDjt+yKpzOv6+/gOHRPIVig9NKffyw71yk0NxdXsRYupm3lbZNHsLvTXmU/rjE9568iN71CTJI9/vwX3fPO3lmpIfaqg56H1LIOGX4DMtUclWPkzLhFsc933r6Mk7zRnmgMY/bhxYTKYuheo564BLUXGZcNMJ/NabxwNBMPDvh6Y29kJrPh5s3GdMilmihSNoT0yy3o0FPqcLfP3UFf3HK7fvcfrht3qSF3p44XgeiE4gUlKe56rIb9uo53+LosHzj3xmRhYl+BilCSJZ2vR0sixUj+58U0RJXnr9M2t8qDa6JY0WqaHRajC0SFDb6uKMBPbdvA9ui/9IprCt38oqOh1maifj5pX/PmzvezOC6DtwRC5VJObOwhVOcHB8ZOItbv3oxU39jxBVShT8EP/vtueTXWtR6wM3YOA1NZkRhBworSJFBapZXGoQ0MbYQ4AqEojmZrsGWYAlEIzETgdpGpM3eKlKifZuo5BJ02UQlYKsRZHBtRJIgUoVOEiOy5LIUnrb5yYXn8z8P/RFfPfc/juXbclKjk8S8/0KYyqisR1L0sGvmfW50O7jjabP3jp60fkvyNnHG9PBzx2JkJUR7LtqzcCoRnY8lJDkbGZrY0q6luOMxKLOO1Lcpz7IonxuSedZjyoMNonaXLZdlSM+uYiWS7MNZooIg6ITOex3iPLDeY9WzC1HdCnpCCoWAF01dz/KLCghXMbCqm1nPxAd0Di5f9gXceoI9UkMMNmey60VzzbdosR8s/vSNxD2a3GZBYXOCXU2RcYorBSL1iEpGmHSGHMQ6h2wD/BFN0A5pxtjoycQI30qCDCUbR9tZWTqDf7znXQSJzc8v/dpetz/vP26grfRWLurZwKWlZzjd3Uo19bh980JuuMBY6x3PMa1IBdpWLXHlhESgDjRLs8URpfXNtRd+71Vf2ePju954jrcb0cHsz+0rr9uemaggzdjbq1t24MqXbhddrrno0yw5/5MHvZ8tThxWqpsAUGGA2rgZtXUbjI4z9dYheu8LaWdHAAEAAElEQVSBzIhCRpqgTeCOSf7xpmW8ds3Vk6//0+IAF2TXkndDppQqJEpONrt//+aX441q/DFNZijFWpVjxarTeXpjL7/bNIMt67oY3lZExxKZmsbkSQ5S38yDpy7I1DRwlHZKFFsMV3JENYe8H+HZCXFixJTh8RxPDvcwWM+TpJJcNmReZpCtic+KhktWRuRnl5l+9jbqF9ZJ8mbiz2ok1KZ7RCWL7IBm25Z2yqPZ3U9Ui6PC1fJ1qHod77GNZIZT4oKxTMhsschstIkqHlsH2hgfzBNuzVF6VlD6nUv+IR/nvjzDT3ehn8mT2WxhDzqMbisSDGSh30cOu4iyjajYpKMeW7Z0MF73SbUkji0cO+X7ay9gy9puhILo2SI/v/VC/uSHf8H1N/8+g4Ml8vdniH/Twb39c3n68Zk829fNQyPTeaoxdafjKFgBllDEDQctBTJ87gHpBx75Q668431sKLcTRg4IjbYEMtFYIbijEus53Ov2lc3d4uRgybmf5PLbPoAlFOvjLn41spDHN0zj6aenM7K6g2hdATHk8e0NF3PLxsVsWDWVp5+agRx2sYYdLD/FcxOkm2K1RQhbIesWIhJYUrGoNMi2qI3rn/i9fe5HWe+5UvYHtcKROOwjgnI0t975kQld9rjk96/cewLMlVdsj+uuvPyGo7E7+83Ssz52YC+QguVbvm6qrC0JUiCE+b206+27Lb5s6rvN7+nvMXZiLU4adBKjwxDVCNBRROeK1cy8NcIKEkScQhyjHYvC5pjoW1N5312vB+AUJ8fFvetwexrEcwLIpKyum2z9/3z4ArrvGTST5XECYUjnExFdD0hK6xWFzYrcQIIWYIUKbyjAqiUo30I7Ftq2wLaaggloWyJShQwTRKJQno2WAuXbiKT5eKpAgXYslGuhHYkVaLL9xuYsKfk0puVJp3ag0xRSBaUiSMgMae4bmkVf0Gpuf6y4Wr4OHUXocgXKFbAs4s4sSdYIIzJMccdS7FqCU4lwB6u4fWXcvjKZtWMU1lbI9DVwhmuIegOhFAiBtiQiShFKoxwLbUvsekLiWwTdHknOoTbVwRvT5J706HgyxR4P8QdDen8T0fsdn+6f+rQ/E5DrS4lLmuL6iI5VEZkhjbagZ9EQF8zdyLyOYcbjDG4xotReI7dZkNkw9pzH/oI3foUXv+ZLvPSav8UZj7DqMSJM0EmCDiPccYmInvuLdYn/hsPwTrQ4kVlaeitxwdw3nRo45QQrSJBRihUkOJUUpwzuiIVMwa5Brl/jVjWZYU3qQdymCKakphfRGOQ2CRobCtyy+RQe2zqVNUNdnPbjT+11H9SIx9hYlt/0zWH58Jk8E0+hkTqMDxbYmFSO2rk4WLSl0a46riuVW7Q4UWhVsBwgu954jvcb0TUv+gykmlvu+8Qen99x/29feR1XXPl5MziA7X/vwXLmlvs+wZILPnUkdrnFccikXVizV4oaGISBQYprfcTiuYyfWsIKwRuF9mcTNm2cz/0f/8Vkn5WrMwm/7VzLs7UptDkNflE9jfe0bSRRFl5ZYddShAZn3CJIJFgKvS2DPyqI2jXK0aAgKkBUYrKcV7kmixhA2gqtBUlokSmEdGeruFbKlEKFaugxPJZnbDAPAiwvxc81GE1y3F47ldP8rbw4/zTl2RmWFB/l83IZgTcN4ViknjQT4LGm0WX6yIikdes8pqQpaE1ma432p4so2/glBO0Cb7ODjB3suikVz/Wlk5OfQkNhiyTKG4uxbL8gbLPRFlihEe2SnEDZRszTwqI+3SLuDLBtRZpKKlsKYGniksKqSbLbzPUYdAuouojUXJuDj3dT2CqIRnIkF9X4cu/vuCsAX8T0pSV+PnwWQeoAmvIci7t/uGcLJ4DhrTNol1l63blUwvkMDhfQVYf8gMAbiVGexApBJEz6DO+NvZXVtzg5WPCFG0muzTJfVvj1+AKeHe9m87NTsMsW3qixVkgyELXB2G29iBTa6tDoAm8cEg+SeobAyWArc62HHSZIcMoWDVXgV+l8Lp29hoyMWXjTZ3n2dWaifMm5Jiljwq7sO+NnMNsdoihN/5eciHkqmsK/972Q185fuV+9WK6+5LOs/PUBTsQfJp798LXM+/cbTEKKc/jylRZ+/ka0ABUcnl5fqb/376sdG9jf9svjrIeM3j34XHrmRxGpZvmq3cWg5etv3P533zdY1vsukCCwQGmW9bzTZIlbFihlbHmA5Vu+vkcBpsXzk4l4Vjf786hGA9Vo4NwxgtXRju7qANdFBDH+1hrZwVHyG7t41fwlfGveD/h8728AWFvtIlIWz5a76EurWF6Kdm1Eo2n1pRR2NQYcUk+Q7Y8QibmmZaRQjiTscM2EXyUyFrxKGRGkOUkOpoAlzXkkWfM5lonCqsbIemQ+I5aFsgRagAwVDiC0sYJKMzbVGQ5YguzqZt+ZJEUXfJKsYLzhk3Oio3n6W+wBHTfFsijCLodIzzb3KiHwt9VMAk6qjHCnUlOFojWijFnObt7jGwHSsdCegwgiLFuibYFVN9eLcgpEJYv6FJvaVEHb6pTcthTlStKCi10Osdf1gesgzphKkjPrLT0tsOsJMkwYPMfl0pc/zHic4cFNM5jROcamchvptgzjrk9Bg7b2Lows+MKNaKnJdQmsUGDXYqxaCImCRmCOUUrsGjzzkfc/57m7Ofj+4XgLWpygXPBnX0H98ZnYNcj2Q2ltZMTJyIjlynOQqaa4MSEzYpG6YIXGVs9uaDKDKXZgUZ0myQ5qogLEGcgOatyqJNrYgShCMDvCzUfM+caXWP+uDwCwtPgWAFaUv012iySqZigPedw1mOfhjulUKz6ZtQ53NWbzhsLIc8a0x9KedN173s+8/7jhiCSOn/YxE5vFaat/7RFBQ3qcZHm1XMoNrVnC5zm33Ptxllz4N1zzwk+TZhxuu+PDLD3nE6x4eM/2Rrffdt1kRuOE0DLh9XrbHR/eqUnqzQ986igcQYvjhYlKlqvl6yYfU2GAWLUaZ/a5yFgTh5IoL+l8pMK7rn8v4/NBuZrvvPobvKX9fv5Jv5AOu8aWsJ2vj8HD26YxZ30F7dokeYeoDWbNGmTbSAkdm4GncjTkE6KsIJqlAY016OKNCtMgFOObGo17UNqeEb2lUsKSCkcq6lFzQQE6luClxEpSTX0ckZIVIfPsMq8qPcglvmT6gv/iVRd8gK5HFMoW1LsFtemQFk0/mHXvee6gv8WRQyuNqtURa7fQlmqCqTmCThunZiqaJqs4BIhU41ZStC2QkcIT4BZslG3sNzLDTP6tHIgzJkiRqRFhrMAiGskhAqPr2CVzTYoU4vaUsR6Fv8VBxqaSKskaEdAfEigXwq6UN80xEzK3Vk5nqjvGQFwkSm3WjXUgHcWjX9m3KFJRKRYN1ja6GatlYMQlt1nS+VSCW46pzPaNp7yGs997I498bd/rey6WzfxLAJZv+uohrafF8cVFb/4KzmxBUreoRR73bZ1NbSSL32fhVMAra+wAEAJVh/wWjbLNdV3YCG5FoVyBU1NEBQstICoKlC2QkRG7naokquW5z53FxdPWsahngJfe/n7Koc+Mr4/T45tMvmW/+ksSdRphalNyAxItcWXKpnIbI5tLMH/fx3L1i69n5d0fPebWXPO/oUEnpL59yI3ur7r0ejYuzRpRQJnP8+FAxieoj31TAFl61sdY8ehnAVjx2PUsO+0jLD3742gp99pbCIzIAhhhRe5wnaQpWNb2Xi20bMFONvYUz+o0JRkawYoT9NQpiEaIrAVgW8inNxJcN4fXd15L9R3jfPP07/MDeQGeTLhrYD5vfOb1iPVZRG0MKqZCGylpTPUZPQ3ymwSZAYHyBGHRQlsWScZFS8hvSRBBBIrt97NUI6PUVK04lolfYoWWwtiCyeayqQYLUEa00Zbpy4IvibMChM3YIk1tqs3c+8yEfTqlyOD5BcYXK4oCll/a+p4/ZgiJVhqhm/ZtjQA5IhF539i7AbLa2Pk1SkMcG3FtwlosTcGxjfBSriFs87fVFGlEI4I4xhkSFCsO2pYUNjpG1AF0JM33vmsjpnQg0hRlC8KiJCwJcv2KOG8TTfOpzU1pc+rc+sxiGPSJ2yt0ZmsM54tkNjko19yn94ZJjjPXuR00K7EaEdQb6EoVnabIjA/AaR+9kVXXH1o8uyT3JgBurn33kNbT4vhj2akfJregg9EFNpkhyPUZUduqm75UpArR/Bw5tRRvNEa5kiRjoWyBW0mQkcIOUtxxid1IqU3zEKmxE/PGFd4YyFQzErnUFwLZlHlf+zLOuCT92FlYISy64UbcGHJbwdycXZTj0jmmKa0N+Kz7h7zhbd/c+3HM+wDL134JZvQehbO2d+b86/ZEoUNtdL/k3E+y9Yo2M4ZwQdvA/jtht2hxQtMSWJ5n7OlmePP9O1t57SuzBEALYfqzXPl5I7i89HM7ZRLuKLLsyJILPtUSXU4Cdh2Y6iQm9+QQ4ex27NBChook59D92xEyQyUaXRbv3PZu6uc0+MlLvsHpTpaPDJzFVx+6Amd1Btm3Ft1RJO7xCXtSXti1nl+reWzzMqSuAKEpdVa5sHcT41GG322agUgFVgBuWZNkzER26lskjgNa0Bh3CUOJyiisthDPi+lqrxImFuWxLK4X05Wt8cR4L7ZQrGt0cV5hA6d4WwHNKU6Ocy59hk2PLaA8S1KfqVC+mfEScctZ8ZijFToM0VGMFUTYDR9vXCBTSZwItBRoC9CQZCXueILWYlIstuvbozyRmv5BYO6NdkOaBrISUk+gXIE7BoVNisQ3GXdJRpD6kHYqpJOSZGz8QUHYAcE5DRCa5Jlsc9JZ8J+bL+DXYwu4oLiBUDlsDtoZi3yybsTv/uizezzEJRf+DTff/0l+svYcuq0MGxKb3/bPJl2fI79FmOyqkRBtmworOzQC0aGKK9ASVp6v1HsEqQfOqMXQ+BQzgAzNhIdbAW9cmyzoSOBUwSunhEULBXhlhTcam8k7pbECB2UL7MDCCo1AqSXEeYGIIfpdOyuG8hS7qkipGRvMM7y5DacthAtg7VAnWguimovtx6hEolIJFRt/0KKsGhRlZq8Zfyvv/uhOv48VE9u/5kWfQR1CFcuiG25ELzPWk6Ip7h4utNxBkDqBWPHIZ8zvR3e+R+6pemVvLJv3AcjlWL72Syybcy3L199orME8zzzf806W9+8+8bFs5l+27oMnAbsJLVqRjpexHRuKBag3IE0Rvoe1aj25UgH/0+287eL38vF3/z9em6tw5eA8Nv16Jp3PaKhUUdUawvMQne2MzbMonDJCNe0gv9nCijWV2YL6oggqNu2rJG45QUQpRJHpwSIFIknRiQJXo4WpQBCJIs25aEuQ+jZaSqx6ZAQY10JbAquRmMSSRCMTm6ggSfOKwqnj8C2B7mwn6MmQuqZiN06sY3j2W6DVpMhCHIMlEY0GIgwRQoDrmp6Xzb4rpGqy5w7pDrOVaTpZ8UKqQRkBRjSMcGL6+kji7jwiUThbx7CaggyWRFsC7doo30G7FlYlILupSvUFJZQDTl2RZC3qPRJ3GP777hciNMiegKwTkSiJiCSpC099cvcYdEn+zdxc/Q6n//WN2ArcbZDvS/CGQuR4Hao1dBxPVpXhOFghPPalQ49nW8LK85dwWomwKHHLmtxAil1NkHFqxJVmJdQEWgpk1OxHhBGkrapJytSWhfAthAKnprAbysyV6aad43CAXfcZrbjUe43DgT9oYmaAWq9AaJPcJxON3XREyAwluH0V5vw44JIXvIZfn/XDPca0y9d+CWCvyc9Hi4k5xKsuvR7lHfx3w5kfuBG1tM1UVngw0R5EtASWFicJJ8RM4fr16/mzP/sz5s6dSyaTYf78+Xzyk58kinYua964cSOveMUryOVydHV18d73vne3ZfYXq54cjl0/rpj02pbSWIex554tt9923U6/ARCCKy+/gdvu+LCpZNnBt3uClrhycrFS3TQ5OE1Wr8XbPI431CwdEAIRp/jDEdqCzidi5v6z4E8/837m/fDtrPjnSyjek8EbBd0IECNl7IYiu8Hi5k2nkHdDivPHiBc0sDpDSpmA4TDHQ5un4zyVpbABnIbGG1fGWqwKVkMgqjaiauGMW2T6BNmNFum4i+8mzG8b4rSufvxcRNaPyNoxo40s60c7uHvjPL634QX0JW2Tx3dV5ypGTpc4l46gbY07ZCMkkE2Z8929e9q3OPJMDMJkPge1Bu7mUXLPjlB8ukxxXUR2MCUzmJIZMv7VMkxxxkJEohBKI8MUuxJhj0fIIMUKU2TTr9oKFHY9xQ41QoGMTNBsxD4zGe2PgDcCmXUOuuwgUoEdQNIb8anzf8opU/uJ2hVRm0Y7mo2buni4bzobww7WNrr5lwv+jZWX38jdV31hr8c4IYwPJ3libRNoG0totEmsQqYmsFe2bO63fs7+Ky1ObmQC7jjktkBxPbQ9rfGHjWe1W1NYkcIbT8j1J+T6FM54jDee4o+muGOJsaUJYqzxBu5wA28kJLulQX5zTGYobf5ovHHIbYbSQw7ej9pgRQcdv3XJrbWxnshxxgdvJF1dINmSxVvvYj2Vw9qYwd3k4Q9YeMPgiBMiPN1OqpHBwY8en/nItZMilbJN9cpD73v3Ydu9wynYHC9M9AG8+uLP7vT/jixf+6XJyYtJCzHLgjBk2fT3sLz/m8ZKbNfXtcSVk4od41m0IhkcgrHy9koBqznZpDTWmq1M+/YT/MvrX8m5N7wT/cUept4T4w8n6Cg2k91JAo5NfqtibGsRNaNB38WSoTNs6rPN+LJ9laT7/gruptHt1khamW01K66E0iZuiVNELUCGCdqSpBmbpOCgXBvlWk2bVBDKVAQ4Iw38gYDEE8hSxDUznkJN7aZ8RgdagD+qoT2i4IdcftsHjvr5brEHtIZUGaGhWc1BrWZEEK2b1rhq56rNyYonZa7VeJdeflIa2zmtwHNMMpEQaM9FSzlZBSMShawEWGMNZC1CxClyYIzxBRqZAEoTFSS16RAXFNgaZ2qdtlKNwVqeO674Muvf8QGe/fCeBZGbq98xuxMbO15/TGEFCpGo7QmcTRFJSLOPdv1wntwWz0dSXyJjKG6McEdCrCABpdBCmH5WloRUYzUSnPEQESWI1IwBrWqIbMTIRoxVaWDVY+zBCt5IhF1XeCMxTq0Z0wmBN1BjyoN1Zt4eMvWeiI6nQ/zhhPymgFy/xhvTeGWFP6rM68spdt0IPSJKmFUYO6bn6kCwahHOSOO5F9wLj33pWtDGxn3yx4YHPnb4YtoW29GA0vK4+JlU005yTogKlqeeegqlFN/61rdYsGABjz/+OG9729uo1Wp86Utm4JSmKS9/+cvp7u7m7rvvZnh4mDe/+c1orfn617/+HFvYHaE0V1/8WVbes3dv70Mtn9sTRzLLcMJre8eKlv3Z/4lqlYkGqDs2u98TSy74FKR6n9YNLZ4/TPpZb+3HCjuQjawpbU8V9lgDf8SjOs0hOyjo/s0wU+5MQAri7rxpvthsMuo/upFZfR1Unm1j24wOkizQrUkKCZvTdjapDvxnfDIDJptaC1COAGWySbJ9kI7IyYkku2ECeeXYVDs9qrFHpCzi2KKS+gy7WVIlkFIRVDP0bcnxaO9MXp8fBaDXGaf3BVupRS7ZTRZhu8YrBTz9mj33M2pxdNFKmyqWeh3humBZSNvGG8nitBVQWccMJCUgBbIRIpSxRhCJQoQxIojNMo4NjoVybbRtMkjTjIXlismGnk5NIVOod1kIrZGxwKkZCzGr6Ux3+twt9CcltlRKKF+hPeicMcbw5jaqQ1lufNV/HvBx3jm2mErR5yXZZ7h06hp+MFQgHvVJfEGSdwg6bOKsxIo0D/zfQ8/2a/H85JoXfYbi1AxxzghyTl3jjUQEXS4y1lihwq4lyCAmzTqk/vaJO5kYv3ftSERTRJD1yGT4WebzoJtZsHZD4ZalyaBONXYtQTmSJG/jVoytWJwTxk6sJrEDTeKbijC7YSz2kJAR3rE9YQfI3vrcHQg72oLNuCOEvzjkVe7ElZffsNc+K/t67mBZeuZH92kVc6jc/KCJMSfi9In/n4vlm78GmCqVZTPeC46z12WXLfyQmbSU1qRQ0+L5y0Q8C5COl5G+t71vT5oaIaSQR9Tr6CfXMvVpMxksfA9cFxWEJgEkiqBvkPbfxmQGuxifm0HbzV5W22ycKky5r4wcGodoh0nxVJntSBtZqUOtWYGgNYQRsiyQno1yJDJRiDQ1919bGuuwCUuoJMYeChE6S7HYYE2tm+qCIgCZ/oBGV45sIeQ3S/Y9nmtxFNAKnYKQwoghSplrSGto6GZ82xzYTIgtSYJOU0QzEUFrZex3lDa2X7a1vcolMVZJKI07GoBSiKgpxtg22rPNtRPHiChCxO6ksCiUydIPOm2qMwXuqeMkmwogNY6d8uCyA7y/S8gOKVJP0Oiy0VLg10JEGCESY90oshmiBT089I1WPNti7yyb+ZdkOop4noNQatIuTzuWsVtMEjPWSxLscWV6/DgWIknNvTNKJkVNANGI0a5lBOokNZ8JMPfWKEFWQ2QlwE5SsC10xkVlXUScku23QGMqZKRA2RIZK+OQkM9QnV/gj7ruOIZn68DY31hqX2jLiCpgqnlm3dKA9xzyalu0OCE4IQSWpUuXsnTp0sn/582bx9NPP803v/nNSYHllltuYdWqVWzatIlp06YB8OUvf5k//dM/5frrr6dYLB7QNn9821/z2qVf2+vzE5Uf+xJZDkaA2Zu4ctWl13Prr46tvcNtv/yIOaZd7MGuuswILxPe4zc/8KnJZrYtTh5UI8AKQ9hcRlomuBeRR36ji9PhYQWKpC1jskeCGHu4jhgrk6YpQitUuYKo1SkOj5PvbkdlHeKiS6PbpjLDoT4rxQrADjQy0pNWd9mhlNQTyNhYJKWOIHWNbZi2wSlDY22Ox4Zmoy2NiAQ4mgGpmdkxSjXyGIsldl1SS7ZP6j1Un00jchjuL+J5oB2MzVSLY8rkBIhW6IkKxThBCIGOIkRdIC0LWTdZoNqxzIRDtYGoNozlQpxAvW4Ca9tCOA7YNhYYuwTXQaQ+qSNxLIEVKdMU0RVYkelLYTfMBLJQErthrOqe6Z/ClkqJseEcIhKcf85aXtC2ju9EL6A2ljmo41013EPRDrgi9xS97hil9jpjcy2ikk1UcE3Wu2UmZ1u02Bupb2PXU6xAIZsZfVYlIj9UMxN0rm0mXsIELSXKsZqVUQKhtt9vzYA1NbY5QoBMkVqbiSHLwqqZwahuCi8AltbYVRu74qA8y1j4NTOutYCoIElSgRZGeNECXvLYq7nrzB8B7Fez++OBJRf+DVqIgxZbnv74tcy78SvISHD7yuu47CWHJ4766YoP8ppX/P0+e7rIRD9ngs+EbeH+si9xZcm5nzzmSTh7qlJZtuCDoPT2qpdnv7D98RYnBZNJQ2mKjiLTI0MKY98FCM9tevs7CNcxywUhulpDJ0Ys0UpDGMLwKH4U4w0UoSmE1GcVqMywzARf8146WYmQJEacge39NZrxNABRZKoM6jFCmcoWbUuEY6EdiXJtrEZiKlxjUylTqfo80D+HWbHJrNZC4FY0lUdL8Kqjempb7MJO8Wya7mz7JQRaKUQQbu8h1bxOdGoa3WuaQoxqBoBSohNTCSWENNdT83HSFFGPEHGyvdJFaWNPB+ZaTBIj4igFjk12iyB1TAXk9Ks28qHZK/hax1VUIo+NAx0HfLy5Po3d0NR6JG7FxNTatxE6B56LUJp4Rjvjc0+sBIsWxwDPiBsyUQilzH0wTIz4YQnzdxwjXBdtY2wXAakUpNqIMklqPgupQiROs49RhEyMUGL6HTUrC5N0e7VVIhFJihWnaMfCHdhebqU9C+FayChFS0nS5mPXFZ+8/TW8/pXfwBISToCYdtnc96GzGVY8cXBJMquuv5aFn7+R1Dc9S2/75Ue4/OKPH+a9bDGBas1PHVecEALLnhgfH6ejY/uX+7333ssZZ5wxKa4ALFmyhDAMefDBB3npS196wNtIc3s/PYe7cuW5mBBXjrWP9u0rr9tNUNkTx3rg3OLoo5MYNTZuBgVJMjkoFdv6ybguzJxG3JMHoVGeg11uoKs189rmwEJjfAtlHCMdB6tUAF2kMtPFHbbIb1H4IynKEaY/hgPuUALS9A6KimbyTtYVaSqIs6YXhz8o0EMWutmwOXUhiHLQMUqSSoStSQop1dQFYH1S4dnaFGJlUeioU9ECGpJwvBX0H0/o1PhKix0bGCttfoSCWCFqje3NQMMIMgrC0FROKWXsCGwb4dhmEColIoywtMYVAis22X1aCLRtGTEla7L67UBjhSnecER9qkc8kKE2BcS4g12VtLt15noDXDB1E9951f89qGO8f9kNLP7hp3lsdCoz82OEkU2xq0ot61EVGTLbBFYISaYVXLXYM0vP/jgy72E1jI8/qTZWCWEEgSm/Er5nrv84xhoHGUSonLnfadtUCooJ//eJrFgAaZmBKkAaIpLETORMbDybMZmwFY2d5MCWJpPQMuJn6lmIxMZuSGSiSV1BkpVE/97DBf47eeN7l3NVfhXvvPVDbHmqh3V/8f7Dem6WnP/Jw5KtB6Y6eMmFh7auuT8JJitJJhoQHw603Pf9YX/iSi0O3z1mIkY8nOf/YFhy/ieR9YjlT5pMfp3zd+o5OMHy1V882rvW4lgzMekN6BQgRSfNLH/XRWR8Ey8IYQSVZjyCVpMJIDqKTD/6Zoa1KBVodEgywwoxPI4OAjMRPlFxkKTodLtFtXCM8D0pwlguot5A1Nku+FgSC0jaMmhrez854di4ZU065ONUJYiUuGCRZCVoyAwc1bPZ4jnQaYpuBEjHBttuCicarRVCSVOlMtGLZcd7lNp+nYpJuy2Fhkm7OTEhsITRdhHFts21OtH7Z6IKII7NZLLvYYdN+9BAo7QgJ0P+fPpdvGrewwd1jL/5f+/jmhd9BnfcVGGJxOxvmvdRmTwiVlRnZfaZDNCixbKFHzL3w0ZgEn4AYVuTorKwm5aOsRGxJ/4Xyjb3WjAJdmG0/XoPQtMDybK2C97NeFcnO96TnZ1ETRGb74CJKjOdSGRDIirGYksXMlhZl3n/7XD5L9+N8+d9TM+N88BdnyUe8Vn//x0+i8ZlM947WaF7qCxf9xWWnv1xli344EHHP7NuNr7Ve+rb3KLF85kTUmBZs2YNX//61/nyl788+VhfXx89PT07Ldfe3o7ruvT19e11XWEYEobh5P/lcvk5t79j35J9CS1HQoRZefdHufKln0Ok6ohWtOzLHm1CWJkQe/YltLQ4uVBBiHRdM1BoCiaAybrbtBU37EJnXDOQDKPmxPf2wQFAWqsj4wThOohinjhvYQWmOdrE5JsWJsvZCjUyMc3ohNbYDdNsWSiNnGxGb4QYZYPVMP00ECC0ZP1gJ66b0DmljCMVPV6FUMcEWlJyGswujVKNXSxLmaqE6gl5y3x+oxU6TkxQbNsmyI1jUBKk8dqfzPaLIqjWUFFkltcKLSTCStCRNINQy0LYNqQpdhBhew7Kd1FZB20LhCcQqalkkaHCqSXYo3XysUKoDElfBn9Q4lTh1idPQZ6q+c5FByeuTND+wzybzsmzobcTrSSRl5A2TMWNUMYK73ffOjQ7hWte9Bluufe5s4uWdb+D5YP/eEjbanFkWdb9DpN9J2Uzyy/BLjuTg09E04okSdCNwFzzcWyquyYGrQ2w6iGilEX5DiJVyEaMqIdmIDrRUJfUfOYcG5IAGgFaK3StYe7hSkEmY54HI+w0moNay0JmXJwxY88HTTsGpQimmGrH//7MEr7+gqX4s8uIVLDgvz/LIy/5Z3JTNxzyeVp6zie4eT+aii49/aP7ncWnheCaiz590FUsO9p0/XTFBymVPruPpXdmX/Hs3nrngYlprVqyT0tcODw2aLty84N/c1SqWZYtvo7lT+/ec3BC3Flywae4+YFPseKRzxzR/WhxYqHTFGFZRkDRavIxOWEZNnFPbU5i6x1eN0FarmA1BRI1sxsrBivQ6FLBCNETk3VpaibRJybJRTODmh0m1q3U3NetZnVCc70CsDxnsg9UWsyY7bnC9JGLIGiXzabDAjvQ2PXWLPbxwI62dGhlktNS1fwON9eAlk2xPUnQahfhPVWTMa3WyiQdTfTxSVNzXTZ7tExOHk/0FIJmj6Htwo2OYmOvFLi4FY07luIP1Nl4x0y+7C3lBxf//+zdeZhcVZk/8O85d6mq3rMvkA0hQFg1OEzEEUjI0uDOsAhiWEQRETUgq4SwJGRkU5lhZtRh86cDKuoMS2eRgBgEBiKbRFkkSEISsvXetdx7z/n9caqqq7qru6u7q7uqur+f5+kn3bXcPlWprnrPfc9537sH9XitLTtgjalFUFcB2R4HAg1dacGrsqFcCS8i4ESH77W5uGppukcMlZ76/S813wgBeB6070NEIiaJmFykCSkhbBs6Ff+kXuMZ76XCSvZkiYTNdb7Z4aJTSUch0u+tIpngTCfY29rN35VjQwPm+lSC0gtMgiaZZBHSApQpJ6mDAGhqhjVuDERVBHZ7Ah13T8KmD0+FN8mH1S4x8/5/wbtLrxz88zTz23knV/JNxGhbApXhAce0XRMr/Y1picpVUc8WrlixAjfc0Puk6oUXXsAxxxyT/nn79u1YsmQJTjvtNHz5y1/Ouq3IsbpOa53z8pRbbrmlxzH0lSAZ7l0sKcORCc6caPdU6iy14vGkT5gTD8UuYUYlQCuoeO5O20FbG2QiATmmDnAc6I6OzlVXyWBfK50OgkQkDG0JRHYn4LSZkkjQgNMWABrpxuTQ2pS0CVuQvoaV8CHjpn6qcs394nUW/LAwvQY8s4MlvFcg+lYlohUa7SEFUe3hD/JDmLf1ULR3hDCxrhU1oRgumPYMwiKBW/+2GM8u6n6ChoZf1oQUZvdU0B7Aqqo0deFicaiODqhYvPudUydJ/NQkNUiX9cgiJGQ4BBEKQUbCEONqoVwLFds9aFvAr3TQPtkGhI3wPgdepUT1Fgm7A3DaNULNAZy2EJ595WjgmO6Hz9fHT70N7TMsOO1A6IUwAKB1lgOM8RDe3dkjpj9Sq+xT5X4WHndzZwmKPjC5UhqW1JwHoLNUSGrlndkNqExyY2wddHNrcvdW8m8huStCx+LmvTp5MkZEUyVIOruh6yCAjIRhpSajQpjGuKnJqkwmWVLHrK2CsG2IllZowKz6i8WBjqg5URkOmTF6PoJmc/JfphIvtg0ZSZbRcx1U7o1AR1xEtgnUbjYnioLqDrx5fggREULT9mk4s/7cXk+ILznyu1jzas+TuTV5JFcAYM3rK3HqHy/G2ZOeRbsK4ZyDnstqqJ65A2MokhD56i2eXfixm/FETwkUhT6TK0NpOHY8ZyZXcsW0a19cAcAk3RAEQ9o7hspLZrIkRUWjEJ5verS4jmlOrhSEFFCezopp0+9xkTCsfe0Yu7EF/uQ6+OMrYbk2ZEccaG4xye5UWTCZPElum5OEWgfp/izp997U7obkiUTpeaafkG1B2xKqMoRQo48Za0xT55YDwmiZJeDValS/I/DKDwrb44KLLwYuM6bVvmdi0mQMCq2hY4n052y6dFHqtqmTwL3FtEJCOja0SJ5ADocgwiaeND2mpJmXja0xr73mNgQTx6D63agp59zcihn/q7D7lVnA/wz8cdZP+TpQXQUoDWvbnvROWMuvhhOx0TIrjHBjkC5Jmq8lYy8EtMaaxp+Y3zP5YjTszC8RxORKaaif9DWT3FPKvAZDLnQ8AZ1KDAIQ1VVAwoOORs37X2o3FoAg3tyZXEwSMploEQI6tfu6rb1zJ3bnDdNzIGFZ6SRKKl4VrgvtmeSm8HxoL9m/xXUgbBv+7r0AOuNZ2LbZ5WhZgCOg9+yDbLKBqgpUN3ag+i/SJEarQnjjK9Xwdx6IT837NBq23NH7c3TQFemypV01vHtn3s91w7Yf4pF3jsQpFTHIyW+aHUHJhVMN730/fbti7i6m/lFsLl9SippgueSSS3DmmWf2epuZM2emv9++fTtOPPFEzJs3Dz/60Y+ybjd58mQ8//zzWZc1NjbC87xuO1syXX311Vi2bFn655aWFkybNq33gReh1n0xe7D0lUjqOq6FHzcT01SAxB0ulKKDADqegKiqNIFPwkuv+BOWBWFLCNcxdYTjCYimNthSAjpsAiQB2O1+ekuwjPlm90qyAYXwFayOZONyW0IEpuY0ANhu8sShALwKCT9k+rPYbQIisOBXWni/bQIQUoDUeL9pPHa0W1i+cwI+Ov09JldKTNckC7RKntA1J3ZzJlf6K9VQNGFW7ruNraZHS1017OYYRFCFICJhdwSQARCvkwhCQMUuBS1NOToMYiHekqOXI/7hOrTPVIASmPBSgNgYC0GNDyE1wnuBcFOAp/+nf/0BRNwzvWmS1j9TvJOr1H+LK7+UTnKYhDSgVfL1n5w0qmgMcl8TYFlmMprcmZVqnqvSdf4VtK86X6apsjNSQNimv0B6dR+QPsGnAQjL9C5KS50cFKY8jfZ8k8hJJExN+HgcsqICKhpL/+7UOITSUEBnKROlzCreVIkcz4Pd3I4Zj+wHfBKokRF85dePYslhasA1ovvj4Y/djRv//GmcUfsiHt9yOCbe/Y/46bE/weK516eTLcWejPYaz/aSQBU5SmINtSVHXVe03SK9xbS5km71c66Bdqx0P6/+9KGhkUsHAbRSkBUVQCQMsa8JqrW1s2SpkJCOSDYpt6CjMbPgLxIx728JU6oRQWB2D/q+2RGTTGKndyEmvKzSUDrz/RgAbNHZoyWeADzTN8tqjyPsJU8iCoExm32EGyvQPNMqeHIF4OKLwcoV0yIIoJMN57u9h3fZ/d8XU7ZZme3/gYLuiKZX+IuQCyQSEG3SxACeD9keR3S/MXC2NwG2haAqBGUP/CTekvFfgaiqhKqKQPg+RLMHnfBMrBBxEYRNCV63JcCT6/q3ol9YlkncJOWbXKHSsKTmPJOUSMaTWqvOZEugoJKvE7S0mvl9Rzwdq2b9DSTj2TTLMn2GMnpoIVnCPJOQCoDVmZzpcj0sCwKpcxhxqGRfFmFZkFVV6d+dGc8CSO6IScbevg+Rjn1NbxfZEcX+66qx55MduPB3T2LJ+K9gzZ7s85tZChirfeqAV6F2zobaORu/ftpDZMoW1M9aZvrNWVbOHb9ElJ+iJljGjx+P8ePH53Xb999/HyeeeCLmzp2Le++9F1LKrOvnzZuHlStXYseOHZgyZQoA0/g+FAph7ty5PR43FAohFOpfX4UNTwz/zpWuSYyeEi497TYptIXH3Zw+KXfSJ1ZCqM4dLes3Xpve1UKUSQcBhGND1UQggrCpBxyNpq8X4ZAJRBLJ8mGxOERHHJadrNUrABn3k30EzJZc7bqQCR+WFweSze7SCRbHgrYk7ChgxRSUK6EcU97JSgjIZHUHKwbEBOC3SwQAIAB3t4WKDwDxViXejh4C/GNRnjLqBxWLQ8hE52qnjAlp14C6T6nJa8KsoEJyK7pKJCC2W7DG1iHsBUhMrkaixoaWAqFm8zvidRKxsQLxusE9HhFNILI3QGiPDSsKRHZGYcXDsFpsQAChZpWuYd0fva3qp9K1yD0LQMaqPMD8m0yaIAg6e19ZFnTCg/Y7dwrKSCS56s9L7+TqKjURTZXQg6+SE1Od3rGik2VHIIRZYR1PAC0J04zX6ozNUomVFK00glRJh66SE2qdvL1IhEwz0lCos5xZwkPl/72L45Z9FW1ntkA9U4fpiR2on7Ws28q/+tlXYs2b/zKQp7lHyw//X1y06Rx8uOo91I97DQ+9/VGs3fQCFh+zoqC/Z6B6i2d767HyxIbhr4+dmVxZ/NEbciYtMuPMobTgxFvSO8Pr51wDaJ3uyQIADZtXmZ0tQEFPcFCZ05093IIxFbASyXg284Sfbaffo7VS6X5Vsj3Z+8rz0+/fIhIBbC+r3j8SXX4GOhuaA8nm5QqwVGevOU8lV4ELiIQP7ZpyN9YHTaja147Kd9yhekaowJTnm3J0QpjeD8nXESSA/HMryb5AAoB5Lar2DggpkklCs+NKRsJmDbTrQk8Yg6DCRWRHB4Kx1UiMC6NluoNEzSAejOcD8QRkLAF4vunVmZzriY44rGgIjisHlPBncq88LY6cY77RyiSfXSe5UEh1Jhat5O4rz4dWftauLWE76bJ6uaSSilol/2C6xr2pJI3SEHZyR7bWnecghEi/n2ulzMK9rjFtS2vu352KZ5OlxdKLj1K/I7n7pvr593Dcxq+j8vkK7Cfe6LGcaf3BVxW8F5yc/CbUztkICQdq52w0bHkT9QdflRXHE1H/lcVf0Pbt23HCCSdg2rRpuO2227B7927s3Lkzq7fKokWLMGfOHJxzzjl46aWX8MQTT+Dyyy/HhRdeiJqawUQEnVI7M0pBT7tZekquLDmssLtfMie9PY3ld7+/hrtXqLuaajQfUoOmw2qhx9YlawInV3m4jtkhkJqgSmFqASd8WB2JdHJFxD2IVKIFMAG6F0AkPLPN1fPN9QkfMhFA+Boy0BC+hhVTcFsUQk0aVszsMkhUA0HY9LPQjkLl5DYkxgbQFhDep+C086RKKVqvfpl9QTIpohKJ3MmVHk4q90TI5OpT34eKx0xJpVQDW98HojG4O1oQ2R5FxfYOVL4fR6jRhx8WiE4w1coie4CPntfHtu+Dc79v64iL8K4oqrZquK0AhIBMKIR3CYR3CUhfw6/oZ30wKl+ZK1ZVsj60Mj2IUk1rZWUFYFnplXSZq/tUNAoVj3Vf9SokhO2YyWpqlV9y0pruPSCFKZngupCRiFnxatuAH0A1tSBobIba1wi9rwk6GkPQ1tb97y35t5P+yrwqCNITZx0EUNEYgn2N0E2mEbSOJ6CjMaimFtQ++mdM/p6L6b/9ALoyjMSM7IU6i+dej4YCJ1dS/mPuT/HVg3+PDU2HIoDEOc9/GWtfXJEuMZVp0T/emPVvqZm/oDRWKPa0I6S35Eoh4/HMsrsNm1flvI0Wosf/ZxrFbBvR2RPQvr/ZxSIjkfT7qLAsEz8kk9LQ2pTwsiREIuishpAq/WRJoKICoroKIpkoTb9XZ+5YSSVSAPP+7/tml4vnmZOBjgNUVpp/pUTbATXY/Q915v06ZhYiUWnKGdMmEiaRp0wZOtOzR/dr9wqAzj6FMKXFVCKRfF2qzr6ZybhWRBOwG9th7WpBUOlg3yEOvCqgcqfGvLNu7+M3JXfZdiUldCwOtLZn78pSyjQiT87R4nVOvx4XlTGt0uXsUokVJJPOwnEgKyogpISKRrNeq+m7p5ItuRInGcmT9LwtFdMmbyOk2W0tI+F0qUUVi0PH49DRqPk3CEzJ6Y6O3mPazIuTZf5Sca2KxaGiMajWVqjWNrM7J+GZmHZvIw68zcd+j+6EmjEZTR+ZkHWs+v2+AQBDtqNETn4z/b3aORsNb6zuMQ5acMKqrH+pdCgtSuKLZ8uMskiwrFu3Dm+//TY2bNiA/fffH1OmTEl/pViWhcceewzhcBjHHXccTj/9dHz2s5/FbbfdVrBx9LYCsBTNX9j5ZjzUJSC6Pjfsx0I9UXWVaJ8i0TJDwptUZRIrqRXXnp9dhzpZ318EunPHip06AWi22IpUg9DUazxZgxpadyZgJBA4Epan4LR6cFsCuK3K7GSJw+yM8QC7QyCy1QGerUXFdgvCB57978vwx4cuK8pzRQOTakqrU5PQHAFwn8ewk+WPgiArWBeWBWvyJCQ+fAASsyYAgYK1qxHW3jbYLTFYsWRJug6g5m9A9dYATh/NZHsKnLUt0Ty7Ch0TBcL7FJRrQWiNmr8r1Pxdw2kN8Mwv+docLVITw3QyIm4mbemTJQlzgk1WV0FYVo/9sLoSUnSfIOZaEZhxYs+svjM7CWVdDaxxYzpP+hQo3tDKrCTU0Zj5N5V8icUhX3oDeucuQKnOcgxJw1Gq6yfH3IfVf1mM57fNwOIPmwTBkiOy4551zy3P+rfUFGM39mBk7ozWQzh7ydy9kjIcfWKo/AjLgldlwauUUJFk7JmMZ4Vjd66GTr1HucndI8ldCNqxO3tZCQE4NnRFxDRirqyEqK02CZdI2PTVSjVXTp4MND23zPsiZLKBM2Dezx0bKuJAegqVOwOo2go0vPf9YSmpSIUjQqF0aSIky4Cmdp7kfYzMxRMZ8WzqZ6uyAnLKJIiKCrPqfl8T0NQCtLdDJgK4LRrjX0ugZksUbmvfsfTa9gdyDEJAVFUCFRGTDNTaJI4AoL0dVlscTnOCMe0oojw/PU/TiQRUayuCtnYE7R0mweH7JtksZDrO7ZPoHhxkJVbQmXTRSneWgobZpSLDIchIJOu6fldA6D6Azt/r++nETSqWx5/fht65C9qW3foPNbx/1+B+dx5SSZafto5H/QGXAzA9DLt64qlrsv4lotyKWiIsX+eeey7OPffcPm83ffp0PProo0M/oDKRuZslMxtdP+eabpcNlcx+LNzNQgCgHAuR3RrhpgB2Szxdz18rBSTrk6b6sCCVPIklIMKuuY1INnj0fbMCJe6ZRIrSprlnyIFybchoHFCmFqrwNXSFgIhqWFEfyrEgNBBqDmB5ElAS0IDTDtS866Nq8x58sGBycZ8oGrD0iqWBSm3pBtL9JGRyR4ysqoQ/bQICRyLUGjOvR9c1J3pjppSHHdWo+TtQ8YGPICSyFp/263FIieh4AekBVVs7oIWAsm3YUQ1A97sRKI0Mnauas8seaF8haA8gYvH+1WZPNU7u6XqlIZA8iScktOWldx5qbd57hWUlT/bB7KgZrGRpBTPJ9dM70tKPK1mfXmzfBWdfGPWzrwT8AGhtG7ZyIa9+Krkz5VTzDxujD63MhTuZ3w9lj8L5C1ZnJaKWHHUdtJTQIatkE2c0OFl9MPqgJ4+D2xKg+q1mszMk5JqGyImEiVdT74WpkivJxT8IlNnBIpHcCegDtg0ddjoXEdky3fcHSkFGPbPSvyMKxBOduxkAk6TRGmjrAKqr4E0bCxFoWC1RVG1uBzwP/n7jCvYc0fBJnYwFkF51nyZk37Fu1xPOUkCmEn1amUVuY+vSrzOR3PmUWtRmtScw7hUfsqkd/qRayMQgYutI2JywTjYvN8OTyV24qij9wKj4Uq/vzLmbSphScunYMu+DqZxJlkzpvyGtoFOHziyLlVz4qX0vv7+xfowrK6ZNJXmSu13km1sxZmsY9YdeDX9sJex3PxiWBAtgkixLJwNL3zE/s5R0+dAQUEO56oj6rSwSLFRYXRMrCz++csh25+Rz3EX/eCMnqqOENXYM0BZDzRZhkit7m6FTK/e07gyMpEyXChNAug4rQg5goXMyKQDR0g5ICzoSgo44UGHH9FqJ2JBx3xwfgPA0hNLwq1x4NTYCV8Bp19AC+NN/Fr7hJxXRIIPh1I6qdANvKSDgQAgJuC4SY1zY0QDWzkYgFIKqDEMkfKjKEIKQRGRfAJHaPOVpyP5Vckhb93/LcfzJ34MMNKw9rWZFqluF2BgJ5Qq4LUywjBaL3LPSNdPTE75cr/OuTT7zZOqwd048e1yxZ0kIx4H2POiODnOZ0oDrQEiR3wrDgUr1Z8lMtrRHTT33pmZTHm1s3dD9fipJWcmW41cVdDFP110+mb1jchmuvjFUfDISgQ67Jg6Neemd18J10iePU4TjdMa5QOfJvGQT5NTJbPjJk8yOBeXa0LaEciWCsEm0hLc1QyACuC5ER4fpWTi2BirsIqiwIT2FRK2L3z9+xTA/GzRUujXxHkA82XlCOVkdwEq+FpXppaYrKyCUaXwvQi5QWWF2mTgORFsUQgjokAuhNGR8YAHtmn0/Rv3ki01/jUSiszSelBAVEQSREDqmRAZ0bCo/mTFtOomSowTXQOLZ1LkEIUVWLJuVnMy8LFmOHMlKGqlbmb+9AU7g+hhbtxhbK+iODvO30dQMe18l1HQu9CQqR0x3UdFLn3VNrpRKw1gqvOCQGRAxD1bUh2iLQicb3KcaJouKCsiqSnPjZF+BzhXLGkJraMdCUFcBXVsFXRlKJ1dUdQhBhYMgZCFR6yA+xoFXE4Jf7cCvsqFCEvGxLmLjXfgRAS2B2FgLz/2M29EpN2FZECEXIhw2DWirKgAAkffbAABqQh38cVXQYRv++Er41S60LaAFoCxAuQLaEvj9I98Z8BhCjXGE39lryjW0tsPd1oiKPeZvgq/dUaiPlXkD1iVhkzkRTX8vTHJFhJJ9iaLRdF+XoLV1aJIrmRPuzJraqauTpdIAmM+LXXtyljag0aHYO6VzJVdOOp71ykciceAMyL2tCL/baBIkyRXXACDCIdOvamwd5IRxJo6wLHNSOVDJxIqAijjwJ1RDja2GjrjmxDdMzx9YAtoxyZX4GBuxcTa8cZXwJ9bAn1yHYNYUJA6cjNjUasTHh5Goc9AxJczkCuWW6qPmOObLtk2iT2uIPfvMboFUbzWloCsiZkdVVQSqrhKqJowgZA2qPJBOxg060dlvTScS0LEYhNbY+OvLC/iAqaSlYrtUsmGIYttU/JoruZL6/cK2oRIJ0yslbnoIDtVioVT8KqTo9pjN34PpT6QTHsQb75ZU/2ciyg93sFDJ6a2J6JKjl2PNy6XZMJZ6Z1VVwbeEWe0fS5hmm0GyxEGywb2oMCew0dZugv7UqhY/WWYh2QNAhWwALrQUkLapMx1EbChHQIUkAteUVVIhiXitKX2jLNPEPlWvnyenR4b16pf9KunRb5ZlToYkG3HqaBSixYGaVIn3ltSg5l2Nig88KFtAOwLC04AtzGswAGR8cLtprN0t0Lv3mr+D5IrV8I5qCD9coAdIZSFVSiD5/dD8Cg0InZ74Cavzd2mlIaQpy6WjMSjPL1zphD7GJKQCkOzVJe1u5SLSOx2lgKiuQgNLG1AJKXbShwpPRiLQrm3eK6Mxs9of6NzFEg6bfirVFdCWBdnYAt3WDqECs+MveWIbQsCvtCFtAemZflIi4UO7NoKwDW0LsyPbFpC+RsfUEJQtYMU1nA4FBBraEXj6fwa+iINKy5DHtEKYhGCqp5rSUO0dkKEQYkdMR+iDNoh2k/DQGgiqQvArbEhfwYoOsvyn52fM51KxhYRIeJB7mgf5wKjcDGlMqxW0SvbOTCVZbKfzvTeV4AsCIIFhiWdzjs2ysn9vcpeaUAoiEsb6jdeifto30bD1B8MzNipLSrOiRSnhDhYqCYv+Ib+kCZMr5UvF4nC27AIAiGjC1M93k2UTAFN+yfOARMIEHK4DrZXpheG6gJSmNrUCZNSHlgJBhQ2/NgS/ykFQYUooaCkgAo1Qo5c+ue2HAKGRbGqvmVyhXgnLMlvFg8C8JlNfsTiEkNCREBoPchEfrxG4gLJNYq9jvIVErQUrruC0K/zhN5cPejVpw9u3mkbm8bhpAtnRAWvLdvz+Ma5SHS0Wh88eup0rfRGdE1StNFQ0iqC1FdCq5xWBQyCrqW/XJr2p66MxQGss/igbklPxzF+4uthDoCGmEwmIv20zJ4u1Nv2flIJO/Zz8EjEPst30aks3qA+56X6BWoj0SesgbMOrceHXhOFXOfAjFrQUgADsqEJkjwctBZQFaAsIXAFtM7lCvUvFswDSC9bSJ5Yz6LoqBJHkPMuyoB0L8Sk1EIGC05rAExuuxrpnrxvUWNY039O5cyXVeFwraM9Hw5Y7BnVsKh+L3LOGLabN2o3t2OndW8J1ze6ZIICKx4ZlLFkyd413fS60Sv99Ljnyu9j5qZnDOzYiGhTuYKGSsO7/2INlpNO+B93cAj11LHQQgvB9MylNllRIr0K2TP8VoUXnBMBxzFZ1y4J2JERgmt17VTacNh/SU5C+ArQpyySTFVSF1gg1+rAiEtoyiZdnfsUt6NQ709Q7+b3nd65KjYSBSBj++EoEIXN9xxQBO2bBimsoW+DZ/15W8PGsS/wcALDQOgPrg4cKfnwqfaYhZnY96YLTCkLa6e/Tk750kkVBeRnlufrTeHSA40klU1K7Gbv9zoyJqVYKQgi0T6sc2nER9WLD+qv6vhGVtVRCV6RK2qaa1yevE0qbXa+B6uy3kurDYltQFS786hC0LQAFKEcgUWND20Bon2/6rnkKSLWpCJBcOOQjCEsoy5Qiffp/mVyh3pkdqSLdTF6ne58ko1xLJlfRazitPrRlpftcPrnuyoKPZ533IAATz2b+TKNP1x4pBT9+5u4QIU2MmFGVwDSyT14/HLtXMuLqnH1nUrtoRHKXjW0jOq0GYohDbSIqLO5gIRqkJWO+XOwhDNji8NlY5Jw5bL9PVEQABQgvAKTVeUUQmO268Xg6qIBrel/oiWOBkAPR2gGZ8KFCFoKIY+7mCChLQCYCyFhgVvtpQCaSzZADDelp2HHzL1E+dBCYJrXJ12W6nEIQQFeEoKVA7bsBat8wE1Q/ImAlNCL7hjZAZ3JldFob+5n5ZhhW/KVXlWZKNQFFcsI6zNKJlYxyZZnjNKXDzAkkVEbQPmX4x0g0EtTPLvwJ1eGyuGrp8MazkbBJniQSJpmSLLcEz0/2lYibPoN+siyYnXxfChSEryACBa/KRqLO9AiMTpCIjpNmEZGnIBMKOplIkb6GFgLS07ASGtJnPEt5SPW30LrzMzTrhG7yc1NKiD1NcN9vTve6FDFvSIe2PniIMe0olVo0NpyEFMkeWIFJdEuZczf0cNCZ/WWRHXcLy0onRREKoWWGA7D6E/VBQZTEFxlMsBD1oX6/b/R6/ZrGnwzTSApvbexnBV89JCwrZ8BiTxgPhEOwtu8BWtqAjg4gnuisg5ratp7woGur4c+YiPihUxGfWoOgNgKEQ9COBb/SRsusEFpmRZCoFvArLAQVNlTIghUPEN4dQ2hvDEJps2tFawhfw/I4KR2p1qtfFvaAWkF1dCBoazfluTzfvE59H6KpDXZbAlZUofp9HxNe8lD7dgxOq9lJRTQUUkkWYVmmjvQQTQq170H7nmn4mUiYn1PNP5M/DxshO8s7ZJwUSiVUAJN8UZ5vvmJx6N17Mfb1KOZ+5c7hGydRGVl4XM89ihre/JdhHElhrW27f0hWw+eKae3p+0OMHwu9r8nErJ5vmhOnYtmEl1ykkXzfqqqAqquGP6EGqiYCnSx560cEmmda+OAYGx2TAeUA8RoJv9pBELYgfQW3yYPTnIBI7pARvollBcONEatgMa1W5vM8Fjefj6lSm1qZpF+g0vEt/ABoboHcvgeiIw5VzT5/NHRSSRYhRY/nDQYrXYoufZ7B/C3ojg7oaLT/u7AHO8asHdfdFzNlxrM64UE3NmHSHxtR91Ych1zPmJaoXDDBQj1aNO+mYg+hJDS8f1exh1DSujZjFK6bc6utjsVNM1DfN/0kfD/9lV5VApjeLPuaYDV3wGmKw2lJmPu7NqAU7HYflrkIlbsChPcmYLX7kPEAwg8gox5kzIeM+7A6zOXQGlqaPixEeUtNThOJ5CRUAa4DEUvAbUoAGvAqLUQnhhCELdhRnvGgobMu8fPOZp299T8p1EQ1WQe6WxmDYZSagPZURqJz90ry+fB8uO/uZjKdulkw/5ZiD6EkrH/mu8UeQsnK1Vw8Z0wbjZmv5M5WBMkeLEFytwpgerDYtlkp7QcQSkE7En6VC782BG2JZFlbwIoD1X/XqN0SILLHh93qwYoFyV3YCtIzu16kp6AFzH2J8pXcuZL6LM886WyuTvYPAkz/y4qQqTRANITWeQ/2vWBosPFsaudzZpIlYwFRn7Ftxu+Xjp1/MijzNn3cPjOuz1xUpD0PYuceAEif9yDqymyeFSXxRQZ7sFCPBtvMjkaZZO1QFYvnvFp1dECmalR7fregxvS9CKAB6NY2iHgCMuRCj62DjjjQUgJCQMYCVL/TYUosaA0RS5g61al2Ab6ClhIyCAApEVSHIT0NoRWeXFu+5S+od+vVL3OeHCkYmWxS69gQiQB2Yzu0LWCFbchEAL/ChlfN0kQ0dBZXfgmwbYhAQSWCnI0xi1HuoGD6GHtmSbBc1wkLEDXV6DhiKhoPHZIRUhl7YsPVxR4ClZNeYtqgsRkyHOpMqCRPWpvSLqk6+na6lwX8ACKagB4TQRCxAa2hQhLKFqjcoeG2KLjNPqQXQPgaws/YsaeT5cF0gCAsIJSGCDT+wP4rI1rBY9oun6/p/hfJ16j2zO5UM6+KA9VVhfvdRDksjpwD4TpAIKGjQed7Z0qBkiuFohIJSNeFVn5etxeW1bk4qIfHkv7c6HZnCVlbg+iR0/DuFzSsUMdAh01Ew6yMZ+JEVGypJoUAkKuUSyYdBFDRKFQ0asrOpLaqC2lOGroOYHXpy+IHEAnPTDYlAK1htcVg72mFta8Vsj0OEfMg4gmIQEPbdrK2qum/AqUgYx7sDg9Oc+7ED40cBS8VliQdG8J1zWvWtYF4HIjFzYkQbSaoQmk886vLh+T3E6Wsbbu/syktuiQbyjm50g9ZpRUyGobKygoE+49HokrCrxi+HSz1U74+bL+LiIbGIvesrJ97i2m175lYNrUSOmNnAKSAcF2IcMj0E7Stzkb3UkA5Al6VBa9CwulQqNzuIbw3AREo00dQmhhW2xIqYkM5Vjqmlb7pJyi4Q29UKGRMm97taVnpVfjW2DqzcCjZpwUi2fvBssy/RENsTfM9kLU1kOGQuSDVF6VU4tmM938ZCpv39lQiva+dKbbTWQItdZllmTllRuzeNckipIBwHfizJqNlpgO3IoEj999ewAfVs0X/eOOw/B6ikaxE3r1KVzk3fCQaaultrXlumU1v0c1s5lYZgaysgIxETOBiJ7fgSgmtlTmRHfcgArOqT8Q8UytYSjMhkBK6IoTYtFq0z6pGfL8a+GMqoCpDUJUhU1ahLYZ1zy0f0ueCSkOhkyzCskyJEGFOfIiEDzWhDomZExAfH0LgSmgh8NQaflbQ0Frb/gCA1GvS6VZWIKu8wAjR02NKP17HhqyogKysgBhTh7ZpFbASGu9+/bLhG6Qsn1B6/sLVxR4CUUmSlRVZCds+d9RllFiCkBCuCxkOmRPWrgPhOIBjm5PVjg0ddmB1mFhWOQLSB5y2ADIRQLkSKmRBOxJByEJiTBhtMyJonR5G+/4RxMeGoUI2lC1gxQP8/vErhvrpoJFCZCzISL2uLfOl2tpNg3vXgayogKiqBJLxbsMb/KygobU2+lPzjetA1tV2SzIAKFp52m6Sfzfa87PL5ub6nEheli7BFwTpmDWdSMq6uUh/hgjXhQiFICsr0L5fGG6rBv5ahd8c929D9tCyBzOy5hCjRbFLg6W+NBvdA2CJsD6Vc8NHoiEnJERyYYawrH7V6peRCEQoZJIoAGBbEEBnHWClzAe9UkDcg1BmRwpS12sJKA0dsqEqXDMGpU1j0HgAnVqJBWDNaysL9YhpNMkIkoVlAQnTh8WrC8GvsCA8DRlobHjiqiIPlEYVyzI7p1LvuSNUupF9xuq+zJ4s6Qm4ZUFURBCfNR5BSMBzhjfAL6c+bRvW872KKBcRMgkSJBcBCSmgu5asyXU/KSAj4Z4TrZYF7ZgdASIeQHoaToeCjCvIRLI/gBRQlgAsARWS8ColvAoBZQOiSkDbgHYErJjCE09xMQcNQMaJYCE7TxQLKSEiYSAUMrunlEbD1h8UcaA06ghpXn/IUQI2j/fgYaGV6R+bGXP3MK5U+b1UYiVFRiIAAOX5kI4NCJ1edCosmOS8ZUE4NoIZU8xux4iAGMaHz/YARINXPsvuiuCk41cVewhEpS0ZXAjXhaiM5B0ECctKlwMTQnZuT7etZKkwmQ4yTJIl6Gwq6vnJxqLKfB9oyI4E3L1RuC2+KdsUJEs3BRprXuZ219GmkLtYtOpsYitCIVOeKdAQyiT02NeHhp0UpvRM1xIFyZ9H4i6WXJcJ24GsrjKfEwCkF6B9ssCeBSwHmQt3rxD1TCc8834SiZhdgpH8YtrUjmsAJnYVojOmDVR6EZBybeiQBekpOM0e7A4TyyrXxMKWp0x/FaVhdyi4rQrSS64lsgUCVzLeGIUGHc92fQ1LAa2UiWVTn61Oct6lNBre+/7gfh9RP6kxlVDjqk21gAyZpbVKhbAd0x/FdXvevZKZzAyFzG2B5N+dKRFmbtpZBUS4DkR1lTkHIgSE1mjdT6DxxCjiMxnTUu+KvXMl3eSe1UsBMMHSq9/9/ppiD4Go9AkJYdvQ7dH8bp5KnCjVZSVI8l3ZtrPKhAEwiRTPMye6hTBb2B3bTAhsCe1YUCEb0IAVTe5w8RVkLFHAB0qjTsbEVFREgLF10LZJsMi44lZqKoo1e34EEXIhHDu7lE3X5qClUsMayH8sWgFadZ74yXE/YVnJkpIOdDzV/0DD2d4EKwFY28IFHPjIwd0rRL2QAqiqhBg3xpyEztHcvqt0CVGlAKUgHMecIEstAtIa2rEQhG1o14KWElbUg9Xhm1JhrgWv2oJXaSEIW/CqLPghCT8ikKiWUA4gApidLAHPXNDAaKUzShoJiHAoXUUAlmVer37Q2SuIaBit3XQD4uMjpkxYlyQLgNKIZ4VMx53SdSGqKntc/JN1biNIJjNdF0JK81kBZO1wkZUVps9newd0wgOEgGyPI1EH2G4AKzRyd6oTjUT8JCWiQRFSQB08E7K2Op8bJ08IJsu9JBJQHR3QiYRZ8ZdKqOiMiaRO7iBIBiWorkQwthI6ZJvrtIZ2bShHQnqm5ILwFGBLrHn15gI/WioXg171l7EbQKvU68wCFCDjPux2D081sA46FYnWEKGQWfWWXOWXeRKltwRFyeq60jZVGiKj6WnmSj9ICe155rahEKIHTUDrTA2rn4v96ve/tDDjJ6KyJUIh6IoQdFUEcsoksyu71zuYk2ap3djQurO0bbLHBSJhc7Is0XmCTHgBhGd+btvPQfMsC/FaCS9iSoPFxkhEx0t4lQCESbCIAPAjXNAxWq1Xv0x/BkrXTa+Iz0uOXa2iS1yg43EgkUDDljsKMVyifvMrJPwZkyCrKtO7RKCViflS77EDTLQIyzIN51NfyWOmj93LMTNvrz0fOuFB+55JnOSQKpXerbm9bUMHAVQ0Zip0ZIwJ0yabpL7nQVgW1OTx2PrJCdAfakfI9VERyX+x6PwF3KlMVGxlNPMmolKTKvXVMa0CqK7qczuvSJW2QTIICZRJnmhtVg8CgO93Ng9NrgpMSyZgZMyHiCaAeAKiLQbZHofTFIPVEoXd2A6hFNa+cP2QPGYqH5mT0n4H5V1O9mrPh9jdCFVt6gSvf+a7hRomUb/pcWOA2mqzs8pKJh4yT6IMZWIl829qKFYWZu7IyXVsraGjMfO4wyGISATetLHomGSj+u8CTmt/fx9PXBKNepEwVNhFfFIlgvHVJonb24m3zBN/UkIrBR2NQccT5vJwCLoyDAQaIrmbBTLZG1AC2paI1wkkaoEgLBCETa195QLaQjpRrC1AOcBzP7tsGJ4EKlXrg4cgwyGT1EuVCO1LD7fRQWD6XSYXLABAwwf/XsjhEvVLEBJoObACqKuFqIykExRCCgjHhnTsAZW/TSUxzN+Ok24on16wY2df1k0yyQMAKmF2TAvbSffq6kl6F4tO7mRMeIDSnSXAHNuMx3UgogmICeMgJ0+EnjoB759Uh+hHoqiIJDC+qg2vffqG/B8wz+yOOhrFLw2WLhFGANjknogGQ5h6035YoOOg8Qi9+17ft8+kTT1S2Lb5SjZeBGAmolKayzMTLdEYRBRmO3vyGCLmmZ+Tgczav9xS0IdJ5S29C6V/d0r/K1zHlLUbU4tEXQhPrWEddCouoXWyTKJlGtYKCQjdfRdIT7tC+vwFEuuDh3q8eqF1Rs779Ph7C9SkVKRPUJrJt47FoRGFV2kjOk4gvE/D6ejf3zob+hJRKtGqLAFtSfhTxkK8vxPaz+f9UpjyL0DnLm3XhRYCQiloWBCBglcbgghZkF4AbQnYUUC1mD4rXqUAlEmoQJt/tcnF4MX/WDZ0j5vKhtkxJSFS86S+5FqkoDWQSq6EXCDkYs27dxZ+sET9YEc1WqZLqJoIZLwSSHid5wOEMOXs4nFoledrP0lIke6Ntbbt/h5vl45pM3dOAxk7XILORIwlTeWNPuJa7XvQQnbmPFLlz1OkmV+qqghgCcgPOiCURsf+GvNmbUG1HevXYwVYCpaoFDDBQkQDJsIh00tFCrTOcBCpqEDQ2svy4WQCRFhWutlbut+KEEDIhfC8dM1Scx+dLLmQDEo83/ycuty2O0uKaY0GThQoaZF7VjogFlJB97OMbboBoesCNdVQFS6TK1QSGjavwknHr4JtS6Cl1SQctOj9Nd7Hitf+lNVLJV9Sk9KuuxezxpFvUieXdN14md4BKVzXTLaFgEgm5ive2gNtT0DrNBsv3MuTkUTUP96UWtMXJSTRNj0CEQA1f61E0NSU+w6p96ZUrOo6EI7TuSjIkvDGR6CFgNOaAAJtkjdhCRk3iWIRANI3iRRtm3+V1ZlcERp46YffHpbHT6Wtfvq3TEIkfcK3Pf87pz4/U2WaU6VFLYtzJioJf/jN5Zj1r7dj4ibblMBLvo8Kx+wWEa5rdoFkytV/MKm/ZaLXBw9hoXVG8u/EyT6uJSF05xxSuK7ZAZYPraA83/RtkdLcT2lz/kQIIBSCPyZsypxXuVCuhQkvAn8/bAxuPPB/MH/mG/16HERUfEywENHACbPLRDkw9aJ1/1YOpxuEWrJzVVUkbIIm3zerVTzPBFi5WBa060Aok7hpeIcTBepkEiRmEgmlsxt95nPf5GRUJxIQHVGsfet7Qztgon5omxZGFQD7PdH5+k7JSEyYfwRkRQVUNNaZ/NBq0L2KUomWxeGzO39/avVf8l+TfLFM3ep8aAWtOk8IpRrfA2a3jnBs89kTCZtdPNEYVF0l3GYPL/3vdwb1eIhodArCNkSgkaiSiNcKSA+oraoEekqwJAnb7lwEVFlhdl/7gWlu70p0TLLhtlgI70lA+tqUDFMagSvgRDWkD0AAgSPgVQGJWtNzxe4AXruVyRVKcpPJO9sCQgFkWztUPL8V7iaZIiEcU5IIrsudm1RynCkdACTgeeYcgO9DA8mysFGzkCg5r0vtLNG+B61kYePZyDnmAmkDSkNGIul+sTLimqoGkbFQO3bmd2CtoBIJSGlidWgFHYubv0VLwquyIT2N1hlhVL8XR/sUgda/j8f8k5hcofwosDxXKWGChYgG5IT67yF0wH6QHQlUbfNQsVOYLbO90MpMLDWC9Oqp1NZdyOS/sbiZRFRVmOuaWqC9aLr/CkSycZxtmVUt7R1cgUU5rY39DEvGXgjh2NCeDwlTQzdFSGFWw6fK1EkBBCbwhRRY2/5A8QZP1IN/+txtkL5G9b447F0tpta/75sdLCrZpyocwpqWe7Gk5jysabkX9RMuMpNT30+XzFuX6LkEWL/ZNta13Y8lNecBANa03IuF1hmQjm3e961+JFiStNIQ0iSKhO2Yv0/LMjWwHQc64gJCIDZ9EqSnseGJ0iyNUD/9W+kSlw3bfljcwRBRN//zztFo/Oan0LSnCmhXGPeyhfGbmkyMaTs9v3el+jdZlolRgwCwHGjXAaRE+IMOOK0OEnUuds2NYNKLUbNLxhawAIT2+QiSze1FoCGUgPSBV37AxApla3j7Viz82M2ITwjBbUzA8TyIllYEbe1ZC4JkVaVJxihlyi7H4xCWxR4rVLL+843j8bfYROg3P4bWmRp1bVUQ0ZjpY+L7kGPqzCLKnXejfs41aNi8Covm3QTlSDhb9wLRGBp23l24Ac05AGs33YAFJ6yCFfOhN2/B2vYHsMg50yxUamqGnDwR0nWz5pQ9Si50UjHztygc2/ydOg7U+FpYMQW/QqJil48PPhpGbDzw9wuuKNzjKbD5C1env2dJMqLuhNb9XHI+wrW0tKC2thbNzc2oqakp9nCIStbxJ38PlqfgNMXRNqMSNS9/gODvW3veJZDcoi7sZD+LZFkw4didvVYAIBaH1ipdAgZx01QuXRJMCgghTYJFSjS8f9fwPnAqS0vGXggdjzNpQiNG/f6Xml0c8QQQTyamgwA6GoOIhAs74czDkprzzImdQJkTjUKY9+5AAVJAxeJ5939Jf5tscgrbNqtvk58TWpvSEdGjpmP3h128fktpn5Cc8907AQUEYeCN5fmNdbDxKONZovy8tW0qNicm4v/tnIfXd03CuPurUPFuK+T2XVAtbTl3CgjbgaysgKisAFzXxKRKmfc914EO29CuDW1JaEsgNt6FFVOwEgoi0PDDFrQjoGyBeI2EsgW0Dfzp30v7vYyKb/ExKyCbO4DWtmH/nCcaKgf+y50I7QOqtykoW6BqewKhv2yHHleLNa/cNKxj+afP3gq/QiK0z0fkpXehJ4+HiCbMOYrWNmDGVGDLtt7LoqdkxLRWZQVEJAzU1UJVh+HVhuHsi0J2xLHnYxPRdHIH3jrtu0P4yApjzm9XQAjg9c+syPs+jEkLb8OGDfjU0lPx8f+3tNhDAQD8/rT/wpP/sw7z5s0r9lCKijtYiKjf6md+G5GaSmjLAmyJmtf3Qu3c1ef9UtvUzckys/UWSpsunqm+KgCEMKuukFnyxpJYs+dHQ/SIaKRbs+/HxR4CUUE1bPsh6mctMyf1qqugK8OAEFjz8o1FGc+alnsBAIurlpqyjpY0m9alND23gBwNd7skXLpcn5VcqaqEHlcL0REH9uwz1yvAbR6CB1Ngm2/+Nj50+x3QNvChO+6A2L8Db59e+pNoopFu9qo74Rz2FUyoasOkijbYloL0NUQQAKmSSl0TLMKUKhS2DTg2dGUIUIBImB6CQilT2VCaBAqkQKjRAzQAAfhhC79/vHRXKFNpW/viimIPgajg3FbA8oDmAyTi4zWaPxTCG+uLs+v3D7815WbrD70aiIThjYkAYyJw//YBEh85EE5L3Cxmsqzs8rhddY15hQCqq5CYUoOOqSHsO0TigP/XCO3YsBIa+t2KIX5khbH5sytw2P+swKG/uQEA8JfPXV/kERGVDiZYiKjf/KnjYDd1AELAj7iQ21qSO0x6aCaeqsOfbkiXDEZS9Uil7H5ZptSuFSIiSmvYckexh9DN2rb7TUkyADqVSI/H0+XC0pK9Vnra1ZIq3SfCIYjqKnjTx6N9agg1b7ZAtrpAyEVoZyteWnfzcDysQdMWoC0NLQHnrUosPmYFT5QRFdmxC17Hxrc+hEYrwPxJb+L5Vw7EmEBBhxxTQrQiYsrVpMqECQmZSq4Apt+KbZuEjBCAbUE7FmBl10TXloDwFFSO64iIRrvNN5fe7r2Gv9wCAJh31u1QloA7Zhq0BNy9HZCTJwIAdGsbdCJhvjKreHQ5byEjYYixdUhMG4vGg8PYd1SA2mn7oB+yAcdC1bY4nvvZNcP6+AbDDyRsS8GSCvMXrma5MKIknrEkon7zqxzAD+CNicCrddNlEUzzuS5SpcEyrtOeB+350J7feTulTEO7IDDlX5JJmdQXLIn6KV8fhkdHRESDobUy5cFgdo+tbX+gc9V36st2zPt76t9UOTCYHjIyEoaMRCCqq+BPGYuOSSE4HQpy5z7ADwBpQbR2FPNh9ss731oGd58Ju/0Kjbe+WIP6OeUzmSYaiT5e9xZ0m4P5+7+Fj1e9gdBuC3YsMImQkGPi1aBz1ZCwLPON1tC+D8TikI0tZmedENAVIWjXJF9kzIPV4QNKQ1kCKmQhCEv4IYF5Z91ejIdLRET9JBMaVlzDjwhsfPhyrHn5RujqSqgJtRBTJkLW1UJWVJjYNRSGTPb3FFLAqqqEPWUSxIemo+PQydh3aBj7PuJj8gF70fz3OoiEB20JOLvyKDdWQt74/HJMrG5F2PGx9St+Vm8WGl5Ki5L4IoM7WIgobwd8/w6ocQlMGe8g/HeBxBgX0k+uSA7MCbXMiSiAdPPFdMPiAGaXiu+bySgA4ZtdK6n7pvuyKNW5m0WYBsdERFTacpVzXBv9KZaM+XK64Tu0NiUjU7sXk+/1QgqzcryqEnpsDeKTq9A6zUHF7gAV7zRBt7VDVESARML0Pigjbyz/NmbdZU6sOi0Cfzt7AuZceyc2ryy9lZtEI5naORsAMCekAAF8vu5FPNZyNNwmQAQaMu4Bjc1QzS3Zu+y02aWtY3HIcMjEsPGEiVEdG1AKIh5A+CZ+VRUhCN053RYaUK5A4PJkBBFROXjmV5d3u2zN6ytxwpJ/gRULIOsqYO9ugfA8E8umYtuKCLRjwauLoPlDYTQdJCAOasPBE/bijb9PwdjXJFRNBDLqIagrj/JgmaZWtmCnqMa+lgq8c5bErH+9HVsuuazYwyIqKiZYiChvi/7pJTzxzsGwOywkptTAjwjUvNEK1d4B7XvZ5V+S0okVIZMJlMBsm00GIEJraJ1xP5GcdKaSKSowtxW68zoatPrp30LDe98v9jCIaBQR4ZBJngNAEHQ2rY/FTO8C2wZcB3BsBBPHoG1WJdqmSlRtV6h4twWiPQ5UVZrPB0uaz4dyIwDpA6FG00Mm1Nz9c5OIhsdWfxyWHPMK6qwYHnzlGOz3noLV4UG89R6CaLTboqHOODeAisU7e7Ekd2SLGDqTxq6brhUhNAANCF9D+EBQyXi2UOYvMCunNzzBEjVENHzapzqQvgM7qoGpYWhLILI7ARFo+BELsfEOrJhCdIKFlgM0ps3dhv0rm/GHlw/BlKcEQo0JtM2qhlBAeG+i2A+n3yaGWrGzoxp+zIHVaIObGIjKsERYPB7H0UcfDSEEXn755azr3nvvPXzqU59CZWUlxo8fj0svvRSJRPm9WRGVqrv3ex4f2X8bAleiZVYYjbOTbyG+nzO5AiBZZ1+nd7foIEiuAAzMLpbMXSlKmbILQQAEQeeJOAAIFBq2/mDoHtwow+QKlQOWBRxZGnb8G/T4OgTTJ0JPGAOEQ4BtmR5bljTJlSBAYuYEvPvZajQeLDFxUwdqN74LsXOPWUkeCgG2DVgWGt69s9gPqd+2XHIZRCBgx4DIHgUtgONOux3Hf+pWHLHsTvzjF0uvrw7RSGVB4dsTn8BhTgXQZiPyQQyysQ1Be0fuuFar9Jf2TblbFY2aJHEsDgQqq4+gCDSEpyC9zl0wdlxh04+5a61QNjxxFZMrVPJYQmnkeeGeZdj9EaB5pkSi2pyzEL6CtgSCiIWKDxKo+dNONB6mcN7JGzB33Da88uBhOOTuZtS+ug9BxELbfhbaJ1v43e/Lr2TsnUc/iKZYBNoXsKICdrvAwTfdiYNvuhMfuu0OzPzRrZj5U77uh5IGS4SVmrLbwXLFFVdg6tSpeOWVV7IuD4IAp5xyCiZMmICNGzdi7969WLp0KbTWuOuuu4o0WqKR5cY9h+L/3pmBWXs97JsTgjiqBcGTIaRTJNrsVEn/mylHI2OtdGdj0JRU+RgRAJZON71v2P0fQ/KYiKh0Nez4t2IPgQpszSs34cRF/wI34UNEEyZh4roQsTgQj0PH4gCAym1A1Y4Azru7odvaoYMAaz/49yKPvjDcJkALQNnClAxygHjIgraA5/7fsmIPj2jUePCDf8BpH1oPAHDGx6ClBBLJhvZaQViWWfSTimlzxLLQ2iRWRHK3i2UBSJa59QLIhNndoqokhNJ4+n+uGOJHRUSlhk3ARyZV5yHR5sJtFVCOQHR8BewOjYpdPtydrWg/fBKggT/uPQBv7JyI/d70IPa1AAD+8JuVRR794O19bwysuIBQgBUHoAAIID5RoXpyG1779A3FHiLRsCqrBEtDQwPWrVuHhx9+GA0NDVnXrVu3Dps3b8bWrVsxdepUAMDtt9+Oc889FytXrkRNTU0xhkw0osSUg9pnw7DbWxGbbEPGHMhEkL3KL1dyJSV5ebpsGGBKLFiWSaQIAZHsvaKDAAIApGByhWiUqp/0NTSMkJPq1OnJdVdm/bzoH26ETIQgEj6waw9kQmHMG3E4+6LQHR3Qvo+17Q8UabSF9U+fvRWhSTbsmIbTrmAlNLQlEKvj6i+i4fRwezVeem0WXp4Ww9Fu2ORJwpbZQZ2UlVwB0t8LKTr/VTodtyIIIEIuYFuA65iG90JAKAURaO60IBql5i9czSTLCPTuudnx7OxVd8JpFQjCDoSqxdP/+x3M/I/b8Ncdk2C9XQG3uQPwPDTsvLtIIy6cw666E+GIBSjA7gCsBAANtE3XmDxzLw4ft6PYQxz5NLh7pMSUTYLlgw8+wIUXXojf/va3qKjo3gTq2WefxeGHH55OrgDA4sWLEY/HsWnTJpx44onDOVyiEWn1kb/CbybdifeWVOPgQ/+Ot3dMBAJtJphaQKfmpBlJltQkVKvspItONzQ2DUPXRX8+bI+DiMoDkyujw7r/W57z8iWHXQsxpg4iEh/mEQ2NY790B2REwm3XcNoC2B0KKiRhdQQISeCFe7s3UiWiwpOT38T6F5di8qy96cu0NqtwEQpBui5UPJa8wuxkAWD+Te3UzqCDwCwQAqDjCazh7ksiysDkyujw5jXdyz++e5GJ7eZccyd2H12B2tqZwzyqoWElTE9BKw64LRpepUB0AuCP8TGhog0/Oea+Yg+RaNiVRYJFa41zzz0XF110EY455hi8++673W6zc+dOTJo0KeuyMWPGwHVd7Ny5s8djx+NxxOOdE/eWlpaCjZtopDnhicsROroCcc/G+HA73mhxYLW1md2gtgMAWQ1BhRTpiWhnoqVLTWshsS7B5AoR0Wi3ZMyXASGwZt+PAQBrXjflE5bUnm+uA7Cm8SdFG99ghff6CEISsbECMiHhNnlo29+BHZWQ3uCa3TOeJcrfv/51PuZWB5hVsRt10sNbng/x9wqEPtgH2Bbk5AnAjg+gPD+dTBGu23kA1SXJorXpIwVgzZ4fDedDISKiEpPquZOZWNu8yiRfFs+9Hid9YiVEoLH+me8WZXyFEISA2DgNoQQqdgi0zVIYc9A+WAkHj/wTWzTQ6FTUJvcrVqyAEKLXrxdffBF33XUXWlpacPXVV/d6PCG6b4/SWue8POWWW25BbW1t+mvatGmDflxEI9X2xlq0vluL+N4IfGXB3W0DLW3mSkuaJIuQ2eUUupQME1Kkky1UOhacsAoLTryl2MMgotGsh3htTfM9nf25ytjvH7sCG399OV78yTJ0TJJoOSCM2BiBtv0knvnV4HavMJ4lyt/zzQfgqcaDsT02Bk3Kwb2NH0Pdmxrig72AbUGNrYaoquzcsQIASqd3ssCS2fGu0t0a3FPxzF+4mk3Fiajocr0Prd10A6yobzqUl7HXb/k2/nb5MlTO2YeWQwLUfKgJH5/8Dl7/zIpiD20UEdC6NL7IKOoOlksuuQRnnnlmr7eZOXMmbr75Zjz33HMIhUJZ1x1zzDE4++yzcf/992Py5Ml4/vnns65vbGyE53nddrZkuvrqq7FsWWdD0ZaWFk5KiXpgvVoFaQGxSRqbd0+C2wRTWzoUArSGDjobggopOneraC99jPXql1goT0tPSrl7pTQ88dQ1xR4CEY1yqZ0rhy6/E1YUCDdq1L0ZhbOnHZi1P+AFfRyhtJx0/Cp4NWZ3p7KAwDWfe26LD2u6i1idgBUHXv7X7iUl+ovxLFH+Nv7foVAVAaZO24eIdSxeadoPAKD2m4DEOFOK2lVTYO1uhG5phfZ86CDoLBuGZDxrnQHAlA7T7R2MaUsEyzERUTGl3oOOW38ljlt/JbzAgtbA3r+OR+U2AX1CDcKN5ZVhOaH+e/ArJKLjLMTGAl4N4DQDbQdX44QP/wVTws1YfeSvij1MoqIqaoJl/PjxGD9+fJ+3++EPf4ibb745/fP27duxePFiPPTQQzj22GMBAPPmzcPKlSuxY8cOTJkyBYBpfB8KhTB37twejx0Khbolboiou8OuuhNWAPiVACyN9vYQqhMAnIzSYFIAAbKTK10slKdhvfrl8A2ciIjKigjMxE1oYXa1RGOAFYGIlk8vloXH3QxYAk6LB7/ChpACkd0JOHvasOa1lThi2Z3waoHXrh98cgVgPEuUr4NvuhMuJBICaI+7aPIqELZ8JKoFYpMqIZSG2xSHCALTrN4yje+FFlkLjhnPEhFRb7zAwq5dtUC7BVHtwY4JVG1XiNdJhPeVz87sBSesgiUFtADsqITTJiAC4M+3fhuf+sM3cPLYV3HGgS8Ue5hERVcWPVimT5+e9XNVVRUA4EMf+hD2339/AMCiRYswZ84cnHPOObj11luxb98+XH755bjwwgtRU1Mz7GMmGmmcNkDbADoAEZPQsRBq/u4DiQR0EEB7vrmhzhEsdGkIulCeBgCcmBIRUTcTNyXgVVkINftw3tsDeD5Ec7tJtJQJESiI5ObNUIcHbQkEESd9/Wt3FCaxQkT94zYDygG0kIhNcbC5aRJ2NVWjwgdUSMJp8WHtbATiCeh4AsjsLZjcpZ3CeJaIiHryf0tW4ehL7oQd09AyDLdNwW0OEGr0EdrdUezh5U0mFCAAx1eQgYayHfgVpiwU+60Ul0JplOfSJTKOYiuLBEs+LMvCY489hosvvhjHHXccIpEIzjrrLNx2223FHhrRiBBq1lAOkKgSCO82ZU5CjXEgnoCQEjojgZLavZLZ5F53bQhKRESUg9PqwUooaEtAV1dA7G0GEgkg5PZ95xKw5MjvQkoJbUuokA3ZFIWQgIz5WPPaymIPj2hUCzVpBCEBLYHo9gq8H7Uhd4ZQ8YFC4ArYtjDJFc8zzeuBznK4vg94PrTv9f5LiIiIAET2KUgPCFwNZQvIQAMa8GvDxR5aXhZ/+HpIS0C5NmLjQ+iYaMGrAP78PS4UIuqqLBMsM2fOhNbdyw9Nnz4djz76aBFGRDTyOe3mZJf0ATtmMtRWe5fdKzDJlXRiJYMpG9aZZOFqPyIiymX9M9/Fgvm3IF5rw6uqQ1XMA2JxwHX6vnORLTnyuwAAEU0ArgXLCyD8ANq1sOblG4s8OiJy2jXsGCA9ASsuEW8Nw24HrEQApz2AsycKHYsDSpkEi2VBuI5pcB/tnH+mkiyMZ4mIqCfP/vwyHHfa7UjUSMRrAC0c2DGT6C9lSw67FnAsCJjdCfHxIbRPtuC0l/7YRwsNQLHBfEkpywRLMdQfdAUgJVR1GGtfXFHs4RANq+P++TbYMQVYAtIztTeF0pDNHdC+n06a9JRcSe1iEVJgnceJKBER9e6JDVfj46eaXcg6ZGPNm/9S5BH1rv7gqwCtITwPuioCHbIhGlvNiveQC6FKJzk0f+Hq9PdsBk2jybyzbofTbkqdWHEJ6QlIX8BuB5zWAO6edog9TWbxkFImqWJJiFRca9vpIhhsaE9ERPl45peX4chv3wnlAn5E4P/uX1bsIfUoHc8CgFJITKpGbLyLICQQbjT9YwK2/CPKiQmWPOmwA5EIIHyWOKLRJ9TsQ0sBBCaBIgMF4SlTQkHl+JvQChCy12b3REREvdn48OXFHkKf6mdfCVjSrHbviJqESk0lRHMbkEig4YN/L/YQiSgpvNdHarGnUAAgoS3AbdWwWxNmx0pGjxVoDSQ8aNeBELbpwQJACK4YJSKi/L16Z2mX1MqKZz0PcBwE1RG07x+GUBpOu8IffvudYg+TqKQxwZIn1sym0Wr+gtUQgYLlJRMpQkC50jQ780x5hMwkSrr/ipVxuVadu1uIiIhGgPqDrgACZcqXJRJQrW2QUyZBNLdBt7VjzZ4fFXuIOXHXCo1WMqEgk/GstgQQ2NDSgpXQkLEERNw3f9NJOlkmTMABtIZOmNK4wi2PflBERER9Scezqd5jgQJcgcQ4k1ypfb0Ja165qdjDpBx0qZQI45pqAIDs+yZENJpteOIqOE0xWG1x89Uag90cg4yZD2Ahe3gb0cokVoKAu1iIiGhEqT/gcrNbJRo1q/0CBWHb5jIA4OceUclxGqOwWpMxbUscbosH6WkEjoCqcIEgSCdRMhMtCBR0LJ4si9tllwsREVGZSsezKjCfbwAQcqErQvAqJZw2ZeJcIuoTd7AQUa+WHL0cUCpdHk8LAaEUtG0DQgC2DehoziSKVhrrg4eGe8hEo9b8hau5Op1oiNXPWgb4gSmlIKUpl6kV4NiAtAApsGbfj4s9TCLqKhnPaiEgHAvQplmvHxbQtgVEY9C+D+2ZRKkAAEtCJ3dsr21/oHhjJxpFGM8SDb10PGtb0NUVgGVB2xLKteHVOEjUSAgFPP2/rOZTqtjkvrQwwUJEvRJxz6zElQLISK4I3zfJlfYOs9IvfQdujCMqBalG1pygEhWY55vEiuMASkPrOEQ4DD2uFmhsRcN73y/2CIkoBxH30/GstgS8ageJKolwYwD7/b1Qe/dBJZMrAACtIGSyHBh3pREVBeNZoiHi+YBtAeEQgtoKKMecx4lOcJGoEYAGXrhvWZEHSVQ+eCaUiHq05KjrzDfJyaYKOdCOBdHSDigASkEnEp13yEiupHa0LLTOGK7hEpW81CRxqGROPjesv4qTUaIh0LDth1ATatHw1vcQ7DcOYkwdoDX82jCTK0QlasnRy9PxrA7b0I6FIGLBjmtUv9EItXO3Sa4kS9wKKSBsxywusiyzY42I0oYypmU8SzT0TDxbh4a/3AK/0jYJFgH4FQIdkwRe/C8mV4j6gztYiKhHqWZm9QddAS0lVMSB1epDt7ZBdESho7Hs3Ss9WGidASEF1nkPDvWQiUoaJ4hEI8PaTTdgwfxbgIgNjKnCure+V+whEVEv1rx8Y0Y86wJaw4opRGIK2LEb2vdMcgUAhDTJFUumew0Ky8KSmvOgg4ClwojAmJZoJFj7wvU4Ycm/AFJAC+DJdVcXe0jUDyXT5J4AMMFCRL2on/6tztJgAKx2Ce3akGPHAO0dULG42amS3LkipIBWGkKKzt0smk3RiIho5Fg0zyw+eOLZ64o8EiLKV/30b5mECQAZTSA2tQpNs2xMeqENuq29s5egkGbHikyetHAdCMcBLAvwPAjBkxlERFT+UrvQnmKylKggmGAhop4FARDANO51bHjjKqCFQKixPV0yIXMHS1aje61MkkVIrEv8fPjHTkRFVT/z20AsDp3w2PCbRpR1TKwQlZ8gMEkTx4ZXF0G8Jrk4yDNxrFkkJM0ioSThOBC2bXouAWj44N+Hf9xEVFRLjl4OKAXhKzRsXlXs4RAVDHehERUWEyxE1LPkhBK2DRVx0DHJhRXXCHke4HkAuuxaSRES0IqJFaLRzPOBQAG+jyVjL2SShYiIikfKdDwbneQgCAlUbQ8g4h4QCgHxOCCS8axlQbguhOsAtg0EARp2/FuxHwERFYFoiya/EVhy2LXQYRtrN91Q3EER0ainAagSKRGm+77JqMBufUTUM9sCQi50xIVfE0ZsjITdEQCJBHTCS5YP6/I20vVnIhp16id9DfB9aN8HLIvJFaI81U++uNhDIBqZbKsznq2TCBwBp11BBBrCdU1SJbVYSAhAKbNLO49eg0Q0MtXv9w0gngASHuD7EPEEkytEeUqVICMaLbiDhYh65rrmXynhRywoF9COBJSG9jwz6eypxwoTLUSjFsuo0Eh20vGr8LvfXzMkx27YefeQHJdo1HPdrHhWSUALANGYWQyQ6imYSrJoDXi+2aXtcMpMNBo1vH9XsYdANGTmL1w9pGXCWIJsiGkTqlDpYLRIRD3SrgURaEApWJ5JpOw91EbFSy7Q1m5uJCSENNdppbE+YFkwIiIamRbMv6XzBCwRlQ3tWlnxbGIMoG0BRGNAEHRLouggwNr2B4oxVCIioiHF3SVEhccECxH1aM1rK7HoH26EUArCU7BigPQAVFZAtLRCJxLmhsmeK0IKLHLOxDrvwX7/rsXhswGYJE0mkSxDtjb608E+HCIiokF5YsPVxR4CEQ3AmtdWYvExK9LxrJZA+2QbFePGQGhtdrAA0FoBgYIQAktqzsOalnv7/bvqD/yO+SYIOpeXOg5gW2j4yy2FekhEREQDwt0lRIXHBAsR9Uo7EsqyACkQalaIjZVQNRGIvQ6QSKSb3KcVqjSYVp3H4mphIiIiIhqEoMJJx7NepYQfARKTqxGKxgHfB5QyyZZkyTDdUxncvlhmtwy0BgJlvhcCkCyfS0RERIUgoMDzZKWEUR4R9UpbAloKQANum4Id1dh3eDWixx4I8aGZpjEoYJIhyYTIIvesQf5Slf6XJRqIiKgcLJjPlelEpSwzng03aigH2HNUCM3HTEEwdazp0+I65l9LQlgWloz58sB+mRDmSyUTLAkPDW+wJAsREZU2lg8jGhjuYCGiXv3u6Wux4ERz0kjGFUJNAh0TLew9zEFN1VjU7muC8PzsZvcD2MWyNvazrJ8XVy3F2rb7BzV2IipdqeCdW9RpxGCjSaLSJsxKz1Q8G4QstE0D2qcKCFWB6qhndrHEPCBkFhAJ1f8/7K6JlPoDLkfDO7cNfvxEVJIY0xIRERMsRJQfAUhfwWkHQs0CQUhi3xwJoQ5AzfNboVvbMnqyDH6rIpMrRCNXaiIqAp6RppHjiSfZn4Wo5GXGs00CfkSiY5JA63QLTns1EtUWwns9OM0xCC+jh8ogMLlCNHJxtT+NNEwUlg+tWSKslDDBQkR9Sp00WnDCKghfw20JoCUQuBIt0yWAaXBbfITf2g20tkFrhSXjvwIAWLPnR0Uc+eDMX7i6xwCDK5WIBo5/N0RENNx6imeVJeGHgcaDHQQu0LZ/CFXbHLgtPqSnseCEVdCOLNvPrnziWYCfzUQDwb8bIiIC2IOFiPrhiaeugdAa0tcI7wtQuyVAZK9GbIxExyQHbUdNRvzImdAzpkBMGAdMmYAlR12HJUddV+yhD0g+AfP8hau5cqkf+FwRUamYv4DvR0SjUa54tmq7ht0B2B3mNu1TJVpmuIhOdBCbEEK8zsHxn7q1uAMfoHxPADOmzR+fJyIqFXw/Gp00AKVFSXyRwR0sRNQvT2zILoFy0vGroAUAaWpZd0xx4c9yYcWB8F4fdocPmVC5D1bGelsJyJVMPeNzQ0SlYsMTfD8iGq1yxbMA0jGtH7EQHW8jOk5C+kCoRQGxIgx0iPUWlzGm7RmfFyIqFXw/IioNTLAQ0aD87vfXAACWHHYtrMoQtAwDY2wIpeFVWYAAfv/UFUUe5fBhgENERERUXlLxLAAsOeJaWFVhaFsAwoJQJvHy+0e+U8QRDj/GtERERET5YYKFiApizesriz2EssUVgkRERESlYc1rjGkHijEtERHR8NC62COgTOzBQkRUZBvWX8XaqURERERU1hjTEhER0WjEBAsRUQnghJSIiIiIyh1jWiIioqGntSiJL4CN7oEyS7A89thjOPbYYxGJRDB+/Hh8/vOfz7r+vffew6c+9SlUVlZi/PjxuPTSS5FIJIo0WiKi/uOElIiIiIjKHWNaIiIiGi3KJsHy8MMP45xzzsF5552HV155Bc888wzOOuus9PVBEOCUU05Be3s7Nm7ciAcffBAPP/wwLrvssiKOmogof6xZTURERETljjEtERERjSZl0eTe931885vfxK233ooLLrggffnBBx+c/n7dunXYvHkztm7diqlTpwIAbr/9dpx77rlYuXIlampqhn3cRET9xQkpEREREZU7xrRERERDx5TnKj6tiz2C/IwdO7ZftxdC4E9/+hNmzJiR1+3LIsHypz/9Ce+//z6klPjwhz+MnTt34uijj8Ztt92Gww47DADw7LPP4vDDD08nVwBg8eLFiMfj2LRpE0488cRiDZ+IqE+pMgqcjBIRERFRuWJMS0RERKWmqakJ3//+91FbW9vnbbXWuPjiixEEQd7HL4sEyzvvvAMAWLFiBe644w7MnDkTt99+O44//ni8+eabGDt2LHbu3IlJkyZl3W/MmDFwXRc7d+7s8djxeBzxeDz9c0tLy9A8CCKiXnASSkREA8V4lohKBWNaIiIiKkVnnnkmJk6cmNdtv/GNb/Tr2EXtwbJixQoIIXr9evHFF6GUAgBce+21OPXUUzF37lzce++9EELgl7/8Zfp4QnTfHqW1znl5yi233ILa2tr017Rp0wr/QImIiIiIhgjjWSIiIiKi0UNpURJf5UIplXdyBQBaW1txwAEH5H37ou5gueSSS3DmmWf2epuZM2eitbUVADBnzpz05aFQCAcccADee+89AMDkyZPx/PPPZ923sbERnud129mS6eqrr8ayZcvSP7e0tHBSSjRKpEoYpHDFHRERlSPGs0SjV9d4FmBMS0RERDScippgGT9+PMaPH9/n7ebOnYtQKIQ33ngDH//4xwEAnufh3XffTTebmTdvHlauXIkdO3ZgypQpAEzj+1AohLlz5/Z47FAohFAoVIBHQ0TDqRD1nTn5JCKikYDxLFF5ykyODDQuZTxLREQ0yujyaS5fqt5//30888wz2LVrV7pyVsqll17a7+OVRQ+WmpoaXHTRRbj++usxbdo0zJgxA7feeisA4LTTTgMALFq0CHPmzME555yDW2+9Ffv27cPll1+OCy+8EDU1NcUcPhHlKdcKvJSuk0dOJomIiIioFPUU0zKeJSIiIique++9FxdddBFc18W4ceOyWosIIUZuggUAbr31Vti2jXPOOQfRaBTHHnssNmzYgDFjxgAALMvCY489hosvvhjHHXccIpEIzjrrLNx2221FHjkR9SbfCWjm7TkZJSIiIqJS0Z9FQqnbM54lIiIiGn7Lly/H8uXLcfXVV0PKwrSnL5sEi+M4uO2223pNmEyfPh2PPvroMI6KiAplw/qruk02e5qsFqI8GBERERFRoeUb0zKeJSIiooHQAHQZNZgvNR0dHTjzzDMLllwByijBQkQjU2oSmppk9rYCsOv9iIiIiIiKLRWX9jemZTxLRERENLwuuOAC/PKXv8RVVxUuDmOChYiKIt9ESleciBIRERFRKWA8S0RERFRebrnlFnzyk5/EmjVrcMQRR8BxnKzr77jjjn4fkwkWIhp2/ZmMZq4I5GSUiIiIiEpBX/GsCDS0Zcp3MJ4lIiKiwhEsETYIq1atwtq1a3HwwQcDQLcm9wPBBAsRDYt86kxvWH8VFpywCpAC2hJZt+VklIhKVeZJNp5EIyIaufLtm7Jh/VVYcuR34Y2vTCdZ8rkfEVGx9BTPQgEbnuB7FxGNHHfccQfuuecenHvuuQU7JhMsRDTkMoO13lb7zV+4GhueumY4hkQ0KvT098YTPN0Votmw8BROOn4VlCsBNbgkS67/O/6/EREVTz7xrIwHUCHLvP+/evNwDY1oROtt/sjYKFsh4lkrGmDhx1ciiFgQvoa2xYBjWs5FiIaOLvYAylgoFMJxxx1X0GMywUJEQ6bfdanV0IyDaLTI92+u6+1G2iRn8UdvAACsfeH6vO+T6zlITSZTz5cINJ7YcHX659BftiN+6FQ4+6Lwa8PQjuwMdGXnMfr1OxesTt8313h6u+9AdP19XY/b23jyVW6vr0KcnCCikSXfz1cVspLfDOFgiEa4/swhR3JMWz/nGkBrNPzllrzv01M8m7ouHdP6Gk88aWJa9/k3kDj2YIS2NSMxuQZBxErfV9ui23Hy+Z0nfWJl5/thDoWOafN5HQy0Z1Zfxy1ljGmJcvvmN7+Ju+66Cz/84Q8LdkyhtWbSK0NLSwtqa2vR3NyMmpqaYg+HqOykAxeFPk/KpYI8fuATDUzXycmAkpqy8/4jRep5sDp8BBVmLUlmLfySksd7Za77CGUmxgs/vhLrN17b7SYLj7sZEALQOv0c5HvsVBmIhcfdDOVaWZPrIVUiJSiGIpHVX4ONRxnPEg1evjFt5ufvSPosJRpOuZIA/ZL8Ox1Jf4PpeLbdR1DZGcuVZEw7kHg2qbdzAoNJimQeb8GJt0BLMehFQ3kpkXgWGBkxLXW3YcMGLPni6Zj1r5cWeygAgHe+cjuefmQN5s2bV+yh5O1zn/scNmzYgHHjxuGwww7r1uT+17/+db+PyQRLF/zjJxq4rAColyBrJAW+RMNp0AmVPFjRIGvlWup3lbKcz8MgJnqlTvgaEOg+uc54zKmSDuWoFF9vw70YgAkWouLKJ6YtxfcqonIx1DFtqlxfplL/m831HJRkMqWQ8ojXy/k5KMXXXLnFtNRdKsEy865vFnsoAIAtX72t7BIs5513Xq/X33vvvf0+JkuEEdHQkN1P8FnRAEEvW4WJKFuvPYsKULopl67Jlb7G0asCrybs1zhGaHIFQM+JE5nHbcpAX2XLiIiGlcw+wSc8Be2M4A8ZogLrK34bigVDucpTlUo825+xlGtiIW95vJWW83PAmJaoNA0kgdIXJliIqGC6BgwL5mfXi808cTt/4Wo4e6JY+9INwzI2olLX70lfOZzbKcAYh2LSTSUu83Wj8nsNZH7+DEU5BE6IiUaX3mLazOTK/IWrYXX4kHEfa19cMVzDIypZIzJuS/7Jn3T8Kvzu99cM6BAj8nmhvvUzpu3WC5ExLVHZYIKFiPqttwZ3C05YBUhhVpr0sNokdX9vfIQ1q6ksLTnqOkAIaFti7YsrsHju9fDqIv0uIcLJVjY+H9RNnkm6nl47/U3OENHo0dv7w4b1V+Gk41dBS2F2BOaIaVP3DypsqJDFmJbK0knHr4IWJnHYW6muvl7XoyGGyze5MhqeCxqAPGLaXqsX9DM5Q6MAG34M2N69e7F8+XI8+eST2LVrF5RSWdfv27ev38dkD5YuWB+QqFPXD/HUh/b8havNVmlg0CvUU2XERKDxxIarB3cwGtWGsolf/bRvAo4DXRnCmtdW9vn7eyMCDS2GqclisfXQ5LF+9pWIzxjTvabyCO6bQqWvlCam7MFCVFjzF66GjAdw/rYTDe/flb5MBBrQhSmrmPpMY0xLgzVUybolR10HLSV02IaWAuuf+W6vv5+SemlavuSo65CYWJkd0zKepSIqpXgWYEw6FNI9WH5YIj1YLiq/Hiz19fX429/+hgsuuACTJk2CENlx4NKlS/t9TO5gIaK+dQkSsxItg6SlKOtmzKPFScevgnJlzv/70Kt/R/zIGbm3NGdMSHK9XnI1VAcAmVBQbueLzm5NwNrbBv9vWxAsmNvneFO/K7NOemp8iyu/hOCYQ3I+nm6PLzn+hq0/SF8+2Nd9OdcR7pcck8sF82+Bs7cD3v51AHI8F5yMUhHNX7gaVruPoDIZHme8hkttskpEg5frM38wn0NaMKYtdV3jWaBLTPu3PYh/aHz363PEs113e+SKaYcyngV6jml7imfXvHJT1rGZSMlTjveF+QtWw2mJwx9XAaBLTMt4looo/b7RdSFbEmPakUPr8ow3nn76adx6663YtGkTduzYgd/85jf47Gc/m77+3HPPxf333591n2OPPRbPPfdc+ud4PI7LL78c//3f/41oNIoFCxbg7rvvxv7775/XGDZu3IiNGzfiqKOOKshjAriDpRtmV4l6SZzkWL2z4MRbCrrqL/TWB2h4985BH4/6p2uCoX7S1+AdMi1rUph5fU+7m3o7dlF0OVki4wGs9gS8sZGs2widDEC7nFDlxHPwMl8bC05YxcbANOIMxUSVO1iICiPn5/gQxrMAY9piy4xp62ctQ2LG+G6xR08Jlq7X5TpuUeRI/vUa02bslGY8Wxjd+jIV8D2DqBQMVeKFMWnhpXawzPjBt4o9FADAu1+7tV87WBoaGvDMM8/gIx/5CE499dScCZYPPvggqxG967oYO3Zs+uevfe1reOSRR3Dfffdh3LhxuOyyy7Bv3z5s2rQJltV9AW9XH/3oR3HXXXfhH//xH/N/oH1ggqUL/vET9T2B6Gk1RNoAVgCmVmZxRcXwyKeGa9Zt8vw/TZfH4ApOQu8nMIhGqkJ8jjHBQlQYvX329BnPAoxpy0BfvXQGEs+mMJ4loPfG40QjUeq9sxRiWuqu3BMsmYQQORMsTU1N+O1vf5vzPs3NzZgwYQJ++tOf4owzzgAAbN++HdOmTcPjjz+OxYsX9/l7X3jhBVx11VVYvnw5Dj/8cDiOk3X9QF6rLBFGNAQGEnSV0iSsr5OiWhR+oqEtCeGpvm9IhdXDRLPb/3uek9HUiQpORke3zBMaC+bfMnrKohEBBZuQEpWC/sa0pfba7y2mHYp4FmBMO5z6Sp4MNJ5NYTw7umXGs/MXrGbpLxo10q97xrQlrVS2SwzFMJ566ilMnDgRdXV1OP7447Fy5UpMnDgRALBp0yZ4nodFixalbz916lQcfvjh+OMf/5hXgqWurg7Nzc2YP39+1uVaawghEARBv8fMBAtRiRjKBt0F1zW47DKhEVrjifVX929SLgEE/BAvpJ6eyyU15yE0ZRLi0+tgxXP3QCEaqKzJ6MLVAJMrRESjRn9KiBZdrpOljGlLTo/x7JgvA8ccCHd7KxJTqxnTUkF1i2eZXCEi6lEikUBLS0vWZaFQCKFQqN/Hqq+vx2mnnYYZM2Zgy5YtuO666zB//nxs2rQJoVAIO3fuhOu6GDNmTNb9Jk2ahJ07d+b1O84++2y4rouf//znOZvcDwQTLESD1FOjw0z9bQrfrxUyOepI52PB/FsAAE9suLrnceSYJM9fuDpru3yqeaNMKDhvbEPDzrsH3jRRivTv5YR0YJaM+TLWNP4k5/OfvuzYg9OXcSJKhcayCTTa8fOLylHXXmy9xbT9eZ/vz20H8rez6B9uhHYtrN94bd7j6C2ehTTfO3/dioYP/p0xbREtGfNlJI45sNvl6f+P5HWJqdUAGNNSYTGeJWJMW9J0CTW518ADDzyAE044Ievi66+/HitWrOj34VJlvwDg8MMPxzHHHIMZM2bgsccew+c///meh5HcfZKPP//5z3jppZdw8MEH933jPDHBQiWrrFbA9aHfAVp/VsjI3Mfv7fla+PGV0CELQuucCSK7zYNflV2DECoj8SNMTWKZCKBtM1jlSsSPmD6gYDRVA1sLMaBa19RpTeNPsn7m5ICIaOiIQEMEGso2J2bLOVahoTOqY9oCHLun5+uk41dBVznQQuRMoACAFe2yq6FrPBtoyHhnPAskY9ojZzCmLbLMBUOMZ4mIho4INKA0tCXTn1vlHKvQ8PvSl76EO++8M+uygexeyWXKlCmYMWMG3nrrLQDA5MmTkUgk0NjYmLWLZdeuXfjYxz6W1zGPOeYYbN26lQkWGp0G09ckV/mtQpXkyrxvf1f1DaWexiECDTjmg1ND5Lx9EO7+1iC0TteqTvVTCOzCvIWk+zPw5FTe5i9YDfvpl7HOezDn9VaHDxWy2PuCiGiIyITC735/TfrnUvn8p9JXiJh2KOPZ1M+l8prOOQ4FCEvkjHMyb6/cnjMc6Xi2onBTYsa0/TN/4WpAAc5zm7G2/YFu11vRAEHIYqKKiGiICE/hiacYz9LguK47oMbw+di7dy+2bt2KKVOmAADmzp0Lx3Gwfv16nH766QCAHTt24M9//jO+973v5XXMb3zjG/jmN7+J73znOzjiiCO6Nbk/8sgj+z1OJlho2PW126KvZMhgf1fOyxasxoYnuk8k+zMxyqdUWCnI54R7roaOQ32iPrXij3q3uPJL8I89FBACwceP6nZ9+rVXwJMFRESEPkty8mTq6DJ/4ers2CXH62MoY9qeYtyefs+Ii2m7LBTqSbfYchhO1DOm7Vv9hIsQP3Jm+v/D/4dDu91m/sLVAMt+EREVXG8xAePZMlIqJcLyiMcytbW14e23307/vGXLFrz88ssYO3Ysxo4dixUrVuDUU0/FlClT8O677+Kaa67B+PHj8bnPfQ4AUFtbiwsuuACXXXYZxo0bh7Fjx+Lyyy/HEUccgZNOOimvMaTKkJ1//vmdj0IINrmn4kglJbpdPoCJWE/3GbZJXa4yW6p/hyjllX+lLlX3mh/mfcu1ui+FrzciosLKOlHKFdQj0uIPX4+1L92Q87q+PlezTqL3ULI132MVSiF+D2PagWNMm5+G3f/R6/V8vRERFRaT/1QqXnzxRZx44onpn5ctWwYAWLp0Kf793/8dr732Gh544AE0NTVhypQpOPHEE/HQQw+huro6fZ8777wTtm3j9NNPRzQaxYIFC3DffffBsvJbmLFly5bCPigAQmutC37UMtbS0oLa2lo0NzcP2famcrNg/i2mNJTkBIsKJFWTuo/VwNSzslhdSkRUxop5gnSw8Sjj2dwW/eONCMI2tMNsGRUA49mCYExLRDS0yjmmpe42bNiAJWefjml3Liv2UAAAf//69/CHRxswb968Yg+lqLiDZRTqd+Bq5e7TQZSmACseQDkS2hYQngJkdl1sruTLVqi/Jf5NEhHRaNXvz8Bqd2gGQiNHHzEt49lshYxDGdMSERHlRwPgdon++d///V/U19d367fSk8cffxwnnngiIpFIXrdngmUUSQetqdJX0jQO1MkGkVoIiEBxVR/1mxX1gedfgwSwPnio2MMpSZw0EhERFUbXz1ThKUAIaGlOggvNMhg0MIxpe8d4loiIiMrR5z73OezcuRMTJkzI6/ZnnnkmXn75ZRxwwAF53Z4JljK08OMrEYSsnmuBKzOxhM5oVp7cwp6quygTCtoSUK45iLYEoMDkCmXJVaeTK/f6xsknEVH5yyxbk+vyXPgZ2T/zF6zuu7dNxsKgrpcLraGFgLZk521UjsbmNOp1jWn5t5ofxrREROUvV0zLeHYE4A6WftFa49xzz0UoFMrr9rFYrF/HL5sEy5tvvonvfOc7eOaZZ5BIJHDEEUfg5ptvzmqM89577+HrX/86NmzYgEgkgrPOOgu33XYbXHfklAOo3/9SYPrE3iejEtAQ3S4DzIRTBBq6S/mmzNsQpeQ6QTF/4WpY0QDrN15bhBENzKJ/uBHW1g8QP3xaj7cpRBDBSSgR0cgzf+FqOI0x6FffxLrEzyE8BaE0VCi/JoqUW/3MbwMHTer7hj3FpxLQSnS/nvHs6JXqiZJD15h2pMazAGNaIiLKbf7C1bDbPKx79jqIQANKc5E1jRpLly7t1+3PPvvsfvUNKpsEyymnnILZs2enkyff//738clPfhJ/+9vfMHnyZARBgFNOOQUTJkzAxo0bsXfvXixduhRaa9x1113FHn7BNGz7IeYvXA3hZZfyEr6G9BSEHyCIOJ07V3Lgqr5RqKfVnz3IbDIpfJOQE0rDivnwq5w+J6PzF66GjAdw3tgGf/cerFe/HMTgBy49Oax14df2Phmdv3A1RKDxxIarB/57iIhoRPLGhIHjj8T8BasReuN9wLIQP3QqAK7yG6iGd+/EghNvyYpZRaDNl6+gQlbfMSvPCVCmHK+HrMbpChBKQ8YDBJV2XsmVzJi24YN/L/CA8zd/4eq84tnUbRnTEhFRLn6VY+LZbU2A1ojPHAuA8SyNfPfee++QHr8sEix79uzB22+/jXvuuQdHHnkkAGD16tW4++678frrr2Py5MlYt24dNm/ejK1bt2LqVDPhvf3223Huuedi5cqV/co6FcOS2vMBKSGmTERQFUZQYUM7MuebXOZl9RMuAiwJPWkctJQIqt1ekys0SmVMOHOV/UpLTjwB8zpb5J4FAFiX+HmPh+5pIqZtieCAqVhfpMnoQnka5MePzm+FccaKx8Vzr8faTTcM6diIiKhMdF2gIJG1epyT0WxLxl4IaA0xeQKC6gi0a0HZoseY9oknzQng+v2+AVgW1IRaaMuCithcEES962W3Sur6zJh2cfhsrI39rMeb95ZYSMW0xbJQngYsmJvfjRnTEhFRT1KfERKIzxiTvpjxbHnSmrFyKSmLBMu4ceNw6KGH4oEHHsBHPvIRhEIh/Od//icmTZqEuXNNsPnss8/i8MMPTydXAGDx4sWIx+PYtGlTVimxUiRcF96c6emeKCldg/2ub3wNu/8j/X39hIsgtIKYMA6JKTXQloDdnEgna4gAs4PJbvPgVzndr5SAlsKUTejwIZB/ckUmFJQtYcUD4I8vm98FMyksxg4Wq6oKCSfP8i0ZJfT86hDqD7oCDW99L6+7LrTOQOZvkZEw5JRJ8CfUmNW3THgSEZUdTjQHRoRceLP36xbPAr3HtA3vd+42rz/gclhaQddWwa8NQ9kSkIDV7vNzlTpJwOrwEVT0MJ3tGtOqnguVd31t9hTTFotVVYUg3xsPIqZdXPklZM4ORCRs5pWTa/h3R0RUphjTEg2PskiwCCGwfv16fOYzn0F1dTWklJg0aRLWrFmDuro6AMDOnTsxaVJ2HecxY8bAdV3s3Lmzx2PH43HE4/H0zy0tLUPyGPqSSpQsOexaqJpw7pPfMBOAXG+QS8Z82XwjBPQHe+Ds3gsAWLPnR1n3BZI7GESOmtU0avT0+sqkHIl8q8tbHT6s1/6GNS2dW+4WytNyfp8r2bJQngad3G0i4wGcrXvRsOWOPH97tvQk+diDB3R/bUnAzr+u/vrgoV6vX+ScmfWzrK6GqKyAHleLxISKAY2RiIgKz25NYN1zy4s9jAEpmXh2x78BABZ/+HqoCqfnk9/IHdPWT7go/b1o64DzgQVICSiVPnbqvgD63sVAI1pvr69MypGwtOr7hug9pu0rnk3dplxj2rXtD/R43ZKa87J+FpUVQCQCNaYS3tjIgMZHRESFl1pMy8QK0fAqaoJlxYoVuOGG3rctv/DCC5g7dy4uvvhiTJw4EX/4wx8QiUTwk5/8BJ/85CfxwgsvYMqUKQBMIqYrrXXOy1NuueWWPscwnNa8vnJg92v8Sfr7JWMvzEqspC4L1dUiPms8Sy5QXrQlof7xMNTvfykatv0w5216+9BOTTznL1wNpykO+Are+EjOEgzuEYekd5uokAVEwnnvfEmtTAzCNkSggEHu1gq9ty/vlX758E84uttlwtdcCUhEVGL8arfYQxiwUotn1740sLFk7sxeMv4rED7QsPvfsm5TP+EihGqrEZ8xjskVyou2JNS8I3q8vq+TUKl4dPFHb+g1ngUGHtOmjmdFAwQhq+Ri2kSOJA/jWSKi0pPPYloaIYq5vZa6KWqC5ZJLLsGZZ57Z621mzpyJDRs24NFHH0VjY2O6l8rdd9+N9evX4/7778dVV12FyZMn4/nnn8+6b2NjIzzP67azJdPVV1+NZcuWpX9uaWnBtGl9Nw8sZWv2/bjHyxbNu4lvuJQfCSjHQjB1PBbMvyUrMRfa1gy15T2oRAIyFIacNB7xgyZhw/qr0qv7UhPJrOaiSV37wCQmVnZeLgT0zt39KiuWWsGoZY6JaB+rW/Nd2bHQOgPB/A+bcfoaIlAQz7yavqw/OBklIqJCGpHxbJfFQimpJAxjWspbMqZdcOItWTFY13hWRMIQNVU9xrReXSjrsLn6Gg40pk0dK4iY5Ey3mDaP3Vr5xLSL3LPgH296mqbiWRWy4Gx8Hd7HD+vz/pkYzxIRlSb3g7ZiD4GopD3wwAM444wzEAplx3aJRAIPPvggvvSlL/X7mEJrXfI5r0ceeQSf/exn0dzcjKqqqvTlBx98MJYuXYprrrkGDQ0N+OQnP4lt27ald7Q89NBDWLp0KXbt2pV3k/uWlhbU1taiubk57/sUSo8roV58O+fl/pEH5Kxx3aOujVqJBivXZE8BVixHTezkbctpq2pmCRIRKPYyIiIaBUrhc2qw8WgpxrMAEHr171k/6yCAf9jM/sWzAGNaKqyekhe5YlrGs0REVCZK4bOqmDHpSLVhwwYsPut07Hfr5cUeCgBg27dW4w+PNmDevHnFHkreLMvCjh07MHHixKzL9+7di4kTJyII8u5+l1YWPVjmzZuHMWPGYOnSpVi+fDkikQh+/OMfY8uWLTjllFMAAIsWLcKcOXNwzjnn4NZbb8W+fftw+eWX48ILLyybP+JcK/0BIHHMgdiw/iosrlqadbm16Q38ru3+rMvmL1gNpymKoCrUfbLKWJoKLddrSvZQE1uaeqD1ky+Gv2t31lX92a2Sj95O7mTKFXDkvK/sYXcMERGNOJmfA6UwMS03PcWzABA/cgY2rL8KS8ZeCCTXeNmvvpNV6hZIxrPNMQgvgF8XYUxLQ6un11OumLaXeBYo8ZiW8SwR0ajCmJYot57aiWzbtg21tbUDOmZZ7GABgBdffBHXXnstXnzxRXieh8MOOwzLly9HfX19+jbvvfceLr74YmzYsAGRSARnnXUWbrvttm5bfnpTDtnVxZVmq1JPjQjzDcSJhpNMKGhL9NoDSPga8vd/yrtO9WC5L76NxDEHAgCcPVF449mkk4iIejccE9Ry3sHSH0tqz8ea5ntyXsd4lkpRPvEskF9MW7DXuALcPzGmJSKi/A1XwqVcYtJywh0sA/fhD38YQgi88sorOOyww2DbnQtpgiDAli1bsGTJEvziF7/o97HLJsEyXAbyx9+tv4Rntl47e6IQSkHs2gfV2gY5eSJUdQWE7wPbPoBOJDLuJNIr+VJSCZQlRy9HYkLF4B4YERERERWc8BS0JXOugh/o5LUYCZZu8WxGA2unKQ4oBbm3BWiPAmProKrDEL4C3tvRGcMq1XmAjLh2Tcu9ABjTEhEREZWi3uJZoHgxLXWXTrB8r0QSLN8unwTLDTfckP73sssuy2pD4rouZs6ciVNPPRWu6/b72GVRIqzU9fRGM3/hasiEguPVQkwYA/3u+8BOhfR0UwjI6fvBG18JFbKy7is8hQUnrDI/jOEKJCIiIqJS1Fs/g8GU9xluvY1h/sLVEJ6C41dBj6mB3L4LYu8+QGmTSNl/EvwxFd3jWd9cz5iWiIiIqHT11Z8rn5i2FOJZot5cf/31AICZM2fijDPOQDgcLtixmWDpwSc/cwdsu/sT3Vtd6dT1ub7vKnUMuzUBZ8suAIAaX4eg2oW2JZsPEhEREY0S8xeuhgg0tBCABHw/VpDj9hTPAr3HtF1j2L5iWrvNg7N1LwBAja1GUJmMZ20BoPdSSkRERERU/lJx5VDEtESFtHSp6XGeSCSwa9cuqMxd+ACmT5/e72MywdJPfWVt+1tL16924R8yZTBDIiIiIqIy11dPh0LrLWbtdzxb5cA/cOJgh0REREREZW64Y9rRiYuYBuOtt97C+eefjz/+8Y9Zl2utIYRAEAT9PiYTLERERERERERERERENKKde+65sG0bjz76KKZMmQIhBp+sYoKFiIiIiIiIiIiIiKgc6L5vQrm9/PLL2LRpEw455JCCHZONPoiIiIiIiIiIiIiIaESbM2cO9uzZU9BjMsFCREREREREREREREQj2r/8y7/giiuuwFNPPYW9e/eipaUl62sgWCKMiIiIiIiIiIiIiKgclEqJsFIZRz+cdNJJAIAFCxZkXc4m90RERERERERERERERD148sknC35MJliIiIiIiIiIiIiIiMqBFsUeQdk6/vjjC35M9mAhIiIiIiIiIiIiIqIR7w9/+AO++MUv4mMf+xjef/99AMBPf/pTbNy4cUDH4w6WLrQ2xeN8P17kkRARERHRaJSKQ1NxaX8xniUiIiKiYhtsTEs0FB5++GGcc845OPvss/GnP/0J8bh5nba2tmLVqlV4/PHH+31MJli6aG1tBQA8u3F1kUdCRERERKNZa2sramtrB3Q/gPEsERERERXfQGNa6hlzVgN388034z/+4z/wpS99CQ8++GD68o997GO48cYbB3RMJli6mDp1KrZu3Yrq6moIMfLq2bW0tGDatGnYunUrampqij2cUYPPe3HweS8OPu/Fwee9OPi8F8dIf9611mhtbcXUqVMHdP+RHs8CI/81UIr4nBcHn/fi4PNeHHzei4PPe3GMhud9sDEt0VB444038IlPfKLb5TU1NWhqahrQMZlg6UJKif3337/YwxhyNTU1I/YNvJTxeS8OPu/Fwee9OPi8Fwef9+IYyc/7YFb5jZZ4FhjZr4FSxee8OPi8Fwef9+Lg814cfN6LY6Q/79y5QqVmypQpePvttzFz5sysyzdu3IgDDjhgQMdkk3siIiIiIiIiIiIionKgS+SrDH31q1/FN7/5TTz//PMQQmD79u342c9+hssvvxwXX3zxgI7JHSxERERERERERERERDSiXXHFFWhubsaJJ56IWCyGT3ziEwiFQrj88stxySWXDOiYTLCMMqFQCNdffz1CoVCxhzKq8HkvDj7vxcHnvTj4vBcHn/fi4PNOfA0MPz7nxcHnvTj4vBcHn/fi4PNeHHzeacA0AD0y+ywOl5UrV+Laa6/F5s2boZTCnDlzUFVVNeDjCa11mW7oISIiIiIiIiIiIiIa+TZs2IDFXzgDU1deUeyhAADev2Il/vBYA+bNm1fsoeTt/PPPxw9+8ANUV1dnXd7e3o5vfOMbuOeee/p9TPZgISIiIiIiIiIiIiKiEe3+++9HNBrtdnk0GsUDDzwwoGOyRBgRERERERERERERURkQrEfVby0tLdBaQ2uN1tZWhMPh9HVBEODxxx/HxIkTB3RsJliIiIiIiIiIiIiIiGhEqqurgxACQgjMnj272/VCCNxwww0DOjYTLERERERERERERERENCI9+eST0Fpj/vz5ePjhhzF27Nj0da7rYsaMGZg6deqAjs0ECxERERERERERERFROWCJsH47/vjjAQBbtmzBtGnTIGXhWtMzwUJERERERERERERERCPajBkz0NTUhP/7v//Drl27oJTKuv5LX/pSv4/JBAsRERERERERERERUTnQotgjKFuPPPIIzj77bLS3t6O6uhpCdD6XQogBJVgKtxeGiIiIiIiIiIiIiIioBF122WU4//zz0draiqamJjQ2Nqa/9u3bN6BjMsFCREREREREREREREQj2vvvv49LL70UFRUVBTsmEyxEREREREREREREROVAl8hXGVq8eDFefPHFgh6TPViIiIiIiIiIiIiIiGhEO+WUU/Cd73wHmzdvxhFHHAHHcbKu//SnP93vYzLBQkRERERERERERERUDkpl90ipjKMfLrzwQgDAjTfe2O06IQSCIOj3MZlgISIiIiIiIiIiIiKiEU0pVfBjsgcLERERERERERERERFRPzHBQkREJW3FihUQQmDJkiXdrvve974HIQROOOGEbtdt27YNruvikEMOyXlcIQSEEHjuueeyLo/H4xg3bhyEEHjqqacK8RCIiIiIiNDe3o4rr7wSBxxwAMLhMCZMmIATTjgBjz76aNbtXn/9dZx++umYMGECQqEQDjroIFx33XXo6OjIut3MmTNzxrPf+ta3csbHREQ0QhS7uX0ZN7kHgN///vf41Kc+hQMPPBAHHXQQPv3pT+MPf/jDgI/HBAsREZW8KVOm4Mknn8S2bduyLr/33nsxffr0nPe57777cPrpp6OjowPPPPNMzttMmzYN9957b9Zlv/nNb1BVVVWYgRMRERERJV100UX47W9/i3/913/FX//6V6xZswannnoq9u7dm77Nc889h2OPPRaJRAKPPfYY3nzzTaxatQr3338/Fi5ciEQikXXMcDiMK6+8crgfChERUVn6f//v/+Gkk05CRUUFLr30UlxyySWIRCJYsGABfv7znw/omEywEBGVkF/96lc44ogjEIlEMG7cOJx00klob29PX3/vvffi0EMPRTgcxiGHHIK777476/5XXnklZs+ejYqKChxwwAG47rrr4Hle+vpXXnkFJ554Iqqrq1FTU4O5c+fixRdfTF//8MMP47DDDkMoFMLMmTNx++23Zx1/5syZWLVqFc4//3xUV1dj+vTp+NGPfjREz0aniRMnYtGiRbj//vvTl/3xj3/Enj17cMopp3S7vdYa9957L8455xycddZZ+K//+q+cx126dCkefPBBRKPR9GX33HMPli5dWvgHQURERDSKMK7t7pFHHsE111yDk08+GTNnzsTcuXPxjW98Ix17aq1xwQUX4NBDD8Wvf/1r/MM//ANmzJiB0047DY888gieffZZ3HnnnVnH/OpXv4rnnnsOjz/++JCOnYiIaCRYuXIlvve97+Ghhx7CpZdeim9+85t46KGHsHr1atx0000DOiYTLEREJWLHjh34whe+gPPPPx9/+ctf8NRTT+Hzn/88tDb7Ln/84x/j2muvxcqVK/GXv/wFq1atwnXXXZeVdKiursZ9992HzZs34wc/+AF+/OMfZ03Czj77bOy///544YUXsGnTJlx11VVwHAcAsGnTJpx++uk488wz8dprr2HFihW47rrrcN9992WN8/bbb8cxxxyDl156CRdffDG+9rWv4a9//WuPj2vVqlWoqqrq9SufrZjnn39+1ljuuecenH322XBdt9ttn3zySXR0dOCkk07COeecg1/84hdobW3tdru5c+di1qxZePjhhwEAW7duxdNPP41zzjmnz/EQERERUW6Ma3ObPHkyHn/88ZxxKQC8/PLL2Lx5M5YtWwYps0/XHHXUUTjppJPw3//931mXz5w5ExdddBGuvvrqIWncS0REJUYD0KI0vsrQO++8g0996lPdLv/0pz+NLVu2DOiY9mAHRUREhbFjxw74vo/Pf/7zmDFjBgDgiCOOSF9/00034fbbb8fnP/95AMCsWbOwefNm/Od//md61dt3v/vd9O1nzpyJyy67DA899BCuuOIKAMB7772H73znO+m+JAcddFD69nfccQcWLFiA6667DgAwe/ZsbN68GbfeeivOPffc9O1OPvlkXHzxxQDMysI777wTTz31VI+9Ti666CKcfvrpvT72/fbbr8/n55Of/CQuuugiPP3005g7dy5+8YtfYOPGjbjnnnu63fa//uu/cOaZZ8KyLBx22GE48MAD8dBDD+HLX/5yt9ued955uOeee/DFL34R9957L04++WRMmDChz/EQERERUW6Ma3P70Y9+hLPPPhvjxo3DUUcdhY9//OP453/+Zxx33HEAgDfffBMAcOihh+a8/6GHHoqNGzd2u/y73/0u7r33XvzsZz/jQiEiIqJeTJs2DU888QQOPPDArMufeOIJTJs2bUDHZIKFiKhEHHXUUViwYAGOOOIILF68GIsWLcI///M/Y8yYMdi9eze2bt2KCy64ABdeeGH6Pr7vo7a2Nv3zr371K3z/+9/H22+/jba2Nvi+j5qamvT1y5Ytw5e//GX89Kc/xUknnYTTTjsNH/rQhwAAf/nLX/CZz3wma0zHHXccvv/97yMIAliWBQA48sgj09cLITB58mTs2rWrx8c1duxYjB07dnBPDgDHcdJJkHfeeQezZ8/OGktKU1MTfv3rX2dNPr/4xS/innvuyZlg+eIXv4irrroK77zzDu677z788Ic/HPRYiYiIiEYzxrW5feITn8A777yD5557Ds888ww2bNiAH/zgB7jhhhvSyaDeaK0hRPcVwxMmTMDll1+O5cuX44wzzhjw+IiIqDyIMm4wX2yXXXYZLr30Urz88sv42Mc+BiEENm7ciPvuuw8/+MEPBnRMlggjIioRlmVh/fr1aGhowJw5c3DXXXfh4IMPxpYtW9Lb/X/84x/j5ZdfTn/9+c9/xnPPPQfANMQ888wzUV9fj0cffRQvvfQSrr322qxGmCtWrMDrr7+OU045BRs2bMCcOXPwm9/8BkDuCVuqjEOmVOmFFCFEr+UIClUiDDBlwn75y1/i3/7t33D++efnvM3Pf/5zxGIxHHvssbBtG7Zt48orr8Szzz6LzZs3d7v9uHHj8MlPfhIXXHABYrEY6uvr8xoLEREREeXGuLZnjuPgn/7pn3DVVVdh3bp1uPHGG3HTTTchkUhg9uzZAJAzZgWAv/71r1k7dTItW7YM0Wi0Wy8bIiIi6vS1r30NDz74IF577TV861vfwje/+U38+c9/xkMPPYSvfvWrAzomd7AQEZUQIQSOO+44HHfccVi+fDlmzJiB3/zmN1i2bBn2228/vPPOOzj77LNz3veZZ57BjBkzcO2116Yv+/vf/97tdrNnz8bs2bPx7W9/G1/4whdw77334nOf+xzmzJnTreTAH//4R8yePTu9ym8gClUiDAAOO+wwHHbYYXj11Vdx1lln5bzNf/3Xf+Gyyy7LKv8AAJdeeinuuece3Hbbbd3uc/755+Pkk0/GlVdeOajHSkREREQG49r8zJkzB77vIxaL4eijj8YhhxyCO++8E2eeeWZWH5ZXXnkFv/vd73DLLbfkPE5VVRWuu+46rFixImdteSIiIjI+97nP4XOf+1zBjscECxFRiXj++efxxBNPYNGiRZg4cSKef/557N69O12DecWKFbj00ktRU1OD+vp6xONxvPjii2hsbMSyZctw4IEH4r333sODDz6Ij370o3jsscfSq/gAIBqN4jvf+Q7++Z//GbNmzcK2bdvwwgsv4NRTTwVgtkl+9KMfxU033YQzzjgDzz77LP71X/910KvgClUiLGXDhg3wPA91dXXdrnv55Zfxpz/9CT/72c+61c7+whe+gGuvvRa33HJLt9WKS5Yswe7du7PKThARERHRwDCuze2EE07AF77wBRxzzDEYN24cNm/ejGuuuQYnnnhiOg79yU9+gkWLFuHUU0/F1VdfjcmTJ+P555/HZZddhnnz5uFb3/pWj8f/yle+gjvvvBP//d//jWOPPXbA4yQiohLHEmED9sILL0Ap1e1z8vnnn4dlWTjmmGP6fUyWCCMiKhE1NTV4+umncfLJJ2P27Nn47ne/i9tvvz1dsurLX/4yfvKTn+C+++7DEUccgeOPPx733XcfZs2aBQD4zGc+g29/+9u45JJLcPTRR+OPf/xjVi1ny7Kwd+9efOlLX8Ls2bNx+umno76+HjfccAMA4CMf+Qh+8Ytf4MEHH8Thhx+O5cuX48Ybb+y2E6TYKisrcyZXALN7Zc6cOTkbk372s5/Fvn378Mgjj3S7TgiB8ePHw3XdQg+XiIiIaNRhXJvb4sWLcf/992PRokU49NBD8Y1vfAOLFy/GL37xi/RtjjvuODz33HOwLAsnn3wyDjzwQFx99dVYunQp1q9fj1Ao1OPxHcfBTTfdhFgsNhwPh4iIqOx8/etfx9atW7td/v777+PrX//6gI4pdK5CpEREREREREREREREVBI2bNiAxWeegf2vu6rYQwEAbF1+E/7weAPmzZtX7KHkraqqCq+++ioOOOCArMu3bNmCI488Eq2trf0+JnewEBERERERERERERHRiBYKhfDBBx90u3zHjh2w7YF1U2GChYiIiIiIiIiIiIiIRrSFCxfi6quvRnNzc/qypqYmXHPNNVi4cOGAjskm90REREREREREREREZUCw4ceA3X777fjEJz6BGTNm4MMf/jAA4OWXX8akSZPw05/+dEDHZIKFiIiIiIiIiIiIiIhGtP322w+vvvoqfvazn+GVV15BJBLBeeedhy984QtwHGdAx2SChYiIiIiIiIiIiIiIRrzKykp85Stf6fU2p5xyCn7yk59gypQpfR6PCRYiIiIiIiIiIiIionKgRbFHMOI9/fTTiEajed2WTe6JiIiIiIiIiIiIiIj6iTtYulBKYfv27aiuroYQzAYSERER0fDSWqO1tRVTp06FlP1fD8V4loiIiIiKbbAxLVG5YIKli+3bt2PatGnFHgYRERERjXJbt27F/vvv3+/7MZ4lIiIiolIx0JiWeqGLPQDKxARLF9XV1QDMH39NTU2RR0NEREREo01LSwumTZuWjkv7i/EsERERERXbYGNaonLBBEsXqTIK/5+9Pw2z5KrOROF37R3DGXKoKlWpkIRAMggM+sDQgEEIIyipVJluY3fbtz8w2KjBzFwmGSRAoAlNIJBku7G5Brcb09Dt6/762t2PXSUJZAtjG9NgBj/NfJkMaFZV5XCGiNh7fT/W3jt2nMysSVmqrFKs56mnMk+eEyciTpzY71rvu941MzPTJqRttNFGG2200UYbbRyzOFJ7rxbPttFGG2200UYbbbSxUaK1rD0K0XawbKhoDfDaaKONNtpoo4022mijjTbaaKONNtpoo4022mijjTYAvPvd78aWLVsO6bktwdJGG2200UYbbbTRRhtttNFGG2200UYbbbTRRhttnPDxiU98Aueeey5OPfVU/PCHPwQA3HLLLfiLv/iL8Jx3vetd2LRp0yFtryVY2mijjTbaaKONNtpoo4022mijjTbaaKONNtpoY4MH8cb5dzxalf3BH/wBLr74YvziL/4i9u3bB2MMAGDTpk245ZZbjmibLcHSRhtttNFGG2200UYbbbTRRhtttNFGG2200UYbbZzQ8Xu/93v46Ec/issuuwxa6/D4M5/5TPzzP//zEW2zHXLfRhtttNFGG2200UYbbbTRRhtttNFGG2200UYbx0Mch50jGyW+//3v4+lPf/qKx/M8x/Ly8hFts+1gaaONNtpoo4022mijjTbaaKONNtpoo4022mijjTZO6DjzzDPxla98ZcXju3fvxpOf/OQj2mbbwdJGG2200UYbbbTRRhtttNFGG2200UYbbbTRRhttnNDxjne8A2984xsxGo3AzPjCF76A//Jf/guuv/56fOxjHzuibbYESxtttNFGG2200UYbbbTRRhtttNFGG2200UYbbRwP0VqEHXG84hWvQFVVuOSSSzAYDPDSl74Up512Gn7nd34HL3nJS45omy3B0kYbbbRxmLHrmVei3NxBdt8AZiqH6WqQYTARiBlUWZAFqDDgRMF2NMBAuncIWAsoBTOVwyYEEDW2/Zm/ftcxOqo22mijjTbaaKONNh4pMffU96DYPgW9XEHvH8Js6sL0EpCpKzZqZKCGJZAoVFMZwIzsnkXAWHAvD3iWGGDtMK17eYtp22ijjTbaaKONjRZVVeGTn/wkXvSiF+HVr3417r//flhrcfLJJz+k7bYESxtttNGIHTtvCD+T4TpZOlhYhKlOd9z+zvXfsXWM+W2vg9m3D6rbBW3fBjvThVoag7sZAIB+ci/QyYE0hZ3tgzsJbKYBADZTwGwHAFBs64Vt+vPEILCW56KrG+8bP3/VsMCO8935jyZkbfTz2UYbbbTRRhtttLHRwmNaMiJ+Ya0Awgps6wkFdqIXVVmwkp83Mkkwt/U1sPsXQEkKaAV18jbY2T7U0jBgWvz0XtD0FHh2CrabwmYaTABrBdraBwCYfgLTnw7bjc+P/C0uGRDGj55dsS8NEa2V/87fcX29PQvc8ZkWz7bRRhtttNFGG8c2kiTB61//enzjG98AAGzdunV9trsuW2mjjTaOiwjkiY0eVGiQI7AAGQtOVUg0fVDF4GQNwkXVz7ngvOvAitZ+7kQcDQJhV//luHX5TwAAF2YvBQDoU7fD3vcAYFnIlS2bRIGXahSn1ckin3QG0oUxOFEwnWTlcSgcnVhjuzHptVq0BEwbbbTRRhtttPFIiTXx7ORjqDEtoEKnsSosWFPAuQ28qxwhwIAeVdj1rKtgUy24WBFAEDaBWbo2CIAiUGVhc310MG33N3Hr8BM1nn3UyYJn2YLyHGp6CkhTwBogUShO21Tv29YzoZdKmF4CKHfM7lwxDlFEdbixxvYPhmeBFtO20UYbbbTRxqEGtRZhRxzPfvaz8eUvfxmPfexj122bxw3BUlUVrrzySnzyk5/E3XffjVNOOQX//t//e7znPe+BUoLimBlXXXUV/vAP/xB79+7Fs5/9bHz4wx/G2WeffYz3vo02Hlqcv+P6ZjLnkkJiBhiS8HmCI1bhrUUETD6uJn42azwPAJW2aQNgGcn+cf18C+n4SJVkdj55VbK/IYmNtr3j/BvCa+PnEB/4WFRhAWboQSm2BRBFHgCkT/oZzD/xnbC9HPzMJ8N2NKxh8M+cHLaff/MnQDUCVVMr1IzlpnyVE7dx4o7b34nzd1wPJmoUGshGqywBsIzP/M27cf4LrxfVprtusv/9I8Aydt/3kWOy/21sjNix8wZQaZF9926Mn3QqqGJk3/4pdv/k9xrP2/Wsq8J3gire0IreNtpoo402Nm4ETIsIv06QIquSJath2kN5zGHauNMYVjpalPWYGlClhV4ag4YFwCz4tTLgbg6VJUCpYPNE7LAsi5BI1VjYptK1vPN519bbLDy547rCFerXRKSOKi1MrpEsFlCjArafg4nCa5Mnnon5J78b9JSzYLsZTGXAp2+VbViGun8RWFgEVxVougeeycHReahms1VO1MMcUZ4SY26PKXbsvAFkOOQEyVIJGAa0nGcyFrd9/nLsfO41oQtJCC8K2PfTd777WBxZGxskPKblVAme/eaPsfuuDzeeM/+kd8FOdVpM20YbbbTxCI83vOEN+O3f/m38+Mc/xjOe8Qz0+/3G35/61Kce9jaPG4Ll/e9/Pz7ykY/g4x//OM4++2x88YtfxCte8QrMzs7iLW95CwDgAx/4AG666Sb8p//0n/CEJzwB11xzDXbu3IlvfetbmJ6ePsg7tNHGsY3zX3Ad9KAClaI+o1EBKgywtIx0OMKeBz+KC59zNdTyGCCS5EtRoyefrAVVQjpwqmHzRNRrRPKYVisTTytWCFRaSVgSJSo8RStIB0mESRIeOMsFw6hm88Z7xMRIg1TxsQZZwoSQTAI+CV79+fBJsVawuQ6P+e2XmzvA5k79uEIzoTOM8ZNPW2XDx0fs2HkDMGnf5hP3qCBByhNYBD02UMMCalA8vDvbxsMWO3begPzH+7H7G9ev+Nv89teDH7UV9MB+VI89GZwoIFFgrVCdsR3J/gKmn4KXljH/xHcCgyGKx21Hslzi1v91RdjOzudegwvOuw56uYD68b0YP+Uxx6XidMfOG6AKi+TBZfD3/iV0vPm/AXKfUCOD5L4F2Lvuwa1LHz9Wu9tGG220cdzE+TuuhxobwZaaBNsyg0qDz3ztGux83rWgSpgPm+mabPDEhvuZLBy2pGDvBawhvHEiHbB0rYBq4mQS07JW4NSJkixDVQwyFma6A0zlYE2gigVfMguholXYP/mdgvDJJjW+ZgXo5QK2k8J0k5XEQoRrqeJ6W3BEyGwWusk9kVNu6QqmNlZwuO+mUYKfi1NnwY/dvL4f4lGKFblFQsEeNwisDKPqpTLX0AvHEiUd8pkK5yVsg1oV74kWB8KzgNg986nbQPfvQ3XGdrmuUg3WqsazywPMP+FSwbOPfxSSpQL4wY9x6/ATYTsB0y6NoX58L3bf8wcP1yGua+zYeQPSB4dQP72/QSpNWn+rwkLvHYD2LawQU7XRRhvHW5BrVd0IsVH249DjxS9+MQDgzW9+c3iMiMDMICIYY9Z66ZpBzHxcwJFf+qVfwvbt2/FHf/RH4bFf+7VfQ6/Xwyc+8QkwM0499VS89a1vxaWXXgoAGI/H2L59O97//vfjta997SG9z8LCAmZnZ7F//37MzMwclWNpo43JmD/rEpjNU5IYVhZkLUw/B6cKelBCPbAIDN2A9NkZYHEJvHUTuJOBEwW9fyjJ4LgCtILtZfUcEABkTCi6kxVLLE5cdmfd3wGYfiYJaWSbcCR2WH7gu/xsoQobiBbb0SG5otLWpM9aREobhx7uHIbhpFYSd6oYemkE2rso15Ax2H337x/TXT0WMWlNccft78SOnTccF+TA/ClvxPj/c3r4XY0NVGFAhlHO5M0CjveQLw0+/dnLAABzP/desFIw05mobOPvmhUbFJtpZPcsYnzaTMMqEBbIvvhtFD//hNpWxX2H82/djd0/uuWoHvv5L7gOemxgU4Vk/wh7vvq+o/ZeB7IvUWMDqliG/X7nBy3Z0sZRjYeKR1s828axiLmnvgdQKuBJWBb8pxVsqqAKA700BisF7iRBmOPXFD2swIlYeanShC4O1hSEPB7jeNKDFYSIAUCVcUSIm5lH1OjyPmhMWOYC0TwWZiSLYxEyAag2deU93BoKeLIIgF1D1NTGYQcZrsVkUSc2AIA39oycoxWrYZXjBdPOnX0ZilObwldVWOeQwKimUgATeLayoTtp/jFvBW+ZAWuC6a+OacnymnhWVRbJV7577DDtC4V85lRBL4xx65evOirvczA7PiqtEMuVgb57L3b/4Oajsh9ttAG0mPRoxB133IG5F78Ej3nHxlgDf3Dd1fjb3X+Fc84551jvyiHHD3/4wwP+/Uisw44bguWGG27ARz7yEdx22214whOegK9+9au48MILccstt+DXf/3X8b3vfQ+Pe9zj8E//9E94+tOfHl73K7/yK9i0aRM+/vHVCyHj8Rjj8Tj8vrCwgNNPP7398rexrrFj5w1QY4P0/mXAWOz+Vg16LjznfaCiko4M5/EMIphoQDpVDL1cQo0K0NIIYJf1JQlQVfJ/mgBODRhsuRIN7qaAYXkPQLoc8lTeyyWuNjv8DFAPTbBY4EyH/fXA/oLzroMelLCprkmVqMMEwMrf2ziy8IUFp3aUX0iUSsMCt37p6ID3jRA+gfDXXfz7oXh9H25MJq6N94gKM0crwT3/hdeDE2pYbKjCwmYKZBjZ3S6hdJHuHaGayUOxSo2MdMEpoNoibbC+QJQsF1DDEmYqh801koWxdIKd4INpdz3zSjnOQ4j0waEk6OMynOeNXsxo4/iMw01GWzzbxnrF/PbXH1DFff4Lr0e6dwgA2POVq8PjO593bU2okHQ8e6usuDtZD43glVIwK6dafiaCTbUQK4kS7MosXSOAkDKZli4OF56c8XNQDmiPu0aosYgVfLcNE8F0E5CtrYMueP610IsFqtl8Rac2EOEv1zXjySCs0g3exkEiIrbAzorNXT8n+nq7GqZ9uPBs/P6H8rz1+Cw8pm10dZXSpZU+OESxrReem+4bo5rOoEYGpptAVRZ6UIJcV351Uk/uIZkSq7018Gz+07W7Yo73uPCc9wWC6lAiWZRzR5VFublzwn+/2jh20RIs6x8twbIx47ixCLv00kuxf/9+/OzP/iy01jDG4Nprr8Wv//qvAwDuvvtuAMD27dsbr9u+ffsBmanrr78eV1114hYf29ggYQGba4xPmZGEAZKIqi9+HXj6z0LtXRaP5+UR7HQHtpsFVQ0g7fPBNmDbFMgykn0jqFEhxEpZCbkSuk5cwmctMCzFBihLJCG0krD4xM/v32p+15IsQuwWHJlClmEzDZsQVAVAE27/3GUrDnk1H+QLnn+tKI38+7XEykMOsXYThabMn5EZOSeaD/XBksvJv693MrpW0vFwJyNrKTV37LwBn7njXY3jPtx927HzBmC69mm/9YtXHtE+PtRYrdPoaEY5e2jkCgCUW7ryg+2GxyYLIm20cSyixbNtrFcczCKHE0JxUi8QHee/8HpkX/8R+ImPhh6WgkUTBSoFL/p5CN7SSQQ5GkAabBiJhNhQRSVdKiMLJE2QSMyAsbCpanY1RLZixAy2q9uHNbbjbMFsqlxHtwVYgazF7f/w3hXH7LtBfew89xqYThLIJE6VaJ8a79sSK4cbvrjOrlBOhvGZOzZG8Wi94lDwafychwvPHuxvR/K8g8WBuo9aPHv4UfUOnVwBgMqfI3d/bPFsG20ch3FctEtszPiTP/mTA/795S9/+WFv87ghWP70T/8U//k//2d86lOfwtlnn42vfOUreOtb34pTTz0VF110UXgeTcx68P5pa8W73vUuXHzxxeF3r/hro41DibnNr5IfnMUWW0Eo6uRtgDXAaIzdd//+qupv9aVv4tbRJ8Pvu7q/GZJPRQRSSjpTAFCaAEkCHo9BiVgqwDKQpfJYrwdeWgaPZT4LZRmoJwVAYgaUAnVyYDQGD4egsgJp7bZjgzowPob4saDEIzqoLc6F2UtDhw1HA9dVJ0eSJIBqWZV1C2vBxoCUwp6FP8bclleDup0T0lM3++J31/wbZSnQ7YCXpENsvWLP3o+t+beNZsPg9+Wh7NNGOR6v1qSKRdl4tN/P3Z/D/fwhxFrbONC11EYb6xEtnm3joUS4d9mJNVQp0ElutkdVYfcPbl6xVqT/9B3s3v8f623NvCLkXhqAVgrQCtTpCJbMUmA4ArJM3m9cyGPWAp1cHt+3H3Z5AFIKlOfA9JRsnC1UrwsaF8DSsgx1JwU2polbJ4+F6+5e//OehT8+6HnZ1XmZbBs1plWdHDrLoA/0wjYOP6yVz1NrwbQzrwi5zIkUB8KzwNHBtAfDIBsN0wInGJ6Nus6P6vsdTTxrbcjhW0zbRhttnAjhZ7n7KMsSg8EAWZah1+ud2ATLO97xDrzzne/ES17yEgDAU57yFPzwhz/E9ddfj4suugiPetSjAEgnyymnnBJed++9967oaokjz3PkeX50d76N4ybmH/UGcFFK8qVdUkeE3T/+3VWfv2fvxzC3+VXgsmr+oSwBrcDjAnOzr5TkzFjYosDt5k+xqy9f1l3d35Tnu+Hxty7/CXb1Xy7kCpGA7CSRhDNNQEsK6HaA4UiIkqIUoiTPQHkGWlqW50/35RgqeV9UlSSzZSnvpzUoTWS/PeHhgBP52S1RYsrGrCBX/DEAAJcVSBFASv7XmbOJsECShONpyZV1DGMCGcbWYm7zq4R8myyOnABx0ESh14XdNA1VGfDy4LC2faAkwb9v8czHH9Y223jocSyS47WuhUNKVN13cK3wf2uT0jaOVrR4to045re/XrpbDxHTejy7JkmRJsBwhPlT3ggeDAFmKYLPvhJgxtzMK+ouavf/nv3/UbBJ5lTVWQZoBSRa8KnDs1Ak75OImMhO5aDuNqh9i/L7JrGzpKKSTurBUDq3fSgCVptDOok5/bFo3bgX75q6qHncxgCkZLukQHniZr8YUJbVx9nG+oQTerER62G2lVxPWXrCnetDwhNHAdO2ePbYxUbCs8AhXINr4dnoftpi2jbaaONEiL1796547Dvf+Q5e//rX4x3veMcRbfO4IVgGgwHUBFDWWsM6sHzmmWfiUY96FG6//fYwg6UoCtx55514//vf/7DvbxsbP+Y2vwogwp4HP4r5R71BHiQC9XtCSCgl/w42pkgrIStcYgBFQmSUAHtCg2vV267ubwZCZTJ29V8u++RUdXNbXwOMC/DefSCtpaDu7gNqqg+kqRA5PSmqEDNQlEKqjMfgfg/QJMPNy1L2z4o9GBdl883j79eE6q9BrPhE1HfZAELKEEmXjD9vRQmuJoinNh56eCIsz+U6NQZw598Ohyfk4G0P4FcD/L5wQ0UlJGSeNa5vSpKgbA0FJEC+t0ki3zFjV00S2sThkRtzm18VPv8DXQe7pi5qktJKHZTk3HG+s4w4yvN62mijjUdGrIpnLYtN1+FgWh0JbiLbLfjC93gs2wUAIiFX3M+rCWj8eustx+Yf/WagqsDDkWx//4K8fHYGmJL5CWaqA87knqqtBY1KUGlApYHtZbAdBb2wVL+JseBDVfkr1bifi0CqrEVAPly3dcC0QItpj0b4NTNNZB0djUMHC4hApLD7rg8f671c1zgQngVWwbRZenA8CxwU07Z49pEbMZ4F1r4WjgTPAk1M2+LZNtp4mIMB2iAWYSeKHOKss87CDTfcgN/4jd/AN7/5zcN+/XFDsLzoRS/Ctddei8c85jE4++yz8eUvfxk33XQTXvlKAfdEhLe+9a247rrrcNZZZ+Gss87Cddddh16vh5e+9KXHeO/bONYRg9BJUDq/7XVA7hRpRNItAgTbguqnd626zfknv1sGc247CVgeYs+PbgEgAMUuLa9MYh2hcuvwE+GhmKyIwz9+6/KfYKd+sXS9TIkVnk8Ed9/9+7Ifp71JlHVLI/C+/ZJI79sP6nZAvS7YQLZvWZJD142yglBhBlsLUip0RnjrqTh8AX9X/+WhsyXeLy5L8GgcyBdAOixI67aDZT2CGTTVl+t07z5JQrUGGwO1dQt2PeMKqEFxQg5wnEwKfFEJAGg4FsVpmgJFUT9JEfbc99HwK59xGtTiQIhIuBFDpmjVWMdprJdf9OR2DvU6oDQNieievR+TgqNSMAuLUN1O83kA5mZfiTsiK5022mijjcONeL1aE89qK+KLCUxr7rl3xfbmn/xucJYAj34UYAz2/PO1jffifQv1NiIctye2BTvEDr5mUViKebv/5XdkP868GCrVMImC3j8E3f9gLQaangJPuXuqExM9VMIjFLtnXrHSQswXFosy2O82ntPi2YcezKDpKVSP3orkvgXA2xd7AdpUDzufew1u//v3HNv9PAqxGsZYFdPGMYFn9+z9GHY9/Yo1MW2LZ4+/WA+rtvXGszwcBsvyxnPRYto22mjjxAytNX76058e0WuPG4Ll937v9/De974Xb3jDG3Dvvffi1FNPxWtf+1pcfvnl4TmXXHIJhsMh3vCGN2Dv3r149rOfjdtuuw3T09PHcM/beLhjbvOr1lZcKNVQ+sUxf8bbAKWl04PEL9onfavF7q9fh53PvQa6siBmzG19Dfbc/4eH3UFw6/KfBPIkDspk8Nzt5k+xU78YqtupSQp3fB78EAAeDOuOGQAoStCD+4RNNhZcFMFHGnDdLkAzacQhelL3Xx5ULmxMUJvxuBBypd8F9XpiY7W4BC5KUKdNRh9q7Nn7MczNvAKjJ50KVkD3myV4YQlcFKBuB0gS3PqlR9iQY2OBwVBUtVrVdiguVgzr1QQ73YPau+Beo8N3oE1GT/y44LzrAqmtv/StcL9eK6G94LzrwCTqIJuoFfO0/DUzv/318oDW4KJokCsApLOKCHZxSVSCSgFaw5x9JlgTPn3nu9f5SNtoo43jOXZ1XoZbR588OHGxFp5NtGDZQ8C0u79+HXaeew3AgF4eY/7x7wCWlrH77t8/rHWxQaDEODwmZXzhLktldoojSea2vgYAQGWFZCEBBkPwaBzWcx4MoO92GylKcENIsTa+PNj+x9ZmHiOT1nIvHxfg8Riq15MOG2bYe+6vLc/aOOIIePZnT8HCGRmmf5SiW5bg/YtAUQmmJXVCkisHjNUwrYsVeBY4IKZt48SP819wXVCvJ//8fex58KMHJGguOO86+YEZNtUNTLsWng3zYGMB5iqY1jz18S2ebaONYxHt7f6I43/8j//R+J2Zcdddd+E//If/gHPPPfeItknM7Qocx8LCAmZnZ7F//37MzMwc691p4zDC+0DzBLkSFBmAAE9F2HP/H4qNgu8eIVq1DX3+rEvkh6oCKrNmcjp/xttg738QQNThEZEmMShpxCrdKwf7G6Vpg0jx227MOZkYVL/inKz2XBd7DqJEueD514IV4TN/IwDqwvQloCyTIn+WgbQWS4quG0w5dElyGw8trAXNzsCcugXjkzowHYWpb+8F3bcX6OTgfg9UGez+1g3Hek+PSaxWhDoSwmS9OiIeKXEofuLHI3F1wfOvhc018q/8AADAbFH83M9AldK1t1oCOX/G22SugCvKAZABvcxArwsUJayzxAFcEc9boxDVhZFEC9mvCJxnQKKw56vve1iOe6PHrv7LUT73yQBO/O/oQ8WjLZ49fuNA91VKEjBbkFO3777vI5g/5Y2N56xlqzR/1iVyj6kMdn/vg6s/5wmXCrnhZj8czNLoiMN33/ouFOs6brwQaJ06RA60/uw4/4aGrc2F2UtBigTTlpVYhMHdx929nB9Y6dfdxmGGx7OnnYTxlhxLp6bo7DWY/pbDtN0OuNdtMW0ULZ59eOJg97njEc9e+JyrUfUz5F/7AZhdzm8ZxdMftyamXRXPxsKh1TBtJz8gnoVS4DRpMW0U86e9CeMnn/aI+I62mHT944477sDc//cleOxvv+tY7woA4Afvvxqf3f1XOOecc471rhxyTI4gISJs27YNO3bswIc+9KHGbPdDjZZgmYj2y398xaqdH57MYIaa6tcdFsBKwoI5WGd50sITJPOPeav4UVcGcASBn3ExN/MKGRSfJJLcPuatsA8eQdJlLG4dfqJ5HAciXR5CeMsub+u1wnMaBydX1oqd+sVhyD0AUJrIwPXYdsxMTCCN9yG+Dfl9au0XVgRtmoHZtgmqqGA7CcZbOiAGyimNdLFCulTh9s9ddqx385jH/Glvwu6f/N4RvbZNSNe3kHa8JKPzp7xREsJxIQmom1VFWVrPHFBUW0m6DpTGLC1/72IGxk5d3e3Kc8aF+MuzBcpK1qVUBvhSmsjw57KUbfpB5Vq86VmT2PcohVv/1xUP30lZp5h/9JvlvLq1ePd9HwmKR28feaRrz2qxHhYbGyFaguWRFWvedyOMFGaC+MJVfG/yc0jKEjyuuzuCKvnMi0WJbCxgDXhhCXse/Cjmtr5G8FqSYPePfxfzP/N2sZs9AqJjhQXY4UQk9mFjapvZSTy82rzANfbxSNcfPytR9Xq1ta7WK8RLQGSBOxkthj1geDxLpYEajGG29DHekgMMVH3BtMmgwqc/+8jGtC2efWgROtTW4ft4vODZuS2vFvLad/nFjhWexFYqzNwiUrKGOOeM8Fz/2qKQ37NMXuM7IycxbZatjWcV1e9JBE7k/+ORaJk/6xJgOBLxLbDCOWE9r5MTBc8CLSY9GtESLBszWoJlItov//EVnpi4denjYUA8KQX49n236AOA6nbFm3pcSMJEFBLIFcV/iLqYpqckWS2rJlBxCa9PqvYs/PGqZE8D1KwW0bbi5/B4jNvK/7r6Ng8jVpAocceKB5vu9/UscPm4MH2JgDzLuK34lCStbHHr6JNrvsYntuGzBIJP9yM9aKoPdDuw/Q4WnjSD8axCuszo7DVIFwTgPdKT0TaOLNaDVHm4k09fPPBxoCRk/syLwTN97Pnq+yQ5MhYYDNyAZFPfg32h0s8acI+FBNQPiSaSeT9JArBdacdh2T1fS0I5ijz8R2MpjuZZ/bwkkYQtTYBuR/aBGZylQKrBROBU47YvXL76AW6g2HnuNUh+dB/4pFkwEdQD+6Vg65N75noWmD9vSSLJKpEUkft97P7eB8WqCMDu7954DI/o2ERLsDyyYsWcEn8P0gqU5/J98fgVAJ20We4lvqPZcoMcXhFaCYYAZDujcWOmCjkbmN33faSxPwcjMQ41wnGtNgcwfh//XvGQ5Unh0SHsy9FYj3b1Xw5ArH3nZl4BtvagtsCNAu/EDJtHcgQ8O91BcVIPo60JRpsU0gEj32eQ7a8A5tAt30YbhxPeQvtI41iQKTGmPVhRff6MtwF5jt3fugHzp79F7OQWlprzo6L7Z7D2ivPp+PwQie3Xan9zfw8EiRMjrcC0SSJ/Xw3Pxpia3Rql1IbvUNtx/g3I/2UvQASzuQfWCsn9S+D7HpDcIE1XuHRQltZ2k52OnAetsfu7N7aYtsWk6xqeYDnj4o1BsHz/A8cfwXL11Vfj7W9/O3q9XuPx4XCIG2+8sTGO5FCjJVgmov3yH38xt+XVIZk8FEDkiZhVYzKJc7+T1mIZUDmiheiwZq1MEiWBEAIcAbG6fdha81lWC+WU0jwc1ZuIhtXHnSGUZ8D0FLC4BLu0fNhzYx7OCMRZJ2+CtEdo0CknY/nxm1FMK9iEkC9YkGFQxSAGkuUSNtcnjOJlPaJV8a2MNVV9rqOCjQFKKXAcylymox2H+hleeM77YDoJyDKS+5cBADQYyrH4MAawjlhZqxgJhHt/6FJRqk4QQycL1fYHwMpul0SDlZKZVyYiYrSqn++fOxnM4DwFp5IQH4/dK7umLoKa6gNbNgFLA2A4kiKw85Vna6H6PbGbcLH7+zet2M78mRfL+QufhQbyFOXJ06vOxjkRoiVYHnkx/+g3u5kphN13//5Bn98gxq1t3MuCdSzQVCMTBWtCHo5ERXyYApuYAIqHIR8swnN9xK+ZIF68PRcPhiutb303iVLyvKk+sLQcnrtRleb+8woFOL8uPUIxrcezVUfBZgSbAOkyQ1UsuJaBZKnCZ/56YxSPNkK0eHb1CLNBY1y7QfEscGif4/k7rgdVFlQxkvsX5Z5njOCnWBjq3Ti8WAho3i8n7/9xTJIsnoBRFOYArXiNf47fB2uFVPH36Vg8M0mcKyXioqrC7h/cfKBTtCFjbvaVoM2zsNs2QS2NgKUBeGk5/J2m+nJ87tyshmcBh2lJCTGlFThLUJwsAogT9bvdYtL1j5ZgeeihtcZdd92Fk08+ufH4Aw88gJNPPhlmFRH+weK4GXLfRhtAPWelAaC0AooKbG3d/eBjAhTcuvRx3Lr8J43HGgTGYRInhxrxNuc2v0radxMBfR7srSBSiFYnZqYuCuRL43V5BmSZLPRrHMeuqYsAY9ZMPs9/wXUbTi126/KfYG7zqwS0VAZ2334pVp7gXS2UJPKZ+sgycD9HNduDTQllTyFbsqg6hHSZUWzS+IdP/fax2+E2jouY2/oaSaCSpJGgeV9/GAv0+9izhj//sYq1Eo6g+HM5HHUSZHcv1KSGjzjh8wU8/5iNipJVJf7wnbzuuIjDEy5EdXLk1xmt6u1NkDZMBIr+7u0RYBhQsk+sFKAAMqJANNMdUGnl76vEhee8D6wIt//dxhkCfP4LrwcI+MwdAvZXW4fmH/UGMOSa23MIRWRg7SS1jTaO55jb+pq6Ow6Q+4BTw/oOCZoogAEIhcJJLOdfEz//aHQnx8OQ5097UxAgxfuzgvxBE+feuvTxRteO3/9AFPV7cr9dHgDWrjgO/9y15s0AG89eZc/ej2Fu62uAPAcZI93xxoCAE55koX6kDnV4ttzcg8kIxTSBNSEdMGwKqAoop1SLads4aMxtfhUoSUBZVhfz43lOM1PYswEL+QfCtGRq/JjevVDjV48tvcAnxpmKQNB1F6M/fl8vmXw+EAkvXZe2jp5HJNgz7ojxsZooyZjQhQygxs5Kyd/8/BZyvycrS5BzT7sce75y9Vqn7GGPHTtvAJUW2f97T5jBu9p6Orf1NaBeD7t/dMshb7vFtG2sa2yUdomNsh+HEcws9YCJ+OpXv4otW7Yc0TbbDpaJaNnVjRe7pi4KRZq5za8S786icGpgX1VziQlHIEBH/tRs5TmR9dShqlh26hfjdvOnDWLDW13F733r8BMr9nsySGvQ5lnZpb37g9rkcDpVgNpCbLX3IeXsJLTC7rt/X1QSgJwv37qbJqKKtha0NATvq4fUrZbIboSYf8KlziJjDN67Xx48kRJSrWQmg2ux5n4PdjoHlQacJaimUlQ9DVYEqwGTE5Ih43P//e3Hes/bOA5ifvvrw7wpP1ckWCX65GrrZuz+xvXHdD8PpuqbP+uSlTOb/D8g3OOZCNAUkjsqTF24iwgVDIfyWJrK/95uJ02b2wcalj2N5FGroPRjIlA1oXaJ99dbIzgbS7+frDVsLxXihRlkATIWNKrAnQQmFyJHD0vo/UNgXIovtk9+J2zL1hpgDQgx49+bE/HCZk2wmsCRQOHOv7pkzW0cKM7fcX0gWFaL+dPfIt7dxoA2zcJsnZHPCsBt//DeI3rPEzHaDpYTM+bPugS7v/MB+fmUN8r8v8jOdtVwlrQcqZJjtfbhdGzMzbwi2NreuvTxlXjW3UMnydFg7+UjSUDbTpLduff+ZkeL75AEmjZfq4XWTYLFH7Inl7SWIfNpgt0/uBnzT3pXwLOcarDWgCZQUYEWB+DFpXoeDbAhMa239EFZSdeNn/FyIsUEpjWP2hzwbDmdwXQVrCbYhFBOEVQFJEPG3/1ZS6q0cfCY3/56cFkBVQXK8zALxJMJtO2kY24/dShdKiswbcNxosazFMgjrsmMUOOI/q+q+l5SVfUc2klB0Wqd0/51sZ1X3BXjYxJHA3VXtid0et3aUjd0cLtj6OS1oGhciZ2YjTqb2daEj9YHnUE097TLQeNSsGyWwHZSkGW53yQiXrr9749MiHTBedeBCQcUn85tfQ1gLGjrFlQnz4Tz2s5EbUaLSdc/QgfL2zZQB8ue46ODZfPmzSCicD3GJIsxBktLS3jd616HD394bRHPWtF2sLSx4SNO8ihJYIfDZvIUh1dE+KGU4YWqASbY2pqYiFpm/Xvt6v6m/D78BG43fyrPc179uzovA0fEDWk0EiNvf+AH+MbBxkjxzflxHkknRtjHAxEym2eBRGPu7MuAmb4QKYZlWLKznKHSgKpVFC1KhWPYSEnp7m+/X0iWbgdkWTp1jnd+2Hve+oHZUz3YbioAMdOwmUIxk4AJUBWHIqguGSgAPoH4pTaOcszOSBKzbMBFKR1SjhggUsF3/2jE/FmXhGGQwErl1vyTHDC0jBzA+DGbGsrj+SfK/yFZthyR5mgq+iwcsYL6fp8l9eyPyjY7WwDZNz/MPk0AT5BMJp9xt0pILm1D3UcqVv+55xqut6nEnoeJQMsDkGUpVCoCVdKxRlWUSGsFLqra8WJUive1MXXi623G/DBSY4RQc5YNXnk3/4RLxbJscw9qVIKUgoUGa4CVI1dI9pEV8MJd74cqLFRpDytRPCC5csbbAolFWgPWgJhhSTqOdp57zYbqyGmjjfUOT64AkPuCFS96Appz+QD3HaZgb+Nj0gqnMS/FPdboJnHd33sW/jiIi7gosavzsvActgxSFqSzBtkzt/U17k2piWmLAlQUQurG/vxhg+5YJnFw1JUz2cHtH2+8j7XgTTNAqrHr6VeAp7tQrphm8xScKlBpoQzXVoxxKLWiU+ZYx+5/+R1HsmhQnsmQ5CB4OI6B3WqYtpeBU41qKsV4NgGIoCqG1QBrAlkgW5TOlRbTtnEoMf/4dwCzM6DhCLy0LKLLtMZ5pPVRI1fmnnJZ3THtyINJYdL8k961Jp4FDoJpYVfFsxzmpkK6oWMyBIiwoKq7qbWu1xUfMRnjI+78iWNyjmxsQRkJWv38Lq4q+dkYYDBc3fqWCBiO6mJm5cki29guswUZAMaKFbyisO55+8xAVM+Iw4VssYI2LOIl5fC0AnY96ypQUUkOYO0hi8k+feeBXT3mH/1mOe9EwGgMNSqF+FcKFzz/2nYuahttbNC45ZZbwMx45Stfiauuugqzs7Phb1mW4YwzzjhioqjtYJmIjc6uzm1+1YZJEB7umD/tTeDBUNR+q6knosU3TlI5Vs7512jVJECYRQnDtjEAjic7YOAKaHHHDKlG98rcllcDxgiZkqayv05tJ37+qh4k5+1ivCe9G/S72kyWmGg6ELmiZmeA2WmYGd+OS6BRBbIWnCUw3QQ211I4G1bQ9+4F718UhaDW0iHiVCSAeEXvvucP1ny/hzs8cMV4LINalwfHr/KPCDQzJZ87EbibCbmSJ7CpgukmGJycQBkgGVjYRAqgZNGq/No4pJh72uV1B4fv0HCqPxh7dImVJ79b3ssXvHxC5u6Du7/9fnmeJ1jcPdsnPuFxIFgj7P72+6UrL9h96Xr4fKLBmlYUqVh7UgSiArRWElf/FAshvq1dua+T4e/93p/a/7xaYSx+TrxtreTnqmomsG7mANxchIbd5cR5CF7cq6yFDfVfbA+hlNg0eFVklsB2HJmbathUbFo4ESI3XTZIlmQexHor8XwXixBOKdDrgjtCLpteCnaF2key9/4joYNl1zOuwK1fuupY78YxifmfeTt4wXUPx0rkqChFqfO1r4wQn2W1UlE8WWiDkCdgK6SJ1nXBzZga1yLCs9G9edJGd/5RbwA7UpfyHHY4FCLEFdWo123ayDBLV4abncfD0QpMe6h4FgDUplnwSbMw04JpWQF6UMJmCWxH7vmqsFCFgb7rwTDomfJM9rEsG5h2I+VQ80+4tFadl5V030zaIB9PcQBMW8xmGG5zeHYoeJY1QBXw9/93i2fbOHjMPe3ycJ+hsSvKl0504h4/Wvnq3M+9F1QK8cxEgVwJAhegiV0PhGeBtTGtn2US49nVLMHC+3tcW+9HmPd3IDwbY8d4XspqJEtM/E/OegFWEimKAukSZuc1Os2je1tE7oS5iJPv79/Dd9v74ySqhbVpAqQpOE9qy113/nwOoIaliJSAdSXgQicqHNnUycUGMU3AnUQ61DviQLHRbNgfzjgeMOnxFqGD5a0bI1f6/o3HTweLjzvvvBPnnnsuklVsC4802g6W4yw2UmLwcIZvv2x0pUzOWnFkCikFZCloekoUFMORJKXRa4JKziVd5B/XeuXwtklg4hd3y6HYNjf7ytDtsefBjwKYSBrZQtoQxCqBB0NRlmSpJL6VBT3qZLFN2b8Q9nE1G7PYQmEyAjnkQBUnGnphCNq3JIW1ykIRBRsaThXstk2gTdMw3RRUWah79oY2XR/zZ10CO9XFrV8+9oUQToVEI0A+gyyV/T0eE1Jm8MKSFCim+wLeiYBOimRxDD02IMuwmQpDQJkkOW2jjYPF3NMuh80SEGvQ0n5JRLodIKmAcXFYfsFHFKNCkl92nSE+4kQLkpTOnX2ZJKxEou5jbg6CBwBmUS56b2mgTtycPddqiShNOu9YUR6ynUgKiaRLhVnu15NB1Pw/6pJpJKGx9YL2+zLhga1cYhivL/5c+ecZbr5frDxsDA6lmqiHf4pT/8UdNcyyJjqrSEI03sXdP9kCbBjIFZgAKi04Wx8Ce/6UN4ZCcfhMvQXFcCRFAmZQnoCMgV4usGPnDSimE6TLRuxkMoIqGNlCCb003lB+3W0cfjxiyZVtr6u98hVFmNIXyKSAxcxSsEk0eOsmscBaWq4xDxDuk1wUUTebK0K6YfYAZN6HV0oDDaGQdK/IPsxve12DePdqYY89vTiJ3H7ywmLoxPD35j0Lfywd1ONC9tXdryZtxw5Grvh9p6ICGQubKiT7hqBhAaUU7FQOM5XLrCpm2JNmQNM9gAimk4Gshbp3XwPTbig82xGrSKoSgAqxEF4eCokFnFCYNt87buBZk4lgKClbnWcbB4+5p75HupFJQy2PRWTnxBlIEmA0xu4f/+5Re38ajAU/wRPf0TB46Gb3XoQVfbdKo2ZxIEy7Gp51z20Q8N5+ixgMBSLXtQFIZ3SMhVfDs/G+cCREDURKszOG2awkZFaLmOTxa1sck/h1rW3Fz/PHagFWFmS90Al1d7w7P8QMzlJQSkDlt61hM113VCbrhGm3v17qSN4NwHfKu5oTAeAsAXcU9HIBNSiw89xrUMxmSJdKsCKYbgI9rJAsl7j1f12xLvvVRhttHHpMT0/jG9/4Bp7ylKcAAP7iL/4Cf/zHf4wnP/nJuPLKK5Fl2UG2sDJagmWN+LUz3wp1xumP2ORvowWRApNrd40L6a5TJISzQJibeQWwNKgf9+o9T8RMqiRIidUX1yROSESpBk1BCTgx/2U17+yGQq/7m7Kvw2GtKHRKRMpz8Sl2IIO6HdBEgfCQw7flu7CZQlIa8OISaDgCAdB5Bpy6FaafijVMoqCX3XtVFsgzEKZE9TcuwGUFShNUmzo4/wXXgfxuMYMMP+x2Lnu+dg3mnvoe+ZwUgTodcFFKx9Ak+NzgQW4OQwB7wxFo0SAZjAGlYKcAPdKCjXMCGUCXDFW1CWkbB44Lf/5qKGbpXHOEqnSvuEKTPnrfj/kzL5b7pu/Q8N/JVAhlb3UQSBWWAXMhOYw3RgTYVdRywZYmIj0mDynaJgD5uyVQApnD56wT5W8k7xwXOXni5/j9gXrmSqwU1KoeYO+sCAAhu8M+APK+wZd6Imk1ptkp49SMqIyzALP14NBorSBSDZKloRp0XUP1uaoV7WoEIZ2MBiuALGDHClVPw/QEJk5aXMw99T0h4d3zv68FIIr80DWjVW394CPPAJYB3khU8/xaC4wLkGVoAKPTZkDGQi9X6BTyOZlcg1ONZGiQPCBzFuYf/w7A8gFnzhyv8Ws/e2QzcCbjVx/7JqSdKfCWTeGzauPYhidXpKvZqWy9TRQQOq8JwG43GJ32LcmLjW3el4pSnu+6Uwi6vn9EGLlBrgD1e0d/Jw3weLyCZAHQEPzs6rwMNhYoucHF1O8BaYr5My8GdTtyjJ0c1MnXxLQUYbXYPgyA3Lf8vZMZrBVoWID37gMsQy1kwKO2yvwqt7YoR6ATs1jCJAloql93skR4FoBg2mOJZ3/uvXUXiyLB4EUhn5sx9fnY4CIi8nZ2QC2oGI5ASxbJYAw70xU866woiQE9YuhxKxhq48Cx6+lXOJzFgIbDFi6PL8smblvnmD/tTbLtspR82JMhWovAj5KABcN8KKAu5geM5gltrv/5mMS0Hs/GpAdRbRPmQ5NgNyVkfMC0OnovYGVXiA9H0IAj0YudIFe81ZZVYOWIe4rJJYTXefy5osskvnf5nxXJubJ13SVsM3SHr0JahWOf2B5RsOIlZsAm9fGUGgqZYPMsBTRh7mmXNwQ68495KwAE4dn8o95QdxMpEkKtdGIBXwvKMiGzlLuhBXLJYXMUImrNNUw/AxmGGpXIS8kNZIaYQnbvUk22GbPCRvlEiV99zP95rHehjTZWxGtf+1q8853vxFOe8hR873vfw4tf/GL86q/+Kv7sz/4Mg8EAt9xyy2FvsyVY1gguC6iFIXY+9xqYfnLAAWXHKua2vgY8GstQ85lpV3BWBx0Gdqxi/pQ3Yvddhz8oCMCKRM/7cQb1qwMRXBQA6kRwfvvrhbAAIlUGh4STjJFBzz7MyiTUB3klRgA8bnE/hEKltxDb1XlZ6Jbxj82fdQl47z5ROmyeFpXMcCSL7SrnLBBIaCajbC1oekq2UZoAxOxUB+qkzYCfWZJlMn/FJuK7T5DkclQJKEmTekaAUxuX26ZQTSWg0rrhy3IOFFlceM77HvbBxL5NO8w1yFKQI1n850weGG3UIHJ2PbpORn2nVVUBaQoyLGpN00HVc0pOBvT46BMshzKc8USK+bNWL2bu/s4HBPQCx1Uh97YvXI5dz7oKNnfeyJumQcujegCm1ph72uXgVK+bamr+CZfKD6SEFAHqYrub+cJJlBQxAwZu1kiUPEWEOGuSWVHA6gU6igba+9/d8MzwPvH7aYjazxMfPkFdxWqr0UEzQarEZA6DQiJWKwijbhK/Pxb1fBW/Xb9vLrEO5Iy3fmB2Q+g1FLPcM3xS6m0xrIVnvgmqPk/OpqVxH/SfRZysM0MVFbg00iGoCbowMLmSgqZlUYi7mH/CpTWpxFbmqnjrssqdC39vjkkkP2Mg+uwmP0tYA1oaIr9PbBWUMbAE2NRZdFYs+5Uo0OIyfNfR3FMug5npwnQS3PGZ5j1r7mmXA6Wbf+YFEmW1Yb/L80+4FNi7H0jXaYNVJVhxcRm7nnklys2dDXdfn3/MW8FLy6IM3jQrD2qF3V+/7tju2AHiocwL2nP/H4af5095o4iHjIV1GDYUtpxgxj9/bsur5e8TFiuUue6RuPvYdaZ4POutwWiyKBY/rtyclbUsEl3cOvpkPb8lssmdf9K75NotCnCvC7t1BnopAxYFf84/+s0NlfmtSx8XPOvvmxN2rzQzBZ7u1UQ4M+xUF2phUQqteSbdLR2xVSULIW+LCjQupSDrMC10H1SZg+JZAA87pgUJsQJACKGqAgZDsLUNm2M6AiXlwxJ+/xO9Nqa1QLpvBOIOqn5Nmqni6BMsjzQ8C7g5JRNrbMCz7ju/UdfAybj1y1eJqMORDtzNRIg4HAULbqgkYFBvP/tQYv7Mi4NIhKMZWGxMLQKqagxFvsgf2YI3CA4/N8VyjY8Bh/9U1I0t+XewsfXkSoxz/esgz2FrQ6d2A9NGndQBt/q/TYaxgKEgXgw4NHTBMCgQBwjHjdWws19jlKrJj7ijZjXxjxMUwLIjcprXLsXnaFL45GePkSNn/Bxeh3WpKF1nS1Kfwwijz5/+ltBBPr/99VGnjrNuZ4WGGKoogliXSDXt2eJzYywwGEJbC9XvSF3FMEA25EKqcttdWAp4ff6J74Tt5eBc47bPX77io5o7+7KmLdzy8Og7EjyEmP+Zt0uda6OuXydA0Cpf6TYOLb797W/jaU97GgDgz/7sz3DeeefhU5/6FP7u7/4OL3nJS46IYGlnsEyE9wc8f/Y3kW4/9agNSTucmH/0m2WhsLa2uopUaaQdmI19lTPXEeG8m2OCYlf/5YDlxtyQjRS7pi4CjF2X/Zt/9JtXgoSqkiHPWoPZgoej+gVEYZh9CNfFEtR+E9FICCN7hMbxMK/wtQ77+Kg3wC4tQ207Cdzrgh7cF4gQr37xQ4rjaFiFEck1sH0bym19qMJCLw7Fa9SplLE0AKZ6qE7ZAk7Iqf3kePSwgiqNKK6NkSJg4VRBaQJOtIATItjpHKaXQg9KURW79lZOZHtkLGClwHu0Y9fTr4Badp9fZYDhEDwa1zNwNjLJQiTf0ywTRQ0gFnGz04Am0OIAu79/Ey58ztWwmUY5lcJ0FPJ9JZKFMW794pVHZbd8Igqc2MnoaskngEhtNvFzPDg3DFgn7P7ujUd/Z9chLjznfVDLYyFfEwXuZKFlnrX8O9Bw8oNFsPXypHdVNZMuX9hXdZK0++vXyZyW6Hw3yAuXbEihbMIb2hXWOUskUfE+1O54Vnzv3dwV8rYDhmsSxJMDBwvffeNIkAaZEr/eDVte4dPt3zvujozterQKhalg45gkYZ9pLApnTrXcoytTExc++Yv3ww879e/j//dWmFqJgi6N5o4lcoxUWdiOI3VdxxxVsq6AhAiiwVje23lNU6TAl/Ngo2N2P8fzIsLQVlsn4p7UUhroZLD9HKYrYgAoAlUWrBX0qILeP4TtZbIeDStYN0gZBGQPjoSIL43sl+869efA76t/3ywF71tA+fTHAQxkP9m3LkWaI4m5sy8DPbgPlTL49E//r4c8g+X86Zch0R3Q7DR2/+Dmo7DHhxfzZ17sSK4yzKjzs/Uoy2RdJKoJwm6nts/LMsG0UWFw/vS3rIqRNkLMP+ldsN//Edgybis+9ZC35wfOkxP4sL/XZilgGXZpWf6uKBTzxC9/JclCScTgRWtaA9O6gcXeAtfvQ0wQNY739LeIzS0RaPs22H4H6r697rNLg23M5HXoh9CHIBKybcsmVFv6UIUBDQrQcCz7ujQAuh2YU7cIlk1qPKtKCzUq5R7p8ay73sAslkJAjWe7KfSwxrNkGKpw6yTJPYeYj7p9y66nXwE1Lut7k1Pn87gIsxlDEXej4Vr/eRHJdzTP5FyPxsDMFDhR2PO1a0S02E1QziSwCSF/sES6fwRW6qjlDI8UcmX+zIvlh7gQPRlrdTQcZ5h21zOvBA1LuR+UZVgngp2pUtjz1fcd8fbnz7pErl2i0DXc6A52hW0/V9W7R+z+0S2SW4zG9XNjkY8XeNgIG012dnQ7UecINWeJ+J/jcN13HteuRaJ4PBq6uv0tJMJhYVZj3FVSRfWQGMtNXEvB8tKHn8Pia1FAs5Pab89h+UBIxO8RR9ypEudm/n/f6e3f0z/mO4m8gHQyxxuO5Nofj2tSJk3qWZV+tq9/L2/f6Wtwcbe5Px++83ySXMozcL8D20mc8EpqJlQaqIWhzCHMU9C4lLktPcFCZCzUsKzXM79v/r2Go9qqDBBXlE4Oe9IMbCY5RXLfAnZ/5wM4FjH/hEvBD+6F0YxP3/uxdgbLOoafwXLmWzbGDJbvffD4m8EyMzODL33pSzjrrLOwc+dO/NIv/RLe8pa34Ec/+hGe+MQnYjgcHvY2W4JlIjbCAKb5M94mhVZfNHELQ7C1mvTxjG/qkzFRxFnNymqtCJ7MLm4r/+sRHc+BYlf3N5tKuYYPqQJ1O2Gmyfxpb5LEI88O22d1/vHvqBcjY4RU8Qsn0LBaYT+MeK3ZKxNB8eIL1MDI/72Tg0/ZtqZXfDgH5BfGBDQ7U2/LR1kCed5QKQSSRWuxYEhTIM9QnroJyf3LwE/vkWKFG2DPeQYz24XpJ7CaRO1HkpBSJWo+WIYal1ALMr8GgAyTd4UzyjPwts2ye1mCYmsPnX/ZL4WufgYqrZA1EEB3tJImr87X+wcCJsuqLl4Oh+DBUEiWSUC3gYKy1M3EiJoJh6NA+lGegbdsgtnURTGbgRNCtq9Aetf+YwaUjseIragaynqgvjZWI1V8eC/hWHmmasL1eEhIV4vzXnQjqJLk7K9vuxS/8G8/CDW20K5bgSo+rCHjYYhnZdzaFa1ZXqWn60L67q9f1/hsVnSeuH80LmsyAQhJCzuCBYmS5NB3tiklSUWcaFZWlM4xSRP7Sft7R6wsVLq2vPL7NFG4aCSt/v3i96gm1twoQQuki18znIVa3NFiZrtiL2alywTMcpzMkmg5UQBi20u2tYIysrhs2Hd5Yi1LhGCxqFWOEDKFjGmQL1QakGHYbgoaVVCLAyHgPenk96mUGT/hvE6qF711nD8HQbmpG4kotJaCiapt5fxn6Dt9WGsgUVJ8tVauB2trcYG3EGmoOVWz4GpZEvNNM2Eg7eGGVz3uvu8joqJddhalM1NHvM0TYcj9/BMulWKTtcFipVGgiK9ZoL5eo4IfgAbWJa3roenGSmEXouJFVdU412FfTyroqT6MIyAA4Hbzp+t6rBdmL13x2G3Fp3Bh+pKwP5SlwT52ftvrpKB5BEOZ/Twjrqrm7BUgslepf18N+wdrLx/uezhp2eW/O36wPXU7a3bK75q6qCZZXaGLsgw0Ox1Z0FgpYBnbxLMxyaIVqNMJxTezfRP0/iH47vukaDfVAzo5zGwXVT+TTkdfXARApYUem0B207gELQ4kt/L3Jkzg2SRBsa0HPaqQ3r8cyFtV2nDPhVJHhWjZ9ayrYFMNPSgAt46RV82XJVBW4PFYBESAfBYT3T7HPDzJsgamXQ3P5g8WSO5p8ezhRAPPNrpDfRF7It+J176428DjhNBtoAPOPV46WybjgvOuC4SD6SRI9w0F2wCAOryZX/M/83bBg+NC7rUTNQFvyRpyzDzD7h/cLDWccbHy++nFRa4OEXBgg4DRMiAdqK1iEw1OkwYhwko1cSZzLRoKJMUqeBaoMXj83v4aKKuVa4nH8ZPYzYe3BpsUKvlif0xApKnrJtS10Mjvf7S9xu+T+Zjfd3/OvH2XdufK5RHBhjc+3+58BtLHnQPby0UIkGVhO+F1VeXOS3ReJzppeDzReapIjttjbjdHzZM3rN1nzSxY1XfGpxqsCWrgrrksrbvFy0rOV2VWYlpmIViMESI+TUG97hE72sxteTXAHOY+zz/6zbUVX7dzxN0yGwGTnmjREiwPPXbs2IHTTz8dF1xwAX7rt34LX//61/H4xz8ed955Jy666CL84Ac/OOxttgTLRBzrL//8KW+UuRexTYCLMKjSTixI/mY/aQUwAQZ8kgmgaRGwyt8PN0jrFeq8C7OXQm87CXb/QiAsOPaWn9zGKvsUFHVekUAkdmh51GY4HIHHY5DWayaq82ddIvtQVbUyI/JGDe2/nsyaVE9MElsxWJ1ISBvqMvdZxeq/MNQz7qoBArGkpqcbntMCSJzS0Pllr+bPuav/cqgtm2XOy5mnoZrKkH33bsBamMecDNYKalgASqHcJADOxrY6BLGCsQJMyNjwu14ag/YtynBVV7ijTbOw0z3Yfga9IEpiTjTUSCwqfPvrau2t6xXnv+A66FEV1DtUWdCwkOJWVQlRsRHVfj6064yKri+OLT6IQNtOQrV1CjbXsImCquxD6jR4pMTcUyPrFua60O67AD3w9gA4LgQD9TBuperOCX9f9Z0Y8X0iKiJvhM7HI41z/92HoMcWemyhCivKYWODtRUrP2MEK+xx5p52eVMx7Gdw6KgY5L6PnGjs+d/XhmJBsD+IkidfVFejYlWCpTHvJIoVRE1ESvjPLexjUM0ZrOiSWcv/2e+HT5jc8SAiI3wSSu5+uOJ94ud50mMiAeZEo3jUNExHAQwow9AjI92Do6KxX1Sa5jlaJQkMHThKXif+zzr8HvbHkUSesArJPDPMdAeqMFD37689yCu3nlaVHIONZsNUpk6oY0Vkg+iyTaUfIGueU+H7+TXkX7ciGa8FCmGN9+fGRp9pSH5VSG5DATP+vP29wHWzUpbW3RT+b1W1QgQTfx7s7NAoy6ToaNk9f8IaJE1AMzMwJ8+g6mcNe7PjnWCZP+1N4PFYZoTEx70KARBjV48FG5j0YH9fx9D9XqML2ceF2UuhT94KHo3AS8tr2skCWIlzvTe9vw+6ArSangJvPwl0zwPynR+Pa4x1IEz76DeL8GWyUMerkylY5VyuIFfCvjfxbdjvcN9LgvDJF2Li63pSpKQ2b5LvW6wG7nbkyVW1pt/8rqmLoLZukXN9+imw/QzJ9++Wlz12uyh6kyaelXkqACtIR7VlqJKhKnfPZ0h39/5l8GCwKp6lykANiiamZZZ7JY5ed/YFz78WVInAiYoq3KPJMGhhIMKh5UHdybIBCZag6l8N0xKBtm5BtXUaNqvJ0xbPHjzWxLN+zY+Jk9iaKsxas1hBwHosEheA/XN9HCcdLWvFjvNvgB5V0tFWVLVFqz9u38WbJbCpxu1/X5/n+Se9Cxi7brJSRD7sZ3+GTlyuSRYngJw//S0rhSVAjcc8jonszWtRjaq7LIBaZBA6QCK8a6xgo0TV8/6sy3EOhmf9ewJ17QMAckfu+E5nj+OMqfd7ArvJGlTXUxprhg+/32kK9LsihPGkUGVqIsNjYE/++ZgkgwKm1bXgKqt/bmB8v7+xqNb/rjTsbF+cO/YuCrnlSaTKBKwHZiFf/HfNY38/i8cLauJccXIGjbNJlv8jcW+8Xk8e82rdPJMuK1GNjI2pc9zJY0VdP/TON41O2HimcXRd3rr08eAsE94rsoDkeE6Y1qCpPnjzNGw/x3hzjjv/qrbfPtaY9ESMlmB56PG1r30NL3vZy/CjH/0IF198Ma64QkQ0b3rTm/DAAw/gU586/O7zlmCZiGP55Z9/9JslaR8XgYVeQbDEqiBgJbPvF7tYxYe1E1FSVP9ttaQrfny1v01syyv0ViwAk+81GXEHR5TohYHwDjCqXk+Ua37h8AWO0Vhu8ptmazASLca7v3F9c8aCT/5KAU4BIIRhn2ss7I3jUSufG/9Na1CWih3ZyVsFCP3LTwUIuAUpVgd6W7S5La+WY+52whC1xufsrbDKctUEfP4Jl8LOdFFN58juXgCWBuDN07JfzmLGTHdx2xcux/k7rsdn7ngXXjD/AZBl/PWtl+K8FwmYZgJAEMKltNAjg3TvELQ4rBWK3Q64k8J2U9g8kXkhoxJmS1/8sJ239dEcHLrzude47hsbbAbmf+btwHgMHgzr4t1xGhvF1mWjRxgUCzQVYb57IRRTIwujcI9QAbTXCn53L8hdshMnMJMqtLgzww9uXJE40REr2Q8U3jOe3fwOJuAzf/PuI97e83/lRpAF7vyf78D5L7hOSJayJqT9UEabSDGLyvrc0thIYb6onM2UqVVXPjw5FXWwAAjkSugE8Z7MnjQNqvSJpCWeieJFCESAt3dxRIEnCWhYhHsCp0lto+Bb7n2CEyedq9kVJIncm9NotoxSokwjCsppGOn6qIeyTh7HxLVD1NjWaHsfNiOoUlSZunDE17iqk0jfORITLMDK69qdI7GE02A/18RyUD+GAoT73sh2hHTnRMH2c+h9Ayk8sAUGw5o8IKqtNGemVybmPhnVuj6ncVIeEyCdvEGihWQ5Sq795xu6eOLvtidNJomc+Nz4aygiZbis6sQ4HibuiyqeePFroN9mZPOx58GP1rMyAMFEaSpWI/7a8a9xxBpPdcC5WLtyqjE4tYuxGuOL/+09xyXBMv+Yt8oaPBytFAW5oPhaiP8eqzJ9lwvbFZ0pwAFIllVwaxApVeWKv02Gx6G3lf8Vc0+5DPTgAsy9900+aW2CZfJ50T6F4wagTtpSryfeMs0Nrac0BeVZ/Z3w1yszdv/4d6WrG6i/Sx53T4qFgJWkJNDsCJok/lZJDYN9m2Vg2xbYH/1EXuu/+0rJEGjfUVRWuHX4Ccxve50UIfNcjttjW1/EGgylO10r7L7791e87/wTLoXtd4RguXdBZpNsmanx7GwXt33+cpz3ix/AnX91CV544fvB7pT/zR7BtOwhPAF6aKFHleDVxUF9z3d4FkSwnWRVTKtKe1Tns+x83rWS64yrQOrc9oXLQ7GXH3gwfK4bkmQ5SLR49tAjYNoD4dnJNd9HEBK4L4JbG9nZEYeitn9uLCzyAgl/37JGCt+TbhM4Ot3bu555pbMCpXD9H2nsOP8GEDM+c8e7MPfU98g9w82r5TwJeMjjrtApay30/mHdjQvIXClfKwAaaz8lCZCl2P2T36vvyxFGbZAZ/jObxLRuW2GAuscbXsCjgLhD2ncX09B15DkxShCSrYVn/b5PXjdEQLfbJOL8z7GYJJ7DYm3TKismgybtsRSJnWwvrzsO3X4EjBxb6E4QffU5jTtDdJhRyLl0YpMxQqYV0TUefxd897KxYg3b74AWlmXddfNvG5+NUrIOe+s2n/v586k1eBRZzTdOaXROvEjHkyx+H/y58efcd1jH7+HOywobNv8+fh1wrw3rubOWbGAr5hrL+jqW74iJrwVILcuLTeZmXxmeQ3kuJFNlamLWk11aAXkutaE8hRqOwUmC8fYehnmJL/yP97YEyzpGS7AcvRiNRtBaI03Tgz95Itoh92vEhb/xu+DZHv7xExcfle3v2HkDbCLDY7P7B1B7a9sCylKwUTLey9t8+IUmIh+EgU5rAObsF0gpMMuwMK+wmxwcuWpyOpEErhqxUnSt8FZS/j2dRcNBE+FgYxb9jZSQEU5NwUUBGjgVRJY51Q2k0FREr4sVsYD4/PukzxeaLJw3uxtYRwrsXttQ64V9iUDQJPEVJTx+KCUB2H3Px6TQUhRA0l2xvcb7aC0LmAdXY+fh6pR+jeIWS/KNslzph03R8GJj3dBJ51Gdp6JK1k3lmIoGL9/5P9+B5//KjbCawEoIFqXE39rmU6CtfeixgRoWYheTJYCVc2L6OaiboppKYTVBmYdhgKUiOR4LQInVAnVzGRI62Sp/HIVvzW3jwDH3c+9dWXQPij4rwD10qEUJQ5rU3Q+xTZgvRrtWbc6SMFuIvArWd2lwdH3FINm/vw9mAMoN6ZTv4qHM0Nmx8waXUHHYt0nLLo6PHU1yZcfOG8BEYTd1YQEGGmCbAJsq2MyRJgBgGDt23hCGHvvnep/7cNgTgJxzDYYGehnU8hisE5BWcv4nkyVmuS8TgTsJ4oGecZLbSJD8OY66MxqDP5mDXZXNE7l/GSXD4f1280S6SlzCypB7R/CP11GCx8p1MqnVlYBV1UjwoKN9ZwMYwHbzeu4LhKgIpIs7J777hbUjsBINm8jxqYrl83fXtk2lm4WMAlUAJ578QH0fjEPV+8vKqTUTFT6DcG0Bzt7LNEkLoC6GMkMNCiE8xgAvLoXvFvukO8tA0MDSsnSaWpb/nXAktuMM67QnKyYLPa5jk8qICPXXvDsuq5L6WsmdKtJCrjsvpIhVjCv+r4vNdTeAK5gkauUakiQAKnmO1kLIxF0zcNadWdosXDMD/b78nKeotvTBicJ4cwqygE0IyVAS4WRQIV00IFNhPWLuxb8Dmuqh6tBRw7Tn/esPAAx07htKd5O3k8jSMLgWgFxzWVoXZXx3sld1clRgsGJTFwituAjgCwCAKOQjKzD5Q4RnPbasJr8ca4fvlLkwfQlAqjGzJMw0WQUrr45z3bF6Rb8jjSh1RZYkCR1blCSyjaJodG4HctId+/zpb6l/9zMYmUFFIdektx+ZIEvY2hUe/uy/74jIllWITy4K7Nn7MSFM4oJhvB3/PSKZMTc3+0rZbpaFTnOe7su9Mk/F2s/Y4Hk/v+11QKKx+64PN0+hghRCnXqYs6TGs25fglKWIIS027dJTAtWYJUEPKsK28SzwAEx7dGM2z93GS48531BEMCpws5zr4HqZFBm4npbRfi1kaPFtIcWKzAtcHA8C9R2nQ5HNdZTb6npr+8yKt56gYYXMHC0zdAJwTUO8F0GSmH+Se8KgpCDzTw5/4XXB8xB/q014dN3NgVBrBRAvIJcufA5V4f5cNAERJaAalgG4snjd9tJkLoifiCrFMntJm3t5QABAABJREFU2MpMO04BUAIkDruRw9sWsJ0MlGogz0COZKGicHWV5n2AjQHGVu5fvoDui+mTXRlRzh8+Y/9YEMXUgg1OtGBkpUT0UtXdbbAAJVoELynVmJZSufevhmf9+6yGaa0BtHfMcH/zXRGThBCzkA9uW4KfIO/r7W7TtLbtAmoxlnE4LpwDU+Nk/xn5682TKnFHdmxz6zqQWCtZS4w7t8oCfqaMmrByj2pitDyS+tLi3oagwxM5xCzES1GCuh2EOTnLgzo/8OHJF49VURMo5DFtnKeGTiiqP3t/nbLLedznDQWQVYBGLaTw159/juuwCkI/CEkyKaAIBD3kPBPc5+W7jSNi17uuUJY1tgsA6HeBLIOd7Tk8m0MZhs0U9MCANUF3E6hhhWRQobsQzSZqY33j6EKTR2R0Op0jfm3bwTIRXvH3gmddBmyeFkCeEMopV3xy95XP/+f1SVJfeOH7oUorN6NhhWRhLIvPohuoU0Q+5i68ws0X4kNniy8UerbadbFQngcCBoAoCp2q2BMwqyaFa3SurLDyigfoArWC1SvaYgXdGpYKk/Ne/GON90yS2uvUL1h5LolZmjYXLUA8S90AX5tJUclmCmVfClmd+wskDy5Lsc23gAI1AJpU1fpFJ1YHRMU+IiV+2GW5ortlhYUYsEJ5RqlTRFeV+CxHnzn1uuG4eXYatH8RvDwATU+BN01hz9euwdzPvVcKX6MK9MBe8Ngl6JtmZKhaN5WuEoezPv3Zy1Z8DgBCB4t8VnCWCxwGiIIATgiqYOihFICyexaBhSWZ9eKSX5unMlR7MATPTmG8vQ+Tq4Z1w9/++TtW3YfDifN3XA8woEoLVoBNNcgykoUR1AML4IWlFWD4WESbXK5fTA4t3fX0KwBAlEtVreaNFWbcSeuB2Q6YA02OxGZyfXqbEdmmsxgpDFTFUMtFsEsK7zVpeQME8A+i8DxOFDhxMy+0FMtNNwnfC7LAZ/9H8zvxvF/9INJlI0kfEL6Hf33rpXjhhe93SYlPXCDfz6C6hysq1VYptEpySDEX5AbeBw97ZhkiHIZs1skVMaDGlSS31sqx5ToUh9SoEqsTb2XgkmJf+GJN2PPP14q1WFTY90PqWSn5TIdF/Tl6JZ9Szed6ckMRbELgVMFknqgRElnmQ4nt2Yp7gvev9l0ck3ZbccQdJ3AFgVTD9DLo5XF9zGmCclu/PsfxfRSAquTa4cSdVxK8YVIlSYomlFManAB6xNClPN/fw8kCeixkDbv5KWSdvWMlx2Mz6TgKn7Wxcj2wu5aYhcSpjHQgVVWtkgxzXOrzDEA+j737ZSbApMWBW9fIzWpAlolYYHZGLDYWFuR5rkjkE1Z2+ESIDbcW+vUVkMLtVDes535t9laU9fHV30eqpHuJqqpZmPJrb1kJxsoyIdzKsh4WCtTWYN6P2133ARN0chG2TPew/LhNck4J6P14WWY+FJLscp42rysicJ7ATHWE2Mw1bKZQdeQ+kAwt9MiiMiN87o4rH3IHywuf+W5Qvw+ba5hcsGzZV2CNgGn/8U8eOqY97xc/AFUxbEpIBtLxGubhFIUUOYr6uyz/E3hhSfCPV+8mUTEkLiR65Wm3gzCUVinwwmKwX+M15o3Itg4R00YRW3o18Cywaqf2AWPi/SlNQHled2l7643IfgZAjU/zLAgDOE9heinK6RSsCd27BlAPLEqBzN+7Yuw9WZD13zm/Tsb2eDFejW1D4kJgpHBdNXxnkpu1wkURcgIQCabVGpiZAhaWGniWxhV2f+sGwbRKiUXkg/ukGzxJgNlpmG0zh4RngZWYVli56Akk92I1NuG+mP10v5DEq2BapBrj7X357mp5vjKMz/7FQ8ezwCqYNhebsGTvCPTDn9YW0n73j0Bd+VCjxbPrFx7PAmtg2tKsjmd7mROSOPzgOeWA0QDTVaCKw/XuRW/Kdxu7NTKsT76QHneLenvP2OYTqIvnQbShYFMd1hmywF/fdmnjWM970Y3QA7GdDQIft4b/9W0O0zqLam//HLodHLHihVE0qoSAB5p4zuMXIAhuqIysk9Kkni1HJKSqpoCT1LgSC1aH3ZlI5iGNxisG3vs5LDFG3PPgRzG39TW1/aAXD3gi3HcmKFUr/lVUD0iTYP3FUQ3DZqrG9pD7g8d6qpzAtGvh2bgDH6jXAzfvLs5Pql6K7IEBaN9i3anQ7cBOdWqyL+qiDqIc31XuOoI41WFunhcPsVZQpRGcyixkGSD3ekfcNMRyYfsM7qZyXsh1MFtIfaej5b5ZGPkMh6V8bloFAUJ9jbjPzHeUj8aw+xcjQYzUtAI28Hb13Q5oqi+Coc2zghcfqIkZwbPUsOmKa2Ih/GfRyev9iyOuO03GpMPKBPEeLOsmsVCMCSZrUopA3a78vdtB8ZgtAEtOnO4d17aVjlDiTNciMeb6fpRp2FS+/1VPQRkRD6VLBnpYoTJjfPZzV7cdLOsYoYPlzRukg+VDx0cHy5YtW/Dtb38bW7duxebNm4UYXiMefPDBw95+28GyRthMQbFTMhhAFRzUolYTnv3ym+SJrgDNhCNSBsbg45yXfghkOmANzHwnCQO8yc3NADNQlm6hcgUEUrXyzxdRslQSMq8cjFVuzFL4qCrpdjHGKQNrG5dAbBysUyV6jrQb1mrPkERNT8mCMy5c4SJKDJzqlbR23TYR224FOLgdqvfFgZHQdmltPVBZToh7nl943TH7oqFh6JGF6WqUUwnUOIf2ijSvdl1tsVMUEkWUpahjV/kyhkf8guV/nwDH4Rji7Xc7QZlBnVxeMxzJ5+MLkssDYHlQ54bM4DzF/Blvgzn1JEARdGmA2Rk5p91MSJdSWmYVkkaxbc0w3FDq/fWtTZB8/o7rXcFNjrDa3EdCJMTfuHTguBQrh+UBqCihNnWw/KgUJpMiYLbIeMHc+5HtL0CVPeLBodJV4IqJnUTmFQAA50jUJqiyEquwYxhtMrp+sWPnDSEJnXvKZfJ9SsSOLqjwAPkueUWfK37bjnzvbUoyf4jqAqNNgSoXhauqIMVs9sV5hqoUqGRkAKgwcu/08yv8/dkr6vzvbj9YR8o6wKmyAcUCRuFtj/UqCzwBVU8Hu72YgLEJQXvSBHDvSYB2xIqO7oe+CJ+QW7fcGmK4zjvYF/CjbbpjkEKWK+5T/HyXxCoFzl3xGwCVdScQ3OBxOHWldd0ut33+cux6xhWyLwpgTNybNIGhQV4B58kUb+Wg4GbCSMJmUyFabEqOaKqLX2CCskoKsJqcYgz1fTwF2Cel2ori019KcYHSq7kdYeSHrFuXsNs8BWWJO9caqvTrGBrXmxDNaCZeLDhDEcO4YrsvBpJlWI0wTF4IFcB05Nr3M3PkWtZyPEldaPHJOCshn2xEMlrD0CPIWmjk+mFIF23o8nLqVyaCXh41EzdneUVK1Wt8kojqr6oEHwyGQKJBJ22RdcEO6uTRWcnRSVuA3FkQ+WGr7vqFMaDBGHZTH1Rap2hXzsoyKvz6a5wIyDX0UD4/m5CoUV1BgFMN7uVQg0QK9UPX1dTrgWgYCB8Rq6xipeJJgCQBLQ7Q/4EIN6rpHMVJXagyBxhIlgrBHpUFlWN4z3fbyWBzDU4ofLZ6bGEyd+1qgq0RxEMK00mQeDsowwLVChZ4pAisgZ//9zc1is5f+Pjh49nYa/vZL78JeHQO1kD/rhLp/jFML0WydwS1PAL35KZH4xIUz0qb6CYU5an70uRZ3RWlqO7S6Hbk2vZdLgWwqnDoYJh2NdIlWNe64tumWSHkikJwxdBZg6xmsbtCTKRXiokmSHmxBolUzv5cAM4zXoX1hQwjWa5Q9RJU0xnSQQ5aXK63FZMmRC5ZqbdLnY5Ym0ziUQDxQGfy22s+ofk+Mb4NAihnb+utgwERd3krXodnQ1gL1hqkLebPeBt42ybYTAtBOj0VYdoENKqgjLc5PITvSYRpV8Oz/lik65FhZnvQWsnna2wD08LagGdtKpdnvt9ix84boMZG7rXrgWkrC9tLaqFAlSHtdRuk1wp3gochWjy7fjEpFloV0/oOVo9nEwXby2A6iXQf5womFWEJgIDdbEqoOiR4diyCGDIMnSmoTIgXVbk5e0UFKLfiKAWQqe9NMdHruwk4EiK6exFbK+YQ7nr1+xMHK8D0dN2VCrHxCxHfDo3ftuAQX6gXQZHHANFsNED+VlWCX4JAxpEkXvgYze2TPBbNjjwnwpCivQokDnmSQrvOSo+hoQEt5233XR+uLcLi+6pfyzzmi9cmP6Dd7183g80S2I6z482U5CuaBAPC3co1QY+FTFqBaQ+AZ8P59XUFT4akGtWUL5JL93S5pQuayYXs1c7218LZl0ky4OdEIe6OdJ8JAdLJ3UlrkVZUg+DUOYd4XJ1KFwqNTU2eOQFVjf1dDuOxnMsBrJsNKdeOlaU4dLzQSicY4nre7Ug6K+p1P+pWBUDKAtAifi1KEfcuDeQzPmU7cNc9YLhropS6mtqyuZ7pUhkh5xqdaQweDoWw8QSmvzZCLateT+Va5mZ+aUyz0wcAsWyD2YbXhVkrvls8XATOScXjWa2B0RjZXQtyXntSQ6pmOyGXUcNSPgcj88Lke5LB9NLwPeKEkAysiHGBIBQw9uFfr9poY7W4+eabMT09DQC45ZZb1n37LcGyRgy35UiTxKlBBZgwfMEGddHDPUYWeM5v3CRK51KUpnf+z0NTMz3nZR9yRQ/CFz51MZ798psweHQfVZfQeSBBsliG90seWAIAUGajpMndfD3BkYoXqFeg+EJUYJuzTBa+ohSyoDKiRPX+ogcIP2cl2I45CwPK3NB5T0747SRaPF87KUgr0LCZPFOc7E0O4XQelA2LDa9wVlZaJRGBvFidl2UAnFUZEShRcpO3cKoH2abNE1AvA42pwcbHnqns99NY8Ww1LO3C3pOUue5uyVLnUW3rhdF1D3FRukF4Wa2YDZ+dUx8vD2Sh7/WAfg5M9UAP7pO5PKsELy1D7cthTtmCciaFzRXUVAJlpJgrhTcD8u3h/vM5gGLzQNftBeddJ+cUkgR6RbvpJ7Cd6VCgsZmCyRX02CJ7YAgMS7BWMJkksMlI7IqI3XYqi13PuAK3fumqNd97rVCjWvmuKvn+2Vyh6sn3V62lsHwYYs/ej2Fu86setveLk7ULzrsuJD5HcwbOwx133P7OMLfDz7hAbP3i1FNiISKF+aAS1wSTEUwuRXiTSnHRJgBryIVt5fr0yagnFFgRiFhUs5rkBe76l86XuoAZ1gffrcFA6BTw9wwr76VKA1UqmLy23jr3330IAPB3f/bb+Nz/7+14/q+4uUia8Lxf/WCdhHaEdFCFDe/PJODWk0jKyPtWXXcPIDnO0L1gUFs2+K41K7M+TDzvwh+fI1/8ObHdBORIFVaSvNpEgZWBcsA/JoA80QMAF/781VKUTwAyEfsAR5woBYIF56lTv6maUAmt9qKAtKkU1q0mmE7dtWMTuQ+qjoIuGGqsoKpEPie3hHgy33fyeAWlFDdccu5+rgu/KuyTzYVQUWMjKjqgPp/ktu8PLVJKemLAJiqoT/31QxVDVxwU1SZTSJcM8r0j9znLumQ6CaquDtdYnByr0oqlGIRggWXYrobp6NBJCACqsCAj+60BUXuyEcJL62DDZiPVJ3U7YvmDtLZz6uSg2Rl4MQiSpD5nPrFTlaxrgKyLrkDNVQVaXALSTTCzPXCmoZYLqMG4Tj6thd63DE4TsTrp+E4cue4CWciMakrWalaE1Kl1UVnY6VxU6IaBFDCbe6Ayh1oa1xgjTes13xNE3o41+txgLXiqi/HJfajCQI8N9KBCsjgGa12rMROZ9cN5XWSAAkxHY7xJI12OCuCuyMvENUH2EGO4NUOSZu66dN95IxSayRDuCaFjFcCzXnGTdEiVUuD6+z/97UN6r+e++ENyL9ViR/bM37oJxbTGaEsfZZ/Q2ZsiW+jCdDSsBjr3jZFURgrZXs0b+4N7DAsI7oqtsvzQWK0EN7ECkRwnFyVIrdGdHYUvqDTw7ORMkvBkt0+JBnRHPlNv5YrVCgfRY76ryj/kCQxjZSkxgLCrqhYONYgYj2MKZ3/niHAGkqGR++B0LvU172Ufd417UZIPY4BODur3HIlgahwbd4+7jjJmWxcLFUmhyYuF0rSJd2MyxomEqJPL96DXBe9frEUvET7j5QFUJ4ed7QF5KveyXIO39EFlV4o1I6fohyuwFQzTPXAquxamjfFsKPApckRpBttNAO43ipy6tMh/stDAs/nAQg9rYYd0HPC6Y9pyKkXqrkGKO/Eepni48SzQHO7OWQKbJY1B5Md73HH7OzH3lMsOiGk5WOJp1xGgYHJnKaoQMK1JKVyTnKC2hh25+74vJZCrW/jtayUiGFRglQVBie9Eliet0bHtxRcRaeGL8SaX33/h334QTMDn/vvb8dm/eAfO+9cfaHSJv3DX++XYPQ5VgE00ylQ5MUUtBtFDIzULS6Kad3ORwNoV5xlUyBwSqdk4saVhwQz+dqOU6+6tnUmktqNgKQ3HKGKNBNphICpT1/laInRVeoKHGfOnvDGsISsiuucH+yx3D427ts10FvIVThXKrsfICJ+vF37psYIeWehSNwRBXpAl+BsinKps+Ds7O1lydo42S6R7upug6gqe1mMLO5OASd4rXTZQhRAgcs4pYCLpJHZF/OieTt4uy4l8mFzBnZzwY7mEXhyFffW42rsEQGvYLAn4jSor9QxASEEA3HUzEH1OkiqowmFXtzSQtx6zXA+vdx3x4V6q3TF4oVmaQG2aQW1/VgtwuapEGJJnAClZR8tS1kX3HeaFRVCawm6ahu2mUOMSamEoJL0jRghKBMip65aeJDV9LUzpetaJx9MmqjNNCh5MRFD5cwuEGWpxB1awJWMGuh2Yk6ZElDsuQaNCrjVnxVY7RAiGtb6bSCtU/QTjGYV0wCJUhOBJq4TsBYvwr42jEBF2b+PQ4qKLLlr15/WKlmBZI6oeASkhGcAVRKLaD0lBDpDHyEIWD+OG0Dobj/NfeP0Kv3wAeN6vCdjwKlsC5GbOhGf/5k0AQewbFDDYnoK2JlAlkC1UsPksWBH0sBLm2A2qpdJCL41qL0oH8v0NVvzhHXCzLgFzXTBIEvHwzFJJUscH8Eh0tgYAoKb69bDWPJeFoDKBrWe2wPJQFqGZaWe1scYlF7HvUoQzALnC1mRbsvNIZ2Lx2nT2XGHx1KpOLh34IQ8mKhkO7AtFYbFQbntZNKfFLeIBiFgL6wBduncovp0om62nfqGLk02tAJ1LEppooJPD9rIw28GDTL04rIuZe/eJ+q/Xq099kogaAgBG46BE4L37oHo5Uq0w6mQwXQ29vwSB6/kLrih5IBuFg8UF510XFEXhY9MA4LoB3EwhKXAqmA6hmNEoZhKYDKi6crFnSxb5XgM9FgUSmB0YPrKFN1YpqXGF1FjwwIHApVE97Hidw6szvZ3MZHiV33qo/c5/4fXO1kc+U5sS/mbPpSFxIVcUp44GDGPH+TcIuHH3pl3PkiT/SBWVGynmfu69DWJW7hdyc+ZEg7spbCeF6erw/WIl32PTUSinFKoOCamSyL3cdKSDBQBUKT/LTAQIYV6w65JyBAtL4dZbSFr3z1/CPgECA8nINouXvtDmBpYDkmzYRPbvOS/7ECiR15/z6x+SNSaVQrJN6uTKv49NCeiK3U+wN4NLNDRAVoo0HKnfwusAN+PD7Z+tiaVkaKFMXXwlCzfQ3h1vSsFqKhA1pQ3Xov9sgk2auxf78wfftWJFWWg11R7MFm7+hesQccm+J1Rkx2VbXtlnUikysJaisZBLCISLrNFAuqyQLlmx53LnQhlppw/zTgDAarEw8IlqhrrYEBXiPNFjUyH2vG0iVTasGV6tBsBZpBmQJ9VZ7Oc8yc6pgmIrc2P8oZayTiVLhZADPiyDT5oCunUyny4WIZFmTaDMfQ8csS4kFNz+yneA/HpobLDcku+YO15ny1FNpVCFAfdyES7EMzPcvA0QScKYO+uDsqrncRgnFCilW4RnpkTosbAIXqpgBwNQVUHvS8EnbwF3MpjNsgaqYVkXeXweHKlQ2V8bGrCuAM0JwWgNqG5QlvsOq0lFvp3pgsZuxkeegWwXGI0jQtTW67nrXEHqOnpGFfRyEcQCAEDaiDVYZRvdbpxqmE6CYnOGqkNIly3Gs1qU8Ea+a7oANCmU6yQOKKcINpdCUjJytyBXZJOdle8JeQslD2es7BNZ4Nz/44PI91dBaR3H837tg+HeJGu64OHnvOxDMiIvE2JXF0AxrTCeERJEl0DV7SLZliPbV9Zqy8oi2TuoiyCelALkegHCuaeyCgUTsdoSsoSd3aodjbGiO9sftrOZJaVA01OhI0aO3brZOs5mo5K5Jry0DCwuicWVV3TH+G+tiD9KywidLh6jEwf/9GAZFguHYiGPHYIqA2Ut1FDBdv3gahtmOYFIrkVHIjdsFV3RUQrWGsleJWpcwCnBraiy43OF6HtDJIQJkRSGPLaNj585qIIBwC4ugbJMzpsPl0uEgb4A+MF9UOMC6DoCK+mIUnuhrNXZ7nweyhyztWIFnmW5F/p10OYKJhHi2iYkop2u3GCGW09C2Zf7Tb4oeFYVcq6DEOEoYdqAZ9eZXAn5xvLympgWWB88e8Hzr5X3tCLG8u4Cn7njXTLgfFjKmj7Vgd0i9//0QbkfEPMJh2cBHBDTmk1dmF4S8ILHnqajQpdK1SHY1GFa7TBtInqGJJWidzpkqCUh7ADAzzVigtwDddbsrCAES1lPagZCxX8PE9c1nNezCgHBEmQJ573oxlBQf96vfVDWBk0wrtDq8ZUISwjsOsK8cAkupwEQuiOo9HjYWcM6EYkv3qpSN3IlskAyqECVgc0T2a5F6B4F3PslzumCETreyAr2t5kTLmYJqEpBRdq4bzUK3hzdVxqdfVExOxBTzgosUeF+bHIN03GWoYl01stxSH5tvSgCBF2ugmm1m93n8SyjJl38xxvYtVSwrMthTEfV+F4rJEMOBAsrQjUlhEuybGqLLzf7pr52o2tFCS5Ww1KG0BPVHVMWIqAZDOvz1e+Bp/L6EhwW0Mujup7ivhNhBo8n9txxMsl1YnMNNVa1bbSNPg9PahHB9nOoogLlOVS3K2u9v4d7e31rQR3nxOLWZXbiXz+bB3kG2jQDGo3Bi0vg5aEIl++9D7SwgCTP5dg6TnBsWIQNvmamyP1zx6PlXKJ0pI6fKZvE63AlOuI0rYkYwO2/ro83mrHm8ToZ1F2qSVILR9xn5W2OJWdQ4Ttq87TufHKPF5tylFMaVZegx4zBVh1EI3LdAOmQoRWvG6Zto431DmMM/vzP/xzf+MY3QER48pOfjF/+5V+GPkKs1RIsa4TJCHaKUOVeAYywMIn6w4N8uXmQgrTlgZ0KQoYRX/D8a5HsHWD58ZuD6heuKKWquBDHoqROKXTKyALpAA4RxlsSZ68E5Ps0gBxVR4XktXtfjvyBEWwqpItSAMYISb2ocLUkXYkCMg1YZ9NgrfNgL2Af3BvssoKdQZKIOnV6Sm7Gw1GdULn5J0EJ4Ia+hsIEUBdYgDpJ9Ew7UC+eXgniChkEyILnh336cJ0fRDK8i2FWJIDhZ2bQuApFJwBAJ6uVQj751NGQ4chfH8wgcmoeY5GMq/oYSpdge79pH3Fbpy/EhC4S7ZQqBN/mGsBWrwtMdUG+iDYUlR9tmgHSVObKaAItpcDefaJGUAp4YD90ZaGnU1RdQtVPgs+tL8ZOkitzM6/AnoU/PqTvA+AKhk6JrZw/rZnuALACwrQrZucqqI1UyTA54fP/+WI89W03I12WAjZZaU1nkmvzoSTK4VoyDCpL0Ng9ZgFaPHCyeCRBSQJMT8HO9gW83XV/ILsOlnzG9laHEjvPvSao5E3ulOguEfmFf/tBNxdKgLQUyaSIDCAkaV5NCThfZ4UjUlVuhNj19Csi1V10/wBccqZR9VNUPbGK88V+321hMsJ4llBOO0KF4ewHAJO7+65GKMZj1Hz/esB7k1jx5Ibfj0AsMKNMFP7hU2urv8956YdElUb+sxPyR8h7WU9sR9RZqkIg1ILi1r23XUGwILrHAPFslqBwpPo5obXeFVVZSXLlQ1fSJVM5ksqkCOuYqhiqYCSWoEbOO9uym3/hiHKnZAtKxzgJhST4YeilRl2sIlEqyrH6/Rc7AFH4yWdQ9qQAFtT4BLHBUkDZg7sW5BwwqaDMZyX3KVXBqfbk3gQF2DxSBVoGSDf2gZUrTrg1mjMCsXbkCkIFWwj7Zsdm6DgCuU4nsVNgrmfeeCGGTTSSQVWTTKZOmvSgQMf7b7tCiC+GsFKgThLIfJtQuH5UaVFOaZSO+BaFq6yhigiKGTS0MmiddZRMSTFX9XOoogvflYRSlKUI63WU8LkiNflh906JRwtL4TujPLZINDAuQPfvC1aj6OTgPIPt53IOKykOEzPY3euRICh6lWGkD4xgMw1VGNhUQ+8fCs7pZWJ3MDKSWBeua6Cqag96Xxj2w+ud4i/MgHPCACF8KuhFh7F0bfdH1gph4+5LXuXHmlD1EpR9BVUwqo6CyQDTIahS7kOqIOicUVVHVqCdDJMTbE9wp8lJGiVMPWhYdhjhegYDyZjFVsZ1STCJ2nrHzhsAC5QzSRPTehs+V8QJJG50X9FjG659mxHKLqGcIvTuBcim4fOzmtDJNbL7Bm4mlCMAE7lxeb9/9sIOotrmlqRQQK6LSi8PQ3c2eRtYZ1lF3Q4wPSWf8ySO9QKdyoBK6fYGc7C48p0rlKZB0BPPZ5mcTdKYRRh1krDz4w/XuvLqrbDSOZLFvdba0G1CpVxfivtSfB67OYtuJgIBoXAHIBRoqbLCOVUW2vuqe1VsjJ/jCDlP/Z1cMXjYH18ceSa5g58B6Ypp1OvWsyPLUh73fvVFId31ZQnVScQKqZcKge+EY3u+fE3jbS58ztW47fOXr9zvNULu0SyFVI9np/K6YOgG9cq1rGr7JdfN5fEsVXLMHs8SH11MezTxbLGth/zuziFj2sPFs7ueeaUo5TPpwiA3g8wXznc980ohxt1A72JTFrqzfPffCYln/a1hDUxbzGawuRR2Pb6z2nWt5ITxDKGcEUxLleRYIPk9FDpLgMcO+xFAcKKgBHLtOrwpOxIPoo/IYyJQUWH3N64/4HF5C2llZN00HSegiY/TiXJ8x7SIexiwHjOhrhm4NYYVYFIFRKQc4PGqYEHBtHKeyr7cq1TFwUqVPQaykO86AZwKmeE7bryoCmOLpHR41s9yGzhLpspEA+Ndnk+m7mgBmtZNWtcWUFnasOXyXUl+zkrV0yh7bk6aw7JiXUyCS1PAONMQYz0WVTJj0eU0ITe0cB3KkPej6HxSnSd4EVrZp7B+w4knkxEDFYfn24RQ9bUI0MgV4f11U9omziVy9m51XcBqDXQSJEtFbW0fEVTKzy8BZN0N3c/yeVLmZ5HpkEuo0sJ0dLAIJ8Oh44ItQFVZfxZubScAZAzMVA7NLC4rXtTg37Msa9IsIlfC55ylNem9uOxqSgzqd0X4m2fg0ai2E/Vip25HrodODhhPkBjXdSMEEo2j82AtsLhUE+txzSkmaMLxmVogEluVxnbS3pITKRrrd2nkusxTEVf5e5IntSC4wrqOsbKvUEwJ1jMpoeoBVUfEPOEzT9cX07axSvDBn9LG6vHd734Xv/iLv4if/OQneOITnwhmxre//W2cfvrp+Mu//Es87nGPO+xttgTLGqEq8cS2GcCW8MWPvQ3PeuVNUsAycBZMqO0pVLRQEWPqH78PoFnUPu9FNwJKFnXpiuCoA4YBZ9vgPbGVA+6AezxXGG8S9akqxe6knCKMNxEGpzDUOEP/rgxWAyf/k6jRiBlsSYB5KmBNAcCoksGjflheloEKIUUoyyKlnFdj6toqoN+RjpfK1AuPe69QUPFgAmjYhcEaUa1RtKhOdrVwvWg0FgYfEbkCRSCfkHo7Eu8nCaBhVwZ3PhMdlMjB5gouOQ2JOyL/WKcGKQzIGpfgcW2rkKY1SPDv4ZWuPmlXqqE4Y3KFT19MSxRYdQScOGUhACg3N4c7Kbx6l6HA3Rxkp2vloGWZdYC6wKqHVVD2rGYJNkmuXPjzV4MdwPN2M+GUW4YKbeEALY2AwQAq2QbbzZD8+D75W6+Laosk+36GgAfBX7v5bXjuiz+EdNkgXRI1ESuF2/7hvSs/48OIW794pVgN+Qe89Y+mupNpPUMRzPbZI9rvw0lGm+8JQHvCF8G6UJtIpeQAkipsU1nkrY0AubbXydf/4Y65n3uv7H/qVMa+IO/mX3AiqiVvfwRyM1V0M0kpZoBikxAXeiRFzW9d/rbwPo9//82wJWA99+vv8RmFIr3vALAJMHk65R7uE1khdf7Va28WZWEKwAJf/d36/ayurcF8+NeTrUErK0CTsywDwufNBEeyNLfDGiGRBEgSLHc8otCDqP1d545/ri5EbZQtykwPr5qr+homF6WkyVxXZwXAsTNkEEhAYh3mgcBIETq0rbtulNCt4u+PVjyTQyE6EVuW2uoA4d7KTi3vyZWqK+RK1UGwniDrPhpPTHkSSgNVR/ZfyBT3OSSu4yUFbFrvP2dRYcBfR7pOSH0XgJBBgB4TkqEclxpX9dwTLcRO2I5qekb7c12rCeW5ximnx1sS9O4qoPe5GQu+wL80lAKz+07EinoiAkZygGa247qHAFUwimkdknRWUoxIhhaqcspRlUKXRggf5QsVFnokxFM5k0KVmXTTuvVRjUvAOj/uUQGw9yxXANt6rsmgANKk7srsig8uigLc74ly0N+3KwPetx+U59BVP9ilFLMZ8nsGUJAiLRuEOTNy/RP00hggQrI0ChafammMtKhgpzqopjLogYJyVhMoSiFXPP5xw2yJ3KBan4TmeS0EcbOB4iKCKiys0uCpLFLAKjcnSD5fPZYZKFWXUHUJJgcol2uU3Pyc9UpGieWe83NvvVmcHRTwpQ9fjGe+6iawcvjGWeH62VQ2kf1IRlJw8rOf4jXMY1owRNDgu8AcIaNMjYulCM3helOGYVIl3eJE0CMh/MazCouPJcDmmPpJBlaE/j0Vuj9eqq8Jv8a7AiQVjlxhliJSJ62vf8ugRAve8KSfF7+kKbjfceRC1O0hL65xnXsu2NY+/ICzonXBFjQY1rP04s4na4FxsWI4ef1aua+Rf21lwGVRF2OAICAKVl1hH9LGefCECpViM0REsK7bz+NBcvaBev8AVJjaH94Xu2PFXiwcCgQjNXF7LEhCRLb0u/V56Mh3Oih+Y5Jdazl2r6SN3o+8itwy1HDsyOKVisLVyJVdz7zSKdZ966acs9CpyLwCz5p+Br1/DLrXdfSsgmmBNfCsu16OKqY9zvHspC209bMhrKwz3NFhzSTLMLkUjm3qOkpPEDy76xlXhA7d0O00gWmhSDqxHSlgM485KWDEqkMoZoFiVs5ruiidLN94n2DMJ159M3y3Ilkn4tEESx4HutmACWBdPq9KAYmsGNqnz+4eM3jsDHaee418H7o6dI3Ec1R8Ryl5oqZ00/W4xtM+Arnir3H3emgR8/g1xfrOkjQ6ie7+yKmS+3zF4EzBdEX8UvbIEftAWrm1qbCuC0RBORK17KqAbZMRB9ESp4QK2nWpirWViEkcEZ0m9bUYSOaoKE5KXDF8jp/XNqPxDEG4bh3rhHRlX6HsESrf7OfwLGuHYQPmhOQVheQ6SgPJWO7vgFvLNWCTeoZjEFL4dRuyDZnhA9jMdzjL+yRjn18IPiQreIA1oZhJAqkjb8jBmtbPkeJUBQtcKq3Y26UKpqtQzCbo/pSg9+6vr51BPZPLD2qvP2/XfeJdVtxcFzk2Gzp3WDsxkRLrM3LXIgpH1nhhQCrrpEIhc/E2TwkW9B1b3gYu3gfrcLqG4EM3k4t8p2nubDeNESzZ70m357gQOzEAcEJmShKx1LUWdttmqH2LjijxJyOqqXkxs8f5HptYKwRPnsn66Ykqcmu0MXW3Snwc2mFarQSzWBbSqpPKGpuosJ7Z1OUpTmyjCi/gErGQdfmpTYRcMR0nWEwkR2Tt0je9fpi2jTbWM9785jfjcY97HD7/+c9jy5YtAIAHHngAv/Ebv4E3v/nN+Mu//MvD3mZLsKwRd374/8TMzEzjsf/1Hy/Gv3rdzTIIlp0IoKqLLmSBv/+/V1cqz29/Pe685w8AAL/wb26MCl+oi0bKP+aUI0ShkKNKRtUR1QIZoOwTxjNKioWzQgRVfYNiC1zBpgdiYOonBqwJC6crTP/Eov8vw6AqDjduwKlTE7H/8u2FHPmI+mKCG7gufue2Ji/iZMnYmv1vRFTsdqoHAAJSovZS7ktLOC2PJGGNbRqAeiCXK9iFIgeR88OMmPjYWiEeSucWIM5EoUyF/I2IgKKS9Y287Q8BcMdcukR8MHSLnHZKBFWrir0Cwu+DU0VwaWThjBJTr2i1mZJiOUc+t0Rh5oso2URpSNbUCbwtpCoDYM9XrsaF57wPppNI8rw8hu2mQsokChecd10gBT9957tXfjwK0IsjKKVg+5lTjnrrFRYViC8WTndFcV1U0KUk6DwagZaHSIyF3q/BnQzlphymo/G8X/0gVMXIRzJQ8fbPXeYSjFW/Locdt31Bkuu5p76nBieGm8n6OsVu9z0+UByusm+tuP3v3oPzX+jUYkZsBFlJgTRdqkKhFkAAt3pxBFocgvs5bFdanAOkYSmGH4/hiRWxCFKwHVEw2VSSEpsrmExF91EBfCZ3iYYCqi4w3sKwudgXfOdtFzfe42duvkluJUxQ1r0+c4m/r9FE927fMUJVXcwPySN7MkOSw2IKrgAP/KvX3uwsJSHDKONtuvXEFzpDd4mSzkq49/F/C90zUfIad3GwS878GsWotymguN6WWAgxsv0GydA49ZkUlsazbpBqVJQnhWhHXILmyC49lO+6IoIqVSj2iQrTFR6NsCEyQBL1fdwXBXWd1ApJoeoE0c1bqTqSSPthw7GVp/+uaC1/D1ZnUc3Q21EATjypEe79vlAsc1QmC9CO4HJkvNXyvGJKQxca2ZJGuqCE6E7qJDNYyzlySMgqKSapok6ATEchWzRQFSMZAcnAILt/WZIpP28trDWMoICL/1ZKcRmjCjotgZ5UJ0yuAQLSZUY6MI6kI5RTkgmpisEpA+i4Y/TWa/L5MFiIXOOS6dI6cqUmN4htbdeptSj9g0o+Ksj6gmvqiuKLTQIJWQbavEmS1YVFEXtkGXJnKWeJRJhACEQzlaZW7ruOXSI3R0cRqDDQDyxBB8xiwFNdcDcTMjDgFAKpNPws1yjJMSVuCG6eNtSZAFDMpsGCjxjQI/ni2ZSEhCQhVkab3P0pk3uTJ3BVIT8fZHzIIcff3vxGAMBXb3lb4/EvfuxiPP0NNwdrMjIQazoSbPv5T67deff8X7kRn3WzLX7h39wIZVHfgwImlhsNE4fOymBJE/CvI/xmNIoZEREBkpwvnSY/mzxBlc+ALKNzfwFOFRYfnaF3T4XOXcsRmeFOmO9ucR0AMApIIIR1wLQcCXGc6raKthGLZiyLOGjyca8cBRz+zOtiBSB4Nk3AXZkhpR9YAu/dBxSldLR4jO32iQe1Tax/jNKkLt5ZC7hiCVkFHo6kUwoAel2YWanIUVE5fOvmNmi5d5pUOeEJQ1UKsF1QZaHv3RvEQNKZrmrCKrbA9eHxJ+CweE2qBBU+O9waY2GP0f35jC26ImLYP3f3d2/E/JPfHWz2vCiMSoMLf/5q+ahHBfZ8rdnNEodeGEIlSQPT2gRQkWcbT3dluSwNkv0jmYV4AEwb41kyXONZW2PRhxprYtp1jkPBs8D6YNpbv3hlKM6zIpRTkm9SxVAFZH4ZSVEUDOiRCZgW1p54eNbKNRcwT4Rp/RzLGvO5+YEZQl2g6olgqJxhmFzwyTff3sS0psvS+UBSPwgzWrwNkmUY1PjGJ4l6ZOReHrow5Pusx2KzufToHNmis2Y0jBfMfyDYUXnr1MSte9paWK6xOfm3sRys1W1E/gYBC0lnpxcayd8dVjIQW0W/7obOYqDsCRFFDsuky4JnAUiR2A3Cqnpia+TPsTIcusetdtbXuWybYkxQJgG/kq3zLzlP7t7pcZgXC3XcTCdAcnJn4xjuSc7qzKaEou9wdrSeshZ86ruRQoeSjfC+O37rjsd3tctaTGF7gMP9Uc5gtYiO5BpB6H6qpqTelC4R8v1i8Y3oNUGI6r6KNpFrLBmxPNfd/8spjWzBINs7gsoTqEq6svX9C+CyFNGAljwhzL+Bq/mQcuIIhyk0A0UBGmqgm0l9QidIBgZ6WIb7i800tGUwNNiv8W49DR1EoSucoarKERJckxRpWg+p96EIZBWQJ0KyGBlqD3KWc0UR8Cz27Zf10M9FAwCtobZsFqv3ffsBonpWrLeZU1I7Qiev39vPYAlrr5J1lMgJg4Zh/0T46207K5n1Enemhr/Jz9wV4ZLcf7XMJ4qs42TekHxfq14SSF/jHEvEEl6IFZPLfYeMEL7hGlxHTNtGG+sZd955Z4NcAYCTTjoJN9xwA84999wj2mZLsBxm/NNH6gT1mb91EwC3QAG1r+kqEYPYv/3zd2B+++ux+54/wC/8Gxle/Lf/z9sBuGFwgFsAEACJFDcI3iN/uLW2uWHNsKkVTkQLObPwBFkEixmN8UkMnDrE4Mcd5Gf1Mf2jHjZ/bR8QKShoUhlURQoNvz9lKQQAM9DrgtMEVJQyxB6IPDjLZhLqu1Wsy+JtVFxzdgD2pBnYvL4cq34Km0whf3AEfe+CsxwzoYUS3Y78XFJdRFcEeGUbW/k5Hhjmu2H8ELI0AcFXCzmAnZigIY4+B4YsylkCqvK63TOyEgNQF7kSIYLCNp1SOx5UCCBYzsWqn1Bc8qewrGqlgldEKiX/BkPs/vHvYv5J74JSClS5bqRhAT0Yhy4h1c3CsOjzX3AdyHKjw4oMgwZjUTx2U7k2yF0jrp1csQAIzhLwlmm5boYFePM0aDkTS7PxGLRQgCqDfHoK6GRBvWNzIdN2Peuqo9PWH392lbRyU5aum63CofpPrwe54iOe4/TCC2UYpB4b6OVaCeqtn7x9ThgUHFSP/lqj48pOYdczrnB2Jxrcz6CGFah0aqNMi3omVyimVJhbpUqGLv19E85KQYB/sRkwM478HdXs3lnX3wwQkNi6I8GHny1gU4Q5Bbqsi/6SsLknR2QGXDeCTzxUCZgunO2TUxL61xGcFZTbjOu0ANxx+I/QDy6lKKniehsU5QBhloJy22L3dhxtI7IVC/+sgOZySqPquMQ8JadyqwkZv80EcHNZEI43GRHSTEEXCmpsoQstRIMnuCvrul9i0p3C37wdoy7qe6NNVBj6bdJ65k08l8bblQFyPtkVipWpE8vaLs2d87RZ7JUT6c6lS5jkXHt5JYduFZvA2XS48+tz+AQgVuFDtKnrCiE5RyaVZFY8/eW6ypYZ2YIJiu1iNpFEP3EWYobFygCQ+V++YJm4AgjX60woxgJCypPMagCJkj1xHbicELIHxlDjEqafBZUwJwpVV6PqavF476pQECELJEMLPXb2dZmGYoA5kcJuZWW9IiWfr1+f/UwLQNZGn4CWpRNljARvKCDMUguiDqeyq4zgiLKEumevWIfNdlD1EmR7R0GlaXricU1j8ZImdt7R3o+7LF2B1wbRiNg5uCJzNIsjqAWJwrrurTo5rYfp+uvXJspdVyp4nttMAYaDOtUmwGgLYbRV7gtiUchIBnLNllPA1699GxYWFjD7B6uIIdYxvvz7gmmf8eqbwcQBzx7MbuCzf1EPDv/bP5efz3uR4Fnf7fIL/+ZGsAL+7r+9Hc//lRuD/Ri5e6LJpYNw+RSF8Sb5nqoxpPBoIarXChhtkdktZICpXgdLpxIGj7bo3p0iXdqEU26/vy6zBtLE/a41gLIeGu87kSoZVEyDsXyeMZngyQKl6u4wjx+jv4dr1V8rrrPbbJ6C6aeBXGACqn4Cc2oPnQc2If3R/SA//J3cte2x3QTBEn73BRzfPWVlTgqXpVjqDYbQ4ylwnsk9P09heqnrBiSY1NkJO2tDmxKyTEkh1cxA3buvvvYBwCqA4wUF9ffAF2ciL/tQ6HT7LF2KVX3Oor/B2555u7P4OB3G3/2jWzB/5sUAKSH9KiPHORoD1kIPhkJoKRISghl7/vna5v4yg/Yvg/JMbKfgiO6UYJXsA1mG7WWgVAueHYyls2m6tyamzaY6DTx74XOuxm1HC1dNYtpjgGeB9cO0t/9dPaB+x84bAEj3phpWaMw4m8S06fGPZy98ztW1Y0EngR4bkBNViNDOYdpMbFiLvmCGZMhBNW8TKb6bVPDseIsFd9x3KMK0P3vVzSL6yGobWSaCTeTm64kWZRy5UHCwdxQrSenwkE5e8s5dAAPVVIJkaFH2lXQBg8CGQyekYDY0bLzAUnAVQRIDvqhPDm9ZFgGHWytVwVBa9tWmcFhQyANVwmHJaPsAvDDGi5ysFr2Mx7NgmWXrw5M4NnHnxglYlRFOvuq4NT0TzKbHGrpwnd2+S8MTLR5bqDg/p9p2PFUBN7ITmBhnleexqMkcrvTzICuPQ2vCw2PMeC1l5S3D6hxCNuCPDWGeYrAQjnKP0AVPQNUX4g6I3kvJz7og6DG584xgQwby8x4RZgHpgpEsVdLtwADZDKqwMN00XFtghp3tQ2mpY8BKdyYr16W5SjA7uzMSHEhaSBLl1k61OAaVFbiTQnmLsFTD9HNQL3PH7vG4nzvnhEKOnAHYCWlQkytxhzjgviQ2uKyQ707x5IcnWbyzirK1Falf57sdsXkvSvDSsogp8kwIvdLjU1MLGGKCxZr4pAjBE2z4IZajfn99Z6iimjjKs7B+214WOlakW8XNt0zEytXPawSAZBwRbKlyVnaE8ayIF4lFMGQzCz2sZ4M+nJj2ERsteXXEkec5FhcXVzy+tLSELO5UP4xoCZaHEF/8o4tXPHb+C68HCBhtSfF3/+3ta77WEy4+MfXxt//P2/G8X/0gPvfffxvn/h8fDIr1su/ApokWVoO64KYATi1opKAKhWRJBjT74cVmfwZsK1E8psRS2cfsNxNxdnCFShBBDQuxUtg0C+xfdN7QvDqJwNKYzR03A8RasSIDap9yHyFB0DVx4Betbgd2KoftpKJmcsksK0KxScPmPeR5gmTfUBIf3/5YuJZIn+jRxP5BNZM6RZIwwtbPNxaciSotDKL1PuoKQYVjM3+CpbCtFGB1pwYF4zKoIqRw5FQNia6VZ+QsRLQjV5Jofx2pwppEwQUEn+ngCe+P2x9T1Gq6+64PY/6sS9z1UYLKCtXWaVA3hX5wOZwjKsXSzfRS19kjMz7ihMdOdYVcoZUzW3x45WCwnyICLQ4EOExP1ee3rMALC8BeARxqego4eVPYzo7zb8Adn1k/IgIA9nz1fWIlRSQql1il8VC3vQ7DPR9qSIcTQ41dUdBwUN+SccqvbiqDoVlmsDwkL/BjEHNPfU8o0Ija1t3jmDE5ZNx0xVKmmK4L5b5rxSu/rFNkVT2gnHIsAwM/eONv44yPfBCqICSsRDVeuaQmbsBzyYcviicjeb3YTnFNNkyEJ3hCdwhQ35PJkxEcEh+buATKHW/cCeP3wybR4y4x8qS7nyXlh1J76yufOHnVW4Og4Xh/5F+VAyZTKPvUeD8ZKlrvp3hCO5zP9fOUQSBmbKKgnTLPe20DACW+uGXrQqgPhdCa7j2zq64OhEoYOpzVxIoUICSp8wpEFrcqhEHd1crPKU7EPbnkHydFTgHobSrkbyaTF1mn8jMZUDqHq2QgHUqqkm2WfRVskkwmszZ80t7ZZ8P6nC5VSJcrJPcvu3PCSBZyIT1yLa/tKJRTHSTTKTp3k6yHIdnzBV+qkyxPsvj/rQWNKiQLFaAANc5RbO6g2JRBlwmotEj3y9AhmydIXJGFWMEmLKrEIYtKcCRDnYkZNhPLTU4UmFJQxsAIUpgOA2CdOMLPMvHJXpaJQs9be3oRASDFU2YgcXihLF3CmgXRAlUW6X1LSDTBzPZARmaqUKZhegnUuJK5LaWBWh7VNkgeg/gk1FqxnSidOMRbLYTzqmvRyMQ550SubVVIx1dSWrB2qkrllbBitVF1CcU0BZVfTK5wyq5gURdBHs740kfftuKx83dcD1jGeIvgjc/997UxLQDc+T8n8OyfvwPnvehGnPevP4DP/uUleP4v3xg6+sq+nM9sAa4TimA69T3NZnUnjxoB+QKQLVg3P4igh4TB6QboVTjldriCfz3vxts/gQjo9wAMHI6qFeMNQmPye2OMXMNAA/cGog0ATFUXYqwF97phIHXV08GqxSuyyykF08nR6WxHfteiWFMtu660rvODiWeaOJGIvH8uuNd7wgMA+S5IfzwshWjXZc5aOesZ14mYKREKuHtpaV3hZFMXKRHU/fvd90LLjV1FGJZt0zosJldUdI7iwrjW4Jzqjnnf4c22Fgr5ApA757vv/n0AwPxj3uoKQrLI8HRPClB+IHJlACrA073wHZ47+zLs+d81yUKjCsgz2NkeWBFu/9xKTLvzuVH3CxE4S0HD8UEw7b6VeHadupYnYwWmPYHwLICAZ/1g7LUwrc2T4xLPAsCuZ13VICFDcXtCTMfKdwvrBqaVbhMn9Inx7DSDc2et6jDtmb/3IagxIVEkA+6HEZ51uDPM8IjxI+Cs81zBPVfOtYCj2Rn1EHRWQnSEgn1C4MrXKRgwcM4MTZKWHYyjioWLSAmm460AHSbzFmZOzKQLDgJWWzbFHo1ubwAi8GHpbO5LF7K34dQjRtlPkYzczL1EMJpNI5xrIpzt8KZJAXQJApxE7KMKC+VmNUmupd19joPYtGFh7Oz9OFFiY5w6oY3vnnb3ZbGuRejSsbo+cZ548d0AVNWYHKjzh5BzmPr5NkGwyAUQ7OKY3LWg6uuqmjaABtRAQY8INJb3qzoE3VNIBhZkSGzlEnJCCUZnn0G6TNBjK5j27oWA+5J9mRDZlYXupq5LS6OaSpH0UiT3MLA8kO6QeJ5uEK66Y7EsBEwFWVPKSrqOiUB5KnjPJCDDUEvOSsxamSHpBUmJCsQUVdJpT0UVOp9r8ZKr5xTRDGF25JnHqR5PxjN2/L77rhWtnZWnqrte/XqYpU7sC6n1DIYiIujkdd0nS52wx9mh+vDb8LU6oHadARx+1s11m0yw0ee0Ps9ipamCNaOqXEIJgNiiyuV7UniiEGKxbFNgvFlswQCXFyXsBLr1tXksMG0bbRxq/NIv/RJe85rX4I/+6I/w8z//8wCAf/zHf8TrXvc6/PIv//IRbbMlWNY7CEF58wv/9oMAgGx/ic/c8a41X/LcF38oFJ+UkbXxvF/8ALRTNFQdScqD530iSXl4v4RBFQHGFeet8812yWnvJ6KMIaPBOkMyBIan9Zz/LSHbVyF9cChAoJ+Dky5o85Rj0I1wEmUlxQlALLx0tIiE/6MCKFAvUkCdhPpQWpJC7fyijUV+zyB4mVNlke+V4X7DbRnopAz53hJ6uYReGgGVgZ2RhFT5gfBAvdi5ItVqs0fCvmkl1mCqEqLJkRbSMho/FwEcGWe34FXWSjtygZ2q1XE4SLQkBVkCvTSqB9w7X30BknJ+4mKi96H1RQKyFlQowKTyGZQldn//phWHs/s7Hwg/X/gcR4C4wcf84D7sefCjuOD51wbS5Pwd14MV4dOOXPHzV5AnopI7QBLnrQt2PfNKBFXd8hDIKgcWUqDbAfdICmk+gUgSmXOj60HRRyN8Qso6ev8jCO9Pyt7CZgPEZALvlZtUidKFjFqp4lwjzt9x/QHvS8cidj39CrET8glKKm3KaiSzO/wAb9vJYDM3CLJHQdnlEzSTIcw8MW7otE0BTlkSA0M44w8+CKoIakxQ4zoRja9MkyGASd+x4VVgeizFPm9LBkgC4m0JyADKvUC6KiIbSAc8FQgWch/2CrXgi0xNUOq7aGLfZDkwh/mj+2v8Oq8ajBxR3B/kX8NizCDsS9V1pIvvfvGqpQkiyHcHUeXEe7426AttnhPr6MguBuFExx1DsRe39RYKiXhxc4JgY+DtuELHzFjUl4FAIbiE3J9zl4wbR5SRFAQo+jxhOVxDPjFVECUjK6qvo6Q+bmmFB6qeS24M1YktE5IRMNqkw/uYXNbmfG+F/MGx+1xJLFDitVQBamkMtThCdfIMqq5sQ5fiaW16GZLBeJU1NirY+L85ZT4Zt2PO1gpW5nT5+QRhJgGRWLuNK1GgKYVsLwW1ovKDpks5SWrJyjrqO0xJiZdzLhcKFaau8JhorfakBRE4zcT+x9i6U0W5QnZ8jNaCtYgZyFlTQilwnruiTwLK4mSSZIA1IM/1w1O9vWdV1XMlfLeutzLzVp5xwuyK+PXMFR3W78lxcX6ejidRfQJsOkDZdwWVVPCbzDCpi0SspKvuS2/8LRzz8FYyXGPadKlas5h87r/7UDhm301GVgrQKpEuCuMxrRKbOhM8vF2izkCyJPc4PQbSJchMqBKoeiIe6txLoLs0oDRGj5FODJsqpIsF9P6hYC1HoNmpHOh3XBe0K4A5i9tgwzrptQ44UUvUuRIH25qIi4QyvnMpf6Bw30ME69fOfRrjk3IMTk4x3LoZnQcNuj/YC4zGsLN9KfyMarxBvhunrMRKzxd1fCe3idStRIA1oOWRkASuE87bfAjpLl3ZxByU3qzFto63dJERSWcY2fr6D0UuKRJxqoXcjcmVxvWiVnRisytWSVcf1wRRmqyKZwFg949uCT/Pne2IkcoASYLiZ05GsneEW798FQA3LFwp7Pna1c3XaAL3hKhVg9W7Pm7/e4eBn3O1KOeZ624iQO5TiW5iWmsfNjwLTGDaI8SzAKSTZwPjWeChYdqjRXI9lNj19CukqAvAz2KLbTWDnZ+zmiz7CuWUdAx7PFL2pHDJSU2MmAywucUPX/UOPPY/fgBUKpzxBx+EMgpkhPxIBmhgGum4RXDFICsFUiEcZFaKOBQ44lUBlcNtvvvCR+h+tnJ/k2KqkDqwjnBJCNaq2rrTzfMTu9ZaFe+JaF+o92uOKgR4hjm1ANTYuroH1d3Xbvt+e1VX5lX6uRAmg+tO8eyO2Fh50sZ3lZPx9liRjSUBXErHH2sGDwUDsVLgisK+rxYhj/EWYEqsYcueCvde3wkSz/LVjtCwrgtItuUwuMfjtv5cTacuZAvWcM83dR0IQDgPHn7HFmIyfwUwPQvuiOUqxjWxxxDhUNklVLmWWSuuuThbtOjeXyK7byDX97AMNRM5ARZYWIJ6UNZKfdJm8OYeyJjQ4SJ4zNRdkkAD+wXiQKOu7TC7NVCIECpENEP+cT9rd8wAKhFMKBHvKYVAzJNxhL23YK9MY11HmgrhkTjBpp/NgkK4LE+6JM5iP01EeEvWzeszIiZydSd30buLVYTGGI3rdTzRYldbunPia0cet/hOcE+uMIv4wJ+XJHHd4BrI3ZpdWXetZ2FerydYbJ408jCZJR3lTgWgXUtx6KSyHsOKmw5rDgI/xQQYEcIoP4NlI2HaNtqYiN/93d/FRRddhHPOOQepc1eoqgq//Mu/jN/5nd85om0S80NAaydgLCwsYHZ2Fvv3718xg+Vw47x//QHc+ZeXHPA5P3/RTSHx0a5IBAjgMB1nfTNFKPvyfL+geZBV9YFy2grBAke2GEK6SEiWRPWXLnuLE2A8I4WifJ9Lfkn+3rtrhPSeRVEQMIO3zGB02gySQYVkYRxIhdD66tWbfvGrKimkADWb7hO/uDXRLxA+2MJumQZnCfQDS43ki/MEtpOh3JyjnJIBy1QB/Z8MoReG4I4oWdXiuCZ2fII8OQvFvVf9c/S3bgdmtgfbTeoh89qBQsMw/RRVVxYi5QduVtIdoAojXSKAdPP48+LV9/69AOleSfziCilsRao/NZaOFd/N4okeNa6ERBrLgLY48TyUmHvqe8Bao5rNoUdSUFutO2XXM690n58UIPZ8pU5Wdz3jivDzZEv+/BMuBRaXmmDEqTI41TWIcbNg/Dna89X3HdZxHG7MnX2ZI38G4OXBwV8wEdTJRVW6vHzIPtVtHFnMnX2ZFGqUch0D8v31w/aosvXQ3srAzPZgplIMt2YYbVENmyebShdGOQ3YvL73/b+/fTEA4IyP3ihWikONZFkhXQLUGNCu/hLV/sMDvkOEWLolVCWqOrFJaiZ2NpFtqZJDgher63w3TLAJg7PeyhAsC/zgaN/h4Ae3e4LFd5P4ZBFwibSpO3BCAub23Wb1tn1i5bfjf1al/LPa2Zl5goXkHHnLAf8+4JrooXJlcpcMgXQgVl967JIdBoKXfKzopPrYausGKUh4Ek0s2ur9kn1mUVJ6Isd3m7h986RMUMa7pCB0t7hz64kaKUg4qyRFKLsuwXSe1UFFmktiW3UB27GOqCPpYCnkGkgGcp2AJaHnBMgWGLPfXYZaGCEMLfZiMVsn5TAWdirH6NQpmJTc2iOfjR5ZdO5aqrtYfBE0VtpPBHel45MThXJzRxR+45pMp8LUZATcZ+T2L6hYXTHRq4zFg9y6DhVXjCYF7uaw07mznSxAfrhoUdbF4VwSVu6ksM66wds5qEEBGhaSWHrCxHW4+Oc0LIXc38tNHXCqnKe/kWtheQwaO4GIFw94O1HfseKxgEuQvc2Svx81Pht3X7Kpdt8/T/5wwA6mk4QZLKxd90BKKKYVRidRTV4maBRWlJHvn3ENqnY0wveufvcR49H1xLOAECzezna1ePbLb5LrqoRYqThiyauTpQtLYTytUPbd/XRQFw6rvlzf6aKQtcbds5Tvyivl/psM64LfeJaQ72eky3IDSAYW+f1D6cZYGtQ4dGYa48duRuIImDVFJL47wrhuqomZPF79CaXleo+H3gOw2zejms6RLBWuA9kEfMpZAjOVo5jNMN4smHbTtx2e1Rqca9DY1ESQFwoZIwRLVTXFQ6t1b2cZ0O/CdjJw7gopiYbJZXi4qhjFTIqqrwPxrCqZuaCHBsk9++XYFWFFJ3osWCJnqethdUwyeGGL61CkQLJ4JYKVOSdKY/f3Prjm9bRWzJ91CexUVwpqiVoTS8497fJwnwIQulsOiGef+M46f4jV91rXmBZ42PEs4DDt/sUjwrMAZJZVi2cflph7qnMGoFo0KIIhtdKhINGw/RzVVIbR1gzDk3Swq5K5boJnTUdydlbA96L5gQ1Mu6SQLgN6VNtqqSrGR/KYHnPAfHrMIt6gJlkRuhYKDlZcvntFtlXP1gL8e7l81wlTdMlhDfD1DQ55MoJinixgc1W/h9sXVQj5I0SAw9rOMl2sc31HjqwHuhASwKZA1UHoVLG5EBfs1vJ0IOfWpILjyNTEhp9BQq47W7m1R48Y6VD2SZdckyue5EG0jw7PAo4McvNKPKFi8giHOjLFk9V6WJMijfmMrgtFOvXlMVUhdCT5PEg5LK4KuM+ufg8/xD7gD7icpCP/ik1iOaeGGmpESIYU8oJ0CUgGsvYqI8IIAOg+aDH1vQWoRemAFiI8srMCBH9lmWDDmU4QIgjJp6AHpdhU+g7NQHBHPwN1nUEpqTM4gQz38tDdwURBkBrWxUnBrbFN61e/lsdrLCCv6XbA/Z7MKFEAjSo3H9jUZEe3G2zhbU/IFCrFFUUNS/me+2Px66rvTnVCocmwU7kQRuMyCJrEwaWIusIjcsd3rARxkAp2toGkcQII+dmRkLkO30NPBPrvJLl6kE1UjWUzsQ2uOkA5RVh6tD9X7rtgCDZjcYdYRhA7AoAdPjRM28bKuOOOOzD3716Cx71xYwhmv/s7V+Oze/4K55xzzrHelcOO73znO/jmN78J/v+z9+fhllzlfSj8e9daVbWHM/QgqSUxCiM5hnCxwmAmowkN7Y/c5NrX5IvDYzu513FMvuuAjMFADJIMQgIkkcfXdh7utU0S3zhPbmxntARitIE4xNgmMY6Fwcxo7O4z7Kmq1lrv98f7rlW1T59utaRuqWWf9TzQR+fsXbt27dpV7/v+JmY85znPwbOf/exHva0nlYLlW9/6Ft785jfjzjvvxHw+xyWXXIJf/uVfxgte8AIAADPjxhtvxAc+8AEcO3YM3/M934Nf+IVfwHOf+9wnZH8fDlx5xfe/D851hUoOH7MEOLFQaMdyI7a13Oz7di+pUKBAMA3BNoBpSIqrGgAL82VxkNTGhMEuYvwNg2orws0jyDPaVYvN7xhiZeBg2nUUD0zQnL+KxUGHSi/MobIIAwnd8wPC6IEW1X0T9fRnUF9Fkuw8rJVmz9nuZtX3jlSf9Tgo0K6VGMwa0JZaWkW5qJvAKEOA2y7QrhVYHHSYXTCAWy8BAtzUwyw8OHu9aEMXSbZPcZmFmFbypFRGgWnE/5cLaXANe4RRiTh28CtO2C6ec8gcGcqgVrxgHRQYdksCxhK4ws4sN5dpmNgvUBkqMRZgJ4U/SyAZIxYWkd1jksUn5oLblmHcR37v7flvh5/yfwDDAe780ntFIrs9A5xDXBkK8woKnkVIc0zqdx1EuXLnPbfgzi/e2m3vouvlxj9fALFSNpTtbu5aWDfnjR/1+znVddcX3iXN8nAgn8Fs/oiez22Lu+79hTO0d0+OdeVV4pGdBoyn09Ltuue9rfsOGv0ehABY/Q57aUDjsOgaUxeAVlicpg6oNjxADl6H4H7Q2SiwAxAJX37zG5Ze96s/Jow/4wl2oc2L6RqWpOYwHgKEJvuokBobUpCbYAZpuM/ZYqoDLSgz0LptKnM45ZjoYDXL9xOrXZlAdgHNFek1Wul1qBvQppUZgdQDWGLXVLPaCSRwpm8hkOXc3O1XAldSs82945AIWGnbMCKiTA0eRR2cVtL4JjsJBkA9YCUx86JBDlTssscEjApqq2UVAIkOwqpqEjGh++xYh96s788wIxiS/Su7zyIpghJYlI8xSeOb3xe69862a2bFXkBApOhN3l6sGHZOoO3uM6Yo6pPIhHaFsP3MEVa+TvmekZdBZ7UJwK9Wkr0WuuGHCTKoDitVp2LpAys7Wfg6iKXaAzaCi0H2vDeLJmc1kIF6MVuYeQNT18BcPeB8EOb2oMo5KckaQ2yJnFh5Qe5/PHAIw0IICI0BvDaAyf85WXRZA9qewc4bGV4SSZOe2IlqbxAHnX1oDgZOAMjAgdqAMC4l56IyCBVhdF8D00rzGUeVzC4oedqh88Pu24KlL48qSBOIcven/zFe9cp37VAFaMaK1iqZIWjEStTW0PBPi6BBtvJZdt9Dv8KgVrzNo2V88c3X46/ccEc+9//wp/4h1m86e/yqTwauvOL73we7s56NYvEHI5Yv7VhyBWIplmmppg1lb4hk5fqNNg3/dECow7l2TJgfFDuxdl1q2qfdHVFstTC1hx+XmD59jGFpQWGfEHdmc4QDY7RjC9M4mNIhjCvE0qA+WKI60qC8f1t2IERgMu2IRDGCW7UWM0a81pPaKakd0vfPOcSqQLteSL7CXCxb098JgN1mVG2EWxRo1gtsPnuIaqOEaVhCf7XWSkNIADKMXZQy1JkvwByAAFHZAp0VamLI+gAzqxFRAcoothOSmraynUWtvodkZUeFQfOUfTCe4R7cRrbwIsqKlSX7GyAPb/Lx6Nu6EAGGwdABjxHVF5W8ZOX1iBezgMFEuLMHbBx++uvle1wVuPN/vFts3rYFyOFxlclGlOwBe/UsIDXjnffcsvRSh5/1RrlmxN419gmoZ9P+Hb74TY+qngXwqMCsv0grZb6kdbrVLks1bSJOgNVOWWyIWBnlbEkm973vjq0DqmOiaGlWKGfEyfCbwSXjz3/yp4573a/+2E/jGb+sNa1yJLLSV+tR2+iAfaBEGKIMsqTZg2TCUa53AamFJNuwy1UBlBDQolNAI9Vs1ClCWLZpPOAWEWYSOlstQOwLi450SF7rHIMlRXZ0ovxIZKacp5fuMdZkQkMo0Cl9tLZOmYahQGbUh0pe0w/kX0DvywY5g0yy9AD2qT4m+AqwhgBEKa1iV9em9yFyD6n/MyCldWUolWCl5AHb9Op6JQy5eaqluvycqGC20ToUkPeXlNW27dXsvRIwHzO9J5uGQb0MwVh0dbutgeqoWcrcCAMGRYKZ9uxvVXXrFrLNdkSYP3UFw68DZmNb74vphs5CRiACrw6xuHBV7o0+ClmnjbDeSw26OgZtbCETGdJ9ZCfIkn6X6siyBFqdO1irao7Y2XY1DdA2GfBhjhlgEacKvX8mQD2RapKFbFEI2W8galcyvqtnkxI6BoAc0HqYTZ/t82mh9/9ENLYuEwelTyF1KpF7UgZjnRGL4NIg2gGK7VZyV4O4OaAohHShdQlY6/D5ArC+IySp+jIOSlGuq1L37s/8Y1xx7a0gr6CKle9pykgyTZD6meWcliwm+X6bgQAyvqL89zBgYBSAxsAsDNgwvvQmAYG/8+fuyD3X2VbT7q291V8XX3wxLr744tOyrScNwHLs2DG8/OUvxxVXXIE777wT5513Hr785S9j3759+THvec97cPvtt+ODH/wgLrnkErzzne/E1VdfjXvuuQerq6tP3M7vsi4//B7JoW4pI+uJzSFFVcdsSOyB7OmPbhjoFoDxBNPIz4OjjMFR8RmbHnJYnAP4py9wzoFtOBtx34Pr4G8OUMwi3MSDQoRtI9zCYnHQYX7Q4IA2X2tfngIRiAOb5ax+KL6mcy4QqjWUGw3c5kLCYVsvMkdAmtK6AaYz0MpYMkNS0DxRZjXEA6tYnFvJ8GHcGxhpk0hRClMzb2HqAqYdol21aNYlewFcYO1rFtWDMx0ixY71t5s4i4xsOwXQVYXc4EKAmXmE9SH8egUQwa84tCOTixU2BLI6OGD1hE0gl2UJH268SDIDZFjmTLYJ6QpTyk1oHtBkmWpibcjjins3wfc/+JjOtTv/5OYT/3Ena6JpgfkCJoFSaqORmSJBpa6ay3P4kjcvASy72T1c97yeWkY/k8dLxn/nPbeIwmY0BBkjzL9TFO0teZn+JV0JUDkTeTmS37NjaFFoUaisPi6dKr+02E4stl7uQblFoGjRjqVAjFHUF9IYnODFo3RpAsTqLqSZU2q2jP6sIAtKyPWw6IEMgboBIAPJQkzk8fLc1NjBANFT/l3cuf2EEaefWQeNkNdN7DzuAx5AZrOlxjRZdOVMEW3clnJeGDKgS8cnbTMiqySjgh6p2e5bhQG6b9zbRi60xcfZeKgySENJjdgKkO+2kY5z+p8ExlM+XoA2vFbubxQIsOm/WRq80JETJLxSBtnRdcz3HPLaA41ybo3uQyjlc6M5C9ilDMm+l3AYKIjSYw+aWcYW4MdyME2NrLTJxyadYwzUawbxWSOsfo3gjs3ye02AfFgfol0tESuDYrtHEYX8ndjIoHRQiNIjn9fphXonfgBABrw6RBhXCGOXs3H8arkEDsTKwY8cnCWYWYPM6ktNXN4JOi5HrG8N5NcGiKUBBWV5OwtqWe4jKX/NkDSIaRgVojT+ANBKs5itd7QR5cx6FFY6hQAm+TDsrBXrDrVgSIz9qKxDjoVsP9gu5D4q05K0JnBWXocIYegQKwtEAQ+KgZOm03N37+4Pm7UxNo3X1+wGQrEQq9d87gUgqvLpq/9oGbT40xs6QHhrawtPlmXruFzPErJyJ4f72mQzJ/YswqrVYZNFl4PVyLVueESsR6iN4MJgcmGJxblA/bQG6+dMsOYCHnhwDW7KsJMatPAoFx62rtCuFpifV2BwbIjh1zZBbcDKPUfBziAO5XvQji3mByzYVIilFXuxo1OpV1svQ2zvMzuUmwbcNEI6GQ6R80PaFhwC6MA+LM4TxXWx5WCmBPjuHAbkvmcWjeQC1QHNygjzgxbNGoFigdVvBAzvX8j9rW6FLVs3Ulu3rYA9qYYpqFPUAJJHEiGKsbqGYQYPS4RxBXaEdqVAu2KzrU5SFuVshlKU28EC8YI1AZ3qVrYfogQK9wEVfV9Z5QUskYqyTZiqXdhaxKFcfx7LuvNL7939D6lOzbaJCoJ4D5rLuUkK7B5Xz0LUKzsBlt1AiaxOeJzrWQDyfh5FPbu3us/pTFmJ7axp2Ri5L8wbubeoraTklul9M/WFOlA2rdS0YItmTfJO/AgIw5N/ztSYrGImVfD267U8KNV8OBRAQgNCQTBam1IEGIyQ7lcAYmVyPkuXBUigBIyn16CuHkwATChV0e0J7aqFXVBWMyMy3KTNfXKaf1DNiJW8d2iQfSxMV7+hA4CSXZFtpG6DJXnr6RKgAsOoKnEYub+kujyTiJQgs3TMYlf3kReAIajtkR0YIbW2STHdfT4JGAmVWpW5rq6PStIB5Pjk52iN6xbd72Mh2Xeh6vJ4kgo+AznU/ZwVSwGZuCW5hFqv9XqC9HO0EKKW1veDB5FJWc0aIECczqACSx/SItfysdSab2CwuHCM0TGtWZIqhAi8MkBY3YdYWiGfTFqp4fokAs/gUQna0nvDbte1/u9iFJChcOBBId81DOWe40Mm/vCgUEeEhYArSaGSSQB6LiYwJq0EiJDYTPr1SmzRGlWmMisRSO/BmgeTrEMpMDhGneWY/Br5GtDLMgEAuzDo1KAMBKlprB6jWDrE0sHUnN1SiEjqAgXc08yCvQcVatdeluAqnXCUv1OJEENGFelgJW8zkhWwUVca+X5C7/Xpf8h20mLxxqAy4Ct/93hi+T0/++SsaZ9062wpBc6W/XgEi5nxb/7Nv8HHP/5xPPDAA4g7AN3f/M3ffMTbfNJYhP3Mz/wMPv3pT+N3f/d3d/07M+PCCy/E61//erz5zW8GANR1jUOHDuHWW2/Fj//4j5/S6zwaS4WrLpcB9kc/8chR2SuuleF0krrCJna0yTLTzPYoKEtLQyUDJLFg6QLgTCvSVT8w2LzIYPr0CHveHMYwfGvBD1VY+arByrcjimmEXUQJbs/2Xtw1RUAGArJdgQ4fTN0Ciwb+/H2YXzBAsR3gJm0OaXebC5F7piBLQNmv4m8ezlnF9jNHiI7g5t2J7GYRgwdmWQ7JvaEOMSMOHNr1CvU+h3ZMqPeJfVp1DBjfF7D6pS2xZEi2DRls0deg7qaZ/DSFSSRWIH7/AIuDJULyb9XBnOQqQG+w3LOW0Z+9qG2q+6fCpDDIDIzERABR/izZppBAZTYlyxVtTvv2XI/Huu75PysKAe+X9jHboswXQNOC61pu4uPkWacDlRSIag3u/LP3ZKbYrh7LO4JIH8913fN/FtlzFVI40GQhAcdAZquk97G3Tn1liznm42w3dlvZikOZRFwWOaAXgNjwlNKMpuZK8iEkXFLCe42ywqQJ8QPC4iBhfh7D7wswAw8OBl/9kTfn173o52+DXYjqL4HXSfUCICswEpgSSyCWEp4OyxIgOhXpc39IT9rgkF4nEqiRGH2sIEgOmDcKYOhrioIDy02kqigoqOXUXF5P7AV6TSOAHDRP3XMBZJuD5I+bwKHUZAHI9ldGbRJCCbQrXSNIcVlNQ0FBI32tZMGQmtNQSlPKlnMuiW26fZFmDbk57FuXAV2DmECfDOqo8sa06Tjr/psOzHAzuSem95YHiDu2lbaflEo5dyWISiYNxIVJ2h3zBKSZRskPPaULU2e1kPyxsxd2YuO38nrVRsTql8Vesj5noE0Nw69YLPZZuDmj2vRLNl5gyWBJ+TRgRnVkAbMxFbBCH5Mfb013zzMGzVP3YXao1GNJebCQbIKi1h/ldgQIGN63QMqQkPeXTi4s7VM6/9Lf5ocGKDc9TBtgFkHqBR8zQJpXsh8rXb4P5/eZhrARSJaB/dfM90wgHwtqQx72xmGVh1d+pUAoZUj08Q9114L+uvoV78pkhw//3ttx5dW35CGxgCndsU15NaxEg2yVqsciOiMDIiu1nB8RPvvB63d93ZOtx2rx9Wief7J798OtE9WzOceqV9MSJyYvCeDoxP6rmHUDK9sw7EKUve2Kw+ZFFtsXRZhz6wxW41iJp3yMUUzVEq4O+fMyrVpo7AAE+jUtG7NUzy4ODVButnDb8n1KGQm0OQFvbnd1JSA2osaAD+zD1nMPoF2hPByjyCgnEW4SpMaufadkTsNXQ5gfqoQsBGB6vviZDx4C1r4eMXygRvHAtlidNQ042e8mRUxZLCuv0lCoKOR+6gz8+gDN/hKhlNfoW0LaBWfrwbwi5+s4RcbgG5tdWG9SszgLv28kj1dgRmyEe/vWq48TY/bxXEsKbB87q5qkOmr9ievZ9LOeK3d+6b0n/F6cbfUsgL2a9jStq1/+TgCiYDyVdfi73tLZC2pNy6XL7gixdFlBlu7hpolynQLEsaAgxMrAD8Qtwg8ImxczwloABhGYWHz1dcug/Hf+3B3iWhF79SuJfWmyjE2B6VFrs7TS44sJUEy455SRMlo0Q7B3fxd1h1xT0/Wjn12XlBh98ktnNwRRLTQRJs0eVKkeK4swsBo8rzZgFrkuYdfVtcnJw7bd6wcNio+lvPekygi995z3MSCHvCd1dbKkJAhJKIEQbFXpkgiVPdAq1Xi5pkVXw2dljxIuc2A9df/mmrftPqtEwgKJXZite8/Z8TmkuUS2SNaaR+xuOefr+IGRY+kk/yxUyFmVpPcs2wCDY5x7AUDs1lJuT7+WBuS1k70cAAyOeAy+vgG/X66n5CPCSoHFwVKC77e9qCKiADXJhp2dEQCIhHBE2zMhewI7wJDefVxz9PjAGtp9Uj8nyzZiFuUI5LibuW6raTtST1pLtTJJvQx0138ihIMr8KMCxeaiyx9MRIfCdXlvOsNJCuglxafVvF0iUIgdSJN2I1nw9/epd89NwIwQlFlmbSR5iR/+zz+Lnevwc2QemXLS7vrv78KrLrs5W32lz9EEXtrPpZXqAq3hQiXP9QOxbf79X378a9q9dfzKFmGvO4sswj705LII+8mf/El84AMfwBVXXIFDhw4JeNlbv/qrv/qIt/mkUbD8+3//73HttdfiB3/wB/HJT34ST3nKU/C6170OP/ZjPwYA+MpXvoL77rsP11xzTX5OVVW47LLL8JnPfOaEAEtd16hTIYpHia4qm/NUQqNfddnNoDZKU1IYkEkD/u6Cl3xM0w3DNhKIFwZWfZMpD5ZsowN/HfrYlmGaCL/fCrOjJfijA4AAt2UwvI8wvp9zPkD2ui+t5I8YBrzc8FL4rVkEmFYGJCJN1IpgPof7RovVjTHisMDi/DEWBx3aIaHaKlGdN8bigMXKN2sUX7q3u5kUDvNDA8wPGgyORfihycVIu2LAxViAn7nejJMHJBFiadGsOczONSAGhg8xhg8BviLMz7UYHB3CbS5A2z2WnyEAalOW1Cvpc0vMW2UaAejYzGnWY0glw6xDQalsmGS4llgdAMT+oM9kKSzCqMis2txwJgVM7A2KiABHuOu/vuORn4OPcSX/6Gtf8I6O/Jx2GQAlZcG86QofQKWxnAdP8d6Tq20kjHR3puDjsXb6ZF976TvA62MA2mBr1tDjDXCdbF11+c2PCrx9PNe1L3hHN3w51WVNZo6CSHMagmQyVAW4tIilEXvCSoo7AHALUaykIj/ldAQNT2ZlilEZMFqt4WzAc/7tDZhtDXDJLzbAa8e5i8r2AQnU4N4AXe0PhMHGOYzazE3XDO3SWJI2JzlAU7cdvdplAaLCSLWzgjQGECuCdHwS+GDSwFL2JYEEfbsw7m2nn0eTQQbFmNOgPzHX8qfVbxJj97p9azR2APeBD+6Ol1ExQGLp2QZqxUDwA0hwphNQC+gAnbT6wBDSjKu375mpp68XNe4qKW6MF4Aq9pQvHdtSBgSJdWdazrkuhM6jmm36TIU1mE/TpttH45GzctL7aAtgdD9j5Vs+AyB+YLLKBZBzYX6uxWK/MhTVFoLagObcEbYuKmBr1r8xBhtBFB/63ZDX1xMiAgacB4FhVAB+CJNDOU2XNZJYhKZAXBui3lfkwUh6D6HQ70zvO9GsWoQSWOwbYXgkoDra5H3plF4KanBn2yEAkwyJwkCADvIMNDpYNjusj2LM6th8PwbEIin5UzsCQ4FXBXtkYCrvkVOoaQJgnNzP231CxJAwVsbv/PufxsnW3Z/qlJZXXn2LHOco521uQBObMPlRm+59f+IuAW4uP/wehIEAwp/6jRNbap2JdVrqWV2nyvJONW2s7Anr2WRRYr2cD0LqifAjBz+22XLE1pzB6VQjmSYgVjbnW5En4JsDcdtYEIYPAkBAdGK/Rk7qSVEzEYjTNecENW36nmo9u9KrZ5t1m68Fg2OrcJPzUB8osPqnR4GvfRvctKDxCPVT1zB5iuR5hUqug7YRQpQdGbiFg507FBPJKqQYAQcwDJpVg3qf2FWufV2/0yWw2GfgZg52WsEsaqABiAyQ7WF2gEbGdFZ3zsqQJzHDSS1zErhEhGgAi25wygp8ZeUleoNEH0Slrpavi6esIVamC8VOnu2kpKEEQFoDdnjYvuhMrA/94Y0ANIMwWb0kgLcsdAhXdR76wHLmCmx3XE+wzrZ6Nu3T2VzTno1B9Lutq1/+zkdWz0KuMTKY8bmmTZmBXIjqdLd61jSqzlCVgQTBU0egIQBVxHB1Abcv4pLf+Dk0Dw5x8a/ptf7aUUekgdRBmaxDgNE6kZJ6w8h1KuXdRatzAEswzFrzpNwTzgQfoLdNzUUR+y/O2XzJ9jpfx1OubFyuZ/oqtmQZK8dQGfI6BM62rqkWNh3JJ+XtJSVeqm1SXd6vZxPJJ4W+JyVyDuGmrt4FADvrQA5EoEzHbQi0K5wzJkwrdrJLdTeQHUj6lmb5PfZq3b41Jkf5rJLCJitqtOaPtutTuhxIwM2jWDYN5fNLr2u0R2hHJoNVTBDATT930yLblZlWiEWr32gx/PpmBgvCqAQXJiuKo5Oaa3aoxPwcgp2TKogIYX2IyTOHYp9biw29kG0iKOXw6ueRCCpys5F7U1gZwDKDNpNKxHTX6JQzQiQkgpUB2gND+IHVHDGfyRyUredIrLYKC+PFGtduz4HpvNtWAlOSgiX1stbkzC1bK3nHcTcLA8T2UkkOBAgYkbIVU01rZd6XSLaxtEBpswpaZn0x17PQ7aRmhq2VvmIsCtQ05zsRWQhYdi655qU/h6tf9k7AyX2ae+AoIsAFwGS0npfP5RN3ihLl8sPv6ZTIlvDp//enTviae2tvPVnXr/3ar+E3f/M38X3f932nbZtPGoDlz//8z/FLv/RLuP766/HWt74Vn/3sZ/GTP/mTqKoKP/zDP4z77rsPAHDo0KGl5x06dAhf+9rXTrjdd7/73bjxxhsf07599OOn3jyQ1xB1vZh97KPy3MsPv2dpuEdNhNEQWtPoxVyZYrZXCNg6Sghc6A0f1K/dzSUI71n/5Ha4bcLKN4HBMc1eCbI9o/8yAx/pMcyuuvxmJOCoH4h+3fPeJkycqoBlFmbdZAbTlhgAsIshmnWHdsVg81kFphcC208bYvWpz0Q5kUoiFIRmzaCcCMOPTYeI+xGBjUUxNSgsoZi0MBzAIMTKoVkvUK9R9le1C6CYM4aTCDcTtiyMAQ/L7HFpZg0wmyP5gMJ2hUK+kRqIMmcRYOuIes0tDf1ysQhk64t0zAEp8OzcAz7mG2RiLclr6OcaWNgL6YBGyM1amZS5eX4cVmLsmsZ3GS+k1Xj6OTOWOTemfZaxrCBFNBnx6cfu7NfDl7wZJjX4MeLwRdfvain2eK4P/eGNuPaFN3TMvxTmfBatsx1cASQo9poX3wRiPuW8oDv/5GYJoe1nFaXsIi1SY2Ekb0KHXKyM8My612GONEXUWTfVhLCwCCsG561u49h8hBlpMUxAHESwT4W9NmvJyiUBDHngDlA0iBWDWpHL20XHeutUIR2TzjacLXCYWGT0KqdOGSAE+VdCO5GbrWxrpfuQPZgTKEG9f9H9nJrPzDTDjt/1m7wdz11SlUCBEm24kjKGWFQqPjV5uoyX45GyTFJ+DKANrAViIMkK873XxfJ+513j3u/0WmQXBDfp+VWn/Y/ddqTRRw6Vz+8r9DJaLKEtkyKF8r4UM8lySYGbphXmHxux8wJT/iwAZEAmOqA6Cuz7swWK+7YAZvhzV+EvHGL8Lf0dERAjRofWMbtggNm5BotzhKFuNrZRMWO8IqxNUUf22IjKOicv9w3TaFaXejSzNajPqVACkrWQ7nXp8KyP4fcJwaJdcQgVodwOeRgRHWX2oZwvyTdcft76DsLskMPgqINtpK6othjVRpvZgqI+IkS9VzTrDvWakdokWeK5hMp19xQm+fCXrreZ9JC+7wl46c7raAgoDEjJDKwNescUNPBjh8mFBdoxoZgy/uuvnhrT7vLrbgUbQjmTAVk6/jCQHAmtEz7+4Tfjsu97D0DAJ3Zk7X3izjfh5T942xPSiJ6OevaRDj9TTQs2J65nPWeVr6lF0QHWAVVl9LsHYTX3ApUBINlaRCvX3j9/g+TUmBYYPgAMNqRWZpdyk+Sc6wNmwIlr2mtfeMNJ61k/lryE+QGLxXc4LM4DNi86Bwe/sI5yo0F9sEI7Nhgck2uIBMAS2hUJgHVzgl8wKgLsIsDNFRh0Fn4k+X7RAnEs169ymzF4yEumzLxVSysrVlbWyAW1acCLhdiAWNsLtRVAgDMAaGBnHnbo4EcCQqeBVrrepcFd3y6SghK7EstWLXsBIKyv5u+cbYX8lYYyAorJIC0NknLGwhleV13x7nxfOA7Q2XGNgWGxTqyKLowZ0CnzjvpXr0U7vxfH1bPPeuNZkXFytte0TwZwBdDcrctu7vU5D7/u+u/vkpq2p/4XwFnugf16NtU4vjJAJYAIIAQLAApcGoRC6p8wcYirhHNWJjg6G6Gh4dJr5wxB/S6TB1xPNZyBiZ5CIg3xbSLYKFkw1aiSs6G1bc/aNddnCsowobNr9d3xksyPDnCFAicJQIkwHdBCWn84tYmtuuB6oAcuEDobLPVcpdABJjl/BbvUs408L1RdXRz18bHsagxKavEe9iofjmwn7RcFylmE6B8b6vazsw3eUdPOCcV2T9mdWu2oj/Oixu6rZUyAEKUYqhCSnxOhQ/oLygpkENCsGSTyLfuUs7PcI0TXKX1GD0aMvvgQ+KGj8rh9a+C1gygenADHNpFC5WEIxcY+lNsjTA85TC8gjO8D7LEZhg+WaFdcRwLT8ypWVs8RAV4SsMBEMG1ALC3m5w8wNATjHMx0sVTPwlnwaIiwT859Py7gxxZ2Ltk+yTpaFCKcrSpBADlGu1agPVShmA5QHhtn5RjNGrHhVHvTNCcCgDgoEQZOlOSWlIyWgBkjwfcpM61fz0Yg24P11JD9nMj0uYrLQanXC9Ndc0i/DwMLP7JoVg38kOAWjM9+8OSEIQC49kU3dveBGIFgVAXWq/kd4RN3vRmX/fX3IlrC7/7b5e0moOWJqmn31qktwo4ef289orW+vo5nPetZp3WbTxqAJcaIF77whbj5ZkFlL730UnzhC1/AL/3SL+GHf/iH8+N2ynqY+bjf9ddb3vIWXH9913xvbW3haU972mne+26dSGqcLmJpJQYlAGG+GAmaT2xtUoa0WHzF3NSwKmNsw/j8++V9De8TT/hyO6KYRXzyP5z4wpzY8ica6t7135el8FmGr0Mft93oTUV8lle+LnLdjWfLMKjc7Aq98f1in2B8RFEaOA2T7zNWpFAU8CH5sworURgmxZxRTGNuzt2RifhTMkto+1R8q+E9MBwi7BtnJgYbZTZvzTPLEZbEJqfhPHiVQSN34bTF8uDRtNI4y2cQsuKGlTlGJJUWefHXPU7umorxGMHZyPrMLzupwUT40B/eiMPn/gOE77hQ95V1f3psvr5tnPp9Z/ZHTAcKoPPPw+Gnvx53fv39S6913frfAx08IDT3FHRszdkBspwiIPCXfb3qsptBgXH3p96GV112Mz7yybcKSMcMs2jx4VOwBeuva194g7Ar2QAQ0FnCPyXQPjppRlNwvagihCXVjmWY5uZSUCcP4f6wnmqDtrVoo8VsUQITB/INvvoPuyLxWXfIuUeR8nXJJMAkqVKS5cJEcz0SsBK7/xkvdjYJkEkKRAFPKDcZpu1YdglsSU1YaogIXUOWA+lN9/gMsKB7/QzE6FcxZ4ekubYCKH0rq6S26ZR4WGbJUdeYZvVG0TvOljtFzZjEP3q6o4HXz8XUJA1rD/jIDWfal2QfljJgnBT/bIWlZzWXIQXdZ+sh3b8UeA90vxf2H2fbCGngO7YhBRmC+iGhmDHcTMkK6TPQfUuDiFh2n8PoXmD0QMDwwQbuoWluyPrstfQ7wPRs7gBT9xROCYBPZQpJ4HkKjyZPsGojmWw6Y+Ukl6IyKLY9mvUC2FfATQYoNsucT9KcN8L8HKfbVDvRACAybJAMokDdwKdv52HVAq0+wFicBx3KEsoNQnWsgm0Yg40IPyTMDxq14+BsWWFrziqCWLoluybWhpSBbA0hw1zkgbrxnO+RKfck2yUow/djH/2ZrlZS8CP9LRbSiNoWeNlrbsPgWHvS4d4r/+f3whDBtlHsnJwBys4nO4FrSanyyd8+3ms6rSeqEX2861lg95p2Zz17xTW3ylAiA4c2W05EBUbcIsIugtZJy/VsAko//0/kvRUTOTedft9/59/tXtP22fInqmn79//d6lnTWsTKIloHkEExk0yE+15SgEKRbf9G9zOKWUS1wfBDozY3yDVtdCQM9ljCLIIoWSqbr0XlFjA8EnJNbOYtzGQuHutF0dVd83nnMb+2Ci5l4JWIPWbRSP3mO3sR00TYhYExHVHILvS7aeWehyDXHJOsexLj2Aepn0MUgk1k2DqCFsKiTYAE6f9RFKs+8lHY1NkX5wwvku9/yoq7+mXvlAwbBbiPy4ZJy/Zq7qDTy74dIcT66c7/8e7uvy9+E3LA8llWzwJ7Ne2prJ2Wb+lakX5v5wEf2QHSPty65sU3gZzRW3noatod9SxI7BBz7pzaYdlWyCFCflhWopiWUE8qbA0H2Dw6RnFMMsZ22gM99813gAshvYQB8pQn1XdQtYKb9WyzVNEcHXV240khotkbKTMm1auiDlH1Wm+Izo50uA3k3ETGUs6KgAEEKNE0bSOFuYslF2XQA0h/03pS69tOxcJ5LoJenkiuZ52GwfdqZaM5NWHY277rtpsIO6meBaktLgPFFMCUct2RAOpMPKKuh0gKmVzvWwFliolsx9aiGDKB83uPun+25Vyz5po9JvWQAvMJKHNdndKsmvw5pjpf3qOqPPW9tKvpGMrzVr7NWP+D+4GNLQl/ByRPJMrnR4VaUqoTiF8p0awY+EHvcxqWCIVBKLQOtvJhZctIQ1J7+gDWOiCpWcgHFNOA+aEKFCsUW0OUD5UdCbV0aM4ZY35ekffZzeW8DKW8Z8mEMUuWYQKKmXwuzM91mJ8j6mY3ZxSTAYrtBmayAA9KNPvli5FySCjEbDsmuX8EcjarpxnIJJzkVkJI99/uszEBeX6VyQtas4ax7a4/GZzpcolSPqVphbz3cDXtVVe8G9Z1YE3KWQRsV9P2RqMnmwsCT1xNu7f21uOxbrjhBtx44434lV/5FQyHw4d/wimsJw3AcsEFF+A5z3nO0u++67u+C7/xG78BADj//PMBAPfddx8uuOCC/JgHHnjgOFVLf1VVhaqqzsAeP8aV2S/SgCbVRGJrEwNuJmoLuZEEmIUOBahAOYl4xfe/D2FAGA5P3SvxkbLlkwwfECm++FNGlFsBxSTIzaEyGByVmwSwPAQNAyPs5ggUWx4lM0JllRETYOYNzKwR660Y880qJhuIhlEdaWCmEjyK6Qw0YaBw0vg0wkpgjiDnYKY1eFTCjwuYNmowqmifyVnECLiJx0BZKhSlyMnMhvSvFpwmMOxcb8ALnwsKudEKM45Y2XIERJWb5pudgQAUTlmbRlgHcg7EU8qyeLTrrj+6Cdet/z35HL7jQikWQshgz26+p6k5ZRJ7nexbCiAHio6H4kUcIvjBI6BzDoDOO0c+j55/eLax2VtPilV84yju/PP34fCz3oiicLjuuW+DLSzCuHxU5+mHfv8GYVomix8gD19jaRBGNqtVoiO4RewG9IDanmiYZEGZlSZ5KsnSizBvCxhifPUn3gj8RPf6z/ont4MLyQiRghfZZisHhabZS2ps2g60SGHx/SI1q9TUxz5Zl6W8i5wtYrvGL9sfWAVHFLyNDggj9X6mTinSb7QYXWMjx6/bZgJcgA7AYKczbmWWJSAmAR6I8pjMvusBVxJEzd3+9t43F4zABKt57ZyaZc1wsbWwB/uZLsQAvGwnATdGH5fZkQBMI9ulZEFWUf6sSNUpqelMn5NkeMhrJUAunR/peKSGOWXj+CHBjUg9pbvPwA/V5mwANGuMwUOE8b2M0QMe1YMzuZZbUYEmD+m1h6Yy7HcSyl4/dR0PXlqhWQfcRNiRFBjh0D4c+64VNGtiEQQI8MJksmpSBp5efJ+J8r9cWAHwAwkrHlIz+JVSbLoqaXJjIerQZOUhL5KaccrncQIU03lKkTG8n1CMCM262ORFJ2DL4hx5XLlpQR7wK0CxCdiSZHAw5zyIEaZizENOIMp3K7H+tMH8yCcfXUZDajCvuOZWVcCJDcPnPvCGU97G5dfdCquKOFPLgeBMJEjH5Oynh52t9WxSpBxX01r5rGxkuImHXXgBVKIOMywBVMB4RjGJeNnfuk3A0AHhD/7pw3++j5Qtv1s9a5SMk2taK8qm9n4l/OhQkKKERbMqwwcbAoIkew3S74JZBJhG8ljctEG1WYJJVHWmjigfmooVa9sCixqs2UpUONle03Q7XNcgLhHHAwGFZrUEugOAtZIvYg0cie97GDpRX9eSY5br2TT80nBbAEBgmLlaEDkHOCCujzKIwkr6SpZ9OQfEkLx2+r4w45qX3JTv87v5xZ+O9dGPvSUPx4EewATkfgrMSmCgpZojL2vQt7zt27AlT/sMqJygnj1bQJa9dfJVfnsbd33hXTj8nLeCiVA6g2tfeANcYeFXiuMUcKeyPvzZt+OaF98EWCEvAEBSQoaRFbUKyfXC1AGxJCUPqlWpqnNDKQCET1l7JUvt1RhsbI5BhvFnP/MGYMfl7XlvvAM8ABDF0osAtGNkZXQCAqyShFLN2c/jS6rDfl5WzhQ03A2II6t7RleX+5Fa9zrKCpEUaM9WAPWsoEh5LKF7LIDu5wRoABngSEpWNgA1vf2E1E1OyTYMAqWfXQeehH1Sx8h+SR25pEzW2j/VoKZNYAZyDW8bgHrAS6gAlF09m45jqDqle36ckee5hWarJHv3/N6kni0UvJID0tUdGeQynRKlq6lZ/5vQrABW1faZcEUk2YA9KznbSFbN+NvAyrcDRt+YiGKk1I3GCEymcJOpqla0gDYGi2fsxwMvKNGuCljnprKvR5+/D+2YBPiA1LGxVJJq7PJHKEZQqltTTVs6FFsNTOM6FeRIFCR+aOUeOxTbzmZVXsO0ABViBRos53yjbDMa5L7LpASgEBGdkKqiJfgh0I4L8AUFyu0hTGA0qxblVshkqWRVLx+szNvkOOgH44XkKzMQqXE+/Htvx6NZS/Ws6erZ//zrpw5wXHnVLfK9TJnKmn/YWdXjSVPT7q1HsPY+zke9fvAHfxC//uu/jvPOOw/PfOYzURTF0t//4A/+4BFv80kDsLz85S/HPffcs/S7L37xi3jGM54BALjoootw/vnn4+6778all14KAGiaBp/85Cdx6623Pu77+1hXYmH11+WH3wPrgd/9tz+Nqy6/OaPgFCKoFnYoecDUHm5qgIHktYy/1e7yCqd/3fXfJBDwmpfcBLddizS9sPDjAsWW6QoGAkJl4YcG83MdwEA5iSg3JGC92G6lwfYKWrQeNF+AiFBOK5hmBcZXmJ1nQQz4kUO1NZeGqiylMQ1R2GXqf0lMQNOANrZA8wrllnp5tindTaaIpm7htgDTlvAjJ82jNpzGM6hZvrGK1LUrIHlQIgeVAUiBZDIQM9m7NgWddhY3BMSgRabanBHh2kvfsdT0n8513frfw12bvwIA+PDvvV2AnQQI9RUrvZWbVOauuWTuvEuNeogagIhA5x7sHsM90Ka37b2G9Oxd1z33baAU5pdWDIAp8nfgVANAd1sf+v0bcN13v11UK5UG2lc2h1ruZM287DW3gU1iLUmjGnsNUrb8ioCbGHzpJzrA+Jm/cNuSeiU/vgee9K2zxD+6azTT0D+UvdeDPDeAOmaZpfy1lgE2ZcuC6Cir4FLYaB9gQewUMtGpYmKgO7MwIL3nc3+f02uZHfuaGjcrwIMwBpeb6tTIUk/p0rcqADowiQtWsIXBpWzT1EZBGQYHCHssdvvQD6N3C4AVZOlbiBG6xy+pRfRxOTSau/cp+QWQzId0LS4T0IIeI1Mb+4EAVQlMyZZhvcbel6kpJri6a+TbkQSe+jEQ1gKKrzrs+x+TZRZ0lvvrkDHbXhAYEfNDBZp1YHg/sPqtgPkBg61nlmoLAKx/xaNZs9o0IpMo7CxkG4MUopkCNZMFpgykAT+WxrPa9IiVQb1mdUhB2avbqHczoEPhABRTzrZMwrIXpp9Rq4lQEdpjhHaV0Kx1Aw1h5wNFAwweFNConKQhrdgHmUaGyeQj0Aa5ZlgLRgQCAQXhI588PRaIH//wif2od1tXXfnu7CVu1bbCLCTANI4kq+ajH3sLrrj2VlDkJ421zdm4dqtnAQG2KDDcXIg5CAwT5DOgEMCwoCbAAaCg5JRosPKtZtftnc7Vr2ftwp+4pu3Vs/W6WN8mQMY0MthwOuA3TYRZNKBZLde9mcXK1y3cvMLsHLEii6MSdmsqWXfGSJC9BrRzCN2QKwTw5rYQh2bqJ6+5RFByT6qBLTOoLWXY5Qi2Dlpfd9lKycqwD0wwEXhUZQZxJjuFiDCQmxEFhkm2hpqTlNRkS/WxZiNd85KbHvXw6WRrZ7bHhz/7dsmG69ecUUhMS6BK+nu/nt3phJBq2jSQivGE9SyAs8YubG8tr+ue/7NLaiYAQNOCrF2yUXss1/p03vVr2jAUy+nP/Ovl+vMVPyDniKimZdgeim4/TACi1jPlMYN7/o/u+d/1s3fgf/zcDpA5KjighBw3Z/iB1mQRMEp8UdG4kFuSwiUCsVVHhp5CmI1c45bOcO5qqMTOT44O7SjVPvr3QnMnCrECD0mRXqc6TR7YD2rPKumi93pJOb6DDCIWSt2+pM8xgTOpJjYtYBaA8Z1avQ/m+JUIagnFttRgptF6yWudajpiTMpYlOwVQjukJSBnyTqYkbMJyXdko5QLuLSIBEQ38uYoaIC8qgsli1GK9ERMSsBPUudE3Q8/0PpsKq9nW8n4S6Sher/Uu34cUfwZYfTVbZi6FXJqmtXYJBfqrcIhjirMzi/Qrkrtt/rNiMV+qWlNy9j35QbNqkWzZuSYRQJxhNv2sLNWBv1Jka3vO9XMsTCgENGuKrFiq1HwzsC2icQgtWZSSbtpEPBFQ9iTDX6qZ1mfY1uW3DCSz8GvEZp1AzdL55zB4FjA4IgX1efc5+sERXEoIa9K7ELmQ9wGIYJEAhd02ggEj6aelQMoJIKseE/Eh0KucXs17d4629bv/M7v4L3vfS8+97nP4d5778Vv/dZv4W/+zb+Z/87MuPHGG/GBD3wAx44dw/d8z/fgF37hF/Dc5z43P6aua7zxjW/Er//6r2M+n+Oqq67CL/7iL+KpT33qKe3Dj/7oj+Jzn/scXvva1+4acv9o1pMGYHnDG96Al73sZbj55pvxmte8Bp/97GfxgQ98AB/4wAcAyDD39a9/PW6++WZcfPHFuPjii3HzzTdjNBrhh37oh57gvT89q2+74KZ6Z/bpop9GehEIAdbKjTp6e9oGGKe6zLSW/YkMtBZFo0BHb2hvByVon3hX1+sq6QwWbk5wE/WeToGThZPGsRU5viPCwBJMW+hQTppeagMwKBH3j2G21btzZ0ha+tIkX8+iAA8r8LAAOwO7tRAfewAu2XwFCVpNwWacfDiTxJMFeOGRpgb2mtW8CEgBYv3VvwGCU3ivNrilBaw9YyBLAleuvfQdoD//Bj6k/33d83/2uOIn7R9C955zEZYe07dayM12ek4nh83b6v17+Nk/jfoZB084iNlbp29dedUtD3ucX3WZWDEWiakDABxx+Omvz58jNQE8kIEJa65R39v+VFcKX73y6ltUIk/4ZC/X4AU/dgdSLsV//dc/hZf9rduQrJ8oNSIs7CjWoE07J9zzdmk+L/o/bwMXDDs3S69bbEnnlWT8f/LON+A5b7sDyaZK3rP2LsmCS4f/UPAgqURsD1Sgnawg7oLAk1VBKMWaIDW7oeIMWEVPebjPhvV/ACpR2+z0ajZ9Fl56aWXEQZtjacSUuTcnCTFVMAMEwAGUQkqTuE69oY3O93yvWmDLoDIiVlE8oVsD8pQBo7QNCoDpA0HcvW4a0APobNmiHl9SNYsyAhNokoEvdMeuU+sQbKssTZaGPlms+VEKedbX5uX3mo+bKnWanjWFHyujdCCB7NOnArN7Rxh/fXrcYC3f5/o/G4Phgy0OhgKDh1oUG3O42QiLgw7kgdH9whKfHnIZ9LKNejWrfRZbsRcxmovAGpjJBprT5mHrAu2KAxtCsdnCzmMeQABpWCCNJ5MAKFiIQoaaoO/dghedL7qbtGLT5gz80ObQ7+iAdkQ5JDaxXqMFioUMBcjLfZPasJQzJqCjBcxjA2cf7UrklMTOTWG6lFjtBgLyFgaXX3crQMDH9xrRM7KS3dq1L7whf28ocA4bJ2agDXJ9D1HBO/u4DgY+/Htvx3XPe9tJa1o7KEH7K4QBYXauQTFl2FouwpIrIyo0xCj1qLXAXBBnd8xiGAE3le8uJ4AErQ5yCmBtIFZhakHbZeNJ3cWzOWBILFwGlTwn1WPzBbCoJS/EQLKL2iAWuk3Qx2mdlpTL3gPGgpyFBLdA673kaU/HX/sg9+TMmjUA2phrWrIGcViArTsjIEs6J6668t346MfegmtfdGNW1h5+zltl/6NMlZfY4bvVs5plk2+2QFfTRumxTljPstxzDz/7p1FfdHBviHWG105g7WSP03JDWd0Bhy+6Xj6vwgmY2XiwMXjVZTfnQf1xeT6nsNJ5Jyz05d79xT96e65l/stvvBEv+1u35cwzqXW4u7e3QhxxU8Kf3iD17HfedAfCkDFYHD8AcouOnGJrxn/9levxnLfeAUBqz2SnG1x3z05KX1YLWbYEP9Bg+0YtRVmvywxYz3KtaSNMy+JCUZqcowqIQsZXSV0OmECZqBNSVooRVW1WFjNlBUl3f9Z903rWxK42l7oZkPofua4BFJjSOjtts5gBTnNG2Mhj0s+xhNQ8JGqLdlUsYBOgkxS9ttWhvoJB0QKxlXxBP1CltJ5kKS8whd3bGbLamlKPke556bNIYFZWGjGMKoAQuLNXI1FJxkBAsh9TgpTYbaJTgUuple18JeNGNpmU/huXGAyOrWD49QmMDzlvS95Ir28iAlcOsIThgx4UHYYPtnDbLYpJicUBi7UvT4EITC5cyS4DtmU0KwZMDiUgRJYYEYcF7NZCZjvDEmAP18h90jRpJwF3bIHxrM3/7ddLUWnNvSgylZxB0YEm/rh6VjJOSAk/Ua2HDYqJQbtps1VfsqD3Q9KsYws7a7PlpRCFvKo+9Z7hbJ75PFHWjK+67GYsXQ0S0SH9Z6HkxcLiimtvBe/VtHvrLFrT6RTPf/7z8Xf/7t/FD/zADxz39/e85z24/fbb8cEPfhCXXHIJ3vnOd+Lqq6/GPffcg9XVVQDA61//evyH//Af8K/+1b/CwYMH8VM/9VN49atfjc997nOwiQB+kvWf/tN/woc+9CG84hWvOG3v60kDsLzoRS/Cb/3Wb+Etb3kLbrrpJlx00UV4//vfj7/zd/5Ofsyb3vQmzOdzvO51r8so14c//OH8AfxFWNc9X9Dx5MWe2Gx3/okMRA9/11tkqLXQBnAn++BxWCmn5fBF1wvr0NvlmzQgA6GFxeh+oJjKye9mEXbhhcloAEQCDEsuyWgozIFWFC1ucyG2LqsFQmFgq0IsJZgFXAHkxtcmFYvV5jR0mSzWAlUBHji5gdYtsD0FBlVm6ZlGG0qgU28EIGW8ZJsrIpD3YP1KUZAqkK0wX9LnlYr2PIRNQMbOZjVGUDBgI2yE67777Xk/5ADitNmHUQig0RDXfffbcdcf3YS7Pv9z2eLrOPYfx+6/gV6DqdYKhtQOJjWzjCWmnyFpVPuAm0zJUX396Gl5P3vr5OtUQKwEyh6+RFk06VxQ0I0VAOTSIVaSt0Qhnmhzp7ZfvYLvpX/7NkRHaFdI7lJBuocX/d3bUUCaHeOlK6FIiEFsnCQ8UxrTS//hHbA1o3qqQX0w4stvvD5v/6/ceIdkRTTdcP/S192BQWKbKbMveR8n6y2vTDk3F2ZYygIRBUCvOUR/+E+58Qvlsi0Vk4ArsUrDRQJRaqR61wTLoqYx6VoELAW5Nx3QECoGFwzEFPoMxCIKAJX2zXaB89n2zACUvKmV7Wi8Hnqr+xaEARhaQjgYQWUAvHz3Q8VItmimFYZYapJtLXYJsRABlNfeaXAUGBxh1OuEdg2gFijm+pno4J6VbSZ+1LqvREve4qz2Z2wAWIhFY3IzSNi6DjXS6jfz6XNMn1v6vBGTXYd+Pg2h3R9w5DkW7XgVo/taVA9Mu2Fb/3rZG4IWD81RHFuI/V1VoNhqUByrs3x/8uw1tCvA4KgSEOqo9gTd5wUI4EJM+bOXXB8BMawXoCQxAa1aXSX2I5hBdciEhFh09j7ig240/8LDpv9mlnB3HWDYRcoR6gDGBHpREMsBtiRzZCUlZNtM55QJbvDhz55+Bvuprr51RDSM4IxkkNa678NSLEgNdaquvXXKg8xHug4/561iK0gEqGd4qiGve/7PynekDoC3MCmT5XFeD1fTmsbDzi0GDwF2sVzPZnuRZJHHDB4UIEPAfAFqAuz2AmwGCAMnSueqBE1nsvEYgelMakznwK3Utxyj1pxQQMqKlVdRSF3atlL/1o3UtJakRl54ra9lX/K9vWl0eGS696avm9UxzsEB4EEB05Q5SyfnLfRYsykIONvJquUL6zXymhfftHSMT+c14cqrbwH2VZmcdOef3NzlpiwpVk5Qz0aVU56wpj1JPZtUMgCqr+7VtGd6neo16WN3/4z0z0RyLseYlWFpsbXgwuS808dqoZNY6C/9odvEqnSFQIXkixkviuyOMLMjw0+xVD8g2LkAM27OKJ4uA+M/fu8bll7ruW++A2YEJItbPySpl1eVaFKhUy9DAYpS6pykrCi3OVuJ2YazRRYA9C2yWQkJYST5bYkYlerRdiRDfKkRCMydZWhScCeQgTyAngKdnZBrim0p/kKFTsmiSpwEQHS5LbI/yb7QzaVm8UPZZlIF21q2GV2P1KM1oJsAzT4lozTI7wUQckrK95OMKek/DFShE3WIv5CQ+MFRj81nlVLD6ueaVdP6eVtVDUuQeToHFAyaRznGrVo5AprdkgpCwFgDxwpmeeR60SjQlNTySVnEJOfd4FhEu2JU7SSOE+1qxJHnOKyN1rD+hQBqu35edozyPqTrfPXQHOWGZOtyYeCmLdY2alAdMH3WKhYHCNUmIxZ6/KnbjmlDVjTGqgA5A64KwIvCEz5ITVAVct+LEeZYnfN1y2nd2XRZk1Xd1IZcQ/TrWfTqWTl8lD8LAduFdEYsvVe2yWQBaQxRlpJRVXQK9UzQYtz1+Z/b5QrwOC2Wc6mvnCeOWXkpucNd9vDe+gu40kzgSbgOHz6Mw4cP7/o3Zsb73/9+vO1tb8P3f//3AwD+2T/7Zzh06BD+5b/8l/jxH/9xbG5u4pd/+ZfxL/7Fv8CrXvUqAMCv/dqv4WlPexo+8pGP4Nprr33YfXja056GtbW10/em8CQCWADg1a9+NV796lef8O9EhBtuuAE33HDD47dTJ1lXXn0LKPCjYsDsXMknNltThUR5CEvhiwCkaGwDPvxHNx23ncd1paYs/dwHCEKAnbUwTZCGlAhG5ZhyE5DhrbDsPLgqEE0FM69BtfzOLnyWXrPTYxMArpwcnwbda4YeK8MHKRysBaZzmK1JBknk7x52a5GPNwFdA5Wk5SF2dgzpvRkDrpTNsFDgwmvDSolB0QNaIpZVIqkIAEQm3LNpIOacfZIsDq59wTvyDf6xKFzag2MUxoh/d1rTuTTr3GtAdjah/ZVUN2S0odbJbgZQdoAssqGuiNPjf6aGOHvr0S1/zircQ9tyHiQLjRhBdQOuSj1nhfnziY+ePqVcZnk1DD8icAlQJPzRz78BL/zfbsdgowvGTMGbfiBZEbEQf+M//AVpQF/0927Hn97QWStccvMdsF6KftOmMO+O8UMmNWoACAiqyDANYBS8sTPk8M+UjyLMQ21sjP6rChex/BJ2W2p05cXkf2JHRjBtB3yI9H+5YuJC9zMIiCFWA/I303b1fnQy9SZP+TW4YLCLiCOAvIGZGZiWOmuyoDWazpbSxigi25FlFUkAUBtR2wRCdb/D+NtYaijbsbyXaiPC1VGzOKDKEvlfMQkYPDCDX6skqJ05Wy9IJgBQ73fZZiKFo0bLgvxAQQYWm7akLkrAUlpu2g0WombMyAHt+ujUtBuvQJDVJnwT8GNCawE4BjyhWWdsXExoVkscaIURhwiUD2z3PoSY79dcWCwuGGJyvoOrJVjTeIabRZRHFqiOtqjXSxRTbaaNKidT4GwbM4sOAGIpLEKZwCjznCSfJSlFSO3E4sDK+6o9UhYKhQDbWsTS6b2IciMrTFUGEefMsPS52Jaz+sctuJe7AAU35cDaOsIsWtkHazXo9IkNX776Fe/K+yn3MPkuGVXasAGaAwPEkuBmer9y5snas5z21Q9gPR1K0+ue9zYdBuo5SQS0wJ1f3GHpm4gtzE+I4um4fdmtpj1ZPet0yGG0NlTLvDiuQMaAGmHIGgVH+wpIblsJG1Y/aPY6LNJBP6dBMWu2yHwOTKZI5CqiNAiKoMm8ex9k5J7uQwcMJEvdGBVg0G2nsOP0mK1t0LyAXQxgrQzIeOC6XBMiAbkZAAiU6t1Uv0boNTpd6+T4XPuiG+VahsdWz6bcJxDQHtgRVtpXnpysnuWouYknqml7z99Zz1rT1bTMp6QY3luPz2rOG6N8YCqfUbK+ZRagM0RgVOU6kAvCx3/7TSff4CmupDxAlKG/CTIM/8N/cT1e8trb86A31YXZjrYS4km1AXz2g0IQeukP3Yb//N5lq7HnvPWOXNLYRsGSaSrgREUQohCEErEoqZw5CvnFLQBXC7BjrIIubbKrglh56ZCevGRdtEODMKBsx5Utv/T2mgAailiy+8r5hXmeofteI4NPKeepfwM2qjanVnqDBCL4EWXFjSiPGbYldOCVPi+IbVoKC09qYZ3+5+NvArDvS7Woe1WFFwfyRzttOuVrlD5fgDkB5+z2AnRsG8Wxg527SI9A2R4YoV0rRNUYUpaVyZ+H5NG2OX8j5WNxYUDoLF4lF0f7r9KIwkXVysmOLTpSNbEco3pNSFfVhoJXA4iFMIB6H3DkuQaj+8Y596O4f9Jdpy3lWQYMwM5gfv4Q00MWbq5WZgysfGOBYhLgFhbFrCPk2Fr2PTqDWFpQIJi6zQRTWjTSyxkDKuTYmmkNhAgeFOCh2K+nzNxMDmghoIdh8FiZW4n0uqOeldmSyc83LYMLKX8RGEWtLiNRrG7DwMLWAAeFZAoLzictAeaJBVauftk75Rzv2RsKEBfB1sCvJsJvutd137m9tbeeDOsrX/kK7rvvPlxzzTX5d1VV4bLLLsNnPvMZ/PiP/zg+97nPoW3bpcdceOGF+Kt/9a/iM5/5zCkBLLfddhve9KY34Z/+03+KZz7zmadl359UAMuTbT3WQfFS/gERyJpuahQi7rznFlEa9BcRYAl3feFdj+m1T8e686t34PAz39D9IqluACk6jAAU5IXxFUZOAlCLDuwwTQG78MqOIcShk8a1DeJtWxHasUG50YCdeNxQ7ZWJZ4GCgNkc3CZdsTRAFE1nG8YsTWQIwHAIHleg7VkHrFjba6Rj11Alpp+yoOKwQKycDLL6ihQFTvIxAEBslkEdZvU7ZbAHKNPgjwdW8sAhsSKNedQ2Yq965bsAa9AcHKHa2Mbhp/0j8HwOOrBftt3ErlnsvZ8ldkv/94AUX1CgKFlFwC43t6nxT+9Jt1997dgjfg9768ytuz8jA63Dz/5p+UUfECysDoQiPnHXYweR+8vWEbYRwMEPOysiANLQVcrEYc4h3s26NpBt17ABwH/9leuXtk0aFp/sp4DeYF1VK0nFki2pdPbkSMAVm9j7yu5nywilAqJJAaEgS7KaigUyQy2pTcBi/xAqkkZH1SvkobZaAhqwKijYsShTNBw+2z3oe7ILKKhiEFZkaEwNgTwhjgKojKI4YdlWcIwAYbKZSQfuJFsxtvIaxNr8tvJ7T4CdWAzvIwwfYowe9BjcN+vUfjGi3T8AIlBszBGHJdgAxUPTfC1H75pY3tegvJeRgOgcHhkBuxghFhZhZFGvW0BZe2hZFEEVLX1WqXmPZQ9kIRk8xKTQIeRMkqSSiaU03W7O8EM5p2wjDfn8oPp899RIbIH5eUB9b4HBkQZ+aDF/+jrcPMDOPcxEmeZWLLYmFzpsXMIoNwjllmxnfD/Bzh1CZTA4pveGwAroRbi5DF6p0ZB7ZrnPWUIsZYppYxQyARhkWC6xPaAFULCOrVxuG6+gTJDhZw9EkRki9QLokQcWMHLdpyCDFzsXdn76PHOjD7EWozaAe2y/U/GmTirKM7HIBzlNnFWVVQTNdWBdWLRrpdidqAe+CSff3l/G9Zhr2v/pH8uAJKkaUs0QIu788/d1isneYmvPWA7dI10nqmlPWM8WqoTq1Uq2dmJTYgDjDOyRNitB/dgBQ8bo27XUeClLZVELmJLqpyXmvQ71mcELIclQUQBtkGFVVQJVBcxmy6BQAmgAAWLSPvoAIEjQcbIaW9RC+mF9fE/JYZwFhgPEQSnXjQTYpjmWlSFkGvJQ6MkF07ai9gS9ehZ45EDLVZffvHRYUJD0Ucw6HDRA8EsDqV3r2VSfnqimtSepZ9N29DPaU2afPStdv6573tvE/o6j9IoKjMWBAwzB+IiP/7tHloFwskWBYRPBQy02rfLZQpG+I6q+1mwQP9DMMyOEobT+8788PuyaothfJdtTo2pTu4jgA07U0HMZWif1CGtNJ5mGWttZgmHOtVS0EDtSAMm6igU/lSyMpPCG1DmR5HnFlEEV5TpXMktkG8lSNCm4k81tAmNMQK47qs0IVxOaFUJUuy+3EABGlOWMoGrsdH2JVh4brexH1PyNfs1dzITcAiLYWkLPQ2EwaIHhQwHlpkfxwKRzzfAedlBlMA5lCawOpZbamiz79SsJzX7j/u5aAeTrbll7FBulXJ9LB79voMdbgKtYiOWaaSLMXPaNGAgDqduNU7vYOqKYeISBg51JBkmyi/UrJdzQIZaEcqMVRVbhUG0KoFRMI5gcFuek805U7xwJzb4C1ZEaflzAP2Md5VYLO6mF6IrYvR8A0/MtNr6TUR0lFBPJw6yOObQrFsOH4lJejV1oPTv3MI3Px4kCA60HlwVQGNBsDoQAKgpw4YDCiiJyIffEnAmWCLMhAnULsgZUuoetZ9P3ZbeatthqjqtnozMwqvxGjJplIqShh6tpzzRhNEcDsBCqzEJYdlxY+NUSYWgQSqOKOO4UUHsqlr11hlfTNNja2lr6XVVVqKrqEW3nvvvuAwAcOnRo6feHDh3C1772tfyYsiyxf//+4x6Tnv9w67WvfS1msxm+4zu+A6PR6LiQ+6NHH3kdtwewnKXruudploE10vCkhkZv0onll9QrV7/iXbj7U2/LVmFny7rzq3cICLQzQDJyHhgZvWmhKCSotzLih6ny1mJW5BsECKC1AnYWcgMXC8LkGUMMjhRw2y1ooLk0Cw9qWqAohAXYt+JKAz4jjSnaFqw3ddpQzW1ia/jkU52W7UCHqEPB0qokVZpFdgYItAy0AN1Qsb+SbNUKiyaFGaf9XAJXgMzIyJYTWvSkphQ49ca0eGiKOK5gvn4f7rz/lwBIQCeSJQKgzQctN5LosTih+xAgAFcgZDl5OtbZemEXYCaBVlq4Hb7kzQAz7vyz95zSe9hbj8Mq1dfKOSlyxwOElQqxMAiVwWV//b1gA/zOv/vp0/JydhG1wbNdxogB/upP3wFeBUxrFMiQc6kdA1949xtOvlFd97z9Dfju/98dIp8nVTSAwD21SLLgIka2quqGzcjXJiW+gSN1wInpzY9S85kbT4AX4h2d1DbMQKxYck08gYyMcpIKwy4IpjWQEEVpBoqpgClMACf/5V5jSgGg2ihLjBBLFtm/Xu5SfgsKGfRxQXAzC/KSDZMzXKjb95VvCIAVnQAy1Saw/uVGLLJ6bzcOC7AxKO+fiMQfADUaBNl6AYCsQVwp4MeFWDpsLkDTBXhlKEq/6QIpX8BtzAFjEBZlDm2xbUSz5tCOrdhAoAPgklQ65+YoGdsP5PcmAMWEUcw42zSwJdRrRsPgldAQOiYlMcHNCLxYDkg1NdCuGBQTq8N5kxlkBqIOnD5FCspQAIMjhMERYfP5gQwG2rVCwDkiuGlAudkIeAIAzAgDB+dVRqSACFsDP3L5fmpVvYIYVXkloA47VU9ag6BWCsbpfcp3CptsGWQgVgJqkSUAP/IQ0ngGWhbro4UEkfet0BKYQq2yOk+hCe2vMwWupH0SxqkOeheNMlNLhFUHiozqWAs/kqwZ0wKf/n+PH2btrUe+rvvut3e1Qqpp02LOgeCprn3VK9+Fj/zO255Y240TrONqWuDE9ezIysDPJRAdoOBQbQaxL/EOfrVEcWyB6MRuxw8tzLPPxeCbm7JtzQukEEWhEnskn1QTaq4LJbWJ92IhBojqZWurA2V2DgOJwAgg2A5AsTaDHWjarh5NTwsB1DTIdkshSkCyAqrsnKhaFPiBJWEB9y22lCyUGd6png0hi54Pf+fP5FryzntuedjPhq3JzPfyoWk+fzJBpK/IPlk9y3pdO1FNm8kBO+rZyPl4SI6LAGSHn/VGwJq9mvYsWQL8O5B3mt1BiOMKflwiltJ/vvx/lWvSp//NGx/z65lWBs3ZPrVhFBOxvA2VAvosygo/7FS0p1rTfuGWN+AFf/+OrMCIKUeiJbW2IlU105K1VuafsNR1bIEIymAKRQFSurqSc1aF8UAxiSgZQGTE0qBeM5r3h5zzARBMJgxK7WW8gD0Uu9dxC84K3qyA8Qxig1CoTWwDFDN5TChJlePdMY4FIQ67XBezJYqhlFESLcEtALSMwZFWVUNiO2nrCDcLKI7OxM3BaZ9fKcg8X3S9LGv95HvXDSLJ8knX4MlUgBgjda+8LxK1VK1AeO1QpBoqRsRhBX9oKKBXBAwkdywNxkUVTwilKjFsCSbATQOKY3PQXGweXRgjlhZuEhFLg3bFghiotuQ9+qFBqBSMa+TztZrp06wYuKmTelbBHWoCbOPhD4xRHyjhh6TnGTB4kMQasxViUr3fwQ8JxVT2uTwm9WzK/wvjAmHk4CYNaC4EHR6NEEsJjTfMGUChpl0iBIBZPhslt7KzakmpKpgQtIa1u9ezup0T17S919tRz8pJJvX0qdpZnmk3jgRUcbSgutVc1AJhUIIio9xo0Y4d2lWx8rQN41O/8divZ3vr7Fxnk53xP//n/xyXX3750u/e8Y53PGqHqZ2h88x83O92rlN5TFrvf//7H9V+nWztASxn0br20nfkgQcB8rMG3gkYQMfbgem6+1OPPFz68Vppn9PgHEBuSlJwGGdggtCsWfiBeMiGAmhXSNg4DbIND1YMyolkpBSTiFgSZucVsOsOo/sWMK2yEIYFsDKUgV0Kp+wHtQMKaCiLrZGA+6W/E4llQgJcNHgYVlkRGtprZ03XsFoBRTg3cLKdSLaTxGphT/39AHQIustF4UR5LYFBtNw898GWvHTz/eyWO//kZly3/3/Hncf+b2lmUyPt/TJLMjWM3Buo9QcMgFRrMWXS9BiRSXWzAyjKdhshSlFKcelvh5/907mhTQOYvfX4rOue97Z8PrIxgEqvUwgoFzI4MGqP1A5liPSy19yGz/zr0zeUTNkOSRGS/Jvbce9vCoQ8//V34PPvf/iG9PmvvwOuBjgz6jjbYEX1qCZVOVAScEV5HbbIQe5RwywZysBLp64O9qMqWbINFQM2gR/6v7AeEcYBVEQABJ5amJbQjiPMwkjTw4CbCYATSoJfi2iZUG4Cbib7045lfyg3mwSrYICoeQhxzDDbQkEM4wC3WmM0lOtd3To07QhAAq6AUIqXtfHA4Aiwcq/H/KBVz2sSduG0lXNCQQWEqAxIBs0bxFEJWAv70DbivrGw1CyBqwJhVMCvFkCQ88hAmFekHswABKQOFjwoYKcNBrM2Xy+pHSC6CqYhxJLQjuVY2xrZa5yifk6ma+TtDKi2GFZty8rNRo9xiXbF6vHjDFTVawYUgXJTP2x0AFW5zSi3I+p9ThrYoy1sHUAhIqyPcOyvDOGHer44oNwA7EIaPNtwF2ZvxMoh+Z2zkWslBcDUQe4npZZrBvm6GCsDD0gGUmIwajMYC4swludEK41yVISNDAkzMNl6pfuWZlxER1mtQwxQG2GbCLsQJjqFqIw+iB2QAjmJNZjUpjCEqy6/GWzN2WOT42PORIvjCmFUiCVGG/Nn50f2pODKlVfLsHfPzvLE65oX35Rz69Crc7IFiK7dSEEf+Z2zt54FdtS0wO71LCCA69gilpIl4Af6OLZw8whuZcDXrK6g3PSw8wg2hMVBh3rfQRTzCFOvC9gymYkyxTm5nzRtV1eltYtChfq/S4SiXRZz7JQs6XFJOdN7jwA667H0mt7n/5EhkLFAXcLvG2mgsGSLSehYun6HpXqWAi/X5mkf9PGHL3mzDDrT4MsImN2vZz/20Z/BtS94Rxdun2rayFKbppr2VOpZ4MQ1rRyE4+vZ2LMiTl6VUY+V96J+IsKdX7l9189gb525de0Lb9ChNCGOhPhhWieK4TZmNbatGWyE6MdWLbl2UY08kpUHX8yqlCb4ERSo6NtBd/+rNhgv/8HbTgnkf+H/fruoetPXPCmgA6vVKACQ1hzymJhy+BRcSYHoUPW2qEI6FQqTKHpF2amMeK0NjKpuXUFYDAzadQE53EK+AvU6iWpkLtcit4i5hhJQSexzhw9JTcnWIAys5mMA1SYJQEUyyI8W2eqzmIqdkx8a1GuExbkKsFiW2rCQGtCPgOH9AuSM7m9RPDABnEEYV2JdVRhYrWfFAjwKkOJcd10qCvndfCHuIr2AczjJwOKBkopquVYvOWUA3eMBuV5utHpdM7CBUTqDMBSAg1uCXUhzYRcRlgWkC6rSaFaNWg8Tik2j19MI8+AxDKYLhH1jNAcqqelZwLK4atGuyLldbqTzkzIg4RaM+blSz47ubSRLD4DfN8Kx7xyiXekua+zEvi7Zg6UMRiEhJWs407N+h9SOKS9kKAyzZGkbRtIPkAvg6EDeK2mVAWeXMkZSvckRkrsSgb6FWSytOqIs17Pp+7hbTXuyejbNesCMay99B+KoeMItS9lKX5jukXFUIY6KTDQwtUehBAdf0QnBlb16dm+d7vXDP/zDuOOOO5Z+90jVKwBw/vnnAxCVygUXXJB//8ADD2RVy/nnn4+maXDs2LElFcsDDzyAl73sZaf0Oj/yIz9ySo+75ZZb8A/+wT/Avn37HvaxewDLWbCufdGN0gTYXqGOXrDmd70FIEJz3soTtYunZXHhpCjRm2MGF5SxYMjDTg1MU4BHUgDEEmgKwFQyIHJzKRKZgFBalJMIN4ugqYAzi/0Ws/PVR30eYbxIU6v7WTyoB5UU0otWGCm5mSMQbO+m2rNDICPflFREKeDFapHESTK7w5aFfMzNYCrs2RCYTQ43BjMY8rfMGOyvtD9B2Rn9BjCi80dN7G0DIOW4AMuP584jf+lzeeZTxLrD9pQzO5vNVGikfdq5/X6TCpadM6TASa+g3LlNQBtdVcD07chSY09GGIDYA1oeryXgH6uvsEUYyK3ClFYaqroFamSgxY8s/FDO3Ze89nb83q9d/5hePwc6KtMuqiqEgqi6g6oRAGHvAcDz3ig387/243d0VgNC3gMbsQp73k/dIfbzVmwCJFtEX8cB5AgxWSRoA5htG0gBliqBp/p3ktdIA3FAfo/eV1mC5uV/3TGGKFYcoxy18I1FJIvoGFxEcCsbDkMNipyRNueMuBbgj1qU2wxuCDSQBpJHQBgw3JQ6YIqE+ec9wcwN3BxYDAgH1qY4urkC85UhmnM9yvPnqO1Awuy9SP5NI4366jcDiq1Wrouan+KmAaZWBpUrwAMjqoDtOTAogcLBbNeI4wpxdSRNQFJUOANqI9zE5+tAHBad5N1ZYW4rkE2AsNXSQItIGFpbAW5OWBywaIeEMJJ7hpsB1WbKcBFWqJsLe9LWgFtEuO1W7g8bc8S1AcJAmpKojaCt5fnlVGwqAOTwWQCaJQMUEw+nwZjC8LQwnlAfKBEGsh9JrWJrAWRiIU0xBYYfGPgRoXgwoNhu5L4YGW5jATNv4feNEIYF/NDCLYKeq6TnH0kjbuQYmsKA2GVAhUnsQlJYL1tCNLaz03CmyyXRBjSx7WNBeu4w3ELuXeKPLl8MijJkEVal3vP03kmq7IylMAfToOSqK96Nj3789NoJnvLSrId8z3UGfqzNqJdhUSxMHgC98m+894SKvJRHkhrT/u//sq8ErOQqgUgu2kxZUZDyV/zB0RO2n6djceHEqmS3enbh4YzRMGkCj0y2yRGGt3ynikmAHxm0a8Kmd7PuO94ODXjFgO0+APtQHlkIazVG0MZE6rVBJSqT+ULUKoBktBCJsmUHoYVjzIqXDnghUb8kMhegtWcLBIiiBQLCLK0+cBMj0LbKLmZgHuFaj7gylGt7VlzLdYJCyIOh/v5lVchOsCOFGfceS3EXIhIRrr30HaJiP1FN+3D1bP/3u9W0PR//vIIOApeOd5RzPy3d1uGnv14Ic19dHkDsrTO4guaKGYNYibLMNvKZGQaMZpyxM3AA/NCgHfVkHo9hpXug5G10xBe34M7qqqCc+/eHvyg17Ut/6DYAwCt+4H1ZPQ3Iff1Tv/lGvOjv3Z7v3xQZxSxmpUk/d4ECw3nOagWxIOudvgng0fzBBPIY09U7Nmiwe8M5UzA6gnWEqCoL20S4BcGPpUa2iw5ckrwTVbYosYkVyPED6U2ZALMIYCfHql1zaEeEaivC1DGr1okEsAml1HJ2ERCqAu0qwc2A8beA6VMI80Pdaw8fEEJMMYkoj8xB0xl4PIKZt1K7N1aUCn1HhdaLPaI1UpN6L9//QbX8fU8ALLNYlAOi+u+7OKSMq7QULO7mPgLq2O05gCFiWYqjx9Cg2PKyzz4ijEssDgxBLMRTKqA2lEZeY74AigJxfSRqkaEVIE9VVNHJDKXakJdNQAigf6uj2Odq1ku7WsA2EfNzStTrwOCY9EdhQOBGatpiKsomYqAdCZnAPMAYPLhA0Fxat12D6hZhdQgYgh+LJatdqEonipoxrBQwTbIhExYbJYArna6qRoYlwGj+V4yIpUMc2BzmHl2y+doBrkSGMea4mtZYc1w9S0Ey+hJwk51KdHeufeENT1y2oNYXiBE8KIUsZKkjYJWaB9dEOJgT1rR79exfkLU7d+YJWWVZnpbQ+Isuugjnn38+7r77blx66aUAxH7sk5/8JG69VRTvL3jBC1AUBe6++2685jWvAQDce++9+OM//mO85z2nVzV888034zWvec0pASzEfAI601/StbW1hfX1dWxubp6WkyOtq658N8xC2KUJCX8k1hl/UdZ13/32LizNR3zoD2/MOTJsTPYkbVcd5gct5udq/kIrvvspMI1CYqkAxQQYPRhRbbQojspQLg4KYVE0QZhyrTRzVDfSjCbWXc8Ka6l5TM2YNR2rryyB0RBxbZgtXEzTfZ4IEkQHFukmzVugsAijUopcfZ0cVFw5KbQjZEi9InY5di5NZnqcSGB76pXc+KWqCNLk9y04kq8wRyn8rAEKCTROwF1ahy95swTIJeZ5GnKGKIqe2LtE7LRD6GdypH97AZ8ApCC1Nit+8hAibSM11f3XCH0mYG+76WdrceeX3nui02xvPYp13fN/tgcaqnrFEvy40JwLwu/+1jID5toXvAMwBn6lRH2g0Kara/h+7/85NebfK37gfbk4SEwnIAEchGa1uw6ARLEBqGOUAUwtA3S3ELaeWzCKSci2Ac26RTuS84eChHm6mSjgTGCEyqAdy4u6hQYc9rIYUhMbKkK9TjmjJX1/2fZUJOo3nfye07/GiwoiWTSEUprcMOoBLxFozvMo9tfgr4xRbAPtiuyDmwH1X50j1BaYWQzvtXCzzke7PiCbMC0yMJV9pwE0+yNAQHnM5L+t/TkwetCDGNh6uoObM4ZHYm6uYAimjjBthJ23uanJQeFRMqLSoMwsGtDWVL7PZSGWCek6UTfdtSGB0tYKcJIHk0lhqAzCVq/VwwF4ZYg4rBAHAviJtYMAPTDA7LwC00MG9QEgjBjUSsNnWsCPGbFgDB4wGN0v4Fq5HTC4fw57ZAI+tgFaXUH79HNQ7y+yosRN1Is73TcMCYvRWXDpEMYVFocGMHXE8FvbYl/ADK5KxHElTLrKCZDhBIQpHpqCjmzK9XjfqgDzG1vAeITmKfvQrjlUD9UII8lqCAOLxQGxXRBLjA4AtHXMeS1pkBEqo7lERkEiUcpURxuxGSIdolgSm7HEBLSU/yeMUmnE07mbbDrZKBCRmOcsf3OzoICLgfExX+tDaXKTFwsBhPzQwA8p5yO9+EdvV3YqHjM4e6J1zYtvkkGKl/spNPCUnXien1UqG12PtR49U/UsIKxHU0veED8C24y/aOvaF7wDbEWZ/KHfv+G4epYHDmHgck3brBPKTUa1GbMi2y6iDHTHBs2qweBoRLXhUWzVMAsFTawAsskGBjGIwiQxpFu/lNNCxkj24M56rDfko0ElqpgExLTtEjs4K0kArdn98t/7Kyvttd50DlyVMpRyTgkIqe6LnTVYX3FjTHcv6AMiRFKLht5zStnvZCuXP48X3iD1fs8C8YQ17Ynq2f5x2q2mrard69m0f0GVL/0V4u71Mglos0ceOv3rmpfclFnsSa3phzZbcu6mDrn6Fe8CmBFGDov9Rde3MR6Rvc5LXns7kh0Rm27ACwig4GqxI2WrygIndV4opPZIhB4mwvBoQLEdYHxEqCzasYEfSa8pBIiI6kgDU3tl7hNiYSXLQ90hYmkkN62J+ZyNpe3UEulr2GP6t2MBmNyMEUvKhKKUq+EWEcVmC9PKwDmWYl3KSaHIwPwci8U+wtrXA4pJECILA6aOmJ1fYHauKGPKbcbKt1oUW40Gths0+0rJxgtS40hWnhAiWJUbIEKx7UXNWxlUmx527hEri2bNYfz1Kahud79u9a5xrASMlAVFTZBrRdMuf7CJ+JeuUTtr2j6o3Xec6P+cwO1Ce+N0zUxAfdOChyXC2hDN/hLt0MAERjsyuc5rVgmLg9JTVBtyLlUbHoOvHEH8xrdAVQVaXwNWRgjrQ1HoaH4tzRt5b8n+XO8BXFoc++6DCCWw+s0W5UMzOXdGBfyK1MUUGH5kMhgHBgZHGhQPbCMOSnBhYR/cAAYV6gvXEUuD8tgC7XoljgdECCOLxT6LWCS1FWeXgGIS4BYhX1ujE9DDj60o3QMEzFuoLVrOc2HpJVJujoJicVAijks06wVgCG7qxdp6IMr0PmksKcgpIitbums8xD6u8aK0V3IZrNznm3PGuX581SvfhTB0AAMf//Dpy3LauZZqWuCsr2eBM1uT/mVdH/vYx3D4f/3/4tl//wkir+1YX/zFm/A7H/ptvPSlLz2lx08mE3zpS18CAFx66aW4/fbbccUVV+DAgQN4+tOfjltvvRXvfve78au/+qu4+OKLcfPNN+MTn/gE7rnnHqyurgIAfuInfgL/8T/+R3zwgx/EgQMH8MY3vhFHjhzB5z73OdhebtRjXaurq/j85z+PZz3rWQ/72D0FyxlcKeDqqivevRRySSHgQ5+98Qncsydu3fVHN+HqV7xLBpPZDsVkJQbFKKH2jlBtEqKzaNZliOhmIm+mKEPU+TkGYZBC71IRA5Bv4WZNzi7JmSUhdo1ZYp60rTRChkDRgJsmF0jknLBWlA2YPFmpbkEknvfUeLFuYWHK+dUS9X6V135rJgXswIn/qHqQcs9fPxbyFWRLaFesFBpeGRPJukVTBRlmWSGTizWAYbvQNw3l6xrXKM2mswAZXPe8t4EHpWQd1C0wqvL+pM8DUNbIEsOGuwJ1B6PkuOY9mWjv/LtBtrteAlX6QFD/8T2LEek4WN7H3jr9S49zLC1iYWU4bGUgGnqWLgBwxTW3SoF6aAzbRs1rQA8kAR6O+veyv3VbBz5orQ493aMGq4Ol+K42eSkTwjQCdiRwQRpNZKsvitCGWv41DaNgZFVHUrik5tcPDPxAfYP13Esh18KuQrZ5sjXAA2UhKoDCkL+3K/JcW4vntWkJbq5MvgAMjokFRSwlRN14gm+7955AkvaBIaqFbLvckucvzgVWV+eYuRJNrEDBZiXP+H7G8AgwPY/gVzQUlQSENl6eb1qDdhXwQ4ZtCOtfYqx9tYEfi6LhwJ/W+XN0E7Hiihpwmh0IUyBx+k4SybUFEHVKGqD1lWhNg+x1H1muAcnX31lQa7thVH+ABnR+1sMB4rACLKnqKAI+Hdco5ytJcLZpAbNNsHM5nvX5Xj6gQUQdChifzh0j7MW6Aa2ugFdH8EMrjWgTVUHFWRWY9y82QEugBcEtWgx9RH3OAPX5Kyg2C5iZZHvYyQJoPWzhZNBKJGH105k01lUFuu8hxMlUVIfew5y7inqtgq+GqDa8WHRFxvAB+TyaNYdm1QIk/ucS1CrfGVFhiE0YFwblBrA4pxDGHgPN/lLs2AJ3ypa2+9KmeQF5hkM3vDFtepy8Dgpl45KG3SuDlNqojR3BFxZOiQJ2Iew/P7TwIxkM+UoCcl/wY3fIawT9nu2YSZ7O9eHPvh3XvPTnpN4g1nMGMtSwAoCdyVDSMx14+nislI2SmI4CLlM3wP5LuOKwVEa6khJ21LNYeFgg17SSn0QY3yuqQDtrgBBgzlmBaSxszWoXqLVeCKDa520iMqAe/mDWvBQWJXXovkDZ2itdc/WaSsaIwiXVWD6I4iTEziasv6oCvCqMBjq60Q0Es3WY1m0aFI6iAA8KxFEpyleiHL4sloPcDRIBZdzK75N1HwDZVrL0quvjcntSNuDhS94MrkRVQo0HaQgxme6c3LWmPVk9m14D3XFbqmlPVM/uHOBmZnvv+9HPrQLkeO4EY/bW6VkRgCNwIZZTTIAfmBz0ntbl192aCRt0sIRR686kxKSeCvRk68U/cnuuC4l6r8EMt5BfGs+otrTP85JdElNLQ0LeMQGaIScB5Nk6NNl2RrEaNapUcZMggIAOgtkahJGVDI2ZfP9J8yZM3ea8KKodzCLAlRahSsx/ZIIUMTA9JIBUKJXoM9eaQN0h3LSFmSwAAGF1qIHsVm27pDgeHmG4WgiIqV6oD5SYXCg9um0VuGmi5HXUHnaygKssvHUCqFAHMts6gmYRTt9nGMj3e3TfAna7QRyXsPOA8UYNM627DBRnM5CSFgUGxwjD3VB/KVulv6h33dD5Qv59uqb2QdpE4NxpLdgHV9LjEsERUOIhg5oAN/GSw1gH8HkVtp5pEUrJSmz2CzAfC1KgBaK4cS7nwcRhIddFW+r+RLkGtV5IT87Kv0UBmgP7/rTE7CkjzTdckfvR3MMugswlAsNNTQ6DN02AmbeIKwOEoYP7k6/J+2pa4MJ1bF5UwF7oMHowiO2efj8GR6Uub1cs2rGQocqtKCptALbW+pEFECm3WoShzd9jEODXKpjGySwmqEtJsjf3BAQH03qYRQM7KTQbl+V4xAguHdr9Q/ixk49Fz+lkFRtLiziQ/MJiqsBKGzK4woUDCos4LBAqg+/9m+8V4p6hXIefydWvacXWTH7/eNSzwF+MmnZvPfHr93//93HFFVfk/77+eiHZ/ciP/Ag++MEP4k1vehPm8zle97rX4dixY/ie7/kefPjDH87gCgDccccdcM7hNa95DebzOa666ip88IMfPK3gyiNdewDLGVh9md1VV75bbpqBcfdnnli/xrNl3f2pt+Gqy28GnDbsXxBFxXXPF0UPNR52blDo1NU2yiyfa+PZRLh5gG0LLPYZtQISpgFXwoZmitl/NjVyufAxaTJqgGAAE48vlgBpNtl0Q75FDTQCrthUHKk0FUSIwwK2Dqg2gVAYTJ4xRrMiA8FyO6KYqOUYIwfX5aI+MKxamgHIhYAUc0lVkphU6tmbMjKIQBTFDSlGafjcjq92ys1QKwdaNCCIDd01L74JZiGsobRt6heK/SwWcAd6pJWKy1R8RiB3ncpyl+PNQOw1tP3np/3tF7C9zyLbR6TfmR2F7956zOuu//ZOXHnVLVo4S5MVy/Q5QMPgZRkfEdlgcY5ah7UyHGVVr9hGrARe+rdvE/ULA5/9Z8cz003bARjJ1oA0BCSF0FMUVhOMNJ/EgK+s2GURYBoBIlJYPcDwIDDpoDwq+15nyZI5IUzBNDdvVjUUtGGkC0FmLhKpx7AAvNHJayS1TizlZY3mqnDJ8GMJrC82gOqYyOjBopwwnvM8RQI6KavyyAODex3KzU6hRz6xvIBj963CzMWCSqwf9DFRAkKbsctqF0DUL2zEC7uYAOW2sCf9WPbZ1rIj7ERh0I4l7Ns0HmZjCtq/glg5UBDLm2xj2Gc3a+YHw3Wgb7JECFGUf4A0mU2rKpXQNXrWdo2pD92QT1nQcDY3NggACgujioswdIhOBgOmYQyOyvUwVAKEUQTK/Qv4xiIsHGLBmD6VMf6GQXTA9KI10DOERRULUl9yUWOYWoKoQSRWQEn1mKwh1G/fNg1G9wbwgTU054xhnYXdmsv+LmpgUcscPzHNqxKYLxAfPJK/BzQewX/HhYiFgVswqo0WbrsB1QE8cCAfYR7ahLnwAEDi7TH6xgS08OBRCTNZIA5KQIPtzcYCzbkjFJOAep/F/ICF8Zz9ykHUA5FECWOamG+B3EbYhVEQJfbIEITIwvxLLEK7EFYkOyOWPSyDlVAZFNOQ73NcqO2YQQ7CNXpu2lotTU6OyT72xTKUZYZc49Ry6Ewz/VJN2K8NnyyN6ateuax47b+Hszn77/FauZ7FCerZGIEdNW3U4RTFKCSd7SnKwHDDAhQY7f6hbJygdWZQBUmQ644Sc45jV6e1mzFBAjaSRRgAXtRSN1qbh32cEQOACicAz3Qmzz1nH+KwAsUIc3TSAenOCkBTOFHuAXmYnAFcp4PNpMhOYEWEqFzS1cfoG48QAL5pj7feAjoyDpBtee784q245iU3Sb3coMv9OWFNe4J6Fjh5TZtVNrvUs2nf0rEh6h6XVt/uN2VA7q3Tvj782bfj8sPvyQx1qd0AECH06lkuxLLUGLGZFpIO5/q0mAYwKSnISD12omwU20J6/oiOMKCgifFRXqdlmDbALALi0OUMtVgazM4rMDjiQVpnAsgEB0CIEagjKFJWr9q5DowLCy5EsdMOjdg2RQYpIBIdwRgDBPm+kGY0cYxZ3cqOMiGUC7HqbgYQIGQTKKastlJSO1AbgLpVtXMrx9LLgBcEVd94RB0Am0YG2G4eMb7P5HD7VGNIHSCvb+ft0vcmllZ7ZS9ZcyzD/lg5+JHTzy1mJU+aC5D3AigMKrmmMWVbKUQWK0FmISkmW8G+VWI+UbirZ/M1IC7/d3qoTy4S3fVK6toe+ShlkO5wZ4AVkN7Ma814NUokIswPMfw5HhwI1BBCxZgdIrg5wU1aYGUE2r+KsDpAfVDyV4rtoFkuBrS9Dd6eaM5MABqdJbQtyFqYhzax8uAG4v41zJ+2glhKDqJpI8zWQtTc6XrVNKLEXh3BbNagrxyT97i2iulzzpX7HESdZFqGm3nYrRrtgaFY/H57E/VT94FdAdMC429MgRhhJnUGzdkS3JZH2DeEnUs92a461PsL2HlEMYFaYQK2DSAiINTyuTRN7kVoUYta06syKQSQtSh8BPEYobJwMy+2x16+S0LOhai3FqS9gBUyGSA1txFFd7tqlZDUqcnhH4fruta0j2c9Cxxf0z5Z6tm/0OtJWkZcfvnlOJmZFhHhhhtuwA033HDCxwwGA/z8z/88fv7nf/4M7OGjW3sAyyNYV159S24GTrTSRWbvYnPy9dFPvBVXXSFBoVdd+W589GNvwV2f/7muKfUBppWQ54EOgUzLsHWAnbXC2tlcoNgawo9tDnszvhCZaIhS+CWVifpkZ2WHs6JeaVpRrSQrm4R2Ji/r1meGHikIwLO5KFkGAym2QpTnGyPy7RWH+UENViPAD4HouqI9sYNMAKBFtV1E2DbJPCnfNCXEWyXLqYBjFhai7TVwLctwzSP7ZWegIqdvKzCjdhYgwnXPfRuoF57MkZafC8jzU0G1sxntr/7vE6OVdEIeCQhRCtm0drKB+q+bh658/LaJAGv22BOncb3qle+S87NQebERICKUAlL0/Q0u+773oFwEGGcQChluWyPNZFQxl5lDbbBIgIwdheZL//Ztqjbowi4FpGEAEdFZtJUoUNycYbzJdlwpjyUpSsiorzOAYgpAA+pjAVAUcEQUGDpgAtRnF4hBbaRCstpKjEFkn+nEuOqCNeW1ZChM3Wt5yUnxBojDiGLLoNgWAMjNVX2XsjCMADy+IlFcNKqqaQkpy0VC7eW9gASooSiNiB8AzaoAJsMHZBBQr1sUM8ZgQ15DLCcoW04UEwaOSbOw2E9wc2HIGQNECDMMBFEeBM4gCIUIWvgc/smqIBM1HXcqwSBh7DQadt9dldBLE6lDp4hl25kEnjKD1RqMEUFGAjDhxe7FRL0ml6IICaMCMQHUEUuM1DAEmnVVs3xhBcMFsDjICGsBZmbh5vK4Zk0Y424hahA3bWVYsRAVCmuYKJwBNhedB7ezyIq6dE0+solq0Qp7e1CCKgY5I3YMdaNWiTJM49ZLgzccIuUouD/7JlBVKL+MzhqtLMGrY/ELn0zh/rzGygNjDZQO8rhvi1rTjIbg9VVgVKI+NAaTvL9ixoiOs5UI6XAk57IkpacCKaYNYm+Q/gYB4PLzGlEPUSugDC18HmQaks8i5dmYYEBtOh8pf2+JBYz1DjCDFL7LS0rfM7Z0YEqI2av7TK90n9qtGb3yqltyQ7zz76/+G7ef0f3a6bmdVlJvffQTbwVw9ofOP9HrpPVsUo6kmrYxsNBh07EZcHRDNrKoYQZyIyvnDfzBFfgVDeNWwo2p225ApGA0ABlq+c4qZalmS+d3yhIxJOoWUhuxEMAhLOe19JcxQFkirg7AWiu2qwNUM0nLTrai6bFx6HIwMhQIpySzM5J/lAa7okjt5RBmQCJ2JBpnAW+695Zq2p0KE2Zc/fJ3wm0tlq27dvy8tE5Wz6a/p9WvaRVU2bWeTT/3c1pMImr57vF9kMWapevA3nrs68qrb5F7VmEQSyHnhBI55D2t7/2b74UJ8n0MQ4dQaq8WJLcilb5GM0iEMHT8OfPiH5Vr9VKmHwNgRhgY1KXUwYOjLKz6NoqVdIzAWLMmPGNw1IMiY65OCOV2BJJlawRMkII5WUubVogJXIgKJVZqDRYYaCBf+UReitoDlj3Lvt53QEgkAJQoBR0whxFQbAHFTHJQogXICEEplg5GQdV0HTA+giOJehXIg2ohBcl7KY8tUGxJH0tRhtSxECDBTCXc3CTyhrWAkl+gBCCpR0XxYaY17Kzs7MABkCXQvBWANn1eIeSak4Du933gNV0n+s4VsXf9SN/zpayqHtDS325/20SA1dcgfzxAk+0VbXbRgOaE+LFDuyJKovG3CM12AdNIjRsrRnUEGByJMG2APzBGIpKNvrYlx2O+6MB4a2V2AYC3trvPPmVw6bXNPLSBcd0iDgvEgdyHeCj/UozAdC7HpiwF0J7N5TVWVxDXRxj/wTeBlRFWv8Byv2q9KNFXhnDTRpRF0xmqL85RfXPY3dMmUzlVRkNgZQxUDnG1EgDQCHBXHW3gx04IPtNGvztRMn5DlDo72aZ7L19GYwC/6M4D/RvVDeyWA40KqYFrPV8MgAYwhYEJYgfJlsDDIqtUxY7PaN8IsfGtrVxPJu0ZV7DkpSTux6ueBZZr2qV6tvffuxGKznRNu7f21tmy9gCWE6xX/43b4dxg9z/GkyPEe0PfU1sf/fhbjrs43/X5n8M1L75JbqTaSDGJyIQdoR4VoDUHNxfWjp17YXa4En5ImJ9TopgGlSFLA2m0UKHW6zRWC6eiAIwG3be+Y5zstqyRaZ1VyzDPyLY3LAUEDQoJl44MCg6xIEwPWSkWmFGvm8z+adY0w8UrS6rUBpQoe9GjjTlkDRFIvtUy9IogqG+uScCJhP8tvQPbKwiZO5sJSDEcR6XY5BBlBcuSZUKyRTDomtvUVPZtFXYqTtJxSUUpa8MfqQNQUrGaGub+se+rWqIWSXkoS3s2Yad5sSGYxsP6TtEQSgMKfHwonrKSjI8o5hI0KQ2SACqi6tDBrAHAwOf+r0698rK/dRtcLSwfapNHte6HZkAA0KBtYfuGSs6NYiKPlyZZ8lXAHVOQPLKNoHzxkuWCAppITWYCU2To6+YMN9dGI3SWDKk8jk72pQu2JxhO3xcBQsW2ASAmuIlFudnbF0CHSd3xjoUoTGwNlBMBdcpJFPl/RUgBvqZNzxEghjxQ1hDwaSaqGAoMN+9eyw/l2lBMGIVeEVwt3/0YCKUzwhoMAaaVbJDFuQOxXmjl+87rKzKcanw32Iuxu4akAZM2oBQiuNRhW7pu6eNyY9sfPCUWdtsbOvVDQXue+Ok18yBPLRdNYEQyWOw3mF5AmF/AiEUAVj2qcQP7uVVc8JkFHvhrAwyOEMy3HVbuFQVkudGKFYBXRd+ixwZv5f2S93KtGg6A0TCD8qgbcNvKYJML+Zv3wGQK2oqw6do3HIDXV0BlASwaIAb4p54Digdgv300q1j4vgclD6HfvA8qwDnQkWPg2RzcejDmwMaWAP5FIftQlrJ9J8B5KCXANwwN3FxAhHISYecRbtY71mkVRsPuSfzPvWTuUBCLOC6MKHsgoIpdhG5YwiwDViTArVOpMMk1xOXPUJi/0UHuZyyHLlSiqrLNsk/9GVm9IWiyDUogwuOxdqsNd6slTwR8PNp10no27ccJ6tY9cOXU1onqWQDLNS1kQBlLg/b8NRQAMJmqbYvWmHUN92AE8apa9xQCehmAWiPXCRdAbSvXBfZdbYoEbkdwZPQEKbKCDEdBRliDGXgJvW1AhntBXkMGuS3gHNoL90nOk6ptACCMS8TKCnnId0ApRVVpkxIJ2giKATlPUIetBAjIYnogiLVa18q9RY6N7HfO6UtLB6F2a66qSQtodk0G9vs1reGT17Npm/1/gWVA5kT1bJ/YtFtNa3jZwlcBrL11ehcTwbZB7ETJISrx7DjlSRp8k/RuTmewpmWtSwmLA0kdITXgp/9Nl8XyktfeLux8/e9UO0bq7LZCCdTrBGKS/JWFBTGw+qUpTN2K4qISlWzOQRsIoBCtDHk5MuA66y6wfs8Mq61W0EynVJ8RTAo314wUAJo9Zjsrw6h1lSEh08QogKaTunlwLKLaUkJO7H+3u5fKrg+2s8Q2dYBVq26urLSQjrq6kLrtIIq1qWkjyAeQDsCp8fKdLwFEEjJHrj97/WoEkKzPWiF8mDRwT9+1stTvZMwEyqVzIF2PogGM2vYRyc8IyI7XO8G1nYBL335xqQfmbNtIO/8GLF3P4koFvz7AxncM4IdiD9zsj9j/3wmH/ssEW88aYXbIYPAgMNgAVr9Wwy48zLEJTAjgzW0hjpYlUJWiVGzbLt/QOZjhEFRVObeLFYgiY7p6dmsCcyzApP0cDsGrQ0TnhDykNfP86evgYj+GX90Af+3boO0JMB7J9a8VUhKvDMHOSS+xPQM2txFnM7VM1PMvkUOdKCcxX4DsqCM7EVAcW4CdQXEsSObjXG3dY+zUQLaQz61tu8+jr0hMYBIAFE76oFn6Apvcg7ISDqMFqDSI3sHUAv6FcSGqoDYiFgamLVCvi/UwzWJHgD3TK51bT0A9CxxfN56ojjzdNe3e2ltn+9oDWE62HgZI2VuPfe12MebCIIxcDjdrVjsWQDsm2AVj1DJYA3rFYohRbURsP7VAs0ootxmDI4CLrdyYrQIQCyB5/3NhQRtbwibOL66DvGQPZG1my3GytEkMwaaRRjUVA8ygOqBYeJhG/acBtCNhE9XrIrceHOPsuctqexQLA0fIqhY2ApbkZQDEbviclsi7qQvstcLcycWg/p5C6ILQnIavWikkoilhtxdL4Iu8plKN05i5D6Ykm5z+Y4GOLbnTAiw/X39OtmHqiSsM6F6xuVM9kxpqp7Jh050Te+uxr1SUXfvCG2DqgLs/fmI7w0/+h5/GFdfeinasSoagQ9KhNJKxRA5XJ4+sFnjxj9wuH/9QckmM+swn//VYGPiRBRsZuKZtswVilFDQMKBO8RJUeu6BUMjjxBaKNWheG2SZ3khDFllmOJERCoOonsASlilAi9iUIedfxILQrEizbHUGL89XJZqXr5ut9fW3ZZBMXh5nW6gtoNgjRCv2TOW2XN/akViUlVuMdr/JXtcpV8a0Al4BArBUG5I75RYM20SYRgfGrgO1bC1NdbKWoAjYuVznkjohOsL8qStws4DywRlsrSxKVj9/wzJsr1tpkhYqu08NWQjCerM2gyXUWrmGZm9pGfRlVhmgAKnrVIMJgIFcb1MTyiw2GDBGXpsMYCoBeRCBUYF2xWLrGRb1fvn8iy0CkwVvWbTDEuUcag8CjL/NWPvKHG5zATYGZlYDm1vguskqktx4qdqR5zpt2Z7k3AJK1pBDGVjHI0dBkwp0YB94vgBVOixTO4IUiolxBS7V7mtagzc2l5pdlPohj4bgQQHamADzCXi+kHtU8vEnAbB4UcvvjJFmNkRgvoB7iEFxDHogYH7hGADDzSTbLA0zllSNGZSzCOcNUGwre1QVKhxFiQNAg+67oUwsDFAIKMkwGQCj0Ck15aRjmMii1GoNiA2ICZ/7wBvytSHq8Oh7/5f34Xd/69TDhB/J4mQFQgzQ2Qce7FS2/Md/dz3W1288Y6+xt07vOtGx3a2mDZUQGJr1gxjcNwK1MjDCfCHXoUUNMy0BLhFGBcLAwEGrMRYLyg6M0Gtriy57Jb94xFIOSCYGRSBIrUuqaiFgaShEeq1B3WT1XnHfFtywRBw4cEmSv5CBI62zdQDctzaSoG/qXAD7ymX0alnDAq5YAlsBb00IAuYnclQfvLBWcg0VwOeqlwm0cxiaalq9DuT92FnP9vdtt5o2b/v4elZIUnTimlZz4ZbqWWdxMmeEvfXIVwqXvvpl74RpIz71m7uHTf/ub70Rl/1/3oN27CSPTutHsZ0ltEMCVCUtdaU8L+WtoESuNykiK0ONZ4TSZOtRMFBuik1XKIG1r9WSS+QMEIF2rYCbeJhWQsSHR0K3nYI0l0XOIbuISJkq8p0SG2kh5BnJgxo4qTXrkJUqoi51olZmVnU6dEAchTQUOIMsdhEw/nbMpCQYEqWJqkmK7QZmXsugnUiY+waIlRNypCrcESHKFCYh8KRlSJR9swa7EvxSvQUgkQDT9yTZe2WVWqu9udaVNJ9JDQboUF2vH953dWzsvvdZDZjA0qzo6M8HErgaO8JQWok8pHZb+XfpMX1yIzMQtMdJdTAgQMSwxOzpq9myOAxI1esyR6AEHDNw7h/XqL52DJjOgBjBdSP1Ygh6TY/gupaZQgj5HkCAgBupPleAw4xGUs/OhqCD+8Gb21LnJivfpgFtBtBoiFgV4BUnFrYRKI7UwDfvF1LQ+ip4dQQYA39oVQCRIzOpuVsv9bTmiEn9GUBMiK0HWQtyTuryugHVNcxcVfHGglflZzOp5V6ZzpkEsiTVUVHIuaDKmCVL4nQP0fODFi3IBjlfSyf/ZgCQ1S4biI2BacTuNlvjGgMy8l36/f9byIiX/fX35hyUy77vPfjkb79p12vP6Vjcu5edzfUsICDLmahp95asvovD3joz63u/93sxHA5P6bF7AMsJ1n/8d9djbW3tid6Nv3TryqtvQThQIZTC4GEjNjphIFZbbIDCEvxI/DGjI7XyAUZbDQYbFpOnGLWNERm0m0iCHhcWVDrQXJhwYaWCW10B+iyK3Hy23c/ZagF6Y9aHhCBs5taDykIKPGUTGPWEtnPxwW1WDPwQcEwIJaHairlYblYJ3hgdlEqzGxlAob68gFoRERBMl8HSY0hEZY6LvZgTJlNm0ei+KzODNbMgs8wT+6EqumLFmU4+3l+5oPQ6ReflIjOtFHoKdA1qn+mntmvZXiIowyQV99qkAsBd/0M8zQ8/R0AAttQNcPfWaV0f+v0bHvYxr/j+98E6Qjs2aFblM2pXBARgq/8qsGEa4L/d/AZc+ro7UABwM2X3FfK9lYEKgAhtPCWAPBTIqpBkcRCd/qyzDF9KQ1dMI6o6ik+uke2mPIeoirCUe2QC5wZvaWgc5TluGnIQLhtCqAwW51rU+wm2BtzRKIqzguAH8h5t01mFAcje3em9AALCSI6NgiAkrzc4FsHW5GyZZLGWWMe21vdMKqCrGavfbDMjMdktxMKKJ7Oy+UrfdjYtQAZ/YUWtYryTgXpJ4LEFMEK0KbycQIYBrwzCRQM0DXgq18kckJzYjKTMs8J1gEusl+0WiQAU+kZ6FggpjCYxpw3ysK+/71jI9sh7oCzAQwEx2rHB5OmMsBIw+rrD6tcZg2MBoUhB9mJ7degPapg6wB2Zic92acHDEnQ0CmAzlFwTrmsQGWm2E8i+uiIKyPEQ2JogHt2QwUAGYwzav3Yxym8claHCopb7SVnIcZnMxPu5aUB1A/Ze2IV6z6E0BOip9FJgLS9qOd6GOiY6R3BvcImmAba21VqCgMkU5sEjoLLAoLhABi+NFwBe81zSgIDV+x0ArCE0aw7hQIFq02crTmk6kdVeYo/WvX6yvoScqvI9WrAOpBgILDkubWIQyvdgSa2iYGayPTndK9nFoDQAi9rgbF8f++jPYGtr67Rsa6+efWLWlVffglAaYJeatlmV71O1yTDtQEN9K7jtUoZHMYIePAZblaCDa4jDEnGgymcAIPGQpyLVWUaU2NiRy7IztB49ApEhIQkBcj1HZx22q52W9woAWdQXrqDcEPaw21wgDhxoWKDZV4gqdBo6QhDJXrNjcDS5Ts72XYCG9Mr9JJZO6tlCato4dLCTWtXc3ZAQpEPcHuGGEsBRuE7xqAO440hEJ6pndwbTA8fXtCerZ4ET1rR3fWGvnn0818Nln37v//I+sZNisRDzA4JtAV9JDqAoioU4ZBrgj3/+DXjB378DFqIe7quvU3QQkAazQDuU/rWYCwnJzaU2nTy1QrG/yBZfzarF5AIHN2cUswinmZwCTMpjyFAm/tgm5txCAEKmC8gKE+Pl73bSZuAiDgrU+ws0q0asx4BszStkIiNtripZqOHOdot6gImCHXaykOuBEmjIB9imBa0MBdCIUYhGfQeCXs/I0YLqFrSd5AO9ZazaywbQvEdszGqT0BF3kqpNwUoK3DkgJGBUVcloW6kvQxRVR1+RBjl+ZC2oqjqnhKXges6kyyVF9m59sCG5roRuNgBAXhcQi8Z0HexdSxb7DEb3exSTNhPK2tUCbuphpgvs//QW9q2NQUc2c82KqgStr4rtVeGkxuyB6PqCoMJ1qufhAJjOEbe3c33JkdG86GIMvqLq6tk8g8FkLRBEsW7aUo7pooZpWnBdgyPD7FuT16k9WDNzpAEjOVeU4Apvl9TrmVgVII9LOUBNA2xNAGtgVldAHDtFYz8rp5/nmJwYRkOQHcj2Fr4DWpwDYJeVhCHKOUsK0BMhDgRosYuIMOiu62YhyqpYOYgdoFm25oryfQ2FQTHdRTV+GtaTsqa9+/TVtHtrbz3W9UjOxdQ//fZv//YpP2cPYNlbZ9X62N0/g1f+z+/Ngzu2UG9LoNknA8gwVMXHXIajsSDUa0C9PsDoQbmxhhJYHLCIJaHUHAmxviHQqICde/hxAVywD3ZrS9nAvUKLjDSeqcmytgsCTUNGoPs5BNDa6tJwyDQBbhHAU4KtGeWEJLA6MOwiwkUZtLYrDvUa4GoBNUwLWBLWUKgsqNQAxlYLi8BgZ9Q6QgZk7IQllVjDMaIbWgUGolmyJ+qCxWV7sBIKnllDgcGkf+svo0Oz5CndB1iWjp88NjMre8UoO5vDmEX2S+DAorIxLAUWABDhrv/2TgDAtS+6MWfFpCZ2j4n7+K+rX/EuhKcNYHwX8P7597/hpM95/j+6o8PY1JYjVHKuGgUW2MjwyQ/lfxKiLc+xLUveSQ9sAQC7ILg6otj2EkjeY6DG0qJdKzKj0DSd7RG1UbxxWcM6NZTQNGJrYFRx0K6WaNYtFgcIYSj2X7aRQHCxOpD3YBtpTv1AhmZQUCcHebeqUhvrcFktlJLCppiKoo0Co9xWkEqVaCkQnKKoVoqJ2j2oTUSycRJQJ2jD3QukB5TtrAMeZ4SlGOV929Iqna0LMyefmmsPms2B2Rw8XyAu6m4Yl5eVYVxSVFjfKVOUZZxVgFEveIBYq7QJzLXIUwplLqZtZjZj/zriPaixMLMW1WbA4AGHpk2+6QrUVQTbANUxL0wzL5J98gGYzkBzI8CEbjNubiOmhjRd+/VfDkEaUmuA9VWYGAX42FIbBgDFH/yZOHAkG4ioHt/DlPXVyHOaVgCSDK4QaFAhWTRQWYhdECAMPmsFUG8a2Y9dBnEcWf21k5ecqk6shf0KslqIigKYyPePBwXYAqYNaqWiQ5mRbN/Og/iXswD8sCSfGdBZAel1niPDoGPRiZ99FA/7oPe7qdjMcelkiOM5K9sAAV7tIi5ZBJ6ula0JdLNPhkZ0b/3FWKlG2bWmrYBYQcDgwqGYSUju4twKpo0Yf6UAPbShVoURdnMGPjDOCkRDJEPANGSyFlQGkDKDAeTrTF69n8noYD+xmDmKPQ4YzCxAhSFQ7D1fB5s0nWH4TZIhmpNrlAkB7CyiI9TrhNIJwA3IPd7Uck2ImnFhAGEA6/4nUAWUCEPUMfabKMxiILPYsyK7D65E8eknEluyzuNT/xbRTcCBE9ezRB3gAhxf056knk2K7BPVtMAu9aylvXr2CViveuW7EC4YSH2pdrW2Bf7LP7/+hM+59HV3gCyQlNEU1c7WivLYtFqHFFLLRs19cTPG/ByCCYSVb3lEJ3/nkUG5LfVrtckYPtigODITG1QNrg+rA7RrpQAmTYStI0wTuqzRVOpVVurZFuBCajwz1aD00iGWBvODVgCfaQJjGG4m9lopc47akGtGAEK0IQJCkPo7ZfHNFzK0TvVZDEAMMBMg5+ullVQDvYE2NRo+n0CQBEJYBThbBVESEJJto/XxfdUCUQ6Hl8cwEHtZJ22Qmsp7sVVMio6dAHRAp6hGhZxZldQy1sg10aDbdr5mdP+dMlthGRwUnNW8q6XnJLILR5D3oHmD8X1if25nLWLlwNai3Gxhpo0cm+lcypnxSP5tWnlfiwVgLeJ0BvZJRdNTLPZJo0ED4cdDEEtNG7e3AQDlp78gp1S6N6RjXhRy36hFPcJNA27arJgBGclN0XOFgoF7aCLvN9Xbxui+1sfvo+4nByxbW3IEgkHc2gbN5qBk95b2K2XX7FAOUeoffJB8lxBAsN05AwCsVmrpHPYxO56YNgLwMIbgZoCdebmmK3Bu6xZcFYimQHmsC3eyTYSdtNIH7JyhnIa1V9PurV3X6T/V/kKvffv2LTsF7bJSLRx2KsNPYe0BLHvrrFu/8+9FZvmK738fQiWD12YdqA+1AAG+NoiFhZsAxhP8GJg/rcW0iOD/XGH4EKNeIzQrQHQGzVgGOuW2DHBswwAqhEIYR240EuZfXatkHyBYke6WhTSxTSsZLbpIm7rM5gZkcMdDcFkIY7gqAAaKzTbfzP1IQ8EXUeyRAICdhDKvKkseDBMIsexAEXIGsWQpqhmIpUEoTWZN5cUQz1tDORScImtAcfewFFZsOIX9KVskh5WyDNQsMsNQHsDCptKchVTYL4WIJna72h5QYNz5JzfnTVzz4pvApUUYCjuEAp/Uiu+Ka2+Fq8TzVQLl5PdXXfHuzBrZs/I78+vql78Td3/6H+Mlf+e2/B0FgL/yjjtkUDSQ8+TL10tz+p033SGNpVGwhAA/ErWGbQE26jeNTu0RSkK1yXDziPkBYT9VGwEmAF6Ds+1cGsyUT5SG54Ay74IoVQoAobIwjXhTpwBAHljJnLAKAER030VD2Ss/OlGesQXsvGcf5hnWMyiKiidUBDeLYgumsn9XM7hF/g62Y8lckaZWGnAToO9BGvRksRCJYCNgJ1HBFlI2lBTuyc4hhe5K8KdkklAQtiHVvmsiUpMRpaGiogAXDjRw2SpQGkMZuFMjz6VpLV7Os45dmOxk5GB310AyJgcmU7oOJEac5q8QsOx9DKBjC4dli5bUOLME30vGjjb5OvAzAIbfNthfjFHvS9ZqjOpYC+wrEB3l92MmOnTc2ETcFNaKOXgA/oEH5fM6dB74oSPdIKz3fqHsPGxvC8ChjXMCS0BGrMFSgylPBDcN4qKGPbhfmlAvNl8xs/a02dawe8lRceD9q6B5I/Ob2TyDKyDTMRF3sKvZL/+3HHcBaYhZGs/Cq7d2AC0AggA/RCRWCcxwQ2HkmWkDmssxMyGCY0QYVx2r0BLYdYGaUTOP2KYMMlGWkVdv9VrUMGiDMGuj0UwkWW4R5dx2BsEAr/wb7z0+++lRrN1C5ffW3nq81241bbsK+JHeEyzBj/S75IB6v8HgGQdw/qctzKwBbU6A4UDubRwQxjIsLdqhZKQMB92gM5OAdnTbZDqweycppj+EA+Qayyx1ceGEIQ10A8G6AR0RMJ1iAbQtyDm5bx0s4dWeyNUE45OlkZFbktaNbACj9kGsAdfJViU6ub5QBEg97mNRKnu/tw29NybCgGk0Q8J07z0DtkHvKen5+v5PWM+m47NLTXvXf39X3v61L7oRsZRwcSYFnplP6IW/s55Nr3PV5Td3nwsBH/3Y3tDsTK6rX/EufORTb8NL//Zt+N1/u3yveclrb0copW4DA3/0f74Bz//JOwAVSpDOcaVu65THEZBeqhAljOQSAge/0GDzWSXcHFj7aotiu0WzX3JDE3mo3F4mtFHKvIOS9aYtYmWF/OB7eR1VIUSJZNkJwCyCKJj757mS8lzNKOZCXDKqXKHGgxYeZtYgjitxe/BKHGyCDMcT8STtX8q80O+GsIfS4FrymvpEG1Ho9q49SSWWVAVLKpEEBMjvxSJVrkdLttGAXJvSfiWgNH9nY6ce8SEDAnJMYvevXt/S++OUHZJUav0VIhgxA0ZLr7/bUnUKIwCwUtelYV26vqTjFiMwnWHwrUJq5nkD81ANGAt/4X55SulA5+wHJjNR48zmiFOp0e3+dfijx+AOHoQ/eqwDztPxTq/NEbFpQPM5kqol24gBQhzaCTzVtahlqkpIQU2ba1OOAiKTIcRv3isqlpWx9FEHxjDzVs6X7Um2MMvgSv+zSMf+uOAwgEzs7NxVMZjrcf2c82dLarHeCMiBts1kKE4zD+D4LFcjwBkb/TIbFiW3Zt9SIhj0QRMf9fzvzgE3aWEaAWNiVeDql73zYZV0p7r2atq9tbdOz/r4xz9+Rre/B7DsrbN2feo334gX/+jt8EPAjxnjgzM879B9OFoP8cUvXwBAAIxmf8Bo/xzGMKKr1PdZWOf1AYCVRe5mFn4khfDwQbHfaVcK+OFTsPJ5Axw5tmRNw62X4qxpc8HG/SIQyKFxDAAzYZUQgOTF6jYWgAEW549lv/r34cxiEel5dABFgmYkwhrK0m0ypIx+qww/8fKWMOEOSAFJQxk0ZNy0+lx9TApdNEE9dUmYgKTFYhoIg6K+XhQbp7Sc5p9YEuuDVgIJGcrOTDYPySuXCPAR133322UoV1jEgUUsLMLAaiAqjguH3bliaWDqBOJI8JzYocl7uPKqW/ZAljO87v60FIi/9/8sh4SmvJIwjEAkXHLzHXIeWWlEKUDAlSoNQ4BqK2QxQzoPo9qLUWAUkwA/NLA1o5gGOU/IydDcC+MuF7wKUqThSCwsYinNQT93gtT6rj5QSmi9E8stsLBeTVAPeCdDHj8yqPcB7aqoV9oxoZhTFyavCpZ2TGhHNntwJ8VN7N1dqZSQXz80MC1Lc+v1O8h6DBMg6oVJ6RaagWFIQutXDcqNVtUqqjDxMTMdM8Oul5OytII2sSGC2hbUOHBZgEsFlRsvzbQO0Hg22+GTjPxzVvcpky+Hd1qbAZfu8dqop0YosabT4CsGbZwTuNuBK7uudI12DlS3cLOYPcvdVIAa2wpIZ5ogntUxdtYQZMC+hb/3vm6T/Wt/YtBR5/+d3j9Hn20N+iqX/F59z1qyt+10bOLOLBV9H3IcWAaWjQBSrHZi3XHdHVw54WJtOlu1n/DifS3ZMN0xScCW8QGFAm7EDB5WEhLLrMH3AWHoFFhZvgeljKFooeqUCGoi7EyUKx3YR5kAsLSrBnk4SZF2ezd7a2896Ve/pm32MfjcGm1tsfYnRR7GNvuAdl8AW4v5U8YYfcWDjAWCqlgGJdgZ+JEDMIQdFrCbcwFCIMoWns5ENbcTMA7idb+TMbz0mMj/f/b+O262q7zvhr9rrV2m3u10dYRErwbTDQYB0rHfxzbEjmNw7NiPwcbOGyyKqabYdJAOTuw4D05iO3FJXBKX940a2IAppgtEEwh16bT73HXaLmut549r7T1zt3OOGpJgrs9HH517yp49e2b2vtb1azLMmghk9nEElmAR45j0r6+Z2Hkh5yklZITKDhPkuofy4uZThJ7W63FudKRr0oOL5T+xA/UQa2w4z+jSo3NPNSJziar7X1PZVdoQpB16QwF92b6n3amf9eP35cPQrRqqeaW45PG/WQ+KfaPKNAsDTCN9yUXPffeOzOKN/ayqFTsVaHSq50/rntc1n5C8gk//+au33OfVWIkC8ORfuhwdejgT1nFVzwaiLta5xzZ0/X2UDJZwrYyE2KcL+c4K8cdhMiX9YlBvKueFZNBtoKtsysKiRjk6fI8rElH13fGRouwk0kPH1XdQByWzlZ+6MfjIYBtCNjSjoNipMtWq73I15DdBiVU6USs4H0h3jEkxtXetGfeeVQWFhPQO4b4y9BKmsoh19fq6yj/ZknMEG5TYwBigqdo1GKumCcBPRYDMxqoCynIcbr9DD7UBlPahB60JQ5t6aqUAg9dOzo2T2XbVMajIS5vIQ2ri3/V7DOpnBZJpUwaFjZNzYHR0dZyDaEyw2bLjz85ayuOLcmhWVra+xwkgadzPCpgxOffYTBTacowC0LLhmNXZtRodRzWxR3XamBPSa/qllRpc2ZILtvnYV/ux3WdiLb4oUCqRPKu8GB/nSXcRP85LxHtUkghZaxIQc16yDyNxxXAtsR6u1paV6rTOB7KbyGtai8oKxmB5eG0fabmeGDde60xrWtN6wNRznvOc+3T7U4BlWg/o+uwfCRv+3P/8ftppTsMUPHH+BPoCzzf9mSLpnsnR2jMaxXRD05uuerIFRXagoDkvQcWjwrAw06c3Sul/e0aC40pF0Y5oHp1HHVusmRsbJK+VzUKwXtm2XGC7DEBZK1LaXl+YIXFMakztw1xZ9lRetjM3K5L1hN6BELidCoMvGklAtslk6CqB9OOG3SZjOxUJDKf25K2CGPWEckUshcBRLT5DzolWEFHnV1Rs+Hpwq8av47XGJ6LCmWRxKO9r6y6vFGU3lsyD/sQgXKnAUJQB9sf+/uQM5Rc8651ixRRLo6+zUoCbSKOsDNurBYba6XOZ1n1ST/6/JZTaJRAFKyyfyhdNLekQ8C7WCCiwDQJzVMBEk3vKVNUWXsoTQuNlwFC0DXHfEQ0EXNG5JV7zeKOJBgV6TYBLn04MeUC+u9bi0gZl08j330uuiC7c2DLPyAJaB7WLKoPNXiIWWqIAk/1JT8h+u1hAIsFu5PWSdWGl5V0ZCkn2EWQzmngoVkk2VTSW5bWLthYffiOWEdoGBYr1EhxqZaGuc1G4+RAqakaOds8SrWdiCWE9Ki82DMhrL+pqeD5Z1RCssm0oxI9YgJZwDKvFWxjQVT7R29X4PBgGdiDnTeVqJYt8HhOLrzxHkYwXrcTjx0yqWqrwUevGCyKY8NtW9eNU6UiXM5KVHLM6BKModrXrY1LMpOhGRHy8Lz7gzgtzr2I/RmJ54CrG3uSC0ruxMmSHHAMZRE4e5412DJXFmHd+WzsEHU9YXkQyvPTHT9Rsu/rxJwFVJvMUtlQST1hVmPGgILAPNwwMvMM4i59pUyy0cInBjMSqovJhV0nF0g7XGi2DRRts7KqyqQ6/t2ADUrG/Y7lW6NLXrP6nvfQyIiPXvCoM9Nk/9v4d3+/p1pTpN60HYk32tLt39Tijs8Z1xbns/4So8LJ5hY+kbxMAPpxDCwdxVPdePlLk8wnKxjRDzhJxBFEHVVrcKBsHCGs1AdAqxn6xm68TegwwB5tBX5Y1acgXZfC5V6KcgbGPfhgSdr5xgsauDtmelLwj52sXQx4rknWN1nJ98yqQGUJ/Kf3cmCBUnU90GZSjVs45Oh/vs9h0hoF2ZaGLADaE6/h2PW2l1K76WQDlrewPjPveYJmE97jqcdYKUGwULo2FzKFVHap+snrBs96Japq6n1Vl2BcX4cK0XgLW9bSn/S7WU//15fKPqpXxIBayEkgP0rOaTP4vGZ++VhebTHo9H8LfdSG9nmxMUXQNyZoTZbNCAEQljzVDR9Qf91ouMQKUtBP0qED3hvg0wTaiOpPFteJgG20x6yN0EtXXcpdGuNRgGxEuNiR5BSpIxmCyEob5RqOLoHQJ6yq8hKirvKzZ/PLmJ4ACo8ZqlPD+CJmek+H0Y3u9TYSfqr/zXggkFfGnIjBOAhKTrzuhftngIAFjxZlSkmlS2z3JutyH3m/H2g5IcFryVavXmdx/qO1bK4WLr5hmMN7fSt1QEZ92qopURFia9wcCHGgl9lUVOBWLWpAsEzVyLDl/41B76r9P+T636Wnrh1Xzj821SQWz430hN1D1B2EtUZ7ytTdco+rd9ZsfJMc9vG9AjpF1Y6V3BR5RiKtIlTUTxzKPseH7WGf4mJoYWtnk+UjVID4eURs6J/ZikYfhhGVdJOfziuB50Q+/C23E7v3KL/+23Pa8d3Pxk97KVV94+47H/FRV24Ix7WmntX09YELuHyj7cYr6yle+wmMe8xi01nzlK1856WMf97jH3eXtTwGWaT0o6pZfkmHMY//urTzzzBt54vztLJ7ZZvHwLI864wjOK25dmScaNEmXLbapaSwaRnsMZz90mQtnjnN2YwnnNR8++nBu2tPExRHNo4rBPuid02L2pg7l8RNMylNrBvM2DUXN5J5kMTsnC9JWC9I4sIAsZrknzWFkQuOkoZmAUkTrOUmk8WcnEkhnoGwI0BKNFLGW5l2HIaxNZJhrY7FWkqBtUenEAyeZEL5q/seLaReYxjosngFpJKpG0TH23q2awQqEqRpb76XpqRgZGoi0hIkH2y+qxa4PTBCjcNpIKFxYPGxmMG9bzouHd2BBq2LcpKuBxhjZd9tN8Fpx0Q+/a0dbhmnde/Wklx8iCvZXJgtEtAzMeoQ3MhgS+z65P1kXAKVMBRjU1gc1i8g3KqarhHuKOkMXnrhX1pkiQBisuLAADCGRuQ2D23G4rLIeMyzq71jZNrW9WJR5UEhGRJVjUgqjVg8tthFRdGNhkypoH/UBRIEy1URZWEQXDjOy6MKRrGrKpjTl1RormzW1VZmzKoSSyqCsbIq3fNnURKOxR6/YnHgJO/ZQzMSYkSXqFfhYYwYFen0kC6xJX+oKcKjW6NVCFzYugiu7g0mv6KIIHtgWPxzVn3HtEz0xvN8RXJ4oVQ3hJplp1WJvgsGoKkZjtb/hd12FjwLjRXL17+pxURR8nC2s9zHr/WBx5WA4Ijm8SJLKuZVY2GnVsVJpgmm35HXCYPAuK0NC6TgK1ggbF6Pyb1GcVP9tt22llXhJh8/Drfe2P36Tz1d6A4izWVlUv/7kNanKDguAii/KMbgyObDIC9ziEtp5/J4O2VxEYzlsM41kIBiUYPHyCJQwZ23DjFVoia4JADUAH37nlQ88EFSmUv/8p6/mmT91GS4ZH8NJC8K7W9NF6LQeyFX1tD/1qVfQ3NdnuDDD3HcK1h4S4zsFZTsQWbKgmosMKi9QRYRrJ3gNg92GxrLYA6kceVwjgUaK6o0HbZvPDeHGel/G949ZzhsGbN4LUBvsebx3gUWs8b6oQXBfFKg8J8oylJvHJm2xL+qakK8mfUHkFdEgnM9juZ7q3FO2IkZzuiYr6EIR9x1m5AR8qUgQZZWn5sMgfDyErftLzY497eZ+VjLZ5AkKjffBKjRkwsibC4PcQkAgtMbH4b/T6WcBnCdazTf0syoDNSzqfrZSeXuteP5z3sWHPzbtae/L+sFfuJwoAHg2UTW4UgEgykGy5oNyRdTJPlLSw8bj7dhUMod04SmbWvrgoSdZl3VMNLS16l5IP4FkkweQI5A5JCuUMcCXxCgvfaHuZwJYthJZW41yVG5R/VHdR2jApwnl7jYAxXyzVqlEvUKC6UFswColTKUELx30h+NhPmxUF8ME0DDxe6qIL0ZP2IZVqpTQ/wUQobbanlC5bABWJnulKmfJ+bHyrspEqbYx+XcgkCg7OeyfIPls2v5OPW197vMON8o23Fcr+6wN7LLwuWm9QT1RV/Uak/Zo4fF1fkjVm4fBvw8ggLxWfyNJpjpm/YFY87aamE5b7LFq4OKu5wVU73tS3bLlerFTjzx5zajcPvpDvB5t7GdPooypq7LdnfhsakJUtX2jwWh5z9VxKsuN1zkL3gppTHU7uJmmzDoKO5HTI8ffpTFmNVghe4+2prYKU96PVZDh/trWuLqOTIBnH/noG3n+s985tlvn3rN7nPa005rWvVdPeMITOHLkCHv37uUJT3gCqgLoN9U0g2Va3xc1ymKuXTyLs7sr/Mx5n2f1rBa3DhdYSPqc2Vrlq73H0bp5BZ9EtG/RwCzfnt1Pcp7lx+e/yBnRGotFh5vu2EPnVkVjyTPYJ4CF3zMPx0+MB1+VT+gEg/ikQ0YrVmEqjmqGz4ZQ4qDewCT4NJbm2XqxzEo1ZQuKNrhEhtZmBD6SxZxXYpfkEkXeVtiG2LFUDCM3UpIR4cbBoIAsDr0MeCfD7UHVaHcV9I0BkABSSsSuYPN71LJNZb009qFZKRdawUNboUuHHsiQ2McaF0XYhpH8GSWqgc0bfvaPv59oYDc0EKp04mOaBbl0sGPDhGDtAlTk8I2olsZP676vL3zoUp72s5ePQblgX5esyJTVDCRjBQLIEhh/upLRKyjaGhMstVzwWk9XSpKlIbYl4fRilYQwi2obLMYZH2FRVtkYeRXjGxFqkKMHORFgWzFFW5N3NdHQYwpbW5SgFHpU1plGXktei0tjylQHJZwl6suCMF6V59lGJIvdwEDVIzAjE4BI2d+4pyk6orKK+7ZWtjijiQei+HGxgDG2oXGxsCB14Vk/J6VoKdJVR7tXYtaHY+XJRDA7zo0XkBMMQT+x4NugDIkjOYaTOShRFM5z4RhW26+AmO2oKJsXSxP/3hYcmHhcZYHgQ6g6pQz7t9gDGFN7LHutwar6trqck+dbUeLgPb5aDFeh8NUxqL4zEyqOKo/AjbIN5/hta8JeQceR2JOZAJZPvreK8DzhZ72tVQPgncb2BxszbTYwzbdnCFb3bQFe2DQUjSIZjhgzHmzkxYSP9cRxmdy99R7pbcsoOytgn/WU3QQ9zDGrGeb4mjzQGOLCEsWyaLWthHwuwSVKFJXBA97HAoC6Ziys2kjz0St+o369p/7c5egYavbnvVCnspyc1rQeKHXj6gL7Z9fY/a+O8KVPPIx4HRrNnP4ejYuEsexHowBiDIXTYgzepGRz4LWheTzCHF2R81EayzUzicfXC8I5ddOQbNt+dmLApbQDAkBbD7eUWCdVllyTv9tqDRoyIsTySFF0RAkglksKm4wVGmWsKeblxFk25bGiSlHonPG5LWzLxgpTSI5hlS3oEjVWQgZ7Fi84NyftaSuRQelCOLj0s64Z15Yv1fW+HswZhW0nuEiGbzrbfuH9wqf/NmpUctWXxqxlVTq5np+kn3VINo2L9QZV4LTum/rcH4qi7Ide9AHw1PbJ0pPJWiwahWy/kCnmUoPROtiEqbHdK2G9FtZgyaolXc6wjSjYDUmeSqWmlieINR2F5Nf5vBQyQmzwSUS+r0u82BOFbrheq1Epa6Mqv2QiH1RyBT1mLcK1YspuDMpgRhZTKVOq1/SB4FP1MVUvObnNKu8lCueBYuK1YGN/VZ0jqtvKUhQYWkmeU0XoCeUn+tYKCNlyTpoMZ/duK3ZgqXunDUSdyR5sYls7nvNg3Mc6jzJsqwTZYAlbZegZI6DIpr5sC0gwkYPlnZN/B8uvSnlS98jWjnu1oILeTHTygJp03ai2PZlvslNtyp4ROy0N4bmbrbl2IgptOH4YsRCrwJkdH3fXS1VEISuqIJ/lwS6sHINeG0gB4TPIC3ETaTdwaRwUjBEuMehBgR5kmOV1AWJcA1UpyRtxbRmmAqBPtd7SCrzCJ7EovybqOT/6PnQzwsX3Ho1/Ur0yrWltW55tl+vT2rluuukm9uzZU//73q4pwDKtB1V9+6fezNOvfj270h6Pb9zKLcVuThRt1ssGn7j1fB7yyVsgy8E7tNLsywoaKwt87eAZ2LM1j45bXLb/i3zktoex+yuQHFlnIdKotT6MMkynLYPIOJYL+HAkwEiWbduY1YFsXoXhWmigimLMTkmDr2eQcfskouymwsgL9gjZjGZwtkV3c1ypYWTQQ4POJTzca4jXteQ4tDw+AjOQht3FnmRFUXQVqpRQ0SpvRWyQkMF01UMGsMUFglLc9zSWAQW2qSiQ/VQedCbhw3gCM1AWIGYYFpxhMVCVsrJt24g2ZMI4I17ZLpIwc69lsOa1WGZ8/G9fyzP+5WX80E+8H114Pvb//w2u/uxbtv0OXPLYN9Wsnyuv/S0uefSbUElUe2FP676vf/6TV234+1FvPET79hDuHsig8llD/4AGJ4tVgKIjwb7KI0G4Q0e6XBIvDdFZgV4bbmS/5cXGBWRVkwoFM7YzyPe2RVGi5btnMs/MiVyC4cP3umhHomxpamEdll7CvI3GDCxmYLEtUwfn4n0I2jWkh9fEi7r2bS/rgGHfiHHNFJNb4hMDYRuG76U3Gm8ShnsMeUeRzyJWYX1hSCoPJZrGsqVzh0VnEqbok0iOSa8voeeTi75Ni1MYL4z85MIUYODqUMh6sVIFhlbKkjQdL3r9pgXV5OLUO8R4WtfhlttaDkwuXCs2tbUCgGwCEuoF3gTTr17Aai02Xt6jO22Ym5XPfCRBnfViy1pUI0U1GjAYile0tXWw/MZFnyxIq8GjMsk4gH6TR/Sk7YLL8/HgctMCVbdbwuL2ssB0m4cR2xybscWYHffHm49ldby3qx2sHlQYpLj+gLE/tR8HXUP47C1+wpfa5zksLpEUBeWZu9CjnPQ7R8VCTikJi7UWFUcoPUc526BoNwG5NkSrFjMs0AM5Rq6VYFsxNjUbgJWqTBZsLS380E+8n7hv7zI4UgEqU1uwaT3Y6sRil2E3ZnXUxLYc5f4C3U+Y/+eU2c/ciltckr4xDHaUtZgsR9lZ8tmE4QFPazEh/laGH4TrRFnWg7/63DzhU48K51PYBLiMGdA6jsbnFucEvK6Y7EqJXYrZOFBVUbAqiiNG+5oM9hjyLnVP6hIFyjOa15TNBtHQM9yjKVNoLIfeIVwTbUN6BR8pbKzH24jk//FgrFhFUeddmJy6Z93S0zpC9oWrVS6ieA02iOWYre8SE4bnLuReSDaWi02tWPFKwpS9EmsY5akVJ1d/+jd57gvfy3N+5H3o0vOPV79u2552Sz/72Deh1sppT/tdrn/636/Z8Pczf+oyokAUg2DlCpRtySFTIUvPpbomtWnra3u7ZLUkXs/RwwKzuD7+7U32s5vIDSiFimPJhWilsmZUMHjIHOlS6H+yUpQsxYTtVSyh6Bgt4GAgPZi1IXpQCGCjtViBFWKFh9ayfivKsGauekkn1/jKarYiCVbni4q0UgW8Gy0gShSJRSEEC9qgWM6yCSXJBABi3bYAhjxg4yBegIdwiDZlc8jfdgsBJdy5LaC80TLRbX0ek33ZyWqip93mtTeAMZvyTqQPC9+DoMquyFGTqplxbz1+bg12hP57vM9ja/O6Zz2Z6mSiBx2rgDb2tBVJSgAndt7epuOw5fidJPfrtKp6T67EDwZhM+PjUH+mE39Xr+WzHLU+xM82yLtNon5JdGxNMgkBP8rwRYHWGt+ewXZSecnSCglvmG8EBptp7Zpw1efftmE3XaJxsVxrnv1j7yfq27ucDzvtZ6c1rfu+zj333G3/fW/VtHub1oOuzp89wbnNEwB09Yjnzn6Dm7K9fOTOx+IHt6GaDVkMAfn+LoM9moVPpvza6i/wp//X7/G0NMJ7JbJpDWq1B9bh1nuyCAPx60xiXK9fMzq2b+ykaqWK98KYSGIZtFUMlVYTSodvxhSzDcq2hBxWQEg08jTuNNhmExoeN1vinNzpNZA4ii7Ea4HVFgIYfQTKqgBkhMF2UMDgwabhdlOxBwEC095LHoayIUQ7DMX9RB8UjbSwtwpfW7jodVt78fqGsOGrbIs6qyUsQER9E1iPVf8eS8A4XvbrqT93OU5I4Xir8B6e8yPvq/34N9eV171z499fe+e2j5vWd6++/q5Leca/vAyQ76RXAp4M98igJFkDvQxm5ElX5fuZdwSAaR1TMuDISwE0K8ZctSANSo06sDD43hLH+LAILdsxLjVivdUWOxK8gInRyIuqKrPy1Xce1YooWgJuto6PbRpsSxj2OndgJbQ0Xpf7TV+G+KKCcCI3tyVXfOu9HNz/q3LOsA6TVYsmsXjRfRsWyoqPXvEbPOnlh3CJgJ/VIsQlitJDOvLE6yU6k/1RhZXmPsvxRSGS+GpxUqtMAMZWVBuB4InFHIwXurqsWXOTtcUDmwnAZjsG24Qa42S2BEq7ieHdpvuqfahYfJMKnChCtZrC4M6LCVWIh+EIv7o+truq7LqMwa4e27JgnHwv47/HipsNj9+8MD/FIMBbQHlcr4eK4jEwE3yx73KdagE6sQjeKYPFT4JFTLx378QvMvy7Zqo7vVF1OcpkmDPKx+BKswmNBDXKoShw7ZSyFeFjNc4Oym0YeoolmEsjfPjub65n/MvL5NqlFf/0V6/mh37irmWvbGb2TRei03qwVdwomW2NaMU5y/Ntztm/xC237KF9xMrgswqVB2GnpwmkCXppnc4dc6xewFj8FWxnVBSNfflrJYoMRiUTagL4PakfvmRs+eo6EzINlNYVfhHsWswEeKPAOlo3rJCstHGRWH71zoyp7GzLBvQPKKKhougKaIIWCzHlg50t4Rqp5ProJfpFFAYGRnMhBJyg2taAh2TdCWAcykfUNqTKeqJR6FFjGTin6yP0eja2MAwD5EphoErpBSrVrPI6KMFFtVApFlQh9qHPe8F7UKUXVWzoe5X1XPS8d29rFbOln71u2s8+EOqTf/lqLnreu/EqOBwYRdnSZLMC9jVOlJiRI1krsE3pPfOZiLyriIehpxwWqLXBGGwIeSTVtVm1mjUwgtLSMzYTXBpjOzFlO8ImQkpTPiFaL1CFFgAF5LocAE3fTChnG7hEE63nwRYPWXtlhSz5okhUL1kuQE/dzwb1RwBArjj+n7i48/PSg20Od69+4zriiuP/CYCDD3mVvIeKGKXVmLAxCa5UqusKXJnoTSZJOtVgf7u+q3psdY6azAOsasNwfUJNsW1w+k51d9UWE+9hcjv1PtRKjI1EKV/lDm45LlEgF22zP9uoyWsQpjzF/p9CjVL39CfJarlLdZo97cme77chZo3v3qy4EUBGxZF8N4sCXThsA8lzHWWylmykqJmu5N60m6JOjDXKii17/f2vyGiRCdcavwVceeZPfgAfi6rzk38Z+tm7cPim/ey0pnX/1Xe+8x0++MEP8o1vfAOlFI985CN55StfyUMf+tC7tb0pwDKtB1396VP/gN/95vO4Md/Lkm3z0zNfYqns0LkpyHsHQ1QSUz70TI4/PiVZhXTNsetaxb858Av87MM/R/aVOVAjaUBHGVgnqpU8l6Z3bgZW1kIomt0wjKwaIQlXs2N2YAjS84UALEppYRY1UvHPdg4fQIgqn8HGul6A7fqaJZvVFB3FaLfIS8qWhxi89qhEmBlRX2FGMqSuABQXyWLUNuRvk4Mq5d82BZd4GThXPYgTpYuOxM7JDiXTpWgHEKVShzcVcV+yXXQxHv4q72t/UjkoYQg76eATa8arcMJiVPbVhgUzHuKBQzk1lthrhXrApHVN63TrU3/xap720sswmQATvXOguGBIFFsGSw3wEZ07oHtLRj4bkc8YBg1F2VT4WIsSxDpIE3y7USu+VB7CYI2SBWKwRrCzLbI9DfFlD4tfGxMWw/JdVKXCG48uIxIbrPBsCM114ptdNDVmpCjSuLZx8CErJmsbomFMevtQ9s+52k5BdVpc8fV3AXDFkf8IwCULL5PzRLMBzUZtn3LldWObEJtS2b3jY/Dht2ZyiIZOFsdZyAwZhSD7PDCoJhcVAeTE+9pa4LSqWnxUjLhJoKYakhkTtm9Q2DHb+STbrGunQHiz5eYNQZU1uFIFFVsnp46yDPYSZVjE+3GmShXC3GrJudto3HC0lVE4wWjbvBA75Xs52d+bnreBCXgf1tbMl+33ZceaeA8bnj9p7+EceqVPrRSr7Nm8l3yxblOyH5yc5AVkF6sdAJ9E2KYAljsx+D71F6/m6S+5rAb//+lvTi97ZboQndb3Sn37p97Msz78G9x0ZDfxzQ3YL3lm7VvXhWzgHb4IQ8VOG797DtUbwmBI9/YSm0Q0j+f1ebw+/0wO8YINlZ9U8p1KcVjfFHLQqgFTdZevAO1JRk5UD6NUf0Bc5Q0aTTRo42JDNh+Rdw3D/Z5kVaEzUaxIdt/YlkkX0Fh2jBY0zkCUy3adEYtcr0GXQqSogu69gVzpYJcrt4uiwKMLcGkYVjuIeyXJ0R5qkEES40y04TqoinD9mchzwSH9R2Dw+0RjU1HL0pBrpi59DfbUQMxkaPK0HjT1kX94A8+76D0oD9mMYbBPk82LfTNENI8VJMeHlO0u0dDiUk3eFYWT8sh3qyyh3RS7oWB3W1lnegKAV1jJqGynZLsbOAM20RRthYsUUeYpWprJ0BftM1G7KIVPI1wjErJDpNB5JIHdlcVRYVGDDD8TRoVYc6sAAQAASURBVD6r62MlRRzVoIeKxqDJVb0/BuDi9s/Jfk+Qca5c/a8bD1QFsDq/0cYVts9aOcmwfRIc2VDbWdPuUDtaVLEDUeju1o7qYbWV2FLdZ+oH1b0pgGqkcqyGI1mYO4/yGwGX0339k+7vdtazO/TB0kPe9/3sqap2CrkLpbQK4IoZWw7nJfFaAPq67WA7HcCTVrPOCBQiHlBZg1VzDqPxsYDwVYD9ZH3yr17D0156WT0/Od1+FpiG2E/rntd0bHa366qrruLHfuzHeMITnsAzn/lMvPd86lOf4tGPfjR///d/zwte8IK7vM0pwDKtB1197tbzsFzAH3z7mZw1s8rrFm7g9nyBuRtDwzg/R3nGPCsXNklWoXW8ZLAnoncONNOc//qlZ7Dveo/pF6j+YGwvk+fw6Avon9UhGljMQhvTW0CdWJVAuW5HGNVFge/J4MkPR9KcWCTYXsttfpQJUFNJpkth/ai8JOoXtUd0VIqllo8Mcb/E5AaOQ+cORd7VDPYrsjmFs5K5olxQrhjxCHaJ/BsHZQtQsjCt1C0+MAZRMmj2auOi1EeQzUHcg7KhKGZkuzqT26JheJ1IkayVmFEIhlbBEi0X2wSvheFVDaiVA49nO5zEBgWLLiEeeKKBE+VMeP4n/vrV34Vv0bTui+qdKTZ2LoLs3IzHnnUY5xU3ml24O2YkAH4+FtXW0KOdfBfNIPj+znWE9Z5EArpYD41YFhulG3umO8eJJ3QpOqLC8hqyBSg6HvDEfRncxAMEvJuXRW+8VhL18wAQyvcPqL+/eLEXceH32TpWkBwfCLgSmmvV649D5ifq4L5XjAf+w9HYMsFoLn7y23CNmBOPaeFa0DzucTEMd8vwpmjK7xbAxQYzylH9DJwVcCGoNzawt1S1cN3BVzrUyRaaqhqaMcnQClaGZVHbdtVWAfdCbdif2vtZiTVjXoiXdbWPRYlfXUe1m+gkgT0LlAttzNoQtbwubDKlRWkIp7UY3clbe9vaZpFfH4t7a5F+F2uz6ui0n7cBSBkrWOq/jRbGqtaS3xDHYw/1RioL/+Az6TsNCdqtcr2KoF6pwBWl8Ins507gyjN++jIB2hMB+5/1Lz7AJ/76Nds+tqrpInRa32v1pq+8mF72aDqfbQqwgMdrj+6NcMEKRcURKk1RMzPSc+UFLMzhIsXMLSXx8Z6oHPO8th/ygfxj5meh24HhCBXytnx/KL/9Kjy5BrXZFnz11o5DpquqLHCtQwJOQlXnpwnCBMMR8WAISSLWZt0GUV8JaKGkD7XN0DfmcmmLhp5sVmNTiNeDsiX0wMm6ZzQvCti4L5sRwKUiMCjivsfGirwjwEq8Ds0TQhSKBpbkWF+sgbXkQ6GUDKXDkE2VLvQgrlaxVDlwNBirtYMVqbJerMkcKO9xRpQ7AB//u9MftE3rgVVl24CCbFYz2hWyWUby/fSxxs40Uc5TNg2qFKtLZb0onkHINla+F64Z4dtB2VRKhpApc4hElXL8BzqSVRTWZ/mMfJ+bxxTJGnit8UrU2qYZoYelEPe0DjkvEPVLIatpjVdKMn9C6aPL+NFI9ieAJr4oaxWw39TTXtz+uTGRpwJRgEt2v1wIhEks708pUcVoFXqyoDQnC0REtlVHwxiAqJR2FTFkS7+5CUw4VT86qXSZfLwoX7axYD2dAPa7UiEXZXO5osQkCTTDuqbTxs+2UcvrNTnUDQbj59+V/TnVY3ciFN3b7/2u1qTF19147pabjJEcXaXEtrLVxHdbuEYclIYGNxfLOiIPeT3xGGCvM2bLsv6tEIU8SKO2BVee/jOX4SKFCxboz/zJD/DJvzp5PwtMbcCmNa0HQL3+9a/n0ksv5T3vec+W21/3utdNAZZpfX/Uk5KEI+UxBsOUsw8sA/Dfv/g0HvnZWwL7PcUbRfOEJVktiFZHoGbonWNYX2vCyJDNBVZaf9x8qiRh7YIZshlN0tOYLKIRaeKlNezaOqo/wDz0XBmarq3XTBzvPCrRcGCv5CUcPi5e2M7JIjMvIE3leVrkqd4GuwalcKkw35xRmMyBh6jviQYaiIgGCmc02cKY2ecS6gyVKpfFJaJa0YUEinqDLF4VQSUj4IdNPbqEaCDNhIsg7worsGiL2kUngYHlwReSY2ETjZtNMFnwpC587VdtG0a8R6MAsFiPtgpvBWSpZO42lkBIkwdwZeTEWibkrkzrwV35XPiHA19o5pIh+xrrrBcpt+3p0DqiKdqa4W5FsuYxGbSOW3Q/w861xbZDKVwiIfGDPYbmkiNZKTDeowc5PjaUC22+8KFLedSbDxERmKoNsLMWrz2oCBPJdzpqQDRS2NjQ1MIqtYnGpgo98MRDh001uvAhvN4SVQvQvET1R2NmK8jgmYIrDv/ehvd+xdHfB+DiJ7+N0e4maw9JmPtWRnJiUEvJH/aOQ9iWp2wpig6UHUe6qElWRU2TzRl0GaGLRNQrwUsfEAbyBjDFbhyan4zhtx0bcHJRNflvr8Z5KbW9DHd/AcQOw/2qKoClCineXEaTP/58okFRh8UapcSianV9Z/uEydcPWQQ1qOTV3Vaa7Pi8k6lb7sWqBqfykjuwojf5f0/evu1tWmx/6uMfAC/fbaHWB2NP9U67tuXzRs73XimikcWMJMfAR1ryCyK9rSVOVZ/6nwKkP/0ll8l1q/Q894Xv5R+vft2Gx03VKtP6Xq6j+QwgQMH6udCyEQtf0fiji/IApceqsuEQ+g4fwJJkdQabyHAW74KFl66BYNVsCrgSR2BjsEYyQxji8hyTite8L8sN5/bNCpfqGlCVd07OF27MsFYTOU5oA81I9icXtSGlA3Li4306iaHoJBRtIQC5aiY7lDwybUVNnc0FdUopIIaLK9KPgLJlA7JZ6YvjfiBbKHl8HRCvpcctuqCtJhoEdcuBDmls0EeXAygSrnNZAYHkoQqHcm6soA0Mj8oWzBtRwygnvYMqq2wX+bw+/nfTnvbBXi6StZApvHy5fPiulR4zsuSzMaOFCG9AF7K2aiyV0qs2kxqIzPe06J8R01i2RD2LdqAzyer0SYSPDV/6vUt50ssPMZoPoGMKxYwjWdOUpViV2VQRDTRRqokSjSqDwqwKmXeeeGUEhSXKC1hb30jOCVlCk6W0DPMr1UpVV/X/Gwf3vUJIFq2m5DtlGVcufqh+zCWPe7Nsr93ANWPKTowZSv6LygKZqVKxnKK2DbjfuKPbP+6ubndzTapJTjcr5DQsrbbrmXWSoPbtwc210Yur+E4zAM0BCKoya06l2Nhwfr77vXm1r/dr+Z0thGHienQKpTwgFr0mXDODcoU4xqcxoz0pJvMkKxl6VIiteSq/PZQSVVmwe9RZIcA6CPgS8sa2A1cAPv3n0s8+9V9fjsnlGvacH33ftnONaU87rWk9sOob3/gGf/EXf7Hl9l/8xV/kgx/84N3a5hRgmdaDsmb0iB+54GscOvAFlt2A5g0JfjjCPuo89KggWhmKWiMrUUtrdNYGKLePW86IULGTgWwzxjRSVGnq4F5demHFWwnfNr1MLMQAXxa4m25FH9gHxmBX18YhyYBrp5hlyXOpLXbKMgxkCXkSciFXNtgGRJIFo0tdW2S5VJpmlwYj6kqdmgWWXi7qkjprxUkYqGtZ2UbQIItNkkeViqgfABMHPlMSBDoSpUsF2HgtgIoZymNtQ+6PfAgsb4hSxSWOqG9lWwEgyuYljBGEPaisx2SeT/y9MPd+6CfejyoVWsvCRJcQjRwf/9vtmX1VyNu0HlylrKhIooFi9msxn1p+FPrcAdo4fLek6CREmTBNdSl+6XGvxCtFMZ/SOzNm7TyFstA6AiuPdrgUWvsynNOYzy0w+x1HNifN9dffcSlP/NVDKCu/ifxEhG0GT/fAjC3bou6KGmBTgy6F2Vq0hQlrBlaAz9wJI9CGDAmQ32ylqBiOUGW5BVjZXFd9/m089PLL8QeGfPH337jhvm+9+VIAHv6/fou55giH4kR3hvJoQrwOLtJEQ4MZRqhmIgyqauGsVFCThI1tCZ1n67+hXrhsGbhXVmFajRnKMM7u2O7z3WmgL3du89q+vm/Dc6vAZeeFPQlbmI31Zo1BFxazOkR/e1EGdsZIDkGnjcoiYVKesRfuPIbv9SVcfjMTW2lhSE7s0726sPxuLlInQbHJOhnwstPgYFJFVPnBd9q4bgu9Pqgt8Wpmut/4OalgueeVgtgIuGLUScGVqp75U5eRjITJC6BLx/Of/U6x72tuVepMrwnT+l4rjafXT2nMQn52zuFbdnH+zZmAKHGEaqXiPV8U8tu0wYveWvQohHB7j0pTUVQDYMbWPFkeckU0uFK2E37/bjBAN5tUeQcbchCC+to7F8CRUFX+nnNb1XQTAdgbKo5FjRlJcLsAs9J7RkOI+x5n5P+m8GQzmqIN2bzYbblEegJdQh5LD1yF3itL3Seb3NM+ZqVPjSqltiJdlvOLSxT5jLxHr0EXDdLVVIZnWSkqg5mGZK5oJYoVkOBwJX9f/c9v4QXPeEcgcih0dWyc58Mff9OOn/O0p33wlnKe9p0F6arBJkqIYZnDDKvcNvnuyfC2IDkxEMVn0qGcbzHak5J3NMsPVygXkZ/lgIiZL7eYvckSDSy2Ib+7L3zoUh536SHUENIVKFM9diwIbgI2UdihAHxm5DBDjy5kXWsGJWplvSb31WH1kxX+9qG/vHLtD3d871cc/X0u/sG3U3YSPvKP79ly/5VfeQcAFz3v3aydl7L0GDADxfy3mix8pqwVdRWIs+3xvav2rXfBGuu0gYeT9FNb9ucuvH7di4UeWCWxWIbnQR1x62EBuEO2lUoSTJKgztyPP3Ic1x9sVbLcm+DKA6W26Wknj93EjTtuorYFC+CKiiVjxe7qkO1u4I0iGhSoUSnAX+WWkASbx0rB4gWw9FpDMibDXvWlt5/0LTz9Zy4jGYpKEi95Yc+76D1io6tkXrI5k2V6TZjWvVUPFBPSB8p+3JXas2cP1157LRdeeOGG26+99lr27t17t7Y5BVim9aCsH2rADx34AgAGRdkC+8hzie5cHrN4ANUf4VfXwHva18HCmWey8owRLoZ8NsIc2CWgyMoaPstoHh7RO6MtoZmAHuRinWKM+Os7D72BLH4ng6OtxfRG+OUVsQebHEbFsXjWaw2xMHsr9q9LDMr6+vU8ovYw4bnRyFO0FLZFaABkYZmueWwij81nw0spUKnFthQ6VzgjapZkRTJbKuuuuAfRSCySopEMyHpn6joXolq0RgOxWDJZyKsIKhQXyb5rK5L4om3IZjQml8eh4LN/stHmq2KAKS+LhIq9vF1tZndM6/6pl37mZczGQ1qmIFKWWFnWygZ9m/Kfn/xH/OAVb+RzB99VP/5Rbzok1hmRR1nFzM2WXV+19M5ssXqBInlEj+zpOcVXO+z7bCFKKC+ZRL2Hz7N+jiGbhezcHBU5vvn28YD2qpsexddHZ/F3c4/lpkfuoXNdyuMuPUTchy99SECLZ/2LD9A+Kt/TsqnIuwKi+EgAyEIL2KJcRLrmBVzJvAzvB4GtFNiqFCU+ieX32mnIAKvPGCw9RX3nVa866f3Xv/gtADz+//eb6Nhim45oqHERDHcbbNKg0TRE7RRzZLlmAaoJGTvey36ephJjgy91BS74SUuGsACsz12b2qTTUMZMWompOJK5V1FuVdpMbnunxaFWIvMHzBe/hSvH71UZI0PGEHqphgoNqL274cx9RCdWxfZxlMl/gRGokhitdXjezkDSg6K8A8YDzs3hqZuDY8fPqZ4wYQs2Aa6oRgPiKLBrvViAVJZo1WMDo14XHgpRXaIVZRqJkjE5vRZblx6sxwzLkFcwcV/ucMl436cL0Wl9L9ZnjpxD2U/on+NozQyx180SrQ7RnTZuOISK0WwtfhhA6fB3dHwNu7tLFXStmg0Zqk6EAauiEIu/6hzs/Aamtt+sAKyuCXmOSlMBdLbJNKjsBGuANhK/e8ksEXUL1UApMuIiZgzemNp2yRvQuSfuyXC4aGv6BzQ2EcWJj8ElDrwmGig5BRWQriJWSg7inscU0scm6450MZPsp0STrAb7IaNwiSKbNWQzleoEAW86TcqZlGhdzmleKVzLoPMAriQR+VzCx/7PRiayLpxYk7FzxlRVz7to2tPe33Xe73+AdN+AsjDYUSQ5lKsROlPc8LpAfPntQ1z/m5fWz3nWiz+ATRW+gOYdQ9I7CiERNGOKmYT+mQ0aiwUz3xlIHpn16KHYbbldMxTzDfJuxGhe8/n/PO4JL/zLd1AMYwb7YLRg6NxhiHueZ/2LD2CGjq+E79rTf+Yy4oEjmzWUjeBMoGG0IFbPedcQ9zXtI55ofUDjqMWsCrjji5IqU69WnFW9XaWIq/59irrqc2895WMqQsVD/uTd2FKz2Igxoz10bm6JTVlvAP0BPsvAVWQX+f+kfeupLG831E5Ek4mg9pOSgk5SW6zFTsMmd0uQ/eR91W3O4e84gndOgJWqf1dauJRh3/WdR1ELc5gDe2F1PZz/R/gsE9V2dcyiuM5q8e67o6K+z2oiL7E6XjXha6fPeqJUmo4zV7QS5VWa4pUiXitISulVXSvGG4XOJ9ZOIR9JLG+tgCHNuLYFu/rTv3nK3Te5zDhM7uT64cUCPrwASozT68dPe9ppTeuBUS972ct4+ctfzo033sgznvEMlFJ84hOf4L3vfS+vfvXdiy2YAizTetDX14sY5SRU3a+syoW1KOEEeGOE6ddswmDA/r+9ke4d52ATsR1ShRWGjVaoNMU2IxrLAj6kyzJgchOBgN5a8fv3Dt1IpakJDYC//bDskHXjbHetg4olgtQIW0KrYKelg+2Bqj2c0WKhVXlNx30XwuE1wz3UAIaNg3okFhm53C4Sdj3SxOuqthPTuQAmFXBiMk/c82grLIuyJd7Cyot9mI8gWVLEfeqwUBBbhio/pWiN81ZsKoqBL/4/Ow+VfbBM0CV88i9P7ks6bTru33rpZ17G+a1FzmxEnNdYpKuHrNoWs2aAQ/ON4Rn80uf/DZ10F0+64k2M8hitPI1nym/E5BGDRpvjKqJ5zJCuenQO3daQpa/t5sDnChrHBqAUthWz/PAG2Zz4TX/7DZdu2JeH/6/fohhFzM+/iN2tPsMiwSSO0R5oHgkD2lCf+OvXcMlj3yRBoQsN8BFmpARUKWVh6lLonwV2UdE65ik6mrLVJBqkxD2LLgVgMX2xInOJGbPrG4nYh9yL9eX/z29zwXsPEY0k6DcaCugZjeRHl88mmMYeorURqrDo48th0ew2BbmfxPJqYsHlLbWSY9vHqXg8iLPjxeUGtcfJgj2r/ytdAye6IYseP8rqxbPCjgf84Ryt4hgVRWMQZfcC5e4u0XIf7jiCmp2RIV5e4L2T/0/uQFHC0orYZQAkMardQrWaom5cWcGX8vlVykNf7rAYnbDZ+W6E1t/jUnpstVbt+05B1lVVtmBhEKCiCNpNaDbEKiE2kMai6OqN8J0mrp0Km89INoGokBDSgB4PMndSJlb13Ivfi3KepPSBNODRowKxBzQbB0BMrwnT+t6t1eU2ZJp4VTOYazCzjPSlWkFZ1ue4ClSpS2nc4aOYwVD6zFG2FVypAPmyHP/OjcGVxYQtS2VBuZlFbgXc2TxUDL1cDbTCBoBWgJYAsIRrFXkO2uAbMRhFvF7iogQXh3NGsJYtOmKd6aIqY9Chc03UVySroZ+11HkrKheLsbjvRHGeyXHzkaJoazmvFEICUl5639ZxX+ewAOR7WxQdg000cU96eV040Kq29txcriEAjC4913z01OemUwEw07pv6xFvPcTMk9c4e3aFkY24fXmOIotwQ028bnjkbx5ClyJkevTrDtUKfh5j0Dk0Fz367A7JSkG0noH32FTTvm1IdGxVXiSO8JEQEIqFltgmp5pP/K/xeucHfvkQSd/T3Num5cSVQBceZWUdFQ1FLVPVp//81Rx82Osw5y0w2h0JyJIqXA5oKJugvKLoGJITCnN0RX5zSSLkFhuyP60dg5+EYb/z+Mra716sm372DTz8tw+hCxjtUri4TWOpQbzaRg8L9PIafnVdzg9B3VJf753HW2rwZUewYDvF9jY5IpsJRTsBJJMgzJZQ+on7NgAoSJ7KhvuUFmJRBTh7X1vEqdkufraDWlqTTFdrUe2WfEYhYxFrayKnzzIBVk4sS/ZrmqCaDVQjRQ1HMosYDnHZaOP73/4NPvj62SgKNpR+gy3u+CFblTsqSSZsKsP1SCt0XkIm16x8oQkKzMjio3GukM7KsXMB1EoTH2mu+dSbT7nLP3zJe4nDfEbnDjMo6izCihzrJ75L0552Wvd6fQ8I2e6v+s3f/E263S6XXXYZb3iDkAXOOOMM3va2t/Hv/t2/u1vbnAIs03pQlTvysC23fW54PrqA/lkN5r8ZS2g9oDpt3OpaDaDQbOCOn6D54evkQhyaznqgN9MlGogMXOeO+DtH8Os99NwMrPdwwX7Bl4U0UpEwtLEWlSTjxkUrGYB6h9LxuMly4ueMBWU18TAnm08pW3IBFka/bEK5sIgsPPHAY9fG+QQmC1gKISh+PVgoZBrd0yTLYgEWDQRQ8UYWrMoGxYoTVr93Ev6ZzcjjdSGKF2UhWRkvZvGyDRsr2ZaW/4sFmZDRr7ts42B8c/3T/z512Nu0HhjVjUZ0zQjnmySqZOBS/vbI41kdNVkbNBgdb2HWNbpUqLC+cDGs7S5ozI/I1lNwimyvJZ9TRH0ND+0z0xjB16F10wpXfP1dG17zUW8+tAVcefZHXstj9ve5dXWO7Jo9fPvJbfxSSucmTf8sz+AsyVZ56s9dzmf+m4B7KisxuUXNN1BOVFO2VJhMbMJ0Jv9lcwgooaB91FE2FcNdCS6BxrLDZKkAlLmrg2tdw/CR02Dy3dWq2JNP+LeHMJmvm3GQhrzsRNhGGxcr4l1tol6OXumj1nvjjUyoFk4n6HLS73jD4tJaFCawmDcuajYM3iZqcjC3ZahvNKrVhJkuankVn+dig9BpS/BkGgaAsYHCQn8EK6tid5NG6MLCKEN1O6KkyAt8OcQXBcoYzNycLKK6HWGLHVsUxUy7KYHOeYEfDCSLYAIkOqXH9YbHPUCrOs7Voj4EVns4pX13netQ/aeV2KwpJbYJaYweCcioViRom2BH6ZMQ0mvDbRoZamq1JT9lu3rOj7wPE3zjdenl+hhsjkAGTF6D13q6CJ3W93y1Z0b0fQNdGrrXpqQrXgaizQYacGu9+lwsoHAh51oDLjCaN7CrKxawMcLo9R5Ksbr06z18WcrtYag3ydCugVkQRvXEAKvO46quHd7XAKuoKQtRqkSBuW2MDLnyPKhmnAygvSfulUSjRAgFQy+/eaPQhSisy6b0FMoqop4iWZHeNVn30oMauTaaQohCYjsr5+yiG1N0DHlH3ke66ohGDjNy5LMRXkGyXjUuUHZMIAspynZE1C9RhePqz75lx8/sdOwPp/XAqaLrmYlL+kXCiX6b8sYO6ZqidUQyAPE+KPWFce6VWDVnM5oykMkGe0SpHw8ShrtEsd/+dh9W17ni+H/a8po/9KIPbFj3PP7XD+HaoJxiz5dGDA4kxD1RXKnSke1rsnpeRPswXPTcd/ORfwzfseGI5PgAb9qoGbEoQwkAZMLvp3l4JOQfpYVFUwhZQTUaY1C2UpWBDP+V4spbP3ifHO9KBfSUf3N5TSJEK2w3wcfz6Jk2qrBC0hgMJbO0LPFYlIkD8GJrdfVp1cn63p3AlQmly9a7wnlxU3+rjEHPzsDsDHq9J/sO0uc2m2P727yA4SgE1ivUKEPFcQCbFSpO5TMJJM3KolElCWamC87hVtfk9iorK8/lfB9to6Q/xfuHB3g/C6A0Oo5kPpPE4DxKKcg2fn7bqZJUHI0tNL0LsxkX/vNitwwky6oGvcp2LK9ZOLG6zUJeWMgo2ilvZXM950ffR5S7OrNFWZn5KC37g5eZCR7+4ZrptWNa03qglVKKSy+9lEsvvZT19XUAut3uPdrmgxZgefe7380b3/hGXvnKV9YBNN573v72t/OhD32I5eVlnvrUp/J7v/d7PPrRj75/d3Za91rp/d+qQZbClzznKz+N84pdX5VMEHf2PvRtR8NgbRikoqF5Go4ECBmO6gGdaqQCyHgPjRSVl7S+swzW4ZZXZFiXF2PmTxgg6oY0PKrVxBcltj+omyPColVBDaxQaBSgSodrxpBG5LMJtqklrD7knESZD3YsoEKAphk5GiugSx3C61XIS/GBAaWwTbCJxuQBLMmpbRDifmWTIIehbIl9knJineQjaB4j5LeMH++i8DpOFrRlS+5XVgCbmkWo4LGvOsR1l58cZJnWg6O08mjl6EQjvtw7h08eeQgr315g7puKAzfmxKsD9Kgk39Ni9byUpO+Y/foqapBJqKfPca0EHxl6ZzfIu7CctjiSlPgDil1ma3P89Xds/e44r0h0yeJ3dnH+F4fM3RBz4tGa5qJncAB84rENRXTcc/BRb8TddBsAqpHy0evHlhyPfc0h8hlZkKbLomYxI+jc4Rjt0qRrjmxGo7xn11dH6GGJa0bh96AouhFeQ7xu+eFL3stHrzz5EPn8P3sXN75Eslce9g5h8n3z7af+bVz7u/KYJ73sEHa3QXlDuuJIlwtcorGJptyT0IgUcelgtiVAS3+AW1uXxYgJKpXTAFnG/xwz/5QBX7oNYEq9mNlBwVIvPCcft8EzWZGfMUvcSlGrPfxMm2xvm8HeWIYFodpHSpq3WJTS+PUe9sgxlFa4NEXvXhA2XyNF7ZqvF0uMMvxgiDuxJOfzJAGjJYfF+VqxQpXz8r1WYZBaM8irAcrkZ7VNLo4y1H7f9UBUqZp1qXOxFxGLzCqBWuMTwzWf2Dln4FT13Ivfi/Zy7arIBNd88s288Om/Lfvv/WlZMUxrWt8r1V9t4AuNyWDuRosZWtRKT37LaYpqFDAc1jkpsFEtKOfqAMBoNT6fGy2DJgv4PDCeR1vPz4wZ2RXDWYD6oh54jQdzZmIoGYZYVd5gMrGcLIU5jwsDLu8FbB+VIX/Q0Vhy0j/aMNj2EA98TfQBUF4Trwm4YnJf97DxUFTeugz2tanY1mazmrKpxPqzFCtcbT3NwwPKdozJgy2aUtimRufy2rrwuFieh/P4WHPxE996Ss/9aT04ys5aVnpNjg1niI4kdG9VzNxa0rp5DbU+lHwg5yFNsLs64MAsrtHxDt9p4qMIIo1tRkERkjDYY7CzTczy6ravuYVUJmJNWouW5I4V4sUIO9vC9DPUsSX0/DnoEoqOpnncc/DM/y/2+AkArr7td+rN/MAvH8IbASHjHjSWLbqwqGEOWSa/O+sC0c/iszzYLXn5rSaxXOet4+Aj38AV33j3SY/dJFD0gme8A13Y07IMA/jsH72KH/jlQ7jI4KKUxokc0xuJ2hjwlcq4kcJ6D/IClSbgPW5NCESnRRraoU5q6bVZBbODSnuLSiJNseefQbaQ0roxWKx22tj5FrYZh2G9wyyu43v9oMAoKY+fgOMnBKBpt+R8PhigOm30nl3y2QF+lFEeWwQQsMEYsQWrzt08CICSe1IB/FNK47WD0m/5DDZn9agoll62IgsVXsC6QG7Vo1yuSd7L78R5SGOMUthOfM962he+V8ZDweL2mk+8adrPTmtaD7IaDod472m1WnS7XW655Rb+y3/5LzzqUY/ihS984d3a5oMSYPnc5z7Hhz70IR73uMdtuP1973sfl19+OX/0R3/Ewx72MN7xjnfwghe8gOuvv/4eI1HTeuDUdfmQxyZNYhVx/Lo9zN6gmL2zT7QyEN9MJUFnvgpDrpjMRYGem0XNdsWjNstroMUNh7Cyij1zHn10WZh+IUi0Zr9UodAmLC69x61Ic12x/3wIV1bGCOu6KMdB2dpJYrzWMjBt6CBJVXXAmosEtPBKLLmM8/UC1CZioVA2hLlvMgFDkp6lCCw8M5Km2+QBpPEQZSJBLxuKoqMY7hVGlxkKyFIpXVwiYIuNA0MqkX1QVv5dtAVsiYbCLizbAuSA3L6BdTWtB239xx/4Ey699l9x62CBz3/jPDo3xHQyaB63NG5dESsS74mVohtpTGZRiyu4lVV8XqC0QicJKk2Z+47B755j9qYua+fMULSplVinqtsPL8ABuOnfvhr+7fj2R7z9EA97ys3ctLiLdd0mWVNQWlRbrKBcr7dhO9d9QICLC953CIBiBtp3Qvfba3RuNoz2NzG5fMeXH9ZEeU/rmBULkEKsIPr7NMpHNfi4ua677SwSHP80fCjn7HsqD/vr38aWmvKMmPhExMPeeQiXeG547cmzWWBs+6ALAVNtw2AyS/db62T7u5QtAwtN8tmIeKFJ44bj6NLi1tdrFtzdZf5tJ8Xfskjdzgu5YjvXHsoTj2mk9M5u0NEKe6DDcHeEi+U8N5pXRCPo3FmSnBjJIC4yqNndRFkurMYsFybgcAjDISqO8XmOC5ZjG/b9exVI2VyVT7VWY8ueAK4orfFVFss2AwNlEKZfEosqyGhZfMax5A5Zj6pIB6WFNIb+ENXrc82Xf++e7bevVI9KLk4BbK0WoS98ym/ds+1Pa1oPtsoMulVik5h0KSda6kOey2A0TbZeLyfys8TqcIdzdFkCKURizzjZz9bo5qZz+eTgbjJjcIM6sTqneE8ddF/lrlgn/YHSY6uWNKjFo0iyxLxH5SXpcoltGnQmvvcu0aTDkmhksYkmW4jIZjXRwJOuyWNsLNuMMi85gLmjbBl6ByQI3CuIMgFWlBMAxiso27FYDyLEIZXqYHcrPbBXMJrXxH0BanykSFY0B8/6d1xx+7+/dz7nad1vdfPLXstD/sNldG4Tgk6yZonXSlR/BH0Zgkt2p8Mcc0I6yDJ8r48/fBQ9NwtKct6Y6RItGtq3RMGGyJzq5QFI1jw2VVuAlxc88x2U+89h/eyYbBZwwS7aSmaczzfa0n7x/5F+9vGvPERz0aEzh21G6EUragozQbrwXs4hMM5PiyJ8uyGh6m5n4OKnP/0rfObLF3BmpHjuC9+L8h4daygsF//g2/FGcfU/76zyqsqmkPQ8zSMjouNr4dhKT6ciA+0WPk1Qekb2Z5RJBpxSlMdP3PV+drJOYWt7Vx5bW4DNzrB+XksU5esd1Hwb24wo2wYzcmTzMelKgakU5kajE3GyqOYDk1aPvj+srR1ddX8o9/3Sz4aqs1f82L7ORxEqcfXacuLBG/O/QP5flgFQ1PJdc16+U9aNbSvDb9bASZWKp7XP3uOCArIiANT97NOm/ey0vnulToInT+vk9eM//uO8+MUv5ld+5VdYWVnhKU95CkmSsLi4yOWXX84rXvGKu7zNBx3A0uv1eOlLX8of/MEf8I53vKO+3XvPBz/4Qd70pjfx4he/GIA//uM/Zt++ffzZn/0Zv/zLv3x/7fK07uV6bNKs//0jz/sCMy8c8ucffSYX/neLGuTi9R8upL5qIPNCAkDjaCwbDbfXgXHOM9ybEt8avFOVgCmTIXLKGPT+vfLcKMIfzqVprb2qqwGnxa+siUy0IYtc0hjXSrCtGFU4zEguyi4mBBjKotBFsvAbLmiSniIaesqWMPPKlihJfIyoSZwiGopNWLriMbkoXiqfapsqyjRYeilZTIZkTrEXW5Uge1QAWIKKRZdiSeY1FC25T0x9gz92UgEwcls0DPdP63uiPnzrw1k/3GXXlwzd2wqKtiFZD0BhXoSFpUKXjuTwmiyYSlkceIsAi0mMarQk02RQsvvz/dOWXD/69YdoNFN6nznAD/3u+/mnvxlnOnzzrZfyU596BU8843Y+m59H/4wmM2fPkwaw1OcJB/f/KiQJV0xYIDSPiYolW3B0bxFGvh5mtG7OsTNN3NkNyqYAjPmMwUWG5rGSuGcxc5p8FvpnKB71N2/jkXuPsa+xxvnN47xi7puMfMS3i3n+8vCTuOmWvTRvi9FAWkDli+pHihd98tfoFQnX/PAhzv/3l+FmS5JOjrMKd7iF155kt2bmJk/rWEk0lLBFPbKopTUaR09At4NPE1wyK/lJF+6hcZOB4bBWz92jCgs8NTE4ONk2J9Ur1UJYVVYJVgZ40VDk840TA5o3l9huk+M/2GVwhmf2BkXr9j762Ap+ZRU3ylDrPVFYpCkqjigXl+42i/FBX9t4i9e3q3GGzZjdHm7b8NgAwkAdHqrSVMKvnZMFZyztoKpUl8MRdNvy/HaTK77xwXv+VrxHZ36DF/Vk3dPF7rSm9WCr5z/xa3zi1vNxcYOVCxso12DmxjbJtw/LtdZvYvCeJJdgQ26B0mJJ00jDgMnWCpeKEAQTNmIwDhRm63XEO79hMKgiNR5kwYR6TuzAaDfxaSxgKoiVoFK1XUu8VmByR9kI+SgjIS3pkQUP6VJJ4wTSqxYOMxJVnTca24og0bWVLkC6KkSiaOiJMkfUs5JvGGvJUrMeF7IOi6aWftV6TCl/ey0EJh8ZITfo8TlzWg/+6tyimb3R1opgnVeZF6JeUZgQih3Del/IHWUZlAZDIczNduX7HBv06oArbnj/ab32RT/8LtrNiKhfcPBRb9xgkXvNJyXf4UkvlxwYm8JwX0pnbQHtPd5kXLLwMlQSc8WR/1g/b/56WXu6RGN9RFxlHxUl3joBWtIUgr0URkufHgbNvpXgTMxFz303+WzEaMGQzyiGu6HzAydYuulC2rdqWnf0JaS+sgMNpbTmoue9m95ZKXlX8aXfu5RHv/5Q/Xt0T17HfK5LZ9nTvTlk1QxH0mfkuQC+vUKss1pN2c80HgNWjRR1Yume97OwIylow7n0JBkfypj6b7/eo3GiJJ+RfMbo8BLRKCPtdug9ancN1PrBUKy/SiF6eudRSYwysVg7ThJgsnv+Fh9UtV1PW91WOY44UaGInVosSqH6sWr8uHD9USHTEaeFzFopK6nWrfnYbs0LGexU6q3TfjsOUGF+MlGnA0BOa1rTuv/ri1/8IocOCQn3r/7qr9i/fz9f+tKX+Ou//mve8pa3fH8ALL/2a7/Gj/7oj/L85z9/A8By0003ceTIkQ1SnjRNec5znsOnPvWpHQGWLMvIsvHVbW1t7b7b+Wnd6/U7Z3wOgNZFOX/zpeex+4obcEVg/ITQvCrozA8G+DxHt1uy6FzL8UWJK0ph3Lea2FSRn7eHeKaNGebiD9sfyOIUUHOzZBfuQ1lPcscq+oz9uNsPb2D+VRYNdm1dABkdFrqlFXZxN5WQYA84j8kcRdugQxC9V7LvSc+BUpQtRdFS2Eaw6SKAJ4nkpAx3meBBLVZeKg5ICMHmy1SMYdC5p3lcYTJRpphcwBSbyvadkdskw0U07c4odAmNZY+LIO8K8GIi+ObbprZg34s12xrS76bgmyQrOdHAUDYNbqaJHmW4ffMApDcvye+s0xLbpuFQmKpxLP7PcLea2GyXx501ovHkIWvXLGy5//q/fJiovRbksXc+O2V+75nMXbuIWpRQSJoNLnn0m8AorvzKO2gd8wz2KrQV5UTZSUjuXIS8IBrN0vGe4f6GAJSFxzY1ZduIF7zz5LOKb73pUh7392/hppUFkoWSPz/6ZH5/7dkszPRZXm9hrm8zfxRaxx0mc0QDR9E1lE3NcLcit4bbluZ5zG8cojvS9M6NWdi/wqiMWKNF605N9zbPzHf6Emrfz/BpzPCMDtnus2l/7mbckWNQljQOt7CPOJdsd0pxYJZoaTmwvILSTp8k+P40ajs1y7aPcx7dFMWSD9dS1Q4nqqKALGPmukXcHYdxmbCbdafNvuFeYLeAxp2EZCmCRIApN8pAK9wo27gQ/X6u7T4L74REsCkUvs5W2W5AaIywWqvBy8TCVQUbBUCGTZnkKvjGNp7fd6P+4ZrX84JnvRObCutdZZaLn/y2HcOkp3XXatrPPvjqsZ3bObqny1dn26yfI4P/otVk//Ic6ugJfC/b8fxXZ7MElvekhZh40gu7V7VbqEisvnyeCyteaVQSo7sdKCUwWSWxnMO3ez2lxzkB1RDUGMl+CrYuonorod3CtUNuQD0IkywLnVt8WHp6pcZiGg04hW1GuETU3bpw+EjhYo2yGjMsxZo2d+QzEWboSFdKkjUlVl+5Q2cWH4ecKKegcGK/WzqigUUXHmYUyXKOyeR8FzUiIOVTf/Hqe+tjndYDrCpb46iXSy5IKj2iCtmadAKZYGVNfjfttvQi/QGq28EvzOA6jbtl+TPcm1I2FRAxPyi2fcz89UNcpBntjsm7mt4Fc7TTGH37MblGJzEHHyIK6CtuuhwzsqLKSuR3Zec7mOEIN1oVQmH1+6+u80rJujdYgvpI7D4vet670RYaSxZdGNp3euJPz9DFkqwMie48IYSpSfZ/HEGrSbSWEQ0TGsuW5z/7nRxALP9WL2wx/ESXA5/uYY6vwXqvDnMH6Q9VqynAQ57jl+Scozpt/LkHcM0EnEcbA8qPFSz3pA/cDLJs3tam+1UUQzk+TwIo6/B5TuMbd9JoNnC33UmZ53JOXFunMxyRPHSfbCCKhGDpxzmvPstw98Dy7HuytrGxFSDegtYoZSAx+GJrj6uMwVfPrdQqWkMcjy0qHbKtYDtW5a/cW/UP17ye5130HlwkoO3zn/1OPvzxu285Nq1pTeu7X4PBoHa6uvrqq3nxi1+M1pqnPe1p3HLLLXdrmw8qgOV//I//wRe/+EU+97nPbbnvyJEjAOzbt2/D7fv27TvpwXn3u9/N298+9dl9sNb5V/8i859J+dibDvGGd3+Lg199Ker6m2UwF5ojnSTCHOl2hJEUbLtUItJpZa2oWBZP0Dx+pizu+iOxEev1JZC53YLIYGcaqMIRrWa4bgNVOvRsF3c837lpslaYQ40U5Rzx8T6unUqQKeBjQzRMKFuGaGBxRokNEAK2aCvKFrwi6ovyRJdC1ChT0DFkqQo+1ZDNq5rEgQ+AycgzmlcM9ylc6tGZPF5Z8bsuWrL40EUAV0bSyOhCQkJ7Zxj6BxRffd8UULkndckT3sKV1z6wZcMP++vf5klnrrA2bBBlDWwrIp+JGC4Y1s6bpbnYZeYfrsf3h+KhPNOFNJFBSxVOCPi1da5c+8N6uwfP+XXKs3aTzyU0P3sDVy5+aMd9aN+hGBZNlvfGPPS6rfSurxza+j189OsPcfQpe2ge28vMzY5P//mrOXj2K3H7BaAZ7lIUXWBPRs+kzN8Qk3TaNfM2OrbGJz75Zi559Juw8y1GuxosPk5z/jNuoRPnfOWOMzjvD9+HXp9l9nrN4rUNdueWvf0+9AbsNiNQK+KXXxQCqs7NkHQalO2YdDni6B+fR7SgKGZgtAviNUX2d3tpLTrm1kqS5RFmeSD7VJZQlKg1T/P2I5AXHPvpxxGNPAv/dBvu6CLq81+nQWDbQWDImbEdAdwzv+bTyXKpBm+RQXV3yW2NdGy7EYLTyyc/HB/YZrp05LMxczfkpIfX8Tfehg2hy7XP9N3f6/umqoXgdgvCe/M1Tnr3dnZBE+GfE7Y+AFf1/xsAFzdeKsNQY4S9GhRnyhhZjMYRlHqcx7Lew2c5Vy7/53vpjY1LjwpUafFaco9cGnHxk97KVV+Y9mH3tKb97IOv/q/O17hxuIevch6zN3oWvnCCxafu4pu/OssZH5lj9uPfwS6tTNh76bFdVyjvfG3NWGW12P4A7ZyQzr0Xi8XAyFexACK6OVaDV/mBRPEprxneefG3txY/tLX9kAC3CXZ3l9Fe2XbjyBA9DPkCaYxLIpRR5LvC4DdkDhbdiOGCxjZFNe0jsa9NV4QAhE9I1zxm5DCFJ+pbBvtilId0xeKNJgJcLPa7yUqO9uAjhRpZol4uC97A+i9mYz7yt2+89z7I78O6ZOFlXLn0B/f3bpyynvLzl5N0FNGwUncJ0OeasQSWr63jjy1Kz2QCIa4/GPdxnTZqVHD1de+st3nwgtfi5jvYVkz89Vvx3u3Y07bvHAVSAejF7TNbPvyxrd/Fi3/w7fSfch7xeslH/uENHDzvUvxsB4B8PiHvSC5nlIFyKWa5gVrvjUGQapgfRfhmQr67zWiX/GbinuWiH34XuvQko4xoZQBLK/jQd/qQc+cqBUmVMaoUDEENR+glxczRZekhQq+Hdey69TgUBT7Lg0NElc8XzhnB+kp12qhzzxLV7OIybjjEf+V6tDGoZhM1OyMAUZ6HcyD3HGTZqbZRVVTh8rV6osp0zXOIY/TZZ6C9uD2Q55CmJLcuyf72+g94clClflZBYfNd72ur2zdf0ypwJYqEHGuDkkUZrjj+nwC4uPPz8r0LawpfFPI5VUC/UmKBG9QrlCVEhisO30Ob2+3ehnWYUVi3RHoKskzr/qkH3KL5wVMXXHABf/M3f8OLXvQirrrqKi69VGZMx44dY2Zm5m5t80EDsNx222288pWv5Oqrr6YRmNHbldrkV+y933LbZL3hDW/gVa8a++Kvra1x9tln3/MdntZ9VpNB92ceWKZc28fj//EVfOeiP+T6l7d45Pv24G+cANW0qq3BpKEohJ2CDKKqIGTvPOnhdRkIHlvEO4demJfwueVVmJ9FDwuU9ZTzDaLlEWpRGlJlDL7c2px4a3GjTBrGEdBpgVES9GfFi9W3UiKgbDaxDSMWYbGoRlzksYmibKrApBfQpWhV7w2sF8uuYgaSFQFNynaw7SJYiilFPgdl26ELJcqVIrh+GchnAQWRg7IBZUNjcsl4KRuawX5RzEzrnpXf5lx0yRPeglfqARGoeuG7D6Fch8/e/AgaxxTNYwVmUNIclESDhNWHxKyfrZk5sAd1y53ChF1dk99M5RW9abh7ycLL6tsjo9FZ96TgCoCN5Xu859OG9Nt3nNa+f+09l3Lhew6x5/l3cPMde3jSyw7xhYlw0K8cupTzf+dyztm7xK5zB3x16ULitTmU95hBgTnR4+DZr4S5DmZtiE2bRAO4/htnceD8RYp+DENNckKTrHn0qECfWMOvrst7TmJZjDsnC4PS4o+fQNt5jGkTLw2I15usPrSJcopsHkb7LLZpUE6HEN8gcw+2hX6+Cw7UWg/XH7LnU4u4doo7KiGYKolRjVRerwopryyeshwyJZaJ9+bCafNiqcqeaqSMLtxD2dQ0FnPJ2og0o4WY4R7DYL9YGSZrcg7rnQu7v+xIjhmxtWo2sOvr995+3ktVLT6VMagkLNiMrgeStte/58f3NJRCSitUFNe+3EqHi4GlBk/8pKf6BPDigwJzMk/hqtGfAvL7VDMdwIEL18ooOmnfdI9LKSEn5CUuicYDmGndo5r2sw++Ov+sw8wsvwidSc+nSsfct0cM9jZZfji0jpxJdO0QW2WLBWsvGNvYbLBonDwXWSe5DN7X12dVW6cEdbf3QorIHD4rtweRN4E5SodhUgXEVP/3HhVF6PWMBohKAISpHvKWdGHxRmFGFhzYlmE0Zxju0ox2ByWLhrLlyXZ7yqYmGoq9py4VecegnBB/VLCszbuaoq2JB1qsxhwUs4korUcOUziK2Qa6sOjCkXdFmTqte1Yq3n6EcPCsfwfwgMiveeZPfoDEQXPJkyznqMKiRrl8J2OD66Ro5wT0L0rJ6wx5DzJ09qi19Xowe/CcX5ffzCgT17uiWQ99dypRU3mSO9fwa72TPnayrvrcW3n2j72fwb6Ei374XXzk5kP1ff/0v1/DU37+cvkNGCg6hjioWIgMaCND5UDCsO0UHylMLr9dnTuxgvYenZcbbLPrrJBgu6S0xjtRb1QWo64/kGOTJMEGO5Ict6bYumITIXFE0bgXUUrWQGUpvchaD20FALKrorZUaYrevQCtJj4O57nldXQj3Tan5D4rI0prIGSoBluqZhM338Y1YnxU5aiCbRqOPSFlz1dy0tvX0Gvr43P2A6xUANFVkqDTdEw4jQxueeWeH+PNYNXkNWVSJTTR01YW6/V3jKpvDdcr77lieWLdGMC6WlkVRVxxx3/g4J5fkc8qTUFrfCMO4E0D30rv/ns62dv14nJQATv+1O38tKY1rQdQveUtb+ElL3kJl156KRdddBFPf/rTAVGzPPGJT7xb23zQACxf+MIXOHbsGE960pPq26y1fPzjH+d3f/d3uf766wFRshw4cKB+zLFjx7aoWiYrTVPS9L456U7rvq+fPOtL/MG5B+l+ocHPnP88fvmZ/8hVF/ww6eGjuOFIhn/VBbvVxPX6sugsCmHv2fGFXxmDWlrDLa/U7G93/AR6bgZm2vjFJdTcLMV5u9Aji15ek8Xr5trcRFSBg5ERyxWtcc0YlYunl09jbDMmXitwqcHGBm/EmssmkM8q8hkBV5IV2aaLwaUyhDajsMicc3itiXvi42ubcr9teFwCLnaS2dJTmNEEOzBR2IannC8pBobmUfGjVmuQdxSjXZDtsdz8K6/Z+l6ndZdqM4hy8ZPeWg8XL37iW+93kOXbb7iUx77qEK3jYHKHttIwqtwSDUoaK4b1tsbONDGVBD5N8d7hBwNhInlhIl3c/NdcNfzv+MEA1Wxy5ep/Pe398FHIFVp1G3JUJuuS3S/nysUP8cKn/Ba2FTHcl/Kyt36YffEq71w5SD6zFRG88ZWv4rF/91Z2NQc0nrjEzbNzdG/QzN1gMO2E9PAaqjfkipsu59k/9n5GCxH6JsPx9b3M3KnEJs94CeVNY7RStfUKwXYFHcCmshTGW3+AKYWBFVnPjFZ0bxfgYf1sQz4D2Ry4yGDjJq1Io4oW+VxCspoTLfYk+L3ZwN98GzqohCqGoWo28TMd0GLPQF6Ip3hg3WnnZSh/by9KJ7z+vbWi+NOK0YLBRSlxz5ItRKydo+k/xGLWNXglYC6w66uO2S8cgV6/XtCZbvcBB7JUDD8VPlezZ5cA41mOajaIGimu1xdbs7tzjE+lWgksw81DT+883pWySGUM3l7V+2Mubv9cDXC+MP5X9fu4uvgfW7cfFGeS6RIGtbNdsQu7D8pHWiwyKzujwt7v573vlZr2sw/OenL7Jv4kfRY2VtjZJtFinz3XxSw9PKJ/ZoO5m2ZQw+HYasZ5dFwNgCcsISfyCmrQJQsB99V93tVMdJ/lqIZYO/qQ07JtbQqAri3CwkCpPkeF29RgiBkMMYHx7dMI4gSXRgK8G42NNdGgxIxAdWW7JqMOq6cFbrYkszEsK1wkqk8cIWNQoyzEQ0/ZUEQjT7oqeRou0eQdzXCXpnnC0emXlB2DGYqCO+8qPv9fXsW07lldcfT3t9x28OxXyj+U4uBZ/+5+B1k++Vev4Tk/8j7ifilAQmHl2ma8XDONkiGsGV9fxwNeITP4/qC+pvrBABXHpwRVJksVDlNYKMqTKn4ubryUq0Z/ysEDvyaARSOl+MF9KBsGuJvqs38s3+Gnv+QyvFYUcyk+2SegyUgAVb3c54ob3s8Ln/JbSF6mk/+v56Isc0AAP2trUa3EIgFRb1Q5NYDkYriJ42StnDtUjoojsQpOYlEgdNqS/1QNnvMi2DVpQPJvXH+wUXmbA6OM/Py9KOsxvQy6bVHM9Qfo4eje72e3ywSpAKdmQyzSQj/vOw3KbirHCCjaEcO9Ef19il3fLGl8+RZxyshzTKfzgARZfBlIps6Lbfr8XG2ppQ/sExvolbXTPs4bzv9q4lpUKVOq13VagLKinLhebNy+G2Vird5IwYhiRdZ649/NJbO/WH9ntqwrjR5/h0HAwDkBynx03yAfLhIQswLbpuqVad0vNVWw3O36yZ/8SZ71rGdx+PBhHv/4x9e3X3TRRbzoRS+6W9t80AAsF110Edddd92G237hF36BRzziEbzuda/j/PPPZ//+/VxzzTU12pTnOR/72Md473vfe3/s8rTuw6pULD8z81X+w55LOONjjs9/6mH8+Uv/gT96xgs47/hDMDfegV1dG9slVCFnxuCzAmedeFADLpfmsMpbAcY+1u0WfnkFDuzFJRHR6ihcwMMisyxrFUxdk1YORtesHwDlHB7wUSRNo3Po3KJCQ6dahqKlyLuyqLRNWXS6WJQmcU8swlBjS698RlgUEnwvt8sbEwswF3t0odEjsQbTuQAsykHRBtt2zO7tkRURQ9XG9DUuomZHTcGV+6hCcOQDyR7HyJqSZM2iM0vZivCdCG09Ovck65DPJrTmZmFtDXfOPtSohLXgs+wVKM/V+Z8B1Ez5u1Jfe/fJregueu674XEP4ZLHvgltDOsPbbP6EM2X18/iMV2Fd4rrLtt+G1kR8eXbz0Abj+tabKopuoZkNSymO8E2RUGy5inaCtsTe7GZWxzJeinB81mB77ZQzQZqdR1fWwKIRF01GyJhj2RR5pMIvTog6uXkC03wsOtrBT5SDPYYyoaif0DTO7OJDeDp3msdkXMQx6g0EYA4DNVUkqAW5gQwbkS4RiwL+VUHBEVNWGhowGWjjQciBKRX0nxfFqdnJ7aDl7Xr9UkXh5gsIbn5BAD6obtZuSCFVknr+hRTiDqpfdQx+/XV2hu5UmWY5Lsgk9spNH6nhxuD7nQESCtL/HA0DndupFBa9Pwcuhp+Doa4weDuW7NNHF+llXzWE7kHOo4EkKof7kF5qmXsxc1/vWWT2wErdbUm8nJcsPpREvZ88OGv54rr33P33sdEXfzkt4H1+NRgmzG6cKCpWe3Tmtb3c/34+dfyqvxybKoEfFzv07g9oj0zQzarsQd2YfIcu7wqvaZ3G84BINcdGXSFmwIg6wu/MSi6AlKtg0RBGUKAq6D7u2Jro5QA+ZX9IMh5pKqilEGr0dg0ItuV1OHxyoNLjLB9PcQDTzSSnrfoIHaeI0O6rGgeg7IJ0Uge6430rqYQskM0gqTnMAMruWmRIpvRDPeBbWiiYXjdpsYmegqu3JdVlhDHOxJj7o/SpSdaHqCGYlflU1FNqiqjAUKvJgCB7rSFKLO0XOcWVX3sqdTX29U1n3rzSe8/uP9XZT/n5zi47xXy+4xj3Iz0iSZzOw5tn/azl+MSRTSw2IbGxTG68BijMP0c36xC7lWdaeSVwjUMpudhvQ9pMl73NhuSNZJlMgivVLFhYK2qXCdjhORTPa/6/Q/FXpskWI92OzW5UNmezABrOyg511TKO1EJx7heHzMsyedSVOFQSYRKInSzgVpdg7Xe9sP/zQP90+3Btjnf+VIszpR1Yq8IohbPWujC4WJN1MuJlxxxL2X2BojuDPmPeSHZrtEDc8QmPW17rEArS9lvrcXmuZGiux2xlywK3PETuMFgx+1Ngiu6kcpvK2TgqjiS71Bwk/F5sRHINAZdrT8mSAAV4HPJwsvGYMnE613V++Od32AU7PHyXPJbmjEulp763rLvet5F0he7RKOMwmHQ6oFrBzetaU3r5LV//37279+/4banPOUpd3t7D8yz/zbV7XZ5zGMes+G2drvNrl276tt//dd/nXe9611ceOGFXHjhhbzrXe+i1Wrxkpe85P7Y5Wl9F+p/9R5O6w5F3LOc/78zPvJiw7//2T/gzTf9ErtXB+gsE2Yx1CzgyiYFa6EUEMU0UtRsF7+8Om4WTILat0cGmOedwfpDu2LRpSFZLWnceAeu1x/LiDdXxSz0IYsgkmBfYd55CVpM4jqXwBuNbYoP9WhechpsImCKcgFg2WUZFYp4XVQmLvKYXJHPWWhZXBaDV6TLMigvW5AriJyEiZqhgC9eywJ2cIYiW3A09/dpxCVFaVC7Mso0xg2M2BNNUfH7rHZibl/85LeB9/cL8HLt717K03/mMuLVHOUc/TNT+vu0DDcYW3P4bhNVFJCXqMFQGmkrrLRr3EkGuqdZD738cr7zqh0GIQqy+Zh8Zo5szjBcEHuVz3z8kXw6fiQ3/vrOA5Q0Lul0M7TyxHOrHPv2mTSP50R3LsEow6/3uLjz8+hnPQpdiJWILuX3t36OYdd1JdGooFhoMtwTU6aKhesS9FIK/X4IEBY7AXv2Ho49qcNwn+AuZ/5Tk2i9wKUaU3jSY328MUT9GJtoBvtj1s9RDPdb0kXDYF+CKueJ1jM5vscW0TOdoJZRYSGboEqHbUWo0oNpYxbXZQEbGVRlqVkBLJuAFRAVg56bgTjGHjm2FTDeXJMgS5WZkmXoG27D9HpYQCUJydoaB9z5LC2lRENPuiq2FN7IIl9FEb6/HHJjHLa/8yLuHlX1nuOovh6cbnlrcb1eYI2HQOckEdudXh/VbArQohQ+jlCdNmYwxPf6d12Ns83AoL7NVKCWlgXpxCBUPs9wHQkL24s7Py+B1YQMlqCuqpQtdRWFMFLD9ZAkEaaf9/hGvAFkOfiw13HFt06PsHLxk94KTs5xqnS1wkbnYhGkoL5/WtP6fi9/YATfaqIHhTDQjywyq2Ht4TOsX9BmNtuN6g/CQHLr4FBsDMeDTrHp2QiWKK1Esea92Evu241PItQwx996O64IuUycRMkyqWJRIZch+OQrpeX8CALYxBF+tkM526CYTRjuEkClseRQ1jPcG+MiIfHYRMAVbSFZF0VeOTA0Tsjjo5H43LtYMdwTEQ29BNYr8FqCvgcHEsoGFC0hRJhMiApr50boQixvo+G0ob0va6eMg4MXvJYrbnj/d3lvpP7x6tdJQHxeQKct5DZroXSoLK8tiFQcC/nNO7CBme/Ku0US2lwveNY7ueYTpxjsVkS8SDJUVOloHc35yD+8Ycen/POfvIof/IXLKZui6FIe4vUSnVv0+giWV8U26aFngALbMKjC4SNNOd/CRFqAJ4BmE9IQ6N4fwmCAH1Z9oxKAYW4WnyaiXu8PIc9rNXWt5E5iGI5QNISIGEfynpIY5d1YHeLdhBpvIzhiTvTIz25RtBs0FnO0VrhWjGkmaJC1emXLPUlImfi3SpK7riyugOmgrvEThEvC+4yyDN8VYooaFcRZwejsOaJKNRiOmRuOtnmBe6kmcktO2a9vKm8tbn1djn2zIWQtkHO30fgkkn5NgypitNLofp9ycemkx1IniQB0SstvqALYw3pIRRE+jrFr6/L5NJtiIQdi/xZcR1Sa1pZlePltHjzvUq64+RCXzPwCSmsumf8lIa8qvb2aLDwPJ7MV6WkBBc+9+L3841WvAxDrvY+eXhbX814gffA/XPN6lBcFnC7lWmYTjTeGf7z6dXflo5jWtKb1PVoPGoDldOo3fuM3GA6H/Oqv/irLy8s89alP5eqrr6bb7d7fuzat+6D0/m/xq/vh37cOsfSIhP2fGvKaQy/nBf/3P/OIX/46d970UOLlFZEoT1Rtq1D5VacputUEbYR5XIW95Tnu9sPyWnlOvK+FLj1FW/ykVaeNX11DtZqoXn/bJkeZYO0TPPCpGCPOobzCJ+AiRdkShYCLlQwfo0CEj3ydR1F2HcnuIdlaSunBzRU0OjlaO2wW450M+Mq2DJu9ESagi8VGLBoCQnbGRpB1Id9XotsF+2bWWRk1GZwITSOgStC54ttvmAbbf7frqs+/jYPn33+qoaIVGEhAsi5DDZN5kp4jXRwJG6h05BfuJ17s49d7ta3eNe4v7/LrPeRP3o06keK1x3dLbv43ryNdVDzsXYdoHoG5GwrSRVmsXP3Zt/CRf3hDPcBt3+xxzRis5+rPvuWUr3Xdj72dH7xCGuo7FufR+x3Rei6ZKUWBz0Sinh4fAC2UixnsUZRtWH18QeeOmMaix0WawV5N7xyPi2bZ88+FAE7WoppN+j9wFscfFzHa5/Cdkrk9PaIrG0R3niBaDIuH4UgWahqiVUuyGpGuNllfMqw80nHk4gJ6MY0jDfZeW9L8ToQfZeh2S9iFowwVRaj1IXquKecMrbC7u5IXlUtgqVIKnfTrgOPK1qxmH6dJPRgzZ52BP7Ek2SKw0R5mGw9lVFyD1nZtfQy4BI/y9Gu3sndwgP5ZLeKexWSOqJejBxnl3hmiLEfPd1GjAnvTrfc8yHSidBrOvWGxXX1Ht80XOMlrVotsl+fCihuIrYWKYnyvL8cwilB7duFbKSoomKKZLuUdd+68g9sogbZ9WBTyfYyWYVBlpeEld6cGV1xg/mnqzLH6NQJAc3Hn5zew/64IOUUHD/yaMBgn33ekIZ1oE83G+09aDpT3XPLoN4kFSTX4LRzKyqJXmSnjb1rTArjxJW+ElwjDVtku6sQq+o7jzFpP7/wZRmd0aa4u4I4c2xB4v8E2MAyFa1taxv2u/FvLADQwhNXispz72y0BivNVVJyeVMWyIYx4MoPDOojkekKa1EoGn0TYRoRXYDIfwBDZvC7k72pzRUf61nRZ1CrxQFSkKvStZUsUKCAkp6pcorGJYrhLtl0RoaKhKL5dIn/XXvnT+q7X/QWu1FVZXmYZ2jn5fpa2HppX2XV67x4YDnHrvbuvQgWe86PvIz0+QlnLVV94O9FSn0se92bUIIP+oN6fK47/J6448h8BBAgB/MihRhlqEPORL//2KV/rc3/4Kp72s5cDHjMSAosqrJAksgyUQq8HOzBPUG1H2IWYuBvTONJH9YYQR2RnzIKG5Fgka9a8kP6m3cIvzGAbiQyXEftZsgw/HIkypVLGOSdg1WCIygvI5Rzj52ZkXTEcoXoDnLXAOBcOqDPu/JFj2HQfoOifmRKNPGbkiBJD7HehrcWtro3z8SYsEutzlFKYdgs3yna0pNq2JkCWDedO5SHYjKssl35JKWikNL59FIoSt28eXRToVhN7+53yvHurn02SWrlY5Zf4sthyHdjy9zZV97SDAQR1ik4bqF5fetlGip/vSg5OtwnNlGhhDtZ62OMntsw7dKsltuvNhoCVxYQiJY4EfE8TyDKUVuhmE7VrHt9uoEYFajAUxYzWck2auIZVmUcH970CVVmg6mBn5z0H972itiusf0vnydxCVUALCMCY6LuvnA497Que9U6qTrhyHrFJAndzs9Oa1j0uPyVDP9DqQQ2wfPSjH93wt1KKt73tbbztbW+7X/ZnWvdPPfz53+HIh87HpRFnXHmEL37jidz0bzz+5wyPfGsLtdYL9jdQM/OqBiosOO2JJdTKqtwXFq6+8ieNI8rDR2ksnkC1WqRn7SM70KV4yF7i4Qh3YBccPbbtvtXWLjoMxtb7MuhrhybBe1xiKDomXPyFxedVsPDyirLpKecs3X09itKQ3hljMhi0DK1GTivJuf3oXvCgnVzhy6YAK2XHY1MvNmHrimQlACcKaAMeXBZx+4k5yn5CvBShc2Hsx2sQ3TWy97Tuzborw8x7uSoLjYuf+FY+/nev5QXPeAc6Kxie2WHtoW3SpRI9SomXhqiVXq0KuMb+zy3bOnjg16SxbjYYnT3H+tkxS88foW9vgFNc+PSb0dE+4hVhoZZ7S170yV/DpRew9wuW1p1DzOowZDcYDj7qjVzx9XfV6p6D512KUjNi93Ca9bmD7+LCv3wHAN0bNPl8g+SrS1D9XpVG3XAb7Hk4Radq8mFu7zrDhQV0ETHcbRjtAnNOn7W8Q/PEPM0jTczqkOUnLLD0aI1tePF9dxHrzQYHbrhDcpuMQbWaspjISswwh7V1cJ7OrTGt/QvYdI7BGQnlrGW039LfG9E+sA+/3oNuR7yuR1lYZDjim45Bs4FPI3wSWGFGocJlXrVaAg7AmHFYiMWDD7frVktYho1UFrDD0Xixtl1AZXWsqgVtWJTWi94QcGqW+kS7GxJsrBRlO8YohYs1xXl7WL2gya7PnBB1jvNj1qSXANST2RNsVzptyDm/LMb+3nk+3v8Jn2gdR6gkucte2Rs8p5XHDUfoE8sotYA/toia6W60y9lUwo7dZN2ziW0OCJuvYv/ZMBBSYyY6lV2ZdeP1XVh4ejfBFq13fIcuPPikS3ioByNB9JOPv+Ib7z7dwyPlHL6VSLCwc6i+7LtPIrzWXPX5t9217U1rWt/jVcwmxEfXqTJSuPUw3dUe5Zm7sAcW0Mur9Xl82yGad8Lstnps2wP1ua8ayPnhSMK8kxhdFKhuBz3K0DPd01L5eedQeSGk4FZT8haMrm0xAXwzIZ9vYJvy2vHAAzLwymYlrL6xbPEaRvOGoq3ENbWAeNWjS1GpmMKjCodtRuQziqKtSNYMyWqJixUocLHCGYj7YHJPNFR4Bdp6TE+GD8l6CPae1vddXXHb78gg9o7/IJZc1kG7Cc2O/J5KK+Bbvx/6Iul3rrF/tmE7B8+7FNJUbMa0hsJi51u4RBMvDaGwlLtaJNZj1ofgZCBrIo06sSqAh/O17dElCy8D4MqlP6iZ+JfM/mL4vZ6+MuGf/+RVPPMnPwBANLR4Y2BlTe70Ho4eR519AIgFrEw1o3lNNquJhg3iYY5rJBQzEYM9hmY3onOjqIyJDK7bwFXqliLksKyt48L6ulIJA5LbUkgOoVcalWVC2kuSoGaRbaokEZWDd9LHTOQ4eWtZ+PB3ACgedibZfIyPFGXLgG+RlLvReVHnS03aS3kn9mPKO3wFOO+g/NtQk0oYwjlsG4DE57moJyKxmvOtNCgBQ8bqWXvRa0N0IPdW/awEy8e1UuN0q+pnN9pCshHkmOhpTbt1t7JfXDYS4CC2+KEAHn73HKo/qvtMv2nfdbNZE0lJ0/FnONmjwpi8k8SYmS6UJW62JY8b5tBIZQ2nFLRb8v2q8nvC9qrviC9LlNNC3Kl61s1VPd57sbxTkZBXYy0ZX6FOV73y7B9/P5EGPXRifeYcKrMoa/FpjHJM1SvTmta06npQAyzTmhbA3z7rd3n8Xx6iE2soCtKv38HDPribm39shsHjzyQ9fGTD8Eo3m7WnqgwOK+bLRPMV/GC98xBFkmFQlKheH3NsCb2rTXzjUWmy8hK3AyvOFSX0+tJ8jLI6UFhFBp9G4kFtFCZ3DHcbbKooWiF3RUlAfTlnSedGGOPo3zzD/K3C9NMjTX+UkEYlpq9RhQR4egM+EoAFwIwUqlSo2ptbWILKQ7QS4SOPW4loLiuSVbEWi4Ye5aBsTCkZ91dd8e333d+7UNv3XPOpN/PMn7qMYz+gidfh63/yG6d87sE9vzIhr9cQlaSH14hXUpJem/btA3ykOfGNczlzyZKe6GMbEWs3N7lh9gIecsUxWFyWBVQcoRoNrtwuMLXVvFs2Q9/+qTfzA684xOyNOSazXDX87/V9l+x+OcoYbNPQXHTYMzS6gPzTC/i94JIIPEQ9+NpP/iYAj7v0ECsPbdNYapHNKWzD1xZnb/rKi/mrv/0hsQ+LxLrFr8sCSIVhmVvryfkky9B5wVl/N4TIYOda9M9sYhse32kKI0upoGRwYHzNGmR1TWwcmg2xD8vCIC6KZGFf2SPWrLwJxh9gi7L2UN5pEVgBKxv8kqEORlWJkUGFVrIQai9Q7OtiBhYzKrHNmOTWJYgMZtHCeo/d34lhpgPzcwI6ra3j1tbFojvLgoIjGoc1TwIRUbyFnTiZN+OtRTeb4bnlGLhIEnSw5FBRhAFsf1AzA+ucg80KnvGBwJx7toQq33lYFvAhy0vtmhdrybzY8FzxGJ/wOzfjz0BqPBDdMBwFfHVNKkthBFZWPNaJHUO1oJxYcCqCK4IxW8NAN5UvRem0AZBxDpWVHDzwa9tav1z8xLcCW22+nnvxe4laMaowEizsvSyi+wOY6YQF6VS9Mq1pba6P/f1rufjJb0P3B7VtrTt+gigvZNjV7cCE9eDGgPlquAhgN55DKoB8MoS4sutRCndiKZzD3cnVfEFBp7wTq6U4FlClkdbACoDrNMn3tsi7hryr0RYJrc6DyjJVdW6KSzS68MR9RRkyB03mMbmjbGlcrLDzhtG8wmTQWPZEQ0fZMYzm5DWTdcfCNwswkr8CYAoJ9dZFsBMDfDTtab9fa5LlfvC8S3F75lB5iSotV9x+6KTPPfiQV4nqJAyB62/RYEgUejff66OUJl5dD9mcJUppojzHr6zVSooqa2THa7LewfboFPXJv3oNF/3wu4h6OVg/Bmzmf0k2mxWYvsHrRNTEueOf/ua1POdH3ofa08XFGp07vvAhUc8/94XvJUWIOi6N6yyZ5178XtLb16RHm1grb+7DxJY7OEYsr8hxq3ogrcRKzDkoZWhdPUd5Iey4lTVUHBFde4MMq7xH7d0tFmXHlzbYf23sRys78LFize+wRgc2KonDYyftymoSkXegYiG9dDvj52mNvuWIELScl/nCgX2ouVkBktZ7uLV1ca3IMsxMF9cf7NjTblZVb85PrNTTdQ5N2L+qp1XtFsYYXABZtu1nq9fZ9Lc++wzcbXfKZ9brw+453GxLSDJr/ZqopFPZpp7pwkxXgDJnAcno8e1UFB+D4Xj7Vd5XEdZBDnwa7GjbDWjEdVA8IIB99ZurrmXeixpGq1qtsuNnqsSS3SVG3EG0gPDKC2Dy8b997YanTFqATdazXvwBosyhc4fKhSzktQ45t0qU3tPLyrSmNa2JmgIs0/qeqC//zqU86eWH2HusAUWJvu0oe65tE69tDW6uwZVQk43X5LCuvr0Kn69yApZWSO7o4sMCmJvv2HnHwuDLrfUwC3PQaYsvtdb4RoKLg8coitGCwjYgn/PYtoOGJenknD23ytKgxfKRLt3bAgtRgRkq8kFMP06wTUecmdoaAYIKZV2JPVgmwfY2lfurkNBkTZh/rTshGok/tfKS/VKpaS553Ju58ivvuPsfzrS+J6poiQKqdXznhcol878kQ/wQXg7I78dayDI4XqLygu51YfCtFfOfCU9WGm00uz4jz3ETizRZ8KzxwuQlXJ3/GS+M/1Ud3O2V4pJHv4krv/bOu/yevvj7IiN/wTPewdNeehk2VXzuv76qDjI9uO8VAMwoxeGfvJBrf3dnu7yvHNp435NefohHv/4QX3vPpfzpF57GnhvHUnVflsKS9E4Als0LvCzDHz4qqgSt6F6f4h9yBsOzZ0kXU8yxZVn8lGEbcSwWZ2UpbK21Xq1KETZhuTVEcvL13Jh9WO+XVuPAZNnQWLViDCqSBZ1KJRRzA4ssisT+rNfHN1PMsMQMS7xRxCf62H2z6H6GWi8EHMgy1KKwEVWS4PfuQu2ZRw0y7C23yUK0KNGzM/gJVpsvSnSzsWPWSWWhUB2L6n3gXR1aXytDokgyVirGYxRhyrIOuVVRLAvoKELNz+IWl/BLK/jzz0Tnu3CLJ+S7H2nKs3cRH15FpQuYSk1SFLXNl4pjfH+Adw6ttbDBtR5fqyY/J6/kcY1GyFSIBVyZHJ5WSpNJNl8AXFQSn1Yw75WLHxKLkixDpbFkhZVuvMDdpsr5BjjP85/zLlkYey/AowKdlWJRZ70E2jdilJPHixrt/lPoTWtaD+S66vNv4+DDXw+razVr162uoZUag+ahtrCyJ5SGLs+33gc1COOdhxDmjPOoRopdXj35znlHNURTcSyDxmYD10rlfOBBZxbbjshmI1wMRVtsb3UhAy4XQ3PRE/ddyOMSYo+qLIwakHcV0UgY9lCBLtC9Xa4jUb9gMNOgsWxRpScaWsywwDZjXBSTrgWmcRjYuURyC72eTsKmBSiF7mcwHHHFTZfv+LCD+39VlF7GhGwWhypLscXtDzfZSG0azIP8FldW6j9rICLPN/SxLzA/vUEBfsn8L3Hl8n++y2+rYuQffNjrOPjIN3DFN95db+eS2V/EJAlGK4pHnM2H/4889mP/Z3vC1CQj/+DDX88lT3gLV177WyRLI9R6f4NdFUyciyqJgJo4z9igngYYjoTIE4l62EMdfi5ggxr73WghE1VWr/6OIwIWVMdxJzB4wkLxdMGVDRkusQSl159mpYDRSv4bZdL3jjI4sSQgQ1ni80xIL4tLdT+rDuzd0M/atXV0sKzdrqfdKVOl7mcrolTY/5o0FEXyXfVyLldFIeQ2pSCOMEU5nm9kmexb1c/PdnGLS5S7u0T5btyRY9LPpkYU/ssjfKeBabdQlQVdaXGdJr4R4WItykuj8bGhnGuihyUaxCZuMKzt6ip74nJWyFxqpolrJrKNpYHY6BWFrB0nFTDey//1zllPVV1x4wc4eMFra6tr5QNQGInqxeRbvzfZnChufugn3k+VV688GCtgvx6WQhgK6wUiDbgA3EyvK9O6n2sqzn1A1RRgmdb3TKWrjnxvh6Qo8ccW6X5BgI/yFM+ryjuP2be7Zm9Mskd02kB3GvjBAJTG3nSLNDsTwWxbqlrkhucQFse+lUror/foUiTMNtXYVBaeLvaQOBrdjLn2EKMdpdXogaHohrD7WShnZPi2ttzGDHXNDHSJNKi6FB/rZNUTD8SXF6XIu6CssO+VhUYfFr4xwBtN2RK7srKpxHIhhm3lt9P6vqvmkqVoR+RdxcF9r8DnBX44rNlXuiX5PX6iiQdZtLjhCAYTXvEVY6saZhsjg/2JhUX9mIlFmtITzLhQdwdY2VzXfOrNPPbVhyjb8Og3HCLqy0DnzHpn/EnBFRCQRhcWvdLHt1K6Bzp84UOyQJ3ds85g7wILwXqlWiQpY0QZVy3srA2ydsckq82NMsy3S6LZh1HMp5jDTkAH76Eow6Is2H4FALnOmoLA5juJPULIpFJajYND2cSODtsh2AGoOBYpfxxsElTI7SlleEAcoRbmYJihnGN43jy6dESArRZk6wPx/jca327B0eNyvryxj96zC78wg56dEa9ta7FLy6A00Rn7oZHil1dkcbrT29pkoaBjyc6yy6t13paujrlSqDQV8CvPJd9GVyBFIqCHC5Zc2qDbLVyvj77jOHTaqE4btWcXq4+cp2wq1HlN4p6j+7kMyrK2hEMp/GwbVR0nRE2j4gjfH9Se8LXNWgV8DYbydxykiRXoUQGZzo09wcM5+64MaC7Z/fLADBTWoCqtqKC8r5m/k/VDP/F+dDsC61FOFI/K+tqTWmeyb8o7vFP4xEAzoZxvUcwmfOzvX7tlm9Oa1rRCDUfQaqFMuGYMBvi1dbH9O53yTpR/Wm0PtEwMFqvQYd/bSkjaUiFUWSUxVf6Ab8SU8w16Z6XYWMASk8s5wWSedM1TpgKyuAaUbXCrULQ0zihsQ5F3NGVzrLorm5JHaFMh/OhC9H3D3QZdgE0axOsWHc4/eE/ZTVClJ13K0VmJj0SFahuGsqlxEVOf8mlJFaVYIXWaHDz7lbil5XqQX/VdZtdCUKLmeOvq3Ac/yjaoB4AN4GUNOEw6I2yjUNgw+J+4/+4AK5vrim+9l0se92YuecJbUFkhvUuw3qL0fPhjp7ZGOviQV0FvIEqCJOHK698zvrORbnjPk7lQY2X0pp6//qPAjUDFVtQgcVyrfSt1ndKuBqOq4+kKv/HYnobN1slsWDdYglVARdULxnEALHLZNyXqbADyAl+UosKtesKyFOVG0RMiTktU064/QN14C3rvHvx8Fz07g11erdcA2/W0dml5+/dSjhXRNZCnNHqms7Gn9aJq15227HtZ4vsTxFItvW5FylGtJiQJen4OfXwN322h+138GXtYe2gbmyp6Z3RQDtK1BumJHOXBRRqbalyqyTuajlbEKyOK+SZlJ6KxlqHW+1AU0qcrNX5tpUiO9XBpTDmbSiaf92K1NshkHeF9UFSKahKtTwmsVHXwwt8AY3DtFBcHVb31KKfwhi3qFQAXyXWm/nr4if87sc31RtxAlLW41EASUXbiHUHKaU1rWt+fNQVYpvU9U5/6n6/mMb9xiPaRBrrcx8y31lHfvvW0n6+0wi0uES3MUy4tb2jEXJ6j63yBwNrxDjfMT97kVfd5h1teQc/OCPNDKWH3thNsU5N3FMWMp2x50gN99sz0eMTcMY4Ou3zzyD6c1biWlVzj1DF35hqxtqwNG2RrKemiNFs6gqLlsU1HtD5mOOddjTeQzUK2AHhoH4bmcUf7Tll8l52IoiVhoS4WVuGXf2cacD8tOHj+a2i2U6Jeh6IbSZBhHphUNsjxQzZEtdCq2HzeMrHgqhhigUVVPf9kNWHRVG3nGveX9/p73PW1nKIbkc1KA91cCiGk2wyXty2tsM0INYpRg4xo2KzvyvKYZo+aBVe9j5pNZhl389taHojyLrnpOMXZu8SKxUUopeoFFJOsNsavJXUaYa0BZKlrk6pGGTNmHcaxMLjCZ15bZngvzLPKK9o5yZzRmmZR4o+fAGMw7Ra0mth9cygrigbbiEi8h8PH8KMMe+QYemUVNTeLn1xwerchOF5F8bZvpw54D99FM9+R72wATlSaSoAroDttsWirAIrqO2qMPM5aAZKKAL4cFXafajbFHieOKB91Lv0zGwx3hUW7kwVoesF+ol6OPrE+Bk+SCDU3AyeW68WjL8sN9lyqYkrCGETRaryP1fF2E3aWFVsvisbPPY26ZP6Xxs8JIbSijhKLzMl6zo+8D9vQ+FjjYrHgMLnH9EtU6QLQIhYKPtXCoDQK24rxpkE+F/NP//s1p71v05rW92NdcesHueSxb0IZLUPIhTlYXcetrp38iRM5U5VlWK3M3qZXra7fsGkYudO2q22UpQRfpxGulVA2DXlHUTZEPa2cIh54XKQZ7ZJcwLLtUVYR96DoCCjvZ2G4dwJECeH20dDjtRJVdgx5R0hBuhQbnuaxfJzJAMTrktMS9XJU6bCdlNHuhLIp9i02kZ72c3/4qrvyMUzre7BqMgGgog50WujQq9S2V1FcK1fq63Yx0bdtAikns+r8qdqtSdvRUPdFT6uW1yX/EGCU4YuSq9b+8PQ34L3YeOXFBhWrj3SwStsaBj95jhnbFbLl3DP5HBVFgcwT9ltveuxkvspptLI7veZ2tdkKTJ43oTSftF8sNpKWVFluyNNh7wJqroNaXJHzY5rWoJ09fKTuZw1sBFE29bTblU6S8bqhLEDFmD27REk1HKG0Qne7QgJNEnHYgHEYPNSZKKrZkNuSRMCP4QjWe6KU3rsHH0UUjz2Xwf6E0fxYQQhgG4ai1SAaeUzmUNbjDIzmFco36Hjp/xqH++j1gSjZ81yAsjhGKQOtJr4R49MYl0bYhlilKwc6M3WA/AbbW6PH64pT1MGHvEryKJXCJUZIP06hAsDuNrXGz/jpy/AGXCQKF+WFGIAXkkBUOJTzeKPxjRgd1DS2EeFjTT4zHaVO6/4txQOIPPJA2Y/7uaZnhWl9T5VNYe08RbKiSFZaNNS5aOfQx1YAtm9iJhvlMOCqPVKTWGStSJO3Ib/gdAfDUDPIXX+AjmP8rllcGuONomxoirainCvp7uvxmL2HeXjnKGmgUnwn3kXmYlTkMSNFcnafR+8+wjeX9hIZRzQ/pGglRCNZ2HrjoV3i+wKWjBYUZUusx1zTYQaadEmRrHrSFWGJDPemDPYKMzAeOL74+9NF6LQmqt+HlVWSIydIklgCcofDejijgowfbzeoBgQ42GR/dTJZ/0lq0j7hvqiPXnnPAgqv+cSbdrxPf7HLwteGW5nEkzVp37LDIMyvrBG1mrJYHmWoVCT+dRj9BFvylMOyU9V2C+L6jwCk5F4sa+J4vMjMRP0hgE/YhrXYmwTsVlqhhiP0bBdTlKJeaQmbbnT2LI1RDieW8EMrdo7DIWZuDru6JovMEKi603m4Ut1454n278IeOy7WX86jdu+iOG8XLtakR3roI4v4osT1+mNg0FpUFKPbLbE/M0YGDI0U4lIAAxBWoLVgLcXuNsuPaJHNCntbFwKw2FSxcsH/y957h0l2Vffa7977pModp3vyjLJQAhSQABMkJhljc425cMEifYCxMRjJgMlBgMgajMH4AgaDQTbm2r6Ya2YkISERhCQQKKCcw+SZThVP2vv7Y1dVd8/0zPTkHs15n6efnqo6dc6pqp5Ta+211u8XUHpCIvoC/I12cTQpByilUK3QSoWl9josXMdO0bRvI4RNfpXsSogJKae/3+1Ov67fghTdosjuvFN2YapcV6dbsD25suY4WwxZs+wSWicPY3xpO8vbC6JuPSUNJEmg8EdtkcUIAUpw9S8/OO0wL1z5aVRzX1ZIMjKOXdbf+QnWnPpeu8AUx+B7yHLRLtqF4S5yt0A3np26cChcx0repCnC87reBbt4t+zte3nq4mm7OUK0Yij43WmVNBBoD7SyRZS4BNFgArkUIQ0mUqiWC9pOuTSGBGGfwa3aCZewD7QPRli/FRXaqW3VgMJW672imhqELWAbYa9BqhHbAm9iZceiXo+x4xxkCv6Y4ZZ/ymLajDZRjNYaGg1EvT2hEcXd/xfdyVFj7BRCZ2F3Dz4Z+8qhKKjszLon/vbAnv/o2hnvl7UWjFd3auKZgb00HxotrUm4mHKtkmJyIma2+zpYGD0ZQkdRO6eZ3hQ1SdqNRYUUkKbIKCGt5FDb6RraYwxEUVvtwsazMpebdUzbiWd1nODMH0LvGO16uZIkiIXDhEt60EoQbGsiN2630rxRZNc523JWopBD5POTcWOqbUzruYhioSt9h05JegNGTgmISlZeXCTthiEXopKVfHSrAmGkLYQr6wub+oLiE+CMt2xxD9BLhhBRgoxS+//MGAjttdo4VlJWGEh8WwiXkYPKeYiObJrr2EJQezp+zZJ3sO7xL+z5c1QK4yqM55AGDkjQSnD9Ojtl8uz/+XkAnvMnn+s2h9kCy2QBxhb3Bf5ogluzPk3aU/z4px+YdqgXrvw0bnW2OikZGRnHCsKYTP9nKhMTE1QqFcbHxymXy0f6dDL2gzWDb7GGwH29Vo5rx7jt+BaS5LEn9hyoCYlsG/CZtnSP0QYZ+N3FtKmLpNLz9rxoOmW/QgpkPo/o60EPVLo69FHFpTngsPU5KYOLRxECenMNzujZRJg6pAjuHh3m0fuHUQ2JWlanlG+xfUMPIhX4gw10KpFK01toMlSosqVeYttdgzh1QVwyIA1OVZLbCoVNGq+aEhckrT5FVIQ7r8gmVZ6KrC6/nvX70rHWed7AmyeN0zuyAu2xedMKdzFdPNwcjuT0YPGs11xB7+2j8MiTpG3Tyf1GyK5PCGA7m/M5m0Rpja43rKRFZzLoYCelwnq1dKUUYNIvpO1P0vl76Zph5oKudAEwbQFQeJ6VGxMSBnppnNDHxBKH/JaU0n2jsGkbphVavehO4WRvhe3OqXbkzdrnrIYGMX1lmgtLNIYdoqLtmOu/q4X32A5IEtIFfchmjNg6Am3psq5xc9r2IzEaPVABY5BjdapnDTF6kkI7YBy7EJjbbsiNaJKcYMfpkuJjUHkkQkYpqpUgqyEm5yK3j9v3rzM9Um9MSn11MMZ6xSjV1p+e8piUk0agbQkFpixWdAslezIDncKaZZeAEF1N+ue/5LMAuOMRMtYkeRftSURqiMrKdvo1NW4txijJtT95L0BXq30mLlzxqV1MRDNm5kDj0SyefWqwuvKGbje5UMoWXR2HdHxi79f49neG8DzrCeD7tjPfddCdJonOpjtLQu5pt46LDHxEpYzpKWI8Bx24JEWXVp9Ds99KfoV9YCQkvQnBQJOw6aJbiqGfOajQUFsoaQ2A07ALXEnBoD2DjIUtwoQCbxzyWwylx1p2MS6nkKnBqcV2ElwIjKuIKh6tfockEPz6H7OCylON1X1vYv3I1/bruatyF0+bDhbtRgTTnsQ+LAv4u+FoimfXLHo7plpDN1sH533bSe7Kxjlt35U9+AYeNHbyYJk2bU/n0GbGbXY+J6EUqqcHBvtsfu+7aFfhbJuwcdxW29AjXIe03uj6us7mmjvVH1Z6HhiNHOjHVEqEi8rUFrhEZTt9P/9HGyBJSBYNWNniLaN2kqk9bT5turmd5yXzKgitqS0tMHKK9TkxApw6BCPg1TRxQdDsF4R94NYh2AFhD7ZAXhOoBhQ3GryaRjVTnEZiJ1w8ZVvs2++baiTIZmgLIAXPTkQZOw2d+org0RHM9hHbOOS5UCpicp7102o3FK174DN7fc9e9LxPTItLwRZXhAEZa1RL24KKEmhPoF2J00hRLQ1y0ux+1bkf5apffXi3x8li2tmTxaQHn+uuu47f/+NXcuqr37v3jQ8Dd33rMm645kdccMEFR/pUjijZBEvGU4512/4BsMG48D3Wbfoyaxa+DVwHGfgzd/11MBodRd1FxE7nkp7qazBt89nVJzsdUSLwMfkc2rcd1bIVo3yFkSDyCX35BgNBnYKK6HXq5L2In4+ewIaRHgg0iWtwhSGKHYQyEAviloMbJBgtqLZ8Sn4LR6UkPQkice3YbVOS3wRe1ZDkBUnOwSgry6C9fX+PM+Y2axa+bVK+aR9ZXXnDZAd9J/AXEuG2vSBmuQBzKFnpvcp25AphDeHTdNZJaudagDaYRqPr73EoktwzL12L74Cotya7IA8Eo61nS0d+LYpsAlIsACBzAWa8ao0391VOYZbHNyk282p39U0abLYTwHQyYbTn2DaITXcyZ9a2s6+j4y/GJsg/CI3BQZymJhoukS7rIf+7TejN2xCeaz1PcrnusXdnBgpM684W0vqbiDgmP15DxUNMLPFoDgrGj/PJl4dwx2O8DWOTnX2dqY5U0/U1cW0BSXsKEWuSoQqNAfv/QrYVtWRqu/2afZLUF6SBYfR0g3E8yo/EVsLGGGjGtrCiDTQaXQ8d0ZHk0u33sWtm2m71m+rBIMR0I1DoTr509auFYM3wX8yqyLJzx2rq2s9WuQqRGpx6RJo6aF/hNDXGsZMqP/7p9Omt3RVXgCwRzcjYR9aPfwOAVcXXglKsn/imlfVTappn1oy0vzOkkOA4kwujs2kM2gPCdWxxPxe0F740ztYJVD0ACqS+a6dZfEOa18hiTCnXwnMTajsqpJ4gCewkHFgJMTv9JzCusZMpDYE3YSflUl8Ql12cZmpN7sdCRJhiAock75LmFVFJElYkv/37rGHoqcbqgTfvk+zlVFYFr97Fs8No6/nQkfU6kqyQL58sLjA55T3bmHRV8bXdyVqTpt1JnIMd06457p3TZIAPCp2YUkjru5KCkM6UKY24vdksJuz28/jANAni6Q/vJuefacpcG3S1ivQ9kuOHafV7jJyiGPidT+GebeinLUc9uhldq7f99GyRuytzu4diy9RYV4ctO/nSaEKrRTAyhlOdT21pjsaQpHHKPLyJGGfLuI0POzGl6cjIym4RC0dBKkCAkZJmv7QG7+2wVxjbOBSW25KwBnRgaC0KadYd8DRy3MWpgT9mFTC8sRjVjKEt0QUgwxQZpYg4tUXxVNsCOmCUmjSjj7VtjO3vhVodE0aIag1BcdLoXgjWnPQ3rLv/03v8aHeOS7vvpbBxuowNqpWgPUUiFAiDcQTXXTs9Rt1TcQWymDZjjpCNS8wpsgJLxlOWqZ1OJgyhLfW1i9HdzhhrHq/jqXJgMz9vTwt8XTqBs2p3H3cmy11J4nmEfS5hr8AkkjBxyKm2L4DQDDgT3L99kHRjnvJxY7hOyth4ASk10k9IUxedSsKaj5hwSBLBA5U8hJJgm6LwJBglCHut1ILTNGgX4oLEadku69u+9Nezfk8PBmtOfS/r7vnkYT3msca6DX8HtDtf9xFrgpl0x+LtpEGni//Idvp16P6/60g6KcWq4NVc1fruHp+3KncxopCDMOxORnQSmhXy5d3tDlZi2ntfjIo0dGSgDgbt65PRku5yQ5KA7wMgigVMHCPM7LuR9/X4U6XfukWWjrzCVO+qmaQ1Orc7z4/idlFDIyZq9N/qEM0rsPlcn7gEg/mFVH5j/V6cSrkrf9AxU59q/Lm7v03hee3FyARGmni3jDNwq0IM9qOLPuOnlImKPnF5EKOsVn+wPcTdNE7taQMIDcG2FmpHDeM6OCN1aIXUzppPXLISCkaBiO1ioFHYxUMftGvwxiRu3eA0U+R4A8LIGqROKWKKdpGMJJ3UzI7jrvmrMRqRMt2XpVNEnTrVAlMKo6L7+JpFb2fdk1+c5Yds+fl/WHmw33upnWRxqhEyMSA1P7lq/7qlsm6/jIz946ratyZvTGl+mK20l2629rjtrL8vhLQ6/vk8xnVACUg0JnDRgYN2BKbdAZ0GGn9eA89JEQJ68k0azV6qSyEpaUQsSAv2t2lKjDTIUBBsE/ijEIymaFfgNDXeWISqRjiBY+XAjCEJHMJeBxUbvPGUX155eOPZFz3/8lkZhmccGOu3f9UWWfaDjll6d3q23UBn4uTApVQPFlMbYtrnudJ7FVdHV+72KSu9VwHtRpa2DPXU4kcnpj1ohZaGnZAm1bsUrA4GRhtExzq0M72AjfE6fo6HjJ0lvac0D+1x250fSlP0jlFcz0MkPXgLC4wvd6gPz8eravL5xbi3PYzM5TBpipPPoxuNdtOQbFc09j6V2J16jmLbeDRRpXKXQ89gP+NnDxMXFV7JJfWtMXuwzcazyVCF1qCPSA3+9hBne3Uypg1j4kIBGdFdpxCplXvUgW3IFAZ0LqWvt05aEYxvqFB4whbCVWRw6umkX4kjSX3rr2IcG4tKrcGRiFQjkhTRNEBsZeIkqFjZ5qLARThlRL1pv+vaeSmiLYHrOqw+4/2sv/MTs/6IL1zxKW5sx57P/ePPIZVAxBqhBDKW3PDf++cNmMW0GRkZO5MVWDKOCdZv/2q342+PTA2+22b2U80L94eOWbFod1+IVoxSIVF/ntSXNAesRILRgk3jZVyVEqiEauLzmNtPdSwHjuHs4SeoxQG/GS/QrPsw6uGPSbTrYByDSKx5qNjm2vHdEUOwPUEYaI0rZAIyMdb0E9tlfbiTUSArrhxGOp2vs6Ujo6DjZEpnl2u76tvSJHNhggXYyevFFoNWyJfvOZk02pqZ72Usf4V8+aRJOuw2ye10Rpok3uW4a5a8g1ylgBivo8dmIeWyDxhtkJ6dijNRbBfsnWZ38sJOjLSNWmdTBN6/k7C/28lo53rZlT3YWwLe0eBW7X2lqZUCG6/heg799zhse7pi9GRJ8fESsh5amTrPtQnc6BhCa0ykulOHGDE5PTNFIkw3m4g4scU1IewkCoAUtBYUCXYkaE/SHFDEedtVHZVzVFJrtFwfUtQWFum918HbPNHW5jbIyJpgus32YqJvk1CnaeXH4hJ4o5KBO1JKD4wjRiasl4Ix081RHQdTKZIWfGQzxvj2e0qNNhAjY91z7dIpnHS+zzr/nqqv3fHJ6Ty+cxFmH9COQLuCtOCCgGuv2/9R9CwRzcg4cNZPfNN+/+zt63iq7E7nrn2QApt5l+3u5zhGtGUUdd7DuIo075LkrP+f9kBG9rqjlCZMFCW/hc5p+k7aQd6NeGJbH0QKMeagQhCpQCZWgsY4gBB44yluPUHV7fSfMYa4107OVJf4NPsEwag5Igb2WXHl8LF++1f3+Tkr3Vfaf3QM1aWYXDifA9Mr05h6Lu2Cyx5j2k7hNN6zjFZnQqbDnvwMO+/XzlPdq8uvtzlAFB2amNLYeLVzbTFpZBtjXGdaceywebHsPNEym+N2vKzSFHSKGmtS3Biw7SxF3KMpPC5RoYvXns4giqzXR1smVzesbNhkPDslT+m89vbnqJstRBTbItSU6SfSlGB7TFJQNIYc4rwgCSAqtePZdgNRfb5DbaFD770Kb+O4jReTBJGC0wIjJxUuhG7Ht3l7v5EwsqFC/jGHgU1WEkwmBhnbeBjoHke0j5nkFWmgcByBU4tsPNppMurQnrw2SoEjMYlGajNZYOnEtZ1p8n2MaafGntqxhae06GKE4CdX778HZxbTZswF5ozJfQaQFVgyjjGM3nuQ1AlUbBJ6gAfsdGnHSbfjWMQxxC7uREg6nCf1IPUMwtWEdY/HTB86tQlAGiv8x3zCeSmu0NyxeT56uw8Gclsk3riVpolztvvDHzX4EwYVadxqggxTMKBaiiSviIuKsMcu/t361UyjOmM6nUTGFhnbuu1piolidFSfW8nobugmk+1znZokTisc7QU7GdPep3rFtP11k9ApRYSpEzBgdZLF2Dg6bZs7HkwfxLaUob26xNYzqtlEGI0oFmx3cUf+4gAX02ZzLlOT9+77uw/vc0dyTERganWk65I3hnlpgcY8RW1xnmCHi4xTVEeqbqCMGq0hqjUYG59MhqdM1nQL5p5rk/V5AxAnmEKAzrmkgYNTT0g9iTsRox1BkrP7b/YJ4rMKOE1DUoBWH2ACehxB2OPi1FMQNvlMctZDwKsamoMC7YBbN9Q9wcDtmvJtWzBj45h0J3kvI+z3TZIgJuo4sf2ctBKQGnTRR060/wiVaheHXPv35DoYz2knxjtpgceJnYRJDvyP7rkv+xy/+Pd38rw/+ixGCTvBkpGRcdTQWbTsxLQH9H3QWXhMEiszFtjJSdmMSac0MKWevS5iwFEaJTWBk9CIPYyA0/o3ccf2BaSxhLrCHW/Hs5GVb9GOvbamnvUB0J5EKmWlbXMujXku1UWS+nEpJII733r4m4Uyjg5M+28fsH+/++DldkSZIbacGs/u0xTJlDht51j1Gv19G+NOOebO23VkrjtxVdcN/iBiPxMFpm36Hic2dnMdm0OTHvYiy349tS3tKpohhUerJLkKrR6JTOwiaDJUQfQWUbUWtCKo18FxkJUhGK9CVe8Sz3b+3ZEW6zToyIE+CCPrGRh46LyHMAZvPMZIiPN2ma/VJ0jOtPGsEUzGtDqg1xhagz5uLbUTKq5VvDASEt+G58JAEgDSEGxyKD4OxQ3xtHhQGIMMU0RiurExSWqnzY0izSnSnIPQBhlrSI2d5G5PbBshMO7k65XGYBxlt3Gc9t9EPOmH6O6lYXY3POfln+fG7/81v/fSz2Icx55vRkZGxkEkK7BkHDOsH/16d2G008HXCVa7gWS7o0m0je7tWHK6//qv7Y4W2dayF93RXvuwiDUyBrcuSI019YxGAkRoTd/8HZLiEwbtKq657xTUhoD8DvCq4LQMKgKnYc3atCdIPYmMNUZAq99DaIPTsFr5uh2LyNg+NyNjd3SNHKNon4oSR5Sduv86TJNJ2MfXMVMSvnNyujt0FHV17mW7UHVQ6RRZXAd0W9IgiqHe9pjy3HYnnZVdOORFFtitjvXenme0tO+VsvIAYmwCKQSBq3AnFA+93KfwuE/f/Sn0ecjYym0Zp4zyXGSpCLU6enRs+msV0iajYDu4WxE4irTgEZdc4pJDs0/iNgxJ4JHkIC6DW4XCZt2W+bIFEySEvVBd7IGxiat2bfIpY8htT2kOKvwRK5XQ6hM4Naj88gnM+MSunXpTp08CH3IBOm+NSK1BqsAZbUwmzr6LcRUogUhsJ59xFUYKZJSiPYV2O9OJBhmlqI1tYxglQQhWnftRRCvaJ1kFfyTmuX/8OXtNcLFSDxkZGUecrgRje9Fxl3gWutOEQk1ZJO2YR+9nTGuv89pOZUt7bTFK2IUwbdCeIC5DNJCSG6pTCkKEMGgj2LS5B29Ccv/YPLZv6MHf6iAjW6CWifVhcRvGmiO7gqgkiUoS7UCS81ERqJadFmwNGlRPSFJzD8K7mfFUpBOPdCSfjrSh/YFyIPHsHidc9vbUKUWpznTFQcd0PFhE998kdlq3E8d1ppIPW5FlP59jxsYRvo/UKeUHFebEImGPoD6sGDs+T6sfSo+X6L+zgYjKqGoTwhgKOWQugDAkHR1HupNesEK2G3K6n4NniyuAKfikpRxx2SWqOMQFQZwXRBVwa1PiWc/6raQu3Zh2YnkAQFyw77GMwa0ZKNgpFLDT2AjwRwSVhzX5zSEySq20F2BciXY66w/2MzMdOXQlMa5EtCe/tavQrvVdEWn7J7GvyRreW58VbRykMdC+T8Sp9Yxpy+iKVsyap9kJwnV3Xz7rj8gfi3nuyz6HEAKt9iAFl5GRkbGfZAWWjGOKTlK582TKNfr73SCz0+0khMAAAhCqvWC6fwdtL/S5UMyjK3mSku36i4sKYWyHnphwUA2JW7W3/QlDfqsNrOKSQ1QPcOuQ227wx+1kikgMKtY44xE659Aa8IjKitpCYSdXIghGJN6ERqYGt5bitDQizgosGbvSSaA6ck9mJ0+No5nZFkYOBft97dgbnSKL5yGkQLfCTu3Wdvy1EzKTcuiLLO3z2a+uv460AikC0M0mUgqk7xD1VOi9W1J+PMGpxsRll4mlLmGfS+lxQ36zS3DXk+iJKsL3MWmKzOcxUWQnQ5QCz0Xk85higC74hAM+tQUOSQDBqLHSiXlB2Ee3aFJ60iCMYODWMTY/p4ckbyhsEPhjGhXa/xNRWdkJlnYhpvJwRNjjUJ8v8ccMg7e3vb+M6U5PdhclpbDSe4GP7i2T9AZdQ3vtK7RnE1JR8InLPnHJFlNUbNqFeWvIKbQh6vOJ29KPKrZJrNBQGA1sMq4UOu/v10d67U/ey0UXfhKjbBKaySFkZMwRdvPdPDWe7W6n3K4RtvBckJJ0fHy/jyuLBfTwAGnJQyQGkWh0ziHs82j1SsI+Q2lBFYBtoyWSmoszoShuEggDG++dh1+VuOOTvlUi7fwYnJYhNXaSMOyDaGmIl4sJJ3yCDS5uFVRLEG8N2I9vnIxjhZ2M7bN49sA51M06Nl5V7Cz3ahfC1ZR4kUP/eYr9O05abyBaIQpQm6EiBDtOL7LjmSnBUIO45qMecK0cmiupntpP2CMpPxri/vYhO5HuuWAMKpez0mztmB5tG4dEqQi5ADyXeKBIbbFPWBYUtmjigqDVbwvRRtp4FgRuQ1O5r8rm51RoLjDkNwq8qsYJDaSGJOd2CyPBqCYqSVq97dvbofJwSm6rLa6I1CCwRREtbGOPEdZvxahOF6mdPkx8gUztJEzqS+vbpa3ahmoktmkoNUhsQUZ7ElyJMQ7GtUUYpJVfE44iLQekgQOiLTm2D1x3zXu4cMWnpt3OyDjqyZb15hRZgSXjmOKa9HvTAtNdgtSupFeMkG0vg3aHhhTSLpTud9eflXeJ+3LEBdtt3OyX1lB5h8Ebl8jE4DYNKjT4IzGqHqMDRW6bxK3aLkEVdrT/7TjutddP14A+451rUS3bEeg2DV5V4+8IUc0E7aqu2VxGxlSmymBlHF3oOOnqaq8KXj3lEWU9WdqGrsKZXGDYZ33p2bK/+5pSZEEbtKkjhcAt5whGFd5IiKqFuKNN6kN9JDkoPmGLF8myIZwnFKZas8Vx37NdcJ79LZTCNBqIwIfAw98eknoSp57i1mLcjWP4Jwyw9RwP7UJchB2nKVQTkqCH6gka7RlA4TRSW6weCxE6R1h20R4YKUgDaTuvHSg9HuFtGLeSXnGC6Mh1qfZn4jhQKpL2FklKHshOF6D1OzFSEFU8krwiyUuiorDFH4UtnrfACe2x4ryVffQn2t26yt5OK3lklNiuQCHQvoMK910/3SiRJaEZGXOMnQspMy66dhYIU92+9rQlcHsqsL8FFgDPQ2hNa8AHAaqlicqKsCzRLjh1QXVDCRlJnLrAa0Gww8ooJr4g2Nou9hhQMZjEytLc+rVLdjnUcVdejh8khHUPNe7gTkB+q/UdFEYSl7KVhYxd6cpedcji26OGjsLESveVmGRy0tlO10uE1FPkyjpP0vtdENn9iRxAPJtCOjYG4xOoepN+FtIcKuItiUlTSep6NIcDhDaML1ekAVQe1LBgCLFpK6bRsM2ZjmMnux0rCWuElcwyjaYtmnsu7mgTv+xQ2JTiPzqCe3w/W8se2oO4bNj2dIUKIfUF1SUVGgu19W41CqepUZFt1Bw/3iVtS4Q5LevbihCIxCpnBCMxMkpB0zWm1267YSg16KBtai87sl+gPXvbmOkesALQjoS8g3YlMtIIY0gDB+0KnEYCqQHVKdoIRCzsBIzv2CKOpLtGs69kMW1GRsahIiuwZDylmckgcJfuvp0waQqhtgmk53WDGpRGtjvG99Uk1KQpNBowIvCTFK+cR+dc3KpHfb6L0ODVNE5L89MfvGuX5z//JZ9FxtJqnMbadopIsUtxBeDOz+2aoK487zJEnCKUwKAQsWb1WR9k/e0fm/VryHhqME1iYKf7Mo5OdjYt7cgoCNJJKaoO7QRUyCmFlsMlubA3phrfA7pWx3lsK87gYhrzA5JcnmAkwR/XVK6P8TZP2ImUwTwsHkBNFBBbR2wy6nuYJMG0IkwrBCUxGzcjN9vXX97Ub483XgWlyN2Xsmikh7GnFaktFLTmGWRLEJdA9yRg7MRKa8Al2JGQ5l28sZBKaqgtconzAqcpCHskcRFUK8F4ClEzk98XUtriiu9DuUg0VCIN7BRjXLCJaepbOUejIC5IksBKLcQFK9OQBqA9g2oJ3HFrCB0X7UKlkQIVClsAahiSiod2Aitj1tbFvubnH9+nj2Rqp19GRsaRZeeYdm/xbLdwncSgJDKf65oDC8e1htX7cv1v+wDobTuQYUipGZH2FEgLLtqTTCyz1yntGrwRu6h3z2W7xqSnv3utncJObYe1duDWL+66HcDDr9o1zn3Oyz9Pq1+QeiBDwUkfX8v9H5j5+RlPXVa6r8Ros0sMlMW0Rzc75+3A9MmVmdhPz5RDxpR41qQpavMowze7bI36SJZoxi9sIMoNdjzeizNhyG2xhYh4sICnB2wB4vEN6Fq9PbliupKPJoqtN81ojBifACEojJTtWkUrJHdvzOIdPYycUaK6WNBakII04Gl0PkYZSBouYUUR9jr44ykycihuTKnNV6SeIM5D2CNICrZhM85BY9ijsMEgm4ktbrTlZ600pCT1pC2wKBu3Gim6U+FgZddF2vZgkYKoKEk9BxUZnJbGHY/RnkS7gtQ4aF+BBtW0PrYmkKR5xxZmAIzh6ls+tE8fSxbTZmRkHGqyAkvGMcluk9IpngBCtzs38jl7X6tlJWectt6zmL2GtfVxMcha3XYzRxEqnyNoeLgTPo2FOeKC4Mbv7VpcAbjhh7ve/4I1n5nVsQGuvuVDrD7rg8hWgmxE0/0AMp4ydDyGro7/1d72XsXV0ZXdx2f6m88S0acWV7W+y0rvVZPJqN6N0fmUQsucMXztnpOwRQgAY3CrKVHFwWkZ4qJChRqnGkGcIDdMkJso0jihH5V3MAvKeNsbyGaMqDXsPuIEpER4ri22GIOZmED099lpF9eFKEY2Q9xanqisUAsayHsLpD7k7/NoLEqJyjCxVDCx1KXnQUV+c4g7EaJCq3ltpEArQWEDRD0eriNxx+ugUuvr5bnguZhKkTTvEVdcO/niCuKCIA3sgqGRWJPQxC48ah+SPKSBIQ0MJtBWZgGJaoJxrBkpxuptq1CgIohKDtqxkjwiNajWvhXRLrrwk1YCIpt4zMiYs8y2yCJSDVKiFwwQl33cTVumxbyziWdVuQRAOlGF8Qkrg9Nswfx+TJ+L04Cwz5CUNDIS3P/+mc3nf/eZ6cWQM965dpav1pL6ArcKgYI0Z6+TGU89Vve+EbAemqt738j60a93H1vpvWpGL6Espn3qcHX8r90immWOxKqzoRPPug6iXMRUioCdvtOupGkCRhLJuWc8RKQVt9+xjNz2gNLjIY0T+pChRiyo4G+agFoDU6tjwhB0YveplJ1kido5/biNaTEGwgjRiPCqhqgP5i0dQUlN4MTsqBeo1azvSthvGHMFMnEoPa4obIyQ8xRxzkrfxqXJa6v2obZA4tZd/KTd6OlMFlRSV5L67eKIZwsrWgmEMXbqWoGMDRI77Z36oiuvGzqCYFQgQ+snm/iS1BM4TY1IDcZxrb+Lsl6zgC3Q7+NSxopnfxzpSlsgysh4KpEt680pspB0Fqx49se55sYPHOnTyNgPZuqCmdrBv9tA3Gjb2RdJuwCXy9lR3DiZ7CLZ1zjP2IVM02wh0hQZRoiGh0pKFIzh6l9+cJ92d/26d+/T9iJOrTlcHO/a1Z7xlKCTjKx0X9kN7ld6r9rF2HOvCzIZRxU7dzVfHV1p/wamLjzsTkpByMPjzzILhBT2vBzHduwBJAkyTik83iIpekQ9LsJA2B+Qa0SIVgjNFt5YRFpwENqQFqxZfOv4XtyJGHdr1RqINpuIcgnimOiURYyemiO3bQB/PMFIgbe9QatP0XufIdxcoDEfcqeMUa/7MOYB0FigMUFKUnCp5AOCMU1tgbSSB9rghIbK/Q2cjTswPSWrkQ026Q18dE+BNO8SFxxSV3SnVuKCTWbjopVP6BiAGQWpZ0hzBhwDfopJBSoWaAdM3m6vQpBR+7nCJsVJvp3gpwYcwc//Y9++M669zvqvgO36yyQVnhqsfvqHWH/bZUf6NDL2g51j2lnFs9CNafX4BLJSQpQ8ZLmIHp+Y9bVflUp2oruzvzS10otJggLcXh9/3C643fGud+7T65pp8npPxDmB2zT2uyAVyDkwgJlx8OkUVjqFltW9bwStSWt1KwcqBVfHWTw7JzmAyeipMe3V8b/uKvd2CI99sOjEs8Kz8aiIEpxqROL7YKD8gKQxP+BWuZhiscXzz7mHG+SpgG+n+pSDMAZ3qB9/tAeMwd/WQLYSRLXenVYRhTwmTkhPWcrIaQV6HmphhMDb0aDZL9HlmLwbMZirsyg/Stjj8ES9l4d29NNoKpIejXANYa+Ldjxa/ZAE1hsrKdjf3jggICpDfZ6DjAxOI7HTJo6059uZPPEFcU7YwrcCFdlYPm5Psbh1g0xtcSVpF8f9cVt8iYvKvlfGTl3b+FgiU6vaYUQ7ngUQguvX/80+fSbX3PgBVjz746AEK8+/jKtv2rfpl4yMjIzZkBVYZkFWXHlq0UlEZwrIp5ndpymEIcZ1250iCuG1ZWf20yTepKldzIxi0vaIr0wSrr7r7w/oNc2Kah2SpC1TYwPPNYv/inVP/O2hP3bGYWGFekU74fzX7n2dqZZMEuwo4AD0o3eWfusumk2VBJtSVNn1uEewwCKstrZwXCuh5dliBnGCiROciZC04CFjTeHRKkYJmguLxP0FHKVs4jrWIClWSAoK6UmMkng7QtKCQ2tJD60+hyQQFDYnGAlOM0WFhupihXat78nG5/ZQfAJSV1BbYlCLGlRH83iFiKiYkCTtxK+uSIqa6hI7RZIGMP/GEBWmiFTbiY92Qm0C13bwCYEuBaQ5hySnSHOSJCdJPYhLgrAXoopBF1JEKBGpAGHQOY2RVt5LCBCutscsJ+hUIBsKkVrPg05hRYUg2w16Qhu0K7j525fu88dy0QsuB+C66997cD7njDlBVlx56rCneHbq4zAZ07JjFC9JrUfVPlz701odTLU7xd2RoiSKSLdsIwBkOMQt/7SrpNfBxml7EeqCRMV2EfCst6/l9t3IjGUcnayuvAGA9ePfsLfLr8dM8ZyDLJ6di4huE5/9Pc2wfoapo5mY1ji0u2ahOYpQClksIgIf09eDzrnIeojaXqXvHsXYSTma/QKnAcGvcqR+jrufl/CMMx7ht7kliAkHMMhQkN9svfmchibsLZMEAn+8F+0KkpwgvzlGRZraQp+wFzY9O0C1oDHfI+mNGZo/xgmV7fS5dR6ozeOx8V4WlsY5dd5W7jYCKQ2+mzDu56iP5UlyVhJMaCtJi7BSjk5oixypD2GvspPWsiNpK7oTKXFeEBdAe/Z5QttGIRnZfSX5tnyYak9ou3ZCW7sSt2ZjXTudovCqGqeRWtN7Y5DtRibtyH1uMgVYef5lyDjlqls/enA/8IyMI8l+THNlHFqyAkvGMcnuuv06Ad3UhFTXG0hAeDap7Cz+7W/Ht9Gm6zFAmrJu82EoroAtrhhjfwNoa5TXYVXhNQBcVf/24TmfjIPOzjrUwLRiS8bhpZMczmoBYGrSuLsEch8KLzsX1LoG8t1DiINvCLqvzPA6RaegrdqTLI4D20aRqg80iB3j0F+xCo2OIC37yMhBNmP8zVU838U4krjsoV1rOo8Ap2WIipKRU1yr259a7yutsL4peVBNGD/RoF2QkcD7dQF6IV2WUqo0aXgppWKLoh+yaXsPZjyHimHgzgR3IkRuG8MU8uiSj+4pIWtN22kY+BjXQXtWU1r7trgSlQVRCaIeiHtSZDlCAtq4EEqEFhCkKKXRscLEEtN0kLmESqVBGLk0VYCIJdoTaFfijbYNRNsfqRH2Ne4rF73QTq7M5PN1MLjowk9y7XVZ4SYj40DZ0/TKTDFtOjKK0gYKOUQuQBjfSn7tjY6cWBLvdJ8Co9GjY1x7/eFr2DEO1mvKCFRkSIPpUoYrnmP9pq75RdYkd7TSKax0b0988widScas49mdGnmEFJOFFTr+f+3CyyyLLbNqEJsrhZfO6/Y99KJ5NBfkEbFBJjnb3NNIqDzYIs7noAnFjSnbz1IsqYzx3N4H8U5KuXvbEGHkIKShWskRVRyC7Qq3Zkh9QRoo4rydMKkPeyQFa2afFmOEq1F+ynFD2zmlvJWy0+TG7cu55uHTEJHAG2qybHiEE/JbWJIf4cTcFpZ52/j+9nO58f4zcWt2YkVoSHIQzk+o4VB6VJDbrhHtNEK3pbpS18qBJYHoerZo1xZPvAkbgzpNUC2D9gRxzj4ujC3CYCDOW6lHb0zgtCD1wJswtogDyEgjO42tsuPpMntWndsuqAhxSIor2YR3RkbGVIQxmRnDVCYmJqhUKoyPj1Mul/e6/apzP8pVv/rwYTizjEPNCvny7ljxzsGcUAqZyyHmDWCKOcS2UUyzha7Vd5FfmpGdFjKFUt2u7ata3z1UL2kX1ix5B6ZUAAlivA5xzLpNX2ZV4TVcVf+2LbIIAcZkhZanIFmn3+Fnn4ossOckcR8LIXtKSo+oTFzbKFm4TldyESGtLJiwyTiuY+VoXBf89kSL68DYBCaMEH09xAt6EBpkM0Ik9r3RORfjKESSIpsxaE1rYZlWv0OSs9rQYQ8kxba2tLCG8f4IFDZrGoOSsNcmhHEJyudsY1lllKdXnuD03JO8JG99Xf7XIxdy5w9PZt5vIivbMN4ApdrG9k17vo6D2TFqX08hRzrcS9QbEPYqasOSuNzu3isatK9BGURL4tSk7e5zDcYxGM9AImxBqJDil0OU0rTqHjpUdtollrYoNGG9CVTLFpUAfv312U+vvOj5l3f//eMb3pcVQo4g+xqPHujz15z4btY9MHtvt4y5SyeeVcUCutGY1mjRiWm3v/FZjD5NM+8WQeW+GuKO+9BRNKv9q75e0tHx7rW7cz0/nHHjKR9eS3xqE8dLMPeUCLbDHWsvYeX5l2GU5JpffIBVZ3/YFtmNYf3tHzts55Zx6Mni2cPPrOLZdm678327MCWenU2hZXfyiFMfP9Ixreqt2Nu+P+m5pwTGcUjLPq1+j4mlChXZxpekAJWHNbltERueF3DGyvsZiwJGmnmMESytjDLo17h3fB5PbuklbTmoIEEntkAl3RTXTxgo1dFGMNEMiGNF3HIwVZf5x29nUXGc+3YMsrgyxsuGf8OrSxtxxa791VvTGqs++y5UE1RkqC0SxGWDPyJw6pAbMZQfqiPrIcZziPpyhD0OUWlS4lakkPp2olDG4NXaO9fg1TTasdtq106wdCZdjLQ/wQ5bPJGJLfD4YwavqnHrKU4txjiSNFD85KrZSYO96PmXI5sJIk656re2sJJJgx05DjSmzdiV6667jt//H6/ktFfMjTztzisv44ZrfsQFF1xwpE/liDJHyv1HLzsXV1afmXVKHa10gzchdwnSjDbWSE4ItOdAuWg7/zpj0HtaFBUSGfjIwO8WVqbu93Cy7vEvkPbkML477f5uUizEpDxPxlOKLBk9SjD6oE2UTJWO2ZN2/0FHyMmfGe4XUnS7GlHSekIpiXDaxp1KTRZXlLRTd63Q/uRy1qx+ZAz3/g04j28DDdG8AkklQPsOaU4Rl33ivjxpOYe/pUHpsRb+uL3eunVwJyDuS4j7E1oLYyZO0IwfL6kvgnBAU1+siYuGnlyTSCvyMmJQTQDwQFzjN08uorDJ4E7EiERjfA+T86wEY5Ja7xVjJl+jVN2FPrAJpGphfVakAQ2kAhkLZGxlvlQobPEEkIlARmLSm8UIjBF2yiUVqJbArQnQtnAkE1tYmVpc6RRPXvT8y3nR8z4x40f34xvex49veF/3PHcurly44lMH8peRMYfZubjSkefJOPq4Rn/f+qREMbJUYlXw6mmPG20QCaiWYPx4QXNhHpHLzXzd3hkh0cctwhmeN7mYajQmPrzGwfd+9BJWnXQ3S/pG7YJdp9u5lUxOrbQbhsh6CZ9SZPHsHMboGXPbbtGlE9/u48TJzlKIhy2m3V08O+UxIYVtGMrnoFCAYh5TCDCOfY4ueLT6PeKCRCbgNA35bRp/DKqLJI1hjwU/C3nkH08kTB2uOPX7rFl0NycWt3Je+WFes/gmXn3GrzjnlEdZMjTC4OA4+XKTcrlJb6HJjmqBMHF42uAWAj8mKESUFlb5g4W/40+Hf8nrT7iJFw7ex2n+hhmLKwC/ifq68WWnYIIR5LaZrtG9UbJ7TZUdo3tlZcM628gUVAROyxZc3LrBr2qMFMjUNv5o1x5KhXYbGwdjp9RNuzhTNW3ZW4HQVmb3xze8b1pxpSNju7u49Mc3vI+rb/kQxp8c4965uNKdbsnIOJoxc+QnA8gkwg466+/4+JE+hYwDYQ8Lm0YbzOgYMucRDZeRvQVU27B+T3Jh1lvAQeQCTLOFCcO2TJg6ItI81/ziA6x6xodtV/iUpLMjEWbCsHs7m2LJyDg47HN33VQj+oNw3E7SOdN5HCp/HiFFW5ps8jbYCb5OIbdbpFaqK8NokikLdULYgkUY2UJLqQjlEkIITOCC1uiCR+pJRGKQsUaGKQiBkQLtK0SsEakm2BYSVgKSvPU8qQxVcZRmfCJPYiB5eoNFvePEWrF1rES8NYcjNfNz4zzQnMf1O06ix2vSSDzkPQVyO+x56rxnJ2iMwbgKcv0AyIZERLEtsLg23DJSEBWtb4t2J6UOjNe+Fpu2xFfa6QIU6JbVu9auQYSSJFIEuQghDSaSqKbAG7d63sJY/ezO9ArAOf/fFRgp4OQcYJPOvfHjn75/xvsPpgzCyvMu4+pbsk7CucrO8jwZRx86bCGZuZmn7+469QUFWseHbD0zYsmWZcjf3GPN6/eggCuUYtPzSvTdlyN/m0SPjELHj+Uw8/fP/A5n/vBDJOWUqNX+LtE2rl55wcfAkRgpka2I1Wd+IMvRMjIOAnuNZ43eKfbTk9eUnRQdZisTNvW4U2PWPcW0BxzPztQktFOBSEgxqXDRbrJJSwFJ3kFGKc54iHasR17qQVSC/BZDYWMLt+Gx5RyHLYsFGI+0kvC/Bh9hsVMlryLumFjEY41+EiNZEIxzTs+j3CaWoHOC4cA2/JSdJndX53NOz2O8ufe3/GHtYrY2Spy0cBMXFB4gEDG/04vodeqcu1Nz5VS+tvH5xCVoDNsGHaMMaU6z4+kC1QR/AqKyi6smp5OEgbgIrUEwjoFx2yCU5Ns+gAbcmsYogWpp6xsTCLyJ9vQ21pvFKBsDy1QgWxCMady6fZ9lZBCxnrZe8ayLryDOT8a0e4tL9zSxcrBUaDKZsIyMjA5ZgSUjYzd0grhOoLbSexWm2UJuHYGBAmnBwRkeRG4G02ig42TGINGkKbrRQHkeIvDtne0FxKvqh08ebFXuYsRJy2xXNYDrdDtWO8WVmZ5zVfOfD9s5Zhwasm6/I8fOyeA+sZ+dfjsff2+3d05WD9axuot6U4pFQimE7yM8DzPleil8v9sZJ1INqQYTgQpsgaKYt5JbgYsu+GjfwQhQYYqRoFpt+cVUIyKDcdpdhVGK0BrtuWhf4Y9pUk/htKD+QA8iBeNaRfAQ0L02eUwihcmleDJlcTDKkDtOXsX8Ystyto6WKI6ASAw6UCQFBxlpUt++RhkbVCtFJNqanAYuxlWkeRfjClIPmsOGNNCThp6JQMQCkdgpFRm3O/pcEAnonJULQ4COFC3jYVKJ0LYLXej2VEwEKjRdnezzXnsFQtnGolu/Ot0Aemc5sMONqjYP+zEzMo41dNhCKMXqvjexfuRr3Wv86oE3s8hZxiOnQuDFPPTyXk4MT0Dc+wimZRttZoxpkxi3CmFF4R43hOu60GyybtOXD9trWv30D3HvmyrIRKDzJZCG+z7Uvr5JaaXBpMQIAZ0FQWNYs/xS1j1yxWE7z4yDTxbPHjn21qwzjWkSYJPFiMn7Zl9YmXr8nc9jTzHtAcezOzc67RSTS89DlouY+YNEPQEy1hhHElVsIUM7AtVIUK2E3BZDXMihQmv0vvWZecJ+aC2MedoJGzin93Ga2sMVKT9rLkcKzdZmgc3jZTw3gT54vNHLk9UKS8pjnJzfxKBTZWPcS79fp5F6/KB2HFtHS6TjHo8Wehmbn2dQVWmkHi8q3gXsvsAyFga0Bg1iqEUcS9wgoZQPiRNF44kSSU6S5iTa90gCgUyg1Stp9UEyHOHlI6InC3ijVqbWmzA4Leuj4lYTtCcJK7IrI5b4oNs/1qfFTsKoyPq6OKLjJ2jziM5U4ornfgK1MCDJiWkx7YrnfLw7gXNEfLeOkJVlRkbG3CMrsGRk7A4hWem9iqujKwG4OrrSFlmSBO1KagtdvK0Kkc9hwtBOsmg5c0LakRhzHduF0fEZOIzsqVDS9V+ZSjuoWRW8GpHPA7B+5GuH7PwyDg1ZMnrkOaAiCxyUSbc9/R0c8Pm1uUZ/nxXqFbs+MEWjXyhlZbQCH+G6EIbdjmOSZLJLre3HQpKC501eO6UkDRxkYnBGG4goRuY8O0XSluDqyDLIeoRshLar0Bg74ZIYVGhwaraYYZTttkvKKbneFgU34p57F6FqClNKkcJwb22YR9QApxU24qvFJDWXJICwz8FMCJJAEg0pGkO20FHYaAjGBKqVYHwH4yqSkk/Y79HsV0Q9kOY0FFLb2ZlI5KhrJb6wutwd80/tG9AC047WRCowDYVG2eIMtosQY6deVGj41TetLNiFKz6FV3aIC7JrdD+1qAL7Xlg5mF16aSV3UPYzE6tPez/r75pZBi0j41hgZ3N74bmsWfIO1j3+BQD0RA13a5U0qvBvZ/0jayb+kq3P6mF4cwWzdZt93m5i2p4HQ+oLPVQjxhR89MDh1VNff9tle31s1dkftgt07WI3rQhaIWuWvAOg+z5kHD1k8eyRZ7/ixc60Sopt+NiP4spM57Gnxw40pu3Es0Kpafm6SWIAZKmEKBYg8DGuorYkoNkvKD+eoloap56gQtvgkwYuCIE3kaIdRVwQtAbs5Ib0Us6obKSW+vzXfWeglObU4S1srJZpxS6D5RolN2RDtcLmLT0oL2VBcYIUSUk18dMiBRXyeLOPx5t99Ffq9A5v44L+Rzg/2MKt4QDzvIk9Tq8ArBy+h//95CCVYpMzBzfxp/Nu5M7WYn6y7WTumghIAh/tCLQDUUkSF6C+xOAsqjOv0ERJzaZ8gKk6uE3I7UiRoaa2yCUNJCo0xEVBEtjCSdoprsi2pFjDTsPIxDYcpZ7EaelpkmCrzvkI0hiEDpCJzRU6Ma0Qgmt+MfPk9Z5Y8ZyPH5SCjDjEku9rjnsn6x7+3CE9RsbRikHMGRnUuXIeR5aswJKRMYWpHTFCKYQUrApe3TWivzq6kjXLL0U1E4R2qZ1QoSAlotFs60/vXldBN1uI1LX77SwuHmFeuPLT+Dfdy/qJb04rslxV/7adeHEdjNZ24fMwF4QyDpwsGZ077Knjbi6wJ23r/aHrsSIkJokRntstrgjfs1rVqr14Z4yVAEs1xmiEkLYII6V9LEnsj+PY4rSB1FekC0qI1CAjK0FglECkVk5AhjEiSkAKdOCQ5m24I9NJA01rJA9JQTO4dITjekZ4YHQAVbXXOqMMv7lnGSIWlBdNcNLxW+jPNXhUGaIKNCJBVHTsRMo8CBfEqKqDUQKZKvzt1hMFTVeyLOyBqAwylGhlMDmD0dZ7RSS2WJLkDFFfe7olFcjUoB2DCbQd8tEgmwoRC5ymwKmB07RTL7/6hi2urD7t/bieA+Qw0kWFNug90EmVgymBcCiNRrPiSkbGTlI5SkExz5pT38u6ez7J1dGVvOh5n6B4p8+3n34+lz7zx3y2sYaeBxfh7RhpTyDuGtMKpfB++xBOYwlJySNcXKA5cOTjw+Xf/SQnfinh6l9+EICrbv0oq8+y/1539+WsWfi2yY13NuHOmPPMxbjpWGVnhYd9+Wz2JKl9MDkYniydOFZ4rlWgEIJ0ZAxZLCB6KpiCj3EckqJHc0DQ6genoeh52E6tiDjFKEVScNGe9SDxJjQylqgQmgMC46doJMcHW3n/M9Zxe30xRRVyXu+jPNHqpZl6bG0VaUQuXj7C9xJOKG3j2fkHiY2kJO0kcCt16fdrvPm4n/GG8pb2KyjSIxucm3uYvS35/X7xTm45fjn9fp0/m3c9Z3seJ7t3sD0ucf+WeYjU7zYoIdpm9Y5hYe8Y83J1HhnvQ4R2QkWkoJoaYQxCQ6vXxudxAdLAHk+7kAYGzJQp7Mh6EzotgzDw0/96FwAXvfCTiFSjUoMJHCsFHNvvnAONaQ/WtMu1Pzm0JuNZcSUj4+ghK7BkZMzANfr7rPReNV1vtc26R65gxXM/QeILkkBRfKhtWhz46GZzunZ1xwCUdqDmeSCFNRPtyIUdBs5/9ecRxur/G2klbGRscByBPmV5d7tpnivtDnIhJUZrrpr4ZldiIiMjY9/Ym2b0XOJAuv+uSb8HTJcd7EiCAfa6kgswnrKGloFvzesBPBfRmWbpmNwbbadYXBcCuw8ZJohEoj2bYIlUY6Qk9R2cemylp6S0+vvCSnNFJQeh7XVPxQaZ2GthGhhMLiVKFfdsn0d1IofbFDgtAIe+u6DVJzALBUXV4pTiZn6dLCdeGBEPSJwRB5lCvLRFT6XBeFom9RzqwwIZ5yimGjSYtlGnV7Wde1EPEEvwNMLRpHmNW5M4DUg9QVoA42qEEohxhTQC7RqMMghlMK7BG5G4VZvMCg2/+d9TJMAciUgSUlfiNFK0my0oZmQcq1yjv8+a+W/FCMHUK8GPf/p+znrHWu6uzufS5bfwxa0vQTsxcqAf02iiq9VdY1qlwBjiskfqSyaWKsLew/t6XvzTt9PjNxnwasRGsalZIV8c5IFXl6Ztt/72j03eSJJu0X7do1/oFpoyMjL2jZ3jw7kc0x5IPHt1/K8ArFn8V+DYeFMtWoDJ+ejA6V5Paot8ooqNw+qLoPd+Q9TjoyKNdiRhr6LVayervQkr9Rr2COqLNTkn5YHqII3U5bjcNkaiAuV8izWlO/j39Bz+4/ETqORb9Bfq5CsxZa/FisrvOLsdU7fMKL/QJwKwwB/nfxYfA4LuaxjTeWKjwK8DsOreF7Nq6G4u7X1k2ms9w8vxiSX/l21pobtvAG0E83qqbFqaR6aKwmbbFKUigT8iefiRIZ4sRxhjfViSvG0iiksKt5YiNIQ9dlI8zRtEDMEOK5WLEWjfkOYMRgkKG+0xjYJffP+vu+eQ5BQylWhfEZUdksDG7xkZGW2ywZE5RXZ5ysjYE0Z3p1emcs3P349MDMWNCcZViL4ecJxux3aHqXqzIp+HhfMQ5bL1ExCHfsHrWa+5gnNffwUyBqdprFmctrqwRrVN9/IOq8/8AGtOnt6ZfFX922AM6ye+CalmVe5iSFNWD7z5kJ93RsZTjbmafO6OAz3fq+rfttc4YQvLHXkwoZSVVPBdTN7DeI4toICVAfO9bnHF5HxM2UowdAotohmhJlqIVCNjW4zRrkS2UvxtDZyxJiiF9l2MIzGOJC46pIGVHLBTLnaKRca2c87d5jK2uUwrdNGhQoUQ7ICeewV9vx2nsNlwysBWYqP4/gPPQDYlSxZu5/ln3Yte0iQuaZSbUgpCgv4m0fEtJp4WM3qypLakQDgYMHaCz/hyRZxvd/e1BKopEDUH6u1eF2O7+rRvI2URSdB2SiXYKvA3OzhjDqLqoKoSbwzchp3Kue1L0/1V1t/+se7UoVtLGDkl66fJyDimSVLEeJV1d0+XCbz9C5cQpYrbowL5s0bYfL5LsmTepKTjTh5gJk1h8TCPvS6lushBO8Bhqt/+7b0v4uKb38iGagWJoey0GPYmGPRrlHMt1Lwmy77yOU76+FpOe8/aac9dt+UrdkFUa9Ysb0/6nXkEtPozMo5y9hofHoBv4KHgQOPZdU/8rY2nXBfdVyTpzxP35KwXoKto9QpaS2Li45uEQwki1YR9Do0hj6isSAJBdSmMnhOz5dmasRMFWoGMBM1NBe58fAH1xGc8yXNGaQNPtnr47MbVXL3hFPpLdZ45+AQDQYN5uSq/338Hq3NR99yGVY3zSo+wauB3PKvwICM6nnbuSmjG0gKPJ1Ve8fBFbPrREq7a8rQZX+cpboGlTrV7e4lT4tW9N/GWZTcwdOpWxk9OqS6WNIYkE8cbwuEEkQqiCY+k4UIuJe5LaA4Zxpcqxk7wmFgqCAcMad7YaW5pfQWDHeCP2lhYRgIZ2wkW7cEt/3TptPO64Ufv5idX/Q0TSz2qixVRWVJdkjUNZWRkzE2Omoz7k5/8JP/xH//BvffeSy6X49nPfjaf/vSnOfnkk7vbGGP46Ec/yle/+lVGR0d51rOexZe//GVOO+20I3jmB84K9QqceQNQyLPuwc8e6dM5Zuh4r+yOX//jpVzwqs8Tn1DEG8+Rv7WGcWyXtEmnF1fsJIwhLeVwQmtw3+mGOVSc/ea1OAZUDE5LkwSSNBBERYHTMnhVjdNM0b5CF3xkalh91gendfyZdje5yAVWqqd9e/XAm1m//auH9PwzDoyjbUE/46lHd2JvqrygNhAnkHrWWR6sVJiW1theiMniSs5Few7ORB2SFFMukFRsZ16Sd0jyykqDCfAmEtyJGCkEUW8AAryRFhhjzTk9gd9IMRLCskS7VorASPsb4RB5Lqqm8KpWxqGwMUJu2kYFuPPqk/jV8mU4mz2EZxjK1fjTwRsZCfPc581jQc84/bkG8/NVim6LR6t9PFZdyMRSSVKQNBcl1ivF1zhBjLq3gNMURIEBCbIpSAN7iRWpQLYkKDPZpWdANW1xXLuGh945PQGdCR04oAQ/vuF9LP3HzxzETzYjY//pxrS5XCZ7cRhZt+0fdvvYfz/vi+jNJ/Gbs7/Hv59S4rKJP2W+no+8L0akta5JNWCnWKoNjp9fZ3N+CV4Vwv5Df/5680kc5wXcqRZxav8WLuh5iD8tPcQWnfClbc+nEbn0lRukpSYjpSLyoYCTP7aW+z44pfisNWawt+v1ZVzFqmd8mKt++9FD/wIy9pssnp17HCzvvqMGpdClgNa8PGlO4tRTVMsgEk35iZTmPJfkuAQRSVQ9ovRginGtZ2B1iY88rsbx/aM0Yo+R7UM4IThL6rz2lJspqhYvKd7FMsdO4E30/I5vjp/KPL/KJYPX4wnBJ7e8kBRBVU/3rhtSgteVt6LR/DZKdjntM7wd9Ms6X9rxPO7675NYeGODkdElXPM+hxW5hKYJyYlJRY0lTmmn5+c4wxvh14OP8YPNvTSGJUlfwnHLtlB0baHHkZo7nlyAEAadSpJI0Jwvuz6HCOslKIw1tE8DuzZhhI3BdaB58N1/zd5ozBM0Fqc8+ufvZOk3spg2IyNjbjK3Wgz2wA033MBb3/pWbrrpJq655hqSJGHlypXU6/XuNp/5zGe44oor+NKXvsSvfvUrhoeHWbFiBdVqdQ97ntt0pgX02AREtithVeE1rFn09iN5Wsc8F170KQC88RSZ2FFYHAfhulYKbCd9ZyEFwnGQcQqNJsQJaTngRc87MJ34NcsvZc0J7+KFqz7N7710evHNbRiENjhNTdijiErWnyAY0wSjmp/933eRFBy0IyA1JAMFwqEiK5798a5u9VW1bwHW3H796NdZP/4N648ArBl8C6sH3szq3jce0GvIyMh4arJ+5Gv2etGe1jNG2+7nWh3ZCBGJRsSpLawkiZUKi6K2lAuIKMEZa9jEdqiX5sIS1aU5WoNWesGrJvgjMU6oaQ24NOcHtIbzhL1WoznNu4SDeZymRqQQFxWtPkWSt/UcFQIC7vnYJbbI0lJtCUVbyHBHGpgwQtZbDNyZIiYcknKKLqT8r6GbuCiXcnbv47xg6YP8wYI7uaD3IZYXtlNUEX1BE6MMwaghyYFwNbIY09NfQwiIS4ZwKMFbUIcgxakL3Anb1Vd4EoqPC/ztEtWQYKy8gvbs5M0jb9t7IgrW40Q79r0/+WutQ/QpZ2TMnjXDfwG0Y9p2/L7muHceyVM65jn+c1dMu/2yQhX1whHGTyzC0gXIfL7rSSikwKS22P34SC9uvS39sqTJid//+AGdx5qFb2PNorezZsk7OPGTa1n2T5/eZZvzgx30uE1eN/RzVhTu48EErqqdwt8+41/IuQklv0XJC+nrr9Fz/lbEaVVOvmwt577evsZ1m77M+js+zvo7P8H6Oz+BiFNEkrBmyTtYs/ivrBRQRkbGgXGABvZzkXX3fYq4EmBcYRteIo2qR4gwJtjaItgBadPBG5XIagu1bQw11kQYGwNGNY8NNyxm5OYhjIDSH2zilgu+ynv77+dtPY/zRFLizsj6qZRljr/qfZS1829liVPigbjIc8v389r+X/Boa2DaefXKPAASSVlELFu0adrjC1WJBU6LGzYez7xbI5wdNYobY/7shtcCTCuu7Il+tw4YdGDI9zYZCBosLozy9J4n6fEaVEpNTh7eSpCLEKkAbadSvDHwRiSq2Z5UiQSpD60+SAp23w+/fXYx7d2XX0Lf0jEATv5aOKvnZGQcCwgzN34yqTLLUTPBsn79+mm3v/nNbzJv3jxuvfVWnve852GM4Qtf+ALvf//7+eM//mMAvvWtbzE0NMSVV17Jn/3Znx2J0z5gdjclYBpNVgWvRlbKduw947By3bXv4Xl/9Fl++t/v5pw3XkFhU2LlbZS0hZbOeHRnQRG7uChHa6QLBpCtCOMoVHPXbpO9sbr3jXbBUgr0cYsYP6XIlmcZSo9Mr5fe9J3JDudnveYKhIGbvjs9iLnhh+/iogs/iWxFJCXPdktLAcaw6hkfJukNuPa6SeO2NYNv6f573bZ/YHXfm7pTLRlzh6zbb24yteNvLmtWw8Exugd7nViz6O2QphAnCNcBx8E4yl474gSiCJOmCMexMgzGdgWiDdQbmN4ScW9AmpMIbVAtjTMRogOXNKeQkSHxoT6k8CbAH9eI1Go6y0jj1FN++l/v3+N5yhhkS6IrCa1+DxWCaMUYZa+rqS8IFtVo1T2METw/tw3Is9zfxovLt3O25/F4UuW6xvHc3VxII3ERqcCrGvruhsZ2j6gHGiaHNJD0aJyeEGME+UqTuz/4N5zz/12BV7Omn9oTtGLBPZddssfz3hs/+0+7eC0b0V62zMg49Kzb/Pe73hlFrO59I6JUZN3jXzjs53Ss89A7L+Wk//Mx7v+T+9GbT+KuuMHYjiKlQUGxL4dX60fVG5h6A4C03kDUW5T/Xy87zjKopiBtOuh032PBVYXX2AlHz2Xrn5zK2MmGyoOCy//nd7ixeuK0beXw/QwCn1sA2zYuZHCBFex/Zvvxm1Z9klP/86M0x3IIL+V5Jz7I5qDE/b0FeERwwas+T1SU3PpVe01dde5HQSlElLDu8S/Y4orJVgcyMmbLbmPaGfxLjyQHK5697tr3cP6fXkFUtDLbzmgLXQqIKh615RqMwKkB9Qb4PiiBu6NBz4MehU0uPffWaSwI2PCSlK+e/F3KstDd9w/Hn8Gzig9yhrdrU/CEDljmbicQCcuC7dwZNTlryRO7bHfyLvdYFqoS27ZWKLdSkt4CYY+i3D++T6/dlQlCGWQoaG4pcLccQslB4kSRasmCnnECJ2F53wj//dKPcMqH1+JWrYStboEo2GamA+U3v28L+UnePeB9ZWRkZBwKjpoJlp0ZH7dfDH19fQA88sgjbN68mZUrV3a38X2f5z//+dx4441H5BwPFVfVv836ka9htMGkqe26yjoADzs//cG7OOGzV1CfbydDSFLb5ee6dhFRiklDULATSONV1HiDeKCAs3XC+qDshV0WYZVEeK6diGlFxDnBX114FY1zmrvdx83fvpRffWNmSZlrr3svIkzwttdRoUa22vqtSpAUHM59wxWceanVsjbtgLlT+Fs/8jXWj39jr68hIyPj6OFgyz6se/KLdiFLKUya2tuOxLgKkgTTCiflwYSwhZdq3SapqfVdcWqx9Y6SNrENB/O0Bn3CHhcjILcjJRgxOC2DE9rrlDPawtvRQMwiz7/nY5fgjUq8Jz3igjWaBxBCYnzHSkH8uoz3cIDy0m7X4MWl7V1D0CVOifNzjzDsjbG0MIK7uEZzwIZZ/jgUn4Te+wz5TeDvkJjH83BPkbtf+hHASiYAmHbry86+KrtjauF7dxjvqOmnyTjGWPfkF9H1BsQxa5ZdwppT37v3J2UcVO7/kw+iN58EwEiah4Yiv83Q6vdIB8uYgR5EXw+ikEcVC5iRMQZ+sRWnKkiKmmCjiwlnJ3s7NaaVxQLRuScTn76MsBecxXWSVWO8rFDl88O/2e0+BhdsmPH+e/7HhyGUuI8F/Pxnp7G9UcA4hqgiSD3rg/CKX06/Xq6/y06Sr3vib+13U0ZGxoHxFCyudLjpO5cS9lhpK+MqZCvmhh+9GzEv5PSTnkB7YKo1K4+baMREncotGxj45TZEolGxwd3k8bPGCdP2+5mh3/KywsyKK7FR/MPWF/DlrRcy7IzxaLJnTUY5fP+udwpbPI7LLvX5Ni79xsQQt0Wzm25+a8/vOO+4xxCLG5BPCEOHidE80SMlos15dtQLPDrey38/z15DjYI0bw3u49LsiytPRV+sFc8+sOnOjIy9YubITwZwlBZYjDFceumlPPe5z+X0008HYPPmzQAMDQ1N23ZoaKj72EyEYcjExMS0n6OFq6MrWb/9q9Z8rdnsmjZmHEaWNkjPqlFd7NkJFsexXdid350iSy4HQqBrdRgZw3t8hGhhDzvOKO1ixLkzO3e6d/aP5yEm6qjY8L/veS5PX/Lkfr+Mdfd9ivW3fwx3Rx3tO7QWlgkH81YuJ4EkZ6dg1m//Kuu2/UMWLMxxrtHfP7a0kY9SjqXPaN2TX2Tdtn+YnMoUNvkkirtTfiQphJEtRocRxLHtKJYSoyRJTtDqFYQ9ila/Q7NfYiS4tRinoQnGNCq0EyAi1t0izjU/3/P0Sod7P3wJffcYnBaMn2hIBoogBSbw0I4gv9ngj4HnJWhmXkDYkVp97H63zinztjJxvKE+LIiLoJXNcb2aofS49VFZfN1kcnvzty+1kzdSkAT78N7uwVuhg5GSledfNvudHmE6UlIZs+doj2fXbfoy6x5dC2MTmQzuEeT3AlC9IdUlgjgviHp80kqeZGH/ZKFleBC9YRNLrm5QfESS5A1CGU76Px/b6/6nfu+1nr6MxrBLdWlAfoshHPcZLk/wuZHj9/v8H33LO7n/fZfw0F9fSuErPeSfUNQXGnacCZxS448Hb+W89e/jql9Z75UzL9lzDJ5x5DmWYqWjmWPlc7rrU5dw4/f+mqtv+RBX3Wr9mwZ7bXEktw07iZ0kdkLb8zClPGlPnjTvEBUlcTll0Jn5+/n6liA209UttiVlFvjjnFbcQFXn+KPjbtvrOe5cZHn+KQ8QV1zSQFI9MeUVx/2G+5vDxGZ2hfGiDFi75L94/Wk3ceqyTRTyIdLRGGWnVKojeXZsLXe3v+9DlxCVIeo1tBbNXq1j/R2zXF+QcOGKT816v0eSa278QLZukpFxDHFUtjT+5V/+JXfccQc///nPd3lMiOkTAcaYXe6byic/+Uk++tGj39zQxDHC91hz0t+w7v5ddYsz9o3Zmvc9+D8/wCkfXUvl4dAuBEYx9JTRvUWEsRI1IkwR1QYkCSKM7CJirY57+xjzNg8QDZW46AWXc+3179vtca7R3+fv73sh//KeF1MUVsKLNAUUcUEQ+DH//uwZpDd2w5qhP59RWm62gY2zeYw1J7+HcEkPE0s93IYhCQQygfLDzVkvaGYcOuay/NSxTOdzmYtSYYc1OY5Tez1M7eQfelJOESkQrmuTVEdhAheRahJfUD2/yYQR9P/Ep//WcUSakvTkiIuKJCfIbU9w6gmNhTl+8f3Z6TpP5abvXMpZb19LdFKL+1/vc9I3FrL5/AJXXvJ57o2G+I9tZ/OuBeu58K5XsPmXC0jKGl1OGJ4/xh8vvo3YKGKjOC2/gVtGlmIUtAYN3rig/9GUwhN1rvrVh7vH60gwrj7j/UTDJdJ5LqkHehbTjbNl5XmXWU+b9OhpL5pRSmqOsUK9gmvS7x3p0+jyVIln0RrKpcx8/CCyKncxVzX/eY/byOH7+dw9q9gQ9mI22UKxdmFiqUvy4hquk3JS7zZGwjxP/miQ3PYBCpsTihs1i364lSf/cJjK6u186d4L+aPSPSxeuGm3x9KbT+L7tQoTS15FcWNMsKVBY3GRP3zG7fztgl+xIa0ih3f//Km86Hmf4Mc/nTnm/Ol/vWuGez/IK6Y0j5ee1Jz3uisYO0kQDsX03uYSlaE5X4OBRddaz8KMI8dciZEydmWuxrSHu9gTODH3PDlMjwATRTBeRQQ+pq+HuC9Pa8CjulhRW2rw5jW4eux0Xlq4edo+/nLjeby2/xe4YlL+6vu1Cm+qbEIO37DP5ySH7+9OJn5zyc/4X+9x2VAv8/Dp/3fKVrOX2ioKhxcV7yIvI36kT2N8RxEhzS6+gE97/1oaS1LUkgjHTcn5B1ei9mgprEzlmhvn9mTOXItnMzKOZo66CZa3ve1t/Nd//Rc/+clPWLRoUff+4eFhgF2mVbZu3brLVMtU3vve9zI+Pt79eeKJXTUtjwZMK2Tdo2uz4spBYIV6hdWPnSX3fvgSrrv2PSQL+9FLh9HFHMIYZD20Uyt5F91TwPSUoFS0C4bNFia0j29+Vo7WgGdNPb863aj+6X+5ljP+ei0nXW477LacrUC2z01K0oX9GAWNprdPr3F3vj3P/p+f3+1znvuyz3HRCy638h1KYhyFDFP67qihlaD4ZEzl/hoiSVl9mk12dzfquyp38T6db8a+c6x0kh2tTE1Aj8nPSonutcykqS0aG2OLKztff1N7Pc2NaNgSYMZda1AvsZIL1Qh/NCbYYYsrarSxX8WVDmE/zOurcs7THqG+KEft7BanuXleVqjy3WXX883tv0ft3xaw9Ed15v/UUPmtx9Z7B9kUVTgz9zhrSnfwyuIob19yLX+z+geo5XVkbKdX4p7dGIoqRZJTVte7ZQjGDo7Exo2PHcdHvv9PnPD399P8VO2g7PNwsWb+W4/0KeyRuZaMPmXi2WaLdfd9KiuuHCRW5S62/oCz4J2nXsXap/8rujdGnDfO0jc8CH+4g4nRPN4/93HzzafwjN4nyb9gGzuebmj1OfTcvgOzZRtawQuHHuAvep60mv8bF/KzR6fL4Nz5xKLugt/Li+NoD5KcpDW/QHWh4qYtSwEoidn3/+2uuAI2hp6J475wBad8ZC3P/LO1JIHASPB3QN+tLklgiyuqKei9W5Lb0mL1wJsBZpx2Wem9atbnmrF/HJMx0lHGsR7TnlDZTq4Q4danNLIU8uAqtKeIi5KkALqSEI0EXP/YibvsY9ib4N/HzunevjWK+NwDK2aW/NoP/mX5dVx72v+Z8bG/2PAsTvrpa/j0yAkzPg52iuVc3+U1lbtJtES6KfTuWjwJew35oRo9lTquk2LMwWsY0ptP4sf//A3e+JX/5CVfvO6g7fdwcNGFnzzSp7Bb5lo8m7FvHGlz+67JfQZwFE2wGGN429vexn/+539y/fXXs3z58mmPL1++nOHhYa655hqe8YxnABBFETfccAOf/vTuiw6+7+P7u1nwOIq4qvatI30KRx27m1LZ3y+ZkdMK9N9RRW0dsd3YlRJJ0cWpxdZrQAjwHUSz/d9OGxgZIykOsuM0xcAdmrDH4YxL1+JVrSxXYxGkgUG7hodb8+g7dysPeMcx+FtNMJLw5As9xAk17v+TDx7IWwHAOW+8gnCx5JlvWYvQ0OqHuz55CWvmv5V1m75M6guiHhfVyiGrIcZzrB+CKyk+0cLdVkc0QyuVpiRrFr4N+sqseM7HkWGC9hzk7ffb191mVfG12d9uxrHJTEXcI2QMeiSSYR14SEDUFUJKjNZ0UjAj7ISe8FxwFEJriDWFJxssvCGgtsBBhZq4J4ejFMIYnFqEO5KAMV1N/f3l3g9fwj8/cD5n+ht4Y+ESSuXp/la/3r6YvnubCK3Jbw4JtgviYo6K0+QUbzvawPu2ns1jjT7O73mY5yx5mOs3no7TVLh1yYmfWssD75muR22EwK0lyNggE81117zngF4DwLKvfZY7XpxQlAFvfPwEhsoz63vPWfTc0XE/GniqxLPrJ755pE/hqGNPU9d7m1yZiUdf+zd84q4/4P9tOJ3abf2Ut8P4cnjLiqsZSQo8rX8LPxsrIhMfRsYwacrQr0MmXhmg0Ugkd0ZFxtI8n7tnFeNJnkXeCH9cmp6B3/rBr/A/HlzJ/dsGueuC73bv71lw4MXBk/79Y/S9pMGyr30WEUrc4UY3Vhap9QiIKuC0IPXtt4/bMFQeSXDrLvmtKeXfbIZGAwOsrryB8J1n8LT3ryUNYNmnb7MyQG1Wl1+PiSKuan13hrPJyMg4XByJmPYV/TcTa8Vv5p1Oj26rTEQxRuSRUYp2XMI+g1uMSDbnCDcU+ODW03lr/00MqyIAHxi4l6+Nz+fOqMm/jZ3L9VtO5FdrLj+g85o6xQIwqlvMax9vKr/4l2dSbMG//nwFL3rn3V1vwZnolXleOO8BvjPaQ1T3OO7Ky3n4VZMqHGklJefH5NyYVuRyx0sOjjzt1NdxvLuVx6I9e9HMOXS2Ap2RcSxw1BRY3vrWt3LllVfygx/8gFKp1J1UqVQq5HI5hBC84x3v4PLLL+fEE0/kxBNP5PLLLyefz/OqV2XdRRm7crADsFu/OrlgtnrgzdBfIS46jJziM/ibOqoe2kJLLrALhmEIgY8/Cotf+gi13ywm9QUiFeRGUlo9Eu2B7otR211++NBpXHbmD3n5WeO8+nkv4OZbTsZZWMPog9MZ8uuvX8r5f3oF5QdrpIFDdZk1AVi36csA/PLKXTvCV53zEZKy35W52Zk1i96Os3kHOArZW2Fd/dvTpCpEu4N9NvIVGRlPGWYorhwpWYUj1Wl49S0f4kXPvxy3EWLGJ+y1QAiblIr2dIsxNiFJNUQRaqSO70qEAaeWIrQhLbq4I00rOZakrLvv4EgHXHziTejNJxGVBH35BrdFLZ7u2WviL878D55+9p8zdHMdI2FieUBSgH+5/2weWTTArzYuJrmrgtOEXy4+iRNP3kDluDEaE33IjYLSY9bT6uZvT/qmHYpufVmMKUp7zo3NRdJS/aAf45CSJaMZGbPiUFzH33/a/+P9pwEr4YJXfZ6NF6W8s+8hAI5b90aEmzJ6sqSwYSHu/RvwN45zYm4LAI8nVVqmn5G0yJ3VRfx602IAHlo2j/OLD/LSwuS16D9PuBp23zS939z/sg+y9OufpXK3QxpAo3cy5X3or3f1rPy9l36W0RMdbvmnd+92n2uOeye6t8ADF1e4qvYtVgWv5uroSgDEvAHYMQrAquDVWaEl49hiH5QfDiVHKqZdsfweLsqdxHFnnWj9Vx0H02ggi3lk4iFSELEgHglAGXKbFf/+4NN5ceU2hqfYoCz2dvC5Tau4ddMi7n7pRw7KuU0tsuyubeVlr7ueH3zlBQQv3srJzq5bXTG6nF+NLedPh27kxfkWHxi4l/vqQ/zyoeUYLTj+e5/goVfYacJH33ToJRXvCheyNSrvfcOMjIyMw8xRU2D5ylespNELXvCCafd/85vf5HWvex0A7373u2k2m/zFX/wFo6OjPOtZz+Lqq6+mVCod5rPNONbpGDk/+xWfp7BZo31F9ZQ+EFZb36um+NubiHpIz4MJm+slkuMd1Mod9OYaPPy7hehcytCiUfrzdR7KD9AayXH5vatZP/Qkzyg/wV3Lh5kYy+PlY9YsfBvrNvzdjOeyuvz6WXeE3vSdXZPOPSGihGuv+8huH1/35Bd3uW9qIcV0OpRnKV9xLLEqeDVAlqQ/hdlZ83auaFcfLpKcwvFtl5zR2vqudOTCOhhjze5Te62QrRSnkVqPK9kuLmt9UIsrU4l6YPN4mU88+Qd8/7gfd+9f/NJHaP1mmDTnUJ8viEsaM+Fzw70nUbjHo3eDQWiQoeKRicUkAwmyYNCOIBgx5LYnnP/qz3PTd/dfymyvtN/Gb0wMIRLBWCPHsn/6NI++7m8O3TEzMjKecnQabJ7YsJaFqsTDa75uH3gR/PvFJT7w3T9l+FcJV6z/A/7ilf/AEqfEEieC3BbeUN7Cv/b1MpIUWFG4l7pxuDdOOcUt7PZ4F134yd027qw87zKuvuVDszrvx964Dwt9QvC7z16yx03WPfy5abenxWe1OmLQdlTL/r7ZH/cYYc0J72Ldg5/d+4YZRy1TY9pjLZ7tcMayDSTFAvT3wug4NJrInItX9fHHFN64wm2AllBruvy8fjLn+w91n79u9Cx+dsfJh6xIsbts+0MD9/AvQy/gv0//FkU5fcLla+PzuWG7LdDcVDuB492bOcUt8NbhaxkJX8L9G4cQh1Ef6Nqm4vubzwbgzB9+6KBNyBxy9uAJnZGx3xi6+V7G3OCoKbAYs/e/HCEEH/nIR/jIRz5y6E9oFqwuv5603sh0DY9hbvyeTUqf/pdriXqsYWjYr1FNB39HmYG7EvKPTaC/1ktjCBo395O7u5fBvCCsONQeGWT7aUWEMjhjivCJPm5Uffyk/3QoJdBURKmYVlxZs+jt0wobh1JuY/0dHz+g519V+xare99oOwEzubBp6DhBSMFK71XdDsk9yYBkHF0IKTDtDv2V7iu5Ov7Xw3bsufI3lBQUuuCjcjnrSdWZXgH7u/MTxVaKxVHIyMOpCUSiIdGgxAFfh3bHZdtPJeox8EiRW3cs57XqeXxr6U8B+OFJ63naC/+c0mMGFULxUYlRHv4YqMigQltgMY5AhgJvg4uaIlVdH3aoLRac/LG13PfB3S/qra68AZOm+3Vt1OMeW9MaH7/+TeQ3Sqo9uaOquGLS9EifQsYUVve+kXSimsW0xzAd4/qpUi0vK1R52Zu/wotfsIahryzhaWN/Tu+zt1APPX55zrd42n//JU8/5TH+/YT1SOzC3T9XB/jExtPocxv8z76bOcMLidGUhY8//2GunSKtf+GKT02TTJxtcWVf+dl/vvOAnr9u898DsObU97Juw9+x5rh37lKQOZYxO0a7ksOQxbNPKXaaXjnchtlz6e/ozQtv4MvNsxGtCIrtIrIGp6lxa4rUhdITKU5DkxQC/k//M1jqbWfQmeDO1mL+7pnf5e+eeejObyZ5sA4v+aObaBmDRvOLluR7I+dxemEDTw8eY3tfieX+Nl5ZHAXs63KF5qyeDWyplRDC8IpfvoXvXfAPezz+hRd9CplofnzD+/a43Z548y9egxjxcBY0DopE+mEjq69kZBwTHDUFlqORTEc6o8NtX5pcQFv+d58n7k9IKoKo4jCY7yG3NcIfi+m9F1JfEhVdgjFDbgTymwMmjheoJngTkNuuiYqS5jyPqGIQ43a2+LQffIQklSSfGz5SL3O/WD/6dVb3vrErF5Zh6SQn+2ugutJ71fSkZ0/eHkfI++OYREiEnIyyV6hXTLt9qJhLCWiHsCJx6j657UVbcIqTyQmWKT+m0cTEMSJOEHGC7LVTqWL7GDiHLoz59h3PahdJQDYUm5slXv3oC/jususB+LvXfJU/+683UbkPglGN09R4EwmtPtfKPWowwhbWvSoE20DodqG9R5DkQLXgvNdewS3fmnl60KTpfl8bvVHFs2/4S1RVYRwQ248ufw6h1D5NYGYcWtaPfv1In0LGHKFjujy10PLfJ63j0x88ga/f+RzE1wdRg5LTH307zzvvHr659Hokkg1pFRfB/c3T+fWGxSSPFvmvnrNYsGiE5ww9worynaxq76++aSktk/Ljf84DB+5JdbhYd88nWX3G+xFZTDWN9aNfZ83wX+zXc1e6r5yMU7N4dW7Rjmk7DUMr1CsO+SHnYjzb4cX5Fp9ecRrFB8cRo1UwBikl3riHP+6QBAJvIsHfMME82cOmYJAf9Z1JTkX85L+fyV8dmvrxrPjM0G/5bnUpb9t0Hvf+ehnlBwXXrzyBj5/xA1yREojJLqHQxHxnxwWMxXn683USLXFkyqtvfhPffdbX9ngc7ex7TNv5rvnb0WWIEQ9vVBKR3+f9HEmMEHuczszI2F/misF8VkO0ZAWWjIzDzCNvs1Mty778eSoPGWRiFxG9ezd0O7uO/9wV6OEQsd1nyfoYr+owerIkyYGRgmBUo2JBqylIfVu0Ef0ezqM50p6UC65+D9vGiuRuLuBVAQO3fm3P0gdHHKX2vs0xSGd6ZV8RSk0mPUaDcKdv0ElUu7fFTg+bXbfv7nx6QpUluweG0eaQdvzN1WS02S8w0sWd6MF5uDFNGszEsTU5j2JreN8pMsSx/dVf4No7D8zMfm+YER9d0Bhf89gbJnX5O4neRbmU8gmjxE/24TQFRkrCHt8a1ceAABWB07SFFOMACcjQTnNrz1B6XOBPaC541ed38blaXXnDgU31nVRj4IcFRk6HsNfw8Dv2TQLySLNu2547ITMyMo4sUwstP2zkeVHxbp44sY+bK2dT2Jzy2y+/s/s4wEJV4vWP/x5P1isYbaf73G0uG3U/vwDKqsm9976IV5XvoV8W+NOHV/CJJf+XUzafxIRu8p2JE7mttoSvn/NPR+gVzxIp0QOVI30Wc47OlM++IpRCOLawYicbp+cLnVh0arPKLjHs5AMzHGCWzUgZMyKUQvgOutk65Meaq/HsVCaWKAoPS0TQbmpptlA1j97bmui8h0gNRghkYqg8ZHBXpfz9wpuRHzp8XqSdazdML5QXZEjgJHjLq9SXSJQRfOWJF3BieRvL/a3d7cZ1yDOLj3FbfQlbW0X6/CYTUYAjNa+95f/jW+f947TjXfTCT3LtT97LddceWLH8R1tOIy2kRFrw8NsPocTuIeBAX3tGRsbRQVZgycg4Qjz61t0HBg+981JeffObuDW/mI3PKzH/FzFDv7ZyKaqVkgYKUKS+wK0DQlLPO+iKxniGnqDJlg3zKGwxGAl6jv9PXz/6dVb3velIn8acZFXhNQCYKJp1YrG6703W18YIRCcPFcJ6XLSNxE0UWyNGISbNxNuJpdFm8nldlE1utUF6Xruz3t7uJqf7kpjuzhDzqZrcTp1c6f473aVItYtudaeYtZ9ySXM5Gf3dZy/h+O99gvqCAsu+X4Et2625vdaQanQUI6RAeB44DqItt7D+EBdWOjzyl3tP3p6/4EF+kp5HYVNM2OtQHxbkt4Lb0CQ5gVb2+pv6kAaQehAdF+I9HICA+gIQqQIDz/yztfzmf08WwtePf+OAzv+CJY/yO+90RAJCGU74zFoefPccL7RPIZteycg4OpDD9/NH7X+fuwT42q6PdxbxPrdoPc/55jsR2k72RT0gPE1f0KChPWqhz71RjucE8O/HX0NHjuY3UZ5/23A2E63gcL2s/Wb97R/johd+8kifxpxjzYnvhiRBb9uxT7GJyOdtvKoNhKGNZz3PxgTGoEfHwBiEUiBsvCRS3Y1Zp8eVNridVpRpT8V049mnahx6sGjHpUIpUArhODZOSxJ0nHQ3mymeBfb7/Z3L8SxMXuei36sirtPdhiAzPgHjEwjPQxVypPP70JUcUdlBaA5LwXhqQWVP3FI/nt/85nhMJeYlp93JugdP5bHtffR4LXp6G93t5qkiF5e2c3FpO7f1tbittYQbJ05AYtAIXv+r1/PNcyfjt2t/cnCmNhYVxnhAzkf7muV/9/lu0+rRwEUvuJxrr99/abSMjIyjg0yTJyNjjvLdZ30NrQVJwbD9DJf6sK2SyFjj7WgRlQS1RTB+vLELaLHEnbD/pR/Z3k+wQ+DWrM7rVO3/uUxWZJnOqtzFNqGcWsTYC2uG/hzhuchcDuH79icXIAt5RLGA6OtB9FYQrk2IhOva34E/uZDtOt0JmE4SZRNXiQx8hOd2b3e36SSpU392R/uxGaWxZvk6D5jDcBzbdekiPQ8Z+Mh83v4Evp3Y2inZ7CSiU5PIqUWZ2XKN/n73Z67z0Cvez4tfdhOjZw8i8rnu4kjnR8cJRmtELsCUCpie3etHH0zWLJtdIWIszttxFCFIAkHYb2gOCKKiRCuBaRcq0wCaQ5riudsxWqA98LcLVAg7np5SXQ7RQW54fmb5MWqLwa2CDAXyKPkeOFpZVXwtq4qvPdKnkZExJ+ks8PXLAs5p4yQFg0hBpPCip93Dv534A943cAvzvAkeiHaVuv1l/UQef3yQsW2H5zvgYJAVWSZZs+Qdtpkn1ciON8UsWD3wZuIzl8OCeYieCrK3BznYjzl+EVt+fylPvmIZ6TNPQvb2IMolRLGArJSRA332d7HQjVen/ggpkK5jY+R2zCtdZ9dYdrbsHP/u6/PnOkLa98jzkJ6H6ulBLlmEWLYYMTQIvocslex7bfSM8azdzb6JyBxN8SzY69zdz/4OW5/dB40mZscoutkirdVJRkbRW7Yjay2SksvEEsnoKYdeVGfl+bM3gb9p2zKcqmR43jiDXpXTFmxmsFIDYKEzMeNznu4FvK68lZPyW3jlwE28vP8WhvzqQTn3Dp3vj08suAqUBgkizQSJDhWrnvFhVj3jw0f6NDJmi5kjPxlANsGSkTGnuf9PPsgz3rqWJICR06DV7xKMOPjjmvoCQbQwslMKW1x6fqdoDNtO5eixIoGBqKRwWtZwec2it7PuyS9O2//qyhsOuEs649BxVXPfx8XXbfkKaxa9HXIOotNJ5ihwXXAdjCMh9RDhlNVWpWzi25ZjAtqJcGoXtzuPA8Jx7JRBpwNtSpFgmmxY57Gdt9uJXZ6z87YHu5NwyiSJ0VMKHAeza7GdiAoput19gP23UhijEZEtwJgoQkeTn8VMxq9CKSDF7GWI5WhJQHfmL/p/yn897Xx6b/SgbjvkOgse3c9ESkzgYA6DlOCaZZew7tG1s9r2+jtPpjeG+nyHxqBg4MytVIIm9z02n/6fezSWphhHIzzNM457gqFggtGeAo/M62P0t4OUH4awRxL1pji1g/vaXlG6my+e/EL8m/PEJfBH4fR3rUW7cPfll3DhRZ+as5IFR+P0ygHJuWVkHAN0Orx/d/6V/PNpA3zxwRdC7PC5BdeSEzkQsNTbzq315VwW9fOhgXsmnys0bjEibjozXrtWnfMRrvr1Rw7zK9oDJlttmMq6x7+wX89bv/2rnPVXa8lv88lvjpCtlKjXozHkUFsEcY/GaebpCRYC4NRitK8wUqCaCTKMkTsmMLU6xIn9XDqT22B93NIU075PKIXQxk4NGz09TtwfDrX82JT9T5MFPpiH6DRYFQuInoqdJpISXQqIe3KIVONtkRD4yCQhHR8HZo5nu+e8l3M8WuPZDiPPSBhan4NWaJvSjNOdsBLVBkaUCXshGowP6XmsPP8yrr5pdsYuNd1ipJHHe9o4f33C1bysUIWBewF4y5MXcIq758LoSFLgRHeCharEQ9GOAz73mRhWRaSj0YnArQqe9v61GAnzbwq57pq5Gc8C1nvlKJpeueq3Hz3Sp5CRcdSSFVgyMuY4v/2y7aR+2vvXoloQFwTVpYqoZzJ5a80z5LYItAtEEpmACq0sjdM0qMjsUlyBA5egOZgIpWzQnnHArHvyi6w+8wOIRFuTcEfaBWrPwSiBSA0iKkxKgykJSQJSIjrm4mkKbYmFDp3kgDRtFxGY8riy0mJyetLUTU47+9hFJgvrzrabZGvG5FZIpOcBTBYn9qar3Tn21OmZ9nGN7njKHECRZWcJMKVAyfaEkGsN3JMEXAfh+JNFpRmkv3aRVFDKPn83HO2J6HGLNpEsv5zw+AG8W0YA7DSVEPY9cxxwXYznkPqHtsCy5rh32uPOkuIDLoUtmuaAxDiw+dF+9NIRvHyEdjzyQzWKQcRQocpLBm/n3uZ8trTKFLyQiRYUN8SAy8iZAn2QPei3pArXTZk4XuPUJWkA3jjoBE77m7Vwztw1vT/aiisZGRmzo1Nkubi0nT8461v0yjyQ6z7+skKVlxXu4Gc72TnkZcRQ7wRbRYnrrv3gLvudU8UVyOLZg4hatYMtY3m8+3Lkt0LYA1EZ0oJGNQWNIYjKHiIFp+mBAZmA2/DQCoob8ngjTWS1ZYssjsIELqIR2hg4iqDVsjEvgNYIXFtkiWL7ey/TKFOlxtp32F9KdYs1nTh5lzhTSKRrl2R0nOw+Dp0ppu382/PsseJksji0n9KynWN1XpNQClHIoY9bRGt+Dn97iDNSR8QpaV7R6vEoRxoZp8hWCO0CC0yPZyffoz0XFY72mBbgR2u+wDu++RZUK7T5QLmI8drFPA1hr0NSMrilQzdavOI5H7cNcbPkl2GRWi3gdWfcxP8ojDNV6KbstrgpTDjf3/3S4fonTmWJv4O3VDZwvLflQE59j7hBQitwiEsC1bTT2VvOnrvxbGZsn5FxbJEVWDIyjhLu/sSkZM1xf3sFaKClEMUY1XJJPSg/AiNnWr9yq/0vMFKw89zenJxcUbJrgLm6942Qptki2wFQPakHFRtUSyO0QUba/l20F6hdJRCJRkTtjj7tIpLU/jtJ7cK21rbgotuFGtqL/CnWvLHTBdiZdOkUZqYg1K5mo8J1pi1ii04n4RQ/kkl97I4vzGSgLz0PWSmB5yHjGNMKMc3m9GRyasFjyn1TFz2EMJjUnmOn4GKS/SiwTEmOu8dRspvw4jgIbcB1oK1T3e2i3AvW60bsknA/FRLQqXzp/Ct55+/+P5b+LofQ2k5cCWEXPvI5TM5HewrjHgbJjfYixu4mWab6CURn13Hu9Cg9qQnLDsbVRKki8GPGTtW4v6uwdUnEaadu4nXlrdybe4Tfv/3t5B7w6H1I403EOAMOwkBr4OB2nd7UPI6LT76FexcOc+umRTQ2lCg9IYgL7QmuQz8MlJGRkbELXbkwphssT+U5gWZ9M2B1zi5ADjvj9AcNRt38tO3mqq69EaI7ZbPyvMsQWs+9ItBRwq+f+W/2HxfCtU3FT2unMJEE1FOf27ctYFF5nChVbK6XiGKHJJU0qwFyzMEIaPV5lJ5wyG3zUc3YSpEKgXRVOw52EaXCZOybakhTRJqia3WE6SyMm10nnoW0EwpS2pilI6nb9owxRiPiBJPY+LkzHdOJV7tFjHwe4XvIJMWEIbrZnO4T0znWVNlYJbuTOLJUtNPozRYiTRGBT7J9ZP+ahjryv+0YVvg+Zrif1vwctQUOWgkKUcrECUWqiyX+KMgo6TZz7Y6ZmrA6PNVi2lPcAtvPKjKYzCPNOWw/M49XM3hV+/onlkp0JcJ1DqHfj5jM//c0ydKJaVfkEsSmgG/Ez+HU52zgwtyWdgEcPjrvJm5s5YHdF+1GN5W5b8EwVDZwojt6sF8NAKGJuWjZ/dxRXsC2iSJRWCK/xa55zFXMPjRtZWTsKwLbL5oxd8gKLBkZRyEP/9Wl026f88YrUCHIxLBkvSHJmfbkgl1EE6lhzcK3sW7D3x204srq8uttV73qTARMD6r3pTiyZvAtmCkySetHv37A53ess+m5krSYIkIHGQuCbQJvHIIxgzeRYnp8ZGwQqUYmxhZXtC12iDi1hZdkilxYkthtOoFix3C0XXwR7YkXk6a2gOJ59nmdAo1SNvFKU3vbcezfTto2gpxSZDHGFoUAhOfaU2g07d9bO1k0YYRwXbtf2t17YM/Pdaws1xSJDpOmCCG7SS5gE+jO/pMEQWqnRXaWLJvCzlMwnYTbJo5iMtkOfPB98FyM72E8B7l9DD0yCtpYCax8bsYJlqlck35vr5/1npg2DcPcTWJPcXfwq7/8AqcteRsn/0MVuWPcvjeFAslwD1GPR5KXGHVoExVTtAbKa5ZfuluZsKkLgvf93rc5RVyMd0uRuz59yfRtzoXjrn4DcsTjJ7eczmW5EZZ4OxgeGsNZkBI+2+GhB/phsMX8gXE23z50UF/L3Y0F3LJtKcOFKvMrE4x6CVsrBbxHApwaOC04+01rEcZgpODWr87OdyYjIyPjYDGT+bLefBISyepcxL/XSzwWDXDttlN4aOsAUdPlwhWf4rpr3mOlwg5CcWVV7uJuM8NVre92vZRE4Ns4x5h9iktXXvAxvMZkTHv1LbOT6MnYOxflUi7K3TV5x6Jdt9FoftmCzWmF8TTPZ+5cSXVLDtX0yW0JcGsgY5CpQSuB0Aan1f6p2zhXtVJUPe42AInY3m9chfGUjeMSjXElcdElLiqioiTJC7wJjTDWX8itpahIY6Sg1e+gWobSPTtgZKwb7wKI9rQyrotwFCoXYJotRLlkm3OUwuR90nIOWW//bUlss50jSZUADcaVaFfijjYRo+N7bhpqNwd1J4bbeZxphfb/g+ch5g0QLuphx2k+409LWX7Sk6wcvofNYYX1/+88jrtyK1TrmP4KUV8ONRrsVgLsYMezMHdjWoBff+QrnP6lP2fhdXV6748YO8Fj/HiFObXGqcNbmIh85CFcGdWuLcCteO4nuGYPMmFTY9oVz/8t161/Ji8//tZpj+eEz0W5PecrP169luMd65H1N4+/lO/P8H9zf+mcoy9cPjR0HX/nnM/9+SHuBGpBkeJjgme+ZS0ymXvx7FyV4s3IyDg0ZAWWjIynAL/++qWceclanJZAJlB4solINUnJI/UkN/z3u7vbHmhx5Xl/9Fn8bSHO0CBibALdaNjOKc+DYh7jKtbf/jFbgElTm0CkKVdHVwI2kdVha1pQbKJo7k3UHOU8/I5Lee6P383WsRLRSID2HFRoH0sCSa6atNse2tMRnVzIGNtt40hbsOhMtAgJynQ79ID2wkP7icaBJLXJqFLge93CDEkKgY/J+7YYU2va254DibZ+MFFsCy8weVwArTFxW05ACmDS08TU6ojARxQLtkiTalu06UiZdYopQthijKMmfWmiGNMuDiHEZOehaBeBpkzRdOh09E3eIezidJxMFl463YXtRRmbMCtkGIPvIXzfbhMnNpFWCqoHxwxypmLKXE0+1wz9Oeu2fKV7+7hFm3jgyQWce8ZDbDjpBCo3T2CqTdtB6vUR9SiqiyS/+8yhS5pWnf1h+zeQpqx75IoZt1l5/mWs/7/T77v9Od8g9yePzLj9u591FX/3nT+kuAG+U38BL7jwdv548W0s8ka4vzXMvOMmiI1i7c0rKG0+uMWjkajAL1d+ivff8ccMuDXG0xw/9k7midYguSccZGy7aYWGzJ1wOquKr53RU6Wz8Jr5rWRkHDqmTgkGIuY7D5/H+CM9eKMST8B119jvgQNduLpwxafwttSQPWVMvdGV4hSeh8gFUC6CNqy771OsHngzxAm60eDq+F8Bez3QjcYu37Oy1mL9nZ84oHPLmGTq38NsSI2mZXxUO7A9ed5WNuQqjI3nabg+7rjEqYFxBUke/B2CSAuEBhm3m3aMi9P0pxRLDAirDFAfUsRFSPKgWoCAsBeS4ZBCpcXIpiK5jQqnAUJLuw2gIoPT0KSVHNKRdp+OtEWbdvNSUvQwrkRGGtWIaczPk+QkuW0RGIhLDnqeT1yU9nwjg0zttLpbS+xEjgGMQZaLmFrdTsxMmRDvGtYXCzZ+VhIcx8qmRSnsGLHpQblM2lcg6nGIS5AfrvH8eQ9y1aanMb8wQWthjC4GSCEQUYI7EUIY2uajA1Ang6MrnoXpEyJT/14vfc1/8LXH/wc9d09Q2iCpLXHACAaDGqsG7+IvTv7JITmfCy/6FEj7N33Nz3dfhN45pv37hTcj3793/89R3ehOt3ToFFcufuz5/Or+ZfDs/TnzmXnRxW/gx//8DVuQ37CA84oPU3GaNBKXuxsuekNgmwVTyOLZXdmd52KnWSHjKCfzfJtTZAWWjIynCHesvYSz37SWVq8kCfKUHmuiGgnoA/9vvurcj/LoH5bpPW8rm1/cx8JrchSbMVIIZGdB2fe6JpGrzvkIV+1mguWq5j+z0n3ltEJLp7hy3JWXc9JbH84mWA4SO6oFSoUWVUA8UcQJDVFBoFwo39+0SZ0jITVdKTCRtgssQrT9WrBdbUKAkdNlrYSx+lpOu+ASt6UV2gaYKInJeXafTnvqI9GYShHjSLTflgrTOVS1iaiHk/vWaVemAWgXP+x+Rad4ow3kcuC7EP7/7J13mGRHefV/VXVTx8kzm5O0yjkgBCggadldA8bYHwYHogFjbIwS2SADSghJC8YGDBiMMbYx2BiDWQWUAIkglCMrbU6zk2c631D1/VHdPTObtLvaKPV5nn5mpvv27eo7t/ueqvO+50ST1g1gxxDW7RPqk0d7/5TgdKPta2hthRMpJjtqEo1oiCyNCakUk++/2Z1jposrU6oAAYyj7HE0BuN7CN/D1EIrvAS+7QxqeHTvBLsKCd1ZJd8RBSGaXXUNLJ6zhbdHJ3HpH87CH5uB/+uCrSStJYQZSeGYXefQ7A/c+sAnWfLyq7n93l2HO972y0+g+/912n2+cHfYTs5YxdvvfzsDlRxxGrQSpLbBXfecwq+PGWNx1xDHZfu5Z+RYVn/tGHqT+gLOc2B7YWqX2y26EmhnOVfS/e+dXJh7ipEky91iMU4uRHsORkESCFS1Rcz3BrcWv9kUWqbe10ILLew/NBYpX52u8rM5T/NfT59LasBmCz4fnPEXKzj1HY/yT3PvRX/4dxn47my6H/FRQwUYGmFZ2zts50o6ZXlQymXpmVdx69BXdtjXrcVvskS9kaXBn6DDsHmtbogrw1vm8Id//N7D0sLshYYvj8/mRH8zi90iG2OfCMVgnGdr1E5fqkA5dokTSRGoZhxEVYFjMK4myilkTYCwXf860BjHoIqK/LPK5lvWrZfLswzMqIABHUt6eyfwnJi+dJG3zfg5F6XG2ZJE/NXqP2TVY3MRkcAp2w5yZwiEhijvIwMHoyS1DocoI1GhQdUMxVkKGdv8TAgo99p8zWpngIwMiWdFoTAPKgSMwKmAPyZJKYFbjJGhJu5Io9yZyOEJzEQRU6vVBUTVzFQRuSwmnbIij2P5vYg1IrCdvLg29y4OBHEKzpyxhYX+IN+vnML6/i78rS5GVaEaWi6bDeqfG8nOrKR2GXrPC4DTsnOR5R35bfz9G0eRl4VkyiGd+W4KxQxPtffR500csLHceYft8Lvjrt1nf+yM026P7QXOH5bTQJrXpss7bLto5TvJrHLJ1XZ4aKfYkwX+i5ZcD1iRBa7nJ9/KssgdIicr3MNigkyIdgPiQNQ/Ny3sKRqdoEAzcmfq/+OS86/hJz/92CEYWQstHLloCSwttPACwgNfvYyz334zlR6BW/ZJbbMM55VLP8Ndt35or/e3fPb7wHUwMzvJrzX85Zvu4tOFVyOjANk/ZBeSGwvXtRCRaAg8jC9YPu9S4jndlOamcKqan/7gA80FVeG4yHyW8LSTOOFjKyjPS1hwdD+5fKolruxHPPX6q1h6z6VUQ5coBcWZVhzwJ4SdTBmDUZI476CqCc541dpmNQQVITAC2/nREBQAI6XNyahXe5p6Jwey7r8sJwUa47skgYtINGqsDHFC3Jur70egXWv7pD2J4ziIOLZWZVpb0QQbEgo07ciYYtuBFHY8vjtFFDJWKAnkpBAiZf35uhkcL3y/2TXT7HrRGpF4mDCy4k6STMtLaVjhNbqzUBKhpiywS2k7bDzXdumkXOKcjyMlohxCex4xMgaeZ6sFq+xWYIHJSekLYQIKViTA91m54XM75Jyc4Y1wzpz1rOo7AV+I5vdLnIK+OQfG07mBpWd/ckqk5/PHN87+Bm+//+2sOW6CMT+HDAWZTQI2dfC018Fj+cW0P2PofLJIknb2aBFuT8QVgM/d829cesEfA7Cp1MZvazNxRYJo2FE0Gq0cwBeosDUpnYpdCSaN+1uCSgstHHg0FvZOTG/mP7siWOvhVPZ9f+e8+WbCmYJybFWaO0/8XxY9/ee0P+OiKlVELmuv3XEM5YpdcA588D3bwTKrFx143PbrT7C85z2sHPyytVhKpQgvOpWz3nkzQ+dHHL9gC/93zEo6ZLolruwnPFcXy1x3mAkd0CZrzPBdaqbE1YVj2FDppNsvEqiYwI1JdxYoZTzKZR/Hi1FS4/YmVKoe4bY0xtdke0okiaTq+YydIsE1IA3t3UU+f/wP0Eg+8NAfUKs6XHr0Hbw02IAE5jk5wOcox2flsT/mirYzuG39cVQrHuWtAUYIorSDkeBUQEWGSreg1o7lrhq0Z/CHbX5mmIfybNuRUusUqFq9yyVtQBmSmgBtxQ/t2A7vMK/AGOJAIOMAfzxLMGhD6SlVLJ91lOW8novO+BhPIcIEGcbEHRnoyiIrIcZV1Lo8JuZLglNHeXPffcxQE6S9iPKGgNw6CNt9UsMSjBVpdMp2Zpt450H2LzQ+C5Y7IgS3/foTLHnZ1dx+399Me/yLJ32bT5v/B4USqtaFOyHYtLGLXzo7P0b7AxctuZ79SWgbn79vFzpZXevjE91P7bDNE1GZ7JMubgke+uKedZvvSffET75lizCtwGJxopum4lTJe1WSRCJ8a6SQtPjsTrG7bs/dPdYSV1poYe/RElhaaOE5cKS1T1Y7Balh08zVEJ6kMNt77ifuBNFRMxCxIWrz8Mc0X3v/79Obkmw9V3HUxm7ktvqCpxBQqYKShPM6SVIOrqcI2+zrFuY4vOqln0JJyfIZ70X2dTN84VxqbYLOpxPKxyREWhEnh3FK3RGKWy/4HAALRm4g7JD4gwq3BOPHWpEjzEniFKQHNLnEIKt1wi/qdlxhDA0P53owqPEcK0TUM1hEQ6SY0uFhlN0uSbtoX4FWGJlBliO0IxHGoB1JEkiMBCNtNZ/dD6hKYieERgNqilVZfdFdysm/pRV9AOtTrbDjmuo93RBJGkJGIwNmu7DSxnsQcQxRjIjr4aSJtvfXxRAB4EzJe2m8BtiA9sDHpDyMIzGOIM56uNUQwgRSgbVTK9jqr92JKw28kCajpIJd5pvMmL2F2cP/j6f/aIhnTjmeo/9jgtKcNNVuOKNr6wEd1q33X7Vf9/feB/+UsbANIQzarVsXCEHbmthWovqSn//3lQAsednVe7TP5TP/kpVb/2G32+j+Y1jsZlm55sbmfR9+9P+xutjDcCkDRqAdm8FipjSkHYxr3dKzP7nfj/PBxrL820GIHWwtl3W+C4BbRr7Kss53ccvIVw/F8FpoYbe45IJr+ck9R9aif2IkouDglm2V/75i2ys0qr3Gs2NdvH3Dedy/ZS43L/tXbvjFm/E3BJjAJe7M4K4dsPkXvkfx5D7ilCDdn2X0mIAksHaSwmiWtb0Dc/pxbLwoS2WGpv0pQed9Hq8951HALjievL8OQgvNvJ6dCS2vTtd9uLDimS9cTklvpKw9Tk5vYkEwxC/HFrF6rNs+HoRk/JB5bWP0BRNsLrfzWDgLXXKpVl2EMCg/JttZxVMJR3cM8ak5P2raIC04+yt8beh8ZjhjLHByOx3vTTMe5K+0wy/7FzBScahqh1oiUDVwipCkBGGHQXeG5NoqFAsBpuhipCRJCaKcwZ1peWJY9ohjAQaEa3CCiLjmwISLjIQtNlKibgUsSHxrYQYObsEhGEkTjGi88RgZJRhHEra5JJ5ARgavEGOET63DodYmccsp3JKm2iEpz094ee9WStrHdTQL8iMM+L1o1xZHmUyAKFUR1Rihbd7MDjksU/5+QfFZQI6VWPnMDfaPKZyqIUq81Hc4+Xtrue+T59D/Cug+ZpAuLfHU8/RR2w32N5cb3DKbJ8MMvygcTagdBpIivSo7bZuT527i8c/abL89xXPxzqmf9cntPtzMhdlcaiOJFa6xJgsAGLj4wmsPirh9pK0RbY8lr7Ddlrf/fLqQcvGF1wJglLTdUEf4+3yhoxVyf3ihJbC00MJz4Ei7oER5kJEgzDnEQYbshjJxKuDYT68gThlWX3n5tO0XrbiZ7EbBozfvWG0yeLpd2GxbbUj3R7iFiGJ7Cu0Zhk9vo/0ZH3ftANHCXsJ2FyMFtTaJV9CIxEXVNE41Id1vUAMTkwvQpQpdvxigfHQnwye6ZNqLjJVTLQvJA4h1b/8gi1bcjJGQeND/MhBtIabkIiuSOCVBpPBHXJxKYruRAAWIOGzmshgpMb6CxHaHiPpEzXiOFTS0Bmn/1q4VzJxCiKxEhN0ZRKLtTRskUEs51kKsPjkUxi76jh3tkx7wyT05bIWURENQD/psdNQIMZl5Ak1xR3tO/fF4MtclwVZzKTXFwqsu3CTYiZ/RoKXdTsh6p4yHiCJb0VrvpBFxbKtcG6/pONPHUO9gMZ5jc5BcSZKTyDCFU42sTVngWLGnWtsh68Xupz7GqeJPo/tmJ+Gh2+Nw9qqeKq7sTGi5tOs+Xt/2AG/s/wuMI0l8QWYL3Hv7KRx7ywpUBZ689vAJsARYdvLHdvDcD7XDROgTJ4rUVok/Bl7BLhCKxHDP/13Z3Hb7isdd4bnElfs3LOBMz5sWHL3w29ex9k++x4JvXU8mXyWpOARla7XjlMGpGmQM5b59E+KfC1MtBpK0/dy86iWfOiyDn5e1veM588Bu2YX9ZUNYafzeQguHI440cQVgSWY17rLv8re9r2Xmf/os+OKNiHzE2j+dbn8zdTFu6ndgA1991T+hhOaftp3Pk8N9nNzXz0WpIT54KoS5mXQ8XUW7Ejm7i+GT5zOxELrP3MZoMU3/5gz+MOTXGpKMh9vbDRNFZLHKnNsNw6fmGD3JEMyf4OL0b1kdw1iS3mEMLTx/7Gkmyxuy4yxN30vBxKSFIiNrrB1/BYEbMSNbYHZ6jFOymwDwZcxwb5otA+0EQcSc9jG2TuQ5qaefc9tWc3ZqLXOUz/+UMnyr/2X811G3c3p2Pe/42dtZs+TrVEyNlNjRv64U+xRKAUhDkk8wypCUFLUeQ8/8Eebkx+kLJhiPUqz1uxj2MsQZRbVT4WRCzp23jpQK+e14LyPldLMQLZ+qUg5dKimPOFKEBZc4o5AhqIqwVmcuGGnQjqDSBxhJMOTjFWz3apy2NFnGILRCaGuRFuZtR4w/pgjbIDezwOqxbv6HM/jLGXfw2u5HeGjBHErVHMGYJMn6SCEwrkIWQnQjy0ipJpcVUtj7t+e0e4DDmc8Ck+IKcPu9O+dyf9D+Gx4YOZ3U1hRDuhunJKhUu1h83wpkBL/9+OHBaWsm4nXnfprbfvHxafdviSUXLFjFD8ffSKwV/108lgvTqzjOzeywjwe+uufvZU/Ele2/y/s3z2LG7C28+zdvpRK6JBUHP7QCi1syqNBQ6XueXpK7wfZiw+EqPuzJuLYXVhq44+6PcvFF1+3UNqyFFlrYPVoCSwstvMDw9FWTxObst99MYYGd4CWBQfuGBf94I+v+/EqO++9P0Z6pIJIeKr2w+Lu2gvqZN1hyeOKHVyBd6xdc7RCkhiVR3mPsaImMDeU+QTDi4Qxl2HJeCqdkF7GdKkRpCQZkbJChJrV+DArFZlaHSRIYHCblKMwp3bzhqIf41cgC1g13HtyD9SLDmssuZ8E/3kg4N2HZSY9zVm4dtw6dxAPr51JOeSAVWeWQ6Tc4JY2RoF2FDOqh8kphXIkq1hClqrWPc2S9UyS2nS3SCis6UGhX2uyJLTXElkH8srWsU45qdsMkfhthXtUng4IwK3Bq4JQNbiFBB/VF3zrJa2bEJPXuFSWa9l8i1hjH2osZR4KrELV6J0tDxHCdSXsxrSdFmrhuK6aM7TJpBNQ3Ol3clD1/o8g+J7Yh9XjuZFeM6zbtF5K2FEngEKcUUVbiVAxJ4KA8147ZGESYYMZtwL30A4Tr2DDSKLafkamTz6m5MS9w/KC4mA21LuSEgyzUyK2VJIFDpl9Ra1PU2vdvGPxULF/8wWmT5efC1yf6ONbbyo9u/w4wXWD52ln/zCk//ASr/uDjnH7nCtKDGqeU4JTjA7LI+cFH3sCCYCHfHe3mhhn2vuWLrmRtvZNl3Zs/zIIv3wgatAeP3XgZZ7xnBV7Bdjzqg9BA2Hjfh6O4AjynuAKwrPvd3DL0FWsZVP9eaQgqre6VFlrYv5AzVjEXeDPwD2s+wuYLA4yncbyEJXdfxu0Xrpi22F4zEb5wd1ic0/3HcHHKbqP67mFzVwdznWE2JoaeUweInu4lyjuU+hzC15T5+mmf50zPY1iX+Mro6Wyc38Etj55M1+MSGWmqc9pwJwLURBU1NEFuo0+Y9+g6qchi11Z298cv/Ov1ocKeiixjOuZnlfksy2xksbeN82c8iysSZnpjHOtv5be1mfzr+nPYtqobk00glBSrDquKPl4q4i9n3MFLfQewxQHfHTybLf94FIsunodQmrb7fU7O/zEZPyTnV7n9+B9Ne/039vyKsTDFU9v6UFJzyoytvKzjWSKjaFdl0jIkJys8VF5ArBWzc+Pk3QopFbG+2MlpuY0AzE8Nc9/wUWwp5km0RElNd6ZEvmOEYuSxOdVGeTyFDiVRl8EZdZChwBsTOFUo9wnitoSqkFRm2JwZNMhIosqCYMgKLlHOCi5GQnmmIW5LOGfGJlaN9VBNXDbHHQzGOTKpGsMdaSqdCq/g4bi26EoN1nn+cUfbQqfxAnp8wtru7ozTvkhw9YbX4G0YYd4WRTQjb+cHGUWpV9U7jfY/9mXh3xcu//K9LwHTBZZT523kkguu5fx/qHDjqd/h5P+9in+Ur+Dcmev43c6H+J2Fj+/Hke+8Sw3g4ouu4447twDwlbO+yfHft5mJT15jc2i9grXUa3azHGAczsLDnoytUQB1yfnXNIsUGzz9jjs/wkVLrj9sBaQWWjhc0RJYWmjhBYz7v3E5x398BcEIZNcLwrygPFtzxo//hqULVzM3GOEfVr0K7Rs8pVm28Cke3DCP9zz5p9S6uklvEcgIivMM2nUIhg2VuTGqoPBHodKtSA2kUVXwxwyJb72Ew5zAKyhkbEg8h2p3D+2POYiBEWBKpsbQCL0P5vl224WE3TFOLuTlt3+IREt+ufS6Q3fgXsBY9+dX0r95Fr+q9fLadJkzgvV8IziPpyd6eSY1A1X2CEYlqmpFAONKEte3v0uBU4oQw+OYahWRTtvA+UrVigNdebTvEKcdwrwi8QWpoRhRqmKMhtExoFHVJhCd7VZUyQm0ErgVgz9hxY/URIJTjNAp11oQuBJZS1CFELBij6iHaBohbFd+vTuGxCAagZ2N4PC6/ZhxpH08TurdLGJSfJl6RYzq3S86qYssCuM7iDBsZrXguZiUZ4UST2F8t2lFlviK0mx73MK8rdTzRzQ6HyAnqvb1S2VMrYbqaEMIiWnsu9FN8yLFnx97DxfecSXemECMTXD7E1a4uPii63DKmrFjPV7387/iB6/4+/3/4vU2uuXHfIiVqz7znJs/VprDyf4mvl2YyVtn7Pj4o6/9FGAFQxkb7vnxBwHblr+ryrF9wbt/81bOzA3wUHEeXz7zW837p9qEAax7z5XM//oNhO1w8pUr8BIrWsqaBv/AzEgPlIfzq176Ket7PqXScn8f112hIbLApDVYA7eMfNWKL9DcpoUWWnj++OXS63hn19v4ya9PIq64aCP48dqTWJaa3MYX7rTn7Gyh7rwARvVmfht5fH34FfQPtuEeJQjzDoVFmtUv+XfAFnd0yQwf6apXUM/+FS+f/ftsuK+PttUG2eWQGvCQUYIw0Pl0RH9+NueE/48TurZxVHqQwtqT+NHoaXzxjN0HSbew99gTkeVHxeP5z81nwryfcWawkfd2/ZyaEUgBN227mJUPn0zb4y7znwqZmO8RZcArKEqzXOITk7q4Mon7Hl/MnIph1v85GAdi36BWtlFNQXjJyA6vvywVsuzo2/jZHOhRpWkV//9R7KCQBORkhdPT6wCoaYcT05t5ojybh6pzeHBiHhmnRtYJCbVCYsgEVfpSReakR5nnj7Cm0kOsJeQL5L0aQ5UMm5NuEmPtd2UEXsHa/ejAILtrzOycYHgiQziQQrgSryAozTXQWyUe9SEX4WdD5rRN8M7eeyj32M/DklTMl8fzxIlERrZTxkjQnsSdCCGKkcctQqc91GgZPTaOCcM9ssJ9IaJxjsZGQqUCUvKTn1pueckF16IqiuIcl1Pfv4JHPn9gulj2ZoG8Ymr8+8RJXDZ7x8emFgYVCwG6qvjyayzffP9Df8TnT//3/TLeFU+9igsyVRY5hvZZG6c9dsed07sWn3r9Vcz/pxs44aMrSNVrr2RNow8Qn4W9F1X25PhftOT6HfZ9sISNqV3ml1xw7bTHGq+/s/G1cBjhcHGAOVzGcYjRElhaaOEFDhlZyyWvaPAK4FQkhYkufvxIF1F7gjTQtXiYa4/7Pp5IOM0LuO+0/+QDM87iB3e9BJQhu3Cc8VwO9yEHWVRkNglSQ5pKt2T0uBT+mKE8QxC2QZzRyEhQq1jLp6gtwe8rY2QHnbfXJx9qkvgEG8ZY+D8pxo7LEr6hyieO/iE3rFvGUTffzOrLL9/Fu2rh+aBXZXlt2vo6n+YFfH7W/TzRU+Zq/zU80H8s6SFVtwkzkwH2GlQ5Rg6O2e6Lrk4rOMQaokkbgMRXRDlFmJf2vBsoY4Ynw8lFZzu6I4t2FeXZKcYXSIyynVKN6hmMIAkkTq5uWSDsBE6FiiBMkKUaxnEwdQsyNJBMBt4DNjdGieb4jarbh9U7YkSSgLZ2XyJMJm3DjLGCiqgLTLn0pDVYLbKPxfGOB1UpdOBilLDZMr5EJIbR4yRx2pDZKEkNSdREDZ0PUGNla0F2/CLEpgFMeUpyr5CThqr7ILQc7nYKDeyuW2Tjw7OYd28I4WQIqBGCTe+K+O15/3TAxrTy2c+y/OgPTJ6Lu8ETUZm7Nx9NTTvMTw3zqcd/l0+c9L873fb+b0z/LtufIsDZKz9Ke6qTr5y1++D1C++4knWbuwEJ2YSwTeGPGhBgnCli5D5iTyeDtgLxI8+53fbYPjvitl9O74K5aMn13DnluO4sbHZ/YKposnzGexFKsXzGe1nZ/8Vp2yzv+4v9/tottPBix2A1C+kELxtyQts2zvHHgL0vAb+z0seq6kx+uOok3PUB8cIKzmllXta1bbfPu/eU/6Zyco3zPnUpIhbEgYdTMzgVgxHQvkrjPdjBo3N6mPnn97IsFZKYR1n079ey5o+OPHu2Ix1/lF/F/w2czOpaH8f5/XTKkJqBfxw+j7t+fAbzHogRJibKKjIDCW6xzu+Ez9jx0xdplzz1Gub9n2jysk3nSV5ylhXfTsxt4W+6n97lOM4LAKbbKZ2X2sA1/Zew1u3h9PR6zsqsAaCkfYajDHm/iiMTSrGPKzRSGFJexFH5Ibq8MnP9YX4n+yRB3vBwew+RUTxQWsjPakchMxE6VsTtCWVPIhJI0hrjGUxVMVJME0cK1VUjwQej0K7BcTRaGJwg5rVHPcHvt99fF5kmee9rs0/z1KxZ/HDoFGTsEeYU6WJCnHYpnTuf7JoJ1Nqt6IkiJo52boO7hzhS+CzAxa+8jjvu2jm3eWr9TI5XW6bdJ2sxhWNSlJYXiJ/deY7P88Gdt3+4uTC+J3g4rLI66mFdtYu3/vrP+OZLds211/7J9Pe5v8SVV955BbMy87ns+Nuec9tzb/swW/s7bFFbCpsLup/47P7MKtsVL57KmbffZmd8+kAILlMLoC6+8FoQcNHF1+8QfL+351ILLbyY0RJYWmjhBY4nrp+siDn+Eyuo9mpoDxHKkH4iRa3TcP/ya9H93+OXtZg/23gBp2Q387LcM2w6p4ONhXY8J2YiyiNDCIYE5RlQ7ZLIGFRZIGPr5y9iMI7BdNcwjqY9W0YjyHghm87IUm0/mu6L0MehAAEAAElEQVRHK3irt6F720EI5EiR0eN7mFgkqK1v42/k7zHyZDfBkOCkD6zg8c8eHr60L3TkRMLRmQF+M28exZEURnq4RY1T0cjIklZ3tAJSYbqzJBkfpECECbIeei8LVbwwxh1RmKNyFGcphNbNrgDR3cnoS/oozJVEeSucOBVwShBnoBKAHhWoKghj0I61motT9VDuikFGAX4tsTZbYMUerSczWRw5xbYMkKYupDT+BuMojJYIYxAVAyRMCwCSsimwiEq9Y8b3oBaB70JsLbxEktj9JglECSJMENSjXqqSkeMyvPUNt/OVB89DbwuQtQRZi6BQhkqV6olzULUE6bqg6t0r21f6ie2qsJ5DcDmSJqO7s+JafcXlcMX0+9b8gcOa8yYtnHT/MTv12d8vSHZ9nOWMVQxvmcO3Rs4l7UUU4oCHx+fxnXO/fGDG8hyoxQ7bCs89Oe9KldmciokqDtK178+xbh5Wz0sM5/3eZ/nZ/3zgAI52xwrEXWH7irmpk9098pauiysHMtS7Iaosn/0+li+8nJVrb558bNuXDshrttDCixk/eMXfwyvg75++iPe2b2J7cWVXQegVU+PBmotGcv2G5VRjh8RI8tkqR124mdf0PMKbc0N7NIaU8PnNVV/izesv4Kl/PoHBV0ZQUcxdafAKhoEzHaKc4T8eeAlrj+vmV08vQg23ptyHAh0yzTULvm8tuWSIBtLS8P2nT2HOr+OmNWbDVkg7EiMh0x9TezDFkr7XcOvx/4tEsnG4g9nlBCNg/asdfv0HN9Mld8yg2FPMVjlOyW4iI2v0OBNUjYtCs7bWy3AtS96t8ftdD/BUdTaRUYxEacJEMVDJMVTNQh50BmY7OWamyxR1jS1RB1GiEMrgOBEyYzlsEimIJEQSNeyi+z10R8LCxVtZOzwTf0LjlAVx2cWdUMRJiqdm9PHxkd+jN1Xk2wvubo47EJLISKgptAJ/NMYdqTD4knZUZJCVqJlN2BRXpnLZRp5g4/dd4Ejis8AuxRU5YxXr3oz1OZyCzRfm+Ou3/w/vatvKyeqPOfbTKw5JFkujy+ZYV3BrsY97thzNw6/+9EEfB0Cx5vNM2LNH22a9GtJN0NTzPqv2fhEbhDZcuPwG7l75wQM11L3G9px2anfInggne7v93uKOuz/a3P/OXqPVvXKYwtSLVFs4bHCQHApbaKGFwwFGguyu8bLFa5jXO0KYq4d/A0f95O287dvv4/7vnsKXv7ecj3/rT3nk7mPo39bO+rW9+IOKahcEw5DaBucueRx12jhhB0R5G5hoFMhQkpRcpNKc0LWNo9uH6UmVeMsl93DfRz5H9PFR1rx7Aav/sJ31r2kDKXBqhqhNk9qq0N/voechCIZAJnDa+3YMwW7h+WHqovQdFcXXJ/q4tXQMxcRn0YxBSseFjB4nmJinqPQ4VLsdyn0utb4sJpdCpz2MI9COwHgKHTi2M0RJxGgB2T+EU9G2M6US1q22NHFfG6PHSSozDGFHQhIYVMX6PccpqHUYwrz9XSuBVhDmBcW5UOmDKCuodqopGSaxFTjqHSpmStdBs5MFrHBRf0yWQ2Qtrm8j0IGDCVybzeKoSXGl8VMb0AZRrmByKbvw7roI34dqzYougIjrgosxyKp9jcw2zddWXoJJJJXe+uul6pkt+Sx+fwERacLFMxDteXt/HCOkQChlf065vZCwNPOWvX7OPy5/7nyM/YGVz352511KU/Cj0jxuOPW7nN69idnBGBORz4J/OTTVXRNbc4wPWs//i195HRddvOM4Xvfzv8IRmlQQovyEXK5C4kGtTRBlbLcZ2HN0X7C/KtsaEzvY0Sphf2Lq6+wPrNz8hR3E0GUnf4xlJx94u7IWWngx4tRgw24ffyIqs/TpV7Poh+9i8bffw2n/fClv/d+/4F0PvJmnH5nHmnV9bFjTy3ghxXcW3bHH4spUfGv+Pfzmqi+x5lX/xJrXfYVtZzu4hRinBEkuIfO0y/p/OIY5P5K0rxK89E9vfu6dtrBX2JMii9O8gLN9l6OcLDNUltnKFiSI2CAjg9A2M9IIiDKSJJAYJeh6IqL2hVm8/pnljOoy3q+yqGqCqibMOm7geYkrDbw89Sw9zgSDcZ67J47nF6XFlLXHjGCCNq9CQafIqiqjcYYwcch7NfJeFW0Ev53o5QeFU3kgDKmZCImg0ynRnSqBEcQ1hzhU6ESgY4EJJcLVJCmN9gykY4aKWcjFFGZLsusFwToPtwD+kGRzoY0td81l7ReO5eRf/XFzzGPa8MxED7IscUsGpxRTnZkhPZgQjGpGzurGlCvNYqEdeKyQLzxOe/Yn9/o5X/+Lv+NdbVsByKeq1OZEz/GMvcfeLIqnhM8r0qvI+jWO+a9DI7AMP9PFwFqbx7o7nvaSWz5KLXFwvATlx2jH2pNHaYlMTNMEYF+wvU3WvmL78R8oTru/+ezuOm5aXSwttPDcaJXTtNDCiwhP/+12lTEXT/669k8/wsveeBOqpnHKGneiRhI4TCwMqHZYIiyAYFST25hw96PH8eozHmFl8UTMpqCpnquKAK2oeT4TUcDi7ABnZtbxeGUOKeFz94k/IDoh5j+LvXQ5Rf5m65+hQmObCJS9aQdkYvDGodIjOP4TK3jqU61Olv0JOWMVT26cza/Lp/NkcSbFyEcKgzaCdHuFckUhQ4UwAqEFiQ8ydvAH6tZZSqI9ifahNDOF0NC2CqSrENUIbzSk5xHbGSKyGQgjjLSCnnEMSNCeIewQ9r66K1acAmkL7ogzgjgFcU4T9EvcokHW5x+2c8RAI5hbTtpqNVrDjZQIITCi3kWjBSJKbDaLEmhPgVAYmYDS9nFhJrtZNFPC5Q1ivGiD7F0HMmkYn4By3eorjpGATvsYVyHLIe2PjVLt7GLCcXGL9XGHMbo9R2WuXRBPPEH+kQFMoWiPa6N7ZfsKPyERUmN2Y2N9JFX7CaVY1vFObhn92h4/5/0PvYmTZ2zlnxf+mJTwD+DosNk8u8FbF98HQCVxOTbdzxsW3E9hns97H3ycZyZ6uP3CgyMMH/3Zm/EiB+0ajv7szcynbpMwBWeu/BiJ7kAK08yEOf77nyTujZhQDsGQQMYSGRru/d6V+zyW/VHdtquKub3Z9/aVd3vSvbI/KgK3z7u55bFrWgJLCy0cIJy34NndPn7y3E30f34Fs9drvIkIpxiRpB22nZVFemDGpLUg3erw0eNP4dreR5/3mJ7+sy+xqPdd5J4GQkkSQOKBSARu2RAHcMrlK3j05haf3Z/YVdfS7qAcywudsgYBiScxQqIdwdZzLfeac49BVTXP3raI88wVzL63hIg1xlMkev/UqE5on7Ekw7PVPrZW2+gLCmRVlS6vSDnx2BR2UkgCyolL2gmRQpNSEYGKGKpmeWB8Pq5ICLJPApAYwWgtRRJJTCTRWqClxNQUsmrvQ4B2DRhBqeRDVRF2QOeTmuxWQxxY/jOU7iSaFyMSh2BlGxfnXsvb5v6CwXghp3RsYWN5Lv6EpjzLZ/gkSdgd4/c7zP9RAVOt7didUuexe4Ijic82sPTsT3Lr/Vft8fbve+qPOKNnI5f13oGvYtId5QM4ut1DzljFxs0zOcFTfOXYb7Mu7uDNv1rPM2M9By0T9agbbyY1LIkysOjzN7NgF9sd81+fJokzYASr32T53YKvfpZi4hAMC7yC/W7/6f/uezf2/uh63hmn3FtOuy+dJPtqw/tcr9GyCWuhhT1DS2BpoYUWmrjvO1ew/ISP2rwKpRC1hLbVBq/XJ8xJ0gMxxdku5R6JrGp+tukojBYkaY2s2YV47RuSXIyXitBGUEk8/mH9hfSP5RmL0swNRpjjjXCMt40zfcVX3/IsD/52PiKSqG12tdwI29WgqoZKr6DaqznqO9fQlqvw4O9cfWgP0gsIJ8zdzAnA0nsu5ZktvXh+THumQlu6StyrqJkUMrb/k7DN4BWk7VbxHUaPCRg/pu53O6OK3JgiNRhAR4A3VsMZK9tuD0dBNgNJgnYVqgIiEuh0gkhrIu2iKhKnDCYUiBjCdgi7E/A07jaX1GaJPwZu2aAiQ7U3jT9aa3avNG26NFZwaXSyOBJjDCLUVnRJ7HZCG4SU9hZra2PW0FGc+qQ5MQgHK7bE8aRllA4nBRi/vsivje3SSSrIMLQijKMI+7LEAfjDguxGmxEjKiFjL+2i3Cvo+G1E/udr0YUiCIGZmjeizfSJqNEvrJBQpRCZvfPNr23O8JvKPE584q/45pKv1j3NDwxWrtszgWRdoZOsCjnO30JJ+2RVjW2FHPO/fgPr33FgrQmO+9sV+FV7rtvsH9h8YcDTV9nFu4svug4jBG0yZ89vCfyOfe5Tr7+KBV/9LElbQlXYDKVg7wu4mzjY1gHPd+K6qwnr8xVaXvWST3HbryezYYzjsPT0q7j1ob2vbn2h4GAFtbbQwvZ47MbLWHbix+q+nQpZjWh/1qXSKQnGNMMnSeLFFdqc/bewuea1X+Xl83+f0lAeM5yy3YHCFn4YKSn3wcJvX4fjJTzzhv2fEfVixlShZUJXeCz0ycsaJ3spKqZGYgxZaYlDHCrciQhVqqHTHpvPy5I+Z5g4kXzxpO9xzZpXE90/A288ZsH3BqBQsoU82TRhX45y6D6vsa6LC3RKh5M9mO1soF2VmO/bi/CmsJP1lS7GoxR+NqaiPbrcEmkVMRym2VppI0wU/aUcUawYqaXYUOtktj/KY4U5bB1qhwkX2R4ipEFHCpEIhAYRCkQoLHcfdQEXXE3jI+AWE1LbYmQ1IjWYotrlUJgLExeV+L3eZ7hl+CQe3DKHnnyR9FbIriuy9nV5gpNHCe7sYPa/rUKPTzStwYQUU37fTlzZh4zBwxYNm+K9wMDWdn5a9bjtp6eTXyNoe+3u85/2FXt6/R3TimeSDApDVbvMS42wttDJ0f95Nc/+4YH/rgqGBBjrmExBsPFin2c+PClGv+qltkBoAQD1+dCb7A9RlcR5TVSTFOY4BGP73sJyoCxld4X9zWcb4srz5V67CrZvcbrDEK1w+cMKwhjT+pdMwcTEBG1tbYyPj5PP5w/1cFpo4aBiWee77IK170E+R9KeoTw3TbVDUu0QGAfi+pponDYY13YFyMh2niQpjWwL8YKYdBBSrnpUxwOcAZfMVogyUO3TJNmE7pnjpNyIwV/MJLfOoCLbueKWDG4xIU5Jyr2KseM1LznrGf594Z3TxlrU1eZEaSoOWCbDiwAL/uUzoMHNRMzrHuGk9q30V9t4aPNswqKHSsU4v03zR79/N2vL3QC8o/dnnBfAWQ/+Ibm/z+NUEtyhIrc8ds1zvt78r9+AiAWiJhFJfaG4u0ZPd4ETu7ZydHqQrz30crIPB0wcH/GyE5/l2dFu5uTHefQXRzHr5wnpTSVrFRYlEFvCbQIX49mgeu3bOgJRF0hU/6jdzvMm7c6EQGiNrMa2i8SR6JSHdm2lH4BTCJGlGlRD0IkVXLS2E25dF3gSjTHaCi7GWMu0dBo8F2ohemjEiiy+b7dXCuG5JCNjOwooQu60+m9XE9Ijrdpv+eIPgqMwjtyjc+VQ4bT/+zivnfc4RwfbuO6xZZgncgTD8MjnplcgL75uBW6x7uHu2kwq4xpWX375Lva87zjrnTejXYGq2u9NsF0rMrKLeNUOSa1D0PubCjDpq7wr7Ivv9+E+wdof49vV5PJg4fny0RafbeHFjmXd74ZET+O0I6dkqXQLSieE9PSMkw+q/PX8OznD39a0jmrYLbli53WI91Y1dxVPoNstcJS3jVO9MVwh+UFxATc9dQnxI204JVso5I8bUkMJTkWz6UKPMy78LV+c/yM6ZBqN5vulNh4tz2O+P0RVu1SNS3/YzgPDc1i/rYs1f3RwF/teSDj3tg9TrPqc1reZCzp+y7HeVnpVmU4lSIzhdx97G4kR/M8pX+fO8kJckfD6zAC+cHn1quXo97cjh8ZYufHze/R6//bsORSSgJyqcrK/mblKkJepadtcNXgin+x5YqfPv3roOL696ix8NyZwYybKAdWCj1AaPx2hlKZc9JFbfVRNYKTNMTQCwg5D+zEjXDDrWWra4f5t8xh5shvtGURXjVy+QtqLGC8HlAcyyIqy3v0xOGWbfZjbaMhtqOL2T0AUY8bGJzMHPc8WxUQRJort/WFou1I8d9IOzHXRpTImnmJ3tSs+Cy8YTnvJ+ddglMQ44rDmRm/8xXs4u30tPU6BL689vykUPvKaSUuwxdevwC1M4bOBdRwAWHPpgeO0qcGEJJC2CC4Bp6KJU5Jqh6T74UJz+9t++Yld7uuUy1bw6IoXVofg/uKiRzqnbWFH3Hnnnbz6dW/k9OWHx3fOAz/6NHffsZJzzz33UA/lkKLVwXIEYMnLr+b2e1tVTi0ceNwy8lWWdbwTHAeT9knSDpVORa0DvAkYO0HTfvQoI5vbIBLISDaJeZyGuE2jXE1HtsxYKUV1IA2ZmKg7Ih5xETEEA5KKgOH+NoSXoHxIfIFX1ASjmsQVlPscm70xx9B3zBDndewomuxMXIEDHHz9Ase6t3yIBf9wE5GE0UqaWt5hYWaIDfl2howgGvVZ/YnLgEny+q1nXsrdjNKTKXLrj/euu0hUlLXokDbUHiPQocJzYnq8Iu/peJh3X/QQnzvlHLL19MLT8xt5pDAH4xlkAqISIaJ4MjfFGFspWu9mkaHtnBG1BOMqTFsWUaiAFBhHYqSok/m6sOI7toNLCBJfkqQU2hE4GQd/UCAdacWcag0iA1E0mfGiJNRiSBJMGNoulFJlunASWwFGBD6mXMaUmZxg7mIS2qgAFFJYi7Dtsh5uT76zV8f9cIBJeSAltzz8qUM9lN1ibHOeh/NzOH7mFk6c0c8DQylSAw6v+IMb+fl/Tdpp5daBUzPEvkB7EKUhSQmOuXoFq/5m15O9hm/3nthKnPPmmxHGEjdR1tYuz1ivaRkbZGiFPc8RVDutMvhc4grA7J/Wmr/v6QTscF5AgANjV/ZcONxFp8MFy0/4KCuf3D8e5y20sDvcMvSVSU6b8kjSDrV2gapBZ3eBZXOeIpARPWqCyMADYciWuJ3ECOa6oyxwSuTrdpS/rDn83/ip/EnHL/lp6VTuGlhMYiQZN6Q3KNLuliklvrVk8sAdhPSARmiodCu066COLXBibgsFndAhITIJ85wRnlV9PFicT1bVqGmHSuLhSE2QCjnuvz/F07+/6wXFFnaNX7zqehb9+7WMhSlK2qdXlelWEoWgYGJ+vazxPXQNb63/NrhlNr5weWX3Kj740Mq9e72Jo9lUaSfthNwuT2CWP85fdv2SGSrb3GZX4grAvcOLSJ7NUXQNE9kEUZVkNkmQkHgBsQOpCvjjEAeWO6vI/i4j6MkUWRAM8ZvxBQyPZknaEmRFotanGO92yS4Y4tieQTb5IQObOxCxgHRMUnLwhxRhXhBlHER3FlmNEEPDmMgKLCaKoVSezlcBTARGIzwPE4boMJq0uN2VqML0zhawtrGNfdwW/cdeHffDASI2IAx33P78rJkONJ4c7MORCa/uepQ52XGeHOyjUvJY+IWbWPu+K4A6n63uyGeNsuLL1K6SqdjbBfyXvO1mhAZHW04rjBVVVGhQ5QRVS5BZh1qb13QZmNohvDN0P773fPZwx/4a//Ox2m3h8MbzyRxqYf+jJbAcAWiJKy3sT+zOI3ZZxzsRjkM8r5dqr49RgrDNiiepIYNTlIwM5CC0/qbuhMAbt7kZSVqT6qiST1cxxmZZGE8jSg6qJonabJWVWwJ/RKILkjjtkMyuMpp14XFFZmOFOOcycryidFTEzNmjLJv9JGen1gJ73o7fEln2Hev+8orm72/+1TtxheYXr9q15+qbF/8SgIsW7NtrHXXzzSS+7YRCgJpw+PklN/DmX72T7xQWc2awjo/2PMCaOOHJ2kxcEXPrtuMxAgqzHUTchjdabQokIradJSIxaEdhpESVQ4isyJFkfcj4yEpdGDGgXYnxFcaVRFkHrcAr1Lf3BGFWEGYVkCLYlFj7MKVsJ4xS9ua5tnOlHo5ukgSjzbSQzyakFWSE76Mr1V0foClBoFPDQafiSBRXmtCaZSd/7LDuYFn37g+w4J8/w6rBHhylETVJHEC1XXLOW27mV/9iq/ke/MfLeNkf3oRTNmhPIGNBFMNjN+2+ki5J7TkNc8t2htkQU4Q2GCnqVYaCJLDnRhIIHv/svlfw7cmkqjX52hGt47FnaIkrLewvPNf30FROG3b5aEegXXAiGFnbwcO5ObysazWRcXi4NoNfl45iIg5YlBrEFQkFXcMlYTDJcdf4Cdzbv5CfbTuKwbEscckDYRCOZpWryWaqnNC9jVfOf4Yn8zMYmJhNzwMVkpTDyHE+4YkVXn/UE/S542xJUniiyJgWDOsOFIasqhEZxUAtx1A1QznyOL53gG3lLKf+6OPTKsxb2HM0OoD+7dlzAOiatQmA9l1s3zNrMwAfnLH3r/WFM77N2Ss/iqM0xggGUjlmnbKFe9YdwwxVZLGb3eVzNycF5mbGeGZOL3JTCkqKJB+DkKQGDVFWEPuQGja4ZUOUspZfYV4Q5SHqSKjELk8UZxMbSSoT0t4zzuZNXQRrJd64w2bdg14omJEtUOzyqYyloOIgaxIj7Vyu3OeQpCTFWRlmjhQQiSbZ2j9NDIFJuy+jDaKehSg8D1Ot7bBt/QnTeHBzm/r9Mp3GxPERKa4ATRvAS86/hp/89PDNXnvsdz/Jgn+5nt9k5+IoTXlDDn9YNvMtAR788mW89E9vJijraXxWe/DEdfuvO8Qt2aIgFdULhLCiIdIWuBlHEKcVD3zlwPLZFnZE67i10MK+oyWwHEFYdurHueWRFsFu4flhd5XSt4x+jVed+2mGT8kQZS3RqcwwOCWBWzKIRGASgTSgyhKnZJ+XBKAVCGGItaRSc6kUAtS4g1OxIeaqChhwqpC4IDzQSnDUnG0MdWYo93czvjhNlBXUOg0vPX4NS7qe4Hcyq6dVf7Vw8PCtc/Y8gHxfsSsLpSdH+qgmLgP5PKuDfhIjqBmXsSSNNgLZU2PkVI/SLJdg2MWpgFfUqJoNJXUqCXGgkLFBlUOE1ohaRNSZotrt4k14OOUYUyfy2pPEKUmUFiSeIMpIZGwXsLVr8y2qsSLYhM12UT7CdaAhkEiJSbuIUslOGH0f03jMaEw9EFVIgYliRCoA6UB5J/YIU4UVz7O7iGJbJSgFQikr4BzJmSwNa7W99Kw+FFj3tg9xzLUrKOc03pgkGLFdI1FK8NI/vZlf/qs9h92KRpUT4oxCK4VWe/De9vD9X7Tkepx6PpCMNbKeK2TqeluUdYmykvv+84rd7GX3+9+bCdWRMvlqCUGHL5Yf/QFWPvvZQz2MFo5gPNdnu8FpR49PkwTCWjcq6/GvqoKsWyPSDj8vHcPGagejYab53P6wnbEoRSn2GKpm2DzWRmkogyooVFXggs0c9A2xrykJQ6Ai/qjzlzySnseNs2cyclKGMAfO2WN86sQfsSQ1wJZEozCsiwNcoZmhJlCp9Qx7OTKyxpPeLJ6WM6kmLr1+gQ6vzEODsw/wkXzh44+P/tVBeZ37l+8oIH976Fwubn+S/mScE7xS8/4uOXm+FbTkjV2/YuGpQ/yg8xRKNY/eXIE19JGkXBIPhIbUEMjQ4Ee2aK00S1CbEeFmQ0ZLaVbLLmakCxzXM8BINQXCEOXtHCzoV2xRXVRmukhpoCLxxhRGQJwxxBk7LxNGktmaYLIpRC1GdXYQDw5NdqUIOU1EMdogPBchpO3ungoxyX2F59m8wVptysMCmUphkgRdqeyvf8NBh3alrSI/Apz3173lw9M4bXajwSjBme9e0RQzVM3gj0TT+ex+fGsXLvsMjhT1DmzLaRvHLk47xGnFPf995XPsZed4IfO+F/J7a6GFFwpaAssRhJa40sKBxrLTPkFlQY5ah61kitq1bUEfEpR7JdoBEUlEbHNXtGdvbgEwkrCWI0pARoIgAhnWbzHNLAtVtZOEyLWerq+b8Qjtqsy/Z1/Cbwd6OXvOBv56xk842290rLTElRcbjvqPa8nlJN992Ze48I4r+Yk5lg6/Qta1k7LxagrXi6EDasolyiucksAfkWS2GeLAVj3ZjqkE7TkIIazNQiAxCirdDsEIqKptS0dYQdGKKxC2CVTNdtVEaWxILoK4PUAkGme8ajtYGnkr1RqiWrPCgTA7TrKmTEqF1OiJ4g7v21omyKl3IHNZa29SKmMqFZvfYgy6VD7iPKqnoX58jKsO8UB2j+M+uYKnr7qMVR+1k87T/3IF/oTtHkl8m4PSmPDc88MPsORlV4MElZXIeEfx5JILrgVjplU4/uSej3LJBdfuNFjzkvOvQUYapSTCtYKfnYzWO6MSIDE4UsCeCDrPgRfaxO1weT8vFKuK/YmWuNLCgUaT07bbTr9aF/gjEKUgyWrGwhSPTcxGCoM2gnLsMlzJ8FBxNmHJg4pCRAJZE6iqIBXV+a5oZBMIRCyIXY3vxyxMDfPyQPLyYBOdS/+T219yAu/o+RkvDxrX9RT5+q9+XKBdOuRlioopEZkCBRPjiphIO5S1R1qGaATrUx2H6hC28Dzxxl+8Byl83nj0/fzJr96FNoI2t8Isf5zjU5uZ7YxS0AHDyRwio8iqKufPXM3Wap6BShYvF1KZLRCRwCko4pRoihZGCOI0CGVIIkUplqyvugwEOTw3Jk4kbiaiepRBjLkILZCpGK0FjkognRAaAcpYK7GaIBiBYNTyi7gzgzNSsqLJ1O7pKdZfQlkOZypVcBwrtMQCHcXTxBUA4fs2r0WpSZFFKUQ6hSkUj2hOa1x5RORMb89pT/urBqfVJL7gZW+8ifu+cwX3fveKHfis2Qldv+ji60FOD2XfnQhw8UXXIWKNksJaNYvpnJbE4ABGtvjsznC4vKelZ16FcdVu83BaOIg4AoTdFxP2SWB5xzvewec//3lyudy0+0ulEu973/v4+te/vl8G10ILLRwcXLTketyRCghBrU1Ra7cBzUk2sTkZST202TGossQbta3pMrLiiapa6y8ZC0RMvfKfesu0fY3EFySeDbLHgIjs48f5W7gwMLxp8a2wuDGiPbcD2xVaNmFHLla/aXKhefOvZ2Mcw6asRuQilJegY4mOFSTC3oQ9D2VSby83Au2auggoCTt9RGM+KOvh4MLY89AY0NY/WWh77goEiWMrXeO0rRJMAoMMBeWZHt5YUhdY4skuDMcBndifYQhJYjtNpgZ9Tqv8S6bbhtWxw31KWTuxdApRtyHT5fKRbQ0GNotGYi3dDmPM+nmNk69YgarBw39/Ge3Phs2uJqfRfaThlUs/w123fggExClFlLJdT6dcvgIjJq3CjGCnXStGCi6+8NppmSlLXn41MtHWe7ou2onEICKNiHUzK4i6pkey7wR7Z5O2XYk+Lew9DpdJcQstvBgwldOGeUXYbq/n2rMiddgNMh8yUQsYKmWsW6iBkfEsetDHH5HkJmzHtYxARgYjTZNrJJ7ls07FPp6kJMaAEpPXszdlR3lT9l7q1Rk7YJ4zOYdOCZ+UgDyQ88fpUY/SH+eJjCJBMtqW5rT/+zgPv7pVaHek4Tvnfrn5+y9/fjzGgSQXk2qvMrvjaGalJ3BkgjYSbQShdihGHuNhwGgpTTTmI6sSkdgOgloHhIlonlZGgZhwrOgnDVpAQQYYVyO9BKEMyktI2gBlyOUr+E6M5yRkZ4+gjWBgNIcaTuONQ2YgJspIijMkuc2S3EQNajWk66DDcIf3Z7RBuqLJa4Tngesi2S5/UNiMRFMLLZdpdGcnCbpQ5NbSvxyw/0ELk2hy2hAe/sJltK+2cxTtClRFY1zBBa/9LPf88AMYVxKnJ/mskXDy5SuQMTzyd1Nsu3ZC47cXWS654FpEYpBm0t5WuxLBFE7r2LwhoUFF+z432BWfNWLPcglbeG7c+sAnD/UQWmjhsMXOWd9z4Jvf/CaVnbRxVioV/uVfDv0F8otf/CILFy4kCALOPPNMfvaznx3qIR0QLJ936aEeQgsvEDiFEFGNKS/IMX60wCiD9gzSS2zVigvVLtut4hQFbgmCYfAK4I0b/HFNpl+T2xCRXx+S2xCS2xSR3RyT6Y8JRhO8okHVRRUZWYsGGQr64/YD9r50/zEHbN8tHBykt0FmoyAYUIgRj2QgBYMBcthFTjioksSdEKiK7ZYSGoQ2zVZ2rSBJKZKURPsSkrqFWCnBqSRNqyWw4p8w4JTALWIFQReSlEEHhkqvoTBbErYrdNrD5NL2RRxlA+7TKUy+3nHlOE07rz2GkNNuop7V0lyQFwITxy+IiWhD2OIwF1juvP3DPHbTZcgEzn7HzUQZ2xmV+JIoI+25hhVOLnjtZ6n2BpRmOMRpa31ghD0nL77oOrtDKaZN8BoCRmmWR6XX58Jln2k+JiI9OXEV9ryWsbGiVF1sITEYKdGOJAlsLsxFF+86M2mn2Mm/4Nw/vsmKQS3sNyw/tiWy7ArLF+w/X/cWWnDHapbTzs9SnGUXpuOMwQjLY+OsRkjD4ESWwcE2BjZ0MLyqG2dVitwaSW69Ib9Bk18XkV83hdNuikgNJ/jjGq9ocEqgyuCUJGHoUEiC5z32vExxpufx6nSVlwbbONPfQkpFlKvefjgyLRxKZDcKcmsEqQ0utc0ZVm/o4751C7l3wyJ+tWk+D2ydw2PbZvDsUDdbh9opjaVwxhROSeKUBCq0nFR79WINA6oC3qjEH5KktiqCfoU/oPD7XWS/D/0BeiCAmuWilapHNXIRwrAoP8zr5zzCKXO2EOU1SQAiMngFjVuxQqJxFSKbsZzWmVL8Vu9Oka6D8DyElLaDGxCOg0il6pZgU5aadJ1s1AuH7H3mBcFpjxQ0OW1sOW2ckk1OK7RBVTQkhvN/97NUuzyKMx2ibGMOYm9GTXblIuHOOya7VwCKszzKfR7nv26yS1WGCSJOLK+tz7m257STfFZgpOC819/I0rOf/0L+y954E9Xu1vfn/say/NsP9RBaaOGwxF4JLBMTE4yPj2OMoVAoMDEx0byNjo7y4x//mN7e3gM11j3Cd77zHS699FI+9rGP8dBDD3HeeeexfPlyNmzYcEjHtb+xfNGVmI7cc2/YwhGPZR3vPOCvkaRdcBXFmYqwXeOUBe6YxN0Q0PZbQTBkK/VUWeAW7O9Cg4jBK1oyHgyH+CM1vOEy7kgFb7iCN1zFG6vhjUV4EwluyXYVxCnbEQPwaHku/cmOdkn7Cy2R5chBk7BPhbFk3kiaeRPuhMAbE3gjArckcMoNYaVB2G2VqdAGmdifIrLkXcYGVdOomkYkUxaqjc1wcYsGv6CRCaiavTUqB7VvKM+yFmQi1oiJEqQCdHsOHEXcnkZnfMhlEYGPzOV2OiHdKbZ7rNHJYgpFqAstK/u/yC2jBz4X52Bg5ZPXWpFln8o8Dj4e/NJl3P91m7Vyz48/iIwN2hVUelxqHQ5JStmweWW7oFS98tmeP3DHnR8BJn9uj19++wqC4QhVTbj4wmtZ8oprrOWXqleqGhugKhJtj5sxoDVCaxCQpBVhXhJmRXOyuyc4+YoVDJ7mT7vvZW+8CZFA2NGakO4vLD/mQ60W/l1g+bxLj4gsphb2D5Zm33pA9798wWXIoXFwFbV2hQpt0YQ3KnALgtQAeMMSPRAQbUnjbfRIr3PIrRHk1hsy/ZrUULIjpx0q4w9V8EZq+GMxblEj4/pn2oAxgkri7lc+O0NlWeDk6HRKdOVKHP/9VtXwkYQlr7hm2t+q0uiIsgVmouCgBwPC/jTV/jTlrVnKAxlqg2mSYR8x4eBOCNwJcMr25hbAH7NZLMHQ5M9gCFKDkB6AYLD+94AgGLL2ue6wgxnziCoOcWKJV6gdsqpKmCgQ0P6MRmhDYY5DZmsMAsKuAJHLIufOQmYz096PnNKFYrS2AooxmDi2ndeOY4uMGpZmSYJoyyEyaUQ6xS0T3+DWyrcO/D/iIOBI61LdGaet9LjU2h1bjFa3TVahwSnbc9apWE4r4+mWYNvj19+8nGA4RlU0F190Xb17RGCU3C2nbfDZOOMQp2zH0+5yY7fHiR9awcDp0/nsuX90k/3FQNj+/N0xWrBoiSuHF4Q5PG4tWOyVRVh7eztCCIQQHHPMjouWQgg++clDS/5uvvlm/uzP/ox3vtMuSn/uc5/j1ltv5Utf+hLXXXfdIR3b/sTKNTce6iG0cJBwy+jXWKLeeMAsgRZfv4L5iaE8L0echmBA4pYgNWhsaHhVE2UtQQ5z1oYJYwPw3LLBKSV4ExGyGiFqESJM7EKSEKAkxpGIyAEp0I5AK0mcEsQZMNJwT//RlGKfd/fcw4lu+oC8xxaODGxP1Bf+/U3IubaDSqcSSCVIpYlrAU5ZNBexRVx3UJLWaknVNELXF7u1QYa2Jd0KLboZRCkjjal7gziVBFMTqKqm1uagqgY/EcQhdZFHoD2DWxQYaZDFKiaXJuzN4ZRCkiBNrcdakYlOHxl1oSoxzlABNm5BhyEqkyYplZvvz+axTF9YnBZuL4StCIxiVm7+woE+/AcdK5/cMQz2SMD5v/tZnJqm0ulSnmnL+XIbDcFoglOxFZqJX+88MgLt7TyYstHVcsedH+HiV16HrOf5GCkwSmCkrIt/9XMiqXdbNWztjEF7ijjjUstLam3WtuakD67g8Rsu46QPrkA7dkKMASQ8duNkp8Cpf73CssC6yNUYo0isXd7OOliOtIDNS86/ZlrezSHDRAG8lmC1M6zc8LlDPYQWDiJuLX7zgO17+dz320VeKYnzPtnNITL2qHYIslssp9WOzbBQNYnQ1t7WLRncksGpamRN45Tj6Zy2UXkvBCJlr83asd/TUaZeDKEFqwq9fMM7g1dmn+Sl/v6LOZ3pjpL1apTD1gLhkYTbfz557Vl8/QrULNspHacNOqUxrkZoAaFERtJaLEfWarlRNBSMYAt83IYls8Gp2TkYxoaTN7IxRAwyMWglrC2zb7tQtAtxACKRhLhUjGDQCDZt7uLh3CyqYwE9DwmiNGw7x6XtGah0WXGyNNOhOGsOlR5BZmsPXT9eRTwyikwFyFRqWjC9SRK7WA62SwVAyUleK6UtFtr0dwfj8B90HEncaCoanHb4RAVG7JLPamXPX+0KLrr4+h2KeRr88KIl16MSYzMqhbBc0rV8tmHjDDtyWuNKy2fbbYeTU9ac/7rP8tMffACAEz66AkSd02I/H4/ebDntGX+xApWCxJ0+FpHYz0Sj23x7XHzRdbssfDocsfT0q7j1ocNAaJ/ahdZCCy1Mw16xv7vuugtjDBdddBH/9V//RWdnZ/Mxz/OYP38+s2bN2u+D3FOEYcgDDzzAhz88/Qv/Va96Fffdd9/z2veytndwy3grW6aFQ4OGuLK/hZaL77ocs6iTsN1n67kOUWdM388VwVCMP1QFIMm4aE/gTYCqClQETkWjQoMqJ6haghovI2oxRNFklW49l0LgADEydFGRtQlToa3CMkqwdWsHd1d9ionH23ru5bzn77DQwgsEf33xrfxk8DhGqml8FZNxbeDrar+b2oSPHHPwxm0Hi6yBW560/wKQrrTZKokVU2RU71qpQ8T1DoBIEmc96wtsBDI2OFUQZUOclmgPEOAPSbqeSEh8QemYTryxiFqHQ5xRRFmJjMAtxAgDYbuD6XTJj5YQmRTSaEQmjQxDjDbTvam3h1L2pjUkyQtSXFk+56+bQuyRNNmWsUGGmrtu/RBnv+Nm/BFIgvp8URtkZHC1RibSLmho7ALKdmhahjVQ38Q0gj+had3VrPKLrbVCo9rPeA6V2WlKfYooA0mqvn1sf8Ypa3UnGo55xoovdp9gAnvf45+dbs9kpLCfBbXnk6fDVXg5LMQVQI8Xdv+ZP8hYln87t0x841APo4UXMfY3n1169icR+SyiVLZCSGKodrikBiNSA9Y2DKA6M7VbPitrMaIaWk4bhjCFM6AkQgikq3BciXEEbtl2CZRSAWv8LiqRy6pcH890PMVrMhvokM+/cKhmXOZkxhivpp73vlo4NDjt/FU8PdRLLXTwlSblR2gjiGJFGDpEJRdRcJChaNooO2VIDWqMskKJ0LajwHZh1zPZjLGFQtD8WzsSowRxSpIEgsQVqMA+HyGJjEM86NKxRqBdD7otj4lTkOQjCvNckND7G4OqQWmmpDLTkB4AUgFCKVsElAqQUthrWxjZTpaoTkD0lM9NvZDJJAm3rL35oB/7g4Fmt5Ix3H7v3xzawewFpnLa09+7Yvd8VorJKvXtus93cCAwWHFF1n3FGgKH2TWnLc/OUZqhSHxrP+7Vi30AXvLWm2GOaBYMGdtkwxl/vsLmGtW/Gp/4zHZ8VgH1U3JPBYHDOX/wsBBXGojj596mhQMPQ9MWvYXDA3slsFxwwQUArF27lrlz5yLl4eXtMTQ0RJIk9PX1Tbu/r6+P/v7+nT6nVqtRq9Waf09MTOx0u1vGv87yRVe2OkdaOCR4lfumZibD0sxb0NXafpmYaiMQAjafp0jSCaqgSA3GuBOhXXimbrNU03jYhTcZalSoEZFG1RJENUYUKxDF0FhAchybSyFtB4tRyrb/RhpVFXgTsm4zJkgCl4k4w6PuLH4SnEiP+jXHuZldD3pf3mcr8P6wRoOYb79A+/6OdSzNPsF9lUUkRuKKhJEkQ6c/j83FNvrb8lRGUqiCwi3YbgEZS5yKboaBq1CDNvZcDWNEWCeEStlARWGrUFUlQg0VwHUw89tRkSTMSkvmNXhjgu7HEmRsiDISWdOoiRq58Srjx7ex9QJD0K9wih7taxIwUG2XePPaCRINYQS5LOVzFpC9dzXJ2NiuD0i9+4skeWEvgtarGY8k/PR/bSXdhcs+Qy6xE9MoYy0V7OLFZOeHCq2dXPuztR32c8edH2lWzr3krTeTVY2uFVvtJwyI2AD1Cj+NnYjWv5eNlCRpFyNtVlCUtxPO3358cnJpVL3jsP67MKClrYQV2lYimikssPH5SwIB9UnsK/7gRuuRrUFVdy0QHI7iyuGEWyvfYol64wHtRt1TPgtwy8Q3WD7v0lb3SAuHBK9y34SQgld5f4xJkv3ymTBCWJ1aG0x7Bu0rjAPueK3+HapBiOfks7IaQrVmr9l1q6Nm0UN9oVhUIqTnIGsStyjrlqSCosmyrstnS6aNTaU2nu3u4yWZ1ZzmDzJb7but87HeVi6Z+SwfSV7LS275KL9edmR2f75YsOQV1yASzW2/+Hjzvtf3Psiz+T5+W+rDERopNBNRimLkUYldxlMBE26aSHoYJTFOvTu7YXsbWctbGdfFwGpsO7LrtlxT8/q0q0AKVE0SBwrtW2cCFUm0J3BKkvx6gz8eE6UkRkmitO2Q6f6FS7UbqqdVKG1M0746wh8XVAqCiYXQtqAHp1iCOMa0Zyktmk328QHMyBgkiRVbjIa6DZlwHYTjvGDyA3cHESfWBusIwlRO21VJds5njWl2jWglaF+9I6dtcMCXvPVmMlJgXNF8vjBYkUNgu693wWlN/XEtIcoI7v/GB5r7dyoGf8x2Yxlp15NVFdKDCeUeRZJlmujT5LOesF0s9anfBa++ARVqZK2xXrHj/+twFVcOJ9wy+jWWpt58qIfRQguHJfapf3n+/PkAlMtlNmzYQBiG0x4/5ZRTnv/IngfEdgs2xpgd7mvguuuu22Nbs0Mlriyf/b4XZAVzC3sO4fv1ALhkv4krAGs39EIkWXzWRtb8Zi5tzwg7yaxXlhghkGGCkgKZmObfMtTIMEZEdtG6ORHVxuZFGAOOg6mLLChbEa2qia0s1NjOgBKIWCBiSTV0GYvSlMyBsUBoZLG0hJbDD42W8p3hODfDce42BpIiZWMYTAJq2iXnVEm5EUOpDIVKQLXoE3Y41EYkqW0uwZjGqZh6aL0VVmQlgnLFTkJd114XajVboVrvvNK5NG4hIgkc3LoHcZiXuAWo5SVOxdB122oGXnM0/mAZMTBOnGrHuAnVhQkUFV1PatK/HSTTlqY0P4eXCxBDDptfM4Ng2JCVAuG4mDiyb1JMWiggpPWsDqMXtLiyctPfsfzYD7Pyt3sZyH6YwAbYC35yz0e55PxriJRHlJGoyFgrRMdWULMb/ahhS/Drb1of7AtefUOza0QkBontNBHaNPNqDBIcSZJyqPR41NokSGuVt30Fk1uARz5nBZdFf3cTui3m2AVbufWCz+32vUUpO4Zf/cvlvOL3b7QTZD35/Q/WpqBhBXLLw59qPvdw7WQ5HHCghJUG9obPwqGz5moJOy0Iz7N8Nor32+dCGIMII0x7ltrMHEIbUoOR5amRta41joOqJsjIfnfJWNuOlfo2IkqgUoVaCHGCMfVCIyHAc8F1IYoQxiArju1icSUIiVsSpLYJwppH2K7YUO9cHIvSjOTWclF67T6LLC8PJJCjwytTCV0W/du1CAmr39RaCDwccfvPP7ZD/sqbsqOMpjdzT6qHLVEHZe2zudbOiMpQTjx8FWOMoKQMUcohKSm0K6mOK7yCtgJLqHHKCaoU2TlYGNviNpgszBEC4SqMlMiqQFatRXOSUshYEWYdnIq1UirMdkgNa7oeDxk43SO/PiG7epzi0W1smRkgNKRXDZF+oEhXZzv9r+yhOC9Fx7oMuqeNree3kxoyoBTCczGVqhVX6hD1/MAXg7hy+88/xqvO/fQR1b0yFcIwjc/GaWmzBut8tlFo81zYFZ8VworQMkx2yWkTX+CWDdrbkTgbB3Ib46YgtOjvbsIIkLHiwX+8bIftG0h80RSL7vvOFVzw2s+ilUA4VqWRoX1Ty0623c63PDb5uT2cO1kOB7xQ8pNaaGF/Y59k9sHBQV7zmteQy+U48cQTOf3006fdDhW6u7tRSu3QrTIwMLBDV0sDH/nIRxgfH2/eNm7ceDCGuldoiSstkGhkOo1IW6uB5T3vYXnPe57XLpcf+2Hecda9vPyUVYxU0ggD+Q2RFU8qEUQJQluhRdYSVDnGKUaocowqh4hKhKhGUJsirjTQCKxrBDE324Drj9cXro2wFjayLKmUPNaVOnm6NuN5va/ngu4/pnlr4fDB9ouy2/9/euthryd5mlNSGzg+s5V2r4IQkE9Xae8qEswpEh1bYXyxoTRDUumU1Nod4rRjJ59RPHkLQ5uLUKrYatUogiRB1iLURAWnFKJqGrekccq24r84W5AaqFE7YS7+hEZOVDCdeSYWiObitqz7uuuOLNVZWbsQ7zkI36PzqYiOR8etxULgs0PovZCIVADGvKDFlSaO8NBvGduJ2U9++jHiQBKnJbEviQNBHAi0Z33Qh0/0GTzZBm/uSkgE0J5sTmaNI9BKNC0WjBIYV6FTLnHOI+zwqPQoivMEtbZJW7AGTrl8BUZaS7DjPrkCEsGc2cP86+LvPvd3n7SLLxctuZ6f//eVTS94Gdsq76WnXzXZDWYMS8/6W5ad9onme9vde9wb7K/9HCgs7/uLfXreEvXG/TwSiyOBz0Irc6UFbPh1PZNoaerNz7sSdvnc9zNyco5wdjtJLiDKKCrdLu5YzQonxSqiGiG0/Q5Tldhe44s1ZDlElkNEpd65EifT7I2EkE1Oa++QtnDIkWhHNnMJTD0bwC2AU5CEBY/+iTwbyh2sqszgybDjeb1HgPEoRWE4gxn2yeUqfPyx1/O3j7+O9z/0R1z35O887/23sP8wNX+lcc3tkGlO8/uZ7w2x0B9gUWqQBelh+oIJ2r0qQhiSUCGUzWiJs5pKt63mj9OSKKPQnqyLiTFUQysG1kLLaStVqNpzWdYiZDlEjVeQldB2a1U1TsV2wYQ5QaUHnKqm1uGQGjZk1hZsPmFscCYkbWsjiCJMVwdjp3aRXxvhj9jrfmV2lq4nQ1JDMXFXdpLXQrNoSPj27xe6uNLAkda9sjM0+GyUmeSziS9IvPptDznt9nzWNIvIds1pSzMl1Q7bcTIVJ1+5gmqHZOwoh1MvXcE5b7mZzDqJNyYZu7jMaf/38R0HMHUsrj3Pl536ce754QdspqZjv9dFmLDs1I9bS0gNy079OMtP+CiXXGC7BC+54Nrm788XhzOn3VVo/XOF2S/NvOVADKeFvcShDrdvhdxPxz51sFx66aWMjo7yy1/+kle+8pV8//vfZ9u2bVx99dXcdNNN+3uMewzP8zjzzDO5/fbbef3rX9+8//bbb+d1r3vdTp/j+z5+nQC00MLhigNRJZB0pPlQ1+O43U9z4TXvwmnDdq/ESdNGyWgQYYyK6mwnSWzgZ9K42YwIWzlVt1Fo2P4kCSQKPAfjKoxnJwYYm5NhPSNt4L12BbWMy8aJdn6TXciS9AZ6VXa/vM9RXeY9617LuvEOLpi1mhv6Hmo+tv1CY6u75fCBnLFqpwvBKeGzPF1mlfsU/7PlVEYe6UEmEOU1sqdKW77M/Lmbic+SPL5+Fs7GgNSAR26jIr3FwdlU77hMtLWyc11b9ec4TUu7JBtQ6/apdipq7YLiPEPbcSMQOmxKtSEjaFutqc3rZPB0n1pfgnAts3DKwlbITlRIj5VIOrKEXQH+RIHUM4PWp7pQtJ8lpTAJCKWQM/swKR9RrrDyBepRvT1WrvrMoR7CPuOuWz/Exa+8rhn0ee93r+CSC66l2u0R5uwkO05Lyr2gfYhymmM/vQJzgc9RN97M6isvn7a/Uy5bgZirbIhtzYbYytAQZxSJL4gD0I6g1mEX87wJ293iD1sbsIf+YXoFX9gG7jg4VUgPGMq9gk1dXTx4VBudqoxev5AEwa/KR/O9TaeTuroNI+COuz+6g6WZU0msx7sBWapZYd0YSDQiFLbjasrCgr9hjOWLP2i3kRKUxEjbaTO1OnAqpna+bG8ZuCsLwV3df7CwctuX9ul5UzPVpv79fNHisy0cKdjfmZZmfAIjYdvZKeb+yypyGzyqx89C+47tBGxw2LheQGQMxBoRRpYLxHEz8wxoclqh3ElOq63IotsymMAhSTkYRyBDg0vDUlfaRQYh0K5DyQnYFuSYmcpQNR6TYQC7xoa4wK+qc7ivcDSLU9vIqSrra93kVJVf/Oo4eh6yoeYT4518a/gczlm8jq8vWElK+C1Oe5hiKp+drVIUnFFCFPOcEQa8HGvCXgDuH1xI28MuQkOUsdafpUUx5eMT1KBHMCgJhjwyviToFyhjQCf23JyaFRTZrmyT8jC+S60rIGxzqLVJSjOhMj9GVBSpfsnYIiuudD1SQBhD1J2h2q7IboTUhnErOo4XaNu4pdmposcnSN9TQPR2Y9I+YrxoRZ6GtbQUyI52TBRx64sov3aqqHak4a5bP7RTPhtlrXVXlJGEWZt1kvgQT+G0R9+wgmc/OMlBd8VnhTYgnGmcNswDBvxx8Edtl0yjC6aBsM0K2OlBQ2rYumiomkO1LJk41pDxQs697cMYIxh4uoej/72ISAy33n8VvfdsQ2d9WxRUL4pS9a4VYUBWalZciRNEFDXXMRrWZu7mUdCG5YuutJ81qcB3d8tpt+ezDZeG3XHaQ81nd1XU91zFfg3xdH/afbbQwpGOfRJY7rzzTn7wgx9w9tlnI6Vk/vz5LFmyhHw+z3XXXcerX/3q/T3OPcbll1/Om9/8Zs466yzOPfdcvvKVr7Bhwwbe857nV+3fQgsvJCyRb8BZtIC7qwFLUjGbLpHkVgtSgxJZs4thDfuXaZV8idmx6nxqjoIQNntF1BfVHIUOHOKMh3brrcIGSIy10qmZegYG4Gu60iXmBiP7TVwBWB9LjsoOEmpFSoZM6Ap5ufOg0KmT09bE9PCFRHKcm2Fxfoh16VnICYk7JgmzDsfOH+CU/CaeLs4knatR7FOAi1NROGUPZ8i3FapxXF8AFk1vdRO46LRH2O5R7lWUewW1bkPSFdGVLjEmUoz6lujHKcH4UT5OGYItClA4ZfAKICNtu2SMJm7zCLYWwfd3WMQRrr0Ey7YcSXceoTW3PLHzBegWDj/ccZe1+Lpw2We4+5YPIRIzmb8S2dDYWo9GdNZQjqaa8RA1CY79Dl34hZtY+74rAKj0wTMfthPUUy5bAQWDVIIoK6h0Q9hu0OmEdF+RBZ2jPLVuJulVPqaeqbI90ltsBkyYF5R7BaW5mnVv+RDwIb7z7Nm0qxKnemMsbnuCy46/jYuvudZ+Ftj9BO+WR68GYPnxH5n0fJcCEo2/Yaxp+bZ8wWXTrgtCGAyCpadf1eydvvWBSTurqa+5s0nn1N93JrQcibZktyffsflqLbTQwj5jiXwDMpVCJPWg4/Y2Rs/qQbuC7EYD2iAanFYyef2dymVlPSygkS26M04rBbgOcXuA9iYX4IQ2NpS8Zkg8g5GCxAOkQShD4EQsSg0xyxljWEc8FmYp6BRf2XQ+hcjnd2c9ygnBZtbUeglkRFp28ER5NqsKvawq9BKomInQx5EaZ0ISp8EtGtLbIAk8ek8qkBI7F1ZbnPbwgysc2mSFcQ1jJkXVuHSqIguCYYSXoB0XFVouaSTECyJ0rNCuIWyzhQ4qUsgowDcGqY3lmzqpd2DVOW2iMe0ZorxPmHco9UlqnRC2GaSfYBJhF4mBYCgCrTGORJUjUkP1TpkwadpTg+08M2E02X1dLNnPUbWGqXNqoZTtXHFdbtn6D4fqMLewD7jzjg/vwGeNmOSzcRpq3RrTHiGkoZp2EKFoctoGap2TeYCnXroChOWzCEGUFtQ67b4SzxB3xvhtNUpb07Q9Le1353bIbIH0QGLtxQOJzkpKMyWP3ly3wP23a1k8ewBPJvzy/dfxqv/4dNOqbpc2xPWljYZAsvyYDwGq2a3obR5j5TM32Mfm/LXdWAgrsGiDQNuOl5M/BkpNs8rdGZ/dXlyZ+vv2nPdI5LO3hf92wLqzW2jhSMM+CSylUoneXltt0dnZyeDgIMcccwwnn3wyDz744H4d4N7ijW98I8PDw3zqU59i69atnHTSSfz4xz9u5sYcaBzIANMWWthfuF1/l2Ud7+TDn30XSz7xJeipIZ9O2ZZdJcBVmHogKNAUVYyoe1E3RBVlJ6/oRheLmqxYdiQ65RO1+UQZZStFYoNJDChRt9SxgXWJb5BeQm+qyBmpdfv1vZ7oOryl4xdU2xXHuwpf7Fxc2R476574WRUuWNCapB4s7KqLpYElHY9z96yjqaV9ZFnh52u8pG0dvoyoJi69uQL5VJV+r41qMcCpOHhjOVSpZru06gH3jcB77TtoXxFlFeUZgtKCmIULt/E7M5/grPQarln7agb7QoTSDHW6eCP2vG571lDtEmT6Nen+EDVRAdfBeApvoGQrZX3PiizCdtAI38fEsY3oaMuDEtz66789KMe1hf0LmRgu+J0buOfnH+MVv38j/oQhTlnrLjpCMtka2aCG3xVTjV2GxjMs+Nb1SO1x1M03YxyDnGIXF6dBhTbsvtZhRRrZXaO3vchR7UMEKmJ1uptauweSHe0UrliBK2xYvXahPEfjzS7xxl+8h++c+2XeePT9O7yHO+6e7jN95rtWkB5KUJUEIQRGTgpKS8+8CuHa73rRsM6ZYqGzfMFl9rqg6teKhjUEWM9tpRBRYiemdZHmlkc+vcvju331385w0ZLrJ0NLsTYXRxKWdbyTW0a/dqiHMQ0tPtvCkYDb9XdZmnoznY8XKM3Ms+nVfUQ5yG0waFegattx2ql8tsFljQSp7aJc0wps55w2bLeK9lQ+m3jWwinxhbULc4BEYGJJzqsxxxvhTM/j3qrDP207n4FKFk8mzEwXGAjzrKn00OGUme2PUo1dtoV5BkpZKjWXzmyZnFejEPpoFyrdUGsTdoGyO+IludV7dJx0/zG87JE/oHhHL21rEtxiwt23fOhA/Eta2Amm8tmaEQzrNI9U5lM1DoGIqWoXIQ1JynapqhAQoMc9ZCgx0hB1xSS+QsYCjIMRKTxPIcuRrdDXZlpHtogSEl9S7ZBUe6A2v8aC2UP0pErc/9hR1tKuZIiyCrfo2ZB2R+EPVu31OwzrIqNjO2LCsP6ZEJgwspZg1RqmXLG5m0li7cECv2UFeYRid3y21q0xbRGpbA3Pjcn11Qhjh+GxLAv++TM4A1YdUVP2px0bNG9EvfMlbW9RTmNyMW46QgqDDjTVHomqTB/PKZetwDEQpaX9bpVQ7RSEHbDgH25i3V9ewZo/ns5fb/vFdMuw5cd+2NrYYa3L7Pe54Cd32OdZTutM8tkpuZzLF0zpDlfSCu7TOK2EZM/5LDw3p93eSuxIE1xe5f0xt4X/dqiH8eLC4WK5fZgM41BDGLP3/5Gzzz6bq6++mqVLl/J7v/d7zc6Vv/u7v+N73/seq1fvGdk7HDExMUFbWxvj4+Pk8/l92kdrUtrCkYLlx3yIgc87jD3ZRc9D4I8nuBMRqmyrmZrVfNpWagg9ZfJpjL3P2PDjxmKaEcJ6U3uKJO0Q5m07MMZWVAPEgSBK20q8Si+EHQluT5XTZm/mLTPu5dXp6iE6IrvG2zecRzVxmZseZWn+UZYsfOpQD+lFg92JLFf0n8GP15xAdSxg1pwRPnz0LQzGOX44cCqbCm0YI9BGML62nfRmSceqBH80QlYTe+5Kga7b12nHCi6VLsXw6Ya+4wZ514Kf87b8AACfH13A5++/iJ6eCZQ0CGHYsqELd9ghtQ3rR71+zAo3QhD1ZVHFeiDuxm0k82agBseaBN6UytZuYW4ft95/1cE5mC0cEFzw2s8C4BRjEl9S7nMpzhHUTinjeTHH9Q7w8s5nebbcy9NjfWwZayPaksZIwNWse/cHpu3v1PevQIVQmgW1Tk1qVpGefJGcW2M8DNjc34GuOsggZu2ffmTac0/88AqEhkqvIcknECScs3gdr+l+mEBGvOGoB3YY/wkfW0Fc157dEvijkNsQ4VSsaBGnrPB433/ajptlp9YnsMZY+524Xuka1u13GoG7Tes9ZavH6zZ8ItaTVpSOxASeFTg9SeIr7l75wb06/jubkF5yvq1MPNLElgaeLx9t8dkWXkxY3vMeaqctoNLtUu6R5DYnOKUEp5JM57S74LPNDu369XtXnLbS407js4kniFO2MjtOWVunOFPnum0xs+aOcF7fat7T9XM2xxl+MH4mzxR66PRLAITaYd1EJ51BmbQTUY5dnh3qprI1A8DC47YyLzvGSC3NExtnklQchDJ4uZCefJHrF/8XLw/2LPthVJc59+tXsPAHExhHUukLqHQpfvNPlz/3k1vYL1izaSY5KbmlNJffFBcyEmY4ObcZX0b8z5ZT2fDQbNJbBapmbcIqfQYZ24Vl7RmMY3AKitQABMMGf1zjFhO80SqiHNrrrFLWmtmRkBi2vSzH+PEJRx2zhd+d+SiBiLjunteAgAX/pYlyDsFwvfgnMchajKzGiMHRSctnKe31HdDFEiiJzGUx1Zr9TBmDSRKbr5TNtPJjj2Dsis9WZmhEdw3HS5jfNcJ53avZUO3kqdE+tgy0I7fZruo1l07/PjntfSuQMTYvUIP2oNpt0J5GJAKRCIIhQaVPN7u6Gzj10hVgrE1Y4lvBRiYQzgkJsjVqFZe1fzKdAy878WNU57XhlGPcwSI65ZJkPGSYoD1luwxTDmFuO067Kz47ldO6blN0B5rXioYNpXEkxnfRgbvf+CxMijKN349E7A9O2sJ03Hnnnbz6d9/IWZfs3Tl2oPDrW6/h7jtXcu655x7qoRxS7HMGy9atWwG46qqrWLp0Kf/6r/+K53l885vf3K8DPJyxK4X29uQ7LE29+YDkZjwXlrW9Y797G7fwwsTyue9n+KL5XLH4O/xt6TUkT2SQYZ0k16v6k8CxnSe1RiaLatq7iMTYlnIhSDKe7X6pd7w0OmGSQBKnJLEPRormgnbi24lDnLHiishHdLcVOSo7yAxngshIXLFPX08HDPf/70loF546Y5S/Ov2n6P5j9thy4VXnfnqHipoW9hy762R5W+e9PDwym/VVB2MEJe1T1S6bCm0Mb7ChspkZRVJzCpRkFregMAK8grX4sIsp9Z0ZoF7Mqn3DWd0bWZZZA9jKp3PSz3LiguPYNNFGzq1xQe+z/NJdwOpoFplHbfYK2kClgogivKjutx6GkGjU2i2Qy0JYsxPWOMbM7D3o4sqrXvopRJRMs2hq4fnhnh9ageS8199oM6YEqAokNYXwI7r8Emen1jLLHePLZz43N3jk85ft8rHLHn4TC3Mj/GrTfHI7EaMT39qGdZ00xMBgnpl9Y7yu5yHelB0FYHjLHLpmbZr2nCevuYzjP74C7YJRdh+qpptdKy9/w02EecGpl67gkc9dxi2PfJolL78akWjURLW+CFNfsIymiCwAjoNwVPNvm9mi6nZ5GqRvrznaXnvCvGJv0ZhwLjvtE2CMrQ48QoWVQ4Flne/ilpGv7nD/7cl3WJp9K7cWDz63b1VBtrCnWNb2DkQ6ReJJ5rzvWR64fzGpYYE/qq3VzRROq6o757Mm1rbDznPQnmrerx2BcW2gfRJIopQNabZ5Ag2BBaJ6PkGc1ZhsjHA12WyNGZkClcTj3sp8lqQ3cFH+CWZ7s9hQ62RdqYtNE21oBFuKecLIoTCaRkw4OGVJ3BuxOD9EZCSBiunoKEEHLGobwZEJ2ki6VAXI7NFx6pBpECC3DIHv46ZdRo53OOaaFaz62K6vOdsf69Y8c9+xaM5W7lu/CE8kdLhlni308AhzODW3iTmZcdbmZ8AWB6HBKYMMBU4ZnIrNrKj2GuJsQllKtCtIfEU2tue4yfjNcxrsvEsVq+Q2ppk4K2JOZpyMrLGqMgOZi9ChIso5yEgjYk0SOMi69ZEoVpriiomiyYyXRk5RHKPHJhCuY7vDTN2OL5066OLK8hnvBWP2ORethenYFZ91ipIor8BNyHs1Tk1voNst8LWz/nm3+3v4C/a75cSPrODxG3b8nlm04mbCHKjKjkKxU7b2i5VegTi+gN6YJQ4082YPMTszTn85x/Hf/yRPvX5yHnXLE9fwyld9hnKfj5txSFISp5TghUmz4GZ7Tptk/V3z2UTbrhUhrA2f49hOFuquHp43jc8iBCLRgCTKSF7+hpu497tX7PDedoXt+axx1RFrHdbCgYegFTB/uGGfVjD/5E/+pPn76aefzrp163j66aeZN28e3d3d+21whzu2n/g1Kv2WZt96SMQVANzDa1G6hcMTS9QbcY49ijgluH30BGpjAQAy1AhN3TpJon1LIEyjHXaKdYKok22jJGG7i3YmW2btwrWdeEZpQZSxFSvatZY12oUko0myCV4upLutyEt717E8/yhnejsxYJ0CjUayZ9V6+wsVU8NIGyhdeawDdQbcXRVctIfPb4krzx+7EllO9lL8yZxf8x15FoOlLN/cfC7dQYkoVsiqRNYEpVSAl4kgm1DpU8hEoV1re2SUPW/98QS3EBP6LrU2AQmsK3WyOfGYUV/v3Rh1cXRukGeHulnQPspLsmuY6Y3xlWKW0swOhPZxigEySSDwSTozjC/O4o8nZB7bCsUy+C7UauhiCdndifYOwXe2tjZNLex/GAF3r/wgZ7/9ZtwyqCGPUiy5jwVkVI0Z/vjzfo02p8KytkdpdyusK3Xu8PjTn7QT2Pc88Ga+vOxb3PDkcs4ONtIQCjtkeqf7ferTO19gW/iFm1hbnxye9MEVHHPtClZ99DLijIswhlpXQHqNFW8a2UamXukK2PDbelaLqOdz4ThNOwURSkTkUJsRUOlxiAPBea+/kZ99/8o9PibLj/9IPWtB2Kpdjlwv60OB7cWVaXz2EIgrYIOSW2jhubBEvgGVy1nf/PGIh+85hqBku6sbRUPTOK3YOZ8VGrQrSXyJ9mVTRDGCZnerdiDM123AlEB7kHiQpAxJLoFAo7yEtnyZvmyBuekxjsn0067K5FWVjYnHcJylrD1Gwgxbi3kKlYD2TIWRYppwwodIYDxDgibdUQag3a0QaodSxWdG2wTH5fqJjL2Gz1J7xoefiYosveuv6Vldf9+1Gt5QiSjj443ZqvXGwuru0BJXnj9eNn8NH3v09zk/9zRzvBG+s+Usvtl/DtWqC7EgyllBRYXg1SmDCkHVICkIwnaBcSHKgQzt3CpJuRgpmpzWKUX2HM0GBIM1vDVpHuucSagVD26ZQ+4XKSq94I/VUJWkeY7HrkIkBuW5k9krDSu9XAaKZczoGCRMZhgmCSaKUW15e20/2GjkwbWwX7E9n2UYtOcSlhUPRXPw5EvQRvLePdzfE9ftnGMGw4JahyEY2PF/+MBX7HMWfPFG0lLz2/dfzvx/uoEwdqgmLmGy8/Ptrtt2bX94zLUrWNXgtB9YwfGfWMGM3fHZJIF4ygr29pzWj6fxWRM41DpTVDsdEt/a+O4Np11+/Ecg0QitMSkPUafTLU7bQgtHBvb4Knj55XvePnzzzTfv02COJCzNvhXhedMmpTKwIYOHajIKcMvQVw7Za7dwBMFokmfW0GcMj8Un05azvtTak1YK1/XJqCPsfWlLuEVc99UH+zuQ+IJqu92WxrxVANK28kZpOwmIswad0hAkKD8hCEI6MhW6UyUW5wY5I7OOuU4ByO1y2KO6zLbEMEcpsjI4sMdoChxs14NxwBuD826/FMqK3LMrmPHrMrf/vFUpfTCwK5HlHflt9Dl3cNXTv8szW3oZ7yzgKI0ONDKUiHGXsOxAkBB2aDC2qkgk9lzVLsSBQ76i0Y719pWR5PENs/h7/2Je1/UgLw22IUWOXq9A4EVUE4fNUQe/Lc+kK1Ni3WkpwrYAkeQIhgNklFDr8ql2CqKMg1Pqxf/tFhgaRS+YiRQC05Zl8KXtB/9AtnDA8PP/thOo+79xOee9/ka0oyjPcilXs9zOsZzc1/+8X+NvT/oBAP3xy/jCGd/e6TZfX/UKXlL/Kn13++PIfaunAWDh/0Zc9L92Yvf4DZdZm4KP7noCu7zvLxCZtJ1wam07tZLE2uKhIQbi2Hay1CtkpRDQlwEDbtkga5oLXn0DQrNTe4UdrBIqVRs+qiRCiGl2ChddfD133mG3u+T8a3awDNvZfS82LMu/nVsmvtH8W9YLHQ4ln721uvNzu4UWtkdSLCGTBPX0eo5en6J88my011hsFmhBk9PGaXe3fDbxZL2TTzSLhbSivngNYR6inCFJGUwqQQUxfioil6oRuBG+ipmVnqDTK9HtFulzxul1JpAYnqzNYlPYyUCYYyIKqEQOi3sGqSYO/dvaoSpBGYwyEBjKEwG/3jaPnkyRvFejK2dtxYqJnW+6IqFsEvbEbOW9z76J/MM+2qFpcSMmSsy7PYWRAmesyvJjPwzFUsve6SDgmlP+mwVf/Sy5px2KCzXpuQWSoQCEoTojQTuK7EZwyxAH9hzEWJHFnZAkQcPeDuKUxHS5CF3vwHYFni9xSjG1nIs/WGXmLyL6dRe/mN0GniYTQtsaQ5hzCGpJXWg0yNCKinF7GiUEohbaBWXHhnvjKGQmjYliTBhiwhDh+/Z67rnWQulgo2H918J+xVQ++4rfv5G4IHAqkvIMRVJI8YviYvA1PE83oCev3n333AkfWwELDOWCnff77TUGR3NsG8rjpSJqRX+vXm/+j8ss+b+ruf3ev+Hxz162Ww64vO8vbIZmg682OG0YQZTYyIkksWJLXWxs8FkjrTDqVHbPaS9acj1omjy1yWcBbCPMdE47RWjZXnSZyndbaKGFQ4M9nnE/9NBDe7SdeJFUEOxs0nlr6V8OwUhaaGHfYJIEvWEz3sndjJwIE2eElB/3yW/QqJptN08824UijA1CxDPEaWnzQCODMJC4gjBnK/m0ommxhKwvXKcNcXuCykXkM1XyqSpdQZl2r0KnV2KeP8Iif4AFzjDznOe2OehR4B9A+7DFd7+NZy785+bfG+ICV2x4PcGwtYBAgLfFwylC9xMharTM8tnvA9chXNjbtNRp4cDgZVe+h3d+4vu8I79t2v1V4+JIzTkL1zEjmODOTYuRNevt6xQFMoKwQ2AcQ60vIcpJnIqo5whBGEOSkghtcErWVzdMOzw8MIu8U2WBO8wCd5iROEt3pkSYKB4vzWZ1oZtq7JLO1ajkfUaPlbStcWl7skIqTEj1W+u8OOuiZ3ZBbCeBteNnISJNsnfzgv2C2379iYP/onUsPfMqjKu47ZeHbgwHA2e+awUPfP9Kzv3jm5CJZDyQxIlioGK/45ad+vHnDMLcGS66+HqEMdxx50d46+L7mvdffNF11uZGwLe//fecGSj6lK0+bZ+1cQdh8uILr8W4crchm43HdrZNY6K35vUO6957JadcvgIZwsN/f1nTpmPZiR9DhBHUQkSS2CrXOLY2ConGaGMnpQCVKqn143hjKYwriVOKJLBVsxdfdB1oW40uwxgRJXhaI2oxyxd/0Fo2NKAkK5+8tjnui5ZMn2zuahL9YhdZpoorwKHrwm6hhX2B0ZOh21ojDAye5pBbr0gPJWhV706pd1JP47MCVGTA2E6VxAPt1X82Gj3rvNYoqPZqVFdtBz7b7pbxZUybU6FNlUnLkJyqMM8ZISdDSsZlfdRNVbuUEp9ARcxrG2NpzxOsrvbSP5Gn5PpWc64q5JiLdjVKarQRxFoSOBGFWsCzhR46/TLaCEJjuL3i8KPR0zk9u57j/C382T+9DxnaoqD539nK6rfNpPMpQ8dohDca2spsNwVS4IyUrOVvGEGliqnVWNbxTpg/i20v7+Chf9gz67AW9h7Hf2IdSMmW/7eIeacO8+TqPLImSTJ1NwEJ1S4QsV2oNYCsgVeDKCdwKlaASVzQSiJMff4FRInEKRhUVSOiBLcQkd3k4I07hO22AM4tQVy3vEOAjLUVUbBh4DJwrMBSv8YaUwSszadQyoopor6wnArq+UbJAT9uy3vew8rBLzf/PpSC4JGei7EnOPPdK3igLra89E9uAiOZWGQglDijdj6+fNGVrFxz417ve/miKy1ve+aGyfuO+ZDtMJSS/ov7CDSU5wmo2i/kVX/wcRZ+4SacGRUcpakVnN1aF25vgbp9UaQzWmbp6VfxzFvbWHPp5TvlszCF01Zrdr0z0XVOm4CRGG2sdSRlUuudJp8Fm2OofYmBJqd1ShGiHOJJLJ89+gP2s9ZYS3VdbnnimubrNzntlHNth/NOtkSWFyVaFmGHFfZ4lfKuu+46kONo4XliXy9sLby4YcKQ1FBIaltAyXMpHhtROloQbHJQVbvwLGJwarbS30hBmLfWSjIWzWqpKAdxqh7AqOwk1EiDCTQqF9GZL9OVLtGbKtLrF5jpjZNVVdpVmQXuILNUhXnOrjtXGuiQaWomQu+nK8lxX/sLa1nmG3Sg8borZLOV5uMLf/xOG763xSFfMFS7LOlxJ2yQabXTIVgTYYolxKw+SrN2b2/WwvPHL//1chZ8M+IdS/+ped/dVcHDpfkc2zHAK9qfYSjOUSik8EYk/qi1WpCRoTYqmTha43RViD2PRDu4BdEMUKx0KoIxjVO253BcUoyPZPlx6QTu27aAEzq38ZquRzgqN0ynV+Lc7LN8LzqLoXKGSslDBxrtKvyxBFkow6YCJo4R6RSO51I5bgZhTpHeVsPfPMGWS3p45HMHZ/Fi2Wmf4JaHP3VQXmt3eLHkvrSvttkov/i3KzjnzTejKva7oxJ5/MF976XvqzXuW7/o/7P33nFyXfX5//ucc8vU7atVr7Zc5Iq7jXG3pFACJKSQ0PIFQiCEmA6m2ICNAYND8iOFkNC+KUD4UoNsyxa4YLANuBdJltWl1fbdqbed8/vjzMzuSlr1as/zeu1rp9y5ZebOnc85z+d5Hi6e9zxPbJ7N6XPGM1GuvswSBHfd89HG/frtOrmyM+qPXX3ZzUyftQ29dSbTVK6RFTVR/SWnr0GYmxHhvnd8TmlNkLd5BmGLtSqZiPrAcPmC91orEWnVJajaJE7tMcAqWsoVlATjOCSpDHFGImLQjsQthFAPoTYGEetGJ2HD6keqSYN0AHeowtJzPrnH8+6ue6/n6pfdNOXzhxvLTr+e2584ets/1nC0MgybOL5RV8kRRqTXDdKV6aY8TdF/hoOMbLiyEXZCul7PRvlaPRuKmj1uzcLWhThjbzeU2bVstpa5o3TnikzPFJjmF+hyi+RUlZSISMmIjAyY7w6y0IlxkWSkR1krduiQDlWkX+XxZMyOKE/ODUiQtDtlFnYMst1rQUnN9o2dmO6A8xZsojtVYH5qECk09w2eSCFIUU0cXJnQ442Rl4q//s7bOOErG3iOLuAc5ouN9vrqeeAouh7TtD681R5INOGamSSIMEHnUwgl7ORhFGPimOrMHCMX75rx1cShw4rtX2H5jHfR9XiVZ2YuRGc0qiLIbpCosGY/54FXAacEbsUgY0sGBi0St2LwCrpBkogaOWKErWGdQmDJsyRBhIr8ppptmGeXj1MCp6IxSmIcgXYEMjLIWFvL6CiBUhkTBJgoBqNBqUbepnBdkMJ+9wKNyOdYsf7IuJjsTLIcLbyQiZU6WtePN7H8+j/ex3lv+RIyFiS5CFNxOfX628hfMhOAC97wJR789rjrzfIF9vbE82L5KR9hxTOfbdzfuW5bseZzdrmF7+eRf7yOl/3+F3DLipETBPP/6VY2/NX7Wf/u9zH/X27FtFfZ8K73sewjb9mvY5pUd2kQWluXDSDMg4x2fU2jpp37t5ZcVBqhpCVZYJIqWxRKjXrWuAqRUlYFWbOmdiqx/R6lHGQ5HK9noUYu7VrPwt5r2lUrP8yVV92yX+/FocSyJddPIoWaaOLFiCMbZNDEYUOTXGniQGCSBG99P92PRcz/SUz+WRdRlejTi7RctYPiwoSgC4I2qHYIKl2CoB2CDqh22b+gA4J2Q9iZEE+L0D0BckYZf1aJaXOGOWvuFi6Zvp4rp63mqvZnuKb1Sa7IPcPlmTWcl9rMqW60T+RKHb5wccWhyY949q3/xKVXPm67E11NWHEpFtOc/Ms3cPZv/hjpJThDDuk+SPfHdgCOHbiE7QlO1YDrINpbbUeLhjP/9rZDsm9NTI1ZP1Es+t5fNu7nZcDidC/XzbiT6e4oo3EaHUn8EchvSchvCskMJLQ9H4MytOfLqHSMqgrS/ZAeABnbc7zaJonTlnCRgUANuJhtacYe7eKB+0/FFTFn5DbzlvYHWOgOkFYR5aoHAz4k4I9Aqq9G0rXmEd2dkEmjO/JEWUmUFVS6PcLpeYSGs991ZM6XY4FcWXruDSw955N7X/AFgIkkyIPffi9rrr+O1kyFl05/Hk/GLMlt40LfQfcuZombIdi+sLH8Xfd8lJf/8y+47ZlrG/d3t97dob7szFnbGo9NJFZ2Xq5O5uyMSZYD19wy5XMb3mBvhx2aas/uiW+TS2Nasta/PZ+DbBZymdr/LKTT4HsgJCKIkeWAJCWptku0J3DHAkQYI4yxg8rEhunWO23r3X67q4NElCDCeK/n3dFUr5iUJeaXnnvDUduHYwlNcqWJA4LRmGqASRLMwBD5e5+j46ky2W2GSo+Bl43Ymra19lvfKQha7W990FH7a8M+1gZhuyHsSEhSBu0ZkowhaY85fdp2Lu5azxXtz3J5y7OcktrKdGeUNlUmLyu0yTKnuoZ2mSEnU0gkOZmiWyraVBlXJPRX80hhyDsBm4NOxpI03akiPdkCGTdE5iJOm7uN7lSBjIq4OvcU721fT8YJibWkHHk8OzKN+/oX8debfo+oPWHwqnkMXzaPaME0yKYtuQKQaFof2QFCQpyMk9K6RkhVbKhz1JWzpAwg0in8gSotrWWW3/ueo/aRviigNd5zvSz8QYH0Dkk4O2w0qlW7wCvY+tQvaLLbQ7JbqqSGYnK9MdntIentZdL9EW4xwSlrvILGLWmcqkEWA0TFdj6IJMEthLhjIf5AQKo/wB+24xrtSZKURHu1/CEhEGGCqEb2O6U1wnWsFZjjIFI+smYDKoS05402ECd28vkwwxh9TJArV151y1GdzD5S2JlEevjr72Xth68DaZhxVi/VJRWGXlVm8fc/zdASYS29alix/ktsfc0czvybCY9NJFf2MH9Vf+7eH32AB7/1XoKuBL+nzMK//yIAG/7y/aR/Pe58saz9rbtdz84Zc8u63o7oHx5//qmbINZs+Eur0okzEHTuoZEzm67VsBnIZBDpNCKTgUztuus4Vp1dCZHlABElaE9S7rZ2685oOLmm3cd6Fvatpj2q6pWa7eay01+8ivCjAWGOjb8mLJqJ6E008SLESv09rpGvAyDZsg2xuAehDW3rElrXC/rOyZE6f4STTtnC6o3TiUZdVEVipEH71h9aaNEgHHRLjJcPactWyHoBGSci54bMyQxzYqqXOd4g09UY3SpimkzjCg84cLXHVCH3gYnwxf75//7bnF/y2av7+dd7LkcWHIyBIJ+Q5BRiwCfTC5m+8U7vOGeIWzSkE7TjQKEEWhMtmo52BdXOAz6sJvYVQjDjPvjgy87m8z2PcI7nAds4y0txllfmlZnHCE53uGPd+XijEhkbEs9a24kYCpUUScXBjWlkPhghiLJ24sU4kKQ1IrG2CUkuRmckIhL8ungCT43O4LvROYSxw/Yt7ai07TqSgWx8J+qdSKYli3EVxYUttrAOTK1z1iE9qCl3v3j6HIyruPNXHz/au3HU0JKqUow9nhvusg90rGs8N6irbN64gJLxSImIhBMJtEv/tll0SjuAvPaP3wxYcuSal9oOMaPEJAIGJpAm5k12+Rp5YG2wdiVZJmL5qR9tWGzBrvYXE8mWiYNu07mTfGUCbn/iJq649nPW3z3WyCC2ChRjbBZCGNuJv8bKDEKDqhrcYmK7+wDj2+/K/nTH3f74Z2yugJRc89KbSNJql30/2rjjYTtQvuM3NxzdHWmiieMQE+tZHVSRUiAcB5MkuGu30fW8AjGf/s4M3fOHGAy6kIGdBDKusXWBpmEXqh3QKQ3ZBCcVkUQKEyqEmzC9e4zzW9ez0OtjvjtEXiQMaZcEiTZ2nT2qSlrs2jSUkz4uCQrD4twOhuMM64udDFcy9GQLtLhVHKnZOtxGe1uJnBuwvdIKwLpcN6e4QwD4TkwYK/r7W1B9HluZAT0hfee5OEVJcUaGaY8q/C2j9roaRXbSzhjbJW1MLUugNhuSTmEciTNWtRODSiEch42vzNOd2n6YP70mTJIgogi1dZC2NVmiMyPijId2ITqhQgTIzWlSgwI3o3CwhIjQ4BRCRJDg6BARuyS+tQlTsanZfWmrEq0rRRPTmMAVWuOUYxLtoIIEU7WqFhlraxkG40onsCSL59kufd8bDwA3E5SwYWitwg4zjpW8WaHNi9oWekbPCHkvIJevMq9tmB+deAfXdLyC9Y/N5sTP3kaSNtberksgEjj1Y9Z6y0hrub3o3zZDNWDF9q+wrONtiHRqF7u3iQqYU27tBSlY8Zy1GF7W9XaeqJ0LO9ucwq7ZcgDLZ7zLrq/3HxvL4LmTzimjDElmaoX3imc+a+tsY5CRRpaC2vUVRLRrPVufsqhnHMmKtQGr17QrVu87Sbe7mvZYqmdvf/wz9n9Tld3EixhNgqWJJl6kWKm/B8A18nWsf43CG1D0/CYmzEvMwhIfX/hTHiwvYriSYTidIao6VncuDEIYjBYYI0AaurvGmN0yyqLcANO9EVIiIiNDZrlDzHdGmO24pEUKOLyF9/6SK3V8pHMNf/jK3/Gqh9+B+6s8CAe36NCyMcKpJKhKTHFOBoD20waItEJrQWowbQeviUaGCTI2xHuPkWniIOEWYrQv+cHdF/D519t8sJEkDdii9qmozEmZXlacXqSocxilSHxB7Nfs3ao5MiN2ABnlAATaHe/AUIFVryR5jXE10k9wUwGZVMjtm07h4pnruXPNKQgB0k/QiUT1VEmqDmOuA7qFjtUpUptHEcMFaMuhXdi21ND5sEImBgqSMG/VMocbU1kQHWkpd51cueYSGy75YsPdV3yJDz72Ovr7WvGchP8odPD72W1kpMfm2KdNBpygIh4LswTaxZdRg1wBuPM73wDg6ssarjVTKlHqj1/z0pu45hI74LlrH97zFU/f3MiH2dkWTPcu5q6auGCiGgZg/gx7XdwdznjvbXhzXSrdNiQ6u9XgFQ1OVeMUIpzRYBJlbpRABprUSM2+xLfX9ToRsb9YsfoWlp79yUmTRVMRRUcT9e/FlHZsTTTRxG4xsZ4VjgPzZyHKARRrofCzBVcseZZy7NPf0YpOBEZja1pqBEvtNqkEL2cbhtrTNuekGPq4KuHUtl5ektrAHKdEt/JIiwxtukLVWBLYFZJ2uSu5MqhLlLTm6WAxJ/i9nJqKuX30DEaqafqH85QCj8Vd/bR5Zc6csY2lnU+iEbgiwRUJ2ki+MrIYR2jm5kfYONYOJYf0DmEtzzb6uEXr/1+eJhg6yacl00Fm/SiiWLIT7ElSmwQ04FjVgW5vIWnx0Y7EMcaGmRsDnkcwLaEcenSmyof983sx4/aBr7Ks420Qx7Q+1s/YvB7CdluH6kCRXuchEqh0CbTrkBqSGAfcokZWY5s5lCSo0TI6nyLJeo2JX5xdf5OF1hgpLZkSaWQUEmdcZJRQnwmWkca4EpP2EK15RKVqQ72TxIZ9xzG05BFKwvBowyLJFsWHxmFgKuzJQnJZ19uPKPlSJ1derBluv7r2Ft76mzfz7GNz2Tgfvl/K8775d/LItPks8PvpVAX+fvPVPLl2NqKqUFVBqt9mByU+rH/THNwxa/dGHDfIlWXtb0W05hvE8IoNVv2y4vlbWX7KR1h+6kdhaGSvn/XtY19vkCzLWt5iCZwJmSoff+I1RD9awLot0ya9Lkkb22A3BS7+oy/itLpU2+25nt/sWEu9MEGWrJUvQlgSxVMgpa1phwUyNramFeKQ1bTHYj070cZs6dmf5I5HXhz20E00AU2CpYkDxPITPsCK575wtHejiUOE1qcV3/3AF1g6+z1Mv0vxqZf8hMtThmeDCj3ZAnm/SpA4FAPf2iEZkNISLb4Xc860zZyW3cqpqa3Md8bI17qlcsLDF7mjfHTjqJiAtNh9qvh8J0XQnyEVQbpf0/bUKGF3BndHEVEJyApBZoekr9hN4tnASW9LLwC6XEYWAiCLDKcuyo42rlF/zMrkO0d7Nw4aqppgpGDWLxJOEO/ga6/5F8rGZ0wP8rXRU/nKXdciOgPa2soMzUmBcDAKorxBVQTeqEAGNkcnTtuOVZGAiqzCJWqFJKdJTytRKfiYxOa0VAMX10l4bHAWOlB4+ZArTljH/ZsWUu3PgKdJzSpSKrfgj7qoShY9q4WxuR6z3vI8/zH/+1xpbDeWUYauGUNc1rPxsL9fU3USHS2f3BcjuVLH58/8Hp8/096+ZOWHuLNlkMvaV9PtFDjFHSInU+RlwPmZdVycKgO7Xq92pzyZ6rmdwzzruPb8T3HnQ59o3F925sftRE2sSTpzXHXFZ1lVmzy48ppbuOvbuw8PrePnV35xt4+f+rHbkArGFgpOv3wtV3Q8yzfXX8i25zrJbHPI7FBktyn8gQqiEmEyHtpTaEdYdYseJ0WueelNUx7P3lAf3O1sd1Z/bKJC52gNUJvkytHB0tybuKP4zaO9G00cIuhyGak1vdfOoPu3BeRzW8hf3M+/zfklH+87jd94c9GJQClDEkrANg5hBNJJaGsrMyM3xrR0gU6vTE5VibTClQkz3BHmOKVJtrYtMs1IXCArJZkpmnw6ZZZ2qTnR72UwyREZRaYWWqVjQbniESaKnlyBjmwvl2fWkRGCdpnCFQ69SZHvRO08P9aJp2JGyylEItAeqGGDU7Xd0dq1k5fahcSTNkMDrJKhHsisNRgHISVIUMUABVYpGEWgNaZYIrdOwRwYC3dfMx9tXCNf1yDWXigw/YPM/pli4MJOgjaBv9lj2qMxQatibJ4gbAGjJE7Z4I1MyCOr2nNJlkNErDGqrtBSDcWSTnvIILZ9SMJgGB+rCGMQsc3QjHIObiFClWOMZ23BiBO7tJTgusRzu+m9IEPrhoT8YzFCKYzvoD0H7R/eqaU9WUgeLWXLi5FcqeNr534DzrW3X37vCK/qeYy53gDnpTbzu+os1g10oUoKZ1aZJFKUMh7kYjq7CqTdiMF7Zuxq95YkoA0rNu1qoTzRXmwqLGt5iyUCJ9yfqGRZ3vNXOP/j8O+LHuLG7qf47LTFk16/4V3vm3LdF//RF5GJIWhTDJ8siHOaxEuRGk7wR2OUK1FjNrTepD2SjIdxpa1pdY34rOFw1LTHSj1bJ1eWnfUJ7jgGLKpf0DCMK1KbOCYgjDHNT2QCxsbGaG1tZXR0lJaWlv167ZG6kC076xMYJY56WHDDX1GIhiSwieMT18jXEV17Ln3neMy8r4z6dD8rTvoZ/zo6g4JO4YqE7WEbDw/OZetwG9oIfDfGc2PaUhVuXvgDzvMPTD1yOLEuLnJPeRGn+1voVlVSQjBd5YiM7bZyxfhA4D3bzuP2O8/FKUPHM5qWJwcw/YN2UBqGkCToKG4sL6RAdXWC4xDPm8bWyzNUuwzP/+17d9mPJg49Lvu9zxN0OERpwQl/sZrXdv+W/95xPjkn4JfrFiIkTOsYI0wUY8U0UdVB9VtbuiSlMZ5B+AlUFM6wgwoBA9qDsDvi/FPWA/B0fw8ZL+S8nk08OTyDdr/CxtF2Lp3xPOfm1/Pf28/jmedn4m3zECcXuGzuOu5acxL5B9O4JcNDnxkfOLxl06UArBnpRklN3gtYs62HdX8y9YR5E03AeI7KwWLZq/4cgNt//H8BOOnrf8V//tmXazZ749hZoXIoMfFY1sVF1kYdfPTp1zD2XDsigXXvHb+Gnv7+2yjO08z/SYx2hP3OZwRxGh778nW7JUxgz118O3f7XXnNLSSexKkkGCWOCYLjymtu4Yfff+cB16NwcPXszlZxhxPHAsGxvPsdtZD0hNtH90wmNnHs4xr5OpyeadDWgtnaS/Xik7n0C79mTbGHTYU2tm9rx+nz8MZsc0WUh3BGRKa9zIldA1zSsY6rc09xggM5aZXXY7qCL5zdKqX7kiLTlG0m2poUaBVu43UARV1ldSx5OpjJ+qCbB4fms22shTixamiAl8zcwiVtz7HE38qltZcO6hL9CTxQWcg9wydx39OLwdEIaTCjLt6IItUPThlkYq0V3aIhTgvymwO8DYM2mDyM0COjoI09z6Hxvw6VzSBmzyDuyLL2T1Msu/BRnhyewf1X7xq03MShx/Lud4CSkPKpnDKDoE3hVDRxRhKnBIlnCRaMzfrrfKyAGi3byWgpwVEYz2kE0E+0JUpyviVdjGHwtAwtm2O84RDt1BRcxhIriS9tlksxQpVDovY0zkgVOTgKScL21ywkuGoM55cttK+NyWws2LyWJEGnPIynkNWoaXfZxF6x+H8+TRIr/FTINfNWc1nLs/xs2HYffXX2A6yNitxXWcSaynS+8/D5fOjSn/GO1q2T1vFwEHHDFX8ARrPhDXOY/61NDFwxh8Frq5hEMGv6MMOlDE/9/g2H9VhO//EnKWzPYxyNcA2p5z28UavSeeqW6yYte+lrbiXMS/IbqyS+Imh3qLZLfvfPB1bPwmQr353r2TituPfHHzg0B3oQuPaiT/M/d7znoGraJnbFqlWreMUr/5jzLj/6nzHAr1fdzC9WreCiiy462rtyVNFUsBxC1C9s9duHC0nGs/LDYwD1zuipLGiaOH6Qfmob6TnzAVh/3zz+efosLs2s5aeFM3hweCH9lSyDpSxhMH7Z0EYQeSEZGQHHHsGSEoaqdtkat5GR/UgSIhOzIa7SoQSdEwiWq9ue4o7kXFKDkNlexTgSkctCpYouTbBIqPkNGy1BKSpLZrLh9xUi0bgjL548jaOJay/6NKLVTgjL2PDgmgVoI1g/0mEX2JHCHRVsn+dwyqKtLG7v59HtsyiHEq/PRXsCnASpNDoNOh9hBCSRJJ0LmNFSpN0rs6Oap7wpT1lA5+xnuLh7PSNRmpSK+aOOBwGYliqyLhcS9AjmtRZYV+gkmwvIvWKUS6Y9P2m/y7HHlmIrO56ahjuvyIJZQ6zZz1S4ZUuuRxizx8nP5Sd+EIRgxZrP7de6mzh2sSfCYyJhIaev2eX+RNz5UP01lmB5ze89wGc2vYIfnHDnXrdzqDBxHxc5ORY5IcvO+Q7v6LmIr547eaL9iVuv45wV1zN0ahctGxOCVhtMLSP7fN/ZPtMeCSbVX7DnhpeJj195zS1UO1xUaKCSjHvPH2WsWvlhXnbFDUdt+yuevtnacNRuv9BhkqQRhHssED5NHDz0yBjSccBxSK/ewff/62WY88YoD2ZIb3HwR8AbM4gEytMEie9QVilG8ykio8iKmJwcV2C7Qk5pQ6vE+HVjltrVIuzBIMvGqIvnqj1UEheJIYoVQeCilEZKg1MLcOtQZcBa0vYmggcrC9gYdDESpiEWGCOhnoOYAMKSK0Zaq1O3aNAuxCmFJwWEGpLE5tLEMcS1Dup6doaQyJSPmD6NcFqODa9I8bml/8Xj5TmNfWri8GJZx9sArOVWnOAPVJCxT5RzCLOSzEBC4gpkbHNSUiPaWg/VSGGUwihhyRUl0J5jhVnaYIzNGQKQ1YRpD41SmZW1eWT1HE0liNPSKl1cgXElSdZDu5K4LQWtPklKUbqsxIyWIr0dLaiqfbHQGjFWQgJxKj3JinNfsDT9BmBqZcrenm/i+MSaP9w1j/G1jNezJ7o5TppzH99bdw7vXHY/D1Zns+jut7D+z8Yzby4AVtSGWeesuJ7wvmm0bAgYfT6N0HD/nx85ctgog/A0J83tZa0zDeeR9C7kCsB9P3g/l776C8ggtt/vvL1uA/Sf6dP92O7rWZh6bnGiYmXnejbxjo2a9s5ffZwrLnjxuhc08eJCczbwEGPVyg8fMnKl7pu+M1Y+8LEDDgquD5gPBRrkyhnNC+bxjpX6eyS9Oxg9ETZfnWHWfSFf/u6r+ObQJfQ4Y2wca2ewlKUauOhIoSNJEiniRJJoSVkfe+QKQFkL1lWnUTUeVeNQNpK7qxm+Pnwxv6hMJzARRV1lTFe48dlXkOmF1nUhaqyCKAUQxZhK1a5sYpCjkEjXwZQreKMh7ojCeJo1H9u1mGri0GPi9c8t226hR7fOYnQ4QyVwYXrVWmcMOXgy4U+mPcT5szaBsRkQRhmkZ7s3/WzIefM38ddn/oK/POdePn/m9/mz2Q/RH+R4prcHowwmF+OKhJe3PMqfdj7INZ1PsTaczoOVRWSdgO7WIqn2Kie39vHphT9k1blf428WrOKWnscm7XenXyTREhlDyovoSRWY0zW8X8cu6iG1wPJTpgjXlLJJrryIIKevafztjL0pX27peYx1P1405esPF3a3vX+e/St07+Jd8mR+u/wm0KAdgYzAqUK1G+b/861ox5IsEwmV/anDVq38MA98530YCWGrS9DqTNlFuDvsz7L7i5/+6OiqIVc8ffMhJVfqYbU742DIjKW5Nx3wayeiTq4s734HMps5JOts4uhhpf4eOgwhk0ZM78YMjTDvv7fS8Z85cusc0v3WCtYrGJyq/T2VocCEipFqmq1BG1uTPMO6TF9S5KmozNORoKiru91ei/B5IqywIS5MenxrUuDXQcwvCqdw38hiHuhfwJMjM+gt5SkXUiQDKaLtGYKtWR7tm8lokqY/ydKXFAHYHLfxbGUmmyodlGMXWVaISGIiCcZamqqqzZBRocEtGhDgFQzeqFVeE4aQ1OqGunpFGxDS1rLpFLIlD2MFvK0juCXBSJLBlQm/uOrWw/gpNVFH/fqDUphqFVkKiHK2s33wZQG9FyhGTpQMnmkYvDik/yxJ4it0PjMeKl8j+YyU6JQibPOIWjySjItIanZitRweERsSV5KkJHFOEWdkI+/CKIH2JMaRhK0OQYcLUtD3Eo8L527g6p7VaAUiNui0i5GyljXhYBzZ2I8DQZ1M2RlNcuXFg53r2SVeL3mp+G1pPjpQnP7+XW3DAO4/6z/ZuCyF91wva66/jtUfP3Lj8SdedSMb3/oB8o/5PP/APLK/seGaL33trSyf8a5dlr/vhx9AjVXx+6s4FUOlGxbfdBsimbqe3Zeadnf1bJyR+1ynHs56FuBHKz94WNf/ooY5Rv6aAJoEy7ENIbjm4kNrvWUOovDZE5rqleMfJknIb4RgRozXV2bWLwL+59GXUNApYi1JtBhvTNICHQt0ItFGMKiPXLL7b8OQ2ysev6zuvbOuN8mhjaA/th2FGaFZXZ3JnVtO5rOrl/NcHJGTKT68/XLKD3YiYwjaHXTKgyjCBEHDx1U4LkIKhFL2z/cRXR0U5mdIMoYNbz825JkvFhglUFVNYY6kOj0hiSRCGcKyi3I08uQCan6JFrfKS1MDvKLzUdyWALmoyGXnPMNrlzzGOfM3c+381VzT+RQz3WHe3vY4L89UWej1sWWslXAgjapK3GxEMfEZ0RlKxqPHGWWWO0S3UyCjIjwVM7djmKwTcKHv0CmzbI46dtnnt3Tdz+/Nfgp/8RhXzl7LNS1PsHF7Jwv/82bmf3PfCJEVz3x23IN4Cs/VFatvYflJ+zbBvOysT+x9oSYOGa686vAOYGD35MWyMz7WsPXcmXR58vNHjxjeeT/l9DW7zZh57O+vI8oKZGRwymCkwRtUOFVrwwC1weEBNlzf//33c98P3s8D333f+LqmwJXX3HJE1MovRExFshwrMHE8KQS3ieMYRkPFqpFNkmAGh8g/O4RTAadiiRXtQLVDEmfAOPb3NIoVm0vt/Kp0Io+FWZ6PU9xVPJV7Sifhi90bP2gMW5NWvjVyPuviYuPxDulRNS5jcZreSp4wdpidHWVxez8mUKT6JK1rJLn1krENbdw/cAK9cRsPB138sJRlxfCZPDQwl8f6Z7JtpBUZCGRVIjQYOYFYKRmcslUqVDskbiFBFargOODaCXKTJJZUAVRrCyqbQbW3Irs6IOVDOkXSmUMreLYygxtO+9Hh/4yaGIcxmEoVkUoxtqSTbZdK+s/XCGFI5lUonxwgugKmzxghnBlRnO1hXIVxFTrjozMeJuWQZF1r95WSBG2OJWI8hQwTm9eCVX7L2FiSrta8YOrTAwKrhvIkiS8IcxJVjuh8OuZ3/28JX//FZWS3Q5xVBO0+cVsKk88Q5zy0I5FjFaui3kfcUfn2HgmUOyrfnpJ42R32Z9kmDh6HsnF3dzh1zlY6Z27hV588H7/XbZyny+e8h+Wz3g3Ymvb3nnkt57xsNSs2f/mw7s+e8MSt1yFjSFI20/P+//d+Vmz/ym6XXfH0zei0g1s2qABUUPsu1tx6r7zqFkR8YDPWE+vZ7HabzzRVTdusZ5to4tCjaRF2FLG3zJYDDb7aEw5HqHEzf+WFgZX6eyxr/QvC3OkMvqSV9mfLZNZm+e8Z53Lh9A0MBjme7u+hrCVJJDFakESSSuRS1S4QHpH9nKNCfjiymDMym4HRSc/9d7GdQpLiZH87IzpDf5znxPQOytrn+bCbc3KjzPYGGSumiCsuc2pBkL6M7aBCgIxBlgKoBhBGoBTCdRCOA0ajoxjpCkQmTWVRJ2Fe7rckvomDxz3/+0Fe+tpbKc3VzDqhn96hFnzf+gZVSj5eLua6k3/O21q3Axm2Re24bsK5MzfzF9Puo1uVeCC9kJnuMN2qyOaoHYVgTFf48fDLiLRCtoQkvkNnvky7W2JH3EpGhsx3+2mTAW2yQiFJceKsXiKj+L8bL+DC3oW8e9EqTvR38JNyhldmxu3lepNWfBmxuKufJZmt/Ka8kOzjKcozDKT3f2Z4xeqpJ4H39NxE3N4MH3zBYmfy4vYnbmqQK4dCrbL0nE8CHFQe3J7szHbGQ9+YPDl/wRu/RLnbBj2jbVAv5ugGex4q1DNYjhcsO+Nje60FV6z/0iHf7qG28rp9+GuHdH1NHD2s1N/jWu/1KCkQ+RymVEaMFAlbutCOID1oCPOS8nSIcgbjYMO/DYRasabUQ1W7zPaGyMiAE/3eSbl9E+ELl1PdQf5h6CrmeoMsaukDIC185jgFur0CD1bmkXIjevwxfBnzVM90wi3tOBVr74WBkSDNtqiNjZUTuGfrIsaGM1BVoAUykEhAVQQYhfY02rWTcnXCRTsQpyBJS4znWLVCEGKiuGElJXwfkU5hyhVb4yYa0inirjyFBWmMgkpybKrSX8i4ffhrLOt4G3p6B1svBxwNmRhTdjCuYcasId42/37uGDyNvqe7rRrbU2gl0J5q2FvGGUXiS4y054RVrmiMlJaQkRIZWCWTCiBJKaSS1kpICIwwxBmFjA35DRXCdo8k7eIPR7StE/ijChkZm9cS2lxK4zkIA04xgkIRfG/3B7kXTEW07I+Cpal2OcKIk70vcwhw3w93amKMY1Zs/wpLfnQDrz9hMT+/8osHtf6l2TcCcEfpWwe8jhM+fxtxVwLZhA1v/NBel5/YTHTJ675IcZYk8UBE4+PBK6+6BacUcuevj+9muKtfdhP/76fvPtq78YLFfrqNHzYcG4Z0Rx9NguUwYF8H90dqAuCal950WMiaJl54SAoFZq8ao7AghwwTpv0mZN6r+vn/Zj7E54ZOoNMvsq7Qxfr+TsKKiw4cRocPzk5jXVxkkZPb+4I1TFM5Pj3tyd0+92hpLutK3TzsLaDDLXF5yzMUkjSPl9vYLDqAUV6VGeafu4d4bv10+nVCi4SXtqzhf9Pnk92RkO6tgqsg5Vs/ZLCS99rgVNYULSjFtkvcpi3YUYSqamTFpRK5JBWHctWhtbPIjJn9JFqyNLsGsOqlSzNreGjmAp4YmMEHhv+QJZ3bWZAeZKY7TJsMuT/s5kc6TWQUaRXy8jlPEcx2cURCl1vgJekNjCQZIuNwohuwOVbkZcgbW54jJ1N8r9hKb18rYtTl78xV3HLy/9tlf2c6I9wXndS4/4v+E3HKkN4hqHbtKii98qpbWHX38T1R3MRkHK3Pc+Lk94GQK7uzGlvxv/VbuxIs+1p3TMxj0b2LufaP3sRd9+5bvfLgtyYQLjXXwKsvuxkRGq668rP7FVg/sYNvb6+p+2MfTiJn1coPMzY2dljWvT9Yeu4N+xRYfCQbbZZ3v4MV/f98xLbXxPELE0eYoRFEJo3RGoolwiVl5KMZBpY4aA+qPbUJwkQgQkkUOUxPF7i49TmqxhINF6af53QvvcdtzXXyOELzgx1n44qH+b3sFtplhkVOjpNS2/nP8rlUXYfvPfES2jtK+E5MoVOTpCRRa0J2ZpFT2nfQF7bwwI75jG1rwRlRqBBEYkmUxAMVggoEYZsk8SFOC5yqsZ3dwuZThTlJ2ndwyiFojVAK4zgIpcB1MEGAiWxDiqgGkMswcFaWoXMiNv6f9x3Oj6SJPcEYRI20kFWJThycripR0aO3v5XC3BRjkY8MBV6hloESa2Ri0ClFkrZB9YlnzxcZg/YkkXQRBlRVNTYlEo2IDcKztaeMrb1c4kmSlMAfsSqodDEgmJZF1iZ9/bHadhODMFiypmZBpmrnG8GuDXfLe/6qqQ58AeJo2RHXlSHFgQzX//5P9/v1J336NmQ4rgSUf3M2TmX3y+4r+fLcB6/jw4//Ia9p/S1veHAtfVdF+9wE8svvTbju1riUa8//FCJJMK6y6ne5b3OHx1o9C3DXvdcfEzVtE00cCTQtwg4D9ucCdSTsQprkShP7ipX6e5hHn6H152uRo2VS24vc++CpPBWV+VDHc/x/Mx/ieyf+P6a3j0EikGMODHs8WZlzwNvsT1LcXVF7X7CGQV2a8rlXtj5COXa5d+Mifjs0h21ROxvDLsbiNK5I6EuKuMLhb+ator2nwB3Fk6mYgMVuH1FXhAoN2rXew6R8a6+gFCKTRnhew5JJ5nMMXTmf/DkDB3zcTRw8hAHjGjyVYLRADrsUnmtn+2gLrX6VzfG4dd1ZXoqr2p9h7Ll24h928+CPzuDfHnopvywspkNKfBnxXLWHxEgub3mGy/PP8M7Oe7kq/xTlxKdblVjkDjDdGaVTZpmuYtZFneSk9b/+8eBZOH7M9MX9XL/4Z1yV3rWr6xzP43VtD3FV5zNsC9tZu3YmMraZEqmB3fd9XHXFZ3f7+M4WYBf++aHvDm9iMg63P/GRwKFQruy8Dt27eJc/o/atj2ln4mZfyZWpcNc9H210BR7IYHFfP+PjXSGzr9gXcqWOpWd/8vDtyAQ0yZUm9hUr9fdIikWSoRFINCaK6PxZmsrpFV71J7/kFa/5NZnpRYxjkJFAlSRR0aMce1yZXctbWtbwe7k1LHZtP2LFBOg9+BD2pAs8vXUGn37s5fzN5uWNevVEbwcLugaJE4l0NS1+lawXYnIJYVdMflaB9qxVu87wRmlLVSAWIGzGij8MbgGcCsjAkihO0WZShS0Q5GXjmltXsySZWiZGJg2+Z61tc1nEtC5EZ83C1BhIp9jy8mmc9xeP8vWr/u3wfRhN7B1aU1jcBq4GA96IIip6uIMO/toU//j0y1i9tYfMDsAYgk4PIwSyGqLKEaoS14iS8d/fxJdoXxKnJUlKNRT3xpHWOk4IEk8itEFVrSoKA24xxkhJ0JMlbLEWY24xwRtJcIsaoQ1aCYwj0GnXWpAVazPUU6j6l3W8bcpDP1R5Wk3sO+q2scczNv6fA8v1cAsgQ3u9fObT1xFlIXHhvLd8iUv+8FYu+73P89I/uJUzrruNLX999j6tc/4/3UolcTnBjRgJ0wetsL3zoU9wx29vxCiJjJL9rjub9WwTTRwdNAmWo4xmd3ITxxpMkqDLZRgdQwyOcvI/DvDH//w+3rTxZXx5eD45meIXS37E/Dn9oMEbkazYdipbk8LeV74bXOg7u52Mngof334lnxk4ebfPDekcbV4FRyWUI497hk/inoET6QvyuCKhagxroyLznUHO79lE1bikhc+Pxs6m7QkXGWpkpJEjJWsRFse2GyuOoTWPSKeQnR1sfuOJiD/rt+HLTRwVXPZ7n2d4sYueFlAOXVQ6xjiG9HZB/HQr24stbIvbJ73mzTXbDrdsyG4z+NtdZngjtMsM72jdymtaf8vpqc10qyIFnWJQ+1SNiytjlriZRgfr1qSABF6esYG3DwcRj++YSWu+wtKZz/DqrJ1UqRqXigkm7cN5vsv2sI1v3nk53b9SOBWDDG2n4c5YdfeHkZFm6Tmf3CUrZaIF2Jl/cxuxD+e8bffhj00cGhyoH/KxhgPJ3ZlIquxOzQLw19vOb9y+8zvf2O9tHErcveoj+7X8/gSJTnzNRBwMATfRB/t4xR2PHLhVXBNNHE6YJLEZJHFM5z2baf95mu/efTGRlnxoyZ2ogkIGAlUVyBGHp/p6eDSYQU6mmCbTFE1Ib1Lkxr7z+f01v8c1z7yCzw4upi8p8lRU5n/LtlGoxxsjkwkQ0pBWEQ8H7QQmwhWal3auoyNX5poTnmVxaz9D5Qxy1MEddAhCh55MkdmpYRIEQeKgKgKnUguyD2ukStn+x9BoztAuRDmIU4LEF0Q523yiyrGd6K6HlyeJtQUrlKBURrgucvZMnnvnPE77w2d4X89Krpy/+mh/VC9aLGt/K6Knm8IcBYlAu9bysv13Lq1rBel+SJ7L461Jkxo0BK2SSqciybrWDg6rKjFKEGUEUdaSLDLSyNigAkuKIARR3iFos1ktCHArGqEhTkvilCA1kiCDhLgtRXGmi4oMQhtkYogzkmqHojzNIc4q4qyL0Bq1YwRGC/Z7thuCZcWOf4IkYWnuTbslUyZORi+f9W6Wz3nP4Xmjm2hAjBT3vtBxgAPJ3Xny89dhahaLSz50myWzI6i2C4SG9NYC1XZJYaEmbIe1N5+113XKUPKz55bwmb6X0uZNIYc5AKz85cf2q/noUNSzV125++a+fcELoZ497mDMsfHXBNC0CGuiiSZ2wkr9Pa6Rr0M4DpXzF1LuUsxeVWT7/Qv5sX8if/dHkvWv+FdWLfkxi7a/BW9rim2bOvmfOafznvYNk9Y1rMt8Zegl5FWVHVELf9r24F5tFvaE/y2nWLVhMefN3gRdz056TqP5xvZL2F5sQUl7kV89PI1CxWdm2yjFJMUTYTfbonbyqkolcRmOsmyKC1yQfY6vn3cRuS0u/vaCtQOLazPeLXnM4BAMjSDSKbb+4TzO/oOnmJseOuDjaOLgcOU1t+BEmijnkm+1RazRAhEJ4iyEbQmXTH+e5ZkdQGrSa9XMMsnjGVQI4bSYd7ZtaTx3lmeX3RQXqKoC3TLgnEyVs/xHeDaSnOxmuTQFPyn3cLLbx7Sa8OrmzS8n7UWc1N43aVsXp4ZIi10t9H7Zv5DOx2t3arYeTFGX7IsCMf+q7WzZ1knbQwfme93EvuHun+/fpP2xigPJ3ZmKVJmI/2/mQweyO7ts51CobI4GDqYLsG7T0EQTTRxa1GtajEDkWjBDI3R/d5RpLXke/M25rHjtqeiUJrtFYSQ4ZUE5m+Xe0ZM5x1/FU2E3/zt8CYNBjofXzCf7rIdThW91zOFf57+U+bMGOKF1gKwK0EYyv32I54c6WTfWyS/cU+iPt9If53lgcCEL8kOclNnB78bmUlzXRv55QZwBrTSdXolWZeuZMHZI9wn8EZurAtgJwNASKgm2+1pVIc7UsjaokTGBtQ0LunwyxQAi2+QhpF1ID9jaVWTTPPvubq6/9v9x38hiPrzpNfzgwMXoTRwElrX+BRhDNL3FZkFWJcJAahAyfRrtCSpdglQ/+COWTIuzlmyL8g6qEiESQ5JyCPPSkmxa4FTt+SBDjVaCJCXRjrDNIo4g6HBwKgannKA9S5xgwB0NrSJKgD+qMVIQZ1xG5/sMXWYbi3KPpnAqAu0o/AEDlSpIgdBT9+7ePvrvjdtL02+YMi/FdLUhxqZ2K2ji0OBoBsIfShxI7s6Zf3MbnrHZq0lqvMktyUClUyFMK0OnwalnbuSZLdPRhb2Pr4wyRAMphuZl+ea8e3nrb97M1879xn7v27GA/W1SmohmPdvEix1NgmU/sCd/wv3xRtwTrrryswd1UWuiiUOBlfp7XOv+CYWZDqVZ0PFojIoSZCA56WuwZNNfoc8qwLBHpRv8Xocfbz+dme4wroh5sjKHVqfMnX2n8uzD85GhIGpN+MH0Mzh/1ia+OvdufDE5RHNQl+iU2UmP/aIquMgPG8vOd4dwnYR1I10wb/I+v23zpTy2aRY6VDjpiGrgEo34GGUopAM2VzsYjdNkVMhQkmVzsY2+ao5ni9NZ3vUEi2fvoFqeiYg1KGVDGqWCcsWGgApB+cw5uNcMcEHr8/xkxxmH9TNoYmrIUFOa6aMdGBvM4mQidFUhHUO8uMolC9Zz47QHGvZdE/H+M1by5UdeTcfqBK9/9z+BGrgkJannt8xSeb5d7mJE93Kh73B1epi0GM8NKscuJ7X3MSM1yl29JzHbG+IvWnYQmd1biczLD3PvOTPoeVBgBGg1YRJlP1HZvoAres7ie2M5EB6XvvoLu4ZBNtHEQWBfyJUXIw61Z/WRtmm4+mU37bYrcul5N6JdxcoHPnZQ69/X/JYmmjjcaDQO+T66YieIzfAIbT8t0P67HuIOgRqrUF7QRnGGQ5J2eLh/Lt/yzmddqZv7nj0ROeLSskHQvjoiSUlSQxKzzmOwcxYbF8xATqsyvWOMgUKWaGOOLUErG2Z3sfXENjrcMk+umYPKRuiFglgrm5cSg1uEke1Zfu3MY3tbC0PVDP1rO2ktg1MxJB5oVyBjm8VSt3BCQJS3t23ehsGpGsQwRDlB0KpotHdIaYPtoxiMrXErF5yAN7PEQ2MLeWDjAta+7uC+700cBIxB5HPEWRe3DKl++3nnN2sSXxC0ChIXWjZptANBqwRjibWwReGNKJzRKjJykJFBBVa94pY0KtA2l8WXYAxSgFuyrgFR1iHKACh0rWHIH9WIxNolq2JEKtZErR7CGKI8nDC7j/V9nURZKM4U5LeC9h1keysMjdiViH2zCN0dXvaqL5BKu8g4zdLzbuSOh4+M9WQTLx7M//Yt5FI++S0ap2y/H8WZEpFYO8bEh6GTFUlLxPODnUhHo+O9n9MmH6P6XU7ObQdgfaHjcB/KIcOhnn9s2o418WJGk2DZD+zxYlFr2JgYLHUgaJIrTRwrMElCzx2biOZ2IeIYtERECUZK5v1oiLHVbQycLnFPH8U81MrmgXbuaTuJM7ObyaiArAzYMtZKyzobwFmcrQjiLPdXFnGdE/CJ6XczXY1PUu9Mrny87zQeGpqHNoJTW3fw5ZkP0y01p3bvYO1wF58ZOJnfb3mEGza/ikfWzMPtdVECdF6TKI1JJLKo0GlNKfAYi1NERlJMfEqJz+aBdowW6FCxo5xjy7ZO5niC8qJ2vOEQZ8MOTLkmn9Ya4XloXzL0XAd35JZwx2V/dwQ/jSYmQnuSoVMlQXeCHHaJywqRj2npKXDe9M28vutXuyVXBnWJV+bWcsuSKuE2n9bnDJ8aOIVPdD3TWObZqERkJv80ajQznWG2xu08KvrpVhHTpEJjWFFuY2ZmDFcmPDE6k6297fyXOo8L0t9liZvbeRd4OIjo9ossv+QRfuacBQZa1yhUdADvQ+9ifOHy+OgsxCN5ytMhTjd/1pvYf+xMohwJFcnxTtxM7NI7HgeTU1lOxFkXpOCqKz6LkeKArWyb5EoTxxp0fQIYAIMxBrNhC6o/jchkMKqdXG9M2/MJ69u7+G1mLmGNDAHwRw3+QJW41cMpCxACryhxqopRk6KQCYhDB90egZ8ws2uUWCt+tmYJbU86GOHw4OZTkYuKaE8Tp2yIfWarolxs5xna8Qehq8/gljQI0I6o7+640lXazmsja3Zgof1zyhpV1RjHQQXWDsqkfYTrYEbHMLoWUO44yNggHsvzC3NCk1w5iliafgPCc0nmTqPa6eCWLXsmI4MKNWFOoV1LrhkF5WkSpwJuCTC2QSdJO6iCRBVCvKJHlBEIA+5YjNAGIwXaMRgJMjSgQQWaTF9kzyNXIjRke2OrdvEURo5bjDmlmMSTJD6s3TCd9oc9Eg+KCzQdaywZE3XncHXNJqawd+up3akOTr7xNtwTHGZuTagsbGNsbrOebWL/MUk9oXe141d9Vo0iI/t9cCoxiediJpCMWkHY6hKkYtxUjDOw51SF03/8Sfy8Iqgovrbiav597sUkWzNwxSE9tMOGu1d9hCuvugWhzQtGrf9igjhW3LmOlf04ymhmsOwB+yNv29nr8MqrbjkuPQiXnflxlp/6UZYveO+UyyzNvvEI7lETRxPxpi04j61DVKOGl7OoeSwOnSwJuxJKYyl6rtrCq096gnanzOmpzfxh/nHmuINUqh6JD4kvrJ1BWdLdWeD/dN83iVwJzK6zy//x6Plsum8uGx6ZzU+fPo3/s/kSflQ8ESkM1cDl28+cz2vu/yueXnUCmedcvBHQnkEmYIoulJXt+IsE5aLPurFOnh3p4ZGh2dy7YRFmWxqxPYWzw0MKw0nztjO6wCFokYQtru0oUwqRTiFSfu2YFReet5qU2k1gRhNHDHFa4RTBG1TIUCC0YNb0YS6asYGX5DeSGElvUmwEzNZRNZrbSwt5yYLNjC4SiAS+9fgFjOlxr9zBJM3Piqfz5eH5bIptrtBTYcDmqJMfDryEH4/ZsMO7qxmu2/ZSbnj6lfxq03xOz23hHbPvob2jxLot0+hPJhOGdZznu9w07WFirXjP5Xfy/Gu/yth5VcLWA38/BqsZgi5D1KIpzZk6gLeJFy+mCjOth9LXUb8W1x+bigTZ+Zq98/1lr/7zve7TVCTO8Ui8HA+13pVX7ds+3v2Lj9pmHwHCGK66/Gb7+uOspl0+929Z1v5WlnW9fcoA5Wu91x/hvWriaEIHVavg2AkilQLPJbOlRKVDIYOEmb8wPPPAQp7v60J5CSKG9ECCKlRwhyp4I9Z6q9ylKM4Bf06Ri2euR8eC7LMeqafSbO9vZWupBffZNK3rY/u3FuSTOZwxBdJO8qUGoWUdtD9ryPYa3JLNu0j8WnB9UvszBpHYoHsVWIswb9T+x9iJ7iQl0UoQp2z4OK7CeHbmUEhpFdrG0HeWR9vFfaT98Ii9/01MASmRxSqqqlGBwStonKqxdl7GZu/UCRUjQIUGf0STHkrwRxNLoKRdRJKgqglupUamRAmqFOENV/GHI9xiglNNkLHGKYR4fWW80RAZatzRCG8kxC1aUibOKpKMA4khzjpUu1zcIvibPZtRMWDIP2+nkcJWS4QEs9sonNaN6Wg7oLehbY0m16sRsWZ0nkNl2iF6f5t4wWF3uStXXnWLzQ7RNo9IVRJEoiflicz/1udwStZ+McwJory9Nmb6IlJDCenBBHcsBmHnLfSoR1D0mPf5R/a4P0+86kaCMR8yMU5ZkPp1lsxWwWkfuI0lHz5O8jElGEccV3VeE00ci2i2BuwBB9KReDx1MV79spsQtXFG3effSIkgsZZIU+CO0rd2eWx5z1/ZALsmXjCoWyokhQKO5yFMHuN7lpYVNgRO5CNSq1NUpnn8qm8+AB/rfgRf5GmTBaa1FdhychrSMVQVxIKzurZyjjfuZfp/Nl/CQ98/A5HAF9/5r1yTtuTF7JlDbClOQ7aFuH7CI32z+d2O2YwOZ5FDHk5RkB0EJERZ0FmIWxJEKFBliYgExjGW1e/z2SbacFMxQclD9XmkhgTVHo2ZXuW09u2seGYJPX0afyQh1VcG37cB99mM7cZqzVHpMbyy6zFef8KDR/zzaGIccUoiI8htgcSFynRJGCsC7dAXtaCN4KcjZ6GNZGG6n1NTW8jLKonJ8kR5Nj2pMX7bmRBtV8jNaS5/5M18+pQfMdcZ5p93LOPxHTOpVF3unXUip7VsI6+qPFGYxRN9Mzht0VY2x2lGkiyPDc5itC/Hhac+z7vaNiCRtJ36XT6+7vf57uD5XD7rQYq6uouaxhUOo1GaLmcMgFed+jg/Kr9kv96Dl9/7N/SX/5DBp7vwBwQqbz23tbv31zbx4sPtT9y0x+d7kyJ3l+fyy7ETOSmzg/e0b9gjubImitmaZFnkDCEFtEkxyfbxzl9/4qD2t77tYzmPZcE/fBHzapcN73rfcTEg3V8lys6K6mO5vl2+8P2N2yuev9XekILbh79m8w2mqGnvDP9z13U169kXJOo1rUkShAKEBG1ACshn0RkP2TtE145h4tldpAZCZv7SZbvJkrQmkNUkniCc3tJYZ6XbYfQkQ27xMH+04BG++ewF9Nzu0/rsKCJK2DHUwZYLFdkKJJ5EaIM/pjHbJdq1FmDemLFkprZqgTgjMQ7EriVJhDZWbaKtPZhTUzhoxxIr/phBRsbmcWQEiedgFKQHNCQGkgRRjTBKITwXqgEinaI8W/PWub/lulPuPGqfSRM1CKuGSvdbsksGMWF7ijgtUaEl3ADcgu20d0saFRpkqJGRQbvCnsdSIoOEzHaD9iTOWIAIY0g0surhuAqjBCLWiEoEjsQkBlWx4y5ZTRDGEHSmCPMSozw8IXBKMVFG0rIxITWsqHQJVBXymxKijCDKKLyxmCSjKE9TpAZ2zR7cG5ad9QnatEYUqxBFxJkO4gOP7GziBY4pc1e0QcUaESfIaox0JEnG5YqlnyPKKWb4DlHa4I9a628ZG7QSqEjjVBKCVgcZ2OtuphdkpHjm0++HfegtTq33iFoN8eIywahH65MOQkO1C+Z97QuosuT5v3nfoX0jDhEWfvlLmFe5rH/3+w4q4L6Jo4TjUDlyww03cOONN056rKenh97eXgCMMdx444189atfZXh4mAsuuICvfOUrLFmy5Gjs7n6hSbBMgVf8/pe49+c37PL4zp7bh9qD+2Bx7UWf5s5ffXyflr3r3usnLX/tRZ/GpF2Mq5Cu2mX55ad8hBXP2Ivu8vnXQanCiv5/BmgORl+gWKm/B2ADQgcHkZkMxDGyrZU5Kz12jOYRBsz/7WZktqA0N+GUte/iDZf+khu7n+Le034Ip8EPS1n+afPlVGKXHdU8G+IC8508Pyln+N3/PQMvArdkePuqN3P+KetZN9JpdyAfIx1NLh0wtKOF9PMuXgqiFt2YTPaK1i81ajHIikRVBaoiCKYliFwEI57t+NuaIkwZkKACQdBuyC0YJZ8KWF/sJJUJGTwtRdQC2c2tzP1RAL4LQURw6hy0J5l1j+ajqdfx8d/exLo/3nv4eBOHHtfI19G6aAH+SCf9Z3qEFxTJZQIGhvI8UEmxqb0dbQRbh9oIxnxSW12c0rh3eXmWJt0rmb7eUOmEuDVhZCDH3/zsTZjWiHxrhTiRSGl4ZO1c1nd3cGL7AOtGOrls1jpmu0O888k/I/h1B0GnQbiGB9cs4NyhP+Xlc57iv+96KUlXxN/Ov4uFP3kbhBLVVeWM2dv4/qKVjeP4rwWrAHj7lot5+Ntnkt/1krsLlt7zt6zeOB057KHKC2h9znDCo6OIaszIWR2MLZDszSZ4afaNuyXJm3jxYNnp1/Ozld9r3P9lVfOXj76dciEFFcUKCQ+c+jzfWXh3Y5n/LadYNXYqrU6Ft7c/TIjHxf4oLTJHUVd5JEyx0C0wS9ncon0hSPamVDmWyZU6TCo52ruwV7z6yltY9Zubd/vclVfd0iBernnpTY1mm2MBy0/9KCue3v1+74wVz9/K8hM+wIrnvmBfW1NhL5/7t4jWlobydtL6F77fvq5GztSJmWY9+8LFRJIFYbvvpedhtvYi5s0EJSGKUWs24fg+XjbDoo0efRd18AfvvpuPvHoNpz7w54Qbc7bWDCDJxyyd8yz//fWrWLhyCAgh1ogopvOpCvmtLiKOQAq8wQDjCHKbNKIa2wahtjRBuwNCoB2BCqylU+ILVGga+SphzhI0MgFvzJB4AhVZtYN2BGFeoD2BUzFoA0GbBDIYlUVGhvwTQKGI6OkGY+j6neAHp57Jnf3vYcXLXhhh18cbrpGvAyFt39rGbbgjLcRzugjbfFQ1QQUJcUohY4MKEtxtI/j9advkFkQ2MFAJq7hPDMZVqFKIiCyphmPVSgCiVAXPRbgKEcbojG1002kHZ7iMGCna7ElHkQoivCEPVahgPIfyvBZanh7CpDzcMRehfUYWScYWKNwCyASKs30SF9pXV3Gf37HXY7/2wk8hggRZDSG2SgMqFUypjEkSWp+fgze698L4Wu/1uyXKm3jxYGn6DVSvPgMyCm8wxhksQpKANghAhCmMzCB9e81P74hwyhEitnZ41Wkpqp2OVYYNx6ggQST22usVJRf/8RcxEhDwq//cPUHy0tfeSltGEmYF8eYMcQaQkNmhGT0Jfrr0y5w+Z8sRe0/2FyICnbfXCqMOPEOpiSb2B0uWLOGuu+5q3Fdq/Jr/+c9/ni996Ut84xvfYPHixXzmM5/hmmuuYfXq1eTz+aOxu/uMJsGyn9iZTDmWyBXAditNwNKzP4lIEm5//DO7XXwiGXPnrz7OtRd9GhEloDXLzvx4I6hOlINJoXUrNtzG8unvPAwH0MSxiPqgVJfLAOi+fujrZ/pjKcxZixk9MYtbsD7S3b+LuOOhS/nwZ39HWlhrrVdnSzzZtY61pWm0uRV+UlzCu9s2sTbowRuznSRCG9whh2Ls4UhN38YO/D5F0O0wagREgqjFEHfFdrwwItE+GLtL1GMzZCSIWg2yJUS5mrgtJAkVYsjBH5DI2kR7nDOMDWcpuikKOR/fi6m0JcxYNMCOcBrGdzFCIDwHowTaFVTbJKoIOto136OJIwQhoVJFxhqvAKXtGYbbHaRjC+n127sQvSn8QWGJu6Il71Rouzxb1wvilLHdSX2GKK+odkpS/YJk2KfQoyClUX0uuR2CkdNzeF29XD1rNa9sfYS3/u6NpLyIysyE7CZF1+MxYavD9ktbeSg7jySjwcAXn78Wb4eDPwLxzJjvL1rJ3RXFVemEwET8oDSNEz07CNUuPHHrdVMecn0iel72IlYXZ5Pebid2sn0JslDFpFxkBE4Jnv7M1OuB3SsQm3jx4J4Ni/n+nQFgr83DuswHVr+B8lgaMergjlrrx6EgzbcLXZzsbeepYBZtqsSjQ7NYv2Ua31QXsnBmPye19rG13MabZvySk70+/mv0LC7IrOPSCZdH3bu4QZQsP/GDUA1YsXnPk3l9SZFpKjfptVPh6stu5q57PnpQ78mBYv2738fC/7r5kKtXFt9s7SSSsHpI1mfU1G7AE1UtxxK5MhWWtb8VtOb20X/f5bk6uQKwYv2XaiRLrSY2xt4X0nZ6i1rHN0wiWZp44aNez9atwnRQhQB4+jlUNoPIpBFK2Qm6cgX6B+kZLfJvJ13Jr89dwM1n/oDPppczUswQGzAFj8dGZqEdbF5fYiCKbTNSJUbkHJACpxChSgHGkXaZJCHJpxGJxi1ptCds7oWpZWYom7EiY4hTgsQHm80BbtkqYeqTgDI2uGUwVfvaOG8bkBJPUe2EdD/kpQTHgSjC5DMUZwtU7ODKY58kfqHDJAkkElGp4gyVMCqHcazCyh8OLGESJVAsIYWwRGCirco+SaztGyDKFYRrLY4JQkuYSAlRBFGMEALtOZiMR5z3cYcruH0Fez30PQhCzGAJ4TqImdMwrgIh8AcCRDVChAnxtDSDS2wgeH6TaZCCqYEY7UtLlOwBL3uVvU67KQcnSiBO7L5qjYki+14AqcGIX/7P3q/LTXLlxY1rL/wU5pyTEZHGLcY4I2X7nUhq55brQmJwR6qocozxFCJOao4tIMsRqX6Bqjh4IwHad9COxClHyCjBGxYYVxLmHRJfcOlrbuW+H9jzsm5Tdkfl27ilpEaESpKivWarEPyRGG/EY4mb4UfPn8XvL3x0ymM5mg1w697/XuZ/q2axdogJllM+fhtGHrqatokXDhzHYfr06bs8bozh7/7u77j++ut57WtfC8A3v/lNenp6+M///E/+8i//8kjv6n6hSbC8wHHHIzey7MyPs/TsT2JSDnf+6uOTlCg7485ffdwSKxpbuClhu2CEYMXqWxodfwArev/xCB5JE0cbk9QsNeigivjtM8gF55AeNKhQEuUVnQ8NcNnH38PYfDsY/MQb/ps/b3uYr5sL6XBKbA46+XahzDfXXsisR0ZIsh5R3iWenvAXs+7n37e+lL64086NpBLyuSpJOiQ1J8JRmu3b23HHxkO9VADumCBqAe0ajDKYkksiQCiDCGoTTAJEDLg2m8WEkiQWmKygM1MknKF476KV/LzrFH7z6Etof7qAdhzKPS6FOYIkDcY1rH/3sSnxfTFA1PzDnbGA3DYH7TqUZ6SIs4YQcAoCfwhkbYwnEjsZ4RatNzXCWnWELQ5CG9pXa6KslYNHaYEMa/YafdZ6wzgeD24/FeMavtN2HmhB4PogIWyBHee6OGUwbkzvWAted4V5nUOs3dSDzBvCeSHvOfmXANxdWMLFqYdJC5/pzgg/Hj2bNreyR3JlItYVOvFGFKlByG2NyGwYgShCd2TRnvXqPv29t/HEl/ZtfVNh+ax3A7Bi6z8c1HqaOLaw5EO3Mf/ly/jJ4tsbj31l6CX0bm/D6fPwRuy1NGoVRFpx8xPL6MiVmZsfoRy7rF89g8wWhT8CG+fNYV12FmQSfp3fwfPeNJ4rT+P5ShffEYZPT/8F7dLahOjexayLi/zvffXcrS83HuuNM6iaV2lehqwonM4//uYynr921wn0iWgQK7tRJhxJzP/3cfLiYBXNV11+M5uWpRuB2odM8i+O727EZe1v5fbhrwFYy6/2t9oGH89jxaa/m/J1K9Z/CWDKTMFJhEzdVqyJFwV2V89iNEmxiEwSZD5Xs5WLEY6D7h/kpH/yCLMdfOANb+BPrr6fVb2LafGrrA6ms+bxObSP1tZTqU0iGUOSdal0OTgVg1O0xJ5RCu1LtK/QrkRVY/z+MlFrCu3JWqe0QYUQpwWJC1rZWhpARpZUqRMrRlnLXqdqbO6KU1N158C0QTAtsdvM+EglCafl6L0oTXhaGUcl3H3Fl47Qu97EbmE0YOtaE4aIUgWV9dGeAwJkJbLjcVMLkB8ehWzNOyvREMeWRKkvU6naa379t1EIS7DElriQYQhC4BU8u4zW48s7DqKjDcJaFlvKQ6cUqhCCozC+S5RVqABa1htSgzFBh4MRgABvNMIoyYotfz/l4cpQWyIREHFt/6MIE4SYILCWduk0xhFce+GnDtpudGnqzwC4o/ofB7WeJo49LJ/1bmRHC3FHFqeSIEuhPXfDid8ZW1+KMEZVQoyjbC6VI2v2eQYJ+KUQWQ6gNQNpByMFMkzsOZoYjMwQpx3itODSV3/BKg2vPgO04dJXfwHHWAs/10Z3YhyBDBKc4TLTf93KCSe8mXk9g/z+wt0cx+y/YcWWv7e/O0cRJ3+pjE45JBmXq6747EGF3S89+5NsubYN44JRjNe1TRwGmN2qtI8WwjBkbGxs0mO+7+P7/i7Lrl27lpkzZ+L7PhdccAE333wzCxcuZP369fT29nLttddOWsdll13GAw880CRYjlscpznBdz60ayFy+2OfnnTfyKm7GQGSrM/KBz7GsrM+we2PfoplSyZ0NcYxy2e9e7cTb8u63s7tA189sB1v4rjBzgNTE0e0PTpI6cR2/OEYp5IQt2foXrWN/IndhC0OX/jSnzB8fsjPrvp7TnazvK+3gxsefCWZp1Kw8Smc6d2UZ3Ry+vyN/EG2wL25AZ7JzSSuuAhXc/XsNfxFx/08GszmK+svR446uCXwivYHJcrWu/XsQNMfELaLJAVhi8E4hqQlwXgSb0iS+JBkNO6wAi0olloodfnk8xUWuf38wcwCCy86i7Y1kuLcDOUeYQsEQFabVcJRRxghR8v4vkNeQna7wChBtUMStIH2bE0tEnATgwpsoS20wQhwizbAULsCMIikFiRaEQgtoRYiqhWUFkdQkXT9VhLlXbSy648zEGcNcc6gtkpannUoRHmWLNnErMwoa8KZaF/T2VVgU9DBv44GXJF/uqHqiowiJSM+ffoPdnuI9evs6s0zyUjDfZW5rFs9k84N0LIpxB0OoBrajlQhUFWNjBSPfeXgyBVoEisvVCQXFHhJ+2ZWVhy2Rh2sHDqVp/qnI4oO/hD4oxCnLHEtMVSH0vRFijBRDG5po+0phVcwtttaKcI2SZQX/O+GJZQLPkZLvGxIEil+9vjpLDv9Sf6o8yGqxuWHg9ewdqyLaekS35kO/11sJzJdPFhYiDaC0SiNFIZHts+i9Tc+1GrqqVQsddXKXfceXdVFnVA5WBXLoi9+CV6RqgVZc0gHo7IasfTsT3LHIzfufeFjCHV7sDq5UsfO9/eE5ad8BFI+K575LMtP/CAr1n6e5Sd8wE5IwpQNRxObiZp44WK3jUPVAKEUIpPGhJGtHXwfva0XkfJZ/PdjrHr4Epa87wm+NHMVZ6x/F+1PS/JbYkSxAtXA/i7ns4RtLqUZAq8g8EftORe3ehTmeMgIsr2hzb0IItwhg864NqheOySuQivb/OFWDKpq81m0gsQDTC13zbEXC+1glawVQ26rodJl6yHjGPRpRfRKl6gjTWGuR2WawXUTpDh2JmVe1DBWiWKEgHIZ2autdV3ab1iAIQS05DFDw4jAZrU0yJEkwcRxY3VCSIzRiPpjWlvFXiZtbxeK45PQUtp1OAo8r6bui5GjJaLZ7XaiOYgwUqLTLv5ozLTf1rIrarlCwtTIPiFYtWrXJoOl6TdwR+XbXHnVLShjwNi8IYyB0JIrdUsnhEQ4Ds5ouNs5jf1Fk1h5ASOXxXgOItKoYtWqvJIJfxPshowQCK0Rse1dkUEEgbVuFFo35sZElCDBfu+0JQFFqYqfJMjQXtNlaHDKMTJMrGIwZ/MHRVJTFdZUXLIcIkZLZJ4JaL1vFnd/4ies3fJfnDh726TDqBOSR7tx+fZHPwXAsjM+RtSx/zlKdZz60dvg5W2gayrMBLSyaswmXvj41re+xeWXXz7psU9+8pPccMMNkx674IIL+Na3vsXixYvZsWMHn/nMZ7j44ot56qmnGjksPT09k17T09PDxo0bD+fuHxIcFwTLhg0b+PSnP82qVavo7e1l5syZ/Pmf/znXX3893oSw7E2bNvGud72LVatWkU6nef3rX8+tt946aZl9xp45iOMSjbwVJRqD7asuv5m7fzHZXmPlAx8Dxi+0whhINMtP+nCjW7DOtk9Ek1x5cWHiwDR+di3ZZBE646Mzbq0bSuMUIwpzXLp/U6DnvoA33fM++i9KaH/MoV2DDA2mGsCOAbw5bTz56Hy+N6OVt3ffwykXbuN3hXnknSpvaH+AlND844bLGPzldNq2Q2pY45YSwlaFW4QoLXAqgLG2UP6IDQ4tzhZUZ2hUa4jJCeJqGu0bjKfBKLwCqH5JOJJGnVNmoWMHnC2zxhg+pY3hkwSpAfBHoDwDkqxm/r/cyoa/bFqKHBUYbQeOiUaGCf5QaAM6Y02qK01xpkfYIhCJJUncssFIcMoxIjZ27FiO8IMY7SpbGKckwkDiCtyyRkbWcq7SKZF+jI5cKl12EsNOYIBbgCQliDMCpwq5LQmFhfAH03/Hf207DxEJVEfA2d1baXfKVI1LXlYp6piWmZtYCizdw2HWSY5NcStV47Jq5BRkaCdbMIx3q0iJiDVeIUEcp40BTRwZtGUrPDoym++vO5MocohKLkYLnFBgJEQZrMovFGweaCe91aE6EwaHfDKbFf6owS1r/KEIYSAoSmQExcFWsol9bbXTI2lNaH1W8YsNL+Fu/yVo107AxHnNprJk8arbyJx1LZ5K6OtthUgiMjFGC8SIS270xTfpt+597+XEz1obBVP7DXrkfe+i9VMHb38myyFiN7l6xzuWdbyN24f+tVGPLl/w3oZqpY6J5MmKtZ+3N7QBacYJl5M+zIrVkwmyJrny4sIkoqWmZFFQm2yWDTs5ISRmaISWnwyx9Tc9vOKUd3PyhlF0yiPOe5BYmyNh7GSzU07wxhSJD5VuF6EzVNtdhLbkitdXsnktxiCqFUQcI7I+xpWAQibG1jJVjTeWgBAELePsq3Zso4hIrDWYUZYAl6FGxg6JL/FaA/74pN+xasYlFGcqZGzrl1w6wFcx1/ziOlZeftuRf9Ob2BV1wkEbRBAiwhBSvj0Ha1aPQkg7brJ3EK5jbbWieNJygJ1grllu4TiWREmEtU2aiCSpqVmsigWAcpmwrQd/KKypWyTaUzYHKLaqKltba+774Qf2eFj1QHJR24ZxJYl0wKRwYo3wXEtM1t8DR9nJ8iaa2AOMb89VNVpBRLElDMFet5VqKLMazyXWMkzEte9LZB1aiGNrrVepIpVEA6KaNBoxEAJRrOIFMe7AhFpKKaidp9qVdoxZu56jNSKobcMY4prorGMvTc7HCtzB0gG/9umbr2PJh29De7YZQCaAhoc//i5abz06lr5NHDm88Y1v5LbbJtcUu1OvLF++vHH79NNP56KLLmLRokV885vf5MILLwRA7KTAN8bs8tixiOOCYHn22WfRWvMv//IvnHDCCTz55JO87W1vo1QqceutdhCUJAkvf/nL6e7u5v7772dwcJA3velNGGP4h384sG7cvdk9HI6A+4mBo4ca9byViXksO5Mru0O9i3D5KVYquHzBe8Gd+tRZPvdvQQpWbGgW7C8GNPJZNm1FtrUg02kbDh9GOP0F0tNSlOdkSG+XdN25nq4VtsAxna0YR2LiCCqQemQ9i4dncPPa1zO6JMHvLnPh7I1oI/juyHlsqnQweO8MWjYaUsO1wrs26FWhIbvDkAzbgl8Ym7vhljVGOkQtkiStMLHEDUDGAu1LjDRoJfACaH3OUDrDoUXaKijrh+w4w9oxZHuh2imIc5r1f920BzuaMEmCqVQRjoPIpXDC2Mq8oxg/iFDlDEGnT+LXOusSGworq4ntWBKikSklkwRnxEVnPLTv4PiKxJMIDdoVRBmBtyaNUZAaBrekGZsnIYDMkEEMG6KMxCtqhIHuBUNsCjt5fkcX5GJOndnLm7ru53/HzmLdWDfvOfmuvR/gTvha72WkVESPP4Yzq0x1S47UsMIpKWTKQ2d9krSDDBLuv+NDh+Edb+KFgJe+9lZGl0xjoKUbGQp0ypAerSn/fIjy1nImPWCviWGUQSQgSwp3zGb+xCmBV7TWB95YjKpIkpQkv7lmXyMgNSiIsor8loTW523uUZKSlLsUQZvCLdvMofKjHYRlaC1AnIY459jAaB8qXUf73dp/HMpa0AiYd0cIh0oBr619wLIzPjZlHt/S827kjoc/eYg2aLFsyfXc/tRNh3SdE3H70L8CE7o/dyJXpkKdPFl+wgdYvvhDe7SZW77gvdaGx3GapMuLAI18FkBXKgjHHc/sSbS1cMqkoVJFb9lOest2jJJI18XPZTFjBUxobZJkokkFIV3FVoIuH1W11kheISE1rPF6C9Z+BhpEjghipAaRcvAKCW4JMKAijarYujfxnIZqBQMiMcTpei1s7yME3mhMlPVYOG2AkShDcbZCO9b6NMrDwtYhvnfxPx3pt7iJ3cBoAySWPNExglouSxAgosgSIo4CqcBzIQwxSYJw3XFyxZhG576pkySJzVQ1SYJwHKt61om15Uq0JWPqJGIcj5MxUoDn2fo5iDGeQ5L1qXZ6+CMRItKYtMM9P9ozsbIzRGwbo8J0ijgtURmF0NqqWhKNSGl7rC25405x2cSRxbKutyMyGUvO6Qm/4XXVSpzUSBVtyTut7XdIa7t8jfiw92vXU0dBXFOwxDXSUUp7Owzt97Gu+vJcq/hKElRJWUK+riir3wbwPUxbnrANHg2r3Ljp1fxo5hF5iw4YU9WJ+4W6Q6GxNe3clSVoTp8cHhiOKeclz/NoaWnZ79dls1lOP/101q5dy6tf/WoAent7mTFjRmOZvr6+XVQtxyKOC4Jl2bJlLFu2rHF/4cKFrF69mn/6p39qECx33nknTz/9NJs3b2bmTHvl+uIXv8ib3/xmbrrppv3+oH/6o/fy6j+YWqpXt4PYE8lyIATMVOTK0QxyrWPFM5/lqis/y907DWJ3JlRWbPq7KT2vm3jhwsQRplzBjIwhXAeULZyz632SnI8qhzU5r0IEMWKkAMUSRkgwGl0uIzdsZ0Y5pH1tK2FLlsc7TyPxYeykhNkn9NUCy7UdqNZC2NI7IrQrkJHBOKLR0Wdq3VX+qCa3URINWvZcBdZKIfEkSV6jqgoZ2pyOKFKsjYo8GsxipJRGRtZuzCgDGpzi8dF58kLGxAkQ2ZIf96UGqIaoEYGnRCMgFCmsHUHFhnQ2PKrrxW9FIisust7R5yiMq4hbU3g5hT9sJ5f9EY1R4BWs5NktaZvr0uKgQk2YV4yW0tzTdwJCGJSr+ceF/8MsladFPsjD1fkHdLy/2TSHztYS581fT2umwkhHjtFYUW3LkN/iIrRBO9KqeJpoYgqEeYk/At6oDd5MPIFbNuQ3RyS+pDjDwTjgVCE1BCoCb8zgjdU6txPr8a8qCU4xQsQax5EYJUl8harEGEeQdiSqHNlJvvrkoRL4Qx5RziHKKoSBzA77lNAQ5gVhJBAxiIy13/vvYjt/khsGprYJO9ZQrwsPlGxZ+5HrWPAPX0QYu46XXXHDIdmv7//uRv74wltsN+UUEGHMsjM/voul7ETsL2Gyp2XrFrRHExMzWOpYfuIHwZjGc3vLcWnihYd6jWGSBIS01zEhEVJYG6a4NpmtpM2EA0wYYvorjYBuEolONCIIcKoBaiyPCO1EuG7NEnWk7UScNuP2T8ZAGCKiCHdEoQK3Fnpf6/w3BqdkSClBnLZWpkKDSajZnVqve+0KZGhA2vuj1TS/GD0BJwJVsVYtKhCsHT4OmewXGBr1rNEYLRG1vAgThvbcM+MWYEIpqy6p2dYBmCiCcELWSg0itja4pj6xXFeyRNE4uQLjpAzUJqlrE8+1SWRvOGz8jo+clKE0S9D6vMApa9zC/itMVCls3JaJteE1jkLnUghHIsIUxlMkrQduT9TEiwPCcex5Wlc+1XOI6gqRuKZaqdkoUyPx0BPyWbQeJ1yS2vcrisbXCRMsxybMYMsJ3x+prDVkHUphHGVVM4DJ2nO5fbXhD+77K7x0xPxvfo4Nbzq2G+KWn/ABTNrj9icOrEnmqc9dx5KP3EaSstm3Kx/4GFee01SvNDE1giDgmWee4dJLL2XBggVMnz6dlStXcvbZZwM22+Wee+7hc5/73FHe073juCBYdofR0VE6Ojoa93/1q19x2mmnNcgVgKVLlxIEAb/97W+54oorDun2D7VyZW+okyuHU+GyL7h71UdYfpLdfsNSIeXv0gG4r52ETbxwYJLEBhRS87CWAlOpwPAIUilEWyt6ekdNwm7Jl8bgtFbAJFGMkoK01vhZn+xmh5GTMzgdVbZs6WTe2hhvMMA4giRlu/jckQpIiRGCJOdihMQNNVoJkpQNDE0PaFJDNvwTrK2CSATFFjsI1V5tkq/k8evqfJ4oz6EyksYxgrANwE5KumO7PfQmjgJ0pQKbtyFbctZXumY9IIyHjLTNNTQGGSbWgiOpDxyNPU8ndDyJOAYZ2EGotP7PSkr8lIOMrCUCQhCmJKlhYyXPkc108cZi3OGAMJ8jChzCxCEOHCg69CY+sxSc7qU5c+59B3Sc6/74ehbfdBu37liKcDSOgeo0G0RulEe2N66pBF54FkBNHBpc+OdfQiWGlk0JqlqbwJECpxzjjFRAa9xCjjijcEqxJU0yqjYRp4jT1oImNZLgFiLUUMl28wE4Do7rWH9rY2wn7cQJnJQPSiJLAbKSxhtViESjXWkVjELgFiWpIYk/HGEcQWm6x+f+4U+4sQueeZvtsN62dSZfH3kJ1y/56SF9b/ZGKuwPVq388EFnsSz4cXR46ssoxnjulE/v03twCPsL6uRK3abraGFnQgWYNFFZR7OmfXGiQZiQ2DbcJMFEMcJ17ATfBAsZhLTLgW0aChNEHCGp1RjGQDqFznrIKLENH1E03nFdJ1yUVdmqIEKnPHAkIogQUYLOpXDHQlRFYlx7/TTKkjBRTqIdYUkZBWFOoarQP5IjLrq0OWB8W/+qAIa373+HaROHEUajoxghhR0bGW2twlwHoZQlS0wVU58chgnd8jVypKbqN7UGoknBx2ZC1z7YZXWt9blmLWbiGAKrcBHplD1PwxgRJwhjybnSdMnjXzqwVvQ7fnsjy0/8IKnEELWnSXzbCJVkXEzOQwYJSNsc10QTU2H5jHfZcz+KGtdo4ThWZWhqcwvaNOYWhDNhurNOtmgNcdJYhhA7N6FU43uENhijbV1bh1IIlK1zwXYfCTH+XVQJIpJQqVh7spQPrkvbY4O0POez7WV5lAPnvO020kMJ93//0NmNL829iTuK3zwk61rx3BdYvvhDLJ/+zgPOhpl1dwEYz4cW2uxp8SYOAsdSyP2+4v3vfz+vfOUrmTt3Ln19fXzmM59hbGyMN73pTQgh+Nu//VtuvvlmTjzxRE488URuvvlmMpkMr3/964/2ru8VxyXBsm7dOv7hH/6BL37xi43Hent7d5EMtbe343leIyhndwiCgCAYZ6rHxvY+gzpxAL2ngfDhGCSvutsO4GWoD6ui5doLP8Wdv959uFydWFm++EOsWPM5Vqw59pnEJo4MdBQjXacxuJwIoRTSc8FxMJ6LyaYQ1cAOIiYMYpOhYWSSICtZ9KxOqu2CqOChxhyqbSCD2iSRABVoRKwxjvVplKHtRJGhRglQoUJGijhtg+39MYOqaNv5Zxzi7Q5GQHE2CCNwMxFDcY7BMIPKREQdAlmR1hJnuJbx0sQxAxNHmGpg86B9HzwX49hMknrnpxwtW3l3zf5Aj46hK1Vk3bdaSITn1opq2ehKlWFIqljBT7noXIo456KV/ckUibBeu5HGLQTI4RK5tEPvmEefl4eCQ36d4m1PvIF/Oe3/csG89Qd1nAt+OMaOC1sI2kBVbYe/jO18jzAgQ33QxPvScz7JHb/duyXDsta/4PbRfz+obTVxeLHsjI+BMei0jwxjUjNyyFDjbxqqdV7XOuyCEEYLIAXecAEv5Y93xyqJacni9uQIWxxUReMPVFEDY1AqjQ8oZQSug/B9O0itqcN0oYjwPFv0p3xMyrU5A5UQUY1RcYJxFLjKBvsCslSFOMFfHTNyyRxSw4LTv/xXdF+9lT+d/TBPF2fw/z17Je9s23JIFC3XXPIZVu4DsXDt+Z/ar7Ddg7GPnfi6n/7ovbS27rtNyp7q2RVrP8/yU3dfMy478+NgzF5tIQ60k3FPWLH2841a8nBi6bk3cMdvbtjt9mGc6DmaZE8TxyCMrhEnk8kWIYXtdk4SjNYIKTF1VYE29nVYdUlSKiNrCgTR2W5r1MRgXMfWLvXO6jiy11ApGh3WMogwsUBUQggtWUPGA+HZiT9jLCGeko0Q4SRlVdxBay1bruIgK4qwxqeEbQZVFTijzaaMYwETVdn2vFE1yzBqjWpV28AgJSaKG+dWbYFJxEz9sfptI+T4+dSw/6rZghmBEONMhqk3RtRIRLwEESW2E79coW11CSOyPPz1g1PzmYEhRJBDeQ4ykDavyBiMI0kcx+YH7UFteahxMBPITRx+LO9+h70hBSasXSNrtmD1pk6buRLbcxjGvy81otEQNMZ4wnMbJIupjQvHlYeJJbzrpHft8cZ2lLL2fYCQzrgTQt0aTAhIpF1nEDZqYpHLIqIIVQmZtUpTnpMjyghUaLjwz77Ir//j4L2zlrX+xT6TK/tKxJiUi6h6e5wT3BN2rpt/cM9HaG09uCakJl442LJlC3/6p3/KwMAA3d3dXHjhhfz6179m3rx5AHzwgx+kUqnwzne+k+HhYS644ALuvPNO8vn8Ud7zvUMYc/QorxtuuIEbb9zz4PHhhx/m3HPPbdzftm0bl112GZdddhlf+9rXGo+//e1vZ+PGjdxxxx2TXu95Ht/61rf4kz/5k/3ah9HR0T3aih2O/JV9RX3bR8I27GgrZpo4PtAYHGCJlPGBKJMel/k8oqsDk/FtANxwgXhb7+QBA6ByOURXJ9UTuhk5wUOFhtIMgT8MLZttWLlTinEKASKMMb4tmEzNskZWI0gMxlUYVxJnXbQvkYHGKdkcjso0n+IsRdAGYash6Y6YP7sfJTXPb+tGuQlSGvLZKuWqR7y6hbUfvu5wv5VN7CN2PudURztks+jWLDjW1kOOlmwXUU06bqKIZHh01wFq46ZAeF6jE0koZe93tJG0ZojafZKURIYGVU1IUgoZa9zhKiOntDC0ROANQ9gObWsMUVbw6D8c/Dmz9NwbGDm1BRnZn+ugRRJlIdNvyPaGiMRw96qPHPD6rz3/U6BEI6erieMDS8/+JHc8ciPLe/4K8jmSjjxqaz+kUyAEuiWNLFTRLVbhJftGLNHoOBDHmFK50Y3d8GFXEpFKjXu3T+uwuUVjJagGdoALk0KfcRT4nvWHNxoqVZLBIWQ6jUinrE91ysekPfuaIIbRsUZHN1FsB8z1Qa02VE6ahvYEYU4SpwTlGYLyoojvXfWPnOPZ9Rwp27DVm2cy23FJC7+xzasuvxlhOKw12NjYGK2trXutR+s40Hr2WMCRUrJcc/FnWPnAxw77dpo4vjGxvmhYNU2EkEjPswHj9Um2xDYLmSTZZXnpp5C5LGZaJ8IYklwKkSTISmSvf5UqBKHtvk6nbQ6FkuMKmXLFqg9cF3IZdNa3NqiAkZKo1SPOSIwUxGmr1o4ygvIMm3nlD0JlhkHNKjOtrcC2Z6ex/t2H1hC/OVF9cNj5nBNKWaJkwu/ixPOqTuTtMt7aqaadtM4aMShqTgIoOWHdBuE4lrgLI0Q2Y5dxHXv+ScmK7V856ONc1v5WRMrHdLQ1VJHGcUharI2zDGJEYg4qE+xQdvI3cWSxrOUt4wH1SWIbeCYSgWE4PqZrECxyXPElReM/Qo6f44mG+hivlks0ySKvvg0lx78fYN01SmUApOeNW0O6DqJmLW3KVq1CXSlTV4dJ0VBzi2ymkd1ifA+TdolzHsOnpBk6M2HDOw6dkmVvuOCNX6IwW5B7WT8PLbuZZe1vxUTRbr8ze8ru21/sb03bxN6xatUqXvGKP+KiC4+NgJtfPvA5fv7zFVx00UVHe1eOKo6qCPOv//qveeaZZ/b4d9pppzWW37ZtG1dccQUXXXQRX/3qVyeta/r06bsoVYaHh4miaI9hOB/5yEcYHR1t/G3evHmv+33lVUeXfa0TO0cik2XV3R/e6/EuP+UjLD/lwCf3mnhhYXfkSv1xU6naSTolEJGV1dbl8PU/6adsYaOt139uW0xua0zr85rUiEFVNU4lQVVjuw6AxKB9hzjjol3bnSXiGBlEyCDGKUU4hQinFCESjZHglBPcoiE1CJltAn+jx4ZnZ7Dht7Pxn0sRD6UIh1MAtGUraOf4k1++WGCShHhgCKIIkdiuOzk8BoVizaM6avzfZaLE6MafSRJ0NUBXqpggsOdsGMLoGCJKMFLgD4aoSoz2JMWZDqMLfKo9GcrTBGFXTJKB/EbI9CcIDSd84eCsZa698FOMntxC7AtSgzGpoRgEGMfmwMggmRzwuA9YfsIHds0USJrn9/GEpWd/EhlE1ipBGyiWbPim1pi+AczgsB3MlSvIgVGr5DKmEdapC0WSYhEdhjY/II4x1cB2yxaKmGqAHh1D9A7Clh3ogSF0sTQehJvocfuEep+O7za6/xpEpTaYSsV2rfYNIYbGYGSUuH+QeGAI3T+IHhrBDI3YScZqADoh/dwAqe0V8hurtK2tMOvnJeZ/Fz618ZWN92DZGXueKK/bmR4sTpqzjbSwkz+6d/Gk5666/OZDso1DgT3Vs8tnvGvK1y07/fojsXt7xJFSjqx84GNc/bKplTjLT/ygtQ1rook6dq4Zao+ZOLKd/rCLTbJQyk7YCYlwLFlijLZqgDhBVkMbSltXr0zsoq5vUwg7OWjMeO6LMRBEiEqECGrd1Y5AxhoVGkRiUIGx+YFjhtxmaH0O0gOG9A5B3Jumd7AVp3QYhv+7sdZr4gBRP7/qtV3t/DDaNP7sYrup23aqaeuvayxft+9UtZzCqPabrmyzhPB9O1HsurZ5olJtNFYsP2H/Qu13xrKOt1nLJMdBBCGiGlmrPGic37Iaj+e37SOW5t7E0uwbD2rfmji6WNb+Vpbm3mQJ6zr5YYytSYNgnEyp2XvVr5d1olGH4SSCu3G7rswyGhPV6tza+kwUj3+f6tf5eibWhOuZTPmWXKkrw5LErqca2Ma9YomkVMaUa3+V6nidXCOKTKForXWrAaJQQvYO4W0ZRoYG4+k91mh17Msy+4IHv/VeyrM0F/VYd4W6hdqylrfssuyhIleaOMwwx8hfE8BRtgjr6uqiq2vfQva2bt3KFVdcwTnnnMPXv/51pJxcHF500UXcdNNNbN++nRkzZgA2+N73fc4555wp1+v7Pr7v79d+C21sYXwEcTRD7vemYFnxzGcn3a9PahjPyjEPlb95E8c/TBxBGBJ2ZYiyeXLrRmG7JUZFfWLO921HdaWKs2WAbLkFnXYBn8QXNfl4YjM1jME4Dqhxz95JxIvWiAhUrJGqLp8X4DskKYk/qvEKNig0ykmKJQmy5nozpnCqUNrWxeDciA3vb4bcHkuYZKtQg6lUEI6iEWQPkzufpiD/Jq+kJinXsuFpasIIOThKenjMKgPa8rYLNZUnzElEYvBHDTIVU50uaH1OkniCMGfzfQ4Uyxe8l/CkHsbmCdwS+NvH0LkUUdazlncjEc5YcEBh0bptXGK7P/ZHTRx9LOt6OzKXtbZ4LXmMpxBhghyrgO9ZgqRYQm3qBSnRg8PWBs/z7KByYudfbWBah3DccZsEx7FZRxPCPU1t8Clg3K8aGoSLXYmwkzRxjC6XLYFTs8iRrS3oseL4tivWd1Ea3bAuEa4DUYwCdC5t87qqEc6QYNu3F0LtdP/Znd9l+UnxeB7cYYScvqZBrujexaz8b/vYVZffbEkWIbj750e30WSP9aw7df6KOIJ2LHUsP+nDR+Rz2x3uundqQml3RM/OhEvTRqwJsBN7wmiEl0J4LqZcmVRj1K+NwrWKAVMNEJVqQ2Eoarlx6MRe+2TNsqme52IMVEOrwtUTBp1RhFASlLWjMVKQuHayXAUGFYBr6sSLtBEBGlLDmnSfpDQrzTOfOvRq7EOhbngxY3c1LaZGvk3VRLM78m+q5Uz9vLKTzyJkPKvFdWuTwcl4gHcUQUseSpUa2acOikRb1vIWq2hNpy2ZE0W24cN1rNuAFNaVoFTl9v28xtYVBXU01SvHF5Zm39hosgTs2L6eF5Qk6DBEOG7N1tlahdWVKvZ8rq1o4m2wHspGAMm41WMcjT9f//6InQjn3RDmRugaUZOga1Z9QilkJtNYV72WFo476bUo1WjyE0JYBXkcI6KI9mfLDLzU4+nPzGN59ztY0f/PB/FO7js2vOt9nH/7R7n1maVs+bcLeeJVN7Ks9S9Y1vE2kILbB76695U00UQTu8VxESO2bds2Lr/8cubMmcOtt95Kf38/vb29kxQr1157LaeeeipveMMbeOSRR7j77rt5//vfz9ve9rZDLkO7++cfOeID6Z3Jlasv233X5MEGrO4rlp05biVzzcWf4ZqLxxnuFatvsSz/Th0ATTRhkgRclyinKM5SVGfkxgsqIS254nu2OySKMeUyon8YNVDA7y2R6g9QlcgOTI3BeJZcAZDVBHeoghyr1kIZa8HmWiPCGFmxIaEitv6+qqpxSwn+aExqMMSpGJuxUhuHpAcM+c0x3Y8mzLy96VV9zMNoTLGE7huwA0IpIZu21kWOqk1k7Ed7hZnQVRrHttO+f5B401Z45jnEjkEyz42QGowpzPEIWgXO5hSZzYriLMH2SyTVsyuk5u0912tKhBHuWER2uyG7TSNGiqjBIulBgz9iz/kDwYrnvsAdj+x7tkMTxwaW5t5kO/xKFQhCdMYn7szZJ+ukYhAic1lURxu6VCYZGEQHVZJiCV2pWLKjps7aLSZO2MS1wPp6Ryw0rEQwxl6768GilQqUylD3nTYGXanYbU7oNEyGR3e7bVNTuuhiyS5TrkCliixWEKWqPbaRMabdtZWzb/4rPtp3Bou//Q5IEq69cFeCcfniDx3yCfydLcl072Lu/kWtNjvGS50Vm/5u6ueOQo7exM9m+eIP7XaZ5bPefUT2ZdmSccJl+Qkf2KVLu0moNLFb1PNZpADXtfVr3daphvqkoal3M9fJ7NjWpQ3iRAhrzdiatwQM2OUjq741UTx+7dV6PGA51shII2ODCnVD4e0WI2Soccr2ORkb/OGI1ucDpv1mwgRjE8c06t31k5T+9fNrX8mV3a0zDBtqbV2pootW7W3i2JIvmTSkfPu7m/IRHW2YjhZrN3qgx1LPdjH2vKYaYKpVmy0URKhqjCwG4+f2fuD20X9vTggfh1ia+jOWpv6spiSpNdkYU1Ox1JQsQtrmoFoYva5UMXFkyYyaLdiUBCQTVF51VctOKrD6cxPtxEwUN9TaRuvG/ugwbGy3vu6kWNrdRu0xhaGtgatBQ4loosgqwqIYU6niPLeVlsdd5v5EYMKQZe1v3e1xLOt6+yEnsR9adjO9YRt/ufg+vrbmUm4f/ffxTNImji8Yc2z8NQEc5QyWfcU3vvEN3vKWXWVrABN3f9OmTbzzne9k1apVpNNpXv/613Prrbful0LlheQPeNUVn20QQUdTAdPECx+7dF3tAeLc01n7hiyiKyD/qzQzv7vWymmVsn7W9cJGKRtG53m2+zblWd9pJSx5EmtEENlQ80rYIPSM64AEEdbtE5S9n9TscaqB9UDNpog6MmhXEuUUUVYSZQVBuw0RTw1Casjw4LeaypVjGTufe0IpZM5OOpsJnfkAuhrs26BUSGQ9uFvKxmC03rGkeqZRXTLLEnGbRu0Ec9rDuArtKTZfnUWePUryeCvZbRC0wlOf2/+O0eUL30+woIvKNJfcxgrOlgFQEt2RR6dcRKIPKHiwieMT16g/Bmh4SwvPtYPRMMRog/Q8ZFsL5HPoTVsmKVP2iAmhuFM+r5TtsHYcRC5rr9FS2mtqraFCjxas+kQpktHRgzvYWkehdB07uK5NKjbCf2uPR2ctYmy+f9DBuwcC3buYvqTIG173TlY+8DGuuvzmccLlEOBg69EXUj0Lk1Uvy0/9KCuePnbs2Zp4YWFfa1qVy8GC2RjPQfYOYYolSzZDQ+FXnxgEkPk85HPgqPFaNajZf0mJSbkYVyGHilbZkuiGPZgJI3vNr+daQSPwWadddNojzjoIbUhciXFs2H2UkeS2WMXi0VbZNbF37HzuydpnPcnGiH1UZNfQUAfUFCyTagMhkekUsr3NEnrlCYqVJEG0t2La8ojRoh0/ue4eCfupsDT3JmQ+ZxUsYdhQJzSyK3wfdMKKDbft97qbOD4xqaa1NxrntajNAQilrBJ6P873+rr2/PT4NkVd/VQnXaQlO+rfmYmkykGhnq1UIzDqdmbCcW1NO30aSVv2qLgKvPSuD7K1t52T3r2O24e/dljUNC+0mvRYQCOD5fxjY67ql7/+fDODhaNsEbavePOb38yb3/zmvS43d+5cfvrTnx7+HTpOMLGQnkiu1NUvR4JwueaSz9iJF0cc0omHJo5fFBdkccck2WfTuEUDuSwCMHFsPf6FDaETrmMn8FK+LfbjxHb9aawSJbDdJSKoFUSuwqQ9tFcbtDrJuEZPCExikHHS6Bg0UuKMVNFZGw4qDKQHNflNCakdJQbPbiU5CHunJo4edKk8LgOfEBYqpJgsH58CjWDRuh2S5yFrajyZThMtmk6UVXiFmKQlVSPvNKIagp8hNQTxL1tpX58QtErc8oG3t0d5hYwMzkh5fJKmHCIrEdqf2vaniRcexAT/Z5jg2V8b+Omgiu4LEYPD+zcYNRoYVxLubJsgpKgpuqzFrghtp2s9EFegGoGgO5OaB4xaR6HRxlrrKDVuB1GfaEoSvCc30rUuxdLzbkRUQ0QpYMXztx6afdgL5PQ1TAdWPmDvN2ucw4uJqpeJ5MrhJFuWn/KRSTa4yxd/yOZpuKrpTf4CxX41DKVTUA4QAyO2HnUca1sbW8WJSWrXw4nWTJUKZDPgSIyUthloggWYCGOrunXGC1AjBKJUhnQKI62VrahGdju1WlkkGm+wQtSaotrlkHjQ+lyV/OMjMPb/t/fncXJXdb74/zrns1VV70kn3WkSCJvsiwaFAIokZukBxHEuV0QdcJS5DMMoizogyCaRKAFURoZxGa56nYHrV8fxqp1FwiKLCgEVwR+CBBIggay9VtdnOef3x6mqruqu7q5eP1Xdr+fj0Y+kq6qrTn26uup9Pu9z3u9uZI4/aJKOEE2nXDkiAKOeNC5p8M9k+wLlTzDbNmRjg3nN+f5AKbDcAtYghNjTaZIrtjXQFHw8LMsslMg1BRdiYLW8igDJlfOz0UC8OvDa0mH2/TJXCmyyHzO3WEea3Sa5hUsDFVhkPtaelOTKwANDRwNxdW5HmYgiyF17YHV2mV4rySTUW7umrdzdo+/L7tT9qPlnukqVEc1EVZFgoclVqtzYVCVbNj02chNawDRx5irs2cFumQ+/TkAGph60221W/ouMb+qS+gG0UmbS6pjSM7na1BACQiloSNOQO7viD6EPeB60a0FbApCA8mzAsyEiDZlroChhtv/W1yJqSCJK2JB+hKDWxq9+MrHGjVRBhBxSY1dHKCuxUnw/In/SWNi2WTkqJSAl+ue6sAIN7/UuhE0pZOZ5sHtNWQO/3kbNTgUtAeUICGV6+oxHx8vr0H7UNSa52NNrTjSnklC1CURJG1GSH+GzxUr3AgBmIipdt/ikSyGtoMfYINb8mC5a0QetBiacQL65p3Bd8z4aAiqdNokPPwBck+wre9fM2AeYn4wWJppUTy9EJgPs2QtRWwM9f87UPD5VrKlMtgzuMThaObX2wz/HkmKzhMztrs41oQfMLj/Lgo4GvQdbEkC2/E0QmJ4sTnYRhyXzCRbhh6Ysk7TyTe61Y5nFFDUeRBSZnxMCUgjo+iQy81KIEqYXi5VRyDRa3Hk9kxR+zo/3RO+gJEs+qSEFZDJpEn6ZjKkmkI13dRiauNcPzOe/Jc1OE2t81eU39HzXlD8SwvSAy500d2xTYdOxgQRXtc0WuZg2X55ruHh2Avm8cuWSOEKahUQo3GEyRQqTRvlkSzpterVECiLjQy5ombLHp5lFVEo9qkoZR8yqogcLTa24S4cNTq6sPpHJlplqz6pDUfNGiIaXNew+BXefDxEqoDYFNDUAhyyCOGSROVmX8c2kMwiBMIK2BHR2UqrqE1B1Ceika1b02Ra0a0NbFrQlEdTY8BscKEdCuTZUwkFU4yKYVwu/pQ5BvYvIk8g0e3hofen671SdipIr+QtVcR+JMggpTWKlJmXqos9pBBrrAaVQs7UbItQI59RAOSbhF9TaCJMmyRe5QFAjEKQEtAU8fc8EGsqm+6H37Yfa32VKlXV2Qe7rgVDAgxv42p11CkpnTarBfxtCFp+UKexhZNuAUlB9fYh6ehH19CDauw8q0z+5Yxo8rlyT0oKJqQ6D/K4ZHYTAth1oP+LqyR8HVYW4y4aVSq60H3j59A+EppycO8f0kujuGXh/VGbhjymVKCFSKci6uuwu2uyOQC+7KzsyfQTDOTVQDSloN9srLlJmNb/W0LaESrnoX5BEz+Ia+HNT8JsSyDQn0Le4Ab2L65CZYyNMSYQpifQ8G7/+wVUxHxmqWLlEiWVKjArPg9YK6OkFpAVRVwvhuWZBm52tIuBlE4muCyS8iZXwiiLodL8paxoGZpFEf8YkXIIw9vdvmkaDd2WNZ3dWOfc/GiFNE/psXxeV65tSai45KcPSJcemlTY9YvzA/H1aFvSbu4p6xBFRdeDyV6o46383tGFtTvviK1iftUpZc5oQJgSUJ5HcFcLp9GH1mrrQ2nMQNiSQmeNCRBqpVwDk6vlnJ6qQ0pRUcCSUZ0E40jT3BKA8B9qRJgljSyhXQAbmJJzf6EK5ZieBCDWEMtvSH+r4XGzHgibPJvXDMZX0KJdWKruqzjGvwTB7wqMvDbmnE3JOEm+8O4W6bQrevggQMDuoAESuQJgQEBHgpCe4nKM/u6pQK+ggu3q/sxu2z0a1s0quNBambpdIfgVfridLYV+WbHNQ+CbxrTOZ4VcdTsGYtMr1ibGGPKaOonyPeVFbM+nN7YkmYjz9CqiySdcdKHeUa2AvcjsABeA6kJZl+krkSyxm37fC0JRdCi1o2Ig8C1qaIo0i0qY/S20S2rWhPAf+XA+ZBgsy1EjPdxA5gIwAGWpAA1qASZUZZKpi2iLanMwV2X8BQKSS8I9og7OrB2J/j1ngJqWJgS1pXr/9mYk9rFLFuwJyzcKjCMhM7L6pik1xHAlgyA5t87DZsrNBOOWPn33A4kSSkBAWhu5Sy+6IFHW16HhuDVY3/z3W7/7m9IyRiCaMO1ioIqw8ZfikSiEmV6qX6upBy+adkBkFKxNBZgITwEcKUAoiULB7I9i9EbRlmTJhtg2kklC5yWa2DJiITJIk8iwEc1MIGj2TSPEsRJ7pWeHu8yEDBVgCOlfeRmnISDO5QiMyzRWzpQp830wq0/1AfwYi4QEA0vMdhClA2QJRQsKvleg6yEZvqwW7X8PrVHj6366YcKmOjp13QwdhvhmijiKodJon7WaRVYmPTP7qvnIIUXDSMLt7xPcRdXdD+f7AhHU6FCSYhuyuQfYETRgCQmDVO2+avnERDdJ+MMszzXQqCKH2ZntdKZ2NZaOBpt2596ogADK+2Q3ruSZ+SCUHFg1FGlZ/CBFpKNdG0FyDsG0O/Pl16G+tQVDvQNkCVr9GYk8ILQCdW/AdATLQTK7QiHL9BwFkX6PKvD7D0JxYzu5WiZrrENTZ0AnX7FpxHaCuxpzwzfjoeHkdOrZ/bUJj2dDz3YG+E9mv3Lh4Ann2yJcHm0Za6SG7ZUxfzmjKdqsMURi3DkoqFcbTuXkeogjth38O/tsPmZ7xUfXSujK+WCMMAHewUIVgD5aZT4cB9N59EHoutBBQCQcSMA0+tYYIFezeANCA0NrUBM7Wn9aOBZWwzO4UW0KGCloIBPU27N5s4+9QQ0Qa2sXAfUTa7JTxLChbQihg8yaWj6FRWJapPZ1rVhsE5kSz45gVqQkPQgF2HxDUCthpcyJaS+B3d02gHNgwNvr/AQBYYX0Im6L7J/3+qfKZGs1T0+wzTytAONn/aohImROBQgCWgACg/IImpFNYn3pgPDK/o6bk4xVMWLVSELaFrsNqp3ZcRCPo2HpH3EOgqaYVtB/kF1wgW/4rn2QR2fcrxzYlwSzL7GTJll3Snp2NbbOJa0sgqHOgHAG3K4SIFCzf7GiJkmb3igg1EvsjhJ7ILzR67P/7TEwHgKpGwYKEfNNuZGMKS2aTfilEnuk7ETR6cIMIwp+akl0bg/sAmHi28HuaZYTM7k6enhOyQxYETcMO7CEKdrCYXl1Rcf/DorGZE9aqIQURTPM4iWhCuIOFaILaF34q7iGM20r3Aqx0zp+2xxP19YDWsLt9iEiZ/itRBNEfwOrph723FzJtVpLopAuVcKE8B0JrSD8CNBDWWAhqbWhboL9RQnnZUmGZyPRccQSEBrRlAhQZmN0xItL5lX9EwxJyoA56FEEXlgDR2pwgEQI129No+IsCNKAcwO2OULNzaoNgJldmpw39PzD/mY5dLINLFQxq1pxvjjuNcpPQ/PeDVr/mVugKKaHrUth/GN/oicajfdGn4x7CuK1KfCR/0nY6CNeBENIkVJTKN6rXubghDE2DcKVMcsU1vS2gFEQmhAgVwloHQb0LbUtkGi30z7EQuRLSV7D6QmghAK1hZUveyoyCndH5ErhEI8qeRM7tgB58nZASIlsCzNmXhrc7Ay1MAm/wZ/9k2xTdz5h2lsotGptqQxIX2b+Bostj2B2e67eSG0s+ni1YUAQAcBz4c5LF5XqJBhEapgx+BXyRwR0sRBPU8drX4x7CuE1XkAOYmtU9x7fA6Y4g+31TBiyIBiag2suWUpCIGlKIkha0EJChguw3tYKhNZQFU/bLshCmBDINFkSoIX1zslv6ZieLskX+ZDhgVgI+uJG7V2aiSa1ZXVCGSyS8fG11LRVEGJqVqpaETAeo2xoh9aaTXX1qw69lEExTS1jWwE6WKVp9p6MoO+mTACKIgjrpU75rZchgss9RD/O3pRV0BDMxjSLI3gyUM22jI5pRJloCKE75RPR0EBIymcy/J+Ya2GuVLb+UXamsVWhKi3qu6a1iCYhQQTsWohoXfr1t+q/4Ev1NElECcHptyCC7g1ACVsbEtIApSQqlIUPgkZ9+dvqeL02rSYtpda5/mfm3qLG4Vub1GgQQGR9CStj9AaxuG6I/yJZ7IZpa+VhzunaTZP8mCr+fVvn+LzKfXBlyXQQIIaH7+yH9CIJ/ikRVhcv8iEbRfgi34I+FsKySK0LEkYfC7Qrhbd8HESrIvmxfi1zt/IyfbaZoQbmmFJjyJMKEKa0gezOmd0uokZ5roXuhhSjbJkPbAto2JRPsdAQrEwFSmF0sALQ0159xzm3TeSioSukwgM5koDq7oLN1cPO7WjIZ83q1JZRrmWSeIxGkJMD8Ck2RopOHU7jirrDXT+GXyvUBmk5Clvw8Kawpn9/NEkWmnnxvLxY87uOIL7JfG1EpK05fE/cQqkqp9yCrJmV2qWQbc2uVPVmt9UC/qNyJu1yvQQAq6UHVJqBSLsIaB8oBeg6Q2HukhcwcQGZbAShHQHkmvrB7A9h9odnJHer8KtF3//W6aXn+VOVyPU8G7QQVnmd6DfrZZIoloV0LyCbz4HANLk2dwgWeQoopiWvzr/fBfX9yMe40lSfLy5Xry5XsG/T4hWPUYQD4Adxte2Hv68MZf/WV6R0rEY0bEyw0rNXHXRv3ECpCx8ucxIxk8Cor4bolV4SIvgzsbt80De9LmxPVvjmRrcPQnMi2LSCIYHdl4HQHsHtDWBmFyLMQ1SWgLdNHRVsANFCzUyG5K4DdHUBmIlN2LBooCSZDBaE0tC2gXL7dUfmKTixnMqZcmO+bK8MIsqcfQpn66GHKgp1WqNkRxjtomtE2+v+RTyyM2GB+siaqWg1fXmSa5Cagw02EB8qDZRMufoDkC29C8E+RBll9/HVxD6EibHqUsf1wSu0aKBXT6nxZsEENXge/T+Xep4MACELAEgjrXAQNHpQtoKVA5JoNerXbNRq2hkjsDcxCof4IIjK9V0QYQfoK0o+KGt0TlSX7WV6Y/NPZ+Rdcx8zLunrMTinHgqpPQnncCkpTa2Nw39SXnc3vglZDY9qxxrUFyZGpUBjLAtnPme4eQAiI6U4GUXWJu7l9vsk9ASwRRiNY/yxXudEYZLecq/5MyavV6zsg/blAxofuS0P7AaCVaQCa622R7odQLkTGh4wiwHEQzq9HUGtDOQ60FFC2QM2bEezeCHY6gsyEpr+KEIA0pcC0JSB882YfJWyzg0WwpMJMNqllwnLyZRS02ZwipXmdAkBPHyxhyn04+zMIGj2EqenvT0Gzx6rkx/KNQVWgh070ChpoVqVRxl7Yc2XYu5g3F2+d0Yr573ljUodG1W/9H26JewhUTUaIabXvD5QCi4ZPAJsba2g/gOjphW5pQFhjmySJZfqr1L1merg5XaFZKKTUQEwLQCgFLSVEGAG2DaE0hBJ45KfcXT+TTXpMW9DUW1gWkN3hL4Q0uz+DEMK2IHQCIq2h6hKT99hEJaxKfswksKMIephzBxNqRj/ZC4PGEmNPQiwuPA/6gPnYeXoTLH/Cd0dE06SKZ+JEFLfChqL5k17DBDQqnUb0+g5Eu/dA9fWZMkxKQ7guRE0KorYG8FyzLd2yANuGTjgIa2wEtRYyc2z4jRaEBtz9IZyeMF+XGlpDOxJR0oFyLdN3JTJ1q4U2SZf8bWnG2qR+OKn3J6SA9BKQNSmIZALCdYCalCkRFobQlmkGqm1T0u6R/2YCj6bWhvT3i5pgxt2sMw6FDe7zhIRMJtB54nzsP0Lj4Lq90zae9pZ/mLbHIqKpsdI5v+j7kWJaHUVQvp/f5Vq4OlpIkT2BbQ38m41ro6SFyBWIXAFlAW63Qs1r/fB2ZSADBW0L0/NNCBPT1jhQng1YAlCADE2Deza5nx0mO6aFkJCuaxJ1UkI2NZrLszEtlIaWEtq2oO3ZEU9QvNZ33QvhupCOXVxCa4p3i4yHsKyRd4+XuD1QHKcP3qVSeHnu+QopzLmROY2IalwIBaTnTXDwZWpf9OnpeSCiGYw7WIho3AYaIZtAYrTGy7ka/sKyYC1sg04lAWUafkJKs6JPSjOhBACtYaVD2K5ECMDOaFh9EYTSZhWgFFCuiyAl4ddKRB4gFJDYr2D3KZNcCTQe/sXnpvpQUIWYjFV/IntiRLgu4DoQjmOSf+l+IAigFs5HWOvmt8M+8NDnJ2PoRCPakP4+AJiTdVKYkjPZE3qFpr2u9DQo7LlSeJlwXUAIyGQS/e84GPsPlxAR8N13fWfaxtbx5r9O22MR0dQQtjOwWjrb/2nEmFYr6AjmtnZBOSUr2zvKsSFs2/QWtM2iIWd3GiJKIPIs01Ow3+xYUZ4NZZsY2G8y8axfLxG5Jqb19mu4PQpWOsJD6/95Wo4HzSC5RRlCAlJASGn6Bu3eC1lbAzG3Cbo2iajGg/Js/PJhxrQ09fIxredC2DbU3n3m+8HN3yvEaOc48nLVD6KCnwNMEgmACkLzGZEr2Zf9GZnwIFJJIOFBzWtE6NmA0mh6IYPND1w9FU9piI7tX5uWx6FJVnl/LrNaZaWGK8z7zvhS3EMgqmj5ki2WBZFMlr0dV6ZSgOsC2dX/IlTZetaAci1oy5QCM/+XkL6C2xXB7gkhlGkqDiDbYwVwehUS+yI4vQMNQCEElCWYXJmFJrrqL9/3Idfc3rLMv54HWFZ2l5S5LZMrFAshhjYGza74G8sKu4o06HMkn/C0B9WEF9Ks8pPZY6CB/vkai9752jQNtLqsOJUlsoiGpRWEY2cXVzgQyURZMW1RD4Hce6+UJrliWSbBkkzkm4ZLX8Hp8mH1BBBhrvyXgpUOIQMFEWgT0+5VsNPZoVlA5AomV2ahSd/FApj4IVsmTGcTitq1ESUdJldo+iU8oCYJ6dj55MpwOz1iVVgibLjdNYXJTAzseilMGuU/Mwpv4zoQ9XXm80IIQCn0tiWw85Qa9La5U/q0iGhyMcEyAgYZRKPLBw7pdHm3t7NBhNYQQQSV9MwVkYbQ2f4poYIMtTmJLQCZiWD3hRCRgnIlwhoLYdKUZVIWoGyBKGHezux+DejsJLY3mqJnTbNCroGtlEBtCrqpzqxKjRSkr6AtfoTS9MuVVEBBuYIhK+sqsLxCWQqeQ36CnW1KqsMgf7l0XQjHhvZ9sxI3Mp8RmNePYxt3xjX6irbpcTZ5JxqJsG2IZBIi4ZkG4KP+QHFC25xMK3jftSwg4SKqTUB5DrRnQWZCyP7A9FZxJMI6B2GNA+VZCFMWlCsQuRJ+rYCWgPRNU3sZcokqjV9RjGBZEAnPfGUTLVGNiyjBPoI0/TpeuROqqR7C8/LJh6IdLBUSz+aTJZY1UNKshKKxF+yIFJY18DPZuFZIYcpQuy50XxoIArObZV8vhAa8Lg3JEuc0CqF1RXyREf+7FRFVPbmwzfRQGY2QkPW1QF2NWaERhACyzT5tCZXIlQYDRKQgQvNl9Yf5Zvb9c2z0tliIPAnlCIQpiUyDROgBMgIsX0OGQJSQeHADV/vNVuNe9SekCZxzTUAtU1JBOxa0lGblXyaC8KNp27JNVIrwvGyJLJlfHaejKL/6z9yoQsK8csZRarV4tvxObmIqpIDwPMgFLeayKIKQEqJ5Dl5blsKBLWPvvbL6eCYeiGa9bL8UtLVAH7QAsq525NvnYoVBJ8zMfUkg4UE31UF5DoTWUCnHxBChggjM7frakug8xIXfYCNMmoVDfr2F/jkSUUJA5GLaAAgTFbaam6bNJvXDgR2quRO15Rr82Zs7+ZsvTSSgk6bPw0Md3PFP8dCOBTGn0exKLlg8VLSTZSLxbKn+LuUkbgbdLtcDcNgSZrl+XCjRI7EgqVL4tyzmN+fjWUQKui6JnhNa0bXInOcIUuW/968+4Qtl35aIpkaFzLyJqBrlVnKoplqIVGrUQMWUebGBSJkJKADZmzHlvJKmmacINYQyiRUZZL/6Qwjf7GCJXAFlA8pGvpSYloDlDzyOsoFHf/SZqXzqVAXGmmQRtpOvkQulzYlbIfPbtWUmQNiUgvYsbPzt9VMwYqLyiMYGiJqU+SpIPkzfAMbYiLTM8pHDsu2ByajjAGEI0TIPsnU+cFAbXnt/KxpPfxPHNe3AosQYkyySoTDRbGcS1g7gWOhvqQHq6yC9xPC3L+hpkZfrM+g40HUpRLUetGdBOZaJIwpuqqVEf6OEXwdEnoByBWSoobLnzp1eDcvPlr0VwK9/cNUUPGuqFpui+4tXwZfzuVtwm/zrVSsgDKF938S3dbVQNR42PXrtFI6eaGT+HA/Bgc0D78MF8WVRUnGsSZaC0rmDY+T8ZaPEsvmd4rn39+zO6hHj2kHXDV78ZGLZ7GK+rm4g4ZmFqo316DqyET1tFuwMEHnAU9++cmzPmYhixSb3RDR+2YBEWwKqpQl4fccoNxem5FIUQXs2RCBMmlcIaNuCFoCVDgZSv1pAebbpw5IJoaWEDDUsX0BLgTBpkimAqVFtdr4Aj9/PiSgVyE0qR6GjCNDZ2tQFAbUII4jeDODYSLck8OiPmbyjmGll6lYH2RN8w1VDHPy6L/NvARg5QbnC+tDQCwtWck8mHUVmp0puhbklgWTCfIZoDW3b6D7WxxWLH8Wh7lvw9djKnKz/3c2TOl4iqkIFJ9+UJ9F7ZDOS20bo55RrGG5ZgAXoIDQ9XJIJwDMlHAFARBoQGggVwhoX2paQ6RCwBNzegZr+QY3M9xCUgUmsaAkIBfzmezzBRtk5lGVBIMo30B5RYc+IHMsk+4TrmtK3SRcbn+Cqd4qXlVEIkxYc14EIw/y5AnOlBZEN63KlYscil0TZ6P/HsLfJx7S5GDnXH2XwLpSsYXewFNBRlE3uqCG9WfJ3aVmAbQO2Bd3ZB+EHCGpa0dcCWP2ADMfwRAGs//0Xx/YDNDOwPFdFYYKFiMZNuA6gNcI6F5kGG7XPe1Aj9GLJNw13nfy2dO05gFLQEggaHEAK2J39EJFG7jxZ5GVrsloCQpkJq5ZAJAd2sEBoJleoyErn/OKGhKOd+NXKTFqFhPTsbJ8LU+pD1SahPYvJFaoIHVvvwMp33Wx2AO7emy0RJgFEAxPCUsmVEYxlx9em6H4AA5NSYVkDE87Bf2tjSOrkbl80EdUqn/QUtp1tHi2hUi6iuTXob3ZR8yeJ35+wCO9OvYzDF75R/mMREQEQdbVAGEH4IdJzzMKhmoZ6qF27S/+AViaetWBOWNckzU5uzzXxrSWQmetB+gru/gygAEggTFr5ybcITQkwILsj2zGLhbQUUEozuUJ5q5s+aXZySgkN5Essjyr3+ZlbxW/bZqW8YwOOg/V/uGUqh01UlgcevAbHfeZOLHw+u4hGFCcjciW0dGE8OcKinrFWMNgU3Y8V1oeylTncIQkUIdVAk3rbgfb9UnczVHZeKWw5UCZMabN7RQjAtqGaG6EdCzKVBIIQc7fsQ5icg30nhHjl7z87pudBRPFjgoWIxk0kPCBSiFyJ/jkWRqlYnadtCS0ltGMhqnEgfbNKRUuB3gUuvIQFb3c/AED6kenFojS0ZcHpU5CB2cGiHKB/rqlTLZTAU9++YoqeKVWr/NZyraDKDIh1FGWb03pAbQpRXRJRrYMHNl8zxaMlKp8/x4OntUluhGF+klky0SEkpOuaMgW5la9ajb9XUVYu0bLSOb9opV/+MfL9YcaQZNEKWsn8ikUIaSakiMxKP60BPwCQQM8iDzLUSLdqPPja4fja2/9zQs+HiGYp1wVshaghCb/eLObBCKuUc+VehOcN7KqrTZpFQ0JAuaZXYG+rjWSNhcSuDGQmyu/k1paEnVGQkYAWMLX2awT8OhPTOgp48l4mV8gQnptfXIAwhPD98naxFJRZyu/SkhIdr9w5peMlGqvut2WThkqbXiS5fiVKQquwoBTuQMLQlN6SkxrPrqr5WwiRfe/XCrAs6CAEdADpuhDJBKyEh6izs+z7zj2XXHye3/FoWfCbk4AC1BwPyb/sQVTroX5biGe+weQKlUHDLOCoBNxIA4A9WIhmrdUnDvSQaD/68+O6D+E4EAkPqT/vRu3rwYiT0RxThim7CkRraFtAORIi0vD2ZOD2KAR1FroPq4E/NwGZDmD1+hBBBBEoOF0h7D4FK9Cw02bXCgBs+SaTK1RsY3AfZMKDSHj5xolFhIT0EpCplPlKJrP/Jsxr1LagPQfakUyuUMU4c9WXccZffQUAIPqyScPBZQeytaVzCcZ8byEUlDyYSMPQQYTrFu8WKx7M2JryZuUmpLkvrbQ5MekHQG8fACA9V5hV4BmBP5zDUl9Es9Hq44r7R6xacsOY70PVelCNNcjM8WD5gNutB5rWD0cIwM4uxkh4UEkPUY0L5dmABhJ7fLg9Cv2NEvsPT8JKh7D6QshAQUQKdk8Eq19BRoDdb5rZi8hUFGPdfSrUsfNu8zqrr4Ooqy3+zM3JLqSQqRSs2lpYtbUmBnZsEwd7nkmubP9aPE+CqISPP/lxXPr0R1HzcsG678LSXJY0r2HXgayrg6ythTW3CXJBi/m+1N/CBMi6WgjXMY/peQAG+q9ASFOytqFuzPergtDEs46dT67AthDUWOg81ENfqwNICeVaePj/MblCVK24g4VoliqsO9/x/JfG/PNnrvwy3IXzIQITdCRf6YS2ZPGq6RJMKZlscgWACLKrri0BEWp4e3zIWhvdB7pQtkDijdwqEg2hFEQkIEMJ5QEQgNep8dv/zYkoDcOyIFwH2kc2AI8GdrVYFmR9nSnpYdtmVbzvQ2d8CNtGx9Y74h490RBammbIdk8AoRSQSpqEoFbINWMRtoMN6e9jVeIj2ND/A6yu/7g5GZjJ7g6RChuD+yZvUEJgo/8fWFV7IaA1Nvr/YcotZHePjXfym28qalkDiSGloDM+rH19mL/FwpvvSlX0qqlVS27Iry7b8MxN8Q6GaAZa/+yaou83bBnb39mSjmvR84FmpHYCdlpDCyD1ZrYPwDAxrUn8SrPb1TXlbrUtTRJYAgIC0ldI7fAR1NvYf4gNLYSJfTWy5W4VhJLQAoAwjw0Av/0uY1oqIZlANLcWsqsfwnUhlc7vzM4tqJCNDUBdLSCzJ4I7uwHbQseOb8Q8eKLSHKHwQud8ePuAcGEz7Jd9aN/Px4+yoR5QCh07voHVx12L9c+uwcpTboaWEnZoYsRN6e9P3oBsG+s7/x3th33WlCV7azc2RfebndqODZXuh5XwzPmM0ZLwQHHvliiCALI7Hy0gmYTdp5DcHSH5Zj/2njw/34urUq1658Dn64Ynx76YgWimE1qzK06hrq4uNDQ0oLOzE/X19XEPh6hivefc2yACDStQsDt9WK/vgursgs5kSgcc2VXM1ry50POaBsqE2RLayU4wAYhs3Wm/wYG2BLy9PmTGTHSVZ0PbEsqVCGptKFvgsR+y5wqNbnX9x6F9Hxv6fxD3UIgmRfsRV5tG7/0BkO43iYd0P3QmA+G6WL/v29M6ntVzLjarDoPQlCwDzK5GrSA8D1FPb3llwgrrbmd7sQys9jMlwnQQQLgu+k8+HFv/B/DqJz43Rc9qchzxxTshItO0+oXry9ttOdF4lPEsUXlO2/TP2NVVC/VSLZxewNsHtDy+H3juJaggLJ1gsSzIujqIxgaohhrohJ3fna2lBKTpw2KyKQL9c114+wNI3+xeUa4FZUtTGqzWgrYEtAU88R+MaWlk7UdcDXR1Q/elsb7z3+MeDtGkWPL3dyKxTyH1RhpRyobdE8Da9haiRfOw8dfXj34Hk6j96M9D1Xhml/hrO0zfIgDwA6h0GrKpEWrX7vJKTxfEtNJ1TTybTAA1NVANNRBhCNEfYO8prXjzNIVXLqn8Xp8H/59bAQBbP1p+dQfGpJNv8+bNOOevzsPpx30q7qEAAB7+/R148OH1WLp0adxDiRV3sBDRmK0+/jp4dQkoz0JQZ8N7pQfwg/xqvuFWdAjXAWpSJkni2RCRgvRDKOlA2ybDoqVpWu/u983qvtBMbJVrY9Nj103bc6SZZX3XvXEPgWhSdbywdqC8Y12NWR2dSmL9i1+JZTzr934LALAq+THTkN6yoIWCSCQHbjR4J8vgE5elyotlyzSIZAKorwXS/dC79wJaw8pEaPxDYgqezeR64QtX4NA77kDkaRx81+2wWtJ46X/y84wobqeddzv2H9oKmQRUEsjM0ah5HZBv7oPKLgzS4dD3KeF5EKkkdH0KwZwkhNKwe3wgVBC2NouHLAtaCkAIJPb4Zse2AKKEjQceZNlRGp+OF9bGPQSiSef0KshQo/OwFPpaBLTw8NyXvxDLWHKVPdpbL4V2bCCZABwb2Lsfsq0VCAJzrqMwZi1nAZE0cToa6tF36BzseoeDg+57A3BsyFDDe2vs5XTjsPWj1+Cw/3sLDv4/t8L2Irx4HuNZohwmWIhozHoOa0TqtT70tyXR2ypR8/sAcB0gioAgHNJcWUgBYTuQdbVAEEDuVxApz0w+HbNyTygNEZoyYNqSZuUfpPm/bb5ftmItNm+6OtbnTkRUKcZT3nGqbUh/H+0HXg5kMhBKo2PXPQCAle4FA71YtMr2VBmos60LenjJXN8kzwVqa6Aaa+A3JeDX26h75CXT/6upEe72ffj95ngSSmP1lyuvxBFfvBOZOQrRW0kc9J2v4G3f8bHpcU5MieKy7yPdSP68AXtO93HogW9i908WoeEvaUAIyNoaqO5u6IKYVnoJiGTCvDe5LkQmgNPZP1AezLNMOcZIw+r1ASEQJW1ECRsiuwNbuQKn/806PPqjyl+pTEQ0HX79g8rbvdex824AwMp33QyhFNScA/KLPdvnXWL6IgkB3dcHne7P79rWSuc/M4TtmM+MxgZELQ3Y87YavHV6hJOP/Qteef4QQAiolIvGp97EE/9ZHfEsALz0P6/D8f/vevT7DhZ/fy0O/7cImx69dvQfJJrhmGAhorK9bc2dyLQGmN9oI7VDIKgRSO5WJqCIIuh0v9kuW7CKI1c3X4cB1P4uyIY6wHEghGn0ppUyDey1NiVuLAs6ZRIrgIKINESoBlYCEhFRRevY9tUhl230/wOrm/8eiJRJxue+soQFk5B3HdPAt64Wak4tgqYEeg5wUbctg5pXuqF6eiHrTbJeJ2un70lNghe+cAUWf+N2SF/A2e/g5f9h49jP3ok/3lZe2TAimhxq59sAAEfMW4FX7QYcsXgHOvuTqHstgtUXQqfTJqYdXCJMChPvZnwIAAhDSKWhPTufWBFRZHZfaw3tOUDSBsyaIQBA5EpE7nQ/YyIiGo+Nvx1aoqxj1z1YfeL1pkdsbQqipw8IAkCZ8yI6Wx4XlgVdV4POY+Zg7zES6pgeLGnbgT/tno85TzvQNQnIPh+qPlnikSvb3Jpe7BUp+D0uXvyoh8NuuwMvfZY9xKYdO35UFCZYiKhsy1Y/jcdePwRCNaD3gCTChED91n4g3W9W+UXRkC2yhauSte8D+zvNyuQwBSQ8CN8yk1QhTFNGDxBq4K1JRApQgNQwiRyaFO0HXl7yJCgR0VQRyWT2JGQE4QfmQimgfTMpFckE9NwmqKQDf24S6WYbQUqidmcId/s+oC8NNNSZXiy2BbFnX7xPaBykLyACAW8voLsEknv4uUYUlz39Kew9xcdxyW785bcH4tBXOiHf2g/V01u6/4rSpsdUGEL39QG2DdnUCKHMSmah1EDi2HEAmIb20DCxbKggQ4kgNagcIo3bylNuBoTAxifiKSdERLNTelEdlC0gQ40gNRdaArXb0pCZECrhIDPXhdMdomehh71HC7SctAOnzHsVP3nhONQ/WIPUmxG6D28AtEZibxD30xmzRq8fnf1JoM+Cu9cyCwmIZrmqi+4ymQxOPPFECCHwu9/9rui6bdu24ZxzzkFNTQ2am5vxqU99Cn45zaeIqCx3H/AbXHHkA8jUC3QeYmHPSaFp0plOQwVhUTIlT6uiL+X70L4P3Zc2jZnDMLsDxkxKRSaE7OqH3Z2B9COzg0VrSD/EAw99fvqf9AzF5ApVg5XvujnuIdAk6tj+NejGWujmRqCx3pRXkNIkXRzbJN370ug9sBavnG1j35ESzb/rQuqpV4CubsCyoBbMg55TDyQT+fIN1eTlK66E5QNOGki9qaEFcMpHbsfSD9+OY665Eyf+051xD5Fo1qhzMlh5zPP4u/m/gt0rIPd2Qw+XXAGgowg6CKH6M+Y2ANCfAXp6TUzrB2Y1aXZXNoIIMhPCykSmFG6kYaUj/Pa7XOU7WTb++nomV6jirVz6xbiHQJPs4f/3WWxfDbz5Dhu9rRJBjYDyLEQ1LvwmF05XCPeFN7BrCfB379+EU+dtxf/76Sk49NYALb/cAQDob5RIN1t4YHP19eX6r9O+gXTGgQgF7DRg9wHH/POdOOaf78Tb1tyJg++6HYvvXhf3MGe+XMwR9xcBqMIdLJ/73OfQ1taG3//+90WXR1GEs846C/PmzcOjjz6KPXv24MILL4TWGnfddVdMoyWaWTalbXzn1dOQ2qXwxooIsIjBawAARJ5JREFUN5z+U9z96w9i7uPZSahWA/1XRmj8pqMICEOzOyUIAakA2wJgmVXMSgB+CESmXr/QGut/xxOtRLNNqW35VN3W/+EWrDrpRujaJGSkzKrv2hqTaPF9oKcPVkZhzh8ceJ0Kck83dMYslln/5r/GPPrJ4XSbf4UGZAhTg9sxLWl+dxfLhRFNl+deOQB/f/ojeHcC8Bu12XVSULqwqKcgsvErMHBZpMzubG1DhBFgScCyzPsZQggpgT7AChVUjQttCTy0/p+n7wkSUUVgEnBmalzYib49cyADwK8T2HNMAsk9CsldAdw3OpE58gCoZASlJTZsPxItT4WQO3ZBhyEe/XH19FwZTv9rtbD6BaABK2N2bGoAYa2GmJvB1gu4OJZml6pKsHR0dGDjxo340Y9+hI6OjqLrNm7ciOeffx7bt29HW1sbAOD222/HRRddhDVr1qC+vj6OIRPNKE+nF2PPo62YoxRa2vbjwX1Hwu3WAxNOYGhyBRiadBFyoNxXGBasYHagHdv0Y4k0hNTQlsD6LUyuEM1GK5d+kZPSGWjDUzcWfb/qnTchrDVNCdyXdkJEGqldIZzeCMhkgCjC+s5/j2Gkk++0/7EOXpMFJ61hZTSsjIKyBdJzLbjdcY+OaPb4+LZ3I/VnF72negD6IDMCOuWNHtNmLxNSmNtmsmXBLAuwLAgru2hIOGbRkB9AaA2dsLHpUX6eEc1GK991MxcNzUC/O+uLwFkD3x++9k5ErkSQdNGUrsPmB67G4n9bh3//41K4z6Xg7e4FAKzf/c2YRjx5jr/yTiRTEiKE2cGSNpf3LARESz9a53bGO0CiGFRNguXNN9/ExRdfjJ/85CdIpVJDrn/iiSdw7LHH5pMrALBq1SpkMhls2bIFZ5555nQOl2hGuuboX+De476INw5zcM3Bj+H/vrEEid2mZqiZaGZvWDD5zE1MhbTzJcQGGt+HEK4DHQRYv+Mb0/58iKiyMbkyO2x48oaSl5+58svQc+pnTFnnd378DjiWgNuj4PQqWP0muWKFGk5aYsu3WDaIaDrI1j+j6y//COeUvVjs7MI+5UMoQGSCbJLEgg4H7c5GNn4VzsDlWpnYV2nAUmZLmudh/a574nliRFSRmFyZHV68eugu5Ff+12cAAMdfcSd2vb0GyQMPne5hTQkRAk4PYKUBr0shSAkEtQKRB9huiMdWfDnuIc4OQ6uZUoyqIsGitcZFF12ESy65BCeddBJeeeWVIbfZuXMnWlpaii5ramqC67rYuXPnsPedyWSQyWTy33d1dU3auIlmmn/5/y3DhUelsL2/CYvcPXh11xwctqcP2rIAywH8ADocSLgIyyravSJkwSeAzq74k96MKftCRETj197yDwCAjuxnwoMbTSmd1U2fRPu8S6CjCOv3fiu28U1Uck8E5Qj4tRJ2v4DQGpk5DhK7AyTfmliDU8azROW7808r8Z45wAkNScyV/Xi8vxm1rwHYux8AIJMJqDTyMS0AE9MWGlQ+DNnFQ9X8HkVERBO34tRbAACbHr8uf9kf7jTJl9XHX4dVb7+h6kugKwfINJl1BUJLdB0MBK0BRI+Flz7IhCLNTrE2ub/xxhshhBjx66mnnsJdd92Frq4uXHPNyM2fhBi6xlFrXfLynFtvvRUNDQ35r0WLFk34eRHNVL/pPAQ/e/1Y/HHfAgBAuN+D6EkDloSQBTtWsiv9tMqWDyuYhOZ2sQCADkLTBJRit2zFWixbsTbuYRARDbF+37dNnwNZ3XtZHvnpZ/Hojz6D3373SoQJgb75Dvw6gb4WJ59MGi/Gs0Tl+23nYmzcdRS29jVjj0rg/+56F+peC6F6es0OllQSMuHlFwrldl6Lwe9BBTEvFJu8VgrGtEQUKwFAinyipdD6P9wCUViKsko9e/sV+PN1V8A/Io19R2lEi9NYfOBb2PpPV8U9NKLYxLqD5bLLLsP5558/4m0WL16MW265Bb/+9a/heV7RdSeddBI+8pGP4Lvf/S5aW1vxm9/8puj6ffv2IQiCITtbCl1zzTW48sqBkgxdXV2clBIN44lXFyPM2DiwbQ9ezLRC+NI0q8+t6svVpFYaWmkIqUxCJVdeIftvPumCyCRZKHabN10d9xCIaJbL7VxZ/t4vQWjglw9/Hu2LPg0AEHW1xc2nq8S7/3odoM2J16DWgt1nFhX0LbIgA5g+LP7ET8wyniUq329fPQg6Eki3OHiy/hC80VcPLcwuFeG5gJ2dImdjVQAD5cAK+wrmdrDkL6uK4hAzHmNaIorTpsfMzpWD/8+tOPS+L0FIhZf+53U4+ro7YfUD1nvmQlThGtNTPnoHwgQQeQJ9raaxvVroQrb2I5H0se3NOXEPcXbRML2LK0B1L4GbPLFGgc3NzWhubh71dl//+tdxyy0D2d833ngDq1atwv3334+TTz4ZALB06VKsWbMGO3bswIIFZnX9xo0b4XkelixZMux9e543JHFDRKVFbyahkwp+aOP1TBOgATgOhOtCRxGEk2tcH+STLPkJaXaCukndhxXyPEBoCClYSoGIiIq82p6E2wm85/23oaY2BQQhonn1sPb0xD20MVl+5q0QdSbUVraAiDTClITbFcHp1YhcASsAnvjPia/2YzxLVD71VgI6odDte3ilvxndmQQcR0I01AOpJJDuNztZHLsomaKjCEXxrPUhADALiiJgY/8PYnxWRERUSZrndsOSGoGSOHPzVehbuAB1L1qIPMDy4x7d2Ly3/SuwUxKRKxG5gAwApxsQoUDbvP1I2gE2feDOuIdJFKuqWGZz4IEHFn1fW1sLADj00EOxcOFCAMDKlStx9NFH42Mf+xhuu+027N27F5/5zGdw8cUXo76+ftrHTDTTHPHFO+FCwhdAn+/gzUw9ZCCgXceUTPAjM/HUaqAMmB66NGOFPA+b1A+nefRERFQtlKeRbtN4y7Fx4M4krK1vwAKAnt64h1a2971nDSAFnJ4QkSsBSDg9Edx9/djw5A04/oo7oS3gmbvZ2J5oOuXj2Uag33fwRroRWgOZegHUpoAwApQyO1miCLCsbGKlGONZIiIaSaAs7HqrFuizsLcugLPPgrdfw68XSO6pni0sy9/7JVjZEplhQsBOCzg9wJZvXYElHdfizJYX8cXj/ivmUc5SFbKDxay8pqpIsJTDsiz8/Oc/x6WXXorTTjsNyWQSF1xwAdatWxf30IhmBLfTNDPTQqJ/gYPf72pDw4sCIgihowjaD/IJliKDm4DCTEoBcGJKRERDzP09oKWA261g7dpvPlv27DN9WKqECDUENITWsLsVwhoHUcICQvN5mGt2SkTTy+0ElA1AS6SbXbywdx72v16PA3dHpo9KfwZqzz7T86mwj6eQgNBFMS3jWSIiGs7vzvoi3v6Pd8LKaGiZgNuj4PQqJPcAqe3Vsytb+goQgAgVkpEGhOkhCABb2tfEPDqiylGVCZbFixdDl8jUHXjggfjZz34Ww4iIZr7a1xW0JRCkBPz9teivAebuioC+NHS6H2rQiS/TCNT0ZtFKDlyRnZhyMkpERKU8ee+VOO1/rEN/k4X9Sw9A4+OvAWEE0VAX99BGtfrE6wEAth9CpVwo14b0Q0jHwgMPfT7m0RFR3XYFZZtVuMHeJPxUEnN3A8nXO4F0P3Q6bXZjB2auKaSAcN2Ce7AKyoUxniUiouE9840rcNp5tyPdLNB9gETNmwJOj0LX2yq7ys7qY64FHHMuR1oCmfk16GuxIQON0AOe/lcuFCIarCoTLHFoP+oaaCkRNSbzTauIZoulF9wOp9esXLAyEjIQcHqFuSwIhjSqF1IM+T5XNowTUSIiGs1j/99ncNIn7oAWgK5LYf2zlb1Crv2IqwGtIZSCrklA1XgQmQB2Vxo65VVU98f3vWcNtBTQjmQzaJpVln74drh9CloAdlrAzkg4HpDcqyC70oDvA36Q7yEoLCvb6N7IxbdaSWxS98X1NIiIqIo89sOrcMLld0I5QJAS+M33PhP3kIaVj2cBIIwQtNTBb3Rh9SvUb+1HZo4L5VRQUDvbVUyJMAKYYClbbqJMNBsl9oTQ2c9RoQBAIgwBqz8qWZdaKz0kyUJERDQWT32n8vuTtL/tnwFLAkoB/RnAcaBdGyITQGRCdPz5y3EPcQjlWJBBxGrJNOskdwfQ2fhUBgP/uvt88/erNbQaKAFm4lkFwDLlwkqUvSUiIhrN779a2Ts+iuLZjG/+n0wgM9eD3RvB3dOHDVtuinuYRBWNCZYybXjqxriHQBSLZSvWQoYaMjATSm0JILIhQwmZydarHjzZ1NnJaP5bnsYhIqKZpf3wzwGR2cmJIITuS0O0zoPs7AN6+9Dx+l1xD7GkzQ9w1wrNTtJXENl4FlJARDaUIyCUBlwHuqfX/E0D+WSKjgAhJGCJgV6DBbtaiIiIqllRPBspIN0PJBMImmvgdgZwX34LHa/cGfcwiSoeEyxENKLNm642NeW1BoSAFgIi0gjqHAilTBPQEphUISKimar9kM+YE61am4UGAITrDExQFVe5E1Uae396oJyGEBCRiyhpDzSz14MWDeV2rGgFhIq7V4iIaEYZEs9qs+AAACCEaXAfDq1YQhWiUkqEVcgw4sYECxGNaNXbb4BQCiJUJrniWIDS0AIQocqfWAIwsKqvYGXfpuj+GEZNNDstW7GWPRWIplj7wVeayaYlAbsglFYutGcDtoX1W++Ib4BEVFo2ngUA7VhApKEtAWVL2EkXUCrffyVPyPyioY0B+64QTQfGs0RTLx/P2haQTJgLswtqo6YUgnoHUBqbXvt6vAMlqhJMsBDRiGQmu1VUCvOBawkoz4LQgOzsg8pkivuwsHQCUUVYtmItAHCCSjTZghCQEnAcMykFoKVE1JiE1d2P9c+tiXmARFSKyIRmt0p297VKWOhd4CKxO4To7EWU7i+KaYv6CXL3ClEsGM8STZEgNHGs60LVJgCloBIOMs0eRKghQo2HOj4X9yhpJAxNKgrPghLRsPKlwYIQAKATtlnxB8DuC4HuHmjfH/E+VlgfmvJxElWL5e/90pTef+Hkc/OmqzkZJZoCHa99HXpOPTpe/ArCOTXQngNIIErYWP+HW+IeHhGVsPrE6/NlTlTKhXZtCAWEnoDTG0J3dg30WCmVTOHiIaIiucTHVGA8SzT1Ol77OtS8RnS8sBb+nASiGhciUvBrJfYd4TC5QjRG3MFCRMNa/7ubAZjGZ1pKqKQLKA2rN4C1uwuqu6e410pu8qlV0fe5JAvLhdFs98BDn497CEQ0Cdb/7mYsX3Yr4FoQysHGJ26Oe0hENIL1v7vZxLO2BZVwIDMhZNpH44sCzks7EKX7i+JXYVlD7mOlewGEFNjQ/4NpHj1R5WHSg6j6bXjyBrx39ZcBAYQpGw89cm3cQyKqWkywENGI2g//HKA1RBhBhBGipIOw0UVqdxd0dmfLEIWr/FgyjIiIZqAHNl8T9xCIaCyy8azsCwBbon9+Cm6nDz2oNFghIcVAs3tzwTQOmIiIaGo9tP6f4x4CjYuGqJQm9wSACRYiGkH7gZfne69ACIggQjgviSAlzeWFZRSGm3ByIkpERDMI68ETVZ/2Ay8HLGni2ShCWOeif64NGWrITGbghtndK0IKs0tbSPNzkEA4zMIiIiKiKrP8zFsBwQVDRJOFCRYiGl4UAREAxwYcG0FjEn6thNujgNykU+iBREuJZIqQAhuD+6Z/7EQUq/bDPgtkfOh0Gut3fzPu4RBNGiZWiKpQFJnFQbaFoLkG/XMcQABaAiKZgPB9aDVQ6lYraXavSGH6EQqWBiOajVYffx1EqIB0Pzq23hH3cIgmzQMPMrFS1TRMfEIVg0vLiWh4Upov24ZKOki3OAgTAk5XAPT1DdxOyKLkipACgOm5wuQK0SyVTa7AD7C66ZNxj4aIiGazXDybcJGe5yKolXB6FNxOP79oSEhhvizL9GCxLLOLG8CGnu/G/ASIKA6iLwOk+4EwQvuBl5sFRERERINwBwsRDS+VBADohIP+lhr0zZeQPmDv64Pq7AaAgRIKg+SSLEQ0O3Vs/1rcQyCaEstWrOUuFqJqk0qaeHZBDXoXSFgZoOHFfliv74EGTEJFF8S0WgHINroXjGmJZquOl26LewhEU4LxLNHkYoKFiIalXQsi0oBSsALTayU9H4jqErAcGzoMhvzMpuj+6R4mERHRtMj1XyGi6qJdayCe1UDvAqDhLw7sXOkwSwIRICxkS4RpbOz/XtzDJiIimnSMZ2eIEgudKT5MsBDRsNY/uwYr33UzhFIQgYLVD0AAQb0Ly7ZNWTCtinaxrLA+NK4ky+r6j5tSDMokcmBZgBQQiQRgW+h45c5JfGZERERjx5V+RNVp/bNrsOqkG008mwFkAGQabSTqayH2hoDrQvu+qWeuJIQFrEp8ZFx9V1bPudj8R5tFStAacB0I20bHzrsn+ZkRERGNDeNZosnHBAsRjUg7Eiqb7PA6FYKURFBrITm3CTIMofoz+STLRIhkwpRg0BpQGlorCCHzjUWJiIiIiMYrSjn5eDZyJcKkQFSXhLV3v1nUY1nQYTjwA5Y1/gcrSK5opSAU41kiIiKimYpN7oloRNoS0FIAGnB7FBL7NboWSexcsQDR8YdB1tcWNbgHgJXO+WN/IMcZ+JICQkhorYAwRMfWOybp2RAREU0NllsgqmyF8azbrRHUCuw9vhZ97zoEYu4cCNeFcF1TLkwKQAisqr1wfA+WTaboXJLF99Gx4xuT+GyIiIgmH+PZKqJ1ZXwRAO5gIaJR/PKRa7H8zFsBADKj4O0XiDwLPQuBMJHCwl1zINL95sZKm6agYuy5247Xvl70ffuBl2P9tq9OdPhEVKFywTu3qBMR0bTIJj1kRsHrFIhcCz0HCPTNt3HAvjrYXd0QwEC5Wsc2u6nHaP3ebxV9v7r577F+9zcnOHgiqlSMaYmIiAkWIiqPAGSo4PQC3n6BMCnR1wLsWNGC1kdsiF37oDM+EEWTksXuYHKFaMZatnyt2UOr4h4J0eThiRWiKlAYz3oCUUKivxnYe1QKzelmqIQDa38aorPbxLNy4gUfmFwhmrm42p9mGsazVYS7RyoKEyxENKoHHrwGALD8vV+CCDXcrghaAsqS8OuBN943FzU7m9Dw7F6IvV1AGKK95R8AIaq6meeyFWuHDTC4Uolo/DY/wL8bIiKaXsPGs45EphHYc2IDtBSwMynUvVoDq9c0vV99whegbYkNW26K9wmMUznxLMCYlmg8+HdDREQAe7AQ0Rg88NDnIbSGDDUSeyM0bI1Q+4aG9IG+Zol9b5+L9HELodrmA3MaoVubsfJdN2PFqbfEPfRxKSdgXrZiLVcujQGPFRFVCr4fEc1Og+PZ+lcipHZpQABaAkFKYP9hCew9rh49h9QjfUAdgsYkVr7r5riHPi7lngBmTFs+HiciqhTLl90a9xCICNzBQkRj9MDm7Oq/ZbdCRBp2n4KdtuDXCvh1AkHKhTPPgdCA3adg9StYGWVWCyoNbQ3kdXMrCavR5k1XF02uRlodSAN4jIiIiChupeJZ5QpEnkRQIxAmBLQEooSArBdI7FOwMhFWvfMmQCloy8ovVdz46+tjfCYTk4vLGNOODY8PEVUKbYm4h0BxqZQSYRUyjLgxwUJE45KbmL7vjC/B7guR3CUQJi2km2349QLSB6QvIG0BpQQeeuDzMY948pWaXHFSSkRUHfheTUSF8Sx6AS2ApBSIPBPThkkBoQAZaWgJbHjyhphHPDUY0xIRVSe+TxNVBiZYiGhCfvmwSZysPu5aWLUJaFsAwoJQgLYBZQs88tN/jnmU04cBDhEREVF1ycWzQDamTXrQMoFMkw2hNEJP4pFHro1xhNOPMS0RERFReZhgIaJJsf7ZNXEPoWpxhSARERFRZWBMO36MaYmIiKaBBqAqpTZXpYwjXmxyT0QUs1L1r4mIiIiIqgljWiIiIpqNmGAhIqognJASERERUbVjTEtERDRVNKBVZXwRgCpLsPz85z/HySefjGQyiebmZnzwgx8sun7btm0455xzUFNTg+bmZnzqU5+C7/sxjZaIaGxYUoGIiIiIqh1jWiIiIppNqqYHy49+9CNcfPHF+NKXvoRly5ZBa41nn302f30URTjrrLMwb948PProo9izZw8uvPBCaK1x1113xThyIqLycUJKRERERNWOMS0RERHNFlWRYAnDEJ/+9Kdx22234ROf+ET+8iOOOCL//40bN+L555/H9u3b0dbWBgC4/fbbcdFFF2HNmjWor6+f9nETEZUrV0aBk1EiIiIiqlaMaYmIiKaBZnP5SlIVCZann34ar7/+OqSUePvb346dO3fixBNPxLp163DMMccAAJ544gkce+yx+eQKAKxatQqZTAZbtmzBmWeeWfK+M5kMMplM/vuurq6pfTJERCVwEkpEROPFeJaIKgVjWiIiIpptqqIHy8svvwwAuPHGG3HdddfhZz/7GZqamnDGGWdg7969AICdO3eipaWl6Oeamprgui527tw57H3feuutaGhoyH8tWrRo6p4IEREREdEkYzxLRERERDSLKF0ZXwQg5h0sN954I2666aYRb/Pkk09CKQUAuPbaa/E3f/M3AIB7770XCxcuxA9/+EP8r//1vwAAQoghP6+1Lnl5zjXXXIMrr7wy/31XVxcnpUSzRK6EQQ5X3BERUTViPEs0ew2OZwHGtERERETTKdYEy2WXXYbzzz9/xNssXrwY3d3dAICjjz46f7nneTjkkEOwbds2AEBrayt+85vfFP3svn37EATBkJ0thTzPg+d5430KRBSTyajvzMknERHNBIxniapTYXJkvHEp41kiIiKieMWaYGlubkZzc/Oot1uyZAk8z8MLL7yA008/HQAQBAFeeeUVHHTQQQCApUuXYs2aNdixYwcWLFgAwDS+9zwPS5YsmbonQURTZqRJJyeTRERERFQNhlsYxHiWiIiIxoVN7itKVTS5r6+vxyWXXIIbbrgBixYtwkEHHYTbbrsNAHDeeecBAFauXImjjz4aH/vYx3Dbbbdh7969+MxnPoOLL74Y9fX1cQ6fiMpUqsQBEREREVE1YUxLRERENHtURYIFAG677TbYto2PfexjSKfTOPnkk7F582Y0NTUBACzLws9//nNceumlOO2005BMJnHBBRdg3bp1MY+ciEYy3AR0uBV9y1as5Wo/IiIiIqoYIyVUSsWtjGeJiIiIZo6qSbA4joN169aNmDA58MAD8bOf/WwaR0VEk2XzpquHTDaHm6xORv8VIiIiIqLJVm5My3iWiIiIxkWDJcIqTNUkWIhoZhk80cx9P1pJBU5CiYiIiKgSjJQ4GeuuFiIiIiKqTkywENG0G0td6twElKUUiIiIiKhSjBbPikhDWwIA41kiIiKaTLpydrBUyDDiJuMeABHNDstWrC1rd4oINaAGvi+8joioEuXe3wrf49jgmIho5iknngVM3Grv64eI9JDLiYgq0XDx7LLljGmJiEbDHSxENOXKPem4bMVabH7wmukYEtGsMNzfG0/wDDUZtfClr/C+96yB8iyISE9opXKp3x1/b0RE8Sknns3tWlm2Yi02P3PTdA2NaEZjub3yTUY8a6UjrDjtFkQpGyLU0LYYd0zLuQgRzRZMsBDRlOEKbqLpVe7f3ODbzbRJzsp33QwA2Pjb68v+mVLHIDeZzB0vEWk8sPma/PfeH15F5viD4L7Vi2BuCsod2BicKwsz1pMCy5fdmv/ZUuMZ6WfHY9nytUX7mQff72S8j1fb64uNp4losHLfC/Pv32oKB0M0w40l9pjJMW37ok8DWqPjta+X/TPDxbO56/IxbajxwIMmpnUefQ7B6cfA27YfflsDoqSV/1ltiyH3U85jrjrpRgQNiWFr5kx2TDs4fh5rjF2uant9Maad4VSlBBusEQYAQutKKdpWGbq6utDQ0IDOzk7U19fHPRyiqjPW/iqsRU00foMnJ2M+Ga6Qn/jMpL/D3HGw+kJEKbOWpLAW/kwx0nvouBMjCtj8gLm/FaevgXLl9B23gseO01QkssZqovEo41miicu/FxR8VpZS+Pk7kz5LiaZTqSTAeMykv8HccbA7fYQNbv7ySoxpS45plPfO3M89sPkatB9xNTpeGPp7bz/8c4AYuN/MQU3lDWhQTLly6RcRJeyihNFUyT2nSjATYloaavPmzThn5QfxnnkfiXsoAICH3vouNj+6CUuXLo17KLFigmUQ/vETjV+5wfBMCnyJplNZCZUyJjMjkZkIyrOKLqv0v9mpOA4VrcwJa6VNvstVia+36V4MwAQLUbyKPleGec+txPcqomox4UVCo7DSUdFOjNzjVLJSx6Ca47lySF9B2bLoPTZXlgwwz19EumiXeDWpxNdctcW0NBQTLJWJJcKIaOoMnpDO5BOeRFNgxJ5Fg0o75U3wb2xwcmW0cZRj0spZjWUcM/m9poznVs2T8dHKlhERTStZfMLPSkeISnxWElFpo8VvU1FWenByZUKPk53DTmY8MuaygzNUqcRJ4S4TbYmqPgbllC4jGjful6goTLAQ0aQZUrt/+aDAsSB+WrZibUVtnyWK25gnfTM5gVCAvZxmoUGv7XJeA4WfP1NRDoETYqLZZfDf/PIzb83/v/DE7bIVa+G+0Q2xey863vzXaRsfUaWakXFbNi5ZcfoabHr02nHdxYw8LjSqouSQKlhEVObOSMa0RNWDCRYiGpeyGgqO0tSuMOBg7WqqZitPuRlhnVt0WTmv5WF3oRAATkapfMO9VvjZQkQjKfXeUer9olTd/uXLbgUsAb+tDt7uvUPuk+87VI1WnL6mKIlY7ut4NsRsstcf18/NhmNDZZDD/L/AiNUL+NlCg3EHS0VhgoWIxqzUB3+ulufyM28FRPnbmRkoUDVafeL10EJAJ2xsfOIL5sJBK5HKem0zuVKEE1CaKiO9tvj5QzQ7jZSY3bzparzvPWugLTlsU+TCWNc/5kDGtFSVVi79IrQQgBTY9Oi10MPsIuXrGtjwzE1l3Y7xLE2l4V5f/Bsliheb3A/CBkxEA/If3goQkcIDD32++PJJkKtpzXJhNFFTsYU6p731UsB1oRtqsP7ZNaM+/khEZD52q7mecNkUsPmBob+L1cddC7+1bmjjTvZpohhV0sSUTe6JJteyFWsBBVj9ITY9dl3RZUJPThNpxrQ0WaYqqdF+9OehbQnt2oAQ2PDkDSM+PmUNE88CQPthn0Xm4LlFfZoYz1KcKimeBRiTToV8k/u5H457KACAh3Z/n03uwR0sRDQOuQ/tyQi+tRTFASlVpOXv/RK0I0v+7r0/vIrM8QeVrhlbMCEp9Xqx0lHJJpTSV0VND+1uH9aeHoR/2Ypo+ZJRx5t7LBEoaMfcT258q2r+FtFJR0K5Q5/PkOeXHX/Hzrvzl0/0dT8rEis5gyaXy5fdCruzH+G8WgAljgUnoxSjZSvWwuoNEdVkw+OCEySVNlklorETWgMFSwtLfeZP5HOIMW3lGxzPAoNi2q17kDl47tDrS8SzmzddXfSzMhNBecUx7VTGs8DwMe2w8ezzXyq6byZSylTifWH5slvh7O5FsGgOgEFlBBnPUoxKvW8UYkw7Q2gAivslKgl3sAzC7CpRGYmT0Sag45ig5gIAfuBPj9F+x4MnjeX+TnM7EniCgYDhG48TzWST8TnGHSxEk2Okz54huygnCWPa6TVaCcjxxLM5U/UaoeoyUuNxopko995ZCTEtDbV582acs+KDeM+c8+MeCgDgob3/hztYwB0sRFNiPEFXJU3C4jgpqi0JEahpeSwqMMxEc8jvvczJaG4SyuTK7FZ4QmP5slt5coJmlcmakBJVgrHGgZX22h8pptWijM+mcSwaYkw7fUZLnow3ns1h/DK7Fcazy5av5c4UmjXyr3vGtERl40cEUYXIbdOuihUxg985Bs0hhdZj/yDO3mdVPP8qMdyxbD/gn+Du7AYAyCCaziHRLFA0GV2xlicniIhmkcJ4tuJjulIzYca0FWe447iq5m8BAN5rnQBMfx2iyTI4nuWZMyKqLBpaq4r4IoM7WIgmaLg6vIXG2rNkOlYLltM8cfA4cs+xsPxTrgyC9BWcF15Dx867xz+pliL/uFwpMT7ti69Axyt3ljz++cuOPiB/2eBa0UQTxRNKNNvx84uq0bC9yAYZKd4d6X7LMZ6/neVn3goIjNpUvnAcpeLZfK8MaXppOH/ajo5d9zCmjdGqmr9FcOrRQy7P/z6y12UWNgAAohRPbdDkYTxLxJiWaCwYhVDFKnVyv1pNdYBW6v5HOl7Ll90KWAMTv9ztc/8f3JARAKAKtkYLU5NY+graEqa/liuROe7AcT3XXH1jLcSEG4zOdh2v3Fn0PScHRERTR0QaUBraMidmqzlWoanDmHZi9z3c8Vq+7FZoWRzP5m6fj2kHNx4fHM+GGtKPoO2B4FN5FjInLmZMG7MNvd8r3kFARERTQkQaItJQtsx/blVzrDJrVEqT+woZRtyYYKGqMZG+JoMnXcNdNh6FPzvWVX1TadhxKAAlak4X3n7Ykj6y+PooOTm7H/KPx5NTZVu2fC2cx5/DhvT3S15v9YWIEjYn9kREU0QECg889Pn895Xy+U+VbzJi2qmMZ3PfV8pruuQ4cvHsKH3kChMng+XjWXvypsSMacdm2Yq1gAKcx57Fhv4fDLme8SwR0dSSvsIvH2Y8SzRRTLDQtBttt8VoyZCJPtZwl5WaSI5lYlROqbCKUMYEpWSCZYonNrkVfzSy9gP+CZkjTYmv8JQRyiawTAIR0eRSwOYHho8LeDJ1dsmdGC6Mjwa/BqYyph0pni11/YyLacuMS4fEltNwop4x7ehW1V6I8F1H5nfUh0uPHXKbZSvWMp4lIpoCI8UEjGeJxocRC43bcDWFxzMRG+5npnNSN9HHquSVf5UuV5KMH+aj63j9rmGv4+uNiGhyFZ0o5QrqGWnVkhuwYctNJa8b9XN10GtipNtP12f0ZDwOY9rxY0xbng093x3xer7eiIgmF5P/M5Bmba5KwgQLjWq4msaDr5uJJvL8ZvqxmZDcis9RVgPT8KpidSkRURXjCdKZZ+UpNyNK2NBOQWZkTnJWfI4ypp0CjGcnBWNaIqKpxZiWaOoxwUIAyp84MeilCSsop8HJ6FBj/Rvj3yQREZHRftQ1AIDMwgZzweAm43XutI+JZijGs6NiTEtERDSFlIp7BFncSQMwwTIrMXilSacAKxNBORLaFhCBAqQo2oLKVRPF+HdIREQ0MUM+S3OJlRyWdaOxGiWmZTxbjPEsERERERMss0qpAFhEGloU1BYfvNKPqAxWOgR+8ywkgE3R/XEPpyJxAkpERDQ58p+p2bhVZiJACCjbBLFCaWibdcZp7BjTjozxLBEREdFQTLBUofe9Zw2UY42cCFGA0CWaWBXUCoaEuX7QZUQ5pRqhceXe6Dj5JCKqfoV9AUpdXgo/I8dm2fK1w8ee2bhURBrQGEiYFF6uNKAFdDaxkotnmVyhwQbHtPxbLQ9jWiKi6lcqpmU8W+U02OS+wlRNguXPf/4zPvvZz+Kxxx6D7/s47rjjcMstt+DMM8/M32bbtm34x3/8R2zevBnJZBIXXHAB1q1bB9edWfWWlWdBBApaDsxIRaghIgURaSjPgrYENEpMLuWgf4e7jGaWMSbPck0mtSUgQg0tBYTSsPpDLFuxdtQP3GUr1kJmIjgvvIZw125sUj+c2PjHaayTQhFpPLD5mil/HCIiqh5F7/EK8J7bBlgWMkcfAICT0IkQ0dB4VgYKUNl4dlC5UQD5eEZbAhh8XcH1NENNIKaFwpjiWaA4pu1481/HP+4JYkxLREQTVbgD2Ht+u4lnj2oDwHiWaKKqJsFy1lln4W1ve1s+efLVr34VZ599Nv7yl7+gtbUVURThrLPOwrx58/Doo49iz549uPDCC6G1xl133RX38Ee1uumTAADROg9RXRJRyoZ2ZMk3ucLL2lv+AZASumUutC0R1bhDJ6JEBRPRUrtS8rITT8C8zlYlPgIA2ND/g2HveriJmLYlokPasCmmyegKeR7k6SdCedboNy6YrK9acgM2bLlpSsdGRERVItc7smAxSua4A/NXczJabHXD3wEARFsLVG0CyrOhbDFsTPvAQ58HALTPuwSwreJ4lrtQqJTc3+JoiZZBMe1K9wJs9P9j2JuPlFjQtkR46AFjH+skWSHPA5YvKe/GjGmJiKiUwphWApljF+WvYjxLNHFVkWDZvXs3XnrpJfz7v/87jj/+eADA2rVrcffdd+O5555Da2srNm7ciOeffx7bt29HW5vJwN5+++246KKLsGbNGtTX18f5FEYlbBvB0QdCucUzhcHB/uA3vsKVVO0HXg6pNfScevjNNYAErL4QyrU4SaU8bQlYfSGiVIk/fwloKbBsxVpYfSEkyk+uSF9B2RJWJgIe/515LJhJYRw7WKzaWvhOGckVoGg1bFjnof3wz6Hjxa+U9aOrEh+BAwAiW/c9mYBoaUY4p4Z/e0REVYoTzfERyQSCIxYOiWeBkWPajl335P/fvvBT+Xg2bErly+LanX5+ARIRJGClI0TJYWK9QTGt0Kr07TD0tVkqpo2TVVuLqNwbTyCmXeleUHRyQCYTEC3z4B/QyHiWiKhKMaadqTS0Gj62mU4sVGZURYJl7ty5OOqoo/C9730P73jHO+B5Hv7t3/4NLS0tWLLErOZ54okncOyxx+aTKwCwatUqZDIZbNmypaiUWKFMJoNMJpP/vqura2qfzDByE8vVx1wLVZ9AWOuUvN1w29nb511i/iMFxBu74O3pBLRGx+t3Ff0sAPZaodLJlUGUI/Mr/0Zj9YWwnv0L1nfdm79shTyv5P9LJVtWyPOgs7tNZCaCs30POrbeUdZjD5Z/nZ98xLh+XlsSsMtMzGDkBBQArK7/OCAGJqWitgZIJqAaaxA0JcY1RiIimnx2t4+Nv74+7mGMS8XEszvvBgCsevsNUClnxHijVEyb29ENAOhLw94xELCu3/3Nop8FwJh2lhs2uTKIciTKjexGimlHi2dzt6nWmHakHT65Xe05sq4OqElCNdUjaE6Oa3xERDT57G4fYZ3LxArRNKuKBIsQAps2bcK5556Luro6SCnR0tKC9evXo7GxEQCwc+dOtLS0FP1cU1MTXNfFzp07h73vW2+9FTfdVDlbp9c/t2ZcP1e08m/eJeh47etF17cf8E/wamuQWdjIiSiVRVsS6pRj0L7wU0NeTzkjfWjnJp7LVqyFsz8DhApBc7JkCQb3uCPzu02UZwHJRNk7X5atWGtWMHoWRKSACa5s9bbtLXulXzn8EpNiEWquBCQiqjBhXfX27Ku0eHbDM+Mby/p9387/f3XTJ4FIFV2Wu9xrrEfmkPmMaaks2pJQS48b9vrRTkLl4tFV77xpxHgWGH9Mm7u/So1pg3cPPX6MZ4mIKk81x7M0RmxyX1FiTbDceOONo04Gn3zySSxZsgSXXnop5s+fj1/96ldIJpP49re/jbPPPhtPPvkkFixYAMAkYgbTWpe8POeaa67BlVdemf++q6sLixYtGvb21aAw2ZK/LLuTZcWptyCqqYq8GsVNAsqxELU1Y/myW4v6tnivdUJt3Qbl+5BeArKlGZnDW7B509X51X25iWSuuWihwX1g/Pk1A5cLAb1z15jKiuVWMBY2ys0bZXVruSs7VlgfQrTs7WacoYaIFOSvn0N4xvFljzOHk1EiIppMMzGeHZxYGXz5ylNu5kkEKk82pl1+5q1FMdjgeFYkExD1tcPGtEGjV3S3pfoajjemzd3XsDFtGbu1yolpVzrnI3zvieYxs/Gs8izYD/9hzDEt41kiosrk7uyOewhEs47QOr6U1+7du7F79+4Rb7N48WI89thjWLlyJfbt21fUS+Xwww/HJz7xCVx99dW4/vrr8d///d/4/e9/n79+3759mDNnDjZv3jxsibDBurq60NDQgM7Ozmnv2zLcSijvd69AD64brDTC4w4uWeN6WIMbtRJNVKnJngKs/hI9XrK3raatqoUlSESkWPediGgWqITPqYnGo5UYzwKA+9RLQGG9aK0RnniYWek/FoxpaTINl7woFdMyniUioipRCZ9VccakM9XmzZtxzvs+gNOTH4h7KACAh9M/woOP/RJLly6NeyixinUrQ3NzM5qbm0e9XV9fHwBADlrJI6WEyk7Sli5dijVr1mDHjh35HS0bN26E53n5Pi2VrtRKfwDInLgYmzddjdUNf2cu0BoQAvbvXsL6zn8vuu2y5Wvh7E8jqvWGJl8YS9NkK/WaksP0eJGA3ROgvfVShG/tKrpqLLtVyjHSyZ1CpQKOkj8rh9kdQ0REM07h50AlTEyrzXDxLAD4Jx2GzZuuxqraC80FWsN6+s/4Zc93i26Xi2dFECFsTA5NwPAjmSbTcK+nUjHtCPEsUOExLeNZIqJZhTHtDFdmz+QpVyHDiFusO1jKtXv3bhx55JE444wzcP311yOZTOJb3/oWvva1r+HJJ5/ECSecgCiKcOKJJ6KlpQW33XYb9u7di4suuggf+MAHcNddd43+IFnVkF1dXf9xAChqvlio3ECcaDpJX0FbYkgphUIi1JAPP112neqJcp96Cf5JhwEAnN1pNukkIqJRTccEtZp3sIzFqpq/xYbe75W8jvEsVaJy4lmgvJh20l7jCnCfZkxLRETlm66ES7XEpNUkv4PFOzfuoQAAHu7/MR58nDtYqqIZR3NzM9avX49rr70Wy5YtQxAEOOaYY/Df//3fOOGEEwAAlmXh5z//OS699FKcdtppSCaTuOCCC7Bu3bopG1epoNju9AFpGkuN9Q1rdcPfFTUpGi6BwsQKVaNyytlpW5SciE7Vazt4+6ED/+dElIiIyjB4NeCyFWurelXgsPGsJRDWOgDGNgkvjGd1dqf5hkE7VHJKJVcYz1IlK7c8c6mYdspe25IxLRERjc1Mi2eJ4lYVO1im03iyq0MaeAemtq2zNw0oQO7aB93bBzFvLlRdAiJUEG/sgg7D4jrUhbTOJ1JWvf0GBspEREREFUgECtqSJcsMjXeiGscOluHiWQAjxrR45fWBHyoxrdBK5RMsq0+8Hv681JifDxERERFNnZHiWSC+mJaGyu9gcc+JeygAgIczP+EOFlTJDpZKN9wbzbIVayF9BeHXAc2N0K/thNhlEir56efCBQjnpobUlhaBwvL3fsl805SYopETERER0USM1DB6Iv0TpttIY8jHtGE2pt22A+LNaOAGw8WzoQa0Hohp53DBEBEREVGlGSmeBcqLaSshniWKCxMswzj73Dtg20MTGyM17sxdX+r/g+Xuw+4J4GzbDQBQTfWI6lxoW4765kZEREREM8OyFWshIg0thCk1G/ZPyv0OF88CI8e0g2PY0WLafDwrBNScOkQ1LpRjQdsCwMi9KoiIiIio+uXiyqmIaWkQDehKaXJPAJhgGbPRsrZjra0b1joID2+ZyJCIiIiIqMqN1jR7so0UszKeJSIiIqLxmO6YlqgScJsEERERERERERERERHRGHEHCxERERERERERERFRxdOAVnEPIoulygDuYCEiIiIiIiIiIiIiIhoz7mAhIiIiIiIiIiIiIqoCbHJfWbiDhYiIiIiIiIiIiIiIptTdd9+Ngw8+GIlEAkuWLMGvfvWruIc0YUywEBERERERERERERHRlLn//vtx+eWX49prr8UzzzyDd7/73Whvb8e2bdviHtqEMMFCRERERERERERERFQNtKqMrzG644478IlPfAKf/OQncdRRR+GrX/0qFi1ahH/913+dgoM0fZhgISIiIiIiIiIiIiKiKeH7PrZs2YKVK1cWXb5y5Uo8/vjjMY1qcrDJ/SBamyZBYZiJeSRERERENBvl4tBcXDpWjGeJiIiIKG4TjWlpqGQyiTR68YTeGPdQAAA++mFZFrq6uoou9zwPnucVXbZ7925EUYSWlpaiy1taWrBz584pH+tUYoJlkO7ubgDAE4+ujXkkRERERDSbdXd3o6GhYVw/BzCeJSIiIqL4jTempaGWLl2KR371CHp7e+MeCgCgrq4Ov/jFL3DyyScXXX7DDTfgxhtvLPkzQoii77XWQy6rNkywDNLW1obt27ejrq6u6n+5pXR1dWHRokXYvn076uvr4x7OrMHjHg8e93jwuMeDxz0ePO7xmOnHXWuN7u5utLW1jevnZ3o8C8z810Al4jGPB497PHjc48HjHg8e93jMhuM+0ZiWSjv99NPjHkKRJUuW4Morryy6bPDuFQBobm6GZVlDdqu89dZbQ3a1VBsmWAaRUmLhwoVxD2PK1dfXz9g38ErG4x4PHvd48LjHg8c9Hjzu8ZjJx30iq/xmSzwLzOzXQKXiMY8Hj3s8eNzjweMeDx73eMz0486dKzNfqXJgpbiuiyVLlmDTpk3467/+6/zlmzZtwrnnnjuVQ5xyTLAQEREREREREREREdGUufLKK/Gxj30MJ510EpYuXYpvfvOb2LZtGy655JK4hzYhTLAQEREREREREREREdGU+dCHPoQ9e/bg5ptvxo4dO3DsscfiF7/4BQ466KC4hzYhTLDMMp7n4YYbbihr6xZNHh73ePC4x4PHPR487vHgcY8HjzvxNTD9eMzjweMeDx73ePC4x4PHPR487jRbXXrppbj00kvjHsakElprHfcgiIiIiIiIiIiIiIiIqomMewBERERERERERERERETVhgkWIiIiIiIiIiIiIiKiMWKChYiIiIiIiIiIiIiIaIyYYJmh1qxZg1NPPRWpVAqNjY0lbyOEGPJ1zz33FN3m2WefxRlnnIFkMokDDjgAN998M9i2Z3jlHPdt27bhnHPOQU1NDZqbm/GpT30Kvu8X3YbHfeIWL1485PV99dVXF92mnN8Fjc3dd9+Ngw8+GIlEAkuWLMGvfvWruIc0o9x4441DXtetra3567XWuPHGG9HW1oZkMon3vve9eO6552IccXV65JFHcM4556CtrQ1CCPzkJz8pur6c45zJZPBP//RPaG5uRk1NDd7//vfjtddem8ZnUX1GO+4XXXTRkNf/KaecUnQbHveZhzFtPBjTVgbGs/FhTDu1GNNOD8a08WBMSzT7MMEyQ/m+j/POOw//8A//MOLt7r33XuzYsSP/deGFF+av6+rqwooVK9DW1oYnn3wSd911F9atW4c77rhjqodftUY77lEU4ayzzkJvby8effRR3HffffjRj36Eq666Kn8bHvfJc/PNNxe9vq+77rr8deX8Lmhs7r//flx++eW49tpr8cwzz+Dd73432tvbsW3btriHNqMcc8wxRa/rZ599Nn/dV77yFdxxxx34l3/5Fzz55JNobW3FihUr0N3dHeOIq09vby9OOOEE/Mu//EvJ68s5zpdffjn+67/+C/fddx8effRR9PT04Oyzz0YURdP1NKrOaMcdAFavXl30+v/FL35RdD2P+8zDmDYejGkrB+PZ6ceYdnowpp16jGnjwZiWaBbSNKPde++9uqGhoeR1APR//dd/Dfuzd999t25oaND9/f35y2699Vbd1tamlVKTPNKZZbjj/otf/EJLKfXrr7+ev+w///M/ted5urOzU2vN4z5ZDjroIH3nnXcOe305vwsam3e96136kksuKbrsyCOP1FdffXVMI5p5brjhBn3CCSeUvE4ppVtbW/XatWvzl/X39+uGhgZ9zz33TNMIZ57Bn5XlHOf9+/drx3H0fffdl7/N66+/rqWUev369dM29mpWKka58MIL9bnnnjvsz/C4z2yMaePBmDZejGfjwZh26jGmnX6MaePBmJZoduAOllnusssuQ3NzM975znfinnvugVIqf90TTzyBM844A57n5S9btWoV3njjDbzyyisxjLb6PfHEEzj22GPR1taWv2zVqlXIZDLYsmVL/jY87pPjy1/+MubOnYsTTzwRa9asKSqXUM7vgsrn+z62bNmClStXFl2+cuVKPP744zGNamZ68cUX0dbWhoMPPhjnn38+Xn75ZQDA1q1bsXPnzqLfged5OOOMM/g7mETlHOctW7YgCIKi27S1teHYY4/l72KCHnroIcyfPx9ve9vbcPHFF+Ott97KX8fjPrsxpp1ejGmnD+PZ6cWYdvowpo0XY9p4MaYlmlnsuAdA8fniF7+I5cuXI5lM4oEHHsBVV12F3bt357ed79y5E4sXLy76mZaWlvx1Bx988HQPuert3Lkzfwxzmpqa4Loudu7cmb8Nj/vEffrTn8Y73vEONDU14be//S2uueYabN26Fd/+9rcBlPe7oPLt3r0bURQNOaYtLS08npPo5JNPxve+9z287W1vw5tvvolbbrkFp556Kp577rn8cS71O3j11VfjGO6MVM5x3rlzJ1zXRVNT05Db8O9h/Nrb23HeeefhoIMOwtatW/GFL3wBy5Ytw5YtW+B5Ho/7LMaYdvoxpp0ejGenH2Pa6cGYNn6MaePDmJZo5uEOlipSqhHc4K+nnnqq7Pu77rrrsHTpUpx44om46qqrcPPNN+O2224ruo0Qouh7nW1KOfjymWyyj3upY6e1Lrqcx720sfwurrjiCpxxxhk4/vjj8clPfhL33HMPvvOd72DPnj35+yvnd0FjU+q1y+M5edrb2/E3f/M3OO644/C+970PP//5zwEA3/3ud/O34e9geoznOPN3MTEf+tCHcNZZZ+HYY4/FOeecg46ODvz5z3/O/x0Mh8e98jCmjQdj2srAeLY6MJ6aWoxpKwdj2unHmJZo5uEOlipy2WWX4fzzzx/xNoNXiY3FKaecgq6uLrz55ptoaWlBa2vrkOx4btvi4FUOM9lkHvfW1lb85je/Kbps3759CIIgf0x53Ic3kd/FKaecAgB46aWXMHfu3LJ+F1S+5uZmWJZV8rXL4zl1ampqcNxxx+HFF1/EBz7wAQBmpdmCBQvyt+HvYHK1trYCGPk4t7a2wvd97Nu3r2jl2VtvvYVTTz11egc8gy1YsAAHHXQQXnzxRQA87tWEMW08GNNWBsazlY0xbTwY004/xrSVgzEtUfXjDpYq0tzcjCOPPHLEr0QiMe77f+aZZ5BIJNDY2AgAWLp0KR555JGiOr8bN25EW1vbhCa91WYyj/vSpUvxxz/+ETt27MhftnHjRniehyVLluRvw+Ne2kR+F8888wwA5IPHcn4XVD7XdbFkyRJs2rSp6PJNmzYxCJxCmUwGf/rTn7BgwQIcfPDBaG1tLfod+L6Phx9+mL+DSVTOcV6yZAkcxym6zY4dO/DHP/6Rv4tJtGfPHmzfvj3/vs7jXj0Y08aDMW1lYDxb2RjTxoMx7fRjTFs5GNMSzQAlGt/TDPDqq6/qZ555Rt900026trZWP/PMM/qZZ57R3d3dWmutf/rTn+pvfvOb+tlnn9UvvfSS/ta3vqXr6+v1pz71qfx97N+/X7e0tOgPf/jD+tlnn9U//vGPdX19vV63bl1cT6vijXbcwzDUxx57rF6+fLl++umn9S9/+Uu9cOFCfdlll+Xvg8d94h5//HF9xx136GeeeUa//PLL+v7779dtbW36/e9/f/425fwuaGzuu+8+7TiO/s53vqOff/55ffnll+uamhr9yiuvxD20GeOqq67SDz30kH755Zf1r3/9a3322Wfrurq6/DFeu3atbmho0D/+8Y/1s88+qz/84Q/rBQsW6K6urphHXl26u7vz798A8u8nr776qta6vON8ySWX6IULF+pf/vKX+umnn9bLli3TJ5xwgg7DMK6nVfFGOu7d3d36qquu0o8//rjeunWrfvDBB/XSpUv1AQccwOM+wzGmjQdj2vgxno0PY9qpx5h2ejCmjQdjWqLZhwmWGerCCy/UAIZ8Pfjgg1prrTs6OvSJJ56oa2trdSqV0scee6z+6le/qoMgKLqfP/zhD/rd73639jxPt7a26htvvFErpWJ4RtVhtOOutZmwnnXWWTqZTOo5c+boyy67TPf39xfdD4/7xGzZskWffPLJuqGhQScSCX3EEUfoG264Qff29hbdrpzfBY3NN77xDX3QQQdp13X1O97xDv3www/HPaQZ5UMf+pBesGCBdhxHt7W16Q9+8IP6ueeey1+vlNI33HCDbm1t1Z7n6fe85z362WefjXHE1enBBx8s+V5+4YUXaq3LO87pdFpfdtlles6cOTqZTOqzzz5bb9u2LYZnUz1GOu59fX165cqVet68edpxHH3ggQfqCy+8cMgx5XGfeRjTxoMxbfwYz8aLMe3UYkw7PRjTxoMxLdHsI7TOdhokIiIiIiIiIiIiIiKisrAHCxERERERERERERER0RgxwUJERERERERERERERDRGTLAQERERERERERERERGNERMsREREREREREREREREY8QECxERERERERERERER0RgxwUJERERERERERERERDRGTLAQERERERERERERERGNERMsREREREREREREREREY8QECxERjcl73/teXH755XEPg4iIiIhoXBjPEhER0WRhgoWIiIiIiIiIiIiIiGiMmGAhIiIiIiIiIiIiIiIaIyZYiIho3Pbt24e//du/RVNTE1KpFNrb2/Hiiy/mr//f//t/o7GxERs2bMBRRx2F2tparF69Gjt27Ihx1EREREREBuNZIiIimggmWIiIaNwuuugiPPXUU/jpT3+KJ554Alpr/NVf/RWCIMjfpq+vD+vWrcP3v/99PPLII9i2bRs+85nPxDhqIiIiIiKD8SwRERFNhB33AIiIqDq9+OKL+OlPf4rHHnsMp556KgDgBz/4ARYtWoSf/OQnOO+88wAAQRDgnnvuwaGHHgoAuOyyy3DzzTfHNm4iIiIiIoDxLBEREU0cd7AQEdG4/OlPf4Jt2zj55JPzl82dOxdHHHEE/vSnP+UvS6VS+ckoACxYsABvvfXWtI6ViIiIiGgwxrNEREQ0UUywEBHRuGith71cCJH/3nGcouuFEMP+LBERERHRdGE8S0RERBPFBAsREY3L0UcfjTAM8Zvf/CZ/2Z49e/DnP/8ZRx11VIwjIyIiIiIaHeNZIiIimigmWIiIaFwOP/xwnHvuubj44ovx6KOP4ve//z0++tGP4oADDsC5554b9/CIiIiIiEbEeJaIiIgmigkWIiIat3vvvRdLlizB2WefjaVLl0JrjV/84hdDyigQEREREVUixrNEREQ0EUKzcCgREREREREREREREdGYcAcLERERERERERERERHRGDHBQkRERERERERERERENEZMsBAREREREREREREREY0REyxERERERERERERERERjxAQLERERERERERERERHRGDHBQkRERERERERERERENEZMsBAREREREREREREREY0REyxERERERERERERERERjxAQLERERERERERERERHRGDHBQkRERERERERERERENEZMsBAREREREREREREREY0REyxERERERERERERERERj9P8Hj1A3P4VyqWkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "soil_clim.plot(col='season', col_wrap=2, robust=True, figsize=(18, 8))" ] - }, - "metadata": {}, - "output_type": "display_data" } - ], - "source": [ - "soil_clim.plot(col='season', col_wrap=2, robust=True, figsize=(18, 8))" - ] - } - ], - "metadata": { - "execution": { - "allow_errors": false, - "timeout": 3000 - }, - "kernelspec": { - "display_name": "pangeo-forge-recipes", - "language": "python", - "name": "pangeo-forge-recipes" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.15" + ], + "metadata": { + "execution": { + "allow_errors": false, + "timeout": 3000 + }, + "kernelspec": { + "display_name": "pangeo-forge-recipes", + "language": "python", + "name": "pangeo-forge-recipes" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.15" + }, + "vscode": { + "interpreter": { + "hash": "8472a85c0cbfd90fc84f178c7f47d34e20396f42fa331cce9968659ce876ac9d" + } + } }, - "vscode": { - "interpreter": { - "hash": "8472a85c0cbfd90fc84f178c7f47d34e20396f42fa331cce9968659ce876ac9d" - } - } - }, - "nbformat": 4, - "nbformat_minor": 4 + "nbformat": 4, + "nbformat_minor": 4 } diff --git a/pangeo_forge_recipes/rechunking.py b/pangeo_forge_recipes/rechunking.py index e89e881d..e0566bac 100644 --- a/pangeo_forge_recipes/rechunking.py +++ b/pangeo_forge_recipes/rechunking.py @@ -247,9 +247,7 @@ def _gather_coordinate_dimensions(group: zarr.Group) -> List[str]: ) -def consolidate_dimension_coordinates( - item: Tuple[Index, xr.Dataset], target_store: zarr.storage.FSStore -) -> None: +def consolidate_dimension_coordinates(_, target_store: zarr.storage.FSStore) -> None: """Consolidate dimension coordinates chunking :param target_store: Input target store diff --git a/pangeo_forge_recipes/transforms.py b/pangeo_forge_recipes/transforms.py index 18c1f948..197874a1 100644 --- a/pangeo_forge_recipes/transforms.py +++ b/pangeo_forge_recipes/transforms.py @@ -420,8 +420,14 @@ def expand(self, datasets: beam.PCollection) -> beam.PCollection: target_store = schema | PrepareZarrTarget( target=self.get_full_target(), target_chunks=self.target_chunks ) - rechunked_datasets | StoreDatasetFragments(target_store=target_store) + if self.consolidate_coords: - ConsolidateDimensionCoordinates(target_store=target_store) + _target_store = rechunked_datasets | StoreDatasetFragments(target_store=target_store) + + _target_store | beam.combiners.Sample.FixedSizeGlobally( + 1 + ) | ConsolidateDimensionCoordinates(target_store=target_store) + else: + rechunked_datasets | StoreDatasetFragments(target_store=target_store) return target_store diff --git a/pangeo_forge_recipes/writers.py b/pangeo_forge_recipes/writers.py index 0198b2f4..9d8d04ef 100644 --- a/pangeo_forge_recipes/writers.py +++ b/pangeo_forge_recipes/writers.py @@ -89,6 +89,7 @@ def store_dataset_fragment( _store_data(vname, da.variable, index, zgroup) for vname, da in ds.data_vars.items(): _store_data(vname, da.variable, index, zgroup) + return target_store def write_combined_reference( diff --git a/tests/test_end_to_end.py b/tests/test_end_to_end.py index 5bad856b..45d99015 100644 --- a/tests/test_end_to_end.py +++ b/tests/test_end_to_end.py @@ -57,11 +57,13 @@ def test_xarray_zarr( xr.testing.assert_equal(ds.load(), daily_xarray_dataset) -def test_xarray_zarr_subpath( +@pytest.mark.parametrize("consolidate_coords", [True, False]) +def test_xarray_zarr_consolidate_coords( daily_xarray_dataset, netcdf_local_file_pattern_sequential, pipeline, tmp_target_url, + consolidate_coords, ): pattern = netcdf_local_file_pattern_sequential with pipeline as p: @@ -73,9 +75,11 @@ def test_xarray_zarr_subpath( target_root=tmp_target_url, store_name="subpath", combine_dims=pattern.combine_dim_keys, + consolidate_coords=consolidate_coords, ) ) - + # TODO: This test needs to check if the consolidate_coords transform + # within StoreToZarr is considating the chunks of the coordinates ds = xr.open_dataset(os.path.join(tmp_target_url, "subpath"), engine="zarr") xr.testing.assert_equal(ds.load(), daily_xarray_dataset) From e31ddfb6f4163c8b69705ce94a701e13ff576143 Mon Sep 17 00:00:00 2001 From: Raphael Hagen Date: Wed, 23 Aug 2023 10:09:49 -0700 Subject: [PATCH 04/15] updated StoreToZarr to pass singleton_zarr_store to ConsolidateDimensionCoordinates --- pangeo_forge_recipes/rechunking.py | 5 ++--- pangeo_forge_recipes/transforms.py | 16 ++++------------ 2 files changed, 6 insertions(+), 15 deletions(-) diff --git a/pangeo_forge_recipes/rechunking.py b/pangeo_forge_recipes/rechunking.py index e0566bac..41c4e748 100644 --- a/pangeo_forge_recipes/rechunking.py +++ b/pangeo_forge_recipes/rechunking.py @@ -247,14 +247,13 @@ def _gather_coordinate_dimensions(group: zarr.Group) -> List[str]: ) -def consolidate_dimension_coordinates(_, target_store: zarr.storage.FSStore) -> None: +def consolidate_dimension_coordinates(singleton_target_store: zarr.storage.FSStore) -> None: """Consolidate dimension coordinates chunking :param target_store: Input target store :type target_store: zarr.storage.FSStore """ - - group = zarr.open_group(target_store) + group = zarr.open_group(singleton_target_store) dims = (dim for dim in _gather_coordinate_dimensions(group) if dim in group) for dim in dims: diff --git a/pangeo_forge_recipes/transforms.py b/pangeo_forge_recipes/transforms.py index b887705c..6e2ae950 100644 --- a/pangeo_forge_recipes/transforms.py +++ b/pangeo_forge_recipes/transforms.py @@ -411,19 +411,8 @@ def expand(self, pcoll: beam.PCollection) -> beam.PCollection: @dataclass class ConsolidateDimensionCoordinates(beam.PTransform): - """ - :param target_store: The destination to store in - - - """ - - target_store: beam.PCollection # side input - def expand(self, pcoll: beam.PCollection) -> beam.PCollection: - return pcoll | beam.Map( - consolidate_dimension_coordinates, - target_store=beam.pvalue.AsSingleton(self.target_store), - ) + return pcoll | beam.Map(consolidate_dimension_coordinates) @dataclass @@ -515,4 +504,7 @@ def expand( ) # TODO: optionally use `singleton_target_store` to # consolidate metadata and/or coordinate dims here + if self.consolidate_coords: + singleton_target_store | ConsolidateDimensionCoordinates() + return singleton_target_store From bcf71904d6ec92dc95e7841b66c45f8c4f7cdb65 Mon Sep 17 00:00:00 2001 From: Raphael Hagen Date: Wed, 23 Aug 2023 10:11:50 -0700 Subject: [PATCH 05/15] revert docs 1 --- .../intro_tutorial_part1.ipynb | 1042 ++++++++--------- 1 file changed, 521 insertions(+), 521 deletions(-) diff --git a/docs/introduction_tutorial/intro_tutorial_part1.ipynb b/docs/introduction_tutorial/intro_tutorial_part1.ipynb index bdb7fdf4..ea0244b0 100644 --- a/docs/introduction_tutorial/intro_tutorial_part1.ipynb +++ b/docs/introduction_tutorial/intro_tutorial_part1.ipynb @@ -1,526 +1,526 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Defining a `FilePattern`\n", - "\n", - "Welcome to the Pangeo Forge introduction tutorial! This is the 1st part in a sequence, the flow of which is described {doc}`here `." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Part 1 Outline\n", - "\n", - "The main goal of the first two parts of this tutorial are to create and run a **recipe**, the object that defines our data transformation. \n", - "\n", - "In part 1 we create a `FilePattern` object. A `FilePattern` contains everything Pangeo Forge needs to know about where the input data are coming from and how the individual files should be organized into the output. They are a huge step toward creating a recipe.\n", - "\n", - "The steps to creating a `FilePattern` are:\n", - "\n", - "1. Understand the URL Pattern for OISST & Create a Template String\n", - "1. Define the **Combine Dimension** object\n", - "1. Create a Format Function\n", - "1. Define a `FilePattern`\n", - "\n", - "We will talk about each of these one at a time." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Where should I write this code?\n", - "Eventually, all of the code defining the recipe will go in a file called `recipe.py`, so one option for development is to develop your recipe directly in that file. Alternately, if you prefer the interactivity of a notebook you can work on your recipe code in a Jupyter Notebook and then copy the final code to a single `.py` file later. The choice between the two is personal preference." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Understand the URL Pattern for OISST & Create a Template String\n", - "\n", - "\n", - "### Explore the structure\n", - "\n", - "In order to create our Recipe, we have to understand how the data are organized on the server.\n", - "Like many datasets, OISST is available over the internet via the HTTP protocol.\n", - "We can browse the the files at this URL:\n", - "\n", - "\n", - "\n", - "By clicking the link, we can explore the organization of the dataset, which we need to do in order to build our Recipe." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The link above shows folders grouped by month. Within each month there is data for individual days. We could represent the file structure like this:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![OISST file structure](../images/OISST_URL_structure.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The important takeaways from this structure exploration are:\n", - "- 1 file = 1 day\n", - "- Folders separate months" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### A single URL\n", - "\n", - "By putting together the full URL for a single file we can see that the OISST dataset for December 9th, 1981 would be accessed using the URL:\n", - "\n", - "[https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198112/oisst-avhrr-v02r01.19811209.nc](https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198112/oisst-avhrr-v02r01.19811209.nc)\n", - "\n", - "Copying and pasting that url into a web browser will download that single file to your computer.\n", - "\n", - "If we just have a few files, we can just manually type out the URLs for each of them.\n", - "But that isn't practical when we have thousands of files.\n", - "We need to understand the _pattern_." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Create a URL Template String\n", - "We can generalize the URL to say that OISST datasets are accessed using a URL of the format:\n", - "\n", - "`https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/{time:%Y%m}/oisst-avhrr-v02r01.{time:%Y%m%d}.nc`\n", - "\n", - "where `{time:%Y%m}` (representing a year and a month) and `{time:%Y%m%d}` (representing a year, month, and day) change for each file. (We're using direct string interpolation of `datetime` objects here, anything that [strftime](https://strftime.org/) supports can be put in). Of the three dimensions of this dataset - latitude, longitude and time - the individual files are split up by time.\n", - "Our goal is to combine, or _concatenate_, these files along the time dimension into a single Zarr dataset." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![OISST file structure conversion](../images/OISST_structure_conversion.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Why does this matter so much?\n", - "\n", - "A Pangeo Forge {class}`FilePattern ` is built on the premise that\n", - "\n", - "1. We want to combine many individual small files into a larger dataset along one or more dimensions using either \"concatenate\" or \"merge\" style operations.\n", - "1. The individual files are accessible by URL and organized in a predictable way.\n", - "2. There is a some kind of correspondance, or mapping, between the dimensions of the combination process and the actual URLs.\n", - "\n", - "Knowing the generalized structure of the OISST URL leads us to start building the pieces of a `FilePattern`." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## About the `FilePattern` object\n", - "\n", - "```{note}\n", - "`FilePattern`s are probably the most abstract part of Pangeo Forge.\n", - "It may take some time and experience to become comfortable with the `FilePattern` concept.\n", - "```\n", - "\n", - "The goal of the `FilePattern` is to describe how the files in the generalized URL template string should be organized when they get combined together into a single zarr datastore.\n", - "\n", - "In order to define a `FilePattern` we need to:\n", - "1. Know the dimension of data that will be used to combine the files. In the case of OISST the dimension is time.\n", - "2. Define the values of the dimension that correspond to each file, called the `key`s\n", - "3. Create a function that converts the `key`s to the specific URL for each file. We call this the Format Function.\n", - "\n", - "The first two pieces together are called the **Combine Dimension**. Let's start by defining that.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Define the **Combine Dimension**\n", - "\n", - "The {class}`Combine Dimenion ` describes the relationship between files. In this dataset we only have one combine dimension: time. There is one file per day, and we want to concatenate the files in time. We will use the Pangeo Forge object `ConcatDim()`.\n", - "\n", - "We also want to define the values of time that correspond to each file. These are called the `key`s. For OISST this means creating a list of every day covered by the dataset. The easiest way to do this is with the Pandas `date_range` function." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "DatetimeIndex(['1981-09-01', '1981-09-02', '1981-09-03', '1981-09-04'], dtype='datetime64[ns]', freq='D')" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import pandas as pd\n", - "\n", - "dates = pd.date_range('1981-09-01', '2022-02-01', freq='D')\n", - "# print the first 4 dates\n", - "dates[:4]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "These will be the `key`s for our **Combine Dimension**.\n", - "We now define a {class}`ConcatDim ` object as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "ConcatDim(name='time', nitems_per_file=1)" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from pangeo_forge_recipes.patterns import ConcatDim\n", - "\n", - "time_concat_dim = ConcatDim(\"time\", dates, nitems_per_file=1)\n", - "time_concat_dim" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `nitems_per_file=1` option is a hint we can give to Pangeo Forge. It means, \"we know there is only one timestep in each file\".\n", - "Providing this hint is not necessary, but it makes some things more efficient down the line." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "tags": [] - }, - "source": [ - "## Define a Format Function\n", - "\n", - "Next we we need to write a function that takes a single key (here representing one day) and translates it into a URL to a data file.\n", - "This is just a standard Python function.\n", - "\n", - "```{caution}\n", - "If you're not comfortable with writing Python functions, this may be a good time to review\n", - "the [official Python tutorial](https://docs.python.org/3/tutorial/controlflow.html#defining-functions)\n", - "on this topic.\n", - "```\n", - "\n", - "So we need to write a function that takes a date as its argument and returns the correct URL for the OISST file with that date." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![Format Function Flow](../images/Format_function.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Because python's string interpolation directly supports formatting datetime objects, all we need to do is call `.format(time=...)` with a datetime object (the supported arguments as the same as the python [strftime](https://strftime.org/) function).\n", - "For example" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'1981-09-01'" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\"{time:%Y-%m-%d}\".format(time=dates[0])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Armed with this, we can now write our function calling `.format(...)` on the URL_FORMAT string we created earlier" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "URL_FORMAT = (\n", - " \"https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/\"\n", - " \"v2.1/access/avhrr/{time:%Y%m}/oisst-avhrr-v02r01.{time:%Y%m%d}.nc\"\n", - ")\n", - "\n", - "def make_url(time):\n", - " return URL_FORMAT.format(time=time)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's test it out:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc'" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "make_url(dates[0])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It looks good! \ud83e\udd29 \n", - "\n", - "Before we move on, there are a couple of important things to note about this function:\n", - "\n", - "- It must have the _same number of arguments as the number of Combine Dimensions_. In our case, this is just one.\n", - "- The name of the argument must match the `name` of the the Combine Dimension. In our case, this is `time`.\n", - "\n", - "These are ideas that will become increasingly relevant as you approach more complex datasets. For now, keep them in mind and we can move on to make our `FilePattern`." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Define the `FilePattern`" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now have the two ingredients we need for our {class}`FilePattern `.\n", - "1. the Format Function\n", - "2. the **Combine Dimension** (`ConcatDim`, in this case)\n", - "\n", - "At this point, it's pretty quick:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from pangeo_forge_recipes.patterns import FilePattern\n", - "\n", - "pattern = FilePattern(make_url, time_concat_dim)\n", - "pattern" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```{note}\n", - "You'll notice that we are using a function as an argument to another function here. If that pattern is new to you that's alright. It is a very powerful technique, so it is used semi-frequently in Pangeo Forge.\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `FilePattern` object contains everything Pangeo Forge needs to know about where the data are coming from and how the individual files should be combined. This is huge progress toward making a recipe!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To summarize our process, we made a `ConcatDim` object, our **combine dimension**, which specifies `\"time\"` as the axis of concatenation and lists the dates. The Format function converts the dates to URLs and the `FilePattern` object keeps track of the URLs and how they relate to each other." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "tags": [] - }, - "source": [ - "### Iterating through a `FilePattern`\n", - "\n", - "While not necessary for the recipe, if you want to interact with the `FilePattern` object a bit (for example, for debugging) more you can iterate through it using `.items()`.\n", - "To keep the output concise, we use an if statement to stop the iteration after a few filepaths." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Index({DimIndex(name='time', index=0, sequence_len=14764, operation=)})\n", - "https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc\n", - "Index({DimIndex(name='time', index=1, sequence_len=14764, operation=)})\n", - "https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810902.nc\n", - "Index({DimIndex(name='time', index=2, sequence_len=14764, operation=)})\n", - "https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810903.nc\n" - ] - } - ], - "source": [ - "for index, url in pattern.items():\n", - " print(index)\n", - " print(url)\n", - " # Stop after the 3rd filepath (September 3rd, 1981)\n", - " if '19810903' in url:\n", - " break" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `index` is an object used internally by Pangeo Forge. The url corresponds to the actual file we want to download." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## End of Part 1\n", - "And there you have it - your first `FilePattern` object! That object describes 1) all of the URLs to the files that we are planning to convert as well as 2) how we want each of the files to be organized in the output object. Pretty compact!\n", - "\n", - "In part 2 of the tutorial, we will move on to creating a recipe object, and then use it to convert some data locally.\n", - "\n", - "### Code Summary\n", - "The code written in part 1 could all be written together as:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "\n", - "from pangeo_forge_recipes.patterns import ConcatDim, FilePattern\n", - "from pangeo_forge_recipes.recipes import XarrayZarrRecipe\n", - "\n", - "dates = pd.date_range('1981-09-01', '2022-02-01', freq='D')\n", - "\n", - "URL_FORMAT = (\n", - " \"https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/\"\n", - " \"v2.1/access/avhrr/{time:%Y%m}/oisst-avhrr-v02r01.{time:%Y%m%d}.nc\"\n", - ")\n", - "\n", - "def make_url(time):\n", - " return URL_FORMAT.format(time=time)\n", - "\n", - "time_concat_dim = ConcatDim(\"time\", dates, nitems_per_file=1)\n", - "pattern = FilePattern(make_url, time_concat_dim)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Defining a `FilePattern`\n", + "\n", + "Welcome to the Pangeo Forge introduction tutorial! This is the 1st part in a sequence, the flow of which is described {doc}`here `." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Part 1 Outline\n", + "\n", + "The main goal of the first two parts of this tutorial are to create and run a **recipe**, the object that defines our data transformation. \n", + "\n", + "In part 1 we create a `FilePattern` object. A `FilePattern` contains everything Pangeo Forge needs to know about where the input data are coming from and how the individual files should be organized into the output. They are a huge step toward creating a recipe.\n", + "\n", + "The steps to creating a `FilePattern` are:\n", + "\n", + "1. Understand the URL Pattern for OISST & Create a Template String\n", + "1. Define the **Combine Dimension** object\n", + "1. Create a Format Function\n", + "1. Define a `FilePattern`\n", + "\n", + "We will talk about each of these one at a time." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Where should I write this code?\n", + "Eventually, all of the code defining the recipe will go in a file called `recipe.py`, so one option for development is to develop your recipe directly in that file. Alternately, if you prefer the interactivity of a notebook you can work on your recipe code in a Jupyter Notebook and then copy the final code to a single `.py` file later. The choice between the two is personal preference." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Understand the URL Pattern for OISST & Create a Template String\n", + "\n", + "\n", + "### Explore the structure\n", + "\n", + "In order to create our Recipe, we have to understand how the data are organized on the server.\n", + "Like many datasets, OISST is available over the internet via the HTTP protocol.\n", + "We can browse the the files at this URL:\n", + "\n", + "\n", + "\n", + "By clicking the link, we can explore the organization of the dataset, which we need to do in order to build our Recipe." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The link above shows folders grouped by month. Within each month there is data for individual days. We could represent the file structure like this:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![OISST file structure](../images/OISST_URL_structure.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The important takeaways from this structure exploration are:\n", + "- 1 file = 1 day\n", + "- Folders separate months" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### A single URL\n", + "\n", + "By putting together the full URL for a single file we can see that the OISST dataset for December 9th, 1981 would be accessed using the URL:\n", + "\n", + "[https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198112/oisst-avhrr-v02r01.19811209.nc](https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198112/oisst-avhrr-v02r01.19811209.nc)\n", + "\n", + "Copying and pasting that url into a web browser will download that single file to your computer.\n", + "\n", + "If we just have a few files, we can just manually type out the URLs for each of them.\n", + "But that isn't practical when we have thousands of files.\n", + "We need to understand the _pattern_." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a URL Template String\n", + "We can generalize the URL to say that OISST datasets are accessed using a URL of the format:\n", + "\n", + "`https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/{time:%Y%m}/oisst-avhrr-v02r01.{time:%Y%m%d}.nc`\n", + "\n", + "where `{time:%Y%m}` (representing a year and a month) and `{time:%Y%m%d}` (representing a year, month, and day) change for each file. (We're using direct string interpolation of `datetime` objects here, anything that [strftime](https://strftime.org/) supports can be put in). Of the three dimensions of this dataset - latitude, longitude and time - the individual files are split up by time.\n", + "Our goal is to combine, or _concatenate_, these files along the time dimension into a single Zarr dataset." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![OISST file structure conversion](../images/OISST_structure_conversion.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Why does this matter so much?\n", + "\n", + "A Pangeo Forge {class}`FilePattern ` is built on the premise that\n", + "\n", + "1. We want to combine many individual small files into a larger dataset along one or more dimensions using either \"concatenate\" or \"merge\" style operations.\n", + "1. The individual files are accessible by URL and organized in a predictable way.\n", + "2. There is a some kind of correspondance, or mapping, between the dimensions of the combination process and the actual URLs.\n", + "\n", + "Knowing the generalized structure of the OISST URL leads us to start building the pieces of a `FilePattern`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## About the `FilePattern` object\n", + "\n", + "```{note}\n", + "`FilePattern`s are probably the most abstract part of Pangeo Forge.\n", + "It may take some time and experience to become comfortable with the `FilePattern` concept.\n", + "```\n", + "\n", + "The goal of the `FilePattern` is to describe how the files in the generalized URL template string should be organized when they get combined together into a single zarr datastore.\n", + "\n", + "In order to define a `FilePattern` we need to:\n", + "1. Know the dimension of data that will be used to combine the files. In the case of OISST the dimension is time.\n", + "2. Define the values of the dimension that correspond to each file, called the `key`s\n", + "3. Create a function that converts the `key`s to the specific URL for each file. We call this the Format Function.\n", + "\n", + "The first two pieces together are called the **Combine Dimension**. Let's start by defining that.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Define the **Combine Dimension**\n", + "\n", + "The {class}`Combine Dimenion ` describes the relationship between files. In this dataset we only have one combine dimension: time. There is one file per day, and we want to concatenate the files in time. We will use the Pangeo Forge object `ConcatDim()`.\n", + "\n", + "We also want to define the values of time that correspond to each file. These are called the `key`s. For OISST this means creating a list of every day covered by the dataset. The easiest way to do this is with the Pandas `date_range` function." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['1981-09-01', '1981-09-02', '1981-09-03', '1981-09-04'], dtype='datetime64[ns]', freq='D')" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" } - ], - "metadata": { - "interpreter": { - "hash": "872ea42c32c3f63d8f4b36be21cfb5d37e4f64dbfc719d9980b5e00daca69998" - }, - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.13" + ], + "source": [ + "import pandas as pd\n", + "\n", + "dates = pd.date_range('1981-09-01', '2022-02-01', freq='D')\n", + "# print the first 4 dates\n", + "dates[:4]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These will be the `key`s for our **Combine Dimension**.\n", + "We now define a {class}`ConcatDim ` object as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "ConcatDim(name='time', nitems_per_file=1)" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pangeo_forge_recipes.patterns import ConcatDim\n", + "\n", + "time_concat_dim = ConcatDim(\"time\", dates, nitems_per_file=1)\n", + "time_concat_dim" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `nitems_per_file=1` option is a hint we can give to Pangeo Forge. It means, \"we know there is only one timestep in each file\".\n", + "Providing this hint is not necessary, but it makes some things more efficient down the line." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "## Define a Format Function\n", + "\n", + "Next we we need to write a function that takes a single key (here representing one day) and translates it into a URL to a data file.\n", + "This is just a standard Python function.\n", + "\n", + "```{caution}\n", + "If you're not comfortable with writing Python functions, this may be a good time to review\n", + "the [official Python tutorial](https://docs.python.org/3/tutorial/controlflow.html#defining-functions)\n", + "on this topic.\n", + "```\n", + "\n", + "So we need to write a function that takes a date as its argument and returns the correct URL for the OISST file with that date." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![Format Function Flow](../images/Format_function.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Because python's string interpolation directly supports formatting datetime objects, all we need to do is call `.format(time=...)` with a datetime object (the supported arguments as the same as the python [strftime](https://strftime.org/) function).\n", + "For example" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'1981-09-01'" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" } + ], + "source": [ + "\"{time:%Y-%m-%d}\".format(time=dates[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Armed with this, we can now write our function calling `.format(...)` on the URL_FORMAT string we created earlier" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "URL_FORMAT = (\n", + " \"https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/\"\n", + " \"v2.1/access/avhrr/{time:%Y%m}/oisst-avhrr-v02r01.{time:%Y%m%d}.nc\"\n", + ")\n", + "\n", + "def make_url(time):\n", + " return URL_FORMAT.format(time=time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's test it out:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc'" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "make_url(dates[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It looks good! 🤩 \n", + "\n", + "Before we move on, there are a couple of important things to note about this function:\n", + "\n", + "- It must have the _same number of arguments as the number of Combine Dimensions_. In our case, this is just one.\n", + "- The name of the argument must match the `name` of the the Combine Dimension. In our case, this is `time`.\n", + "\n", + "These are ideas that will become increasingly relevant as you approach more complex datasets. For now, keep them in mind and we can move on to make our `FilePattern`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Define the `FilePattern`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now have the two ingredients we need for our {class}`FilePattern `.\n", + "1. the Format Function\n", + "2. the **Combine Dimension** (`ConcatDim`, in this case)\n", + "\n", + "At this point, it's pretty quick:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pangeo_forge_recipes.patterns import FilePattern\n", + "\n", + "pattern = FilePattern(make_url, time_concat_dim)\n", + "pattern" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```{note}\n", + "You'll notice that we are using a function as an argument to another function here. If that pattern is new to you that's alright. It is a very powerful technique, so it is used semi-frequently in Pangeo Forge.\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `FilePattern` object contains everything Pangeo Forge needs to know about where the data are coming from and how the individual files should be combined. This is huge progress toward making a recipe!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To summarize our process, we made a `ConcatDim` object, our **combine dimension**, which specifies `\"time\"` as the axis of concatenation and lists the dates. The Format function converts the dates to URLs and the `FilePattern` object keeps track of the URLs and how they relate to each other." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "### Iterating through a `FilePattern`\n", + "\n", + "While not necessary for the recipe, if you want to interact with the `FilePattern` object a bit (for example, for debugging) more you can iterate through it using `.items()`.\n", + "To keep the output concise, we use an if statement to stop the iteration after a few filepaths." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index({DimIndex(name='time', index=0, sequence_len=14764, operation=)})\n", + "https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc\n", + "Index({DimIndex(name='time', index=1, sequence_len=14764, operation=)})\n", + "https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810902.nc\n", + "Index({DimIndex(name='time', index=2, sequence_len=14764, operation=)})\n", + "https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810903.nc\n" + ] + } + ], + "source": [ + "for index, url in pattern.items():\n", + " print(index)\n", + " print(url)\n", + " # Stop after the 3rd filepath (September 3rd, 1981)\n", + " if '19810903' in url:\n", + " break" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `index` is an object used internally by Pangeo Forge. The url corresponds to the actual file we want to download." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## End of Part 1\n", + "And there you have it - your first `FilePattern` object! That object describes 1) all of the URLs to the files that we are planning to convert as well as 2) how we want each of the files to be organized in the output object. Pretty compact!\n", + "\n", + "In part 2 of the tutorial, we will move on to creating a recipe object, and then use it to convert some data locally.\n", + "\n", + "### Code Summary\n", + "The code written in part 1 could all be written together as:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "\n", + "from pangeo_forge_recipes.patterns import ConcatDim, FilePattern\n", + "from pangeo_forge_recipes.recipes import XarrayZarrRecipe\n", + "\n", + "dates = pd.date_range('1981-09-01', '2022-02-01', freq='D')\n", + "\n", + "URL_FORMAT = (\n", + " \"https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/\"\n", + " \"v2.1/access/avhrr/{time:%Y%m}/oisst-avhrr-v02r01.{time:%Y%m%d}.nc\"\n", + ")\n", + "\n", + "def make_url(time):\n", + " return URL_FORMAT.format(time=time)\n", + "\n", + "time_concat_dim = ConcatDim(\"time\", dates, nitems_per_file=1)\n", + "pattern = FilePattern(make_url, time_concat_dim)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "interpreter": { + "hash": "872ea42c32c3f63d8f4b36be21cfb5d37e4f64dbfc719d9980b5e00daca69998" + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 4 + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.13" + } + }, + "nbformat": 4, + "nbformat_minor": 4 } From 8db820be04028fe674732aa5712155462c2d0fba Mon Sep 17 00:00:00 2001 From: Raphael Hagen Date: Wed, 23 Aug 2023 10:14:03 -0700 Subject: [PATCH 06/15] reverted pre-commit docs to main --- .../intro_tutorial_part2.ipynb | 1404 +-- .../intro_tutorial_part3.ipynb | 874 +- .../grib_reference/reference_HRRR.ipynb | 3116 +++---- .../hdf_reference/reference_cmip6.ipynb | 3288 +++---- .../tutorials/xarray_zarr/cmip6-recipe.ipynb | 3596 ++++---- .../xarray_zarr/multi_variable_recipe.ipynb | 7604 ++++++++--------- .../xarray_zarr/netcdf_zarr_sequential.ipynb | 3878 ++++----- .../xarray_zarr/opendap_subset_recipe.ipynb | 552 +- .../tutorials/xarray_zarr/terraclimate.ipynb | 1998 ++--- 9 files changed, 13155 insertions(+), 13155 deletions(-) diff --git a/docs/introduction_tutorial/intro_tutorial_part2.ipynb b/docs/introduction_tutorial/intro_tutorial_part2.ipynb index 1017ed56..c31aa892 100644 --- a/docs/introduction_tutorial/intro_tutorial_part2.ipynb +++ b/docs/introduction_tutorial/intro_tutorial_part2.ipynb @@ -1,723 +1,723 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Running a Recipe Locally\n", - "Welcome to the Pangeo Forge introduction tutorial! This is the 2nd part in a sequence, the flow of which is described {doc}`here `.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Code from Part 1\n", - "You'll need the `FilePattern` that was created in Part 1 to work on Part 2. The Part 1 code is copied here." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "\n", - "from pangeo_forge_recipes.patterns import ConcatDim, FilePattern, prune_pattern\n", - "\n", - "dates = pd.date_range('1981-09-01', '2022-02-01', freq='D')\n", - "\n", - "URL_FORMAT = (\n", - " \"https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/\"\n", - " \"v2.1/access/avhrr/{time:%Y%m}/oisst-avhrr-v02r01.{time:%Y%m%d}.nc\"\n", - ")\n", - "\n", - "def make_url(time):\n", - " return URL_FORMAT.format(time=time)\n", - "\n", - "time_concat_dim = ConcatDim(\"time\", dates, nitems_per_file=1)\n", - "pattern = FilePattern(make_url, time_concat_dim)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Part 2 Outline\n", - "\n", - "The main goal of the first two parts of this tutorial are to create and run a **recipe**, the object that defines our data transformation.\n", - "A recipe is an Apache Beam [Composite Transform](https://beam.apache.org/documentation/programming-guide/#composite-transforms).\n", - "\n", - "In part 2 of this tutorial we wil be using the `FilePattern` we defined in Part 1 to create a recipe and use it to create some cloud optimized data on our own computer!\n", - "\n", - "The steps to doing this are:\n", - "1. Prune the FilePattern\n", - "1. Chain together the necessary beam transforms into a recipe\n", - "1. Run the recipe as a Beam Pipeline\n", - "1. Check output data\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Prune the File Pattern\n", - "\n", - "\n", - "Currently our recipe is set up to convert over 3 decades worth of data. That is much more data than we need to run a test (and probably more data than fits on our computer). What we want instead is to run a subset of the data, just to make sure the recipe is working. \n", - "\n", - "Pangeo Forge has a built in function for getting a smaller test-appropriate file pattern:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pattern_pruned = prune_pattern(pattern)\n", - "pattern_pruned" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Create the Recipe object (Beam Composite Transform)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import apache_beam as beam\n", - "from pangeo_forge_recipes.transforms import OpenURLWithFSSpec, OpenWithXarray, StoreToZarr" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A place for our data to go" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'/var/folders/kl/7rfdrpx96bb0rhbnl5l2dnkw0000gn/T/tmpy6h7cm84/output.zarr'" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from tempfile import TemporaryDirectory\n", - "td = TemporaryDirectory()\n", - "target_path = td.name + \"/output.zarr\"\n", - "target_path" - ] - }, + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Running a Recipe Locally\n", + "Welcome to the Pangeo Forge introduction tutorial! This is the 2nd part in a sequence, the flow of which is described {doc}`here `.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Code from Part 1\n", + "You'll need the `FilePattern` that was created in Part 1 to work on Part 2. The Part 1 code is copied here." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "\n", + "from pangeo_forge_recipes.patterns import ConcatDim, FilePattern, prune_pattern\n", + "\n", + "dates = pd.date_range('1981-09-01', '2022-02-01', freq='D')\n", + "\n", + "URL_FORMAT = (\n", + " \"https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/\"\n", + " \"v2.1/access/avhrr/{time:%Y%m}/oisst-avhrr-v02r01.{time:%Y%m%d}.nc\"\n", + ")\n", + "\n", + "def make_url(time):\n", + " return URL_FORMAT.format(time=time)\n", + "\n", + "time_concat_dim = ConcatDim(\"time\", dates, nitems_per_file=1)\n", + "pattern = FilePattern(make_url, time_concat_dim)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Part 2 Outline\n", + "\n", + "The main goal of the first two parts of this tutorial are to create and run a **recipe**, the object that defines our data transformation.\n", + "A recipe is an Apache Beam [Composite Transform](https://beam.apache.org/documentation/programming-guide/#composite-transforms).\n", + "\n", + "In part 2 of this tutorial we wil be using the `FilePattern` we defined in Part 1 to create a recipe and use it to create some cloud optimized data on our own computer!\n", + "\n", + "The steps to doing this are:\n", + "1. Prune the FilePattern\n", + "1. Chain together the necessary beam transforms into a recipe\n", + "1. Run the recipe as a Beam Pipeline\n", + "1. Check output data\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prune the File Pattern\n", + "\n", + "\n", + "Currently our recipe is set up to convert over 3 decades worth of data. That is much more data than we need to run a test (and probably more data than fits on our computer). What we want instead is to run a subset of the data, just to make sure the recipe is working. \n", + "\n", + "Pangeo Forge has a built in function for getting a smaller test-appropriate file pattern:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "<_ChainedPTransform(PTransform) label=[Create|OpenURLWithFSSpec|OpenWithXarray|StoreToZarr] at 0x14ee0f070>" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "transforms = (\n", - " beam.Create(pattern_pruned.items())\n", - " | OpenURLWithFSSpec()\n", - " | OpenWithXarray(file_type=pattern_pruned.file_type)\n", - " | StoreToZarr(\n", - " target_url=target_path,\n", - " combine_dims=pattern.combine_dim_keys,\n", - " )\n", - ")\n", - "transforms" + "data": { + "text/plain": [ + "" ] - }, + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pattern_pruned = prune_pattern(pattern)\n", + "pattern_pruned" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create the Recipe object (Beam Composite Transform)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import apache_beam as beam\n", + "from pangeo_forge_recipes.transforms import OpenURLWithFSSpec, OpenWithXarray, StoreToZarr" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A place for our data to go" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Run the Recipe" + "data": { + "text/plain": [ + "'/var/folders/kl/7rfdrpx96bb0rhbnl5l2dnkw0000gn/T/tmpy6h7cm84/output.zarr'" ] - }, + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from tempfile import TemporaryDirectory\n", + "td = TemporaryDirectory()\n", + "target_path = td.name + \"/output.zarr\"\n", + "target_path" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" - ] - }, - { - "data": { - "application/javascript": "\n if (typeof window.interactive_beam_jquery == 'undefined') {\n var jqueryScript = document.createElement('script');\n jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n jqueryScript.type = 'text/javascript';\n jqueryScript.onload = function() {\n var datatableScript = document.createElement('script');\n datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n datatableScript.type = 'text/javascript';\n datatableScript.onload = function() {\n window.interactive_beam_jquery = jQuery.noConflict(true);\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }\n document.head.appendChild(datatableScript);\n };\n document.head.appendChild(jqueryScript);\n } else {\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "with beam.Pipeline() as p:\n", - " p | transforms" + "data": { + "text/plain": [ + "<_ChainedPTransform(PTransform) label=[Create|OpenURLWithFSSpec|OpenWithXarray|StoreToZarr] at 0x14ee0f070>" ] - }, + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transforms = (\n", + " beam.Create(pattern_pruned.items())\n", + " | OpenURLWithFSSpec()\n", + " | OpenWithXarray(file_type=pattern_pruned.file_type)\n", + " | StoreToZarr(\n", + " target_url=target_path,\n", + " combine_dims=pattern.combine_dim_keys,\n", + " )\n", + ")\n", + "transforms" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Run the Recipe" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Check output\n", - "\n", - "Now that the process has run we can use `xarray` to inspect the output data." - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" + ] }, { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "import xarray as xr" - ] - }, + "data": { + "application/javascript": "\n if (typeof window.interactive_beam_jquery == 'undefined') {\n var jqueryScript = document.createElement('script');\n jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n jqueryScript.type = 'text/javascript';\n jqueryScript.onload = function() {\n var datatableScript = document.createElement('script');\n datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n datatableScript.type = 'text/javascript';\n datatableScript.onload = function() {\n window.interactive_beam_jquery = jQuery.noConflict(true);\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }\n document.head.appendChild(datatableScript);\n };\n document.head.appendChild(jqueryScript);\n } else {\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "with beam.Pipeline() as p:\n", + " p | transforms" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Check output\n", + "\n", + "Now that the process has run we can use `xarray` to inspect the output data." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "import xarray as xr" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.Dataset>\n",
-              "Dimensions:  (time: 2, zlev: 1, lat: 720, lon: 1440)\n",
-              "Coordinates:\n",
-              "  * lat      (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n",
-              "  * lon      (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n",
-              "  * time     (time) datetime64[ns] 1981-09-01 1981-09-02\n",
-              "  * zlev     (zlev) float32 0.0\n",
-              "Data variables:\n",
-              "    anom     (time, zlev, lat, lon) float32 ...\n",
-              "    err      (time, zlev, lat, lon) float32 ...\n",
-              "    ice      (time, zlev, lat, lon) float32 ...\n",
-              "    sst      (time, zlev, lat, lon) float32 ...\n",
-              "Attributes: (12/34)\n",
-              "    Conventions:                CF-1.6, ACDD-1.3\n",
-              "    cdm_data_type:              Grid\n",
-              "    comment:                    Data was converted from NetCDF-3 to NetCDF-4 ...\n",
-              "    creator_email:              oisst-help@noaa.gov\n",
-              "    creator_url:                https://www.ncei.noaa.gov/\n",
-              "    date_created:               2020-05-08T19:05:13Z\n",
-              "    ...                         ...\n",
-              "    references:                 Reynolds, et al.(2007) Daily High-Resolution-...\n",
-              "    sensor:                     Thermometer, AVHRR\n",
-              "    source:                     ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pathfin...\n",
-              "    standard_name_vocabulary:   CF Standard Name Table (v40, 25 January 2017)\n",
-              "    summary:                    NOAAs 1/4-degree Daily Optimum Interpolation ...\n",
-              "    title:                      NOAA/NCEI 1/4 Degree Daily Optimum Interpolat...
" - ], - "text/plain": [ - "\n", - "Dimensions: (time: 2, zlev: 1, lat: 720, lon: 1440)\n", - "Coordinates:\n", - " * lat (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n", - " * lon (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n", - " * time (time) datetime64[ns] 1981-09-01 1981-09-02\n", - " * zlev (zlev) float32 0.0\n", - "Data variables:\n", - " anom (time, zlev, lat, lon) float32 ...\n", - " err (time, zlev, lat, lon) float32 ...\n", - " ice (time, zlev, lat, lon) float32 ...\n", - " sst (time, zlev, lat, lon) float32 ...\n", - "Attributes: (12/34)\n", - " Conventions: CF-1.6, ACDD-1.3\n", - " cdm_data_type: Grid\n", - " comment: Data was converted from NetCDF-3 to NetCDF-4 ...\n", - " creator_email: oisst-help@noaa.gov\n", - " creator_url: https://www.ncei.noaa.gov/\n", - " date_created: 2020-05-08T19:05:13Z\n", - " ... ...\n", - " references: Reynolds, et al.(2007) Daily High-Resolution-...\n", - " sensor: Thermometer, AVHRR\n", - " source: ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pathfin...\n", - " standard_name_vocabulary: CF Standard Name Table (v40, 25 January 2017)\n", - " summary: NOAAs 1/4-degree Daily Optimum Interpolation ...\n", - " title: NOAA/NCEI 1/4 Degree Daily Optimum Interpolat..." - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:  (time: 2, zlev: 1, lat: 720, lon: 1440)\n",
+       "Coordinates:\n",
+       "  * lat      (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n",
+       "  * lon      (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n",
+       "  * time     (time) datetime64[ns] 1981-09-01 1981-09-02\n",
+       "  * zlev     (zlev) float32 0.0\n",
+       "Data variables:\n",
+       "    anom     (time, zlev, lat, lon) float32 ...\n",
+       "    err      (time, zlev, lat, lon) float32 ...\n",
+       "    ice      (time, zlev, lat, lon) float32 ...\n",
+       "    sst      (time, zlev, lat, lon) float32 ...\n",
+       "Attributes: (12/34)\n",
+       "    Conventions:                CF-1.6, ACDD-1.3\n",
+       "    cdm_data_type:              Grid\n",
+       "    comment:                    Data was converted from NetCDF-3 to NetCDF-4 ...\n",
+       "    creator_email:              oisst-help@noaa.gov\n",
+       "    creator_url:                https://www.ncei.noaa.gov/\n",
+       "    date_created:               2020-05-08T19:05:13Z\n",
+       "    ...                         ...\n",
+       "    references:                 Reynolds, et al.(2007) Daily High-Resolution-...\n",
+       "    sensor:                     Thermometer, AVHRR\n",
+       "    source:                     ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pathfin...\n",
+       "    standard_name_vocabulary:   CF Standard Name Table (v40, 25 January 2017)\n",
+       "    summary:                    NOAAs 1/4-degree Daily Optimum Interpolation ...\n",
+       "    title:                      NOAA/NCEI 1/4 Degree Daily Optimum Interpolat...
" ], - "source": [ - "oisst_zarr = xr.open_dataset(target_path, engine=\"zarr\")\n", - "oisst_zarr" + "text/plain": [ + "\n", + "Dimensions: (time: 2, zlev: 1, lat: 720, lon: 1440)\n", + "Coordinates:\n", + " * lat (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n", + " * lon (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n", + " * time (time) datetime64[ns] 1981-09-01 1981-09-02\n", + " * zlev (zlev) float32 0.0\n", + "Data variables:\n", + " anom (time, zlev, lat, lon) float32 ...\n", + " err (time, zlev, lat, lon) float32 ...\n", + " ice (time, zlev, lat, lon) float32 ...\n", + " sst (time, zlev, lat, lon) float32 ...\n", + "Attributes: (12/34)\n", + " Conventions: CF-1.6, ACDD-1.3\n", + " cdm_data_type: Grid\n", + " comment: Data was converted from NetCDF-3 to NetCDF-4 ...\n", + " creator_email: oisst-help@noaa.gov\n", + " creator_url: https://www.ncei.noaa.gov/\n", + " date_created: 2020-05-08T19:05:13Z\n", + " ... ...\n", + " references: Reynolds, et al.(2007) Daily High-Resolution-...\n", + " sensor: Thermometer, AVHRR\n", + " source: ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pathfin...\n", + " standard_name_vocabulary: CF Standard Name Table (v40, 25 January 2017)\n", + " summary: NOAAs 1/4-degree Daily Optimum Interpolation ...\n", + " title: NOAA/NCEI 1/4 Degree Daily Optimum Interpolat..." ] - }, + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "oisst_zarr = xr.open_dataset(target_path, engine=\"zarr\")\n", + "oisst_zarr" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHFCAYAAAC+Zf4TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9eZgcVdn9ubeqt5nMTBbISkgim0BYlF3BhCQzSVgVV6IsBiN+IIiCKMIPA2LA4IICIm6AYERFxeUjK0s+FRCQTRZRJMQQEkJCMktPd1fVvff3x13qVnX3TM8+CXWeZ56Zqa6uravrnvu+5z0vEUIIJEiQIEGCBAkSJBgS0KE+gAQJEiRIkCBBgrczEjKWIEGCBAkSJEgwhEjIWIIECRIkSJAgwRAiIWMJEiRIkCBBggRDiISMJUiQIEGCBAkSDCESMpYgQYIECRIkSDCESMhYggQJEiRIkCDBECIhYwkSJEiQIEGCBEOIhIwlSJAgQYIECRIMIRIyNkzx8MMPY/HixdixY0fZazNnzsTMmTMH/ZgGCzfccANOO+00TJs2DYSQLs915cqVeO9734tcLoempiacfPLJeP7558vWK5VKuP766zF9+nTU19dj3LhxmD9/Ph5++OGyda+44gqcdNJJmDRpEgghOPvss3t8Dlu2bMHZZ5+N3XbbDXV1dTjmmGNw//33l63neR6uvPJKTJs2Del0GlOmTMFll12GQqHQo/3deOONeOc734lMJoNp06bhqquugu/7kXV++9vf4vTTT8fee++NXC6HqVOn4uMf/zj+/e9/9/j8eoLbb78dhBC8+uqrA7qfwUAt17kafN/HVVddhalTpyKTyeCd73wnbrzxxpree/bZZ4MQAkIIpk+f3pdT6DW6eiYNFg499FBzHU466aQhO44ECfodIsGwxPXXXy8AiHXr1pW99vzzz4vnn39+8A9qkLDffvuJd7/73WLhwoVi9913FzNmzKi43r333isIIeL973+/+N///V+xbNkysd9++4lRo0aJl19+ObLuGWecISil4vLLLxf333+/+PWvfy0OO+ww4bqu+Nvf/hZZt66uThx99NHiM5/5jEin0+Kss87q0fEXi0Uxffp0sccee4i77rpLrFq1Spx66qnCdV3x0EMPRdY97bTTRDabFUuWLBGrV68WV199tUin0+Lkk0+ueX/XXHONIISIyy67TDz44INi6dKlIp1Oi0WLFkXWO/LII8Upp5wifvrTn4qHHnpI3HnnnWL//fcXI0aMEM8991yPzrEnuO2226reyzsTar3O1fCpT31KZDIZsXTpUvHggw+KL3/5y4IQIr7+9a93+96zzjpLjB8/XjzyyCPimWee6eup9ApdPZMGC88++6x45JFHxPjx48WJJ544ZMeRIEF/IyFjwxTD4cE3VGCMmb8PPPDAqmRsv/32EwcffLDgnJtlr776qkin02LBggVmWbFYFI7jiE984hOR97/++usCgLjwwgur7r++vr7HZOzmm28WAMTDDz9slvm+Lw444ABx5JFHmmWPPPKIACC+9a1vRd6/ZMkSAUCsWrWq231t3bpVZLNZ8elPfzqy/Otf/7oghERI+xtvvFH2/o0bN4pUKiXOOeecms+vp9gVyFhPrnMlPPfcc4IQIpYsWRJZvmjRIpHL5cS2bdu6fP9ZZ50lpkyZ0qtj7y8M1DMpn8/3+D1TpkxJyFiCXQpJmnIYYvHixfjiF78IACZVRwjBQw89BKA8Tfnqq6+CEILrr78e3/jGNzB16lTkcjnMnDkT//rXv+D7Pr785S9j4sSJaGpqwgc+8AFs2bKlbL+//OUvccwxx6C+vh4jRozA3Llz8dRTTw3GKUdAafe35bZt2/DSSy9h/vz5IISY5VOmTMH06dNx7733gjFmtkcpRVNTU2QbjY2NoJQim832eP9d4Xe/+x32228/HHPMMWaZ67r4xCc+gcceewwbN24EAPz1r38FAJxwwgmR9+v0y29+85tu97VixQoUi0V88pOfjCz/5Cc/CSEE7r33XrNs7NixZe+fOHEi9thjD2zYsKG2k4th6tSp5v6M/+j7tRrWrFmD2bNno7GxEXV1dXjve98bSeXee++9IIRUTO/ecsstIITg2Wef7dVx9xQ9uc6VcO+990IIUfH9hUIBK1as6PWxEULw2c9+Frfddhv2228/5HI5HH744Xj00UchhMD111+PadOmYcSIEZg1axZefvnlsm1091l090wCant+nH322RgxYgT+8Y9/oKWlBQ0NDZg9ezYA4KmnnsJJJ52EsWPHIpPJYOLEiTjxxBPx2muv9fraJEiwsyAhY8MQn/rUp3DBBRcAkDqfRx55BI888gje/e53d/m+m2++GX/9619x880348c//jH++c9/4uSTT8Y555yDN998Ez/96U+xdOlSrFmzBp/61Kci712yZAlOP/10HHDAAfjVr36FO++8E+3t7TjuuOPwwgsvdHvMQRDU9COE6P2FseB5HgAgk8mUvZbJZNDZ2Yn//Oc/AIBUKoXzzjsPd9xxB+699160tbXh1VdfxaJFi9DU1IRFixb1yzFpPPfcczj44IPLlutlWtNW7Rz0/7UQjeeeew4AcNBBB0WWT5gwAbvttpt5vRpeeeUVrF+/HgceeGC3+6qE3/3ud+b+fOSRR/DXv/4VBx10EOrr67HnnntWfd9dd92FlpYWNDY24o477sCvfvUrjB49GnPnzjUkQA/Mt912W9n7b7/9drz73e+ueJ1t9Nd92dfr/Nxzz2H33XfH+PHjI8v18Xf3/u7wpz/9CT/+8Y9x3XXX4Re/+AXa29tx4okn4uKLL8Zf//pX3HTTTfjhD3+IF154AR/84Acj51vLZ9HdM6knzw/P83DKKadg1qxZ+P3vf4+rrroK+Xwezc3NeOONN3DzzTdj9erVuOGGG7Dnnnuivb29T9cmQYKdAkMYlUvQBbpKCcyYMSOSulu3bp0AIA455JBIiu2GG24QAMQpp5wSef9FF10kAIjW1lYhhBD//e9/heu64oILLois197eLsaPHy8+8pGPdHmsev+1/Dz44IM9ug7V0pSMMTF69Ggxe/bsyPLt27eLhoaGsjQh51xceeWVglJqjmXPPfcUTz31VJf7702aMpVKiXPPPbds+cMPPywAiGXLlgkhpOYNgLjzzjsj6/3kJz8RAMS+++7b7b4WLVokMplMxdf23Xdf0dLSUvW9vu+LmTNnisbGRvHf//63233Vgs9+9rPCdV1x3333mWXxNGU+nxejR48u08UxxsQhhxwSSeV+4QtfELlcTuzYscMse+GFFwQAceONN3Z5LP15X/blOgshRHNzs9hvv/0qvpZOp8vSn3F0laYEIMaPHy86OjrMMn1vHXrooZE0vn4mPPvss0KInn0W1Z5JPXl+nHXWWQKA+OlPfxpZ94knnhAAxL333tvlddBI0pQJdjW4A0n0EgwuTjjhhEiKbf/99wcAnHjiiZH19PL//ve/mD59OlauXIkgCHDmmWciCAKzXjabxYwZM/Dggw92ud+JEyfi8ccfr+kY99tvv5rW6w6UUpx//vn42te+hq997Ws499xz0dbWhosuugidnZ1mHY2vf/3r+OY3v4nFixfjuOOOQ1tbG2666SY0Nzdj1apVeNe73tWj/QshTBpUw3XDr5OdOo1DvzZ//nzsvffe+NKXvoRx48bhiCOOwKOPPoqvfOUrcBwncvz25wIAjuOY7dSyr0rHf8455+DPf/4zfvOb32Dy5MlVt1ErrrvuOtx000348Y9/jPnz51dd7+GHH8Zbb72Fs846q+y85s2bh6VLlyKfz6O+vh4LFy7Et7/9bfzyl7/Epz/9aQDAbbfdhkwmgwULFnR5PP19X/bmOvfn+7vC8ccfj/r6evO//o7H0/h6+fr163HQQQf16LOoht48Pz74wQ9G/t97770xatQofOlLX8KmTZvwvve9DwcccEAPrkCCBDs3EjK2C2H06NGR/9PpdJfLi8UiAOCNN94AABxxxBEVt9udhiqdTuPQQw+t6Rgdx6lpvVpw5ZVXoqOjA9dccw2uvPJKAJJ4fvKTn8SPf/xjTJo0CQDw4osv4sorr8TSpUtxySWXmPfPnz8fBxxwAL7whS90SzjjuOOOO8r0P0KlfsaMGYNt27aVveett94CEH4e6XQay5cvxxlnnIGWlhYAQH19PZYsWYKvfe1r5vgBmWq1cdttt+Hss8/GmDFjUCwW0dnZibq6urL9HXbYYWXHIYTApz71Kdx111244447cOqpp/bo3Cvhrrvuwle+8hVceeWVOOecc7pcV99vH/rQh6qu89Zbb6G+vh4HHnggjjjiCNx222349Kc/DcYY7rrrLpx66qll93Uc/Xlf9uY6x9//9NNPly3P5/PwPK/bc+kOff3u1/JZVENPnx91dXVobGyMLGtqasLatWvx9a9/HV/5ylewfft2TJgwAYsWLcIVV1xRdv8nSLCrISFjCbDbbrsBAO655x5MmTKlx+9/9dVXMW3atJrWffDBB/vNI811XXz729/G1VdfjXXr1mG33XbDhAkTMHfuXEybNg177LEHAOCZZ56BEKJssEilUjjkkEOwdu3aHu/75JNPrhp1Oeigg/CPf/yjbLleZvtE7b333njkkUewceNGvPXWW9hrr73Q2tqKz33uc3jf+95n1ovvS19vrWH6xz/+gaOOOsq8vnnzZmzdurXMk0oTsdtuuw0/+clP8IlPfKInp10Rq1evxsKFC3H22Wfjqquu6nZ9fb/deOONOProoyuuM27cOPP3Jz/5SZx33nl48cUX8corr2DTpk1lRLgS+vO+7Ol1rvT+u+++G5s3b47oxirdE4OJnn4WXW2j1udHtSigvkZCCDz77LO4/fbbcfXVVyOXy+HLX/5yt9tNkGBnRkLGhim0iLun5p+9wdy5c+G6Lv7zn/+UpQ9qwVCkKW2MGDHCDJZPPvkk7r//fnzrW9+KHB8APProo5gxY4ZZXiqV8OSTTxrS1hOMGTMGY8aMqfjaBz7wAZx33nn429/+ZgbuIAhw11134aijjjLHY2PSpEkmEnbFFVegvr4+EmE6/PDDK+5r3rx5yGazuP322yMkQRutvv/97zfLhBBYtGgRbrvtNtx66601EZru8PTTT+ODH/wgZs2ahR/+8Ic1vee9730vRo4ciRdeeAGf/exnu13/9NNPxxe+8AXcfvvteOWVVzBp0iQTSewK/Xlf9uQ6V8Kpp56KK664AnfccQe+9KUvRd6fy+Uwb968mo6zv9GTz6LaM6mvz484CCE45JBD8J3vfAe33347nnzyyT5vM0GC4Y6EjA1TaHLx3e9+F2eddRZSqRT2228/NDQ09Pu+pk6diquvvhqXX345XnnlFcybNw+jRo3CG2+8gcceewz19fVdRjzS6XRVstAbPPHEE8atva2tDUII3HPPPQBkKkTPvh966CE8/vjjOPjggyGEwGOPPYZvfOMbmDdvXmRgOfbYY3HEEUdg8eLF6OzsxPve9z60trbixhtvxLp163DnnXdG9r927Vq8+eabAADGGNavX2/2P2PGDOy+++5dHv/ChQtx880348Mf/jCuu+46jB07Ft///vfx0ksvYc2aNZF1ly5divHjx2PPPffEG2+8gV/96le49957ceedd0bSlNUwevRoXHHFFfh//+//YfTo0WhpacHjjz+OxYsX41Of+lREd3PhhRfiJz/5CRYuXIiDDjoIjz76qHktk8lEdHOLFy/GVVdd1WXEqK2tDSeccAJyuRwuueQSPPHEE5HXDzjggLJ0FCDJ84033oizzjoLb731Fj70oQ9h7NixePPNN/HMM8/gzTffxC233GLWHzlyJD7wgQ/g9ttvx44dO3DJJZfUZD/Sn/dlT67zz372MyxcuBA//elPceaZZwIADjzwQJxzzjn46le/CsdxcMQRR2DVqlX44Q9/iGuuuabPacreoiefRbVnUl+fH4CsBv3+97+P97///XjHO94BIQR++9vfYseOHWhubh7w65AgwZBjiAoHEtSAyy67TEycONFUAOqKr2rVlNdff33k/Q8++KAAIH79619Hluvqtscffzyy/N577xXHH3+8aGxsFJlMRkyZMkV86EMfEmvWrBmQ86sGXXFV6ee2224z6/31r38VRx11lDne6dOni29+85vC87yybe7YsUNcfvnlYv/99xd1dXVi7NixYubMmZGqP40ZM2b0uRp08+bN4swzzxSjR48W2WxWHH300WL16tVl61111VVir732EplMRowcOVLMmzdP/N///V/N10rju9/9rth3331FOp0We+65p/jqV79adh2mTJlS9bzilXoXX3yxIISIF198seo+u6tW1Neqmunr2rVrxYknnihGjx4tUqmUmDRpkjjxxBPL7lchhFi1apXZ7r/+9a8eX5/+Qi3XWZ+vfa8KIYTneeKrX/2q2HPPPUU6nRb77ruv+N73vlfTfrurpjz//PMjy3r6TKj1s6j2TBKitufHWWedJerr68vO4Z///Kc4/fTTxV577SVyuZxoamoSRx55pLj99tsrnnNSTZlgVwMRop+MnxIkSLDL4Mgjj8SUKVPw61//eqgPJQGkWepDDz2El19+GYSQfi2E2ZnAGIMQAnvvvTemT5+OP/3pT0N9SAkS9AsS09cECRJE0NbWhmeeeQZXX331UB9KAgvr1683RSdvVxx22GFIpVJYv379UB9KggT9iiQyliBBggTDHK+++iq2bt0KAMjlcr3umLCz44UXXjA+giNHjsTee+89xEeUIEH/ICFjCRIkSJAgQYIEQ4gkTZkgQYIECRIkSDCESMhYggQJEiRIkCDBECIhYwkSJEiQIEGCBEOIxPQ1Bs45Xn/9dTQ0NPS5eW+CBAkSJNi1IYRAe3s7Jk6cWJMZcW9QLBbheV6/bCudTiObzfbLthL0HxIyFsPrr7+OyZMnD/VhJEiQIEGCnQgbNmzoVWu17lAsFjEmNwKdYP2yvfHjx2PdunUJIRtmSMhYDLrd0PMv/XtAWg8lSJAgQYJdB+3t7Thwv30GbLzwPA+dYDgTk5Duo7LIA8fPNm+E53kJGRtmSMhYDDo12dDQEOmrR7vIWPLEHCRBggQJBhVdPZN7i748ywda1pIGRZr0MQ2ajFXDFgkZqwJKav+yV1svIWkJdhbUcq8Ph/tZH+dwOJYEg4+BIGB93f5AH5OGQwicPhI+ByQhZMMUCRkbQOwsA1yCty96MpAMBRGqdnzx5UPxPUqIYYLBBCWA00fiR4GEjA1TJGRsiEFJ8jBPMDTo7Yx+ON6z9rkM9LHFr9tg7vvtjGr3a09v4+QjSjAckZCxGlDLl70vX/DhOLglSDDUGI5ksbtjSojZ4KDSx0CrpPB4rOPfQD/PBwr9lqZMMCyRkLEqIOjZjEuv29sv8a5MyHrb/jTxeesaXV3Xgb52w/1+HYjj6yk5HO7XqCvY99Zw+x7aR1ONgKGLdeLkrLt92BjKj9PphzSl0z+HkmAAkJCxGtHVl97+cveVlPUnhnKw7m7/PXn/cBsMakVfz7+/9l3p+lUiFl1d5eFwP/cUw4EM9eUYqt0//fV9qPX+rHYvDeb3s9L9qp/JPdm9ELU/yyuh0jt3zqdTguGGhIx1gVpmXfZ63ZEye2uVvvL9NXjU8pCttE5fHqoDSTyEEGXHVuv+dgbSOdCodP3i6O4qEfSMkPXmmvT0GAfzqg9WxRzQ/bXrbdSqP+7TStvoKSnryyRRv0oJiZAwUsszL/aeSm+p9MyvJZI2GEjSlLs2EjJWBfaXspb7355xVSJlcfR0cKsVfXng1jJo93Zf3ZHM7ga73p5X/H39Tc6GOxHT6Oqz7Up/E7+XaznbvnxW+hjj90NXEYmu9razRcd6eu26i1oNJvqT7HX1PbWJmCFhgne7bWIZpsaJWflxRPdnY6jIWZKm3LWRNAofBOwcw7VEVw9U+7WdhYTY2FnTnUOBWgacwYoWJZ9abRBCmJ+dHd1HBwd2/109KmrNmCRI0BMkkbF+QFcPBhH73V10oS/VWP31EO4qLThQD3p9rgM1wPeGiNVi5tvVdofboGh/rlyE5ydQmfBUImTx+7c/vLb6SpIHKsqs0ZWlQi37HerI3M6KavdrZB1CakpRxqHfI7q49wip/my3CdlgkbMkTblrIyFj3aCn9749gFX6HvfksdFVemOgB/qhIhLVHrp9QXeDfS37s1NitRKQoU4bVUJXhAyoLQpVKT3Y03RgrQQsvlal9KlebyCucHeFDt3ttyfXZLjcI8MJf/5vW4/WnzNlhPxDtw3S6csqbYSqETlN0mpNZQ4GCPqeykqo2PBFQsaqgJCeE7GybWDnSlEOFqpF/wZTJF3rPu2XbSJgk7KuoM+PEDJsBtuuIg7VCk4qoZwoye11d67VdGFdb5uU/T+Q2p1aNGv2a8Pjk62Mv2xox7GTG8zfNo6d3FC2LA79Xhu9LaiJH1d/Y836DgDA7GlNkmgpEsZRQWfWA1R8Ty+qOfuCJDK2ayMhY/2M+CDR1wd1tYhDfzwMe4PuIho9PQ59fkNBxHqCeFpCf8bdna39+Q00IdOfTb+lq+1tW39Xqzgj6J6QxYlYtY+9N6mfat81+zPozX3W3Vv6WkBQ6+dln0OlbT78Wjves0eD+dtGNeJTCyGqtM5xezZG/u/u3tbbqEYK+xv3r2s1fx87uQEOBYgusuoitdlV2jIOvY3ekLsECeLYachYEARYvHgxfv7zn2Pz5s2YMGECzj77bFxxxRWgVM5+hBC46qqr8MMf/hDbt2/HUUcdhZtvvhkHHnjggB6b/v4K87Dsv+qbahGY+MO4EknSEZCeDM591u9UIQSDSbZ6cg69HaQ1IauFbPemoq/S+l2RCvuca41M9SdsgmoTssrrquNAddLVnQVBz4+vd+/r6m21HlZXOtBKn1O1z97eTpxsdbe8PzB7WhOECCPDa9f3LIUIREnYzCmS0D3Ui+10BzviRwgxEz4uhIkurXm1TaY1VfRMEFLxXhsuev2kmnLXxk5TTfmNb3wDP/jBD3DTTTfhxRdfxNKlS3H99dfjxhtvNOssXboU3/72t3HTTTfh8ccfx/jx49Hc3Iz29p4/oIgQPf6hqPzjUNLtDyVVlqkfAjkw6L8dEj6gqwqMTRidRH4cWvnvv2xoN81oq22/q/31J+LHHP/p6n0DAS5E2Q8QHZC5qP7Ts331fB27iq4rs9BK16erY9T3XeVjqCzwB6rfJ9UiYloWYH7s71b8NaK3FYsOVzn27n4qnUNX511pX71B/HOq9jnY17G7+3+gMHtak3U8pFdELI6H1rcNCBEDoqSPEqk9W6v2d/+6Vqx5Ve53zfoOrHm1DWtebYPHBFjs+63Rk4jZQEE+l0kff3q2z1tuuQUHH3wwGhsb0djYiGOOOQbLly83rwshsHjxYkycOBG5XA4zZ87E888/H9lGqVTCBRdcgN122w319fU45ZRT8Nprr0XW2b59O8444ww0NTWhqakJZ5xxBnbs2NHbS7VTYqeJjD3yyCM49dRTceKJJwIApk6dil/84hd44oknAMib4oYbbsDll1+O0047DQBwxx13YNy4cVi2bBnOPffcnu1QcCP+JOq3qCAC1a9FfG6EiEynCKEV3xvZDgCARrZjtkCo9UAWoCScxcX1S/FUBiXlg4pDdfRKHqYd0net17gQeGh9G2ZPazLrzJraBC5Er/2bbP2KRldRHvv1SgNAPF3SW1St1urBNmq5JrWkEqttp5br3ZcUZfwa1ELCuqu4rKXYQZMvA/u7RGhZGkh7RAkRjcjZx1s5XRmuUYsXYDX09grb16ASEauESpGuGVMaMWtqEx54NfzeNu9Zh9X/7ezlkVWG/q4D0WfEzoauiKNO68Z1k0NPvYYH9thjD1x33XXYe++9Acgx9dRTT8VTTz2FAw880ARAbr/9duy777645ppr0NzcjJdeegkNDfLaXnTRRfjjH/+Iu+++G2PGjMHFF1+Mk046CX//+9/hODJWt2DBArz22mtYsWIFAODTn/40zjjjDPzxj38cmhMfAhAxXFTF3eC6667DD37wA6xatQr77rsvnnnmGbS0tOCGG27A6aefjldeeQV77bUXnnzySbzrXe8y7zv11FMxcuRI3HHHHTXtp62tDU1NTXhj0+tobJQDPdHETJEqQ8A4A+FBSNzsCh5C5Y/gEE5ajTix1y1UJXpxM0MdUqduGSGLrAZJuogQZhbYPDlbcVvhQXCs3lCU6+5ZFzk2fSzCSYODmH0ORLVYJTJW7YF63J6NNaWB+hpNqEVsrnfdFysDESE6vT+m3sC+RrWQskqo5dTD6FkN5p3dTGKEIbfhMpto1do8ust91LheX8hytfRzV9qqOVNGYM36DvldrWB6qr/LPYGOgFWaqO1qmDGlEYxLKYfMBMiLX+n+6Ur839bWhnHjx6O1tdWMGf0JPSZ9vf4dyJK+JRqLguHy/Ct9OtbRo0fj+uuvx8KFCzFx4kRcdNFF+NKXvgRARsHGjRuHb3zjGzj33HPR2tqK3XffHXfeeSc++tGPAgBef/11TJ48Gffddx/mzp2LF198EQcccAAeffRRHHXUUQCARx99FMcccwz++c9/Yr/99uvTOe8s2GkiY1/60pfQ2tqKd77znXAcB4wxfP3rX8fpp58OANi8eTMAYNy4cZH3jRs3DuvXr6+63VKphFKpZP5va6s+i4oQJk3E/GJIVKgLUApwDjiuIWmrN0W/wM2Ts2WzWFu7IHfGLRIkwocthSF5BFQ+JUQYjag09JhybzuKx5lUtCqSKAjFmv92Ys7UxkhUUO5HoZuB0UYlgjQQAvY//7cNM5T2hKA8EmPvs6cdBmzYUaNqW7AjQrWiKyI52O7xNnGtxYdMv4YuXkeV16sK9AmtSCwAy27A+j5oV3VivU67OJpaSVhPL3tXn1N393zVFHEP7tU48WreI1PzeyvvW15n/ezQVYq7CmZPawLjwmQJ9MRVP+2Go7Frf1ZTxse5TCaDTKbre4Yxhl//+tfI5/M45phjsG7dOmzevBktLS2R7cyYMQMPP/wwzj33XPz973+H7/uRdSZOnIjp06fj4Ycfxty5c/HII4+gqanJEDEAOProo9HU1ISHH344IWPDDb/85S9x1113YdmyZTjwwAPx9NNP46KLLsLEiRNx1llnmfUqVRl29VC79tprcdVVV5W/YBEPoaJcnDjgQiDFfZCgCBJ4oMVWLO8Ya9ad17AVcNJY8aYkCC3jgOZJKQDA6o2+/B17cM6ZMgJEcDkAECpJnn0odvSNq4gbdQHqANSFQ0PhafxUBSEQWrZJHFDBYqlVCkHlNpv3rAPMvhRREwKAigpS10TFNGzyY6dEI+2kEEbueIWBsrvPiIswHVnJd0hHzWZNDXUtep/xyr5aCVlXRp+VYI+n9jWJ7y8ecSq7TooI6WPt6li6qkLtqjCh24ibOhsmKkfLurp6lV7TETAiRCSSFRHpk7DCTVB5v+r1I7ciABASaW1j9m2lK+33AQDj5dHjrtCddqsr9Kai2EatJEwTpNX/7TSTOR0FX/1aqau3RqC/N/F0MeEBBKHm89gVcNyejUY35dqXmTP57CVKl2sRMyB271VLqe9EmDx5cuT/r371q1i8eHHFdf/xj3/gmGOOQbFYxIgRI/C73/0OBxxwAB5++GEAXQdANm/ejHQ6jVGjRpWtowMomzdvxtixYxHH2LFjzTpvB+w0ZOyLX/wivvzlL+NjH/sYAOCggw7C+vXrce211+Kss87C+PHjAcBUWmps2bKl7Gaxcdlll+ELX/iC+b+trU3eqDHdCgA4QREu8wAegDBJmISbxfzcJiwvyH2uaN8NADB3TAErt+Ww6g0HgI/mPTJonpSSpEunMKkD7qTkg0DtRyiBvo5eER5AUFcSMrVPUBUx4xRwOIQrZzQUAhBAIMKZHiDTncSOtBEqI2wqwkCYH452gpeRQeFm5ENZReHsSkKNSkTMCK0RJRxmu+p3JYJWCZTI1EKllOXMKY1G4wbI9boyzO1NhEyTp0pv1YN9me6qyn70tqh1PUhMrwdCwGLETEOfWzWftr4440eiYnba1Pqc4sRMR8/073hv1zgRs3/rVTUhi6eCTIrIImS2oLqatYDZbiSFWXHVsvOKXz8hRBk5rYRaqljtCcVxezZWTaXr+10v7UrsLqhjIlm1RrFmTW2KEDABAkEImDppQeTwsHYXSlUydXMLLqsq5TPTmpyqNKB+Dse/1w4IRMSzDINGyHRxVZ+2oX5v2LAhkqbsKiq233774emnn8aOHTvwm9/8BmeddRbWrl1rXu9pAKTSOl25AbxdsNOQsc7OTmNhoeE4DjiXX4Rp06Zh/PjxWL16tdGMeZ6HtWvX4hvf+EbV7VYLz5KgJImQk5b/Mw/E7ww1W65cLhwXhLpAIfr+ldtykf/1TLVlopplCg5w9eVQkSgiuIx4AfJ/ixSJVA4EBZDAA1gYRdPrEwJJEDlDOijKSF6mIap101EvLqNjQkfX1P7Ck49q3YSTDgdKyAdVPBVUKf0jRPlrdlpLb8Eh0eXVtFf6/7hOTG/XJmn23zOnNEYiTl2h1oiYTQBsYlCJEFXaliZ1mtLaJIRY7w2LLSQBZiraVimF2RviVanwoxoqpTHtXQrrN7PPBcQcd5TAV46S2dDXRBNBLoSZEFR7T9yiIK5v7IowVSNcNXcMsAo0KhWrADBp9bXr2yLE7NjJDSCEmGVhsUzXBrdzpjZiTS8IExcCVJELLgQYFz12vN9ZUOlzADTpClPjetJAVKRMR88ElSSVCQGXElDmm0k09XuuzesN+jNNqasja0E6nTYC/sMPPxyPP/44vvvd7xqdWFcBkPHjx8PzPGzfvj0SHduyZQve8573mHXeeOONsv2++eabXQZSdjXsNGTs5JNPxte//nXsueeeOPDAA/HUU0/h29/+NhYuXAhAPgQvuugiLFmyBPvssw/22WcfLFmyBHV1dViwYEGP90c4A/ELIF4exC/JiJGOagHRCBchmLubJFsrt1aeYcwdUwAIxcrXMwCYSV3K8DgBqGPSgCAOnHjBAFMVnY4LwmRkTriSLBFFrnQqU7hZEOaBltol4XJSUvCvRP+EM6NxC0QYzXDBQf2C2k8awpHHGOn/JriSmkWJsa7wBKzIjoI9jNQy6GtCVk1PVckoVpOvOVOrP2CEegPjlY+tK+j1mBCheaQ+NisFZkcHKz03QxInL7y5ZpX0UJZeT1BXRs64AEPvtHfxlHJX3Q+60vfp5V1FivT2mAiJmb08/i5ze2lyakXTKhWpaFLmWAdeTcwfJ2I9McetRbdXLQpZqdLXPv+ZUxojROuh9VL/OHNKIx5a32aqJWdPawIFwaypTaCChRuzCoLmTG00KcpaEImKCY4HdjFNWBxOhQdO5B6DlKAIATkRBoWj7j2mJkr6O039opGpiFR2p01V9hZCCJRKpZoCIIcddhhSqRRWr16Nj3zkIwCATZs24bnnnsPSpUsBAMcccwxaW1vx2GOP4cgjjwQA/O1vf0Nra6shbG8H7DRk7MYbb8T/+3//D+eddx62bNmCiRMn4txzz8WVV15p1rn00ktRKBRw3nnnGdPXVatWmRLbnoIEHkhQkjoqRWZgHuSW0FgIQEhS1bK7j1VvpiLbmTumEArmFVZv9E3Fol0YQJVuSEalKMB8Fc1SBCyVla9ZUS5QV26DuoCjNGYMJhWqo2IkKBkCKdwMAivCQJkf7ksRT8I862Ioew5FGk1FaMSKg3aZctQaKgAm/QZUHtC7ErbbKTq9nhnYrPUeeLU1bIuiSCQAuJbJIxAd9FmNJCc0OCWRAVUTWx11iAyeFUAq7C6i6bNSzXDSoITIwSGW4qzVm8z2/6olCtYTxCNnGl0S72qENbb7SpVudio+PIZwu0KEKXUTfbV3GDtO+5y704fFU4sEYYTXjspqQqbT+JQQPPBqqyFDgIwcciGMCSoQ6rgeeLXVVDSWTTTUfaLTks2Ts91WUOrvCRUMxC9JUsECzN1Nbi8e0d9VsFZZ9Nj3h33vSH8xOVFLO/I7bT8PHB0NE1w+A1M5iJS8VsIZrMjY4Ju+fuUrX8H8+fMxefJktLe34+6778ZDDz2EFStW1BQAaWpqwjnnnIOLL74YY8aMwejRo3HJJZfgoIMOwpw5cwAA+++/P+bNm4dFixbh1ltvBSCtLU466aS3jXgfwM5jbTFY0GXEb776LzQ21IN4BUlKlIDdVDLauio9uDspOVMiFKtUBWXL7r4kQsyXkalsgyQ1KupU5k+mlhFNwAIPwlGcmXPATYcaMu1/5qQB6oA5GVCI6GvqmE2akQdhNE6TQOab/Znj4bp6kwKO3CcApR8jCNQoVqa7sK6HJmwcxDzs5Gn2TERfaWC3I1AadoTBxswpjRGxrp1WZF2wmEqpU3vf8f3bxwBIwpmiauBjvrXh6Ew6bp1SBr2MEHA3g4CLCLEN9131VKzj1ZuqrNGohlorYbsi1vGoqJ1yib/N1phV+l8vM8deISpmo5IVix31ss+NEFI2GYiTs7I0eGzdSpWxBBaB1N9xIGJTY5+i/p/wGKG3JhO2dU1X0FWRti0P9ISLBWZ5tcj+rgRNaitF8gWUgF+RNa3ZLbMjssaAth3bMXbytAG3trhx5N7I9dHaoiAYLtjxcs3Hes455+D+++/Hpk2b0NTUhIMPPhhf+tKX0NzcDACm682tt94a6Xozffp0s41isYgvfvGLWLZsGQqFAmbPno3vf//7kSKCt956CxdeeCH+8Ic/AABOOeUU3HTTTRg5cmSfzndnQkLGYtA3/tZ/P4Om+hygo0OEGv0YgPBLSrS9hHxyCuoCblp+WUv5iFeYcDOSrKntRUiL7VVGKBB44QBOHUnItJ5MR6QElxoyyPSlSNWZYxFOymyfqNQj4QGIX1SpzHS4PXNSMSKgI4JuRhYaACgFHA6NOnDPmTJCEUBhInHmmilBsD1YVUMt1Wp6FTsqYj9UbSNMG1oIHSdqs6Y2RfRN+mEsjzWMftmI63fiflmG8AJR+xOgMtkyG6ImAhtZnzqGqHHiwOeh235PdGK1Vu31po1WfJtd+bvZUaKIgLwGgl7mR6YLSxCNioXnIn93pxuLEzCgQioVURKmU4NaA1aJgEG9R+sc9XkDYdUqBMea9R3G48volmJES4vzeyLSt9G8Z11EZgFATsQCFdnh3NyDqzbtOsOCsetR90pXt7X9PeYgcFhJPk/dTGQbgMwmEL+Ath3bsfu0dw44Gfv+qH36hYydt/3fA3asCXqPnSZNOdigXh4ko/U8kvxQv1M+sDiTA6SbhnDSSsPlAZyDZ0ZU1xBwJskQYCJNhAcREiQH3zASIiNqluhfVVSSeHQl8EALrdCaMZGplwJ+lZIkdgqS+XK7NjGwy9etp9XKt+oAVHb2NmaTetv2g17rnggFsWb+OsxeTVMGlA+C9jr2gKgHr1qMKauZxmryZrzYCJUpZwDEslgwx1FBRCtElIQRXXEbeGGxhCLHRHCs3JpBy+6SaK96M4W5u5XC6KeecVuE1kTMTOk9IlVvtaAn9gl98YPTRK6rCFklIgZESZkdJYosNwvLP5tK0TUY4mOlkqtEZu3InU2aCAnvMd2NYva0JkCISHcKG8ft2Vg1VauP44HYPWlvR9+P0m5GRbKttKQmGERLFWzYURxCjG0DOAMhlrzA3LM89EqECxJ0AsihZaKUJKx+rRQSOf0d50G/O/4PFCKEdmojEPvuxKu/AZjKcXm+Ud9FyoLw2gWemewmSNAXJGSsGjgPZ4pAmJ4MStB+X5IolQBH6agozECsIZdbl1kNEBF3fV3ZCIRifTuapio3TTqB+eGArQmW0n+AMynY9ztB/KKMxBm9m0q1imilJhEcCALzEF/ROrLscrSMFxBu1kT/OHHgCwFK5exRVnIqoqiqOiE4RKYehFCpsbC1cbGIRiXXax3NYFxUdCLvT3dwWmpXehB1nXTxAnVCI0gIUywRGZg0wVW+THJhlGCv3JbD3NGditwioisUhCoLFGXWqUcFHeFU29MkRV8ToHI0MZ5Ws0lBV2XodnqtK7LWVe/LaqjYakogYhOgl3F9bohZf8RIcWjdUjmyFr+/7KPuKlVuN5XW92KoPQwJWFfFIn/+b5up4Dtuz6gdi66S1NuxtaM64sWJoyqkOSKSAgXT5FrwCIuoav5qSR/k88uSIVAqHzdqIijgygmCT0EoRcs4AH4htNwBABZg7mh5z6/YsfNEWPQ94dCQkJlJgQjXIUKA8iCUcKjvoswuFIx8RVA3KkEYQDjoB83YrhPw3OWQkLEqEOk6SWRsbRhXs8fAB3FTIRkKOAhh5qFoUor6AUodMxOVKwgZfbFSLZFIl57tqlmZTC0KSfQUYRD29s12ZCQNPADat8HxSyGpcHRKNXyo64cr8YtY3jm+4nWYu5sS/TOAEE9GAgUHoU44WJqZt6rGtEgmKXLwTL18qOmUrj5nfbqEgiptmX55MNuwtIxjAFODlalSVSlDEQ7K8iENU/Vq60pIUAxnzercJfG2q20rpxgiBR/WwLt6QycAWaXbvGediYK4mgw6KXAnBY/JtKWuGCOWniwu9I9ro3QUzCZkGpUCb7USsUrky14USfWKaCrYTvsKRCt55YbK+1WGxxeNcMTNXilBTb52Jp2JcJB2woOyUl/yM505pRFMSBKmqyG7amX00Po2zJraJIlZhXvejsZpmOitQi2pyoiljv2M0Z1C9ITTsXRRDoWwtKNysuZFIuZGb0Yo5o7qwMrt0WMbjpDkVaZ+50yVOlJD4K1rQ3n4t9Hu8gDE75QTTeabZ3Hck3EgQStE5XuzjQTDEwkZqwbmASIbEi5AzhqdtNQWqWpH/WXUc3ndPkgAgCIuosrMyXh9AeHgrR5ytJQPNVs6OkJVuop5MvWn9FwAIDL1Zju0lAelrXJd7SytQuvSN0yRRVMAUH4bzBvZJo9NZzVU4YDxR9OpWq05IRRIZcHVQ52wQNqCeJ2gzJOp03TOEA1ddCAtN5wu9V4DhZbd/XBQAsxgFB6bE7XBEIBQEQvGpcWFKQxQ+j0SlKKFHrb2i1C5Tx3pVCkiAEarA50+JhTNk7Ph/aGqYfV7iHqPQ11k3Qy4mzHH6liDjO5A0BXssv+urEeq2UJUInJA5XRzvCqyUoqobL86bamMTauuJ6K/4+iqY0H5cZa/NzxmecAUAOEMzXvWgVOCIJCf5UNWRwj7vGxbE7sHpF4ctZsQ0cibGvh15HT1hmJN1ZOAjI4J614saznFOQAuCVnkpHkkamZ0oTqFZ6q4nYpV5MMNa9Z3oHlyVqZcEX5Hyu4p/RygLuDwyERZOK4sqKCukSIQv/ZuBwkSVENCxqqAegUQL6U0Vymj/wFg0nUQIhwsATWiyPSlDPdbL8UjX3oWaqJIch1aaIXobJVyhWy90ZDFI2HGsNUSfQMACYoQTgo8Ux85ZnncqTBlahUL6K4BGvMa3wKgiJcW5ItQVxJ/f6VCAJ5rAupGhSlV9R7auV2lLxsg0nXqmEsggqNlAhkU4XDzpJQ08Q1UetYuONBRMX0qgHHKLzKBtEMhBKTxo/Yb8gogPADP1EO46VArplNClj6QMA8iKAGEYuVbdZjX2Bo++C2xPlSLKqIGPKntscibBRKUQDkDcTOG2Gq4VnYrrjHT9iKVImB2taaxb7CrG6uwp1rn3WEUT6UYK7bJ0scSpgsrDaBmWaX9WAUktVh66O3o/VWbIBy3ZyP+/F8lulcfiUtJxJ4iss14wYAS6WsrG8AikxWu7f2vdkRsWuZMGQHwQBILfX8xS6No6zd1RJ1FoziVnknCuveQSqvvOTeTMLkezLNATjwdEMFN15HhiOZJqbAQRvstWhFXu6K5YlWzJcHQ32tDTgcJ/WJtkQTGhi0SMlYFegCUmoAAdmsiuUIsZK/C2SLwwygH8aIpSKM7swTvKqIlo1iWJQVjkTSeGbA1qBMSBx5YLZSs6I7gIJrIxQZ1wgIZEbMqRAFFxPSMV52n1rEJfQ5WVA3MM62hzHVTBISn60Pxuiay6XoZPXLTWPU6gzREGxzMmNIow/zcx6qNPoCwjL9lnDyOVZsJmicTFQlg0pNMCfodSkEFM+mhlnFMzoyVdkRGMVXENPBC0s08UEunQ5QOcf6IDixvkz3Z5jVslQdC1WfCdbrSi+qF7Eiehh4YAphUsCF3PLz37B6m1RzdK6UhK1VG2u2vAESaiVeyG9HLCYEyHY7uo2KvScB0e6gcYYqtX4GgaSlQpYifXpaixC6IVoRHfubVBPraqV6/Nmtqk4ySWuJ5QULSpY8n7hnGIaNMcdKni2PsyJd9HLOnNVWMKGsdmRbXN++RkQL8SWms3kzQMiFMywl1T5oWaeo5JuACjiWBsKwvzLkh/LxJICNDIj4pG0ZYvdFH8+Sw0psYGYiCPclESFSN7ENdJxKUwupTyAmucAcnItgvDvxJmnLYYvh+e4YYZuanRdma4KinNgmKUjuWypgHmQh8qa1ISwf80P5CvUeRLeGX5IBMHZPiMw8yK6UpAl8OzLYonOreaXqg1Q8NK12hw+xuNhzz9CBNqBTUE4oVbaMj5zyvYStA3PJZoTXAmChPKR+awirRf8vuvhGyg7NweGWescgQ6TrwzAjTNH2wUK2npYYW0ANREXTz5KwZpVPUBfXysffk1A/QMlEJ/4k07aXMB9UpDELCYhCrMGT+iC0hgQXkACk4AFXFpV4zEQs7ramh7s9IFaYQJg1sQ5MN03tSLa+lMDMuetcDciUdir2fan0k7QhOtQpk3XjLjpx15zemW0vJFlii7NxC0qh+QwCcg4ECOvWsCia60y7OmNIIxoUhRDOmNIZGvpaOL16NGT+HWVObooRM60YroHlyFmB+WTXjrKlNWBMjdVozpr9vqzYJGRk2Widedu1NRFcUzXlogh9GkBz5y4ooxSu8hwNMNSoQfpf0i5pw2REuXX2qV1HaVmLpxMLewpbVUIIEfURCxrqAFqvbwnyiIxzUBeBDFNoNQSJuCkhnwQt50Fy9NHYVHEQL/wvtEExFiOxKTXuf6jdxHFk27aaAwAkrKpW2jOiIkraksNNiGna43TqOSFGCwvwRWyBoOkx/xmeN5ryl4N9259fVl1IzksK8ph0gzMPK1xnmju6UkSNFKoWTAnczAAZXH9YVEesKtWhyDJgHolpPgboQ6RyEIuXydatoQw1w8cKJeQ1bw/Xtz8BJyYiFTiFpWGlQER8cdJssvcwm9TEYY1ZdOVoh8hWHTcQqTbjtIoewEpSA6smLPiY9eSAkFp0KiUJZ5MyeIECSMI8JUCIiQvu4eF+fC0EsrUkoAqaIm3Jg510w1Gq2KvZ9NmNKI+5f12qE+rabPgBFGnlFIf7qDUU0T0qhZaKDVa8zYy1hyE+MqDXvWYfVVVKqc6Y2mu/gmlfbovcEpSr9aJER/dyIa8iIFPYTFoQdP4KSisYOL0KiiyhW/7czUq1KYjpOXSkZkjBrYmOiY9Zz1ZZ5KM0YLeXjux8QJGnKXRsJGasGaxA1pct2VZdJAToAZxC+D96+A0Kn44qdAKUgbtos07D/J9Qpe41QRw4inAPIqxSkiD7w9N/Mi/xNWBDRmIWzXCsVoa0n7P3qCByhgJWmiYjQ3bSqqrIGwgoPYZ6uBy2qgUHNqEW2waQlm/ek5mG5K0GWuwcRY1+RrodQRQ4EDLafW6UK1rh+T2New1bAzcoODpXMem37g1hKCUDE5T1EuVLLIVY60b7fTeot7BWptXRqU1EIDqo6T2iNo3Az0fvGmjjYvmkUBCDRBs6R8wJMhIMIDu6kpC5MyEbqhCKSkq1oMhvZrjwelxJp+ktl/9Zq/RqlIL5753tNzHT7Ixu2q75OWZZtz0ymmCTWXaX0u7BXCLcrJxbyeyjtagCEHT00jBZMyy2i5N+k+rSZ8TCMiD2k2h8RIUzxQqTNGBQZt5+DelJtRb+NRMWQ4CCUZVSYTA8kkjTlro2EjHUF5puKQVBHph11hWSpE6KQj0SmhHLDB+fgKm1IUqnwSx4jXrJSyXoYcC4jYdQBSaXlNhkDvKJMV1pREEMItahbV1pSa0DWaavYIC0cFytiRMBExOwZstaLKUJHi+X7XN4xNrKdOVMbwQU3lVU8N1KmSraH57mzmEX2FERwcDvaoweuTD1ErkleO7+IlVszmNe0o8fblppED8ThFUmN7X0mX0O4HIj4uememjbpMpGsmKaLWOdCIImfQ8IG9ZEIl14/1mKLECq/R1rPpo9d/dYie9Nei4fbEipqRhC29eJKL6W/U5QQOFQWKVBCQIMShJOGr87DIWE6MiLWFtzoK121P1IqAX4RLbvLFFZclE6LbepcaxerxzVhdnRGE1w7lT57WlM0Fan1XEqqEI/Yrt7oo3lSqkfp/1WbCQAHLbtHo4wR6OPU8gQAWqeqyWKlyFjLRAcdtA4Pv1bd3mOgoaOQOjIWgT0ZsGUkKuJP/FIY/befebAm54Mnd03wNkDSDikG3Xpi+9MPonFEHXjHDtARI+WXNyhBcA5RKgCBb8T6ekDgXlEuZyyccVEnQsg0bGJG3JQhZbS+ESRTZx54oihnaSTXICsUNdQDgngFOcjp9JgZ4EiUWGmSFvgRS43lhQlmk/NGqhm0jqYRKh9K1v+AHECWFydVvYbVRM9vBzRPSsF3cwMW9TOWI3Y6yZ6h6/S3SiNp5/8yoqYRS9sAiJB3/VqcQM+ZMiJKaoBIlIEERVm9p6t9tV1IpeiuTeKsfelKQVtfJQSiRrAxo12jGWO6TVjarKcjdHpSZS83ZszMByl1hN55gsuopohWKMo0XrrXhqdGi0gdcCcFIQCfCxOZpEISXfu6G0NgTYJUulLrwvoK7SkYuR8sf8JomjQw6TtNTmxSLtI5wEmbKNxgQnvA2enf5snZiuuaziSBF4nyGeE+EH4PtF7TTv8DaGttxah3zxnwdki/HLc/6uIT+h6ikzN89I0Xk3ZIwxBJZKwaOJN6sMCHKHWCZEdIQhX4EJ4U7wNypsjV3wh8CN+LbAMAhA8ZzQDU4OSYv1eOOArzOp8AAKwccRROcF4OBwqjU9DRN8s1X/uGMR+CcxAnTN2EqUb9wKBmkC6zp7CwYkejrKYUquKTkMjsEHrb3aArL6hdHas3+pgxZeDK+1fsaJSEjFCs3F6+n7mjS4BwrIFRIDSLi0VA4voZVXBil/3rAXjOlBGmLZdJsemBWG/XjsSaaAIAoqIopr1UjMRpMiR4JLIjiDICBiKCfEIJqJEOhBauMm1pXQzOQEQp3AcQpmXNAMvMseoIWSSXa5+P5dUnF/Xe8HP1hqJxxydCRBLGMjrJu40g93eE2W7TJRwX2uQ6Ul0NADYx0YviJFvpSwfLriZ6MDWmTW1rC3UfG6LNPPO3IWK6qth+hg6iVo44BKRWo7xq20jSlMMWSWQsBj0Leevx5WggDNwrgmbrQXL1IKkMRKEdbPubEL4Hksmah1IkGmZFxUyK0gkJGHHTWNl4TLfHcoLzMoRXBElnlZWF8jdT+zBpIG5pkQiNVj3BSkHGYPerlFYUcjartWfmdathubG1EBz3+dMqHvecKSPAiTPoJq4JJOaOKcj7QPVOBRC9P0h55VtZdElFhmwRvlwx9FcipQ5TXRpJPSodZQTUgUhlZZ/UoCS1h5RGqlh7gtnTmkyaNDIwxgdJW0sVIQwkLHrRVi+prEkl21FlHSWp5rbOs03gmRGq5Ve0erIW6DQaV+bOOrJXqXjETrnZ7ZO6Q1m1ZnfHNEkdi9Kk2jrFiA4VkKnfmGZNt/0abJiILdREQqXGy/SUsKJfLJCdQxQBAwDTgxgIybj9TNUV8U4Kbe0dGPWu2QMeGbtn8oH9Ehn70Ibnk8jYMEQSGauGwINwVAox8ICSStExJqNfnMmHUDorU4ysfPABdUAcB6t2Ox4A0PLWWqwaPaOm3c/zngFXqVBSKsptZbJyf7rKUxExGaXzLW2aHxkQ5UPEqrgzBpphqsOUfSsitrxzPE5Ir5cph0Bp5pxUxEesKghNiNgQQvZMjXrShc7pclBZvaFoBnYdYbEd300UC2FUSqYIIUmM1ykHMBUN04M2SJhEtM1+wdT7/CLA/D63z+mK7MgUIA+JYRxCRNJTq95MYV6T1Dat3JoBkJPtqziDMXambuhir3Vw6nuCDgBQ38FeYPV/O9EygYBq+YC6jpUc9nUXDC1I1xFLrbnTcQ+XwHhikcCDKLWZSFwtaU3py5WFQFrKISxtoJnsAZKkCssEFWF1dU/211+Ik1NJKimMM6/5Hohw0qm9w1S1cyQiBqj7REpUTLajkIegDkiuPhpJTZCgl0jIWBUIxkAyOZWSVKJOR6YpwZn8YpYKkphRaUMhYqaeAAwRA1AzEQOAFelDAMuPdW7H30yK07iyEwrBY6lRIFrYpo5pRfZdOMF5GUhRANEqS+mPJrVketsnZDbgvtIUuQ2iNuoBJ2Q2yH2kMmhprNICpdY0QYIBQVTHVJkk6IHSJm1dVQfOmdooo0Scq+4FpTCSoNN3gkOkMoCTCtM+zJODnEp5h+msgetlGPGJ0zorJdAu1zDJ+1cTCA1JylCx76IpvqBUVrn2QTumo5jwIUleur7c545QQ5j1Z6T7VArqIODSkkMb0Zr3quiWbYtDBMfc3Urm/LqCtteIEHv7u230Y1aEUXDMa9iKFe27wd36CniuCc17jh30oh27Qbr8bT0V1fESPySr5nU3BZTyIPoZb73HFFRZy0UhD94xONYWcGhkbOkVSEIchyuGlznMMILwShEiBs4hfBUhykitjuCSyAivCOEVZeol8LB60gmVZ+R9wMoRR2FF+hAsF/vivtJkuX/qgrgpkwIljozEgXN5PABIKiULCCwQ5kEo4b8o5uUDpX0H2LbNEMUOKc4XHCek1pUdx32lybjPmyLTX6lstH+ehTlTG01rmBlVWsQkGDqsfq2E1f/trKlpNiBJgDQrVebHjnVPaX2ZTnMLoVJ/niT52uKCMaxo362qfcdAYPVrJazeUMTq10ogXs8JQaUI3orWkVjRNlpWElPXELGuKmRnTmnErKlNaN6zDi0THdU4Hli5LSfTyW5aSQDiDrWSiMWtMThxsGZ9B5giYkIIHDu5IXruGy09n31OljasK7RMjBUdWRE58ECK3m0PLqtQRHeUIEFx8InYJO3vGFj6xJhRsF+Ujb/9UqivdRxVaOKqSa9VmKKJGCAzFJmsmhwPomaMEqkb68tPHzVnCQYOiWYsBp2f33r/z9GQy0iy46al1iuTUzOhHeDt2yPvE1z6joE6WDPl1EE51vnZjSB+QRIvrU8LZKRuOdlfriNeNHYZWvtwnz8N87xnsCJ9COZ1PoEVdYeXbfsE52Xcx/bu9hiq+YX1VKOSYOfBrKlNcLgPUmiVKZ5Itwkp5NdVuMKX6T59P+7qmDNlBAjzpf0F8yEy9eCZBpM+06nHubuVwipoXRHrpMFTOUOedKVod/pLPdmJGxvrFl+Ipxd1ZWksClcJLRPtFkKWGbExMlZpPjslrdaPRxsHEi3jRRnp1Mdiey7qQhVSyoN6HaEw3yKUuruKBqFUTrpLRRlVy2TDCBmlaOvIY8yxpw24Zuw37zgY9U7fJvl5xvDBV55NNGPDEEmasgpIKgOarZcPSZWaZB07IHzfRJ20hoC4KfmF5eVVRgMJbS8xjz0DMGYVCTgmV0myI8yD5j5vinnvivQh8ncFIgagJiIGYJczbk3QPTQxaJ7cAMHrZKrHtkABwsGf+uClAuYFT4AX8z1K1e9saN6zDpw6JkW7cvsIQxKMI7wiPzJNmMG8xrdkbJK64BkA6fpuzWRtzJ7WFPGPi0DrywKZHiaOjBLJogkH2gS2K2ij5pbxIlpZmcpFKmkjRUODIFPQpFenR+MmwgAMCSVep1lXOCkzgbB1vmXdSyyYdCWlpliKAGEf4kECdQhoHy30aY2R8ASDj4SMVYMKQYtiJ0TgSRJWzJdXiXEGwRUJCrzy7QwCVqQPQcuOv8gIGOdY2XgMWnb8BU7TGEDUAcyvmVz1B7pqzZJg18HqDUWZpnZSEG42FPUDEG7KWK1QJwVR6gS8Yo+KWHY2RNNxUsogjVWrk6t4f9j4ut11qrh/XSvmTG3EAxXWWbVJoHmPbBit1N0zkEPzHpmQyBiCVh2rNhPM3S0IiwTsykKtEbQIzUCmolsmEMDLR4lf3HpD/+8X4eS3hUVKVu/JiEDf7glsV1LqSnVlxD2UaSRC+64ZezvbDg13JJqxKhBeyaQjRSFvvMXKRJ2AMoGVROz+/RYMxeHKqk+vCMEZ5qz/PVaNPBasdRtEqXNQidicKSPKG40n2GWx5tU2MCqd31e9mTIDIWHSkFg3LyeuEpP7Ppo33jfER73zoJbIc7VIWssEVTXtZmREK5WFSGXRMl4oY1uZWqzVXmTl1gxWveFI3zBNZKgLuGljLqxJkNaM9TdaJpCwmtUvyntMaXWh9WvaZDjwzOQAgIoSqrS6X4DwChDFDtkzWD/fAx+iVJDPfNVhhaSzIOmc/O04oSSESn0ugt77zSVIoJGMmlXAO9shSsWoQN+C0FWVuvE3YwNKxOZ1PoETUuswP7ep7LUTUuvgjBqLVaNngKazoA0jAQCrRh476FqdNes7avY+SrBrwNYzrWgdqTQ5HeAdO2TbMK8Atv1NrBp5LFaPmwMACSHrZ8ye1mSKaVomEElabO84NyN/tKG0SjHKyF1lVGwjpKGJl50eHGAj1OY9MibtSkp5k3o06UoapiXdt/4LZ/NLsrgiv10SMOaZ6nHhFbFc7AvevgO8kDeWRVIXJtfhXlFFxlyLfOpexJ7MmHhF8EFqFK7TlH39STA8kaQpq4A40tcLgDReVctNBWXMTqInWrHZ//4l7t/noz06nhV1h2Ne6xOgDSOlGaz2/krnALimwnJF3eHA0PgtJtjFMZ/8CwCwXOzb5XrLO8ZiPtsiJzCcY0X2XYClFV496YSBPMy3JZxSBwR10TwphVUbfbRMIGGEWqfttEkuoTKS1R2Yj5aJTpkdSMs4BnAhSYry6oLWj2n0AyHTvTabJ6WMAJ8EXtTwWtv8BLI6lZbaIbZuBCvmsWrksQCA5WR/zGt/St6HGioYuLLxGGkbxDlIKiXTsClZsAVdGBUzvhaFvCRixU6lIxscnbCuiOzTNhLN2LBFEhmrAuH70srCXhbREvDIzwPTz+rR9uds+JP5qRW8mI9E6GT6tGCIWIIEAwlNwuaTf5mfOE7IbMD83CaQuiZpUBx4aNn64GAf6tsPzJP2HTyQZEnbUOgOHYoorXo9fK279OTqjT7gF8OetZBEjASeJEV+URIxoKx4A+ja6qM7tEx0QIRsp0SYB1psMz1Dqd8pi0Z4AJrfBrr1VYgNLwLrnwXfvM48I1u2PojmN9YAQJSIxbByxFHyGrlpkEwOxE2B5upBc/Wy+4k6H8GlSbDOlAjfA8+3gxcG17ojwa6JJDJWDZzJL55uCK6XxQX8QI+I2OyXloFk1Zdce5LVCqVTuI/tDRBgHn1G6hoq98BNkKBfMZ/8S2q/7PRUPECczkkxf1AEadwNaNsqIwgJBgzzGraCYxQAqD6QTqgX010ILOG2TE12b/oKAKveTGHuqBJadvchsg1AsT203rBMXyOpSm1x0ks0T0rJiJsuONCRL+aBFtsRvLnR6vvrKx2X2p/VecQ23O4OJFcvI25plQ1RmQcpR1ETYM6UDjf8X1fTDwZkZKyPAn4MThQvQc+RkLEqEJxHxfpAuQMzZ3jg4IU92i6pa5RC0FRKtlHqAVaNPBbzvGdwQk6mKZcre4oECQYK87MbzWBOeM4M7sKRVgbz6UbTPkakMrJ/qpMCAmU6rAbKOet+K7U52oxYTSx6GlFOUA7il0C8AuyuBqs2CbRM4KaiNW790DKBgHidWLmt+6b2K7ePkJ0CgpJlXyHC9mtMMXIdQbK0ar06H+WKT/yCOWZayoPveBOBVwQCPzRg1URMm2yrNnWCMTS/sSbSjq4a5osXI/pf7dcoW91ZLZBKRZkxUZNzQlVhChscAX9ibbFrIyFj1WATpZgDc6XoWE+3S9x0r0r8V6QPkX3+ku9UgkGA9rKbn90Y6WsKIGzJFYuUCMGls3lJCqNJOgvaMAqgDjgAlu8AcTgI7cP36G2OEzIbpLcX8yDgRjoFtIxjICzAyk0y+tUyPuwbaiwtAFlZOY7VVE25clsOc3dTESHVWkoA0apKwLRE0vdEpXZS3cF41qlt0EKrFNprQT0QeioCynzVMTYUwvfDvxlD86aVWD1hbtl+5nb8DcRNQ1BqqimJmzJVkxFtcBAlYfLA1D6D7rsZ9AcI6buDPuHJwDFckZCxKhB+CQhUTzfOovqxXszoZ//nHrldAGtURVmCBDsLiF+ASOUAUKU5Ug2XCTFRMgQ+qF8CghLuY3tjPntOvtdNgzRmQbJ1xoLlwUMXDe0J7cQ4IbPB6vvpA24G80dswfKOsZg3sg3Ck8RLtzwiAYdwXKx6w0HLBC3mV9Ec6qJlovxMZYpTolIHDS2U16SbqOinMYIFQDQp05Eq2rMUXsvuPkipqCJ9MurG23eAF1XFoop6AVZUTEevqANCHZlxsHzCBOeY2/YISLYO4DzclpuSrwdyHwBAGkYaoid8L9ToqhZzxHEAJ2fSoqJULM+gJEjQCyRkrBo4MzMhM9NS6GlqctazPwXqZTnZ/Xt9qP+OMUGCQYLwioBXhGAMtL7RpL0kQZMwFW6Q7bTgZI1TOUlnITI5KZaeNEQnsYtAUBfEy4eRGteHEK60vSnKbqPLi5OkgJ4HICyASGUxd5QLUuCyklKlGU0rJkJhh9sfeFWayRLmYfWGomqtREH9zrBxuKUTM+2Q9P/aENbNoGUCiRC9rkC9PEj7Vss+wjc2QloeQhwnmlK0G3d7Visj3SFF68CKnZKoKed8EQBw5f0pinnATZttCcakyau9PZUOJdSRPYvV9oXffSeD/gB1KGgfNWNUJDV7wxUJGesG0mtMhqp7M5s//ukfgeiqnAQJhgCzXrgTDxxwRo/fd4LzMkSuUQ7YbDeQUgdEvl1FIVDmZC4IlZER7cukPZ1KRYhCvmrrrQS1Y/6ILUDAVTWfD5JKSS0XDUwq8r7SZJnGLFHLZV6AEILlneMByEpHQTJYpZuGO1TaYagm2as3FI2ZrGwY7oAUWqUFBIKwlZDjAH7RONwDCPuUOrIfruABjJdEF2jZ3Qdpz0Pk2yA4kz2B41CRMBO9KhWNESuhDjgLxfVSm1sPWtcgK9Ft4b2bBkkBwmOyCEotF14RIlsnJx+BH4m6aehKSh1126msLUSSphyu2Klo8saNG/GJT3wCY8aMQV1dHQ499FD8/e9/N68LIbB48WJMnDgRuVwOM2fOxPPPP9/7HVr6rt6mVYibltWTlCaELMGAYvZ/7sGc9b/HnPW/N8tmvXBnVF9TA1p2/AXzOp8AXFVxR6h0b8+MABk51jSdFxmlBdLRhFQGPFMvB2IWrUIWg6Sr2ZUxv24zSCkPFNoMsRCMRSu+odKYPDAmp/eVJpf1XVzROtKI91e9qVKJ6j2E+WjeI4PmyVk075GRZNwvgiprCVkwkA97kgZWX1IVHZWWGtyI8U3T8i5gtuOmZIEHZ2GRE7WE+jpFqPvxUhpGqwCj+9IEine2g+fbQ6NubVGhXfYBkGx9qAvWJExti9Y1gqrtiVJRdlzRon5Lx5YgQV+w05Cx7du3473vfS9SqRSWL1+OF154Ad/61rcwcuRIs87SpUvx7W9/GzfddBMef/xxjB8/Hs3NzWhvb+/bzvvaDFa3zugBZj13B2b/+5d922+Ctw3mbPiTrOyiDtZMOdUslwaWtd97LVsfBE1njeExEHpICUdZFtjWBUIAQsgB2/yQsNJODaA9rRxOEMX87EZ5nb1iGOEBwlQcpSEZipmvzs9t6raycdVmIrelU83GM4wYw1XE+xpyFlmXCG6IOgD53GQskmLsCiRmrmpgC+YVwjSlur902hDRe54X8uCF8p7Cxrw7iO0vPnGwSaA+Z72NwB/UfsQ6MtbXnwTDEzsNGfvGN76ByZMn47bbbsORRx6JqVOnYvbs2dhrr70AyKjYDTfcgMsvvxynnXYapk+fjjvuuAOdnZ1YtmxZz3eoBjZQKr/cvYVu7qpC4LWCpORs9finf9T7fSd4W6B5430yJaMisBotWx8ESWdr7vYwr/MJ0MbRoKPGgeQaZIRD2SYQv2QMPgV1ZfRLi/gBYzBqbA6AMLKcyYLWNWCe90yfznPWc3f06f07OwgPQvd3S6QeiY5pJ3xFjE26sJbtxzRghPlhqyFNsiE/f7gZ2TIo3xYlLzZhY8wI/YngmLtbqeq+W8YxgHmKOIWth4jShBH1N4lPbHVFoxL2k1QqtA7SUasYYTJ9Ui0vMVHMhwSNszD6pp327aIA6ph1QR05VgwCtGasrz8Jhid2mk/mD3/4Aw4//HB8+MMfxtixY/Gud70LP/pRSFTWrVuHzZs3o6WlxSzLZDKYMWMGHn744Z7vUM84HSc6E+0FdINxoat4agAdMRKikAcrDt7MK8HOh+aN90nXcMeRA1GuHnPbHpHEqq4hEiWzEXfFn9f5BEgmK0XLWpwf+GGVnN0DELCiMGrw5VxWwLVvAwptRoCtoxIkkwNtGN3r85z55K2RCuYZj9+CmU/e2uvt7Uw4IbUOxC+At7+lSJhKC8ftd2xYTbthpYu7gm4Ebno/ljqkHswvYuXWDES6DiJTD5HOySIArbEqFSQJDGT60qQqlUs+8UtyXVXhOW9km9S+xY6XWOlBGY2y0pL6R6+eSskJq1XpThxJ3OwombxOsb/1JCGdBdG2FsW8TF0W86qzSVGRzXbpj6f2o/taAiqFOWIkaH1Tl9c1QYJasNMI+F955RXccsst+MIXvoCvfOUreOyxx3DhhRcik8ngzDPPxObNmwEA48aNi7xv3LhxWL9+fdXtlkollErhjK2tTYpWeb4NIjUS4BysD+0uHjjgDMz+9y+lhoEzHP/0jyA4x0PvPhcA8L5Hb4bgHEGhBFb0QByK7JgmrD7if3Dc+hvx5/dc0Ot9J9i1MWfDn4B0VplTan2jmvVzJisXLcz+zz0mlSncFFp2/AWrRh6Llh1/AQfg1DfKwakkoy86AiGotK4QxQ75/rR8bBhDUQAAlToxPXFJpYywejnZHxDACdiAE5yXcR/bu8dFBSQmFVh7xP9g5pO3YuaTt4Kqc37g4IWY9exPe1ztPNxhUpMWmTIRIkqjmkCt56OuJEIWeRbKLqJb6P0ISKG7iojyTL38mzMIJw2n1AEozVVY2ZmCcNLSCkX1diRuCrQTksjphuWEYl7jW1jRJgk68QqSyKVSoRYMkjwRNx36hunsgpU2JJmsvC95WNgQOQ/OAB7eP8IiY9pLjKTS4QSisx3EK0odmb4k+XYZYVPtkOCmQw3wYOkh+yPNmAj4hy12GjLGOcfhhx+OJUuWAADe9a534fnnn8ctt9yCM88806xHSPRmE6qKqBquvfZaXHXVVZVf1CFryHRhr72RrPA2USHuY//8XQjGIdIuuKf6uzkUf5v3ZfO2hIglAIA5634LuGmIYj6SciTprOyf56YAro0rAQR+xHVce9xpQkOUvxI4Q8uOv4QEKvAg3DREvk3eqylFuKgrtUGcgRc8kFTO2FgQnQ7TO1PVbsKX9gE0W48TyHqIUif4dmnHMGfbszU3ZZn90jI5OCtrGE2+eOAbEqZTVTOfvBUcykpG6Yh2BT+zOBEz0BIKdf5Sn+eG1hNl2ykANSguSFCESNXJtCTnWLlVFXJQN3Sbpw7g6JRgeAwADBETjCmzjJRMX5ck6RJuCnDSEG4Wc3crQTguaHubSfuRiJs+U5IRdV9xFnqJBT7gpkA1qVJVjnbaNGLcSivcddwifsrCSACmFZ5uWxfRllFHXuvAA/eK4Pm28u0OACghoH00faVdjIUJhhY7DRmbMGECDjjggMiy/fffH7/5zW8AAOPHy5LtzZs3Y8KECWadLVu2lEXLbFx22WX4whe+YP5va2vD5Mmy8TYrlUwvMO5Xbnlx5P8uwWMnfqXrgze6hrA6iKZc/N9x53f9vgRvG8z+9y9N1MoWv+u2XIQzM1Of1/iWTOtk94do2yrX5Y4ZMOLtXwil0kNJQw8objqsQHMcOfuHFD3TXL0c7IMSwAtywHFltCuiC9P6JABwUqD1jUbYLBgDb90mt9nZLqPNSsfTowpPzsHzbZjx+C0gKVceh/ouEYsECMbND0254H6AmU/eaqLQOy30c6OSCN6uNnRShohFWhRpYXyNFgzSQZ/IalnLP2zVJoF5I2UWQagInG6sbSoVvVDHZkhO4IO4ACFq0unlpeZM+52pZZrQ6+guL3hRHzH9eevzdlNy33a6FOp7o8lTENMwapsKZfaqvwuSxKnvQqDSmaZykkcjkGpCHUnFJ0jQR+w0mrH3vve9eOmllyLL/vWvf2HKlCkAgGnTpmH8+PFYvXq1ed3zPKxduxbvec97qm43k8mgsbEx8gMArOSbBzv3g4raraNXL+22casWHQvVT437AQTjfW74mmDXwez/3BOt1qogOHZGjYU7ZjzmixdBi+1Sn0UdqVlRxAlAOFjpbf/7l5HJgNm+NTHQxSKm8iyQAxNxlFC5kFetaJRWSQ+8Wj9j9ywkFCSdk8UEGWmdIJTnE62XfVnhykjKrBfuxJx1v5WRPwDzik9VvkDKusDJZMoE3Xr7gjPzndLfWeJQCMYx4/Fb+vLxDDlW1B2OlSOOMucJqGvqxMTsingZZ37t/6YE9yuy76ppf8s7xhqSJJuKW+CBKuywUp52hWEpTBMK3w+jTYEvu5ooyxNR7ADy24GObUDnjvKqRiC837xiWLSAMM1Is/XK0sKXui4tqNfHYvWwLGtpp49PeeAJTzrp66gb94ryd7FTylQCv8z8W7dC4sHgVAoTh/bLT4LhiZ3mk/n85z+PRx99FEuWLMHLL7+MZcuW4Yc//CHOP19GlwghuOiii7BkyRL87ne/w3PPPYezzz4bdXV1WLBgQY/3pyNh+jdxKI65/5vm9aNXL+12G7NeuDMUmZbCwSzIF8GKHo7983d7fFwJdi3MWfdbM6M3FVo2tFZGz+I5A+/YAdG6RUattJ1A4GPVyGOxsvEY81YTbdPbAaIl/LpyzWoxA0BGO5QWTb5HphtBKXghD7ZtE9j2N8Fbt8lWNfl2k8YMvabC6jOaq4czancldm4EzdYZsqYH0tkvLQPbHhV1a5JKG0ZJXVDGstwwmilLW0QpnGw6Qsr0z/sevblPn9NwAE3LqlRNTm0vLW1tEbGH0J8HAOGkcEK6unY2jpVv1WHV6+Ukw2i8/KLcn4pCiVJBkhtD+H1JoFSE1J5kELv6UEWl9N8aJvJkKkf1RMALo1taR6h7Sur0u742kBFf7dhf1ls4pkMklILrriuK0HNPTsRZqQTuFXH/fgvk91Wdl+Csatakv6Ebhff1J8HwxE5Dxo444gj87ne/wy9+8QtMnz4dX/va13DDDTfg4x//uFnn0ksvxUUXXYTzzjsPhx9+ODZu3IhVq1ahoaGhV/uM9xxz0ikcc/83I6QMAI5acV3lDVitNfSDCQD+OvPzECzpZ/Z2x+z/3GPuMW1/Ikvl09EBy5B5Bl7IS7KUyYUVj16xorv9/ft8NKweU0JqDTPYxQYo4qhoW8MoqQlyU6C5elDVs0876vN8G3j7dvB8G1jrNpOOBABRaAfb/qZc3qk8/twMSE66oZNMTpog66bMmRwEYxEyNmfdb4HAw/37fBRrJp9komlmYOfhd4pQR3qjuWn5d8qNRAB0qndnJ2QkV6/Sgmkr1Wzp5qx2VDaxIZocCy7bVPURK9pGy+tPXdkOyxbTW9FKTfQBFYViLHym2pFafY+aiC2X90ZORr7CCYXano6KWjYUJJUGydWbbcuIrReSMC57p+oIl5kc21E9U6UaZkQEl1mMtUf8j0l3P3DAGbh/vwWSBPbQP7IvSHzGdm3sNGQMAE466ST84x//QLFYxIsvvohFi6LiXEIIFi9ejE2bNqFYLGLt2rWYPn16r/YlGAf3gjBVqf6mltbl0eZLzeuVwFUVlA6BA7IKDABo2gVN7TSSvQT9jDkb/gRAkjCaqzfVWZqkAFakjDqgDSMBNyVL7du3y0iEHRGoAlOFyK1eqybq4BvdSySNowdGwaVo25EVchpGLB3olFMevLM93D5TGp5CHqJUUKlPqTUiGV39WU4SdXXlnA1/Aty0HPAgRfyGkJpzYNbgaQ3skKnaSt9J4tCd2rdvOdkfCDyZbqQUwklHyZBtZ6FTeumc7IqQyvTvweiopJtSJCp2vSvq27ipRhSMRdOYijQJ3zOkDAhJnT2ZJUrQL3T6s6SE+yXrnvSKYEoDqX0ieeDLH68oI2Aq7SssEgkA3AuMnETrD6vZqPDATybWCfoFCRuogqCzAJ9z0LQLJ5UCt9I4gCRiGoLzikJ+wTgErRzGTiol375o3rRSWlIogT6AMCWoSvVhpSyJlY4BZzIt2L5DkrRcfSQ1GceaaadJcmMNcJFUpbIfAMI20dwrglIHJGdZJPgF8x0glueTIXalgrQIcFNy8HNTANO2A2nTgkYXEhivJrVPTcSaN62U23bTmLPhT+b47B6xtl5Mg1vXqqtoBaEO5hWfqlk/Ndyw3JGTyxXpQ4CibH0U8cUnNNQIavG7o7omUDeqeeoDhBMOHcRNm6pJUSqWd1uw9GCmjZNdkEApCNdif09Wyur2REqrqCcJ5n7SOjJN5qyIm9Y5CiYjacRNmYpHTbCIQyGoPE7uB+B+0XzPDMln4e9qqcggXxw0MtYfmi/Cd6r4y9sKCRmrAvum14OQrR/TMIOptWzG47dIz7B6OcCaL38yg3rbw3iDOQ7g5ECgWrsoTZg92GhvOqH8k6DaFIlS0TiGrx43p+q+mjetjLZsiTuXA9HB2SJ9QkXGCA8gih1gOg0Z+DKKp3Q40J5LSqxvNpXOgqvfJJVSOhsf8H1DqjS0Ma0+XuKmJCENvAjRiKTALOi0kg39fTP6MS4HVJpyy/a/M+O+0mTZ0D3wQXT0S0c9KQchFMJNY0XrSMwXG+Xr/ZGpsqNwuUYQ5ocpUl9FTmMRJyBKwkxE0yLXpqLXfo/9/VCeY9qEFUBoQaGF974PVipBMOkRKQLPeDjK/fKIBEVrw4hDy7IVnDGg6MHJRj1BZj3700GPislgZB+tLZIhaNgiocndQDAe+fLqlKUGoRSPn3wFsmOaIu/Rg4HWHBCHIsj3zck/wc6N5k0rLY0PLW+jYguLVSm9IWS64quQl0SsBqPJSBPjiK6HhgJ9S3+kXzeCagAQ0laCK12YKBUkkXSlAzrN1cNpGgOSrTP71OkiQ558X7aU0eeofJqIm8KaySeheeN9mLP+92GaM97Q2fdgehAqwXR8QNXfMTuKoQdfLQnQkUj25kZTwbkr4D62N5aLfWW1oi7oACSBUV0T5pN/gbVuk6nOfsCKttEyTeoqZ34r6qZT0Vrvxb2iJEna1V7dy0YvplOLgW8E9zoKDFhRVOWpZ6oqi+F3QQQ+eLFTFpgUOk31u2Acfnunin6F6UcAUphf9BAUSpHMh5GmWBo3fS9pvfADBy80GjJew3cxQYLukETGqoC6Lmi6/PIQh0ZC1o+d+BVp4JpyTXUkU2SMI4AoSs2B/nIneHtC6qBSWD1hrmxFpA2AIQcggbQiHr5Jy8gWR+lY9EqlFN1UWYFJGaz3RdZ30yryZJEezsIolCW8lu9Nm/eTTE5W9LkpKc7XRpxQREy9x0SvODWBGD0QE8fBmmmnAZBFDBzRAgYR+OB6e7rVTSpVNjBqUmmInj5ehxpj2Mjl0CRu6xtywTRZKKCPZWfHcrEvoHk0AebjOfmZlaRliSjkgZH9t7+Vb0kCPm+kL41iOQ+LT7SXl9YiltS9QR15n3N1b1MqP2NFuHRBCXGc0Eoi8EAaRsFpGAnh++DtOyC02aryAEPggeXbo7YmnMPJpiP6L86Y0f0GReWZFotu6fX0c/6vzZ8HIDMea2dfElmXMzZ4aUpKQPpo+trX9ycYOCSRsRphC/W59eU7asV1Mhxe9PCX4z4n//Z9MM8H9wL85bjPmRnYI7EvcoK3EVTfuzkb/hQpqZf2BKGhpChaXl/MimpZPyai1QV0U+6IaB+SlMkefswUARjSptq9aOj30oaRoE1jZEWlioAh8JUux65stIT9WmzPufFsEpzJtCqlaH5jjekMIAdnHqZjdcsZLdqO+UPRbJ0pfCCptEyFWtdUMF6WQjLRMkqNKHv2S8sgvKL0YtsFoT8bnm/Diuy7sHrC3AHZz4odjRBuVvrLpXPy71QmTD/G/Oki4n9N2nTVoxb4K/sIae4qi1sEY+DFvLR26WwL72MVjTUdJig1f7OiZ8gV8/2K2q+I7MSKiAnGIx1R1h7xPzj2z9/Fkf+7JFy/Qop8oEBpPzQKpz0b8q+99locccQRaGhowNixY/H+97+/zO9TCIHFixdj4sSJyOVymDlzJp5//vnIOqVSCRdccAF222031NfX45RTTsFrr70WWWf79u0444wz0NTUhKamJpxxxhnYsWNHr67VzoiEjFWBEOGXTBMxpsLcAHDYvVcDAP4278tgvo+/zpSzJ+bLQeCR2ZeYZX+d+Xnzd4K3J9ZMO01GYFT0a9XIYw1B4fl2QzYiA5ZFQgzBgfQBo/UNIG4qJDQW5rPnZKl/XWO4TYRO/ML3JJHSWhud1nLTcuCzKjDNb23+mm+Xbvqq6T1JRbsGhOszU0kp8m3K04yheeN9iqh5ISFkIRkUhXzYW9CG0rERNy29yuobDSHVaTGze2XSbPuMRaQFTijyF4xF3pugdxDpHHg6Z5rMAwgrHq0KXdPyyIkZEXOLiHlFWZ3r6XS33A7vbJetumIaSMEl+Y4banMvgJ8vyGcytyfTzETFIufAeWTdeEHWcQ/faKQn+vn/aPOlcDI19JjaSbF27Vqcf/75ePTRR7F69WoEQYCWlhbk82HXgaVLl+Lb3/42brrpJjz++OMYP348mpub0d7ebta56KKL8Lvf/Q533303/vKXv6CjowMnnXQSmDXJWrBgAZ5++mmsWLECK1aswNNPP40zzjhjUM93KJGkKauAEKlB0Q9x/QVljOPJDy6OrGtXVtp/J0gQhwh8iI4dwDhg1chjMWf978HzbXCaxoR2D5xGiRDCikqaq5eRM8bCNjQx8Hy78l4KTTCNGD7mUm4aJAdeJJUpVESFArLlS74Nopg3EQ1JCBth9wykVsNyUciDFztBqBT40/pG0HQWQb4domNHSAI5l2SKUpPG0h0B5Hk7hpia1kecRdOutvEpAMJCoTah1KStABUh8yUhe+jghZj55K1lxQe7CkgmZ+6fAa8gVYJ+Iri0MdE+YCrCyYud0GawgNR/abE+gDBlru9nzmSfVcpNGzBRUBYqpbA4wDZpBcLCDVb0wBkz94QdEbP/jhsEd1VoFRRKcNIpEErx95OvMMsfm3khgBt7f+1qRH/4hPX0/StWrIj8f9ttt2Hs2LH4+9//jve9730QQuCGG27A5ZdfjtNOk+n+O+64A+PGjcOyZctw7rnnorW1FT/5yU9w5513Ys4cWXB01113YfLkyVizZg3mzp2LF198EStWrMCjjz6Ko446CgDwox/9CMcccwxeeukl7Lfffn06750BSWSsCoSQs2nmBwiKHpgX4MkPLi4jYgkS9AT37/NR3L/Xh8z//pbX8cABZ2D1pBMi68X1YKEvF5XkxZHmsHGrgjnrfgvevh1s+5uS6GTrTeRHRx2A0EpDMKXTMmaaNGxjVOxUvk9RAicjaMrrqdhpiBygbCdUdaWdOpTpppRJN2miRHL1crBVqSjaNAa0cUzooJ7JRtK6xlsq8GXEzfcg8m3gxU5zzWytp60zMxFuzzcdMLgXQBTyu5SgX2O52BeAJNw2wR0IrNjRKEX9XsF8PgDC6FWpEJkYcF2IUsyHkVSLiGn/OaIKRcJoa2idIV3xyyvcuR+Aqeiq1ofZUVKtK/PzRfj5orwHOA+f9eq1ONxcBsSh3fciHiD0Zzuktra2yE+pVB4prITW1lYAwOjRshPDunXrsHnzZrS0tJh1MpkMZsyYgYcffhgA8Pe//x2+70fWmThxIqZPn27WeeSRR9DU1GSIGAAcffTRaGpqMuvs6kjIWBU8fvxF5kHO/SAhYQkGBHaFbdznCECF9J/0TTLl/haa31gj05Ccy0EOSu/VMDKsnqSWzsa2vYClERsxErSuQQr1IQmQ6YNo7DekAS1TLZGENtNU+zV6IO0rVpKpp3hRAq1rMClX+xiJqp4k6awkE5msJHP6epiIGTc2BpUMmE1k29IN6eWCcfzf0ecj6OjYJZs9N++RAepG1qQx7Dfo+0n9lm20wqpa/bmaqttCWA0ZMR4GQn2k5byvEamk1RFRVVzFvHK9oO2uHxQ9cCt9zfwAzAuiJt/VfMUKtZGW4Y7JkycbbVZTUxOuvfbabt8jhMAXvvAFHHvsscZMffPmzQCAcePGRdYdN26ceW3z5s1Ip9MYNWpUl+uMHTu2bJ9jx4416+zqSNKUVXDon74Bnk136bCfIEFfUbXCVkWSAER8mIR2O1fCZk2YNHSvQNO7j3MZjXJlKxiit63TiYEPcKXhohTQBQWpNKAr2iAjadRNGd0aICNtduUccdMQarko5GUrpYZR0sgz3w4o4027wwCx7BCMb1Rnm4nU0YZRUlfmFWXFphWlI6kUeCEvq5U5N15R8cHUOKk7DhgPdUPUcXDcwzeCMw5e7NylKisBYPVrJczPAaAuCGXAIBRzC8YA1X5IcAaayRqNWFity0w/VmNQq0gYSaXDdLSl6zN6M3W/6GiWsQ+itGw5R2D85Vjs3qBwDXmLFGcpL7pnPh6K9I9evRRuNoPAq1wAMFiwCxP6sg0A2LBhAxobG83yTKb7Dg2f/exn8eyzz+Ivf/lL+XZJNP0phChbFkd8nUrr17KdXQVJZKwKbPG+/cVMkKA/YbfXUgtM9ED/L3VUqjej70une516irvNW6lL2YOvUNEktex/lao0FY163+a4aCxlxKPHaVVrCluo7aakUSfKzTbDlkw8JJh6WbxjQDyyoyvwOFeO/NGKONu807aViQ9mhIapG92wfFeDILT8Phlo2LYqTvnnJyOtqpODJuQ6+ooYAbMqdXngm/soKJTAPF/+LnrSRyzmF8a9wFS/x9OU8WhqnJiZU/FktI37QaS6crDR50pK9QMAjY2NkZ/uyNgFF1yAP/zhD3jwwQexxx57mOXjx48HgLLo1ZYtW0y0bPz48fA8D9u3b+9ynTfeeKNsv2+++WZZ1G1XRULGqoAHgbGkSJBgoEDTLo57OBT/6pSSSdNpE0zAVJzp9XTLGACYs/73ssl3zkoLdbaBd+yQZq2dbREtj2nGnM5GolsmhVnIGzG9bj8k3c85ePsOsO1bpChbkSZt5CmKnbI6VKUrdcVo/PjlyTvGykPbbIiYPo3rqk8d8dPb0BWeLEw/VXJY54xFzDuNhqhCmqtMG7cLYHlhAgDgPn/agO5H91qNeNRxLtO/+j5LpcO+pGqCoTs5hM27mdEp6j6svLMdvHUbWPsOBPmiaUGkq2al/qsAPy+jbXblLIuZvPqdRVkV7wXwO4sIiqGtil5XcI53/epKHPyzL+PQu6+A196Jwps74OeLOPJ/l2D67ZfikJ8PgW6sP/RiPWynJITAZz/7Wfz2t7/FAw88gGnTovfRtGnTMH78eKxevdos8zwPa9euxXve8x4AwGGHHYZUKhVZZ9OmTXjuuefMOscccwxaW1vx2GOPmXX+9re/obW11ayzqyNJU3aBpz92zVAfQoK3E3SPP936xXFCN3w7UgbAOPhTB3M2/MkI4yPRBE3KPNlImdhROIt8AYj4P4lSEZxzOCp1qEXzhMrjMQ75pSKEHWlSREtYUS7oyJWbgvBCg1kdAZTtZsIBW0f2hHbe18eVzqr/uTSAtSMgnEVSlGbw9fxo25tYStiIvNOusv2QgvHmTSsHzJNrKLC8OGlAtz/rhTsh7AmDTkN7qlF3Ogta3wDhpiL3nLm3A3mPBZ1FOIFvyBRNu5FIlqmU9H04qiCB+QFS6Wyk44ngHJxxUKsyUjCpFSMOhaOjporAm1ZIlIJzDqIjZZwD6rWg6MFJuXDSLp47e+mAXs/hhPPPPx/Lli3D73//ezQ0NJgIWFNTE3K5HAghuOiii7BkyRLss88+2GeffbBkyRLU1dVhwYIFZt1zzjkHF198McaMGYPRo0fjkksuwUEHHWSqK/fff3/MmzcPixYtwq23yqbsn/70p3HSSSe9LSopgYSMVcU/Pvj/UDfUB5HgbYGwLF/aRgigzNrCJmMmWuUoMX2uXkYS2rdD6JSg0u4YPycgTBXZejG9bUWYZGQsrGwj2ToZ7VICd2PICYDWNwDUCZsw66bjmtRxLjVu1vbNPgMPyNbLys3AA5AK/afcFAR1pEbMl5o2U9UJADQLAoBr1/ZYY2cgJGK6BZK5xlZzdsE4OGWAB/BUAMeVzdnX7EJEbKAx67k7AM5w/wFnoHnjfeC5ellNq8kzYLSLgHXPxaA1f5oYMc8H8lY1LKUmqhnPWLCiZ9LSzBLnB17UzkJ2tQh7lmryxfwAhIfEjSEAVfYonHNQAG42DZpy8biytDjs3qsR5IsgDkWxj827a4WdUu/LNnqCW265BQAwc+bMyPLbbrsNZ599NgDg0ksvRaFQwHnnnYft27fjqKOOwqpVq9DQEOpZv/Od78B1XXzkIx9BoVDA7Nmzcfvtt8OxJog///nPceGFF5qqy1NOOQU33XRTL86ye9x55534wQ9+gHXr1uGRRx7BlClTcMMNN2DatGk49dRTB2Sf3SEhYwkSDBOs2u14tOz4ixSm56N9JaVWywlNSt2UFPBn61VzZM+0otEpQnAOAWVtoPZh/Lx0OkgVAgCxCBp1wAMPFCpV2NkmiZEeWCmVlhR2pWUcXKafiMPDfpqBZ3yjJEGD3Jaqoox0HVBWHgAk2Qx8UB1dUWlTR/Wr1GJs48fmOIDjVGxXowlZ3Hk96OgAKXTi+Kd/hAcPXdSXj3KXQfOmleBt20zhhlCFGtyTqUKRcsMm353tIMpIWBdmCK8o9Y4K0QIMeb/KNHVYpaitR5gllqcOBWccrmrYzSxLC+bJz12nH82+LNKtt8U9X0bxfMBJufJ/zo03nUybSj9J3ZIMNEzzHfHHayTxy6bhqMKR4iBJWfpTwF8rhBDdrkMIweLFi7F48eKq62SzWdx444248cbqfmyjR4/GXXfd1aPj6w1uueUWXHnllbjooovw9a9/3RjPjhw5EjfccMOQkbFEM5YgwRBC+14ZqNSegd3IW7cyghrI0jljrgnqyEgVYLUiYqElgLa0sCwEdA9MBJ7UbNmVkqWibLrcuk1G3OKu+Mo+Q3jFSMrQnIP6LbxiqCfLt8l9UEf6n+miAMtyQ6dZtY7NdBvIZEE1CQVM83CSyYZVdSxWIKBAU25ZGsu2EdF9DFnRQ5AvRirmjl69NNL+5u2EOet+GxHiA8CDhy5C0NFhtFpBZxEPHLwQgPTQWzPlVKyeMFc65QOmclIXndBsnfzMI9ffQZAvmrRxnIjJzYTpSqrShdwP5PuKnvQHi/0AYXoyEjUtluSPH4RtyKr0eeW+b/zHHN1w3qRLAwQFD157Z8X3JhieuPHGG/GjH/0Il19+eSQyd/jhh+Mf//jHkB1XEhlLkGCIcMz93wQD8MjsSzDj8VvkQ37SXjL96FppO8BUJQqrFYwgFLyYN+kgUWKqebeKSmjXerV+mY8ToCwItOBavy9W2WjD2jZr3WYc8vUxGF2aTolaBQdmHauCzkAfn96HTm3qqBlUyjLwo50EUukwfaMOVUe8NMmljgMORAxC7cGXeb5cx2oiPWfdb0HqGrG6+VIcc/83K318wwLvfeg7oGkXf37PBf263Tkb/lRm8zHruTtw7J+/C0+1EnJSqarWLJJQQ0ZYi53mMzdN6S3fMMEYijukvoynpOGq4Byp+ixoykVQ1PeWjIJpPZgmWcShofheRbOIQ0EB+PmCIXDmu6TT17rVmEXUjBmxNUhz3wd8SeozIxvgteclEcsX8czHl6Czox345sBHdGR0rm8FJsQZBH+TYY5169bhXe8q70aRyWQibZ4GGwkZS5BgiKAf/Mfc/00443YPX7AsI4zuxk2pSkkq/cIoBfyCiYDpdjO2Q7lBXDCt0oywKh2JbT1gV0BCuurbxE7wsDpRcA5qPUWETmFSZgTx8vjTMgxv+UfJc3XkwK3Jn7bZ0EUIah1N7njgy9Rp4Jv9ErVtuzehHmA1yYr7Q9nr2REXne7khTwoZJUq9n1ntY9wSHHsn78LqHM49s/fxV+O+1y/bHd+bhOWTz4psmzWsz8FD3xp8WAZ6VbzYFwz5VRZYcnDlkQipvGThq6S1GvzY55yZdSNczjZNICgTNAPAIEXgHs+aDpV9Rh8FTXTHRl4hZ6nZTYvln5T/wjG4OeL8No6kRnZMGQt72wH/b5s4+2OadOm4emnn8aUKVMiy5cvX44DDjhgiI4qIWMJEgwJ3vvQd8AQmkySlErXBZ4kQhbhAWdGd0Nz9cZzibXvMNWNopBXvmNhL0aqiZCOhkU8vmRz5Ygnl05l8rBdUdwbjNDozLysqbiCscbQthlayK+PR/uQqdfCik2qKiqLYWrU9UNtGaXmuPXTi6SUt5ntGRWptgz7DtpELT6I2+lOf8cOOMVOPPTuc2v5OAcd7/7NYogxTZEB+t2/6Z92bdoOQ+PI/12CYEyTIbT2/VCtNdD7Hr0ZvLERpveo3UsUMClsQN5DTjaN0o4OOJa+ixU9CKXLAmDE/VylDeUy3xAmDS3O95TVhT7moOCBapuHWGGHWc+6h2gqZaovBefK4iLqlZVg58MXv/hFnH/++SgWixBC4LHHHsMvfvELXHvttfjxj388ZMeVkLEECYYAxoTUoXhk9iXGbNQ44iOMnAEwmi6SawhTdIEfCuMtmAFGfbvj0bI4obKd8DURi6RuWKirsglLOKiFxFGKjJ2we4A6J9HZFlZZaud+AIAapAPlM5VKyb9tWwvVHUAXCsQH9fh5B0WrZY2V1omfk7keVrNoBkn0iC/NRPsz4tRfOOKP1yBgHEGxBOJQpOplH9BUfXZA9vfYiV/Bex/6TiTCqFPDOoWrNVrMD/D391+J/zv6fBz/9I/kZCPwpKjfNnUtFRF0dMCty4Hm6pEZOcJURerPT1dXAmFvUfjhZ8es9KVNtgFlS6Fes0X9Grp6U68T6W3JpL0FY/L6IpsBTaXAfR+dW3Zg+u2XIjem0VRWDhYolSSzr9t4u+OTn/wkgiDApZdeis7OTixYsACTJk3Cd7/7XXzsYx8bsuNKyNhOislfPRtOiuLVK37ao/eNOOP9AADqELTd/rsBOLIE3eHo1UvBVNsWTbZYvh2OMlWN+H9Zxq4AIEqdYK3bQNNZ8EI+7KlopYLKIhCcmWgZYKcdrRYyJhog00R2vz+brJRXJsptRSNsstm4iYYEniRaJlLHIXxPRvm80OjT6OEQtr2RryFSZUnTYQQPimhqkqCrJwXjoGkXzPeNcJ8zDsq7rkgz0RedGuujRqe/8a5fXQlNLf4278t4928WA5D6rYFMQWniBygxvRcYQbsW0DsqjXjk/y4BTbvgIxvC1LGOACtSJgIpsicOhb7Cbn02cn8FxZJMg6dScB3Zmo7bNiU2ifYDuE4aNJUCVZWVpv1RleiXXu5Y0VJ7HXtdAHCyGXDfhyhyFDD4SNKUfUcQBPj5z3+Ok08+GYsWLcLWrVvBOa/YF3OwkZCxYYy9li7Cfy79kfl/jyvOhGACzGPAiHSPidiY8z+CEtSDZpgNMm8n6Fm8ny8aPUuQL8Kpj5XIq0bJodaGQbTvAAIfrFQMLSwQCuftyFXQWZCDXSaDIN8Bt16aY3LtIabSfvoBHeSLcOuzhpA4jtJpWYaqACLEzo6kCSfUaRHL4FOoPoUkgEmFao8wovpfikA6oWsLDn2M9qCor5UNXdVnone6l6YTEs2y629F8YQVQYkLuYFyo9ihxlMfuTryfzwteeBPLsHz5/R/wYHX1mn2fcjPv4JnPr4Eh/z8K0Zn56RdONmwmEIK5KMRLM4Y0o0BnFydIWKCcfgdeQSd0irDa+8s84cTNIwiUwBBmZmvNvkNI122PowqgT8AMGvbAMxxRvzH1DapRVwE4/Da8nDSrpxIsTz2/8Hn8OJnvtvv17oaEjLWd7iui//5n//Biy++CADYbbfdhviIQiRkbJhi0mVnIMi5mHrNQggusP7K28A8DuYzCCZACj1vWKsfLsxLGp8PNQTjZpA69s/fDYmEcjDXGrGIMasiNdp0ldiasFIRrFRCkC/CzxfA/EDqYyhFdkwTgmIJjjKuDDqLRqcDRFM5Jg0Ve/DbbYeY58NJp+RATKukAbUAX1e3qUpQncIk2vbC0gPJbXRG+kqaiJeKJNr70Q3CTdVk/Fgtqws9YNtREntYqmSLwRkvE/4PV7zz5gvkPUQppt9+Kfy2PFKN9XCz6X7pJPLUR67G/j+Q6doglcI7b74AQTYDP19EurEOVA0lkXSfIu2cMUO+aMqFCDzTuqiwrRWCcaPFiqcOiUONSD/S7sr6jI07P+eqIXgpQsLt3pQ2BLNkALHX9LNSH0NQ9MA9BlaU9xp3SDJ47qQ46qij8NRTT5UJ+Icayf3UT5h02RngTGDT0v4pcWaenA3a29S/d7/wYz3az+4Xfsxsk3s6kkG6eVeCgcDRq5dKc0o1uHjtnagbO8oMUkSTLm1X4XvKa6sRoBSikJfmmtl62QNSRZS4F8iS+6Iny//9AL5u85J24WYzshrNGsh0REn/bYNQWQDASqUISbFJi5PJgGSyKlUYEhcn5wOlohHaE4dKf6l01tq+E9GxRSIdCEx0xUZQKIE6Dpjvm4iGjlwJzhH4gWoWzaODNytPbTlWlM0mbNQa1PV7hzv2WroIpFH2C3nh09/B9NsvVQTbR8nWz/USzZtWgm3bjAesKNABP/y8FLbHdHhuVjac5srt3i4CSdXnAMhImZNOobCtFdtf/C9o2kGprQQnReGkQ3KvSXn8s4s0/7YIOnFkI2wzsWA8cr/bx1kJlaJGzAtMWyXOOIKi+k45g//8JKQfTF/J2zsyBgDnnXceLr74Yrz22ms47LDDUF9fH3n94IMPHpLjSshYP2HjtXdi/MULMPWahT1OH8Yx/uIF4FyAMAHBOMZfvACbv7UMu1/4MTlb78U2mccQFAMwn6H02/v6dHwJeoejVlwnPz/GEeSL8NrzCAoe/jrz83jfozfLlaw0np71u3VFqbVhLHTOB8AKnZJ8eAE4Y/DaOo0ImqbccFDyArjZTEQLJtM/PGxDo0gNL8jf6WzakKm4MW1o2MnA8+2yebM16NOODvU6N6SJur7UjClNHI8VHdiDDPcDEBZG5vS5sKIHrgZGmnbBKpi9csbLUpOVBt9IhEzvR7m8U4vE6aq94Qz5eadMevK5s5finTdfUNE8taeY/Z97QJrG4IHpZ5ll7/rVlWCKdLGiB6+tE8ShcLNpFUUKBfh6HT35KLy5HdwL4GTTKG5rg5f3kHEySNcrM18mHd/tz8eeKISEjIFUIET2+Zo0qcesSFf4nrhoP05T9DH4+ZIidgJO2gHzGBgDnNTgSj2SNGX/4KMf/SgA4MILLzTLCCEQQoAQYhz5BxsJGesldr/wY3jze3eb/8ec/xEg64L5fZtJT7j0ExAAKCWgDgGHHHx2v/Bj8iGgImZNC0+Dk3bw1g9+3eX2xpz/EXCoqBgTCREbIhxz/zfBEaZYgqIHP180JOT/jj4fs55VJJ46AHwTGeB+ALJ9i7QISGdltWHgR9r/FLe1wWvvBPd9ZEY2SB1PNg3uB1YrmMAYm3LGpChbtwaiFG4uY/RhxE2Daad1Fq2W1BEOv70Tfr4QIUOEUnjteSPod9KqoXOpBEcRzaCzEE2HKjsO/b9gHEEhJHcppUNifgDKraIDJcqPW1VouxD9tx0ls/cRH5gIpUCMuOn2O8MZtMIAqyM5L198a6+22fzGGlkMEnhYtdvxAKRWTDAOPx5tUtpH/Znr6Kw5Dj+Aqyo9i9ukM38a0vfLzbphBIxzANwQMv2ss6Nleh+pejcS+ZLvkb+JQ8w27OvDGY84rsehiXiEkOt7jAtzPAmh2bmxbt26oT6EikjIWC8w/uIFIFkXYz9/OrZ85xcAgG03/wrjL14Av8PDhEs/0et0pR2Sp2kHhHFIdUsQmeExPyRmXWHbzb/CqEUfAvPlQ6tp4Wlo/elve3VsCfoOnULUAmM7Pafbyrzv0ZuRGrMbwBn89jeNeNjNZeDWZY1ovbCtFfXjxwAA/M6wLRH3gkikyW6qLDg3pNAW5tuGmm591uh6bAsAmnalOF/fg3nfqmJUOi5ESZE+P+b5cNW6vuX/RCiFk06Zxt56GVcpx/g1MhGTWLVbpKiAcXAERsdkzr1ChCyii4ulY6kSpQ93MD/AS5Zof/JXzwbG1OPfn78lst7e3wo907oiabOe/SmYIs60Sd5fh959BQLL5d7+rJByUdrRLvtDFuV942YzkSiVjpjpSKN9Xf18CU7aiUTFqEPhF1XaO62d+oV8LVU+bBGHqHs5fCbGqyj1NuIRtfh6+hmrxfp6/07KgV+0UvuDnMJOImP9g+GmFdNIyFgNmHDpJyAYN6lCR4XUg2K0iermby3DmPM/glTWxR5XnAniUGy46vYe7y+qdRHgTIbH09brpbYSgmKA+gWnIL/sD11uj/kMQSEAdQj8fLkLdYKBxVErrgNjsvye+wGK21pR3J6XaY8KqQ6hNGO82GnSgzLqFZjIQ2FbK4rbWgGoajEV5QKkxxK1jE41mdPQy5gfGN8mYkWQHJUSDDplxSPzgshD3GHpiGDa9nhisRShTjdyLyRXdkRPbwcISSO1tEiccdk0HdGqTr+zCCflyupPP4zC6PMiPDR4jdsU2FWZREVCzLVnskm0hpvLdPv5DjUE43jHtZ/CK5dJw8oNV92OvZZGG53vtXQRum/5DBz38I0IKJXkyqGoow7e/ZvFqnE2j5AdfT19qxtDaUe7IceaNLnZTIR8sWIJQd5Fqi4HP1eEn/fMxFJHoNysC+qQcLkiYoILsKIPBpgImCZvxAmXMV9FsSgx2yWUmOiYJGXRyloNJ5s21ck05eKFT3+n4rXa44oza7ii/QeqNHF93cbbHT/72c+6fP3MMwf3c9VIyFg3mHL1JxE4BIwBYz9/OhDRHJCydKVgApwLCCZQ1kC5BhidjEMQFAKzLeIQUPVgcdLUzCSZx5D90Eko3vOnqtvkOuyvHlCNZ38g8RgbQBz4k0sgGMMLn/4ODrv3anBFUrSGp7g9j+L2Ipy0g/VX3mbed8APP4/6CWPAG+rhbXsLfr4QsQnQKbegWDLkrHPzNqTqZNpQp2y458PXgmambCtUNRsAQ8C0PxQApBvqwB3Z35ErPRBNuSZCJYocqJdNuT3AaNCY1YTZnkQYTzOHgnKKoOBFZ/aWWF73/dMpUzvaZm9bC8HtdjzcC6rqurgXGF8qotKb1LIyiJM1fQ0BIFWfhVuX7feejwOBShFy2xJn0mVnoOQQvHZN14MQABS3tRpCnRvTBG/7DlPsIPs/MuNmz4o+OONI1WckUUiHFZXtr+1Awx4jQRVh1pW9WvTfuUVWTxpdl8/hpKh5VumJCmcCXt6Xkg0mJEHzpeTCSUU1X7zA4aQdpcsURmQveLhNQsMUZiQLEamedJCqzyJVn+3S2LWW65lg+OFzn4uaOPu+j87OTqTTadTV1Q0ZGUtocg3QIXBKQ0JUDZog6Z8x53+k5v3oqkdAabwUEdPb5VyA+RxBzNaCOgR1Hz252+1zkwYQPTquBD2DHrAOvVs+yHX0iPmynx7zOTgX2HjtnWXvZV4AP19QP1LETx3HaIA0OQqUVisohCJt235CMAZHeUDp17S5q45SBUUPQb4AViyZKkTmBbL/oJpI6GPX25CDsCdTTmrfnEfTNZpQheL/IOJ/Zi+3o1J2BWVcC6ZJn2DS+JNSGqkO5Z5vfptraafVKqasrOsVa/vkZNNI1ecwZ93wT+kLLgzh0Jh02RkApKSiJ9D3mPmMiyWkG2S1mT0hMFWrXMgIqR+NkHp5H76KaDppt8wmpLijAK+9aEW+oveBPhazX+vZxVVhk33O+hrYWjG9PP5/LenFvlYtDgQIJaE3YK9/kir67du3R346Ojrw0ksv4dhjj8UvfvGLITuu4XfH1Yhrr70WhBBcdNFFZpkQAosXL8bEiRORy+Uwc+ZMPP/8833el5t1kR6Rgptz1cxLDqT6iz/6Mx82627/0T0otXkotXlKXyAir9cC5jMwn0dmvNyIVAG/GCiCSOCkpSM5TVcXpnbceS+oCekLaW/BRIT8Jegf6Co2QziUvsvvLMJvyxuCpT/Lvb91Lt55s4y+uNmMXFc1JS7t6EBpRweCYklqcdo6kd+0DflN21DcLtOOkvhIAsJUlMjPF8uE636nbJrstXfCa+9EaUc7SjvawfwATNlilHZ0qNc6EHTKY/DaO81AG+SL8DuLKG3vQGm7EvdrEmSbzapj0NE7uV4QHcj1jxcYHZ2dmtTXzZDPYrT3pG1zoMkvU47tgjFQJfrnvm+WadgkrFIDcQBIN9TDrcuFHQ6GMZjHIhFWQFZ3j/386WA+x8Zr76w5iqM/P+YH8h7cLitjdXGIJtHMYxBcICiEpLuwrQPtr21H2/q3wBlH/g15T/n5Iko7OlDYskN9/j5KbSV4Hb55zkkPRQ7qEBMh8/M+uEXWuLLm0c+voBDIyWkxMJNfL+8ZfawmbvaPhn6e2jq1yATA6o4xXGB7r/XlJ0E59tlnH1x33XVlUbPBxE6Zpnz88cfxwx/+sMwPZOnSpfj2t7+N22+/Hfvuuy+uueYaNDc346WXXkJDQ0Ov9qWjUDRdbm5JLE2DnfrruPNe1H30ZKTqU6Y6pxa8+b27MeHSTwAIHxZv3nx3ZB3bM4w4RM50YiH7Suj85R+ROnW+2rYwx5+gf+Hn5Ww/t5u837TOiSnxskw508i1pykXB//syzFdjeVQng/NUb03tyMoeua+0q/LfWlvujDylKrPGmsB7UQedyDXx6l/6+bL3PfBvUBGoFRvPgAIGIejihAEsywBVBsavTwOBy44LLd8nUqFi6AQ7TNorpsiS3aLGyCqD4tH3YhDwWLNo2V60wfSKZOqtBE3uPXzBbh1OYDX9t0dSlQiWuMvXgDGRERC0R0O/tmXQRrrwFQ0LDumEdwPkN+8zURiJVH2jd8W8xhKbSVkR8lUef6NTrg5V+m2OIrbi3Cz20HTLgJ1rwbFqP2EfsZKvR6UBCOaaowbVeu0JVdaWP1Mow4BccJta4lHJRKin8uEkXDi4oRp/Z2heCNB/8FxHLz++utDtv+djox1dHTg4x//OH70ox/hmmtCZ2khBG644QZcfvnlOO200wAAd9xxB8aNG4dly5bh3HPPrbbJiqj/9Omod1x0Zl0ZEfNYOFBwgbGfPx2UEgTW7MomZJ2//CMaz/4AOHhZqLwr6CrMMed/pCzkDsA8XDUpkwMsr6lC0kk5RjemkVRX9j+oIzVSurkwTcmCD5pyIRwOkZfEY8Kln8DLS+/C/j/4nNFEaaKkvZocpdtixZIkZR4Le+qp/XGPRaprBRMotXmgDgFNFwxJy47KhtsETC9BMyjpPpmKvOkKReJQcPjGbJOqiJMmUCG5YpEIl3zNapek3fgd1XKGSyInnFjzcYfKSJtld6FJnuMofyuL9MWLBsCihq/hsXBjfmt7kdnaMeJQuPXZULg/zKIjtWLzt5bVvO4BP/y8vPca6iX5TqVMdwMd2dI6MM8qAHKzLvxiAC/vQzCBTGMGxCHKU0xOVFmKIr+lHSMmNMHPF1HcXoRfDEApUde8fELIIxErAai0pK2nrQW2xAPandFxzPPYiPtjFZbc90HY8Pvck2rK/sEf/hAteBNCYNOmTbjpppvw3ve+d4iOqkYypslNT/CDH/xgQJpvnn/++TjxxBMxZ86cCBlbt24dNm/ejJaWFrMsk8lgxowZePjhh3tMxgQTgKNSJioErsWhgLSMACSZsWETMv1bN+eOo/HsDwCQD7W3fvBrWamZotj8rWVm+9XQkxmvBnUIBCdShJ33u/UoSxCiFl+3g3/2ZZSyaZWmK4VkRzvhOxSMy0gA85ixRQEkuaBM6qCComdE0n5eutv7eQ+l1pIps3dzWi8lTLWsHijDgcUBV1EH5jOk1D1MHGqaI5u+fhbxknqc0LuJqabQzA+MsSdg9ahUBQpxIT2hFNRySNe9KwGo6jwmI1X6/FXESvuUmSIARsOWN+p9Or1o/Kys6lG9P0BGKmnKVdV2kuQ5dtWpLo5QfwOSTHtt8hjSo0bWcHfsvNj7W+dCqH6kQdFDypEie7+ziOJbrYa0ltoKKGxXPVKZQKYxbYqMACmd0M9I/ZukCTq3Fcy9mcq6KLaVpFieEhMh1vd0vKBCR7z05+qkqSFOQkXNdETMSYet3ohFwO3omv5fQ9MSDg41PQCnHDDR7OFl+Js48PcP3v/+90f+J4Rg9913x6xZs/Ctb31raA4KNZKxe++9Fx/5yEeQy+Vq2uiyZcvQ0dHR72Ts7rvvxpNPPonHH3+87LXNmzcDAMaNGxdZPm7cOKxfv77qNkulEkql0GCyra3N/C0Yh44jmdlUbFaml9tf8hFnvB8dd96L+gWnyIdGzi2LQI044/2RykygdwSrJ/DyvlUO3vc2KW8XjFr0ITAuuiRi+33vfATZNJgfmDSMrKD0I2aSAIyWUEMLzxnnoH6YDgSkB5PUxGg9VTi4lNpKMirmRTWGknCp9I4fRsv8vG9MiaXdhDaxJAiKAbjHQFWKyFgGgIJmw7RenOzobQBAUPDN/s15aRLEwkEy7uel06y6AbTdn1CTWUBVhFLPbMOkWGO6r1R9FjSVUpE4arzVKKStghPzqTJ+WGp7Xlsn0o11UryOXRt+3jOfN3EognzBpNO1p5ZgAp1bC2A+A6EEzOdIjUjB2140Oq/i9iKclAM355r730k7IJTAzbnIv5GHq7IMxJHbcAAIRsy9KqOcUQNfG5FiJvU9iEfJbG2s2U7M6NVEYC3bC03IhMMBdc/q+3K4gDgOaBemtbVu4+2OeMHRcEHNacrvfe97NZOre+65p9cHVA0bNmzA5z73OaxatQrZbLbqeoTEyJJqcVAN1157La666qqy5YIJCAg4aaIqcERksNPgsUFVv9cGZ6KsUkI/RJyUg0zj4HsZcY+hOHMWsg89MOj73pkw+jMfhqMGEECSaCdF0bmtAP/3ywHIdGOpMQ20FYyomTgEfr5kfN24imBRKzWiIbUyMppG07KsHoDR5ujogxHjF4PINmXPUSvqZLWKYUrs7KQdE5UwnnNFrcfSlimOIWPEoUpIHUbPzLEqwb3UDPkgFVJNmswRJ4CjHjO6z5/tcK63abzIGI9EFG2Xddv0WJ2pqegDZITZUa2BnJQLpFzTZNr2WZOWISoak3JBuOzjyFX61MmmZfcCLwDJRfvW7WrwOnxDbHa8ss082/QyN+ei4428bOFVCEDTDjKNaXRulca9Tooi05RBx+sdcFIOvA5JloNigHR9CpmmDDq3FqQOjIuIGz5Xkg/ttWcTfq4+01RW3zuyBZFMWesJgPICUwSskgbWSZcTMf0eIFptKScMBAzqe6HkBd0hd/ZHa1ovwfDA1VdfjUsuuQR1dXWR5YVCAddffz2uvPLKITmummKWDz74IEaPHl3zRpcvX45Jkyb1+qAq4e9//zu2bNmCww47DK7rwnVdrF27Ft/73vfguq6JiOkImcaWLVvKomU2LrvsMrS2tpqfDRs2AIjaQITi0Kjp3ogz3l9Vv1D30ZORX/YHqaFQ0Yv6BaeUrafD/YNZ2Sj1HDwemEsQg7b/0ORq9Gc+jExjWhrw1ocPahnd8VFq8ywxskDntgKKbSV4eUmq/A65Do+JkbmqYPOLAUptJXRuaUNhazu8vNyeXwxMhRgAVTUmK9KCQgDu2elGpmwFfPgdPrgXRrm07YqX91BU79Xb0pE1205CgxV9sKLUZwVFLxRwa42ZmqTo74feX3w7kdZMVvWabRwrt6dsNnwVWVTfH21LIHVKnjE+1q2+bD0M55pQuubY9PHY1ZWmQEAJ+4nyyzLHw8s9vHZ2jP7MhzH6Mx+WLdZ8WZ3YtqEdpTYPhe2h3QTzGHa82qrIO0WmMYNMo4wVxu11NBGiDoWbDf3G/A4/MvGMFK6oAgDmM6PF1dFQbSMUr4K0Na9x/autMzM2KMYKI/wx6+uJUwW7B+JQ0+uzO9D04KT+kmrK/sFVV12FDtU/10ZnZ2fFwMxgoaZPZsaMGXDd2rX+xx57LDKZ/o32zJ49G//4xz/w9NNPm5/DDz8cH//4x/H000/jHe94B8aPH4/Vq1eb93ieh7Vr1+I973lP1e1mMhk0NjZGfoBoKgVQEQE/FE83LTxNlWE7SGVdU82oZ2idv/yjIV/6YWA75bfd/jvpG6MeSAOdogTCKAn3GPIBQ6FCgUAChdlzzJ9hGkXrUxzUjwsjJpu/tcwMKjqC6hcDlFpDwqPJh7QtYZGBxGsvSsJWCOB3eOjcWkBxe9EMjn7eN1EEnTbSOpxSW8lsS5td6kFIkzutKbPPg3vcRNQ0SeMmFS8JVVAMiZOX90wqUy6TTuhA6Jquvx9x7zBdDKDvPWMkqyJeVA3AWisX2l4wQ7w06dLHwDyurjUPt2sKGBi45yu7jnYw3biaRRuL6/Xi0MQt3VgPUchjbtsjvbuHhjHe+sGvzfOgqO4RHWXVxR/Ml1HHUpuHji15NbHkKKiUJVcEuXNrQVlThClxAChuL5rUZiXYBSfEoUgp130bQTGQ++K2mXZIqvR3DkAF4hZOYGx7C3lPhpmOiF8ZC78DtSL/w8HxpkrIWP+gWrbsmWee6VHQqb/Rq2pKzjlefvllbNmypSz/+r73va9fDiyOhoYGTJ8+PbKsvr4eY8aMMcsvuugiLFmyBPvssw/22WcfLFmyBHV1dViwoGfGh5VgdAqAigrID5MzjvSIdGSmGA+Ny/UEMqedgNJv7zOaMupQBMUATopi0mVnVDQB7U/oQbzIOApMgAmBxgHd406M+9egoOxJdLcDL+9BtAnUj6svSy1rLRYDM+k0O4rKPV5RXzj+4gXwHBoTGXNDnOw0p5OiZoBx1QQgMBExVWGZohC6ewML28Kk6lORCBqgBqHYrco8DuoIleqkSNdTQ+bMQKUq4by8Z3z3RKyJsp6cyEpPLyqk9nWUJLQX0GTNvgZCkU95TPr7Jsr0a7YzewqIOMQD0pbGSbkm/WmqP63iAnuw4ozDrZMNrHngQ3jDSzvUV2jtoybhtsaKAijlS2h7rQ314+pVBXYRfoeP9k0ymkAdglTWlUTLasqt2w3ZfxNKZPFEmsC2AtKESvslam1X3OxaFwPEoaNvepIMOEbQb090OBegqKx31PvXz3VzzIyAewEOvfsKPP2xa9AdMmckBto7A0aNGgVCCAgh2HfffSOEjDGGjo4OfOYznxmy4+sxGXv00UexYMECrF+/HkJEIyuEELBetADqL1x66aUoFAo477zzsH37dhx11FFYtWpVrzzGdEjdDCBpx/RKIw6FQ6XHly3styNf9QtOMZVFgJzB6W113HkvMqedAKZKwZ1U1HdqoKB7yDEhVIoyyVN2hc5f/tEQ6NGf+TDcrAvmc5TaSnCz0aKMN793N8Z+/nSjf9G/NYmxZ/CAvAcAmHukmJepICclIwRSS2OTORmJkDYCHKn6tKkuswc4DRnl4Gaw0SLlONxcXMzOIBiR+3ekPk1G1cJoQsR2AIgM5gBXGh5JcOziAycdVmsSSgAPAOSArlve6O2GKVmVylSPFR2909YIBo6DoBAgyHqgKhLnFwOjOZLHGR2UAZgWPfY61KHG2oJ7AXj7dsxuvQf37/Whsuu3s2LEGe8Hsq65NzU6txbMhI1taEf9uDo4KQe0iUTuXw3mcThpinTONe2GbNBYxaRtXh2xk+AC3Cpssdez/9bFKXYlpWACgkoJvk5xypSnEvMDZZ1T4rYXxEpnayuVam22hgraRb+v23i74oYbboAQAgsXLsRVV12FpqYm81o6ncbUqVNxzDHHDNnx9ZiMfeYzn8Hhhx+O//3f/8WECRO6FMcPNB566KHI/4QQLF68GIsXL+7ztvWDwlUPLEdJhPTDhjoU2390D5oWnmYE09pp/60f/NpEDOS6BKW2AE7aMYO77rumETc1HAikHnwAxZmzAABpSuD1wP/s7Qr9uehoQv2CU+AVOJxUEW7OjViZOCkHuVFZqbtR0SS/GJpS6jRa5y//GN2Hz01qSBsFA0CpI4yKAVbvSSbg5z0ERVnuT1gYWdP70CTGUS2D9OzfvifltrmJ/JnBD+EA53d44FwYjZxdySajVuG29GTF96Uo20nHCKKKugEwpqHUIWGvTBZd345y6AHWREys9YhDADVJKm4vyo4USqvJU9SIsgXjoCkXjk3GlO+Z/FulJxvqIRhHKd8OJ5UCb98BsYtpx6jyAzN9G1noZE8cgpzjwPNlytLNunIioisdY4bBzJORWrsHJFCuEeOMg6sJgm0TFBQCYxRbCWURU0+AKomHJuecC6Pvq1QkoycXNox21iFlRJJ7DEG+gMlfPRudWzsrWg2NOOP9EIyjY5DEt4nPWN9w1llnAQCmTZuG97znPUjVWKAxWOgxGfv3v/+Ne+65B3vvvfdAHM+wQbouhbTrduvF1frT32L0Zz4svYkK0hl91KIPwbMiCHGhaea0E4CUU6aPmPzVs1HcXsSb37sbxZmz4BBJoDT4rNl4sxRg3F/X9vq87OrJXbtOrH8Q/GkFACD7oZOQHpECg/w8S20l1I+rjzRc37T0Lky9ZiFKbSWjlwGAVH3aGLOWfntfZPtcpUp0CrLUJmfjTkpGlbjSboWWJGFUihrDBpRtM/53vMQ/JFTRljAAAOt2JdY6dnsu39dpLQ6SdgFLa8OKHiglYF4YjdKNoLXDOqCifdZ+NIE0x6i0aNShYFYRQlwErtcFZ2A+QBUx0/u1B1p7QBOMA3qS5dCwUTljYPmCIb9uade0gfHzPjq3FsCFgMcF6lW7NwAm+qRJmuDU3DOEUhVtDe1FDLlW2+ZMgFAOR91zdkSVmIkDN5oyTdAqpTFt6GICOcmJVubGJxP6tdCbTJsTVyF9Km2vtYqpem4i1btf+DGj6x216EMy0t0Pn0GCwceMGTPM34VCAb4f1Y1q3fhgo8dk7KijjsLLL7+8y5OxHTfeCW9E9+nN+gWngGVd4/UE6Cohq/8dExHvJ/mgkgOr9v5KZV10bu2En/eROe0EEBWtwOw5KDKOXNoBJaRPRCxB7yF42ENPk6KgEEQiYwDQua2AttfaFYnQbVgkwYoTMcDqhTgijcL2YkheAJPi03pE2/QSiM5y4+aWlQaeSmkmuZwbywtAVUWmZWGJ9oXiTAqodYRKkyQ98Gnto02C4EeHK9vjTLuq62066Wh3iEgFaEz6EEkxpeXFsvV5jAkQyzLBtpaR0THp5WYTM9MOisu+mMxXg70qJiCU4n2P3oz/O/r8itdwZ4SX99HmM+QcgqxFUGlaFiXxlAM/71mWPmodKzJGleYrHnGRRDe8/zTp0p9TWNQi4NDopEATLrmd8kpKkpaFBMIJvwv2hIKivAWdYAJQqW3dwIui3JdMz0S4x+DnQxKu9zP5q2ejmHPVfgA4jtGkDTR0wVdft/F2R2dnJy699FL86le/wrZt28peHyqpVU1k7NlnnzV/X3DBBbj44ouxefNmHHTQQWWhvni/yF0d+WV/MOFqABAOUS2Qwioe+4FCKAVVuhpTmeZx+AiM6BqQWh7TxkalgjiAJLE4+HBPmgeuIjcmbabSPDYRA4D8G3kU8h4cQiANLYUhZpWgK9V0q6pU1lVRh5CIFZm0IeElAUpCvYxMWRKAye0zjkjfSeOEbkTW0SpHQkN/Jt10WZM46stK4biAmvlc3acyvenm3Ei1qD3Y2pEQXYlnRwEBlXay3qMRtyGwYafXTGuodMw2ARRIhWlbmnNV2oyaNkpONmNc98NG58wQMaKtLlJuVJ+2iyAoBEhTgqylq9OpY0me5Pk7TkhGtEbMhryH5N8R30VLp6jbGulIldB/W1IJ+/O376VIda5FJmT0LiReetuMMcQjat1BVykj7RgrFW0toycMANC5tVNWz6cdeHkfHXfei86OduDIfXq0v94g0Yz1D774xS/iwQcfxPe//32ceeaZuPnmm7Fx40bceuutuO6664bsuGoiY4ceeigIIRHB/sKFC83f+rWhFvAPFaIu5AFS9akw5aE8kLQuB6lQ3K3TVp0IPa2cFAVPOXBSANPVQctXgZ4637S2STB4cE+aBzcrXcUZQoLh5lzkRmXRaq3btPA0tG0tqIydAH3gfkTn2xLO/BYQhyLTmMaOrQUUPIY0JaCEGFJm7CZUsYUcywSylnCZM2G0UqGGSpEl67uqo066356MBjCr4pGbAhOp25LRA0K5aqIs9WPaCkMXI2iSxqwImO1RpVOTYOUVxlqbJAXW3ByHhj3AlkU5eKhb0//bpNF2dNepWc4E3CwxhrpONgMnJVs8Ea6d/MN0BdWCbtUbVJOxGY/fgrVH/A92ZmROOwG8Po02n2GEGxZVaMjK3dCIlVpGsHoC4CiZReRaozxa69Do68xncBASZ8KIcvGnYUpcpZUr3QPxTih26lr/rScKAMy9RS19mY5kaRNZ6oQVofp5DcjIoY4AZ1RfV1s7ptvZJdi58Mc//hE/+9nPMHPmTCxcuBDHHXcc9t57b0yZMgU///nP8fGPf3xIjqsmMrZu3bqBPo6dFqlT58MHTKk3ALAdKpxOw3SlHiz0A0yHxrMfOglOmiJQrUIA3fxbDlZBUabCStYDI8HgIfjTCtSd/YFQH5PSrXiI+bxGf+bD8PI+inkPLOBlWj/3pHkI/rQCqVPnA5DxKeYxKTZ3CHIWURGcK1IkwAIOJgSYgCFkPudwhCRuXAgTfXOUcz4AcCFUxSwBC9T2PIA4WmCtilO4C6ZEz9pdXTBhBt+4gWtQCCJEyI4+6GiH0elYYm49sJsBlEejXpqQ6VSWvQ9WRThvEzGdhrQJmbYHIbpgQe2HUGpc+f3OgokUOCkXXE2ghKrGBBQZ8wJwNcl066t3/9gZkDntBABA28Z2MCEjreU9PcP7PJriLX/+2Ck+HTGTUfyw3ZaJOkGnJ0WkyhUISZpNumz7IA29L9tSo9px2Qj7T6o0ti46QUjYQ31kuSnz+itvK9tHPCo+0CDUAaF9bIfUx/fvCnjrrbcwbdo0AFIf9tZbbwGQ/qj/8z9DN9GqKWY5ZcoU87N+/XpMmjQpsmzKlCmYNGlSlz0gd1UIFjas1UaU+m9ADox2lEJbDsT/14OX1usQpaPRYtm443WCwQPzmGpbJe0kCKXKsZ5j8lfPRqDMVUutHpgQhohp8mXrWoz/V8CV9USoq6EOgdfho7CjFEaYVERMV77q/33Ow99BqGfzS8wQOI9LUsYrDjDCGNKGXQO4EToLJp3udbRBpzH1cRGrYk2nJJkvTVlNmyUrimcPnjqtGU9L2j02ddUo86KWIHrfce0Lt1Jg9jalVYVFGrV8wPcRFDxTTUnTsnWSk81IzZgXRFI61HEMUTv4Z1/u+oYZxuBMmPvUIcToAfW9UGb7YU8UKtxDusBER3Pj7Ya4MurVprJ6HeZLkbx+7mmjZF20YvbJhSnCiFhZsGhRSRn5srzE7ImCfs1EwnhoBmsjvA/DFk5DDur0z8/bHO94xzvw6quvAgAOOOAA/OpXMtr5xz/+ESNHjhyy4+rxXXb88ccbJmmjtbUVxx9/fL8c1M6E4E8rTGWRhpmxcS41Ppb9hz042TCDnLEJoGZdPy8F4FyUzwATDDzyy/5gBg5ZWaa0XNuL6NzaifwbeXS2leBzjtSDDyB16nyMWvQh07synMFbEQJF0pnH4POwKEC/xgJuyJSMjIX3i8eFeg2GdHm+3I5e3pVkRusYfVUgYDuT2+RQD6SaYGnne2FptvQgbvuo6T6SYTqVR1OQavIhYo7qmvQFym/Kvl6Vig8qkTL9/QlTltFHnJ8vIsgXFNFwJRGjuiG5TFMyJdoPih689k4ExRI4Y+BeAK8tj6BYwh5XnDmoLcz6A878FvgdUrTfoSK4OkXn8yjR0hFaJy3TeFpvZyJonJsf+1mmdY5mUhrz19P3nilwsapcAUQInW27YbfqsslUtMdpSLj0etG+qtHXw+W6LReveM8ORneUmkBp//y8zfHJT34SzzzzDADZDvH73/8+MpkMPv/5z+OLX/zikB1Xj6spq7US2LZtG+rr355mCdpYME6wtG0BAFQTcGswL/zyRwZvHj4g6BB6ur3doUW9gBYjSwKy/Uf3gM+aDSAkTP7vlwOLlEHo7DlS+zdrNohLpQYMBI4i6TIVCThCgDKV6vEVIRNRYsViZFxHN+Tf5cfskPCYKlVhCSYgnNCeIB75sJuN6/OWk46u7TTK9mMJuXWlm05DljUNj01qbEuCSoiLwCsdv3F4BxAUJOFKp0I3fnuAsntzcgSAH6vUHGZGoLXCmd8CAKr7BodDSHi/cnkPVjJj1fcGta5l1JzXMldV94d9G8WJGI0kDCuj67SjrNKM3zdy+9HuErVWDtoCff2/xmCYcScYXHz+8583fx9//PH45z//iSeeeAJ77bUXDjnkkCE7rprJ2GmnnQZAivXPPvvsSO9JxhieffbZLntA7sqw9UDxNImGFskyTxgNDxAlaXbvS50GA0JRKRei56HMBP2CSBpafR4FFEFamuFxgTQlcFwKR+nDCtuL4LNmw+MCjhojKJMRrax1X1BCkKZhKjLHSBjtUtsFEIuShccVHyv0/3qw1QReEo9wPa0Lk6lSoSonuXLJDwmcjsraVZoyfU5MalJfE21xUCmdpdliVAskBd7GssAhpsigklUHR7RtlB6MbcsEGzQWdfGLoRDfSXkyVVosqYpBqSUL8gUj3uee7jzAQaicGPn5Img6hUxjZlCMmvsLNC07FOh0d5oSWaHLRITIS+KrDamZIWNxsm1XiZsoJudmefzzs98n2yk4ZWlR/bpOb2sTYSnjkJMGx9qmTciIQwCGisScM+l3ZmcdzN/WPaL3p7tmuDl3+ETFoA2K+6gZ6+P7d3b4vo+Wlhbceuut2HfffQEAe+65J/bcc88hPrIekDHdOkAIgYaGBuRyOfNaOp3G0UcfjUWLFvX/Ee4k0CkpQAq2NWwbArZ8FQCghFBPZK8nf9uVQ2FLGJ0CSzA00BWJJgLABPwOP5I69nyG1CrZqL7zrUKEUKUpMcL6oiYERInsbU2YSk8WzDrEpB7NfiIDjtxGzgkjZGl7lq8ibtoPLBQuWxo2IZAbmZGEi5UbbXImkEoRQ4ZscmV3FrAtDuT/5SatuoLNrMOjeh1bZ6bF45rk2aJ9O+phV+KF+5a+UjZCPZNsdyMLbAIIloeoz0EwTQodMD+Ak5L9KZ2U7mKg+4KmQVOy4GbCpZ/ApqV3YTjDmd+CgAm0FgMwIZCLpfbsCKte5qRpGMmKXVd9L4XL7KbtYRTTJmz2e4hDlP6OgHlBjGD/f/bePM6uokwff07VPadvp0NCIOyEVXSIQQWiEJZsQFgElQyCE0VRRFEckEVGRwVGWRQFRFAQNwaRkS+bo/wEWUICicgaBhAHBgSJEEAwJKTT3ffeqvP7o85b9Vadut19e0l3oN/Ppz9971nq1Fnuqaee932fl1WSKBJKeCk5wN3/XOdQWtkEEW68UkrMSC8vNKsVmYlRBcQADE3M11s8ZixNUzz++OMjWjmomfUbjP385z9HnufI8xyXXHLJgOo9vlWscfOtJUAWGoG3tvmHmBc9hJ2NAsUMlbERYzay1rj5ViTzDnDZenkOWRFAo0iDL17spLpHLkXjKnTLZJKgS+mCmSjimwpARu3Q5/ZgIHGPUWI/O8YsCdyZCUiVTuU5UriYnIRp3FEbck0d2fi0KNasi2xJI8NCpcAsGCpATb1W1nPicV6AA1Q+41G43SPB4aGyuwNkKBkxI9wdSdpTSWyAp2w60orLUCTIaBNHVrB6FpRVTWA/HQtgUheWJRzlXPV++6Oe51jT0FhV1xhfMc+JeV6TQjqFPTsFU8rrOgIsGYIAEnt+6PpSwLvMAMAxpDEXMwlf07uPt8XlMizYzySoGZ7hSUr/AqIkeeJpkIExaDCgK5GJ56Lk8bxZRzagyz1mo98+/vGP46c//emIaorFrKWYsTzPcc011+CrX/3qGBgbIuOq7CRzkavc1i8kBk2OQiT/VjPV0Pa/SBKrHadyHzDX58xFKgSU0jbInga7TCRQeeKxV6IYDFXuQBy5kQB4g6X57qQuMuGejZompg12wLWAr5Ax0HmOlDEXMhOo1gyrV1EVJMKPGxKFZEats24FaQVIUd24jfxMSe2JhtJxYv9RUxDtFQiZoFHrf3JKLGjfDwlIPJ0se52lH/Cva8oCMlVvQMIE9OdaQ2ROzNroBTYsqKAC0uZ6uPb/Z/d98O6HlvT7PNaFUamjNQ2NGG5UhY4dACsunElpRaYBzqi62EIvVoxtp/McqOkCkMFuT+4xks6oVCvFu84BoXDSSiLLxIpSskEineYZABtDZs+ZJgDQVlolkUlk4uBYO9IeM7WINdomjEIwJsQQMGOjfPKwDqxWq+EnP/kJbr/9dkyfPr0U637hhReOSL9aAmNCCOy000547bXXsNNOw684vD4b1TSkwNn+WPf1N6N6xKHovv5mu4wYtLGf0MibrITSCc6VSCCqe/ZcC7RUnpdAVdomgR4DwHgGm7SALPeWURux5TIBMirWnOfIhCht18xMSSIXi2jOxwT0m/UVGxtHA2EsQLvR3bBlcWh9vZ5bhoSzuzH175jsBoDSPmEZG5eF5/+n8xDVxGaIAmUAZ1k11icTWyS8YzY6uyGrmcdQy7SCtg03QG11J9Bdx9QrTsYTn7kI7TLBU+/bF2+//56m130kLMywNc+TWx/Gy4vgWtJ/q0EGc71rBcOYSRkNuk8KhrJeFLxPpM9O0WcuDwT47zoD1BXCN2DsmUlEYllYvszfzySTlIL/C4aMNNJCkeLRYGMK/ENjjz/+OHbbbTcAwFNPPeWtG0n3ZcvZlOeffz6+9KUv4bLLLsO0adOGo09vKlO33GZFP/tjHIiN2eix+py5aO/IPL03iuUjUESxXyIRvgJ+IG8imHtSFFpPUNy16cAcB1TOrQkYN6TvugT8eDHOtNF6wGW1hUbq6mZgrbFBzQxMjUI/jGfUkVtLyIoXwM2PE7IeNPBqlSNh7knAz6Y0Af5+/wDYbDxKIrBXQPqB/Dzrz24fxJvFgKJhwuo2/kmwzEtTT9PFRdW7G8gKgdiQwRxu65w1BwDQpQwwn3TPouh2XQXj5b7HWUgC9FrlqK2p+2WwyC2pmuh6Fcwrsa+VAOwoxpblKke9VkOjW5TcvAbQh8ynsG5NwIdlXLEfMPdYsngxK/4rfZHYGCAj8BhNTR6zN43dddddI92FqLUMxj72sY9h7dq1ePe7340sy7xAfgBRDbK3uvUXiA2n/fm9+wIAdn5gdM3a1xdL71qIBmDixgpgQ27LVBQv8YYTYpVJYhkIAkQiYcHpOQtmLgbTmnYuSO5iBDhzZr5ztsxsV2bO3HZlWQwuoElZmvUehRTmP9YCbRtkxjWkmdwDAavML5CsA1AULidgFoIeBHFczcwHXfw8tBcPFGNdKOaILl5bR2ZixeplIWUrdwEzOFc62qHrDaM9Vqt7+1CZJM7SZCLBy3vPwmZLF/d6PkNhxHiZZ8WxsjWdo7rIJftwbOEDereOPx9cWse2UbjmAXNd6flVuUs6oaxglQOp0qVs03qPKtowAElAo7bGr5+acAAtid2kxI0ijlY5XT4bh8iOEyZ3hMAxfEZEUYDbZBILw+iOFqFXbskQBPDHgi/fovb000/jmWeewcyZM9He3t5UtmtdWctg7Hvf+94wdGPMhtMen76Pfek+Pn0fTHtwdMW1rC9WOfQgUwheGVFWynjM0mImXmQ1kkuIgyLAZTbStqackRvUADdYEmHAAZcbOAHKoiTjbJpb5v4TIPOYs2IQJavpHLADpstoA1zZG4oRIncQxQP1B0xpAFJwvbKyFAyxbtZlxQZnoBwwTxpmQgqr0yczI80gWTtJ4NYyrEilaMOUPxKpiwHLtYak9YUgbK41VM2AMQPEjBtU1RuYesXJwH1349V9ZpeA72Bt9UzDgNH961h8V/Hd3e8YqIoZATfAgXQeZ8iNg6maLuqi5rlNWvHbc0BMJmbf1XVlM4npmaKJikQCkUkIAPU1dca2Cpd5GUnCIKNnSEPY2EPu5qTalsR+xbOEjeQFbz9XGllHhqdP/VGv13FEbCybckjstddew5FHHom77roLSZLg//7v/7DDDjvg05/+NDbccENccMEFI9KvlsHYJz7xieHox5gNo017cAken74PajpHfYyBH7DZYscN7clN2MD+PEeWStTqysaEcVcjuSRtoDMQxI3BY78IzBH4omVkYduha5RvFxrVvXTHTawUR1W6MjkJA0sU1O0GrhxJwDzw0k/8u72G2ndLJsLFpNHgmwgTzxbLQjaxaMSU8KzNgs1Shukw7IkTezU1PA0DQsKvxI7FWJBEOLV5VW9AZKkFZPz8hEzQ6KojEd0mdmzJIqzcd3apvYHayn1nW5YVMPco1j4F6Y+v+OciFt4Jufcsbxk9T8a9maBWiL4Sq0YMVwjwKRnATTTcsTnjJtmzr3LjFm2XwgIy66ZPDYinSYpSOSrtZSYL8AP8PQCvTW3JUActLDYOmIxKP8tWWFYMcFpjYhTGi43Z0NnJJ5+MNE3x/PPPY+edd7bLjzrqKJx88skjBsYGxMUqpXDDDTfg7LPPxjnnnIObbroJSvU+Mx6zgVuoSTYYG+pZ+1vJ+AufZ6FxOYrc28aJr5KFA03MhUSDGAdLoZF7irZJZFJkZSY2dqdZxQZyTXJzGZ2OneIxQ0kxSBmXkrAVCXgslQM+PtsVK21kyx8VdQspOLmvAGNeR9DFmeVRsc96d6OkJWXqImo0uozL0Z1D7oqDezpcQVWCwk1mwKq2cWh5kIzxcgCABmIv7jXLPgd0r7uURpcyQMo9J+UaptxIRiWW0OHAvjFeaov07qhNLjwcq5fKjYAe/QZEkqDS3vfcX7HnirvSufkB+s2fl9gzYdzWXCzWubiFTJCOVlYM8H4jg/lrxe6++24cdthh2HLLLZEkCX7961976/M8x1lnnYUtt9wS7e3tmD17Nv70pz952/T09OBf//VfMXnyZHR0dOADH/gA/va3v3nbrFy5EkcffTQmTpyIiRMn4uijj8brr78+kMvUp91222349re/ja233tpbvtNOO41ofe2WwdjTTz+NnXfeGR//+Mdx44034vrrr8fHPvYxvPOd78QzzzwzHH18yxtlVA5mxj3twSU2wue+Xd+alRIGY52z5hQK3doOWGS8fiSxB9pmOxplfuv6y8P9fJ0nzjg0M76fXdYwAEFWhBc7FQ62VBOTBmc6Li0jN6arFagtm8c1oLjSOndn8dqCbpkvBMqX82W51ragNC0nhX/LSBXFupuVXzIioboEwkgDy6t9qAyIo8LlAGx8WK41Gt01NDq7oLp7oLp7PMClasqCwEQkyDYYZ+UbyJ346j6zo31sxThruaquUdMIAJjZjmfwhsAo5sKOmQNbOQOAbr1ziTowyI9B/aF2uJucu5epuH2ju+ElxJDRc0VaeDxhBAhKZrF4RsAXDY5l0FJAPwDIVNhJRCIF/nrGz0ctEAPQ/0LgQ1govLOzE+9+97tx6aWXRteff/75uPDCC3HppZfigQcewOabb44DDjgAb7zxht3mi1/8Im666Sb86le/wpIlS7BmzRoceuihHoGzYMECPPLII7j11ltx66234pFHHsHRRx89sOvUj3MaN25cafmrr77qVRZa19YyGDvxxBOx4447Yvny5Xj44YexbNkyPP/889h+++1x4oknDkcfxwwmm6+vQbo/Rm6D26btOfjG3kLWUTGMULfSWNNwkhaAG4DInPSEYQQoXoXYK8o8423EpC24cZdQjE0DDCAjwMHX99ZuM8YE8F2OMQDEXa6q5gZFUmKn71xMk1sYnB0zDsgsMLNMmy4NvJoDLWLQdG7+lIt7MwKhhXJ83TElXkHqmkK9swe11V2orV6Lemd3URjbbdvoakBIgWxCB/507HcBuKzGwbDQz+05E+MrwgIxzkhxoENGsYr0fNTnzLXreNwh8wYX6/x2OMAjo8kH/wvdmF1FzUsOBul4KWVorq1bkFfTObo6azYxgCYpFMzPLXRXE7uTFO1yCRPPnUnF6GNK+6wUUyIFso60tM2oM9IZG9Rfa0P+wQcfjLPPPtuWQ+SW5zm+973v4atf/Srmz5+PadOm4T//8z+xdu1aXHPNNQCAVatW4ac//SkuuOAC7L///th1111x9dVX47HHHsMdd9wBAPjzn/+MW2+9FT/5yU8wY8YMzJgxAz/+8Y9x880348knnxz8dQts5syZuOqqq+z3JEmgtcZ3vvMdzJkzZ8iP119rGYwtXrwY559/PjbaaCO7bOONN8a3vvUtLF48/BlEb1VTOWzJm4Ha9IeXet/v3MUHZIveNWNQ7b9ZrT5nbiFQqb0yRWGwvKwIpG3SYym8OK7IQENGg6jPRLj/nOHiA3PoitQBABDMVUT9du27gZN/DhX0FSt3FDJLOugDdyH6rqayC1MwxoO7H91x8hK49JiPJrUpiQFpZnQswepoauZGTQqtMVVXqHc3UOusoXtlN3pW96DRZSQvcl2UxKL1r63CtCtPLx1roO5KA8Q4EPIZ2FCBgQfykyvTrYszZs0md9wtSp+7mIBxDMB1KQaylHum+PPGGeXQFR8+x7ny3dHe88GAuxOD1dAMSNN+qkbMKvtjz7GNE0tbDp9er2316tXeX09PT8ttPPvss3jppZcwb57T0mxra8OsWbPwhz/8AQDw0EMP2XqQZFtuuSWmTZtmt7n33nsxceJE7LHHHnabPffcExMnTrTbDKV95zvfwY9+9CMcfPDBqNVqOP300zFt2jTcfffd+Pa3vz3kx+uvtfwEtrW1eRQk2Zo1a5Blo1C1+E1kMkmwct/ZTfWEWmvL/L9zlz3tyz0TgwN7b1ZLSViVsvWY/MT4irDBzwS2ROHKDHFXrrQXOE9tEbMQ6lRRWaPeGBbKTnNZcQXDAC4/4JgK/t0Nqj6TRvs1uhqOuQCsxpQ5l7wE/Gxh+zw3xy8GPevaLNiIPABT5P7l7kyzPp5NR3UNAW2qIBQZlWY7v74m1SAUTZ5tKoGk4McYGUFYh3i0yqG7GtC1xLhBa46l61ldQyLfgEw7se03Pmlcb/cswot7zRqU7hgBHIBry/nuPwqe71I5mwSg5EYnhs0tK8tbhOti8Wf+PjyWzM/e5SCMZxEDodxKYqtDcKtrHRWTJVFisjAGijTJAFcpIFcKeZG8IVNRmhAlMsH/nXxZ6VxHmw1lofApU6Z4y88880ycddZZLbX10ksvAQA222wzb/lmm21mY69eeuklZFmGSZMmlbah/V966SVsuummpfY33XRTu81Q2tSpU/Hoo4/isssug5QSnZ2dmD9/Pk444QRsscUWQ368/lrLYOzQQw/FZz7zGfz0pz/F+973PgDAfffdh+OPPx4f+MAHhryDY2asumghumfPbepS6q+pPMfsR+/FonfN8FiRmgbGV8bAWMwSmaDeo7z4LhojSOPLqPNrqJoDKeG90soxDiZjzSznGZNhEH8sizJ0j3IZDLvOZnw6Rs1t559f6FY1khss4L4YTLlwZgjEgCAzFA6wkS4bF5t1rr4iE7WmLMMRZjfG3FShthTFbvF4uVjdTH5swMQNKRigSAN2vbMGsAophj0xLEu9nkPUVFDT0ICzta+uha65mCTKThyo0b3LhGmLB8XT8hBUuYLxOV7dZzYmL1nkzrXEpvnHctuFMirNXZv0DLbLxJPICCcVwk40Eu+3Q4wyUGT41hRqdWXasbIqPFbPxJ81q+pAzw/XIgPIBaSBlDGoOkeaJWibMHJxQi2ZEIMvZ1Tsv3z5ckyYMMEuHkysVKjN1R+9rnCb2PbDqfu1+eab4z/+4z+Gpe2BWst39vvf/z523HFHzJgxA9VqFdVqFXvvvTfe9ra34eKLLx6OPo4ZM5XnQ5Kp5bs1csx7/I9QeY6Hd9sbz+05Ey/vPasUgNyxwIDtiZ8qxw+8WS394MHIVTmrLIwR42n3gjFc5Kok1wixBlE3ZwmIufabGQdm3B1FQCwEAxRvZJMLmjStatrEghV/da0tuOLLAQPM6oU8AhlnzvigCPjJAeZYfiY2H3xDlym30H3Ft7fXmwq7a74NMVvauiqdK9Z81uy7dWUy12Ro9SIYvWd1D7pXdnvrBvJ75fclZKy5BAptx0WAw//8WQvdlTH3JeDHJrpntnx8SlZwMizuO9+XEkT4Mfkzz38/9PsyIqxJ6R7HkjfKZZt8o7iyMH6s0l7BM6f/uLT9m90mTJjg/Q0EjG2++eYAUGKvXnnlFcuWbb755qjVali5cmWv27z88sul9v/+97+XWLehspUrV+K73/0ujj32WHz605/GBRdcMOKC9S2DsQ033BD//d//jSeffBLXX389rrvuOjz55JO46aabMHHixOHo45gF1izWoz+27//c67VT0zkOfeI+bxsCC5lIsHrmHHTPngvstz+6V3ajbf4hph7hvAMG3on1yBpdDeg8R8fiu+yAwyUlLCBRLoidMsf4IFfXmjFm/jF4ZqM/iMH7HJe48AfN0ELFdX48wQZHMp5kEEoncBDms3r+AynZ/nSMsP5gWMDbHd+vX8izN0MjJo3W00BLQIwH86uCzQIMqFI1BVXXqHc78VavXI4FikztXbBzKdzSFMRvmD3D2BFYm7xkkQUmA8mslEmC8ZXEA0bhZSBATa5yuhc1bSZZy2c4V+lmSxdHgb3PVCXe/XXLy/0jNpW7R/k6em78iYt/LKAM1gnk8dJaoTUrn0X72IQS7bIsuSUyQVqtIO1Yj0JrRiCbsjfbfvvtsfnmm+P222+3y2q1GhYvXoy99jIZ+7vvvjvSNPW2WbFiBR5//HG7zYwZM7Bq1Srcf//9dpv77rsPq1atstsMpS1evBjbb789vv/972PlypX4xz/+ge9///vYfvvtRzTufcBRizvttNNYsfB1bNVFC9E1BIKSf3jPXl7wLJksYoPI7WCWmZe8zs0gU4XLWHrTK8vttz9yFOrj8IPsCTiZwUYj4ywXhAd2yH3HmapM+O5B114eHTBt20l5QHbxYnFAZvYrr9B57g2+Ks+RFTFi5WeDB5DTccvxaLxPdAzAlYKywdbFScRCYHorRUNuKS6zQd8BvzySBWFKW3V+FAAKmTQgyqscIG1lgUY3r0Hq3JKeq5aBhUZXwwODbfMPQc+Nv4ver/4YL+ZdkolgbZK7ktbxZTXtx4KSkr8Prvxnjt9jfkxu/Pmn9Ubqorzc7eMuAgHUklBx4a5s1wnWNPx4QyET77ng4CoEZhrCisHS8iQzQx3VM5WZRKW9ArkeBe4nQiIZJJhqdf81a9bg6aeftt+fffZZPPLII9hoo42wzTbb4Itf/CLOPfdciwfOPfdcjBs3DgsWLAAATJw4EcceeyxOPfVUbLzxxthoo41w2mmnYZdddsH+++8PANh5551x0EEH4bjjjsOPfmSkRT7zmc/g0EMPxTve8Y5BnW/MTjjhBBx55JE2ZgwAlFL4/Oc/jxNOOAGPP/74kB+zP9byk6iUwpVXXok777wTr7zyCnSQkr5w4cIme47ZUNqLe83Cln8YGIrf65E/4LZpe+LgP91XWuenppsXL700+Ux2VNZuGwajIt6AL7LKZQI4QAOKAtcVBgjYYGxivNxAEgNQMYATsl/NQFs48DcDAyoCxELXqd9Ows7fDdwUQB4beHsDh0BzlxK3mAo/UI4Ha2aWDVMaifKLRedCe8xLLkx5HVLv523k5ofgLaP4t1znUeYutFaSbygW0Weo/GxGzmiF8Ya0vXNnltmt2DNVfn4S+5+SUvgzECYBlJ+F5s8Ar8/K48Nkw7FmdP+bvW8SIWzNymbre7Pesm7HDHjwwQc9uYdTTjkFgKnEc+WVV+L0009HV1cXPv/5z2PlypXYY489cNttt2GDDTaw+1x00UWoVCo48sgj0dXVhf322w9XXnmlBUIA8Mtf/hInnniizbr8wAc+0FTbbLD2zDPP4IYbbvCOL6XEKaec4klerGtrGYyddNJJuPLKK/H+978f06ZNG9HCmm9Fo5feYAKDAWDe438sLdvrEZNG/Pj0fYoSJu7eyqDMSiIT6Ln7QSy8c1D9GK2WfvBg9OQ5sqyC6m2GYo8xiWa5i50BgFpdoVqtQNW0LQtDFrpyeLacyWDj2+UeQxLuz7+7QdIfQGPH5kwLfXeAjAeB83762/H96NgheOR9CuUvQveTK/isrcuQ4oVoQPYyKhVpt5UHW16TkMReaR8++CZSINFOuiORiWXqlM38dICt3t2ArhnXpsgEkEnoIsaMtjEu6goa3Q1UDj0Ik+5ZZOtVZi0EXzt3Yx6AKnd9aT1nWWPmQJS7Z95vO/HvN48R48+A61vwvEcyh/sSmrWMcEUU1R7MtWl0GWZ2fIVkR0QUkFuWlYkB82eFQJiRpCmeQeb6lqnJll0fsiitJUMQwJ+0tv/s2bORN7mHgAm8P+uss3rNxKxWq7jkkktwySWXNN1mo402wtVXX91S3wZqu+22G/785z+XWLc///nPeM973rNO+hCzlsHYr371K/y///f/cMghhwxHf8asD+Osw2DYsd5s2oNL8NT79kWXSrBRJiEzAVXTqLRXPEFMwGhwpXe9udjQcUcdhp6aQk3nGFetoAEThE2DIRU/BsBADJeXAOo9qpTNyAdYbjEgwz/35Qo0baLYptwmdzECcQkTv+YgH3h94BUet9wfd0ze3zD2K8Zsha4oksLg9TB53Bngsuf4QMyN65TFsiuFSJCzY5J7MpEJoJXnmsxVjlpnzQTxd9YLN6df5kkWwKLBYvjHV4QVCu6vOZe4+73HLGS1OICid8PKfWfbbExi1kLGigMxHpAfrvdd9OZ++yCu3L8YUJRJgrTNIF+eWcuzlmkZB+lkVHiejGvWNTOtcqSpf8z1yUbCTflmtBNPPBEnnXQSnn76aey5p9Ha/OMf/4gf/OAH+Na3voVHH33Ubvuud71rnfWrZTCWZRne9ra3DUdfxqwfttnSxUXNutZm2q0aBeZm41Ik0ulA0YtR1bSLiXqTALJX9zGDluxIoWoaMnFxKK6Ish/kbGLGnFQFDWZOJNOXwwhdTUB5oGtm4YAWsmxxMOUP2L6L1J0DnV/Yt+bgrHk/+3KlhkZAqtkAmascSVoeRIgd43IYNltOgoEkkrRwbnalVMGQSCSagr6VbVNKE1uWS7+8FPWXyvhQXU0CAo3uBhIhIDMDECuHHuQxSE+9b1+8/f57+rwmjjFtfj8NmZQwF7JZPuXexVg+YxaWz5iFKfcuxqR7TPHycnkj/jmMB4wf01j8nobVHByAz71teGIHvU9qaxi7SIxZJr0YQw7IwnhBclcCLKif6ZSZ+1ospnYH6V0Ys/XT/uVf/gUAcPrpZZHmf/mXf0GSJFZWY13W3G4ZjJ166qm4+OKLcemll465KEfI+mIohsJ2vO9uYL/9rfvAY8XYW1wkieeq7Jw1Bx2L7xrSvgxHm9xe3GuWVTwHHKsFAGtWdqM2a04BTstxXL47ycTusFKNdjDiGZMhY8a3C9kNwB+QwwGUW8h88ULO1A43robusvJc//srAhwGgMekO8iI2eJuyFzlSLLmM/Zm5XFIa6xZ/BiVTzKDdcLAm/uPFJCphIKC7opJIriEANMXozlG9TJN1p629RONOGwNlfYKhEzQKBhkynQcqE5gCJYIeBvR4dyL53vqffvayRTZpHsWoVZIbDRzPdJEAkApFtBnWX2mlF9+v0amY0urUpT092zmo3JyKakQXi3KRAgDwCKDIm0jC6CuKXFDl99TgJMOIHD91zN+3vR6j0qjckiDbeMtbs8+++xIdyFqLd+ZJUuW4Je//CV23HFHHHbYYZg/f773N1x23nnn4b3vfS822GADbLrppvjQhz5UqlvVnwrybwabcq9xP/TGTgzWxh/9IaTj/XptntZPnlu5Bj13P7t8KPpEMgCds+YMqjh6zP783n2975T677IcXaB6l9JYVfdLy3DjTJLvUnLbx9L+aaAMGadwkOPr4p/D7fw6gpSMwWO3zPHj+4Ygyg3y5QE4NM6o8WtB5gXKF59Vw1QkMMvcf67tBTQP4o+1TaaV3y5tp2t+qSRV90voxNrWSqPR1fAyLL1i1cpX5CeZk0ZXw/5m2mWCdikwvpLguT1n9no+tm9NrnUmTPjARplER3sFHRVptycQteN9d0PlOZ7bc6Y93mZLFxcu9lCh37GjvuCrz/4SmAzZVcuiB+CdPy88q5bLndB7hJhkwLmrZSq9eDKSqxDEaAphgZi9F0UwPzFlXNoiV9pmz/Li9uuNkejrYP/e4rbtttv2+29dWsvM2IYbbojDDz98OPrSqy1evBgnnHAC3vve96LRaOCrX/0q5s2bhyeeeAIdHUYumyrIX3nllXj729+Os88+GwcccACefPJJL7vjzWChO2moTTKlalXjophuoHZuOIfq+5nk1tSohEznrDnFcQbXHrf/2X0fyAR4cLe9Mf3hpRaI8TiYGFAB6Lzi7EaMyWrWDlAW6Gwm9srZMteHsE++8QE51jfAgcgQELr2yoNtMwsDy8v9MfuTij8NgTrPvba5On/Mes2YC1yIudI2O4/MBvTXlS0qTs+0FYYtak4mymT3kevS6IeVC5/zGpmqpoCiPVPeSdnSVzJJTEktrdEuBWTS90PtsinL4quZSGxYAPFFiumJZSIpfkfuuXpmj5nY8b67rSL/i3vNQk2X5Sf4xMOPg6QkDs3KGbnJhnvmXf1M6jPtyycF/JxiGbnEjiUyQaKMG1gV9zYRlai0BeAC92OF5wngqZpCfU29z3sw2mwoyyG91e2FF17A0qVLo4oQJ5544oj0qWUw9vOf94/aXbp0KaZPnz6oMgvcbr311lI/Nt10Uzz00EOYOXNmqYI8APznf/4nNttsM1xzzTX47Gc/OyT9GC1GLzGKCxlK61jwAahi8KJiu7wotA5YHJkAavZcdLRXBuyGISN3Wbs0Qc9mMBDonj0X1UUDj0t76n37lrIEfZeP/90xRTwOzNdSci5K13czQJEUANWbTLzjxRgmHiPELRbjE2PHuPvIDNgO6DgWxLiMYtYM2MX6G/adBlmudeb3y7EiQLmUUqyWZTjYmuU5ADOYhEKxzv3JRFoLhkWrHIlwriuCdMR60TGp5qRgWZKN7gZkoUlmYycL9ySVcBKZtAKwvG+hXhuJuHb1wsS5a1yuJxlmPZKRwj+PawyTRGQCC8gAE9y/fMYsuz5WKos/r0ZE1oBJWub2df3igNFnVMvxiOF+5KIkC0texbJnucZYDIhVqmaII9FhAOhe2d1UTHbM3vz285//HMcffzyyLMPGG29cKss0UmBs2DjLgw8+GC+88MJwNY9Vq1YBMCmxQP8qyMesp6enVMF+fTBiQPrzYm/F2uYfYgc3nolGpiNAwHwmMDG442cisS/8sADxYNudmAqMrwi0ywTP7DHTulZC3S9+XAe8uNvOlRpqJjHiM18c6CX2GDHXDt+WjsPb64ulKrfFSzOV2/TdrH7/QxdlrI/Nzj0WL0ZloZqtjw2QXFrCLtPaY0N4CSMe1M/V/hvdlPmo7QSDmDBdrCdXoyZV/bq27sZaZx09q2s2Ds2eU7E94ALDgbIoLb82/Yl/3GxpORSBrlnsN8+fVb7M/E8QMk+ACXdodv/peOZZDd3o4e/Dfx5kAsiKQCqEx4T5+7t22qX7HchMetUQKDaPAC/g7j+to+/cLUmuykQKC+AaXQ3Uuxv2PmK//fu8D6PKRpkC//pqZ5xxBs444wysWrUKzz33HJ599ln795e//GXE+jVsYKw3bZKhaPuUU07BPvvsg2nTpgHovYJ8b5XfzzvvPEycONH+hdXsR6sRCOhSeSkOajA2fovxyDpSW3Q5VzoasxPO+AGgu7vR1DXXH+uePdd7MYeK9zw2rRWjgOZ2KZCJBG+//x4bU0P99+Osym0Y4EuDkwMqMeM6X3wZB3TkDiImsBnI6kszzN/WrzcZ2yZku3i9TT/o2rUZHqPZut5MNmHFRHDeBGDULbdF2wndTxSfRRIIxKKRoCyBOVXTVipDyASNbhcDpuoOuPGsSKOqTyWTeOxR7tyQDW0ZOWLGqB9CJqhWK5AVx/io3GQf99dCRikGYh2DW64faZ4JB9Qoy/LFvWbZrOwp9y7Gln9YbKUwmk2ADGOdeM9syPza57yhbb1S/tyHExiKU5MVYWPDAJb5yvTDZOa2ybWL/wrd1zy7VRfsJSWL1DtrUDWFnlU14M47+n0fRoWNgbEhsbVr1+IjH/kIxCiLnxtdvemnfeELX8Cjjz6K//qv/yqta7WC/Fe+8hWsWrXK/i1fvnzI+zscJhOjX9StdVN2ZiDWPqlq6/Zx9Ws+yw9ZHzKuUN+qdc6a47na+DG4TMRALOYaoeWcUSCmyoEaF3PDmT/OFtAy56pDscwHZCEI49vxuBvqV2/n6m/Xv2sQAjXqkxtY426wZu377qzEayfso79fGcQDsIH8QBGgffA8b7+SRlgoY1B8psFb1ZWtK6nqym6XVitIhHE39qyuobambiccqq5Q7zYlkhrdYakkmMLVoigs3tDe865VbsBZcUxykSZS2PgzDngpJrI3o/gugCYA5noSaxYaPX/uOS7f796AOmDclyGbRW22S2FZ677CETjoioP8pNRGWEDeMl4hE6mC4vDaAW76rurKspiO2exB1+s9qNUV6lqbmrtj9pazY489Ftddd91Id6Nk609hrsL+9V//Fb/5zW9w9913Y+utt7bLeQX5LbbYwi7n1eFj1tbWNmRxbevSKDOrKgTqQ8RCTr3iZPyjq4F6Z90IWKbSYwyUSyYrARzu3huocSkGaid063XNnIMJd/ft5om1zUHr6plzvIGJBjA6rmPnYiKtLqbHxZe5dea/D7o4o8avl0ycy8YBQD8ImoxnYcaO6w+8sO3E14Wu09w7J7dt/Ib6LjC/j+F5x5iW2GBu5SaaUG4loU/4AI5qEpoMST/GzMSN5XaANgO4NkxJXSItBm2tcmRFFjEdTzPGK03L94SAJN1PmSSoFOr9BCaoEgM/79X9eJa3++PdWD5jFihuK3Rrk7o/3VNirgj0hxOO8L4AwHN7zsR2f7zbO+ar+8wOqkPw+2qeUdNOjljCR/jchOfOgbstWF+wWABpwTV/mfC6lYB7dhwzWlRykBpKm3tYqysvWaC/0i2jxcj1Otg23up23nnn4dBDD8Wtt96KXXbZBWnqqwZceOGFI9Kv9QaM5XmOf/3Xf8VNN92ERYsWYfvtt/fW8wryu+66KwBXQf7b3/72SHR5WG3H++5Gfc5cbNIm8WJ3A/ftuhf2WNY8Nq4/VntjLXpW11ycRnsGWTALiRSQldzO8AE3uxXsRT0Q9qp79twSQAhjrYCBl4Da+YF7iooCZv/n9pxZ6DO5YxEQ6lLa6wPZpHsWYVKxL7UzvhJTKudZghxcmgGTJwGYQs5xFoIbnbcB4CaxwfTR7WuuXXjMvpmz/tyvGHCKAUX3udyfZvt5kgcycdmWHrvk9gkHYcrC1EXZHKXBXJTwBvcGn03AMDGNroaNC5OZtACP4spoX53nkMXFTKSAylkh8UhCi+hq2HMjVpRvzzNe+2PNhGK5u5nHQKrcADKfgc2taLRZZp4pled4ca9ZpexawMSVUYZzu/QnC9Ru2bXvx5QBTqPPn3TQffDvJ4BoAXmAlTRK/fgxgBg1B4KL2g0AnHYgTWi6lEYm1jPXUDIEbsZkzE157rnn4ve//70thxQG8I+UDRsYG+qTOuGEE3DNNdfgv//7v7HBBhvYOLCJEyeivb0dSZL0WUH+zWbpXQsxfuYcpEn/MrR6s50u+hxW/W21KfdCLiClrQsAgE0vD+OGEpkADfc2bqUgMllZLJLa95+jgboquX4YgNJAFYqW8kGOH9OAKfe9GRtIg2OsDA6xCaWg58Stc9lozaQ08uB782U8y5Gv99tsXtsw3L7McJSBWMx4NmWzWLEwi7K3THzrwipcjIC08Vu03tYwVORC1CWAV9caKUw8UqNLo2dVzcY7ec9lwbjJzAH5uCvOMZ1kdD9lAs9VTe7K3oL6e8uWJnAVusXNM22eJbqvmUiwct/ZxUTAX9cuyzVQCaRxM/u6bbIAzfBn22finExGWG81BNhkrgyVhmaF20l/zGS3AlBOvd9uU5RxS4SwsYGcWaZ3jM+JjNlbwS688EL87Gc/wzHHHDPSXfFsvQngv+yyy7Bq1SrMnj0bW2yxhf279tpr7Tann346vvjFL+Lzn/88pk+fjhdeeKFUQf7NaBtlEjJJ8Pj0fQbcxht/W4XulaagXiKE01AK0s1Do5c/Z8f6O+N/dZ/ZWLkvuVnKYqWuvfLxAOPm6a+RG6ZL5SVARUYD6Kq6xt+ZCn9oPHaGjwHUT2o/zpi57+G5UnuhnIFhJMw+Ru4DhV4VH3jd9jGLZTDyAOxmbhs/OLwc58PPPbZdb/uQEnqz56s3sde8cCsSswXAuCBrCvUexUCYizGqa1P7kMBao2CvZFLItRTtdDaUvYexpA4er8SzArnxJI/Q5UyJJPwatfIscyOBZCdN4bu9/dhH1xc+4eATEb5dMxczbUN957GWZhmKPhX6aszCYH+SysnZ/eLgLBTkDYvF2+zJSCfpPqmagij6KZIym73eWJKYQt+D+lu/XLPDYW1tbdh7771Huhsla5kZ6+rqQp7nGDduHADgr3/9K2666SZMnTrVk5V44403hq6X6B+4608F+TebrWnoInYsQXeLbrztzv4UGt0NdK3sRk9N2xixSjsF0hYvSG3cR6qWW9cLH7jJjRO65/oyen+GauBmXRloDNa4inhsHbFJvH8ySVBd5FgL5wYqx21R/4l1C5mG8LNRQjeDYHtwkpzV4q4h0i6jftD+sQHGj/UpMx+9XVe+nsfG8bZpnVvWvxslkiSqJcbjE8NalSHz0WBuQMN2uTqEKs8hwQPCi2y8RuKO1dWw7JdlitbWkY0zXIm7vg5oqRyA1uhFm9a7Fma/mF4YQHFWtA1g9MKaBec3M54R7J4RJ+rb7LcYPrtczsW5XH12zwFtN1Gic/D7EfbRZ23drfQZUlUzGZipEF6cnqcpVyjrawjUO2terUr+vNjs1TqrN4rEE+IdjG7hiBgBqsG28Ra3k046CZdccgm+//3vj3RXPGsZjH3wgx/E/Pnzcfzxx+P111/HHnvsgTRN8eqrr+LCCy/E5z73ueHo55g1sX/UFDZpk5iYSrzc0+h7h8ImHXcEeiZVWQp/jkSUB0j672auRYwYy2IL1dTbZd8/eCpz5MBXOb6JD/jhy54C8FupW7nzA/dYFf5w0DCxYm6AdAKxuQ20fnlvUuwPB9YysOFxPNwt4gOa8nm5/XM7UFMWHV8XqqfzNqhdzkLwgZa3E5ZrChMPYmC4NxaOmI5mRi5KnqlrDszis8Bigwq2hJsVhlWmPa1yq36vVY4sZZpUvPQRuyY1KouTu1qcNZ1D1tzyUCCXM2AhQHXxVmEyROLtH7JQ5rOLFTRuxMQL7H91n9leZmUzI3bKB2Pu3FzWrjtezMUcnqdjzHKIRLA2fNc/Z1HpGgj2TNJ+HATWA6kS3h/uhrb6cUWMmBTw6oLyigv0TMlUmgxZrSFzF9saCysYs7eO3X///Vi4cCFuvvlmvPOd7ywF8N94440j0q+WwdjDDz+Miy66CABw/fXXY7PNNsOyZctwww034IwzzhgDY+vYOpVGrSu3gbit2NpX1yLXTmE/7TAPJc1GKZAfoEHR7ctfuNxig1hoFCzMgQ0f3GKggdtgUtJ5//jAwY/j4rfMPjQwuj46d07IivUWl0XL+EDJr4M/cPuAzD+H+DVqxlL15WqKWehOMtY7+9GMaePsh40bUy6WC4jUrrRuquDcg6B6lecQxfaqptGtNNoLNXwCdKqmLVNS0zmyBgdoASht+OCN/vPzM/fP/w1QcDtnKf1nwz0z3Ph9dJOZBNhvf+jcZd82q7QRY9K6CtclUHY9xyY4fgyk25Y/oyStkWntnQPFqjpG3GfjEpkgy5Mo8xwzleeQFcdoAn7soJWvkNrE7tU0anWFqiyr8xu5EtfPdimKqgimFuaE3rsy6ixPBPJBMluD3f/NYBtuuOGw1tEeqLUMxtauXWtjsG677TbMnz8fQgjsueee+Otf/zrkHRyz3m2PZX/Anbvs2R/PibVNT/4XNGQC1W2EME29PlGokecem6CDt2fIVMRerl1Ko6OPPsSZB3+bkH3gIKmV2DRuuz28FI9P36cYLN2LiY5Fg4Zb7n/mLiZ/OWe5XJuubZdFFmbS0bKwRh+P2fETDHzwFSt/EzPOfoWMV8jk9Gfg5NuVmUHTXrNA/dB4UD8JdEKpUtyYHaA5uNEauofFd9ni44nbtuGfTIzV4SwZMZvNnjFzv7TdpnxNXSwexWXF4xRde158XibQ3dWwz1wrrvrJSxZZyQsTcygA6MJ9Xmbm+Pkb1zlnc3N7Lo7d9Z9z+hxeq7QQX5VZCtVZ8/YJWWHB+lWSMGHA3MX7USJGDqUKRrRduCxcFquWpRK1noZl6sjNv97ZmJtySKy/JR3XtbV8Z972trfh17/+NZYvX47f//73Nk7slVdewYQJ69tc481h+z32x36xYm3zD0HHgg9gzYtrUOs0U0ZSMKfPANXsy0tq53zmyV0ZMYasesShTfsRgpdwHeAr03O3SiqEXV6VAtV+uERDKwu60nm4PwJHXSovFS2PuQdjA5Rr360L2SyeTNAMjPYWlB/bz+3ffB9uzUBHfwFAnAEsgzAOxKxCOosVczFgTuiTK+uH2/H+cx05+l/XJgapHK8VipL6AJW7q0N9Ol75oqbzIpmDS0r44DQWTxWywfTZy9ys6dL5UA3K/lh4nrHfamzSYfoBOzFxMYn++RNwp2SWUFCYzoVP7lzMmQukp8+8QgHdX1rmx4IJ+ywQow+UGVQueSEziXYpUNM5OhvKK7m2XlmSDM3fmKHRaOCOO+7Aj370Ixvf/uKLL2LNmjUj1qeWmbEzzjgDCxYswMknn4y5c+dixowZAAxLRvpeY7burT+B840uF1MmWB29VkzIBPVGOc4jHORDIBezZuCGtxv+T2QCsHipRCb9TBeItRv2xwc3xECpvPfr1B8gHAM8PvPgjtms3aHIAOMuNB7DFjKQve3fm3GgFLJizSQMBmJ9XQuf2XHsVGj8d9MMvIbgirtrQ7DMJxFhtmKMbQx/tzbwX2uv7YEwwe5Y8WvlwKBr12f4fAacWGMOImPaZDLxsyhDdj00eib4s9NXIW96lvg+FGOmi/Uy89un8xAF4Byzt6b99a9/xUEHHYTnn38ePT09OOCAA7DBBhvg/PPPR3d3Ny6//PIR6VfLj+QRRxyB559/Hg8++CB+//vf2+X77befjSUbs3Vv0x9e2vRl/fLes/Dy3rOwsrOOrtd7jJJ4URaG9HpyrT22grsG6L/VgmoyqPEZPwd+fVkzEECzcBrgKPCbZtQDHdi52yceUM3r6Ll+hEHU4eF5WSOfXXHAi1iKMLOzN7dJbLCjtnmweBm8xc/bLwnlszbhMfpa1ltsH+APhLFgfFPZwbFA4YCcsOdQNbSNEyNmivoQAml+vfm2ft9Dxso/n5CZpWWZSGzBeX4tST4hSyWycWlTtjF0BxMrxu+NiUvzQR4F+FPyS18WqwUZniP1ga8n0MWrUKxpaCurwhMBXBvO/ZcJJ1lSqxvl+1QIzxVJ1wswzJVqaBt/RgxWZ0Nhdd0UbXexhdq6oYUkhs08N/TOaXQ1sGZNrdivuMcVYfudyMRmza5XJsTQ/L3F7aSTTsL06dOxcuVKtLe32+WHH3447rzzzhHr14BEXzfffHOsWbMGt99+O2bOnIn29na8973vHVH12jErD+hcu4hiZADzsqoXQogEzEwtP2WzJgGTRi6zsvuyL5OJC7RtZv1lNqg9KjWTKOe6yRraA4b9zToLs77Kxy7vw8vDxLbn4M5nURwoCO8Pd2v1dnweNzaU7Bj/7j6XGclWjMeK6TyHRFICZIB5Pqjos3Odue14DJknWeEN6I5VCq8ZB2r0nwM2zlRyqRJa74CItttTCTKZmMLWBApooiAzgUTlkJlEpVqBqinIuoLKXQA5gZwYcOaAT+Xw2CXqD1VwQB/CyuMrotDU0+DAjx8ntHYprEgxd0vKxGnnuf67/SyYZNcEMPetS5nnPoXLugZgJSxEkqC2to5VdYVVdV1oJvr3S+fF774Qd6XYL/6O6VIaHUkCVVPoqinr6jXsmDAJSkJA5WbSWalW0P/p4uiwsQD+obElS5Zg6dKlyLLMW77tttvihRdeGKFeDYAZe+2117Dffvvh7W9/Ow455BCsWLECAPDpT38ap5566pB3cMz6b9MfXor7dt0LAFCfM7dgBdxg0qVyvNTdwKruBnpW9xSSFrz8ix87BhS6PkXcB4/RiBmPCenLYiCE2uBFjjmTQMG9ro18QAV/MwFPtJUGmI0y6Ula8OLXHOT1N6A6xvSFiu3l5SFL57YxbcbZqVhmnN9ffwCNiXQ2c9s2Mx5/1OyxiD0vlAkJFM8dexZ4/JDOHRumGcjrK1nBz4J0n10coCvyTespHpEAUMgOuYlB4hjaigET1OdKewWVdn9+y8G5E4GNs3Q8EYCzOFwklu5/l8rx6j6zsXzGrOg1oPMox6mVt+Xths+FSwJwMXExiYgupdFVUy5GrWEyW+m6dzZUlIXVubkfrpam+W9KfjmtN4ojpOeAjAP9bmUyK6nPde2qLtS16w8Vkh+zt6ZpraFU+f7/7W9/G1GB+JaZsZNPPhlpmuL555/HzjvvbJcfddRROPnkk3HBBRcMaQfHrDVLE+PKGF9xYIMzNCRIarKcBFQN3ospiQS28ILHoang5WjjZCoCGxxzOFZfeVO0n1TM2LAQbplMErRnspjd+tvXdA4UM2pTYNusI/FGlZvyLVv+YXGv14gPeuMrJgnADBbOHURxXNwV5ZiFBJstXYTlM2b1CsxiLryQFSGgZIpA+9mcnNWhNnjmZOhe6gsghuuJLXWxQH5f6XMs8DwelF7WJNN5DqF8FyUHYrlyxybGIwTc8XMh5sploYbAiW9HywkcAEDGmKeym9Ytp+eTGDAyXkuT2GQqGUYleAR71qi/YSxYMyBtyzQFLlLalrYPy4+9us9sTG6rsLbLbsXQHUvPFS8yTiDMXCtXzkkHzy93bfJnl/rHww34d8ncyCao3k+CWNMwTBlNugyzZXTkAD/Rw/VfeH2QBavGwTQA1NfUsd7ZWDblkNgBBxyA733ve7jiiisAGLH4NWvW4Mwzz8QhhxzS67677bZbS8dKkgS/+c1vsNVWW/W5bctg7LbbbsPvf/97bL311t7ynXbaaUzaYpRYTZuyOXygohfj2++/x9SyY8KYje5yyRHKpqRstly5F2KYzVYGZK5cTcz4i50DIBpQeTFywAxolfYKZE1BNbQN4g+PS+fZX3dlu0zsi71WcyCIq+ETo2REZkM5BHjbxVkHv2/03wwc4XK3bawNwIHrELDR5zLg8r/TIBmCwvBa+udfvt+x7UILYwvD58ZphaG0nYosN/12faJtaILBQQ6da2Ru4TGvsXPy47p8hgzws/yosDhl+ZnzKlx9hd6ZUuV+hPfcHduXA0lkApmXATh34YfubwIv/Br09mxmolCjnz3X/J85x8ZvuTJLrn/hdSL2ndyYjiE3+6+qm3cRTRAJuFGmJm+Lt00gz55HBKzG3NPhfZXwf4dkJOa83tgYGBsSu+iiizBnzhxMnToV3d3dWLBgAf7v//4PkydPxn/913/1uu8jjzyCU089FePHj+/zOHme41vf+hZ6enr61a+WwVhnZ6cthcTt1VdfRVtbW6vNjdkQ224PL8WLe81ig7YbTKk+45btqQmw5cHHMimKgicQmQRqCrVubUU2bemYPAQjzeOPKC4tNJ9Z8V/e4aAIADITqFQrkJnAqn90W9FO2qc+Z64Fcv2JqZqYuhfSmp6GNziHA7hhCszxCOAtnzHLsmJAeZ8YSKPSR5xd46CUjLMHsTZbjRkL2w/jcXyw6O/L70cMlPHAd9o+BsqigftFTJnPGLoB1w3ufRcwp3PkA3HI0PD7G+trb59pW+5CDQVGAXgB44Zh9t36/Pjmf1mln1cw4CwhZ0RNUW+/6HZ9zlykd7nyPgRQy0DN/ywTwyy/uo9j0yfcfRdq+8yGyjVU7v8uOPsYgh6Vw9ZR5ZMpSqBY09BeRQoHoF07sbJM/j7liYr/WzWgj8cu0n0EgLTNTL5EewXtq3WJVRyzN79tueWWeOSRR/CrX/0KDz30ELTWOPbYY/HRj37UC+hvZl/60pew6aab9utYrXgKW4bJM2fOxFVXXWW/J0kCrTW+853vYM6cOa02N2bDYOGLe7s/3m2BGABUJ1WRdWQQ0oAcMl4UPMxUDMESvRjLbIQ/cFYOPajUv9jgGivNQnpAXPPMdzMVcT53LSy12SzjLJl3QDGbN4MDzdodKHR9VLkZqLirl9ZNuXexxyzQteHFod25mftgBlG3j2vPnXO4LGYhuCqzX70DthAstmLhdQhBHV8WY1BpXSJ9YdGYS5d/5iAmFnsUHj+MzYsxUHzfWKafG8j9epoxSRjK8iNtM9Uw8UthuR9+TM4mVaWLV+PHBmBj0/hhub5ZyLrxZB0OnmJMIwGRyUsWlWo1crDXLk1MZUd7paRdRscJWTu6D2sa2rsnfh/ifTNt8olaAdaZOj+fxIWAjgMxCvq3x6xp5Mq4O9cr8ddBFwkfAmbtTWB333030jTFJz/5SVx66aX44Q9/iE9/+tNI0xR33313r/s+++yz2GSTTfp9rCeeeALbbrttv7ZtmRn7zne+g9mzZ+PBBx9ErVbD6aefjj/96U/4xz/+gaVLl7ba3JgNg/Xlohs3uR2N7gZUTSHryCBTiVpnHW0TzOPg3Cx+oeZYsLZzs9ES/+XG1fy5cQBEmVjknqwx94PKc6Ch0ehqWDaCu9R0nkPAd2kQkPNmvfvt71Lt7QDhnwcxfS5DL/eENikeLYy3Ca8JWcgA8MLTZZbG9SGWCciBHwckYT9iy4iF4edqry3rK49janYusRikZnFJAGxGpe+OLEoYRazsEg0/++DPxTe5bVwMGa8JavoYmzjQshAEkaXFJIUrwwumEU9u/N5ApDuuOya/VpwN602rjfbNBH8u/G1IgZ/6wftFz09f7wi+vnOWcdFXFy1EcuhBLAEigcrNJKNLAeMrifc7BIA1jRz1SDgB4AvSysRkgK5plK8PZzZ58kfMaMJD4NlKWyTmHaOL/XOlrUxOyCqOVsuTZAiyKdcj8DlMNmfOHKxYsaLEbq1atQpz5syJBveT9RdYkU2ZMqXf27Z8Z6dOnYpHH30U733ve3HAAQegs7MT8+fPx7Jly7Djjju22tyYjYCpmkJtTd3EgXU3kHakqFQrnqZYrnKbiUSuSqDMpIQzdrON+d/oapSkMMLsL9qWEgoAl0bPNbnqPQq1tXWr+M1jrwA/I9HOopPEMmSr68pme1E8XVcToAjEQIBjGXa872472Pnn4s/S42DP9S8cKPkAHothCrdz24bHac6GcMDVVzxYM8aiOdBw+xm3tnueeKwdUC4Q3exauH6Hrkf3mQNbN8DnNkEkdCfTdvzcdJ4baQrpQD7gJCtCNoxXBeAAIXQ7xix2vajPdN349SDGjfYtu5jNn567n3e9HNCJg9D+Wsfiuyxr1rj51kIyw7WRCsfS+dffCNem9nmHd26hGzVc518z899LHqhQrcl4vz0XccW/hxTjxxnJMXtrWJ7nURmu1157DR0dfRXyc3brrbdiyZIl9vsPfvADvOc978GCBQuwcuXKlvs1YJ2xb3zjGwPZdcxGgdU7XSaRLgoqV9oraHQ1DMtUZFeqImA+tDDuyCzjhYcBaA1o2AB5vu+kexYBzI1Y0zmyHoW0TQZlkBLGJhmdIDNgFoHAa+vgLJZMgImpr1PEB2m/H4YB44yTSBJ0RVLeOYMHmELlmUgw4e5FHnPGM8F4DI3vzgsD58M+ORcwBw+x7Xn/3Po4wxVrK7weZZDVzL1VZvOabQMUQIcxOM49R/0sM3XhdQrZFH5s6Q32zk3HtcGofZNB6bMvxLhJldtsSDLD7MHWQQyZGZEYCQUOeLjLsyyw62IbudZZ6DpuniRRTmzwjrvf/sCdd2DSPYYdo3Yn3bMIL+7lT4QGapStTDqGVNCcQBoBQbq+hjlzIsohK8gBMpmLeQPCCgEAindBkSDRiCefUJxrJhKgkdtapWmb0YEj4N3oaqCLkhdGs40F8A/KqDh4kiQ45phjvBh3pRQeffRR7LXXXv1u70tf+hK+/e1vAwAee+wxnHrqqTjllFOwcOFCnHLKKS3XwBzQnbnnnnvwsY99DHvttZcVSfvFL37hocQxG502/ugPldgqmwWmNerdDa8OIFBmLfggRrNvPgDRQEP6QGSv7jMbGxUZnMRu0cCzpqFR7zFAaHyhlk0AiQZco+rtgvkBp6c06Z5F0UFq0j0GMPn6SQnGV0wMjJWtqAjPLUsDDr3kreTFfvsXQOyu4Fh0rXwQyAOPZXCN3PV17YT6V5671vvvn2czFivsX2/LOODx3ZJue87+hYMqbyPWd6DI3JNODb38XMURY0xNnqQYKGicJwPwtqwrPGAnfTdrWdTYslQ1bScmLtPT/HWzTELu5hSRc6FjiiSx8Ur8WgIosTSJdHUceT3H8HqJxKney4PneedFwGzLPyxGTefYbOni6DVu1XiySazKAf1meB3I2D0ox5qVn2UO9ux2BWMfPjcyAWMqnftZF8yjyKTVg6MYwIHUuF3nliRjtSkHYRMnTsTEiROR5zk22GAD+33ixInYfPPN8ZnPfAZXX311v9t79tlnMXXqVADADTfcgEMPPRTnnnsufvjDH+KWW25puX8tM2M33HADjj76aHz0ox/Fww8/bNM233jjDZx77rn43e9+13InxmzdGTFhBLiETJArE9CaCIG8ZjIgebyFz5SUdacAWHbAZYiZ2W1nQ2Gj+Yeg58bfYXxFYPz4zFO+di/wHKvqqgBKhr2gYF0KzyG5DIpDowGQzMULme+ZSOzsPQx0pixJy0I1NFTDgaewKLNt9847AOYO4lYGLuV1zWK96No2c/3xcyyzZWW3VW/79caQ8e1DdxEB51iGHj0XtE8zYBgKhvI4OQLf/Jzoc+ieI/aL32tq1wV++8cJleNj15okXLh1K40s95lDzr725ZoM48Aojo7LxHj6ZQV4oEQAWRFWq00isdnEsXgyIZ0yPYGuzllzmJhx0262bNVFC9E9e66dfPG2+eSHElh4uTDOFGcCjFFrzha7Z8JcG2ifVeW/bRVcb9qGLFcauqaQS+FYz6G6MMNlY8zYoIyYqu222w6nnXZaSy7JmGVZhrVr1wIA7rjjDnz84x8HAGy00UZYvXp1y+21fGfOPvtsXH755fjxj3+MNHX1vfbaay88/PDDLXdgzNat0ew5jIGh+pT2s8otC8ADbUPmh4wPTJTlSANWo6sB7Le/N7BXFy30ZrtcD40YAC7qCBjAt7qu0N3dcNUC8twq8PO+hjFk4TJ+DiarUtmgfg44yfi+YqGrX9ZsNs/ZmRDQmLqGwmNrwkEoxpw1+0+SGc0AAXfn8b7GBmY+6NE14nF5/rZ5cP4+Ixi20aWMCjopoceOzZmn8FjmXJq78ShjNbzmsfgk1zd/wqGD551YQv49dm3JYkWvid2i7WMgygrhsv04S2brwkpTV1FWTHwbZ3P5b1rP3Q/1OXPtMYmd6ksQuVUj1x5n+eiY9LwZV7Eokg7CWpl56Xl26xD9vYbvH5+ld/dPJkW2dZsfKgEAqqaRSGHZtVzlXszdmL157cwzzxw0EAOAffbZB6eccgq++c1v4v7778f73/9+AMBTTz1V0mHtj7UMxp588knMnDmztHzChAl4/fXXW+7AmK0761jwAfuZu2MoWB+ABWo2ozJx8S0ui6rM8HAXkcpNgWd6GXd3NyAzgSyVXjKArwvlBjU+MFH5E8kEI2vaiYXyAXW7P97tsSH0cibWiUCfG1xzjzHj7jl+XgQwJ92zCN2z53qyGbHU+DBY2o8Fc8ud2j/seg6SQkDDt+H7hPegvE0M+JRlOEI2iv/n7lPeT379Q8kDfq4EvAn48mOS64mesRDgNbu2MQDqu1ATD4Tx6xPrZyg2y8/VPUvcRRhnGbl+Wsh4EYjiFm5DRiCOT0goXpJLbNAEi/+GgQLM7be/bXc4wYbvcjXLeDB/GE/pT/CagX3/maLfSwiK/UmW/+zqPEciBWRFFBPEBLqmvKoj/J00mo1qUw72b8yGxi699FJUKhVcf/31uOyyy6zK/i233IKDDipLOvVlLbspt9hiCzz99NPYbrvtvOVLlizBDjvs0HIHxmzdmhOr1FG9JAD2pc4L/1LwMZCDlLPD4OOYa4sC8NOaLol/8gysiaksXqjl2JMqqyNpXuRAJnLvpb+qkJ1olwL/qCk7AHOwU9OuaDLXYcqEsECTGKoQBLRL5/IkuQw9d7+oS853gfqDOnfPuOtUBhT+93LGWOx7GAMVtsvZJX6NCXCH582Bjg+cOUPlg5yw7xzw8UEzE+XnyJ1XHIAR8OPHJbYlTAbgyvm0jCv10/7jK9IAIF3Wwmrm0qM4JP9aF0dV7v5aQKZYDFNxT2KlxbiobK5cMgEHb6oIM+CF1sl0nhuaFD6oy0QB1up6YEHCfZgL1jfHHF8R9hkLJw507cshD36b/Flzz57/2zX3l9ouT3rCZymRCdAosmC7GqX3H0+AGJWWCGCwmZ9jYGzIbJtttsHNN99cWn7RRRcNqL2WwdhnP/tZnHTSSfjZz36GJEnw4osv4t5778Vpp52GM844Y0CdGK028VMm+0JIgZU/vn6EezN4y1WORJp4CZkJTy1cAKjX82I7FzMTc6lwxsm9XN3gkwmj52U/az/uhpzbLrA3L1LUtW2fvyd1ngMNN0PuUjnapcuABLR9QVcXLQT2mmVn0RwYmdk1lYvKMb7ikgRctlduBXIpGy0TCSaMS1HvUfh7TwNde8/CZksXl1g0shCM8qBj0/dyNlmMneLfQ0YodNP4x+fZerwtf3s+KDqdML+WYrNj8P6VAYwP4ni/6NlZ08ghE2IH/f7F3ac5W2c+8xqKsf7xOKXwHAikpW0SWuXIpMSqomIEXY/YhIOOx6Usmt0z6iu1E7Jc4T4kv5BIYX+DIYtGVtcauicvsWrcnUnstxhm4mfSPYuwct/ZFqBXpYmFo98a4CZpMdbUTeIcS02/VbLYNj676Zcb4+A8ZL5UQ5v3TQF0wxqjyaEHoXHzrcN0tcbszWLPP/98r+u32WabltprGYydfvrpVhytu7sbM2fORFtbG0477TR84QtfaLW5UWuTv/IpiAIs6F70qNYnC1/sIVNlYrRcLcpEJl5gPhAKkrpBnLMuvpvMvJy7lVO6T+Yd4NWf5IOba8vNgk1R8Lz0Qgdc+rrKnSjrln9YjM5Zc1CVhUuIuVd5jFomhA2UpnixcOyjbLBKe8Vk1RXuks5Zc6IDBK+xSWCBl3Ohc+LB5D446r38TwiUQmBF28SADZdS4Pv0FnzujhM7ZlzdnrbnelTkxiJwHgZcu3VldyBty8E/P4eAILLXlmIXQ/ejTIBqtWJZYlmEFMmehn1OmoFPYsXC2C6ZuWdEr62XQCjplfFYR8BNdlLhdLBkJqCVcaeFlhedc9cl947hXJcCYOKVpFg/XBaWFJLzDgAa2gNHnJHlvw/qP2fDuHGmi7NiZp1rzxWq57Vvc6ChbdyYildoszIZBITlwfOgbrltgFdjmGwsgH/Irbu7G9VqdUD7brfddlG9MrLexGNj1tKdUUph8eLFOPXUU/Hqq6/i/vvvxx//+Ef8/e9/xze/+c2WDjzaTbEi16quUT3i0BHszeBt3FGH2cLgMpM2OJ4DtPCzamiPfQD8ma0/KMblGmqa4scckBAFyCNw5bS4fJcUDczcCOhUFy3Eqrqy5YxUnnvByTWdu7I0jMlzyQIOBPKBk5eNmrxkkQNSNQfIOWgIGapYfUw+yMQCzF275WWxTD0CgRwM+exauZ0QwPBr68eDlWPxfNdluR1+XXh8FsWJ0XYEpsZXEo+14rFFzrUI2w6dH7VP7XBNOn6OtI5AUtombTA8AdK2CW3IOlwCEgB0VKQ9D7r2/FybJkgUQEymRr+KBn5+rUiWpRnTBZg4TgKI4SQp3I6LnfJ+hcXKKRGnN9X64bD8ttuLvrnfbCZM8opxYyal+9nM+PqQDStvm3jbkhl5Ej9xhNcZVTVlJ6OJFIjVHm1mW537uX5vOygbK4c0JKa1xje/+U1stdVWGD9+PP7yl78AAL7+9a/jpz/9ab/bWbZsGR5++GH7d9999+Hyyy/H29/+dlx33XUt96ulOyOlxIEHHohVq1Zh3LhxmD59Ot73vvf1q4L5+maqpqCVftOxYtwFSS9uPkjwlxBnu8g4E8OtHPfjlgmZ2MEwjEmijKew/WbGX8yT7lnkvZyfet++djvSHfNdRu670TlzelDNABKBnVzp0oAWP2f/e7gtDULhucZYgVaYjN6AWG/7hNuXv5djyZq5VIHmLkNax7NMOejqy2QS7hev/EDLuEBwXyDISLuY30U8IcO/LyGrlUiBhOpKFqCLW+jqt65E5lbkFibX2HYi21rWrdDJk5mMAgnRB+M6XMbdvCH4cs98eZnfRpyZ5e3H9zGfKZCfS5bwjPJmJdtidXU3PuFIG74CAFt/7eNRBnPMRq+dffbZuPLKK3H++ecjyzK7fJdddsFPfvKTfrfz7ne/2/ubPn06jjvuOHz3u9/F97///Zb71TJM3mWXXSySfDObamjk3NUQoy3WM5OFGj7FUPCXOwUMAyg0tyibsjz4hsDDts8Cq7lbMZEC6fgUFDPU2dVgLj0gHZ8iSyUmpNIbcAGf/Yi9eIkNi4GQNQWzx4PI3ezctEeDocpzjxUDjD4TYGbY3d0N5ib12aDwGvgxdYm3zjBC7jsHb725x3gbbl/Xd95GzHg8Tcxq2slr8HZi/5vFytFx4m5L/4/EWkMWijOq3GXYLv3r6JixcHnxVwAxVVNWsJUzgLpghStVE6lB30lyxO93/KboPLeAit4P1E74XFTaK6hUK+Z/ewWyUrBpmbTZkNw4QDDtS/uZrCoN61dpr1gQaEIPtJdZaYHaMLopYyYW3mmTb/g942Kw/DsH2fy682WhZEyMBYuzye655O5c/p9fW7r+BMg2OfEj2Oj4D0PXzLgw4ZjDscmJH0HP6hrqa+tYJzbGjA2JXXXVVbjiiivw0Y9+FFI62ZN3vetd+N///d9Bt//2t78dDzzwQMv7tRwzds455+C0007DN7/5Tey+++4lvY4JEya03InRalrlHlqtHnEoVF2Z1OiaHr1ZN4FtfMKRqBcv80q1gka3c8Eaal5BK+OKa3Q12MDtu6L8uKRy3IYzB6CI9aIZ/poC5BEzBSSQqSzkNRQQmWSSa8m4MxOsaWgsnzELU+4lIFYGPmQuXsWdg3GTCTtQdCldAmLuuPD6TW1QJh/g3JZ0PHLNuWxRIFbGJgaQKD7PZ93Kgcnm+KGIafO4oJirsxmL586R78//J8Hg54M1XsSa9qO+8nYcGOWsWw7mEYbKTUmjVAioQp+M4oMoQJyW2QG6ImzsD4m4Ur1TGqgdg8WSVWQCQEDWldfHZtcNgAVCgHlfkGRCNi4tynWZbbKOtIhLcr8HExuWe3FeSfCZB/OHRirySdFvaler3IJRigEFzHM+eHWlFu3OO4CZblJDbvrQJa1yHlfpi8KGLuL4JNDP9uWg3oH23JuAAYAoQjYAU/ydXzMpzbUdd9RhaExoQ714b9L9anQ1kMgEjZ4mgWhDbGOFwofGXnjhBbztbW8rLddao17vP7AOhV3zPMeKFStw1llnYaeddmq5Xy2DMdLP+MAHPuAFr1HxzVaD1karmZeaAjLpZknFi7emciQyh1zPsm7oZWJeOL7WDuBccb3FbfkDJRDKEBBQISajrjXQ1bBB1MQcEdAZX0mg6qo04ISuTgrq71KO7Xp8+j6Y9uASbPfHu/HMHjMjLBUHNySO6twmda1Ra5jMvkmR60VSG5lIsKbBwYcDdtzlqHLg7z3KMjpUE7EZIHOAxQ0UYZwWn+WHLJB/veJUFfXL/Xf9bQbcmiUJUJ/jzGDcZTkx9ZkRgMtdhHFpiXcNyucMuKxP85nU9vk5he48X8bEZFASg0TGGZJUCXuPRZKgs+GDM3I7crd1rnLkWjtpi0xA1kxQPgEjGrzDWE3AgIKsIzWTkrqCpj7JBKpmtkmkgCDwyFxsuUIBwKTtS2IZN4mkmOjUdL7uwRhcd1XuJz+Ezz19B4BMCPschEH7ISNMy0J2lcz/nZVdye6eCAds2Tim6go9q3ug6spMHBn4TqsDKu88ZiNo73znO3HPPfdg22239ZZfd9112HXXXfvdzoYbblgK4M/zHFOmTMGvfvWrlvvV8pN01113tXyQ9dFylUMjB1g8QCKdwKLMJGQmsG7mRAO3Sccdge7Omld3j2bkAGzmpCvAXRQJZ0AsZF+cObaDs0P04qXvNe1EPn0BTpNRla6p2361ZxJZIQwazoDDTDferx3vM4DsuT1nWpbLuTJ85sq45Jz6PzFs3JbPmGUTC4hV4edNRueqctjtOEvkZuZlgBmyROYcwdoug0vuIo61ya+Lc4f25r6MtV0GaWU2wndZ8vtqWI44UxcDm372pN8XalfnObJUWsmUkEEsDcBFQDZvg4CUyJxrQsjEsiNcToLkIGhyQn0kKQzASEbkSkMWlUj84HlhXZBkmtGNucptQXKRSchU2kkS9Ss0AgrE3IiA1QsnNLnXn9FlHNTyZyKccMSWldty/302108ESYUBW3S9uYeAzLJkwX1LBL0/FVAHEiEgZA4lE2i9jq7vSEXiKwABAABJREFUWDblkNiZZ56Jo48+Gi+88AK01rjxxhvx5JNP4qqrrorqhjWzEAsJIbDJJpvgbW97GyqV1kF6y3vMmjWr5YOsj6bqCrkElIaNKwHgzXzXB6t11qBquhQfRqWPSFhS1bT30iYgETI53BxA8eM8wozCEJSE7rXVdQWV55iESqF/5sdDUbkf3g65Df/83n2x8wP3ADBuGM6OERMS6mBRO5OXLGp63abcu7hQ2k8s00cgzvTFubyaZU9S/+l4XMqDb+cPMM1ZqfAYzv3aN3gK710YrxbuG9uezofvQ+AxzqZxgOhc39xFSct4m5wh6c1VaJmOJAG0EyoOZR3IVZ7IBJX2SonNMGyHhqoZ4MJ1p9BwblFqWxZafRrOnWh+Pw7Q8exbmUqrmE9uSQogp3dL6FKUqQF9hm0j91kTRF0Yb5tYOG6h/MS6sgl332VLloU1OgFEf0NkoUszBFuAe7ZSIQrxXrM+ZMrpelDsLN0DVQhSA+79zpkzV+1A2vdmrjXodVlfV96gJMGgC32PuSlx2GGH4dprr8W5556LJElwxhlnYLfddsNvf/tbHHDAAf1uZ6ixUMtg7NFHH40uT5IE1WoV22yzDdra2gbdsZE2XTBjFM9Ebg2timXrajY0CKPyR2GwKpnLpvQ1jYgVIyDDB1xiQbjkAMBVuOENsrTeMSd8MPb1t7jxQd/XNvODcTnQmvbgEvz5vfviqffti7fff493Lv45lBXtY0bn7zNYJBzr6v0ZFyh3K3J3nnPL0rWLsVCx5Ije+hhWIeDAKhywXOJBHNyFbcRYsLBP/HghuHLnlbNt/Eb9IPlygfHegs3p2CLx2wD8ZzyswZpIUTBQLhYrkQmkTJArcj0ZlxXF9RKAIpbLJrnUTIwRxYK5dwQsa5VIpx2WCNc/kUlkRR/SagWqrpCIBPVCXZ908mUmkHVU8caKNfYcCJjx+CY6NwENkTm3pNne/cZH0uj5JjclZxpVTTedVHAg1qxNwJ/Y0D6UXMHZLpFJDxQD5jpTNmwui+spfDAWPicASmEew25jzNiQ2YEHHogDDzyw5f1+85vf4OCDD0aapvjNb37T67Yf+MAHel0fWstg7D3veU+vQmdpmuKoo47Cj370owGLqQ3WfvjDH+I73/kOVqxYgXe+85343ve+h3333bfvHfswr0acEOv+x9iCjTvqsEgUj7NEGPaAx6/YMkgF49KM9XDbuPU1nWB8xYGBdmnYq0yIgJniL91A+LNwn9bZ7JaMs3Q1bViwetEv7prc+YF78Of37otn9piJHe+7Gyv3ne2JSwKIuiWbmWH6EMSMJbYCQJfS6Fh8F1btNYuBMDpXc45hQLrrTljQOu6CNcf0t6Pr6LuHeeBz3M0ZthWea0zOhPodYwL5QMkZPwJgIciKDaq0Lwe1sX5TPFdd62hlCDP4ihIIA2B1wLiLklsiE0hIJCKHgvIYEgrkLu8jkAZaZXx7GvTbJlQgpIDIpJ30VKpmWTo+BdYUun71gq0Gy+Zrr6A6qWrrKWqVWGYn147NA1ByvwKwsWecqRsJo/tf19okY7BnKJEJZO60CGl77soma+aKtM9eRSArFPZ5OAZZ+FwkhQQK28Jfb3XfdFmXUZGodAsXYj204RpPR8oeeOABaK2xxx57eMvvu+8+SCkxffr0pvt+6EMfwksvvYRNN90UH/rQh5puN5D4+ZZh8k033YSddtoJV1xxBR555BEsW7YMV1xxBd7xjnfgmmuuwU9/+lMsXLgQX/va11ptekjs2muvxRe/+EV89atfxbJly7Dvvvvi4IMP7rN0QWiimFHlWhcB5i7min7Q9f++Zcj7PxRGArU8Liw0Oj9uNGP1A6w5e+OLmvrlSlzchwvQj4MBE4flpAZo+5Wddazqblgh11CWgu+j4bNR3HZ+4B4PIHBGqzfGJbSOxXfZ8yYAR67PyUsWWY0yAJ7grB+Y7s49xl7x6+32d4yAv4xfS840+rpboZuUH58zCPxahAKq/D//C/eNAbtwIPUZ05AVK8eJ8XPkrkgdDIbk5uLyDWQ0iFqdMeFrjcXiqEQRBxoaZ1e0ctmKbRMyyExaoEVuRwO0DGiSqUTakUJkwjIsuqbQ6G5AK23Wj0+RyARptYK2CRnSasUG42ul0TYhQ9uENrRNaEP7pCqy8alJEChEZkUQm5Yrw5CZ85F96qytC+O/B4rDo3sKOJYz9pyFvwOzLv5bFpFnwcTDlhlTmUomL1K4oItrRn9kLv7OgfSYptxw2kgUCh+q8XQ02QknnIDly5eXlr/wwgs44YQTet1Xa41NN93Ufm72N5BExgFJW1x88cUexfeud70LW2+9Nb7+9a/j/vvvR0dHB0499VR897vfbblDg7ULL7wQxx57LD796U8DAL73ve/h97//PS677DKcd955/W4nEcLyNxTAKaTJ/BuF8bAl4zQ8fecWulm1CoPP/UG8pmG1uboUbeP+ywRW0oEy0ULXGHdd+fv75W58FiwEhqadNEmghPkfY1Om3LvY1pbk7tBWxqSV+86GymFjyzijlsw7wJvd07FirsXQheLO34FdxzzFXYExUBcabefa8Nm83uJyYt9jgKsZM1E+33DfMuvGgb6pFahL/aT7Z+N9MokMsDp4ZFxnyxXYFp4LigZQzQbWEMTITCJVuc08pkoVFJSfK420I0M2PrXxXiITkEogr1actEThDs1YjJquUakxU3YnG58ZANfehp7VPbb8Wi5zVGTRthQGcE1I0LWy2wOGqqYMi6YT52bTGrl0ArSQCXpu/B1G2lyCinnPULWDWGYp4E/6YtmTZjksqAMoucp34ZJrMimOY8V5C6AVhnAkbKKQ6yIGr1hG7Bh9BgBdU9HJ7rDYCLgph2o8HU32xBNPYLfddist33XXXfHEE08Mqu3XX38dG2644YD2bRmMPfbYY6WUUADYdttt8dhjjwEwrswVK1YMqEODsVqthoceeghf/vKXveXz5s3DH/7wh+g+PT096Onpsd9JO0TIBNyjEstuGo3WNv8QgNW56w2E0YtdF5lnFAAbY5wykTO2iZgqvzZeuB+PI+PBtxyA0HcuI+FKMMXPUSYkAirsS5vqUnLjLlFqq5mbLLTlM2ZZvawX95plNcNiGZqrCx0lnuHHwV8sDiyc2ZskBR888TZjRoDLD2SOn084kMVcQO7Yza5K2J/Eu64h2C2DNMZ4VMoB6f71cduGLknJ4n7oO+BcicSgCT74snVcFFXAuAJpuVa5/Q7Auiw508aBmGlb2D6oukZSgLpEJGib2GaBAemCKZkg7UgtqyVTgbYJbYV+oTJMX8HapNWK5wrVKkets2ZdlbTMXAcBVQMq1dEVF/TqPrMxeckiW88VQACCcy+DlUxWfI1CkSSQHKhXgkoHBfOYSBPDR2yl2TgpMiAJzBrAZoAzjw8T0EpDSAGlTSyfvbcAAN9duc6A2BBbqJHV1tZWivUeyHi6PlhbWxtefvll7LDDDt7yFStWtJQF+e1vfxvbbbcdjjrqKADAhz/8Ydxwww3YYost8Lvf/Q7vfve7W+pXy7/af/qnf8K3vvUt1Go1u6xer+Nb3/oW/umf/gmAofs222yzVpsetL366qtQSpWOvdlmm+Gll16K7nPeeedh4sSJ9m/KlCkAYGdRiRDIOlInxkizbDG6XnhklIEVM76cJC3oc8w9wwP5wzI2RrwR9jvguxiI0aL9UyHsYOvcnP62KjfiqkY5X0cZL9Mvvw4iuTP7shiL08xInNLs5ycSuD6bvwl332W3M9v6bJ77c/UZueuu2THMuZYLapevR/n8m7lxerOYm7A3C12eYd/4uXN3pKxw/a1iUGOsGc+6JSDGGQkrT2DdcC47kYwzHlxdnQSbKfzAxGHlnsspEYkBXIVYK/1VCjciJfXQny7Al8xk4Wo0LsW2iW2WFTPJAyZGrG1CG6oT2rzMTpkKq86fVivIxhfHLNxolfYU4zYdj3GT25F1ZIaNK9ygpgwSudjMZzrv0ZD1Tcxyx+K73H2V5bg+Jxvkn0PC/tI2af8IlDdri8B4IoTNaHXHCYGcsMwkATKzj7BZuDI1rkzBXL+mLmk8DnGozYi+Dv4PAKZMmeKNezGWayDj6fpgBxxwAL7yla9g1apVdtnrr7+Of//3f28pm/JHP/qRxQu333477rjjDtx66604+OCD8aUvfanlfrXMjP3gBz/ABz7wAWy99dZ417vehSRJ8Oijj0IpZTU6/vKXv+Dzn/98y50ZKosJsTVLOvjKV76CU045xX5fvXo1pkyZUmTPuNkwzZpzrUctEKsecSgUHFCMzdpKTBnR7U1meAQuYm4uzpSZ7L544LnKAZnzYtDE5JSZomZq9RRIT0yYz7iZtmPsGG/btd+3GY0xFP00H2o6x8SUAKS2IGPlvs4dmgk/fmz5jFnW9VrTrhQSv4b8OOQCpvg27tpTuctwJQtdk5xdilns/sQ+x/ctM3e8b9y1HGfcysvIpcjXc7dTrEg2uZzI7KQCQTZlL3FiNBnRtFzKYN8EUiRW4DMRCXKdW5cVr1kr4KQzDAgQljlTLEtZZhKyODaxNolM7P66YGuoKoCJdXPAQWYVVNozdK/sRlqtoI5GoREoCykMzWLNDMBsm9CGztJVHzmzcZj77e8muBEQ7YElpeLLC2s1bivehv88mThAYQG36ZvwngGkBgA3GutIgT83f4NtAwCWL1/uVcvpTQGhlfF0fbALLrgAM2fOxLbbbmtFXh955BFsttlm+MUvftHvdlasWGHB2M0334wjjzwS8+bNw3bbbVdKDuiPtQzG9tprLzz33HO4+uqr8dRTTyHPcxxxxBFYsGABNthgAwDA0Ucf3XJHhsImT54MKWUJtb/yyitNmboYPUuWsNgLjULkr3gHj0a3ZW9yG+E6ioPhSQkqGPh8dyNnW/xyPwYQ+LUs6fIYEKKsDARtw6UeOKhb00Ch6eWy98gVZ7Y12/A4KwIoIdDYbOlivLjXLIyvOAkKmcDLvozZ6plzLMgraZHtt793Hio3+k1Gk6zsBp1y72I8t+dM+53O2V1X341b07CsozHf9VmOOwsBVXO3ZsxCrbhwnR8f5q/jrkS/UkNigSNnzwADtEjwNBYrFBbPpuLOMkkgmfRBKXanAB+5dMHbRqPLlzdw2l0uDsxmEZOCfQF2E1HuX65zaCa2muscuqYh2h2z4jSrNDQDzknBQEt2fqqmPEYm1zmU8mM+dU0VwrQaqtYoBewTm6ZVbhMD6p11JCLBxG0n4u+lsxgFducd5illoMzXQtTe+5cvB3xA1ayqARfGNe/vpGkb3ELNMU8epG7uObmJZSaBdQTGhtImTJjQZ+nCgYyn64NttdVWePTRR/HLX/4S//M//4P29nZ88pOfxL/8y78gTdO+Gyhs0qRJWL58OaZMmYJbb70VZ599NgADVtdJAD8AjB8/Hscff/xAdh1Wy7IMu+++O26//XYcfvjhdvntt9+OD37wgy21JSuicKcYyhrFj93MbUeftc0/xH+BF59jjBcNRKqmgwy0BCkEVK4Z2+EHzgO+i41/JqDBvxOL01UEZ4dmBFUFupQGxXeRS9QN5q7sjQFe2m5nlguvdqTfvhGd7Jw1h/W1dyA9oXjR1rRC56w5djb/4l6zsFURdC2VA5+rZ86x12jC3XeVGDrnms2t/tnKfWcXhbnzglWkc27mmm3GNrljxPaJbU9sWpgNG7YfAjEO/Li7uW9GzW3DRT/RcIW2azVtt+Hq9965NHxJCz6ZcAAv9+KzwvqytIwP9gTawmxpYkHywAXMv5vkHm1ZKQ4StXZ6X0IK5MIch0tQcHBnQSBl6nEWrlbI6XTXzfNXzUzMU00hLeLOqO88lq5j843jN2W02J13APOMayi8/oAPylRNeYCKMiCBOLvmtQkNjVDGwhkHc04zrvz7SYSRIEmEud9a6eikYjhM57n/+xlgG/21oRxPR5t1dHTgM5/5zKDamD9/PhYsWICddtoJr732Gg4++GAAhmWL1b7sywYExn7xi1/gRz/6Ef7yl7/g3nvvxbbbbouLLroIO+yww4jfpFNOOQVHH300pk+fjhkzZuCKK67A888/3zJ4rLRXbDCf7tKQqUAegJvxR38Ia37x66Hs/joxW7OuiHvghXKVKgeBO+BVHvRjAfxknAGiAPXQxUZtOPekk3ogxojalwmxZkkplq2Za27KvYvx8t6zMDGVtj2qGdmb1bUBBwTE6HzyomPE7rlg/RxAgu7Zc9EuE7y41yx0qRw73ne3vUYExADDptX2nhW5zs6F6zNRsPU+e3NFOhaznEHKP3MgzePbaF1vx+Hbm23cPWoGAGNmhUC97Fznyg7/A24wIXbD0/5jE5FwYsLND8iPD/x2mc5tGSOZCguYeOkj0/2GV/5IaxdTBsDOlGXBcFHwOJ14s4kTmVYaEk4PTWQSKUwyAA8yt5NH6lt99LM2tbpypYpkEtwb947qjzeCJ22UvAGMKY0Zf5aaVTvgLGZWJFaIrnWTXp+jFc67eRut2FCNp6PRnnjiCTz//PNe/DvQf7HWiy66CNtttx2WL1+O888/H+PHjwdg3JcDCdNqGYxddtllOOOMM/DFL34RZ599tn3JTJo0Cd/73vdGHIwdddRReO211/CNb3wDK1aswLRp0/C73/0umgHam4lMQlbMTLfSXoGuaUACsmAxR5Pga9v8Q/rcJhHClfJQOSrVCnKpmw4AXCvLfPfBEwGhrgK8kcuSq+UTeHAB5uZ7uxS2fQcUzH60/8RUWCBmFO/N/iFIMaDMuTaXz5hVEnWlgTy9ayHU7Ll9MmPEEHYVzza1OXnJImC//V2mXQEewmSFTCRe6ZlmMVSbLTX9JBcnv77cRetAj5PCIDAYGt82XBZ+jl2jcFk5CxNNwRIHdn5MmXsOwrgw125ugTV9j/UtzKDjLiqPEakpW66I2BASanasip9xGRoxaEB5cA51yoQUUDVlgspFAq1NYD/1jQNFihDzzl+52FQL1AoA6Nyn1G+XyEBMPWmpyY4KVK2BXOfoWtmNVc++gh3PPw7PnP7j6DmOBkvvWgjAAAU97wDkt9yKyqEHlbbjFQcAfg9EcH3jcbD8Pg9EH4zHjomilq+QCVBbN8zYSNhQjaejyf7yl7/g8MMPx2OPPYYkSZCTXiG9e/rpYkzTFKeddlpp+Re/+MUB9SvJ88hUthebOnUqzj33XHzoQx/CBhtsgP/5n//BDjvsgMcffxyzZ8/Gq6++OqCOjBZbvXo1Jk6ciLv2n4lxUnovYR28mOnl+4/LrxuRvpJVjzjUgkMaXLxU/iLpgANImUr7Paypp/Mcq+rKU67ndR5lAoyvCKRCoLOh7EAM+JmNFKtFGZI0cG+UkRuQQI2rP0n7b9ImbXuhS5T2JcDn4q3MvmEQ/6v7zPZETSm+qV0KW+dyfEVALLwTAFCfMxepEFhdVzZTkkzP3c8ev6ZNJuXKfWdj0j2L0D17LqqLFqJ79lyTMVa01x+j2n1+DUu3no8rBGrCMlHuXpWD+cPPHOAQEArb4a5J7pYkdzQHYSGI4m7mGMDKUgnV0KU4uFg73NI2wwo1ugwTRQXBY6r7ZJ7+WM0VAwf830uYZcd1pQDYuK0QmCUyQdaRmf6NTyEKVxYHYwTSYiDAlVzyE4YAp9TP+xxjbYxERgWJFFC1BmpvdKNnVQ96Vtew8sfXR6/LaLbKoQdF5S/8gu5+iAU3zjTaskesJmUYj5aIxGZOxuLPQjemyITNhO3UGrN/vwirVq3qMw5rIEZj0vMvvjTo9levXo1tttx82Pq6Pthhhx0GKSV+/OMfY4cddsD999+P1157zWqj9lZdoK8SSNyGvRzSs88+azMQuLW1taGzczTl7QzOdJ43paopY4q7IUarUfIBB16m9Ioq9b23jEoeCyaTxLoVpPIHXAMEXOYkgTinQ+VrUwEGcFFMWLPYL3Jj1nRu3YzOHefcqDGbvGSRjesyWZI5MiFQLViTdgYSKOCfEhK6Z8/FqrqCyk2WJI99y0QC7Lc/2qVwhZALsEbMj567X79AWXWRYQfAQBkHQiETxssM8XM3oLT5ccJr1EwINrZ9DBD668uAKvxM7F5ZY8wHh81cnsQsGb0ozpLkHtdk2SQ2gaLMSV4zkowH3RMY4lU3AABF/FcpNhOGKZepAYdoUnLJ9ZVr/QnwuDdh+10AXyqRxAqFa1W+wQImfkkA0PVGNPlgfbLGzbci/aCJweGF28l16QBZ8/MkoB3LgOcgzLmeNaQs37sS0CtAs6prJMFzOJyW5zla5E6ibbzV7d5778XChQuxySabQAgBIQT22WcfnHfeeTjxxBOxbNmypvv2VgKJ2zoph7T99tvjkUceKS2/5ZZbMHXq1FabW69tpEuMAEUNyn4ULQ/1lrjFdHeaufL6oz0Vao2RLhnFzpLLk8d8meXxouHULm0TWui+e3EvPxbr1X1ml9xe1WIWzAdbPXc/VgTd/VGfAT+GrFnfZGKuaeXQg6I1FPsyHrMVX+9itNy2Sa/3Jty2v8bd07F+NtMY89uIgKomzFfY55gRSOL3rmnAtcd0NYsDijNWzaRh+O8tjPWiCRpnUXStzKbFLJ5so0sJBICJZaO/0JwUhlwvWbFmFhZ97816F7t2enL8P1B+RsIyStFjrSOAo/Oh+Xurm1LKxndNnjwZL774IgAjXP/kk0/2um9vJZAGWw6pZTD2pS99CSeccAKuvfZa5HmO+++/H+eccw7+/d//fUBCZ6PW2CyU/pr9UDc+4ch13r3QYi4a70VSiB8KNkjwbbibRySOzQqNWJg6y2gkF6GsCGSptPvRcrOfc1tx0MIFPqk9DojoeATmSCLDB3Gub2Qvs+D4yUsWebFKMgFk5pgGUoQXSYKJqbAuQKqPudnSxZAJ0DlrTnE8B9KoqLkDbUXdPUmCkBVUDj0oGgMTM2LIQuBE57jZ0sXevXGA1mfIYv/5NQuZRD9Dtvc++vs1i0ErgynOmAJ+3FgI2JqBWGLEyjFcefBfe3/GnelPWug34bZ3pY9K7VON2iYTH1LOB8rMlS6OTyxXzKifmumSkRaa0RpzbVNSQQhIAQM0KtUMlfYU47dYv91QvPavD8T6P5lodr96S5ZoNmHl/8UAYs7GbHTYtGnT8OijjwIA9thjD5x//vlYunQpvvGNb5RU+ftr3d3dg+5Xy27KT37yk2g0Gjj99NOxdu1aLFiwAFtttRUuvvhifOQjHxl0h0aT8ZgPwP0QKYVdSAFkI/vDbPZSIfeJEZWMBLPGYizY8ipE04LfQBGsjqKmYK5tG4kUkHXF9MdyGGmKxGZUrmnkkEmOdim9YtsGdMUGe5J9AKhkEiUBuAByP66NG8WMAWYWm7HYkVzlVhFeA0jN1cKqujvvl/eeZV2CVPrImDk300/Tjy5l3Kg0UHL5hWTeASZzrAhYbma9kij77Y92mWBNgzN99J8AVc4Ace6t5+WT3Dm45INwn/Ix/MD+MJasd4asvEwkiWUW/MQFfxsyK9mS56XyOTrPnXtY9Z2hGHNfaZUjL1z6oYsrrPdq+ycTC+RERDoh10b/S9WU906hmCOuR5aoHInyE2tUXUdlNiy4TIW3TFYzpFKgbcMNmp77+mIEyKpHHBoFVjyWrJm8RcxC+RKehRq2D4SJIn4WuqysO7mjMWJr8Pa1r33NhlSdffbZOPTQQ7Hvvvti4403xrXXXtvvdpRSOPfcc3H55Zfj5ZdfxlNPPYUddtgBX//617Hddtvh2GOPbalfA0IRxx13HP7617/ilVdewUsvvYTly5e3fOBRb94PW3iAS4ikKI3hUspHg4WZYbzkUaxUTGiJpJIqJkW/XSYYXxFerBi5rSjuJ5GuTBLVBEyF8EReAcdumaB5p3DPKX4eX8aPReuIXaPvFIBP/1MhML4i7PfVM+dYdXwyAg68np8syptQOZlUCNuP8RVRyGJw3bMy6IhdUl5EuJXYQkoaULn5PHnJIkxesgibLV1srzdgGD9yz9K50XXm9yzMbIyxZZytDNm48HMYu0YMYm/xZ+Hp13RcM6mZS5Nv67mWI9u7MkW99KdmdPYa3Y1S/KRWuVlPcZZau5JJBZsWY6ZiGdamrFpxPetGjLXR3YCuadQ66yW2jvT/uJhto6uB2pq6x6xx16otMK6NlIWJGRPQtQZ2//U3ml6D9cm6r7+51/XE7Dd7t/HgfTJRVDjIi8zX/loiEzsGCLHuYsbG3JQDt0cffRS6APMHHngg5s+fDwDYYYcd8MQTT+DVV1/FK6+8grlz5/a7zXPOOQdXXnklzj//fGRZZpfvsssu+MlPftJyHwdF6UyePBmbbrrpYJoY1UYFgF3NNGnBF2VHpdUBSbUNqXF3S2jNBqTwpWXZG0vDJ6hWKxhfcRIT5GKkQZ+SHGjgVw2NRlcDiTQxWZxpIdDQLhNMLFyZsZqKVBOSgAJlS5IRuKD6dB5rkucMNLn9KOuRjlerK6iGC9DOlfbqJNK5tssEHe0VVKUoFQqPGZ0fMW2KxQrRYJH2s5TWpHsWQSZFlmWh+t85a47nWjWFl8sgyMVx+aAsVtuSX2vuxiyfm/855iKmY3KXLQfUYUwgAbLeYsoAw4yJJLH1CsNtPKCWNxfG9IBT4bbMlXlm6wTKeP1WFrBv3IXN7x3FH+om2ROGfXGsnaorA8q00zwTFrSpQqcscHcycG/jnQqWxrJ3NYVGt9FN0lrjoQ+d0bTP66Px+pLh8mbvOiqLRbGxXFDXrPfb4nVHezMuOjtmo9t23XVXq/Swww474LXXXvPWb7TRRi2XeLrqqqtwxRVX4KMf/aiX+PGud70L//u//9tyH/uFJHbdddd+d/Thhx9uuROj0USS2MKwodFLkgO1rb5yNF44r/91rYbS7Esefro2vZwsO6P90jExc+ChiM0aJ5Aqje5uIx7Jg8dFwLioPIcEy36q+9mOZOSyNECsLPJJ7cXrM5o2VM1kMpmYLZd5WC2YN26k5zXpHpNVaeQyjLQFGjmAgumgwbc4nskYNW5LAo/8XAEEfTbrKHMvFlSeyASqnxmWJJdR1xqYY2Zs3SRBUpzzZkuNqK0PWGHj3rzMz8LoWjkgFY/d4tvQd9qe1pXPH4jpwcWYN8CJ1HKLVQPQeV6UE5LIa41SX2P7hUrqBJikjExGagp5RAiWW7O6tDwTk7NjuqZtjFciEsvCEHAg9yZSB8RKxwyEaE0/HSMvUwGRutc4ZffpegOJlHjPr76GRz5ydrTt9c24ViLPsMzDhw3wmEzh/Q5NHVKzTXNGq1ngvmVdAatntq5sLJty4Lbhhhvi2WefxaabbornnnvOsmSDsRdeeCGqtK+1Rr1eb7m9foExns7Z3d2NH/7wh5g6dSpmzJgBAPjjH/+IP/3pTyNaHHyozRXfLQMXzQjFULdoJK1ZPAtQBmahxUADDWaVagatDKNE7ApJW+Qqt2yPSNzsXzWMgr2vhZVYEMcBEy8wzt+rNLCSy5M0x4AClChfLLSmqWRVAlnIUZDsBAXGh7phgInDaBQlWYQ0/WsvGAdVUzZZIWR4HBvkuwpVniOFm427ayqMumc/zSUMhBmq7l69us/sEuD1r6H7z1kqWkaxYir3dd9ixnXm/FixvAQGycJs1FhSCGfXyut4jJQpL8QzMV1/fCYtHEzDLEcy/vvmshdUpzUR7p5plYPPzWK/N/P7MrFhqm4qd3AXmaopC8gSkVhAQHIapNxP5Y20zgk7FPubt49JGBDRMAmXhKCgaw3sceu3cN9BXy5f3PXMhEygdG/XvX+B+SSoS/eAx41x8N6sLBKXwNBN3O3DYbr4G2wbb0X753/+Z8yaNQtbbLEFkiTB9OnTozImgBGF7Y+9853vxD333FMSwL3uuuui8l99Wb/A2Jlnnmk/f/rTn8aJJ56Ib37zm6Vtli9f3nIHRqtV2iUqacW63fLIj51cXIKVIxkJCwFj7IVki50HP0fHqsUBmZCJnY0afbGymyAEHKqmLEtBQIsGexqMTeA+HS+BrzQPzzUqK6Jwh/oMDgGCTBi3JXpc7A/1lYK6K4ceBJkJ9Nz4u9K1Wbnv7CI2LkGuyi4LP3aKubrKE3Ko3GRE6rn7IS3cGHkQkN2KGCwZZ5DC60PrS9ctALVknDkjoCcTFMK84fb++cYsFpcWY7z6Mg5w/eVMr4wJxQIoMZa214HbvZn0BVAGZDx6g559y341YcfC9uhi0QDPjdxiuXbZm+TyEqwMOX0H+07DqQEKCNolZs/1vdHd4zFn67sRO9bbpLKkxh8Mutb922QwbnrsJg/0QORrxmzd2hVXXIH58+fj6aefxoknnojjjjsOG2wwuASXM888E0cffTReeOEFaK1x44034sknn8RVV12Fm2/uPcYxZi3/Sq+77jo8+OCDpeUf+9jHMH36dPzsZz9ruROj0cit4Ir6FvR4uF1EQHIkzNLyMmkaCEiAzH6PzJO8AsrKFF+mVP+wFA3V2eN9yJU2sVFKAJpU933WJXx5ubJKrgQQUASYp9JcX5mgWnMuxC5VHoBlRUCxYtKJTCCUqTNKcTXjjjoMIjNtrr7yJgCwpYs6Z83xZDmqKrc1KmNq9zEGCDBxXjIBispZHiOmGrrp/ZEHz7PF29Utt6Fj8V2oz5lbHDO314bLf/C+cLch4QEO4LhQLL/GMnHXMwSYnPFz5+r3O+YCDYGgO3asIHk8Yzc0ii8rg0sH8PsyN1gXbC50aYIVBtCTWda3EHjty5yqfwEOak7AFQCDXc4IgNn3CgMM9Nuy5x2EUdhJU6HEb+Uy6g3MeuAyLH7v5/rs82i2RCY207WvTFluvYZlRHXaen+OwmSu5m/cobU8N3+DbeOtagcdZOSFHnzwQZx00kmDBmOHHXYYrr32Wpx77rlIkgRnnHEGdtttN/z2t7/FAQcc0HJ7LYOx9vZ2LFmyBDvttJO3fMmSJahWqy13YLSaqufIJfsRS1lkCzpNovAHvt3Zn8JzXxt5MNosVgkAJA0oNe3FYAC+MjjXa6L9m70AefkWvt4NmmYZMWMyIoXgZBcAkosA4DGObRMr6FlVs4H6vN12KZC1C9TW1M29KVymGiZjkmusmVI6AhOOOby4FkVJnbaKAUsL77RACnPmIr1rofteBNN3K21dnwS+uKkcBbByWapA4UKbd4ArzXPnHXYfAv5eoHlOWY+iOFd3Pem6xWKnwtvkQFjcHRjuy12/3HhSBB2f9ustuYG7OPmxeKIFnUsshpCfb8zINdmM/eqNFStv2ywIn1SLTaC/hj8R48CI6/lRv7TS/kAeFiUvJkL8mS+xapbpE4UqvwOOXMGftml01VDv7H5TyFz0ZqHQrhfnRfcK/vUj4y5KbrGSSCZ8RTgpEmkmnevChiIb8q2aTUnWaDRw9dVX47TTTsO0adMG3d6BBx6IAw88cAh6NgAw9sUvfhGf+9zn8NBDD2HPPfcEYGLGfvazn+GMM948mTvctSRkAplKJKKIHQIsKFM1bWMPRgKI9cdtwhX2uaBlqNvDQZWLGRN2Rp5IYYOneR09+i+lATbciK0wwfiO6VI1DZnkkQHYgYVUuCLPWuU2K0rVnTuNs26JEB5bJzIJAT+tnQ/K1NdGdwNpR4b2SVXUOutIPngwGl3mPLNUQh56EBpdDXQ2FDoKTaHqooWoz5lrg+R5PBngQINTQxeW9XLXLIc4eB7ULbch/eDBJl6t3bjG9bwDkN92uz2Oc9XmDFT5rkHHdiWey9Lfpsyi0TIO2Pxz8V2I7pwduOK1LX0WrTnrRUAsTNxoBsi4JpnVE+vnVN8LNSjirei3EFZiMNuXgVWz77FYNDKtNBKVOF3CoE+JNEXFoc2zKKWrgRnrizmettI63B3LsyppO11voNE5eEHK0WwhCGsWH+i2D66nzgHp38fwXRF+p4QLDobHbPRbpVLBtttuOyCFfLKVK1fi6quvxic+8YlSfc9Vq1bhqquuiq7ry1rmV7/85S/jqquuwrJly3DiiSfaWk5XXnklvvzl9T9INDRvYC9mowacUX0y1fRHvy4sFgOVSAHBMj0BnhIev+VhFqVrywE5Ai/NZ+tFQWRylxZshayYOpBZaqRBRKHnlaUSsojVyoSRwwiBGB8kG90NGzvGQUS7dFo/BHZEkYAhU3cdiDkwbkthpScSUQah9u+2272XbV37bFYINHjMFmW2hTFjZLaA8cHz3LUURd8Zw8FFYrl8RFiUm4494e67CjaNVz3w5SsIfJELltrlGm8k+ktxZWXtON6WY8V8Vy4HjAj295MAwnZj15fc3L395pyMQfk5JeBF9yQUCqVJRyn5op+SJN7x7IDtAyb6TBZKKcQqAFD/7D46D9o1WZUh4BNpxWqPrc/WscAUXeb3IdQVi11bXnkk9szEZC14e81iY92yeBLFcBhlUw72761uX/va1/CVr3wF//jHPwa0/6WXXoq77747CrYmTpyIe+65B5dccknL7Q7I2X3kkUdi6dKl+Mc//oF//OMfWLp0KY48cuRLAg2X9VZ012kDaex4/nHrqktR08oFBAOclSlcZMHA05s+WfmlJGyJHwJU4eBCM0suoErabO6zQFqtoNJesS9TkSQWfNFATICJtJV4Jp3VnSr2o2xOkhXIOtKmMT02YaGmoOrKK6DOxT/p3CqHHgR1y20A4IERPXe/KBME+GDCKfHn9ju1Lwqx2dBkaq5T2/xDvPsRY4Gcm9e5Futz5iKUHgFQkiJxTKQDZ6EWGYE1AB7go3UExHibDpyF2/qlm0KLlUkqn69bx1ky/hyGz3lvYqB8O7N/uaA0/UZi7ZRqIPaDJeFgkZTfnTo/17/j4CwsseSESrn4ayjXIKSArtdRW92JPW8/v8++rQ/WGzAWwXOQa10CYuWyWE1c38Xkm+6TsCB9ZLTF9BD9vdXt+9//Pu655x5sueWWeMc73oHddtvN++vLbrjhBhx//PFN13/2s5/F9de3XhP2zZNmM0xGsRkyrXgxVq0oNg+38VguVwbJrEuksEyAp1fEwZYQkBnTI2PrHMBKAAiEM/rYzNG5DfyEAIrdctvTcndsHnxv/ksv1dw7VlESiFyZja4GKu0VVDdM0ehuoNZZL17OomA7nKK5p7kGjXrdH/w8uYN5BwAyseV3XFC9b44ZMmySYMDLj8fT3nk5IUoXg0SbUxmYnjvvQHrwPHR3N6xOW3hcw14xl+Wdd0AUMW4ygQWy9SKxgrNjoVFSBf8uK6bUVbh9M1ckMXJmm/Ixyts712NvbkgqhRQDbba+agxcKeWtC40/p0A5eN8+kyqmNebc9WGpHbPcsbNxhqU4X50DpHdXxDnx9TYrOgAXSQDE+Hk3umpodNfQVnUq4euTdSz4gJ2YkXmlqpTqE2zzEIzQeLyYZdB5DJmCXSeEe67WtXsyxxAE8A9JT9Zv41JdA7FnnnmmFDPPbaeddsIzzzzTcrv9AmMbbbQRnnrqKUyePLlfjW6zzTZR/Y31yfhL1Qa/ZxXHOinfBUH7jJQRIMu1SeW2L+iigLFhzJRltMLRMRHCZpbRYKQCNfEQiNF/zkaQGCtAsS8ue42DDc4QJVIiUQSs/PMhzSfrLmYDcNomrUuJ4tAMeyeh6kXRZdsHs4+ulYs9c8FXkhig60euWSsy2fDrddKlpBqc7rvJpiTgoOGDAB3E1iWiYq8HV3unvo476jDojszeE4q3i1UgsEBm7n7eNSN1+nKsmfscugudjpu7577oLXd1omTclcpBYxhb11spJX4OBPw4YAMouNq/d6HJTDJXu8tajG1Pv4fQDOvrvvdHLsPfPym5EoFyMH+zd0kiTO5eb2yOF5wuBXS9gdoba9G+8cToPqPd3D1ydXY5KM114v1e+MRGs6SG3uIA+X2heCIbF0bvGBHuU0yixqQt1ivjUl0DMSklXnzxRWyzzTbR9S+++CLEAMIa+gXGXn/9ddxyyy2YOLF/P+bXXnttUAFyo8GENC88GbiSEimAunsp83px4QA7UqbqChISKMBVJTOfgb7dKPQiy7VGbAZvQRcDYZwxDGNwaAQmMEIvUplKKCi3v6QYHumxGyZoP4eq5Z60gUThymQvXRokbT3O4iVMrshQwiA0Umcn8MgZMu42CgPLOaBJ71qINfvOtliXAAOpdseOnd92O9qOOsx3YdK2cLpKudaotBcTAlPxxt4DrXKg4QAKBfw3C3AXQQB+KoQFj1xY1sSamW1MtQPXRpg9ScDMfDbgtJnFgB/vW9jX2HZ0/mRWV6rJesDPznWZh6LUjhRlQMXZL7fM/e75s9I3U+OeC8EGe83S3cJjm365Uj5hrJKZiLlEnUQ6Jrq+uhNqAKrgI23jj/6QBV52QkYu3mIbj21nLuXQZCqslAWFMWgVf89xS4r3FZ+c89qn62oS3lupr1baGLPB2a677opf//rXNoExtJtuumn4RF8B4BOf+ETLjb+ZTNUbkKjYFxxnVwwrM3JArBmwEDAvaCvFwTMNmWuT6P7wvGi70AggeTPQAjR4A0hYvoSBDcm2I2VtAPalF5Zw8jKZyJXJsi2NHKZ/vFAIV9XjbiohEyCT1j1kWbBiACC2L6yjSICDyz2snjnHBr93sED/ZF5ZdyZ0WcmwjpPtCx/8CyZRCuNuZSAvBDFJ4Vq1zC4SqIa7vxxUWnazyHJFIcTLdde4fAWPCYuxWgTMfKFe3yUaAiueLRn2P2SgmsWVGVDePF6QxI05iA3jzPj20TYC9yWC41F2NTfnZvQ1qjT7TP+JcQmzKl37PijsLfMSMEH8Wmn0rFyDuY//JxZOW3/e5eH1jgEnmQnv+YhNaiyQiijtEytWzqB0WnQ8C9qsAxKq2KDXTXJEjsG7GcegGCCE6JXN7ItI+sIXvoCPfOQj2HrrrfG5z33OKvkrpfDDH/4QF110Ea655pqW+9UvMDYUdZzWN3M/Wje7FJlhYlSt4QBO8eLNVY6/fKX1Su1DaQSqcq2Raw2lUfTX3L+KTKAUvFkdNwJFHJB5rJco0/zNwBcHabx/AJCrpMhOzT1tLQEXbEvuCIoJSWSCVAqIAhjl5JIFuaaUPV69u1Fi7Oz51bRFBCVQRi5NctnCxKzxeDaRJIWuEAcZLiNQ5TkmL1lUvje33W7uwaEHecCdXv5rr/2tzRgDygDEumWgrSgpzzYldy7ta89NJpbV89gf5iYUSeKBOieTYf77avdlRgzwWbbisKVYMp81i7NhMUAZux69sRmhcDHggC4BslJsWazmJGNZKO5P2fghtz0xLhyACekD6HAZtUFMXuhCc6ER0pbsKclvBH2OxWOaNgybWl/bDQzAfTLSVgZkdG/LgyaFYBiWm7+bXLKEF9saGXfDLHRdvGNE0J4q1ie9MMBjNvrspptu8r7X63UsW7YM//mf/4n/+I//6HP/f/7nf8bpp5+OE088EV/96lexww47IEkSPPPMM1izZg2+9KUv4Ygjjmi5X2MB/L2YkUeoQBQvM5GmSKRARWs0ANRrPahUK4VOVdpne8PWT5rhs6BWcm1xt83qK2/C+KM/5IBLBJCFbBYt498BlNgaESyPgTVirrgciLedNFma3O2j7WAqi9lpofVWU6itMW6XSrXCgm0L2QK4IOxY+rvHvoVuw2DyQdplmm3LgQYPdCc1/5i1zT8EyIQVmaX+0N48G5WuGBcXduBWWwZISseMEDgT0skz5MUzQH2PaXUhOL5EAjQ0HCDjLFf5mYnVm/SuX2R1fxT3mwW7836H7Gcz46CVZ0jG2okxcVzDqj8SCdQO/x9+Nt/Lvy1fmqGIZZKAVg2riQW4yZdk5Y7C+LdEGq29XGroWh3111/H3Cd+gYVTjy71d7TZxE/Nt08bn9jxWDB3vppdSzaJKaR2rCsYxCo6gBwG8AsICEEyJ+bdRu8UmnwLeywBqHXDjI2Jvg6NffCDHywtO+KII/DOd74T1157LY499tg+2zjnnHPwwQ9+EL/85S/x9NNPI89zzJw5EwsWLMD73ve+AfVrDIw1MRHEIVhAIgTyNIVUGvXOHvsCqLSPHBgLLQRTgD8YhTwnD6znL70QlITWLC6mt+Xc60KyDzwWQ8gEuXTxNGSUidks65ObWd687xxwhlIgVJswJgIqoC37FFpfAeitmouTKU/dnQhvxH0XADHzn84hsYCMjMcucaCaKx5k79qPKf7HjGHjyLqBMQlhvEvU3dxXG/2I5wq3pf/Nnje/D/1jnsJg8H7t089+x8zGjnV2IW1RjHI0WF+lj2QmPfekJ2At4hpjQgrksgyuQxDdV0zZOrN8CMoZjYGxprbHHnvguON6l6d69NFHMW3aNAgh8L73va9P4PWnP/0J73jHO1Cp9A211j/Oeh1apZpBZBWILEUiHUuWdlQh0goq7WkxM5XINhg30t21bFgYqK5Vjvp/32KXcRqeXJrhy46C7Pn3cD1vhz7LzAnOhseLZ2M6Ud1KtYJEJAXT5QNC0t6SqURarUTjgkxShXD1BXW52oAo+kixadzVR0KgJAabK5NlqYo/2i4VwsumJP2tvhiinht/Z6sEGJYvLlpJ/eDXOLyvMRNMUDcG1nh7HITZhAeZeIMaF4EFnJuWa7uR+YAN3vWhtmIgLBb7FXtewu2jsYwsk5C0uXipoMFYONA360PsHFyMlwnS50Csv7pk9Pvg1SQIYMVkdnJVxIFKgUTSPhL1zm7kjVp/TnnELVY3kswynHRthdOTM9ep7Fr02maMO90T+pOFODU9T/y58vtAiRdjw+j6bl1dXbjkkkuw9dZb97rdrrvuitdee63f7c6YMQPPP/98v7YdY8aamAUZTJ2dvtMLrlLo9uh6AyIbOWZs7bW/RfWIQ71lfODmQIyMqH3AZ8YA5p6ULnaLvsfbKRvpepEbwdbdS2WJEeOfbXp5nfWN3HLFoKRrqigvVI6HoizXXOWo13Ov/ZDhoPOWmS+qGdbZ5O1rxhapHLZuZaw+JbfqEYeaQOMCAKoaili4chwRPz4vR6XqirlnKL0foESDUkJAkbGaK8eYCebOoZJPOndF4DmjJlFmKGlbqoQQk66gZakQ0eytMFC/L0V9oGBVm3iD+DXrD7ihbMlwGT2DYUwlBYgTEOPB4H4f3TWMxYnlKgeYThX/z8E3LZepsPvb7Ej2m7LtsixKvi0l7/DrpGsN1N9Y2+c1Gi1mM0eDuDmKo4snWZjYMP/6hUx3mfWiCV5vWeRa5UiLqh55L+/F4TCNHHqQ1NZg938z2KRJk7wA/jzP8cYbb2DcuHG4+uqre903z3N8/etfx7hx/SNfarX+T3zGwFgT48wMzSy11pBgbE5qWDNVa+DxY0ZW3ZoHeANOI6w3AMVdkn6skv/yT1h5Fo/+l8IDOdzsMhYADxj2JmHAIZy9UjHlXBWxZcIBuNAq7RWPvTNB7RKQLikgl+XBmbtsic1TxW+G19ekc/MC5RPKqoQtFA6Yz6TrFTMCQ7lSXjYqt85rfgPAiFyGVRQSmUB3G+ApM3OXE2FqhVKGpWW5mtzzsOSTjTFjnlACuvw6UVYjUJQjUn6Kvcpzy5Tx5SHg8q5HAMjCDMfoNWSCwFTnM3Z+fFkziyWl8AFW1QvZlYxYWh1lWmL1JqN99+KS4lmzMdZNKy79Sr/JgJVM469xE+dU985R1xtY+8rK6Paj3UhjjX9vZhxY9VWr0mznx5Jx49mxgm1PIQTrStoiHwI35ZiyBXDRRRd5YEwIgU022QR77LEHJk2a1Ou+M2fOxJNPPtnvY82YMQPt7e392nZAYOyZZ57Bz3/+czzzzDO4+OKLsemmm+LWW2/FlClT8M53vnMgTY46IwYMcD82mRYleuoNyLQCBfPCyyZ0jGBPjSAowOKMWKxXjBUDCGw5iYkSKGLBqkgFGt3Ng1T5y4pcC727cAzI4wxDrnO7r9Is21BrJFnFS1HPZQIJiUrV6f0IGHDWNqENWmnomkalPbeMkVY58lrDQFVS7Cb3TQCO+KBuXSH2xWsKlXMgZrddeGfTc1577W+NZlImobsa0dg9e85FfznYICZM0boChKqaYkBPG7AbJGGQaGUeyRwz1yGo4EDtFUXhSdtMqxwpGw5FklixV16mihf6Lh2viZ5YOAhyUMY/xxgNN3EY3KBYYk8i7wCzPIm60PrDkIR95Cx0b6wbrScR597OlQsX61rDhFqkaXGOGrU31uI9v/oaHvnI2X32dzSYB3ilm7CF7lm6ZlppVLIKotmTfHsCvDpHmsUTK0KjWrd8/7FC4euXHXPMMQPed9GiRUPWj9BafnstXrwYu+yyC+677z7ceOONWLNmDQAT2DZYZdvRZKWCu0JAVjPIrAJZzZBOGIdKNUO2wThUNx7ZgFj+kqFMsUQmaNx8a3R7NwCIkqgtmUyFzRqyEh+R7ZweGEs9Z8KUzYwAHM9MCtPXCXBwVo6EeCvtftxYQu2xGB2ZNi/iS65SHi9liwp77RZtsWMONAB9zS9+bePUKkV9zoEM4ATMuOuEx0aFiRfEOPFamDSgJ1LYjLPQQt0zHutGbVSliR/jbs7QyA0ZZ2nLy3kyiQz6HF8eZ6d6y2LsMyC8iFGk44XXh5c54uchi3hJ+t3ELJZpzNtt9tvp76DPWVWS5rHuUO1i6d772/UDjAH+dQ6vMf8DyhmStF9pe+HHxbpt+x4WRwKAUTblYP/e6nbrrbdiyZIl9vsPfvADvOc978GCBQuwcuXIscYtg7Evf/nLOPvss3H77bcjy1xdkDlz5uDee+8d0s6NpFHRXm70YpOpYQpkNUN14wmjInifjAbeZoyY2648Q6eBgIMwgGaiSdN9Adh9ei2qXvQtBHq0P7EvgAFSHBQZl6S/PTeZSQhphFBpxhyCPAtKmgz+3rWQ5UQEmhX3xoD1ZauvvAkyk8g6MlSqlV7vky0uXrAhPHib99VlUJoBiDNK1G8K/ubXwCZcMKAW3mfjEvQpNSFNncpKuwOUkl0rnuDA93HtspjEfriOwnPl7VAfw6D/MnsRz8RsljFMIp+xWEpuMfdXCATsuTYRgu2t/WbHMvGObqLkt+u7bCvVtmJ/I2+RKwVVb6DRVcNuN5zV6zFH0rhAK+AD3tJETLqJmPkN+O8AwZ4T2kdrVw0kZuHz1t+SVcNl5KYc7N9b3b70pS9h9erVAIDHHnsMp5xyCg455BD85S9/wSmnnDJi/Wr5aXrsscdw+OGHl5ZvsskmLWUZjHaT1Qyy2gZZvMhsLEcRQ5IrjbSjikp7G9KO/vmEh8PGH/0hOyBRP5uxLZOOM0J01qXIs/YKxonPKkPWgl5OxEzQMoC7J31GwDEIwgN6fPB2L9Hy4EcAohJkUPJgXgskZeG2ZDU1ieGwAITLlBQgpDeWxC+U3tzt24qtvvImiCzONHLjNTMB2OuQMl01x9z5CuKh25HrlZEmHb8e9joFTCnd60q7H9HgJXkUoA5woKdZEW/ajgMxOgZnbH0GzzFhIUsWPp/0nw+kMfaN3/O+JFxiFtOnIgvBQ2/H7i2OLLS+to1lk5KZ74pJuhh3pa43sOftIxvvGrOJn5oPgCbFuQemTaZk4q0HfPbaq3QgXbkpQew5Y8XiIJsnbZVdmJyVXVegjAL4B/v3Vrdnn30WU6dOBQDccMMNOOyww3Duuefihz/8IW65ZfDv94Fay0/RhhtuiBUrVpSWL1u2DFtttdWQdGo0mEidvAKlLsu04lH+NOOsjIBuz0bHf9i+sMjoBUWB4H0ZgR8+A20G5DhrRt+jbhY+QxUBsMpkCYQBDvCk1QrSjhQylQ7cUUp/sZ97Cefl4zUZfOklXalWbF945hqBEv7Zc4s0mTkP1tJqPGRz7bW/tZ95/TuZSWTjUw90WXdnJCNWqxxptWIBJ8Wa0flYuRACSATQAnaMJzDwgceK8xZxajKTSIv+JQV75oLunavbyoZw97NluWIZiYnfzwAsxtgr63JmwCzcthkIp75wpja0mJwEt1DCQrAJELe+AsvLfXNly3gfYuxYuJwSkew51OvQtQZUdw3v+dXX+t2HdWXN3Ly8fqeZlLmEoEq1YqUtCHgBsGWmKPyBg39u4XVrxvTzSV2sesOYjV7Lsgxr15qM4jvuuAPz5s0DAGy00UaWMRsJazmAf8GCBfi3f/s3XHfddUiSBFprLF26FKeddho+/vGPD0cfR9QIiNmYnCLmotJuXLQirSBpGxlmjFK7SQKhLzcHf3k3CxQOBwen05W7kiJWEiPx1nFLpFO7pvUh+OLb2jgQkQBVoGd1zTFdSrugXegCTCirQm+PJ42Io6nD6Zgak42pPWZNgrnliqB6biFAy3XvLrVW7bUf/L9e15sMT+ce9hTAZVH+KTPq6pY9k9JmnvLC7QRmKMM2PA+6LqpmtKnS1Mlo1P/7FjQApB882LalWJFyA5y1PUYijKtYZhKqcK9SPUyezakaGmjkkFlqQZYqkhZUrfycArCJFnwdna8UfoakZQGD+Sb11cYLRhmteCwat8GKuxJbGVrst8St2cAfZt+KtGKvR6O7p1jHM4+Vp1Oma+tGRb6/RpMryfpMz6llX1lMo8iKGLBChkQpH7SZNv2JHBm9Z+j5tjGY7Nix2pUDYVQHY2PZlENj++yzD0455RTsvffeuP/++3HttdcCAJ566qk+dcaG01qG9Oeccw622WYbbLXVVlizZg2mTp2KmTNnYq+99sLXvjY8s6vnnnsOxx57LLbffnu0t7djxx13xJlnnlnS8Hj++edx2GGHoaOjA5MnT8aJJ57Yks5HzLTWUPWG/dNFXcpsg451SlFz2+j4D1tmIRFJEUvlXuDjj/5Q032tbk/BkHC3oq/XVXa/kBHDZZkuUd7WMlaZKDFLjvFwbBzNZKl9yoxMx6fewBeyXIlwrsyw/TB2hFyxgIlBs+7ZVHhCqQTEOJMiU+kxVsNtpBOlmzAnsaD7RCb2vACWCQrHcNF2nvvPXnefJZOpRNv8QzDuqMOcy7gozi7ZfU0sc2z6RHFkzQCHkAnSNhbzIyjI3L+X/Jh8X35fPJFbxoY1255vk8jmMhrcehPcdeLFvkyH1nkJDPA++Syuk4gxQDr33P7e5CgCAHKle2XqaB9ddzIXVuxZGyCm6g2866ovN21jXZvIhP+O8RhNKv9lmFiRuXeYqhXC19q5NsNr05zRb5ZwEcqf6HUOxACTsTwUf291u/TSS1GpVHD99dfjsssusx69W265BQcddNCI9atlZixNU/zyl7/EN77xDSxbtgxaa+y6667YaaedhqN/AID//d//hdYaP/rRj/C2t70Njz/+OI477jh0dnbiu9/9LgBTMf39738/NtlkEyxZsgSvvfYaPvGJTyDPc1xyySUtH5OCXWk2mStl0sSlKPTFKna7vKcL+/3ftbhzp6OG7qSb2KTjjkBS1DcUzD1HQda9qVaT8Rd8M+HCcpq/7wIM2S0ueGn3sQOmQKISbzv+QuVuIXohZh2pffER6wUYpkEX+4nu4n5kfpwb71Ouc2hoG6cWno/rq4Crb6ch2Tkapm14XJXNjLM+4fE5qykpnb+4/y4BgjEKBZOIQosM8F3Uuc49QEDnDwC5igSwF9pxQvqSE9R2Wq34MWusuDZncLJxDgQDQK79eqFJAOKpFiPvi5BGzkUVzE7oZuUmWR8NiwirZRf2r3TOLRo9O1rnHjuWBAN7aDHGmiQtjGnPRdYMhPHYMAL2MVYtVxqqe3Qq8vNnir83DKPpwD/gGEhVL96DxHQJknYpv5/8wvMsZAMApAzuQTxez1zTiGbMmI1a22abbXDzzTeXll900UUj0BtnAxZ93XHHHbHjjjsOZV+a2kEHHeQh1h122AFPPvkkLrvsMgvGbrvtNjzxxBNYvnw5ttxySwDABRdcgGOOOQbnnHMOJrQY16UbDaDNqeonUkLXG1BFzIauNcxLTmjo7rUQ62imZMEBcxfyF5aGjhcE7MN4oHpYFLlUSLc4jqfMrrTnUuBGhY7D/tv1RSYlP0fXJ2JMhFXlF8LobVkhRmnUyrXOPcAVXjdT6kdbVs0r1q1z6wZUiuKYzL6VqsCqn93Y0vUcrK2+8iZMOObwUiZjzIQstNcyaVX1CeDaYOc6vCSHRDKAzUCdgaLMzVe4bBLlMzQC5Ip2For/EktG9T9N5QC3Pbk1qb+SHhKYygGAYb5QU1C6aL9wUycMtAg4lfzQeEA7AW1u7pjNjeuKNY0h6idoI7DIgV9YhNpt6//u6PdA65rpbYUuS9PvWAa0cXfXiTFrIh47EhayUYJNBukZp2uZdaTWUyCgobUDYokUkHDJOmTcZU5tkVFYQ2gj4QXhpjTQCwHa7zbGbHRav359raR7XnjhhQPuTCu2atUqbLTRRvb7vffei2nTplkgBgAHHnggenp68NBDD2HOnDnRdnp6etDT02O/UwCfcZv4elO50tD1BvKsgkZ3D0RqNMfqq9ciXQcx/Jue/C9QnJVSPrihZb3N5kOXZIzlajawcIaKf09kAl0zDFZarUDVtTerDdukFyW5cUL2ICxaHStTomrKujCo9AlgWBlaV+9uWNekjUmDQJKZF7rXJ+FKP9HxaNBvBvCG21ZfeRMmfmq+jSNSde0zUkEmrBO9NKWjQp01YsBypaxMCA3oZj9tgRmty4rrmUhzjV0WqwM3DiCw+wbz4hcyAaSJMxMygWivWPV8DsQI/NqYnSK2i4Am6rDnlogcFZvNW8QRFjFqzWpQ+oyUByFL20XZqQAkue3jLq/Y8SkhgAst91evKgSSdN8SyfT5lYZsAhg4M2YFgYsSbqq7B2Fw/0ibnVylfvyelO79YJ5LI7GiaiSk7KqQ2HspnaQL4MqMAWXQatbzmMVIIoTnNm+uJzfUNhRuxjE35ei1foGxZcuWed8feughKKXwjne8A4AJfJNSYvfddx/6HkbsmWeewSWXXIILLrjALnvppZew2WabedtNmjQJWZbhpZdeatrWeeedh//4j/9ouj58YdoXmtJAQZxppdDo7B7IqbRkRLkrZQYdAhglMBWZvU845nCItMn2EXcjAMtmIYvpNPlxXLRMZtKCK41ysD7NVgHYWazpQxBozY5HAIv2JdclPz6Pz7H9YUAs6ygGnppT0veLaBeDOosr+8fl15Wu47q2VT+7ERM/NR8yMxmmqkbuxmIgSSse85h2pKV4I1NeityXgE7NANboanjsCw3r/DvFoeXaoKFEJABLGFHKASjf3ZwgUT7oIXCbCBdET3peZNQ+jwmkDEIaZIU3sGp7/hwkUvvhxIQC+t3xnbRJCMJC1om74nsrPM4nGtwcS5db1rWvOKUQRHqljQrw5X5PbDu2n6tQIG3gvq67gP3Rlg249dc+jgac65HYVa5BSDF5AtoyZYBzWwNOtJieB5lKW+YKMM9CMwmL2L3mYRTeszHCjNmYvTmsX0/RXXfdZf8OO+wwzJ49G3/729/w8MMP4+GHH8by5csxZ84cvP/972/p4GeddRaSJOn178EHH/T2efHFF3HQQQfhwx/+MD796U9765KItlGe59HlZF/5ylewatUq+7d8+XK7jmq+5UoVbhYTK+aCwikY3Ehc7Pd/17Z0/q0asUA8ANuqzbMg175carHg/JjsRBhoz/f31gfijDYQn4mNOo0fpvklhV3Xm5H2FaWj02fS27LJCKIckG2TAzJZBHvHFLcTGzDcNrEN/7j8ulEBxMhcRQFzHYgBIj0luheV9gqy8RnSjhSVasU+H4lMsPLH19vzNEH+oqQdxu9rM4Cea6f2T0CJx3nROlLrJ2FY+kxMBvWXPw+cySNAQS5oStpIO7JCSiMeb8UHXmIN+R9PduH/OWijAHr6nfOA+vBaheb9JoJnPn5v40LEvK2Y8Zgwt308C7Qk1yClybYMtMj0CASl92XhufCEmth7I7xmnhRLwfwCsM8CjxXrq62Y9SVxMpSmizJjg/kbY8ZGr7UcJHDBBRfgtttu8wpqTpo0CWeffTbmzZuHU089td9tfeELX8BHPvKRXrfZbrvt7OcXX3wRc+bMwYwZM3DFFVd4222++ea47777vGUrV65EvV4vMWbc2tra0NbWVlpuA4WFKBgeZVWvVa2BXGqPNUukQF4f3kBYCuY2xbDdcpOxWI4diVkoYtqXezIWRGuPK/z6iiEYapZKTu3yIHHHWIUDSfHy5aV5CrkKIRMkBbtC6ewUG0KzWKfAXQSrl6oqOJeczCReuei/Sn0daau0uwmATAUUgEQ6N6oXz8fiwmgZAGx+6gLUGbgGCsZR6pJwJlAwTixLjRICNGOeaF2j20hZwEoPcNFd343DpVhIZ01kAvXOurePqusCRJvkDy4tUC/qpJYqEtRhlxtmzt+PTLOn1pNsUdq6Yck91p+EmGZuyZCd8wAfY1lC64/bKxoDFtlP0ITSSp1I+5+LwDbbf13blDOP8fTnKCM3fIdYlyR79vOQ4YyAYB5ry7elddzK70phxwDb1lAEcvXTTDmjwboph6gzYzbk1jIYW716NV5++eVSQfBXXnkFb7zxRkttTZ48GZMnT+7Xti+88ALmzJmD3XffHT//+c+t/hfZjBkzcM4552DFihXYYostAJig/ra2tgG7T5vNFK3wotLIpXYvVq0x94lfYOHUowd0vL5sxflXY6PjP1z0wQEYXhKlqVCiyiHT6Covjqy0rgBcAmUgxs0HdUHmEgs8Do1ifVxfQgauPNsXMreAS8AIn9JgTrEhGgIyA1TdAcK0EHvkOlj8ev39+7+K9nGk7e/f/5WJFyxi4ZpZrnJAJNatCzg3eyIFqhPa0L2aNKf8+o6UheZYTWFBD2AAU65ySGmuIQ1UUko0KDZP+DGFWuVeDdF6d8MALLhkAgD2nhDwMYxdw+5LemU2jq3ZgwwC48KrwhDqUiUqKa0z+woorUoDOLdYnGXsNxcDYKHlSiOxYKnMvMXPr8x6xTL8CGyZbcogmWIHafv1yXj1Dz/Lmdyxve/PXYzcJd0MVIf7AmDeEQGosWzK9c0eeOABXHfddXj++edL8lc33rhuk7XIWv4VHn744fjkJz+J66+/Hn/729/wt7/9Dddffz2OPfZYzJ8/fzj6iBdffBGzZ8/GlClT8N3vfhd///vf8dJLL3mxYPPmzcPUqVNx9NFHY9myZbjzzjtx2mmn4bjjjms5kxJw4q6e2GsAzlS9brfJTboX1kUgLDEZflyDYXZW/vj66D6kRZTI+EDELRYTY19ebABNpHAZS6TqXkgV8HiNcJk7jnAxQeSWCjSFQldSWijOC5lY9XkeX+PXrBMeaDSB/tJbnkijRdaXCOtIG6mG87p8IROqasokLUimNh7EZLVPqgJwoIuua9aRFm5f4QEo/34nNv6OtiH3IbkjRebckGnV3BshfP0zmUqvpqWN7WNZkrasTQDwhBTIOlKvf/RH7uqQ5ROZkz8R7Pysqz9jrl5yqxfbOvemn8xB4DBWOiw28Wjm1jTCzb2/hmnixyU4eJZodJ8iRsz8heBMQAgBkaUQqQO2I1H8Omb0/PKi9FxXrtJuKnVwNzvve8z1G0rzxALv+XvIW046eIK9p+y9X3dAlki4wf691e1Xv/oV9t57bzzxxBO46aabUK/X8cQTT2DhwoWYOHHiiPWrZWbs8ssvx2mnnYaPfexjqNcNG1GpVHDsscfiO9/5zpB3EDAM19NPP42nn366pJCbF7StlBL/3//3/+Hzn/889t57b7S3t2PBggVW+qJVk9UMMq1A1RvezDJUq0462v2XWCULmxpSczpJxT+uPyUSbHzCkSVgMfFT801ArBSebAVQnhFSqRpapnV5OyGKmo5dDc8VoEHlbnyXI8+6E9J3QThWjgVWFwILLqvRdxm5QFwTuJ0UM+SkiAmhygQAikwrF/tDLgrNBsF1lQ01GFtx/tXY6itH20D5ECzz+5kXrluAAKqfSEGxMiUpiuIakoXPVl7Eb6XjMyRdDai6gkwlsvGm6Hmju+GBdqqeUKlWIFEkFxRsGbF3usjwNPcpzjDQ/ef94jIm9npkjvUgsBWyn+TKJbbXVpNgzyIxcQCAWjnGMhYfCZSzgmPmu5BZEkwhp1CKz6RwibQCmVWiMWJe+6I5SEuktHGw5pgV5EKPGpWsHc77NHqKa5+NT20GMWU9UoYw3ad6vVFy90Zj74KYVoBNMqT0fhtm+xjTGSRSSBb8v47eH2PZlENj5557Li666CKccMIJ2GCDDXDxxRdj++23x2c/+1nrVRsJaxmMjRs3Dj/84Q/xne98B8888wzyPMfb3vY2dHR0DEf/AADHHHMMjjnmmD63aybmNhAzM0dzeRTLPOLqy9F4Cz28rzY+MJSEWXuJQUlY7Azfl/TBwgww/t0OXkwhP9YvwT6X1xfxH5F1oSCr1fpi+k6A+e60lYzblQOM2JUPJQHWZ0ukyTQ0YLh8rw275A8a4XqeQVgu+ZJ4GWZWSJNlsXkDn3A1Pu3/IgOTAx3qi81YTZ3QLwq3YK6SpvePsjOb1XEMXek2i7QAkL1ZKO/BlwMUI9ck8zgAXjxT2D+H5mx0b6WPYv2JWW/xZ2E2Zmx9ovsvsTHUtuP5x9l7nIO05OLWm4t+IAxVmCkPlIFYby7cdR1jR0H4g23jrW7PPPOMTTZsa2tDZ2cnkiTBySefjLlz5/aqrjCcNuCnqaOjA+9617vw7ne/e1iB2EhZIo3SfqWjWrjPDJ3PU8L5tgCgG/VhB2M0IGUdaYkxAJq/tGUqvMGM/jsmzBXWpay2XLmZvnVHFlmJ5lh9x42V+kGZkamwcUOicFFVqhWX+UasWjGrpcxBF1DuF5d27rPUa4ey5+h4lJFpXFpxodDRan87+yrLeFUntKE6oQ1ZR2azStsmZEjH+8wsZRgCsOccZlE22966LNlzxt2Nll0rmNKUFWim4HvBmVM28PmCwb6YKd1rMnKD8+LPPHifxyhSX11h6MRbzo306ej6UQ1ULyGCuTdDppD6Frq3wnJH3JxL0w8ub7Y9XRP+e+JisdQH/xjS6w9gWDCZVrx72yzrcl1apZohEcJVEFEaqqa8GELPLatzqLqyEhVll2JS+h6WU+LtudAIXzaEVzng+/F1Y4XC10/baKONbHz7VltthccffxwA8Prrr9sC4iNhLTNjc+bM6VUqYuHChYPq0Gg0IYQN5qdZqCxKIvGYMZFWADG8MWNaGVlDGhgaXY2mNfD4PvRfekK2PNvMsSFu8BaeDhMxKTZTsVBHd+2xF5yMZ1bSZ8tepJRRR7ExxrVlSuqwOJC04iVL8CBsOiYNNo3umnWH0uBq44fSii2wnSsNrev9UrkfLVapOrcraYrFMlE9lX3lyilxQNEIiqNTFqEswFSju1FIZAjU19Qs88YL1NNxSWEfcFpuPA6MekaSF4BxO1HiAFAAMfbM5Ur7gN9mApLr1W1LgAoA6t3dxjVqi8UXv1l2jQQ0UAzCudIlFo3Hytn+MZ07bvxacKDam6As/200SwSwkzzlxFwti2S1w4pkooCl5++ssD3OpCVSQCgBtY6ZsZ0vP8mAMBgPg6prJkqsfVdxYRQnT9fRli4KjAMymUmvaDrPhlQRrbWmk9lqNiL1KLlpDD4b8s3hIxic7bvvvrj99tuxyy674Mgjj8RJJ52EhQsX4vbbb8d+++03Yv1qGdK/5z3vwbvf/W77N3XqVNRqNTz88MPYZZddhqOPI2Kl2a6IB2uaODIFrdSwzyy3OP1jdnAg9WkKciaLMQC5zm2ANRkPPqag9thM2QCZ+CBC2UzhS9OyE9IxU77WE3NT0bGE6485dnyAIvAW9pcH18q0AllNowMq9a+tYJX6ivEZbdY2od3GV9kAc8ZgOcYwsaDXMoPsmhvNrrQIupdWZBVw7FSl6idHpEXgfCISBu78JAHSDgOMdEbbhMwCJiENC0UAr1I1sWP0fNmEDEoMKD7b4Hr2DHOWlpgoy7oWgM98ds8i6Z2ZfksrrUHt0XEM61wkFjA9KwsCIr9zHjDOA/n9uEliJ/0i77H6sI4J0t49MJOgivtcBOC74H4OHkUp65y3HQalryt7x/dPAGC8DLoAlrqmUFtTh2D3MVc5VE2Dx9iVGEX2TuGJF5xFF/ROSCuotGf2+sm00pTVChnPXGuINI26MdcVM6Z0PiR/w2XnnHMO9tprL4wbNw4bbrhhdJvnn38ehx12GDo6OjB58mSceOKJpWzGxx57DLNmzUJ7ezu22morfOMb37Cx4WSLFy/G7rvvjmq1ih122AGXX355v/t56aWXWkmtr3zlKzjttNPw8ssvY/78+fjpT3/a2kkPobXMjDUrpnnWWWdhzZo1g+7QaDFRqSB0lYi0Ag0TNNrorqEC82OUWVqiuYfatjj9YyZgOgAWNChylmKL0z+GFedfDQDY7uxPYWUhd5BIgVpnzTIWje6yyzWM3bKDSGYGKno5EusihYn1sWKfBbMRsk1hEDUfbPhslbYl9oMzERawZRVWGNq/5iTOS4HoVFQ47Asv8DtS5Y4GYk+e+APseP5xaHQ1rFQE4GKyYm4uCg7PVQ6ROial0k4sSzwWy7qqLRBKi+Vmva65Mkw8uQKo20xLGyeWCeTKCc5S+xSzpeoaoAkGJWzQBABOyNXoOpFUhe+qpISEtgltlq1yA2rC5EycqxA1ZdvPlQO2xlWmbRydYJyCjWm0IMlnzEIGLBpjyUstRa69ty1jtERaMYArDdcpLzMy2g5j0CwTnlYgUPGWDbdRn1WtAdVdt+y1ACzYVjVlGWAXLxjXBeOuZf4s8xAM/n7OtWMVUWvYAHwdxN6Fkz2zjNe3XH8Y9XVhtVoNH/7whzFjxowoqFFK4f3vfz822WQTLFmyBK+99ho+8YlPIM9zXHLJJQCMdNYBBxyAOXPm4IEHHsBTTz2FY445Bh0dHVbD9Nlnn8UhhxyC4447DldffTWWLl2Kz3/+89hkk03wz//8z332k5dRFELg9NNPx+mnnz5EV2HgNmSVYT/2sY/hfe9734CzF0ej0ayRAvm9wr71BlA1o5KssjidYYgZ2/prH0ejGDQpiJrHp2g41wP9p8y7uscYCKTKyReQkWiqVk6/K2euLStJkEmoogYlLbODMHODmcHIzWSU5q7MxHsx8lk/L+Ys0wq0KLLLqlTXT1tQbGrRMSCScpZDIhemakLOBGBN/5zLglxkMpV42wWfxdOn/miwt2qdGI+vQVoGuZV2N3jbUi7agVKThSqg6g07weDXjzMRlWoFKVjZIQBa+BmX3LVklrl4PytWWzBtDuARsyMgtAZQd4C+2MZmDBeJGk5XL7Ht5zq3vz9VV0hEgjQAbTITJUBkfz+ZRMVzubqYxVAmJZQJ4et4GR5uVmxYu8L2lOAQsxI7XYpbkqVtZFqxyQ9RMKE1tNbGTRvERTWLOxsu2/nyk5AUbkNdb6DWaVgRet9Uqq70EWUBxyZ39hzYtbTPUwHw67Uel7zEag17LkuWoSpQBmC8jmeYKJErVdyPdQPK8iHIpgwZpqE0Cny/8soro+tvu+02PPHEE1i+fLmtIX3BBRfgmGOOwTnnnIMJEybgl7/8Jbq7u3HllVeira0N06ZNw1NPPYULL7wQp5xyCpIkweWXX45tttkG3/ve9wAAO++8Mx588EF897vf7RcYA0wQ/89//nM888wzuPjii7Hpppvi1ltvxZQpU0oaquvKhuwXeO+996JarQ5VcyNuzg1QQbbBuNJLURQxY4Ch2y1Qq9dLbQ1dnxLLOADN0tf9ci/dq3uQdaReLAu5rbLxKWQmmF6XWU7fHdtl2I+0I0M2PvVcWma9sG4C3lf672v8iIJNrHiBybGUfcugVNtMKSoPhAasZZZCZCm4npKsZkg7qiYRo5AqITOVFJQdZNc34332MiiFc8kYFsUBF5FJNrhU2Gzf3A/OIonChZNIAVnNUGnP7HqZmetZaU/d/Ujp/iQWeFXaU+vyNM9Pm2ufAR3jPkptcoW5n9L744Mgd0lVqhW7DeCeC3LPWreXF3Dvu/Wt8Cc7TpjoQO1Y1zvrG9+G/sh9Rn0pBZZbdi4mxeCzxLHfuYvxjAfkc/cod1fSO02wYH46Jgfkw2XE3ulaw4J+FQj0UnA+udKtxl7xnnFJPu5Z4ZMtele42r00iS6L3HraYfw3UYC30A0ZJk+sS1P50PwBhoHifz09PcPe/3vvvRfTpk2zQAwADjzwQPT09OChhx6y28yaNcurinPggQfixRdfxHPPPWe3mTdvntf2gQceiAcffNDKbfVmixcvxi677IL77rsPN954o/XoPfroozjzzDMHe5oDtpZ/faGwa57nWLFiBR588EF8/etfH7KOjbTZl52U0BQ3oLT346Ufqa41zAxLayRaYf/lN+OOKYcOWV8MG+VcJWm1AlU37pVYqSEKfq53N6BrGkmHL55oA/ezxJWCgWMl6MWmVY8beFBoFBWJs42uOrjOV+zamc+516b3IpTuWpJ2GwcIYYF2kVUg0hShjlnsxSiy1A1AxYtV1+vQtQYSIRhjY1jB9YUVAxwL2eg2GWdGd83JrYh2wxTprpoZYFNAaCcaqpVGorTTrSKQVQzGWph1quZLunCjGq2eNEQ1NYNhWpQryiqo1bo8to76INOKx7ZVqpkL3GZua1cfUjdlt+x3XuiZ6YwBsM84sWa8mLouEgVKhaKlYSEFmEuUieXy7zbzL6xCAHLBlV2apWe8eKeYvvrnGcaeAS6O1SQgENNHBdbZdsV9jrUBmPsEwLvfw22N7hrTg3Msv6or627motYSLjY1rbb5CQsFg2XFcdlEmsytjwMycxwGrIvsedresMxO1Ntc9/XXTTllyhTv+5lnnomzzjprWI/50ksvlUoTTpo0CVmWWQH3l156ySuBCMDu89JLL2H77bePtrPZZpuh0Wjg1Vdf7VMr7Mtf/jLOPvtsnHLKKdhggw3s8jlz5uDiiy8e6OkN2loGYxMmTPCyKYUQeMc73oFvfOMbJbS6Pht/cZVmnAX41nUjeprYH64eQsdv/yyMU9HFzNIOQiw4WtU1qFSIVhqVLLXxP1AuNgPQqFQzVDc0LzkapBMpIOFnOZLF3Csmvi6336OK1zQ4k6u3eEnTend+sqiK4GdvijRFo7MLula32xEQ06GLgYEwAGib0GZU6zuHj80cDqNBhmL+RCYh6srG1QDmelfaCeCwskYF+KDYOsB/hvICpJWYEwZ8KW6JYiaT4ndQSdOCSdPQ9XoBoKXdh54lugPExulasX81AxCv7xoLnA4HZHJvaqUhRepl55rjmcw6oTUaXax8VqGJxgd//7z9rE4+eQm/h3F7sklFDv5+CWMiAdh7520bTGS0dlmWtIwmizHjgMzGTab+fV8XZn7HDrzKANBSmSg/ycfFuFXaM+haEfxfJDjool2l3TlWiklJuR5t87gve32CbNSQadRag1zGch0wisDQir4uX77cq0wTq88MmFjwvnS3HnjgAUyfPr1fx48pMeR57i0PtyHXaqvbNLPHHnsM11xzTWn5Jptsgtdee63P/YfLWn6KmvmD32zm1LhdLIuddbKBKZy15lohr3UPcV9IfNMMFJrF55iMI1XIW0jb16wjsyxY24Q25Co3NQQDN58/e8yt/EUiBaQUiM2opRSsXFTugSrXZwHAxCPRdz7404AesgQiq0B31fzUfeorUjs7ldUMIktRqWbQ9bqd+RLDIrIKVGe3CWzO3H783OnxV3WN7c7+FJ772s+G5H4Nt/3fyZdhx/OPA0AuZKfZRkbnqmsNe69sDCTYwC0ElKoV+8QyVKXXXi6UG4RkG4QQaAAWKBPYSoqKCmlHFY2umr0/iRQAf6aE//upVEOdNB+00ABM+3JmTmZVwwh39ljWT3S0QdUb0DVlVexVrYFKe2qfQ6XqxfMpEQJTIRNAOhe8lUqRruwSF7vl+/qTCS554Sx0SYbAywdgfqYkUI4VjQExWk6SGAAsG8q3WReWSIG8W3vVBjhgdlqAjtmyrvXi/hFLnrDz4WxieA199rEcc9d3n6UBYCiqFvAJcC/gd6htKLIhaf8JEyb0q0zgF77wBZt52MxCJquZbb755rjvvvu8ZStXrkS9XrdM1+abb+6VOQRM3WsAfW5TqVSw8cYb99mPDTfcECtWrMD222/vLV+2bBm22mqrfp3LcFjLYGyHHXbAAw88UDrp119/Hbvtthv+8pe/DFnnRtpI4JX+uwDmcgwBwNyVPV1D2o+whIqqa1vsGkDBeBmKn9LxARTSBYYhqNd6LHsGFG4cL4i+Yh8GDjZJ4yjUNUqlQKOrBo2G1VzjZaJ4RiMxiCJNbYkpfhyrD6ZqltGh4/OZJ5VusbFLpFFG6f3SxDep7jK7Qi9hPrjzQm1pR3xmOFqNi6ZyhojS9V1wsWEzk6ofM5QXM3taBvjgi5aHAw+8RIkC3GltmUm3zsTu0f1sdNU8xi1kefh/q2NX9NN79pT7DpgBWnd2Q2QVyGqbG5yLxISkmAQ0RM0CNGLkaFvVXTcAq0gaAYrBXWhIlrmZK+0Fi3MW0tPAi52bcBOYWGwWd8/zZTwGsrQP25bHO/F7R888saExrSxq576Dvhw9znCZrJqYwkZ3zVxXup6ZX66NQBDvq4lxS6GLGKG8eE+Vr7/0AqM5s0UAiyyuzeZkfyrFNc6l9p5Dsa7dIevQJk+ejMmTJw9JWzNmzMA555yDFStWWFfibbfdhra2Nuy+++52m3//939HrVZDlmV2my233NKCvhkzZuC3v/2t1/Ztt92G6dOnI+0joxgAFixYgH/7t3/DddddhyRJoLXG0qVLcdppp+HjH//4kJzrQKxlSP/cc89BRV4OPT09eOGFF4akU6PBTJAoZYn5sRTkWqHPZnt2KbXGfk+WadCB2HZnf6oYUAhMOPZD1RREJtE2IUPbBAcmaJu0o80AJckU6otCyDyI3uwjvIEyZNDoHM2sNIWstkFmFaQdVcNSpanV76HYLhoIKtXMgicKqrdB5uxYlWqGtKMd6bh2E7TPgsjpWtN+NkC9YMNkEaRPgzidC8V+cOYtnMma4Oz174UaKosDxaDMxVGrbah0tKPS0W6vl8hSxhr4+nh0jWOzfgN4shJgIDZLFBIvobaVfdbSCkSWIh3Xjkq1DdalzLSy6PmheyerbcWzYLYRxTNE5wUYd5Sstrl+Z+WB2wOCxcSAnhNZTUtuWWJqbAKBjRXlwf/Fs5ixZAdKZBDur1LNHKMTJJHw/pWAGzGAtjauyRDWtXrhJovHgHnPg3RxaPwa8/tNy9eFieKdahI22LUorrOspsXvOPGYQqutFsR3kfYX/e7Tce0FY95mnp/imeurP2T8M71TOFvL3y+ieKZo8jjcRm7Kwf4Nlz3//PN45JFH8Pzzz0MphUceeQSPPPKIDZCfN28epk6diqOPPhrLli3DnXfeidNOOw3HHXecZekWLFiAtrY2HHPMMXj88cdx00034dxzz7WZlABw/PHH469//StOOeUU/PnPf8bPfvYz/PSnP8Vpp53Wr36ec8452GabbbDVVlthzZo1mDp1KmbOnIm99toLX/va14bn4vTD+j0C/eY3v7Gff//733vVzZVSuPPOO/tNV64PZspuGMDluepY0Kzdls3GEyEAIQAhsd+T1+DOdywYdD/IKMg4TSV0TVnNJOOy82UoDN3v3IL8RUauQ+6+AIrUbhYALIL9K1Xj8iGq3gmwymJZoC1mX5TSgTRWtcC4iGr22tlzlkYkoB4ENxOYEnT8go1T9YYZ8JiLkoQeOXBWSkNW26C6e1xslDRK86rWwM6Xn4Q/Hz9yAZytGi8bBRi2jBIU7DbewBsPUOYDHDEQFItkIqboeMImqthjsrg8PmhJVKClgOo2WVq20gL7/YSg7v9v783j7CjqtfGnqrvPMpNMEgiQBJKQoKAIFzUIRsAQ9kUFd68IiXi5P8Q9Kgp6WbwqXlnkheuC93pZvHxEXwV92XeQRRAQWWRXYiIkIgGSMMnMOae7fn9Ufau+VafPzCSZyWRCPZ/MJzPndFdXVXdXPfV8l7JbjjGVjTazprqSPyA9u828MBOvUb2y1PkPlvQDTxpMZfLJNAwc4OpxAd9XjTvLq1x7jTnzZsm1k3YiJIJ3M/SDC+uq/yZyxhTEwC+qvH9T72+67sbKLD/n199Ay6h0NljEjANJQKBl4C/Hf6fxpGg0LeGisVpWUru7BillaLSgAt897uclCmnHtNBJn/dPOPbboCJsnC3VeDTkhpQxUjjllFNw8cUX27/f8pa3AABuvfVW7LvvvkiSBFdffTVOOOEE7LXXXqjX6/joRz/qpcOaMGECbrzxRnzqU5/C7rvvjkmTJmHRokVYtGiRPWbWrFm45ppr8IUvfAHf//73MW3aNJx33nlDTmuRZRkuvfRS/Pu//zv+8Ic/oCgKvOUtb8HrX//6YeqJ9cOQydiRRx4JQDvILViwwPsuyzJsv/32OPvss4e1cqMJPylj++qRE5VS04NM9M8GYKfzPoV+KaAaOdJaqglYs7CZx4tc5y6q9NTdJMMGdT5wcFOiKtrVLpsIkU3MfEXJHb4dMXK5d/SPIYRmgNR5sIIVP/PzKJotbS4ArCOxvV5Qf6s0BCoA9yeRid7WhSZGPvHaiUvqLVjs/cqAtNZA3je2nPid35LJP8ciDcPJtTRtSDixBAsM71jorWOsycvcC75PK+0xSPeNHOV5+UWj6S0AnCO0MQPRPoXS5EAL7nda0+ovN8mltYr37KvCPZe67bn3nLZHhbpnnNcPxkE8YYoMBSrQMxyadYnUcXMr1Ys+DyP8bBJXr999UzE3p3Hl0bYlEH6Sih+pStfl9eL9mgzBtLOh2OPqb9vk0KooICgLPutfG/FYQkj57+EYIBIJUfhjdNFo2aAgGrf4M8WfBXqG8r4GuE8Z9zkLx/fw3dkYGE4H/pHARRddNKhP+YwZM3DVVVcNeMyuu+6K3/72twMeM2/ePPzhD39Y1yp6mD17NmbPno08z/HII4/g5ZdfxqRJkzaozA3BkMkY2dJnzZqF++67b9jsyJsqaOIBtDLg5cTqK9peQD0JpBAyAYoCaDUgKhuWd63V5xyrAZNlv5EjzyhLuU6imZhJivtV5A2X+4xPXiT380kprVVRFIEvDpuseWJEGjj5CtQ3ZWXIumreNRSblAl8Qqa/yZTT6mvo/m+0LKkqG4CJGJQ50YaOzQBTezKXHyvv67dO3GOJkPH+zZs5RC70VknddW3OIpJqlNqyfQplliLJC6t28qzu3v1mZEln7teTXJNNnp3MXCkzaxJ1s88PqRFF4T3rfBIt84MiIkSf8e+pzaEvEKgcmqwLR875eS1WFpXMnxf62x5j+japVUrfI1JvikazfUJvU74Kq04WwfvBHcgHIs72/Sy5F3rBoslGyyiWOhVKta284Uarr4Gi2ULLqNKW4AaElsaKtF6x/ZxUypW/8PdwgQG455fA95jkail/zmXwzAm2eB1o8RIxNvD5z38eu+66Kz7xiU8gz3PMmzcPd999N7q6unDVVVdh3333HZV6rbOjzLPPPjsS9dgkYQkM9EscqgGAP5CqvNDRZtI4L2/AtWd+4+PITeZumZhM4yZBK5FEFwqem1UdG3QCHxRd18SaGuk8AKXEqlQtCyYPkUgoWXjmD/qcrz6tylUU/neyADI/Izb1pW2HMWGUmmKCQZWclHn90loFzd4+73OKuKSJ05kry9MqbGrY+cdfQFGraNIqJRKzBQz1a5KllnzZNrMJzdsgOdEO/rJkkvfuNxNPrJnY/M/NN/azRFrlhxTZhJFquh5FN0pmXg19vgBf7fNUnsInjfY+F04Rpu+5ilv0Nax6y58XWRTI+/q98pJAVaJyLaEDIGs6oW1inmvbl8asqljkMDc3UjlSalWXFGyRF/bdco7i7r5QnxcsGIbMdWVmR/uZTceQochzSOt7NXI+k3tc/W309zXQ7F2LZq8faS55WiC4tqWmP/NmC2l3HXlfv02Bwp/Rsr03AbjnzyQobqxa4xaiHcYbIaX3vITjJy+boPICaoNG+qGjKJSJmt+wMl7r+OUvf4mPfexjAIArr7wSf/nLX/DEE0/gkksuwde+9jXcddddo1KvIb2B5513Hv71X/8VtVoN55133oDHfvaznx2Wim1KoAHC/k2qijFbIGOZmZkqtqG+GHwLlbxZoDapbsmFTo5J+XlYxJuJMKLkqNwPx07W8CdrG0IuXRv4ZORtGRKYZ0mhkpl25qfB1kZAJu2qGF03HFjtvnlGaaHM70mtgiTL3Go+NLs14amYdsJnKgvVSySU/8zVX+Vuq6WxApFIs7tAhrzSbyMPCdKY+ogYlJl5vWz8XFlhChS/HuBMzQC8xLBWVUgkS1vg/KeUURg6mZq032Pqzme/Eygql5S5Ii+Apn9tuk5SMrTZhYBxqpdZ6sgMM3vqd8WoNRm8oIXcPDtEvHjZoWpSFI7I8fO5IicSbRIFnOpVtuihOnZacNFxsnBklxZCocqpcq3kiYCUjxQ4cbamWaaIWfWW9QtXuxLjRN/s7bM+iPaeE3FnRBuAjXDUAURVrcwRmevzyRivp4T/LoRkncrk40XR3DjJX4th8BmLXAx48cUXMWXKFADANddcgw996EPYcccd8YlPfGJQfjOSGBIZ+973voejjjoKtVqt40bhgPYn21zImPZ38gcpaRKPhk6+becWBUSrCQXggGcvx02z3rdO1575jY8DMDmkWBbxyvguyEqmN9ht5JYEUUh/UqsirVXQ6nNpCOwAHDguSwCQLHItkd7ESiYp/hlFZqmigEraJ1Xy6SkzoYQDGzl7F82WVbTIsZcmkqy7Zk1VBcuEza/LI7J4RBvdB8BNpq2+hh5Ija8aba6c5/2mvzdMHdjnbr3ZrcxS3P62T25QWUOFbauJtOMIiddQ1A9LqEB+Xn66EsDlLqMoQHsuERpz/xJp0gBI5xvkkTVSd8g3y5INP0kt2ORHiweVa19DnmbGq0+GNqLv+W6x7bV4ZLSspMgCEzdXfqWUEFmKtLtmCSsPiPEWLWby93xNc5NWgdIksKhIrviFCxXe/wDfIcQnFFyZDO8fEWn77rB3cKRMbm+/8bsAJ6pSk+msu64XC3lhxyGu/OV5w5HnxJm1G6ud2ZaO5eohmdu5+tvs1amGeD8XzZb3TPDvPZ87Ni7yvqbvAABjRFGP0Nhmm23w2GOPYerUqbjuuuvwgx/8AACwZs2ajkmaNwaGNPtw0+RrxUwZrhRVUdhoqtDJlOT+otmCNCafDUWSJTb3lUhakEluHeMrPd3ewECrecoxxZ2pYerMB2kvmlI63zhSOmjwo4E89AvjK3QvJUaizR+52fSZTyze4AWg0tMNlRdo9fUjAdBYtUZP4ONp02ff3EJEmOpjyzXpFijHW0qfmwFXJgkKk77BkVfTP0HIehGkMBkq9nvsp8h7X0VO6qgsMO++HwLAiJAy3i+kFqa1qk6+mlP2cuklxeSLC6tYsWjW0CcwYSYce/8Q3HsWGUvnEsL3R0iJlCIqMz9hchKoemURbEL6i6OwDoSE3VO+kGjzbaRnPnMKXNZds+9D3mh55kbrxJ05VZKel1ZfA3lfw8ttRsoub4ddHFBKjUqqE+IGylWIcCEEaAU4JLW8b8gMWYZwoUkJekcCVI+82bJ9S2lrPHM5PW+Bed2mrTDjR2V8lyWPpPwBQJh+Ik0qKJo6SprujffsGPdQF0Th+oAvstvUs1BdzguE+46OFDZ1B/6xgo9//OP40Ic+hKlTp0IIgQMPPBAAcO+99+INb3jDqNVrnVnDN77xDXzpS19CV1eX9/natWtx5pln4pRTThm2ym1q8LKIA3rlbwY2ewz7WyTrHlE5+4x/ATK3OXKnwTkzZMamDqhkbQMYP94brPPO5qKhIjQh8VW3yINkoSXXoIkrYU66enJJoAIfNPJrSbIMhcyhEkcw9ACf2JQOpDgQOS4DTcA0Wae1ClrAOpOx/R7+H/s7JyUq6ZwNfTjAHaC5qdGLXpTOxEznAJTMtN1kyZUYTl74MwXAU3L4RFXm2Bz+Xvosk1mKlRsSMTqf/2+VEKRo5X6gi0d8SM2Dn9crvE4ipX0Ww+t6Pko8nQUbD6yCg7T0PG9hwlI58GPJf5FAZ3PCZesR9F8IvZNFXqqwhRip59SWXUIKQ9Jljy95pgBHPLkzf2hKp/KozXx84tHZ/B0prW+Hzwqj9rbVeQT7jyNXCvkGkqkNPX9zwGmnnYZddtkFS5cuxQc/+EG7FVSSJPjqVzdu4mOOdSZjp59+Oo4//vg2MrZmzRqcfvrpmw0Z4y81/wwwpgBGCEg1o4G4aLYgM6yXW6dIhF6hW/VCJ75MaSUonR9KmVM6J1l8QuWESLHfw2SnPDeZl08qLzxliyYw7pyfN5qWOPHVuRfOHxA4Ik9pnjufoKQKlWXIm003QZprZ0ZtaK3tt6TL+767bkmVTfwKaMdlc3zedFGTpASuK3mad98PkcPtztBa2+++bLiBft59PxxWdezNl30dre667whuyFV14jg0V63xjs+6ayjyAi0TxAAAlR737nL/L57/iT833D+GB3PIJGnb0Jr+t0SZKazWxF1mTm36Sg1PkQHQO5VapZPqTmqorXNA7hL7XvjmQMBF7rUpv4lEVqm5nRzYwiNh9ckbLfu+EMEqGFEg5darq/F3C82J5K/JU1IALGlrENTAla/SrPrm/nhm0GArIKv2jSBEIpGQk36hI3dT82xQAEVRFHYje/sMFJ3fRZFIty9wB9IMtLs0lI3l9DvvcxoTCKTchrnnrKrWHDtR2BEaH/jAB9o+C1N2bWys85sYbupJeOihh7DFFlsMS6U2VdAEk7A8RjmabdGG3AcjqXUPufw3fP8zaAJITCSRNT2awZpvIxQGFZDJqUwR4+B+NQUjb4DvV8OPFcYZnMrk5YerU61AJDZqS4I55ucuGCCM/kzrVRSMWHHTZ2HSdHBVgt8Daj8AO/lqlSHzButEatMFmWUS48Td7O2DbLRsipDBMO++H+ow/bUuPQBNrERiuVM8J2T7PXoxbtll/V/6oqFzJbUaTS9De9FsOf8/E5FHk0Vhngtn0ilvp8ycudZTYYJniAiRNc/D3ZNWX799Nu135j4mlQy5ScjqRfOZfGl8IWHbwciXZM9UATe5av8jTdw50SazPb8W/U/XaK3tR5437PND55OZEYAlcxxcxUoyvd0U3zatYHWgxRrtQEFtyZtNJIUjYcoQMZc3LSCt0pGqpFZBAj3WhD5Rzhcv93KIheTF3s90ZPKM7ffoxciZ6Vb1FW73DKtYtpzKFyyAyf2gzJeT/EA9MzzKCSYfE2iM49HZZNqnOnDSxY8XLMDJmq434s4dMZpy88aQn6RJkyZBCAEhBHbccUePkOV5jldffRXHH3/8iFRytMBXVOHqma/OaRLgZjGVFyiaLSQTBo+0mXvzWehbsQqr+xpuSx8pbbh8HpjbPKWpr7ADU5l8Hm5nxP+XYKtMZroiVStsq6yk9nM+6fFJgBOgotFq81shUyMdHw7AIcEKHZxtOcYnhK5DCpk9LynaiKK3hyOrpy23t/MG73vf8X/ssUVR2GtSGaQKFlLn+OJqEGG/Ry9uL3g9wXMzZcaZnKJHLdk2/ZvWKjp1x1rfdwbwiVnebLbdh5CcE0KSFBJlexzg3Rv+HdhzFe6LCnYeP6dMASmbECkC1yrHlKE/8fe8pOcrrVdtH9hr02brzDQOwLu3XL3Tn5Gi5/tapqbfs+66U/mYE39iynVmzPboYVKDCthtHJE3nH8mV4rzvobX76GySZ+JYUhOPRCI9CRZiiJLIbszGzwBFmzhKbHQ6qjdyq1WsQtcWUmRsTGjzBVBJgnyol3ttN+XqP+Ua09m+lm0iytyAzD+gpyIAeWmzpFCjmHIwD8sNYkYCQyZjJ177rlQSuHYY4/F6aef7m2HVKlUsP3222Pu3LkjUsnRQvvA5QY7/lIWZksZO2iaSSatV1GsfgX7P/1z3Pz6DwMA3nnP9yESicaqXvui969agzXLV2hzXXfdD3sHrLMpN6fRQMSPs+YXptJwv5Oy5Jx8Jcnb6Dkf5+3mQDTbTVadTH2eQ3Yi3TYlQT9LmFX0AANcuPoPr6Hywg7eBUtDALhJlOpKK2/A7QZQhr1u+x5azaZ3j8NJ2H6GtCMBBLBBqtgeV38bTUO8+ZVtrq4s9foagFWGWgAkey7sM0MkpVZBsSr3nh3AJcnUZM9/BiT8+0EBE6EprNNzQc8Z1YOOT4KdHXQbfUJmE/jaXR+Yr5XMfVVUuvvPc02RGpd11616QosFT0XKJfJG09YhZwo4qXcWmauTJXaGXHkKsiERCcuzRfVMKhlS46pQNFpABm9RQ/6Q/B4mQWJajo79n2aWiG3Ic7nfYz/FLTsf7X22/59/CZiFW9HUwTmUO0zlRVtKFFpMkPtDuHWUbYt0OciavWv9cYipfkTmaLEJaDWVHP0pItxbcCe+fyP3gwVglV5Omr17HxGxARgyGSN76qxZs/COd7xjSLujj2UI4ZsAU5Ol2lsVsUmLXsqCZT9XeYHWmrVIihz7PfZTFH1rkJtcO3lfA6oosHbFKjRX9aLIC1R6uu1gwQeihJEswA0GnEiF/hChwlGwcuxx0oWF09/epBeQKD5wWeXMqCJlJIATr6LRcpMc8zUDfDMfmRDDxIxeuWYCETKBKnIvgo6+t8qEaWOrtw9FniOtV+3x3OyTddfQ6mvgLb84BQ9+6BsAgLdd+U0IKdGiNjQdmbOmQOq7wkXQ2Wgv1h/7/uECYBjMQVxBsOYoszcnfQ/olX7W7XaAoBV/uMDgv6d1E5FZtE9A1heLK5cdkv2CXYeeDd5/3nfsGbC+OIGPmki0mb4tc3qwdQ0nT/w58+rH1b1KikRWvHYktQpkUfimrYCAk7JWBMQzCd8RZB5pV4mf94snXaX20L2SaYZCuklfNN3CIlSiqd55X3tkZpnSacsYJkXslp2Pxv5//qXu29S8i5UaUKlBrVzRpmTyvG2UqFYk0nOQ58SKB6mEbbF7ntL/5t3MG822HRySmrRWjLyvYV0weAofKhfQpNhem+6NCTAqGi2opIDfspFFjKbcvLHOBu958+bZ39euXYtm4LxIu6+PdchKZieitF710gBwXww76QaKmUj0liOJUbBk1nCkJM/Rt2IV8mYLeV8/kloFVbPaozLLfg8nz3DF6yYpaX1Q6HOZ+MQrlNlpcPFUjRIlzU6kzNQTfmfrxxJQAvAmPu4zxn2UwglfsHqrvICoBmaVQisGSfd4qGYTRaMPolKDaDEiIBPIrGVNOjLNULScWTntriFvNlEZ3wWVF3jLL3QQSp5on7mkVtGDcQabX4rXm0iknuw1EbR+MrmbgJXMN8hnTFZSFKvX6EAR9nwUeeG27mEEhzt987tY9twQsf/dOz6DuTfrjXvLzLqe6pc70hJO/vw6nCTx63GCN1BkG5mIOMmla3KzK/cDKosy5M8YJfcMnbFJHZGVGlDkyPv7dRJZpmDZvFbsXG/hwn3fggUPN6t5ZDJxqVVkJUXRarq6VtwuBnxcAIBsfFdpmp2yPmxz9C9y/S4Nh6mtyKEACPM+0lZw+do1tk0qL1Dp6UJlfLc1iae1KmSzaXPX8YTTtg0l9eNjW5Jl/iboibtfIpGeLypXvQB975q9fW1EnZdtFU72PjXNeJTWqkjyjUPJYjTl8GDffffFscceiw9+8IOo1+ujXR2LdSZja9aswYknnohf/OIXWLFiRdv3eYfcNmMN2vcm05sDcwKSFDpajl5qM6jkxpbIV9J2wMidGS5vNtH/8qtorlmLpFZFbcsJntIVDkJ80KA6ELlCkFsH8J2tw890Jup+L4WDF54fyPKhjxmVSZMgmQLD6/HJl9ebR7G1+a9Zp2VpfTNogpOVGlSrofs+WM3b+te6AdkHWeQQmTatyVqmt8Upcu1rgnqbXx8NsNWJ41GdOB79r6z2HXuJMOY5Kj3dSKpVtNasbVNcnDqY28/4/yovcOubj8P8P/6XTokhk3UiZe+85/toSp1nqdnbZ/utZdQQaXYq8JRMZj4GtFmRcq6FzxVvK5nU8qKw5rFORIxSlNhrsuPaniN6dtLM9pO3C4AxdSrp9y0H/5urVPazIAkt3wGC1yd0WiffKSITYHWWMIlES5J7hsTBEorQ1YDVWSWFR+QBloC1Qf6biU8srRqsf8/7+5FUqxDdPVBre1E0tL8j99/j/cCfR6dG6q3bwo3K1wsyceOETCCyCvIVy9C3YiVEop9bAKhOGq/f9V5A1LSSLPqkzZHH4QVesM854SQiFm6Xxl0vqA94f1hXhkYLRdZqv08UfV3RY3aR55rAm3MpEEVmKZKNRHCKQiGPDvwbjDlz5uDEE0/EZz7zGXzoQx/CJz7xCbz97W8f7WqV7ic7IL785S/jlltuwQ9+8ANUq1X893//N04//XRMmzYNl1xyyUjUcVQgpHBmiYrbu8863iZ+RCM3aXDTS//LrwLQjrZ5XwPN3j40Vq+x2fIBtG1NRNer9HR5piZ7DJ+QEu2gzZMeclgzKlMQKCDAyyxu/FpsW4qibSXtD+R8oiiP2mzb6Fkm5scvJ6lVINKK/i6tQNa7IWtd+vdKDSLL9O9ppidJ+qHrpxUoMxmJak1PBtUaZL3bHifTDGlXXQ/SMoFMM00mzKSc1LuQVKtIsgzVieNR33qSJRY0CSf1LksGQzUnnNxlmrm+MeYUisJURb5eagRNtLzviFDqraN0/ZMss/4s9CzRc+U50LP7R22ad98P7dZEvH1t5rpK6ikFfNLj6oNMM3tvyacN9jnQ90GXV4Oo1JBUq7Zsqju1lb8faZc+lpMU3ibd/+5ZS6pVVi+jrhKxt/9LbUpm91KaOiXVqk0WTP1B/3vvRc7IZYnaApiFniGy1s8vL5B2mZQ2babVxBAnR3boOUarAdXSzyclNLbbDdGzR1G2FXc9iyLHzTt9tOxxWyfcvMMHbJ+KSg1IMzRfftluQ1TbcoIjYnA+cDpFiCM2NopatpMj/kOf8WPLLAdAu0rqPZ8VnUQ7665rFS1MNp2lXjATYMaSetVzeYgYOzj77LPx3HPP4ZJLLsE//vEPvPOd78TOO++Ms846C3//+99HrV7rrIxdeeWVuOSSS6zUt88+++B1r3sdZs6ciUsvvRRHHXXUSNRzo4M24XakK4FIXCZua9oxzrQUkchXxoBeTTdWG6k+kWj19nmh3SovvM1urUO1GSRUXhhzpjGRNloARSPBRY3lJbluZCJtVnhOHlVe6FUpOdialSapXRQZKCupdVLuZIbi/3OItAJR5B45NZXSkzAYoUsrlmBRolwhE6hmw54DmUNkxuG4yLVvipmERLVmjxWZ8Z1KM2Ou1NtSodUE0gxpT6aVs2YDojCDegpLjshxmhy7KaItqWTOrANYUgBwBdFM6mmm29FsQrUadvJPzKS6vki7a8hf0XuM5sZPLAXM3n06GtAmvQ1MZm3+NiVKF92P3779UwB04AL5QJb6/YQ+WUzBsf0R/g1Y0zJBppm+twAUAEn3GHD3m5VhVawsg+rvsybF8LrU964eTUsGLRmW0m4qjqLwSbJ5HhWlQgFQtJrtkzvrY1pckCnc9Qvb+UKytBm8/9IKkprZ9SJQWMM+FGnFkrDQr5MUwRAjlcLCXSCBSDPIejeK3lXoW7FSj2/dKdKuOvpfWmkVLMpLaBcUzC83bzTt78j9fhjIDM6P45YGT7ksOZ9M4Fytp/dFZm7rK1oM0DFWcU43jhN/PgzK2Iaev7kgSRIcccQROOKII/CPf/wDF1xwAf7t3/4NJ598Mg477DB89rOfxX777bdR67TOZOyll17CrFmzAGj/sJdeegkAsPfee+OTn9w4+/FtLLiVFTcRmM/SivYpId+nJrzEgDD/p2zblAKwkyjgRz0SPF8Yc70kS/V1aNBP/Fw45H9BTt2Aljw9BcoMgDJJkFRSn0wETvNh5FpZn7T1B63eTb8QuUqgJxZPZWNqluAqFzeXFDlEtW4nWZFVrBJA11YygWC7Hag81+elmXUkJt8Vrawk+vMi18fz+iQJlDd5Jki7a8jM9isw7RDwfdFcm8wzQqtoIpBMdRFZpieXVlP/rAPIBFmdON72eVqveltW0f+kjuh+cROM9ccx54f5xEKIRHrZ07mvVKmPFAussCSqyB2xIOduTsbMcYpdR2SZJUD2M/Y7mdd0J2SOTFniJf3+TVlm/TKndSntM1tmsqPPFGAWEX4iY6/dNeNvBkDYFC6OjBetpjNjGhVJNfrcu1et2vYl5B8pJdAISDydn2V6MVcUlpxZAsr6i/cDikL3Z0B0NxQizSDq3ZDd49Fc/DiavX1uH8p+t8E3LSz5ojWtV5GN6/YIrK6iyQ2HdpMwH9vK9u2k3zsplNzvlRZf9j4wFTTpHqdPsKQ9d3nSAiVtJBHJ2PDj97//PS688EL87Gc/w9Zbb42FCxdi2bJlePe7341PfvKTOOusszZaXdbZVjJ79mwsXrwYALDzzjvjF7/4BQCtmE2cOHE46zaqSCoVa2qy8jv7IZMGqRI0AVJWaUCTJpUXSOsVq5iFEY3VieOQBRnRlXH6z/sa2tepu27NlZ6/jzGhNXv7vJUd4IiYtyG3mXzJH46OCyMyQ4mf163Mj800VitRZCZMEqM0MDNS4CwsKzXI7h6rZlkYBcqqW5WaJlhs0rZEoFJz94cm0rSiJzmrvOlJgsrkJiqRVawahzRDUu8ySl1iTaDWxGU+lxVjAg3KAntWNBEp2pQwvkXW/D/+F0Ic9OKt3t/7//mX2O+xn3r3h0wktILnpkvdr2nHe+j5H/FjOpCypJLhngNP9Ez1vCz3O1P9uPnPI2jMp6i7R98TOseqO4n9n368fjWmbHoW7PdUjyyzxJ3IH91jMp+JLPPKF1nFEZVOEYbSHUfmdDK/8rbaxYV5dkRasddEmkHWurRJ1jxvIqs4EzygP0sr9j2y7aJrBf2oTfJ1iHq3I7umbG/cqtTc+8H94oZJLTtw2fX63ah1u4UQJ/7NFpJaBa3ePmuWtG2TEmmXvjdJ93jnj8pS0XD4RDgwRwZmZM+y0aZoajO5Ne+S+btWsfeIfOrcc+jcHsjEHjG28MILL+Dss8/GLrvsgn322Qf/+Mc/cNlll2Hx4sU4/fTT8eMf/xi/+c1v8KMf/Wij1mudlbGPf/zjeOihhzBv3jycdNJJOPzww3H++eej1WrhnHPOGYk6eujv78eee+6Jhx56CA8++CDe/OY32++WLFmCT33qU7jllltQr9fx0Y9+FGeddRYqlXW364uqGbgLYw7J2QDWarpVEvQLn2SZdvJtNoG+hqdSkWmQjqXPiAgleYGcBg1D4FprGzrKMs2Q9XTpFWXj5bbti3ITYVYA3n51ACxJbKzutdcPB0ICl/S5KYEPNkm1as0/tu18wqjWrXJl+6vI244jc5Csd0OOnwSV5yhefUWf6x2nzZFCSqgWADT9CcUjehJA1h4cICUg9cCqGn2ajAFQLTjljcqp1t1g3ugzapae+KVRIQC4442p1JGCINJT5tYEa78n1dD0y36PXgxIafM0FWt77en7//mXUP1rrcpjzSLBa8sVr9A8VaZg2eoFCwOKMCTcuc/ndB0f+ykKlpOtrHxPjeFRekXhzNB0TqZJNoocqr/PqVIhKafjAZOln0xWxnRYFDqCz6ia1owNWDKj+teaxvlqkd/wxN7nNrWIkS37bHjnSmfeNP3Av+Pkm/ePyplJvlrzFhqiavxEZe5IJADVamrzOr0DSeKUYMDm9bJKL68HtQ/w1MThcN4/8O832XqLejdU7yqIukvT01rbrxcPxoJAkblFo2UVX2kWS3qxk9pdBeyuCyxQQyTSppIpTauTtAdD2fvfKgnCCBRd1ejTJu5KzS0oTWAQAN3vhnDKtb2QoWo5QsiLDVe2NlLg5yaN7bbbDjvssAOOPfZYLFy4EFtttVXbMXvssQfe9ra3bdR6rTMZ+8IXvmB/nz9/Pp544gncf//92GGHHbDbbrsNa+XKcOKJJ2LatGl46KGHvM/zPMfhhx+OrbbaCnfeeSdWrFiBBQsWQCmF888/f90vxAfotAKRgpldjEmo1UDLZG3n5kZKN5DVKpBNnUcn7a5ZUyOP6Ot/5VWmeGji0WSZ4EltkFlqBzebuNL4k2kymLpcQ4aQpN3a+bhotlw2bxY91zZgwa00uTmB9wk6Te7UN82mm3iL3PrY2PL5JGEULAFNfhSVQ6arVlOvUOvdQLOpB8TKeNP3zdKJU5j7I4jYkWJG6oSJrqTz7DXpuob8Ia0ARN4suSDlg13X1J/D9k/GlIoScxBXi/Z77KeaXFRr2O+xn0LWu/W9N5OB4OUG94zSMtB3fkQsIyGGSFuzofQdw3mUYydwVbSTqdY7nhEk1WxYlUv3K1PKyAxdYsK0ZIZ9LgBLxOyxqU/mhJSaHJh7LgIVyEvdIiVUYe4vV1WDid4+T54CqutofRyLwvdvpMk8NXmrZKLHE6pnpabJJJiPJN37rOKeybK+pued+jVz34my94Pq3Wr45awHDlx2vVtsVeuQtW7dx909kOMmomvqluh/eXWbGY+ez6RWQdpVL713umq6bkmtok2FrSZaa9bq8YnlkrP+qcx83WaWDEzpJRezx9nFnPEt9b+nhVjm+nED+nBdEM2Uw4Obb74Z++yzz4DH9PT04NZbbx3wmOHGBm+sNWPGDMyYMQNLly7Fsccei//5n/8ZjnqV4tprr8UNN9yAX/3qV7j22mu972644QY89thjWLp0KaZNmwZAR00sXLgQ3/rWt9Yv/5k1i7AJpdFn/WhUUViSY3NpmdXp2hdeRrLtVkhrFax94RUvPxURM8ANTFl3zYZbp/UKcrMfY2tNnz2m0qP3uaSVYtFsobGqFzLTpsx03Dg0Xn4Fzd61On9P5vIVAS6CiZA3m1B9TlWhpJXkUMvNUiovUDT6nOmW9xERG6ZyIBiAbf8ZFYn8u1SrYSMoCwCqr9d33k4rkLVuqLSJvNEHOWFLiLSC/OUXLCGjSdYOnux8Mi9IY84s+nqBZsOZUoocKLTyZs0cZOJqubKE2WO0bXKm60jpfM5giILXT9IRSH4fAlJJg793DfrO3Je2aLu8PaVE+2SUgPyMXFqJdqf3W//pWO+0/f/8S63IBMqujSalCZ6ZvkSSQDWb1kePRwFaEkCLmkA98hASw5SpVzLRPln8utx8Ts9hWoFoNZhKxJTc4DPu6ybC4xghVGxMUI3ca6OdvLl/nNfPrC+YOV7XO9fKl1n4eUSWSJxRyRxJzfz3BXCkjyt9RVDPDguEoeCgF291729RaDeAWpdW9ISEyHQwSTZ1e8jKcjRefgWADmaivHSykuqI6SSB6OqxpIb8SLPuuotirlaRTNgSRd8apDBBFAlbFJi2ewqX6SOPoCWJd7xbNPqBG9THdI89Imz9Yc07D3jnRmz6GIyIjRaGbZfTl156CRdffPGIkbG///3vOO644/DrX/8aXV1dbd//7ne/wy677GKJGAAcfPDB6O/vxwMPPID58+eXltvf349+41wKAKtWrQIAiGqXNaXYQbBlVvZG8ZAAZLbad+JMEk2m+lwofVEUaJnEgtWJ41DbcgL6Vqz0skanxiessarXbnWS1qo2SWxSyZCN73ITBgCZNRxpSisQ9W5UityStbyv4YWOh8kh7e/GXODteVmS1kKbQ5s2eq1NRaG/iWCA+W6U9L1q9KFY/Yo2TdS7rTOzVsCc75lqNbXTdPd4z3QgpJlgquw+2UlRK2nKXFubnSs615ZnjjJEzhKUwvO9oZQZyfhJbUQvnMzsJAg2sXOzCE30ZlJQrYaNVrXn0MRgzSQ5VL9pW9KuSuo8bDpje573ez4y9prAoBMGTVr7//mXEGmGm2YeYe8pOaxzE6gmY50VAc/niciTmchUUVin9SERMU+VZD6M/HoDtg5oU5ZY2f59k75CS9fnZaWuTrZsKouieen+cMWHtUPxAAOZANKZDUmdsyb6otDPUVqBqHXr56d/rVXEVGGeK8ASBXoHrYmfvxvMl3O9QYuUSg2ye7x+f9MMKqlA5A39zq5ZhXztGk/JzaZMt/3DfToVEUbz7idg1gbj8ykoZ2B/H4pGn1kgtiDTwLzMibTs8HyBqar8GQzfaSJezFQMUpPpfnYwrw83ojK2/njLW97i7ac9EP7whz+McG3KsfG2nN8AKKWwcOFCHH/88dh9991tAAHH8uXLsc0223ifTZo0CZVKBcuXL+9Y9hlnnIHTTz+97XNZ74Ksd7mVLgN3Ak/rVTQoMzhlZe6qoTpxvDEjNlGdOA5FQytetS0n6FxKWYr6NlsZs1Fh94nLjK9WKiWqW0xA3t+vHfmJcNEkZ4hh2u2cmXUEYg0Z9OTa7Ftj02+IYG887rxNe/bxcHueVyo8fsAVtV3x64lT0qDNzTYMRHYUmQbSDIBx3M+0r1HRu8oMetrMqBp92o/PtFfWum053B9G9efapwsVqP4+Tcqsv1Jhd00gp2zV6APIx4jaIl0ggS5zrambTquguBnWrs7JL81FznltJpOr1OlS/P6jdApmRZ9WgGbTRs1p5cCYFys1bUo19dQRuMx8xlf/JSgjU4L5s+3/9M9dypC0oid7Mj17/jjSV0NDosKVyjSD6luj+y3NgFq37UPFzy+ZWL37Anjkg5Mb5yuYuIk+KIuTFE/dk84EassyCEmMJU30N0u34lQqp5DxccOLJqay2LPv/Kgk0N9nlVb7HuW5JaCiyI1PJesfRr5CdUdQf8lE5wdbV7ByZb3bLqSQVgFVAELf8/4X/uFtV0TJfOX4ibqv+/u8Z9Uq3aaeiek6a8KmfjTvQmHGN+8552oXKeZ8R4IsgwrdZlNOoAd+d4msWz/JSs1Go480YtLX9ceRRx452lUYFKNKxk477bRSIsRx33334e6778aqVatw0kknDXhsGfNVSg3IiE866SQsWrTI/r1q1SpMnz7dRV5ROXmgiJAyA9iEqc3etSZZazeSehfytWuQv9JEbeJ45M2mdqivdwFSorblBDtw2AG5WkMqpfajACDq3UisCpbagViYxJQkt6s1q5wvFBtwySQAONMm4MhWUtcKI5kKRb1bOzw3nGlUtz3w+eAh+4xcqcAvRySJ9vcC2CrfmYGsrwwpBd5qu8cFCpA/GoBizSo7mQFwJkoyKWQZirW9JuKusA7PdrIm9YlAKpKU2tRSqXmrdCpbtRom0i3zlDsYh3sijvR8qH7n9+chIEiyknj3ze3zR4qsJt7K5JEjImknYiI+xnfGIzH0XLHJSLFzfdOLvlc3zXofDnj2cn2saYN1wGfRoSrX2zsRISJfwFDpsuYyNCHHTdTRg8Ekx1OKUJ0VN0ly1TIkl9yfqs0/iqkaQVn6GYJvTqR6Gx+kEI6wMWKTol3hYX3r6kY+Xe45saQ7Mf5mTEVzz7WJDOX1Meqqvg+5VWq4aZybZUOVtCzNw2A48LlrcOO2h5nrs1QiRDCTDEpQ8MtaU7dC76aRF0i32gKqvw+tfzyHSvd4fW615iVsBpmTC+0sT1HUNqGzlChynfJGpECSVSD5YllK42tZtN1vZwpuf/4907G9x4Uby+gzfi/onal1Q8qY+HVTx6mnnjraVRgUo0rGPv3pT+MjH/nIgMdsv/32+OY3v4l77rkH1WrV+2733XfHUUcdhYsvvhhTpkzBvffe633/8ssvo9lstilmHNVqta1cAHZ1x3MUURSNU2EqyHp6kE3U0UrJKy9p0lPrgqjWkQBIjZ9EippnBpT1bjvBkmnMmuZoQIEmaAkzvVnlha926Tzu29ZsICUiRE1iK/Ni9cum/DpE4dJHFEVuovf8yDnrdEs5dwAvl5N1CjcRlaq/z5pz7aBm1BXbfzQhdjKZkLkFYO1qIhnfbSJda3albPNSpRUI2ef8kUwdyHFd+4755i7XPxUXOdtqopAJ1OpX9Jd0j9LMbj0jZOLaSOk3pIk2LQpfNWP9QORTmz0Lp/oZcLWCiJHd7qbWZesvksSZWMgka/dMLVEvZQLIctOyqNbsdeWELd13Xh4vZ/7kSWJFkfgRhnyysrsmsNQQLM2CajZKndMFmZAD8mPbQX1KfmGAfu6YMzsRHnDSk7O6ZYxkUr1pgqbnhh3Pr20JlFHSuIpq70fg+F+mVPIABCLg9Le9Nr8uPV98IUdl9K+FqNaN31nGypXWt8t+hnWDajVxwNKrNDmiulPEeaUGJdlU0tJmSlLTK+MmQvZsCdXXi/yF51H0rkYyYUvbX4oH2/DdNMgkSws141tKizg5fiugKJC//IJPsmWifUCN0sj7TytqKFdeuW8fLbwCki+qNYDeXUKn8WuYkathMFPGvSk3WQyZjL3vfe8b8PtXXnllnS8+efJkTJ48edDjzjvvPHzzm9+0fz///PM4+OCD8fOf/xx77rknAGDu3Ln41re+hWXLlmHq1KkAtFN/tVrFnDlz1rluHHrAgCNAfLKpd9sJIalTZCUN6DoPWcLJHk0ugJ7cTJZ4mkTtap6O52rL2l7v2gDzzaHIPzvoJx5BoNWmVR4afdrkRhM7S5TanhtLnyOz1Ft5kqJBSV1pSxsFQK3t7ehTZAkKXSeY7JRRYIRMoND0J1YqI3TWLwMjERakFBQuSab7zkzs0rVH2QmMmb7Mjw2OYN+Fztqe47idGN39tQqaaf/+T/8cN7/+w7YMz7eItZ23h/rQS6MQnsRJBO8bA35NkVZw4LLrUdqz9CxxMyU902T6De9J8Bx0TKdAZXfw2yqLbORl8n611+HmU95+wH8PwUyTLHdZ+LlHcssIouxwD8rehaBuYMpmSBx9Ra9SHvVKCmlW8dVGwCO81Ffr68BPsPtaihKlraWTYSf1Lh10k2UAuv2xEGaskcZczxaTNoCBQP6FtW679ywf67yxJGwvkVF6v9MmUJQE4gBt77CnHtvPOvgfjjCiz9j6Y4sttsBTTz2FyZMnY9KkSQNayyiR/cbGkMnYhAkTBv3+mGOO2eAKlWHGjBne3+PGaXVmhx12wHbbbQcAOOigg7Dzzjvj6KOPxplnnomXXnoJX/rSl3DcccetXySlcpm7rGrVaralVJCAR8y4eUvluU4iSnmEyFcoIaJkJtXQyRtwUVOWPOQoZGKUET0Aye7xkN09vlmMjjXkjPL3iIqOdEJuCFSziXxtb9ugYn2EyrY4qtQgunq0j0pfL1SaoegzWz3VurT/SPd4u6lvW+RYSTuduYelOqDzjdmH1CwbFUX9yRQq+2qRORFmoA9TYJBJjYWkqyI3CRyDgZiSxRY5ZFePO99sXO5MIBWrWOgAhMJN2pTxn9/PVgOKkngyBcmZ9BgK7Q9os7onrr/KojrbJgl2DW+iBzxzEwcFUYCOYQsIO0G2BSYU/iRFfkCUe0uSHxyZvpnq46VuyNomQ5e2oaIjYUva01E948TIkB8vHUZ4nbDfgGAREOTokhIoWDnUP0XiLRZKCSg9f3wrs4BgAnBKjEdMHdH0iCt/n4JreXVg7Ttg6VW4afq72usXgPv/CfIT018AQkIULW2qNHXIJk5EMmlr66ogqgmSLaeA1GN7PqDfq2qdOcpr1wl6z1Sz4Rae0uTU611l0+Mgzdr8vOz9NGlqILWPm6rW9Hi5ZlV7v7MFAJk0vRQX1JcZ3PvTihn4N3V873vfw/jx4wEA55577uhWpgOGTMYuvPDCkazHBiNJElx99dU44YQTsNdee3lJX9cHesVW1blzzORfUCJQ4+ipWk2zL2JTrwRJQYMZCKp1V6CZ0KySxgZNxY8B9HfkE1WtORJiIpZoEJDdPc7virKSm1xOCcn5aU1HN6V6RSp04yDr3chJmcsqbnJsaVNouHWNIuWlyO2gKNlKW07cWh+3ttdGAqqisBn0YQgcALM6zbxJVfexITE8qWxo1spza0ZUfWsAKaHM9/Q5rbCFTLR/m+dvw8xr4eQtE+OUT+ZDrRgKWXP7XxpFzZJyQppBtIw/HstNpAkXM5eGASHUz2kF4Gk9ApC/oDbrcQKbd17hI/DDsn2Q2zJV7idbPfjVe1GYIAb7bLdN5NI9H+Zvi4HUFtrUmhQgrmLYbPmZSZES5PYiE6f5qM0MKxMA7p54qgqRxaCubVsG2T7juwkwh3B7nfC65b+LsJ5scWLNvcz/yy+XLWToHIoapvNCk2fm58TT9c7b7p812RoSORQipq9fd4lpTRAL0gqUIWJQhVUSVZ4j2XIqZPd4qEYfZK1bLxDr3bCmeUa2qEw5fqJ2BVjba5I06whSMlVSBK5qNfX3tENHfaImZ9SvtMVUkVv3Am/fWpnoRSO9y1yFBVPTEqc2cv9SvWgoUdcjNkksWLCg9PdNCWMimjLE9ttvD1Vi+54xYwauuuqqYbmGSDLImlZ6VFHYCcJbcabQq2JpnJcpp1GraZOZkjlPtRraj8z446g8d2kcmPmFthSiNA98b0NZMyk9uK8W+SUlmVbzrLJWh8qqeqWaJHrAVAWUTCHyBkStC8mkrXV9jJNssfoVu22Qvk5DRx4VLO+SGdxkrRtFVTva674w0YVEFI0500aAFc73Q5ApJfSJIVMUggmRESinuPiTsS6rsMeTgqX7yA2YlFmfnNFLTancrMUnQaZcOWUisecoQwTtJBxOjPa5qTifKG5KCY474NnL25zi7S4BXLmROqovjEociqO2SBJrojz41XsdyTQLgrb+IfJAm617juRm1wYzSbflaSojLsYXyE56Fa1a2OeAbROkz2OqR2EIOH1WdUqLS2hr6ifDyda9VzZzPpkNmQLkwUzGXkqNkvvL94IUaeYWCN45XIULFGQ6jnZvkDWoSq5z8a3tDYiqdIE8RHAD878lpvReWJWzggP/fhNu3OaA9rYGEKROh4EFWdUocy3vWNpCSLtD9Okcgs2mddqHHRdym7eNykTCibSE7O5B6x/P6b1Bx02E7BqvU3uwZ1XWurW/K4GIm0327Pe5SDPI7vFAUTjix5Q0kWU2OMctnCu+mmfKEY2No4y1CoVkA5Wt1mtUGeuEtWvXotn0XUHWy5I2DBiTZGxjgDbhRVoF+l61qzCdA6ppt0rS5jLm35BlEBTFR5NDk63Ya11WxSr6elH0rrYrNRSknJGqk1gznZPoE4BPyLqyzlRQSaGEtJFNRMAAaEKW6oSPsttM7EZdKYoCIqtA9miyiFYDRR+cKQ1mQKbIujQzeaPMgNu7yktNYCehksmcfHu4/46N3Msy01aWK6swOc3Y4CqyzPYP4IICuGJjndlD4mbVv8xFINIPU5J4Wd5G1vxzL4kpm4Sl1Kk1ihxhHiJNZliiWrbBuWppvzEi+DzsXhUFZK3LJ6amv/X/nESWRBiaNvK23LzTR9n3RUAGMuitpEzAATP5tjk3G1Lk9oBkOxnA97fiG2+TaqPy3L4HokqEzDnZSxPlqvjWM5xYhGQKgWmSb8nEj2HkyiNWsmgn/cxE5vVZ8HdIYFXq6qf7sNwcqvu84kiVVWIogpr8nZw6Rv2gr81My4BTc7iPGb8eUxoHg1XoQ4JPqpj5Xbt36OvoqGZmdi7cPQbcOyVr3V4bVLPfuoTQeyq7xgMyQTJhS53OpjXJtEE79QOwkcbWD808PzaNSOr6Q2SZHdvsZu1GEadxXjWbnmndBs6wraVU7gjqSCOaKYcHvb29+MpXvoJf/OIXWLFiRdv3eVnw00ZAJGOdQC+gKuwLa1Uy+ETCmieNagTAmrSsmc7I9UTy8tW9llzI8RP1Ocb/Sq/odf4sANa06algJU6zikgZABgHRe3DYW5z0dLETJr2ZaYtrX5LsGRNJ5Yt+nq9FARkckzGT9SrfLM/p2r0oehdpaObOFGgCDe2chWVms4ZVkZaTJ8KpqjoOuftE0ilBiSZG0SbTTcI29V/YiIN3aRrB02aO0w6D4r+JJ8+/gyE5jnvf+YPBQCyUrNRj6F6Ycu27SocqU0za2IRMvfMiZ6vWScToFXX3CQUfhcqPSJJPCJ2yJr7UfBUIoCnAsjuup5cpbR+gt5zz53bGRHjPlZ0XRcIwZQKXrcgUapT2BL7zPFgCm97JzjVy9ubMTTd8X7j/WTrEJgCi8SVw/u2cFneVfDs6POC5MlMZbF1NkmNbYoVUlxprCHCSgE81C+sXJtWpjBZ7GkLMEtSzbPXlmx2cPWU6ukRcKOSkeJuKmH7V3aNN/uFdnvt5W3ikcTe/q7UPqaKJpO29vceTTPI8ZNgFXAiUQDQt8ZEFlcgyJrAVD3rX0gLskrN+pEVa1a5VD9GEbf3itwlbB+se1RqxOjjxBNPxK233oof/OAHOOaYY/D9738fzz33HC644AJ85zvfGbV6RTLWCeS/1Ox35hqZQCSZ8yeAzotDaSrIl0ikmVXFbE6wJIGisG1mIpHjJ0KOn6Tl/rWrPYXIM93RoG6IGFe+bKJFTsSk1MTLHCv4MXlDf0bjMCN2pExI0wc2tQepgWYVGq7wbR1pVR9M7HL8RN2WWpeXuFT16clBBmk4bFRYs+E2yqZEsIQkA1KWN6jR51SFFFqtMYRJMGd8l3PMbN1CJlabcsNNpHZQp4m30/NizC4ScL6FpHqxfvDISfC/TQNB9SukS44KGKUmiCYs/PJtOUBHBU0gUMQAvU0UEVnydbSpOPSkLc0kJhFEedLzbPz57P0ocmvG9XynSKmidpHJmE2WbqcFpvpQ/zB1BVK6PTUDIkpBHDwXG3+m/SS1JQErJapumc9YmPNN0QReuB0g2gihp44Z0sdVNeknsvXyHIbn0zUAhP6DFARj3zciPQBumLg3Dl71u7Z2hzhkzf06KTP1Ey1SaFGoCv8ZkwmSrbZFc+nTOvik7ggZfz+5/6utL12Hxk9yETCJX7lFQJqgJNXs19HbmUk9Q8ljKUjKmMItaUegZCWZHteNuwalwSF/URh/M1Ht0qqdvW+JJZMbAzHp6/DgyiuvxCWXXIJ9990Xxx57LPbZZx+87nWvw8yZM3HppZfiqKOOGpV6RTLWCakx7fWvdRmgZWqUpVRHDhW5XVWLDM75GND7rVmfDTOQsOSZiSEnetCoQyUZRB1utc0mNTuI0CQr3MCoWk23MgV8RQzwFTQiZmYAtcckGeS4ifp3s1qV4ydaQlms7XUkk6+Om00o2WcnDmlWjgX5WhCKXCeFrNQh6Zq5NkPkrabOJh6YvbRKpq9X9K522fNpIlXML6rWDaSGHDb6XFg/7UVHhNjkHRL9fYGKkZp8WqE50zjLs02sad9Fapd9BgCb88tOyq0Gez5KTEZUhvF/oSSkArAmQfI7tM9Smtn+9sgBW63bCE7ApQCAUWEaeRsRO/jVe41J1PWvlyhU+mS9KHLA+NnQPSDS6pl7g8mf+5cJqg87liettWTGqp0JUyILj2S4Pg8IlZQQfro8RyQA3/crcKIfiHSH53gZ3aXU7gvMVMrVOu47xvvUI9ZMfeLXKq0TI+++mdxXDPWzlHl+VQe9cmc7uQxwaP6o9ukK2mwDT4SASipAwhaGgCP0rQZUUXPmyRbcPeXmYrb5ukoqEFVpo1G1CZtIlSaAotrlxjPZtDt46AVaZv1uXcb9pq+eMej6J0BRhZxQaJUasOOfynObS01IY64n9TfJIGrj2socCeRKbXCesJhnTKeumDVrFgDtH0apLPbee2988pOfHLV6RTLWAbKrB6Ja0RnppXFUTTKdGVwVQBOBcuXMD6p/rRm0XO4uL1N8kQNp1UYhaYJX7sTrrQZ5YkVpBiKgzWSpklT7igHGqT/1812pFMgb9jyV1fQ5Zl85ADr6MqtrZ/9mE6IrgejusYMlxtch86ZTytIM6ZQZEFKitWK5JqVWHSt0So284kwZiR6cZaUGb21MhJM75JOZJa2094+BMCZPKkvWu/Xm3tLP44W0qutMCVfzplkZaxJTFh1ls/hzR89gotPHNb3ziXgJmQAVf4K2ZUOboUFpRkw7LZFi17KQxpzJt9qxyWwZiQJ8Qlam7AAu4CRUbnhaC1KzrL8SU/OoTZR+w/Ohyj1zIaWWsOoDrw83SYfEmJNe7ifGPmvLA0b9wAi+1zchAWJo+461wytHJv7G76x+lmTKxE+ea8oYqK7WJ9WUw0mt7RPeN2VKYUnbBHvGb5i4NwbCofmjto6ewhhCJlBJalwemtaHjNwWRJFDpEb5DqObw3bLVJcnmDIO2GdCP6suSl0oEzRSrWuVW+nfE/JdBFcVpXU18awNRChTbSKWpnwlUx153lzrxt4kM4sCTcSUTKFYfSI2fcyePRuLFy/GzJkzsfPOO+MXv/gF9thjD1x55ZWYOHHiqNUrkrEOUFkNqHVr00yiN8BVacW9lHlLDwpWoWGUwkrxFTtweA71aU0rWErpF54GWZL7mblFZFVHmgQjbLaeVSBvAbTiCdUBIj/MuVavJlP3PRG2TDplLUn1RC60rxxkApXWoJQ281B/iCRDMkGnK1DjJwNFC8mkAmptL4pXX2lXyUyuM1Vo/zdRrUHyCTiYyPX/nJRkfnvo3CQD0hRyXGYJlpKpWWH3O4KgyEFX++DowAzdp6KaOLWLkxpyXg/BTV/mPM+sCAzsU2KdwTObokT1rtIKU1LXk3yroQMeaPKwpLJiAyjAcqaV1dGaWI0P1AF//Y3dCPzAv98EmInLIzwFm4TDBKGcNLJ6eUElofnUKFvUbgC6X41zu2deDNsSOLy3JVMtMzGSakV9JtvfHQ/UlwMoRW15uuhzz6Hb+S3y+tljwv5p80PMvc865QbThN1tk+WpYOZ/UWGK2wDEc0AEQR1ufJJQadUtTi1ZIZ8wCTlhSxS9qzFQCog2gilTPfbkLa1+QS+G3B6p/GA9dgk7HmUQzX59DPnWmjQ+ihZTSWbHas9XsGgBSQVF1gWRVPT4UrT0/9ycLhMIchMJLQwjjOjAPzz4+Mc/joceegjz5s3DSSedhMMPPxznn38+Wq0WzjnnnFGrVyRjHaCS1GRfd8qPR2iSVBMgQ6qgCk20hISopUCrH0irKCp1LaubwahIqrYcfXymBzJVaIJEgykpRDK1ZkiKjFRphZGRVK/q8ob26wohGAkxuYDoc+tLRp+rQreL90OaAWKcVeIA6B18zepXJSnEhK3t4KTbPx6iaoislJBdPVCVbk06c3gTs6iPB9J+axpoyy8lpc2dZmFC31VCTtCFNd2qRPvJiaIF0ez3orucT51x5mVbH1mYfGH2HATKA/WLNVFLb7LyosU8AtPZoZtHiqpU+5mJjBLXJt4Eq8swEZrkf5YYws/LtYldORnqAyVhPejFW53qUPVNN7w+dD3yEfQcuW0bOkxGgYppoylDAuL1Dzue+Tq1qTIdFNL2OgwyUYblhKbfsuP5seHnLNUGXd+5OSRt57WZH3m/Bvt8AnDmQfN7SJ7bygmeT+rL63vmtrctgAvIyJyfFZVLVgKZ+v6rea7HGZmYhNT6OSrWrIaNZGTk2PMxpOfcLC71YqpLP39Nev7cGGwXr0mmF6VJxV2fbVquyOdT9vmL08SUpZQeW5lfLR93VUKE01zWjJG6vYN247AhkrHhwRe+8AX7+/z58/HEE0/g/vvvxw477IDddttt1OoVyVgnGN8wlUnnIA8ARcv5aAlhiZHIXSJQJQ3BShI9QABQiSZfSFySRAXYtBNCFSgqde3PBTexinDlRduPsEEDQpg6Gb8IOpyIWgkUmQOK3JE9yqAdhKsrNgEos2r0vmerRFtHJBATt0E6bqK/gk4qur7kf5do86soci94QROSqj7GOOfaPfdSMwEQYaW6CalVR5lodazV1P1Z7QZFkgo+GKcVIF+r0yjQJuxZRZfHnfwpMW6TmV0D1Y4mOUrLEKYdaIu2YxBSb60kSAnhZEUmnkmrkzqjy/EJn/OXQRvhUJTY1SQS5oTTRr6R/xNgzEssuo+cnfl1S+pUClKOPLIr29QdKk+EhImTpcA8GSotfDPuAUlW8DlPDeL73Zn3k6uUJaZQrz6hibjMTGrysymUtCEt351Bq1PGpN2EU2mBNjVR19mdf/Cq3w1KyK6r6InpUPFUO9ljKrvNcdhqQbT6XNS3NE709W6T0DjI7UcqIL8fqoBorNWLBrOQte3NKn7QgGmbHkcq+v0WwhFEvkBLM61oNfv1uFKp6z5v9dv+h2jpvjRjqmeRYAtoe+28oUlgX8kiOGLMYMaMGW27/IwGIhnrBEZ4rCmPBiCrZOnjrEID6AFHSKDCSBA/j5XvmS6FhEgMEeDKWZ7b/RHJxNnJOR+Ar2AJ6ZQ7BkWfU9344EbHyBQCQf4gE53J+6dNoid5n8rJan4fkNlVMhJXSSFZWLzdeooRSR5RyNtL94I+06tVc6/SDKpIoCpdQN9qQz5Z/xKZW9tr8gkllpDRpvCCFFECTc4cfLItIV2esjUAKQtVMwAuKhewyoI/6SbOBDQAOYBJwGmDQlpNvREz+YrxttC1+CbbMvFUGTl+IoqVK3x/NNM/tu6MwHbcj5K3nSIO6XxuXrRmbF5XZ8brSFKLvFxhstdw+4d2IpVln7dFL4aEK/fJb6drhubKtrqW/c79ygBLyLz6cPDnhX82RPCdRez1+YJQSCBJHbGherCIajLDc2h12UQxUkLovOGimrOqXlQZNU1Uu9ziFfDHIlokSwklq26RlFb0OFK0gEQvPFWlrhdtRhXTY2Di/GypXSz5rB27c+MTRwtXwC1MRxhRGdtwFEWBiy66CJdffjkWL14MIQRmzZqFD3zgAzj66KMH3LNypBHJ2ACwLxvgmfusrwD9LhMomJVZywwkfAJnJkxrzpOJlsfNi219uPggBwCiZc2YygwQKq1oKb/IXQAAoJU6TpgAR8QCJU1n4m+6lV6owJHTP5PsVdAHlkyRnxkFIuSJG+gMRNHSQQOkiPEVpulr7cuV6shSudb2L01Qopo5gsb97EJyasyuSkidKT6tQqR9btIw5gWV1oC0BillkHLEXM8QMdq1wE2MTd9sxkiE3SMUgcJD5QI2pN939g9yIIEpUDSZhWZPTgRQor6xCZhv0UTmX1FtjyzT5+Vtk7WXeoLy53X3QK1cARTmHTBJOt11pPud6kz14spScB1qi9eGoShuZUiZr1ZAGD3fPuP7Zj+zixv45weEsFQpIzPyAGZUe55MOuQ5Y4sPISHg9l1sm07bfMI6BDPA9ev14/bsWLdBYdvZ0sozW+SopKIVqP41ti5qbS88HzbAJGHNbIoMyrfGo4Zp3KGFiB3b6N02xwDQLglkqaDxpWj5C8gkgRJ17RfGVfwc1r0h6Czj/sCe21GcrHNVIC8j2+tYxmsVSim85z3vwTXXXIPddtsNu+66K5RSePzxx7Fw4UJcfvnl+PWvfz1q9YtkrBPMSksxAgPA+YnxgVaZl1RmRmZfEyRgZQMJDV5GxVFCOJ8J7rPAiSCVYaR4+l6EDgvS93fwFDBAEznZ4ZYL6QYxKoNfmwZgIli2rsIftGyEkgRU7o6lz8zfKqlY4irsqjbVPnZSr7JpxanshEr1EaWKHPUN7b9pfeGK3COpqmjpvrNmZgFh9u6EWd1bhYHaSWSkkO37SxKK3CcTlBy3bKIMMrW3K17SJZ6kBMIyac+FJqWfMJUTMlOel6PKmAQ93yP6jpfLkhvzjcWJQNotsVaucGk5ihyQNba3qDH9mgSk1Ee8v0JTpe27kmNcXd29bzMHlqHD53a7LjKp+V+y97WknMB06kXndSDhdJyncBGpD82wgemOg2e150oYbQ3lqYRtueaGrogdWnvO+JQyckh1pvFLFVq9qtSNRaCu96alhRSgiZlZAKhKN0TeQP7i87qctOK7MeQtiLTpItcL7ZSPoqUXnmlV+yVIE1BEY7M1W6ZelLkdJ2gsqXR5baRUReR+4fmj0ZhGSnredIvIkgXlSCPmGdswXHTRRfjtb3+Lm2++GfPnz/e+u+WWW3DkkUfikksuwTHHHDMq9YtkrBMsmXHkCYBbUdGYppSTuiWMqiM9xcYSIJp4jEJjU0+EBIdXg5QgRuD4RtrcMV+R6mRVK+E7orYRGOEGLqonJ1nsOFevAsZRyH52/YuayBy0DXMUFhJC+OoYd/Z1E11q20NmAdHs0wM8XT6r6gG96AO6K86kwAmvuTdKJroc45RLfaSSilHEGlpVZKtolRnfm6JldiMIstgDLjpTFhBVHS2q2yT93RhaMCqeidgkX6Bc2vQYipOaEkXEmnOK3Cd+Q3RY17s10DmFNTdCJnqirNbbTIKlObrIRFmtQ9Zh8z3RnqrkpE0BB2r1Kx7B0KkwfPMjbYHUKc2Gp6yF7bUKUFFOKjqUOXifBb5kNClzQsYnXf43NwmTusaJGatX2xZmEqWpRwQRAF6PkCzy6xqfspCQUo4zW4d1hA3u8fogUF5loVXjBvzFk5TW8V2kVZv6QmVdkI1X2R68dRRpBarS7aIoW/12PINModIaRH+vvo7xcS2ybv3+qwIqqQKVbj3WSK3K61tnVLOipd955hqhqH3UNjJJqna3Dtt2IQDoKFIICdFca04ZOsGNGD387Gc/w8knn9xGxABgv/32w1e/+lVceumlkYxtaqAXzpISUp1yPeA4AqNXT6KxVg8iQjp/BDIrZjWbzkI0zCRuBgdNBqAnTRr4qGwukQMmyohPCsKZ0IxyBmP+1N+3DxL2Gkyt8oYe4SYMzx/L1EebDAAFN+gftBURJ11fVcCSTW0GFUAekCemwCGr+ZOrUt5mwSqtatMHq49XljFtQilfbaHVLplRlQmcIBJGvn9mpatTfiROGeRRpkRyZQJUdXSsJiEVG0GpWk3dZrN3qCoKm4dNgMyETv2inE+eI7eneuSa3KVmL87+chNkmJSVT8jebgMAkNRLE196jt8h0bEkIbHkUBU6ClXUuvS2WSlLeEz7qxonf/JrC7c5CtO42HLBFOHQTyoAEcayPFwDnVdemP9stqkk9DsdGypmNhChxPcvJGKeGdTkrQqc2b1gGlX45wOwxCjJtBkzDUyjhsBpxYzdj6GCjxH0PvDv6F61GjpanEyvNBYR8cmk70qR1iAnTIaSKYqsyhacqUuZ0+wDlHKEqz4BorkGIm/pACm4hbGSEiqpaVWNkWQFPRZ6QSZ2PHD3gJMpz3LAI8t5MBeg35ekYiJHN840mhcKMvqMrTcefvhhfPe73+34/aGHHorzzjtvI9bIRyRjnZCwjPAqd6soVWinUOny66gk00SJEqbSS8pWdxBCy9xGDRL5Gp3BvqojgSALoFk4AkaqEaAl+lbDnyTIVElkSiZMBXOTAff18jL1E2SiDyfSyQmcEIBIfLkfbsDyypNsgkmkXdEqVUD2v+qXCejN1MkXjkyI5FNWrUDlmU7Vkeh2qazmrmv87Oz9sCaNwhJiqNwjljSZqcwldBRFC6Jw5M76BlL/plVDDBPtkC2EXr1LCVEfr++nIW+2eYnbU48TCtquR1aM0kr+MQXLa1bkLomu2TKKzHyiPh6i1o18xfL2e4gShc2cq9Ig0ov7coUIfMUonYA9j5zhKakog96HUG9xJDnZk1IHYxhCAJNgFlLqTb+L3N+rkMoL2zRUxWug1BTWVFeiugHtJqdOikeJgl1qsgyvz1VhMu+BEYU2shWcx8mhbUfwe1uQg9sRQtdTH3NI34O4rvaW8vYBOLS+DEqlLsKaX5fMdooSS2vfV6VSL9q7NNDIpKwo6hPaohYp15clcuYdF/29erElx6NIUjMWUl5FpgRy8khWBOMqYd1CksyOkW3XBzQBKyFXrrwCXkQ9nKI/0mgVgNhAMtV67bqM4aWXXsI222zT8fttttkGL7/88kaskY9IxjpAJRU98Ra5GYQktIlOucGo1UBRraBIqxCVLutQz9M+ANAvb65Xj1olq1qCRSkmRN4eHl22/6RKUk06aFWYpHoAoVVebgYwriDRipWW8kXRZvIIpXbBCB/9Hf6ugpWjO5kNxDJBUR0HkdX8yYRPjOYjYfrKOt0aImaLbfVpgpdWIXK3WrfHJKlWKotC+4Qxs7CgvqD+IBJmzlUmPL+oT7CTAq+vKEwOtqQClTe0b0xRdfet1R+oEmZQNz5oNjiB6pDVNXEsck3KjUJmt4Ay9wlFrk2cqoDK6kgmbYXWiuXuWJNKw0OR+/tKAqbNbEIu888KTIC0pYyX3oEm9/4+p+ABdpN7ScljaUsmUv9YvWxmdL73Iiczdm/N9vxuro2FvTaAjtGapUrVQIStvJDyv/nn9CszWQ5YVsn7Hh5HKrayCzijrjL/KFRNpCB/n8g/ixQ3QOfdKlrm/cgHJWJWMQYbfwJTLX83Pb9aqmMnMmsDjZg/q6B3suGSrtpxgG0DZ1IDlfmh2mMAq9Bbv1qKVJcSCtK4KsAfwwqm1tPimSH0RRPI2/xyIzZd5HmONO1MeZIkQau1cSJjyxDJWCfQpCmEmW0KoxKxPDaG+OSFgkwyO2hY3wk78BqCZkLCKQO+SphfGTddhPUoGPGSKYCWGxdtPaV1UrWmQvP7kMGdt9mg5v1NdeWyP/3PyQtvP/m78cmEzKn8PJkCoWmQYPw+VAqQ+ReAv5UU1UMCKIRbzZb1h5SA0gRb5ylKff8aUoJYn1pTplEjhYSOxBLkE9W0dbAmUN5Hpi9seULqLZvQC5tY1fSDl7S1KPR3SQUqq1uCQn5podJjUwZ02s/QdlXgKM/qJ2g7GZm2qz5BP4oWLAn2IBObMZ3vr6rznzVRZp5swxD8wEqJ2EDnlClmZceHEz79zp/ZdQEnKKE6F16fkx8ywdN1aQFBhCZveOW4QAinDHPfUAA4pPGQzSNWBi8fH6l4MnHEiJOpkFSxMlTYdwDafLLKiFu4AOXnAwOrV2C3h/y8gnGKH8tNxqU5xsLzaPyj29eJdA4zoplyw6CUwsKFC1GtVku/7+/vL/18Y2HjPEVjEYzkkNol8qZeLdHgl5jEqQCasgJVG69z2JAPU5I5vwPuUG5MYKrSjSKrOVm+zF/HkAmPdNGxYTi2kGb/RqOWcdPhAPBMo5xolRC50I9NH5c64hSuoI1ZQtGWUuSUm9X8CSnJoLI6VNalTYnC+N4BNtpSZTWoqnb0taZNPokFPi7aiTj1+4PXudKl60H9SObQrGryE2XOdxBw12R+IzbEPjE5yVLmpyak3oM0TDciXXkqrRlCZggJ1T2tBFFxOURzre6LSg1ywpZ69wJbpiFlfCNqMkny+0k+jlwZKiMi3L8rYRu0M7JmI/fIJNps+LmkpLRKmDQ/olJzEZDmb/qefO+87ZE6kSop9S4FIRHjPmak6JWkpABK1KuOSo7/7rkI60HO533LzNk8MIgTnNLrAtZU7tLipCZfX7si45k8ue9kqhNR6+AN/flh1aWll7127VT7u71mVmfRi7ru166Zoo/JauZ9ce+R/qJdXbOWAxNAY3cTofGMlC9Oeslf03xH44jz4zTRkJ5Sr8tTaUW/z5U6VLXb1Y058zsyxsqjBR93cwjHYCFKrQojBcoztqE/I4HFixfjE5/4BGbNmoV6vY4ddtgBp556KhoNP/J8yZIlePe7343u7m5MnjwZn/3sZ9uOeeSRRzBv3jzU63Vsu+22+MY3vgEVEPjbb78dc+bMQa1Ww+zZs/GjH/1o0DouWLAAW2+9NSZMmFD6s/XWW4+a8z4QlbGOUDIxPkPGD4ltJSTyFlTF5RYrCv2iqKSCSsUNmHaQzZvaRGDUHjKtFRBo5gqJADKZONOYefF5tme7OuQqEtBOxkLQgObtl6eles9pu20iaScPANw5/HhWZ78TTX8VLWP2NXm7ABuJJPp7AZmV5/kxZai0Zv3CVKVbB0FIQAn/8SVfPR31mDqlsEO/kELp+eKFzttUB1OGyBvOTGvC8YUqNCGjtjLCqoTQvzf7jSkmh02PkpBZUJN6WetGUe12q3siLZkjQ6rZr/3Kqt1OOeNBAZSsNungFwWmiIVEh6tinNTZZyjXUZomeMGdZ/qmygIxCpdmwVPSAP+5Y2XIpKb91Eoc+8PEpaJad5GnLT+HGidfgpHR0oSo5nMKTOlwQJtS4qkq9Jx5PpQuQMESsU7vamD+8/6nZyEllZLtktFa613PC3rgClXRgspNvU3qCd6W0ibTeyFNDrE00++LSTMBmeLQruW4dtUUHNLzEmyqBw7eV4aIUZCRXYgULRQp8zFMMudHGJRHPl+uksqSJu2jm2rlnBRsO3ayxM15EzanI2++JdjC1ZnaIBQbdxMopnh3tGi8xvDEE0+gKApccMEFeN3rXodHH30Uxx13HHp7e3HWWWcB0GbCww8/HFtttRXuvPNOrFixAgsWLIBSCueffz4AYNWqVTjwwAMxf/583HfffXjqqaewcOFCdHd344tf/CIA4Nlnn8Vhhx2G4447Dv/7v/+Lu+66CyeccAK22morvP/97+9YxwsvvHDkO2IDEMlYB9icXLTNBpyErVLjJ1bkaCl4rF0JnUunBYlWoZBIgbSSQRS5P7ioAjm0iRNSIJUpkBTOT4HIQplvxFBe/nDgT/zBHYCbDAdb4fPzLKEzAx6PAA3aZ02VSmlSIhJNWgFklNcrbekVrSq02TfxyZGqdGv1igZ2E/Zu/UkC0w/fGkmEfWD+D02uVE8epBFGrupoWKeMuNxEAmj0GvWtAjRMuDsN+OSj0GravUXJB1E/T/qeiyyDqI9HYXzSpDUHJhC1bhuhK5pmqxjmKyeyivUbo1xTpFS55gcJYUk1s1sTObJD+3WKNPMVAUYwvC1tAO20H3zGYRUsqpdN/Bpuhu2rsvw7ynWmc7BlLsFoQL4oWEKEKiEnc0NJjTHIe+Y9M4DuK75dD50elNNmAuTX63BN8pcC4KIr6R0xpCa8lg3o4UmQAZ3ba20vZN4ILwMAOKTnJSiV2T0idd8UhpewBZaQ2r+sJaz7QHnlmVouJIpaj1PtAJZWwhEeFNCLYcB3FyD1mBzx2fPpLYCpOJlAJRU0FZAIgcScb/sUcO8lJ2L2GS5gXVUoFZBVC82YkGyc7ZA2ZTPlIYccgkMOOcT+PXv2bDz55JP44Q9/aMnYDTfcgMceewxLly7FtGnTAABnn302Fi5ciG9961vo6enBpZdeir6+Plx00UWoVqvYZZdd8NRTT+Gcc87BokWLIITAj370I8yYMQPnnnsuAOCNb3wj7r//fpx11lkDkrFNHZHSd0ALEi2TU0ab2DItdWc1T5WiR1sK/bJDSDQh0cgVCsW2sAhIAA0IUuifEJ6vgo3I7DxQ8x/vGmUDPJXJvytbuYfHsc+UmZzDLZ46QZNRBSkECqX7F4k265F50ovkIxMDT9LIyBeZLPyOULaOpZGj4UqWkyte/5xFwvJBXiYmVUmXU/oAS8y0qSSB86VpJ6kqNc+R2ZJFpTWd6Hbcliiq3ZZoqqyu83uNn6hNs2mmTU00QRmlgUiHqHdDTphsN2e2hAeaiPFs+2Emf0rsqvfnlDr6cW1v2/Y1ZQTGqndcFQOcuTQMEJDuWqKq9/wUlZoxr5vvqjWT26zbmjGRVvTf5js7QVPfphVbP53Dqsu4Ceg+U0kFolI32z9Jz4xnNz5PAjVwIOWIPztlKtdQFZNgAVPqi6YKiFafa29R2OhepHqTbE/94QuPxJgnucnQOPGrVhOHZc+2Xe66VVuYCG9HVoTZ65WX7+qT6whH+3ervB3UFqXz/uVJVb/7RI68sUS4PjTuAraNLNG0PccQaedKQLkb9UKwmSsU5jPF75v9PQg+AHyF0RsbhUnBUXWR3BsBxTCYKCnp66pVq7yfkfCXWrlyJbbYYgv79+9+9zvssssulogBwMEHH4z+/n488MAD9ph58+Z5fl0HH3wwnn/+eSxevNgec9BBB3nXOvjgg3H//fej2Ry7+4RGMtYBrULpH0io6jh/j8WipTe2NtnzEymQSoGSjUoghIAsc3BVhV6pSaFJnHeSr9xYHwZOyjqRrICYeX4RnFwBncsqG4BY+eGxpU663rWFmwgEkAjdv8qQDgB20rD1ot/JBEXtSSo2Z5sdLGnwpMmMD8plfVHSNhFOhEKrRSqttE3S5EtiJylTBxu4wX1XaHIyk6ae5JiPnSF3RW289ZGDkJqAjdtC/8+fhyTTJkqbUNMEjVTqKIxfjKjWmILkkgZ7e2SawAAANk8X0or1KRLVWvu+nKEZEDDEqmJ/t35iWcVtY2W+t+elFecvZoiQjgztMik8xgG18frZSKv6p96jTdS1cRBZVdeDiEC1S39G5Iv5E1kyTaQlq9tnzoLIafDeefe8jLSz7+zn9Dx2IlYDocM7LVQB0ezXuQzJh5RvKG+e1fayhPWvtAElRlnVaUYanop5WHUpDh33gm5/knU2Y4bt5dcP33/AkjOroucNyL6VSIomCjhn+bY9HgNFzbWp4n/G3nmralnFTEDmTVQSNg4PNN7RM8PbzxaeisYWo7gVaRXFRkptMZyYPn265y91xhlnDGv5f/7zn3H++efj+OOPt58tX768LbXEpEmTUKlUsHz58o7H0N+DHdNqtfDiiy8Oazs2JqKZsgMKpX9sDi+W4I9eyrZzjNdGIgBwawelwjYDB73kEsqoYsoOHl4WfAIRGfKBKCNJVE8zeHvRdUQWOGlh5MRuVM7LKis//J1J/l69PNLDI5OElckLBfQXQCJSZKphV8vUDhS5iVpiechoAmZ1UWnVTxMgKP9aiR+OHdj5Ktitlj0fPXYOZQYvvS9GQRN5wxxbceZDk4yXE0nrP2PvNyk0um1F6laEomhB9K+GaPZD1cajEFJvIUVkTyZ6cm01XR/LFLI2zhIc1ejTKlez4fyK2qIJDXHL2LUzF3jAFRCdaiN3BCtwUhcyd9cixamQ2teMRVTa+0LdaQkUy4AuEyhlJmDaLqfp+o4WF1ah5KQqJEImNYmQmix7e7IGW1OFsCSeTfC24mZvQ7pu+BwNiKG6HAA2p5cSrO/InC4YiTFjiCIiTeOJSdtgSTnlszOE/LDqUkAVuPbVrQEA16+o45DxJkE15fuiZ53GMJn4JNAoxKLVZwkLaKN4xf0uW0DeNP5jmXu+lII2C7JxhJsiAbMwde+voPfXfO5vH5fZ5zdFASWS9jEkjOyEP76G0ZT0e2Gel7xQZUWMCPJCbXCeMRp/ly5dip6eHvt5pwjD0047DaeffvqAZd53333Yfffd7d/PP/88DjnkEHzwgx/Ev/zLv3jHlm3ErZTyPg+PITegdT1mrCGSsQ7g5sMiySABL50CPdQKmlhIASuDA4AAjEmOJnsBoZReWSnHB0T4JssEUCwRoSoAxZSbDsqOvoaZ3BXbn9EV7IhgcK41E5SpRebzsDw7uIZqkv09eFmEtP5ipCYq0xF2RUurTlVAFv3tuYvMNYokg2z1u9W+cfr1EjjSYMxNcrZPVVu5HlEF2pWGkr7yCWRqyZjbxzRQyHhfgj1PXFlITN6onHxkjJqRVaFqE1g2dlI7lPabYoRBZVUgq6IQEtI4Q3dsE3f8N31kSZklHgykdLFIWJFVXb8VZsKV0imKidR7f1rlkgWjlD17ZMqi+8/NZQGBIZ9Eq5TaAAKhiZwlRqR46P4tqmZnhKIFtF5h/ZHr6FG+QPHqZK7BAxjC544ILLWRf76uahng59oL32GlIFpNp8oSEQsjf8131B5RIeW5H4c2HsU1/bu0Xfe61ZNxaO052H1hyWxvF3+uTW3RpUZZsosOUnJNIBMdmxRNlzYjfNZM3W9c2ocDZ3SZNiRugxFhxlVm4PH2oJXaRzVJMkfawntQZrVoW7yxe6uAXMEt4uCP+yMJpRTUBpIxIi09PT0eGeuET3/60/jIRz4y4DHbb7+9/f3555/H/PnzMXfuXPz4xz/2jpsyZQruvfde77OXX34ZzWbTKl1TpkyxChjhhRe0WjvYMWmaYssttxy0TZsqIhnrgERqE6KANqmBR+4Z1cz+qRRyBWOSdJ/n9MIqN3AQIUkg3DjAJ2quWgFm8My94+wkyQcBb1DRk4M/tLG8XWUTQokSxwcnxY4p2xeyDdRoPnGyrxOh6yyF0Jn2qQ2KBTGoAhAmHxlT/ZQyqUQUUOH+HawtRPog4asadgXODg/NIdKVQ/WgZLvk6B5OqqqEEIaRX7asYOIGy6NkHYQTEzmXpBAygezv1b5qadVGokJIG7ZPZRNBtP5uWT8gVzt/H+qrkJgZ5UmbgTPIxlq7ECBVzCYRpQCBFnxTpipMGoyqrxARMQ76wctFx8kFVzApBYFM9SRO2+eoAqKx1p1HKq25R+THY7O1J4mNypWNXhS18fod6e9Fkva6cphyQguQkADatgak0MvK3vb+oeOxpYsjmdgkw/qdaGgCWBQuGKeszCTxSZOQ2q1CwqVioXZKU8dGHw7NH4XomoBr+qd75V7bty0OS57Ri6BK3SpNFIBB5erVqiPbSkjtD1odr8kWfwepX1t9NmpdyUT7leZN3fHsuAOn6+AVJVO945l5hmwP2+3O9O9EzpSCNU0qIfSQFPS3p4LJRC+YzcK5bHzjxMuW3XbUyKBgPl8bUsa6YPLkyZg8efKQjn3uuecwf/58zJkzBxdeeCFkMMbMnTsX3/rWt7Bs2TJMnarTp9xwww2oVquYM2eOPebkk09Go9FApVKxx0ybNs2Svrlz5+LKK6/0yr7hhhuw++67I8vGnsmYMDSN/DUMUr6sAySZL5WyP/ZYVeIwqTQp41Eshoe0oSyUu015sgpIQMTM50IpbxXonUurT57fKAiDb7tOyWdtq2Ah/AbRNQBfTWOXSKRAKgCpcj86zJyjSUrm/DNkikIkKJLMBjc1c2X9NdoCGEw9ub8d92HraI7l5CD84TsdUD/w1AWBqcte35rfinZ1p8TXR5nkrqo6Dqo6HkXXJEtAvK2jcrZFllUDUm26NfUiH7Ki0edtQA4Ast4N2d0DOW6iTnlAGfVTtvVUSNztc5NCVOp+IIW5tvbNcg7XVvkjXyfjS+b1Hwt80EESJtebkJZEUfuKSjeK+gTdL5W6PpeeNaWYSc4EgZi0DJ7ixu4x7eqgc3ex+1HmiE6+dmXvjK1D+zvrqc8dFBj+/FJ+PIrq9t5l4zzOfSW9RRwnXEK6LYaCXILKkHlR67Yk9NAurTgcMv5FHNq1XJsvU0P4jQqs83qR43z7mEXKoEqretsjZnqnsUJVu3V5QloiZmHKINM+XwTaQ6CJUaH4WOtMhgWYVYLzDzZO2CAMNgbyvUmUEFBCoICwvyu0k6+xaxgbPjz//PPYd999MX36dJx11ln4xz/+geXLl3sK1kEHHYSdd94ZRx99NB588EHcfPPN+NKXvoTjjjvOqnQf/ehHUa1WsXDhQjz66KO44oor8O1vf9tGUgLA8ccfj7/+9a9YtGgRHn/8cfzP//wPfvKTn+BLX/rSqLR9uBCVsQ4g0hUiTD4XnsMhhT6eXnBJrjBksjQvuFDtk16b8mImlzZ/J+knHSR/CsHMkoL932Yu0UtbXzUiskLmHa9ioSlBudGOJlPjUyeU84XTX+j/csNwpRCQRJR4SgDAOcwKgUIlpn/1YJsIE/RgRDMX2Sb8la2ts6/OhYPnYEqFf3DhTWqKf64KTzXzMpAbxceSzHBCLvldGYUJtR7tK0aXoug4Sm9hAwf0JM1NZEqmEPUeSPLdMRtri6p2jldZVU+oSkEkWoEh/zfKMUV+ZgJwJis+8TP1i0eW6Q3ZpVZ08tyZzwBAuP39bF8k7lnVebUSazZUSWr3HdWEqgJVTaGKKkTegmj1Q/St1v1krkFBN/w+KCEhkkzny1JrzRZbmcvxJ10KEvL5a1OUSYWz6TqkM/fye84Qfs7fx46mfqNICrP7hP3Yi5wUequujs+Tv5OFKPQG3MhzLTqblCyCbluR47DKX6FyvS+rElITMSLnLM8Z5Qa0jvneM6Eg8iaKSjdEkjJTpNTJlplqLJt9bswx45nnk2vTwWg/WyGZhYG5gri+FZ4CVCiFRAjnu8v6icbLMj80r0xF5M+5rwgBW4+NgXDxv75ljARuuOEGPPPMM3jmmWew3XbblV4zSRJcffXVOOGEE7DXXnuhXq/jox/9qE19AQATJkzAjTfeiE996lPYfffdMWnSJCxatAiLFi2yx8yaNQvXXHMNvvCFL+D73/8+pk2bhvPOO29Mp7UAAKFG6u6MUaxatQoTJkzAX59bNiSbOkcZeZOeYCTsZzQ4CLPJLuArWZ4qVmLysyoGH5jByBgzB/EyvWuw3EShWck7t8wc6ikBzOGaVpjCDaZkriVFkfdHIrRK1iqUyQOk1RtKistRKB3hmpIJ2eRuC4+lfm3z+Qj7ozB5lAYiwkx98A8qmfwAIG/opMDcrAlocxngh8EXAbHjof2GjMrmWkeqbK6lliUgep9THT2myPTWt9rdpyKHyBvazEkTJzMlqUrdfacKbRo1Oc0g9BZW5Acn8qZvipL+Wk6F0ZdURtHS6TIomjTsVzbZurKqbnI3uedsv7Jrc18p0VgD2b+aRbUaU2Xe0ClETP8AgGj2aXKXN0xalQSi0avvk5SmPG0GVZkmuKLZb+tsfQPJb4rn5Cp7XgZDGEBgkwbr/8lsrJKKbgcA2Vyjr031IuLEVFK7D6TUx8nGq21qFn8HbF4yIrQyNalV9MJANg2BtYtDaY8v20pIVcdpUmtMm0IVKLom6euaZ9NLEwNYv7DCpMKRaF9gFRBoFjphdhlo0UV+u2RStGMD0DZm2N+Zny9HbiLs+TheKD1nzJg2BStXrlznOWMooDnpHd+8CqnZrWN90errxd1ff9eI1TVi/RGVsfWAc9gf2rGAU8kAowxJ4zeGQJmhgQxMwSF/8FCuNwNfOGhYlK28OfigzY9vO4YpZuw873tWP6oaXzUOlGyQzAxpqssvksw4yio7oHrNMudIkUAKiZaiT/1jrTrH2uaZRGzdfZOrUiWElcoYyO/OKkSUgsT1p02KSfeDKR1tYERPyRSiuSYwbVJeM2Zus47rLUeKzQRMqpXeozPx7qUoWlB9r+p0EqZsUj/szgnGfKfSiiUlyqhVAJxqU6YIkX9RmIaEk0/yf7QmV0cg+B6EnqJC6pRpW5FWIbK6JqRKQfS/qos2G7WHebhUpcvdL6MOyqKl+yhhhDlJnKmMtlZigQX23WXkSajCRVhS+4Bysmbay/eFtYew990qdYDOOaYKrTim3OzJFG1VuETVbIcN7cvmfB/deYmrFpFYq/a2dMAmKbos9YxKMm/JpLKaVYghzTOU1UG+oIonKzaLiCKr+U755vfERlAVrn7G90sTLP21Fyhl6pFb0kQLQeZn5pXRPnYWzJ/X+vsqM24jGMfZ3xERG4JIxtYT6+pHyUkZ/S2g33TJzV0Mncxn2k81cCD2LYWlZCEM0+bmPfs5U7wsUdQ19urggRQMXrZyA2OnvqJoSgp+AGCddAHY/Gt8oLXHQZO1ArA7HXiTAjM/hM647X0aql5OVQrb2fY3J0kimPQ4kQvP9XJEBT5BthGF25Irb7T7cVHkpXHoFo01ljS1ER/yd0skRLPPkh89QeauzsonA9aPiplhPXOkUUR0mb7/GmCegYSpKGSaJH8xBKSDUliE/UnHC8mImDDO36l1zi7SKvJCIasn2jSWVqCM2tV27axmkpX6vmSW+EhHxBwha7UtcNqefVju0N6vee4d6xEx9mxw3y8FaNIFQCuULRfJys2XxsfOI1EAkLf7b9J1PBBpNt8VVAchtX8iXwxQ3SpdQLNPB3iY4ApttnTbmBUi0a9UWtXBN4VCJgVkkun3nw0QqXJ1cGkrnGM9LdJoQUy+Y3ysUeZ748EPKdzCtlAKkvmTESHjpAtw/5NrRKjqjwZGw4E/YuMhkrF1wHA+x0op5JrulGbgt8cFkzSFctuJwwwkbfBIVtImvQu47x2Rk9bxNTFbklAdyvysrMnHkA4yTQoTUl7Yga1zx3HZnyZUqnboj8H9NQi5GShFyXdlvh/C+MG4vwM1kJtdWVu9ornvHdrvkSu8RJUMiaBgEy/NBmFkLE9Saoh7uBUMyOQqWNmAVZL8bat807jomqCPY5OajeYDHHkjsDQY1ieR7y0a/g9ffbVpTLiiB0AJloSY+5OF5TF/QlI4EglA6WomUmhlyuyYwNU1mL5TSJwZs9kHCImiPkH/3WoAKoXKfNOx3YnB1M+abfn9pGP538w9wMt/VxY/VZZ+hO6lSSFiiR3tc1pyfbouihZEs7DPCFfx7GFUNxl8xhcKJjhDm5xbLrjAkGFdd0auhU7OWkBohdtUs2XGBR1NrQM3dK4uvaCybWVKlFbBYdsajsMhEQPaLRf0qwDaVLRm4c7hGCoB21j8hnuubEgZEZsmOswimyauvvpq7LnnnqjX65g8eTLe9773ed8PZUf4dQU58g/mDzYUhMcrNYDzJ1uV6qzP7atFPnoWSvm+/WbFGZoHyd++gFllmiikwqw8aZWpFOx1FTnVsp9CJHpfThMlCOhBrVkoNHJlB1hapYY/YT/Q+S1TP07E+Dm8DGqfDZQwEzMlYlQBqbE/rO+8CExu/jVRg5Rt326J5UVISl+xMcSEbz3D1QRvW6uQEBIJZJGx9t5CWB+qtuhXTuZ4MAf5/pj28L01kSSuDURY6NrkZE1pFQgmClKZPSHb6kAbWTMli/eXd2yoBHIFxvYp/STuh+6XTNFizy6HEDC7YzCiS/cyrXrb6uioU0Yize4OOgKzaqNS6RmATKCyGorqOG0yZVGZ/JkY8D4DsJGlnkk9bXu2SkEm6rRiIk4zVw6RLX4/+LMQqp782Q8/K6u7SRmid86oQtXG2+hdq1B6EaCufbkhV2R6bBUKjbxAIy+c2a9Q6MsV+luFHgvMTxilHo4rtPALiZNkizp7DNwPnUvlhZHwQ1XC1nUeiIgow5hRxn71q1/huOOOw7e//W3st99+UErhkUcesd8PZUf4dQG96EP1DVsXUD4yqxwJP3EhwapeJKEzJQDk72DK4FI7AGsmtAtKMvmxxnCyAwCUUFD/p1ezdEzKTAV0soIZzJKqkfNd2evaZ3ZANivpsu9ClJE6TSgBBYXE+IcAzmdNmsAJ2+dlS0WalHhEKH2lCkAFDiWAVbXaTH3cOZ0UFfa7LZd8abh9i7eNO3jzTd/5ZGoz8/PouZatp/UDk6mv9BVEBqEJR5rpzadJnSKzJ5+oVZBOQSYoaKcCL99aEAQSBqIEShjvf+cTGZJPZ08q8/nxzPB0jiEHOvEy26tRuVQMaPZBSGlNf27LqtRtQJ+Y7bGUSa4rhG82JZWJ7g/VB6QYcbM2+94q3b7azNtjiSovGwBEw1M+Lcmm+8TKsopduABRPNGuu9fewsIQL5g8dqQs8qChVihlw1eYhBDIEr1XpL5/7bcPGJoiFaYVGsoxeclh3IWEq+9l0fFl6vzGwqYcTRmx4RgTZKzVauFzn/sczjzzTHziE5+wn++0007296HsCD/cGA6SViiTVBawzuo84oeDZ7DX57Y7oHJfB7DjoNzEVSbrA6SWabNhaGK0poXAPwMAWkF01mD9MqBZdh0Gi7JyiHTlysxxcGqfrpvyk0WKxJkueUQZHIn1MnwDWgErWvClSEfaPMd0ITV54+1i5kUvxUEJRGC2JDKiJ1jpFCNUTOqJAQID2PfWEZsSglIbpHQqWuAP58iN7jfF9vxSSQpVHQ9V5BDNNfpDKj9v2YfWliF9otSWU4/aFSgsSukFxUBPSQEBwYg0L0MJAWnJp7lnaQVKGdJcsAS/STvxcVv3FMZfrmBBIkQ4ZVvkqmsA27WBEZ02UzcnViJ4ftj3ALxdILxdK+g+cfJcBk6qqf4UiQmmIpsN10MSRk1XZiEVbm/D32kiQ+tDaEIixMeZkECFx3UiWGH5Ax3T6fuNZaaMPmObN8YEGfvDH/6A5557DlJKvOUtb8Hy5cvx5je/GWeddRbe9KY3ARh8R/j58+eXlt3f3+/tWL9q1Srv+5F4dsMVWrPQg4UQAsooUlz10ufogYwGFfqKIg7pb8q7w0kbP5bQRsQU7EbnpQqXUlYQavtuhFE2wA4FuVHIwkHbElXzn43aEn7ySS8YIpgsLYGw3wtYq3+pWkP+YDyKULpqkBJUAqc4SE0kVXB9QCshhpCReqVJXgswuaZESBIMIVOq0GobL6/EF6p05wXWN0WSQckMiUxsFKNTzgK/L8D5IwkZRA+7fijg3gN6rv3nTqdEIeLsqcPkX8nKI+KtlavcbTrPFVAhbeSibSNFBzZZvrfERCoWXCk1BJkTc0/ZE15aDqX0/SgjZTxHHT/f1lWy3Smk71fom731s9lG+JhKa0kcqXzkMxj6zNm6hf6mfsR0uKiy7/A6ZuUaKvEZbCyKHCRiU8eY8Bn7y1/+AkBvWvr1r38dV111FSZNmoR58+bhpZdeAjC0HeHLcMYZZ3i710+fPr3jsSMFS7DIb0Fp4kQ+WLlSbaY7jlw5v4mcTVgKsL+HP2WEK/TpKhsIB/KhGyrW9/z1uTb3CSE/EwXnw6LsMe6cNsLBJ8iBdiwYYH89b2LkflDWT0u0n2Pr4zJ/07NQCOcf5tQm45RuytNKhlFL0gpUVoOqdqPI6i6hLPPT0tFvFdsm7qBNfkA0SXPfIiUkUBSQDa2INWnrMMpXlQRrPiKBaVWnPSB/LOZ7Rb8X1F6zgCm7n83Cz77OEeaqs20z7QtVR9t3bMN3yBTIau486m+zJZDvO+iImc6RlrnPBU/ZwYNw2H1MMueraEkVmQkpcIKZesP6txEuBcpD5z1r5nfb50mmd3yo1G20rEprKCrdejeIMD+cgYQqFe5CcGUqfIc7vdfDRaDCRdxY9fFShRqWn4hNE6NKxk477TQIIQb8uf/++1EYM9jXvvY1vP/977d7Xwkh8H//7/+15Q1lR/gQJ510ElauXGl/li5dOvwNXUfY0Gz2OydI4etExCo81h4f+BqETvVl2Bjv7FCI1UD1G+j8ge45J6OuX7n60J67LVQC/O8Cx2dWjj3Jmo4CP6YBnLXbTHedwK9vJ2wiaGmbSRCJu67nrC2EixYkf6204hExRzwDIgit9CRFE6mAb/oK+yQkNfQ5JzPmHlhhtkPTw5xP+rPwGPZ7yX3Q/wvXd+Gz4DnnGyIVKlgyIKehv1sZUWJO/CrsF1aGh04LAd5e+9wN4fmh67A9QEGKWJKZAB6WzNWqpMrrz8E2y17X8WQkx58xy0eGg4iN2cZv/hhVM+VQd4RfvXo1AGDnnXe2n1erVcyePRtLliwBMLQd4ctQrVZRrVY7fj+cGMp7wFUyAhFKPvGEQQCdrjcUJ9dNBes7ToS+JMDAbeXkVbAJHwAgpDWN2RxEZBqk/ERC+yRBkf+Wyx3FzW3OH4wTDD3hWcXGJK5tSy5L1VEFoKRnftZtVpCknLC6e2ZIwJonqT4eZAIooQ9lqg2vP4QEUu1PpXgqDVV4e3XaiT9n2wnx46l+jHxSMAHPd8ezo5PZiy9MBrqfnJAJ5czP5CfY5ovJyRI3UdqgB+kCJ5g/mNfnPPEuWlC0SXWiVUbR6tO8lKciIRTumjyViN3Qm54f5YidDZqgiEzafkspQOWOUHZAGznm+1XCmSKLShf6WwXQKpBKgdQEovBAEs8sifbxZjCUve/DxRU2R85RKFXqS7yuZURsmhhVMjbUHeHnzJmDarWKJ598EnvvvTcAoNlsYvHixZg5cyaAoe0IPxbAiQX3lQqVHAllHe7LjuPlbeoYjjqGZQwlSosILUGnyfBJD98FoPCILdrVLvN7SO6Adn8bATe/FxB6v8TQyZ/9rskf+6jsvECN0hO3aQupWrnZLFxKKFkBWg13PqldxoFdqAIqb7VN2PrY1CMznGxY/zRDEmx+LtMPYY40IqaF6X/yP6Is6uGzH4KnMKDjhdArldJoS34fykiWkABPBKyU8yGzfWDydRky6e0zSSZYymNGhIzKozISQ6qoP1Whd2bg2fEBP4lv7tJjiLxllTTLKYV00Z8sCraNCIY+gbZOme1L6u9c6X0FRZHbIKIyglx2f0YiGj0iYnPEmHDg7+npwfHHH49TTz0V06dPx8yZM3HmmWcCAD74wQ8C8HeEP/PMM/HSSy+17Qg/VjBU0+FYJF4bC5ygDuU4OjZXqpTYcVIW+sjwxLtafWHfBSRMKYBSlejra8LQKnT5XjABMwV1WtBSFJug6EOlz7VlJJlW7ozyJAE/cjQ15ItP1kb10r5gLZdvjAhJ4OtkfyeTl2m3JTvcyZ/VVRMuaNIGgLavUap9+6zBFOBQUfaTKpe4L7DoSk6CXVCGaics9mSnCtqowwJWgaTzbbqJpAKgoVUzbhbu2CBHuBSkJb6gTbptG6Q1KSpVwIukTSt2/0xvH0+l2tJm8N0QqFze3UoptAoAkG0m/sGiFOOYNHxQasN9vjZ168hrGWOCjAHAmWeeiTRNcfTRR2Pt2rXYc889ccstt2DSpEkAhrYj/FjFSMr5mztCssXBzb9l6TxsGfAVNCtElfmPKX9SJtXHmsgMsVLGDEoRn2HZgCFZwh0btkmUnMcnSB0xCAASlMlXyQzSqDA6cz7b6xHQn+cNq+6IVr9Tv8icGOZOI/8omXrE0SpdZkcGqzqS4hKYIRMTOEmqDE/mOxjKyDcRMgVDpFneuTZzTxhJyqOZJUvjYUi59c8rMRUD0NtXKU7YGAGjvmfPiTXtpnCkikfd0jXIlJm3HOEC/B0WhPQ23+Z7tIYmbBv0YeoMpYA0RR7kAeP3yu0JiYiNiOFwwI8O/JsuxgwZy7IMZ5111oDkasaMGbjqqqs2Yq0ixhIG8i3jxCwkcLSHpi6jfTBry/Vm1BbFJnQyaxKx4qVwIsG/46ZM+pvXuaVITQrMRYY8cnMSlU/7eUqRACKx7ZGp2TZJALLpFC4AlrQpoTeBpo3EaVcA2vJGT+AKadDJlnwRIQDsPqOhT2OTRKH1nOjpHnMyRz6WudK7NSTC38e0o5N76H9lzJfepuOqsEQ2TFnizhOA1EEQWpVK3L6PqrBpQKypM0x9IqRLQUFkT6YoKt3e/bBkmZuOAYjcqX3WSd8oZnbfSACw9QNSqfeMHcxEzPuc/x0REbFuGDNkLCJipFEm4YeTuyVE5n8BR9Ds2QpGiQmIl3JEhFC212anhJUhuQrrzCNIB1NTiZgUyv8bChBJ1RLMJDF+X7QBdO6cywuRoFkoz8zYvr+f6xufdLq683qEPkbrM7HzyGMq06Y1EUAhgEwyh/4wgIJQ5mPFCVLwmTuvJJIyrKNIkCuFLCgvdLAXymXQV2nVlqcA9BeAFBKZTO3OAn6AgFM7dUckyNMuTZwLBaGETk1h+1giMRut00dD8cW8+2+r8Y7txkelbIRRFIDYQKZbdFh3RIw+IhmLeE2hTB0Lwf1guC8SN1eWjYkhMaJs5BwDpdzgdez0N0/VwreYGSq4AuhFHzIzLcDImqxYYibNZE+kQQhXnmce7NAOq7JAtPXLYFvRhFgXJaaN3Ck/S3wigMQEQljiI1Od1kEBUuWl2esL44/XloKEmWw5uGlUqhxCJnqzcYP2NCACSlFQQOJ8v1SBIsmQNwsTaCmRyUQ791MyWBbIQWbRIsnQ13T1lMZ5kRNlMk+WmYd5n9+5dLX9/R3bjW/r54jhR9wOafNGJGMRYxbrG6nF1a7ByufotLddGcqizMqiXdcHQyVhZcQt/L3TZ0IIG51oiRm0eVOSmqN4+ojOZQ92rfVRwjr5Lq3L+TDtaimnSAqRWvlTWuu0bFOdCgjjE5eAb71k2yiEF4RAKVKkMQWKvOml0LAIInRttCWAFiSkCcIQSiFLhFWxcpnpFCmGKBfGBK395LRJutnh4Q1TUnSKirxz6WrsPX28JWJ7Tx8fCVhExDAhkrGIMQk+EW+IKWugMjZ0oqE6khmn0yQ3GDqpeSO5yuW+dIDLbaegbNIHvtXUhtRlQ+8h75t1LSv0LSNQZKf5BxsEATI167a3isIS3oz5mIX7Z5K/nBTGJCmKwCFQtAUDeJuCC4lWrncaqCQSKYBMAEnikzWbWoXMsqaene7PQCps2edExPaZ0dMW8RoxshhqDujByojYNBHJ2GsYY9XpttP2JmWRk+uqfg31+sNV7lB8ckIT3lAROshvKNZFGdyYGGoakzIMlI+u1aGtoSJJfdwcwkTXBJCIBDJhfmp8X8og9xoACGMuJf+7VqGQG9MwRdRKIZBIYSNRyxLhdmrnumKfGT3R3DUKKAo1DD5j8b5tqohk7DWKu/+22vt7UzA5DAc5DNtF/ixl1+B+L2XHlp3DP1sf8jcQhpoTbSw6Sg+UYmQkrrE+5wy1XoPtBDDg9cwuDlIAicy8XQF4WhCe144UKHrmyMSas3IriY4Spf07bXoT4fs5SqiOxH6g/uPvVSRio4OY2mLzRiRjrzGEZIVAxKSMvGyM9zecHMi0x3+n/8l3hUB/l7WtjHTSOZ2O7UTK7lzq6sGvx+vSqX/LPufnrQuGau4Mt9EaqLwy9W19zaqD1XVjELPBUEaeO5HdoaiXQwUPYmhPk1Liy2c+sySsA1qFQqtwZmNhlTO/3mG0LpXdCfy5Xd/nNSIiYnAIFZc5HlatWoUJEybg2b8tG3OZ+wcCJxqdCAOhExkJsT5K1mATWRlJGgsYSr8OBWUT3vqQ4U79HBfGw4OBnuPhILGdMBC55tdNOlxwqEl0OynnY9W1YSSxatUqzNpuKlauXDkicwbNSTudcBmSatcGlZX3r8GTP/jIiNU1Yv0RlbHNHOGgOhTCMNAxQyVqHJ0morFKvMowHEQMQJvqt74oU3ni5Dl86KTuDeYAv6GkbKC1c7j7AF13fZ4Bvrjo9DzGfSc3LuJG4Zs3IhnbzDBcpGBdyx8qSducCNhIgffRhhKzOFmOPNYluGK4VLNO97WMeK3vMzCQ2ksKXSRkERHDgwF2q43YlDAYybr7b6tHnIgNhKFMKJGIrTvuXLra3lspYH/o74hNA4P5dA3lXP4z0PdDLWtDQM8ZUP7eRu+WjQ9y4N/Qn4hNE1EZGwMgksWd2su+Hy2QejPQKjkSsQ1H2Ic8+SYhjrWbBwa6j8N9jymhK4CO2xqVPWsjUZeIzlBqGKIpI4neZBGVsWEEX00OF8p8vsaKIkKKTiRiI4s7l662P2Pl2YgYfdB4xf0Uabyh5ykE/ywSsYiI4UNUxjYAnSa+Dck5xVepncBXsaOtinXCplqvzR2UfiMiYiDwsSumrBgbUIXa4KSt0Uy56SKSsQ4YSOXie7SF+a4GAh3L8zoB609cRpvwdBrER7ter3WEuaHi+Dt2MdzRsEP17dxnRg/uWLJqwy+4mYH70XH3jI2BuFH45o1IxgZBJ4JFn6+LCW5zM9eV+ZFEIrZpodMzF9WzsYGRJNLhYpJvAj6URMGbKwbzmaPtsMJtsSIiNgSRjHXAPc+9iq6V8WUbDNHEMTbRKRgkYvMGz3e2Lqo+B5G4zZGQ0e4anHyV/Q5sfJUpboe0eSM68EesN0Iitrkpf5s7RjsdSgS8dCU8ZclIBANxFMq9r0II7DOjPRt7p4XWxjbPbQxQf4eEq9Pv9PedS1fjnude3Sh1LIzP2Ib+RGyaiGQsYr3BTbWRiI1NRHVs9DCQTyqPjh0pYkb3nnzD5s3UhKyMmIX12xywMUjvcEIV+bD8RGyaiGbKiA3C5jIwR0QMNwbLTl8oZxYjcJ8kwDeFhaQh9PkaLCs/P57/zsvgRGygd3u4tu3a2HgtbM0WMTYRyVhExGsUURUrB5luN6R/aNIfLM3Nhpr6w62zyq5DxGkg8qSUwu1Lhn7tsUbENgcSNhzKVlTGNl1EMhYR8RpCJGADgzu283x+QHukMCc/XAUrm/g7qWSkjg0HQmLB8xAOlsB1fTDW3I/C+9PJMX9ThSqKYSBjxTDVJmK4EclYRMRrBJGIlaOTahKqP/Q3bZIdnhuaHENTXidCNlJk4LUenMHvTZlZNSTdERGjiUjGIiI2c/Bkw69lDEROhosQ8YTQZRiIkNH5mzLGgnmyjFyX1XtT7+sQKs+h8g1Uxjbw/IiRQyRjERGbMV4rRGxDfYKGc2IeKB3CWAd/jsI+H0vP2Fi8L0oNg8+YimRsU0UkYxERmzHG0gQ5VGwOzthjCUOJ2ASGf+umdcVgKSri8xGxKSOSsYiI1zg6TWKbGpELUzTEPRTXDUPJuD+YGXKoObkGiyIdboRO+ZsjYjTl5o1IxiIiNmMMlOtqsIl1oO83JlEL60GEYbDkpBE+OuUWG8l7OViuteHAayVQIZKxzRuRjEVEbMYo20ewjGR1SjTaCcNlkipLZBpiIOfrseBQvikhTNcRYn3u5VBI/UgQstcKCYt4bSBuhxQRsZljKNvqKKXsz7oi3F9xoOsMdEwnExPfHijcemtzNksNB96x3fi2H8DtSzochKZQ7T/h58DQTJydniW+d+drdU/VTX07pPe85z2YMWMGarUapk6diqOPPhrPP/+8d8ySJUvw7ne/G93d3Zg8eTI++9nPotFoeMc88sgjmDdvHur1Orbddlt84xvfaBuXbr/9dsyZMwe1Wg2zZ8/Gj370oxFr18bCmFHGnnrqKXz5y1/GXXfdhUajgV133RXf/OY3MX/+fHvMkiVL8KlPfQq33HIL6vU6PvrRj+Kss85CpVIZxZpHRIw+uImK58kaSazrnn+bQ/qBTQ0haeGEbCTRaSeAMgxF3YzPwaaf9HX+/Pk4+eSTMXXqVDz33HP40pe+hA984AO4++67AQB5nuPwww/HVltthTvvvBMrVqzAggULoJTC+eefDwBYtWoVDjzwQMyfPx/33XcfnnrqKSxcuBDd3d344he/CAB49tlncdhhh+G4447D//7v/+Kuu+7CCSecgK222grvf//7R6x9I40xQ8YOP/xw7LjjjpZonXvuuXjXu96FP//5z5gyZcqQbnRExGsZcUKL2BQVpfhcDg1FkQMbSMaKEVTGvvCFL9jfZ86cia9+9as48sgj0Ww2kWUZbrjhBjz22GNYunQppk2bBgA4++yzsXDhQnzrW99CT08PLr30UvT19eGiiy5CtVrFLrvsgqeeegrnnHMOFi1aBCEEfvSjH2HGjBk499xzAQBvfOMbcf/99+Oss84a02RsTJgpX3zxRTzzzDP46le/in/6p3/C61//enznO9/BmjVr8Kc//QkA7I3+3//9X7zlLW/BAQccgLPPPhv/9V//hVWrYrRVREREREQEoBUo/tPf3z+s5b/00ku49NJL8Y53vANZlgEAfve732GXXXaxRAwADj74YPT39+OBBx6wx8ybNw/VatU75vnnn8fixYvtMQcddJB3vYMPPhj3338/ms3msLZjY2JMkLEtt9wSb3zjG3HJJZegt7cXrVYLF1xwAbbZZhvMmTMHwNBudBn6+/vbHsyIiIiIiIhNCcPpMzZ9+nRMmDDB/pxxxhnDUsevfOUr6O7uxpZbboklS5bgN7/5jf1u+fLl2GabbbzjJ02ahEqlguXLl3c8hv4e7JhWq4UXX3xxWNoxGhgTZEwIgRtvvBEPPvggxo8fj1qthu9973u47rrrMHHiRABDu9FlOOOMM7yHcvr06SPZlIiIiIiIiHXGcJKxpUuXYuXKlfbnpJNOKr3maaedBiHEgD/333+/Pf7LX/4yHnzwQdxwww1IkgTHHHOM55/Ko7Ztu5TyPg+PofPX9ZixhlH1GTvttNNw+umnD3jMfffdhzlz5uCEE07A1ltvjTvuuAP1eh3//d//jXe961247777MHXqVABDu9EhTjrpJCxatMj+vWrVqkjIIiIiIiI2W/T09KCnZ/A8fZ/+9KfxkY98ZMBjtt9+e/v75MmTMXnyZOy444544xvfiOnTp+Oee+7B3LlzMWXKFNx7773euS+//DKazaYVUqZMmdImnrzwwgsAMOgxaZpiyy23HLRNmypGlYwN9UbfcsstuOqqq/Dyyy/bB+gHP/gBbrzxRlx88cX46le/OqQbXYZqterZpyMiIiIiIjY55DmU3EAH/HXcKJzI1fqA1CryR5s7dy6+9a1vYdmyZVZAueGGG1CtVq270dy5c3HyySej0WjYLAg33HADpk2bZknf3LlzceWVV3rXuuGGG7D77rtb/7SxiFElY0O90WvWrAEASOlbVaWUKEyo7lBudERERERExFiEUhseTTlSG4X//ve/x+9//3vsvffemDRpEv7yl7/glFNOwQ477IC5c+cCAA466CDsvPPOOProo3HmmWfipZdewpe+9CUcd9xxVmT56Ec/itNPPx0LFy7EySefjKeffhrf/va3ccopp1gL1/HHH4///M//xKJFi3Dcccfhd7/7HX7yk5/gZz/72Yi0bWNhTPiMzZ07F5MmTcKCBQvw0EMP2Zxjzz77LA4//HAA/o1+8MEHcfPNN7fd6IiIiIiIiIjhRb1ex+WXX479998fO+20E4499ljssssuuP32263lKUkSXH311ajVathrr73woQ99CEceeSTOOussW86ECRNw44034m9/+xt23313nHDCCVi0aJHnSjRr1ixcc801uO222/DmN78Z//7v/47zzjtvTKe1AAChNkb2x2HA/fffj6997Ws2fPVNb3oTTjnlFBx66KH2mCVLluCEE05oS/q6LmbIVatWYcKECfj5759G17i41UpERERERGeseXU1PrzH67Fy5coRWfjTnDRh/lcg0g1zqVGtfqy89T9GrK4R648xk/R19913x/XXXz/gMTNmzMBVV121kWoUERERERGxcaCGIelr3Ch808WYMFNGRERERERERGyuGDPKWERERERExGsVqiiADdxbciT3pozYMEQyFhERERERsYkjmik3b0QyFhERERERsYkjkrHNG9FnLCIiIiIiIiJiFBGVsYiIiIiIiE0cRZFDRGVss0UkYxEREREREZs4VF4AYgPJWB4d+DdVRDNlRERERERERMQoIipjERERERERmzg25b0pIzYckYxFRERERERs4lBFvuFmyugztskimikjIiIiIiIiIkYRURmLiIiIiIjYxBGVsc0bkYxFRERERERs4ohkbPNGJGMBlFIAgDWvrh7lmkREREREbOqguYLmjhFD3sQGXyFvDkdNIkYAkYwFWLFiBQDg4/u9dZRrEhERERExVrB69WpMmDBh2MutVCqYMmUKlj/2i2Epb8qUKahUKsNSVsTwQagRp/NjC6+88gomTZqEJUuWjMiLNZpYtWoVpk+fjqVLl6Knp2e0qzOsiG0bm4htG5vYnNsGrFv7lFJYvXo1pk2bBilHJiaur68PjUZjWMqqVCqo1WrDUlbE8CEqYwHoZZowYcJmOcgAQE9PT2zbGERs29hEbNvYxVDbN9IL91qtFgnUZo6Y2iIiIiIiIiIiYhQRyVhERERERERExCgikrEA1WoVp556KqrV6mhXZdgR2zY2Eds2NhHbNnaxubcvYtNDdOCPiIiIiIiIiBhFRGUsIiIiIiIiImIUEclYRERERERERMQoIpKxiIiIiIiIiIhRRCRjERERERERERGjiEjGGH7wgx9g1qxZqNVqmDNnDu64447RrtI647TTToMQwvuZMmWK/V4phdNOOw3Tpk1DvV7Hvvvuiz/96U+jWOPO+O1vf4t3v/vdmDZtGoQQ+PWvf+19P5S29Pf34zOf+QwmT56M7u5uvOc978Hf/va3jdiKcgzWtoULF7bdx7e//e3eMZtq28444wy87W1vw/jx47H11lvjyCOPxJNPPukdM1bv3VDaNlbv3Q9/+EP80z/9k010OnfuXFx77bX2+7F6z4DB2zZW71nE5oNIxgx+/vOf4/Of/zy+9rWv4cEHH8Q+++yDQw89FEuWLBntqq0z3vSmN2HZsmX255FHHrHfffe738U555yD//zP/8R9992HKVOm4MADD8Tq1Zvexui9vb3Ybbfd8J//+Z+l3w+lLZ///OdxxRVX4LLLLsOdd96JV199Fe9617uQ5/nGakYpBmsbABxyyCHefbzmmmu87zfVtt1+++341Kc+hXvuuQc33ngjWq0WDjroIPT29tpjxuq9G0rbgLF577bbbjt85zvfwf3334/7778f++23H4444ghLuMbqPQMGbxswNu9ZxGYEFaGUUmqPPfZQxx9/vPfZG97wBvXVr351lGq0fjj11FPVbrvtVvpdURRqypQp6jvf+Y79rK+vT02YMEH96Ec/2kg1XD8AUFdccYX9eyhteeWVV1SWZeqyyy6zxzz33HNKSqmuu+66jVb3wRC2TSmlFixYoI444oiO54yVtiml1AsvvKAAqNtvv10ptXndu7BtSm1e927SpEnqv//7vzere0agtim1ed2ziLGJqIwBaDQaeOCBB3DQQQd5nx900EG4++67R6lW64+nn34a06ZNw6xZs/CRj3wEf/nLXwAAzz77LJYvX+61s1qtYt68eWOunUNpywMPPIBms+kdM23aNOyyyy5jor233XYbtt56a+y444447rjj8MILL9jvxlLbVq5cCQDYYostAGxe9y5sG2Gs37s8z3HZZZeht7cXc+fO3azuWdg2wli/ZxFjG3GjcAAvvvgi8jzHNtts432+zTbbYPny5aNUq/XDnnvuiUsuuQQ77rgj/v73v+Ob3/wm3vGOd+BPf/qTbUtZO//617+ORnXXG0Npy/Lly1GpVDBp0qS2Yzb1+3rooYfigx/8IGbOnIlnn30W//Zv/4b99tsPDzzwAKrV6phpm1IKixYtwt57741ddtkFwOZz78raBozte/fII49g7ty56Ovrw7hx43DFFVdg5513toRjLN+zTm0DxvY9i9g8EMkYgxDC+1sp1fbZpo5DDz3U/r7rrrti7ty52GGHHXDxxRdbh9TNoZ2E9WnLWGjvhz/8Yfv7Lrvsgt133x0zZ87E1Vdfjfe9730dz9vU2vbpT38aDz/8MO68886278b6vevUtrF873baaSf88Y9/xCuvvIJf/epXWLBgAW6//Xb7/Vi+Z53atvPOO4/pexaxeSCaKQFMnjwZSZK0rXBeeOGFtpXgWEN3dzd23XVXPP300zaqcnNo51DaMmXKFDQaDbz88ssdjxkrmDp1KmbOnImnn34awNho22c+8xn8v//3/3Drrbdiu+22s59vDveuU9vKMJbuXaVSwete9zrsvvvuOOOMM7Dbbrvh//yf/7NZ3LNObSvDWLpnEZsHIhmDfknnzJmDG2+80fv8xhtvxDve8Y5RqtXwoL+/H48//jimTp2KWbNmYcqUKV47G40Gbr/99jHXzqG0Zc6cOciyzDtm2bJlePTRR8dce1esWIGlS5di6tSpADbttiml8OlPfxqXX345brnlFsyaNcv7fizfu8HaVoaxdO9CKKXQ398/pu9ZJ1DbyjCW71nEGMVGDxnYRHHZZZepLMvUT37yE/XYY4+pz3/+86q7u1stXrx4tKu2TvjiF7+obrvtNvWXv/xF3XPPPepd73qXGj9+vG3Hd77zHTVhwgR1+eWXq0ceeUT98z//s5o6dapatWrVKNe8HatXr1YPPvigevDBBxUAdc4556gHH3xQ/fYjsDoAAA+SSURBVPWvf1VKDa0txx9/vNpuu+3UTTfdpP7whz+o/fbbT+22226q1WqNVrOUUgO3bfXq1eqLX/yiuvvuu9Wzzz6rbr31VjV37ly17bbbjom2ffKTn1QTJkxQt912m1q2bJn9WbNmjT1mrN67wdo2lu/dSSedpH7729+qZ599Vj388MPq5JNPVlJKdcMNNyilxu49U2rgto3lexax+SCSMYbvf//7aubMmapSqai3vvWtXrj6WMGHP/xhNXXqVJVlmZo2bZp63/vep/70pz/Z74uiUKeeeqqaMmWKqlar6p3vfKd65JFHRrHGnXHrrbcqAG0/CxYsUEoNrS1r165Vn/70p9UWW2yh6vW6ete73qWWLFkyCq3xMVDb1qxZow466CC11VZbqSzL1IwZM9SCBQva6r2ptq2sXQDUhRdeaI8Zq/dusLaN5Xt37LHH2vFvq622Uvvvv78lYkqN3Xum1MBtG8v3LGLzgVBKqY2nw0VERERERERERHBEn7GIiIiIiIiIiFFEJGMREREREREREaOISMYiIiIiIiIiIkYRkYxFRERERERERIwiIhmLiIiIiIiIiBhFRDIWERERERERETGKiGQsIiIiIiIiImIUEclYRMQwY/HixRBC4I9//OOIlC+EwK9//ev1Pv+2226DEAJCCBx55JEDHrvvvvvi85///HpfK2Jg0H2YOHHiaFclIiJiFBHJWMRmhYULFw5KMEYa06dPx7Jly7DLLrsAcOTnlVdeGdV6hXjyySdx0UUXjXY1XhPo9FwuW7YM55577kavT0RExKaFSMYiIoYZSZJgypQpSNN0tKsyILbeeutNQpFpNpujXYVRw5QpUzBhwoTRrkZERMQoI5KxiNcUbr/9duyxxx6oVquYOnUqvvrVr6LVatnv9913X3z2s5/FiSeeiC222AJTpkzBaaed5pXxxBNPYO+990atVsPOO++Mm266yTMdcjPl4sWLMX/+fADApEmTIITAwoULAQDbb799myry5je/2bve008/jXe+8532WjfeeGNbm5577jl8+MMfxqRJk7DlllviiCOOwOLFi9e5b3p7e3HMMcdg3LhxmDp1Ks4+++y2YxqNBk488URsu+226O7uxp577onbbrvNO+a//uu/MH36dHR1deG9730vzjnnHI/0nXbaaXjzm9+M//mf/8Hs2bNRrVahlMLKlSvxr//6r9h6663R09OD/fbbDw899JBX9pVXXok5c+agVqth9uzZOP300737d9ppp2HGjBmoVquYNm0aPvvZzw6p7YO1a8WKFfjnf/5nbLfddujq6sKuu+6Kn/3sZ14Zv/zlL7HrrruiXq9jyy23xAEHHIDe3l6cdtppuPjii/Gb3/zGmiXDPouIiHhtY9NeukdEDCOee+45HHbYYVi4cCEuueQSPPHEEzjuuONQq9U8AnTxxRdj0aJFuPfee/G73/0OCxcuxF577YUDDzwQRVHgyCOPxIwZM3Dvvfdi9erV+OIXv9jxmtOnT8evfvUrvP/978eTTz6Jnp4e1Ov1IdW3KAq8733vw+TJk3HPPfdg1apVbf5ba9aswfz587HPPvvgt7/9LdI0xTe/+U0ccsghePjhh1GpVIbcP1/+8pdx66234oorrsCUKVNw8skn44EHHsCb3/xme8zHP/5xLF68GJdddhmmTZuGK664AocccggeeeQRvP71r8ddd92F448/Hv/xH/+B97znPbjpppvwb//2b23XeuaZZ/CLX/wCv/rVr5AkCQDg8MMPxxZbbIFrrrkGEyZMwAUXXID9998fTz31FLbYYgtcf/31+NjHPobzzjsP++yzD/785z/jX//1XwEAp556Kn75y1/ie9/7Hi677DK86U1vwvLly9vIXCcM1q6+vj7MmTMHX/nKV9DT04Orr74aRx99NGbPno0999wTy5Ytwz//8z/ju9/9Lt773vdi9erVuOOOO6CUwpe+9CU8/vjjWLVqFS688EIAwBZbbDHk+xIREfEawOjuUx4RMbxYsGCBOuKII0q/O/nkk9VOO+2kiqKwn33/+99X48aNU3meK6WUmjdvntp777298972trepr3zlK0oppa699lqVpqlatmyZ/f7GG29UANQVV1yhlFLq2WefVQDUgw8+qJRS6tZbb1UA1Msvv+yVO3PmTPW9733P+2y33XZTp556qlJKqeuvv14lSaKWLl1qv7/22mu9a/3kJz9pa1N/f7+q1+vq+uuvL+2HsvqsXr1aVSoVddlll9nPVqxYoer1uvrc5z6nlFLqmWeeUUII9dxzz3nl7b///uqkk05SSin14Q9/WB1++OHe90cddZSaMGGC/fvUU09VWZapF154wX528803q56eHtXX1+edu8MOO6gLLrhAKaXUPvvso7797W973//0pz9VU6dOVUopdfbZZ6sdd9xRNRqN0nZ3wlDaVYbDDjtMffGLX1RKKfXAAw8oAGrx4sWlxw70XF544YVe/0RERLz2EJWxiNcMHn/8ccydOxdCCPvZXnvthVdffRV/+9vfMGPGDADAP/3TP3nnTZ06FS+88AIA7fQ+ffp0TJkyxX6/xx57jFh9Z8yYge22285+NnfuXO+YBx54AM888wzGjx/vfd7X14c///nPQ77Wn//8ZzQaDa/8LbbYAjvttJP9+w9/+AOUUthxxx29c/v7+7HlllsC0P3z3ve+1/t+jz32wFVXXeV9NnPmTGy11VZeO1599VVbDmHt2rW2HQ888ADuu+8+fOtb37Lf53mOvr4+rFmzBh/84Adx7rnnYvbs2TjkkENw2GGH4d3vfvegvntDaVee5/jOd76Dn//853juuefQ39+P/v5+dHd3AwB222037L///th1111x8MEH46CDDsIHPvABTJo0acBrR0RERADRTBnxGoJSyiNi9BkA7/Msy7xjhBAoiqJjGesLKaW9PoE7s4ffhfUEtClzzpw5uPTSS9uO5WRnMJRdK0RRFEiSBA888IA1LRLGjRtny+nUxxxEYnjZU6dOLfWlIn+zoihw+umn433ve1/bMbVaDdOnT8eTTz6JG2+8ETfddBNOOOEEnHnmmbj99tvb7um6tuvss8/G9773PZx77rnYdddd0d3djc9//vNoNBoAdNDGjTfeiLvvvhs33HADzj//fHzta1/Dvffei1mzZnW8dkRERAQQyVjEawg777wzfvWrX3mE4e6778b48eOx7bbbDqmMN7zhDViyZAn+/ve/Y5tttgEA3HfffQOeQ35beZ57n2+11VZYtmyZ/XvVqlV49tlnvfouWbIEzz//PKZNmwYA+N3vfueV8da3vhU///nPrdP7+uJ1r3sdsizDPffcYxXCl19+GU899RTmzZsHAHjLW96CPM/xwgsvYJ999ikt5w1veAN+//vfe5/df//9g17/rW99K5YvX440TbH99tt3PObJJ5/E6173uo7l1Ot1vOc978F73vMefOpTn8Ib3vAGPPLII3jrW9/a8ZyhtOuOO+7AEUccgY997GMANIF7+umn8cY3vtEeI4TAXnvthb322gunnHIKZs6ciSuuuAKLFi1CpVJpu/8RERERhBhNGbHZYeXKlfjjH//o/SxZsgQnnHACli5dis985jN44okn8Jvf/AannnoqFi1aBCmH9ioceOCB2GGHHbBgwQI8/PDDuOuuu/C1r30NQLtqRZg5cyaEELjqqqvwj3/8A6+++ioAYL/99sNPf/pT3HHHHXj00UexYMECT5k54IADsNNOO+GYY47BQw89hDvuuMNei3DUUUdh8uTJOOKII3DHHXfg2Wefxe23347Pfe5z+Nvf/jbkPhs3bhw+8YlP4Mtf/jJuvvlmPProo1i4cKHXLzvuuCOOOuooHHPMMbj88svx7LPP4r777sN//Md/4JprrgEAfOYzn8E111yDc845B08//TQuuOACXHvttYOqiQcccADmzp2LI488Etdffz0WL16Mu+++G1//+tctmTvllFNwySWX4LTTTsOf/vQnPP744/j5z3+Or3/96wCAiy66CD/5yU/w6KOP4i9/+Qt++tOfol6vY+bMmQNeeyjtet3rXmeVr8cffxz/3//3/2H58uW2jHvvvRff/va3cf/992PJkiW4/PLL8Y9//MOSte233x4PP/wwnnzySbz44ouv6XQeERERJRglX7WIiBHBggULFIC2nwULFiillLrtttvU2972NlWpVNSUKVPUV77yFdVsNu358+bNsw7rhCOOOMKer5RSjz/+uNprr71UpVJRb3jDG9SVV16pAKjrrrtOKdXuwK+UUt/4xjfUlClTlBDClrVy5Ur1oQ99SPX09Kjp06eriy66yHPgV0qpJ598Uu29996qUqmoHXfcUV133XWeA79SSi1btkwdc8wxavLkyapararZs2er4447Tq1cubK0jzoFFKxevVp97GMfU11dXWqbbbZR3/3ud9v6o9FoqFNOOUVtv/32KssyNWXKFPXe975XPfzww/aYH//4x2rbbbdV9XpdHXnkkeqb3/ymmjJliv3+1FNPVbvttltbvVatWqU+85nPqGnTpqksy9T06dPVUUcdpZYsWWKPue6669Q73vEOVa/XVU9Pj9pjjz3Uj3/8Y6WUUldccYXac889VU9Pj+ru7lZvf/vb1U033VTaByEGa9eKFSvUEUccocaNG6e23npr9fWvf10dc8wx1in/scceUwcffLDaaqutVLVaVTvuuKM6//zzbfkvvPCCOvDAA9W4ceMUAHXrrbfa76IDf0REhFBqCM4iERERHXHXXXdh7733xjPPPIMddthhtKszKG677TbMnz8fL7/88kZJ+nrcccfhiSeewB133DHi1xqLuOiii/D5z39+k9uhISIiYuMh+oxFRKwjrrjiCowbNw6vf/3r8cwzz+Bzn/sc9tprrzFBxDi22247vPvd725LXrqhOOuss3DggQeiu7sb1157LS6++GL84Ac/GNZrbC4YN24cWq0WarXaaFclIiJiFBHJWETEOmL16tU48cQTsXTpUkyePBkHHHBAabb6TRV77rknnn76aQAuWnA48fvf/x7f/e53sXr1asyePRvnnXce/uVf/mXYrzNU3HHHHTj00EM7fk8+fKMB2kw+jOKMiIh4bSGaKSMiIjZrrF27Fs8991zH7weKzoyIiIjYGIhkLCIiIiIiIiJiFBFTW0REREREREREjCIiGYuIiIiIiIiIGEVEMhYRERERERERMYqIZCwiIiIiIiIiYhQRyVhERERERERExCgikrGIiIiIiIiIiFFEJGMREREREREREaOISMYiIiIiIiIiIkYR/z9n0zpwVXML3QAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "oisst_zarr['sst'].sel(time='1981-09-02').plot()" + "data": { + "text/plain": [ + "" ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "There it is! Some zarr data that we created during this tutorial! We have converted the netCDF OISST data to zarr and opened it up in xarray. We have a working local recipe.\n", - "\n", - "If we wanted to run the recipe on the full dataset (as opposed to the much smaller pruned version), we would just repeat the above steps on recipe rather than recipe_pruned. This would take a long time, but it would work." + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHFCAYAAAC+Zf4TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9eZgcVdn9ubeqt5nMTBbISkgim0BYlF3BhCQzSVgVV6IsBiN+IIiCKMIPA2LA4IICIm6AYERFxeUjK0s+FRCQTRZRJMQQEkJCMktPd1fVvff3x13qVnX3TM8+CXWeZ56Zqa6uravrnvu+5z0vEUIIJEiQIEGCBAkSJBgS0KE+gAQJEiRIkCBBgrczEjKWIEGCBAkSJEgwhEjIWIIECRIkSJAgwRAiIWMJEiRIkCBBggRDiISMJUiQIEGCBAkSDCESMpYgQYIECRIkSDCESMhYggQJEiRIkCDBECIhYwkSJEiQIEGCBEOIhIwlSJAgQYIECRIMIRIyNkzx8MMPY/HixdixY0fZazNnzsTMmTMH/ZgGCzfccANOO+00TJs2DYSQLs915cqVeO9734tcLoempiacfPLJeP7558vWK5VKuP766zF9+nTU19dj3LhxmD9/Ph5++OGyda+44gqcdNJJmDRpEgghOPvss3t8Dlu2bMHZZ5+N3XbbDXV1dTjmmGNw//33l63neR6uvPJKTJs2Del0GlOmTMFll12GQqHQo/3deOONeOc734lMJoNp06bhqquugu/7kXV++9vf4vTTT8fee++NXC6HqVOn4uMf/zj+/e9/9/j8eoLbb78dhBC8+uqrA7qfwUAt17kafN/HVVddhalTpyKTyeCd73wnbrzxxpree/bZZ4MQAkIIpk+f3pdT6DW6eiYNFg499FBzHU466aQhO44ECfodIsGwxPXXXy8AiHXr1pW99vzzz4vnn39+8A9qkLDffvuJd7/73WLhwoVi9913FzNmzKi43r333isIIeL973+/+N///V+xbNkysd9++4lRo0aJl19+ObLuGWecISil4vLLLxf333+/+PWvfy0OO+ww4bqu+Nvf/hZZt66uThx99NHiM5/5jEin0+Kss87q0fEXi0Uxffp0sccee4i77rpLrFq1Spx66qnCdV3x0EMPRdY97bTTRDabFUuWLBGrV68WV199tUin0+Lkk0+ueX/XXHONIISIyy67TDz44INi6dKlIp1Oi0WLFkXWO/LII8Upp5wifvrTn4qHHnpI3HnnnWL//fcXI0aMEM8991yPzrEnuO2226reyzsTar3O1fCpT31KZDIZsXTpUvHggw+KL3/5y4IQIr7+9a93+96zzjpLjB8/XjzyyCPimWee6eup9ApdPZMGC88++6x45JFHxPjx48WJJ544ZMeRIEF/IyFjwxTD4cE3VGCMmb8PPPDAqmRsv/32EwcffLDgnJtlr776qkin02LBggVmWbFYFI7jiE984hOR97/++usCgLjwwgur7r++vr7HZOzmm28WAMTDDz9slvm+Lw444ABx5JFHmmWPPPKIACC+9a1vRd6/ZMkSAUCsWrWq231t3bpVZLNZ8elPfzqy/Otf/7oghERI+xtvvFH2/o0bN4pUKiXOOeecms+vp9gVyFhPrnMlPPfcc4IQIpYsWRJZvmjRIpHL5cS2bdu6fP9ZZ50lpkyZ0qtj7y8M1DMpn8/3+D1TpkxJyFiCXQpJmnIYYvHixfjiF78IACZVRwjBQw89BKA8Tfnqq6+CEILrr78e3/jGNzB16lTkcjnMnDkT//rXv+D7Pr785S9j4sSJaGpqwgc+8AFs2bKlbL+//OUvccwxx6C+vh4jRozA3Llz8dRTTw3GKUdAafe35bZt2/DSSy9h/vz5IISY5VOmTMH06dNx7733gjFmtkcpRVNTU2QbjY2NoJQim832eP9d4Xe/+x32228/HHPMMWaZ67r4xCc+gcceewwbN24EAPz1r38FAJxwwgmR9+v0y29+85tu97VixQoUi0V88pOfjCz/5Cc/CSEE7r33XrNs7NixZe+fOHEi9thjD2zYsKG2k4th6tSp5v6M/+j7tRrWrFmD2bNno7GxEXV1dXjve98bSeXee++9IIRUTO/ecsstIITg2Wef7dVx9xQ9uc6VcO+990IIUfH9hUIBK1as6PWxEULw2c9+Frfddhv2228/5HI5HH744Xj00UchhMD111+PadOmYcSIEZg1axZefvnlsm1091l090wCant+nH322RgxYgT+8Y9/oKWlBQ0NDZg9ezYA4KmnnsJJJ52EsWPHIpPJYOLEiTjxxBPx2muv9fraJEiwsyAhY8MQn/rUp3DBBRcAkDqfRx55BI888gje/e53d/m+m2++GX/9619x880348c//jH++c9/4uSTT8Y555yDN998Ez/96U+xdOlSrFmzBp/61Kci712yZAlOP/10HHDAAfjVr36FO++8E+3t7TjuuOPwwgsvdHvMQRDU9COE6P2FseB5HgAgk8mUvZbJZNDZ2Yn//Oc/AIBUKoXzzjsPd9xxB+699160tbXh1VdfxaJFi9DU1IRFixb1yzFpPPfcczj44IPLlutlWtNW7Rz0/7UQjeeeew4AcNBBB0WWT5gwAbvttpt5vRpeeeUVrF+/HgceeGC3+6qE3/3ud+b+fOSRR/DXv/4VBx10EOrr67HnnntWfd9dd92FlpYWNDY24o477sCvfvUrjB49GnPnzjUkQA/Mt912W9n7b7/9drz73e+ueJ1t9Nd92dfr/Nxzz2H33XfH+PHjI8v18Xf3/u7wpz/9CT/+8Y9x3XXX4Re/+AXa29tx4okn4uKLL8Zf//pX3HTTTfjhD3+IF154AR/84Acj51vLZ9HdM6knzw/P83DKKadg1qxZ+P3vf4+rrroK+Xwezc3NeOONN3DzzTdj9erVuOGGG7Dnnnuivb29T9cmQYKdAkMYlUvQBbpKCcyYMSOSulu3bp0AIA455JBIiu2GG24QAMQpp5wSef9FF10kAIjW1lYhhBD//e9/heu64oILLois197eLsaPHy8+8pGPdHmsev+1/Dz44IM9ug7V0pSMMTF69Ggxe/bsyPLt27eLhoaGsjQh51xceeWVglJqjmXPPfcUTz31VJf7702aMpVKiXPPPbds+cMPPywAiGXLlgkhpOYNgLjzzjsj6/3kJz8RAMS+++7b7b4WLVokMplMxdf23Xdf0dLSUvW9vu+LmTNnisbGRvHf//63233Vgs9+9rPCdV1x3333mWXxNGU+nxejR48u08UxxsQhhxwSSeV+4QtfELlcTuzYscMse+GFFwQAceONN3Z5LP15X/blOgshRHNzs9hvv/0qvpZOp8vSn3F0laYEIMaPHy86OjrMMn1vHXrooZE0vn4mPPvss0KInn0W1Z5JPXl+nHXWWQKA+OlPfxpZ94knnhAAxL333tvlddBI0pQJdjW4A0n0EgwuTjjhhEiKbf/99wcAnHjiiZH19PL//ve/mD59OlauXIkgCHDmmWciCAKzXjabxYwZM/Dggw92ud+JEyfi8ccfr+kY99tvv5rW6w6UUpx//vn42te+hq997Ws499xz0dbWhosuugidnZ1mHY2vf/3r+OY3v4nFixfjuOOOQ1tbG2666SY0Nzdj1apVeNe73tWj/QshTBpUw3XDr5OdOo1DvzZ//nzsvffe+NKXvoRx48bhiCOOwKOPPoqvfOUrcBwncvz25wIAjuOY7dSyr0rHf8455+DPf/4zfvOb32Dy5MlVt1ErrrvuOtx000348Y9/jPnz51dd7+GHH8Zbb72Fs846q+y85s2bh6VLlyKfz6O+vh4LFy7Et7/9bfzyl7/Epz/9aQDAbbfdhkwmgwULFnR5PP19X/bmOvfn+7vC8ccfj/r6evO//o7H0/h6+fr163HQQQf16LOoht48Pz74wQ9G/t97770xatQofOlLX8KmTZvwvve9DwcccEAPrkCCBDs3EjK2C2H06NGR/9PpdJfLi8UiAOCNN94AABxxxBEVt9udhiqdTuPQQw+t6Rgdx6lpvVpw5ZVXoqOjA9dccw2uvPJKAJJ4fvKTn8SPf/xjTJo0CQDw4osv4sorr8TSpUtxySWXmPfPnz8fBxxwAL7whS90SzjjuOOOO8r0P0KlfsaMGYNt27aVveett94CEH4e6XQay5cvxxlnnIGWlhYAQH19PZYsWYKvfe1r5vgBmWq1cdttt+Hss8/GmDFjUCwW0dnZibq6urL9HXbYYWXHIYTApz71Kdx111244447cOqpp/bo3Cvhrrvuwle+8hVceeWVOOecc7pcV99vH/rQh6qu89Zbb6G+vh4HHnggjjjiCNx222349Kc/DcYY7rrrLpx66qll93Uc/Xlf9uY6x9//9NNPly3P5/PwPK/bc+kOff3u1/JZVENPnx91dXVobGyMLGtqasLatWvx9a9/HV/5ylewfft2TJgwAYsWLcIVV1xRdv8nSLCrISFjCbDbbrsBAO655x5MmTKlx+9/9dVXMW3atJrWffDBB/vNI811XXz729/G1VdfjXXr1mG33XbDhAkTMHfuXEybNg177LEHAOCZZ56BEKJssEilUjjkkEOwdu3aHu/75JNPrhp1Oeigg/CPf/yjbLleZvtE7b333njkkUewceNGvPXWW9hrr73Q2tqKz33uc3jf+95n1ovvS19vrWH6xz/+gaOOOsq8vnnzZmzdurXMk0oTsdtuuw0/+clP8IlPfKInp10Rq1evxsKFC3H22Wfjqquu6nZ9fb/deOONOProoyuuM27cOPP3Jz/5SZx33nl48cUX8corr2DTpk1lRLgS+vO+7Ol1rvT+u+++G5s3b47oxirdE4OJnn4WXW2j1udHtSigvkZCCDz77LO4/fbbcfXVVyOXy+HLX/5yt9tNkGBnRkLGhim0iLun5p+9wdy5c+G6Lv7zn/+UpQ9qwVCkKW2MGDHCDJZPPvkk7r//fnzrW9+KHB8APProo5gxY4ZZXiqV8OSTTxrS1hOMGTMGY8aMqfjaBz7wAZx33nn429/+ZgbuIAhw11134aijjjLHY2PSpEkmEnbFFVegvr4+EmE6/PDDK+5r3rx5yGazuP322yMkQRutvv/97zfLhBBYtGgRbrvtNtx66601EZru8PTTT+ODH/wgZs2ahR/+8Ic1vee9730vRo4ciRdeeAGf/exnu13/9NNPxxe+8AXcfvvteOWVVzBp0iQTSewK/Xlf9uQ6V8Kpp56KK664AnfccQe+9KUvRd6fy+Uwb968mo6zv9GTz6LaM6mvz484CCE45JBD8J3vfAe33347nnzyyT5vM0GC4Y6EjA1TaHLx3e9+F2eddRZSqRT2228/NDQ09Pu+pk6diquvvhqXX345XnnlFcybNw+jRo3CG2+8gcceewz19fVdRjzS6XRVstAbPPHEE8atva2tDUII3HPPPQBkKkTPvh966CE8/vjjOPjggyGEwGOPPYZvfOMbmDdvXmRgOfbYY3HEEUdg8eLF6OzsxPve9z60trbixhtvxLp163DnnXdG9r927Vq8+eabAADGGNavX2/2P2PGDOy+++5dHv/ChQtx880348Mf/jCuu+46jB07Ft///vfx0ksvYc2aNZF1ly5divHjx2PPPffEG2+8gV/96le49957ceedd0bSlNUwevRoXHHFFfh//+//YfTo0WhpacHjjz+OxYsX41Of+lREd3PhhRfiJz/5CRYuXIiDDjoIjz76qHktk8lEdHOLFy/GVVdd1WXEqK2tDSeccAJyuRwuueQSPPHEE5HXDzjggLJ0FCDJ84033oizzjoLb731Fj70oQ9h7NixePPNN/HMM8/gzTffxC233GLWHzlyJD7wgQ/g9ttvx44dO3DJJZfUZD/Sn/dlT67zz372MyxcuBA//elPceaZZwIADjzwQJxzzjn46le/CsdxcMQRR2DVqlX44Q9/iGuuuabPacreoiefRbVnUl+fH4CsBv3+97+P97///XjHO94BIQR++9vfYseOHWhubh7w65AgwZBjiAoHEtSAyy67TEycONFUAOqKr2rVlNdff33k/Q8++KAAIH79619Hluvqtscffzyy/N577xXHH3+8aGxsFJlMRkyZMkV86EMfEmvWrBmQ86sGXXFV6ee2224z6/31r38VRx11lDne6dOni29+85vC87yybe7YsUNcfvnlYv/99xd1dXVi7NixYubMmZGqP40ZM2b0uRp08+bN4swzzxSjR48W2WxWHH300WL16tVl61111VVir732EplMRowcOVLMmzdP/N///V/N10rju9/9rth3331FOp0We+65p/jqV79adh2mTJlS9bzilXoXX3yxIISIF198seo+u6tW1Neqmunr2rVrxYknnihGjx4tUqmUmDRpkjjxxBPL7lchhFi1apXZ7r/+9a8eX5/+Qi3XWZ+vfa8KIYTneeKrX/2q2HPPPUU6nRb77ruv+N73vlfTfrurpjz//PMjy3r6TKj1s6j2TBKitufHWWedJerr68vO4Z///Kc4/fTTxV577SVyuZxoamoSRx55pLj99tsrnnNSTZlgVwMRop+MnxIkSLDL4Mgjj8SUKVPw61//eqgPJQGkWepDDz2El19+GYSQfi2E2ZnAGIMQAnvvvTemT5+OP/3pT0N9SAkS9AsS09cECRJE0NbWhmeeeQZXX331UB9KAgvr1683RSdvVxx22GFIpVJYv379UB9KggT9iiQyliBBggTDHK+++iq2bt0KAMjlcr3umLCz44UXXjA+giNHjsTee+89xEeUIEH/ICFjCRIkSJAgQYIEQ4gkTZkgQYIECRIkSDCESMhYggQJEiRIkCDBECIhYwkSJEiQIEGCBEOIxPQ1Bs45Xn/9dTQ0NPS5eW+CBAkSJNi1IYRAe3s7Jk6cWJMZcW9QLBbheV6/bCudTiObzfbLthL0HxIyFsPrr7+OyZMnD/VhJEiQIEGCnQgbNmzoVWu17lAsFjEmNwKdYP2yvfHjx2PdunUJIRtmSMhYDLrd0PMv/XtAWg8lSJAgQYJdB+3t7Thwv30GbLzwPA+dYDgTk5Duo7LIA8fPNm+E53kJGRtmSMhYDDo12dDQEOmrR7vIWPLEHCRBggQJBhVdPZN7i748ywda1pIGRZr0MQ2ajFXDFgkZqwJKav+yV1svIWkJdhbUcq8Ph/tZH+dwOJYEg4+BIGB93f5AH5OGQwicPhI+ByQhZMMUCRkbQOwsA1yCty96MpAMBRGqdnzx5UPxPUqIYYLBBCWA00fiR4GEjA1TJGRsiEFJ8jBPMDTo7Yx+ON6z9rkM9LHFr9tg7vvtjGr3a09v4+QjSjAckZCxGlDLl70vX/DhOLglSDDUGI5ksbtjSojZ4KDSx0CrpPB4rOPfQD/PBwr9lqZMMCyRkLEqIOjZjEuv29sv8a5MyHrb/jTxeesaXV3Xgb52w/1+HYjj6yk5HO7XqCvY99Zw+x7aR1ONgKGLdeLkrLt92BjKj9PphzSl0z+HkmAAkJCxGtHVl97+cveVlPUnhnKw7m7/PXn/cBsMakVfz7+/9l3p+lUiFl1d5eFwP/cUw4EM9eUYqt0//fV9qPX+rHYvDeb3s9L9qp/JPdm9ELU/yyuh0jt3zqdTguGGhIx1gVpmXfZ63ZEye2uVvvL9NXjU8pCttE5fHqoDSTyEEGXHVuv+dgbSOdCodP3i6O4qEfSMkPXmmvT0GAfzqg9WxRzQ/bXrbdSqP+7TStvoKSnryyRRv0oJiZAwUsszL/aeSm+p9MyvJZI2GEjSlLs2EjJWBfaXspb7355xVSJlcfR0cKsVfXng1jJo93Zf3ZHM7ga73p5X/H39Tc6GOxHT6Oqz7Up/E7+XaznbvnxW+hjj90NXEYmu9razRcd6eu26i1oNJvqT7HX1PbWJmCFhgne7bWIZpsaJWflxRPdnY6jIWZKm3LWRNAofBOwcw7VEVw9U+7WdhYTY2FnTnUOBWgacwYoWJZ9abRBCmJ+dHd1HBwd2/109KmrNmCRI0BMkkbF+QFcPBhH73V10oS/VWP31EO4qLThQD3p9rgM1wPeGiNVi5tvVdofboGh/rlyE5ydQmfBUImTx+7c/vLb6SpIHKsqs0ZWlQi37HerI3M6KavdrZB1CakpRxqHfI7q49wip/my3CdlgkbMkTblrIyFj3aCn9749gFX6HvfksdFVemOgB/qhIhLVHrp9QXeDfS37s1NitRKQoU4bVUJXhAyoLQpVKT3Y03RgrQQsvlal9KlebyCucHeFDt3ttyfXZLjcI8MJf/5vW4/WnzNlhPxDtw3S6csqbYSqETlN0mpNZQ4GCPqeykqo2PBFQsaqgJCeE7GybWDnSlEOFqpF/wZTJF3rPu2XbSJgk7KuoM+PEDJsBtuuIg7VCk4qoZwoye11d67VdGFdb5uU/T+Q2p1aNGv2a8Pjk62Mv2xox7GTG8zfNo6d3FC2LA79Xhu9LaiJH1d/Y836DgDA7GlNkmgpEsZRQWfWA1R8Ty+qOfuCJDK2ayMhY/2M+CDR1wd1tYhDfzwMe4PuIho9PQ59fkNBxHqCeFpCf8bdna39+Q00IdOfTb+lq+1tW39Xqzgj6J6QxYlYtY+9N6mfat81+zPozX3W3Vv6WkBQ6+dln0OlbT78Wjves0eD+dtGNeJTCyGqtM5xezZG/u/u3tbbqEYK+xv3r2s1fx87uQEOBYgusuoitdlV2jIOvY3ekLsECeLYachYEARYvHgxfv7zn2Pz5s2YMGECzj77bFxxxRWgVM5+hBC46qqr8MMf/hDbt2/HUUcdhZtvvhkHHnjggB6b/v4K87Dsv+qbahGY+MO4EknSEZCeDM591u9UIQSDSbZ6cg69HaQ1IauFbPemoq/S+l2RCvuca41M9SdsgmoTssrrquNAddLVnQVBz4+vd+/r6m21HlZXOtBKn1O1z97eTpxsdbe8PzB7WhOECCPDa9f3LIUIREnYzCmS0D3Ui+10BzviRwgxEz4uhIkurXm1TaY1VfRMEFLxXhsuev2kmnLXxk5TTfmNb3wDP/jBD3DTTTfhxRdfxNKlS3H99dfjxhtvNOssXboU3/72t3HTTTfh8ccfx/jx49Hc3Iz29p4/oIgQPf6hqPzjUNLtDyVVlqkfAjkw6L8dEj6gqwqMTRidRH4cWvnvv2xoN81oq22/q/31J+LHHP/p6n0DAS5E2Q8QHZC5qP7Ts331fB27iq4rs9BK16erY9T3XeVjqCzwB6rfJ9UiYloWYH7s71b8NaK3FYsOVzn27n4qnUNX511pX71B/HOq9jnY17G7+3+gMHtak3U8pFdELI6H1rcNCBEDoqSPEqk9W6v2d/+6Vqx5Ve53zfoOrHm1DWtebYPHBFjs+63Rk4jZQEE+l0kff3q2z1tuuQUHH3wwGhsb0djYiGOOOQbLly83rwshsHjxYkycOBG5XA4zZ87E888/H9lGqVTCBRdcgN122w319fU45ZRT8Nprr0XW2b59O8444ww0NTWhqakJZ5xxBnbs2NHbS7VTYqeJjD3yyCM49dRTceKJJwIApk6dil/84hd44oknAMib4oYbbsDll1+O0047DQBwxx13YNy4cVi2bBnOPffcnu1QcCP+JOq3qCAC1a9FfG6EiEynCKEV3xvZDgCARrZjtkCo9UAWoCScxcX1S/FUBiXlg4pDdfRKHqYd0net17gQeGh9G2ZPazLrzJraBC5Er/2bbP2KRldRHvv1SgNAPF3SW1St1urBNmq5JrWkEqttp5br3ZcUZfwa1ELCuqu4rKXYQZMvA/u7RGhZGkh7RAkRjcjZx1s5XRmuUYsXYDX09grb16ASEauESpGuGVMaMWtqEx54NfzeNu9Zh9X/7ezlkVWG/q4D0WfEzoauiKNO68Z1k0NPvYYH9thjD1x33XXYe++9Acgx9dRTT8VTTz2FAw880ARAbr/9duy777645ppr0NzcjJdeegkNDfLaXnTRRfjjH/+Iu+++G2PGjMHFF1+Mk046CX//+9/hODJWt2DBArz22mtYsWIFAODTn/40zjjjDPzxj38cmhMfAhAxXFTF3eC6667DD37wA6xatQr77rsvnnnmGbS0tOCGG27A6aefjldeeQV77bUXnnzySbzrXe8y7zv11FMxcuRI3HHHHTXtp62tDU1NTXhj0+tobJQDPdHETJEqQ8A4A+FBSNzsCh5C5Y/gEE5ajTix1y1UJXpxM0MdUqduGSGLrAZJuogQZhbYPDlbcVvhQXCs3lCU6+5ZFzk2fSzCSYODmH0ORLVYJTJW7YF63J6NNaWB+hpNqEVsrnfdFysDESE6vT+m3sC+RrWQskqo5dTD6FkN5p3dTGKEIbfhMpto1do8ust91LheX8hytfRzV9qqOVNGYM36DvldrWB6qr/LPYGOgFWaqO1qmDGlEYxLKYfMBMiLX+n+6Ur839bWhnHjx6O1tdWMGf0JPSZ9vf4dyJK+JRqLguHy/Ct9OtbRo0fj+uuvx8KFCzFx4kRcdNFF+NKXvgRARsHGjRuHb3zjGzj33HPR2tqK3XffHXfeeSc++tGPAgBef/11TJ48Gffddx/mzp2LF198EQcccAAeffRRHHXUUQCARx99FMcccwz++c9/Yr/99uvTOe8s2GkiY1/60pfQ2tqKd77znXAcB4wxfP3rX8fpp58OANi8eTMAYNy4cZH3jRs3DuvXr6+63VKphFKpZP5va6s+i4oQJk3E/GJIVKgLUApwDjiuIWmrN0W/wM2Ts2WzWFu7IHfGLRIkwocthSF5BFQ+JUQYjag09JhybzuKx5lUtCqSKAjFmv92Ys7UxkhUUO5HoZuB0UYlgjQQAvY//7cNM5T2hKA8EmPvs6cdBmzYUaNqW7AjQrWiKyI52O7xNnGtxYdMv4YuXkeV16sK9AmtSCwAy27A+j5oV3VivU67OJpaSVhPL3tXn1N393zVFHEP7tU48WreI1PzeyvvW15n/ezQVYq7CmZPawLjwmQJ9MRVP+2Go7Frf1ZTxse5TCaDTKbre4Yxhl//+tfI5/M45phjsG7dOmzevBktLS2R7cyYMQMPP/wwzj33XPz973+H7/uRdSZOnIjp06fj4Ycfxty5c/HII4+gqanJEDEAOProo9HU1ISHH344IWPDDb/85S9x1113YdmyZTjwwAPx9NNP46KLLsLEiRNx1llnmfUqVRl29VC79tprcdVVV5W/YBEPoaJcnDjgQiDFfZCgCBJ4oMVWLO8Ya9ad17AVcNJY8aYkCC3jgOZJKQDA6o2+/B17cM6ZMgJEcDkAECpJnn0odvSNq4gbdQHqANSFQ0PhafxUBSEQWrZJHFDBYqlVCkHlNpv3rAPMvhRREwKAigpS10TFNGzyY6dEI+2kEEbueIWBsrvPiIswHVnJd0hHzWZNDXUtep/xyr5aCVlXRp+VYI+n9jWJ7y8ecSq7TooI6WPt6li6qkLtqjCh24ibOhsmKkfLurp6lV7TETAiRCSSFRHpk7DCTVB5v+r1I7ciABASaW1j9m2lK+33AQDj5dHjrtCddqsr9Kai2EatJEwTpNX/7TSTOR0FX/1aqau3RqC/N/F0MeEBBKHm89gVcNyejUY35dqXmTP57CVKl2sRMyB271VLqe9EmDx5cuT/r371q1i8eHHFdf/xj3/gmGOOQbFYxIgRI/C73/0OBxxwAB5++GEAXQdANm/ejHQ6jVGjRpWtowMomzdvxtixYxHH2LFjzTpvB+w0ZOyLX/wivvzlL+NjH/sYAOCggw7C+vXrce211+Kss87C+PHjAcBUWmps2bKl7Gaxcdlll+ELX/iC+b+trU3eqDHdCgA4QREu8wAegDBJmISbxfzcJiwvyH2uaN8NADB3TAErt+Ww6g0HgI/mPTJonpSSpEunMKkD7qTkg0DtRyiBvo5eER5AUFcSMrVPUBUx4xRwOIQrZzQUAhBAIMKZHiDTncSOtBEqI2wqwkCYH452gpeRQeFm5ENZReHsSkKNSkTMCK0RJRxmu+p3JYJWCZTI1EKllOXMKY1G4wbI9boyzO1NhEyTp0pv1YN9me6qyn70tqh1PUhMrwdCwGLETEOfWzWftr4440eiYnba1Pqc4sRMR8/073hv1zgRs3/rVTUhi6eCTIrIImS2oLqatYDZbiSFWXHVsvOKXz8hRBk5rYRaqljtCcVxezZWTaXr+10v7UrsLqhjIlm1RrFmTW2KEDABAkEImDppQeTwsHYXSlUydXMLLqsq5TPTmpyqNKB+Dse/1w4IRMSzDINGyHRxVZ+2oX5v2LAhkqbsKiq233774emnn8aOHTvwm9/8BmeddRbWrl1rXu9pAKTSOl25AbxdsNOQsc7OTmNhoeE4DjiXX4Rp06Zh/PjxWL16tdGMeZ6HtWvX4hvf+EbV7VYLz5KgJImQk5b/Mw/E7ww1W65cLhwXhLpAIfr+ldtykf/1TLVlopplCg5w9eVQkSgiuIx4AfJ/ixSJVA4EBZDAA1gYRdPrEwJJEDlDOijKSF6mIap101EvLqNjQkfX1P7Ck49q3YSTDgdKyAdVPBVUKf0jRPlrdlpLb8Eh0eXVtFf6/7hOTG/XJmn23zOnNEYiTl2h1oiYTQBsYlCJEFXaliZ1mtLaJIRY7w2LLSQBZiraVimF2RviVanwoxoqpTHtXQrrN7PPBcQcd5TAV46S2dDXRBNBLoSZEFR7T9yiIK5v7IowVSNcNXcMsAo0KhWrADBp9bXr2yLE7NjJDSCEmGVhsUzXBrdzpjZiTS8IExcCVJELLgQYFz12vN9ZUOlzADTpClPjetJAVKRMR88ElSSVCQGXElDmm0k09XuuzesN+jNNqasja0E6nTYC/sMPPxyPP/44vvvd7xqdWFcBkPHjx8PzPGzfvj0SHduyZQve8573mHXeeOONsv2++eabXQZSdjXsNGTs5JNPxte//nXsueeeOPDAA/HUU0/h29/+NhYuXAhAPgQvuugiLFmyBPvssw/22WcfLFmyBHV1dViwYEGP90c4A/ELIF4exC/JiJGOagHRCBchmLubJFsrt1aeYcwdUwAIxcrXMwCYSV3K8DgBqGPSgCAOnHjBAFMVnY4LwmRkTriSLBFFrnQqU7hZEOaBltol4XJSUvCvRP+EM6NxC0QYzXDBQf2C2k8awpHHGOn/JriSmkWJsa7wBKzIjoI9jNQy6GtCVk1PVckoVpOvOVOrP2CEegPjlY+tK+j1mBCheaQ+NisFZkcHKz03QxInL7y5ZpX0UJZeT1BXRs64AEPvtHfxlHJX3Q+60vfp5V1FivT2mAiJmb08/i5ze2lyakXTKhWpaFLmWAdeTcwfJ2I9McetRbdXLQpZqdLXPv+ZUxojROuh9VL/OHNKIx5a32aqJWdPawIFwaypTaCChRuzCoLmTG00KcpaEImKCY4HdjFNWBxOhQdO5B6DlKAIATkRBoWj7j2mJkr6O039opGpiFR2p01V9hZCCJRKpZoCIIcddhhSqRRWr16Nj3zkIwCATZs24bnnnsPSpUsBAMcccwxaW1vx2GOP4cgjjwQA/O1vf0Nra6shbG8H7DRk7MYbb8T/+3//D+eddx62bNmCiRMn4txzz8WVV15p1rn00ktRKBRw3nnnGdPXVatWmRLbnoIEHkhQkjoqRWZgHuSW0FgIQEhS1bK7j1VvpiLbmTumEArmFVZv9E3Fol0YQJVuSEalKMB8Fc1SBCyVla9ZUS5QV26DuoCjNGYMJhWqo2IkKBkCKdwMAivCQJkf7ksRT8I862Ioew5FGk1FaMSKg3aZctQaKgAm/QZUHtC7ErbbKTq9nhnYrPUeeLU1bIuiSCQAuJbJIxAd9FmNJCc0OCWRAVUTWx11iAyeFUAq7C6i6bNSzXDSoITIwSGW4qzVm8z2/6olCtYTxCNnGl0S72qENbb7SpVudio+PIZwu0KEKXUTfbV3GDtO+5y704fFU4sEYYTXjspqQqbT+JQQPPBqqyFDgIwcciGMCSoQ6rgeeLXVVDSWTTTUfaLTks2Ts91WUOrvCRUMxC9JUsECzN1Nbi8e0d9VsFZZ9Nj3h33vSH8xOVFLO/I7bT8PHB0NE1w+A1M5iJS8VsIZrMjY4Ju+fuUrX8H8+fMxefJktLe34+6778ZDDz2EFStW1BQAaWpqwjnnnIOLL74YY8aMwejRo3HJJZfgoIMOwpw5cwAA+++/P+bNm4dFixbh1ltvBSCtLU466aS3jXgfwM5jbTFY0GXEb776LzQ21IN4BUlKlIDdVDLauio9uDspOVMiFKtUBWXL7r4kQsyXkalsgyQ1KupU5k+mlhFNwAIPwlGcmXPATYcaMu1/5qQB6oA5GVCI6GvqmE2akQdhNE6TQOab/Znj4bp6kwKO3CcApR8jCNQoVqa7sK6HJmwcxDzs5Gn2TERfaWC3I1AadoTBxswpjRGxrp1WZF2wmEqpU3vf8f3bxwBIwpmiauBjvrXh6Ew6bp1SBr2MEHA3g4CLCLEN9131VKzj1ZuqrNGohlorYbsi1vGoqJ1yib/N1phV+l8vM8deISpmo5IVix31ss+NEFI2GYiTs7I0eGzdSpWxBBaB1N9xIGJTY5+i/p/wGKG3JhO2dU1X0FWRti0P9ISLBWZ5tcj+rgRNaitF8gWUgF+RNa3ZLbMjssaAth3bMXbytAG3trhx5N7I9dHaoiAYLtjxcs3Hes455+D+++/Hpk2b0NTUhIMPPhhf+tKX0NzcDACm682tt94a6Xozffp0s41isYgvfvGLWLZsGQqFAmbPno3vf//7kSKCt956CxdeeCH+8Ic/AABOOeUU3HTTTRg5cmSfzndnQkLGYtA3/tZ/P4Om+hygo0OEGv0YgPBLSrS9hHxyCuoCblp+WUv5iFeYcDOSrKntRUiL7VVGKBB44QBOHUnItJ5MR6QElxoyyPSlSNWZYxFOymyfqNQj4QGIX1SpzHS4PXNSMSKgI4JuRhYaACgFHA6NOnDPmTJCEUBhInHmmilBsD1YVUMt1Wp6FTsqYj9UbSNMG1oIHSdqs6Y2RfRN+mEsjzWMftmI63fiflmG8AJR+xOgMtkyG6ImAhtZnzqGqHHiwOeh235PdGK1Vu31po1WfJtd+bvZUaKIgLwGgl7mR6YLSxCNioXnIn93pxuLEzCgQioVURKmU4NaA1aJgEG9R+sc9XkDYdUqBMea9R3G48volmJES4vzeyLSt9G8Z11EZgFATsQCFdnh3NyDqzbtOsOCsetR90pXt7X9PeYgcFhJPk/dTGQbgMwmEL+Ath3bsfu0dw44Gfv+qH36hYydt/3fA3asCXqPnSZNOdigXh4ko/U8kvxQv1M+sDiTA6SbhnDSSsPlAZyDZ0ZU1xBwJskQYCJNhAcREiQH3zASIiNqluhfVVSSeHQl8EALrdCaMZGplwJ+lZIkdgqS+XK7NjGwy9etp9XKt+oAVHb2NmaTetv2g17rnggFsWb+OsxeTVMGlA+C9jr2gKgHr1qMKauZxmryZrzYCJUpZwDEslgwx1FBRCtElIQRXXEbeGGxhCLHRHCs3JpBy+6SaK96M4W5u5XC6KeecVuE1kTMTOk9IlVvtaAn9gl98YPTRK6rCFklIgZESZkdJYosNwvLP5tK0TUY4mOlkqtEZu3InU2aCAnvMd2NYva0JkCISHcKG8ft2Vg1VauP44HYPWlvR9+P0m5GRbKttKQmGERLFWzYURxCjG0DOAMhlrzA3LM89EqECxJ0AsihZaKUJKx+rRQSOf0d50G/O/4PFCKEdmojEPvuxKu/AZjKcXm+Ud9FyoLw2gWemewmSNAXJGSsGjgPZ4pAmJ4MStB+X5IolQBH6agozECsIZdbl1kNEBF3fV3ZCIRifTuapio3TTqB+eGArQmW0n+AMynY9ztB/KKMxBm9m0q1imilJhEcCALzEF/ROrLscrSMFxBu1kT/OHHgCwFK5exRVnIqoqiqOiE4RKYehFCpsbC1cbGIRiXXax3NYFxUdCLvT3dwWmpXehB1nXTxAnVCI0gIUywRGZg0wVW+THJhlGCv3JbD3NGditwioisUhCoLFGXWqUcFHeFU29MkRV8ToHI0MZ5Ws0lBV2XodnqtK7LWVe/LaqjYakogYhOgl3F9bohZf8RIcWjdUjmyFr+/7KPuKlVuN5XW92KoPQwJWFfFIn/+b5up4Dtuz6gdi66S1NuxtaM64sWJoyqkOSKSAgXT5FrwCIuoav5qSR/k88uSIVAqHzdqIijgygmCT0EoRcs4AH4htNwBABZg7mh5z6/YsfNEWPQ94dCQkJlJgQjXIUKA8iCUcKjvoswuFIx8RVA3KkEYQDjoB83YrhPw3OWQkLEqEOk6SWRsbRhXs8fAB3FTIRkKOAhh5qFoUor6AUodMxOVKwgZfbFSLZFIl57tqlmZTC0KSfQUYRD29s12ZCQNPADat8HxSyGpcHRKNXyo64cr8YtY3jm+4nWYu5sS/TOAEE9GAgUHoU44WJqZt6rGtEgmKXLwTL18qOmUrj5nfbqEgiptmX55MNuwtIxjAFODlalSVSlDEQ7K8iENU/Vq60pIUAxnzercJfG2q20rpxgiBR/WwLt6QycAWaXbvGediYK4mgw6KXAnBY/JtKWuGCOWniwu9I9ro3QUzCZkGpUCb7USsUrky14USfWKaCrYTvsKRCt55YbK+1WGxxeNcMTNXilBTb52Jp2JcJB2woOyUl/yM505pRFMSBKmqyG7amX00Po2zJraJIlZhXvejsZpmOitQi2pyoiljv2M0Z1C9ITTsXRRDoWwtKNysuZFIuZGb0Yo5o7qwMrt0WMbjpDkVaZ+50yVOlJD4K1rQ3n4t9Hu8gDE75QTTeabZ3Hck3EgQStE5XuzjQTDEwkZqwbmASIbEi5AzhqdtNQWqWpH/WXUc3ndPkgAgCIuosrMyXh9AeHgrR5ytJQPNVs6OkJVuop5MvWn9FwAIDL1Zju0lAelrXJd7SytQuvSN0yRRVMAUH4bzBvZJo9NZzVU4YDxR9OpWq05IRRIZcHVQ52wQNqCeJ2gzJOp03TOEA1ddCAtN5wu9V4DhZbd/XBQAsxgFB6bE7XBEIBQEQvGpcWFKQxQ+j0SlKKFHrb2i1C5Tx3pVCkiAEarA50+JhTNk7Ph/aGqYfV7iHqPQ11k3Qy4mzHH6liDjO5A0BXssv+urEeq2UJUInJA5XRzvCqyUoqobL86bamMTauuJ6K/4+iqY0H5cZa/NzxmecAUAOEMzXvWgVOCIJCf5UNWRwj7vGxbE7sHpF4ctZsQ0cibGvh15HT1hmJN1ZOAjI4J614saznFOQAuCVnkpHkkamZ0oTqFZ6q4nYpV5MMNa9Z3oHlyVqZcEX5Hyu4p/RygLuDwyERZOK4sqKCukSIQv/ZuBwkSVENCxqqAegUQL6U0Vymj/wFg0nUQIhwsATWiyPSlDPdbL8UjX3oWaqJIch1aaIXobJVyhWy90ZDFI2HGsNUSfQMACYoQTgo8Ux85ZnncqTBlahUL6K4BGvMa3wKgiJcW5ItQVxJ/f6VCAJ5rAupGhSlV9R7auV2lLxsg0nXqmEsggqNlAhkU4XDzpJQ08Q1UetYuONBRMX0qgHHKLzKBtEMhBKTxo/Yb8gogPADP1EO46VArplNClj6QMA8iKAGEYuVbdZjX2Bo++C2xPlSLKqIGPKntscibBRKUQDkDcTOG2Gq4VnYrrjHT9iKVImB2taaxb7CrG6uwp1rn3WEUT6UYK7bJ0scSpgsrDaBmWaX9WAUktVh66O3o/VWbIBy3ZyP+/F8lulcfiUtJxJ4iss14wYAS6WsrG8AikxWu7f2vdkRsWuZMGQHwQBILfX8xS6No6zd1RJ1FoziVnknCuveQSqvvOTeTMLkezLNATjwdEMFN15HhiOZJqbAQRvstWhFXu6K5YlWzJcHQ32tDTgcJ/WJtkQTGhi0SMlYFegCUmoAAdmsiuUIsZK/C2SLwwygH8aIpSKM7swTvKqIlo1iWJQVjkTSeGbA1qBMSBx5YLZSs6I7gIJrIxQZ1wgIZEbMqRAFFxPSMV52n1rEJfQ5WVA3MM62hzHVTBISn60Pxuiay6XoZPXLTWPU6gzREGxzMmNIow/zcx6qNPoCwjL9lnDyOVZsJmicTFQlg0pNMCfodSkEFM+mhlnFMzoyVdkRGMVXENPBC0s08UEunQ5QOcf6IDixvkz3Z5jVslQdC1WfCdbrSi+qF7Eiehh4YAphUsCF3PLz37B6m1RzdK6UhK1VG2u2vAESaiVeyG9HLCYEyHY7uo2KvScB0e6gcYYqtX4GgaSlQpYifXpaixC6IVoRHfubVBPraqV6/Nmtqk4ySWuJ5QULSpY8n7hnGIaNMcdKni2PsyJd9HLOnNVWMKGsdmRbXN++RkQL8SWms3kzQMiFMywl1T5oWaeo5JuACjiWBsKwvzLkh/LxJICNDIj4pG0ZYvdFH8+Sw0psYGYiCPclESFSN7ENdJxKUwupTyAmucAcnItgvDvxJmnLYYvh+e4YYZuanRdma4KinNgmKUjuWypgHmQh8qa1ISwf80P5CvUeRLeGX5IBMHZPiMw8yK6UpAl8OzLYonOreaXqg1Q8NK12hw+xuNhzz9CBNqBTUE4oVbaMj5zyvYStA3PJZoTXAmChPKR+awirRf8vuvhGyg7NweGWescgQ6TrwzAjTNH2wUK2npYYW0ANREXTz5KwZpVPUBfXysffk1A/QMlEJ/4k07aXMB9UpDELCYhCrMGT+iC0hgQXkACk4AFXFpV4zEQs7ramh7s9IFaYQJg1sQ5MN03tSLa+lMDMuetcDciUdir2fan0k7QhOtQpk3XjLjpx15zemW0vJFlii7NxC0qh+QwCcg4ECOvWsCia60y7OmNIIxoUhRDOmNIZGvpaOL16NGT+HWVObooRM60YroHlyFmB+WTXjrKlNWBMjdVozpr9vqzYJGRk2Widedu1NRFcUzXlogh9GkBz5y4ooxSu8hwNMNSoQfpf0i5pw2REuXX2qV1HaVmLpxMLewpbVUIIEfURCxrqAFqvbwnyiIxzUBeBDFNoNQSJuCkhnwQt50Fy9NHYVHEQL/wvtEExFiOxKTXuf6jdxHFk27aaAwAkrKpW2jOiIkraksNNiGna43TqOSFGCwvwRWyBoOkx/xmeN5ryl4N9259fVl1IzksK8ph0gzMPK1xnmju6UkSNFKoWTAnczAAZXH9YVEesKtWhyDJgHolpPgboQ6RyEIuXydatoQw1w8cKJeQ1bw/Xtz8BJyYiFTiFpWGlQER8cdJssvcwm9TEYY1ZdOVoh8hWHTcQqTbjtIoewEpSA6smLPiY9eSAkFp0KiUJZ5MyeIECSMI8JUCIiQvu4eF+fC0EsrUkoAqaIm3Jg510w1Gq2KvZ9NmNKI+5f12qE+rabPgBFGnlFIf7qDUU0T0qhZaKDVa8zYy1hyE+MqDXvWYfVVVKqc6Y2mu/gmlfbovcEpSr9aJER/dyIa8iIFPYTFoQdP4KSisYOL0KiiyhW/7czUq1KYjpOXSkZkjBrYmOiY9Zz1ZZ5KM0YLeXjux8QJGnKXRsJGasGaxA1pct2VZdJAToAZxC+D96+A0Kn44qdAKUgbtos07D/J9Qpe41QRw4inAPIqxSkiD7w9N/Mi/xNWBDRmIWzXCsVoa0n7P3qCByhgJWmiYjQ3bSqqrIGwgoPYZ6uBy2qgUHNqEW2waQlm/ek5mG5K0GWuwcRY1+RrodQRQ4EDLafW6UK1rh+T2New1bAzcoODpXMem37g1hKCUDE5T1EuVLLIVY60b7fTeot7BWptXRqU1EIDqo6T2iNo3Az0fvGmjjYvmkUBCDRBs6R8wJMhIMIDu6kpC5MyEbqhCKSkq1oMhvZrjwelxJp+ktl/9Zq/RqlIL5753tNzHT7Ixu2q75OWZZtz0ymmCTWXaX0u7BXCLcrJxbyeyjtagCEHT00jBZMyy2i5N+k+rSZ8TCMiD2k2h8RIUzxQqTNGBQZt5+DelJtRb+NRMWQ4CCUZVSYTA8kkjTlro2EjHUF5puKQVBHph11hWSpE6KQj0SmhHLDB+fgKm1IUqnwSx4jXrJSyXoYcC4jYdQBSaXlNhkDvKJMV1pREEMItahbV1pSa0DWaavYIC0cFytiRMBExOwZstaLKUJHi+X7XN4xNrKdOVMbwQU3lVU8N1KmSraH57mzmEX2FERwcDvaoweuTD1ErkleO7+IlVszmNe0o8fblppED8ThFUmN7X0mX0O4HIj4uememjbpMpGsmKaLWOdCIImfQ8IG9ZEIl14/1mKLECq/R1rPpo9d/dYie9Nei4fbEipqRhC29eJKL6W/U5QQOFQWKVBCQIMShJOGr87DIWE6MiLWFtzoK121P1IqAX4RLbvLFFZclE6LbepcaxerxzVhdnRGE1w7lT57WlM0Fan1XEqqEI/Yrt7oo3lSqkfp/1WbCQAHLbtHo4wR6OPU8gQAWqeqyWKlyFjLRAcdtA4Pv1bd3mOgoaOQOjIWgT0ZsGUkKuJP/FIY/befebAm54Mnd03wNkDSDikG3Xpi+9MPonFEHXjHDtARI+WXNyhBcA5RKgCBb8T6ekDgXlEuZyyccVEnQsg0bGJG3JQhZbS+ESRTZx54oihnaSTXICsUNdQDgngFOcjp9JgZ4EiUWGmSFvgRS43lhQlmk/NGqhm0jqYRKh9K1v+AHECWFydVvYbVRM9vBzRPSsF3cwMW9TOWI3Y6yZ6h6/S3SiNp5/8yoqYRS9sAiJB3/VqcQM+ZMiJKaoBIlIEERVm9p6t9tV1IpeiuTeKsfelKQVtfJQSiRrAxo12jGWO6TVjarKcjdHpSZS83ZszMByl1hN55gsuopohWKMo0XrrXhqdGi0gdcCcFIQCfCxOZpEISXfu6G0NgTYJUulLrwvoK7SkYuR8sf8JomjQw6TtNTmxSLtI5wEmbKNxgQnvA2enf5snZiuuaziSBF4nyGeE+EH4PtF7TTv8DaGttxah3zxnwdki/HLc/6uIT+h6ikzN89I0Xk3ZIwxBJZKwaOJN6sMCHKHWCZEdIQhX4EJ4U7wNypsjV3wh8CN+LbAMAhA8ZzQDU4OSYv1eOOArzOp8AAKwccRROcF4OBwqjU9DRN8s1X/uGMR+CcxAnTN2EqUb9wKBmkC6zp7CwYkejrKYUquKTkMjsEHrb3aArL6hdHas3+pgxZeDK+1fsaJSEjFCs3F6+n7mjS4BwrIFRIDSLi0VA4voZVXBil/3rAXjOlBGmLZdJsemBWG/XjsSaaAIAoqIopr1UjMRpMiR4JLIjiDICBiKCfEIJqJEOhBauMm1pXQzOQEQp3AcQpmXNAMvMseoIWSSXa5+P5dUnF/Xe8HP1hqJxxydCRBLGMjrJu40g93eE2W7TJRwX2uQ6Ul0NADYx0YviJFvpSwfLriZ6MDWmTW1rC3UfG6LNPPO3IWK6qth+hg6iVo44BKRWo7xq20jSlMMWSWQsBj0Leevx5WggDNwrgmbrQXL1IKkMRKEdbPubEL4Hksmah1IkGmZFxUyK0gkJGHHTWNl4TLfHcoLzMoRXBElnlZWF8jdT+zBpIG5pkQiNVj3BSkHGYPerlFYUcjartWfmdathubG1EBz3+dMqHvecKSPAiTPoJq4JJOaOKcj7QPVOBRC9P0h55VtZdElFhmwRvlwx9FcipQ5TXRpJPSodZQTUgUhlZZ/UoCS1h5RGqlh7gtnTmkyaNDIwxgdJW0sVIQwkLHrRVi+prEkl21FlHSWp5rbOs03gmRGq5Ve0erIW6DQaV+bOOrJXqXjETrnZ7ZO6Q1m1ZnfHNEkdi9Kk2jrFiA4VkKnfmGZNt/0abJiILdREQqXGy/SUsKJfLJCdQxQBAwDTgxgIybj9TNUV8U4Kbe0dGPWu2QMeGbtn8oH9Ehn70Ibnk8jYMEQSGauGwINwVAox8ICSStExJqNfnMmHUDorU4ysfPABdUAcB6t2Ox4A0PLWWqwaPaOm3c/zngFXqVBSKsptZbJyf7rKUxExGaXzLW2aHxkQ5UPEqrgzBpphqsOUfSsitrxzPE5Ir5cph0Bp5pxUxEesKghNiNgQQvZMjXrShc7pclBZvaFoBnYdYbEd300UC2FUSqYIIUmM1ykHMBUN04M2SJhEtM1+wdT7/CLA/D63z+mK7MgUIA+JYRxCRNJTq95MYV6T1Dat3JoBkJPtqziDMXambuhir3Vw6nuCDgBQ38FeYPV/O9EygYBq+YC6jpUc9nUXDC1I1xFLrbnTcQ+XwHhikcCDKLWZSFwtaU3py5WFQFrKISxtoJnsAZKkCssEFWF1dU/211+Ik1NJKimMM6/5Hohw0qm9w1S1cyQiBqj7REpUTLajkIegDkiuPhpJTZCgl0jIWBUIxkAyOZWSVKJOR6YpwZn8YpYKkphRaUMhYqaeAAwRA1AzEQOAFelDAMuPdW7H30yK07iyEwrBY6lRIFrYpo5pRfZdOMF5GUhRANEqS+mPJrVketsnZDbgvtIUuQ2iNuoBJ2Q2yH2kMmhprNICpdY0QYIBQVTHVJkk6IHSJm1dVQfOmdooo0Scq+4FpTCSoNN3gkOkMoCTCtM+zJODnEp5h+msgetlGPGJ0zorJdAu1zDJ+1cTCA1JylCx76IpvqBUVrn2QTumo5jwIUleur7c545QQ5j1Z6T7VArqIODSkkMb0Zr3quiWbYtDBMfc3Urm/LqCtteIEHv7u230Y1aEUXDMa9iKFe27wd36CniuCc17jh30oh27Qbr8bT0V1fESPySr5nU3BZTyIPoZb73HFFRZy0UhD94xONYWcGhkbOkVSEIchyuGlznMMILwShEiBs4hfBUhykitjuCSyAivCOEVZeol8LB60gmVZ+R9wMoRR2FF+hAsF/vivtJkuX/qgrgpkwIljozEgXN5PABIKiULCCwQ5kEo4b8o5uUDpX0H2LbNEMUOKc4XHCek1pUdx32lybjPmyLTX6lstH+ehTlTG01rmBlVWsQkGDqsfq2E1f/trKlpNiBJgDQrVebHjnVPaX2ZTnMLoVJ/niT52uKCMaxo362qfcdAYPVrJazeUMTq10ogXs8JQaUI3orWkVjRNlpWElPXELGuKmRnTmnErKlNaN6zDi0THdU4Hli5LSfTyW5aSQDiDrWSiMWtMThxsGZ9B5giYkIIHDu5IXruGy09n31OljasK7RMjBUdWRE58ECK3m0PLqtQRHeUIEFx8InYJO3vGFj6xJhRsF+Ujb/9UqivdRxVaOKqSa9VmKKJGCAzFJmsmhwPomaMEqkb68tPHzVnCQYOiWYsBp2f33r/z9GQy0iy46al1iuTUzOhHeDt2yPvE1z6joE6WDPl1EE51vnZjSB+QRIvrU8LZKRuOdlfriNeNHYZWvtwnz8N87xnsCJ9COZ1PoEVdYeXbfsE52Xcx/bu9hiq+YX1VKOSYOfBrKlNcLgPUmiVKZ5Itwkp5NdVuMKX6T59P+7qmDNlBAjzpf0F8yEy9eCZBpM+06nHubuVwipoXRHrpMFTOUOedKVod/pLPdmJGxvrFl+Ipxd1ZWksClcJLRPtFkKWGbExMlZpPjslrdaPRxsHEi3jRRnp1Mdiey7qQhVSyoN6HaEw3yKUuruKBqFUTrpLRRlVy2TDCBmlaOvIY8yxpw24Zuw37zgY9U7fJvl5xvDBV55NNGPDEEmasgpIKgOarZcPSZWaZB07IHzfRJ20hoC4KfmF5eVVRgMJbS8xjz0DMGYVCTgmV0myI8yD5j5vinnvivQh8ncFIgagJiIGYJczbk3QPTQxaJ7cAMHrZKrHtkABwsGf+uClAuYFT4AX8z1K1e9saN6zDpw6JkW7cvsIQxKMI7wiPzJNmMG8xrdkbJK64BkA6fpuzWRtzJ7WFPGPi0DrywKZHiaOjBLJogkH2gS2K2ij5pbxIlpZmcpFKmkjRUODIFPQpFenR+MmwgAMCSVep1lXOCkzgbB1vmXdSyyYdCWlpliKAGEf4kECdQhoHy30aY2R8ASDj4SMVYMKQYtiJ0TgSRJWzJdXiXEGwRUJCrzy7QwCVqQPQcuOv8gIGOdY2XgMWnb8BU7TGEDUAcyvmVz1B7pqzZJg18HqDUWZpnZSEG42FPUDEG7KWK1QJwVR6gS8Yo+KWHY2RNNxUsogjVWrk6t4f9j4ut11qrh/XSvmTG3EAxXWWbVJoHmPbBit1N0zkEPzHpmQyBiCVh2rNhPM3S0IiwTsykKtEbQIzUCmolsmEMDLR4lf3HpD/+8X4eS3hUVKVu/JiEDf7glsV1LqSnVlxD2UaSRC+64ZezvbDg13JJqxKhBeyaQjRSFvvMXKRJ2AMoGVROz+/RYMxeHKqk+vCMEZ5qz/PVaNPBasdRtEqXNQidicKSPKG40n2GWx5tU2MCqd31e9mTIDIWHSkFg3LyeuEpP7Ppo33jfER73zoJbIc7VIWssEVTXtZmREK5WFSGXRMl4oY1uZWqzVXmTl1gxWveFI3zBNZKgLuGljLqxJkNaM9TdaJpCwmtUvyntMaXWh9WvaZDjwzOQAgIoSqrS6X4DwChDFDtkzWD/fAx+iVJDPfNVhhaSzIOmc/O04oSSESn0ugt77zSVIoJGMmlXAO9shSsWoQN+C0FWVuvE3YwNKxOZ1PoETUuswP7ep7LUTUuvgjBqLVaNngKazoA0jAQCrRh476FqdNes7avY+SrBrwNYzrWgdqTQ5HeAdO2TbMK8Atv1NrBp5LFaPmwMACSHrZ8ye1mSKaVomEElabO84NyN/tKG0SjHKyF1lVGwjpKGJl50eHGAj1OY9MibtSkp5k3o06UoapiXdt/4LZ/NLsrgiv10SMOaZ6nHhFbFc7AvevgO8kDeWRVIXJtfhXlFFxlyLfOpexJ7MmHhF8EFqFK7TlH39STA8kaQpq4A40tcLgDReVctNBWXMTqInWrHZ//4l7t/noz06nhV1h2Ne6xOgDSOlGaz2/krnALimwnJF3eHA0PgtJtjFMZ/8CwCwXOzb5XrLO8ZiPtsiJzCcY0X2XYClFV496YSBPMy3JZxSBwR10TwphVUbfbRMIGGEWqfttEkuoTKS1R2Yj5aJTpkdSMs4BnAhSYry6oLWj2n0AyHTvTabJ6WMAJ8EXtTwWtv8BLI6lZbaIbZuBCvmsWrksQCA5WR/zGt/St6HGioYuLLxGGkbxDlIKiXTsClZsAVdGBUzvhaFvCRixU6lIxscnbCuiOzTNhLN2LBFEhmrAuH70srCXhbREvDIzwPTz+rR9uds+JP5qRW8mI9E6GT6tGCIWIIEAwlNwuaTf5mfOE7IbMD83CaQuiZpUBx4aNn64GAf6tsPzJP2HTyQZEnbUOgOHYoorXo9fK279OTqjT7gF8OetZBEjASeJEV+URIxoKx4A+ja6qM7tEx0QIRsp0SYB1psMz1Dqd8pi0Z4AJrfBrr1VYgNLwLrnwXfvM48I1u2PojmN9YAQJSIxbByxFHyGrlpkEwOxE2B5upBc/Wy+4k6H8GlSbDOlAjfA8+3gxcG17ojwa6JJDJWDZzJL55uCK6XxQX8QI+I2OyXloFk1Zdce5LVCqVTuI/tDRBgHn1G6hoq98BNkKBfMZ/8S2q/7PRUPECczkkxf1AEadwNaNsqIwgJBgzzGraCYxQAqD6QTqgX010ILOG2TE12b/oKAKveTGHuqBJadvchsg1AsT203rBMXyOpSm1x0ks0T0rJiJsuONCRL+aBFtsRvLnR6vvrKx2X2p/VecQ23O4OJFcvI25plQ1RmQcpR1ETYM6UDjf8X1fTDwZkZKyPAn4MThQvQc+RkLEqEJxHxfpAuQMzZ3jg4IU92i6pa5RC0FRKtlHqAVaNPBbzvGdwQk6mKZcre4oECQYK87MbzWBOeM4M7sKRVgbz6UbTPkakMrJ/qpMCAmU6rAbKOet+K7U52oxYTSx6GlFOUA7il0C8AuyuBqs2CbRM4KaiNW790DKBgHidWLmt+6b2K7ePkJ0CgpJlXyHC9mtMMXIdQbK0ar06H+WKT/yCOWZayoPveBOBVwQCPzRg1URMm2yrNnWCMTS/sSbSjq4a5osXI/pf7dcoW91ZLZBKRZkxUZNzQlVhChscAX9ibbFrIyFj1WATpZgDc6XoWE+3S9x0r0r8V6QPkX3+ku9UgkGA9rKbn90Y6WsKIGzJFYuUCMGls3lJCqNJOgvaMAqgDjgAlu8AcTgI7cP36G2OEzIbpLcX8yDgRjoFtIxjICzAyk0y+tUyPuwbaiwtAFlZOY7VVE25clsOc3dTESHVWkoA0apKwLRE0vdEpXZS3cF41qlt0EKrFNprQT0QeioCynzVMTYUwvfDvxlD86aVWD1hbtl+5nb8DcRNQ1BqqimJmzJVkxFtcBAlYfLA1D6D7rsZ9AcI6buDPuHJwDFckZCxKhB+CQhUTzfOovqxXszoZ//nHrldAGtURVmCBDsLiF+ASOUAUKU5Ug2XCTFRMgQ+qF8CghLuY3tjPntOvtdNgzRmQbJ1xoLlwUMXDe0J7cQ4IbPB6vvpA24G80dswfKOsZg3sg3Ck8RLtzwiAYdwXKx6w0HLBC3mV9Ec6qJlovxMZYpTolIHDS2U16SbqOinMYIFQDQp05Eq2rMUXsvuPkipqCJ9MurG23eAF1XFoop6AVZUTEevqANCHZlxsHzCBOeY2/YISLYO4DzclpuSrwdyHwBAGkYaoid8L9ToqhZzxHEAJ2fSoqJULM+gJEjQCyRkrBo4MzMhM9NS6GlqctazPwXqZTnZ/Xt9qP+OMUGCQYLwioBXhGAMtL7RpL0kQZMwFW6Q7bTgZI1TOUlnITI5KZaeNEQnsYtAUBfEy4eRGteHEK60vSnKbqPLi5OkgJ4HICyASGUxd5QLUuCyklKlGU0rJkJhh9sfeFWayRLmYfWGomqtREH9zrBxuKUTM+2Q9P/aENbNoGUCiRC9rkC9PEj7Vss+wjc2QloeQhwnmlK0G3d7Visj3SFF68CKnZKoKed8EQBw5f0pinnATZttCcakyau9PZUOJdSRPYvV9oXffSeD/gB1KGgfNWNUJDV7wxUJGesG0mtMhqp7M5s//ukfgeiqnAQJhgCzXrgTDxxwRo/fd4LzMkSuUQ7YbDeQUgdEvl1FIVDmZC4IlZER7cukPZ1KRYhCvmrrrQS1Y/6ILUDAVTWfD5JKSS0XDUwq8r7SZJnGLFHLZV6AEILlneMByEpHQTJYpZuGO1TaYagm2as3FI2ZrGwY7oAUWqUFBIKwlZDjAH7RONwDCPuUOrIfruABjJdEF2jZ3Qdpz0Pk2yA4kz2B41CRMBO9KhWNESuhDjgLxfVSm1sPWtcgK9Ft4b2bBkkBwmOyCEotF14RIlsnJx+BH4m6aehKSh1126msLUSSphyu2Klo8saNG/GJT3wCY8aMQV1dHQ499FD8/e9/N68LIbB48WJMnDgRuVwOM2fOxPPPP9/7HVr6rt6mVYibltWTlCaELMGAYvZ/7sGc9b/HnPW/N8tmvXBnVF9TA1p2/AXzOp8AXFVxR6h0b8+MABk51jSdFxmlBdLRhFQGPFMvB2IWrUIWg6Sr2ZUxv24zSCkPFNoMsRCMRSu+odKYPDAmp/eVJpf1XVzROtKI91e9qVKJ6j2E+WjeI4PmyVk075GRZNwvgiprCVkwkA97kgZWX1IVHZWWGtyI8U3T8i5gtuOmZIEHZ2GRE7WE+jpFqPvxUhpGqwCj+9IEine2g+fbQ6NubVGhXfYBkGx9qAvWJExti9Y1gqrtiVJRdlzRon5Lx5YgQV+w05Cx7du3473vfS9SqRSWL1+OF154Ad/61rcwcuRIs87SpUvx7W9/GzfddBMef/xxjB8/Hs3NzWhvb+/bzvvaDFa3zugBZj13B2b/+5d922+Ctw3mbPiTrOyiDtZMOdUslwaWtd97LVsfBE1njeExEHpICUdZFtjWBUIAQsgB2/yQsNJODaA9rRxOEMX87EZ5nb1iGOEBwlQcpSEZipmvzs9t6raycdVmIrelU83GM4wYw1XE+xpyFlmXCG6IOgD53GQskmLsCiRmrmpgC+YVwjSlur902hDRe54X8uCF8p7Cxrw7iO0vPnGwSaA+Z72NwB/UfsQ6MtbXnwTDEzsNGfvGN76ByZMn47bbbsORRx6JqVOnYvbs2dhrr70AyKjYDTfcgMsvvxynnXYapk+fjjvuuAOdnZ1YtmxZz3eoBjZQKr/cvYVu7qpC4LWCpORs9finf9T7fSd4W6B5430yJaMisBotWx8ESWdr7vYwr/MJ0MbRoKPGgeQaZIRD2SYQv2QMPgV1ZfRLi/gBYzBqbA6AMLKcyYLWNWCe90yfznPWc3f06f07OwgPQvd3S6QeiY5pJ3xFjE26sJbtxzRghPlhqyFNsiE/f7gZ2TIo3xYlLzZhY8wI/YngmLtbqeq+W8YxgHmKOIWth4jShBH1N4lPbHVFoxL2k1QqtA7SUasYYTJ9Ui0vMVHMhwSNszD6pp327aIA6ph1QR05VgwCtGasrz8Jhid2mk/mD3/4Aw4//HB8+MMfxtixY/Gud70LP/pRSFTWrVuHzZs3o6WlxSzLZDKYMWMGHn744Z7vUM84HSc6E+0FdINxoat4agAdMRKikAcrDt7MK8HOh+aN90nXcMeRA1GuHnPbHpHEqq4hEiWzEXfFn9f5BEgmK0XLWpwf+GGVnN0DELCiMGrw5VxWwLVvAwptRoCtoxIkkwNtGN3r85z55K2RCuYZj9+CmU/e2uvt7Uw4IbUOxC+At7+lSJhKC8ftd2xYTbthpYu7gm4Ebno/ljqkHswvYuXWDES6DiJTD5HOySIArbEqFSQJDGT60qQqlUs+8UtyXVXhOW9km9S+xY6XWOlBGY2y0pL6R6+eSskJq1XpThxJ3OwombxOsb/1JCGdBdG2FsW8TF0W86qzSVGRzXbpj6f2o/taAiqFOWIkaH1Tl9c1QYJasNMI+F955RXccsst+MIXvoCvfOUreOyxx3DhhRcik8ngzDPPxObNmwEA48aNi7xv3LhxWL9+fdXtlkollErhjK2tTYpWeb4NIjUS4BysD+0uHjjgDMz+9y+lhoEzHP/0jyA4x0PvPhcA8L5Hb4bgHEGhBFb0QByK7JgmrD7if3Dc+hvx5/dc0Ot9J9i1MWfDn4B0VplTan2jmvVzJisXLcz+zz0mlSncFFp2/AWrRh6Llh1/AQfg1DfKwakkoy86AiGotK4QxQ75/rR8bBhDUQAAlToxPXFJpYywejnZHxDACdiAE5yXcR/bu8dFBSQmFVh7xP9g5pO3YuaTt4Kqc37g4IWY9exPe1ztPNxhUpMWmTIRIkqjmkCt56OuJEIWeRbKLqJb6P0ISKG7iojyTL38mzMIJw2n1AEozVVY2ZmCcNLSCkX1diRuCrQTksjphuWEYl7jW1jRJgk68QqSyKVSoRYMkjwRNx36hunsgpU2JJmsvC95WNgQOQ/OAB7eP8IiY9pLjKTS4QSisx3EK0odmb4k+XYZYVPtkOCmQw3wYOkh+yPNmAj4hy12GjLGOcfhhx+OJUuWAADe9a534fnnn8ctt9yCM88806xHSPRmE6qKqBquvfZaXHXVVZVf1CFryHRhr72RrPA2USHuY//8XQjGIdIuuKf6uzkUf5v3ZfO2hIglAIA5634LuGmIYj6SciTprOyf56YAro0rAQR+xHVce9xpQkOUvxI4Q8uOv4QEKvAg3DREvk3eqylFuKgrtUGcgRc8kFTO2FgQnQ7TO1PVbsKX9gE0W48TyHqIUif4dmnHMGfbszU3ZZn90jI5OCtrGE2+eOAbEqZTVTOfvBUcykpG6Yh2BT+zOBEz0BIKdf5Sn+eG1hNl2ykANSguSFCESNXJtCTnWLlVFXJQN3Sbpw7g6JRgeAwADBETjCmzjJRMX5ck6RJuCnDSEG4Wc3crQTguaHubSfuRiJs+U5IRdV9xFnqJBT7gpkA1qVJVjnbaNGLcSivcddwifsrCSACmFZ5uWxfRllFHXuvAA/eK4Pm28u0OACghoH00faVdjIUJhhY7DRmbMGECDjjggMiy/fffH7/5zW8AAOPHy5LtzZs3Y8KECWadLVu2lEXLbFx22WX4whe+YP5va2vD5Mmy8TYrlUwvMO5Xbnlx5P8uwWMnfqXrgze6hrA6iKZc/N9x53f9vgRvG8z+9y9N1MoWv+u2XIQzM1Of1/iWTOtk94do2yrX5Y4ZMOLtXwil0kNJQw8objqsQHMcOfuHFD3TXL0c7IMSwAtywHFltCuiC9P6JABwUqD1jUbYLBgDb90mt9nZLqPNSsfTowpPzsHzbZjx+C0gKVceh/ouEYsECMbND0254H6AmU/eaqLQOy30c6OSCN6uNnRShohFWhRpYXyNFgzSQZ/IalnLP2zVJoF5I2UWQagInG6sbSoVvVDHZkhO4IO4ACFq0unlpeZM+52pZZrQ6+guL3hRHzH9eevzdlNy33a6FOp7o8lTENMwapsKZfaqvwuSxKnvQqDSmaZykkcjkGpCHUnFJ0jQR+w0mrH3vve9eOmllyLL/vWvf2HKlCkAgGnTpmH8+PFYvXq1ed3zPKxduxbvec97qm43k8mgsbEx8gMArOSbBzv3g4raraNXL+22casWHQvVT437AQTjfW74mmDXwez/3BOt1qogOHZGjYU7ZjzmixdBi+1Sn0UdqVlRxAlAOFjpbf/7l5HJgNm+NTHQxSKm8iyQAxNxlFC5kFetaJRWSQ+8Wj9j9ywkFCSdk8UEGWmdIJTnE62XfVnhykjKrBfuxJx1v5WRPwDzik9VvkDKusDJZMoE3Xr7gjPzndLfWeJQCMYx4/Fb+vLxDDlW1B2OlSOOMucJqGvqxMTsingZZ37t/6YE9yuy76ppf8s7xhqSJJuKW+CBKuywUp52hWEpTBMK3w+jTYEvu5ooyxNR7ADy24GObUDnjvKqRiC837xiWLSAMM1Is/XK0sKXui4tqNfHYvWwLGtpp49PeeAJTzrp66gb94ryd7FTylQCv8z8W7dC4sHgVAoTh/bLT4LhiZ3mk/n85z+PRx99FEuWLMHLL7+MZcuW4Yc//CHOP19GlwghuOiii7BkyRL87ne/w3PPPYezzz4bdXV1WLBgQY/3pyNh+jdxKI65/5vm9aNXL+12G7NeuDMUmZbCwSzIF8GKHo7983d7fFwJdi3MWfdbM6M3FVo2tFZGz+I5A+/YAdG6RUattJ1A4GPVyGOxsvEY81YTbdPbAaIl/LpyzWoxA0BGO5QWTb5HphtBKXghD7ZtE9j2N8Fbt8lWNfl2k8YMvabC6jOaq4czancldm4EzdYZsqYH0tkvLQPbHhV1a5JKG0ZJXVDGstwwmilLW0QpnGw6Qsr0z/sevblPn9NwAE3LqlRNTm0vLW1tEbGH0J8HAOGkcEK6unY2jpVv1WHV6+Ukw2i8/KLcn4pCiVJBkhtD+H1JoFSE1J5kELv6UEWl9N8aJvJkKkf1RMALo1taR6h7Sur0u742kBFf7dhf1ls4pkMklILrriuK0HNPTsRZqQTuFXH/fgvk91Wdl+Csatakv6Ebhff1J8HwxE5Dxo444gj87ne/wy9+8QtMnz4dX/va13DDDTfg4x//uFnn0ksvxUUXXYTzzjsPhx9+ODZu3IhVq1ahoaGhV/uM9xxz0ikcc/83I6QMAI5acV3lDVitNfSDCQD+OvPzECzpZ/Z2x+z/3GPuMW1/Ikvl09EBy5B5Bl7IS7KUyYUVj16xorv9/ft8NKweU0JqDTPYxQYo4qhoW8MoqQlyU6C5elDVs0876vN8G3j7dvB8G1jrNpOOBABRaAfb/qZc3qk8/twMSE66oZNMTpog66bMmRwEYxEyNmfdb4HAw/37fBRrJp9komlmYOfhd4pQR3qjuWn5d8qNRAB0qndnJ2QkV6/Sgmkr1Wzp5qx2VDaxIZocCy7bVPURK9pGy+tPXdkOyxbTW9FKTfQBFYViLHym2pFafY+aiC2X90ZORr7CCYXano6KWjYUJJUGydWbbcuIrReSMC57p+oIl5kc21E9U6UaZkQEl1mMtUf8j0l3P3DAGbh/vwWSBPbQP7IvSHzGdm3sNGQMAE466ST84x//QLFYxIsvvohFi6LiXEIIFi9ejE2bNqFYLGLt2rWYPn16r/YlGAf3gjBVqf6mltbl0eZLzeuVwFUVlA6BA7IKDABo2gVN7TSSvQT9jDkb/gRAkjCaqzfVWZqkAFakjDqgDSMBNyVL7du3y0iEHRGoAlOFyK1eqybq4BvdSySNowdGwaVo25EVchpGLB3olFMevLM93D5TGp5CHqJUUKlPqTUiGV39WU4SdXXlnA1/Aty0HPAgRfyGkJpzYNbgaQ3skKnaSt9J4tCd2rdvOdkfCDyZbqQUwklHyZBtZ6FTeumc7IqQyvTvweiopJtSJCp2vSvq27ipRhSMRdOYijQJ3zOkDAhJnT2ZJUrQL3T6s6SE+yXrnvSKYEoDqX0ieeDLH68oI2Aq7SssEgkA3AuMnETrD6vZqPDATybWCfoFCRuogqCzAJ9z0LQLJ5UCt9I4gCRiGoLzikJ+wTgErRzGTiol375o3rRSWlIogT6AMCWoSvVhpSyJlY4BZzIt2L5DkrRcfSQ1GceaaadJcmMNcJFUpbIfAMI20dwrglIHJGdZJPgF8x0glueTIXalgrQIcFNy8HNTANO2A2nTgkYXEhivJrVPTcSaN62U23bTmLPhT+b47B6xtl5Mg1vXqqtoBaEO5hWfqlk/Ndyw3JGTyxXpQ4CibH0U8cUnNNQIavG7o7omUDeqeeoDhBMOHcRNm6pJUSqWd1uw9GCmjZNdkEApCNdif09Wyur2REqrqCcJ5n7SOjJN5qyIm9Y5CiYjacRNmYpHTbCIQyGoPE7uB+B+0XzPDMln4e9qqcggXxw0MtYfmi/Cd6r4y9sKCRmrAvum14OQrR/TMIOptWzG47dIz7B6OcCaL38yg3rbw3iDOQ7g5ECgWrsoTZg92GhvOqH8k6DaFIlS0TiGrx43p+q+mjetjLZsiTuXA9HB2SJ9QkXGCA8gih1gOg0Z+DKKp3Q40J5LSqxvNpXOgqvfJJVSOhsf8H1DqjS0Ma0+XuKmJCENvAjRiKTALOi0kg39fTP6MS4HVJpyy/a/M+O+0mTZ0D3wQXT0S0c9KQchFMJNY0XrSMwXG+Xr/ZGpsqNwuUYQ5ocpUl9FTmMRJyBKwkxE0yLXpqLXfo/9/VCeY9qEFUBoQaGF974PVipBMOkRKQLPeDjK/fKIBEVrw4hDy7IVnDGg6MHJRj1BZj3700GPislgZB+tLZIhaNgiocndQDAe+fLqlKUGoRSPn3wFsmOaIu/Rg4HWHBCHIsj3zck/wc6N5k0rLY0PLW+jYguLVSm9IWS64quQl0SsBqPJSBPjiK6HhgJ9S3+kXzeCagAQ0laCK12YKBUkkXSlAzrN1cNpGgOSrTP71OkiQ558X7aU0eeofJqIm8KaySeheeN9mLP+92GaM97Q2fdgehAqwXR8QNXfMTuKoQdfLQnQkUj25kZTwbkr4D62N5aLfWW1oi7oACSBUV0T5pN/gbVuk6nOfsCKttEyTeoqZ34r6qZT0Vrvxb2iJEna1V7dy0YvplOLgW8E9zoKDFhRVOWpZ6oqi+F3QQQ+eLFTFpgUOk31u2Acfnunin6F6UcAUphf9BAUSpHMh5GmWBo3fS9pvfADBy80GjJew3cxQYLukETGqoC6Lmi6/PIQh0ZC1o+d+BVp4JpyTXUkU2SMI4AoSs2B/nIneHtC6qBSWD1hrmxFpA2AIQcggbQiHr5Jy8gWR+lY9EqlFN1UWYFJGaz3RdZ30yryZJEezsIolCW8lu9Nm/eTTE5W9LkpKc7XRpxQREy9x0SvODWBGD0QE8fBmmmnAZBFDBzRAgYR+OB6e7rVTSpVNjBqUmmInj5ehxpj2Mjl0CRu6xtywTRZKKCPZWfHcrEvoHk0AebjOfmZlaRliSjkgZH9t7+Vb0kCPm+kL41iOQ+LT7SXl9YiltS9QR15n3N1b1MqP2NFuHRBCXGc0Eoi8EAaRsFpGAnh++DtOyC02aryAEPggeXbo7YmnMPJpiP6L86Y0f0GReWZFotu6fX0c/6vzZ8HIDMea2dfElmXMzZ4aUpKQPpo+trX9ycYOCSRsRphC/W59eU7asV1Mhxe9PCX4z4n//Z9MM8H9wL85bjPmRnYI7EvcoK3EVTfuzkb/hQpqZf2BKGhpChaXl/MimpZPyai1QV0U+6IaB+SlMkefswUARjSptq9aOj30oaRoE1jZEWlioAh8JUux65stIT9WmzPufFsEpzJtCqlaH5jjekMIAdnHqZjdcsZLdqO+UPRbJ0pfCCptEyFWtdUMF6WQjLRMkqNKHv2S8sgvKL0YtsFoT8bnm/Diuy7sHrC3AHZz4odjRBuVvrLpXPy71QmTD/G/Oki4n9N2nTVoxb4K/sIae4qi1sEY+DFvLR26WwL72MVjTUdJig1f7OiZ8gV8/2K2q+I7MSKiAnGIx1R1h7xPzj2z9/Fkf+7JFy/Qop8oEBpPzQKpz0b8q+99locccQRaGhowNixY/H+97+/zO9TCIHFixdj4sSJyOVymDlzJp5//vnIOqVSCRdccAF222031NfX45RTTsFrr70WWWf79u0444wz0NTUhKamJpxxxhnYsWNHr67VzoiEjFWBEOGXTBMxpsLcAHDYvVcDAP4278tgvo+/zpSzJ+bLQeCR2ZeYZX+d+Xnzd4K3J9ZMO01GYFT0a9XIYw1B4fl2QzYiA5ZFQgzBgfQBo/UNIG4qJDQW5rPnZKl/XWO4TYRO/ML3JJHSWhud1nLTcuCzKjDNb23+mm+Xbvqq6T1JRbsGhOszU0kp8m3K04yheeN9iqh5ISFkIRkUhXzYW9CG0rERNy29yuobDSHVaTGze2XSbPuMRaQFTijyF4xF3pugdxDpHHg6Z5rMAwgrHq0KXdPyyIkZEXOLiHlFWZ3r6XS33A7vbJetumIaSMEl+Y4banMvgJ8vyGcytyfTzETFIufAeWTdeEHWcQ/faKQn+vn/aPOlcDI19JjaSbF27Vqcf/75ePTRR7F69WoEQYCWlhbk82HXgaVLl+Lb3/42brrpJjz++OMYP348mpub0d7ebta56KKL8Lvf/Q533303/vKXv6CjowMnnXQSmDXJWrBgAZ5++mmsWLECK1aswNNPP40zzjhjUM93KJGkKauAEKlB0Q9x/QVljOPJDy6OrGtXVtp/J0gQhwh8iI4dwDhg1chjMWf978HzbXCaxoR2D5xGiRDCikqaq5eRM8bCNjQx8Hy78l4KTTCNGD7mUm4aJAdeJJUpVESFArLlS74Nopg3EQ1JCBth9wykVsNyUciDFztBqBT40/pG0HQWQb4domNHSAI5l2SKUpPG0h0B5Hk7hpia1kecRdOutvEpAMJCoTah1KStABUh8yUhe+jghZj55K1lxQe7CkgmZ+6fAa8gVYJ+Iri0MdE+YCrCyYud0GawgNR/abE+gDBlru9nzmSfVcpNGzBRUBYqpbA4wDZpBcLCDVb0wBkz94QdEbP/jhsEd1VoFRRKcNIpEErx95OvMMsfm3khgBt7f+1qRH/4hPX0/StWrIj8f9ttt2Hs2LH4+9//jve9730QQuCGG27A5ZdfjtNOk+n+O+64A+PGjcOyZctw7rnnorW1FT/5yU9w5513Ys4cWXB01113YfLkyVizZg3mzp2LF198EStWrMCjjz6Ko446CgDwox/9CMcccwxeeukl7Lfffn06750BSWSsCoSQs2nmBwiKHpgX4MkPLi4jYgkS9AT37/NR3L/Xh8z//pbX8cABZ2D1pBMi68X1YKEvF5XkxZHmsHGrgjnrfgvevh1s+5uS6GTrTeRHRx2A0EpDMKXTMmaaNGxjVOxUvk9RAicjaMrrqdhpiBygbCdUdaWdOpTpppRJN2miRHL1crBVqSjaNAa0cUzooJ7JRtK6xlsq8GXEzfcg8m3gxU5zzWytp60zMxFuzzcdMLgXQBTyu5SgX2O52BeAJNw2wR0IrNjRKEX9XsF8PgDC6FWpEJkYcF2IUsyHkVSLiGn/OaIKRcJoa2idIV3xyyvcuR+Aqeiq1ofZUVKtK/PzRfj5orwHOA+f9eq1ONxcBsSh3fciHiD0Zzuktra2yE+pVB4prITW1lYAwOjRshPDunXrsHnzZrS0tJh1MpkMZsyYgYcffhgA8Pe//x2+70fWmThxIqZPn27WeeSRR9DU1GSIGAAcffTRaGpqMuvs6kjIWBU8fvxF5kHO/SAhYQkGBHaFbdznCECF9J/0TTLl/haa31gj05Ccy0EOSu/VMDKsnqSWzsa2vYClERsxErSuQQr1IQmQ6YNo7DekAS1TLZGENtNU+zV6IO0rVpKpp3hRAq1rMClX+xiJqp4k6awkE5msJHP6epiIGTc2BpUMmE1k29IN6eWCcfzf0ecj6OjYJZs9N++RAepG1qQx7Dfo+0n9lm20wqpa/bmaqttCWA0ZMR4GQn2k5byvEamk1RFRVVzFvHK9oO2uHxQ9cCt9zfwAzAuiJt/VfMUKtZGW4Y7JkycbbVZTUxOuvfbabt8jhMAXvvAFHHvsscZMffPmzQCAcePGRdYdN26ceW3z5s1Ip9MYNWpUl+uMHTu2bJ9jx4416+zqSNKUVXDon74Bnk136bCfIEFfUbXCVkWSAER8mIR2O1fCZk2YNHSvQNO7j3MZjXJlKxiit63TiYEPcKXhohTQBQWpNKAr2iAjadRNGd0aICNtduUccdMQarko5GUrpYZR0sgz3w4o4027wwCx7BCMb1Rnm4nU0YZRUlfmFWXFphWlI6kUeCEvq5U5N15R8cHUOKk7DhgPdUPUcXDcwzeCMw5e7NylKisBYPVrJczPAaAuCGXAIBRzC8YA1X5IcAaayRqNWFity0w/VmNQq0gYSaXDdLSl6zN6M3W/6GiWsQ+itGw5R2D85Vjs3qBwDXmLFGcpL7pnPh6K9I9evRRuNoPAq1wAMFiwCxP6sg0A2LBhAxobG83yTKb7Dg2f/exn8eyzz+Ivf/lL+XZJNP0phChbFkd8nUrr17KdXQVJZKwKbPG+/cVMkKA/YbfXUgtM9ED/L3VUqjej70une516irvNW6lL2YOvUNEktex/lao0FY163+a4aCxlxKPHaVVrCluo7aakUSfKzTbDlkw8JJh6WbxjQDyyoyvwOFeO/NGKONu807aViQ9mhIapG92wfFeDILT8Phlo2LYqTvnnJyOtqpODJuQ6+ooYAbMqdXngm/soKJTAPF/+LnrSRyzmF8a9wFS/x9OU8WhqnJiZU/FktI37QaS6crDR50pK9QMAjY2NkZ/uyNgFF1yAP/zhD3jwwQexxx57mOXjx48HgLLo1ZYtW0y0bPz48fA8D9u3b+9ynTfeeKNsv2+++WZZ1G1XRULGqoAHgbGkSJBgoEDTLo57OBT/6pSSSdNpE0zAVJzp9XTLGACYs/73ssl3zkoLdbaBd+yQZq2dbREtj2nGnM5GolsmhVnIGzG9bj8k3c85ePsOsO1bpChbkSZt5CmKnbI6VKUrdcVo/PjlyTvGykPbbIiYPo3rqk8d8dPb0BWeLEw/VXJY54xFzDuNhqhCmqtMG7cLYHlhAgDgPn/agO5H91qNeNRxLtO/+j5LpcO+pGqCoTs5hM27mdEp6j6svLMdvHUbWPsOBPmiaUGkq2al/qsAPy+jbXblLIuZvPqdRVkV7wXwO4sIiqGtil5XcI53/epKHPyzL+PQu6+A196Jwps74OeLOPJ/l2D67ZfikJ8PgW6sP/RiPWynJITAZz/7Wfz2t7/FAw88gGnTovfRtGnTMH78eKxevdos8zwPa9euxXve8x4AwGGHHYZUKhVZZ9OmTXjuuefMOscccwxaW1vx2GOPmXX+9re/obW11ayzqyNJU3aBpz92zVAfQoK3E3SPP936xXFCN3w7UgbAOPhTB3M2/MkI4yPRBE3KPNlImdhROIt8AYj4P4lSEZxzOCp1qEXzhMrjMQ75pSKEHWlSREtYUS7oyJWbgvBCg1kdAZTtZsIBW0f2hHbe18eVzqr/uTSAtSMgnEVSlGbw9fxo25tYStiIvNOusv2QgvHmTSsHzJNrKLC8OGlAtz/rhTsh7AmDTkN7qlF3Ogta3wDhpiL3nLm3A3mPBZ1FOIFvyBRNu5FIlqmU9H04qiCB+QFS6Wyk44ngHJxxUKsyUjCpFSMOhaOjporAm1ZIlIJzDqIjZZwD6rWg6MFJuXDSLp47e+mAXs/hhPPPPx/Lli3D73//ezQ0NJgIWFNTE3K5HAghuOiii7BkyRLss88+2GeffbBkyRLU1dVhwYIFZt1zzjkHF198McaMGYPRo0fjkksuwUEHHWSqK/fff3/MmzcPixYtwq23yqbsn/70p3HSSSe9LSopgYSMVcU/Pvj/UDfUB5HgbYGwLF/aRgigzNrCJmMmWuUoMX2uXkYS2rdD6JSg0u4YPycgTBXZejG9bUWYZGQsrGwj2ToZ7VICd2PICYDWNwDUCZsw66bjmtRxLjVu1vbNPgMPyNbLys3AA5AK/afcFAR1pEbMl5o2U9UJADQLAoBr1/ZYY2cgJGK6BZK5xlZzdsE4OGWAB/BUAMeVzdnX7EJEbKAx67k7AM5w/wFnoHnjfeC5ellNq8kzYLSLgHXPxaA1f5oYMc8H8lY1LKUmqhnPWLCiZ9LSzBLnB17UzkJ2tQh7lmryxfwAhIfEjSEAVfYonHNQAG42DZpy8biytDjs3qsR5IsgDkWxj827a4WdUu/LNnqCW265BQAwc+bMyPLbbrsNZ599NgDg0ksvRaFQwHnnnYft27fjqKOOwqpVq9DQEOpZv/Od78B1XXzkIx9BoVDA7Nmzcfvtt8OxJog///nPceGFF5qqy1NOOQU33XRTL86ye9x55534wQ9+gHXr1uGRRx7BlClTcMMNN2DatGk49dRTB2Sf3SEhYwkSDBOs2u14tOz4ixSm56N9JaVWywlNSt2UFPBn61VzZM+0otEpQnAOAWVtoPZh/Lx0OkgVAgCxCBp1wAMPFCpV2NkmiZEeWCmVlhR2pWUcXKafiMPDfpqBZ3yjJEGD3Jaqoox0HVBWHgAk2Qx8UB1dUWlTR/Wr1GJs48fmOIDjVGxXowlZ3Hk96OgAKXTi+Kd/hAcPXdSXj3KXQfOmleBt20zhhlCFGtyTqUKRcsMm353tIMpIWBdmCK8o9Y4K0QIMeb/KNHVYpaitR5gllqcOBWccrmrYzSxLC+bJz12nH82+LNKtt8U9X0bxfMBJufJ/zo03nUybSj9J3ZIMNEzzHfHHayTxy6bhqMKR4iBJWfpTwF8rhBDdrkMIweLFi7F48eKq62SzWdx444248cbqfmyjR4/GXXfd1aPj6w1uueUWXHnllbjooovw9a9/3RjPjhw5EjfccMOQkbFEM5YgwRBC+14ZqNSegd3IW7cyghrI0jljrgnqyEgVYLUiYqElgLa0sCwEdA9MBJ7UbNmVkqWibLrcuk1G3OKu+Mo+Q3jFSMrQnIP6LbxiqCfLt8l9UEf6n+miAMtyQ6dZtY7NdBvIZEE1CQVM83CSyYZVdSxWIKBAU25ZGsu2EdF9DFnRQ5AvRirmjl69NNL+5u2EOet+GxHiA8CDhy5C0NFhtFpBZxEPHLwQgPTQWzPlVKyeMFc65QOmclIXndBsnfzMI9ffQZAvmrRxnIjJzYTpSqrShdwP5PuKnvQHi/0AYXoyEjUtluSPH4RtyKr0eeW+b/zHHN1w3qRLAwQFD157Z8X3JhieuPHGG/GjH/0Il19+eSQyd/jhh+Mf//jHkB1XEhlLkGCIcMz93wQD8MjsSzDj8VvkQ37SXjL96FppO8BUJQqrFYwgFLyYN+kgUWKqebeKSmjXerV+mY8ToCwItOBavy9W2WjD2jZr3WYc8vUxGF2aTolaBQdmHauCzkAfn96HTm3qqBlUyjLwo50EUukwfaMOVUe8NMmljgMORAxC7cGXeb5cx2oiPWfdb0HqGrG6+VIcc/83K318wwLvfeg7oGkXf37PBf263Tkb/lRm8zHruTtw7J+/C0+1EnJSqarWLJJQQ0ZYi53mMzdN6S3fMMEYijukvoynpOGq4Byp+ixoykVQ1PeWjIJpPZgmWcShofheRbOIQ0EB+PmCIXDmu6TT17rVmEXUjBmxNUhz3wd8SeozIxvgteclEcsX8czHl6Czox345sBHdGR0rm8FJsQZBH+TYY5169bhXe8q70aRyWQibZ4GGwkZS5BgiKAf/Mfc/00443YPX7AsI4zuxk2pSkkq/cIoBfyCiYDpdjO2Q7lBXDCt0oywKh2JbT1gV0BCuurbxE7wsDpRcA5qPUWETmFSZgTx8vjTMgxv+UfJc3XkwK3Jn7bZ0EUIah1N7njgy9Rp4Jv9ErVtuzehHmA1yYr7Q9nr2REXne7khTwoZJUq9n1ntY9wSHHsn78LqHM49s/fxV+O+1y/bHd+bhOWTz4psmzWsz8FD3xp8WAZ6VbzYFwz5VRZYcnDlkQipvGThq6S1GvzY55yZdSNczjZNICgTNAPAIEXgHs+aDpV9Rh8FTXTHRl4hZ6nZTYvln5T/wjG4OeL8No6kRnZMGQt72wH/b5s4+2OadOm4emnn8aUKVMiy5cvX44DDjhgiI4qIWMJEgwJ3vvQd8AQmkySlErXBZ4kQhbhAWdGd0Nz9cZzibXvMNWNopBXvmNhL0aqiZCOhkU8vmRz5Ygnl05l8rBdUdwbjNDozLysqbiCscbQthlayK+PR/uQqdfCik2qKiqLYWrU9UNtGaXmuPXTi6SUt5ntGRWptgz7DtpELT6I2+lOf8cOOMVOPPTuc2v5OAcd7/7NYogxTZEB+t2/6Z92bdoOQ+PI/12CYEyTIbT2/VCtNdD7Hr0ZvLERpveo3UsUMClsQN5DTjaN0o4OOJa+ixU9CKXLAmDE/VylDeUy3xAmDS3O95TVhT7moOCBapuHWGGHWc+6h2gqZaovBefK4iLqlZVg58MXv/hFnH/++SgWixBC4LHHHsMvfvELXHvttfjxj388ZMeVkLEECYYAxoTUoXhk9iXGbNQ44iOMnAEwmi6SawhTdIEfCuMtmAFGfbvj0bI4obKd8DURi6RuWKirsglLOKiFxFGKjJ2we4A6J9HZFlZZaud+AIAapAPlM5VKyb9tWwvVHUAXCsQH9fh5B0WrZY2V1omfk7keVrNoBkn0iC/NRPsz4tRfOOKP1yBgHEGxBOJQpOplH9BUfXZA9vfYiV/Bex/6TiTCqFPDOoWrNVrMD/D391+J/zv6fBz/9I/kZCPwpKjfNnUtFRF0dMCty4Hm6pEZOcJURerPT1dXAmFvUfjhZ8es9KVNtgFlS6Fes0X9Grp6U68T6W3JpL0FY/L6IpsBTaXAfR+dW3Zg+u2XIjem0VRWDhYolSSzr9t4u+OTn/wkgiDApZdeis7OTixYsACTJk3Cd7/7XXzsYx8bsuNKyNhOislfPRtOiuLVK37ao/eNOOP9AADqELTd/rsBOLIE3eHo1UvBVNsWTbZYvh2OMlWN+H9Zxq4AIEqdYK3bQNNZ8EI+7KlopYLKIhCcmWgZYKcdrRYyJhog00R2vz+brJRXJsptRSNsstm4iYYEniRaJlLHIXxPRvm80OjT6OEQtr2RryFSZUnTYQQPimhqkqCrJwXjoGkXzPeNcJ8zDsq7rkgz0RedGuujRqe/8a5fXQlNLf4278t4928WA5D6rYFMQWniBygxvRcYQbsW0DsqjXjk/y4BTbvgIxvC1LGOACtSJgIpsicOhb7Cbn02cn8FxZJMg6dScB3Zmo7bNiU2ifYDuE4aNJUCVZWVpv1RleiXXu5Y0VJ7HXtdAHCyGXDfhyhyFDD4SNKUfUcQBPj5z3+Ok08+GYsWLcLWrVvBOa/YF3OwkZCxYYy9li7Cfy79kfl/jyvOhGACzGPAiHSPidiY8z+CEtSDZpgNMm8n6Fm8ny8aPUuQL8Kpj5XIq0bJodaGQbTvAAIfrFQMLSwQCuftyFXQWZCDXSaDIN8Bt16aY3LtIabSfvoBHeSLcOuzhpA4jtJpWYaqACLEzo6kCSfUaRHL4FOoPoUkgEmFao8wovpfikA6oWsLDn2M9qCor5UNXdVnone6l6YTEs2y629F8YQVQYkLuYFyo9ihxlMfuTryfzwteeBPLsHz5/R/wYHX1mn2fcjPv4JnPr4Eh/z8K0Zn56RdONmwmEIK5KMRLM4Y0o0BnFydIWKCcfgdeQSd0irDa+8s84cTNIwiUwBBmZmvNvkNI122PowqgT8AMGvbAMxxRvzH1DapRVwE4/Da8nDSrpxIsTz2/8Hn8OJnvtvv17oaEjLWd7iui//5n//Biy++CADYbbfdhviIQiRkbJhi0mVnIMi5mHrNQggusP7K28A8DuYzCCZACj1vWKsfLsxLGp8PNQTjZpA69s/fDYmEcjDXGrGIMasiNdp0ldiasFIRrFRCkC/CzxfA/EDqYyhFdkwTgmIJjjKuDDqLRqcDRFM5Jg0Ve/DbbYeY58NJp+RATKukAbUAX1e3qUpQncIk2vbC0gPJbXRG+kqaiJeKJNr70Q3CTdVk/Fgtqws9YNtREntYqmSLwRkvE/4PV7zz5gvkPUQppt9+Kfy2PFKN9XCz6X7pJPLUR67G/j+Q6doglcI7b74AQTYDP19EurEOVA0lkXSfIu2cMUO+aMqFCDzTuqiwrRWCcaPFiqcOiUONSD/S7sr6jI07P+eqIXgpQsLt3pQ2BLNkALHX9LNSH0NQ9MA9BlaU9xp3SDJ47qQ46qij8NRTT5UJ+Icayf3UT5h02RngTGDT0v4pcWaenA3a29S/d7/wYz3az+4Xfsxsk3s6kkG6eVeCgcDRq5dKc0o1uHjtnagbO8oMUkSTLm1X4XvKa6sRoBSikJfmmtl62QNSRZS4F8iS+6Iny//9AL5u85J24WYzshrNGsh0REn/bYNQWQDASqUISbFJi5PJgGSyKlUYEhcn5wOlohHaE4dKf6l01tq+E9GxRSIdCEx0xUZQKIE6Dpjvm4iGjlwJzhH4gWoWzaODNytPbTlWlM0mbNQa1PV7hzv2WroIpFH2C3nh09/B9NsvVQTbR8nWz/USzZtWgm3bjAesKNABP/y8FLbHdHhuVjac5srt3i4CSdXnAMhImZNOobCtFdtf/C9o2kGprQQnReGkQ3KvSXn8s4s0/7YIOnFkI2wzsWA8cr/bx1kJlaJGzAtMWyXOOIKi+k45g//8JKQfTF/J2zsyBgDnnXceLr74Yrz22ms47LDDUF9fH3n94IMPHpLjSshYP2HjtXdi/MULMPWahT1OH8Yx/uIF4FyAMAHBOMZfvACbv7UMu1/4MTlb78U2mccQFAMwn6H02/v6dHwJeoejVlwnPz/GEeSL8NrzCAoe/jrz83jfozfLlaw0np71u3VFqbVhLHTOB8AKnZJ8eAE4Y/DaOo0ImqbccFDyArjZTEQLJtM/PGxDo0gNL8jf6WzakKm4MW1o2MnA8+2yebM16NOODvU6N6SJur7UjClNHI8VHdiDDPcDEBZG5vS5sKIHrgZGmnbBKpi9csbLUpOVBt9IhEzvR7m8U4vE6aq94Qz5eadMevK5s5finTdfUNE8taeY/Z97QJrG4IHpZ5ll7/rVlWCKdLGiB6+tE8ShcLNpFUUKBfh6HT35KLy5HdwL4GTTKG5rg5f3kHEySNcrM18mHd/tz8eeKISEjIFUIET2+Zo0qcesSFf4nrhoP05T9DH4+ZIidgJO2gHzGBgDnNTgSj2SNGX/4KMf/SgA4MILLzTLCCEQQoAQYhz5BxsJGesldr/wY3jze3eb/8ec/xEg64L5fZtJT7j0ExAAKCWgDgGHHHx2v/Bj8iGgImZNC0+Dk3bw1g9+3eX2xpz/EXCoqBgTCREbIhxz/zfBEaZYgqIHP180JOT/jj4fs55VJJ46AHwTGeB+ALJ9i7QISGdltWHgR9r/FLe1wWvvBPd9ZEY2SB1PNg3uB1YrmMAYm3LGpChbtwaiFG4uY/RhxE2Daad1Fq2W1BEOv70Tfr4QIUOEUnjteSPod9KqoXOpBEcRzaCzEE2HKjsO/b9gHEEhJHcppUNifgDKraIDJcqPW1VouxD9tx0ls/cRH5gIpUCMuOn2O8MZtMIAqyM5L198a6+22fzGGlkMEnhYtdvxAKRWTDAOPx5tUtpH/Znr6Kw5Dj+Aqyo9i9ukM38a0vfLzbphBIxzANwQMv2ss6Nleh+pejcS+ZLvkb+JQ8w27OvDGY84rsehiXiEkOt7jAtzPAmh2bmxbt26oT6EikjIWC8w/uIFIFkXYz9/OrZ85xcAgG03/wrjL14Av8PDhEs/0et0pR2Sp2kHhHFIdUsQmeExPyRmXWHbzb/CqEUfAvPlQ6tp4Wlo/elve3VsCfoOnULUAmM7Pafbyrzv0ZuRGrMbwBn89jeNeNjNZeDWZY1ovbCtFfXjxwAA/M6wLRH3gkikyW6qLDg3pNAW5tuGmm591uh6bAsAmnalOF/fg3nfqmJUOi5ESZE+P+b5cNW6vuX/RCiFk06Zxt56GVcpx/g1MhGTWLVbpKiAcXAERsdkzr1ChCyii4ulY6kSpQ93MD/AS5Zof/JXzwbG1OPfn78lst7e3wo907oiabOe/SmYIs60Sd5fh959BQLL5d7+rJByUdrRLvtDFuV942YzkSiVjpjpSKN9Xf18CU7aiUTFqEPhF1XaO62d+oV8LVU+bBGHqHs5fCbGqyj1NuIRtfh6+hmrxfp6/07KgV+0UvuDnMJOImP9g+GmFdNIyFgNmHDpJyAYN6lCR4XUg2K0iermby3DmPM/glTWxR5XnAniUGy46vYe7y+qdRHgTIbH09brpbYSgmKA+gWnIL/sD11uj/kMQSEAdQj8fLkLdYKBxVErrgNjsvye+wGK21pR3J6XaY8KqQ6hNGO82GnSgzLqFZjIQ2FbK4rbWgGoajEV5QKkxxK1jE41mdPQy5gfGN8mYkWQHJUSDDplxSPzgshD3GHpiGDa9nhisRShTjdyLyRXdkRPbwcISSO1tEiccdk0HdGqTr+zCCflyupPP4zC6PMiPDR4jdsU2FWZREVCzLVnskm0hpvLdPv5DjUE43jHtZ/CK5dJw8oNV92OvZZGG53vtXQRum/5DBz38I0IKJXkyqGoow7e/ZvFqnE2j5AdfT19qxtDaUe7IceaNLnZTIR8sWIJQd5Fqi4HP1eEn/fMxFJHoNysC+qQcLkiYoILsKIPBpgImCZvxAmXMV9FsSgx2yWUmOiYJGXRyloNJ5s21ck05eKFT3+n4rXa44oza7ii/QeqNHF93cbbHT/72c+6fP3MMwf3c9VIyFg3mHL1JxE4BIwBYz9/OhDRHJCydKVgApwLCCZQ1kC5BhidjEMQFAKzLeIQUPVgcdLUzCSZx5D90Eko3vOnqtvkOuyvHlCNZ38g8RgbQBz4k0sgGMMLn/4ODrv3anBFUrSGp7g9j+L2Ipy0g/VX3mbed8APP4/6CWPAG+rhbXsLfr4QsQnQKbegWDLkrHPzNqTqZNpQp2y458PXgmambCtUNRsAQ8C0PxQApBvqwB3Z35ErPRBNuSZCJYocqJdNuT3AaNCY1YTZnkQYTzOHgnKKoOBFZ/aWWF73/dMpUzvaZm9bC8HtdjzcC6rqurgXGF8qotKb1LIyiJM1fQ0BIFWfhVuX7feejwOBShFy2xJn0mVnoOQQvHZN14MQABS3tRpCnRvTBG/7DlPsIPs/MuNmz4o+OONI1WckUUiHFZXtr+1Awx4jQRVh1pW9WvTfuUVWTxpdl8/hpKh5VumJCmcCXt6Xkg0mJEHzpeTCSUU1X7zA4aQdpcsURmQveLhNQsMUZiQLEamedJCqzyJVn+3S2LWW65lg+OFzn4uaOPu+j87OTqTTadTV1Q0ZGUtocg3QIXBKQ0JUDZog6Z8x53+k5v3oqkdAabwUEdPb5VyA+RxBzNaCOgR1Hz252+1zkwYQPTquBD2DHrAOvVs+yHX0iPmynx7zOTgX2HjtnWXvZV4AP19QP1LETx3HaIA0OQqUVisohCJt235CMAZHeUDp17S5q45SBUUPQb4AViyZKkTmBbL/oJpI6GPX25CDsCdTTmrfnEfTNZpQheL/IOJ/Zi+3o1J2BWVcC6ZJn2DS+JNSGqkO5Z5vfptraafVKqasrOsVa/vkZNNI1ecwZ93wT+kLLgzh0Jh02RkApKSiJ9D3mPmMiyWkG2S1mT0hMFWrXMgIqR+NkHp5H76KaDppt8wmpLijAK+9aEW+oveBPhazX+vZxVVhk33O+hrYWjG9PP5/LenFvlYtDgQIJaE3YK9/kir67du3R346Ojrw0ksv4dhjj8UvfvGLITuu4XfH1Yhrr70WhBBcdNFFZpkQAosXL8bEiRORy+Uwc+ZMPP/8833el5t1kR6Rgptz1cxLDqT6iz/6Mx82627/0T0otXkotXlKXyAir9cC5jMwn0dmvNyIVAG/GCiCSOCkpSM5TVcXpnbceS+oCekLaW/BRIT8Jegf6Co2QziUvsvvLMJvyxuCpT/Lvb91Lt55s4y+uNmMXFc1JS7t6EBpRweCYklqcdo6kd+0DflN21DcLtOOkvhIAsJUlMjPF8uE636nbJrstXfCa+9EaUc7SjvawfwATNlilHZ0qNc6EHTKY/DaO81AG+SL8DuLKG3vQGm7EvdrEmSbzapj0NE7uV4QHcj1jxcYHZ2dmtTXzZDPYrT3pG1zoMkvU47tgjFQJfrnvm+WadgkrFIDcQBIN9TDrcuFHQ6GMZjHIhFWQFZ3j/386WA+x8Zr76w5iqM/P+YH8h7cLitjdXGIJtHMYxBcICiEpLuwrQPtr21H2/q3wBlH/g15T/n5Iko7OlDYskN9/j5KbSV4Hb55zkkPRQ7qEBMh8/M+uEXWuLLm0c+voBDIyWkxMJNfL+8ZfawmbvaPhn6e2jq1yATA6o4xXGB7r/XlJ0E59tlnH1x33XVlUbPBxE6Zpnz88cfxwx/+sMwPZOnSpfj2t7+N22+/Hfvuuy+uueYaNDc346WXXkJDQ0Ov9qWjUDRdbm5JLE2DnfrruPNe1H30ZKTqU6Y6pxa8+b27MeHSTwAIHxZv3nx3ZB3bM4w4RM50YiH7Suj85R+ROnW+2rYwx5+gf+Hn5Ww/t5u837TOiSnxskw508i1pykXB//syzFdjeVQng/NUb03tyMoeua+0q/LfWlvujDylKrPGmsB7UQedyDXx6l/6+bL3PfBvUBGoFRvPgAIGIejihAEsywBVBsavTwOBy44LLd8nUqFi6AQ7TNorpsiS3aLGyCqD4tH3YhDwWLNo2V60wfSKZOqtBE3uPXzBbh1OYDX9t0dSlQiWuMvXgDGRERC0R0O/tmXQRrrwFQ0LDumEdwPkN+8zURiJVH2jd8W8xhKbSVkR8lUef6NTrg5V+m2OIrbi3Cz20HTLgJ1rwbFqP2EfsZKvR6UBCOaaowbVeu0JVdaWP1Mow4BccJta4lHJRKin8uEkXDi4oRp/Z2heCNB/8FxHLz++utDtv+djox1dHTg4x//OH70ox/hmmtCZ2khBG644QZcfvnlOO200wAAd9xxB8aNG4dly5bh3HPPrbbJiqj/9Omod1x0Zl0ZEfNYOFBwgbGfPx2UEgTW7MomZJ2//CMaz/4AOHhZqLwr6CrMMed/pCzkDsA8XDUpkwMsr6lC0kk5RjemkVRX9j+oIzVSurkwTcmCD5pyIRwOkZfEY8Kln8DLS+/C/j/4nNFEaaKkvZocpdtixZIkZR4Le+qp/XGPRaprBRMotXmgDgFNFwxJy47KhtsETC9BMyjpPpmKvOkKReJQcPjGbJOqiJMmUCG5YpEIl3zNapek3fgd1XKGSyInnFjzcYfKSJtld6FJnuMofyuL9MWLBsCihq/hsXBjfmt7kdnaMeJQuPXZULg/zKIjtWLzt5bVvO4BP/y8vPca6iX5TqVMdwMd2dI6MM8qAHKzLvxiAC/vQzCBTGMGxCHKU0xOVFmKIr+lHSMmNMHPF1HcXoRfDEApUde8fELIIxErAai0pK2nrQW2xAPandFxzPPYiPtjFZbc90HY8Pvck2rK/sEf/hAteBNCYNOmTbjpppvw3ve+d4iOqkYypslNT/CDH/xgQJpvnn/++TjxxBMxZ86cCBlbt24dNm/ejJaWFrMsk8lgxowZePjhh3tMxgQTgKNSJioErsWhgLSMACSZsWETMv1bN+eOo/HsDwCQD7W3fvBrWamZotj8rWVm+9XQkxmvBnUIBCdShJ33u/UoSxCiFl+3g3/2ZZSyaZWmK4VkRzvhOxSMy0gA85ixRQEkuaBM6qCComdE0n5eutv7eQ+l1pIps3dzWi8lTLWsHijDgcUBV1EH5jOk1D1MHGqaI5u+fhbxknqc0LuJqabQzA+MsSdg9ahUBQpxIT2hFNRySNe9KwGo6jwmI1X6/FXESvuUmSIARsOWN+p9Or1o/Kys6lG9P0BGKmnKVdV2kuQ5dtWpLo5QfwOSTHtt8hjSo0bWcHfsvNj7W+dCqH6kQdFDypEie7+ziOJbrYa0ltoKKGxXPVKZQKYxbYqMACmd0M9I/ZukCTq3Fcy9mcq6KLaVpFieEhMh1vd0vKBCR7z05+qkqSFOQkXNdETMSYet3ohFwO3omv5fQ9MSDg41PQCnHDDR7OFl+Js48PcP3v/+90f+J4Rg9913x6xZs/Ctb31raA4KNZKxe++9Fx/5yEeQy+Vq2uiyZcvQ0dHR72Ts7rvvxpNPPonHH3+87LXNmzcDAMaNGxdZPm7cOKxfv77qNkulEkql0GCyra3N/C0Yh44jmdlUbFaml9tf8hFnvB8dd96L+gWnyIdGzi2LQI044/2RykygdwSrJ/DyvlUO3vc2KW8XjFr0ITAuuiRi+33vfATZNJgfmDSMrKD0I2aSAIyWUEMLzxnnoH6YDgSkB5PUxGg9VTi4lNpKMirmRTWGknCp9I4fRsv8vG9MiaXdhDaxJAiKAbjHQFWKyFgGgIJmw7RenOzobQBAUPDN/s15aRLEwkEy7uel06y6AbTdn1CTWUBVhFLPbMOkWGO6r1R9FjSVUpE4arzVKKStghPzqTJ+WGp7Xlsn0o11UryOXRt+3jOfN3EognzBpNO1p5ZgAp1bC2A+A6EEzOdIjUjB2140Oq/i9iKclAM355r730k7IJTAzbnIv5GHq7IMxJHbcAAIRsy9KqOcUQNfG5FiJvU9iEfJbG2s2U7M6NVEYC3bC03IhMMBdc/q+3K4gDgOaBemtbVu4+2OeMHRcEHNacrvfe97NZOre+65p9cHVA0bNmzA5z73OaxatQrZbLbqeoTEyJJqcVAN1157La666qqy5YIJCAg4aaIqcERksNPgsUFVv9cGZ6KsUkI/RJyUg0zj4HsZcY+hOHMWsg89MOj73pkw+jMfhqMGEECSaCdF0bmtAP/3ywHIdGOpMQ20FYyomTgEfr5kfN24imBRKzWiIbUyMppG07KsHoDR5ujogxHjF4PINmXPUSvqZLWKYUrs7KQdE5UwnnNFrcfSlimOIWPEoUpIHUbPzLEqwb3UDPkgFVJNmswRJ4CjHjO6z5/tcK63abzIGI9EFG2Xddv0WJ2pqegDZITZUa2BnJQLpFzTZNr2WZOWISoak3JBuOzjyFX61MmmZfcCLwDJRfvW7WrwOnxDbHa8ss082/QyN+ei4428bOFVCEDTDjKNaXRulca9Tooi05RBx+sdcFIOvA5JloNigHR9CpmmDDq3FqQOjIuIGz5Xkg/ttWcTfq4+01RW3zuyBZFMWesJgPICUwSskgbWSZcTMf0eIFptKScMBAzqe6HkBd0hd/ZHa1ovwfDA1VdfjUsuuQR1dXWR5YVCAddffz2uvPLKITmummKWDz74IEaPHl3zRpcvX45Jkyb1+qAq4e9//zu2bNmCww47DK7rwnVdrF27Ft/73vfguq6JiOkImcaWLVvKomU2LrvsMrS2tpqfDRs2AIjaQITi0Kjp3ogz3l9Vv1D30ZORX/YHqaFQ0Yv6BaeUrafD/YNZ2Sj1HDwemEsQg7b/0ORq9Gc+jExjWhrw1ocPahnd8VFq8ywxskDntgKKbSV4eUmq/A65Do+JkbmqYPOLAUptJXRuaUNhazu8vNyeXwxMhRgAVTUmK9KCQgDu2elGpmwFfPgdPrgXRrm07YqX91BU79Xb0pE1205CgxV9sKLUZwVFLxRwa42ZmqTo74feX3w7kdZMVvWabRwrt6dsNnwVWVTfH21LIHVKnjE+1q2+bD0M55pQuubY9PHY1ZWmQEAJ+4nyyzLHw8s9vHZ2jP7MhzH6Mx+WLdZ8WZ3YtqEdpTYPhe2h3QTzGHa82qrIO0WmMYNMo4wVxu11NBGiDoWbDf3G/A4/MvGMFK6oAgDmM6PF1dFQbSMUr4K0Na9x/autMzM2KMYKI/wx6+uJUwW7B+JQ0+uzO9D04KT+kmrK/sFVV12FDtU/10ZnZ2fFwMxgoaZPZsaMGXDd2rX+xx57LDKZ/o32zJ49G//4xz/w9NNPm5/DDz8cH//4x/H000/jHe94B8aPH4/Vq1eb93ieh7Vr1+I973lP1e1mMhk0NjZGfoBoKgVQEQE/FE83LTxNlWE7SGVdU82oZ2idv/yjIV/6YWA75bfd/jvpG6MeSAOdogTCKAn3GPIBQ6FCgUAChdlzzJ9hGkXrUxzUjwsjJpu/tcwMKjqC6hcDlFpDwqPJh7QtYZGBxGsvSsJWCOB3eOjcWkBxe9EMjn7eN1EEnTbSOpxSW8lsS5td6kFIkzutKbPPg3vcRNQ0SeMmFS8JVVAMiZOX90wqUy6TTuhA6Jquvx9x7zBdDKDvPWMkqyJeVA3AWisX2l4wQ7w06dLHwDyurjUPt2sKGBi45yu7jnYw3biaRRuL6/Xi0MQt3VgPUchjbtsjvbuHhjHe+sGvzfOgqO4RHWXVxR/Ml1HHUpuHji15NbHkKKiUJVcEuXNrQVlThClxAChuL5rUZiXYBSfEoUgp130bQTGQ++K2mXZIqvR3DkAF4hZOYGx7C3lPhpmOiF8ZC78DtSL/w8HxpkrIWP+gWrbsmWee6VHQqb/Rq2pKzjlefvllbNmypSz/+r73va9fDiyOhoYGTJ8+PbKsvr4eY8aMMcsvuugiLFmyBPvssw/22WcfLFmyBHV1dViwoGfGh5VgdAqAigrID5MzjvSIdGSmGA+Ny/UEMqedgNJv7zOaMupQBMUATopi0mVnVDQB7U/oQbzIOApMgAmBxgHd406M+9egoOxJdLcDL+9BtAnUj6svSy1rLRYDM+k0O4rKPV5RXzj+4gXwHBoTGXNDnOw0p5OiZoBx1QQgMBExVWGZohC6ewML28Kk6lORCBqgBqHYrco8DuoIleqkSNdTQ+bMQKUq4by8Z3z3RKyJsp6cyEpPLyqk9nWUJLQX0GTNvgZCkU95TPr7Jsr0a7YzewqIOMQD0pbGSbkm/WmqP63iAnuw4ozDrZMNrHngQ3jDSzvUV2jtoybhtsaKAijlS2h7rQ314+pVBXYRfoeP9k0ymkAdglTWlUTLasqt2w3ZfxNKZPFEmsC2AtKESvslam1X3OxaFwPEoaNvepIMOEbQb090OBegqKx31PvXz3VzzIyAewEOvfsKPP2xa9AdMmckBto7A0aNGgVCCAgh2HfffSOEjDGGjo4OfOYznxmy4+sxGXv00UexYMECrF+/HkJEIyuEELBetADqL1x66aUoFAo477zzsH37dhx11FFYtWpVrzzGdEjdDCBpx/RKIw6FQ6XHly3styNf9QtOMZVFgJzB6W113HkvMqedAKZKwZ1U1HdqoKB7yDEhVIoyyVN2hc5f/tEQ6NGf+TDcrAvmc5TaSnCz0aKMN793N8Z+/nSjf9G/NYmxZ/CAvAcAmHukmJepICclIwRSS2OTORmJkDYCHKn6tKkuswc4DRnl4Gaw0SLlONxcXMzOIBiR+3ekPk1G1cJoQsR2AIgM5gBXGh5JcOziAycdVmsSSgAPAOSArlve6O2GKVmVylSPFR2909YIBo6DoBAgyHqgKhLnFwOjOZLHGR2UAZgWPfY61KHG2oJ7AXj7dsxuvQf37/Whsuu3s2LEGe8Hsq65NzU6txbMhI1taEf9uDo4KQe0iUTuXw3mcThpinTONe2GbNBYxaRtXh2xk+AC3Cpssdez/9bFKXYlpWACgkoJvk5xypSnEvMDZZ1T4rYXxEpnayuVam22hgraRb+v23i74oYbboAQAgsXLsRVV12FpqYm81o6ncbUqVNxzDHHDNnx9ZiMfeYzn8Hhhx+O//3f/8WECRO6FMcPNB566KHI/4QQLF68GIsXL+7ztvWDwlUPLEdJhPTDhjoU2390D5oWnmYE09pp/60f/NpEDOS6BKW2AE7aMYO77rumETc1HAikHnwAxZmzAABpSuD1wP/s7Qr9uehoQv2CU+AVOJxUEW7OjViZOCkHuVFZqbtR0SS/GJpS6jRa5y//GN2Hz01qSBsFA0CpI4yKAVbvSSbg5z0ERVnuT1gYWdP70CTGUS2D9OzfvifltrmJ/JnBD+EA53d44FwYjZxdySajVuG29GTF96Uo20nHCKKKugEwpqHUIWGvTBZd345y6AHWREys9YhDADVJKm4vyo4USqvJU9SIsgXjoCkXjk3GlO+Z/FulJxvqIRhHKd8OJ5UCb98BsYtpx6jyAzN9G1noZE8cgpzjwPNlytLNunIioisdY4bBzJORWrsHJFCuEeOMg6sJgm0TFBQCYxRbCWURU0+AKomHJuecC6Pvq1QkoycXNox21iFlRJJ7DEG+gMlfPRudWzsrWg2NOOP9EIyjY5DEt4nPWN9w1llnAQCmTZuG97znPUjVWKAxWOgxGfv3v/+Ne+65B3vvvfdAHM+wQbouhbTrduvF1frT32L0Zz4svYkK0hl91KIPwbMiCHGhaea0E4CUU6aPmPzVs1HcXsSb37sbxZmz4BBJoDT4rNl4sxRg3F/X9vq87OrJXbtOrH8Q/GkFACD7oZOQHpECg/w8S20l1I+rjzRc37T0Lky9ZiFKbSWjlwGAVH3aGLOWfntfZPtcpUp0CrLUJmfjTkpGlbjSboWWJGFUihrDBpRtM/53vMQ/JFTRljAAAOt2JdY6dnsu39dpLQ6SdgFLa8OKHiglYF4YjdKNoLXDOqCifdZ+NIE0x6i0aNShYFYRQlwErtcFZ2A+QBUx0/u1B1p7QBOMA3qS5dCwUTljYPmCIb9uade0gfHzPjq3FsCFgMcF6lW7NwAm+qRJmuDU3DOEUhVtDe1FDLlW2+ZMgFAOR91zdkSVmIkDN5oyTdAqpTFt6GICOcmJVubGJxP6tdCbTJsTVyF9Km2vtYqpem4i1btf+DGj6x216EMy0t0Pn0GCwceMGTPM34VCAb4f1Y1q3fhgo8dk7KijjsLLL7+8y5OxHTfeCW9E9+nN+gWngGVd4/UE6Cohq/8dExHvJ/mgkgOr9v5KZV10bu2En/eROe0EEBWtwOw5KDKOXNoBJaRPRCxB7yF42ENPk6KgEEQiYwDQua2AttfaFYnQbVgkwYoTMcDqhTgijcL2YkheAJPi03pE2/QSiM5y4+aWlQaeSmkmuZwbywtAVUWmZWGJ9oXiTAqodYRKkyQ98Gnto02C4EeHK9vjTLuq62066Wh3iEgFaEz6EEkxpeXFsvV5jAkQyzLBtpaR0THp5WYTM9MOisu+mMxXg70qJiCU4n2P3oz/O/r8itdwZ4SX99HmM+QcgqxFUGlaFiXxlAM/71mWPmodKzJGleYrHnGRRDe8/zTp0p9TWNQi4NDopEATLrmd8kpKkpaFBMIJvwv2hIKivAWdYAJQqW3dwIui3JdMz0S4x+DnQxKu9zP5q2ejmHPVfgA4jtGkDTR0wVdft/F2R2dnJy699FL86le/wrZt28peHyqpVU1k7NlnnzV/X3DBBbj44ouxefNmHHTQQWWhvni/yF0d+WV/MOFqABAOUS2Qwioe+4FCKAVVuhpTmeZx+AiM6BqQWh7TxkalgjiAJLE4+HBPmgeuIjcmbabSPDYRA4D8G3kU8h4cQiANLYUhZpWgK9V0q6pU1lVRh5CIFZm0IeElAUpCvYxMWRKAye0zjkjfSeOEbkTW0SpHQkN/Jt10WZM46stK4biAmvlc3acyvenm3Ei1qD3Y2pEQXYlnRwEBlXay3qMRtyGwYafXTGuodMw2ARRIhWlbmnNV2oyaNkpONmNc98NG58wQMaKtLlJuVJ+2iyAoBEhTgqylq9OpY0me5Pk7TkhGtEbMhryH5N8R30VLp6jbGulIldB/W1IJ+/O376VIda5FJmT0LiReetuMMcQjat1BVykj7RgrFW0toycMANC5tVNWz6cdeHkfHXfei86OduDIfXq0v94g0Yz1D774xS/iwQcfxPe//32ceeaZuPnmm7Fx40bceuutuO6664bsuGoiY4ceeigIIRHB/sKFC83f+rWhFvAPFaIu5AFS9akw5aE8kLQuB6lQ3K3TVp0IPa2cFAVPOXBSANPVQctXgZ4637S2STB4cE+aBzcrXcUZQoLh5lzkRmXRaq3btPA0tG0tqIydAH3gfkTn2xLO/BYQhyLTmMaOrQUUPIY0JaCEGFJm7CZUsYUcywSylnCZM2G0UqGGSpEl67uqo066356MBjCr4pGbAhOp25LRA0K5aqIs9WPaCkMXI2iSxqwImO1RpVOTYOUVxlqbJAXW3ByHhj3AlkU5eKhb0//bpNF2dNepWc4E3CwxhrpONgMnJVs8Ea6d/MN0BdWCbtUbVJOxGY/fgrVH/A92ZmROOwG8Po02n2GEGxZVaMjK3dCIlVpGsHoC4CiZReRaozxa69Do68xncBASZ8KIcvGnYUpcpZUr3QPxTih26lr/rScKAMy9RS19mY5kaRNZ6oQVofp5DcjIoY4AZ1RfV1s7ptvZJdi58Mc//hE/+9nPMHPmTCxcuBDHHXcc9t57b0yZMgU///nP8fGPf3xIjqsmMrZu3bqBPo6dFqlT58MHTKk3ALAdKpxOw3SlHiz0A0yHxrMfOglOmiJQrUIA3fxbDlZBUabCStYDI8HgIfjTCtSd/YFQH5PSrXiI+bxGf+bD8PI+inkPLOBlWj/3pHkI/rQCqVPnA5DxKeYxKTZ3CHIWURGcK1IkwAIOJgSYgCFkPudwhCRuXAgTfXOUcz4AcCFUxSwBC9T2PIA4WmCtilO4C6ZEz9pdXTBhBt+4gWtQCCJEyI4+6GiH0elYYm49sJsBlEejXpqQ6VSWvQ9WRThvEzGdhrQJmbYHIbpgQe2HUGpc+f3OgokUOCkXXE2ghKrGBBQZ8wJwNcl066t3/9gZkDntBABA28Z2MCEjreU9PcP7PJriLX/+2Ck+HTGTUfyw3ZaJOkGnJ0WkyhUISZpNumz7IA29L9tSo9px2Qj7T6o0ti46QUjYQ31kuSnz+itvK9tHPCo+0CDUAaF9bIfUx/fvCnjrrbcwbdo0AFIf9tZbbwGQ/qj/8z9DN9GqKWY5ZcoU87N+/XpMmjQpsmzKlCmYNGlSlz0gd1UIFjas1UaU+m9ADox2lEJbDsT/14OX1usQpaPRYtm443WCwQPzmGpbJe0kCKXKsZ5j8lfPRqDMVUutHpgQhohp8mXrWoz/V8CV9USoq6EOgdfho7CjFEaYVERMV77q/33Ow99BqGfzS8wQOI9LUsYrDjDCGNKGXQO4EToLJp3udbRBpzH1cRGrYk2nJJkvTVlNmyUrimcPnjqtGU9L2j02ddUo86KWIHrfce0Lt1Jg9jalVYVFGrV8wPcRFDxTTUnTsnWSk81IzZgXRFI61HEMUTv4Z1/u+oYZxuBMmPvUIcToAfW9UGb7YU8UKtxDusBER3Pj7Ya4MurVprJ6HeZLkbx+7mmjZF20YvbJhSnCiFhZsGhRSRn5srzE7ImCfs1EwnhoBmsjvA/DFk5DDur0z8/bHO94xzvw6quvAgAOOOAA/OpXMtr5xz/+ESNHjhyy4+rxXXb88ccbJmmjtbUVxx9/fL8c1M6E4E8rTGWRhpmxcS41Ppb9hz042TCDnLEJoGZdPy8F4FyUzwATDDzyy/5gBg5ZWaa0XNuL6NzaifwbeXS2leBzjtSDDyB16nyMWvQh07synMFbEQJF0pnH4POwKEC/xgJuyJSMjIX3i8eFeg2GdHm+3I5e3pVkRusYfVUgYDuT2+RQD6SaYGnne2FptvQgbvuo6T6SYTqVR1OQavIhYo7qmvQFym/Kvl6Vig8qkTL9/QlTltFHnJ8vIsgXFNFwJRGjuiG5TFMyJdoPih689k4ExRI4Y+BeAK8tj6BYwh5XnDmoLcz6A878FvgdUrTfoSK4OkXn8yjR0hFaJy3TeFpvZyJonJsf+1mmdY5mUhrz19P3nilwsapcAUQInW27YbfqsslUtMdpSLj0etG+qtHXw+W6LReveM8ORneUmkBp//y8zfHJT34SzzzzDADZDvH73/8+MpkMPv/5z+OLX/zikB1Xj6spq7US2LZtG+rr355mCdpYME6wtG0BAFQTcGswL/zyRwZvHj4g6BB6ur3doUW9gBYjSwKy/Uf3gM+aDSAkTP7vlwOLlEHo7DlS+zdrNohLpQYMBI4i6TIVCThCgDKV6vEVIRNRYsViZFxHN+Tf5cfskPCYKlVhCSYgnNCeIB75sJuN6/OWk46u7TTK9mMJuXWlm05DljUNj01qbEuCSoiLwCsdv3F4BxAUJOFKp0I3fnuAsntzcgSAH6vUHGZGoLXCmd8CAKr7BodDSHi/cnkPVjJj1fcGta5l1JzXMldV94d9G8WJGI0kDCuj67SjrNKM3zdy+9HuErVWDtoCff2/xmCYcScYXHz+8583fx9//PH45z//iSeeeAJ77bUXDjnkkCE7rprJ2GmnnQZAivXPPvvsSO9JxhieffbZLntA7sqw9UDxNImGFskyTxgNDxAlaXbvS50GA0JRKRei56HMBP2CSBpafR4FFEFamuFxgTQlcFwKR+nDCtuL4LNmw+MCjhojKJMRrax1X1BCkKZhKjLHSBjtUtsFEIuShccVHyv0/3qw1QReEo9wPa0Lk6lSoSonuXLJDwmcjsraVZoyfU5MalJfE21xUCmdpdliVAskBd7GssAhpsigklUHR7RtlB6MbcsEGzQWdfGLoRDfSXkyVVosqYpBqSUL8gUj3uee7jzAQaicGPn5Img6hUxjZlCMmvsLNC07FOh0d5oSWaHLRITIS+KrDamZIWNxsm1XiZsoJudmefzzs98n2yk4ZWlR/bpOb2sTYSnjkJMGx9qmTciIQwCGisScM+l3ZmcdzN/WPaL3p7tmuDl3+ETFoA2K+6gZ6+P7d3b4vo+Wlhbceuut2HfffQEAe+65J/bcc88hPrIekDHdOkAIgYaGBuRyOfNaOp3G0UcfjUWLFvX/Ee4k0CkpQAq2NWwbArZ8FQCghFBPZK8nf9uVQ2FLGJ0CSzA00BWJJgLABPwOP5I69nyG1CrZqL7zrUKEUKUpMcL6oiYERInsbU2YSk8WzDrEpB7NfiIDjtxGzgkjZGl7lq8ibtoPLBQuWxo2IZAbmZGEi5UbbXImkEoRQ4ZscmV3FrAtDuT/5SatuoLNrMOjeh1bZ6bF45rk2aJ9O+phV+KF+5a+UjZCPZNsdyMLbAIIloeoz0EwTQodMD+Ak5L9KZ2U7mKg+4KmQVOy4GbCpZ/ApqV3YTjDmd+CgAm0FgMwIZCLpfbsCKte5qRpGMmKXVd9L4XL7KbtYRTTJmz2e4hDlP6OgHlBjGD/f/bePM6uokwff07VPadvp0NCIOyEVXSIQQWiEJZsQFgElQyCE0VRRFEckEVGRwVGWRQFRFAQNwaRkS+bo/wEWUICicgaBhAHBgSJEEAwJKTT3ffeqvP7o85b9Vadut19e0l3oN/Ppz9971nq1Fnuqaee932fl1WSKBJKeCk5wN3/XOdQWtkEEW68UkrMSC8vNKsVmYlRBcQADE3M11s8ZixNUzz++OMjWjmomfUbjP385z9HnufI8xyXXHLJgOo9vlWscfOtJUAWGoG3tvmHmBc9hJ2NAsUMlbERYzay1rj5ViTzDnDZenkOWRFAo0iDL17spLpHLkXjKnTLZJKgS+mCmSjimwpARu3Q5/ZgIHGPUWI/O8YsCdyZCUiVTuU5UriYnIRp3FEbck0d2fi0KNasi2xJI8NCpcAsGCpATb1W1nPicV6AA1Q+41G43SPB4aGyuwNkKBkxI9wdSdpTSWyAp2w60orLUCTIaBNHVrB6FpRVTWA/HQtgUheWJRzlXPV++6Oe51jT0FhV1xhfMc+JeV6TQjqFPTsFU8rrOgIsGYIAEnt+6PpSwLvMAMAxpDEXMwlf07uPt8XlMizYzySoGZ7hSUr/AqIkeeJpkIExaDCgK5GJ56Lk8bxZRzagyz1mo98+/vGP46c//emIaorFrKWYsTzPcc011+CrX/3qGBgbIuOq7CRzkavc1i8kBk2OQiT/VjPV0Pa/SBKrHadyHzDX58xFKgSU0jbInga7TCRQeeKxV6IYDFXuQBy5kQB4g6X57qQuMuGejZompg12wLWAr5Ax0HmOlDEXMhOo1gyrV1EVJMKPGxKFZEats24FaQVIUd24jfxMSe2JhtJxYv9RUxDtFQiZoFHrf3JKLGjfDwlIPJ0se52lH/Cva8oCMlVvQMIE9OdaQ2ROzNroBTYsqKAC0uZ6uPb/Z/d98O6HlvT7PNaFUamjNQ2NGG5UhY4dACsunElpRaYBzqi62EIvVoxtp/McqOkCkMFuT+4xks6oVCvFu84BoXDSSiLLxIpSskEineYZABtDZs+ZJgDQVlolkUlk4uBYO9IeM7WINdomjEIwJsQQMGOjfPKwDqxWq+EnP/kJbr/9dkyfPr0U637hhReOSL9aAmNCCOy000547bXXsNNOw684vD4b1TSkwNn+WPf1N6N6xKHovv5mu4wYtLGf0MibrITSCc6VSCCqe/ZcC7RUnpdAVdomgR4DwHgGm7SALPeWURux5TIBMirWnOfIhCht18xMSSIXi2jOxwT0m/UVGxtHA2EsQLvR3bBlcWh9vZ5bhoSzuzH175jsBoDSPmEZG5eF5/+n8xDVxGaIAmUAZ1k11icTWyS8YzY6uyGrmcdQy7SCtg03QG11J9Bdx9QrTsYTn7kI7TLBU+/bF2+//56m130kLMywNc+TWx/Gy4vgWtJ/q0EGc71rBcOYSRkNuk8KhrJeFLxPpM9O0WcuDwT47zoD1BXCN2DsmUlEYllYvszfzySTlIL/C4aMNNJCkeLRYGMK/ENjjz/+OHbbbTcAwFNPPeWtG0n3ZcvZlOeffz6+9KUv4bLLLsO0adOGo09vKlO33GZFP/tjHIiN2eix+py5aO/IPL03iuUjUESxXyIRvgJ+IG8imHtSFFpPUNy16cAcB1TOrQkYN6TvugT8eDHOtNF6wGW1hUbq6mZgrbFBzQxMjUI/jGfUkVtLyIoXwM2PE7IeNPBqlSNh7knAz6Y0Af5+/wDYbDxKIrBXQPqB/Dzrz24fxJvFgKJhwuo2/kmwzEtTT9PFRdW7G8gKgdiQwRxu65w1BwDQpQwwn3TPouh2XQXj5b7HWUgC9FrlqK2p+2WwyC2pmuh6Fcwrsa+VAOwoxpblKke9VkOjW5TcvAbQh8ynsG5NwIdlXLEfMPdYsngxK/4rfZHYGCAj8BhNTR6zN43dddddI92FqLUMxj72sY9h7dq1ePe7340sy7xAfgBRDbK3uvUXiA2n/fm9+wIAdn5gdM3a1xdL71qIBmDixgpgQ27LVBQv8YYTYpVJYhkIAkQiYcHpOQtmLgbTmnYuSO5iBDhzZr5ztsxsV2bO3HZlWQwuoElZmvUehRTmP9YCbRtkxjWkmdwDAavML5CsA1AULidgFoIeBHFczcwHXfw8tBcPFGNdKOaILl5bR2ZixeplIWUrdwEzOFc62qHrDaM9Vqt7+1CZJM7SZCLBy3vPwmZLF/d6PkNhxHiZZ8WxsjWdo7rIJftwbOEDereOPx9cWse2UbjmAXNd6flVuUs6oaxglQOp0qVs03qPKtowAElAo7bGr5+acAAtid2kxI0ijlY5XT4bh8iOEyZ3hMAxfEZEUYDbZBILw+iOFqFXbskQBPDHgi/fovb000/jmWeewcyZM9He3t5UtmtdWctg7Hvf+94wdGPMhtMen76Pfek+Pn0fTHtwdMW1rC9WOfQgUwheGVFWynjM0mImXmQ1kkuIgyLAZTbStqackRvUADdYEmHAAZcbOAHKoiTjbJpb5v4TIPOYs2IQJavpHLADpstoA1zZG4oRIncQxQP1B0xpAFJwvbKyFAyxbtZlxQZnoBwwTxpmQgqr0yczI80gWTtJ4NYyrEilaMOUPxKpiwHLtYak9YUgbK41VM2AMQPEjBtU1RuYesXJwH1349V9ZpeA72Bt9UzDgNH961h8V/Hd3e8YqIoZATfAgXQeZ8iNg6maLuqi5rlNWvHbc0BMJmbf1XVlM4npmaKJikQCkUkIAPU1dca2Cpd5GUnCIKNnSEPY2EPu5qTalsR+xbOEjeQFbz9XGllHhqdP/VGv13FEbCybckjstddew5FHHom77roLSZLg//7v/7DDDjvg05/+NDbccENccMEFI9KvlsHYJz7xieHox5gNo017cAken74PajpHfYyBH7DZYscN7clN2MD+PEeWStTqysaEcVcjuSRtoDMQxI3BY78IzBH4omVkYduha5RvFxrVvXTHTawUR1W6MjkJA0sU1O0GrhxJwDzw0k/8u72G2ndLJsLFpNHgmwgTzxbLQjaxaMSU8KzNgs1Shukw7IkTezU1PA0DQsKvxI7FWJBEOLV5VW9AZKkFZPz8hEzQ6KojEd0mdmzJIqzcd3apvYHayn1nW5YVMPco1j4F6Y+v+OciFt4Jufcsbxk9T8a9maBWiL4Sq0YMVwjwKRnATTTcsTnjJtmzr3LjFm2XwgIy66ZPDYinSYpSOSrtZSYL8AP8PQCvTW3JUActLDYOmIxKP8tWWFYMcFpjYhTGi43Z0NnJJ5+MNE3x/PPPY+edd7bLjzrqKJx88skjBsYGxMUqpXDDDTfg7LPPxjnnnIObbroJSvU+Mx6zgVuoSTYYG+pZ+1vJ+AufZ6FxOYrc28aJr5KFA03MhUSDGAdLoZF7irZJZFJkZSY2dqdZxQZyTXJzGZ2OneIxQ0kxSBmXkrAVCXgslQM+PtsVK21kyx8VdQspOLmvAGNeR9DFmeVRsc96d6OkJWXqImo0uozL0Z1D7oqDezpcQVWCwk1mwKq2cWh5kIzxcgCABmIv7jXLPgd0r7uURpcyQMo9J+UaptxIRiWW0OHAvjFeaov07qhNLjwcq5fKjYAe/QZEkqDS3vfcX7HnirvSufkB+s2fl9gzYdzWXCzWubiFTJCOVlYM8H4jg/lrxe6++24cdthh2HLLLZEkCX7961976/M8x1lnnYUtt9wS7e3tmD17Nv70pz952/T09OBf//VfMXnyZHR0dOADH/gA/va3v3nbrFy5EkcffTQmTpyIiRMn4uijj8brr78+kMvUp91222349re/ja233tpbvtNOO41ofe2WwdjTTz+NnXfeGR//+Mdx44034vrrr8fHPvYxvPOd78QzzzwzHH18yxtlVA5mxj3twSU2wue+Xd+alRIGY52z5hQK3doOWGS8fiSxB9pmOxplfuv6y8P9fJ0nzjg0M76fXdYwAEFWhBc7FQ62VBOTBmc6Li0jN6arFagtm8c1oLjSOndn8dqCbpkvBMqX82W51ragNC0nhX/LSBXFupuVXzIioboEwkgDy6t9qAyIo8LlAGx8WK41Gt01NDq7oLp7oLp7PMClasqCwEQkyDYYZ+UbyJ346j6zo31sxThruaquUdMIAJjZjmfwhsAo5sKOmQNbOQOAbr1ziTowyI9B/aF2uJucu5epuH2ju+ElxJDRc0VaeDxhBAhKZrF4RsAXDY5l0FJAPwDIVNhJRCIF/nrGz0ctEAPQ/0LgQ1govLOzE+9+97tx6aWXRteff/75uPDCC3HppZfigQcewOabb44DDjgAb7zxht3mi1/8Im666Sb86le/wpIlS7BmzRoceuihHoGzYMECPPLII7j11ltx66234pFHHsHRRx89sOvUj3MaN25cafmrr77qVRZa19YyGDvxxBOx4447Yvny5Xj44YexbNkyPP/889h+++1x4oknDkcfxwwmm6+vQbo/Rm6D26btOfjG3kLWUTGMULfSWNNwkhaAG4DInPSEYQQoXoXYK8o8423EpC24cZdQjE0DDCAjwMHX99ZuM8YE8F2OMQDEXa6q5gZFUmKn71xMk1sYnB0zDsgsMLNMmy4NvJoDLWLQdG7+lIt7MwKhhXJ83TElXkHqmkK9swe11V2orV6Lemd3URjbbdvoakBIgWxCB/507HcBuKzGwbDQz+05E+MrwgIxzkhxoENGsYr0fNTnzLXreNwh8wYX6/x2OMAjo8kH/wvdmF1FzUsOBul4KWVorq1bkFfTObo6azYxgCYpFMzPLXRXE7uTFO1yCRPPnUnF6GNK+6wUUyIFso60tM2oM9IZG9Rfa0P+wQcfjLPPPtuWQ+SW5zm+973v4atf/Srmz5+PadOm4T//8z+xdu1aXHPNNQCAVatW4ac//SkuuOAC7L///th1111x9dVX47HHHsMdd9wBAPjzn/+MW2+9FT/5yU8wY8YMzJgxAz/+8Y9x880348knnxz8dQts5syZuOqqq+z3JEmgtcZ3vvMdzJkzZ8iP119rGYwtXrwY559/PjbaaCO7bOONN8a3vvUtLF48/BlEb1VTOWzJm4Ha9IeXet/v3MUHZIveNWNQ7b9ZrT5nbiFQqb0yRWGwvKwIpG3SYym8OK7IQENGg6jPRLj/nOHiA3PoitQBABDMVUT9du27gZN/DhX0FSt3FDJLOugDdyH6rqayC1MwxoO7H91x8hK49JiPJrUpiQFpZnQswepoauZGTQqtMVVXqHc3UOusoXtlN3pW96DRZSQvcl2UxKL1r63CtCtPLx1roO5KA8Q4EPIZ2FCBgQfykyvTrYszZs0md9wtSp+7mIBxDMB1KQaylHum+PPGGeXQFR8+x7ny3dHe88GAuxOD1dAMSNN+qkbMKvtjz7GNE0tbDp9er2316tXeX09PT8ttPPvss3jppZcwb57T0mxra8OsWbPwhz/8AQDw0EMP2XqQZFtuuSWmTZtmt7n33nsxceJE7LHHHnabPffcExMnTrTbDKV95zvfwY9+9CMcfPDBqNVqOP300zFt2jTcfffd+Pa3vz3kx+uvtfwEtrW1eRQk2Zo1a5Blo1C1+E1kMkmwct/ZTfWEWmvL/L9zlz3tyz0TgwN7b1ZLSViVsvWY/MT4irDBzwS2ROHKDHFXrrQXOE9tEbMQ6lRRWaPeGBbKTnNZcQXDAC4/4JgK/t0Nqj6TRvs1uhqOuQCsxpQ5l7wE/Gxh+zw3xy8GPevaLNiIPABT5P7l7kyzPp5NR3UNAW2qIBQZlWY7v74m1SAUTZ5tKoGk4McYGUFYh3i0yqG7GtC1xLhBa46l61ldQyLfgEw7se03Pmlcb/cswot7zRqU7hgBHIBry/nuPwqe71I5mwSg5EYnhs0tK8tbhOti8Wf+PjyWzM/e5SCMZxEDodxKYqtDcKtrHRWTJVFisjAGijTJAFcpIFcKeZG8IVNRmhAlMsH/nXxZ6VxHmw1lofApU6Z4y88880ycddZZLbX10ksvAQA222wzb/lmm21mY69eeuklZFmGSZMmlbah/V966SVsuummpfY33XRTu81Q2tSpU/Hoo4/isssug5QSnZ2dmD9/Pk444QRsscUWQ368/lrLYOzQQw/FZz7zGfz0pz/F+973PgDAfffdh+OPPx4f+MAHhryDY2asumghumfPbepS6q+pPMfsR+/FonfN8FiRmgbGV8bAWMwSmaDeo7z4LhojSOPLqPNrqJoDKeG90soxDiZjzSznGZNhEH8sizJ0j3IZDLvOZnw6Rs1t559f6FY1khss4L4YTLlwZgjEgCAzFA6wkS4bF5t1rr4iE7WmLMMRZjfG3FShthTFbvF4uVjdTH5swMQNKRigSAN2vbMGsAophj0xLEu9nkPUVFDT0ICzta+uha65mCTKThyo0b3LhGmLB8XT8hBUuYLxOV7dZzYmL1nkzrXEpvnHctuFMirNXZv0DLbLxJPICCcVwk40Eu+3Q4wyUGT41hRqdWXasbIqPFbPxJ81q+pAzw/XIgPIBaSBlDGoOkeaJWibMHJxQi2ZEIMvZ1Tsv3z5ckyYMMEuHkysVKjN1R+9rnCb2PbDqfu1+eab4z/+4z+Gpe2BWst39vvf/z523HFHzJgxA9VqFdVqFXvvvTfe9ra34eKLLx6OPo4ZM5XnQ5Kp5bs1csx7/I9QeY6Hd9sbz+05Ey/vPasUgNyxwIDtiZ8qxw+8WS394MHIVTmrLIwR42n3gjFc5Kok1wixBlE3ZwmIufabGQdm3B1FQCwEAxRvZJMLmjStatrEghV/da0tuOLLAQPM6oU8AhlnzvigCPjJAeZYfiY2H3xDlym30H3Ft7fXmwq7a74NMVvauiqdK9Z81uy7dWUy12Ro9SIYvWd1D7pXdnvrBvJ75fclZKy5BAptx0WAw//8WQvdlTH3JeDHJrpntnx8SlZwMizuO9+XEkT4Mfkzz38/9PsyIqxJ6R7HkjfKZZt8o7iyMH6s0l7BM6f/uLT9m90mTJjg/Q0EjG2++eYAUGKvXnnlFcuWbb755qjVali5cmWv27z88sul9v/+97+XWLehspUrV+K73/0ujj32WHz605/GBRdcMOKC9S2DsQ033BD//d//jSeffBLXX389rrvuOjz55JO46aabMHHixOHo45gF1izWoz+27//c67VT0zkOfeI+bxsCC5lIsHrmHHTPngvstz+6V3ajbf4hph7hvAMG3on1yBpdDeg8R8fiu+yAwyUlLCBRLoidMsf4IFfXmjFm/jF4ZqM/iMH7HJe48AfN0ELFdX48wQZHMp5kEEoncBDms3r+AynZ/nSMsP5gWMDbHd+vX8izN0MjJo3W00BLQIwH86uCzQIMqFI1BVXXqHc78VavXI4FikztXbBzKdzSFMRvmD3D2BFYm7xkkQUmA8mslEmC8ZXEA0bhZSBATa5yuhc1bSZZy2c4V+lmSxdHgb3PVCXe/XXLy/0jNpW7R/k6em78iYt/LKAM1gnk8dJaoTUrn0X72IQS7bIsuSUyQVqtIO1Yj0JrRiCbsjfbfvvtsfnmm+P222+3y2q1GhYvXoy99jIZ+7vvvjvSNPW2WbFiBR5//HG7zYwZM7Bq1Srcf//9dpv77rsPq1atstsMpS1evBjbb789vv/972PlypX4xz/+ge9///vYfvvtRzTufcBRizvttNNYsfB1bNVFC9E1BIKSf3jPXl7wLJksYoPI7WCWmZe8zs0gU4XLWHrTK8vttz9yFOrj8IPsCTiZwUYj4ywXhAd2yH3HmapM+O5B114eHTBt20l5QHbxYnFAZvYrr9B57g2+Ks+RFTFi5WeDB5DTccvxaLxPdAzAlYKywdbFScRCYHorRUNuKS6zQd8BvzySBWFKW3V+FAAKmTQgyqscIG1lgUY3r0Hq3JKeq5aBhUZXwwODbfMPQc+Nv4ver/4YL+ZdkolgbZK7ktbxZTXtx4KSkr8Prvxnjt9jfkxu/Pmn9Ubqorzc7eMuAgHUklBx4a5s1wnWNPx4QyET77ng4CoEZhrCisHS8iQzQx3VM5WZRKW9ArkeBe4nQiIZJJhqdf81a9bg6aeftt+fffZZPPLII9hoo42wzTbb4Itf/CLOPfdciwfOPfdcjBs3DgsWLAAATJw4EcceeyxOPfVUbLzxxthoo41w2mmnYZdddsH+++8PANh5551x0EEH4bjjjsOPfmSkRT7zmc/g0EMPxTve8Y5BnW/MTjjhBBx55JE2ZgwAlFL4/Oc/jxNOOAGPP/74kB+zP9byk6iUwpVXXok777wTr7zyCnSQkr5w4cIme47ZUNqLe83Cln8YGIrf65E/4LZpe+LgP91XWuenppsXL700+Ux2VNZuGwajIt6AL7LKZQI4QAOKAtcVBgjYYGxivNxAEgNQMYATsl/NQFs48DcDAyoCxELXqd9Ows7fDdwUQB4beHsDh0BzlxK3mAo/UI4Ha2aWDVMaifKLRedCe8xLLkx5HVLv523k5ofgLaP4t1znUeYutFaSbygW0Weo/GxGzmiF8Ya0vXNnltmt2DNVfn4S+5+SUvgzECYBlJ+F5s8Ar8/K48Nkw7FmdP+bvW8SIWzNymbre7Pesm7HDHjwwQc9uYdTTjkFgKnEc+WVV+L0009HV1cXPv/5z2PlypXYY489cNttt2GDDTaw+1x00UWoVCo48sgj0dXVhf322w9XXnmlBUIA8Mtf/hInnniizbr8wAc+0FTbbLD2zDPP4IYbbvCOL6XEKaec4klerGtrGYyddNJJuPLKK/H+978f06ZNG9HCmm9Fo5feYAKDAWDe438sLdvrEZNG/Pj0fYoSJu7eyqDMSiIT6Ln7QSy8c1D9GK2WfvBg9OQ5sqyC6m2GYo8xiWa5i50BgFpdoVqtQNW0LQtDFrpyeLacyWDj2+UeQxLuz7+7QdIfQGPH5kwLfXeAjAeB83762/H96NgheOR9CuUvQveTK/isrcuQ4oVoQPYyKhVpt5UHW16TkMReaR8++CZSINFOuiORiWXqlM38dICt3t2ArhnXpsgEkEnoIsaMtjEu6goa3Q1UDj0Ik+5ZZOtVZi0EXzt3Yx6AKnd9aT1nWWPmQJS7Z95vO/HvN48R48+A61vwvEcyh/sSmrWMcEUU1R7MtWl0GWZ2fIVkR0QUkFuWlYkB82eFQJiRpCmeQeb6lqnJll0fsiitJUMQwJ+0tv/s2bORN7mHgAm8P+uss3rNxKxWq7jkkktwySWXNN1mo402wtVXX91S3wZqu+22G/785z+XWLc///nPeM973rNO+hCzlsHYr371K/y///f/cMghhwxHf8asD+Osw2DYsd5s2oNL8NT79kWXSrBRJiEzAVXTqLRXPEFMwGhwpXe9udjQcUcdhp6aQk3nGFetoAEThE2DIRU/BsBADJeXAOo9qpTNyAdYbjEgwz/35Qo0baLYptwmdzECcQkTv+YgH3h94BUet9wfd0ze3zD2K8Zsha4oksLg9TB53Bngsuf4QMyN65TFsiuFSJCzY5J7MpEJoJXnmsxVjlpnzQTxd9YLN6df5kkWwKLBYvjHV4QVCu6vOZe4+73HLGS1OICid8PKfWfbbExi1kLGigMxHpAfrvdd9OZ++yCu3L8YUJRJgrTNIF+eWcuzlmkZB+lkVHiejGvWNTOtcqSpf8z1yUbCTflmtBNPPBEnnXQSnn76aey5p9Ha/OMf/4gf/OAH+Na3voVHH33Ubvuud71rnfWrZTCWZRne9ra3DUdfxqwfttnSxUXNutZm2q0aBeZm41Ik0ulA0YtR1bSLiXqTALJX9zGDluxIoWoaMnFxKK6Ish/kbGLGnFQFDWZOJNOXwwhdTUB5oGtm4YAWsmxxMOUP2L6L1J0DnV/Yt+bgrHk/+3KlhkZAqtkAmascSVoeRIgd43IYNltOgoEkkrRwbnalVMGQSCSagr6VbVNKE1uWS7+8FPWXyvhQXU0CAo3uBhIhIDMDECuHHuQxSE+9b1+8/f57+rwmjjFtfj8NmZQwF7JZPuXexVg+YxaWz5iFKfcuxqR7TPHycnkj/jmMB4wf01j8nobVHByAz71teGIHvU9qaxi7SIxZJr0YQw7IwnhBclcCLKif6ZSZ+1ospnYH6V0Ys/XT/uVf/gUAcPrpZZHmf/mXf0GSJFZWY13W3G4ZjJ166qm4+OKLcemll465KEfI+mIohsJ2vO9uYL/9rfvAY8XYW1wkieeq7Jw1Bx2L7xrSvgxHm9xe3GuWVTwHHKsFAGtWdqM2a04BTstxXL47ycTusFKNdjDiGZMhY8a3C9kNwB+QwwGUW8h88ULO1A43robusvJc//srAhwGgMekO8iI2eJuyFzlSLLmM/Zm5XFIa6xZ/BiVTzKDdcLAm/uPFJCphIKC7opJIriEANMXozlG9TJN1p629RONOGwNlfYKhEzQKBhkynQcqE5gCJYIeBvR4dyL53vqffvayRTZpHsWoVZIbDRzPdJEAkApFtBnWX2mlF9+v0amY0urUpT092zmo3JyKakQXi3KRAgDwCKDIm0jC6CuKXFDl99TgJMOIHD91zN+3vR6j0qjckiDbeMtbs8+++xIdyFqLd+ZJUuW4Je//CV23HFHHHbYYZg/f773N1x23nnn4b3vfS822GADbLrppvjQhz5UqlvVnwrybwabcq9xP/TGTgzWxh/9IaTj/XptntZPnlu5Bj13P7t8KPpEMgCds+YMqjh6zP783n2975T677IcXaB6l9JYVfdLy3DjTJLvUnLbx9L+aaAMGadwkOPr4p/D7fw6gpSMwWO3zPHj+4Ygyg3y5QE4NM6o8WtB5gXKF59Vw1QkMMvcf67tBTQP4o+1TaaV3y5tp2t+qSRV90voxNrWSqPR1fAyLL1i1cpX5CeZk0ZXw/5m2mWCdikwvpLguT1n9no+tm9NrnUmTPjARplER3sFHRVptycQteN9d0PlOZ7bc6Y93mZLFxcu9lCh37GjvuCrz/4SmAzZVcuiB+CdPy88q5bLndB7hJhkwLmrZSq9eDKSqxDEaAphgZi9F0UwPzFlXNoiV9pmz/Li9uuNkejrYP/e4rbtttv2+29dWsvM2IYbbojDDz98OPrSqy1evBgnnHAC3vve96LRaOCrX/0q5s2bhyeeeAIdHUYumyrIX3nllXj729+Os88+GwcccACefPJJL7vjzWChO2moTTKlalXjophuoHZuOIfq+5nk1tSohEznrDnFcQbXHrf/2X0fyAR4cLe9Mf3hpRaI8TiYGFAB6Lzi7EaMyWrWDlAW6Gwm9srZMteHsE++8QE51jfAgcgQELr2yoNtMwsDy8v9MfuTij8NgTrPvba5On/Mes2YC1yIudI2O4/MBvTXlS0qTs+0FYYtak4mymT3kevS6IeVC5/zGpmqpoCiPVPeSdnSVzJJTEktrdEuBWTS90PtsinL4quZSGxYAPFFiumJZSIpfkfuuXpmj5nY8b67rSL/i3vNQk2X5Sf4xMOPg6QkDs3KGbnJhnvmXf1M6jPtyycF/JxiGbnEjiUyQaKMG1gV9zYRlai0BeAC92OF5wngqZpCfU29z3sw2mwoyyG91e2FF17A0qVLo4oQJ5544oj0qWUw9vOf94/aXbp0KaZPnz6oMgvcbr311lI/Nt10Uzz00EOYOXNmqYI8APznf/4nNttsM1xzzTX47Gc/OyT9GC1GLzGKCxlK61jwAahi8KJiu7wotA5YHJkAavZcdLRXBuyGISN3Wbs0Qc9mMBDonj0X1UUDj0t76n37lrIEfZeP/90xRTwOzNdSci5K13czQJEUANWbTLzjxRgmHiPELRbjE2PHuPvIDNgO6DgWxLiMYtYM2MX6G/adBlmudeb3y7EiQLmUUqyWZTjYmuU5ADOYhEKxzv3JRFoLhkWrHIlwriuCdMR60TGp5qRgWZKN7gZkoUlmYycL9ySVcBKZtAKwvG+hXhuJuHb1wsS5a1yuJxlmPZKRwj+PawyTRGQCC8gAE9y/fMYsuz5WKos/r0ZE1oBJWub2df3igNFnVMvxiOF+5KIkC0texbJnucZYDIhVqmaII9FhAOhe2d1UTHbM3vz285//HMcffzyyLMPGG29cKss0UmBs2DjLgw8+GC+88MJwNY9Vq1YBMCmxQP8qyMesp6enVMF+fTBiQPrzYm/F2uYfYgc3nolGpiNAwHwmMDG442cisS/8sADxYNudmAqMrwi0ywTP7DHTulZC3S9+XAe8uNvOlRpqJjHiM18c6CX2GDHXDt+WjsPb64ulKrfFSzOV2/TdrH7/QxdlrI/Nzj0WL0ZloZqtjw2QXFrCLtPaY0N4CSMe1M/V/hvdlPmo7QSDmDBdrCdXoyZV/bq27sZaZx09q2s2Ds2eU7E94ALDgbIoLb82/Yl/3GxpORSBrlnsN8+fVb7M/E8QMk+ACXdodv/peOZZDd3o4e/Dfx5kAsiKQCqEx4T5+7t22qX7HchMetUQKDaPAC/g7j+to+/cLUmuykQKC+AaXQ3Uuxv2PmK//fu8D6PKRpkC//pqZ5xxBs444wysWrUKzz33HJ599ln795e//GXE+jVsYKw3bZKhaPuUU07BPvvsg2nTpgHovYJ8b5XfzzvvPEycONH+hdXsR6sRCOhSeSkOajA2fovxyDpSW3Q5VzoasxPO+AGgu7vR1DXXH+uePdd7MYeK9zw2rRWjgOZ2KZCJBG+//x4bU0P99+Osym0Y4EuDkwMqMeM6X3wZB3TkDiImsBnI6kszzN/WrzcZ2yZku3i9TT/o2rUZHqPZut5MNmHFRHDeBGDULbdF2wndTxSfRRIIxKKRoCyBOVXTVipDyASNbhcDpuoOuPGsSKOqTyWTeOxR7tyQDW0ZOWLGqB9CJqhWK5AVx/io3GQf99dCRikGYh2DW64faZ4JB9Qoy/LFvWbZrOwp9y7Gln9YbKUwmk2ADGOdeM9syPza57yhbb1S/tyHExiKU5MVYWPDAJb5yvTDZOa2ybWL/wrd1zy7VRfsJSWL1DtrUDWFnlU14M47+n0fRoWNgbEhsbVr1+IjH/kIxCiLnxtdvemnfeELX8Cjjz6K//qv/yqta7WC/Fe+8hWsWrXK/i1fvnzI+zscJhOjX9StdVN2ZiDWPqlq6/Zx9Ws+yw9ZHzKuUN+qdc6a47na+DG4TMRALOYaoeWcUSCmyoEaF3PDmT/OFtAy56pDscwHZCEI49vxuBvqV2/n6m/Xv2sQAjXqkxtY426wZu377qzEayfso79fGcQDsIH8QBGgffA8b7+SRlgoY1B8psFb1ZWtK6nqym6XVitIhHE39qyuobambiccqq5Q7zYlkhrdYakkmMLVoigs3tDe865VbsBZcUxykSZS2PgzDngpJrI3o/gugCYA5noSaxYaPX/uOS7f796AOmDclyGbRW22S2FZ677CETjoioP8pNRGWEDeMl4hE6mC4vDaAW76rurKspiO2exB1+s9qNUV6lqbmrtj9pazY489Ftddd91Id6Nk609hrsL+9V//Fb/5zW9w9913Y+utt7bLeQX5LbbYwi7n1eFj1tbWNmRxbevSKDOrKgTqQ8RCTr3iZPyjq4F6Z90IWKbSYwyUSyYrARzu3huocSkGaid063XNnIMJd/ft5om1zUHr6plzvIGJBjA6rmPnYiKtLqbHxZe5dea/D7o4o8avl0ycy8YBQD8ImoxnYcaO6w+8sO3E14Wu09w7J7dt/Ib6LjC/j+F5x5iW2GBu5SaaUG4loU/4AI5qEpoMST/GzMSN5XaANgO4NkxJXSItBm2tcmRFFjEdTzPGK03L94SAJN1PmSSoFOr9BCaoEgM/79X9eJa3++PdWD5jFihuK3Rrk7o/3VNirgj0hxOO8L4AwHN7zsR2f7zbO+ar+8wOqkPw+2qeUdNOjljCR/jchOfOgbstWF+wWABpwTV/mfC6lYB7dhwzWlRykBpKm3tYqysvWaC/0i2jxcj1Otg23up23nnn4dBDD8Wtt96KXXbZBWnqqwZceOGFI9Kv9QaM5XmOf/3Xf8VNN92ERYsWYfvtt/fW8wryu+66KwBXQf7b3/72SHR5WG3H++5Gfc5cbNIm8WJ3A/ftuhf2WNY8Nq4/VntjLXpW11ycRnsGWTALiRSQldzO8AE3uxXsRT0Q9qp79twSQAhjrYCBl4Da+YF7iooCZv/n9pxZ6DO5YxEQ6lLa6wPZpHsWYVKxL7UzvhJTKudZghxcmgGTJwGYQs5xFoIbnbcB4CaxwfTR7WuuXXjMvpmz/tyvGHCKAUX3udyfZvt5kgcycdmWHrvk9gkHYcrC1EXZHKXBXJTwBvcGn03AMDGNroaNC5OZtACP4spoX53nkMXFTKSAylkh8UhCi+hq2HMjVpRvzzNe+2PNhGK5u5nHQKrcADKfgc2taLRZZp4pled4ca9ZpexawMSVUYZzu/QnC9Ru2bXvx5QBTqPPn3TQffDvJ4BoAXmAlTRK/fgxgBg1B4KL2g0AnHYgTWi6lEYm1jPXUDIEbsZkzE157rnn4ve//70thxQG8I+UDRsYG+qTOuGEE3DNNdfgv//7v7HBBhvYOLCJEyeivb0dSZL0WUH+zWbpXQsxfuYcpEn/MrR6s50u+hxW/W21KfdCLiClrQsAgE0vD+OGEpkADfc2bqUgMllZLJLa95+jgboquX4YgNJAFYqW8kGOH9OAKfe9GRtIg2OsDA6xCaWg58Stc9lozaQ08uB782U8y5Gv99tsXtsw3L7McJSBWMx4NmWzWLEwi7K3THzrwipcjIC08Vu03tYwVORC1CWAV9caKUw8UqNLo2dVzcY7ec9lwbjJzAH5uCvOMZ1kdD9lAs9VTe7K3oL6e8uWJnAVusXNM22eJbqvmUiwct/ZxUTAX9cuyzVQCaRxM/u6bbIAzfBn22finExGWG81BNhkrgyVhmaF20l/zGS3AlBOvd9uU5RxS4SwsYGcWaZ3jM+JjNlbwS688EL87Gc/wzHHHDPSXfFsvQngv+yyy7Bq1SrMnj0bW2yxhf279tpr7Tann346vvjFL+Lzn/88pk+fjhdeeKFUQf7NaBtlEjJJ8Pj0fQbcxht/W4XulaagXiKE01AK0s1Do5c/Z8f6O+N/dZ/ZWLkvuVnKYqWuvfLxAOPm6a+RG6ZL5SVARUYD6Kq6xt+ZCn9oPHaGjwHUT2o/zpi57+G5UnuhnIFhJMw+Ru4DhV4VH3jd9jGLZTDyAOxmbhs/OLwc58PPPbZdb/uQEnqz56s3sde8cCsSswXAuCBrCvUexUCYizGqa1P7kMBao2CvZFLItRTtdDaUvYexpA4er8SzArnxJI/Q5UyJJPwatfIscyOBZCdN4bu9/dhH1xc+4eATEb5dMxczbUN957GWZhmKPhX6aszCYH+SysnZ/eLgLBTkDYvF2+zJSCfpPqmagij6KZIym73eWJKYQt+D+lu/XLPDYW1tbdh7771Huhsla5kZ6+rqQp7nGDduHADgr3/9K2666SZMnTrVk5V44403hq6X6B+4608F+TebrWnoInYsQXeLbrztzv4UGt0NdK3sRk9N2xixSjsF0hYvSG3cR6qWW9cLH7jJjRO65/oyen+GauBmXRloDNa4inhsHbFJvH8ySVBd5FgL5wYqx21R/4l1C5mG8LNRQjeDYHtwkpzV4q4h0i6jftD+sQHGj/UpMx+9XVe+nsfG8bZpnVvWvxslkiSqJcbjE8NalSHz0WBuQMN2uTqEKs8hwQPCi2y8RuKO1dWw7JdlitbWkY0zXIm7vg5oqRyA1uhFm9a7Fma/mF4YQHFWtA1g9MKaBec3M54R7J4RJ+rb7LcYPrtczsW5XH12zwFtN1Gic/D7EfbRZ23drfQZUlUzGZipEF6cnqcpVyjrawjUO2terUr+vNjs1TqrN4rEE+IdjG7hiBgBqsG28Ra3k046CZdccgm+//3vj3RXPGsZjH3wgx/E/Pnzcfzxx+P111/HHnvsgTRN8eqrr+LCCy/E5z73ueHo55g1sX/UFDZpk5iYSrzc0+h7h8ImHXcEeiZVWQp/jkSUB0j672auRYwYy2IL1dTbZd8/eCpz5MBXOb6JD/jhy54C8FupW7nzA/dYFf5w0DCxYm6AdAKxuQ20fnlvUuwPB9YysOFxPNwt4gOa8nm5/XM7UFMWHV8XqqfzNqhdzkLwgZa3E5ZrChMPYmC4NxaOmI5mRi5KnqlrDszis8Bigwq2hJsVhlWmPa1yq36vVY4sZZpUvPQRuyY1KouTu1qcNZ1D1tzyUCCXM2AhQHXxVmEyROLtH7JQ5rOLFTRuxMQL7H91n9leZmUzI3bKB2Pu3FzWrjtezMUcnqdjzHKIRLA2fNc/Z1HpGgj2TNJ+HATWA6kS3h/uhrb6cUWMmBTw6oLyigv0TMlUmgxZrSFzF9saCysYs7eO3X///Vi4cCFuvvlmvPOd7ywF8N94440j0q+WwdjDDz+Miy66CABw/fXXY7PNNsOyZctwww034IwzzhgDY+vYOpVGrSu3gbit2NpX1yLXTmE/7TAPJc1GKZAfoEHR7ctfuNxig1hoFCzMgQ0f3GKggdtgUtJ5//jAwY/j4rfMPjQwuj46d07IivUWl0XL+EDJr4M/cPuAzD+H+DVqxlL15WqKWehOMtY7+9GMaePsh40bUy6WC4jUrrRuquDcg6B6lecQxfaqptGtNNoLNXwCdKqmLVNS0zmyBgdoASht+OCN/vPzM/fP/w1QcDtnKf1nwz0z3Ph9dJOZBNhvf+jcZd82q7QRY9K6CtclUHY9xyY4fgyk25Y/oyStkWntnQPFqjpG3GfjEpkgy5Mo8xwzleeQFcdoAn7soJWvkNrE7tU0anWFqiyr8xu5EtfPdimKqgimFuaE3rsy6ixPBPJBMluD3f/NYBtuuOGw1tEeqLUMxtauXWtjsG677TbMnz8fQgjsueee+Otf/zrkHRyz3m2PZX/Anbvs2R/PibVNT/4XNGQC1W2EME29PlGokecem6CDt2fIVMRerl1Ko6OPPsSZB3+bkH3gIKmV2DRuuz28FI9P36cYLN2LiY5Fg4Zb7n/mLiZ/OWe5XJuubZdFFmbS0bKwRh+P2fETDHzwFSt/EzPOfoWMV8jk9Gfg5NuVmUHTXrNA/dB4UD8JdEKpUtyYHaA5uNEauofFd9ni44nbtuGfTIzV4SwZMZvNnjFzv7TdpnxNXSwexWXF4xRde158XibQ3dWwz1wrrvrJSxZZyQsTcygA6MJ9Xmbm+Pkb1zlnc3N7Lo7d9Z9z+hxeq7QQX5VZCtVZ8/YJWWHB+lWSMGHA3MX7USJGDqUKRrRduCxcFquWpRK1noZl6sjNv97ZmJtySKy/JR3XtbV8Z972trfh17/+NZYvX47f//73Nk7slVdewYQJ69tc481h+z32x36xYm3zD0HHgg9gzYtrUOs0U0ZSMKfPANXsy0tq53zmyV0ZMYasesShTfsRgpdwHeAr03O3SiqEXV6VAtV+uERDKwu60nm4PwJHXSovFS2PuQdjA5Rr360L2SyeTNAMjPYWlB/bz+3ffB9uzUBHfwFAnAEsgzAOxKxCOosVczFgTuiTK+uH2/H+cx05+l/XJgapHK8VipL6AJW7q0N9Ol75oqbzIpmDS0r44DQWTxWywfTZy9ys6dL5UA3K/lh4nrHfamzSYfoBOzFxMYn++RNwp2SWUFCYzoVP7lzMmQukp8+8QgHdX1rmx4IJ+ywQow+UGVQueSEziXYpUNM5OhvKK7m2XlmSDM3fmKHRaOCOO+7Aj370Ixvf/uKLL2LNmjUj1qeWmbEzzjgDCxYswMknn4y5c+dixowZAAxLRvpeY7burT+B840uF1MmWB29VkzIBPVGOc4jHORDIBezZuCGtxv+T2QCsHipRCb9TBeItRv2xwc3xECpvPfr1B8gHAM8PvPgjtms3aHIAOMuNB7DFjKQve3fm3GgFLJizSQMBmJ9XQuf2XHsVGj8d9MMvIbgirtrQ7DMJxFhtmKMbQx/tzbwX2uv7YEwwe5Y8WvlwKBr12f4fAacWGMOImPaZDLxsyhDdj00eib4s9NXIW96lvg+FGOmi/Uy89un8xAF4Byzt6b99a9/xUEHHYTnn38ePT09OOCAA7DBBhvg/PPPR3d3Ny6//PIR6VfLj+QRRxyB559/Hg8++CB+//vf2+X77befjSUbs3Vv0x9e2vRl/fLes/Dy3rOwsrOOrtd7jJJ4URaG9HpyrT22grsG6L/VgmoyqPEZPwd+fVkzEECzcBrgKPCbZtQDHdi52yceUM3r6Ll+hEHU4eF5WSOfXXHAi1iKMLOzN7dJbLCjtnmweBm8xc/bLwnlszbhMfpa1ltsH+APhLFgfFPZwbFA4YCcsOdQNbSNEyNmivoQAml+vfm2ft9Dxso/n5CZpWWZSGzBeX4tST4hSyWycWlTtjF0BxMrxu+NiUvzQR4F+FPyS18WqwUZniP1ga8n0MWrUKxpaCurwhMBXBvO/ZcJJ1lSqxvl+1QIzxVJ1wswzJVqaBt/RgxWZ0Nhdd0UbXexhdq6oYUkhs08N/TOaXQ1sGZNrdivuMcVYfudyMRmza5XJsTQ/L3F7aSTTsL06dOxcuVKtLe32+WHH3447rzzzhHr14BEXzfffHOsWbMGt99+O2bOnIn29na8973vHVH12jErD+hcu4hiZADzsqoXQogEzEwtP2WzJgGTRi6zsvuyL5OJC7RtZv1lNqg9KjWTKOe6yRraA4b9zToLs77Kxy7vw8vDxLbn4M5nURwoCO8Pd2v1dnweNzaU7Bj/7j6XGclWjMeK6TyHRFICZIB5Pqjos3Odue14DJknWeEN6I5VCq8ZB2r0nwM2zlRyqRJa74CItttTCTKZmMLWBApooiAzgUTlkJlEpVqBqinIuoLKXQA5gZwYcOaAT+Xw2CXqD1VwQB/CyuMrotDU0+DAjx8ntHYprEgxd0vKxGnnuf67/SyYZNcEMPetS5nnPoXLugZgJSxEkqC2to5VdYVVdV1oJvr3S+fF774Qd6XYL/6O6VIaHUkCVVPoqinr6jXsmDAJSkJA5WbSWalW0P/p4uiwsQD+obElS5Zg6dKlyLLMW77tttvihRdeGKFeDYAZe+2117Dffvvh7W9/Ow455BCsWLECAPDpT38ap5566pB3cMz6b9MfXor7dt0LAFCfM7dgBdxg0qVyvNTdwKruBnpW9xSSFrz8ix87BhS6PkXcB4/RiBmPCenLYiCE2uBFjjmTQMG9ro18QAV/MwFPtJUGmI0y6Ula8OLXHOT1N6A6xvSFiu3l5SFL57YxbcbZqVhmnN9ffwCNiXQ2c9s2Mx5/1OyxiD0vlAkJFM8dexZ4/JDOHRumGcjrK1nBz4J0n10coCvyTespHpEAUMgOuYlB4hjaigET1OdKewWVdn9+y8G5E4GNs3Q8EYCzOFwklu5/l8rx6j6zsXzGrOg1oPMox6mVt+Xths+FSwJwMXExiYgupdFVUy5GrWEyW+m6dzZUlIXVubkfrpam+W9KfjmtN4ojpOeAjAP9bmUyK6nPde2qLtS16w8Vkh+zt6ZpraFU+f7/7W9/G1GB+JaZsZNPPhlpmuL555/HzjvvbJcfddRROPnkk3HBBRcMaQfHrDVLE+PKGF9xYIMzNCRIarKcBFQN3ospiQS28ILHoang5WjjZCoCGxxzOFZfeVO0n1TM2LAQbplMErRnspjd+tvXdA4UM2pTYNusI/FGlZvyLVv+YXGv14gPeuMrJgnADBbOHURxXNwV5ZiFBJstXYTlM2b1CsxiLryQFSGgZIpA+9mcnNWhNnjmZOhe6gsghuuJLXWxQH5f6XMs8DwelF7WJNN5DqF8FyUHYrlyxybGIwTc8XMh5sploYbAiW9HywkcAEDGmKeym9Ytp+eTGDAyXkuT2GQqGUYleAR71qi/YSxYMyBtyzQFLlLalrYPy4+9us9sTG6rsLbLbsXQHUvPFS8yTiDMXCtXzkkHzy93bfJnl/rHww34d8ncyCao3k+CWNMwTBlNugyzZXTkAD/Rw/VfeH2QBavGwTQA1NfUsd7ZWDblkNgBBxyA733ve7jiiisAGLH4NWvW4Mwzz8QhhxzS67677bZbS8dKkgS/+c1vsNVWW/W5bctg7LbbbsPvf/97bL311t7ynXbaaUzaYpRYTZuyOXygohfj2++/x9SyY8KYje5yyRHKpqRstly5F2KYzVYGZK5cTcz4i50DIBpQeTFywAxolfYKZE1BNbQN4g+PS+fZX3dlu0zsi71WcyCIq+ETo2REZkM5BHjbxVkHv2/03wwc4XK3bawNwIHrELDR5zLg8r/TIBmCwvBa+udfvt+x7UILYwvD58ZphaG0nYosN/12faJtaILBQQ6da2Ru4TGvsXPy47p8hgzws/yosDhl+ZnzKlx9hd6ZUuV+hPfcHduXA0lkApmXATh34YfubwIv/Br09mxmolCjnz3X/J85x8ZvuTJLrn/hdSL2ndyYjiE3+6+qm3cRTRAJuFGmJm+Lt00gz55HBKzG3NPhfZXwf4dkJOa83tgYGBsSu+iiizBnzhxMnToV3d3dWLBgAf7v//4PkydPxn/913/1uu8jjzyCU089FePHj+/zOHme41vf+hZ6enr61a+WwVhnZ6cthcTt1VdfRVtbW6vNjdkQ224PL8WLe81ig7YbTKk+45btqQmw5cHHMimKgicQmQRqCrVubUU2bemYPAQjzeOPKC4tNJ9Z8V/e4aAIADITqFQrkJnAqn90W9FO2qc+Z64Fcv2JqZqYuhfSmp6GNziHA7hhCszxCOAtnzHLsmJAeZ8YSKPSR5xd46CUjLMHsTZbjRkL2w/jcXyw6O/L70cMlPHAd9o+BsqigftFTJnPGLoB1w3ufRcwp3PkA3HI0PD7G+trb59pW+5CDQVGAXgB44Zh9t36/Pjmf1mln1cw4CwhZ0RNUW+/6HZ9zlykd7nyPgRQy0DN/ywTwyy/uo9j0yfcfRdq+8yGyjVU7v8uOPsYgh6Vw9ZR5ZMpSqBY09BeRQoHoF07sbJM/j7liYr/WzWgj8cu0n0EgLTNTL5EewXtq3WJVRyzN79tueWWeOSRR/CrX/0KDz30ELTWOPbYY/HRj37UC+hvZl/60pew6aab9utYrXgKW4bJM2fOxFVXXWW/J0kCrTW+853vYM6cOa02N2bDYOGLe7s/3m2BGABUJ1WRdWQQ0oAcMl4UPMxUDMESvRjLbIQ/cFYOPajUv9jgGivNQnpAXPPMdzMVcT53LSy12SzjLJl3QDGbN4MDzdodKHR9VLkZqLirl9ZNuXexxyzQteHFod25mftgBlG3j2vPnXO4LGYhuCqzX70DthAstmLhdQhBHV8WY1BpXSJ9YdGYS5d/5iAmFnsUHj+MzYsxUHzfWKafG8j9epoxSRjK8iNtM9Uw8UthuR9+TM4mVaWLV+PHBmBj0/hhub5ZyLrxZB0OnmJMIwGRyUsWlWo1crDXLk1MZUd7paRdRscJWTu6D2sa2rsnfh/ifTNt8olaAdaZOj+fxIWAjgMxCvq3x6xp5Mq4O9cr8ddBFwkfAmbtTWB333030jTFJz/5SVx66aX44Q9/iE9/+tNI0xR33313r/s+++yz2GSTTfp9rCeeeALbbrttv7ZtmRn7zne+g9mzZ+PBBx9ErVbD6aefjj/96U/4xz/+gaVLl7ba3JgNg/Xlohs3uR2N7gZUTSHryCBTiVpnHW0TzOPg3Cx+oeZYsLZzs9ES/+XG1fy5cQBEmVjknqwx94PKc6Ch0ehqWDaCu9R0nkPAd2kQkPNmvfvt71Lt7QDhnwcxfS5DL/eENikeLYy3Ca8JWcgA8MLTZZbG9SGWCciBHwckYT9iy4iF4edqry3rK49janYusRikZnFJAGxGpe+OLEoYRazsEg0/++DPxTe5bVwMGa8JavoYmzjQshAEkaXFJIUrwwumEU9u/N5ApDuuOya/VpwN602rjfbNBH8u/G1IgZ/6wftFz09f7wi+vnOWcdFXFy1EcuhBLAEigcrNJKNLAeMrifc7BIA1jRz1SDgB4AvSysRkgK5plK8PZzZ58kfMaMJD4NlKWyTmHaOL/XOlrUxOyCqOVsuTZAiyKdcj8DlMNmfOHKxYsaLEbq1atQpz5syJBveT9RdYkU2ZMqXf27Z8Z6dOnYpHH30U733ve3HAAQegs7MT8+fPx7Jly7Djjju22tyYjYCpmkJtTd3EgXU3kHakqFQrnqZYrnKbiUSuSqDMpIQzdrON+d/oapSkMMLsL9qWEgoAl0bPNbnqPQq1tXWr+M1jrwA/I9HOopPEMmSr68pme1E8XVcToAjEQIBjGXa872472Pnn4s/S42DP9S8cKPkAHothCrdz24bHac6GcMDVVzxYM8aiOdBw+xm3tnueeKwdUC4Q3exauH6Hrkf3mQNbN8DnNkEkdCfTdvzcdJ4baQrpQD7gJCtCNoxXBeAAIXQ7xix2vajPdN349SDGjfYtu5jNn567n3e9HNCJg9D+Wsfiuyxr1rj51kIyw7WRCsfS+dffCNem9nmHd26hGzVc518z899LHqhQrcl4vz0XccW/hxTjxxnJMXtrWJ7nURmu1157DR0dfRXyc3brrbdiyZIl9vsPfvADvOc978GCBQuwcuXKlvs1YJ2xb3zjGwPZdcxGgdU7XSaRLgoqV9oraHQ1DMtUZFeqImA+tDDuyCzjhYcBaA1o2AB5vu+kexYBzI1Y0zmyHoW0TQZlkBLGJhmdIDNgFoHAa+vgLJZMgImpr1PEB2m/H4YB44yTSBJ0RVLeOYMHmELlmUgw4e5FHnPGM8F4DI3vzgsD58M+ORcwBw+x7Xn/3Po4wxVrK7weZZDVzL1VZvOabQMUQIcxOM49R/0sM3XhdQrZFH5s6Q32zk3HtcGofZNB6bMvxLhJldtsSDLD7MHWQQyZGZEYCQUOeLjLsyyw62IbudZZ6DpuniRRTmzwjrvf/sCdd2DSPYYdo3Yn3bMIL+7lT4QGapStTDqGVNCcQBoBQbq+hjlzIsohK8gBMpmLeQPCCgEAindBkSDRiCefUJxrJhKgkdtapWmb0YEj4N3oaqCLkhdGs40F8A/KqDh4kiQ45phjvBh3pRQeffRR7LXXXv1u70tf+hK+/e1vAwAee+wxnHrqqTjllFOwcOFCnHLKKS3XwBzQnbnnnnvwsY99DHvttZcVSfvFL37hocQxG502/ugPldgqmwWmNerdDa8OIFBmLfggRrNvPgDRQEP6QGSv7jMbGxUZnMRu0cCzpqFR7zFAaHyhlk0AiQZco+rtgvkBp6c06Z5F0UFq0j0GMPn6SQnGV0wMjJWtqAjPLUsDDr3kreTFfvsXQOyu4Fh0rXwQyAOPZXCN3PV17YT6V5671vvvn2czFivsX2/LOODx3ZJue87+hYMqbyPWd6DI3JNODb38XMURY0xNnqQYKGicJwPwtqwrPGAnfTdrWdTYslQ1bScmLtPT/HWzTELu5hSRc6FjiiSx8Ur8WgIosTSJdHUceT3H8HqJxKney4PneedFwGzLPyxGTefYbOni6DVu1XiySazKAf1meB3I2D0ox5qVn2UO9ux2BWMfPjcyAWMqnftZF8yjyKTVg6MYwIHUuF3nliRjtSkHYRMnTsTEiROR5zk22GAD+33ixInYfPPN8ZnPfAZXX311v9t79tlnMXXqVADADTfcgEMPPRTnnnsufvjDH+KWW25puX8tM2M33HADjj76aHz0ox/Fww8/bNM233jjDZx77rn43e9+13InxmzdGTFhBLiETJArE9CaCIG8ZjIgebyFz5SUdacAWHbAZYiZ2W1nQ2Gj+Yeg58bfYXxFYPz4zFO+di/wHKvqqgBKhr2gYF0KzyG5DIpDowGQzMULme+ZSOzsPQx0pixJy0I1NFTDgaewKLNt9847AOYO4lYGLuV1zWK96No2c/3xcyyzZWW3VW/79caQ8e1DdxEB51iGHj0XtE8zYBgKhvI4OQLf/Jzoc+ieI/aL32tq1wV++8cJleNj15okXLh1K40s95lDzr725ZoM48Aojo7LxHj6ZQV4oEQAWRFWq00isdnEsXgyIZ0yPYGuzllzmJhx0262bNVFC9E9e66dfPG2+eSHElh4uTDOFGcCjFFrzha7Z8JcG2ifVeW/bRVcb9qGLFcauqaQS+FYz6G6MMNlY8zYoIyYqu222w6nnXZaSy7JmGVZhrVr1wIA7rjjDnz84x8HAGy00UZYvXp1y+21fGfOPvtsXH755fjxj3+MNHX1vfbaay88/PDDLXdgzNat0ew5jIGh+pT2s8otC8ADbUPmh4wPTJTlSANWo6sB7Le/N7BXFy30ZrtcD40YAC7qCBjAt7qu0N3dcNUC8twq8PO+hjFk4TJ+DiarUtmgfg44yfi+YqGrX9ZsNs/ZmRDQmLqGwmNrwkEoxpw1+0+SGc0AAXfn8b7GBmY+6NE14nF5/rZ5cP4+Ixi20aWMCjopoceOzZmn8FjmXJq78ShjNbzmsfgk1zd/wqGD551YQv49dm3JYkWvid2i7WMgygrhsv04S2brwkpTV1FWTHwbZ3P5b1rP3Q/1OXPtMYmd6ksQuVUj1x5n+eiY9LwZV7Eokg7CWpl56Xl26xD9vYbvH5+ld/dPJkW2dZsfKgEAqqaRSGHZtVzlXszdmL157cwzzxw0EAOAffbZB6eccgq++c1v4v7778f73/9+AMBTTz1V0mHtj7UMxp588knMnDmztHzChAl4/fXXW+7AmK0761jwAfuZu2MoWB+ABWo2ozJx8S0ui6rM8HAXkcpNgWd6GXd3NyAzgSyVXjKArwvlBjU+MFH5E8kEI2vaiYXyAXW7P97tsSH0cibWiUCfG1xzjzHj7jl+XgQwJ92zCN2z53qyGbHU+DBY2o8Fc8ud2j/seg6SQkDDt+H7hPegvE0M+JRlOEI2iv/n7lPeT379Q8kDfq4EvAn48mOS64mesRDgNbu2MQDqu1ATD4Tx6xPrZyg2y8/VPUvcRRhnGbl+Wsh4EYjiFm5DRiCOT0goXpJLbNAEi/+GgQLM7be/bXc4wYbvcjXLeDB/GE/pT/CagX3/maLfSwiK/UmW/+zqPEciBWRFFBPEBLqmvKoj/J00mo1qUw72b8yGxi699FJUKhVcf/31uOyyy6zK/i233IKDDipLOvVlLbspt9hiCzz99NPYbrvtvOVLlizBDjvs0HIHxmzdmhOr1FG9JAD2pc4L/1LwMZCDlLPD4OOYa4sC8NOaLol/8gysiaksXqjl2JMqqyNpXuRAJnLvpb+qkJ1olwL/qCk7AHOwU9OuaDLXYcqEsECTGKoQBLRL5/IkuQw9d7+oS853gfqDOnfPuOtUBhT+93LGWOx7GAMVtsvZJX6NCXCH582Bjg+cOUPlg5yw7xzw8UEzE+XnyJ1XHIAR8OPHJbYlTAbgyvm0jCv10/7jK9IAIF3Wwmrm0qM4JP9aF0dV7v5aQKZYDFNxT2KlxbiobK5cMgEHb6oIM+CF1sl0nhuaFD6oy0QB1up6YEHCfZgL1jfHHF8R9hkLJw507cshD36b/Flzz57/2zX3l9ouT3rCZymRCdAosmC7GqX3H0+AGJWWCGCwmZ9jYGzIbJtttsHNN99cWn7RRRcNqL2WwdhnP/tZnHTSSfjZz36GJEnw4osv4t5778Vpp52GM844Y0CdGK028VMm+0JIgZU/vn6EezN4y1WORJp4CZkJTy1cAKjX82I7FzMTc6lwxsm9XN3gkwmj52U/az/uhpzbLrA3L1LUtW2fvyd1ngMNN0PuUjnapcuABLR9QVcXLQT2mmVn0RwYmdk1lYvKMb7ikgRctlduBXIpGy0TCSaMS1HvUfh7TwNde8/CZksXl1g0shCM8qBj0/dyNlmMneLfQ0YodNP4x+fZerwtf3s+KDqdML+WYrNj8P6VAYwP4ni/6NlZ08ghE2IH/f7F3ac5W2c+8xqKsf7xOKXwHAikpW0SWuXIpMSqomIEXY/YhIOOx6Usmt0z6iu1E7Jc4T4kv5BIYX+DIYtGVtcauicvsWrcnUnstxhm4mfSPYuwct/ZFqBXpYmFo98a4CZpMdbUTeIcS02/VbLYNj676Zcb4+A8ZL5UQ5v3TQF0wxqjyaEHoXHzrcN0tcbszWLPP/98r+u32WabltprGYydfvrpVhytu7sbM2fORFtbG0477TR84QtfaLW5UWuTv/IpiAIs6F70qNYnC1/sIVNlYrRcLcpEJl5gPhAKkrpBnLMuvpvMvJy7lVO6T+Yd4NWf5IOba8vNgk1R8Lz0Qgdc+rrKnSjrln9YjM5Zc1CVhUuIuVd5jFomhA2UpnixcOyjbLBKe8Vk1RXuks5Zc6IDBK+xSWCBl3Ohc+LB5D446r38TwiUQmBF28SADZdS4Pv0FnzujhM7ZlzdnrbnelTkxiJwHgZcu3VldyBty8E/P4eAILLXlmIXQ/ejTIBqtWJZYlmEFMmehn1OmoFPYsXC2C6ZuWdEr62XQCjplfFYR8BNdlLhdLBkJqCVcaeFlhedc9cl947hXJcCYOKVpFg/XBaWFJLzDgAa2gNHnJHlvw/qP2fDuHGmi7NiZp1rzxWq57Vvc6ChbdyYildoszIZBITlwfOgbrltgFdjmGwsgH/Irbu7G9VqdUD7brfddlG9MrLexGNj1tKdUUph8eLFOPXUU/Hqq6/i/vvvxx//+Ef8/e9/xze/+c2WDjzaTbEi16quUT3i0BHszeBt3FGH2cLgMpM2OJ4DtPCzamiPfQD8ma0/KMblGmqa4scckBAFyCNw5bS4fJcUDczcCOhUFy3Eqrqy5YxUnnvByTWdu7I0jMlzyQIOBPKBk5eNmrxkkQNSNQfIOWgIGapYfUw+yMQCzF275WWxTD0CgRwM+exauZ0QwPBr68eDlWPxfNdluR1+XXh8FsWJ0XYEpsZXEo+14rFFzrUI2w6dH7VP7XBNOn6OtI5AUtombTA8AdK2CW3IOlwCEgB0VKQ9D7r2/FybJkgUQEymRr+KBn5+rUiWpRnTBZg4TgKI4SQp3I6LnfJ+hcXKKRGnN9X64bD8ttuLvrnfbCZM8opxYyal+9nM+PqQDStvm3jbkhl5Ej9xhNcZVTVlJ6OJFIjVHm1mW537uX5vOygbK4c0JKa1xje/+U1stdVWGD9+PP7yl78AAL7+9a/jpz/9ab/bWbZsGR5++GH7d9999+Hyyy/H29/+dlx33XUt96ulOyOlxIEHHohVq1Zh3LhxmD59Ot73vvf1q4L5+maqpqCVftOxYtwFSS9uPkjwlxBnu8g4E8OtHPfjlgmZ2MEwjEmijKew/WbGX8yT7lnkvZyfet++djvSHfNdRu670TlzelDNABKBnVzp0oAWP2f/e7gtDULhucZYgVaYjN6AWG/7hNuXv5djyZq5VIHmLkNax7NMOejqy2QS7hev/EDLuEBwXyDISLuY30U8IcO/LyGrlUiBhOpKFqCLW+jqt65E5lbkFibX2HYi21rWrdDJk5mMAgnRB+M6XMbdvCH4cs98eZnfRpyZ5e3H9zGfKZCfS5bwjPJmJdtidXU3PuFIG74CAFt/7eNRBnPMRq+dffbZuPLKK3H++ecjyzK7fJdddsFPfvKTfrfz7ne/2/ubPn06jjvuOHz3u9/F97///Zb71TJM3mWXXSySfDObamjk3NUQoy3WM5OFGj7FUPCXOwUMAyg0tyibsjz4hsDDts8Cq7lbMZEC6fgUFDPU2dVgLj0gHZ8iSyUmpNIbcAGf/Yi9eIkNi4GQNQWzx4PI3ezctEeDocpzjxUDjD4TYGbY3d0N5ib12aDwGvgxdYm3zjBC7jsHb725x3gbbl/Xd95GzHg8Tcxq2slr8HZi/5vFytFx4m5L/4/EWkMWijOq3GXYLv3r6JixcHnxVwAxVVNWsJUzgLpghStVE6lB30lyxO93/KboPLeAit4P1E74XFTaK6hUK+Z/ewWyUrBpmbTZkNw4QDDtS/uZrCoN61dpr1gQaEIPtJdZaYHaMLopYyYW3mmTb/g942Kw/DsH2fy682WhZEyMBYuzye655O5c/p9fW7r+BMg2OfEj2Oj4D0PXzLgw4ZjDscmJH0HP6hrqa+tYJzbGjA2JXXXVVbjiiivw0Y9+FFI62ZN3vetd+N///d9Bt//2t78dDzzwQMv7tRwzds455+C0007DN7/5Tey+++4lvY4JEya03InRalrlHlqtHnEoVF2Z1OiaHr1ZN4FtfMKRqBcv80q1gka3c8Eaal5BK+OKa3Q12MDtu6L8uKRy3IYzB6CI9aIZ/poC5BEzBSSQqSzkNRQQmWSSa8m4MxOsaWgsnzELU+4lIFYGPmQuXsWdg3GTCTtQdCldAmLuuPD6TW1QJh/g3JZ0PHLNuWxRIFbGJgaQKD7PZ93Kgcnm+KGIafO4oJirsxmL586R78//J8Hg54M1XsSa9qO+8nYcGOWsWw7mEYbKTUmjVAioQp+M4oMoQJyW2QG6ImzsD4m4Ur1TGqgdg8WSVWQCQEDWldfHZtcNgAVCgHlfkGRCNi4tynWZbbKOtIhLcr8HExuWe3FeSfCZB/OHRirySdFvaler3IJRigEFzHM+eHWlFu3OO4CZblJDbvrQJa1yHlfpi8KGLuL4JNDP9uWg3oH23JuAAYAoQjYAU/ydXzMpzbUdd9RhaExoQ714b9L9anQ1kMgEjZ4mgWhDbGOFwofGXnjhBbztbW8rLddao17vP7AOhV3zPMeKFStw1llnYaeddmq5Xy2DMdLP+MAHPuAFr1HxzVaD1karmZeaAjLpZknFi7emciQyh1zPsm7oZWJeOL7WDuBccb3FbfkDJRDKEBBQISajrjXQ1bBB1MQcEdAZX0mg6qo04ISuTgrq71KO7Xp8+j6Y9uASbPfHu/HMHjMjLBUHNySO6twmda1Ra5jMvkmR60VSG5lIsKbBwYcDdtzlqHLg7z3KMjpUE7EZIHOAxQ0UYZwWn+WHLJB/veJUFfXL/Xf9bQbcmiUJUJ/jzGDcZTkx9ZkRgMtdhHFpiXcNyucMuKxP85nU9vk5he48X8bEZFASg0TGGZJUCXuPRZKgs+GDM3I7crd1rnLkWjtpi0xA1kxQPgEjGrzDWE3AgIKsIzWTkrqCpj7JBKpmtkmkgCDwyFxsuUIBwKTtS2IZN4mkmOjUdL7uwRhcd1XuJz+Ezz19B4BMCPschEH7ISNMy0J2lcz/nZVdye6eCAds2Tim6go9q3ug6spMHBn4TqsDKu88ZiNo73znO3HPPfdg22239ZZfd9112HXXXfvdzoYbblgK4M/zHFOmTMGvfvWrlvvV8pN01113tXyQ9dFylUMjB1g8QCKdwKLMJGQmsG7mRAO3Sccdge7Omld3j2bkAGzmpCvAXRQJZ0AsZF+cObaDs0P04qXvNe1EPn0BTpNRla6p2361ZxJZIQwazoDDTDferx3vM4DsuT1nWpbLuTJ85sq45Jz6PzFs3JbPmGUTC4hV4edNRueqctjtOEvkZuZlgBmyROYcwdoug0vuIo61ya+Lc4f25r6MtV0GaWU2wndZ8vtqWI44UxcDm372pN8XalfnObJUWsmUkEEsDcBFQDZvg4CUyJxrQsjEsiNcToLkIGhyQn0kKQzASEbkSkMWlUj84HlhXZBkmtGNucptQXKRSchU2kkS9Ss0AgrE3IiA1QsnNLnXn9FlHNTyZyKccMSWldty/302108ESYUBW3S9uYeAzLJkwX1LBL0/FVAHEiEgZA4lE2i9jq7vSEXiKwABAABJREFUWDblkNiZZ56Jo48+Gi+88AK01rjxxhvx5JNP4qqrrorqhjWzEAsJIbDJJpvgbW97GyqV1kF6y3vMmjWr5YOsj6bqCrkElIaNKwHgzXzXB6t11qBquhQfRqWPSFhS1bT30iYgETI53BxA8eM8wozCEJSE7rXVdQWV55iESqF/5sdDUbkf3g65Df/83n2x8wP3ADBuGM6OERMS6mBRO5OXLGp63abcu7hQ2k8s00cgzvTFubyaZU9S/+l4XMqDb+cPMM1ZqfAYzv3aN3gK710YrxbuG9uezofvQ+AxzqZxgOhc39xFSct4m5wh6c1VaJmOJAG0EyoOZR3IVZ7IBJX2SonNMGyHhqoZ4MJ1p9BwblFqWxZafRrOnWh+Pw7Q8exbmUqrmE9uSQogp3dL6FKUqQF9hm0j91kTRF0Yb5tYOG6h/MS6sgl332VLloU1OgFEf0NkoUszBFuAe7ZSIQrxXrM+ZMrpelDsLN0DVQhSA+79zpkzV+1A2vdmrjXodVlfV96gJMGgC32PuSlx2GGH4dprr8W5556LJElwxhlnYLfddsNvf/tbHHDAAf1uZ6ixUMtg7NFHH40uT5IE1WoV22yzDdra2gbdsZE2XTBjFM9Ebg2timXrajY0CKPyR2GwKpnLpvQ1jYgVIyDDB1xiQbjkAMBVuOENsrTeMSd8MPb1t7jxQd/XNvODcTnQmvbgEvz5vfviqffti7fff493Lv45lBXtY0bn7zNYJBzr6v0ZFyh3K3J3nnPL0rWLsVCx5Ije+hhWIeDAKhywXOJBHNyFbcRYsLBP/HghuHLnlbNt/Eb9IPlygfHegs3p2CLx2wD8ZzyswZpIUTBQLhYrkQmkTJArcj0ZlxXF9RKAIpbLJrnUTIwRxYK5dwQsa5VIpx2WCNc/kUlkRR/SagWqrpCIBPVCXZ908mUmkHVU8caKNfYcCJjx+CY6NwENkTm3pNne/cZH0uj5JjclZxpVTTedVHAg1qxNwJ/Y0D6UXMHZLpFJDxQD5jpTNmwui+spfDAWPicASmEew25jzNiQ2YEHHogDDzyw5f1+85vf4OCDD0aapvjNb37T67Yf+MAHel0fWstg7D3veU+vQmdpmuKoo47Cj370owGLqQ3WfvjDH+I73/kOVqxYgXe+85343ve+h3333bfvHfswr0acEOv+x9iCjTvqsEgUj7NEGPaAx6/YMkgF49KM9XDbuPU1nWB8xYGBdmnYq0yIgJniL91A+LNwn9bZ7JaMs3Q1bViwetEv7prc+YF78Of37otn9piJHe+7Gyv3ne2JSwKIuiWbmWH6EMSMJbYCQJfS6Fh8F1btNYuBMDpXc45hQLrrTljQOu6CNcf0t6Pr6LuHeeBz3M0ZthWea0zOhPodYwL5QMkZPwJgIciKDaq0Lwe1sX5TPFdd62hlCDP4ihIIA2B1wLiLklsiE0hIJCKHgvIYEgrkLu8jkAZaZXx7GvTbJlQgpIDIpJ30VKpmWTo+BdYUun71gq0Gy+Zrr6A6qWrrKWqVWGYn147NA1ByvwKwsWecqRsJo/tf19okY7BnKJEJZO60CGl77soma+aKtM9eRSArFPZ5OAZZ+FwkhQQK28Jfb3XfdFmXUZGodAsXYj204RpPR8oeeOABaK2xxx57eMvvu+8+SCkxffr0pvt+6EMfwksvvYRNN90UH/rQh5puN5D4+ZZh8k033YSddtoJV1xxBR555BEsW7YMV1xxBd7xjnfgmmuuwU9/+lMsXLgQX/va11ptekjs2muvxRe/+EV89atfxbJly7Dvvvvi4IMP7rN0QWiimFHlWhcB5i7min7Q9f++Zcj7PxRGArU8Liw0Oj9uNGP1A6w5e+OLmvrlSlzchwvQj4MBE4flpAZo+5Wddazqblgh11CWgu+j4bNR3HZ+4B4PIHBGqzfGJbSOxXfZ8yYAR67PyUsWWY0yAJ7grB+Y7s49xl7x6+32d4yAv4xfS840+rpboZuUH58zCPxahAKq/D//C/eNAbtwIPUZ05AVK8eJ8XPkrkgdDIbk5uLyDWQ0iFqdMeFrjcXiqEQRBxoaZ1e0ctmKbRMyyExaoEVuRwO0DGiSqUTakUJkwjIsuqbQ6G5AK23Wj0+RyARptYK2CRnSasUG42ul0TYhQ9uENrRNaEP7pCqy8alJEChEZkUQm5Yrw5CZ85F96qytC+O/B4rDo3sKOJYz9pyFvwOzLv5bFpFnwcTDlhlTmUomL1K4oItrRn9kLv7OgfSYptxw2kgUCh+q8XQ02QknnIDly5eXlr/wwgs44YQTet1Xa41NN93Ufm72N5BExgFJW1x88cUexfeud70LW2+9Nb7+9a/j/vvvR0dHB0499VR897vfbblDg7ULL7wQxx57LD796U8DAL73ve/h97//PS677DKcd955/W4nEcLyNxTAKaTJ/BuF8bAl4zQ8fecWulm1CoPP/UG8pmG1uboUbeP+ywRW0oEy0ULXGHdd+fv75W58FiwEhqadNEmghPkfY1Om3LvY1pbk7tBWxqSV+86GymFjyzijlsw7wJvd07FirsXQheLO34FdxzzFXYExUBcabefa8Nm83uJyYt9jgKsZM1E+33DfMuvGgb6pFahL/aT7Z+N9MokMsDp4ZFxnyxXYFp4LigZQzQbWEMTITCJVuc08pkoVFJSfK420I0M2PrXxXiITkEogr1actEThDs1YjJquUakxU3YnG58ZANfehp7VPbb8Wi5zVGTRthQGcE1I0LWy2wOGqqYMi6YT52bTGrl0ArSQCXpu/B1G2lyCinnPULWDWGYp4E/6YtmTZjksqAMoucp34ZJrMimOY8V5C6AVhnAkbKKQ6yIGr1hG7Bh9BgBdU9HJ7rDYCLgph2o8HU32xBNPYLfddist33XXXfHEE08Mqu3XX38dG2644YD2bRmMPfbYY6WUUADYdttt8dhjjwEwrswVK1YMqEODsVqthoceeghf/vKXveXz5s3DH/7wh+g+PT096Onpsd9JO0TIBNyjEstuGo3WNv8QgNW56w2E0YtdF5lnFAAbY5wykTO2iZgqvzZeuB+PI+PBtxyA0HcuI+FKMMXPUSYkAirsS5vqUnLjLlFqq5mbLLTlM2ZZvawX95plNcNiGZqrCx0lnuHHwV8sDiyc2ZskBR888TZjRoDLD2SOn084kMVcQO7Yza5K2J/Eu64h2C2DNMZ4VMoB6f71cduGLknJ4n7oO+BcicSgCT74snVcFFXAuAJpuVa5/Q7Auiw508aBmGlb2D6oukZSgLpEJGib2GaBAemCKZkg7UgtqyVTgbYJbYV+oTJMX8HapNWK5wrVKkets2ZdlbTMXAcBVQMq1dEVF/TqPrMxeckiW88VQACCcy+DlUxWfI1CkSSQHKhXgkoHBfOYSBPDR2yl2TgpMiAJzBrAZoAzjw8T0EpDSAGlTSyfvbcAAN9duc6A2BBbqJHV1tZWivUeyHi6PlhbWxtefvll7LDDDt7yFStWtJQF+e1vfxvbbbcdjjrqKADAhz/8Ydxwww3YYost8Lvf/Q7vfve7W+pXy7/af/qnf8K3vvUt1Go1u6xer+Nb3/oW/umf/gmAofs222yzVpsetL366qtQSpWOvdlmm+Gll16K7nPeeedh4sSJ9m/KlCkAYGdRiRDIOlInxkizbDG6XnhklIEVM76cJC3oc8w9wwP5wzI2RrwR9jvguxiI0aL9UyHsYOvcnP62KjfiqkY5X0cZL9Mvvw4iuTP7shiL08xInNLs5ycSuD6bvwl332W3M9v6bJ77c/UZueuu2THMuZYLapevR/n8m7lxerOYm7A3C12eYd/4uXN3pKxw/a1iUGOsGc+6JSDGGQkrT2DdcC47kYwzHlxdnQSbKfzAxGHlnsspEYkBXIVYK/1VCjciJfXQny7Al8xk4Wo0LsW2iW2WFTPJAyZGrG1CG6oT2rzMTpkKq86fVivIxhfHLNxolfYU4zYdj3GT25F1ZIaNK9ygpgwSudjMZzrv0ZD1Tcxyx+K73H2V5bg+Jxvkn0PC/tI2af8IlDdri8B4IoTNaHXHCYGcsMwkATKzj7BZuDI1rkzBXL+mLmk8DnGozYi+Dv4PAKZMmeKNezGWayDj6fpgBxxwAL7yla9g1apVdtnrr7+Of//3f28pm/JHP/qRxQu333477rjjDtx66604+OCD8aUvfanlfrXMjP3gBz/ABz7wAWy99dZ417vehSRJ8Oijj0IpZTU6/vKXv+Dzn/98y50ZKosJsTVLOvjKV76CU045xX5fvXo1pkyZUmTPuNkwzZpzrUctEKsecSgUHFCMzdpKTBnR7U1meAQuYm4uzpSZ7L544LnKAZnzYtDE5JSZomZq9RRIT0yYz7iZtmPsGG/btd+3GY0xFP00H2o6x8SUAKS2IGPlvs4dmgk/fmz5jFnW9VrTrhQSv4b8OOQCpvg27tpTuctwJQtdk5xdilns/sQ+x/ctM3e8b9y1HGfcysvIpcjXc7dTrEg2uZzI7KQCQTZlL3FiNBnRtFzKYN8EUiRW4DMRCXKdW5cVr1kr4KQzDAgQljlTLEtZZhKyODaxNolM7P66YGuoKoCJdXPAQWYVVNozdK/sRlqtoI5GoREoCykMzWLNDMBsm9CGztJVHzmzcZj77e8muBEQ7YElpeLLC2s1bivehv88mThAYQG36ZvwngGkBgA3GutIgT83f4NtAwCWL1/uVcvpTQGhlfF0fbALLrgAM2fOxLbbbmtFXh955BFsttlm+MUvftHvdlasWGHB2M0334wjjzwS8+bNw3bbbVdKDuiPtQzG9tprLzz33HO4+uqr8dRTTyHPcxxxxBFYsGABNthgAwDA0Ucf3XJHhsImT54MKWUJtb/yyitNmboYPUuWsNgLjULkr3gHj0a3ZW9yG+E6ioPhSQkqGPh8dyNnW/xyPwYQ+LUs6fIYEKKsDARtw6UeOKhb00Ch6eWy98gVZ7Y12/A4KwIoIdDYbOlivLjXLIyvOAkKmcDLvozZ6plzLMgraZHtt793Hio3+k1Gk6zsBp1y72I8t+dM+53O2V1X341b07CsozHf9VmOOwsBVXO3ZsxCrbhwnR8f5q/jrkS/UkNigSNnzwADtEjwNBYrFBbPpuLOMkkgmfRBKXanAB+5dMHbRqPLlzdw2l0uDsxmEZOCfQF2E1HuX65zaCa2muscuqYh2h2z4jSrNDQDzknBQEt2fqqmPEYm1zmU8mM+dU0VwrQaqtYoBewTm6ZVbhMD6p11JCLBxG0n4u+lsxgFducd5illoMzXQtTe+5cvB3xA1ayqARfGNe/vpGkb3ELNMU8epG7uObmJZSaBdQTGhtImTJjQZ+nCgYyn64NttdVWePTRR/HLX/4S//M//4P29nZ88pOfxL/8y78gTdO+Gyhs0qRJWL58OaZMmYJbb70VZ599NgADVtdJAD8AjB8/Hscff/xAdh1Wy7IMu+++O26//XYcfvjhdvntt9+OD37wgy21JSuicKcYyhrFj93MbUeftc0/xH+BF59jjBcNRKqmgwy0BCkEVK4Z2+EHzgO+i41/JqDBvxOL01UEZ4dmBFUFupQGxXeRS9QN5q7sjQFe2m5nlguvdqTfvhGd7Jw1h/W1dyA9oXjR1rRC56w5djb/4l6zsFURdC2VA5+rZ86x12jC3XeVGDrnms2t/tnKfWcXhbnzglWkc27mmm3GNrljxPaJbU9sWpgNG7YfAjEO/Li7uW9GzW3DRT/RcIW2azVtt+Hq9965NHxJCz6ZcAAv9+KzwvqytIwP9gTawmxpYkHywAXMv5vkHm1ZKQ4StXZ6X0IK5MIch0tQcHBnQSBl6nEWrlbI6XTXzfNXzUzMU00hLeLOqO88lq5j843jN2W02J13APOMayi8/oAPylRNeYCKMiCBOLvmtQkNjVDGwhkHc04zrvz7SYSRIEmEud9a6eikYjhM57n/+xlgG/21oRxPR5t1dHTgM5/5zKDamD9/PhYsWICddtoJr732Gg4++GAAhmWL1b7sywYExn7xi1/gRz/6Ef7yl7/g3nvvxbbbbouLLroIO+yww4jfpFNOOQVHH300pk+fjhkzZuCKK67A888/3zJ4rLRXbDCf7tKQqUAegJvxR38Ia37x66Hs/joxW7OuiHvghXKVKgeBO+BVHvRjAfxknAGiAPXQxUZtOPekk3ogxojalwmxZkkplq2Za27KvYvx8t6zMDGVtj2qGdmb1bUBBwTE6HzyomPE7rlg/RxAgu7Zc9EuE7y41yx0qRw73ne3vUYExADDptX2nhW5zs6F6zNRsPU+e3NFOhaznEHKP3MgzePbaF1vx+Hbm23cPWoGAGNmhUC97Fznyg7/A24wIXbD0/5jE5FwYsLND8iPD/x2mc5tGSOZCguYeOkj0/2GV/5IaxdTBsDOlGXBcFHwOJ14s4kTmVYaEk4PTWQSKUwyAA8yt5NH6lt99LM2tbpypYpkEtwb947qjzeCJ22UvAGMKY0Zf5aaVTvgLGZWJFaIrnWTXp+jFc67eRut2FCNp6PRnnjiCTz//PNe/DvQf7HWiy66CNtttx2WL1+O888/H+PHjwdg3JcDCdNqGYxddtllOOOMM/DFL34RZ599tn3JTJo0Cd/73vdGHIwdddRReO211/CNb3wDK1aswLRp0/C73/0umgHam4lMQlbMTLfSXoGuaUACsmAxR5Pga9v8Q/rcJhHClfJQOSrVCnKpmw4AXCvLfPfBEwGhrgK8kcuSq+UTeHAB5uZ7uxS2fQcUzH60/8RUWCBmFO/N/iFIMaDMuTaXz5hVEnWlgTy9ayHU7Ll9MmPEEHYVzza1OXnJImC//V2mXQEewmSFTCRe6ZlmMVSbLTX9JBcnv77cRetAj5PCIDAYGt82XBZ+jl2jcFk5CxNNwRIHdn5MmXsOwrgw125ugTV9j/UtzKDjLiqPEakpW66I2BASanasip9xGRoxaEB5cA51yoQUUDVlgspFAq1NYD/1jQNFihDzzl+52FQL1AoA6Nyn1G+XyEBMPWmpyY4KVK2BXOfoWtmNVc++gh3PPw7PnP7j6DmOBkvvWgjAAAU97wDkt9yKyqEHlbbjFQcAfg9EcH3jcbD8Pg9EH4zHjomilq+QCVBbN8zYSNhQjaejyf7yl7/g8MMPx2OPPYYkSZCTXiG9e/rpYkzTFKeddlpp+Re/+MUB9SvJ88hUthebOnUqzj33XHzoQx/CBhtsgP/5n//BDjvsgMcffxyzZ8/Gq6++OqCOjBZbvXo1Jk6ciLv2n4lxUnovYR28mOnl+4/LrxuRvpJVjzjUgkMaXLxU/iLpgANImUr7Paypp/Mcq+rKU67ndR5lAoyvCKRCoLOh7EAM+JmNFKtFGZI0cG+UkRuQQI2rP0n7b9ImbXuhS5T2JcDn4q3MvmEQ/6v7zPZETSm+qV0KW+dyfEVALLwTAFCfMxepEFhdVzZTkkzP3c8ev6ZNJuXKfWdj0j2L0D17LqqLFqJ79lyTMVa01x+j2n1+DUu3no8rBGrCMlHuXpWD+cPPHOAQEArb4a5J7pYkdzQHYSGI4m7mGMDKUgnV0KU4uFg73NI2wwo1ugwTRQXBY6r7ZJ7+WM0VAwf830uYZcd1pQDYuK0QmCUyQdaRmf6NTyEKVxYHYwTSYiDAlVzyE4YAp9TP+xxjbYxERgWJFFC1BmpvdKNnVQ96Vtew8sfXR6/LaLbKoQdF5S/8gu5+iAU3zjTaskesJmUYj5aIxGZOxuLPQjemyITNhO3UGrN/vwirVq3qMw5rIEZj0vMvvjTo9levXo1tttx82Pq6Pthhhx0GKSV+/OMfY4cddsD999+P1157zWqj9lZdoK8SSNyGvRzSs88+azMQuLW1taGzczTl7QzOdJ43paopY4q7IUarUfIBB16m9Ioq9b23jEoeCyaTxLoVpPIHXAMEXOYkgTinQ+VrUwEGcFFMWLPYL3Jj1nRu3YzOHefcqDGbvGSRjesyWZI5MiFQLViTdgYSKOCfEhK6Z8/FqrqCyk2WJI99y0QC7Lc/2qVwhZALsEbMj567X79AWXWRYQfAQBkHQiETxssM8XM3oLT5ccJr1EwINrZ9DBD668uAKvxM7F5ZY8wHh81cnsQsGb0ozpLkHtdk2SQ2gaLMSV4zkowH3RMY4lU3AABF/FcpNhOGKZepAYdoUnLJ9ZVr/QnwuDdh+10AXyqRxAqFa1W+wQImfkkA0PVGNPlgfbLGzbci/aCJweGF28l16QBZ8/MkoB3LgOcgzLmeNaQs37sS0CtAs6prJMFzOJyW5zla5E6ibbzV7d5778XChQuxySabQAgBIQT22WcfnHfeeTjxxBOxbNmypvv2VgKJ2zoph7T99tvjkUceKS2/5ZZbMHXq1FabW69tpEuMAEUNyn4ULQ/1lrjFdHeaufL6oz0Vao2RLhnFzpLLk8d8meXxouHULm0TWui+e3EvPxbr1X1ml9xe1WIWzAdbPXc/VgTd/VGfAT+GrFnfZGKuaeXQg6I1FPsyHrMVX+9itNy2Sa/3Jty2v8bd07F+NtMY89uIgKomzFfY55gRSOL3rmnAtcd0NYsDijNWzaRh+O8tjPWiCRpnUXStzKbFLJ5so0sJBICJZaO/0JwUhlwvWbFmFhZ97816F7t2enL8P1B+RsIyStFjrSOAo/Oh+Xurm1LKxndNnjwZL774IgAjXP/kk0/2um9vJZAGWw6pZTD2pS99CSeccAKuvfZa5HmO+++/H+eccw7+/d//fUBCZ6PW2CyU/pr9UDc+4ch13r3QYi4a70VSiB8KNkjwbbibRySOzQqNWJg6y2gkF6GsCGSptPvRcrOfc1tx0MIFPqk9DojoeATmSCLDB3Gub2Qvs+D4yUsWebFKMgFk5pgGUoQXSYKJqbAuQKqPudnSxZAJ0DlrTnE8B9KoqLkDbUXdPUmCkBVUDj0oGgMTM2LIQuBE57jZ0sXevXGA1mfIYv/5NQuZRD9Dtvc++vs1i0ErgynOmAJ+3FgI2JqBWGLEyjFcefBfe3/GnelPWug34bZ3pY9K7VON2iYTH1LOB8rMlS6OTyxXzKifmumSkRaa0RpzbVNSQQhIAQM0KtUMlfYU47dYv91QvPavD8T6P5lodr96S5ZoNmHl/8UAYs7GbHTYtGnT8OijjwIA9thjD5x//vlYunQpvvGNb5RU+ftr3d3dg+5Xy27KT37yk2g0Gjj99NOxdu1aLFiwAFtttRUuvvhifOQjHxl0h0aT8ZgPwP0QKYVdSAFkI/vDbPZSIfeJEZWMBLPGYizY8ipE04LfQBGsjqKmYK5tG4kUkHXF9MdyGGmKxGZUrmnkkEmOdim9YtsGdMUGe5J9AKhkEiUBuAByP66NG8WMAWYWm7HYkVzlVhFeA0jN1cKqujvvl/eeZV2CVPrImDk300/Tjy5l3Kg0UHL5hWTeASZzrAhYbma9kij77Y92mWBNgzN99J8AVc4Ace6t5+WT3Dm45INwn/Ix/MD+MJasd4asvEwkiWUW/MQFfxsyK9mS56XyOTrPnXtY9Z2hGHNfaZUjL1z6oYsrrPdq+ycTC+RERDoh10b/S9WU906hmCOuR5aoHInyE2tUXUdlNiy4TIW3TFYzpFKgbcMNmp77+mIEyKpHHBoFVjyWrJm8RcxC+RKehRq2D4SJIn4WuqysO7mjMWJr8Pa1r33NhlSdffbZOPTQQ7Hvvvti4403xrXXXtvvdpRSOPfcc3H55Zfj5ZdfxlNPPYUddtgBX//617Hddtvh2GOPbalfA0IRxx13HP7617/ilVdewUsvvYTly5e3fOBRb94PW3iAS4ikKI3hUspHg4WZYbzkUaxUTGiJpJIqJkW/XSYYXxFerBi5rSjuJ5GuTBLVBEyF8EReAcdumaB5p3DPKX4eX8aPReuIXaPvFIBP/1MhML4i7PfVM+dYdXwyAg68np8syptQOZlUCNuP8RVRyGJw3bMy6IhdUl5EuJXYQkoaULn5PHnJIkxesgibLV1srzdgGD9yz9K50XXm9yzMbIyxZZytDNm48HMYu0YMYm/xZ+Hp13RcM6mZS5Nv67mWI9u7MkW99KdmdPYa3Y1S/KRWuVlPcZZau5JJBZsWY6ZiGdamrFpxPetGjLXR3YCuadQ66yW2jvT/uJhto6uB2pq6x6xx16otMK6NlIWJGRPQtQZ2//U3ml6D9cm6r7+51/XE7Dd7t/HgfTJRVDjIi8zX/loiEzsGCLHuYsbG3JQDt0cffRS6APMHHngg5s+fDwDYYYcd8MQTT+DVV1/FK6+8grlz5/a7zXPOOQdXXnklzj//fGRZZpfvsssu+MlPftJyHwdF6UyePBmbbrrpYJoY1UYFgF3NNGnBF2VHpdUBSbUNqXF3S2jNBqTwpWXZG0vDJ6hWKxhfcRIT5GKkQZ+SHGjgVw2NRlcDiTQxWZxpIdDQLhNMLFyZsZqKVBOSgAJlS5IRuKD6dB5rkucMNLn9KOuRjlerK6iGC9DOlfbqJNK5tssEHe0VVKUoFQqPGZ0fMW2KxQrRYJH2s5TWpHsWQSZFlmWh+t85a47nWjWFl8sgyMVx+aAsVtuSX2vuxiyfm/855iKmY3KXLQfUYUwgAbLeYsoAw4yJJLH1CsNtPKCWNxfG9IBT4bbMlXlm6wTKeP1WFrBv3IXN7x3FH+om2ROGfXGsnaorA8q00zwTFrSpQqcscHcycG/jnQqWxrJ3NYVGt9FN0lrjoQ+d0bTP66Px+pLh8mbvOiqLRbGxXFDXrPfb4nVHezMuOjtmo9t23XVXq/Swww474LXXXvPWb7TRRi2XeLrqqqtwxRVX4KMf/aiX+PGud70L//u//9tyH/uFJHbdddd+d/Thhx9uuROj0USS2MKwodFLkgO1rb5yNF44r/91rYbS7Esefro2vZwsO6P90jExc+ChiM0aJ5Aqje5uIx7Jg8dFwLioPIcEy36q+9mOZOSyNECsLPJJ7cXrM5o2VM1kMpmYLZd5WC2YN26k5zXpHpNVaeQyjLQFGjmAgumgwbc4nskYNW5LAo/8XAEEfTbrKHMvFlSeyASqnxmWJJdR1xqYY2Zs3SRBUpzzZkuNqK0PWGHj3rzMz8LoWjkgFY/d4tvQd9qe1pXPH4jpwcWYN8CJ1HKLVQPQeV6UE5LIa41SX2P7hUrqBJikjExGagp5RAiWW7O6tDwTk7NjuqZtjFciEsvCEHAg9yZSB8RKxwyEaE0/HSMvUwGRutc4ZffpegOJlHjPr76GRz5ydrTt9c24ViLPsMzDhw3wmEzh/Q5NHVKzTXNGq1ngvmVdAatntq5sLJty4Lbhhhvi2WefxaabbornnnvOsmSDsRdeeCGqtK+1Rr1eb7m9foExns7Z3d2NH/7wh5g6dSpmzJgBAPjjH/+IP/3pTyNaHHyozRXfLQMXzQjFULdoJK1ZPAtQBmahxUADDWaVagatDKNE7ApJW+Qqt2yPSNzsXzWMgr2vhZVYEMcBEy8wzt+rNLCSy5M0x4AClChfLLSmqWRVAlnIUZDsBAXGh7phgInDaBQlWYQ0/WsvGAdVUzZZIWR4HBvkuwpVniOFm427ayqMumc/zSUMhBmq7l69us/sEuD1r6H7z1kqWkaxYir3dd9ixnXm/FixvAQGycJs1FhSCGfXyut4jJQpL8QzMV1/fCYtHEzDLEcy/vvmshdUpzUR7p5plYPPzWK/N/P7MrFhqm4qd3AXmaopC8gSkVhAQHIapNxP5Y20zgk7FPubt49JGBDRMAmXhKCgaw3sceu3cN9BXy5f3PXMhEygdG/XvX+B+SSoS/eAx41x8N6sLBKXwNBN3O3DYbr4G2wbb0X753/+Z8yaNQtbbLEFkiTB9OnTozImgBGF7Y+9853vxD333FMSwL3uuuui8l99Wb/A2Jlnnmk/f/rTn8aJJ56Ib37zm6Vtli9f3nIHRqtV2iUqacW63fLIj51cXIKVIxkJCwFj7IVki50HP0fHqsUBmZCJnY0afbGymyAEHKqmLEtBQIsGexqMTeA+HS+BrzQPzzUqK6Jwh/oMDgGCTBi3JXpc7A/1lYK6K4ceBJkJ9Nz4u9K1Wbnv7CI2LkGuyi4LP3aKubrKE3Ko3GRE6rn7IS3cGHkQkN2KGCwZZ5DC60PrS9ctALVknDkjoCcTFMK84fb++cYsFpcWY7z6Mg5w/eVMr4wJxQIoMZa214HbvZn0BVAGZDx6g559y341YcfC9uhi0QDPjdxiuXbZm+TyEqwMOX0H+07DqQEKCNolZs/1vdHd4zFn67sRO9bbpLKkxh8Mutb922QwbnrsJg/0QORrxmzd2hVXXIH58+fj6aefxoknnojjjjsOG2wwuASXM888E0cffTReeOEFaK1x44034sknn8RVV12Fm2/uPcYxZi3/Sq+77jo8+OCDpeUf+9jHMH36dPzsZz9ruROj0cit4Ir6FvR4uF1EQHIkzNLyMmkaCEiAzH6PzJO8AsrKFF+mVP+wFA3V2eN9yJU2sVFKAJpU933WJXx5ubJKrgQQUASYp9JcX5mgWnMuxC5VHoBlRUCxYtKJTCCUqTNKcTXjjjoMIjNtrr7yJgCwpYs6Z83xZDmqKrc1KmNq9zEGCDBxXjIBispZHiOmGrrp/ZEHz7PF29Utt6Fj8V2oz5lbHDO314bLf/C+cLch4QEO4LhQLL/GMnHXMwSYnPFz5+r3O+YCDYGgO3asIHk8Yzc0ii8rg0sH8PsyN1gXbC50aYIVBtCTWda3EHjty5yqfwEOak7AFQCDXc4IgNn3CgMM9Nuy5x2EUdhJU6HEb+Uy6g3MeuAyLH7v5/rs82i2RCY207WvTFluvYZlRHXaen+OwmSu5m/cobU8N3+DbeOtagcdZOSFHnzwQZx00kmDBmOHHXYYrr32Wpx77rlIkgRnnHEGdtttN/z2t7/FAQcc0HJ7LYOx9vZ2LFmyBDvttJO3fMmSJahWqy13YLSaqufIJfsRS1lkCzpNovAHvt3Zn8JzXxt5MNosVgkAJA0oNe3FYAC+MjjXa6L9m70AefkWvt4NmmYZMWMyIoXgZBcAkosA4DGObRMr6FlVs4H6vN12KZC1C9TW1M29KVymGiZjkmusmVI6AhOOOby4FkVJnbaKAUsL77RACnPmIr1rofteBNN3K21dnwS+uKkcBbByWapA4UKbd4ArzXPnHXYfAv5eoHlOWY+iOFd3Pem6xWKnwtvkQFjcHRjuy12/3HhSBB2f9ustuYG7OPmxeKIFnUsshpCfb8zINdmM/eqNFStv2ywIn1SLTaC/hj8R48CI6/lRv7TS/kAeFiUvJkL8mS+xapbpE4UqvwOOXMGftml01VDv7H5TyFz0ZqHQrhfnRfcK/vUj4y5KbrGSSCZ8RTgpEmkmnevChiIb8q2aTUnWaDRw9dVX47TTTsO0adMG3d6BBx6IAw88cAh6NgAw9sUvfhGf+9zn8NBDD2HPPfcEYGLGfvazn+GMM948mTvctSRkAplKJKKIHQIsKFM1bWMPRgKI9cdtwhX2uaBlqNvDQZWLGRN2Rp5IYYOneR09+i+lATbciK0wwfiO6VI1DZnkkQHYgYVUuCLPWuU2K0rVnTuNs26JEB5bJzIJAT+tnQ/K1NdGdwNpR4b2SVXUOutIPngwGl3mPLNUQh56EBpdDXQ2FDoKTaHqooWoz5lrg+R5PBngQINTQxeW9XLXLIc4eB7ULbch/eDBJl6t3bjG9bwDkN92uz2Oc9XmDFT5rkHHdiWey9Lfpsyi0TIO2Pxz8V2I7pwduOK1LX0WrTnrRUAsTNxoBsi4JpnVE+vnVN8LNSjirei3EFZiMNuXgVWz77FYNDKtNBKVOF3CoE+JNEXFoc2zKKWrgRnrizmettI63B3LsyppO11voNE5eEHK0WwhCGsWH+i2D66nzgHp38fwXRF+p4QLDobHbPRbpVLBtttuOyCFfLKVK1fi6quvxic+8YlSfc9Vq1bhqquuiq7ry1rmV7/85S/jqquuwrJly3DiiSfaWk5XXnklvvzl9T9INDRvYC9mowacUX0y1fRHvy4sFgOVSAHBMj0BnhIev+VhFqVrywE5Ai/NZ+tFQWRylxZshayYOpBZaqRBRKHnlaUSsojVyoSRwwiBGB8kG90NGzvGQUS7dFo/BHZEkYAhU3cdiDkwbkthpScSUQah9u+2272XbV37bFYINHjMFmW2hTFjZLaA8cHz3LUURd8Zw8FFYrl8RFiUm4494e67CjaNVz3w5SsIfJELltrlGm8k+ktxZWXtON6WY8V8Vy4HjAj295MAwnZj15fc3L395pyMQfk5JeBF9yQUCqVJRyn5op+SJN7x7IDtAyb6TBZKKcQqAFD/7D46D9o1WZUh4BNpxWqPrc/WscAUXeb3IdQVi11bXnkk9szEZC14e81iY92yeBLFcBhlUw72761uX/va1/CVr3wF//jHPwa0/6WXXoq77747CrYmTpyIe+65B5dccknL7Q7I2X3kkUdi6dKl+Mc//oF//OMfWLp0KY48cuRLAg2X9VZ012kDaex4/nHrqktR08oFBAOclSlcZMHA05s+WfmlJGyJHwJU4eBCM0suoErabO6zQFqtoNJesS9TkSQWfNFATICJtJV4Jp3VnSr2o2xOkhXIOtKmMT02YaGmoOrKK6DOxT/p3CqHHgR1y20A4IERPXe/KBME+GDCKfHn9ju1Lwqx2dBkaq5T2/xDvPsRY4Gcm9e5Futz5iKUHgFQkiJxTKQDZ6EWGYE1AB7go3UExHibDpyF2/qlm0KLlUkqn69bx1ky/hyGz3lvYqB8O7N/uaA0/UZi7ZRqIPaDJeFgkZTfnTo/17/j4CwsseSESrn4ayjXIKSArtdRW92JPW8/v8++rQ/WGzAWwXOQa10CYuWyWE1c38Xkm+6TsCB9ZLTF9BD9vdXt+9//Pu655x5sueWWeMc73oHddtvN++vLbrjhBhx//PFN13/2s5/F9de3XhP2zZNmM0xGsRkyrXgxVq0oNg+38VguVwbJrEuksEyAp1fEwZYQkBnTI2PrHMBKAAiEM/rYzNG5DfyEAIrdctvTcndsHnxv/ksv1dw7VlESiFyZja4GKu0VVDdM0ehuoNZZL17OomA7nKK5p7kGjXrdH/w8uYN5BwAyseV3XFC9b44ZMmySYMDLj8fT3nk5IUoXg0SbUxmYnjvvQHrwPHR3N6xOW3hcw14xl+Wdd0AUMW4ygQWy9SKxgrNjoVFSBf8uK6bUVbh9M1ckMXJmm/Ixyts712NvbkgqhRQDbba+agxcKeWtC40/p0A5eN8+kyqmNebc9WGpHbPcsbNxhqU4X50DpHdXxDnx9TYrOgAXSQDE+Hk3umpodNfQVnUq4euTdSz4gJ2YkXmlqpTqE2zzEIzQeLyYZdB5DJmCXSeEe67WtXsyxxAE8A9JT9Zv41JdA7FnnnmmFDPPbaeddsIzzzzTcrv9AmMbbbQRnnrqKUyePLlfjW6zzTZR/Y31yfhL1Qa/ZxXHOinfBUH7jJQRIMu1SeW2L+iigLFhzJRltMLRMRHCZpbRYKQCNfEQiNF/zkaQGCtAsS8ue42DDc4QJVIiUQSs/PMhzSfrLmYDcNomrUuJ4tAMeyeh6kXRZdsHs4+ulYs9c8FXkhig60euWSsy2fDrddKlpBqc7rvJpiTgoOGDAB3E1iWiYq8HV3unvo476jDojszeE4q3i1UgsEBm7n7eNSN1+nKsmfscugudjpu7577oLXd1omTclcpBYxhb11spJX4OBPw4YAMouNq/d6HJTDJXu8tajG1Pv4fQDOvrvvdHLsPfPym5EoFyMH+zd0kiTO5eb2yOF5wuBXS9gdoba9G+8cToPqPd3D1ydXY5KM114v1e+MRGs6SG3uIA+X2heCIbF0bvGBHuU0yixqQt1ivjUl0DMSklXnzxRWyzzTbR9S+++CLEAMIa+gXGXn/9ddxyyy2YOLF/P+bXXnttUAFyo8GENC88GbiSEimAunsp83px4QA7UqbqChISKMBVJTOfgb7dKPQiy7VGbAZvQRcDYZwxDGNwaAQmMEIvUplKKCi3v6QYHumxGyZoP4eq5Z60gUThymQvXRokbT3O4iVMrshQwiA0Umcn8MgZMu42CgPLOaBJ71qINfvOtliXAAOpdseOnd92O9qOOsx3YdK2cLpKudaotBcTAlPxxt4DrXKg4QAKBfw3C3AXQQB+KoQFj1xY1sSamW1MtQPXRpg9ScDMfDbgtJnFgB/vW9jX2HZ0/mRWV6rJesDPznWZh6LUjhRlQMXZL7fM/e75s9I3U+OeC8EGe83S3cJjm365Uj5hrJKZiLlEnUQ6Jrq+uhNqAKrgI23jj/6QBV52QkYu3mIbj21nLuXQZCqslAWFMWgVf89xS4r3FZ+c89qn62oS3lupr1baGLPB2a677opf//rXNoExtJtuumn4RF8B4BOf+ETLjb+ZTNUbkKjYFxxnVwwrM3JArBmwEDAvaCvFwTMNmWuT6P7wvGi70AggeTPQAjR4A0hYvoSBDcm2I2VtAPalF5Zw8jKZyJXJsi2NHKZ/vFAIV9XjbiohEyCT1j1kWbBiACC2L6yjSICDyz2snjnHBr93sED/ZF5ZdyZ0WcmwjpPtCx/8CyZRCuNuZSAvBDFJ4Vq1zC4SqIa7vxxUWnazyHJFIcTLdde4fAWPCYuxWgTMfKFe3yUaAiueLRn2P2SgmsWVGVDePF6QxI05iA3jzPj20TYC9yWC41F2NTfnZvQ1qjT7TP+JcQmzKl37PijsLfMSMEH8Wmn0rFyDuY//JxZOW3/e5eH1jgEnmQnv+YhNaiyQiijtEytWzqB0WnQ8C9qsAxKq2KDXTXJEjsG7GcegGCCE6JXN7ItI+sIXvoCPfOQj2HrrrfG5z33OKvkrpfDDH/4QF110Ea655pqW+9UvMDYUdZzWN3M/Wje7FJlhYlSt4QBO8eLNVY6/fKX1Su1DaQSqcq2Raw2lUfTX3L+KTKAUvFkdNwJFHJB5rJco0/zNwBcHabx/AJCrpMhOzT1tLQEXbEvuCIoJSWSCVAqIAhjl5JIFuaaUPV69u1Fi7Oz51bRFBCVQRi5NctnCxKzxeDaRJIWuEAcZLiNQ5TkmL1lUvje33W7uwaEHecCdXv5rr/2tzRgDygDEumWgrSgpzzYldy7ta89NJpbV89gf5iYUSeKBOieTYf77avdlRgzwWbbisKVYMp81i7NhMUAZux69sRmhcDHggC4BslJsWazmJGNZKO5P2fghtz0xLhyACekD6HAZtUFMXuhCc6ER0pbsKclvBH2OxWOaNgybWl/bDQzAfTLSVgZkdG/LgyaFYBiWm7+bXLKEF9saGXfDLHRdvGNE0J4q1ie9MMBjNvrspptu8r7X63UsW7YM//mf/4n/+I//6HP/f/7nf8bpp5+OE088EV/96lexww47IEkSPPPMM1izZg2+9KUv4Ygjjmi5X2MB/L2YkUeoQBQvM5GmSKRARWs0ANRrPahUK4VOVdpne8PWT5rhs6BWcm1xt83qK2/C+KM/5IBLBJCFbBYt498BlNgaESyPgTVirrgciLedNFma3O2j7WAqi9lpofVWU6itMW6XSrXCgm0L2QK4IOxY+rvHvoVuw2DyQdplmm3LgQYPdCc1/5i1zT8EyIQVmaX+0N48G5WuGBcXduBWWwZISseMEDgT0skz5MUzQH2PaXUhOL5EAjQ0HCDjLFf5mYnVm/SuX2R1fxT3mwW7836H7Gcz46CVZ0jG2okxcVzDqj8SCdQO/x9+Nt/Lvy1fmqGIZZKAVg2riQW4yZdk5Y7C+LdEGq29XGroWh3111/H3Cd+gYVTjy71d7TZxE/Nt08bn9jxWDB3vppdSzaJKaR2rCsYxCo6gBwG8AsICEEyJ+bdRu8UmnwLeywBqHXDjI2Jvg6NffCDHywtO+KII/DOd74T1157LY499tg+2zjnnHPwwQ9+EL/85S/x9NNPI89zzJw5EwsWLMD73ve+AfVrDIw1MRHEIVhAIgTyNIVUGvXOHvsCqLSPHBgLLQRTgD8YhTwnD6znL70QlITWLC6mt+Xc60KyDzwWQ8gEuXTxNGSUidks65ObWd687xxwhlIgVJswJgIqoC37FFpfAeitmouTKU/dnQhvxH0XADHzn84hsYCMjMcucaCaKx5k79qPKf7HjGHjyLqBMQlhvEvU3dxXG/2I5wq3pf/Nnje/D/1jnsJg8H7t089+x8zGjnV2IW1RjHI0WF+lj2QmPfekJ2At4hpjQgrksgyuQxDdV0zZOrN8CMoZjYGxprbHHnvguON6l6d69NFHMW3aNAgh8L73va9P4PWnP/0J73jHO1Cp9A211j/Oeh1apZpBZBWILEUiHUuWdlQh0goq7WkxM5XINhg30t21bFgYqK5Vjvp/32KXcRqeXJrhy46C7Pn3cD1vhz7LzAnOhseLZ2M6Ud1KtYJEJAXT5QNC0t6SqURarUTjgkxShXD1BXW52oAo+kixadzVR0KgJAabK5NlqYo/2i4VwsumJP2tvhiinht/Z6sEGJYvLlpJ/eDXOLyvMRNMUDcG1nh7HITZhAeZeIMaF4EFnJuWa7uR+YAN3vWhtmIgLBb7FXtewu2jsYwsk5C0uXipoMFYONA360PsHFyMlwnS50Csv7pk9Pvg1SQIYMVkdnJVxIFKgUTSPhL1zm7kjVp/TnnELVY3kswynHRthdOTM9ep7Fr02maMO90T+pOFODU9T/y58vtAiRdjw+j6bl1dXbjkkkuw9dZb97rdrrvuitdee63f7c6YMQPPP/98v7YdY8aamAUZTJ2dvtMLrlLo9uh6AyIbOWZs7bW/RfWIQ71lfODmQIyMqH3AZ8YA5p6ULnaLvsfbKRvpepEbwdbdS2WJEeOfbXp5nfWN3HLFoKRrqigvVI6HoizXXOWo13Ov/ZDhoPOWmS+qGdbZ5O1rxhapHLZuZaw+JbfqEYeaQOMCAKoaili4chwRPz4vR6XqirlnKL0foESDUkJAkbGaK8eYCebOoZJPOndF4DmjJlFmKGlbqoQQk66gZakQ0eytMFC/L0V9oGBVm3iD+DXrD7ihbMlwGT2DYUwlBYgTEOPB4H4f3TWMxYnlKgeYThX/z8E3LZepsPvb7Ej2m7LtsixKvi0l7/DrpGsN1N9Y2+c1Gi1mM0eDuDmKo4snWZjYMP/6hUx3mfWiCV5vWeRa5UiLqh55L+/F4TCNHHqQ1NZg938z2KRJk7wA/jzP8cYbb2DcuHG4+uqre903z3N8/etfx7hx/SNfarX+T3zGwFgT48wMzSy11pBgbE5qWDNVa+DxY0ZW3ZoHeANOI6w3AMVdkn6skv/yT1h5Fo/+l8IDOdzsMhYADxj2JmHAIZy9UjHlXBWxZcIBuNAq7RWPvTNB7RKQLikgl+XBmbtsic1TxW+G19ekc/MC5RPKqoQtFA6Yz6TrFTMCQ7lSXjYqt85rfgPAiFyGVRQSmUB3G+ApM3OXE2FqhVKGpWW5mtzzsOSTjTFjnlACuvw6UVYjUJQjUn6Kvcpzy5Tx5SHg8q5HAMjCDMfoNWSCwFTnM3Z+fFkziyWl8AFW1QvZlYxYWh1lWmL1JqN99+KS4lmzMdZNKy79Sr/JgJVM469xE+dU985R1xtY+8rK6Paj3UhjjX9vZhxY9VWr0mznx5Jx49mxgm1PIQTrStoiHwI35ZiyBXDRRRd5YEwIgU022QR77LEHJk2a1Ou+M2fOxJNPPtnvY82YMQPt7e392nZAYOyZZ57Bz3/+czzzzDO4+OKLsemmm+LWW2/FlClT8M53vnMgTY46IwYMcD82mRYleuoNyLQCBfPCyyZ0jGBPjSAowOKMWKxXjBUDCGw5iYkSKGLBqkgFGt3Ng1T5y4pcC727cAzI4wxDrnO7r9Is21BrJFnFS1HPZQIJiUrV6f0IGHDWNqENWmnomkalPbeMkVY58lrDQFVS7Cb3TQCO+KBuXSH2xWsKlXMgZrddeGfTc1577W+NZlImobsa0dg9e85FfznYICZM0boChKqaYkBPG7AbJGGQaGUeyRwz1yGo4EDtFUXhSdtMqxwpGw5FklixV16mihf6Lh2viZ5YOAhyUMY/xxgNN3EY3KBYYk8i7wCzPIm60PrDkIR95Cx0b6wbrScR597OlQsX61rDhFqkaXGOGrU31uI9v/oaHvnI2X32dzSYB3ilm7CF7lm6ZlppVLIKotmTfHsCvDpHmsUTK0KjWrd8/7FC4euXHXPMMQPed9GiRUPWj9BafnstXrwYu+yyC+677z7ceOONWLNmDQAT2DZYZdvRZKWCu0JAVjPIrAJZzZBOGIdKNUO2wThUNx7ZgFj+kqFMsUQmaNx8a3R7NwCIkqgtmUyFzRqyEh+R7ZweGEs9Z8KUzYwAHM9MCtPXCXBwVo6EeCvtftxYQu2xGB2ZNi/iS65SHi9liwp77RZtsWMONAB9zS9+bePUKkV9zoEM4ATMuOuEx0aFiRfEOPFamDSgJ1LYjLPQQt0zHutGbVSliR/jbs7QyA0ZZ2nLy3kyiQz6HF8eZ6d6y2LsMyC8iFGk44XXh5c54uchi3hJ+t3ELJZpzNtt9tvp76DPWVWS5rHuUO1i6d772/UDjAH+dQ6vMf8DyhmStF9pe+HHxbpt+x4WRwKAUTblYP/e6nbrrbdiyZIl9vsPfvADvOc978GCBQuwcuXIscYtg7Evf/nLOPvss3H77bcjy1xdkDlz5uDee+8d0s6NpFHRXm70YpOpYQpkNUN14wmjInifjAbeZoyY2648Q6eBgIMwgGaiSdN9Adh9ei2qXvQtBHq0P7EvgAFSHBQZl6S/PTeZSQhphFBpxhyCPAtKmgz+3rWQ5UQEmhX3xoD1ZauvvAkyk8g6MlSqlV7vky0uXrAhPHib99VlUJoBiDNK1G8K/ubXwCZcMKAW3mfjEvQpNSFNncpKuwOUkl0rnuDA93HtspjEfriOwnPl7VAfw6D/MnsRz8RsljFMIp+xWEpuMfdXCATsuTYRgu2t/WbHMvGObqLkt+u7bCvVtmJ/I2+RKwVVb6DRVcNuN5zV6zFH0rhAK+AD3tJETLqJmPkN+O8AwZ4T2kdrVw0kZuHz1t+SVcNl5KYc7N9b3b70pS9h9erVAIDHHnsMp5xyCg455BD85S9/wSmnnDJi/Wr5aXrsscdw+OGHl5ZvsskmLWUZjHaT1Qyy2gZZvMhsLEcRQ5IrjbSjikp7G9KO/vmEh8PGH/0hOyBRP5uxLZOOM0J01qXIs/YKxonPKkPWgl5OxEzQMoC7J31GwDEIwgN6fPB2L9Hy4EcAohJkUPJgXgskZeG2ZDU1ieGwAITLlBQgpDeWxC+U3tzt24qtvvImiCzONHLjNTMB2OuQMl01x9z5CuKh25HrlZEmHb8e9joFTCnd60q7H9HgJXkUoA5woKdZEW/ajgMxOgZnbH0GzzFhIUsWPp/0nw+kMfaN3/O+JFxiFtOnIgvBQ2/H7i2OLLS+to1lk5KZ74pJuhh3pa43sOftIxvvGrOJn5oPgCbFuQemTaZk4q0HfPbaq3QgXbkpQew5Y8XiIJsnbZVdmJyVXVegjAL4B/v3Vrdnn30WU6dOBQDccMMNOOyww3Duuefihz/8IW65ZfDv94Fay0/RhhtuiBUrVpSWL1u2DFtttdWQdGo0mEidvAKlLsu04lH+NOOsjIBuz0bHf9i+sMjoBUWB4H0ZgR8+A20G5DhrRt+jbhY+QxUBsMpkCYQBDvCk1QrSjhQylQ7cUUp/sZ97Cefl4zUZfOklXalWbF945hqBEv7Zc4s0mTkP1tJqPGRz7bW/tZ95/TuZSWTjUw90WXdnJCNWqxxptWIBJ8Wa0flYuRACSATQAnaMJzDwgceK8xZxajKTSIv+JQV75oLunavbyoZw97NluWIZiYnfzwAsxtgr63JmwCzcthkIp75wpja0mJwEt1DCQrAJELe+AsvLfXNly3gfYuxYuJwSkew51OvQtQZUdw3v+dXX+t2HdWXN3Ly8fqeZlLmEoEq1YqUtCHgBsGWmKPyBg39u4XVrxvTzSV2sesOYjV7Lsgxr15qM4jvuuAPz5s0DAGy00UaWMRsJazmAf8GCBfi3f/s3XHfddUiSBFprLF26FKeddho+/vGPD0cfR9QIiNmYnCLmotJuXLQirSBpGxlmjFK7SQKhLzcHf3k3CxQOBwen05W7kiJWEiPx1nFLpFO7pvUh+OLb2jgQkQBVoGd1zTFdSrugXegCTCirQm+PJ42Io6nD6Zgak42pPWZNgrnliqB6biFAy3XvLrVW7bUf/L9e15sMT+ce9hTAZVH+KTPq6pY9k9JmnvLC7QRmKMM2PA+6LqpmtKnS1Mlo1P/7FjQApB882LalWJFyA5y1PUYijKtYZhKqcK9SPUyezakaGmjkkFlqQZYqkhZUrfycArCJFnwdna8UfoakZQGD+Sb11cYLRhmteCwat8GKuxJbGVrst8St2cAfZt+KtGKvR6O7p1jHM4+Vp1Oma+tGRb6/RpMryfpMz6llX1lMo8iKGLBChkQpH7SZNv2JHBm9Z+j5tjGY7Nix2pUDYVQHY2PZlENj++yzD0455RTsvffeuP/++3HttdcCAJ566qk+dcaG01qG9Oeccw622WYbbLXVVlizZg2mTp2KmTNnYq+99sLXvjY8s6vnnnsOxx57LLbffnu0t7djxx13xJlnnlnS8Hj++edx2GGHoaOjA5MnT8aJJ57Yks5HzLTWUPWG/dNFXcpsg451SlFz2+j4D1tmIRFJEUvlXuDjj/5Q032tbk/BkHC3oq/XVXa/kBHDZZkuUd7WMlaZKDFLjvFwbBzNZKl9yoxMx6fewBeyXIlwrsyw/TB2hFyxgIlBs+7ZVHhCqQTEOJMiU+kxVsNtpBOlmzAnsaD7RCb2vACWCQrHcNF2nvvPXnefJZOpRNv8QzDuqMOcy7gozi7ZfU0sc2z6RHFkzQCHkAnSNhbzIyjI3L+X/Jh8X35fPJFbxoY1255vk8jmMhrcehPcdeLFvkyH1nkJDPA++Syuk4gxQDr33P7e5CgCAHKle2XqaB9ddzIXVuxZGyCm6g2866ovN21jXZvIhP+O8RhNKv9lmFiRuXeYqhXC19q5NsNr05zRb5ZwEcqf6HUOxACTsTwUf291u/TSS1GpVHD99dfjsssusx69W265BQcddNCI9atlZixNU/zyl7/EN77xDSxbtgxaa+y6667YaaedhqN/AID//d//hdYaP/rRj/C2t70Njz/+OI477jh0dnbiu9/9LgBTMf39738/NtlkEyxZsgSvvfYaPvGJTyDPc1xyySUtH5OCXWk2mStl0sSlKPTFKna7vKcL+/3ftbhzp6OG7qSb2KTjjkBS1DcUzD1HQda9qVaT8Rd8M+HCcpq/7wIM2S0ueGn3sQOmQKISbzv+QuVuIXohZh2pffER6wUYpkEX+4nu4n5kfpwb71Ouc2hoG6cWno/rq4Crb6ch2Tkapm14XJXNjLM+4fE5qykpnb+4/y4BgjEKBZOIQosM8F3Uuc49QEDnDwC5igSwF9pxQvqSE9R2Wq34MWusuDZncLJxDgQDQK79eqFJAOKpFiPvi5BGzkUVzE7oZuUmWR8NiwirZRf2r3TOLRo9O1rnHjuWBAN7aDHGmiQtjGnPRdYMhPHYMAL2MVYtVxqqe3Qq8vNnir83DKPpwD/gGEhVL96DxHQJknYpv5/8wvMsZAMApAzuQTxez1zTiGbMmI1a22abbXDzzTeXll900UUj0BtnAxZ93XHHHbHjjjsOZV+a2kEHHeQh1h122AFPPvkkLrvsMgvGbrvtNjzxxBNYvnw5ttxySwDABRdcgGOOOQbnnHMOJrQY16UbDaDNqeonUkLXG1BFzIauNcxLTmjo7rUQ62imZMEBcxfyF5aGjhcE7MN4oHpYFLlUSLc4jqfMrrTnUuBGhY7D/tv1RSYlP0fXJ2JMhFXlF8LobVkhRmnUyrXOPcAVXjdT6kdbVs0r1q1z6wZUiuKYzL6VqsCqn93Y0vUcrK2+8iZMOObwUiZjzIQstNcyaVX1CeDaYOc6vCSHRDKAzUCdgaLMzVe4bBLlMzQC5Ip2For/EktG9T9N5QC3Pbk1qb+SHhKYygGAYb5QU1C6aL9wUycMtAg4lfzQeEA7AW1u7pjNjeuKNY0h6idoI7DIgV9YhNpt6//u6PdA65rpbYUuS9PvWAa0cXfXiTFrIh47EhayUYJNBukZp2uZdaTWUyCgobUDYokUkHDJOmTcZU5tkVFYQ2gj4QXhpjTQCwHa7zbGbHRav359raR7XnjhhQPuTCu2atUqbLTRRvb7vffei2nTplkgBgAHHnggenp68NBDD2HOnDnRdnp6etDT02O/UwCfcZv4elO50tD1BvKsgkZ3D0RqNMfqq9ciXQcx/Jue/C9QnJVSPrihZb3N5kOXZIzlajawcIaKf09kAl0zDFZarUDVtTerDdukFyW5cUL2ICxaHStTomrKujCo9AlgWBlaV+9uWNekjUmDQJKZF7rXJ+FKP9HxaNBvBvCG21ZfeRMmfmq+jSNSde0zUkEmrBO9NKWjQp01YsBypaxMCA3oZj9tgRmty4rrmUhzjV0WqwM3DiCw+wbz4hcyAaSJMxMygWivWPV8DsQI/NqYnSK2i4Am6rDnlogcFZvNW8QRFjFqzWpQ+oyUByFL20XZqQAkue3jLq/Y8SkhgAst91evKgSSdN8SyfT5lYZsAhg4M2YFgYsSbqq7B2Fw/0ibnVylfvyelO79YJ5LI7GiaiSk7KqQ2HspnaQL4MqMAWXQatbzmMVIIoTnNm+uJzfUNhRuxjE35ei1foGxZcuWed8feughKKXwjne8A4AJfJNSYvfddx/6HkbsmWeewSWXXIILLrjALnvppZew2WabedtNmjQJWZbhpZdeatrWeeedh//4j/9ouj58YdoXmtJAQZxppdDo7B7IqbRkRLkrZQYdAhglMBWZvU845nCItMn2EXcjAMtmIYvpNPlxXLRMZtKCK41ysD7NVgHYWazpQxBozY5HAIv2JdclPz6Pz7H9YUAs6ygGnppT0veLaBeDOosr+8fl15Wu47q2VT+7ERM/NR8yMxmmqkbuxmIgSSse85h2pKV4I1NeityXgE7NANboanjsCw3r/DvFoeXaoKFEJABLGFHKASjf3ZwgUT7oIXCbCBdET3peZNQ+jwmkDEIaZIU3sGp7/hwkUvvhxIQC+t3xnbRJCMJC1om74nsrPM4nGtwcS5db1rWvOKUQRHqljQrw5X5PbDu2n6tQIG3gvq67gP3Rlg249dc+jgac65HYVa5BSDF5AtoyZYBzWwNOtJieB5lKW+YKMM9CMwmL2L3mYRTeszHCjNmYvTmsX0/RXXfdZf8OO+wwzJ49G3/729/w8MMP4+GHH8by5csxZ84cvP/972/p4GeddRaSJOn178EHH/T2efHFF3HQQQfhwx/+MD796U9765KItlGe59HlZF/5ylewatUq+7d8+XK7jmq+5UoVbhYTK+aCwikY3Ehc7Pd/17Z0/q0asUA8ANuqzbMg175carHg/JjsRBhoz/f31gfijDYQn4mNOo0fpvklhV3Xm5H2FaWj02fS27LJCKIckG2TAzJZBHvHFLcTGzDcNrEN/7j8ulEBxMhcRQFzHYgBIj0luheV9gqy8RnSjhSVasU+H4lMsPLH19vzNEH+oqQdxu9rM4Cea6f2T0CJx3nROlLrJ2FY+kxMBvWXPw+cySNAQS5oStpIO7JCSiMeb8UHXmIN+R9PduH/OWijAHr6nfOA+vBaheb9JoJnPn5v40LEvK2Y8Zgwt308C7Qk1yClybYMtMj0CASl92XhufCEmth7I7xmnhRLwfwCsM8CjxXrq62Y9SVxMpSmizJjg/kbY8ZGr7UcJHDBBRfgtttu8wpqTpo0CWeffTbmzZuHU089td9tfeELX8BHPvKRXrfZbrvt7OcXX3wRc+bMwYwZM3DFFVd4222++ea47777vGUrV65EvV4vMWbc2tra0NbWVlpuA4WFKBgeZVWvVa2BXGqPNUukQF4f3kBYCuY2xbDdcpOxWI4diVkoYtqXezIWRGuPK/z6iiEYapZKTu3yIHHHWIUDSfHy5aV5CrkKIRMkBbtC6ewUG0KzWKfAXQSrl6oqOJeczCReuei/Sn0daau0uwmATAUUgEQ6N6oXz8fiwmgZAGx+6gLUGbgGCsZR6pJwJlAwTixLjRICNGOeaF2j20hZwEoPcNFd343DpVhIZ01kAvXOurePqusCRJvkDy4tUC/qpJYqEtRhlxtmzt+PTLOn1pNsUdq6Yck91p+EmGZuyZCd8wAfY1lC64/bKxoDFtlP0ITSSp1I+5+LwDbbf13blDOP8fTnKCM3fIdYlyR79vOQ4YyAYB5ry7elddzK70phxwDb1lAEcvXTTDmjwboph6gzYzbk1jIYW716NV5++eVSQfBXXnkFb7zxRkttTZ48GZMnT+7Xti+88ALmzJmD3XffHT//+c+t/hfZjBkzcM4552DFihXYYostAJig/ra2tgG7T5vNFK3wotLIpXYvVq0x94lfYOHUowd0vL5sxflXY6PjP1z0wQEYXhKlqVCiyiHT6Covjqy0rgBcAmUgxs0HdUHmEgs8Do1ifVxfQgauPNsXMreAS8AIn9JgTrEhGgIyA1TdAcK0EHvkOlj8ev39+7+K9nGk7e/f/5WJFyxi4ZpZrnJAJNatCzg3eyIFqhPa0L2aNKf8+o6UheZYTWFBD2AAU65ySGmuIQ1UUko0KDZP+DGFWuVeDdF6d8MALLhkAgD2nhDwMYxdw+5LemU2jq3ZgwwC48KrwhDqUiUqKa0z+woorUoDOLdYnGXsNxcDYKHlSiOxYKnMvMXPr8x6xTL8CGyZbcogmWIHafv1yXj1Dz/Lmdyxve/PXYzcJd0MVIf7AmDeEQGosWzK9c0eeOABXHfddXj++edL8lc33rhuk7XIWv4VHn744fjkJz+J66+/Hn/729/wt7/9Dddffz2OPfZYzJ8/fzj6iBdffBGzZ8/GlClT8N3vfhd///vf8dJLL3mxYPPmzcPUqVNx9NFHY9myZbjzzjtx2mmn4bjjjms5kxJw4q6e2GsAzlS9brfJTboX1kUgLDEZflyDYXZW/vj66D6kRZTI+EDELRYTY19ebABNpHAZS6TqXkgV8HiNcJk7jnAxQeSWCjSFQldSWijOC5lY9XkeX+PXrBMeaDSB/tJbnkijRdaXCOtIG6mG87p8IROqasokLUimNh7EZLVPqgJwoIuua9aRFm5f4QEo/34nNv6OtiH3IbkjRebckGnV3BshfP0zmUqvpqWN7WNZkrasTQDwhBTIOlKvf/RH7uqQ5ROZkz8R7Pysqz9jrl5yqxfbOvemn8xB4DBWOiw28Wjm1jTCzb2/hmnixyU4eJZodJ8iRsz8heBMQAgBkaUQqQO2I1H8Omb0/PKi9FxXrtJuKnVwNzvve8z1G0rzxALv+XvIW046eIK9p+y9X3dAlki4wf691e1Xv/oV9t57bzzxxBO46aabUK/X8cQTT2DhwoWYOHHiiPWrZWbs8ssvx2mnnYaPfexjqNcNG1GpVHDsscfiO9/5zpB3EDAM19NPP42nn366pJCbF7StlBL/3//3/+Hzn/889t57b7S3t2PBggVW+qJVk9UMMq1A1RvezDJUq0462v2XWCULmxpSczpJxT+uPyUSbHzCkSVgMfFT801ArBSebAVQnhFSqRpapnV5OyGKmo5dDc8VoEHlbnyXI8+6E9J3QThWjgVWFwILLqvRdxm5QFwTuJ0UM+SkiAmhygQAikwrF/tDLgrNBsF1lQ01GFtx/tXY6itH20D5ECzz+5kXrluAAKqfSEGxMiUpiuIakoXPVl7Eb6XjMyRdDai6gkwlsvGm6Hmju+GBdqqeUKlWIFEkFxRsGbF3usjwNPcpzjDQ/ef94jIm9npkjvUgsBWyn+TKJbbXVpNgzyIxcQCAWjnGMhYfCZSzgmPmu5BZEkwhp1CKz6RwibQCmVWiMWJe+6I5SEuktHGw5pgV5EKPGpWsHc77NHqKa5+NT20GMWU9UoYw3ad6vVFy90Zj74KYVoBNMqT0fhtm+xjTGSRSSBb8v47eH2PZlENj5557Li666CKccMIJ2GCDDXDxxRdj++23x2c/+1nrVRsJaxmMjRs3Dj/84Q/xne98B8888wzyPMfb3vY2dHR0DEf/AADHHHMMjjnmmD63aybmNhAzM0dzeRTLPOLqy9F4Cz28rzY+MJSEWXuJQUlY7Azfl/TBwgww/t0OXkwhP9YvwT6X1xfxH5F1oSCr1fpi+k6A+e60lYzblQOM2JUPJQHWZ0ukyTQ0YLh8rw275A8a4XqeQVgu+ZJ4GWZWSJNlsXkDn3A1Pu3/IgOTAx3qi81YTZ3QLwq3YK6SpvePsjOb1XEMXek2i7QAkL1ZKO/BlwMUI9ck8zgAXjxT2D+H5mx0b6WPYv2JWW/xZ2E2Zmx9ovsvsTHUtuP5x9l7nIO05OLWm4t+IAxVmCkPlIFYby7cdR1jR0H4g23jrW7PPPOMTTZsa2tDZ2cnkiTBySefjLlz5/aqrjCcNuCnqaOjA+9617vw7ne/e1iB2EhZIo3SfqWjWrjPDJ3PU8L5tgCgG/VhB2M0IGUdaYkxAJq/tGUqvMGM/jsmzBXWpay2XLmZvnVHFlmJ5lh9x42V+kGZkamwcUOicFFVqhWX+UasWjGrpcxBF1DuF5d27rPUa4ey5+h4lJFpXFpxodDRan87+yrLeFUntKE6oQ1ZR2azStsmZEjH+8wsZRgCsOccZlE22966LNlzxt2Nll0rmNKUFWim4HvBmVM28PmCwb6YKd1rMnKD8+LPPHifxyhSX11h6MRbzo306ej6UQ1ULyGCuTdDppD6Frq3wnJH3JxL0w8ub7Y9XRP+e+JisdQH/xjS6w9gWDCZVrx72yzrcl1apZohEcJVEFEaqqa8GELPLatzqLqyEhVll2JS+h6WU+LtudAIXzaEVzng+/F1Y4XC10/baKONbHz7VltthccffxwA8Prrr9sC4iNhLTNjc+bM6VUqYuHChYPq0Gg0IYQN5qdZqCxKIvGYMZFWADG8MWNaGVlDGhgaXY2mNfD4PvRfekK2PNvMsSFu8BaeDhMxKTZTsVBHd+2xF5yMZ1bSZ8tepJRRR7ExxrVlSuqwOJC04iVL8CBsOiYNNo3umnWH0uBq44fSii2wnSsNrev9UrkfLVapOrcraYrFMlE9lX3lyilxQNEIiqNTFqEswFSju1FIZAjU19Qs88YL1NNxSWEfcFpuPA6MekaSF4BxO1HiAFAAMfbM5Ur7gN9mApLr1W1LgAoA6t3dxjVqi8UXv1l2jQQ0UAzCudIlFo3Hytn+MZ07bvxacKDam6As/200SwSwkzzlxFwti2S1w4pkooCl5++ssD3OpCVSQCgBtY6ZsZ0vP8mAMBgPg6prJkqsfVdxYRQnT9fRli4KjAMymUmvaDrPhlQRrbWmk9lqNiL1KLlpDD4b8s3hIxic7bvvvrj99tuxyy674Mgjj8RJJ52EhQsX4vbbb8d+++03Yv1qGdK/5z3vwbvf/W77N3XqVNRqNTz88MPYZZddhqOPI2Kl2a6IB2uaODIFrdSwzyy3OP1jdnAg9WkKciaLMQC5zm2ANRkPPqag9thM2QCZ+CBC2UzhS9OyE9IxU77WE3NT0bGE6485dnyAIvAW9pcH18q0AllNowMq9a+tYJX6ivEZbdY2od3GV9kAc8ZgOcYwsaDXMoPsmhvNrrQIupdWZBVw7FSl6idHpEXgfCISBu78JAHSDgOMdEbbhMwCJiENC0UAr1I1sWP0fNmEDEoMKD7b4Hr2DHOWlpgoy7oWgM98ds8i6Z2ZfksrrUHt0XEM61wkFjA9KwsCIr9zHjDOA/n9uEliJ/0i77H6sI4J0t49MJOgivtcBOC74H4OHkUp65y3HQalryt7x/dPAGC8DLoAlrqmUFtTh2D3MVc5VE2Dx9iVGEX2TuGJF5xFF/ROSCuotGf2+sm00pTVChnPXGuINI26MdcVM6Z0PiR/w2XnnHMO9tprL4wbNw4bbrhhdJvnn38ehx12GDo6OjB58mSceOKJpWzGxx57DLNmzUJ7ezu22morfOMb37Cx4WSLFy/G7rvvjmq1ih122AGXX355v/t56aWXWkmtr3zlKzjttNPw8ssvY/78+fjpT3/a2kkPobXMjDUrpnnWWWdhzZo1g+7QaDFRqSB0lYi0Ag0TNNrorqEC82OUWVqiuYfatjj9YyZgOgAWNChylmKL0z+GFedfDQDY7uxPYWUhd5BIgVpnzTIWje6yyzWM3bKDSGYGKno5EusihYn1sWKfBbMRsk1hEDUfbPhslbYl9oMzERawZRVWGNq/5iTOS4HoVFQ47Asv8DtS5Y4GYk+e+APseP5xaHQ1rFQE4GKyYm4uCg7PVQ6ROial0k4sSzwWy7qqLRBKi+Vmva65Mkw8uQKo20xLGyeWCeTKCc5S+xSzpeoaoAkGJWzQBABOyNXoOpFUhe+qpISEtgltlq1yA2rC5EycqxA1ZdvPlQO2xlWmbRydYJyCjWm0IMlnzEIGLBpjyUstRa69ty1jtERaMYArDdcpLzMy2g5j0CwTnlYgUPGWDbdRn1WtAdVdt+y1ACzYVjVlGWAXLxjXBeOuZf4s8xAM/n7OtWMVUWvYAHwdxN6Fkz2zjNe3XH8Y9XVhtVoNH/7whzFjxowoqFFK4f3vfz822WQTLFmyBK+99ho+8YlPIM9zXHLJJQCMdNYBBxyAOXPm4IEHHsBTTz2FY445Bh0dHVbD9Nlnn8UhhxyC4447DldffTWWLl2Kz3/+89hkk03wz//8z332k5dRFELg9NNPx+mnnz5EV2HgNmSVYT/2sY/hfe9734CzF0ej0ayRAvm9wr71BlA1o5KssjidYYgZ2/prH0ejGDQpiJrHp2g41wP9p8y7uscYCKTKyReQkWiqVk6/K2euLStJkEmoogYlLbODMHODmcHIzWSU5q7MxHsx8lk/L+Ys0wq0KLLLqlTXT1tQbGrRMSCScpZDIhemakLOBGBN/5zLglxkMpV42wWfxdOn/miwt2qdGI+vQVoGuZV2N3jbUi7agVKThSqg6g07weDXjzMRlWoFKVjZIQBa+BmX3LVklrl4PytWWzBtDuARsyMgtAZQd4C+2MZmDBeJGk5XL7Ht5zq3vz9VV0hEgjQAbTITJUBkfz+ZRMVzubqYxVAmJZQJ4et4GR5uVmxYu8L2lOAQsxI7XYpbkqVtZFqxyQ9RMKE1tNbGTRvERTWLOxsu2/nyk5AUbkNdb6DWaVgRet9Uqq70EWUBxyZ39hzYtbTPUwHw67Uel7zEag17LkuWoSpQBmC8jmeYKJErVdyPdQPK8iHIpgwZpqE0Cny/8soro+tvu+02PPHEE1i+fLmtIX3BBRfgmGOOwTnnnIMJEybgl7/8Jbq7u3HllVeira0N06ZNw1NPPYULL7wQp5xyCpIkweWXX45tttkG3/ve9wAAO++8Mx588EF897vf7RcYA0wQ/89//nM888wzuPjii7Hpppvi1ltvxZQpU0oaquvKhuwXeO+996JarQ5VcyNuzg1QQbbBuNJLURQxY4Ch2y1Qq9dLbQ1dnxLLOADN0tf9ci/dq3uQdaReLAu5rbLxKWQmmF6XWU7fHdtl2I+0I0M2PvVcWma9sG4C3lf672v8iIJNrHiBybGUfcugVNtMKSoPhAasZZZCZCm4npKsZkg7qiYRo5AqITOVFJQdZNc34332MiiFc8kYFsUBF5FJNrhU2Gzf3A/OIonChZNIAVnNUGnP7HqZmetZaU/d/Ujp/iQWeFXaU+vyNM9Pm2ufAR3jPkptcoW5n9L744Mgd0lVqhW7DeCeC3LPWreXF3Dvu/Wt8Cc7TpjoQO1Y1zvrG9+G/sh9Rn0pBZZbdi4mxeCzxLHfuYvxjAfkc/cod1fSO02wYH46Jgfkw2XE3ulaw4J+FQj0UnA+udKtxl7xnnFJPu5Z4ZMtele42r00iS6L3HraYfw3UYC30A0ZJk+sS1P50PwBhoHifz09PcPe/3vvvRfTpk2zQAwADjzwQPT09OChhx6y28yaNcurinPggQfixRdfxHPPPWe3mTdvntf2gQceiAcffNDKbfVmixcvxi677IL77rsPN954o/XoPfroozjzzDMHe5oDtpZ/faGwa57nWLFiBR588EF8/etfH7KOjbTZl52U0BQ3oLT346Ufqa41zAxLayRaYf/lN+OOKYcOWV8MG+VcJWm1AlU37pVYqSEKfq53N6BrGkmHL55oA/ezxJWCgWMl6MWmVY8beFBoFBWJs42uOrjOV+zamc+516b3IpTuWpJ2GwcIYYF2kVUg0hShjlnsxSiy1A1AxYtV1+vQtQYSIRhjY1jB9YUVAxwL2eg2GWdGd83JrYh2wxTprpoZYFNAaCcaqpVGorTTrSKQVQzGWph1quZLunCjGq2eNEQ1NYNhWpQryiqo1bo8to76INOKx7ZVqpkL3GZua1cfUjdlt+x3XuiZ6YwBsM84sWa8mLouEgVKhaKlYSEFmEuUieXy7zbzL6xCAHLBlV2apWe8eKeYvvrnGcaeAS6O1SQgENNHBdbZdsV9jrUBmPsEwLvfw22N7hrTg3Msv6or627motYSLjY1rbb5CQsFg2XFcdlEmsytjwMycxwGrIvsedresMxO1Ntc9/XXTTllyhTv+5lnnomzzjprWI/50ksvlUoTTpo0CVmWWQH3l156ySuBCMDu89JLL2H77bePtrPZZpuh0Wjg1Vdf7VMr7Mtf/jLOPvtsnHLKKdhggw3s8jlz5uDiiy8e6OkN2loGYxMmTPCyKYUQeMc73oFvfOMbJbS6Pht/cZVmnAX41nUjeprYH64eQsdv/yyMU9HFzNIOQiw4WtU1qFSIVhqVLLXxP1AuNgPQqFQzVDc0LzkapBMpIOFnOZLF3Csmvi6336OK1zQ4k6u3eEnTend+sqiK4GdvijRFo7MLula32xEQ06GLgYEwAGib0GZU6zuHj80cDqNBhmL+RCYh6srG1QDmelfaCeCwskYF+KDYOsB/hvICpJWYEwZ8KW6JYiaT4ndQSdOCSdPQ9XoBoKXdh54lugPExulasX81AxCv7xoLnA4HZHJvaqUhRepl55rjmcw6oTUaXax8VqGJxgd//7z9rE4+eQm/h3F7sklFDv5+CWMiAdh7520bTGS0dlmWtIwmizHjgMzGTab+fV8XZn7HDrzKANBSmSg/ycfFuFXaM+haEfxfJDjool2l3TlWiklJuR5t87gve32CbNSQadRag1zGch0wisDQir4uX77cq0wTq88MmFjwvnS3HnjgAUyfPr1fx48pMeR57i0PtyHXaqvbNLPHHnsM11xzTWn5Jptsgtdee63P/YfLWn6KmvmD32zm1LhdLIuddbKBKZy15lohr3UPcV9IfNMMFJrF55iMI1XIW0jb16wjsyxY24Q25Co3NQQDN58/e8yt/EUiBaQUiM2opRSsXFTugSrXZwHAxCPRdz7404AesgQiq0B31fzUfeorUjs7ldUMIktRqWbQ9bqd+RLDIrIKVGe3CWzO3H783OnxV3WN7c7+FJ772s+G5H4Nt/3fyZdhx/OPA0AuZKfZRkbnqmsNe69sDCTYwC0ElKoV+8QyVKXXXi6UG4RkG4QQaAAWKBPYSoqKCmlHFY2umr0/iRQAf6aE//upVEOdNB+00ABM+3JmTmZVwwh39ljWT3S0QdUb0DVlVexVrYFKe2qfQ6XqxfMpEQJTIRNAOhe8lUqRruwSF7vl+/qTCS554Sx0SYbAywdgfqYkUI4VjQExWk6SGAAsG8q3WReWSIG8W3vVBjhgdlqAjtmyrvXi/hFLnrDz4WxieA199rEcc9d3n6UBYCiqFvAJcC/gd6htKLIhaf8JEyb0q0zgF77wBZt52MxCJquZbb755rjvvvu8ZStXrkS9XrdM1+abb+6VOQRM3WsAfW5TqVSw8cYb99mPDTfcECtWrMD222/vLV+2bBm22mqrfp3LcFjLYGyHHXbAAw88UDrp119/Hbvtthv+8pe/DFnnRtpI4JX+uwDmcgwBwNyVPV1D2o+whIqqa1vsGkDBeBmKn9LxARTSBYYhqNd6LHsGFG4cL4i+Yh8GDjZJ4yjUNUqlQKOrBo2G1VzjZaJ4RiMxiCJNbYkpfhyrD6ZqltGh4/OZJ5VusbFLpFFG6f3SxDep7jK7Qi9hPrjzQm1pR3xmOFqNi6ZyhojS9V1wsWEzk6ofM5QXM3taBvjgi5aHAw+8RIkC3GltmUm3zsTu0f1sdNU8xi1kefh/q2NX9NN79pT7DpgBWnd2Q2QVyGqbG5yLxISkmAQ0RM0CNGLkaFvVXTcAq0gaAYrBXWhIlrmZK+0Fi3MW0tPAi52bcBOYWGwWd8/zZTwGsrQP25bHO/F7R888saExrSxq576Dvhw9znCZrJqYwkZ3zVxXup6ZX66NQBDvq4lxS6GLGKG8eE+Vr7/0AqM5s0UAiyyuzeZkfyrFNc6l9p5Dsa7dIevQJk+ejMmTJw9JWzNmzMA555yDFStWWFfibbfdhra2Nuy+++52m3//939HrVZDlmV2my233NKCvhkzZuC3v/2t1/Ztt92G6dOnI+0joxgAFixYgH/7t3/DddddhyRJoLXG0qVLcdppp+HjH//4kJzrQKxlSP/cc89BRV4OPT09eOGFF4akU6PBTJAoZYn5sRTkWqHPZnt2KbXGfk+WadCB2HZnf6oYUAhMOPZD1RREJtE2IUPbBAcmaJu0o80AJckU6otCyDyI3uwjvIEyZNDoHM2sNIWstkFmFaQdVcNSpanV76HYLhoIKtXMgicKqrdB5uxYlWqGtKMd6bh2E7TPgsjpWtN+NkC9YMNkEaRPgzidC8V+cOYtnMma4Oz174UaKosDxaDMxVGrbah0tKPS0W6vl8hSxhr4+nh0jWOzfgN4shJgIDZLFBIvobaVfdbSCkSWIh3Xjkq1DdalzLSy6PmheyerbcWzYLYRxTNE5wUYd5Sstrl+Z+WB2wOCxcSAnhNZTUtuWWJqbAKBjRXlwf/Fs5ixZAdKZBDur1LNHKMTJJHw/pWAGzGAtjauyRDWtXrhJovHgHnPg3RxaPwa8/tNy9eFieKdahI22LUorrOspsXvOPGYQqutFsR3kfYX/e7Tce0FY95mnp/imeurP2T8M71TOFvL3y+ieKZo8jjcRm7Kwf4Nlz3//PN45JFH8Pzzz0MphUceeQSPPPKIDZCfN28epk6diqOPPhrLli3DnXfeidNOOw3HHXecZekWLFiAtrY2HHPMMXj88cdx00034dxzz7WZlABw/PHH469//StOOeUU/PnPf8bPfvYz/PSnP8Vpp53Wr36ec8452GabbbDVVlthzZo1mDp1KmbOnIm99toLX/va14bn4vTD+j0C/eY3v7Gff//733vVzZVSuPPOO/tNV64PZspuGMDluepY0Kzdls3GEyEAIQAhsd+T1+DOdywYdD/IKMg4TSV0TVnNJOOy82UoDN3v3IL8RUauQ+6+AIrUbhYALIL9K1Xj8iGq3gmwymJZoC1mX5TSgTRWtcC4iGr22tlzlkYkoB4ENxOYEnT8go1T9YYZ8JiLkoQeOXBWSkNW26C6e1xslDRK86rWwM6Xn4Q/Hz9yAZytGi8bBRi2jBIU7DbewBsPUOYDHDEQFItkIqboeMImqthjsrg8PmhJVKClgOo2WVq20gL7/YSg7v9v783j7CjqtfGnqrvPMpNMEgiQBJKQoKAIFzUIRsAQ9kUFd68IiXi5P8Q9Kgp6WbwqXlnkheuC93pZvHxEXwV92XeQRRAQWWRXYiIkIgGSMMnMOae7fn9Ufau+VafPzCSZyWRCPZ/MJzPndFdXVXdXPfV8l7JbjjGVjTazprqSPyA9u828MBOvUb2y1PkPlvQDTxpMZfLJNAwc4OpxAd9XjTvLq1x7jTnzZsm1k3YiJIJ3M/SDC+uq/yZyxhTEwC+qvH9T72+67sbKLD/n199Ay6h0NljEjANJQKBl4C/Hf6fxpGg0LeGisVpWUru7BillaLSgAt897uclCmnHtNBJn/dPOPbboCJsnC3VeDTkhpQxUjjllFNw8cUX27/f8pa3AABuvfVW7LvvvkiSBFdffTVOOOEE7LXXXqjX6/joRz/qpcOaMGECbrzxRnzqU5/C7rvvjkmTJmHRokVYtGiRPWbWrFm45ppr8IUvfAHf//73MW3aNJx33nlDTmuRZRkuvfRS/Pu//zv+8Ic/oCgKvOUtb8HrX//6YeqJ9cOQydiRRx4JQDvILViwwPsuyzJsv/32OPvss4e1cqMJPylj++qRE5VS04NM9M8GYKfzPoV+KaAaOdJaqglYs7CZx4tc5y6q9NTdJMMGdT5wcFOiKtrVLpsIkU3MfEXJHb4dMXK5d/SPIYRmgNR5sIIVP/PzKJotbS4ArCOxvV5Qf6s0BCoA9yeRid7WhSZGPvHaiUvqLVjs/cqAtNZA3je2nPid35LJP8ciDcPJtTRtSDixBAsM71jorWOsycvcC75PK+0xSPeNHOV5+UWj6S0AnCO0MQPRPoXS5EAL7nda0+ovN8mltYr37KvCPZe67bn3nLZHhbpnnNcPxkE8YYoMBSrQMxyadYnUcXMr1Ys+DyP8bBJXr999UzE3p3Hl0bYlEH6Sih+pStfl9eL9mgzBtLOh2OPqb9vk0KooICgLPutfG/FYQkj57+EYIBIJUfhjdNFo2aAgGrf4M8WfBXqG8r4GuE8Z9zkLx/fw3dkYGE4H/pHARRddNKhP+YwZM3DVVVcNeMyuu+6K3/72twMeM2/ePPzhD39Y1yp6mD17NmbPno08z/HII4/g5ZdfxqRJkzaozA3BkMkY2dJnzZqF++67b9jsyJsqaOIBtDLg5cTqK9peQD0JpBAyAYoCaDUgKhuWd63V5xyrAZNlv5EjzyhLuU6imZhJivtV5A2X+4xPXiT380kprVVRFIEvDpuseWJEGjj5CtQ3ZWXIumreNRSblAl8Qqa/yZTT6mvo/m+0LKkqG4CJGJQ50YaOzQBTezKXHyvv67dO3GOJkPH+zZs5RC70VknddW3OIpJqlNqyfQplliLJC6t28qzu3v1mZEln7teTXJNNnp3MXCkzaxJ1s88PqRFF4T3rfBIt84MiIkSf8e+pzaEvEKgcmqwLR875eS1WFpXMnxf62x5j+japVUrfI1JvikazfUJvU74Kq04WwfvBHcgHIs72/Sy5F3rBoslGyyiWOhVKta284Uarr4Gi2ULLqNKW4AaElsaKtF6x/ZxUypW/8PdwgQG455fA95jkail/zmXwzAm2eB1o8RIxNvD5z38eu+66Kz7xiU8gz3PMmzcPd999N7q6unDVVVdh3333HZV6rbOjzLPPPjsS9dgkYQkM9EscqgGAP5CqvNDRZtI4L2/AtWd+4+PITeZumZhM4yZBK5FEFwqem1UdG3QCHxRd18SaGuk8AKXEqlQtCyYPkUgoWXjmD/qcrz6tylUU/neyADI/Izb1pW2HMWGUmmKCQZWclHn90loFzd4+73OKuKSJ05kry9MqbGrY+cdfQFGraNIqJRKzBQz1a5KllnzZNrMJzdsgOdEO/rJkkvfuNxNPrJnY/M/NN/azRFrlhxTZhJFquh5FN0pmXg19vgBf7fNUnsInjfY+F04Rpu+5ilv0Nax6y58XWRTI+/q98pJAVaJyLaEDIGs6oW1inmvbl8asqljkMDc3UjlSalWXFGyRF/bdco7i7r5QnxcsGIbMdWVmR/uZTceQochzSOt7NXI+k3tc/W309zXQ7F2LZq8faS55WiC4tqWmP/NmC2l3HXlfv02Bwp/Rsr03AbjnzyQobqxa4xaiHcYbIaX3vITjJy+boPICaoNG+qGjKJSJmt+wMl7r+OUvf4mPfexjAIArr7wSf/nLX/DEE0/gkksuwde+9jXcddddo1KvIb2B5513Hv71X/8VtVoN55133oDHfvaznx2Wim1KoAHC/k2qijFbIGOZmZkqtqG+GHwLlbxZoDapbsmFTo5J+XlYxJuJMKLkqNwPx07W8CdrG0IuXRv4ZORtGRKYZ0mhkpl25qfB1kZAJu2qGF03HFjtvnlGaaHM70mtgiTL3Go+NLs14amYdsJnKgvVSySU/8zVX+Vuq6WxApFIs7tAhrzSbyMPCdKY+ogYlJl5vWz8XFlhChS/HuBMzQC8xLBWVUgkS1vg/KeUURg6mZq032Pqzme/Eygql5S5Ii+Apn9tuk5SMrTZhYBxqpdZ6sgMM3vqd8WoNRm8oIXcPDtEvHjZoWpSFI7I8fO5IicSbRIFnOpVtuihOnZacNFxsnBklxZCocqpcq3kiYCUjxQ4cbamWaaIWfWW9QtXuxLjRN/s7bM+iPaeE3FnRBuAjXDUAURVrcwRmevzyRivp4T/LoRkncrk40XR3DjJX4th8BmLXAx48cUXMWXKFADANddcgw996EPYcccd8YlPfGJQfjOSGBIZ+973voejjjoKtVqt40bhgPYn21zImPZ38gcpaRKPhk6+becWBUSrCQXggGcvx02z3rdO1575jY8DMDmkWBbxyvguyEqmN9ht5JYEUUh/UqsirVXQ6nNpCOwAHDguSwCQLHItkd7ESiYp/hlFZqmigEraJ1Xy6SkzoYQDGzl7F82WVbTIsZcmkqy7Zk1VBcuEza/LI7J4RBvdB8BNpq2+hh5Ija8aba6c5/2mvzdMHdjnbr3ZrcxS3P62T25QWUOFbauJtOMIiddQ1A9LqEB+Xn66EsDlLqMoQHsuERpz/xJp0gBI5xvkkTVSd8g3y5INP0kt2ORHiweVa19DnmbGq0+GNqLv+W6x7bV4ZLSspMgCEzdXfqWUEFmKtLtmCSsPiPEWLWby93xNc5NWgdIksKhIrviFCxXe/wDfIcQnFFyZDO8fEWn77rB3cKRMbm+/8bsAJ6pSk+msu64XC3lhxyGu/OV5w5HnxJm1G6ud2ZaO5eohmdu5+tvs1amGeD8XzZb3TPDvPZ87Ni7yvqbvAABjRFGP0Nhmm23w2GOPYerUqbjuuuvwgx/8AACwZs2ajkmaNwaGNPtw0+RrxUwZrhRVUdhoqtDJlOT+otmCNCafDUWSJTb3lUhakEluHeMrPd3ewECrecoxxZ2pYerMB2kvmlI63zhSOmjwo4E89AvjK3QvJUaizR+52fSZTyze4AWg0tMNlRdo9fUjAdBYtUZP4ONp02ff3EJEmOpjyzXpFijHW0qfmwFXJgkKk77BkVfTP0HIehGkMBkq9nvsp8h7X0VO6qgsMO++HwLAiJAy3i+kFqa1qk6+mlP2cuklxeSLC6tYsWjW0CcwYSYce/8Q3HsWGUvnEsL3R0iJlCIqMz9hchKoemURbEL6i6OwDoSE3VO+kGjzbaRnPnMKXNZds+9D3mh55kbrxJ05VZKel1ZfA3lfw8ttRsoub4ddHFBKjUqqE+IGylWIcCEEaAU4JLW8b8gMWYZwoUkJekcCVI+82bJ9S2lrPHM5PW+Bed2mrTDjR2V8lyWPpPwBQJh+Ik0qKJo6SprujffsGPdQF0Th+oAvstvUs1BdzguE+46OFDZ1B/6xgo9//OP40Ic+hKlTp0IIgQMPPBAAcO+99+INb3jDqNVrnVnDN77xDXzpS19CV1eX9/natWtx5pln4pRTThm2ym1q8LKIA3rlbwY2ewz7WyTrHlE5+4x/ATK3OXKnwTkzZMamDqhkbQMYP94brPPO5qKhIjQh8VW3yINkoSXXoIkrYU66enJJoAIfNPJrSbIMhcyhEkcw9ACf2JQOpDgQOS4DTcA0Wae1ClrAOpOx/R7+H/s7JyUq6ZwNfTjAHaC5qdGLXpTOxEznAJTMtN1kyZUYTl74MwXAU3L4RFXm2Bz+Xvosk1mKlRsSMTqf/2+VEKRo5X6gi0d8SM2Dn9crvE4ipX0Ww+t6Pko8nQUbD6yCg7T0PG9hwlI58GPJf5FAZ3PCZesR9F8IvZNFXqqwhRip59SWXUIKQ9Jljy95pgBHPLkzf2hKp/KozXx84tHZ/B0prW+Hzwqj9rbVeQT7jyNXCvkGkqkNPX9zwGmnnYZddtkFS5cuxQc/+EG7FVSSJPjqVzdu4mOOdSZjp59+Oo4//vg2MrZmzRqcfvrpmw0Z4y81/wwwpgBGCEg1o4G4aLYgM6yXW6dIhF6hW/VCJ75MaSUonR9KmVM6J1l8QuWESLHfw2SnPDeZl08qLzxliyYw7pyfN5qWOPHVuRfOHxA4Ik9pnjufoKQKlWXIm003QZprZ0ZtaK3tt6TL+767bkmVTfwKaMdlc3zedFGTpASuK3mad98PkcPtztBa2+++bLiBft59PxxWdezNl30dre667whuyFV14jg0V63xjs+6ayjyAi0TxAAAlR737nL/L57/iT833D+GB3PIJGnb0Jr+t0SZKazWxF1mTm36Sg1PkQHQO5VapZPqTmqorXNA7hL7XvjmQMBF7rUpv4lEVqm5nRzYwiNh9ckbLfu+EMEqGFEg5darq/F3C82J5K/JU1IALGlrENTAla/SrPrm/nhm0GArIKv2jSBEIpGQk36hI3dT82xQAEVRFHYje/sMFJ3fRZFIty9wB9IMtLs0lI3l9DvvcxoTCKTchrnnrKrWHDtR2BEaH/jAB9o+C1N2bWys85sYbupJeOihh7DFFlsMS6U2VdAEk7A8RjmabdGG3AcjqXUPufw3fP8zaAJITCSRNT2awZpvIxQGFZDJqUwR4+B+NQUjb4DvV8OPFcYZnMrk5YerU61AJDZqS4I55ucuGCCM/kzrVRSMWHHTZ2HSdHBVgt8Daj8AO/lqlSHzButEatMFmWUS48Td7O2DbLRsipDBMO++H+ow/bUuPQBNrERiuVM8J2T7PXoxbtll/V/6oqFzJbUaTS9De9FsOf8/E5FHk0Vhngtn0ilvp8ycudZTYYJniAiRNc/D3ZNWX799Nu135j4mlQy5ScjqRfOZfGl8IWHbwciXZM9UATe5av8jTdw50SazPb8W/U/XaK3tR5437PND55OZEYAlcxxcxUoyvd0U3zatYHWgxRrtQEFtyZtNJIUjYcoQMZc3LSCt0pGqpFZBAj3WhD5Rzhcv93KIheTF3s90ZPKM7ffoxciZ6Vb1FW73DKtYtpzKFyyAyf2gzJeT/EA9MzzKCSYfE2iM49HZZNqnOnDSxY8XLMDJmq434s4dMZpy88aQn6RJkyZBCAEhBHbccUePkOV5jldffRXHH3/8iFRytMBXVOHqma/OaRLgZjGVFyiaLSQTBo+0mXvzWehbsQqr+xpuSx8pbbh8HpjbPKWpr7ADU5l8Hm5nxP+XYKtMZroiVStsq6yk9nM+6fFJgBOgotFq81shUyMdHw7AIcEKHZxtOcYnhK5DCpk9LynaiKK3hyOrpy23t/MG73vf8X/ssUVR2GtSGaQKFlLn+OJqEGG/Ry9uL3g9wXMzZcaZnKJHLdk2/ZvWKjp1x1rfdwbwiVnebLbdh5CcE0KSFBJlexzg3Rv+HdhzFe6LCnYeP6dMASmbECkC1yrHlKE/8fe8pOcrrVdtH9hr02brzDQOwLu3XL3Tn5Gi5/tapqbfs+66U/mYE39iynVmzPboYVKDCthtHJE3nH8mV4rzvobX76GySZ+JYUhOPRCI9CRZiiJLIbszGzwBFmzhKbHQ6qjdyq1WsQtcWUmRsTGjzBVBJgnyol3ttN+XqP+Ua09m+lm0iytyAzD+gpyIAeWmzpFCjmHIwD8sNYkYCQyZjJ177rlQSuHYY4/F6aef7m2HVKlUsP3222Pu3LkjUsnRQvvA5QY7/lIWZksZO2iaSSatV1GsfgX7P/1z3Pz6DwMA3nnP9yESicaqXvui969agzXLV2hzXXfdD3sHrLMpN6fRQMSPs+YXptJwv5Oy5Jx8Jcnb6Dkf5+3mQDTbTVadTH2eQ3Yi3TYlQT9LmFX0AANcuPoPr6Hywg7eBUtDALhJlOpKK2/A7QZQhr1u+x5azaZ3j8NJ2H6GtCMBBLBBqtgeV38bTUO8+ZVtrq4s9foagFWGWgAkey7sM0MkpVZBsSr3nh3AJcnUZM9/BiT8+0EBE6EprNNzQc8Z1YOOT4KdHXQbfUJmE/jaXR+Yr5XMfVVUuvvPc02RGpd11616QosFT0XKJfJG09YhZwo4qXcWmauTJXaGXHkKsiERCcuzRfVMKhlS46pQNFpABm9RQ/6Q/B4mQWJajo79n2aWiG3Ic7nfYz/FLTsf7X22/59/CZiFW9HUwTmUO0zlRVtKFFpMkPtDuHWUbYt0OciavWv9cYipfkTmaLEJaDWVHP0pItxbcCe+fyP3gwVglV5Omr17HxGxARgyGSN76qxZs/COd7xjSLujj2UI4ZsAU5Ol2lsVsUmLXsqCZT9XeYHWmrVIihz7PfZTFH1rkJtcO3lfA6oosHbFKjRX9aLIC1R6uu1gwQeihJEswA0GnEiF/hChwlGwcuxx0oWF09/epBeQKD5wWeXMqCJlJIATr6LRcpMc8zUDfDMfmRDDxIxeuWYCETKBKnIvgo6+t8qEaWOrtw9FniOtV+3x3OyTddfQ6mvgLb84BQ9+6BsAgLdd+U0IKdGiNjQdmbOmQOq7wkXQ2Wgv1h/7/uECYBjMQVxBsOYoszcnfQ/olX7W7XaAoBV/uMDgv6d1E5FZtE9A1heLK5cdkv2CXYeeDd5/3nfsGbC+OIGPmki0mb4tc3qwdQ0nT/w58+rH1b1KikRWvHYktQpkUfimrYCAk7JWBMQzCd8RZB5pV4mf94snXaX20L2SaYZCuklfNN3CIlSiqd55X3tkZpnSacsYJkXslp2Pxv5//qXu29S8i5UaUKlBrVzRpmTyvG2UqFYk0nOQ58SKB6mEbbF7ntL/5t3MG822HRySmrRWjLyvYV0weAofKhfQpNhem+6NCTAqGi2opIDfspFFjKbcvLHOBu958+bZ39euXYtm4LxIu6+PdchKZieitF710gBwXww76QaKmUj0liOJUbBk1nCkJM/Rt2IV8mYLeV8/kloFVbPaozLLfg8nz3DF6yYpaX1Q6HOZ+MQrlNlpcPFUjRIlzU6kzNQTfmfrxxJQAvAmPu4zxn2UwglfsHqrvICoBmaVQisGSfd4qGYTRaMPolKDaDEiIBPIrGVNOjLNULScWTntriFvNlEZ3wWVF3jLL3QQSp5on7mkVtGDcQabX4rXm0iknuw1EbR+MrmbgJXMN8hnTFZSFKvX6EAR9nwUeeG27mEEhzt987tY9twQsf/dOz6DuTfrjXvLzLqe6pc70hJO/vw6nCTx63GCN1BkG5mIOMmla3KzK/cDKosy5M8YJfcMnbFJHZGVGlDkyPv7dRJZpmDZvFbsXG/hwn3fggUPN6t5ZDJxqVVkJUXRarq6VtwuBnxcAIBsfFdpmp2yPmxz9C9y/S4Nh6mtyKEACPM+0lZw+do1tk0qL1Dp6UJlfLc1iae1KmSzaXPX8YTTtg0l9eNjW5Jl/iboibtfIpGeLypXvQB975q9fW1EnZdtFU72PjXNeJTWqkjyjUPJYjTl8GDffffFscceiw9+8IOo1+ujXR2LdSZja9aswYknnohf/OIXWLFiRdv3eYfcNmMN2vcm05sDcwKSFDpajl5qM6jkxpbIV9J2wMidGS5vNtH/8qtorlmLpFZFbcsJntIVDkJ80KA6ELlCkFsH8J2tw890Jup+L4WDF54fyPKhjxmVSZMgmQLD6/HJl9ebR7G1+a9Zp2VpfTNogpOVGlSrofs+WM3b+te6AdkHWeQQmTatyVqmt8Upcu1rgnqbXx8NsNWJ41GdOB79r6z2HXuJMOY5Kj3dSKpVtNasbVNcnDqY28/4/yovcOubj8P8P/6XTokhk3UiZe+85/toSp1nqdnbZ/utZdQQaXYq8JRMZj4GtFmRcq6FzxVvK5nU8qKw5rFORIxSlNhrsuPaniN6dtLM9pO3C4AxdSrp9y0H/5urVPazIAkt3wGC1yd0WiffKSITYHWWMIlES5J7hsTBEorQ1YDVWSWFR+QBloC1Qf6biU8srRqsf8/7+5FUqxDdPVBre1E0tL8j99/j/cCfR6dG6q3bwo3K1wsyceOETCCyCvIVy9C3YiVEop9bAKhOGq/f9V5A1LSSLPqkzZHH4QVesM854SQiFm6Xxl0vqA94f1hXhkYLRdZqv08UfV3RY3aR55rAm3MpEEVmKZKNRHCKQiGPDvwbjDlz5uDEE0/EZz7zGXzoQx/CJz7xCbz97W8f7WqV7ic7IL785S/jlltuwQ9+8ANUq1X893//N04//XRMmzYNl1xyyUjUcVQgpHBmiYrbu8863iZ+RCM3aXDTS//LrwLQjrZ5XwPN3j40Vq+x2fIBtG1NRNer9HR5piZ7DJ+QEu2gzZMeclgzKlMQKCDAyyxu/FpsW4qibSXtD+R8oiiP2mzb6Fkm5scvJ6lVINKK/i6tQNa7IWtd+vdKDSLL9O9ppidJ+qHrpxUoMxmJak1PBtUaZL3bHifTDGlXXQ/SMoFMM00mzKSc1LuQVKtIsgzVieNR33qSJRY0CSf1LksGQzUnnNxlmrm+MeYUisJURb5eagRNtLzviFDqraN0/ZMss/4s9CzRc+U50LP7R22ad98P7dZEvH1t5rpK6ikFfNLj6oNMM3tvyacN9jnQ90GXV4Oo1JBUq7Zsqju1lb8faZc+lpMU3ibd/+5ZS6pVVi+jrhKxt/9LbUpm91KaOiXVqk0WTP1B/3vvRc7IZYnaApiFniGy1s8vL5B2mZQ2babVxBAnR3boOUarAdXSzyclNLbbDdGzR1G2FXc9iyLHzTt9tOxxWyfcvMMHbJ+KSg1IMzRfftluQ1TbcoIjYnA+cDpFiCM2NopatpMj/kOf8WPLLAdAu0rqPZ8VnUQ7665rFS1MNp2lXjATYMaSetVzeYgYOzj77LPx3HPP4ZJLLsE//vEPvPOd78TOO++Ms846C3//+99HrV7rrIxdeeWVuOSSS6zUt88+++B1r3sdZs6ciUsvvRRHHXXUSNRzo4M24XakK4FIXCZua9oxzrQUkchXxoBeTTdWG6k+kWj19nmh3SovvM1urUO1GSRUXhhzpjGRNloARSPBRY3lJbluZCJtVnhOHlVe6FUpOdialSapXRQZKCupdVLuZIbi/3OItAJR5B45NZXSkzAYoUsrlmBRolwhE6hmw54DmUNkxuG4yLVvipmERLVmjxWZ8Z1KM2Ou1NtSodUE0gxpT6aVs2YDojCDegpLjshxmhy7KaItqWTOrANYUgBwBdFM6mmm29FsQrUadvJPzKS6vki7a8hf0XuM5sZPLAXM3n06GtAmvQ1MZm3+NiVKF92P3779UwB04AL5QJb6/YQ+WUzBsf0R/g1Y0zJBppm+twAUAEn3GHD3m5VhVawsg+rvsybF8LrU964eTUsGLRmW0m4qjqLwSbJ5HhWlQgFQtJrtkzvrY1pckCnc9Qvb+UKytBm8/9IKkprZ9SJQWMM+FGnFkrDQr5MUwRAjlcLCXSCBSDPIejeK3lXoW7FSj2/dKdKuOvpfWmkVLMpLaBcUzC83bzTt78j9fhjIDM6P45YGT7ksOZ9M4Fytp/dFZm7rK1oM0DFWcU43jhN/PgzK2Iaev7kgSRIcccQROOKII/CPf/wDF1xwAf7t3/4NJ598Mg477DB89rOfxX777bdR67TOZOyll17CrFmzAGj/sJdeegkAsPfee+OTn9w4+/FtLLiVFTcRmM/SivYpId+nJrzEgDD/p2zblAKwkyjgRz0SPF8Yc70kS/V1aNBP/Fw45H9BTt2Aljw9BcoMgDJJkFRSn0wETvNh5FpZn7T1B63eTb8QuUqgJxZPZWNqluAqFzeXFDlEtW4nWZFVrBJA11YygWC7Hag81+elmXUkJt8Vrawk+vMi18fz+iQJlDd5Jki7a8jM9isw7RDwfdFcm8wzQqtoIpBMdRFZpieXVlP/rAPIBFmdON72eVqveltW0f+kjuh+cROM9ccx54f5xEKIRHrZ07mvVKmPFAussCSqyB2xIOduTsbMcYpdR2SZJUD2M/Y7mdd0J2SOTFniJf3+TVlm/TKndSntM1tmsqPPFGAWEX4iY6/dNeNvBkDYFC6OjBetpjNjGhVJNfrcu1et2vYl5B8pJdAISDydn2V6MVcUlpxZAsr6i/cDikL3Z0B0NxQizSDq3ZDd49Fc/DiavX1uH8p+t8E3LSz5ojWtV5GN6/YIrK6iyQ2HdpMwH9vK9u2k3zsplNzvlRZf9j4wFTTpHqdPsKQ9d3nSAiVtJBHJ2PDj97//PS688EL87Gc/w9Zbb42FCxdi2bJlePe7341PfvKTOOusszZaXdbZVjJ79mwsXrwYALDzzjvjF7/4BQCtmE2cOHE46zaqSCoVa2qy8jv7IZMGqRI0AVJWaUCTJpUXSOsVq5iFEY3VieOQBRnRlXH6z/sa2tepu27NlZ6/jzGhNXv7vJUd4IiYtyG3mXzJH46OCyMyQ4mf163Mj800VitRZCZMEqM0MDNS4CwsKzXI7h6rZlkYBcqqW5WaJlhs0rZEoFJz94cm0rSiJzmrvOlJgsrkJiqRVawahzRDUu8ySl1iTaDWxGU+lxVjAg3KAntWNBEp2pQwvkXW/D/+F0Ic9OKt3t/7//mX2O+xn3r3h0wktILnpkvdr2nHe+j5H/FjOpCypJLhngNP9Ez1vCz3O1P9uPnPI2jMp6i7R98TOseqO4n9n368fjWmbHoW7PdUjyyzxJ3IH91jMp+JLPPKF1nFEZVOEYbSHUfmdDK/8rbaxYV5dkRasddEmkHWurRJ1jxvIqs4EzygP0sr9j2y7aJrBf2oTfJ1iHq3I7umbG/cqtTc+8H94oZJLTtw2fX63ah1u4UQJ/7NFpJaBa3ePmuWtG2TEmmXvjdJ93jnj8pS0XD4RDgwRwZmZM+y0aZoajO5Ne+S+btWsfeIfOrcc+jcHsjEHjG28MILL+Dss8/GLrvsgn322Qf/+Mc/cNlll2Hx4sU4/fTT8eMf/xi/+c1v8KMf/Wij1mudlbGPf/zjeOihhzBv3jycdNJJOPzww3H++eej1WrhnHPOGYk6eujv78eee+6Jhx56CA8++CDe/OY32++WLFmCT33qU7jllltQr9fx0Y9+FGeddRYqlXW364uqGbgLYw7J2QDWarpVEvQLn2SZdvJtNoG+hqdSkWmQjqXPiAgleYGcBg1D4FprGzrKMs2Q9XTpFWXj5bbti3ITYVYA3n51ACxJbKzutdcPB0ICl/S5KYEPNkm1as0/tu18wqjWrXJl+6vI244jc5Csd0OOnwSV5yhefUWf6x2nzZFCSqgWADT9CcUjehJA1h4cICUg9cCqGn2ajAFQLTjljcqp1t1g3ugzapae+KVRIQC4442p1JGCINJT5tYEa78n1dD0y36PXgxIafM0FWt77en7//mXUP1rrcpjzSLBa8sVr9A8VaZg2eoFCwOKMCTcuc/ndB0f+ykKlpOtrHxPjeFRekXhzNB0TqZJNoocqr/PqVIhKafjAZOln0xWxnRYFDqCz6ia1owNWDKj+teaxvlqkd/wxN7nNrWIkS37bHjnSmfeNP3Av+Pkm/ePyplJvlrzFhqiavxEZe5IJADVamrzOr0DSeKUYMDm9bJKL68HtQ/w1MThcN4/8O832XqLejdU7yqIukvT01rbrxcPxoJAkblFo2UVX2kWS3qxk9pdBeyuCyxQQyTSppIpTauTtAdD2fvfKgnCCBRd1ejTJu5KzS0oTWAQAN3vhnDKtb2QoWo5QsiLDVe2NlLg5yaN7bbbDjvssAOOPfZYLFy4EFtttVXbMXvssQfe9ra3bdR6rTMZ+8IXvmB/nz9/Pp544gncf//92GGHHbDbbrsNa+XKcOKJJ2LatGl46KGHvM/zPMfhhx+OrbbaCnfeeSdWrFiBBQsWQCmF888/f90vxAfotAKRgpldjEmo1UDLZG3n5kZKN5DVKpBNnUcn7a5ZUyOP6Ot/5VWmeGji0WSZ4EltkFlqBzebuNL4k2kymLpcQ4aQpN3a+bhotlw2bxY91zZgwa00uTmB9wk6Te7UN82mm3iL3PrY2PL5JGEULAFNfhSVQ6arVlOvUOvdQLOpB8TKeNP3zdKJU5j7I4jYkWJG6oSJrqTz7DXpuob8Ia0ARN4suSDlg13X1J/D9k/GlIoScxBXi/Z77KeaXFRr2O+xn0LWu/W9N5OB4OUG94zSMtB3fkQsIyGGSFuzofQdw3mUYydwVbSTqdY7nhEk1WxYlUv3K1PKyAxdYsK0ZIZ9LgBLxOyxqU/mhJSaHJh7LgIVyEvdIiVUYe4vV1WDid4+T54CqutofRyLwvdvpMk8NXmrZKLHE6pnpabJJJiPJN37rOKeybK+pued+jVz34my94Pq3Wr45awHDlx2vVtsVeuQtW7dx909kOMmomvqluh/eXWbGY+ez6RWQdpVL713umq6bkmtok2FrSZaa9bq8YnlkrP+qcx83WaWDEzpJRezx9nFnPEt9b+nhVjm+nED+nBdEM2Uw4Obb74Z++yzz4DH9PT04NZbbx3wmOHGBm+sNWPGDMyYMQNLly7Fsccei//5n/8ZjnqV4tprr8UNN9yAX/3qV7j22mu972644QY89thjWLp0KaZNmwZAR00sXLgQ3/rWt9Yv/5k1i7AJpdFn/WhUUViSY3NpmdXp2hdeRrLtVkhrFax94RUvPxURM8ANTFl3zYZbp/UKcrMfY2tNnz2m0qP3uaSVYtFsobGqFzLTpsx03Dg0Xn4Fzd61On9P5vIVAS6CiZA3m1B9TlWhpJXkUMvNUiovUDT6nOmW9xERG6ZyIBiAbf8ZFYn8u1SrYSMoCwCqr9d33k4rkLVuqLSJvNEHOWFLiLSC/OUXLCGjSdYOnux8Mi9IY84s+nqBZsOZUoocKLTyZs0cZOJqubKE2WO0bXKm60jpfM5giILXT9IRSH4fAlJJg793DfrO3Je2aLu8PaVE+2SUgPyMXFqJdqf3W//pWO+0/f/8S63IBMqujSalCZ6ZvkSSQDWb1kePRwFaEkCLmkA98hASw5SpVzLRPln8utx8Ts9hWoFoNZhKxJTc4DPu6ybC4xghVGxMUI3ca6OdvLl/nNfPrC+YOV7XO9fKl1n4eUSWSJxRyRxJzfz3BXCkjyt9RVDPDguEoeCgF291729RaDeAWpdW9ISEyHQwSTZ1e8jKcjRefgWADmaivHSykuqI6SSB6OqxpIb8SLPuuotirlaRTNgSRd8apDBBFAlbFJi2ewqX6SOPoCWJd7xbNPqBG9THdI89Imz9Yc07D3jnRmz6GIyIjRaGbZfTl156CRdffPGIkbG///3vOO644/DrX/8aXV1dbd//7ne/wy677GKJGAAcfPDB6O/vxwMPPID58+eXltvf349+41wKAKtWrQIAiGqXNaXYQbBlVvZG8ZAAZLbad+JMEk2m+lwofVEUaJnEgtWJ41DbcgL6Vqz0skanxiessarXbnWS1qo2SWxSyZCN73ITBgCZNRxpSisQ9W5UityStbyv4YWOh8kh7e/GXODteVmS1kKbQ5s2eq1NRaG/iWCA+W6U9L1q9KFY/Yo2TdS7rTOzVsCc75lqNbXTdPd4z3QgpJlgquw+2UlRK2nKXFubnSs615ZnjjJEzhKUwvO9oZQZyfhJbUQvnMzsJAg2sXOzCE30ZlJQrYaNVrXn0MRgzSQ5VL9pW9KuSuo8bDpje573ez4y9prAoBMGTVr7//mXEGmGm2YeYe8pOaxzE6gmY50VAc/niciTmchUUVin9SERMU+VZD6M/HoDtg5oU5ZY2f59k75CS9fnZaWuTrZsKouieen+cMWHtUPxAAOZANKZDUmdsyb6otDPUVqBqHXr56d/rVXEVGGeK8ASBXoHrYmfvxvMl3O9QYuUSg2ye7x+f9MMKqlA5A39zq5ZhXztGk/JzaZMt/3DfToVEUbz7idg1gbj8ykoZ2B/H4pGn1kgtiDTwLzMibTs8HyBqar8GQzfaSJezFQMUpPpfnYwrw83ojK2/njLW97i7ac9EP7whz+McG3KsfG2nN8AKKWwcOFCHH/88dh9991tAAHH8uXLsc0223ifTZo0CZVKBcuXL+9Y9hlnnIHTTz+97XNZ74Ksd7mVLgN3Ak/rVTQoMzhlZe6qoTpxvDEjNlGdOA5FQytetS0n6FxKWYr6NlsZs1Fh94nLjK9WKiWqW0xA3t+vHfmJcNEkZ4hh2u2cmXUEYg0Z9OTa7Ftj02+IYG887rxNe/bxcHueVyo8fsAVtV3x64lT0qDNzTYMRHYUmQbSDIBx3M+0r1HRu8oMetrMqBp92o/PtFfWum053B9G9efapwsVqP4+Tcqsv1Jhd00gp2zV6APIx4jaIl0ggS5zrambTquguBnWrs7JL81FznltJpOr1OlS/P6jdApmRZ9WgGbTRs1p5cCYFys1bUo19dQRuMx8xlf/JSgjU4L5s+3/9M9dypC0oid7Mj17/jjSV0NDosKVyjSD6luj+y3NgFq37UPFzy+ZWL37Anjkg5Mb5yuYuIk+KIuTFE/dk84EassyCEmMJU30N0u34lQqp5DxccOLJqay2LPv/Kgk0N9nlVb7HuW5JaCiyI1PJesfRr5CdUdQf8lE5wdbV7ByZb3bLqSQVgFVAELf8/4X/uFtV0TJfOX4ibqv+/u8Z9Uq3aaeiek6a8KmfjTvQmHGN+8552oXKeZ8R4IsgwrdZlNOoAd+d4msWz/JSs1Go480YtLX9ceRRx452lUYFKNKxk477bRSIsRx33334e6778aqVatw0kknDXhsGfNVSg3IiE866SQsWrTI/r1q1SpMnz7dRV5ROXmgiJAyA9iEqc3etSZZazeSehfytWuQv9JEbeJ45M2mdqivdwFSorblBDtw2AG5WkMqpfajACDq3UisCpbagViYxJQkt6s1q5wvFBtwySQAONMm4MhWUtcKI5kKRb1bOzw3nGlUtz3w+eAh+4xcqcAvRySJ9vcC2CrfmYGsrwwpBd5qu8cFCpA/GoBizSo7mQFwJkoyKWQZirW9JuKusA7PdrIm9YlAKpKU2tRSqXmrdCpbtRom0i3zlDsYh3sijvR8qH7n9+chIEiyknj3ze3zR4qsJt7K5JEjImknYiI+xnfGIzH0XLHJSLFzfdOLvlc3zXofDnj2cn2saYN1wGfRoSrX2zsRISJfwFDpsuYyNCHHTdTRg8Ekx1OKUJ0VN0ly1TIkl9yfqs0/iqkaQVn6GYJvTqR6Gx+kEI6wMWKTol3hYX3r6kY+Xe45saQ7Mf5mTEVzz7WJDOX1Meqqvg+5VWq4aZybZUOVtCzNw2A48LlrcOO2h5nrs1QiRDCTDEpQ8MtaU7dC76aRF0i32gKqvw+tfzyHSvd4fW615iVsBpmTC+0sT1HUNqGzlChynfJGpECSVSD5YllK42tZtN1vZwpuf/4907G9x4Uby+gzfi/onal1Q8qY+HVTx6mnnjraVRgUo0rGPv3pT+MjH/nIgMdsv/32+OY3v4l77rkH1WrV+2733XfHUUcdhYsvvhhTpkzBvffe633/8ssvo9lstilmHNVqta1cAHZ1x3MUURSNU2EqyHp6kE3U0UrJKy9p0lPrgqjWkQBIjZ9EippnBpT1bjvBkmnMmuZoQIEmaAkzvVnlha926Tzu29ZsICUiRE1iK/Ni9cum/DpE4dJHFEVuovf8yDnrdEs5dwAvl5N1CjcRlaq/z5pz7aBm1BXbfzQhdjKZkLkFYO1qIhnfbSJda3albPNSpRUI2ef8kUwdyHFd+4755i7XPxUXOdtqopAJ1OpX9Jd0j9LMbj0jZOLaSOk3pIk2LQpfNWP9QORTmz0Lp/oZcLWCiJHd7qbWZesvksSZWMgka/dMLVEvZQLIctOyqNbsdeWELd13Xh4vZ/7kSWJFkfgRhnyysrsmsNQQLM2CajZKndMFmZAD8mPbQX1KfmGAfu6YMzsRHnDSk7O6ZYxkUr1pgqbnhh3Pr20JlFHSuIpq70fg+F+mVPIABCLg9Le9Nr8uPV98IUdl9K+FqNaN31nGypXWt8t+hnWDajVxwNKrNDmiulPEeaUGJdlU0tJmSlLTK+MmQvZsCdXXi/yF51H0rkYyYUvbX4oH2/DdNMgkSws141tKizg5fiugKJC//IJPsmWifUCN0sj7TytqKFdeuW8fLbwCki+qNYDeXUKn8WuYkathMFPGvSk3WQyZjL3vfe8b8PtXXnllnS8+efJkTJ48edDjzjvvPHzzm9+0fz///PM4+OCD8fOf/xx77rknAGDu3Ln41re+hWXLlmHq1KkAtFN/tVrFnDlz1rluHHrAgCNAfLKpd9sJIalTZCUN6DoPWcLJHk0ugJ7cTJZ4mkTtap6O52rL2l7v2gDzzaHIPzvoJx5BoNWmVR4afdrkRhM7S5TanhtLnyOz1Ft5kqJBSV1pSxsFQK3t7ehTZAkKXSeY7JRRYIRMoND0J1YqI3TWLwMjERakFBQuSab7zkzs0rVH2QmMmb7Mjw2OYN+Fztqe47idGN39tQqaaf/+T/8cN7/+w7YMz7eItZ23h/rQS6MQnsRJBO8bA35NkVZw4LLrUdqz9CxxMyU902T6De9J8Bx0TKdAZXfw2yqLbORl8n611+HmU95+wH8PwUyTLHdZ+LlHcssIouxwD8rehaBuYMpmSBx9Ra9SHvVKCmlW8dVGwCO81Ffr68BPsPtaihKlraWTYSf1Lh10k2UAuv2xEGaskcZczxaTNoCBQP6FtW679ywf67yxJGwvkVF6v9MmUJQE4gBt77CnHtvPOvgfjjCiz9j6Y4sttsBTTz2FyZMnY9KkSQNayyiR/cbGkMnYhAkTBv3+mGOO2eAKlWHGjBne3+PGaXVmhx12wHbbbQcAOOigg7Dzzjvj6KOPxplnnomXXnoJX/rSl3DcccetXySlcpm7rGrVaralVJCAR8y4eUvluU4iSnmEyFcoIaJkJtXQyRtwUVOWPOQoZGKUET0Aye7xkN09vlmMjjXkjPL3iIqOdEJuCFSziXxtb9ugYn2EyrY4qtQgunq0j0pfL1SaoegzWz3VurT/SPd4u6lvW+RYSTuduYelOqDzjdmH1CwbFUX9yRQq+2qRORFmoA9TYJBJjYWkqyI3CRyDgZiSxRY5ZFePO99sXO5MIBWrWOgAhMJN2pTxn9/PVgOKkngyBcmZ9BgK7Q9os7onrr/KojrbJgl2DW+iBzxzEwcFUYCOYQsIO0G2BSYU/iRFfkCUe0uSHxyZvpnq46VuyNomQ5e2oaIjYUva01E948TIkB8vHUZ4nbDfgGAREOTokhIoWDnUP0XiLRZKCSg9f3wrs4BgAnBKjEdMHdH0iCt/n4JreXVg7Ttg6VW4afq72usXgPv/CfIT018AQkIULW2qNHXIJk5EMmlr66ogqgmSLaeA1GN7PqDfq2qdOcpr1wl6z1Sz4Rae0uTU611l0+Mgzdr8vOz9NGlqILWPm6rW9Hi5ZlV7v7MFAJk0vRQX1JcZ3PvTihn4N3V873vfw/jx4wEA55577uhWpgOGTMYuvPDCkazHBiNJElx99dU44YQTsNdee3lJX9cHesVW1blzzORfUCJQ4+ipWk2zL2JTrwRJQYMZCKp1V6CZ0KySxgZNxY8B9HfkE1WtORJiIpZoEJDdPc7virKSm1xOCcn5aU1HN6V6RSp04yDr3chJmcsqbnJsaVNouHWNIuWlyO2gKNlKW07cWh+3ttdGAqqisBn0YQgcALM6zbxJVfexITE8qWxo1spza0ZUfWsAKaHM9/Q5rbCFTLR/m+dvw8xr4eQtE+OUT+ZDrRgKWXP7XxpFzZJyQppBtIw/HstNpAkXM5eGASHUz2kF4Gk9ApC/oDbrcQKbd17hI/DDsn2Q2zJV7idbPfjVe1GYIAb7bLdN5NI9H+Zvi4HUFtrUmhQgrmLYbPmZSZES5PYiE6f5qM0MKxMA7p54qgqRxaCubVsG2T7juwkwh3B7nfC65b+LsJ5scWLNvcz/yy+XLWToHIoapvNCk2fm58TT9c7b7p812RoSORQipq9fd4lpTRAL0gqUIWJQhVUSVZ4j2XIqZPd4qEYfZK1bLxDr3bCmeUa2qEw5fqJ2BVjba5I06whSMlVSBK5qNfX3tENHfaImZ9SvtMVUkVv3Am/fWpnoRSO9y1yFBVPTEqc2cv9SvWgoUdcjNkksWLCg9PdNCWMimjLE9ttvD1Vi+54xYwauuuqqYbmGSDLImlZ6VFHYCcJbcabQq2JpnJcpp1GraZOZkjlPtRraj8z446g8d2kcmPmFthSiNA98b0NZMyk9uK8W+SUlmVbzrLJWh8qqeqWaJHrAVAWUTCHyBkStC8mkrXV9jJNssfoVu22Qvk5DRx4VLO+SGdxkrRtFVTva674w0YVEFI0500aAFc73Q5ApJfSJIVMUggmRESinuPiTsS6rsMeTgqX7yA2YlFmfnNFLTancrMUnQaZcOWUisecoQwTtJBxOjPa5qTifKG5KCY474NnL25zi7S4BXLmROqovjEociqO2SBJrojz41XsdyTQLgrb+IfJAm617juRm1wYzSbflaSojLsYXyE56Fa1a2OeAbROkz2OqR2EIOH1WdUqLS2hr6ifDyda9VzZzPpkNmQLkwUzGXkqNkvvL94IUaeYWCN45XIULFGQ6jnZvkDWoSq5z8a3tDYiqdIE8RHAD878lpvReWJWzggP/fhNu3OaA9rYGEKROh4EFWdUocy3vWNpCSLtD9Okcgs2mddqHHRdym7eNykTCibSE7O5B6x/P6b1Bx02E7BqvU3uwZ1XWurW/K4GIm0327Pe5SDPI7vFAUTjix5Q0kWU2OMctnCu+mmfKEY2No4y1CoVkA5Wt1mtUGeuEtWvXotn0XUHWy5I2DBiTZGxjgDbhRVoF+l61qzCdA6ppt0rS5jLm35BlEBTFR5NDk63Ya11WxSr6elH0rrYrNRSknJGqk1gznZPoE4BPyLqyzlRQSaGEtJFNRMAAaEKW6oSPsttM7EZdKYoCIqtA9miyiFYDRR+cKQ1mQKbIujQzeaPMgNu7yktNYCehksmcfHu4/46N3Msy01aWK6swOc3Y4CqyzPYP4IICuGJjndlD4mbVv8xFINIPU5J4Wd5G1vxzL4kpm4Sl1Kk1ihxhHiJNZliiWrbBuWppvzEi+DzsXhUFZK3LJ6amv/X/nESWRBiaNvK23LzTR9n3RUAGMuitpEzAATP5tjk3G1Lk9oBkOxnA97fiG2+TaqPy3L4HokqEzDnZSxPlqvjWM5xYhGQKgWmSb8nEj2HkyiNWsmgn/cxE5vVZ8HdIYFXq6qf7sNwcqvu84kiVVWIogpr8nZw6Rv2gr81My4BTc7iPGb8eUxoHg1XoQ4JPqpj5Xbt36OvoqGZmdi7cPQbcOyVr3V4bVLPfuoTQeyq7xgMyQTJhS53OpjXJtEE79QOwkcbWD808PzaNSOr6Q2SZHdvsZu1GEadxXjWbnmndBs6wraVU7gjqSCOaKYcHvb29+MpXvoJf/OIXWLFiRdv3eVnw00ZAJGOdQC+gKuwLa1Uy+ETCmieNagTAmrSsmc7I9UTy8tW9llzI8RP1Ocb/Sq/odf4sANa06algJU6zikgZABgHRe3DYW5z0dLETJr2ZaYtrX5LsGRNJ5Yt+nq9FARkckzGT9SrfLM/p2r0oehdpaObOFGgCDe2chWVms4ZVkZaTJ8KpqjoOuftE0ilBiSZG0SbTTcI29V/YiIN3aRrB02aO0w6D4r+JJ8+/gyE5jnvf+YPBQCyUrNRj6F6Ycu27SocqU0za2IRMvfMiZ6vWScToFXX3CQUfhcqPSJJPCJ2yJr7UfBUIoCnAsjuup5cpbR+gt5zz53bGRHjPlZ0XRcIwZQKXrcgUapT2BL7zPFgCm97JzjVy9ubMTTd8X7j/WTrEJgCi8SVw/u2cFneVfDs6POC5MlMZbF1NkmNbYoVUlxprCHCSgE81C+sXJtWpjBZ7GkLMEtSzbPXlmx2cPWU6ukRcKOSkeJuKmH7V3aNN/uFdnvt5W3ikcTe/q7UPqaKJpO29vceTTPI8ZNgFXAiUQDQt8ZEFlcgyJrAVD3rX0gLskrN+pEVa1a5VD9GEbf3itwlbB+se1RqxOjjxBNPxK233oof/OAHOOaYY/D9738fzz33HC644AJ85zvfGbV6RTLWCeS/1Ox35hqZQCSZ8yeAzotDaSrIl0ikmVXFbE6wJIGisG1mIpHjJ0KOn6Tl/rWrPYXIM93RoG6IGFe+bKJFTsSk1MTLHCv4MXlDf0bjMCN2pExI0wc2tQepgWYVGq7wbR1pVR9M7HL8RN2WWpeXuFT16clBBmk4bFRYs+E2yqZEsIQkA1KWN6jR51SFFFqtMYRJMGd8l3PMbN1CJlabcsNNpHZQp4m30/NizC4ScL6FpHqxfvDISfC/TQNB9SukS44KGKUmiCYs/PJtOUBHBU0gUMQAvU0UEVnydbSpOPSkLc0kJhFEedLzbPz57P0ocmvG9XynSKmidpHJmE2WbqcFpvpQ/zB1BVK6PTUDIkpBHDwXG3+m/SS1JQErJapumc9YmPNN0QReuB0g2gihp44Z0sdVNeknsvXyHIbn0zUAhP6DFARj3zciPQBumLg3Dl71u7Z2hzhkzf06KTP1Ey1SaFGoCv8ZkwmSrbZFc+nTOvik7ggZfz+5/6utL12Hxk9yETCJX7lFQJqgJNXs19HbmUk9Q8ljKUjKmMItaUegZCWZHteNuwalwSF/URh/M1Ht0qqdvW+JJZMbAzHp6/DgyiuvxCWXXIJ9990Xxx57LPbZZx+87nWvw8yZM3HppZfiqKOOGpV6RTLWCakx7fWvdRmgZWqUpVRHDhW5XVWLDM75GND7rVmfDTOQsOSZiSEnetCoQyUZRB1utc0mNTuI0CQr3MCoWk23MgV8RQzwFTQiZmYAtcckGeS4ifp3s1qV4ydaQlms7XUkk6+Om00o2WcnDmlWjgX5WhCKXCeFrNQh6Zq5NkPkrabOJh6YvbRKpq9X9K522fNpIlXML6rWDaSGHDb6XFg/7UVHhNjkHRL9fYGKkZp8WqE50zjLs02sad9Fapd9BgCb88tOyq0Gez5KTEZUhvF/oSSkArAmQfI7tM9Smtn+9sgBW63bCE7ApQCAUWEaeRsRO/jVe41J1PWvlyhU+mS9KHLA+NnQPSDS6pl7g8mf+5cJqg87liettWTGqp0JUyILj2S4Pg8IlZQQfro8RyQA3/crcKIfiHSH53gZ3aXU7gvMVMrVOu47xvvUI9ZMfeLXKq0TI+++mdxXDPWzlHl+VQe9cmc7uQxwaP6o9ukK2mwDT4SASipAwhaGgCP0rQZUUXPmyRbcPeXmYrb5ukoqEFVpo1G1CZtIlSaAotrlxjPZtDt46AVaZv1uXcb9pq+eMej6J0BRhZxQaJUasOOfynObS01IY64n9TfJIGrj2socCeRKbXCesJhnTKeumDVrFgDtH0apLPbee2988pOfHLV6RTLWAbKrB6Ja0RnppXFUTTKdGVwVQBOBcuXMD6p/rRm0XO4uL1N8kQNp1UYhaYJX7sTrrQZ5YkVpBiKgzWSpklT7igHGqT/1812pFMgb9jyV1fQ5Zl85ADr6MqtrZ/9mE6IrgejusYMlxtch86ZTytIM6ZQZEFKitWK5JqVWHSt0So284kwZiR6cZaUGb21MhJM75JOZJa2094+BMCZPKkvWu/Xm3tLP44W0qutMCVfzplkZaxJTFh1ls/hzR89gotPHNb3ziXgJmQAVf4K2ZUOboUFpRkw7LZFi17KQxpzJt9qxyWwZiQJ8Qlam7AAu4CRUbnhaC1KzrL8SU/OoTZR+w/Ohyj1zIaWWsOoDrw83SYfEmJNe7ifGPmvLA0b9wAi+1zchAWJo+461wytHJv7G76x+lmTKxE+ea8oYqK7WJ9WUw0mt7RPeN2VKYUnbBHvGb5i4NwbCofmjto6ewhhCJlBJalwemtaHjNwWRJFDpEb5DqObw3bLVJcnmDIO2GdCP6suSl0oEzRSrWuVW+nfE/JdBFcVpXU18awNRChTbSKWpnwlUx153lzrxt4kM4sCTcSUTKFYfSI2fcyePRuLFy/GzJkzsfPOO+MXv/gF9thjD1x55ZWYOHHiqNUrkrEOUFkNqHVr00yiN8BVacW9lHlLDwpWoWGUwkrxFTtweA71aU0rWErpF54GWZL7mblFZFVHmgQjbLaeVSBvAbTiCdUBIj/MuVavJlP3PRG2TDplLUn1RC60rxxkApXWoJQ281B/iCRDMkGnK1DjJwNFC8mkAmptL4pXX2lXyUyuM1Vo/zdRrUHyCTiYyPX/nJRkfnvo3CQD0hRyXGYJlpKpWWH3O4KgyEFX++DowAzdp6KaOLWLkxpyXg/BTV/mPM+sCAzsU2KdwTObokT1rtIKU1LXk3yroQMeaPKwpLJiAyjAcqaV1dGaWI0P1AF//Y3dCPzAv98EmInLIzwFm4TDBKGcNLJ6eUElofnUKFvUbgC6X41zu2deDNsSOLy3JVMtMzGSakV9JtvfHQ/UlwMoRW15uuhzz6Hb+S3y+tljwv5p80PMvc865QbThN1tk+WpYOZ/UWGK2wDEc0AEQR1ufJJQadUtTi1ZIZ8wCTlhSxS9qzFQCog2gilTPfbkLa1+QS+G3B6p/GA9dgk7HmUQzX59DPnWmjQ+ihZTSWbHas9XsGgBSQVF1gWRVPT4UrT0/9ycLhMIchMJLQwjjOjAPzz4+Mc/joceegjz5s3DSSedhMMPPxznn38+Wq0WzjnnnFGrVyRjHaCS1GRfd8qPR2iSVBMgQ6qgCk20hISopUCrH0irKCp1LaubwahIqrYcfXymBzJVaIJEgykpRDK1ZkiKjFRphZGRVK/q8ob26wohGAkxuYDoc+tLRp+rQreL90OaAWKcVeIA6B18zepXJSnEhK3t4KTbPx6iaoislJBdPVCVbk06c3gTs6iPB9J+axpoyy8lpc2dZmFC31VCTtCFNd2qRPvJiaIF0ez3orucT51x5mVbH1mYfGH2HATKA/WLNVFLb7LyosU8AtPZoZtHiqpU+5mJjBLXJt4Eq8swEZrkf5YYws/LtYldORnqAyVhPejFW53qUPVNN7w+dD3yEfQcuW0bOkxGgYppoylDAuL1Dzue+Tq1qTIdFNL2OgwyUYblhKbfsuP5seHnLNUGXd+5OSRt57WZH3m/Bvt8AnDmQfN7SJ7bygmeT+rL63vmtrctgAvIyJyfFZVLVgKZ+v6rea7HGZmYhNT6OSrWrIaNZGTk2PMxpOfcLC71YqpLP39Nev7cGGwXr0mmF6VJxV2fbVquyOdT9vmL08SUpZQeW5lfLR93VUKE01zWjJG6vYN247AhkrHhwRe+8AX7+/z58/HEE0/g/vvvxw477IDddttt1OoVyVgnGN8wlUnnIA8ARcv5aAlhiZHIXSJQJQ3BShI9QABQiSZfSFySRAXYtBNCFSgqde3PBTexinDlRduPsEEDQpg6Gb8IOpyIWgkUmQOK3JE9yqAdhKsrNgEos2r0vmerRFtHJBATt0E6bqK/gk4qur7kf5do86soci94QROSqj7GOOfaPfdSMwEQYaW6CalVR5lodazV1P1Z7QZFkgo+GKcVIF+r0yjQJuxZRZfHnfwpMW6TmV0D1Y4mOUrLEKYdaIu2YxBSb60kSAnhZEUmnkmrkzqjy/EJn/OXQRvhUJTY1SQS5oTTRr6R/xNgzEssuo+cnfl1S+pUClKOPLIr29QdKk+EhImTpcA8GSotfDPuAUlW8DlPDeL73Zn3k6uUJaZQrz6hibjMTGrysymUtCEt351Bq1PGpN2EU2mBNjVR19mdf/Cq3w1KyK6r6InpUPFUO9ljKrvNcdhqQbT6XNS3NE709W6T0DjI7UcqIL8fqoBorNWLBrOQte3NKn7QgGmbHkcq+v0WwhFEvkBLM61oNfv1uFKp6z5v9dv+h2jpvjRjqmeRYAtoe+28oUlgX8kiOGLMYMaMGW27/IwGIhnrBEZ4rCmPBiCrZOnjrEID6AFHSKDCSBA/j5XvmS6FhEgMEeDKWZ7b/RHJxNnJOR+Ar2AJ6ZQ7BkWfU9344EbHyBQCQf4gE53J+6dNoid5n8rJan4fkNlVMhJXSSFZWLzdeooRSR5RyNtL94I+06tVc6/SDKpIoCpdQN9qQz5Z/xKZW9tr8gkllpDRpvCCFFECTc4cfLItIV2esjUAKQtVMwAuKhewyoI/6SbOBDQAOYBJwGmDQlpNvREz+YrxttC1+CbbMvFUGTl+IoqVK3x/NNM/tu6MwHbcj5K3nSIO6XxuXrRmbF5XZ8brSFKLvFxhstdw+4d2IpVln7dFL4aEK/fJb6drhubKtrqW/c79ygBLyLz6cPDnhX82RPCdRez1+YJQSCBJHbGherCIajLDc2h12UQxUkLovOGimrOqXlQZNU1Uu9ziFfDHIlokSwklq26RlFb0OFK0gEQvPFWlrhdtRhXTY2Di/GypXSz5rB27c+MTRwtXwC1MRxhRGdtwFEWBiy66CJdffjkWL14MIQRmzZqFD3zgAzj66KMH3LNypBHJ2ACwLxvgmfusrwD9LhMomJVZywwkfAJnJkxrzpOJlsfNi219uPggBwCiZc2YygwQKq1oKb/IXQAAoJU6TpgAR8QCJU1n4m+6lV6owJHTP5PsVdAHlkyRnxkFIuSJG+gMRNHSQQOkiPEVpulr7cuV6shSudb2L01Qopo5gsb97EJyasyuSkidKT6tQqR9btIw5gWV1oC0BillkHLEXM8QMdq1wE2MTd9sxkiE3SMUgcJD5QI2pN939g9yIIEpUDSZhWZPTgRQor6xCZhv0UTmX1FtjyzT5+Vtk7WXeoLy53X3QK1cARTmHTBJOt11pPud6kz14spScB1qi9eGoShuZUiZr1ZAGD3fPuP7Zj+zixv45weEsFQpIzPyAGZUe55MOuQ5Y4sPISHg9l1sm07bfMI6BDPA9ev14/bsWLdBYdvZ0sozW+SopKIVqP41ti5qbS88HzbAJGHNbIoMyrfGo4Zp3KGFiB3b6N02xwDQLglkqaDxpWj5C8gkgRJ17RfGVfwc1r0h6Czj/sCe21GcrHNVIC8j2+tYxmsVSim85z3vwTXXXIPddtsNu+66K5RSePzxx7Fw4UJcfvnl+PWvfz1q9YtkrBPMSksxAgPA+YnxgVaZl1RmRmZfEyRgZQMJDV5GxVFCOJ8J7rPAiSCVYaR4+l6EDgvS93fwFDBAEznZ4ZYL6QYxKoNfmwZgIli2rsIftGyEkgRU7o6lz8zfKqlY4irsqjbVPnZSr7JpxanshEr1EaWKHPUN7b9pfeGK3COpqmjpvrNmZgFh9u6EWd1bhYHaSWSkkO37SxKK3CcTlBy3bKIMMrW3K17SJZ6kBMIyac+FJqWfMJUTMlOel6PKmAQ93yP6jpfLkhvzjcWJQNotsVaucGk5ihyQNba3qDH9mgSk1Ee8v0JTpe27kmNcXd29bzMHlqHD53a7LjKp+V+y97WknMB06kXndSDhdJyncBGpD82wgemOg2e150oYbQ3lqYRtueaGrogdWnvO+JQyckh1pvFLFVq9qtSNRaCu96alhRSgiZlZAKhKN0TeQP7i87qctOK7MeQtiLTpItcL7ZSPoqUXnmlV+yVIE1BEY7M1W6ZelLkdJ2gsqXR5baRUReR+4fmj0ZhGSnredIvIkgXlSCPmGdswXHTRRfjtb3+Lm2++GfPnz/e+u+WWW3DkkUfikksuwTHHHDMq9YtkrBMsmXHkCYBbUdGYppSTuiWMqiM9xcYSIJp4jEJjU0+EBIdXg5QgRuD4RtrcMV+R6mRVK+E7orYRGOEGLqonJ1nsOFevAsZRyH52/YuayBy0DXMUFhJC+OoYd/Z1E11q20NmAdHs0wM8XT6r6gG96AO6K86kwAmvuTdKJroc45RLfaSSilHEGlpVZKtolRnfm6JldiMIstgDLjpTFhBVHS2q2yT93RhaMCqeidgkX6Bc2vQYipOaEkXEmnOK3Cd+Q3RY17s10DmFNTdCJnqirNbbTIKlObrIRFmtQ9Zh8z3RnqrkpE0BB2r1Kx7B0KkwfPMjbYHUKc2Gp6yF7bUKUFFOKjqUOXifBb5kNClzQsYnXf43NwmTusaJGatX2xZmEqWpRwQRAF6PkCzy6xqfspCQUo4zW4d1hA3u8fogUF5loVXjBvzFk5TW8V2kVZv6QmVdkI1X2R68dRRpBarS7aIoW/12PINModIaRH+vvo7xcS2ybv3+qwIqqQKVbj3WSK3K61tnVLOipd955hqhqH3UNjJJqna3Dtt2IQDoKFIICdFca04ZOsGNGD387Gc/w8knn9xGxABgv/32w1e/+lVceumlkYxtaqAXzpISUp1yPeA4AqNXT6KxVg8iQjp/BDIrZjWbzkI0zCRuBgdNBqAnTRr4qGwukQMmyohPCsKZ0IxyBmP+1N+3DxL2Gkyt8oYe4SYMzx/L1EebDAAFN+gftBURJ11fVcCSTW0GFUAekCemwCGr+ZOrUt5mwSqtatMHq49XljFtQilfbaHVLplRlQmcIBJGvn9mpatTfiROGeRRpkRyZQJUdXSsJiEVG0GpWk3dZrN3qCoKm4dNgMyETv2inE+eI7eneuSa3KVmL87+chNkmJSVT8jebgMAkNRLE196jt8h0bEkIbHkUBU6ClXUuvS2WSlLeEz7qxonf/JrC7c5CtO42HLBFOHQTyoAEcayPFwDnVdemP9stqkk9DsdGypmNhChxPcvJGKeGdTkrQqc2b1gGlX45wOwxCjJtBkzDUyjhsBpxYzdj6GCjxH0PvDv6F61GjpanEyvNBYR8cmk70qR1iAnTIaSKYqsyhacqUuZ0+wDlHKEqz4BorkGIm/pACm4hbGSEiqpaVWNkWQFPRZ6QSZ2PHD3gJMpz3LAI8t5MBeg35ekYiJHN840mhcKMvqMrTcefvhhfPe73+34/aGHHorzzjtvI9bIRyRjnZCwjPAqd6soVWinUOny66gk00SJEqbSS8pWdxBCy9xGDRL5Gp3BvqojgSALoFk4AkaqEaAl+lbDnyTIVElkSiZMBXOTAff18jL1E2SiDyfSyQmcEIBIfLkfbsDyypNsgkmkXdEqVUD2v+qXCejN1MkXjkyI5FNWrUDlmU7Vkeh2qazmrmv87Oz9sCaNwhJiqNwjljSZqcwldBRFC6Jw5M76BlL/plVDDBPtkC2EXr1LCVEfr++nIW+2eYnbU48TCtquR1aM0kr+MQXLa1bkLomu2TKKzHyiPh6i1o18xfL2e4gShc2cq9Ig0ov7coUIfMUonYA9j5zhKakog96HUG9xJDnZk1IHYxhCAJNgFlLqTb+L3N+rkMoL2zRUxWug1BTWVFeiugHtJqdOikeJgl1qsgyvz1VhMu+BEYU2shWcx8mhbUfwe1uQg9sRQtdTH3NI34O4rvaW8vYBOLS+DEqlLsKaX5fMdooSS2vfV6VSL9q7NNDIpKwo6hPaohYp15clcuYdF/29erElx6NIUjMWUl5FpgRy8khWBOMqYd1CksyOkW3XBzQBKyFXrrwCXkQ9nKI/0mgVgNhAMtV67bqM4aWXXsI222zT8fttttkGL7/88kaskY9IxjpAJRU98Ra5GYQktIlOucGo1UBRraBIqxCVLutQz9M+ANAvb65Xj1olq1qCRSkmRN4eHl22/6RKUk06aFWYpHoAoVVebgYwriDRipWW8kXRZvIIpXbBCB/9Hf6ugpWjO5kNxDJBUR0HkdX8yYRPjOYjYfrKOt0aImaLbfVpgpdWIXK3WrfHJKlWKotC+4Qxs7CgvqD+IBJmzlUmPL+oT7CTAq+vKEwOtqQClTe0b0xRdfet1R+oEmZQNz5oNjiB6pDVNXEsck3KjUJmt4Ay9wlFrk2cqoDK6kgmbYXWiuXuWJNKw0OR+/tKAqbNbEIu888KTIC0pYyX3oEm9/4+p+ABdpN7ScljaUsmUv9YvWxmdL73Iiczdm/N9vxuro2FvTaAjtGapUrVQIStvJDyv/nn9CszWQ5YVsn7Hh5HKrayCzijrjL/KFRNpCB/n8g/ixQ3QOfdKlrm/cgHJWJWMQYbfwJTLX83Pb9aqmMnMmsDjZg/q6B3suGSrtpxgG0DZ1IDlfmh2mMAq9Bbv1qKVJcSCtK4KsAfwwqm1tPimSH0RRPI2/xyIzZd5HmONO1MeZIkQau1cSJjyxDJWCfQpCmEmW0KoxKxPDaG+OSFgkwyO2hY3wk78BqCZkLCKQO+SphfGTddhPUoGPGSKYCWGxdtPaV1UrWmQvP7kMGdt9mg5v1NdeWyP/3PyQtvP/m78cmEzKn8PJkCoWmQYPw+VAqQ+ReAv5UU1UMCKIRbzZb1h5SA0gRb5ylKff8aUoJYn1pTplEjhYSOxBLkE9W0dbAmUN5Hpi9seULqLZvQC5tY1fSDl7S1KPR3SQUqq1uCQn5podJjUwZ02s/QdlXgKM/qJ2g7GZm2qz5BP4oWLAn2IBObMZ3vr6rznzVRZp5swxD8wEqJ2EDnlClmZceHEz79zp/ZdQEnKKE6F16fkx8ywdN1aQFBhCZveOW4QAinDHPfUAA4pPGQzSNWBi8fH6l4MnHEiJOpkFSxMlTYdwDafLLKiFu4AOXnAwOrV2C3h/y8gnGKH8tNxqU5xsLzaPyj29eJdA4zoplyw6CUwsKFC1GtVku/7+/vL/18Y2HjPEVjEYzkkNol8qZeLdHgl5jEqQCasgJVG69z2JAPU5I5vwPuUG5MYKrSjSKrOVm+zF/HkAmPdNGxYTi2kGb/RqOWcdPhAPBMo5xolRC50I9NH5c64hSuoI1ZQtGWUuSUm9X8CSnJoLI6VNalTYnC+N4BNtpSZTWoqnb0taZNPokFPi7aiTj1+4PXudKl60H9SObQrGryE2XOdxBw12R+IzbEPjE5yVLmpyak3oM0TDciXXkqrRlCZggJ1T2tBFFxOURzre6LSg1ywpZ69wJbpiFlfCNqMkny+0k+jlwZKiMi3L8rYRu0M7JmI/fIJNps+LmkpLRKmDQ/olJzEZDmb/qefO+87ZE6kSop9S4FIRHjPmak6JWkpABK1KuOSo7/7rkI60HO533LzNk8MIgTnNLrAtZU7tLipCZfX7si45k8ue9kqhNR6+AN/flh1aWll7127VT7u71mVmfRi7ru166Zoo/JauZ9ce+R/qJdXbOWAxNAY3cTofGMlC9Oeslf03xH44jz4zTRkJ5Sr8tTaUW/z5U6VLXb1Y058zsyxsqjBR93cwjHYCFKrQojBcoztqE/I4HFixfjE5/4BGbNmoV6vY4ddtgBp556KhoNP/J8yZIlePe7343u7m5MnjwZn/3sZ9uOeeSRRzBv3jzU63Vsu+22+MY3vgEVEPjbb78dc+bMQa1Ww+zZs/GjH/1o0DouWLAAW2+9NSZMmFD6s/XWW4+a8z4QlbGOUDIxPkPGD4ltJSTyFlTF5RYrCv2iqKSCSsUNmHaQzZvaRGDUHjKtFRBo5gqJADKZONOYefF5tme7OuQqEtBOxkLQgObtl6eles9pu20iaScPANw5/HhWZ78TTX8VLWP2NXm7ABuJJPp7AZmV5/kxZai0Zv3CVKVbB0FIQAn/8SVfPR31mDqlsEO/kELp+eKFzttUB1OGyBvOTGvC8YUqNCGjtjLCqoTQvzf7jSkmh02PkpBZUJN6WetGUe12q3siLZkjQ6rZr/3Kqt1OOeNBAZSsNungFwWmiIVEh6tinNTZZyjXUZomeMGdZ/qmygIxCpdmwVPSAP+5Y2XIpKb91Eoc+8PEpaJad5GnLT+HGidfgpHR0oSo5nMKTOlwQJtS4qkq9Jx5PpQuQMESsU7vamD+8/6nZyEllZLtktFa613PC3rgClXRgspNvU3qCd6W0ibTeyFNDrE00++LSTMBmeLQruW4dtUUHNLzEmyqBw7eV4aIUZCRXYgULRQp8zFMMudHGJRHPl+uksqSJu2jm2rlnBRsO3ayxM15EzanI2++JdjC1ZnaIBQbdxMopnh3tGi8xvDEE0+gKApccMEFeN3rXodHH30Uxx13HHp7e3HWWWcB0GbCww8/HFtttRXuvPNOrFixAgsWLIBSCueffz4AYNWqVTjwwAMxf/583HfffXjqqaewcOFCdHd344tf/CIA4Nlnn8Vhhx2G4447Dv/7v/+Lu+66CyeccAK22morvP/97+9YxwsvvHDkO2IDEMlYB9icXLTNBpyErVLjJ1bkaCl4rF0JnUunBYlWoZBIgbSSQRS5P7ioAjm0iRNSIJUpkBTOT4HIQplvxFBe/nDgT/zBHYCbDAdb4fPzLKEzAx6PAA3aZ02VSmlSIhJNWgFklNcrbekVrSq02TfxyZGqdGv1igZ2E/Zu/UkC0w/fGkmEfWD+D02uVE8epBFGrupoWKeMuNxEAmj0GvWtAjRMuDsN+OSj0GravUXJB1E/T/qeiyyDqI9HYXzSpDUHJhC1bhuhK5pmqxjmKyeyivUbo1xTpFS55gcJYUk1s1sTObJD+3WKNPMVAUYwvC1tAO20H3zGYRUsqpdN/Bpuhu2rsvw7ynWmc7BlLsFoQL4oWEKEKiEnc0NJjTHIe+Y9M4DuK75dD50elNNmAuTX63BN8pcC4KIr6R0xpCa8lg3o4UmQAZ3ba20vZN4ILwMAOKTnJSiV2T0idd8UhpewBZaQ2r+sJaz7QHnlmVouJIpaj1PtAJZWwhEeFNCLYcB3FyD1mBzx2fPpLYCpOJlAJRU0FZAIgcScb/sUcO8lJ2L2GS5gXVUoFZBVC82YkGyc7ZA2ZTPlIYccgkMOOcT+PXv2bDz55JP44Q9/aMnYDTfcgMceewxLly7FtGnTAABnn302Fi5ciG9961vo6enBpZdeir6+Plx00UWoVqvYZZdd8NRTT+Gcc87BokWLIITAj370I8yYMQPnnnsuAOCNb3wj7r//fpx11lkDkrFNHZHSd0ALEi2TU0ab2DItdWc1T5WiR1sK/bJDSDQh0cgVCsW2sAhIAA0IUuifEJ6vgo3I7DxQ8x/vGmUDPJXJvytbuYfHsc+UmZzDLZ46QZNRBSkECqX7F4k265F50ovkIxMDT9LIyBeZLPyOULaOpZGj4UqWkyte/5xFwvJBXiYmVUmXU/oAS8y0qSSB86VpJ6kqNc+R2ZJFpTWd6Hbcliiq3ZZoqqyu83uNn6hNs2mmTU00QRmlgUiHqHdDTphsN2e2hAeaiPFs+2Emf0rsqvfnlDr6cW1v2/Y1ZQTGqndcFQOcuTQMEJDuWqKq9/wUlZoxr5vvqjWT26zbmjGRVvTf5js7QVPfphVbP53Dqsu4Ceg+U0kFolI32z9Jz4xnNz5PAjVwIOWIPztlKtdQFZNgAVPqi6YKiFafa29R2OhepHqTbE/94QuPxJgnucnQOPGrVhOHZc+2Xe66VVuYCG9HVoTZ65WX7+qT6whH+3ervB3UFqXz/uVJVb/7RI68sUS4PjTuAraNLNG0PccQaedKQLkb9UKwmSsU5jPF75v9PQg+AHyF0RsbhUnBUXWR3BsBxTCYKCnp66pVq7yfkfCXWrlyJbbYYgv79+9+9zvssssulogBwMEHH4z+/n488MAD9ph58+Z5fl0HH3wwnn/+eSxevNgec9BBB3nXOvjgg3H//fej2Ry7+4RGMtYBrULpH0io6jh/j8WipTe2NtnzEymQSoGSjUoghIAsc3BVhV6pSaFJnHeSr9xYHwZOyjqRrICYeX4RnFwBncsqG4BY+eGxpU663rWFmwgEkAjdv8qQDgB20rD1ot/JBEXtSSo2Z5sdLGnwpMmMD8plfVHSNhFOhEKrRSqttE3S5EtiJylTBxu4wX1XaHIyk6ae5JiPnSF3RW289ZGDkJqAjdtC/8+fhyTTJkqbUNMEjVTqKIxfjKjWmILkkgZ7e2SawAAANk8X0or1KRLVWvu+nKEZEDDEqmJ/t35iWcVtY2W+t+elFecvZoiQjgztMik8xgG18frZSKv6p96jTdS1cRBZVdeDiEC1S39G5Iv5E1kyTaQlq9tnzoLIafDeefe8jLSz7+zn9Dx2IlYDocM7LVQB0ezXuQzJh5RvKG+e1fayhPWvtAElRlnVaUYanop5WHUpDh33gm5/knU2Y4bt5dcP33/AkjOroucNyL6VSIomCjhn+bY9HgNFzbWp4n/G3nmralnFTEDmTVQSNg4PNN7RM8PbzxaeisYWo7gVaRXFRkptMZyYPn265y91xhlnDGv5f/7zn3H++efj+OOPt58tX768LbXEpEmTUKlUsHz58o7H0N+DHdNqtfDiiy8Oazs2JqKZsgMKpX9sDi+W4I9eyrZzjNdGIgBwawelwjYDB73kEsqoYsoOHl4WfAIRGfKBKCNJVE8zeHvRdUQWOGlh5MRuVM7LKis//J1J/l69PNLDI5OElckLBfQXQCJSZKphV8vUDhS5iVpiechoAmZ1UWnVTxMgKP9aiR+OHdj5Ktitlj0fPXYOZQYvvS9GQRN5wxxbceZDk4yXE0nrP2PvNyk0um1F6laEomhB9K+GaPZD1cajEFJvIUVkTyZ6cm01XR/LFLI2zhIc1ejTKlez4fyK2qIJDXHL2LUzF3jAFRCdaiN3BCtwUhcyd9cixamQ2teMRVTa+0LdaQkUy4AuEyhlJmDaLqfp+o4WF1ah5KQqJEImNYmQmix7e7IGW1OFsCSeTfC24mZvQ7pu+BwNiKG6HAA2p5cSrO/InC4YiTFjiCIiTeOJSdtgSTnlszOE/LDqUkAVuPbVrQEA16+o45DxJkE15fuiZ53GMJn4JNAoxKLVZwkLaKN4xf0uW0DeNP5jmXu+lII2C7JxhJsiAbMwde+voPfXfO5vH5fZ5zdFASWS9jEkjOyEP76G0ZT0e2Gel7xQZUWMCPJCbXCeMRp/ly5dip6eHvt5pwjD0047DaeffvqAZd53333Yfffd7d/PP/88DjnkEHzwgx/Ev/zLv3jHlm3ErZTyPg+PITegdT1mrCGSsQ7g5sMiySABL50CPdQKmlhIASuDA4AAjEmOJnsBoZReWSnHB0T4JssEUCwRoSoAxZSbDsqOvoaZ3BXbn9EV7IhgcK41E5SpRebzsDw7uIZqkv09eFmEtP5ipCYq0xF2RUurTlVAFv3tuYvMNYokg2z1u9W+cfr1EjjSYMxNcrZPVVu5HlEF2pWGkr7yCWRqyZjbxzRQyHhfgj1PXFlITN6onHxkjJqRVaFqE1g2dlI7lPabYoRBZVUgq6IQEtI4Q3dsE3f8N31kSZklHgykdLFIWJFVXb8VZsKV0imKidR7f1rlkgWjlD17ZMqi+8/NZQGBIZ9Eq5TaAAKhiZwlRqR46P4tqmZnhKIFtF5h/ZHr6FG+QPHqZK7BAxjC544ILLWRf76uahng59oL32GlIFpNp8oSEQsjf8131B5RIeW5H4c2HsU1/bu0Xfe61ZNxaO052H1hyWxvF3+uTW3RpUZZsosOUnJNIBMdmxRNlzYjfNZM3W9c2ocDZ3SZNiRugxFhxlVm4PH2oJXaRzVJMkfawntQZrVoW7yxe6uAXMEt4uCP+yMJpRTUBpIxIi09PT0eGeuET3/60/jIRz4y4DHbb7+9/f3555/H/PnzMXfuXPz4xz/2jpsyZQruvfde77OXX34ZzWbTKl1TpkyxChjhhRe0WjvYMWmaYssttxy0TZsqIhnrgERqE6KANqmBR+4Z1cz+qRRyBWOSdJ/n9MIqN3AQIUkg3DjAJ2quWgFm8My94+wkyQcBb1DRk4M/tLG8XWUTQokSxwcnxY4p2xeyDdRoPnGyrxOh6yyF0Jn2qQ2KBTGoAhAmHxlT/ZQyqUQUUOH+HawtRPog4asadgXODg/NIdKVQ/WgZLvk6B5OqqqEEIaRX7asYOIGy6NkHYQTEzmXpBAygezv1b5qadVGokJIG7ZPZRNBtP5uWT8gVzt/H+qrkJgZ5UmbgTPIxlq7ECBVzCYRpQCBFnxTpipMGoyqrxARMQ76wctFx8kFVzApBYFM9SRO2+eoAqKx1p1HKq25R+THY7O1J4mNypWNXhS18fod6e9Fkva6cphyQguQkADatgak0MvK3vb+oeOxpYsjmdgkw/qdaGgCWBQuGKeszCTxSZOQ2q1CwqVioXZKU8dGHw7NH4XomoBr+qd75V7bty0OS57Ri6BK3SpNFIBB5erVqiPbSkjtD1odr8kWfwepX1t9NmpdyUT7leZN3fHsuAOn6+AVJVO945l5hmwP2+3O9O9EzpSCNU0qIfSQFPS3p4LJRC+YzcK5bHzjxMuW3XbUyKBgPl8bUsa6YPLkyZg8efKQjn3uuecwf/58zJkzBxdeeCFkMMbMnTsX3/rWt7Bs2TJMnarTp9xwww2oVquYM2eOPebkk09Go9FApVKxx0ybNs2Svrlz5+LKK6/0yr7hhhuw++67I8vGnsmYMDSN/DUMUr6sAySZL5WyP/ZYVeIwqTQp41Eshoe0oSyUu015sgpIQMTM50IpbxXonUurT57fKAiDb7tOyWdtq2Ah/AbRNQBfTWOXSKRAKgCpcj86zJyjSUrm/DNkikIkKJLMBjc1c2X9NdoCGEw9ub8d92HraI7l5CD84TsdUD/w1AWBqcte35rfinZ1p8TXR5nkrqo6Dqo6HkXXJEtAvK2jcrZFllUDUm26NfUiH7Ki0edtQA4Ast4N2d0DOW6iTnlAGfVTtvVUSNztc5NCVOp+IIW5tvbNcg7XVvkjXyfjS+b1Hwt80EESJtebkJZEUfuKSjeK+gTdL5W6PpeeNaWYSc4EgZi0DJ7ixu4x7eqgc3ex+1HmiE6+dmXvjK1D+zvrqc8dFBj+/FJ+PIrq9t5l4zzOfSW9RRwnXEK6LYaCXILKkHlR67Yk9NAurTgcMv5FHNq1XJsvU0P4jQqs83qR43z7mEXKoEqretsjZnqnsUJVu3V5QloiZmHKINM+XwTaQ6CJUaH4WOtMhgWYVYLzDzZO2CAMNgbyvUmUEFBCoICwvyu0k6+xaxgbPjz//PPYd999MX36dJx11ln4xz/+geXLl3sK1kEHHYSdd94ZRx99NB588EHcfPPN+NKXvoTjjjvOqnQf/ehHUa1WsXDhQjz66KO44oor8O1vf9tGUgLA8ccfj7/+9a9YtGgRHn/8cfzP//wPfvKTn+BLX/rSqLR9uBCVsQ4g0hUiTD4XnsMhhT6eXnBJrjBksjQvuFDtk16b8mImlzZ/J+knHSR/CsHMkoL932Yu0UtbXzUiskLmHa9ioSlBudGOJlPjUyeU84XTX+j/csNwpRCQRJR4SgDAOcwKgUIlpn/1YJsIE/RgRDMX2Sb8la2ts6/OhYPnYEqFf3DhTWqKf64KTzXzMpAbxceSzHBCLvldGYUJtR7tK0aXoug4Sm9hAwf0JM1NZEqmEPUeSPLdMRtri6p2jldZVU+oSkEkWoEh/zfKMUV+ZgJwJis+8TP1i0eW6Q3ZpVZ08tyZzwBAuP39bF8k7lnVebUSazZUSWr3HdWEqgJVTaGKKkTegmj1Q/St1v1krkFBN/w+KCEhkkzny1JrzRZbmcvxJ10KEvL5a1OUSYWz6TqkM/fye84Qfs7fx46mfqNICrP7hP3Yi5wUequujs+Tv5OFKPQG3MhzLTqblCyCbluR47DKX6FyvS+rElITMSLnLM8Z5Qa0jvneM6Eg8iaKSjdEkjJTpNTJlplqLJt9bswx45nnk2vTwWg/WyGZhYG5gri+FZ4CVCiFRAjnu8v6icbLMj80r0xF5M+5rwgBW4+NgXDxv75ljARuuOEGPPPMM3jmmWew3XbblV4zSRJcffXVOOGEE7DXXnuhXq/jox/9qE19AQATJkzAjTfeiE996lPYfffdMWnSJCxatAiLFi2yx8yaNQvXXHMNvvCFL+D73/8+pk2bhvPOO29Mp7UAAKFG6u6MUaxatQoTJkzAX59bNiSbOkcZeZOeYCTsZzQ4CLPJLuArWZ4qVmLysyoGH5jByBgzB/EyvWuw3EShWck7t8wc6ikBzOGaVpjCDaZkriVFkfdHIrRK1iqUyQOk1RtKistRKB3hmpIJ2eRuC4+lfm3z+Qj7ozB5lAYiwkx98A8qmfwAIG/opMDcrAlocxngh8EXAbHjof2GjMrmWkeqbK6lliUgep9THT2myPTWt9rdpyKHyBvazEkTJzMlqUrdfacKbRo1Oc0g9BZW5Acn8qZvipL+Wk6F0ZdURtHS6TIomjTsVzbZurKqbnI3uedsv7Jrc18p0VgD2b+aRbUaU2Xe0ClETP8AgGj2aXKXN0xalQSi0avvk5SmPG0GVZkmuKLZb+tsfQPJb4rn5Cp7XgZDGEBgkwbr/8lsrJKKbgcA2Vyjr031IuLEVFK7D6TUx8nGq21qFn8HbF4yIrQyNalV9MJANg2BtYtDaY8v20pIVcdpUmtMm0IVKLom6euaZ9NLEwNYv7DCpMKRaF9gFRBoFjphdhlo0UV+u2RStGMD0DZm2N+Zny9HbiLs+TheKD1nzJg2BStXrlznOWMooDnpHd+8CqnZrWN90errxd1ff9eI1TVi/RGVsfWAc9gf2rGAU8kAowxJ4zeGQJmhgQxMwSF/8FCuNwNfOGhYlK28OfigzY9vO4YpZuw873tWP6oaXzUOlGyQzAxpqssvksw4yio7oHrNMudIkUAKiZaiT/1jrTrH2uaZRGzdfZOrUiWElcoYyO/OKkSUgsT1p02KSfeDKR1tYERPyRSiuSYwbVJeM2Zus47rLUeKzQRMqpXeozPx7qUoWlB9r+p0EqZsUj/szgnGfKfSiiUlyqhVAJxqU6YIkX9RmIaEk0/yf7QmV0cg+B6EnqJC6pRpW5FWIbK6JqRKQfS/qos2G7WHebhUpcvdL6MOyqKl+yhhhDlJnKmMtlZigQX23WXkSajCRVhS+4Bysmbay/eFtYew990qdYDOOaYKrTim3OzJFG1VuETVbIcN7cvmfB/deYmrFpFYq/a2dMAmKbos9YxKMm/JpLKaVYghzTOU1UG+oIonKzaLiCKr+U755vfERlAVrn7G90sTLP21Fyhl6pFb0kQLQeZn5pXRPnYWzJ/X+vsqM24jGMfZ3xERG4JIxtYT6+pHyUkZ/S2g33TJzV0Mncxn2k81cCD2LYWlZCEM0+bmPfs5U7wsUdQ19urggRQMXrZyA2OnvqJoSgp+AGCddAHY/Gt8oLXHQZO1ArA7HXiTAjM/hM647X0aql5OVQrb2fY3J0kimPQ4kQvP9XJEBT5BthGF25Irb7T7cVHkpXHoFo01ljS1ER/yd0skRLPPkh89QeauzsonA9aPiplhPXOkUUR0mb7/GmCegYSpKGSaJH8xBKSDUliE/UnHC8mImDDO36l1zi7SKvJCIasn2jSWVqCM2tV27axmkpX6vmSW+EhHxBwha7UtcNqefVju0N6vee4d6xEx9mxw3y8FaNIFQCuULRfJys2XxsfOI1EAkLf7b9J1PBBpNt8VVAchtX8iXwxQ3SpdQLNPB3iY4ApttnTbmBUi0a9UWtXBN4VCJgVkkun3nw0QqXJ1cGkrnGM9LdJoQUy+Y3ysUeZ748EPKdzCtlAKkvmTESHjpAtw/5NrRKjqjwZGw4E/YuMhkrF1wHA+x0op5JrulGbgt8cFkzSFctuJwwwkbfBIVtImvQu47x2Rk9bxNTFbklAdyvysrMnHkA4yTQoTUl7Yga1zx3HZnyZUqnboj8H9NQi5GShFyXdlvh/C+MG4vwM1kJtdWVu9ornvHdrvkSu8RJUMiaBgEy/NBmFkLE9Saoh7uBUMyOQqWNmAVZL8bat807jomqCPY5OajeYDHHkjsDQY1ieR7y0a/g9ffbVpTLiiB0AJloSY+5OF5TF/QlI4EglA6WomUmhlyuyYwNU1mL5TSJwZs9kHCImiPkH/3WoAKoXKfNOx3YnB1M+abfn9pGP538w9wMt/VxY/VZZ+hO6lSSFiiR3tc1pyfbouihZEs7DPCFfx7GFUNxl8xhcKJjhDm5xbLrjAkGFdd0auhU7OWkBohdtUs2XGBR1NrQM3dK4uvaCybWVKlFbBYdsajsMhEQPaLRf0qwDaVLRm4c7hGCoB21j8hnuubEgZEZsmOswimyauvvpq7LnnnqjX65g8eTLe9773ed8PZUf4dQU58g/mDzYUhMcrNYDzJ1uV6qzP7atFPnoWSvm+/WbFGZoHyd++gFllmiikwqw8aZWpFOx1FTnVsp9CJHpfThMlCOhBrVkoNHJlB1hapYY/YT/Q+S1TP07E+Dm8DGqfDZQwEzMlYlQBqbE/rO+8CExu/jVRg5Rt326J5UVISl+xMcSEbz3D1QRvW6uQEBIJZJGx9t5CWB+qtuhXTuZ4MAf5/pj28L01kSSuDURY6NrkZE1pFQgmClKZPSHb6kAbWTMli/eXd2yoBHIFxvYp/STuh+6XTNFizy6HEDC7YzCiS/cyrXrb6uioU0Yize4OOgKzaqNS6RmATKCyGorqOG0yZVGZ/JkY8D4DsJGlnkk9bXu2SkEm6rRiIk4zVw6RLX4/+LMQqp782Q8/K6u7SRmid86oQtXG2+hdq1B6EaCufbkhV2R6bBUKjbxAIy+c2a9Q6MsV+luFHgvMTxilHo4rtPALiZNkizp7DNwPnUvlhZHwQ1XC1nUeiIgow5hRxn71q1/huOOOw7e//W3st99+UErhkUcesd8PZUf4dQG96EP1DVsXUD4yqxwJP3EhwapeJKEzJQDk72DK4FI7AGsmtAtKMvmxxnCyAwCUUFD/p1ezdEzKTAV0soIZzJKqkfNd2evaZ3ZANivpsu9ClJE6TSgBBYXE+IcAzmdNmsAJ2+dlS0WalHhEKH2lCkAFDiWAVbXaTH3cOZ0UFfa7LZd8abh9i7eNO3jzTd/5ZGoz8/PouZatp/UDk6mv9BVEBqEJR5rpzadJnSKzJ5+oVZBOQSYoaKcCL99aEAQSBqIEShjvf+cTGZJPZ08q8/nxzPB0jiEHOvEy26tRuVQMaPZBSGlNf27LqtRtQJ+Y7bGUSa4rhG82JZWJ7g/VB6QYcbM2+94q3b7azNtjiSovGwBEw1M+Lcmm+8TKsopduABRPNGuu9fewsIQL5g8dqQs8qChVihlw1eYhBDIEr1XpL5/7bcPGJoiFaYVGsoxeclh3IWEq+9l0fFl6vzGwqYcTRmx4RgTZKzVauFzn/sczjzzTHziE5+wn++0007296HsCD/cGA6SViiTVBawzuo84oeDZ7DX57Y7oHJfB7DjoNzEVSbrA6SWabNhaGK0poXAPwMAWkF01mD9MqBZdh0Gi7JyiHTlysxxcGqfrpvyk0WKxJkueUQZHIn1MnwDWgErWvClSEfaPMd0ITV54+1i5kUvxUEJRGC2JDKiJ1jpFCNUTOqJAQID2PfWEZsSglIbpHQqWuAP58iN7jfF9vxSSQpVHQ9V5BDNNfpDKj9v2YfWliF9otSWU4/aFSgsSukFxUBPSQEBwYg0L0MJAWnJp7lnaQVKGdJcsAS/STvxcVv3FMZfrmBBIkQ4ZVvkqmsA27WBEZ02UzcnViJ4ftj3ALxdILxdK+g+cfJcBk6qqf4UiQmmIpsN10MSRk1XZiEVbm/D32kiQ+tDaEIixMeZkECFx3UiWGH5Ax3T6fuNZaaMPmObN8YEGfvDH/6A5557DlJKvOUtb8Hy5cvx5je/GWeddRbe9KY3ARh8R/j58+eXlt3f3+/tWL9q1Srv+5F4dsMVWrPQg4UQAsooUlz10ufogYwGFfqKIg7pb8q7w0kbP5bQRsQU7EbnpQqXUlYQavtuhFE2wA4FuVHIwkHbElXzn43aEn7ySS8YIpgsLYGw3wtYq3+pWkP+YDyKULpqkBJUAqc4SE0kVXB9QCshhpCReqVJXgswuaZESBIMIVOq0GobL6/EF6p05wXWN0WSQckMiUxsFKNTzgK/L8D5IwkZRA+7fijg3gN6rv3nTqdEIeLsqcPkX8nKI+KtlavcbTrPFVAhbeSibSNFBzZZvrfERCoWXCk1BJkTc0/ZE15aDqX0/SgjZTxHHT/f1lWy3Smk71fom731s9lG+JhKa0kcqXzkMxj6zNm6hf6mfsR0uKiy7/A6ZuUaKvEZbCyKHCRiU8eY8Bn7y1/+AkBvWvr1r38dV111FSZNmoR58+bhpZdeAjC0HeHLcMYZZ3i710+fPr3jsSMFS7DIb0Fp4kQ+WLlSbaY7jlw5v4mcTVgKsL+HP2WEK/TpKhsIB/KhGyrW9/z1uTb3CSE/EwXnw6LsMe6cNsLBJ8iBdiwYYH89b2LkflDWT0u0n2Pr4zJ/07NQCOcf5tQm45RuytNKhlFL0gpUVoOqdqPI6i6hLPPT0tFvFdsm7qBNfkA0SXPfIiUkUBSQDa2INWnrMMpXlQRrPiKBaVWnPSB/LOZ7Rb8X1F6zgCm7n83Cz77OEeaqs20z7QtVR9t3bMN3yBTIau486m+zJZDvO+iImc6RlrnPBU/ZwYNw2H1MMueraEkVmQkpcIKZesP6txEuBcpD5z1r5nfb50mmd3yo1G20rEprKCrdejeIMD+cgYQqFe5CcGUqfIc7vdfDRaDCRdxY9fFShRqWn4hNE6NKxk477TQIIQb8uf/++1EYM9jXvvY1vP/977d7Xwkh8H//7/+15Q1lR/gQJ510ElauXGl/li5dOvwNXUfY0Gz2OydI4etExCo81h4f+BqETvVl2Bjv7FCI1UD1G+j8ge45J6OuX7n60J67LVQC/O8Cx2dWjj3Jmo4CP6YBnLXbTHedwK9vJ2wiaGmbSRCJu67nrC2EixYkf6204hExRzwDIgit9CRFE6mAb/oK+yQkNfQ5JzPmHlhhtkPTw5xP+rPwGPZ7yX3Q/wvXd+Gz4DnnGyIVKlgyIKehv1sZUWJO/CrsF1aGh04LAd5e+9wN4fmh67A9QEGKWJKZAB6WzNWqpMrrz8E2y17X8WQkx58xy0eGg4iN2cZv/hhVM+VQd4RfvXo1AGDnnXe2n1erVcyePRtLliwBMLQd4ctQrVZRrVY7fj+cGMp7wFUyAhFKPvGEQQCdrjcUJ9dNBes7ToS+JMDAbeXkVbAJHwAgpDWN2RxEZBqk/ERC+yRBkf+Wyx3FzW3OH4wTDD3hWcXGJK5tSy5L1VEFoKRnftZtVpCknLC6e2ZIwJonqT4eZAIooQ9lqg2vP4QEUu1PpXgqDVV4e3XaiT9n2wnx46l+jHxSMAHPd8ezo5PZiy9MBrqfnJAJ5czP5CfY5ovJyRI3UdqgB+kCJ5g/mNfnPPEuWlC0SXWiVUbR6tO8lKciIRTumjyViN3Qm54f5YidDZqgiEzafkspQOWOUHZAGznm+1XCmSKLShf6WwXQKpBKgdQEovBAEs8sifbxZjCUve/DxRU2R85RKFXqS7yuZURsmhhVMjbUHeHnzJmDarWKJ598EnvvvTcAoNlsYvHixZg5cyaAoe0IPxbAiQX3lQqVHAllHe7LjuPlbeoYjjqGZQwlSosILUGnyfBJD98FoPCILdrVLvN7SO6Adn8bATe/FxB6v8TQyZ/9rskf+6jsvECN0hO3aQupWrnZLFxKKFkBWg13PqldxoFdqAIqb7VN2PrY1CMznGxY/zRDEmx+LtMPYY40IqaF6X/yP6Is6uGzH4KnMKDjhdArldJoS34fykiWkABPBKyU8yGzfWDydRky6e0zSSZYymNGhIzKozISQ6qoP1Whd2bg2fEBP4lv7tJjiLxllTTLKYV00Z8sCraNCIY+gbZOme1L6u9c6X0FRZHbIKIyglx2f0YiGj0iYnPEmHDg7+npwfHHH49TTz0V06dPx8yZM3HmmWcCAD74wQ8C8HeEP/PMM/HSSy+17Qg/VjBU0+FYJF4bC5ygDuU4OjZXqpTYcVIW+sjwxLtafWHfBSRMKYBSlejra8LQKnT5XjABMwV1WtBSFJug6EOlz7VlJJlW7ozyJAE/cjQ15ItP1kb10r5gLZdvjAhJ4OtkfyeTl2m3JTvcyZ/VVRMuaNIGgLavUap9+6zBFOBQUfaTKpe4L7DoSk6CXVCGaics9mSnCtqowwJWgaTzbbqJpAKgoVUzbhbu2CBHuBSkJb6gTbptG6Q1KSpVwIukTSt2/0xvH0+l2tJm8N0QqFze3UoptAoAkG0m/sGiFOOYNHxQasN9vjZ168hrGWOCjAHAmWeeiTRNcfTRR2Pt2rXYc889ccstt2DSpEkAhrYj/FjFSMr5mztCssXBzb9l6TxsGfAVNCtElfmPKX9SJtXHmsgMsVLGDEoRn2HZgCFZwh0btkmUnMcnSB0xCAASlMlXyQzSqDA6cz7b6xHQn+cNq+6IVr9Tv8icGOZOI/8omXrE0SpdZkcGqzqS4hKYIRMTOEmqDE/mOxjKyDcRMgVDpFneuTZzTxhJyqOZJUvjYUi59c8rMRUD0NtXKU7YGAGjvmfPiTXtpnCkikfd0jXIlJm3HOEC/B0WhPQ23+Z7tIYmbBv0YeoMpYA0RR7kAeP3yu0JiYiNiOFwwI8O/JsuxgwZy7IMZ5111oDkasaMGbjqqqs2Yq0ixhIG8i3jxCwkcLSHpi6jfTBry/Vm1BbFJnQyaxKx4qVwIsG/46ZM+pvXuaVITQrMRYY8cnMSlU/7eUqRACKx7ZGp2TZJALLpFC4AlrQpoTeBpo3EaVcA2vJGT+AKadDJlnwRIQDsPqOhT2OTRKH1nOjpHnMyRz6WudK7NSTC38e0o5N76H9lzJfepuOqsEQ2TFnizhOA1EEQWpVK3L6PqrBpQKypM0x9IqRLQUFkT6YoKt3e/bBkmZuOAYjcqX3WSd8oZnbfSACw9QNSqfeMHcxEzPuc/x0REbFuGDNkLCJipFEm4YeTuyVE5n8BR9Ds2QpGiQmIl3JEhFC212anhJUhuQrrzCNIB1NTiZgUyv8bChBJ1RLMJDF+X7QBdO6cywuRoFkoz8zYvr+f6xufdLq683qEPkbrM7HzyGMq06Y1EUAhgEwyh/4wgIJQ5mPFCVLwmTuvJJIyrKNIkCuFLCgvdLAXymXQV2nVlqcA9BeAFBKZTO3OAn6AgFM7dUckyNMuTZwLBaGETk1h+1giMRut00dD8cW8+2+r8Y7txkelbIRRFIDYQKZbdFh3RIw+IhmLeE2hTB0Lwf1guC8SN1eWjYkhMaJs5BwDpdzgdez0N0/VwreYGSq4AuhFHzIzLcDImqxYYibNZE+kQQhXnmce7NAOq7JAtPXLYFvRhFgXJaaN3Ck/S3wigMQEQljiI1Od1kEBUuWl2esL44/XloKEmWw5uGlUqhxCJnqzcYP2NCACSlFQQOJ8v1SBIsmQNwsTaCmRyUQ791MyWBbIQWbRIsnQ13T1lMZ5kRNlMk+WmYd5n9+5dLX9/R3bjW/r54jhR9wOafNGJGMRYxbrG6nF1a7ByufotLddGcqizMqiXdcHQyVhZcQt/L3TZ0IIG51oiRm0eVOSmqN4+ojOZQ92rfVRwjr5Lq3L+TDtaimnSAqRWvlTWuu0bFOdCgjjE5eAb71k2yiEF4RAKVKkMQWKvOml0LAIInRttCWAFiSkCcIQSiFLhFWxcpnpFCmGKBfGBK395LRJutnh4Q1TUnSKirxz6WrsPX28JWJ7Tx8fCVhExDAhkrGIMQk+EW+IKWugMjZ0oqE6khmn0yQ3GDqpeSO5yuW+dIDLbaegbNIHvtXUhtRlQ+8h75t1LSv0LSNQZKf5BxsEATI167a3isIS3oz5mIX7Z5K/nBTGJCmKwCFQtAUDeJuCC4lWrncaqCQSKYBMAEnikzWbWoXMsqaene7PQCps2edExPaZ0dMW8RoxshhqDujByojYNBHJ2GsYY9XpttP2JmWRk+uqfg31+sNV7lB8ckIT3lAROshvKNZFGdyYGGoakzIMlI+u1aGtoSJJfdwcwkTXBJCIBDJhfmp8X8og9xoACGMuJf+7VqGQG9MwRdRKIZBIYSNRyxLhdmrnumKfGT3R3DUKKAo1DD5j8b5tqohk7DWKu/+22vt7UzA5DAc5DNtF/ixl1+B+L2XHlp3DP1sf8jcQhpoTbSw6Sg+UYmQkrrE+5wy1XoPtBDDg9cwuDlIAicy8XQF4WhCe144UKHrmyMSas3IriY4Spf07bXoT4fs5SqiOxH6g/uPvVSRio4OY2mLzRiRjrzGEZIVAxKSMvGyM9zecHMi0x3+n/8l3hUB/l7WtjHTSOZ2O7UTK7lzq6sGvx+vSqX/LPufnrQuGau4Mt9EaqLwy9W19zaqD1XVjELPBUEaeO5HdoaiXQwUPYmhPk1Liy2c+sySsA1qFQqtwZmNhlTO/3mG0LpXdCfy5Xd/nNSIiYnAIFZc5HlatWoUJEybg2b8tG3OZ+wcCJxqdCAOhExkJsT5K1mATWRlJGgsYSr8OBWUT3vqQ4U79HBfGw4OBnuPhILGdMBC55tdNOlxwqEl0OynnY9W1YSSxatUqzNpuKlauXDkicwbNSTudcBmSatcGlZX3r8GTP/jIiNU1Yv0RlbHNHOGgOhTCMNAxQyVqHJ0morFKvMowHEQMQJvqt74oU3ni5Dl86KTuDeYAv6GkbKC1c7j7AF13fZ4Bvrjo9DzGfSc3LuJG4Zs3IhnbzDBcpGBdyx8qSducCNhIgffRhhKzOFmOPNYluGK4VLNO97WMeK3vMzCQ2ksKXSRkERHDgwF2q43YlDAYybr7b6tHnIgNhKFMKJGIrTvuXLra3lspYH/o74hNA4P5dA3lXP4z0PdDLWtDQM8ZUP7eRu+WjQ9y4N/Qn4hNE1EZGwMgksWd2su+Hy2QejPQKjkSsQ1H2Ic8+SYhjrWbBwa6j8N9jymhK4CO2xqVPWsjUZeIzlBqGKIpI4neZBGVsWEEX00OF8p8vsaKIkKKTiRiI4s7l662P2Pl2YgYfdB4xf0Uabyh5ykE/ywSsYiI4UNUxjYAnSa+Dck5xVepncBXsaOtinXCplqvzR2UfiMiYiDwsSumrBgbUIXa4KSt0Uy56SKSsQ4YSOXie7SF+a4GAh3L8zoB609cRpvwdBrER7ter3WEuaHi+Dt2MdzRsEP17dxnRg/uWLJqwy+4mYH70XH3jI2BuFH45o1IxgZBJ4JFn6+LCW5zM9eV+ZFEIrZpodMzF9WzsYGRJNLhYpJvAj6URMGbKwbzmaPtsMJtsSIiNgSRjHXAPc+9iq6V8WUbDNHEMTbRKRgkYvMGz3e2Lqo+B5G4zZGQ0e4anHyV/Q5sfJUpboe0eSM68EesN0Iitrkpf5s7RjsdSgS8dCU8ZclIBANxFMq9r0II7DOjPRt7p4XWxjbPbQxQf4eEq9Pv9PedS1fjnude3Sh1LIzP2Ib+RGyaiGQsYr3BTbWRiI1NRHVs9DCQTyqPjh0pYkb3nnzD5s3UhKyMmIX12xywMUjvcEIV+bD8RGyaiGbKiA3C5jIwR0QMNwbLTl8oZxYjcJ8kwDeFhaQh9PkaLCs/P57/zsvgRGygd3u4tu3a2HgtbM0WMTYRyVhExGsUURUrB5luN6R/aNIfLM3Nhpr6w62zyq5DxGkg8qSUwu1Lhn7tsUbENgcSNhzKVlTGNl1EMhYR8RpCJGADgzu283x+QHukMCc/XAUrm/g7qWSkjg0HQmLB8xAOlsB1fTDW3I/C+9PJMX9ThSqKYSBjxTDVJmK4EclYRMRrBJGIlaOTahKqP/Q3bZIdnhuaHENTXidCNlJk4LUenMHvTZlZNSTdERGjiUjGIiI2c/Bkw69lDEROhosQ8YTQZRiIkNH5mzLGgnmyjFyX1XtT7+sQKs+h8g1Uxjbw/IiRQyRjERGbMV4rRGxDfYKGc2IeKB3CWAd/jsI+H0vP2Fi8L0oNg8+YimRsU0UkYxERmzHG0gQ5VGwOzthjCUOJ2ASGf+umdcVgKSri8xGxKSOSsYiI1zg6TWKbGpELUzTEPRTXDUPJuD+YGXKoObkGiyIdboRO+ZsjYjTl5o1IxiIiNmMMlOtqsIl1oO83JlEL60GEYbDkpBE+OuUWG8l7OViuteHAayVQIZKxzRuRjEVEbMYo20ewjGR1SjTaCcNlkipLZBpiIOfrseBQvikhTNcRYn3u5VBI/UgQstcKCYt4bSBuhxQRsZljKNvqKKXsz7oi3F9xoOsMdEwnExPfHijcemtzNksNB96x3fi2H8DtSzochKZQ7T/h58DQTJydniW+d+drdU/VTX07pPe85z2YMWMGarUapk6diqOPPhrPP/+8d8ySJUvw7ne/G93d3Zg8eTI++9nPotFoeMc88sgjmDdvHur1Orbddlt84xvfaBuXbr/9dsyZMwe1Wg2zZ8/Gj370oxFr18bCmFHGnnrqKXz5y1/GXXfdhUajgV133RXf/OY3MX/+fHvMkiVL8KlPfQq33HIL6vU6PvrRj+Kss85CpVIZxZpHRIw+uImK58kaSazrnn+bQ/qBTQ0haeGEbCTRaSeAMgxF3YzPwaaf9HX+/Pk4+eSTMXXqVDz33HP40pe+hA984AO4++67AQB5nuPwww/HVltthTvvvBMrVqzAggULoJTC+eefDwBYtWoVDjzwQMyfPx/33XcfnnrqKSxcuBDd3d344he/CAB49tlncdhhh+G4447D//7v/+Kuu+7CCSecgK222grvf//7R6x9I40xQ8YOP/xw7LjjjpZonXvuuXjXu96FP//5z5gyZcqQbnRExGsZcUKL2BQVpfhcDg1FkQMbSMaKEVTGvvCFL9jfZ86cia9+9as48sgj0Ww2kWUZbrjhBjz22GNYunQppk2bBgA4++yzsXDhQnzrW99CT08PLr30UvT19eGiiy5CtVrFLrvsgqeeegrnnHMOFi1aBCEEfvSjH2HGjBk499xzAQBvfOMbcf/99+Oss84a02RsTJgpX3zxRTzzzDP46le/in/6p3/C61//enznO9/BmjVr8Kc//QkA7I3+3//9X7zlLW/BAQccgLPPPhv/9V//hVWrYrRVREREREQEoBUo/tPf3z+s5b/00ku49NJL8Y53vANZlgEAfve732GXXXaxRAwADj74YPT39+OBBx6wx8ybNw/VatU75vnnn8fixYvtMQcddJB3vYMPPhj3338/ms3msLZjY2JMkLEtt9wSb3zjG3HJJZegt7cXrVYLF1xwAbbZZhvMmTMHwNBudBn6+/vbHsyIiIiIiIhNCcPpMzZ9+nRMmDDB/pxxxhnDUsevfOUr6O7uxpZbboklS5bgN7/5jf1u+fLl2GabbbzjJ02ahEqlguXLl3c8hv4e7JhWq4UXX3xxWNoxGhgTZEwIgRtvvBEPPvggxo8fj1qthu9973u47rrrMHHiRABDu9FlOOOMM7yHcvr06SPZlIiIiIiIiHXGcJKxpUuXYuXKlfbnpJNOKr3maaedBiHEgD/333+/Pf7LX/4yHnzwQdxwww1IkgTHHHOM55/Ko7Ztu5TyPg+PofPX9ZixhlH1GTvttNNw+umnD3jMfffdhzlz5uCEE07A1ltvjTvuuAP1eh3//d//jXe961247777MHXqVABDu9EhTjrpJCxatMj+vWrVqkjIIiIiIiI2W/T09KCnZ/A8fZ/+9KfxkY98ZMBjtt9+e/v75MmTMXnyZOy444544xvfiOnTp+Oee+7B3LlzMWXKFNx7773euS+//DKazaYVUqZMmdImnrzwwgsAMOgxaZpiyy23HLRNmypGlYwN9UbfcsstuOqqq/Dyyy/bB+gHP/gBbrzxRlx88cX46le/OqQbXYZqterZpyMiIiIiIjY55DmU3EAH/HXcKJzI1fqA1CryR5s7dy6+9a1vYdmyZVZAueGGG1CtVq270dy5c3HyySej0WjYLAg33HADpk2bZknf3LlzceWVV3rXuuGGG7D77rtb/7SxiFElY0O90WvWrAEASOlbVaWUKEyo7lBudERERERExFiEUhseTTlSG4X//ve/x+9//3vsvffemDRpEv7yl7/glFNOwQ477IC5c+cCAA466CDsvPPOOProo3HmmWfipZdewpe+9CUcd9xxVmT56Ec/itNPPx0LFy7EySefjKeffhrf/va3ccopp1gL1/HHH4///M//xKJFi3Dcccfhd7/7HX7yk5/gZz/72Yi0bWNhTPiMzZ07F5MmTcKCBQvw0EMP2Zxjzz77LA4//HAA/o1+8MEHcfPNN7fd6IiIiIiIiIjhRb1ex+WXX479998fO+20E4499ljssssuuP32263lKUkSXH311ajVathrr73woQ99CEceeSTOOussW86ECRNw44034m9/+xt23313nHDCCVi0aJHnSjRr1ixcc801uO222/DmN78Z//7v/47zzjtvTKe1AAChNkb2x2HA/fffj6997Ws2fPVNb3oTTjnlFBx66KH2mCVLluCEE05oS/q6LmbIVatWYcKECfj5759G17i41UpERERERGeseXU1PrzH67Fy5coRWfjTnDRh/lcg0g1zqVGtfqy89T9GrK4R648xk/R19913x/XXXz/gMTNmzMBVV121kWoUERERERGxcaCGIelr3Ch808WYMFNGRERERERERGyuGDPKWERERERExGsVqiiADdxbciT3pozYMEQyFhERERERsYkjmik3b0QyFhERERERsYkjkrHNG9FnLCIiIiIiIiJiFBGVsYiIiIiIiE0cRZFDRGVss0UkYxEREREREZs4VF4AYgPJWB4d+DdVRDNlRERERERERMQoIipjERERERERmzg25b0pIzYckYxFRERERERs4lBFvuFmyugztskimikjIiIiIiIiIkYRURmLiIiIiIjYxBGVsc0bkYxFRERERERs4ohkbPNGJGMBlFIAgDWvrh7lmkREREREbOqguYLmjhFD3sQGXyFvDkdNIkYAkYwFWLFiBQDg4/u9dZRrEhERERExVrB69WpMmDBh2MutVCqYMmUKlj/2i2Epb8qUKahUKsNSVsTwQagRp/NjC6+88gomTZqEJUuWjMiLNZpYtWoVpk+fjqVLl6Knp2e0qzOsiG0bm4htG5vYnNsGrFv7lFJYvXo1pk2bBilHJiaur68PjUZjWMqqVCqo1WrDUlbE8CEqYwHoZZowYcJmOcgAQE9PT2zbGERs29hEbNvYxVDbN9IL91qtFgnUZo6Y2iIiIiIiIiIiYhQRyVhERERERERExCgikrEA1WoVp556KqrV6mhXZdgR2zY2Eds2NhHbNnaxubcvYtNDdOCPiIiIiIiIiBhFRGUsIiIiIiIiImIUEclYRERERERERMQoIpKxiIiIiIiIiIhRRCRjERERERERERGjiEjGGH7wgx9g1qxZqNVqmDNnDu64447RrtI647TTToMQwvuZMmWK/V4phdNOOw3Tpk1DvV7Hvvvuiz/96U+jWOPO+O1vf4t3v/vdmDZtGoQQ+PWvf+19P5S29Pf34zOf+QwmT56M7u5uvOc978Hf/va3jdiKcgzWtoULF7bdx7e//e3eMZtq28444wy87W1vw/jx47H11lvjyCOPxJNPPukdM1bv3VDaNlbv3Q9/+EP80z/9k010OnfuXFx77bX2+7F6z4DB2zZW71nE5oNIxgx+/vOf4/Of/zy+9rWv4cEHH8Q+++yDQw89FEuWLBntqq0z3vSmN2HZsmX255FHHrHfffe738U555yD//zP/8R9992HKVOm4MADD8Tq1Zvexui9vb3Ybbfd8J//+Z+l3w+lLZ///OdxxRVX4LLLLsOdd96JV199Fe9617uQ5/nGakYpBmsbABxyyCHefbzmmmu87zfVtt1+++341Kc+hXvuuQc33ngjWq0WDjroIPT29tpjxuq9G0rbgLF577bbbjt85zvfwf3334/7778f++23H4444ghLuMbqPQMGbxswNu9ZxGYEFaGUUmqPPfZQxx9/vPfZG97wBvXVr351lGq0fjj11FPVbrvtVvpdURRqypQp6jvf+Y79rK+vT02YMEH96Ec/2kg1XD8AUFdccYX9eyhteeWVV1SWZeqyyy6zxzz33HNKSqmuu+66jVb3wRC2TSmlFixYoI444oiO54yVtiml1AsvvKAAqNtvv10ptXndu7BtSm1e927SpEnqv//7vzere0agtim1ed2ziLGJqIwBaDQaeOCBB3DQQQd5nx900EG4++67R6lW64+nn34a06ZNw6xZs/CRj3wEf/nLXwAAzz77LJYvX+61s1qtYt68eWOunUNpywMPPIBms+kdM23aNOyyyy5jor233XYbtt56a+y444447rjj8MILL9jvxlLbVq5cCQDYYostAGxe9y5sG2Gs37s8z3HZZZeht7cXc+fO3azuWdg2wli/ZxFjG3GjcAAvvvgi8jzHNtts432+zTbbYPny5aNUq/XDnnvuiUsuuQQ77rgj/v73v+Ob3/wm3vGOd+BPf/qTbUtZO//617+ORnXXG0Npy/Lly1GpVDBp0qS2Yzb1+3rooYfigx/8IGbOnIlnn30W//Zv/4b99tsPDzzwAKrV6phpm1IKixYtwt57741ddtkFwOZz78raBozte/fII49g7ty56Ovrw7hx43DFFVdg5513toRjLN+zTm0DxvY9i9g8EMkYgxDC+1sp1fbZpo5DDz3U/r7rrrti7ty52GGHHXDxxRdbh9TNoZ2E9WnLWGjvhz/8Yfv7Lrvsgt133x0zZ87E1Vdfjfe9730dz9vU2vbpT38aDz/8MO68886278b6vevUtrF873baaSf88Y9/xCuvvIJf/epXWLBgAW6//Xb7/Vi+Z53atvPOO4/pexaxeSCaKQFMnjwZSZK0rXBeeOGFtpXgWEN3dzd23XVXPP300zaqcnNo51DaMmXKFDQaDbz88ssdjxkrmDp1KmbOnImnn34awNho22c+8xn8v//3/3Drrbdiu+22s59vDveuU9vKMJbuXaVSwete9zrsvvvuOOOMM7Dbbrvh//yf/7NZ3LNObSvDWLpnEZsHIhmDfknnzJmDG2+80fv8xhtvxDve8Y5RqtXwoL+/H48//jimTp2KWbNmYcqUKV47G40Gbr/99jHXzqG0Zc6cOciyzDtm2bJlePTRR8dce1esWIGlS5di6tSpADbttiml8OlPfxqXX345brnlFsyaNcv7fizfu8HaVoaxdO9CKKXQ398/pu9ZJ1DbyjCW71nEGMVGDxnYRHHZZZepLMvUT37yE/XYY4+pz3/+86q7u1stXrx4tKu2TvjiF7+obrvtNvWXv/xF3XPPPepd73qXGj9+vG3Hd77zHTVhwgR1+eWXq0ceeUT98z//s5o6dapatWrVKNe8HatXr1YPPvigevDBBxUAdc4556gHH3xQ/fYjsDoAAA+SSURBVPWvf1VKDa0txx9/vNpuu+3UTTfdpP7whz+o/fbbT+22226q1WqNVrOUUgO3bfXq1eqLX/yiuvvuu9Wzzz6rbr31VjV37ly17bbbjom2ffKTn1QTJkxQt912m1q2bJn9WbNmjT1mrN67wdo2lu/dSSedpH7729+qZ599Vj388MPq5JNPVlJKdcMNNyilxu49U2rgto3lexax+SCSMYbvf//7aubMmapSqai3vvWtXrj6WMGHP/xhNXXqVJVlmZo2bZp63/vep/70pz/Z74uiUKeeeqqaMmWKqlar6p3vfKd65JFHRrHGnXHrrbcqAG0/CxYsUEoNrS1r165Vn/70p9UWW2yh6vW6ete73qWWLFkyCq3xMVDb1qxZow466CC11VZbqSzL1IwZM9SCBQva6r2ptq2sXQDUhRdeaI8Zq/dusLaN5Xt37LHH2vFvq622Uvvvv78lYkqN3Xum1MBtG8v3LGLzgVBKqY2nw0VERERERERERHBEn7GIiIiIiIiIiFFEJGMREREREREREaOISMYiIiIiIiIiIkYRkYxFRERERERERIwiIhmLiIiIiIiIiBhFRDIWERERERERETGKiGQsIiIiIiIiImIUEclYRMQwY/HixRBC4I9//OOIlC+EwK9//ev1Pv+2226DEAJCCBx55JEDHrvvvvvi85///HpfK2Jg0H2YOHHiaFclIiJiFBHJWMRmhYULFw5KMEYa06dPx7Jly7DLLrsAcOTnlVdeGdV6hXjyySdx0UUXjXY1XhPo9FwuW7YM55577kavT0RExKaFSMYiIoYZSZJgypQpSNN0tKsyILbeeutNQpFpNpujXYVRw5QpUzBhwoTRrkZERMQoI5KxiNcUbr/9duyxxx6oVquYOnUqvvrVr6LVatnv9913X3z2s5/FiSeeiC222AJTpkzBaaed5pXxxBNPYO+990atVsPOO++Mm266yTMdcjPl4sWLMX/+fADApEmTIITAwoULAQDbb799myry5je/2bve008/jXe+8532WjfeeGNbm5577jl8+MMfxqRJk7DlllviiCOOwOLFi9e5b3p7e3HMMcdg3LhxmDp1Ks4+++y2YxqNBk488URsu+226O7uxp577onbbrvNO+a//uu/MH36dHR1deG9730vzjnnHI/0nXbaaXjzm9+M//mf/8Hs2bNRrVahlMLKlSvxr//6r9h6663R09OD/fbbDw899JBX9pVXXok5c+agVqth9uzZOP300737d9ppp2HGjBmoVquYNm0aPvvZzw6p7YO1a8WKFfjnf/5nbLfddujq6sKuu+6Kn/3sZ14Zv/zlL7HrrruiXq9jyy23xAEHHIDe3l6cdtppuPjii/Gb3/zGmiXDPouIiHhtY9NeukdEDCOee+45HHbYYVi4cCEuueQSPPHEEzjuuONQq9U8AnTxxRdj0aJFuPfee/G73/0OCxcuxF577YUDDzwQRVHgyCOPxIwZM3Dvvfdi9erV+OIXv9jxmtOnT8evfvUrvP/978eTTz6Jnp4e1Ov1IdW3KAq8733vw+TJk3HPPfdg1apVbf5ba9aswfz587HPPvvgt7/9LdI0xTe/+U0ccsghePjhh1GpVIbcP1/+8pdx66234oorrsCUKVNw8skn44EHHsCb3/xme8zHP/5xLF68GJdddhmmTZuGK664AocccggeeeQRvP71r8ddd92F448/Hv/xH/+B97znPbjpppvwb//2b23XeuaZZ/CLX/wCv/rVr5AkCQDg8MMPxxZbbIFrrrkGEyZMwAUXXID9998fTz31FLbYYgtcf/31+NjHPobzzjsP++yzD/785z/jX//1XwEAp556Kn75y1/ie9/7Hi677DK86U1vwvLly9vIXCcM1q6+vj7MmTMHX/nKV9DT04Orr74aRx99NGbPno0999wTy5Ytwz//8z/ju9/9Lt773vdi9erVuOOOO6CUwpe+9CU8/vjjWLVqFS688EIAwBZbbDHk+xIREfEawOjuUx4RMbxYsGCBOuKII0q/O/nkk9VOO+2kiqKwn33/+99X48aNU3meK6WUmjdvntp777298972trepr3zlK0oppa699lqVpqlatmyZ/f7GG29UANQVV1yhlFLq2WefVQDUgw8+qJRS6tZbb1UA1Msvv+yVO3PmTPW9733P+2y33XZTp556qlJKqeuvv14lSaKWLl1qv7/22mu9a/3kJz9pa1N/f7+q1+vq+uuvL+2HsvqsXr1aVSoVddlll9nPVqxYoer1uvrc5z6nlFLqmWeeUUII9dxzz3nl7b///uqkk05SSin14Q9/WB1++OHe90cddZSaMGGC/fvUU09VWZapF154wX528803q56eHtXX1+edu8MOO6gLLrhAKaXUPvvso7797W973//0pz9VU6dOVUopdfbZZ6sdd9xRNRqN0nZ3wlDaVYbDDjtMffGLX1RKKfXAAw8oAGrx4sWlxw70XF544YVe/0RERLz2EJWxiNcMHn/8ccydOxdCCPvZXnvthVdffRV/+9vfMGPGDADAP/3TP3nnTZ06FS+88AIA7fQ+ffp0TJkyxX6/xx57jFh9Z8yYge22285+NnfuXO+YBx54AM888wzGjx/vfd7X14c///nPQ77Wn//8ZzQaDa/8LbbYAjvttJP9+w9/+AOUUthxxx29c/v7+7HlllsC0P3z3ve+1/t+jz32wFVXXeV9NnPmTGy11VZeO1599VVbDmHt2rW2HQ888ADuu+8+fOtb37Lf53mOvr4+rFmzBh/84Adx7rnnYvbs2TjkkENw2GGH4d3vfvegvntDaVee5/jOd76Dn//853juuefQ39+P/v5+dHd3AwB222037L///th1111x8MEH46CDDsIHPvABTJo0acBrR0RERADRTBnxGoJSyiNi9BkA7/Msy7xjhBAoiqJjGesLKaW9PoE7s4ffhfUEtClzzpw5uPTSS9uO5WRnMJRdK0RRFEiSBA888IA1LRLGjRtny+nUxxxEYnjZU6dOLfWlIn+zoihw+umn433ve1/bMbVaDdOnT8eTTz6JG2+8ETfddBNOOOEEnHnmmbj99tvb7um6tuvss8/G9773PZx77rnYdddd0d3djc9//vNoNBoAdNDGjTfeiLvvvhs33HADzj//fHzta1/Dvffei1mzZnW8dkRERAQQyVjEawg777wzfvWrX3mE4e6778b48eOx7bbbDqmMN7zhDViyZAn+/ve/Y5tttgEA3HfffQOeQ35beZ57n2+11VZYtmyZ/XvVqlV49tlnvfouWbIEzz//PKZNmwYA+N3vfueV8da3vhU///nPrdP7+uJ1r3sdsizDPffcYxXCl19+GU899RTmzZsHAHjLW96CPM/xwgsvYJ999ikt5w1veAN+//vfe5/df//9g17/rW99K5YvX440TbH99tt3PObJJ5/E6173uo7l1Ot1vOc978F73vMefOpTn8Ib3vAGPPLII3jrW9/a8ZyhtOuOO+7AEUccgY997GMANIF7+umn8cY3vtEeI4TAXnvthb322gunnHIKZs6ciSuuuAKLFi1CpVJpu/8RERERhBhNGbHZYeXKlfjjH//o/SxZsgQnnHACli5dis985jN44okn8Jvf/AannnoqFi1aBCmH9ioceOCB2GGHHbBgwQI8/PDDuOuuu/C1r30NQLtqRZg5cyaEELjqqqvwj3/8A6+++ioAYL/99sNPf/pT3HHHHXj00UexYMECT5k54IADsNNOO+GYY47BQw89hDvuuMNei3DUUUdh8uTJOOKII3DHHXfg2Wefxe23347Pfe5z+Nvf/jbkPhs3bhw+8YlP4Mtf/jJuvvlmPProo1i4cKHXLzvuuCOOOuooHHPMMbj88svx7LPP4r777sN//Md/4JprrgEAfOYzn8E111yDc845B08//TQuuOACXHvttYOqiQcccADmzp2LI488Etdffz0WL16Mu+++G1//+tctmTvllFNwySWX4LTTTsOf/vQnPP744/j5z3+Or3/96wCAiy66CD/5yU/w6KOP4i9/+Qt++tOfol6vY+bMmQNeeyjtet3rXmeVr8cffxz/3//3/2H58uW2jHvvvRff/va3cf/992PJkiW4/PLL8Y9//MOSte233x4PP/wwnnzySbz44ouv6XQeERERJRglX7WIiBHBggULFIC2nwULFiillLrtttvU2972NlWpVNSUKVPUV77yFdVsNu358+bNsw7rhCOOOMKer5RSjz/+uNprr71UpVJRb3jDG9SVV16pAKjrrrtOKdXuwK+UUt/4xjfUlClTlBDClrVy5Ur1oQ99SPX09Kjp06eriy66yHPgV0qpJ598Uu29996qUqmoHXfcUV133XWeA79SSi1btkwdc8wxavLkyapararZs2er4447Tq1cubK0jzoFFKxevVp97GMfU11dXWqbbbZR3/3ud9v6o9FoqFNOOUVtv/32KssyNWXKFPXe975XPfzww/aYH//4x2rbbbdV9XpdHXnkkeqb3/ymmjJliv3+1FNPVbvttltbvVatWqU+85nPqGnTpqksy9T06dPVUUcdpZYsWWKPue6669Q73vEOVa/XVU9Pj9pjjz3Uj3/8Y6WUUldccYXac889VU9Pj+ru7lZvf/vb1U033VTaByEGa9eKFSvUEUccocaNG6e23npr9fWvf10dc8wx1in/scceUwcffLDaaqutVLVaVTvuuKM6//zzbfkvvPCCOvDAA9W4ceMUAHXrrbfa76IDf0REhFBqCM4iERERHXHXXXdh7733xjPPPIMddthhtKszKG677TbMnz8fL7/88kZJ+nrcccfhiSeewB133DHi1xqLuOiii/D5z39+k9uhISIiYuMh+oxFRKwjrrjiCowbNw6vf/3r8cwzz+Bzn/sc9tprrzFBxDi22247vPvd725LXrqhOOuss3DggQeiu7sb1157LS6++GL84Ac/GNZrbC4YN24cWq0WarXaaFclIiJiFBHJWETEOmL16tU48cQTsXTpUkyePBkHHHBAabb6TRV77rknnn76aQAuWnA48fvf/x7f/e53sXr1asyePRvnnXce/uVf/mXYrzNU3HHHHTj00EM7fk8+fKMB2kw+jOKMiIh4bSGaKSMiIjZrrF27Fs8991zH7weKzoyIiIjYGIhkLCIiIiIiIiJiFBFTW0REREREREREjCIiGYuIiIiIiIiIGEVEMhYRERERERERMYqIZCwiIiIiIiIiYhQRyVhERERERERExCgikrGIiIiIiIiIiFFEJGMREREREREREaOISMYiIiIiIiIiIkYR/z9n0zpwVXML3QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.9" - }, - "vscode": { - "interpreter": { - "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" - } + }, + "metadata": {}, + "output_type": "display_data" } + ], + "source": [ + "oisst_zarr['sst'].sel(time='1981-09-02').plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There it is! Some zarr data that we created during this tutorial! We have converted the netCDF OISST data to zarr and opened it up in xarray. We have a working local recipe.\n", + "\n", + "If we wanted to run the recipe on the full dataset (as opposed to the much smaller pruned version), we would just repeat the above steps on recipe rather than recipe_pruned. This would take a long time, but it would work." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.9" }, - "nbformat": 4, - "nbformat_minor": 4 + "vscode": { + "interpreter": { + "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 } diff --git a/docs/introduction_tutorial/intro_tutorial_part3.ipynb b/docs/introduction_tutorial/intro_tutorial_part3.ipynb index 72872472..b1ebfca6 100644 --- a/docs/introduction_tutorial/intro_tutorial_part3.ipynb +++ b/docs/introduction_tutorial/intro_tutorial_part3.ipynb @@ -1,440 +1,440 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Running your recipe on Pangeo Forge Cloud\n", - "\n", - "Welcome to the Pangeo Forge introduction tutorial! This is the 3rd part in a sequence, the flow of which is described {doc}`here `." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Outline Part 3\n", - "\n", - "We are at an exciting point - transitioning to [Pangeo Forge Cloud](../pangeo_forge_cloud/index.md). In this part of the tutorial we are setting up our recipe, which we have thus far only run in a limited compute environment on a small section of data, to run at scale in the cloud. In order to do that we will need to:\n", - "\n", - "1. Fork the `staged-recipes` repo\n", - "2. Add the recipe files: a `.py` file and a `meta.yaml` file\n", - "4. Make a PR to the `staged-recipes` repo\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### A note for Sandbox users\n", - "If you have been using the [Pangeo Forge Sandbox](../pangeo_forge_recipes/installation.md#pangeo-forge-sandbox) for the first two parts that's great. In order to complete this part of the tutorial you will have to complete step 1 locally, and download the files you make in step 2 in order to make the PR in step 3." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fork the `staged-recipes` repo\n", - "\n", - "[`pangeo-forge/staged-recipes`](https://github.com/pangeo-forge/staged-recipes) is a repository that exists as a staging ground for recipes. It is where recipes get reviewed before they are run. Once the recipe is run the code will be transitioned to its own repository for that recipe, called a [Feedstock](../pangeo_forge_cloud/core_concepts.md). \n", - "\n", - "You can fork a repo through the web browser or the Github CLI. Checkout the [Github docs](https://docs.github.com/en/get-started/quickstart/fork-a-repo) for steps how to do this." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Add the recipe files\n", - "\n", - "Within `staged-recipes`, recipes files should go in a new folder for your dataset in the `recipes` subdirectory. The name of the new folder will become the name of the feedstock repository, the repository where the recipe code will live after the data have been processed.\n", - "\n", - "In the example below we call the folder `oisst`, so the feedstoack will be called `oisst-feedstock`. The final file structure we are creating is this:\n", - "\n", - "```\n", - "staged-recipes/recipes/\n", - " \u2514\u2500\u2500oisst/\n", - " \u00a0\u00a0 \u251c\u2500\u2500recipe.py\n", - " \u00a0\u00a0 \u2514\u2500\u2500meta.yaml\n", - "```\n", - "The name of the folder `oisst` would vary based on the name of the dataset." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Copy the recipe code into a single `.py` file\n", - "\n", - "Within the `oisst` folder create a file called `recipe.py` and copy the recipe creation code from the first two parts of this tutorial. We don't have to copy any of the code we used for local testing - the cloud automation will take care of testing and scaling the processing on the cloud infrastructure. We will call this file `recipe.py` the **recipe module**. For OISST it should look like:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "\n", - "from pangeo_forge_recipes.patterns import ConcatDim, FilePattern\n", - "from pangeo_forge_recipes.recipes import XarrayZarrRecipe\n", - "\n", - "dates = pd.date_range('1981-09-01', '2022-02-01', freq='D')\n", - "\n", - "URL_FORMAT = (\n", - " \"https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/\"\n", - " \"v2.1/access/avhrr/{time:%Y%m}/oisst-avhrr-v02r01.{time:%Y%m%d}.nc\"\n", - ")\n", - "\n", - "def make_url(time):\n", - " return URL_FORMAT.format(time=time)\n", - "\n", - "time_concat_dim = ConcatDim(\"time\", dates, nitems_per_file=1)\n", - "pattern = FilePattern(make_url, time_concat_dim)\n", - "\n", - "recipe = XarrayZarrRecipe(pattern, inputs_per_chunk=2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Another step, complete!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Create a `meta.yaml` file\n", - "\n", - "The `meta.yaml` is a YAML file. YAML is a common language used for writing configuration files. `meta.yaml` contains two important things:\n", - "1. metadata about the recipe \n", - "2. the [Bakery](../pangeo_forge_cloud/core_concepts.md), designating the cloud infrastructure where the recipe will be run and stored.\n", - "\n", - "Here we will walk through each field of the `meta.yaml`. A template of `meta.yaml` is also available [here](https://github.com/pangeo-forge/sandbox/blob/main/recipe/meta.yaml). \n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### `title` and `description`\n", - "\n", - "These fields describe the dataset. They are not highly restricted.\n", - "\n", - "```{code-block} yaml\n", - ":lineno-start: 1\n", - "title: \"NOAA Optimum Interpolated SST\"\n", - "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```{admonition} Full File Preview\n", - ":class: dropdown\n", - "```{code-block} yaml\n", - ":emphasize-lines: 1, 2\n", - "\n", - "title: \"NOAA Optimum Interpolated SST\"\n", - "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### `pangeo_forge_version`\n", - "\n", - "This is the version of the `pangeo_forge_recipes` library that you used to create the recipe. It's important to track in case someone wants to run your recipe in the future. Conda users can find this information with `conda list`.\n", - "\n", - "```{code-block} yaml\n", - ":lineno-start: 3\n", - "pangeo_forge_version: \"0.8.2\"\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```{admonition} Full File Preview\n", - ":class: dropdown\n", - "```{code-block} yaml\n", - ":lineno-start: 1\n", - ":emphasize-lines: 3\n", - "\n", - "title: \"NOAA Optimum Interpolated SST\"\n", - "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", - "pangeo_forge_version: \"0.6.2\"\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### `recipes` section\n", - "\n", - "The `recipes` section explains the recipes contained in the **recipe module** (`recipe.py`). This feels a bit repetitive in the case of OISST, but becomes relevant in the case where someone is defining multiple recipe classes in the same recipe module, for example with different chunk schemes.\n", - "\n", - "```{code-block} yaml\n", - ":lineno-start: 4\n", - "recipes:\n", - " - id: noaa-oisst-avhrr-only\n", - " object: \"recipe:recipe\"\n", - "```\n", - "The id `noaa-oisst-avhrr-only` is the name that we are giving our recipe class. It is a string that we as the maintainer chose.\n", - "The entry `recipe:recipe` describes where the recipe Python object is. We are telling it that our recipe object is in a file called `recipe`, inside of of a variable called `recipe`. Unless there is a specific reason to deviate, `recipe:recipe` is a good convention here." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```{admonition} Full File Preview\n", - ":class: dropdown\n", - "```{code-block} yaml\n", - ":lineno-start: 1\n", - ":emphasize-lines: 4-6\n", - "\n", - "title: \"NOAA Optimum Interpolated SST\"\n", - "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", - "pangeo_forge_version: \"0.6.2\"\n", - "recipes:\n", - " - id: noaa-oisst-avhrr-only\n", - " object: \"recipe:recipe\"\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### `provenance` section\n", - "\n", - "Provenance explains the origin of the dataset. The core information about provenance is the `provider` field, which is outlined as part of the STAC Metadata Specification. See the [STAC Provider docs](https://github.com/radiantearth/stac-spec/blob/master/collection-spec/collection-spec.md#provider-object) for more details.\n", - "\n", - "```{code-block} yaml\n", - ":lineno-start: 7\n", - "provenance:\n", - " providers:\n", - " - name: \"NOAA NCEI\"\n", - " description: \"National Oceanographic & Atmospheric Administration National Centers for Environmental Information\"\n", - " roles:\n", - " - producer\n", - " - licensor\n", - " url: https://www.ncdc.noaa.gov/oisst\n", - " license: \"CC-BY-4.0\"\n", - "```\n", - "One field to highlight is the `license` field, described in the STAC docs [here](https://github.com/radiantearth/stac-spec/blob/master/collection-spec/collection-spec.md#license). It is important to locate the licensing information of the dataset and provide it in the `meta.yaml`." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```{admonition} Full File Preview\n", - ":class: dropdown\n", - "```{code-block} yaml\n", - ":lineno-start: 1\n", - ":emphasize-lines: 7-15\n", - "\n", - "title: \"NOAA Optimum Interpolated SST\"\n", - "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", - "pangeo_forge_version: \"0.6.2\"\n", - "recipes:\n", - " - id: noaa-oisst-avhrr-only\n", - " object: \"recipe:recipe\"\n", - "provenance:\n", - " providers:\n", - " - name: \"NOAA NCEI\"\n", - " description: \"National Oceanographic & Atmospheric Administration National Centers for Environmental Information\"\n", - " roles:\n", - " - producer\n", - " - licensor\n", - " url: https://www.ncdc.noaa.gov/oisst\n", - " license: \"CC-BY-4.0\"\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### `maintainers` section\n", - "\n", - "This is information about you, the recipe creator! Multiple maintainers can be listed. The required fields are `name` and `github` username; `orcid` and `email` may also be included.\n", - "\n", - "```{code-block} yaml\n", - ":lineno-start: 17\n", - "maintainers:\n", - " - name: \"Dorothy Vaughan\"\n", - " orcid: \"9999-9999-9999-9999\"\n", - " github: dvaughan0987\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```{admonition} Full File Preview\n", - ":class: dropdown\n", - "```{code-block} yaml\n", - ":lineno-start: 1\n", - ":emphasize-lines: 16-19\n", - "\n", - "title: \"NOAA Optimum Interpolated SST\"\n", - "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", - "pangeo_forge_version: \"0.6.2\"\n", - "recipes:\n", - " - id: noaa-oisst-avhrr-only\n", - " object: \"recipe:recipe\"\n", - "provenance:\n", - " providers:\n", - " - name: \"NOAA NCEI\"\n", - " description: \"National Oceanographic & Atmospheric Administration National Centers for Environmental Information\"\n", - " roles:\n", - " - producer\n", - " - licensor\n", - " url: https://www.ncdc.noaa.gov/oisst\n", - " license: \"CC-BY-4.0\"\n", - "maintainers:\n", - " - name: \"Dorothy Vaughan\"\n", - " orcid: \"9999-9999-9999-9999\"\n", - " github: dvaughan0987\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### `bakery` section\n", - "\n", - "**Bakeries** are where the work gets done on Pangeo Forge Cloud. A single bakery is a set of cloud infrastructure hosted by a particular institution or group.\n", - "\n", - "Selecting a `bakery` is how you choose where the recipe will be run and hosted. The [Pangeo Forge website](https://pangeo-forge.org/dashboard/bakeries) hosts a full list of available bakeries.\n", - "\n", - "```{code-block} yaml\n", - ":lineno-start: 17\n", - "bakery:\n", - " id: \"pangeo-ldeo-nsf-earthcube\"\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```{admonition} Full File Preview\n", - ":class: dropdown\n", - "```{code-block} yaml\n", - ":lineno-start: 1\n", - ":emphasize-lines: 20, 21\n", - "\n", - "title: \"NOAA Optimum Interpolated SST\"\n", - "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", - "pangeo_forge_version: \"0.6.2\"\n", - "recipes:\n", - " - id: noaa-oisst-avhrr-only\n", - " object: \"recipe:recipe\"\n", - "provenance:\n", - " providers:\n", - " - name: \"NOAA NCEI\"\n", - " description: \"National Oceanographic & Atmospheric Administration National Centers for Environmental Information\"\n", - " roles:\n", - " - producer\n", - " - licensor\n", - " url: https://www.ncdc.noaa.gov/oisst\n", - " license: \"CC-BY-4.0\"\n", - "maintainers:\n", - " - name: \"Dorothy Vaughan\"\n", - " orcid: \"9999-9999-9999-9999\"\n", - " github: dvaughan0987\n", - "bakery:\n", - " id: \"pangeo-ldeo-nsf-earthcube\"\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And that is the `meta.yaml`! Between the `meta.yaml` and `recipe.py` we have now put together all the files we need for cloud processing." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Make a PR to the `staged-recipes` repo\n", - "\n", - "At this point you should have created two files - `recipe.py` and `meta.yaml` and they should be in the new folder you created for your dataset in `staged-recipes/recipes`. \n", - "\n", - "It's time to submit the changes as a Pull Request. Creating the Pull Request on Github is what officially submits your recipe for review to run. If you have opened an issue for your dataset you can reference it in the Pull Request. Otherwise, provide a notes about the datasets and hit submit! " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## After the PR\n", - "\n", - "With the PR in, all the steps to stage the recipe are complete! At this point a [`@pangeo-forge-bot`](https://github.com/pangeo-forge-bot) will perform a series of automated checks on your PR, a full listing of which is provided in {doc}`../pangeo_forge_cloud/pr_checks_reference`.\n", - "\n", - "All information you need to contribute your recipe to Pangeo Forge Cloud will be provided in the PR discussion thread by either [`@pangeo-forge-bot`](https://github.com/pangeo-forge-bot) or a human maintainer of Pangeo Forge.\n", - "\n", - "Merging the PR will transform your submitted files into a new Pangeo Forge [Feedstock repository](../pangeo_forge_cloud/core_concepts.md) and initiate full builds for all recipes contained in your PR. A complete description of what to expect during and post PR merge is provided in {doc}`../pangeo_forge_cloud/recipe_contribution`." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## End of the Introduction Tutorial\n", - "\n", - "Congratulations, you've completed the introduction tutorial!\n", - "\n", - "From here, we hope you are excited to try writing your own recipe. As you write, you may find additional documentation helpful, such as the {doc}`../pangeo_forge_recipes/recipe_user_guide/index` or the more advanced {doc}`../pangeo_forge_recipes/tutorials/index`. For recipes questions not covered there, you are invited to open Issues on the [`pangeo-forge/pangeo-forge-recipes`](https://github.com/pangeo-forge/pangeo-forge-recipes/issues) GitHub repository.\n", - "\n", - "Happy ARCO building! We look forward to your {doc}`../pangeo_forge_cloud/recipe_contribution`." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - } - ], - "metadata": { - "interpreter": { - "hash": "872ea42c32c3f63d8f4b36be21cfb5d37e4f64dbfc719d9980b5e00daca69998" - }, - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.13" - } + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Running your recipe on Pangeo Forge Cloud\n", + "\n", + "Welcome to the Pangeo Forge introduction tutorial! This is the 3rd part in a sequence, the flow of which is described {doc}`here `." + ] }, - "nbformat": 4, - "nbformat_minor": 4 + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Outline Part 3\n", + "\n", + "We are at an exciting point - transitioning to [Pangeo Forge Cloud](../pangeo_forge_cloud/index.md). In this part of the tutorial we are setting up our recipe, which we have thus far only run in a limited compute environment on a small section of data, to run at scale in the cloud. In order to do that we will need to:\n", + "\n", + "1. Fork the `staged-recipes` repo\n", + "2. Add the recipe files: a `.py` file and a `meta.yaml` file\n", + "4. Make a PR to the `staged-recipes` repo\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### A note for Sandbox users\n", + "If you have been using the [Pangeo Forge Sandbox](../pangeo_forge_recipes/installation.md#pangeo-forge-sandbox) for the first two parts that's great. In order to complete this part of the tutorial you will have to complete step 1 locally, and download the files you make in step 2 in order to make the PR in step 3." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fork the `staged-recipes` repo\n", + "\n", + "[`pangeo-forge/staged-recipes`](https://github.com/pangeo-forge/staged-recipes) is a repository that exists as a staging ground for recipes. It is where recipes get reviewed before they are run. Once the recipe is run the code will be transitioned to its own repository for that recipe, called a [Feedstock](../pangeo_forge_cloud/core_concepts.md). \n", + "\n", + "You can fork a repo through the web browser or the Github CLI. Checkout the [Github docs](https://docs.github.com/en/get-started/quickstart/fork-a-repo) for steps how to do this." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Add the recipe files\n", + "\n", + "Within `staged-recipes`, recipes files should go in a new folder for your dataset in the `recipes` subdirectory. The name of the new folder will become the name of the feedstock repository, the repository where the recipe code will live after the data have been processed.\n", + "\n", + "In the example below we call the folder `oisst`, so the feedstoack will be called `oisst-feedstock`. The final file structure we are creating is this:\n", + "\n", + "```\n", + "staged-recipes/recipes/\n", + " └──oisst/\n", + "    ├──recipe.py\n", + "    └──meta.yaml\n", + "```\n", + "The name of the folder `oisst` would vary based on the name of the dataset." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Copy the recipe code into a single `.py` file\n", + "\n", + "Within the `oisst` folder create a file called `recipe.py` and copy the recipe creation code from the first two parts of this tutorial. We don't have to copy any of the code we used for local testing - the cloud automation will take care of testing and scaling the processing on the cloud infrastructure. We will call this file `recipe.py` the **recipe module**. For OISST it should look like:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "\n", + "from pangeo_forge_recipes.patterns import ConcatDim, FilePattern\n", + "from pangeo_forge_recipes.recipes import XarrayZarrRecipe\n", + "\n", + "dates = pd.date_range('1981-09-01', '2022-02-01', freq='D')\n", + "\n", + "URL_FORMAT = (\n", + " \"https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/\"\n", + " \"v2.1/access/avhrr/{time:%Y%m}/oisst-avhrr-v02r01.{time:%Y%m%d}.nc\"\n", + ")\n", + "\n", + "def make_url(time):\n", + " return URL_FORMAT.format(time=time)\n", + "\n", + "time_concat_dim = ConcatDim(\"time\", dates, nitems_per_file=1)\n", + "pattern = FilePattern(make_url, time_concat_dim)\n", + "\n", + "recipe = XarrayZarrRecipe(pattern, inputs_per_chunk=2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Another step, complete!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create a `meta.yaml` file\n", + "\n", + "The `meta.yaml` is a YAML file. YAML is a common language used for writing configuration files. `meta.yaml` contains two important things:\n", + "1. metadata about the recipe \n", + "2. the [Bakery](../pangeo_forge_cloud/core_concepts.md), designating the cloud infrastructure where the recipe will be run and stored.\n", + "\n", + "Here we will walk through each field of the `meta.yaml`. A template of `meta.yaml` is also available [here](https://github.com/pangeo-forge/sandbox/blob/main/recipe/meta.yaml). \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### `title` and `description`\n", + "\n", + "These fields describe the dataset. They are not highly restricted.\n", + "\n", + "```{code-block} yaml\n", + ":lineno-start: 1\n", + "title: \"NOAA Optimum Interpolated SST\"\n", + "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```{admonition} Full File Preview\n", + ":class: dropdown\n", + "```{code-block} yaml\n", + ":emphasize-lines: 1, 2\n", + "\n", + "title: \"NOAA Optimum Interpolated SST\"\n", + "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### `pangeo_forge_version`\n", + "\n", + "This is the version of the `pangeo_forge_recipes` library that you used to create the recipe. It's important to track in case someone wants to run your recipe in the future. Conda users can find this information with `conda list`.\n", + "\n", + "```{code-block} yaml\n", + ":lineno-start: 3\n", + "pangeo_forge_version: \"0.8.2\"\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```{admonition} Full File Preview\n", + ":class: dropdown\n", + "```{code-block} yaml\n", + ":lineno-start: 1\n", + ":emphasize-lines: 3\n", + "\n", + "title: \"NOAA Optimum Interpolated SST\"\n", + "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", + "pangeo_forge_version: \"0.6.2\"\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### `recipes` section\n", + "\n", + "The `recipes` section explains the recipes contained in the **recipe module** (`recipe.py`). This feels a bit repetitive in the case of OISST, but becomes relevant in the case where someone is defining multiple recipe classes in the same recipe module, for example with different chunk schemes.\n", + "\n", + "```{code-block} yaml\n", + ":lineno-start: 4\n", + "recipes:\n", + " - id: noaa-oisst-avhrr-only\n", + " object: \"recipe:recipe\"\n", + "```\n", + "The id `noaa-oisst-avhrr-only` is the name that we are giving our recipe class. It is a string that we as the maintainer chose.\n", + "The entry `recipe:recipe` describes where the recipe Python object is. We are telling it that our recipe object is in a file called `recipe`, inside of of a variable called `recipe`. Unless there is a specific reason to deviate, `recipe:recipe` is a good convention here." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```{admonition} Full File Preview\n", + ":class: dropdown\n", + "```{code-block} yaml\n", + ":lineno-start: 1\n", + ":emphasize-lines: 4-6\n", + "\n", + "title: \"NOAA Optimum Interpolated SST\"\n", + "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", + "pangeo_forge_version: \"0.6.2\"\n", + "recipes:\n", + " - id: noaa-oisst-avhrr-only\n", + " object: \"recipe:recipe\"\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### `provenance` section\n", + "\n", + "Provenance explains the origin of the dataset. The core information about provenance is the `provider` field, which is outlined as part of the STAC Metadata Specification. See the [STAC Provider docs](https://github.com/radiantearth/stac-spec/blob/master/collection-spec/collection-spec.md#provider-object) for more details.\n", + "\n", + "```{code-block} yaml\n", + ":lineno-start: 7\n", + "provenance:\n", + " providers:\n", + " - name: \"NOAA NCEI\"\n", + " description: \"National Oceanographic & Atmospheric Administration National Centers for Environmental Information\"\n", + " roles:\n", + " - producer\n", + " - licensor\n", + " url: https://www.ncdc.noaa.gov/oisst\n", + " license: \"CC-BY-4.0\"\n", + "```\n", + "One field to highlight is the `license` field, described in the STAC docs [here](https://github.com/radiantearth/stac-spec/blob/master/collection-spec/collection-spec.md#license). It is important to locate the licensing information of the dataset and provide it in the `meta.yaml`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```{admonition} Full File Preview\n", + ":class: dropdown\n", + "```{code-block} yaml\n", + ":lineno-start: 1\n", + ":emphasize-lines: 7-15\n", + "\n", + "title: \"NOAA Optimum Interpolated SST\"\n", + "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", + "pangeo_forge_version: \"0.6.2\"\n", + "recipes:\n", + " - id: noaa-oisst-avhrr-only\n", + " object: \"recipe:recipe\"\n", + "provenance:\n", + " providers:\n", + " - name: \"NOAA NCEI\"\n", + " description: \"National Oceanographic & Atmospheric Administration National Centers for Environmental Information\"\n", + " roles:\n", + " - producer\n", + " - licensor\n", + " url: https://www.ncdc.noaa.gov/oisst\n", + " license: \"CC-BY-4.0\"\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### `maintainers` section\n", + "\n", + "This is information about you, the recipe creator! Multiple maintainers can be listed. The required fields are `name` and `github` username; `orcid` and `email` may also be included.\n", + "\n", + "```{code-block} yaml\n", + ":lineno-start: 17\n", + "maintainers:\n", + " - name: \"Dorothy Vaughan\"\n", + " orcid: \"9999-9999-9999-9999\"\n", + " github: dvaughan0987\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```{admonition} Full File Preview\n", + ":class: dropdown\n", + "```{code-block} yaml\n", + ":lineno-start: 1\n", + ":emphasize-lines: 16-19\n", + "\n", + "title: \"NOAA Optimum Interpolated SST\"\n", + "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", + "pangeo_forge_version: \"0.6.2\"\n", + "recipes:\n", + " - id: noaa-oisst-avhrr-only\n", + " object: \"recipe:recipe\"\n", + "provenance:\n", + " providers:\n", + " - name: \"NOAA NCEI\"\n", + " description: \"National Oceanographic & Atmospheric Administration National Centers for Environmental Information\"\n", + " roles:\n", + " - producer\n", + " - licensor\n", + " url: https://www.ncdc.noaa.gov/oisst\n", + " license: \"CC-BY-4.0\"\n", + "maintainers:\n", + " - name: \"Dorothy Vaughan\"\n", + " orcid: \"9999-9999-9999-9999\"\n", + " github: dvaughan0987\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### `bakery` section\n", + "\n", + "**Bakeries** are where the work gets done on Pangeo Forge Cloud. A single bakery is a set of cloud infrastructure hosted by a particular institution or group.\n", + "\n", + "Selecting a `bakery` is how you choose where the recipe will be run and hosted. The [Pangeo Forge website](https://pangeo-forge.org/dashboard/bakeries) hosts a full list of available bakeries.\n", + "\n", + "```{code-block} yaml\n", + ":lineno-start: 17\n", + "bakery:\n", + " id: \"pangeo-ldeo-nsf-earthcube\"\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```{admonition} Full File Preview\n", + ":class: dropdown\n", + "```{code-block} yaml\n", + ":lineno-start: 1\n", + ":emphasize-lines: 20, 21\n", + "\n", + "title: \"NOAA Optimum Interpolated SST\"\n", + "description: \"1/4 degree daily gap filled sea surface temperature (SST)\"\n", + "pangeo_forge_version: \"0.6.2\"\n", + "recipes:\n", + " - id: noaa-oisst-avhrr-only\n", + " object: \"recipe:recipe\"\n", + "provenance:\n", + " providers:\n", + " - name: \"NOAA NCEI\"\n", + " description: \"National Oceanographic & Atmospheric Administration National Centers for Environmental Information\"\n", + " roles:\n", + " - producer\n", + " - licensor\n", + " url: https://www.ncdc.noaa.gov/oisst\n", + " license: \"CC-BY-4.0\"\n", + "maintainers:\n", + " - name: \"Dorothy Vaughan\"\n", + " orcid: \"9999-9999-9999-9999\"\n", + " github: dvaughan0987\n", + "bakery:\n", + " id: \"pangeo-ldeo-nsf-earthcube\"\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And that is the `meta.yaml`! Between the `meta.yaml` and `recipe.py` we have now put together all the files we need for cloud processing." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Make a PR to the `staged-recipes` repo\n", + "\n", + "At this point you should have created two files - `recipe.py` and `meta.yaml` and they should be in the new folder you created for your dataset in `staged-recipes/recipes`. \n", + "\n", + "It's time to submit the changes as a Pull Request. Creating the Pull Request on Github is what officially submits your recipe for review to run. If you have opened an issue for your dataset you can reference it in the Pull Request. Otherwise, provide a notes about the datasets and hit submit! " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## After the PR\n", + "\n", + "With the PR in, all the steps to stage the recipe are complete! At this point a [`@pangeo-forge-bot`](https://github.com/pangeo-forge-bot) will perform a series of automated checks on your PR, a full listing of which is provided in {doc}`../pangeo_forge_cloud/pr_checks_reference`.\n", + "\n", + "All information you need to contribute your recipe to Pangeo Forge Cloud will be provided in the PR discussion thread by either [`@pangeo-forge-bot`](https://github.com/pangeo-forge-bot) or a human maintainer of Pangeo Forge.\n", + "\n", + "Merging the PR will transform your submitted files into a new Pangeo Forge [Feedstock repository](../pangeo_forge_cloud/core_concepts.md) and initiate full builds for all recipes contained in your PR. A complete description of what to expect during and post PR merge is provided in {doc}`../pangeo_forge_cloud/recipe_contribution`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## End of the Introduction Tutorial\n", + "\n", + "Congratulations, you've completed the introduction tutorial!\n", + "\n", + "From here, we hope you are excited to try writing your own recipe. As you write, you may find additional documentation helpful, such as the {doc}`../pangeo_forge_recipes/recipe_user_guide/index` or the more advanced {doc}`../pangeo_forge_recipes/tutorials/index`. For recipes questions not covered there, you are invited to open Issues on the [`pangeo-forge/pangeo-forge-recipes`](https://github.com/pangeo-forge/pangeo-forge-recipes/issues) GitHub repository.\n", + "\n", + "Happy ARCO building! We look forward to your {doc}`../pangeo_forge_cloud/recipe_contribution`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + } + ], + "metadata": { + "interpreter": { + "hash": "872ea42c32c3f63d8f4b36be21cfb5d37e4f64dbfc719d9980b5e00daca69998" + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.13" + } + }, + "nbformat": 4, + "nbformat_minor": 4 } diff --git a/docs/pangeo_forge_recipes/tutorials/grib_reference/reference_HRRR.ipynb b/docs/pangeo_forge_recipes/tutorials/grib_reference/reference_HRRR.ipynb index cb36e688..d6e3b2fd 100644 --- a/docs/pangeo_forge_recipes/tutorials/grib_reference/reference_HRRR.ipynb +++ b/docs/pangeo_forge_recipes/tutorials/grib_reference/reference_HRRR.ipynb @@ -1,1577 +1,1577 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# GRIB2 Reference Recipe for HRRR (High-Resolution Rapid Refresh)\n", - "\n", - "In this notebook, we will demonstrate how to create a reference recipe using GRIB2 files. As with all reference recipes, the original data is not duplicated, instead a reference/index of the dataset is built so the dataset can be read as if it were a Zarr store.\n", - "\n", - "The input files for this recipe are GRIB2 files provided by NOAA and stored in Amazon S3 ([HRRR AWS Open Data Page](https://registry.opendata.aws/noaa-hrrr-pds/)).\n", - "\n", - "This Pangeo-Forge tutorial is an adaptation of the [Kerchunk GRIB2 Project Pythia Cookbook](https://projectpythia.org/kerchunk-cookbook/notebooks/case_studies/HRRR.html). " - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Define the FilePattern\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import fsspec\n", - "import xarray as xr\n", - "from pangeo_forge_recipes.patterns import pattern_from_file_sequence\n", - "\n", - "fs = fsspec.filesystem(\"s3\", anon=True, skip_instance_cache=True)\n", - "\n", - "# retrieve list of available days in archive\n", - "days_available = fs.glob(\"s3://noaa-hrrr-bdp-pds/hrrr.*\")\n", - "\n", - "# Read HRRR GRIB2 files from latest day, the select the first 2\n", - "files = fs.glob(f\"s3://{days_available[-1]}/conus/*wrfsfcf01.grib2\")[0:2]\n", - "\n", - "# Create a filepattern object from input file paths\n", - "pattern = pattern_from_file_sequence(['s3://' + path for path in files], 'time', file_type='grib')\n", - "pattern\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Optional: Examine an input file" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# import s3fs\n", - "# import xarray as xr \n", - "# url = f'simplecache::s3://{files[0]}'\n", - "# file = fsspec.open_local(url, s3={'anon': True}, filecache={'cache_storage':'/tmp/files'})\n", - "\n", - "# ds = xr.open_dataset(file, engine=\"cfgrib\", backend_kwargs={'filter_by_keys': grib_filters})" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Write the Recipe\n", - "\n", - "Now that we have created our `FilePattern`, we can build our `beam` pipeline. A beam pipeline is a chained together list of (Apache Beam transformations)[https://beam.apache.org/documentation/programming-guide/#transforms].\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Specify where our target data should be written\n", - "Here, we are creating a temporary directory to store the written reference files. If we wanted these reference files to persist locally, we would want to specify another file path. \n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "from tempfile import TemporaryDirectory\n", - "td = TemporaryDirectory()\n", - "target_root = td.name" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Specify additional args\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "grib_filters = {\"typeOfLevel\": \"heightAboveGround\", \"level\": [2, 10]}\n", - "storage_options = {\"anon\": True}\n", - "remote_protocol = \"s3\"" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Construct a Pipeline\n", - "Next, we will construct a beam pipeline. This should look similar to the other standard Zarr examples, but will involve a few different transforms. " - ] - }, + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# GRIB2 Reference Recipe for HRRR (High-Resolution Rapid Refresh)\n", + "\n", + "In this notebook, we will demonstrate how to create a reference recipe using GRIB2 files. As with all reference recipes, the original data is not duplicated, instead a reference/index of the dataset is built so the dataset can be read as if it were a Zarr store.\n", + "\n", + "The input files for this recipe are GRIB2 files provided by NOAA and stored in Amazon S3 ([HRRR AWS Open Data Page](https://registry.opendata.aws/noaa-hrrr-pds/)).\n", + "\n", + "This Pangeo-Forge tutorial is an adaptation of the [Kerchunk GRIB2 Project Pythia Cookbook](https://projectpythia.org/kerchunk-cookbook/notebooks/case_studies/HRRR.html). " + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Define the FilePattern\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import apache_beam as beam\n", - "from pangeo_forge_recipes.transforms import OpenWithKerchunk, CombineReferences, WriteCombinedReference\n", - "\n", - "store_name = \"grib2-reference\"\n", - "transforms = (\n", - " # Create a beam PCollection from our input file pattern\n", - " beam.Create(pattern.items())\n", - " # Open with Kerchunk and create references for each file\n", - " | OpenWithKerchunk(\n", - " file_type=pattern.file_type,\n", - " remote_protocol=remote_protocol,\n", - " storage_options=storage_options,\n", - " kerchunk_open_kwargs={\"filter\": grib_filters},\n", - " )\n", - " # Use Kerchunk's `MultiZarrToZarr` functionality to combine the reference files into a single\n", - " # reference file. *Note*: Setting the correct contact_dims and identical_dims is important.\n", - " | CombineReferences(\n", - " concat_dims=[\"valid_time\"],\n", - " identical_dims=[\"latitude\", \"longitude\", \"heightAboveGround\", \"step\"],\n", - " mzz_kwargs={\"remote_protocol\": remote_protocol},\n", - " # GRIB2 input files may generate > 1 kerchunk reference per input file,\n", - " # therefore we must precombine each input's references with itself, before\n", - " # adding them to the aggregate dataset. This is accomplished by setting the\n", - " # `precombine_inputs` option to `True`.\n", - " precombine_inputs=True,\n", - " )\n", - " # Write the combined Kerchunk reference to file\n", - " | WriteCombinedReference(target_root=target_root, store_name=store_name)\n", - ")" + "data": { + "text/plain": [ + "" ] - }, + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import fsspec\n", + "import xarray as xr\n", + "from pangeo_forge_recipes.patterns import pattern_from_file_sequence\n", + "\n", + "fs = fsspec.filesystem(\"s3\", anon=True, skip_instance_cache=True)\n", + "\n", + "# retrieve list of available days in archive\n", + "days_available = fs.glob(\"s3://noaa-hrrr-bdp-pds/hrrr.*\")\n", + "\n", + "# Read HRRR GRIB2 files from latest day, the select the first 2\n", + "files = fs.glob(f\"s3://{days_available[-1]}/conus/*wrfsfcf01.grib2\")[0:2]\n", + "\n", + "# Create a filepattern object from input file paths\n", + "pattern = pattern_from_file_sequence(['s3://' + path for path in files], 'time', file_type='grib')\n", + "pattern\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Optional: Examine an input file" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# import s3fs\n", + "# import xarray as xr \n", + "# url = f'simplecache::s3://{files[0]}'\n", + "# file = fsspec.open_local(url, s3={'anon': True}, filecache={'cache_storage':'/tmp/files'})\n", + "\n", + "# ds = xr.open_dataset(file, engine=\"cfgrib\", backend_kwargs={'filter_by_keys': grib_filters})" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Write the Recipe\n", + "\n", + "Now that we have created our `FilePattern`, we can build our `beam` pipeline. A beam pipeline is a chained together list of (Apache Beam transformations)[https://beam.apache.org/documentation/programming-guide/#transforms].\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Specify where our target data should be written\n", + "Here, we are creating a temporary directory to store the written reference files. If we wanted these reference files to persist locally, we would want to specify another file path. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "from tempfile import TemporaryDirectory\n", + "td = TemporaryDirectory()\n", + "target_root = td.name" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Specify additional args\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "grib_filters = {\"typeOfLevel\": \"heightAboveGround\", \"level\": [2, 10]}\n", + "storage_options = {\"anon\": True}\n", + "remote_protocol = \"s3\"" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Construct a Pipeline\n", + "Next, we will construct a beam pipeline. This should look similar to the other standard Zarr examples, but will involve a few different transforms. " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "import apache_beam as beam\n", + "from pangeo_forge_recipes.transforms import OpenWithKerchunk, CombineReferences, WriteCombinedReference\n", + "\n", + "store_name = \"grib2-reference\"\n", + "transforms = (\n", + " # Create a beam PCollection from our input file pattern\n", + " beam.Create(pattern.items())\n", + " # Open with Kerchunk and create references for each file\n", + " | OpenWithKerchunk(\n", + " file_type=pattern.file_type,\n", + " remote_protocol=remote_protocol,\n", + " storage_options=storage_options,\n", + " kerchunk_open_kwargs={\"filter\": grib_filters},\n", + " )\n", + " # Use Kerchunk's `MultiZarrToZarr` functionality to combine the reference files into a single\n", + " # reference file. *Note*: Setting the correct contact_dims and identical_dims is important.\n", + " | CombineReferences(\n", + " concat_dims=[\"valid_time\"],\n", + " identical_dims=[\"latitude\", \"longitude\", \"heightAboveGround\", \"step\"],\n", + " mzz_kwargs={\"remote_protocol\": remote_protocol},\n", + " # GRIB2 input files may generate > 1 kerchunk reference per input file,\n", + " # therefore we must precombine each input's references with itself, before\n", + " # adding them to the aggregate dataset. This is accomplished by setting the\n", + " # `precombine_inputs` option to `True`.\n", + " precombine_inputs=True,\n", + " )\n", + " # Write the combined Kerchunk reference to file\n", + " | WriteCombinedReference(target_root=target_root, store_name=store_name)\n", + ")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Execute the Recipe" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Execute the Recipe" - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" + ] }, { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" - ] - }, - { - "data": { - "application/javascript": "\n if (typeof window.interactive_beam_jquery == 'undefined') {\n var jqueryScript = document.createElement('script');\n jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n jqueryScript.type = 'text/javascript';\n jqueryScript.onload = function() {\n var datatableScript = document.createElement('script');\n datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n datatableScript.type = 'text/javascript';\n datatableScript.onload = function() {\n window.interactive_beam_jquery = jQuery.noConflict(true);\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }\n document.head.appendChild(datatableScript);\n };\n document.head.appendChild(jqueryScript);\n } else {\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/charlesstern/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/kerchunk/combine.py:260: UserWarning: Concatenated coordinate 'valid_time' contains less than expectednumber of values across the datasets: [1682643600]\n", - " warnings.warn(\n", - "/Users/charlesstern/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/kerchunk/combine.py:260: UserWarning: Concatenated coordinate 'valid_time' contains less than expectednumber of values across the datasets: [1682647200]\n", - " warnings.warn(\n" - ] - } - ], - "source": [ - "with beam.Pipeline() as p:\n", - " p | transforms" - ] + "data": { + "application/javascript": "\n if (typeof window.interactive_beam_jquery == 'undefined') {\n var jqueryScript = document.createElement('script');\n jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n jqueryScript.type = 'text/javascript';\n jqueryScript.onload = function() {\n var datatableScript = document.createElement('script');\n datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n datatableScript.type = 'text/javascript';\n datatableScript.onload = function() {\n window.interactive_beam_jquery = jQuery.noConflict(true);\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }\n document.head.appendChild(datatableScript);\n };\n document.head.appendChild(jqueryScript);\n } else {\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }" + }, + "metadata": {}, + "output_type": "display_data" }, { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Examine the Result\n", - "\n", - "Here we are creating an fsspec mapper of the reference file and then passing it to Xarray's `open_dataset` to be read as if it were a Zarr store." - ] - }, + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/charlesstern/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/kerchunk/combine.py:260: UserWarning: Concatenated coordinate 'valid_time' contains less than expectednumber of values across the datasets: [1682643600]\n", + " warnings.warn(\n", + "/Users/charlesstern/miniconda3/envs/pangeo-forge-recipes/lib/python3.9/site-packages/kerchunk/combine.py:260: UserWarning: Concatenated coordinate 'valid_time' contains less than expectednumber of values across the datasets: [1682647200]\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "with beam.Pipeline() as p:\n", + " p | transforms" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Examine the Result\n", + "\n", + "Here we are creating an fsspec mapper of the reference file and then passing it to Xarray's `open_dataset` to be read as if it were a Zarr store." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.Dataset>\n",
-              "Dimensions:            (valid_time: 2, y: 1059, x: 1799, heightAboveGround: 1,\n",
-              "                        step: 1, time: 1)\n",
-              "Coordinates:\n",
-              "  * heightAboveGround  (heightAboveGround) int64 2\n",
-              "  * step               (step) timedelta64[ns] 01:00:00\n",
-              "  * time               (time) datetime64[ns] 2023-04-28\n",
-              "  * valid_time         (valid_time) datetime64[ns] 2023-04-28T01:00:00 2023-0...\n",
-              "Dimensions without coordinates: y, x\n",
-              "Data variables:\n",
-              "    d2m                (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
-              "    latitude           (y, x) float64 dask.array<chunksize=(1059, 1799), meta=np.ndarray>\n",
-              "    longitude          (y, x) float64 dask.array<chunksize=(1059, 1799), meta=np.ndarray>\n",
-              "    pt                 (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
-              "    r2                 (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
-              "    sh2                (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
-              "    si10               (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
-              "    t2m                (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
-              "    u10                (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
-              "    unknown            (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
-              "    v10                (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
-              "Attributes:\n",
-              "    centre:             kwbc\n",
-              "    centreDescription:  US National Weather Service - NCEP\n",
-              "    edition:            2\n",
-              "    subCentre:          0
" - ], - "text/plain": [ - "\n", - "Dimensions: (valid_time: 2, y: 1059, x: 1799, heightAboveGround: 1,\n", - " step: 1, time: 1)\n", - "Coordinates:\n", - " * heightAboveGround (heightAboveGround) int64 2\n", - " * step (step) timedelta64[ns] 01:00:00\n", - " * time (time) datetime64[ns] 2023-04-28\n", - " * valid_time (valid_time) datetime64[ns] 2023-04-28T01:00:00 2023-0...\n", - "Dimensions without coordinates: y, x\n", - "Data variables:\n", - " d2m (valid_time, y, x) float64 dask.array\n", - " latitude (y, x) float64 dask.array\n", - " longitude (y, x) float64 dask.array\n", - " pt (valid_time, y, x) float64 dask.array\n", - " r2 (valid_time, y, x) float64 dask.array\n", - " sh2 (valid_time, y, x) float64 dask.array\n", - " si10 (valid_time, y, x) float64 dask.array\n", - " t2m (valid_time, y, x) float64 dask.array\n", - " u10 (valid_time, y, x) float64 dask.array\n", - " unknown (valid_time, y, x) float64 dask.array\n", - " v10 (valid_time, y, x) float64 dask.array\n", - "Attributes:\n", - " centre: kwbc\n", - " centreDescription: US National Weather Service - NCEP\n", - " edition: 2\n", - " subCentre: 0" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:            (valid_time: 2, y: 1059, x: 1799, heightAboveGround: 1,\n",
+       "                        step: 1, time: 1)\n",
+       "Coordinates:\n",
+       "  * heightAboveGround  (heightAboveGround) int64 2\n",
+       "  * step               (step) timedelta64[ns] 01:00:00\n",
+       "  * time               (time) datetime64[ns] 2023-04-28\n",
+       "  * valid_time         (valid_time) datetime64[ns] 2023-04-28T01:00:00 2023-0...\n",
+       "Dimensions without coordinates: y, x\n",
+       "Data variables:\n",
+       "    d2m                (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
+       "    latitude           (y, x) float64 dask.array<chunksize=(1059, 1799), meta=np.ndarray>\n",
+       "    longitude          (y, x) float64 dask.array<chunksize=(1059, 1799), meta=np.ndarray>\n",
+       "    pt                 (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
+       "    r2                 (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
+       "    sh2                (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
+       "    si10               (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
+       "    t2m                (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
+       "    u10                (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
+       "    unknown            (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
+       "    v10                (valid_time, y, x) float64 dask.array<chunksize=(1, 1059, 1799), meta=np.ndarray>\n",
+       "Attributes:\n",
+       "    centre:             kwbc\n",
+       "    centreDescription:  US National Weather Service - NCEP\n",
+       "    edition:            2\n",
+       "    subCentre:          0
" ], - "source": [ - "# open dataset as zarr object using fsspec reference file system and Xarray\n", - "full_path = os.path.join(target_root, store_name, \"reference.json\")\n", - "fs = fsspec.filesystem(\"reference\", fo=full_path)\n", - "ds = xr.open_dataset(\n", - " fs.get_mapper(\"\"), engine=\"zarr\", backend_kwargs=dict(consolidated=False), chunks={\"valid_time\": 1}\n", - ")\n", - "ds\n" + "text/plain": [ + "\n", + "Dimensions: (valid_time: 2, y: 1059, x: 1799, heightAboveGround: 1,\n", + " step: 1, time: 1)\n", + "Coordinates:\n", + " * heightAboveGround (heightAboveGround) int64 2\n", + " * step (step) timedelta64[ns] 01:00:00\n", + " * time (time) datetime64[ns] 2023-04-28\n", + " * valid_time (valid_time) datetime64[ns] 2023-04-28T01:00:00 2023-0...\n", + "Dimensions without coordinates: y, x\n", + "Data variables:\n", + " d2m (valid_time, y, x) float64 dask.array\n", + " latitude (y, x) float64 dask.array\n", + " longitude (y, x) float64 dask.array\n", + " pt (valid_time, y, x) float64 dask.array\n", + " r2 (valid_time, y, x) float64 dask.array\n", + " sh2 (valid_time, y, x) float64 dask.array\n", + " si10 (valid_time, y, x) float64 dask.array\n", + " t2m (valid_time, y, x) float64 dask.array\n", + " u10 (valid_time, y, x) float64 dask.array\n", + " unknown (valid_time, y, x) float64 dask.array\n", + " v10 (valid_time, y, x) float64 dask.array\n", + "Attributes:\n", + " centre: kwbc\n", + " centreDescription: US National Weather Service - NCEP\n", + " edition: 2\n", + " subCentre: 0" ] - }, + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# open dataset as zarr object using fsspec reference file system and Xarray\n", + "full_path = os.path.join(target_root, store_name, \"reference.json\")\n", + "fs = fsspec.filesystem(\"reference\", fo=full_path)\n", + "ds = xr.open_dataset(\n", + " fs.get_mapper(\"\"), engine=\"zarr\", backend_kwargs=dict(consolidated=False), chunks={\"valid_time\": 1}\n", + ")\n", + "ds\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Make a Map" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Make a Map" + "data": { + "text/plain": [ + "" ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" }, { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHFCAYAAAAT5Oa6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebRlSVUnjn8i4gx3eEPOU81SUMjUKiKgLgFpEKQERKUFQZDJBSoLhbYVFIp2olFBWwVpBwopaGxaAaEVoYGi2y+FFCg/gaZAZagqqrJyfOMdzjkR+/dHxI7Y57ybmS8rM6sKuXutm/nuvefGienE/sRnD6GIiDCXucxlLnOZy1zm8g0s+u6uwFzmMpe5zGUuc5nL3S1zQDSXucxlLnOZy1y+4WUOiOYyl7nMZS5zmcs3vMwB0VzmMpe5zGUuc/mGlzkgmstc5jKXucxlLt/wMgdEc5nLXOYyl7nM5Rte5oBoLnOZy1zmMpe5fMPLHBDNZS5zmctc5jKXb3iZA6K5zGUuc5nLXObyDS9zQDSX8ybXX389lFK4/vrr42fXXHMNlFLb+v3ll1+OZz/72Wd1z1//9V/Hu9/97m3V5d+S/PEf/zGe/OQn4/LLL0e/38eVV16JF77whbj99ttnXv+Od7wD3/It34Jer4dDhw7hJS95CTY2NlrXfPjDH8ZznvMc3Pe+98VwOMRFF12EJz3pSfjUpz61pbz/+l//Kx72sIdhz549KMsSl156KX70R38Un/vc586qHdup16y2K6WwsLCw7fucTX+tra3hFa94Be5zn/tgMBjgoosuwo/8yI+02qaU2tZLzr/f+73fw33ve1+UZYkrrrgCr371q1HXdevef/mXf4mnPe1puPLKK9Hv93H55Zfjx37sx/DP//zP227rdu8FAEeOHMGzn/1s7NmzB4PBAA9/+MPxoQ996B57r7nM5YIKzWUu50k+8pGPEAD6yEc+Ej+75ZZb6IYbbtjW7y+77DJ61rOedVb3HA6HM3+zurpKN9xwA62urp5VeV8vcujQIfqxH/sxetvb3kbXX389velNb6KLL76YDh48SIcPH25de9111xEAet7znkcf/vCH6Q//8A9peXmZHvOYx7Su++Ef/mF61KMeRW94wxvo+uuvp3e+8530sIc9jLIsow996EOta1/5ylfSNddcQ+9617vo+uuvpz/90z+l+9znPjQcDummm27aVhu2Wy8pt956Ky0vL9OhQ4doOBxus7fOrr++53u+hwaDAb32ta+lD3/4w/Rnf/ZndOWVV9Li4iJ95StfISKiG264ofX6/u//fur3+1s+5/n3q7/6q6SUol/8xV+kj3zkI/Ta176WiqKg5z//+a17f8d3fAc98YlPpD/90z+l66+/nt761rfSN3/zN9PCwgJ99rOf3VZbt3uvyWRCD3jAA+jiiy+m6667jj7wgQ/Qk570JMqyjK6//vp73L3mMpcLLXNANJfzJrMA0dnI+QRE/9bljjvu2PLZjTfeSADoV37lV+JnTdPQwYMH6bGPfWzr2re97W0EgP76r//6tGWur6/T/v376dGPfvQZ6/T//t//IwD0y7/8y2e89mzqJeXqq6+mH/iBH6BnPetZZwWItttf//zP/0wA6Jd+6Zda137sYx8jAPS6171uZvmnq8+xY8eo1+vRC17wgtbnv/Zrv0ZKKfrc5z532np+7WtfozzP6bnPfe6pG3gn7vUHf/AHBIA+9rGPxc/quqb73e9+9B3f8R33qHvNZS53hcxNZt+g8u53vxtKqZmU9Rvf+EYopfBP//RPAIBPfvKT+NEf/dFobrj88svxtKc9DV/96lfPeJ9ZJrO6rvHzP//zOHDgAAaDAb77u78bn/jEJ866DUopbG5u4i1veUs0UTzykY8EMNtk9uxnPxsLCwu46aab8H3f930YDoc4ePAgXvOa1wAAPv7xj+O7v/u7MRwOcZ/73Advectbttzz8OHD+Mmf/ElcfPHFKIoimgiapjnr+p+L7Nu3b8tnD37wg2GMwS233BI/+/jHP47bb78dP/ETP9G69kd+5EewsLCAd73rXactc2FhAfe73/1aZZ5K9u7dCwDIsuyM155NvViuu+46fPSjH8Ub3vCGM5bfle32V57nAIDl5eXWtTt27AAA9Hq9s773+9//fkwmky1t/Ymf+AkQUcvkO6uehw4dwsUXX7ytMTibe73rXe/CVVddhYc//OHxsyzL8IxnPAOf+MQn8LWvfe0ec6+5zOWukDkg+gaVq6++Gvv27cOb3/zmLd9de+21+LZv+zY86EEPAgB85StfwVVXXYXf+Z3fwd/+7d/iv/yX/4Lbb78dD3nIQ3Ds2LGzvvfzn/98/NZv/RZ+/Md/HO95z3vwQz/0Q3jKU56CkydPnlU5N9xwA/r9Pr7/+78fN9xwA2644YYzKsu6rvGUpzwFT3jCE/Ce97wHj3/84/GLv/iLePnLX45nPetZeM5znhMX72c/+9kt/5nDhw/jO77jO/C3f/u3eOUrX4m/+Zu/wXOf+1z8xm/8Bp7//Oefsb7OOTRNc8aXtfas+oHlox/9KKy1uP/97x8/++xnPwsAcSxZ8jzHfe973/j9qWR1dRX/8A//0CpTirUW0+kUN910E573vOdh3759WxTkLDnbeh05cgQveclL8JrXvAYXX3zxGcvfjszqr8suuwxPetKT8PrXvx4f+chHsLGxgZtuugkvfvGLo5/U2Qq35YEPfGDr84MHD2LPnj1nHIMvfelL+OpXv7plDHizIUH/2dzrs5/97Jb+B9KYSJ+pu/Jec5nL3SVn3srN5d+k8O7sjW98I1ZXV+OO+POf/zw+8YlP4Pd+7/fitT/8wz+MH/7hH47vrbW4+uqrsX//frz97W/Hi1/84m3f96abbsJb3vIW/OzP/ixe+9rXAgAe85jHYP/+/fixH/uxs2rDwx72MGitsXfvXjzsYQ/b1m+qqsKv/uqv4ilPeQoA4JGPfCTe97734Td+4zfwD//wD/jWb/1WAMC3f/u3Y9++fXj729+OBz/4wQC8Ujh58iQ+97nP4dJLLwUAPPrRj0a/38fLXvYy/Mf/+B9xv/vd75T3fs5znjOTderKIx7xiLN2Bl9fX8eLXvQiXHLJJXjOc54TPz9+/DgAYNeuXVt+s2vXLnzlK185bbk/9VM/hc3NTbziFa+Y+f1wOMR0OgUA3Oc+98H111+PSy655Iz1Pdt6vehFL8JVV12FF77whWcseztyqv4CgHe+8534qZ/6KXzv935v/OxBD3oQPvrRj2Lnzp1nfa/jx4+jLEsMh8Mt3+3atSv2xSxpmgbPfe5zsbCwgJ/92Z9tfae1hjGmxcCezb2OHz9+yv7n7++Oe81lLneXzBmib2B5znOeg/F4jD//8z+Pn735zW9GWZZ4+tOfHj/b2NjAf/pP/wlXXnklsixDlmVYWFjA5uYmPv/5z5/VPT/ykY8AwBbw89SnPnVbppZzFaUUvv/7vz++z7IMV155JQ4ePBjBEOAX6n379rXMgu973/vwqEc9CocOHWoxOo9//OMBeMbhdHLNNdfgxhtvPOPrTW9601m1aTKZ4ClPeQq++tWv4p3vfOfM6KtTRfqdLgLwl3/5l/G2t70Nr3/96yMo7MrHPvYx3HDDDbjuuuuwuLiIRz3qUa3dvrW21VfOubOu11/8xV/gve99L/7oj/7otPXtMnCnYtrO1F8vfOEL8Rd/8Rd4/etfj49+9KP48z//cxRFge/93u/dlpn4TO3Z7ndEhOc+97n4v//3/+LP/uzPtgDNV77ylWiaBo94xCPu9L22e+1dea+5zOXukjlD9A0s97///fGQhzwEb37zm/GCF7wA1lpcd911eNKTntTazT396U/Hhz70IfzyL/8yHvKQh2BpaSkCi/F4fFb35J3ggQMHWp9nWYbdu3efe6POIIPBYIsfSFEUM3evRVFgMpnE93fccQfe+973Rj+TrpzJfHjppZduy9xzNsphOp3iB3/wB/F3f/d3eN/73oeHPvShre+5T48fP479+/e3vjtx4sTMdgPAq1/9avzqr/4qfu3Xfg0//dM/fcr7f9u3fRsAz9Y98YlPxJVXXomXv/zleM973gMAuNe97tUCEa961atwzTXXbLteGxsb+Kmf+in8zM/8DA4dOoSVlRUAnukDgJWVFeR5juFwiP/8n/8zXv3qV8dyLrvssi1M05n66/3vfz/+5E/+BO985ztbrOhjH/tYXH755bjmmmtmmplPJ7t378ZkMsFoNMJgMNjS1llgk4jwvOc9D9dddx3e8pa34ElPetJ5v9fu3btnMjMnTpwAMJu9u7vuNZe53BUyB0Tf4PITP/ETeNGLXoTPf/7z+NKXvrTF0XV1dRXve9/78KpXvQq/8Au/ED+fTqdxMTsbYUV4+PBhXHTRRfHzpmnu8bT5nj178KAHPQi/9mu/NvP7Q4cOnfb359tkNp1O8eQnPxkf+chH8J73vAePfvSjt1zD/h2f+cxnWua8pmlw00034WlPe9qW37z61a/GNddcg2uuuQYvf/nLz1gPlsXFRdz3vvfFF7/4xfjZe9/73mhSA1Ifbbdex44dwx133IHf/u3fxm//9m9vuefOnTvxpCc9Ce9+97vxghe8AFdffXX8rizL1rXb6a9Pf/rTAICHPOQhrc937NiBK6+88oz+PrNEtlUCsMOHD+PYsWN4wAMe0LqewdCb3/xm/Mmf/Ame8YxnXJB7PfCBD8RnPvOZLWXwZ9163Z33mstc7gqZA6JvcHna056Gn/u5n8O1116LL33pS7jooovw2Mc+Nn6vlAIRbVEuf/zHf3ynnH85Cuxtb3tbawf5P/7H/7hTkVplWZ41S3Vn5eqrr8Zf//Vf4173uted8iW55pprTsu2sCwuLp7xGmY6PvzhD+Mv//Iv8X3f930zr3voQx+KgwcP4tprr8V/+A//IX7+P//n/8TGxkb0pWL5lV/5FVxzzTX4pV/6JbzqVa86Yz2kHDt2DJ/5zGfwXd/1XfGzrsPt2dbrwIED0cwq5TWveQ0++tGP4m/+5m+wZ88eAB5snQqUbre/+Pcf//jHcdlll8XPjx8/ji9+8YszQdSZ5HGPexx6vR6uvfbaFnC49tproZTCk5/85PgZEeH5z38+3vzmN+NNb3rTthzU7+y9fvAHfxAvetGL8Pd///fx2qZpcN111+GhD33oGQH+XXmvuczlLpG7L+J/LvcUedrTnkb79u2joijo5S9/+Zbvv+d7vod27dpFf/RHf0Qf/OAH6Zd+6Zfo4MGDtGPHjlYOoFl5iF71qldRd5o94xnPIKUU/fzP/zx94AMfoNe97nV06NAhWlpaOuucQo94xCNo37599Fd/9Vd04403xqSAs+pyqlwxj3jEI+j+97//ls8vu+wyesITnhDf33bbbXTZZZfRfe97X3rDG95AH/rQh+h//a//RX/wB39AT3jCE+iWW245q7qfi1x99dUEgF7xildsSQYo878QEb31rW8lAPSCF7yAPvKRj9B/+2//jXbs2LElAeJv/dZvEQB63OMet6VMmVxzZWWFHvKQh9DrX/96et/73kcf+tCH6I1vfCPd9773pcFgQDfeeOO22rDdes2Ss81DtN3+Wl9fp8suu4x27txJv/Vbv0Uf/vCH6W1vext9y7d8CxljTplj60z14QSGL3/5y+n666+n3/zN36SyLLckMPzpn/5pAkDPec5zttTzH/7hH1rXvvrVryZjzJbEhtu912Qyofvf//50ySWX0Nve9jb64Ac/SD/4gz84M1niXXmvuczl7pI5IJoLfeADHyAABIC++MUvbvn+1ltvpR/6oR+inTt30uLiIj3ucY+jz372s1sSKW4XEE2nU3rpS19K+/bto16vRw972MPohhtuuFOJGT/96U/Td33Xd9FgMCAA9IhHPOKUdTlXQEREdPToUXrxi19MV1xxBeV5Trt27aIHP/jB9IpXvII2NjbOqu7nIjxes17cB1Le/va304Me9CAqioIOHDhAL37xi2l9fb11zSMe8YjTlssymUzoec97XsygnGUZXXzxxfSMZzxjCxg7k2ynXrPkbAHR2fTX7bffTj/90z9NV155JfV6PTp06BA94QlPOG3G9e3U53d/93fpPve5DxVFQZdeeim96lWvoqqqWtdcdtllp6znZZdd1rqWn61ZIG079yIiOnz4MP34j/847dq1Kz6LH/zgB7dcd1feay5zubtEERFdGO5pLnOZy1zmMpe5zOXrQ+Zh93OZy1zmMpe5zOUbXuZO1XO5R8qZHKy11tB6jufnMpe5zGUu50fmGmUu90jJ8/y0r2524bnMZS5zmctczkXmDNFc7pFy4403nvZ7DrWey1zmMpe53LXyxje+EW984xtj4tP73//+eOUrXxmz9v/lX/4l3vSmN+FTn/oUjh8/jn/8x3/Et3zLt7TKmE6neNnLXob//t//O8bjMR796EfjDW94w3k7q/DOyNypei5zmctc5jKXuWxb3vve98IYgyuvvBIA8Ja3vAW/+Zu/iX/8x3/E/e9/f7z1rW/Fl7/8ZRw6dAjPf/7zZwKiF77whXjve9+La6+9Frt378ZLX/pSnDhxAp/61KdgjLkbWjUHRHOZy1zmMpe5zOUcZdeuXfjN3/xNPPe5z42ffeUrX8EVV1yxBRCtrq5i7969eOtb3xoTs95222245JJL8Nd//denTJx6oWVuMtumOOdw2223YXFxcX4Q4VzmMpe5zOW0QkRYX1/HoUOHLlgAyGQyief6nasQ0RbdVpblllMKumKtxTvf+U5sbm7i4Q9/+Lbu9alPfQp1XbdORTh06BAe8IAH4GMf+9gcEN3ThdHrXOYyl7nMZS7blVtuueWC+MVMJhNccdkCDh85+yOUZsnCwgI2NjZan/FhzLPkM5/5DB7+8IdjMplgYWEB73rXu1rnEp5ODh8+jKIothyBtH//fhw+fPhO1f98yBwQbVP4fKlveskroct0Wro6g8GRzoVMOsNvSbWvifdSAOVAsxgeFAKydQPXdz7lbUaAIZhNAxBgFy3UREM3Cnqq4AqCrhXMCDATQFnA5UAzBKYHayx9PodywHQHYHuAHTgoq+BKB71YwW3mQOl83RT5PLsTAzXVIA1Q6aAaBTPWcDkh29RQVbhUA8PbAVsALgOGdzi43Dds/WIF0r5OxSZQnnSoljSKdYemp+AyhWoJqBYB1yeQ8W0H4OMpFeFUwxW7kVTMDaxc+N8qKCs+C32qSPwPcS/46+K13fHRiPfQjW+zcr6fFaXfxjK23JfSvTpzhLTy9xEbUmUBU1EsiwzQlAq2DL+n9L8zYdhE3UmlumvrX75f0jW2TONHOlRPifIptZv7i9urKy6bQFrBFu1rsjHFvmbRFUE53ybdEJQl1EODbOJARsU+tbkCmXQvEAFKYbqskY1d+D1QLygUaw66odA2f09b6pnPmaLQL1oBCnGOpk5vXwvRN0AaZx5TKC4v/K19maSAbELIRiS+U5js9PdVLtzDbR1L5cK9HVr9l038H8oRVAOY2pdtSz/PyQD5hoMtNcrVGuPdOUxFsKVCvulAWvl54oBirUG9mMV2kQ59b/31XC/SsgMp9gH3EZSCy/3fZirGW/SxLQBT+b5pev4+ZPz8IK1azwRpQNcEU/u6kFZQjuL9dON/y/OaMgWXAaRUfL5az7d8zs8gXKatJ/j//cWvbOtswjsjVVXh8BGLr37qciwtnhsDtbbucNmDv4JbbrkFS0tL8fPTsUNXXXUVPv3pT2NlZQV/8Rd/gWc961n46Ec/um1QNEtmsVR3pcwB0TaFB0mXPZhtAqJTgSFeTE9/wzN/dzpA1Cw66IJXHEBBwzhA1wrNwMH1LbTN/EKdOyAH1FRDZQqqJJADNCmgBPQUcAPA7SRkVAALGtkI0BOgKoBp34Eygu5ZQOUwOgMZBzKEbFiDnILNMqi+guJKLlvQpoFyCsppsA+dywA1AGgRWLidoHpAMSFMdmpkRVC8BZBvAnpAMKUCKYLKFbQGsgxwJdD0CJSJzlbk/1NCSbUGK42Nr4iKi6CyHhRJEBAXSdf+rQoLrZl4UMrjoZwHlSSBCoOioBh1hfY9BTjClsWZQEql8Sev4Fym0hzh7xygNcW6kwF0T8WnX1sPhADAKP89tyMqNFGerr1CQZ76wwTl5bKgaCQo4v4VQFBxWxygM38/BggqT2OkGsAE4OP7IShTE0ARAcr4/zUUqJ/63F/HlfaAi0VXCgqAHSjkGw7lOvl2FqHPMwCOoHLt+yY8/y7zyhOOAK2gA4jkYZV9CdUGjQyI5LiSTm1tShW7SylAMYDKgaxycexcrqAH/ko5N4BTKPEAGiMoyfzFNlfIxoQ6C6CL/L1AAJYAA6DZ20NBAEr/XpeEpq+QVYRytUGzXCLT8PMu9BEpAJkfR64Tg8d6oFBsuFRXJLBki1A9MU78PSlAKwA9D4a0ADPIwnyMgxv6OQfMiJBXDnVfe5DLIFSMUbwHj4HYcHSB651a7y+wgl9YVFhYPLd7uNARS0tLLUB0OimKIjpVf/u3fztuvPFG/O7v/i7e9KY3nfG3Bw4cQFVVOHnyZIslOnLkCL7zO7/zTrTg/MgcEJ2tnMW8U52dWYtBELvFLQ/Sme5Bs6+JQIv/N+HBJgU4wPYJ5YpCNtYYX+xiffRUwy5YOEdwOQGFA2oFMzGY7iHQyO/GipNeM072E/Iv+513vUyg0kEv1Mhyi2qUg3ICGYKqNewoB4yDyh2QKVCjoKZBK2ivMCgjOBcUTk4Y71dYuKXdpmxC0FOFesH3W7UMNLWCroHpsvIayQH9Y4TpThWUMgWmIOwMDaUFsNt5TsWFjxSgdPhN6DsY8iCJ64RQd52UDimvED0QC3+HeqWFN7RLKDJmMyIACX9D1Efb9DePqZw3np1R0A212AoKmMllKraJQROXKZkqBECkG8AGZiWCKwU0PQHqCDABONkSKFcJtREMVfjNTADK7YAHEPnUAzwJEOT3WSNAEgG28IxgvuHCe+3HOTwb9VDDFu0dfzZNLIGyfl70TjoPfERfeyDjQRZl5EFPrjwrEYG7mAsqtYfEM18PVRxXEn0RGRy5Lqg0JyLLxv3M7XYEm3kGjcGmZEFNLcbQcTs8TmlyBVOFDYVTMBOCmRJskeZMZCUtxXaCAJupyK6RUoExVhjvyZGNHeqhDu1M4xfZK7EB8POY0PTE/GSQxvMhzDFd+w1ENiY0vdDfAVS7TMztLgtr/PdmCuQj/7zbXnq2Z28g01gqEWN0toxQ+uHWe11IseRgt1nX05VxrkJEmE6n27r2wQ9+MPI8xwc/+EE89alPBQDcfvvt+OxnP4vXvva151yXOytzQHRnRCzmMxf77copgM25lMELtBlpNAueZqBGgzIEkxgwuphAGcHurmGO5X7xyrw5TZUWWM9QnDBoFoBm4IFANgGKNW+OytcUmj4wuogwuFVhWmVo+g2cUaDKCLqbgEoDAweqNFThV+lsU4N2W9iJQbZhQAqwA0J5TKF/TGHzkF/UJjsVlm52mC5r5COHfKQw2UdQzpvGTAX0jgPlGmHjIgXdABsXKbjSt2/Ljo4UoNPur9X3OgAepwBDcZFTIJBRgI3rZiwKDGTCz4nBRFA8ZppAk7xnyzwmWJuoSELXRTAB8R3Pu+48YIVsgtkjE58HXUKCPZLgmcUrS19vIPwvAA0p3+fNICirkW+bLQIoYqWq4Ymc8FtXesZMAkNZb28GCYpZqTY4VL5NTUkwFQCl0JS+3goeJJBW0LWL17tMwUwJZgrUA68YmR1oBhrFmg0gVswRYcZh8AEgmodcYDu6mxg5DoraLKBuvNmIL2wxugpwWrZRgE8EppTnlAJWL/ego1zxLCBloQ8Y+AhwRdqzjpQlsB2fSUrvGfSQAWDhmRUFqABSIqCJIM1PGEWAMyqZFI1KrGC4njcDzrSfQVIqbhh4PvCmggKAa3oKRUPQjf9bWYCKNkhULgDAjlmc56WpCdqSX5NUqIdTW+Z8ayp2Ppfz/lRr/FlvZi+AOBDcKZ0Btl/G2cjLX/5yPP7xj8cll1yC9fV1vOMd78D111+P97///QCAEydO4Oabb8Ztt90GAPjCF74AwDNDBw4cwPLyMp773OfipS99KXbv3o1du3bhZS97GR74wAfi3//7f39ObTkXmWeqPs+ybZ+hcwfkpxXdAPkdOVTu2ZnipBLK17M3etWv8nZoodcy6ImGWsnRO2JQ7XTQFaB3TeEKv0uzBTDd61AvEMwEWPxXr7xcRrjowEk0mwVUaUGFg5oYwCqgtAApmPUM2jioRkM1CnS4j3zHFMUq4EqCGSvUSwQzIUwvrqEcMLrYd9LwSIN64Hf8zYJDdckU090Ow9sITd+zBZQBo0MO+UZQXgRQz0WWqN054X8b2B/J3Dm/cLbMkoa8yQxo7/5U+o38X+7yHZtgbHvx5s+AtONlVkU1/jtd83gJIMTXdNcvCUBywTIEhUNBqVvhEtDyVeowFvE9K11K1+brQHki1EUDxYb3RZEmqegDFNizVt/JamvA5um5aXq+z+T9dBNAaQf464YiSiWtQMazRpEl1UC+SdB18DWyhGI9gaF66BFBBDdchlHeHOl4DEO5PH6nUo7GAwVv4vEvXacxkHMqsl1i7sjxAjxgkiCKNDDdoVrM0SzGg8G0atJ13m8moWlm2PzvOgNDQN33QFD6NCnnwastVPTRsUUCHIBvv6kR/bdcpsIYK9hCRfDHcyeakzMBdgIoIgU0AwVbqlgPl/v/dR3miE196P2gGKSHcQjAmtm9OA4dcMrA/ky44LTr+yz26d+o3HHHHXjmM5+Jq666Co9+9KPx93//93j/+9+PxzzmMQCAv/qrv8K3fuu34glPeAIA4Ed/9Efxrd/6rfjDP/zDWMbrX/96PPnJT8ZTn/pUfNd3fRcGg0HMb3R3yTwP0TZlbW0Ny8vLuPIXfj35EMlFH+2HQAnFN8tkBiDauu/ULkOJ33XXM/HA14sOVBAoc+jfkqNaJq/gGwW7YGHWDCgHXN96VsUpqEahOG5QXzZBOahhblwEyDMG6/dyKE5qZJuenVm5imAmCvlmYA7uu4lqtYQe+9UtPzRCtVZCr2Rwu/0qpldyuIyQ752gPt6D2VEBX+vBTBQWvwKsPHoMe7JAedRg+UsUafzJTo1yjXD08RMs/X99bFxGsD1C74jG4DAwOgg0faDe3XgHbhPMeWMD0p5ZojwMQsehFRpAo6Br5U1rsqttApPsSyR9FpTzrBBlgBn5stgfQpH3wQIA20f6bVBYZPzfOjiL6oqVfahmAHfM1sTfS4AEAcYYEDETRR5wsBMp795j2wVzVQ/89dkkKcAIFhgMhDoU65SAVvDTYdOLy/nz9jyNjr8uFuP9p1y4Z/iNy73C8wo4sTjMqrEy5jZnE4pKkNklULommskY4DE7BHg/IPbPiW0NbJVRqHYY2LwNxlrmL6Q+8Z9tvbbLHMW+Rxoj79CL+NxGR3axRjCAioyjagMqZphIB1AdWCBvcmag4eeSqQk2VzCVZ5yyKcVyZLtsLuYLgik1sGXZ1LNzTtgZbKGiM7PNg7M5CZCXI7Eu3BaV6m97gBmjBQJ5LbWlnyvaBrAnmVekfivXKALLpqdg+0C26d+b4HcmzdBAZ65y++WmQDwrs9b71gaK+6Ka4B/f/gqsrq5u2y/nbIR10m1fuPi8OFUfuurWC1bXrxeZM0TnQUhh9o7gQkHNs9h9ZBsaeqyhKo3Jfgt1cOIXo9r78rhecLYlBb1pkJ803qeoR9CHS4xP9kAKqBf9S9V+t9YMPQAp1hTqZYfxQYdsBAwHUyzt24AbWLiBRbVeALWC210BEw21mvtFbqmGvXUAPdXIv9BH76hCeZzb5xmZpa94Zbh2ufffWLjdYrqs4DZyD36WHAa3aez8gkP/hIUtgPIkoEcm7kBV7YER2CTFjIUTjI9TQKO83UtTVCpxNymVF5sbOk8OKy3bY98H7/jNwIKZIr5WjqUK/hJRuYUF22Vo+YqwSYGZHjZ5MCMQF3Tx3gYF1HXQVtabkkxNsiqt9sSyIcCMKCsfeZ8Sbpup24VsUSIBDPkbpEvNNLBkwcwT60sCYDDg0AwoVVSk9UBFUEbaRylBeaXPYAjwfkXSVAYCECKQSKsW6+YCI8UMx8zNDrfpFCJNLRxJx8yXtgnkukyYyMyMuSeAaGKz2uBIMoIMhmQdLLODwaxUDzyr6jIVovtExcVckr5rkckJrIszqtW/QAKfkeli4Bb+183sNrBpmfvEFmlTAYTIMzYz82ZEzPM4163/XdP3a4bteXOtZxORGK3M+1G1fJAIrTnA7TiVT9BpXSXuQobIEp2X11zmgOjftoQFw+WeKQEAbRzc0EJfueGZj0Z5JVVaKKfQDH10mB06KKdQLFUYH3QoT/hdlhta4Cqfq2J87ymqZcLSFSsoTmg0A2Dl6ALqxiBfrLC0d9OvKD0HTAyyVQM9VaDCwU1NXDR0BWxeagHld512mmH4VY3j/84vYMOvhZ2oUcg3CMufzUD32cTiF0LagJ7Cyr0Meie8X1O+pqCrUDgzdA6I3tAAoCm230wVzEQBLpgJ4gIuFkyhjCI4ALbuKgPbw8AjG3nmjBf/qByovZOXzJHLkmlgizBLJMBHS2GrdI00d8UIJ8svCuHqqeiotIGYZqB1a6E8RvtUNMFkY/8/K6SWCVIqmdj34j3595JFUU1qkwcIKvlYUWCRTPt7F1gwDg9XNilx73ANFOtuiw+J9NPx4d3JAZfD3vm6mX0hGDYp1BkbZv9aTIIE2zaZjSIYNqKMjql0S32s+J7BSLiuxX4wg9ZigVS7zjM2eAyM2GzG949RjbHh4k+dQOqW+cn3CuCK5yUCaM8mwV+t5+dV01Np3st7ibmlHAI761krU3s/JJf5tAp8v6avIkDiPk8AHDPlVJ/PBEWnAFBzuefLHBBdSDnDA3GX2JkJQO58ZFdGqI/0Yyi821nHxUkXNlxL0BMFtVCjWbRopgb5uoYNVsLhlzMY4/xObiODahQm/7gLLk9Ud55ZNNMMmxsldOk1vp541okKQr5zCmW847MrHCb7CNm6QT4CqkUFWOWjRNZUvO/mxcB4j/Yh7VOgHueoF4FyBdg4pLB4i0OxStAVsPRlSg6qpLxPkOyPEFIPIDpaKhsUofYro1QOYLaJgYzyC7M0ZbACMhPPBsWxFSxCa1cPwQgEpRDXVlZqKpnOmN1xGZJZCGgpmGjK6fiYsINr9BVyKc+LNBu08v+cYcPIjtDSTKQogaOZvjb8XjBt8brAmrDCi9/L9sh6hV1+VObGK8Gmr2Fzr/B8/6rIOnXbRXnyTQEEyyKU/EzziGjPFmAic0RBjFOnD5jpi87jaANOrg/3K88xBnQcjTij6Na6wywN96ep/dixuMz7VkkzYDsQQcxZ2S4JalR6cT29acwzT46dqAM4k2Ze9gGKTJP2YJ3vbWokk2InUGDLvA8g2Rb+PfsZ9Va8gz1/bqY+dUA9UHGzcD7YfLm54PrfFcJO1ef6msscEF0YETusLZTruYIgWa54fzrJVo1niAoHGIKtDOqNAtjI4HZWflG+vecXv4mPSKPNHHAK+nAJWxJsD6iXgHoIjDdKVMsEM9Yo1oDpLgcz8d+b0mLjZm+Ddo2BHWfAZgaXeb8l7J3COQWyCmr3FJQT7EKDYt0vTJsX+TpP9gCLXyWs3sehWvaKa3QQGN7W+Kimyps/xnuBzW9qwOaT3f8U+j+DjwyT7AR1BwYgTYAhuJCzSddeubPpTLItUlm0oqCY/YEHQ9EHIryyUdp9soJgRoB3vcoi5iNqrU2BWYiMgQQIAmwxqxSbKJrKzI2uU9K7uNOmBI7ycVIirZ13dxdOvk5NX7XaRCrkiLEeyLX7PtVVQSih8L/Lk3N1ZFWUMJsIYKLI54uRDr/RfykAxqavI2CKz4oj/zIKruD0AOFLoyIQUg0FsKTQ1RMzzeNdBgwCgHWUpK6RTD7iNzLqKxWS+rWl9AV7Jtk/30ZEB37JhnE4ujRFMeD2qQn8++jrxGMlTKxNX7XGID4TArwCnIspOG0LJoiy4P8jAgp4XpJREeTJfuf52AJD/D/XUYLk4N9kJoR85CIbmtrq2yHrLNlWCRbPKN250Rm/LsC9UOJAsOf4mgMiL3NAdC4yC4yIB7almGaBobMBR3cGTPGCYRWU9TmAMGyAEWfkI5hjBdzuKlHXwZdGVQoofI4XXDTx/gcENAuE4uYSzZKD3VuhGQBYbDA+4GDGgD1RQO2aQmcOFPyUdOVD7V1BUApwR3owGxnc1HiT1XqGyT6HyS5guq8BxhpLXyaM9isUJzX6Rwn1vcbQNbBxcY71exF0v0EzAMZXVtjxmQxrl2jkI/JMVcULqYrKmBmg6EeTEWIEGvk2c5iw7DvJusRIsxnjx74tpEP27rIdqt0FsC2WSLVZAhmZ5YIiieH7SIyBBC6RTWG/oo4i9k7JFJ2TWyLK6wKQ2EZWrCJKh51rpanGFUhmylksker8TeE3KjncSn8nM0ELTLGwEzCPD/uG+L4k6OAsrAgxESC0AkKSP2ki4USLqiEQ+wwF9kua/Kgz3tt6nnl8XLusLZsm/r/b7xC/EwEakc0STse+jeK22puetEOKduMEnNP0mbxPqz6ifOV83iLAZ7SOzApfp9K8YuAEJJOUlWHzxM8TIjskzXitZ4NZMjandRJdyghFBk/eTKYw3m1ABpgueWY5H5H33aoYNEuE7v+UfkuyT2ZK+B3P15bM8cXXpcwB0bnKNkDKlkgyubCeaVGdAYROZ2o75XfOAw+lfNJEZA66VshXFbCRwS4llkU1ClQQUGnUuxu4RiHbBKZ7nAdPGsh3TQD4jNjFsIKufR4gPdUgUnCTDNlq5oEY7zx71mfArnwkV3Y0R3nUwA2td9bOADOsQT2HY99GGN5OWPoK4cjjpnArBZb/1cEWwN5PArSZob5oCmxkIAPs+FcLWyiM9yjoKqxGGYXF1PsURcWiAM6B4s1JfCwCr25IDBH89/EzwZK0mA+5ew+LuMvTK42D2B3HHTGigoyOo6JcJxQPj3Erj5EAEHHaMPgTTrHlmu+XaMIITY7h2EGavgd1Tb8Tpt9teyjD5YCuwvEIneg7/l18T21dEaOLuI8otY2/9yYdNROEtI5fkH4zDEZVioJjhkgRYMb+CApbJLNb0w8FhGMeOIR/1k7/VCyRjDKTzuF+HlLrehkZ2PVtkmUCCEdsBLBvRZliPCJ21YgsXNNDBIo6mGV13R5XqGTKagGkUD9OjMgmW1NRAmIdxoYjAOU46UbMQwZZwd8n9lloQ4wCy1J+Ky7fVEC+6WL/y00Gb2bYvJZNKTpiI2xWlPMMqal8KobWGIQyYwSnHAsJZE8nM4D7XSFzk9n5kzkgOh/S2f3Lz1tmFtW+9oL5EM0oN1s1XtEcK6EyB2xmIAVMLq+hpxpmPZ1HBABmQ8NMlE/YOMpQ7fJAyhwpPO2vCPpk7sPrCcg2vWNrseqTMzLjMviaL9SVDmbToOg1MalcseoVaHYyg5koTHc5kFPQpc8V0/R8gj113G/bxns1eiuElXsrDG7OYAqL4c0aq/exOPwwDVN5EDXaF86fClmwof0OVI+1zz0ExMXL5Rw+Tgl8yvFkMCR25q7ryyC+UwRwgrsYaYP2whvNScxAuOQkHJ9IJRZ91XGyFqyNIornb7XML0EJ8L3I+MzJMR2AiBprzZMRooJh80ETjsNoOZUjKDLZHuL2UctkRKK/W2aOUE9XBBZDJCZkNsQr6ZBtGkJpc72pXeZWn54ZY+AItqcTY0begVpbBlAeMLlcJYDL/S7aMNN8dhoho1rKNbIdYc7Ev/m7AA65f31OJt83fNRJyycKiXlpRZ8pDzAoYbWWmYjbJtk/KcyoKErgJobni7Ut+sgpFect16+VRDF8Z0UqAgmYdDhbLZuk8HnSIcGmAP4xIpHbK8ywTalakZsgoFpQrWckHwl0Huqku+xpV2TfzMIQdwOumEeZnT+ZA6LzJWdibboM0XYW0hnXnIpp2vJd9xpWvAPrR90QehdvQK8buF011P4JaM805ekBYIcOmBqg5/z3hUN5rzW/e7P+YFY7cJiulT6aJyTV06sZ9IkcdsFifMjnQVKLNcpLNlAWdVzA8jWg2uGTPGabAC03UJpAlQ+b9wyFQr6i0T9sAAes3Fth5xecz3lUe2dv3ShkI4XpksbaFQrVDiBf92ZCCTxd37NinlYPEXbk+wIBjCirfNZeCVwNwZUuMUCGvM+OQWvBjlE8XWAVylHOh+NHZ9JafBcW8lguEDP6yl01K0r/PgGh6EQsHESj+SzUibP+bmEkVJofivxYAEnRmElqSyuvlphbQAKEphbXYPbuumUmDHlloi9Vg+gzogLoA5L/CY9DlwXjQ2y5LS2nd4V0pIkAJezrEiOMgj9NvWi2MB1bmINTPcfUfvE4eQCWDqXlNsWNEzwwbDFLfMsAgkglR2NZF+KgTUpmS2mmY/ZDslL8/xZWSIzvTBMf+8F1GJEtTDjEs0BpnGLofdwQ+KzSinz+Ig4C6Jq0lPXjEXNQUapLuUow49Q+7wsVsmI7P4c451L0PwsbBZt7AAWIdmH2vI1tAlJwgpDuuMzl60vmgOjOyNkwO2I32VLOp0rGeZqHcFu70RkLXfwdeZ8eqjTQsxid7MMOHMyRHM1Gnq7lh9qQ9yMK3r6q1piMCjRXjGGMg554/yCzYdAMyZ8/xBFTuV+JXU4w6xo6d7BWY+XIov9sGvK+GP+70RUNTGHhaoNdf5+jPKqxfi8bzW166sHEzpsc1i/W0FOArMbkoIXr+fqNDgKLNwfGhzPfKh/Z5koXyvKJJPVEh0VWedYoMhasPcVusvHgyuUEFyLlKAumRx2i5QJ4YX+YGD3G4CWEFcczygIAYiXHzMQW51lphoNQQt3XLGYkjLvmyCIVQpJNyuCbrvcFsELIRr7MbJzK58X+VACH55zN29+1nKsFSyGd0aPfEIU6dJ2y4fuHFZcJYDI66TLAqFLl+DMzceHEc3g/IgUgsEMmKFdOvugVrB/7pp8UpwQG7YajNQats7CcV/IMiiRb0VWmKmBbNo+2IshUam82QTKZSvNl6J9W7p4q1S9GKzID4hh8UhiLdsMiw9lZv1hah9iG+rfOveuI4wNYea7GuUmRmeM6kkIrBYTsC567tmAA7O9t87SBiMyY4bqGNopjQ2xg/5xBPF5lSyqFTn/wd2kuKGRj1zaF4jRz5QKJO0+vudzNgOj//J//gx/4gR/AoUOHoJTCu9/97tb3RIRrrrkGhw4dQr/fxyMf+Uh87nOfa10znU7xMz/zM9izZw+GwyGe+MQn4tZbb21dc/LkSTzzmc/E8vIylpeX8cxnPhMrKyvn3oDtMj0dOS2wuVAPES9sIR+RUj4PT7lj4kHRuvGRZfL+hfMKP2yz9VKFrLRwq4X/bP8EtudZIlbazaKFLQm0XEOPDIqTBrZPKIoG1dE+8mNJW659E/nEkRWQH89gVwoUwwqTXcCOfyWUxw1I+xD84R2E8V5gukNj+csOk33O13XYAD3nM+gWwOZB5UFRa3fLiz6SOcv4zNWqUVsUttfK8OYy67/XdfBBauCBJe++Gw+eokJu2uPrpOOxAEK2H8BDz7/nc9Gio69Oi3p8qdlAmlQ6hqFlSkJbqbVy2wTQlQC7Sn0EtJS1DMfn30rABfhcUK12nmoek9A3nTJYuqYveQCoCb4f1F25SCg+9skKLBqxDxEf4mkJMApwBF05mMpt8XNyMjfPLNYjVvYUf/N7yfYwkBHgUtaf3dckWG5F63EzRHldMx6nb9AOqPviPpQAB7OhpqJ4Jplvl2q1l+/RciYX3zOQ6V4jr5WMlMsQczFxdBmbdWW/MkiT9eV+aHrKj40wMSoLOM5Szma7LLXb8XEsgX1lRtWba1Vs63Y3nZEhCvOtG5l2wVwhTiHnGmHGr7nczYBoc3MT/+7f/Tv8/u///szvX/va1+J1r3sdfv/3fx833ngjDhw4gMc85jFYX1+P17zkJS/Bu971LrzjHe/A3/3d32FjYwNXX301rE3G4Kc//en49Kc/jfe///14//vfj09/+tN45jOfeW6VP92iOGthVLMX1/Mucl7PuKdZM37BaDRQOkxXS/QOjOB2NEDfBoZEtGMjQ97zWt7VBtWxPoq9Y+R5A2c1sFhDVQrZpoKuADPR0DunHnAxgFAeVKkmVSRfTcdoNOEEe8odqiN9n8snA5o++eMBDDBdUhjc4Z0kT3xzmrb6eIH8awVcDgzu8Nm08w3nd44BrICP7FAhsoxDgKdqtglIwTNHtYZu0tlYfL0Zs2JNO8vo1yCeKOkDFA82pQRKgJBFV55SrnzdIsMF8bsAYmR4MjsbR58OMdbROTl8zoDIhSMVnOmEpdNWoMP35yjDLSJ+C+XNnGyG4O+j74pqfzYLaJBoa++EFder1jhFwBvqbAIzRELB5yPnFZ5QYLbw55XFg10jkA2HxFYO2lKbNaCt9e0yKm0ToXyD1n22iAAsMqmlNHdJJ/zWWLtOOXw/9g0P/kYMJrJRSsSZjfyp86aiaGb0IHK287pvc+rzWcA5Xhfq0AXRpNIBwnwPjj7TTTKVWQYpTTIpFmsUHfZtHtoVvtMNRaY1pgloUtmyT9hM5zIV2NIZz66a3a7Yv/D3NFPfb579Sgzgthywz6NYOj+vudzNp90//vGPx+Mf//iZ3xERfud3fgeveMUr8JSnPAUA8Ja3vAX79+/H29/+dvzkT/4kVldX8Sd/8id461vfGk/Ive6663DJJZfgf//v/43v+77vw+c//3m8//3vx8c//nE89KEPBQD80R/9ER7+8IfjC1/4Aq666qrz05jtAJ2wOM4ETTTjM/nTWYqqA37k51t20HyZU8hWDZr9fnunCofJ0QHUsIYyBGcM7O4G5ngGtZpBOYVm6jV4sVChogJ5ZpFnFqOxQbaSwbHfkQbKEwrmyimmdYZaFbAloCvtm+dUdF6eXORXsOIkUO0EbN+hOJL7BGo97ytUrALKEWyZHCqrZWD3/3P42n7yfkqLDbLNHNUOh2xTozzho4WKleCDoDRc4WL94qne2pu/VKPSeHTYFQ+gtvavy7aaOyQjwyIdVzkkHyqARM4pZAAXDqQkzskiI3DY3Cbu5ww82cEmCuEro1hRCJaFFShn7WXTnc8ZxBeF/9inRc6l8HXTTzmVENiMLnvgc934HTydbq5z2yi0I/QjZ6le+moFV+qZzwVHAikCsrGLZhQA6J2ooWoH2zOolrMIRvhwWD71nkPto6k0nF9mezqBAqR6ymfXM2DUOrBX5qRqHZYq50UHILSYHUoKPZrpWLnL+WXSdab2EWCRMXJ+LvF4K3jfmmpRYeFrDca7DQZHLKol37hsQuH8N4rtk4klGSwoIJ57Fk3YIps4Cx9zEvtMtF+CYZunOvLRITzHzdTXF/DmZwbizJJCBXNdMKu6Au18R/y8sUlPzj+HVqqBeGgyoW3C7M45AdKl75kO5myXq+igP8cVX99yj/Uh+vKXv4zDhw/jsY99bPysLEs84hGPwMc+9jEAwKc+9SnUdd265tChQ3jAAx4Qr7nhhhuwvLwcwRAAPOxhD8Py8nK85oKI6vy/3evP5hadKJMWjX6qcvn6qQFGxjMomkDrObLcAoPGnzlG8FFmfCSAIWhFGOwYwzmF9S/sRLbqtVC2qXwWagVMdxI21nqo7uhjz5XHkY0ACr8F4K9bqgGnkK0YVMtAtaeBG1rk60D/CLB4C6G+bOKzYQNwl4y96awGhocdRns1ekcN3MBCTQxcQcg2NepFYLrT/6Zc84usrgAz0j6vkgn+RTod8Oh9dITWD6/oS6QCkBPmq3jkCbWVs3zFBTz0eTzNO5TPzsCcY4iBAID28QRAdBxt5TUy8KBD+BhFH6Qw7tIEwAu/y4NTLvtzxLlEUWlHX5BQTjZFK+psy3wS5WTBAdtMBYvQZUe64F2ABfbx2Lg4x2ivabMtQcoVG5QoRVNhsWpRrFqYsUW9lIOMgpm62F9QrLDbSRlJnFVmc4Wmr2N9sjGl89l4bAVgafkXcZsYVHBT5ZzQqQwl2q2bkBdIRJZ1o8u2mHRUGvs4n+B97djkmo8I9YJCPiJMdhpoCzQD3ZqP2cS3sWsGbJmcEUyVodxo4pLgh3/fZZcCSOb6xmGPTKUALqH/sonfFMVnRAHFmkM9UJ6BDP3W9GfUgUGpThuAaIKWz2R431pDt4tmQnn1wJ+Xxg77rkMv3FWms7kP0fmTu5UhOp0cPnwYALB///7W5/v378dXv/rVeE1RFNi5c+eWa/j3hw8fxr59+7aUv2/fvnjNLJlOp5hOp/H92trazOtaCqcrMx6IUzE325Vo4jnVw8a72FmMEteJFMyqgV1wPlmjAlTfop5k0Cdz77y6p0F2NI92cm0c6trAjksUtxWgISHb9P49k/uNUXyxHxU8jX3+oeP/vBt6CFBG0Jq8qWkQzFYOKNZDNIghlMtTuCLH5iFg5fIpaD2HCaeuu9rATAnTZW8iiixL36I8nIEyYN+nLFbuZTA6lBycdeMPofXmsrDI56HN4TiPeLK9WJBTP6WXZ7ZElJZOFD8rR12nBbflYEoIEWxcVvterMz4N7oGKIQ620LoGganwUTHioQjrwAxDyUgF74YPiEfhUzZW5kMVtzxY+136WaKLaH6XX+T6KsUgJtkxbbMwe49DQCb+tAZheERi819pg30CZjsMj5fDZsoHCEbW4AIG5f0fK4ZSv2kagKMiuxQ9JkJY6cr8pGTpTehIKQ44CgnjrajwE5oJF+uWVFGvrpbF4SUrmBrv3CW8Wgqs8L/TExR6b/VykUlvnMGMbN0sU7RoTnOL99Vvu0BVJbrDtWCTnO+IxL8xfrHSom2CMdkCdhiO+QGLrRxWiqfY2iDUPd1MOOFA4y5vuEAXpeHXbwAqDIyLD5rAfArG8x01m8EyhWHqTwZPs5lBU3pyJ5oQhTA8KxMYd2N6QUUBwV7jjdzd1Vl7+Fyj2WIWJRqDxQRbfmsK91rZl1/pnJ+4zd+IzphLy8v45JLLtlaxnbn0HmYa9JnYrvS8o8R4grvUJytaygNn59nM4OrDNzOGmasYE6Eo9ZDtJWzGs1mDowNnAGKkyoqZXV7zy9eGnC5gwrRZxSYFmUVXDg4Vk801PESGFo4A0z2OPRuy2EbjXzDn2BvCovlm0yMHoEibFyiMNnlj/QAgOkugs4cesc8C7RyL9M64LJa9GBNVyoq8rRoetMdGQ/OWuBBLmTsjB3MfGSo5Qc1K29LN/IHhJgDhs9S4ut0g7RTDSwRszjxcFJmFoKiccwO8f1s+i4CLmYSVAJNMRyfWQmbIqxYsZhaTBZ5bSeMnsuWDrvcf/HUetmnpxL5XSjD5UCx4fs7giGk8loKi19KYborR72U+7xVge3iA2xh2C8mOMbXLrFXlrxDLnmgCASTnyhfhf6KYPE0CpJm9UsAKfKw1la7BQvE86d78K7sI/l3K0ov/D4bA/kIKNY9OpM5fuL/4VqeK/XAA8YWEyYBrxPtkvOd0uecEyuaD8V1TT+VG4G1AEu2AKplhXoRmOxSqPsJdPaP8/PXBnbcD8ysbfEBEptDyexFM7EEZzNYPRYr/NC2jENHXIZz3vTO5e6Te+zQHThwAAC2sDhHjhyJrNGBAwdQVRVOnjx52mvuuOOOLeUfPXp0C/sk5Rd/8RexuroaX7fccstp68sLyylB0vkA4GfDa57mobWLTQpJPpmBFhtQ6aBqHRdEEOB6BGiCOl6CnEKxWEE1CtkIqBe9+alY9/4/McfIVGPhKz5VPvUcKAey/WNoHcLUlT+7DBsZ6mWCWq68L0Djp2L/Ng1z0xD1AlA9ehWrjxsBBCzcSshGQL7hzy9zpYPJnM9Ku+l9i3onfflNT6Fa8ueutfsvDJCm5HDd9XVo9aHwiTAhSVzmL5yl9FgUpYVbOe84rYT/gq4S4InO1MLfgaONpFKKZrMCaMrwCg7MW44bYRAUfkdCqcF5ZogdQmUkkK6Dr1anLdGH6VRzSsxtDtOXJiG+95afC+Uqd+HVgpoJNCM7yEBBsTNrCJ0PisvlGlCALbV3llaITtDOAM3QpHPOjEpMH/cdkuJuhWILJctKuNuomWyCuD6aj5RqgRkGLhx5RVohmwRAHuYIn0MXn1GkUHYJzk3lTWEtMzCluSBZsgiifOJ5nwm7SXP4VCAssnYSNMbfUWuMqkXEHFP1MPWxPE7EFf65Zh+lZiGY0zKfNoE0UC8gBR0IU3EE6E6Y4LjfAqBnMEva+87JNvE85VD8bnslKyrHOQKnUJwLzCZnPr+rhI/oO9fXXO7BgOiKK67AgQMH8MEPfjB+VlUVPvrRj+I7v/M7AQAPfvCDked565rbb78dn/3sZ+M1D3/4w7G6uopPfOIT8Zq///u/x+rqarxmlpRliaWlpdbr7pSWn8KZpKPQtizcpNAsOCCEnaPSULkDBg105ldpu+Qjzpiap1EGW2t/3McGUJ5U0DWwfoUDBhau8GCFzQs7vqCQH8tgRgr1JANR8OVp/Onz2gLFikJWWm86G2eoF71pptrpMP7mCdw/LkN/fgilg/NnUBr1EgELFs4pjC4mDxIWCDZXUCHxImWAKyn1mUIClJoVCM1c8KMS0UEhBbNadHLl3aa8NnVtq7yoWNkfpGPeYEXh75N+z2YPzf5FGSu6kHslVN/mbXPLTJGMTnjvHc5T3aWfyxY2CILdCjv7LvCPDI4EmJLNEXWJQEl8H4GfwswdtiKf0yc6qotxTZFRPnIO5M1Ajg9oVcm/irNF21JFZ2sJFPINCqHgYu6E+3T9TVpmmu7fMxRMBHUAunOGwTP7RvHREizZmFrjm2/QljHwjO7WMUymxQRUvY8NxWNNlA1JEcUxLjItg+wHvlf0cRLzmsGHrtO5eeUK4gYgHtaqPKhngNsMgP5RX2Y2DtGXweSqyPvoRPaNzcXUnisxB5rYJHSfsWpBb2E8Y7vkxgHp91vMfrLLVfqfRH6vu8p/CABsMJmd62sud7MP0cbGBv7lX/4lvv/yl7+MT3/609i1axcuvfRSvOQlL8Gv//qv4973vjfufe9749d//dcxGAzw9Kc/HQCwvLyM5z73uXjpS1+K3bt3Y9euXXjZy16GBz7wgTHq7Ju/+ZvxuMc9Ds9//vPxpje9CQDwghe8AFdfffX5izDryCn9imbsNE4pp5ufnQXvtMWEiCWphJQhuJ5Dtu6ZnGzVwB5qQFbB5P74DPQtMNU+R9FIo9g5QbVZoJgobF5CcLsrFDeX0LWCua2IC1A2UnFnScZHJVW1P9/MLjhYAlS/gasKVEsEO8rhLib0bsswuazC5IAB5Q7L/9DzydYMQOMM1YKve73o72MKv8Jlm97R0pUOgD8s1lPi3t8A0i9A9n845R5A9CcCxPeRDWANInakxn9GxoMVuLRwxtBopMU7JqxkVig4UjMroBrvREpFyAoNtE4y53Ek7dklcGSTDiZFCxjh3C3nRvTj4S4I39lcBRNHUqA292dA5Q6ohpKeQWSoOM+SYuAiWI5oYpFgRyiMLsCQh5XyNaxge8cdJrt8xZX1yfuavgc7zKA4E+oUTksHfN+iUYAjmKkDGQWX+XJIU4w+ckbBKA88mtJHmMWIpwkgEylyGLgEbBzS3jqFXbAu0tcn9oH2wC7m/mHMRQHwcc4hncY/9k24Jzvc1wshuzbjJsa3Dsg30w85qjB2fQDp3rwpTrnPgo+VBcC/CdFc2xFFgGrITwwHGOvb1PS9s7HL/LKVjRGTkyrlHz3lgN7RVJbLEUPuXYiGrIeqNacY+LAfUvTPCp9Fxig4b+vah+73TlrUCxrTZX5IxW8VvKO9lh2PYO5OjF274YiAuhuReleCormcH7lbAdEnP/lJPOpRj4rvf+7nfg4A8KxnPQvXXnstfv7nfx7j8RgvetGLcPLkSTz0oQ/FBz7wASwuLsbfvP71r0eWZXjqU5+K8XiMRz/60bj22mthTHK0eNvb3oYXv/jFMRrtiU984ilzH21Lzoat6cp2QdHp7iGZjDtRJ102cI1GfdAhv73wETm3laEYn+pWHytAOUEt1bA6hx3lwKZBdfEUUEBxc4l62SFf02guHyP/1z7qBSBf9wtD0w/HcWTA7gNrGBQVbjnRh8oJrjJQuYNdcFDGYeFmhcluIL+9gLtijIUb+smXogZG8KzI6EBYJAsH1BpZ2cAWPhlkedRg5X4EOGC8RyHb8LvKZuB9mIg5YY0Y5r2dvlPsfB18oWDIA0ai4MCqoBTiMRy8o2VnUG/CgVeeDHKYZQlKLq7zNvTbGJFp01O0o2NUiJ6R4d7SF6NEcih1abcqnaVjqLiIForX6uBL0qIwPHPXAjkqASPZf8y0xMR4EIqB0s9bf8gywt8MhuR10gxDGuidtJguG1DmFXmx2mC6Mwt9rmBq8sW6BEL83NTeBDPUIOUPeWXHXM5VxDf1x12Eg2tDX+sqsQaSJZJsQQSmQkkyOyWv8Rm0fbCAAiV/Me4rBmWlijl8+Pcx2rDDbLR8zwLzJKPUuG4MaKMPG/8dwHHXLBbb2WEBKWCVWbmZVOPBERDACWfSDvdiUyKH0oP8GuLyYGqzvu11HzHqzJaITFirLVwnIDl0h++c8exX09MwEwKWE1j1m5SwwRERnpJRdZkHZtmE0qYglp3aHXM63YVyPhieOUPkRRHNT3XbjqytrWF5eRlX/sKvw5S9be8CZkYmbKfHu+XKRamz2+46sMZdqWo/9Cz24gnIamCqgcLBHM+TOUkBulbRZ8YdmMJNPYDRmYMyBJM50D8voF62KE4YmCkwPmix9EWDpu9Zjmpn8DPKCL2LNrB/aR1f/vJ+QBEW9oywudqHznzWayw0yA4XcAVQXroO95mlGG1kJsDmNzUYfimLJ3RTBjT3HsNWBjr3x33s+WiOYw+1KI5lqJYdilW/QtqCPPCqFagXHFmY8WF/oEZ5xih8zuyFsuk9ZQRVq1YyRiAoaZfMeZHm5908R5fBl8nvpXnMTBBCotMizsrJTJOjJkfKRCaBF+QslOu8smalw6YCVngRCIW6ekUko7VCfSrCdEmnOSaUq8/VoyJgi79TyUxhKg/sGGQ4cX/ibMVICi7+LaLYGBQs3lpj82CGfJTOodKW0D9uMdpjYkI/XVNsH5trWAEywwQgmNL8ESDeATk4YZs0rtynSoLGrK3wI/gRDu7yO37umWGRCTS1DeZd4XzMiSV5XL2JmGKOpci6hvKY+ZDPuJl4H7AIxsN1nFG65bMk6ulTKlBsHwNI9ndKYFm0nYFv+JvPSWOgpsTcjEdmCIDV9dnivteVd+63hfLnFWZAuUKY7AxJUQMYtUVqozwkl0FjnFvcN9PgZA7vkzTaZ1KSU0qAUVnPkkphnyBXJIbOz9GwKco4jQNapk5bTfDp616B1dXVC+JywTrp7z57CAsycu5OyMa6w3c/4LYLVtevF7nH+hDdU6VFgXdBSweonFJmXSN/e7oyzmbExHMtdzsAfOh5RsDYwO5sgEvG8VqXEeAUTKXgKgNd+hXHjnLYEyVso9FcPEG+asBmn/5tBtOdfoEbHySfKHGkoCuF8UaJoxsLUIWDygmbq31gw2BpeQwMLGDDuUJ9i/F6D9VOh+r+Y/SPhN2g8uVOLm6Qr3ugZWsNjAyywsIcy3HskRXMmo+A2/1pjWrZoekT7KLXAm5g250hFnr2FYq78iopRxWO5YjRZdx/bLYklaKDgJYjMRnP8GgBYuTizTtwFcozU8AEk8KW0PxwLZsRY1OcB0lmmnL/qODQHXOvMCgWUUYxB0wWjjUQu2k2EUmTGIup4XfYkkQSfaLIO/+yyHPNbC/4O83yTUGao9JxePNAht4Jh+my9s6wyu/UNw5lcQyjhHHQDQVQ4YME2LHahgR6kZ1xDCqUYBQoHh7qzYoCDM3aO8qNCtprQgIQKrYrnW2GGJUl/XakiYqZHe5P5ahlZmxttsLYVUu+j7icWU7eErQU636ToAITxt8rSoCDTcUsPj2BeB46fSB90VqbgU73KRsCDgI4z0YUwTxHCvrDjtUWAMbm59jPygMWWVf2JeLy/flnPidT3FAw0xbKz8eUkosG4YNnOVIwms51eHYUYmb5lsP2XL7uZA6ILoScDjRt57ezhJB8gbZT5oy1Oy4CNjhRK/KHq65msNMMdl8Nu5dPzSQ0Q4JZz6BC2LkZ1D7r9O19uMozQ7zzm+71kSDTvQ6252+ua6BZbrBv71qqlFXARAN9h5O3L0GtZ8DIwO6toScau/asQzUKLpwxlo2B4miG0eUN0LNxl2aOFCiOGW++umgMtZLDTBSWvuT9jLKR8gyQIlDhfJ8xqOFT7q3yTgx8wKtD8olpwjlnYnfNyRih02nb3T6X0SfMXqSDNBGZn3i9Q2S+ePh1lcpmcBSdicPiL0FFPMVcgKwEDhB9KaDaoCRGrgXQwuH+rdQBSpQb6hyjn2awj5HlYQVlhFJm1qLo1JWLFs/M4JiN0WHFeoP+MedTO4Ty8g2KdW7KdEBn3O2HvENsqlKOQ8J9jhtmkYoNBzN1KE8y3aDakUMZkI1cBEMyao/bKwMXlOwreDDEJ9xH5guJmZN+UzxezA7Je8S+DhFWPEaENFdc7gGGB7gq1YnZnc69gOBk3BBM7Y+i8H2mtpyZJ5kz9oWS4fy+D6gFhiKDSMIhvOOw7HNIUUxMWa74BIx+jAJA77fnFpvoYuReDtSDdhsjcyrmpzMK0yUdNwmUhfxa3EfGRzjaQsWEjjynENYiM+VDgtMzxABcMoMzLQMXSOZO1edP7rGJGe/JMhPknGY+yQeldf2pHpqOogAQoet2HrSuM+esC0xh4Rrv7FysKEyzzAOHwsEuOlDmj9KoD1XQBOjMISssmn0TaOOAw33oCqh2EGwPGNzis1tXewn5rgnqEz24DOjtnKCyxmeq3sw8I1QbmKUpmo0cNLRQhQU5hR1XnsR4miO7ZBPT1dL71AzhI+JqBWQ+QqTeadG/NcN0t4Mh+PB7eGUy3ekBBoMyWBWOuWAqJu1sGeCkiDM/UNI52oMfFc8xY2ocwGxnbCA6UgMJTPHf0W8jE4oO7R19Nk1ZeF3hWSYXQJHtJUdiObwRxKit8zM6zsZIq4CrQttj4jsFgEJ2Zt5pq7TD9vfxCrPFiIm5nI04gab/jn2PKDhkO3TmpWR5VHpWRntSQsa1SwsMjlpkY4VyleIxCaO+Acib8Ej7xUyDQloB500ZBlBTgsu1z1ytEBI0hrFW8M7XIRrNj4X/g7MzN32dnilKdW2ZWuT3oR1+7CmOgeLINSXmhSjThTmhbTBZBT8eZiuc8ZGdLveK2eVqS714zKzxlYwKvLNuxHmXA/k4OFU7Cge+Aija0Xek/Pg1PV8HH6XXPUQ5nfvXYmoEQ8Z1ZDAUGc7Ke1lnY0LTI4z3qAgQG7FhkEeXxHsEQMP9x9e18jiRH8+ml7LOKxsOV0ZqXyyfvBN/TEPhUgOysaTD/H8+uo5S4tbtblzPg1ho2HPkNrpuld+oMmeILqTM2P2mD8T3XQXWMVOcUs6wG+neM+7Aaw3XaGSFBTKHyWU1dKWQnfRsDQhQWWCFjucgp5DlFtV6ATvO0O/VyA6NUC0Dw5sVyhN+8ZruBFSlsGNhBLOhUV8+gVaEfl6jbgzMrqk31S16tFDekUGXDcgp7Nu7hs1JgfFaD01tUB7OI3ORrWtgsQGmGpuXOWQr3lcJCr4dxoKWm7hALnyNUJzUUFbBjDWykxkodz6qjP0KBBjRFt40RqKTFKJfUbbhcy/l60C+GY40acKCHaJx+NRuXQkwBbSS8XX9TVqnzRvvH2HC0QvR/yewOuzIqadpN8uLrsxDJP1HpKOvVJh86rf09WAl43LlQ+wFizDLFMxggUELt3e6Q0VWykx9OXyorLIhU3Y1I/pN+hApUWYof7rDIN8kTHZojPcYrF1mYEuvtJxBTAway2ImxPrjKhgoeOdoiixXsVJD14Txviz1jwJ6x5oIBNlHRIImKTLE+5QZw2f9HcbKOzGnL2XEUpyOoR8YOPPp7rHPwjU+spLzCVH7nlKPMyPFvmTMcmgV/LwoAj7At4tNTgCgGp/MkcGjDRGd3LYEftpsF4AYWRnnFxHyTYd807PMzPbFYzrEPGFGp2W6DoCb54wTYIj7l0FdNqHWs8jPbQRY3JduxriETYPtJYCXmFlqremkVTx66EILkYI7xxedtSnj36bMAdHZyoxF7bzKuVCt2/ytmmqQU6hHOeAUyltz2EXrFfJEeyAwMX5xWvDsTRN8ibKVDGvHhqiO9uF6fkVr+sD6vf1ZZLRgkRmHZtnCTQyKvAGRwmSthNYEVWsoQ2g2cq9saoPF5TGOHFnyGORkDqWA4W3A6n28Pb9e9vcxG9qnCxirAFYApf2CoFazeLzEeI+C7ROKk95sRllgBGQ/SYVPSixsSCYQwIcQB98e5fz/ZoyUg8UGBT9Nyj4qqs6OmM9v6gIjVh6sAGJ0UNOJaBLbOKbtfQGSkfD3pQ5IkuA7+k2IXTz7tABIPkV8XQRanh2K9Q79F4+YkOyASUol+nwIpoJB1yzfEr63VDDOANMlDdvz/ST7lqP5WPK1BtWCRrZp235TDGyC/0uxagGloGvb8v/wfjs2HnHiP1SpThD3V8nhGRB/U3sORH8VHg/ZVgAyzJ+VeDalqOylv4yZUtukRcGxvEkh6C0gLgGWfB/aw0eWNP2UmNAVqs2ykPDlCSYww+CfGTKTfu8bxX3UAXsC7GobHMFDLik+niNGWXac7vnZiGBfMmSElkmZ/en4mVMkkn4G4cg2Es9SBLMdkATZRlEGA6PExKpkspvL15XMAdH5kHMBRTPYIboAoxIf6rB4aONX32KhQr1AMGsmnEyvoAZB2xOAwiG7o/D5iawCHZhATTVgCPmqRrUDGNwB5LsnyCaAyi0a6xuggklu0mTQhfUAbGChMwezGew2mtDLa2CUwVpvErNrOTYvAlzP+SSQxzWKvvdvWvp8FnyTLMxIwx3zfHq+pj3DUQDT3YRsQ2Hpqz4jtcsp+QoBng2yKjhMK0jnaMmq8O6UwYfP5OxZomLFA6NsEyhPAsWaZ5BM3R4/v+MNLAkvvjLHTIcllBS+qfxv2JdCIYE11bQVbGuRDgCoFfXT8d1gxeGyFA7NoeUcvdRyYmWFSNRyvG4lyBP9xWSbVCZ8X1cyK5cAU0ymF/olKvwW8Gmbf6SpKt+k4A/lEzJmE8J0R5buHcCJz2WUwKMtNSjTyDcJi1+t4r3GewufDDBD8P+heN8tfkKd51VRRxl2xrgFuBlIWQi2RUWHYpn1mceFy2IgoDvmom54frynSuXw5+UaO80p4W/mx5nnAoNJbROLlPo/+Q1FEK2YgVQRVEtzqPTZAfn0B2biYAuFfMO2QL333UvzRQL5eIaZQuuwYglipKN1tdDZFPGfpjOmAajzZxFMa98fukpjJcvz36to6r6rZO5DdP5kDojujJwNM3Q28+xc2KFZtxZ0evqQAAMUvQbKODS3+PMtVKPQ7PAxxlQboHCodzfQaxmaAxWc1T5j9Cj3x3xU2u/y4Xf79cRrAHWsxInVBeh+A7NjisXeFESAO1mCGgWlHVytUR5XqHZamMJidbMPPdVwtwzQ7K3Ruy1DeRxQlUI9BAa3AUoTFj5X+KMNagA5wRWBvlf+WI+mD1TLBNv3YdbjPcovbE75yDH+28H7BNVITp4udU80uUSwhLjgNeGgSHb4ziZpNxpZHGZWQph5S0HqtNuNrIFgaoD0t64R/SgiUOuYlVoskRb1D/Xgk8lj+LdJ7+Mp40GB2CJ9H++nkvKBQvTB4Gu4PSzxrDW5g+bDZZmFE5mCmdVTnf5vm5sV+HBPZYHeilfW2RgRaNmcrwFs33hfF+mzE0wx+aaLoAlEqBczTHfmHuBp+Ci0oMwTa6AQGaIOAJ3FpLX8g7gvjWxHu5yYYLJJjBAAtA7g1Wke8Anr3F88/rb033dNNcyylCsWxZpLDCDgExSSAFTsAB4cq+NxKc77ZvHfCTAHcCTnsJJsHCD9coD0exBQrlqYiYMrNfrHakAk2Mw2UxtlX7VN3WkuKRfmmNgc2JDsVG4YWmNH7bHjZ47HDUCL+VJNeh6anoqmZ+/HplKQggCgF1os6fPymsscEN01IhmH08lZAiK5W95WmXF3SWjYofrSDeiLRmgWHLKTGeplC7VhoDIHlTm4pQamsMiKBsoQlCFkJzMo588xY3+QxU+XWL/ML3Q7ljehFGHfznUcXx+ibgwGF61j4V9yEClQozHdRcCwwXAwhTEO2DfxAGczw2Sfxfo3eQfY8iQw3eGrvXGZ82ecLcP7A4XDWZ3TyDf9wpuvpeiwha85EIOmRsW8Qt5B2qcVyEYqKlVYvyrKqCgVHKCjE3QWGB+TdsJQyfen6SEthl32xqXr4wIrd6UCHCmkqKHWAa58rWQZkBZpBk2mSmWyn1PL8TYU5owHMYkJCPXoghqbvovgSgMyfxUpz1ZEUCjMNhIcGFY6rMS5iK5y49+J32oLTJe8c7XtIYJQzcddIJm+2DQGMZ7NQHsz7EAhG1ssfHk9mH/Ih+krBV1RbH9kBoQi3qLoxDgwoDO1uFah5UtDSiWgQUKxS0BFCQxFhkjOHQayOoBQHaITA9BgxR2dvh0w3mNQLWmfXFDMBw4zb3r+bDdToeWLxqBHpgfguaUCY8h5lnw9UxJLkvMg1I19cUzl62dqgp462J5Pm6Gr8BwhbQi4voqxVJh78fHh5KciCzxUMDlzqDyPhUl14Q0D92k8nFUwUa1xD2MTxyRTnnV0gc0T47ltX9C53GNkDojuYumaEdIX4T8GOVJRng70nM0uJGp6H5k1XJqgmmao1wvoSqHeW3ugsbOCMuT9eTKHPLdwVsMYBzOogYvHsAvWR3OV/jwz2wcoJ+RrvkImd+hlNYxx2LO4ifFmic1LLRAOcVUWyPsNRuPC+wBp2qJwaKlGveDNSGXeINs7Rr0IkCGo1Qz92zXMrgp1bbB6b7/61IsEVzg0A2Dl3hqLX9Iw45ArKIAiby4DXE4paSErXgL4EFjK/PdNn+LxAy73kW/1Yvh74BfvajkkIyyRolKEcmeWhJPkRcDRHV/e2bLZSjBWEgjNBFLcf7p9TddnRYbCU+7rzGxW3M3bdK8WUBK5V1rOrQLksSKUIcjKIZr8uiHYctxbIf/8HQF8lpkERcyESXDZO2EjEKoHYS5WiXnxfjAK5ZrDxiU9NIslendM/I5/YEIf+dBrNl1JR9suGJUMjer0VzK9qlM/w0G5SidzD4ApnGvGYKd96C5UMNeuUgSFNoDxZoho3pL+RGzOsYWK8wYIAJX8PaXvS9cfyI97AnOxCeE9aZ84UwKJOC8lyFCIJ87XA+0duAGo2sGW2o9XuLbphXniUl8T0nzSzOaKDNNxPJhd5XGIuaYQzbdcH45Si4CJQSelurfWWrEZ1cGBXfZXjP67C8RBwUGf4+suquw9XOaA6J4k3R0odf7vXn6WjBI/oaQJttE+8itL1IPKHdCzoHXv8KwrhWLgQY3ShOlaCXuyhF0roEcG1Q6H+vIJaLHB6MoK2YbG9JIKdWNw8e6TyLSD0Q5GOQwWpli6eA26bPxhslYhyyyIFLR2sCdKn106ZI9GRjCFw+AIUO0ijCcF3NcGcRdtRhqbFzvYNZ8sUi1XyEZh8c8ICzcDuz7v0D9GyDYRzVytcF0gmt10lZSE362n1ZfBSzMMZ44xexDYDZcj5tyRprFZYyVNHdLZOZrQutQ+X4v0mQQisY4MpCRDFW+edta68b5PbHqLyebC4s/vY5ZiBjBBcXBWbL5vt67RnCEcjZmtmDWPpVlO+isBPidNuk6AG9EX+YiisgZ8NJpyPiSdP2cAELN1I/jEBKBk+xkWvzpBPVRbACP7kdhSbfEdao0HBBDaksOHtrxXIiIrgoSgvJOvDqLJqem3FRaDDVuols9XsY7k+wXEucHOw7b0R5r4MaJWeS5XiY1UCLmaAqvFR5fItYnbbbAVEEtQxfdn1g+ImbBdBlRLBq7UaAYmZuWOiUWzNAachiBWQSUwIyMruV9jNm9Zb/HMxX5R/vecBTs6aSNdW/chAG4aB87h5M1lCfhSF0BdQJn7EJ0/mQOiCyTdaJILUvbZAiJRAIdZauN8iP2+CbDhkzDq5SouHApAr6g9QCos1EINs1jDbGqYsUZ/Yer9G9Yy6ArYtW8do3GBO9YWAQAHl9aQaYdhWUFr8iYzQ6h3+y2drQyaEJLvcgI0QU800G/QbOSYLgNuZ4X6SN8rpnuNoKyCHTjk6xq92zJ/oGvuYHs+ISOcwspVhGrBh1jv/GKIUhuncHkofzaZGSnoWkEmW3Q5pT7WfmfeDAi2SCyRdOpUwhQWaXflQVJMgmjStTKiLTpv8meMT51niWzuTSKsFKIZAwJQiZdXbGmObFnEw67ZVIjKj0P5JbiRu2kAMTFkZEkYyAlTRpetIoMWM9AFT+jWDULJkY8qY6fWhcMNKJ5mnwClDawHK3fvC5Xy4XB92PQl729qgss0dG0xOlAGZsyXY6YhW3UINc83HfigYCXu3wIfsRH+FZW0QgQWEQhRAnmslIFgbhLmmOib5tAyeyoC6gX/294Jf7xFvg5Mlz3gtT3vJ8XnhbFZkDRiUkqXpYOYuXyfvRwhg3ZqUj5K/RvHOPRrFzzEPuB685zR4n8wsPe/t8Gviw9y5Wi5VhqLTmAAs61yQ8CpHgBEp3B2rI6+SGIOcB05cnHLhiM8o1JT8lxnn6+m553vpSM96XbI/ly+PmQOiM6TSAV0QYAQtcs+a3ZIiCL4EHhFcNavAMoQ8j0T5GUD1xiftNEQBj0feaM0QWce0GjjYAd+dRpvlFjcMQKswnS3w3JvDJM55JmFVoRjoyFWxn2MqzymKcmGDUy/gQ7h/bYxKIomRrhRToD1ylDXgCkt8nWN8oSCHWd+J5cTyBCagS/TVgZmAvSOw59bJs7/8okMgzN1DfBp9TLKKb63SGa1ppNoLqPkT6J5h44YDcMLLwgxoqyV30QqB6BtMhIACcBs/xsIn6KgWBi8QMwLknl5JHBmwKXa94jv+W+p9Dq7/xbTI+diV4kIHwyOGOPyo8lMoe2UrZLiBfzngyMNoIGNA1k8QoHNE4o8I9Y6D41S/yTmRoU8Oim5prIEM3EwkwbKAfWCjso7hXwTskkqm4X7Y5ZZJM4nldrNjY8JCqMDOSUGxSSA7YIilWPPbdF16m/S/gBUWwLjvQqjA561jGf+ifuzGTTfoOibJH3gXI7oQ+RBqAcoDIQrcdo8dcZdW0Hb8PedOUPMEIl51XLGl2H+Ym2LDtGUyo7klPTRYaAqnq8Yzdl9DuWwhH6Pc1+MF89V3gBJlpfBEDuoz2JuSQCkCylzp+rzJ/NeuIukHb0kvpgFbKRimfG9OsXnp7rvFiGACMiMg1LeNBXNaaRQLkw9c2QVMu2wPuqhqTKfO8gq4F+HyDZ8iLy+o/S5hvZOsXzZCjamJQ4urwEAjo2G0CBMmwxKEcrMwuReexW9BnlmQwZpX8lmgVD2a7i+BYyL2aVN5tAsONgCKJemfvFZrFHvbtAsWlBBUCs5RldN0yJs/MK/ekXKMsyshQr3jAkDRRRXvu7PX9OVZ450pTz4yjwIcyXF3EZxoUdggxg8iMUfEPdlZS0jquR7EaHGPi/ShAT4a1lJR6ZKJGmM9wv3lMwVglKM7BLS/aKpRwJvAdQ470xkfTr32vI+zDMA3uFVKArHDEFgINghHQCqRdUCg5sHs6ic2IcFASjryitMMxVHRkD0iQBlsq3cj/WCwXhfic1DPZipZ4GiI7aQVv8LpdgVydy6DiMoHbxnAVX/++SzJEELj0n0rQkAhutTLQclXfk+dYX/n6POIqPWZenC33XfM298UrtPoEmQZ5vF38j+CO3TdWpza75S6nNlETcpANJGpSLYUqHpeRDWDBSmu7jPUr9Gti2MY2tOC2Aac2LxdUjzoTV+wjQWzedi3sXUBB0QyCCJASMfhROTqIow/+7xJxdKvA/Rub/mMgdEF1RaYESCGPGgtX9w+s/jrncWRd1531qUOguvHhloTTDa+f8zv6VWmlAUDZra+FPoFaFxGkY72Knxh7OuewVFGaEZEPINhcJYQMH/D+Dw6hKIFKzTMJqQZxZL/Ql6eY3lxTGazQxLgwk2Nkugb5HlFk1jvDN0o5Et1KDKAApYf9AUzirkaxpmClTjHNkm4KbGOz8rwGxq5Ot+hR/vS+3fvBhYutlh46BGeVL0HXlQRFqcDK7Jm86QDkqNfUr+WsADLSgGBpSyJIsF018nFlRmE3hXTF5hqWC64qzUgM9xFE+oDz4lkrmwpfCjoQSKuouwQljoBYPEZrzIaMnw4Blzh0PopblGKik2H22Rjr8QJ5iESreLu2or6ifYoq4vjr9X8mnJR953g0O4u+ypTJAYWS4BQuqhX/p89Bc7NW9NuidF+n0x49AFSBKAkWAQ2G8o+iax3wuzFyHpIQPhyHAKZ+Kmp1pmWi5HMoaAn7u2BIrVYCKzCVA1Zcq3xWUUmxSBPZvVWsACPGiirbo9blkwMXYZRPaNYlaty66x35YtFMa7FZo+4qGvHIXG/doV7h8X5iizYDKlhawn+8dBJROwdKTmg6Sj6UvMyRZDGMxjTS8BQpcjHk8T58AcY3zdyTyX5gWSLYqCd2mzLj4VS9TdnUA8mLMeNprxOSstsYtSDshz79BsjIO1GYxx2DEcY2NSoCxrTHcBtNODnU0qkPVrNMd7MKNgWqgUilVgdNUUS+UEt1e70C9qrIz6KAvvH5RrG9PCn9wcoG6Mzxm0UKOyBs1mAd3zNIE2DmqpBjntAdqi9zlSwQE82/RgYVRr5CNAlxZ52aD52tAvqD3fuc3+Cv1/KUDGR5zVfYXhYYfxXo0aYqEK3pmUERqjIjvS9H2ov7IAloDGiLHrjofhgVYpfDd8r/g69s0w8EmeOfIFItOvDqfYh8VbN20w4oIfCDuNN2VycCUFKFZCQnlIVowX/GheQ/pf+pCkwypD+zSgqjS3uK5NLzmgthxtuT5OgD90AJ6Yl3x/6XvR2lUHvxFp+lKW0D9uMV02PjqLQkQeV1PFIYlz3YNGFc9AY5NY0wuO0o5aDteR2VCAPOGeHbejchYASbJpCRypmEySD3mVz7KM5lJWZGuWmx/urlAuh4XzeXYcZt4C5AEox9QGIemmLYFy3aFa0JENYofsbOz7xhY+qWXTVzHyKq5b3bWFgXOWsktL4bGNjKfzUWE8t02FmCHblv76ejGAtynieYCpExDHL7KM/J7TN3SYpDgVVHof/X2U2GQw65qhdawIz4l8lMAcHxvEebDieOpAnobxcDNA3IUQdx7OMnN32iH135bMGaKzlHP2DzrVvJtRbvTdkOCIFxfdvm7Wb7fcLyzytucw2ijRWI3GaihFqMY5po3x5+I4jSy36PUrWKdgtPNO2IbQLFlUl0xh+77g3r+W2KhK9JYnGFc5enmDwlj08wYOCpU1cKSgFXnnbAD7dq5jWmVY3ruOomzQL8PZZv3a39NquKM91CslqjVPv4yumvq2jE1SOKTgCgdXOlBG0KuevRpf2mCy36JYURjvVdg8oJGvdzo+OCN41iSwP9qbwqodQLPQUTL8J6X/o49NCM+X37cUpTDTAEkJ8VEeQDIJRFNL95gO50P8s3HazXPeldZ1YuGX95C7VsqEw3cAU8zWtOZWpHNSP+g6KTrugxZjIZmwDqhvEVGUfh/vQUjsiAx9FqIbYLzbbAkN56NUdEcpNz0VI7HICA0ZXt5xPfgYieSOXWGmphVBJliPFjAM33EYuwxTjxFTwfwn/dha9+3MM8Bn42bJpnyPNggs1r2Cz8edrNwh83TdV5EFAhLoaPneSLZRgmqdAI4JZ8Ep65k6MxXPl2DIgNBnAsAz0OXymZlhYJKN2vWRDuzs5MxdzVnWNQcJiCg5uWlwuZjvkCAb6Xic0O+mTpsCaZJmdrXFXIoxiyk1Qn+ZLqC7QDL3ITp/Mu+FOyFnAkWncng+5e/O8nPJVLTKPBNYE8pAhYgv22iv6IxDZhyKvIFSBK0IRIBSwHSao1kvgJ6D2VnBlBYuJ4wP+INhJ02Gh1x0M9bGPUzqDJlxcKTQWA3nFIZFhTzzZ5wpAKujHsqiQT9vUOQNNkclbOOBWR0cuvODI5ilCrpsYFcKYDPDeB+8o7MBqDLQxoEKvzrqachGrQFkPlKtWPOh8qYCig2KeUmkmUFZlfom9CEZQtMDXDmb0pOmE0iF3hkHVlassKL/DcRCy4BEgAjS4aDXKizkZVIaTd8nJYxARCRMlAqagqIgQf/H76VJhBVHEA55hkrRSVx+ueLS7lcAwGiy47aySxqlNsXr+LbhGpmvh5kI2bcMiri+zPbw39EpWDIlYiyj2YN9PErVAlMRJKpUDlQIoZZncIWx6vr/RbOZYIb4O6ANhpxRrSzRfKo9m9bk3EGnLNJAtZTO3GNGMfoohfpPl/1cqRb9+3rBO0pz+Xy0DPeHNLNyvbiPmn76HY8P4IGZIm9ey8chIaYS+Z66mzXB2DE48glOFeqBSvUQAD2CYwbqsl9ngGRpxnQSUAumTTKU0vTZZTmlb56/gQB1oZ+yMZLJ0AjAFq6fydZfIDn3HET+NZc5ILrTsgWMIO3+Zsqshe405W4BT91yz8BwysgfuWsBPAhQCp650YTdi5tQhjCaFKjqDGXhgUqeWaxs9mFXSl+eVd4ZO7fIDoyx85tOIhtWOHF8ASemA9xn71H08gZL5QRF1uDQ0hr2LmzAOo3CWFjncw4pBVS1wfoknEOWNygKzxTV4wy0mcFZFUxmQP9rBtma8TmPShd3tdPNAsoQMPROCnboHbHJAcWKSoelGmDjIh3D5lsKPKeUJ0cLJZ0J84bo69iXcdFjdklcJ/q95cTJC7Twx4k+FcJk5UwCSzpknHYh/N4WXhl2HVtbSt6gvZPttEO5cEBtcIbd4usm2skLvS28co3RTp0IOclmRn+RoJxajtqif2K92MQnouWir1dQcmn3raKzr7LA4KiN2YJtmY4WcVk6Eywe/ipAG5+bFlMmhLaUKzaAq9QpPF66plYYOTNScgy5TI7UkpLYQ5VAtEKM7JLh6LPmnpn4srXwKWNGQzJq0TyqA6MY5nbTU5guM9hLQNfUaa56kIZwtImYPwrJ3MsAVNSNj7Dp+jbFLOkKLdBvi3TGH7RwTA5AntcvM0nzWLYPnTnbWi916ptYR+6zjj9QXBM5szcHHWhsyW0kcyTVgzT3+Z5+bMPbpnOfuXxdyBwQnaNIBuC0MmOBa9sQzvDzcwRa0uRGCw2KsgY5BdsYrI56GPQrFHkTHKE9aBmNS1TrBYpjxh/4mjnom/uYHhng4K5VZNqBnAat5fjyiV3YqAvsH67j6OYCqiaLprLMWChFUAooch+OrxRQNwZ1Y2CdxrCs4EjBFBaUEUzmUJ8sQXf0MNnv4EpC8aWeX8CnAIXFJrvDH6jWDJ1fGMOCm28C9RJQrKZT5Ad3JNYjglcHH6XWXVR54eVFjxIYaDFC4UeUUWIagLgYR0dTcDlonVUFJNDAxTE46CpFV3plUS+kBHrShMeOnewsHRkTh+iLww7cMToIsx1oJYMD5Rf4mOEYqd5KtkeAP2kKYuAgTUNyRx3BFFI5kXWRfcd/8rlmDtjcn8X62sKDoWpRwZYhAqgIPjQCfPmzqVSsC5CO+8hGLo4L+ybxobHe/JbAagvksWJlJUgpHD0mZmSWzPjPrABv3T7pAktp1mEfFxX6usvwsMmx6fu+qIfe76vpA8W6T1tgC+XBnGDJzNR/rsgDqdguVvJWmIal43I82kOABAa43B0MnMP9eL52AbCu2sMdE6FqtO+NVI5kaSj4AMX7sq+cbc8rP7BcfwHWSPg+dcaXGdtsEnyK+P6ijQyi5NEoF1osqfPymsscEJ032dZ8mgWKOg/NmYDVGYHX6e6ryB/NoYCmMchCdFkTgInRFA9pzbX1bI1TaBYdslt6KL9Solm0KI8a3HJ4F3JjYWsNaGB0cgCtCFVYnY12KMLqoJWPaCuMhdEO0zqDcwpKEWzwPKyswWTqzzrr75h4v6WM4HIf/u9zBwHFzgnW7kVQEwOqNZoDlfcr6ltgYKEafwhtPQynz1d+kR3eQShXKCV6U6lLVK3aeVFmABv/N+/kfV0YGEXFJRVAJ+RWOipLuj6bICkdAaK4bq5M4CU5A6e6ncqRnnfJMidPq02d3esWHxggHovAEtMUCGDYNSO1fGJCmyLj1a0nJUXEZ6pxs7qsHMRLkZ/D0VQY7mlLbyKNzJSoE+lgZhJjy+DTA1D/YTM0YSwZMPjw6ngv0fb4W2b+hHkw3js4S8dxCfWJZ6SxeUf463TNTK2x4TnCTAazJR3lzE7V0X8szMdq0R9JEvNUiT5iwNuUquUXFVmP2oMm0uxL5jOCK0eRdVPUNuECaT4ACbxFc1Roa/QBCoBEQZRBon8pmUnTBPF+RzwXIjBk85zCKcErPxfyrLRo4u0AOgbC8qifWYx+N5fShRYbnKrP9TWXOSA6ezkN8DkVKDotdSp+cyZQ1fJdOU2duiYyqQAQDji1tQ6sjX9yOQEjOYWVtQHWxz2Y0gJOYfgVjWLFL1q9owb2qk3Qao6qMTi4fwV6qQIaH2ZfaItLllawb7ABLVZoIoXc+Mi2Mm9S2L8iKHi2KM8shoMpHClkxsGsZ1BWwWUEN7AgDdTTDNmmQrHij/9ApZGtGu9b1Ghkaxr54QK27++ra+EIOiUfQRbAiUzAqEIYrgcTlCjwVuRRQhVmEtgS7UGmd16m1jEKvOvnxTZGZoViGAiYyitrzsfDykz6A7X8Pkzbh0SawpSDzzwtosfk9605EpQp56+RYf7SP0b6HUWfJ6G0ZfZuoK1oI9MmRDdoZb7uOmBHBSre906kynO2aj4kFEFZSf+nOOdFnSJ40al85fy80I0fw+myj6LMN1xU8KTEYbmxA1M/8llgkdUT30mGqMX+afFSCTC2zEJI79mExwyHotA9ATRzOex0bKbJDKUCQ8hMmcsD45enrNhcV1v4jrOFSmCE+9Kk8WJndd14R20P7lJaAFIeoLKZms263EcxoSa3Bx6AE2b0oejvFtjm6lEnESmLQszl1Z2bkb1V4n+k+cO/5xfn4DLTBKQQzNyxPsL/aS5fnzIHROdZZoKaGQ/IthilUz1YYpd6SpEKQSFtHxVAVkFnDqPVPpTyIfgb49KbuIyDHeWYrJUoyxr5SROPn6h2ECYHrM8wbYD1cQ8LxRT796xBL9QY5lW8feV8dBkAaFAEX0oRdABCRlMLlE2rDBvrPTirUNUZ3HLtTVGaYNYz2AFBHSnR3G8TtiTA+fxAulZATtBjLZQ3QYdInN4JYLzbr3jFOiXGRTpXE8Lhr0iai3MORbONb0+2rn1UW+UduVU4+sP3UzopPSq2sHDakDBvC9UflHk8/ykoBBn6K5PatUAGpZey/l7RPCWnDAMdwYLFqcIKSfh7dE0Z0jzA0TZdRiOadVRSfrF8ZjU6jFL0vZL3FGUySBjv0eCswi2w5IByzUV/KI6Ci6ZKyYx1+sPFqDMVwKaKx1bYUiGbUmSabNHuMzZVaZv8kaTPE7fbXxtC/gU4BVJkXBqIBJa43gwumMGS7eJ7tNoX+pfNoM0w1bvlaxTGsR76L+uhd3BWFDYDOl3L7auWfH81fX8dA0xt2+xh9PuqEPPymLGYC0hzITadWVEEvywGiKp9XXwvgAcpYHCE4jyNrGGYB/mmeIZaG5y2n1DcRHZ8jBhERlDMz5KsnwBpd4rFPwdxpM/Lay5zQHTn5AxgpkWjdnaLp/uN/D990S7zTNK9pvve9f3TPuhXUMahqdhc5lDVBguLE8A4qNxhtN5DvbtBvQRM9hLswGFwsw/NL/aMfeSYdihNg6ywWCom0MpHqGkQsgB8OAuqdRq5dnBO+6M9gmduZtJqmJUW2hDq2q+IVPj8RG6XB0dmquCsRjZS0BMN5fzuNF+o/N8hm7QZK2RTYPMioFryC7AtFLIxId9ICREj4HFiywn/vmuqAQFm5JVmeUIFRsIzTAjRahRAEYAUHSNMFpLtccwOCNZId/wfZK4iCg6o0u+DlZCZeGZI12KuyJecC6HNLRYRQpmgDVr4NywMJsG/CW1szW9WqApbTHectRjwSsv2xO+6ykQlpdwChAqReWl6yh+yGRSwYnAZGAI+nwtIO/sIVriOQZlK35l4JtqsenHbKTEG7LwtTZQxd5FRMaVAq3nCPBpNr9L8RQzwPJLQNaV5qxLAVE1qA/cTJwx1IrpROf+3LdJ963AsB2kf+cXzJzr2B4Cia/+9Nz2qCCKacG6aIuFfJUyrpvJjzODRhbLkeMr+5PnFbF68LvSVrpH2eGEObx5QSZupNA4ewIl7CNOtOxU40mitm/xMxXHn+dcB8nz4bOvZuwtkbjI7fzJPzHhnRYCdOyunBDizyu5+tp2HbdY1jYIiDes0dO5XGK0IRd5g38IGGqdBpFA1BtONEnAK1aVTFIMa+p8WvKOqU7CbOfKdPvGiUoTFwQQTm6MJEWWFsdFkVpoGU5uhIZ+XqMgbnxRSJ3aIxTYaZVl7H6Lcomn8g9qs5nAZoZgC1TjD0hGAMoWqD7iC4CrjF+TlBmo9g8sV6oEHCtUOYOcXKJpVZLi7sn4d9WY1gnIKCOcU8QDlGyoyPYrCbpe83wKfGwWlIjvkcuEcGtml8B/XIUsLsMwlw+aFrh8EBCAgHaony6YQ+dUgRZmJeSAXaqb3WfE2PQRl2wYucWEnJF8VqRjCPxJcRaUewB3/LpqrYl+nMZAh/IqA4CIEaD9+tpfayO3nzNIR3IX8QQyu5PiC2QZ2sHXwTAiF0+JZ8TcpOSLS8G+VDrBkRe8Pi5WHyKpUDps8uT/gx5VPc+f2y3Zq23ZUzsbe6ZlEqoLI/CnEpISuQDLnwLNEugGyTUQGSfZlZJsgPuMPwpw0wteNHaI54kw3FIEfR0ty0kU53tzGCJgEYyjrAQSAp9LzEgGsADoREFJocwDfkamxfk43Q0TznMsRIyShfZ/JZKjisff3AIAiReJFYJWla/jZs51+25YVYC73KJnDwnOR0034O/vddq69E7+PCqt0gCZUVYaFoU/P6gI4AYBjGwuYTHM86MDt+ObLb4PKHA7sW0Vz6xC2D9RLBDvNcPDQSexe2ETjNCZNDqMIE5tBK3/ch1aEL6/sipFmGt5nyIQtcaZdSAoJn72az1XLHKaTAtZpTG4fwnxhCLplALVUI18zmO520IXFyv1TchLOS+SWG1BgahQB5QqQbfjFdbRXoVoUPg5GLNRhl6+DycxMVWQ1WGxJ0XSoGyDf8BFs2WYwDbAJLtD0tkfpKACRNZiVgWR6JDMAQjsxITvGCr+TaI4TgIgPk40Mxan81sSiLvPXAGidDE7decO/5fvzPZE+i/4uLinGro+KkuYQILEAHR8alqaf6i3Zj9hHBjG3jy3QUkQth2dmhmICTAVXqHRQrBOmGslGSRGsjS9b/J4EG6REeyn0D/d1ACPxuA2p3FX7HrHfgtgymLQgxlcnICtzOkEB+Rpa1/LY5pvkWaK8fb00TzHo6ibZbLE/CjG3Es+BVlCA6G8GVrGv8gBew/1lKokIXin9nkz7c6DjOB/AD5DmEM8XPU1t4I0Ks6sxQo+fScHuEDzQiQBKifkRvs/Hadz4jMG7WhzOPdLsdG6u30gyB0TnKpIa7VClLUpVLPZn3DmcinmS9zpTnTD7PipzMEs1nNUYTwoMB1PkmUXdGIybHEoRBv0pPnHTFaisARRw5Ka90FN/VIddaEI+IoVcW0ytX5W0IhTam80GWY3GaVyx4wQcKZ+kUWiYPJjSdDjnjEJFKUSexT4YNqiXHSgDzO2lj8ra0FAnfJJI+01j35aMoAoLVUiQlM6OUg4YHCW4AuEATyQlybtMycpoeP8gm859MmMVnXazMeLiGMeVEJM8KguoRoWoHP4uLNrMUEkAgKRI2OTjilAnAeBayQElOAnluEywLeysvJ15ott/x5BjvoYVO8+p8L7FOMm5JhVb+E6yBFHxy+dCowVEJIAxU6FYVSo35l4yyQQklVkLbKrg/OxSX5ppYjZM3X7ousBMlh3fOoqh/tG3CamvTsUStMxhIrNy934pQSbP48BAyTFhEOzEPA5gv9qZ2sKmS8CnbbC5v12MQuuuYy7NSQYitvRzE84DVVuGtnPahlAHZ9pjw5sCGYquQ/SnjMhy4SwwjphrTSlus0tAi+eGjMDsOvDH/mYAl6U6SVNp1yWBWT0nmKy4YdHi+wwzQ+y3PBMXUOaJGc+fzHvhfMk2J/9dZl/m8jt0PFkF1/jkhRftWvGJE8MRHuPah72vr/eRrWT4yh17sLx7AyrQ7ZO9hP7NObKhP9KjZxr0sxrjOkdmLHYUY3xpdTdu3Vj2/kOgltmsMA2MJjhSqEO+I8AzVFXt88mQU7CVxnS19EpyVwXSBDgFWxDqRQdSQHY0R/bFvs+n1Leg9Rw08lFpeurBTL2gMLwjZVcm5U0k0ncomhxkZBVHaImFNDI9NkTO5CG5HFP1xIt1Gtgt5jKhZKNfhwAV/JLHBkTQJMdRAh1WMMGpWCYflHmKTjc3WuyA+L/LLnYlJjxEp06h7vLeZHy/tuY/Awb+v3Nfdu5tQi4aPgqBAaIEcRJkxHBqUVTL50m0izIPhiQj1gIxs9ouFadUwIKRiqYzCf647vIzmjFG1P7bGRWSTKo2GCWEaLHUBzKnlXQUjmY5l5Q8++vEW4l5Ia/nuZ9vUOgvtDKkx+dEmEpbcziYFbmOcuyY/YwO+/mMugjTsmybP5QZ0b8JQPSlim0SbCeXwf0Xnb+75YexyUadQ547G4DuszmXr3+ZA6ILJZ2HMkp3sT2Lck55iVzET1Om7ZPP7AxgYXGC21aWcXI8wBV7jmPQq7AxLtHLa7hGewV3aw+rty0BCqiXCdmGPxOqKBoUmUXlDLQiTKY5jq8PUTmDHb0xLl86gUmTxe9ra1A7/7LOm9D6eR38iLym4uNCmtoAEwPTb0CNgpsaqN1TNEsWtk9Y/JIGLTZohg71YjAfhBxFeqEGeg7ZWPnDYNcJ00XtI0RC/pTpskY9bO84WdgpVypsNn+xXxAZoFr2RyOwE2U0BdhAybuUxDH6mGTte8WzxBRax0+wD1KMFBK7Xl6wZyl3yPZI0MGmGmmKCS/22dmyu+2ajGbMKakI5A49/kQoFlLJB0WJ8uJ9RH9LRUM6OZ6zeYMVeuzH8FkEVEjlAOm38RTyjmmO81LxtbIvWzLruWIlHsrUlvw5YRzRxFm6dXvsZfJGJcdHgN5u9JkHHrTlOY/KWfQJZ43uMnWRSQt9xSxbdHBnQCDaynOz6YVjQBRQhxPpyQD1MF0TGS8SYxjqIc8Di+ZoAQhbJi9uL+cjCsCvZUbkPuOIUSAlZOxE88XhEsBZPkutOShYzOkuxINg2Rm8dSwI2szg3SXzs8zOn8x74ULI2TwgZ7p2O2XJxVH+pvNb6lvo0qIY1CizBrsWRrBO4fb1JdSNQb+scfToEvTJHM3OxpuASEFX/lXtdGgWCDuHY+woxzGKbPfiJqzT+JeTe3Cgv4ZM+SSMk2BOy41FaRofjWYcMmNRNRnKrEFjtchkTbDjDGrQwFkNZQhm08Bt5D60PiOM9wOL/1SAehb5ZRuY3rIAfTIHs1+AT75oS2D9MhXPV/L+F8DGxSqG0EqaPTrcchZgyXg4zyoxgInHF/CBkQHsZBtIPhQCbLBJqDVGFJSTRgqpF2YjBljRhCTBkGqXw/4ZLgtvWQGGS7QEK1L5CuUQI9nkdaKMrkR8pdCKnJJASZr3mAWQZkm+T9dfK7J3st+AlIVbfN/yaQm/jTl9gqJmJ/YIqEJ/OxN8gMS1LSA1429+LzuCM2c3vXA2V2AZGaR18z8ltogSk+fSfInzT4AFD5xU7DvOWSX7gkGGLcUAId3PFt5vh/MRkVTmAiTKNjNgY6aEBCsU2b0s/TaymgwKudwwjmYcrumcvyfnIlTwHQtt4ueuZU5Fqg8fZ9OKMuP/u+bgANBipKQEb7rdB9ko3Sc+X917zJC70lwGAA7qvLzmMgdE5194Xs3o2S10fPc3s2Q7dOys3VAXDClgsHOMvPTszsn1ASprUNUZ+nmNYVnFumSHRjCDBrhiE2bHFIPbQ+jpYgO75A9/7WUNlvIpBlmNqjEY9Cos9XykmSOFk5M+Cu0jzTKdotlKk44HAQCjfT4idqrOBg2oNh7kKHgwMjZQlTeFNYsWm5d4oFSNc8D6IxzMrgo686tbNgb6x/xiaSpCuQIoR+idIPSO+wXVFkIRBYDDviCsBHTjEzBmI0T/HyivVJjq94nnyPszVN60yA6zrSMeeLcsxoXZJXYwZT8NBlrRGTuMccuHQSp9ndiqllJgRSSAVHfeRIXcoJ2td9Yco6QIY1Gz5q4W1wpg1zJfSEUoQQCS4mr1m2CMWkdViGv4HkYk2eRyuG/YqV5ROIwU3rx1qufsVEAolgk/tzhbcwtI8/PeZX7EvbrAJ/oUSYBE5PMYhfA7ZnY0z10eH9UuGzqwRVqAd/afkb5mfJZfp40M1k2VynY6mOlCdCUnUwTQNolK4Xrptkks3pMZ0jBWTT/46YV2ydQEPEdJh2dGzv3O3JVO1zxPeMOSokPRBk3hOhOWQxe+67KyPP6zGFaWmWv9BZA5Q3T+ZN4L51NO8QCcEghtV04Dimb5O5zqXnVtQE5hY82fXabhj+0YVXnMLH3poeOoxjl27tgE3TqAXS1QLQHTXQ6mZ1EuT3Fyc4C1qsSoyVHoBvuGG1gop7j52K54r4PDNaxXJTS8zxAf42FiUkYH63y27Mb6NACN9SfY67KBW2pAlYZdatC/XaF3TEGPNfIVAzNVyDY0aKWAKwiUEdTNfdj1HHAK/WMUHXLrgUbTA6oF7f1/emk3zlFgUckE9oEXWBMyPjNrxP9zxJk3aVEENtUyfIbsoABa5isGMsxo8CJvEwiyJVoRZqQRfXPYBOPK9D0DD96Nx0Ueac5tmR/h/7iYM1vhACV2zTzv4k9OZV5ToY6hjdK0MevoEMkSRZkBllrMmWAeWKnH/4Upg+vDGZIZYDBDxiwRaZ+g04+1Sn4k0iRzCtkCkBTAh7NG1gT+Hhwu7qPtKOZNkhId/63oe6HYlaMIdloh/QZxbkj/KQAx0pGUN2klRkr0b6v+oZ4zzD/sMxdNfxBAVoCalp8cifFiJ2Y57jPmJJnwp0qBCHIeAZ4FchlitFzMTE5oATHuRy2YRwlgo9+SiIDr9mXMW8VNlZFm4dmLIF4lnylp9p3L15/MAdH5ku5C2V37tvGAzNyZx0K3ljlT2XXfq1SwNgRr/VlfALA27kEbh8t3nAQAFMbijtVFmNzh+NFF//vCYXxJAyw2WFwcIzMW02mGUV2gcgajpsBCXmFnOcbicIJP3nJppF9rZzwdSwqbtb8u0w5GO+TaYu9gAzo0isjnIKpWS5Dzx3BAEcxahukuoF4Emp1NXATNBChPaJjdU5iRRrEGmHUDvZJh5UqFYsP7cuRjwsJthHrRMwJRYQclxGHtvDOX/hyqTrtjXnhtz2fG5nL8OWtICQA5aof9FVTyPYqh6EE5ZCP/WTwOQIQpx7BsBAUnFvZochCLNzNYfIRBS/nxDlc6jSIpKr5OKmZ5/+686yrWLdeoBIbYnMd90mV3bA+tc7VaJhehXLm+DAwj2OO+gGDkdAKvPMYk6liu+j9sEcynNbV2/jOl9Ty1282h9y0zJv/fAZ6z2KFYbgcIKZsQKamt5+3FCCeHFisHLaKvBBAFBGANn3FEIftqMcDm6+XBuKQRTbKRMQl14YN0szHaqQsYMAPJ/NVhSqUvFYMPnovMKPGGJJq6mLGS0WyE9torACrfn597Li+yk/xcUPoMSL93ISlqM0yAjCAYSzk/5HjfBTJPzHj+ZJ6Y8XzIWUz+04Kezvf8MEYH3W08bKek+HNAKcJw4J0BMuOgdY3JNMcgq3BsMoQjH07fbOTYeXANK+MMurRQPYuDe1agFeHwZAmu0agagzXqQffGaJxGL2uwd7iBnf0RKpvh1o1ln/3aesfqMmtwdDzEYjHFznKMQlscHQ8BAKNxAW0IxjjY0kJpH0aPUQZoQrO/BjUK/Vtz2NL7IRSrPgM1kQcMo3vVGH4hx8a9a+z6XIbRPgWXE0A+2V6x6he5/lEHl2nPynQzB1MCFoD/Px8B02UAQZFnmwpNPyk5BhquoKB8Vau8luMmJedi0kATEkdGX4bg/OuCUtNV2vkSfDujv1Mo25VpgQeEMhL1YxMXJxCMPkMK/qByUcd4xtgsMMR/u7Duyx25+DsqYFEHVihAqhs7pPIRK7OUCQM/LkM1opzAoMnzs5gViuAg9KWCV179YxRBlu0BxapEKOJZE34t8vst76USFspYW3/waVc4IST3mSIA8gBY4jJTziHJkLXqof10Uw7QIYGlrv38iSYxC+gOQIvgi03FmQDcJpUtfYjkWuQyADyXBENDKpmxOBt5PFtOp3vBpnsDAuRR2pzwPOT/szGh6XsAG49KCf1HaD+PEXCJfmCwq4WJ0hZijnAZEM+cmEOKABLmRW4Xzzvp6B/n8l0Eiji1ybmWMZc5Q3Te5ZTz6gxAaJZsiTY54w9O/ZUdWkzXS/TyButrfTRWY//COga9CmtVDz3TIDcWznrTlD9t3sFVBvt2raGf1R4wOQU3zeCgsDEpMWkyFMaicRqOfCg+4B2ph3mFhbzyx3eQQmMNNusCR0YLODoeYmozWNLo93x4ST3NoDMHpQGdO1DuYIcWprRQhjC5Yopm6JBv+IUz3wRcbVBfMYEqLMaHHLIV71nMh7quX6qxeYCPdiCQ8eCIF1TOOk3a7255Z61roHeCYCYUD3bkxbHreK0IiKdsawo5kNByKuadO5t5osOmSgtwlwVk8NLaxQaJWaA7rBapsIMNYINBB1+jxHWRDeJ7NO33UVFIvxgS3wNt4NQBT1JJRfYNyW8KEABMOrJ3FLf0keo+D8yWSRakW4+W6VAoKpmkr1WmADaznj8Of5/1W3lfdsTlc9Jkv8W5Idspxij5C7VvwD4wkfkKbKCuQ3to67W6EW0FImMT6yHMijJCbIt5szNXY9oFweBJX5uuabS7Nkqn5hYQFp8xc+sy/6WMRtOdeSkdomN9RR1abJkEzF1Rrf/SfRkEOWy9gN8zmFJb2zuXe77MGaK7SsTDPvPrOwGYtpQ9o8z4UGq/AqyNehgsTFFmDXqmwSVLK1jKJyhNg6+tL0Nrgts9xfqoB5U7DJZ8+tXjoyEWyimGgynWao2VtQFc4/MXrZZ9lFmDQV5htfJnJ+ztb+KO0QIKbZEph5H1GnCzKjAsKmxWBSa1/6yxGuT8gbMAYDKHepxB5Q6YGNhawxzPvf9O3x+4Od1DGNyuoNYy6MpTKG7/FMW/9NAMAsAZKUx3eLNX01eYkoaZEnJL2Cw9520mgAnZkPU05brxDIJCvkEpZN6hxaiAPPgAAOX8Suvy4IBufOdHvyWxK2bAEhVPx3/BswZtJdZVMPJ3vPDHHX8AO3EOyDwtFqAcSQGxcmVQwkqioyxM1U5+qOu0U+e6MKvCithXtH2NcgDYDBKUugQyzDxtUazMaAiwpEN+qZiDSSo5/l3oG10HU5lQVNmY4rPTVd7nvBFRfm4xAxkTP7I5VSSa3LImCCA6K9GgrvwcUgxi5fUqjQVvCqAQ2cdYPYcWO6osgJBbS57dFetAnWtV+iiCJGayOMQ+5O1qZbvmMrpgm0Eqg3QxlrpOzxmPk+K/HaB0CoaIgLMLjJgxazrgeda6zBsc7m+ew/BjymfjsfmulY/rbhB3Hkxe88SMXua9cC5yBlp01q70jNeK9zN3GGfx4LXs55pQLlTIM4vGagwLr213FGM0pLEjH2Nnf4Tl4RjKEC7auYJiUOOiHauYNlk8xDXXFnt2bSDPLfKeD6Mvswa7eiPvI6Qcjo4W0DiNi4ZrMcJskNVYLCfRT2l93EPVGFSNgXUaRIDW3mxGTkFpwq49G0DpQLWGK7zprDipMdlPcedtRhrZhkI2UnBVONqjASZ7vPMz5YRmSBjvBcpVh8lODZcrzwwp7wStq2C6CgrGTP3LGWCyK+3sJTPEJ3n7HWvSDrpiGkRFJZCvI6YC4MixGI4ulEnLDAdE6r91zAN/L0EHj3fericYxHFiSlYmAoRExSBYhzhnBDPFjrXxXsEJVpqYWBHye1A6ziCyAaEOkRliZ+Yu8yPnf2i37Xkl3spMzEpR9hE3yXiz6uAIId+kmayFFMlAdZ3SW0yNfAbp1N+xeUz6lUm2b4uvYYd1csabzdicFpkhnf7mQ4JnsUwAYmRkt+08HhxN1fQSoGITa5dhadUtE9UN94s5oyBAuABoALac8Tdr3ZMgVddANqHIiMaUF5kIQuDNgQRdDNDEnGwlbZSbxQ4YkoCMATrPUZ57RhzTcTbr/IWQ+Wn350/mvXBn5BQTfxaAkQ9d11EvXZQ+7wKhmdFCs8o4w4No+k08GmPYq9DP62jmOjYZ4mvjZfRMg2FRwU4zfOVzh1BtFDjQX8e377sFRdbg6OYClnoTTBuDA8tr6BU1enmNhcKH32tFyI1FbixuWduByhmcnPTRyxpMbIaVcR+jKke/rFFNM0zXSjRVhn3L67j3gaO4fO9x7F7axM7FEfJeg81JEZSmPzgVY4Pp/sY75/YcxvuB3lH4/EgDQnEkB+Ue/DS7GigCipMKqlbIN4ETVxk0faBaVDFRnyuA/tHgl7TuWYRijdA7SfHIiLgABsCUr/vrVROAVAxZ96iG6xsPmgwLaTYK4Gsc/g++M7zbZKdjZ4TiMIFRknNOLOoRIHXnCDvaCkUpD6SUClU5hANPw1QSEVfde6qO8pCfR0USAJ8K1+hueZRMSVuepe59hcSQ6+CwG80YSP3ApkmXeR+tHf/iorlzSz1mMBYe2Cm4TEUzDR8iCyTwE0HQLMAkhRCTP3YBbMvZWvwfgSv5o0VaiTkhwG0wJUKhlRyRHZIZgEYnfKR7xISCgeVk0KKcfx/zNokxlud+SQYvzgEgmc8EYxRBoahjqw/CK94viA4BDbZQ0TyYjSmCb55H6QcCwDFjyFGOwsn+jOyf+J005fEQmWliJ+WGZi5f/zI3mZ2tbHPit3wELuS9O+Bpy3Xh6VfKnx2WGQfrvBPeIPcgpmcaZMqhlzW46fb9yHo16kbh4otO4NbNZVjybM+X6l2YNDnus+sYjk0GAIBhUYXoMYuBrlBoi0Jb5NrCkcL+wQYa0uiZBq6c4raVZVTjHLRSwEwV7C5gXOfQirAy6kNrwurKAMs7RiACaKBQIYea5IAFihXjaf3KYOGrPuoj29AwFVDtIOhKwZbA4KsZmr4/hNUVwHhfYH4C8Gn6fnzKE2nnqSuKIdikfYQaWAGatvMu4Mu2IQwe7LyqUmh0a/FlFiiAF85lBPL14rxIHCEUzRSs6GugWUiKTu66QYgOrHGXH5LzMfADkHbQyv/dPbJAmhK6Jg4xlQAEc1Bf7PRnbK0YsNgstY1cMt/FfpHMTtfnA4gnvkfn8c6clwAgsgd9YPlfE7uSjb2Tc3TOFveMdVfeV6UeJrAazSFiHPmeWxyfId6jDZrib7QAZlKhhrbIRI7R0Zrb3AGjxSphslttAcg8P9iMpKsEiNjfiE1r9YIAkpSAVWTgkO5re4BeR8x9FNkzjqDk24sUCCoALmZqdJXuJecr9xNvHpLZ0J8Xx75DTU9F0y0/AwlAyt+Jz+DrHPN6iX6MbFiXoWTALuaGvAdHMrbm0Plc689CLBTsOSKyc/39vxWZA6LzJGd0oDvdw9Jd7LYrs8DQDGkOVMgVMOxPsaM3Ru0MigBYKmfQMw1OTAeonMHeHRs4fMcyzIbB0dUFWKtxv0OHcWLax4GFdQ9cqh529cY4MFhHJra9HKmwkFfYUY5x2+YSJiaLeYhWJ33Ukwz6jhKkgHxdwfYN1kc9TCoPiogI1GhMpjmWBhNsOtWK3JrucihWNbINH4o/OkgYfs0f1QGn0Az9taOLLIY3e0bIFh68ZCOgf5SwedBHq/SPeFNBNvZ5aaoFhf4xB20J9VAjG/NqrdH0EbNVs59DsUEYl0nJAp0FOiyotkwgoGs6iEAI7V2vVPyeEeOB9mUS/P8cmszZmPl3WoIqca10rmaH29au+hRzUTIo3m/CX8x+Ol2foZbTufW4kkg4yYpMxqpzX+n4zeCt61TOvlGtOiKVu/RlaoE0jvhiZ+GukFExSooZAF1xoxFNV936thysTyMu89fpcG5aTGgoxlgqdlIKyhJ0ZHmYmUrtnuxUrTGTh5YC7MsWxjr4E0XfHufBKc83f+SMH6d4ll9g+aLPFQcCBDMls44RYEGE6TM7JO8X2E5dhXIN921qQwQbwdzms4kjmuD4OfTMkdgYiHkdhqz1Bx8Z0gLf21l35fcqtZPBurxEbae8CyDnw+Q1N5l5mffCBRJ1moeuFd657QLTn7PMZV0nwZaJBUBTeV+dQVajn3nt3DgNrQiVM1iZ9rGQVzhyfBF5v4FqFKZrPtPfsfHQn1lmM4yaHI3TqKzBStXHxOYY2QINaRyZLAAATkz7ODbxvzk2GqJxGut1ifE0hztZoneHr5ieAsUJg3qcwTmF9dU+Vo4sAgqoJhkqa0CkAE1wfQfVKOTrGk2fMLqiwegQIdv0SsrUhGq315o7/pnQu8Nguosw2U8+c/XREJk2SpT75kHv45KNCdnIwVTkj/iwhHzDYXjzJsyUoBvakngNSHlsJMCIUTDhHko4ssbdZAiNt2Xysemanvi6eGSABElsDgugwYTooghumFkSZeoKLbMB79DjTr2T/2hWBA6JezKbsR2l0jJtQcxNBnciezL727T6QgEUHFkZDMTQa3FvzkPUP5reM1Dlfox9zQyNABEye7GZUmiziv+3opgI7fcQf0c2gTq+X+TZR2F6IuWP/Yg+P8yaaAZGAlh2EjvyuWFsTuo6EnfBloyUZGd2zrPVDABXCvZKgGQZbSYZkmjOD+W7MgEf4gSKIs0Ds1UyTYScP9qGavOYB1Mfs0tx/gvQ1xoPfjbEvI9sVTcsHum6rjBj1GpzuDwCIX7mZxcxl69TmTNE9xSRimU7T1nnmlOBK9JAb1jBkT/F/kRRYaGYYk9vAxt1D40z2FGMsZBP8bljB+DWCjgCDAHl7Tmab2pgtMO0yXyiRVIoTQNHymehDhVpnMEgq3H7aBEahMViinGTQ4NwcjxAL2swneTIRgqjix3cwGJiDNyOBqgD8FnLoTICjNeeVW0w6FcYUQlrfdZqZxWGX87gTmYwE7+QlysUwImD2dRY/SavFKdWoVomb0prFPQUqBYUhrcTVu/lmZ3Jbs8eNQMN0gr1ApCPPChqFgpoy1FqAVh0TtNWlMLjZdJB1aikCMS4tvx95G4YfhfPvjERaEnTmCjD8U5VmNA4qsdUHQXCdRKKsOVUTZ654KzNESywwlft+aXIR+A5oYSj6UowRN3oI+lT0jqzLSp8+BxFAqyRDlF6oU7MDsg2MThjRawstcKrWXlvcUJXiAyPywN7UQeTpcYWk5dkIFobD9EvLTMaUlsR2DE+jV7mrYl+Zk3qJznH/JygBOC47swUcn2E47aZeLMhg0hlU+b1CNicB4HR9BRAOue7Avmoyxi12JkHMbVDiKxE0wadukE0VekGIDkn5BxhJ3EG6/DlcI4uzihvNWKS04YPmOUEpVxHflY0gDoBtGiGmwHgqdPfcjwjeA5m1pgMU4xvnAvA3cISWZy7ycue+ZJvCJkzRGcrnUXhlLKNh0L6o3DZd6Y+3b/T7olgB/6MsMXBBCazGOQVpk0GE1YARworVR+fO3YA0yqDWqiBYRMVuqsNpnWG9arEgeE6AGBqfdSZg8KoyaPprXEai/kUi8UUTdDiG5MSk2mO9YnPQA3nHY7NWga3s8bijhEuvuQY9i2vAxnFHZ7SwGjdR6LZiQFGBqrSKI5lyNf9NfkGL3gKo/0AMkK+DgxvD4sgH89m/QJKGhjvUZjuUNF51AYHUjMNmYHJH/cBANWOHKSAuq9itmg2M2WBadLTtNhmfKK7NBWF6BcZ3cKfM7PDO3b+TobJt07T5kgaOe485pl4z8yKLFfseGM9xBw1wm9DziHJBPDcZ+fvLfO1C+gV4mnh0tcofiaZIcngiPtHcCDa0H3+GCyR5nuplg/fFoWn0u9I+zlQL0AoVmqZwk4VBBHLktdtqRslECxMRBHYzNqSCrDs26VSpBmDPJ4XHcCqK6B30vvJFauI81HX8EySSQe12tx/xnObVDB56XQP2VQ+NkOyJ1BIR4VknbrBH2czq+8BBCfp9vhKp3yOIqsXE2ADMDOMX1Y0RlVy+0T5XVYx9unpRCXwpsTzNKNJd4vMo8zOn8x74U6KjP46K9PXmeQMZc1adLtRaa1y+hZVlWE0KdBUHrTwwaqjJsfto0UcGS1gNCl84sWNHNjI0OxsMN3f4KKDJ7BQTnHp0oqPHLMGu3ojbNQF1qsSlTUYNXk4xiPHZjjSQ4MwzCvsWhjBOYXNtR707SXyTaB3h0F+2Qb6C1OsHVnA4RNLuPXIThS7xzh4r2NA5adlMaixa2GE5T0bWLxkzTfLAhuX+gWpWg7AYkqol/0KlY+AzUMpn0p5UmFwu4o79OiAyzs55UESGaAZ+E7TlgClkG1aH6m26YLPjAcx+QbB1N78Vq5RPHvJloi+FdFhVETkdJ2C5aGybL6IYcW5GMeOwmAWyQ94uqYVFRNefH085HTmpEI0O7aYI+ngHIrmAgxHTol6yYvjOWPCrMRKrXXAKLNG6JQnzCbRBCJyK82K2oICBodTuWxCk0AOSH/bQsXT34EEWJgpk9FcMnoqHkvB/dEBRd7XSIX3Krbdheg1ip3pmbnYFm4nm0yVav8+/JbHn8T9meUxtZ+H9YJPPaECSyMTjrJpUFHbsZ4ZUFd6MKEcYAeeaaJMmPPE0SnMyhD7FcFvElTj3+cbgGInegEquK+bvh8nCXpIJ/M2KERn1n6cmr4YF+rMAQaL3dxNHUfqsxKxGdEWKaWFnPOnKvsuQkp3x+Gub3zjG/GgBz0IS0tLWFpawsMf/nD8zd/8TfyeiHDNNdfg0KFD6Pf7eOQjH4nPfe5zrTKm0yl+5md+Bnv27MFwOMQTn/hE3HrrreelT+6szAHR2cq5sjhBGLiccXdyjmJ6FloTFnpT3OvQUWTaIdMOd4wXsTLtY23cw+a0QHW8h/rmBaiFGtRzUJXG0sF1FKZBL2swanKfvZoUjo4WsFmVWJ+UsMGf6OR4gJVJH1Ob4dhoiNWqh8oabFYFjHFQmuB6hMk+h8khi+lGiWqaQxHQrJSwowz33ncUt92yC2rYQAXQdnJjgNUTQ4wnHiHk64DtO0zuP8bokEssUUaAVShPEoqTPvqsXgJ6J4Ad/9J4Nsb537sM6B1DPBupWQCmixrZyCdWbEqF0V6D6Y4MzgCDwxWKNQq+NoSFWyboH6mhnE/4CPjFMjnjpjB9VgBxF80h1F0/Cvj6taLI2NwhFl+5S+3uVKWZiNkhBtDykNNZANoWIdRc+NTwWVhQYs2ngLnsbKXETru2QPQxikrcte8ZFVt4H0Px0a5nyxRHqU2RMQogq3cCERwAiOHzvjwuLNTJJJ+gehnpuJY6AaqWwusyEhBtY0AUgBOZEEVoGBQJMOdS5Js/rFXFc/DiOXfscC76DxCh60j3627GqkWfe6ke+jrrJpwc3xkn7sdW0lGR4FKCRzP2zBCbcckEwMT941L50vzJyUjl2GkLTHdRvCYLZrF8szOP4IGpy8R5gi7N4djfcn4ArWSfEYhhK2CX0t1k0oxr+Av57Mnnr1XEjE3rvzW5+OKL8ZrXvAaf/OQn8clPfhLf+73fiyc96UkR9Lz2ta/F6173Ovz+7/8+brzxRhw4cACPecxjsL6+Hst4yUtegne96114xzvegb/7u7/DxsYGrr76alh79xnw5oDozsh5muznzCxJdkq1P+cnlRygFEEpoGcaDLIahbbYqAvsKMewTmPt5MADCgXQWu4XvYUGw7KKEWk+AsznMWqcxuqoh8z8/9n7s1jblrS+F/xFxGhmt7rdnzbPyZYmMykMVdjYV3ZdEq6MjS1RFjJIyJJ5sIVkKS0wbrAtZInMMjaNBQ/3BYmUEMIPFm8WBbjK6FLYuqYxThKS7E5mnm73q5nd6CKiHqIZMcaaa+/T7DwkrhXS1JprzjFHEyNGfP/4f//v+wy1zti2bom9XE84WU+xVrBtc1qjOD2ZUW0Kii9MEJ1zl8n9BrRwrrDSKSlFLbm3WSByy7UrS6wVGC2oVgUsc8zrM5hqqm9eY+Ya7kyYvSZdTh9tMYVFbSTdRAxKFcxva1Rlovh4+tBw8CWNLqE8hskDn1PIwOTYJXXUE4FsLdVViS4Fm5sFzV7fwZunS2wuB6xDvJ9BVKoASYyQidt5hiqdwGMYcyJEjaxJMACmNwjjiKtwz1MhdGA2ou5J9y9IDFcAPN51lDJWj2o26wXhEbxEsBEYkaFhhWSFHQCNcAyAqogGPkZSeaYg1Vul7q+0T0MZE9la5wbN+4iw4EILUWLggICeQH3kfh/Ahsl7UNEsEgPoj3PeJdZfX2SevC4nGmz/XmrrQFA2ZHvC9YVrTZ/p6KoMWhnoGZn0fozcoUBcBIyNeMiwHEDLYHEm+nDy4LrVU8f6YIlZ4Me/i+xlAuri6aTuVesyyAfA302GIFj4BYXU0E7pS91sbZ9/KrC8Y3YoYcsi25Yyp49hdHbOx+nvYDDOw/djttI+4hhfiWYRroj223jZN2nUvuu7vovv/M7v5P3vfz/vf//7+fEf/3EWiwX/9b/+V6y1/MzP/Aw/+qM/ynd/93fzwQ9+kE984hNsNht+6Zd+CYDT01N+/ud/np/8yZ/kIx/5CN/4jd/IL/7iL/LJT36S3/iN3/hKdNMbapeA6K22N7MKGE+aO1bob2g3Fx3zgn10M0tWutmm8xFmmy5nkddk0iCF5Wi+4caNM4SymCPHDpW3c2aHW3KlWdUlmTSc1RNaIymU5upsTVl0aCNZ1wVVl7Fpclf2wwo6LamanLune8jMZZqub3WY3KKu1BRlR7FfO00RwMSBom2T8+zTD7j72iHdOndC603mJtAWxDIj+9Sc4m5O9tya7Q1Xn2z5jPQRaMIlWnxgnIh0C+1MUF3LsRksXteoxrhIMgMHL2nmrzu3WHUV8rUGA6qyTI61Kxp7Q7K5IWkXAj11YKnelyyfzagP+5wo4T6k+V7Sez5YzY6iu2LkVN67ymzWA4qBeHg0QcdxEfaXgI1U9xSP7XDvuXEXGImB1mfkMhPJWNMldOX5sTdwMwVjnoLGYNQ8EIzZvru+D1L3U+jTFGTGyuay3+fknvsuJDLUhTtHXfb9ZwowhaCbiCggjiLnvM8knup6umnSAUnfRLeg77dQzsFkRGZubDyNEv0+fORg0FINqrYn/ZgeI94X0RvdqA0bg5NUO4YL80+Tbw5E8P76tM9dFd28gQ2S/TUGV6kVvWhapNfrQVOMrgx6pOD6FL0wPgQApC7QcJ+FhqzuhebtvHc1BvdvtF4j0BrPPY0qDH/fClB53BydgKM/jfYkXWZnZ2eDV13Xjz++1vzyL/8y6/Wav/AX/gIvvfQSt2/f5ju+4zviNmVZ8pf/8l/mt3/7twH43d/9Xdq2HWzz9NNP88EPfjBu86fRLgHRm2znNENvENA8asX9RkDRG95mtN1s0iCk5eR0RiE7pLCcNROksBzXUzqteHg2w3aCfNoiC42eWCZFR6k6tJZkwlB1GW2nqLuM02qKkgZjBNYKqtpZ8Xqb02xyNtuC7bqgqTJ0o6CVyK2EzJXmaJvMJYosvZhHC8qbG1ZnE0rVsX99jcgN9s4ESkN3oNELQ34q6RYWtYXmrGT+iqCbCeeqqt2Fz28b2pkk28LidUt9KNlec4ndtlcVq6czls9IrIR81bG9quhm7jS213PyjYu2avZdDqNgXEOVbV06ZqGdEr+HZJKON4PeBZawB6GlehiEF7N6YxCMa2SRdgg54zFIDGB6/xNmYKxRATx48OedaG3SsRRdW+GVfB+yCI/Hn00YnZ2C5nA+XW/Mu6lzb4ZmMnd+EQglYDJcWwpKilO3PcYL5UtnlFXIBm57YNFNnDtpc9PpVkK/BoaonTs2RDUOQJjcC65Fcsyk79yJMWT9RsAjAECTu+Nb4X+f9/d6vMBKwV6qwQrvY8h96OdwH1PjHMB3CqT9OEizdksPzGXbg5wIYkTvRowJNe2O8UR/bvmyfy6kL4OjfMBBTKqoe+AVx5p/H2r9xeg1kbBugQlKwNAAUCWas9gPcP5cL2oXzbNix2t8jNH2f0r46G215557joODg/j6+Mc/fuG2n/zkJ1ksFpRlyd//+3+fX/mVX+Hrvu7ruH37NgA3b94cbH/z5s343e3btymKgqOjowu3+dNol2H3b7ENJvow4Txm+7fTdkWknWOaBg+poHxqhTGCr7t5h8/cv85GF2TC0FnHFp3VE043E6S0TI8qirzj7P4+prBRa/T+a/fIpGaSdbSdm+WW2xJrBU2dUZQdXSepN1NMrRC1pJsqqKSbtGYdlBotLUJZl6W6keiHBex1oAXWwLRsqe9POammSGmQxzmiExSv5TRXNChLe+ByEdXX3Cy4fI/mxv/pXFd6Ysk2jrGxGRy81KEqw+Jlw90/N3EZq73hKZbOJbJ8tqDZJxruZtF3YFeKgcDZBBeYL6yZ9nfMgCuAENacTNyDBHQJs+F+zKB0QjSywVg1wxV76o6IK2HZ7zu6xsL/g0HkPtO5jyoLDEzqVkjHVeIKC0xD2I+ejLb124XyC8ElEtkw//t4nUkph1i8M2znDWdgjaKrzGtd4ml0YMvAWtiBWzOEjsvOYgoRa1+1e0QXVjD4wUgHnVUKFoTpI6+iK0/0xjpqoxIgMhCmk/ST8CkRZA8EBEQtD9bLkALzoqHLkmhEGLBXxoKQbhuTMpOJOH3g5gvHoz+fsSs3XHP834M5AnOTAqELmJE0zUBwGQ/0cmFsdj2bFEPocWMouO3CQkFoJ/YO5zdIOjpqofDtgDVKAOobbeH+nLtekv9TwJWwZHbX9l+hZqyISXHfzj4AXn75Zfb3+9VJWZYX/YQPfOAD/Pf//t85OTnhP/yH/8Df+Tt/h9/8zd+M34tRORtr7bnPxu2NbPOVbJcM0ZNqYvT3UdvsaKk7bdfYvtBdBhesUBz4EMJyUk949vDEhcjjHp5MGNZ1gbWCvXlFtS44vbMHgJkalDTs5zUz1bikjUWNEJaDyZbD+ZY80wgBXScxncR2sp9BlIF5h80MKjeowiAKA8qiCo06y5i9opDKzdzCCJpWoZaKvaKmaV1Ifn7mDFl5X5GdZD5MV5CfuWPNX1ZgfTSKsuiJ5fQ9ElW5EHo9lTSHeTSyLsdMn2ixPhQxRNiF09s+D4yxTE5M1Lcon1AuhobL3kUSEieOXUVR/8OOlWu4darfPhjKqMVIXV0J6yBrH8mTCFjjOBD9ajlM5tH4pQZdJf/vGl87NCnp/7tcQu5kGIqlR4Y3ZaMCyIjgKhi5ZLER+k2GaCYv6A3Hmt51b4Mmp5sl+9DeTTVazUeXXepeDECiHfYTglg6hKQfw7mlQvH4efo3AZfCEHNWhVB42TgtVr5xryDGDy3f2D6XTmcH7tbA7FjPqI3nhxSoXRhEZJMxjd+nd2UG0Ji6ZGNS0HQX/hhpTqPA2IX0EjGxKb5Irx8H2abfPkbOWVyOKw/0s60TXbuLGp1/0u87Iw/fAE3zWPY+uY8XztHigvfvQNO+2v3bfQExaiy8HgWIiqLgve99L9/8zd/Mxz/+cb7hG76Bf/fv/h23bt0COMf03L17N7JGt27domkajo+PL9zmT6NdAqIn1UYrsZ2ribe668ft65xRsnT7hum8pu0Uq7rkeDuLxVwLqTlpJlydr3nuyjHaSFShEcpS3leI3DDLnSr5Uw9uMctaTivnXjssKxZFzbbKyYoO00myQjM73CInHUw1MoCg3KArRbfJYKso5y5joDA+m/CdCdYIrLR0WmFu1rzyu89QVzn5qyX5yrE5gXLPVpJu7mYvsXY1zVbPCB58UKLWEpO72mRZbVk/lbF8JmP5rGLy0EWPba87A9POBNP7NtYTiyHeQqAaGw1CtrUcfKF2AMJH49gEBKVRTsHAhnDjtExAdJslrASCKKKGHqAE0fE5MW8yaQ+0H6mbJohkUzFvasQ9EIrjRfqfp7NACp4CWKA3VKRAJQU7ogdxaag/9MxccIuMFw/RiPo+CQdMI6qiSzKcjHSGVZdO/Ly94WttNb1RlK2NLkg9cexQmvtpAAqtB7V5Im6W/XW3c+fa03lynQkYwvdjcPOlup/YtSFKKhUZh7YDdIamfdkJk4sI4AYRfqJ/HzVEqeh4zJCEcesBh2oc+xKvN/wmEcDHe2X7/UbXqG+qYuDGC1FlQWg+EEF74B7Kb6RAxuQMxmS2tXST/pi7BOTh/UA3tAPopALweD2jPorurl0gaNciIG1jVu7/j5q1lrquefHFF7l16xa//uu/Hr9rmobf/M3f5Fu/9VsB+KZv+ibyPB9s8/rrr/OHf/iHcZs/jXbpMntS7VEPwOO+Gz+4/oF8S7oj/6PZzRXzskEIKLKOg6KKyRONpyS1deLnSdZxssmhkugCZgdbDsuKTGpePHzISTNh0+ROLK3dkJlOWp49PCEThs/eu87RfMvBrGJVlWyrnO6kRNQSu9eRnWSoraBSE2SpOXjJ5X+58ik4+UCGfqpGtwqZuWgx0yiYWJZf35HfyTGZRdUCm1mmrzuj0O25SVxP3CqzaAXZykWVdVNJs+86MV8RQYlVsL4pnXFsBNkWmgwyH7rf7MPsLujS0s0EWSVgP6NYWrqpiKt76yl9nYiKA+0f3CnQG/fIjiR1n6IbzYOB+F2IlvKutwByZOOifQLLAO53scBkMIZpRmE5OkYYb6YHcWFbIXoDCYmBGhmH1HUWDYXyK3rVG0zpwWEAVamYOmXDxsxU6oJL3X/C9CyDFb3LKkSJDdw9wo2JzS1BtvHaoak/H99noSYduO9VEukbAVoCSoOWJWRuHjBaI3dJvC6SPk2AS2Rl/N8sYftSBqmbgdBiWKIjuEsDwFFujAfXb0jeKbQ/nAePAyySgJp4/z2gDzW/grYtzZUV2Ub68TPQxSWM5SBjeohuzNziJiRJxe+jWDlNnvBjJUSIFkt3kfW+oJuHAZKMF9+fofJ8dLtqHulSG/RD2OeOZoFHeW9ShjDd34Vs3FeoPUmX2Rtt/+yf/TP+6l/9qzz33HMsl0t++Zd/mf/8n/8zv/qrv4oQgo9+9KN87GMf433vex/ve9/7+NjHPsZsNuP7vu/7ADg4OOAHfuAH+KEf+iGuXr3KlStX+OEf/mE+9KEP8ZGPfORtXcvbaZeA6CvRHvUgpgBo9GC/GVB1TlMUPvStrgoOZhVXJhsaX1ajaRSZNLx2esC0aFlVBW2bYbREnmWOqbnSMc80Z02JyQWdkdQ6Y7MtmE5atm3OzdmK/Ws1L58dcnO+pCxajBXUXcZ6VZIVmvLalvruDHmaYzOLnkK2aNGbnPqKC3m3UjC9A8uDDLtRHHxWcPwtDfJBTvb8Gv5kAR9YwUtzmusdk9czqmuWyQNBtpSUx27lbjO3v24KZ+9SsZjq7J5l9Yxg/0teYNs4UasuobpCnOj1BKb3feZe4XILWQGLl9boRc7q6UmMijJFb1jDPQtiVFUTBdrpPUuFrtazIMH9FtgT2TojHsTAkU3yBjQFTDE3UbJSF4F9Ifk8nIIYGjsUsUxIAF7RTRV+dMFKN4CjNGtwYMkCiIiXK3t9UMx3k+4rAEV/fqkeKrouA1BJVujhdyEqKpx31HxloA/cduF+hOclGDHZQlsQ80aF8zAKZ7ib5LHyFz6oS5dcwyCFQXK/w3WkJSZiH3uRNcKN4Wzrwv1DTp7UqJrMe8TS9Cwps6F7oA3n+3lwT1MgR9+nWB9FFmrrCQbj6xwQgaE2KNlfcOdZ4f7GJKPhfFNXXgb1vt8unEoWwJRAGOueD6/dC7/rZpD53EUxkjCAwCTkP70v55p9xDbh/B4xl4cxtXP/j2KRnnAzSMzbdPa82d/fuXOH7//+7+f111/n4OCAD3/4w/zqr/4q3/7t3w7Aj/zIj7DdbvnBH/xBjo+P+ZZv+RZ+7dd+jb29vbiPn/7pnybLMr7ne76H7XbLt33bt/ELv/ALKKUuOuxXvF0CoifdRtTrbn3PG/yMHaDncYf326tMs21z1sr5ZDKfS2g/r5ldvc9LJ1cAmE2dZqe5ZeH2FFtqjqZb9os6FnJd1SVZZtBGcG+14Kn5GV88ucrJ6ZxVVbCYNMzyhpP1lGLS0dQZ5rRwTEED81clp/+XhkIZtLB9FIuf6CgNdt4h/2hC/mrB4Wcsp5sF+1+wVMcLqv/rmtn/mLuVpR+x2dqtigMrEhiAoEfJtm6SnNwHrBNcl0vD6paMie+yNZg9t111FfKzfkK3OdTXJkxfXWKyiTMWdX9/QwHXYA906Q1/YJGCZsQbveBui66z1AVEb5SjriVhPCJjgQcYie4p/U1kffDnGQAE/XHjb7yRjsJR+t/1Oiq/H5JhnACS+H6sX5GgPejTQVROv9/BmL6AHQVibbbAyAXWK/ZFM/qdP1ZMIOiPJxvXF1ErI3qwZlUSjp7cjwGb5cGmYHjPwr6ii8/3WQAD4f80Gi0tpaLqxKgal1iy2evduLEorh29wr32+7G4femE9YpuK9HrccJ5DRi5BNjHiLRxS8BQjAxTCZhO+kIEdtCP2QCGZNdnj++mRAAb7q9RnqUL99E/k5MHIia6jIyU7KPWxu7CN6IZitd0Udu1aB39NgVBg8CC5O/bJG2+qtvP//zPP/J7IQQ/9mM/xo/92I9duM1kMuFnf/Zn+dmf/dknfHZvvV0CorfYHuXOelJt5wN10YSVND03KGB/UtEaxSxvqHTOfl5zUGzRVjAvFhxNO/YLx/QIYanMFARO2KwVE9VRkVFmHcVcc/vOAfODivvVnOPjOYu9iqbNuHv3gJP5FN1JVzdtb8vpWYEtDfJYOW1B5ixxsdewfTrDKkl54lmLZYa4WjtRpoV24SK8li+4qLHupKSwOHfaTLN6r0XUkvmXFfkKNk9BdcOw+KIc1ALTpWB2R7N6RmElNFaip7D/BUtzIGhnfUkDPXHZrYtlH0VWXc1oDg/7hIXeCISsvYFtidmdw+0IpQ28IQm1o4ztQYsNGiT/oxBpFu67HE3uqatnZ32ywCSNQBHQu7E8w5HmPgqGMK50d6x4B2AoAUQpYxMARtCFqKbXh6QuPGuH+4psQQCCKVNkGLILY+2ISN5DrwXy1xCTQNKft9QOIEAPNlO21aokmindbsSQjHUsY91X6j5JAW36/O4SxRdn/TY6AdjRVZmwT/HaPUAPof3RBZoY9gGjPAK9O108Y6OegqgwZnwainzJwA0cxyf9uO38QgUPBFM3XNrHodSLUQ7IdtMk5D6MTT08l0cuPB/F4jyq7QJFF+0j7Zvxeb0DTVuBfpvo6+3+/n+WdimqfsLtLT14F70YvfdtEOWQrmrDZ/MOpdwsu/BV58+aEoNg3RVU2pXhuLt0dcxOl1OUtJTHAjYZnZXuZSQSyyRzCUj2jzZUVc4Xbl9nsee49eeuHCezv0Aqy2o9YXJbIbeKbmE5ezfY04K2ypgULfJ6xfb5jvXTjuU5evcx9kHpXB2Fq1Q+vesm3dkdUEsHaPKlYPpyxt6f5Agj2DxrOPk6TXO9QxjHCqVVrYszg6pN1PuE1e3+SxXZ2k3UIQNv0DmYTJAvLSaDZk+wfEZGoxxWuANXj+2BSuo6st5FJL3IOgCSkMtF+qi11H3QherkiassliLwBsjuut8jI5nObbtCr+MxRgZzAMB2jMM0emzAItGDoTRqLeaTCVF44XjJqj4eL1xzACk6eaVG2zIogxL6PAUpARxEF5cHYzvzIaVGz1+rSZm8oMNKGKSgx4o/9ZqhFIANgMholh1EoaXMD04nFt6H6Kx4jsm4SPVNqSg55goi+U1yPsC5hIVpP6djK16/33bAJvn/1bYHu7EffQvsqFEO6JWn/TMYAapniyOTllyT9dnEA5M8doUNiiaH9gSASPpcDe6dGPwZzr3h1MPc/A7ii6Aheruvy3YJiJ5suwAMRePzZtv4Nxf87x5Ad3A9dX+FsChhWDUuZ9BEdRgr+MzxdZecsZpwONty72RBUXTUTUa2gvKuYts6BCCFpTGKW7MlTy3O2Js4qiMrOs6OZ0hp2S9qblw/oz519E59UpLlGvHhM6y0mCsN+pmKyT1JPnW5jA73N5Ab5AeWtO/dsqkK7Fyzfs6iD3Sk0vOlK+BanIqYRTjqaAQuT9GxYv75DLPfDYyX0NDsSfTECcUnDyzVVXzovXbRZIm+IbqsrO0NY+ENFF7H4ZmksMJFEN1/QYMRDLSq/DmOyiRAD24is5EYGncyDN1bqZbD3/cYKTNeue9yG4xYgii+tv2xdo6xMbsQDN/omJGdCvuJriuLLm281hg6HcCe1/LEaKZw74y799mavlRJIlROI5nCfQj5j+JleBYuluTw4GmQBHFk9FM3VwRMOvnObxsBjQcWsukFxLtacB2dq0+2Y3u13XEvUhA02HHfZxfpfFJx/BjgRkZr9Jtz4yH9XjIAigPGSyf9pfphGBYkIVouBCPoaQ/40ojNIB5PI/W6+fBZC9cdXORwQf9f9N0Fi8wUrO56T7LdCMue6+N3CmNY+/Yr3dt3Wgn+Vdoue+Er2HbqDZ7EPh/VMovMXRHWp+dnHJZbFkVNoTSZMGzrnIf1jHnRcPdkj6LoaOqcts5o950hb0M0mhXcWe5xe7PHqi3YtjmmlRSZC60/O5vy6vKA67MV08OKbpWTzTvqs5KuU4iDlmLaIjNDfdWABSkthXJh+l2TUUw66k2O1QLZCCi1z11iaQ5g+0zH5L6b/LqpZfuUM7D7n5d9RFENYpWhyz6sOmQrrg8kuoTNTVfPShegJxn5xsYVqvJRPq5MgKDedyVA2rkHSkHEO+lXrFFYTaL5ML0uIrAT0usiAqORshJRaxQiqXSvU4psAAkw2gW4B1RFAr5TcBQMTeJmSUF6nOBTZioxdruYp3PsUnI+JrcDwBFi96PgPGUrdpwblig8T90851qyryjqTvVNAQQlDFLaPwNDR/859PsZh2Jb+vuepeDFjvoh6dvgxoqlWN7InJCCkDHISYFfcr9SMDx2Z4bjnnObcd74D8bOqD8CoE5dgKkOagyyUybIKGLUGtCzgQljFO5hSH1hZQ+S4z6TZyMCyDEIeTtz7a77s2usXPQbeMfA0GV7su0SED3Jlq4e0pXgju0eRe0+inIdUPy7tp12YKHIO15eHbLIm5h7qFAdH7h+j8/fvcYkazna2zAtHcduKkVzaN2rU7Ra0VnJcwcnaCvZL2quz1eUs5ZJ3pKXHVYLzrYln/rCM7zn2n2eff4BedFR7tfoViKVRXcKXSvsXofuFFWV89rLV9gsJxwerJHSMP30BGGgfaqBbcbqOVeDTFgob2dklWX+KqhGYHLD9pZLmJithBNGSzAzTbPvJtFsQyzwGjMD255dWj3nRCL5xtUzK1YWVbuyH8XKMDmxTO/B4hVLeerZig2RUTIl0SXWzRLNie6jdPQ0MVYeBIUcRdADpPB+vNKPhilxY6QMwcCdITjHogxWrfYC4x82TBmLACQuAAt2tG1sQfuRA0bQLixOLyKGxm5kcAOAHLeQGDC6gxJDHGqahfOKBj+wCopBkdxBMsig+doBsFLXU9A0hXMPpTYGoNMmLqqxIU7Yv+gyVK4MSLvP0P1zASgbAJXkusN9vyhsPE1PMNCYiaTfAngM+0/csen9GoPSQaoE0X8fQfvomoIrsTw1FEv/Vahfp3sWKGba9s9C0PGF443LpISmp4+YL0f3ZCdLdBGwGQHRtG/O3esxYB0zeV/hphFP5HXZLgHRk2/jhyx9kODcAzimah+5Xy54qH0zpSuPMV+4hIxNl7HpcrZdTiE7fufV5/jcg2tMJw33VguksHRaYjqByI1LpX+zRQioda+3n+cNry4PuDVd8q6rD1mUNTcPlhwcbVhMGq7fPOVTf/Ic2kjm05qDWUVWavRZzmTaUC4aqBTi5Qm6ysj3GtQ9F/22eW1BcQLTVzLUpCN/qKKh6abOzbJ8XlBdg+IYjv5QYSYGqxxIaQ58VIsWtAeWfGNRDWSVpTmE7TUR+1/WTpvULATNnqCbwuz1LdN7HYvXNcWpZv5qTXUomN7X6EKQbS3T+wZhnQ5C1b7Ug0kmcZ3UzSIxQqlxtS4jsdT9/2HCjyvrZMU8GB/BfRaARDrhjsZFXL1LH12UGujARgUGa8QqDM49NcRytyGIDFnQCQXAUVpkK/ooogystEPNTNhPwjKlqQTahWPo4rknhjgtepsa/egWK3r3Zbr4CP0YxeOpXikBqlGflAII/94qdx/DOIiRbgmY7coe3NZHCThT/fnXh+4VE2W+gWZFnzbi3Mydgm/TM5MD8DoCa/EepuAyAZ7nAAB9X6dsYjoehPHpAzzgCWH39YGMDGF0Odu+D3uGlsikxiACmUTkpYDYDs/7wjly1Ifn2g6An87LdrTfc31qh78b7PcdaMY+CR3RO3OuX+3tqxoQdV3HP//n/5wXX3yR6XTKu9/9bv7Vv/pXGNNbBGstP/ZjP8bTTz/NdDrlr/yVv8KnPvWpwX7quuYf/IN/wLVr15jP5/yNv/E3eOWVV97WuT0pSnRn+OZ4/+MHPf0u/b1yq/JOS27uL9krKyqd8dzihNc2+xgt0UawWru0r+u6oNMKu87BCOwzFVeuLanajNPNhG2b8/LpIRLL2bbk924/S+cr3udSsyjruJ/soOb2nQMefOmIu3cOkMJCJ7AWrBHIgwb54ho2ijzXZGvB/VcPmX9ZcfINHdtbGr3JXSkG4QxitnX5hSYP3KRZX4X6CohCs37GGdrJPWeApi9nmMJEar0+FIhEYCo0LG6bqB0CB7pO3zunOG5o55LJnQ2mcCLq6Z2KG//5da787gPytWOkjAdCxWk/UcvWaV3AgYxYkDIYCtEfPzWyouszcAeXmUxcZ/GvoXfPJQYrjIM4JsaumJSh8DopYUYLXx/GHABCdAmlxoD+nM8xQx4ABXCipxarLLIWEQDFXDU7jM652lkjQfIuBioY8JQVSs8lpEdIDfdYJ5SKkiMYSkBqPHZgl9RwH0H3Mgg7F30/ZsHtKbzQPxj6cOzE6Df7DhjtarvyGgVGapfkIwUM8f6Nzn1nX9CfE6Jn2QbsUnKNcVyOoxU9aC2Ww34JDFB0EZv+s27mnuPQRxG0Gwa5q4LbMfbfRQBo14Jx9NkY7KRA5yJmNAXV8e8j9r/zXC7bV337qgZE//pf/2v+9//9f+fnfu7n+OM//mN+4id+gn/zb/7NIG/BT/zET/BTP/VT/NzP/Rz/7b/9N27dusW3f/u3s1wu4zYf/ehH+ZVf+RV++Zd/md/6rd9itVrx1//6X0frHVz949pFoGXUdjE54892/X5g8B7T0t93CwNzzd7Blr1pzbopOdlOWeQNnVFcm2zI846uU0wmLfOyoe0U1bYAC9dvnnLjypIy6+i0pK5zap0xK1rubRY8c3jKwWzLpi0wVtAaxaYpqNqMus6xRlLMW6Y314izjOruDASsH85oliWmlbRVRrZUFHmH+Pol+bECAbPra9TVGpRxFcEXNhFGEydkoaE+tGR3CsoHPry7dkAiX4LaSNqpK79hMjcxa0+9Tx9YdC7YXhPsvdbF/e2/tGX97JTyVHP2vj3ufbgk30B29wxzMMMWGd3MPSbZxrMDjZ/0jTt+vibWFrMiMRipENg4xiYKmr1hCJFx0fWSuNJMlqymcf0QV+8JoxRbsmq2MhmqlpgbJnwvE/ARWZaUUaH/O4huE/32qTvH5L31FsbtS3ZOtyUbQbYRvZA7GbvnQvzHzEQ41pi5Sgx9MODhnnZTIkAasxiBhYp/E31W1OEkmhaTDRmeVBi+M99YAHb+eMF1G914cqhpivcvnYkvmlfCOQY3VtJ3gZEKbrmQ1TzW6rPn+1zY5N4GQDhijAbHTsbaICItkMlp1Jfv8xTA6XwI8sI9CIxaOkeGYsoBoA2i/EbjMv0unu4uYMPo/0fN5eLi1wA4XTRXv4Ng6O0KqsPrsn2VA6L/8l/+C3/zb/5N/tpf+2u88MIL/K2/9bf4ju/4Dn7nd34HAGstP/MzP8OP/uiP8t3f/d188IMf5BOf+ASbzYZf+qVfAuD09JSf//mf5yd/8if5yEc+wjd+4zfyi7/4i3zyk5/kN37jN972Ob4RUHTRNhcBn8EK4zH7iL/JHTuUKUPdKdZ1waoqmaiWWdZwdzvnPVcfMClb9iY1Z9sJxgrEl6ZgoWpdIVglDdW2QNcZ67qgNZJJ7jJRBxfbqinZNjltp7BWcLC3RbcSJQ1CWOSNCrFoYa4RWpAvGopZy2Te0B1otlVBU2foqWX9YkemDFJabKNcIccz4VwSXqujJ7B6l6G50TlB9ecE63cZFq+4yXJ7g2hsXeZb11nNgZtwZ3csRgm6qXfjdJbizLFJonGguLyzBQHT+5bDzzasv/Y67cEEuaqxAibHBqF9wkfh3Rb4yLNQ7sD0brPBqpo+2gkPgjA9O4RngdwO/T33+wrG+FxId7pSDe6S4J4KYIH+u4GGJxlPwiaMgOAc+InAYuQ6i6yRDNXmBbJ1zFAAFSa30XhHw+WN4C7t0JjNiaHlI+MWDZE/l9TAD9xCqQHX/RhJ3XYDl2ECCFKAEe7jGMzJbtinkIAw3HW2CxchNb4/adZxcPXYxi6tRz3zIcLKjMCIbF0pD6GJua1Sfc65iEUSIEi/r/Q8zrnbxu6q8L84//tYxiYwbaLXVMU+8+7NoL+zkhiRF/IwDfbvx178/S4wc67DRq+LPt+xIOgPNASCF7YRcPtKN4N4Iq/L9lUOiP7SX/pL/Kf/9J/4zGc+A8Af/MEf8Fu/9Vt853d+JwAvvfQSt2/f5ju+4zvib8qy5C//5b/Mb//2bwPwu7/7u7RtO9jm6aef5oMf/GDcZler65qzs7PBa9AuWF2MVyYXsUCP+h6GE9TObcaTmLAgLevKVbDvtOT91++xl9VsusLXJjO858oDWiNZn7nCqt2VDnXU0GlJqTrmecN01qDKjjzTKH8QKSytVkyLFiUNBkHdZKzXJUoYZObA0OZsimkdPZFPW8S0o10VNMuSal2gDhomZUs5aTFTTXG1YrMtMMZdZKznhXNNQS+onH8hI1sLl1X6RFIfQnMEemY84yIoTw1Sw97LXni9gcmJQU9d5JpsYXs9Q7Wu4r2eZZQnHd1BQba1lKcahGD20gmq1lDXHP3mlzj4/bux31XjAIwI7727K3w/WPmHj6Wrg5XWwgrhxwNmwhuXlM2xfqUdV/L0xjpljAJQiG6ToE8Zr2r97wVDV0bKuqQuqZQNCtcycKnQX6/sRLw+0QkPpiyx+nm41hFrMzjGjpV9ynCkIGjcgsG6yKU0Nv7jZyu6c0KRVw94oqbFG/KgmUrBobv+sGOXaTlb+35P+nngQvPnuitL9KOY4nAPBmkE6MdCqL3mhO3eNZWAzTQ6jfT9CJQBEcgPTy45HkPAM/49gr4+GsRM4qko3fo+RfZRm/Hee1CXMmvQL0qAnuUcjaFHub/OgaMd1zf+7EImif5+PnIfl+2run1VA6J//I//Md/7vd/L13zN15DnOd/4jd/IRz/6Ub73e78XgNu3bwNw8+bNwe9u3rwZv7t9+zZFUXB0dHThNrvaxz/+cQ4ODuLrueeeO7/RI4DQuI3ZosdtP/7do5qeGkThKszvTyuuL1Zc31+5OmQmc/mEtOL22iVizKVBFZp2nZOdKObziuv7K3Jf4TLPNPNZjcQxRkoYl7toOyH3lr9pM4S0qMyw3DpwlSmDzF1IvtVuaIW/8izDNIrrR86Vaa1gfnXDpGix/iJF7WgNk/nK9CvAOO3Q4ksSjJtAq+tOON3s+yy2nUA2zvh0pSvamq80+crSTaGbSmZ3DFZAvrbkK4PoLJNjQ/HaKc2+wmQSrEUXkuK4Qu9PyR6uQQjIHCLbe6V1oKpLcuusLMWZJfeRaioYIty5h1D6qP/w1xfZkeBaC1oem/yf3v8UOI0ZifDXG+7IcKSCXZGAnPBbyaA+1zm2Q57/7NzqOQC4UFrjnOvIIZnBODb9tQZDlgKVsXvunKbIjl4wYD5iRFL4Wbpf2xvnVGAdWQ6GfZ7qjVJWKpZhuchwesDTzXcAAfp+PdfHyTkMmDqGf9Pvu+n544frTH+n0+0SDRXJvUgZwdhs8n+yX5P19z1NyBlPw7Ocob/Dd+2ePdfvIrmucH6RhfTnFRm5BPQPrnl0/DcMSMZ9/KjfhXuVunZHx3qjc/uTaiFT9dt9XbavckD07//9v+cXf/EX+aVf+iV+7/d+j0984hP823/7b/nEJz4x2E6MShJba899Nm6P2+af/tN/yunpaXy9/PLLyQHZ/T797HHj6zHfn5sQ030mqy9hgSuNc1UpQ91lnFRTtJFsupxK55w0E5ZtyYPlnDvHewBcP1yRz1vaI432OYdCO5xsuTpfU+YdUljHOBnJ0wenFEpjrUApw7RsOVxsmJQtk1mDlJZy0rK3qFCFpig61KRDlh1cr5i86jJkZ8qwN624stgAoBuFNQIKE2sWNUc2Ts5BmIrwle3PBOVDZ5S6uSHbuHOf3YGzdws3YWYiRrgYBVa5MP7Zfc30bk1x3KBqA0IwedDSTSX5UrO+JdGznO2tCWZesv3ATezZCpRk+oWHHP3xug/l19DOBcWZY5vChJ3mNgL3V/rEfSF7c0g4CL2BCcxSFKwmq3ldMHTf+NslvcYoFZ/2g2j4Xnq30UDP4v8OEi4mq+0xExRX4v59YDZkwnC4DMvC/W/EgB0YtJEhDW61cWqJ8H3oo3A9Yx3Qrv1H11foo5SZ8mLq+F1gedr++3OsiTfGshmGgg8WOjvck9EdmaYASBibmIQwMFLj/krniwCa/P6EdouDbkLv+gz7Hu8nADwYAnE52rcfq/jxnGbGtkn/uZxhyWcwAAtjFjHtg3Df0mclpgxQCWj212iy4fVEIJYypOO5Mu3/xwGV0XdvGtgkz80bsgFPqF1qiJ5c+6ruhX/0j/4R/+Sf/BP+9t/+23zoQx/i+7//+/mH//Af8vGPfxyAW7duAZxjeu7evRtZo1u3btE0DcfHxxdus6uVZcn+/v7gFdujJqsn+RBcBLaSZgVM5zXTRY21sNkWVE1O3WWc1RMmquXaZM3d0z2u7q2ZTRsenM25fzrHWshOFFpLTjdT7q0XnNUTpnnLlcmWed5wWLrMZ1WXk0mDxDLLG/YnFYeTLa23ClJatJbUVc6irMmKDmMEWa7JCs1ir6J9zxZtJNO8RVtJLrXTLRUaUyvnXls47YnJDdWV3ohtr/dMS/kQtjeh3TPsvSSpvbYoX3uX2E3QuXOfOWG2QLaWvS815GctotHIbYtVgu76HtlZhdSW8ssPOfpMw9m7SrKNYfXCgvysxbz3Oey9B7Ct0JOMbiL6EHEB81e3ZJV10Wn3LWpDn30ZYpK5sHJPS4ykoeZxXKUCaNEbrsE2Y3YkgANvvFJ3TNgmDd1P9S+DDMojYx3D6QO75LcN+q4x42kKSzt30WZW2R74pdqLsL8AhjwQGEREjVbs51x33gUXnwNvFE0i3E33HfuJfj8mSzQuwaCPdE0xCs27RxFDBio938DUhNp3aQj/+PNovBO2o50NjfAuEDlgYHS/Hyt8MlJfk09Pkv5Lfpu6DSNzlvRrCtIG+riEUYuRZp5dCkEBMTt1AEqtE0yPAWlxKmIJnACMzAh4yxYXJZo8Z1EgbhiA1ZShCtd54WJy1IcXtQu3CYAyEeMPjhn6/M2Cqcv2VdG+qgHRZrNByuEpKqVi2P2LL77IrVu3+PVf//X4fdM0/OZv/ibf+q3fCsA3fdM3kef5YJvXX3+dP/zDP4zbvKkmPL87FiM8ZkUw1PtwHlTtaonRu7BJizGSTvtw9swwKVr2SwdYpDA0OuPa/opb8yVXZhvabYZ5fYZ9ZQZAWbRoI9Ba8nA1I/OWY6I6MmmY5w1KGjojeXV5QKsV87xh3RS0nZuJyrxjvS6RyqCNJFOGPNPU6wKtJWXWcePqksy75QIoMkZSli0oi9XSFXO80XLlkwpduqiu6T0vQDZeKK2hfADZxhV/FbVk9SxkW0Pm3WyqsXRTQXmCj+YydHNFdbWgOyionp7TTQRYy+b5PbKNxk5yTCnZ+3LD+lbG9E4FUtBcncAzN0EK1LaNAlDZOIN68v4ZsnORbdO7HZMTOwijT9kWYXrtg6AHOzGLdRIBFY1BmPzD993QILhx0K/2UyN+TmuWjivbr9iBQaTRWIOEB0NBgB2rzydsgashJpCdQGgBRpwbv49kL2KnDA3zgGVIAaHfPgVj0RAl+xi7bHaxOGl02YDxCS4dDz5ipOCoX00ilO58skCT9yAoJHWMqQZGLFhgDh+5UB8xw1FHpPr7Di57c4xa9NeVrXsXtBVO7J3uNzB9Vob76D5XKQOZuNjScRNcYzaAloSxkZ55M0mB5HhMDxZ1MbpM1QvCQzBBYCPTexhE2GNX4sB9Jobfx2NcBFjsBZ+nfZUuWMK+UmaI4Xl8pZvhCdQye6dO9qu8fVVXu/+u7/oufvzHf5znn3+er//6r+f3f//3+amf+in+7t/9uwAIIfjoRz/Kxz72Md73vvfxvve9j4997GPMZjO+7/u+D4CDgwN+4Ad+gB/6oR/i6tWrXLlyhR/+4R/mQx/6EB/5yEfe2omlhkhc/ATt/CqslsJ+LmrhdxcZjfC1gP1ZRaMV603J19y6w2fuXcda4cLqu5ymU9yYrziupqybAnmSY2Yadaqwz1SurIcy5NJQNzMao8ikIZOGqssolGZOQ6MVV2drpLBILLcWS+6s95DCUmQdZl+w3pSsqpJ52VB3ir2DLcuTGQaXLTuXmqrLY8HYIu/QRrKVFnuWY0oLWmB8iHNXgigcuFg/DUhLuxAUS5epWk+hfCjpZhZTCA6+pDl9QZEvO5bPTiiWluzEYjJBfSiZv95RXck91W9RZ1vq984QRpGXOfmywypBvrasn50we91l3muvzsiB9bMz2plb/crOJQ+sDwXtwkfIrTvKU4kuFd3UGybZT5qBGUpdBibvwVWY9KWfeE1yvyNTlLI/KbvkDVUKhFLGIx2LA/1FOJ9Un5Eex/9N8xnZ8fgU/fXoiXVMlQSd4TReoQyD7sFfyl7ZRxmS9LxDvyXHF0DIezQO607fh4i6gevML06CcQ7bxN+F+9MRI6PUpj9fkd5L6wv0Fv1+Ux2XTPRa8fi274vgNtsV+RYj6QJbktwb648nWzccVItP1kd0X3XzvjacFT5gIZnHwj2P7iv/nWqIFegH6zgDtgSrwXb9/U9ZktR9h+2BWzyuJkaY5SuXjym9B7LpDyhb368QXWgIYjRqeB4G99Ym42A8pi5g3x4HC8I4GoPr8bMSvnsnmuXtAxp7CYiAr3JA9LM/+7P8i3/xL/jBH/xB7t69y9NPP83f+3t/j3/5L/9l3OZHfuRH2G63/OAP/iDHx8d8y7d8C7/2a7/G3t5e3Oanf/qnybKM7/me72G73fJt3/Zt/MIv/AJKqV2HfXw7N2HvfrrGD0Q6saUTdtjFzgcoWcmMDxMePum/mE1r/ujVpyjKlqrJeOrgjE1bUGSa02bC2XbCajVh+q4l1ef2sQrKSUuRaZZVSV4YyqIjE4bjasrV6YZCaaSwZMLQ4PrLWEFjFLOsZa+saI1yWaoLBx6qOkcpw2ZbcrjYoK6umBcNlS8a22mJzC1Vl6OEpTUCmRn0XkeXKVCW6pqb3Ooji6oF+5/3+VUyqG5YhBFu5ZnB4Wctx1/rJk3VWB8GbpmcGKZ3WvTEWd69lzvauUI1Fqxlcr9h+9wBk2NNN5WYMgNj0VNFedKRbXzBWByzdPaukvpIOAMZMk5DLDw7XVmsFBQnHdurymXg9YbApkbW9MbDeLYlNU4qAU1RVGr7fcV7b51BwfifeiMkPAgjJM6z/blGsCP7SKqUARmvqKM7ReISfxrRGx8/HrN1n/cmGGxTWgeEWtGDhtQAJ8YnZRpSfdJg/A+scQ+uwvv4fIQHKTVQEJNmRtaNBKQGvZZIXDfhOfURVkF8vqvMCMIbZQPdYhgNNS5JMb721JAHt2q43giCkksa90F6nelYEtoDXD8Gso3/bQSQ9IDagykRsm57ViewQbHrUxDn+ywmKA2/FX4RY0I6BvcKUW6q7oFSdJMat59sC/Wkv0em6I8TTyIB7dihG/LcPQ/9lIydc30ozgOcnS0FqOlvUrCePj/vIL54EtXqL6vduyastY/iKS6bb2dnZxwcHPDiv/pxZBkKVT2ixSfM/Ump/nRlfGHb8YDuChdur3Y89dxDllXJB2/c5vdeeZai6Hj64JTXTg8wRtB1iqLoeP7omFdODtlsC3h5Sr4SiG8449bBGQCn1ZRZ0bBX1GTCMUTgAFfVZRgEDzZzJnnLXl6TScOmy+mMpDUuJ1GrFSfrKbOJS/zYNBntNmN+UNF2ijzTXF+smOYtJ9UU6x9mJQ2bJqf6/SvUtzr2Pp1RH7lrzpcwf92yelaw97Jl9bSgm/cT0P5LlrMXnS6hOHVG6OAljaoN3UxRnHWIzlJdy5nea7BKoLYatapZvncf1Vrys47qWkG21phSkq86jBKU9zaYSU51vaQ+UDT7Ap170IJnBLw7RG3g5u9sUNuObp5z/IFpXL0GFgiIeWgQfbI6ob3uwzo3Yay5xQhIJ1qbOL6CWycVCIeVbKIHCYyFScKVdenPJylBEcbfIDeRIrHMjo1xrrH+WML44rk+Y7XQ/feyEz0YsYNdnVscxDEedEa7Vvj0AMoqO9yXTiyisJGhSgvuBrF9BCL0IezRxen3KVsnXpc+bcIgwaQHBVb5iu6+b1Xj9TeBlUrYusBSRTdVACTG5xAK7kfbg7Z4zf6e6oJBjh9w16daYgHVkN05slT+WkyixQnnmjI5EYsmUWpW+ksOWjLhCx37Yw+CCJJM8MG9qnMXLRqzvNvkHKwri6MLv7go/bk2JKVfeoYoZT9j6L3/LB1jaZ+Ntwn/D8bTjkVpBKX6/PZp30QglrDBuqn43P/zn3F6ejrUoD6hFmzS/+M3/g75vHj8Dx7R2nXDf/jIJ75i5/pnpX1VM0Rfjc36STa8vxAXXfR5MhHR7+r8yiRMGMn355giAfl+zabJ6bSkMYrDxYb9SUUhNc8entBoxaoueXb/lFnWUC0yXm0PMUbQHFmm0iKFxVjBcj2h7RRSWOZ5w7IqqXXGs4tTMmkwVnA03cTVhBSWQvZLZm0l2ki6RsEE9qcVD7o5s/2KpsnQraTMO2qdkSvNJGupuhxtJPfuHlDMWuobmuxhFkW7e18AoW00AlhLceZyEckO8jPQpQu7z9cu2ubqH2nO3qW49ocd3VTS7CmKM3eeulTYTKAnCn2zdCLt+zVCG2SXuz5ddZhMIjuDaDXZvVPE1WcoTzXdLCPbWNq5iIYwJGw0OWSnFTZXIFxG7JN3Z3GboPvRgUFQXmORTt6mN1jpZ3Hs6ARIpKCIxKCF0gdpmHeSJyYa5rwfVwOWhd7oxWKiYcz78jBWgdURc/TAX/tt/LZW4Ut5JMLyZLyfW5mnLNIoiis9t/gbaXtxtj8Pq2zPSnnQFo21Z9mMZ9ZS11YAniEPTviNG2OO/VEPk/sl+nMcuE4gRkvGe5m6CINI2faapHGWcYTvinBNCfsRAbHt70/UNCUsDobIEkVXm+yPJTq/adL3KSs1mMOS/cbM0bIHEabAA9++/wLzpXPHIBanHsCMwFAENeEepwvFxA2W6uKCzmjs+gz7iefMjnlaMOynR7T0twNWyPb3I2VUB8d4h9qTiBK7jDJz7bIXvhLtUfTj6AFMgc4b3U36EL7n5n0OZ1uePTqJ4rhXjg+5MV2yakoyafi6q3d4fvaQF6YPmGUt09L5cuzVOoqcrRW0DxwgOqsm3Fnt0VlJrjSrzq0+UsaoMYrOyPi5TGYclRkHuLQLp2/bDOPdYtLv4956QSYNpeqwVjCZN9QrNzN2+5p8DSazTlcg3cWqClTt3GnlQ5jecUZKl75MR+kmyXylnYHoXJSTKQTb6xlCW3Tp9mUyQTeVDmwp91n5oEZVhm6qwFryh1vW7znErtbM/vMfUT5sKE8Mxcr2q26/0tc+fP3sA4fIZYVsNKrSfQi9SNwZQTMSwAb0T+Iu6n4MeLzhSTUp4Tip2DcYdZm4e6J7LuxaDfcRo8lGE31kGsK5JucbDXg0+P3JCy38d7Yf6+krvUbR7yeyU2ERkLi5Bn2SArqwTxmAnyDB69HFakOSvwCsRm7EAOjCcaJLqybWMYvnkh4zYZis6AXo4Rjj646M1AiUxu3T6027atx3jzLEYTykfWQ8++K7MRxDBkH/GJRwHnDZAPJE8rntAU8EcEmIfaqbS8eWqhPdVgLMAzMUANdFz0o49rmW9HcKKC9qu76LffGIBW76u4vefyXb2y/s+vZdbv+ztEtA9NXaxquaC9osa5nnDZk0fObedTZVwfX9FZuu5P2Hd7k1XXK9XFHKjtYqKp3RtI61mC5qykzTGkVnJdmVitnERZSdns24OnFsUKNVfGDqLsNYwaopWbUOKEksDzZzXrlzhJKGw8WGPNOOcdrkSGUoy5aDvS3LpYtNvjpb0xlX7mNR1uxNa8Rp5kp+SFi+x82ccbIOehElmNyHYgXTBwZdOm3R3pd1NCztXFGeWLqpYvmsYnVLsnxe0uy54e6ixIw3vO4AonPJGm0myFcd3cyxPO1cor/mXVR/8WuprpXMbjdsr0myjQclOjk3AatnJLbMUCdb8uOK2V1XIkQGgxCidMLqGnqRKAxBg+0j1aIRVj3AStkg9yVDaj9ZVQ9C8xOGCAE2s+ddcYlh78XfFlP4baWN25jC9nqk8YwyZqik1+mI4XGiKyayZ9Ypy0k+B8cI+WPHDNjhGjLbA4zCddoAWKQ6KtV/Z3JncB2Asef7DZ9gMZQh8cdMgUBggNLw8QgERHLcpF8RPjIOPxaSqL5BhB/932jYvQspLRVihX/rz02aXh+VFkdV7WMIjIQRGbjpZe9uHZxrwm6FkiHhnpnc/SaOj/ExvKu4XSR9k6R6iOeh6ZOIJuM7gv30PMeg+23Y+nPgMz1+8v4cU/Q2j3vZ/nTaJSB6G22nyPmC9qYA+GiVMfjt6EEL7q5GK56/csw3P/0yudQYKzhpZrxnfo+pbFiompfW15ioju1yQrev2Z/WzIsabVzZjrLsKDMX9YWwdEYihXVh9N5lFvIOKenC+Sud0VnJ9fmKZ28e02pFaxRVk6M7hSy8q8pIqiZHCNh6cXXIUB1yG9nSoHJNeUdhpgbVCLIKVs872j1fQ1YZpg8MWFg9LTn6tKW6Zsm2hul9QEJ96Ib1yfty2gW0B87YNfsCXUh07tghK6CbCKwU2Exic4kuJRiLai2i6SiWmrP3zDh7Ief0BcWDr59EA65qoiEMkVMmg5MPX0FYi9i2lMd9IdnU1Rk0N+FvBDjpZG/6idb6z1JDFN06frtBrajgikn2F3QlwUDF8eUNZlpdfJCzJxgp6YGHsj294LfRpfs8gorRmI2C5wBmwnFVMJy2P5Yas0lDcOPcYf02ZmJ8LT/hXSkWo1y0m57Y6NpM62epWkSXnrt2G5mh4G4LYCXc27ErJl6eSe6bdNcYit1G92Zm4/GCuykFhRgoTvrn3Xg2K4p4E8bGCiIbFdxXYV8B2GnvLjWq30cUSj+q7ViEpZFbAybL9mMt9FNkxLIe+I6TewaGMYi68zMGNfhCWZywcNgFQIXtFyKD6L1wajJ57WKH3uB8nAYCPG6bgVvzHQRDl7XMnly7BERvob2hAf9Wx9eboVyF5c5mwSJv2LYFX354FF1Xn7z9FNfLFf/lwYtcy5e0VvH+xR02XY58mJPtNUyylkXeUHUZd5d77E1qOi0xRrCYVxgE2yZ3brO24LSeoKTh4XYWgdJZNaHunKUJJT4Ap+cQlvm8pmsVunNs0GxWc/Jgwd3lXtQPtUZR6wy517KY19Qv1pS3M+avusKte1+ydDNBsbIcvydjfUsiNEyOLcLA4acF9z+UU11xrrTjDwiqK4L6aFjDyeRQXZHUh5LNTTdzdxPB5ukSPcnITiumr66QnUVVGjMryDaa8kxz8//1Kvtf1kjtXHchgigFHaZ0q931LYGZFYhtTbZu2XtFxyKu8f4mmhagfxJ9+LcKIccBeAStSMJSnHP7e6MXI8gyBsYnrtqzYebrYPyjyyywciFrsGdqBpFSwfAXvfvQuaOs1+34nahe4xPrf4Xx7VmgAG4C8AnnHYFPYFY8UErrd4Xj9aDJW8vCjI7RAzs9sXRz63PgOGbJjhI0RlCmHDsU0iL0J08EGjGTcmEHFxiM9rk0BX6zCJoSdi4Y/3j/0jES7rHo+zKyeNqNv5hl2/8mMoyJ+H3czk0zF2wXx1MAZLIXU4dEkMJ413blxdoekAXReDp2U21OcEeGvEexry9iWsJzNwKLcfsxc5OAz7cCjAbz8ohJTbc5d7x3oF26zJ5cuwREX4kWn/Rd3z3qd/3bNwKGAF7/H7dYZDWTrOVgViGFYb+oec+1+5y2U15cPOC0m3Gn3mdjCl49PsQUBtM6ILJqC/bLisWk5nQz4WQ1Y70pWS6nZMJwON1SSE0mDa1xrrNcGqo2j5qlZVO64q9G8XDlkj1qI9lbVEhpyHNNnmvmZcPqbIJQhrrJKLKOzsrIcE2mDWenU/JJR77ER5FYttcF22tQHQnyrSuaWawt89c7hIHF6x26dOH4WFfs1cIwD4r/KzuLyV2eo/rIsUNGOVDUXJ3R7U9Qqxq16dCznOLumtkXzzj95qdo9iX7LzXIzoGHGDUWtBlJ07McrCF77SGTezVZZQegJoqiA5gKq2B6N4cu6JPkJeMj/C6dmKNWKdk/JO6pxBBZ6QEXEUeQum/C+BsDrlTULBs5ZIxk/9txlE9Y6RPuibSekUlYhXBtYnicwXdJdFRgfGzmwZQvKuv0VQJa0d935bZzbhs7yOWT5m0KgDKCwgB6Q3TaiImILFtgc3yBYgdQxAAIpUVv+/MQPUBQ/V/HbrkkpDH3TmCOQvRhwvhEhsq67UOE2ti1FMDG4J4O/z2Xvbub9K/I+iTPVUigmG3cuUgPkAJIybZ9tNi4D61wv++mw3s+cLOm94ME/KTXN2rOJZ6Ak7fRBgB+DH7Uuc3jd+e2v2x/JtpllNlXuo1WKxfqgnY9eOMHKrpc7OCz+9Wc69M1D+sp96sF9zYL7tzb59rVJd9wveKPV7c4aabcXS8wWsCi4+jKmtsPDlC55j3X75NJQ640x+sZy+MZ4izjztEeTy3OIuvTZK3LNzRpOK2mKGmQRtIaSd25IrK6k7Sd4mBWoa1wgumyRQrLnfv7WC0p5g3NvSn6YOUyYFvhC8la8klH1yo2T/V5bHThJrhs60BCeQzba4JsKynONKunMiYPXeZqBNjc0u4lLqDEXbS9KmLotDMcLiJpeq+l3VPMXt0g6hZlLWppMfMSua5p9gXX/4+76IMZ7UJRS4kpBOWppToS7hCaGMGjpxk5YE+XiJuHfcZpeoYjrXoudbSnBFdEVkG2seiJwGq/eol6HgYuENmeZwyiuyIYddGzWmnyweCSCb9PE0A6sMNo9Ws9GEn2oayr12ZFX3IhjtfRMM52fJ64R6ILyOcAsgKEIOZX0hODbKVjg5SFqUassh4cRSbO/a8nFlnLno3KLLKSjl1K+0Lh2C2LY4yCZ1ABIzH6OcYhgGLhfyQt1jgXnrU9aIn33ANDod3x8hXRjWZK+szX6f0ZAVQH8PsxHv4GkCfCby1Dlqrv8nPXEnRtukhE3wHMpoA8/ET3z9LATTtiVMLzp/y2Qdwu/LOYAk8YAp84b6bXFsaIv2a1TYrXJiA/nrfYgY3C3JzM0TvbmIEKjK3fZ/rcndv/O9Au8xA9uXbJEH2lWgpaHvegpJPHo+7IjjHbHXVMso5XVgdIYbm92uP2l66QTzu+7uod7mz3+IPbT/Ohg9d4+HBBty4oFy5HUDlpePHaA+6v5zFi7NpiRfFKgaoEy62LUvvU67e4vd5jv6iZ5i2F1BRZR6E6lDS0nWLdFJxVE7CCedlgrTOOhY9iW64nCAlWC5pVgS0Nq7qg9YJtgysYW+Yd9rUpshGsXzDIzkWQhbB2qZ0brZvA8fuVY3hy97+eOp1RcV+5RIE2maSDscjctuAm4GJpydeG/LjyWg+JPpw5KyYlcttSPb3H1T9Y0t7cY/PsjG4q472qD5xBC66K4JJaPpfDpESfnoFwtdSC+yoWQvWTfAhHlwkTFNwc+bYXPKeTdogWS1mfYHSjKNUDQpP1AtxgkE0RDLntBd1Zf/5RyxO1HV7D4xNiOiPg2SHPEJmyFzw7ACjidkE/FGqcOSF3sGz9NaAsunT7MKXp9xUYm9xCOJ/Mu8ZaiZ2Hi8ABKZG8ADMzQyH1rBft91F5wjNebj8iRAWmbN7IyEZWSfWgZai/sv1UYIRnWCyyFRFEpdF9yGEYeprrZyCuT+aJmJMogIbAfoVtwvhPWiSPAugJrA/00XhBexXZuP73AyH/SF9lkyKsASzJ2rvXguhf9OcanoFw/akmavC/6I+bslCxwLAH4tnGlyax/f0bTMePAj+7cMH4s1SXFIFwv907riG6dJk9sXYJiN5CGz9gb31HDMGQ2P15POi4WYFoJau24Mpkw8PtjHu3D7ny7CnTsuFuteDTt2/SthkP2zkHhxuef/4eRkvyTDMtHbi5Nl8DsKpLlygxg/aKE1dLLFmmKVVHZySF1M5Fho2i6EnesWkKNtsC3SinOapKlDAoH2YvpEVlmmzukEN2nGGMpNEKbQXaR5xJaTHXGvTcRYHpiTNirQ+vjxOon2SbfdmXg2ih2fNZeRlNSoHiTibWGJZeG0Rn2F5VtPsF1Y0J2+f2sblCnCyZ3F5DZxz4ypwrJt+6+xHzAgUGyDhD0k0FVkrUwT7dLEfVttdxJGLpeJ6m30/qDQjai2zjGKNYsT4FCmGFmoZ4Jy6qNAouNZIxL1FicAbC52Ts9WyPTYydt6DSghYuK3KqrUjPTey45siu+GOGBIvGgQbRho0TwBA+KhyDaDsJpXaatQDOwnvSc0kAWOgClWiLZOhv0bOKias1iqHTltyobtaPt9jP0gGfgV7GwNhaZmvi+Ix17kYsy0UBHAOtDf3clM5RMVVA350ecPbXPViI2eF1n2N7SO5pAAcpKxNAW2CodL/fAUhLx0joX5swU/63A8AVfu77dJDTLckHdq7f3uZ8fc51lgKieLAL/l62PzPt0mX2ZluC/t8UKBrTshcBoXO/Gy1tRpOpzZ2Q+WE1Y7UtObyxZL+seOXBIZ+vr7lq8srwhw+eQvlIMaMli7JmmrVUOuOwqHiwmTMrGqZ5y9GH77HcTjBGcNaWdJ3i7nLB0fUtx9WU1iiEsORSo6ThbDthsyqxjeLFd92JWqPMF3qNudAFCGGhlahaULcZk7wlU4YGV9IjuM30w4Lygcs+rUs32W1vWrKViOn/2z1AuLpmxRI2N5JQZBLQk5Z4MFCewvS+C4evD4SLOBLOcK2fypndbilOG+SDJXQa0XSgBMXrNXpyBGS0C4GqLEzEMKrLgzNdQHdtTt5eQdUaXeYx51HKIgTRrfHAJQpXvfGoD1xiwfLUoAvhwaFwK3Z6PYkMoMHrLnRJzM5sFcGD1AMpXKK85rAHUI7xEVGkHIeaFT2YCExVZvv76gXUaiOdfkt5UBHAk7SRicB6IKUstMI9T35s9M+B09dEwCVwbBBgC4NonLvMTszACEfjlBnnLpIW0Um3j84dC+O1PYmoPYbxC9w4yCyyEYMcToFdi+M44MKUfRkBBxGOaf19kglDlfdg1Hexc+8VCXhKGEOd98A2iLUjKziKQBOGmOMq1C6zKpl+BIOsz+mYiEAoRI+F80u1XBE8El1mUdeVAgXf9QHQiC4RX1t3jsIfO7rcOiDJpN5fWH+eA6xuhu+DLmngsrXD/exs6fw8nqsf086BvLCPdwgQXbrMnly7BERvpe14YHaOpxTAJBPfY4HUozYYfScax7JI4TJOH062/MXrX6C9pni1OuT2Zg9tJM8tTrhWrrhfL7g5W1F1WUyoeL+acXW2ZtvmLJsSg6CpM4SA4+2MPNfsTyuMFbx+us+1vfUgZL7TErvJmL6cwbuI5yKFRUhDaQXGdDSdwmiFFS7UtvaGdFHUrBo3C1ormE1rTq9kqFdKbObS+m9uuZIQpnSC3OKhwipn0IVxdHx5DOtnXL8EoHEu5b7AgyxBeaKx+xkmF4imY/LQsUSbW7lzcd3YR91fYu/eR5Ql5uEJ2a19urlC1dDOpNM++EMEpkfgJuXNzZKZ3XduuFI4MJSOE0vU9gxwb2CJ/NNZLA2qsa4EQgGmEjFKLOaZKdyx8aAvjrUw9iLz0huWbjY6F2/co7ZFgPWx/5F1kj1DhBFgXHV7qyzdoXbfd0475sRRNgIRcr8vbH+O0saHwpYGoR0goZZ+uAsXyeaZJOE/t0XCIHUyPhvCn6NtA4Vg3bFt8tBGdsJiEaBAtCKCUtkKZCNc3qXcIqRAbZNhZB2gCWBMRjdQoGT8dp45s1kfweeuORzfbWMydx0xB1N6WwIDo3AZpzWQMajxFZiV1J0Wpp6QgFJ4xiu4T8ExrDYD0SS/9WkIUkYugK5BVKXo3bbhWEInOh7VR7iFbU3mGBwrfV4n2wN27Z9LAqMUbqkZXk/UEqXPkXRjOVu5RK2kaRCSv49l9sXo/WgtOgDto7ZLX/VONffYvj1A8zYJtP9p2iUg+lNsY5eO+/sGh6b/seicTqfqcjJleHH/AX949jSfvnuDb33uJf7XG58Z/OyknWI6wSJ3YUYnzYT9ombTufD6usmQWEwnefaph0hhOVlNYQpfPDlCdy4qLGSYjqc/7dg+I5hkHWf1hJv7y5izCKDpXK0zIUAUGl1mtGclelHFBI3KSDSgJOwdbOkmZVztuYSAFrvn6kU0M43VAqEs07sF9aGfDGP/uOiWqGcIq13rJuBiacjXGnWoyJca0bRIbdl7pcXkgvy0Qp6ssbMSsc7BGOT+gk4JirMOo3JUYzGFwBrv6pB+pWt9qYepQE/cI2aUGLgCovaC4TnHiTiZkE0mENqhpGwLJvPFbT34im5E7XCGqocGO+x7LPw0UR/Un5cI34eoMW+FhHXXhXHgJzXCJrO98dM+2kum1+gZJl8YNrizIgMhLUw1UhlkZtG1cu4z6/eD+43NbA+sSPooMDH+2bHan3OSMRthIbNOHI3oXWvCgTObWW+VwajAEA2RaqhfN8g7RB8iP3DrBQMZ2Ks0mi0xmqEEheygm7n7KlMQ78eSajxT2tGLmEWyL9uzNbFvYRCxGKMcOw+KZA+sgrDZeuYq5m4SPdMobEjXYMm2IpY/kS3Yohd4RwbUeMATghsSNqib99cvQ6bqjgjejOwZn8EiMoD7hJkL59nNkn4LffLYxefoN+Pvwq7CPd31Wbp9YMcuGaI/k+0SEL3NZkdz7oUtXaCOx146mb+BcSmS1aidO03PneM9nrt2jLFOU/Tnnn6F1zYHfPb0Oh++8hoLVXOn3ueT95/ifUf3XV2yYsNEtXTWaYNWXYG1gjLvuHH9DID7yzlSWrZtzo3FinvCMUDH2ynTvKPIOuptjl3nPPueuxxvZxxNN2zbPLrorIUic2BLNxIEbJ/rELVEG8G2LRDCun21fhmaQfuNS+pVSW2AVjrDJy0qN0hlHDjrpBNZz2zCcjhGo5v5VWxiNOavgTCW9U3lslDngvL2kgd/8Ra6ECxebZGNweaK6j3XkI1BTQqE1sjbDyk+e5vq654G/Grbr8BtYlzCanl7TTA5kS4Dtkwm8UQLE1ibqJ2AvlJ5sjq3SqAqQzv3iTHr/vjC+lBt1Yu7o0jVACpZ3eM+DyUqRCuwk95yDDRA8Xz9P14QLQIo8qHk5UNJfcU4QGHDPgJoElhhB0AvHENMO2ytHCvUCbKppqsyRGYQuUZXGWarHAAyAlHq/n0lo0vNApQmgithPDPlRd0iN7D1B81sdNGBW1A4oEXvPvMMRGTK0nD7wDQkuiyTeQYk0W0FTRihv6L70D27jqVz56enFhPdY75fQ2RbAmKtdMAjAo3ZEFSLVCvkQZjxLJFNxmloekIMiW/nvSg5bBevK/PEoHApLbKVjMBKehcxeBAenoEg4A/JJf1iIdv04zyM/1QQnrbIcPZd4w80/Kz1/VCcueMG5jNf+kXSmC0atxFrO27nWJ8EHA20RUn/2tF3l+3PRrsERG+jDbQ/b4TY2bXdRWBo18O04xiTgwqAK/sbnp2f8t/vPs3plw945daG/+X5L/Cl1RFX8zW1yZhnNSenMziC+9WMiWopVQcGKgSdkU7jg8tEvVfU3O32uLq/5mQ9RS6cG2zdFFRNHiPIFnsV82tn5FKT+RlaCIsxrtgrQNupfiLZKrda32s5ubOHuLVkmrfkUrvCq0aCMRwtNmzL1gEp7YCU7iRKefG1EQhpqW92iEY68FC7jot5XpKJVlVOnD297/6Wp5rZ1tAdTt2EujJ0U4nsLFU5wShBezOnPM3Ilx35Z1eIa1cxmYgFLFXj6fqtzw4Mzr2B+050lnauBqHs4V6mq15hHQNhvDskCMh1IRDaG+lMRJdGWCULC9a7DIMRjKv0xFgFV0z8zIMUG5kSD6ymBtm4NAIY0Rs4bxEHrJYErKU5DGii7+sAhmJTnt0BB8IKA51EZCYiiXZVIJSjokyn3PuZdnofDyxEZrCbLBqj4K4TjXTbdo41pJHu81pihUX48iTCALl1+iUrYpScaOXwvL2rTybuG+j7tv+ACFzTFlxUeC1VuB+iEzGaLv7e9iyI0CIyQikgsPRAI5S7SA19yCsVx5MANH05lQS0Y8F4LU8skJowV0FzFFkeEcCiv+1dUqQ10RlhcRGAqh+PJvfAyH9WXfWbhnth/feiH0LxGuICZ3RtfiNdOGF42E+zn/S9dRrDsTvxsW0Mjt4IqEn67U9DUH3JED259qfg8fyfpO2gUHdvN3oSz1GsIzD0BvaZil33ZxUHRUWjFbe3e1yZbcivV9T3p0gsLy4e8unlLQ6yLaftlKuHKzorOSwrNrpAW0HjRdCLvGGWN6zqklne8OmXb9GsCzotee+1+zEj9TRvmU8aDCJGm83yhta4CDMAawWdVi4s36g40UllELVE1BJ1r0CtFcY4EFR1OZU/hrYOTOVSkymX3FEKS55rtHbATUrrAFxpYg4ap6cJ4eJOA2IytxKe3emZlWwDq6edfmj97ARdwMGnTtj73Bmqdvsqj1vytaGdS7bXC8RTNzFH83hbVdOHaOsgUg0uBhsMh0Q15nx0l2cR4v32E38AILLDle5ItRhh/206GOhdGSMGwBSJQbTE0Gl3zqLXWljn9jKlJTtTLvlfqAsWXI4eJISs0qIT8XzioPRanSASj2AriImVxeZmAEBs5/MB6X5/qtCR4ZFlhyw1IjcI5VkgI6KQO/7W96HI/DFzg1C9LgkjevZECwfIhe3dd57xEq2I90htRQQLg4SCqQH092AQ7RXAQ2JQgy7G+jQHshW9u0kEw+827uv2JfdT9KyDnjDQx8XaduO5Q/hj+mSOgRkMYD6CHL9dSPoYnx2fpykAFqwTzgtNTEoaS9dIYrqHcA6m6AF4CLkvznpA7+6fP1XTHyNcU+jbGF6fAJtUPB1/E74fgHIubFacfw1awswN5vt0e8nFzNA7hDEuw+6fXLsERE+wXTimdoEiccHn537L+UnOH0u2sFdWnNROyZhJ44DI7SlYgRSGl1ZXuFquOO2m3N0uXERXyP1jBZ1RZMLwR3dukglDoVzk2IONd/J7EWsmDWf1BCVMLPBqreDBek5VO2uwrHy1eiOpdUbrGaKmdTSF9KyEmbraU2oryM4ky1N3/o1WqMBQ+TIgBsG2cvuX0iCEpSwdIhCJiDYtz0CopSW8URNuJZlvLMXSvfKNA0rFaeuiX4pgYF2Ns3ztZuTpndrXOwN9ZU5zbYYuJdM7bQyJF8blP0qBizN67jy211TCFvQr9WAE0szOwYBY4YiTIIwNE66qev1O6oJSzdAApXqh6NZLP0/GntCOaRGtoFtoBxYCoPHbpVXjnatKDPdhzg/nkHPonCsks/GeCQsiib4S0kWIZWXncll53ZGQ1gGcTeb2mbsIs3gMgEbCVjltWWbc31bCpAfM+FxDWAeKQokOrIgh97IZPYi7jGro+9CVtjeGKXglfQ/Oned/H0LwAysVXXEJABg0mRwrGOlk/1YS3YHx4yQVwiDreXIdAYgMS5MIVCMGxj3of8K5RRYsgAQ/zkIUaADhIZ/TgD1JWKXASI1D/CMz5I8VXYfhWElL+2oAjOxwH8nl7WwXgaTBZwnTm36fXt8lvviz2S4B0Zttu1Zib+h3Y/DT/79bU0Q/cYwm1bgCy+GkmlKojq+/dpsHmzl3zvZ4/4dfJr9SsdWFqxEmnKvr2fkJD1czvnx6yB/fucmn795g1ZWsupIP33odgKrL2CtqVuuSo6M12XHGvGh4dXlA2ymmResSMW5K2k6hlGFSttTa5RXadjmvnR5wsp6ijeRkPcVaEbNdm04iCu3cGhK6PYs1ktPNhLZTVG3Gui7QVlJ1GZ2WLOZ1TPTYdYq2zciUca4zZZxB9cY7Vm73RrabO4M8fwWfCygYQEu2tVTXS/KtcWH8R1P0LGdyb4tRApsJ1Kpm8YorD3727hl64iLG6is55alzNwZAE7Jpq8Z9ViwtRgl04SKYTEEstumYJNtnGfbGJYpZvYfR5C7MvptK76rzLrTEqITElNFNFlbPMhlmYwG3N8wmA1sk7iTbW/kIIkKeoQAkAoDTSc0ykuug7xNb2KibIXdgJwKgRjqA4kXQatqRlRrdyijYt51ESEtWakwrnVYocffZ3PZsjwdIIrOY2gtoSh3P0+mFTGSB0mdY+Oi6GJYf+m6XEQ+X611RgSUZi2r7dAb0rII/Z2GI6Q1EJ3pBshrdM89WpTob2TqQkbI8cRvZa4ZC9GHQ7+xqKXgTtv9d0BalrrIA9nTZg3ntE3ymuqAA4NMM1mHbcB1pSoHYzwE06l6gPRhb/pjdvD+H8F26XdS+pUxRusmI7Tk3p1/0P/QJLMO9H83JAzD8hv10b69dMkRPrl0Coifcdq0qYgtLl10PyujBGu6U86AIyN93xo35isOy4rPH1znbTPjIuz5DZyTNWUFjFPO84T9+8kP88dkt/o+X3kP9YMrpvT3qk5L2M/v8j1eejsLqzkpmmZs5bx4tyaTh6MP3ADjbTJh4nQ9Almk6LZlkHctTB36mRUvTZWyWJUXeYYyIhs1Yr0vRApkZRKFprmi3etSCZptTtxlNm9F0ik1VRBCkpEFJy3ZVkmUapVx27OAyE9JGEbIzRD1DhHXh+Pna0k1CfhywSpBtLdurErRl/0sdyxcmrJ+dIOqWbKupDzKXmPGLD8G6UP36QGGVoJ0LNjdyJieG+W3D5NhQLg3Te5ry1DK7ZymPO0zhM1kn+WDC7Te5QFiLMCELtDu3qNuBKG5tFg5YOcPX18UKrhnhAVkwiuOIsjiO6A1pcIeEZrJwYjgBux9vVuCAh7A9KxDKZqRD2BJLUbhBYgfHDcCH1um96BIqAxACjHZTkgxRbgFAWbxLzt9Xf35BExRrqvnjiE461rCTTk+UGW+IPbBL0wcEt3VSqiJbeUCWsDKRBUn7xd+HWCds8LwT95Fqu2Qt/Gc21jzTpY1RYtF1JPr7GN1DyX6Fj/4KbjDwgJsexAhfw+ycK8lvE0CKLvt9pAyILnrwEqPNdN8vYTzY5BWeuxDeL4zrW5M78XZMLzBmXwITOtI7xQSZIfdYcg0RhNvh+8FUa4fHSe/duZcc/s/ou+iGHLmnz42Jd7BZz9a/3ddluwREb709BvyPx9ejKNrYHjUmd2xXrQskltvrPVcctWz5/YfPuAzTW8V/f/0Z/uizz5C/XnB3s+DKf5zF1bQoDN1RR5ZrKp1T6SyuEhwAMVRtxvMHJ2zagqPFhrrL2LQFdZtRFh1l0aG9nmO/rHhwOudkNcUawTTvEMKitQvTF4A1AjXtENIZOZRF7+to3LrWJXy0RmCMoGkz2k6RS4P0+XCMFWgtab0bzoEhb+C8kUGArNw+85VwE7MIK2Ub/+pS0E0Fy+dzVGUQGuoDid6fsr1Rsve5M+xqjZ0WFCuXGNFkxFc7F1SHku0V9xgVSyfKzraG6V3HKuVrEw2K8lE80jNIjq1y+YlSxsJ43Y6M4M2de7OQdBPHNgXNkNCJoDYxwLJLtB/CGyT/coVObQwVBw8UAtAReDaoB5c21OaS1oEL4QfvwPAkFi4OcBxT1bqoMKuFu98+h1EAKUK5cHtrICscSyQ8cDGtpKudQMWGZI3KxntqddiXcFojAWLeOk2QFzVHJivUQAugwp8XJCyKsIPorngd4W2PFWN/p5oXRiVJAlsQWLhYOy1zINRFbImeZUnAfPjfZH0Zjxgx6Pc9EA6L/p6em0/CtqPrMUXv2hwb+cDwuO18Ru4QRp/0jWrcuA7jLbhYA+BKx1pxmrBMHgANyp2k5+1/000TVigF0SMANBZgn5unU8AiktcFbcwmpUBpvM3QbWbfcWB02d5+u4wyeyvtTTKhu+zEoD3uwUlWjPEjfw6Ncfl9bi6W3N/MuXuyx1981xf4Ek9Rv7xg/4UzVtt99suKP/lfG4S0mCpjfrimzguO5ls2XS8eMLi8RsYK1usJ2TWDtVCqjpV1GqFM6ag1OpxsUU9ZzuoJppPoRpFNHBhq2gyjJca4OmUAk0lLVeXOgBUGGwxl57MPW4HueoGAUoY79/fZ298y299ifCSc8myA9OJqowy2ENBIshOFnhnURjK77dghk4HqwBTOoFolYkK8YmnY3sidgHqhqK+4pa1oOpjNoGop721p9ubU+3JgIIIxrK5KmtZnvFYSoR2b0ixc1FqXuYitUMcsJKGL48Lf46gtCitQ61b9whuVrBJ9mLNnDazyItewPy+OTZkNINZM60oHimKRU+GBpK8PJjyzEmpEmZAR2o/FCC4CYAOnjfFgwIQotogcXHFVK0XU/YS8QsLnAHLRZW77ZpsT3HYyM5hWYVvRs4ApO9AKB46CsNoDZatceD7KCcGFEc5V1eLYo2CA9PxzgQABAABJREFUS4PcKIRxkYPZyiUXNHnP3gSAGe8V/fHj85meV9A9dcQisbEFwNAKDHbAYJwTAQfWMPwOIqhKRfqD3EMJKxKF3ePz9exNyFEUsnLHFBDCR4e1CVAJY8gfK820HTPCd/15htQRafbqsL/msD+/QYZskZwD7m9I9BjL1Txq7n3Ud+Nn7c2CFTH6Gw55ATjate1XqhnE207M+HZ//z9LuwRET7KNx5R9E58/ajzueND1xDJd1BRSkynNqim5Mt3w8OGC//cffJ1bWF2raTuFmWr285r3PX+HB5s52ggWZYNYbJjnjSuz4bNWF1KTSUPVZVw9XLFqCwyCWmcsJjWNVuSZi/jatjlXJhuKrOPO6R5SWUSuOdjbAnAwq7izKZCK3nVmBCozGCFcaHVhnLETFiGgqV1NCiemdSH2ednRtBl5puk6F2pvtKTTkrbOyHLtEvppC8aJtoUWHHzehddbnxRxftvECV8ndL4wML3f0M0U03uabiIRFrorc7LVBrRGtBqjBKp21edDeLzQTr9jMgcKsgo6KVAzOdBWRD2GByiys+hcDFb04+rigSmCPjJIl+7zbt4blGBUYtkPhoYjNZ4mc4bJSBCVdAVUA7vjs1OTG9AWhIjiZwITh0tlILqeSggrc2F86oHUVSYgFDWNxk8Buc+BlFmXd0h4QGadS3Ugum29OLpMPk+i0qIrLXwXTs1nzRbSa4cq1Ued2XAOshe2e00buPukkppxaVh7ivXidQLZWtAteoF4iO5zwEgk4NGxMs4lJHoA4zEdElcCxnd/6MeBPiUIrxNmZdAeY5SDHicCcw+CYu2wAHSSjNipyzUyf+FWi6TfxQ7g5pspXH8onxxSrUfX58+32fdJKkM2bJPsf3wtFwGhi8CL4PzitMfuw+0v2N+YZRq41N5hdugy7P7JtUuX2Vtpux7AXeMpTBK7Hqw3CoZ2HMNKMDPNwazi9nqPed5wY7ZiWU+4df0UtXRLrK9/zgmls3nHa+t9Mmk4Pp7Tdor9smKatcyyNmatnmUNh8UWiaU1inlRs8gbCqWZZC5nUaE027rgdDNxuYGAO6d71OuCZ64fI5Wl7RSTrCVTGpW7wpuhppo20rleglBC9PofIV1kkPHG1mpB43MQdZ0DQEGXJLzxzMtu2H8Wpq9KV/zVi5bnr2uMwkeL+WR4pYjh9cWpRk8U+bJDNZZ27jVCT01g4bK8yVXN/uc3g+OEv9IzP1HQnEN1JLFKuJIdEbjYAXg4l6k6TMqBIQoh0F5/YaUDRLrsv08NWDSUpt9HMGSB4QjCWeHz98hQ/sIXIu1D59PZH+dq6iRU0oGhoO9IwIEpE99F0Oh41ijVLQWggnCYazz+RfK/aVw+ohCZ5jJgi0H/h76zhQuzp3TMo1XWgbPCxGSNohV9VFoQNY+eZ+v1S7H4qxoCgwBcQ3+G8xDW9WvUrCgIddyCCDoFM9FdGbRjoY+CYHqUdTq9H4GRCWNItkNwsguwBTbHJLog4UFyEPubvNchBYF/OMeQ0iKNVAsLixB2n+p9YqJ6PwadazC5bt2zrH3f9/0sO+JYli2oLTvbLhfYQAcUtknB0AWvc3qh9DXu2/CbVDsVwNCOcX3ZvvrbJSB6q20XKBpT3ux+WHc9aI9s6XYWTGkoD2smWUvV5NRdxvVyxVOLM77+ym3MtQZ5reYD+3e5tr/iO9//Kb726A7H2xnf/OKX2SwndEby4uIhJ/WEQmpOqilfWh7RGBUjwiZZhxQm5hbqrCuxMS0dq/TC0UM+d/8aB7OK2V6FEoZ265gca11uIeOLawppnQ4IXIkGb3SEtFiDM2DGRRShHWgyWrrIIiuwRtI0rr4aFoxnCKLuyAK1c79lFWQbB2qMgmZPolpo9hyzowsHhoJhE8bSTST1oXMdmswJmOsDgT6YQlWD6dFLcCUFAxJysqg0JLlzQminiXDiaXDaJWG8xkfbuH1knBJhNUFv4g8dCmNGwao3PCG/TDAcIaFeONc0UihE4MRcOFYgG4lsHFOCAdaqH7etdEkPQwi7ABHKWnh2Q1iSUhj+d0EjNGpW4OqRaV/Ow7tSrQc51ogYZWaT34uQSgGiXqx3UeESPYIvHGsQhaNArC8BYqWL7rKlSfrYX0MQgge9kQdPqQC+PkyM3uCCGACqgQ4pIpT+XGVLf+7J54M0DAkrFF1fph9nERAFJicJrY9RfuP5yf/fzon1w4yPEAupC6IwPWisUrApkzHjxx3CLQR02R/PBBeZZ5Bi+L3sgWTEzM3oFD2waPe95ssk25mkTtqONtD2jBaigwjAHXPuOR3nju/P7T8FUFF7F6Iyk2O9A+1SVP3k2iUgejttBwCKn8NgVfHI3YxWMzubn2SEAZSlaxSZNMzLhucWJ/x/X32RZ6cn3CzOyCcd/7cXvshZO6HTitvVPpnQ/LnrLzPLnI5olrWUsmOWtRSy44X9h2zbnE3nlnwPVzNeO9sHcMkRpaHTKiZcFEClM7qXFhxNN+SZ20YVmlwayqxz+YpOi3gJykeFxYfPeldZSLJnwXTSV1EX2EZitfQGEnSV0a5z51bxDISuM8c4aeGyVVvnwsL0bMr2mqA8dav9dibQPtrMZM4IZ1vN7LUtCGj2VR9pIgXVjQnMpnC2RFiLatxrzNAEABP+l9pGMBKYqhA1I3XiVhG93icNbx4IZiGCo25Kn52XHgyNV7473Qhi9NfvN+h1wIGEEKKO8ZqRAEw60UefBXufDFpnND0QMv0+wzbxtnujKzeBigj33/0VgaFJQJEN56jsgEFyYfLu3oeaaGgP4LIExEqca073maJtZhGNiIbMgSJfqsOX1QgGb1Ai4wKwMejnWFCWpHxH0gkBGCTs3jk2w/dpN++BVRoVODgPsePz5PswpoNbSgQgpfAAsI8KC9sHgBajwlKmLHR/Umg2nLdVvWs3ndMGuYMCQFv012YFtHu2f6Z8/8SFwI42Bik7wQs7/jKcc624+HVu8boDNA3OhWS7d6Bdht0/uXYJiN5sexQAGn/8BoHQI38zesjMsxXF1QohLdsuR1vB77z2HB+8cZvPLK/z5e0VvubWHZ6bHnOn2uMv3HyJd80f0lmFwrKfVfz597zEIq+5W+9FMZ0UFm0kx/WUxiiKXCME3K/m8diTrKVQHZnSCGFZ1hOufN19ZlnLjcWKTBqevnrKwWRLZyTbOkdtJWadOxthHesjhY3h1dYKJq9nrrRCyiqEHDdh5dlK5EmOPM5p17mLQlsVyOOcrlVYLZm+LimOZUyQWJ44d4UpHBAKE/X0vqErRWKQXOh71MB4QGIF1PsKhIDpBPXS60zvdcjWolzFlCgyTd0e0leml9oiGzu4ryIYtYQZSIt5DnREItm3JBbFDGUbAtsQgZk3cuEVhNapiyMad1+WI/ZBkjCwFyvvAAOd2GlwQ8h+n52awexiS4OdmH71roX7H7Hz+bEBUHjWSPjSIbYVPYMRNCyWCKrFSe6izmoFGxWvxxrc57nxwl3b9zP+NLKeGYlG2UBI+nnOtRaeS9uDh3i/wIFCDxD7ivd2cL3ptpFUSuaFcH3dDPQsuddhzKTXkJ5feo88SAn6nZ0LuQTAOsNue3AdCsqGumZ+XMnOpXqI4DzDF2FO9Eg2gC7iIiJct7CQL8XA5RTHZkgX0Lms8t18BK7GADJ8njJDO4DS4Ldv5LXDdXYOLMWbOTrWO4QxLhmiJ9cuAdGbbePVQmjj1dpjgM6bHn9+Envq2ikHsy2LecXD1Yxp3nIwq7hfzTDWJUD881de4l6z4Gv3b1PKjlvFCc9Ojsmk5je+9H7mWcML0wcc5FsWWUNjMlZtyf6k4mTjeOlcaowRPNjMef10n1pndFZyWk154fCY7XLCXllRZK5+2SxrkVjunu5hrOD+eg6/v4++2iIXbayRlmXOOktlkLl2ofgbEKee6emkMyAGRCOZfa6ATkKlwMD0rkCeZZhOkt3LkZWIbrTgWgiZcnUhYq6VyUMTI2e2VyTFugdBTlck0Hmf6ycYmW4qsGUG2sBsRn5SIzvIauuEtsF9oR0TJLXt61AlOg2EY6TSlXTQFUW9kDo/yaeZqyE9Vm9kYpRPEqGTjrM0LFz6elqxGTwrhGNarP/bCWQtokF1leD7QR6Md9DbCCN8hmv/iqAlbOgYEjNJ0FUQSSenI0aoI1S7t9qBIaEstpX9/vF9O9OOJcKDo1LDNFhq4ftbxBpn8ZnCgblQuiOE3I81XtqzjlivjUnZgqRPHPKnHxfJ9cXcPZ6BGyS1HDd/34JYH7x7tu5D4fWEAVsT2w7gFoB4vK7k/K0K2jYPQPPkd2Y4NmMW6vDz4P5tA9hyO1Y1vUuv66/dCn/+qv8sgHrHDjn2NquICSbbBQOwEfs67asxQArbD/Q9w9+wY7tz2iGGAOgcIyXdydj0/OLrgpXyZfuqbZeA6O20R6wCdgGeXSuaN9tONlMOp1tmRcu8bJDCcnW6RhvJ/3bzj5zmR2g2XclMNtzMz2itopQtC1VzON+ybCccdzNaK5moli8vD1m1BfO8QUrLST3h/sM9JnmHsYKb+0u0kWzbnJuLJcf1FFVork3W3Jov47lJYbm6t2aWtZw+XLB9sWXvaENRdvH7UOxV+Lw2nOV0c8hPJeI0R26le20U+5+Rzv0VDJ2nz01hMeucoz/2k2swOn7iFwbyM2j23Pd64kTOuoTFaw4ZlA87JsfGaYlKRbfIafaEEzGnEyNQPb2HPdqD5QqAbOt+V546tiHb2qgNEsZlxJbRdRZuPn7fLrw7FIJ1maf9NsJfRhBpp0yS7YFNNIKJq27gUqXfJnqtkiivVN4ifLLEAIqcVqi/9sF+7XCOjy4Y/94BAf9DE25GGBwutF4o69ItFH6HI0AU+mogyJYu+7QIDE4SxRMBWSV7hqcw/T6tA1Ei5D6yLmljZJQ8QAkamtCvDr2Jvu7bmI0JXbPDeMbLCFohk2znz3mQTye5R+eMOkm/hzGkdgAbhvtKTzKI8o0PYx/UNstszFEVwI9o6d2YCfsU2SvFQBwtW/8cZq5D9dTdh6iJ82xh/D/0cQAiwp1fvhTkK1cGJ/RDAH3xmdwFXMZjKAFHoS/ja6Qn2gWC0uPtYpKGv7sIDJ2/FV+pZp+Au+ySIXLtEhA9ifaYsfTIUM430oJbwMKNvSUPtzNypXnh4Jhtk7NsS3Klud0cctZO+Y+vfz2vrA7YUxXvLu/ygfJ1PlC+zkk747WXr/B7rzzLVue8sj6kMRlXJhvurRbcX8+5uViyqkuyQrOuCz5w5R6rukRJQy4N2zZnmrV8+LlXOWucc/+zx9dofEjJtena+aO3iuu3TpiXjdMXefGs8kkWdedE1IsvSuqb2k10i47pbcn+Z92rm/u+LbWfYPsMzfPPZZy8X7iJ2AjkcY7JoTiB7XW3ag2upck95yqTLXQzN+RNKakPpIsqWyjaPXf+YVUamBihLdvrOXpvAkqijleoqqcOZGcpli5TtewgXxmyylCe6Gj03AQq4sRvfA4kHXMiufO19NsPwqrDBBwS+vnJOAU40TU0Wg2PQUvqPgvur+AiCYxA70p0LEa2kv1KXjLQxwwipcJ5pMyHz8ljBb0OSFjkxCvTRw9Eqi9zO6YXIYePfKi+O56ImqsQOSfWKoJohBPt9+fDQAtlBS4fUxfuj/XZwPuH1noRdzcjGuBdjG9k/nxf9QxCAF7J9omrLoL5pBZemj4h2+CAwoo4D+gyOfhFc8qoe4NAOZb5CJ+HIAH6+x9yUqXXEHRBQMxDFOvjRYDVAyRED8S6Sa91IxlLMXLPBwX0+j2fBHIMdHaxOCl4HwOb8Xdpv6RA6aKXPP9/ZH9SMDRmod5BdsiCz+r/Nl7v2Nl+dbfLPERPqoUHPbxPWjBKbwQMXSTYDJ+/8n8+y7U/d4eDouJhPaXRimv5GoD/z2vvZb+s+PPXv8h7J3d4Oj/mqlyztgWtVbx7eg817bAvzTl5esZpNeXhdubC6vOOeeHyDClpuXG45MZsRSG7WJKj0YqHqxl/8fkv0JiMQioyqdnWOdLnbwkrjumNNZkyrOuCIu981JkALem0Iss1ulExuaBsIbuXM3/dogtBdQWaI1eBHUAtFVZZ6msGJprNs8LlG/J0f750zEt95KJUZCPo5j4r7gSMde4GcJNvvS8xSriEh37yDqtZK9wkLpPJTs8yzNc8S3F3RbZqyX1tMVXZeH/ytctmjRAIY8m2BoRAF859V565CbTZE32Ivl+9h8zSgSUK7r/wN126BLYoMEZRRxMmNg8epIm4yg3JZHKP+9K4PD2pC4oElAloDzSyE8hGRNYjup3wfaUDmBnOrsEdE9kFk4id43bDQW/HD4xw9e5EYJyCQc0NwsoeDOa+AGwlnWtMmJ6R8CxPcBcGcImyTrDuhe2ykiBcUeDAAIRTSTHaTgbAj6GB2zLcR9Hft3ManpR5G/1VG/poN38tujzXZYNzSPVpgR0KJT6scvuJ5znGpP69KS1yK6N7ULS9yy3N4WU8Y+UWEhYzMRR3VMym7bRLrpBzyoTFxKHhNtQ9S4VwwQNp/5w7R5P8fjRuB5+H/hjh7AGj82baQGfl9zkAt+e/v2x/dtolQ/Qm2zkKNW2PeQiCYXjDi4fxJOnfl6pjv6ioupz3XnmAxPLHX3yKQmle2HvIh2cvc0U5945GkKM50XMednOsEXSHHZ97cI2qzdhUBcerGVWb0fhCsNdnKw7LLa+v9jlppuzlNXfu77Moa7BgrCvHUciO//rSi1zfX8UCspXOOKmnHM63LIqam3tLDicugUin+9Ic1gjYZFTXLJM7ypWiUFAfCs5ehM1zGj2x6LlDDtPXBXpPw0yj7juxtrCQ3c/guECX0B5qmisWXVq3mseJPmUL1XVLvvXgpnR5iIR1ES3FUntgIjDJytytep1hXN8q6GYZ7bU5plTI2rjSGwkTEDRC7UzQzl0R2HjbvBGY3u/I15bJiat9JhOiJDWkwfioFrKgx/AG0fjcRDGr8Oh36Qo5XEu/ATEUugcLEDJNR21HIigO7EnAO2kNs8guydG+6I8ffxf9dPQlOEYtlmLx24WNBmH34WORnIu/HhsyVis7OF4KmlIwFzNcJ5FmosOxRqH+XCr4TQ4/OO/wgUmuNzmvNAN5/yMiGErzDqWgxuY94JWdE1anrpu4fXgfLjkRMQ8YoDDePNjrFwLJPQ1uwpCQ03imx7NnIUpQT1yf6cLGNAVqK2OJESsdGIL+rxggdH88Mfysm40myXB9SY3CMXMT9xO+S7+Xw/s4ZJnsm3pdyFAl7jM7vj9f4RYyVb/d12W7BERvv+0YR+PVwUBn8WbbYPXodlDrjM4oCtVxbzuns5Lnn3nAtemaw3yLtgIlLHPR0NqMiew40TO+sLnGzetn0AnWq5Jt5ZZ6e9MKKS3H6ylnlXODZdLQGsmmy9l0OZNZw9XJJhorYyUGQVZ0XJ+uXeSYdRmvt23Oflmxafs43tW2dJFhjSvn0awKKAzzVwTZ2jM5U+NqFs0MZD3YoBWsXjBO59FJTGFdorYzxdEfwfSOpLvVwLzD5CbmqcnWjrnoZoCPIAsgpjpy1eibPQdi8o3LS2SKfiWfVg23ClACkytsJlxYvdcIWZkkYPT3yigPsLIEBAvAWiYnGlWbvlAm9FW0Q9mC0WQeDOogqsezDbLrjWYASfF7hkArZSdSnVRgQgZ6jMTQiMDA2OH4DiLsAIxiPbnwZdxoPK7PPwxBUD1gguL/yYn7/4W0EKrdeyMuMoPNTa8HSoFCBEain/kCEPAXab2mBnr3UDzli2ZL278CkE6jwNxx/OmkgMDu+L2PIMsqen1YAqjOHXrMnPixEsaBsD2LMxgP0g5dQOEe+usM4MyxSt59ZgW6dPfYlB4cZHYQsn8uNN+AbER/fr5PBolDw+mbJMUAnAckg8+Gv01B0dC11b9SsDJemY5dZbvaeDE82N+u9g65zS6jzJ5cuwREb7a9SeQv7O73j23J/O/+F3EyebCcY6zgymTL/3L980xUxzRrWTYlv/HlD1DbnFx0NFZxZiY81DOuZ2e8b37XMTsPFeL2BPPyjO2y5Hg54+xs6sR5CL54fIVVWzDNXZa5dVOijaSQmq+5cZfGKIwVdEaxmNax5AdAJgxnqwlSWM62EzZtwbopsZ9ZUFc5ulHw2gQaiSg0xZmrYN0uIDtTtAtvV7cSZhq5Vm6ynrgoouxMgYB86fpn9ZwL0ZW5ppi2sNB9FJWA6qqb1FUjmD50Fe9DVfPlc67qertQNAtJs5cYDel+pwtizTMrwBTO1WalQLYWrEV23rgoQTdxrxQ4NAsZDaTNJflp64CUN7gyuC+S1WcoFREAkWog2/YGM4yNUIE8gpx0xTwCRwOmI4CcdAZImYoRoLcCV48s7q9f8cfnIYCQ4BYiWQx4Eb3wRWMjSxRu1OjZEInRcy40/z7mQepP0AY2yAK1y2zdZ7Wm1zQFgCJ3PIihiK0gZqhO2ZbQn/GxHPVPfI0ZkAR8hlIsqYvzHJNk+ygyVRMjI9s9aA4YCrR3AIKYE8i/UvYwXkcA2iGaLCRPDIsQaV3gQvheJt/nXjcTtGGRqRyCWEQIvU8iK23SD34b69mVbm5pF3Y4fh81zyb6ndjfo/cDcXQASEkCxTcCnsbbWDHaXwKu3rY77rL9qbdLQPQW2y6/+7n3b+S3b/iA/V/xRwvO2pLOSDamIJOG104P+NLrV1lMapZ6SmVyKpujhGFtSm53h9yu97n/mavo2TD9fldlTKYNs0nDflmxP63YL5zgpvUz6o2DJYXsXIJGz05lUrNX1GTCYHAh/xPV8fTVUwCkNKybAiVdDTG9ztk72KKvtex9JsNqQX0IzZGhPXCzdbYFPdfMv+TollAIVPi/JrfYvY6sAr0wbN/bsP66hix32bFlrrF7Hc2RpptbJg+g2zdxEitWbtJXTa/FqPcl9aGI0TAxF5By26nWkm0sVglUpZHaYjLhIsQsCG1RtWX+Wk1W2ZiB2iVwFEweaspTQ3nqOt0UivJ+RbE05Bt3L1RNNBiDSdq3mAHYGxZV93lawrkGUBUmZJEk8YtjaGyIIbo7IFm5x5BpESOOIovkz0PY3uA6jYsHjknElk3cHP15OAAkvPF1rsBklRq3dYk8U6ZIKOsSL4Zt0v0HoFMplw27SxI2DvY76pOQ/yphdGyoKJ+c8sBo7mpp5BhDcBnYwEh0BOYn0cIE4CmM07sFIX1z5M9hdH9T4+1YHq+9CWMnYays8nq1rO8zoYkAIa1DhnV6sV6L5MCPKWz8LoimY5kTCbIWZKt+8ZAK/1Xlnq8Q0ZYCzm5uz4351O206xXOdbBdGE/C+nHXv6z0rwsA0IUvmfTnzu9tf76h/+j7+J1ol4kZn1y7FFW/jRZcCedabz/e2Pbndrz749T1Zqxg0+V0RtF54Ys9yzmZT/mTzU3eVdwDQGFobeaq13eli545amGroHN5f/IHGetOcvDsQ65MtkxUy6urA5ou4z2H9zGeRtjogkwYMulyD92tFrE4LOAKwVrBPO9z8u9PXAZD8+yWq4cbjBUIZVi+z4EDm4GZakQnmX4RVi8al6RRugsVWsB+64ylT3CHtCzfbWAeSpCDlBaLxRiByB0Ayu4qVs9bzNSQn0rH3pQCVflkbzPIt+5YsoP6yF2H8RXK+0gzXH6hytDNnMtscE/xrrmpoxCm9zXdVLpz2DiLkK819ZEi2xjsRCIbp0PKtoKsdHqjEM4MRLG5u/H+j2eVsgpXtd0mk7slMkzn88wM9xNBUfxf+HIOfaTZrmEYx68lRvyFJIcRRCm83sdCKyOzAP7zBNiTgJ3B0YIhlsOs5kjrAK/1+ao87SC8YQ4pBALgkhvVAzLfP8Pju/MllFDRviSJsFHQ7q5X9MY3bUl/hj7VOUPXVjie7Ldz2bWT8RWYJeNAohVgi6QkRgrUAhgNu07mlKDdiZXoZWBp3LhJwUPcF04bJLp+PyEnkwB0aRBGxshLWftnpPDbGd/3PsIPIeLz4xY0fvvS18oLIM2PUz1Nx8CoT9P/R/0Zx6Lo+8GOgO+F9yvd3UU44FGfP2YSPweOvsItRIq93X1ctktA9NZanI3Of7bzAfMP7lt2KccZrF/0LPKGTZdztVjxyvaQednw7Adf5tNfvsWyczqg1ipaq5jJmo255mqUzTV0kuJqRdc4A37lQyccTTfOzdWUUMDV6YZ53nCQb6mN0yxV7YTGKgolKWTHts1d7iJheVhNOSwd+DmpncssZK9utOLG1SUnaxc64oTVULxcOheZEVBqTKbIzyTtkaG+iosUOmyxtUKWGjvvovtDLzRKGUyrUJPOMwmCPNdUmxw1a6nehUvoWDi9TjdzgEMGjUNgZCQ0+6JnhryhL878rTWgKoPJnZtMq8RACoHs/CpRifia3W7Y3CrQE0G+dr/NNgZdSFfpfuoevXylaWeyL7jpgYUJtLw/fqpPshL35CZC66hRSZJBRiBkk1doY2M+ymkTXBnWr4JjsVeLL0XRG6UYFeZZCqsFovDJDoUDNsHFAsn7yDadfzCEsr1Lzf/OGpdTSCqL1tbrhsKDMdRwRWAjcMC/NFE4HhmvJAItPFcBWNncorOQn8lfbyYGfXTOzWcSMB3mgh1zxcCNHhiikO6gZpBmIBj7+DvRf57gWQ88idGLNvOkl4/ccufvWB7R9ffXKHxCSr9P4/4POYVkI/0zkpx08t4EoBRyF4nRNqIXq0c9XBDs46JDwbNEClc0OFzz4wBFvNlJXydg6LHazTcLWMbPx47vbRjPga26bH+m2qXL7M22EfqPD0YyWV34G3Y8SBc9lP18svNzYwV1l3Hczvjg/mt821N/wufuXGexX7GXVVS2oLUZSzNF+WSNU9Xw1K1j5InLCn14sCGfdNy9t8/xdsZ+XrNf1FRdxoPtjHcvHgDwyvowRpCt2oKH1ZTOKHKlaYyi85a7M5LOSD7/yg22XU6tndHPpOHhasa1/RV70woEZCtJ80xDc0W7RHobxfprG5pna+caCcxDKxG5xa5zVKHJZi0qNy4aSVmKec9GdZ2kbRUi15hWMtmv3STVSvIVcRUstEvaqCewuS5oFoJu2k/Y0BsXoZ2bqJ0rZNuXcHDUu4jRZd3U5RayAtq5pL6SM73rNFixfId0O7dK0C4UJnf/q8ZGIxqq2sfxldL1JG6PlFAJ7IwfH4OcQOOWAnN/zBDpNqi/FQ3bjjGe7AvOj1Fh6XU7wgMg1ecNim0g6iaKqgMrZK2vdSf7FwKXxTyUwEjOKdWOgTP+znUoHFskhn0bcheFsRYyVod9hcr1QScT+j26bUZsRu+y8acRAFi4RJ/baaDVSvrMZDhdTwqmkteAeRD9eeiiD6m3iphcNLjqILiprNMHlf3kEoGKT48QSoyYLOjibCxzIhuBKX10WdCQWfr6cNLG/E02jCdA+r4cRC+GrgvX4bVlj9XejEBP7yoL19Ff+yMjwt6M2yy+bAR4u84pgiH/953yQl2Kqp9cuwREb6UldG40jkkUx4WU7biNwNXOQ+36zsJZU9JZSe0Vir95973sL7Z0WvJth3+EwjCRLXvShbxrBMfNnLsP9wEw2tUaq+/MmC5q7rxyFHf/5ZMjcqVdyL4wjuXxQupJ1jHJOh7Wju0JxWGvlFvubhZ0Pl9MpxXTrI37PJxvo9Yoy3U/KVuQpxlivyXNZlzfantD68tGKGXIMkNRtkwPKvJcI6TF3JtEt52UFrvMKWctbatg2iEa4ULtJ8Rq8KZwkW1CQ7vvtRcBLKTsjHWZqd3qWqAn0kefueOZzIXwG+VC7WVnI7BqDjOvD9KUDxtUa6OxcsDG7W9gIK1jskJOlsBmBcMWSiWIZAymf9+QiD8FSyNwlA46k7sPo2FPfheu0WU8tsPvLVgtkIV2LE9mnO4nsDPN+WkniqiTc4xRZ2n9L9sbAKHMMFw868dUYLb6yLGkNAdEvY8tDTZJwhj0Mukzbr3GypSWun9MRhfQG2Tn/hJJkkuRdmvvIhPJ79KXz9GTrXYcIwF14VJk51xPESD4+egckAJE693QKjHYwZXpXdTGRxMKLZybiwCMXL9ZZWOfub7pNWjxPvj+l23fD3HcjoDkoHOSax03m15LAmyifi64alNd2TkwZCOwedMvOAdKU2Dag6HwemcYoktA9OTaJSB6K031Az+N5Bm0HZNR+vmbomsH6k43mVadCwFZdhNerw94arZECcv3vu93WeppjDJrbYbCoLBcLVfoByU2s1w/WtK2iufff4fmpT2uPXMSdUnvvXo/Ro29sj1kP6+5u10wy1r285oHmzkT1dH5yDOAzkquTDYYBMWsZZK1fPnhUdQ3SWGpdUahHIgpnl07jUnmEsBlpSafdsjM+WLUpHOrVu3rmk07jBFOIxQMZZik9jqk6JP3iX0HxPLcZbjOVgrVQLPfJ5VTVe8S62b0LrQQZp+A2m4qfeSPBwZJuXWXLygYB5eAUWgXch9C8Te3ClbPTQZuOmEckNKeJWrnDlyoJHmkq8eWjDF/76NRtP3fMQuZskARcAW8MBqzgfUalJMQDCvXj1oQu+PDrmPoe+4YIZEb1/cLdy+sweWequTwoQjnHsBCwhL1+qHhdxGUGf9D4Vxzg+dEWg+kGYqMg7vMh54HMXXQD6U5iqJeKum3mMwwXEZy7u3CejdmEmWY3oMRqIyurGQWFr6Aath3tnZjItv098UKD+x9iRcX6i6G5ykS4F3YwbVbH5wQgZ9x35nC9K4xf18C4xP0P/hnUnigJDsRQY9jKkV/fZ1AFzYGBLjITXuu38ZtPGcOgFDyf0yHkQqm43e9kHogrk63eQOvwfFSMJSea9x/f12PZbqeYLsUVT+5dgmI3mSzY9T/BhcBT3K8Vbc0i6KmbjMe1jNOmymfPb7Gw7MZ95o9ADSSjSlZmgmNzdhTW5dd+uYGm1me2TvlxRsP0Eair7ZUTc79asZEdWTCcG2ypjOK/bxiltVcm2x8FFnLXlmxX1QUSiOF5fMn12i04tXlAeDKc9xbLTicu6r3xgo2Tc6mySlVR9dklEULE+cu6/Y0WeY1QZ1EHxcxo7FcK4QEoSzGRxcJQXyABZBNndE1WqA7p4sSwkZdUbZ1hmF22wGYZt+xQlbQl8NIcg7FEgPCGayu9OHPjUMGAQA50OAFqb5QrLDeBQZeqOzYI4QLvx8Y/1hR3Q4S5snGA6ZJb0THUWcRjMPOidcGY3fui9H/Y6M9Bj+D1fXoWDIxBGEfMSyeAXAdCKrT46a/DR+Fe5ceHwautOF1JAjQ0gOdmAbA9i68JGJu/FA6kXCKJv3nI/B47hri7znfrDi3XZoQ04o+TxD48ZgwRUFPpCduXECffmHAGIWW6KiMD5MPLsF4TA9cbCjPkbB8wuuAop7KfyZrF9Bg0vxgoQtTIJb3STpNnmjP/LHdcUd96AHMTnfYRfNmHJePn4Afu6/H/Paiz3azQuEzm66bLtufkXYJiN5ue9SgT1cLPOaB3PXdBdsfPneKFJZr8zWF1BwUW3KpOdjbctZNmMiWU+1SNd/MTpmIllK0vDi9z9X9Nc++7y6//zvvwVjBq68fMd2v2G4KXnlwRCE1E9UihWGtXdTYZ0+vc2vijrnpCq5NNjQm43jrjnH/eEGhNKt1SdVlTIoOrSXWCm6fOhdd3Wbc2ltSZh2LhXPjTRe1q3Z/pfFRYmBPCrKVxDQKmblkjGQGe79ESEueaax1jJOUPhlkZgZGNCs12kiktGS3C7KVY4Pydc/khBwreuLvTebdIl5HYoreDWClqzvWTSVW9SJbZ1zcylzVNmqBsI4hCmBL1S4sHyEGE7Nq3WTa7ElChXVwbEDIDZOmAIhsUMoOJZFTwTim7rRzQIohE2Q96Bus2AOLEUOy+xV2NIj+x27/7jpsbmBiosvCaMfYydz4zNQepBSmP0bY1cCv0/82nk/yV4yN4Mj95DrXktZRC8k6XRmUBAx5tjcUe3WsAj4Pzw5jmwKAkYs8aoKSaKc+X5MH8DZlMRjeG9mzQxGc+zGoascGZVt6NiZhmgLrYzKfOTqAfduPdaDPfO2Fvza3TsgcQIzXEKEFqhKRben2w2JA9IxM0BfhmSSZFN1NS3Mk4De4zOJ2Mu3HEbgY9/sF343dWOd0Q4/bzzlA85hXOOaFYCh5/w60t13HzL8u2yUgeuttINbY8d1FD8MbWTXY0XbhiReAdKHs+3nN/fWc03rCg3rO//3pz3JluuG1zT6VybmiVhyqTcxFNJc1pWx598EDXvn8DfTM8PmXb/LCM/epXl1gtUC/MuOTd27x0vIKpezYyyo+9eAW2kjWuuT2eo+rpatv9mA7Y5I7/ZBe5xRS89y1Y1Z1SaE0h/Mt2ru3pLDcPFhyVk9YtwWnx3NmhWN1rt46oyhb5w7Tkv3PuUrkIjcI6fOXWJA3Ksr/MUNJ42qhKRPLhQAumkm56LWuUWRKu30+u3VskHLuLNn6LNdb158mJ7qEBpE01pXxMJmILghTBAMhwNqdeh1h3XbhPgpj+xIg4bd47VHRF6sN2qbABqS1pkLelii4pp/0B3/T4TIyOucYGb9NSpRE4xT6IRVZh/3kxgEawGbGM1iObRBec2QTTUo4ISGJNcysj0Qb6JeE+421vqxL8j4mZoT+/8HFMGR+AgDy54jsNS/RpROSW4bzSJ8561xEabbrPt+OpTlM+tqPjfrI9noWgU9F0I8Rpw9LnmP/LIe8QaFwakgBEcBxHGP+f5MPQXIcH/H/cN12kDHaeoAXk3hKd+1OT5Tcc3+/bGbpZjaWOpG1iEkZ1SYI7BxASjVYgVWVjUjSIPR9G8ZGKngeg6SdQIXRd75zUvfbRW6ugT5LDF+I85890m02cMGNzlGE0h7Bhcs70mx4Vt7W650516/2dgmI3k4bg6I3+gA8brvR9ynFDiCxTrMz2/Dnr3+Rq+WarS54sJnzTVdeZmNchBnAvtzSWsVVteaKWvPC9AHvef9rlIcVthW8frqPmWmsEZgrLdpIrk/XfPrkJvfqPaZ5y+Fky6dPbjALIfb1jOvTNS/uPWTVlRzeOiOTmkJprs3XnG1L9sqKw+mWZw5PMVbQdBmTrEUKy3y/YtvmSGmpmoxMGZomo304ob4C7dM1Knf+J/1UjVCWsmzpvnGFlJZp2SCEHfi929YVjBWSKOoGB5K6uaW64vpVl4Js41bbQjsgEjQYCGLdLoDCi1pVnTBCWbjXgSnyBkiA0BbZODZIVdaX7hD+tzYySaEFoBQMsvS5hVTIM5SEUKe1y6xwRlM2OLdcmOhHjEOctwPgG4+7oQ30gysxMknSvVC8M+4/S97750BmGpGZWI1eZpquDjSZQ17xOEY8evZJryN1n6X/YwfXEABcBCRexySEA2M2c2DOSgcQ0ppsZmoGINEUaShUf50hz4+e+MMrV4QYQa+1CueZlDRJwUrK+KXAQNXESMOBkU8SKw7vB5GJifokiKxhjOgKoDXzEWbh3voyN9bfmxQQik64/tEuZYHJrNMN+Rpm4UYGRs1dfwr4/EIl1TZJhoNwBDpCHw/csLuaP/++/85rhd7oqwdhj9nmQhDkv4v9YPvP3iFAdNmeXLsERE+67XoILvos/fwRpNK4HU2cNmfb5RgreH7ykFe2h2TS8GzxkMrmNFbxXPaQyhZcURvWtuBUO43RLGupTyYII6hvz5Cl5vDqmtnBlv1pxabLebiZ8el7N1DS8DX7dzheO/dYZxQPtnNmmRM0HFdTVqspEsvDzYxCatYPZ8691hZ0RnJ3teB4PY1Zr/NMU9U5ShqKXFM3GeqzMw7/UKFLkJnBdG6mlJnLR1Pkmr15xaYqMEYO9CltqzAjhsBoQdcpdJ2BhfK0F0/LzjFEVoKs3f9BCxFyAcUwYInLPt31oEgXrpq91H3Ycmj51gzdVhbyjfHAxP1Gdg78yMZGBimrggHpQUxkjUyvH4nCXr/vuMKGqD1JQVCM+pLJ/378hesJ15Cu0AM7EsKvo4CasL9QS8y7yaBnbkK0oATrI8qEMv13XhMWMzsL91uRsBTp/R1HwAwyWu8ypqNmPSBwN6hXl0f9i3EiYbmRyFY4N5U38qY0yb0Ug0jA5sgVDQ5pDwb3JZwPybEjiEhArHfRWuETK6ashmAQRTWoq+fPPaRhiJ/746cMIwlbFRJq0kpfqsP2LlE17D/R+vxNQZwu6CP1lHWfqaQfk/In48sOof2BQUwZVfs4K5SM2Z1AJn73Vl6PAjrpNvRjbfRdzNPkt+vZoTc4ob/Ndhll9uTaJSB6C23niuai9ibG2a4VfJgw0sN0Rrpq922OQfJKdUTmLeCpnrEnK/ZVRWUz9uTWR5kZni0e8N7ZXQDe/e7bbmcKrl1ZoqThYOZYnbN6wvXFiheOHvJgNScXmqcPTln4DNQ350tK2VHKjnftHfP8DZevqMw77qz3ePFdd3m4mbEoaqoup/2vV5DCUqqOs2rCelPStorNtqDtFG2dsfclWD8N3VHnXF9doOUtaEnTKqomZzGtUd64Bh2RPi6dXkj1q3rdKredsKhaeLeGBz8K8rUzGpkvmeEAiE/O6CO5uimRzs+2Ftk6nZAwYJRAF9KV8Mjow/C99qeb9jdTFwLVWPKV6Y1EBla6pI7Z1iYZsd3vVduDItX04CVEqA3cXKnhSVfcidFxb4ZjK20DMbXod5bmjeldBv5/4zNGa4EojBPCS4tUTjMUQK21HuAEEOVdm/E8PChJo8ps4q47pxkKLSm3EUGP7RGiEP3L5S5y+416nlaA8GxhKzBzjZkYHznnAJtsZSIkHhrObm56g+jF0PH7BLTFWmtiqLvp9hKWI7MDIAYM8hTFPEOJizQWcNUO6EQmKIyJFI8JMBPTi6tz07tErQfAQecV7lFhEY2IaS9C+gLZSq/DYmcEYnTnyT63k00YnajXCvg5qc33KBZz3OJYHGuGBvPzBa/x949qu4CQ3MUKBTBk39h+n1CzT+h12S4B0Vtu5x7clGZNP4vvufgBSQ3XY0am0NAYxaotOZg4cbIUhqvliv/tmT9mqScszQTpZyqF5cRM0f5Wv1xdoVCaTBqeeeE++ZWKe1+8wrxwYOfhdoY2ktYoCqW5sbfk5e0R+0VNITXLruSw2GIQvLo5oJQdL+w9ZKML5nnDXllhEGgrWbcF904WbN7VcTh351oozXxWYzpJ93BCpjQ8LBDG0u0ZxKxzhtYIeNUrnitJpgzz0pUJUdJ4Q+c6K79aRYYoy13uG9soOm+sVeWKvBYnDnQByM7XHDPORaUazxz1eR7RExcx5kKhXRi9ahwosllvpEzmEzTmbkbMakOxNHFlPLnfIFpDvuoGWbIBl+xROdF2vP8iGA7+f+z9e9BtyV3Xj7+6e9327bmd+8ycuSUTcsVEgkgAwSKAXErys0rqpwbM76eWJWBCUKlCS4WyKqhVCAUICiIoCFQp8DXgLSgXQSoEA/xCQkgmmZlkzplzf+77si7d/fujL6v3fp5z5pwzZ8KMnq7a9Tx77bV6rdWrV/e735/35/OJDJHJicxS0BnFfFvJgL3kUr8KgNLumYCkNB9ZNL1Zlvqviy3jWZ8gRA5sgRcpH0nImvRp46OiB2GzWNIn+ZhC6esiwwX778L2DJJNbi4wPCJ5/ZbMMj2DEHQSMc0HgHaMkBnrvr0SLzUTwgksmbvCJE/C4iQXv9J2aQmgRg/6+tTc69QyJ4qWbWjzZdOYu/YeFPXnIk7C8TrE8v7W35PNrANDoW1E/yxt3jM3Nkz63jQaWDC5kA40hnAFnXCA0tLHFvPXZSXYHGeeTLRRKTsUrnH1cd2qBJPokQCLJP+v/rb6udVvq/sd2de3SfJ/jMgeFwz25kD+fnnJlvuA6KVUbvb+JEDJKudyvtAZrVaczvcZqJbPGl7hmdkJ1rMZE7lgJGtamzG1Bbt6yMLkVMKNtJuFyyk2b3NGwxq5kMwb54qyvT1mVNTkPl/ZM5dOst9UNFpRyI5R1jBQDXOdc264jxSGWVeyW1ecH+3y2Hib/UVFpyW51Fgj2Xpwj1J1GCu4+ulNlDQu3pBxE2exIzl4RGDXWqcN6iRyqtAT7SbCTnjTCVFEvVqkdALryDJkxtU9aVALxwjNz7i4LmHC6QaCfGqjbiebOg8v1QjHKvm3Q3bB3OCfgT+FA0KinzAEYAOD5Fe+QDvOULVBHbbI2vQrf7+KF8blVDv2mYc5S/dgR/qErlFgm9QVAUkAErYnTVIwlDajTJgIYTli+nAshOhBhBFRcxUTtPq2D4JoqVz72wCORNJwnpVINTzRpd4IrJFHYhDZVJ+y1D6OgbKBNQtgJF2pr7QnJBNqvGkSFiMBAbnpQarowUkAD+n+bkM4Xw/KIsMmV7+7CbQb9+wJeNNuEgLCeFf2GDvIX1tw108ZodRs5rzlTA+aBVivoaI0/fMLoDI30XwntOhDFYQ2kmCGAUwRo09b/2zlQsZzLx0XLinVEKXY6biF4uricKlOEgCULERvlSrjOCb/dgDR0r49gIxgCI7GwFo99kUufxQms+/6ru/icz/3c5lMJpw+fZq3ve1tfOxjH1va58qVK7zjHe/ggQceYDgc8mf+zJ/hySefXNqnrmv+5t/8m5w8eZLRaMSf/bN/lgsXLrzgNrnbch8QvYDyvH0oDPy30ddWg+Id3aGvslId47zhzNCpfpWwvH/3cT5/45N8fHqGoazJ0UhvKgvFIDlVuKz1J6sZ69Wc2aJAWLj21Akuf+wUZp5RZS6r/XPTNVTuYg3t1AMak5EJ932gWiSWuS74g2tnWCtqNvI5n5puslYt2BrOaI0iLzoK5Wbcpy+eojw5R2LRjaI8O6PTEqGhfrRGFcbnqjLY9Y5sw0UptMqipMUgUMIgceBHCOvAlTIoZZYiGwtpUZlBd5LiwJnLTG5pJ96zByj2Xdb66oaLWq0rHyXau9/rgXsmJu/pBV2IKJY2WW8iC2k4AluUzY2LL2Rd2o9sf4Gc1qjW9M/SC2KdaNsuAZUwiQlLDMIXclDFT6IriRGs037ECgaJA3naRyFkXY8r9ZWUE1EfEiJXFxpCmgtlllNrrHbbwodEyEysy8a4OCnjk4CiTkTzTUjwKrM+rks8z+pEFLYtMUTu0QnZf4BeTBzBj43bASfAFo5VCQEenWu7wRTGm9FsH7LAg7OUseuBsweloQl83J80UGI0UyXatWB2irfiAYrJbfQ4TG/VpkL31e/hObfS4TbtNVshbpS0yL3M9TkfpDECIq8Js0F/JZwpbUkrh+ufKdg3RQCay9cS+mDfj1cXA8cMgP5ZL5mE07/HAaSlj9/nTsXXMvmki40l7ZL/LZjPPtMGKHuPPndQfu3Xfo1v+qZv4v3vfz+/9Eu/RNd1fPmXfznT6dRdkrW87W1v46mnnuI//sf/yO/+7u/yyCOP8Na3vjXuA/At3/It/PzP/zw/8zM/w2/8xm9weHjI13zN16C1vtmpX9RyP7nrCyzpSvzYEgbLYw9eOXZlHDiuTmHhkzdO8LrTVzhsC2am4NJijUeGNyhEx0PVLk/XpymE5tH8OoaOXGlaq7ihJ2xlhxgEN+ox47yhuT4gawXFQtCccmkuLh2s8YaTl5h3OedP7vDgcJdzg32mumCuCwaJXel3Lj/EG89c5Ex1QK0zrs9GbFRzFl3OjYMRJyZTpk3BrMnJq45R1VB3bobIlHG5xzJQpU/zIBzLkFUuw72UTsvQaUmVd0faDqBdZIwnC7SRDMqGmSnJMheLCGB+Csodl82+3IVyrz84W4TVuUDNcSDID3wmc0lfrYLBdUM7FuhM+NxkDhShoJga2oGAQjivNWEpdxra0cCBAQumzJ3zj0jAhp/4hLbYwumJtBRxUpGJUDc1NeiKaHoLH1X7STfkJTtmRX3LPhouaaUPBrBF64CBzU1cEatK9xOrZYnlEd6MZlvhYjcJi7EkSWJXkFl4F4JQu5Mu/1lgPkwPZmIy2eMmzjDvptWnICWcR9CLjQPbFfbXPoxAK7142AOHhDkQzerLip+wAyiycbkZ2L1ohrIu0KGpksSn/j4DQ2dtCJwYQMYK0orUH3E/97wccLT46w3Rt73JC4AsMedk1pkr21BBcj8BxGr3TopaQm6RU+XNZu4SZNf36eBNF/tCwkDF6wved7h9j/TL5N6OHTuPYwDDNd+iJLKu2yrHyiKSc8X+Evtafz3iOEbqxSp3wfAcV8edlP/6X//r0vcf+7Ef4/Tp03zwgx/kT/2pP8WTTz7J+9//fj784Q/zute9DoAf/MEf5PTp0/z0T/80f/Wv/lX29vb40R/9UX7iJ36Ct771rQD85E/+JOfPn+e///f/zld8xVe8sHu6i3KfIbrT8gL7XSzJpLj0WVq9H/MGW+g+vM5hV7BRzlmYnJPFIR87OOMjUruM87nouKzXWdiMXT3k2fYEAJeaDS7Xa8y6nB2fj8xmPghd5WbijWrOflvRdBmZNNQmwyAYKWcuM9ZpjForef3pS5ypDmiN5Go94YHxvjPpdRknJlOaTjFbFEhpKYoObQTTWclgsqBpMrpGsTjngE7+iYFjBLQLqmiuOQ2R8OYvJU0MIqaEQfnVs5nmCGGZ7lc0bYaQlvYTE4x2edPU3Ae2a1MA4bRAg23N8ErH8KpmcMMyvOQ8uoKbezNxoMnkLuK0zoWLM2SDKc3SDp3pzIEH62MdabLagBDoAprNgm6tohv2r9xqvJnUdBVNZcmYGq5dNkRWJwCgkOIjTQ67xB6sMEWhvmCyIwVTLK/aHWsheu1PI93+icDatH2YZmtdTCkMiNxgFulvHtismhg8QLLG0x6e8QvgKhxzxHS2NCklQSPDZOnfKWs8GArvmF/1CwEUjuWK+wQ2I4mZE8yGSBvF2L1mKWnjpG1TJi8wTCm7oeYifrC4WD/BFJa5hQCCPvpzSh9aEVkum/eb44XEpKz+XqJHnxe0h+s0YBuFzc3ynBhNwCICGls4AGkKH3wz6GtwddvMMauOwTJ9PKoE2ESwmIiVop4qtGH6XI8r0UybtPFtfMJ5j6T5OO4TmKRjGCIX2oP+92PB0PPcw/9hZW9vD4CtrS3AmcIAqqqK+yilKIqC3/iN3wDggx/8IG3b8uVf/uVxnwceeIDXv/71/OZv/uZn6tKXyn1AdDflTjv6LV6OVYY1YqCbxY7xxxgr6IxiohZMtRM6X23XONAVuexobca+rsiFjoJqhWEzn5ILw5nBAacGU6pTM0zpxJy2dSvAnfmACwfrLLqMWVtw2FYRAHVWYRBIYbgw3eDBwR7aCp46PMnF6RrX5yO3b6doteJwUTKsGqyFpsmwVqBrhbXCsTjzjGzcovcK6rPdclC+9TaaW5QyaCNd2g7fmDp4JlkwRlJ8unSu9q2i2HGTq9GSfAY6h+oGjC5byj1DtrAUex1qoclmHWphWPtUw/C6ptiD8obzsFqcsuy8SmKUiBOjzkXMfK4LQVcJF5smd9Gsu6FCDzKymWZ4pUF2zqTWjbOYe8o9Y9v3gfCs00l1aTDvn/2Rxac3l4XEsUuu2aL/blIRdgKEoAdDq3nOYv/0E6AN7vcJWIm/A1bL3nspiK8L4wASROCxBIpWFwUAWi4xTiEX2hGzXHqMN1kt5ePyn6iVSRcZHiiFc4TrAxBzFQXmwufxsj76dZhQHUj015iY8VI9ELA0ygZAEABT0CE5UXP/fKyiF61b0eewC6BK2Ggutd7UFoMwhutLxcBGOHF4WnxTyIVE7WeuX3WiD94Y7ruwPZDBM0LgTGjSOtOaspjS9CY+61z2Q18zpQ/NkABFhF0KfnnLsvIekDzK4/e3Rz/P9/sxJrYgll4yC6+a4TwYitHy4//Pc0/3qNzLSNX7+/tLnwBsbn1+y7d+67fyhV/4hbz+9a8H4NWvfjWPPPII3/7t387Ozg5N0/CP//E/5vLly1y6dAmAy5cvUxQFm5ubS/WdOXOGy5cv39tGus1yHxDdbbnTzh4movD/LeqMgy0s5QJKB4Dt2RBjBZfrdU4Whzw3W6M1iq1sirGSa92EbT2mtcpFqRYtjVUYKxllNXOdc2F/nSLvkKcWqIUg281Q+4qH13c5mFacGh1ycjCNMYeMlWgr0FZgrOTCzgatkXxo5wF+/5kHAbhxMEIbSZ5p9mcV9dwtX3evTDBGsH9jRDVusOAAThIXRow6NwAdOJZHCIv2E+nhtETbPqKqwZnclDJkGzXaCEYXoT0sXAJb5V7ydpFRHFjKXTfptwMHYJqxpN7KmJ/MQQq6oWSxmaMWhvEly+RTluoaDK4KdAW7T0iKA+OSsQrH5ugqpO0gDo5dBc1EsDhVogtJdtC4fGhDiWiNf6bEeDbYfnI0OctAJWEYYoLM0EcSb6OoI9I98IkmGpK6kuB+aV9Mc2mFbRGrSOsm0kTfEo537uyuPeikAy5pJvuF6kHJ3J3ABl3KajDAJgAp3ASbgKXgdWh1EG2L5fcpADyb3PMquypsLwAP59ACEe4puOOH47IErCYeTTY3bqJPgVn6vup4uiQ/nbs4oYUDOeGdXvUYwwMhTQRN8Rn4/YNWJcQeCsL06Pmmkjg/wvYmvyB8D/nafPuJoO+J5j2fcibopnw72MCMKOuCWIZnJ+hznKXgxusBw3ORrURXpr+P0OeLmw2GSdveCgTdDNCkx97kk+rKjnw8EEqZofgJzFhYLXgA1IMoe+fzwwso91JUff78edbX1+Pnu77ru573/N/8zd/Mhz70IX76p386bsvznJ/92Z/l4x//OFtbWwyHQ371V3+Vr/zKr0Sp45L+pfdjEX9EieDua4juQbkjU/HqvsccG80oZnkA6Ccp2PvgKYovu8bHD06xVc44OzjgwmKT08U+C5NTypyJXDA1Jdt6zIEeMJQ12r+pxgoe39jmdy48hN4tkQLMmRohLQud8cTpa4zzhuuLIWv5wkWkLmYoYdFW8Mn9E0wGNdebMZ/8xDkefvwqEks7z2iGCollcVhSjt0KQ1aa7qAA6fKRaSNomgyMY4zkpHWTnwU71nHA1rMcNejIc82NaxNOn94HC9I33KJTmE4iSiecFrmm2M6RLZj9AjQsNgSHj1qyQweahIHiUGMyB46m5wrKfcN8S6KrDKOgHTsWSDaQHziwMjutkK2LFyNx4Cc/7J9PiCnkzGeCYtcByWxhaHKJzSU67yNXS22xuYzxhqg4MpDGBWhw1/e6otQNO7IMAWjhAJQI+y+ZkQSBxYgggt71XrZgiqTfeXOZzfoYQnQSVWiflkW44JfebV6EHGLKRhMsFpfuw6x05vR7kVCi0dzVA+DeU83vr2WcrITw/Ub0L4m1xEStMbAgft/we5JwViRBCVeZKJv5eDyhzs4BG5ObqKkh815n4bkY39TGnzSJ5xQ9Bv18Gv8X1uuXwon7pgp5yaxyXpcRfMCyq70ApHVyIQ8crRekRy+vPAAaE1mjkOg1eGBK7RYdIoC/5HmFQ/FtAfShCaRwKV0C8I3Yyz0HPTQOFEK/T3KvSyV93qm5MNzLcQPv6vuTfr+dgVrc5P9jB+pwjgQU+e1CwJFE4C+D8uyzz7K2tha/l2V5y/3/5t/8m7z3ve/lf/7P/8lDDz209NvnfM7n8Hu/93vs7e3RNA2nTp3i8z7v83jzm98MwNmzZ2mahp2dnSWW6OrVq7zlLW+5h3d1++U+Q3S35W76+i3AUDRNCJbNZf77qvcQAn77wsMAFFKz0Dn7bUVrFcYKapOzsDmtzShFy7qaMVELhrIh955i+21JVbaIxgl5rRHICxXDrGW3HvCHN05xspp5E5nFWInE/R1kLQ9O9vjojTNQaSTO1DYY18wWBdo6DcmoaqibjHLQkk0apJ9IjZGozCALjSoMZpGhcpftvliraesMM8/IRs7cJj1dLYWNYMggGBYNk7U5Wktmr2qQmaU+qTl8ZYfaqFFbDZMLOpqVql2DVYKDhzKnCSoFs9OSnVdmNBNBMxbUG84EtjgJ7cTlmcoPoB37OatyYCkwOVJbZAPVjqHc0VS7mmK/c3qieQvGASW10MjOUt1oyA81orV0pYuDEwI1rj7nnkkiTp6pOcZKYkC/kFYkLJKDyccxQCHthF1ml5ZMO97UEr3A6HN9+aSeUvWd0xrHCokgftbSMUB1UmnInu6fNdYFcUSLI5NXvKfAYFj/EkRWSPTvTZigjViKRC0SBskaf53KJsDKt6tw12Y7p4dy1636Y6VFLuSy91miiRFGONORT2chwrmiScWxH4G5S9NpLJnybG9Owqe5CIwLKtG6yIQBypaFyDb3Ocdy48xYwT3fX6vL5WZ60CeIDJ3Yy2Idvdu8wAwMttJ9AE2IIFXUsg/D4EEanftufQ5CBhoWvdkx4FwgxnB6XhYlgqF+LFwNlXCEvfHPNnyOM4MdYXuWWJ/wSR7QTY6NsbFWGKLPeLkTIdWtPsDa2trS52aAyFrLN3/zN/NzP/dz/PIv/zKPPfbYTS9vfX2dU6dO8eSTT/K///f/5mu/9msBB5jyPOeXfumX4r6XLl3iwx/+8B8ZILrPEL2YZYnDv9k+3Bxc+RdTLNFERG8RKSwnqynb9ZDDtuAtJ5/m2cUWY1UzVgtmpuj1Q8K54E/kglo5M9Z+XbE5mnHIWjSlyEbQGMW0cVGkAZ493GC9WCB9QDcpDOO8oVItdZtx4qRL3Lq/N2Q4rim8N5jIDNNFQX1YMlqfI6Why5x+yPhVuGkVxahBdzlGS2zr0nLY3cLFRfG6ISfGPb6hMmVYgDPLlBq50YAFvVcgJy3X36Aot338HtwArUsHbKbnRGRcdBlWvq6du7Gh2JPOq6t1wKIduoncZMKJonV/TboQVNc72lFGN1RYUVDNGqcfGjjxbL7fYkpFNutoNgt06epxwmx/fauMcpjY/CewOzGCeZsck0wecRKSzk07ALhAtoRtafeK0Y+DKSztn5FexwuQ3YE2ASbO5GL7eWGuYNj1DE8o0t9YoGwkjh1JzhXpq7Qd8OcyuAkeHFuU7OPnbffV4sxCvh2imSywNd5kJhqfpiKY8oxwnlSEibVvt/Q+hO4b2pmjkt8CiPXvsVViibELoEDWsg97EN34BSazLrdeyhiFawnPOgAwP6mFNrFlwsQEABSeYSf68ANJvbIV0OFyleUOtIrctZXVsm9vfL8JbWHpAZZw4DMCtpuMgcK6e43BRY8rIt05qSYFQ2HT6imO2efY7+m+t9onnscu7bcafFEk1/iZCsx4L7LV3+nx3/RN38RP/dRP8R//439kMplEzc/6+jqDgXPW+ff//t9z6tQpHn74YX7/93+fd73rXbztbW+LIur19XX+yl/5K/ytv/W3OHHiBFtbW/ztv/23ecMb3hC9zj7T5T4guptyL/r5Cju0KhhMX9JIUUMyYEJzYcTviIfYGs94eLIT91/P5lSiRcl+dK5EixQGJQwawVY+4yl7gv3p0HldNaClpdnUzNuc2aLg7MY+nZWcH+8y6wouTDc4PThkpBqGWcNC5zy6uU1jFE9++ixrm1MODyomJw7Yn5cUw5b62pDq1MwFVBRgraHTknq3otxcxBxXatKiD/K+CUYd2dWC7OTcERRGUlTOSy0twrdF1yq3ovZzrFAG0zowtTirWf9DFQGRqi2jS5bdV0raiX8WHjSYgUEdSvREYyVMHzeoQ0V1XVDtWJo1x+gEgCRyEVf+s9MSXVRUuxqdC2QnsVJG77FmPWN02CHbFps5obawUK/LqB+KJpfQHzz5YqQDMLpkyRsMnIkLiGa1mKNstb+lrvulm7ytT1Wy5AoNRydoz8gIaVFVF7VDNgCCJIu80AJCgtJKewDTT9bMlbvOPEEPMTO6q8eGbXggHMw1YZ6T9B5nQRdkRbx/4cXPS7GLgilsSaPkwUzlwgnYNhyQAAjrWQDb4zRTGuRCumcz8PdhYMnt3vdP6/PBuZhKASiJHixZErf5BFQagSl6E5kILExg2LxQWvi8ZEtsRusQj/Uu9raV0ZwpMhOZFltYCPn7UuZGEIXoVnt9VTTNWczA9s889NXUtBa8DFf6lTueqEm6ZUmBkOi/r7JBq/vf3OwFywPvMac8DhwlTNWRfW8Fyv4PLj/0Qz8EwJd8yZcsbf+xH/sx3vGOdwCO7fnWb/1Wrly5wrlz5/iGb/gG/v7f//tL+3/P93wPWZbxdV/3dcznc770S7+UH//xH39endGLVe4Dohe7xFHUf09frmRMTouNK3Q/IGQurkfIdxVKdiBp6px2oJhkNX9wcI5Cai4v1nnL5icYyZqZKciFJhc1GsmB7t0g18oFUlim7brTDmwXVA+6oFnjQU3TZXRGYqRgnDktUCYMl+ZrrBULfu/ZB3nVuat0RmJbFzNobX2ONoLZ3oD1E4fYk3OUMhjrzG5tq8hzjZoquqFCZpauVW5yKw0cZFFEqx9ckOHAjmklw0ntAjRaQWck+4cVa+MFxq9MKZzJTSpH26uTC6cvWms5PC858WEHPtoRdCMfhDG3/WQwcjkIdGEcA5FZaCT5gWD/VYbhBRfksRv6+cYDoaC7MMrFOrJKoUvB4A8bbK5ohzLu205y8oPWxR4KHjcyATLQm8Wsm2OM7LctJfjEuTkHs6pVPg6SZ3msn6RsYAiCJkf0YKiPgJ2wMemi3guRA3gJhI5QNoIhm2pBgjdX6N/SgQyRO7pEaAGDDrHC6qRgCHvUm2x1BRtd6NPi64gRoZX3hNMCioSuUaYHcaEYgfV6o/gswsStRUxXEu5JzoLoyjrNjBGIRvbBEoNbur+/oPOKDK9IzF7JABDi9ERPLtH/bEOOtWDGFO57jO0TLtCLgS3CLxg8GJUu5pDz9HM6MD13+qeoXQqALLBwPhZTEGNbSy9ED5q0oGfyiZgRuGOTxxLb0qcIQdjISsfhMX2eK8DEtamvJ3gC3owxOrISSOtN/r1dZiiCr+PB1HGgTAh7T9bNt1WOexfupo472f02KKV3vvOdvPOd77zlPlVV8f3f//18//d//51dwItU7muI7kE5DtDYY16SIyVdfTxf/cL2Ytow4QB54QIvHnQlhdRIYRhmNa1VXGnXOdADWqs4MAOutOtIYVFY1rI5jVbszyvGr9il2bAMLkvq50ZMm4Ibl9Y4N96nM5JZV7BdD+mMpDGKhc44bEtObx5wfTpi2pSsnXJAqmkV07qgGDWMy4ZMaTotmc8KB2TmOfODClMZykHrXbDdxCVzjdTQNQqRGfKqYzEtMFcrhr9fURUOeTRaoYShLF06kLZTdHsloz8ooJOYnZKuzlDKYFuJ1RK1ENFU1g2gWbfooXMVNpXBDDQi1271nBlE7iePhUQtYHDJR9Te9I8uiJe9h5auiMHvuoHA5R+TLM4OltzsbSboRhmByhLWXdNSqoYEKJk86Su4Z+9yqLl4L8LSm20SIJK61IdOZDOvNQmAywu0o/5I9vcVNW0JgJeZQTcO3JlWxpAHcUII11Al9hQtorh7CYCkgMe/MJH9CfGAvPll9QWLUa9Xy8o7F4Ca00V5D7XUhJMwKiLRTAkDdAI5U65tg8u4dfWIRh4Ni2Hxbua+njB5h4jex0y2EegED7Do0eQARzTBhTrLRB8ETshsExZG9vcQ7w96ZieERgismAV8Kg/HPrlz6nHXM01WILrebA0JkxTu07cLPplvGp8q3KctTNQ6xQCRKyx4OMauHhsE1IGBIjn+OH1PKtBa+S24xsdrDNu9V+utPsv19J8j3m3h8j5DjNH9bPf3rtwHRPeorGjT4rZYjrN7Hzeuh0lt1W4eDyIOQt3QeWydHh7y7OEGlWqZdQUb+ZxDXTGUzstJW8muHtLaDIUhF5r9boC2krrJOPzkBsWucy8XJ2oOFyVy7sTZhXIC7E9cP8mZwQGF1NQ64+psTN1lziTVZghh2b2wTpFr5hcmnN3cd9dvBc087wP3+YFjeOYQEzQoYcULZA/OMHsFCGjnGUwz7EbL7Lwhl4ZZk7O3M6Q1isW8iG75Ythx+KoWcahg3C2BxurpAj2wdJUgP7QukWswjVjhVs6ehctKjcoN+aB1E9pYMz/rJo124gZntXDAQdU9aAneaMIDlnYMi5MZovPPURL1RmqhEa2h2O8jb8f4QeH5+mKSXFXCOjYqmLOWXLiT/rKaz8rVb3vX/eAivTohJ48oFTBbr+8xWrr0KgnzEZiECJziROkmvqWFpFqdzJLjSCYQr0mK1xeASDADdf6Zm5UXLmmHSDtYIhAIbMmSYDuZiAHPXrj7MIVx3mWHamlys4VBDwxmpN3+0GeK9/ceYhchAeWOiS7ysgdKy2MEcVvqQk9u3fEhYjYOBItW9N99G8V4Spl1rFxImutN00JZZGZQhXbvZCd6Eb4X34tOYjvp+lcQcwcTnW9b4QGbS3FCAuhs/z5L37ekB1Bp+AArlgXSwh4FQuHZJAArBslcBUEpgl8FPysgaAn8yKPg6GafJRCUXHda+vNxv7wMy32T2R9FCQP1KtWZvvR2Zd+kWP9SqlpwYjRloTOe/fRJRq9oqFRHKTtyoZmoOdpKDkyFsdK73btRqLXS5QWTztU2RHE2rWJxo+TR1z7HYVswzhuuTCdURctc5xy2Ja9av4bEcnG2zm49YN7kTKcl2eaC/f1BdKe9tj92CVdbiRp0GO/VM9ycExKBmlahSkdLmN0CTs9BQDH0bJAR0ElOvuJGD6CmOWyCbhQzSqyBYtDSKYvYztCbbsBv5xnFxYJm0yDnkmaNaBIxCvI9gR5AlzmhqSwNupXIzNA1ClMrNwnklsUZF3k331PIGopDnIt95gZ/6cGO8ROuqoPw2rnhFwearpLIQ41sNLJukW2O8BnstUrAT9T1EM0YsR/4vyHLeARR0E88hJhGyaQMMf2HTUBLNM/6ukN+tchWeBMKPjZNcP8+AiyAqB/xndR2MtYlZLhw26O7sF/av20ywXv2KQiibag/6NFEaCPRnzsuPEIKC19t2CyXzxv0PjY9b+rlJnCBCZPrthmI3AeY1A6o2cIgOhnF4fHdTc14iaYJk7RbaM7U1T9NPhu2BS+0IlFmJ8cJCaLQ2EY5XZCy0bSZhhgA/P34L62Iz1O2Aj3SPSLRfljyrJCQzhRkTRCnCyw2CXxJNKlZjGsbb25NlQNBm5YSdtEEl1xn/C2wbAFsRP3OMQvNFW1P3HZkP46W49j8tL8ed8hNLQA3P+ael8/gqf5PLi95hujixYu8/e1v58SJEwyHQ974xjfywQ9+MP5ureU7vuM7eOCBBxgMBnzJl3wJH/nIR5bquOcZde8A/d/UdLbagVfrTCfCm9QnOvj01S02ijmiE3zsGachmnbOVVL7QXNDzZAJHbXdjZh2JRvlgs3xjPZEx+xBl4U9u1xgBpq9hfMU+NTeJucnu+xeXkNiubEYAjDVBYXSPL52g/kiRwgYVC1mv+Dh1z+HNpLmqqtDlpos18y2B4xPzJDS0jQZxrMAUhlsoxCT1t+XS9PRTHMwgtHWDCFg93DAdFYyPOOC/xTDhrzoKAfuOJVp9DmndWoPnNJY1c79OVs4c1e96Sb9wVUXQ0i2AjWVbuAOQmErkMr2QSPDKrkw6KGhG0OzBu1IkE3dpJzNXXqPbGFRtfte7Wia9YxiX1PsNKjakB92oC3tiSHzU0WMd9SvqN0zVi3RjT4++wT8qAaEdsyUbJIV9UqeKCC6aaeTvU3A01L/86AoapAsLkaQtMhSO0bIs2rHmZ6wHnz4NBdLZrLg4t4ui2vSiUkkjI6NLvUcYcKWFgxL71UCmOzKij4CORG9Fp1ZTSx5ULln7p9HiI80d+Yz4U2GUWhs6fVZmYnfI3OUvLCBVUlZ4BBpGhwwDYA9Lo4y4wCPJeZcI4CizEawEZmUcKveW9J6AblN2CP3v3QODYU3wwXwJ13MMFHqaOa03qyGby/ntNAD0BB1fInhE+7erY95FPPQpQu8lBU6ZkyNrJJI+v4qGPLbUrbnZgxQDLgY+kRq6krYnmgiSx9cUo6Y0uL29POZQyj3TWb3rrykAdHOzg5f8AVfQJ7n/Jf/8l/4gz/4A777u7+bjY2NuM8//af/lH/2z/4ZP/ADP8Bv//Zvc/bsWb7sy76Mg4ODuM+LklH3XvWf1ZWMXXn/7NHf0+PEpYpR5mbEE6f3OVvtc6I4RHtGaEPNGEqXfwxc+g4lDA8PthlmDY1WZNsZxY50Zp9DUFPFosnYX1TsXhtjEKydPmSgWjJhmOucTBjW8gXPzdYYVC1SGZpORQq/6VSMa2KNM7cI71ZtjBNgd9cGUDs3+zRruJp7kbQfwMuQ1FXAZLygyLXTDbXKpfRI0jwI5QfB3OU/C6YlNXNu992wD6bYDSGbgWh9BGHbi3mFNE6cHVIiDDSilqipF0h7gbv04uhsYam2DaNLHaqx6ErQTCTdQKAL4cTUU9ffbKFoxxld5VzuI/BNdD/aa4fS3GShDUJcqoBxpcaJcMOk6EGNyRy74SrsWQthibqTmO/qZkXiGIR0Igtd0wMM4aM8i1R4jPtrM9NHiFbWRTC2aQfu2ZsYV0gufwd6nVRawoSa2KojEbCyEInmMnqgFM5/hKmNLJffJRFYx3QUJMd3ojd/rwK1wJqEv8G8KEhE132FQXDcX5eIk37UFUl6Lzrp+7wXTVstvAbOx33y1ySEM5VZ48A+wiKDODrrQwbYzAvRwzXkXjCeOTG28HnpbACCoUiOpGSJQvw0/pGwvXnxZszLKvBJAP6SqSxsThihW2p9CHUu9/mbA5ybaIlYBT8r/e0zXew9+twvL22T2T/5J/+E8+fP82M/9mNx26OPPhr/t9byvd/7vfy9v/f3+HN/7s8B8G/+zb/hzJkz/NRP/RR//a//9XueUXfV5u82Pv8xPZCxycqaSPsv1ZPWd8yLllgFUDPB/3j/GxAWdveHjB6sudpM+LzJUxTCiawlhnU143o34Vy+y8LkTLuSRrvcYjEOT+WYh3xPsvj0hObsHJTlxnxI0yn22gE3piP264onNq9jrODCzgaboznTaUm7W3Lq8RsIYdneGzvBshGYWtG2Ejl2GezbVlEUHc1AI6cqxqix2umNNp8R1E8AtULWguysd82XBukHpcYLXmQyGAJ99nW/SuuGbpAvDp1nmdAwP+1YlWzmmB5hHSgyWqAb5SYOBKZx5xCdAK2QtYxan6AnElYwuGEpd1p0qeiGkuHljoPzOap2D2p2WjG5YJmfyil3NKYQVFfmdNWIeiPoYYjmKGGJCTtN7lODWKJrNqELif5/oYGc6BEVE7JasRQfJzAUwSQjGuHn3B6ARtNNkiBUhP46zRCDLjJNEcgG8BIiWxu73PHDM5JJ5w392V9z0KwsLc6D8Ps4vYZeeY+W3huLQPTgx9nGesZJ0Lvtg3MbVN5jqxVOsCzx2iUP0grHAEWReAL+YiBL5fpSZIgEznwVWRN83cnvyfO0mUFY2R8neobDWg8y5gpy2+eRE7gEyCmAzJbzxyHAeIbOhDhEApcyBaKo2gE82WuDwMUkkhaZm2i2TtsUaRHSYIXqQbIXvouc3jxo6Vmu8LBCW/qSko6xfbw2aTkpcP+OL/9lpYLlssro3Mty215r98tLtrykGaL3vve9vPnNb+bP//k/z+nTp3nTm97Ej/zIj8Tfn376aS5fvryULbcsS774i784Zsu924y6dV0fSXQXyrFC5zvt/OkgngKrZAEj/ISTjgHp+cPffM89xqLoWM9mnMintFbxVHOKQmiM1xENZcO2HjFRi2hCG+QtZqulfWSBVU4wrBYweE7SbVcUg9YlU/3IhEq1PLC+h7GCD189y2FXcGb9gCprnUCzMOwcOJOabiTFmTld4/JZyUI7L6WEzZGldlF5jSDfqGGegRbsvLFzmeyNm1ykcBGqi7yj05LDeenNWi6mEfTAKAokjcBOc7rNLgaoy+auPXXlWJ16E/TA0q5p9Frn4us0ElOr3n24c4wQBvJDN9GZ0iK0A5DNBJqRS//RDSXV9YZir3HaIQHFrsYUsP9IRn5omJ3JUAuDzRSmEDH+UPjIjjhBGNUDjpC7KjBDabTp0H9k4wFNcIM2LAl3o7ki/A1B/3xfjDmv6L8LH34gZJ6n1O75rQqaNX1U47CKDv01EV3bJon+bP1OgakIZriAFdSKWS+wCoHpUX09S1qUAATNynGJfiiY84S02E7EjPfxXfSeZnGy9nGAHJDybZhqhbxZyGbGtX9o+8ybjFKhuO1BZzShZc4kKyQ+b5xZerZB+I/xIQDCdUsQyvQ53vDgyLOdKWsnVG9GiiY0r5GLTZwZB2oOsxiB2rWbcM4OyviPjeeSucaaYBMLfSD0i9A5/f2mrFhgNY8pNrn3ZY0R8XMsGBIOnAU2R8rlT2Bz5C28ym5VbumFtrTjLau5x0Xco8/98pJmiJ566il+6Id+iG/91m/l7/7dv8sHPvAB3vnOd1KWJd/wDd8Qo2OeOXNm6bgzZ87wqU99Crj7jLrf9V3fxXd+53ce/UH0E8aRdydMNLdTwsseqgyDVnp8OuGs1GsFfeA0RRR+fvjgQdbzOY+V13ikuEEuOhqhGMqG2uQYK7lYbzBULcOs4aHxHovTGXsfOolsHWiYnwE1dxPscNBweWeN5hEXiLGQmtecuMJHb5yhMxJtJFJqyrFLtzEa1uzXFep6gZrUdNdGlA9NaaY5ps4o1mrKsiULg/jIR7X2HjRibGK0ajWXTsAqLI1WLJqcUdVwsJczGNcUhT82DErggJIPHqhnCgqLUZpyT2CU4OCVBjMwdGNBeV0xvCyYPiTRRhDGdOYKOwQaJwqWjSR6YRkXCFHuOtObMKAHMHimQzbGzbXakC2cmLpZd+kLTAF7j2eIDsqhIt+pEcbHdkm8wiL1r0HpBAhZnMDVELOiJ9hgaTwLDEUICCi9O7Ww/YQUXbWFj1cTulvoZ8kE5gIKeqASwEgA6uEgRTTjxA7qQaWwYLWbPOOyPAVmfn8H+FY6etAhWbHym1gBS/T3cEwJ5pzVHGY0jhmKTIkPdhjbWq6Ar1Cf9DGVUpf6kNLCOlAaBc2RAbLRQ1RETzmW60jvIbBmhY3JVpdYmdx9dyErvDmsNF7n459fYIz8czHGa6ACqPVmNlMZsm0VTW+hPRhpJ47PrDMbK4vVkshcgUu5o2XvfRgecSc9i9WD08DqhTZK2aGlskQTJu0joEfMCRiSy+Ys9zet4ybniY2e7Po8oOiWJX0PX0g9d1LCguqF1vEyKB/60Ifu+JjXvva1ZNntQZ2XNCAyxvDmN7+Z97znPQC86U1v4iMf+Qg/9EM/xDd8wzfE/VYz495Ottzn2+fbv/3b+dZv/db4fX9/n/Pnz/sT+pf8bkHRqtmMY+pZutib/x7FhhbWBjWHbclWPuPp+hRvGj7DgXbC5tYqNIJStpzIpxgrKGXH1cXYsSzSIhvHWJTb3iQk4OCwYjJe0ByU7DYV07Zgpx4ghWVvMaDRihPDqZMblB3rgwWXttfRI7dKs8qSKY2pnJAz6IGqvONAWmwnyXNNVbY0aoAQluLEnKbNsGcXjHxy2L2DgQsmN+hTiAhBdLsPJf9URffYHIwTS+uR7gd3cDdVGsihPmORTUZ2KOjGBrmXYSrjVuoL56kTAuRhhIvu7KMGtxPPpF13QMMoQdY4d/rF2QGqtszOKDpvhgzCa+e2bxDGYJSIhMgSUxgW254RAgd6pQb8Al2XRFCRJnoN+0bzlUdBgj4vVjRzBUbE9rm+ohnKe0vFQT30vzRicdqmKRDC3ZAL/LjMEIg8iVFk/Q2ESS1NbBpBrguYuMTyhEYL/6fXGABY0LNAn74jve/am8iUB0iBVWukMxHNVRRBWx/vKQLG9Jy+PaLZO4jVE1PhUvJV75kWvciEa2db9CYqEXKvCRyL0kjH4mgc8AzmUIP3dnPtIYRFezOvKpwAXmYuYjtBUGyStgqmSi2QtXQBRpO2jcloc4NtpNMlZQYrbGSgALpa9c/D643MQrnjfIRsIcF2vWl0iSUMf1M0G4mLBOQkoKgXTSd9JQVCK0P7zcCJTcbhpeu5VblPpvyRlTe+8Y0IIW4rMCSAlJKPf/zjPP7447e1/0saEJ07d47Xvva1S9te85rX8LM/+7OAy5YLjgU6d+5c3Ofq1auRNbrbjLplWd46028CisLX/jeOZ3TuBoUfd0wcmN2/1Wt2OdgecunZLc69xomqZ7pgakpOZIcx/tDMOs+rXGiGWc21ZkKjFXvPrpNZgSnB1sQUF8KC3inZnWcwUzGQ46hseMXGDZ7cORkv6fzWDtemY8DFD8q3Fk6ftO50Q0XRUS+KKIKelAuubZ+ADechlkvn32s6RaYaF8hRSwaFOz7PNYupYm86cIN+2XpxtnGrXnBxcmriBJHPBBpLcT1j6knEJX1MZl3aCwtyvSF7ZkBnJcb0DEp2KN083DndkbCgGzdxdyOoPqHpSokwFj3M0JWiHUlmZyRdBdU2CG0p911kXqFBl4J2s0I1lnwGpkjAcZjjte9iqn/eRvUhXILewyg/4foOdpxLfZiQw+QXWaIAVsLcFOITRZbI/01A0lLqieBlJT2Doewy1rc4BsAzIKrU6HnmdV7ETOsIXIwhP6lHcLJk9qKfJFPwGMBVmDgTj/S4zf8upI+q3UiXkNiblqRyEc6B/tyBQUu9qTxjFEXCmfZpSDxbFNohANWglwkAyYOYcM/hHbZ5YtoKjI7wLBS+nYVZvvcA/gLD588hcWY3q0Vk9WQWAJZFhMCuEkzr+oecO0CzOK3ds6m9q7xw1yGVQXt0qZShM6off0I08MAoggtX4e9FhOjaURxuewrHP+OlknaglQCP4YEvB1ZMmaF+/yM5xo7UsrzfEWCU7nRcBf5Ya0X8u/rbZ6z4Z/GC63iZlN/6rd/i1KlTz7uftZbXv/71d1T3S1pD9AVf8AV87GMfW9r28Y9/nEceeQSAxx57jLNnzy5ly22ahl/7tV+LYOeeZ9RNVypJOVZX9Hz7HFP37dQTNRM+bs30mTW+6DVPIlrBRjHjUFfkQnOlW2dhchrrTGbrak4uNJVs2WlHZFKzVtRsPbJLt9m55KUjJzaWrbuW7EA6U0dh+PS1LQ72BtzYH/HswQa718ecm+wjhWWjWHB+bZdr+2PKcUOWaeaHJYNxzWJWkGeawoMYYwWZNGy+Yoes7KjK1oUIGHSwkE4PBIjdPP4/KFtMoxgOGopBS55pZxqTFqVcPCWAxTmNmWcIaWk3DNSKE79vqLdg+pD1eae8vqDQmNybvpRFdG7eUTPnTaYWbgJTjWPN8inuex1c9mHvkYx2JFzajFpjMsH+w5ITH6kpd92KfO3TDd1AIFtLPtUU+x1CW6rttk8mm+AQYYjswZJXkmcYYr+Iq2uBKR3gsrmbgIwX7sZAf9KvzH2dUvfHL+mRUqAiPTgR9IxEmOj8BJtqXGKX7XwQxQAOvAeaELZnlzLjWJpwWGkc4BLLdS2ZSiIQsNEEmLbBkrki3M/qRBcm7k463Yvx4nkjXP6t4KmVmwgObYiMbUWMom2NcOJmQ3Kv4uj7anHRoAPQCvdQhVDnvYejbaUDgOn9+3APIk+923owYI1AhfAQEMGazBybE8IJREtl4nrvzJQWWTtBtWz9/WfWmfQ8oDWdpLiaOwDuj5fBe3C1fQW911toch+OIPQdt5EUxy6XpF9FLZGwcbsI3nW+naS03nOOJfP50mdF57M6jB8LYMQxO67Ulf494ol2zK29KCXV1r2Qz8ugfPEXfzGvfOUreeSRR5738+ijj/Kn/tSfislmb6e8pBmid7/73bzlLW/hPe95D1/3dV/HBz7wAX74h3+YH/7hHwZACMG3fMu38J73vIcnnniCJ554gve85z0Mh0P+4l/8i8CLnFE3Xc1wDAuUTlovsKyyyemqQHSCBwe7YGGgWmY6Z9cMGGcLALa7MZV0YKS1ymWrzxZoJNO8ZFzWmAf2OdzZoth3QGt4GbqhpD3XuPOVDnR89mMXWOiMjWLOostYdBkb5YJCdcy6nK5TbIxn7M0G8fqKQcv6YMFUFRzOS7bGLtlrmXVkmWGQt0zrArTz4hLCkhWaRllaI2najCpvEVpgjGBQNShpsdav8IXLb5bnHe1AI/czxMSi1zuyqzmydcyJbATGT25Bd9Gua/RQRBZENkkcGL+Sbiv3nMttB47UwumsRs/B7msM1RVJtSMwuaIbuOCFhw8W1OswuQj5bk05cKvm8sYC0Wqmj07cZBtEzSqZ740fo7yoOrp9S47EphKW3m3dbw9gKJhjgqdWFGUHNiMZB9N6bGZ7z68YoDFFbIECEf07IHqWqPfWkslE6QWt0jqTVGCYBC7XWWBRgmZIOdFwNJWkXlmrxQPIVIgbrjd1sV8ymQl7dGXdumcnWklMTIqvO4QNSCJB0/l7D/UYXNqShYzbXfPYPmhkFB8LBwJnKorZnTeb8EDHX2tpCAmMhTLRizIyZ/6+hEq/C3fT6bPxDzoIqtHSna+0keHSQx1Zw+Dejzdri64HIFjHFLn4NaCkA01RZxbaPzzfxIzWX2T/b7R4puA3/A2msNBPV1ig8NtxIOQ4kLPKCKVD9HFMz82Ov1/+aMqv/Mqv3NH+//k//+c72v8lzRB97ud+Lj//8z/PT//0T/P617+ef/SP/hHf+73fy1/6S38p7vNt3/ZtfMu3fAvf+I3fyJvf/GYuXrzI+973PiaTSdzne77ne3jb297G133d1/EFX/AFDIdDfuEXfuHeZNRdeUGOgO1bvV/pb7d6z1ZWKqtiWivhycPTnH58m712gLGCgWz5w8NzTE2JRrKhZsxMSWsVudC0JqM2GQudc6KakUuNeGzK9LzFx3WkPdu4+v3JTm8ckAmDxGKsZKOaUyhNZyQSy7XZmDOb+2TKoFvF2TN7ZMrw8NYOShiqrENJw1Y1c0EeD0aMBjVSWA72B9AJsnGLlBbdOvtQpyWzecGizcnWa+o2Q0mLNoLDwyq6AYO7TnU9x5ZOvyRzzeiiYO9xSbkN3bnGeeA0ymkbpIWRRpxxSWBVTUzUKhtQC0G7ZrCZy322OAnThw3NBlQ3AAN6pJk9YLj0BYrFyZzZaafF2H2VIFtAOxQsTg3I5pp8rwUDi7Mj6jXJ7IzL+m4yb/ryzzONMRSed+gjaYC6dL4jOUZ2gXVI6rEusrWw9Hqe9DyWRCTsPjE1SJJaJbASS8xM+Jt6qFkflC8Avk7SLjI3mRYONNjMa3XyPmeZiJot54Xo4hcZBx5KF6TwyPu1pNlJwY6f3A1O8BycEKQHNHimSIuYDgRw5xL4vFvCt4UXQfvAhLYV0VV/qYSkr4HJSto6gDEb9EwL6dijIPLOLaLwep00MGhgpCwu9YbX8qTjh26UAyUx7IRnT5TxIKK/Tqud6VDWEjFXfbNp4WJOtYJsP3GhX0hMGQBmH2RReGYmeJiFwKbODd+BPFXoeL50xShSD760JOayZXaI+HHA2i3QYhDG8PMKS3OzssoWHbf9Vsccd+ztbH8xirX35vNyKb/6q7/6vPt84zd+413V/ZIGRABf8zVfw+///u+zWCz46Ec/yl/7a39t6XchBN/xHd/BpUuXWCwW/Nqv/doRu2HIqHvjxg1msxm/8Au/0Auk77SsrmLgCCiCm4OiHsisrHhTgBMAT6SJk48faEI+JCyY0nBlNuZ1Jy6xns+5UY9prXRxgtotTqhDLrabnMwOyIV2+cykS/HRGMXTu1tM64L890ZMPimcANNYmGbIzFH7MtMsuowLh+vsNRUAZdaxMx+yVc4oVUdnJIOsJVeabpYxyBsWtfNMa41yYGg869vCCLRxHmX2IIfCUJQtbadc9OrMknl9x6LOnaao9FGppUUqE9khJZ02qbruNBBCgJ7ltGMHXtqJG0QRIHJDtuvyrxWjxulHbB+PSXbQrRmaUxo2GsyJBlMFX3jB7Lxm73Ud239MO/G1j2Z89c2C/MCZ3tY+ackPrRNS5wLZGPZeUaGHGflBy+hyx/CK7jUvYUQPbINIwEqYgPxvKVgKJjXp4wkF80eIehw+ciUGacoMRQbK96cw+ePNb3GwTMHn6shh6cGTCOYs4d3QA8vhdS1B62QFDNyFCWl9VGZfXerSHuqXvSnmyCsX9/OsRKqPCttMcm8WpyUSNsnNlgCorH/nQvqJADJZSKQXXZOyYGlzFP1DilotDzCFwUW8Fp55sh4wyOQd9yBJZsa5toc4QwEcheZRntXQ/UWkE7f1IGZpFSVALqQPLAo2dz+pmXsP8j1Ft+5iTYmDDHJLd8pp+UznzHq6U+hO+kCPznymQugCcAmVQ2BIP6iJBMQ5tjIB1vHi7dH2FO6B9ZGnjwFDK2as23GPvxn4uR23+mR9+hkFP8cWe48+L5PytV/7tfzO7/zOTX//pm/6Jv7dv/t3d1X3Sx4QvaTLKihaWYkd2TdZTMdjbL9taWJcAVE9S9BHGI6L89LR1w9Vu5zIXdZ5KSyjrKY1GZVsqUTLhnK/zUzJRC7Y7yrODfZ4bGObelHQjqHe6uP1qFrANReLKCs1OzsjOi0pVUchO/brimHekHvAU2YdhdRc2x9z/uHrZNLFNMmkQRuXO+1ENcMg6KxEt5Jx6bzI1EZDNmgp8o7FvCDLNGunD5nOS6phg1SGatBQNw7IzOs8MlfGuIz37SJzbbPu8qbJuaS6BofnoZ14d2EAC91Gh7WCes/Vj+xzujUbBj3SqPUGmRvKUYOYtLTrFlMa5KTBKsuZ90tGFyRyphhcdsBjdlYwuuKiMU8utEw+vWB6JqPeKrBSYAqFXGiyaYsuxVJW+jgXWJZMZcJ7l4WYVAEYRXObN23IzvcTD5JEYHYCKPCr9BTMhL4kvHYleEjZIIaF6Dp9hB1K+3o4j/GVdiLeUBD5hv1MKxEBMCwk1oODEHU51GvqhDaTDhzIQsegf/GdWNIc2Xi/MYdXsq+L7+PMQE5XJSMISdNgWB8GYunePKuRtqsw9GDE4oBMALCddJN+mhg1gEHvxReYtWCeEsI6FtOnNwli7+gmH86DY3/idWTGpZuRCQAKj8ZHiI9mtuD63gkHgnx766FrGz0IJ7DYcYdYOB2h8G1rtMQkAMwEc6AHLO76LLpeUWQE3Y8POJmaOI+1VKXmspQdCv/jxjmZxB0KZrRbRZG+E6bnuHLspSbb49/75rUXpfzVv/pX+cqv/Eo+/vGPH/ntm7/5m/m3//bf8ou/+It3Vfd9QHQ3Raz8f2RFkwg+b4LCg1lhSTAbtvtPzxSlv9ml/YUFdajQRvKB7UfIheZEeciVxRo7zYhcdjRWYRC0NosaolxocqFZyxY0WjGZzGlPdqgFlHuWZiIodgWjTwuawwIhLCe3Drl+Y8KsLeis5FUb13hs7QbXFmNmXUGuNFJYhlVDJgyF1GxOHCNUqg5tnWC6kJqPP3uGydqcXGoyP9N3tTOHIVwQtTzTzHcrtJGsDxdoIxlWDRL3+2hY03aO8tdGUn2soj7paHq9yBBGMH3IAQYzNM5zSAvnPlxqiqKjXK/RPjbL4oSlXbPYSqMGnWOgfAweVWjHEo00Kjdk2xnTMwK1gGwqmFwwDK5CN4D5CUm5a5ifzJCNF27vd4yudlgJ2589ZnGydKBzYSMr5fQ9IIOQ2rrvVkCM6Gt78GwyMJ7FieyGj3AtEtF0ZJasm+itD3gYxdSAKWwv/M3dpBKzlgdz2Eo/71NshA2uX0Ygp3w9AdzV0gmHg34j5LlaMZ0E7ywRYxD5+9YC06m4KIhsSvLeub/05iYvFBYr75lI2KKQn6u/AM9epBNxnWh/0iICeO3BDRbHKsVI3/2z6JEZvXZIWvAskGtP0ae98L+72D9gO4npFKaVmEb5+D/ObKUb5YCKDRG5XaiLOH7YJPq6b56QBy+E3cAKjA8QGWMIrXcxyGPwqgr34jRagRUSS+wVPvK7UAkzZASMdc8+iqNNGto1msvomZ/wNwChEGxRBQcLaVHSxKj2sbpjgFFaZzjlrcpxQ/1x+3zGS8oAvpDPy6R893d/N1/91V/Nl33Zl3Hx4sW4/Z3vfCc//uM/zi/+4i/yRV/0RXdV931AdLflCAha+b4yAB85PAVIdnn/JXHhyrLjuH6rppL9ecmF3Q0+Nj2DsU7T85rJJW60E4yVTKQTUZ/J9qlEy54espnP2G5GNEaxqHOqixmqhsWmG9RMDtPzlurpglHVMP3VU2Sl5uyozxM360ouHa7RWcccVapjo5qjpBvQlbQx3cZ6scBYwU49ILtQsT5YkElDaxTrkzmjNScCL4qOtlMYrykZVg1SWJe7TFgOFyV55iImN3XmEsluV7RjMGdqrAF1PUfNXGM1m2H0t1ifxd4aSVl0jAc1VeHMcHpo0CODGnRkhSbLNEJajBaozFCcmAMW3Un0yZb5OQdmBpdxAmjtksa2Y2jWpAvMuFFSHFiyWUt5rWb/0YL1TyzYe1wxPyGZPiAj8ME6hkp0HiAFnOMn1GDSC0lfRbBIePbGBDB0Exq81xsJzwZ5lBQ8fgQuqacImp7QB8MEeEwn9gDd5eDy281yZxWpPif2X19ZYZzHVQAIjVyOXeQnU6sFtvV5tFJ9VZaCJn8+gdOIedd54e9VRJOVB48hLUnw7gqXFRYqQdsTGTF3z+miZekdDg9Mi57Rq2Wf5iPcU2BR4jZ3zsCiWSNcItzgzu4Zl9jWnXAOCP6+zUosLpPoiITsWSRrhDu2Vn5B5t5xqxwrZDPvfaiInnQunlPwKHOsVHQ1NyyJkK3tE8hCAg5l3yFjyo8s9LsVQJuMgceKqQPrmBwXxpcjXl4BOB3HCN3EdCZu8bmT8plkh1LjxAv5vJzKv/pX/4rP+ZzP4a1vfSvXr1/n3e9+Nz/6oz/KL/zCL/DFX/zFd13vS9rL7GVXwltj6WPD+O2rq+BjkU2yybLyEt6kw5rcnWc+dUroJ3dO8dj6tvt/ehqAg4FL27Grh5zK9l0qDlywxoFqeMXkOrvzAddOD1G1oqmWz6cr0EZQn7CIT4wYP1y7gI5GcnpwyBOb18iEy3MkhWWjXNAZyUJntEay35RslA7sXJ2NuXhpi7XX7ThmRrlEsOCo905LmiaL30MMHW1cLKO9WRUHYW3cyr45LMhvZJjMead1lwcIC4NrsDgJdqCjGUIufOoICfKkRQmDFoJy3GAGnfNwyzQh6GMzy2GWUZw5RGXOxd9+aA0rID+A0SX3YI0SlHvObCW1oN4QrD3TITvjvdwE3SjHKth+7YBz/+uQ628co2rIpi7RbEzTEiZQA2R931kK1BjMLjjWRxiB6NykZvIeLN10oLO4SSm6QfuoyshoalrWDvkvxsepKc1ywlVhXQTtVkQgEUFGSBwqbTS9WC1jwExrZYzqTGIyQ3vRcnD3j1SXu54YGTtMvJZesJy0C41ElMYnEnb33QMpsfTeRhOXwJl2vGkrYJ2lhQwJaIU+4WrAMGa57lWNmM0da4lx/THE85GF7qNpC3oXef9cRIjwHJCZWX7Q0ZMMQPTxiOjkkjjcKjCljSL8br1DNBJ1KOk2PAhqJZQ+KXHKbnmg6YCRXBblWhFZwzRGUQQ0HpBHT7SlBuVo8be5mkVeiGUwtHSIWI4RFLSGQnCsgPh2PMxW90/LH2m2+JU+edd1vIyKlJKf+Zmf4au/+qt57Wtfy3Q65b3vfS9/+k//6RdU731AdKdFrPx/Jx3puP1XGKD4v6BPj7ByfHDLTn9TFysQlhvKcmZ0wMWDdQZ5y+nhIR+ZPcgfHz3DRM5ZmJx1NSMXJa3NMFYyUC0bgzlXS8P8jMRstlBLTn5AsfuEoN3QNG2GeHSG+NgIg+CTV06yNl7w2ZvPcbV2Hn2FV+5K3KrsyuGEjWrO/qJirajZrSsuPnmK4QOHnBhNyaTxgmgLxpCFeEJWoBsJQ1CDDmuh0Yqy6Ni9PqYYNxgjqBcFphPIvYx2q0OtN+gLQwbXhfMSq10KEkLE3lkW55AgelXSTdaZMnS4BLKBfZodlLCfg7TMdoYMN2fUi5wzHzM+ZpGb/GanFfOTDticff+UwTjn8MGcYrclm7ZMzxbIRrP3hlFclXfjnNFlzfarFKMrzmvORQr2WCjz3SCYyTwwSiOTp2Up8q+kTwSbmM5Sc5HN6WfyCI5wAESL3u076EOCnscn+gzXIoyPWxPBq5t805xVIWJxuAjrrxErYsLUEKsokCFYlrPS01+P8O7vFtsnWvXHhZg+0YwY2KOpT4haS7+IgGhH827nS++nsCB7pidsgpX/g7Yq6IbaJAp1zAO2cg/g03IE/RIuOWpguNJjbJis/bPIjWOPiLjQ1+m/hG7gwZPxZs+Ya8yzcGrhTJXd2AFbMzDRTNit6x68hPosyFCfIJoZTWhff/oY5FIIykntHCd0Gn6BCIRSLHqkJOzj0mYPioRwprHVdB0p2Hk+kLP6+5EgjTc55nbqul9evPJ93/d98f8v+ZIv4dd//df5iq/4Cj7ykY/wkY98JP72zne+847rvg+I7qYsDZzJ/2kJg9vNAFN42Y9oEpaZpThur5x7aUBOjtOt5KntEzHp6UYxY6xqaptTCmcaav1sqRGsZXMAHhnv8NTuedQjU7pGMfxwgS5h8inYfrPzDrt4aYtCuFhH1kge29imM4rOKIwQGMcvAGCsYFHntEUTtUOtUTAwjKuGwuuNDpoSISzjsnFRsDONPsih0s5s1iqsFexvj5hszlBVR+4933QjoVYUe5KuE+g8p5gLTAHlrgsy2Y1AeG8Xud5gdguoDNW6Y6zm3o1fCovR0nm1GRnjrGQzAUaiO4Fed2aK6VnJ4JqlG0iyuQuIaAoYPGtpTpQYBfnUgaVuUrDYFNQnqqjZEQb2HitdbKQWVBNnNfcYVb+QDmDIPeukDwhfV2BVrGcnTE8cxAjK4di0q4XvHgABDpB0CRvif7etn4it6282t16DE2Y026enyIIpzrMQnnlKO7FUBtOomMZBFKYHLqslgBv/o+1cCok0HUesOrjBp0BBuPsTWmBKz42KdB9fr4/iHdkhz6qIEIRy5ZLigiT8mLSj28H2D3HVNV8QXe1FIuR2IFAg8MlXdc+u2MCqLJkfj7kwenbIJB5wNoRhsCEsA44l7YSLW2VxYQ1a4b3qXCcQ47a/pgjOBDbQ3kG7ZnomyrF9UB+U0fX+poDhWEboKNsTtgczWAqUj/v/VsAoZYnuZZTplJX6jJZ7oQF6GYG57/me71n6fu7cOT70oQ8t5TkTQtwHRC+JclMARL8iWsI8xxwQXqhjBJxxd5MmjaTXhdSK6V7FcG1B2ykeGWxTShcJuiUjFx0HumJhcxSWoWpYmJydZsjwiT02RzOe++ADdEPIFm5i3zxzwLiowUK+D3OdMxzWnKn22W0HfPT6ac6v79J54FMpl/vjwc1d9hdVZIL2ZgPOPbjNMG+iXf/6/pgHN3epVMfaYOEGtErHCNciM044fZixGOZIaWlb5RiTvdylBpEZ42cEe6cM1TU4eIVBthJduhUwgOmUG5jXWuetJGzUKWWqpelUr13SgvGoRgjL2ifcSnp2TjJfK1Glxgq48Qb3bNY+KWhHznxmFKiFpph1mFwiWkM3LDA5zM7m6JJoEmtHIDQUB7jJyRLNXGlCV4vbX1cseaQFlsiGvFY22T+CAXzUYUFIKooVvdDXT9jWszRLwlNBzKPlGCWbACB6rywrVpK6eiAUgBFEzzHrGRE9d4L3GAsoALK4Akj6eZwM3aQuMuP+BhNbeKksy0lSV9KSAC5Egm+DJeAocGyNJkE6HDl+6bfQ/r4O0SYLIMtRN/r40JLryUwvqg7XFZgi3w4hDYaQvv2sB2/hvU9An2tL2V9baFcfsdp2AtH4IIsWmjUXSkB4pizeqgfY6oZCnzaxfy2lt7DOAy6yRiQMSwweKcAIdEjl4fvNLU08xwIk+uStgoQVWgZGz1eC2exI9S93dudW7XkndbxMytNPP/2i1X1fVP0ilqWFgu0HS/ej3yyOfuIPS5X1x8ZBODUVWBxIal0leeZWZQuTM5ELcqExCA7MgKGsGcmaoayRXvvzitE1To4PGWQtw8tQnzTRXPPgZI/T1SH5sKWdwHY9ZG2w4GN7p7m6GHNiNKVQmtPVIcOsZaGzqCeaNQVF1tFoxcnxIScHzvX/xmyExNIsMud5pjSLNkdJQzF07vdZobFaorVErDcoZZiMFgwHDV2nsOstCOcpM7pikMrQjRwIaCbQrlnUXPhgdpqyalC5S/mhjaTpFMYI5nWO7qRz1ReW8ahm99qY9c0Z22/uWJzwbT9XZEXHwRtrunM13ciw+zrD4qQzmXQDQb2RszhVIjvL4kyF7AzFAYwutTEAoy5daAPpzW7gGKZQZJOAIg+GrHL7BGF13yeSScqD5MBcHBnjU1NMcBcPOg7jghPGlbNnFELaCtGKfvL1dYu2Hz6CySmEAgjfRe4qdPF0kolb2WUhs0nMdNCn3hD0+ccSsOa0KfTicJK6Vq4pMjLCYgvr35GkjWKj+XfKv4hBfO3qFemfpXc1JWnj9/Tlj1ql9DqPW9VbL/gXMa1IuCfbyX78iG3lN6RaqHANbWJW09IFwPSCdVULuqF7N5AWM9QOTLc+r1nmTIt64JwQhAo539LGDawQMZp5CphCvCkZYxGRTNzPAz6Wfl51pXf/Z0ovgaFV4fSxGe+P+b3/fm8QwarG6X55eZX7gOhelvAu3Gy1sfrO3Wy3lQE1jp3H7J9GGw5/N04e+kHDcL0ZMzMllWw5k+0xknU0mV3vJlTCsTnb7YgvPPUUT109SVfBxkcl2cySLSwXD9aZ5At0K2nOuPhDp4eHfPr6FpcPJpwdHjDMGkZZzTirueqTvBZSkylN6dN6VFlHoTTTpmRz4OIRPXxmO4Kn8HdYNZHWLoYNADI3WKBQ2qULUIZy3DgvsBymZyR6nlFvWapLClNYv5omBo9T3lVfSEsXJh4rKHKN6VyAyGHlgkkyU+xcniAGHfmUaCLqmozhZEFWdoiNBrPeMbooWH/KUO5ZVGM4OJ+xOFlw+ICiGyjKPcP11xWxD1gJuvAskfFgxydxtd78Fp6rrty2AIRMzDPWs0RLmda9+cMKYlwhk9ul/hSkM0HnEtN5gJtcQ4TqRGMUIwt7cCECO5UyJqG/endql7vKMTumUzEwZpy4rXCRkQNY8KAuhEeI1wNLCV+jdgYiUxJjeAGicSayVa3VEsAJYFKsTPL+npYWL6HRVtvQHxPE8P17avuggxYHAkNMo+D9pSwi19GcFCoTwfTmtT/CA7+l8wVhdVw80beV9Z5kwVxXS9/G+Bxzrg+Zwpl6A/DTI+2YvpHzMpSdcMCoTATex5Rlc5UXy1v3fzFssUaQVZ03/YWHxTKQT5/Jcf/7BpfKmTyddsg3p+i9yG7mUXazchwoelnGDrL36PMyKN/3fd/HYrG47f3/xb/4FxwcHDz/jr7cB0QvUrnt9+omQAd43k4aQZKfENqTHSgXtHCtWrA5mPHxvVNcatZ5uj7FzJQMpQuEKLGcy3eRwrCezTlZHPKfnn0d7TwD6eLpmEygaot87xYf3T1DUXX8sdd8ijef/DSf3t9gUDWcnbh0HpNswa986glmXcHWYEZnJYXSTCoX52fR5Yyzhs5IGu1m9Up1nBvtUyi3ipzuDDisC6rMma6Cp1eWacajBevDBbMm5+BgwPygYrFbYWpFdQP2Xu+And5qnadXB6YyMeJunmuUMtEzReUG3Sm6IFCVMK4apouC5sKIM++XlJdyVKGZnXXJXK0A0wkWswLTScw8w7aS+Rk4OC+ptjtuvDpDtqAL70EloV6TtGuQ+yDdqnFeZVaCrgTNRGIKaCbQVQ4sWeX+j8yRIGqVYl4y3z+MN08FwXV0gQ8TfNJfQhyi0L+sZ3Cs8h5gFgc+gku6ES7wZ2V6nYwVS55V/UKAPl6RTNJxSAeKrE+eGqJWO71UAjR8/J1g4knFxX2+NrsUE6mPaJ3sK+m9z1JWSeDMfFmaHFb0MYT8PQTgFKtMqCBhk/qTn2IRx230lYW4TgIIucA84AlmspBGxCZMWlqcYNsusUH4xUMafDFqn4K43GukHOC2PZvln6lQ1unEwj0AYtRGc54MQDGYrvwkaq13+7f4mEc2JnftakVedb13WDL5Lnl6pWNgymwKYiJX6eMLhdhDKfi5GZBZBWtwlEk6rqwmbr2b8hkFVv8XAaJ3v/vddwRwvu3bvo1r167d9v73NUQvtKx2pLu1Raer3pusoGz6VVifCNL9MHqtc7U/Ozngk1dOIrHM2oJxUTNWDgRNTcmpbJ8DBow8MNrTQ3KhGcqGLzj7NL9fnuO5Cw+6U+y5gVd2lp35kNPrriM+WO6yVi4YjlqGWUtnJbkw/IkHP831ekQhNVXWIbEMspbd+YCz4wMao7gyndB2iuuzEQ9N9ljoPLrsnzqzx9nxATu1y06cZZqN0Zxc6WjigiAWtQjhVt66AEpDfqWgPenMaKITTD6hOHglyEEThdgARd7RkLl4QosMOV6gG4mSxkXhLSxqATZzpotmSzO8pMgPJK3KsUMdWQS1p5x3WHh+0pnEuqFw8Yfmho0n5+w/PqArXdBF7eMFmdKBn3LPYgo/CXc493XtwY8XYpvMP3OfmD0yItFVX/hM9z3wCSYu672lgN4DKgRPTMS2Ftn3PUuM3Bzj+QQzWNLnQ+qJYGoSEQgl9aTgJgDQMLEnXmEi65OX9i7ZfccX0gE1qQzGKqep8cLxyAZ5EBCTlPoQCyGlCEkoh+iW7+MGBcBzhFWy/YuYAsHViN/xWgMICQAqWbhEzZIR8X5XRdcOdPkwCNKDh8A8hXoMbsb3932cmNhKZ/py+7tUHVa6hYLofN3KOg2ZFsiZwnimyGy00CrIDBaBsDZ5vsKBV5/FHvDbvehZWapBQ6dd/rojQuOgkYo33D/j2AD0z9zFQQoBGE10tb/dsqoRSrVEt3LDT/8eV26mO3pZskwvk2Kt5Uu/9EvJstuDLvP5/I7qvw+I7qbYlb8r/x+h229VxyrtnZZj3rfUdJa+d02b8fiJG1ybjZHSMshbRnkTYw4tfNS+wpvINBKF4YF8h109pLWKTGr+5Kln+Hn9oKPVc0G9JsnnFisNudR85LmzPDG5xms2rvBodYPf2n2MT+yc5MEH9mjqjEp1SGHJhKGzkkwaDuYu91ndZZxb26fK/LVZQWdkTBALziTWaUXbKbbGM4Z5Q2tUHMCsFQwmNfO9inJ9QfvpMbPzBnU9Z3AF2hOuPYp92Hyyo1nLWOQZeiTRph8MLQ5YleOGTBo2Tky5sT9ycWAawfScizRstIChRljF4ApkM8X8QaDSWGkpdwTd0AGb7VfnWAH1BlQ7wTQhfXwgZ4bQJR5kQrsG8gbkhwa1UHRD53VmcqJbuw6WNmm9qzwxhk50n2/pgwgK7wKucCLhjGg6E51wEYK915UNEYSjiNeBpyDyTsF9SO0R+mDo4yKz2I44I0dXeQE0bkcRIxg7kCYEDggVNoKtoI2JYum+yijSDtdpOhWBmQ3vTsqYkABC6+47gCBRSx8Dh3g9aR6weL/p/SeAJLZF+J5qd+K77EFmcmwEbQIf/JJeAC18bKYAumQfxiC2ZwBNkWkJAC+5Z+uBpo/vJGcu35rxLGGMRi5dH5JzgZq6NBxmqB0YyixiL8OudS4oZqjbOFATg0AGYGSPAgAhDYt5gfHPXYikvVcHtbQNw/OAPkGtSNgh4XIbhhI9WlfqvFPx9HFg8nbKS0aMfawe7S7qeBmUf/gP/+Ed7f+1X/u1bG1t3fb+9wHRH3U5Zow4Uo4MuCwPyEBZdGwvhoyKmmleUKmOYdawWw841CUPljt8ujnBg/k2EzWnEJrGKirRopEcmIrNbMZON0R/1pT890c0Y1g8Kjj9O5Ybl9c5mFSYTrKZTclExcnsgGvzEWXekQnNej7n0nzNXaOC3bqiUh1aSx6Y7PPxa6fYKBY8Pd/ikckOUhh2myEAC505l3crMFawPpyTeWYI/CCH8F5hhnKtpmsyp48ZdVQXC/QAxEIhG8ewdKX0EaCd+HN2UKEKTZZrMmVYdJL6sKDzYQAYNOzvDzADw/RBl+HbdhKhDLOzMLro4wM1Alu4QUiXLnnsYovIDgkNs1OOHah2wKxlmMyZyoJAuhs4wNRVcHBeYTJ3LNCn0whgJrhF4+p2Ls/+/8y6eDmWPmFq2FkRGYJgUgNcnKEAkiwOGMGyiz4J4PZ1By8zYWw/ISf9Ms7VwfIS7TIBHIjIXomgE0pAhLWJdid5JyKjY/01KgMhro4HiEfCC6wIiFJQtLQYSXRFMehlYRH1yku5xGD017zMAAXAJI7uG09i+8CX4a/oGZPACC1d6yr4SusJgmaDF1sLhBWRATS5E5GH9pGNQK9pJ4i3LjCjmgtsJh1TVEu3T2C5SJ51OLWwWOsuVAiLMRJBz9o4U6ADUcWwpat9upAopL/5gLeqlRSeJXIxyvq4QzJ5thI3NvxRAJTlRLrLTNhnSlS9Im+76zpeDuVOAdGdlvsaontZ0pcxfRme78VYZZfS45KV0vF1uwN2r49ptEJbyStPXGfW5RSy4/TggO1mxMenZ3mo2I7Z7idyzkjWVKJFYdxfYTjoKr7osU9Sv3aOMDjWZSR4zSsuurxBlys+sPMobxp+ilx0nB/vcn68C8AoqzFWcNgWXJmNuT4dsVsPePTUDYZZg5SWQnZMygWl7FjonMO24LAtuDYd8+jadtQYGQTayAiCWq0iONJGuEzbV8vYNrpyIuV8Xzq9j4LdJ9z/wkKnFdlzJd00j8EXs1GLKl28o0YrZvPCaTikdclfJcjcmdrq8w2zs1DtWIbPSRf1ODNYBfUm2Myl7AjmrXbiusPsdMbu426lriunRZKt84CzuaUbuYS6unKska6cSNwEIXUwgfmliylsnCBNmeSCSiZKpJ8Eg2eYdZO0HbiQAWTO20pWndMLWdF7gAUX/VCfFzmL1kUzRtODCEF053f50RL2InzSxKY2qdPiXcATQCKImhqR3E9IGxHNUTgwZT3wEavXHd+b/v2KYDFEkLfJdViQmqi7kbXo9yGpMykpRohanaUdko/fP5xbdNK70Ivomh5c6oNOJx4rPEAKJr9w3WlJ7iPOjh48itZ7HmoH+PTIxFAK4DLcdxPjGTiQc+n6fvAgDM/QEuMbBa1Q2kccCEqO8dubaeGCotYuZc4qGxeSCcfnlZjLpAfqUrgI8UpaF/SV23e3v5k32fHpPJY/d1rum8pe/uU+IPpMlNthgUhX5GJpQ/BcOTIwJwAsv1QwyFvOj3c5N9hjZz5koXOMlY5VkZrnmk1u6DFnsz0UFoWhxSV7BRhK59H1WxcfwWrB7EGLNA4QLboMC6i5YJzX/I/d17Ktxzw6uMH5wQ7TriQXmkfG2zzsAVLTZkybgmHWUkjNA+t7AJwdHnCtdglhA71tjOCTuyeZdTmDvEUblwR00ebUbeZTdsBikTO9MST7yIj1j8k4cVnhBnvVuOz204cNs/Oa/dd0iEFHVyu6iUaWGmMkg9wFqVSZcWlJmiwGYxSFMyXZtRYzzWNbLx5pWWwJquuQ7StoJdnUt78HOmoB2cyzQEMnlF77tGHtE4KDxw3d0AE3gG6jY/5Qh65sBD/gwYX3BEpzhMV8XCIRUEtc8MQQzDGYRPJkUvV1ilpGb7EQrJLMuOCAQYMkICSRJU6wrt/Z4NmUMEdoJ0qOaTyCDictyeQePdqChijp+2lk6igQDq+C8eLn2oFR6Cd8Z060CeAKlRJHOFvpmAakt7XRC52DVijeh2eMQlukYt/wW/gqlv9JNUORlYuTvu2jX4f328dVigenTNDqSQJACikx0u3S5WULoMP452WUY8gCWxQ0Tlb6DPfW/S5nyiUw9oDABs/CmIYoAYqrC7cEPMYcZ/7SukXmTWccRZKiZy6jSdEDWies9xHshUuzk4KVJbd7fwG3iiS9Wp5PYL0KkG4XKN0toLrrYu/R5365c0D0jne8g//5P//ni3EtL98SB4MEwNxh6cWsy2AoniKCIrt8kKfnTW65ujdhv6m4Vk+YlAuMlWwVUw67kt+9/hCVbBnJmlwYGqvIfSTASrScyg7IRRcHFnmlpLommD5oKfcsa0XN689e5m1f85t8+dZHOOicfedVg8v85rXH2G0HGCRD1TJQDevFggc29nhi8zrDrGGhc05WUxrjYhTt1hVr+YJh1tIaRZl1zJuc/YXTGw3yloNFSaMVe9MBUljmiwKVGUQt2fiEod50K3usoJ1YjPLJVTc0tjCIcYscdCCgqDo/aRNTc5hOMh7UzHaGNHXOYla4CV1YN6nMXaoPs8icV5AWLE7C4cMuTQeNZPNJw/AyqJmb5ModF2Oo2PVBFw10lWB+Ctb/UFJvwuKs05Bkww45ccBMGNClY31M4dkfZTGZxZQmTvpxLgnmJmmjK36MTxQmcC/Itj7VxRJA6mRc0dvOMSxusqQH3l4861gh+tW9WPme9P+oLQqaowgI6MGGP8Z6LUvs3x4EWZMAo8D+dOH6RX++IAhf8qhKXyoiOJJzlRwvIpiSmp6lStOfeDDj6uVIiSlU/H1jj7yyfZ2R/aAHO5FF69s7xPUJaTEiM+bPEaJXr7Z5ELGH/k3QkHnvQ2E8s0jf3tnUXYesBTKYVQPwCXGOPPCK0buT8A7uAKI2zCZAx3TSAzYXRNOZnVMQlDwfP66F8a1PSmuR0pJlvalM+eez7GF2TJvfpBwnlL5TV/1wzpuBnvuxh17e5Y4B0cHBAV/+5V/OE088wXve8x4uXrz4YlzXS7/czjuUrBSPJHe9gzqf9331g4z9+JhMGmZdzslqhrGC7WaEsYI3bF3if22/Am0lB6bkcrdOG2dQkMKtwjbyGY9s7aAnmmwO40/3LtaPjW7w0f2zvLq4xKwr+H+e+2O8tnwOgN1mQGskpWipTcZeU3GymjHOF0hh2W9LOuPYqEq1rBU1G/kcKSw3DkcMipbN0SwOeuOipm0Vs0VBW2fMrw1p6wz9zIj1jyl04Va4RuEYA2WhcMEkbWHIN2vyQUdedUhlKYuWyaN72HnGoGhR0rC2PmP7qsvDphNK3x7kfbsMOjcB1ArRCrqJT3TpGZl2KJg826GHLop3ZAX8MysOLLp04KjaNeQHkB0otzrfdgAvjUxtFNjcxmjSQov4lorWrfKDDidOfmk8IIXXHdmehQkr7tTUEv4/JqJzNLM1IgqwhfbgIXhkEc5tjhwX6z/ufJYYEXrZPJxcn2dBECAWcpm9CRnrQ1BJ22/Dt1XUEwUPtnBd6XsYQJvtTUpL5pww5/evyNJ9RnlUAnbSCOA2BIxMc32BazuZuP2TbA+gJoAc6eMNhf3S1XyoLwJMEdnCWLF/XtE7MDzHWoLBpaWJ92pjPxLxOlauL54zNKBvi8RU6gCbB0udjJ5oNgniGcygwXNMpAJ3gXuGwucr86Ey1C1MXc9Xjgcuy/UEYHQ3sYxeiJntXhTf5V7Y54/m0l9y5Y4B0c/+7M9y8eJFvvmbv5l//+//PY8++ihf+ZVfyX/4D/+Btm1fjGt8aZY7WZmYZab4yO9h5QrHgqIjjJM4Zps/7rAt+LytZyikE1UDdEYy1zl/YvMZjH/ka2pBYzO0lezqIQd6QCE6xqpmo5gzPD3FKOcSXhwaduoBEsMnb5zggWzBmzae5bndddZEw7se+x+M8zoOJMZKBlmLsYKBahmolrW8ZtblXF+MMFayli9Yy+ZcmY15aGOXxybb/LHN5xDC8sB4n0p15LnmkRPbVMMGOVOcObmPmjshczsS5AegFoLJk8pR/uOW7T/ROm2KB1Zl3qEyjZKWPNNMzhxS5a2L4t3k0Ejkboa6kZPtZKjtzE0M0jrxdPCq0QI1k2T7Cl3C6BKMn5IMtjX5QUd1Hapti6r7eEPtCA4fErRjQTOB7ddIzn5ggaqduHV4UbkAkZlFlxY9MC4WjNfjWGVd/B/hPbUq48CSZ1acm73FZiZqMUIKieDKHr2TQooOSQQU1jMjwte5POFxNAZOAEop2AkaoWyl46aMQqgzsEZq5Tdhe7YkMcmkCVeDWU5YHKMTGKNQgmkrTP4h4KQPqBk+KSgSbQLu/PY0PUr6wqZmMGA5OnYykfe6Km9KTO9Ti/j8lkxw0AusUzF1KjyPwCFpz+hp5p9jYrYMbRqinYdjZOO8CNt1g64seuAYycjChfsLudZWGa5wwz72EHjw4s1bEXxGAByu3/bftXTC+AiEeoDk7tPEe82UjnkP7yRw4s1AzbLo+eZ1rQKku2GS7peXX7krL7MTJ07wrne9i3e961387u/+Lv/6X/9rvv7rv57xeMzb3/52vvEbv5EnnnjiXl/rS78kA9HNfr5lWR3sWJ6UjgVV6SK8cHqcG82YjXzO9caJVc4N9xnIloeKbSrhQFIuOrSVVKLFIKlky3PtBuvZjM9eu8BHb5xh/2HL5FmLyQQXPn6Gt5x6mtl+RWtBW8nJyZRzKuOh4XV+Suc8WO7wWzuP86rxFdayBR8/OMUwaxioht2mIhOGx8bbrOULau1SdgyyljdsXGK3HVCbjK1qRiGd6e6VJ67TGEX3sTUYWA4WJd3Y0jzYIfdd/rL8QDi9znpHmWua/QIsNAcFw405nXbgaG9/yMb6lCLvKFXHc3vrdK1C1C6RpREwfkbSbIIOq93MwlQhRprisnIYo3WswdozLboUqIWm2cgZXdHsP6KYPKuZnVSo1iWWBZid6RmgbuA8ymTrWAl5pURPNMLKpSStFBY1k5jKJTI1A7/SzmyctK0HbksdxFrP6hAFz+6Bm6UJD683sblxE1AajTjk5UqCLi71Oz8/GukmctkKLHIZFAlLyBa/xGaEcFDh2uQyMyRSLyQjXJt0YjneUVwS+8WGf14p+EjZMGGIouF0wrc5PYD0E7ktfJTteE3J+xxZIeLL6MIGWHc/qaiclffVsqybWmlPvGdWPBCw3g9crD5jgTdrWU9NWJeLLYDO8HDC9eP7g8Ulcw1mSuXaRs3cO6CHfQOG+7cCx1IlmiegB32+0YW0Lsv90nX2129Nf38h6KZjwULbBprCxthDISL10bQcL8ybLD1+1Uvs+Uq/6HsJcSqp1OKF1PEyK9Za/sN/+A/8yq/8ClevXsWYZTPMz/3cz91xnS9IVH3p0iXe97738b73vQ+lFF/1VV/FRz7yEV772tceyUj7f1yxK38hDpBBRxE+YWy46QIj7YxLg449ckzUEnl9SG9/d59ZW5BJN+uMsgZjJbXOaK1EJ5HklF8atygWJkdhUP5m/uDgAXYuT5g8Ldh+nWSxIdn6kEJheOyha7zjY2/nqdlJHp7s4OCU5P995gPsdUO+cOtJNvMpp4oDHhvf4FR5yFq2wFjB69Yvcao4QGKQwjBRC169dpVr9ZiRcnnVzg33MVZSqI5x7rzWTv7xK7zhc55yA+TZBWQGUxj2X+lEylYQc2ap9QZGGlk4nVCeacaDGoRlazBjrVywtxgwKhs3MOYu7pCtNNNHDM266VNS+Meirua0ExfFeXQRNj9maceKfKpR047hhSlWwvrTHeVOS7VrkB0MrjtNkfWRkU1uka2NkbSHV60zW+T9pCtagZxLZ66CGFNGNM5tXCiLLR2LJLwgWki3zRQmmjv6VByuX8RJPPRD7zEmGgkL1TMubSqSZinb+6p4mMy6hKkkQC2wRyvsRejP6f99mIAVxiUIg4NOSSTnXLkGK+iZo/R6A2Pk4zlFFsUHspStXNrmrimZx9MXL/wfLmHV/C1W/jfhWvp6A1MnvD4oVmuTnGmBWUkHC4vT6VgRhcnhfqMWqpO9uc6HaAiibZGwR1Y5L0abLIOFZ630oA+yGM/rhc399qMTr9HSfdqg0cI958wxQCGB7RIY9bpHEQfK8JuNLJFUztVeSQ+4jhk8j2Nsbh4scfX70WMDA5V+blZuxiCtphL5jBR7jz4vs/Kud72Lr//6r+fpp59mPB6zvr6+9LmbcscMUdu2vPe97+XHfuzHeN/73sdnf/Zn8+53v5u/9Jf+EpOJ02P8zM/8DH/jb/wN3v3ud9/VRb1cy9LAdkx5fobI9g4mCeO8asoI+66+5VbAlT88xYeLmlevXWWSLZh2BZN8wcXZBnvDIaeyfSSWqSlpbcZQ1kyUyw0zUXM+sTjDs4cb5JMG2eaohYuPE7QUT6xd58n9k3zqYJM3bV1E+Yt7dXGZ39h/FQ8V2xjrGKeBcibUoWrYKucMVcPC5E4grQtK2XKiOHQi7GzO0/OTZEKTSc3Ch3M+P9qlHTjt0c7QRbDe3x3CQCMyQ5dndBM3eXaNIitdFGmrBfODkmJrirUClRmG3ox3/XBMkXdIaaHSqG1FtwF2pJ2gN7Nu/O6cGFfVwgEXAcXUMnquZnGiQFeK7KBh+vAIkwmEttSbOSaD/NDSrInYboFouPT5BdnMhwiY+hgwhphCwY40zBRYpxdyWh6JHevepICI5jBbK+f+Ly0iI+atiiVlibymJZi+wuSJ8fWFgIg+Zo8Ik3PSd13/9CB81SSUMimir3cpBlDo2z0h4DZF0bc/pwc3S0DJ7y8sSylJ3PH0eh0pYmDLMOdG1ie+YzY6JIR6gy5s6X5WzGbpNYMHcsa1ZcRsoU5BrzEKbWyJAQAD6xXjMuHjGnmRktDJ/Qvrnrs/LoCioBuKIC4BjrITzsPMx6vyPhTYIqmzC1HG6T3ygjYr9BPBytI5sFS+UQiAJx3/bP8cvbg+eg1asFo6E1t/QF91WIgosxRv6IWW1QCMadykmx/z/PscV6SwkQy9X16c8pM/+ZP83M/9HF/1VV91z+q8Y0B07tw5jDH8hb/wF/jABz7AG9/4xiP7fMVXfAUbGxv34PJeRuVWL9XNAFKw7yeTjkhXUikQSqpPLXOrZ1UzSWckV+sJZ6s9Hh9e57l6na1yyvuuvYYzD+xxzawxUXMeyHbYNS4w4q4esqeHDGXDicGMZ+0m85PO7JOKhDfyGZk0fOXZP+B6O+ZZbfnDZosvG1zls4aX0EiGsubAVOTC2f532iFSGHKhmdmCJw9P+3QdkhvNmAeqHd6//TjjvGYrb9nKZ8xVzu9cfYjHHrwBwH5b8eBoj1J1LJqcTGlm+wPUWovp3Oq5GjZu4FKQV5pOuyjYmTIwcMlm99sSISz7hwOMn6S6sSEfNzEnE4AxCiuF8/CaK3RlKW8IDh8QNOOKrY/OMYXEZor8QHNwPidXksNzkvElg9CWrhK0E/9gvPmnXbNsftCy/RrJ7LRkeNVSb2XokUFogbE4N/jAYHhTjxq26EXmJhEPZGRusMp4BkFFj7NVs1KII4RxeclEI9wEFfKVSWI2+SjANX0nS6M+x34p6L2NQheOgQ2dJyD0QCdO7qEvpcxRYCGsiOAiZKSXXS/qj9cV3wl3QT2b1b8vjiGz/XtmwzwteuZKANoH2zzOjV7YXt4UGJjAvAXBdLz5Hnz1AIz+ftN76EQff4fA3vi2Ds8t/G9FNJnFSMqJNiglWWL7QRSMyxZkK9DBrBeE5Il2Kt6vF6ovRQ9PSzhXQIU+OCNJYMkeRDlzWggPEEXymUUVOkaxvlkRnmlR8vl1Q2n6jdQcdvOI1Ulbwm2Zze4WGH1GStoHXkgdL7Oyvr7O448/fk/rvGOT2fd8z/fw3HPP8c//+T8/FgwBbG5u8vTTT7/Qa3tplpt0nFu9s3f0DtnlQdb9v/L3JnUL62KPPP3p01SqJZcGjaSUHbvNkLODfT6xOMOJ7JADPaDFRapemByNpLWK3Ot3ttamLE4b9NCQzaEbuwFmux2xVtR8/vBJnp6e5BcPPpvfPnycNTlgXc3YUDOUBzuHuqQ2GU8dnuTx4XWut2Nqk3HpcI0PXT4HuGCOlejYKqd0RjFQDaOs5kyxz+ZgxkA2tEYy1QWf2DnJYVMi/aBXjmuyosO2ClUY1ocLBmWLlNaZxIBrFzbJlWatXDg9kpG0ncJoSZ471sWeaBgOGrJCo3LjPNNKHVfOurTI1qXoKHdhcMMwfaBEVwqrBIuTGc264OBBSbEPi03JwUMSk7mI1GFyDECiGbnXbvoAlLs+oaqfhKJX1YqNVdcZCBu95oSy6P3CTWja6498gs4ouA4lZRmC15rfJrx50GamD8AX4uWsitZWQHkESvE89C7sAbysgPmj3kr02d29zoWkrZb6d0yOamObycYDuAiCiExIvOaV90ZYerbGA8gI+mMOtP4+l//p942PKGG1YlyjNDJ4yhgdNxYE4JOCunSSDkyMxx54V3rXniLxskvbyQFQNRfoIqmrcBcdxNVCuzaIfWI1jclxF2xwwmhcO9jUmw9ivKWQ88y2qmdnOoFu+2PjA0qpcOGSmNwKCC2DmJvudgtxdf9ZrfdW5rLbMad9pouw9+bzcivf8R3fwXd+53fecb6yW5U7BkRf//VfT1VV9+wCXpblLjrPEvsj+gE3/R1wA4nsdUExAN8KKEp1Q3E8sYAEdSPn/3ftAT413XIi63rMQmfRdTUXHRtqyg09ZmZLDMJ7mC0YyoZXjK9x7fIGKMvm4zu0Y+jGhkv1Or954VEarTiwFf+fc7/Of7/yal41uExrO2qbMzMF2kpK2fLaoXPJf3x8HSksB13F5cU68zZjULZohI+e3XGqOORstcd6NmeiFmzmU6Sw7LZD57WmWtaqBTuHQ4wR1POcMnd502TZMRy6ZLVl1rE2XNBoxen1A849coPd2YBJUXPYFhzUFUXecfbEnltYGUFWaJf/rWzIMu2aVFoIARpzp/+xCg4fgt3HJbuvlMy3FEJbRAcbn+zixGqUYx3qLaKpyOTeZGFg+pB7Xt3YcOVzHfskNX3cnlHXP9fMYAuDbSSEZJkGzEEOWmB2CzjM4FDBXLlrHmkHcNLOJekZAr8tuK6nK/XezNRvS5mPWKRjliIoaqQTP+fe1OaZrSMDbWpWW2I3/LnSa1kFQ8G0Yx0QcmEAcLnXVphWV1f/e0x/YpP3SeCZMn++EHgynjT5QG+SW72+KJTuwWDfcMQZZ+l+UqYmPTyAoxVQbIMHWde70S8tlBKAJLTA5AY1l+iRweb0gT99+4aM97IVzsssAOVUM5Ted9L24ECaDSyP9aDNkNyMv4/QD6VF5Ibh5pxy1CAzsywWXwHJxwmnjwM3zvvM/+8PvplL/c3KzWMK3Rr4HKc5eikBpf/Ty5//83+enZ0dTp8+zRve8Ab++B//40ufuyn3c5ndTUlfXtGvTJ+v3IwpSrcf+T9dCaXmiXAdq2DJ/7Z7bcxsssenZic47AoKqblRj5hkC1qboZEUQnOtm8T6D3WFtpIr9YSN0y6z/c7OiMzn3Zp7Xc84r/lfB6/iq9d/j7Wi5lP1SZhcZEsd8qH5wzxWXqPVCiksv3vjIV65fh1jJWeKfVqj2LuwzujcIa1VHOqK0/k+Q9WwmU9jtOzfOzjPp7c3AVgravabkkWXc2IyZX9eUZUto7KhyRSZMtRtxvpwTqk6ap1xbrxPITULnXHpuU0WkwOXrwx4eH2XvaYiU4auMOS5S3grBEhp0dppjqg0nc+obluF0I4hasfQrFsGH+zoRhndUDA/lTG5YFhsSGzmIlaLtWUMEQBIfgDNupv8u82ObDdzwfMmTizNoXf9D5OfETHzvNXS5fwaddhp1pttQuyiEKsnMZfFCTsxN9nCeO8hgZgr7MBFco5eV8eVVfIgeFnLoHdxDJFNJ2h/vtBXhfGTZ2BZQuLWpO9iHNhxILK/5pTJCeeKuiCv6e0BX3+9zgTkqKmY4T4AjcCUBWYoxH+yy4sUJElgShsZnSWNX2ijcF/BzJb+nF5X+N/4bPJpkwmWB4PUjJZcL11v/grXE9otxKwSxon4TYb3PvT36sF79MIL1x8vzl+L5YgbfTCrLeuckrb3f60VlOsL6mnB+uaUps2oD0ryYRtT8aQPK/X+UrcVvO34cpyJaxUUrZrTbpbk9U7NZQHMfcbA0epi5W7reJmVd7zjHXzwgx/k7W9/O2fOnEHcg0BQ9wHR3ZS084SBwR7z280O90BnKVDe6j6JxuBICZOHcNnJw3nD4CwsMM348Cce4qHzN1grFzFg44PlTqymsYp1NXPmM6soZctMuwCK+3sDHjl7g/r9W8webVGHGSPV8JrTV5l1BZu5y1nx9O4WZ6p9OjS/fvBZPFpdd2Y4kfPk4iyztuA3LzzKEyev8/hYM8pq1h7cB+BGO+F07v7fzKaMZM2FZovWKN5/4VEGZcuNmQssWWvXVY0VdFqyNZ4hhCW3goV13mTaSHbbAY+vb1MoZ/rrrOTzPutpdpsKYwXDvOGgKZk3TtxdDRryTLts2lhUYZjOS5Q0dFYhcoNtvVvyADb/sGP3iZz5WcPeK/oAjvWm8yobbBsWVpItLAjB/Gz/PIVxE9DosjNZgKDOJO1WR37DgSIbXJ8Xffyj8Mytwel9tMsdReFsSyLXTquhPXgLQAHfh0I3StzCY2oGcBnOG7ncd5cQQeiU9GJr059jqR9boullqfsGdmZFj5T+LlbeJRFMMR4MLe2r+/0iAPOMz5JZLr0X4ye9wHSExcyq6S8hdiJA8l547jmKhGXq2zQ8J0x/XOqhJmIb9NcUNYThXtLf/GUvWS/TIJW4OFwhCrXxQTkxomd+wDFoViAbImMptG+S0h551KkpNEbBDm74SZiEpWcSn2nyAL3+p2sy1jZm7O8NY1yvdp7jdHA6cdfvWRYlbz9fGRB1QSHRa799BWgeA5DuFBjdqhznzv+il/9LAdF/+k//if/23/4bX/iFX3jP6nxBbvf/V5ZjBs6b/n5MWWV9jjvGBnv+6urz2Lr6OtJq1dz90HQKY10usnHW8Oxii31deTd7p/UJA4hJ7HhCwqJzXmYnH9hDnpvxULXDw8NtLh2uUZucDVmzvz/gbLmPtpbtZhTTgSxsTq0zXrFxnbrO+eiVMzx1eJLNbMbWcMaD63s8WLiM95eaDSrRoq3kgzsP8z8ufRYPb+0wyFvKrMNYEVeTnZacWTtgmDdoI5nWBbPDEmME24dDcmliVGyDSxHy6YMNPvapc2zPhuzXFdPGmfXqNmNUNuTSgalFm9NpSVk4bzQ9zR1wVdYxKlpw5fNyZudgeFGxOOm8xRYnXN6ywwcke49KZ6FqLYPrTntkMpzZrXBMg6otzQbIhpg6IgINgMxgS2cqCxOxyD2jEx68n/SVj8ZdjFrn6ixwXmdL/bQHzbEsJGIhXe6r8FsQGqc22jDAh3k9BT9NsOey5PW15FnFSndPgEPUGJlke3KdqwuGACqlI/QwGZG9ifobu3y+XgNED2wgCsoDe5ZGnI6m6nBPEQzgtUGJV9dS/b5ORdR0xfQp3gzeB15cBYxiqQ2O4FEr+lAEXkwdPB9t5nPcKRsjiptEN6TqBMB44GIKl8fMFGZp3yMkSAL2ln5L20R4EBF/F0vjltGC/d1hTPOBsOSDFqRF+bARLhij7aNX3waguNk+t/JMO8609Xw6o/vlpVnOnz/P2traPa3zPiC61+V2kbafSI4ccyvAdCvGSBw/mClpabRimLVUqmW3dd5k23oMOJZoVztPM41gpxtyYbpOd5jz0HiP+RnLbFFgjeS5ep1HK6cHyoWOcYtO5/vkQrHfVjyzOIlGcqgrHh9cYz13grfmRsVhW5BLzawt2CjmfVJZVaOE4cBULHTGmdEBjTe5ddrFT1KyX44qaTBW0GhF0ylsK9Fa0rWK63uOUXL50gaM84Zh3qDKjmldAGAQaONYpfDdGMc8xRWeb2+ZGeReBq3EFJZuAN3IsDhtqbcMJnfmM8ABpDViJO1uKCiv+4v2JiWA658tYygD0bgIyjbzk3Lwzmod2LCZhYEhKzuEMmAE+bi5eXb0cPGJDi32t/Sv/1+0vQdajNQcfpbLE+URLZHog0Sm0aqj+PmY8/W0ToKNTK+l6T2nxNK5QqLb5eCL9No5L+BdYmtS0OEBUXgG0ZMqKaGuCJYC4xTScIRtR7RC9NtD28vk1sNxKcoRliOi9BV1a/i6xECHKOPKYgoHhtTUBfAMnnkmSfchF4LM59kzIXmvBZObJQDY51xbRWJJ26xu82yWWG0H3PmFv+9Uoxa2LQGS1WtJm8Tv92LE9LkdUOT2u31g9EehIQr95IV+Xm7lu7/7u/m2b/s2nnnmmXtW532T2WeyxEll+e1Kx6AjmoTnrXN5xRnqMaUTvV7fG/HIqZrOSjKp2W2GbHdj3jR8BoBCaDbUjE/VJ1HCsNu6RKrZxGl59NBQFh3rwwVvnjzjKGkrmJmCBslg2DAzDmicKKfstkOeaze4XK/z+OAapewYDWv29woy6Vzv/18P/x6X63WuNmsRXGkrUVheu36ZqS7ZKqf8zpWHsFaQKcO0LtgYzikyaI1i0ea0naKeFtA6sbFQlrMnnXZot6modYYShnlboJSh04q2sxR5R9spilxHr7O2c8ra+aIgyzRSGoq1xgGltQ6McGlP/DM0Q42oJc2mJZsLuoFjBNaelKw/1dKsKaZnBfWWf74SZ7oAupElmwrUHKwS1CPHBgWtUHRVLwwUUPhwAjKz6M7S1Somy1Q+E3hMveFBRIgO7DpD6Csi7hMmVWsEshPLQRMDmxJYj5U+Gr+npgnjTAzxOoI2Jc0Fls7uASCkLttpCfdhQA/6NvFd3R0a2J40KHMSLmBVZL0EaCwxzlFqGlsCO+Eag+A4BYPhXBDBRAQIqblSsHx/8dqS7Smo820eYwGF04VJWXoPwlZich+qYWBd3wlaLP9sQ4DOGLzUAjoZY1YWWsfFfEp/j5ulXR6iIlNm+/sBp6NJbn6yPmd6WCJwiVulMhgjXDww5VzzpTLuI19YqozUdBYYI3PMwHo7bvr9vke3HefhdlwS2Re1rLCLd13Hy6y8/e1vZzab8YpXvILhcEie50u/b29v33Gd9wHRCy1HZgqIOgFYivcBKyvt1cOPY4dutyT1AchGoJVFN4pZW1DrjFPlIcOs4ff3H+T1g2fZULOlBK/aSmZdyawtWJ/MOVvt81mvu8DZwQHXFyNK0aKE5TVbVzid79NayRc8+LSvRzPtCl4zvsyWmqIGFo1gLVtwfn2XT7QZF3Y3yE9pxmpBXmkuNxtcnK3zmvFlcqH5dL1FLg1n1D432hHGyDhAaSOZNoXT+UjXuHWbIfZyhIFzj+5y42DEo2vbfOT62Sig1lYwyFsGVcP+7hDdSZ892w1mnT+HEBZtJFIZCi+yNkYihEDnBls74bGpJQw01MqBmFpRn+7I9hVGwOwsVNuKcldz+KATWEf9TA5B/6JqGF2x5E9ZLr3FrfCpTG8WKR1VIpWhaxQy8daJJehbwrVnBtN6RGJW+iT9dQRBrmx71qp3aU+ATAACx4Eiv286sQdB9lIPNsTIyCJhyXrNjF1yz7e500BJD4ZsxpFEo0c0SwlIEcaLhwmT/PJ2d3+JSzyBGXIv5pIQOrxMQawetmcWu+LaH7VGgW3xWA9hY4Tppclz9TUPxxh6XWC0U7LkuCEX0rE9oSjb66aCJgrIptJphQJI9SbRJQG1SNopNIZDu0cWZqm2Jj63LHSK0Hn8DoLei8z/OTyoqIYNi1lBs8iQmSHPdXzHrQWVGTIP8tNirFjyFrud+EKrprObAaNVUHSz+o8rqyDpViEAXrSSvgMvpI6XWfne7/3ee17nfUD0QsuqFgDi6nqV7Vl6x8Lgknx/3nfwGOCVfl+i1gVkV3LaEx3Xdsec3drnWj3mTLXPDT1makpOqCm50Gx3Y15ZXeFKu87p8oBLswlvOnmBq/WEx8Y3+O2rD3N6dOgYEms4VR5yNtvlt+ePsZHP0FZyaDv+v2d+nV89eA0A62rGhWYLgPOjHXbrAa/auArARM652q5xvrzhXP1VTS46rtdjRlnNZjXlN68/Rt1kdI2iKlqM8Toi6eL2rFdzru+M/UTnbvrBzV2ePdyg7RRN6xggJQ17s4Eb9DpJVysOjCAvOxeYETcgGitopjn5oKPTikxpP1D6mcK7DUe3ZAO2sM5lfi7RpSWYkHZeLTnzv40z/3RAEfqD8+ISHhRlM8v2qyXCeK2REi4FiXKgQGU9cItBI4VfeRearNARDOlWOf2FPzau2pMAhKmWKM61qdt35oCCDMfLwMr0HToCjbSvhS4X6pwnE3aai0/274Vo/eQczH3h8oR1GhyfusRkdqlPmxxEZ5cAwpGJOyxIRHKvyf1a0V/LzViQyBaFST0AhjQgI8m2lQsQiYt7TH8R2LAEWcYkqj49x1Jd6TtuehDrtGiuDhvAUHp9EtTU9UnZCFQDOnMAph17m6QHurEd0sZL2nRpwg8eeRaXmyyI56OA/Jh2tPQmXaCpc2RmqCoXxd76S0EZzygFV3obgzOullWwkjI7R4DnbZZVT7L0vHeSt+xuz3+/3Hn5y3/5L9/zOu9riO62JJ3+Zu/LzciewHCGgTmILpdEmjc517Hbjogh3McKEAuni9mfV1zYX+fibIP1Ys6nm5Nc1RMq0fJIcZ2JnHMu32Etm3N5Z41np5v87sUHmeuCk8Mprxxfp7UKg+QNw2fJhebD04d4w/BZHsh3+Dd7b+TVxS6tVWyoKbnoUD469UC1DPOGUnZIYWhtxul8n5GsOZ3vs6FcevjnZmusZQu3j3ET/Gjs4gvND0raTtFpSaMV8y53sVm8ycdYQaU6pk1B2yrHLnldUKcl01npRKfKkuU+1lCyMuxahSo17W7J7KDEGOm8zzyFLzKDyo07p3S5w0RmsQPtJiVv6monNra9FZCFmGFhIvaMRzeExQlJO3bmTZMlE61NnqH3jArmr2BSULmO19+1KiY4jdqiYJaJbIfvkEUvwglu2SHP2qqZzEqfg60yzoNptbt5pmA1phZ49ikB+UGXsywU7tkfWxqXgBaQtfTmr2XA1rvGr4AcH9BRJO2+xAD5tBpCJ27roX1XgyeGeleEFVa54JURtEkccMuSnGz+eaWsmmvofrJebqRjwGAKVkOgyUYi5xKM6ytI6yKZh+uOyVfduUVg/nwyWeuBcTdKwFDy3I6YyjzT1We6Tz/+d+Uz1C+lZAk34wGG7dtV5ob1jVl8SHWdxRhCwTympEFKg1KGPNEM3qzcbt6y1fJ8ousj+4s7y3Z/s6CPL1YRq4/oLj/3y31AdM9KCnJuWW7VG2/jBTqyAEsGUrch+YBLwOlXW1vDGQdNSSE7LtfrgEvuWsmWSraczvbJpeb0xoF7+YVLmfGqyTXOlnssTM52N45JYgeq4UK7xYcXD/Ha6jlaC68eXOLADLjSrUdzXCk7bsxGzHVBaxUHpqK1ik8szvDU4jS7esj1bo3HJtu8bniRmS7drYTVGk7crLVkWLT8ybPPsFnOOX9um2Am6LTk6nTMbFHEZlg0OU2b0TSOCBXSkg1bmlmOlE5TJISl0/1sb6XF1A54aSNRypAV2nlxCZ9QVbq/Vvu0Cla4lXLrov8i4PCBjMF1J3ztTVGBFXEms3rDP7rSuCzrhYl6FFEYxwqBz45g+4lIOQ0G+MHae+boxidaNT6zeNpXJMvZ6PGgJQihTcLWeKAJOL1KmBiXOmJyT/57mGBN1k+2wvTniLSSsku5zYJ+CiuQi35ISpOQBlYumvRWAE8EQ8rFJIqMa7iu4LkJveA5gLUsgISknURSx9I9r5jb0hE0gNDwf2gz5eoP6SvgmAkoXQxZDwRD+ATpAWtox070ICgyQ0StWAgkKucygnCbB8+4pD3p2+TI8126NpLQBCkwssv7hH8Txkgq6yLAK0MuNZOxy5uY506np/wn86bqPNMUnp29HQASHCjAtW/4PB8gkdibAqNbBVi8U3D0GSn2Hn1eRuUHf/AHeetb38rXfd3X8cu//MtLv12/fv2uU3rcB0QvpMSBYrk3HeuRcbOXUySfe3lpFvTYaVLag8KxRHXFicGMnWZI60fyiVigraC1GY3NeLi4wes3L7FXV2DhxmJIJjUX6w2enJ9hYTNy0XGtW2M9m7PTjtjrhjxZn0Ej+JODp3kg26G1ik9OT7GvBy7y9GDGc7M1DruK39l/hNYqXlld4ZOHJ9lSU9aVc+v/xOIM//3SZ3F9f4zRgrZTPLS2x+kTB3zhw0/x0HiPj+2dBuDi9Q2vZYC6y2g9jZFlmkHZkmearlNkeWB6LNa42TCAoRBATSmDrp0wO/eCcmOcbiHz3mhSWlSpsUYilEVVnVtpV9qJW4cO2OgCmgnUmz5YoXZeZAH8Cg2Dq/45Gbz7uwuQyFz1TJERmFZhakXQZIRrDdcTrjMmyhQ20W6IhHm0biINQuTj+lvYloiUgweaY0KWGZ5UrBwATmSE/ARqctMzBWFSTSItp3oW0axclBc8Cwuy7k2N0dTm8VVgiGxmexG3AALzFVzeZQ/gIgBM4yJ5sJYyrPGeknfc5SizkfUSyh4dB8L/x42w/vqXvLPAR4ReWVkFcJqa6nzS38gApefQ7pkFl/zQPia30bS8dE5w5r2wLQCJ1Xs50l/8tuTcvdu8/3h3eqUM66O5Y4OEZTKZUxZdzw5J5+hQKE2Z6cgW3W0E6BQI3Q5TczNwdKcZ7++Xz0z5vu/7Pv7O3/k7vPrVr6YsS77qq76K7/qu74q/a6351Kc+dVd13wdEd1uOWTnGr8exOMcdfy9B0DFjcb6rHIWeu0FnmDdkwvD03gkGqmVmSma2YCRrLrab8fhpV/LgeI9B1aCEYTObMVQtZ8s9brQTtvWYmSl4qNjmXLGHsYIz2R4HJmMoDGtywansgOdma2gryIVmq5zz2Hib/W7AKKvZUDMHwIbbLGzOgak4l+9yqEveeu5jnF4/QAhoFo4m+PwzT3OjHvHkzknWiprHx9d5y6NPYyuDldC0GcaI6JUGbqWolFuBIkA3sjd/SadZ0FqiO+c9JjPtJmHhRNwu/pGrU3ogIoRFenOV8ceJRiI6gTqUqJlciuuSHRJza8naTW6qhq5ysYuE9ttx2p3R0yGPBNjW1a8GXXy+0k86UvaDdZhUhOrZqyVTBniAwJL+JZhSeg8rHFPlQULUCd3CemEF/QQdSgAe6YQffj8SEdlXkqQUWTIjgfea8oAnsE8iYXqg3+7PH8Cbu/6wEw7ApEzJcfcTrkscB3To9UkJUxLi8DgwmuyfRM4OE3PYNyY8DcxVeGaB8Y1hBHy7hesJYChh8sJ9B4F6yNEmGxcHK96zEa49PUBNrymCh2Mm9yVwsArk/DHBrBtZzPAeAvvzir3ZcsqnaCYT1jtLWHKl+233AGyEY29lxlr1RlsttwvG/shAUbLmuWtz2csIz/3Lf/kv+ZEf+RF+4Ad+gJ/4iZ/gV37lV/je7/1e/sE/+AcvuO77ouo7LWEQDANM6Ejp/74si5xXBpN7eDmhXrFiJjGZhdItn2eLgo1qzm5T8Zqty1yYbfLE4AoLW9BYxdlsl0J0/PNPfjFnRwd84vpJxoOaQmnO5Hs8VGzzu4ePcKI4ZK8bsq8HbGZTWqtoreJ6t8bPzh/gs4fP8uriMutqxhed+iTPLTZoc0VnJaeKAw51yZtGz7KnhzxSXOOwrLjeTrjWuBQiF+YbXDxY55G1HRaTnEnp8pL9j2dfFdmczkh+6VOfhRCw9eAe289ucHr9gJ3pkNGgJpeGRruUHlq4uEVdpyjHzn0dC/ODiqxqvT5HgtQORLQu+WTQGmkjkcLSLDJU7tyBrcGBKIQTK3tPJiu9ySazIIXLaVZCNgM9BF31YuB2zU1aOuSUqiVIy/wcVM8ULM5qxKAPx1xUzvNNa0mudDQLGOMYsXqeu0lLgZAuwWt36GMZBeGssA4U+TbowY7odTDCOPBRmj56tRFO5Bz6bgJuRCti7KS4PSZIDYCBeGxw2baewQn7i070uiHLUqDH6PIeLlFabFSvil7AHc5jQHA0pURws+/fXdGbiuJ1uoZNdVIimLvi9bj7EixvjyA0HR+WFk4egAQBsGejbIj6HTz9VsXVab0hVUmY3D1DGpgtm0G+o8inPrGwxOUzC/UFYHWzyXupzfr/+1QUrt1FAhSdF91yfYG9FF4fJOXK78n+SpgYjHEpNlDiFSaFdfE7b0K1h/fhuHOsutOnwuc78UTjFudfPeedCLFfcLkXgOZlBIiefvpp3vKWt8Tvn//5n88v//Iv86Vf+qW0bcu3fMu33HXd9xmiuylhoEs70U06VD+w3uULcjsd9SY2OltYUJZq3MTNO/MhC53z0HCH/3btdXx4/hBX2nU0ksZmvP7EZXbrAScnUxZNzmvXL7OwOZ9uTrDmFcI73ZBr9ZidbgTAejbnd/YfZr8b8MPPfhH7pmRhcg51xVq+4FPzE5ypXL6yy4t1DkzFR6fnGMmamSk41CWfODzJdjvkxmLovKoQHC4KTlYzdusBhwcV2nuaXTxYJ1OGtlM8trHNZ736ApO8Zlz9/9n701jZluwsFP2imU02q9lr7332Pl3VqRZXY5ctm+ZZdWW/a2OQjBDiB9LFT8IWEkJuhG1shEFI/oNLQtiAjUACoQJkGesJ8LOl9+SLwaYMFwrsgoKyXS5XlatOv89uV5Mrc3YR8X6MGDHHnJm51tpNnXPqskJK5VqZs8+YEd/8xje+UWOStSlDzBoPG9Pvy6KlaE1ryHvHOnSnOUIAspzARnAK9nYGf5hHHQ5lvfhALJFryfzRNTqJRrm4pZ9S9lu36xFMQH0FaTJsd5AmSN0C+RFgVkgiWQJKgN9x8PstmivChDIWnvWe8rsmZYMQiMEiESpNNibzfWo+N2aLctf3k4ABA8RNBQLUqtGUZRZrkiVxLq8uQVEAFZ7N/aCfapmSPh5hQg9U0iS9oczHgN1Rw+XouBhsRQBq+hAWOUSPn06wVQCewJoAbfzgo2RIaMwyiNBkCr0l5o4HiNBPWEElLRGDpzBmeYDhw5PUW0XX8vTwY0JvGeAU7JGhlPwioN6n8KHP4zKm3/bAXXrc+NB5/2KZHgwoMLOlIxPErJAs2CrDZ0CfPcagoe0MNIYlOrQKsMrHz+N6onONtUWSAZJtzNaMmaZHFTxfNIR3GUb7yrVr167h5ZdfHnz2oQ99CL/6q7+Kj3/84/jRH/3RR972JSB62DZmheTn/BQxmmzo+zf35uBq2qGmkbDMW9TO4spkid+6/TReW+3juCnwzz/3h/AfHrwfX6hv4Av1Tby23MVrb+zDeY1vevplPJUfI1MOU01ZYi5oZMqh0B12zQqZcrjd7OAdk/vYtSt8y/UvAADe6PZwr5midhb/9Y134GZxjFv1Hl5f7uB2s4t7zQyl6rB0eRo4dmyF1+/vofUGz5RH+APX76DxBrfu7cFHF2mtQhIZG+3x6Zeew83JCf7gwYtUSNJ0mNgWuXGw2qOwDrOiofR0R1SJtlGwbAIVcQXpcHxr0O07wIZUXymAUt5JQA3S80SwBMSBNU7ErvRUZd4AUIFCFbFWFZXmoPBYNyF2qJvFoqgxfR+GRNU+CmZDo+Eak849BBKPAyD2S2TSea/onNJkSmDIlI6AUhHZJg2EUto9x/fQv3PqvQoYiJ9lHw55P2knVkwuEtB7G+lAxWkFq8CmgQOdTuiBkaniTSTBhxGARoE8i7RYHxiG0WIGZ2KXxOXhkBEfdAJTfE3S3B969mEtzoDElARHA4MaiI/jxnhfkZ3ql0GvP+pUnynGzYPKo/DvE8uBpN+Az9MECtVmFCIjpjKK26ONA1QgHZg4zwHrNWCwh2NVmvxDfw3YWylpqOK1MNb34VzepMIIjND3k7xNwISd6CWzMi6QOgYY21yszwIiY1C0DRidJboen8dbXuk+PKHXV0n76Ec/in/1r/7V2ucf/OAH8e/+3b/DL//yLz/yti9DZo/SxuyQ/HxT3Ey+Cxp6MPht65Cb9rVp2Q27nbxwjMWdGdrW4Mp8iXle46X7V2CNxxcOr+KZ+TGaZYb//uqzePH4Cq5OTvHi3QM8e/MB3rnzAE+XRwBokMqUQ4UMO6ZCqQ0K3cFD4V6zg2eLQ7igsWMqTHUND42lK5Apj4XL8c69B3BBY9dSNXoOjzko1J7Sbw+KJbQK+OgLX8TvPriBV1b72M0qdEEjL1o0IBfSwQAZRZuf+J3349fte3FwdQEfFOZZg9YZdFqjcwZ1Z9E5Q0+ySsEFAxX6UUCpQKCjo0yx4p5B+96WwlPapYnDJ9M7Sm9X0V1XAYBT0K2GnzpQZXUN3QLVHhLTEmzA/JWYXdYB0DGsqQPUfhsLXxJoYZGxKmOdJzHBAFFIrQLats+QS+GYODibgmyJCSiBDCUDUso2aweYjVnroqNsrrVQMYdFnCKwItykwWAq0DGpjly4+1BSiGJt329bUSgszc0Og3pivL1BqnzUx3iRaSYw4fDhhdkRPgYMv2PWhH/vgS5oPHF6BURtGoJKywKR9UnXMUTXcGGHYIZurQPjSQHmVKvIzoF/1+j7E7L+mikdgJWh6xT68KHugG4aeiApHtjSafNn/MNLxou3H6+L/N0HLFAMAwbVMz2sHWKQo1WA8wrzskHVWoSgMCuawTZkeGtj6jvCIHSmMQRPHBa7CCtzniP1eL/AZpfrTe2iobUn2QQ+f6xtfLW0v/pX/yo+9alPbfzuQx/6EH7t134N//Jf/stH2vYlQ/Sk2hhliyfMPlUm9EDoCdwv53Xi1e/vwkxbGOuxqAqsugw7kxpXZkvkxmGe1bj51BGmkwandY7cOPw/3vFlfPjK63hhcg+Zcmi9RRsstPKYmhqFbnEjO8KOqbB0OXZthRNXYs8u8d6CHKdvux28t3wDu1mFymXJDdpBU6mMoPGR3VcAAK+srgAA7tdUT63QVHPMB4WXFvs4jlXqi5IGUE4xVwopZAQTkE2oHIfVHqWhENiqzeADZao5p2NxyRiy0AEmVolnXZFqdapx5TtKufdBJSFz4CwgnvD4/1ZBNxq6AdTCUnaYBeorgJsE8h6KAOL0GWByN6DdBVQbf6jSITgFnbmUURSsB2aO9hvZIaVD9FcixqjrDGXOjQZf/t93Gr5TybtIxad5lZGPEodTNvWjxHLGFPbETGzKVFL9MkGHxNwEZjQcegDE25eO0FpksLEvF2vL43GMl2cAw6GxlDUmji2dm4p1vMREPzhu/jcyOWvMgbxnGSAkIMEURxBjwBDgcP9KpVQk8GQRuQCSA3bKhiiVCr3JpjzeygCBz4+OQ9cqlTVJGYOd6s8f4vz4Iq2dX7+fAdDlU9AhldgwxsNaD8u+XYp9hQLyjOKnRgfUsTyOjgCfM8mkEaNRo7AvepBxXibYw4SoHjZ8dhHGaNtxXbYn277u674O3/M934OXXnoJYYML5gc/+EF8z/d8zyNt+xIQPUpLT1LARiCUJghAGrixHwkzAE8CFG1tip4ScadE9/IMJ6/uwCqPMmvxzvkDHC1L/Ncvv4BVm2G3rPDeq3ex7IiF2c9WcCAQ0wYDB3r3gi7IlMP9dob3l6/jXcUdLH0OozzudjuY6RqlalCoFpXLcNIWWLgCX1xcx7Vyif1shamp8euLr0FpWqxchgeraX/oKuDl433MswavnuwBoAFVNh7QjPHIJy26xlAdMu2hlccsIwH1aU11zDSDp0ADoM0dOUHzhBrDPiELcNMAdFQwFiAhs7Yxa0aD/GEa3WtBYnjClQQ09EqTqHkWtUETn9gNNwlYPqVgKlApj52WGAZmWEyAqjVVtlcR7AQqPhs8vTvXH1tKww9KeLDQetoE6GyYcRZiaZAEJNJEvKEzKhAwi2nmABCyeC6RrYAXBow69ALo9LdK7yoQGzIIGTU63QshpvYzo+Gj4JxT5ZOmie+pyBZ5Bm1jk0Xwd6EPWWG0jJy0GAzo0fIDdiXSJAmU8bkMw2Wcdp4OfKwT4sseMAxLAtGWgPpSGl/kMfBvFX8bs9LQlU4skWl6QImAHsDL85bnmIwkxbgmmOyUQs/vOgwE5JtCR9b4ZA/BfZSB+k5ZJ/+hzDhk2sEq8im6qPZmm0/Rk0jVP6s9LDC6bF+59q53vQt37txZ+/z+/ft417ve9UjbvAREj9rUhvc02KAfMMdpu29WY41D9GjRrcKLv/M0Xr27j5cX+7i2c4qnDo5xfbaA8xpfOjzAblbjN19/Hp89von7zQwOGkZ5GAS0waDyGdpgcOoLZKrD+6dv4PX2StIY3el28YHyVRh4OGgUukPnNZ6enuDfv/peHLcFrKZlX64O8IdmX8T7Zrexcjly26HxFj5oPDVfYJo3eFBPAACTosVyWaQ0edlsTDXPii75BflAmWFGeZQ56YmMDunhPcs7uI7S7ROb0upUd85nAfowRpPjU3z/IBLI7VlH/U9AnxllAuwDi7DXIux08BMPt+sIVET9hs8BV8bfpAEgPISSUHu/jWEXheCI5fGdRltbuKgX4pTtxHp5wK0sgaZOw1UiGh5IHxWcTvqn5BCdTAp7zx8571I4LO6r8FB1BDAjtqLvd+LFcyxndqWwV2QwEpgAPTBocTxSyK1DzzaNSoHwPZayx0xI6/B9kNLk+fhGDySS6CHEHF+StWGWJlJOSjJWEAxiwPAaQKw7vlDMRI2v45iNkcxSTuJ9ZQKxQxo9GwTqg+1uiAVx0af9s2eSwprvEBBG12eDn1BKpScNHuuE9AbwkcX7MIQ+BBYC3au7EzJmZOG0FE/LZkXqPYCt4EZ+/7iMzMM4TPOxvy3AUXhCr6+yFkKA2vBjLRYLlGW5YY3z26WG6FEbc/HAcEB7FNZnW2d8Ep009HMTALj7Bb58eBMf+sBL8JnCveUMe+UK87zGostxc/cYt5dzHBSnaROvN3uYmxpGefigsQwGO5r0Qm2givI7usKOXsEojyZQmO1Os4OnJ8fwUJgXDaa2Ra7pifCwmqJULaa6waIrcLVcYuUyzEwDqz0mtsWd0zmAOOip0M9PgWL6XMcLQHziDCk81wUNowMMAqrOosxadE5DaY+msSlUZmwnrlVkT0yAXWiEEa3OobYQ3ZdVo1MYlMGDciCwYEhIrGxIvi+q0zBLYodsBdRSNIw4UcX/zaQjAbdGzzwEJDErH4c2pG5QzMzEbqmzKKKOgE9njkARgyEAXA9rAIBYLI54vZMGDlBt1MEwEOFlOyVSw8OQDRG3STqejq5RsCF5NJHoPDJBHCYKCpp1TCH+APFz2JCuPWICgRRJD975OGQbM0PA+n2s+++G2pARWEr7oO/UeL/xGqyN3QxEW73+uWwMfhWoLEcs81K+bkmcv8N1YeJvEf2IGHyGzI3ObQjmpEYoOaJHlpEtB6jPRW2Q9X34b9R0DPHqeD8a5WHjLFNm7WDZ80DO4BK8iZocoL/fL9JY3/RWtf/VNEQ//MM/DABQSuFv/I2/gem0jy445/Bf/st/wdd//dc/0rYvAdGjNnmDbuLZtokzxCR1YWS+ZTDYuAuJfoBUzJIX5hpTn331Jp6+doSr01PcPp3j5uwEyy7D1NKg9crpPvazVdpO7amr7NkVprrB0heY6ho7ZpVKdLzYXMcfKF9L3kS7doWpafBfH7yA0raYWspUK3QLHZmnE1fimfIIxx1phWpvkWuH47pH+EZ57MwrOKfTIMomjCGChKAUyox0RssuQ64dctuhajNoFdB6gyLv0LQmaTp8axAK11+uTtH1ygJ0R9IXLgDr2VtHaj54Ao7sxOzLBsvnAlAboFOw1yq4xsBkDv4wR35ooBuQRwzfw7UGZpQyH1yfVRO8ovIgcVLizB6ei70nbZOP18RYhzAF3NKSkWP8zXlQ5wlFddGXCHQOIaMMKd31hVsHfccT0Ats6sjAR7IhzM44CYyQGJvkTO3jPkQIJ1hP2i3HnTlmn9kA+AAEjaB98unhbL3A/k+I7zLVX+4fggHi4xUAaHBr8fNNnNRlJtkg02oMhvg6q0AsnNwHxxMT6yR2ykBHI7GT8CCjy3QsQACBRWYhVa1R3DHkMVTGY+wAZAQmVYjZjPNAXlGdJnDOx6XEzsdN7Jf8hjz0CCjJxv9xJplm0MQhWYUUGpPNQxGeFYDzK5GqLusVPvy69P4wxVolYxQuNLhftodt//2//3cAxBB95jOfQZ7n6bs8z/GRj3wEP/IjP/JI274ERI/aVBDeHuLzQaaNYADGQOhJHwtX0g5DoDSYDCC+u1Pg9bCHVxfXsHNzgdunczw1W2C/WKFyGV4+3sdJV6LTLSamofAZPBwUlj7H0hV4td7HzeII1+0JAOCzp0/jmewBPlc9jQO7wJXsFEfdFFoFvGfnHrTyKHSHqW7wzsl9OCgY5TExBGSOuxKVy1A5iwenExgdUGYtWm9Q2g4VbMyu6oGK86SnMcbjtM6xW1bYzSscNhP4oFKmiwvkYZRKdiiFbNoieIWuMZQ1xmCoUahvdMiYlPCIYKS/kCpOwoqLqcbrak8V7G2DZj8QiHIKPhDT080CZvcUqmuxq5QeyGJIwSmq1xar1gNAcAomVrQPXtNTetRi+FbHDKSY5ROBmpn2jFcQyUyc+UQ6k57R4v4ToiZHYSS0jqApCaPjZ6kPR2PHpI/jxuyNi2wOgzmNxAoloJWqwSNmq/E+yLNIRSCkI5hL64YI2vINN1Qg6wByDWfgih688U8p2Dc6n8jmRQZuAIYUkjEni9yD18TGAfCdQYimngwUg9RMxX2HTiWNWA+WVEq7T+G+0E/GxN4BqtGwx4aYoXmAPVHooohdtWThoDoVi8DGdaU/1dpTVOzk3BVUSAA8uVjH4+nDX1E35lUCAJv8gBjk8D0I9JlhlC2m+nJvIu1+GyjaxMKcly32ZjNLb1n7Xwh7/dqv/RoA4Hu+53vw9/7e38Pu7u4T2/YlIHrIlu4vtWFsOatTPgEw9DAPT6Gf62j8j7mq8gEV9wooBZy8MUd7dYXndo8wMw18UHh+9xCffXAD79+noltaeVzNKIx2u9nFSVfCRUZnkZV4V3kH75/dwo5ZodQUCnuj3sNLqwO8MKOMtdpbzE2NA7PA89m9qEVymJsaWgW8tLyCxhtoFTApiKnyUCnFPDcODQxy47CIFe3b2sKt6JVzDbKgYZVHYTosPT09aAR0gfQNVZfB2L54qjYBzketSeHhcsAKYOGj9oZ1MylcEEM+rMGpr1DGj26A2asKhwcWxX6N5s4EutIo7iu0c8AVBEy8DeQ/U4iBO0Q9k+lLdHCtsm6VwU6i3igyMcQQ+XWzPyBN6ON37iBBBWIWQH/r6HnDoAiIoMkhCqnRi6kjYElZZwFigkesMSeYIBOS99CgqQA0miZyxi4CWAUyEe+BinjgUCECvCj6Vu1w3wK/xhX4OJFE4ErH68VAKa6U2Div+kwtFRLIVLr3HoKi3wzsOeUBKNVP3wrkHh4HDGX5gg2vQygofDbQ+PB3DlC1gamIPXNZPM+goGsFs1JwBYCckgN80QNfOnZxvdOBDY9hzdKC2ZXQgyJexsSHivH6Mm3eqL40R9ouM7wi449C8WrgO3QeUxSC+oq7QW9yv97W3lItkXxAeZxtfJW1j3/84098m5eA6DGafIoefnHWShuWf+gdn7FPHme48rUCQgZK8eandbFOiE64AUDlLI7aCV462ce94xmyzOHL5gAH5QpX81Mcaw/tPDpvMDM1Vi7HyuX4rdUe5rbCgTnFqS+glcfr7T7+4513Y7+o8J7pnZROO9UNSt1i3yxTaG0vht3uVVPUrcUHr74BqzzurmZYtRm5MauAZWdwZUJhvMMFCa59FA+rE4vWepw2Baz2JNpUAYXp4I3CqskS6LBZL/pUCuiaWFA185S5U5Opjet0D34E66cUgFalawdEgi5qgNpdoHM9QEHpYB4YTN4Aqms0ibvIDoUY9mKhqgOSf5Dm2mTxOLNpS0JVTT4qPGF5p6P3S5xsoq5KmcgeuTiBt6pnY3Sg8JXSQEP+S+hPcdDHGFQnxocbg5EAwIjPA6DaGKaxiKEy9JocLUAN14Orpamk6MehZz5kv06FSn0f5gyces5AwI7YoAgGGMAyOQIlMsI4E1EHBPS/fbqWiECTQRMQTTzV8L6PYKov/BqBZgqpxeVqTaftFVStgDIaWEqHbj6MLKBj9il+3+x7FPc0lKMMRm66VilLL+GGlGUnQFG8Pil0ldiheE08BmU3nNd0+AL4AARwLPtlxZbS6jdobCQw8sEMmByjh07V8rsnCYIu4kf0MOGyy/bV3y4B0eO0TTfLticbeeNtA0U8eF+kxW2Mw2NpnEuDIIVmTKfhr7YInYJZmAEDYOcNnt47xlPlArcr0hNlxuGNox28cu8KvrR6Ci88ewc3pgtMbY2r+RJWOezaCq9U+3h2eoijboo9s8LSF3gmO8SLzVV8eP8WZrZGqVvMTYWlz7FjVvBBwyDAIWBuKhS6xdTUCEHhYLpEph3uVxRq2y0rHK1IT3Rt1gu9uZSGyh3QkQbFLynUtlNUfS0lFdB2lgTXTqPrTEoHDjrAdSZOfv2112UH32qE1sSn/XiteAINgMo9lZJggAEqwxE0ZfS1OwE6dxQ2WxnMXiVDRm+RwFACBSqQgDpz0HGiN9HThcITBI4oVGagMwcNj64hHyJKz0cqNhtaA5U7Ol6P/knf+p6BCQAcWQfoyKwM+p8AQ71XTuj1Orw8/8/9WYIZLkvB32n0/8t98eQfGbMkHI6/kS9Ev2cht8NQe+MUdKzqHl37+n2O7ysR3uFsvQTW4o0hGbtUq27bQwiDMKf6G1JFVkVkbDFQBQT7wudUOmBl+ptZWnsA0CuDoAM0M1Hx+voyEOMY9USKr6VTgBZPRQkEjU5iAIZCAkPpXhBgaBs2YJ0QV6rfxPJIBmVT6IuLKRvtAa8B7QcuCbJt893qj+fiKOZhTBofpqkRPv5KNpanPe42Lttl2v2jN54oEN/5xaGVIN6lEJdTYfn/izR+UlLAmfduZCkCD/Cx6ZWm6tdHFnppkm9LUDTh7M4rvPZgD13Q+NLdq/j9BwdoncELV+9jOqlhig53FnMqu7HawWePbsDAwyiPq/kSc1PDB4XPnj6D6/YYN+0hPly+gm+Yv4j3lm+g0C1musbddgeFanGr2wMA5Mrhuj3BwpUksK4K3JyQHmm/WCHTDlWbITcOpw15DC1bKvWhmFmJT+Bup4OadsitQ+0sGk8mjQCQGRcHWwpB2WhSmLJ8OFyS+aT3CEH1AuEAEiPHJ3lGnir3UDZ6E5kAn8XUegt0e1QstqsslFPIlqTTaXfEj154qIzcjs2kix4vXhhIUraO0sRWGe2TnkmbWLtMhZTZE7yCW1oED/iKBG6cTafkRJcASuxXORWD5bIOcnDk/kZhq76fESsU0NsGQ7AwcVsMfjhFn/s8Z43x9zzzCfZJtyqWPYkMkQ5J/4SAHjDFch4pWhd9ltL++O8RwEi//aj+FhAGvk30QyDVtpMAIv0GQH8urMERF4/7FAOk9LtwWQ4FhE7H1Pj+eJWJ/UuMFT7z0B2dvy8DdEW6Kp+HVCrFzRz8lMFQ/E0MI3msp9Qn/yQ6t3FKvWwDXKnoXtKpDxIwClGvh9Gy0mAxvQQw1EpUu0f/QPOwTQKkt8Ic8VHrpD1yC0/o9RDtYx/7GP7gH/yD2NnZwVNPPYU/9af+FD73uc8NllksFvj+7/9+PPfcc5hMJvjABz6Af/gP/+Fgmbqu8QM/8AO4du0aZrMZ/uSf/JN45ZVXHvICPLl2CYget0mws6ljjZ+Gz92e+HvLOltBEQ/8gh0C+qfoAX0u2v0vXUFzZ4L//PvvQv3aDMdHU6zaDPeXU+TGoSxbeK9wXJUEmu4f4KXVAZYujwxPh2vZAgBw6GaYqQbP2kOUusWOrvB8dg+HboouGLTBYqZrVMFCw2Oqa+yZJTLlkFmH29Uc7yjv485yjnunMypkGjSqmkwjG2cGx85lAnThyIRQhfS0yQNupt1A2JlSipUYdPlpXk4S/FQdFLFBre49YHhbEcRo6xEKjzB3aK846EkHV1uagDxQ75NhnqkVablMPzlp69cG7uAVMuvAVcDZrbqYtMjzjsSqYj2tyYSRAISmUFTsEzruyzeRDePvhNA5hWX0sI8kx2kpSuO+JfQ1iYlhsCiBB9DrjtKFC4PvFT9ICIdqMMBh/VFHzFGwYQByVARjgYu6KgxBmDQ/ThP/6PhEiGbjccZlJVgFIAD0lnXCaILksYDtD/gyxBAsr8/gNQSVSq3obqjBCiqye/y/CfAzN9Bujfc7MIxkcKcwAEV8WTaBIdnflALchn05r5L9BTfOIJPb5HAamzTmtoNRHmM9ztpxPCTIuXSMfvLtE5/4BL7v+74Pn/zkJ/Erv/Ir6LoO3/Ed34HT057F/6Ef+iH88i//Mn72Z38Wn/3sZ/FDP/RD+IEf+AH84i/+YlrmB3/wB/ELv/AL+Pmf/3n8x//4H7FYLPAn/sSfgHPjtNE3p10CokdtTI3LwXZ83/EgwwMzMzeDx6wNf28CReMJU/XfJU0E/61DX9jyjMMfnEcAwr2CHtxrg7qxsBFsXJktMS9rPL1zjM+/+hQ6Z/AfPvs+/NtX/wCOuglqb1H5DNfzE3ypvo5PVS/AIOCF7A6uWyoO+4XlDVzNTtAGg0w5HLoZcuWiF1ENrTwy7bGb1QCAVZPh6uwUVZthsSyQZyRyfmq2gFYBzx88QD5tURa907PvdF8FPl4PNnhjkJRnXWReSCFiOLXd9AZ0vqVirnCaPqt173sjBbiVSUVgjfXQ85ZCPvMWO7urHiB4heXTAd7ENGnxOysTM8x0nBisTxqnzDrY+MRsrEcAmdtxyj1NMEj+SEoFEoMrmhyV9sjKDiYjV247Ez4wzIAxeBGsiizUmkJSjKY5Ljvut9y3AcEM8XeBXhpbR5xUYR6i3wakkh58LIqZIwC6plBpwlaRvUu+SHzPCfATRv8DdFw6euuklHv+7QAhVqcD8zGzUI3PRcXPgkrhJwnAEhgJIJ0aXytNx8A+VBKkhFbTZbeBshIVBtcjGPrO7Xa903dA2ncCuwEC7Pf9hfaH9BCgGeBhnWlJJTciK8TeX5wZ5qHQxgcWFklvKtDKZTuS27zyKG2LwghPMO4CElRhuzv1ee2sZb7aq9Lz7fW4r4dpv/zLv4zv/u7vxoc+9CF85CMfwcc//nG89NJLgxpj//k//2f8uT/35/Ct3/qteOGFF/AX/sJfwEc+8hH85m/+JgDg6OgI/+Sf/BP85E/+JL79278d3/AN34Cf/dmfxWc+8xn823/7b5/kJbpwuwREj9OC6gGOQu+kO5gsxMAsn5ol+Nk0uWD0GW9L9NzBk7wARePtyEkgLcL0fXoqplFQxSfaNvr1zPIGs6zBO/YO8VS5wDe88Aqa0xw4tTg8muL/uvVuvF7toQ0GO1EPlKsOr7o9AEgu123UDU11jamu8Vp7BQBw4ieoQ4ZStXjn7gM8VZxgx1S4Nl9gJ6/x3qt3Ya1DGQFRaTpY5XGtXOI91++izFooQ2GF4Klu2arJkjkjD9a57ZBZl15UB613iNbWw+QuCWRDp6FODXBqEUoHZJ4m59zH+lEK+tQMBtq87GB2WmQl1VUzZUdp8jagm3m0e4DbcX2RVSCZJbKNwHxSo8g7ZPF8yWKAvIYU+idyrQLyrBuEOJQixiwkXZGCNS6GJdCnkSewwMJZlcKDyquh83EUfg/0OgppH/2C6MPB49CaQj+LdxEAyHR7Zi+YbchY44XEDA36tVPQjerBnDgGzQ+WOohSOfK+iOnkArCoWKQ1pZcbv3YPcoZYb7/Qe1NpS6EtBqdsKgkAJuMwJxJAgAL1AT6fwol7uw8huaVN/STEWmwhXid7okk3NKGadCr3CFkYFoqN10GJBzHFYVHThwuV7muSKQbafLkEq0NaoZD8hlIdM+PgvEKmPZwYlLivypAYgBTKrh1JWNuYWapVgI1s0Xms0LbSHZuWPe/zJ9ne9HAZsB6heNTXY7SjoyMAwMHBQfrsox/9KH7pl34Jr776KkII+LVf+zX83u/9Hv7YH/tjAIBPfepTaNsW3/Ed35HWeeaZZ/DhD38Y/+k//afHO6BHbJeA6FHbeDIAxBN0GA7C/NTGy45B0IX2N9r3KOTAux+0MGSJBt8nYBS3oUJalgZ1heNVgftLchDsvEYXNHazFa5fP4JZKfgFFW61mlLqnTiYe90cp75AEwxK3WLXVng6e4BcOeTK4cAu4KBQqgYnbgIHjffObuOV1T72zBJPTU6xn69wWJeUKt9aWOWxaHN4qHgsNV7Ye4Cvf+EVmMwDC4t2ZbFs8pi90qfmhijYZG2Di0VSlQqwluoueS4AG0Fh2OmIlXCK/GRsSE/+9q6FbpHYJddGUWgsW6CUSHefd0BQaK46Kr2go3YINBmb3GFStgTU4mTDOidig/r/edt8Tta6xBbpWD/KTFvo0qEo2r5kCeI5JQNEkNEhh88YdPA+AnotLqewi76neNLnjbOWCIjaItVrjBiAMLvGwl8TYibYqOM61afhg9b3NpbkMAG+GDozJymfDUkfpxpNoSZmaRRG5xCXEyEkbQkk9KwEAWU5WXAotQ+rxs/HABF0PQahNDkGcAmU3PcHptEfaABp1DpNDGW8xioQa9bNI+g1AaH0SY9EzHBI4cME/viYVf/Sun/xdZZAiN77/7lOHjE8oQfaEei18d5qfWSJEO9B9N5CEsQUpkNmHPbyalCqQ4bXxmn7chsSFMnzOqs9jDv2/4rt+Ph48Krr+tx1Qgj44R/+YXz0ox/Fhz/84fT5T//0T+ODH/wgnnvuOeR5jj/+x/84/sE/+Af46Ec/CgC4desW8jzHlStXBtu7ceMGbt269WRP7ILtEhA9buPCl4OBTw3F1dy2MT/y77OA0gVBVJDbSk+HYvAO4mlcPB2oAIR5B2UCiqKFNQQg6s6i8xp3qxkWbYmD6ZJS+Scd9krKGtuzK2TK4cCc4oY9wn03x6GfYqZrnPoCH5q+il1T4U63g0x1uGkPkSmPUrdY+hy56jA1DT648zo8FK4WCxSmQ24cDqZLzIomeRT5oHC/mmBqa8yzCrtZRZljZczE8grLNu/LeETgk2mPSdbCeWJOjKGn0QAq4DrIEorO0cEG6JWhiSkWd9WnccDPiR2wuYO2lPVVFi2yzMF5DZu59HQeCg81a2NV+76obDbpxJM2HY81HpmN24ifW+MQgkKeuSgOJ/CTZ8R4yay6YtJivlMlt2AWVievosSQxPeu17PIPAEgHrtCEjgn0J+8iNCDIe5r0tFaZnkp8b8XO2KQJJ9WRX91Ox1CTsVOQ0YgKk36LK7OIxuU+2HyQaeG//NxRM3QQECtQir4azIhmEYUUEcmMrGt6Zpj0HpDQxbv9a+kDTKBjtUDaDRQ9LYJiSUKKi3H1z+YgJCh1xux6WU8/sF9zuwY7z9ErZkZmS5GdkxqfBhccA0yPi/+PD1wRBAks9Eu2iQzJJtki4ZV6fvaYZu8jS7a/m+nKXpURmj8AvD8889jb28vvT72sY+du/vv//7vx//8n/8T/+Jf/IvB5z/90z+NT37yk/ilX/olfOpTn8JP/uRP4nu/93vPDYdtq1H2ZrTLtPtHbUlkiv5dsjY8cErdBbD+PUZ/y+/Pa4q8UhRvY/RdeoLfxAwBQ68TPqVTC0wdlscl8lkLoz0+eOUWXl3uo3NUNHVqW7zza1/FraNdfOPVV/Dqag+3mx0sTY6dssLSFzgwC7zWXsGuXsHAJyPGL1ZP4fn8Pqooer5pjnHFnsIFjalusGeWuNPt4GZ+jM+d3sC18hQH2RK/v7iKZUdeQplxuL+c4qBc4ZnyCIftBDuTCqvDkjKOHRVtbZyF0R6t78NmqyZLQM9oj87pZNBIvjG+/1vHiuOtSqnmoVMwtYKbevjdjiKPiibjED1bqoYMGpuTArro0jX2lUW2W8NaD28o5JBnHQrbpVTkwnTpaZsnKJ5spiWZZhJYUsh0BFzGoXEmFb7VmiwGWL/BGWgcVuR+EdgoUQUErfpMrVg/TEWjQWQBamWiuFr2bYxKc8j+LFggFgKP+yKQmCPtejYzFMSMBBvrwWkAtQRgCn7ioRo1yAZkR2a2REhAv1H0O8bDSuAk6W3i55ESs7mD6zSUQbp3Q2B2rT8PzqzykUEEMGCNNNdki+eefotGQ2V03ir3CLXpL4u4tiHqpTiLTgLQYONyvrcoUIKR6sOCtFEJfNhlm68PJxwwM8a2FLIlcB3UoH4gh52dI8d4LuwKYE0cza3zGi6Gs8uoG7Lw6GJRZtkGztaxP+uAxDr5eEwPmz6/qaTHeBsPU8+Ml38r2ggHP/I2AODll18eOD8XRbFlDWo/8AM/gF/6pV/Cr//6r+O5555Ln69WK/y1v/bX8Au/8Av4zu/8TgDA133d1+HTn/40/vbf/tv49m//dty8eRNN0+DBgwcDluj27dv45m/+5sc7oUdslwzRk2qaAQg/PY+e2rjDDsASBk9vw9IHW/bzsDedJKhGNw2Hg1iMmkJ9lQYqg7ayaBqL/3bneeTakX5HO5SmxQs79/F/vO9TeHd5G9fyU/zm3Xfgdxc38Znlc3DQKDUJeI/9BJlyOPETGOUx1Q00PO50u/iV4w/j5e4A78nfwHV7DAeFE19i0ZU4dhO8MLmH5ycPsHA5TltynPYgA7jCOryxnEMrj52sos+ju7T3Cqd1jpOqQOsMOmfQxpcctLiUR9eY5OHDE0VgYbVXFIbR9JnKPNpnavgrLYrdmkIscXtF2ZBVz/+ck9mjDvCt6VmQ+HTOk8bulCp/KwVkmkTlwNCYTqPPkiPxaZcGcw8FF5kf1hSx6JoHdhe9hhDQhwSjWEzFCZX6QN8FWJsTNFL9MC6hsSljK4EhyQZ5CJYUQ7DE+h5RD81z2n/cXrA+2hLEiTj3wNQhlB6YxNjRxBNDEq0XlFMUXuKaajEbLZX2kA8tm24V7VPWIoOCxPJwCz1blH6HTguWhpdTSWME9GAjBJUK/sKQaHrdcCcCk1MDVWsyzewUdKOhfCxHkvV2D+Nz6muWhaSPonMhbVBiZVTPrmjdh2qNJoZShq6UComJ3FSBXmu/llXG7xohGTcy81OYDleK1YANyrUjQ1UE2ChYG4fReL+SKZK+Rw/DFm1iip5U6GyTZcFXrD0MC3TWC8Du7u7gtQ0QhRDw/d///fjX//pf41d/9Vfxrne9a/B927Zo2xZaDycyYwy8p9/2G7/xG5FlGX7lV34lff/666/jt37rt94yQHTJED1O49lDNn7yGiuez2KF+Lvx5iRTNP4b4v/x9/L4ZAxk2w3KmE2LZZyCrw0msxqndY5nnjrEyuX4/PE1PDc7widfeQFf3jvAD7/wK5jtUJz5sJ1gbmq80hzg6ewBDDxebK7h3flt7Gia/N9T3kapWrw7v43r9hjXzTEMAjLl8M78Lu50u9gzK7xUX8W1bIHfX13Hoi3x7PwIry72cLic4EiVeGq+QO0sJqbFqsn7kFCcXNpowNi43gWXByh+wuWSIMncME7QvjbD6yX8YbKyI61OzLAJQaHIOtQtmT9a43H0XAfUFuAn7cjcqMzTJJkBZdGi7gwyS+zOJFYCr7oMk1iktul6AGcQ2YjIrLG9gFYhabesiYxXIPdq1ndwmIbNHVNocDQRMwuRGAn+vOsHNa4rloC8U0g+RNwP2awx9i1mMgYMqhT/mlG/DIgOz7x+ILYGgQCSV1CG2DpYn/q+6nTSJKXbLxsJpFkYFYb7S6ABSCGhNKGpkNL4ddSLaStqysmV0z3aO1kDSKVT0vVisGK02L58eqHfwZce5sQMfJcS8wz0NgNBsBlCE8RhOm37TMUEVuLhynpjSZyvAgKXGwGSOzo5pXsYhYEmLzdukHHG22EdELvHQyHpiuZZjcpl6ZQlGEmZaxtA1pgp4uMei7cvwhhdhCm6SHur2KG3qn3f930ffu7nfg6/+Iu/iJ2dnaT52dvbw2Qywe7uLr7lW74FP/qjP4rJZIJ3vvOd+MQnPoF//s//OX7qp34qLfvn//yfx1/+y38ZV69excHBAX7kR34EX/u1X4tv//Zvf0vO6xIQPYmWgE0YDIiDSVWCk9HA2espMBy8H/VweNsbxKrKhLWPAfSmd2kjgF4adLsGsA4+aBy1E7TeJLHk67/+HPbfvcRT5gQn0xK/cfwuPJffx9IXeMoeY9dU+NWjD+Cd+V2ceHKbvmoXMMojAzldT3WLL7cH2NdL5MphR6+QK4fZpMahm8JqelLtvEFmHJrWoshb5NphNydDyJmt6enTeDhnqL5X5uCcRtsZKokRC8Dy4O+irgiBTA59TLGnYpygchdy0o7sWdcY2Fhc2WjKFuMUfrYGQKtSplRiJRgUxe1ZQ4xP1WYp7AAAJ1WBVWtxZbJCq0xkgKgIrofqy0XE4/dQKXQTgqJQGWf3xMkq/axxgmLmi1krDpdBdNX0xzisKrMoA4RWSPRtCY64yTIfY1zuFGVIsRFjwhjxntHxbz5+r1OGmoqhygQQTEjFYwl0jMJIso2fZfT2iVSZWOokKJhYOX5g6Ki2vDNIj+9Bkw+UEkBucD3F/yH+Pn7ioVcaA9uCwcNOv04KCYLBTQTDY/DLbIu4LpJpGV8DtnpIAH0Ehhisp2uJIbOT655x4rI6AGAVhcrSeltAENCDJP6b98MgSyYbPEzbBIr67xC3edb6w//fdIH2pnvqUbbxEI0NFr/1W7918PnHP/5xfPd3fzcA4Od//ufxYz/2Y/iu7/ou3L9/H+985zvxN//m38Rf/It/MS3/d/7O34G1Fn/mz/wZrFYrfNu3fRv+6T/9pzBm6Df3ZrVLQPS4jUFQGtRUP1HwQM2iUR6UpGkcr8hP2TJbRwKnMPpftDH5s0YGJXA2xEi8TNBIpnfpODQ5K9fHBdR+hU++8U5UbYZZ0eD2ao6n947x4nsz3PdzPGMP8b9NP48vVk/hleYAN7IjvNpS+uXz5X3s6hW+2NzAVbPATJ/ixE/wjD1E5S3udTMAwMvdVVw1JzhGiVNf4G63g9ebPXTeINcdvnRygFnWIIDAxEGxxKIr8NtHT+P52QNUrUVXWwprWY/K57C5Q6uIhckzSoUPih7KAcRyHn3NMMdMSMwgCq1OKd9BR81IY6DKLj1RFzn9bQyFvFathTlo4GrTe9qIa82sFO9/XtZonEHnNIwOmBUNXCBReAhA5zRy0+syfBSNexbdBtJfyMnACxE1OSxrwXaAbAMUgCJERsXTuTI7FHUrskxHyAOCo7DUoLq87O9SSyQne9lvue9zn44CbGW9MIwEKeNSX40rO4VgQKwQ/yiGYn3KeMBEPR0nOvBv6Td0eiBpRAjcCAsG8D3EjEhI711reg8fCRzH9zP63yMtG6+HUujF3Kzn4rpn4nQxdf3Dkgb8xPVsGzCqYs/XWgwY8dqzUHyYlQVktksgml2n+UHBO40ugnj+HPDJL0vqiLgNM76Qwrwyg6xftg+JyTFtI+jZApLaoJPjNV92WePvYZieMSg6S090Fhv0VmSrqTAa7x9xGw/TwgXEVTdv3jy3AGtZlviZn/kZ/MzP/MzDHcBXqH1VaYg+9rGPQSmFH/zBH0yfhRDw4z/+43jmmWcwmUzwrd/6rfjt3/7twXpP1B48AaDR06EckOTksPbEqNbXAwaDwlooTH6+9pS74Sl1/B3vM04Om24gxZMTt+hCrGqN+qRAbqn8ReMMDldUWHV3f4n/z71vAABkyuObdz6Pw3aKz69u4JXmANftMaa6wVQ12NErNMGgCjl2otD60E9xq93HG90eTlyJ362fwZGbogoZtPKYmz7lU6uA0nQ4mC/x1GyBxltoFfDS4RW8Ue2mrBxlAnkHLS262qBpLNrOwHmdBvG2MymdXWolXGN6dqXrDQBD5kn8urRJROt9P2Gw2y5Ag6VrtZj8qD8EFqU6harO0HYGVWfhvMZuUaGI7JLRHjt5DRcU2PfFBY3W0zmE0B+/94r0UZ1B3WTpPGV/CY70LSGKrMOp7dkUTtW2IU3qg37BKfoO6XsO3az5DXVqjeGQTsxJU8St8PQZ3yutHvocBRBACor0XK0mM0OnEKKpocqjxQEXUBWZVwl08L0qfIdkY70NMz48KfoIEigjKwKE2D+kb5QyIemO0kVXIsU9sUOxH1sPFbMSQ0O18npxO3rhtjw+YGDKmMTS47A8/xbobQGS6aLq9UAM8Gj7IRqA+lSdntPoObtsUFzV9w7wAPX9ECh0ldL54/ccKtMIyXuIW88e+aQXGoMX1glJYCTXN0o4tQtN0ab9XKSdn7J/cTB0EQuAy/b2a181gOg3fuM38I/+0T/C133d1w0+/1t/62/hp37qp/D3//7fx2/8xm/g5s2b+KN/9I/i5OQkLfPE7cHVhr8HAxJSOCLNMDK1WIuBGuL/MTPEr7P2P9r9mY3DH+OFmUAKGBXqjEaEXuGNBztYLXMUtsP+ZIXaWeTG4bCZ4uX2CkrlcdMc4SPzlzA3NfbsErnq8DXFazDK48RPcNMe4dhR6Ow3Vu/CoZsiUx32zBKlbpEph6Uv8FJ9Fb97+nQUYjrsZBWuFCtMbYNlk8Eqj71sBR8UnFd4x/Q+JnmLvYMFdg9OoXZbqFrD1wbBqZQBU7DoOPQuurKRW3GcfNP1itfbKaiKnJG7ZZY0PG1nUmo8pynTxpAmRG18rJbeT8guTqpaBTTOom5t/FyjdnYw6bB2g8FQ8lJyBLzqVYbA/0PQ/CygFsxk0D2zkIBEPF52hYZCD06ir0/quyaKn8dgIwl80Wd9pZTv+C5BS7yWZNSI9ACRgHkK+xGYUMywmgBddnGyiecnWJEQRvsRfVxmXXH/VtEEUOke1Mrwi+v0UBAtw4eSQdDC7FBJQCL2FY9JR3dyWi+ebx5/EytQpQIgCt2uNTnhcjgrYN0jSYAh9g/iyZ1fzCgaFeAii0mZmJSx2IfMCKADQKYdhc9jp2a2RinAGodMO+TaDRhObrK0zhi0SAA0BjpyWWaeJBDjZcZgZCzOvoip48OAqTEYelNbeEKvy/bVAYgWiwW+67u+C//4H//jQXpeCAF/9+/+Xfz1v/7X8af/9J/Ghz/8Yfyzf/bPsFwu8XM/93MA3iR7cJ4YGGvwk7D0IeLPpA8MD/JSdJ22F/8ev8vv0ytOQIKRCuPleRthfQHJsiMo4VEU/640utpC6YBFVWCeNThakh/R/3jpWfzP1Ttw6DPccTvQCPiayWvY0RW+2NyAiTv/2uJlnPgSz2YPUKoW7ytuwagADw0TqYY2GFQ+w55d4mtmr6MOGQrdYWpavHt+F7l2KKzDF+9dRRs0ll2Gb37uy9i1Fd65+wAH0yXKrMN0XiPYANWSnsY5jbq1yTnXewJSbWeS9sY5DROLpSpmhDKfJpoQQ0UhXsOuM1RwNYYTpnmTgIq+m1NhThNSSQj+jW3mkGUueQ1Z45J4uuoIFGXGJeAGINVxS2nRkdliU8a8FCUPxMDGTsShNqlIKE/alJ0lTAcTWBAtMSvDPqg4Q0z0t0GfcqMNcf8etWDjcQQQWyTXU6QpYmYlaFqW2ZjA4N6JIUw+SPD/Chi4ybMWiYGL6vU1UnzPoMJ3xAzx5/SOfjn+W/ds0qBWmNBcc0kP38XMNAak/OAkvZ4iczT4HeKfCEiMY7+fkIAn/e7r1zstzkDb9/2J9WgcQqQiyC6V6xizSkAvaAYggJCn/htDZSlchrDG8Iyr3sswFfscSVAy/nv8GR/H+Dy3tW2AZ8zunAWMxt+9FayQCk/mddm+SgDR933f9+E7v/M715TnX/rSl3Dr1q2B9XdRFPiWb/mWZP39qPbgdV2vuXae2fjJOmAoPJXMED85y4lEYZjKzKkf43YWSDqLHuKeLkFP2uYGUIT15ULuE1iaFQ0+8+rTOJgvseoyfPfXfhL/v1c+BAD41Om78PXlSwCAUre42+7g2JdwQSNXDplyMAg49QVc0JjpGplyaIOFCxq3m11MDX0GABPdpPdMORw2E3z9tVfxh599EVfzZRRrdni93sP/eP0ZTG2LK5Mlbu4eI7taAbMOvjZwNaXWV02GVU1lPZrGJk8VHxS62iQNkY61xJTtBegqgl6qa+bpaTqCGoAm0zIjZ2iYoX8QARC6hq4zieUJQaFuLYqMdEil7RACcLicRB8h0hAFAHWToWltmqzYtFFHL5i2tmiWGZplliY6ADC56yu6i9IyZtKlzCfFxVuZ5eG+FVQCKal8RqvJZVlMyH0YZzhJJyDUqeH9IBgr1USdFm8jEDulOCOrVVCnZIwZAsjGIN4/2ngCdb6/oRQXfpXhPMHMcRhTc6kScX8kM8LI3HUNAVQlf8cEhhBDbBg0CUQ4HKcFe+g7nYrwpuORWWGg8SJ4CpkGyXQFJCuBjfc8Z6/F/drMwVgXhdP9djg7EUDSmzGQYJdp6nsmMUgEmqSeqGeEeF12leZirQkUqR4U5dG2Y3DYahhOA0Bld6A2aoDGoKi/3mFtmYuErs5iizYBo20s06OyS5ft7dPe9oDo53/+5/Hf/tt/2+iYyal+N27cGHwurb8f1R78Yx/72MCx8/nnn99+kJEAGDy1BSCVKwAGE0j6fhPA8eJ/udwmwMKfb4H4aSzhfQ/AEBLIgVNDdkmyAmk/CiYChfmsRqYdXr27j2+Yfhk/+TX/bzhoPJ0fogoW78lv4343w46pcN/NYeKA95Q5wVQ3mOkaHgqZ6pmNma7xVH6MUhGQut2QOVgXDFY+x5XsFNfLBZ4pD/FceYjjtsTcNnj59AoOMqqw/NTkBD4oHFclVYSPLE0eHaLbyqJtLWlAnEa9IubFdRrB61S00zsdy1rQRQishckCzLUKCAp5ToCiD1MFNF3UK81dun5aZBgpMQlzVo7Rvc8QhyNC1Goto52AnNB4oM2si+VIaAL0jUHoNEzu4VtNadLxvHiSNLmDyR103tfR0nmso8WgN/bjIPuMU/S/VzQhI07UmvsKL6vSdhMg4dplyadIdG5+QMijn1AsyaGXhkBB7qMzM4XpmKnzNdWQS/4/8RiSeJlZoQFdJko7KMRQGRIgMcbDR3DsPQNmDAwMGaQg/n5dazY/aACxgCqJ7TWXAwkxXDbQ6qHPOOOLp/pzTeCHty+q26fFBfvFTBHXJRszc8O0eNqo8wou6KRRY9Z0mjdou2G2T9IHCRAjtTVGe2TaJXaIwBC98uhj5qEGQGoMcMYgKHkSbVgnHdc54EONznnczgujnQWq5Pdjv6Q3pYUn9Lpsb29A9PLLL+Mv/aW/hJ/92Z9FWZZblxvbfF/E+vu8ZX7sx34MR0dH6fXyyy+Pdjo+iDi4R5Zo4BItwYYarjNgi9ZObHzQZyzLOoeztrdp2zwJxswhNd4Hn0egm53DOq2ndPZStcgjo7NjKvxu/QwykVZ76osokg4kqva0fhVyGoSDQhMMHDR80GiDRe0trmWUnn/FnmJuKpSqw7V8QX/rFjNbIzcd3rtzBwDQnBK4WXUZJjk9gZqMim66Tqc6Vd5ptLWF76LGSFoexMKuyVgzsQtxtIgZTdmEyppoFUtoiCdjAINCn0l8q/rwysCfJoIgq3zKytHR40jHiQ3AQL+ixMTBob9s2iagYwuXstm8U9C5g6uM2CcoVaH1OsMAAPchSURBVJ37QVA9cOFzFf1DcbakCqQxM4E8f3TorQl4QJXrq9Dr49BvjwX7YLDDOppaAw5UqywZOar0cBF4XQChJQAYul7zFZjlgjiGeC/2QGhdXzPo7qwtkyBEye8joPU6lUSR3wVxHXRklIJX9DvyNYnbUJrMFZPeiMXZqt9G/8AzPI7++McfjL8PA1sHGZaS4UIGSjZ6VSkV0DhDWqAYmjXaJ4dpXp89i4wIjeXGiTT7yBRtYIG4sZ5oW2u8GaTqy7YpZLUNNMllzgNGZ4XSxq9t+3jT2iUgemLtbQ2IPvWpT+H27dv4xm/8RlhrYa3FJz7xCfz0T/80rLWJGRozPbdv307fSXvwbctsakVRrLl2rjXJqAA08MrOxZOIAEty3WS/kQY88UQ3mLDE+4ZB+qyW9jlmncZ/O/S1oXjw5VCBmNSrOkMIwOv39nB19xQtDBwUDDz+SPll3Hcz/E79DN6X38Jz+T2UqsWJn6DyFjPd4NBTFlnlM1QhwxvdHuqQwQWFqa6RqQ7vm7yBTDloBMxNhaeyY2Sqw/vLW9g3S1yzJ5ibGgfZEi8tD1DoDjdvHKHQHe4vpjhtcuxPV5hNa5SzBvNZhaJskGXEhoRWAwsLvTRolnlihtAphLZnhVK5A08OyKHVcCsCdJ3TmBQtDm/v9GnAjkBHPmsji6D6shmIIIT7QmBBtRmIeJnxcXESDQHIrEshOE4PZv0TrUPLSQZKqUB10iyxZGbSwXcaSpM55EBjogP5JmWh1/WAjlVxyCyAyl8weAIGpoB9yGtLxwxiORZkOwU4QFeatsmhsyiqVgx0cg/F9dZUoO9b+n1UFt2s0wMI30OhB7V8vaO2JpWvUL3YOETNihf17Ppq8L0IWWaUKfF7sGO1jyLs4IYCbB9LwfCxcNX7pDUb+zsxoxh1fOPLmh66+PdDz2YxO6TQgwIuvcHnPMhGRA/knLBoMAI4ZtohY8AuwH3KXFPEdA70QyMQI0GPFGPzdmQ2mhRU55FxWk/dH87i2wDTtnYR1uiiTYu+xNfjMmT21dfe1oDo277t2/CZz3wGn/70p9Prm77pm/Bd3/Vd+PSnP413v/vduHnz5sD6u2kafOITn0jW30/cHlyJMX/b+J9oou1tDI7G+1j7W2EkDh0tM9ZwbN1xfA10S9GrhT+P2wsM0qKmwTmNsmhRWBIGP7tzhM9Vz+CemwNArF7f4tBNUaoWM12j1C00PDw0HDT29RJtIOBQ+QylatEEizbYNNgCwI5ZYcdUyJRDrrqkK2LH6z27RGE6PFMeYcdUuDE7wdw2KPMOTWuxajPMctIgWeMxLxu0rWCEvIJdaAJAfNmE1kV5UNFN33+vl3Tc7WGBapmjcxpPP/sAPqhYg4yWM9rTxOhiZk4UMo+zlNrOQCPqgUTGDIXQQnL/7XVKGExkkh1grxltPHnlKMC1Bq62UIJpcq1BVnSp/lZgXySeMDvVexApJA1LMIEqyEeQpFrS/yQ2LZXh6Lc1KOUhQBYDKgQAhgBPKITjtEfKclO1qPYOgEXDnJVF4Amp78uwWD//xnMQy/G25BI6gpuUiSlvUvlg43WfnTbyDkqiaoVUKkXHsFli+ET2mZYaId4Qs2piHEmHrcShqciaiWNTJiSjUIDAdA+GeuZCqxD1Q0jfcTZjSvUX5+9B9fU8VMoa6zPXfAr7ylCZ1e5M5mfctAoDJmkbANq0zW0s0abtbGrbWJ9NuqGxoHscIksi8jeJdlFP6HXZ3ubGjDs7O/jwhz88+Gw2m+Hq1avp8x/8wR/ET/zET+B973sf3ve+9+EnfuInMJ1O8Wf/7J8F8BW2B2fAAGxGRnFglvjorMUH2ThRIJnErtvuLe7No+2vbTY+dfZZb2KbQQEhiLIMYmMxl5dFtaXtcHVyijv3dvDGco5PqnfjjdkuvuvKJwEAU93ghfwOWvQhGgI0He64OWaqwe1uF0YFtMHixJeY6gZ51BO1waBULTQC9swy6YxOwgQ7uoKDRhYF2oVqsZuvcLvdxd3VDO+e38WVyRIv3jnA1aunOKwmsMZTSClvURQt6ioHagPd0lO3OTVUfoGLf3Z0QVVDaeG+9JSmroFQkkAZHWmQ2s6gMR5XJkvUzqL1hrLZOirt4DudQmapWGxQaTIFKPSoFLBoChyUSxyFMoY1/ABAhaBS2ILDNFWVIcscuk5DGwI9zunEYpSTBq01sNahbS208MzhMJPOSYtENdl6kXBQQTA0olNFkkj5HjxR3+LvVW9IagOl7Qf6nDL/GDgBmHdARWaZJFYPCYinumkxpZ8TFZQO0LkjndcI8DCj4ztiOULKQ2eggsFk10+AdF7O63SzJKCADQ83giGRomrpPTQObxrtEbyB1h4uGKjMR41QgG91L9zWI9dkFZk4Zp9HTYYAdeZhM9dPzEl87+BjMWNZ8Fc2DqUZwXo5r1BYl9zSc+NSSr4ZgQKjh6wQO8yzXugijQFYaTs0kW3lzxpnkBuXjlMaOG5rGmGNhZLbPKtts1cYb0suOwZsb7qG6HG3cdne3oDoIu2v/JW/gtVqhe/93u/FgwcP8If/8B/Gv/k3/wY7Oztpma+EPfjWe4qf2HhgHS23dT2xDoChoy8weuLF8LtNN8Ta8mH4dxrRxWaYgRK6DbkvpWkwunW6A5M5PD09wTdf+QLeV9xCqTyW3uAPTr6MzzfXMdM1Tn2BHb3CoZtBI2BfL3HPzWFUwNLnaILFF5dP4f3TN2DgYxYa0fJGeWhBYy19juv2GG2wyCJjdC1bIFNdfGrt8NpqHx/efx3zrEHjDa6UK1TO4vYpMVghKGR5B6cz6EbBroBOK/gswNyzCBZUYd1Qyjc8gE5B5QByUWhUx4rows2XPYnoidwnsbVrTEq917bXAxHAcSkjR6uAxhtMbIvWGVQdaaI4nXlnUqFqsz7UA6As2+QPE0RYk1u1ymGi+DrLOtQ+Q1cbElrHSdZ3BjpzqY5bEg0PLCFC39/S/yKMw0wSs0cc4kl9SEWGSSW2SDWk4dK1ho4gi8wwo1eStKfg/qcolOkbshEIUKRp0jGUpWIWV9TBJCE1b0Nx6Iv+59CPTCdX2qeSJ+P7hsETaYdE2MiEGIak6ybdm6E4XOcjMO1T+JUlTZsSvkSB2TZFN6eK92Pwgc5X9fckVbSnv7UlMDRmK2Q9OwY6Wge0naZVBbjjxstbE9BF9hKK/IlYOyf7WRa9hlg3NNYLMSgap9nLRplm7LFA5UAY+DR+JOxWARa+9z9SYQCQxiVEzkrvl39vaw+TpcZ1BseffyWbIAgfaxuX7asQEP37f//vB/8rpfDjP/7j+PEf//Gt6zxJe/BUSVpOFDwZ8ZNv+qf/OzDQ4HVF64khMfGM71EV1kFSXEVynudG6/hLzhrS/ceBt5eWXT/kVZOhzFpkmcNvfPGd+OjB51GqFr/TPIUX7D34oFDqFre6feybJXZ1Rf5CIUPrDXLVoVQNKmTIVYc/svtFNMGmsFiJFqe+iKGy3tCNQ2VtMBSCCwqFbtN6H96/hf/zS1+D/9cfeA2T3RZ3mzlab/B7d5/HNG/iAO8xKxrcaQ3CsYEr6KTMMhou7ndJu+G9AlL9qEBlLgJNyCpmCjVHJSbPNGngbluDnVkF5zWWq5x8jUCgKGkLzDBLTFa472I6NIchWmdSwUxrPGa6Qet7o0Ce4BarApxhlZyWY590scit8xquMX1x0aBgCgffiW1xqEaLvsyfM9kSqGOE1PeRwlzBgoTSAQRsWHCtI8PIaf0uskW1plBZFTP1PKiaPYffAnrjxsSgYHgPcEhPTPpQxI7wMfZu1D17I8Me7L8jzToVszIjNoVDVMFrYtFUoEsWQ4J9ij2BIBZUM1jmbWhxDsGpYTg1gUmkBywFAmH0W6Efe9RwApYMEAvAuSyM9BKSjtTjCZ8ZICP6Jl+DTLuUmi91P4kZkiU5RNsEhtacqZWHD3oNpGgESsPfAlw21p4Tv9s2UDRua/sVAOsi4GYMhrbLyC/b27W9rTVEXxVtw33CMf6kweEPuUlIPwBOYjEtvg/oQ2fj/W7TFYmWdjEeOITuiMMgadtqtP/49Ku1x7LJoXVAVnYw8FS9PrubNnvTkGcTCactdiIouqpPUaoOM11j31Cq/IFZIFcdpprKe1DWWgcNStXNVIcmmORinSkHowKmuoEBZb1kyuFqvsCfft//wGeOnyVvI2/wyukenNNYVAXqzqJzGnePZugWGbr9Dt3co5t7BA10+w4qd1CNhikcOSLvN1Dztv8tgGT2GJxCfod8gWys7VQW7Zorr44hDW0DjI1skDC7s8ahMB0yTev5oNKEY7SPYQyPurMw2iM3JDCVOoki6xIQGBTqVAEmllxhKwGebE3hqGyE51puNJlzGn7wADJKe1e2ByOBwQm/M1CqdZ9xphDr4oW+3hZfQxeZp6jnUbVOywc2fOTLzSyRfJhg4BeF8LKumFIETBIAYv8lBkMKAiyoGFISzEz8vYqy6X9vRSJlI9g9eVNpLfymmG1RSKJmZoiKrIveUgp50aX6eUam3PP7+D5kUMnhMb7+fF4xXCr1LzLU2jtt8/kD4+wz7m/Ezq4PagwUKMTbp96ziJrBEGeWPWpLNc6wzvYMl1s3e5TfAUNm5yJhO2kEeZZ4m7c3fq2Fzt4s2iU8oddl++pjiN42bdzZJQu0bXlGSQOwodbX5adzuS3+LG1PvF+0M4tjHozr8sl0A7jitOhmlcEYj+u7CwAUJvrE/T+A6bUG31i+CK0CTjyVgp/qGqVq4aDhQD5DTTDE9PgSpyhQ+QzGBly3J7jXzTGzNUxcB0BysJ7pGlUISYwNoNcW+RIOCkfdBF84uY6TpkDjn8VxU6D1Bs9eOcRLdw+wDATmjPVwhUNYWfiZg+pIJ2T2GnSLDNMbp+RPtDDwM5BJo0fSeahGwSwszDtrNE91mAIJtOyUVHstxN/KaJ/YppR5EkGQ0TShOB9LikSGKJXlEMUzWXTdOoPcdjTQOkMTWKAndK09qiYjvc3A8Zne2lUGlXkqeFtZGEshPxVCnxnFAmumLBUzJWJzhkI3yodBXwkFgScCJmL9GD5LjJPUF3VU5Z7DXr04Ok7gRkz8sqzNpr6vEEXTgt0R9eUYBPAq8paR1ggBCnV0Bh9bECQwJMJxzg2fKdVoMmUGCSDfIiMcyBOg0z2zFRgwit9gzAIDvW6IwRDpywKcj8BQUeFinqQptb2/FlySg8GcUT7WI1ufyF3UHxWmG4RyrfaDKvaPA4aIGSKGCIjHEIasTRdF3Wel8I9ZnvOYoouyP4N9jAbcsQhbbvtNa5eA5om0S4boSbRtN9QG0HShddUQCw0ngS37Cv33QU4UEGyV+H/bd4N9im1yK/IOqyZD01H20hurOe67GQ79BAYBX26vowo0aBrlkwt1FfIktNagp9AjNyUmCB775jRphkrVoFQNTjwVkW2DRRtMqqF06Kbw0ElLZBDw0vIAlSN8f6+aIjcOTWcxzxpc2VliZ1L1+geuxwXAnBjywvGAKhzyjNLTdaOTtiZ4DXNERVF5PWsdUETNRNQByQKvCEg1zkyskSYnTx4sZf2s9JsEErTyYJ3bPoOt6WxKb2Yxa2aopIlC7yjMrVmSB1Qxr2Eyh3ZF59FWNpkGAnEijufKWpsg/JhUZCnG/QEMWkCTs7Khr3cml+f1OeU+qF5wzThX9vNN6473La4Xt14j1GtjJHMjrzllWumB7QEvD6D36HG9dQIfw2AS1D0DNTiuuEtm+tKxhvXjliAvsVpaUEUqpPdkB2H6v+X5A8N6bJxlFoIauJgPbAEw/FymjnPIrPVm4LklU+HHmVeP0nwYTkdjloaPsYthtbP2edFjkADqIgBGCqbPStm/bF+d7RIQPU5TGD65ps/PuEk2fSdQyeBr/kcCk/FNK7PFzmlr4GfEBqXvlGAF4jkqT0aHx8cTNM5EbYLBXl7h/3zjgzj2JapgqBwHHCqfoQ09AbmjV1FLZNHCoFQN3lu8gVx1yFUHB50yzTLlUrFXBkUMhn57+SxK1aINBnUEXgDwTftfxrvm91E7iy5mqFydnuKgOMXV6Sms8ThdFjTohVi6Ik7O06tLQAGz3QpVkyF0Gn5GmUy+sgiNhi88MRAzB7fjkGcOO/srTLI2aTfYvZfLIQAR3LQGUCFVqO/dqekayoFYCnJ5sG46i0neIjMkwl62eTRl1GjF+rtT0lmxbw4LjBmIdauMGIWig7YBTroQO90X/5VmldwXxDuHzlIxWG4NhbGCIX+g9F0YCrAHgEm+DOmVQvyea3IlI8U0WhE4GIeHUt0zqQOJoMFaRyVSRHFfzpiSh0bbQwSLvs+6k/dYUD344XAkkMDJmIECehZKRzaH9UxJzM4hafYQYrsGBoTp2PpQIB8nAALyIjTG6fM9GOqvC98f0kuImxP9loGcVgG56VJoiO0xmCXqw2UjMfUGgMF6ux6E6DUgJNeVYMcHhVWboeosOlk+5JxQ1UVDZxcJjY23J4/xrfIdivj/sV+X7RIQPV4ToGHz9/0Tdmpq9AJSj9zYKeWHQQ08V5LwcnwMchAdgR7+jMegoHhyGx06P/Xz3BhTtvOiQ91EBkh7HDUljqoJPDQO/QTP2/vY1TVu2iOUqsG+pqr3zBIxsNEI2DErAASAZrqGg0apKAX/TreLfXOKHb2CVh5HbgoPhUJTVhm5XGsSWSuP1lvMbI1pRiLnurPYz1codIfSUJjp+v4CXWtQTFr41mC6t4J/ukbbGriVxaxoUJ/mxHK0Cvpe3nsIFaSzgQ7QK5pQdicVplmDzmuaMFRA0xmsqhxZ1qHMWiqLUBsEp2CsT6wDXVsKn0n3X66tZjSZNnaO3LyrNkthtMy4JIY14indaI+9aQX2HcqKDlBAs4glQKynTLeg4DsFV9F5J+8dDo9FYLSxQKgS4EAh9V0GSJyhGFoNFmQrNzIsTX0sAggJgjTIbJGZp2h5oIxP/TqVQeG/xaTf64V6lsMKfU2Qt4ZgkBAPL63LFgnc/0eZZ0pqh3QPcrQKPUBCNElUSJqlcfNOJ0NH6Umkk28TUkiNigVHLZQmBklFKwbetwQ+QM8UyXOlMOxwmSD6H5szOiHg5/tWMkcMALaFsM4DCBIISaCUwNAG8EICeAF41flaorXPR9u96HKAYA8vAIIuNURffe0SED1mS5PDqEMNUPeGzqYkYAHSU/RGBkd+FjOEButuWCfI99GyScLAT+Z8sCP6fXCOQcF1Gpl1eOfV+2iihuVoVcJoj1vtHkrVIlMeDgq7msptaE6nVx47ekWhLji0MJgpEq8aBEq7h4ODTun69zpKl/dBR3G1xbXsJAmpAaD2GWqfwSiP2lvkxuHKZImqy/DFw2vIlMfc1nGgV8mocLq7Qp45ZGWHmwfH2H/qBJlxdHFWBqHw8FdaaK4krwBddlQLrFaYZG2szeTT0+rUtmicwXRSo8w7pBpPlRHsBVLWWP+T9oMrhwWYvZA+LjwYSzdhdljm/3PbYXdSIY9siIkp/2zECNAEzi7IrK0ZdCAW+srPFRJgYmEvTcoRPI/YywRYYvr+mCxQHtClS6BIxRBQL6QOvV+T6nUgMlNMsicSGJGjdH/NjPbDoqTawxpH2V46DMAMb2fNe0awUUqFVLZD1kSjvqoG68uUfulynbIBu34/vV1APH+FJBjvwZ+nGmmWwp0MhoIAPloARMmajJkNFvLzcbN7OrNEEqTLtik8pbeU1pBtEyskAdCmxq7XGsRCJRYWKoXINx3b+H2N1TkHAcjvxxqhrQBqA1i8bF9d7RIQPW4b9/vRxEDLKPESi/KEKZ60N7YBS4SeJRKDJS03XCeISW0AkMb7UqNtCJAmt+dOs5Q6PMla0hK1Fssmw6/e/wAy5fHl9gAAcNvtIFNdGsC+3FwnHRAotDRTDb7YPAUHjYadq2NJDwDRuTqgCnn6fhkF21Wgsh9tzD4rdAutPK7YJd41v4dcO7Re4/p0gcJ0uFYs8IGDW2i9wfXrR6jrDF00etuZVmhifbZ+8gk0kTfxqTh3aaLcmVfonq5htMfUUs00GzUWizbHNG8xzVsUtkMXi2UiyIlxOKEUpkMRhdJJPOp0KvLKAzO7VMuJOjOuz/iJWqJUMNa6BIrsrIWxHrbsgMhUaOOhyw4qIwPJJII2PQiBcKxO/YGXG7EyiCQT10gLMZSbwmrinKl4LOAjUFQKEQjFi6Wkd1DPkAz6J38XgVQK/whwQwJ2H9PNVQplMmMD9JMYg4+1CVWEuJjtAdAL5YXOiE4Og3c/AhNG+8REuShmZ71eH/oL/W8ArJUQYddra1w/hsR21kQ8tmtwQacQLVW3jw8No342BgSDCvaPAIb4/zEQkuU8xoaK7IC9X1S4Uq6Qa5fuPwBbWSLZLgqKtoGhgb/U26hxV3nc12W7BERPpm1ghwZsTxrMN/c6+YS5tkxkZwbhuU2AZbzp0DvbJkZITkxj5mnjgYU0oSsNqE7h5LRMA9miKmCNR+cM3j9/Azkc3pPdwy23i2ftIU59kaj257N7AAjMnPgSTTC4bik9/9BP0y57B1wPFxRcUPCxm7aB9DIPutkg44wHWQcNg4D37tzB//OZL6ByFq+u9nCr2sXVfIlnd44AAPNZBe8UFlWOSUaDqlKkrdD3M0oNLxxgwyDzKs9j6O3acV/RWzyxAgRwMuNQ2jbprDB18K2G+8IO2s7AshA6htnofPsfMLe92zBn/mwSy/IksEnYqUFggAtzss4py7seDBjy/DE5pdtrKy0D4iydLrIafiXeGdQkvyK5HDNLEGFZwXAGoRse90cZvgKzJbws+L5hEOHXls2zLqWWJ1NBTZlhMvsKwEBsnHYhGJYEXOTx8b4iyxSET5jSIQEfo+l3YFaQU+Fd0/dhk1NBXpO5AWsFILmcp+OMl9nEcFkv5u/DguPr2P+NxCKxdcO2iZ51RHI7sr8yc8NtG8AYg6HBdxEESQAkQZE0X2S9Ev+f9nsGY3PW9xvX2XIOY23fptdb1sITel22S0D0RNtazIsfetUA6KxVqB59NgQwvACGoIgFsDwpyF/Sb9hBOpjRttJOR8tsOi4b0BwVeO1oj3YTFDpH5Sk+PHmF6HYovNxcBYDEDp34SXSepsruv1s/gyqQMWMbbEyrz9PyADFEPuagnbgSR24at1Ximj1JyzAwWroCh+0Et+sdEhwHhf2iwu3VHL/58jtwp57j+dkDGB2wN6lwZWeJzpEz9LM7R7g+WyC3HfzVhgqJ6oDplSV295a9KZ2l0N+8qDG1LV48uoLK9QLP06ZAYTsUhjRTyyqH/+IcQCATxOdWg5CE0R6l6Sh1GWFQ9TsTXkOdSMHn7DKtyKxukCkktCBG07qZdcgyCvu5ZZaYDWOJ1WLfIQB9WC/W6pL9RsXCuKl/RCuG1G+62Pe9inXxRmCdQ0hKbGZTPxX9nc9lMm1SeGzstwT0YS89sggIkS3jArnAEPgMtCjCS0grElozs4QIILiIrtYx1V0NTR45g0x+xiCIgZHR0dVagD0OlfH+ZOgv3atSF8Smm743YVSKMuaYAZMAek1zo0IKl3E/kfXO8ijet4KBHIiX0RdhTdtE/915LQGkEcI8K3QmhdXjZdcNHh9+dt9Ue2zsK/Sw274Mm331tUtA9JCt1wxtv3kHc4Fkc4IcjMW2Ntw4595Lcl0e5EdAJygMZ6Dx0/umd2xehtyHaX87ZY2JbbE3rehJ12m83B6kgel9xS046JQhdqAXiSny0NjRFZa+wO1uF41Ip3eBwmenvgBAjNCJK1GFDA+6GZauwGvVFQJLcZ1MOTj09HvjDV5ZXUmnUHUZTRZBYddWeHp+jNMmx7yoYY3Dbl7j1ukOTuoSALB3cIqw38JXFvOyQecMQqcRPBVjZc8gq6mGmdUerTdoOkvZOJE5AoCmsUlo7NtY3yyCHo2QDBjZbFGyPbycUkBhiXXiz6V+iJvUSsgJxyiPPHOkAzG9tsU7naqiB6fgW9OzNQgizXx9X2M0HbwgfYJgIsM6+FfxabQP3WLQ2aUWiFmjapUPwJDc2CYtER8vA/YQNVtsZSC9adK1ViGF0sYp1VoRaPFBZJdFkGTZVygeXzJkjMfgfA90+PdRCqlkRzreGM4ztq9zN7ALGH0W0DNNPqgUmhuDA8lscJiKwFlIoFuux7qj1pmkKeL98rXglrRvY5HyJjH0BnZo+H0PdM5Lf38cf59NYbPzxNNp2bcpwEnD+2O+LtulMeOTbTwbqNDXcxp9nhZVQ/1FChkEsbxs/D03FlfLSUJuY+sxjt5li3qRNLmN3lF6FNMGR8sSk6whhqNosaxyvLi6hmpqUaLDiZ8gg8NNc4TTkJNoWvnoJUSTNIOeEm1ieTLt07FzrbP7UVjNbT9bogoWU93EEJqOoCimlnOWlgqY2xq7RYZmZlA50iY9NznElw4PMM8aTA/uo/Ma905mmE/qZK54WhQIucPxsky6Il06FHmHiW3TU3ZuHKrOYlEXqBsL5zWenh9Dh4AVAvK8Q1godFcUsikxNSGoWDncYJ7XNGkLUfaizdO5etDMp4OiOqeD/rP+I3MdtE6yRlDJGsAVTfLd4RpsBh5eKZjMo2vMIOwzaBvCs8EjuVMHHXVXcnkeaYMeZpkpAtdBS5aTvufwkGLWM5I+bLbI5ov9dej/T2EmRWyRZIW4fIX3Q9DDjdiWddbIe6Qwm49lOAK2TI7pOPpSF7KEhlJAE2uZcVp8CEgCd++p3ybdFABkDsGv11xkjRSfnzbkPK0EIzTQXmH49DusS4aYrUjrtV4ji4agm7LK5P9WD53Z+31trl02ZocuUo5D6us2fS+3t63JbYwB8bh9NYEhAE8m5PU2Pr03s10yRI/TxiEyAXoCP+WOwRAvvvYkPPw+rSImkbTsuEkGaPTE3S8j3i/4gDXWIsAD9WGJ1UkJqz12iwqznDLFDtsJqpDBQeF92R3MdAMHhVNf4NBPk1kjNwZIJ24SQ1/0ypVL4TEfwVPtLRYdAYU9u0x1zQwCMuXwu6dPx+U13jjdQWk7uKDw2nIXjTNovcFhU2LhCljt8E03XsZuXiE3DrtZhaf2TnB0MsGizrGXV3j+2gOUJWmAVosCaKhch48MQx4nAat8b1anAz508xYAoHJUZmN1e4bmwEM5hXZFgIkn6dK2tC3jKG0/bpNLf3ReU8hri75jEKaJrXYWHgqlbVHaFln8jVh/UVgXJ2taP2VK8cSs+kyoBBgk9QP0gy8DJ3ELsIBaPnGmoqUjIM6Zab2x4JCJ4H0l0TV4+Q2s0wjcyPR2Bg5KyRT09fujDxn175zCzmFGBhj8e/P2pVmhFGgn9sXr+KJrnXyq4vXWujdh7BqDrjXp93Xd+hDN9dLk+UuWiEvDqHQsHFYUbBHYi0kPWB6j/Fr5GWDdF4jYoV4/tw2QPAm35rNA01mhs8dp54GhtxVACk/oddkuAdHDNq4+nfCLBCzjm0QuJCl91jowOInMTAoXDMICYjsDgDTiOSVbJH9Vucy28UJuc7QeFZ5EqnulDB3ESV0i1w4nVYGuMdjJKlTBwkGjigaMLpDZYuUznLhJYoWkh9DS5ynTjEXUbbACKNEy+9kKU1PDRJqeQ2VtMHjX5C5MrH329Pw4DZT7eYVlm+PZnSMcVRMctRTC27EVruUL3KumaLzFTl4jzztY41E58uXJrEPTWEx3KqB0QEDKBitNh8YZNN4kUfXN3eN06fhpNL+2gs8C1euqaKJrOwpF1M7Cao/GGcyzBl3QKdSW0uuDXvOLGbchAzCcJCcZgVXnNcrIEgFAmXe9DoaNAGNfVNFvSpmwcR/M4tDnEfgn0E/9JgEj6YpMRFHyHGLTxYGFxIb+ySxqEgEbSjuX4bIQFK0uQIjUnFCpCr/m0SN/r/G5MpBQYt8sypaWCQDi5z4tw+sbEZJyfqjlMWIbqbBsLPIaPBUKbhs7LMPC11ywQJ3TCdCyXkim4G86Rw4TsQYJoBplpL3ry8coRV5Eq+g7tqYl2tL3xk1mlgHns0NntW3ZadvawwCXTWB5DIweRkD9ppbuuGxPpF0CoifRgjobYcen8FSpW4CgAXPDwGg0sQDAmkcQT0BcUHPcJGDa+L14FyBq/CSfWCp5HEHh6uSUJvE4qQJAFTgtPjI+MKhCjhNf4sSXVL4j2JSOX+oWe2ZJYRvo9H1ytA4GRXSsPu5KLLqS1gWXu6CDLnSbRKJWexzWJQ7bKeZZhaNliZO2wKrJ8J//0wfwW4dPp0y2q+UyMT47kzqZIiYvoNqgrqI54xFNCqUhY8hlRyUx2CTx7umMzt3ZXo/hFaBBYaWsZ2Scp3pMGjHsFoXZXO1eTkh0nsMfkHUjMnV83Ka2RWm7lCl02uQobRttARpYQ2n5eWSsutqk6uy0E+4bgslUoe8ngwcBJAClS5eWDeK7pBnic5DWEVjXAqXtxgcQFjPTdcFgwpeaKql7SWEuHdC0NgEFeR0ZSAxCNCIUZY1PPkacLcYC6/G++f8Q0DuSW0cmmdbBxdAdCaDVYL2BvtCrWF8O0LYHp1ytngF3AlL8vJTeFcYsGrdBeRkMAaIEOlyfLzMOs7wRITI/CJVt0+AAW5yqt4ChsSnjpm1s+nvT9rYBkW1AZo1h3AT4trBEb3mGGUSA4DFfl+0SED1+4440Dp/Jxr1tg1Ptxm0B6yBGApMgPuP/eTJJ7+K1aftyH1qsJ48XIvSHOIjG8gxaBVSxnpmxHr/z4CbudDtp2SaY5Ct06KY4dFNUnvyDGJCcuAmWvkAVMmJ8gkITDK7ZExhQxlrrLfbsCjfzY1zJTpPJI0Cp+Uufow0GU93gQTNDaVq03mDRFdi1FTpnULUZrs0X8Nca3FvOKLQUNOa2Rhc0prbB1ekpbszJ9FEjYHFaoJgTwzKZ1QhzKrVhtcdutiL2Szvk2mGStb1YWQzq2njoJZX9QKsScJQMQ+dp/zaWSei2iGM5vCFNGcfNR3F5FzS9YjFMFzUhtbMpw4gL0TKzkZVkJJkAkWA0e+sB6kRKB3LzZjZF96nevjai7zFYQAL0nMmWGCjpc5T6WUh9lY0IZRYY98XxdZBiaC0ASydqyI0ZogFrE4EP0IfauHCqDMPxuY6ZJaV6rygGvgBQNxZ1Q95XXWMHDI88hh4c8TaRwl0MtOh/P1jfj/bpA3su9ce5KdvMBZ3K8OTRw4rfZUtu6JEdSh5ECANQIK/Hw2SQnQeOxn+P93EWGNq237Fwnq/JGAy9HQDPuS08oddluwRET6JtRdnbBgHZAeXfGwBJ+ny8rYCeJZLrbj1IbF+W97flpkg+MwHIDyqYSYe7qxly41DaDnvTCjt5DRc0Xm6vpKyxymc49QV+9/RpLFzZp8hHEMOlO9pg0neUbq+SE3WmqYArh8scNCqfxUGy775tMHh++gAz0+DlL19HE+s1TYomPRW/45l7yI1D7SmXoDAd7lVTdN6gNB3mWQONgAerCSZliyLrABUwKVrA9KyAUQE7WZ2yzXLTJWaCB2/WlCgP0ttkgYrESjAUw2SNJ1Zpalt0sbK4HIR7N+L4M40mtoEXjAqJQQKAqs1iKIeu5zRrcFRNsGzyWNIiEoQR1JCrddSixFIfSmSnQaEv0Mp9JvSp3lKIz4aJA3G+EmFhjeQfJH1+hqJgpHpkCaRJNimuts78qAj26DPn+1CS3EbSBMVjYE0NszoABuAinQco7NUzQ/3kKUN5HCIFonmjCvF6iQ0GEosnnVI8V1nXLIXCBi7Y/TltYnq49Vl0PfvI1wCgsFvjDEIAqs7CCdbJDAwYw2Cb47YtnX7bctu2c956FxFiP2zbBIC2hcs2gaSvCuB02c5tl4Docdume3DTjbnpZnmY+0cyP5s+H+/70ceGzeuqXiz69NUjLKoCbyx2kJuO6nkFHUXV5B10382jnijDvXqWABE7UXMj/RABFAZDsi26Elp5GARUwabBnVklSl8nvdLcVPidwxtQjmz922CwN6nQOQIeRpG3Shs0XNwPu1Rb5VF1tP+mtSkLZz4jAXc26V1xXTyG0vSf5dHrh7VBALA8mlC4zATAUmjRaC/MJ+m9NKTvWXRUc4yLb45bbp1wFha1n+K5jIHRoilSpXKeCJdt3utGOpNMCpnpG2cmSTExIETJOoiwb/w/lctA3y+Z2eHvJSgf3xNhBHY2sCj9ga0zRNyklkYW2h2nsw+9jPzahJomRh0Gy0ptEO+v365wvR6JucetP9coFheO25t+B4AAK7OEAwuG0flvayGsAxZ+gDEjNphBIl+LHig8mmPzeazRJmZIfj747LEGuGE7D8hs+/7tAoBUCE/kddkuAdFjt6TzSU/Mqh/o5Q0zAC1YB0Pn/Z+2I4DRphBc2rfY76a/07bC5u/SccanxXhe9WmOVZthkreoG6odNssa3D2d4dX6Cl5sruHQT6GVRxssFq6EVgGH7QT3uzlpiXxGxV59lkTTVIaDDA1P3AQOCkfdFIXuYOLFYA8iLuHBoMZD4ZXqCgrd4o9cfxHPvvsOcu2wchlmWZMGz9J2aDqLzht0MZX5ymSJxhtUzqLxBq0zqJY5jKYwwjRv6X1SIzdUjqNyGeYZhZxsLOHBgIPdp632QGUQbBiCgti4RhlvrzTEDrHfkFEEnGQquBdhM9Z4SDaIz5OPc57X0YNn6IpNddhoP0pM+gBgMpfYiUGoSAEqaozYTFAZD5XJumcBKncDsJRN275/8eknx2rRFZk54v9j5pUEMf2XcXW/DjQ2eecM/IP4EBKbM9QeUQbZUB8EDA0dh0aGQ9DCruCyRAuDFy65wfXPEigLw5pyfd07Garkz4bXLWXOpWNA6hfyWvA16EOvwwsiC746TwWFXQy5StZTluwYt8cBCNtCXWfphrYtd1Y7i+nZZCuQPtsyIL8tmKLwhF6X7RIQPXSLICLdf0H1GTSMhYLaHi4DtrM3Ycsy488ZyKR9ieXk91K4fYHxIoyf2jc8xYdW497tXdQdZaW8drSHZZfh2uwU//3Bc5jqBve6Od5o97D0OW63u7DK4+XTfRy7CRbRaJFftc8S4MmFPmjhyrTPTHXQymNiKJV/4UosXYGlK1I9s+v5CWqfwQWFb73xeTTe4LidYG4bZNqjdQa5drgxOyEfoND7FjXeDJx3y2mTQltcGoFrnzXe4LCZoPO0vWWXoXIWpe1IJB1dp63yCJmHWapknNkLcGmAbSIos8pj2eUUslOUHcYeMewYDGAQjpGTbRKDB4XWGSzqAlrRsczyGrOsSXXPmD2RpSzIbydOoKbXE6UMLmYyUv8CfBc9aqxPYSAACE4n8AQA7SojZoizK9W4Q8euFtmjvrZXHxbqNTUSGYgumtiYfvLnxiEwXn8sxmY3Zgy2g7RvYkmGDJWHQmG7PoQa+wiHlbX4zRhI8drW9mG8wfeKzBqT7keeTxK698xXEIBmk68SgzppuChJAAYVfRZcDJPG/6VT+pPMljor1HbWOo+y3kXbthBY+hs9KNokIn/bp+Vftgu3S2PGx2gEhMIA/AzuUckWDVaUy2z4jp/mxt+Lp3UAWCt9IJmggM373tTSemHjsaUBnAfXTmFxWqIsW3RO4/5yiklGE8TvV0/hij3FB8pXcavbx2ePbqSnzDv1HG1GRoqtMnjQzpAphwfdFB/d/TyaYHAYPYimukGhWwqHQcPAY8+uYBDwSnUFN/JjtIH8WuoY9oIHOm/wwE/x+Zdu4H3veAPXylPM8hpaERtzv5pintUwcbDfzyssuhxVDHUVpqNyF7qvRxaCQpm3Sa/TBY07qxmen5OXULvBOK8LGuV+hbpT6Zp2jUUea1pJQSgDssZRGr+1PoUxeH+sc/GjcJpVHkFR1hofa25JGHva5mgj6zXNGrIIiI9Ak5xMHGtR2DYBA4BS4wH42CW6WlPIzzp0VQYgwDsdAVHsLALsKBUQJIhK/adfTkn7ifieJvUNzA8CkmGhnNCl4FiCgs6ZtYnJJIHysOwF93PJqPD2gb6Qq1YhlbaAM71TdWy8DXKo9oDTKfTEGjNmw9hjiB3CmRmC+C0CexcNhOG0nwSKzOb7fFuYjq8nP3ww0ypDZlLHdhbrwcyRvGbD7zc/c29jds4UX29ghrbv93ywtA0EbQJDa+tis/HkWdv/SjV+/n3cbVy2S4bo4VvS6PQskfio/+OsHraJCVIbvuNtnndvS1fsNTbpjPX5u3NuhvHTpXLEgLWRJbo2O8VOUaXvC93i1BeDAqxaBby23MVxV+JuO0ftM7xe7eFBN8UVu8TS57jvyJX6QTtD5UkjVMa0ewDYM0s4KLxnehsPuik+d3IDALBwBY67MoqzNVYuw87+CndO52kCyzXVALs2OcVv3X4aJ20JD4W9fIXSdLDKE6OSNZjmbRQcs6Fhh2vT02SeyMLn47ZMnzXOUBhMTA4H8yX0TgsUHiZ3sHmHurVJ8F1yeE35NLHkxhEDYbo0GLPXURsneGaKknA77tMmpoK+4wyzMhaw9VDJnqBqs7Qdaxx8ZFIU+kmOM9BcR2AISqS+s9jXKwGKqJkYRpOiYAAo53VaTo3BPeLkz1loA7Yj1gET9cPGjIgEM7LPSXbB6P6cJCt0vjcRLWeiiJ6tFjhcKcMrMq2d65ONzyeJpL1O3kP0xQYQCMRr34ve+TsWWcvlx9dgmzRExf7BDyuSRdtkzAgMwc+2dlGPoU3beRQwdF7bFCI7ixG6CBi66PdvWgtP6HXZLgHRYzfBAqVxjYtbXgR2j56QB2GqEbjhB+yggL64a0jM0WCcEGAtSGC0CSSdN77EGyZlOZkA15J7c5F1OKlLtM5gt6jQeh3LaljUPksDLkAD2e3VDl5b7eM/3HkPDhsyS2wjM7T0OXzQmJoGnzl+FrXPhF6o76q1z9B4i3lWY+Uy3KvnyXTRB43OG3zw+ht4z5V78EHh3nKWQmJaBVyZLXHYlDhpS9SuJ0mr6PQ8y+uB5sYqn8BLF3SqPXbcFJhaAhuF7bDsMnShDz1oFTCb1TBFlyZ11xo4r0mr5OgceFmrCZTNbZOOiydv6U0kJyZOpefPJ7bFLGuQa9INWeMGWpDWU9bTLCcNFOuUmLkIfOwxdKQQwzfRsNF1pi/8GidoNg9UOkQw1IedtA1Jc1Svsh4YhB4UDTPEgJ2d1dDXB31YKIX5RoCF+5ec2HUEiBJEskePFFaz2aLcJmm4SMfF6fgaAbklD62mI1BrhBhbqQAT2aEUghwBN6NpaueMM6WRAGUYZbOla8LjyRayeZzGPwZ5PXvGy/brSH0ah8gG2xfHzmzmNjG0/H9Tk6aO47a2TfTJAmcxMWd5Dl2EoRmKxS8Ohs47rsv21dkuAdGjNBliGnwumCEVcKaOSG5LgiIAa9ST3J0CpXJHPQa5/w63d56E6cy26WlhtC2lATiFtrJU+6vOyRF6eoSbxRFut7sAgPvdLK3Dg+Zpm+PV0104r7Foc9yvp2iDwVEXq9lH7dD7528kY8alz2HgU1HXTDnkmhiUNphkkkgvj0VHJTo4Nf/G7CQN5AwajqoJjtsCXdAJyHAJDWYBOK2em1U+AaC667PJePBkc0XWBjE7c3XvFHneYVK0CJ58aRpHx3PclClbrfMaVpNRY2E6FDZWqRcgS5ZaYK1SFtkv53Vin5itYnbJeZ2y13wgR+KmMyljblqS55LRVKurL0MRUriGGAkPnfkEdBAnV5M7mMwlr6XUbxh46Di5RuYo9TX0rIc2xDidHE/67hjIBoBBkZwAmY1hA8YQKL1eTmzjDDP6rAcG3q+LsKXOyAWVSqiwR1Hj+mzIsZ9QFz2BOrcuXGaQ5Meh7tDbFvD/vIz3G5aP58CZaGPGi9+lPxE3mfkmr2ViNkUoUvoMDc5DDDgD5mbA4uit4bLz2rZt0nafDAjZJqgG1rM1t4qwNyz3VjSedh73ddkuAdHDtwR4+LUOgKSZYVpuZHi31rg21Khjyvtfsj0S9KgQQRKGxNQaSRWG21kbW84abAahDSRWoHUG07zBvcM5ZqZGqTo8aKe472a421AIjAffEFSaqLmWUuMMVi5LhVq5ZdrhXjPHoitR+wxHkUFqg8HS5ThpKXut8RZT22JiWhy2E3zx5BqOmwK3lju4s+oB2WmbU0q9J92MjYVZKcOrS8fYbCmkOXhHoEwt7fDGcg6jPe4vpsh1b2rng4rGlSBwZcjA8R037iMEharJ0Hoq/7HsclwvTrCbVWicpRCe9qQn0j5mNfXARzbJgMjK5lzktvUGZQRxLPTlcNy44jmzJ7l1aCMDolRIGhf6HzCWtERQfeisF0EjuSynMjex1MZAIwRmPvq+FTx6v6Eg0+Z7hoj3wSzIJh+e1NcEqybPsf9sKF7mzzVCSk+Xy0sLA54Mh1qj/n8jgEfaryKA45xeC9PJawy1HsYbfI9hiHAc/uPaafKcvd8c7lJq6K/FfW0tpITepXps98BsThIfxweTi6Tnb2JnvpJtExA6C+Q86vbfVIAUntDrsl0CoifW1OgdSGhEpXpP2NzxJLCSA2GE7mOcMl6EP9x4/z0E+mcGitdLxyaX4ad9E5BPW5ysCgrDeOA3774DOhZjNQh4fbmb1tsofIxhnNpbdMHABY1S0+SdKQr5sHcR1UMrI2vU4dZqBzoWVwVAjJEKuLecpfT0RV2kfR9X5SBj5nhV4rgmNqrzOoGQtSfn+JQsS3Iwm7TsMuzF4qkH82VilHjSkG1ekKjZaA8XhbatI8Gzh8LK5cTU2AZWO6qX5ntRMDM9uemSTkiNJpPWm8Qm8XnsFlXSFjFLlEqTeIXWM/vTsyZsYujY80aTCaGxvY5H6zBig+Lk67UwFwyDyV0aDHLfGvvtDMKzo2voYoHUcWPmaFPJih6wDBkmI8pgyGPSICBjdAQHyiexceeG4SL+m7cxAD/idwlBpQQJx+LoMMwU498giaWDikVc1043ns+6juqsdt5yLLA2msrRbAoZyQnej/pZWuZNnlkfBnRs0w2l/y8IhsYA6q3WEl0yRE+uXQKih22R2u4N1CDA0JA9SpW55Uu2IN5T6CysbWcAigbf0+dcMHMt0hafytPnevzdOtga7nf9qySwFs7NTWuAuwVOG9IA8YAhxZkhUEkJmSLOoZv79QyLLsedZgdH3QQnrsTS5ShUi4UrsIjp9febGV6r9uGhMM8a+EAePrnuUOgOnz0kkTVrfa5Oqd6aZKVy7ZLYuHN0LFJfxD4rrTOp9AUAHFWsUVIJPO3mNSpncVCscG1yOtCwLNs8PSXyhNFGgHPjyjG6CIo8iCWrXDaYWEhf1CQg5NEzJOOSCdwKQ/qWVQwhchmGuqMQ3HrIKaTwDrMpHGbJrEvZTRL48N66mCGVAA2DgFQsdsNkHYa+OuyKLV2qU/8DUj9nzRADMWZfZEugxA91O9LlW4tq9OzLMwau7ONDPk+kLbJRRN2DKZ8YGinyTscyMm4csD0RCAVPF5OZH06lH6TGxzT8BNjEuJPE6Wk86r2R5H7HzBlbBIzduV0gD6xJ1sCoHnCP+5mc/Hs2dH0a6ZmfdZZoGyt0Uc3PRT6T353HCgEPD+Qed/3L9vZsl4DoUVoEE6kUQQIzYhEFXAh6y/ViqID3MRj8xtvh/2XhzQ1wP4wBlVwX/XcphDbeTfxsrTSDDmhqcp2eFC3czOHkc1dwt51j11b43PIG3je/PaDXeVKR9Z58ULi9nOPF0wMcd1SUtfbkMu1AAun7zQy1tygi8DnqCJxQurpLpS+empxGYTexRlPbpkG7iD5BDIbq2uJ0SQzS3dWM9DuK0uGtIg1R7WxilZ7dOYKHikaKJHiunI2aI5dAFYMiFkEzAwMQu6NVwLLJU0hNgkM+D891yOKxZ4b8mUIEkDI0BlCGGwuyAVFuIQKnWfQ34gmudQanTR4F1ypNpG1LjlDOEVhMYTMdYG3UKXUaXaehTYAeOE9HoCF8dbaxG2uZZuh1RMwaDRYfs0iIoTlmXni5uMyaQNf3ISqqA9Z/Z8TvxhqgznHIr5+4JTjg9RJoQH+t+3MPa6CIQM34YYfZMF4Q/YPR6NzUaBxgRk+rkLIix3oiFpevOU+P2JBJ1qbQ6rhJMGRjf9fCoJH1fMDFs8w2bf9JLr8tZLUJyDwpLdA2n6KveAtP6HXZLgHRQ7cB4zMetEYTwXmDgvxaDoQjUKS27G/jdmQbDMASMIlz4O/kuzwm/nM0SPvawDVU+sHEbboZ6Vx4Un+hvDuY8HnS4adS/h8ADqsJ7tdT3GtmOGwnqL1NIEjHtPSJIeGvDwr7+RK5dli0BSpnsXI5ll2G65NTNJ0daB00AkrbJj2ODwqzaY1re6dovEGmHbrIbDGoAICd6F/E2wCI9Woie5TCWghYtDnVJotV7KvWDs5Xan2WVY5mleF4MUn7ACjsx4VZc+2SnikXgMsJoMTb41Df4Ek+sk8SwLEbsfMaRgfUrUUR9ULOKxgbtSOROXGdTuCk60xihTTXMmOgLHxw2NCSQQdPzjvzKvU9FlenPibAhwTcqe+J8huDiu7cjdUwEy310RQuYxCznZFg0JOArbipnABUTtSaM/GVzl0x64IUouNTlMehRueewGBasD9G1mHJ+z/ppkBgrw8XMgAKyKxLppuDsiNqeH5KBRS2G4Chscu1vEbMovLropP/NpCxEbRcYJvbjm0bGzRmuS5qsHjeMWxluxC2DstfiTZ+Hn7Y12WjdgmIHrqNAEUawAVoGPe0szrcBlZm+H0/wK4Dmf6QBoOoTMnfcgqD/cf9rAE4fnodAbzk5NspTCcNTlYF7KwFctL0ZMrh/bNbWLgSndcp1Zt1KQORtdgnMzVZnFjuNzO0QaPQHTLtydAxaNTeYmKI/dnNSCNTe4tr5QIvHl+BUgHHVUlC6rj9xll0MUOrtOQzdHVySoxArPo9HtwYiDC4AGLIzHYoY3kMDsEdVZP0dxPPV4IyniyZ1fC1wY0rxykrjEN7AJKYOr2LbLdtWhAOrQ0AkgBxDJiYKWicQesJ2HH1dOlpFDx56HinoqZnlNqd9EDUL7g4LB9jSruPk/LJokzrbQyPxb+V9im0JkuHSDEyZ2+NQ1NKnB+fjwRJTrBXifWB0GKhv9cywcJtEl0DPbvEQMuDwq8cukuhOtUX11XxvlTyPhYgj4+PzzmBqOj5xNtIafMYsnKypAhP2DJjUKkeELBNwJhxHJ+zZL/GzM8mRmV9me1hs/HfD9POY3MeBmydBdi2ga3xuo96Hpft7dMuAdHDNgX0j7UYAIr0pCw/f9SWYljDp+axhqBfXvy5qcbZwx5XmtzER2Kz/AS/OC2QZx125hVU5nCn2cGeXWGqG7DoWTJCHorqJMWJbTzRAojMhsFBfopMeUxMCw2fjB4LTenoWgXMbI2qs1h0BRpvUXcmeQi9+PrVVG6DtUL8ujY9peNvCoSgsKiLQQmPg2KF46Ygw0bjMI3sVK4ddrN6wMhULsNeuUphKvZ0YTGzHEytonpgdtZuHEgpXblngNj/SIPErpPIdMkm/5fmkSzKlhOaVuSlw9lFMj2b2QRrKIPMWpfCYhy2MtYnViMEJNNA7g/O6TUzQtLvCFDBGiPdv/o+pgbvgwyyyFzJENg2NoN/AwnOaHv99xyC5PBmEpuPjoGPw0Q7hrG+hrebivbqXpvD27DGw1qHLHN0DdP5Y9j4YcOL7Dmxj8H5hJ4t4lIdDLz5mBnAWe0Hmj4GRplZz1w8S4A9BgZSVJ2KDJ8FHrYIl8f3whp7I1idTczOecBlWyjrLFB1EZB01ndvGkBiYefjvi7bJSB6pJaARQRGUsczEFnj4UCIaIP+KdkeJcJo8njOPVYMKHkZ3lsblHm9c+4RZT2806iaDJl2mMxrXM9PsPQ57rY7CcD0jNBwkvGgLCeenArTYZ7VsMqlp0qrXQRXdDCT6Nnjg0LlMmTKo/EGizbHsstRWEpvL2yH6Q6ZD7JJYWk65NqRiWRWY2pbLBsSMy+qIjlG36+oOO3N6UkKgwFUld5DDcwZAQIfNycnyQ07Ny551uSihhhrlJ7aP8H+7jKBqiYyNZXLwNoMCXK0CmuGj8xc5dolITjQZ8ClST70VgcATXbOa2Lc4ktrTyGWBJL6SZHZDWviZK5JNM1sTWJgAgbrremAEjiRbIvoa7Evsp0DEHVCowKuKWML6yGyAauRwNj2myOFVMVxcVHfcQYZL2MUlVVhwCObEfokZofkcbGpJLNfAImqx9cxMcLiutE1jVogduzWPeBLjCRGQHHEZtFvHNK7ZLzkNeZlh69eb/UofkCbwM5FQMNGIHPRUN0jAKGHaRdhkL7SjaeHx31dtktA9NBtMLCPgc/jtNEAw4UiNy4je68AOf3KD7lvJZ5Ut6wrQVgKowUV3Ys1rPHYm1b43cVNuKCT67RkgMaD9abJSiNE3VAcyFXAG81uGoCnusGpK9AFg9K0aIPGQbFCrh0O6xJ75QoAMM9rXJktSe8TNArbxcmPWJvStCQQjcBlXhJ46rzGfrGKWV86TQQynLXNQiDXXfrOap8qhvOkyttgH6BM6JUYMHFYDejZHlm6Q/ocDa7b6AmbQVg6nqj3yCJLUNp2kE3Fy3P2WwopiVIUnJmVWze4D+SEnvoI+2oBmJRtAjx9h0JyvO6BUeyHKgzuh9RfRoVS06YEmOH/e5+hCAT08Pr0WqSeLRqEz0ZAi5k+1qHJ7zh7SzbZt/n6jr9jJimdQwQ2Y3Y2RLZYM6OGPiSWMsb4/FjcLNhlCZjG55RphzGQ5G2Pr4Psm3IfwMO7Nm9jeeQ+L1I6YxtYehwg9LjA5q0ER5ft8dolIHrUNghdSYgdWaOLjA9x0f5/ye2HtafscXbYGrszBmYbmCFgNDHJbacJZcsyvGhkj5SlUhTGUlHUzpH7dO0tdkyFQrcDdmhTkxPHTl5jYtqUTVboDlY53KnmqD0Jg5c+hwsKVjk8Vz4A0KfCr9qchM5R9DyxLRpv8IVb1xPY0CpgalvMLAGgp2YLAPT03niT2J/K2cQOVS5Dx5XptSMwxaLS+JtUjsqJaEVFZPPoMi2zlbpo6OeDShqe1pm+ZpkmB+7cdMlXic9PhuH4PFjjJD/rBGvBnzWOGLQilp1gLyPJImnx2ztPafch9KnnqXxFnBS1GYaixuwffQiwiHpaNmvs0JjhGXayXkMka6IxSNtUkwzos7+0DvBeJcBL34W1yZ9BFKWa931SbjeFHePvlEUGSVa75/DYGBhIUMnLMgsk+8agjIl48Ej6oMjMSTYrsUwCJDNLx8vxfcdiennumdDI8Wfjdw632pEOSIbHLtK00LhdbPmLgSJe5rwMr4sClIuEwc57vektPKHXZbsERI/TBoP5WngsbAYn4uvhugJUjW+qTdsR66wBp037G4Oh8b6kXil9Jw43DN/5HHT0IzqsJtifUEHVhSuQKZfKcQBD119g+HTJT+kcFuKirvx69/wuDtspMuWQKYf9bIW5JU3PaVfgOGaaXY1eQLeOdweTxM2DY3RB47Ape/dnFeBjNldhek1S4wwaZ1DGz3xQmEfwREDGovMmhc5SyrwzSYPEkw0gvH6ENsjG0AdPoMsuiyAsw7IrhEA6huRCX1KExdJ5yuZTqJyNXkYWresF7HxOWgW4CO6s9uRvxMBhBBBC6JkWrakuVxI4qxA9i9Sg/6Z0dy4zwZNyBCBVk2FZ5Ykl2gSCUjZV7IvMnnDf3plW6Vzk+SmF5JmkFGVX5VEXY41f0wHxeTLw4//pt+rFx/KdmaMsFgmWflPUf/t9SDE2AcleoyXZtLGmSp7r+rXprz8L4OV5KMUhzB5083FxuFR6LqnR+Y77wLYXr88PCJwRyQarnSiPI7c3bmOws4mNGv//KMDjosuetdyjAJw3Gxwp/2Rel+0SED1e48H9ccNlG7a7MaNswEphsN+BJugsJmjb/oDeXVg0CYDGLE9oDVyrkWcON+YnlFHWGby4OAAA7JhqbVfjAVNOjnn0N+FCrhQ+a7FnV3i6PEou1VPdYB63vZ+t8PzskJaPg9AHr7+BL792bbC/qW1xrTxFph328yWxT7Fu2OtH5KjNvkCNN7DKpww01vb4oKMHSxjsj/U+yy4bhL6A/snceY2TukzLzosaTWeiJUCXztdGILVja+SRjZraBvOsSdeJwVUXdBKMn1d0UyNg2WWw2ifXbQkEAQovMaPCobNxDbQEMgagB4OMMKpaH8Xl6FkbTq8fh84G2ZnYrPM8XRWDc9N68+TpvKawXtR4qQhOM+3S78DMifQLkj5Z8vc1gtkYh5wY4Mh1OBQ1Xm5wrKYPFcoQWWoDsNmH1qRNhdxuf07xIQAqFaflZTcdvx8du7yW4/BY5WwE7Hnqd503W8NSm/6X2WbbwMK2Y9m27FmMznntvOXO2+/bgh26bE+0XQKih2xpcDu376v+7TxgErAR5DzcgQ0PaACKNoXAgkLyJEoTkjheMXFtBFYxDGZyB+d0BBxLvP/aHXRB48SVqVDrprZp8HhQT7BylCq/cGUa0AkULTE1DU3kukvmi1Y7THSL3byibDDb4m41RTFrUsr/4ekEt5dUV631Bs+Vh+mJdtEUMNpjnteD0JPMOOuLx1L4jBtPKFzGI4WyIkMxy5t0nDxZfeHeNZSmQ2G6dF2ZlWo8OVZ30VqA99F5A63IGZutA9g3SRo4dqJ+lTQc1KrXwFSdTYaVUgfEjEoSgJuhtxGnj3eurw9mWCQsXjYWeFXoNSccqpFAivvQJlaEgcJAN8THKbRA7CrNx8xNAhLO/JIFcmmZHrhQiY51sCP/T7910GuTnxbXUa4z3tYgRLjxnkJyvpelVJg9UmJ73J+k47QESHy+cr9r4vRxiBNYOy+gz1gEmCWlkPTUNolBowcD8bCwNXQ1pCIuAqjO+/5hQMnDLHfWeondGoXq3hJwFJ7Q67JdAqJHao/LCDEA2hLWeqwmnrTTR0pkrvD3cpkxIyXCapvAUHpy9wrBKVR1hlunO7hbTXHc0JP8whXYs8uzD3V0nFVLT6ArRzqhQrcwCDCs3VAOhe7ItDFkcNDIYkbaXrbC1fwUpWnxYDXFM/tHWLU5CtNhdVTiuflRAlO/v7yGQneonMWD0wn2phVy7bCfVwPHaR74eTLodUM9ayDZmVWbJQ3P1LaJmQCIKepELS4KY9HfzGaUUTvEmXQs5uaJJtdUMmRum43Cbhn64XMYf5+y0yJoo3IffVo2MUBA25m0nbYzaDsTHZwVjPGDjCkW9loRqsqsEOuGdTDABV+VCokxGbM+SoVUIb4POfWhPD5f9hzic3deo+rId6pxVN9NitF5W2NjRcnA0DWicicManl7AKJn0boGymgPI0BLCAqdM4MUfBma61Pm0LNl/H9Q6RqzFskks8X+3FlP1VsRiCKzAvDyNR1P1gxaBxN+fE+WFcqnBAXuQ50AXZt0PNtT7Nf1RNvCZuP2MMs9KQZncJyj8xuwxSMN05sWMgtP5nXZLgHRo7dBuGpTb7pADwujv8OGzx/meAYgZzNj1O9Pnc9KbQjJDbalAtwyQwhA3dmUyWKVx2lX4D/ce99gczKVefA5+oH8fj3BymexRMcUle8ZmUz1WVlWkZaDABGBpjZo3K1m8F7hoFzBeap5tn99EQXLDnfqOZ4tDzE3Nb58eAV55nBzdpIE1bTtIeCpo9PzYTNJgup0HHFycEHjuC6xaHO8erKXAMZuWaX+wewKX4fSdqi6DI3rtRc+aKxGdc2AfvClOmpu4Ki96dryMfF3BKhcYofY36j1BmXWJhPDEEhQzYAms27A8jAoMTFVXwIf1vNw9tqgbbxF+Hfvf/+ki4tgXAsX7HnZgE0P5TnLMJKLoMV79rmSFehjHS/V63CcOE4ZdpOAxwlzUdl35TlyOI6XMRG0pVNlbBj6rL5N2sCUsMDZdopC2db4NYG41CXJY0peS+gd0mWT2WXMcEprBp7cN/kLVZ1NfScXfmDbgMdFRdFrn11ghh4DuCfFzmwCauPjHO9nEGp9s+mWSx+iJ9YuAdFXrJ1B93CYalPbBpK2bXY8qJ7FMqmAZPjIjsFroCiM/h9tQoKkLEDlDnneJb3G1LaY2hY3imN84/5LYrJTo+0MT4wZrNJQZtnKZamumQy9lbrF1DQoNRkbZpqE1oXp8Nv3nsZJS0aLGgEH0yVK0+Ij11/Doi0S68MD18F0iWd3jgDQ0/9xU6w9gTIossoTmIDCoiuSuBnonxqt9qmAqw9USDY3LpXK4Otw2ubII3tkzTDThzPNaBskhO7/V5jaBpXLUNpuAIo2TQgyBZs9khgYWaEv4YwpYk16toZ/a6N9Kp/BZSEy69KkmlkXhcMY1EBjIXAKi6l4XUPfj0IM823SIslwnjEeVWsH5Sg43ZwZK2kLQewS2z7E82DAE2ifbkvYyGifiulWXQ/IW29QdRlqZwcWEs6T0Sj3R76OSiHVRUtu1gK8pQk1jgfBKXIGBzFoxsZMOgD709WAkRpn2A1AJfcJ9N9zk95EwDC8tmr7c+XGdg3MnE5ti71shecmhzDxfLVgTc9qm1iibd8/THtSTMxZYGocEjvvGN6SmmaX7bHbJSB6MxuPvWfdJxueGrf+f95ykguV71sHkLDxz63NA7bskGcOIcTQTxzoFq7A1FB2lnxKP69Z7ZGJwZJDTstY8R7oB1NmjArdwUWwc7VcIs/6J1erfEqx16oXMJe6xdcfvDqoAwb0egnS89heYB3DLnJgTOU84uSZmaGvEO+fW5l1yKzDss3TOpPI2PBTOrNEvD8Wr8pjzLVLT/DbGAstJsy1p1n02UeTWMOKQjt6wEQw4NARPGsB3M7y2aHvRw+dSmhtzsim6l+0jkK/X2bYZMr6plAQsUh67Zi0CoPUcxYjy1T5dM1ADBtfu20ZkmtCdpHVxdlv8vpocX7DFPuolwpDxou3flIVaTl5nvK4gmCH+BjkcUpAJfsui+vTdRJ9XGaRpT6d/LHcQH+lR+Hk8fY2tYuAi/M+P2/bZ23vLFZp/GBx3nGxqeqb3XhIf9zXZbsERE+srYutN9E7W5ocVMPoffz3YKfnfJ+WGy0wGMODeG2gmM66U4KCa00KvZzGid5qh1vVLhau7EMfilKD06pbmCOrPdqgQaaIfTFWHxQqn6ENBj5oVD5LgKgNBBreufcAABLoYUaHB3L2FbqWneAXXvkIrmULfO72U0moLBvv87WjPapPFlkBWcCV2+3TOXLjkn5FqYAH9QQAgcRp1pDTs3HQ2uP6dIHOkxbjpC77iSeCIQZehelZIJm2z9oiBlxWhKhYZO2DGrhpSw0Ni7hXkf3onIFSAbl1CTCwJmeWN5gVzdokDxBjwqGhXswdBuwSsxcDzYsi3ZCxLvUvHTVJHCK6trcYrCPDT7RdOu66tUl47AUbNGRQhvoqPiYpqmagkkVQL2vXyZfsH8w+eahBP5VC9iLrEoMlf4cxOBzXeAtBwTudxO+d04P9s3ZIpuF7EU7k0CZrmOQx1zHLkFvt7IDt5L6Vx9Cs7OuUYWbTOTAAGuuxtrVtLNGTEFf3x7SuhdoUWnucNma47IitfVNbeEKvy3YJiB67XYz4eLR1uJNuYoDUlu/P2/Z5uqFN29l2g6uA4DROqxylpcypZUceJYu2wO1mZzA4nJ7SU+5Y+yEN7V492cPK5Vh5coquvUUbDJY+x8rnWLocbTDYs0uYWCsNAH7v5DreMX0Aqzx2iwpd0Lian2JmGnTB4NbpDpZdjqvFArXPcHg6gQsaH7jxBu5XUxxVBGDaKKT2QVGJj0lFnyU9jh6wQwDw3M4RTYDKYxGf5J0AJrWzmERn6MK6VH2es8IWTUEp/jJjLGjU0Ryy8TYCJR3ZIp0mcZ6MSVvUT7pyewy4ll2G46bAUVPi1mIHPigs2zwBORPdtZl5MCokkDEtm6QnYo0Qh8jS8gOxL8TnPgEWKVwGsAaeeLK6v5ji2s5p38UVvWZFbz/gPR+DEdlvwxCR/HvM5kgvIwDpN2QQLeuC8Ttfz8E5oC+Hwd+xaJtF50r8nVkHE4XnxnoyueSabvJaRENMCb7G5yUF51oJ64N4T7Veo036pt57KYnHRWhHsmN8rklsL8rUuKDiQwsB+NabkRbrbJZoLbz0GADiYbRDj7Kfs9ghZsQYDDFAZKborWCLLtvjtUtA9DhtE7JeAxoXuCnOZHDO2JTa8Nr2OYMPt23jG7Z91rHEYy7mFI7aKSpcK5dRa9NgntW4V8/xv9/8PQDkBJwXHerGphDa+KkbGKZMA0AdKJ2dUu013miIeWLTR60CDPrsr3lWYdVmKKPj9cxSbbRrk1McN6T9+fTR8whB4Vazi6ltyMm5ygnEgLKKcu2S+HSe16On/5654mNgncW8rBGCQtVZ/N4dcsg+KJcoTYc7x3PMcrpeyzYfnGcVPYw4nJVrJ8SsQ/8W3i9nvbGzNk9gPBi7CIpYN6VVSBlX1hAIamI2WWG6ZOrIvxcDHg+FurVwTqcsKqrRRsfUjZi/8cQtQ0A0afvUt5ILNZAmdu52d09m0Cpgf7YCuzaf1nncD5Inko314gb6Gd3X/OM+NT4uI5i+lLI+SldnUbK0IBjXMOvLmgS0kW2T/YLZE87Mk9lJed71vkQ6pDFFPiysi6aHbtXD1P7+uOQ2Vk2Glg1F4+/lYjhsHDbc1JhxBJBC2l0wOHV5zETTA1D0KG2ctfVWtTGY2XQsPoyy8jD8Xd/Mps4JhV30ddkuAdGjN44wibbdY+Qhe5tcfAxyHqUFRDZH9YPuuTseUvjb7pj6uMBzVw6xn1eonE1lMZhWBzhMARR5i7rK0qTJLwmKctNhYpqU2eWCQu0tTrsiZWAtXYbaWyyjZ1EdSGTsg4aJbEjlMsxsHTPRKKV9N6+xayu8vtzBlfkS9+o5nipOkBuH07szAMQQSc0QAJzUJZXj0G7gQ7OJmgfixI+ASdHifj3Bbl5hals8d+UQWpHwnFkT5zXuncxwfzFNoAZYZzOSK7Bg0zxU0m2RtmNoIqhUn2lWdXQ92aAwXW/rogA4hou0R2F7jyRrCABN8yZpszhby7neX4g1SACQZy6xRZwurhWBHhPdm0mr5HrTRmDwzuDJB4XjVQnPZUa8SkAHQCzRoaNmiPtbSCEr1qDxtZCp4eMSNUbUKQtBpVInfG3GYIQbezTxtR+6Y/ffFZZKprTekHGiDiiyDnnekYA6skTaRo8nxan2fo1Jk9tOInPTAz8+Vg0Kt/H1ZOaIs+IAAkZFtBionB30ZdkPS9PioFih0F1ihmTz4ezpZHNY7OySHufpe55kWwNCZ2qftpQyAY8LFxOaP5F2mWX2xNolIHqc9ih96CKhqjE7k9bZREmdcyAM3DYCqvO2Fc4/3qDwhS/dxBcPr6JyFq+e7uJOtYM3lnO8sZyj1C3+txtfpEUDCUc5PVlOHEzpV12GiWlxkJ8C6I0JAcBBYdnlOO0KnHZFcrS2yuFKvoTVDrWzmGUN3jG9j9erPdyq9lCYDtfLk+QR9MH9NzDPa0xtjc4bvGPnEFeePsZpk+P1W1egVEDd0cSwbPNBGItrm0mBNR+nTUwEhY86p3Fclei8Qa47XCtPk1M0Z3OxENsHhdOmiPqeGCqLAImzzXwYlQCJDBGAVGpEDuqtEGOHGEaTYCgVBo3fG+VRZm3axrLJEyPDvxE7WANAntEkyllnzFZwhXoJODhExEDNGpf6AH8mGY1ek+Thfe+1M/YqYvZHiqoTc8ehrPg72ejj07/o/LPon8Rgk9brJ2qrfPLpkfXf+oyxIZiTYUHebm67gegeAHaLCoXtcHV+CsXZcrmDyZyobUbXmQEeA+mxLopfgwLMsWndm25yKC+VLUGfes/HO25ahWQ3MbU1nBgUuIyMBAASGJ0nRL7od2+H8FMP3vwgWeKy/d+nXQKiJ9E2gYYBAHnIMNX477WxIIxe48+wEQSprcDogsclB6XRNu7f2cHLD/axajO8fLKPprNYtjlOXInjrsQ7dx9QCQKvsFrmA/diHrw9FOpYPoMHwNrbNBB1MaV9Ypr4lKpSyIw9Ue7WM+znFa5kS3z2/o207hW7xIN6korGrrosmTzeryc4ejDF0ekE093VIGyiVcAsulgzIOF98eQJIJk3Jv1IZFpc1O4sugKdNzgoluncukAhKwYD9xdTHDUl7qxmWLRFBD866Zc6MRkTC2ZJsxUL0nJqvVUetbPYyWvMsibpmFzcVmlbFNFLhnUymSGLgEw7lDHzrMg6FLZL4SmjPXbKOoGIWd7AxLCVMR5l3oq0+AhOPBeIdYMsMgCD5YCh3oebSZN5/5lkwJQiIFFmVFyYgcxYTC6F0/z78HlnMTwqJ7nCdMlvh49tnMlGICUMtFTEtAzPJQSgbm1aj9tpk6NzGqsmI9F95lDkHazpWS0GOVpm/ImmVEAWw5hGLM/hRA+VrACYGZPCcy5ZwuG0TWFsuo49EObvs9jfJqZBpvpjGLMjF2ddHs/YcMzcjsNeYzZXvo+Pcb3OWg+GWLs3bmOW6M1q6jHCZPJ12QB7/iKX7U1r3CnH99rjhebXAY3CxpDfQzWJjeJ2moa608JrXJmtMMvr5C79od3X8PtHVONsm44pBIVllUcBMTFC9IRN4moPhd1shWwDHb2KBSfvLWeY7rbQCHh6foyZbWCVw9LnKcV9165wfUIMlFYei6aAMgGuMyjyPiwEAKVtU0V5AImxYZCS2Jio0yltiy5oZNql8FvjTRSmusFAWbd0Tm1L2p0sc2g6i9lkOZh8fFBogkkZYrlxvWPyaJLicN8sa7BqM7CXTmG6wTFrTaBJpnFb5dEEKlliRdacZCaaziKL4CZlpBmPSdYmIbYLvfNxGLEnAOC9jnXTyL+o29AfZJ0xKX7Wo23x+bjQ11nLjYMLCpn2cL4Xe8tzVRE48nayyAL5oFLocDxRbnKmBvqJ0IA9ndaXmeUNTpscu8V6fT8JTKZ5g6PlhLaqeuZLGidCE8jam6zSMS6aYk3bxAJxPnavkH5PDfr9dAwFagAePdjO1ZDNSucagVGmOroHDaIdhgeiJon7gGxS+zb+jOsEnrf8o7QxMNkGis7exmZwJzWEF9n3V6xtCxw87DYu2yVD9LBtk5HbEBw8ZEjrSYGdi+xPYzvo2rp+DJud11O8QneaY7UoMClaqr7eZfjy8iqeL+/jXjPHwWSJnb0Vgu+f5Dlswk+tZUEaJKsdDEhMrZXHSdcX9+SsjjaYFHpqvE1+Q7vZCiYCkUmsg5YpYlDaYDC3FRpnMDEtXl3u0+WIhW0zS0CGDfmqWBA1hV1UXxxVDnhZBCmZCAVNswa57bBoCiy7DI23JLIulpSVl3XJEdlYTqEG7i9JT8TFZVMqfRRcV9ECQKZHl6btPZWSRobEzzJUI8M+Rg1ZFFmWoTAdctOhjCVIqjZLWWjyd/OxhAbbDcj9cJgs9SSeQETYB+iBD4uOadm+a0nBtARJKjI0PgIxPp8Q+pIV1njk0YYht12f6aXdGvCRmiONgMpZMtA0fahPHlMS2QthNps+8v9A71M1y/sMOf6cgdBuUWG3qOC8xrysMSlaFFmXQl1jtkOCQx8U5nmdgI7UQgHkIu+8SiaRQYA2ZjM2hbHTcW5hjbiZLYzIWt0y1e9z/NlgufO+/woCjbMMGLft90kAt8v29miXgOitahy6Gt9jm+6tbff/mYLr+NigRhu48L2rRtolUG/hQWHDIBACEDqNk5MJOqcxz0lcvXQFam/xhw5eRJ51UMbjj7/js2upw5zS/Ylb78WeXeFqvsCeXWFiSNcy0S3mhiYVTkEHEEEBhcLetXcfV/MltPLItcOuXSFTDq9W+/jmq7+PZ4sHMDEj7H4zw8vH+zhekV+S7zRWdYa6s5hmVJj1yoTqsbFBIxklDkNXDI5cBC+LOk8Tr1WegJF26LzGiydXoFXAYTVJE1uWxVplmUPrDazxCQT1RV8tVm1f5gNA8ijicB3XOsuNGwiuC0OhL9YhefSaEQ4dlabD1LbJe4avK7s257ZLk38bj0EpUdojiqpTTTHlYyiqD3lJMbBSAW1H27kyW6VMLQ43cXYYT9AcshsKr2kdDt2QANzDBZ0AFIcFp1kDE7UfJno3aRUGaeUy1NJFATYzg7Kfcm0yl46XGCBmNWSm5E5RYb9ciWPezDBxmLYwHaZZk/RFKRQm2CyriZHjPsgaoGnWkDaKrw2U2G+/Pyu0YzJkOK6BJ1kUDqfx9wuX43a9k4oQ03I+gXFp1ijbJlC0abnx/s9jdB4XrGwKkz3qtt7spi5DZk+sXQKiR21nhLU2s0SjdpEO+Khan407CqNlHuYYBXJTGIKi0bkGr+BWFpl1qDuLRZvjTrOD11e7WPqcJg4T8OLyKm1uw7XicNDcVCh0i1K3eKo4wcpT5hgPwlazU67Hrq3SZ9w6r5OR40d2XsGteg9ZDJ/l2uHFkyt4z5V7uDJbYjohoNU0FlZ7LNscqyYbiJWZtRmEL+J+6q7XiBS2BxSclcYT1/PzQzTO4nhVoo3nmVmXMrjKmInkIju07DKsYr0zWWRUCoV7obdOYEaW52CQM65rlRsXC8q6WDKFypPkUU/EQE+CDmYWmFHgiY+OO6TfjgXVElAkQ8fOpFIfIQAPTie4uXucti9T5bmNtTPjxiwQh8e41pcZAZ1Z1qTCtqxZGZdekYyIXK60LZzXmOU1plmDWd6gyDoSoqPXJYUYditjiHYMMJIeacM9KDVQDEgZOLPdwV65wjyvB78l2ylcieFWWTuNt6sU0rkzoO28xk5eJ8YL6IH+uDH474JB423SrA1+J9bajEDRprDTJgCyDTCNl7to2wqgJAA60yNpHaidx5jxNtWbFYfy4cm8LtslIHrkxv1Hif+3iasHK4jPz2KHzrrfzvtuq3A6iNdZy2G4zJhhGoOi8Wom4P79OVpvsOwy3K53UDmL2lt8y1NfQDlpiNERhUFlhpFGwBdPr6P2WQybtdizK+xnK+yYCnNTJ2G1UR6ZcpibGqVucZAt8f/9/Q/CB42pbbFyOTLlMNU1/tu952Dg8eLqADdLyir7wv2rmGUNyqyDNhTmOTydEGAZsUE+UCmN45iGfxjfx6UfphmBK61CH4KJE+uiK3C9PMH1+SKxDJylBQDLJkvhmbqzOK5LnDY5FYHtDE6jViSBsyDcs4WRYBJY674yOR9Ppl0CUgx+rHapZAkDLgYzk6ijmuc18iiylmzNJGtTUVVumyYidlHugUEvmr6zmMPE8FCfSdVvQzJHQA+QGCw0nbB5GDExzKAcFCtMbYt51qQMPR1BBrNm/HuN7Q+4Rt3OSAO06TxlOFhWuR8vL4XOkgHi/bK4XW7XRkAz/n059Np5HUODfC38QNNUd3bwOwFAFY1D2aGbmcnxNWiijq/1BhohPYQAFDbrz3EdFMnPt7VxCv5XSpw8AECPAIaG/w+n0PP8nL4iLTyh12W7BESP3DaBidFT2ZnrbgJQX4lOuQ30bANfZ4KyEZBKYCZ+HJcPLaXXH69K3F3M8fqSXJGvZqd4aXWAad7g2clhyl4am8q5oPH5w+u4Ve/hdruL1ltkymHXrHDUUaip0B0M+ppmmY7hJu3wwRtvEAiyDVY+w389egFaBXzrjc8DACamhdUOz+wcY1VRWv2Dkyl8p9BWNLHmWYfSdmmyYT0PgAR4GmcTMMn+/+39ebBlV30djq+995nu+F6/HtXqlmgxCRCTBRa2CYNNgBgCmHyDjTE2FbtsbMDIONhOkZSJyzHEqWASEnDhwsSBECjHYOOhbCQbZPgJgy2JQYwChNSSen7DfXc4097798ce7j7nnnPffa9fD6LPqrr9bp9xn3OHve7nsz7rw7it2GI6DePCjZQwSDxq6azV4zBdoaOavQqkuYc493Fu1LH6ksjLrF7G9X9xtUym3UnEVMsSkwJzdS5utMSMySMC4zwAJdKSolEWIOPMRrFyQTHUxpYmgmMeKnKiJlLjbzN1RIY9rxE92/tARaGc3qfcVlKZ6rVpZRrs8VzjQwNTOUeIRKTTScYo0aTEjGbHjXwpewNm75MlTFQUoiRWD2QF3sXoElAfdTCoSvu4FW/lFJGJNtlqSirQcyJDbsrPENTMEdszIrXn0FSnVzbRNEQvoBwH28OCS7VxVLfvM0wjnbmk4CBgkLYMv3gNzvu9gtTURYl22vR1kXRW03C1wVZoCNGFhgSKYSTMkiFS+rsIStvW6RPqtp+/nszZXv+cKBEtS4qoXp5TTGIfjAksBTH6QYJzWQfL/hiMSvzld5+A5x6+B889/K2ZX8aESNyw9wSGPACFgK/L3BkR2OOP0Kap1aj4hNsv0UwytGlqU0XmF6xqfUFw/2QFp7IlMEjkgiFiOdKx8tlhTEDmFHLoI/RzpJmH9VEL41xFbL5zbq+NyBgicW6zgzOjro0imYnXlGuXhZmUSAzSEIM8slU+aebBY8IKn7kgGKcqRdYJU7T8DKkumXfvkZmUCqRAe8UAQJulMG0FyhVTJmLitvfIddRplAUq1SgYxlmAhHs4N+4o926dVuuFMTqaFBoRuQslvlYpMSMoNuc1ZGfqMyRtny8upxVtJkrmkqFpo1TY9YYMmPO6/kHusQBg7HSud8mgcfp2jS0jlttISdvL0NNu5WUyU/W8POkSUiQ75m+VcLcMM9EvRRP0tMt51aQeMF4YZ6BTr64+z9OmmO0gLRzbcyKL5ZSdeW8b5IIh1hWda2kbq1nbavlYidxUYZHUmRvpnCdy3k0sEh0qby9Kn8lLBfPb9Lwe2zzn2972Njz96U9Hr9fDgQMH8LKXvQzf+MY3iuMipPLxX/7Lf7HbJEmCN7zhDdi3bx86nQ5e8pKX4IEHHjj/m7JDNIRoh7BfgFt9Rt30Ut1692/l/qX/24iMnE+EqnRO89JkdiyyenkB+lNkejDNHEuCMmlJQttL8bX1g3hosoyDnU0QIrGetfH3Jx5pXYjdtNnd565CSHP4hNvIh09U5VlElWYjE8z+OlXEaCqIzSTDataGRzgCqgjKk/vHseIN0fcm8HRlFojEmVEX8TAAmLoO3+NIc4Ys9fCdk/shJEGvldjJwZCIq5Y3EHk5Rum0R5sryC0bN5q/PuXYzENwPo2kGAEyIcrRmEL5HwW62ivOfMS5V9DWuL5DnnbRVucwHcqn+iWgOAmbcQpJMLCeR8TaBRhx8Dj10fIzDJMQxr05EwwbccsKthXpga3SYkQi1JoekzYxQl5DnD1dgWYiD+Z94jtGi6T0vpuZtDD1FAJUk1JrVKlTQC0vQ6Q9hUyj0rL2JaCKTACw3k4m8mcqCkdZUKl1cT9/i2gHy6/BPAhJ0AtjLGlRtiHCbqSrUu+kX/NyF3ufTo03XeJotp/aQ0zF1SOnxYx1S4eTQpNT53RKRIEUGZE1gIVTZ/NIUfkay8vmoS4yVLXvImRoWtAx3XbGVuBiRaMugVP1bbfdhte97nX4h3/4B9xyyy3I8xzPf/7zMRqN7DYnTpwoPP7wD/8QhBD8q3/1r+w2N998Mz72sY/hwx/+MD7zmc9gOBzixS9+MTivtn240Gh8iHYA1xtlIZTfa1X6obr95qS7qnxRypqcXYMd82KDl4IgHQbIWwk8IvDgcEmXOatUFjAVQJsvEka0GFQPfcIDhOEGuKQzkSBGBDiUcaFRWkQ0Q0gzPL53AlRXVHW9FGupasvhE44vDY/C9T1hAcc4DkB9PQlEHMNJiCjIkKceBNfmdjoSkmmPIY8KRF6OOPfha0+fUEcVzC9uIQniXHkBmaiRSXeZ1ia50z8M0BVzmih4VFjfoRGmglgTgTHn8nS6x+iIBNTzHLr6TAukBdcRDjI1laREwoMa71g7cPuMY5wFkBJoB+ru9qMY40xpmYyWxUzKqgeafs85E4zpl2YqsQAUysUBRQSFTr2Ye0YxbTmi7o0RW2vBstPnzWwjiFoeMFXNR4kEShEfoGimacwsC/de/3+YBTPrF8F2vxvce1Hn02PWlbctb59KFfVkREBIZqNzHhM6nTklLx4RAIXVTNlzmPeErqgsw55T/wkon23sqtNpdhnklv5EZpvydVetr7p387AdYrJIu43LtdrsYuKv//qvC/9///vfjwMHDuCOO+7As571LADAoUOHCtv82Z/9GZ773OfiuuuuAwBsbGzgfe97Hz7wgQ/gec97HgDggx/8II4ePYpbb70VL3jBCy7ClRTRRIi2iZlfgaXozfwvQzL7tO6zWkeGFsSWKbQ6LLTL7MDcX/M2YkQl4tTDehrZ3mQx9/Hls1ch5xSfuv9ReNqB+0ueM8AT953AY/ecBgC0WWJTZj7h9kGJQJumyCRDJjzbpwoAeizGyWQJZ+OOMuyjHAHJ1baSouulONY+g3Ee4Jr9q5CC2AeoRLIWYTwJbAuFzTREnHs4NVBaqMQ4ROtWFsbQD4CdjCnRk4CuGEvFVKRKIW0JfOjn4EKREBMtMs1WPSKsjmkpmiDwVLQoZDk6WudiS531L3LfaStgiJJx1jYGk66g2kSKhlmgIik6stP2UxD9fg5YbquojCGjRwQyrtJqlJg2HdMKMTeNFXimUa7Wu+jSd5+qFI4xUsz0vVOTZ7HcXUhS+AFgmqWqUvNpub1pZGuut+unVvi+nkYY576tTky5Ev2PdRWfiQCOtfeU6zllqux2mropa4S2g1kh75QkmWieu8yMXVXGFY1GjdDbpPFMKxlzncaqwaRjCVFpXuuF5Ywl5UyZkJJpx3eDaaRoKrAGUFmOXx8JmhVZL4p5Wq7yeecepyIqWEyVlQwlL5AQfB62nR6reQDAYDAoPJIkWWgMGxsbAICVlZXK9adOncJf/uVf4md/9mftsjvuuANZluH5z3++XXb48GHccMMNuP3223d4N84PDSHaTcitwubSeWjMIz1VhyqQh60/eFu1RpjdYetN1CWQyvFNtUQSyCnynOGhjSVwQbE6aVsS4TEBIShuO/6owviYmeSJwLI/hpAUEVGpMxcMEm2WqC99XZrv0xwMEifSJXxz8wCOdVdxTbiKfcEQqfRw32Qf/tnSPTganoNPOJ7YfxBtL0O/O1GEiBOwkIMw5UlEiEoHmrYL6voIHjy5x/Y4M72+3Oqk8i/7jXFkUy5cT84Ry+Axjj2dMQLd46sTpNjTGiPTE40RRXtE6ZI6fop+kKDrp6pM3omABDTXqSluo2MmaqR6qfGZL3czEVKi3KxTratqexlC3XsrzhXZjHPTlFddVyaYbeFh/rqWAVyoFiGuKaQxWDRaIEOwzLhMusxMmlaQbft66ciOxwsk2kTsmLYNMBP9chAXvKNs+xXBsJ5GAFAgql0/VWaMjGM5iBF56h4b7dGi/auKXkn1zUlnUzXzl7nvKfMw5fK5rvIzZK5wvxhHP4xniKZPp42BzTlsdE3DHGtacq/+DrMAZycdfGdjb6GNThWRKWMrUlQkRudPiirXbZViqyCw6p7TGYK6k+PvKuQuPQAcPXoUS0tL9vG2t71t69NLiTe96U145jOfiRtuuKFymz/6oz9Cr9fDy1/+crvs5MmTCIIAe/bsKWx78OBBnDx5cuHL3000KbPdwLwskqxa74Sdt/rcFCJFNTtURJum7Q7K7Q+2me4rn0cWBuSsk4DU7sM6dQIiwTkFpRKT1AelAvec2Y8XP/Ir2OON8OFv34hM9/Iyg/ep8hSiRFWSbfIIPRZbQiR0fy/zRdljMTiI9RsSALoswaHWQEeREjy5cxyn8j6+O1rBk7v322O0WYLHLZ3CmXEXAMBCDpFTgEqIjCHVpI9LpfXhXH0ZsoBjlAaF8nDzyxoohvnT3MOezgTDJMSecILIyzDKA3S8FPs6Kt/OtImkYER5BjGOtUlbX28xnaZSb2JmkjQdyAHVhoIxCU8SxFxN5qlghX3MsYxWph8q8nB63EU/jK2mphskGKYhGBWIcw+mCazH1IRh0oQhy7GZKJJhohEp96bl+c51uCSJUYGcM/guOdKk0ZTDMyLtPmmu0jgeUzYAgCIy6nrUmD0tuE+4hzEPbKTHTQUJSTDOfURebglT5OXo+inWk8jeG6sLc6oM6+DeX7cSrirKUIW6ibb8WhtiZ2B6ljFNhI3WzGwTeRni3LcCdOkeR6c9DWEup+hcIpKXyAAlspByA1ytkEqdqa8KlaJ2014mfeY2hC2kyrRGUchpa4956bPtoJqglrrXSzJDhHZ67IcTjh8/jn6/b/8fhuGcrRVe//rX40tf+hI+85nP1G7zh3/4h3jVq16FKIq2PJ6UEqQsILxIuKwjRIso2aWUeOtb34rDhw+j1WrhOc95Dr7yla8UtrngSvYSESkIrrciS8DWURk582SK0r519vvbiRRtWa3mHn7eoQjAU4Y09myUJQwyZIJiI2/hedd8A/FGhDyf6mjMl0+XJbaajBKBTDIMeYSxmIo8TVheSKo1KFOX5L2Bcpje4G2czXvwCceLD3wJsfBxNuuiTRMISXEm6aITJDiwf4Cj+9Yghz6IJwCiGtGaMYUen/JYAmyst5Fxhr29kepfpiMQbW3GZ/QXJoJysLuJfdEQRzobiJgShR9oDW2Jt/sAgI4ur+76CfpBjK6foGu0V0SgxTJ0WGo7jQNTUatJXxgyZLQxuaCFiICJPpnlqkRbfSUMdQQsd6I9Jt3lMUU4WjoaY67ZNHB1oxemx1vIcp1Kk9YZGYA9H3G28Rgv6I5M77TIy9CPYrT9FG1NgvpBgranfK0GaaQF9NPJzaR/pmlEYT12pJxWkRkPn3HuWzJIoUijIUvzUCXyLUcZtopybCclR4ks2AnY63UqCjOhbBMElIu4We4K802KZ180smkxYOqCbsYScw9tLVA3633KlQM65bYAgkJUltkXzjdHaF1HICs9iuru43mmyQymkbj6arK6PmcXE0TKXXkAQL/fLzy2IkRveMMb8PGPfxyf/OQnceTIkcptPv3pT+Mb3/gGfu7nfq6w/NChQ0jTFGtra4Xlp0+fxsGDB8/jjuwclzUhWkTJ/ru/+7t4xzvegf/xP/4H/vEf/xGHDh3CP//n/xybm5t2m11Vspe5RmXaqCg8rD2AIReLfI6qyFP5+GQaEVpUP1S33Y70Ry7MPZAEImU2EpCkvi2HX/ImkALIYvVLPOcMS9EEfW+CTDLceuqx2MhbOJ32cTbrYsynZEhIirEIrHhzLFRT2EwyfG3zqsI2jwpPok1TbPA22jRFm6X49NpjsJp38MBoCY/sn8PpM32cGvQgPaFSn7p6TmpRMHd/9TMBkTCc3ehqUbOwKSwjnjbpBaJ/RUcsR5el6HjJ1N2ZZWh7KQ61Ngu//o0potL1ZGixzG6r2nNwbGYRKBHoeAm62qSyMJFARUzcFAZQnFDMOdvetA+aMQP06LR9iKlyMjC9vWx7ETElPcovSRQmXeO6nXNWEGOb8ZhzJtyzRobKs2gqCPcptw1jJ7lvq8YARfwCynFVa4BhFiHmPjzCMcgirCYtTDIfm1mot1Xmgm50ZKAjYBtJBFdTRYnEOPfR9ac9yKqEz2XSU364mp5FtC3l47r3qryN61outaao66c2ahf5mfJi0kJ9cyy30W1AOVaTduG8xo3dVOW1vQxx7hXSdaGX42hn3VZ4mr/T4wgrlp9xq3ZIUV0KbatWGuY4dUaLdfezuHy2UXTVNlvBHe9Fh9ilxzYgpcTrX/96fPSjH8Xf/d3f4dixY7Xbvu9978ONN96IJz/5yYXlN954I3zfxy233GKXnThxAnfffTd+8Ad/cHsD2iVc1imzrZTsUkq8853vxFve8habm/yjP/ojHDx4EB/60IfwC7/wCxdeyb4oobGoSTktcp5Fdi/wrfqBbZvwlM9rnk8Y0OJ6fTE1Ai1SBpWq6Ws3Qb8dYz1r43C0hofiPQABmC/sBDhMQ9x+9hgOtEaIMx//v5PX4XErp7A/HIJDIpNMRYyEhx5TxEpAaVpMWuVY5ywAJSre5ylifNQ/hzOkj0P+Os7mPfT8GBHNMIgjbEYRKBMI/BwTX/kR0VBdkxQqUpHlDOnEB+0pMW/YT5BnSlS8xKZl0SDTMu5zcRtcUCTwsBzGqqcYgDFXDtwZD7DkT7CZR4i5cqWOOjkCxrE6auNwdwBGVA83AOAgmHAfwyxCLilGeYiQ5eCSWEKUaZHrSHgY54ElRWOhU0a02JLDTNiAcjE2JGF13LZGinE+baYaeBx7wonVkRjkglryEnk5JplvK+pMs1HP0+kRkEIKNxOqN5iv92dUQApq+5cBsNdmWk0Augw8p4hYjnEeIKVMk5hAkSJaTC26FYCBpyrIYu7Z9BjRKbVhPiVDlEhbcVbGvFRYVUTI3cakfsznqJyKsts4aST3Xrvr3cot4w9lWpCELNfmlIqwD9MQkki0gqSgKzNi9EA3KTZpKXN+I9Z2SbTr62TAoCNWxIxRR3Kd9JdavlgKDRJOqxwza8/qeHYSFVqE6JixqL/VxLR8zEXTaw9nvO51r8OHPvQh/Nmf/Rl6vZ7V/CwtLaHVatntBoMB/viP/xj/9b/+15ljLC0t4Wd/9mfxq7/6q9i7dy9WVlbwb//tv8UTn/hEO1dfbDysXrmykv3ee+/FyZMnCyr1MAzx7Gc/26rUL4qSfafpzvLnal70p+ozuBWnWXBcC3mp1BxLBmJaolC5gdqZeqqTeZIzPDBZxkbeRiYpvE4GnjD0ogSEAAfaQ2zELdyztg+A+vLpezE8wsEw9TWJ6LStQSYZQprbUm1fb+sTji8Mr8GmaOGhbA/uTfYjFj42eYS1tA2fKGfoA+EmCJNIUl+JwWM29Xoaerak3A/z6RcxAfywaMBoy961PmWYhPCZSi0BQCYohnlgU30qzaCiB11dLWU0PYc6m/CIsNV5lAhcHa4jFZ4yWzQpLi0SToSHCffhEwEOFbWxE5ouNTcCa0D3gXNet4hltoIsoFyZU+qIDgC0dJpKNew1xyg2SU10BMFUpLmpMbfVhyE9kU65mXuacYbHLJ+x78OQ5ba6y0zKbS8ruCkDsGJic23j3McwCzDOfRupA4CRXmY0QwHj6AeJraiSklitUUHPUorUlFGbLkN9lGPe/xeZeN39jGs20a+1uW6zv7WM4MxG76yBp5cWIkLufu712HJ9KtD1VZpyOZxoUkNnxjR9Pj+lVJdCK29Tdd2L3JvzJUPzjreVePxiYTdTZoviPe95DzY2NvCc5zwHV111lX185CMfKWz34Q9/GFJKvPKVr6w8zu/93u/hZS97GV7xilfgh37oh9But/Hnf/7nYGzW8uFi4LKOELmoUrIbVlrONx48eBD33Xef3WYnSvYkSQolh4PBYM7gFrkCN8RjZtsqcfKcXS8w5qXPirokHS6SUFGgutSfczwv4DjUH2CUhnhkV0VwQprD8zl4wnR7AeCes/vge9z2XyJEYiJ8hFIZAPpQRo2McGRyao5mokbqV7cAI4DIKa7vnECbJvjs4JH4gf63wYjEd8b7MMwCfGlwBN+//z4kwgMf+9h/eIjTsQeylEJyHcXoTKvHwmBawswJRTLxsUEk9rZG2ExDCJ9gOVSl8fuiaVrXpDAAIJcMm3mEJX8y/XUumE3RxLmHfjB93+WS4mTcx5H2Gu6d7MMwC21kw0Clv6aTUt+LMdHNXjtego2shUCLn02aKRUMbS9RVVWaYKnyd2URsL81wtALbDSCkqmXjynVNrBCXBCEVImWE0fEbPahRGKSqaiLaXMCKNEvlxRXtadpbqO9EpLYPlsBi22pd9UkZMZkrtEQIRNR2kxD6/rtEi1KpI2OmWsVktjXwTTYNUaHVdEc87ygcamJIBX2d6IkMyTJiSC5+1YRFwECnwjbBJgSp48epK0KBGAb3CrjSX+GuLnRPpvKJYoIUUej1mOpJn5FcuFGiWxUyLw/7fVMI0HufXAjRWUhda3IuiKKVodFTCHNfV7kOHWv90WFM6Wc1zG2s/mCBOrnf/7n8fM///O166Mowrve9S68613v2t4ALhAeNhEio2T/v//3/86sKyvSF1Gpb7XN2972tkL54dGjR0vnXPAdJMtPiPPANBW1KOnZLjkimDnlwrtWXCMh+kvaRJS0oeH0HIbsFffNJh4eXFvGKAnw5fWrsJ61ENIcz77m22j1Epw520c8DpDns78MHhwvYZgHEKD6y15FQczDVKAxItBmCcY8AIVEi6VKmA2BkOZ4IF1BLHw8vnsCEctxuLWOLktw73AvlvYr92weexA5hd/KIROGaEml5cznf5z69j5QJm2XetOZ3v012/Yy9IMEEcuwPxyC6vTX6UkXuVPufShSZHt/a4SAceyPhpogKdKwnkbwteO26yKsGpIy6yBMicBE+EiEhy5LEbFMl9zntpmpIQmGNHT9xEaLPCJwsDW05f4RU+m7g+2hfW7K0I1vjyEBAeWWMFAi0fIy1VqFKeGtW/2k7qfycxKSWA8pE10LtdfSWKeqTIQi5p6tdHInrGlKBfb8LuLcKzguc6FsBIwjdZx7aPmZFZG7miHzOrpkyAjB3fOVo0JlHVF5+6px1qGoyyk+d+9fGeYeJdxTAmjtbWVE9GYbkyozmjDzXuj6ihCa91zKp6Rxq7SQIUrTe6AjhaWImavhqfIqKjtWu/uZ41SRlzq9UOU457xGxXGI4nhL43KLGy4qLoFT9fcqHhaEqE7Jbpwwy5EeV6W+UyX7v/t3/w4bGxv2cfz48cL6utL1euPGqu1lMbIy9z1Zv9IVUlcKqt3/bpMcVVWnFY5PS4Mn7jJzHgmZMaSJh8NLG0pfk3Rxz/AAQprj+w4/gE5fEY88U4TIFX+uxy1MeFDQSrgVZgaGGA15iIhmWPIm6NAEHZrgocky7ty4BiMR4qvDq1Q1EU1xJu2pChuudCxBL1XpPSIB3Xcr5wxp6iFzquFMs8xumBbSCW5psiIKOTqeEj2vZy1FWLiHr6wdgpAUifCwmUe4vn8Kh6MNdP0UPS/Gkc46Yu6jw6bRJeP3kkuKM+MuTo27hVSRkBRcKp2RR7m2L1BpMtvXjAi0tAib6YkvoLkVRq+nEfq+ei3aXoaVcIyIZRjpqrNCilALrwFFSqpKt43uxGiLDGkw98mU8eeS4vhwGbmkONAaIqDKO8dNV7nRqjLmpbMsUSHT/mZtXd3HBQWXFKMswFKg7AaMZsiM26QIDWEol9S75yiPrz5lU51am9nOJVgoEiLz17wnjP9TOeLDHBJtdFrG1qDrJej5sR2Le49TJ30Y6RYygWPvYP9WTCOm8TIr3CtFJhikI7YuEZyaCrStSNE8AupuW77/O0WZ/JbH3ODhicuaEG2lZD927BgOHTpUUKmnaYrbbrvNqtR3qmQPw3CmBNFFXS+zeo8f6TzM/+dVo5WX14l4qs+5UKVZRZWaXVYiTpXHmiF/TojfNHnVxyIBhxTT0uaHRn3ldiwpvnL2EDzG0e3FaLWnv87NjxbjVJw7XjocBGtZB2ezrqouEx5Mv7MDwSZ8wjHmAUYiRCo9PH35u3h09zRi6ePkuIeI5fjW6ABGPLBf/GdXu+i0E/R6EzAmQENum4NmmwHyXDVjncSByhZmSqw6ygJbASUkxTgPbARoWvquXKQzwbAnnOBAe4hMUmSS4sHxEr66cQge5TgYKSH1atLBV04eggDB45dO4UzaxXrWQsoZYu6hF8bI9XNANd1U/joUuWRYTTtosdRJLWh9lSYtIVWTm69LpiOmIiSH2wOspy1bzTZIVSNan3Hrzm20TVN9k7QpN097KnlOexGzTcqZ7cbukamHk2oEqyIvuWAYZmGhlNyNCNWlq6rgkgbjZm0egNIeLYWK/BkxsiEFpjS/THDNWAvnKUWFzLbl51WTdh0xKpMrd7nrd+VprRZQ/MFiCgxyodKDe6JpijZgqo9f10vQYhl6Xow2Swsl9YZA9P3Y6tUUOXRSpXoZL0Xs3PvvluGXo0JV0SL3WssEo4poLlYBVqpeW5C41L1uOx3HhQKRu/NocJkTote97nX44Ac/iA996ENWyX7y5ElMJqqqhxCCm2++Gb/zO7+Dj33sY7j77rvxmte8Bu12Gz/5kz8JoKhk/9u//Vvcdddd+Kmf+qndU7JvFWmxvMdlG7L0vLSo9kDOaYnW9dTxJKeKp5bUmHOWI0Z1OqYyQSIoVpW5x5SYuWTKJM6NO8gFxXI4Qcw9+ETgaQen0Te3XNt84RIi8a0NJbLOJEMifCTCxxfXr8Yeb4w2TdREB6nTY6qn2YFggDs3rwWgvrBGeYh7JgdxbtzBWtJCz48xzgOcmnRVB3aqSFiWM2Uo6QnkXDlrR3tiJUxNlchacPXRMZVUALARt0CJKr1XbtQ5Htxcsr+qE6FSPoHu5xZzH+tpGw+sL1svnzabisUPLQ+w4o+w7I+RC4Z7B3tt41gzAY2zAIMs1EJhNRYuTb8vipVgpEnQVFBtIkYhzdGiStjcYhn2RSPE3MdKOEKLZXbizaVKIxkBsnHd9uk0imKIhEm/ALA6Ic95TY0Dtumz5bY9MREqd8KpKnN3/wJF0W1V6sONaLlCcGPK2CmV1bt+O2aZSZUZ8fJWBGcRVO3rXk954i1fs3lEnkoxBkylKE36y9MmjJGXW6G10ZG1WKYIMwg2c2WWtycYq3Spto7o6siRIU+Asjiw92NR3U4FKVLPp6TIXebeA1OWX4gGzUm7zd7jxUTd2y2ZL0eqZsnbRSRITcps13BZi6rf8573AACe85znFJa///3vx2te8xoAwK/92q9hMpngl37pl7C2toabbroJn/jEJ9Dr9ez2v/d7vwfP8/CKV7wCk8kEP/IjP4L/9b/+18VTskv7j0YF+1goSqQXOb8E64jUQgLpLb7PtnK1Nq0YFClyzycrBeOCE2Q5Q5z76AeJ7SvlLVim+k9nj+IJKyfRYeqX7fX9U6plB+E46KsmsLFUYuIhj9CmCY5Ea+jQBD7hOJt2cCgaYE9rDI8KtGiGBzeXcLCziZNrfRAq0A1TpIzh7LkegnaGeBJAZBStXgLf5/Yq84yB+sobh0MRuc04tB3AI6Z0ON+3/ziEJJgIv9Asc6xLu0+Pu1hqK3I44QFGnGBfMMQ17TVc1dpAm6nJuufHeGhtCYf3bCAIEkyyABvjyJokCkmwHMSanKgv7GEeoOulWPYnWM9ayGG+yFUfMY9w5IKBQYJDiVWX/AkyTd5ME1Ul4la6IY9oR2l9I0x0yKRuTBrNeCnlghbaQZRTX24xu3HLdgnSdiJCM9uZzSvewoscy/VLciGd8c0T05aFz1Xndrep296sM2MCiqSJQunZyg1vKZHWKFM1+1X3ve2lqscfATpMGYD2PGAzj3Bt+xxOJX10vASjPFQNc2mOjawFIacGnmpMFLaVRcU9ZhBTYbV+zmtE0O4yK5pG8ZpcMTXkVDvm7mfGVZUic+9bFWz14pwvxm21DrmEUaMGO8NlTYgWUbITQvDWt74Vb33rW2u3ufRK9jJh2MXD1v1fouCavV3focL2VedxJxsOEF9C8qovRmm3s405temgiiowrKUd3Ui0eizudWSCIaMMXSS29xUHBaT6a3yKuixGQFRT0pEIkUmGiCny1PVTnBl3cf94DwBVnZRnDH6Y68aXQNjOFNek0kbBqNacEH1/mC9s7y4pCXpRYicfQGl+lHaojZDmSPXklUMJkoc61eZGxTzC8Y3Ng7ih/5D9os80aSFUYpBEaPkZAi9HrtueJNxDT5fDq2oyCugU3Zj76LIEHZbY6h2fCDshAsB6pnxDen6sfrELD2fStiVA4zywnkMmsuKSHHdScnU3AeVIBStEiNztfMohKLEp0VEWoKeFvLOTYfWbY9EJyoxxHhFyyUZ5UnQncOJMruXIzVYEriqCNW9chjy6xy9Ho8qVZ7lu3mo0WilnaIeZ9VyKWAZGJHLJAKEqHzOhrCsGeYS+F+Ns2kGgDUDbXlIUsVeMV4CC6wht1TUbUsTBSutUBRpHDVEqVZ9VrZslzudHRMrEaF7Zf1V06GKDCPU432M0uMxTZg8bOJ/TauKhwzg2dSadx/ZPst1eZOUxlZtPltct5F7tps6YhB/mIExC5uY6Z4mQEStnukJpkET46sZBPDBcghD1v8Rd9L0YXZboxpRct+AgiKWP01m/8KvV/SIb8ghdlmKQR1hLpsZhPuOY5D6Wl8ZINiKsj1rKVTvXmhtfl6mnnm1IKgSB1BPVYKLSDYFuvmpgNDuZZBjmoS6DL04q7vUNksh+Ae8NR7piLsWYBxiLAJmkePzBUxhOwqm+JWEYb6oU06lRD6dGPatdMpOCT7gigUw5ZCfCsxGgUR5iInzV2oKqaFHIcrR0hdpKOFal1kTaprIeEVgOJuj6qa1Ecydmt1LJrf7yqLCia5NuM/oXn3KsRGNLhlwsQirq4EYFtlMWXSZi5uE2a63Sk5S333I8kAvtYyNImLpH27FWaKtcYpRrzZOJ3qk0oYdMMHhEpc5MihVQ5ChkOfYFI3usVHg2zQpgWqrvRGTm3k9nbFWpsypslQKrSi/WaXzqokNbpTfrUmnzdEOXhBw1KbNdQ0OIdoLyPO28l2YmcSssls7GrnK5lGrazhgM51iEwMxZtwgJmok0lVJ1UhJ4Abdl+IRKQEdRlCWJBCHTNByXFN0gwXIY43F7TlWO16bkHKxnLZxK+gh1h3tAfUElwkcsfGSS2RYfmyJCRDNkkmGPp7U4kmFj3ELLT3F63EXbT5FkqoKsvWeMyboiRZRKcN3x3mtlgCRIcwZGJcIgRxBm6HViJJmHSebb9NB6Mm1eKECwkbVwbtLGMA+14JnaiS0TzPb7irwMXzxzGKfiPgKaIxMMsfBxIl6yE0pAOdLNAGdHHSSZarTa7sVYH7cQeDmWookSPpca4FIiMeSqdYUhjEa7EVA1+YW6B5jxD0q13okSqTVQxEaFjHAaUNE1YyaZS4qYezY6ZCYTU2lW1vIYgfVWKE9w81CnOQLqJ7hFx+Dqj7ajFXLHUdY7ueRoHtEqH8vdxtguuGSU6s9Zx09tZRkAtFlq05K+E8n0CLdEMCTqcyUksf5VS8HEEh9KZKGNDoCF9ESmGq1KZF0WWJvl7j0rt/iYlwar0lzVrlvwtSyQK2MjcImjQw12Fw0h2i3MrcYqLyiTI4kZhlHYrvwcqvHoVkJod3s3IlGzbZ1mqC7CZI5FiEQWe0g3A1s+T5j+VZuTAhkCpq0cNuIW9gYj3Lu5AlraxozZwHwRDbLIdnbvshhtmiIRPjbyFiKqDP7aLLUl+Pu8Tdw9Oao0RUwZy+WcYnXcRuRlGKYq4sKF6p9FcoI8Z/A8DpHr7vaeAGUCyUinjahy3Q4YB8+nqaOpaJfbzuv3rO3H/tYIlEhNHhxxq214qibZlfYY31lbgZBEi8c97AuHNpoDAP29IzAq0Y9iBO0MvsfRb8UYTCIVZTJpNkuKpD3e9Ne0qu6jRKDNMptGa7HMnsuIaAHYyc9cX6jLr/tas+SWpgOKuLnEzyVQ7qTia1+jlj8VkgsQ+3BRGY2ZpweZQ6K2S4zKRMWN0ixCYuZGi0rHrJqo6yJRlvxgNtUEqM+S8VXaFw3tMUKaY9mf2Em9xTL4RKDDEuwLnO1YbqvaRnngRITUuVaTDjbzEFmptcVWqCNP2yFF7n0w6yuJUUUkrg6LrtuKDF10kiR36dGgIUTbRaWX41bfA+6brbDtvAhRmSwVN7GCand5+U3tVIZZokFK68q7lMhOrWdRxbLlA5vKZTrgIFSqFJmniQ4VmhgpN+ZMMHBJ0GIpnrTnIUgJnZZQ93iaolDHNl+2G0mE/cEmukzpXU7lfWzyCEMe4t7xPu3Yq7qyd2ii+pXxFjKpdDhnki6W2jEIge25tbHaRRTk2By0QDo5PI9bXZDR9xCirkdIAiGoTfH5Pkc7SG0E5cyoaycrADjaX1emkoY46FJ5QxbcHl6T3FeGhcLDiXgJE672u3e4F0NNiOLUR+jlqkO7IGgHGSIvg8cEukFiK7xCOu1CPuQh2iyzDsOjPLS9z8bc19GP6X7m755gDI8IS+76fqw8ibQgHAD2RSPbHR6YOlKbdFpXt4Yw98REJwxByviUqM0Ts5ZRlf5w/5afbxfz0lp1E+tWhKB4rFmzvy1J0ZwUjqvTcgm66U2WC4blQPfc0wJ685r4hKPvTdBlSkgtpO6BplOoHuU2bea+hjH3MEijmfEYcGd6MdEhQ4aq7hXf4vUvRnmqS+kLEbcFiVDhHIUoUFUK7vIT21yK1h3fq2gI0Xlg4VRVrfh53puQlP7W/NclOuWIUYmIbUtYXdBFOcuqCJI+9mC9jXEcgKcMkASU6T5nmthQIm1LjjMbXSxHE4x4iFywaqJZukZKlC7lH849Al8bXYUN3sJG3saAt5Bof5RMMGSSqRYU0sNYBAiJKsPfyFsQkuBobx3L0QRrkzaevP8hPPm641hb7UBmWveTMWSJB+brHlCJZ++DEKpSLgxyjJIAe3sjJJmHc+MOuKDY3xki5j5irgwYza93k0ozlUvm133kZdYXR0gC3+P4yrmrkAoPE6Eq5o51z00JBeO2O3y7lWCc+spJ2VPOzraiSDKM8tBGljyiyNH+cKjPRe1kqAik6laeSaoicPpF9inHetJC3491xRGftuMgAjFX3kQRUyStrzVHZhIxneXt/x3ReUA5On5aGRGqQlWJ9HbSHVXHqztH3XbliXa7mB+FmEZDqghY+T66f80+bhUf4DSCBUHPS9DxEktKXF+vc1nHFiQM8hYS7qHjJbpJrHY313YSHuVWcL/oPeBytky/LIR2/abmoZw6mx5jZ6mwKlRH9abn2yoK1KTSHp5oCNFuooas1KbRKqMv2yMtcwXWtUSsYtm8aFDVbjUf+Cz2QD0BP8jBPDF1z9bRIUZUiqTdUk7BK/4IHASPXTlTKLc2DSsNzDLjB/P19YP44sYR3Dvah+PjPZjwAOupEktnUpGiiGRIpYeuFyvilKv1q0kLT937AI721nEkWsPXTx+AFBTEF5BjD5RKiJRBnGiD8+lHhOhf4VGYoRsmWG5P0PFTtIIMSephlKrUUi5UPzCjwVkJx8i0caK5Ftdcz7Sn8IhKJZqJg+toEQAMUkVspCRYm7RBicRjVs7iEctrODfpoBskaPupbkfha2JIbZQIUF/SQye602UJJjzAkIcISQYBanUlxvF6I23hQGsTHS+BR3T5vR6Tr8mRGxFLnUm2nM4RILV9yOahkqTUpJHcv+Xni5ynfPyqlMz5TLRq/1mH5brx1o2pvK/RaZm0pnmuPK8ytNhUb9fVhp2ZJsVDHoISiQkP4FPVFidkOSbct9EroyMzx4i8HLlURNiviZpUVZwB1dEhIdV7T0iKU3F/GxGd+nYcu4l5ZKgu/XrRSFEjqt41NIRop3A0Q7XVV6W/czvJF74jpPO3JgJkdiXSOWdNSs895CJYJEVGqq9dxAwio+i1YnhMf/HbRq3q4VOObphgQ7fk2Mwi7AlGiLwcZVSmJvRg1uIWTk86OD3pIOa++nKmHJlgOtrBsMFbGOaRJRapYDi+uge5UB3S75+s4BlH7sMjrj4DkTBIKpGOfZCBB9FWESLKVLqPMqWxMkQg1ILTjp+iHaXoholtvGpsBQJNRva3Rphop+eUMxspMo04Pa0l6oZTO4FUeEiEByEpDrcHyCVFmnroBCm+fPywTU3taY1t1ZeNCEhVqpwLZtMVIdFaES/Bsj/GIG+h4yUIaQ4OCgrVC81EiVosw/5oEyHNkQuGjayljSXVZDjKp9oiSuS0+k2Le9tMETTjcJ0LiiT3bD+1wutc8wbdigjNEJcKUlS3rzn+VlGnRVJl8yIbVetmUjzlc7oErCZt5xKU8jLTdqXc5w2A9ZxqsQw+FZhoN/W+N4FHOPb6IyWylhQHw039nkltmxchCbpeguUgRttLC2SBY9YmAJiSg/K9KFeoeZSj70/w4Hi59n66x1PXv7M01qL7LUKGzkewf96QUL1yz+fR8CEADSG66Fg8bTV/u+2W3u8U8/yBqsZBIw7qC7SCDIwKRdD0Ju5k5VOOlp+qvlosxzc2DuCmA98tTBR15E7IqfBWSuUsvCcYYZCFCGmGNkuxwdvWpDGTU4+V5WCCm47ch0xSPDBYwjWtVQCqASbxBIgnAUkg+zmkrjQDgDxVjUkpVR3FQ081Wk20t0snUBEvMwF1/RS5YLZxat+PMUxCZLobuSENAGzjVdM89WBnE8ZZWgmipx/TXjdGxhmCMMcdx48g5p7V8Bj9kIEhY+aeuQRokEcwrU5CZzuPFI+RCyXuFiDWdJISifWkhWGmIgvdkk+NOd8wD9HWneqHOp1nXlugwmSwjhTVRH62So/UkaN5EYTdSrksgnnXu9W1pJxZAuTqhwyMo3ngCPzLMJP7sj+xUT9D7nKdPjOd6zP9Xo60g7mJGtWXx89PK5pqRw4l+HcR0lw38jUR1e2155i3zWyD1uL/5x130cjQxUajIdo9NIToQmALIfJ2TRIBaPPnmuatmI0MzZCJefxpC25lIjtzI1CO/rvVViSH6uaoUhCb7jIVVZGXYzmMIUDR82Jc013HII8QMCWIdoXVtOaagWkaJhEeHtU9a3uacRCczXp6G4o2Vb9k9wRjDLII39+7F886/B2cyzqgRGBt2AYLxPRahh4gCUTGkE/UL2iPCQhBLfEwUSKjhen6qRUSG9HwMJtWfh3tryPhnm1XwSVFmns2bQbAevWo5zlOTnq2H1pAOeLEV2aQnMLzBGLuFbQcK9HEKcNWabNBFmGQR5gIHwwCXe1O7FNhq/HaNNV6IlVxtplHaLMMmaRIhYczcReAmojt8XWZvRF8G0JnIl5qslatJLikWAkn6AXT6rWtXIOL7RGqoyTnqxOpOs5Wx9ttkuTqpzzdZsU04y1fnyHSU7doYpe716R0ZBTLwbSarHBO3QgYUBP9sq8E1+b9kAkKRiROpX1QSKSCgRGJY61zuu1HhlCny8pRnq3uj7t9LlhlNOhY9xy4JDg+2jP3WMXz1pOinRCmWpI0Jxp0SSNFDc4bDSHaJVSmxlxitEhAZ56Gx9ELGefmelF38e+WcDJz20FllIoA42GIU5s9Nel6HJ6n6kcokVNCxHL0/Rhjrrq1x9xXlVGMW+H1POLoRiQCyq3vjvm1GZEcbZYgkwyDTPkRxdxHm2X47voerPIO1rMWvrx6GA+MlkGpQBBmIJ5QLt8tHSmZMBBPIGqlyLnyJWoFqlw/YByH2wNELEOce3YsbV1Z5foHjfNArfNT22ldET9pK3ag75Hx+xEg2IiV7inVGqR4U9kELHfHWO5MkAuKE+OeNkwcF84poDRIJl1IITHIVcVdlyWgUK+FqcoLqeqJlUmKDkuxnrXgE4FhpgiPaSMy1qkyM1Ga8RrNEKD8iYQkOD3pYpCG2BNOCo1S6zBPL7TIY+Z4C5KcedvvhDRt51x168opNKM7SwWz2iw3VelGHAFYUl6HacROtXEx5/P15ynQDYCVT5EW/ut0Wyo861005FMXc1c3ZP5fvs6zaQdDHuCsbkD8iM45nIz7TtRGbe+KvhfFhaoCu6xF0hK7oCG61BdxeaAhRLuIuRoh9zkpRnt2FDEqnHd2mYmALkyKFjxucb0sPne2H25GGMcBGBMI/By+x9GNEoQsR6SjKkILd40nTkhzPLJ/zkaFtoL9dey4QquJgWqDxhBcUnS0p86+YISQZHjxNV/BmIf49DcfhRNnl7ARt3DT1ffhhoMnsbQ8BlKqROBMAi0OySk8xuExgb29EVpepgwbicA31/eDEoHDnQEA9YVsJn5KJNqeIhHGsDDS1x/pZpz9MIZHBbqeii55pq2JnvBOPbSMVHg4PlxGzD3sP7CBLGcYxiG4IIhzX0eZ1CRlIkwmqmQaYwotsDbVPMao0dyzTCpdU6Ib7nraWDERKiWYCxVpMpEfQE3Mro7FNoMV1Gqp+kFiG9eW21AYLEpyCssx+3C3WeQ8Vevdv7uFypSdO94aCwH1XMwsM+lVc/+NUN2QaQDomhYoDkEo92ZzjRbV/6frQpZjjzcGg3r/hCzHkWgNFBKHww1wnVbj+vO2FWFwG7x2vBSMSOuGDQCHW+sAUGj26mk/q/PBvEjPoijolRZkDhc1UtSIqncNDSE6HyxQKu7+f2HiUyNgLhx7i8jTtqJDi1SXFc5fd87i9WVaABwwRYb2tUZOywcVcs8Fw/HRHpyedBHSHB0vKaTI5qXLgGmz0KkhIbOO1Uo3o4wcM8nQ8RKcyzroejES4eHQgQ202imetO8hfPJrj8WZSQfjOAB8AVCABFwJDiEhBEWaM3BdYt7xlffQNb11xNwv+PW4v2zNuJaDidZFUEsq2l6mO6tn1mkYUIJYQzC6e8eIc9WrbD1ugVGJOPHRCjOMkgCRl+Gq7kCdE0rEbSI5xuvJkCIGiT3+GF2WYI83BlCsBNrIW6BEYG8wRK4r4kzkoeBIrYXhgNY/UWEFty7aXoa1uGWPMU9cXIVaYlQx0bh2BoueZx5BWtRksOr4lRElK5yuqYqqIXhmLK5Vg9EMUSILhMEldDaiU0EoytdW2X8Mwpbhq6aus9EmCglfE46QZLVVZeXlFBIdNtumpbANUcdeCccz+9rj1hJfUfhbGIvehxFZeNRhJ2SowcMXDSE6X2xBihYlQpXeRSWistNIUoHAlA9RHr+s0ApVnJfUkCj3eqUATpxdQiYYlqMJ9kVDa+4X0hybWYTVpI31pIVH9s5hPWsDgE2rLfpLPeNM+fZw35oZcj0RdJkyZzR+O6M8xH5vE3cPDiPyMly//zROTXoACB5aW1JjpxLgBMznIJ6AF6kIF88pNsYRBmmIvq+aqe7Vvj5GR2OEx6nu/WQmLCMwNgQuFcySCpWemLZX6PqpdXo+0NvEiWEf63ELwzhE5GXgnKLlZ+iE09ScSdN5lGPZn+BAuAkAGGQt+yseALikGIsAviYvHFRXmE3v9VrWtum2kOU24pXkniV1RvPkTvym3YcAwTALkApWcKF2sZ0UmKuLKVdkWWfrBcjQIu+nnWxTHieAWYKjyZAlPyVytJ2oVC6oTUmacxl/p4jlNjpk4OqF7PsAxBohclAwTYA4qG30KqAiTxwqGhQL33pmtbTDOSUCfS/GmbRXOCcjKiVcuDcQSIRnI7Z1kZtTcd8+X9LapjpsRYp2giqiVDaFXERrdNFwvhVm5tGgIUQ7QaVgufwAaglD1bp5uqAql+mpZmm7g3ePW71+V6OnEtjcbOHEZh/fHuxTpePCw4lJ36aRhkmAb2/uRUhzjPIQV3c2alt4VEEdk9mqlSEPp7oZIm1fsIhmGOYqjSYkwdXdDTyx/yBW4zba/QmSjVBbBRCwVo5sGIAFHIIrAuD7HEkcYJIFGGQhzk46WEvbNjpjtDaAEh+numTekCXzC984Na87TWZzSXFm3C1M7B4RGCQRjvbXAQBL7QnGWYCV/gjDJMC+zghx7qPrJ7Y557I/samxXFLtjO1bJ+ohD9GmKYZ5ZCNJZjLM9T1023xMtPGi1KmZckTOwHVbNuaMdSgTlK3IEDCdkKy+RBMvc18XjehslU7bDurSd0bkbgiqfRQInUoh+fq1mjcG9564ETlgqhcykSOXDJXvSVXLjMQhVoB6L3CoIgWKqeje0z8muKS4P16xAnyhCxo8R6/E5hCErpfWrjM4GA30Z8UljBd+xq6LFi0SGbqUpKipMts9NIRoB1jovbMdMTUqUmK7OZaZc80nUltFh4rbbj0AKYE48RFnPtbTFtbTyP7CzThDO8iwHreslqjjpYVqJHWMaS+2KoJkJkVDQhLpg6OYSvMJx5HWOmLp43H9kxhmIYY8wvftfUD1MQsE0tQDYQKECtBAkaBOJ8Ek8+B7HEv9sSI7OrqjfH4IBllYSF90dUoNUF+ouZimytxJzyUX+9vD6SSqv2AfsbQGjwrV4oNydIIEa5tttHyl61kdtq3pXt+Lres0JRJL/gQRy23bBQ6CLkum+iGn/9ggjwpRA5dsuH3JZmwWDEERDIM0Qpx7WE1aWA7iyvdCFRnaCuUJyRVnu3/Lj3nL3fFshwjNRIcqXKXVdk47DlLWOInC/nXnmNUWzQqUDRHy6DRlu93UjtBRQlOQkAhPp8skBKjWEan35VgEaNHMFjEYGC+jRVFPTKeNXic8wJm4N7tN6foWETwbsuOanm73GGZ8O1nX4OGBhhBdDJQiR3PbbTii65ltUVwHh9gUiNE2vuDL5GguGSr9n9RdT0UaLks9nNvo4LvnVjDJfWScYSONwKhA5GVo+aqx6LI/QSYYNtOwkmy5pMidnDeSCGMeIBMME+FjkEUY5SHGQlXACEnQpgkySdGjMYY8xI3L9+O+0Qq+vHYVrl1eQ9hJkU18PP7oCTBPAASYbEYYTwKkmQePCYRejj2tMQaJGrtbMt32Moxz36ZwzCRSJkrm/4wK250eUGXrZj8zcQY0R1+nDbhUkZpOOwEhEpPcB+cUx0fL6LAEifAw4QE8pxVHxDKVUoFq06H8h9R97XoxIprZRrIGqfC0aJba1hzAdCIqa1lyMSVMqWBYCavTHHVkaG7UpmSYWPW8LkJkS9Rrokc7iQiVx2Zep0IkiBadx03EyKMcPlWRFTZzbbNtKOx5ZqqvqI0yLgcTLdLPZshd3fWVdUWZPh4jEolUxMYn6r0Ykgwt3SyZEWn9q8xxPF2R5p6PO8dnFSRuUfIxyKLSvagnklXHrEp9baUZcjFr2HmZEp5GVL1r8LbepMGuwXnPFVJCUOmywq9vApB5v/RK3/GzaTy9rz5mncGilNss0yfSHrNqHAWRtnM+wQkIBbig2JhESDMPgZ+j5Sstyzj1cS/Zi2t7a+h7sU0tbQWTaswlxXoS2ckfACKWYcUfg1PlQwQAT+t9F6u8g9tPHEM/inHDnhO4b7AHce4j9HPkgYdvnDwAQoBef4LBWhsip5jEEXiXYmnPBIM4wqHOpmq5AYn1NELXT9H1EvT9ie5oTwEJpHxa+SUk0Y02KQQhaDmmhctBDBBgmAXo+yq6IiRVJf3ch5Tq3lHKQQhwZr0L3+doRSmOry0jyT08de8D0+asJIPHKHp+DAGCgObwqUAmKHosBiUCiVCT35CHelITVm9iep2ZKF6oK80AWCJkdE9u1VnXT230z42GVabB3EiIfqkL+1SQoa3ITd127v/r0lLudmXCVTXmKl3Q7HGnndEpHHLjbOPDRORmPX3KxwGmxLmrCxAC3Xtuqx5rZSLgVnSZCKp67iGD0hG1WYq1vKOF1RnaTBEoADPRxHnnrr4mWbi3gLnXAj6Aq1obODFZmrkPloA5n/V511mF7ZbRb8fVuu41vGDYDULTECIADSG6oDAkxJIR89ktRHOmxKccEbEEyYnEuKSpvk0HmRIihxjNc50+n/L82fOjQJSkJMrbhxNkEw/ZxIPfyhGnPjwm0A9j7G2N0A9i1XwSBAdbQ5yZdGZcbCtPp0lRnPs4wT3knGEpmqgJwtfRIZaAg2I174ISgUfuOYdT466KovgZzg076ouZSHTaCTZO9NE/MgH1dLf7gEMKJdZebqkISEA5Apqj61NnQqUq3UVU41OBoubGVJMFjBccpimRgJydUIzgepwG8FgMn3G0/Aysp6IMe1pjUCKxHExw17kjePLKg+jqCh4GgTbLbOk0lwR7/REoERjzED7hOJd1bNoPWg8CqC/2XCiBuvFKKkew1HYSbS+zPkrDTPktlauf6qJB80rOy8uKJePVqbu6beZFocr/rzt2OfVlrAnMep/ygtmhe31ulIdBCZUtISFKbKw+M9PoizmfcIiHRzkELzbMNe+duutcdDIXUO1bjKDaJ8pQMyQZWn6qHN9JBk4CCH0an3DkmLpm15IxCIBQu1/53rr/t/ohSXGkta5bjbitSqpJ0W56BZ1PZOiSkKIGu4LmVdtl1EVbCqmpur+l54TKAhkql9/XD0JHcQqRHEO6posu1I8CqcmXayZpltuHICqIJKetB87GHaTCw6FggGs7qzjWP7etcxq4v/JN24shj3A67SOkGdayDr55dj9+cP+9+OrGIXT8FFnOMDjbwS8+6e+R5QySAOceWIbIKaRQjtWCU6yN2jg56GM1biujRO5jbziCkKrH2XraQio8W3EFoNAA1aSaypGT1aSFgOVat1HUu/iUYzSIrG7JZxzDSQgpgY24ZZ2xH7N0xvZBMz2lbMqDqomOEYHTad+SROVaPTXdc7VYAGxFWcSKJfVu09Zx7ltiZCvktqj2WjSSsJDGiMx2ea8iQ5VRqhovo6pzlHVAbpTI1+TIOH2rVFkxhabWKRG1IanmETomiL4+nhFcm3EH2iAxsCmyYpVaMV1WrIBapPdXwj3b984gkww+VcadDAIHggGuCjbsMcwPFldUDRTTZlWYR17KOiwGaXVMi6TPzhe7kSa7qNVnTcps19BEiC4AFks9LfB/OSVC5e2qK8RK6Sxg+v+KL6Ct+pTVouo8JUj1g1CZqIrZbXmuzA+TzEPiuDT/06mjCK5Sk+/eYIzlcIKNNNpW7zamq3DMLzUBinNpF4nwrND6psP34UAwsPsstSc4sxnAJxyP3X8GX5wEigglDKydg2fqRnXCFOujFkZJAHTUvhNNis4lHVs5Z3p4udVQa0kLe6Ox9fKJAhUhEpLiSGd9aqwIVcJuIhCZYGj3YmxsttALVEVZ6OcqrRfGmkipSZXqCIPRgJjnXH/JZ5JhjzfGWAR4MNmDiXYIh1D3f6Kdw1MtuHbtAMxE4bYKMa+b6VXW9rJiG4mS6NjuUyUmnjOxWZF0RYqkKs1l1zmpJHe8dnyliJCJONRFsqxmyBIVYbu9V4meDfFxz6vEveWxqogICECJSUXSQtRIkQiBjk6R8VIllroXdGZZOVpl7xkpps1CliMTFJQQ+/4xnxdTxWiO3/diDPIImWRaR7TY55NCzJAuMz5eIrFba7+caJp7bfo1L7/2Ve+d2fHVk6GqNOp2/aouCFRh7Pkfo0ETIdo2SH3TUYNK0q3TMYVDkTpiU/q7wJjUicthKVn91xlnfW+yxZhSVY8zQqQlQTNWAvqpyCnyVE26GWcYZwEmuY+Wn1kfkjvOHcG+aOpmW33+WcdvI3YWDhnpeyrNpfQzEmtpG0Me4QUHv4pHdc/iuuVVLO9XnkJ7wxGuPXgOYSsDIQBPtWZi4iHOPWQZw3J7Ao+oXmKrSdt2rXermYyTsPkibWmyIKRyhE6Fh9MTlcKLuY9UE8OQ5ej5sTU6pERgpTtGHqsGs1xQtIMMbT/F+qQFT0/KD0yWC/fGJSHGHG/IIzCiqt1MZZCQFPuDoSVDQiofoXE+rRxyrQCUmWRul5tzGfdklwBVEaHtkqEqlAnZPEFxbbSoQHJqNEAokjq3v5gpnVfHcJqA6ojGNAqk+sYZobspZ3cFvlNyxcF0pMkQYnc73z3PFumxwvErUncuzHvSjNN4EhnCnAn1/7EIoJyphY1GMkhb6Tg995xqLIfgLSJ4tlEuyJrXctb40f3rLq8yvizvV3nMitSe+budiOeFQFN2v3toIkQ7xFZl6/O0OgUiskW0hdDZY9VWglU9L5ARUk+eCifY5ofDPaaJbFE5ew9k8a/IKOJJAEYFOmGKiHKETFVVbWYRHtk/h420hSqUU4dlDYn7xZkJiqHoIJMUsRYSP7p7GmtZGxQSy/4YQx7gFx/19wBUU9V7v3EVEAmASYBTgEqACUipyNwoDUDbur3GsIe+n9gIiZvucn9FGm1NwLg1Njyx0ceRzgYA1SOs78fWXbrFMqRCRdAokWCBIkOhlyvSJwmGcYiTkx6u7azhSGtd//pWx2ZEIBMMDyVLOBxu6MlWYCNvWQGtKdXPJEOLZTo65FmbgFif2xC7yMunqUAqbLTLtOpwXw9XX7PTCWO7v8DL74OqCFUxcuW0tnB0KYXr0JFGkyYzmBFKl67RpJHUdhXbSBUtMeXgbuRjWrmlXlE38lOIiCxwexbVadEKN2rj8q5SfipNZ3yq+myCkGTK4mLO66QIeFELWBUpmm4vZ45nrt2HEnO7WrayZ9FO9DuNC3UDoIkQXRC4fcQseXFSVwUyhMWrvOZ3m98ijbXoxHIev3RmxlZ5KCMuIoAgEDkBFxSDSYT1uAVKJB4YLWM9baFFM9sLTB1/67G5E18ulevuetZGro0HM8kwykNMuI9D4QYO+htY8sZgRGLFG+Js3sMjonNqmFRF9aT+riVUtfCgnij4JLWDVEd5vEpCZp4bshRQjr6fIM499FvK8dpUh415oFNnqq0Jl8qJeX9rhE5HVZ+ZPmgGoyyYGi/mgXIeJgJcC3MPhxt24uBGLGvM94i0LsOjPLRREDNuE9GiRNr2HBHLpp43ZCpqrYsMuXqdi4XaCBWpjg6odbMpr/I6Nzo0//zVLTqAabSOaqJk+nyZh40+FQhltUnhdu7pdjUtqs8gs21wDIleyzv2NV/yJjblbVAXHapr7QHA3ofieKv9nUwEjaGabC9cEVYTLdoqOlR7vEsVJWo0RLuGhhBtE7MtNtT/3ffTVsaHhfSZjtpUibDd45bX2/OZideN/mx1ztI5FkHddZeXVbb0mEOUZE4Rxz48xjFJfFVCzj2cnXS0L9G4VFlX7HNmH6Uvtknu49ykjW9t7MPZuIONVJEt46OSCA8rbARGBL44OIqDwQCfGTwGx8IzOJEuQQYCSKmNeslcCcHjxIfIKQaJ8kgZ5z5Ca36oHLNzSW3DTZcgmXSS+f+ZcRedIEHHS9FiKe5dW0Hfn1hxbYul9tfuOPfRCVO0/MxGokZpCCEJjnbX7XkS3TrEiFqZFujav9qJuE1T+ERgPWuh4yW255siQUoD5ZIuc2/jkgGf0RptpuHs6+FOZFUpigVSDfPW16XNzHJjWFg3rrrITpn4FPedimWrbAHcNJklOLrjO4OwpMA8nx67mOoqk6JZYue0jpiTAtoqVQbAWiy4MP34fMIR0czulwgfLZoWztfxEky4v9BrVfWal4nQ1scobr+RtSpJ0aXwDbok6TMhd+fRoCFEO4ZLaLA7Zet1qbEtyZX71+67jWay5WPtIhYRQ/OUYThsIc8Zcs4wTEIwKnBi0kcmWeW1uBNtYWJy/i+gxKAj3Vcr1hoZnwocCgfYFBG4pLi6tY5bHroet97/WGzyCG2a4vCRVSAQQEJBcgIiCGRGISXgBar0PZcUXDdrHWYBNpOooCFyq57MF6Vp3EqJBKMCh9qbumKL4qkHH0RIc/R181mhiZXxMhpMVKWZcbw+u9pFFCjXYNNk86DuYTYR055u3EkFGXHsWAQIaW5bKZjqpxbLVDWTPkfEFElyK9DGeYBhFiLlzF5nL0hmjAjrUzPbnzTKxKqs7anTeBTOW/AOKo6xLhLjkm1Leoi0Wh6jKSqfa6rdmZKhqnG5UZPqKIkoCJ+rr7UYMaozFHT3MxqnMqyTM4jVEsXCV687D3QlHbe98DLJENEMfa/amXwrLEqGptdSfJ0YpO13diHIyE6Pd8miRQ3OCw0h2gl2881O5AypqnWOxiLLFyRC5YjRFvsYrx9zjuJKslhKjgBFd0r9EAQ8YUgnvvITSlUqJ2Ace/0R9kbjysOZL/2tmujGuW+bkpoyfKObeSBdwYT7eNZV38bwXBufOPcEXBWs418dvQs04IAvAE4AX4AwCcEpKFNkYaAjNA9tLGGQROgECTLOkOQqhVB0nVaPce7bCrh9rZEVTnNN3nw9CZuy92EWqpYJuY/xZoiRE4nxQo6V9hj3by7bydtcG4XAIG8VtVSSIRNqAst1dVBIlEO4TwW6Xmp9iDwqZoiNSZPkgtoomDFudDuwV/0tLttuRGC2Esx9XkWOyhGJsnFiVeTKHV/ZcNEQKVNSX76OMsEoRHwwe2+K5KQcxRI2SuQev3xvyqmk6ihcqcKthggBxTRvlyXIhNI3lVNdhqyrSjf1eTKNmbeCiYy5+qE6LVFhv4rXrnjc6vU78RDaLdCLVYDWpMx2DQ0h2iZqHaEv1PFrNywSmh1FhMxxFsS8XmLFscCxByiRKKPNmdlf/ckzhjxXaZjVuIVzWadQ7QQUv/DK10ycic5MEJGXFTrLm8lKSIozaRdn0y66LAYNOO749jXYFBHe+9Vn4ocf/U147Uylz/S4CQHSiY9xqlpabIyV6Pv0ah9cqC70puzfRFkMhCTo+wkiliGgHCvhuLAuoLn9Zb6ZqdSeIRoRy3Hd1Wdw6pv7cPfJQ+h6CQ4tD9D1Uzxt33FbHQQoD6K71o7gZNxHIn37K9+IY43Znk84EumDQWKQRRjmgdUy5WJqNmmsACLtVu1eFyUSPiuKcef9Ut/JhCMkKdgXVJGe8mvuLi+fvy7aVL6G4t9y5KhIhtx1jEhrcmhJKp0VLJdJUSGN5pAiNxpSRWaK6b36Lux1RAiYL0Q2nlZUR4zMe8SUtq9l7cK56jyIKJHTY5nPoP7/PFJk3tdlndXMdnO0YTvBwyfKsxtk6OFyrRcWDSE6H2z3A1NFJHbiY2GiSs6+c8mK2a0qsnMhQYrjcUkbYWJK6pzIkeTKuHGYhJhkaoJ+ZO/s3C+nRdIwHlW/oM2XufnS3h8M0fNi3Dvehyc94kGAE5xMlsBzigfHS9jTG+PYI06jvTSB38rBEwZIYJIEWB230QmVqWPUSjHWXjzl0mDbrkMW/W2UtmdaxeRinKv2HwFV+iRjjnj9k+/Ho/adxSCLcMOeE3hEZxVDHiDhHjKhhNIMAjeuHMehaIBBFtmoTy4ZJrq3GwDb0XxvMMThaF1PeIp4GC0UJcpI0qT6jC6n66tUW6TNJF3voZnXp6Kia97rN59QFaM4RgBee95C9KheNF0c52z0CNjaCXkaVVKpL1PVN0211QutC+eZQ4qm28jCwxyrLk25E7RYhpAo8fxYp2DPpF0IEGxypaFby9oQkuJQOJh3KGv14I6JQrmnm0cVxJx1LlEc5FFpXZngNkY7DbZGQ4jOB07lWCFiU/cFZIjMbqAiQuT+LWyqiUiBLLki7N38JWTH4YyrdHg7VipBmEOKJCA4BWMCSeaBEInVtIPNvNjkEVCTFamZAKruQcYZhnmAc2kHEx5gLAKcTns4l3XQ92KtMfKwtG+Ivzv+GPzII7+Je8/uxZl7V3Bio4/xeguP2H8OkhOI2EM68hGnviI7OUW/FSPOlKDZo6Lg1mz8iEykgxKl5fEIt/ohYOqzknAPbS/DetZSpfpClVmPsgBnRx3si0Y40lpHrgXN391cUaRIeFb3AQAT4eO+0R5LAr+8fhWAYmokEZ7ymNHjzYUqv6eQtpQ+5cqo0ZTXm2OUU1nni7rWD5RI2yalKvLhkiNX82P2rSIUda7UZRJlju+SoXIz0+kYZomJu828yMn5RiOK3kezxytHsbZDEJhu52GOm4lpM+BQRzXL5LHqWs2YqtrxnE26OJX0beSI6ffW2bQ7FaZXaKwAYDVrY9kvRltHebjw9VXh4RMdQpMy20U0hOh8UPWhcUlGFUna5gdtxtyxahh6uW2ZgWlkpjaNthsf+KpjVKbTSn9Ly90xEiKRZQy+x+EzjkEWIeUeKCR6frLjLypfN2KlkNbHpMUyrKVtm0rKBcWB7hDDzQgjHiA+0wZdTuExgaCbYpL7ymOJSSBhSIYh4tSzhom9KLGREtu7zEk9pYIpAqUni1wy7Yps2m0oQpAID23duNMKm0Hw4OoyNsYtrCZtPfmr/fpBgmEWYcIDHB/vwYQHGOUhEu6pNJeegFbHSucx1lEidXxqf/3v9UeFiqHAMSE0CFheTDXp7czxXFSRgnmoT3E5lV1ONKkuorRVpOR8StWr3I65NgEFtta6zD9XxXVAzESmqsjNvOhb8f/b028ZRDSz7xFAExZMS/EZEXPNGO02JUJjUmD7wqFq0OxokXwqcFU0qCRBbuRsXzAsRIgokWixdNvX/rCNIjVVZruGhhDtAEXn5QV/Ie9mZKiUhjLkhzpmiNTR6exW49Z5UajC+OYexHmUj0101Iio61gftzBIQ6ynEQiR2MzUr76ZFgQOaMUYjbGhSvdw60e0mnbwpP4DAIDjw2Xsi8a4trsGKQi+vnoA0X5V8t+LEqSrESaZD8KJ0kDlBDInmDygPHw2xi3de0oWmrkad2dDbDwqrCO1myqgRCAXDBPuYyNTuqRBFmE1aePr5/aj6yV47rF7wKjA8cEyfMLx4HgZHS/BqVHPHiPmHv7qnsdjog0oV8KR9Ym5fuU01rOW8jeyfkRE9zNTUStTZbYSjuFpvyQz7q6fIBdKjO2RadrM6JzKr4H7Wl2IyUa5ahe/wlxyUO6vVUaZUFWRLWA2VVZOvZW1K+X35FZEoWpcZeIwL+XorjdVaa6HUf0+2yNHHNQ6WLdoWtjGtXkw1zsvIub+NWgx1Xdvy/G4lXn6tTJVbm768HyjRA2uPDSE6HyxyK9AN1K0nXUokZlSyqtMUIwDNiGAKPUPU8vnV2NthUqd0gIEyJ5P1jzsGNV/mCfsOUyqqR8kc8WvlafW6/phbFNZlEjdQJNjI2shIjm+unEIAPCd9RUca53FkatW4VMB3+NodxPVt8yXGE1CoMUB05YkJ6D7Y8iUYXO1jYR79hwBU5VhxqcHADYSVTYfsQyZnswZkco0UjJbvROxDD5RLtAPbi6BEJWaWPbH+P8e9QVcu7SGQR7h1KiHXDKcXu3hxLiHXDDsj4bodWOcSzrI9fE5VJsOQ3YySbGuSVebZYUJzCeKFIW6kahHOSKWoe+rViWqqaiahEyky9zbMrbSDm0X5XSYQVm3pbYt6rLKXjuLRG9Mqqzc8sE9FnMIn+tIXYXtEiNXSzR/nLL0d/HzbBVhcmGqEwEn1Qo6vQcLRN7KZK9AbiBxNu0Wt597P8tRwammCFD+SItGiR620SEAkGJ3Hg0aQrRtELkr5KLquAul1WoMGKc9xfSXE5WgVBaW7UakqPJ6ayJmsxV5ehNJCuSq8H9BVKUZp/CYIkZtL8NGUhRNkpkvw+pUBdEpneUgxp5gjBXdpmM9a+NQtIEN3sK+SHWrf8zKGZzNuri6M8DJU8t4/P5TiCcBRqMQfjdFfLYFxAxkxBQpkgS+z1XEiEpl0MinBMh49BjisCeaqDQVpnoi1+XXtCAwv5KPdtawvzPEMw5919oFCElwXfcs7hut4Cn7HsSpuIfD+9fR8jIM8xBcEuxpjfGtc/sAAJlQztxCUturTKUUVLk9lwQPxHsw5KE1Z3R/ZRtdj1+aMFLBLOHJBS207Si/BopAnN9XTXliUyTM6Iq2TpftBigRlSkzN2I027h0fvWViajMSzlRIivF1VUi8XLkal5l2k5AoaKdifCQSF+7my/unD2PFLaYMnw8k3TtuerG7WqNiuuL++RiVq/kbnMq7s3ss5t6rouCRkO0a2h6me0ARJOiaaRk9s20ne7sxYPL4vO6aExh0p8dnyEZdYRtRmS9ILa7j+3rVlVgVzqWGS8hqkUGFwSZYDjY2sQwC2b2n1sx5KQ+AsbR9lIs+xNQCHS8BD7hWPLGiEiGA8sDPLbTg09zjHmIA+EmHveIh9T4qQAf+6BMQDIJNlQfGSIB0eZIxj7CpcQ2lPWJwGYSYW97ZK8vFxSgQABuIym5pLa3meldZjQ9BqnwMExD9L0YZ9Iu2izFvWPlvP2o7lnctXo1BpMIj917Bsc3l7E+aSFY5jjcGeBIZwOp8ECJijZl2jfoxKSP67pn0aap7WROIW0EyXQvV209BAI9HCOiNdt7RCBgOeK0SFQNXNF1nTZIbVclvi2mRKpeW8/19tHvr3kC72ryUNIHOWNxhdRu1/R5E755Hetg2qmY5/O2MffOOItTCHCwynFP95WFFOyiJHQ7BCARnk1PTXiAvjdBm6U4nfasvqgMrpvBFs4n9XXp55n0sJ61LekbZFFBKG2w/d52AqfiPg5G0yo49750/aRqt4cXRCnUvuNjNGgiRDuFEyUykZjC6vONHrnRolJarVC+XjBxLG1D5cy6840SbXldFeMtpM0qxlpc4Z4HiHMP926uFDYJ2NQdeKvogKvlGeYBjk/2oE1TrHgj9GiMiKqy4nNZB0tsgltPPBZ9b4Jj3XO4b7AHz3vkN4CEIdsMQFIKsZRBUgnRUi7WImHIJh66UYKWbnchpZo4TS81m2LSgmujISqneqwHkGQ4l3YAANf01uETjmV/Ai4phnmImHv4znAvjvVWceOh47jz/qMYJYGtFPMqJv/bHzqGo601XN1ex15/BJ9y7UBNC01IE+EhER463nSiMNEsYNq6w4irzXmqBNhV0ZQyqirGaretMFc0RMe95p2m6tz0kdsl3jqfbyPKVde3a1HxsRqPLByrzn+njO2I2MvbbmUtAExNGDkI2jqa6ZIhNxJWFxUzbWTMOFRz4dS2qzEEvGrM9nlNlMjFWtrBVa2NwrW674teyWH7QkUXGzw80BCincCtmipN4OU+ZruaVisPo4YM2XHJ8vZFUlRXor8VFo4SueczpKiQwqs/vzkHFyqtdMPySbuN2xIDmF9lFOmJ29Mu0Fe3NgCo0t9V3sE6b0NIgqPRKjo0wffvvw9f2rgae/0R9reHqgQ9ISAJBc1Umkx6EsgJaEpAmESrm6AbKgLR9jK0gsxqhwiZiqwNqUgdMbBJR5k+Wb41QczsMkokrg7XsJ61kXKGWGuTDDn5vmuOI058tIPUpuPUtWdosQwCShg+4YGdbLiktvzZCHAT7mlnYkWMQt1TzRCOXOubPD3GVDeHrRIilzFfEFytY6mrCpuW2Kvtfcqt8WHVtjOtLUpkyTX8K+y7A6M/4z+023C1RFUkxjUv3AncY1iiURZ2Q2KvP4JHOZa8Ca4O1wHUi6dduNsYkuk7Fg5u649cqp6Abvpx3vuryqfIpKwO6FY2Zcx7v50PLlqazEWTMts1NIRou6jiAgVSNCUBVQSpFlI1D92qGq0u0mNJiru8rty9dLztkLaFyVDJo6lA3qisrjJzzuE2cB0mIb413Ddz7nn6CQNjMKjWKyO4c1kHq3kHmfCUi7NUxGKTRzibdvGd1b34+uYhLAcTtGkKOqFAl0MEqvpNhkKRI05ANj2M11uIcx9nRkr70PN1C4/MQ8hycEmRC4rNNLRl+OoLX1egwUSxph9H097j/s09dt0gj7CZhhgmAcZZgAeGS5YUHdm7hl6Q4PhgGTH3C6Lfr68fwKOWzoLr85xK+xjkEXLBtBCcwyfcRoVaLEVbC7stSSPC6nWEpEiFZ5vVBozbPmaLRjDqJrjyunKJvyVBRNhHXdfyrd4bVeShihip/Y2zMrHnL++n+sFN3ZgXwaLjNgJr5nwubPXXHPPCRTCPRJVfB0YE9vlDu75MhhaJCtpjYyqwXs9a6HoqOuQRod3Rp/d4O6myravxZi0bKt8fFeaXdbiomqEyJHaBEF2aoV9uaAjRTlD15pmJFs2miLYqW9+KOM0jLUUrAGeMO5UyXYiolhMlKpxHFivYbLWZ0yLCNBgtY6sJOMk9Xe2lyM+E+3hgskdVdGn/mEwynM16iKUPCuWDdCga4Im9B/Gt0QGIayaQGYH0BUiixc2+hAhVSw/JlU5mY6CiTQHjyARDK8jAdTQrEwwtL5sKra1z9TQ6ZLabcN9GZva1VCoiFj7GeQABgtBT6a7VYRupUD3aIk81Yb26t4FBFiLVWg9KBPa3RghpjlwwrKVtcEkw4UVNlokcZYLaX+bcud/TlgnCIZizJobbRXlyKqyb48BcNeltRZBnzQNJITVW9bc4TjFjpOmeZ7v3YFE/pKo00W6BlY5d7flTfc7zIUP2nJpI5pJhkEXq/a0jk0N+Ycvm571eVeSmbtklI0INdh0NIdoJnHTUTISlLo1VWlYXldm1yGVFyqx4/urd5jZx3S5cc8h5x6ohklmuIhBSTlNfW00+5eWhp/tvEYETkyWcmCzhYDRQmiIeYcwDJMLHetbCRt5Gx0sQBjk+feI6bOQtnBj38NRrHwDJ1UdF+kqbJUMBUEBSCdbKLfExZfU+5QhZrjyQIMEdbyLjVj3OA6QOMTMmjSFTWqIJ97ESjnD34DAEiE2jLUUT5JyiFWa6xYciWWfHHV0ir/qlrWZtfHXjEPaGIwgQjHgAj3KkwsMdZ45gVWtBTCWOmYgANTkyqHReQNW959rJ2tMTZJulCFgOTztaz5tgqtyd6163stP0dJupUDiXzKY9MkltJKs8Kc+twiLFyNJ2U2QmdWfK7Y0mrE4/VNi3TLhK/68iIWwBzcx0bFtrqMpkyN23evupPcNukCFANSL2KcdV4QZWghEywZBJir4fY8L9rQ/goHbcFa/rPI+ieQRnO1Gji4YmZbZraAjRLmDGFXpuiqrqADWl6jVh4ioB9+wxMSNmdsvbF0WZ8C1MkiojZGZMzjCdyjK14XS9xwQCxtHyc2wkEQ62Vai+yvMGKP5SNw9T5fTQuA9KJJaDCVItHB5kEcYiQCYY9vojZJLhcLiB7zv0AEbjEGt5GwdbQ3zpwcOQngDxTf81gGRaS6Q/QVx7E41zFclZCmN0feWWm0sKpsds2ngMswAxV60+MsGwmYdKV6GjEJ42SeyyFNe0V3Ey6avUFuPo+in2dUaQElibtJEKhm8/tN9GL7p+jFxSjPMAB1pDUEh8be0gVvwxOl4KIQl6QYKY+0orxPLC5GnSL4aY5Tq9ByjzPENETMqPEjntdj+HVBREz/MeFWkMY1wJlKvBipYAVeTGRLIWRXFfUw1HnPeXKAjRgcU6trvXvghmKrMw1RK5ZMZ9Pq/SbRGR+WyKTtjxlomQALGPqvWLwqbjIHAwHNjXMxes4Fxd5TcFVBPEeY1thSSFogGz/rIiOduBELvzaNAQop2ijliUSVFVRVi5vcYi5o7zyuft+cpib+meYzYCU0XOtkrLbYdQmR8dljBSoUmRjrK4tgAEtipuWrmnHi0/hc+UQSBQ1BNUOVWXBdbm7zj3cTruYi1t41Tcx6m4p9JEjtkcI+pLudNOcOeZo9gfbULc3wYdM1BfpciW9w2BDgfJCMBUP7aUMxAqcP+ZFZwY9q1BYz+MrVP1OAswTEOkXJGi1XEb62lLf0GnhQmmeI0Ux0d7ICTFI3tn7f57WhMISXBu3AFhEoxKBDSHTwTGeYC+H+P0pAuPcjxq6SwAIKA59gUj7G2NMUhDVWLPPfhUYMJ9283cJxyZjnqZqBEAG83qeCk6LLVVbYGzzXarnOamzSrK8w2JtFYAIMglU2aXINNjl7RFVVVG2wXVuiVAtZaouqY6DdF2SJmBW5W2aEWYqyeqEqy7WiQ1ruqqtu1gJ0TIhXuNy/7YXsMiztUGZYuHAskHsYTHJ+LyjPQ0uORoCNEOIAWZKWkvd3VXT+AsM9vVHNRNK0ktrt5iYpnXyBVAYYzueKpIkWvguCuQBOVqNkIUKbLnLouryXQZo6IwkQVOJZGL+om0SIqEJJhkvq7SUpGZVJsWTniATDIseROcTnvwCcdVvQGu6g5U88q2gGhzPPrwaVx77Rmsn+0Cmx7Q4iCtHPnIR5p5oEzde0aF9U1qexkS7qHjp0hyD1xQxLmPgHHV18zpdQZMBbK5VKSHQz2u7a7akuTlcIK+n+CqzgD7ddSMJ54lMJQIXNNeRd+LcW13DW2WYdkf467VqzHKQ9Wuw0uwPmnZVhymFUMumHUj9qmw5wdUyf1mphvtOronU1FnokZVrtH2OWajP1WvmcE01TY9tom6Gcdok84z5616L5TJ0CKd6939lYBbVSqa6FCBeGAaSZo51oJRoXnbGMKwlXv1Vr3UZnVV9WSonLYzZDOTzP6I2GlUqAqmFN8QtpDlhQjRPGxlScAgC5q4CwlDQMl5EO9toUmZ7RoaQrQDUCZqS9pn4JACWSAJNQffCSmpJDrTaEuVxmmrSFHduq1Ikz2XQ/CKZHH610aEqNQ9zKActh0C5X7JnZqYnl2LRyBc+EwZI46yAOPcR8RynI07GOSqMepa1rZfwH0/QaC9esw9+8Z3DuP+4/sgOQERADIK6kmQlCIeBRCcQHCKkOUYZQHWk0hFZFojpJyh5WcqpaHH0A1TPLSxhFQwfG3toJ7UKYZZZFt7THUp6lpCmhfK6vtBjLafgnq6hBkEZ5IeBnmETFKcmvRwfLwHn3zg0XjSykOaSBD4lOP6ldO2QafaXhMbCGSSYZgHYFBkciNtaZdrJarezEOcS7q2yi0XDGnJO6as+XIrxcqOy+5fF2a8qfAKGiwhCWKunJJN1Mqc03396yIG8983VZGf6jEaUrRoygwoulOfL8rl9lUps3IUrlxeX4VydVkiPMTChwCZJUr6PVqX0poHN+VWOD8EerooYB4pqrqGTLLKfbYbCdpOWxN3+4uOhhDtGhpCtANIPUlWTczzdDqzKast3oQVx5nxECrpceahzhzRfB5myc/OPyfz0nMz98DohsyXMBWgVEVaGBXWiFFIgkf2zmElnDrYulVoVSjrigAltM646jxPiUTMfdst20Qgrm2fQyoYvrpxCCRXPkQ3Xf8d9bqHHDKQoCOGfOhDelIRI03yfMbRCxKshKpVR9vLMExCBCy3aRYpCeLcQ78VQ0iKlWhszx+xDB0v0e7SiqRkOiKSCA8RyzDIQqynbcTcx55ogm4vRsAUKQp0RdmJyRK6WmD9hP3Kx6nFMts81qNckTCoSjvjP2QiZqa/2lra0YJvqYhPqU3HlBTRyihNOYrntvKwPcC0YLrq9aRE+SAZL6SUq55vbiuNKWGZTbm5E1XRb6d62+L/Z1Mqde+1rUjR+ZIgZsdTHyWqIkPz1m8FQ1hCmlsTU2D7jtF1qKrmM9dnkFVEoApRv1J1nOn7p5yvq/yGxEKPsnP5Vo8GD380rTt2AjmbjnLFweZ52RtIit35EimPpSrq42Km4KymAm1R1GmJtjJ6dJvPSiJBQOwwpAAIU/eVaTIEqC/MXFC0gwwRyzDh/paOwdZZuCZETolEy88Qc0+lrgRDQHMkwsO+cIhMMrRZiqtaG+j3YkRPzjHMAnxjdT9+4LHfxl0PHUGyGgBUgvgC1OdgviIj8kQL4gBBQDkCltsKLUKUGLwTJFaAPEwCdAKVqrq6vW5L4U3UZgJFNMzkbyrEAJWKs+kjQXFVf6DSgdxXxAGKoHzt3EH0I5U628haaGkd1oT76HmKjGVCNejMdKUbBwHVqTtFjOjMxGUEzjaCI1X6z3URr3pNiq9DURxcl24qn9etoDLXY15XdyKbEdZuQQbMfXb/75N8zh71UO02pinerVp1GFDIwvu2/F5mRECYSB6RME05Z3uo1UeM1HEXn8DHPLCO1HZ/InctVVYHk6J0dWFlTEk2KVyz0SIN8ghdlu6IsDxsSE7TumPX0BCibcL10TFvIaKXmy/0ckWWW4XmEom5EZ1Ff8nNO8RiR1DbOqmsclRoKgJ3l9XopmrgRqBMxZnicsQ2WjaEkjE1UTIq4DNuO93nukJrNWnVps0KKRM9uVDntXHXZfp4ikioaqtESHRZgiU2QeypKqxHdFYx5AHOjTr45tp+7OmOcWqfB7EaAilFtDRBK8ywvtGB8CTi3MdKOMEwC7GRLOHxe05if3uIVDC0vWm3+KVWjFCTpgkP4OuITS6Y+j8RCGmOifABSZHLqQFf20uRC4Zx7k8F3H6CmHs4GfcQeRkywbCnNcYoDTHMQwSUg+voUcBy7VytSv0nPLDiaSEJMjD7PGKZjsqoc3uU28ozm8YSRdHzNE1TjLi4pMOIkwu2A1AOxplOzwmtpXIjAp6jJWvRTJXdg0LY98RiOqFCj7KZKIJcmAy5pEOAAnK2dcp2UEkeHaJkiJDpBaZ0VKIyQjXrvj3fnVl1rzf+X6oHWZkMqeMK2ypm3vF2CgYBEFV+P8iiLY/rkkOQ6X1Y9icAimR7xEN02O72MFtUE3chIKWAPM9u9ee7//cKGkK0AxAiLdmwX8FzyI0lDwQ2JlJHktTC6lTcIi0v7P/L61H/G2IrQ8iqdJo557wGsnXHMVoq1fR1enBzH6gmQx4R03JuotpZDOf4h1RhZiLBdMLp+SpaYwTQozyA53PdSDXBg5NlfH31AJZbExzprGOw2gHd8OAfGYEQgO2LwSceRmc76B9dxd7lIc7kSuc0zpXeouVnmoBwrIRjnE062BeMkAoltG7rLvWK0ExsdCOTFCFVHj9ZHmGcB4qYaC2NgDZ4lBRpPo0YpILh9HoP+5aGiLwM95/eCx4zBF6OcRog5xSPXDmHPA8QUA6PcptCyyVFR09+E+5jrO+1R7k9t+0dpkmRC5OymxXuzjauVdsJmxI04uiQ5fAIRwZmSZLxPTLnnh7PfV0FoLd3U2Lz/HGq0jWGfG2lNylXNFVFYlTUQhEvc6fKqZjtYBFSBNSn7haNClWRIuD8KsnmpQpnomJk2tiWEYGVYLFWKPb1kIocFpvdSq1xomjp1N9WhGXRtODFIj61kPL8IzyNhghAoyHaEdyPiauPWMhJmsz6Fm3VOqN2fRVJ0X/rgqjzxNXV59bHqyBFrrt0mdRt1bbELa2355EEecbAhZpsfDb9IgwcMfEiX0BFjcFsKwj3OFlpYg9pjnNZDy2W4fF7T+HxSyfRYhmeeN0DwL4EyYkOBCfggwDIKEAkTq/2MIwDdPsxRmmAM+MuvntuBaMswKm4h4PRAMv+BKbpq0c5jnXPoc1SrMUt9PUvWQDW7E9IilyoMvgj7TV88fRhfO6bxzDOfQzSEBtJhFxQpFoPFWttD2UCwzhEyj3wTR9k08MDD+wFIRK9KLHRHCNMFtooUkWqfKvx2ROMbHQo5j48Om3RYciKOc7M/XcqBKuEzYxI5JLZqjpDskyFnXsck5YTctqI1njJzER2yqX2JY+j6vfKNKJjSrK3QtV7sKp9hiER3ImMzabyFv91TiEL27sNUqfbTDU15nnZeLGu0g+Arm6cvkdMJZkrmq4SUF8oYsAg6pvl1qyra/zq9sDb1LrBOsy7R1Xrd9pHrsHlg4YQnQcK+hhnGcH8dFV1hKdadF0oWXcPWnMCIylyx2CPscV43GKDKoF11fLyMaqWz/guldaZaJHgBJAEkySwUY9AT8KediE20RyDhULpQO2EOEhDLAUx2p7SKJlWHh7hOBgOACgtCYPyMQpbGVhMIGKmnBESCpJTiE0fo7MddKMEQhCMkgBJ7CPOfHz1xCEbhQGgokMsRSo8HIw28ZilMzg9UQTMp1xFhnSDUOPCnAgPTz34IB537CGcHPUwzgLEuY9hGip3X8GwmYZIcg95xhD5GRgViPZOICngnfGx+u0VbMahTbGp+5uj7SWW5Jjlqu2HRMdLFBHSDV2VMeMsuaxuqzJ/ojdRFSuQ1kTMpMvK+5sokoGquHPaiCwgcp1p0VEgFxd2QttpZKgKzCFxhhTMkM8d+Am5hMclRfO8v4Aq8bbAdqrp3F5pVccDptfpPtx1s8esTg+a+1ROmzEicTrp2f8bwuQSyDoyWTbKrOuJd0HQVJntGhpCtANU9ilDkYRIzBKQohuzipCo5bPbVRGhukhRgUQ5y8tbuqRtZmO7bv6yso7I/J1GvequB/Z63cESIq1hI2XqOSQwTlUDU49O2yP0dEfsqi+lqmqyqnVV+xv3aNXvjNqJUUiCa1qrOBRu4LujFZze7CGZ+OD7U9AJA5GqEJCOKcAJ6IRikvnwPSUslueUCSMhEsMsRN+b4HFLpxDQHB0vwVraxnrWQiYprm5vYDOLMMoDfHX9EADgwfESziVdm8LpezGesHQST9r3kIpCrXcxmETYjEPlsZR7ODfqaE8ihuMnVhCPAqCTQzJAehLjSYBhpkSybS9VAmytB8olha/JT4ul6HsxGCQ6XoqIZQhZbgkaUCRBhYhQScdVhpDUWgyofVwhMyls575muVQpQgFSEFO7PcUKkcEtSNGi2I641lTtuddRlWo6L3NIhzxsJyqzVcTDQLjRoR1METutpFuEFC10nDlkZd52XBKs+GOsph0Y8886nE56WM9a2MyjWtfwi4bGqXrX0BCibcJ8zdGSS+1WGp6Z9h72OG5EaPYxbxDzUm2GpEkU9Ud1sEJnuTUBM9dT1jXVehaVjmeXu4cmEtDESkqCnCttzCBVLS0m3MeEB1NhbUGsW50OK06O1ZNm10+RC6oawHLPqZ5iGOQqqrPJIzy2fxqRn0GeC/H/PfkuO3bKodyqOQGRuv8aJCgV6F27gY31NrrtBBtphET64JLgQLiJCfdxatzFKA/QYhnWUuWbciDcxINnl/GNjQNWP3V8pJrRmnYjQlI8bu8pPO2a44hjHxtnehgMWxjGAZLMQ9BJsb7agRz4oEzA72TwNwkQcYgTun+ZQy5y3WEc0FEbSGSOMWQmVPWaq5MJHAE2JXKmusy9z1URBWFTSVvrNCjKeqHiMYBik83FtR8LRC4qPYkWm/Q4pmmmaXqx+it3uySiihTVRYoWHbO9x6XIyk5I0fnCJUWL3m+G2e+E6fGKURv3/y6J8SjHSjACJRIrwajyPEITp2V/Yn+kuahKUzZ4eKAhROeBssi5GNmRxfRV+UNNZo9z3uOpGJf5YrAVcHU72X23OEdNBGkR8jbTWqTy+KrKTGrtwlTnQjDOp+myXFIsB9Mvo3kd1xcRT5ovXqNRyYTSqyTCw4l4Cfds7sfqoIPD159Gwj3c8JTv4geeeA+8TQrhSchAgHe41pIBSerDYwIrK0N1DZmPQRbhbNLFII+UfkZQpMIDg8R3N/ZgmIdYz9oIwwz9ILHXeXywjLW0jQfHSxAgGGQRAsqxmrSwf3kIGuYQx9sYn+5Y8RhlAjISIEyCZxTJikDnGwGwP8b6pIVxHugKO69AWkxZv9Al9z7hVr9jG6s6FWb191xsOxJTfE1czc2sODqk+YzzcJUTcZ3JYtmJejdhokTFZVNH591MnRnsxjXsVkRmEdSl0up1XrPR4IXGVkFM5kVxFmkoa74nymTqkpGgJmW2a2iqzM4DM35DGotEY0zV2aJzRtUxqyI/deemZLZMvuCTJLeuGqurNltovO61ytLy0niEIKBUIk49xL6P2MvgSSUedrGezpbjbiWCrFrmksaY+zg96SHQvdOubm3ApxxXt9cRXZPjULSBrw8O4trOGk5M+hCBig6JUACSYPNkF/6RDcQnOmgfSxEwjrVJiP5SjHM6FJ9yhn3RyDZPPZt2cP3KacTcR8x9PPHgSRtV8IjAseVVmzLKhIqaeURgOYjhUQGxQnA6p2AhRzrxVR6PEywf2ESa6QayeYTJVQKEAmfO9nG4p/RRAcutd5FpwZFyD3uCMSgRNjXV9hLkglkBtFtmH3MPXV9Vp80jpuoe15MBU2Zf3pYSAQ8qRaeE1Mozyd9uVGWXfGXmEcHydqYEnIIXqs3MeHaDHJkSeLc6y1Sf2XFcJnAbxW4VFZvxaDoP0ldnSzA9l44Ye1OLgXNpG3uDcWE7E9Hcyu2bEomYB5XrdhtSCMjzfG83ZfcKTYRoFzCPhABFofPszvOPUbd9eZ/tirjrjl2I5FTsX6UhKm9bpVGqHUOJZJnnQqfOVodtPDTs4+Soh80sxKGWmsgpkTgQqT5e8/pjGcxb1/VTpJxhkIWqvN3L9eRCce9oLzLBsNcf4UC4CSEpjnXP4ROfexK+9M2jCB8zgNQNXokAkGsBaqDKlrmg6LQScKHMDft+rI+vPJYMCTMprIhlaHsJVpMWTL810xzWODXvi8ZYTyNV2i8J9rTG6CzFgCTo9GNE3QQ0ypFzBt/jYFRALOeQFOAJg8xU1En5GKlI0TALbJUaUGzoau5d7kSJXFfptpfZ18Hdp5yuNChWK5VL8d302NQx2KccIcvtepcMuf3WqgW/l8ZJ2J2AzbjKeqKCqHsHabM63c289NHCx6851nbSWGW4kb46UuS+j7bb5mS7112ovnOe89J7bDoeWUuGyvem7e2u11GDC4+GEG0Tda03ZvQx7nL3/+axjS+UuSX5mE+GFj4uqflbsW11b7L5eqaya3fVscv7m0lkNFGi4UmqIihGuGvSO0bDYp5vVRFSBRPh2EginBp3Mc5969DcYinauiKFEqHM3voZfvAJ38JkFABEuZBLT4Iup+p8nGB9tQNA+fPEuUpNpUI1lx3nIY501m2DV3NdqWDwiVAEikiknOHMpGPJyjgP8MBwSTlVgyDJPaSc4UBvE36Qg1GBXitGp5MgyxlCTxGb9p4x/A0KjBmuvfYM4tSzESiXRAyzQFXzab2WMcO0NgAV7TVmo3SLaHOm++SC6fPQgt7GBZfEVt5RMm3U6abJzicSsp0Ks0XeT9y5R3VkaFGY9hl1fb/qsJOu9dv5zFRXW23vnNu5J+6xd0LKZghMyZrAXTbKQ/T9xfRB5bGYtNtO7v+O0KTMdg0NIToPzNXOFLarnvDrRMdV27rb1R1rkVRd6TBbDLz4X0pNmbwhf1uf16yjbuTJKckz3e1n7qM+pEnhjeMAKWe4f3MPDkRDLeIV2BdOhY/nq6OIWI6lMIaUBJNMfam1PVVtdS7rIZMUnz7xSNw72oeX3vBF3PnQEfCJh/2PWAXxBIgnwGMPWc7A9iTwwhzDWIXNA8YRcw8DHdlRESAl5laCboZhFiAXDCMe4PrlU4hYhoBx7G2NQYm0245SdUyPCGSCYZiEkJLg6MoaelECLin2dYcI/RweE/C0Jis5mINNKE5v9MAFRa5JV6QjL+aXuepJpsjJkAe2V5kVUqO+iWeVwH0rmIk+15OjN6PxUY7dM1VBu0CGdlM/NK+v3jxh8jwCWUWAysvcKNGilWeLTNZuafsiBGRRMrQdUrcVqsY079rKxKeOACqbiXovJ3df97wMyiLjopEhQJky7sajQUOIdoJyCqmubL4umlR9UMykzxYps18ElX3HSmNd9NhV1WTVG259rqpz2h8qZHbcaeZhmAR4YLQEjwjE3MeXzlw1o2kpf1FtZ7IUkqAbJNgTTRCxDJQI3Dfei+PjPfCJwGNXTuPu04fwZ7c/DU86dAKPeeQJXLO0Dkw8QBCQnGA8CUCpRD4KkGvTRC6oTUsdP7tHGSoKhgOtEbigWI3bWB23rQXAZh7pyAm1potdP1XRGiqQCwqPCrT9FKsbXTAqkOnz9EP1y3ZvZ4ScU1AqwTlFd/8IJCOIT7WRTnyci9tWN+RRgbaXIaAqjTfMQ6ylHaTCU27ZuoeYkMSKqj09Dmt8SIwX0GJd5oWckqDiazf1JDLtS9x9FvHFuZCYd75iuX01mZkXFdltUlHl3WMm66pJu8rjZ7dF5+eDbacVK8bukiF7XF2dZ9KcXRMRriBO7vu76n7t9aur076X8La3vQ1Pf/rT0ev1cODAAbzsZS/DN77xjZntvva1r+ElL3kJlpaW0Ov18IxnPAP333+/XZ8kCd7whjdg37596HQ6eMlLXoIHHnjgYl5KAQ0h2gEWjQypbYuppkVF0LMHql+0G+m32uhUTU7ORIe2g3njdU0aXUio+8aoinJkOcO5cUd1e08iLLViSyIMyo665WXl7dzl5otukIaIuY/vbq4goDl6fowhDzBII8Sxj86RTfzjFx+Je756Ne76x0dBekK5VnMCPvHgeRxSAunIR8CUjmeUhki4hzz2MUxCDNJI6WF0uu9If8OmqQCl2Wl7WaEs3tP3YTMLVXpLEnS7E8S5D59x7G8PkXDP3rONUQucU3BOMR6GEKEEujnkwMcDD60g5bofmja/jLmHzTTEIA1xatxVbUcot/fYpM1MVMLoh9S9M7+opf1/nTvzjMsxZMFKAYCOClV7FNW9potgUSHzbuiOqnREuwVbyl9ZXbfYZ7PO6HA7x9mOxsfgfKJEu0GK7LHK5K+mUmwesaw63/norLYNKVUft/N6bG+st912G173utfhH/7hH3DLLbcgz3M8//nPx2g0JYPf/va38cxnPhPXX389PvWpT+GLX/wi/sN/+A+IoqlD+M0334yPfexj+PCHP4zPfOYzGA6HePGLXwzOF2vXsttoqsy2iXkOzlu9pwqEQ385SpQ0NkCxImsRYfKWY54lYVKSgolk1T51Y1p0HJXEB9NrLq8gqG8YK6XqAicEBecSk9wHF0pse6g1wCBrVU6Y5q+JbtRNSu5yk0pajVvwqMDZpIOVcIwVf4yTIAiCHOPjPWApA13zASJBMgqSEUhfAmOGvMNUxIhJO/5J5qFNJHrLYzCq9EJ5RpFxhmUdkRpmIVLJrIYpYrklJLmgCCjHOA7QDnRVF5FoBxkePLEHRw6vIuMMwziE3+HIch/ddoLBMILkBCJhQC8HEgaEAoSrKNW+aGQF1hHLsZq1Eee+6n+W+wicdFVAc3jQQnBB4bFpisb9WxQLy1q/IbePlZDE2h6UydCiqOqXVrWu3Nl+++ep1k8tvn/x/ItWnJWFyFXEolx1VoVFKtAq01H62GVSUmnAuQXpcZvrLrrPTjHvXpS3A1D5I2nR85Sr4y40pJCQ50m+5DYJ0V//9V8X/v/+978fBw4cwB133IFnPetZAIC3vOUt+NEf/VH87u/+rt3uuuuus883Njbwvve9Dx/4wAfwvOc9DwDwwQ9+EEePHsWtt96KF7zgBTu9nB3jiooQvfvd78axY8cQRRFuvPFGfPrTn97V4xddpXd6kO1tthOSVJVCW/ik5/F9NW+kbnWblGRLO4I485FxptyVKya2cvRnO7/OTdRDld6rHmoUEoM8wtlRB0f2rKN37QYoExCeHqhQTtAGPKMgqTpnzim4IJY8BH5uU1ym9QagxcWSIuYeUp2iyrXWx8We7liZVwqKhHuYZD4Ik5hkqqHsaBQizhRhFJKApwyC0ymhFer9ScMcmbYyMKLtmHvggoIQiTT3bErN3lfMRtXqsJP2BYxI+AtUhbm+SFX/Ly+/EN4/VaiLDJyvsNrdd6tjbLW+ytNn0UiQ+9ceo1TpVl4+D2Wh+E68q7arI6ra53zNJ83rvlOX7vPCeUeH9APAYDAoPJJksUq5jY0NAMDKygoAQAiBv/zLv8RjHvMYvOAFL8CBAwdw00034U//9E/tPnfccQeyLMPzn/98u+zw4cO44YYbcPvtt+/SzdkerhhC9JGPfAQ333wz3vKWt+Cuu+7CP/tn/wz/4l/8i0I+c1FUfaG4z+scmxchIpVtNWaDKQthEaH1BcGcAW5nNOX7RfX1CEkwSX0kudLMnEm6hYal1c7I8+9aOcwdsVyLi4nVK43zAMutidqOSvhRDrKUQSxnkKFQnybDjzgFfAlIIMk9EAJdqUXgU1XZlWgSwgXFKAuwmrQw0j3KzHXkktroEKAIS6hJ2iQLEGe+6lnWTsGFijb1+xOtWyJIM6aE6xI2WgVBgJQCBKonmqnc0wLrTpCgH8Zo+em007yO5Ji0mXvP1HPhaImqy5Vdo8XCvS+1/ViEDLnPz4fsWKLilO5XnedSYF60ZFEd0ryKy7IIe15lZt1EX3TMFvC13isRiyUfyj0GL1SECKhOZXHQSjK03Wq7Mi4JMdoFHD16FEtLS/bxtre9bct9pJR405vehGc+85m44YYbAACnT5/GcDjE29/+drzwhS/EJz7xCfzYj/0YXv7yl+O2224DAJw8eRJBEGDPnj2F4x08eBAnT57c/YtbAFdMyuwd73gHfvZnfxY/93M/BwB45zvfib/5m7/Be97znoVedBdcqA8tIdMvVCm3bkNQJkZGH+NWVEmUdEYSMwTDXVTXEsRdN29Z3ce9sN1W3wk1BLC8quqLw6TCZvatuJVT40aTcaTIuarUcrUsQDUBcg316tJrZpzm/7lOPaSCwaMC/SCBRwQmkQ8pgdDPkXOKySiEiAGS6UhMReqPmaaqRCqXat3nzCVIUhLb2NanvJC6NL5FZlkmqNWlhUEOX6ebOFf3hUUC/VYCjwnEiQ+eM/CMKjIkAJFTTFJFvgLKEbAcESO2+atHRLElh9RpDiIQVMzHbgqEEVnQEqlXiwJEVGte3EmxosfZTjFvghWS6fNOiRoHKZTgu6Soajzl1NkiqbSyQWMd3HRiFeaZG85L25T32c625fEBgE9zMDhieEcIv9U11B0TqH/tymOt+7HjRom2GwHaTpXYII9U379LRIJ2M2V2/Phx9Pt9uzwMwy33ff3rX48vfelL+MxnPmOXCd0b7aUvfSl+5Vd+BQDwlKc8Bbfffjt+//d/H89+9rPnjoXsOMVyfrgiIkRpmuKOO+4ohOYA4PnPf/55heakLP6t3oYsFBlyt6msCjvvN/zsOLYkQ3LORgSFFFq5ss7Nrs2rZKt0tHa5mCZM7sNNgxECjLLARnOqsF29R9lw0F3eZik8ytHxU6y0x/A9jizzIFOmxs1U6k/mBJJKEG1VYH5tEmfizHKGOPXBhXptTIrLYzo1oQXUJq2QcWZJHaMCPhUgRKpKMiJteb2Qyumb6fO1gwzddoJ2O0GrmwBtrsYqCLggumKNwyMCEcvQ92O0vdRWnal7V6we24qsmEhPWSdDiYBHuH2UIwTF+12dArPPS/485Ql0WxPxFu+NraNWW5/L9DYDoNvSVOudtjOx1hGZquWu+NlG80ol++VH+bUx+/jaE6rNEvhEWWAYUmSg/KyqJ9R5r/uFQJ0ouiyOnieWrkNf9zNz27NcTA3RbqbM+v1+4bEVIXrDG96Aj3/84/jkJz+JI0eO2OX79u2D53l4/OMfX9j+cY97nM3KHDp0CGmaYm1trbDN6dOncfDgwd24M9vGFREhOnv2LDjnMzd5XmguSZJC/tTkSPlYLasisPOJkfvcIT/m/2a9JECV4Lgm6mKXbfGFvigZmtm2vOGcaFDV2GYF3e55puez96EGZZG31I1PJylHQiTCthL+howX0mcu6krxy0E4m/qkArk2VJREwqMCqZeCQoInDBAZ0jFDPqQQsZogBCcgGYXMJYgvIGkOOYnBWQ7pEKI895ClEkIAaZhD0mJVReDlyCm36TNDpiiR8ClHnhsnbIY8ZxBUglCOXFIQwSEEheDp9JejoIBgoIKAcA6eBADlyFiKocfhhxyc5fCJadpKbbwndiYv80u7mDoTkERC6O0EUa0EFAEy97v6dd1pWmq3UitT4qb+zyBRVd9CdljZ5LoaUyLBICAoB4G0aSYXojShurauO4niuDDmBaTm0y8r7mkspu+/cR6CUY42TdHxEghJkdHMXoOEao8hZY5h3tL7TTCUBBwUEZ3+wDBjyCVD6CznUvX382l9ldGiEaKdIN96E4v5JJojGanr2q5gebvIkW1Pi1B3jG1ASok3vOEN+NjHPoZPfepTOHbsWGF9EAR4+tOfPlOK/81vfhPXXnstAODGG2+E7/u45ZZb8IpXvAIAcOLECdx9990FIfZFhbwC8OCDD0oA8vbbby8s/+3f/m352Mc+tnKf3/zN3ywHJppH82gezaN5NI9tPY4fP35B5rXJZCIPHTq0a+M8dOiQnEwmC537F3/xF+XS0pL81Kc+JU+cOGEf4/HYbvPRj35U+r4v3/ve98p77rlHvutd75KMMfnpT3/abvPa175WHjlyRN56663yzjvvlD/8wz8sn/zkJ8s8z3f9fi0CIuX3vmd3mqZot9v44z/+Y/zYj/2YXf7GN74RX/jCF6zIy0U5QrS+vo5rr70W999/P5aWli7KuM8Hg8EAR48enckJX65oxnth0Yz3wuPhNuZmvBcWUkpsbm7i8OHDoPTCpNDiOEaapltvuACCICh4BM1Dncbn/e9/P17zmtfY///hH/4h3va2t+GBBx7AYx/7WPzH//gf8dKXvtSuj+MYb37zm/GhD30Ik8kEP/IjP4J3v/vdOHr06Hldy05xRRAiALjppptw44034t3vfrdd9vjHPx4vfelLFxJVDwYDLC0tYWNj42HxYWzGe2HRjPfC4uE2XuDhN+ZmvA0aFHFFaIgA4E1vehNe/epX42lPexp+4Ad+AO9973tx//3347Wvfe2lHlqDBg0aNGjQ4BLjiiFEP/7jP45z587ht37rt3DixAnccMMN+Ku/+isr8GrQoEGDBg0aXLm4YggRAPzSL/0SfumXfmlH+4ZhiN/8zd9cyJfhckAz3guLZrwXFg+38QIPvzE3423QoIgrRkPUoEGDBg0aNGhQhyvCmLFBgwYNGjRo0GAeGkLUoEGDBg0aNLji0RCiBg0aNGjQoMEVj4YQNWjQoEGDBg2ueDSEaAG8+93vxrFjxxBFEW688UZ8+tOfviTjeNvb3oanP/3p6PV6OHDgAF72spfN9IqRUuKtb30rDh8+jFarhec85zn4yle+UtgmSRK84Q1vwL59+9DpdPCSl7wEDzzwwAUfOyEEN99882U91gcffBA/9VM/hb1796LdbuMpT3kK7rjjjstyzHme49//+3+PY8eOodVq4brrrsNv/dZv2U7Tl3q8f//3f49/+S//JQ4fPgxCCP70T/+0sH63xra2toZXv/rVWFpawtLSEl796ldjfX19V8ebZRl+/dd/HU984hPR6XRw+PBh/PRP/zQeeuihy3K8ZfzCL/wCCCF45zvfecnGu+iYv/a1r+ElL3kJlpaW0Ov18IxnPMM2BL0UY25wBeGSNAx5GOHDH/6w9H1f/sEf/IH86le/Kt/4xjfKTqcj77vvvos+lhe84AXy/e9/v7z77rvlF77wBfmiF71IXnPNNXI4HNpt3v72t8teryf/5E/+RH75y1+WP/7jPy6vuuoqORgM7Davfe1r5dVXXy1vueUWeeedd8rnPve5F7R/zOc//3n5iEc8Qj7pSU+Sb3zjGy/bsa6ursprr71WvuY1r5Gf+9zn5L333itvvfVW+a1vfeuyHPNv//Zvy71798q/+Iu/kPfee6/84z/+Y9ntduU73/nOy2K8f/VXfyXf8pa3yD/5kz+RAOTHPvaxwvrdGtsLX/hCecMNN8jbb79d3n777fKGG26QL37xi3d1vOvr6/J5z3ue/MhHPiK//vWvy89+9rPypptukjfeeGPhGJfLeF187GMfk09+8pPl4cOH5e/93u9dsvEuMuZvfetbcmVlRb75zW+Wd955p/z2t78t/+Iv/kKeOnXqko25wZWDhhBtge///u+Xr33tawvLrr/+evkbv/Ebl2hEU5w+fVoCkLfddpuUUkohhDx06JB8+9vfbreJ41guLS3J3//935dSqi923/flhz/8YbvNgw8+KCml8q//+q93fYybm5vy0Y9+tLzlllvks5/9bEuILsex/vqv/7p85jOfWbv+chvzi170Ivlv/s2/KSx7+ctfLn/qp37qshtvefLbrbF99atflQDkP/zDP9htPvvZz0oA8utf//qujbcKn//85yUA++PochzvAw88IK+++mp59913y2uvvbZAiC7leOvG/OM//uP2/VuFSz3mBt/baFJmc5CmKe644w48//nPLyx//vOfj9tvv/0SjWqKjY0NAMDKygoA4N5778XJkycL4w3DEM9+9rPteO+44w5kWVbY5vDhw7jhhhsuyDW97nWvw4te9CI873nPKyy/HMf68Y9/HE972tPwr//1v8aBAwfw1Kc+FX/wB39w2Y75mc98Jv72b/8W3/zmNwEAX/ziF/GZz3wGP/qjP3pZjtfFbo3ts5/9LJaWlnDTTTfZbZ7xjGdgaWnpgn9GNzY2QAjB8vLyZTleIQRe/epX481vfjOe8IQnzKy/HMf7l3/5l3jMYx6DF7zgBThw4ABuuummQlrtchtzg+8tNIRoDs6ePQvOOQ4ePFhYfvDgQZw8efISjUpBSok3velNeOYzn4kbbrgBAOyY5o335MmTCIIAe/bsqd1mt/DhD38Yd955Z2Xz3MttrADwne98B+95z3vw6Ec/Gn/zN3+D1772tfjlX/5l/O///b8vyzH/+q//Ol75ylfi+uuvh+/7eOpTn4qbb74Zr3zlKy/L8brYrbGdPHkSBw4cmDn+gQMHLuj44zjGb/zGb+Anf/InbaPRy228//k//2d4nodf/uVfrlx/uY339OnTGA6HePvb344XvvCF+MQnPoEf+7Efw8tf/nLcdtttl+WYG3xv4Ypq3bFTEEIK/5dSziy72Hj961+PL33pS/jMZz4zs24n493tazp+/Dje+MY34hOf+ASiKKrd7nIYq4EQAk972tPwO7/zOwCApz71qfjKV76C97znPfjpn/7py27MH/nIR/DBD34QH/rQh/CEJzwBX/jCF3DzzTfj8OHD+Jmf+ZnLbrxV2I2xVW1/IcefZRl+4id+AkIIvPvd795y+0sx3jvuuAP/7b/9N9x5553bPu6lur+mGOClL30pfuVXfgUA8JSnPAW33347fv/3fx/PfvazL7sxN/jeQhMhmoN9+/aBMTbzq+L06dMzv2wvJt7whjfg4x//OD75yU/iyJEjdvmhQ4cAYO54Dx06hDRNsba2VrvNbuCOO+7A6dOnceONN8LzPHieh9tuuw3//b//d3ieZ891OYzV4KqrrsLjH//4wrLHPe5xtsLlcrq/APDmN78Zv/Ebv4Gf+ImfwBOf+ES8+tWvxq/8yq/YiNzlNl4XuzW2Q4cO4dSpUzPHP3PmzAUZf5ZleMUrXoF7770Xt9xyi40OXW7j/fSnP43Tp0/jmmuusZ+/++67D7/6q7+KRzziEZfdeAH1fet53pafwctpzA2+t9AQojkIggA33ngjbrnllsLyW265BT/4gz940ccjpcTrX/96fPSjH8Xf/d3f4dixY4X1x44dw6FDhwrjTdMUt912mx3vjTfeCN/3C9ucOHECd999965e04/8yI/gy1/+Mr7whS/Yx9Oe9jS86lWvwhe+8AVcd911l81YDX7oh35oxsbgm9/8Jq699loAl9f9BYDxeAxKix9hxpj9pX25jdfFbo3tB37gB7CxsYHPf/7zdpvPfe5z2NjY2PXxGzJ0zz334NZbb8XevXsL6y+n8b761a/Gl770pcLn7/Dhw3jzm9+Mv/mbv7nsxguo79unP/3pcz+Dl9uYG3yP4eJquB9+MGX373vf++RXv/pVefPNN8tOpyO/+93vXvSx/OIv/qJcWlqSn/rUp+SJEyfsYzwe223e/va3y6WlJfnRj35UfvnLX5avfOUrK0uZjxw5Im+99VZ55513yh/+4R++oGX3Bm6V2eU41s9//vPS8zz5n/7Tf5L33HOP/D//5//IdrstP/jBD16WY/6Zn/kZefXVV9uy+49+9KNy37598td+7dcui/Fubm7Ku+66S951110SgHzHO94h77rrLluVtVtje+ELXyif9KQnyc9+9rPys5/9rHziE5+4oxLreePNsky+5CUvkUeOHJFf+MIXCp+/JEkuu/FWoVxldrHHu8iYP/rRj0rf9+V73/teec8998h3vetdkjEmP/3pT1+yMTe4ctAQogXwP//n/5TXXnutDIJAft/3fZ8tc7/YAFD5eP/732+3EULI3/zN35SHDh2SYRjKZz3rWfLLX/5y4TiTyUS+/vWvlysrK7LVaskXv/jF8v7777/g4y8TostxrH/+538ub7jhBhmGobz++uvle9/73sL6y2nMg8FAvvGNb5TXXHONjKJIXnfddfItb3lLYYK+lOP95Cc/Wfl+/Zmf+ZldHdu5c+fkq171Ktnr9WSv15OvetWr5Nra2q6O99577639/H3yk5+87MZbhSpCdDHHu+iY3/e+98lHPepRMooi+eQnP1n+6Z/+6SUdc4MrB0RKKS9sDKpBgwYNGjRo0ODyRqMhatCgQYMGDRpc8WgIUYMGDRo0aNDgikdDiBo0aNCgQYMGVzwaQtSgQYMGDRo0uOLREKIGDRo0aNCgwRWPhhA1aNCgQYMGDa54NISoQYMGDRo0aHDFoyFEDRo0aNCgQYMrHg0hatCgQYMGDRpc8WgIUYMGDRo0aNDgikdDiBo0aLAtnDlzBocOHcLv/M7v2GWf+9znEAQBPvGJT1zCkTVo0KDBztH0MmvQoMG28Vd/9Vd42ctehttvvx3XX389nvrUp+JFL3oR3vnOd17qoTVo0KDBjtAQogYNGuwIr3vd63Drrbfi6U9/Or74xS/iH//xHxFF0aUeVoMGDRrsCA0hatCgwY4wmUxwww034Pjx4/inf/onPOlJT7rUQ2rQoEGDHaPREDVo0GBH+M53voOHHnoIQgjcd999l3o4DRo0aHBeaCJEDRo02DbSNMX3f//34ylPeQquv/56vOMd78CXv/xlHDx48FIPrUGDBg12hIYQNWjQYNt485vfjP/3//4fvvjFL6Lb7eK5z30uer0e/uIv/uJSD61BgwYNdoQmZdagQYNt4VOf+hTe+c534gMf+AD6/T4opfjABz6Az3zmM3jPe95zqYfXoEGDBjtCEyFq0KBBgwYNGlzxaCJEDRo0aNCgQYMrHg0hatCgQYMGDRpc8WgIUYMGDRo0aNDgikdDiBo0aNCgQYMGVzwaQtSgQYMGDRo0uOLREKIGDRo0aNCgwRWPhhA1aNCgQYMGDa54NISoQYMGDRo0aHDFoyFEDRo0aNCgQYMrHg0hatCgQYMGDRpc8WgIUYMGDRo0aNDgikdDiBo0aNCgQYMGVzz+/yGd+PHHn3/5AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ds[\"t2m\"][-1].plot()" + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHFCAYAAAAT5Oa6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebRlSVUnjn8i4gx3eEPOU81SUMjUKiKgLgFpEKQERKUFQZDJBSoLhbYVFIp2olFBWwVpBwopaGxaAaEVoYGi2y+FFCg/gaZAZagqqrJyfOMdzjkR+/dHxI7Y57ybmS8rM6sKuXutm/nuvefGienE/sRnD6GIiDCXucxlLnOZy1zm8g0s+u6uwFzmMpe5zGUuc5nL3S1zQDSXucxlLnOZy1y+4WUOiOYyl7nMZS5zmcs3vMwB0VzmMpe5zGUuc/mGlzkgmstc5jKXucxlLt/wMgdEc5nLXOYyl7nM5Rte5oBoLnOZy1zmMpe5fMPLHBDNZS5zmctc5jKXb3iZA6K5zGUuc5nLXObyDS9zQDSX8ybXX389lFK4/vrr42fXXHMNlFLb+v3ll1+OZz/72Wd1z1//9V/Hu9/97m3V5d+S/PEf/zGe/OQn4/LLL0e/38eVV16JF77whbj99ttnXv+Od7wD3/It34Jer4dDhw7hJS95CTY2NlrXfPjDH8ZznvMc3Pe+98VwOMRFF12EJz3pSfjUpz61pbz/+l//Kx72sIdhz549KMsSl156KX70R38Un/vc586qHdup16y2K6WwsLCw7fucTX+tra3hFa94Be5zn/tgMBjgoosuwo/8yI+02qaU2tZLzr/f+73fw33ve1+UZYkrrrgCr371q1HXdevef/mXf4mnPe1puPLKK9Hv93H55Zfjx37sx/DP//zP227rdu8FAEeOHMGzn/1s7NmzB4PBAA9/+MPxoQ996B57r7nM5YIKzWUu50k+8pGPEAD6yEc+Ej+75ZZb6IYbbtjW7y+77DJ61rOedVb3HA6HM3+zurpKN9xwA62urp5VeV8vcujQIfqxH/sxetvb3kbXX389velNb6KLL76YDh48SIcPH25de9111xEAet7znkcf/vCH6Q//8A9peXmZHvOYx7Su++Ef/mF61KMeRW94wxvo+uuvp3e+8530sIc9jLIsow996EOta1/5ylfSNddcQ+9617vo+uuvpz/90z+l+9znPjQcDummm27aVhu2Wy8pt956Ky0vL9OhQ4doOBxus7fOrr++53u+hwaDAb32ta+lD3/4w/Rnf/ZndOWVV9Li4iJ95StfISKiG264ofX6/u//fur3+1s+5/n3q7/6q6SUol/8xV+kj3zkI/Ta176WiqKg5z//+a17f8d3fAc98YlPpD/90z+l66+/nt761rfSN3/zN9PCwgJ99rOf3VZbt3uvyWRCD3jAA+jiiy+m6667jj7wgQ/Qk570JMqyjK6//vp73L3mMpcLLXNANJfzJrMA0dnI+QRE/9bljjvu2PLZjTfeSADoV37lV+JnTdPQwYMH6bGPfWzr2re97W0EgP76r//6tGWur6/T/v376dGPfvQZ6/T//t//IwD0y7/8y2e89mzqJeXqq6+mH/iBH6BnPetZZwWItttf//zP/0wA6Jd+6Zda137sYx8jAPS6171uZvmnq8+xY8eo1+vRC17wgtbnv/Zrv0ZKKfrc5z532np+7WtfozzP6bnPfe6pG3gn7vUHf/AHBIA+9rGPxc/quqb73e9+9B3f8R33qHvNZS53hcxNZt+g8u53vxtKqZmU9Rvf+EYopfBP//RPAIBPfvKT+NEf/dFobrj88svxtKc9DV/96lfPeJ9ZJrO6rvHzP//zOHDgAAaDAb77u78bn/jEJ866DUopbG5u4i1veUs0UTzykY8EMNtk9uxnPxsLCwu46aab8H3f930YDoc4ePAgXvOa1wAAPv7xj+O7v/u7MRwOcZ/73Advectbttzz8OHD+Mmf/ElcfPHFKIoimgiapjnr+p+L7Nu3b8tnD37wg2GMwS233BI/+/jHP47bb78dP/ETP9G69kd+5EewsLCAd73rXactc2FhAfe73/1aZZ5K9u7dCwDIsuyM155NvViuu+46fPSjH8Ub3vCGM5bfle32V57nAIDl5eXWtTt27AAA9Hq9s773+9//fkwmky1t/Ymf+AkQUcvkO6uehw4dwsUXX7ytMTibe73rXe/CVVddhYc//OHxsyzL8IxnPAOf+MQn8LWvfe0ec6+5zOWukDkg+gaVq6++Gvv27cOb3/zmLd9de+21+LZv+zY86EEPAgB85StfwVVXXYXf+Z3fwd/+7d/iv/yX/4Lbb78dD3nIQ3Ds2LGzvvfzn/98/NZv/RZ+/Md/HO95z3vwQz/0Q3jKU56CkydPnlU5N9xwA/r9Pr7/+78fN9xwA2644YYzKsu6rvGUpzwFT3jCE/Ce97wHj3/84/GLv/iLePnLX45nPetZeM5znhMX72c/+9kt/5nDhw/jO77jO/C3f/u3eOUrX4m/+Zu/wXOf+1z8xm/8Bp7//Oefsb7OOTRNc8aXtfas+oHlox/9KKy1uP/97x8/++xnPwsAcSxZ8jzHfe973/j9qWR1dRX/8A//0CpTirUW0+kUN910E573vOdh3759WxTkLDnbeh05cgQveclL8JrXvAYXX3zxGcvfjszqr8suuwxPetKT8PrXvx4f+chHsLGxgZtuugkvfvGLo5/U2Qq35YEPfGDr84MHD2LPnj1nHIMvfelL+OpXv7plDHizIUH/2dzrs5/97Jb+B9KYSJ+pu/Jec5nL3SVn3srN5d+k8O7sjW98I1ZXV+OO+POf/zw+8YlP4Pd+7/fitT/8wz+MH/7hH47vrbW4+uqrsX//frz97W/Hi1/84m3f96abbsJb3vIW/OzP/ixe+9rXAgAe85jHYP/+/fixH/uxs2rDwx72MGitsXfvXjzsYQ/b1m+qqsKv/uqv4ilPeQoA4JGPfCTe97734Td+4zfwD//wD/jWb/1WAMC3f/u3Y9++fXj729+OBz/4wQC8Ujh58iQ+97nP4dJLLwUAPPrRj0a/38fLXvYy/Mf/+B9xv/vd75T3fs5znjOTderKIx7xiLN2Bl9fX8eLXvQiXHLJJXjOc54TPz9+/DgAYNeuXVt+s2vXLnzlK185bbk/9VM/hc3NTbziFa+Y+f1wOMR0OgUA3Oc+98H111+PSy655Iz1Pdt6vehFL8JVV12FF77whWcseztyqv4CgHe+8534qZ/6KXzv935v/OxBD3oQPvrRj2Lnzp1nfa/jx4+jLEsMh8Mt3+3atSv2xSxpmgbPfe5zsbCwgJ/92Z9tfae1hjGmxcCezb2OHz9+yv7n7++Oe81lLneXzBmib2B5znOeg/F4jD//8z+Pn735zW9GWZZ4+tOfHj/b2NjAf/pP/wlXXnklsixDlmVYWFjA5uYmPv/5z5/VPT/ykY8AwBbw89SnPnVbppZzFaUUvv/7vz++z7IMV155JQ4ePBjBEOAX6n379rXMgu973/vwqEc9CocOHWoxOo9//OMBeMbhdHLNNdfgxhtvPOPrTW9601m1aTKZ4ClPeQq++tWv4p3vfOfM6KtTRfqdLgLwl3/5l/G2t70Nr3/96yMo7MrHPvYx3HDDDbjuuuuwuLiIRz3qUa3dvrW21VfOubOu11/8xV/gve99L/7oj/7otPXtMnCnYtrO1F8vfOEL8Rd/8Rd4/etfj49+9KP48z//cxRFge/93u/dlpn4TO3Z7ndEhOc+97n4v//3/+LP/uzPtgDNV77ylWiaBo94xCPu9L22e+1dea+5zOXukjlD9A0s97///fGQhzwEb37zm/GCF7wA1lpcd911eNKTntTazT396U/Hhz70IfzyL/8yHvKQh2BpaSkCi/F4fFb35J3ggQMHWp9nWYbdu3efe6POIIPBYIsfSFEUM3evRVFgMpnE93fccQfe+973Rj+TrpzJfHjppZduy9xzNsphOp3iB3/wB/F3f/d3eN/73oeHPvShre+5T48fP479+/e3vjtx4sTMdgPAq1/9avzqr/4qfu3Xfg0//dM/fcr7f9u3fRsAz9Y98YlPxJVXXomXv/zleM973gMAuNe97tUCEa961atwzTXXbLteGxsb+Kmf+in8zM/8DA4dOoSVlRUAnukDgJWVFeR5juFwiP/8n/8zXv3qV8dyLrvssi1M05n66/3vfz/+5E/+BO985ztbrOhjH/tYXH755bjmmmtmmplPJ7t378ZkMsFoNMJgMNjS1llgk4jwvOc9D9dddx3e8pa34ElPetJ5v9fu3btnMjMnTpwAMJu9u7vuNZe53BUyB0Tf4PITP/ETeNGLXoTPf/7z+NKXvrTF0XV1dRXve9/78KpXvQq/8Au/ED+fTqdxMTsbYUV4+PBhXHTRRfHzpmnu8bT5nj178KAHPQi/9mu/NvP7Q4cOnfb359tkNp1O8eQnPxkf+chH8J73vAePfvSjt1zD/h2f+cxnWua8pmlw00034WlPe9qW37z61a/GNddcg2uuuQYvf/nLz1gPlsXFRdz3vvfFF7/4xfjZe9/73mhSA1Ifbbdex44dwx133IHf/u3fxm//9m9vuefOnTvxpCc9Ce9+97vxghe8AFdffXX8rizL1rXb6a9Pf/rTAICHPOQhrc937NiBK6+88oz+PrNEtlUCsMOHD+PYsWN4wAMe0LqewdCb3/xm/Mmf/Ame8YxnXJB7PfCBD8RnPvOZLWXwZ9163Z33mstc7gqZA6JvcHna056Gn/u5n8O1116LL33pS7jooovw2Mc+Nn6vlAIRbVEuf/zHf3ynnH85Cuxtb3tbawf5P/7H/7hTkVplWZ41S3Vn5eqrr8Zf//Vf4173uted8iW55pprTsu2sCwuLp7xGmY6PvzhD+Mv//Iv8X3f930zr3voQx+KgwcP4tprr8V/+A//IX7+P//n/8TGxkb0pWL5lV/5FVxzzTX4pV/6JbzqVa86Yz2kHDt2DJ/5zGfwXd/1XfGzrsPt2dbrwIED0cwq5TWveQ0++tGP4m/+5m+wZ88eAB5snQqUbre/+Pcf//jHcdlll8XPjx8/ji9+8YszQdSZ5HGPexx6vR6uvfbaFnC49tproZTCk5/85PgZEeH5z38+3vzmN+NNb3rTthzU7+y9fvAHfxAvetGL8Pd///fx2qZpcN111+GhD33oGQH+XXmvuczlLpG7L+J/LvcUedrTnkb79u2joijo5S9/+Zbvv+d7vod27dpFf/RHf0Qf/OAH6Zd+6Zfo4MGDtGPHjlYOoFl5iF71qldRd5o94xnPIKUU/fzP/zx94AMfoNe97nV06NAhWlpaOuucQo94xCNo37599Fd/9Vd04403xqSAs+pyqlwxj3jEI+j+97//ls8vu+wyesITnhDf33bbbXTZZZfRfe97X3rDG95AH/rQh+h//a//RX/wB39AT3jCE+iWW245q7qfi1x99dUEgF7xildsSQYo878QEb31rW8lAPSCF7yAPvKRj9B/+2//jXbs2LElAeJv/dZvEQB63OMet6VMmVxzZWWFHvKQh9DrX/96et/73kcf+tCH6I1vfCPd9773pcFgQDfeeOO22rDdes2Ss81DtN3+Wl9fp8suu4x27txJv/Vbv0Uf/vCH6W1vext9y7d8CxljTplj60z14QSGL3/5y+n666+n3/zN36SyLLckMPzpn/5pAkDPec5zttTzH/7hH1rXvvrVryZjzJbEhtu912Qyofvf//50ySWX0Nve9jb64Ac/SD/4gz84M1niXXmvuczl7pI5IJoLfeADHyAABIC++MUvbvn+1ltvpR/6oR+inTt30uLiIj3ucY+jz372s1sSKW4XEE2nU3rpS19K+/bto16vRw972MPohhtuuFOJGT/96U/Td33Xd9FgMCAA9IhHPOKUdTlXQEREdPToUXrxi19MV1xxBeV5Trt27aIHP/jB9IpXvII2NjbOqu7nIjxes17cB1Le/va304Me9CAqioIOHDhAL37xi2l9fb11zSMe8YjTlssymUzoec97XsygnGUZXXzxxfSMZzxjCxg7k2ynXrPkbAHR2fTX7bffTj/90z9NV155JfV6PTp06BA94QlPOG3G9e3U53d/93fpPve5DxVFQZdeeim96lWvoqqqWtdcdtllp6znZZdd1rqWn61ZIG079yIiOnz4MP34j/847dq1Kz6LH/zgB7dcd1feay5zubtEERFdGO5pLnOZy1zmMpe5zOXrQ+Zh93OZy1zmMpe5zOUbXuZO1XO5R8qZHKy11tB6jufnMpe5zGUu50fmGmUu90jJ8/y0r2524bnMZS5zmctczkXmDNFc7pFy4403nvZ7DrWey1zmMpe53LXyxje+EW984xtj4tP73//+eOUrXxmz9v/lX/4l3vSmN+FTn/oUjh8/jn/8x3/Et3zLt7TKmE6neNnLXob//t//O8bjMR796EfjDW94w3k7q/DOyNypei5zmctc5jKXuWxb3vve98IYgyuvvBIA8Ja3vAW/+Zu/iX/8x3/E/e9/f7z1rW/Fl7/8ZRw6dAjPf/7zZwKiF77whXjve9+La6+9Frt378ZLX/pSnDhxAp/61KdgjLkbWjUHRHOZy1zmMpe5zOUcZdeuXfjN3/xNPPe5z42ffeUrX8EVV1yxBRCtrq5i7969eOtb3xoTs95222245JJL8Nd//denTJx6oWVuMtumOOdw2223YXFxcX4Q4VzmMpe5zOW0QkRYX1/HoUOHLlgAyGQyief6nasQ0RbdVpblllMKumKtxTvf+U5sbm7i4Q9/+Lbu9alPfQp1XbdORTh06BAe8IAH4GMf+9gcEN3ThdHrXOYyl7nMZS7blVtuueWC+MVMJhNccdkCDh85+yOUZsnCwgI2NjZan/FhzLPkM5/5DB7+8IdjMplgYWEB73rXu1rnEp5ODh8+jKIothyBtH//fhw+fPhO1f98yBwQbVP4fKlveskroct0Wro6g8GRzoVMOsNvSbWvifdSAOVAsxgeFAKydQPXdz7lbUaAIZhNAxBgFy3UREM3Cnqq4AqCrhXMCDATQFnA5UAzBKYHayx9PodywHQHYHuAHTgoq+BKB71YwW3mQOl83RT5PLsTAzXVIA1Q6aAaBTPWcDkh29RQVbhUA8PbAVsALgOGdzi43Dds/WIF0r5OxSZQnnSoljSKdYemp+AyhWoJqBYB1yeQ8W0H4OMpFeFUwxW7kVTMDaxc+N8qKCs+C32qSPwPcS/46+K13fHRiPfQjW+zcr6fFaXfxjK23JfSvTpzhLTy9xEbUmUBU1EsiwzQlAq2DL+n9L8zYdhE3UmlumvrX75f0jW2TONHOlRPifIptZv7i9urKy6bQFrBFu1rsjHFvmbRFUE53ybdEJQl1EODbOJARsU+tbkCmXQvEAFKYbqskY1d+D1QLygUaw66odA2f09b6pnPmaLQL1oBCnGOpk5vXwvRN0AaZx5TKC4v/K19maSAbELIRiS+U5js9PdVLtzDbR1L5cK9HVr9l038H8oRVAOY2pdtSz/PyQD5hoMtNcrVGuPdOUxFsKVCvulAWvl54oBirUG9mMV2kQ59b/31XC/SsgMp9gH3EZSCy/3fZirGW/SxLQBT+b5pev4+ZPz8IK1azwRpQNcEU/u6kFZQjuL9dON/y/OaMgWXAaRUfL5az7d8zs8gXKatJ/j//cWvbOtswjsjVVXh8BGLr37qciwtnhsDtbbucNmDv4JbbrkFS0tL8fPTsUNXXXUVPv3pT2NlZQV/8Rd/gWc961n46Ec/um1QNEtmsVR3pcwB0TaFB0mXPZhtAqJTgSFeTE9/wzN/dzpA1Cw66IJXHEBBwzhA1wrNwMH1LbTN/EKdOyAH1FRDZQqqJJADNCmgBPQUcAPA7SRkVAALGtkI0BOgKoBp34Eygu5ZQOUwOgMZBzKEbFiDnILNMqi+guJKLlvQpoFyCsppsA+dywA1AGgRWLidoHpAMSFMdmpkRVC8BZBvAnpAMKUCKYLKFbQGsgxwJdD0CJSJzlbk/1NCSbUGK42Nr4iKi6CyHhRJEBAXSdf+rQoLrZl4UMrjoZwHlSSBCoOioBh1hfY9BTjClsWZQEql8Sev4Fym0hzh7xygNcW6kwF0T8WnX1sPhADAKP89tyMqNFGerr1CQZ76wwTl5bKgaCQo4v4VQFBxWxygM38/BggqT2OkGsAE4OP7IShTE0ARAcr4/zUUqJ/63F/HlfaAi0VXCgqAHSjkGw7lOvl2FqHPMwCOoHLt+yY8/y7zyhOOAK2gA4jkYZV9CdUGjQyI5LiSTm1tShW7SylAMYDKgaxycexcrqAH/ko5N4BTKPEAGiMoyfzFNlfIxoQ6C6CL/L1AAJYAA6DZ20NBAEr/XpeEpq+QVYRytUGzXCLT8PMu9BEpAJkfR64Tg8d6oFBsuFRXJLBki1A9MU78PSlAKwA9D4a0ADPIwnyMgxv6OQfMiJBXDnVfe5DLIFSMUbwHj4HYcHSB651a7y+wgl9YVFhYPLd7uNARS0tLLUB0OimKIjpVf/u3fztuvPFG/O7v/i7e9KY3nfG3Bw4cQFVVOHnyZIslOnLkCL7zO7/zTrTg/MgcEJ2tnMW8U52dWYtBELvFLQ/Sme5Bs6+JQIv/N+HBJgU4wPYJ5YpCNtYYX+xiffRUwy5YOEdwOQGFA2oFMzGY7iHQyO/GipNeM072E/Iv+513vUyg0kEv1Mhyi2qUg3ICGYKqNewoB4yDyh2QKVCjoKZBK2ivMCgjOBcUTk4Y71dYuKXdpmxC0FOFesH3W7UMNLWCroHpsvIayQH9Y4TpThWUMgWmIOwMDaUFsNt5TsWFjxSgdPhN6DsY8iCJ64RQd52UDimvED0QC3+HeqWFN7RLKDJmMyIACX9D1Efb9DePqZw3np1R0A212AoKmMllKraJQROXKZkqBECkG8AGZiWCKwU0PQHqCDABONkSKFcJtREMVfjNTADK7YAHEPnUAzwJEOT3WSNAEgG28IxgvuHCe+3HOTwb9VDDFu0dfzZNLIGyfl70TjoPfERfeyDjQRZl5EFPrjwrEYG7mAsqtYfEM18PVRxXEn0RGRy5Lqg0JyLLxv3M7XYEm3kGjcGmZEFNLcbQcTs8TmlyBVOFDYVTMBOCmRJskeZMZCUtxXaCAJupyK6RUoExVhjvyZGNHeqhDu1M4xfZK7EB8POY0PTE/GSQxvMhzDFd+w1ENiY0vdDfAVS7TMztLgtr/PdmCuQj/7zbXnq2Z28g01gqEWN0toxQ+uHWe11IseRgt1nX05VxrkJEmE6n27r2wQ9+MPI8xwc/+EE89alPBQDcfvvt+OxnP4vXvva151yXOytzQHRnRCzmMxf77copgM25lMELtBlpNAueZqBGgzIEkxgwuphAGcHurmGO5X7xyrw5TZUWWM9QnDBoFoBm4IFANgGKNW+OytcUmj4wuogwuFVhWmVo+g2cUaDKCLqbgEoDAweqNFThV+lsU4N2W9iJQbZhQAqwA0J5TKF/TGHzkF/UJjsVlm52mC5r5COHfKQw2UdQzpvGTAX0jgPlGmHjIgXdABsXKbjSt2/Ljo4UoNPur9X3OgAepwBDcZFTIJBRgI3rZiwKDGTCz4nBRFA8ZppAk7xnyzwmWJuoSELXRTAB8R3Pu+48YIVsgtkjE58HXUKCPZLgmcUrS19vIPwvAA0p3+fNICirkW+bLQIoYqWq4Ymc8FtXesZMAkNZb28GCYpZqTY4VL5NTUkwFQCl0JS+3goeJJBW0LWL17tMwUwJZgrUA68YmR1oBhrFmg0gVswRYcZh8AEgmodcYDu6mxg5DoraLKBuvNmIL2wxugpwWrZRgE8EppTnlAJWL/ego1zxLCBloQ8Y+AhwRdqzjpQlsB2fSUrvGfSQAWDhmRUFqABSIqCJIM1PGEWAMyqZFI1KrGC4njcDzrSfQVIqbhh4PvCmggKAa3oKRUPQjf9bWYCKNkhULgDAjlmc56WpCdqSX5NUqIdTW+Z8ayp2Ppfz/lRr/FlvZi+AOBDcKZ0Btl/G2cjLX/5yPP7xj8cll1yC9fV1vOMd78D111+P97///QCAEydO4Oabb8Ztt90GAPjCF74AwDNDBw4cwPLyMp773OfipS99KXbv3o1du3bhZS97GR74wAfi3//7f39ObTkXmWeqPs+ybZ+hcwfkpxXdAPkdOVTu2ZnipBLK17M3etWv8nZoodcy6ImGWsnRO2JQ7XTQFaB3TeEKv0uzBTDd61AvEMwEWPxXr7xcRrjowEk0mwVUaUGFg5oYwCqgtAApmPUM2jioRkM1CnS4j3zHFMUq4EqCGSvUSwQzIUwvrqEcMLrYd9LwSIN64Hf8zYJDdckU090Ow9sITd+zBZQBo0MO+UZQXgRQz0WWqN054X8b2B/J3Dm/cLbMkoa8yQxo7/5U+o38X+7yHZtgbHvx5s+AtONlVkU1/jtd83gJIMTXdNcvCUBywTIEhUNBqVvhEtDyVeowFvE9K11K1+brQHki1EUDxYb3RZEmqegDFNizVt/JamvA5um5aXq+z+T9dBNAaQf464YiSiWtQMazRpEl1UC+SdB18DWyhGI9gaF66BFBBDdchlHeHOl4DEO5PH6nUo7GAwVv4vEvXacxkHMqsl1i7sjxAjxgkiCKNDDdoVrM0SzGg8G0atJ13m8moWlm2PzvOgNDQN33QFD6NCnnwastVPTRsUUCHIBvv6kR/bdcpsIYK9hCRfDHcyeakzMBdgIoIgU0AwVbqlgPl/v/dR3miE196P2gGKSHcQjAmtm9OA4dcMrA/ky44LTr+yz26d+o3HHHHXjmM5+Jq666Co9+9KPx93//93j/+9+PxzzmMQCAv/qrv8K3fuu34glPeAIA4Ed/9Efxrd/6rfjDP/zDWMbrX/96PPnJT8ZTn/pUfNd3fRcGg0HMb3R3yTwP0TZlbW0Ny8vLuPIXfj35EMlFH+2HQAnFN8tkBiDauu/ULkOJ33XXM/HA14sOVBAoc+jfkqNaJq/gGwW7YGHWDCgHXN96VsUpqEahOG5QXzZBOahhblwEyDMG6/dyKE5qZJuenVm5imAmCvlmYA7uu4lqtYQe+9UtPzRCtVZCr2Rwu/0qpldyuIyQ752gPt6D2VEBX+vBTBQWvwKsPHoMe7JAedRg+UsUafzJTo1yjXD08RMs/X99bFxGsD1C74jG4DAwOgg0faDe3XgHbhPMeWMD0p5ZojwMQsehFRpAo6Br5U1rsqttApPsSyR9FpTzrBBlgBn5stgfQpH3wQIA20f6bVBYZPzfOjiL6oqVfahmAHfM1sTfS4AEAcYYEDETRR5wsBMp795j2wVzVQ/89dkkKcAIFhgMhDoU65SAVvDTYdOLy/nz9jyNjr8uFuP9p1y4Z/iNy73C8wo4sTjMqrEy5jZnE4pKkNklULommskY4DE7BHg/IPbPiW0NbJVRqHYY2LwNxlrmL6Q+8Z9tvbbLHMW+Rxoj79CL+NxGR3axRjCAioyjagMqZphIB1AdWCBvcmag4eeSqQk2VzCVZ5yyKcVyZLtsLuYLgik1sGXZ1LNzTtgZbKGiM7PNg7M5CZCXI7Eu3BaV6m97gBmjBQJ5LbWlnyvaBrAnmVekfivXKALLpqdg+0C26d+b4HcmzdBAZ65y++WmQDwrs9b71gaK+6Ka4B/f/gqsrq5u2y/nbIR10m1fuPi8OFUfuurWC1bXrxeZM0TnQUhh9o7gQkHNs9h9ZBsaeqyhKo3Jfgt1cOIXo9r78rhecLYlBb1pkJ803qeoR9CHS4xP9kAKqBf9S9V+t9YMPQAp1hTqZYfxQYdsBAwHUyzt24AbWLiBRbVeALWC210BEw21mvtFbqmGvXUAPdXIv9BH76hCeZzb5xmZpa94Zbh2ufffWLjdYrqs4DZyD36WHAa3aez8gkP/hIUtgPIkoEcm7kBV7YER2CTFjIUTjI9TQKO83UtTVCpxNymVF5sbOk8OKy3bY98H7/jNwIKZIr5WjqUK/hJRuYUF22Vo+YqwSYGZHjZ5MCMQF3Tx3gYF1HXQVtabkkxNsiqt9sSyIcCMKCsfeZ8Sbpup24VsUSIBDPkbpEvNNLBkwcwT60sCYDDg0AwoVVSk9UBFUEbaRylBeaXPYAjwfkXSVAYCECKQSKsW6+YCI8UMx8zNDrfpFCJNLRxJx8yXtgnkukyYyMyMuSeAaGKz2uBIMoIMhmQdLLODwaxUDzyr6jIVovtExcVckr5rkckJrIszqtW/QAKfkeli4Bb+183sNrBpmfvEFmlTAYTIMzYz82ZEzPM4163/XdP3a4bteXOtZxORGK3M+1G1fJAIrTnA7TiVT9BpXSXuQobIEp2X11zmgOjftoQFw+WeKQEAbRzc0EJfueGZj0Z5JVVaKKfQDH10mB06KKdQLFUYH3QoT/hdlhta4Cqfq2J87ymqZcLSFSsoTmg0A2Dl6ALqxiBfrLC0d9OvKD0HTAyyVQM9VaDCwU1NXDR0BWxeagHld512mmH4VY3j/84vYMOvhZ2oUcg3CMufzUD32cTiF0LagJ7Cyr0Meie8X1O+pqCrUDgzdA6I3tAAoCm230wVzEQBLpgJ4gIuFkyhjCI4ALbuKgPbw8AjG3nmjBf/qByovZOXzJHLkmlgizBLJMBHS2GrdI00d8UIJ8svCuHqqeiotIGYZqB1a6E8RvtUNMFkY/8/K6SWCVIqmdj34j3595JFUU1qkwcIKvlYUWCRTPt7F1gwDg9XNilx73ANFOtuiw+J9NPx4d3JAZfD3vm6mX0hGDYp1BkbZv9aTIIE2zaZjSIYNqKMjql0S32s+J7BSLiuxX4wg9ZigVS7zjM2eAyM2GzG949RjbHh4k+dQOqW+cn3CuCK5yUCaM8mwV+t5+dV01Np3st7ibmlHAI761krU3s/JJf5tAp8v6avIkDiPk8AHDPlVJ/PBEWnAFBzuefLHBBdSDnDA3GX2JkJQO58ZFdGqI/0Yyi821nHxUkXNlxL0BMFtVCjWbRopgb5uoYNVsLhlzMY4/xObiODahQm/7gLLk9Ud55ZNNMMmxsldOk1vp541okKQr5zCmW847MrHCb7CNm6QT4CqkUFWOWjRNZUvO/mxcB4j/Yh7VOgHueoF4FyBdg4pLB4i0OxStAVsPRlSg6qpLxPkOyPEFIPIDpaKhsUofYro1QOYLaJgYzyC7M0ZbACMhPPBsWxFSxCa1cPwQgEpRDXVlZqKpnOmN1xGZJZCGgpmGjK6fiYsINr9BVyKc+LNBu08v+cYcPIjtDSTKQogaOZvjb8XjBt8brAmrDCi9/L9sh6hV1+VObGK8Gmr2Fzr/B8/6rIOnXbRXnyTQEEyyKU/EzziGjPFmAic0RBjFOnD5jpi87jaANOrg/3K88xBnQcjTij6Na6wywN96ep/dixuMz7VkkzYDsQQcxZ2S4JalR6cT29acwzT46dqAM4k2Ze9gGKTJP2YJ3vbWokk2InUGDLvA8g2Rb+PfsZ9Va8gz1/bqY+dUA9UHGzcD7YfLm54PrfFcJO1ef6msscEF0YETusLZTruYIgWa54fzrJVo1niAoHGIKtDOqNAtjI4HZWflG+vecXv4mPSKPNHHAK+nAJWxJsD6iXgHoIjDdKVMsEM9Yo1oDpLgcz8d+b0mLjZm+Ddo2BHWfAZgaXeb8l7J3COQWyCmr3FJQT7EKDYt0vTJsX+TpP9gCLXyWs3sehWvaKa3QQGN7W+Kimyps/xnuBzW9qwOaT3f8U+j+DjwyT7AR1BwYgTYAhuJCzSddeubPpTLItUlm0oqCY/YEHQ9EHIryyUdp9soJgRoB3vcoi5iNqrU2BWYiMgQQIAmwxqxSbKJrKzI2uU9K7uNOmBI7ycVIirZ13dxdOvk5NX7XaRCrkiLEeyLX7PtVVQSih8L/Lk3N1ZFWUMJsIYKLI54uRDr/RfykAxqavI2CKz4oj/zIKruD0AOFLoyIQUg0FsKTQ1RMzzeNdBgwCgHWUpK6RTD7iNzLqKxWS+rWl9AV7Jtk/30ZEB37JhnE4ujRFMeD2qQn8++jrxGMlTKxNX7XGID4TArwCnIspOG0LJoiy4P8jAgp4XpJREeTJfuf52AJD/D/XUYLk4N9kJoR85CIbmtrq2yHrLNlWCRbPKN250Rm/LsC9UOJAsOf4mgMiL3NAdC4yC4yIB7almGaBobMBR3cGTPGCYRWU9TmAMGyAEWfkI5hjBdzuKlHXwZdGVQoofI4XXDTx/gcENAuE4uYSzZKD3VuhGQBYbDA+4GDGgD1RQO2aQmcOFPyUdOVD7V1BUApwR3owGxnc1HiT1XqGyT6HyS5guq8BxhpLXyaM9isUJzX6Rwn1vcbQNbBxcY71exF0v0EzAMZXVtjxmQxrl2jkI/JMVcULqYrKmBmg6EeTEWIEGvk2c5iw7DvJusRIsxnjx74tpEP27rIdqt0FsC2WSLVZAhmZ5YIiieH7SIyBBC6RTWG/oo4i9k7JFJ2TWyLK6wKQ2EZWrCJKh51rpanGFUhmylksker8TeE3KjncSn8nM0ELTLGwEzCPD/uG+L4k6OAsrAgxESC0AkKSP2ki4USLqiEQ+wwF9kua/Kgz3tt6nnl8XLusLZsm/r/b7xC/EwEakc0STse+jeK22puetEOKduMEnNP0mbxPqz6ifOV83iLAZ7SOzApfp9K8YuAEJJOUlWHzxM8TIjskzXitZ4NZMjandRJdyghFBk/eTKYw3m1ABpgueWY5H5H33aoYNEuE7v+UfkuyT2ZK+B3P15bM8cXXpcwB0bnKNkDKlkgyubCeaVGdAYROZ2o75XfOAw+lfNJEZA66VshXFbCRwS4llkU1ClQQUGnUuxu4RiHbBKZ7nAdPGsh3TQD4jNjFsIKufR4gPdUgUnCTDNlq5oEY7zx71mfArnwkV3Y0R3nUwA2td9bOADOsQT2HY99GGN5OWPoK4cjjpnArBZb/1cEWwN5PArSZob5oCmxkIAPs+FcLWyiM9yjoKqxGGYXF1PsURcWiAM6B4s1JfCwCr25IDBH89/EzwZK0mA+5ew+LuMvTK42D2B3HHTGigoyOo6JcJxQPj3Erj5EAEHHaMPgTTrHlmu+XaMIITY7h2EGavgd1Tb8Tpt9teyjD5YCuwvEIneg7/l18T21dEaOLuI8otY2/9yYdNROEtI5fkH4zDEZVioJjhkgRYMb+CApbJLNb0w8FhGMeOIR/1k7/VCyRjDKTzuF+HlLrehkZ2PVtkmUCCEdsBLBvRZliPCJ21YgsXNNDBIo6mGV13R5XqGTKagGkUD9OjMgmW1NRAmIdxoYjAOU46UbMQwZZwd8n9lloQ4wCy1J+Ky7fVEC+6WL/y00Gb2bYvJZNKTpiI2xWlPMMqal8KobWGIQyYwSnHAsJZE8nM4D7XSFzk9n5kzkgOh/S2f3Lz1tmFtW+9oL5EM0oN1s1XtEcK6EyB2xmIAVMLq+hpxpmPZ1HBABmQ8NMlE/YOMpQ7fJAyhwpPO2vCPpk7sPrCcg2vWNrseqTMzLjMviaL9SVDmbToOg1MalcseoVaHYyg5koTHc5kFPQpc8V0/R8gj113G/bxns1eiuElXsrDG7OYAqL4c0aq/exOPwwDVN5EDXaF86fClmwof0OVI+1zz0ExMXL5Rw+Tgl8yvFkMCR25q7ryyC+UwRwgrsYaYP2whvNScxAuOQkHJ9IJRZ91XGyFqyNIornb7XML0EJ8L3I+MzJMR2AiBprzZMRooJh80ETjsNoOZUjKDLZHuL2UctkRKK/W2aOUE9XBBZDJCZkNsQr6ZBtGkJpc72pXeZWn54ZY+AItqcTY0begVpbBlAeMLlcJYDL/S7aMNN8dhoho1rKNbIdYc7Ev/m7AA65f31OJt83fNRJyycKiXlpRZ8pDzAoYbWWmYjbJtk/KcyoKErgJobni7Ut+sgpFect16+VRDF8Z0UqAgmYdDhbLZuk8HnSIcGmAP4xIpHbK8ywTalakZsgoFpQrWckHwl0Huqku+xpV2TfzMIQdwOumEeZnT+ZA6LzJWdibboM0XYW0hnXnIpp2vJd9xpWvAPrR90QehdvQK8buF011P4JaM805ekBYIcOmBqg5/z3hUN5rzW/e7P+YFY7cJiulT6aJyTV06sZ9IkcdsFifMjnQVKLNcpLNlAWdVzA8jWg2uGTPGabAC03UJpAlQ+b9wyFQr6i0T9sAAes3Fth5xecz3lUe2dv3ShkI4XpksbaFQrVDiBf92ZCCTxd37NinlYPEXbk+wIBjCirfNZeCVwNwZUuMUCGvM+OQWvBjlE8XWAVylHOh+NHZ9JafBcW8lguEDP6yl01K0r/PgGh6EQsHESj+SzUibP+bmEkVJofivxYAEnRmElqSyuvlphbQAKEphbXYPbuumUmDHlloi9Vg+gzogLoA5L/CY9DlwXjQ2y5LS2nd4V0pIkAJezrEiOMgj9NvWi2MB1bmINTPcfUfvE4eQCWDqXlNsWNEzwwbDFLfMsAgkglR2NZF+KgTUpmS2mmY/ZDslL8/xZWSIzvTBMf+8F1GJEtTDjEs0BpnGLofdwQ+KzSinz+Ig4C6Jq0lPXjEXNQUapLuUow49Q+7wsVsmI7P4c451L0PwsbBZt7AAWIdmH2vI1tAlJwgpDuuMzl60vmgOjOyNkwO2I32VLOp0rGeZqHcFu70RkLXfwdeZ8eqjTQsxid7MMOHMyRHM1Gnq7lh9qQ9yMK3r6q1piMCjRXjGGMg554/yCzYdAMyZ8/xBFTuV+JXU4w6xo6d7BWY+XIov9sGvK+GP+70RUNTGHhaoNdf5+jPKqxfi8bzW166sHEzpsc1i/W0FOArMbkoIXr+fqNDgKLNwfGhzPfKh/Z5koXyvKJJPVEh0VWedYoMhasPcVusvHgyuUEFyLlKAumRx2i5QJ4YX+YGD3G4CWEFcczygIAYiXHzMQW51lphoNQQt3XLGYkjLvmyCIVQpJNyuCbrvcFsELIRr7MbJzK58X+VACH55zN29+1nKsFSyGd0aPfEIU6dJ2y4fuHFZcJYDI66TLAqFLl+DMzceHEc3g/IgUgsEMmKFdOvugVrB/7pp8UpwQG7YajNQats7CcV/IMiiRb0VWmKmBbNo+2IshUam82QTKZSvNl6J9W7p4q1S9GKzID4hh8UhiLdsMiw9lZv1hah9iG+rfOveuI4wNYea7GuUmRmeM6kkIrBYTsC567tmAA7O9t87SBiMyY4bqGNopjQ2xg/5xBPF5lSyqFTn/wd2kuKGRj1zaF4jRz5QKJO0+vudzNgOj//J//gx/4gR/AoUOHoJTCu9/97tb3RIRrrrkGhw4dQr/fxyMf+Uh87nOfa10znU7xMz/zM9izZw+GwyGe+MQn4tZbb21dc/LkSTzzmc/E8vIylpeX8cxnPhMrKyvn3oDtMj0dOS2wuVAPES9sIR+RUj4PT7lj4kHRuvGRZfL+hfMKP2yz9VKFrLRwq4X/bP8EtudZIlbazaKFLQm0XEOPDIqTBrZPKIoG1dE+8mNJW659E/nEkRWQH89gVwoUwwqTXcCOfyWUxw1I+xD84R2E8V5gukNj+csOk33O13XYAD3nM+gWwOZB5UFRa3fLiz6SOcv4zNWqUVsUttfK8OYy67/XdfBBauCBJe++Gw+eokJu2uPrpOOxAEK2H8BDz7/nc9Gio69Oi3p8qdlAmlQ6hqFlSkJbqbVy2wTQlQC7Sn0EtJS1DMfn30rABfhcUK12nmoek9A3nTJYuqYveQCoCb4f1F25SCg+9skKLBqxDxEf4mkJMApwBF05mMpt8XNyMjfPLNYjVvYUf/N7yfYwkBHgUtaf3dckWG5F63EzRHldMx6nb9AOqPviPpQAB7OhpqJ4Jplvl2q1l+/RciYX3zOQ6V4jr5WMlMsQczFxdBmbdWW/MkiT9eV+aHrKj40wMSoLOM5Szma7LLXb8XEsgX1lRtWba1Vs63Y3nZEhCvOtG5l2wVwhTiHnGmHGr7nczYBoc3MT/+7f/Tv8/u///szvX/va1+J1r3sdfv/3fx833ngjDhw4gMc85jFYX1+P17zkJS/Bu971LrzjHe/A3/3d32FjYwNXX301rE3G4Kc//en49Kc/jfe///14//vfj09/+tN45jOfeW6VP92iOGthVLMX1/Mucl7PuKdZM37BaDRQOkxXS/QOjOB2NEDfBoZEtGMjQ97zWt7VBtWxPoq9Y+R5A2c1sFhDVQrZpoKuADPR0DunHnAxgFAeVKkmVSRfTcdoNOEEe8odqiN9n8snA5o++eMBDDBdUhjc4Z0kT3xzmrb6eIH8awVcDgzu8Nm08w3nd44BrICP7FAhsoxDgKdqtglIwTNHtYZu0tlYfL0Zs2JNO8vo1yCeKOkDFA82pQRKgJBFV55SrnzdIsMF8bsAYmR4MjsbR58OMdbROTl8zoDIhSMVnOmEpdNWoMP35yjDLSJ+C+XNnGyG4O+j74pqfzYLaJBoa++EFder1jhFwBvqbAIzRELB5yPnFZ5QYLbw55XFg10jkA2HxFYO2lKbNaCt9e0yKm0ToXyD1n22iAAsMqmlNHdJJ/zWWLtOOXw/9g0P/kYMJrJRSsSZjfyp86aiaGb0IHK287pvc+rzWcA5Xhfq0AXRpNIBwnwPjj7TTTKVWQYpTTIpFmsUHfZtHtoVvtMNRaY1pgloUtmyT9hM5zIV2NIZz66a3a7Yv/D3NFPfb579Sgzgthywz6NYOj+vudzNp90//vGPx+Mf//iZ3xERfud3fgeveMUr8JSnPAUA8Ja3vAX79+/H29/+dvzkT/4kVldX8Sd/8id461vfGk/Ive6663DJJZfgf//v/43v+77vw+c//3m8//3vx8c//nE89KEPBQD80R/9ER7+8IfjC1/4Aq666qrz05jtAJ2wOM4ETTTjM/nTWYqqA37k51t20HyZU8hWDZr9fnunCofJ0QHUsIYyBGcM7O4G5ngGtZpBOYVm6jV4sVChogJ5ZpFnFqOxQbaSwbHfkQbKEwrmyimmdYZaFbAloCvtm+dUdF6eXORXsOIkUO0EbN+hOJL7BGo97ytUrALKEWyZHCqrZWD3/3P42n7yfkqLDbLNHNUOh2xTozzho4WKleCDoDRc4WL94qne2pu/VKPSeHTYFQ+gtvavy7aaOyQjwyIdVzkkHyqARM4pZAAXDqQkzskiI3DY3Cbu5ww82cEmCuEro1hRCJaFFShn7WXTnc8ZxBeF/9inRc6l8HXTTzmVENiMLnvgc934HTydbq5z2yi0I/QjZ6le+moFV+qZzwVHAikCsrGLZhQA6J2ooWoH2zOolrMIRvhwWD71nkPto6k0nF9mezqBAqR6ymfXM2DUOrBX5qRqHZYq50UHILSYHUoKPZrpWLnL+WXSdab2EWCRMXJ+LvF4K3jfmmpRYeFrDca7DQZHLKol37hsQuH8N4rtk4klGSwoIJ57Fk3YIps4Cx9zEvtMtF+CYZunOvLRITzHzdTXF/DmZwbizJJCBXNdMKu6Au18R/y8sUlPzj+HVqqBeGgyoW3C7M45AdKl75kO5myXq+igP8cVX99yj/Uh+vKXv4zDhw/jsY99bPysLEs84hGPwMc+9jEAwKc+9SnUdd265tChQ3jAAx4Qr7nhhhuwvLwcwRAAPOxhD8Py8nK85oKI6vy/3evP5hadKJMWjX6qcvn6qQFGxjMomkDrObLcAoPGnzlG8FFmfCSAIWhFGOwYwzmF9S/sRLbqtVC2qXwWagVMdxI21nqo7uhjz5XHkY0ACr8F4K9bqgGnkK0YVMtAtaeBG1rk60D/CLB4C6G+bOKzYQNwl4y96awGhocdRns1ekcN3MBCTQxcQcg2NepFYLrT/6Zc84usrgAz0j6vkgn+RTod8Oh9dITWD6/oS6QCkBPmq3jkCbWVs3zFBTz0eTzNO5TPzsCcY4iBAID28QRAdBxt5TUy8KBD+BhFH6Qw7tIEwAu/y4NTLvtzxLlEUWlHX5BQTjZFK+psy3wS5WTBAdtMBYvQZUe64F2ABfbx2Lg4x2ivabMtQcoVG5QoRVNhsWpRrFqYsUW9lIOMgpm62F9QrLDbSRlJnFVmc4Wmr2N9sjGl89l4bAVgafkXcZsYVHBT5ZzQqQwl2q2bkBdIRJZ1o8u2mHRUGvs4n+B97djkmo8I9YJCPiJMdhpoCzQD3ZqP2cS3sWsGbJmcEUyVodxo4pLgh3/fZZcCSOb6xmGPTKUALqH/sonfFMVnRAHFmkM9UJ6BDP3W9GfUgUGpThuAaIKWz2R431pDt4tmQnn1wJ+Xxg77rkMv3FWms7kP0fmTu5UhOp0cPnwYALB///7W5/v378dXv/rVeE1RFNi5c+eWa/j3hw8fxr59+7aUv2/fvnjNLJlOp5hOp/H92trazOtaCqcrMx6IUzE325Vo4jnVw8a72FmMEteJFMyqgV1wPlmjAlTfop5k0Cdz77y6p0F2NI92cm0c6trAjksUtxWgISHb9P49k/uNUXyxHxU8jX3+oeP/vBt6CFBG0Jq8qWkQzFYOKNZDNIghlMtTuCLH5iFg5fIpaD2HCaeuu9rATAnTZW8iiixL36I8nIEyYN+nLFbuZTA6lBycdeMPofXmsrDI56HN4TiPeLK9WJBTP6WXZ7ZElJZOFD8rR12nBbflYEoIEWxcVvterMz4N7oGKIQ620LoGganwUTHioQjrwAxDyUgF74YPiEfhUzZW5kMVtzxY+136WaKLaH6XX+T6KsUgJtkxbbMwe49DQCb+tAZheERi819pg30CZjsMj5fDZsoHCEbW4AIG5f0fK4ZSv2kagKMiuxQ9JkJY6cr8pGTpTehIKQ44CgnjrajwE5oJF+uWVFGvrpbF4SUrmBrv3CW8Wgqs8L/TExR6b/VykUlvnMGMbN0sU7RoTnOL99Vvu0BVJbrDtWCTnO+IxL8xfrHSom2CMdkCdhiO+QGLrRxWiqfY2iDUPd1MOOFA4y5vuEAXpeHXbwAqDIyLD5rAfArG8x01m8EyhWHqTwZPs5lBU3pyJ5oQhTA8KxMYd2N6QUUBwV7jjdzd1Vl7+Fyj2WIWJRqDxQRbfmsK91rZl1/pnJ+4zd+IzphLy8v45JLLtlaxnbn0HmYa9JnYrvS8o8R4grvUJytaygNn59nM4OrDNzOGmasYE6Eo9ZDtJWzGs1mDowNnAGKkyoqZXV7zy9eGnC5gwrRZxSYFmUVXDg4Vk801PESGFo4A0z2OPRuy2EbjXzDn2BvCovlm0yMHoEibFyiMNnlj/QAgOkugs4cesc8C7RyL9M64LJa9GBNVyoq8rRoetMdGQ/OWuBBLmTsjB3MfGSo5Qc1K29LN/IHhJgDhs9S4ut0g7RTDSwRszjxcFJmFoKiccwO8f1s+i4CLmYSVAJNMRyfWQmbIqxYsZhaTBZ5bSeMnsuWDrvcf/HUetmnpxL5XSjD5UCx4fs7giGk8loKi19KYborR72U+7xVge3iA2xh2C8mOMbXLrFXlrxDLnmgCASTnyhfhf6KYPE0CpJm9UsAKfKw1la7BQvE86d78K7sI/l3K0ov/D4bA/kIKNY9OpM5fuL/4VqeK/XAA8YWEyYBrxPtkvOd0uecEyuaD8V1TT+VG4G1AEu2AKplhXoRmOxSqPsJdPaP8/PXBnbcD8ysbfEBEptDyexFM7EEZzNYPRYr/NC2jENHXIZz3vTO5e6Te+zQHThwAAC2sDhHjhyJrNGBAwdQVRVOnjx52mvuuOOOLeUfPXp0C/sk5Rd/8RexuroaX7fccstp68sLyylB0vkA4GfDa57mobWLTQpJPpmBFhtQ6aBqHRdEEOB6BGiCOl6CnEKxWEE1CtkIqBe9+alY9/4/McfIVGPhKz5VPvUcKAey/WNoHcLUlT+7DBsZ6mWCWq68L0Djp2L/Ng1z0xD1AlA9ehWrjxsBBCzcSshGQL7hzy9zpYPJnM9Ku+l9i3onfflNT6Fa8ueutfsvDJCm5HDd9XVo9aHwiTAhSVzmL5yl9FgUpYVbOe84rYT/gq4S4InO1MLfgaONpFKKZrMCaMrwCg7MW44bYRAUfkdCqcF5ZogdQmUkkK6Dr1anLdGH6VRzSsxtDtOXJiG+95afC+Uqd+HVgpoJNCM7yEBBsTNrCJ0PisvlGlCALbV3llaITtDOAM3QpHPOjEpMH/cdkuJuhWILJctKuNuomWyCuD6aj5RqgRkGLhx5RVohmwRAHuYIn0MXn1GkUHYJzk3lTWEtMzCluSBZsgiifOJ5nwm7SXP4VCAssnYSNMbfUWuMqkXEHFP1MPWxPE7EFf65Zh+lZiGY0zKfNoE0UC8gBR0IU3EE6E6Y4LjfAqBnMEva+87JNvE85VD8bnslKyrHOQKnUJwLzCZnPr+rhI/oO9fXXO7BgOiKK67AgQMH8MEPfjB+VlUVPvrRj+I7v/M7AQAPfvCDked565rbb78dn/3sZ+M1D3/4w7G6uopPfOIT8Zq///u/x+rqarxmlpRliaWlpdbr7pSWn8KZpKPQtizcpNAsOCCEnaPSULkDBg105ldpu+Qjzpiap1EGW2t/3McGUJ5U0DWwfoUDBhau8GCFzQs7vqCQH8tgRgr1JANR8OVp/Onz2gLFikJWWm86G2eoF71pptrpMP7mCdw/LkN/fgilg/NnUBr1EgELFs4pjC4mDxIWCDZXUCHxImWAKyn1mUIClJoVCM1c8KMS0UEhBbNadHLl3aa8NnVtq7yoWNkfpGPeYEXh75N+z2YPzf5FGSu6kHslVN/mbXPLTJGMTnjvHc5T3aWfyxY2CILdCjv7LvCPDI4EmJLNEXWJQEl8H4GfwswdtiKf0yc6qotxTZFRPnIO5M1Ajg9oVcm/irNF21JFZ2sJFPINCqHgYu6E+3T9TVpmmu7fMxRMBHUAunOGwTP7RvHREizZmFrjm2/QljHwjO7WMUymxQRUvY8NxWNNlA1JEcUxLjItg+wHvlf0cRLzmsGHrtO5eeUK4gYgHtaqPKhngNsMgP5RX2Y2DtGXweSqyPvoRPaNzcXUnisxB5rYJHSfsWpBb2E8Y7vkxgHp91vMfrLLVfqfRH6vu8p/CABsMJmd62sud7MP0cbGBv7lX/4lvv/yl7+MT3/609i1axcuvfRSvOQlL8Gv//qv4973vjfufe9749d//dcxGAzw9Kc/HQCwvLyM5z73uXjpS1+K3bt3Y9euXXjZy16GBz7wgTHq7Ju/+ZvxuMc9Ds9//vPxpje9CQDwghe8AFdfffX5izDryCn9imbsNE4pp5ufnQXvtMWEiCWphJQhuJ5Dtu6ZnGzVwB5qQFbB5P74DPQtMNU+R9FIo9g5QbVZoJgobF5CcLsrFDeX0LWCua2IC1A2UnFnScZHJVW1P9/MLjhYAlS/gasKVEsEO8rhLib0bsswuazC5IAB5Q7L/9DzydYMQOMM1YKve73o72MKv8Jlm97R0pUOgD8s1lPi3t8A0i9A9n845R5A9CcCxPeRDWANInakxn9GxoMVuLRwxtBopMU7JqxkVig4UjMroBrvREpFyAoNtE4y53Ek7dklcGSTDiZFCxjh3C3nRvTj4S4I39lcBRNHUqA292dA5Q6ohpKeQWSoOM+SYuAiWI5oYpFgRyiMLsCQh5XyNaxge8cdJrt8xZX1yfuavgc7zKA4E+oUTksHfN+iUYAjmKkDGQWX+XJIU4w+ckbBKA88mtJHmMWIpwkgEylyGLgEbBzS3jqFXbAu0tcn9oH2wC7m/mHMRQHwcc4hncY/9k24Jzvc1wshuzbjJsa3Dsg30w85qjB2fQDp3rwpTrnPgo+VBcC/CdFc2xFFgGrITwwHGOvb1PS9s7HL/LKVjRGTkyrlHz3lgN7RVJbLEUPuXYiGrIeqNacY+LAfUvTPCp9Fxig4b+vah+73TlrUCxrTZX5IxW8VvKO9lh2PYO5OjF274YiAuhuReleCormcH7lbAdEnP/lJPOpRj4rvf+7nfg4A8KxnPQvXXnstfv7nfx7j8RgvetGLcPLkSTz0oQ/FBz7wASwuLsbfvP71r0eWZXjqU5+K8XiMRz/60bj22mthTHK0eNvb3oYXv/jFMRrtiU984ilzH21Lzoat6cp2QdHp7iGZjDtRJ102cI1GfdAhv73wETm3laEYn+pWHytAOUEt1bA6hx3lwKZBdfEUUEBxc4l62SFf02guHyP/1z7qBSBf9wtD0w/HcWTA7gNrGBQVbjnRh8oJrjJQuYNdcFDGYeFmhcluIL+9gLtijIUb+smXogZG8KzI6EBYJAsH1BpZ2cAWPhlkedRg5X4EOGC8RyHb8LvKZuB9mIg5YY0Y5r2dvlPsfB18oWDIA0ai4MCqoBTiMRy8o2VnUG/CgVeeDHKYZQlKLq7zNvTbGJFp01O0o2NUiJ6R4d7SF6NEcih1abcqnaVjqLiIForX6uBL0qIwPHPXAjkqASPZf8y0xMR4EIqB0s9bf8gywt8MhuR10gxDGuidtJguG1DmFXmx2mC6Mwt9rmBq8sW6BEL83NTeBDPUIOUPeWXHXM5VxDf1x12Eg2tDX+sqsQaSJZJsQQSmQkkyOyWv8Rm0fbCAAiV/Me4rBmWlijl8+Pcx2rDDbLR8zwLzJKPUuG4MaKMPG/8dwHHXLBbb2WEBKWCVWbmZVOPBERDACWfSDvdiUyKH0oP8GuLyYGqzvu11HzHqzJaITFirLVwnIDl0h++c8exX09MwEwKWE1j1m5SwwRERnpJRdZkHZtmE0qYglp3aHXM63YVyPhieOUPkRRHNT3XbjqytrWF5eRlX/sKvw5S9be8CZkYmbKfHu+XKRamz2+46sMZdqWo/9Cz24gnIamCqgcLBHM+TOUkBulbRZ8YdmMJNPYDRmYMyBJM50D8voF62KE4YmCkwPmix9EWDpu9Zjmpn8DPKCL2LNrB/aR1f/vJ+QBEW9oywudqHznzWayw0yA4XcAVQXroO95mlGG1kJsDmNzUYfimLJ3RTBjT3HsNWBjr3x33s+WiOYw+1KI5lqJYdilW/QtqCPPCqFagXHFmY8WF/oEZ5xih8zuyFsuk9ZQRVq1YyRiAoaZfMeZHm5908R5fBl8nvpXnMTBBCotMizsrJTJOjJkfKRCaBF+QslOu8smalw6YCVngRCIW6ekUko7VCfSrCdEmnOSaUq8/VoyJgi79TyUxhKg/sGGQ4cX/ibMVICi7+LaLYGBQs3lpj82CGfJTOodKW0D9uMdpjYkI/XVNsH5trWAEywwQgmNL8ESDeATk4YZs0rtynSoLGrK3wI/gRDu7yO37umWGRCTS1DeZd4XzMiSV5XL2JmGKOpci6hvKY+ZDPuJl4H7AIxsN1nFG65bMk6ulTKlBsHwNI9ndKYFm0nYFv+JvPSWOgpsTcjEdmCIDV9dnivteVd+63hfLnFWZAuUKY7AxJUQMYtUVqozwkl0FjnFvcN9PgZA7vkzTaZ1KSU0qAUVnPkkphnyBXJIbOz9GwKco4jQNapk5bTfDp616B1dXVC+JywTrp7z57CAsycu5OyMa6w3c/4LYLVtevF7nH+hDdU6VFgXdBSweonFJmXSN/e7oyzmbExHMtdzsAfOh5RsDYwO5sgEvG8VqXEeAUTKXgKgNd+hXHjnLYEyVso9FcPEG+asBmn/5tBtOdfoEbHySfKHGkoCuF8UaJoxsLUIWDygmbq31gw2BpeQwMLGDDuUJ9i/F6D9VOh+r+Y/SPhN2g8uVOLm6Qr3ugZWsNjAyywsIcy3HskRXMmo+A2/1pjWrZoekT7KLXAm5g250hFnr2FYq78iopRxWO5YjRZdx/bLYklaKDgJYjMRnP8GgBYuTizTtwFcozU8AEk8KW0PxwLZsRY1OcB0lmmnL/qODQHXOvMCgWUUYxB0wWjjUQu2k2EUmTGIup4XfYkkQSfaLIO/+yyHPNbC/4O83yTUGao9JxePNAht4Jh+my9s6wyu/UNw5lcQyjhHHQDQVQ4YME2LHahgR6kZ1xDCqUYBQoHh7qzYoCDM3aO8qNCtprQgIQKrYrnW2GGJUl/XakiYqZHe5P5ahlZmxttsLYVUu+j7icWU7eErQU636ToAITxt8rSoCDTcUsPj2BeB46fSB90VqbgU73KRsCDgI4z0YUwTxHCvrDjtUWAMbm59jPygMWWVf2JeLy/flnPidT3FAw0xbKz8eUkosG4YNnOVIwms51eHYUYmb5lsP2XL7uZA6ILoScDjRt57ezhJB8gbZT5oy1Oy4CNjhRK/KHq65msNMMdl8Nu5dPzSQ0Q4JZz6BC2LkZ1D7r9O19uMozQ7zzm+71kSDTvQ6252+ua6BZbrBv71qqlFXARAN9h5O3L0GtZ8DIwO6toScau/asQzUKLpwxlo2B4miG0eUN0LNxl2aOFCiOGW++umgMtZLDTBSWvuT9jLKR8gyQIlDhfJ8xqOFT7q3yTgx8wKtD8olpwjlnYnfNyRih02nb3T6X0SfMXqSDNBGZn3i9Q2S+ePh1lcpmcBSdicPiL0FFPMVcgKwEDhB9KaDaoCRGrgXQwuH+rdQBSpQb6hyjn2awj5HlYQVlhFJm1qLo1JWLFs/M4JiN0WHFeoP+MedTO4Ty8g2KdW7KdEBn3O2HvENsqlKOQ8J9jhtmkYoNBzN1KE8y3aDakUMZkI1cBEMyao/bKwMXlOwreDDEJ9xH5guJmZN+UzxezA7Je8S+DhFWPEaENFdc7gGGB7gq1YnZnc69gOBk3BBM7Y+i8H2mtpyZJ5kz9oWS4fy+D6gFhiKDSMIhvOOw7HNIUUxMWa74BIx+jAJA77fnFpvoYuReDtSDdhsjcyrmpzMK0yUdNwmUhfxa3EfGRzjaQsWEjjynENYiM+VDgtMzxABcMoMzLQMXSOZO1edP7rGJGe/JMhPknGY+yQeldf2pHpqOogAQoet2HrSuM+esC0xh4Rrv7FysKEyzzAOHwsEuOlDmj9KoD1XQBOjMISssmn0TaOOAw33oCqh2EGwPGNzis1tXewn5rgnqEz24DOjtnKCyxmeq3sw8I1QbmKUpmo0cNLRQhQU5hR1XnsR4miO7ZBPT1dL71AzhI+JqBWQ+QqTeadG/NcN0t4Mh+PB7eGUy3ekBBoMyWBWOuWAqJu1sGeCkiDM/UNI52oMfFc8xY2ocwGxnbCA6UgMJTPHf0W8jE4oO7R19Nk1ZeF3hWSYXQJHtJUdiObwRxKit8zM6zsZIq4CrQttj4jsFgEJ2Zt5pq7TD9vfxCrPFiIm5nI04gab/jn2PKDhkO3TmpWR5VHpWRntSQsa1SwsMjlpkY4VyleIxCaO+Acib8Ej7xUyDQloB500ZBlBTgsu1z1ytEBI0hrFW8M7XIRrNj4X/g7MzN32dnilKdW2ZWuT3oR1+7CmOgeLINSXmhSjThTmhbTBZBT8eZiuc8ZGdLveK2eVqS714zKzxlYwKvLNuxHmXA/k4OFU7Cge+Aija0Xek/Pg1PV8HH6XXPUQ5nfvXYmoEQ8Z1ZDAUGc7Ke1lnY0LTI4z3qAgQG7FhkEeXxHsEQMP9x9e18jiRH8+ml7LOKxsOV0ZqXyyfvBN/TEPhUgOysaTD/H8+uo5S4tbtblzPg1ho2HPkNrpuld+oMmeILqTM2P2mD8T3XQXWMVOcUs6wG+neM+7Aaw3XaGSFBTKHyWU1dKWQnfRsDQhQWWCFjucgp5DlFtV6ATvO0O/VyA6NUC0Dw5sVyhN+8ZruBFSlsGNhBLOhUV8+gVaEfl6jbgzMrqk31S16tFDekUGXDcgp7Nu7hs1JgfFaD01tUB7OI3ORrWtgsQGmGpuXOWQr3lcJCr4dxoKWm7hALnyNUJzUUFbBjDWykxkodz6qjP0KBBjRFt40RqKTFKJfUbbhcy/l60C+GY40acKCHaJx+NRuXQkwBbSS8XX9TVqnzRvvH2HC0QvR/yewOuzIqadpN8uLrsxDJP1HpKOvVJh86rf09WAl43LlQ+wFizDLFMxggUELt3e6Q0VWykx9OXyorLIhU3Y1I/pN+hApUWYof7rDIN8kTHZojPcYrF1mYEuvtJxBTAway2ImxPrjKhgoeOdoiixXsVJD14Txviz1jwJ6x5oIBNlHRIImKTLE+5QZw2f9HcbKOzGnL2XEUpyOoR8YOPPp7rHPwjU+spLzCVH7nlKPMyPFvmTMcmgV/LwoAj7At4tNTgCgGp/MkcGjDRGd3LYEftpsF4AYWRnnFxHyTYd807PMzPbFYzrEPGFGp2W6DoCb54wTYIj7l0FdNqHWs8jPbQRY3JduxriETYPtJYCXmFlqremkVTx66EILkYI7xxedtSnj36bMAdHZyoxF7bzKuVCt2/ytmmqQU6hHOeAUyltz2EXrFfJEeyAwMX5xWvDsTRN8ibKVDGvHhqiO9uF6fkVr+sD6vf1ZZLRgkRmHZtnCTQyKvAGRwmSthNYEVWsoQ2g2cq9saoPF5TGOHFnyGORkDqWA4W3A6n28Pb9e9vcxG9qnCxirAFYApf2CoFazeLzEeI+C7ROKk95sRllgBGQ/SYVPSixsSCYQwIcQB98e5fz/ZoyUg8UGBT9Nyj4qqs6OmM9v6gIjVh6sAGJ0UNOJaBLbOKbtfQGSkfD3pQ5IkuA7+k2IXTz7tABIPkV8XQRanh2K9Q79F4+YkOyASUol+nwIpoJB1yzfEr63VDDOANMlDdvz/ST7lqP5WPK1BtWCRrZp235TDGyC/0uxagGloGvb8v/wfjs2HnHiP1SpThD3V8nhGRB/U3sORH8VHg/ZVgAyzJ+VeDalqOylv4yZUtukRcGxvEkh6C0gLgGWfB/aw0eWNP2UmNAVqs2ykPDlCSYww+CfGTKTfu8bxX3UAXsC7GobHMFDLik+niNGWXac7vnZiGBfMmSElkmZ/en4mVMkkn4G4cg2Es9SBLMdkATZRlEGA6PExKpkspvL15XMAdH5kHMBRTPYIboAoxIf6rB4aONX32KhQr1AMGsmnEyvoAZB2xOAwiG7o/D5iawCHZhATTVgCPmqRrUDGNwB5LsnyCaAyi0a6xuggklu0mTQhfUAbGChMwezGew2mtDLa2CUwVpvErNrOTYvAlzP+SSQxzWKvvdvWvp8FnyTLMxIwx3zfHq+pj3DUQDT3YRsQ2Hpqz4jtcsp+QoBng2yKjhMK0jnaMmq8O6UwYfP5OxZomLFA6NsEyhPAsWaZ5BM3R4/v+MNLAkvvjLHTIcllBS+qfxv2JdCIYE11bQVbGuRDgCoFfXT8d1gxeGyFA7NoeUcvdRyYmWFSNRyvG4lyBP9xWSbVCZ8X1cyK5cAU0ymF/olKvwW8Gmbf6SpKt+k4A/lEzJmE8J0R5buHcCJz2WUwKMtNSjTyDcJi1+t4r3GewufDDBD8P+heN8tfkKd51VRRxl2xrgFuBlIWQi2RUWHYpn1mceFy2IgoDvmom54frynSuXw5+UaO80p4W/mx5nnAoNJbROLlPo/+Q1FEK2YgVQRVEtzqPTZAfn0B2biYAuFfMO2QL333UvzRQL5eIaZQuuwYglipKN1tdDZFPGfpjOmAajzZxFMa98fukpjJcvz36to6r6rZO5DdP5kDojujJwNM3Q28+xc2KFZtxZ0evqQAAMUvQbKODS3+PMtVKPQ7PAxxlQboHCodzfQaxmaAxWc1T5j9Cj3x3xU2u/y4Xf79cRrAHWsxInVBeh+A7NjisXeFESAO1mCGgWlHVytUR5XqHZamMJidbMPPdVwtwzQ7K3Ruy1DeRxQlUI9BAa3AUoTFj5X+KMNagA5wRWBvlf+WI+mD1TLBNv3YdbjPcovbE75yDH+28H7BNVITp4udU80uUSwhLjgNeGgSHb4ziZpNxpZHGZWQph5S0HqtNuNrIFgaoD0t64R/SgiUOuYlVoskRb1D/Xgk8lj+LdJ7+Mp40GB2CJ9H++nkvKBQvTB4Gu4PSzxrDW5g+bDZZmFE5mCmdVTnf5vm5sV+HBPZYHeilfW2RgRaNmcrwFs33hfF+mzE0wx+aaLoAlEqBczTHfmHuBp+Ci0oMwTa6AQGaIOAJ3FpLX8g7gvjWxHu5yYYLJJjBAAtA7g1Wke8Anr3F88/rb033dNNcyylCsWxZpLDCDgExSSAFTsAB4cq+NxKc77ZvHfCTAHcCTnsJJsHCD9coD0exBQrlqYiYMrNfrHakAk2Mw2UxtlX7VN3WkuKRfmmNgc2JDsVG4YWmNH7bHjZ47HDUCL+VJNeh6anoqmZ+/HplKQggCgF1os6fPymsscEN01IhmH08lZAiK5W95WmXF3SWjYofrSDeiLRmgWHLKTGeplC7VhoDIHlTm4pQamsMiKBsoQlCFkJzMo588xY3+QxU+XWL/ML3Q7ljehFGHfznUcXx+ibgwGF61j4V9yEClQozHdRcCwwXAwhTEO2DfxAGczw2Sfxfo3eQfY8iQw3eGrvXGZ82ecLcP7A4XDWZ3TyDf9wpuvpeiwha85EIOmRsW8Qt5B2qcVyEYqKlVYvyrKqCgVHKCjE3QWGB+TdsJQyfen6SEthl32xqXr4wIrd6UCHCmkqKHWAa58rWQZkBZpBk2mSmWyn1PL8TYU5owHMYkJCPXoghqbvovgSgMyfxUpz1ZEUCjMNhIcGFY6rMS5iK5y49+J32oLTJe8c7XtIYJQzcddIJm+2DQGMZ7NQHsz7EAhG1ssfHk9mH/Ih+krBV1RbH9kBoQi3qLoxDgwoDO1uFah5UtDSiWgQUKxS0BFCQxFhkjOHQayOoBQHaITA9BgxR2dvh0w3mNQLWmfXFDMBw4zb3r+bDdToeWLxqBHpgfguaUCY8h5lnw9UxJLkvMg1I19cUzl62dqgp462J5Pm6Gr8BwhbQi4voqxVJh78fHh5KciCzxUMDlzqDyPhUl14Q0D92k8nFUwUa1xD2MTxyRTnnV0gc0T47ltX9C53GNkDojuYumaEdIX4T8GOVJRng70nM0uJGp6H5k1XJqgmmao1wvoSqHeW3ugsbOCMuT9eTKHPLdwVsMYBzOogYvHsAvWR3OV/jwz2wcoJ+RrvkImd+hlNYxx2LO4ifFmic1LLRAOcVUWyPsNRuPC+wBp2qJwaKlGveDNSGXeINs7Rr0IkCGo1Qz92zXMrgp1bbB6b7/61IsEVzg0A2Dl3hqLX9Iw45ArKIAiby4DXE4paSErXgL4EFjK/PdNn+LxAy73kW/1Yvh74BfvajkkIyyRolKEcmeWhJPkRcDRHV/e2bLZSjBWEgjNBFLcf7p9TddnRYbCU+7rzGxW3M3bdK8WUBK5V1rOrQLksSKUIcjKIZr8uiHYctxbIf/8HQF8lpkERcyESXDZO2EjEKoHYS5WiXnxfjAK5ZrDxiU9NIslendM/I5/YEIf+dBrNl1JR9suGJUMjer0VzK9qlM/w0G5SidzD4ApnGvGYKd96C5UMNeuUgSFNoDxZoho3pL+RGzOsYWK8wYIAJX8PaXvS9cfyI97AnOxCeE9aZ84UwKJOC8lyFCIJ87XA+0duAGo2sGW2o9XuLbphXniUl8T0nzSzOaKDNNxPJhd5XGIuaYQzbdcH45Si4CJQSelurfWWrEZ1cGBXfZXjP67C8RBwUGf4+suquw9XOaA6J4k3R0odf7vXn6WjBI/oaQJttE+8itL1IPKHdCzoHXv8KwrhWLgQY3ShOlaCXuyhF0roEcG1Q6H+vIJaLHB6MoK2YbG9JIKdWNw8e6TyLSD0Q5GOQwWpli6eA26bPxhslYhyyyIFLR2sCdKn106ZI9GRjCFw+AIUO0ijCcF3NcGcRdtRhqbFzvYNZ8sUi1XyEZh8c8ICzcDuz7v0D9GyDYRzVytcF0gmt10lZSE362n1ZfBSzMMZ44xexDYDZcj5tyRprFZYyVNHdLZOZrQutQ+X4v0mQQisY4MpCRDFW+edta68b5PbHqLyebC4s/vY5ZiBjBBcXBWbL5vt67RnCEcjZmtmDWPpVlO+isBPidNuk6AG9EX+YiisgZ8NJpyPiSdP2cAELN1I/jEBKBk+xkWvzpBPVRbACP7kdhSbfEdao0HBBDaksOHtrxXIiIrgoSgvJOvDqLJqem3FRaDDVuols9XsY7k+wXEucHOw7b0R5r4MaJWeS5XiY1UCLmaAqvFR5fItYnbbbAVEEtQxfdn1g+ImbBdBlRLBq7UaAYmZuWOiUWzNAachiBWQSUwIyMruV9jNm9Zb/HMxX5R/vecBTs6aSNdW/chAG4aB87h5M1lCfhSF0BdQJn7EJ0/mQOiCyTdaJILUvbZAiJRAIdZauN8iP2+CbDhkzDq5SouHApAr6g9QCos1EINs1jDbGqYsUZ/Yer9G9Yy6ArYtW8do3GBO9YWAQAHl9aQaYdhWUFr8iYzQ6h3+y2drQyaEJLvcgI0QU800G/QbOSYLgNuZ4X6SN8rpnuNoKyCHTjk6xq92zJ/oGvuYHs+ISOcwspVhGrBh1jv/GKIUhuncHkofzaZGSnoWkEmW3Q5pT7WfmfeDAi2SCyRdOpUwhQWaXflQVJMgmjStTKiLTpv8meMT51niWzuTSKsFKIZAwJQiZdXbGmObFnEw67ZVIjKj0P5JbiRu2kAMTFkZEkYyAlTRpetIoMWM9AFT+jWDULJkY8qY6fWhcMNKJ5mnwClDawHK3fvC5Xy4XB92PQl729qgss0dG0xOlAGZsyXY6YhW3UINc83HfigYCXu3wIfsRH+FZW0QgQWEQhRAnmslIFgbhLmmOib5tAyeyoC6gX/294Jf7xFvg5Mlz3gtT3vJ8XnhbFZkDRiUkqXpYOYuXyfvRwhg3ZqUj5K/RvHOPRrFzzEPuB685zR4n8wsPe/t8Gviw9y5Wi5VhqLTmAAs61yQ8CpHgBEp3B2rI6+SGIOcB05cnHLhiM8o1JT8lxnn6+m553vpSM96XbI/ly+PmQOiM6TSAV0QYAQtcs+a3ZIiCL4EHhFcNavAMoQ8j0T5GUD1xiftNEQBj0feaM0QWce0GjjYAd+dRpvlFjcMQKswnS3w3JvDJM55JmFVoRjoyFWxn2MqzymKcmGDUy/gQ7h/bYxKIomRrhRToD1ylDXgCkt8nWN8oSCHWd+J5cTyBCagS/TVgZmAvSOw59bJs7/8okMgzN1DfBp9TLKKb63SGa1ppNoLqPkT6J5h44YDcMLLwgxoqyV30QqB6BtMhIACcBs/xsIn6KgWBi8QMwLknl5JHBmwKXa94jv+W+p9Dq7/xbTI+diV4kIHwyOGOPyo8lMoe2UrZLiBfzngyMNoIGNA1k8QoHNE4o8I9Y6D41S/yTmRoU8Oim5prIEM3EwkwbKAfWCjso7hXwTskkqm4X7Y5ZZJM4nldrNjY8JCqMDOSUGxSSA7YIilWPPbdF16m/S/gBUWwLjvQqjA561jGf+ifuzGTTfoOibJH3gXI7oQ+RBqAcoDIQrcdo8dcZdW0Hb8PedOUPMEIl51XLGl2H+Ym2LDtGUyo7klPTRYaAqnq8Yzdl9DuWwhH6Pc1+MF89V3gBJlpfBEDuoz2JuSQCkCylzp+rzJ/NeuIukHb0kvpgFbKRimfG9OsXnp7rvFiGACMiMg1LeNBXNaaRQLkw9c2QVMu2wPuqhqTKfO8gq4F+HyDZ8iLy+o/S5hvZOsXzZCjamJQ4urwEAjo2G0CBMmwxKEcrMwuReexW9BnlmQwZpX8lmgVD2a7i+BYyL2aVN5tAsONgCKJemfvFZrFHvbtAsWlBBUCs5RldN0yJs/MK/ekXKMsyshQr3jAkDRRRXvu7PX9OVZ450pTz4yjwIcyXF3EZxoUdggxg8iMUfEPdlZS0jquR7EaHGPi/ShAT4a1lJR6ZKJGmM9wv3lMwVglKM7BLS/aKpRwJvAdQ470xkfTr32vI+zDMA3uFVKArHDEFgINghHQCqRdUCg5sHs6ic2IcFASjryitMMxVHRkD0iQBlsq3cj/WCwXhfic1DPZipZ4GiI7aQVv8LpdgVydy6DiMoHbxnAVX/++SzJEELj0n0rQkAhutTLQclXfk+dYX/n6POIqPWZenC33XfM298UrtPoEmQZ5vF38j+CO3TdWpza75S6nNlETcpANJGpSLYUqHpeRDWDBSmu7jPUr9Gti2MY2tOC2Aac2LxdUjzoTV+wjQWzedi3sXUBB0QyCCJASMfhROTqIow/+7xJxdKvA/Rub/mMgdEF1RaYESCGPGgtX9w+s/jrncWRd1531qUOguvHhloTTDa+f8zv6VWmlAUDZra+FPoFaFxGkY72Knxh7OuewVFGaEZEPINhcJYQMH/D+Dw6hKIFKzTMJqQZxZL/Ql6eY3lxTGazQxLgwk2Nkugb5HlFk1jvDN0o5Et1KDKAApYf9AUzirkaxpmClTjHNkm4KbGOz8rwGxq5Ot+hR/vS+3fvBhYutlh46BGeVL0HXlQRFqcDK7Jm86QDkqNfUr+WsADLSgGBpSyJIsF018nFlRmE3hXTF5hqWC64qzUgM9xFE+oDz4lkrmwpfCjoQSKuouwQljoBYPEZrzIaMnw4Blzh0PopblGKik2H22Rjr8QJ5iESreLu2or6ifYoq4vjr9X8mnJR953g0O4u+ypTJAYWS4BQuqhX/p89Bc7NW9NuidF+n0x49AFSBKAkWAQ2G8o+iax3wuzFyHpIQPhyHAKZ+Kmp1pmWi5HMoaAn7u2BIrVYCKzCVA1Zcq3xWUUmxSBPZvVWsACPGiirbo9blkwMXYZRPaNYlaty66x35YtFMa7FZo+4qGvHIXG/doV7h8X5iizYDKlhawn+8dBJROwdKTmg6Sj6UvMyRZDGMxjTS8BQpcjHk8T58AcY3zdyTyX5gWSLYqCd2mzLj4VS9TdnUA8mLMeNprxOSstsYtSDshz79BsjIO1GYxx2DEcY2NSoCxrTHcBtNODnU0qkPVrNMd7MKNgWqgUilVgdNUUS+UEt1e70C9qrIz6KAvvH5RrG9PCn9wcoG6Mzxm0UKOyBs1mAd3zNIE2DmqpBjntAdqi9zlSwQE82/RgYVRr5CNAlxZ52aD52tAvqD3fuc3+Cv1/KUDGR5zVfYXhYYfxXo0aYqEK3pmUERqjIjvS9H2ov7IAloDGiLHrjofhgVYpfDd8r/g69s0w8EmeOfIFItOvDqfYh8VbN20w4oIfCDuNN2VycCUFKFZCQnlIVowX/GheQ/pf+pCkwypD+zSgqjS3uK5NLzmgthxtuT5OgD90AJ6Yl3x/6XvR2lUHvxFp+lKW0D9uMV02PjqLQkQeV1PFIYlz3YNGFc9AY5NY0wuO0o5aDteR2VCAPOGeHbejchYASbJpCRypmEySD3mVz7KM5lJWZGuWmx/urlAuh4XzeXYcZt4C5AEox9QGIemmLYFy3aFa0JENYofsbOz7xhY+qWXTVzHyKq5b3bWFgXOWsktL4bGNjKfzUWE8t02FmCHblv76ejGAtynieYCpExDHL7KM/J7TN3SYpDgVVHof/X2U2GQw65qhdawIz4l8lMAcHxvEebDieOpAnobxcDNA3IUQdx7OMnN32iH135bMGaKzlHP2DzrVvJtRbvTdkOCIFxfdvm7Wb7fcLyzytucw2ijRWI3GaihFqMY5po3x5+I4jSy36PUrWKdgtPNO2IbQLFlUl0xh+77g3r+W2KhK9JYnGFc5enmDwlj08wYOCpU1cKSgFXnnbAD7dq5jWmVY3ruOomzQL8PZZv3a39NquKM91CslqjVPv4yumvq2jE1SOKTgCgdXOlBG0KuevRpf2mCy36JYURjvVdg8oJGvdzo+OCN41iSwP9qbwqodQLPQUTL8J6X/o49NCM+X37cUpTDTAEkJ8VEeQDIJRFNL95gO50P8s3HazXPeldZ1YuGX95C7VsqEw3cAU8zWtOZWpHNSP+g6KTrugxZjIZmwDqhvEVGUfh/vQUjsiAx9FqIbYLzbbAkN56NUdEcpNz0VI7HICA0ZXt5xPfgYieSOXWGmphVBJliPFjAM33EYuwxTjxFTwfwn/dha9+3MM8Bn42bJpnyPNggs1r2Cz8edrNwh83TdV5EFAhLoaPneSLZRgmqdAI4JZ8Ep65k6MxXPl2DIgNBnAsAz0OXymZlhYJKN2vWRDuzs5MxdzVnWNQcJiCg5uWlwuZjvkCAb6Xic0O+mTpsCaZJmdrXFXIoxiyk1Qn+ZLqC7QDL3ITp/Mu+FOyFnAkWncng+5e/O8nPJVLTKPBNYE8pAhYgv22iv6IxDZhyKvIFSBK0IRIBSwHSao1kvgJ6D2VnBlBYuJ4wP+INhJ02Gh1x0M9bGPUzqDJlxcKTQWA3nFIZFhTzzZ5wpAKujHsqiQT9vUOQNNkclbOOBWR0cuvODI5ilCrpsYFcKYDPDeB+8o7MBqDLQxoEKvzrqachGrQFkPlKtWPOh8qYCig2KeUmkmUFZlfom9CEZQtMDXDmb0pOmE0iF3hkHVlassKL/DcRCy4BEgAjS4aDXKizkZVIaTd8nJYxARCRMlAqagqIgQf/H76VJhBVHEA55hkrRSVx+ueLS7lcAwGiy47aySxqlNsXr+LbhGpmvh5kI2bcMiri+zPbw39EpWDIlYiyj2YN9PErVAlMRJKpUDlQIoZZncIWx6vr/RbOZYIb4O6ANhpxRrSzRfKo9m9bk3EGnLNJAtZTO3GNGMfoohfpPl/1cqRb9+3rBO0pz+Xy0DPeHNLNyvbiPmn76HY8P4IGZIm9ey8chIaYS+Z66mzXB2DE48glOFeqBSvUQAD2CYwbqsl9ngGRpxnQSUAumTTKU0vTZZTmlb56/gQB1oZ+yMZLJ0AjAFq6fydZfIDn3HET+NZc5ILrTsgWMIO3+Zsqshe405W4BT91yz8BwysgfuWsBPAhQCp650YTdi5tQhjCaFKjqDGXhgUqeWaxs9mFXSl+eVd4ZO7fIDoyx85tOIhtWOHF8ASemA9xn71H08gZL5QRF1uDQ0hr2LmzAOo3CWFjncw4pBVS1wfoknEOWNygKzxTV4wy0mcFZFUxmQP9rBtma8TmPShd3tdPNAsoQMPROCnboHbHJAcWKSoelGmDjIh3D5lsKPKeUJ0cLJZ0J84bo69iXcdFjdklcJ/q95cTJC7Twx4k+FcJk5UwCSzpknHYh/N4WXhl2HVtbSt6gvZPttEO5cEBtcIbd4usm2skLvS28co3RTp0IOclmRn+RoJxajtqif2K92MQnouWir1dQcmn3raKzr7LA4KiN2YJtmY4WcVk6Eywe/ipAG5+bFlMmhLaUKzaAq9QpPF66plYYOTNScgy5TI7UkpLYQ5VAtEKM7JLh6LPmnpn4srXwKWNGQzJq0TyqA6MY5nbTU5guM9hLQNfUaa56kIZwtImYPwrJ3MsAVNSNj7Dp+jbFLOkKLdBvi3TGH7RwTA5AntcvM0nzWLYPnTnbWi916ptYR+6zjj9QXBM5szcHHWhsyW0kcyTVgzT3+Z5+bMPbpnOfuXxdyBwQnaNIBuC0MmOBa9sQzvDzcwRa0uRGCw2KsgY5BdsYrI56GPQrFHkTHKE9aBmNS1TrBYpjxh/4mjnom/uYHhng4K5VZNqBnAat5fjyiV3YqAvsH67j6OYCqiaLprLMWChFUAooch+OrxRQNwZ1Y2CdxrCs4EjBFBaUEUzmUJ8sQXf0MNnv4EpC8aWeX8CnAIXFJrvDH6jWDJ1fGMOCm28C9RJQrKZT5Ad3JNYjglcHH6XWXVR54eVFjxIYaDFC4UeUUWIagLgYR0dTcDlonVUFJNDAxTE46CpFV3plUS+kBHrShMeOnewsHRkTh+iLww7cMToIsx1oJYMD5Rf4mOEYqd5KtkeAP2kKYuAgTUNyRx3BFFI5kXWRfcd/8rlmDtjcn8X62sKDoWpRwZYhAqgIPjQCfPmzqVSsC5CO+8hGLo4L+ybxobHe/JbAagvksWJlJUgpHD0mZmSWzPjPrABv3T7pAktp1mEfFxX6usvwsMmx6fu+qIfe76vpA8W6T1tgC+XBnGDJzNR/rsgDqdguVvJWmIal43I82kOABAa43B0MnMP9eL52AbCu2sMdE6FqtO+NVI5kaSj4AMX7sq+cbc8rP7BcfwHWSPg+dcaXGdtsEnyK+P6ijQyi5NEoF1osqfPymsscEJ032dZ8mgWKOg/NmYDVGYHX6e6ryB/NoYCmMchCdFkTgInRFA9pzbX1bI1TaBYdslt6KL9Solm0KI8a3HJ4F3JjYWsNaGB0cgCtCFVYnY12KMLqoJWPaCuMhdEO0zqDcwpKEWzwPKyswWTqzzrr75h4v6WM4HIf/u9zBwHFzgnW7kVQEwOqNZoDlfcr6ltgYKEafwhtPQynz1d+kR3eQShXKCV6U6lLVK3aeVFmABv/N+/kfV0YGEXFJRVAJ+RWOipLuj6bICkdAaK4bq5M4CU5A6e6ncqRnnfJMidPq02d3esWHxggHovAEtMUCGDYNSO1fGJCmyLj1a0nJUXEZ6pxs7qsHMRLkZ/D0VQY7mlLbyKNzJSoE+lgZhJjy+DTA1D/YTM0YSwZMPjw6ngv0fb4W2b+hHkw3js4S8dxCfWJZ6SxeUf463TNTK2x4TnCTAazJR3lzE7V0X8szMdq0R9JEvNUiT5iwNuUquUXFVmP2oMm0uxL5jOCK0eRdVPUNuECaT4ACbxFc1Roa/QBCoBEQZRBon8pmUnTBPF+RzwXIjBk85zCKcErPxfyrLRo4u0AOgbC8qifWYx+N5fShRYbnKrP9TWXOSA6ezkN8DkVKDotdSp+cyZQ1fJdOU2duiYyqQAQDji1tQ6sjX9yOQEjOYWVtQHWxz2Y0gJOYfgVjWLFL1q9owb2qk3Qao6qMTi4fwV6qQIaH2ZfaItLllawb7ABLVZoIoXc+Mi2Mm9S2L8iKHi2KM8shoMpHClkxsGsZ1BWwWUEN7AgDdTTDNmmQrHij/9ApZGtGu9b1Ghkaxr54QK27++ra+EIOiUfQRbAiUzAqEIYrgcTlCjwVuRRQhVmEtgS7UGmd16m1jEKvOvnxTZGZoViGAiYyitrzsfDykz6A7X8Pkzbh0SawpSDzzwtosfk9605EpQp56+RYf7SP0b6HUWfJ6G0ZfZuoK1oI9MmRDdoZb7uOmBHBSre906kynO2aj4kFEFZSf+nOOdFnSJ40al85fy80I0fw+myj6LMN1xU8KTEYbmxA1M/8llgkdUT30mGqMX+afFSCTC2zEJI79mExwyHotA9ATRzOex0bKbJDKUCQ8hMmcsD45enrNhcV1v4jrOFSmCE+9Kk8WJndd14R20P7lJaAFIeoLKZms263EcxoSa3Bx6AE2b0oejvFtjm6lEnESmLQszl1Z2bkb1V4n+k+cO/5xfn4DLTBKQQzNyxPsL/aS5fnzIHROdZZoKaGQ/IthilUz1YYpd6SpEKQSFtHxVAVkFnDqPVPpTyIfgb49KbuIyDHeWYrJUoyxr5SROPn6h2ECYHrM8wbYD1cQ8LxRT796xBL9QY5lW8feV8dBkAaFAEX0oRdABCRlMLlE2rDBvrPTirUNUZ3HLtTVGaYNYz2AFBHSnR3G8TtiTA+fxAulZATtBjLZQ3QYdInN4JYLzbr3jFOiXGRTpXE8Lhr0iai3MORbONb0+2rn1UW+UduVU4+sP3UzopPSq2sHDakDBvC9UflHk8/ykoBBn6K5PatUAGpZey/l7RPCWnDAMdwYLFqcIKSfh7dE0Z0jzA0TZdRiOadVRSfrF8ZjU6jFL0vZL3FGUySBjv0eCswi2w5IByzUV/KI6Ci6ZKyYx1+sPFqDMVwKaKx1bYUiGbUmSabNHuMzZVaZv8kaTPE7fbXxtC/gU4BVJkXBqIBJa43gwumMGS7eJ7tNoX+pfNoM0w1bvlaxTGsR76L+uhd3BWFDYDOl3L7auWfH81fX8dA0xt2+xh9PuqEPPymLGYC0hzITadWVEEvywGiKp9XXwvgAcpYHCE4jyNrGGYB/mmeIZaG5y2n1DcRHZ8jBhERlDMz5KsnwBpd4rFPwdxpM/Lay5zQHTn5AxgpkWjdnaLp/uN/D990S7zTNK9pvve9f3TPuhXUMahqdhc5lDVBguLE8A4qNxhtN5DvbtBvQRM9hLswGFwsw/NL/aMfeSYdihNg6ywWCom0MpHqGkQsgB8OAuqdRq5dnBO+6M9gmduZtJqmJUW2hDq2q+IVPj8RG6XB0dmquCsRjZS0BMN5fzuNF+o/N8hm7QZK2RTYPMioFryC7AtFLIxId9ICREj4HFiywn/vmuqAQFm5JVmeUIFRsIzTAjRahRAEYAUHSNMFpLtccwOCNZId/wfZK4iCg6o0u+DlZCZeGZI12KuyJecC6HNLRYRQpmgDVr4NywMJsG/CW1szW9WqApbTHectRjwSsv2xO+6ykQlpdwChAqReWl6yh+yGRSwYnAZGAI+nwtIO/sIVriOQZlK35l4JtqsenHbKTEG7LwtTZQxd5FRMaVAq3nCPBpNr9L8RQzwPJLQNaV5qxLAVE1qA/cTJwx1IrpROf+3LdJ963AsB2kf+cXzJzr2B4Cia/+9Nz2qCCKacG6aIuFfJUyrpvJjzODRhbLkeMr+5PnFbF68LvSVrpH2eGEObx5QSZupNA4ewIl7CNOtOxU40mitm/xMxXHn+dcB8nz4bOvZuwtkbjI7fzJPzHhnRYCdOyunBDizyu5+tp2HbdY1jYIiDes0dO5XGK0IRd5g38IGGqdBpFA1BtONEnAK1aVTFIMa+p8WvKOqU7CbOfKdPvGiUoTFwQQTm6MJEWWFsdFkVpoGU5uhIZ+XqMgbnxRSJ3aIxTYaZVl7H6Lcomn8g9qs5nAZoZgC1TjD0hGAMoWqD7iC4CrjF+TlBmo9g8sV6oEHCtUOYOcXKJpVZLi7sn4d9WY1gnIKCOcU8QDlGyoyPYrCbpe83wKfGwWlIjvkcuEcGtml8B/XIUsLsMwlw+aFrh8EBCAgHaony6YQ+dUgRZmJeSAXaqb3WfE2PQRl2wYucWEnJF8VqRjCPxJcRaUewB3/LpqrYl+nMZAh/IqA4CIEaD9+tpfayO3nzNIR3IX8QQyu5PiC2QZ2sHXwTAiF0+JZ8TcpOSLS8G+VDrBkRe8Pi5WHyKpUDps8uT/gx5VPc+f2y3Zq23ZUzsbe6ZlEqoLI/CnEpISuQDLnwLNEugGyTUQGSfZlZJsgPuMPwpw0wteNHaI54kw3FIEfR0ty0kU53tzGCJgEYyjrAQSAp9LzEgGsADoREFJocwDfkamxfk43Q0TznMsRIyShfZ/JZKjisff3AIAiReJFYJWla/jZs51+25YVYC73KJnDwnOR0034O/vddq69E7+PCqt0gCZUVYaFoU/P6gI4AYBjGwuYTHM86MDt+ObLb4PKHA7sW0Vz6xC2D9RLBDvNcPDQSexe2ETjNCZNDqMIE5tBK3/ch1aEL6/sipFmGt5nyIQtcaZdSAoJn72az1XLHKaTAtZpTG4fwnxhCLplALVUI18zmO520IXFyv1TchLOS+SWG1BgahQB5QqQbfjFdbRXoVoUPg5GLNRhl6+DycxMVWQ1WGxJ0XSoGyDf8BFs2WYwDbAJLtD0tkfpKACRNZiVgWR6JDMAQjsxITvGCr+TaI4TgIgPk40Mxan81sSiLvPXAGidDE7decO/5fvzPZE+i/4uLinGro+KkuYQILEAHR8alqaf6i3Zj9hHBjG3jy3QUkQth2dmhmICTAVXqHRQrBOmGslGSRGsjS9b/J4EG6REeyn0D/d1ACPxuA2p3FX7HrHfgtgymLQgxlcnICtzOkEB+Rpa1/LY5pvkWaK8fb00TzHo6ibZbLE/CjG3Es+BVlCA6G8GVrGv8gBew/1lKokIXin9nkz7c6DjOB/AD5DmEM8XPU1t4I0Ks6sxQo+fScHuEDzQiQBKifkRvs/Hadz4jMG7WhzOPdLsdG6u30gyB0TnKpIa7VClLUpVLPZn3DmcinmS9zpTnTD7PipzMEs1nNUYTwoMB1PkmUXdGIybHEoRBv0pPnHTFaisARRw5Ka90FN/VIddaEI+IoVcW0ytX5W0IhTam80GWY3GaVyx4wQcKZ+kUWiYPJjSdDjnjEJFKUSexT4YNqiXHSgDzO2lj8ra0FAnfJJI+01j35aMoAoLVUiQlM6OUg4YHCW4AuEATyQlybtMycpoeP8gm859MmMVnXazMeLiGMeVEJM8KguoRoWoHP4uLNrMUEkAgKRI2OTjilAnAeBayQElOAnluEywLeysvJ15ott/x5BjvoYVO8+p8L7FOMm5JhVb+E6yBFHxy+dCowVEJIAxU6FYVSo35l4yyQQklVkLbKrg/OxSX5ppYjZM3X7ousBMlh3fOoqh/tG3CamvTsUStMxhIrNy934pQSbP48BAyTFhEOzEPA5gv9qZ2sKmS8CnbbC5v12MQuuuYy7NSQYitvRzE84DVVuGtnPahlAHZ9pjw5sCGYquQ/SnjMhy4SwwjphrTSlus0tAi+eGjMDsOvDH/mYAl6U6SVNp1yWBWT0nmKy4YdHi+wwzQ+y3PBMXUOaJGc+fzHvhfMk2J/9dZl/m8jt0PFkF1/jkhRftWvGJE8MRHuPah72vr/eRrWT4yh17sLx7AyrQ7ZO9hP7NObKhP9KjZxr0sxrjOkdmLHYUY3xpdTdu3Vj2/kOgltmsMA2MJjhSqEO+I8AzVFXt88mQU7CVxnS19EpyVwXSBDgFWxDqRQdSQHY0R/bFvs+n1Leg9Rw08lFpeurBTL2gMLwjZVcm5U0k0ncomhxkZBVHaImFNDI9NkTO5CG5HFP1xIt1Gtgt5jKhZKNfhwAV/JLHBkTQJMdRAh1WMMGpWCYflHmKTjc3WuyA+L/LLnYlJjxEp06h7vLeZHy/tuY/Awb+v3Nfdu5tQi4aPgqBAaIEcRJkxHBqUVTL50m0izIPhiQj1gIxs9ouFadUwIKRiqYzCf647vIzmjFG1P7bGRWSTKo2GCWEaLHUBzKnlXQUjmY5l5Q8++vEW4l5Ia/nuZ9vUOgvtDKkx+dEmEpbcziYFbmOcuyY/YwO+/mMugjTsmybP5QZ0b8JQPSlim0SbCeXwf0Xnb+75YexyUadQ547G4DuszmXr3+ZA6ILJZ2HMkp3sT2Lck55iVzET1Om7ZPP7AxgYXGC21aWcXI8wBV7jmPQq7AxLtHLa7hGewV3aw+rty0BCqiXCdmGPxOqKBoUmUXlDLQiTKY5jq8PUTmDHb0xLl86gUmTxe9ra1A7/7LOm9D6eR38iLym4uNCmtoAEwPTb0CNgpsaqN1TNEsWtk9Y/JIGLTZohg71YjAfhBxFeqEGeg7ZWPnDYNcJ00XtI0RC/pTpskY9bO84WdgpVypsNn+xXxAZoFr2RyOwE2U0BdhAybuUxDH6mGTte8WzxBRax0+wD1KMFBK7Xl6wZyl3yPZI0MGmGmmKCS/22dmyu+2ajGbMKakI5A49/kQoFlLJB0WJ8uJ9RH9LRUM6OZ6zeYMVeuzH8FkEVEjlAOm38RTyjmmO81LxtbIvWzLruWIlHsrUlvw5YRzRxFm6dXvsZfJGJcdHgN5u9JkHHrTlOY/KWfQJZ43uMnWRSQt9xSxbdHBnQCDaynOz6YVjQBRQhxPpyQD1MF0TGS8SYxjqIc8Di+ZoAQhbJi9uL+cjCsCvZUbkPuOIUSAlZOxE88XhEsBZPkutOShYzOkuxINg2Rm8dSwI2szg3SXzs8zOn8x74ULI2TwgZ7p2O2XJxVH+pvNb6lvo0qIY1CizBrsWRrBO4fb1JdSNQb+scfToEvTJHM3OxpuASEFX/lXtdGgWCDuHY+woxzGKbPfiJqzT+JeTe3Cgv4ZM+SSMk2BOy41FaRofjWYcMmNRNRnKrEFjtchkTbDjDGrQwFkNZQhm08Bt5D60PiOM9wOL/1SAehb5ZRuY3rIAfTIHs1+AT75oS2D9MhXPV/L+F8DGxSqG0EqaPTrcchZgyXg4zyoxgInHF/CBkQHsZBtIPhQCbLBJqDVGFJSTRgqpF2YjBljRhCTBkGqXw/4ZLgtvWQGGS7QEK1L5CuUQI9nkdaKMrkR8pdCKnJJASZr3mAWQZkm+T9dfK7J3st+AlIVbfN/yaQm/jTl9gqJmJ/YIqEJ/OxN8gMS1LSA1429+LzuCM2c3vXA2V2AZGaR18z8ltogSk+fSfInzT4AFD5xU7DvOWSX7gkGGLcUAId3PFt5vh/MRkVTmAiTKNjNgY6aEBCsU2b0s/TaymgwKudwwjmYcrumcvyfnIlTwHQtt4ueuZU5Fqg8fZ9OKMuP/u+bgANBipKQEb7rdB9ko3Sc+X917zJC70lwGAA7qvLzmMgdE5194Xs3o2S10fPc3s2Q7dOys3VAXDClgsHOMvPTszsn1ASprUNUZ+nmNYVnFumSHRjCDBrhiE2bHFIPbQ+jpYgO75A9/7WUNlvIpBlmNqjEY9Cos9XykmSOFk5M+Cu0jzTKdotlKk44HAQCjfT4idqrOBg2oNh7kKHgwMjZQlTeFNYsWm5d4oFSNc8D6IxzMrgo686tbNgb6x/xiaSpCuQIoR+idIPSO+wXVFkIRBYDDviCsBHTjEzBmI0T/HyivVJjq94nnyPszVN60yA6zrSMeeLcsxoXZJXYwZT8NBlrRGTuMccuHQSp9ndiqllJgRSSAVHfeRIXcoJ2td9Yco6QIY1Gz5q4W1wpg1zJfSEUoQQCS4mr1m2CMWkdViGv4HkYk2eRyuG/YqV5ROIwU3rx1qufsVEAolgk/tzhbcwtI8/PeZX7EvbrAJ/oUSYBE5PMYhfA7ZnY0z10eH9UuGzqwRVqAd/afkb5mfJZfp40M1k2VynY6mOlCdCUnUwTQNolK4Xrptkks3pMZ0jBWTT/46YV2ydQEPEdJh2dGzv3O3JVO1zxPeMOSokPRBk3hOhOWQxe+67KyPP6zGFaWmWv9BZA5Q3T+ZN4L51NO8QCcEghtV04Dimb5O5zqXnVtQE5hY82fXabhj+0YVXnMLH3poeOoxjl27tgE3TqAXS1QLQHTXQ6mZ1EuT3Fyc4C1qsSoyVHoBvuGG1gop7j52K54r4PDNaxXJTS8zxAf42FiUkYH63y27Mb6NACN9SfY67KBW2pAlYZdatC/XaF3TEGPNfIVAzNVyDY0aKWAKwiUEdTNfdj1HHAK/WMUHXLrgUbTA6oF7f1/emk3zlFgUckE9oEXWBMyPjNrxP9zxJk3aVEENtUyfIbsoABa5isGMsxo8CJvEwiyJVoRZqQRfXPYBOPK9D0DD96Nx0Ueac5tmR/h/7iYM1vhACV2zTzv4k9OZV5ToY6hjdK0MevoEMkSRZkBllrMmWAeWKnH/4Upg+vDGZIZYDBDxiwRaZ+g04+1Sn4k0iRzCtkCkBTAh7NG1gT+Hhwu7qPtKOZNkhId/63oe6HYlaMIdloh/QZxbkj/KQAx0pGUN2klRkr0b6v+oZ4zzD/sMxdNfxBAVoCalp8cifFiJ2Y57jPmJJnwp0qBCHIeAZ4FchlitFzMTE5oATHuRy2YRwlgo9+SiIDr9mXMW8VNlZFm4dmLIF4lnylp9p3L15/MAdH5ku5C2V37tvGAzNyZx0K3ljlT2XXfq1SwNgRr/VlfALA27kEbh8t3nAQAFMbijtVFmNzh+NFF//vCYXxJAyw2WFwcIzMW02mGUV2gcgajpsBCXmFnOcbicIJP3nJppF9rZzwdSwqbtb8u0w5GO+TaYu9gAzo0isjnIKpWS5Dzx3BAEcxahukuoF4Emp1NXATNBChPaJjdU5iRRrEGmHUDvZJh5UqFYsP7cuRjwsJthHrRMwJRYQclxGHtvDOX/hyqTrtjXnhtz2fG5nL8OWtICQA5aof9FVTyPYqh6EE5ZCP/WTwOQIQpx7BsBAUnFvZochCLNzNYfIRBS/nxDlc6jSIpKr5OKmZ5/+686yrWLdeoBIbYnMd90mV3bA+tc7VaJhehXLm+DAwj2OO+gGDkdAKvPMYk6liu+j9sEcynNbV2/jOl9Ty1282h9y0zJv/fAZ6z2KFYbgcIKZsQKamt5+3FCCeHFisHLaKvBBAFBGANn3FEIftqMcDm6+XBuKQRTbKRMQl14YN0szHaqQsYMAPJ/NVhSqUvFYMPnovMKPGGJJq6mLGS0WyE9torACrfn597Li+yk/xcUPoMSL93ISlqM0yAjCAYSzk/5HjfBTJPzHj+ZJ6Y8XzIWUz+04Kezvf8MEYH3W08bKek+HNAKcJw4J0BMuOgdY3JNMcgq3BsMoQjH07fbOTYeXANK+MMurRQPYuDe1agFeHwZAmu0agagzXqQffGaJxGL2uwd7iBnf0RKpvh1o1ln/3aesfqMmtwdDzEYjHFznKMQlscHQ8BAKNxAW0IxjjY0kJpH0aPUQZoQrO/BjUK/Vtz2NL7IRSrPgM1kQcMo3vVGH4hx8a9a+z6XIbRPgWXE0A+2V6x6he5/lEHl2nPynQzB1MCFoD/Px8B02UAQZFnmwpNPyk5BhquoKB8Vau8luMmJedi0kATEkdGX4bg/OuCUtNV2vkSfDujv1Mo25VpgQeEMhL1YxMXJxCMPkMK/qByUcd4xtgsMMR/u7Duyx25+DsqYFEHVihAqhs7pPIRK7OUCQM/LkM1opzAoMnzs5gViuAg9KWCV179YxRBlu0BxapEKOJZE34t8vst76USFspYW3/waVc4IST3mSIA8gBY4jJTziHJkLXqof10Uw7QIYGlrv38iSYxC+gOQIvgi03FmQDcJpUtfYjkWuQyADyXBENDKpmxOBt5PFtOp3vBpnsDAuRR2pzwPOT/szGh6XsAG49KCf1HaD+PEXCJfmCwq4WJ0hZijnAZEM+cmEOKABLmRW4Xzzvp6B/n8l0Eiji1ybmWMZc5Q3Te5ZTz6gxAaJZsiTY54w9O/ZUdWkzXS/TyButrfTRWY//COga9CmtVDz3TIDcWznrTlD9t3sFVBvt2raGf1R4wOQU3zeCgsDEpMWkyFMaicRqOfCg+4B2ph3mFhbzyx3eQQmMNNusCR0YLODoeYmozWNLo93x4ST3NoDMHpQGdO1DuYIcWprRQhjC5Yopm6JBv+IUz3wRcbVBfMYEqLMaHHLIV71nMh7quX6qxeYCPdiCQ8eCIF1TOOk3a7255Z61roHeCYCYUD3bkxbHreK0IiKdsawo5kNByKuadO5t5osOmSgtwlwVk8NLaxQaJWaA7rBapsIMNYINBB1+jxHWRDeJ7NO33UVFIvxgS3wNt4NQBT1JJRfYNyW8KEABMOrJ3FLf0keo+D8yWSRakW4+W6VAoKpmkr1WmADaznj8Of5/1W3lfdsTlc9Jkv8W5Idspxij5C7VvwD4wkfkKbKCuQ3to67W6EW0FImMT6yHMijJCbIt5szNXY9oFweBJX5uuabS7Nkqn5hYQFp8xc+sy/6WMRtOdeSkdomN9RR1abJkEzF1Rrf/SfRkEOWy9gN8zmFJb2zuXe77MGaK7SsTDPvPrOwGYtpQ9o8z4UGq/AqyNehgsTFFmDXqmwSVLK1jKJyhNg6+tL0Nrgts9xfqoB5U7DJZ8+tXjoyEWyimGgynWao2VtQFc4/MXrZZ9lFmDQV5htfJnJ+ztb+KO0QIKbZEph5H1GnCzKjAsKmxWBSa1/6yxGuT8gbMAYDKHepxB5Q6YGNhawxzPvf9O3x+4Od1DGNyuoNYy6MpTKG7/FMW/9NAMAsAZKUx3eLNX01eYkoaZEnJL2Cw9520mgAnZkPU05brxDIJCvkEpZN6hxaiAPPgAAOX8Suvy4IBufOdHvyWxK2bAEhVPx3/BswZtJdZVMPJ3vPDHHX8AO3EOyDwtFqAcSQGxcmVQwkqioyxM1U5+qOu0U+e6MKvCithXtH2NcgDYDBKUugQyzDxtUazMaAiwpEN+qZiDSSo5/l3oG10HU5lQVNmY4rPTVd7nvBFRfm4xAxkTP7I5VSSa3LImCCA6K9GgrvwcUgxi5fUqjQVvCqAQ2cdYPYcWO6osgJBbS57dFetAnWtV+iiCJGayOMQ+5O1qZbvmMrpgm0Eqg3QxlrpOzxmPk+K/HaB0CoaIgLMLjJgxazrgeda6zBsc7m+ew/BjymfjsfmulY/rbhB3Hkxe88SMXua9cC5yBlp01q70jNeK9zN3GGfx4LXs55pQLlTIM4vGagwLr213FGM0pLEjH2Nnf4Tl4RjKEC7auYJiUOOiHauYNlk8xDXXFnt2bSDPLfKeD6Mvswa7eiPvI6Qcjo4W0DiNi4ZrMcJskNVYLCfRT2l93EPVGFSNgXUaRIDW3mxGTkFpwq49G0DpQLWGK7zprDipMdlPcedtRhrZhkI2UnBVONqjASZ7vPMz5YRmSBjvBcpVh8lODZcrzwwp7wStq2C6CgrGTP3LGWCyK+3sJTPEJ3n7HWvSDrpiGkRFJZCvI6YC4MixGI4ulEnLDAdE6r91zAN/L0EHj3fericYxHFiSlYmAoRExSBYhzhnBDPFjrXxXsEJVpqYWBHye1A6ziCyAaEOkRliZ+Yu8yPnf2i37Xkl3spMzEpR9hE3yXiz6uAIId+kmayFFMlAdZ3SW0yNfAbp1N+xeUz6lUm2b4uvYYd1csabzdicFpkhnf7mQ4JnsUwAYmRkt+08HhxN1fQSoGITa5dhadUtE9UN94s5oyBAuABoALac8Tdr3ZMgVddANqHIiMaUF5kIQuDNgQRdDNDEnGwlbZSbxQ4YkoCMATrPUZ57RhzTcTbr/IWQ+Wn350/mvXBn5BQTfxaAkQ9d11EvXZQ+7wKhmdFCs8o4w4No+k08GmPYq9DP62jmOjYZ4mvjZfRMg2FRwU4zfOVzh1BtFDjQX8e377sFRdbg6OYClnoTTBuDA8tr6BU1enmNhcKH32tFyI1FbixuWduByhmcnPTRyxpMbIaVcR+jKke/rFFNM0zXSjRVhn3L67j3gaO4fO9x7F7axM7FEfJeg81JEZSmPzgVY4Pp/sY75/YcxvuB3lH4/EgDQnEkB+Ue/DS7GigCipMKqlbIN4ETVxk0faBaVDFRnyuA/tHgl7TuWYRijdA7SfHIiLgABsCUr/vrVROAVAxZ96iG6xsPmgwLaTYK4Gsc/g++M7zbZKdjZ4TiMIFRknNOLOoRIHXnCDvaCkUpD6SUClU5hANPw1QSEVfde6qO8pCfR0USAJ8K1+hueZRMSVuepe59hcSQ6+CwG80YSP3ApkmXeR+tHf/iorlzSz1mMBYe2Cm4TEUzDR8iCyTwE0HQLMAkhRCTP3YBbMvZWvwfgSv5o0VaiTkhwG0wJUKhlRyRHZIZgEYnfKR7xISCgeVk0KKcfx/zNokxlud+SQYvzgEgmc8EYxRBoahjqw/CK94viA4BDbZQ0TyYjSmCb55H6QcCwDFjyFGOwsn+jOyf+J005fEQmWliJ+WGZi5f/zI3mZ2tbHPit3wELuS9O+Bpy3Xh6VfKnx2WGQfrvBPeIPcgpmcaZMqhlzW46fb9yHo16kbh4otO4NbNZVjybM+X6l2YNDnus+sYjk0GAIBhUYXoMYuBrlBoi0Jb5NrCkcL+wQYa0uiZBq6c4raVZVTjHLRSwEwV7C5gXOfQirAy6kNrwurKAMs7RiACaKBQIYea5IAFihXjaf3KYOGrPuoj29AwFVDtIOhKwZbA4KsZmr4/hNUVwHhfYH4C8Gn6fnzKE2nnqSuKIdikfYQaWAGatvMu4Mu2IQwe7LyqUmh0a/FlFiiAF85lBPL14rxIHCEUzRSs6GugWUiKTu66QYgOrHGXH5LzMfADkHbQyv/dPbJAmhK6Jg4xlQAEc1Bf7PRnbK0YsNgstY1cMt/FfpHMTtfnA4gnvkfn8c6clwAgsgd9YPlfE7uSjb2Tc3TOFveMdVfeV6UeJrAazSFiHPmeWxyfId6jDZrib7QAZlKhhrbIRI7R0Zrb3AGjxSphslttAcg8P9iMpKsEiNjfiE1r9YIAkpSAVWTgkO5re4BeR8x9FNkzjqDk24sUCCoALmZqdJXuJecr9xNvHpLZ0J8Xx75DTU9F0y0/AwlAyt+Jz+DrHPN6iX6MbFiXoWTALuaGvAdHMrbm0Plc689CLBTsOSKyc/39vxWZA6LzJGd0oDvdw9Jd7LYrs8DQDGkOVMgVMOxPsaM3Ru0MigBYKmfQMw1OTAeonMHeHRs4fMcyzIbB0dUFWKtxv0OHcWLax4GFdQ9cqh529cY4MFhHJra9HKmwkFfYUY5x2+YSJiaLeYhWJ33Ukwz6jhKkgHxdwfYN1kc9TCoPiogI1GhMpjmWBhNsOtWK3JrucihWNbINH4o/OkgYfs0f1QGn0Az9taOLLIY3e0bIFh68ZCOgf5SwedBHq/SPeFNBNvZ5aaoFhf4xB20J9VAjG/NqrdH0EbNVs59DsUEYl0nJAp0FOiyotkwgoGs6iEAI7V2vVPyeEeOB9mUS/P8cmszZmPl3WoIqca10rmaH29au+hRzUTIo3m/CX8x+Ol2foZbTufW4kkg4yYpMxqpzX+n4zeCt61TOvlGtOiKVu/RlaoE0jvhiZ+GukFExSooZAF1xoxFNV936thysTyMu89fpcG5aTGgoxlgqdlIKyhJ0ZHmYmUrtnuxUrTGTh5YC7MsWxjr4E0XfHufBKc83f+SMH6d4ll9g+aLPFQcCBDMls44RYEGE6TM7JO8X2E5dhXIN921qQwQbwdzms4kjmuD4OfTMkdgYiHkdhqz1Bx8Z0gLf21l35fcqtZPBurxEbae8CyDnw+Q1N5l5mffCBRJ1moeuFd657QLTn7PMZV0nwZaJBUBTeV+dQVajn3nt3DgNrQiVM1iZ9rGQVzhyfBF5v4FqFKZrPtPfsfHQn1lmM4yaHI3TqKzBStXHxOYY2QINaRyZLAAATkz7ODbxvzk2GqJxGut1ifE0hztZoneHr5ieAsUJg3qcwTmF9dU+Vo4sAgqoJhkqa0CkAE1wfQfVKOTrGk2fMLqiwegQIdv0SsrUhGq315o7/pnQu8Nguosw2U8+c/XREJk2SpT75kHv45KNCdnIwVTkj/iwhHzDYXjzJsyUoBvakngNSHlsJMCIUTDhHko4ssbdZAiNt2Xysemanvi6eGSABElsDgugwYTooghumFkSZeoKLbMB79DjTr2T/2hWBA6JezKbsR2l0jJtQcxNBnciezL727T6QgEUHFkZDMTQa3FvzkPUP5reM1Dlfox9zQyNABEye7GZUmiziv+3opgI7fcQf0c2gTq+X+TZR2F6IuWP/Yg+P8yaaAZGAlh2EjvyuWFsTuo6EnfBloyUZGd2zrPVDABXCvZKgGQZbSYZkmjOD+W7MgEf4gSKIs0Ds1UyTYScP9qGavOYB1Mfs0tx/gvQ1xoPfjbEvI9sVTcsHum6rjBj1GpzuDwCIX7mZxcxl69TmTNE9xSRimU7T1nnmlOBK9JAb1jBkT/F/kRRYaGYYk9vAxt1D40z2FGMsZBP8bljB+DWCjgCDAHl7Tmab2pgtMO0yXyiRVIoTQNHymehDhVpnMEgq3H7aBEahMViinGTQ4NwcjxAL2swneTIRgqjix3cwGJiDNyOBqgD8FnLoTICjNeeVW0w6FcYUQlrfdZqZxWGX87gTmYwE7+QlysUwImD2dRY/SavFKdWoVomb0prFPQUqBYUhrcTVu/lmZ3Jbs8eNQMN0gr1ApCPPChqFgpoy1FqAVh0TtNWlMLjZdJB1aikCMS4tvx95G4YfhfPvjERaEnTmCjD8U5VmNA4qsdUHQXCdRKKsOVUTZ654KzNESywwlft+aXIR+A5oYSj6UowRN3oI+lT0jqzLSp8+BxFAqyRDlF6oU7MDsg2MThjRawstcKrWXlvcUJXiAyPywN7UQeTpcYWk5dkIFobD9EvLTMaUlsR2DE+jV7mrYl+Zk3qJznH/JygBOC47swUcn2E47aZeLMhg0hlU+b1CNicB4HR9BRAOue7Avmoyxi12JkHMbVDiKxE0wadukE0VekGIDkn5BxhJ3EG6/DlcI4uzihvNWKS04YPmOUEpVxHflY0gDoBtGiGmwHgqdPfcjwjeA5m1pgMU4xvnAvA3cISWZy7ycue+ZJvCJkzRGcrnUXhlLKNh0L6o3DZd6Y+3b/T7olgB/6MsMXBBCazGOQVpk0GE1YARworVR+fO3YA0yqDWqiBYRMVuqsNpnWG9arEgeE6AGBqfdSZg8KoyaPprXEai/kUi8UUTdDiG5MSk2mO9YnPQA3nHY7NWga3s8bijhEuvuQY9i2vAxnFHZ7SwGjdR6LZiQFGBqrSKI5lyNf9NfkGL3gKo/0AMkK+DgxvD4sgH89m/QJKGhjvUZjuUNF51AYHUjMNmYHJH/cBANWOHKSAuq9itmg2M2WBadLTtNhmfKK7NBWF6BcZ3cKfM7PDO3b+TobJt07T5kgaOe485pl4z8yKLFfseGM9xBw1wm9DziHJBPDcZ+fvLfO1C+gV4mnh0tcofiaZIcngiPtHcCDa0H3+GCyR5nuplg/fFoWn0u9I+zlQL0AoVmqZwk4VBBHLktdtqRslECxMRBHYzNqSCrDs26VSpBmDPJ4XHcCqK6B30vvJFauI81HX8EySSQe12tx/xnObVDB56XQP2VQ+NkOyJ1BIR4VknbrBH2czq+8BBCfp9vhKp3yOIqsXE2ADMDOMX1Y0RlVy+0T5XVYx9unpRCXwpsTzNKNJd4vMo8zOn8x74U6KjP46K9PXmeQMZc1adLtRaa1y+hZVlWE0KdBUHrTwwaqjJsfto0UcGS1gNCl84sWNHNjI0OxsMN3f4KKDJ7BQTnHp0oqPHLMGu3ojbNQF1qsSlTUYNXk4xiPHZjjSQ4MwzCvsWhjBOYXNtR707SXyTaB3h0F+2Qb6C1OsHVnA4RNLuPXIThS7xzh4r2NA5adlMaixa2GE5T0bWLxkzTfLAhuX+gWpWg7AYkqol/0KlY+AzUMpn0p5UmFwu4o79OiAyzs55UESGaAZ+E7TlgClkG1aH6m26YLPjAcx+QbB1N78Vq5RPHvJloi+FdFhVETkdJ2C5aGybL6IYcW5GMeOwmAWyQ94uqYVFRNefH085HTmpEI0O7aYI+ngHIrmAgxHTol6yYvjOWPCrMRKrXXAKLNG6JQnzCbRBCJyK82K2oICBodTuWxCk0AOSH/bQsXT34EEWJgpk9FcMnoqHkvB/dEBRd7XSIX3Krbdheg1ip3pmbnYFm4nm0yVav8+/JbHn8T9meUxtZ+H9YJPPaECSyMTjrJpUFHbsZ4ZUFd6MKEcYAeeaaJMmPPE0SnMyhD7FcFvElTj3+cbgGInegEquK+bvh8nCXpIJ/M2KERn1n6cmr4YF+rMAQaL3dxNHUfqsxKxGdEWKaWFnPOnKvsuQkp3x+Gub3zjG/GgBz0IS0tLWFpawsMf/nD8zd/8TfyeiHDNNdfg0KFD6Pf7eOQjH4nPfe5zrTKm0yl+5md+Bnv27MFwOMQTn/hE3HrrreelT+6szAHR2cq5sjhBGLiccXdyjmJ6FloTFnpT3OvQUWTaIdMOd4wXsTLtY23cw+a0QHW8h/rmBaiFGtRzUJXG0sF1FKZBL2swanKfvZoUjo4WsFmVWJ+UsMGf6OR4gJVJH1Ob4dhoiNWqh8oabFYFjHFQmuB6hMk+h8khi+lGiWqaQxHQrJSwowz33ncUt92yC2rYQAXQdnJjgNUTQ4wnHiHk64DtO0zuP8bokEssUUaAVShPEoqTPvqsXgJ6J4Ad/9J4Nsb537sM6B1DPBupWQCmixrZyCdWbEqF0V6D6Y4MzgCDwxWKNQq+NoSFWyboH6mhnE/4CPjFMjnjpjB9VgBxF80h1F0/Cvj6taLI2NwhFl+5S+3uVKWZiNkhBtDykNNZANoWIdRc+NTwWVhQYs2ngLnsbKXETru2QPQxikrcte8ZFVt4H0Px0a5nyxRHqU2RMQogq3cCERwAiOHzvjwuLNTJJJ+gehnpuJY6AaqWwusyEhBtY0AUgBOZEEVoGBQJMOdS5Js/rFXFc/DiOXfscC76DxCh60j3627GqkWfe6ke+jrrJpwc3xkn7sdW0lGR4FKCRzP2zBCbcckEwMT941L50vzJyUjl2GkLTHdRvCYLZrF8szOP4IGpy8R5gi7N4djfcn4ArWSfEYhhK2CX0t1k0oxr+Av57Mnnr1XEjE3rvzW5+OKL8ZrXvAaf/OQn8clPfhLf+73fiyc96UkR9Lz2ta/F6173Ovz+7/8+brzxRhw4cACPecxjsL6+Hst4yUtegne96114xzvegb/7u7/DxsYGrr76alh79xnw5oDozsh5muznzCxJdkq1P+cnlRygFEEpoGcaDLIahbbYqAvsKMewTmPt5MADCgXQWu4XvYUGw7KKEWk+AsznMWqcxuqoh8z8/9n7s1jblrS+F/xFxGhmt7rdnzbPyZYmMykMVdjYV3ZdEq6MjS1RFjJIyJJ5sIVkKS0wbrAtZInMMjaNBQ/3BYmUEMIPFm8WBbjK6FLYuqYxThKS7E5mnm73q5nd6CKiHqIZMcaaa+/T7DwkrhXS1JprzjFHEyNGfP/4f//v+wy1zti2bom9XE84WU+xVrBtc1qjOD2ZUW0Kii9MEJ1zl8n9BrRwrrDSKSlFLbm3WSByy7UrS6wVGC2oVgUsc8zrM5hqqm9eY+Ya7kyYvSZdTh9tMYVFbSTdRAxKFcxva1Rlovh4+tBw8CWNLqE8hskDn1PIwOTYJXXUE4FsLdVViS4Fm5sFzV7fwZunS2wuB6xDvJ9BVKoASYyQidt5hiqdwGMYcyJEjaxJMACmNwjjiKtwz1MhdGA2ou5J9y9IDFcAPN51lDJWj2o26wXhEbxEsBEYkaFhhWSFHQCNcAyAqogGPkZSeaYg1Vul7q+0T0MZE9la5wbN+4iw4EILUWLggICeQH3kfh/Ahsl7UNEsEgPoj3PeJdZfX2SevC4nGmz/XmrrQFA2ZHvC9YVrTZ/p6KoMWhnoGZn0fozcoUBcBIyNeMiwHEDLYHEm+nDy4LrVU8f6YIlZ4Me/i+xlAuri6aTuVesyyAfA302GIFj4BYXU0E7pS91sbZ9/KrC8Y3YoYcsi25Yyp49hdHbOx+nvYDDOw/djttI+4hhfiWYRroj223jZN2nUvuu7vovv/M7v5P3vfz/vf//7+fEf/3EWiwX/9b/+V6y1/MzP/Aw/+qM/ynd/93fzwQ9+kE984hNsNht+6Zd+CYDT01N+/ud/np/8yZ/kIx/5CN/4jd/IL/7iL/LJT36S3/iN3/hKdNMbapeA6K22N7MKGE+aO1bob2g3Fx3zgn10M0tWutmm8xFmmy5nkddk0iCF5Wi+4caNM4SymCPHDpW3c2aHW3KlWdUlmTSc1RNaIymU5upsTVl0aCNZ1wVVl7Fpclf2wwo6LamanLune8jMZZqub3WY3KKu1BRlR7FfO00RwMSBom2T8+zTD7j72iHdOndC603mJtAWxDIj+9Sc4m5O9tya7Q1Xn2z5jPQRaMIlWnxgnIh0C+1MUF3LsRksXteoxrhIMgMHL2nmrzu3WHUV8rUGA6qyTI61Kxp7Q7K5IWkXAj11YKnelyyfzagP+5wo4T6k+V7Sez5YzY6iu2LkVN67ymzWA4qBeHg0QcdxEfaXgI1U9xSP7XDvuXEXGImB1mfkMhPJWNMldOX5sTdwMwVjnoLGYNQ8EIzZvru+D1L3U+jTFGTGyuay3+fknvsuJDLUhTtHXfb9ZwowhaCbiCggjiLnvM8knup6umnSAUnfRLeg77dQzsFkRGZubDyNEv0+fORg0FINqrYn/ZgeI94X0RvdqA0bg5NUO4YL80+Tbw5E8P76tM9dFd28gQ2S/TUGV6kVvWhapNfrQVOMrgx6pOD6FL0wPgQApC7QcJ+FhqzuhebtvHc1BvdvtF4j0BrPPY0qDH/fClB53BydgKM/jfYkXWZnZ2eDV13Xjz++1vzyL/8y6/Wav/AX/gIvvfQSt2/f5ju+4zviNmVZ8pf/8l/mt3/7twH43d/9Xdq2HWzz9NNP88EPfjBu86fRLgHRm2znNENvENA8asX9RkDRG95mtN1s0iCk5eR0RiE7pLCcNROksBzXUzqteHg2w3aCfNoiC42eWCZFR6k6tJZkwlB1GW2nqLuM02qKkgZjBNYKqtpZ8Xqb02xyNtuC7bqgqTJ0o6CVyK2EzJXmaJvMJYosvZhHC8qbG1ZnE0rVsX99jcgN9s4ESkN3oNELQ34q6RYWtYXmrGT+iqCbCeeqqt2Fz28b2pkk28LidUt9KNlec4ndtlcVq6czls9IrIR81bG9quhm7jS213PyjYu2avZdDqNgXEOVbV06ZqGdEr+HZJKON4PeBZawB6GlehiEF7N6YxCMa2SRdgg54zFIDGB6/xNmYKxRATx48OedaG3SsRRdW+GVfB+yCI/Hn00YnZ2C5nA+XW/Mu6lzb4ZmMnd+EQglYDJcWwpKilO3PcYL5UtnlFXIBm57YNFNnDtpc9PpVkK/BoaonTs2RDUOQJjcC65Fcsyk79yJMWT9RsAjAECTu+Nb4X+f9/d6vMBKwV6qwQrvY8h96OdwH1PjHMB3CqT9OEizdksPzGXbg5wIYkTvRowJNe2O8UR/bvmyfy6kL4OjfMBBTKqoe+AVx5p/H2r9xeg1kbBugQlKwNAAUCWas9gPcP5cL2oXzbNix2t8jNH2f0r46G215557joODg/j6+Mc/fuG2n/zkJ1ksFpRlyd//+3+fX/mVX+Hrvu7ruH37NgA3b94cbH/z5s343e3btymKgqOjowu3+dNol2H3b7ENJvow4Txm+7fTdkWknWOaBg+poHxqhTGCr7t5h8/cv85GF2TC0FnHFp3VE043E6S0TI8qirzj7P4+prBRa/T+a/fIpGaSdbSdm+WW2xJrBU2dUZQdXSepN1NMrRC1pJsqqKSbtGYdlBotLUJZl6W6keiHBex1oAXWwLRsqe9POammSGmQxzmiExSv5TRXNChLe+ByEdXX3Cy4fI/mxv/pXFd6Ysk2jrGxGRy81KEqw+Jlw90/N3EZq73hKZbOJbJ8tqDZJxruZtF3YFeKgcDZBBeYL6yZ9nfMgCuAENacTNyDBHQJs+F+zKB0QjSywVg1wxV76o6IK2HZ7zu6xsL/g0HkPtO5jyoLDEzqVkjHVeIKC0xD2I+ejLb124XyC8ElEtkw//t4nUkph1i8M2znDWdgjaKrzGtd4ml0YMvAWtiBWzOEjsvOYgoRa1+1e0QXVjD4wUgHnVUKFoTpI6+iK0/0xjpqoxIgMhCmk/ST8CkRZA8EBEQtD9bLkALzoqHLkmhEGLBXxoKQbhuTMpOJOH3g5gvHoz+fsSs3XHP834M5AnOTAqELmJE0zUBwGQ/0cmFsdj2bFEPocWMouO3CQkFoJ/YO5zdIOjpqofDtgDVKAOobbeH+nLtekv9TwJWwZHbX9l+hZqyISXHfzj4AXn75Zfb3+9VJWZYX/YQPfOAD/Pf//t85OTnhP/yH/8Df+Tt/h9/8zd+M34tRORtr7bnPxu2NbPOVbJcM0ZNqYvT3UdvsaKk7bdfYvtBdBhesUBz4EMJyUk949vDEhcjjHp5MGNZ1gbWCvXlFtS44vbMHgJkalDTs5zUz1bikjUWNEJaDyZbD+ZY80wgBXScxncR2sp9BlIF5h80MKjeowiAKA8qiCo06y5i9opDKzdzCCJpWoZaKvaKmaV1Ifn7mDFl5X5GdZD5MV5CfuWPNX1ZgfTSKsuiJ5fQ9ElW5EHo9lTSHeTSyLsdMn2ixPhQxRNiF09s+D4yxTE5M1Lcon1AuhobL3kUSEieOXUVR/8OOlWu4darfPhjKqMVIXV0J6yBrH8mTCFjjOBD9ajlM5tH4pQZdJf/vGl87NCnp/7tcQu5kGIqlR4Y3ZaMCyIjgKhi5ZLER+k2GaCYv6A3Hmt51b4Mmp5sl+9DeTTVazUeXXepeDECiHfYTglg6hKQfw7mlQvH4efo3AZfCEHNWhVB42TgtVr5xryDGDy3f2D6XTmcH7tbA7FjPqI3nhxSoXRhEZJMxjd+nd2UG0Ji6ZGNS0HQX/hhpTqPA2IX0EjGxKb5Irx8H2abfPkbOWVyOKw/0s60TXbuLGp1/0u87Iw/fAE3zWPY+uY8XztHigvfvQNO+2v3bfQExaiy8HgWIiqLgve99L9/8zd/Mxz/+cb7hG76Bf/fv/h23bt0COMf03L17N7JGt27domkajo+PL9zmT6NdAqIn1UYrsZ2ribe668ft65xRsnT7hum8pu0Uq7rkeDuLxVwLqTlpJlydr3nuyjHaSFShEcpS3leI3DDLnSr5Uw9uMctaTivnXjssKxZFzbbKyYoO00myQjM73CInHUw1MoCg3KArRbfJYKso5y5joDA+m/CdCdYIrLR0WmFu1rzyu89QVzn5qyX5yrE5gXLPVpJu7mYvsXY1zVbPCB58UKLWEpO72mRZbVk/lbF8JmP5rGLy0EWPba87A9POBNP7NtYTiyHeQqAaGw1CtrUcfKF2AMJH49gEBKVRTsHAhnDjtExAdJslrASCKKKGHqAE0fE5MW8yaQ+0H6mbJohkUzFvasQ9EIrjRfqfp7NACp4CWKA3VKRAJQU7ogdxaag/9MxccIuMFw/RiPo+CQdMI6qiSzKcjHSGVZdO/Ly94WttNb1RlK2NLkg9cexQmvtpAAqtB7V5Im6W/XW3c+fa03lynQkYwvdjcPOlup/YtSFKKhUZh7YDdIamfdkJk4sI4AYRfqJ/HzVEqeh4zJCEcesBh2oc+xKvN/wmEcDHe2X7/UbXqG+qYuDGC1FlQWg+EEF74B7Kb6RAxuQMxmS2tXST/pi7BOTh/UA3tAPopALweD2jPorurl0gaNciIG1jVu7/j5q1lrquefHFF7l16xa//uu/Hr9rmobf/M3f5Fu/9VsB+KZv+ibyPB9s8/rrr/OHf/iHcZs/jXbpMntS7VEPwOO+Gz+4/oF8S7oj/6PZzRXzskEIKLKOg6KKyRONpyS1deLnSdZxssmhkugCZgdbDsuKTGpePHzISTNh0+ROLK3dkJlOWp49PCEThs/eu87RfMvBrGJVlWyrnO6kRNQSu9eRnWSoraBSE2SpOXjJ5X+58ik4+UCGfqpGtwqZuWgx0yiYWJZf35HfyTGZRdUCm1mmrzuj0O25SVxP3CqzaAXZykWVdVNJs+86MV8RQYlVsL4pnXFsBNkWmgwyH7rf7MPsLujS0s0EWSVgP6NYWrqpiKt76yl9nYiKA+0f3CnQG/fIjiR1n6IbzYOB+F2IlvKutwByZOOifQLLAO53scBkMIZpRmE5OkYYb6YHcWFbIXoDCYmBGhmH1HUWDYXyK3rVG0zpwWEAVamYOmXDxsxU6oJL3X/C9CyDFb3LKkSJDdw9wo2JzS1BtvHaoak/H99noSYduO9VEukbAVoCSoOWJWRuHjBaI3dJvC6SPk2AS2Rl/N8sYftSBqmbgdBiWKIjuEsDwFFujAfXb0jeKbQ/nAePAyySgJp4/z2gDzW/grYtzZUV2Ub68TPQxSWM5SBjeohuzNziJiRJxe+jWDlNnvBjJUSIFkt3kfW+oJuHAZKMF9+fofJ8dLtqHulSG/RD2OeOZoFHeW9ShjDd34Vs3FeoPUmX2Rtt/+yf/TP+6l/9qzz33HMsl0t++Zd/mf/8n/8zv/qrv4oQgo9+9KN87GMf433vex/ve9/7+NjHPsZsNuP7vu/7ADg4OOAHfuAH+KEf+iGuXr3KlStX+OEf/mE+9KEP8ZGPfORtXcvbaZeA6CvRHvUgpgBo9GC/GVB1TlMUPvStrgoOZhVXJhsaX1ajaRSZNLx2esC0aFlVBW2bYbREnmWOqbnSMc80Z02JyQWdkdQ6Y7MtmE5atm3OzdmK/Ws1L58dcnO+pCxajBXUXcZ6VZIVmvLalvruDHmaYzOLnkK2aNGbnPqKC3m3UjC9A8uDDLtRHHxWcPwtDfJBTvb8Gv5kAR9YwUtzmusdk9czqmuWyQNBtpSUx27lbjO3v24KZ+9SsZjq7J5l9Yxg/0teYNs4UasuobpCnOj1BKb3feZe4XILWQGLl9boRc7q6UmMijJFb1jDPQtiVFUTBdrpPUuFrtazIMH9FtgT2TojHsTAkU3yBjQFTDE3UbJSF4F9Ifk8nIIYGjsUsUxIAF7RTRV+dMFKN4CjNGtwYMkCiIiXK3t9UMx3k+4rAEV/fqkeKrouA1BJVujhdyEqKpx31HxloA/cduF+hOclGDHZQlsQ80aF8zAKZ7ib5LHyFz6oS5dcwyCFQXK/w3WkJSZiH3uRNcKN4Wzrwv1DTp7UqJrMe8TS9Cwps6F7oA3n+3lwT1MgR9+nWB9FFmrrCQbj6xwQgaE2KNlfcOdZ4f7GJKPhfFNXXgb1vt8unEoWwJRAGOueD6/dC7/rZpD53EUxkjCAwCTkP70v55p9xDbh/B4xl4cxtXP/j2KRnnAzSMzbdPa82d/fuXOH7//+7+f111/n4OCAD3/4w/zqr/4q3/7t3w7Aj/zIj7DdbvnBH/xBjo+P+ZZv+RZ+7dd+jb29vbiPn/7pnybLMr7ne76H7XbLt33bt/ELv/ALKKUuOuxXvF0CoifdRtTrbn3PG/yMHaDncYf326tMs21z1sr5ZDKfS2g/r5ldvc9LJ1cAmE2dZqe5ZeH2FFtqjqZb9os6FnJd1SVZZtBGcG+14Kn5GV88ucrJ6ZxVVbCYNMzyhpP1lGLS0dQZ5rRwTEED81clp/+XhkIZtLB9FIuf6CgNdt4h/2hC/mrB4Wcsp5sF+1+wVMcLqv/rmtn/mLuVpR+x2dqtigMrEhiAoEfJtm6SnNwHrBNcl0vD6paMie+yNZg9t111FfKzfkK3OdTXJkxfXWKyiTMWdX9/QwHXYA906Q1/YJGCZsQbveBui66z1AVEb5SjriVhPCJjgQcYie4p/U1kffDnGQAE/XHjb7yRjsJR+t/1Oiq/H5JhnACS+H6sX5GgPejTQVROv9/BmL6AHQVibbbAyAXWK/ZFM/qdP1ZMIOiPJxvXF1ErI3qwZlUSjp7cjwGb5cGmYHjPwr6ii8/3WQAD4f80Gi0tpaLqxKgal1iy2evduLEorh29wr32+7G4femE9YpuK9HrccJ5DRi5BNjHiLRxS8BQjAxTCZhO+kIEdtCP2QCGZNdnj++mRAAb7q9RnqUL99E/k5MHIia6jIyU7KPWxu7CN6IZitd0Udu1aB39NgVBg8CC5O/bJG2+qtvP//zPP/J7IQQ/9mM/xo/92I9duM1kMuFnf/Zn+dmf/dknfHZvvV0CorfYHuXOelJt5wN10YSVND03KGB/UtEaxSxvqHTOfl5zUGzRVjAvFhxNO/YLx/QIYanMFARO2KwVE9VRkVFmHcVcc/vOAfODivvVnOPjOYu9iqbNuHv3gJP5FN1JVzdtb8vpWYEtDfJYOW1B5ixxsdewfTrDKkl54lmLZYa4WjtRpoV24SK8li+4qLHupKSwOHfaTLN6r0XUkvmXFfkKNk9BdcOw+KIc1ALTpWB2R7N6RmElNFaip7D/BUtzIGhnfUkDPXHZrYtlH0VWXc1oDg/7hIXeCISsvYFtidmdw+0IpQ28IQm1o4ztQYsNGiT/oxBpFu67HE3uqatnZ32ywCSNQBHQu7E8w5HmPgqGMK50d6x4B2AoAUQpYxMARtCFqKbXh6QuPGuH+4psQQCCKVNkGLILY+2ISN5DrwXy1xCTQNKft9QOIEAPNlO21aokmindbsSQjHUsY91X6j5JAW36/O4SxRdn/TY6AdjRVZmwT/HaPUAPof3RBZoY9gGjPAK9O108Y6OegqgwZnwainzJwA0cxyf9uO38QgUPBFM3XNrHodSLUQ7IdtMk5D6MTT08l0cuPB/F4jyq7QJFF+0j7Zvxeb0DTVuBfpvo6+3+/n+WdimqfsLtLT14F70YvfdtEOWQrmrDZ/MOpdwsu/BV58+aEoNg3RVU2pXhuLt0dcxOl1OUtJTHAjYZnZXuZSQSyyRzCUj2jzZUVc4Xbl9nsee49eeuHCezv0Aqy2o9YXJbIbeKbmE5ezfY04K2ypgULfJ6xfb5jvXTjuU5evcx9kHpXB2Fq1Q+vesm3dkdUEsHaPKlYPpyxt6f5Agj2DxrOPk6TXO9QxjHCqVVrYszg6pN1PuE1e3+SxXZ2k3UIQNv0DmYTJAvLSaDZk+wfEZGoxxWuANXj+2BSuo6st5FJL3IOgCSkMtF+qi11H3QherkiassliLwBsjuut8jI5nObbtCr+MxRgZzAMB2jMM0emzAItGDoTRqLeaTCVF44XjJqj4eL1xzACk6eaVG2zIogxL6PAUpARxEF5cHYzvzIaVGz1+rSZm8oMNKGKSgx4o/9ZqhFIANgMholh1EoaXMD04nFt6H6Kx4jsm4SPVNqSg55goi+U1yPsC5hIVpP6djK16/33bAJvn/1bYHu7EffQvsqFEO6JWn/TMYAapniyOTllyT9dnEA5M8doUNiiaH9gSASPpcDe6dGPwZzr3h1MPc/A7ii6Aheruvy3YJiJ5suwAMRePzZtv4Nxf87x5Ad3A9dX+FsChhWDUuZ9BEdRgr+MzxdZecsZpwONty72RBUXTUTUa2gvKuYts6BCCFpTGKW7MlTy3O2Js4qiMrOs6OZ0hp2S9qblw/oz519E59UpLlGvHhM6y0mCsN+pmKyT1JPnW5jA73N5Ab5AeWtO/dsqkK7Fyzfs6iD3Sk0vOlK+BanIqYRTjqaAQuT9GxYv75DLPfDYyX0NDsSfTECcUnDyzVVXzovXbRZIm+IbqsrO0NY+ENFF7H4ZmksMJFEN1/QYMRDLSq/DmOyiRAD24is5EYGncyDN1bqZbD3/cYKTNeue9yG4xYgii+tv2xdo6xMbsQDN/omJGdCvuJriuLLm281hg6HcCe1/LEaKZw74y799mavlRJIlROI5nCfQj5j+JleBYuluTw4GmQBHFk9FM3VwRMOvnObxsBjQcWsukFxLtacB2dq0+2Y3u13XEvUhA02HHfZxfpfFJx/BjgRkZr9Jtz4yH9XjIAigPGSyf9pfphGBYkIVouBCPoaQ/40ojNIB5PI/W6+fBZC9cdXORwQf9f9N0Fi8wUrO56T7LdCMue6+N3CmNY+/Yr3dt3Wgn+Vdoue+Er2HbqDZ7EPh/VMovMXRHWp+dnHJZbFkVNoTSZMGzrnIf1jHnRcPdkj6LoaOqcts5o950hb0M0mhXcWe5xe7PHqi3YtjmmlRSZC60/O5vy6vKA67MV08OKbpWTzTvqs5KuU4iDlmLaIjNDfdWABSkthXJh+l2TUUw66k2O1QLZCCi1z11iaQ5g+0zH5L6b/LqpZfuUM7D7n5d9RFENYpWhyz6sOmQrrg8kuoTNTVfPShegJxn5xsYVqvJRPq5MgKDedyVA2rkHSkHEO+lXrFFYTaL5ML0uIrAT0usiAqORshJRaxQiqXSvU4psAAkw2gW4B1RFAr5TcBQMTeJmSUF6nOBTZioxdruYp3PsUnI+JrcDwBFi96PgPGUrdpwblig8T90851qyryjqTvVNAQQlDFLaPwNDR/859PsZh2Jb+vuepeDFjvoh6dvgxoqlWN7InJCCkDHISYFfcr9SMDx2Z4bjnnObcd74D8bOqD8CoE5dgKkOagyyUybIKGLUGtCzgQljFO5hSH1hZQ+S4z6TZyMCyDEIeTtz7a77s2usXPQbeMfA0GV7su0SED3Jlq4e0pXgju0eRe0+inIdUPy7tp12YKHIO15eHbLIm5h7qFAdH7h+j8/fvcYkazna2zAtHcduKkVzaN2rU7Ra0VnJcwcnaCvZL2quz1eUs5ZJ3pKXHVYLzrYln/rCM7zn2n2eff4BedFR7tfoViKVRXcKXSvsXofuFFWV89rLV9gsJxwerJHSMP30BGGgfaqBbcbqOVeDTFgob2dklWX+KqhGYHLD9pZLmJithBNGSzAzTbPvJtFsQyzwGjMD255dWj3nRCL5xtUzK1YWVbuyH8XKMDmxTO/B4hVLeerZig2RUTIl0SXWzRLNie6jdPQ0MVYeBIUcRdADpPB+vNKPhilxY6QMwcCdITjHogxWrfYC4x82TBmLACQuAAt2tG1sQfuRA0bQLixOLyKGxm5kcAOAHLeQGDC6gxJDHGqahfOKBj+wCopBkdxBMsig+doBsFLXU9A0hXMPpTYGoNMmLqqxIU7Yv+gyVK4MSLvP0P1zASgbAJXkusN9vyhsPE1PMNCYiaTfAngM+0/csen9GoPSQaoE0X8fQfvomoIrsTw1FEv/Vahfp3sWKGba9s9C0PGF443LpISmp4+YL0f3ZCdLdBGwGQHRtG/O3esxYB0zeV/hphFP5HXZLgHRk2/jhyx9kODcAzimah+5Xy54qH0zpSuPMV+4hIxNl7HpcrZdTiE7fufV5/jcg2tMJw33VguksHRaYjqByI1LpX+zRQioda+3n+cNry4PuDVd8q6rD1mUNTcPlhwcbVhMGq7fPOVTf/Ic2kjm05qDWUVWavRZzmTaUC4aqBTi5Qm6ysj3GtQ9F/22eW1BcQLTVzLUpCN/qKKh6abOzbJ8XlBdg+IYjv5QYSYGqxxIaQ58VIsWtAeWfGNRDWSVpTmE7TUR+1/WTpvULATNnqCbwuz1LdN7HYvXNcWpZv5qTXUomN7X6EKQbS3T+wZhnQ5C1b7Ug0kmcZ3UzSIxQqlxtS4jsdT9/2HCjyvrZMU8GB/BfRaARDrhjsZFXL1LH12UGujARgUGa8QqDM49NcRytyGIDFnQCQXAUVpkK/ooogystEPNTNhPwjKlqQTahWPo4rknhjgtepsa/egWK3r3Zbr4CP0YxeOpXikBqlGflAII/94qdx/DOIiRbgmY7coe3NZHCThT/fnXh+4VE2W+gWZFnzbi3Mydgm/TM5MD8DoCa/EepuAyAZ7nAAB9X6dsYjoehPHpAzzgCWH39YGMDGF0Odu+D3uGlsikxiACmUTkpYDYDs/7wjly1Ifn2g6An87LdrTfc31qh78b7PcdaMY+CR3RO3OuX+3tqxoQdV3HP//n/5wXX3yR6XTKu9/9bv7Vv/pXGNNbBGstP/ZjP8bTTz/NdDrlr/yVv8KnPvWpwX7quuYf/IN/wLVr15jP5/yNv/E3eOWVV97WuT0pSnRn+OZ4/+MHPf0u/b1yq/JOS27uL9krKyqd8dzihNc2+xgt0UawWru0r+u6oNMKu87BCOwzFVeuLanajNPNhG2b8/LpIRLL2bbk924/S+cr3udSsyjruJ/soOb2nQMefOmIu3cOkMJCJ7AWrBHIgwb54ho2ijzXZGvB/VcPmX9ZcfINHdtbGr3JXSkG4QxitnX5hSYP3KRZX4X6CohCs37GGdrJPWeApi9nmMJEar0+FIhEYCo0LG6bqB0CB7pO3zunOG5o55LJnQ2mcCLq6Z2KG//5da787gPytWOkjAdCxWk/UcvWaV3AgYxYkDIYCtEfPzWyouszcAeXmUxcZ/GvoXfPJQYrjIM4JsaumJSh8DopYUYLXx/GHABCdAmlxoD+nM8xQx4ABXCipxarLLIWEQDFXDU7jM652lkjQfIuBioY8JQVSs8lpEdIDfdYJ5SKkiMYSkBqPHZgl9RwH0H3Mgg7F30/ZsHtKbzQPxj6cOzE6Df7DhjtarvyGgVGapfkIwUM8f6Nzn1nX9CfE6Jn2QbsUnKNcVyOoxU9aC2Ww34JDFB0EZv+s27mnuPQRxG0Gwa5q4LbMfbfRQBo14Jx9NkY7KRA5yJmNAXV8e8j9r/zXC7bV337qgZE//pf/2v+9//9f+fnfu7n+OM//mN+4id+gn/zb/7NIG/BT/zET/BTP/VT/NzP/Rz/7b/9N27dusW3f/u3s1wu4zYf/ehH+ZVf+RV++Zd/md/6rd9itVrx1//6X0frHVz949pFoGXUdjE54892/X5g8B7T0t93CwNzzd7Blr1pzbopOdlOWeQNnVFcm2zI846uU0wmLfOyoe0U1bYAC9dvnnLjypIy6+i0pK5zap0xK1rubRY8c3jKwWzLpi0wVtAaxaYpqNqMus6xRlLMW6Y314izjOruDASsH85oliWmlbRVRrZUFHmH+Pol+bECAbPra9TVGpRxFcEXNhFGEydkoaE+tGR3CsoHPry7dkAiX4LaSNqpK79hMjcxa0+9Tx9YdC7YXhPsvdbF/e2/tGX97JTyVHP2vj3ufbgk30B29wxzMMMWGd3MPSbZxrMDjZ/0jTt+vibWFrMiMRipENg4xiYKmr1hCJFx0fWSuNJMlqymcf0QV+8JoxRbsmq2MhmqlpgbJnwvE/ARWZaUUaH/O4huE/32qTvH5L31FsbtS3ZOtyUbQbYRvZA7GbvnQvzHzEQ41pi5Sgx9MODhnnZTIkAasxiBhYp/E31W1OEkmhaTDRmeVBi+M99YAHb+eMF1G914cqhpivcvnYkvmlfCOQY3VtJ3gZEKbrmQ1TzW6rPn+1zY5N4GQDhijAbHTsbaICItkMlp1Jfv8xTA6XwI8sI9CIxaOkeGYsoBoA2i/EbjMv0unu4uYMPo/0fN5eLi1wA4XTRXv4Ng6O0KqsPrsn2VA6L/8l/+C3/zb/5N/tpf+2u88MIL/K2/9bf4ju/4Dn7nd34HAGstP/MzP8OP/uiP8t3f/d188IMf5BOf+ASbzYZf+qVfAuD09JSf//mf5yd/8if5yEc+wjd+4zfyi7/4i3zyk5/kN37jN972Ob4RUHTRNhcBn8EK4zH7iL/JHTuUKUPdKdZ1waoqmaiWWdZwdzvnPVcfMClb9iY1Z9sJxgrEl6ZgoWpdIVglDdW2QNcZ67qgNZJJ7jJRBxfbqinZNjltp7BWcLC3RbcSJQ1CWOSNCrFoYa4RWpAvGopZy2Te0B1otlVBU2foqWX9YkemDFJabKNcIccz4VwSXqujJ7B6l6G50TlB9ecE63cZFq+4yXJ7g2hsXeZb11nNgZtwZ3csRgm6qXfjdJbizLFJonGguLyzBQHT+5bDzzasv/Y67cEEuaqxAibHBqF9wkfh3Rb4yLNQ7sD0brPBqpo+2gkPgjA9O4RngdwO/T33+wrG+FxId7pSDe6S4J4KYIH+u4GGJxlPwiaMgOAc+InAYuQ6i6yRDNXmBbJ1zFAAFSa30XhHw+WN4C7t0JjNiaHlI+MWDZE/l9TAD9xCqQHX/RhJ3XYDl2ECCFKAEe7jGMzJbtinkIAw3HW2CxchNb4/adZxcPXYxi6tRz3zIcLKjMCIbF0pD6GJua1Sfc65iEUSIEi/r/Q8zrnbxu6q8L84//tYxiYwbaLXVMU+8+7NoL+zkhiRF/IwDfbvx178/S4wc67DRq+LPt+xIOgPNASCF7YRcPtKN4N4Iq/L9lUOiP7SX/pL/Kf/9J/4zGc+A8Af/MEf8Fu/9Vt853d+JwAvvfQSt2/f5ju+4zvib8qy5C//5b/Mb//2bwPwu7/7u7RtO9jm6aef5oMf/GDcZler65qzs7PBa9AuWF2MVyYXsUCP+h6GE9TObcaTmLAgLevKVbDvtOT91++xl9VsusLXJjO858oDWiNZn7nCqt2VDnXU0GlJqTrmecN01qDKjjzTKH8QKSytVkyLFiUNBkHdZKzXJUoYZObA0OZsimkdPZFPW8S0o10VNMuSal2gDhomZUs5aTFTTXG1YrMtMMZdZKznhXNNQS+onH8hI1sLl1X6RFIfQnMEemY84yIoTw1Sw97LXni9gcmJQU9d5JpsYXs9Q7Wu4r2eZZQnHd1BQba1lKcahGD20gmq1lDXHP3mlzj4/bux31XjAIwI7727K3w/WPmHj6Wrg5XWwgrhxwNmwhuXlM2xfqUdV/L0xjpljAJQiG6ToE8Zr2r97wVDV0bKuqQuqZQNCtcycKnQX6/sRLw+0QkPpiyx+nm41hFrMzjGjpV9ynCkIGjcgsG6yKU0Nv7jZyu6c0KRVw94oqbFG/KgmUrBobv+sGOXaTlb+35P+nngQvPnuitL9KOY4nAPBmkE6MdCqL3mhO3eNZWAzTQ6jfT9CJQBEcgPTy45HkPAM/49gr4+GsRM4qko3fo+RfZRm/Hee1CXMmvQL0qAnuUcjaFHub/OgaMd1zf+7EImif5+PnIfl+2run1VA6J//I//Md/7vd/L13zN15DnOd/4jd/IRz/6Ub73e78XgNu3bwNw8+bNwe9u3rwZv7t9+zZFUXB0dHThNrvaxz/+cQ4ODuLrueeeO7/RI4DQuI3ZosdtP/7do5qeGkThKszvTyuuL1Zc31+5OmQmc/mEtOL22iVizKVBFZp2nZOdKObziuv7K3Jf4TLPNPNZjcQxRkoYl7toOyH3lr9pM4S0qMyw3DpwlSmDzF1IvtVuaIW/8izDNIrrR86Vaa1gfnXDpGix/iJF7WgNk/nK9CvAOO3Q4ksSjJtAq+tOON3s+yy2nUA2zvh0pSvamq80+crSTaGbSmZ3DFZAvrbkK4PoLJNjQ/HaKc2+wmQSrEUXkuK4Qu9PyR6uQQjIHCLbe6V1oKpLcuusLMWZJfeRaioYIty5h1D6qP/w1xfZkeBaC1oem/yf3v8UOI0ZifDXG+7IcKSCXZGAnPBbyaA+1zm2Q57/7NzqOQC4UFrjnOvIIZnBODb9tQZDlgKVsXvunKbIjl4wYD5iRFL4Wbpf2xvnVGAdWQ6GfZ7qjVJWKpZhuchwesDTzXcAAfp+PdfHyTkMmDqGf9Pvu+n544frTH+n0+0SDRXJvUgZwdhs8n+yX5P19z1NyBlPw7Ocob/Dd+2ePdfvIrmucH6RhfTnFRm5BPQPrnl0/DcMSMZ9/KjfhXuVunZHx3qjc/uTaiFT9dt9XbavckD07//9v+cXf/EX+aVf+iV+7/d+j0984hP823/7b/nEJz4x2E6MShJba899Nm6P2+af/tN/yunpaXy9/PLLyQHZ/T797HHj6zHfn5sQ030mqy9hgSuNc1UpQ91lnFRTtJFsupxK55w0E5ZtyYPlnDvHewBcP1yRz1vaI432OYdCO5xsuTpfU+YdUljHOBnJ0wenFEpjrUApw7RsOVxsmJQtk1mDlJZy0rK3qFCFpig61KRDlh1cr5i86jJkZ8qwN624stgAoBuFNQIKE2sWNUc2Ts5BmIrwle3PBOVDZ5S6uSHbuHOf3YGzdws3YWYiRrgYBVa5MP7Zfc30bk1x3KBqA0IwedDSTSX5UrO+JdGznO2tCWZesv3ATezZCpRk+oWHHP3xug/l19DOBcWZY5vChJ3mNgL3V/rEfSF7c0g4CL2BCcxSFKwmq3ldMHTf+NslvcYoFZ/2g2j4Xnq30UDP4v8OEi4mq+0xExRX4v59YDZkwnC4DMvC/W/EgB0YtJEhDW61cWqJ8H3oo3A9Yx3Qrv1H11foo5SZ8mLq+F1gedr++3OsiTfGshmGgg8WOjvck9EdmaYASBibmIQwMFLj/krniwCa/P6EdouDbkLv+gz7Hu8nADwYAnE52rcfq/jxnGbGtkn/uZxhyWcwAAtjFjHtg3Df0mclpgxQCWj212iy4fVEIJYypOO5Mu3/xwGV0XdvGtgkz80bsgFPqF1qiJ5c+6ruhX/0j/4R/+Sf/BP+9t/+23zoQx/i+7//+/mH//Af8vGPfxyAW7duAZxjeu7evRtZo1u3btE0DcfHxxdus6uVZcn+/v7gFdujJqsn+RBcBLaSZgVM5zXTRY21sNkWVE1O3WWc1RMmquXaZM3d0z2u7q2ZTRsenM25fzrHWshOFFpLTjdT7q0XnNUTpnnLlcmWed5wWLrMZ1WXk0mDxDLLG/YnFYeTLa23ClJatJbUVc6irMmKDmMEWa7JCs1ir6J9zxZtJNO8RVtJLrXTLRUaUyvnXls47YnJDdWV3ohtr/dMS/kQtjeh3TPsvSSpvbYoX3uX2E3QuXOfOWG2QLaWvS815GctotHIbYtVgu76HtlZhdSW8ssPOfpMw9m7SrKNYfXCgvysxbz3Oey9B7Ct0JOMbiL6EHEB81e3ZJV10Wn3LWpDn30ZYpK5sHJPS4ykoeZxXKUCaNEbrsE2Y3YkgANvvFJ3TNgmDd1P9S+DDMojYx3D6QO75LcN+q4x42kKSzt30WZW2R74pdqLsL8AhjwQGEREjVbs51x33gUXnwNvFE0i3E33HfuJfj8mSzQuwaCPdE0xCs27RxFDBio938DUhNp3aQj/+PNovBO2o50NjfAuEDlgYHS/Hyt8MlJfk09Pkv5Lfpu6DSNzlvRrCtIG+riEUYuRZp5dCkEBMTt1AEqtE0yPAWlxKmIJnACMzAh4yxYXJZo8Z1EgbhiA1ZShCtd54WJy1IcXtQu3CYAyEeMPjhn6/M2Cqcv2VdG+qgHRZrNByuEpKqVi2P2LL77IrVu3+PVf//X4fdM0/OZv/ibf+q3fCsA3fdM3kef5YJvXX3+dP/zDP4zbvKkmPL87FiM8ZkUw1PtwHlTtaonRu7BJizGSTvtw9swwKVr2SwdYpDA0OuPa/opb8yVXZhvabYZ5fYZ9ZQZAWbRoI9Ba8nA1I/OWY6I6MmmY5w1KGjojeXV5QKsV87xh3RS0nZuJyrxjvS6RyqCNJFOGPNPU6wKtJWXWcePqksy75QIoMkZSli0oi9XSFXO80XLlkwpduqiu6T0vQDZeKK2hfADZxhV/FbVk9SxkW0Pm3WyqsXRTQXmCj+YydHNFdbWgOyionp7TTQRYy+b5PbKNxk5yTCnZ+3LD+lbG9E4FUtBcncAzN0EK1LaNAlDZOIN68v4ZsnORbdO7HZMTOwijT9kWYXrtg6AHOzGLdRIBFY1BmPzD993QILhx0K/2UyN+TmuWjivbr9iBQaTRWIOEB0NBgB2rzydsgashJpCdQGgBRpwbv49kL2KnDA3zgGVIAaHfPgVj0RAl+xi7bHaxOGl02YDxCS4dDz5ipOCoX00ilO58skCT9yAoJHWMqQZGLFhgDh+5UB8xw1FHpPr7Di57c4xa9NeVrXsXtBVO7J3uNzB9Vob76D5XKQOZuNjScRNcYzaAloSxkZ55M0mB5HhMDxZ1MbpM1QvCQzBBYCPTexhE2GNX4sB9Jobfx2NcBFjsBZ+nfZUuWMK+UmaI4Xl8pZvhCdQye6dO9qu8fVVXu/+u7/oufvzHf5znn3+er//6r+f3f//3+amf+in+7t/9uwAIIfjoRz/Kxz72Md73vvfxvve9j4997GPMZjO+7/u+D4CDgwN+4Ad+gB/6oR/i6tWrXLlyhR/+4R/mQx/6EB/5yEfe2omlhkhc/ATt/CqslsJ+LmrhdxcZjfC1gP1ZRaMV603J19y6w2fuXcda4cLqu5ymU9yYrziupqybAnmSY2Yadaqwz1SurIcy5NJQNzMao8ikIZOGqssolGZOQ6MVV2drpLBILLcWS+6s95DCUmQdZl+w3pSsqpJ52VB3ir2DLcuTGQaXLTuXmqrLY8HYIu/QRrKVFnuWY0oLWmB8iHNXgigcuFg/DUhLuxAUS5epWk+hfCjpZhZTCA6+pDl9QZEvO5bPTiiWluzEYjJBfSiZv95RXck91W9RZ1vq984QRpGXOfmywypBvrasn50we91l3muvzsiB9bMz2plb/crOJQ+sDwXtwkfIrTvKU4kuFd3UGybZT5qBGUpdBibvwVWY9KWfeE1yvyNTlLI/KbvkDVUKhFLGIx2LA/1FOJ9Un5Eex/9N8xnZ8fgU/fXoiXVMlQSd4TReoQyD7sFfyl7ZRxmS9LxDvyXHF0DIezQO607fh4i6gevML06CcQ7bxN+F+9MRI6PUpj9fkd5L6wv0Fv1+Ux2XTPRa8fi274vgNtsV+RYj6QJbktwb648nWzccVItP1kd0X3XzvjacFT5gIZnHwj2P7iv/nWqIFegH6zgDtgSrwXb9/U9ZktR9h+2BWzyuJkaY5SuXjym9B7LpDyhb368QXWgIYjRqeB4G99Ym42A8pi5g3x4HC8I4GoPr8bMSvnsnmuXtAxp7CYiAr3JA9LM/+7P8i3/xL/jBH/xB7t69y9NPP83f+3t/j3/5L/9l3OZHfuRH2G63/OAP/iDHx8d8y7d8C7/2a7/G3t5e3Oanf/qnybKM7/me72G73fJt3/Zt/MIv/AJKqV2HfXw7N2HvfrrGD0Q6saUTdtjFzgcoWcmMDxMePum/mE1r/ujVpyjKlqrJeOrgjE1bUGSa02bC2XbCajVh+q4l1ef2sQrKSUuRaZZVSV4YyqIjE4bjasrV6YZCaaSwZMLQ4PrLWEFjFLOsZa+saI1yWaoLBx6qOkcpw2ZbcrjYoK6umBcNlS8a22mJzC1Vl6OEpTUCmRn0XkeXKVCW6pqb3Ooji6oF+5/3+VUyqG5YhBFu5ZnB4Wctx1/rJk3VWB8GbpmcGKZ3WvTEWd69lzvauUI1Fqxlcr9h+9wBk2NNN5WYMgNj0VNFedKRbXzBWByzdPaukvpIOAMZMk5DLDw7XVmsFBQnHdurymXg9YbApkbW9MbDeLYlNU4qAU1RVGr7fcV7b51BwfifeiMkPAgjJM6z/blGsCP7SKqUARmvqKM7ReISfxrRGx8/HrN1n/cmGGxTWgeEWtGDhtQAJ8YnZRpSfdJg/A+scQ+uwvv4fIQHKTVQEJNmRtaNBKQGvZZIXDfhOfURVkF8vqvMCMIbZQPdYhgNNS5JMb721JAHt2q43giCkksa90F6nelYEtoDXD8Gso3/bQSQ9IDagykRsm57ViewQbHrUxDn+ywmKA2/FX4RY0I6BvcKUW6q7oFSdJMat59sC/Wkv0em6I8TTyIB7dihG/LcPQ/9lIydc30ozgOcnS0FqOlvUrCePj/vIL54EtXqL6vduyastY/iKS6bb2dnZxwcHPDiv/pxZBkKVT2ixSfM/Ump/nRlfGHb8YDuChdur3Y89dxDllXJB2/c5vdeeZai6Hj64JTXTg8wRtB1iqLoeP7omFdODtlsC3h5Sr4SiG8449bBGQCn1ZRZ0bBX1GTCMUTgAFfVZRgEDzZzJnnLXl6TScOmy+mMpDUuJ1GrFSfrKbOJS/zYNBntNmN+UNF2ijzTXF+smOYtJ9UU6x9mJQ2bJqf6/SvUtzr2Pp1RH7lrzpcwf92yelaw97Jl9bSgm/cT0P5LlrMXnS6hOHVG6OAljaoN3UxRnHWIzlJdy5nea7BKoLYatapZvncf1Vrys47qWkG21phSkq86jBKU9zaYSU51vaQ+UDT7Ap170IJnBLw7RG3g5u9sUNuObp5z/IFpXL0GFgiIeWgQfbI6ob3uwzo3Yay5xQhIJ1qbOL6CWycVCIeVbKIHCYyFScKVdenPJylBEcbfIDeRIrHMjo1xrrH+WML44rk+Y7XQ/feyEz0YsYNdnVscxDEedEa7Vvj0AMoqO9yXTiyisJGhSgvuBrF9BCL0IezRxen3KVsnXpc+bcIgwaQHBVb5iu6+b1Xj9TeBlUrYusBSRTdVACTG5xAK7kfbg7Z4zf6e6oJBjh9w16daYgHVkN05slT+WkyixQnnmjI5EYsmUWpW+ksOWjLhCx37Yw+CCJJM8MG9qnMXLRqzvNvkHKwri6MLv7go/bk2JKVfeoYoZT9j6L3/LB1jaZ+Ntwn/D8bTjkVpBKX6/PZp30QglrDBuqn43P/zn3F6ejrUoD6hFmzS/+M3/g75vHj8Dx7R2nXDf/jIJ75i5/pnpX1VM0Rfjc36STa8vxAXXfR5MhHR7+r8yiRMGMn355giAfl+zabJ6bSkMYrDxYb9SUUhNc8entBoxaoueXb/lFnWUC0yXm0PMUbQHFmm0iKFxVjBcj2h7RRSWOZ5w7IqqXXGs4tTMmkwVnA03cTVhBSWQvZLZm0l2ki6RsEE9qcVD7o5s/2KpsnQraTMO2qdkSvNJGupuhxtJPfuHlDMWuobmuxhFkW7e18AoW00AlhLceZyEckO8jPQpQu7z9cu2ubqH2nO3qW49ocd3VTS7CmKM3eeulTYTKAnCn2zdCLt+zVCG2SXuz5ddZhMIjuDaDXZvVPE1WcoTzXdLCPbWNq5iIYwJGw0OWSnFTZXIFxG7JN3Z3GboPvRgUFQXmORTt6mN1jpZ3Hs6ARIpKCIxKCF0gdpmHeSJyYa5rwfVwOWhd7oxWKiYcz78jBWgdURc/TAX/tt/LZW4Ut5JMLyZLyfW5mnLNIoiis9t/gbaXtxtj8Pq2zPSnnQFo21Z9mMZ9ZS11YAniEPTviNG2OO/VEPk/sl+nMcuE4gRkvGe5m6CINI2faapHGWcYTvinBNCfsRAbHt70/UNCUsDobIEkVXm+yPJTq/adL3KSs1mMOS/cbM0bIHEabAA9++/wLzpXPHIBanHsCMwFAENeEepwvFxA2W6uKCzmjs+gz7iefMjnlaMOynR7T0twNWyPb3I2VUB8d4h9qTiBK7jDJz7bIXvhLtUfTj6AFMgc4b3U36EL7n5n0OZ1uePTqJ4rhXjg+5MV2yakoyafi6q3d4fvaQF6YPmGUt09L5cuzVOoqcrRW0DxwgOqsm3Fnt0VlJrjSrzq0+UsaoMYrOyPi5TGYclRkHuLQLp2/bDOPdYtLv4956QSYNpeqwVjCZN9QrNzN2+5p8DSazTlcg3cWqClTt3GnlQ5jecUZKl75MR+kmyXylnYHoXJSTKQTb6xlCW3Tp9mUyQTeVDmwp91n5oEZVhm6qwFryh1vW7znErtbM/vMfUT5sKE8Mxcr2q26/0tc+fP3sA4fIZYVsNKrSfQi9SNwZQTMSwAb0T+Iu6n4MeLzhSTUp4Tip2DcYdZm4e6J7LuxaDfcRo8lGE31kGsK5JucbDXg0+P3JCy38d7Yf6+krvUbR7yeyU2ERkLi5Bn2SArqwTxmAnyDB69HFakOSvwCsRm7EAOjCcaJLqybWMYvnkh4zYZis6AXo4Rjj646M1AiUxu3T6027atx3jzLEYTykfWQ8++K7MRxDBkH/GJRwHnDZAPJE8rntAU8EcEmIfaqbS8eWqhPdVgLMAzMUANdFz0o49rmW9HcKKC9qu76LffGIBW76u4vefyXb2y/s+vZdbv+ztEtA9NXaxquaC9osa5nnDZk0fObedTZVwfX9FZuu5P2Hd7k1XXK9XFHKjtYqKp3RtI61mC5qykzTGkVnJdmVitnERZSdns24OnFsUKNVfGDqLsNYwaopWbUOKEksDzZzXrlzhJKGw8WGPNOOcdrkSGUoy5aDvS3LpYtNvjpb0xlX7mNR1uxNa8Rp5kp+SFi+x82ccbIOehElmNyHYgXTBwZdOm3R3pd1NCztXFGeWLqpYvmsYnVLsnxe0uy54e6ixIw3vO4AonPJGm0myFcd3cyxPO1cor/mXVR/8WuprpXMbjdsr0myjQclOjk3AatnJLbMUCdb8uOK2V1XIkQGgxCidMLqGnqRKAxBg+0j1aIRVj3AStkg9yVDaj9ZVQ9C8xOGCAE2s+ddcYlh78XfFlP4baWN25jC9nqk8YwyZqik1+mI4XGiKyayZ9Ypy0k+B8cI+WPHDNjhGjLbA4zCddoAWKQ6KtV/Z3JncB2Asef7DZ9gMZQh8cdMgUBggNLw8QgERHLcpF8RPjIOPxaSqL5BhB/932jYvQspLRVihX/rz02aXh+VFkdV7WMIjIQRGbjpZe9uHZxrwm6FkiHhnpnc/SaOj/ExvKu4XSR9k6R6iOeh6ZOIJuM7gv30PMeg+23Y+nPgMz1+8v4cU/Q2j3vZ/nTaJSB6G22nyPmC9qYA+GiVMfjt6EEL7q5GK56/csw3P/0yudQYKzhpZrxnfo+pbFiompfW15ioju1yQrev2Z/WzIsabVzZjrLsKDMX9YWwdEYihXVh9N5lFvIOKenC+Sud0VnJ9fmKZ28e02pFaxRVk6M7hSy8q8pIqiZHCNh6cXXIUB1yG9nSoHJNeUdhpgbVCLIKVs872j1fQ1YZpg8MWFg9LTn6tKW6Zsm2hul9QEJ96Ib1yfty2gW0B87YNfsCXUh07tghK6CbCKwU2Exic4kuJRiLai2i6SiWmrP3zDh7Ief0BcWDr59EA65qoiEMkVMmg5MPX0FYi9i2lMd9IdnU1Rk0N+FvBDjpZG/6idb6z1JDFN06frtBrajgikn2F3QlwUDF8eUNZlpdfJCzJxgp6YGHsj294LfRpfs8gorRmI2C5wBmwnFVMJy2P5Yas0lDcOPcYf02ZmJ8LT/hXSkWo1y0m57Y6NpM62epWkSXnrt2G5mh4G4LYCXc27ErJl6eSe6bdNcYit1G92Zm4/GCuykFhRgoTvrn3Xg2K4p4E8bGCiIbFdxXYV8B2GnvLjWq30cUSj+q7ViEpZFbAybL9mMt9FNkxLIe+I6TewaGMYi68zMGNfhCWZywcNgFQIXtFyKD6L1wajJ57WKH3uB8nAYCPG6bgVvzHQRDl7XMnly7BERvob2hAf9Wx9eboVyF5c5mwSJv2LYFX354FF1Xn7z9FNfLFf/lwYtcy5e0VvH+xR02XY58mJPtNUyylkXeUHUZd5d77E1qOi0xRrCYVxgE2yZ3brO24LSeoKTh4XYWgdJZNaHunKUJJT4Ap+cQlvm8pmsVunNs0GxWc/Jgwd3lXtQPtUZR6wy517KY19Qv1pS3M+avusKte1+ydDNBsbIcvydjfUsiNEyOLcLA4acF9z+UU11xrrTjDwiqK4L6aFjDyeRQXZHUh5LNTTdzdxPB5ukSPcnITiumr66QnUVVGjMryDaa8kxz8//1Kvtf1kjtXHchgigFHaZ0q931LYGZFYhtTbZu2XtFxyKu8f4mmhagfxJ9+LcKIccBeAStSMJSnHP7e6MXI8gyBsYnrtqzYebrYPyjyyywciFrsGdqBpFSwfAXvfvQuaOs1+34nahe4xPrf4Xx7VmgAG4C8AnnHYFPYFY8UErrd4Xj9aDJW8vCjI7RAzs9sXRz63PgOGbJjhI0RlCmHDsU0iL0J08EGjGTcmEHFxiM9rk0BX6zCJoSdi4Y/3j/0jES7rHo+zKyeNqNv5hl2/8mMoyJ+H3czk0zF2wXx1MAZLIXU4dEkMJ413blxdoekAXReDp2U21OcEeGvEexry9iWsJzNwKLcfsxc5OAz7cCjAbz8ohJTbc5d7x3oF26zJ5cuwREX4kWn/Rd3z3qd/3bNwKGAF7/H7dYZDWTrOVgViGFYb+oec+1+5y2U15cPOC0m3Gn3mdjCl49PsQUBtM6ILJqC/bLisWk5nQz4WQ1Y70pWS6nZMJwON1SSE0mDa1xrrNcGqo2j5qlZVO64q9G8XDlkj1qI9lbVEhpyHNNnmvmZcPqbIJQhrrJKLKOzsrIcE2mDWenU/JJR77ER5FYttcF22tQHQnyrSuaWawt89c7hIHF6x26dOH4WFfs1cIwD4r/KzuLyV2eo/rIsUNGOVDUXJ3R7U9Qqxq16dCznOLumtkXzzj95qdo9iX7LzXIzoGHGDUWtBlJ07McrCF77SGTezVZZQegJoqiA5gKq2B6N4cu6JPkJeMj/C6dmKNWKdk/JO6pxBBZ6QEXEUeQum/C+BsDrlTULBs5ZIxk/9txlE9Y6RPuibSekUlYhXBtYnicwXdJdFRgfGzmwZQvKuv0VQJa0d935bZzbhs7yOWT5m0KgDKCwgB6Q3TaiImILFtgc3yBYgdQxAAIpUVv+/MQPUBQ/V/HbrkkpDH3TmCOQvRhwvhEhsq67UOE2ti1FMDG4J4O/z2Xvbub9K/I+iTPVUigmG3cuUgPkAJIybZ9tNi4D61wv++mw3s+cLOm94ME/KTXN2rOJZ6Ak7fRBgB+DH7Uuc3jd+e2v2x/JtpllNlXuo1WKxfqgnY9eOMHKrpc7OCz+9Wc69M1D+sp96sF9zYL7tzb59rVJd9wveKPV7c4aabcXS8wWsCi4+jKmtsPDlC55j3X75NJQ640x+sZy+MZ4izjztEeTy3OIuvTZK3LNzRpOK2mKGmQRtIaSd25IrK6k7Sd4mBWoa1wgumyRQrLnfv7WC0p5g3NvSn6YOUyYFvhC8la8klH1yo2T/V5bHThJrhs60BCeQzba4JsKynONKunMiYPXeZqBNjc0u4lLqDEXbS9KmLotDMcLiJpeq+l3VPMXt0g6hZlLWppMfMSua5p9gXX/4+76IMZ7UJRS4kpBOWppToS7hCaGMGjpxk5YE+XiJuHfcZpeoYjrXoudbSnBFdEVkG2seiJwGq/eol6HgYuENmeZwyiuyIYddGzWmnyweCSCb9PE0A6sMNo9Ws9GEn2oayr12ZFX3IhjtfRMM52fJ64R6ILyOcAsgKEIOZX0hODbKVjg5SFqUassh4cRSbO/a8nFlnLno3KLLKSjl1K+0Lh2C2LY4yCZ1ABIzH6OcYhgGLhfyQt1jgXnrU9aIn33ANDod3x8hXRjWZK+szX6f0ZAVQH8PsxHv4GkCfCby1Dlqrv8nPXEnRtukhE3wHMpoA8/ET3z9LATTtiVMLzp/y2Qdwu/LOYAk8YAp84b6bXFsaIv2a1TYrXJiA/nrfYgY3C3JzM0TvbmIEKjK3fZ/rcndv/O9Au8xA9uXbJEH2lWgpaHvegpJPHo+7IjjHbHXVMso5XVgdIYbm92uP2l66QTzu+7uod7mz3+IPbT/Ohg9d4+HBBty4oFy5HUDlpePHaA+6v5zFi7NpiRfFKgaoEy62LUvvU67e4vd5jv6iZ5i2F1BRZR6E6lDS0nWLdFJxVE7CCedlgrTOOhY9iW64nCAlWC5pVgS0Nq7qg9YJtgysYW+Yd9rUpshGsXzDIzkWQhbB2qZ0brZvA8fuVY3hy97+eOp1RcV+5RIE2maSDscjctuAm4GJpydeG/LjyWg+JPpw5KyYlcttSPb3H1T9Y0t7cY/PsjG4q472qD5xBC66K4JJaPpfDpESfnoFwtdSC+yoWQvWTfAhHlwkTFNwc+bYXPKeTdogWS1mfYHSjKNUDQpP1AtxgkE0RDLntBd1Zf/5RyxO1HV7D4xNiOiPg2SHPEJmyFzw7ACjidkE/FGqcOSF3sGz9NaAsunT7MKXp9xUYm9xCOJ/Mu8ZaiZ2Hi8ABKZG8ADMzQyH1rBft91F5wjNebj8iRAWmbN7IyEZWSfWgZai/sv1UYIRnWCyyFRFEpdF9yGEYeprrZyCuT+aJmJMogIbAfoVtwvhPWiSPAugJrA/00XhBexXZuP73AyH/SF9lkyKsASzJ2rvXguhf9OcanoFw/akmavC/6I+bslCxwLAH4tnGlyax/f0bTMePAj+7cMH4s1SXFIFwv907riG6dJk9sXYJiN5CGz9gb31HDMGQ2P15POi4WYFoJau24Mpkw8PtjHu3D7ny7CnTsuFuteDTt2/SthkP2zkHhxuef/4eRkvyTDMtHbi5Nl8DsKpLlygxg/aKE1dLLFmmKVVHZySF1M5Fho2i6EnesWkKNtsC3SinOapKlDAoH2YvpEVlmmzukEN2nGGMpNEKbQXaR5xJaTHXGvTcRYHpiTNirQ+vjxOon2SbfdmXg2ih2fNZeRlNSoHiTibWGJZeG0Rn2F5VtPsF1Y0J2+f2sblCnCyZ3F5DZxz4ypwrJt+6+xHzAgUGyDhD0k0FVkrUwT7dLEfVttdxJGLpeJ6m30/qDQjai2zjGKNYsT4FCmGFmoZ4Jy6qNAouNZIxL1FicAbC52Ts9WyPTYydt6DSghYuK3KqrUjPTey45siu+GOGBIvGgQbRho0TwBA+KhyDaDsJpXaatQDOwnvSc0kAWOgClWiLZOhv0bOKias1iqHTltyobtaPt9jP0gGfgV7GwNhaZmvi+Ix17kYsy0UBHAOtDf3clM5RMVVA350ecPbXPViI2eF1n2N7SO5pAAcpKxNAW2CodL/fAUhLx0joX5swU/63A8AVfu77dJDTLckHdq7f3uZ8fc51lgKieLAL/l62PzPt0mX2ZluC/t8UKBrTshcBoXO/Gy1tRpOpzZ2Q+WE1Y7UtObyxZL+seOXBIZ+vr7lq8srwhw+eQvlIMaMli7JmmrVUOuOwqHiwmTMrGqZ5y9GH77HcTjBGcNaWdJ3i7nLB0fUtx9WU1iiEsORSo6ThbDthsyqxjeLFd92JWqPMF3qNudAFCGGhlahaULcZk7wlU4YGV9IjuM30w4Lygcs+rUs32W1vWrKViOn/2z1AuLpmxRI2N5JQZBLQk5Z4MFCewvS+C4evD4SLOBLOcK2fypndbilOG+SDJXQa0XSgBMXrNXpyBGS0C4GqLEzEMKrLgzNdQHdtTt5eQdUaXeYx51HKIgTRrfHAJQpXvfGoD1xiwfLUoAvhwaFwK3Z6PYkMoMHrLnRJzM5sFcGD1AMpXKK85rAHUI7xEVGkHIeaFT2YCExVZvv76gXUaiOdfkt5UBHAk7SRicB6IKUstMI9T35s9M+B09dEwCVwbBBgC4NonLvMTszACEfjlBnnLpIW0Um3j84dC+O1PYmoPYbxC9w4yCyyEYMcToFdi+M44MKUfRkBBxGOaf19kglDlfdg1Hexc+8VCXhKGEOd98A2iLUjKziKQBOGmOMq1C6zKpl+BIOsz+mYiEAoRI+F80u1XBE8El1mUdeVAgXf9QHQiC4RX1t3jsIfO7rcOiDJpN5fWH+eA6xuhu+DLmngsrXD/exs6fw8nqsf086BvLCPdwgQXbrMnly7BERvpe14YHaOpxTAJBPfY4HUozYYfScax7JI4TJOH062/MXrX6C9pni1OuT2Zg9tJM8tTrhWrrhfL7g5W1F1WUyoeL+acXW2ZtvmLJsSg6CpM4SA4+2MPNfsTyuMFbx+us+1vfUgZL7TErvJmL6cwbuI5yKFRUhDaQXGdDSdwmiFFS7UtvaGdFHUrBo3C1ormE1rTq9kqFdKbObS+m9uuZIQpnSC3OKhwipn0IVxdHx5DOtnXL8EoHEu5b7AgyxBeaKx+xkmF4imY/LQsUSbW7lzcd3YR91fYu/eR5Ql5uEJ2a19urlC1dDOpNM++EMEpkfgJuXNzZKZ3XduuFI4MJSOE0vU9gxwb2CJ/NNZLA2qsa4EQgGmEjFKLOaZKdyx8aAvjrUw9iLz0huWbjY6F2/co7ZFgPWx/5F1kj1DhBFgXHV7qyzdoXbfd0475sRRNgIRcr8vbH+O0saHwpYGoR0goZZ+uAsXyeaZJOE/t0XCIHUyPhvCn6NtA4Vg3bFt8tBGdsJiEaBAtCKCUtkKZCNc3qXcIqRAbZNhZB2gCWBMRjdQoGT8dp45s1kfweeuORzfbWMydx0xB1N6WwIDo3AZpzWQMajxFZiV1J0Wpp6QgFJ4xiu4T8ExrDYD0SS/9WkIUkYugK5BVKXo3bbhWEInOh7VR7iFbU3mGBwrfV4n2wN27Z9LAqMUbqkZXk/UEqXPkXRjOVu5RK2kaRCSv49l9sXo/WgtOgDto7ZLX/VONffYvj1A8zYJtP9p2iUg+lNsY5eO+/sGh6b/seicTqfqcjJleHH/AX949jSfvnuDb33uJf7XG58Z/OyknWI6wSJ3YUYnzYT9ombTufD6usmQWEwnefaph0hhOVlNYQpfPDlCdy4qLGSYjqc/7dg+I5hkHWf1hJv7y5izCKDpXK0zIUAUGl1mtGclelHFBI3KSDSgJOwdbOkmZVztuYSAFrvn6kU0M43VAqEs07sF9aGfDGP/uOiWqGcIq13rJuBiacjXGnWoyJca0bRIbdl7pcXkgvy0Qp6ssbMSsc7BGOT+gk4JirMOo3JUYzGFwBrv6pB+pWt9qYepQE/cI2aUGLgCovaC4TnHiTiZkE0mENqhpGwLJvPFbT34im5E7XCGqocGO+x7LPw0UR/Un5cI34eoMW+FhHXXhXHgJzXCJrO98dM+2kum1+gZJl8YNrizIgMhLUw1UhlkZtG1cu4z6/eD+43NbA+sSPooMDH+2bHan3OSMRthIbNOHI3oXWvCgTObWW+VwajAEA2RaqhfN8g7RB8iP3DrBQMZ2Ks0mi0xmqEEheygm7n7KlMQ78eSajxT2tGLmEWyL9uzNbFvYRCxGKMcOw+KZA+sgrDZeuYq5m4SPdMobEjXYMm2IpY/kS3Yohd4RwbUeMATghsSNqib99cvQ6bqjgjejOwZn8EiMoD7hJkL59nNkn4LffLYxefoN+Pvwq7CPd31Wbp9YMcuGaI/k+0SEL3NZkdz7oUtXaCOx146mb+BcSmS1aidO03PneM9nrt2jLFOU/Tnnn6F1zYHfPb0Oh++8hoLVXOn3ueT95/ifUf3XV2yYsNEtXTWaYNWXYG1gjLvuHH9DID7yzlSWrZtzo3FinvCMUDH2ynTvKPIOuptjl3nPPueuxxvZxxNN2zbPLrorIUic2BLNxIEbJ/rELVEG8G2LRDCun21fhmaQfuNS+pVSW2AVjrDJy0qN0hlHDjrpBNZz2zCcjhGo5v5VWxiNOavgTCW9U3lslDngvL2kgd/8Ra6ECxebZGNweaK6j3XkI1BTQqE1sjbDyk+e5vq654G/Grbr8BtYlzCanl7TTA5kS4Dtkwm8UQLE1ibqJ2AvlJ5sjq3SqAqQzv3iTHr/vjC+lBt1Yu7o0jVACpZ3eM+DyUqRCuwk95yDDRA8Xz9P14QLQIo8qHk5UNJfcU4QGHDPgJoElhhB0AvHENMO2ytHCvUCbKppqsyRGYQuUZXGWarHAAyAlHq/n0lo0vNApQmgithPDPlRd0iN7D1B81sdNGBW1A4oEXvPvMMRGTK0nD7wDQkuiyTeQYk0W0FTRihv6L70D27jqVz56enFhPdY75fQ2RbAmKtdMAjAo3ZEFSLVCvkQZjxLJFNxmloekIMiW/nvSg5bBevK/PEoHApLbKVjMBKehcxeBAenoEg4A/JJf1iIdv04zyM/1QQnrbIcPZd4w80/Kz1/VCcueMG5jNf+kXSmC0atxFrO27nWJ8EHA20RUn/2tF3l+3PRrsERG+jDbQ/b4TY2bXdRWBo18O04xiTgwqAK/sbnp2f8t/vPs3plw945daG/+X5L/Cl1RFX8zW1yZhnNSenMziC+9WMiWopVQcGKgSdkU7jg8tEvVfU3O32uLq/5mQ9RS6cG2zdFFRNHiPIFnsV82tn5FKT+RlaCIsxrtgrQNupfiLZKrda32s5ubOHuLVkmrfkUrvCq0aCMRwtNmzL1gEp7YCU7iRKefG1EQhpqW92iEY68FC7jot5XpKJVlVOnD297/6Wp5rZ1tAdTt2EujJ0U4nsLFU5wShBezOnPM3Ilx35Z1eIa1cxmYgFLFXj6fqtzw4Mzr2B+050lnauBqHs4V6mq15hHQNhvDskCMh1IRDaG+lMRJdGWCULC9a7DIMRjKv0xFgFV0z8zIMUG5kSD6ymBtm4NAIY0Rs4bxEHrJYErKU5DGii7+sAhmJTnt0BB8IKA51EZCYiiXZVIJSjokyn3PuZdnofDyxEZrCbLBqj4K4TjXTbdo41pJHu81pihUX48iTCALl1+iUrYpScaOXwvL2rTybuG+j7tv+ACFzTFlxUeC1VuB+iEzGaLv7e9iyI0CIyQikgsPRAI5S7SA19yCsVx5MANH05lQS0Y8F4LU8skJowV0FzFFkeEcCiv+1dUqQ10RlhcRGAqh+PJvfAyH9WXfWbhnth/feiH0LxGuICZ3RtfiNdOGF42E+zn/S9dRrDsTvxsW0Mjt4IqEn67U9DUH3JED259qfg8fyfpO2gUHdvN3oSz1GsIzD0BvaZil33ZxUHRUWjFbe3e1yZbcivV9T3p0gsLy4e8unlLQ6yLaftlKuHKzorOSwrNrpAW0HjRdCLvGGWN6zqklne8OmXb9GsCzotee+1+zEj9TRvmU8aDCJGm83yhta4CDMAawWdVi4s36g40UllELVE1BJ1r0CtFcY4EFR1OZU/hrYOTOVSkymX3FEKS55rtHbATUrrAFxpYg4ap6cJ4eJOA2IytxKe3emZlWwDq6edfmj97ARdwMGnTtj73Bmqdvsqj1vytaGdS7bXC8RTNzFH83hbVdOHaOsgUg0uBhsMh0Q15nx0l2cR4v32E38AILLDle5ItRhh/206GOhdGSMGwBSJQbTE0Gl3zqLXWljn9jKlJTtTLvlfqAsWXI4eJISs0qIT8XzioPRanSASj2AriImVxeZmAEBs5/MB6X5/qtCR4ZFlhyw1IjcI5VkgI6KQO/7W96HI/DFzg1C9LgkjevZECwfIhe3dd57xEq2I90htRQQLg4SCqQH092AQ7RXAQ2JQgy7G+jQHshW9u0kEw+827uv2JfdT9KyDnjDQx8XaduO5Q/hj+mSOgRkMYD6CHL9dSPoYnx2fpykAFqwTzgtNTEoaS9dIYrqHcA6m6AF4CLkvznpA7+6fP1XTHyNcU+jbGF6fAJtUPB1/E74fgHIubFacfw1awswN5vt0e8nFzNA7hDEuw+6fXLsERE+wXTimdoEiccHn537L+UnOH0u2sFdWnNROyZhJ44DI7SlYgRSGl1ZXuFquOO2m3N0uXERXyP1jBZ1RZMLwR3dukglDoVzk2IONd/J7EWsmDWf1BCVMLPBqreDBek5VO2uwrHy1eiOpdUbrGaKmdTSF9KyEmbraU2oryM4ky1N3/o1WqMBQ+TIgBsG2cvuX0iCEpSwdIhCJiDYtz0CopSW8URNuJZlvLMXSvfKNA0rFaeuiX4pgYF2Ns3ztZuTpndrXOwN9ZU5zbYYuJdM7bQyJF8blP0qBizN67jy211TCFvQr9WAE0szOwYBY4YiTIIwNE66qev1O6oJSzdAApXqh6NZLP0/GntCOaRGtoFtoBxYCoPHbpVXjnatKDPdhzg/nkHPonCsks/GeCQsiib4S0kWIZWXncll53ZGQ1gGcTeb2mbsIs3gMgEbCVjltWWbc31bCpAfM+FxDWAeKQokOrIgh97IZPYi7jGro+9CVtjeGKXglfQ/Oned/H0LwAysVXXEJABg0mRwrGOlk/1YS3YHx4yQVwiDreXIdAYgMS5MIVCMGxj3of8K5RRYsgAQ/zkIUaADhIZ/TgD1JWKXASI1D/CMz5I8VXYfhWElL+2oAjOxwH8nl7WwXgaTBZwnTm36fXt8lvviz2S4B0Zttu1Zib+h3Y/DT/79bU0Q/cYwm1bgCy+GkmlKojq+/dpsHmzl3zvZ4/4dfJr9SsdWFqxEmnKvr2fkJD1czvnx6yB/fucmn795g1ZWsupIP33odgKrL2CtqVuuSo6M12XHGvGh4dXlA2ymmResSMW5K2k6hlGFSttTa5RXadjmvnR5wsp6ijeRkPcVaEbNdm04iCu3cGhK6PYs1ktPNhLZTVG3Gui7QVlJ1GZ2WLOZ1TPTYdYq2zciUca4zZZxB9cY7Vm73RrabO4M8fwWfCygYQEu2tVTXS/KtcWH8R1P0LGdyb4tRApsJ1Kpm8YorD3727hl64iLG6is55alzNwZAE7Jpq8Z9ViwtRgl04SKYTEEstumYJNtnGfbGJYpZvYfR5C7MvptK76rzLrTEqITElNFNFlbPMhlmYwG3N8wmA1sk7iTbW/kIIkKeoQAkAoDTSc0ykuug7xNb2KibIXdgJwKgRjqA4kXQatqRlRrdyijYt51ESEtWakwrnVYocffZ3PZsjwdIIrOY2gtoSh3P0+mFTGSB0mdY+Oi6GJYf+m6XEQ+X611RgSUZi2r7dAb0rII/Z2GI6Q1EJ3pBshrdM89WpTob2TqQkbI8cRvZa4ZC9GHQ7+xqKXgTtv9d0BalrrIA9nTZg3ntE3ymuqAA4NMM1mHbcB1pSoHYzwE06l6gPRhb/pjdvD+H8F26XdS+pUxRusmI7Tk3p1/0P/QJLMO9H83JAzD8hv10b69dMkRPrl0Coifcdq0qYgtLl10PyujBGu6U86AIyN93xo35isOy4rPH1znbTPjIuz5DZyTNWUFjFPO84T9+8kP88dkt/o+X3kP9YMrpvT3qk5L2M/v8j1eejsLqzkpmmZs5bx4tyaTh6MP3ADjbTJh4nQ9Almk6LZlkHctTB36mRUvTZWyWJUXeYYyIhs1Yr0vRApkZRKFprmi3etSCZptTtxlNm9F0ik1VRBCkpEFJy3ZVkmUapVx27OAyE9JGEbIzRD1DhHXh+Pna0k1CfhywSpBtLdurErRl/0sdyxcmrJ+dIOqWbKupDzKXmPGLD8G6UP36QGGVoJ0LNjdyJieG+W3D5NhQLg3Te5ry1DK7ZymPO0zhM1kn+WDC7Te5QFiLMCELtDu3qNuBKG5tFg5YOcPX18UKrhnhAVkwiuOIsjiO6A1pcIeEZrJwYjgBux9vVuCAh7A9KxDKZqRD2BJLUbhBYgfHDcCH1um96BIqAxACjHZTkgxRbgFAWbxLzt9Xf35BExRrqvnjiE461rCTTk+UGW+IPbBL0wcEt3VSqiJbeUCWsDKRBUn7xd+HWCds8LwT95Fqu2Qt/Gc21jzTpY1RYtF1JPr7GN1DyX6Fj/4KbjDwgJsexAhfw+ycK8lvE0CKLvt9pAyILnrwEqPNdN8vYTzY5BWeuxDeL4zrW5M78XZMLzBmXwITOtI7xQSZIfdYcg0RhNvh+8FUa4fHSe/duZcc/s/ou+iGHLmnz42Jd7BZz9a/3ddluwREb709BvyPx9ejKNrYHjUmd2xXrQskltvrPVcctWz5/YfPuAzTW8V/f/0Z/uizz5C/XnB3s+DKf5zF1bQoDN1RR5ZrKp1T6SyuEhwAMVRtxvMHJ2zagqPFhrrL2LQFdZtRFh1l0aG9nmO/rHhwOudkNcUawTTvEMKitQvTF4A1AjXtENIZOZRF7+to3LrWJXy0RmCMoGkz2k6RS4P0+XCMFWgtab0bzoEhb+C8kUGArNw+85VwE7MIK2Ub/+pS0E0Fy+dzVGUQGuoDid6fsr1Rsve5M+xqjZ0WFCuXGNFkxFc7F1SHku0V9xgVSyfKzraG6V3HKuVrEw2K8lE80jNIjq1y+YlSxsJ43Y6M4M2de7OQdBPHNgXNkNCJoDYxwLJLtB/CGyT/coVObQwVBw8UAtAReDaoB5c21OaS1oEL4QfvwPAkFi4OcBxT1bqoMKuFu98+h1EAKUK5cHtrICscSyQ8cDGtpKudQMWGZI3KxntqddiXcFojAWLeOk2QFzVHJivUQAugwp8XJCyKsIPorngd4W2PFWN/p5oXRiVJAlsQWLhYOy1zINRFbImeZUnAfPjfZH0Zjxgx6Pc9EA6L/p6em0/CtqPrMUXv2hwb+cDwuO18Ru4QRp/0jWrcuA7jLbhYA+BKx1pxmrBMHgANyp2k5+1/000TVigF0SMANBZgn5unU8AiktcFbcwmpUBpvM3QbWbfcWB02d5+u4wyeyvtTTKhu+zEoD3uwUlWjPEjfw6Ncfl9bi6W3N/MuXuyx1981xf4Ek9Rv7xg/4UzVtt99suKP/lfG4S0mCpjfrimzguO5ls2XS8eMLi8RsYK1usJ2TWDtVCqjpV1GqFM6ag1OpxsUU9ZzuoJppPoRpFNHBhq2gyjJca4OmUAk0lLVeXOgBUGGwxl57MPW4HueoGAUoY79/fZ298y299ifCSc8myA9OJqowy2ENBIshOFnhnURjK77dghk4HqwBTOoFolYkK8YmnY3sidgHqhqK+4pa1oOpjNoGop721p9ubU+3JgIIIxrK5KmtZnvFYSoR2b0ixc1FqXuYitUMcsJKGL48Lf46gtCitQ61b9whuVrBJ9mLNnDazyItewPy+OTZkNINZM60oHimKRU+GBpK8PJjyzEmpEmZAR2o/FCC4CYAOnjfFgwIQotogcXHFVK0XU/YS8QsLnAHLRZW77ZpsT3HYyM5hWYVvRs4ApO9AKB46CsNoDZatceD7KCcGFEc5V1eLYo2CA9PxzgQABAABJREFUS4PcKIRxkYPZyiUXNHnP3gSAGe8V/fHj85meV9A9dcQisbEFwNAKDHbAYJwTAQfWMPwOIqhKRfqD3EMJKxKF3ePz9exNyFEUsnLHFBDCR4e1CVAJY8gfK820HTPCd/15htQRafbqsL/msD+/QYZskZwD7m9I9BjL1Txq7n3Ud+Nn7c2CFTH6Gw55ATjate1XqhnE207M+HZ//z9LuwRET7KNx5R9E58/ajzueND1xDJd1BRSkynNqim5Mt3w8OGC//cffJ1bWF2raTuFmWr285r3PX+HB5s52ggWZYNYbJjnjSuz4bNWF1KTSUPVZVw9XLFqCwyCWmcsJjWNVuSZi/jatjlXJhuKrOPO6R5SWUSuOdjbAnAwq7izKZCK3nVmBCozGCFcaHVhnLETFiGgqV1NCiemdSH2ednRtBl5puk6F2pvtKTTkrbOyHLtEvppC8aJtoUWHHzehddbnxRxftvECV8ndL4wML3f0M0U03uabiIRFrorc7LVBrRGtBqjBKp21edDeLzQTr9jMgcKsgo6KVAzOdBWRD2GByiys+hcDFb04+rigSmCPjJIl+7zbt4blGBUYtkPhoYjNZ4mc4bJSBCVdAVUA7vjs1OTG9AWhIjiZwITh0tlILqeSggrc2F86oHUVSYgFDWNxk8Buc+BlFmXd0h4QGadS3Ugum29OLpMPk+i0qIrLXwXTs1nzRbSa4cq1Ued2XAOshe2e00buPukkppxaVh7ivXidQLZWtAteoF4iO5zwEgk4NGxMs4lJHoA4zEdElcCxnd/6MeBPiUIrxNmZdAeY5SDHicCcw+CYu2wAHSSjNipyzUyf+FWi6TfxQ7g5pspXH8onxxSrUfX58+32fdJKkM2bJPsf3wtFwGhi8CL4PzitMfuw+0v2N+YZRq41N5hdugy7P7JtUuX2Vtpux7AXeMpTBK7Hqw3CoZ2HMNKMDPNwazi9nqPed5wY7ZiWU+4df0UtXRLrK9/zgmls3nHa+t9Mmk4Pp7Tdor9smKatcyyNmatnmUNh8UWiaU1inlRs8gbCqWZZC5nUaE027rgdDNxuYGAO6d71OuCZ64fI5Wl7RSTrCVTGpW7wpuhppo20rleglBC9PofIV1kkPHG1mpB43MQdZ0DQEGXJLzxzMtu2H8Wpq9KV/zVi5bnr2uMwkeL+WR4pYjh9cWpRk8U+bJDNZZ27jVCT01g4bK8yVXN/uc3g+OEv9IzP1HQnEN1JLFKuJIdEbjYAXg4l6k6TMqBIQoh0F5/YaUDRLrsv08NWDSUpt9HMGSB4QjCWeHz98hQ/sIXIu1D59PZH+dq6iRU0oGhoO9IwIEpE99F0Oh41ijVLQWggnCYazz+RfK/aVw+ohCZ5jJgi0H/h76zhQuzp3TMo1XWgbPCxGSNohV9VFoQNY+eZ+v1S7H4qxoCgwBcQ3+G8xDW9WvUrCgIddyCCDoFM9FdGbRjoY+CYHqUdTq9H4GRCWNItkNwsguwBTbHJLog4UFyEPubvNchBYF/OMeQ0iKNVAsLixB2n+p9YqJ6PwadazC5bt2zrH3f9/0sO+JYli2oLTvbLhfYQAcUtknB0AWvc3qh9DXu2/CbVDsVwNCOcX3ZvvrbJSB6q20XKBpT3ux+WHc9aI9s6XYWTGkoD2smWUvV5NRdxvVyxVOLM77+ym3MtQZ5reYD+3e5tr/iO9//Kb726A7H2xnf/OKX2SwndEby4uIhJ/WEQmpOqilfWh7RGBUjwiZZhxQm5hbqrCuxMS0dq/TC0UM+d/8aB7OK2V6FEoZ265gca11uIeOLawppnQ4IXIkGb3SEtFiDM2DGRRShHWgyWrrIIiuwRtI0rr4aFoxnCKLuyAK1c79lFWQbB2qMgmZPolpo9hyzowsHhoJhE8bSTST1oXMdmswJmOsDgT6YQlWD6dFLcCUFAxJysqg0JLlzQminiXDiaXDaJWG8xkfbuH1knBJhNUFv4g8dCmNGwao3PCG/TDAcIaFeONc0UihE4MRcOFYgG4lsHFOCAdaqH7etdEkPQwi7ABHKWnh2Q1iSUhj+d0EjNGpW4OqRaV/Ow7tSrQc51ogYZWaT34uQSgGiXqx3UeESPYIvHGsQhaNArC8BYqWL7rKlSfrYX0MQgge9kQdPqQC+PkyM3uCCGACqgQ4pIpT+XGVLf+7J54M0DAkrFF1fph9nERAFJicJrY9RfuP5yf/fzon1w4yPEAupC6IwPWisUrApkzHjxx3CLQR02R/PBBeZZ5Bi+L3sgWTEzM3oFD2waPe95ssk25mkTtqONtD2jBaigwjAHXPuOR3nju/P7T8FUFF7F6Iyk2O9A+1SVP3k2iUgejttBwCKn8NgVfHI3YxWMzubn2SEAZSlaxSZNMzLhucWJ/x/X32RZ6cn3CzOyCcd/7cXvshZO6HTitvVPpnQ/LnrLzPLnI5olrWUsmOWtRSy44X9h2zbnE3nlnwPVzNeO9sHcMkRpaHTKiZcFEClM7qXFhxNN+SZ20YVmlwayqxz+YpOi3gJykeFxYfPeldZSLJnwXTSV1EX2EZitfQGEnSV0a5z51bxDISuM8c4aeGyVVvnwsL0bMr2mqA8dav9dibQPtrMZM4IZ1vN7LUtCGj2VR9pIgXVjQnMpnC2RFiLatxrzNAEABP+l9pGMBKYqhA1I3XiVhG93icNbx4IZiGCo25Kn52XHgyNV7473Qhi9NfvN+h1wIGEEKKO8ZqRAEw60UefBXufDFpnND0QMv0+wzbxtnujKzeBigj33/0VgaFJQJEN56jsgEFyYfLu3oeaaGgP4LIExEqca073maJtZhGNiIbMgSJfqsOX1QgGb1Ai4wKwMejnWFCWpHxH0gkBGCTs3jk2w/dpN++BVRoVODgPsePz5PswpoNbSgQgpfAAsI8KC9sHgBajwlKmLHR/Umg2nLdVvWs3ndMGuYMCQFv012YFtHu2f6Z8/8SFwI42Bik7wQs7/jKcc624+HVu8boDNA3OhWS7d6Bdht0/uXYJiN5sexQAGn/8BoHQI38zesjMsxXF1QohLdsuR1vB77z2HB+8cZvPLK/z5e0VvubWHZ6bHnOn2uMv3HyJd80f0lmFwrKfVfz597zEIq+5W+9FMZ0UFm0kx/WUxiiKXCME3K/m8diTrKVQHZnSCGFZ1hOufN19ZlnLjcWKTBqevnrKwWRLZyTbOkdtJWadOxthHesjhY3h1dYKJq9nrrRCyiqEHDdh5dlK5EmOPM5p17mLQlsVyOOcrlVYLZm+LimOZUyQWJ44d4UpHBAKE/X0vqErRWKQXOh71MB4QGIF1PsKhIDpBPXS60zvdcjWolzFlCgyTd0e0leml9oiGzu4ryIYtYQZSIt5DnREItm3JBbFDGUbAtsQgZk3cuEVhNapiyMad1+WI/ZBkjCwFyvvAAOd2GlwQ8h+n52awexiS4OdmH71roX7H7Hz+bEBUHjWSPjSIbYVPYMRNCyWCKrFSe6izmoFGxWvxxrc57nxwl3b9zP+NLKeGYlG2UBI+nnOtRaeS9uDh3i/wIFCDxD7ivd2cL3ptpFUSuaFcH3dDPQsuddhzKTXkJ5feo88SAn6nZ0LuQTAOsNue3AdCsqGumZ+XMnOpXqI4DzDF2FO9Eg2gC7iIiJct7CQL8XA5RTHZkgX0Lms8t18BK7GADJ8njJDO4DS4Ldv5LXDdXYOLMWbOTrWO4QxLhmiJ9cuAdGbbePVQmjj1dpjgM6bHn9+Envq2ikHsy2LecXD1Yxp3nIwq7hfzTDWJUD881de4l6z4Gv3b1PKjlvFCc9Ojsmk5je+9H7mWcML0wcc5FsWWUNjMlZtyf6k4mTjeOlcaowRPNjMef10n1pndFZyWk154fCY7XLCXllRZK5+2SxrkVjunu5hrOD+eg6/v4++2iIXbayRlmXOOktlkLl2ofgbEKee6emkMyAGRCOZfa6ATkKlwMD0rkCeZZhOkt3LkZWIbrTgWgiZcnUhYq6VyUMTI2e2VyTFugdBTlck0Hmf6ycYmW4qsGUG2sBsRn5SIzvIauuEtsF9oR0TJLXt61AlOg2EY6TSlXTQFUW9kDo/yaeZqyE9Vm9kYpRPEqGTjrM0LFz6elqxGTwrhGNarP/bCWQtokF1leD7QR6Md9DbCCN8hmv/iqAlbOgYEjNJ0FUQSSenI0aoI1S7t9qBIaEstpX9/vF9O9OOJcKDo1LDNFhq4ftbxBpn8ZnCgblQuiOE3I81XtqzjlivjUnZgqRPHPKnHxfJ9cXcPZ6BGyS1HDd/34JYH7x7tu5D4fWEAVsT2w7gFoB4vK7k/K0K2jYPQPPkd2Y4NmMW6vDz4P5tA9hyO1Y1vUuv66/dCn/+qv8sgHrHDjn2NquICSbbBQOwEfs67asxQArbD/Q9w9+wY7tz2iGGAOgcIyXdydj0/OLrgpXyZfuqbZeA6O20R6wCdgGeXSuaN9tONlMOp1tmRcu8bJDCcnW6RhvJ/3bzj5zmR2g2XclMNtzMz2itopQtC1VzON+ybCccdzNaK5moli8vD1m1BfO8QUrLST3h/sM9JnmHsYKb+0u0kWzbnJuLJcf1FFVork3W3Jov47lJYbm6t2aWtZw+XLB9sWXvaENRdvH7UOxV+Lw2nOV0c8hPJeI0R26le20U+5+Rzv0VDJ2nz01hMeucoz/2k2swOn7iFwbyM2j23Pd64kTOuoTFaw4ZlA87JsfGaYlKRbfIafaEEzGnEyNQPb2HPdqD5QqAbOt+V546tiHb2qgNEsZlxJbRdRZuPn7fLrw7FIJ1maf9NsJfRhBpp0yS7YFNNIKJq27gUqXfJnqtkiivVN4ifLLEAIqcVqi/9sF+7XCOjy4Y/94BAf9DE25GGBwutF4o69ItFH6HI0AU+mogyJYu+7QIDE4SxRMBWSV7hqcw/T6tA1Ei5D6yLmljZJQ8QAkamtCvDr2Jvu7bmI0JXbPDeMbLCFohk2znz3mQTye5R+eMOkm/hzGkdgAbhvtKTzKI8o0PYx/UNstszFEVwI9o6d2YCfsU2SvFQBwtW/8cZq5D9dTdh6iJ82xh/D/0cQAiwp1fvhTkK1cGJ/RDAH3xmdwFXMZjKAFHoS/ja6Qn2gWC0uPtYpKGv7sIDJ2/FV+pZp+Au+ySIXLtEhA9ifaYsfTIUM430oJbwMKNvSUPtzNypXnh4Jhtk7NsS3Klud0cctZO+Y+vfz2vrA7YUxXvLu/ygfJ1PlC+zkk747WXr/B7rzzLVue8sj6kMRlXJhvurRbcX8+5uViyqkuyQrOuCz5w5R6rukRJQy4N2zZnmrV8+LlXOWucc/+zx9dofEjJtena+aO3iuu3TpiXjdMXefGs8kkWdedE1IsvSuqb2k10i47pbcn+Z92rm/u+LbWfYPsMzfPPZZy8X7iJ2AjkcY7JoTiB7XW3ag2upck95yqTLXQzN+RNKakPpIsqWyjaPXf+YVUamBihLdvrOXpvAkqijleoqqcOZGcpli5TtewgXxmyylCe6Gj03AQq4sRvfA4kHXMiufO19NsPwqrDBBwS+vnJOAU40TU0Wg2PQUvqPgvur+AiCYxA70p0LEa2kv1KXjLQxwwipcJ5pMyHz8ljBb0OSFjkxCvTRw9Eqi9zO6YXIYePfKi+O56ImqsQOSfWKoJohBPt9+fDQAtlBS4fUxfuj/XZwPuH1noRdzcjGuBdjG9k/nxf9QxCAF7J9omrLoL5pBZemj4h2+CAwoo4D+gyOfhFc8qoe4NAOZb5CJ+HIAH6+x9yUqXXEHRBQMxDFOvjRYDVAyRED8S6Sa91IxlLMXLPBwX0+j2fBHIMdHaxOCl4HwOb8Xdpv6RA6aKXPP9/ZH9SMDRmod5BdsiCz+r/Nl7v2Nl+dbfLPERPqoUHPbxPWjBKbwQMXSTYDJ+/8n8+y7U/d4eDouJhPaXRimv5GoD/z2vvZb+s+PPXv8h7J3d4Oj/mqlyztgWtVbx7eg817bAvzTl5esZpNeXhdubC6vOOeeHyDClpuXG45MZsRSG7WJKj0YqHqxl/8fkv0JiMQioyqdnWOdLnbwkrjumNNZkyrOuCIu981JkALem0Iss1ulExuaBsIbuXM3/dogtBdQWaI1eBHUAtFVZZ6msGJprNs8LlG/J0f750zEt95KJUZCPo5j4r7gSMde4GcJNvvS8xSriEh37yDqtZK9wkLpPJTs8yzNc8S3F3RbZqyX1tMVXZeH/ytctmjRAIY8m2BoRAF859V565CbTZE32Ivl+9h8zSgSUK7r/wN126BLYoMEZRRxMmNg8epIm4yg3JZHKP+9K4PD2pC4oElAloDzSyE8hGRNYjup3wfaUDmBnOrsEdE9kFk4id43bDQW/HD4xw9e5EYJyCQc0NwsoeDOa+AGwlnWtMmJ6R8CxPcBcGcImyTrDuhe2ykiBcUeDAAIRTSTHaTgbAj6GB2zLcR9Hft3ManpR5G/1VG/poN38tujzXZYNzSPVpgR0KJT6scvuJ5znGpP69KS1yK6N7ULS9yy3N4WU8Y+UWEhYzMRR3VMym7bRLrpBzyoTFxKHhNtQ9S4VwwQNp/5w7R5P8fjRuB5+H/hjh7AGj82baQGfl9zkAt+e/v2x/dtolQ/Qm2zkKNW2PeQiCYXjDi4fxJOnfl6pjv6ioupz3XnmAxPLHX3yKQmle2HvIh2cvc0U5945GkKM50XMednOsEXSHHZ97cI2qzdhUBcerGVWb0fhCsNdnKw7LLa+v9jlppuzlNXfu77Moa7BgrCvHUciO//rSi1zfX8UCspXOOKmnHM63LIqam3tLDicugUin+9Ic1gjYZFTXLJM7ypWiUFAfCs5ehM1zGj2x6LlDDtPXBXpPw0yj7juxtrCQ3c/guECX0B5qmisWXVq3mseJPmUL1XVLvvXgpnR5iIR1ES3FUntgIjDJytytep1hXN8q6GYZ7bU5plTI2rjSGwkTEDRC7UzQzl0R2HjbvBGY3u/I15bJiat9JhOiJDWkwfioFrKgx/AG0fjcRDGr8Oh36Qo5XEu/ATEUugcLEDJNR21HIigO7EnAO2kNs8guydG+6I8ffxf9dPQlOEYtlmLx24WNBmH34WORnIu/HhsyVis7OF4KmlIwFzNcJ5FmosOxRqH+XCr4TQ4/OO/wgUmuNzmvNAN5/yMiGErzDqWgxuY94JWdE1anrpu4fXgfLjkRMQ8YoDDePNjrFwLJPQ1uwpCQ03imx7NnIUpQT1yf6cLGNAVqK2OJESsdGIL+rxggdH88Mfysm40myXB9SY3CMXMT9xO+S7+Xw/s4ZJnsm3pdyFAl7jM7vj9f4RYyVb/d12W7BERvv+0YR+PVwUBn8WbbYPXodlDrjM4oCtVxbzuns5Lnn3nAtemaw3yLtgIlLHPR0NqMiew40TO+sLnGzetn0AnWq5Jt5ZZ6e9MKKS3H6ylnlXODZdLQGsmmy9l0OZNZw9XJJhorYyUGQVZ0XJ+uXeSYdRmvt23Oflmxafs43tW2dJFhjSvn0awKKAzzVwTZ2jM5U+NqFs0MZD3YoBWsXjBO59FJTGFdorYzxdEfwfSOpLvVwLzD5CbmqcnWjrnoZoCPIAsgpjpy1eibPQdi8o3LS2SKfiWfVg23ClACkytsJlxYvdcIWZkkYPT3yigPsLIEBAvAWiYnGlWbvlAm9FW0Q9mC0WQeDOogqsezDbLrjWYASfF7hkArZSdSnVRgQgZ6jMTQiMDA2OH4DiLsAIxiPbnwZdxoPK7PPwxBUD1gguL/yYn7/4W0EKrdeyMuMoPNTa8HSoFCBEain/kCEPAXab2mBnr3UDzli2ZL278CkE6jwNxx/OmkgMDu+L2PIMsqen1YAqjOHXrMnPixEsaBsD2LMxgP0g5dQOEe+usM4MyxSt59ZgW6dPfYlB4cZHYQsn8uNN+AbER/fr5PBolDw+mbJMUAnAckg8+Gv01B0dC11b9SsDJemY5dZbvaeDE82N+u9g65zS6jzJ5cuwREb7a9SeQv7O73j23J/O/+F3EyebCcY6zgymTL/3L980xUxzRrWTYlv/HlD1DbnFx0NFZxZiY81DOuZ2e8b37XMTsPFeL2BPPyjO2y5Hg54+xs6sR5CL54fIVVWzDNXZa5dVOijaSQmq+5cZfGKIwVdEaxmNax5AdAJgxnqwlSWM62EzZtwbopsZ9ZUFc5ulHw2gQaiSg0xZmrYN0uIDtTtAtvV7cSZhq5Vm6ynrgoouxMgYB86fpn9ZwL0ZW5ppi2sNB9FJWA6qqb1FUjmD50Fe9DVfPlc67qertQNAtJs5cYDel+pwtizTMrwBTO1WalQLYWrEV23rgoQTdxrxQ4NAsZDaTNJflp64CUN7gyuC+S1WcoFREAkWog2/YGM4yNUIE8gpx0xTwCRwOmI4CcdAZImYoRoLcCV48s7q9f8cfnIYCQ4BYiWQx4Eb3wRWMjSxRu1OjZEInRcy40/z7mQepP0AY2yAK1y2zdZ7Wm1zQFgCJ3PIihiK0gZqhO2ZbQn/GxHPVPfI0ZkAR8hlIsqYvzHJNk+ygyVRMjI9s9aA4YCrR3AIKYE8i/UvYwXkcA2iGaLCRPDIsQaV3gQvheJt/nXjcTtGGRqRyCWEQIvU8iK23SD34b69mVbm5pF3Y4fh81zyb6ndjfo/cDcXQASEkCxTcCnsbbWDHaXwKu3rY77rL9qbdLQPQW2y6/+7n3b+S3b/iA/V/xRwvO2pLOSDamIJOG104P+NLrV1lMapZ6SmVyKpujhGFtSm53h9yu97n/mavo2TD9fldlTKYNs0nDflmxP63YL5zgpvUz6o2DJYXsXIJGz05lUrNX1GTCYHAh/xPV8fTVUwCkNKybAiVdDTG9ztk72KKvtex9JsNqQX0IzZGhPXCzdbYFPdfMv+TollAIVPi/JrfYvY6sAr0wbN/bsP66hix32bFlrrF7Hc2RpptbJg+g2zdxEitWbtJXTa/FqPcl9aGI0TAxF5By26nWkm0sVglUpZHaYjLhIsQsCG1RtWX+Wk1W2ZiB2iVwFEweaspTQ3nqOt0UivJ+RbE05Bt3L1RNNBiDSdq3mAHYGxZV93lawrkGUBUmZJEk8YtjaGyIIbo7IFm5x5BpESOOIovkz0PY3uA6jYsHjknElk3cHP15OAAkvPF1rsBklRq3dYk8U6ZIKOsSL4Zt0v0HoFMplw27SxI2DvY76pOQ/yphdGyoKJ+c8sBo7mpp5BhDcBnYwEh0BOYn0cIE4CmM07sFIX1z5M9hdH9T4+1YHq+9CWMnYays8nq1rO8zoYkAIa1DhnV6sV6L5MCPKWz8LoimY5kTCbIWZKt+8ZAK/1Xlnq8Q0ZYCzm5uz4351O206xXOdbBdGE/C+nHXv6z0rwsA0IUvmfTnzu9tf76h/+j7+J1ol4kZn1y7FFW/jRZcCedabz/e2Pbndrz749T1Zqxg0+V0RtF54Ys9yzmZT/mTzU3eVdwDQGFobeaq13eli545amGroHN5f/IHGetOcvDsQ65MtkxUy6urA5ou4z2H9zGeRtjogkwYMulyD92tFrE4LOAKwVrBPO9z8u9PXAZD8+yWq4cbjBUIZVi+z4EDm4GZakQnmX4RVi8al6RRugsVWsB+64ylT3CHtCzfbWAeSpCDlBaLxRiByB0Ayu4qVs9bzNSQn0rH3pQCVflkbzPIt+5YsoP6yF2H8RXK+0gzXH6hytDNnMtscE/xrrmpoxCm9zXdVLpz2DiLkK819ZEi2xjsRCIbp0PKtoKsdHqjEM4MRLG5u/H+j2eVsgpXtd0mk7slMkzn88wM9xNBUfxf+HIOfaTZrmEYx68lRvyFJIcRRCm83sdCKyOzAP7zBNiTgJ3B0YIhlsOs5kjrAK/1+ao87SC8YQ4pBALgkhvVAzLfP8Pju/MllFDRviSJsFHQ7q5X9MY3bUl/hj7VOUPXVjie7Ldz2bWT8RWYJeNAohVgi6QkRgrUAhgNu07mlKDdiZXoZWBp3LhJwUPcF04bJLp+PyEnkwB0aRBGxshLWftnpPDbGd/3PsIPIeLz4xY0fvvS18oLIM2PUz1Nx8CoT9P/R/0Zx6Lo+8GOgO+F9yvd3UU44FGfP2YSPweOvsItRIq93X1ctktA9NZanI3Of7bzAfMP7lt2KccZrF/0LPKGTZdztVjxyvaQednw7Adf5tNfvsWyczqg1ipaq5jJmo255mqUzTV0kuJqRdc4A37lQyccTTfOzdWUUMDV6YZ53nCQb6mN0yxV7YTGKgolKWTHts1d7iJheVhNOSwd+DmpncssZK9utOLG1SUnaxc64oTVULxcOheZEVBqTKbIzyTtkaG+iosUOmyxtUKWGjvvovtDLzRKGUyrUJPOMwmCPNdUmxw1a6nehUvoWDi9TjdzgEMGjUNgZCQ0+6JnhryhL878rTWgKoPJnZtMq8RACoHs/CpRifia3W7Y3CrQE0G+dr/NNgZdSFfpfuoevXylaWeyL7jpgYUJtLw/fqpPshL35CZC66hRSZJBRiBkk1doY2M+ymkTXBnWr4JjsVeLL0XRG6UYFeZZCqsFovDJDoUDNsHFAsn7yDadfzCEsr1Lzf/OGpdTSCqL1tbrhsKDMdRwRWAjcMC/NFE4HhmvJAItPFcBWNncorOQn8lfbyYGfXTOzWcSMB3mgh1zxcCNHhiikO6gZpBmIBj7+DvRf57gWQ88idGLNvOkl4/ccufvWB7R9ffXKHxCSr9P4/4POYVkI/0zkpx08t4EoBRyF4nRNqIXq0c9XBDs46JDwbNEClc0OFzz4wBFvNlJXydg6LHazTcLWMbPx47vbRjPga26bH+m2qXL7M22EfqPD0YyWV34G3Y8SBc9lP18svNzYwV1l3Hczvjg/mt821N/wufuXGexX7GXVVS2oLUZSzNF+WSNU9Xw1K1j5InLCn14sCGfdNy9t8/xdsZ+XrNf1FRdxoPtjHcvHgDwyvowRpCt2oKH1ZTOKHKlaYyi85a7M5LOSD7/yg22XU6tndHPpOHhasa1/RV70woEZCtJ80xDc0W7RHobxfprG5pna+caCcxDKxG5xa5zVKHJZi0qNy4aSVmKec9GdZ2kbRUi15hWMtmv3STVSvIVcRUstEvaqCewuS5oFoJu2k/Y0BsXoZ2bqJ0rZNuXcHDUu4jRZd3U5RayAtq5pL6SM73rNFixfId0O7dK0C4UJnf/q8ZGIxqq2sfxldL1JG6PlFAJ7IwfH4OcQOOWAnN/zBDpNqi/FQ3bjjGe7AvOj1Fh6XU7wgMg1ecNim0g6iaKqgMrZK2vdSf7FwKXxTyUwEjOKdWOgTP+znUoHFskhn0bcheFsRYyVod9hcr1QScT+j26bUZsRu+y8acRAFi4RJ/baaDVSvrMZDhdTwqmkteAeRD9eeiiD6m3iphcNLjqILiprNMHlf3kEoGKT48QSoyYLOjibCxzIhuBKX10WdCQWfr6cNLG/E02jCdA+r4cRC+GrgvX4bVlj9XejEBP7yoL19Ff+yMjwt6M2yy+bAR4u84pgiH/953yQl2Kqp9cuwREb6UldG40jkkUx4WU7biNwNXOQ+36zsJZU9JZSe0Vir95973sL7Z0WvJth3+EwjCRLXvShbxrBMfNnLsP9wEw2tUaq+/MmC5q7rxyFHf/5ZMjcqVdyL4wjuXxQupJ1jHJOh7Wju0JxWGvlFvubhZ0Pl9MpxXTrI37PJxvo9Yoy3U/KVuQpxlivyXNZlzfantD68tGKGXIMkNRtkwPKvJcI6TF3JtEt52UFrvMKWctbatg2iEa4ULtJ8Rq8KZwkW1CQ7vvtRcBLKTsjHWZqd3qWqAn0kefueOZzIXwG+VC7WVnI7BqDjOvD9KUDxtUa6OxcsDG7W9gIK1jskJOlsBmBcMWSiWIZAymf9+QiD8FSyNwlA46k7sPo2FPfheu0WU8tsPvLVgtkIV2LE9mnO4nsDPN+WkniqiTc4xRZ2n9L9sbAKHMMFw868dUYLb6yLGkNAdEvY8tDTZJwhj0Mukzbr3GypSWun9MRhfQG2Tn/hJJkkuRdmvvIhPJ79KXz9GTrXYcIwF14VJk51xPESD4+egckAJE693QKjHYwZXpXdTGRxMKLZybiwCMXL9ZZWOfub7pNWjxPvj+l23fD3HcjoDkoHOSax03m15LAmyifi64alNd2TkwZCOwedMvOAdKU2Dag6HwemcYoktA9OTaJSB6K031Az+N5Bm0HZNR+vmbomsH6k43mVadCwFZdhNerw94arZECcv3vu93WeppjDJrbYbCoLBcLVfoByU2s1w/WtK2iufff4fmpT2uPXMSdUnvvXo/Ro29sj1kP6+5u10wy1r285oHmzkT1dH5yDOAzkquTDYYBMWsZZK1fPnhUdQ3SWGpdUahHIgpnl07jUnmEsBlpSafdsjM+WLUpHOrVu3rmk07jBFOIxQMZZik9jqk6JP3iX0HxPLcZbjOVgrVQLPfJ5VTVe8S62b0LrQQZp+A2m4qfeSPBwZJuXWXLygYB5eAUWgXch9C8Te3ClbPTQZuOmEckNKeJWrnDlyoJHmkq8eWjDF/76NRtP3fMQuZskARcAW8MBqzgfUalJMQDCvXj1oQu+PDrmPoe+4YIZEb1/cLdy+sweWequTwoQjnHsBCwhL1+qHhdxGUGf9D4Vxzg+dEWg+kGYqMg7vMh54HMXXQD6U5iqJeKum3mMwwXEZy7u3CejdmEmWY3oMRqIyurGQWFr6Aath3tnZjItv098UKD+x9iRcX6i6G5ykS4F3YwbVbH5wQgZ9x35nC9K4xf18C4xP0P/hnUnigJDsRQY9jKkV/fZ1AFzYGBLjITXuu38ZtPGcOgFDyf0yHkQqm43e9kHogrk63eQOvwfFSMJSea9x/f12PZbqeYLsUVT+5dgmI3mSzY9T/BhcBT3K8Vbc0i6KmbjMe1jNOmymfPb7Gw7MZ95o9ADSSjSlZmgmNzdhTW5dd+uYGm1me2TvlxRsP0Eair7ZUTc79asZEdWTCcG2ypjOK/bxiltVcm2x8FFnLXlmxX1QUSiOF5fMn12i04tXlAeDKc9xbLTicu6r3xgo2Tc6mySlVR9dklEULE+cu6/Y0WeY1QZ1EHxcxo7FcK4QEoSzGRxcJQXyABZBNndE1WqA7p4sSwkZdUbZ1hmF22wGYZt+xQlbQl8NIcg7FEgPCGayu9OHPjUMGAQA50OAFqb5QrLDeBQZeqOzYI4QLvx8Y/1hR3Q4S5snGA6ZJb0THUWcRjMPOidcGY3fui9H/Y6M9Bj+D1fXoWDIxBGEfMSyeAXAdCKrT46a/DR+Fe5ceHwautOF1JAjQ0gOdmAbA9i68JGJu/FA6kXCKJv3nI/B47hri7znfrDi3XZoQ04o+TxD48ZgwRUFPpCduXECffmHAGIWW6KiMD5MPLsF4TA9cbCjPkbB8wuuAop7KfyZrF9Bg0vxgoQtTIJb3STpNnmjP/LHdcUd96AHMTnfYRfNmHJePn4Afu6/H/Paiz3azQuEzm66bLtufkXYJiN5ue9SgT1cLPOaB3PXdBdsfPneKFJZr8zWF1BwUW3KpOdjbctZNmMiWU+1SNd/MTpmIllK0vDi9z9X9Nc++7y6//zvvwVjBq68fMd2v2G4KXnlwRCE1E9UihWGtXdTYZ0+vc2vijrnpCq5NNjQm43jrjnH/eEGhNKt1SdVlTIoOrSXWCm6fOhdd3Wbc2ltSZh2LhXPjTRe1q3Z/pfFRYmBPCrKVxDQKmblkjGQGe79ESEueaax1jJOUPhlkZgZGNCs12kiktGS3C7KVY4Pydc/khBwreuLvTebdIl5HYoreDWClqzvWTSVW9SJbZ1zcylzVNmqBsI4hCmBL1S4sHyEGE7Nq3WTa7ElChXVwbEDIDZOmAIhsUMoOJZFTwTim7rRzQIohE2Q96Bus2AOLEUOy+xV2NIj+x27/7jpsbmBiosvCaMfYydz4zNQepBSmP0bY1cCv0/82nk/yV4yN4Mj95DrXktZRC8k6XRmUBAx5tjcUe3WsAj4Pzw5jmwKAkYs8aoKSaKc+X5MH8DZlMRjeG9mzQxGc+zGoascGZVt6NiZhmgLrYzKfOTqAfduPdaDPfO2Fvza3TsgcQIzXEKEFqhKRben2w2JA9IxM0BfhmSSZFN1NS3Mk4De4zOJ2Mu3HEbgY9/sF343dWOd0Q4/bzzlA85hXOOaFYCh5/w60t13HzL8u2yUgeuttINbY8d1FD8MbWTXY0XbhiReAdKHs+3nN/fWc03rCg3rO//3pz3JluuG1zT6VybmiVhyqTcxFNJc1pWx598EDXvn8DfTM8PmXb/LCM/epXl1gtUC/MuOTd27x0vIKpezYyyo+9eAW2kjWuuT2eo+rpatv9mA7Y5I7/ZBe5xRS89y1Y1Z1SaE0h/Mt2ru3pLDcPFhyVk9YtwWnx3NmhWN1rt46oyhb5w7Tkv3PuUrkIjcI6fOXWJA3Ksr/MUNJ42qhKRPLhQAumkm56LWuUWRKu30+u3VskHLuLNn6LNdb158mJ7qEBpE01pXxMJmILghTBAMhwNqdeh1h3XbhPgpj+xIg4bd47VHRF6sN2qbABqS1pkLelii4pp/0B3/T4TIyOucYGb9NSpRE4xT6IRVZh/3kxgEawGbGM1iObRBec2QTTUo4ISGJNcysj0Qb6JeE+421vqxL8j4mZoT+/8HFMGR+AgDy54jsNS/RpROSW4bzSJ8561xEabbrPt+OpTlM+tqPjfrI9noWgU9F0I8Rpw9LnmP/LIe8QaFwakgBEcBxHGP+f5MPQXIcH/H/cN12kDHaeoAXk3hKd+1OT5Tcc3+/bGbpZjaWOpG1iEkZ1SYI7BxASjVYgVWVjUjSIPR9G8ZGKngeg6SdQIXRd75zUvfbRW6ugT5LDF+I85890m02cMGNzlGE0h7Bhcs70mx4Vt7W650516/2dgmI3k4bg6I3+gA8brvR9ynFDiCxTrMz2/Dnr3+Rq+WarS54sJnzTVdeZmNchBnAvtzSWsVVteaKWvPC9AHvef9rlIcVthW8frqPmWmsEZgrLdpIrk/XfPrkJvfqPaZ5y+Fky6dPbjALIfb1jOvTNS/uPWTVlRzeOiOTmkJprs3XnG1L9sqKw+mWZw5PMVbQdBmTrEUKy3y/YtvmSGmpmoxMGZomo304ob4C7dM1Knf+J/1UjVCWsmzpvnGFlJZp2SCEHfi929YVjBWSKOoGB5K6uaW64vpVl4Js41bbQjsgEjQYCGLdLoDCi1pVnTBCWbjXgSnyBkiA0BbZODZIVdaX7hD+tzYySaEFoBQMsvS5hVTIM5SEUKe1y6xwRlM2OLdcmOhHjEOctwPgG4+7oQ30gysxMknSvVC8M+4/S97750BmGpGZWI1eZpquDjSZQ17xOEY8evZJryN1n6X/YwfXEABcBCRexySEA2M2c2DOSgcQ0ppsZmoGINEUaShUf50hz4+e+MMrV4QYQa+1CueZlDRJwUrK+KXAQNXESMOBkU8SKw7vB5GJifokiKxhjOgKoDXzEWbh3voyN9bfmxQQik64/tEuZYHJrNMN+Rpm4UYGRs1dfwr4/EIl1TZJhoNwBDpCHw/csLuaP/++/85rhd7oqwdhj9nmQhDkv4v9YPvP3iFAdNmeXLsERE+67XoILvos/fwRpNK4HU2cNmfb5RgreH7ykFe2h2TS8GzxkMrmNFbxXPaQyhZcURvWtuBUO43RLGupTyYII6hvz5Cl5vDqmtnBlv1pxabLebiZ8el7N1DS8DX7dzheO/dYZxQPtnNmmRM0HFdTVqspEsvDzYxCatYPZ8691hZ0RnJ3teB4PY1Zr/NMU9U5ShqKXFM3GeqzMw7/UKFLkJnBdG6mlJnLR1Pkmr15xaYqMEYO9CltqzAjhsBoQdcpdJ2BhfK0F0/LzjFEVoKs3f9BCxFyAcUwYInLPt31oEgXrpq91H3Ycmj51gzdVhbyjfHAxP1Gdg78yMZGBimrggHpQUxkjUyvH4nCXr/vuMKGqD1JQVCM+pLJ/378hesJ15Cu0AM7EsKvo4CasL9QS8y7yaBnbkK0oATrI8qEMv13XhMWMzsL91uRsBTp/R1HwAwyWu8ypqNmPSBwN6hXl0f9i3EiYbmRyFY4N5U38qY0yb0Ug0jA5sgVDQ5pDwb3JZwPybEjiEhArHfRWuETK6ashmAQRTWoq+fPPaRhiJ/746cMIwlbFRJq0kpfqsP2LlE17D/R+vxNQZwu6CP1lHWfqaQfk/In48sOof2BQUwZVfs4K5SM2Z1AJn73Vl6PAjrpNvRjbfRdzNPkt+vZoTc4ob/Ndhll9uTaJSB6C23niuai9ibG2a4VfJgw0sN0Rrpq922OQfJKdUTmLeCpnrEnK/ZVRWUz9uTWR5kZni0e8N7ZXQDe/e7bbmcKrl1ZoqThYOZYnbN6wvXFiheOHvJgNScXmqcPTln4DNQ350tK2VHKjnftHfP8DZevqMw77qz3ePFdd3m4mbEoaqoup/2vV5DCUqqOs2rCelPStorNtqDtFG2dsfclWD8N3VHnXF9doOUtaEnTKqomZzGtUd64Bh2RPi6dXkj1q3rdKredsKhaeLeGBz8K8rUzGpkvmeEAiE/O6CO5uimRzs+2Ftk6nZAwYJRAF9KV8Mjow/C99qeb9jdTFwLVWPKV6Y1EBla6pI7Z1iYZsd3vVduDItX04CVEqA3cXKnhSVfcidFxb4ZjK20DMbXod5bmjeldBv5/4zNGa4EojBPCS4tUTjMUQK21HuAEEOVdm/E8PChJo8ps4q47pxkKLSm3EUGP7RGiEP3L5S5y+416nlaA8GxhKzBzjZkYHznnAJtsZSIkHhrObm56g+jF0PH7BLTFWmtiqLvp9hKWI7MDIAYM8hTFPEOJizQWcNUO6EQmKIyJFI8JMBPTi6tz07tErQfAQecV7lFhEY2IaS9C+gLZSq/DYmcEYnTnyT63k00YnajXCvg5qc33KBZz3OJYHGuGBvPzBa/x949qu4CQ3MUKBTBk39h+n1CzT+h12S4B0Vtu5x7clGZNP4vvufgBSQ3XY0am0NAYxaotOZg4cbIUhqvliv/tmT9mqScszQTpZyqF5cRM0f5Wv1xdoVCaTBqeeeE++ZWKe1+8wrxwYOfhdoY2ktYoCqW5sbfk5e0R+0VNITXLruSw2GIQvLo5oJQdL+w9ZKML5nnDXllhEGgrWbcF904WbN7VcTh351oozXxWYzpJ93BCpjQ8LBDG0u0ZxKxzhtYIeNUrnitJpgzz0pUJUdJ4Q+c6K79aRYYoy13uG9soOm+sVeWKvBYnDnQByM7XHDPORaUazxz1eR7RExcx5kKhXRi9ahwosllvpEzmEzTmbkbMakOxNHFlPLnfIFpDvuoGWbIBl+xROdF2vP8iGA7+f+z9e9BtyV3Xj7+6e9327bmd+8ycuSUTcsVEgkgAwSKAXErys0rqpwbM76eWJWBCUKlCS4WyKqhVCAUICiIoCFQp8DXgLSgXQSoEA/xCQkgmmZlkzplzf+77si7d/fujL6v3fp5z5pwzZ8KMnq7a9Tx77bV6rdWrV/e735/35/OJDJHJicxS0BnFfFvJgL3kUr8KgNLumYCkNB9ZNL1Zlvqviy3jWZ8gRA5sgRcpH0nImvRp46OiB2GzWNIn+ZhC6esiwwX778L2DJJNbi4wPCJ5/ZbMMj2DEHQSMc0HgHaMkBnrvr0SLzUTwgksmbvCJE/C4iQXv9J2aQmgRg/6+tTc69QyJ4qWbWjzZdOYu/YeFPXnIk7C8TrE8v7W35PNrANDoW1E/yxt3jM3Nkz63jQaWDC5kA40hnAFnXCA0tLHFvPXZSXYHGeeTLRRKTsUrnH1cd2qBJPokQCLJP+v/rb6udVvq/sd2de3SfJ/jMgeFwz25kD+fnnJlvuA6KVUbvb+JEDJKudyvtAZrVaczvcZqJbPGl7hmdkJ1rMZE7lgJGtamzG1Bbt6yMLkVMKNtJuFyyk2b3NGwxq5kMwb54qyvT1mVNTkPl/ZM5dOst9UNFpRyI5R1jBQDXOdc264jxSGWVeyW1ecH+3y2Hib/UVFpyW51Fgj2Xpwj1J1GCu4+ulNlDQu3pBxE2exIzl4RGDXWqcN6iRyqtAT7SbCTnjTCVFEvVqkdALryDJkxtU9aVALxwjNz7i4LmHC6QaCfGqjbiebOg8v1QjHKvm3Q3bB3OCfgT+FA0KinzAEYAOD5Fe+QDvOULVBHbbI2vQrf7+KF8blVDv2mYc5S/dgR/qErlFgm9QVAUkAErYnTVIwlDajTJgIYTli+nAshOhBhBFRcxUTtPq2D4JoqVz72wCORNJwnpVINTzRpd4IrJFHYhDZVJ+y1D6OgbKBNQtgJF2pr7QnJBNqvGkSFiMBAbnpQarowUkAD+n+bkM4Xw/KIsMmV7+7CbQb9+wJeNNuEgLCeFf2GDvIX1tw108ZodRs5rzlTA+aBVivoaI0/fMLoDI30XwntOhDFYQ2kmCGAUwRo09b/2zlQsZzLx0XLinVEKXY6biF4uricKlOEgCULERvlSrjOCb/dgDR0r49gIxgCI7GwFo99kUufxQms+/6ru/icz/3c5lMJpw+fZq3ve1tfOxjH1va58qVK7zjHe/ggQceYDgc8mf+zJ/hySefXNqnrmv+5t/8m5w8eZLRaMSf/bN/lgsXLrzgNrnbch8QvYDyvH0oDPy30ddWg+Id3aGvslId47zhzNCpfpWwvH/3cT5/45N8fHqGoazJ0UhvKgvFIDlVuKz1J6sZ69Wc2aJAWLj21Akuf+wUZp5RZS6r/XPTNVTuYg3t1AMak5EJ932gWiSWuS74g2tnWCtqNvI5n5puslYt2BrOaI0iLzoK5Wbcpy+eojw5R2LRjaI8O6PTEqGhfrRGFcbnqjLY9Y5sw0UptMqipMUgUMIgceBHCOvAlTIoZZYiGwtpUZlBd5LiwJnLTG5pJ96zByj2Xdb66oaLWq0rHyXau9/rgXsmJu/pBV2IKJY2WW8iC2k4AluUzY2LL2Rd2o9sf4Gc1qjW9M/SC2KdaNsuAZUwiQlLDMIXclDFT6IriRGs037ECgaJA3naRyFkXY8r9ZWUE1EfEiJXFxpCmgtlllNrrHbbwodEyEysy8a4OCnjk4CiTkTzTUjwKrM+rks8z+pEFLYtMUTu0QnZf4BeTBzBj43bASfAFo5VCQEenWu7wRTGm9FsH7LAg7OUseuBsweloQl83J80UGI0UyXatWB2irfiAYrJbfQ4TG/VpkL31e/hObfS4TbtNVshbpS0yL3M9TkfpDECIq8Js0F/JZwpbUkrh+ufKdg3RQCay9cS+mDfj1cXA8cMgP5ZL5mE07/HAaSlj9/nTsXXMvmki40l7ZL/LZjPPtMGKHuPPndQfu3Xfo1v+qZv4v3vfz+/9Eu/RNd1fPmXfznT6dRdkrW87W1v46mnnuI//sf/yO/+7u/yyCOP8Na3vjXuA/At3/It/PzP/zw/8zM/w2/8xm9weHjI13zN16C1vtmpX9RyP7nrCyzpSvzYEgbLYw9eOXZlHDiuTmHhkzdO8LrTVzhsC2am4NJijUeGNyhEx0PVLk/XpymE5tH8OoaOXGlaq7ihJ2xlhxgEN+ox47yhuT4gawXFQtCccmkuLh2s8YaTl5h3OedP7vDgcJdzg32mumCuCwaJXel3Lj/EG89c5Ex1QK0zrs9GbFRzFl3OjYMRJyZTpk3BrMnJq45R1VB3bobIlHG5xzJQpU/zIBzLkFUuw72UTsvQaUmVd0faDqBdZIwnC7SRDMqGmSnJMheLCGB+Csodl82+3IVyrz84W4TVuUDNcSDID3wmc0lfrYLBdUM7FuhM+NxkDhShoJga2oGAQjivNWEpdxra0cCBAQumzJ3zj0jAhp/4hLbYwumJtBRxUpGJUDc1NeiKaHoLH1X7STfkJTtmRX3LPhouaaUPBrBF64CBzU1cEatK9xOrZYnlEd6MZlvhYjcJi7EkSWJXkFl4F4JQu5Mu/1lgPkwPZmIy2eMmzjDvptWnICWcR9CLjQPbFfbXPoxAK7142AOHhDkQzerLip+wAyiycbkZ2L1ohrIu0KGpksSn/j4DQ2dtCJwYQMYK0orUH3E/97wccLT46w3Rt73JC4AsMedk1pkr21BBcj8BxGr3TopaQm6RU+XNZu4SZNf36eBNF/tCwkDF6wved7h9j/TL5N6OHTuPYwDDNd+iJLKu2yrHyiKSc8X+Evtafz3iOEbqxSp3wfAcV8edlP/6X//r0vcf+7Ef4/Tp03zwgx/kT/2pP8WTTz7J+9//fj784Q/zute9DoAf/MEf5PTp0/z0T/80f/Wv/lX29vb40R/9UX7iJ36Ct771rQD85E/+JOfPn+e///f/zld8xVe8sHu6i3KfIbrT8gL7XSzJpLj0WVq9H/MGW+g+vM5hV7BRzlmYnJPFIR87OOMjUruM87nouKzXWdiMXT3k2fYEAJeaDS7Xa8y6nB2fj8xmPghd5WbijWrOflvRdBmZNNQmwyAYKWcuM9ZpjForef3pS5ypDmiN5Go94YHxvjPpdRknJlOaTjFbFEhpKYoObQTTWclgsqBpMrpGsTjngE7+iYFjBLQLqmiuOQ2R8OYvJU0MIqaEQfnVs5nmCGGZ7lc0bYaQlvYTE4x2edPU3Ae2a1MA4bRAg23N8ErH8KpmcMMyvOQ8uoKbezNxoMnkLuK0zoWLM2SDKc3SDp3pzIEH62MdabLagBDoAprNgm6tohv2r9xqvJnUdBVNZcmYGq5dNkRWJwCgkOIjTQ67xB6sMEWhvmCyIwVTLK/aHWsheu1PI93+icDatH2YZmtdTCkMiNxgFulvHtismhg8QLLG0x6e8QvgKhxzxHS2NCklQSPDZOnfKWs8GArvmF/1CwEUjuWK+wQ2I4mZE8yGSBvF2L1mKWnjpG1TJi8wTCm7oeYifrC4WD/BFJa5hQCCPvpzSh9aEVkum/eb44XEpKz+XqJHnxe0h+s0YBuFzc3ynBhNwCICGls4AGkKH3wz6GtwddvMMauOwTJ9PKoE2ESwmIiVop4qtGH6XI8r0UybtPFtfMJ5j6T5OO4TmKRjGCIX2oP+92PB0PPcw/9hZW9vD4CtrS3AmcIAqqqK+yilKIqC3/iN3wDggx/8IG3b8uVf/uVxnwceeIDXv/71/OZv/uZn6tKXyn1AdDflTjv6LV6OVYY1YqCbxY7xxxgr6IxiohZMtRM6X23XONAVuexobca+rsiFjoJqhWEzn5ILw5nBAacGU6pTM0zpxJy2dSvAnfmACwfrLLqMWVtw2FYRAHVWYRBIYbgw3eDBwR7aCp46PMnF6RrX5yO3b6doteJwUTKsGqyFpsmwVqBrhbXCsTjzjGzcovcK6rPdclC+9TaaW5QyaCNd2g7fmDp4JlkwRlJ8unSu9q2i2HGTq9GSfAY6h+oGjC5byj1DtrAUex1qoclmHWphWPtUw/C6ptiD8obzsFqcsuy8SmKUiBOjzkXMfK4LQVcJF5smd9Gsu6FCDzKymWZ4pUF2zqTWjbOYe8o9Y9v3gfCs00l1aTDvn/2Rxac3l4XEsUuu2aL/blIRdgKEoAdDq3nOYv/0E6AN7vcJWIm/A1bL3nspiK8L4wASROCxBIpWFwUAWi4xTiEX2hGzXHqMN1kt5ePyn6iVSRcZHiiFc4TrAxBzFQXmwufxsj76dZhQHUj015iY8VI9ELA0ygZAEABT0CE5UXP/fKyiF61b0eewC6BK2Ggutd7UFoMwhutLxcBGOHF4WnxTyIVE7WeuX3WiD94Y7ruwPZDBM0LgTGjSOtOaspjS9CY+61z2Q18zpQ/NkABFhF0KfnnLsvIekDzK4/e3Rz/P9/sxJrYgll4yC6+a4TwYitHy4//Pc0/3qNzLSNX7+/tLnwBsbn1+y7d+67fyhV/4hbz+9a8H4NWvfjWPPPII3/7t387Ozg5N0/CP//E/5vLly1y6dAmAy5cvUxQFm5ubS/WdOXOGy5cv39tGus1yHxDdbbnTzh4movD/LeqMgy0s5QJKB4Dt2RBjBZfrdU4Whzw3W6M1iq1sirGSa92EbT2mtcpFqRYtjVUYKxllNXOdc2F/nSLvkKcWqIUg281Q+4qH13c5mFacGh1ycjCNMYeMlWgr0FZgrOTCzgatkXxo5wF+/5kHAbhxMEIbSZ5p9mcV9dwtX3evTDBGsH9jRDVusOAAThIXRow6NwAdOJZHCIv2E+nhtETbPqKqwZnclDJkGzXaCEYXoT0sXAJb5V7ydpFRHFjKXTfptwMHYJqxpN7KmJ/MQQq6oWSxmaMWhvEly+RTluoaDK4KdAW7T0iKA+OSsQrH5ugqpO0gDo5dBc1EsDhVogtJdtC4fGhDiWiNf6bEeDbYfnI0OctAJWEYYoLM0EcSb6OoI9I98IkmGpK6kuB+aV9Mc2mFbRGrSOsm0kTfEo537uyuPeikAy5pJvuF6kHJ3J3ABl3KajDAJgAp3ASbgKXgdWh1EG2L5fcpADyb3PMquypsLwAP59ACEe4puOOH47IErCYeTTY3bqJPgVn6vup4uiQ/nbs4oYUDOeGdXvUYwwMhTQRN8Rn4/YNWJcQeCsL06Pmmkjg/wvYmvyB8D/nafPuJoO+J5j2fcibopnw72MCMKOuCWIZnJ+hznKXgxusBw3ORrURXpr+P0OeLmw2GSdveCgTdDNCkx97kk+rKjnw8EEqZofgJzFhYLXgA1IMoe+fzwwso91JUff78edbX1+Pnu77ru573/N/8zd/Mhz70IX76p386bsvznJ/92Z/l4x//OFtbWwyHQ371V3+Vr/zKr0Sp45L+pfdjEX9EieDua4juQbkjU/HqvsccG80oZnkA6Ccp2PvgKYovu8bHD06xVc44OzjgwmKT08U+C5NTypyJXDA1Jdt6zIEeMJQ12r+pxgoe39jmdy48hN4tkQLMmRohLQud8cTpa4zzhuuLIWv5wkWkLmYoYdFW8Mn9E0wGNdebMZ/8xDkefvwqEks7z2iGCollcVhSjt0KQ1aa7qAA6fKRaSNomgyMY4zkpHWTnwU71nHA1rMcNejIc82NaxNOn94HC9I33KJTmE4iSiecFrmm2M6RLZj9AjQsNgSHj1qyQweahIHiUGMyB46m5wrKfcN8S6KrDKOgHTsWSDaQHziwMjutkK2LFyNx4Cc/7J9PiCnkzGeCYtcByWxhaHKJzSU67yNXS22xuYzxhqg4MpDGBWhw1/e6otQNO7IMAWjhAJQI+y+ZkQSBxYgggt71XrZgiqTfeXOZzfoYQnQSVWiflkW44JfebV6EHGLKRhMsFpfuw6x05vR7kVCi0dzVA+DeU83vr2WcrITw/Ub0L4m1xEStMbAgft/we5JwViRBCVeZKJv5eDyhzs4BG5ObqKkh815n4bkY39TGnzSJ5xQ9Bv18Gv8X1uuXwon7pgp5yaxyXpcRfMCyq70ApHVyIQ8crRekRy+vPAAaE1mjkOg1eGBK7RYdIoC/5HmFQ/FtAfShCaRwKV0C8I3Yyz0HPTQOFEK/T3KvSyV93qm5MNzLcQPv6vuTfr+dgVrc5P9jB+pwjgQU+e1CwJFE4C+D8uyzz7K2tha/l2V5y/3/5t/8m7z3ve/lf/7P/8lDDz209NvnfM7n8Hu/93vs7e3RNA2nTp3i8z7v83jzm98MwNmzZ2mahp2dnSWW6OrVq7zlLW+5h3d1++U+Q3S35W76+i3AUDRNCJbNZf77qvcQAn77wsMAFFKz0Dn7bUVrFcYKapOzsDmtzShFy7qaMVELhrIh955i+21JVbaIxgl5rRHICxXDrGW3HvCHN05xspp5E5nFWInE/R1kLQ9O9vjojTNQaSTO1DYY18wWBdo6DcmoaqibjHLQkk0apJ9IjZGozCALjSoMZpGhcpftvliraesMM8/IRs7cJj1dLYWNYMggGBYNk7U5Wktmr2qQmaU+qTl8ZYfaqFFbDZMLOpqVql2DVYKDhzKnCSoFs9OSnVdmNBNBMxbUG84EtjgJ7cTlmcoPoB37OatyYCkwOVJbZAPVjqHc0VS7mmK/c3qieQvGASW10MjOUt1oyA81orV0pYuDEwI1rj7nnkkiTp6pOcZKYkC/kFYkLJKDyccxQCHthF1ml5ZMO97UEr3A6HN9+aSeUvWd0xrHCokgftbSMUB1UmnInu6fNdYFcUSLI5NXvKfAYFj/EkRWSPTvTZigjViKRC0SBskaf53KJsDKt6tw12Y7p4dy1636Y6VFLuSy91miiRFGONORT2chwrmiScWxH4G5S9NpLJnybG9Owqe5CIwLKtG6yIQBypaFyDb3Ocdy48xYwT3fX6vL5WZ60CeIDJ3Yy2Idvdu8wAwMttJ9AE2IIFXUsg/D4EEanftufQ5CBhoWvdkx4FwgxnB6XhYlgqF+LFwNlXCEvfHPNnyOM4MdYXuWWJ/wSR7QTY6NsbFWGKLPeLkTIdWtPsDa2trS52aAyFrLN3/zN/NzP/dz/PIv/zKPPfbYTS9vfX2dU6dO8eSTT/K///f/5mu/9msBB5jyPOeXfumX4r6XLl3iwx/+8B8ZILrPEL2YZYnDv9k+3Bxc+RdTLNFERG8RKSwnqynb9ZDDtuAtJ5/m2cUWY1UzVgtmpuj1Q8K54E/kglo5M9Z+XbE5mnHIWjSlyEbQGMW0cVGkAZ493GC9WCB9QDcpDOO8oVItdZtx4qRL3Lq/N2Q4rim8N5jIDNNFQX1YMlqfI6Why5x+yPhVuGkVxahBdzlGS2zr0nLY3cLFRfG6ISfGPb6hMmVYgDPLlBq50YAFvVcgJy3X36Aot338HtwArUsHbKbnRGRcdBlWvq6du7Gh2JPOq6t1wKIduoncZMKJonV/TboQVNc72lFGN1RYUVDNGqcfGjjxbL7fYkpFNutoNgt06epxwmx/fauMcpjY/CewOzGCeZsck0wecRKSzk07ALhAtoRtafeK0Y+DKSztn5FexwuQ3YE2ASbO5GL7eWGuYNj1DE8o0t9YoGwkjh1JzhXpq7Qd8OcyuAkeHFuU7OPnbffV4sxCvh2imSywNd5kJhqfpiKY8oxwnlSEibVvt/Q+hO4b2pmjkt8CiPXvsVViibELoEDWsg97EN34BSazLrdeyhiFawnPOgAwP6mFNrFlwsQEABSeYSf68ANJvbIV0OFyleUOtIrctZXVsm9vfL8JbWHpAZZw4DMCtpuMgcK6e43BRY8rIt05qSYFQ2HT6imO2efY7+m+t9onnscu7bcafFEk1/iZCsx4L7LV3+nx3/RN38RP/dRP8R//439kMplEzc/6+jqDgXPW+ff//t9z6tQpHn74YX7/93+fd73rXbztbW+LIur19XX+yl/5K/ytv/W3OHHiBFtbW/ztv/23ecMb3hC9zj7T5T4guptyL/r5Cju0KhhMX9JIUUMyYEJzYcTviIfYGs94eLIT91/P5lSiRcl+dK5EixQGJQwawVY+4yl7gv3p0HldNaClpdnUzNuc2aLg7MY+nZWcH+8y6wouTDc4PThkpBqGWcNC5zy6uU1jFE9++ixrm1MODyomJw7Yn5cUw5b62pDq1MwFVBRgraHTknq3otxcxBxXatKiD/K+CUYd2dWC7OTcERRGUlTOSy0twrdF1yq3ovZzrFAG0zowtTirWf9DFQGRqi2jS5bdV0raiX8WHjSYgUEdSvREYyVMHzeoQ0V1XVDtWJo1x+gEgCRyEVf+s9MSXVRUuxqdC2QnsVJG77FmPWN02CHbFps5obawUK/LqB+KJpfQHzz5YqQDMLpkyRsMnIkLiGa1mKNstb+lrvulm7ytT1Wy5AoNRydoz8gIaVFVF7VDNgCCJIu80AJCgtJKewDTT9bMlbvOPEEPMTO6q8eGbXggHMw1YZ6T9B5nQRdkRbx/4cXPS7GLgilsSaPkwUzlwgnYNhyQAAjrWQDb4zRTGuRCumcz8PdhYMnt3vdP6/PBuZhKASiJHixZErf5BFQagSl6E5kILExg2LxQWvi8ZEtsRusQj/Uu9raV0ZwpMhOZFltYCPn7UuZGEIXoVnt9VTTNWczA9s889NXUtBa8DFf6lTueqEm6ZUmBkOi/r7JBq/vf3OwFywPvMac8DhwlTNWRfW8Fyv4PLj/0Qz8EwJd8yZcsbf+xH/sx3vGOdwCO7fnWb/1Wrly5wrlz5/iGb/gG/v7f//tL+3/P93wPWZbxdV/3dcznc770S7+UH//xH39endGLVe4Dohe7xFHUf09frmRMTouNK3Q/IGQurkfIdxVKdiBp6px2oJhkNX9wcI5Cai4v1nnL5icYyZqZKciFJhc1GsmB7t0g18oFUlim7brTDmwXVA+6oFnjQU3TZXRGYqRgnDktUCYMl+ZrrBULfu/ZB3nVuat0RmJbFzNobX2ONoLZ3oD1E4fYk3OUMhjrzG5tq8hzjZoquqFCZpauVW5yKw0cZFFEqx9ckOHAjmklw0ntAjRaQWck+4cVa+MFxq9MKZzJTSpH26uTC6cvWms5PC858WEHPtoRdCMfhDG3/WQwcjkIdGEcA5FZaCT5gWD/VYbhBRfksRv6+cYDoaC7MMrFOrJKoUvB4A8bbK5ohzLu205y8oPWxR4KHjcyATLQm8Wsm2OM7LctJfjEuTkHs6pVPg6SZ3msn6RsYAiCJkf0YKiPgJ2wMemi3guRA3gJhI5QNoIhm2pBgjdX6N/SgQyRO7pEaAGDDrHC6qRgCHvUm2x1BRtd6NPi64gRoZX3hNMCioSuUaYHcaEYgfV6o/gswsStRUxXEu5JzoLoyjrNjBGIRvbBEoNbur+/oPOKDK9IzF7JABDi9ERPLtH/bEOOtWDGFO57jO0TLtCLgS3CLxg8GJUu5pDz9HM6MD13+qeoXQqALLBwPhZTEGNbSy9ED5q0oGfyiZgRuGOTxxLb0qcIQdjISsfhMX2eK8DEtamvJ3gC3owxOrISSOtN/r1dZiiCr+PB1HGgTAh7T9bNt1WOexfupo472f02KKV3vvOdvPOd77zlPlVV8f3f//18//d//51dwItU7muI7kE5DtDYY16SIyVdfTxf/cL2Ytow4QB54QIvHnQlhdRIYRhmNa1VXGnXOdADWqs4MAOutOtIYVFY1rI5jVbszyvGr9il2bAMLkvq50ZMm4Ibl9Y4N96nM5JZV7BdD+mMpDGKhc44bEtObx5wfTpi2pSsnXJAqmkV07qgGDWMy4ZMaTotmc8KB2TmOfODClMZykHrXbDdxCVzjdTQNQqRGfKqYzEtMFcrhr9fURUOeTRaoYShLF06kLZTdHsloz8ooJOYnZKuzlDKYFuJ1RK1ENFU1g2gWbfooXMVNpXBDDQi1271nBlE7iePhUQtYHDJR9Te9I8uiJe9h5auiMHvuoHA5R+TLM4OltzsbSboRhmByhLWXdNSqoYEKJk86Su4Z+9yqLl4L8LSm20SIJK61IdOZDOvNQmAywu0o/5I9vcVNW0JgJeZQTcO3JlWxpAHcUII11Al9hQtorh7CYCkgMe/MJH9CfGAvPll9QWLUa9Xy8o7F4Ca00V5D7XUhJMwKiLRTAkDdAI5U65tg8u4dfWIRh4Ni2Hxbua+njB5h4jex0y2EegED7Do0eQARzTBhTrLRB8ETshsExZG9vcQ7w96ZieERgismAV8Kg/HPrlz6nHXM01WILrebA0JkxTu07cLPplvGp8q3KctTNQ6xQCRKyx4OMauHhsE1IGBIjn+OH1PKtBa+S24xsdrDNu9V+utPsv19J8j3m3h8j5DjNH9bPf3rtwHRPeorGjT4rZYjrN7Hzeuh0lt1W4eDyIOQt3QeWydHh7y7OEGlWqZdQUb+ZxDXTGUzstJW8muHtLaDIUhF5r9boC2krrJOPzkBsWucy8XJ2oOFyVy7sTZhXIC7E9cP8mZwQGF1NQ64+psTN1lziTVZghh2b2wTpFr5hcmnN3cd9dvBc087wP3+YFjeOYQEzQoYcULZA/OMHsFCGjnGUwz7EbL7Lwhl4ZZk7O3M6Q1isW8iG75Ythx+KoWcahg3C2BxurpAj2wdJUgP7QukWswjVjhVs6ehctKjcoN+aB1E9pYMz/rJo124gZntXDAQdU9aAneaMIDlnYMi5MZovPPURL1RmqhEa2h2O8jb8f4QeH5+mKSXFXCOjYqmLOWXLiT/rKaz8rVb3vX/eAivTohJ48oFTBbr+8xWrr0KgnzEZiECJziROkmvqWFpFqdzJLjSCYQr0mK1xeASDADdf6Zm5UXLmmHSDtYIhAIbMmSYDuZiAHPXrj7MIVx3mWHamlys4VBDwxmpN3+0GeK9/ceYhchAeWOiS7ysgdKy2MEcVvqQk9u3fEhYjYOBItW9N99G8V4Spl1rFxImutN00JZZGZQhXbvZCd6Eb4X34tOYjvp+lcQcwcTnW9b4QGbS3FCAuhs/z5L37ekB1Bp+AArlgXSwh4FQuHZJAArBslcBUEpgl8FPysgaAn8yKPg6GafJRCUXHda+vNxv7wMy32T2R9FCQP1KtWZvvR2Zd+kWP9SqlpwYjRloTOe/fRJRq9oqFRHKTtyoZmoOdpKDkyFsdK73btRqLXS5QWTztU2RHE2rWJxo+TR1z7HYVswzhuuTCdURctc5xy2Ja9av4bEcnG2zm49YN7kTKcl2eaC/f1BdKe9tj92CVdbiRp0GO/VM9ycExKBmlahSkdLmN0CTs9BQDH0bJAR0ElOvuJGD6CmOWyCbhQzSqyBYtDSKYvYztCbbsBv5xnFxYJm0yDnkmaNaBIxCvI9gR5AlzmhqSwNupXIzNA1ClMrNwnklsUZF3k331PIGopDnIt95gZ/6cGO8ROuqoPw2rnhFwearpLIQ41sNLJukW2O8BnstUrAT9T1EM0YsR/4vyHLeARR0E88hJhGyaQMMf2HTUBLNM/6ukN+tchWeBMKPjZNcP8+AiyAqB/xndR2MtYlZLhw26O7sF/av20ywXv2KQiibag/6NFEaCPRnzsuPEIKC19t2CyXzxv0PjY9b+rlJnCBCZPrthmI3AeY1A6o2cIgOhnF4fHdTc14iaYJk7RbaM7U1T9NPhu2BS+0IlFmJ8cJCaLQ2EY5XZCy0bSZhhgA/P34L62Iz1O2Aj3SPSLRfljyrJCQzhRkTRCnCyw2CXxJNKlZjGsbb25NlQNBm5YSdtEEl1xn/C2wbAFsRP3OMQvNFW1P3HZkP46W49j8tL8ed8hNLQA3P+ael8/gqf5PLi95hujixYu8/e1v58SJEwyHQ974xjfywQ9+MP5ureU7vuM7eOCBBxgMBnzJl3wJH/nIR5bquOcZde8A/d/UdLbagVfrTCfCm9QnOvj01S02ijmiE3zsGachmnbOVVL7QXNDzZAJHbXdjZh2JRvlgs3xjPZEx+xBl4U9u1xgBpq9hfMU+NTeJucnu+xeXkNiubEYAjDVBYXSPL52g/kiRwgYVC1mv+Dh1z+HNpLmqqtDlpos18y2B4xPzJDS0jQZxrMAUhlsoxCT1t+XS9PRTHMwgtHWDCFg93DAdFYyPOOC/xTDhrzoKAfuOJVp9DmndWoPnNJY1c79OVs4c1e96Sb9wVUXQ0i2AjWVbuAOQmErkMr2QSPDKrkw6KGhG0OzBu1IkE3dpJzNXXqPbGFRtfte7Wia9YxiX1PsNKjakB92oC3tiSHzU0WMd9SvqN0zVi3RjT4++wT8qAaEdsyUbJIV9UqeKCC6aaeTvU3A01L/86AoapAsLkaQtMhSO0bIs2rHmZ6wHnz4NBdLZrLg4t4ui2vSiUkkjI6NLvUcYcKWFgxL71UCmOzKij4CORG9Fp1ZTSx5ULln7p9HiI80d+Yz4U2GUWhs6fVZmYnfI3OUvLCBVUlZ4BBpGhwwDYA9Lo4y4wCPJeZcI4CizEawEZmUcKveW9J6AblN2CP3v3QODYU3wwXwJ13MMFHqaOa03qyGby/ntNAD0BB1fInhE+7erY95FPPQpQu8lBU6ZkyNrJJI+v4qGPLbUrbnZgxQDLgY+kRq6krYnmgiSx9cUo6Y0uL29POZQyj3TWb3rrykAdHOzg5f8AVfQJ7n/Jf/8l/4gz/4A777u7+bjY2NuM8//af/lH/2z/4ZP/ADP8Bv//Zvc/bsWb7sy76Mg4ODuM+LklH3XvWf1ZWMXXn/7NHf0+PEpYpR5mbEE6f3OVvtc6I4RHtGaEPNGEqXfwxc+g4lDA8PthlmDY1WZNsZxY50Zp9DUFPFosnYX1TsXhtjEKydPmSgWjJhmOucTBjW8gXPzdYYVC1SGZpORQq/6VSMa2KNM7cI71ZtjBNgd9cGUDs3+zRruJp7kbQfwMuQ1FXAZLygyLXTDbXKpfRI0jwI5QfB3OU/C6YlNXNu992wD6bYDSGbgWh9BGHbi3mFNE6cHVIiDDSilqipF0h7gbv04uhsYam2DaNLHaqx6ErQTCTdQKAL4cTUU9ffbKFoxxld5VzuI/BNdD/aa4fS3GShDUJcqoBxpcaJcMOk6EGNyRy74SrsWQthibqTmO/qZkXiGIR0Igtd0wMM4aM8i1R4jPtrM9NHiFbWRTC2aQfu2ZsYV0gufwd6nVRawoSa2KojEbCyEInmMnqgFM5/hKmNLJffJRFYx3QUJMd3ojd/rwK1wJqEv8G8KEhE132FQXDcX5eIk37UFUl6Lzrp+7wXTVstvAbOx33y1ySEM5VZ48A+wiKDODrrQwbYzAvRwzXkXjCeOTG28HnpbACCoUiOpGSJQvw0/pGwvXnxZszLKvBJAP6SqSxsThihW2p9CHUu9/mbA5ybaIlYBT8r/e0zXew9+twvL22T2T/5J/+E8+fP82M/9mNx26OPPhr/t9byvd/7vfy9v/f3+HN/7s8B8G/+zb/hzJkz/NRP/RR//a//9XueUXfV5u82Pv8xPZCxycqaSPsv1ZPWd8yLllgFUDPB/3j/GxAWdveHjB6sudpM+LzJUxTCiawlhnU143o34Vy+y8LkTLuSRrvcYjEOT+WYh3xPsvj0hObsHJTlxnxI0yn22gE3piP264onNq9jrODCzgaboznTaUm7W3Lq8RsIYdneGzvBshGYWtG2Ejl2GezbVlEUHc1AI6cqxqix2umNNp8R1E8AtULWguysd82XBukHpcYLXmQyGAJ99nW/SuuGbpAvDp1nmdAwP+1YlWzmmB5hHSgyWqAb5SYOBKZx5xCdAK2QtYxan6AnElYwuGEpd1p0qeiGkuHljoPzOap2D2p2WjG5YJmfyil3NKYQVFfmdNWIeiPoYYjmKGGJCTtN7lODWKJrNqELif5/oYGc6BEVE7JasRQfJzAUwSQjGuHn3B6ARtNNkiBUhP46zRCDLjJNEcgG8BIiWxu73PHDM5JJ5w392V9z0KwsLc6D8Ps4vYZeeY+W3huLQPTgx9nGesZJ0Lvtg3MbVN5jqxVOsCzx2iUP0grHAEWReAL+YiBL5fpSZIgEznwVWRN83cnvyfO0mUFY2R8neobDWg8y5gpy2+eRE7gEyCmAzJbzxyHAeIbOhDhEApcyBaKo2gE82WuDwMUkkhaZm2i2TtsUaRHSYIXqQbIXvouc3jxo6Vmu8LBCW/qSko6xfbw2aTkpcP+OL/9lpYLlssro3Mty215r98tLtrykGaL3vve9vPnNb+bP//k/z+nTp3nTm97Ej/zIj8Tfn376aS5fvryULbcsS774i784Zsu924y6dV0fSXQXyrFC5zvt/OkgngKrZAEj/ISTjgHp+cPffM89xqLoWM9mnMintFbxVHOKQmiM1xENZcO2HjFRi2hCG+QtZqulfWSBVU4wrBYweE7SbVcUg9YlU/3IhEq1PLC+h7GCD189y2FXcGb9gCprnUCzMOwcOJOabiTFmTld4/JZyUI7L6WEzZGldlF5jSDfqGGegRbsvLFzmeyNm1ykcBGqi7yj05LDeenNWi6mEfTAKAokjcBOc7rNLgaoy+auPXXlWJ16E/TA0q5p9Frn4us0ElOr3n24c4wQBvJDN9GZ0iK0A5DNBJqRS//RDSXV9YZir3HaIQHFrsYUsP9IRn5omJ3JUAuDzRSmEDH+UPjIjjhBGNUDjpC7KjBDabTp0H9k4wFNcIM2LAl3o7ki/A1B/3xfjDmv6L8LH34gZJ6n1O75rQqaNX1U47CKDv01EV3bJon+bP1OgakIZriAFdSKWS+wCoHpUX09S1qUAATNynGJfiiY84S02E7EjPfxXfSeZnGy9nGAHJDybZhqhbxZyGbGtX9o+8ybjFKhuO1BZzShZc4kKyQ+b5xZerZB+I/xIQDCdUsQyvQ53vDgyLOdKWsnVG9GiiY0r5GLTZwZB2oOsxiB2rWbcM4OyviPjeeSucaaYBMLfSD0i9A5/f2mrFhgNY8pNrn3ZY0R8XMsGBIOnAU2R8rlT2Bz5C28ym5VbumFtrTjLau5x0Xco8/98pJmiJ566il+6Id+iG/91m/l7/7dv8sHPvAB3vnOd1KWJd/wDd8Qo2OeOXNm6bgzZ87wqU99Crj7jLrf9V3fxXd+53ce/UH0E8aRdydMNLdTwsseqgyDVnp8OuGs1GsFfeA0RRR+fvjgQdbzOY+V13ikuEEuOhqhGMqG2uQYK7lYbzBULcOs4aHxHovTGXsfOolsHWiYnwE1dxPscNBweWeN5hEXiLGQmtecuMJHb5yhMxJtJFJqyrFLtzEa1uzXFep6gZrUdNdGlA9NaaY5ps4o1mrKsiULg/jIR7X2HjRibGK0ajWXTsAqLI1WLJqcUdVwsJczGNcUhT82DErggJIPHqhnCgqLUZpyT2CU4OCVBjMwdGNBeV0xvCyYPiTRRhDGdOYKOwQaJwqWjSR6YRkXCFHuOtObMKAHMHimQzbGzbXakC2cmLpZd+kLTAF7j2eIDsqhIt+pEcbHdkm8wiL1r0HpBAhZnMDVELOiJ9hgaTwLDEUICCi9O7Ww/YQUXbWFj1cTulvoZ8kE5gIKeqASwEgA6uEgRTTjxA7qQaWwYLWbPOOyPAVmfn8H+FY6etAhWbHym1gBS/T3cEwJ5pzVHGY0jhmKTIkPdhjbWq6Ar1Cf9DGVUpf6kNLCOlAaBc2RAbLRQ1RETzmW60jvIbBmhY3JVpdYmdx9dyErvDmsNF7n459fYIz8czHGa6ACqPVmNlMZsm0VTW+hPRhpJ47PrDMbK4vVkshcgUu5o2XvfRgecSc9i9WD08DqhTZK2aGlskQTJu0joEfMCRiSy+Ys9zet4ybniY2e7Po8oOiWJX0PX0g9d1LCguqF1vEyKB/60Ifu+JjXvva1ZNntQZ2XNCAyxvDmN7+Z97znPQC86U1v4iMf+Qg/9EM/xDd8wzfE/VYz495Ottzn2+fbv/3b+dZv/db4fX9/n/Pnz/sT+pf8bkHRqtmMY+pZutib/x7FhhbWBjWHbclWPuPp+hRvGj7DgXbC5tYqNIJStpzIpxgrKGXH1cXYsSzSIhvHWJTb3iQk4OCwYjJe0ByU7DYV07Zgpx4ghWVvMaDRihPDqZMblB3rgwWXttfRI7dKs8qSKY2pnJAz6IGqvONAWmwnyXNNVbY0aoAQluLEnKbNsGcXjHxy2L2DgQsmN+hTiAhBdLsPJf9URffYHIwTS+uR7gd3cDdVGsihPmORTUZ2KOjGBrmXYSrjVuoL56kTAuRhhIvu7KMGtxPPpF13QMMoQdY4d/rF2QGqtszOKDpvhgzCa+e2bxDGYJSIhMgSUxgW254RAgd6pQb8Al2XRFCRJnoN+0bzlUdBgj4vVjRzBUbE9rm+ohnKe0vFQT30vzRicdqmKRDC3ZAL/LjMEIg8iVFk/Q2ESS1NbBpBrguYuMTyhEYL/6fXGABY0LNAn74jve/am8iUB0iBVWukMxHNVRRBWx/vKQLG9Jy+PaLZO4jVE1PhUvJV75kWvciEa2db9CYqEXKvCRyL0kjH4mgc8AzmUIP3dnPtIYRFezOvKpwAXmYuYjtBUGyStgqmSi2QtXQBRpO2jcloc4NtpNMlZQYrbGSgALpa9c/D643MQrnjfIRsIcF2vWl0iSUMf1M0G4mLBOQkoKgXTSd9JQVCK0P7zcCJTcbhpeu5VblPpvyRlTe+8Y0IIW4rMCSAlJKPf/zjPP7447e1/0saEJ07d47Xvva1S9te85rX8LM/+7OAy5YLjgU6d+5c3Ofq1auRNbrbjLplWd46028CisLX/jeOZ3TuBoUfd0wcmN2/1Wt2OdgecunZLc69xomqZ7pgakpOZIcx/tDMOs+rXGiGWc21ZkKjFXvPrpNZgSnB1sQUF8KC3inZnWcwUzGQ46hseMXGDZ7cORkv6fzWDtemY8DFD8q3Fk6ftO50Q0XRUS+KKIKelAuubZ+ADechlkvn32s6RaYaF8hRSwaFOz7PNYupYm86cIN+2XpxtnGrXnBxcmriBJHPBBpLcT1j6knEJX1MZl3aCwtyvSF7ZkBnJcb0DEp2KN083DndkbCgGzdxdyOoPqHpSokwFj3M0JWiHUlmZyRdBdU2CG0p911kXqFBl4J2s0I1lnwGpkjAcZjjte9iqn/eRvUhXILewyg/4foOdpxLfZiQw+QXWaIAVsLcFOITRZbI/01A0lLqieBlJT2Doewy1rc4BsAzIKrU6HnmdV7ETOsIXIwhP6lHcLJk9qKfJFPwGMBVmDgTj/S4zf8upI+q3UiXkNiblqRyEc6B/tyBQUu9qTxjFEXCmfZpSDxbFNohANWglwkAyYOYcM/hHbZ5YtoKjI7wLBS+nYVZvvcA/gLD588hcWY3q0Vk9WQWAJZFhMCuEkzr+oecO0CzOK3ds6m9q7xw1yGVQXt0qZShM6off0I08MAoggtX4e9FhOjaURxuewrHP+OlknaglQCP4YEvB1ZMmaF+/yM5xo7UsrzfEWCU7nRcBf5Ya0X8u/rbZ6z4Z/GC63iZlN/6rd/i1KlTz7uftZbXv/71d1T3S1pD9AVf8AV87GMfW9r28Y9/nEceeQSAxx57jLNnzy5ly22ahl/7tV+LYOeeZ9RNVypJOVZX9Hz7HFP37dQTNRM+bs30mTW+6DVPIlrBRjHjUFfkQnOlW2dhchrrTGbrak4uNJVs2WlHZFKzVtRsPbJLt9m55KUjJzaWrbuW7EA6U0dh+PS1LQ72BtzYH/HswQa718ecm+wjhWWjWHB+bZdr+2PKcUOWaeaHJYNxzWJWkGeawoMYYwWZNGy+Yoes7KjK1oUIGHSwkE4PBIjdPP4/KFtMoxgOGopBS55pZxqTFqVcPCWAxTmNmWcIaWk3DNSKE79vqLdg+pD1eae8vqDQmNybvpRFdG7eUTPnTaYWbgJTjWPN8inuex1c9mHvkYx2JFzajFpjMsH+w5ITH6kpd92KfO3TDd1AIFtLPtUU+x1CW6rttk8mm+AQYYjswZJXkmcYYr+Iq2uBKR3gsrmbgIwX7sZAf9KvzH2dUvfHL+mRUqAiPTgR9IxEmOj8BJtqXGKX7XwQxQAOvAeaELZnlzLjWJpwWGkc4BLLdS2ZSiIQsNEEmLbBkrki3M/qRBcm7k463Yvx4nkjXP6t4KmVmwgObYiMbUWMom2NcOJmQ3Kv4uj7anHRoAPQCvdQhVDnvYejbaUDgOn9+3APIk+923owYI1AhfAQEMGazBybE8IJREtl4nrvzJQWWTtBtWz9/WfWmfQ8oDWdpLiaOwDuj5fBe3C1fQW911toch+OIPQdt5EUxy6XpF9FLZGwcbsI3nW+naS03nOOJfP50mdF57M6jB8LYMQxO67Ulf494ol2zK29KCXV1r2Qz8ugfPEXfzGvfOUreeSRR5738+ijj/Kn/tSfislmb6e8pBmid7/73bzlLW/hPe95D1/3dV/HBz7wAX74h3+YH/7hHwZACMG3fMu38J73vIcnnniCJ554gve85z0Mh0P+4l/8i8CLnFE3Xc1wDAuUTlovsKyyyemqQHSCBwe7YGGgWmY6Z9cMGGcLALa7MZV0YKS1ymWrzxZoJNO8ZFzWmAf2OdzZoth3QGt4GbqhpD3XuPOVDnR89mMXWOiMjWLOostYdBkb5YJCdcy6nK5TbIxn7M0G8fqKQcv6YMFUFRzOS7bGLtlrmXVkmWGQt0zrArTz4hLCkhWaRllaI2najCpvEVpgjGBQNShpsdav8IXLb5bnHe1AI/czxMSi1zuyqzmydcyJbATGT25Bd9Gua/RQRBZENkkcGL+Sbiv3nMttB47UwumsRs/B7msM1RVJtSMwuaIbuOCFhw8W1OswuQj5bk05cKvm8sYC0Wqmj07cZBtEzSqZ740fo7yoOrp9S47EphKW3m3dbw9gKJhjgqdWFGUHNiMZB9N6bGZ7z68YoDFFbIECEf07IHqWqPfWkslE6QWt0jqTVGCYBC7XWWBRgmZIOdFwNJWkXlmrxQPIVIgbrjd1sV8ymQl7dGXdumcnWklMTIqvO4QNSCJB0/l7D/UYXNqShYzbXfPYPmhkFB8LBwJnKorZnTeb8EDHX2tpCAmMhTLRizIyZ/6+hEq/C3fT6bPxDzoIqtHSna+0keHSQx1Zw+Dejzdri64HIFjHFLn4NaCkA01RZxbaPzzfxIzWX2T/b7R4puA3/A2msNBPV1ig8NtxIOQ4kLPKCKVD9HFMz82Ov1/+aMqv/Mqv3NH+//k//+c72v8lzRB97ud+Lj//8z/PT//0T/P617+ef/SP/hHf+73fy1/6S38p7vNt3/ZtfMu3fAvf+I3fyJvf/GYuXrzI+973PiaTSdzne77ne3jb297G133d1/EFX/AFDIdDfuEXfuHeZNRdeUGOgO1bvV/pb7d6z1ZWKqtiWivhycPTnH58m712gLGCgWz5w8NzTE2JRrKhZsxMSWsVudC0JqM2GQudc6KakUuNeGzK9LzFx3WkPdu4+v3JTm8ckAmDxGKsZKOaUyhNZyQSy7XZmDOb+2TKoFvF2TN7ZMrw8NYOShiqrENJw1Y1c0EeD0aMBjVSWA72B9AJsnGLlBbdOvtQpyWzecGizcnWa+o2Q0mLNoLDwyq6AYO7TnU9x5ZOvyRzzeiiYO9xSbkN3bnGeeA0ymkbpIWRRpxxSWBVTUzUKhtQC0G7ZrCZy322OAnThw3NBlQ3AAN6pJk9YLj0BYrFyZzZaafF2H2VIFtAOxQsTg3I5pp8rwUDi7Mj6jXJ7IzL+m4yb/ryzzONMRSed+gjaYC6dL4jOUZ2gXVI6rEusrWw9Hqe9DyWRCTsPjE1SJJaJbASS8xM+Jt6qFkflC8Avk7SLjI3mRYONNjMa3XyPmeZiJot54Xo4hcZBx5KF6TwyPu1pNlJwY6f3A1O8BycEKQHNHimSIuYDgRw5xL4vFvCt4UXQfvAhLYV0VV/qYSkr4HJSto6gDEb9EwL6dijIPLOLaLwep00MGhgpCwu9YbX8qTjh26UAyUx7IRnT5TxIKK/Tqud6VDWEjFXfbNp4WJOtYJsP3GhX0hMGQBmH2RReGYmeJiFwKbODd+BPFXoeL50xShSD760JOayZXaI+HHA2i3QYhDG8PMKS3OzssoWHbf9Vsccd+ztbH8xirX35vNyKb/6q7/6vPt84zd+413V/ZIGRABf8zVfw+///u+zWCz46Ec/yl/7a39t6XchBN/xHd/BpUuXWCwW/Nqv/doRu2HIqHvjxg1msxm/8Au/0Auk77SsrmLgCCiCm4OiHsisrHhTgBMAT6SJk48faEI+JCyY0nBlNuZ1Jy6xns+5UY9prXRxgtotTqhDLrabnMwOyIV2+cykS/HRGMXTu1tM64L890ZMPimcANNYmGbIzFH7MtMsuowLh+vsNRUAZdaxMx+yVc4oVUdnJIOsJVeabpYxyBsWtfNMa41yYGg869vCCLRxHmX2IIfCUJQtbadc9OrMknl9x6LOnaao9FGppUUqE9khJZ02qbruNBBCgJ7ltGMHXtqJG0QRIHJDtuvyrxWjxulHbB+PSXbQrRmaUxo2GsyJBlMFX3jB7Lxm73Ud239MO/G1j2Z89c2C/MCZ3tY+ackPrRNS5wLZGPZeUaGHGflBy+hyx/CK7jUvYUQPbINIwEqYgPxvKVgKJjXp4wkF80eIehw+ciUGacoMRQbK96cw+ePNb3GwTMHn6shh6cGTCOYs4d3QA8vhdS1B62QFDNyFCWl9VGZfXerSHuqXvSnmyCsX9/OsRKqPCttMcm8WpyUSNsnNlgCorH/nQvqJADJZSKQXXZOyYGlzFP1DilotDzCFwUW8Fp55sh4wyOQd9yBJZsa5toc4QwEcheZRntXQ/UWkE7f1IGZpFSVALqQPLAo2dz+pmXsP8j1Ft+5iTYmDDHJLd8pp+UznzHq6U+hO+kCPznymQugCcAmVQ2BIP6iJBMQ5tjIB1vHi7dH2FO6B9ZGnjwFDK2as23GPvxn4uR23+mR9+hkFP8cWe48+L5PytV/7tfzO7/zOTX//pm/6Jv7dv/t3d1X3Sx4QvaTLKihaWYkd2TdZTMdjbL9taWJcAVE9S9BHGI6L89LR1w9Vu5zIXdZ5KSyjrKY1GZVsqUTLhnK/zUzJRC7Y7yrODfZ4bGObelHQjqHe6uP1qFrANReLKCs1OzsjOi0pVUchO/brimHekHvAU2YdhdRc2x9z/uHrZNLFNMmkQRuXO+1ENcMg6KxEt5Jx6bzI1EZDNmgp8o7FvCDLNGunD5nOS6phg1SGatBQNw7IzOs8MlfGuIz37SJzbbPu8qbJuaS6BofnoZ14d2EAC91Gh7WCes/Vj+xzujUbBj3SqPUGmRvKUYOYtLTrFlMa5KTBKsuZ90tGFyRyphhcdsBjdlYwuuKiMU8utEw+vWB6JqPeKrBSYAqFXGiyaYsuxVJW+jgXWJZMZcJ7l4WYVAEYRXObN23IzvcTD5JEYHYCKPCr9BTMhL4kvHYleEjZIIaF6Dp9hB1K+3o4j/GVdiLeUBD5hv1MKxEBMCwk1oODEHU51GvqhDaTDhzIQsegf/GdWNIc2Xi/MYdXsq+L7+PMQE5XJSMISdNgWB8GYunePKuRtqsw9GDE4oBMALCddJN+mhg1gEHvxReYtWCeEsI6FtOnNwli7+gmH86DY3/idWTGpZuRCQAKj8ZHiI9mtuD63gkHgnx766FrGz0IJ7DYcYdYOB2h8G1rtMQkAMwEc6AHLO76LLpeUWQE3Y8POJmaOI+1VKXmspQdCv/jxjmZxB0KZrRbRZG+E6bnuHLspSbb49/75rUXpfzVv/pX+cqv/Eo+/vGPH/ntm7/5m/m3//bf8ou/+It3Vfd9QHQ3Raz8f2RFkwg+b4LCg1lhSTAbtvtPzxSlv9ml/YUFdajQRvKB7UfIheZEeciVxRo7zYhcdjRWYRC0NosaolxocqFZyxY0WjGZzGlPdqgFlHuWZiIodgWjTwuawwIhLCe3Drl+Y8KsLeis5FUb13hs7QbXFmNmXUGuNFJYhlVDJgyF1GxOHCNUqg5tnWC6kJqPP3uGydqcXGoyP9N3tTOHIVwQtTzTzHcrtJGsDxdoIxlWDRL3+2hY03aO8tdGUn2soj7paHq9yBBGMH3IAQYzNM5zSAvnPlxqiqKjXK/RPjbL4oSlXbPYSqMGnWOgfAweVWjHEo00Kjdk2xnTMwK1gGwqmFwwDK5CN4D5CUm5a5ifzJCNF27vd4yudlgJ2589ZnGydKBzYSMr5fQ9IIOQ2rrvVkCM6Gt78GwyMJ7FieyGj3AtEtF0ZJasm+itD3gYxdSAKWwv/M3dpBKzlgdz2Eo/71NshA2uX0Ygp3w9AdzV0gmHg34j5LlaMZ0E7ywRYxD5+9YC06m4KIhsSvLeub/05iYvFBYr75lI2KKQn6u/AM9epBNxnWh/0iICeO3BDRbHKsVI3/2z6JEZvXZIWvAskGtP0ae98L+72D9gO4npFKaVmEb5+D/ObKUb5YCKDRG5XaiLOH7YJPq6b56QBy+E3cAKjA8QGWMIrXcxyGPwqgr34jRagRUSS+wVPvK7UAkzZASMdc8+iqNNGto1msvomZ/wNwChEGxRBQcLaVHSxKj2sbpjgFFaZzjlrcpxQ/1x+3zGS8oAvpDPy6R893d/N1/91V/Nl33Zl3Hx4sW4/Z3vfCc//uM/zi/+4i/yRV/0RXdV931AdLflCAha+b4yAB85PAVIdnn/JXHhyrLjuH6rppL9ecmF3Q0+Nj2DsU7T85rJJW60E4yVTKQTUZ/J9qlEy54espnP2G5GNEaxqHOqixmqhsWmG9RMDtPzlurpglHVMP3VU2Sl5uyozxM360ouHa7RWcccVapjo5qjpBvQlbQx3cZ6scBYwU49ILtQsT5YkElDaxTrkzmjNScCL4qOtlMYrykZVg1SWJe7TFgOFyV55iImN3XmEsluV7RjMGdqrAF1PUfNXGM1m2H0t1ifxd4aSVl0jAc1VeHMcHpo0CODGnRkhSbLNEJajBaozFCcmAMW3Un0yZb5OQdmBpdxAmjtksa2Y2jWpAvMuFFSHFiyWUt5rWb/0YL1TyzYe1wxPyGZPiAj8ME6hkp0HiAFnOMn1GDSC0lfRbBIePbGBDB0Exq81xsJzwZ5lBQ8fgQuqacImp7QB8MEeEwn9gDd5eDy281yZxWpPif2X19ZYZzHVQAIjVyOXeQnU6sFtvV5tFJ9VZaCJn8+gdOIedd54e9VRJOVB48hLUnw7gqXFRYqQdsTGTF3z+miZekdDg9Mi57Rq2Wf5iPcU2BR4jZ3zsCiWSNcItzgzu4Zl9jWnXAOCP6+zUosLpPoiITsWSRrhDu2Vn5B5t5xqxwrZDPvfaiInnQunlPwKHOsVHQ1NyyJkK3tE8hCAg5l3yFjyo8s9LsVQJuMgceKqQPrmBwXxpcjXl4BOB3HCN3EdCZu8bmT8plkh1LjxAv5vJzKv/pX/4rP+ZzP4a1vfSvXr1/n3e9+Nz/6oz/KL/zCL/DFX/zFd13vS9rL7GVXwltj6WPD+O2rq+BjkU2yybLyEt6kw5rcnWc+dUroJ3dO8dj6tvt/ehqAg4FL27Grh5zK9l0qDlywxoFqeMXkOrvzAddOD1G1oqmWz6cr0EZQn7CIT4wYP1y7gI5GcnpwyBOb18iEy3MkhWWjXNAZyUJntEay35RslA7sXJ2NuXhpi7XX7ThmRrlEsOCo905LmiaL30MMHW1cLKO9WRUHYW3cyr45LMhvZJjMead1lwcIC4NrsDgJdqCjGUIufOoICfKkRQmDFoJy3GAGnfNwyzQh6GMzy2GWUZw5RGXOxd9+aA0rID+A0SX3YI0SlHvObCW1oN4QrD3TITvjvdwE3SjHKth+7YBz/+uQ628co2rIpi7RbEzTEiZQA2R931kK1BjMLjjWRxiB6NykZvIeLN10oLO4SSm6QfuoyshoalrWDvkvxsepKc1ywlVhXQTtVkQgEUFGSBwqbTS9WC1jwExrZYzqTGIyQ3vRcnD3j1SXu54YGTtMvJZesJy0C41ElMYnEnb33QMpsfTeRhOXwJl2vGkrYJ2lhQwJaIU+4WrAMGa57lWNmM0da4lx/THE85GF7qNpC3oXef9cRIjwHJCZWX7Q0ZMMQPTxiOjkkjjcKjCljSL8br1DNBJ1KOk2PAhqJZQ+KXHKbnmg6YCRXBblWhFZwzRGUQQ0HpBHT7SlBuVo8be5mkVeiGUwtHSIWI4RFLSGQnCsgPh2PMxW90/LH2m2+JU+edd1vIyKlJKf+Zmf4au/+qt57Wtfy3Q65b3vfS9/+k//6RdU731AdKdFrPx/Jx3puP1XGKD4v6BPj7ByfHDLTn9TFysQlhvKcmZ0wMWDdQZ5y+nhIR+ZPcgfHz3DRM5ZmJx1NSMXJa3NMFYyUC0bgzlXS8P8jMRstlBLTn5AsfuEoN3QNG2GeHSG+NgIg+CTV06yNl7w2ZvPcbV2Hn2FV+5K3KrsyuGEjWrO/qJirajZrSsuPnmK4QOHnBhNyaTxgmgLxpCFeEJWoBsJQ1CDDmuh0Yqy6Ni9PqYYNxgjqBcFphPIvYx2q0OtN+gLQwbXhfMSq10KEkLE3lkW55AgelXSTdaZMnS4BLKBfZodlLCfg7TMdoYMN2fUi5wzHzM+ZpGb/GanFfOTDticff+UwTjn8MGcYrclm7ZMzxbIRrP3hlFclXfjnNFlzfarFKMrzmvORQr2WCjz3SCYyTwwSiOTp2Up8q+kTwSbmM5Sc5HN6WfyCI5wAESL3u076EOCnscn+gzXIoyPWxPBq5t805xVIWJxuAjrrxErYsLUEKsokCFYlrPS01+P8O7vFtsnWvXHhZg+0YwY2KOpT4haS7+IgGhH827nS++nsCB7pidsgpX/g7Yq6IbaJAp1zAO2cg/g03IE/RIuOWpguNJjbJis/bPIjWOPiLjQ1+m/hG7gwZPxZs+Ya8yzcGrhTJXd2AFbMzDRTNit6x68hPosyFCfIJoZTWhff/oY5FIIykntHCd0Gn6BCIRSLHqkJOzj0mYPioRwprHVdB0p2Hk+kLP6+5EgjTc55nbqul9evPJ93/d98f8v+ZIv4dd//df5iq/4Cj7ykY/wkY98JP72zne+847rvg+I7qYsDZzJ/2kJg9vNAFN42Y9oEpaZpThur5x7aUBOjtOt5KntEzHp6UYxY6xqaptTCmcaav1sqRGsZXMAHhnv8NTuedQjU7pGMfxwgS5h8inYfrPzDrt4aYtCuFhH1kge29imM4rOKIwQGMcvAGCsYFHntEUTtUOtUTAwjKuGwuuNDpoSISzjsnFRsDONPsih0s5s1iqsFexvj5hszlBVR+4933QjoVYUe5KuE+g8p5gLTAHlrgsy2Y1AeG8Xud5gdguoDNW6Y6zm3o1fCovR0nm1GRnjrGQzAUaiO4Fed2aK6VnJ4JqlG0iyuQuIaAoYPGtpTpQYBfnUgaVuUrDYFNQnqqjZEQb2HitdbKQWVBNnNfcYVb+QDmDIPeukDwhfV2BVrGcnTE8cxAjK4di0q4XvHgABDpB0CRvif7etn4it6282t16DE2Y026enyIIpzrMQnnlKO7FUBtOomMZBFKYHLqslgBv/o+1cCok0HUesOrjBp0BBuPsTWmBKz42KdB9fr4/iHdkhz6qIEIRy5ZLigiT8mLSj28H2D3HVNV8QXe1FIuR2IFAg8MlXdc+u2MCqLJkfj7kwenbIJB5wNoRhsCEsA44l7YSLW2VxYQ1a4b3qXCcQ47a/pgjOBDbQ3kG7ZnomyrF9UB+U0fX+poDhWEboKNsTtgczWAqUj/v/VsAoZYnuZZTplJX6jJZ7oQF6GYG57/me71n6fu7cOT70oQ8t5TkTQtwHRC+JclMARL8iWsI8xxwQXqhjBJxxd5MmjaTXhdSK6V7FcG1B2ykeGWxTShcJuiUjFx0HumJhcxSWoWpYmJydZsjwiT02RzOe++ADdEPIFm5i3zxzwLiowUK+D3OdMxzWnKn22W0HfPT6ac6v79J54FMpl/vjwc1d9hdVZIL2ZgPOPbjNMG+iXf/6/pgHN3epVMfaYOEGtErHCNciM044fZixGOZIaWlb5RiTvdylBpEZ42cEe6cM1TU4eIVBthJduhUwgOmUG5jXWuetJGzUKWWqpelUr13SgvGoRgjL2ifcSnp2TjJfK1Glxgq48Qb3bNY+KWhHznxmFKiFpph1mFwiWkM3LDA5zM7m6JJoEmtHIDQUB7jJyRLNXGlCV4vbX1cseaQFlsiGvFY22T+CAXzUYUFIKooVvdDXT9jWszRLwlNBzKPlGCWbACB6rywrVpK6eiAUgBFEzzHrGRE9d4L3GAsoALK4Akj6eZwM3aQuMuP+BhNbeKksy0lSV9KSAC5Egm+DJeAocGyNJkE6HDl+6bfQ/r4O0SYLIMtRN/r40JLryUwvqg7XFZgi3w4hDYaQvv2sB2/hvU9An2tL2V9baFcfsdp2AtH4IIsWmjUXSkB4pizeqgfY6oZCnzaxfy2lt7DOAy6yRiQMSwweKcAIdEjl4fvNLU08xwIk+uStgoQVWgZGz1eC2exI9S93dudW7XkndbxMytNPP/2i1X1fVP0ilqWFgu0HS/ej3yyOfuIPS5X1x8ZBODUVWBxIal0leeZWZQuTM5ELcqExCA7MgKGsGcmaoayRXvvzitE1To4PGWQtw8tQnzTRXPPgZI/T1SH5sKWdwHY9ZG2w4GN7p7m6GHNiNKVQmtPVIcOsZaGzqCeaNQVF1tFoxcnxIScHzvX/xmyExNIsMud5pjSLNkdJQzF07vdZobFaorVErDcoZZiMFgwHDV2nsOstCOcpM7pikMrQjRwIaCbQrlnUXPhgdpqyalC5S/mhjaTpFMYI5nWO7qRz1ReW8ahm99qY9c0Z22/uWJzwbT9XZEXHwRtrunM13ciw+zrD4qQzmXQDQb2RszhVIjvL4kyF7AzFAYwutTEAoy5daAPpzW7gGKZQZJOAIg+GrHL7BGF13yeSScqD5MBcHBnjU1NMcBcPOg7jghPGlbNnFELaCtGKfvL1dYu2Hz6CySmEAgjfRe4qdPF0kolb2WUhs0nMdNCn3hD0+ccSsOa0KfTicJK6Vq4pMjLCYgvr35GkjWKj+XfKv4hBfO3qFemfpXc1JWnj9/Tlj1ql9DqPW9VbL/gXMa1IuCfbyX78iG3lN6RaqHANbWJW09IFwPSCdVULuqF7N5AWM9QOTLc+r1nmTIt64JwQhAo539LGDawQMZp5CphCvCkZYxGRTNzPAz6Wfl51pXf/Z0ovgaFV4fSxGe+P+b3/fm8QwarG6X55eZX7gOhelvAu3Gy1sfrO3Wy3lQE1jp3H7J9GGw5/N04e+kHDcL0ZMzMllWw5k+0xknU0mV3vJlTCsTnb7YgvPPUUT109SVfBxkcl2cySLSwXD9aZ5At0K2nOuPhDp4eHfPr6FpcPJpwdHjDMGkZZzTirueqTvBZSkylN6dN6VFlHoTTTpmRz4OIRPXxmO4Kn8HdYNZHWLoYNADI3WKBQ2qULUIZy3DgvsBymZyR6nlFvWapLClNYv5omBo9T3lVfSEsXJh4rKHKN6VyAyGHlgkkyU+xcniAGHfmUaCLqmozhZEFWdoiNBrPeMbooWH/KUO5ZVGM4OJ+xOFlw+ICiGyjKPcP11xWxD1gJuvAskfFgxydxtd78Fp6rrty2AIRMzDPWs0RLmda9+cMKYlwhk9ul/hSkM0HnEtN5gJtcQ4TqRGMUIwt7cCECO5UyJqG/endql7vKMTumUzEwZpy4rXCRkQNY8KAuhEeI1wNLCV+jdgYiUxJjeAGicSayVa3VEsAJYFKsTPL+npYWL6HRVtvQHxPE8P17avuggxYHAkNMo+D9pSwi19GcFCoTwfTmtT/CA7+l8wVhdVw80beV9Z5kwVxXS9/G+Bxzrg+Zwpl6A/DTI+2YvpHzMpSdcMCoTATex5Rlc5UXy1v3fzFssUaQVZ03/YWHxTKQT5/Jcf/7BpfKmTyddsg3p+i9yG7mUXazchwoelnGDrL36PMyKN/3fd/HYrG47f3/xb/4FxwcHDz/jr7cB0QvUrnt9+omQAd43k4aQZKfENqTHSgXtHCtWrA5mPHxvVNcatZ5uj7FzJQMpQuEKLGcy3eRwrCezTlZHPKfnn0d7TwD6eLpmEygaot87xYf3T1DUXX8sdd8ijef/DSf3t9gUDWcnbh0HpNswa986glmXcHWYEZnJYXSTCoX52fR5Yyzhs5IGu1m9Up1nBvtUyi3ipzuDDisC6rMma6Cp1eWacajBevDBbMm5+BgwPygYrFbYWpFdQP2Xu+And5qnadXB6YyMeJunmuUMtEzReUG3Sm6IFCVMK4apouC5sKIM++XlJdyVKGZnXXJXK0A0wkWswLTScw8w7aS+Rk4OC+ptjtuvDpDtqAL70EloV6TtGuQ+yDdqnFeZVaCrgTNRGIKaCbQVQ4sWeX+j8yRIGqVYl4y3z+MN08FwXV0gQ8TfNJfQhyi0L+sZ3Cs8h5gFgc+gku6ES7wZ2V6nYwVS55V/UKAPl6RTNJxSAeKrE+eGqJWO71UAjR8/J1g4knFxX2+NrsUE6mPaJ3sK+m9z1JWSeDMfFmaHFb0MYT8PQTgFKtMqCBhk/qTn2IRx230lYW4TgIIucA84AlmspBGxCZMWlqcYNsusUH4xUMafDFqn4K43GukHOC2PZvln6lQ1unEwj0AYtRGc54MQDGYrvwkaq13+7f4mEc2JnftakVedb13WDL5Lnl6pWNgymwKYiJX6eMLhdhDKfi5GZBZBWtwlEk6rqwmbr2b8hkFVv8XAaJ3v/vddwRwvu3bvo1r167d9v73NUQvtKx2pLu1Raer3pusoGz6VVifCNL9MHqtc7U/Ozngk1dOIrHM2oJxUTNWDgRNTcmpbJ8DBow8MNrTQ3KhGcqGLzj7NL9fnuO5Cw+6U+y5gVd2lp35kNPrriM+WO6yVi4YjlqGWUtnJbkw/IkHP831ekQhNVXWIbEMspbd+YCz4wMao7gyndB2iuuzEQ9N9ljoPLrsnzqzx9nxATu1y06cZZqN0Zxc6WjigiAWtQjhVt66AEpDfqWgPenMaKITTD6hOHglyEEThdgARd7RkLl4QosMOV6gG4mSxkXhLSxqATZzpotmSzO8pMgPJK3KsUMdWQS1p5x3WHh+0pnEuqFw8Yfmho0n5+w/PqArXdBF7eMFmdKBn3LPYgo/CXc493XtwY8XYpvMP3OfmD0yItFVX/hM9z3wCSYu672lgN4DKgRPTMS2Ftn3PUuM3Bzj+QQzWNLnQ+qJYGoSEQgl9aTgJgDQMLEnXmEi65OX9i7ZfccX0gE1qQzGKqep8cLxyAZ5EBCTlPoQCyGlCEkoh+iW7+MGBcBzhFWy/YuYAsHViN/xWgMICQAqWbhEzZIR8X5XRdcOdPkwCNKDh8A8hXoMbsb3932cmNhKZ/py+7tUHVa6hYLofN3KOg2ZFsiZwnimyGy00CrIDBaBsDZ5vsKBV5/FHvDbvehZWapBQ6dd/rojQuOgkYo33D/j2AD0z9zFQQoBGE10tb/dsqoRSrVEt3LDT/8eV26mO3pZskwvk2Kt5Uu/9EvJstuDLvP5/I7qvw+I7qbYlb8r/x+h229VxyrtnZZj3rfUdJa+d02b8fiJG1ybjZHSMshbRnkTYw4tfNS+wpvINBKF4YF8h109pLWKTGr+5Kln+Hn9oKPVc0G9JsnnFisNudR85LmzPDG5xms2rvBodYPf2n2MT+yc5MEH9mjqjEp1SGHJhKGzkkwaDuYu91ndZZxb26fK/LVZQWdkTBALziTWaUXbKbbGM4Z5Q2tUHMCsFQwmNfO9inJ9QfvpMbPzBnU9Z3AF2hOuPYp92Hyyo1nLWOQZeiTRph8MLQ5YleOGTBo2Tky5sT9ycWAawfScizRstIChRljF4ApkM8X8QaDSWGkpdwTd0AGb7VfnWAH1BlQ7wTQhfXwgZ4bQJR5kQrsG8gbkhwa1UHRD53VmcqJbuw6WNmm9qzwxhk50n2/pgwgK7wKucCLhjGg6E51wEYK915UNEYSjiNeBpyDyTsF9SO0R+mDo4yKz2I44I0dXeQE0bkcRIxg7kCYEDggVNoKtoI2JYum+yijSDtdpOhWBmQ3vTsqYkABC6+47gCBRSx8Dh3g9aR6weL/p/SeAJLZF+J5qd+K77EFmcmwEbQIf/JJeAC18bKYAumQfxiC2ZwBNkWkJAC+5Z+uBpo/vJGcu35rxLGGMRi5dH5JzgZq6NBxmqB0YyixiL8OudS4oZqjbOFATg0AGYGSPAgAhDYt5gfHPXYikvVcHtbQNw/OAPkGtSNgh4XIbhhI9WlfqvFPx9HFg8nbKS0aMfawe7S7qeBmUf/gP/+Ed7f+1X/u1bG1t3fb+9wHRH3U5Zow4Uo4MuCwPyEBZdGwvhoyKmmleUKmOYdawWw841CUPljt8ujnBg/k2EzWnEJrGKirRopEcmIrNbMZON0R/1pT890c0Y1g8Kjj9O5Ybl9c5mFSYTrKZTclExcnsgGvzEWXekQnNej7n0nzNXaOC3bqiUh1aSx6Y7PPxa6fYKBY8Pd/ikckOUhh2myEAC505l3crMFawPpyTeWYI/CCH8F5hhnKtpmsyp48ZdVQXC/QAxEIhG8ewdKX0EaCd+HN2UKEKTZZrMmVYdJL6sKDzYQAYNOzvDzADw/RBl+HbdhKhDLOzMLro4wM1Alu4QUiXLnnsYovIDgkNs1OOHah2wKxlmMyZyoJAuhs4wNRVcHBeYTJ3LNCn0whgJrhF4+p2Ls/+/8y6eDmWPmFq2FkRGYJgUgNcnKEAkiwOGMGyiz4J4PZ1By8zYWw/ISf9Ms7VwfIS7TIBHIjIXomgE0pAhLWJdid5JyKjY/01KgMhro4HiEfCC6wIiFJQtLQYSXRFMehlYRH1yku5xGD017zMAAXAJI7uG09i+8CX4a/oGZPACC1d6yr4SusJgmaDF1sLhBWRATS5E5GH9pGNQK9pJ4i3LjCjmgtsJh1TVEu3T2C5SJ51OLWwWOsuVAiLMRJBz9o4U6ADUcWwpat9upAopL/5gLeqlRSeJXIxyvq4QzJ5thI3NvxRAJTlRLrLTNhnSlS9Im+76zpeDuVOAdGdlvsaontZ0pcxfRme78VYZZfS45KV0vF1uwN2r49ptEJbyStPXGfW5RSy4/TggO1mxMenZ3mo2I7Z7idyzkjWVKJFYdxfYTjoKr7osU9Sv3aOMDjWZSR4zSsuurxBlys+sPMobxp+ilx0nB/vcn68C8AoqzFWcNgWXJmNuT4dsVsPePTUDYZZg5SWQnZMygWl7FjonMO24LAtuDYd8+jadtQYGQTayAiCWq0iONJGuEzbV8vYNrpyIuV8Xzq9j4LdJ9z/wkKnFdlzJd00j8EXs1GLKl28o0YrZvPCaTikdclfJcjcmdrq8w2zs1DtWIbPSRf1ODNYBfUm2Myl7AjmrXbiusPsdMbu426lriunRZKt84CzuaUbuYS6unKska6cSNwEIXUwgfmliylsnCBNmeSCSiZKpJ8Eg2eYdZO0HbiQAWTO20pWndMLWdF7gAUX/VCfFzmL1kUzRtODCEF053f50RL2InzSxKY2qdPiXcATQCKImhqR3E9IGxHNUTgwZT3wEavXHd+b/v2KYDFEkLfJdViQmqi7kbXo9yGpMykpRohanaUdko/fP5xbdNK70Ivomh5c6oNOJx4rPEAKJr9w3WlJ7iPOjh48itZ7HmoH+PTIxFAK4DLcdxPjGTiQc+n6fvAgDM/QEuMbBa1Q2kccCEqO8dubaeGCotYuZc4qGxeSCcfnlZjLpAfqUrgI8UpaF/SV23e3v5k32fHpPJY/d1rum8pe/uU+IPpMlNthgUhX5GJpQ/BcOTIwJwAsv1QwyFvOj3c5N9hjZz5koXOMlY5VkZrnmk1u6DFnsz0UFoWhxSV7BRhK59H1WxcfwWrB7EGLNA4QLboMC6i5YJzX/I/d17Ktxzw6uMH5wQ7TriQXmkfG2zzsAVLTZkybgmHWUkjNA+t7AJwdHnCtdglhA71tjOCTuyeZdTmDvEUblwR00ebUbeZTdsBikTO9MST7yIj1j8k4cVnhBnvVuOz204cNs/Oa/dd0iEFHVyu6iUaWGmMkg9wFqVSZcWlJmiwGYxSFMyXZtRYzzWNbLx5pWWwJquuQ7StoJdnUt78HOmoB2cyzQEMnlF77tGHtE4KDxw3d0AE3gG6jY/5Qh65sBD/gwYX3BEpzhMV8XCIRUEtc8MQQzDGYRPJkUvV1ilpGb7EQrJLMuOCAQYMkICSRJU6wrt/Z4NmUMEdoJ0qOaTyCDictyeQePdqChijp+2lk6igQDq+C8eLn2oFR6Cd8Z060CeAKlRJHOFvpmAakt7XRC52DVijeh2eMQlukYt/wW/gqlv9JNUORlYuTvu2jX4f328dVigenTNDqSQJACikx0u3S5WULoMP452WUY8gCWxQ0Tlb6DPfW/S5nyiUw9oDABs/CmIYoAYqrC7cEPMYcZ/7SukXmTWccRZKiZy6jSdEDWies9xHshUuzk4KVJbd7fwG3iiS9Wp5PYL0KkG4XKN0toLrrYu/R5365c0D0jne8g//5P//ni3EtL98SB4MEwNxh6cWsy2AoniKCIrt8kKfnTW65ujdhv6m4Vk+YlAuMlWwVUw67kt+9/hCVbBnJmlwYGqvIfSTASrScyg7IRRcHFnmlpLommD5oKfcsa0XN689e5m1f85t8+dZHOOicfedVg8v85rXH2G0HGCRD1TJQDevFggc29nhi8zrDrGGhc05WUxrjYhTt1hVr+YJh1tIaRZl1zJuc/YXTGw3yloNFSaMVe9MBUljmiwKVGUQt2fiEod50K3usoJ1YjPLJVTc0tjCIcYscdCCgqDo/aRNTc5hOMh7UzHaGNHXOYla4CV1YN6nMXaoPs8icV5AWLE7C4cMuTQeNZPNJw/AyqJmb5ModF2Oo2PVBFw10lWB+Ctb/UFJvwuKs05Bkww45ccBMGNClY31M4dkfZTGZxZQmTvpxLgnmJmmjK36MTxQmcC/Itj7VxRJA6mRc0dvOMSxusqQH3l4861gh+tW9WPme9P+oLQqaowgI6MGGP8Z6LUvs3x4EWZMAo8D+dOH6RX++IAhf8qhKXyoiOJJzlRwvIpiSmp6lStOfeDDj6uVIiSlU/H1jj7yyfZ2R/aAHO5FF69s7xPUJaTEiM+bPEaJXr7Z5ELGH/k3QkHnvQ2E8s0jf3tnUXYesBTKYVQPwCXGOPPCK0buT8A7uAKI2zCZAx3TSAzYXRNOZnVMQlDwfP66F8a1PSmuR0pJlvalM+eez7GF2TJvfpBwnlL5TV/1wzpuBnvuxh17e5Y4B0cHBAV/+5V/OE088wXve8x4uXrz4YlzXS7/czjuUrBSPJHe9gzqf9331g4z9+JhMGmZdzslqhrGC7WaEsYI3bF3if22/Am0lB6bkcrdOG2dQkMKtwjbyGY9s7aAnmmwO40/3LtaPjW7w0f2zvLq4xKwr+H+e+2O8tnwOgN1mQGskpWipTcZeU3GymjHOF0hh2W9LOuPYqEq1rBU1G/kcKSw3DkcMipbN0SwOeuOipm0Vs0VBW2fMrw1p6wz9zIj1jyl04Va4RuEYA2WhcMEkbWHIN2vyQUdedUhlKYuWyaN72HnGoGhR0rC2PmP7qsvDphNK3x7kfbsMOjcB1ArRCrqJT3TpGZl2KJg826GHLop3ZAX8MysOLLp04KjaNeQHkB0otzrfdgAvjUxtFNjcxmjSQov4lorWrfKDDidOfmk8IIXXHdmehQkr7tTUEv4/JqJzNLM1IgqwhfbgIXhkEc5tjhwX6z/ufJYYEXrZPJxcn2dBECAWcpm9CRnrQ1BJ22/Dt1XUEwUPtnBd6XsYQJvtTUpL5pww5/evyNJ9RnlUAnbSCOA2BIxMc32BazuZuP2TbA+gJoAc6eMNhf3S1XyoLwJMEdnCWLF/XtE7MDzHWoLBpaWJ92pjPxLxOlauL54zNKBvi8RU6gCbB0udjJ5oNgniGcygwXNMpAJ3gXuGwucr86Ey1C1MXc9Xjgcuy/UEYHQ3sYxeiJntXhTf5V7Y54/m0l9y5Y4B0c/+7M9y8eJFvvmbv5l//+//PY8++ihf+ZVfyX/4D/+Btm1fjGt8aZY7WZmYZab4yO9h5QrHgqIjjJM4Zps/7rAt+LytZyikE1UDdEYy1zl/YvMZjH/ka2pBYzO0lezqIQd6QCE6xqpmo5gzPD3FKOcSXhwaduoBEsMnb5zggWzBmzae5bndddZEw7se+x+M8zoOJMZKBlmLsYKBahmolrW8ZtblXF+MMFayli9Yy+ZcmY15aGOXxybb/LHN5xDC8sB4n0p15LnmkRPbVMMGOVOcObmPmjshczsS5AegFoLJk8pR/uOW7T/ROm2KB1Zl3qEyjZKWPNNMzhxS5a2L4t3k0Ejkboa6kZPtZKjtzE0M0jrxdPCq0QI1k2T7Cl3C6BKMn5IMtjX5QUd1Hapti6r7eEPtCA4fErRjQTOB7ddIzn5ggaqduHV4UbkAkZlFlxY9MC4WjNfjWGVd/B/hPbUq48CSZ1acm73FZiZqMUIKieDKHr2TQooOSQQU1jMjwte5POFxNAZOAEop2AkaoWyl46aMQqgzsEZq5Tdhe7YkMcmkCVeDWU5YHKMTGKNQgmkrTP4h4KQPqBk+KSgSbQLu/PY0PUr6wqZmMGA5OnYykfe6Km9KTO9Ti/j8lkxw0AusUzF1KjyPwCFpz+hp5p9jYrYMbRqinYdjZOO8CNt1g64seuAYycjChfsLudZWGa5wwz72EHjw4s1bEXxGAByu3/bftXTC+AiEeoDk7tPEe82UjnkP7yRw4s1AzbLo+eZ1rQKku2GS7peXX7krL7MTJ07wrne9i3e961387u/+Lv/6X/9rvv7rv57xeMzb3/52vvEbv5EnnnjiXl/rS78kA9HNfr5lWR3sWJ6UjgVV6SK8cHqcG82YjXzO9caJVc4N9xnIloeKbSrhQFIuOrSVVKLFIKlky3PtBuvZjM9eu8BHb5xh/2HL5FmLyQQXPn6Gt5x6mtl+RWtBW8nJyZRzKuOh4XV+Suc8WO7wWzuP86rxFdayBR8/OMUwaxioht2mIhOGx8bbrOULau1SdgyyljdsXGK3HVCbjK1qRiGd6e6VJ67TGEX3sTUYWA4WJd3Y0jzYIfdd/rL8QDi9znpHmWua/QIsNAcFw405nXbgaG9/yMb6lCLvKFXHc3vrdK1C1C6RpREwfkbSbIIOq93MwlQhRprisnIYo3WswdozLboUqIWm2cgZXdHsP6KYPKuZnVSo1iWWBZid6RmgbuA8ymTrWAl5pURPNMLKpSStFBY1k5jKJTI1A7/SzmyctK0HbksdxFrP6hAFz+6Bm6UJD683sblxE1AajTjk5UqCLi71Oz8/GukmctkKLHIZFAlLyBa/xGaEcFDh2uQyMyRSLyQjXJt0YjneUVwS+8WGf14p+EjZMGGIouF0wrc5PYD0E7ktfJTteE3J+xxZIeLL6MIGWHc/qaiclffVsqybWmlPvGdWPBCw3g9crD5jgTdrWU9NWJeLLYDO8HDC9eP7g8Ulcw1mSuXaRs3cO6CHfQOG+7cCx1IlmiegB32+0YW0Lsv90nX2129Nf38h6KZjwULbBprCxthDISL10bQcL8ybLD1+1Uvs+Uq/6HsJcSqp1OKF1PEyK9Za/sN/+A/8yq/8ClevXsWYZTPMz/3cz91xnS9IVH3p0iXe97738b73vQ+lFF/1VV/FRz7yEV772tceyUj7f1yxK38hDpBBRxE+YWy46QIj7YxLg449ckzUEnl9SG9/d59ZW5BJN+uMsgZjJbXOaK1EJ5HklF8atygWJkdhUP5m/uDgAXYuT5g8Ldh+nWSxIdn6kEJheOyha7zjY2/nqdlJHp7s4OCU5P995gPsdUO+cOtJNvMpp4oDHhvf4FR5yFq2wFjB69Yvcao4QGKQwjBRC169dpVr9ZiRcnnVzg33MVZSqI5x7rzWTv7xK7zhc55yA+TZBWQGUxj2X+lEylYQc2ap9QZGGlk4nVCeacaDGoRlazBjrVywtxgwKhs3MOYu7pCtNNNHDM266VNS+Meirua0ExfFeXQRNj9maceKfKpR047hhSlWwvrTHeVOS7VrkB0MrjtNkfWRkU1uka2NkbSHV60zW+T9pCtagZxLZ66CGFNGNM5tXCiLLR2LJLwgWki3zRQmmjv6VByuX8RJPPRD7zEmGgkL1TMubSqSZinb+6p4mMy6hKkkQC2wRyvsRejP6f99mIAVxiUIg4NOSSTnXLkGK+iZo/R6A2Pk4zlFFsUHspStXNrmrimZx9MXL/wfLmHV/C1W/jfhWvp6A1MnvD4oVmuTnGmBWUkHC4vT6VgRhcnhfqMWqpO9uc6HaAiibZGwR1Y5L0abLIOFZ630oA+yGM/rhc399qMTr9HSfdqg0cI958wxQCGB7RIY9bpHEQfK8JuNLJFUztVeSQ+4jhk8j2Nsbh4scfX70WMDA5V+blZuxiCtphL5jBR7jz4vs/Kud72Lr//6r+fpp59mPB6zvr6+9LmbcscMUdu2vPe97+XHfuzHeN/73sdnf/Zn8+53v5u/9Jf+EpOJ02P8zM/8DH/jb/wN3v3ud9/VRb1cy9LAdkx5fobI9g4mCeO8asoI+66+5VbAlT88xYeLmlevXWWSLZh2BZN8wcXZBnvDIaeyfSSWqSlpbcZQ1kyUyw0zUXM+sTjDs4cb5JMG2eaohYuPE7QUT6xd58n9k3zqYJM3bV1E+Yt7dXGZ39h/FQ8V2xjrGKeBcibUoWrYKucMVcPC5E4grQtK2XKiOHQi7GzO0/OTZEKTSc3Ch3M+P9qlHTjt0c7QRbDe3x3CQCMyQ5dndBM3eXaNIitdFGmrBfODkmJrirUClRmG3ox3/XBMkXdIaaHSqG1FtwF2pJ2gN7Nu/O6cGFfVwgEXAcXUMnquZnGiQFeK7KBh+vAIkwmEttSbOSaD/NDSrInYboFouPT5BdnMhwiY+hgwhphCwY40zBRYpxdyWh6JHevepICI5jBbK+f+Ly0iI+atiiVlibymJZi+wuSJ8fWFgIg+Zo8Ik3PSd13/9CB81SSUMimir3cpBlDo2z0h4DZF0bc/pwc3S0DJ7y8sSylJ3PH0eh0pYmDLMOdG1ie+YzY6JIR6gy5s6X5WzGbpNYMHcsa1ZcRsoU5BrzEKbWyJAQAD6xXjMuHjGnmRktDJ/Qvrnrs/LoCioBuKIC4BjrITzsPMx6vyPhTYIqmzC1HG6T3ygjYr9BPBytI5sFS+UQiAJx3/bP8cvbg+eg1asFo6E1t/QF91WIgosxRv6IWW1QCMadykmx/z/PscV6SwkQy9X16c8pM/+ZP83M/9HF/1VV91z+q8Y0B07tw5jDH8hb/wF/jABz7AG9/4xiP7fMVXfAUbGxv34PJeRuVWL9XNAFKw7yeTjkhXUikQSqpPLXOrZ1UzSWckV+sJZ6s9Hh9e57l6na1yyvuuvYYzD+xxzawxUXMeyHbYNS4w4q4esqeHDGXDicGMZ+0m85PO7JOKhDfyGZk0fOXZP+B6O+ZZbfnDZosvG1zls4aX0EiGsubAVOTC2f532iFSGHKhmdmCJw9P+3QdkhvNmAeqHd6//TjjvGYrb9nKZ8xVzu9cfYjHHrwBwH5b8eBoj1J1LJqcTGlm+wPUWovp3Oq5GjZu4FKQV5pOuyjYmTIwcMlm99sSISz7hwOMn6S6sSEfNzEnE4AxCiuF8/CaK3RlKW8IDh8QNOOKrY/OMYXEZor8QHNwPidXksNzkvElg9CWrhK0E/9gvPmnXbNsftCy/RrJ7LRkeNVSb2XokUFogbE4N/jAYHhTjxq26EXmJhEPZGRusMp4BkFFj7NVs1KII4RxeclEI9wEFfKVSWI2+SjANX0nS6M+x34p6L2NQheOgQ2dJyD0QCdO7qEvpcxRYCGsiOAiZKSXXS/qj9cV3wl3QT2b1b8vjiGz/XtmwzwteuZKANoH2zzOjV7YXt4UGJjAvAXBdLz5Hnz1AIz+ftN76EQff4fA3vi2Ds8t/G9FNJnFSMqJNiglWWL7QRSMyxZkK9DBrBeE5Il2Kt6vF6ovRQ9PSzhXQIU+OCNJYMkeRDlzWggPEEXymUUVOkaxvlkRnmlR8vl1Q2n6jdQcdvOI1Ulbwm2Zze4WGH1GStoHXkgdL7Oyvr7O448/fk/rvGOT2fd8z/fw3HPP8c//+T8/FgwBbG5u8vTTT7/Qa3tplpt0nFu9s3f0DtnlQdb9v/L3JnUL62KPPP3p01SqJZcGjaSUHbvNkLODfT6xOMOJ7JADPaDFRapemByNpLWK3Ot3ttamLE4b9NCQzaEbuwFmux2xVtR8/vBJnp6e5BcPPpvfPnycNTlgXc3YUDOUBzuHuqQ2GU8dnuTx4XWut2Nqk3HpcI0PXT4HuGCOlejYKqd0RjFQDaOs5kyxz+ZgxkA2tEYy1QWf2DnJYVMi/aBXjmuyosO2ClUY1ocLBmWLlNaZxIBrFzbJlWatXDg9kpG0ncJoSZ471sWeaBgOGrJCo3LjPNNKHVfOurTI1qXoKHdhcMMwfaBEVwqrBIuTGc264OBBSbEPi03JwUMSk7mI1GFyDECiGbnXbvoAlLs+oaqfhKJX1YqNVdcZCBu95oSy6P3CTWja6498gs4ouA4lZRmC15rfJrx50GamD8AX4uWsitZWQHkESvE89C7sAbysgPmj3kr02d29zoWkrZb6d0yOamObycYDuAiCiExIvOaV90ZYerbGA8gI+mMOtP4+l//p942PKGG1YlyjNDJ4yhgdNxYE4JOCunSSDkyMxx54V3rXniLxskvbyQFQNRfoIqmrcBcdxNVCuzaIfWI1jclxF2xwwmhcO9jUmw9ivKWQ88y2qmdnOoFu+2PjA0qpcOGSmNwKCC2DmJvudgtxdf9ZrfdW5rLbMad9pouw9+bzcivf8R3fwXd+53fecb6yW5U7BkRf//VfT1VV9+wCXpblLjrPEvsj+gE3/R1wA4nsdUExAN8KKEp1Q3E8sYAEdSPn/3ftAT413XIi63rMQmfRdTUXHRtqyg09ZmZLDMJ7mC0YyoZXjK9x7fIGKMvm4zu0Y+jGhkv1Or954VEarTiwFf+fc7/Of7/yal41uExrO2qbMzMF2kpK2fLaoXPJf3x8HSksB13F5cU68zZjULZohI+e3XGqOORstcd6NmeiFmzmU6Sw7LZD57WmWtaqBTuHQ4wR1POcMnd502TZMRy6ZLVl1rE2XNBoxen1A849coPd2YBJUXPYFhzUFUXecfbEnltYGUFWaJf/rWzIMu2aVFoIARpzp/+xCg4fgt3HJbuvlMy3FEJbRAcbn+zixGqUYx3qLaKpyOTeZGFg+pB7Xt3YcOVzHfskNX3cnlHXP9fMYAuDbSSEZJkGzEEOWmB2CzjM4FDBXLlrHmkHcNLOJekZAr8tuK6nK/XezNRvS5mPWKRjliIoaqQTP+fe1OaZrSMDbWpWW2I3/LnSa1kFQ8G0Yx0QcmEAcLnXVphWV1f/e0x/YpP3SeCZMn++EHgynjT5QG+SW72+KJTuwWDfcMQZZ+l+UqYmPTyAoxVQbIMHWde70S8tlBKAJLTA5AY1l+iRweb0gT99+4aM97IVzsssAOVUM5Ted9L24ECaDSyP9aDNkNyMv4/QD6VF5Ibh5pxy1CAzsywWXwHJxwmnjwM3zvvM/+8PvplL/c3KzWMK3Rr4HKc5eikBpf/Ty5//83+enZ0dTp8+zRve8Ab++B//40ufuyn3c5ndTUlfXtGvTJ+v3IwpSrcf+T9dCaXmiXAdq2DJ/7Z7bcxsssenZic47AoKqblRj5hkC1qboZEUQnOtm8T6D3WFtpIr9YSN0y6z/c7OiMzn3Zp7Xc84r/lfB6/iq9d/j7Wi5lP1SZhcZEsd8qH5wzxWXqPVCiksv3vjIV65fh1jJWeKfVqj2LuwzujcIa1VHOqK0/k+Q9WwmU9jtOzfOzjPp7c3AVgravabkkWXc2IyZX9eUZUto7KhyRSZMtRtxvpwTqk6ap1xbrxPITULnXHpuU0WkwOXrwx4eH2XvaYiU4auMOS5S3grBEhp0dppjqg0nc+obluF0I4hasfQrFsGH+zoRhndUDA/lTG5YFhsSGzmIlaLtWUMEQBIfgDNupv8u82ObDdzwfMmTizNoXf9D5OfETHzvNXS5fwaddhp1pttQuyiEKsnMZfFCTsxN9nCeO8hgZgr7MBFco5eV8eVVfIgeFnLoHdxDJFNJ2h/vtBXhfGTZ2BZQuLWpO9iHNhxILK/5pTJCeeKuiCv6e0BX3+9zgTkqKmY4T4AjcCUBWYoxH+yy4sUJElgShsZnSWNX2ijcF/BzJb+nF5X+N/4bPJpkwmWB4PUjJZcL11v/grXE9otxKwSxon4TYb3PvT36sF79MIL1x8vzl+L5YgbfTCrLeuckrb3f60VlOsL6mnB+uaUps2oD0ryYRtT8aQPK/X+UrcVvO34cpyJaxUUrZrTbpbk9U7NZQHMfcbA0epi5W7reJmVd7zjHXzwgx/k7W9/O2fOnEHcg0BQ9wHR3ZS084SBwR7z280O90BnKVDe6j6JxuBICZOHcNnJw3nD4CwsMM348Cce4qHzN1grFzFg44PlTqymsYp1NXPmM6soZctMuwCK+3sDHjl7g/r9W8webVGHGSPV8JrTV5l1BZu5y1nx9O4WZ6p9OjS/fvBZPFpdd2Y4kfPk4iyztuA3LzzKEyev8/hYM8pq1h7cB+BGO+F07v7fzKaMZM2FZovWKN5/4VEGZcuNmQssWWvXVY0VdFqyNZ4hhCW3goV13mTaSHbbAY+vb1MoZ/rrrOTzPutpdpsKYwXDvOGgKZk3TtxdDRryTLts2lhUYZjOS5Q0dFYhcoNtvVvyADb/sGP3iZz5WcPeK/oAjvWm8yobbBsWVpItLAjB/Gz/PIVxE9DosjNZgKDOJO1WR37DgSIbXJ8Xffyj8Mytwel9tMsdReFsSyLXTquhPXgLQAHfh0I3StzCY2oGcBnOG7ncd5cQQeiU9GJr059jqR9boullqfsGdmZFj5T+LlbeJRFMMR4MLe2r+/0iAPOMz5JZLr0X4ye9wHSExcyq6S8hdiJA8l547jmKhGXq2zQ8J0x/XOqhJmIb9NcUNYThXtLf/GUvWS/TIJW4OFwhCrXxQTkxomd+wDFoViAbImMptG+S0h551KkpNEbBDm74SZiEpWcSn2nyAL3+p2sy1jZm7O8NY1yvdp7jdHA6cdfvWRYlbz9fGRB1QSHRa799BWgeA5DuFBjdqhznzv+il/9LAdF/+k//if/23/4bX/iFX3jP6nxBbvf/V5ZjBs6b/n5MWWV9jjvGBnv+6urz2Lr6OtJq1dz90HQKY10usnHW8Oxii31deTd7p/UJA4hJ7HhCwqJzXmYnH9hDnpvxULXDw8NtLh2uUZucDVmzvz/gbLmPtpbtZhTTgSxsTq0zXrFxnbrO+eiVMzx1eJLNbMbWcMaD63s8WLiM95eaDSrRoq3kgzsP8z8ufRYPb+0wyFvKrMNYEVeTnZacWTtgmDdoI5nWBbPDEmME24dDcmliVGyDSxHy6YMNPvapc2zPhuzXFdPGmfXqNmNUNuTSgalFm9NpSVk4bzQ9zR1wVdYxKlpw5fNyZudgeFGxOOm8xRYnXN6ywwcke49KZ6FqLYPrTntkMpzZrXBMg6otzQbIhpg6IgINgMxgS2cqCxOxyD2jEx68n/SVj8ZdjFrn6ixwXmdL/bQHzbEsJGIhXe6r8FsQGqc22jDAh3k9BT9NsOey5PW15FnFSndPgEPUGJlke3KdqwuGACqlI/QwGZG9ifobu3y+XgNED2wgCsoDe5ZGnI6m6nBPEQzgtUGJV9dS/b5ORdR0xfQp3gzeB15cBYxiqQ2O4FEr+lAEXkwdPB9t5nPcKRsjiptEN6TqBMB44GIKl8fMFGZp3yMkSAL2ln5L20R4EBF/F0vjltGC/d1hTPOBsOSDFqRF+bARLhij7aNX3waguNk+t/JMO8609Xw6o/vlpVnOnz/P2traPa3zPiC61+V2kbafSI4ccyvAdCvGSBw/mClpabRimLVUqmW3dd5k23oMOJZoVztPM41gpxtyYbpOd5jz0HiP+RnLbFFgjeS5ep1HK6cHyoWOcYtO5/vkQrHfVjyzOIlGcqgrHh9cYz13grfmRsVhW5BLzawt2CjmfVJZVaOE4cBULHTGmdEBjTe5ddrFT1KyX44qaTBW0GhF0ylsK9Fa0rWK63uOUXL50gaM84Zh3qDKjmldAGAQaONYpfDdGMc8xRWeb2+ZGeReBq3EFJZuAN3IsDhtqbcMJnfmM8ABpDViJO1uKCiv+4v2JiWA658tYygD0bgIyjbzk3Lwzmod2LCZhYEhKzuEMmAE+bi5eXb0cPGJDi32t/Sv/1+0vQdajNQcfpbLE+URLZHog0Sm0aqj+PmY8/W0ToKNTK+l6T2nxNK5QqLb5eCL9No5L+BdYmtS0OEBUXgG0ZMqKaGuCJYC4xTScIRtR7RC9NtD28vk1sNxKcoRliOi9BV1a/i6xECHKOPKYgoHhtTUBfAMnnkmSfchF4LM59kzIXmvBZObJQDY51xbRWJJ26xu82yWWG0H3PmFv+9Uoxa2LQGS1WtJm8Tv92LE9LkdUOT2u31g9EehIQr95IV+Xm7lu7/7u/m2b/s2nnnmmXtW532T2WeyxEll+e1Kx6AjmoTnrXN5xRnqMaUTvV7fG/HIqZrOSjKp2W2GbHdj3jR8BoBCaDbUjE/VJ1HCsNu6RKrZxGl59NBQFh3rwwVvnjzjKGkrmJmCBslg2DAzDmicKKfstkOeaze4XK/z+OAapewYDWv29woy6Vzv/18P/x6X63WuNmsRXGkrUVheu36ZqS7ZKqf8zpWHsFaQKcO0LtgYzikyaI1i0ea0naKeFtA6sbFQlrMnnXZot6modYYShnlboJSh04q2sxR5R9spilxHr7O2c8ra+aIgyzRSGoq1xgGltQ6McGlP/DM0Q42oJc2mJZsLuoFjBNaelKw/1dKsKaZnBfWWf74SZ7oAupElmwrUHKwS1CPHBgWtUHRVLwwUUPhwAjKz6M7S1Somy1Q+E3hMveFBRIgO7DpD6Csi7hMmVWsEshPLQRMDmxJYj5U+Gr+npgnjTAzxOoI2Jc0Fls7uASCkLttpCfdhQA/6NvFd3R0a2J40KHMSLmBVZL0EaCwxzlFqGlsCO+Eag+A4BYPhXBDBRAQIqblSsHx/8dqS7Smo820eYwGF04VJWXoPwlZich+qYWBd3wlaLP9sQ4DOGLzUAjoZY1YWWsfFfEp/j5ulXR6iIlNm+/sBp6NJbn6yPmd6WCJwiVulMhgjXDww5VzzpTLuI19YqozUdBYYI3PMwHo7bvr9vke3HefhdlwS2Re1rLCLd13Hy6y8/e1vZzab8YpXvILhcEie50u/b29v33Gd9wHRCy1HZgqIOgFYivcBKyvt1cOPY4dutyT1AchGoJVFN4pZW1DrjFPlIcOs4ff3H+T1g2fZULOlBK/aSmZdyawtWJ/MOVvt81mvu8DZwQHXFyNK0aKE5TVbVzid79NayRc8+LSvRzPtCl4zvsyWmqIGFo1gLVtwfn2XT7QZF3Y3yE9pxmpBXmkuNxtcnK3zmvFlcqH5dL1FLg1n1D432hHGyDhAaSOZNoXT+UjXuHWbIfZyhIFzj+5y42DEo2vbfOT62Sig1lYwyFsGVcP+7hDdSZ892w1mnT+HEBZtJFIZCi+yNkYihEDnBls74bGpJQw01MqBmFpRn+7I9hVGwOwsVNuKcldz+KATWEf9TA5B/6JqGF2x5E9ZLr3FrfCpTG8WKR1VIpWhaxQy8daJJehbwrVnBtN6RGJW+iT9dQRBrmx71qp3aU+ATAACx4Eiv286sQdB9lIPNsTIyCJhyXrNjF1yz7e500BJD4ZsxpFEo0c0SwlIEcaLhwmT/PJ2d3+JSzyBGXIv5pIQOrxMQawetmcWu+LaH7VGgW3xWA9hY4Tppclz9TUPxxh6XWC0U7LkuCEX0rE9oSjb66aCJgrIptJphQJI9SbRJQG1SNopNIZDu0cWZqm2Jj63LHSK0Hn8DoLei8z/OTyoqIYNi1lBs8iQmSHPdXzHrQWVGTIP8tNirFjyFrud+EKrprObAaNVUHSz+o8rqyDpViEAXrSSvgMvpI6XWfne7/3ee17nfUD0QsuqFgDi6nqV7Vl6x8Lgknx/3nfwGOCVfl+i1gVkV3LaEx3Xdsec3drnWj3mTLXPDT1makpOqCm50Gx3Y15ZXeFKu87p8oBLswlvOnmBq/WEx8Y3+O2rD3N6dOgYEms4VR5yNtvlt+ePsZHP0FZyaDv+v2d+nV89eA0A62rGhWYLgPOjHXbrAa/auArARM652q5xvrzhXP1VTS46rtdjRlnNZjXlN68/Rt1kdI2iKlqM8Toi6eL2rFdzru+M/UTnbvrBzV2ePdyg7RRN6xggJQ17s4Eb9DpJVysOjCAvOxeYETcgGitopjn5oKPTikxpP1D6mcK7DUe3ZAO2sM5lfi7RpSWYkHZeLTnzv40z/3RAEfqD8+ISHhRlM8v2qyXCeK2REi4FiXKgQGU9cItBI4VfeRearNARDOlWOf2FPzau2pMAhKmWKM61qdt35oCCDMfLwMr0HToCjbSvhS4X6pwnE3aai0/274Vo/eQczH3h8oR1GhyfusRkdqlPmxxEZ5cAwpGJOyxIRHKvyf1a0V/LzViQyBaFST0AhjQgI8m2lQsQiYt7TH8R2LAEWcYkqj49x1Jd6TtuehDrtGiuDhvAUHp9EtTU9UnZCFQDOnMAph17m6QHurEd0sZL2nRpwg8eeRaXmyyI56OA/Jh2tPQmXaCpc2RmqCoXxd76S0EZzygFV3obgzOullWwkjI7R4DnbZZVT7L0vHeSt+xuz3+/3Hn5y3/5L9/zOu9riO62JJ3+Zu/LzciewHCGgTmILpdEmjc517Hbjogh3McKEAuni9mfV1zYX+fibIP1Ys6nm5Nc1RMq0fJIcZ2JnHMu32Etm3N5Z41np5v87sUHmeuCk8Mprxxfp7UKg+QNw2fJhebD04d4w/BZHsh3+Dd7b+TVxS6tVWyoKbnoUD469UC1DPOGUnZIYWhtxul8n5GsOZ3vs6FcevjnZmusZQu3j3ET/Gjs4gvND0raTtFpSaMV8y53sVm8ycdYQaU6pk1B2yrHLnldUKcl01npRKfKkuU+1lCyMuxahSo17W7J7KDEGOm8zzyFLzKDyo07p3S5w0RmsQPtJiVv6monNra9FZCFmGFhIvaMRzeExQlJO3bmTZMlE61NnqH3jArmr2BSULmO19+1KiY4jdqiYJaJbIfvkEUvwglu2SHP2qqZzEqfg60yzoNptbt5pmA1phZ49ikB+UGXsywU7tkfWxqXgBaQtfTmr2XA1rvGr4AcH9BRJO2+xAD5tBpCJ27roX1XgyeGeleEFVa54JURtEkccMuSnGz+eaWsmmvofrJebqRjwGAKVkOgyUYi5xKM6ytI6yKZh+uOyVfduUVg/nwyWeuBcTdKwFDy3I6YyjzT1We6Tz/+d+Uz1C+lZAk34wGG7dtV5ob1jVl8SHWdxRhCwTympEFKg1KGPNEM3qzcbt6y1fJ8ousj+4s7y3Z/s6CPL1YRq4/oLj/3y31AdM9KCnJuWW7VG2/jBTqyAEsGUrch+YBLwOlXW1vDGQdNSSE7LtfrgEvuWsmWSraczvbJpeb0xoF7+YVLmfGqyTXOlnssTM52N45JYgeq4UK7xYcXD/Ha6jlaC68eXOLADLjSrUdzXCk7bsxGzHVBaxUHpqK1ik8szvDU4jS7esj1bo3HJtu8bniRmS7drYTVGk7crLVkWLT8ybPPsFnOOX9um2Am6LTk6nTMbFHEZlg0OU2b0TSOCBXSkg1bmlmOlE5TJISl0/1sb6XF1A54aSNRypAV2nlxCZ9QVbq/Vvu0Cla4lXLrov8i4PCBjMF1J3ztTVGBFXEms3rDP7rSuCzrhYl6FFEYxwqBz45g+4lIOQ0G+MHae+boxidaNT6zeNpXJMvZ6PGgJQihTcLWeKAJOL1KmBiXOmJyT/57mGBN1k+2wvTniLSSsku5zYJ+CiuQi35ISpOQBlYumvRWAE8EQ8rFJIqMa7iu4LkJveA5gLUsgISknURSx9I9r5jb0hE0gNDwf2gz5eoP6SvgmAkoXQxZDwRD+ATpAWtox070ICgyQ0StWAgkKucygnCbB8+4pD3p2+TI8126NpLQBCkwssv7hH8Txkgq6yLAK0MuNZOxy5uY506np/wn86bqPNMUnp29HQASHCjAtW/4PB8gkdibAqNbBVi8U3D0GSn2Hn1eRuUHf/AHeetb38rXfd3X8cu//MtLv12/fv2uU3rcB0QvpMSBYrk3HeuRcbOXUySfe3lpFvTYaVLag8KxRHXFicGMnWZI60fyiVigraC1GY3NeLi4wes3L7FXV2DhxmJIJjUX6w2enJ9hYTNy0XGtW2M9m7PTjtjrhjxZn0Ej+JODp3kg26G1ik9OT7GvBy7y9GDGc7M1DruK39l/hNYqXlld4ZOHJ9lSU9aVc+v/xOIM//3SZ3F9f4zRgrZTPLS2x+kTB3zhw0/x0HiPj+2dBuDi9Q2vZYC6y2g9jZFlmkHZkmearlNkeWB6LNa42TCAoRBATSmDrp0wO/eCcmOcbiHz3mhSWlSpsUYilEVVnVtpV9qJW4cO2OgCmgnUmz5YoXZeZAH8Cg2Dq/45Gbz7uwuQyFz1TJERmFZhakXQZIRrDdcTrjMmyhQ20W6IhHm0biINQuTj+lvYloiUgweaY0KWGZ5UrBwATmSE/ARqctMzBWFSTSItp3oW0axclBc8Cwuy7k2N0dTm8VVgiGxmexG3AALzFVzeZQ/gIgBM4yJ5sJYyrPGeknfc5SizkfUSyh4dB8L/x42w/vqXvLPAR4ReWVkFcJqa6nzS38gApefQ7pkFl/zQPia30bS8dE5w5r2wLQCJ1Xs50l/8tuTcvdu8/3h3eqUM66O5Y4OEZTKZUxZdzw5J5+hQKE2Z6cgW3W0E6BQI3Q5TczNwdKcZ7++Xz0z5vu/7Pv7O3/k7vPrVr6YsS77qq76K7/qu74q/a6351Kc+dVd13wdEd1uOWTnGr8exOMcdfy9B0DFjcb6rHIWeu0FnmDdkwvD03gkGqmVmSma2YCRrLrab8fhpV/LgeI9B1aCEYTObMVQtZ8s9brQTtvWYmSl4qNjmXLGHsYIz2R4HJmMoDGtywansgOdma2gryIVmq5zz2Hib/W7AKKvZUDMHwIbbLGzOgak4l+9yqEveeu5jnF4/QAhoFo4m+PwzT3OjHvHkzknWiprHx9d5y6NPYyuDldC0GcaI6JUGbqWolFuBIkA3sjd/SadZ0FqiO+c9JjPtJmHhRNwu/pGrU3ogIoRFenOV8ceJRiI6gTqUqJlciuuSHRJza8naTW6qhq5ysYuE9ttx2p3R0yGPBNjW1a8GXXy+0k86UvaDdZhUhOrZqyVTBniAwJL+JZhSeg8rHFPlQULUCd3CemEF/QQdSgAe6YQffj8SEdlXkqQUWTIjgfea8oAnsE8iYXqg3+7PH8Cbu/6wEw7ApEzJcfcTrkscB3To9UkJUxLi8DgwmuyfRM4OE3PYNyY8DcxVeGaB8Y1hBHy7hesJYChh8sJ9B4F6yNEmGxcHK96zEa49PUBNrymCh2Mm9yVwsArk/DHBrBtZzPAeAvvzir3ZcsqnaCYT1jtLWHKl+233AGyEY29lxlr1RlsttwvG/shAUbLmuWtz2csIz/3Lf/kv+ZEf+RF+4Ad+gJ/4iZ/gV37lV/je7/1e/sE/+AcvuO77ouo7LWEQDANM6Ejp/74si5xXBpN7eDmhXrFiJjGZhdItn2eLgo1qzm5T8Zqty1yYbfLE4AoLW9BYxdlsl0J0/PNPfjFnRwd84vpJxoOaQmnO5Hs8VGzzu4ePcKI4ZK8bsq8HbGZTWqtoreJ6t8bPzh/gs4fP8uriMutqxhed+iTPLTZoc0VnJaeKAw51yZtGz7KnhzxSXOOwrLjeTrjWuBQiF+YbXDxY55G1HRaTnEnp8pL9j2dfFdmczkh+6VOfhRCw9eAe289ucHr9gJ3pkNGgJpeGRruUHlq4uEVdpyjHzn0dC/ODiqxqvT5HgtQORLQu+WTQGmkjkcLSLDJU7tyBrcGBKIQTK3tPJiu9ySazIIXLaVZCNgM9BF31YuB2zU1aOuSUqiVIy/wcVM8ULM5qxKAPx1xUzvNNa0mudDQLGOMYsXqeu0lLgZAuwWt36GMZBeGssA4U+TbowY7odTDCOPBRmj56tRFO5Bz6bgJuRCti7KS4PSZIDYCBeGxw2baewQn7i070uiHLUqDH6PIeLlFabFSvil7AHc5jQHA0pURws+/fXdGbiuJ1uoZNdVIimLvi9bj7EixvjyA0HR+WFk4egAQBsGejbIj6HTz9VsXVab0hVUmY3D1DGpgtm0G+o8inPrGwxOUzC/UFYHWzyXupzfr/+1QUrt1FAhSdF91yfYG9FF4fJOXK78n+SpgYjHEpNlDiFSaFdfE7b0K1h/fhuHOsutOnwuc78UTjFudfPeedCLFfcLkXgOZlBIiefvpp3vKWt8Tvn//5n88v//Iv86Vf+qW0bcu3fMu33HXd9xmiuylhoEs70U06VD+w3uULcjsd9SY2OltYUJZq3MTNO/MhC53z0HCH/3btdXx4/hBX2nU0ksZmvP7EZXbrAScnUxZNzmvXL7OwOZ9uTrDmFcI73ZBr9ZidbgTAejbnd/YfZr8b8MPPfhH7pmRhcg51xVq+4FPzE5ypXL6yy4t1DkzFR6fnGMmamSk41CWfODzJdjvkxmLovKoQHC4KTlYzdusBhwcV2nuaXTxYJ1OGtlM8trHNZ736ApO8Zlz9/9n701jZluwsFP2imU02q9lr7332Pl3VqRZXY5ctm+ZZdWW/a2OQjBDiB9LFT8IWEkJuhG1shEFI/oNLQtiAjUACoQJkGesJ8LOl9+SLwaYMFwrsgoKyXS5XlatOv89uV5Mrc3YR8X6MGDHHnJm51tpNnXPqskJK5VqZs8+YEd/8xje+UWOStSlDzBoPG9Pvy6KlaE1ryHvHOnSnOUIAspzARnAK9nYGf5hHHQ5lvfhALJFryfzRNTqJRrm4pZ9S9lu36xFMQH0FaTJsd5AmSN0C+RFgVkgiWQJKgN9x8PstmivChDIWnvWe8rsmZYMQiMEiESpNNibzfWo+N2aLctf3k4ABA8RNBQLUqtGUZRZrkiVxLq8uQVEAFZ7N/aCfapmSPh5hQg9U0iS9oczHgN1Rw+XouBhsRQBq+hAWOUSPn06wVQCewJoAbfzgo2RIaMwyiNBkCr0l5o4HiNBPWEElLRGDpzBmeYDhw5PUW0XX8vTwY0JvGeAU7JGhlPwioN6n8KHP4zKm3/bAXXrc+NB5/2KZHgwoMLOlIxPErJAs2CrDZ0CfPcagoe0MNIYlOrQKsMrHz+N6onONtUWSAZJtzNaMmaZHFTxfNIR3GUb7yrVr167h5ZdfHnz2oQ99CL/6q7+Kj3/84/jRH/3RR972JSB62DZmheTn/BQxmmzo+zf35uBq2qGmkbDMW9TO4spkid+6/TReW+3juCnwzz/3h/AfHrwfX6hv4Av1Tby23MVrb+zDeY1vevplPJUfI1MOU01ZYi5oZMqh0B12zQqZcrjd7OAdk/vYtSt8y/UvAADe6PZwr5midhb/9Y134GZxjFv1Hl5f7uB2s4t7zQyl6rB0eRo4dmyF1+/vofUGz5RH+APX76DxBrfu7cFHF2mtQhIZG+3x6Zeew83JCf7gwYtUSNJ0mNgWuXGw2qOwDrOiofR0R1SJtlGwbAIVcQXpcHxr0O07wIZUXymAUt5JQA3S80SwBMSBNU7ErvRUZd4AUIFCFbFWFZXmoPBYNyF2qJvFoqgxfR+GRNU+CmZDo+Eak849BBKPAyD2S2TSea/onNJkSmDIlI6AUhHZJg2EUto9x/fQv3PqvQoYiJ9lHw55P2knVkwuEtB7G+lAxWkFq8CmgQOdTuiBkaniTSTBhxGARoE8i7RYHxiG0WIGZ2KXxOXhkBEfdAJTfE3S3B969mEtzoDElARHA4MaiI/jxnhfkZ3ql0GvP+pUnynGzYPKo/DvE8uBpN+Az9MECtVmFCIjpjKK26ONA1QgHZg4zwHrNWCwh2NVmvxDfw3YWylpqOK1MNb34VzepMIIjND3k7xNwISd6CWzMi6QOgYY21yszwIiY1C0DRidJboen8dbXuk+PKHXV0n76Ec/in/1r/7V2ucf/OAH8e/+3b/DL//yLz/yti9DZo/SxuyQ/HxT3Ey+Cxp6MPht65Cb9rVp2Q27nbxwjMWdGdrW4Mp8iXle46X7V2CNxxcOr+KZ+TGaZYb//uqzePH4Cq5OTvHi3QM8e/MB3rnzAE+XRwBokMqUQ4UMO6ZCqQ0K3cFD4V6zg2eLQ7igsWMqTHUND42lK5Apj4XL8c69B3BBY9dSNXoOjzko1J7Sbw+KJbQK+OgLX8TvPriBV1b72M0qdEEjL1o0IBfSwQAZRZuf+J3349fte3FwdQEfFOZZg9YZdFqjcwZ1Z9E5Q0+ySsEFAxX6UUCpQKCjo0yx4p5B+96WwlPapYnDJ9M7Sm9X0V1XAYBT0K2GnzpQZXUN3QLVHhLTEmzA/JWYXdYB0DGsqQPUfhsLXxJoYZGxKmOdJzHBAFFIrQLats+QS+GYODibgmyJCSiBDCUDUso2aweYjVnroqNsrrVQMYdFnCKwItykwWAq0DGpjly4+1BSiGJt329bUSgszc0Og3pivL1BqnzUx3iRaSYw4fDhhdkRPgYMv2PWhH/vgS5oPHF6BURtGoJKywKR9UnXMUTXcGGHYIZurQPjSQHmVKvIzoF/1+j7E7L+mikdgJWh6xT68KHugG4aeiApHtjSafNn/MNLxou3H6+L/N0HLFAMAwbVMz2sHWKQo1WA8wrzskHVWoSgMCuawTZkeGtj6jvCIHSmMQRPHBa7CCtzniP1eL/AZpfrTe2iobUn2QQ+f6xtfLW0v/pX/yo+9alPbfzuQx/6EH7t134N//Jf/stH2vYlQ/Sk2hhliyfMPlUm9EDoCdwv53Xi1e/vwkxbGOuxqAqsugw7kxpXZkvkxmGe1bj51BGmkwandY7cOPw/3vFlfPjK63hhcg+Zcmi9RRsstPKYmhqFbnEjO8KOqbB0OXZthRNXYs8u8d6CHKdvux28t3wDu1mFymXJDdpBU6mMoPGR3VcAAK+srgAA7tdUT63QVHPMB4WXFvs4jlXqi5IGUE4xVwopZAQTkE2oHIfVHqWhENiqzeADZao5p2NxyRiy0AEmVolnXZFqdapx5TtKufdBJSFz4CwgnvD4/1ZBNxq6AdTCUnaYBeorgJsE8h6KAOL0GWByN6DdBVQbf6jSITgFnbmUURSsB2aO9hvZIaVD9FcixqjrDGXOjQZf/t93Gr5TybtIxad5lZGPEodTNvWjxHLGFPbETGzKVFL9MkGHxNwEZjQcegDE25eO0FpksLEvF2vL43GMl2cAw6GxlDUmji2dm4p1vMREPzhu/jcyOWvMgbxnGSAkIMEURxBjwBDgcP9KpVQk8GQRuQCSA3bKhiiVCr3JpjzeygCBz4+OQ9cqlTVJGYOd6s8f4vz4Iq2dX7+fAdDlU9AhldgwxsNaD8u+XYp9hQLyjOKnRgfUsTyOjgCfM8mkEaNRo7AvepBxXibYw4SoHjZ8dhHGaNtxXbYn277u674O3/M934OXXnoJYYML5gc/+EF8z/d8zyNt+xIQPUpLT1LARiCUJghAGrixHwkzAE8CFG1tip4ScadE9/IMJ6/uwCqPMmvxzvkDHC1L/Ncvv4BVm2G3rPDeq3ex7IiF2c9WcCAQ0wYDB3r3gi7IlMP9dob3l6/jXcUdLH0OozzudjuY6RqlalCoFpXLcNIWWLgCX1xcx7Vyif1shamp8euLr0FpWqxchgeraX/oKuDl433MswavnuwBoAFVNh7QjPHIJy26xlAdMu2hlccsIwH1aU11zDSDp0ADoM0dOUHzhBrDPiELcNMAdFQwFiAhs7Yxa0aD/GEa3WtBYnjClQQ09EqTqHkWtUETn9gNNwlYPqVgKlApj52WGAZmWEyAqjVVtlcR7AQqPhs8vTvXH1tKww9KeLDQetoE6GyYcRZiaZAEJNJEvKEzKhAwi2nmABCyeC6RrYAXBow69ALo9LdK7yoQGzIIGTU63QshpvYzo+Gj4JxT5ZOmie+pyBZ5Bm1jk0Xwd6EPWWG0jJy0GAzo0fIDdiXSJAmU8bkMw2Wcdp4OfKwT4sseMAxLAtGWgPpSGl/kMfBvFX8bs9LQlU4skWl6QImAHsDL85bnmIwkxbgmmOyUQs/vOgwE5JtCR9b4ZA/BfZSB+k5ZJ/+hzDhk2sEq8im6qPZmm0/Rk0jVP6s9LDC6bF+59q53vQt37txZ+/z+/ft417ve9UjbvAREj9rUhvc02KAfMMdpu29WY41D9GjRrcKLv/M0Xr27j5cX+7i2c4qnDo5xfbaA8xpfOjzAblbjN19/Hp89von7zQwOGkZ5GAS0waDyGdpgcOoLZKrD+6dv4PX2StIY3el28YHyVRh4OGgUukPnNZ6enuDfv/peHLcFrKZlX64O8IdmX8T7Zrexcjly26HxFj5oPDVfYJo3eFBPAACTosVyWaQ0edlsTDXPii75BflAmWFGeZQ56YmMDunhPcs7uI7S7ROb0upUd85nAfowRpPjU3z/IBLI7VlH/U9AnxllAuwDi7DXIux08BMPt+sIVET9hs8BV8bfpAEgPISSUHu/jWEXheCI5fGdRltbuKgX4pTtxHp5wK0sgaZOw1UiGh5IHxWcTvqn5BCdTAp7zx8571I4LO6r8FB1BDAjtqLvd+LFcyxndqWwV2QwEpgAPTBocTxSyK1DzzaNSoHwPZayx0xI6/B9kNLk+fhGDySS6CHEHF+StWGWJlJOSjJWEAxiwPAaQKw7vlDMRI2v45iNkcxSTuJ9ZQKxQxo9GwTqg+1uiAVx0af9s2eSwprvEBBG12eDn1BKpScNHuuE9AbwkcX7MIQ+BBYC3au7EzJmZOG0FE/LZkXqPYCt4EZ+/7iMzMM4TPOxvy3AUXhCr6+yFkKA2vBjLRYLlGW5YY3z26WG6FEbc/HAcEB7FNZnW2d8Ep009HMTALj7Bb58eBMf+sBL8JnCveUMe+UK87zGostxc/cYt5dzHBSnaROvN3uYmxpGefigsQwGO5r0Qm2givI7usKOXsEojyZQmO1Os4OnJ8fwUJgXDaa2Ra7pifCwmqJULaa6waIrcLVcYuUyzEwDqz0mtsWd0zmAOOip0M9PgWL6XMcLQHziDCk81wUNowMMAqrOosxadE5DaY+msSlUZmwnrlVkT0yAXWiEEa3OobYQ3ZdVo1MYlMGDciCwYEhIrGxIvi+q0zBLYodsBdRSNIw4UcX/zaQjAbdGzzwEJDErH4c2pG5QzMzEbqmzKKKOgE9njkARgyEAXA9rAIBYLI54vZMGDlBt1MEwEOFlOyVSw8OQDRG3STqejq5RsCF5NJHoPDJBHCYKCpp1TCH+APFz2JCuPWICgRRJD975OGQbM0PA+n2s+++G2pARWEr7oO/UeL/xGqyN3QxEW73+uWwMfhWoLEcs81K+bkmcv8N1YeJvEf2IGHyGzI3ObQjmpEYoOaJHlpEtB6jPRW2Q9X34b9R0DPHqeD8a5WHjLFNm7WDZ80DO4BK8iZocoL/fL9JY3/RWtf/VNEQ//MM/DABQSuFv/I2/gem0jy445/Bf/st/wdd//dc/0rYvAdGjNnmDbuLZtokzxCR1YWS+ZTDYuAuJfoBUzJIX5hpTn331Jp6+doSr01PcPp3j5uwEyy7D1NKg9crpPvazVdpO7amr7NkVprrB0heY6ho7ZpVKdLzYXMcfKF9L3kS7doWpafBfH7yA0raYWspUK3QLHZmnE1fimfIIxx1phWpvkWuH47pH+EZ57MwrOKfTIMomjCGChKAUyox0RssuQ64dctuhajNoFdB6gyLv0LQmaTp8axAK11+uTtH1ygJ0R9IXLgDr2VtHaj54Ao7sxOzLBsvnAlAboFOw1yq4xsBkDv4wR35ooBuQRwzfw7UGZpQyH1yfVRO8ovIgcVLizB6ei70nbZOP18RYhzAF3NKSkWP8zXlQ5wlFddGXCHQOIaMMKd31hVsHfccT0Ats6sjAR7IhzM44CYyQGJvkTO3jPkQIJ1hP2i3HnTlmn9kA+AAEjaB98unhbL3A/k+I7zLVX+4fggHi4xUAaHBr8fNNnNRlJtkg02oMhvg6q0AsnNwHxxMT6yR2ykBHI7GT8CCjy3QsQACBRWYhVa1R3DHkMVTGY+wAZAQmVYjZjPNAXlGdJnDOx6XEzsdN7Jf8hjz0CCjJxv9xJplm0MQhWYUUGpPNQxGeFYDzK5GqLusVPvy69P4wxVolYxQuNLhftodt//2//3cAxBB95jOfQZ7n6bs8z/GRj3wEP/IjP/JI274ERI/aVBDeHuLzQaaNYADGQOhJHwtX0g5DoDSYDCC+u1Pg9bCHVxfXsHNzgdunczw1W2C/WKFyGV4+3sdJV6LTLSamofAZPBwUlj7H0hV4td7HzeII1+0JAOCzp0/jmewBPlc9jQO7wJXsFEfdFFoFvGfnHrTyKHSHqW7wzsl9OCgY5TExBGSOuxKVy1A5iwenExgdUGYtWm9Q2g4VbMyu6oGK86SnMcbjtM6xW1bYzSscNhP4oFKmiwvkYZRKdiiFbNoieIWuMZQ1xmCoUahvdMiYlPCIYKS/kCpOwoqLqcbrak8V7G2DZj8QiHIKPhDT080CZvcUqmuxq5QeyGJIwSmq1xar1gNAcAomVrQPXtNTetRi+FbHDKSY5ROBmpn2jFcQyUyc+UQ6k57R4v4ToiZHYSS0jqApCaPjZ6kPR2PHpI/jxuyNi2wOgzmNxAoloJWqwSNmq/E+yLNIRSCkI5hL64YI2vINN1Qg6wByDWfgih688U8p2Dc6n8jmRQZuAIYUkjEni9yD18TGAfCdQYimngwUg9RMxX2HTiWNWA+WVEq7T+G+0E/GxN4BqtGwx4aYoXmAPVHooohdtWThoDoVi8DGdaU/1dpTVOzk3BVUSAA8uVjH4+nDX1E35lUCAJv8gBjk8D0I9JlhlC2m+nJvIu1+GyjaxMKcly32ZjNLb1n7Xwh7/dqv/RoA4Hu+53vw9/7e38Pu7u4T2/YlIHrIlu4vtWFsOatTPgEw9DAPT6Gf62j8j7mq8gEV9wooBZy8MUd7dYXndo8wMw18UHh+9xCffXAD79+noltaeVzNKIx2u9nFSVfCRUZnkZV4V3kH75/dwo5ZodQUCnuj3sNLqwO8MKOMtdpbzE2NA7PA89m9qEVymJsaWgW8tLyCxhtoFTApiKnyUCnFPDcODQxy47CIFe3b2sKt6JVzDbKgYZVHYTosPT09aAR0gfQNVZfB2L54qjYBzketSeHhcsAKYOGj9oZ1MylcEEM+rMGpr1DGj26A2asKhwcWxX6N5s4EutIo7iu0c8AVBEy8DeQ/U4iBO0Q9k+lLdHCtsm6VwU6i3igyMcQQ+XWzPyBN6ON37iBBBWIWQH/r6HnDoAiIoMkhCqnRi6kjYElZZwFigkesMSeYIBOS99CgqQA0miZyxi4CWAUyEe+BinjgUCECvCj6Vu1w3wK/xhX4OJFE4ErH68VAKa6U2Div+kwtFRLIVLr3HoKi3wzsOeUBKNVP3wrkHh4HDGX5gg2vQygofDbQ+PB3DlC1gamIPXNZPM+goGsFs1JwBYCckgN80QNfOnZxvdOBDY9hzdKC2ZXQgyJexsSHivH6Mm3eqL40R9ouM7wi449C8WrgO3QeUxSC+oq7QW9yv97W3lItkXxAeZxtfJW1j3/84098m5eA6DGafIoefnHWShuWf+gdn7FPHme48rUCQgZK8eandbFOiE64AUDlLI7aCV462ce94xmyzOHL5gAH5QpX81Mcaw/tPDpvMDM1Vi7HyuX4rdUe5rbCgTnFqS+glcfr7T7+4513Y7+o8J7pnZROO9UNSt1i3yxTaG0vht3uVVPUrcUHr74BqzzurmZYtRm5MauAZWdwZUJhvMMFCa59FA+rE4vWepw2Baz2JNpUAYXp4I3CqskS6LBZL/pUCuiaWFA185S5U5Opjet0D34E66cUgFalawdEgi5qgNpdoHM9QEHpYB4YTN4Aqms0ibvIDoUY9mKhqgOSf5Dm2mTxOLNpS0JVTT4qPGF5p6P3S5xsoq5KmcgeuTiBt6pnY3Sg8JXSQEP+S+hPcdDHGFQnxocbg5EAwIjPA6DaGKaxiKEy9JocLUAN14Orpamk6MehZz5kv06FSn0f5gyces5AwI7YoAgGGMAyOQIlMsI4E1EHBPS/fbqWiECTQRMQTTzV8L6PYKov/BqBZgqpxeVqTaftFVStgDIaWEqHbj6MLKBj9il+3+x7FPc0lKMMRm66VilLL+GGlGUnQFG8Pil0ldiheE08BmU3nNd0+AL4AARwLPtlxZbS6jdobCQw8sEMmByjh07V8rsnCYIu4kf0MOGyy/bV3y4B0eO0TTfLticbeeNtA0U8eF+kxW2Mw2NpnEuDIIVmTKfhr7YInYJZmAEDYOcNnt47xlPlArcr0hNlxuGNox28cu8KvrR6Ci88ewc3pgtMbY2r+RJWOezaCq9U+3h2eoijboo9s8LSF3gmO8SLzVV8eP8WZrZGqVvMTYWlz7FjVvBBwyDAIWBuKhS6xdTUCEHhYLpEph3uVxRq2y0rHK1IT3Rt1gu9uZSGyh3QkQbFLynUtlNUfS0lFdB2lgTXTqPrTEoHDjrAdSZOfv2112UH32qE1sSn/XiteAINgMo9lZJggAEqwxE0ZfS1OwE6dxQ2WxnMXiVDRm+RwFACBSqQgDpz0HGiN9HThcITBI4oVGagMwcNj64hHyJKz0cqNhtaA5U7Ol6P/knf+p6BCQAcWQfoyKwM+p8AQ71XTuj1Orw8/8/9WYIZLkvB32n0/8t98eQfGbMkHI6/kS9Ev2cht8NQe+MUdKzqHl37+n2O7ysR3uFsvQTW4o0hGbtUq27bQwiDMKf6G1JFVkVkbDFQBQT7wudUOmBl+ptZWnsA0CuDoAM0M1Hx+voyEOMY9USKr6VTgBZPRQkEjU5iAIZCAkPpXhBgaBs2YJ0QV6rfxPJIBmVT6IuLKRvtAa8B7QcuCbJt893qj+fiKOZhTBofpqkRPv5KNpanPe42Lttl2v2jN54oEN/5xaGVIN6lEJdTYfn/izR+UlLAmfduZCkCD/Cx6ZWm6tdHFnppkm9LUDTh7M4rvPZgD13Q+NLdq/j9BwdoncELV+9jOqlhig53FnMqu7HawWePbsDAwyiPq/kSc1PDB4XPnj6D6/YYN+0hPly+gm+Yv4j3lm+g0C1musbddgeFanGr2wMA5Mrhuj3BwpUksK4K3JyQHmm/WCHTDlWbITcOpw15DC1bKvWhmFmJT+Bup4OadsitQ+0sGk8mjQCQGRcHWwpB2WhSmLJ8OFyS+aT3CEH1AuEAEiPHJ3lGnir3UDZ6E5kAn8XUegt0e1QstqsslFPIlqTTaXfEj154qIzcjs2kix4vXhhIUraO0sRWGe2TnkmbWLtMhZTZE7yCW1oED/iKBG6cTafkRJcASuxXORWD5bIOcnDk/kZhq76fESsU0NsGQ7AwcVsMfjhFn/s8Z43x9zzzCfZJtyqWPYkMkQ5J/4SAHjDFch4pWhd9ltL++O8RwEi//aj+FhAGvk30QyDVtpMAIv0GQH8urMERF4/7FAOk9LtwWQ4FhE7H1Pj+eJWJ/UuMFT7z0B2dvy8DdEW6Kp+HVCrFzRz8lMFQ/E0MI3msp9Qn/yQ6t3FKvWwDXKnoXtKpDxIwClGvh9Gy0mAxvQQw1EpUu0f/QPOwTQKkt8Ic8VHrpD1yC0/o9RDtYx/7GP7gH/yD2NnZwVNPPYU/9af+FD73uc8NllksFvj+7/9+PPfcc5hMJvjABz6Af/gP/+Fgmbqu8QM/8AO4du0aZrMZ/uSf/JN45ZVXHvICPLl2CYget0mws6ljjZ+Gz92e+HvLOltBEQ/8gh0C+qfoAX0u2v0vXUFzZ4L//PvvQv3aDMdHU6zaDPeXU+TGoSxbeK9wXJUEmu4f4KXVAZYujwxPh2vZAgBw6GaYqQbP2kOUusWOrvB8dg+HboouGLTBYqZrVMFCw2Oqa+yZJTLlkFmH29Uc7yjv485yjnunMypkGjSqmkwjG2cGx85lAnThyIRQhfS0yQNupt1A2JlSipUYdPlpXk4S/FQdFLFBre49YHhbEcRo6xEKjzB3aK846EkHV1uagDxQ75NhnqkVablMPzlp69cG7uAVMuvAVcDZrbqYtMjzjsSqYj2tyYSRAISmUFTsEzruyzeRDePvhNA5hWX0sI8kx2kpSuO+JfQ1iYlhsCiBB9DrjtKFC4PvFT9ICIdqMMBh/VFHzFGwYQByVARjgYu6KgxBmDQ/ThP/6PhEiGbjccZlJVgFIAD0lnXCaILksYDtD/gyxBAsr8/gNQSVSq3obqjBCiqye/y/CfAzN9Bujfc7MIxkcKcwAEV8WTaBIdnflALchn05r5L9BTfOIJPb5HAamzTmtoNRHmM9ztpxPCTIuXSMfvLtE5/4BL7v+74Pn/zkJ/Erv/Ir6LoO3/Ed34HT057F/6Ef+iH88i//Mn72Z38Wn/3sZ/FDP/RD+IEf+AH84i/+YlrmB3/wB/ELv/AL+Pmf/3n8x//4H7FYLPAn/sSfgHPjtNE3p10CokdtTI3LwXZ83/EgwwMzMzeDx6wNf28CReMJU/XfJU0E/61DX9jyjMMfnEcAwr2CHtxrg7qxsBFsXJktMS9rPL1zjM+/+hQ6Z/AfPvs+/NtX/wCOuglqb1H5DNfzE3ypvo5PVS/AIOCF7A6uWyoO+4XlDVzNTtAGg0w5HLoZcuWiF1ENrTwy7bGb1QCAVZPh6uwUVZthsSyQZyRyfmq2gFYBzx88QD5tURa907PvdF8FPl4PNnhjkJRnXWReSCFiOLXd9AZ0vqVirnCaPqt173sjBbiVSUVgjfXQ85ZCPvMWO7urHiB4heXTAd7ENGnxOysTM8x0nBisTxqnzDrY+MRsrEcAmdtxyj1NMEj+SEoFEoMrmhyV9sjKDiYjV247Ez4wzIAxeBGsiizUmkJSjKY5Ljvut9y3AcEM8XeBXhpbR5xUYR6i3wakkh58LIqZIwC6plBpwlaRvUu+SHzPCfATRv8DdFw6euuklHv+7QAhVqcD8zGzUI3PRcXPgkrhJwnAEhgJIJ0aXytNx8A+VBKkhFbTZbeBshIVBtcjGPrO7Xa903dA2ncCuwEC7Pf9hfaH9BCgGeBhnWlJJTciK8TeX5wZ5qHQxgcWFklvKtDKZTuS27zyKG2LwghPMO4CElRhuzv1ee2sZb7aq9Lz7fW4r4dpv/zLv4zv/u7vxoc+9CF85CMfwcc//nG89NJLgxpj//k//2f8uT/35/Ct3/qteOGFF/AX/sJfwEc+8hH85m/+JgDg6OgI/+Sf/BP85E/+JL79278d3/AN34Cf/dmfxWc+8xn823/7b5/kJbpwuwREj9OC6gGOQu+kO5gsxMAsn5ol+Nk0uWD0GW9L9NzBk7wARePtyEkgLcL0fXoqplFQxSfaNvr1zPIGs6zBO/YO8VS5wDe88Aqa0xw4tTg8muL/uvVuvF7toQ0GO1EPlKsOr7o9AEgu123UDU11jamu8Vp7BQBw4ieoQ4ZStXjn7gM8VZxgx1S4Nl9gJ6/x3qt3Ya1DGQFRaTpY5XGtXOI91++izFooQ2GF4Klu2arJkjkjD9a57ZBZl15UB613iNbWw+QuCWRDp6FODXBqEUoHZJ4m59zH+lEK+tQMBtq87GB2WmQl1VUzZUdp8jagm3m0e4DbcX2RVSCZJbKNwHxSo8g7ZPF8yWKAvIYU+idyrQLyrBuEOJQixiwkXZGCNS6GJdCnkSewwMJZlcKDyquh83EUfg/0OgppH/2C6MPB49CaQj+LdxEAyHR7Zi+YbchY44XEDA36tVPQjerBnDgGzQ+WOohSOfK+iOnkArCoWKQ1pZcbv3YPcoZYb7/Qe1NpS6EtBqdsKgkAJuMwJxJAgAL1AT6fwol7uw8huaVN/STEWmwhXid7okk3NKGadCr3CFkYFoqN10GJBzHFYVHThwuV7muSKQbafLkEq0NaoZD8hlIdM+PgvEKmPZwYlLivypAYgBTKrh1JWNuYWapVgI1s0Xms0LbSHZuWPe/zJ9ne9HAZsB6heNTXY7SjoyMAwMHBQfrsox/9KH7pl34Jr776KkII+LVf+zX83u/9Hv7YH/tjAIBPfepTaNsW3/Ed35HWeeaZZ/DhD38Y/+k//afHO6BHbJeA6FHbeDIAxBN0GA7C/NTGy45B0IX2N9r3KOTAux+0MGSJBt8nYBS3oUJalgZ1heNVgftLchDsvEYXNHazFa5fP4JZKfgFFW61mlLqnTiYe90cp75AEwxK3WLXVng6e4BcOeTK4cAu4KBQqgYnbgIHjffObuOV1T72zBJPTU6xn69wWJeUKt9aWOWxaHN4qHgsNV7Ye4Cvf+EVmMwDC4t2ZbFs8pi90qfmhijYZG2Di0VSlQqwluoueS4AG0Fh2OmIlXCK/GRsSE/+9q6FbpHYJddGUWgsW6CUSHefd0BQaK46Kr2go3YINBmb3GFStgTU4mTDOidig/r/edt8Tta6xBbpWD/KTFvo0qEo2r5kCeI5JQNEkNEhh88YdPA+AnotLqewi76neNLnjbOWCIjaItVrjBiAMLvGwl8TYibYqOM61afhg9b3NpbkMAG+GDozJymfDUkfpxpNoSZmaRRG5xCXEyEkbQkk9KwEAWU5WXAotQ+rxs/HABF0PQahNDkGcAmU3PcHptEfaABp1DpNDGW8xioQa9bNI+g1AaH0SY9EzHBI4cME/viYVf/Sun/xdZZAiN77/7lOHjE8oQfaEei18d5qfWSJEO9B9N5CEsQUpkNmHPbyalCqQ4bXxmn7chsSFMnzOqs9jDv2/4rt+Ph48Krr+tx1Qgj44R/+YXz0ox/Fhz/84fT5T//0T+ODH/wgnnvuOeR5jj/+x/84/sE/+Af46Ec/CgC4desW8jzHlStXBtu7ceMGbt269WRP7ILtEhA9buPCl4OBTw3F1dy2MT/y77OA0gVBVJDbSk+HYvAO4mlcPB2oAIR5B2UCiqKFNQQg6s6i8xp3qxkWbYmD6ZJS+Scd9krKGtuzK2TK4cCc4oY9wn03x6GfYqZrnPoCH5q+il1T4U63g0x1uGkPkSmPUrdY+hy56jA1DT648zo8FK4WCxSmQ24cDqZLzIomeRT5oHC/mmBqa8yzCrtZRZljZczE8grLNu/LeETgk2mPSdbCeWJOjKGn0QAq4DrIEorO0cEG6JWhiSkWd9WnccDPiR2wuYO2lPVVFi2yzMF5DZu59HQeCg81a2NV+76obDbpxJM2HY81HpmN24ifW+MQgkKeuSgOJ/CTZ8R4yay6YtJivlMlt2AWVievosSQxPeu17PIPAEgHrtCEjgn0J+8iNCDIe5r0tFaZnkp8b8XO2KQJJ9WRX91Ox1CTsVOQ0YgKk36LK7OIxuU+2HyQaeG//NxRM3QQECtQir4azIhmEYUUEcmMrGt6Zpj0HpDQxbv9a+kDTKBjtUDaDRQ9LYJiSUKKi3H1z+YgJCh1xux6WU8/sF9zuwY7z9ErZkZmS5GdkxqfBhccA0yPi/+PD1wRBAks9Eu2iQzJJtki4ZV6fvaYZu8jS7a/m+nKXpURmj8AvD8889jb28vvT72sY+du/vv//7vx//8n/8T/+Jf/IvB5z/90z+NT37yk/ilX/olfOpTn8JP/uRP4nu/93vPDYdtq1H2ZrTLtPtHbUlkiv5dsjY8cErdBbD+PUZ/y+/Pa4q8UhRvY/RdeoLfxAwBQ68TPqVTC0wdlscl8lkLoz0+eOUWXl3uo3NUNHVqW7zza1/FraNdfOPVV/Dqag+3mx0sTY6dssLSFzgwC7zWXsGuXsHAJyPGL1ZP4fn8Pqooer5pjnHFnsIFjalusGeWuNPt4GZ+jM+d3sC18hQH2RK/v7iKZUdeQplxuL+c4qBc4ZnyCIftBDuTCqvDkjKOHRVtbZyF0R6t78NmqyZLQM9oj87pZNBIvjG+/1vHiuOtSqnmoVMwtYKbevjdjiKPiibjED1bqoYMGpuTArro0jX2lUW2W8NaD28o5JBnHQrbpVTkwnTpaZsnKJ5spiWZZhJYUsh0BFzGoXEmFb7VmiwGWL/BGWgcVuR+EdgoUQUErfpMrVg/TEWjQWQBamWiuFr2bYxKc8j+LFggFgKP+yKQmCPtejYzFMSMBBvrwWkAtQRgCn7ioRo1yAZkR2a2REhAv1H0O8bDSuAk6W3i55ESs7mD6zSUQbp3Q2B2rT8PzqzykUEEMGCNNNdki+eefotGQ2V03ir3CLXpL4u4tiHqpTiLTgLQYONyvrcoUIKR6sOCtFEJfNhlm68PJxwwM8a2FLIlcB3UoH4gh52dI8d4LuwKYE0cza3zGi6Gs8uoG7Lw6GJRZtkGztaxP+uAxDr5eEwPmz6/qaTHeBsPU8+Ml38r2ggHP/I2AODll18eOD8XRbFlDWo/8AM/gF/6pV/Cr//6r+O5555Ln69WK/y1v/bX8Au/8Av4zu/8TgDA133d1+HTn/40/vbf/tv49m//dty8eRNN0+DBgwcDluj27dv45m/+5sc7oUdslwzRk2qaAQg/PY+e2rjDDsASBk9vw9IHW/bzsDedJKhGNw2Hg1iMmkJ9lQYqg7ayaBqL/3bneeTakX5HO5SmxQs79/F/vO9TeHd5G9fyU/zm3Xfgdxc38Znlc3DQKDUJeI/9BJlyOPETGOUx1Q00PO50u/iV4w/j5e4A78nfwHV7DAeFE19i0ZU4dhO8MLmH5ycPsHA5TltynPYgA7jCOryxnEMrj52sos+ju7T3Cqd1jpOqQOsMOmfQxpcctLiUR9eY5OHDE0VgYbVXFIbR9JnKPNpnavgrLYrdmkIscXtF2ZBVz/+ck9mjDvCt6VmQ+HTOk8bulCp/KwVkmkTlwNCYTqPPkiPxaZcGcw8FF5kf1hSx6JoHdhe9hhDQhwSjWEzFCZX6QN8FWJsTNFL9MC6hsSljK4EhyQZ5CJYUQ7DE+h5RD81z2n/cXrA+2hLEiTj3wNQhlB6YxNjRxBNDEq0XlFMUXuKaajEbLZX2kA8tm24V7VPWIoOCxPJwCz1blH6HTguWhpdTSWME9GAjBJUK/sKQaHrdcCcCk1MDVWsyzewUdKOhfCxHkvV2D+Nz6muWhaSPonMhbVBiZVTPrmjdh2qNJoZShq6UComJ3FSBXmu/llXG7xohGTcy81OYDleK1YANyrUjQ1UE2ChYG4fReL+SKZK+Rw/DFm1iip5U6GyTZcFXrD0MC3TWC8Du7u7gtQ0QhRDw/d///fjX//pf41d/9Vfxrne9a/B927Zo2xZaDycyYwy8p9/2G7/xG5FlGX7lV34lff/666/jt37rt94yQHTJED1O49lDNn7yGiuez2KF+Lvx5iRTNP4b4v/x9/L4ZAxk2w3KmE2LZZyCrw0msxqndY5nnjrEyuX4/PE1PDc7widfeQFf3jvAD7/wK5jtUJz5sJ1gbmq80hzg6ewBDDxebK7h3flt7Gia/N9T3kapWrw7v43r9hjXzTEMAjLl8M78Lu50u9gzK7xUX8W1bIHfX13Hoi3x7PwIry72cLic4EiVeGq+QO0sJqbFqsn7kFCcXNpowNi43gWXByh+wuWSIMncME7QvjbD6yX8YbKyI61OzLAJQaHIOtQtmT9a43H0XAfUFuAn7cjcqMzTJJkBZdGi7gwyS+zOJFYCr7oMk1iktul6AGcQ2YjIrLG9gFYhabesiYxXIPdq1ndwmIbNHVNocDQRMwuRGAn+vOsHNa4rloC8U0g+RNwP2awx9i1mMgYMqhT/mlG/DIgOz7x+ILYGgQCSV1CG2DpYn/q+6nTSJKXbLxsJpFkYFYb7S6ABSCGhNKGpkNL4ddSLaStqysmV0z3aO1kDSKVT0vVisGK02L58eqHfwZce5sQMfJcS8wz0NgNBsBlCE8RhOm37TMUEVuLhynpjSZyvAgKXGwGSOzo5pXsYhYEmLzdukHHG22EdELvHQyHpiuZZjcpl6ZQlGEmZaxtA1pgp4uMei7cvwhhdhCm6SHur2KG3qn3f930ffu7nfg6/+Iu/iJ2dnaT52dvbw2Qywe7uLr7lW74FP/qjP4rJZIJ3vvOd+MQnPoF//s//OX7qp34qLfvn//yfx1/+y38ZV69excHBAX7kR34EX/u1X4tv//Zvf0vO6xIQPYmWgE0YDIiDSVWCk9HA2espMBy8H/VweNsbxKrKhLWPAfSmd2kjgF4adLsGsA4+aBy1E7TeJLHk67/+HPbfvcRT5gQn0xK/cfwuPJffx9IXeMoeY9dU+NWjD+Cd+V2ceHKbvmoXMMojAzldT3WLL7cH2NdL5MphR6+QK4fZpMahm8JqelLtvEFmHJrWoshb5NphNydDyJmt6enTeDhnqL5X5uCcRtsZKokRC8Dy4O+irgiBTA59TLGnYpygchdy0o7sWdcY2Fhc2WjKFuMUfrYGQKtSplRiJRgUxe1ZQ4xP1WYp7AAAJ1WBVWtxZbJCq0xkgKgIrofqy0XE4/dQKXQTgqJQGWf3xMkq/axxgmLmi1krDpdBdNX0xzisKrMoA4RWSPRtCY64yTIfY1zuFGVIsRFjwhjxntHxbz5+r1OGmoqhygQQTEjFYwl0jMJIso2fZfT2iVSZWOokKJhYOX5g6Ki2vDNIj+9Bkw+UEkBucD3F/yH+Pn7ioVcaA9uCwcNOv04KCYLBTQTDY/DLbIu4LpJpGV8DtnpIAH0Ehhisp2uJIbOT655x4rI6AGAVhcrSeltAENCDJP6b98MgSyYbPEzbBIr67xC3edb6w//fdIH2pnvqUbbxEI0NFr/1W7918PnHP/5xfPd3fzcA4Od//ufxYz/2Y/iu7/ou3L9/H+985zvxN//m38Rf/It/MS3/d/7O34G1Fn/mz/wZrFYrfNu3fRv+6T/9pzBm6Df3ZrVLQPS4jUFQGtRUP1HwQM2iUR6UpGkcr8hP2TJbRwKnMPpftDH5s0YGJXA2xEi8TNBIpnfpODQ5K9fHBdR+hU++8U5UbYZZ0eD2ao6n947x4nsz3PdzPGMP8b9NP48vVk/hleYAN7IjvNpS+uXz5X3s6hW+2NzAVbPATJ/ixE/wjD1E5S3udTMAwMvdVVw1JzhGiVNf4G63g9ebPXTeINcdvnRygFnWIIDAxEGxxKIr8NtHT+P52QNUrUVXWwprWY/K57C5Q6uIhckzSoUPih7KAcRyHn3NMMdMSMwgCq1OKd9BR81IY6DKLj1RFzn9bQyFvFathTlo4GrTe9qIa82sFO9/XtZonEHnNIwOmBUNXCBReAhA5zRy0+syfBSNexbdBtJfyMnACxE1OSxrwXaAbAMUgCJERsXTuTI7FHUrskxHyAOCo7DUoLq87O9SSyQne9lvue9zn44CbGW9MIwEKeNSX40rO4VgQKwQ/yiGYn3KeMBEPR0nOvBv6Td0eiBpRAjcCAsG8D3EjEhI711reg8fCRzH9zP63yMtG6+HUujF3Kzn4rpn4nQxdf3Dkgb8xPVsGzCqYs/XWgwY8dqzUHyYlQVktksgml2n+UHBO40ugnj+HPDJL0vqiLgNM76Qwrwyg6xftg+JyTFtI+jZApLaoJPjNV92WePvYZieMSg6S090Fhv0VmSrqTAa7x9xGw/TwgXEVTdv3jy3AGtZlviZn/kZ/MzP/MzDHcBXqH1VaYg+9rGPQSmFH/zBH0yfhRDw4z/+43jmmWcwmUzwrd/6rfjt3/7twXpP1B48AaDR06EckOTksPbEqNbXAwaDwlooTH6+9pS74Sl1/B3vM04Om24gxZMTt+hCrGqN+qRAbqn8ReMMDldUWHV3f4n/z71vAABkyuObdz6Pw3aKz69u4JXmANftMaa6wVQ12NErNMGgCjl2otD60E9xq93HG90eTlyJ362fwZGbogoZtPKYmz7lU6uA0nQ4mC/x1GyBxltoFfDS4RW8Ue2mrBxlAnkHLS262qBpLNrOwHmdBvG2MymdXWolXGN6dqXrDQBD5kn8urRJROt9P2Gw2y5Ag6VrtZj8qD8EFqU6harO0HYGVWfhvMZuUaGI7JLRHjt5DRcU2PfFBY3W0zmE0B+/94r0UZ1B3WTpPGV/CY70LSGKrMOp7dkUTtW2IU3qg37BKfoO6XsO3az5DXVqjeGQTsxJU8St8PQZ3yutHvocBRBACor0XK0mM0OnEKKpocqjxQEXUBWZVwl08L0qfIdkY70NMz48KfoIEigjKwKE2D+kb5QyIemO0kVXIsU9sUOxH1sPFbMSQ0O18npxO3rhtjw+YGDKmMTS47A8/xbobQGS6aLq9UAM8Gj7IRqA+lSdntPoObtsUFzV9w7wAPX9ECh0ldL54/ccKtMIyXuIW88e+aQXGoMX1glJYCTXN0o4tQtN0ab9XKSdn7J/cTB0EQuAy/b2a181gOg3fuM38I/+0T/C133d1w0+/1t/62/hp37qp/D3//7fx2/8xm/g5s2b+KN/9I/i5OQkLfPE7cHVhr8HAxJSOCLNMDK1WIuBGuL/MTPEr7P2P9r9mY3DH+OFmUAKGBXqjEaEXuGNBztYLXMUtsP+ZIXaWeTG4bCZ4uX2CkrlcdMc4SPzlzA3NfbsErnq8DXFazDK48RPcNMe4dhR6Ow3Vu/CoZsiUx32zBKlbpEph6Uv8FJ9Fb97+nQUYjrsZBWuFCtMbYNlk8Eqj71sBR8UnFd4x/Q+JnmLvYMFdg9OoXZbqFrD1wbBqZQBU7DoOPQuurKRW3GcfNP1itfbKaiKnJG7ZZY0PG1nUmo8pynTxpAmRG18rJbeT8guTqpaBTTOom5t/FyjdnYw6bB2g8FQ8lJyBLzqVYbA/0PQ/CygFsxk0D2zkIBEPF52hYZCD06ir0/quyaKn8dgIwl80Wd9pZTv+C5BS7yWZNSI9ACRgHkK+xGYUMywmgBddnGyiecnWJEQRvsRfVxmXXH/VtEEUOke1Mrwi+v0UBAtw4eSQdDC7FBJQCL2FY9JR3dyWi+ebx5/EytQpQIgCt2uNTnhcjgrYN0jSYAh9g/iyZ1fzCgaFeAii0mZmJSx2IfMCKADQKYdhc9jp2a2RinAGodMO+TaDRhObrK0zhi0SAA0BjpyWWaeJBDjZcZgZCzOvoip48OAqTEYelNbeEKvy/bVAYgWiwW+67u+C//4H//jQXpeCAF/9+/+Xfz1v/7X8af/9J/Ghz/8Yfyzf/bPsFwu8XM/93MA3iR7cJ4YGGvwk7D0IeLPpA8MD/JSdJ22F/8ev8vv0ytOQIKRCuPleRthfQHJsiMo4VEU/640utpC6YBFVWCeNThakh/R/3jpWfzP1Ttw6DPccTvQCPiayWvY0RW+2NyAiTv/2uJlnPgSz2YPUKoW7ytuwagADw0TqYY2GFQ+w55d4mtmr6MOGQrdYWpavHt+F7l2KKzDF+9dRRs0ll2Gb37uy9i1Fd65+wAH0yXKrMN0XiPYANWSnsY5jbq1yTnXewJSbWeS9sY5DROLpSpmhDKfJpoQQ0UhXsOuM1RwNYYTpnmTgIq+m1NhThNSSQj+jW3mkGUueQ1Z45J4uuoIFGXGJeAGINVxS2nRkdliU8a8FCUPxMDGTsShNqlIKE/alJ0lTAcTWBAtMSvDPqg4Q0z0t0GfcqMNcf8etWDjcQQQWyTXU6QpYmYlaFqW2ZjA4N6JIUw+SPD/Chi4ybMWiYGL6vU1UnzPoMJ3xAzx5/SOfjn+W/ds0qBWmNBcc0kP38XMNAak/OAkvZ4iczT4HeKfCEiMY7+fkIAn/e7r1zstzkDb9/2J9WgcQqQiyC6V6xizSkAvaAYggJCn/htDZSlchrDG8Iyr3sswFfscSVAy/nv8GR/H+Dy3tW2AZ8zunAWMxt+9FayQCk/mddm+SgDR933f9+E7v/M715TnX/rSl3Dr1q2B9XdRFPiWb/mWZP39qPbgdV2vuXae2fjJOmAoPJXMED85y4lEYZjKzKkf43YWSDqLHuKeLkFP2uYGUIT15ULuE1iaFQ0+8+rTOJgvseoyfPfXfhL/v1c+BAD41Om78PXlSwCAUre42+7g2JdwQSNXDplyMAg49QVc0JjpGplyaIOFCxq3m11MDX0GABPdpPdMORw2E3z9tVfxh599EVfzZRRrdni93sP/eP0ZTG2LK5Mlbu4eI7taAbMOvjZwNaXWV02GVU1lPZrGJk8VHxS62iQNkY61xJTtBegqgl6qa+bpaTqCGoAm0zIjZ2iYoX8QARC6hq4zieUJQaFuLYqMdEil7RACcLicRB8h0hAFAHWToWltmqzYtFFHL5i2tmiWGZplliY6ADC56yu6i9IyZtKlzCfFxVuZ5eG+FVQCKal8RqvJZVlMyH0YZzhJJyDUqeH9IBgr1USdFm8jEDulOCOrVVCnZIwZAsjGIN4/2ngCdb6/oRQXfpXhPMHMcRhTc6kScX8kM8LI3HUNAVQlf8cEhhBDbBg0CUQ4HKcFe+g7nYrwpuORWWGg8SJ4CpkGyXQFJCuBjfc8Z6/F/drMwVgXhdP9djg7EUDSmzGQYJdp6nsmMUgEmqSeqGeEeF12leZirQkUqR4U5dG2Y3DYahhOA0Bld6A2aoDGoKi/3mFtmYuErs5iizYBo20s06OyS5ft7dPe9oDo53/+5/Hf/tt/2+iYyal+N27cGHwurb8f1R78Yx/72MCx8/nnn99+kJEAGDy1BSCVKwAGE0j6fhPA8eJ/udwmwMKfb4H4aSzhfQ/AEBLIgVNDdkmyAmk/CiYChfmsRqYdXr27j2+Yfhk/+TX/bzhoPJ0fogoW78lv4343w46pcN/NYeKA95Q5wVQ3mOkaHgqZ6pmNma7xVH6MUhGQut2QOVgXDFY+x5XsFNfLBZ4pD/FceYjjtsTcNnj59AoOMqqw/NTkBD4oHFclVYSPLE0eHaLbyqJtLWlAnEa9IubFdRrB61S00zsdy1rQRQishckCzLUKCAp5ToCiD1MFNF3UK81dun5aZBgpMQlzVo7Rvc8QhyNC1Goto52AnNB4oM2si+VIaAL0jUHoNEzu4VtNadLxvHiSNLmDyR103tfR0nmso8WgN/bjIPuMU/S/VzQhI07UmvsKL6vSdhMg4dplyadIdG5+QMijn1AsyaGXhkBB7qMzM4XpmKnzNdWQS/4/8RiSeJlZoQFdJko7KMRQGRIgMcbDR3DsPQNmDAwMGaQg/n5dazY/aACxgCqJ7TWXAwkxXDbQ6qHPOOOLp/pzTeCHty+q26fFBfvFTBHXJRszc8O0eNqo8wou6KRRY9Z0mjdou2G2T9IHCRAjtTVGe2TaJXaIwBC98uhj5qEGQGoMcMYgKHkSbVgnHdc54EONznnczgujnQWq5Pdjv6Q3pYUn9Lpsb29A9PLLL+Mv/aW/hJ/92Z9FWZZblxvbfF/E+vu8ZX7sx34MR0dH6fXyyy+Pdjo+iDi4R5Zo4BItwYYarjNgi9ZObHzQZyzLOoeztrdp2zwJxswhNd4Hn0egm53DOq2ndPZStcgjo7NjKvxu/QwykVZ76osokg4kqva0fhVyGoSDQhMMHDR80GiDRe0trmWUnn/FnmJuKpSqw7V8QX/rFjNbIzcd3rtzBwDQnBK4WXUZJjk9gZqMim66Tqc6Vd5ptLWF76LGSFoexMKuyVgzsQtxtIgZTdmEyppoFUtoiCdjAINCn0l8q/rwysCfJoIgq3zKytHR40jHiQ3AQL+ixMTBob9s2iagYwuXstm8U9C5g6uM2CcoVaH1OsMAAPchSURBVJ37QVA9cOFzFf1DcbakCqQxM4E8f3TorQl4QJXrq9Dr49BvjwX7YLDDOppaAw5UqywZOar0cBF4XQChJQAYul7zFZjlgjiGeC/2QGhdXzPo7qwtkyBEye8joPU6lUSR3wVxHXRklIJX9DvyNYnbUJrMFZPeiMXZqt9G/8AzPI7++McfjL8PA1sHGZaS4UIGSjZ6VSkV0DhDWqAYmjXaJ4dpXp89i4wIjeXGiTT7yBRtYIG4sZ5oW2u8GaTqy7YpZLUNNMllzgNGZ4XSxq9t+3jT2iUgemLtbQ2IPvWpT+H27dv4xm/8RlhrYa3FJz7xCfz0T/80rLWJGRozPbdv307fSXvwbctsakVRrLl2rjXJqAA08MrOxZOIAEty3WS/kQY88UQ3mLDE+4ZB+qyW9jlmncZ/O/S1oXjw5VCBmNSrOkMIwOv39nB19xQtDBwUDDz+SPll3Hcz/E79DN6X38Jz+T2UqsWJn6DyFjPd4NBTFlnlM1QhwxvdHuqQwQWFqa6RqQ7vm7yBTDloBMxNhaeyY2Sqw/vLW9g3S1yzJ5ibGgfZEi8tD1DoDjdvHKHQHe4vpjhtcuxPV5hNa5SzBvNZhaJskGXEhoRWAwsLvTRolnlihtAphLZnhVK5A08OyKHVcCsCdJ3TmBQtDm/v9GnAjkBHPmsji6D6shmIIIT7QmBBtRmIeJnxcXESDQHIrEshOE4PZv0TrUPLSQZKqUB10iyxZGbSwXcaSpM55EBjogP5JmWh1/WAjlVxyCyAyl8weAIGpoB9yGtLxwxiORZkOwU4QFeatsmhsyiqVgx0cg/F9dZUoO9b+n1UFt2s0wMI30OhB7V8vaO2JpWvUL3YOETNihf17Ppq8L0IWWaUKfF7sGO1jyLs4IYCbB9LwfCxcNX7pDUb+zsxoxh1fOPLmh66+PdDz2YxO6TQgwIuvcHnPMhGRA/knLBoMAI4ZtohY8AuwH3KXFPEdA70QyMQI0GPFGPzdmQ2mhRU55FxWk/dH87i2wDTtnYR1uiiTYu+xNfjMmT21dfe1oDo277t2/CZz3wGn/70p9Prm77pm/Bd3/Vd+PSnP413v/vduHnz5sD6u2kafOITn0jW30/cHlyJMX/b+J9oou1tDI7G+1j7W2EkDh0tM9ZwbN1xfA10S9GrhT+P2wsM0qKmwTmNsmhRWBIGP7tzhM9Vz+CemwNArF7f4tBNUaoWM12j1C00PDw0HDT29RJtIOBQ+QylatEEizbYNNgCwI5ZYcdUyJRDrrqkK2LH6z27RGE6PFMeYcdUuDE7wdw2KPMOTWuxajPMctIgWeMxLxu0rWCEvIJdaAJAfNmE1kV5UNFN33+vl3Tc7WGBapmjcxpPP/sAPqhYg4yWM9rTxOhiZk4UMo+zlNrOQCPqgUTGDIXQQnL/7XVKGExkkh1grxltPHnlKMC1Bq62UIJpcq1BVnSp/lZgXySeMDvVexApJA1LMIEqyEeQpFrS/yQ2LZXh6Lc1KOUhQBYDKgQAhgBPKITjtEfKclO1qPYOgEXDnJVF4Amp78uwWD//xnMQy/G25BI6gpuUiSlvUvlg43WfnTbyDkqiaoVUKkXHsFli+ET2mZYaId4Qs2piHEmHrcShqciaiWNTJiSjUIDAdA+GeuZCqxD1Q0jfcTZjSvUX5+9B9fU8VMoa6zPXfAr7ylCZ1e5M5mfctAoDJmkbANq0zW0s0abtbGrbWJ9NuqGxoHscIksi8jeJdlFP6HXZ3ubGjDs7O/jwhz88+Gw2m+Hq1avp8x/8wR/ET/zET+B973sf3ve+9+EnfuInMJ1O8Wf/7J8F8BW2B2fAAGxGRnFglvjorMUH2ThRIJnErtvuLe7No+2vbTY+dfZZb2KbQQEhiLIMYmMxl5dFtaXtcHVyijv3dvDGco5PqnfjjdkuvuvKJwEAU93ghfwOWvQhGgI0He64OWaqwe1uF0YFtMHixJeY6gZ51BO1waBULTQC9swy6YxOwgQ7uoKDRhYF2oVqsZuvcLvdxd3VDO+e38WVyRIv3jnA1aunOKwmsMZTSClvURQt6ioHagPd0lO3OTVUfoGLf3Z0QVVDaeG+9JSmroFQkkAZHWmQ2s6gMR5XJkvUzqL1hrLZOirt4DudQmapWGxQaTIFKPSoFLBoChyUSxyFMoY1/ABAhaBS2ILDNFWVIcscuk5DGwI9zunEYpSTBq01sNahbS208MzhMJPOSYtENdl6kXBQQTA0olNFkkj5HjxR3+LvVW9IagOl7Qf6nDL/GDgBmHdARWaZJFYPCYinumkxpZ8TFZQO0LkjndcI8DCj4ztiOULKQ2eggsFk10+AdF7O63SzJKCADQ83giGRomrpPTQObxrtEbyB1h4uGKjMR41QgG91L9zWI9dkFZk4Zp9HTYYAdeZhM9dPzEl87+BjMWNZ8Fc2DqUZwXo5r1BYl9zSc+NSSr4ZgQKjh6wQO8yzXugijQFYaTs0kW3lzxpnkBuXjlMaOG5rGmGNhZLbPKtts1cYb0suOwZsb7qG6HG3cdne3oDoIu2v/JW/gtVqhe/93u/FgwcP8If/8B/Gv/k3/wY7Oztpma+EPfjWe4qf2HhgHS23dT2xDoChoy8weuLF8LtNN8Ta8mH4dxrRxWaYgRK6DbkvpWkwunW6A5M5PD09wTdf+QLeV9xCqTyW3uAPTr6MzzfXMdM1Tn2BHb3CoZtBI2BfL3HPzWFUwNLnaILFF5dP4f3TN2DgYxYa0fJGeWhBYy19juv2GG2wyCJjdC1bIFNdfGrt8NpqHx/efx3zrEHjDa6UK1TO4vYpMVghKGR5B6cz6EbBroBOK/gswNyzCBZUYd1Qyjc8gE5B5QByUWhUx4rows2XPYnoidwnsbVrTEq917bXAxHAcSkjR6uAxhtMbIvWGVQdaaI4nXlnUqFqsz7UA6As2+QPE0RYk1u1ymGi+DrLOtQ+Q1cbElrHSdZ3BjpzqY5bEg0PLCFC39/S/yKMw0wSs0cc4kl9SEWGSSW2SDWk4dK1ho4gi8wwo1eStKfg/qcolOkbshEIUKRp0jGUpWIWV9TBJCE1b0Nx6Iv+59CPTCdX2qeSJ+P7hsETaYdE2MiEGIak6ybdm6E4XOcjMO1T+JUlTZsSvkSB2TZFN6eK92Pwgc5X9fckVbSnv7UlMDRmK2Q9OwY6Wge0naZVBbjjxstbE9BF9hKK/IlYOyf7WRa9hlg3NNYLMSgap9nLRplm7LFA5UAY+DR+JOxWARa+9z9SYQCQxiVEzkrvl39vaw+TpcZ1BseffyWbIAgfaxuX7asQEP37f//vB/8rpfDjP/7j+PEf//Gt6zxJe/BUSVpOFDwZ8ZNv+qf/OzDQ4HVF64khMfGM71EV1kFSXEVynudG6/hLzhrS/ceBt5eWXT/kVZOhzFpkmcNvfPGd+OjB51GqFr/TPIUX7D34oFDqFre6feybJXZ1Rf5CIUPrDXLVoVQNKmTIVYc/svtFNMGmsFiJFqe+iKGy3tCNQ2VtMBSCCwqFbtN6H96/hf/zS1+D/9cfeA2T3RZ3mzlab/B7d5/HNG/iAO8xKxrcaQ3CsYEr6KTMMhou7ndJu+G9AlL9qEBlLgJNyCpmCjVHJSbPNGngbluDnVkF5zWWq5x8jUCgKGkLzDBLTFa472I6NIchWmdSwUxrPGa6Qet7o0Ce4BarApxhlZyWY590scit8xquMX1x0aBgCgffiW1xqEaLvsyfM9kSqGOE1PeRwlzBgoTSAQRsWHCtI8PIaf0uskW1plBZFTP1PKiaPYffAnrjxsSgYHgPcEhPTPpQxI7wMfZu1D17I8Me7L8jzToVszIjNoVDVMFrYtFUoEsWQ4J9ij2BIBZUM1jmbWhxDsGpYTg1gUmkBywFAmH0W6Efe9RwApYMEAvAuSyM9BKSjtTjCZ8ZICP6Jl+DTLuUmi91P4kZkiU5RNsEhtacqZWHD3oNpGgESsPfAlw21p4Tv9s2UDRua/sVAOsi4GYMhrbLyC/b27W9rTVEXxVtw33CMf6kweEPuUlIPwBOYjEtvg/oQ2fj/W7TFYmWdjEeOITuiMMgadtqtP/49Ku1x7LJoXVAVnYw8FS9PrubNnvTkGcTCactdiIouqpPUaoOM11j31Cq/IFZIFcdpprKe1DWWgcNStXNVIcmmORinSkHowKmuoEBZb1kyuFqvsCfft//wGeOnyVvI2/wyukenNNYVAXqzqJzGnePZugWGbr9Dt3co5t7BA10+w4qd1CNhikcOSLvN1Dztv8tgGT2GJxCfod8gWys7VQW7Zorr44hDW0DjI1skDC7s8ahMB0yTev5oNKEY7SPYQyPurMw2iM3JDCVOoki6xIQGBTqVAEmllxhKwGebE3hqGyE51puNJlzGn7wADJKe1e2ByOBwQm/M1CqdZ9xphDr4oW+3hZfQxeZp6jnUbVOywc2fOTLzSyRfJhg4BeF8LKumFIETBIAYv8lBkMKAiyoGFISzEz8vYqy6X9vRSJlI9g9eVNpLfymmG1RSKJmZoiKrIveUgp50aX6eUam3PP7+D5kUMnhMb7+fF4xXCr1LzLU2jtt8/kD4+wz7m/Ezq4PagwUKMTbp96ziJrBEGeWPWpLNc6wzvYMl1s3e5TfAUNm5yJhO2kEeZZ4m7c3fq2Fzt4s2iU8oddl++pjiN42bdzZJQu0bXlGSQOwodbX5adzuS3+LG1PvF+0M4tjHozr8sl0A7jitOhmlcEYj+u7CwAUJvrE/T+A6bUG31i+CK0CTjyVgp/qGqVq4aDhQD5DTTDE9PgSpyhQ+QzGBly3J7jXzTGzNUxcB0BysJ7pGlUISYwNoNcW+RIOCkfdBF84uY6TpkDjn8VxU6D1Bs9eOcRLdw+wDATmjPVwhUNYWfiZg+pIJ2T2GnSLDNMbp+RPtDDwM5BJo0fSeahGwSwszDtrNE91mAIJtOyUVHstxN/KaJ/YppR5EkGQ0TShOB9LikSGKJXlEMUzWXTdOoPcdjTQOkMTWKAndK09qiYjvc3A8Zne2lUGlXkqeFtZGEshPxVCnxnFAmumLBUzJWJzhkI3yodBXwkFgScCJmL9GD5LjJPUF3VU5Z7DXr04Ok7gRkz8sqzNpr6vEEXTgt0R9eUYBPAq8paR1ggBCnV0Bh9bECQwJMJxzg2fKdVoMmUGCSDfIiMcyBOg0z2zFRgwit9gzAIDvW6IwRDpywKcj8BQUeFinqQptb2/FlySg8GcUT7WI1ufyF3UHxWmG4RyrfaDKvaPA4aIGSKGCIjHEIasTRdF3Wel8I9ZnvOYoouyP4N9jAbcsQhbbvtNa5eA5om0S4boSbRtN9QG0HShddUQCw0ngS37Cv33QU4UEGyV+H/bd4N9im1yK/IOqyZD01H20hurOe67GQ79BAYBX26vowo0aBrlkwt1FfIktNagp9AjNyUmCB775jRphkrVoFQNTjwVkW2DRRtMqqF06Kbw0ElLZBDw0vIAlSN8f6+aIjcOTWcxzxpc2VliZ1L1+geuxwXAnBjywvGAKhzyjNLTdaOTtiZ4DXNERVF5PWsdUETNRNQByQKvCEg1zkyskSYnTx4sZf2s9JsEErTyYJ3bPoOt6WxKb2Yxa2aopIlC7yjMrVmSB1Qxr2Eyh3ZF59FWNpkGAnEijufKWpsg/JhUZCnG/QEMWkCTs7Khr3cml+f1OeU+qF5wzThX9vNN6473La4Xt14j1GtjJHMjrzllWumB7QEvD6D36HG9dQIfw2AS1D0DNTiuuEtm+tKxhvXjliAvsVpaUEUqpPdkB2H6v+X5A8N6bJxlFoIauJgPbAEw/FymjnPIrPVm4LklU+HHmVeP0nwYTkdjloaPsYthtbP2edFjkADqIgBGCqbPStm/bF+d7RIQPU5TGD65ps/PuEk2fSdQyeBr/kcCk/FNK7PFzmlr4GfEBqXvlGAF4jkqT0aHx8cTNM5EbYLBXl7h/3zjgzj2JapgqBwHHCqfoQ09AbmjV1FLZNHCoFQN3lu8gVx1yFUHB50yzTLlUrFXBkUMhn57+SxK1aINBnUEXgDwTftfxrvm91E7iy5mqFydnuKgOMXV6Sms8ThdFjTohVi6Ik7O06tLQAGz3QpVkyF0Gn5GmUy+sgiNhi88MRAzB7fjkGcOO/srTLI2aTfYvZfLIQAR3LQGUCFVqO/dqekayoFYCnJ5sG46i0neIjMkwl62eTRl1GjF+rtT0lmxbw4LjBmIdauMGIWig7YBTroQO90X/5VmldwXxDuHzlIxWG4NhbGCIX+g9F0YCrAHgEm+DOmVQvyea3IlI8U0WhE4GIeHUt0zqQOJoMFaRyVSRHFfzpiSh0bbQwSLvs+6k/dYUD344XAkkMDJmIECehZKRzaH9UxJzM4hafYQYrsGBoTp2PpQIB8nAALyIjTG6fM9GOqvC98f0kuImxP9loGcVgG56VJoiO0xmCXqw2UjMfUGgMF6ux6E6DUgJNeVYMcHhVWboeosOlk+5JxQ1UVDZxcJjY23J4/xrfIdivj/sV+X7RIQPV4ToGHz9/0Tdmpq9AJSj9zYKeWHQQ08V5LwcnwMchAdgR7+jMegoHhyGx06P/Xz3BhTtvOiQ91EBkh7HDUljqoJPDQO/QTP2/vY1TVu2iOUqsG+pqr3zBIxsNEI2DErAASAZrqGg0apKAX/TreLfXOKHb2CVh5HbgoPhUJTVhm5XGsSWSuP1lvMbI1pRiLnurPYz1codIfSUJjp+v4CXWtQTFr41mC6t4J/ukbbGriVxaxoUJ/mxHK0Cvpe3nsIFaSzgQ7QK5pQdicVplmDzmuaMFRA0xmsqhxZ1qHMWiqLUBsEp2CsT6wDXVsKn0n3X66tZjSZNnaO3LyrNkthtMy4JIY14indaI+9aQX2HcqKDlBAs4glQKynTLeg4DsFV9F5J+8dDo9FYLSxQKgS4EAh9V0GSJyhGFoNFmQrNzIsTX0sAggJgjTIbJGZp2h5oIxP/TqVQeG/xaTf64V6lsMKfU2Qt4ZgkBAPL63LFgnc/0eZZ0pqh3QPcrQKPUBCNElUSJqlcfNOJ0NH6Umkk28TUkiNigVHLZQmBklFKwbetwQ+QM8UyXOlMOxwmSD6H5szOiHg5/tWMkcMALaFsM4DCBIISaCUwNAG8EICeAF41flaorXPR9u96HKAYA8vAIIuNURffe0SED1mS5PDqEMNUPeGzqYkYAHSU/RGBkd+FjOEButuWCfI99GyScLAT+Z8sCP6fXCOQcF1Gpl1eOfV+2iihuVoVcJoj1vtHkrVIlMeDgq7msptaE6nVx47ekWhLji0MJgpEq8aBEq7h4ODTun69zpKl/dBR3G1xbXsJAmpAaD2GWqfwSiP2lvkxuHKZImqy/DFw2vIlMfc1nGgV8mocLq7Qp45ZGWHmwfH2H/qBJlxdHFWBqHw8FdaaK4krwBddlQLrFaYZG2szeTT0+rUtmicwXRSo8w7pBpPlRHsBVLWWP+T9oMrhwWYvZA+LjwYSzdhdljm/3PbYXdSIY9siIkp/2zECNAEzi7IrK0ZdCAW+srPFRJgYmEvTcoRPI/YywRYYvr+mCxQHtClS6BIxRBQL6QOvV+T6nUgMlNMsicSGJGjdH/NjPbDoqTawxpH2V46DMAMb2fNe0awUUqFVLZD1kSjvqoG68uUfulynbIBu34/vV1APH+FJBjvwZ+nGmmWwp0MhoIAPloARMmajJkNFvLzcbN7OrNEEqTLtik8pbeU1pBtEyskAdCmxq7XGsRCJRYWKoXINx3b+H2N1TkHAcjvxxqhrQBqA1i8bF9d7RIQPW4b9/vRxEDLKPESi/KEKZ60N7YBS4SeJRKDJS03XCeISW0AkMb7UqNtCJAmt+dOs5Q6PMla0hK1Fssmw6/e/wAy5fHl9gAAcNvtIFNdGsC+3FwnHRAotDRTDb7YPAUHjYadq2NJDwDRuTqgCnn6fhkF21Wgsh9tzD4rdAutPK7YJd41v4dcO7Re4/p0gcJ0uFYs8IGDW2i9wfXrR6jrDF00etuZVmhifbZ+8gk0kTfxqTh3aaLcmVfonq5htMfUUs00GzUWizbHNG8xzVsUtkMXi2UiyIlxOKEUpkMRhdJJPOp0KvLKAzO7VMuJOjOuz/iJWqJUMNa6BIrsrIWxHrbsgMhUaOOhyw4qIwPJJII2PQiBcKxO/YGXG7EyiCQT10gLMZSbwmrinKl4LOAjUFQKEQjFi6Wkd1DPkAz6J38XgVQK/whwQwJ2H9PNVQplMmMD9JMYg4+1CVWEuJjtAdAL5YXOiE4Og3c/AhNG+8REuShmZ71eH/oL/W8ArJUQYddra1w/hsR21kQ8tmtwQacQLVW3jw8No342BgSDCvaPAIb4/zEQkuU8xoaK7IC9X1S4Uq6Qa5fuPwBbWSLZLgqKtoGhgb/U26hxV3nc12W7BERPpm1ghwZsTxrMN/c6+YS5tkxkZwbhuU2AZbzp0DvbJkZITkxj5mnjgYU0oSsNqE7h5LRMA9miKmCNR+cM3j9/Azkc3pPdwy23i2ftIU59kaj257N7AAjMnPgSTTC4bik9/9BP0y57B1wPFxRcUPCxm7aB9DIPutkg44wHWQcNg4D37tzB//OZL6ByFq+u9nCr2sXVfIlnd44AAPNZBe8UFlWOSUaDqlKkrdD3M0oNLxxgwyDzKs9j6O3acV/RWzyxAgRwMuNQ2jbprDB18K2G+8IO2s7AshA6htnofPsfMLe92zBn/mwSy/IksEnYqUFggAtzss4py7seDBjy/DE5pdtrKy0D4iydLrIafiXeGdQkvyK5HDNLEGFZwXAGoRse90cZvgKzJbws+L5hEOHXls2zLqWWJ1NBTZlhMvsKwEBsnHYhGJYEXOTx8b4iyxSET5jSIQEfo+l3YFaQU+Fd0/dhk1NBXpO5AWsFILmcp+OMl9nEcFkv5u/DguPr2P+NxCKxdcO2iZ51RHI7sr8yc8NtG8AYg6HBdxEESQAkQZE0X2S9Ev+f9nsGY3PW9xvX2XIOY23fptdb1sITel22S0D0RNtazIsfetUA6KxVqB59NgQwvACGoIgFsDwpyF/Sb9hBOpjRttJOR8tsOi4b0BwVeO1oj3YTFDpH5Sk+PHmF6HYovNxcBYDEDp34SXSepsruv1s/gyqQMWMbbEyrz9PyADFEPuagnbgSR24at1Ximj1JyzAwWroCh+0Et+sdEhwHhf2iwu3VHL/58jtwp57j+dkDGB2wN6lwZWeJzpEz9LM7R7g+WyC3HfzVhgqJ6oDplSV295a9KZ2l0N+8qDG1LV48uoLK9QLP06ZAYTsUhjRTyyqH/+IcQCATxOdWg5CE0R6l6Sh1GWFQ9TsTXkOdSMHn7DKtyKxukCkktCBG07qZdcgyCvu5ZZaYDWOJ1WLfIQB9WC/W6pL9RsXCuKl/RCuG1G+62Pe9inXxRmCdQ0hKbGZTPxX9nc9lMm1SeGzstwT0YS89sggIkS3jArnAEPgMtCjCS0grElozs4QIILiIrtYx1V0NTR45g0x+xiCIgZHR0dVagD0OlfH+ZOgv3atSF8Smm743YVSKMuaYAZMAek1zo0IKl3E/kfXO8ijet4KBHIiX0RdhTdtE/915LQGkEcI8K3QmhdXjZdcNHh9+dt9Ue2zsK/Sw274Mm331tUtA9JCt1wxtv3kHc4Fkc4IcjMW2Ntw4595Lcl0e5EdAJygMZ6Dx0/umd2xehtyHaX87ZY2JbbE3rehJ12m83B6kgel9xS046JQhdqAXiSny0NjRFZa+wO1uF41Ip3eBwmenvgBAjNCJK1GFDA+6GZauwGvVFQJLcZ1MOTj09HvjDV5ZXUmnUHUZTRZBYddWeHp+jNMmx7yoYY3Dbl7j1ukOTuoSALB3cIqw38JXFvOyQecMQqcRPBVjZc8gq6mGmdUerTdoOkvZOJE5AoCmsUlo7NtY3yyCHo2QDBjZbFGyPbycUkBhiXXiz6V+iJvUSsgJxyiPPHOkAzG9tsU7naqiB6fgW9OzNQgizXx9X2M0HbwgfYJgIsM6+FfxabQP3WLQ2aUWiFmjapUPwJDc2CYtER8vA/YQNVtsZSC9adK1ViGF0sYp1VoRaPFBZJdFkGTZVygeXzJkjMfgfA90+PdRCqlkRzreGM4ztq9zN7ALGH0W0DNNPqgUmhuDA8lscJiKwFlIoFuux7qj1pmkKeL98rXglrRvY5HyJjH0BnZo+H0PdM5Lf38cf59NYbPzxNNp2bcpwEnD+2O+LtulMeOTbTwbqNDXcxp9nhZVQ/1FChkEsbxs/D03FlfLSUJuY+sxjt5li3qRNLmN3lF6FNMGR8sSk6whhqNosaxyvLi6hmpqUaLDiZ8gg8NNc4TTkJNoWvnoJUSTNIOeEm1ieTLt07FzrbP7UVjNbT9bogoWU93EEJqOoCimlnOWlgqY2xq7RYZmZlA50iY9NznElw4PMM8aTA/uo/Ma905mmE/qZK54WhQIucPxsky6Il06FHmHiW3TU3ZuHKrOYlEXqBsL5zWenh9Dh4AVAvK8Q1godFcUsikxNSGoWDncYJ7XNGkLUfaizdO5etDMp4OiOqeD/rP+I3MdtE6yRlDJGsAVTfLd4RpsBh5eKZjMo2vMIOwzaBvCs8EjuVMHHXVXcnkeaYMeZpkpAtdBS5aTvufwkGLWM5I+bLbI5ov9dej/T2EmRWyRZIW4fIX3Q9DDjdiWddbIe6Qwm49lOAK2TI7pOPpSF7KEhlJAE2uZcVp8CEgCd++p3ybdFABkDsGv11xkjRSfnzbkPK0EIzTQXmH49DusS4aYrUjrtV4ji4agm7LK5P9WD53Z+31trl02ZocuUo5D6us2fS+3t63JbYwB8bh9NYEhAE8m5PU2Pr03s10yRI/TxiEyAXoCP+WOwRAvvvYkPPw+rSImkbTsuEkGaPTE3S8j3i/4gDXWIsAD9WGJ1UkJqz12iwqznDLFDtsJqpDBQeF92R3MdAMHhVNf4NBPk1kjNwZIJ24SQ1/0ypVL4TEfwVPtLRYdAYU9u0x1zQwCMuXwu6dPx+U13jjdQWk7uKDw2nIXjTNovcFhU2LhCljt8E03XsZuXiE3DrtZhaf2TnB0MsGizrGXV3j+2gOUJWmAVosCaKhch48MQx4nAat8b1anAz508xYAoHJUZmN1e4bmwEM5hXZFgIkn6dK2tC3jKG0/bpNLf3ReU8hri75jEKaJrXYWHgqlbVHaFln8jVh/UVgXJ2taP2VK8cSs+kyoBBgk9QP0gy8DJ3ELsIBaPnGmoqUjIM6Zab2x4JCJ4H0l0TV4+Q2s0wjcyPR2Bg5KyRT09fujDxn175zCzmFGBhj8e/P2pVmhFGgn9sXr+KJrnXyq4vXWujdh7BqDrjXp93Xd+hDN9dLk+UuWiEvDqHQsHFYUbBHYi0kPWB6j/Fr5GWDdF4jYoV4/tw2QPAm35rNA01mhs8dp54GhtxVACk/oddkuAdHDNq4+nfCLBCzjm0QuJCl91jowOInMTAoXDMICYjsDgDTiOSVbJH9Vucy28UJuc7QeFZ5EqnulDB3ESV0i1w4nVYGuMdjJKlTBwkGjigaMLpDZYuUznLhJYoWkh9DS5ynTjEXUbbACKNEy+9kKU1PDRJqeQ2VtMHjX5C5MrH329Pw4DZT7eYVlm+PZnSMcVRMctRTC27EVruUL3KumaLzFTl4jzztY41E58uXJrEPTWEx3KqB0QEDKBitNh8YZNN4kUfXN3eN06fhpNL+2gs8C1euqaKJrOwpF1M7Cao/GGcyzBl3QKdSW0uuDXvOLGbchAzCcJCcZgVXnNcrIEgFAmXe9DoaNAGNfVNFvSpmwcR/M4tDnEfgn0E/9JgEj6YpMRFHyHGLTxYGFxIb+ySxqEgEbSjuX4bIQFK0uQIjUnFCpCr/m0SN/r/G5MpBQYt8sypaWCQDi5z4tw+sbEZJyfqjlMWIbqbBsLPIaPBUKbhs7LMPC11ywQJ3TCdCyXkim4G86Rw4TsQYJoBplpL3ry8coRV5Eq+g7tqYl2tL3xk1mlgHns0NntW3ZadvawwCXTWB5DIweRkD9ppbuuGxPpF0CoifRgjobYcen8FSpW4CgAXPDwGg0sQDAmkcQT0BcUHPcJGDa+L14FyBq/CSfWCp5HEHh6uSUJvE4qQJAFTgtPjI+MKhCjhNf4sSXVL4j2JSOX+oWe2ZJYRvo9H1ytA4GRXSsPu5KLLqS1gWXu6CDLnSbRKJWexzWJQ7bKeZZhaNliZO2wKrJ8J//0wfwW4dPp0y2q+UyMT47kzqZIiYvoNqgrqI54xFNCqUhY8hlRyUx2CTx7umMzt3ZXo/hFaBBYaWsZ2Scp3pMGjHsFoXZXO1eTkh0nsMfkHUjMnV83Ka2RWm7lCl02uQobRttARpYQ2n5eWSsutqk6uy0E+4bgslUoe8ngwcBJAClS5eWDeK7pBnic5DWEVjXAqXtxgcQFjPTdcFgwpeaKql7SWEuHdC0NgEFeR0ZSAxCNCIUZY1PPkacLcYC6/G++f8Q0DuSW0cmmdbBxdAdCaDVYL2BvtCrWF8O0LYHp1ytngF3AlL8vJTeFcYsGrdBeRkMAaIEOlyfLzMOs7wRITI/CJVt0+AAW5yqt4ChsSnjpm1s+nvT9rYBkW1AZo1h3AT4trBEb3mGGUSA4DFfl+0SED1+4440Dp/Jxr1tg1Ptxm0B6yBGApMgPuP/eTJJ7+K1aftyH1qsJ48XIvSHOIjG8gxaBVSxnpmxHr/z4CbudDtp2SaY5Ct06KY4dFNUnvyDGJCcuAmWvkAVMmJ8gkITDK7ZExhQxlrrLfbsCjfzY1zJTpPJI0Cp+Uufow0GU93gQTNDaVq03mDRFdi1FTpnULUZrs0X8Nca3FvOKLQUNOa2Rhc0prbB1ekpbszJ9FEjYHFaoJgTwzKZ1QhzKrVhtcdutiL2Szvk2mGStb1YWQzq2njoJZX9QKsScJQMQ+dp/zaWSei2iGM5vCFNGcfNR3F5FzS9YjFMFzUhtbMpw4gL0TKzkZVkJJkAkWA0e+sB6kRKB3LzZjZF96nevjai7zFYQAL0nMmWGCjpc5T6WUh9lY0IZRYY98XxdZBiaC0ASydqyI0ZogFrE4EP0IfauHCqDMPxuY6ZJaV6rygGvgBQNxZ1Q95XXWMHDI88hh4c8TaRwl0MtOh/P1jfj/bpA3su9ce5KdvMBZ3K8OTRw4rfZUtu6JEdSh5ECANQIK/Hw2SQnQeOxn+P93EWGNq237Fwnq/JGAy9HQDPuS08oddluwRET6JtRdnbBgHZAeXfGwBJ+ny8rYCeJZLrbj1IbF+W97flpkg+MwHIDyqYSYe7qxly41DaDnvTCjt5DRc0Xm6vpKyxymc49QV+9/RpLFzZp8hHEMOlO9pg0neUbq+SE3WmqYArh8scNCqfxUGy775tMHh++gAz0+DlL19HE+s1TYomPRW/45l7yI1D7SmXoDAd7lVTdN6gNB3mWQONgAerCSZliyLrABUwKVrA9KyAUQE7WZ2yzXLTJWaCB2/WlCgP0ttkgYrESjAUw2SNJ1Zpalt0sbK4HIR7N+L4M40mtoEXjAqJQQKAqs1iKIeu5zRrcFRNsGzyWNIiEoQR1JCrddSixFIfSmSnQaEv0Mp9JvSp3lKIz4aJA3G+EmFhjeQfJH1+hqJgpHpkCaRJNimuts78qAj26DPn+1CS3EbSBMVjYE0NszoABuAinQco7NUzQ/3kKUN5HCIFonmjCvF6iQ0GEosnnVI8V1nXLIXCBi7Y/TltYnq49Vl0PfvI1wCgsFvjDEIAqs7CCdbJDAwYw2Cb47YtnX7bctu2c956FxFiP2zbBIC2hcs2gaSvCuB02c5tl4Docdume3DTjbnpZnmY+0cyP5s+H+/70ceGzeuqXiz69NUjLKoCbyx2kJuO6nkFHUXV5B10382jnijDvXqWABE7UXMj/RABFAZDsi26Elp5GARUwabBnVklSl8nvdLcVPidwxtQjmz922CwN6nQOQIeRpG3Shs0XNwPu1Rb5VF1tP+mtSkLZz4jAXc26V1xXTyG0vSf5dHrh7VBALA8mlC4zATAUmjRaC/MJ+m9NKTvWXRUc4yLb45bbp1wFha1n+K5jIHRoilSpXKeCJdt3utGOpNMCpnpG2cmSTExIETJOoiwb/w/lctA3y+Z2eHvJSgf3xNhBHY2sCj9ga0zRNyklkYW2h2nsw+9jPzahJomRh0Gy0ptEO+v365wvR6JucetP9coFheO25t+B4AAK7OEAwuG0flvayGsAxZ+gDEjNphBIl+LHig8mmPzeazRJmZIfj747LEGuGE7D8hs+/7tAoBUCE/kddkuAdFjt6TzSU/Mqh/o5Q0zAC1YB0Pn/Z+2I4DRphBc2rfY76a/07bC5u/SccanxXhe9WmOVZthkreoG6odNssa3D2d4dX6Cl5sruHQT6GVRxssFq6EVgGH7QT3uzlpiXxGxV59lkTTVIaDDA1P3AQOCkfdFIXuYOLFYA8iLuHBoMZD4ZXqCgrd4o9cfxHPvvsOcu2wchlmWZMGz9J2aDqLzht0MZX5ymSJxhtUzqLxBq0zqJY5jKYwwjRv6X1SIzdUjqNyGeYZhZxsLOHBgIPdp632QGUQbBiCgti4RhlvrzTEDrHfkFEEnGQquBdhM9Z4SDaIz5OPc57X0YNn6IpNddhoP0pM+gBgMpfYiUGoSAEqaozYTFAZD5XJumcBKncDsJRN275/8eknx2rRFZk54v9j5pUEMf2XcXW/DjQ2eecM/IP4EBKbM9QeUQbZUB8EDA0dh0aGQ9DCruCyRAuDFy65wfXPEigLw5pyfd07Garkz4bXLWXOpWNA6hfyWvA16EOvwwsiC746TwWFXQy5StZTluwYt8cBCNtCXWfphrYtd1Y7i+nZZCuQPtsyIL8tmKLwhF6X7RIQPXSLICLdf0H1GTSMhYLaHi4DtrM3Ycsy488ZyKR9ieXk91K4fYHxIoyf2jc8xYdW497tXdQdZaW8drSHZZfh2uwU//3Bc5jqBve6Od5o97D0OW63u7DK4+XTfRy7CRbRaJFftc8S4MmFPmjhyrTPTHXQymNiKJV/4UosXYGlK1I9s+v5CWqfwQWFb73xeTTe4LidYG4bZNqjdQa5drgxOyEfoND7FjXeDJx3y2mTQltcGoFrnzXe4LCZoPO0vWWXoXIWpe1IJB1dp63yCJmHWapknNkLcGmAbSIos8pj2eUUslOUHcYeMewYDGAQjpGTbRKDB4XWGSzqAlrRsczyGrOsSXXPmD2RpSzIbydOoKbXE6UMLmYyUv8CfBc9aqxPYSAACE4n8AQA7SojZoizK9W4Q8euFtmjvrZXHxbqNTUSGYgumtiYfvLnxiEwXn8sxmY3Zgy2g7RvYkmGDJWHQmG7PoQa+wiHlbX4zRhI8drW9mG8wfeKzBqT7keeTxK698xXEIBmk68SgzppuChJAAYVfRZcDJPG/6VT+pPMljor1HbWOo+y3kXbthBY+hs9KNokIn/bp+Vftgu3S2PGx2gEhMIA/AzuUckWDVaUy2z4jp/mxt+Lp3UAWCt9IJmggM373tTSemHjsaUBnAfXTmFxWqIsW3RO4/5yiklGE8TvV0/hij3FB8pXcavbx2ePbqSnzDv1HG1GRoqtMnjQzpAphwfdFB/d/TyaYHAYPYimukGhWwqHQcPAY8+uYBDwSnUFN/JjtIH8WuoY9oIHOm/wwE/x+Zdu4H3veAPXylPM8hpaERtzv5pintUwcbDfzyssuhxVDHUVpqNyF7qvRxaCQpm3Sa/TBY07qxmen5OXULvBOK8LGuV+hbpT6Zp2jUUea1pJQSgDssZRGr+1PoUxeH+sc/GjcJpVHkFR1hofa25JGHva5mgj6zXNGrIIiI9Ak5xMHGtR2DYBA4BS4wH42CW6WlPIzzp0VQYgwDsdAVHsLALsKBUQJIhK/adfTkn7ifieJvUNzA8CkmGhnNCl4FiCgs6ZtYnJJIHysOwF93PJqPD2gb6Qq1YhlbaAM71TdWy8DXKo9oDTKfTEGjNmw9hjiB3CmRmC+C0CexcNhOG0nwSKzOb7fFuYjq8nP3ww0ypDZlLHdhbrwcyRvGbD7zc/c29jds4UX29ghrbv93ywtA0EbQJDa+tis/HkWdv/SjV+/n3cbVy2S4bo4VvS6PQskfio/+OsHraJCVIbvuNtnndvS1fsNTbpjPX5u3NuhvHTpXLEgLWRJbo2O8VOUaXvC93i1BeDAqxaBby23MVxV+JuO0ftM7xe7eFBN8UVu8TS57jvyJX6QTtD5UkjVMa0ewDYM0s4KLxnehsPuik+d3IDALBwBY67MoqzNVYuw87+CndO52kCyzXVALs2OcVv3X4aJ20JD4W9fIXSdLDKE6OSNZjmbRQcs6Fhh2vT02SeyMLn47ZMnzXOUBhMTA4H8yX0TgsUHiZ3sHmHurVJ8F1yeE35NLHkxhEDYbo0GLPXURsneGaKknA77tMmpoK+4wyzMhaw9VDJnqBqs7Qdaxx8ZFIU+kmOM9BcR2AISqS+s9jXKwGKqJkYRpOiYAAo53VaTo3BPeLkz1loA7Yj1gET9cPGjIgEM7LPSXbB6P6cJCt0vjcRLWeiiJ6tFjhcKcMrMq2d65ONzyeJpL1O3kP0xQYQCMRr34ve+TsWWcvlx9dgmzRExf7BDyuSRdtkzAgMwc+2dlGPoU3beRQwdF7bFCI7ixG6CBi66PdvWgtP6HXZLgHRYzfBAqVxjYtbXgR2j56QB2GqEbjhB+yggL64a0jM0WCcEGAtSGC0CSSdN77EGyZlOZkA15J7c5F1OKlLtM5gt6jQeh3LaljUPksDLkAD2e3VDl5b7eM/3HkPDhsyS2wjM7T0OXzQmJoGnzl+FrXPhF6o76q1z9B4i3lWY+Uy3KvnyXTRB43OG3zw+ht4z5V78EHh3nKWQmJaBVyZLXHYlDhpS9SuJ0mr6PQ8y+uB5sYqn8BLF3SqPXbcFJhaAhuF7bDsMnShDz1oFTCb1TBFlyZ11xo4r0mr5OgceFmrCZTNbZOOiydv6U0kJyZOpefPJ7bFLGuQa9INWeMGWpDWU9bTLCcNFOuUmLkIfOwxdKQQwzfRsNF1pi/8GidoNg9UOkQw1IedtA1Jc1Svsh4YhB4UDTPEgJ2d1dDXB31YKIX5RoCF+5ec2HUEiBJEskePFFaz2aLcJmm4SMfF6fgaAbklD62mI1BrhBhbqQAT2aEUghwBN6NpaueMM6WRAGUYZbOla8LjyRayeZzGPwZ5PXvGy/brSH0ah8gG2xfHzmzmNjG0/H9Tk6aO47a2TfTJAmcxMWd5Dl2EoRmKxS8Ohs47rsv21dkuAdGjNBliGnwumCEVcKaOSG5LgiIAa9ST3J0CpXJHPQa5/w63d56E6cy26WlhtC2lATiFtrJU+6vOyRF6eoSbxRFut7sAgPvdLK3Dg+Zpm+PV0104r7Foc9yvp2iDwVEXq9lH7dD7528kY8alz2HgU1HXTDnkmhiUNphkkkgvj0VHJTo4Nf/G7CQN5AwajqoJjtsCXdAJyHAJDWYBOK2em1U+AaC667PJePBkc0XWBjE7c3XvFHneYVK0CJ58aRpHx3PclClbrfMaVpNRY2E6FDZWqRcgS5ZaYK1SFtkv53Vin5itYnbJeZ2y13wgR+KmMyljblqS55LRVKurL0MRUriGGAkPnfkEdBAnV5M7mMwlr6XUbxh46Di5RuYo9TX0rIc2xDidHE/67hjIBoBBkZwAmY1hA8YQKL1eTmzjDDP6rAcG3q+LsKXOyAWVSqiwR1Hj+mzIsZ9QFz2BOrcuXGaQ5Meh7tDbFvD/vIz3G5aP58CZaGPGi9+lPxE3mfkmr2ViNkUoUvoMDc5DDDgD5mbA4uit4bLz2rZt0nafDAjZJqgG1rM1t4qwNyz3VjSedh73ddkuAdHDtwR4+LUOgKSZYVpuZHi31rg21Khjyvtfsj0S9KgQQRKGxNQaSRWG21kbW84abAahDSRWoHUG07zBvcM5ZqZGqTo8aKe472a421AIjAffEFSaqLmWUuMMVi5LhVq5ZdrhXjPHoitR+wxHkUFqg8HS5ThpKXut8RZT22JiWhy2E3zx5BqOmwK3lju4s+oB2WmbU0q9J92MjYVZKcOrS8fYbCmkOXhHoEwt7fDGcg6jPe4vpsh1b2rng4rGlSBwZcjA8R037iMEharJ0Hoq/7HsclwvTrCbVWicpRCe9qQn0j5mNfXARzbJgMjK5lzktvUGZQRxLPTlcNy44jmzJ7l1aCMDolRIGhf6HzCWtERQfeisF0EjuSynMjex1MZAIwRmPvq+FTx6v6Eg0+Z7hoj3wSzIJh+e1NcEqybPsf9sKF7mzzVCSk+Xy0sLA54Mh1qj/n8jgEfaryKA45xeC9PJawy1HsYbfI9hiHAc/uPaafKcvd8c7lJq6K/FfW0tpITepXps98BsThIfxweTi6Tnb2JnvpJtExA6C+Q86vbfVIAUntDrsl0CoifW1OgdSGhEpXpP2NzxJLCSA2GE7mOcMl6EP9x4/z0E+mcGitdLxyaX4ad9E5BPW5ysCgrDeOA3774DOhZjNQh4fbmb1tsofIxhnNpbdMHABY1S0+SdKQr5sHcR1UMrI2vU4dZqBzoWVwVAjJEKuLecpfT0RV2kfR9X5SBj5nhV4rgmNqrzOoGQtSfn+JQsS3Iwm7TsMuzF4qkH82VilHjSkG1ekKjZaA8XhbatI8Gzh8LK5cTU2AZWO6qX5ntRMDM9uemSTkiNJpPWm8Qm8XnsFlXSFjFLlEqTeIXWM/vTsyZsYujY80aTCaGxvY5H6zBig+Lk67UwFwyDyV0aDHLfGvvtDMKzo2voYoHUcWPmaFPJih6wDBkmI8pgyGPSICBjdAQHyiexceeG4SL+m7cxAD/idwlBpQQJx+LoMMwU498giaWDikVc1043ns+6juqsdt5yLLA2msrRbAoZyQnej/pZWuZNnlkfBnRs0w2l/y8IhsYA6q3WEl0yRE+uXQKih22R2u4N1CDA0JA9SpW55Uu2IN5T6CysbWcAigbf0+dcMHMt0hafytPnevzdOtga7nf9qySwFs7NTWuAuwVOG9IA8YAhxZkhUEkJmSLOoZv79QyLLsedZgdH3QQnrsTS5ShUi4UrsIjp9febGV6r9uGhMM8a+EAePrnuUOgOnz0kkTVrfa5Oqd6aZKVy7ZLYuHN0LFJfxD4rrTOp9AUAHFWsUVIJPO3mNSpncVCscG1yOtCwLNs8PSXyhNFGgHPjyjG6CIo8iCWrXDaYWEhf1CQg5NEzJOOSCdwKQ/qWVQwhchmGuqMQ3HrIKaTwDrMpHGbJrEvZTRL48N66mCGVAA2DgFQsdsNkHYa+OuyKLV2qU/8DUj9nzRADMWZfZEugxA91O9LlW4tq9OzLMwau7ONDPk+kLbJRRN2DKZ8YGinyTscyMm4csD0RCAVPF5OZH06lH6TGxzT8BNjEuJPE6Wk86r2R5H7HzBlbBIzduV0gD6xJ1sCoHnCP+5mc/Hs2dH0a6ZmfdZZoGyt0Uc3PRT6T353HCgEPD+Qed/3L9vZsl4DoUVoEE6kUQQIzYhEFXAh6y/ViqID3MRj8xtvh/2XhzQ1wP4wBlVwX/XcphDbeTfxsrTSDDmhqcp2eFC3czOHkc1dwt51j11b43PIG3je/PaDXeVKR9Z58ULi9nOPF0wMcd1SUtfbkMu1AAun7zQy1tygi8DnqCJxQurpLpS+empxGYTexRlPbpkG7iD5BDIbq2uJ0SQzS3dWM9DuK0uGtIg1R7WxilZ7dOYKHikaKJHiunI2aI5dAFYMiFkEzAwMQu6NVwLLJU0hNgkM+D891yOKxZ4b8mUIEkDI0BlCGGwuyAVFuIQKnWfQ34gmudQanTR4F1ypNpG1LjlDOEVhMYTMdYG3UKXUaXaehTYAeOE9HoCF8dbaxG2uZZuh1RMwaDRYfs0iIoTlmXni5uMyaQNf3ISqqA9Z/Z8TvxhqgznHIr5+4JTjg9RJoQH+t+3MPa6CIQM34YYfZMF4Q/YPR6NzUaBxgRk+rkLIix3oiFpevOU+P2JBJ1qbQ6rhJMGRjf9fCoJH1fMDFs8w2bf9JLr8tZLUJyDwpLdA2n6KveAtP6HXZLgHRQ7cB4zMetEYTwXmDgvxaDoQjUKS27G/jdmQbDMASMIlz4O/kuzwm/nM0SPvawDVU+sHEbboZ6Vx4Un+hvDuY8HnS4adS/h8ADqsJ7tdT3GtmOGwnqL1NIEjHtPSJIeGvDwr7+RK5dli0BSpnsXI5ll2G65NTNJ0daB00AkrbJj2ODwqzaY1re6dovEGmHbrIbDGoAICd6F/E2wCI9Woie5TCWghYtDnVJotV7KvWDs5Xan2WVY5mleF4MUn7ACjsx4VZc+2SnikXgMsJoMTb41Df4Ek+sk8SwLEbsfMaRgfUrUUR9ULOKxgbtSOROXGdTuCk60xihTTXMmOgLHxw2NCSQQdPzjvzKvU9FlenPibAhwTcqe+J8huDiu7cjdUwEy310RQuYxCznZFg0JOArbipnABUTtSaM/GVzl0x64IUouNTlMehRueewGBasD9G1mHJ+z/ppkBgrw8XMgAKyKxLppuDsiNqeH5KBRS2G4Chscu1vEbMovLropP/NpCxEbRcYJvbjm0bGzRmuS5qsHjeMWxluxC2DstfiTZ+Hn7Y12WjdgmIHrqNAEUawAVoGPe0szrcBlZm+H0/wK4Dmf6QBoOoTMnfcgqD/cf9rAE4fnodAbzk5NspTCcNTlYF7KwFctL0ZMrh/bNbWLgSndcp1Zt1KQORtdgnMzVZnFjuNzO0QaPQHTLtydAxaNTeYmKI/dnNSCNTe4tr5QIvHl+BUgHHVUlC6rj9xll0MUOrtOQzdHVySoxArPo9HtwYiDC4AGLIzHYoY3kMDsEdVZP0dxPPV4IyniyZ1fC1wY0rxykrjEN7AJKYOr2LbLdtWhAOrQ0AkgBxDJiYKWicQesJ2HH1dOlpFDx56HinoqZnlNqd9EDUL7g4LB9jSruPk/LJokzrbQyPxb+V9im0JkuHSDEyZ2+NQ1NKnB+fjwRJTrBXifWB0GKhv9cywcJtEl0DPbvEQMuDwq8cukuhOtUX11XxvlTyPhYgj4+PzzmBqOj5xNtIafMYsnKypAhP2DJjUKkeELBNwJhxHJ+zZL/GzM8mRmV9me1hs/HfD9POY3MeBmydBdi2ga3xuo96Hpft7dMuAdHDNgX0j7UYAIr0pCw/f9SWYljDp+axhqBfXvy5qcbZwx5XmtzER2Kz/AS/OC2QZx125hVU5nCn2cGeXWGqG7DoWTJCHorqJMWJbTzRAojMhsFBfopMeUxMCw2fjB4LTenoWgXMbI2qs1h0BRpvUXcmeQi9+PrVVG6DtUL8ujY9peNvCoSgsKiLQQmPg2KF46Ygw0bjMI3sVK4ddrN6wMhULsNeuUphKvZ0YTGzHEytonpgdtZuHEgpXblngNj/SIPErpPIdMkm/5fmkSzKlhOaVuSlw9lFMj2b2QRrKIPMWpfCYhy2MtYnViMEJNNA7g/O6TUzQtLvCFDBGiPdv/o+pgbvgwyyyFzJENg2NoN/AwnOaHv99xyC5PBmEpuPjoGPw0Q7hrG+hrebivbqXpvD27DGw1qHLHN0DdP5Y9j4YcOL7Dmxj8H5hJ4t4lIdDLz5mBnAWe0Hmj4GRplZz1w8S4A9BgZSVJ2KDJ8FHrYIl8f3whp7I1idTczOecBlWyjrLFB1EZB01ndvGkBiYefjvi7bJSB6pJaARQRGUsczEFnj4UCIaIP+KdkeJcJo8njOPVYMKHkZ3lsblHm9c+4RZT2806iaDJl2mMxrXM9PsPQ57rY7CcD0jNBwkvGgLCeenArTYZ7VsMqlp0qrXQRXdDCT6Nnjg0LlMmTKo/EGizbHsstRWEpvL2yH6Q6ZD7JJYWk65NqRiWRWY2pbLBsSMy+qIjlG36+oOO3N6UkKgwFUld5DDcwZAQIfNycnyQ07Ny551uSihhhrlJ7aP8H+7jKBqiYyNZXLwNoMCXK0CmuGj8xc5dolITjQZ8ClST70VgcATXbOa2Lc4ktrTyGWBJL6SZHZDWviZK5JNM1sTWJgAgbrremAEjiRbIvoa7Evsp0DEHVCowKuKWML6yGyAauRwNj2myOFVMVxcVHfcQYZL2MUlVVhwCObEfokZofkcbGpJLNfAImqx9cxMcLiutE1jVogduzWPeBLjCRGQHHEZtFvHNK7ZLzkNeZlh69eb/UofkCbwM5FQMNGIHPRUN0jAKGHaRdhkL7SjaeHx31dtktA9NBtMLCPgc/jtNEAw4UiNy4je68AOf3KD7lvJZ5Ut6wrQVgKowUV3Ys1rPHYm1b43cVNuKCT67RkgMaD9abJSiNE3VAcyFXAG81uGoCnusGpK9AFg9K0aIPGQbFCrh0O6xJ75QoAMM9rXJktSe8TNArbxcmPWJvStCQQjcBlXhJ46rzGfrGKWV86TQQynLXNQiDXXfrOap8qhvOkyttgH6BM6JUYMHFYDejZHlm6Q/ocDa7b6AmbQVg6nqj3yCJLUNp2kE3Fy3P2WwopiVIUnJmVWze4D+SEnvoI+2oBmJRtAjx9h0JyvO6BUeyHKgzuh9RfRoVS06YEmOH/e5+hCAT08Pr0WqSeLRqEz0ZAi5k+1qHJ7zh7SzbZt/n6jr9jJimdQwQ2Y3Y2RLZYM6OGPiSWMsb4/FjcLNhlCZjG55RphzGQ5G2Pr4Psm3IfwMO7Nm9jeeQ+L1I6YxtYehwg9LjA5q0ER5ft8dolIHrUNghdSYgdWaOLjA9x0f5/ye2HtafscXbYGrszBmYbmCFgNDHJbacJZcsyvGhkj5SlUhTGUlHUzpH7dO0tdkyFQrcDdmhTkxPHTl5jYtqUTVboDlY53KnmqD0Jg5c+hwsKVjk8Vz4A0KfCr9qchM5R9DyxLRpv8IVb1xPY0CpgalvMLAGgp2YLAPT03niT2J/K2cQOVS5Dx5XptSMwxaLS+JtUjsqJaEVFZPPoMi2zlbpo6OeDShqe1pm+ZpkmB+7cdMlXic9PhuH4PFjjJD/rBGvBnzWOGLQilp1gLyPJImnx2ztPafch9KnnqXxFnBS1GYaixuwffQiwiHpaNmvs0JjhGXayXkMka6IxSNtUkwzos7+0DvBeJcBL34W1yZ9BFKWa931SbjeFHePvlEUGSVa75/DYGBhIUMnLMgsk+8agjIl48Ej6oMjMSTYrsUwCJDNLx8vxfcdiennumdDI8Wfjdw632pEOSIbHLtK00LhdbPmLgSJe5rwMr4sClIuEwc57vektPKHXZbsERI/TBoP5WngsbAYn4uvhugJUjW+qTdsR66wBp037G4Oh8b6kXil9Jw43DN/5HHT0IzqsJtifUEHVhSuQKZfKcQBD119g+HTJT+kcFuKirvx69/wuDtspMuWQKYf9bIW5JU3PaVfgOGaaXY1eQLeOdweTxM2DY3RB47Ape/dnFeBjNldhek1S4wwaZ1DGz3xQmEfwREDGovMmhc5SyrwzSYPEkw0gvH6ENsjG0AdPoMsuiyAsw7IrhEA6huRCX1KExdJ5yuZTqJyNXkYWresF7HxOWgW4CO6s9uRvxMBhBBBC6JkWrakuVxI4qxA9i9Sg/6Z0dy4zwZNyBCBVk2FZ5Ykl2gSCUjZV7IvMnnDf3plW6Vzk+SmF5JmkFGVX5VEXY41f0wHxeTLw4//pt+rFx/KdmaMsFgmWflPUf/t9SDE2AcleoyXZtLGmSp7r+rXprz8L4OV5KMUhzB5083FxuFR6LqnR+Y77wLYXr88PCJwRyQarnSiPI7c3bmOws4mNGv//KMDjosuetdyjAJw3Gxwp/2Rel+0SED1e48H9ccNlG7a7MaNswEphsN+BJugsJmjb/oDeXVg0CYDGLE9oDVyrkWcON+YnlFHWGby4OAAA7JhqbVfjAVNOjnn0N+FCrhQ+a7FnV3i6PEou1VPdYB63vZ+t8PzskJaPg9AHr7+BL792bbC/qW1xrTxFph328yWxT7Fu2OtH5KjNvkCNN7DKpww01vb4oKMHSxjsj/U+yy4bhL6A/snceY2TukzLzosaTWeiJUCXztdGILVja+SRjZraBvOsSdeJwVUXdBKMn1d0UyNg2WWw2ifXbQkEAQovMaPCobNxDbQEMgagB4OMMKpaH8Xl6FkbTq8fh84G2ZnYrPM8XRWDc9N68+TpvKawXtR4qQhOM+3S78DMifQLkj5Z8vc1gtkYh5wY4Mh1OBQ1Xm5wrKYPFcoQWWoDsNmH1qRNhdxuf07xIQAqFaflZTcdvx8du7yW4/BY5WwE7Hnqd503W8NSm/6X2WbbwMK2Y9m27FmMznntvOXO2+/bgh26bE+0XQKih2xpcDu376v+7TxgErAR5DzcgQ0PaACKNoXAgkLyJEoTkjheMXFtBFYxDGZyB+d0BBxLvP/aHXRB48SVqVDrprZp8HhQT7BylCq/cGUa0AkULTE1DU3kukvmi1Y7THSL3byibDDb4m41RTFrUsr/4ekEt5dUV631Bs+Vh+mJdtEUMNpjnteD0JPMOOuLx1L4jBtPKFzGI4WyIkMxy5t0nDxZfeHeNZSmQ2G6dF2ZlWo8OVZ30VqA99F5A63IGZutA9g3SRo4dqJ+lTQc1KrXwFSdTYaVUgfEjEoSgJuhtxGnj3eurw9mWCQsXjYWeFXoNSccqpFAivvQJlaEgcJAN8THKbRA7CrNx8xNAhLO/JIFcmmZHrhQiY51sCP/T7910GuTnxbXUa4z3tYgRLjxnkJyvpelVJg9UmJ73J+k47QESHy+cr9r4vRxiBNYOy+gz1gEmCWlkPTUNolBowcD8bCwNXQ1pCIuAqjO+/5hQMnDLHfWeondGoXq3hJwFJ7Q67JdAqJHao/LCDEA2hLWeqwmnrTTR0pkrvD3cpkxIyXCapvAUHpy9wrBKVR1hlunO7hbTXHc0JP8whXYs8uzD3V0nFVLT6ArRzqhQrcwCDCs3VAOhe7ItDFkcNDIYkbaXrbC1fwUpWnxYDXFM/tHWLU5CtNhdVTiuflRAlO/v7yGQneonMWD0wn2phVy7bCfVwPHaR74eTLodUM9ayDZmVWbJQ3P1LaJmQCIKepELS4KY9HfzGaUUTvEmXQs5uaJJtdUMmRum43Cbhn64XMYf5+y0yJoo3IffVo2MUBA25m0nbYzaDsTHZwVjPGDjCkW9loRqsqsEOuGdTDABV+VCokxGbM+SoVUIb4POfWhPD5f9hzic3deo+rId6pxVN9NitF5W2NjRcnA0DWicicManl7AKJn0boGymgPI0BLCAqdM4MUfBma61Pm0LNl/H9Q6RqzFskks8X+3FlP1VsRiCKzAvDyNR1P1gxaBxN+fE+WFcqnBAXuQ50AXZt0PNtT7Nf1RNvCZuP2MMs9KQZncJyj8xuwxSMN05sWMgtP5nXZLgHRo7dBuGpTb7pADwujv8OGzx/meAYgZzNj1O9Pnc9KbQjJDbalAtwyQwhA3dmUyWKVx2lX4D/ce99gczKVefA5+oH8fj3BymexRMcUle8ZmUz1WVlWkZaDABGBpjZo3K1m8F7hoFzBeap5tn99EQXLDnfqOZ4tDzE3Nb58eAV55nBzdpIE1bTtIeCpo9PzYTNJgup0HHFycEHjuC6xaHO8erKXAMZuWaX+wewKX4fSdqi6DI3rtRc+aKxGdc2AfvClOmpu4Ki96dryMfF3BKhcYofY36j1BmXWJhPDEEhQzYAms27A8jAoMTFVXwIf1vNw9tqgbbxF+Hfvf/+ki4tgXAsX7HnZgE0P5TnLMJKLoMV79rmSFehjHS/V63CcOE4ZdpOAxwlzUdl35TlyOI6XMRG0pVNlbBj6rL5N2sCUsMDZdopC2db4NYG41CXJY0peS+gd0mWT2WXMcEprBp7cN/kLVZ1NfScXfmDbgMdFRdFrn11ghh4DuCfFzmwCauPjHO9nEGp9s+mWSx+iJ9YuAdFXrJ1B93CYalPbBpK2bXY8qJ7FMqmAZPjIjsFroCiM/h9tQoKkLEDlDnneJb3G1LaY2hY3imN84/5LYrJTo+0MT4wZrNJQZtnKZamumQy9lbrF1DQoNRkbZpqE1oXp8Nv3nsZJS0aLGgEH0yVK0+Ij11/Doi0S68MD18F0iWd3jgDQ0/9xU6w9gTIossoTmIDCoiuSuBnonxqt9qmAqw9USDY3LpXK4Otw2ubII3tkzTDThzPNaBskhO7/V5jaBpXLUNpuAIo2TQgyBZs9khgYWaEv4YwpYk16toZ/a6N9Kp/BZSEy69KkmlkXhcMY1EBjIXAKi6l4XUPfj0IM823SIslwnjEeVWsH5Sg43ZwZK2kLQewS2z7E82DAE2ifbkvYyGifiulWXQ/IW29QdRlqZwcWEs6T0Sj3R76OSiHVRUtu1gK8pQk1jgfBKXIGBzFoxsZMOgD709WAkRpn2A1AJfcJ9N9zk95EwDC8tmr7c+XGdg3MnE5ti71shecmhzDxfLVgTc9qm1iibd8/THtSTMxZYGocEjvvGN6SmmaX7bHbJSB6MxuPvWfdJxueGrf+f95ykguV71sHkLDxz63NA7bskGcOIcTQTxzoFq7A1FB2lnxKP69Z7ZGJwZJDTstY8R7oB1NmjArdwUWwc7VcIs/6J1erfEqx16oXMJe6xdcfvDqoAwb0egnS89heYB3DLnJgTOU84uSZmaGvEO+fW5l1yKzDss3TOpPI2PBTOrNEvD8Wr8pjzLVLT/DbGAstJsy1p1n02UeTWMOKQjt6wEQw4NARPGsB3M7y2aHvRw+dSmhtzsim6l+0jkK/X2bYZMr6plAQsUh67Zi0CoPUcxYjy1T5dM1ADBtfu20ZkmtCdpHVxdlv8vpocX7DFPuolwpDxou3flIVaTl5nvK4gmCH+BjkcUpAJfsui+vTdRJ9XGaRpT6d/LHcQH+lR+Hk8fY2tYuAi/M+P2/bZ23vLFZp/GBx3nGxqeqb3XhIf9zXZbsERE+srYutN9E7W5ocVMPoffz3YKfnfJ+WGy0wGMODeG2gmM66U4KCa00KvZzGid5qh1vVLhau7EMfilKD06pbmCOrPdqgQaaIfTFWHxQqn6ENBj5oVD5LgKgNBBreufcAABLoYUaHB3L2FbqWneAXXvkIrmULfO72U0moLBvv87WjPapPFlkBWcCV2+3TOXLjkn5FqYAH9QQAgcRp1pDTs3HQ2uP6dIHOkxbjpC77iSeCIQZehelZIJm2z9oiBlxWhKhYZO2DGrhpSw0Ni7hXkf3onIFSAbl1CTCwJmeWN5gVzdokDxBjwqGhXswdBuwSsxcDzYsi3ZCxLvUvHTVJHCK6trcYrCPDT7RdOu66tUl47AUbNGRQhvoqPiYpqmagkkVQL2vXyZfsH8w+eahBP5VC9iLrEoMlf4cxOBzXeAtBwTudxO+d04P9s3ZIpuF7EU7k0CZrmOQx1zHLkFvt7IDt5L6Vx9Cs7OuUYWbTOTAAGuuxtrVtLNGTEFf3x7SuhdoUWnucNma47IitfVNbeEKvy3YJiB67XYz4eLR1uJNuYoDUlu/P2/Z5uqFN29l2g6uA4DROqxylpcypZUceJYu2wO1mZzA4nJ7SU+5Y+yEN7V492cPK5Vh5coquvUUbDJY+x8rnWLocbTDYs0uYWCsNAH7v5DreMX0Aqzx2iwpd0Lian2JmGnTB4NbpDpZdjqvFArXPcHg6gQsaH7jxBu5XUxxVBGDaKKT2QVGJj0lFnyU9jh6wQwDw3M4RTYDKYxGf5J0AJrWzmERn6MK6VH2es8IWTUEp/jJjLGjU0Ryy8TYCJR3ZIp0mcZ6MSVvUT7pyewy4ll2G46bAUVPi1mIHPigs2zwBORPdtZl5MCokkDEtm6QnYo0Qh8jS8gOxL8TnPgEWKVwGsAaeeLK6v5ji2s5p38UVvWZFbz/gPR+DEdlvwxCR/HvM5kgvIwDpN2QQLeuC8Ttfz8E5oC+Hwd+xaJtF50r8nVkHE4XnxnoyueSabvJaRENMCb7G5yUF51oJ64N4T7Veo036pt57KYnHRWhHsmN8rklsL8rUuKDiQwsB+NabkRbrbJZoLbz0GADiYbRDj7Kfs9ghZsQYDDFAZKborWCLLtvjtUtA9DhtE7JeAxoXuCnOZHDO2JTa8Nr2OYMPt23jG7Z91rHEYy7mFI7aKSpcK5dRa9NgntW4V8/xv9/8PQDkBJwXHerGphDa+KkbGKZMA0AdKJ2dUu013miIeWLTR60CDPrsr3lWYdVmKKPj9cxSbbRrk1McN6T9+fTR8whB4Vazi6ltyMm5ygnEgLKKcu2S+HSe16On/5654mNgncW8rBGCQtVZ/N4dcsg+KJcoTYc7x3PMcrpeyzYfnGcVPYw4nJVrJ8SsQ/8W3i9nvbGzNk9gPBi7CIpYN6VVSBlX1hAIamI2WWG6ZOrIvxcDHg+FurVwTqcsKqrRRsfUjZi/8cQtQ0A0afvUt5ILNZAmdu52d09m0Cpgf7YCuzaf1nncD5Inko314gb6Gd3X/OM+NT4uI5i+lLI+SldnUbK0IBjXMOvLmgS0kW2T/YLZE87Mk9lJed71vkQ6pDFFPiysi6aHbtXD1P7+uOQ2Vk2Glg1F4+/lYjhsHDbc1JhxBJBC2l0wOHV5zETTA1D0KG2ctfVWtTGY2XQsPoyy8jD8Xd/Mps4JhV30ddkuAdGjN44wibbdY+Qhe5tcfAxyHqUFRDZH9YPuuTseUvjb7pj6uMBzVw6xn1eonE1lMZhWBzhMARR5i7rK0qTJLwmKctNhYpqU2eWCQu0tTrsiZWAtXYbaWyyjZ1EdSGTsg4aJbEjlMsxsHTPRKKV9N6+xayu8vtzBlfkS9+o5nipOkBuH07szAMQQSc0QAJzUJZXj0G7gQ7OJmgfixI+ASdHifj3Bbl5hals8d+UQWpHwnFkT5zXuncxwfzFNoAZYZzOSK7Bg0zxU0m2RtmNoIqhUn2lWdXQ92aAwXW/rogA4hou0R2F7jyRrCABN8yZpszhby7neX4g1SACQZy6xRZwurhWBHhPdm0mr5HrTRmDwzuDJB4XjVQnPZUa8SkAHQCzRoaNmiPtbSCEr1qDxtZCp4eMSNUbUKQtBpVInfG3GYIQbezTxtR+6Y/ffFZZKprTekHGiDiiyDnnekYA6skTaRo8nxan2fo1Jk9tOInPTAz8+Vg0Kt/H1ZOaIs+IAAkZFtBionB30ZdkPS9PioFih0F1ihmTz4ezpZHNY7OySHufpe55kWwNCZ2qftpQyAY8LFxOaP5F2mWX2xNolIHqc9ih96CKhqjE7k9bZREmdcyAM3DYCqvO2Fc4/3qDwhS/dxBcPr6JyFq+e7uJOtYM3lnO8sZyj1C3+txtfpEUDCUc5PVlOHEzpV12GiWlxkJ8C6I0JAcBBYdnlOO0KnHZFcrS2yuFKvoTVDrWzmGUN3jG9j9erPdyq9lCYDtfLk+QR9MH9NzDPa0xtjc4bvGPnEFeePsZpk+P1W1egVEDd0cSwbPNBGItrm0mBNR+nTUwEhY86p3Fclei8Qa47XCtPk1M0Z3OxENsHhdOmiPqeGCqLAImzzXwYlQCJDBGAVGpEDuqtEGOHGEaTYCgVBo3fG+VRZm3axrLJEyPDvxE7WANAntEkyllnzFZwhXoJODhExEDNGpf6AH8mGY1ek+Thfe+1M/YqYvZHiqoTc8ehrPg72ejj07/o/LPon8Rgk9brJ2qrfPLpkfXf+oyxIZiTYUHebm67gegeAHaLCoXtcHV+CsXZcrmDyZyobUbXmQEeA+mxLopfgwLMsWndm25yKC+VLUGfes/HO25ahWQ3MbU1nBgUuIyMBAASGJ0nRL7od2+H8FMP3vwgWeKy/d+nXQKiJ9E2gYYBAHnIMNX477WxIIxe48+wEQSprcDogsclB6XRNu7f2cHLD/axajO8fLKPprNYtjlOXInjrsQ7dx9QCQKvsFrmA/diHrw9FOpYPoMHwNrbNBB1MaV9Ypr4lKpSyIw9Ue7WM+znFa5kS3z2/o207hW7xIN6korGrrosmTzeryc4ejDF0ekE093VIGyiVcAsulgzIOF98eQJIJk3Jv1IZFpc1O4sugKdNzgoluncukAhKwYD9xdTHDUl7qxmWLRFBD866Zc6MRkTC2ZJsxUL0nJqvVUetbPYyWvMsibpmFzcVmlbFNFLhnUymSGLgEw7lDHzrMg6FLZL4SmjPXbKOoGIWd7AxLCVMR5l3oq0+AhOPBeIdYMsMgCD5YCh3oebSZN5/5lkwJQiIFFmVFyYgcxYTC6F0/z78HlnMTwqJ7nCdMlvh49tnMlGICUMtFTEtAzPJQSgbm1aj9tpk6NzGqsmI9F95lDkHazpWS0GOVpm/ImmVEAWw5hGLM/hRA+VrACYGZPCcy5ZwuG0TWFsuo49EObvs9jfJqZBpvpjGLMjF2ddHs/YcMzcjsNeYzZXvo+Pcb3OWg+GWLs3bmOW6M1q6jHCZPJ12QB7/iKX7U1r3CnH99rjhebXAY3CxpDfQzWJjeJ2moa608JrXJmtMMvr5C79od3X8PtHVONsm44pBIVllUcBMTFC9IRN4moPhd1shWwDHb2KBSfvLWeY7rbQCHh6foyZbWCVw9LnKcV9165wfUIMlFYei6aAMgGuMyjyPiwEAKVtU0V5AImxYZCS2Jio0yltiy5oZNql8FvjTRSmusFAWbd0Tm1L2p0sc2g6i9lkOZh8fFBogkkZYrlxvWPyaJLicN8sa7BqM7CXTmG6wTFrTaBJpnFb5dEEKlliRdacZCaaziKL4CZlpBmPSdYmIbYLvfNxGLEnAOC9jnXTyL+o29AfZJ0xKX7Wo23x+bjQ11nLjYMLCpn2cL4Xe8tzVRE48nayyAL5oFLocDxRbnKmBvqJ0IA9ndaXmeUNTpscu8V6fT8JTKZ5g6PlhLaqeuZLGidCE8jam6zSMS6aYk3bxAJxPnavkH5PDfr9dAwFagAePdjO1ZDNSucagVGmOroHDaIdhgeiJon7gGxS+zb+jOsEnrf8o7QxMNkGis7exmZwJzWEF9n3V6xtCxw87DYu2yVD9LBtk5HbEBw8ZEjrSYGdi+xPYzvo2rp+DJud11O8QneaY7UoMClaqr7eZfjy8iqeL+/jXjPHwWSJnb0Vgu+f5Dlswk+tZUEaJKsdDEhMrZXHSdcX9+SsjjaYFHpqvE1+Q7vZCiYCkUmsg5YpYlDaYDC3FRpnMDEtXl3u0+WIhW0zS0CGDfmqWBA1hV1UXxxVDnhZBCmZCAVNswa57bBoCiy7DI23JLIulpSVl3XJEdlYTqEG7i9JT8TFZVMqfRRcV9ECQKZHl6btPZWSRobEzzJUI8M+Rg1ZFFmWoTAdctOhjCVIqjZLWWjyd/OxhAbbDcj9cJgs9SSeQETYB+iBD4uOadm+a0nBtARJKjI0PgIxPp8Q+pIV1njk0YYht12f6aXdGvCRmiONgMpZMtA0fahPHlMS2QthNps+8v9A71M1y/sMOf6cgdBuUWG3qOC8xrysMSlaFFmXQl1jtkOCQx8U5nmdgI7UQgHkIu+8SiaRQYA2ZjM2hbHTcW5hjbiZLYzIWt0y1e9z/NlgufO+/woCjbMMGLft90kAt8v29miXgOitahy6Gt9jm+6tbff/mYLr+NigRhu48L2rRtolUG/hQWHDIBACEDqNk5MJOqcxz0lcvXQFam/xhw5eRJ51UMbjj7/js2upw5zS/Ylb78WeXeFqvsCeXWFiSNcy0S3mhiYVTkEHEEEBhcLetXcfV/MltPLItcOuXSFTDq9W+/jmq7+PZ4sHMDEj7H4zw8vH+zhekV+S7zRWdYa6s5hmVJj1yoTqsbFBIxklDkNXDI5cBC+LOk8Tr1WegJF26LzGiydXoFXAYTVJE1uWxVplmUPrDazxCQT1RV8tVm1f5gNA8ijicB3XOsuNGwiuC0OhL9YhefSaEQ4dlabD1LbJe4avK7s257ZLk38bj0EpUdojiqpTTTHlYyiqD3lJMbBSAW1H27kyW6VMLQ43cXYYT9AcshsKr2kdDt2QANzDBZ0AFIcFp1kDE7UfJno3aRUGaeUy1NJFATYzg7Kfcm0yl46XGCBmNWSm5E5RYb9ciWPezDBxmLYwHaZZk/RFKRQm2CyriZHjPsgaoGnWkDaKrw2U2G+/Pyu0YzJkOK6BJ1kUDqfx9wuX43a9k4oQ03I+gXFp1ijbJlC0abnx/s9jdB4XrGwKkz3qtt7spi5DZk+sXQKiR21nhLU2s0SjdpEO+Khan407CqNlHuYYBXJTGIKi0bkGr+BWFpl1qDuLRZvjTrOD11e7WPqcJg4T8OLyKm1uw7XicNDcVCh0i1K3eKo4wcpT5hgPwlazU67Hrq3SZ9w6r5OR40d2XsGteg9ZDJ/l2uHFkyt4z5V7uDJbYjohoNU0FlZ7LNscqyYbiJWZtRmEL+J+6q7XiBS2BxSclcYT1/PzQzTO4nhVoo3nmVmXMrjKmInkIju07DKsYr0zWWRUCoV7obdOYEaW52CQM65rlRsXC8q6WDKFypPkUU/EQE+CDmYWmFHgiY+OO6TfjgXVElAkQ8fOpFIfIQAPTie4uXucti9T5bmNtTPjxiwQh8e41pcZAZ1Z1qTCtqxZGZdekYyIXK60LZzXmOU1plmDWd6gyDoSoqPXJYUYditjiHYMMJIeacM9KDVQDEgZOLPdwV65wjyvB78l2ylcieFWWTuNt6sU0rkzoO28xk5eJ8YL6IH+uDH474JB423SrA1+J9bajEDRprDTJgCyDTCNl7to2wqgJAA60yNpHaidx5jxNtWbFYfy4cm8LtslIHrkxv1Hif+3iasHK4jPz2KHzrrfzvtuq3A6iNdZy2G4zJhhGoOi8Wom4P79OVpvsOwy3K53UDmL2lt8y1NfQDlpiNERhUFlhpFGwBdPr6P2WQybtdizK+xnK+yYCnNTJ2G1UR6ZcpibGqVucZAt8f/9/Q/CB42pbbFyOTLlMNU1/tu952Dg8eLqADdLyir7wv2rmGUNyqyDNhTmOTydEGAZsUE+UCmN45iGfxjfx6UfphmBK61CH4KJE+uiK3C9PMH1+SKxDJylBQDLJkvhmbqzOK5LnDY5FYHtDE6jViSBsyDcs4WRYBJY674yOR9Ppl0CUgx+rHapZAkDLgYzk6ijmuc18iiylmzNJGtTUVVumyYidlHugUEvmr6zmMPE8FCfSdVvQzJHQA+QGCw0nbB5GDExzKAcFCtMbYt51qQMPR1BBrNm/HuN7Q+4Rt3OSAO06TxlOFhWuR8vL4XOkgHi/bK4XW7XRkAz/n059Np5HUODfC38QNNUd3bwOwFAFY1D2aGbmcnxNWiijq/1BhohPYQAFDbrz3EdFMnPt7VxCv5XSpw8AECPAIaG/w+n0PP8nL4iLTyh12W7BESP3DaBidFT2ZnrbgJQX4lOuQ30bANfZ4KyEZBKYCZ+HJcPLaXXH69K3F3M8fqSXJGvZqd4aXWAad7g2clhyl4am8q5oPH5w+u4Ve/hdruL1ltkymHXrHDUUaip0B0M+ppmmY7hJu3wwRtvEAiyDVY+w389egFaBXzrjc8DACamhdUOz+wcY1VRWv2Dkyl8p9BWNLHmWYfSdmmyYT0PgAR4GmcTMMn+/+39ebBlV30djq+995nu+F6/HtXqlmgxCRCTBRa2CYNNgBgCmHyDjTE2FbtsbMDIONhOkZSJyzHEqWASEnDhwsSBECjHYOOhbCQbZPgJgy2JQYwChNSSen7DfXc4097798ce7j7nnnPffa9fD6LPqrr9bp9xn3OHve7nsz7rw7it2GI6DePCjZQwSDxq6azV4zBdoaOavQqkuYc493Fu1LH6ksjLrF7G9X9xtUym3UnEVMsSkwJzdS5utMSMySMC4zwAJdKSolEWIOPMRrFyQTHUxpYmgmMeKnKiJlLjbzN1RIY9rxE92/tARaGc3qfcVlKZ6rVpZRrs8VzjQwNTOUeIRKTTScYo0aTEjGbHjXwpewNm75MlTFQUoiRWD2QF3sXoElAfdTCoSvu4FW/lFJGJNtlqSirQcyJDbsrPENTMEdszIrXn0FSnVzbRNEQvoBwH28OCS7VxVLfvM0wjnbmk4CBgkLYMv3gNzvu9gtTURYl22vR1kXRW03C1wVZoCNGFhgSKYSTMkiFS+rsIStvW6RPqtp+/nszZXv+cKBEtS4qoXp5TTGIfjAksBTH6QYJzWQfL/hiMSvzld5+A5x6+B889/K2ZX8aESNyw9wSGPACFgK/L3BkR2OOP0Kap1aj4hNsv0UwytGlqU0XmF6xqfUFw/2QFp7IlMEjkgiFiOdKx8tlhTEDmFHLoI/RzpJmH9VEL41xFbL5zbq+NyBgicW6zgzOjro0imYnXlGuXhZmUSAzSEIM8slU+aebBY8IKn7kgGKcqRdYJU7T8DKkumXfvkZmUCqRAe8UAQJulMG0FyhVTJmLitvfIddRplAUq1SgYxlmAhHs4N+4o926dVuuFMTqaFBoRuQslvlYpMSMoNuc1ZGfqMyRtny8upxVtJkrmkqFpo1TY9YYMmPO6/kHusQBg7HSud8mgcfp2jS0jlttISdvL0NNu5WUyU/W8POkSUiQ75m+VcLcMM9EvRRP0tMt51aQeMF4YZ6BTr64+z9OmmO0gLRzbcyKL5ZSdeW8b5IIh1hWda2kbq1nbavlYidxUYZHUmRvpnCdy3k0sEh0qby9Kn8lLBfPb9Lwe2zzn2972Njz96U9Hr9fDgQMH8LKXvQzf+MY3iuMipPLxX/7Lf7HbJEmCN7zhDdi3bx86nQ5e8pKX4IEHHjj/m7JDNIRoh7BfgFt9Rt30Ut1692/l/qX/24iMnE+EqnRO89JkdiyyenkB+lNkejDNHEuCMmlJQttL8bX1g3hosoyDnU0QIrGetfH3Jx5pXYjdtNnd565CSHP4hNvIh09U5VlElWYjE8z+OlXEaCqIzSTDataGRzgCqgjKk/vHseIN0fcm8HRlFojEmVEX8TAAmLoO3+NIc4Ys9fCdk/shJEGvldjJwZCIq5Y3EHk5Rum0R5sryC0bN5q/PuXYzENwPo2kGAEyIcrRmEL5HwW62ivOfMS5V9DWuL5DnnbRVucwHcqn+iWgOAmbcQpJMLCeR8TaBRhx8Dj10fIzDJMQxr05EwwbccsKthXpga3SYkQi1JoekzYxQl5DnD1dgWYiD+Z94jtGi6T0vpuZtDD1FAJUk1JrVKlTQC0vQ6Q9hUyj0rL2JaCKTACw3k4m8mcqCkdZUKl1cT9/i2gHy6/BPAhJ0AtjLGlRtiHCbqSrUu+kX/NyF3ufTo03XeJotp/aQ0zF1SOnxYx1S4eTQpNT53RKRIEUGZE1gIVTZ/NIUfkay8vmoS4yVLXvImRoWtAx3XbGVuBiRaMugVP1bbfdhte97nX4h3/4B9xyyy3I8xzPf/7zMRqN7DYnTpwoPP7wD/8QhBD8q3/1r+w2N998Mz72sY/hwx/+MD7zmc9gOBzixS9+MTivtn240Gh8iHYA1xtlIZTfa1X6obr95qS7qnxRypqcXYMd82KDl4IgHQbIWwk8IvDgcEmXOatUFjAVQJsvEka0GFQPfcIDhOEGuKQzkSBGBDiUcaFRWkQ0Q0gzPL53AlRXVHW9FGupasvhE44vDY/C9T1hAcc4DkB9PQlEHMNJiCjIkKceBNfmdjoSkmmPIY8KRF6OOPfha0+fUEcVzC9uIQniXHkBmaiRSXeZ1ia50z8M0BVzmih4VFjfoRGmglgTgTHn8nS6x+iIBNTzHLr6TAukBdcRDjI1laREwoMa71g7cPuMY5wFkBJoB+ru9qMY40xpmYyWxUzKqgeafs85E4zpl2YqsQAUysUBRQSFTr2Ye0YxbTmi7o0RW2vBstPnzWwjiFoeMFXNR4kEShEfoGimacwsC/de/3+YBTPrF8F2vxvce1Hn02PWlbctb59KFfVkREBIZqNzHhM6nTklLx4RAIXVTNlzmPeErqgsw55T/wkon23sqtNpdhnklv5EZpvydVetr7p387AdYrJIu43LtdrsYuKv//qvC/9///vfjwMHDuCOO+7As571LADAoUOHCtv82Z/9GZ773OfiuuuuAwBsbGzgfe97Hz7wgQ/gec97HgDggx/8II4ePYpbb70VL3jBCy7ClRTRRIi2iZlfgaXozfwvQzL7tO6zWkeGFsSWKbQ6LLTL7MDcX/M2YkQl4tTDehrZ3mQx9/Hls1ch5xSfuv9ReNqB+0ueM8AT953AY/ecBgC0WWJTZj7h9kGJQJumyCRDJjzbpwoAeizGyWQJZ+OOMuyjHAHJ1baSouulONY+g3Ee4Jr9q5CC2AeoRLIWYTwJbAuFzTREnHs4NVBaqMQ4ROtWFsbQD4CdjCnRk4CuGEvFVKRKIW0JfOjn4EKREBMtMs1WPSKsjmkpmiDwVLQoZDk6WudiS531L3LfaStgiJJx1jYGk66g2kSKhlmgIik6stP2UxD9fg5YbquojCGjRwQyrtJqlJg2HdMKMTeNFXimUa7Wu+jSd5+qFI4xUsz0vVOTZ7HcXUhS+AFgmqWqUvNpub1pZGuut+unVvi+nkYY576tTky5Ev2PdRWfiQCOtfeU6zllqux2mropa4S2g1kh75QkmWieu8yMXVXGFY1GjdDbpPFMKxlzncaqwaRjCVFpXuuF5Ywl5UyZkJJpx3eDaaRoKrAGUFmOXx8JmhVZL4p5Wq7yeecepyIqWEyVlQwlL5AQfB62nR6reQDAYDAoPJIkWWgMGxsbAICVlZXK9adOncJf/uVf4md/9mftsjvuuANZluH5z3++XXb48GHccMMNuP3223d4N84PDSHaTcitwubSeWjMIz1VhyqQh60/eFu1RpjdYetN1CWQyvFNtUQSyCnynOGhjSVwQbE6aVsS4TEBIShuO/6owviYmeSJwLI/hpAUEVGpMxcMEm2WqC99XZrv0xwMEifSJXxz8wCOdVdxTbiKfcEQqfRw32Qf/tnSPTganoNPOJ7YfxBtL0O/O1GEiBOwkIMw5UlEiEoHmrYL6voIHjy5x/Y4M72+3Oqk8i/7jXFkUy5cT84Ry+Axjj2dMQLd46sTpNjTGiPTE40RRXtE6ZI6fop+kKDrp6pM3omABDTXqSluo2MmaqR6qfGZL3czEVKi3KxTratqexlC3XsrzhXZjHPTlFddVyaYbeFh/rqWAVyoFiGuKaQxWDRaIEOwzLhMusxMmlaQbft66ciOxwsk2kTsmLYNMBP9chAXvKNs+xXBsJ5GAFAgql0/VWaMjGM5iBF56h4b7dGi/auKXkn1zUlnUzXzl7nvKfMw5fK5rvIzZK5wvxhHP4xniKZPp42BzTlsdE3DHGtacq/+DrMAZycdfGdjb6GNThWRKWMrUlQkRudPiirXbZViqyCw6p7TGYK6k+PvKuQuPQAcPXoUS0tL9vG2t71t69NLiTe96U145jOfiRtuuKFymz/6oz9Cr9fDy1/+crvs5MmTCIIAe/bsKWx78OBBnDx5cuHL3000KbPdwLwskqxa74Sdt/rcFCJFNTtURJum7Q7K7Q+2me4rn0cWBuSsk4DU7sM6dQIiwTkFpRKT1AelAvec2Y8XP/Ir2OON8OFv34hM9/Iyg/ep8hSiRFWSbfIIPRZbQiR0fy/zRdljMTiI9RsSALoswaHWQEeREjy5cxyn8j6+O1rBk7v322O0WYLHLZ3CmXEXAMBCDpFTgEqIjCHVpI9LpfXhXH0ZsoBjlAaF8nDzyxoohvnT3MOezgTDJMSecILIyzDKA3S8FPs6Kt/OtImkYER5BjGOtUlbX28xnaZSb2JmkjQdyAHVhoIxCU8SxFxN5qlghX3MsYxWph8q8nB63EU/jK2mphskGKYhGBWIcw+mCazH1IRh0oQhy7GZKJJhohEp96bl+c51uCSJUYGcM/guOdKk0ZTDMyLtPmmu0jgeUzYAgCIy6nrUmD0tuE+4hzEPbKTHTQUJSTDOfURebglT5OXo+inWk8jeG6sLc6oM6+DeX7cSrirKUIW6ibb8WhtiZ2B6ljFNhI3WzGwTeRni3LcCdOkeR6c9DWEup+hcIpKXyAAlspByA1ytkEqdqa8KlaJ2014mfeY2hC2kyrRGUchpa4956bPtoJqglrrXSzJDhHZ67IcTjh8/jn6/b/8fhuGcrRVe//rX40tf+hI+85nP1G7zh3/4h3jVq16FKIq2PJ6UEqQsILxIuKwjRIso2aWUeOtb34rDhw+j1WrhOc95Dr7yla8UtrngSvYSESkIrrciS8DWURk582SK0r519vvbiRRtWa3mHn7eoQjAU4Y09myUJQwyZIJiI2/hedd8A/FGhDyf6mjMl0+XJbaajBKBTDIMeYSxmIo8TVheSKo1KFOX5L2Bcpje4G2czXvwCceLD3wJsfBxNuuiTRMISXEm6aITJDiwf4Cj+9Yghz6IJwCiGtGaMYUen/JYAmyst5Fxhr29kepfpiMQbW3GZ/QXJoJysLuJfdEQRzobiJgShR9oDW2Jt/sAgI4ur+76CfpBjK6foGu0V0SgxTJ0WGo7jQNTUatJXxgyZLQxuaCFiICJPpnlqkRbfSUMdQQsd6I9Jt3lMUU4WjoaY67ZNHB1oxemx1vIcp1Kk9YZGYA9H3G28Rgv6I5M77TIy9CPYrT9FG1NgvpBgranfK0GaaQF9NPJzaR/pmlEYT12pJxWkRkPn3HuWzJIoUijIUvzUCXyLUcZtopybCclR4ks2AnY63UqCjOhbBMElIu4We4K802KZ180smkxYOqCbsYScw9tLVA3633KlQM65bYAgkJUltkXzjdHaF1HICs9iuru43mmyQymkbj6arK6PmcXE0TKXXkAQL/fLzy2IkRveMMb8PGPfxyf/OQnceTIkcptPv3pT+Mb3/gGfu7nfq6w/NChQ0jTFGtra4Xlp0+fxsGDB8/jjuwclzUhWkTJ/ru/+7t4xzvegf/xP/4H/vEf/xGHDh3CP//n/xybm5t2m11Vspe5RmXaqCg8rD2AIReLfI6qyFP5+GQaEVpUP1S33Y70Ry7MPZAEImU2EpCkvi2HX/ImkALIYvVLPOcMS9EEfW+CTDLceuqx2MhbOJ32cTbrYsynZEhIirEIrHhzLFRT2EwyfG3zqsI2jwpPok1TbPA22jRFm6X49NpjsJp38MBoCY/sn8PpM32cGvQgPaFSn7p6TmpRMHd/9TMBkTCc3ehqUbOwKSwjnjbpBaJ/RUcsR5el6HjJ1N2ZZWh7KQ61Ngu//o0potL1ZGixzG6r2nNwbGYRKBHoeAm62qSyMJFARUzcFAZQnFDMOdvetA+aMQP06LR9iKlyMjC9vWx7ETElPcovSRQmXeO6nXNWEGOb8ZhzJtyzRobKs2gqCPcptw1jJ7lvq8YARfwCynFVa4BhFiHmPjzCMcgirCYtTDIfm1mot1Xmgm50ZKAjYBtJBFdTRYnEOPfR9ac9yKqEz2XSU364mp5FtC3l47r3qryN61outaao66c2ahf5mfJi0kJ9cyy30W1AOVaTduG8xo3dVOW1vQxx7hXSdaGX42hn3VZ4mr/T4wgrlp9xq3ZIUV0KbatWGuY4dUaLdfezuHy2UXTVNlvBHe9Fh9ilxzYgpcTrX/96fPSjH8Xf/d3f4dixY7Xbvu9978ONN96IJz/5yYXlN954I3zfxy233GKXnThxAnfffTd+8Ad/cHsD2iVc1imzrZTsUkq8853vxFve8habm/yjP/ojHDx4EB/60IfwC7/wCxdeyb4oobGoSTktcp5Fdi/wrfqBbZvwlM9rnk8Y0OJ6fTE1Ai1SBpWq6Ws3Qb8dYz1r43C0hofiPQABmC/sBDhMQ9x+9hgOtEaIMx//v5PX4XErp7A/HIJDIpNMRYyEhx5TxEpAaVpMWuVY5ywAJSre5ylifNQ/hzOkj0P+Os7mPfT8GBHNMIgjbEYRKBMI/BwTX/kR0VBdkxQqUpHlDOnEB+0pMW/YT5BnSlS8xKZl0SDTMu5zcRtcUCTwsBzGqqcYgDFXDtwZD7DkT7CZR4i5cqWOOjkCxrE6auNwdwBGVA83AOAgmHAfwyxCLilGeYiQ5eCSWEKUaZHrSHgY54ElRWOhU0a02JLDTNiAcjE2JGF13LZGinE+baYaeBx7wonVkRjkglryEnk5JplvK+pMs1HP0+kRkEIKNxOqN5iv92dUQApq+5cBsNdmWk0Augw8p4hYjnEeIKVMk5hAkSJaTC26FYCBpyrIYu7Z9BjRKbVhPiVDlEhbcVbGvFRYVUTI3cakfsznqJyKsts4aST3Xrvr3cot4w9lWpCELNfmlIqwD9MQkki0gqSgKzNi9EA3KTZpKXN+I9Z2SbTr62TAoCNWxIxRR3Kd9JdavlgKDRJOqxwza8/qeHYSFVqE6JixqL/VxLR8zEXTaw9nvO51r8OHPvQh/Nmf/Rl6vZ7V/CwtLaHVatntBoMB/viP/xj/9b/+15ljLC0t4Wd/9mfxq7/6q9i7dy9WVlbwb//tv8UTn/hEO1dfbDysXrmykv3ee+/FyZMnCyr1MAzx7Gc/26rUL4qSfafpzvLnal70p+ozuBWnWXBcC3mp1BxLBmJaolC5gdqZeqqTeZIzPDBZxkbeRiYpvE4GnjD0ogSEAAfaQ2zELdyztg+A+vLpezE8wsEw9TWJ6LStQSYZQprbUm1fb+sTji8Mr8GmaOGhbA/uTfYjFj42eYS1tA2fKGfoA+EmCJNIUl+JwWM29Xoaerak3A/z6RcxAfywaMBoy961PmWYhPCZSi0BQCYohnlgU30qzaCiB11dLWU0PYc6m/CIsNV5lAhcHa4jFZ4yWzQpLi0SToSHCffhEwEOFbWxE5ouNTcCa0D3gXNet4hltoIsoFyZU+qIDgC0dJpKNew1xyg2SU10BMFUpLmpMbfVhyE9kU65mXuacYbHLJ+x78OQ5ba6y0zKbS8ruCkDsGJic23j3McwCzDOfRupA4CRXmY0QwHj6AeJraiSklitUUHPUorUlFGbLkN9lGPe/xeZeN39jGs20a+1uW6zv7WM4MxG76yBp5cWIkLufu712HJ9KtD1VZpyOZxoUkNnxjR9Pj+lVJdCK29Tdd2L3JvzJUPzjreVePxiYTdTZoviPe95DzY2NvCc5zwHV111lX185CMfKWz34Q9/GFJKvPKVr6w8zu/93u/hZS97GV7xilfgh37oh9But/Hnf/7nYGzW8uFi4LKOELmoUrIbVlrONx48eBD33Xef3WYnSvYkSQolh4PBYM7gFrkCN8RjZtsqcfKcXS8w5qXPirokHS6SUFGgutSfczwv4DjUH2CUhnhkV0VwQprD8zl4wnR7AeCes/vge9z2XyJEYiJ8hFIZAPpQRo2McGRyao5mokbqV7cAI4DIKa7vnECbJvjs4JH4gf63wYjEd8b7MMwCfGlwBN+//z4kwgMf+9h/eIjTsQeylEJyHcXoTKvHwmBawswJRTLxsUEk9rZG2ExDCJ9gOVSl8fuiaVrXpDAAIJcMm3mEJX8y/XUumE3RxLmHfjB93+WS4mTcx5H2Gu6d7MMwC21kw0Clv6aTUt+LMdHNXjtego2shUCLn02aKRUMbS9RVVWaYKnyd2URsL81wtALbDSCkqmXjynVNrBCXBCEVImWE0fEbPahRGKSqaiLaXMCKNEvlxRXtadpbqO9EpLYPlsBi22pd9UkZMZkrtEQIRNR2kxD6/rtEi1KpI2OmWsVktjXwTTYNUaHVdEc87ygcamJIBX2d6IkMyTJiSC5+1YRFwECnwjbBJgSp48epK0KBGAb3CrjSX+GuLnRPpvKJYoIUUej1mOpJn5FcuFGiWxUyLw/7fVMI0HufXAjRWUhda3IuiKKVodFTCHNfV7kOHWv90WFM6Wc1zG2s/mCBOrnf/7n8fM///O166Mowrve9S68613v2t4ALhAeNhEio2T/v//3/86sKyvSF1Gpb7XN2972tkL54dGjR0vnXPAdJMtPiPPANBW1KOnZLjkimDnlwrtWXCMh+kvaRJS0oeH0HIbsFffNJh4eXFvGKAnw5fWrsJ61ENIcz77m22j1Epw520c8DpDns78MHhwvYZgHEKD6y15FQczDVKAxItBmCcY8AIVEi6VKmA2BkOZ4IF1BLHw8vnsCEctxuLWOLktw73AvlvYr92weexA5hd/KIROGaEml5cznf5z69j5QJm2XetOZ3v012/Yy9IMEEcuwPxyC6vTX6UkXuVPufShSZHt/a4SAceyPhpogKdKwnkbwteO26yKsGpIy6yBMicBE+EiEhy5LEbFMl9zntpmpIQmGNHT9xEaLPCJwsDW05f4RU+m7g+2hfW7K0I1vjyEBAeWWMFAi0fIy1VqFKeGtW/2k7qfycxKSWA8pE10LtdfSWKeqTIQi5p6tdHInrGlKBfb8LuLcKzguc6FsBIwjdZx7aPmZFZG7miHzOrpkyAjB3fOVo0JlHVF5+6px1qGoyyk+d+9fGeYeJdxTAmjtbWVE9GYbkyozmjDzXuj6ihCa91zKp6Rxq7SQIUrTe6AjhaWImavhqfIqKjtWu/uZ41SRlzq9UOU457xGxXGI4nhL43KLGy4qLoFT9fcqHhaEqE7Jbpwwy5EeV6W+UyX7v/t3/w4bGxv2cfz48cL6utL1euPGqu1lMbIy9z1Zv9IVUlcKqt3/bpMcVVWnFY5PS4Mn7jJzHgmZMaSJh8NLG0pfk3Rxz/AAQprj+w4/gE5fEY88U4TIFX+uxy1MeFDQSrgVZgaGGA15iIhmWPIm6NAEHZrgocky7ty4BiMR4qvDq1Q1EU1xJu2pChuudCxBL1XpPSIB3Xcr5wxp6iFzquFMs8xumBbSCW5psiIKOTqeEj2vZy1FWLiHr6wdgpAUifCwmUe4vn8Kh6MNdP0UPS/Gkc46Yu6jw6bRJeP3kkuKM+MuTo27hVSRkBRcKp2RR7m2L1BpMtvXjAi0tAib6YkvoLkVRq+nEfq+ei3aXoaVcIyIZRjpqrNCilALrwFFSqpKt43uxGiLDGkw98mU8eeS4vhwGbmkONAaIqDKO8dNV7nRqjLmpbMsUSHT/mZtXd3HBQWXFKMswFKg7AaMZsiM26QIDWEol9S75yiPrz5lU51am9nOJVgoEiLz17wnjP9TOeLDHBJtdFrG1qDrJej5sR2Le49TJ30Y6RYygWPvYP9WTCOm8TIr3CtFJhikI7YuEZyaCrStSNE8AupuW77/O0WZ/JbH3ODhicuaEG2lZD927BgOHTpUUKmnaYrbbrvNqtR3qmQPw3CmBNFFXS+zeo8f6TzM/+dVo5WX14l4qs+5UKVZRZWaXVYiTpXHmiF/TojfNHnVxyIBhxTT0uaHRn3ldiwpvnL2EDzG0e3FaLWnv87NjxbjVJw7XjocBGtZB2ezrqouEx5Mv7MDwSZ8wjHmAUYiRCo9PH35u3h09zRi6ePkuIeI5fjW6ABGPLBf/GdXu+i0E/R6EzAmQENum4NmmwHyXDVjncSByhZmSqw6ygJbASUkxTgPbARoWvquXKQzwbAnnOBAe4hMUmSS4sHxEr66cQge5TgYKSH1atLBV04eggDB45dO4UzaxXrWQsoZYu6hF8bI9XNANd1U/joUuWRYTTtosdRJLWh9lSYtIVWTm69LpiOmIiSH2wOspy1bzTZIVSNan3Hrzm20TVN9k7QpN097KnlOexGzTcqZ7cbukamHk2oEqyIvuWAYZmGhlNyNCNWlq6rgkgbjZm0egNIeLYWK/BkxsiEFpjS/THDNWAvnKUWFzLbl51WTdh0xKpMrd7nrd+VprRZQ/MFiCgxyodKDe6JpijZgqo9f10vQYhl6Xow2Swsl9YZA9P3Y6tUUOXRSpXoZL0Xs3PvvluGXo0JV0SL3WssEo4poLlYBVqpeW5C41L1uOx3HhQKRu/NocJkTote97nX44Ac/iA996ENWyX7y5ElMJqqqhxCCm2++Gb/zO7+Dj33sY7j77rvxmte8Bu12Gz/5kz8JoKhk/9u//Vvcdddd+Kmf+qndU7JvFWmxvMdlG7L0vLSo9kDOaYnW9dTxJKeKp5bUmHOWI0Z1OqYyQSIoVpW5x5SYuWTKJM6NO8gFxXI4Qcw9+ETgaQen0Te3XNt84RIi8a0NJbLOJEMifCTCxxfXr8Yeb4w2TdREB6nTY6qn2YFggDs3rwWgvrBGeYh7JgdxbtzBWtJCz48xzgOcmnRVB3aqSFiWM2Uo6QnkXDlrR3tiJUxNlchacPXRMZVUALARt0CJKr1XbtQ5Htxcsr+qE6FSPoHu5xZzH+tpGw+sL1svnzabisUPLQ+w4o+w7I+RC4Z7B3tt41gzAY2zAIMs1EJhNRYuTb8vipVgpEnQVFBtIkYhzdGiStjcYhn2RSPE3MdKOEKLZXbizaVKIxkBsnHd9uk0imKIhEm/ALA6Ic95TY0Dtumz5bY9MREqd8KpKnN3/wJF0W1V6sONaLlCcGPK2CmV1bt+O2aZSZUZ8fJWBGcRVO3rXk954i1fs3lEnkoxBkylKE36y9MmjJGXW6G10ZG1WKYIMwg2c2WWtycYq3Spto7o6siRIU+Asjiw92NR3U4FKVLPp6TIXebeA1OWX4gGzUm7zd7jxUTd2y2ZL0eqZsnbRSRITcps13BZi6rf8573AACe85znFJa///3vx2te8xoAwK/92q9hMpngl37pl7C2toabbroJn/jEJ9Dr9ez2v/d7vwfP8/CKV7wCk8kEP/IjP4L/9b/+18VTskv7j0YF+1goSqQXOb8E64jUQgLpLb7PtnK1Nq0YFClyzycrBeOCE2Q5Q5z76AeJ7SvlLVim+k9nj+IJKyfRYeqX7fX9U6plB+E46KsmsLFUYuIhj9CmCY5Ea+jQBD7hOJt2cCgaYE9rDI8KtGiGBzeXcLCziZNrfRAq0A1TpIzh7LkegnaGeBJAZBStXgLf5/Yq84yB+sobh0MRuc04tB3AI6Z0ON+3/ziEJJgIv9Asc6xLu0+Pu1hqK3I44QFGnGBfMMQ17TVc1dpAm6nJuufHeGhtCYf3bCAIEkyyABvjyJokCkmwHMSanKgv7GEeoOulWPYnWM9ayGG+yFUfMY9w5IKBQYJDiVWX/AkyTd5ME1Ul4la6IY9oR2l9I0x0yKRuTBrNeCnlghbaQZRTX24xu3HLdgnSdiJCM9uZzSvewoscy/VLciGd8c0T05aFz1Xndrep296sM2MCiqSJQunZyg1vKZHWKFM1+1X3ve2lqscfATpMGYD2PGAzj3Bt+xxOJX10vASjPFQNc2mOjawFIacGnmpMFLaVRcU9ZhBTYbV+zmtE0O4yK5pG8ZpcMTXkVDvm7mfGVZUic+9bFWz14pwvxm21DrmEUaMGO8NlTYgWUbITQvDWt74Vb33rW2u3ufRK9jJh2MXD1v1fouCavV3focL2VedxJxsOEF9C8qovRmm3s405temgiiowrKUd3Ui0eizudWSCIaMMXSS29xUHBaT6a3yKuixGQFRT0pEIkUmGiCny1PVTnBl3cf94DwBVnZRnDH6Y68aXQNjOFNek0kbBqNacEH1/mC9s7y4pCXpRYicfQGl+lHaojZDmSPXklUMJkoc61eZGxTzC8Y3Ng7ih/5D9os80aSFUYpBEaPkZAi9HrtueJNxDT5fDq2oyCugU3Zj76LIEHZbY6h2fCDshAsB6pnxDen6sfrELD2fStiVA4zywnkMmsuKSHHdScnU3AeVIBStEiNztfMohKLEp0VEWoKeFvLOTYfWbY9EJyoxxHhFyyUZ5UnQncOJMruXIzVYEriqCNW9chjy6xy9Ho8qVZ7lu3mo0WilnaIeZ9VyKWAZGJHLJAKEqHzOhrCsGeYS+F+Ns2kGgDUDbXlIUsVeMV4CC6wht1TUbUsTBSutUBRpHDVEqVZ9VrZslzudHRMrEaF7Zf1V06GKDCPU432M0uMxTZg8bOJ/TauKhwzg2dSadx/ZPst1eZOUxlZtPltct5F7tps6YhB/mIExC5uY6Z4mQEStnukJpkET46sZBPDBcghD1v8Rd9L0YXZboxpRct+AgiKWP01m/8KvV/SIb8ghdlmKQR1hLpsZhPuOY5D6Wl8ZINiKsj1rKVTvXmhtfl6mnnm1IKgSB1BPVYKLSDYFuvmpgNDuZZBjmoS6DL04q7vUNksh+Ae8NR7piLsWYBxiLAJmkePzBUxhOwqm+JWEYb6oU06lRD6dGPatdMpOCT7gigUw5ZCfCsxGgUR5iInzV2oKqaFHIcrR0hdpKOFal1kTaprIeEVgOJuj6qa1Ecydmt1LJrf7yqLCia5NuM/oXn3KsRGNLhlwsQirq4EYFtlMWXSZi5uE2a63Sk5S333I8kAvtYyNImLpH27FWaKtcYpRrzZOJ3qk0oYdMMHhEpc5MihVQ5ChkOfYFI3usVHg2zQpgWqrvRGTm3k9nbFWpsypslQKrSi/WaXzqokNbpTfrUmnzdEOXhBw1KbNdQ0OIdoLyPO28l2YmcSssls7GrnK5lGrazhgM51iEwMxZtwgJmok0lVJ1UhJ4Abdl+IRKQEdRlCWJBCHTNByXFN0gwXIY43F7TlWO16bkHKxnLZxK+gh1h3tAfUElwkcsfGSS2RYfmyJCRDNkkmGPp7U4kmFj3ELLT3F63EXbT5FkqoKsvWeMyboiRZRKcN3x3mtlgCRIcwZGJcIgRxBm6HViJJmHSebb9NB6Mm1eKECwkbVwbtLGMA+14JnaiS0TzPb7irwMXzxzGKfiPgKaIxMMsfBxIl6yE0pAOdLNAGdHHSSZarTa7sVYH7cQeDmWookSPpca4FIiMeSqdYUhjEa7EVA1+YW6B5jxD0q13okSqTVQxEaFjHAaUNE1YyaZS4qYezY6ZCYTU2lW1vIYgfVWKE9w81CnOQLqJ7hFx+Dqj7ajFXLHUdY7ueRoHtEqH8vdxtguuGSU6s9Zx09tZRkAtFlq05K+E8n0CLdEMCTqcyUksf5VS8HEEh9KZKGNDoCF9ESmGq1KZF0WWJvl7j0rt/iYlwar0lzVrlvwtSyQK2MjcImjQw12Fw0h2i3MrcYqLyiTI4kZhlHYrvwcqvHoVkJod3s3IlGzbZ1mqC7CZI5FiEQWe0g3A1s+T5j+VZuTAhkCpq0cNuIW9gYj3Lu5AlraxozZwHwRDbLIdnbvshhtmiIRPjbyFiKqDP7aLLUl+Pu8Tdw9Oao0RUwZy+WcYnXcRuRlGKYq4sKF6p9FcoI8Z/A8DpHr7vaeAGUCyUinjahy3Q4YB8+nqaOpaJfbzuv3rO3H/tYIlEhNHhxxq214qibZlfYY31lbgZBEi8c97AuHNpoDAP29IzAq0Y9iBO0MvsfRb8UYTCIVZTJpNkuKpD3e9Ne0qu6jRKDNMptGa7HMnsuIaAHYyc9cX6jLr/tas+SWpgOKuLnEzyVQ7qTia1+jlj8VkgsQ+3BRGY2ZpweZQ6K2S4zKRMWN0ixCYuZGi0rHrJqo6yJRlvxgNtUEqM+S8VXaFw3tMUKaY9mf2Em9xTL4RKDDEuwLnO1YbqvaRnngRITUuVaTDjbzEFmptcVWqCNP2yFF7n0w6yuJUUUkrg6LrtuKDF10kiR36dGgIUTbRaWX41bfA+6brbDtvAhRmSwVN7GCand5+U3tVIZZokFK68q7lMhOrWdRxbLlA5vKZTrgIFSqFJmniQ4VmhgpN+ZMMHBJ0GIpnrTnIUgJnZZQ93iaolDHNl+2G0mE/cEmukzpXU7lfWzyCEMe4t7xPu3Yq7qyd2ii+pXxFjKpdDhnki6W2jEIge25tbHaRRTk2By0QDo5PI9bXZDR9xCirkdIAiGoTfH5Pkc7SG0E5cyoaycrADjaX1emkoY46FJ5QxbcHl6T3FeGhcLDiXgJE672u3e4F0NNiOLUR+jlqkO7IGgHGSIvg8cEukFiK7xCOu1CPuQh2iyzDsOjPLS9z8bc19GP6X7m755gDI8IS+76fqw8ibQgHAD2RSPbHR6YOlKbdFpXt4Yw98REJwxByviUqM0Ts5ZRlf5w/5afbxfz0lp1E+tWhKB4rFmzvy1J0ZwUjqvTcgm66U2WC4blQPfc0wJ685r4hKPvTdBlSkgtpO6BplOoHuU2bea+hjH3MEijmfEYcGd6MdEhQ4aq7hXf4vUvRnmqS+kLEbcFiVDhHIUoUFUK7vIT21yK1h3fq2gI0Xlg4VRVrfh53puQlP7W/NclOuWIUYmIbUtYXdBFOcuqCJI+9mC9jXEcgKcMkASU6T5nmthQIm1LjjMbXSxHE4x4iFywaqJZukZKlC7lH849Al8bXYUN3sJG3saAt5Bof5RMMGSSqRYU0sNYBAiJKsPfyFsQkuBobx3L0QRrkzaevP8hPPm641hb7UBmWveTMWSJB+brHlCJZ++DEKpSLgxyjJIAe3sjJJmHc+MOuKDY3xki5j5irgwYza93k0ozlUvm133kZdYXR0gC3+P4yrmrkAoPE6Eq5o51z00JBeO2O3y7lWCc+spJ2VPOzraiSDKM8tBGljyiyNH+cKjPRe1kqAik6laeSaoicPpF9inHetJC3491xRGftuMgAjFX3kQRUyStrzVHZhIxneXt/x3ReUA5On5aGRGqQlWJ9HbSHVXHqztH3XbliXa7mB+FmEZDqghY+T66f80+bhUf4DSCBUHPS9DxEktKXF+vc1nHFiQM8hYS7qHjJbpJrHY313YSHuVWcL/oPeBytky/LIR2/abmoZw6mx5jZ6mwKlRH9abn2yoK1KTSHp5oCNFuooas1KbRKqMv2yMtcwXWtUSsYtm8aFDVbjUf+Cz2QD0BP8jBPDF1z9bRIUZUiqTdUk7BK/4IHASPXTlTKLc2DSsNzDLjB/P19YP44sYR3Dvah+PjPZjwAOupEktnUpGiiGRIpYeuFyvilKv1q0kLT937AI721nEkWsPXTx+AFBTEF5BjD5RKiJRBnGiD8+lHhOhf4VGYoRsmWG5P0PFTtIIMSephlKrUUi5UPzCjwVkJx8i0caK5Ftdcz7Sn8IhKJZqJg+toEQAMUkVspCRYm7RBicRjVs7iEctrODfpoBskaPupbkfha2JIbZQIUF/SQye602UJJjzAkIcISQYBanUlxvF6I23hQGsTHS+BR3T5vR6Tr8mRGxFLnUm2nM4RILV9yOahkqTUpJHcv+Xni5ynfPyqlMz5TLRq/1mH5brx1o2pvK/RaZm0pnmuPK8ytNhUb9fVhp2ZJsVDHoISiQkP4FPVFidkOSbct9EroyMzx4i8HLlURNiviZpUVZwB1dEhIdV7T0iKU3F/GxGd+nYcu4l5ZKgu/XrRSFEjqt41NIRop3A0Q7XVV6W/czvJF74jpPO3JgJkdiXSOWdNSs895CJYJEVGqq9dxAwio+i1YnhMf/HbRq3q4VOObphgQ7fk2Mwi7AlGiLwcZVSmJvRg1uIWTk86OD3pIOa++nKmHJlgOtrBsMFbGOaRJRapYDi+uge5UB3S75+s4BlH7sMjrj4DkTBIKpGOfZCBB9FWESLKVLqPMqWxMkQg1ILTjp+iHaXoholtvGpsBQJNRva3Rphop+eUMxspMo04Pa0l6oZTO4FUeEiEByEpDrcHyCVFmnroBCm+fPywTU3taY1t1ZeNCEhVqpwLZtMVIdFaES/Bsj/GIG+h4yUIaQ4OCgrVC81EiVosw/5oEyHNkQuGjayljSXVZDjKp9oiSuS0+k2Le9tMETTjcJ0LiiT3bD+1wutc8wbdigjNEJcKUlS3rzn+VlGnRVJl8yIbVetmUjzlc7oErCZt5xKU8jLTdqXc5w2A9ZxqsQw+FZhoN/W+N4FHOPb6IyWylhQHw039nkltmxchCbpeguUgRttLC2SBY9YmAJiSg/K9KFeoeZSj70/w4Hi59n66x1PXv7M01qL7LUKGzkewf96QUL1yz+fR8CEADSG66Fg8bTV/u+2W3u8U8/yBqsZBIw7qC7SCDIwKRdD0Ju5k5VOOlp+qvlosxzc2DuCmA98tTBR15E7IqfBWSuUsvCcYYZCFCGmGNkuxwdvWpDGTU4+V5WCCm47ch0xSPDBYwjWtVQCqASbxBIgnAUkg+zmkrjQDgDxVjUkpVR3FQ081Wk20t0snUBEvMwF1/RS5YLZxat+PMUxCZLobuSENAGzjVdM89WBnE8ZZWgmipx/TXjdGxhmCMMcdx48g5p7V8Bj9kIEhY+aeuQRokEcwrU5CZzuPFI+RCyXuFiDWdJISifWkhWGmIgvdkk+NOd8wD9HWneqHOp1nXlugwmSwjhTVRH62So/UkaN5EYTdSrksgnnXu9W1pJxZAuTqhwyMo3ngCPzLMJP7sj+xUT9D7nKdPjOd6zP9Xo60g7mJGtWXx89PK5pqRw4l+HcR0lw38jUR1e2155i3zWyD1uL/5x130cjQxUajIdo9NIToQmALIfJ2TRIBaPPnmuatmI0MzZCJefxpC25lIjtzI1CO/rvVViSH6uaoUhCb7jIVVZGXYzmMIUDR82Jc013HII8QMCWIdoXVtOaagWkaJhEeHtU9a3uacRCczXp6G4o2Vb9k9wRjDLII39+7F886/B2cyzqgRGBt2AYLxPRahh4gCUTGkE/UL2iPCQhBLfEwUSKjhen6qRUSG9HwMJtWfh3tryPhnm1XwSVFmns2bQbAevWo5zlOTnq2H1pAOeLEV2aQnMLzBGLuFbQcK9HEKcNWabNBFmGQR5gIHwwCXe1O7FNhq/HaNNV6IlVxtplHaLMMmaRIhYczcReAmojt8XWZvRF8G0JnIl5qslatJLikWAkn6AXT6rWtXIOL7RGqoyTnqxOpOs5Wx9ttkuTqpzzdZsU04y1fnyHSU7doYpe716R0ZBTLwbSarHBO3QgYUBP9sq8E1+b9kAkKRiROpX1QSKSCgRGJY61zuu1HhlCny8pRnq3uj7t9LlhlNOhY9xy4JDg+2jP3WMXz1pOinRCmWpI0Jxp0SSNFDc4bDSHaJVSmxlxitEhAZ56Gx9ELGefmelF38e+WcDJz20FllIoA42GIU5s9Nel6HJ6n6kcokVNCxHL0/Rhjrrq1x9xXlVGMW+H1POLoRiQCyq3vjvm1GZEcbZYgkwyDTPkRxdxHm2X47voerPIO1rMWvrx6GA+MlkGpQBBmIJ5QLt8tHSmZMBBPIGqlyLnyJWoFqlw/YByH2wNELEOce3YsbV1Z5foHjfNArfNT22ldET9pK3ag75Hx+xEg2IiV7inVGqR4U9kELHfHWO5MkAuKE+OeNkwcF84poDRIJl1IITHIVcVdlyWgUK+FqcoLqeqJlUmKDkuxnrXgE4FhpgiPaSMy1qkyM1Ga8RrNEKD8iYQkOD3pYpCG2BNOCo1S6zBPL7TIY+Z4C5KcedvvhDRt51x168opNKM7SwWz2iw3VelGHAFYUl6HacROtXEx5/P15ynQDYCVT5EW/ut0Wyo861005FMXc1c3ZP5fvs6zaQdDHuCsbkD8iM45nIz7TtRGbe+KvhfFhaoCu6xF0hK7oCG61BdxeaAhRLuIuRoh9zkpRnt2FDEqnHd2mYmALkyKFjxucb0sPne2H25GGMcBGBMI/By+x9GNEoQsR6SjKkILd40nTkhzPLJ/zkaFtoL9dey4QquJgWqDxhBcUnS0p86+YISQZHjxNV/BmIf49DcfhRNnl7ARt3DT1ffhhoMnsbQ8BlKqROBMAi0OySk8xuExgb29EVpepgwbicA31/eDEoHDnQEA9YVsJn5KJNqeIhHGsDDS1x/pZpz9MIZHBbqeii55pq2JnvBOPbSMVHg4PlxGzD3sP7CBLGcYxiG4IIhzX0eZ1CRlIkwmqmQaYwotsDbVPMao0dyzTCpdU6Ib7nraWDERKiWYCxVpMpEfQE3Mro7FNoMV1Gqp+kFiG9eW21AYLEpyCssx+3C3WeQ8Vevdv7uFypSdO94aCwH1XMwsM+lVc/+NUN2QaQDomhYoDkEo92ZzjRbV/6frQpZjjzcGg3r/hCzHkWgNFBKHww1wnVbj+vO2FWFwG7x2vBSMSOuGDQCHW+sAUGj26mk/q/PBvEjPoijolRZkDhc1UtSIqncNDSE6HyxQKu7+f2HiUyNgLhx7i8jTtqJDi1SXFc5fd87i9WVaABwwRYb2tUZOywcVcs8Fw/HRHpyedBHSHB0vKaTI5qXLgGmz0KkhIbOO1Uo3o4wcM8nQ8RKcyzroejES4eHQgQ202imetO8hfPJrj8WZSQfjOAB8AVCABFwJDiEhBEWaM3BdYt7xlffQNb11xNwv+PW4v2zNuJaDidZFUEsq2l6mO6tn1mkYUIJYQzC6e8eIc9WrbD1ugVGJOPHRCjOMkgCRl+Gq7kCdE0rEbSI5xuvJkCIGiT3+GF2WYI83BlCsBNrIW6BEYG8wRK4r4kzkoeBIrYXhgNY/UWEFty7aXoa1uGWPMU9cXIVaYlQx0bh2BoueZx5BWtRksOr4lRElK5yuqYqqIXhmLK5Vg9EMUSILhMEldDaiU0EoytdW2X8Mwpbhq6aus9EmCglfE46QZLVVZeXlFBIdNtumpbANUcdeCccz+9rj1hJfUfhbGIvehxFZeNRhJ2SowcMXDSE6X2xBihYlQpXeRSWistNIUoHAlA9RHr+s0ApVnJfUkCj3eqUATpxdQiYYlqMJ9kVDa+4X0hybWYTVpI31pIVH9s5hPWsDgE2rLfpLPeNM+fZw35oZcj0RdJkyZzR+O6M8xH5vE3cPDiPyMly//zROTXoACB5aW1JjpxLgBMznIJ6AF6kIF88pNsYRBmmIvq+aqe7Vvj5GR2OEx6nu/WQmLCMwNgQuFcySCpWemLZX6PqpdXo+0NvEiWEf63ELwzhE5GXgnKLlZ+iE09ScSdN5lGPZn+BAuAkAGGQt+yseALikGIsAviYvHFRXmE3v9VrWtum2kOU24pXkniV1RvPkTvym3YcAwTALkApWcKF2sZ0UmKuLKVdkWWfrBcjQIu+nnWxTHieAWYKjyZAlPyVytJ2oVC6oTUmacxl/p4jlNjpk4OqF7PsAxBohclAwTYA4qG30KqAiTxwqGhQL33pmtbTDOSUCfS/GmbRXOCcjKiVcuDcQSIRnI7Z1kZtTcd8+X9LapjpsRYp2giqiVDaFXERrdNFwvhVm5tGgIUQ7QaVgufwAaglD1bp5uqAql+mpZmm7g3ePW71+V6OnEtjcbOHEZh/fHuxTpePCw4lJ36aRhkmAb2/uRUhzjPIQV3c2alt4VEEdk9mqlSEPp7oZIm1fsIhmGOYqjSYkwdXdDTyx/yBW4zba/QmSjVBbBRCwVo5sGIAFHIIrAuD7HEkcYJIFGGQhzk46WEvbNjpjtDaAEh+numTekCXzC984Na87TWZzSXFm3C1M7B4RGCQRjvbXAQBL7QnGWYCV/gjDJMC+zghx7qPrJ7Y557I/samxXFLtjO1bJ+ohD9GmKYZ5ZCNJZjLM9T1023xMtPGi1KmZckTOwHVbNuaMdSgTlK3IEDCdkKy+RBMvc18XjehslU7bDurSd0bkbgiqfRQInUoh+fq1mjcG9564ETlgqhcykSOXDJXvSVXLjMQhVoB6L3CoIgWKqeje0z8muKS4P16xAnyhCxo8R6/E5hCErpfWrjM4GA30Z8UljBd+xq6LFi0SGbqUpKipMts9NIRoB1jovbMdMTUqUmK7OZaZc80nUltFh4rbbj0AKYE48RFnPtbTFtbTyP7CzThDO8iwHreslqjjpYVqJHWMaS+2KoJkJkVDQhLpg6OYSvMJx5HWOmLp43H9kxhmIYY8wvftfUD1MQsE0tQDYQKECtBAkaBOJ8Ek8+B7HEv9sSI7OrqjfH4IBllYSF90dUoNUF+ouZimytxJzyUX+9vD6SSqv2AfsbQGjwrV4oNydIIEa5tttHyl61kdtq3pXt+Lres0JRJL/gQRy23bBQ6CLkum+iGn/9ggjwpRA5dsuH3JZmwWDEERDIM0Qpx7WE1aWA7iyvdCFRnaCuUJyRVnu3/Lj3nL3fFshwjNRIcqXKXVdk47DlLWOInC/nXnmNUWzQqUDRHy6DRlu93UjtBRQlOQkAhPp8skBKjWEan35VgEaNHMFjEYGC+jRVFPTKeNXic8wJm4N7tN6foWETwbsuOanm73GGZ8O1nX4OGBhhBdDJQiR3PbbTii65ltUVwHh9gUiNE2vuDL5GguGSr9n9RdT0UaLks9nNvo4LvnVjDJfWScYSONwKhA5GVo+aqx6LI/QSYYNtOwkmy5pMidnDeSCGMeIBMME+FjkEUY5SHGQlXACEnQpgkySdGjMYY8xI3L9+O+0Qq+vHYVrl1eQ9hJkU18PP7oCTBPAASYbEYYTwKkmQePCYRejj2tMQaJGrtbMt32Moxz36ZwzCRSJkrm/4wK250eUGXrZj8zcQY0R1+nDbhUkZpOOwEhEpPcB+cUx0fL6LAEifAw4QE8pxVHxDKVUoFq06H8h9R97XoxIprZRrIGqfC0aJba1hzAdCIqa1lyMSVMqWBYCavTHHVkaG7UpmSYWPW8LkJkS9Rrokc7iQiVx2Zep0IkiBadx03EyKMcPlWRFTZzbbNtKOx5ZqqvqI0yLgcTLdLPZshd3fWVdUWZPh4jEolUxMYn6r0Ykgwt3SyZEWn9q8xxPF2R5p6PO8dnFSRuUfIxyKLSvagnklXHrEp9baUZcjFr2HmZEp5GVL1r8LbepMGuwXnPFVJCUOmywq9vApB5v/RK3/GzaTy9rz5mncGilNss0yfSHrNqHAWRtnM+wQkIBbig2JhESDMPgZ+j5Sstyzj1cS/Zi2t7a+h7sU0tbQWTaswlxXoS2ckfACKWYcUfg1PlQwQAT+t9F6u8g9tPHEM/inHDnhO4b7AHce4j9HPkgYdvnDwAQoBef4LBWhsip5jEEXiXYmnPBIM4wqHOpmq5AYn1NELXT9H1EvT9ie5oTwEJpHxa+SUk0Y02KQQhaDmmhctBDBBgmAXo+yq6IiRVJf3ch5Tq3lHKQQhwZr0L3+doRSmOry0jyT08de8D0+asJIPHKHp+DAGCgObwqUAmKHosBiUCiVCT35CHelITVm9iep2ZKF6oK80AWCJkdE9u1VnXT230z42GVabB3EiIfqkL+1SQoa3ITd127v/r0lLudmXCVTXmKl3Q7HGnndEpHHLjbOPDRORmPX3KxwGmxLmrCxAC3Xtuqx5rZSLgVnSZCKp67iGD0hG1WYq1vKOF1RnaTBEoADPRxHnnrr4mWbi3gLnXAj6Aq1obODFZmrkPloA5n/V511mF7ZbRb8fVuu41vGDYDULTECIADSG6oDAkxJIR89ktRHOmxKccEbEEyYnEuKSpvk0HmRIihxjNc50+n/L82fOjQJSkJMrbhxNkEw/ZxIPfyhGnPjwm0A9j7G2N0A9i1XwSBAdbQ5yZdGZcbCtPp0lRnPs4wT3knGEpmqgJwtfRIZaAg2I174ISgUfuOYdT466KovgZzg076ouZSHTaCTZO9NE/MgH1dLf7gEMKJdZebqkISEA5Apqj61NnQqUq3UVU41OBoubGVJMFjBccpimRgJydUIzgepwG8FgMn3G0/Aysp6IMe1pjUCKxHExw17kjePLKg+jqCh4GgTbLbOk0lwR7/REoERjzED7hOJd1bNoPWg8CqC/2XCiBuvFKKkew1HYSbS+zPkrDTPktlauf6qJB80rOy8uKJePVqbu6beZFocr/rzt2OfVlrAnMep/ygtmhe31ulIdBCZUtISFKbKw+M9PoizmfcIiHRzkELzbMNe+duutcdDIXUO1bjKDaJ8pQMyQZWn6qHN9JBk4CCH0an3DkmLpm15IxCIBQu1/53rr/t/ohSXGkta5bjbitSqpJ0W56BZ1PZOiSkKIGu4LmVdtl1EVbCqmpur+l54TKAhkql9/XD0JHcQqRHEO6posu1I8CqcmXayZpltuHICqIJKetB87GHaTCw6FggGs7qzjWP7etcxq4v/JN24shj3A67SOkGdayDr55dj9+cP+9+OrGIXT8FFnOMDjbwS8+6e+R5QySAOceWIbIKaRQjtWCU6yN2jg56GM1biujRO5jbziCkKrH2XraQio8W3EFoNAA1aSaypGT1aSFgOVat1HUu/iUYzSIrG7JZxzDSQgpgY24ZZ2xH7N0xvZBMz2lbMqDqomOEYHTad+SROVaPTXdc7VYAGxFWcSKJfVu09Zx7ltiZCvktqj2WjSSsJDGiMx2ea8iQ5VRqhovo6pzlHVAbpTI1+TIOH2rVFkxhabWKRG1IanmETomiL4+nhFcm3EH2iAxsCmyYpVaMV1WrIBapPdXwj3b984gkww+VcadDAIHggGuCjbsMcwPFldUDRTTZlWYR17KOiwGaXVMi6TPzhe7kSa7qNVnTcps19BEiC4AFks9LfB/OSVC5e2qK8RK6Sxg+v+KL6Ct+pTVouo8JUj1g1CZqIrZbXmuzA+TzEPiuDT/06mjCK5Sk+/eYIzlcIKNNNpW7zamq3DMLzUBinNpF4nwrND6psP34UAwsPsstSc4sxnAJxyP3X8GX5wEigglDKydg2fqRnXCFOujFkZJAHTUvhNNis4lHVs5Z3p4udVQa0kLe6Ox9fKJAhUhEpLiSGd9aqwIVcJuIhCZYGj3YmxsttALVEVZ6OcqrRfGmkipSZXqCIPRgJjnXH/JZ5JhjzfGWAR4MNmDiXYIh1D3f6Kdw1MtuHbtAMxE4bYKMa+b6VXW9rJiG4mS6NjuUyUmnjOxWZF0RYqkKs1l1zmpJHe8dnyliJCJONRFsqxmyBIVYbu9V4meDfFxz6vEveWxqogICECJSUXSQtRIkQiBjk6R8VIllroXdGZZOVpl7xkpps1CliMTFJQQ+/4xnxdTxWiO3/diDPIImWRaR7TY55NCzJAuMz5eIrFba7+caJp7bfo1L7/2Ve+d2fHVk6GqNOp2/aouCFRh7Pkfo0ETIdo2SH3TUYNK0q3TMYVDkTpiU/q7wJjUicthKVn91xlnfW+yxZhSVY8zQqQlQTNWAvqpyCnyVE26GWcYZwEmuY+Wn1kfkjvOHcG+aOpmW33+WcdvI3YWDhnpeyrNpfQzEmtpG0Me4QUHv4pHdc/iuuVVLO9XnkJ7wxGuPXgOYSsDIQBPtWZi4iHOPWQZw3J7Ao+oXmKrSdt2rXermYyTsPkibWmyIKRyhE6Fh9MTlcKLuY9UE8OQ5ej5sTU6pERgpTtGHqsGs1xQtIMMbT/F+qQFT0/KD0yWC/fGJSHGHG/IIzCiqt1MZZCQFPuDoSVDQiofoXE+rRxyrQCUmWRul5tzGfdklwBVEaHtkqEqlAnZPEFxbbSoQHJqNEAokjq3v5gpnVfHcJqA6ojGNAqk+sYZobspZ3cFvlNyxcF0pMkQYnc73z3PFumxwvErUncuzHvSjNN4EhnCnAn1/7EIoJyphY1GMkhb6Tg995xqLIfgLSJ4tlEuyJrXctb40f3rLq8yvizvV3nMitSe+budiOeFQFN2v3toIkQ7xFZl6/O0OgUiskW0hdDZY9VWglU9L5ARUk+eCifY5ofDPaaJbFE5ew9k8a/IKOJJAEYFOmGKiHKETFVVbWYRHtk/h420hSqUU4dlDYn7xZkJiqHoIJMUsRYSP7p7GmtZGxQSy/4YQx7gFx/19wBUU9V7v3EVEAmASYBTgEqACUipyNwoDUDbur3GsIe+n9gIiZvucn9FGm1NwLg1Njyx0ceRzgYA1SOs78fWXbrFMqRCRdAokWCBIkOhlyvSJwmGcYiTkx6u7azhSGtd//pWx2ZEIBMMDyVLOBxu6MlWYCNvWQGtKdXPJEOLZTo65FmbgFif2xC7yMunqUAqbLTLtOpwXw9XX7PTCWO7v8DL74OqCFUxcuW0tnB0KYXr0JFGkyYzmBFKl67RpJHUdhXbSBUtMeXgbuRjWrmlXlE38lOIiCxwexbVadEKN2rj8q5SfipNZ3yq+myCkGTK4mLO66QIeFELWBUpmm4vZ45nrt2HEnO7WrayZ9FO9DuNC3UDoIkQXRC4fcQseXFSVwUyhMWrvOZ3m98ijbXoxHIev3RmxlZ5KCMuIoAgEDkBFxSDSYT1uAVKJB4YLWM9baFFM9sLTB1/67G5E18ulevuetZGro0HM8kwykNMuI9D4QYO+htY8sZgRGLFG+Js3sMjonNqmFRF9aT+riVUtfCgnij4JLWDVEd5vEpCZp4bshRQjr6fIM499FvK8dpUh415oFNnqq0Jl8qJeX9rhE5HVZ+ZPmgGoyyYGi/mgXIeJgJcC3MPhxt24uBGLGvM94i0LsOjPLRREDNuE9GiRNr2HBHLpp43ZCpqrYsMuXqdi4XaCBWpjg6odbMpr/I6Nzo0//zVLTqAabSOaqJk+nyZh40+FQhltUnhdu7pdjUtqs8gs21wDIleyzv2NV/yJjblbVAXHapr7QHA3ofieKv9nUwEjaGabC9cEVYTLdoqOlR7vEsVJWo0RLuGhhBtE7MtNtT/3ffTVsaHhfSZjtpUibDd45bX2/OZideN/mx1ztI5FkHddZeXVbb0mEOUZE4Rxz48xjFJfFVCzj2cnXS0L9G4VFlX7HNmH6Uvtknu49ykjW9t7MPZuIONVJEt46OSCA8rbARGBL44OIqDwQCfGTwGx8IzOJEuQQYCSKmNeslcCcHjxIfIKQaJ8kgZ5z5Ca36oHLNzSW3DTZcgmXSS+f+ZcRedIEHHS9FiKe5dW0Hfn1hxbYul9tfuOPfRCVO0/MxGokZpCCEJjnbX7XkS3TrEiFqZFujav9qJuE1T+ERgPWuh4yW255siQUoD5ZIuc2/jkgGf0RptpuHs6+FOZFUpigVSDfPW16XNzHJjWFg3rrrITpn4FPedimWrbAHcNJklOLrjO4OwpMA8nx67mOoqk6JZYue0jpiTAtoqVQbAWiy4MP34fMIR0czulwgfLZoWztfxEky4v9BrVfWal4nQ1scobr+RtSpJ0aXwDbok6TMhd+fRoCFEO4ZLaLA7Zet1qbEtyZX71+67jWay5WPtIhYRQ/OUYThsIc8Zcs4wTEIwKnBi0kcmWeW1uBNtYWJy/i+gxKAj3Vcr1hoZnwocCgfYFBG4pLi6tY5bHroet97/WGzyCG2a4vCRVSAQQEJBcgIiCGRGISXgBar0PZcUXDdrHWYBNpOooCFyq57MF6Vp3EqJBKMCh9qbumKL4qkHH0RIc/R181mhiZXxMhpMVKWZcbw+u9pFFCjXYNNk86DuYTYR055u3EkFGXHsWAQIaW5bKZjqpxbLVDWTPkfEFElyK9DGeYBhFiLlzF5nL0hmjAjrUzPbnzTKxKqs7anTeBTOW/AOKo6xLhLjkm1Leoi0Wh6jKSqfa6rdmZKhqnG5UZPqKIkoCJ+rr7UYMaozFHT3MxqnMqyTM4jVEsXCV687D3QlHbe98DLJENEMfa/amXwrLEqGptdSfJ0YpO13diHIyE6Pd8miRQ3OCw0h2gl2881O5AypqnWOxiLLFyRC5YjRFvsYrx9zjuJKslhKjgBFd0r9EAQ8YUgnvvITSlUqJ2Ace/0R9kbjysOZL/2tmujGuW+bkpoyfKObeSBdwYT7eNZV38bwXBufOPcEXBWs418dvQs04IAvAE4AX4AwCcEpKFNkYaAjNA9tLGGQROgECTLOkOQqhVB0nVaPce7bCrh9rZEVTnNN3nw9CZuy92EWqpYJuY/xZoiRE4nxQo6V9hj3by7bydtcG4XAIG8VtVSSIRNqAst1dVBIlEO4TwW6Xmp9iDwqZoiNSZPkgtoomDFudDuwV/0tLttuRGC2Esx9XkWOyhGJsnFiVeTKHV/ZcNEQKVNSX76OMsEoRHwwe2+K5KQcxRI2SuQev3xvyqmk6ihcqcKthggBxTRvlyXIhNI3lVNdhqyrSjf1eTKNmbeCiYy5+qE6LVFhv4rXrnjc6vU78RDaLdCLVYDWpMx2DQ0h2iZqHaEv1PFrNywSmh1FhMxxFsS8XmLFscCxByiRKKPNmdlf/ckzhjxXaZjVuIVzWadQ7QQUv/DK10ycic5MEJGXFTrLm8lKSIozaRdn0y66LAYNOO749jXYFBHe+9Vn4ocf/U147Uylz/S4CQHSiY9xqlpabIyV6Pv0ah9cqC70puzfRFkMhCTo+wkiliGgHCvhuLAuoLn9Zb6ZqdSeIRoRy3Hd1Wdw6pv7cPfJQ+h6CQ4tD9D1Uzxt33FbHQQoD6K71o7gZNxHIn37K9+IY43Znk84EumDQWKQRRjmgdUy5WJqNmmsACLtVu1eFyUSPiuKcef9Ut/JhCMkKdgXVJGe8mvuLi+fvy7aVL6G4t9y5KhIhtx1jEhrcmhJKp0VLJdJUSGN5pAiNxpSRWaK6b36Lux1RAiYL0Q2nlZUR4zMe8SUtq9l7cK56jyIKJHTY5nPoP7/PFJk3tdlndXMdnO0YTvBwyfKsxtk6OFyrRcWDSE6H2z3A1NFJHbiY2GiSs6+c8mK2a0qsnMhQYrjcUkbYWJK6pzIkeTKuHGYhJhkaoJ+ZO/s3C+nRdIwHlW/oM2XufnS3h8M0fNi3Dvehyc94kGAE5xMlsBzigfHS9jTG+PYI06jvTSB38rBEwZIYJIEWB230QmVqWPUSjHWXjzl0mDbrkMW/W2UtmdaxeRinKv2HwFV+iRjjnj9k+/Ho/adxSCLcMOeE3hEZxVDHiDhHjKhhNIMAjeuHMehaIBBFtmoTy4ZJrq3GwDb0XxvMMThaF1PeIp4GC0UJcpI0qT6jC6n66tUW6TNJF3voZnXp6Kia97rN59QFaM4RgBee95C9KheNF0c52z0CNjaCXkaVVKpL1PVN0211QutC+eZQ4qm28jCwxyrLk25E7RYhpAo8fxYp2DPpF0IEGxypaFby9oQkuJQOJh3KGv14I6JQrmnm0cVxJx1LlEc5FFpXZngNkY7DbZGQ4jOB07lWCFiU/cFZIjMbqAiQuT+LWyqiUiBLLki7N38JWTH4YyrdHg7VipBmEOKJCA4BWMCSeaBEInVtIPNvNjkEVCTFamZAKruQcYZhnmAc2kHEx5gLAKcTns4l3XQ92KtMfKwtG+Ivzv+GPzII7+Je8/uxZl7V3Bio4/xeguP2H8OkhOI2EM68hGnviI7OUW/FSPOlKDZo6Lg1mz8iEykgxKl5fEIt/ohYOqzknAPbS/DetZSpfpClVmPsgBnRx3si0Y40lpHrgXN391cUaRIeFb3AQAT4eO+0R5LAr+8fhWAYmokEZ7ymNHjzYUqv6eQtpQ+5cqo0ZTXm2OUU1nni7rWD5RI2yalKvLhkiNX82P2rSIUda7UZRJlju+SoXIz0+kYZomJu828yMn5RiOK3kezxytHsbZDEJhu52GOm4lpM+BQRzXL5LHqWs2YqtrxnE26OJX0beSI6ffW2bQ7FaZXaKwAYDVrY9kvRltHebjw9VXh4RMdQpMy20U0hOh8UPWhcUlGFUna5gdtxtyxahh6uW2ZgWlkpjaNthsf+KpjVKbTSn9Ly90xEiKRZQy+x+EzjkEWIeUeKCR6frLjLypfN2KlkNbHpMUyrKVtm0rKBcWB7hDDzQgjHiA+0wZdTuExgaCbYpL7ymOJSSBhSIYh4tSzhom9KLGREtu7zEk9pYIpAqUni1wy7Yps2m0oQpAID23duNMKm0Hw4OoyNsYtrCZtPfmr/fpBgmEWYcIDHB/vwYQHGOUhEu6pNJeegFbHSucx1lEidXxqf/3v9UeFiqHAMSE0CFheTDXp7czxXFSRgnmoT3E5lV1ONKkuorRVpOR8StWr3I65NgEFtta6zD9XxXVAzESmqsjNvOhb8f/b028ZRDSz7xFAExZMS/EZEXPNGO02JUJjUmD7wqFq0OxokXwqcFU0qCRBbuRsXzAsRIgokWixdNvX/rCNIjVVZruGhhDtAEXn5QV/Ie9mZKiUhjLkhzpmiNTR6exW49Z5UajC+OYexHmUj0101Iio61gftzBIQ6ynEQiR2MzUr76ZFgQOaMUYjbGhSvdw60e0mnbwpP4DAIDjw2Xsi8a4trsGKQi+vnoA0X5V8t+LEqSrESaZD8KJ0kDlBDInmDygPHw2xi3de0oWmrkad2dDbDwqrCO1myqgRCAXDBPuYyNTuqRBFmE1aePr5/aj6yV47rF7wKjA8cEyfMLx4HgZHS/BqVHPHiPmHv7qnsdjog0oV8KR9Ym5fuU01rOW8jeyfkRE9zNTUStTZbYSjuFpvyQz7q6fIBdKjO2RadrM6JzKr4H7Wl2IyUa5ahe/wlxyUO6vVUaZUFWRLWA2VVZOvZW1K+X35FZEoWpcZeIwL+XorjdVaa6HUf0+2yNHHNQ6WLdoWtjGtXkw1zsvIub+NWgx1Xdvy/G4lXn6tTJVbm768HyjRA2uPDSE6HyxyK9AN1K0nXUokZlSyqtMUIwDNiGAKPUPU8vnV2NthUqd0gIEyJ5P1jzsGNV/mCfsOUyqqR8kc8WvlafW6/phbFNZlEjdQJNjI2shIjm+unEIAPCd9RUca53FkatW4VMB3+NodxPVt8yXGE1CoMUB05YkJ6D7Y8iUYXO1jYR79hwBU5VhxqcHADYSVTYfsQyZnswZkco0UjJbvROxDD5RLtAPbi6BEJWaWPbH+P8e9QVcu7SGQR7h1KiHXDKcXu3hxLiHXDDsj4bodWOcSzrI9fE5VJsOQ3YySbGuSVebZYUJzCeKFIW6kahHOSKWoe+rViWqqaiahEyky9zbMrbSDm0X5XSYQVm3pbYt6rLKXjuLRG9Mqqzc8sE9FnMIn+tIXYXtEiNXSzR/nLL0d/HzbBVhcmGqEwEn1Qo6vQcLRN7KZK9AbiBxNu0Wt597P8tRwammCFD+SItGiR620SEAkGJ3Hg0aQrRtELkr5KLquAul1WoMGKc9xfSXE5WgVBaW7UakqPJ6ayJmsxV5ehNJCuSq8H9BVKUZp/CYIkZtL8NGUhRNkpkvw+pUBdEpneUgxp5gjBXdpmM9a+NQtIEN3sK+SHWrf8zKGZzNuri6M8DJU8t4/P5TiCcBRqMQfjdFfLYFxAxkxBQpkgS+z1XEiEpl0MinBMh49BjisCeaqDQVpnoi1+XXtCAwv5KPdtawvzPEMw5919oFCElwXfcs7hut4Cn7HsSpuIfD+9fR8jIM8xBcEuxpjfGtc/sAAJlQztxCUturTKUUVLk9lwQPxHsw5KE1Z3R/ZRtdj1+aMFLBLOHJBS207Si/BopAnN9XTXliUyTM6Iq2TpftBigRlSkzN2I027h0fvWViajMSzlRIivF1VUi8XLkal5l2k5AoaKdifCQSF+7my/unD2PFLaYMnw8k3TtuerG7WqNiuuL++RiVq/kbnMq7s3ss5t6rouCRkO0a2h6me0ARJOiaaRk9s20ne7sxYPL4vO6aExh0p8dnyEZdYRtRmS9ILa7j+3rVlVgVzqWGS8hqkUGFwSZYDjY2sQwC2b2n1sx5KQ+AsbR9lIs+xNQCHS8BD7hWPLGiEiGA8sDPLbTg09zjHmIA+EmHveIh9T4qQAf+6BMQDIJNlQfGSIB0eZIxj7CpcQ2lPWJwGYSYW97ZK8vFxSgQABuIym5pLa3meldZjQ9BqnwMExD9L0YZ9Iu2izFvWPlvP2o7lnctXo1BpMIj917Bsc3l7E+aSFY5jjcGeBIZwOp8ECJijZl2jfoxKSP67pn0aap7WROIW0EyXQvV209BAI9HCOiNdt7RCBgOeK0SFQNXNF1nTZIbVclvi2mRKpeW8/19tHvr3kC72ryUNIHOWNxhdRu1/R5E755Hetg2qmY5/O2MffOOItTCHCwynFP95WFFOyiJHQ7BCARnk1PTXiAvjdBm6U4nfasvqgMrpvBFs4n9XXp55n0sJ61LekbZFFBKG2w/d52AqfiPg5G0yo49750/aRqt4cXRCnUvuNjNGgiRDuFEyUykZjC6vONHrnRolJarVC+XjBxLG1D5cy6840SbXldFeMtpM0qxlpc4Z4HiHMP926uFDYJ2NQdeKvogKvlGeYBjk/2oE1TrHgj9GiMiKqy4nNZB0tsgltPPBZ9b4Jj3XO4b7AHz3vkN4CEIdsMQFIKsZRBUgnRUi7WImHIJh66UYKWbnchpZo4TS81m2LSgmujISqneqwHkGQ4l3YAANf01uETjmV/Ai4phnmImHv4znAvjvVWceOh47jz/qMYJYGtFPMqJv/bHzqGo601XN1ex15/BJ9y7UBNC01IE+EhER463nSiMNEsYNq6w4irzXmqBNhV0ZQyqirGaretMFc0RMe95p2m6tz0kdsl3jqfbyPKVde3a1HxsRqPLByrzn+njO2I2MvbbmUtAExNGDkI2jqa6ZIhNxJWFxUzbWTMOFRz4dS2qzEEvGrM9nlNlMjFWtrBVa2NwrW674teyWH7QkUXGzw80BCincCtmipN4OU+ZruaVisPo4YM2XHJ8vZFUlRXor8VFo4SueczpKiQwqs/vzkHFyqtdMPySbuN2xIDmF9lFOmJ29Mu0Fe3NgCo0t9V3sE6b0NIgqPRKjo0wffvvw9f2rgae/0R9reHqgQ9ISAJBc1Umkx6EsgJaEpAmESrm6AbKgLR9jK0gsxqhwiZiqwNqUgdMbBJR5k+Wb41QczsMkokrg7XsJ61kXKGWGuTDDn5vmuOI058tIPUpuPUtWdosQwCShg+4YGdbLiktvzZCHAT7mlnYkWMQt1TzRCOXOubPD3GVDeHrRIilzFfEFytY6mrCpuW2Kvtfcqt8WHVtjOtLUpkyTX8K+y7A6M/4z+023C1RFUkxjUv3AncY1iiURZ2Q2KvP4JHOZa8Ca4O1wHUi6dduNsYkuk7Fg5u649cqp6Abvpx3vuryqfIpKwO6FY2Zcx7v50PLlqazEWTMts1NIRou6jiAgVSNCUBVQSpFlI1D92qGq0u0mNJiru8rty9dLztkLaFyVDJo6lA3qisrjJzzuE2cB0mIb413Ddz7nn6CQNjMKjWKyO4c1kHq3kHmfCUi7NUxGKTRzibdvGd1b34+uYhLAcTtGkKOqFAl0MEqvpNhkKRI05ANj2M11uIcx9nRkr70PN1C4/MQ8hycEmRC4rNNLRl+OoLX1egwUSxph9H097j/s09dt0gj7CZhhgmAcZZgAeGS5YUHdm7hl6Q4PhgGTH3C6Lfr68fwKOWzoLr85xK+xjkEXLBtBCcwyfcRoVaLEVbC7stSSPC6nWEpEiFZ5vVBozbPmaLRjDqJrjyunKJvyVBRNhHXdfyrd4bVeShihip/Y2zMrHnL++n+sFN3ZgXwaLjNgJr5nwubPXXHPPCRTCPRJVfB0YE9vlDu75MhhaJCtpjYyqwXs9a6HoqOuQRod3Rp/d4O6myravxZi0bKt8fFeaXdbiomqEyJHaBEF2aoV9uaAjRTlD15pmJFs2miLYqW9+KOM0jLUUrAGeMO5UyXYiolhMlKpxHFivYbLWZ0yLCNBgtY6sJOMk9Xe2lyM+E+3hgskdVdGn/mEwynM16iKUPCuWDdCga4Im9B/Gt0QGIayaQGYH0BUiixc2+hAhVSw/JlU5mY6CiTQHjyARDK8jAdTQrEwwtL5sKra1z9TQ6ZLabcN9GZva1VCoiFj7GeQABgtBT6a7VYRupUD3aIk81Yb26t4FBFiLVWg9KBPa3RghpjlwwrKVtcEkw4UVNlokcZYLaX+bcud/TlgnCIZizJobbRXlyKqyb48BcNeltRZBnzQNJITVW9bc4TjFjpOmeZ7v3YFE/pKo00W6BlY5d7flTfc7zIUP2nJpI5pJhkEXq/a0jk0N+Ycvm571eVeSmbtklI0INdh0NIdoJnHTUTISlLo1VWlYXldm1yGVFyqx4/urd5jZx3S5cc8h5x6ohklmuIhBSTlNfW00+5eWhp/tvEYETkyWcmCzhYDRQmiIeYcwDJMLHetbCRt5Gx0sQBjk+feI6bOQtnBj38NRrHwDJ1UdF+kqbJUMBUEBSCdbKLfExZfU+5QhZrjyQIMEdbyLjVj3OA6QOMTMmjSFTWqIJ97ESjnD34DAEiE2jLUUT5JyiFWa6xYciWWfHHV0ir/qlrWZtfHXjEPaGIwgQjHgAj3KkwsMdZ45gVWtBTCWOmYgANTkyqHReQNW959rJ2tMTZJulCFgOTztaz5tgqtyd6163stP0dJupUDiXzKY9MkltJKs8Kc+twiLFyNJ2U2QmdWfK7Y0mrE4/VNi3TLhK/68iIWwBzcx0bFtrqMpkyN23evupPcNukCFANSL2KcdV4QZWghEywZBJir4fY8L9rQ/goHbcFa/rPI+ieQRnO1Gji4YmZbZraAjRLmDGFXpuiqrqADWl6jVh4ioB9+wxMSNmdsvbF0WZ8C1MkiojZGZMzjCdyjK14XS9xwQCxtHyc2wkEQ62Vai+yvMGKP5SNw9T5fTQuA9KJJaDCVItHB5kEcYiQCYY9vojZJLhcLiB7zv0AEbjEGt5GwdbQ3zpwcOQngDxTf81gGRaS6Q/QVx7E41zFclZCmN0feWWm0sKpsds2ngMswAxV60+MsGwmYdKV6GjEJ42SeyyFNe0V3Ey6avUFuPo+in2dUaQElibtJEKhm8/tN9GL7p+jFxSjPMAB1pDUEh8be0gVvwxOl4KIQl6QYKY+0orxPLC5GnSL4aY5Tq9ByjzPENETMqPEjntdj+HVBREz/MeFWkMY1wJlKvBipYAVeTGRLIWRXFfUw1HnPeXKAjRgcU6trvXvghmKrMw1RK5ZMZ9Pq/SbRGR+WyKTtjxlomQALGPqvWLwqbjIHAwHNjXMxes4Fxd5TcFVBPEeY1thSSFogGz/rIiOduBELvzaNAQop2ijliUSVFVRVi5vcYi5o7zyuft+cpib+meYzYCU0XOtkrLbYdQmR8dljBSoUmRjrK4tgAEtipuWrmnHi0/hc+UQSBQ1BNUOVWXBdbm7zj3cTruYi1t41Tcx6m4p9JEjtkcI+pLudNOcOeZo9gfbULc3wYdM1BfpciW9w2BDgfJCMBUP7aUMxAqcP+ZFZwY9q1BYz+MrVP1OAswTEOkXJGi1XEb62lLf0GnhQmmeI0Ux0d7ICTFI3tn7f57WhMISXBu3AFhEoxKBDSHTwTGeYC+H+P0pAuPcjxq6SwAIKA59gUj7G2NMUhDVWLPPfhUYMJ9283cJxyZjnqZqBEAG83qeCk6LLVVbYGzzXarnOamzSrK8w2JtFYAIMglU2aXINNjl7RFVVVG2wXVuiVAtZaouqY6DdF2SJmBW5W2aEWYqyeqEqy7WiQ1ruqqtu1gJ0TIhXuNy/7YXsMiztUGZYuHAskHsYTHJ+LyjPQ0uORoCNEOIAWZKWkvd3VXT+AsM9vVHNRNK0ktrt5iYpnXyBVAYYzueKpIkWvguCuQBOVqNkIUKbLnLouryXQZo6IwkQVOJZGL+om0SIqEJJhkvq7SUpGZVJsWTniATDIseROcTnvwCcdVvQGu6g5U88q2gGhzPPrwaVx77Rmsn+0Cmx7Q4iCtHPnIR5p5oEzde0aF9U1qexkS7qHjp0hyD1xQxLmPgHHV18zpdQZMBbK5VKSHQz2u7a7akuTlcIK+n+CqzgD7ddSMJ54lMJQIXNNeRd+LcW13DW2WYdkf467VqzHKQ9Wuw0uwPmnZVhymFUMumHUj9qmw5wdUyf1mphvtOronU1FnokZVrtH2OWajP1WvmcE01TY9tom6Gcdok84z5616L5TJ0CKd6939lYBbVSqa6FCBeGAaSZo51oJRoXnbGMKwlXv1Vr3UZnVV9WSonLYzZDOTzP6I2GlUqAqmFN8QtpDlhQjRPGxlScAgC5q4CwlDQMl5EO9toUmZ7RoaQrQDUCZqS9pn4JACWSAJNQffCSmpJDrTaEuVxmmrSFHduq1Ikz2XQ/CKZHH610aEqNQ9zKActh0C5X7JnZqYnl2LRyBc+EwZI46yAOPcR8RynI07GOSqMepa1rZfwH0/QaC9esw9+8Z3DuP+4/sgOQERADIK6kmQlCIeBRCcQHCKkOUYZQHWk0hFZFojpJyh5WcqpaHH0A1TPLSxhFQwfG3toJ7UKYZZZFt7THUp6lpCmhfK6vtBjLafgnq6hBkEZ5IeBnmETFKcmvRwfLwHn3zg0XjSykOaSBD4lOP6ldO2QafaXhMbCGSSYZgHYFBkciNtaZdrJarezEOcS7q2yi0XDGnJO6as+XIrxcqOy+5fF2a8qfAKGiwhCWKunJJN1Mqc03396yIG8983VZGf6jEaUrRoygwoulOfL8rl9lUps3IUrlxeX4VydVkiPMTChwCZJUr6PVqX0poHN+VWOD8EerooYB4pqrqGTLLKfbYbCdpOWxN3+4uOhhDtGhpCtANIPUlWTczzdDqzKast3oQVx5nxECrpceahzhzRfB5myc/OPyfz0nMz98DohsyXMBWgVEVaGBXWiFFIgkf2zmElnDrYulVoVSjrigAltM646jxPiUTMfdst20Qgrm2fQyoYvrpxCCRXPkQ3Xf8d9bqHHDKQoCOGfOhDelIRI03yfMbRCxKshKpVR9vLMExCBCy3aRYpCeLcQ78VQ0iKlWhszx+xDB0v0e7SiqRkOiKSCA8RyzDIQqynbcTcx55ogm4vRsAUKQp0RdmJyRK6WmD9hP3Kx6nFMts81qNckTCoSjvjP2QiZqa/2lra0YJvqYhPqU3HlBTRyihNOYrntvKwPcC0YLrq9aRE+SAZL6SUq55vbiuNKWGZTbm5E1XRb6d62+L/Z1Mqde+1rUjR+ZIgZsdTHyWqIkPz1m8FQ1hCmlsTU2D7jtF1qKrmM9dnkFVEoApRv1J1nOn7p5yvq/yGxEKPsnP5Vo8GD380rTt2AjmbjnLFweZ52RtIit35EimPpSrq42Km4KymAm1R1GmJtjJ6dJvPSiJBQOwwpAAIU/eVaTIEqC/MXFC0gwwRyzDh/paOwdZZuCZETolEy88Qc0+lrgRDQHMkwsO+cIhMMrRZiqtaG+j3YkRPzjHMAnxjdT9+4LHfxl0PHUGyGgBUgvgC1OdgviIj8kQL4gBBQDkCltsKLUKUGLwTJFaAPEwCdAKVqrq6vW5L4U3UZgJFNMzkbyrEAJWKs+kjQXFVf6DSgdxXxAGKoHzt3EH0I5U628haaGkd1oT76HmKjGVCNejMdKUbBwHVqTtFjOjMxGUEzjaCI1X6z3URr3pNiq9DURxcl24qn9etoDLXY15XdyKbEdZuQQbMfXb/75N8zh71UO02pinerVp1GFDIwvu2/F5mRECYSB6RME05Z3uo1UeM1HEXn8DHPLCO1HZ/InctVVYHk6J0dWFlTEk2KVyz0SIN8ghdlu6IsDxsSE7TumPX0BCibcL10TFvIaKXmy/0ckWWW4XmEom5EZ1Ff8nNO8RiR1DbOqmsclRoKgJ3l9XopmrgRqBMxZnicsQ2WjaEkjE1UTIq4DNuO93nukJrNWnVps0KKRM9uVDntXHXZfp4ikioaqtESHRZgiU2QeypKqxHdFYx5AHOjTr45tp+7OmOcWqfB7EaAilFtDRBK8ywvtGB8CTi3MdKOMEwC7GRLOHxe05if3uIVDC0vWm3+KVWjFCTpgkP4OuITS6Y+j8RCGmOifABSZHLqQFf20uRC4Zx7k8F3H6CmHs4GfcQeRkywbCnNcYoDTHMQwSUg+voUcBy7VytSv0nPLDiaSEJMjD7PGKZjsqoc3uU28ozm8YSRdHzNE1TjLi4pMOIkwu2A1AOxplOzwmtpXIjAp6jJWvRTJXdg0LY98RiOqFCj7KZKIJcmAy5pEOAAnK2dcp2UEkeHaJkiJDpBaZ0VKIyQjXrvj3fnVl1rzf+X6oHWZkMqeMK2ypm3vF2CgYBEFV+P8iiLY/rkkOQ6X1Y9icAimR7xEN02O72MFtUE3chIKWAPM9u9ee7//cKGkK0AxAiLdmwX8FzyI0lDwQ2JlJHktTC6lTcIi0v7P/L61H/G2IrQ8iqdJo557wGsnXHMVoq1fR1enBzH6gmQx4R03JuotpZDOf4h1RhZiLBdMLp+SpaYwTQozyA53PdSDXBg5NlfH31AJZbExzprGOw2gHd8OAfGYEQgO2LwSceRmc76B9dxd7lIc7kSuc0zpXeouVnmoBwrIRjnE062BeMkAoltG7rLvWK0ExsdCOTFCFVHj9ZHmGcB4qYaC2NgDZ4lBRpPo0YpILh9HoP+5aGiLwM95/eCx4zBF6OcRog5xSPXDmHPA8QUA6PcptCyyVFR09+E+5jrO+1R7k9t+0dpkmRC5OymxXuzjauVdsJmxI04uiQ5fAIRwZmSZLxPTLnnh7PfV0FoLd3U2Lz/HGq0jWGfG2lNylXNFVFYlTUQhEvc6fKqZjtYBFSBNSn7haNClWRIuD8KsnmpQpnomJk2tiWEYGVYLFWKPb1kIocFpvdSq1xomjp1N9WhGXRtODFIj61kPL8IzyNhghAoyHaEdyPiauPWMhJmsz6Fm3VOqN2fRVJ0X/rgqjzxNXV59bHqyBFrrt0mdRt1bbELa2355EEecbAhZpsfDb9IgwcMfEiX0BFjcFsKwj3OFlpYg9pjnNZDy2W4fF7T+HxSyfRYhmeeN0DwL4EyYkOBCfggwDIKEAkTq/2MIwDdPsxRmmAM+MuvntuBaMswKm4h4PRAMv+BKbpq0c5jnXPoc1SrMUt9PUvWQDW7E9IilyoMvgj7TV88fRhfO6bxzDOfQzSEBtJhFxQpFoPFWttD2UCwzhEyj3wTR9k08MDD+wFIRK9KLHRHCNMFtooUkWqfKvx2ROMbHQo5j48Om3RYciKOc7M/XcqBKuEzYxI5JLZqjpDskyFnXsck5YTctqI1njJzER2yqX2JY+j6vfKNKJjSrK3QtV7sKp9hiER3ImMzabyFv91TiEL27sNUqfbTDU15nnZeLGu0g+Arm6cvkdMJZkrmq4SUF8oYsAg6pvl1qyra/zq9sDb1LrBOsy7R1Xrd9pHrsHlg4YQnQcK+hhnGcH8dFV1hKdadF0oWXcPWnMCIylyx2CPscV43GKDKoF11fLyMaqWz/guldaZaJHgBJAEkySwUY9AT8KediE20RyDhULpQO2EOEhDLAUx2p7SKJlWHh7hOBgOACgtCYPyMQpbGVhMIGKmnBESCpJTiE0fo7MddKMEQhCMkgBJ7CPOfHz1xCEbhQGgokMsRSo8HIw28ZilMzg9UQTMp1xFhnSDUOPCnAgPTz34IB537CGcHPUwzgLEuY9hGip3X8GwmYZIcg95xhD5GRgViPZOICngnfGx+u0VbMahTbGp+5uj7SWW5Jjlqu2HRMdLFBHSDV2VMeMsuaxuqzJ/ojdRFSuQ1kTMpMvK+5sokoGquHPaiCwgcp1p0VEgFxd2QttpZKgKzCFxhhTMkM8d+Am5hMclRfO8v4Aq8bbAdqrp3F5pVccDptfpPtx1s8esTg+a+1ROmzEicTrp2f8bwuQSyDoyWTbKrOuJd0HQVJntGhpCtANU9ilDkYRIzBKQohuzipCo5bPbVRGhukhRgUQ5y8tbuqRtZmO7bv6yso7I/J1GvequB/Z63cESIq1hI2XqOSQwTlUDU49O2yP0dEfsqi+lqmqyqnVV+xv3aNXvjNqJUUiCa1qrOBRu4LujFZze7CGZ+OD7U9AJA5GqEJCOKcAJ6IRikvnwPSUslueUCSMhEsMsRN+b4HFLpxDQHB0vwVraxnrWQiYprm5vYDOLMMoDfHX9EADgwfESziVdm8LpezGesHQST9r3kIpCrXcxmETYjEPlsZR7ODfqaE8ihuMnVhCPAqCTQzJAehLjSYBhpkSybS9VAmytB8olha/JT4ul6HsxGCQ6XoqIZQhZbgkaUCRBhYhQScdVhpDUWgyofVwhMyls575muVQpQgFSEFO7PcUKkcEtSNGi2I641lTtuddRlWo6L3NIhzxsJyqzVcTDQLjRoR1METutpFuEFC10nDlkZd52XBKs+GOsph0Y8886nE56WM9a2MyjWtfwi4bGqXrX0BCibcJ8zdGSS+1WGp6Z9h72OG5EaPYxbxDzUm2GpEkU9Ud1sEJnuTUBM9dT1jXVehaVjmeXu4cmEtDESkqCnCttzCBVLS0m3MeEB1NhbUGsW50OK06O1ZNm10+RC6oawHLPqZ5iGOQqqrPJIzy2fxqRn0GeC/H/PfkuO3bKodyqOQGRuv8aJCgV6F27gY31NrrtBBtphET64JLgQLiJCfdxatzFKA/QYhnWUuWbciDcxINnl/GNjQNWP3V8pJrRmnYjQlI8bu8pPO2a44hjHxtnehgMWxjGAZLMQ9BJsb7agRz4oEzA72TwNwkQcYgTun+ZQy5y3WEc0FEbSGSOMWQmVPWaq5MJHAE2JXKmusy9z1URBWFTSVvrNCjKeqHiMYBik83FtR8LRC4qPYkWm/Q4pmmmaXqx+it3uySiihTVRYoWHbO9x6XIyk5I0fnCJUWL3m+G2e+E6fGKURv3/y6J8SjHSjACJRIrwajyPEITp2V/Yn+kuahKUzZ4eKAhROeBssi5GNmRxfRV+UNNZo9z3uOpGJf5YrAVcHU72X23OEdNBGkR8jbTWqTy+KrKTGrtwlTnQjDOp+myXFIsB9Mvo3kd1xcRT5ovXqNRyYTSqyTCw4l4Cfds7sfqoIPD159Gwj3c8JTv4geeeA+8TQrhSchAgHe41pIBSerDYwIrK0N1DZmPQRbhbNLFII+UfkZQpMIDg8R3N/ZgmIdYz9oIwwz9ILHXeXywjLW0jQfHSxAgGGQRAsqxmrSwf3kIGuYQx9sYn+5Y8RhlAjISIEyCZxTJikDnGwGwP8b6pIVxHugKO69AWkxZv9Al9z7hVr9jG6s6FWb191xsOxJTfE1czc2sODqk+YzzcJUTcZ3JYtmJejdhokTFZVNH591MnRnsxjXsVkRmEdSl0up1XrPR4IXGVkFM5kVxFmkoa74nymTqkpGgJmW2a2iqzM4DM35DGotEY0zV2aJzRtUxqyI/deemZLZMvuCTJLeuGqurNltovO61ytLy0niEIKBUIk49xL6P2MvgSSUedrGezpbjbiWCrFrmksaY+zg96SHQvdOubm3ApxxXt9cRXZPjULSBrw8O4trOGk5M+hCBig6JUACSYPNkF/6RDcQnOmgfSxEwjrVJiP5SjHM6FJ9yhn3RyDZPPZt2cP3KacTcR8x9PPHgSRtV8IjAseVVmzLKhIqaeURgOYjhUQGxQnA6p2AhRzrxVR6PEywf2ESa6QayeYTJVQKEAmfO9nG4p/RRAcutd5FpwZFyD3uCMSgRNjXV9hLkglkBtFtmH3MPXV9Vp80jpuoe15MBU2Zf3pYSAQ8qRaeE1Mozyd9uVGWXfGXmEcHydqYEnIIXqs3MeHaDHJkSeLc6y1Sf2XFcJnAbxW4VFZvxaDoP0ldnSzA9l44Ye1OLgXNpG3uDcWE7E9Hcyu2bEomYB5XrdhtSCMjzfG83ZfcKTYRoFzCPhABFofPszvOPUbd9eZ/tirjrjl2I5FTsX6UhKm9bpVGqHUOJZJnnQqfOVodtPDTs4+Soh80sxKGWmsgpkTgQqT5e8/pjGcxb1/VTpJxhkIWqvN3L9eRCce9oLzLBsNcf4UC4CSEpjnXP4ROfexK+9M2jCB8zgNQNXokAkGsBaqDKlrmg6LQScKHMDft+rI+vPJYMCTMprIhlaHsJVpMWTL810xzWODXvi8ZYTyNV2i8J9rTG6CzFgCTo9GNE3QQ0ypFzBt/jYFRALOeQFOAJg8xU1En5GKlI0TALbJUaUGzoau5d7kSJXFfptpfZ18Hdp5yuNChWK5VL8d302NQx2KccIcvtepcMuf3WqgW/l8ZJ2J2AzbjKeqKCqHsHabM63c289NHCx6851nbSWGW4kb46UuS+j7bb5mS7112ovnOe89J7bDoeWUuGyvem7e2u11GDC4+GEG0Tda03ZvQx7nL3/+axjS+UuSX5mE+GFj4uqflbsW11b7L5eqaya3fVscv7m0lkNFGi4UmqIihGuGvSO0bDYp5vVRFSBRPh2EginBp3Mc5969DcYinauiKFEqHM3voZfvAJ38JkFABEuZBLT4Iup+p8nGB9tQNA+fPEuUpNpUI1lx3nIY501m2DV3NdqWDwiVAEikiknOHMpGPJyjgP8MBwSTlVgyDJPaSc4UBvE36Qg1GBXitGp5MgyxlCTxGb9p4x/A0KjBmuvfYM4tSzESiXRAyzQFXzab2WMcO0NgAV7TVmo3SLaHOm++SC6fPQgt7GBZfEVt5RMm3U6abJzicSsp0Ks0XeT9y5R3VkaFGY9hl1fb/qsJOu9dv5zFRXW23vnNu5J+6xd0LKZghMyZrAXTbKQ/T9xfRB5bGYtNtO7v+O0KTMdg0NIToPzNXOFLarnvDrRMdV27rb1R1rkVRd6TBbDLz4X0pNmbwhf1uf16yjbuTJKckz3e1n7qM+pEnhjeMAKWe4f3MPDkRDLeIV2BdOhY/nq6OIWI6lMIaUBJNMfam1PVVtdS7rIZMUnz7xSNw72oeX3vBF3PnQEfCJh/2PWAXxBIgnwGMPWc7A9iTwwhzDWIXNA8YRcw8DHdlRESAl5laCboZhFiAXDCMe4PrlU4hYhoBx7G2NQYm0245SdUyPCGSCYZiEkJLg6MoaelECLin2dYcI/RweE/C0Jis5mINNKE5v9MAFRa5JV6QjL+aXuepJpsjJkAe2V5kVUqO+iWeVwH0rmIk+15OjN6PxUY7dM1VBu0CGdlM/NK+v3jxh8jwCWUWAysvcKNGilWeLTNZuafsiBGRRMrQdUrcVqsY079rKxKeOACqbiXovJ3df97wMyiLjopEhQJky7sajQUOIdoJyCqmubL4umlR9UMykzxYps18ElX3HSmNd9NhV1WTVG259rqpz2h8qZHbcaeZhmAR4YLQEjwjE3MeXzlw1o2kpf1FtZ7IUkqAbJNgTTRCxDJQI3Dfei+PjPfCJwGNXTuPu04fwZ7c/DU86dAKPeeQJXLO0Dkw8QBCQnGA8CUCpRD4KkGvTRC6oTUsdP7tHGSoKhgOtEbigWI3bWB23rQXAZh7pyAm1potdP1XRGiqQCwqPCrT9FKsbXTAqkOnz9EP1y3ZvZ4ScU1AqwTlFd/8IJCOIT7WRTnyci9tWN+RRgbaXIaAqjTfMQ6ylHaTCU27ZuoeYkMSKqj09Dmt8SIwX0GJd5oWckqDiazf1JDLtS9x9FvHFuZCYd75iuX01mZkXFdltUlHl3WMm66pJu8rjZ7dF5+eDbacVK8bukiF7XF2dZ9KcXRMRriBO7vu76n7t9aur076X8La3vQ1Pf/rT0ev1cODAAbzsZS/DN77xjZntvva1r+ElL3kJlpaW0Ov18IxnPAP333+/XZ8kCd7whjdg37596HQ6eMlLXoIHHnjgYl5KAQ0h2gEWjQypbYuppkVF0LMHql+0G+m32uhUTU7ORIe2g3njdU0aXUio+8aoinJkOcO5cUd1e08iLLViSyIMyo665WXl7dzl5otukIaIuY/vbq4goDl6fowhDzBII8Sxj86RTfzjFx+Je756Ne76x0dBekK5VnMCPvHgeRxSAunIR8CUjmeUhki4hzz2MUxCDNJI6WF0uu9If8OmqQCl2Wl7WaEs3tP3YTMLVXpLEnS7E8S5D59x7G8PkXDP3rONUQucU3BOMR6GEKEEujnkwMcDD60g5bofmja/jLmHzTTEIA1xatxVbUcot/fYpM1MVMLoh9S9M7+opf1/nTvzjMsxZMFKAYCOClV7FNW9potgUSHzbuiOqnREuwVbyl9ZXbfYZ7PO6HA7x9mOxsfgfKJEu0GK7LHK5K+mUmwesaw63/norLYNKVUft/N6bG+st912G173utfhH/7hH3DLLbcgz3M8//nPx2g0JYPf/va38cxnPhPXX389PvWpT+GLX/wi/sN/+A+IoqlD+M0334yPfexj+PCHP4zPfOYzGA6HePGLXwzOF2vXsttoqsy2iXkOzlu9pwqEQ385SpQ0NkCxImsRYfKWY54lYVKSgolk1T51Y1p0HJXEB9NrLq8gqG8YK6XqAicEBecSk9wHF0pse6g1wCBrVU6Y5q+JbtRNSu5yk0pajVvwqMDZpIOVcIwVf4yTIAiCHOPjPWApA13zASJBMgqSEUhfAmOGvMNUxIhJO/5J5qFNJHrLYzCq9EJ5RpFxhmUdkRpmIVLJrIYpYrklJLmgCCjHOA7QDnRVF5FoBxkePLEHRw6vIuMMwziE3+HIch/ddoLBMILkBCJhQC8HEgaEAoSrKNW+aGQF1hHLsZq1Eee+6n+W+wicdFVAc3jQQnBB4bFpisb9WxQLy1q/IbePlZDE2h6UydCiqOqXVrWu3Nl+++ep1k8tvn/x/ItWnJWFyFXEolx1VoVFKtAq01H62GVSUmnAuQXpcZvrLrrPTjHvXpS3A1D5I2nR85Sr4y40pJCQ50m+5DYJ0V//9V8X/v/+978fBw4cwB133IFnPetZAIC3vOUt+NEf/VH87u/+rt3uuuuus883Njbwvve9Dx/4wAfwvOc9DwDwwQ9+EEePHsWtt96KF7zgBTu9nB3jiooQvfvd78axY8cQRRFuvPFGfPrTn97V4xddpXd6kO1tthOSVJVCW/ik5/F9NW+kbnWblGRLO4I485FxptyVKya2cvRnO7/OTdRDld6rHmoUEoM8wtlRB0f2rKN37QYoExCeHqhQTtAGPKMgqTpnzim4IJY8BH5uU1ym9QagxcWSIuYeUp2iyrXWx8We7liZVwqKhHuYZD4Ik5hkqqHsaBQizhRhFJKApwyC0ymhFer9ScMcmbYyMKLtmHvggoIQiTT3bErN3lfMRtXqsJP2BYxI+AtUhbm+SFX/Ly+/EN4/VaiLDJyvsNrdd6tjbLW+ytNn0UiQ+9ceo1TpVl4+D2Wh+E68q7arI6ra53zNJ83rvlOX7vPCeUeH9APAYDAoPJJksUq5jY0NAMDKygoAQAiBv/zLv8RjHvMYvOAFL8CBAwdw00034U//9E/tPnfccQeyLMPzn/98u+zw4cO44YYbcPvtt+/SzdkerhhC9JGPfAQ333wz3vKWt+Cuu+7CP/tn/wz/4l/8i0I+c1FUfaG4z+scmxchIpVtNWaDKQthEaH1BcGcAW5nNOX7RfX1CEkwSX0kudLMnEm6hYal1c7I8+9aOcwdsVyLi4nVK43zAMutidqOSvhRDrKUQSxnkKFQnybDjzgFfAlIIMk9EAJdqUXgU1XZlWgSwgXFKAuwmrQw0j3KzHXkktroEKAIS6hJ2iQLEGe+6lnWTsGFijb1+xOtWyJIM6aE6xI2WgVBgJQCBKonmqnc0wLrTpCgH8Zo+em007yO5Ji0mXvP1HPhaImqy5Vdo8XCvS+1/ViEDLnPz4fsWKLilO5XnedSYF60ZFEd0ryKy7IIe15lZt1EX3TMFvC13isRiyUfyj0GL1SECKhOZXHQSjK03Wq7Mi4JMdoFHD16FEtLS/bxtre9bct9pJR405vehGc+85m44YYbAACnT5/GcDjE29/+drzwhS/EJz7xCfzYj/0YXv7yl+O2224DAJw8eRJBEGDPnj2F4x08eBAnT57c/YtbAFdMyuwd73gHfvZnfxY/93M/BwB45zvfib/5m7/Be97znoVedBdcqA8tIdMvVCm3bkNQJkZGH+NWVEmUdEYSMwTDXVTXEsRdN29Z3ce9sN1W3wk1BLC8quqLw6TCZvatuJVT40aTcaTIuarUcrUsQDUBcg316tJrZpzm/7lOPaSCwaMC/SCBRwQmkQ8pgdDPkXOKySiEiAGS6UhMReqPmaaqRCqXat3nzCVIUhLb2NanvJC6NL5FZlkmqNWlhUEOX6ebOFf3hUUC/VYCjwnEiQ+eM/CMKjIkAJFTTFJFvgLKEbAcESO2+atHRLElh9RpDiIQVMzHbgqEEVnQEqlXiwJEVGte3EmxosfZTjFvghWS6fNOiRoHKZTgu6Soajzl1NkiqbSyQWMd3HRiFeaZG85L25T32c625fEBgE9zMDhieEcIv9U11B0TqH/tymOt+7HjRom2GwHaTpXYII9U379LRIJ2M2V2/Phx9Pt9uzwMwy33ff3rX48vfelL+MxnPmOXCd0b7aUvfSl+5Vd+BQDwlKc8Bbfffjt+//d/H89+9rPnjoXsOMVyfrgiIkRpmuKOO+4ohOYA4PnPf/55heakLP6t3oYsFBlyt6msCjvvN/zsOLYkQ3LORgSFFFq5ss7Nrs2rZKt0tHa5mCZM7sNNgxECjLLARnOqsF29R9lw0F3eZik8ytHxU6y0x/A9jizzIFOmxs1U6k/mBJJKEG1VYH5tEmfizHKGOPXBhXptTIrLYzo1oQXUJq2QcWZJHaMCPhUgRKpKMiJteb2Qyumb6fO1gwzddoJ2O0GrmwBtrsYqCLggumKNwyMCEcvQ92O0vdRWnal7V6we24qsmEhPWSdDiYBHuH2UIwTF+12dArPPS/485Ql0WxPxFu+NraNWW5/L9DYDoNvSVOudtjOx1hGZquWu+NlG80ol++VH+bUx+/jaE6rNEvhEWWAYUmSg/KyqJ9R5r/uFQJ0ouiyOnieWrkNf9zNz27NcTA3RbqbM+v1+4bEVIXrDG96Aj3/84/jkJz+JI0eO2OX79u2D53l4/OMfX9j+cY97nM3KHDp0CGmaYm1trbDN6dOncfDgwd24M9vGFREhOnv2LDjnMzd5XmguSZJC/tTkSPlYLasisPOJkfvcIT/m/2a9JECV4Lgm6mKXbfGFvigZmtm2vOGcaFDV2GYF3e55puez96EGZZG31I1PJylHQiTCthL+howX0mcu6krxy0E4m/qkArk2VJREwqMCqZeCQoInDBAZ0jFDPqQQsZogBCcgGYXMJYgvIGkOOYnBWQ7pEKI895ClEkIAaZhD0mJVReDlyCm36TNDpiiR8ClHnhsnbIY8ZxBUglCOXFIQwSEEheDp9JejoIBgoIKAcA6eBADlyFiKocfhhxyc5fCJadpKbbwndiYv80u7mDoTkERC6O0EUa0EFAEy97v6dd1pWmq3UitT4qb+zyBRVd9CdljZ5LoaUyLBICAoB4G0aSYXojShurauO4niuDDmBaTm0y8r7mkspu+/cR6CUY42TdHxEghJkdHMXoOEao8hZY5h3tL7TTCUBBwUEZ3+wDBjyCVD6CznUvX382l9ldGiEaKdIN96E4v5JJojGanr2q5gebvIkW1Pi1B3jG1ASok3vOEN+NjHPoZPfepTOHbsWGF9EAR4+tOfPlOK/81vfhPXXnstAODGG2+E7/u45ZZb8IpXvAIAcOLECdx9990FIfZFhbwC8OCDD0oA8vbbby8s/+3f/m352Mc+tnKf3/zN3ywHJppH82gezaN5NI9tPY4fP35B5rXJZCIPHTq0a+M8dOiQnEwmC537F3/xF+XS0pL81Kc+JU+cOGEf4/HYbvPRj35U+r4v3/ve98p77rlHvutd75KMMfnpT3/abvPa175WHjlyRN56663yzjvvlD/8wz8sn/zkJ8s8z3f9fi0CIuX3vmd3mqZot9v44z/+Y/zYj/2YXf7GN74RX/jCF6zIy0U5QrS+vo5rr70W999/P5aWli7KuM8Hg8EAR48enckJX65oxnth0Yz3wuPhNuZmvBcWUkpsbm7i8OHDoPTCpNDiOEaapltvuACCICh4BM1Dncbn/e9/P17zmtfY///hH/4h3va2t+GBBx7AYx/7WPzH//gf8dKXvtSuj+MYb37zm/GhD30Ik8kEP/IjP4J3v/vdOHr06Hldy05xRRAiALjppptw44034t3vfrdd9vjHPx4vfelLFxJVDwYDLC0tYWNj42HxYWzGe2HRjPfC4uE2XuDhN+ZmvA0aFHFFaIgA4E1vehNe/epX42lPexp+4Ad+AO9973tx//3347Wvfe2lHlqDBg0aNGjQ4BLjiiFEP/7jP45z587ht37rt3DixAnccMMN+Ku/+isr8GrQoEGDBg0aXLm4YggRAPzSL/0SfumXfmlH+4ZhiN/8zd9cyJfhckAz3guLZrwXFg+38QIPvzE3423QoIgrRkPUoEGDBg0aNGhQhyvCmLFBgwYNGjRo0GAeGkLUoEGDBg0aNLji0RCiBg0aNGjQoMEVj4YQNWjQoEGDBg2ueDSEaAG8+93vxrFjxxBFEW688UZ8+tOfviTjeNvb3oanP/3p6PV6OHDgAF72spfN9IqRUuKtb30rDh8+jFarhec85zn4yle+UtgmSRK84Q1vwL59+9DpdPCSl7wEDzzwwAUfOyEEN99882U91gcffBA/9VM/hb1796LdbuMpT3kK7rjjjstyzHme49//+3+PY8eOodVq4brrrsNv/dZv2U7Tl3q8f//3f49/+S//JQ4fPgxCCP70T/+0sH63xra2toZXv/rVWFpawtLSEl796ldjfX19V8ebZRl+/dd/HU984hPR6XRw+PBh/PRP/zQeeuihy3K8ZfzCL/wCCCF45zvfecnGu+iYv/a1r+ElL3kJlpaW0Ov18IxnPMM2BL0UY25wBeGSNAx5GOHDH/6w9H1f/sEf/IH86le/Kt/4xjfKTqcj77vvvos+lhe84AXy/e9/v7z77rvlF77wBfmiF71IXnPNNXI4HNpt3v72t8teryf/5E/+RH75y1+WP/7jPy6vuuoqORgM7Davfe1r5dVXXy1vueUWeeedd8rnPve5F7R/zOc//3n5iEc8Qj7pSU+Sb3zjGy/bsa6ursprr71WvuY1r5Gf+9zn5L333itvvfVW+a1vfeuyHPNv//Zvy71798q/+Iu/kPfee6/84z/+Y9ntduU73/nOy2K8f/VXfyXf8pa3yD/5kz+RAOTHPvaxwvrdGtsLX/hCecMNN8jbb79d3n777fKGG26QL37xi3d1vOvr6/J5z3ue/MhHPiK//vWvy89+9rPypptukjfeeGPhGJfLeF187GMfk09+8pPl4cOH5e/93u9dsvEuMuZvfetbcmVlRb75zW+Wd955p/z2t78t/+Iv/kKeOnXqko25wZWDhhBtge///u+Xr33tawvLrr/+evkbv/Ebl2hEU5w+fVoCkLfddpuUUkohhDx06JB8+9vfbreJ41guLS3J3//935dSqi923/flhz/8YbvNgw8+KCml8q//+q93fYybm5vy0Y9+tLzlllvks5/9bEuILsex/vqv/7p85jOfWbv+chvzi170Ivlv/s2/KSx7+ctfLn/qp37qshtvefLbrbF99atflQDkP/zDP9htPvvZz0oA8utf//qujbcKn//85yUA++PochzvAw88IK+++mp59913y2uvvbZAiC7leOvG/OM//uP2/VuFSz3mBt/baFJmc5CmKe644w48//nPLyx//vOfj9tvv/0SjWqKjY0NAMDKygoA4N5778XJkycL4w3DEM9+9rPteO+44w5kWVbY5vDhw7jhhhsuyDW97nWvw4te9CI873nPKyy/HMf68Y9/HE972tPwr//1v8aBAwfw1Kc+FX/wB39w2Y75mc98Jv72b/8W3/zmNwEAX/ziF/GZz3wGP/qjP3pZjtfFbo3ts5/9LJaWlnDTTTfZbZ7xjGdgaWnpgn9GNzY2QAjB8vLyZTleIQRe/epX481vfjOe8IQnzKy/HMf7l3/5l3jMYx6DF7zgBThw4ABuuummQlrtchtzg+8tNIRoDs6ePQvOOQ4ePFhYfvDgQZw8efISjUpBSok3velNeOYzn4kbbrgBAOyY5o335MmTCIIAe/bsqd1mt/DhD38Yd955Z2Xz3MttrADwne98B+95z3vw6Ec/Gn/zN3+D1772tfjlX/5l/O///b8vyzH/+q//Ol75ylfi+uuvh+/7eOpTn4qbb74Zr3zlKy/L8brYrbGdPHkSBw4cmDn+gQMHLuj44zjGb/zGb+Anf/InbaPRy228//k//2d4nodf/uVfrlx/uY339OnTGA6HePvb344XvvCF+MQnPoEf+7Efw8tf/nLcdtttl+WYG3xv4Ypq3bFTEEIK/5dSziy72Hj961+PL33pS/jMZz4zs24n493tazp+/Dje+MY34hOf+ASiKKrd7nIYq4EQAk972tPwO7/zOwCApz71qfjKV76C97znPfjpn/7py27MH/nIR/DBD34QH/rQh/CEJzwBX/jCF3DzzTfj8OHD+Jmf+ZnLbrxV2I2xVW1/IcefZRl+4id+AkIIvPvd795y+0sx3jvuuAP/7b/9N9x5553bPu6lur+mGOClL30pfuVXfgUA8JSnPAW33347fv/3fx/PfvazL7sxN/jeQhMhmoN9+/aBMTbzq+L06dMzv2wvJt7whjfg4x//OD75yU/iyJEjdvmhQ4cAYO54Dx06hDRNsba2VrvNbuCOO+7A6dOnceONN8LzPHieh9tuuw3//b//d3ieZ891OYzV4KqrrsLjH//4wrLHPe5xtsLlcrq/APDmN78Zv/Ebv4Gf+ImfwBOf+ES8+tWvxq/8yq/YiNzlNl4XuzW2Q4cO4dSpUzPHP3PmzAUZf5ZleMUrXoF7770Xt9xyi40OXW7j/fSnP43Tp0/jmmuusZ+/++67D7/6q7+KRzziEZfdeAH1fet53pafwctpzA2+t9AQojkIggA33ngjbrnllsLyW265BT/4gz940ccjpcTrX/96fPSjH8Xf/d3f4dixY4X1x44dw6FDhwrjTdMUt912mx3vjTfeCN/3C9ucOHECd999965e04/8yI/gy1/+Mr7whS/Yx9Oe9jS86lWvwhe+8AVcd911l81YDX7oh35oxsbgm9/8Jq699loAl9f9BYDxeAxKix9hxpj9pX25jdfFbo3tB37gB7CxsYHPf/7zdpvPfe5z2NjY2PXxGzJ0zz334NZbb8XevXsL6y+n8b761a/Gl770pcLn7/Dhw3jzm9+Mv/mbv7nsxguo79unP/3pcz+Dl9uYG3yP4eJquB9+MGX373vf++RXv/pVefPNN8tOpyO/+93vXvSx/OIv/qJcWlqSn/rUp+SJEyfsYzwe223e/va3y6WlJfnRj35UfvnLX5avfOUrK0uZjxw5Im+99VZ55513yh/+4R++oGX3Bm6V2eU41s9//vPS8zz5n/7Tf5L33HOP/D//5//IdrstP/jBD16WY/6Zn/kZefXVV9uy+49+9KNy37598td+7dcui/Fubm7Ku+66S951110SgHzHO94h77rrLluVtVtje+ELXyif9KQnyc9+9rPys5/9rHziE5+4oxLreePNsky+5CUvkUeOHJFf+MIXCp+/JEkuu/FWoVxldrHHu8iYP/rRj0rf9+V73/teec8998h3vetdkjEmP/3pT1+yMTe4ctAQogXwP//n/5TXXnutDIJAft/3fZ8tc7/YAFD5eP/732+3EULI3/zN35SHDh2SYRjKZz3rWfLLX/5y4TiTyUS+/vWvlysrK7LVaskXv/jF8v7777/g4y8TostxrH/+538ub7jhBhmGobz++uvle9/73sL6y2nMg8FAvvGNb5TXXHONjKJIXnfddfItb3lLYYK+lOP95Cc/Wfl+/Zmf+ZldHdu5c+fkq171Ktnr9WSv15OvetWr5Nra2q6O99577639/H3yk5+87MZbhSpCdDHHu+iY3/e+98lHPepRMooi+eQnP1n+6Z/+6SUdc4MrB0RKKS9sDKpBgwYNGjRo0ODyRqMhatCgQYMGDRpc8WgIUYMGDRo0aNDgikdDiBo0aNCgQYMGVzwaQtSgQYMGDRo0uOLREKIGDRo0aNCgwRWPhhA1aNCgQYMGDa54NISoQYMGDRo0aHDFoyFEDRo0aNCgQYMrHg0hatCgQYMGDRpc8WgIUYMGDRo0aNDgikdDiBo0aLAtnDlzBocOHcLv/M7v2GWf+9znEAQBPvGJT1zCkTVo0KDBztH0MmvQoMG28Vd/9Vd42ctehttvvx3XX389nvrUp+JFL3oR3vnOd17qoTVo0KDBjtAQogYNGuwIr3vd63Drrbfi6U9/Or74xS/iH//xHxFF0aUeVoMGDRrsCA0hatCgwY4wmUxwww034Pjx4/inf/onPOlJT7rUQ2rQoEGDHaPREDVo0GBH+M53voOHHnoIQgjcd999l3o4DRo0aHBeaCJEDRo02DbSNMX3f//34ylPeQquv/56vOMd78CXv/xlHDx48FIPrUGDBg12hIYQNWjQYNt485vfjP/3//4fvvjFL6Lb7eK5z30uer0e/uIv/uJSD61BgwYNdoQmZdagQYNt4VOf+hTe+c534gMf+AD6/T4opfjABz6Az3zmM3jPe95zqYfXoEGDBjtCEyFq0KBBgwYNGlzxaCJEDRo0aNCgQYMrHg0hatCgQYMGDRpc8WgIUYMGDRo0aNDgikdDiBo0aNCgQYMGVzwaQtSgQYMGDRo0uOLREKIGDRo0aNCgwRWPhhA1aNCgQYMGDa54NISoQYMGDRo0aHDFoyFEDRo0aNCgQYMrHg0hatCgQYMGDRpc8WgIUYMGDRo0aNDgikdDiBo0aNCgQYMGVzz+/yGd+PHHn3/5AAAAAElFTkSuQmCC", + "text/plain": [ + "
" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "pangeo-forge-recipes", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.15" - }, - "orig_nbformat": 4, - "vscode": { - "interpreter": { - "hash": "6b8a746a12f29aa2c546c85b48de78550232bc5612f99eafab965bc70842be27" - } + }, + "metadata": {}, + "output_type": "display_data" } + ], + "source": [ + "ds[\"t2m\"][-1].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "pangeo-forge-recipes", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.15" }, - "nbformat": 4, - "nbformat_minor": 2 + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "6b8a746a12f29aa2c546c85b48de78550232bc5612f99eafab965bc70842be27" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 } diff --git a/docs/pangeo_forge_recipes/tutorials/hdf_reference/reference_cmip6.ipynb b/docs/pangeo_forge_recipes/tutorials/hdf_reference/reference_cmip6.ipynb index a99943af..1aee14d8 100644 --- a/docs/pangeo_forge_recipes/tutorials/hdf_reference/reference_cmip6.ipynb +++ b/docs/pangeo_forge_recipes/tutorials/hdf_reference/reference_cmip6.ipynb @@ -1,1666 +1,1666 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "id": "49caf2b2", - "metadata": {}, - "source": [ - "# HDF Reference Recipe for CMIP6\n", - "\n", - "This example illustrates how to create a Reference Recipe using CMIP6 data.\n", - "This recipe does not actually copy the original source data.\n", - "Instead, it generates metadata files which reference and index the original data, allowing it to be accessed more efficiently. It does this by using the Python library, [Kerchunk](https://fsspec.github.io/kerchunk/) under the hood. Pangeo-Forge is acting as a runner for Kerchunk to generate reference files. \n", - "\n", - "As the input for this recipe, we will use some CMIP6 NetCDF4 files provided by ESGF and stored in Amazon S3 ([CMIP6 AWS Open Data Page](https://registry.opendata.aws/cmip6/)).\n", - "Many CMIP6 simulations spread their outputs over many HDF5/ NetCDF4 files, in order to limit the individual file size.\n", - "This can be inconvenient for analysis.\n", - "In this recipe, we will see how to virtually concatenate many HDF5 files into one big virtual Zarr dataset." - ] - }, - { - "cell_type": "markdown", - "id": "941f9855", - "metadata": {}, - "source": [ - "## Define the FilePattern\n", - "\n", - "Let's pick a random dataset: ocean model output from the GFDL ocean model from the [OMIP](https://www.wcrp-climate.org/modelling-wgcm-mip-catalogue/cmip6-endorsed-mips-article/1063-modelling-cmip6-omip) experiments." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "965272cf", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_170801-172712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_172801-174712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_174801-176712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_176801-178712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_178801-180712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_180801-182712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_182801-184712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_184801-186712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_186801-188712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_188801-190712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_190801-192712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_192801-194712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_194801-196712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_196801-198712.nc',\n", - " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_198801-200712.nc']" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import s3fs\n", - "fs = s3fs.S3FileSystem(anon=True)\n", - "base_path = 's3://esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/'\n", - "all_paths = fs.ls(base_path)\n", - "all_paths" - ] - }, - { - "cell_type": "markdown", - "id": "ba062f69-5c31-44e9-a252-6b55e292b4e5", - "metadata": {}, - "source": [ - "We see there are 15 individual NetCDF files. Let's time how long it takes to open and display one of them using Xarray.\n", - "\n", - "```{note}\n", - "The argument `decode_coords='all'` helps Xarray promote all of the `_bnds` variables to coordinates (rather than data variables).\n", - "```" - ] - }, + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "id": "49caf2b2", + "metadata": {}, + "source": [ + "# HDF Reference Recipe for CMIP6\n", + "\n", + "This example illustrates how to create a Reference Recipe using CMIP6 data.\n", + "This recipe does not actually copy the original source data.\n", + "Instead, it generates metadata files which reference and index the original data, allowing it to be accessed more efficiently. It does this by using the Python library, [Kerchunk](https://fsspec.github.io/kerchunk/) under the hood. Pangeo-Forge is acting as a runner for Kerchunk to generate reference files. \n", + "\n", + "As the input for this recipe, we will use some CMIP6 NetCDF4 files provided by ESGF and stored in Amazon S3 ([CMIP6 AWS Open Data Page](https://registry.opendata.aws/cmip6/)).\n", + "Many CMIP6 simulations spread their outputs over many HDF5/ NetCDF4 files, in order to limit the individual file size.\n", + "This can be inconvenient for analysis.\n", + "In this recipe, we will see how to virtually concatenate many HDF5 files into one big virtual Zarr dataset." + ] + }, + { + "cell_type": "markdown", + "id": "941f9855", + "metadata": {}, + "source": [ + "## Define the FilePattern\n", + "\n", + "Let's pick a random dataset: ocean model output from the GFDL ocean model from the [OMIP](https://www.wcrp-climate.org/modelling-wgcm-mip-catalogue/cmip6-endorsed-mips-article/1063-modelling-cmip6-omip) experiments." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "965272cf", + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 2, - "id": "64ce8337-8984-43b5-bc01-33c531bb21cd", - "metadata": {}, - "outputs": [], - "source": [ - "import xarray as xr" + "data": { + "text/plain": [ + "['esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_170801-172712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_172801-174712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_174801-176712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_176801-178712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_178801-180712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_180801-182712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_182801-184712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_184801-186712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_186801-188712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_188801-190712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_190801-192712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_192801-194712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_194801-196712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_196801-198712.nc',\n", + " 'esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/thetao_Omon_GFDL-CM4_omip1_r1i1p1f1_gr_198801-200712.nc']" ] - }, + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import s3fs\n", + "fs = s3fs.S3FileSystem(anon=True)\n", + "base_path = 's3://esgf-world/CMIP6/OMIP/NOAA-GFDL/GFDL-CM4/omip1/r1i1p1f1/Omon/thetao/gr/v20180701/'\n", + "all_paths = fs.ls(base_path)\n", + "all_paths" + ] + }, + { + "cell_type": "markdown", + "id": "ba062f69-5c31-44e9-a252-6b55e292b4e5", + "metadata": {}, + "source": [ + "We see there are 15 individual NetCDF files. Let's time how long it takes to open and display one of them using Xarray.\n", + "\n", + "```{note}\n", + "The argument `decode_coords='all'` helps Xarray promote all of the `_bnds` variables to coordinates (rather than data variables).\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "64ce8337-8984-43b5-bc01-33c531bb21cd", + "metadata": {}, + "outputs": [], + "source": [ + "import xarray as xr" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "6143ffb9", + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 3, - "id": "6143ffb9", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - ":1: UserWarning: Variable(s) referenced in cell_measures not in variables: ['areacello', 'volcello']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 713 ms, sys: 324 ms, total: 1.04 s\n", - "Wall time: 4.41 s\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.Dataset>\n",
-              "Dimensions:    (lat: 180, bnds: 2, lon: 360, time: 240, lev: 35)\n",
-              "Coordinates:\n",
-              "  * lat        (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n",
-              "    lat_bnds   (lat, bnds) float64 dask.array<chunksize=(180, 2), meta=np.ndarray>\n",
-              "  * lon        (lon) float64 0.5 1.5 2.5 3.5 4.5 ... 356.5 357.5 358.5 359.5\n",
-              "    lon_bnds   (lon, bnds) float64 dask.array<chunksize=(360, 2), meta=np.ndarray>\n",
-              "  * time       (time) object 1708-01-16 12:00:00 ... 1727-12-16 12:00:00\n",
-              "    time_bnds  (time, bnds) object dask.array<chunksize=(240, 2), meta=np.ndarray>\n",
-              "    lev_bnds   (lev, bnds) float64 dask.array<chunksize=(35, 2), meta=np.ndarray>\n",
-              "  * lev        (lev) float64 2.5 10.0 20.0 32.5 ... 5e+03 5.5e+03 6e+03 6.5e+03\n",
-              "Dimensions without coordinates: bnds\n",
-              "Data variables:\n",
-              "    thetao     (time, lev, lat, lon) float32 dask.array<chunksize=(240, 35, 180, 360), meta=np.ndarray>\n",
-              "Attributes: (12/44)\n",
-              "    title:                 NOAA GFDL GFDL-CM4 model output prepared for CMIP6...\n",
-              "    history:               File was processed by fremetar (GFDL analog of CMO...\n",
-              "    external_variables:    areacello volcello\n",
-              "    table_id:              Omon\n",
-              "    activity_id:           OMIP\n",
-              "    branch_method:         none provided\n",
-              "    ...                    ...\n",
-              "    sub_experiment_id:     none\n",
-              "    tracking_id:           hdl:21.14100/97e4edf3-22e7-4e5f-831a-f2a671b7094f\n",
-              "    variable_id:           thetao\n",
-              "    variant_info:          N/A\n",
-              "    references:            see further_info_url attribute\n",
-              "    variant_label:         r1i1p1f1
" - ], - "text/plain": [ - "\n", - "Dimensions: (lat: 180, bnds: 2, lon: 360, time: 240, lev: 35)\n", - "Coordinates:\n", - " * lat (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n", - " lat_bnds (lat, bnds) float64 dask.array\n", - " * lon (lon) float64 0.5 1.5 2.5 3.5 4.5 ... 356.5 357.5 358.5 359.5\n", - " lon_bnds (lon, bnds) float64 dask.array\n", - " * time (time) object 1708-01-16 12:00:00 ... 1727-12-16 12:00:00\n", - " time_bnds (time, bnds) object dask.array\n", - " lev_bnds (lev, bnds) float64 dask.array\n", - " * lev (lev) float64 2.5 10.0 20.0 32.5 ... 5e+03 5.5e+03 6e+03 6.5e+03\n", - "Dimensions without coordinates: bnds\n", - "Data variables:\n", - " thetao (time, lev, lat, lon) float32 dask.array\n", - "Attributes: (12/44)\n", - " title: NOAA GFDL GFDL-CM4 model output prepared for CMIP6...\n", - " history: File was processed by fremetar (GFDL analog of CMO...\n", - " external_variables: areacello volcello\n", - " table_id: Omon\n", - " activity_id: OMIP\n", - " branch_method: none provided\n", - " ... ...\n", - " sub_experiment_id: none\n", - " tracking_id: hdl:21.14100/97e4edf3-22e7-4e5f-831a-f2a671b7094f\n", - " variable_id: thetao\n", - " variant_info: N/A\n", - " references: see further_info_url attribute\n", - " variant_label: r1i1p1f1" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "%%time\n", - "ds_orig = xr.open_dataset(fs.open(all_paths[0]), engine='h5netcdf', chunks={}, decode_coords='all')\n", - "ds_orig" - ] + "name": "stderr", + "output_type": "stream", + "text": [ + ":1: UserWarning: Variable(s) referenced in cell_measures not in variables: ['areacello', 'volcello']\n" + ] }, { - "attachments": {}, - "cell_type": "markdown", - "id": "2de47e7f-5196-4b98-b05d-f281cb2eb056", - "metadata": {}, - "source": [ - "It took ~5 seconds to open this one dataset. So it would take over a minute for us to open every file.\n", - "\n", - "As a first step in our recipe, we create a `File Pattern <../../recipe_user_guide/file_patterns>` to represent the input files.\n", - "In this case, since we already have a list of inputs, we just use the `pattern_from_file_sequence` convenience function." - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 713 ms, sys: 324 ms, total: 1.04 s\n", + "Wall time: 4.41 s\n" + ] }, { - "cell_type": "code", - "execution_count": 4, - "id": "8c3a47bf", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:    (lat: 180, bnds: 2, lon: 360, time: 240, lev: 35)\n",
+       "Coordinates:\n",
+       "  * lat        (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n",
+       "    lat_bnds   (lat, bnds) float64 dask.array<chunksize=(180, 2), meta=np.ndarray>\n",
+       "  * lon        (lon) float64 0.5 1.5 2.5 3.5 4.5 ... 356.5 357.5 358.5 359.5\n",
+       "    lon_bnds   (lon, bnds) float64 dask.array<chunksize=(360, 2), meta=np.ndarray>\n",
+       "  * time       (time) object 1708-01-16 12:00:00 ... 1727-12-16 12:00:00\n",
+       "    time_bnds  (time, bnds) object dask.array<chunksize=(240, 2), meta=np.ndarray>\n",
+       "    lev_bnds   (lev, bnds) float64 dask.array<chunksize=(35, 2), meta=np.ndarray>\n",
+       "  * lev        (lev) float64 2.5 10.0 20.0 32.5 ... 5e+03 5.5e+03 6e+03 6.5e+03\n",
+       "Dimensions without coordinates: bnds\n",
+       "Data variables:\n",
+       "    thetao     (time, lev, lat, lon) float32 dask.array<chunksize=(240, 35, 180, 360), meta=np.ndarray>\n",
+       "Attributes: (12/44)\n",
+       "    title:                 NOAA GFDL GFDL-CM4 model output prepared for CMIP6...\n",
+       "    history:               File was processed by fremetar (GFDL analog of CMO...\n",
+       "    external_variables:    areacello volcello\n",
+       "    table_id:              Omon\n",
+       "    activity_id:           OMIP\n",
+       "    branch_method:         none provided\n",
+       "    ...                    ...\n",
+       "    sub_experiment_id:     none\n",
+       "    tracking_id:           hdl:21.14100/97e4edf3-22e7-4e5f-831a-f2a671b7094f\n",
+       "    variable_id:           thetao\n",
+       "    variant_info:          N/A\n",
+       "    references:            see further_info_url attribute\n",
+       "    variant_label:         r1i1p1f1
" ], - "source": [ - "from pangeo_forge_recipes.patterns import pattern_from_file_sequence\n", - "pattern = pattern_from_file_sequence(['s3://' + path for path in all_paths], 'time')\n", - "pattern" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "8fa5d0a3-fdee-4072-a621-b905427cd616", - "metadata": {}, - "source": [ - "## Write the Recipe\n", - "\n", - "Once we have our `FilePattern`, describing our input file paths, we can construct out `beam` pipeline. A beam pipeline is a chained together list of (Apache Beam transformations)[https://beam.apache.org/documentation/programming-guide/#transforms].\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "3a443948", - "metadata": {}, - "source": [ - "### Specify where our target data should be written\n", - "Here, we are creating a temporary directory to store the written reference files. If we wanted these reference files to persist locally, we would want to specify another file path. \n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "41f8bdab", - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "from tempfile import TemporaryDirectory\n", - "td = TemporaryDirectory()\n", - "target_root = td.name\n", - "store_name = \"output.json\"\n", - "target_store = os.path.join(target_root, store_name)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "6b9d27c7", - "metadata": {}, - "source": [ - "## Construct a Pipeline\n", - "Next, we will construct a beam pipeline. This should look similar to the other standard Zarr examples, but will involve a few different transforms. " - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "edebe82b", - "metadata": {}, - "outputs": [], - "source": [ - "import apache_beam as beam\n", - "from pangeo_forge_recipes.transforms import OpenWithKerchunk, CombineReferences, WriteCombinedReference\n", - "\n", - "store_name = \"cmip6_reference\"\n", - "transforms = (\n", - " # Create a beam PCollection from our input file pattern\n", - " beam.Create(pattern.items())\n", - " # Open with Kerchunk and create references for each file\n", - " | OpenWithKerchunk(file_type=pattern.file_type, storage_options={'anon':True})\n", - " # Use Kerchunk's `MultiZarrToZarr` functionality to combine the reference files into a single\n", - " # reference file. *Note*: Setting the correct contact_dims and identical_dims is important.\n", - " | CombineReferences(\n", - " concat_dims=[\"time\"], \n", - " identical_dims=[\"lat\", \"lat_bnds\", \"lon\", \"lon_bnds\", \"lev_bnds\", \"lev\"],\n", - " mzz_kwargs = {\"remote_protocol\": \"s3\"},\n", - " )\n", - " # Write the combined Kerchunk reference to file.\n", - " | WriteCombinedReference(target_root=target_root, store_name=store_name)\n", - ")" + "text/plain": [ + "\n", + "Dimensions: (lat: 180, bnds: 2, lon: 360, time: 240, lev: 35)\n", + "Coordinates:\n", + " * lat (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n", + " lat_bnds (lat, bnds) float64 dask.array\n", + " * lon (lon) float64 0.5 1.5 2.5 3.5 4.5 ... 356.5 357.5 358.5 359.5\n", + " lon_bnds (lon, bnds) float64 dask.array\n", + " * time (time) object 1708-01-16 12:00:00 ... 1727-12-16 12:00:00\n", + " time_bnds (time, bnds) object dask.array\n", + " lev_bnds (lev, bnds) float64 dask.array\n", + " * lev (lev) float64 2.5 10.0 20.0 32.5 ... 5e+03 5.5e+03 6e+03 6.5e+03\n", + "Dimensions without coordinates: bnds\n", + "Data variables:\n", + " thetao (time, lev, lat, lon) float32 dask.array\n", + "Attributes: (12/44)\n", + " title: NOAA GFDL GFDL-CM4 model output prepared for CMIP6...\n", + " history: File was processed by fremetar (GFDL analog of CMO...\n", + " external_variables: areacello volcello\n", + " table_id: Omon\n", + " activity_id: OMIP\n", + " branch_method: none provided\n", + " ... ...\n", + " sub_experiment_id: none\n", + " tracking_id: hdl:21.14100/97e4edf3-22e7-4e5f-831a-f2a671b7094f\n", + " variable_id: thetao\n", + " variant_info: N/A\n", + " references: see further_info_url attribute\n", + " variant_label: r1i1p1f1" ] - }, + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "ds_orig = xr.open_dataset(fs.open(all_paths[0]), engine='h5netcdf', chunks={}, decode_coords='all')\n", + "ds_orig" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "2de47e7f-5196-4b98-b05d-f281cb2eb056", + "metadata": {}, + "source": [ + "It took ~5 seconds to open this one dataset. So it would take over a minute for us to open every file.\n", + "\n", + "As a first step in our recipe, we create a `File Pattern <../../recipe_user_guide/file_patterns>` to represent the input files.\n", + "In this case, since we already have a list of inputs, we just use the `pattern_from_file_sequence` convenience function." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "8c3a47bf", + "metadata": {}, + "outputs": [ { - "attachments": {}, - "cell_type": "markdown", - "id": "5a1e6228", - "metadata": {}, - "source": [ - "## Execute the Recipe" + "data": { + "text/plain": [ + "" ] - }, + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pangeo_forge_recipes.patterns import pattern_from_file_sequence\n", + "pattern = pattern_from_file_sequence(['s3://' + path for path in all_paths], 'time')\n", + "pattern" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "8fa5d0a3-fdee-4072-a621-b905427cd616", + "metadata": {}, + "source": [ + "## Write the Recipe\n", + "\n", + "Once we have our `FilePattern`, describing our input file paths, we can construct out `beam` pipeline. A beam pipeline is a chained together list of (Apache Beam transformations)[https://beam.apache.org/documentation/programming-guide/#transforms].\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "3a443948", + "metadata": {}, + "source": [ + "### Specify where our target data should be written\n", + "Here, we are creating a temporary directory to store the written reference files. If we wanted these reference files to persist locally, we would want to specify another file path. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "41f8bdab", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "from tempfile import TemporaryDirectory\n", + "td = TemporaryDirectory()\n", + "target_root = td.name\n", + "store_name = \"output.json\"\n", + "target_store = os.path.join(target_root, store_name)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "6b9d27c7", + "metadata": {}, + "source": [ + "## Construct a Pipeline\n", + "Next, we will construct a beam pipeline. This should look similar to the other standard Zarr examples, but will involve a few different transforms. " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "edebe82b", + "metadata": {}, + "outputs": [], + "source": [ + "import apache_beam as beam\n", + "from pangeo_forge_recipes.transforms import OpenWithKerchunk, CombineReferences, WriteCombinedReference\n", + "\n", + "store_name = \"cmip6_reference\"\n", + "transforms = (\n", + " # Create a beam PCollection from our input file pattern\n", + " beam.Create(pattern.items())\n", + " # Open with Kerchunk and create references for each file\n", + " | OpenWithKerchunk(file_type=pattern.file_type, storage_options={'anon':True})\n", + " # Use Kerchunk's `MultiZarrToZarr` functionality to combine the reference files into a single\n", + " # reference file. *Note*: Setting the correct contact_dims and identical_dims is important.\n", + " | CombineReferences(\n", + " concat_dims=[\"time\"], \n", + " identical_dims=[\"lat\", \"lat_bnds\", \"lon\", \"lon_bnds\", \"lev_bnds\", \"lev\"],\n", + " mzz_kwargs = {\"remote_protocol\": \"s3\"},\n", + " )\n", + " # Write the combined Kerchunk reference to file.\n", + " | WriteCombinedReference(target_root=target_root, store_name=store_name)\n", + ")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "5a1e6228", + "metadata": {}, + "source": [ + "## Execute the Recipe" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "b0a08c82", + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 7, - "id": "b0a08c82", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" - ] - }, - { - "data": { - "application/javascript": "\n if (typeof window.interactive_beam_jquery == 'undefined') {\n var jqueryScript = document.createElement('script');\n jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n jqueryScript.type = 'text/javascript';\n jqueryScript.onload = function() {\n var datatableScript = document.createElement('script');\n datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n datatableScript.type = 'text/javascript';\n datatableScript.onload = function() {\n window.interactive_beam_jquery = jQuery.noConflict(true);\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }\n document.head.appendChild(datatableScript);\n };\n document.head.appendChild(jqueryScript);\n } else {\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "with beam.Pipeline() as p:\n", - " p | transforms" - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" + ] }, { - "attachments": {}, - "cell_type": "markdown", - "id": "300f5b49-4b3c-4dc5-8519-63485456af94", - "metadata": {}, - "source": [ - "## Examine the Result\n", - "\n", - "Here we are creating an fsspec mapper of the reference file and then passing it to Xarray's `open_dataset` to be read as if it were a Zarr store." - ] - }, + "data": { + "application/javascript": "\n if (typeof window.interactive_beam_jquery == 'undefined') {\n var jqueryScript = document.createElement('script');\n jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n jqueryScript.type = 'text/javascript';\n jqueryScript.onload = function() {\n var datatableScript = document.createElement('script');\n datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n datatableScript.type = 'text/javascript';\n datatableScript.onload = function() {\n window.interactive_beam_jquery = jQuery.noConflict(true);\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }\n document.head.appendChild(datatableScript);\n };\n document.head.appendChild(jqueryScript);\n } else {\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "with beam.Pipeline() as p:\n", + " p | transforms" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "300f5b49-4b3c-4dc5-8519-63485456af94", + "metadata": {}, + "source": [ + "## Examine the Result\n", + "\n", + "Here we are creating an fsspec mapper of the reference file and then passing it to Xarray's `open_dataset` to be read as if it were a Zarr store." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "01d262ac", + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 8, - "id": "01d262ac", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/var/folders/tt/4f941hdn0zq549zdwhcgg98c0000gn/T/ipykernel_51158/4021537054.py:5: UserWarning: Variable(s) referenced in cell_measures not in variables: ['areacello', 'volcello']\n", - " ds = xr.open_dataset(mapper, engine=\"zarr\", decode_coords='all', backend_kwargs={\"consolidated\": False})\n" - ] - } - ], - "source": [ - "import fsspec\n", - "import xarray as xr\n", - "full_path = os.path.join(target_root, store_name, \"reference.json\")\n", - "mapper = fsspec.get_mapper(\"reference://\", fo=full_path, remote_protocol=\"s3\",)\n", - "ds = xr.open_dataset(mapper, engine=\"zarr\", decode_coords='all', backend_kwargs={\"consolidated\": False})\n" - ] - }, + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/tt/4f941hdn0zq549zdwhcgg98c0000gn/T/ipykernel_51158/4021537054.py:5: UserWarning: Variable(s) referenced in cell_measures not in variables: ['areacello', 'volcello']\n", + " ds = xr.open_dataset(mapper, engine=\"zarr\", decode_coords='all', backend_kwargs={\"consolidated\": False})\n" + ] + } + ], + "source": [ + "import fsspec\n", + "import xarray as xr\n", + "full_path = os.path.join(target_root, store_name, \"reference.json\")\n", + "mapper = fsspec.get_mapper(\"reference://\", fo=full_path, remote_protocol=\"s3\",)\n", + "ds = xr.open_dataset(mapper, engine=\"zarr\", decode_coords='all', backend_kwargs={\"consolidated\": False})\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "f57db791", + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 9, - "id": "f57db791", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.Dataset>\n",
-              "Dimensions:    (lat: 180, bnds: 2, lev: 35, lon: 360, time: 3600)\n",
-              "Coordinates:\n",
-              "  * lat        (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n",
-              "    lat_bnds   (lat, bnds) float64 ...\n",
-              "  * lev        (lev) float64 2.5 10.0 20.0 32.5 ... 5e+03 5.5e+03 6e+03 6.5e+03\n",
-              "    lev_bnds   (lev, bnds) float64 ...\n",
-              "  * lon        (lon) float64 0.5 1.5 2.5 3.5 4.5 ... 356.5 357.5 358.5 359.5\n",
-              "    lon_bnds   (lon, bnds) float64 ...\n",
-              "  * time       (time) object 1708-01-16 12:00:00 ... 2007-12-16 12:00:00\n",
-              "    time_bnds  (time, bnds) object ...\n",
-              "Dimensions without coordinates: bnds\n",
-              "Data variables:\n",
-              "    thetao     (time, lev, lat, lon) float32 ...\n",
-              "Attributes: (12/44)\n",
-              "    Conventions:           CF-1.7 CMIP-6.0 UGRID-1.0\n",
-              "    activity_id:           OMIP\n",
-              "    branch_method:         none provided\n",
-              "    branch_time_in_child:  0.0\n",
-              "    comment:               Experiment name = OM4p25_IAF_BLING_csf_rerun\\nFor ...\n",
-              "    contact:               gfdl.climate.model.info@noaa.gov\n",
-              "    ...                    ...\n",
-              "    table_id:              Omon\n",
-              "    title:                 NOAA GFDL GFDL-CM4 model output prepared for CMIP6...\n",
-              "    tracking_id:           hdl:21.14100/97e4edf3-22e7-4e5f-831a-f2a671b7094f\n",
-              "    variable_id:           thetao\n",
-              "    variant_info:          N/A\n",
-              "    variant_label:         r1i1p1f1
" - ], - "text/plain": [ - "\n", - "Dimensions: (lat: 180, bnds: 2, lev: 35, lon: 360, time: 3600)\n", - "Coordinates:\n", - " * lat (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n", - " lat_bnds (lat, bnds) float64 ...\n", - " * lev (lev) float64 2.5 10.0 20.0 32.5 ... 5e+03 5.5e+03 6e+03 6.5e+03\n", - " lev_bnds (lev, bnds) float64 ...\n", - " * lon (lon) float64 0.5 1.5 2.5 3.5 4.5 ... 356.5 357.5 358.5 359.5\n", - " lon_bnds (lon, bnds) float64 ...\n", - " * time (time) object 1708-01-16 12:00:00 ... 2007-12-16 12:00:00\n", - " time_bnds (time, bnds) object ...\n", - "Dimensions without coordinates: bnds\n", - "Data variables:\n", - " thetao (time, lev, lat, lon) float32 ...\n", - "Attributes: (12/44)\n", - " Conventions: CF-1.7 CMIP-6.0 UGRID-1.0\n", - " activity_id: OMIP\n", - " branch_method: none provided\n", - " branch_time_in_child: 0.0\n", - " comment: Experiment name = OM4p25_IAF_BLING_csf_rerun\\nFor ...\n", - " contact: gfdl.climate.model.info@noaa.gov\n", - " ... ...\n", - " table_id: Omon\n", - " title: NOAA GFDL GFDL-CM4 model output prepared for CMIP6...\n", - " tracking_id: hdl:21.14100/97e4edf3-22e7-4e5f-831a-f2a671b7094f\n", - " variable_id: thetao\n", - " variant_info: N/A\n", - " variant_label: r1i1p1f1" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:    (lat: 180, bnds: 2, lev: 35, lon: 360, time: 3600)\n",
+       "Coordinates:\n",
+       "  * lat        (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n",
+       "    lat_bnds   (lat, bnds) float64 ...\n",
+       "  * lev        (lev) float64 2.5 10.0 20.0 32.5 ... 5e+03 5.5e+03 6e+03 6.5e+03\n",
+       "    lev_bnds   (lev, bnds) float64 ...\n",
+       "  * lon        (lon) float64 0.5 1.5 2.5 3.5 4.5 ... 356.5 357.5 358.5 359.5\n",
+       "    lon_bnds   (lon, bnds) float64 ...\n",
+       "  * time       (time) object 1708-01-16 12:00:00 ... 2007-12-16 12:00:00\n",
+       "    time_bnds  (time, bnds) object ...\n",
+       "Dimensions without coordinates: bnds\n",
+       "Data variables:\n",
+       "    thetao     (time, lev, lat, lon) float32 ...\n",
+       "Attributes: (12/44)\n",
+       "    Conventions:           CF-1.7 CMIP-6.0 UGRID-1.0\n",
+       "    activity_id:           OMIP\n",
+       "    branch_method:         none provided\n",
+       "    branch_time_in_child:  0.0\n",
+       "    comment:               Experiment name = OM4p25_IAF_BLING_csf_rerun\\nFor ...\n",
+       "    contact:               gfdl.climate.model.info@noaa.gov\n",
+       "    ...                    ...\n",
+       "    table_id:              Omon\n",
+       "    title:                 NOAA GFDL GFDL-CM4 model output prepared for CMIP6...\n",
+       "    tracking_id:           hdl:21.14100/97e4edf3-22e7-4e5f-831a-f2a671b7094f\n",
+       "    variable_id:           thetao\n",
+       "    variant_info:          N/A\n",
+       "    variant_label:         r1i1p1f1
" ], - "source": [ - "ds" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "206619cc", - "metadata": {}, - "source": [ - "## Make a Map" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "4f95c115-3cff-4454-83fd-8d9b89a77560", - "metadata": {}, - "outputs": [], - "source": [ - "ds_ann = ds.resample(time='A').mean()\n", - "sst_diff = ds_ann.thetao.isel(time=-1, lev=0) - ds_ann.thetao.isel(time=0, lev=0)\n", - "sst_diff.plot()" + "text/plain": [ + "\n", + "Dimensions: (lat: 180, bnds: 2, lev: 35, lon: 360, time: 3600)\n", + "Coordinates:\n", + " * lat (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n", + " lat_bnds (lat, bnds) float64 ...\n", + " * lev (lev) float64 2.5 10.0 20.0 32.5 ... 5e+03 5.5e+03 6e+03 6.5e+03\n", + " lev_bnds (lev, bnds) float64 ...\n", + " * lon (lon) float64 0.5 1.5 2.5 3.5 4.5 ... 356.5 357.5 358.5 359.5\n", + " lon_bnds (lon, bnds) float64 ...\n", + " * time (time) object 1708-01-16 12:00:00 ... 2007-12-16 12:00:00\n", + " time_bnds (time, bnds) object ...\n", + "Dimensions without coordinates: bnds\n", + "Data variables:\n", + " thetao (time, lev, lat, lon) float32 ...\n", + "Attributes: (12/44)\n", + " Conventions: CF-1.7 CMIP-6.0 UGRID-1.0\n", + " activity_id: OMIP\n", + " branch_method: none provided\n", + " branch_time_in_child: 0.0\n", + " comment: Experiment name = OM4p25_IAF_BLING_csf_rerun\\nFor ...\n", + " contact: gfdl.climate.model.info@noaa.gov\n", + " ... ...\n", + " table_id: Omon\n", + " title: NOAA GFDL GFDL-CM4 model output prepared for CMIP6...\n", + " tracking_id: hdl:21.14100/97e4edf3-22e7-4e5f-831a-f2a671b7094f\n", + " variable_id: thetao\n", + " variant_info: N/A\n", + " variant_label: r1i1p1f1" ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" } - ], - "metadata": { - "execution": { - "allow_errors": false, - "timeout": 3000 - }, - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.15" - } + ], + "source": [ + "ds" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "206619cc", + "metadata": {}, + "source": [ + "## Make a Map" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "4f95c115-3cff-4454-83fd-8d9b89a77560", + "metadata": {}, + "outputs": [], + "source": [ + "ds_ann = ds.resample(time='A').mean()\n", + "sst_diff = ds_ann.thetao.isel(time=-1, lev=0) - ds_ann.thetao.isel(time=0, lev=0)\n", + "sst_diff.plot()" + ] + } + ], + "metadata": { + "execution": { + "allow_errors": false, + "timeout": 3000 + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 5 + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.15" + } + }, + "nbformat": 4, + "nbformat_minor": 5 } diff --git a/docs/pangeo_forge_recipes/tutorials/xarray_zarr/cmip6-recipe.ipynb b/docs/pangeo_forge_recipes/tutorials/xarray_zarr/cmip6-recipe.ipynb index d145d8a9..f78cbe4d 100755 --- a/docs/pangeo_forge_recipes/tutorials/xarray_zarr/cmip6-recipe.ipynb +++ b/docs/pangeo_forge_recipes/tutorials/xarray_zarr/cmip6-recipe.ipynb @@ -1,1846 +1,1846 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# NetCDF Zarr Sequential Recipe: CMIP6\n", - "\n", - "This tutorial describes how to create a suitable recipe for many of the CMIP6 datasets.\n", - "The source data is a sequence of NetCDF files accessed from the 's3://esgf-world' bucket.\n", - "The target is a Zarr store." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Background\n", - "\n", - "- The s3://esgf-world bucket has about 250,000 datasets stored in about 950,000 netcdf files (for an average of about four netcdf files per dataset). This is a small subset of the WCRP-CMIP6 collection available at the Federated ESGF-COG nodes such as https://esgf-node.llnl.gov/search/cmip6, but it is faster and easier to work with. \n", - "\n", - "- Each CMIP6 dataset can be identified by a 6-tuple consisting of:\n", - "\n", - " (model,experiment,ensemble_member,mip_table,variable,grid_label)\n", - " \n", - "and so a convenient name for a particular dataset is a string of these values joined with a '.' separator:\n", - "\n", - " dataset = model.experiment.ensemble_member.mip_table.variable.grid_label\n", - " \n", - "\n", - "- There can be multiple versions of a dataset, designated by a string beginning with 'v' and then an 8 digit date, loosely associated with its creation time" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import xarray as xr\n", - "import s3fs" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 1: Get to know your source data\n", - "The CMIP6 collection is very heterogeneous, so getting to know the source data is rather complicated. We first need to identify a dataset and learn how to list the set of netcdf files which are associated with it. Fortunately, you can explore the data here: https://esgf-world.s3.amazonaws.com/index.html#CMIP6/ or download a CSV file listing all of the netcdf files, one per line.\n", - "\n", - "Here we will read the CSV file into a pandas dataframe so we can search, sort and subset the available datasets and their netcdf files." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "RangeIndex: 1056266 entries, 0 to 1056265\n", - "Data columns (total 13 columns):\n", - " # Column Non-Null Count Dtype \n", - "--- ------ -------------- ----- \n", - " 0 project 1056266 non-null object\n", - " 1 institution_id 1056266 non-null object\n", - " 2 source_id 1056266 non-null object\n", - " 3 experiment_id 1056266 non-null object\n", - " 4 frequency 559718 non-null object\n", - " 5 modeling_realm 559718 non-null object\n", - " 6 table_id 1056266 non-null object\n", - " 7 member_id 1056266 non-null object\n", - " 8 grid_label 1056266 non-null object\n", - " 9 variable_id 1056266 non-null object\n", - " 10 temporal_subset 1027893 non-null object\n", - " 11 version 1056266 non-null object\n", - " 12 path 1056266 non-null object\n", - "dtypes: object(13)\n", - "memory usage: 104.8+ MB\n" - ] - } - ], - "source": [ - "netcdf_cat = 's3://cmip6-nc/esgf-world.csv.gz'\n", - "df_s3 = pd.read_csv(netcdf_cat, dtype='unicode')\n", - "df_s3.info()" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
projectinstitution_idsource_idexperiment_idfrequencymodeling_realmtable_idmember_idgrid_labelvariable_idtemporal_subsetversionpath
0CMIP6AS-RCECTaiESM1histSST-piNTCFNaNNaNAERmonr1i1p1f1gnps185001-201412v20200318s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES...
1CMIP6AS-RCECTaiESM1histSST-piNTCFNaNNaNCFmonr1i1p1f1gnta185001-201412v20200318s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES...
2CMIP6AS-RCECTaiESM1histSST-piNTCFNaNNaNLImonr1i1p1f1gnsnc185002-201412v20200318s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES...
3CMIP6AS-RCECTaiESM1histSST-piNTCFNaNNaNLImonr1i1p1f1gnsnd185002-201412v20200318s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES...
4CMIP6AS-RCECTaiESM1histSST-piNTCFNaNNaNLImonr1i1p1f1gnsnw185002-201412v20200318s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES...
\n", - "
" - ], - "text/plain": [ - " project institution_id source_id experiment_id frequency modeling_realm \\\n", - "0 CMIP6 AS-RCEC TaiESM1 histSST-piNTCF NaN NaN \n", - "1 CMIP6 AS-RCEC TaiESM1 histSST-piNTCF NaN NaN \n", - "2 CMIP6 AS-RCEC TaiESM1 histSST-piNTCF NaN NaN \n", - "3 CMIP6 AS-RCEC TaiESM1 histSST-piNTCF NaN NaN \n", - "4 CMIP6 AS-RCEC TaiESM1 histSST-piNTCF NaN NaN \n", - "\n", - " table_id member_id grid_label variable_id temporal_subset version \\\n", - "0 AERmon r1i1p1f1 gn ps 185001-201412 v20200318 \n", - "1 CFmon r1i1p1f1 gn ta 185001-201412 v20200318 \n", - "2 LImon r1i1p1f1 gn snc 185002-201412 v20200318 \n", - "3 LImon r1i1p1f1 gn snd 185002-201412 v20200318 \n", - "4 LImon r1i1p1f1 gn snw 185002-201412 v20200318 \n", - "\n", - " path \n", - "0 s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES... \n", - "1 s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES... \n", - "2 s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES... \n", - "3 s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES... \n", - "4 s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES... " - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# So there are 956,306 entries, one for each netcdf file. We can see the first five here:\n", - "# The 'path' column is the most important - you may need to scroll the window to see it!\n", - "\n", - "df_s3.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "239268" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# We will add a new column which is our short name for the datasets (may take a moment for all 956306 rows)\n", - "df_s3['dataset'] = df_s3.apply(lambda row: '.'.join(row.path.split('/')[6:12]),axis=1)\n", - "# the number of unique dataset names can be found using the 'nunique' method\n", - "df_s3.dataset.nunique()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiESM1/histSST-piNTCF/r1i1p1f1/AERmon/ps/gn/v20200318/ps_AERmon_TaiESM1_histSST-piNTCF_r1i1p1f1_gn_185001-201412.nc'" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# The value in the `path` column of the first row is:\n", - "df_s3.path.values[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'TaiESM1.histSST-piNTCF.r1i1p1f1.AERmon.ps.gn'" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# which has the short name:\n", - "df_s3.dataset.values[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "EC-Earth3-LR.piControl.r1i1p1f1.Omon.mlotst.gn ['v20200409' 'v20200919']\n", - "FIO-ESM-2-0.piControl.r1i1p1f1.Amon.rsds.gn ['v20190911' 'v20191010']\n", - "IPSL-CM6A-LR.piControl.r1i1p1f1.Amon.o3.gr ['v20181022' 'v20181123']\n", - "CESM2.1pctCO2.r1i1p1f1.day.zg.gn ['v20190425' 'v20190826']\n", - "NorCPM1.historical.r1i1p1f1.Omon.thetao.gr ['v20190914' 'v20200724']\n", - "NorESM2-LM.piControl.r1i1p1f1.Ofx.areacello.gn ['v20190815' 'v20190920']\n", - "NorESM2-LM.hist-GHG.r1i1p1f1.Emon.va.gn ['v20190909' 'v20191108']\n", - "CESM2.deforest-globe.r1i1p1f1.Amon.rsuscs.gn ['v20190401' 'v20191122']\n" - ] - } - ], - "source": [ - "# some datasets have multiple versions: (will just check one in each 500 of them ...)\n", - "for dataset in df_s3.dataset.unique()[::500]:\n", - " df_dataset = df_s3[df_s3.dataset==dataset]\n", - " if df_dataset.version.nunique() > 1:\n", - " print(dataset,df_dataset.version.unique())" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# So pick a dataset, any dataset, and try it! N.B. some datasets are VERY large - especially the day, 6hourly, etc.\n", - "#dataset = df_s3.dataset[10450]\n", - "# or:\n", - "dataset = 'GFDL-CM4.historical.r1i1p1f1.Amon.tas.gr1'" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
projectinstitution_idsource_idexperiment_idfrequencymodeling_realmtable_idmember_idgrid_labelvariable_idtemporal_subsetversionpathdataset
603842CMIP6NOAA-GFDLGFDL-CM4historicalmonatmosAmonr1i1p1f1gr1tas185001-194912v20180701s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/...GFDL-CM4.historical.r1i1p1f1.Amon.tas.gr1
603843CMIP6NOAA-GFDLGFDL-CM4historicalmonatmosAmonr1i1p1f1gr1tas195001-201412v20180701s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/...GFDL-CM4.historical.r1i1p1f1.Amon.tas.gr1
\n", - "
" - ], - "text/plain": [ - " project institution_id source_id experiment_id frequency \\\n", - "603842 CMIP6 NOAA-GFDL GFDL-CM4 historical mon \n", - "603843 CMIP6 NOAA-GFDL GFDL-CM4 historical mon \n", - "\n", - " modeling_realm table_id member_id grid_label variable_id \\\n", - "603842 atmos Amon r1i1p1f1 gr1 tas \n", - "603843 atmos Amon r1i1p1f1 gr1 tas \n", - "\n", - " temporal_subset version \\\n", - "603842 185001-194912 v20180701 \n", - "603843 195001-201412 v20180701 \n", - "\n", - " path \\\n", - "603842 s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/... \n", - "603843 s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/... \n", - "\n", - " dataset \n", - "603842 GFDL-CM4.historical.r1i1p1f1.Amon.tas.gr1 \n", - "603843 GFDL-CM4.historical.r1i1p1f1.Amon.tas.gr1 " - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_dataset = df_s3[df_s3.dataset==dataset]\n", - "df_dataset" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**So is this what we expect?**\n", - "- this dataset is split over 3 netcdf files - see any trouble here?\n", - "- lets do a quick sanity check (make sure one and only one variable is specified) and get only the latest version of the files" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The variable is: tas\n" - ] - }, - { - "data": { - "text/plain": [ - "['s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_185001-194912.nc',\n", - " 's3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_195001-201412.nc']" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dvars = df_dataset.variable_id.unique()\n", - "assert len(dvars) > 0, 'no netcdf files found for this dataset'\n", - "assert len(dvars) == 1, f\"trouble with this dataset, too many datasets found: {dvars}\"\n", - " \n", - "var = dvars[0]\n", - "print('The variable is:',var)\n", - "\n", - "# make sure we are looking at the last available version:\n", - "last_version = sorted(df_dataset.version.unique())[-1]\n", - "dze = df_dataset[df_dataset.version == last_version].reset_index(drop=True)\n", - "\n", - "input_urls = sorted(dze.path.unique())\n", - "input_urls" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**There are only two files - one netcdf file was from an older version!**\n", - "- We want to look at the first netcdf file to make sure we know what to expect\n", - "- To use `xarray.open_dataset`, we need to turn the input_url (starting with 's3://') into an appropriate file_like object." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Dimensions: (bnds: 2, lat: 180, lon: 288, time: 1200)\n", - "Coordinates:\n", - " * bnds (bnds) float64 1.0 2.0\n", - " height float64 ...\n", - " * lat (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n", - " * lon (lon) float64 0.625 1.875 3.125 4.375 ... 355.6 356.9 358.1 359.4\n", - " * time (time) object 1850-01-16 12:00:00 ... 1949-12-16 12:00:00\n", - "Data variables:\n", - " lat_bnds (lat, bnds) float64 ...\n", - " lon_bnds (lon, bnds) float64 ...\n", - " tas (time, lat, lon) float32 ...\n", - " time_bnds (time, bnds) object ...\n", - "Attributes: (12/46)\n", - " external_variables: areacella\n", - " history: File was processed by fremetar (GFDL analog of CM...\n", - " table_id: Amon\n", - " activity_id: CMIP\n", - " branch_method: standard\n", - " branch_time_in_child: 0.0\n", - " ... ...\n", - " variable_id: tas\n", - " variant_info: N/A\n", - " references: see further_info_url attribute\n", - " variant_label: r1i1p1f1\n", - " branch_time_in_parent: 36500.0\n", - " parent_time_units: days since 0001-1-1\n" - ] - } - ], - "source": [ - "# Connect to AWS S3 storage\n", - "fs_s3 = s3fs.S3FileSystem(anon=True)\n", - "\n", - "file_url = fs_s3.open(input_urls[0], mode='rb')\n", - "ds = xr.open_dataset(file_url)\n", - "print(ds)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 2: Deciding how to chunk the dataset\n", - "- For parallel I/O and subsetting the dataset in time, we will chunk the data in the time dimension\n", - "- In order to figure out the number of time slices in each chunk, we do a small calculation on the first netcdf file\n", - "- Here we set the desired chunk size to 50 Mb, but something between 50-100 Mb is usually alright" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'bnds': 2, 'lat': 180, 'lon': 288, 'time': 241}" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#ntime = len(ds.time) # the number of time slices\n", - "#chunksize_optimal = 50e6 # desired chunk size in bytes\n", - "#ncfile_size = ds.nbytes # the netcdf file size\n", - "#chunksize = max(int(ntime* chunksize_optimal/ ncfile_size),1)\n", - "\n", - "#target_chunks = ds.dims.mapping\n", - "#target_chunks['time'] = chunksize\n", - "\n", - "# Remove the comments above to recalculate\n", - "target_chunks = {'bnds': 2, 'lat': 180, 'lon': 288, 'time': 241}\n", - "target_chunks # a dictionary giving the chunk sizes in each dimension" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 3: Define the File Pattern\n", - "- A `FilePattern` is the starting place for all recipes. These Python objects are the \"raw ingredients\" upon which the recipe will act. They describe how the individual source files are organized logically as part of a larger dataset. To create a file pattern, the first step is to define a function which takes any variable components of the source file path as inputs, and returns full file path strings.\n", - "- Revisting our input urls, we see that the only variable components of these paths are the 13-character numerical strings which immediatly precede the .nc file extension:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_185001-194912.nc\n", - " \n", - "s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_195001-201412.nc\n", - " \n" - ] - } - ], - "source": [ - "for url in input_urls:\n", - " print(f'''{url}\n", - " ''')" - ] - }, + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# NetCDF Zarr Sequential Recipe: CMIP6\n", + "\n", + "This tutorial describes how to create a suitable recipe for many of the CMIP6 datasets.\n", + "The source data is a sequence of NetCDF files accessed from the 's3://esgf-world' bucket.\n", + "The target is a Zarr store." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Background\n", + "\n", + "- The s3://esgf-world bucket has about 250,000 datasets stored in about 950,000 netcdf files (for an average of about four netcdf files per dataset). This is a small subset of the WCRP-CMIP6 collection available at the Federated ESGF-COG nodes such as https://esgf-node.llnl.gov/search/cmip6, but it is faster and easier to work with. \n", + "\n", + "- Each CMIP6 dataset can be identified by a 6-tuple consisting of:\n", + "\n", + " (model,experiment,ensemble_member,mip_table,variable,grid_label)\n", + " \n", + "and so a convenient name for a particular dataset is a string of these values joined with a '.' separator:\n", + "\n", + " dataset = model.experiment.ensemble_member.mip_table.variable.grid_label\n", + " \n", + "\n", + "- There can be multiple versions of a dataset, designated by a string beginning with 'v' and then an 8 digit date, loosely associated with its creation time" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import xarray as xr\n", + "import s3fs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 1: Get to know your source data\n", + "The CMIP6 collection is very heterogeneous, so getting to know the source data is rather complicated. We first need to identify a dataset and learn how to list the set of netcdf files which are associated with it. Fortunately, you can explore the data here: https://esgf-world.s3.amazonaws.com/index.html#CMIP6/ or download a CSV file listing all of the netcdf files, one per line.\n", + "\n", + "Here we will read the CSV file into a pandas dataframe so we can search, sort and subset the available datasets and their netcdf files." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**What do these strings refer to?**\n", - "- If it was not immediately apparent, comparison to our dataset coordinates makes it clear that these numerical strings are time ranges; the string `'185001-194912'` from the first url, e.g., represents a time range from Jan 1850 through Dec 1949:" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 1056266 entries, 0 to 1056265\n", + "Data columns (total 13 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 project 1056266 non-null object\n", + " 1 institution_id 1056266 non-null object\n", + " 2 source_id 1056266 non-null object\n", + " 3 experiment_id 1056266 non-null object\n", + " 4 frequency 559718 non-null object\n", + " 5 modeling_realm 559718 non-null object\n", + " 6 table_id 1056266 non-null object\n", + " 7 member_id 1056266 non-null object\n", + " 8 grid_label 1056266 non-null object\n", + " 9 variable_id 1056266 non-null object\n", + " 10 temporal_subset 1027893 non-null object\n", + " 11 version 1056266 non-null object\n", + " 12 path 1056266 non-null object\n", + "dtypes: object(13)\n", + "memory usage: 104.8+ MB\n" + ] + } + ], + "source": [ + "netcdf_cat = 's3://cmip6-nc/esgf-world.csv.gz'\n", + "df_s3 = pd.read_csv(netcdf_cat, dtype='unicode')\n", + "df_s3.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Coordinates:\n", - " * bnds (bnds) float64 1.0 2.0\n", - " height float64 ...\n", - " * lat (lat) float64 -89.5 -88.5 -87.5 -86.5 -85.5 ... 86.5 87.5 88.5 89.5\n", - " * lon (lon) float64 0.625 1.875 3.125 4.375 ... 355.6 356.9 358.1 359.4\n", - " * time (time) object 1850-01-16 12:00:00 ... 1949-12-16 12:00:00\n" - ] - } + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
projectinstitution_idsource_idexperiment_idfrequencymodeling_realmtable_idmember_idgrid_labelvariable_idtemporal_subsetversionpath
0CMIP6AS-RCECTaiESM1histSST-piNTCFNaNNaNAERmonr1i1p1f1gnps185001-201412v20200318s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES...
1CMIP6AS-RCECTaiESM1histSST-piNTCFNaNNaNCFmonr1i1p1f1gnta185001-201412v20200318s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES...
2CMIP6AS-RCECTaiESM1histSST-piNTCFNaNNaNLImonr1i1p1f1gnsnc185002-201412v20200318s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES...
3CMIP6AS-RCECTaiESM1histSST-piNTCFNaNNaNLImonr1i1p1f1gnsnd185002-201412v20200318s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES...
4CMIP6AS-RCECTaiESM1histSST-piNTCFNaNNaNLImonr1i1p1f1gnsnw185002-201412v20200318s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES...
\n", + "
" ], - "source": [ - "print(ds.coords)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Let's define a function that takes these strings as input**\n", - "- ... and returns full file paths!" + "text/plain": [ + " project institution_id source_id experiment_id frequency modeling_realm \\\n", + "0 CMIP6 AS-RCEC TaiESM1 histSST-piNTCF NaN NaN \n", + "1 CMIP6 AS-RCEC TaiESM1 histSST-piNTCF NaN NaN \n", + "2 CMIP6 AS-RCEC TaiESM1 histSST-piNTCF NaN NaN \n", + "3 CMIP6 AS-RCEC TaiESM1 histSST-piNTCF NaN NaN \n", + "4 CMIP6 AS-RCEC TaiESM1 histSST-piNTCF NaN NaN \n", + "\n", + " table_id member_id grid_label variable_id temporal_subset version \\\n", + "0 AERmon r1i1p1f1 gn ps 185001-201412 v20200318 \n", + "1 CFmon r1i1p1f1 gn ta 185001-201412 v20200318 \n", + "2 LImon r1i1p1f1 gn snc 185002-201412 v20200318 \n", + "3 LImon r1i1p1f1 gn snd 185002-201412 v20200318 \n", + "4 LImon r1i1p1f1 gn snw 185002-201412 v20200318 \n", + "\n", + " path \n", + "0 s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES... \n", + "1 s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES... \n", + "2 s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES... \n", + "3 s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES... \n", + "4 s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiES... " ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "def make_full_path(time):\n", - " '''\n", - " Parameters\n", - " ----------\n", - " time : str\n", - " \n", - " A 13-character string, comprised of two 6-character dates delimited by a dash. \n", - " The first four characters of each date are the year, and the final two are the month.\n", - " \n", - " e.g. The time range from Jan 1850 through Dec 1949 is expressed as '185001-194912'.\n", - " \n", - " '''\n", - " base_url = 's3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/'\n", - " return base_url + f'tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_{time}.nc'" - ] - }, + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# So there are 956,306 entries, one for each netcdf file. We can see the first five here:\n", + "# The 'path' column is the most important - you may need to scroll the window to see it!\n", + "\n", + "df_s3.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_185001-194912.nc\n" - ] - }, - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# And let's be sure to test our function before moving on.\n", - "\n", - "test_url = make_full_path('185001-194912')\n", - "print(test_url)\n", - "\n", - "# If our function works, inputting '185001-194912' should have returned a url identical to\n", - "# the first of the two urls in the list named `input_urls` defined in cell 10, above:\n", - "\n", - "test_url == input_urls[0]" + "data": { + "text/plain": [ + "239268" ] - }, + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# We will add a new column which is our short name for the datasets (may take a moment for all 956306 rows)\n", + "df_s3['dataset'] = df_s3.apply(lambda row: '.'.join(row.path.split('/')[6:12]),axis=1)\n", + "# the number of unique dataset names can be found using the 'nunique' method\n", + "df_s3.dataset.nunique()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Combining dimensions**\n", - "- Before we initialize our file pattern, we need to define how we want files to be combined in our eventual zarr store\n", - "- We have two options:\n", - "\n", - " 1. Concatenating dimensions with a `ConcatDim` instance\n", - " 2. Merging dimensions with a `MergeDim` instance\n", - " \n", - " \n", - "- Our current dataset requires only concatenation, which we can achieve by instantiating `ConcatDim` with our variable name (`\"time\"`) as a positional argument, followed by a `keys` kwarg, which is a list containing all of the ways which this variable appears in our set of source file paths.\n", - "\n", - "> **Note:** This example reads from only two source files, so we can simply copy-and-paste their respective time variables into a list. If the number of source files was much larger, we might consider finding a way to create this `keys` list programatically." + "data": { + "text/plain": [ + "'s3://esgf-world/CMIP6/AerChemMIP/AS-RCEC/TaiESM1/histSST-piNTCF/r1i1p1f1/AERmon/ps/gn/v20200318/ps_AERmon_TaiESM1_histSST-piNTCF_r1i1p1f1_gn_185001-201412.nc'" ] - }, + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# The value in the `path` column of the first row is:\n", + "df_s3.path.values[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "from pangeo_forge_recipes.patterns import ConcatDim\n", - "time_concat_dim = ConcatDim(\"time\", keys=['185001-194912', '195001-201412'])" + "data": { + "text/plain": [ + "'TaiESM1.histSST-piNTCF.r1i1p1f1.AERmon.ps.gn'" ] - }, + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# which has the short name:\n", + "df_s3.dataset.values[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Instantiating the file pattern**\n", - "- Now that we have a both file path function and our \"combine dimensions\" object, we can move on to instantiating to file pattern, passing these two objects as arguments.\n", - "- Note that we will use `fsspec.open` under the hood for most file opening, so if there are any special keyword arguments we want to pass to this function, now is the time to do it.\n", - "- Here we specify `fsspec_open_kwargs={'anon':True}` as a keyword argument in the `FilePattern`, because we want to access the source files anonymously." - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "EC-Earth3-LR.piControl.r1i1p1f1.Omon.mlotst.gn ['v20200409' 'v20200919']\n", + "FIO-ESM-2-0.piControl.r1i1p1f1.Amon.rsds.gn ['v20190911' 'v20191010']\n", + "IPSL-CM6A-LR.piControl.r1i1p1f1.Amon.o3.gr ['v20181022' 'v20181123']\n", + "CESM2.1pctCO2.r1i1p1f1.day.zg.gn ['v20190425' 'v20190826']\n", + "NorCPM1.historical.r1i1p1f1.Omon.thetao.gr ['v20190914' 'v20200724']\n", + "NorESM2-LM.piControl.r1i1p1f1.Ofx.areacello.gn ['v20190815' 'v20190920']\n", + "NorESM2-LM.hist-GHG.r1i1p1f1.Emon.va.gn ['v20190909' 'v20191108']\n", + "CESM2.deforest-globe.r1i1p1f1.Amon.rsuscs.gn ['v20190401' 'v20191122']\n" + ] + } + ], + "source": [ + "# some datasets have multiple versions: (will just check one in each 500 of them ...)\n", + "for dataset in df_s3.dataset.unique()[::500]:\n", + " df_dataset = df_s3[df_s3.dataset==dataset]\n", + " if df_dataset.version.nunique() > 1:\n", + " print(dataset,df_dataset.version.unique())" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# So pick a dataset, any dataset, and try it! N.B. some datasets are VERY large - especially the day, 6hourly, etc.\n", + "#dataset = df_s3.dataset[10450]\n", + "# or:\n", + "dataset = 'GFDL-CM4.historical.r1i1p1f1.Amon.tas.gr1'" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
projectinstitution_idsource_idexperiment_idfrequencymodeling_realmtable_idmember_idgrid_labelvariable_idtemporal_subsetversionpathdataset
603842CMIP6NOAA-GFDLGFDL-CM4historicalmonatmosAmonr1i1p1f1gr1tas185001-194912v20180701s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/...GFDL-CM4.historical.r1i1p1f1.Amon.tas.gr1
603843CMIP6NOAA-GFDLGFDL-CM4historicalmonatmosAmonr1i1p1f1gr1tas195001-201412v20180701s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/...GFDL-CM4.historical.r1i1p1f1.Amon.tas.gr1
\n", + "
" ], - "source": [ - "from pangeo_forge_recipes.patterns import FilePattern\n", - "pattern = FilePattern(make_full_path, time_concat_dim, fsspec_open_kwargs={'anon':True})\n", - "pattern" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "> By inspecting our instantiated pattern we see that our pattern has indexed our two files chronologically according to the concatenation key we provided it, and assigned the correct url to each file using the file path function:" + "text/plain": [ + " project institution_id source_id experiment_id frequency \\\n", + "603842 CMIP6 NOAA-GFDL GFDL-CM4 historical mon \n", + "603843 CMIP6 NOAA-GFDL GFDL-CM4 historical mon \n", + "\n", + " modeling_realm table_id member_id grid_label variable_id \\\n", + "603842 atmos Amon r1i1p1f1 gr1 tas \n", + "603843 atmos Amon r1i1p1f1 gr1 tas \n", + "\n", + " temporal_subset version \\\n", + "603842 185001-194912 v20180701 \n", + "603843 195001-201412 v20180701 \n", + "\n", + " path \\\n", + "603842 s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/... \n", + "603843 s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/... \n", + "\n", + " dataset \n", + "603842 GFDL-CM4.historical.r1i1p1f1.Amon.tas.gr1 \n", + "603843 GFDL-CM4.historical.r1i1p1f1.Amon.tas.gr1 " ] - }, + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_dataset = df_s3[df_s3.dataset==dataset]\n", + "df_dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**So is this what we expect?**\n", + "- this dataset is split over 3 netcdf files - see any trouble here?\n", + "- lets do a quick sanity check (make sure one and only one variable is specified) and get only the latest version of the files" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{Dimension(name='time', operation=): Position(value=0, indexed=False)} s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_185001-194912.nc\n", - "{Dimension(name='time', operation=): Position(value=1, indexed=False)} s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_195001-201412.nc\n" - ] - } - ], - "source": [ - "for index, fname in pattern.items():\n", - " print(index, fname)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "The variable is: tas\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 4: Write the Recipe\n", - "\n", - "Now that we have a `FilePattern`, we are ready to write our recipe. As described in {doc}`netcdf_zarr_sequential`, a recipe is defined as a pipeline of [Apache Beam transforms](https://beam.apache.org/documentation/programming-guide/#transforms) applied to the data collection associated with a `FilePattern`.\n", - "\n", - "First, we'll import the transforms provided by Pangeo Forge that may be used to transform a `FilePattern` collection into a Zarr store." + "data": { + "text/plain": [ + "['s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_185001-194912.nc',\n", + " 's3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_195001-201412.nc']" ] - }, + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dvars = df_dataset.variable_id.unique()\n", + "assert len(dvars) > 0, 'no netcdf files found for this dataset'\n", + "assert len(dvars) == 1, f\"trouble with this dataset, too many datasets found: {dvars}\"\n", + " \n", + "var = dvars[0]\n", + "print('The variable is:',var)\n", + "\n", + "# make sure we are looking at the last available version:\n", + "last_version = sorted(df_dataset.version.unique())[-1]\n", + "dze = df_dataset[df_dataset.version == last_version].reset_index(drop=True)\n", + "\n", + "input_urls = sorted(dze.path.unique())\n", + "input_urls" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**There are only two files - one netcdf file was from an older version!**\n", + "- We want to look at the first netcdf file to make sure we know what to expect\n", + "- To use `xarray.open_dataset`, we need to turn the input_url (starting with 's3://') into an appropriate file_like object." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "import apache_beam as beam\n", - "from pangeo_forge_recipes.transforms import OpenURLWithFSSpec, OpenWithXarray, StoreToZarr" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Dimensions: (bnds: 2, lat: 180, lon: 288, time: 1200)\n", + "Coordinates:\n", + " * bnds (bnds) float64 1.0 2.0\n", + " height float64 ...\n", + " * lat (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n", + " * lon (lon) float64 0.625 1.875 3.125 4.375 ... 355.6 356.9 358.1 359.4\n", + " * time (time) object 1850-01-16 12:00:00 ... 1949-12-16 12:00:00\n", + "Data variables:\n", + " lat_bnds (lat, bnds) float64 ...\n", + " lon_bnds (lon, bnds) float64 ...\n", + " tas (time, lat, lon) float32 ...\n", + " time_bnds (time, bnds) object ...\n", + "Attributes: (12/46)\n", + " external_variables: areacella\n", + " history: File was processed by fremetar (GFDL analog of CM...\n", + " table_id: Amon\n", + " activity_id: CMIP\n", + " branch_method: standard\n", + " branch_time_in_child: 0.0\n", + " ... ...\n", + " variable_id: tas\n", + " variant_info: N/A\n", + " references: see further_info_url attribute\n", + " variant_label: r1i1p1f1\n", + " branch_time_in_parent: 36500.0\n", + " parent_time_units: days since 0001-1-1\n" + ] + } + ], + "source": [ + "# Connect to AWS S3 storage\n", + "fs_s3 = s3fs.S3FileSystem(anon=True)\n", + "\n", + "file_url = fs_s3.open(input_urls[0], mode='rb')\n", + "ds = xr.open_dataset(file_url)\n", + "print(ds)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 2: Deciding how to chunk the dataset\n", + "- For parallel I/O and subsetting the dataset in time, we will chunk the data in the time dimension\n", + "- In order to figure out the number of time slices in each chunk, we do a small calculation on the first netcdf file\n", + "- Here we set the desired chunk size to 50 Mb, but something between 50-100 Mb is usually alright" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Define a pre-processing function\n", - "\n", - "- This is an optional step which we want to apply to each chunk\n", - "- Here we change some data variables into coordinate variables, but you can define your own pre-processing step here\n", - "\n", - "We will write a Beam transform that fixes both these issues. This is achieved by creating a [composite transform](https://beam.apache.org/documentation/programming-guide/#composite-transform-creation), which is a subclass of the `apache_beam.PTransform` class that overrides the `expand()` method to specify the actual processing logic. " + "data": { + "text/plain": [ + "{'bnds': 2, 'lat': 180, 'lon': 288, 'time': 241}" ] - }, + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#ntime = len(ds.time) # the number of time slices\n", + "#chunksize_optimal = 50e6 # desired chunk size in bytes\n", + "#ncfile_size = ds.nbytes # the netcdf file size\n", + "#chunksize = max(int(ntime* chunksize_optimal/ ncfile_size),1)\n", + "\n", + "#target_chunks = ds.dims.mapping\n", + "#target_chunks['time'] = chunksize\n", + "\n", + "# Remove the comments above to recalculate\n", + "target_chunks = {'bnds': 2, 'lat': 180, 'lon': 288, 'time': 241}\n", + "target_chunks # a dictionary giving the chunk sizes in each dimension" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 3: Define the File Pattern\n", + "- A `FilePattern` is the starting place for all recipes. These Python objects are the \"raw ingredients\" upon which the recipe will act. They describe how the individual source files are organized logically as part of a larger dataset. To create a file pattern, the first step is to define a function which takes any variable components of the source file path as inputs, and returns full file path strings.\n", + "- Revisting our input urls, we see that the only variable components of these paths are the 13-character numerical strings which immediatly precede the .nc file extension:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "scrolled": true + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "from pangeo_forge_recipes.transforms import Indexed, T\n", - "\n", - "class SetBndsAsCoords(beam.PTransform):\n", - " \"\"\"\n", - " Fix issues in retrieved data.\n", - " \"\"\"\n", - "\n", - " @staticmethod\n", - " def _set_bnds_as_coords(item: Indexed[T]) -> Indexed[T]:\n", - " \"\"\"\n", - " The netcdf lists some of the coordinate variables as data variables. \n", - " This is a fix which we want to apply to each dataset.\n", - " \"\"\"\n", - " index, ds = item\n", - " new_coords_vars = [var for var in ds.data_vars if 'bnds' in var or 'bounds' in var]\n", - " ds = ds.set_coords(new_coords_vars)\n", - " return index, ds\n", - "\n", - " def expand(self, pcoll: beam.PCollection) -> beam.PCollection:\n", - " return pcoll | beam.Map(self._set_bnds_as_coords)" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_185001-194912.nc\n", + " \n", + "s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_195001-201412.nc\n", + " \n" + ] + } + ], + "source": [ + "for url in input_urls:\n", + " print(f'''{url}\n", + " ''')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**What do these strings refer to?**\n", + "- If it was not immediately apparent, comparison to our dataset coordinates makes it clear that these numerical strings are time ranges; the string `'185001-194912'` from the first url, e.g., represents a time range from Jan 1850 through Dec 1949:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Define the Recipe Object\n", - "The recipe pipeline of transforms applied to `pattern` is similar to that described in {doc}`netcdf_zarr_sequential`, with the following modifications:\n", - "1. `open_kwargs={'anon':True}` is specified to `OpenURLWithFSSpec`, because we want to access the source files anonymously.\n", - "1. The new preprocessing transform `SetBndsAsCoords` is included in the pipeline." - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Coordinates:\n", + " * bnds (bnds) float64 1.0 2.0\n", + " height float64 ...\n", + " * lat (lat) float64 -89.5 -88.5 -87.5 -86.5 -85.5 ... 86.5 87.5 88.5 89.5\n", + " * lon (lon) float64 0.625 1.875 3.125 4.375 ... 355.6 356.9 358.1 359.4\n", + " * time (time) object 1850-01-16 12:00:00 ... 1949-12-16 12:00:00\n" + ] + } + ], + "source": [ + "print(ds.coords)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Let's define a function that takes these strings as input**\n", + "- ... and returns full file paths!" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "def make_full_path(time):\n", + " '''\n", + " Parameters\n", + " ----------\n", + " time : str\n", + " \n", + " A 13-character string, comprised of two 6-character dates delimited by a dash. \n", + " The first four characters of each date are the year, and the final two are the month.\n", + " \n", + " e.g. The time range from Jan 1850 through Dec 1949 is expressed as '185001-194912'.\n", + " \n", + " '''\n", + " base_url = 's3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/'\n", + " return base_url + f'tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_{time}.nc'" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A place for our data to go" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_185001-194912.nc\n" + ] }, { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "from tempfile import TemporaryDirectory\n", - "td = TemporaryDirectory()\n", - "target_root = td.name\n", - "store_name = \"output.zarr\"\n", - "target_store = os.path.join(target_root, store_name)" + "data": { + "text/plain": [ + "True" ] - }, + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# And let's be sure to test our function before moving on.\n", + "\n", + "test_url = make_full_path('185001-194912')\n", + "print(test_url)\n", + "\n", + "# If our function works, inputting '185001-194912' should have returned a url identical to\n", + "# the first of the two urls in the list named `input_urls` defined in cell 10, above:\n", + "\n", + "test_url == input_urls[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Combining dimensions**\n", + "- Before we initialize our file pattern, we need to define how we want files to be combined in our eventual zarr store\n", + "- We have two options:\n", + "\n", + " 1. Concatenating dimensions with a `ConcatDim` instance\n", + " 2. Merging dimensions with a `MergeDim` instance\n", + " \n", + " \n", + "- Our current dataset requires only concatenation, which we can achieve by instantiating `ConcatDim` with our variable name (`\"time\"`) as a positional argument, followed by a `keys` kwarg, which is a list containing all of the ways which this variable appears in our set of source file paths.\n", + "\n", + "> **Note:** This example reads from only two source files, so we can simply copy-and-paste their respective time variables into a list. If the number of source files was much larger, we might consider finding a way to create this `keys` list programatically." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "from pangeo_forge_recipes.patterns import ConcatDim\n", + "time_concat_dim = ConcatDim(\"time\", keys=['185001-194912', '195001-201412'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Instantiating the file pattern**\n", + "- Now that we have a both file path function and our \"combine dimensions\" object, we can move on to instantiating to file pattern, passing these two objects as arguments.\n", + "- Note that we will use `fsspec.open` under the hood for most file opening, so if there are any special keyword arguments we want to pass to this function, now is the time to do it.\n", + "- Here we specify `fsspec_open_kwargs={'anon':True}` as a keyword argument in the `FilePattern`, because we want to access the source files anonymously." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "<_ChainedPTransform(PTransform) label=[Create|OpenURLWithFSSpec|OpenWithXarray|SetBndsAsCoords|StoreToZarr] at 0x7fc01da350d0>" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "transforms = (\n", - " beam.Create(pattern.items())\n", - " | OpenURLWithFSSpec(open_kwargs={'anon':True})\n", - " | OpenWithXarray(file_type=pattern.file_type)\n", - " | SetBndsAsCoords() # New preprocessor\n", - " | StoreToZarr(\n", - " store_name=store_name,\n", - " target_root=target_root,\n", - " combine_dims=pattern.combine_dim_keys,\n", - " target_chunks=target_chunks\n", - " )\n", - ")\n", - "transforms" + "data": { + "text/plain": [ + "" ] - }, + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pangeo_forge_recipes.patterns import FilePattern\n", + "pattern = FilePattern(make_full_path, time_concat_dim, fsspec_open_kwargs={'anon':True})\n", + "pattern" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> By inspecting our instantiated pattern we see that our pattern has indexed our two files chronologically according to the concatenation key we provided it, and assigned the correct url to each file using the file path function:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "scrolled": true + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 5: Execute the recipe\n", - "\n", - "Execute the recipe pipeline using Beam." - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "{Dimension(name='time', operation=): Position(value=0, indexed=False)} s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_185001-194912.nc\n", + "{Dimension(name='time', operation=): Position(value=1, indexed=False)} s3://esgf-world/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/historical/r1i1p1f1/Amon/tas/gr1/v20180701/tas_Amon_GFDL-CM4_historical_r1i1p1f1_gr1_195001-201412.nc\n" + ] + } + ], + "source": [ + "for index, fname in pattern.items():\n", + " print(index, fname)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 4: Write the Recipe\n", + "\n", + "Now that we have a `FilePattern`, we are ready to write our recipe. As described in {doc}`netcdf_zarr_sequential`, a recipe is defined as a pipeline of [Apache Beam transforms](https://beam.apache.org/documentation/programming-guide/#transforms) applied to the data collection associated with a `FilePattern`.\n", + "\n", + "First, we'll import the transforms provided by Pangeo Forge that may be used to transform a `FilePattern` collection into a Zarr store." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "import apache_beam as beam\n", + "from pangeo_forge_recipes.transforms import OpenURLWithFSSpec, OpenWithXarray, StoreToZarr" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define a pre-processing function\n", + "\n", + "- This is an optional step which we want to apply to each chunk\n", + "- Here we change some data variables into coordinate variables, but you can define your own pre-processing step here\n", + "\n", + "We will write a Beam transform that fixes both these issues. This is achieved by creating a [composite transform](https://beam.apache.org/documentation/programming-guide/#composite-transform-creation), which is a subclass of the `apache_beam.PTransform` class that overrides the `expand()` method to specify the actual processing logic. " + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "from pangeo_forge_recipes.transforms import Indexed, T\n", + "\n", + "class SetBndsAsCoords(beam.PTransform):\n", + " \"\"\"\n", + " Fix issues in retrieved data.\n", + " \"\"\"\n", + "\n", + " @staticmethod\n", + " def _set_bnds_as_coords(item: Indexed[T]) -> Indexed[T]:\n", + " \"\"\"\n", + " The netcdf lists some of the coordinate variables as data variables. \n", + " This is a fix which we want to apply to each dataset.\n", + " \"\"\"\n", + " index, ds = item\n", + " new_coords_vars = [var for var in ds.data_vars if 'bnds' in var or 'bounds' in var]\n", + " ds = ds.set_coords(new_coords_vars)\n", + " return index, ds\n", + "\n", + " def expand(self, pcoll: beam.PCollection) -> beam.PCollection:\n", + " return pcoll | beam.Map(self._set_bnds_as_coords)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define the Recipe Object\n", + "The recipe pipeline of transforms applied to `pattern` is similar to that described in {doc}`netcdf_zarr_sequential`, with the following modifications:\n", + "1. `open_kwargs={'anon':True}` is specified to `OpenURLWithFSSpec`, because we want to access the source files anonymously.\n", + "1. The new preprocessing transform `SetBndsAsCoords` is included in the pipeline." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A place for our data to go" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "from tempfile import TemporaryDirectory\n", + "td = TemporaryDirectory()\n", + "target_root = td.name\n", + "store_name = \"output.zarr\"\n", + "target_store = os.path.join(target_root, store_name)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" - ] - }, - { - "data": { - "application/javascript": [ - "\n", - " if (typeof window.interactive_beam_jquery == 'undefined') {\n", - " var jqueryScript = document.createElement('script');\n", - " jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n", - " jqueryScript.type = 'text/javascript';\n", - " jqueryScript.onload = function() {\n", - " var datatableScript = document.createElement('script');\n", - " datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n", - " datatableScript.type = 'text/javascript';\n", - " datatableScript.onload = function() {\n", - " window.interactive_beam_jquery = jQuery.noConflict(true);\n", - " window.interactive_beam_jquery(document).ready(function($){\n", - " \n", - " });\n", - " }\n", - " document.head.appendChild(datatableScript);\n", - " };\n", - " document.head.appendChild(jqueryScript);\n", - " } else {\n", - " window.interactive_beam_jquery(document).ready(function($){\n", - " \n", - " });\n", - " }" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "with beam.Pipeline() as p:\n", - " p | transforms" + "data": { + "text/plain": [ + "<_ChainedPTransform(PTransform) label=[Create|OpenURLWithFSSpec|OpenWithXarray|SetBndsAsCoords|StoreToZarr] at 0x7fc01da350d0>" ] - }, + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transforms = (\n", + " beam.Create(pattern.items())\n", + " | OpenURLWithFSSpec(open_kwargs={'anon':True})\n", + " | OpenWithXarray(file_type=pattern.file_type)\n", + " | SetBndsAsCoords() # New preprocessor\n", + " | StoreToZarr(\n", + " store_name=store_name,\n", + " target_root=target_root,\n", + " combine_dims=pattern.combine_dim_keys,\n", + " target_chunks=target_chunks\n", + " )\n", + ")\n", + "transforms" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 5: Execute the recipe\n", + "\n", + "Execute the recipe pipeline using Beam." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 6: Check the resulting Zarr store" - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" + ] }, { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.Dataset>\n",
-              "Dimensions:    (bnds: 2, lat: 180, lon: 288, time: 1980)\n",
-              "Coordinates:\n",
-              "  * bnds       (bnds) float64 1.0 2.0\n",
-              "    height     float64 ...\n",
-              "  * lat        (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n",
-              "    lat_bnds   (lat, bnds) float64 dask.array<chunksize=(180, 2), meta=np.ndarray>\n",
-              "  * lon        (lon) float64 0.625 1.875 3.125 4.375 ... 355.6 356.9 358.1 359.4\n",
-              "    lon_bnds   (lon, bnds) float64 dask.array<chunksize=(288, 2), meta=np.ndarray>\n",
-              "  * time       (time) float64 15.5 45.0 74.5 ... 6.015e+04 6.018e+04 6.021e+04\n",
-              "    time_bnds  (time, bnds) float64 dask.array<chunksize=(241, 2), meta=np.ndarray>\n",
-              "Data variables:\n",
-              "    tas        (time, lat, lon) float32 dask.array<chunksize=(241, 180, 288), meta=np.ndarray>\n",
-              "Attributes: (12/44)\n",
-              "    Conventions:            CF-1.7 CMIP-6.0 UGRID-1.0\n",
-              "    activity_id:            CMIP\n",
-              "    branch_method:          standard\n",
-              "    branch_time_in_child:   0.0\n",
-              "    branch_time_in_parent:  36500.0\n",
-              "    comment:                <null ref>\n",
-              "    ...                     ...\n",
-              "    sub_experiment_id:      none\n",
-              "    table_id:               Amon\n",
-              "    title:                  NOAA GFDL GFDL-CM4 model output prepared for CMIP...\n",
-              "    variable_id:            tas\n",
-              "    variant_info:           N/A\n",
-              "    variant_label:          r1i1p1f1
" - ], - "text/plain": [ - "\n", - "Dimensions: (bnds: 2, lat: 180, lon: 288, time: 1980)\n", - "Coordinates:\n", - " * bnds (bnds) float64 1.0 2.0\n", - " height float64 ...\n", - " * lat (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n", - " lat_bnds (lat, bnds) float64 dask.array\n", - " * lon (lon) float64 0.625 1.875 3.125 4.375 ... 355.6 356.9 358.1 359.4\n", - " lon_bnds (lon, bnds) float64 dask.array\n", - " * time (time) float64 15.5 45.0 74.5 ... 6.015e+04 6.018e+04 6.021e+04\n", - " time_bnds (time, bnds) float64 dask.array\n", - "Data variables:\n", - " tas (time, lat, lon) float32 dask.array\n", - "Attributes: (12/44)\n", - " Conventions: CF-1.7 CMIP-6.0 UGRID-1.0\n", - " activity_id: CMIP\n", - " branch_method: standard\n", - " branch_time_in_child: 0.0\n", - " branch_time_in_parent: 36500.0\n", - " comment: \n", - " ... ...\n", - " sub_experiment_id: none\n", - " table_id: Amon\n", - " title: NOAA GFDL GFDL-CM4 model output prepared for CMIP...\n", - " variable_id: tas\n", - " variant_info: N/A\n", - " variant_label: r1i1p1f1" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Check to see if it worked:\n", - "ds = xr.open_zarr(target_store)\n", - "ds" + "data": { + "application/javascript": [ + "\n", + " if (typeof window.interactive_beam_jquery == 'undefined') {\n", + " var jqueryScript = document.createElement('script');\n", + " jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n", + " jqueryScript.type = 'text/javascript';\n", + " jqueryScript.onload = function() {\n", + " var datatableScript = document.createElement('script');\n", + " datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n", + " datatableScript.type = 'text/javascript';\n", + " datatableScript.onload = function() {\n", + " window.interactive_beam_jquery = jQuery.noConflict(true);\n", + " window.interactive_beam_jquery(document).ready(function($){\n", + " \n", + " });\n", + " }\n", + " document.head.appendChild(datatableScript);\n", + " };\n", + " document.head.appendChild(jqueryScript);\n", + " } else {\n", + " window.interactive_beam_jquery(document).ready(function($){\n", + " \n", + " });\n", + " }" ] - }, + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "with beam.Pipeline() as p:\n", + " p | transforms" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 6: Check the resulting Zarr store" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAHFCAYAAAAExnZzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebgdRZ0+/lZV91nukhXIAiGgBBQIiqBo8BEY9hHRYb4yg4phUVFQDBJBXCCMJiwCoigII0NgEHBUUMCBH+iYKAKPBEUBFUeMwEAWCdnudk53V/3+qL27z7nn5t5sUO/zXDjdXV1dXV3d6Xr7/bwfIoQQCAgICAgICAgIGBZ0azcgICAgICAgIGB7QXhxCggICAgICAjoEOHFKSAgICAgICCgQ4QXp4CAgICAgICADhFenAICAgICAgICOkR4cQoICAgICAgI6BDhxSkgICAgICAgoEOEF6eAgICAgICAgA4RXpwCAgICAgICAjpEeHF6lWHBggUghODll18eszpPOeUU7Lbbbpu9PYsWLcKPfvSjTTrOaLBhwwYsXLgQhx56KKZOnYqenh7Mnj0bl112GYaGhjqu54477sCb3/xm1Go1TJ8+HfPmzUNfX9+w+y1evBiEEPM3ltfuRz/6kVf3smXLRlzHSy+9hAULFuCJJ54obNPX99WM/v5+XHjhhdhzzz1RrVYxefJkHHbYYfjf//3fjvbvZFz8z//8D0477TS84Q1vQHd3N3beeWe8973vxeOPP16o76GHHsJHPvIRHHDAAahWqyCE4G9/+9tYnOomYVPG/Xe+8x0QQtDT07OFWhkQMHYIL04Bw+JLX/oS7rrrrs1+nK314vT888/j6quvxlve8hbccMMNuPvuu/H//t//w4IFC3Dcccehk6xE3/3ud3HSSSfhrW99K+677z5cdNFFWLx4MU444YSO23HnnXfikUcewYQJE0ZxNj4OOeQQPPLII/jiF7+4yXW89NJLuPjii0tfnD7ykY/gkUceGUULt2309fXh0EMPxY033ohPfepTeOCBB3DTTTfhoIMOwsDAwLD7dzourrvuOvztb3/Dpz/9afz3f/83vv71r2P16tV4+9vfjv/5n//xyv7sZz/DT3/6U+y6666YM2fOmJ7vSLEp4/7FF1/E/PnzMX369C3Y0oCAMYQIeFXhoosuEgDE3//+963dFCHEyNrT3d0t5s6du/kblUNfX5/o6+srrP/qV78qAIhf/vKXbfdP01RMmzZNHHXUUd767373uwKA+O///u+2+990000CgFi+fPmI294p9DEee+yxEe/72GOPCQDipptuGvuGbeP49Kc/Lbq7u8Wzzz474n1HMi5WrVpV2H/jxo1iypQp4vDDD/fWZ1lmfusxOtZj5+c///mw9W7quD/uuOPEe97zHjF37lzR3d09ls0OCNgiCIzTqxSrVq3CSSedhPHjx2PKlCk47bTTsH79eq+MEALXXnst3vzmN6Ner2PixIn4f//v/+Gvf/2rV67sU926detw+umnY9KkSejp6cG73/1u/PWvfwUhBAsWLBhxewgh6O/vx80332w+Kx166KFj1R1t0d3dje7u7sL6t73tbQCAF154oe3+jz76KFasWIFTTz3VW//+978fPT09o2LrDj30UOy777545JFHMGfOHNTrdey222646aabAAA/+clP8Ja3vAVdXV2YPXs27r///k0+VhmWLFmCt771rQCAU0891VwbfY3LPtXttttuOO6443Dvvfdi//33R71exxvf+Ebce++9AOSnyTe+8Y3o7u7G2972ttLPh8uWLcPxxx+PSZMmoVarYf/998d//dd/jem5DYeBgQF85zvfwfvf/3687nWvG/H+IxkXO+20U2H/np4e7L333oXxR2nnj+0NGzZg/vz52H333VGpVLDzzjtj3rx56O/vH+HZFLEp4/7WW2/F0qVLce211476+AEBWwvhxelVin/+53/GnnvuiR/+8If43Oc+h9tuuw3nnHOOV+aMM87AvHnzcMQRR+BHP/oRrr32Wjz99NOYM2cOVq1a1bJuzjne85734LbbbsP555+Pu+66CwcddBCOOeaYTW7PI488gnq9jn/8x3/EI488gkceeWTYh2uWZUjTdNg/znmHveZDfyLZZ5992pZ76qmnAAD77beftz6OY7zhDW8w2zcVK1euxKmnnoqPfOQj+PGPf4zZs2fjtNNOw7/927/hggsuwHnnnYcf/vCH6Onpwfve9z689NJLozqei7e85S3mJe2LX/yiuTYf+chH2u73u9/9DhdccAHOP/983HnnnRg/fjxOOOEEXHTRRfjOd76DRYsW4bvf/S7Wr1+P4447DoODg2bfn//85zj44IOxbt06fPvb38aPf/xjvPnNb8a//Mu/YPHixcO2eazGxeOPP47+/n7MmjULn/jEJzBx4kRUKhUceOCB+MlPfjJsO0Y7LtavX4/f/OY3w46/VhgYGMAhhxyCm2++GWeffTbuu+8+nH/++Vi8eDGOP/74jj5Bt8NIz2/16tWYN28eLr30Uuyyyy6jOnZAwFbF1qa8AsYW+tPY5Zdf7q0/88wzRa1WE5xzIYQQjzzyiAAgrrzySq/cCy+8IOr1ujjvvPPMurlz54qZM2ea5Z/85CcCgLjuuuu8fS+55BIBQFx00UUjbo8QI/9UN3PmTAFg2D+3PZ3id7/7najX6+Kf/umfhi27cOFCAUCsWLGisO2oo44Se+65Z9v9232qO+SQQwQAsWzZMrNuzZo1gjEm6vW6ePHFF836J554QgAQ3/jGN1oeY6w/1enr62LmzJmiXq+L//u//yu0bdq0aaK/v9+s/9GPfiQAiLvvvtuse8Mb3iD2339/kSSJV+9xxx0npk2b5n2qKsNYjYvbb79dABDjxo0TBx98sLj77rvFvffeKw477DBBCBH3339/2/1HOy4++MEPiiiKvGufR7tPdZdccomglBau+Q9+8IPCp7Q0TUWSJObvpz/9qQAg/vKXv3jr3b4f6fn98z//s5gzZ46558OnuoDtFdHmfCkL2Ho4/vjjveX99tsPQ0NDWL16NaZMmYJ7770XhBB86EMfQpqmptzUqVPxpje9CUuWLGlZ99KlSwEAJ554orf+pJNOwgUXXLBJ7dkU3HPPPWg0GsOWG6kI9W9/+xuOO+44zJgxA9/5znc63q9VdNloo86mTZuGAw44wCxPmjQJO+20E3bbbTfv3N74xjcCAJ577rlRHW8s8OY3vxk777yzWdZtO/TQQ9HV1VVYr9v8l7/8BX/6059wxRVXAIA3Nv/xH/8R9957L5555hmzXxnGalxoRqpSqeC+++5Db28vAOCwww7DrFmz8OUvfxlHH330sMfZlHHxpS99Cd/97ndxzTXXeNd+JLj33nux77774s1vfrPXj0cffTQIIViyZAmOPfZYAMDhhx9u7msXe+yxh7c8d+7cAuvXyfn98Ic/xD333IPf/va3r/oozIBXP8KL06sUkydP9par1SoAmE8iq1atghCi5UtLO03HmjVrEEURJk2a5K1v9wI0XHs2BXvvvXdHnxtGogl57rnncNhhhyGKIvzsZz8rnGMZ9LmtWbOm0AevvPJKR3W0Q9n+lUqlsL5SqQDAiCwUNhdatW24NutPxPPnz8f8+fNL6x7OrmGsxoW+rnPmzDEvTQDQ1dWFQw45ZNgI0E0dFxdffDG+8pWvYOHChfjkJz853Gm0xKpVq/CXv/wFcRyXbnf78frrr8fGjRvN8uOPP46Pf/zjuPvuuzFt2jSzfocddjC/Oz2/vr4+nHXWWfjUpz6F6dOnY926dQCAZrMJQOol4zgu1RkGBGyLCC9Or1HssMMOIITgl7/8pXmJcVG2TmPy5MlI07Tw8F+5cuVmaWsrvP71r++IXbnoootKBet5PPfcczj00EMhhMCSJUs61mHMnj0bAPDkk09i7733NuvTNMWf/vQnnHTSSR3VE2D/Yb7gggtahrTvtddebesYq3GR1+64EEIM++K1KePi4osvxoIFC7BgwQJ8/vOfH+YM2mOHHXZAvV7Hf/zHf7TcrpHvU+3DNHv27JYebp2e38svv4xVq1bhyiuvxJVXXlmoZ+LEiXjve9+7VaxIAgI2BeHF6TWK4447DpdeeilefPHFwie34XDIIYfg8ssvx/e+9z184hOfMOvvuOOOUbWpWq2OiIEay091zz//PA499FBkWYYlS5Zg5syZHbfjoIMOwrRp07B48WL8y7/8i1n/gx/8AH19fSPyctoWMRbsYKfYa6+9MGvWLPzud7/DokWLNqmOsRoX06ZNwzve8Q786le/woYNGzBu3DgAUnS9dOlSvP3tb2+7/0jHxZe//GUsWLAAX/ziF3HRRRcN2/7hcNxxx2HRokWYPHkydt9991HXl0en5zd16lT8/Oc/L+x/6aWXYunSpbjvvvu8l7iAgG0d4cXpNYqDDz4YH/vYx3Dqqadi2bJleNe73oXu7m6sWLECDz30EGbPnu29FLk45phjcPDBB+Pcc8/Fhg0bcMABB+CRRx7BLbfcAmBkn8ZczJ49G0uWLME999yDadOmobe3ty27oGe8o8Xq1atx2GGHYcWKFbjxxhuxevVqrF692mzfZZddDPv03HPP4fWvfz3mzp2LG2+8EQDAGMPll1+Ok08+GWeccQZOOukk/O///i/OO+88HHnkkW2jDbcmFi9ejFNPPRU33XQTTjnllJblXv/616Ner+O73/0u3vjGN6KnpwfTp0/fbAaG119/PY499lgcffTROOWUU7DzzjvjlVdewR//+Ef85je/wfe///22+4/VuACAK664AocddhiOPvponH/++SCE4Morr8TLL7+ML3/5y6bcaMfFlVdeiQsvvBDHHHMM3v3ud+PRRx/12uG+pP397383eqQnn3wSAHDfffdhxx13xI477ohDDjkEADBv3jz88Ic/xLve9S6cc8452G+//cA5x/PPP48HHngA5557Lg466KBN7ptOz69Wq5VaiyxevBiMsS1mOxIQMFYIL06vYVx//fV4+9vfjuuvvx7XXnstOOeYPn06Dj74YONhVAZKKe655x6ce+65uPTSS9FsNnHwwQfj1ltvxdvf/vZNdr7++te/jrPOOgv/+q//akKp24nUxwp/+MMfjHfVhz70ocJ295OOEAJZliHLMq/Mhz70ITDGcOmll2Lx4sWYNGkSPvzhD2PhwoWbvf2bCv05xtWwlKGrqwv/8R//gYsvvhhHHXUUkiTp+PPnpuCwww7Dr3/9ayxcuBDz5s3D2rVrMXnyZOy9994jZkdHizlz5uBnP/sZvvjFL+KDH/wgAPkSs2TJErzjHe8w5UY7Lu655x4AwP3331/qxeVqtp5++mm8//3v97afeeaZAODdM93d3fjlL3+JSy+9FDfccAOWL1+Oer2OXXfdFUccccQmp1HalPMLCHg1gYhOVJQBAR3gtttuwwc/+EH86le/2uqpILYnaObnL3/5C2bOnIkoGrv5jP4H/ZZbbsHpp5+Oxx57DAceeCAAGRW5fPlyPPbYY2N2vICAgIBXOwLjFLBJuP322/Hiiy9i9uzZoJTi0UcfxVe/+lW8613vCi9Nmwgd+v33v/99zDQfP/7xj/FP//RPhfVaAH/rrbeOyXECAgICXisIjFPAJuHee+/FggUL8Je//AX9/f2YNm0a3ve+9+ErX/mKEdEGdIY1a9Zg+fLlZvnNb37zmLFO69atw1/+8hezvPfee3s+SgEBAQEBI0N4cQoICAgICAgI6BAhV11AQEBAQEBAQIcIL04BAQEBAQEBAR0ivDgFBAQEBAQEBHSIEFWXA+ccL730Enp7e0MyyoCAgICAthBCYOPGjZg+ffomm/8Oh6GhIZPbb7SoVCqo1WpjUtdrFeHFKYeXXnoJM2bM2NrNCAgICAjYjvDCCy90nN9yJBgaGsLuM3uwcnU2fOEOMHXqVCxfvjy8PI0C4cUpB50F/Z1vmY+ItU502xaBqJJoxdgNF8i5jcd5ku0lELWTdm4np7ItYHNfd7G5GO7t8Xm0DbD9nV6PNGvgod9cYf7tGGs0m02sXJ1h+eMzMa53dIzWho0cux/wHJrNZnhxGgXCi1MO+vNcFNcQRcWBJYYbtyO44cUIng0k98x2981v22LYxH9ICB/jdgCb3JZtBpuh+R39Q99pv22Oa5ZDvr2b7UViG8FmeRHb3u8Dg+Gv/bDjo9N3jBb1CNrB+CMESIn6uXnH67heOuoXp5Hiuuuuw3XXXYe//e1vAIB99tkHF154IY499lgAwJ133onrr78ejz/+ONasWYPf/va3ePOb3+zV0Wg0MH/+fNx+++0YHBzE4YcfjmuvvXazsHNbCkEcHhAQEBAQsI0jE3xM/kaCXXbZBZdeeimWLVuGZcuW4R/+4R/w3ve+F08//TQAoL+/HwcffDAuvfTSlnXMmzcPd911F+644w489NBD6Ovrw3HHHVfI67g9ITBOLSCowy7lZhIFpqjVTKNkddtZUpvXWHceua3NxMdk5tzB/TzscTptRpt6Stm7duXL2j0Wn8g6vcRt6smPkxFfpxGyTCNiuDoYw0SILTbWO+6bkfThZmTzNttnw9HW28n+nV7TknLueCD552W+fAmlXxhPFH6b3e16dafP+80MDgE+Smp6pPu/5z3v8ZYXLlyI6667Do8++ij22WcfnHzyyQBgGKk81q9fjxtvvBH/+Z//iSOOOAIAcOutt2LGjBn46U9/iqOPPnrkJ7ENIDBOAQEBAQEBryFs2LDB+2s0GsPuk2UZ7rjjDvT39+Md73hHR8d5/PHHkSQJjjrqKLNu+vTp2HffffHwww9vcvu3NgLj1AKCEvmNW88u3ImIO+OgLdbn9pHb3W3DsVhtGtfm2/tIdFObC8Nqrng7mmQE9ZXMbluXzZcrL5hnsmW5klmoXqTCKWt+lbbPY6dIcXu79rZDW/ahbJvTjs3CtHSyf4f1mZ7vZJY/lkzASPq0BWNU2rcjvVajKVtgYEZQ/3BjZKwYr8JzsPzZqst6pTnxtplnXxkdUMY0lWzzjk9KtpfsJ7bQQ5eDj1pqqGvIR45fdNFFWLBgQek+Tz75JN7xjndgaGgIPT09uOuuu7D33nt3dLyVK1eiUqlg4sSJ3vopU6Zg5cqVIz+BbQThxSkgICAgIGAbRyYEslG+sOr9X3jhBS8Ze7XaOoJ8r732whNPPIF169bhhz/8IebOnYulS5d2/PJUBiHEdu2TGF6cWkDEFCKS04v8LKQVc2TWu9spyZVHsXyunsK2fJ1l2/MY5aDclEnUJkX35VmZfB2ixTbFBPnrWpTVDJdXd35ftcD8fQXIMGwVMbPzfNO9cgIQrE37nbKEw7/euXpatyWHYdimjsp3sm1T0OnUWc/w88cvsLstWIMRYkT9WcpO5sp2yrR12B8j0zZ1cC68pM2tlguNaaXtJO339fYTHoPubXEZpTI9U7tr7mwvsFj5/XLP4TJWSZbNtZ3I/fl2qHgZN26c9+LUDpVKBXvssQcA4MADD8Rjjz2Gr3/967j++uuH3Xfq1KloNptYu3atxzqtXr0ac+bM2bTGbwPY/q54QEBAQEDAawxaHD7av9FCCNGRJgoADjjgAMRxjAcffNCsW7FiBZ566qnt+sUpME4twBkBZ1rfRIpsEtWzGaDAIpWxUCgp54KQ4nq3PO1s/62BfFuGi0zzmZ5c5FdplFpZ3aS8TpEv13qdCZoRqj4A4EKub8N0CVXWrDesSL7ZxGcIPN2Iqa5wPoKq7WYjcfrFZ88EIUWmo50+pYwVKcMW8G1qiVbTubIxXrJu1BFnm6jH8q5FOzamrM4CG9niGGactqi+3b759m0qo9Rum6sLdY7bFu2m722YxUL9LaKgizuIzurNn4timPRx9HG3nMZJINvCUXWf//znceyxx2LGjBnYuHEj7rjjDixZsgT3338/AOCVV17B888/j5deegkA8MwzzwCQTNPUqVMxfvx4nH766Tj33HMxefJkTJo0CfPnz8fs2bNNlN32iPDiFBAQEBAQEFDAqlWrcPLJJ2PFihUYP3489ttvP9x///048sgjAQB33303Tj31VFP+X//1XwH4YvOvfe1riKIIJ554ojHAXLx4MRhjheNtLyBCvGqsZscEGzZswPjx4zHnyIsRxTWrUdITRcUouQxUXqvUijUC8lEZuW2bzFa1P6ctjjasT3G9aF+Wl683+7j7D3OM0m2t2uZpP4Zn0UrrLZT3F1uzUcIv6+mfhOwTkW+fQ2HxXP2tWCaO4mx/E5gMU/VYsZ6toqJGW//mftS10ZS1Zf70cis2Ko98ItlOmaN2GqxO9Foa+t7Q2iRCyv2RhkOrvtGHbRdhp47r/XY1TXmdkrNNRNSLmBOO7qmVjkm3wdVE6bJpOoRf/fQirF+/vmPd0Eig/0169k9T0TtK5/CNGzle/4aVm62trxUExikgICAgIGAbx1hG1QWMDuHFqQV4TMBj7eXksDwkx0A52qPST91tGKiy9e3YqjJsts/rndRbxgCp9SRHmpD8Pnl9UhnL1Kr+sqaoa2K0Q8TuT3J6KEHa11XmM6X72duPjLDePMPormB25p3XsXhRfoRAUAGiGyQkA2WaIYgfiZZZJqMws6clLIfedxg2II/CLL8V8oxWO/fnkWplhsFmuVVauk77/akjxEo1UJpt6tSbqVU5IdozjlzY32kGpKldNqyKZZE8a26auy6EONdSgLRin/JMYRk75bZzOGbOGz9OH7vPE0ohQMs99vT1yOtXjWaVmG3Gub7V1wYmf/MtRPlzjF56uDWli68mhKi6gICAgICAgIAOsd0wTmmaYsGCBfjud7+LlStXYtq0aTjllFPwxS9+EVR98xdC4OKLL8YNN9yAtWvX4qCDDsK3vvUt7LPPPiM+XlahILH8Fp7XJbnfwQv6JwAFVqlDfdJwzuOdoKMIN2+HkdVvWBFCQNydRQtWRi/nNDuFKLgSlqnM48huJP7/IY+vS3osTc4ziXBAwGmDw04BkLPPFu7mBVaphHVqB39f/7iiBTPk5eeCPBdzHFGsR/elEGoI6WvG5ey/lEUqY574CFmeDvRRbSOg2hxruHZsciTdaD5dDLdvO91Qu/07YVna1Zlx/3eayuXBIYh8GLkec5UKUK0AVAl2Cc2xTwRg6jlLKcBIi3uQSCZG67AYKUanuW317neHceIA4dxb9s63jJ1y6iVCWB8oKuxzixMQIozrOI8gdayKZTIZIwBwzTZpNoqqZ4zpF7mcbaGI5mwMoupGu3+AxHbDOF122WX49re/jW9+85v44x//iMsvvxxf/epXcc0115gyl19+Oa666ip885vfxGOPPYapU6fiyCOPxMaNG7diywMCAgICAkaHTIzNX8Dosd0wTo888gje+9734t3vfjcAYLfddsPtt9+OZcuWAZCswtVXX40vfOELOOGEEwAAN998M6ZMmYLbbrsNZ5xxxoiOx6sEWYWYGb0XRUdzLFQOeS8il4UQnlYgV6aMvWp5kJJ9vYM6RXPaowI7oZmYwgyw3eFFS4apbXvLyA6vDc4GzUyVbYNmvtQSI9KZm7hbdVECktmVgiiNkGG5RKF5xL1OuQi7kZx32zIFZm74Cg3TZxpKJHvWIj+eLK9AHeZJ7VuInvIimTbxKVsY/26daM0stTn/ETNKo2GSWumINiUnXbv+zUdlZqLlNut+34a1KoueowSI1GN+fC8IyUVSRZJhEjEDKLXeRHFJqHguUk3kdU9us3LPR/NM5AL5CFBvWfUByTNKKhpOOLorj6HlJRfH7Y+8lkst80oknx2Rwyo5Hn35iDvvGaO+PGRsu+EfAsYI280Vf+c734mf/exn+POf/wwA+N3vfoeHHnoI//iP/wgAWL58OVauXOllYa5WqzjkkEO26yzMAQEBAQEBfIz+AkaP7YZxOv/887F+/Xq84Q1vAGMMWZZh4cKFOOmkkwDAZFqeMmWKt9+UKVPw3HPPtay30Wh49vEbNmzYDK0PCAgICAjYdHAQZKOM4NtSEYCvdmw3L07f+973cOutt+K2227DPvvsgyeeeALz5s3D9OnTMXfuXFMun3F5uCzMl1xyCS6++OLC+iwGEGuxIAw3xyP55yeRlf9jDYA1ReHzjEnumv8U53zy08JDa8zWssl2fxfuF4D8avdTl7C0OeGw6T2ghJOOCFPA2VbSHndb4ZxtFK9XD3RIr2oUgWqDKw7PmVoS7i+XnnYmwJq5T3duWhy4nw+I+mqi6yX+VwEBCLcNlKDsc6Hg6pOZ+WRg2z4s2n2m08aUOWuAQjnA+Zyp2ut97hnBJ652gvFOy2u4PHaZyWb+XEeAdsL5jtqTP2YrO4Syess+Xebb750bL5QjQv3IcjsKYT6beccXwrcRyH/CyrLcMUs+DZpPSQyiFstNlQiCMZPIHJSARwS8KtvAIzcsH6ANDtbIiuefO2+SyXuCptwupxwkk/uSlEsrBPdczGdIVwwuZLv1pzlGQSIGUYlM+6HaxykFSASi+tRYCOhPbK4tASW+GFx9puPMbjfllTmmfn5rYbjdLusOLM5rD9vNp7rPfvaz+NznPod//dd/xezZs3HyySfjnHPOwSWXXAJA5sYBLPOksXr16gIL5eKCCy7A+vXrzd8LL7yw+U4iICAgICBgE8DF2PwFjB7bDeM0MDBgbAc0GGPgala3++67Y+rUqXjwwQex//77AwCazSaWLl2Kyy67rGW91WoV1Wq1sD6rEaAiZyKCAZkqklXhMUfgAGvabTQjoIlcpmmOqcmLzJnDhpQJvPNC8bwgvAMUxNW5ZcJ9tscyTsQrm69LlrcLrViuMnhpDcpYGpHfVl62LHWKy0Dpc+EMysxU75jrUCE8Fs7tEyFyTJLbB4yUMFC5dWjR3tz1c80wSZ7ZcGfM3Bd0F1Kw5FmmTRVJtwofb7W93XHKGLPRiLcdtEuqa9ioTiiBTmwR8uLrMqF2GyuBguA5XzbPQukyromkFq7rfaPIL5tlgM4BRikQMSP0FpUIXP+OKXhEwWNZL80ESCZAFasU9dt/ZYlmzjSDw6hkiTPnntDnmHKQJANtqIdgM5F2CJplchkyxTaJzGGg8iJv9cwnUaRYp0gtM0A9t0U1goid84wpeMwciwHbdsJFwU7Gex7lmCrBYJlrCi8wSAvJOW8xXsYY2Rh8qhvt/gES282L03ve8x4sXLgQu+66K/bZZx/89re/xVVXXYXTTjsNgPxEN2/ePCxatAizZs3CrFmzsGjRInR1deEDH/jAVm59QEBAQEBAwKsB282L0zXXXIMvfelLOPPMM7F69WpMnz4dZ5xxBi688EJT5rzzzsPg4CDOPPNMY4D5wAMPoLe3d8TH4xFAYslWZDWAV+R6OwtRBQXANWHFAZpYBkqG2to6RZtk0KWapTzjVILhQuJFO8aJW9ZJLwvub3P3FdyRYGl9T1k7hiMTSK6MSiOS3yYAEG6ZokJ7hD0u4f7slwjbKEIIaCLszDGyv/Xx3RNw2T/NnuUNO80x8tw3yZ2aM8OTaWBadI57jRXbZ9iUMsYkp2spZXIKhqpqWY9D1ySwBctCWtWXD63Pt62VLmskWqqR6q7yRdvpoVz20U0DUmbM6bbHCZ8nKffZn7LrlGMLDfNB3P1EkW1xt3n15a5X4Ro7ByREskx1qWviFYZMaZjSboas4txbHIgGOeKNqW6AbQqlksWpaANM4hWhKTftzMvyqG6jPo8sM8yayDIgyyC0QafHPnEILkAUe0YoARizjFOlYlgswmsAqVoLBSJ1S1lVn5xtM8kEaDPvTOqySLZPNNtk9U+WZdLLcDRQmxuBcdp2sN28OPX29uLqq6/G1Vdf3bIMIQQLFizAggULtli7AgICAgICNje4IOCjTE462v0DJLabF6ctDa4COngs2Sd/FuIwTkTATNo5AY8lQ2XgMCiSoXB+l6Btkl+3nnYosCL2N3HNPKhikRx2hea1PmoCSFW0TBnzYg47mlADrSvwU98WI+5gf5dFsZn2OYwYS/xIR0GgUkHYZTeNAuCycDlmLSsybR2lucmZeZZe27xsyGGIPPZJ5I6RZ/DM9S3R4OS1PPnZcp6lcRvlTtRbsVlQbTUhlwLIB2OVJXotAxujh3yOnfESEuu2kJLyANy0IDTlIM3UMEMkEzZZLFBu7ulqsJhdzmvVvLJcWOrXXQ/Ia+Am4HXTmcQRRI0YjZMgBKLKwCuKZaozJD0qaq4io+hcM9eswpB0y3pp4uj+1H3GlUkkj2V/6WcDyQSo+7vJwRSrQxsxaCMFaUrKngwlwJC0fyHNJkRqOVmRuXwIA1Gsk+wvAUKEZae0ngtyvBEAqKqIQaNbUl3mnCciWngWuGlWBFVpWADoqDo3obtgOUaKwDBSmxuBcdp2sN1E1QUEBAQEBAQEbG0ExqkFRGT/8tFsknHS01DLOIioJMokpynqVLDkFpN1WPFMIW1KnuFwtgs4socsVz4DaAYTBciGpA8VALBEt9nVOhCvXa6fift/7evkJaLNMVXFNguzXs9kNbOi20BTZxacCsvimLLCZ9NasBpUCIjUsgycEaNh45HWvFh9lMdsEf86CFeDovvcmcV758Vz2h8uzLlJXy81o49oS30O8UIHHTauDKWaG591KiaWbqN1ajWzbqfxya8bjmnKszabkEC1cE6qTqtjynn15NkmL3LTLnMagUS0wACZqDN3v0z4DB8hPjvltlNrp5qSTSHcaoZa6rzyWie3Pq0TUnogrWvKaq7gSrJKlk2RfZJV5Iq0RuAxLTn/In3ugLwvqSKCWFOARQQiVsxVRMEYAXMZScOkUpBm4iTmFhAmQbFi9VwtouDmGSYIMd5QSFMgScD6huS2uEtF/ul7GE6iXmFTaalzEZQYlimvYfKi6FRaJ1fzBAqINvZWY4kMFNkouY4t1NRXPcKLU0BAQEBAwDYOMQYaJxE0TmOC8OLUAoLZb9h5/yVppavKOd/AQUSRUHI8PuTkUdMVrQ5c8lszF96yE9lSqqlRh3ES6Bq9kLONpjYKMB60xzDMWlyu/WnHPAlC/Mgy7redutMe5aHk+SiZRJ8+4yX1WWqb8p0hHuPjlE3tzLEAIpkbrl2TmdWJEA6fDtPXXp8w9xMCF5IB56+Fo92SehS1WghwRgszfrNbBo9NM6BSH2MmnkJYhi5/aK2n6YS16WQ8toKbqFW1yfP4KmOAvGOPnGHydEq5fc3xiF2fT9ZqvXqKx/OiJV2Pr4wbdsg9D0GLLIBgaMkammU1/kr9nTSLlU9nr8eqbn9E7fEZAY8pBHOi3yiMNsmNoGUN4et1NEXssKXePU5c5kUzpLqJxDxDCjrHjIBS4jCmsOeq2VhFibv9I5TOS0fVgTGAEBB9rlEEUldi0koM1KrgSuMk2+gwXBxwb1r3muvEva2i6rjbR0rr6juJbzmNU8C2g/DiFBAQEBAQsI0jiMO3HYQXpxbgEUAimG/aQn8DZ0J+D3ei6tpFwgmWj5xpf1zfD0nNKhWr5AYqudqZAv3qyGAEtcfU2iijR0gANghEDauzEe73e2/GKaOAPP2ObrOegTvMG/J9kitv8s9lij3KRfCYajjMrJtwq2lqGZFk2uusy0dNKW0RU/m02BA8BkI4uazy15OkwuTEAqByfOkZfgmD0cK3Sfen0Z1RYWbcgmmdFcx5m/7T7I5zbq6PDOEw0XQ6cstjnpzthX7p0A3ctF2D+bn+4EWM8WK9eeZlJDqmDqLhNLtkWWKimENi6iiwUqYxADLJSALqeuu8a3ktEyc+28Ry0YIFFik3bnV9eQaLW2bFjMPIX7au3cK2KxNyLJuxK8cx0wxURM1Y5RWKrEaRxZaNkiyb04cO4+lG5xptj2ZLHR0oTWC0QHIbkXojkxOPwtV9ebn0GAOYjpTjENzpWy7keVUkq0RqNaC3W27qqiDrriDt1n5V8tobZtv5YqAZJT/fnMMqOQwSjxRjp8/F/Qqh9uUM4FtK4yQoslGFLhcJzIBNQ4iqCwgICAgICAjoEIFxagEeA6SiGKfIMkdmtuU4XfuMU+6VPse2uIXL3La9aLqc6Y8bpWa0RrmK5E9nTzuJlMuOnog2pT+TN3M0zczN5vMzFacNhRx2uT7xGCbdbXkPmHa5y1ytiqHPiIzyMlbFRc2LO/t3I+4IQe7cBEiifGc49yPB2k0tuNxOmZ7FM/AKtVE5BNY5XLF19vyFF1XntxtSp+LaMLsBUYQ4qf4ECBzWyXFpJuDWGdw9H1cL5OpKCudK/Jx95hqWXCs3Gk3rsAAnb5pTDvbaeOyZGU8l2qx8ZJzSKbWNjtN9xHx2qlBOn6CqFtQWErGjQzM228XTlwWcasv6iALCcfY27GReI+P6PTHJanEVGSeUXokNKmZG664AyWhRq48iKQdp5thJxfxk3RXQlIEqN/CsRqWeR0UGC0H8gEjnQUIzebvpSDTtdac7x/goAdLbrkJBMqXn4hGo29eAM25Sy7QBgODgTUPJgsYRAJWmIY4gKipqsKeKrMZM32gNG2e2D7nOWxfBjw7O6ZQk26x+668NrqbJ1UOpbVsqcS4HAR8l18E7Ei0GDIfw4hQQEBAQELCNI2icth2EF6cW4FUAVcksCQaH9VBskzt7NTQC/P9ruMyBLsrlbCzvb2TgsiJ6tpdjdTzkia6crsmrRu0rvYuI0TyVu1fbwwlCLEPiaAjyGcchAOroctyoLxO848o/nBm+p6vKnay3n+lH+YNmADKrgfLYnXy0m9I16JkuzXyGwGNBsqI2xehOKPWctUnGjcbDwGVRPIZRM04oggIkL5xQfcsjyUTp4xJuWSfZNjjjjcGNxpQaNY/S9NiIsuMZJqswPjt7AIsc02Q36P6FE0UpgJTbvnYj55SeyHCpmjnTzJZiguUxfVYrD99jrEQb5zhJIwJQY3abA9bkRi8HKAZWM0XI6cBKNFl6nJhjxTrKzvaJ3G6ZJl02q6scbhm1GqxMSPoj032S60/Yell/E2yQgqn8brzKkNWY8XrKKrAsOCOym009BERH6Jpzkf9Pq7K9WVW1s0JRYQSxbj+jYIpVopRKtlaxcASAl2uv2bTbKAGpVEBi5Q7eVUfWLdmnrMqkO7iWUSXymnDtSVUlJrKw4M2kWUu17DFMzLJMZt/cds6Cbui1iPDiFBAQEBAQsI1jbMTh4S1vLBBenFqAxwKIFbNE/cg5OUPJsUwaeV2QgJkB0pSAKr8TkhKQzIn80GyQnvlEsHqDguNw7pg66gVQEU2O/ihzZoZar6KuekbkjEkzTjRx9svlRCswB0QYXQBTuinLTjgz8FyfuPZTpj6XAWjHpOVIN1dnBQhQEBCdI4sL6S4OFHVE2pvH1eyYyL2cV08ZXJ2O4xxNEgCM+5F1joam4C2DFoyMbp/xuwGIclKmzcyPatMMh9aGRFa3JHUnxF5Dp37dBhshKCR7Y4UnnoZIaj+sxqfMR6ksUq0sjx9JBVhDZ7YXll1JuXSDzo8fAKISgTgWzQJS02L0UML2gdeH+lTgs21es9woO2hGwjkXR7Pm/rslYgra5HacCXsuJMtnXfT3lYWI93/DKsFhnDQLrO9LCGQxBSKH3dX6oVSUMpvmcAKGnaKNFCTJQPVykoENUWQ1+XBIuxz2qSqPbPyKiADhxHuuCGWhpJ8BrKHPmSDphtFWxQ67o2EWncSZpucSHQJMjV+TKe6ySBExEYK8i5q8coCfa5QzojSqsPs63kwFxsmNwCspCyogttDLiNQ4je5T22j3D5AIL04BAQEBAQHbOPgYpFwJ4vCxQXhxagHBhM09B3fWIZS+omQAEsjZXmoZJpIQsCG13PR3k6yH8zvPrphs5GqmoycLVDFiql1SE6FmaplfF+F29kcTnwEgWW7mTdz9hO9eDdjZL3SkofqtWC7bPsnEmHxvIndcV3fFczoCV5uUynbQ1NEiqeg3U6fD6Ghtg162XlG5WTgUS+Tpj3wGp6VPFHG8e6ismySZKSMianNxwbZPMElXUF2WcwjGAJW5njt3oo2Ss+eG1NnOuefjI7U++mRsFJj0vXLHMMmxSPAvjMizc8JqiJxZO0AA5aps6vVcqP2ucyPuWEOApZkNRcqcvgdkn2hQSN8fWIbLsl7q3nBythlmTUXRedF5FOV6MyGky7wzdgVzIsrcKEXV1zy2TAevUEBFb9FUgGptGlM6qby0y/GSKqzzWO1yZsC7x6BlbPr5IqzeUPcDs+0FADYozywaYjLqLvXHOdXRpSm1ec0Us2uGNVHPDlWAOpdTPreAtK6W6wA4QWWj83zSDF1CQVIGoXLOkTi2YyGlQBSBVhXD1F2H6O0Cr8mkkrzCwJU+C0SyX+6zKqsQpHV975UwTO5yCctkziVXFlT4y2TL+TgFbDsIL04BAQEBAQHbOILGadtBeHFqAREpximvvaF5p3BHQ8CJzM2UqKiRBgEbsrng8roZz/8oz4hkjsP3IOB5IxH7/T6rSkZKgybKCVvXR+3MEFzqkWhiyxZcu00HFEk1LwLMYZ+0y7DXLy6b4WwjAtKLyd03D2HLUkcHRpsctKkjiEocqZFrgzuTz0fNOf/3cqvlnbnzecRcJgOS6dFZ7ZFxoF4xs1fisimUgjBuNCY2qkzNxF1H5ZKHm2YfJUNH7cXJlZWMkWVzCtGChHhaK82eaZ2XKa8jtfTsOmUm4z2PqdTSOQxTFufqda434cLcA6yR+W12x0mbnF8ky/zU7ipKzfhkQVhmKIU3NjTzYpzZc87nervsD1JgMv1ITgGm2D4dqaWdujkjXl64/L4F9s/tK9cHK+dJVbgPBWQuNwDEZdq0NkuzURFBVnE8vgTAI7mQ1SloIllaAFLr5GrKKDFML3ecwAGYfJJUjV3XSJ9HAGIdsQuwASAegqnLixCMqfxLVIRgxC31WoPMRafy0WXj62hMqqIxQZZNuqh57hk/KZ3dIVKZH3S/uIy20lh57KjD5uczJoAUGSbjzG/22VIaJxp8nLYRjO4qBAQEBAQEBAS8hhAYp1aIBBAJCCo8axEgrwsS1iVZQEbLKUaHNeB5GHku4sQjbez+ue3uAb3ZqyI5SKpmWLHdBuF4LDUtw8SacubnRhsV4OoscrPefN47t30810cClqES8Gd/RRGMe24l2iJuZ3iGedF6J8PCydm+1sAQIcysXGplHBdsqNm9y9oYV3EO4fo66Rxj3JlWa5YmAUgjARqawiOSfdLaCzdaLyYQGQCt52hmUt+kPW2EcLRTfv8UWLmy62ZYQ5/W9CLJUil+s9GOBKRF+KA5fzN+M8Os0FSAg5u2Wx2SOqbje8YJQIT1RRIkAmtwo6WRohLVR/noR0J8PyNGnGNQORZK+kK7srd0o6cAZ7ZTC1F0gBNJ594Eim3ROiDtuu+ObTi/idM+Ifwcfi6JCVhHfFXW+HIRlLNPIrfstlmdWhZLfZMZP05ZHhOQqnDYZ6I0gqreTCDqU3qovgy8QpHWZUVSO0SsrM78R/6fJkDULxejoaK20827CABC3S9ZzABWV+et2Ky6/CeqOT5CcxzFwE5yfdILj0kr1YhqDWYsPMZMXhtbriX0A5r4DJN3DCqK+Ug3EzJBkJU8O0daR8DoEV6cAgICAgICtnFkYxBVl4VPdWOC8OI0HPSMw52huFSRgI1oa1DQJgFrWAYK1AYm+bms1HIuqs7TArnRHU7kBwDjBwXiR2TRFGCJ3U5Tqy8g+eiPksmHy264ee0AqwfIlzPb3KqFPyMUznqPWcvN1olLy2mNiJ5dczjeTP7+IKrOzFBHjnN4/iRzDw+XUcpUtnntzZQJWae7T6ZFV0qXFJnwQiDjEFWVwT3LQFJVNklBGLXtSzMgYiBDTd18k3tLxEyyTw7zZD1zhIyGypyL2cpzipZeYgtX70SIp7tBpajJMRnuc8clCQcDNf2dgXh5D6H0PrIeGYlmc5mhwHLqdpQFrnoQosCyAABikhtjwtc8Ocyldpx2x4gbBcpjP4oOAoiGFEuYSt8mz3Mp30SHEfVu8Fz5fOSpje4EyrR8rkbQRDeqyMZMOWZnFdmXpXnzhGQCqbpOjFII5vhQCcuW0USujwZt5GYzyo1NV0/kSPBoE4gatl5XV8WGUtBmBq4iS5NxFSQ96ne3r89Ka0DSA6Td6jhMFJk0/Wxi8AaP67+Vj76T+ieRy+5A7HmhhPH1QqMxzE0W8GpEeHEKCAgICAjYxsEFBR9lVB0PUXVjgvDi1AJaW0D0jMKdZbhjN6PGt4lkBCR1ZraOJkhDs0PSe8myQDSB0VDo4xvkGCeZC0ptymQUHRtS9ShvKFcr5cKL5NNt1LNXZ/ZUmkPNaZdbNp8TTOZEa7G/+o/rUO5HF/odZq6BOhfDFBAq2Zdc/2p2DYI7OpCca7Tj4WSWjc6GS18mzRQJxThpsxbKjE+TiOS5E62X4RxoNEAbDVPW7OcwYQAARkEaTaDp6KOUZ42oMIhaxczEoTVZkA7PSLllyEqi/mxEWE4rRYj0F1LMkWDUHsMh+rx9dG60KjW5v7Qzfd4DSB8uqxJvHNHUshVE5RM0eiYOP8dczsHbIO9rxIXVWBVPVTKxxFmAvScEtS7TIrKMjSkjhIlo1RFk+regvl8VccakZJ9b6apUZF9JXrsyeBFhZcywccW2kXw8kgxZWlPLsd7XMihG+6hyO2pId20iI4MhWSvzjOHSf0sj6aa+j1ve+4jZ51M0oBgox/PJuMZnHIIRpD2SoW1MZBjYUVaU9EqWSTOXggl5PlpPpPRF+rfH/BAho5sb1CyaANsMUofqsElZF7d1RZYeN3LB3LPYZbnlSWGLYGt8qrvuuutw3XXX4W9/+xsAYJ999sGFF16IY489FgAghMDFF1+MG264AWvXrsVBBx2Eb33rW9hnn31MHY1GA/Pnz8ftt9+OwcFBHH744bj22muxyy67jOpctiZCVF1AQEBAQEBAAbvssgsuvfRSLFu2DMuWLcM//MM/4L3vfS+efvppAMDll1+Oq666Ct/85jfx2GOPYerUqTjyyCOxceNGU8e8efNw11134Y477sBDDz2Evr4+HHfccciyvHZk+0FgnFqBCvlH9J9cTdRvoTOQJ5Zl0rMqL6M8t7MxEfnf5WlKzJurUHoiTwsEp2wCCNc92tEIuQ7fJFPHzUWuAA4DlpsxuZnCvQMQey5ac2Vm5zlditsmk6OrpAyg2SbnBD2GzJnSub91HY43kwxays2gVPvybIjntq3ZGtdJ2tE4IeNAopggrW/S26llnwiPgYgZBocggqhX7DGHEpljCwBM1KNug2JMlE8NktRG3A1JRoxEcpvvj0RA8wxTHm7+OmrLCEohIurk+CJ+JJujBRKMgEfU6HuSHpZjMqx2hjXlNc3UqfsMjlD+RnIg0UQ5wavj0Ca3LGEeLrtDSY6FzWmy8n5WrmYo10duvrE8myMIwB22JRoSJoIVkNGPps+If64gMDnkChGCGnp8ckgdEeDYbpecDoHHtul7ULNMWdU/AZrKNgNAQgl41We5TSQclww5dyKAaWrbTVOBSLHYSRdBYwJFqhkoyOeMzl2XucwQleNDR/kKClTWE9TWqX0zex+STIDHzJxLs4ci6ZHlmuMFspoTsVbmoUTsdQBylzkW4HrfRGpP5TEJaOYw57Hy66vaB6VlBZXOazgN0xbzcRp9VFwrOWQrvOc97/GWFy5ciOuuuw6PPvoo9t57b1x99dX4whe+gBNOOAEAcPPNN2PKlCm47bbbcMYZZ2D9+vW48cYb8Z//+Z844ogjAAC33norZsyYgZ/+9Kc4+uijR3U+WwuBcQoICAgICNjGoQ0wR/sHABs2bPD+Glpe0AZZluGOO+5Af38/3vGOd2D58uVYuXIljjrqKFOmWq3ikEMOwcMPPwwAePzxx5EkiVdm+vTp2HfffU2Z7RGBcWoBEgmQSLJNxGGcBCdS09RQbrdNR9ekZycumVIRxkW3oO3JbFlXIyB3tNtIfl/nN5SVkauJIO4sidqM2C6j5Z+s89uZ6QqWZ6HcWXyxDjNLbjdLU9ssW5AXgcGL3BPUdy0u1WzpanJu0K2inQrMk+vjlOacrR03Z/N/zRAMyYcNidX0msk8ddqXRnRVLYNDiNQlaUdurW3S9UcMrv4JETUu40TvC/jaJg3FJOn2mWum3bLdyDNCrA8Rz7z2uQwjIPtP1LRbuM39lVVVOSf6yMtr6IxPIYjn3EwqcsZPm5rZyOXOo65Xk2VW9Lg2ZXWuPKOlIt61chkfQ+xEbj/Y7nMj8PS5aMYkqRMwdam0yz5xfNt0PjPTa1pDJGR7WkUGupFnOiqtXVmjH6tQZDWCtGrZPw9Oe3isdU/ldbrtZQ2CuN96vum6ZFni9RmnkLkKVb2Zw2rJe9Y+L7MaAVkLj2UybSAEvMqQdMvBkXZJbRMAZHUBEYtyhkm1zWof1fHMNVXLeixXOTL1jOZcji+i2SgmpKO/qptn1F5flavRe645/UJ0m9KR8jibhrFJuSL3nzFjhrf+oosuwoIFC0r3efLJJ/GOd7wDQ0ND6OnpwV133YW9997bvPhMmTLFKz9lyhQ899xzAICVK1eiUqlg4sSJhTIrV64c1blsTYQXp4CAgICAgNcQXnjhBYwbN84sV3Uy5RLstddeeOKJJ7Bu3Tr88Ic/xNy5c7F06VKzneQ/hQtRWJdHJ2W2ZYQXpxagUQYaZ4BQs+ZU6Vg2RjIqQ0fdZKTlTJFX5Hd6nT2dpARI9CydeLMk7bZsvJbyLFBu2eiKqJpoU7ubIPCjxpxqSuGySJqkEcXzKkTgtainsB/JrdP54IaB1KJYb2tKACgPGEKU9sfRcnk5vJDLr5VzoJZlnGg4z1SHAJpFitQtoqPics7cEAJI1WBIAQwO2UsVMRlZB4BUY98HyWWYcu0y/lCpZoZsFCDJRdEJxsDrMXjFRsrpvuURBY9szjHazEATbvveZaeo77ye1ajUNSmWKa0RJMpDh8fwxophTPKRkgDAlXZGT/Ab0q2aJVqHBYiKq+FxGCcKc65EKO1R7Ot9PKbWGZSCUf+aO3opNzeZ9iqz0ZiqiE4/GBOj7WGJPVfdJkGstsvdL++Blo9m9erRbXCi91xw5rJ9RDmCq22xz8IJ4rB9KhLXsEsCznMLHsOY9EitEhsi9jw0a+TkntPtcyPn3Ag7zTZp/RPvFehndlzR1N6LNKJIxkUYmiS3DU0G0h7ZeM02eZFzKGGZzDbhlBGKkXL2rZTsD1teqAHBmCOAUlkhBHfuU/XvgXecZMswThzEfD0YTR0AMG7cOO/FqR0qlQr22GMPAMCBBx6Ixx57DF//+tdx/vnnA5Cs0rRp00z51atXGxZq6tSpaDabWLt2rcc6rV69GnPmzBnVuWxNBI1TQEBAQEDANg79qW60f6OFEAKNRgO77747pk6digcffNBsazabWLp0qXkpOuCAAxDHsVdmxYoVeOqpp7brF6ftinF68cUXcf755+O+++7D4OAg9txzT9x444044IADAKAjT4lOQRkHZRyCUxnNNiinUGyQgCaW6XDHoZ3Rqtm0/kavGCchYFzGQdUsx/1+7sygPe+TFN6MHi6j5Mzs9WIZ4wPI2VbBoTgPhzUSzr5a3+TlnHN3c2VBueUCI+ewFWXbWzp+l9WlQQHBickrKNxGKiMXHaFDOJXRc3o2ywmI+s2Ve7dhZbTHUwvGB25ONM0+aQ+ooYad4vIMpF4D76rY9jmeS1KLpOt0jqXboCAIsbnwIHN5De5URdqlGNFMmKgqwmVescp62R7aBLKuqFg/gKzKkHRTDE1UepO60jKZiFDHoT7v2Cx8lkl65cC0QTKp6jyZZAUzhy6gnp+QZYZoai9h2mX9iXS9ghZd8wGANQVoUxjWQ+vkWkXSgTg6QCoKeiOT+61CcuNWM3tWO6WPIXNC+kyF6Q/k7g8u+6vM3VpGnlnGicfEZ3iYry/ydIi6Tfo2SJ1nivaQ00OsIq95Ms72kfe8yTFmXn8yWGZIH89pQ9ol0L+zXJF0U9TWyHuANQV4BCRdqly3inAD5L3qRTOjnGVSv4lXVjNOtg26Q4n5PzwQ78Hi/Kaind2W3DfefsPqh8PnP/95HHvssZgxYwY2btyIO+64A0uWLMH9998PQgjmzZuHRYsWYdasWZg1axYWLVqErq4ufOADHwAAjB8/HqeffjrOPfdcTJ48GZMmTcL8+fMxe/ZsE2W3PWK7eXFau3YtDj74YBx22GG47777sNNOO+HZZ5/FhAkTTBntKbF48WLsueee+MpXvoIjjzwSzzzzDHp7e7de4wMCAgICAkaBsTHAHNn+q1atwsknn4wVK1Zg/Pjx2G+//XD//ffjyCOPBACcd955GBwcxJlnnmnIigceeMD79/ZrX/saoijCiSeeaAwwFy9eDMZYq8Nu89huXpwuu+wyzJgxAzfddJNZt9tuu5nfQohhPSUCAgICAgK2R3BBwEfr4zTC/W+88ca22wkhWLBgQcuIPACo1Wq45pprcM0114zo2NsytpsXp7vvvhtHH3003v/+92Pp0qXYeeedceaZZ+KjH/0oAAzrKbGpL06EcoDYN2Mb2qxWOOZnhiqnflk3CaWmtHlMZEis3kYAkvipAERNbmQNIpP2ujS1/p1L0UJywvB8igCR/wyRo9XNJ0hdPnfMQmguHErfPQ4pWY/isvkkkfs/gELy1bbZAsr0mUZ4r8wSTdoS+WGG6+968Gc+RDi2mkIl1VVCbVGW4sS0gYOkzH6qc5P65topYgZeY0h6bKw4zaXr0CH1+RBuUCCtyzYP7sDQGE/MeKQZMel3okGBeEAgqypLgUoFSbc1MuSx/fSU1eSnGm1kqEXH5vq7v4Fcmhx/mXCjiZefh4QNXU8FAWVu6g/hGXLK1B/2OPp3WiNeqqG0G574H5AmjgAQDcjgDb0MqtKClExw9RgzbhPq85qX+kjf844ZLABwQgqf3Nx6C/2F8jYQTkAi+xnNE5YLgqTbfqoTTNoBmM9kbn+p+84TzDvLnNhjQH2m08dhQ+rTrvJj5VV4nzYLn/idz6Tys1quvxwRtiBA1iU7YLBOMLSD3BQNENAEyOrqmI79QLGThF/vMGJw82lPbfdcVdpljy55ryisMl/mtUi8dXUBr05sN+Lwv/71r7juuuswa9Ys/H//3/+Hj3/84zj77LNxyy23AIDxhCjzlGjnF9FoNApmYAEBAQEBAdsSuPpUN5o/vv38k79NY7thnDjnOPDAA7Fo0SIAwP7774+nn34a1113HT784Q+bciP1lLjkkktw8cUXtz02oQJCWfKLQYqsIiB0SgGXNQJKZyymLRG3ZoQZkQyTniSlUrysZ7ysCaDpTpN89sfkcXWM9MzxXdbLZZgU+2Si0QVaMk4AfJaBFE/TzMoByaTkZtiGBXPrFbYdgD2+nUja/pTiVVFkyHQfCBSEzp5hpyO2JrD1iojKBLBu+hZjlinc7LByFaUgkTKgTLntQG3WaeqJILhlp0gSyVQqpl5hDCwFmAzRVhYEzR4qxcf69Lid8XPmMAPKoHBwkiybdisWRjWJNSzTEg8IJF0ESbfsiLQOLwWHdx2YL262zIHLdtk+8bW0xLJOqu2WAZOsCNWuDhWACGLSebiGi0bErRkSJs8PUGk9qGO6WBPgFW6vsdvWjIBkBGxQNriynoA2UBQ7q13KWNhWSa7zwnFO/PN2WU7vhmlzDCNI1zYZLnsnpAWBsR9gimVyEn4XTGlz7I93H9rmSEuPnHmnFti79gPRkAwsSDUzVNWJfYVpg8+G55J8O20QRACx3C+rq/Qn+lkVC7+RBYE34LJIHuMEmMAQbVrckmUqY5XasVAOXGsC18ZgS4ALCj7KqLjR7h8gsd304rRp07D33nt76974xjfi+eefByD9IgAU2CXXU6IMF1xwAdavX2/+XnjhhTFueUBAQEBAQMCrBdsN43TwwQfjmWee8db9+c9/xsyZMwHA85TYf//9AVhPicsuu6xlvdVqta1rqhAqVJ3J6SHvlgZpIlasAhVAooUYuVlmJLzv/8TRCGlrAJJLPmmOy+BpRrw2ubNElUalED7tzqhLZtpwf5YwTpoxapViRQj45+UyXx1M3jQzRIQoMACF83WO05bRy4X029QqQqbyUCZ8Onxcg6QCRHDzWxoDuswVATLqlNcJf0tOlBAv/YlNOsxl0l1tP6DM//qmylsw6fVTYwgCm3omx4B4zJAOf9fJWptA3C/bNTSBIu2WqSwAmyrF0+DltCh51sJrj7vsnrJm+1zNk5qZC8U+EZ0gVhk/6mSutOlXTBN73lnNam6ymoCoWIsBMKWH8dgVxTzEUqOm2ap0PAHbwMAasjBNJYOij+eG5WsrANcWJH+/2WTWJV3ljGOdgNs9b6+oYYV9xq5geeBonkQMlW5Gd1ibezR/v+TuswKEYrrhjzeawrMyaEbIywKL48hZX0iX4jBDPBbFsm4D9f+pbKCvY7K/3bKabWrFMpWxS+14Iy2oFpwgS6gpTBnfovqmDMSx8dj0OgJGj+3mxemcc87BnDlzsGjRIpx44on49a9/jRtuuAE33HADAHTkKREQEBAQELA9Inyq23aw3bw4vfWtb8Vdd92FCy64AP/2b/+G3XffHVdffTU++MEPmjKdeEp0CutNKL9js4pOBcAhMu+jvTVWzEhO9KD+5zATxhRPOfvnJ1gGbtqK/NTWYXtM5Jkz8277ud6ZcOSLEWd74ZDOMQt1le2T1yXpvjAJTf2jGz0PsSaWhMu+N7oLR/NAKYHIhNGFGC2U7noqrB6BERlZ57JIQjgpLoStmAiQjDuJXIVHFZIk8/VQ7dzxCJHpUwAIlSpEG2w2dqyib3qEphqaOiGrPLkStkA3m8BnGQBEA0Dcp07VSXIuIsk2GW1KBGno5+lRnHqB1te4cG6O9klX4I5XrX8RAKLcmHTLOvWzhtxXM286LYg+F+5qYKhQ2hqXgXDa5ra7KpBOEsiaKu1HkyDaKH9Hg5J98lKROM1yTTaN6WOe/XO7xc3BLIykUd7vHpPkX0PiDCV3HJvILccM170PvDRIrt5Lt8+5xplrhilgIh69Y2oytWnr0GaZ+tx4LOvh5ma0Uaj5cWTYppIxl39OesyUez1R3NfXOMn9XHNLkhsDLstUNqRbaZyEsClX0iaDaDLLNFeAKHazW29eZBg9Y/TqtercsthuXpwA4LjjjsNxxx3XcnsnnhIBAQEBAQEBAZuK7erFaYvCzGCkMMBMkAkk42QYCUg/JsCkVjEzkkh4bJPIiEz0C4CmREb/6Jmlmk15KRlKZqDDtzuniXHZqTKKydE9uNFFBR2HIl3K9Bw6HYMXXSRyE7ES/YbZ5DIfTu5bQggIF5aBSAmImsLzyE9pQTMh9UluG9wkvxygWpvEoVglXZg4LBL8yDmtWdL9yZGjDnwWC64XExWGcQKlyLoqGJwqRTv90xiavbC+Sa7PEEFBb+QlvnVm5myIIOqXrJOGToTLIxnFxt0IUE9HYvdpTX2qfYeb6LozeuFcZq0P8Wvzfurot6wK8BovpAwBAETCYy50MtmWLFNuoJLIbueU6FzbAKFgFBBN53huyhNnHJsh7GrEciyO+xuw2XKIZoadey3P/rpsVeEy6EdMQ+qQ9FhJq1ILJvsIRQ2b0xaXseGRekw5z4m8Z5r3bHI0jKxh9XK6XleH6GucRI5lyp2XNx5zJ+1d03bMrh9FV/B1cg9fpm9yy1lyuXT7cE3ZnAif6rYdhBengICAgICAbRxjkaR3LJL8BoQXp2FhiQet2bBMk4GOIKJqZqtZJs3mGMEELEvCiT/DIyh6MnWA4cq7OqrizqqM1hS5H8B9+YHxfWkVleNGwxUiiNwZtJnFKu2GWmFmrzkdiAvu+BwJxTwZf6OGAKXCskicGPaHcCEdqpXGiXdRsCGADmhhi9MHAtK3SUeKMQJeYZaRojARdoIRiMjSWqSZSQ2U6ymlIuyyrhhDO1QwsKNNopt35navh6ddyelCPEd1oXx2UmHar/2g0prSozB7Md1ovVYeTS3RobzCr6s4WycCIJryITJiDpBsk8dOADln/qKuxWcy3MFTZAqEGaBWt5L0cvCIGsZO6Agydyw75yUY/CTHOcLRu2FcBkpFupYl+TX7a2dy7jJ2xXK6bgCIGjaikit20TCMKjGzbgNt2rKFyFXIthc0TxrELtJEMZz6UcbtRiEAuEl/hXpo5FkooHw8udfXLaOuZ8EdHK1ZJJJbNutzx6W5/XXCZ2m9Rswzn0Zc5vTm6v7nBJwTz9sp4LWB8OIUEBAQEBCwjUOAmJe60dQRMHqEF6cW4Bk1zII3o3FmIHrZQP/UDJTWMOlJUt7nKYeWWia13mVtigyO0wRnpuvOFPMeSYUIPOIzGd45wc5K8+sLbRbwCQBXA5FjowQhfoSdwziYnF1mWdgZcyaZF27YFemDRRWTwRrckBU0EyBCIOmWw50zAJzKvHK6HcrbiahIPZLLG2f9l5h1VSYqWk+zZzEFbVLLegkBXlU+Td0RBAGiIcWuqONlpi54UVF+tFSeWfH1JTyy/jtplaA5Tv5OegBeEV7Zgs8OnG0ORmSI3Ant6RxGEIDXdfiWc2zFIBU0MmpHN/+YHSdF9qJM4yKLWCZQqEhDUSVImQDRxkhDAJxceu3uVxml6DC1zv2VZ3A0GyWc+6/0foYladrBJbY0tCeVjqxMu/wCxrNKVeD5UwnVNjcyz31WwG+jZDnVceo231xWQrO7nnSl46xVZCTNnaF3jf0Geb5NuWO4TBUhPsNUGk2nBmDGKdJmZK4ZjThYJUOm9XApRQaAJyUJCDcDwqe6bQehFwMCAgICAgICOkRgnFpAqG/X0g+IgmeWRQInEKlio1xGSfvTODoBN/LL1Ti1zIVV2pgcW+RO6EpmcMS1FsnrMHIsk6uXIQJO7jd4mdbzvkLCPU/1H7esm+Hd86UhkBoIYrcJToozbgCECRBKPA0WG5KVxv2ZjLhTuqW0m6l8b7oWCpJm6hwJhibGyGpE7csVY1VOq0iHcW5+u+UEswwZyYTMP6dOjuqoPq2tEgK0IaflEQEIZ2BNuS3uI0h6KFLVpqQLSMbrY8DpOL9vC9ebSi2LqacXaEyU23hFFH2bnP4tYMQCuxa/AUsUaKqCOatzEXBFt2j1v3YMk1pX5g7dmnmwxxGaFaQAujLolHmCMrAGwN0ppaN30i7aAECYjGjTPk/uPa2Z1UKeOOce8cjqXESb+7uUFGlzqQrsrj6XvAu6eygOT/sjAJv7rYQJdxlR1vDbmLosIkXxoeOOQ9ePqcCsCu+a5r2ZClDbqKuFMvu23paHZqSylHq6NarykqaOzlWkFCLbMvwDF8S4mI+mjoDRI7w4BQQEBAQEbOPIQJGN8iPRaPcPkAgvTq3gzLJ4ahkmkREQlyFxXZDLqiFoyy7ZGamQeh9nNmbmBvoQzpj3PlU7bJS2nirzltEaJtNcXc7N72YnU6Wzu7yWqiVcliQ3gxaOJEAIObPVM3xBrXZCz/D1ctzPQRsqZyAjoABYUy6zJgcbZGhMlJUnXQSCyt88AnhMEA0oZigRACHIqpr9c2egUt+ko+UM2+RoNLjKeYdIngBNlG4JXP7WDuWpKzAh9thQE23BQfW4osToRIxTdQtW0V3OagJZTEw+Oq1rAuBF05n62s3a2zCZpeVIfrnFgMjrluCULdOtlDJZIle2XMek9/Eip/JaJwKTCYBnBIQIcNVXqWYGh5zT1U/JVDG0moFIZLO05s1o3+Azuar1he7xdIhtclMW7J5bXSd9nXPaJe5cfzdaTVC/e0Hg2pcVZEn5HHSmnZagNcf0PKS8Z5DwfhMKPwrZobF9d3DhX1dSdAr3I+d8lsm0rcA4oQC9nTIBQrhdJgJJEtkO1c0dIVEbsP0jvDgFBAQEBARs4wif6rYdhBenYcATKr9ja00Th5xx5DyYDDx2xdfutIyac+rxtCz5mWcuIi6/LwA5OyWwmhJWnMF6x8gRZrponrnKH8fVQGi9Uz5iz/x2dRpCMSp6Jqky1buRSfGg0gH1c6XTcJgiB7SRgSrGiXAOwQgqfbLirGL1TlmFoNInjNcRiGSgbFttJ9BE+FF+OXZFUGIi8KR0g4CrXmNqSm+0XjEzTJNgBIISx2dKMlc6mIumfh+4yLuIe/5LjCAZD1MPrwnroQOtRcnrhJy6OkU7/ZMeR21Ynvwx2zt+t9AtlTBOXtW54xei6vQ1dOgfRiFzUTLZ+Vk3QdakYA3NEAJCXRedt05fXx2lRh3XceGwhR7bi1yXlGmXhK0nHzXr+ae595Y3NuFfB5pjvN3ni1u3+1vvy53DcH+bPqbeJeuy0aGmf5yyeaZKn5xhm9yxoH8SP+sCCEBoST46tc3VLhEiwGhrLZM7TigRhZcJqo4bsQwksowVFwQJEZYh018bttC7CAcFH+WnttHuHyARXpwCAgICAgK2cWSCIBslYzTa/QMkwotTC/BmBLDIeDFZx2+o79pyOc8i5WeZpgzgfxsH/FmnzunVSrvgeqyUoUTfYOBEpZU6Uus2uNFuPHcuZbNVJ9rIjcAjzjpA1ePOaJ3ZKhWS5aluULPFTCAakFN81uBoToiRdmkKx7IykYquo00tiJKMjmGOUmHKxkrb5Gm93FMhsMyQirYrMm1qe0Q87ZaMEpTbeERVGy31JpQeSns9uSIyXiHG5Vmeu+0v01fI/VYaEbdM2u2zTIV9Wq3vJIqupI5yH6giS+RtzrNR3jjPMQul+id/XUGbUsIukLL9y/aFMN5snHHweoamolOjjdT4ImktkjuWtc4JkGPeMH8Rikyvc6rGN6nYfO/eMufcgoFyGSaTpy5/fi6B6rLNOa2UcCJhBYUXAeje/9pbLdWavNiOXREp36YWkY0e9DhwtUmO3ik/ZqjLOFFr5VimaWqlZaLOsTQYEZ43n95Wq/hsFOEEUZyBMaWPU89zLhIEvLYQXpwCAgICAgK2cQSN07aD8OLUCikBUu38TUo0TVqrQgqMkjdT4j6T0FLz4FRpFi3R4uWJy3tFuWVBoLxT7LJxvlXtMfXr3Fi6DjeqjsLX1sBvO3XzecEvK3TKMTfzuj5G/pgMyKoEmYoEq7+cobqq3xwn7WIgFebtC8A4ewsnF1xWpciqWosmWmquTKSP7l9mN/IKhWDCuaZC9qVhlayrOEmFYiHktoxJJ3Gic9lRQMSacVL9k+p2E6RVR2vlOKR3As/7KE9ktmJ32qFdHW5dbfYpi1Aq3aeEZZL7t9cxFd2iy1mkVpF2bberVVElQ8IJeCxXNGscUB5u0UYm9XhqFx39iPw9qNbl9UXu/wVgNYJaKuMyuK4ZtXPva72gyzK5z4CCHs55VriRutqd3M3RCIdx4rFzf6h8d17OQ4eRok0YRl4IqePz+mLYceOwU3osUJ9F0myUyzJRh2VllJcyjUDRu8nbpjrH/RhAnYcrIU6mCApU4xSpur+TJELaZFvMOVwICj5K528RnMPHBKEXAwICAgICArZZPPvss/jiF7+Ik046CatXrwYA3H///Xj66ae3SnsC49QCOhqEAMXoNkfj5Op1CBVy6uIKeIid5nmsh2KzzKyOKpajRaZt4bBIBSbF3UXAj2JzNnPoWXuuPTn9kVlXprFxj63aztXs0zBrPNdeV+Ok6nZnyVkVaI7TLE0MQboBAJVXGqCJnb1yRhDlIut4RXs1UXBHfyQj2NTxMyHz1anlLJbMkNcorWGiAJxZvPaQ4k4knZFhuCygPpeanYtwBuMDRYTynFLLaZUi7SImGknuC3OMkUbqtMrv5v1f/y7Rn7T0WXL30z9HykZ55fNapRb6JrNs688zTGWu4V4T8lF1Zc0mziAFpJdaV2IyBaSNyJRJhWSd3Aq5wyh7jLFybBc5VsqMe2JZGg3DMokc+0ScS6Z82LKqXM7qTp8kAGs6+rzc/e3qqsqi8wiATGvuKKxDeiL9wkzEIJNMoL2/7JinCcBBzLkIo2NyT9Q5qHMPEmo1TkbPpMkedf01y5SPosvnoNPr5amUs02yjPw/U2WE8Mc3g4DQrJRgaCQRmoOyk0Qm/f14cwvlqgNRuQBHV8f2hqVLl+LYY4/FwQcfjF/84hdYuHAhdtppJ/z+97/Hd77zHfzgBz/Y4m0KjFNAQEBAQMA2Di6szmnT/7b2WYwcn/vc5/CVr3wFDz74ICoV6zJ72GGH4ZFHHtkqbQqMUysQRYu4DBIgZ4MZAUnlmztNiGElIJQ2IFIzFAaACft66rqMCwGSEBuNovNI6VmUy2QYtocU1nlRMHDW5ZgQ3T5XL2F1PE7ZElbLgyPJ8dYJ2CicGIUZpjvTphmMGzLJ/PxfSQ9B0iNvjnpvhNrLTVT65NGGJjCTk42mFBggYIMyooUNpuBRHYLKRhR8mohlf2xuMcsyuUwVzVS0lLNNu4zrMrIexxsKkpXKqsRonlymgA0p1kLV0z+VIhnn95GOsDNRSWWMUR5EM1Ql7EsH+3taqVy9QIfsUv4YbRgmWadw6i/TOtnjDMcyedvzTWqha2kXYSeEABEERDOQnCNrKEYhFsi6rMGRHsukqceke39LarKlZ5qQx1Kn6WmRZGXq/xnxdUoMyKrCusNHzvMlBkCoeTYVOsXxZhK54xn228kiYJjeGOBV4bHjbuUu62W0eoayVe0rHTM+G0WoZZQIFW29mVz9E1DUMbksU+kYdvZzwUFK1wFSR1WNUwj13EiGIoAJEFY+zgLGBk8++SRuu+22wvodd9wRa9as2QotCoxTQEBAQEDANg+uxOGj/dveMGHCBKxYsaKw/re//S123nnnrdCiwDi1BKHyTyavgpmdsSEK2iBgyi2YJpYpyKqwPiYOvNxMmdW8FCKZnDHNI2dWrvbhlJtyVDM2ic+IES71BcJoNpz6Y4BX7LSTDchzcaPfDFSEjsumef3DUJyxOhNRweD5PLmzdJHB5AKLhqSPk9YQcWZ1IYOTKQSpIO6TJ1tbl5lyhAvwmCKZIMUemYpeY0oDJajVWYAAaYW21H7k17luxzwiSGvEaEoAt0+kTk2zToJIpstl+DSTBiLrGtK59MbJ8UJKNGPaj6cssq3U58tdbqVncra11UPp1a2YqHbHLtOStGKJyhitnMdOOx0TIcI/1Rb6FvcYeSahbD8AEIIg02xknIErBkcIChELiIqmeQHeoGAOw+NeT8KJlzewGNmp64XHyqqq7S9BLJFF5fOFJmrfjJhoNxEL8Kow0XqFc3WYaKKZ9DwzrNvP3PGo2uD2aUYMsy7iXB96zxFhWVF14oahoQChHFQtM8atxom092ZyNU2ECFCIArNUdr11+Tx05ByjRard7U4apYYVGyBAcyC2osfNDA5i2K/R1LG94QMf+ADOP/98fP/73wchBJxz/OpXv8L8+fPx4Q9/eKu0aft7/QwICAgICHiNQTuHj/Zve8PChQux6667Yuedd0ZfXx/23ntvvOtd78KcOXPwxS9+cau0KTBOw0HN0jTrwwYJsppA2qOZDUBUVb60Sgb0R1ZjQPzZPXF8UsBV9AvVM1IAVDFNAEQ9MzMzMcQk8xVZcZLOOUSIH40njEgJql4BXlftizgEJyANao4pImG+2RMOM0PW/2cDsixNUc7QKAg42/Xpa12Gk9+LDQKVjZa1oU2B5jiCpMepWu3HqZxZZ1U5TFlDRscBAG0ICEaQKt+mrErltdB+SzkfHFfHpM/VjVL0/HaI9fERVLJNnFmmkDuaBiJsxB2E7FNdVkYe2es71EsxuCNUe/2cfbKMM6Y8HxynU3Io6Jt0ed04UlK25NlZyjC1ZJaAIgXp1lWmW7Ljcjg/Jr9sew1Tuxxk7coOB6b1PdxGeokKh9CaIwCkQUEbVLK+KLqIA45uLccICsDvAwFzH9oC8t4hQvjsbgYPmvEx2sqaDZ0jKTUaLGTEPm90FJm+PqnUapr7hsJGxqmIX3uPEIiKsHWV/Vucu97EXa/GOY04WFRkmQAZVedeQ0p5KctkqiX+NW93rUuZqJJ12ixS16Udxom6AKLaRNpkAGslCA0YLYQQeOmll/Dv//7v+PKXv4zf/OY34Jxj//33x6xZs7Zau8KLU0BAQEBAwDaOsdAobW8aJyEEZs2ahaeffhqzZs3C6173uq3dJADhxak1qPAiQjSLxGMg6+EQsWJxmhREaR7iegpezZCtl1FhpEFzXk12VpjXQekcZKIuZzO0mpmZDqcCSKmZqYEIw06QAQZk1r1cqIzjJiKmxkHrqTmMGIyMPoJkcrZoZtTuLDNS59xCU+O5IqtlkxNPszl6du14wsQDQDQokHTJjY1x8hhmwuf0F68CmaMv4hOJ0XbRJpN6JmeGz93RTHzWRhDiRTiRDIa98pgoc3zZvizORehxGC8mkovtlUyRvRbEibhr9lAMTQIyJ78XjwTYkFM3zYmvTP/5DI7HMhHnT8NlAtpFrbnIa50KZXymqi2rlNs/r2PqNFKuTMOU37cVy1DUPNnf7j75FBTSx8e2kTF7D4iMgCRO1JqAjKrSjG0Kr/9o055FoscYc6+NqoZJ/sf1QfMiaN1MALpK/WyIBFDVBmVaEKT6igrJQGv/pdi5hkKyTC5LzGN4einzjEupHPcOI5pnLj3G0rtwuqNUH1EOVlHPOBVFR5WuyL2eZQwTYKPl2l17vV5f27JyIscmlSGfw06fn350p5yCMr7FGCeOMUi5sp1pnCilmDVrFtasWbNVGaY8tq/Xz4CAgICAgIDXDC6//HJ89rOfxVNPPbW1m2IQGKdWUDNC0pMgrqbSswNS39Lb3TCzpI0b6sgGpJAhQYR6bwPZJLmtsa5mItcAHS1lWaM8RCxAq2o2FtncSzTiQBXe7IfWJIWTxBHYqgqifnuMtNvqHoiwjBJlXEUCSUaM6mg3h+3Rv2lCrIcM4HkSAXrWqRY4TBSeLWDrIhnMK3pjPJDWifFJqq4Hquu50SalVUczBIBXLAtGLHGGZi+k344zS6eZO2u3bJSgxOTb0n0iGMBNYj7LHukIQBPlFysmy7ls1uOJ+H2Sn8wxglRpXBoTgLTLYfSYjLA0Wq8EyDRxUNe6sNwMH7Yf2+qY4G9rGSGXZ6o8jIBhKmOy2miYyvbV60ihfHFfoDz/WFnEVdl2Vxuj5Wh6Ji6UUaDeP82s9ogkSs/ksEo8FnDDSV32stK0rKxmMl2tk30WyP+ZXHAOBesxyXD2dSLTDOMhKOBGu6qoT2jNExPWgE17U+ljR0I+Myq2rOluyr1xVhgyDgNWuK5CP7f0s0yYKDpKBBjjJpItH0XHHEo7HxlZxjDlUVbWrO9A75Zxiv5mBU0nFx1zGDLOKYT62xIQYxBVJ7YzxgkAPvShD2FgYABvetObUKlUUK/Xve2vvPLKFm9TeHEKCAgICAjYxqHdv0dbx/aGq6++ems3oYDw4tQKQ9LIKZ7cxKSeAaDX2ZRGZhbS3dPAxlTNSIYYGnGMnh5pUlSbkqB/oIrsFSnSoQ2rjzD53FzNQ1cGFtvv/2Y2yIlijYozqHpvA1l3gqG/y7fw6t8Z4o2WShCUorGrnCFVelNQJpDoWfaGWLanJJoHXLE5rk5J2BmzoDa6jGQE0YBlYnSUmmZ/aApEA/J31BCIBrjJTWfq1oyPICYSqTlB64ZUvRkQ98vfrOnrxEQEpLEzw8/sOcn64euomLO/8MsDdpvOJWdm/sJGShEOwGG5wIBmj9UxQcB4UnF1PKNxU15cXNXPIyDrUtoMpUXxGAndvBJfHFNGr8qVzUc7eoKZvISjpU4pr0NydyrXH7WrtyxarixKbjgNU5l2abgcZWUaL52rTJOjVgsDCJ2LTY8R91RS66OUddsbhA4R8IqNUiMZFNujmEzHT82ws+becm+0Ek2bw0AK6l9CwYR//WMnarZBPXZZ55wz9dYyEFevY+oBCuMkl1dOk2557VCeYaRUskyA9Exyo+fcSDl97VsxS51ESLZkotrkrnORARgYqqDZr4361DhwvhqIlIIPvnr/Gb3kkktw55134k9/+hPq9TrmzJmDyy67DHvttZcps2rVKpx//vl44IEHsG7dOrzrXe/CNddc42mSGo0G5s+fj9tvvx2Dg4M4/PDDce2112KXXXYZtg1z587dLOc2GgSNU0BAQEBAwDaOreEcvnTpUpx11ll49NFH8eCDDyJNUxx11FHo75czWCEE3ve+9+Gvf/0rfvzjH+O3v/0tZs6ciSOOOMKUAYB58+bhrrvuwh133IGHHnoIfX19OO6445BlWatDGzz//PNt/7YGttsXp0suuQSEEMybN8+sE0JgwYIFmD59Our1Og499FA8/fTTW6+RAQEBAQEBY4DRJ/gd+ae++++/H6eccgr22WcfvOlNb8JNN92E559/Ho8//jgA4H//93/x6KOP4rrrrsNb3/pW7LXXXrj22mvR19eH22+/HQCwfv163HjjjbjyyitxxBFHYP/998ett96KJ598Ej/96U+HbcNuu+2G3XffveXf1sB2yTE+9thjuOGGG7Dffvt56y+//HJcddVVWLx4Mfbcc0985StfwZFHHolnnnkGvb29LWorRzS+AdpFML5rEIxyb8AxyhEpVWktThHvsBEAsH5DF7Ihho3qW824CQOYMG4A69R+fHXNfBLS4movcaaAERpmQiBTgnT0M5CMgHfLt/OoO0Ec2zd1wW3SYUHk5x/92YcNELCXJdXMe5qIowxQ4f3NGoMYLH93JhlRgm/NwUtDSntQK5IlAmANeJ8eogEgHpD7xn02GW5jPEXfzgxplyrK5LHcZMdGiJ1CpmXQx6T20xltys8fJskxA7KabQPJbD3awkB/NqGqjR6T73yyyGL7iU2Q3OdCDjD9STKT6VZ025vdBM2JOSGv7hIqP42YepVlhP50Z84dUImhW4i+ywTf3mcz2BNXn8TcoAKSK1/45FH4xOYcx1tfTHHR6jNffhvJrc9/1ikT9XZSpp0hYh4tP/VwCuGk72DUEVRHAmg61h9E3Sd6O3UE/THAE2KuN8mklYZQwQAiIgWbCe+3MarUddtrWthPf4rTn/RIbpvzea7wyVdbF0RyzOnPb27aFp0WRYu4KZW/jV0Kp97zUVo6qMM49gK6je51YYR7ZfOf5joSgQ/z6c29B1pd97LtjErhOlW2DByAl6gdBCTiINH2Z4C5YcMGb7laraJarbYobbF+/XoAwKRJkwDIT3AAUKvVTBnGGCqVCh566CF85CMfweOPP44kSXDUUUeZMtOnT8e+++6Lhx9+GEcffXTbY/72t7/1lpMkwW9/+1tcddVVWLhw4bBt3hzY7hinvr4+fPCDH8S///u/Y+LEiWa9EAJXX301vvCFL+CEE07Avvvui5tvvhkDAwOlmZUDAgICAgK2F+hcdaP9A4AZM2Zg/Pjx5u+SSy4Z9vhCCHzmM5/BO9/5Tuy7774AgDe84Q2YOXMmLrjgAqxduxbNZhOXXnopVq5caRLzrly5EpVKxfv3GgCmTJmClStXDnvcN73pTd7fgQceiI9+9KO44oor8I1vfGOk3Tgm2O4Yp7POOgvvfve7ccQRR+ArX/mKWb98+XKsXLnSe6utVqs45JBD8PDDD+OMM84Y0XF2mrgRUXdTWewLMGcmkiUxGonsuq5Kgmokp5E7TtyIgWaMDeskndI/UEV3V8OwQw3iiIO7M9BqaqmEpqRD0j7JDtFBikiZI5KMgEcCJJXHFOsjJGqSQxMZ2l+XL/5yQhQBemqZTMys6LTBUKskgNI6JnEGkRLLZuQZGNeIj6pZmwmvtiabGRVoTCKGlYg3ErBXYBIhN8ZTpN2qbKxC/B1RdD6k3xVxE+EIbAVAdAqLSLZPi8VB4Kd2yWw9gkmmSm+jiqlyU1doMThnVvytj5nWTXciGpCiUUCzSNagc2gywKv+jNb0LbUsk66YDRFzbrwiPDZAUCdZq8vuuIwS7Lp2dgEkJwZvZRvgVdlC3Js/btk+bYq0NLIELMPQiQVBu6SupeHnLdqhYVg5ygsMnWYUBACRRg7hoI6n7xGX0VG/XQsMmgLcGdv2ILn/e+uEVw+osMxSWVnvpFR5HSiSt5hgwphRRpUMlAjTLMmqWyYlYtzYA2jWSLNMQrTXqXCQjo0rWzFMeVZpLFKqmPapZ3x+30xIdo04bJ97kUVGJFO3hTCWUXUvvPACxo0bZ9Z3wjZ98pOfxO9//3s89NBDZl0cx/jhD3+I008/HZMmTQJjDEcccQSOPfbYYesTQoCUuvF2hj333BOPPfbYJu8/GmxXL0533HEHfvOb35R2ln5znTJlird+ypQpeO6551rW2Wg0DN0IFCnMgICAgICArY2xfHEaN26c9+I0HD71qU/h7rvvxi9+8YtCJNwBBxyAJ554AuvXr0ez2cSOO+6Igw46CAceeCAAYOrUqWg2m1i7dq3HOq1evRpz5swZ9tj5f5OFEFixYgUWLFiw1dzEO3pxestb3jKiSgkhuPvuu7HzzjtvUqPK8MILL+DTn/40HnjgAe97atmxXQz3VnvJJZfg4osvLqynRIbJZo4ZnkaFZSYNh/utHwDG1e3sK0kZ6nEqdRIAhnqrwKCkGGgtRa3eRJrJ5WaTAX0RImWWCeezuQynt2aJrraHcEgtkG4C0doLtZgQiF65Y7WeoBanJkN21kUxlFKT6oNwYpMFEwFBiJOOxRcFsQGKeIMsGw1IdqmixndtbYasQtA/TVImQ5N9SwHkUkgI1W7AZ6BoIvshGrL7MvWOK48pkHSrc6nKsvpKZzV7DJKTIPBYbtP2CSBwmB/ZVs06ZTUBEcMYjDbH29l/NCjrbo5TWo9q2UwXtv9UOhx74sSaeta5TeJszAcdrZLWnrRgftqxSO3Sj7TTJbU8XovipYxTi2OXsQ5aN7WpiVxbMU754wEluhhz2xFkjpivGqUYUimLspQiTSnokEqSTQCSWn0eKKwXJiSLaFjOhmSGfZNYl44CXMsBV9NGqHNOpmltmA6HJRSc2GVmt4EANM5Qq0tauLvaBKPCY17c9CRlfd3uH/FCqhJ92GHYQP96ty7bTr/WSfvatUFDG6FG6osBIQI8peCZTrAOVLoTZCQp3f/VACEEPvWpT+Guu+7CkiVL2oqxx48fD0AKxpctW4Yvf/nLAOSLVRzHePDBB3HiiScCAFasWIGnnnoKl19++bBtmDBhQum/6zNmzMAdd9yxqac2KnT04vTEE0/g3HPPRU9Pz7BlhRC49NJLPRZnLPD4449j9erVOOCAA8y6LMvwi1/8At/85jfxzDPPAJDM07Rp00yZ1atXF1goFxdccAE+85nPmOUNGzZgxowZY9r2gICAgICA0WBrGGCeddZZuO222/DjH/8Yvb295svO+PHjjYP397//fey4447Ydddd8eSTT+LTn/403ve+9xnZzPjx43H66afj3HPPxeTJkzFp0iTMnz8fs2fPxhFHHDFsG37+8597y5RS7Ljjjthjjz0QRVvno1nHR/3sZz+LnXbaqaOyV1555SY3qBUOP/xwPPnkk966U089FW94wxtw/vnn43Wvex2mTp2KBx98EPvvvz8AoNlsYunSpbjsssta1tsqmoAR+U2flSRw7IqbqMVylkEhjOAuyRgyTo3mSUef1FVEybhJ/djwsnz55AkFr1JUY5U6pRJBNCz7oxPxApCzw9TX5JiEtgRA1bInbEj+bo5XM8cGASeycDw5Qy1OzIxa1AiajQhcmXmKpjOzjABAeDNoQeEbS6o2JD0AWwN0rZYNrKxrojmxgkhF7NEUSLoVGxBBmmu20DXRBIg3qiYMyn0z5/JUNsqCXasz0ESgMUExdr0Uac2W5XV/dk9Th/USUBGMqmzF9qdMiwOkPYpFiiTT1pxg6zJJXTkFawKsqVivbi4j4hwmwWia8tqUQQZBBbJedVGrHERHHtEiG+JGtw2XJDePsqS5rcp0ik6T6Laqu53GqUwPQ4gorbeMLSiLsuokOgsAiCCgVCBVFy5iHF01ycokKcNAQoFBlbKoqUI+dWSsYqAAeZ/wqrCaQG2A6V4Ek7QbRteml30T05w2qWzZOwn1fwE/HQhzTCuZQKWaoEedW1fcNFFzZX3U6T+4xaTJ/vJw46wdq9QutYp7XBPJ14ZJ6gRmPGrmTWsUU9vBjHKAbpmouq3x4nTdddcBAA499FBv/U033YRTTjkFgGSPPvOZz2DVqlWYNm0aPvzhD+NLX/qSV/5rX/saoijCiSeeaAwwFy9eDMby2e6LIIRgzpw5hZekNE3xi1/8Au9617tGdE5jgY5enJYvX44dd9yx40r/8Ic/YPr06ZvcqDL09vYaJb9Gd3c3Jk+ebNbPmzcPixYtwqxZszBr1iwsWrQIXV1d+MAHPjCmbQkICAgICHi1Q4jhJ1Rnn302zj777LZlarUarrnmGlxzzTUjbsNhhx2GFStWFIib9evX47DDDuvIRHOs0dGL08yZM0dU6db61HXeeedhcHAQZ555JtauXYuDDjoIDzzwwIg9nACrcdK/U83SqDd2/eZOnRlymlH0DVUxvkuKcuqVIa/O7moTG1UUC4szVCuJ0T/VuxsYaDKZ6gVSL6P1L0RIJoVXisyCITfUpCfeQEFTy4Lo9CKAjPLrqiSox3KWGdMMfXEVDZUyQGs3ANiEn3oWzGVsjvZ1ympEMiwAkBFU1lMr0eBA1Jeh9oqsL+miEGoKLZg8D240TwSsAVTXyuXqWoHKRhXFxAjSOgFRJ5l0A0MT9Xkx6YtjfLDk/yOny7nDVLleTDopMXe2mUg6pS+hTbuNZNSk1eB1boQsCQFEPzVlwQnQnXm+PmZ+RyQTJZqKyRigEBUB0qXYSWY1ZAVtR863RyfDNavaRKK5njplaKUZKtOouJoXd7kd+5Q/Rqs6ARspV8Yy5dklWbaccWp1THddq5m3vtcjdREps8fYyKuIaymasRwsJCMydYrLdmg/skwyFHrsynHvMMWA9WqiAGFu9JZllFpr2lS/tDGU4Zod1kl1I26OEcUZemoNdKlnQTVK20axucll3STIpcfN9W07lsNli8rYJt0ONzKvVT16n+FYFUoEOkmWG9MM1Sg1fZ0QBs6J6fRKV4LJvf1I6djKUlpBAB21e7g6tje00imvWbMG3d3dW6FFmxhVt27dOvz617/G6tWrwblPU374wx8ek4Z1giVLlnjLhBAsWLAACxYs2GJtCAgICAgI2Nx4rSX5PeGEEwDIf9dPOeUUT1KTZRl+//vfdxSVtzkw4hene+65Bx/84AfR39+P3t5e702QELJFX5w2J9YNdYHRKgYbsRdlk8ekngHD4PRUG6hEGWJqozBcUCawwyQp4OEgiB1H8nH1BiLGsTGWgrtad9Mct7G2hsr4BmKltxpc60QVEv//jToH62dgg2oW17R6Kb6yjlWraxA9alrMONBgnuu4njGjScCZE1Un4GuTiDD70SGC6noYk5qkN4aICOIB2d4JfxVoqKS+g5MJsjoxU5+4H+j6O0dlnUpunArwqizb7CFgDevMzRpAVtXsEzHaL0Aycllsl0X+0zmxfaT9nqxPksNG6VX63BqAqAiIitZocatpYQI8cSomQiZJ1b5TXgQdwNdVUF0nN2YVgawnQ0UxkISKInOj/59jhfKsTLvkuoCN9BrOMqWMRSjTjuRRGsXWYYJdz5uphMHKMw9uWZdlGO48Oi3DBUFEuWGYqQCouiniKEOSMqBbDjJOIoiYe9N4PqSiZh0GEwCyqgBnBPA8gdRPJpT+yNG4GcbJavH0fmVjRUMIAqGzE3ACQrmsX9Wr2ctKlKGn2kBXJMWREeVt+8T7B3e4f3uJP264c9FLx0UbfVx+v5Fc27ZMl9OOVuUqLMOkrgEzFjY2aqB1yy7VIunhl8bN0v0DRgcdpSeEQG9vrxGjA0ClUsHb3/52fPSjH90qbRvxi9O5556L0047zeiHAgICAgICAjYvXmuM00033QRA5qqbP3/+VvssV4YRvzi9+OKLOPvss1/1L03r19VBmzXpgwKY/0taRiCqqmg4TtHtzIJqUdJyVpRyiu6KnJ00sgjNjCFWs8yIZZjQlWJyt7TCpkQYxqm/axDdlSbWDck37qGoame5rv8LAFoR4DGHoPLSVhJqWRgKICKga5UDOQN4lUNUdcI3O2MmHNIDSs0WSULBBqjxM2INx6V7SNa1bo/Y1ENTySQBQPWVBLW/y1l716oINBNIeuzQEwSGZcpqUtsEOFGEzihlQ0qjMQBkFWKYJTaknJ2daEPXcVy6fPvXQy/rSDq9n1emIpB1ZyCxmrUzJ0cXkdon7YIuahwsspqXrMmM3klwqdXKlNdT1psh6k4QRcq5ORe92YpRoFQUHJYBeJFoXvvLJvhj/OwcaU64vK6qTLvUqm6aZ5xaMFudMBMaZWyKYS2ccvU4QZIyNBVLmHEdhap24jB6IqEj6ExEFpGspd4eC0CNKTDuaZxcRonk2NBCFCWs5kwIOc70Mo24/HNYrojJtndXm+iJm6gwK6xt1Ze8ZMC0+wc4r4Fyl9vpo0bDFLZqR9nvsjrLtlPltB4pAelGAJUotZpWQfHKhnHIBraMxum19uKkcdFFF23tJhQw4heno48+GsuWLcPrXve6zdGegICAgICAgACDH/zgB/iv//ovPP/882g2/U+jv/nNb7Z4ezp6cbr77rvN73e/+9347Gc/iz/84Q+YPXs24jj2yh5//PFj28KtBJ4yIGEAEaARR1xP7baMIFL5q+KcNqDst37Lr7DMfC+vkQQxywyrFBFe9FFRy5UoM5m6AUCkxOgWdPvMfoxDRByZ2pwNVqyLOCfIYm79Y5gAYm61PhyWfUqI1F2kciPrp6isJ4gG1HESy+hkXcC6PQX4RGUmNcBQX8lA9Ln1U7AhFT2WCPCYIOpXs/YaBa8QM7WnqUBm2B/JKOlIJM6IzwgJGOaNpkA8KHPSAfL/VLuBayJM70v9ZREJx6kZJrIOkBGAJOamj2lks7mDALwng1BsUVxLQQiQDGlfLBtpCCZAJzZMbrAKk7nAtE9YIU9XG41QO5+kTdUpjRYjzR3mapba3T+tmAqK1hqndsfVaDnzVgRS2b5VlqK72jSMzoAgyJoUUU2OeyEIMsXu8CYDSYjNY0dg8lQCgHAi3AiV97DxjCOwjLIa8q4XV6Fl9lEAgBsvuDjOQJ1nShxl6KrItu5Q7zf6JgCgeXt9BzwvAETr6C6O9hF3w6Fd5BzQ2fg113YE5EpZxKVmogZS+QDpb1SwZp01gRZC+fENtgltHEO8Vhmnb3zjG/jCF76AuXPn4sc//jFOPfVUPPvss3jsscdw1llnbZU2dfTi9L73va+w7t/+7d8K6wghW8VTISAgICAg4NUMIUjLVDYjqWN7w7XXXosbbrgBJ510Em6++Wacd955eN3rXocLL7wQr7zyylZpU0cvTnnLgdcEFPOgZ4NuxE815sjUTDLjxJuheP/PRYK4s7GIcgBZWzZAL/dUGqBEYEOf1DgRN+eZ0jVQ7dXChJw9qnrTiSnogGRA2ABB1E+Rqqg6USlmmHchJ5pKkxFJ5qap8kIyxy8p6ZGaHc2mkHqKwXoMCDlTq79MEfdp8QiQdjPwSEX6qdx0Rs9EAJaoYxIBHlPrjcMETBY3KqvPT4Y1C+axRjqKzule4WhHPI8ns05TWZoVUOcdWeYvigh4NTXLGado9FUsG1jNjBaORRy1SmK0THnPIqA9c9Sp83VZFvkt8bAcMeOU0yqZ9Sg/T8/LCsV7rR3KWAyt29FMlnsPp5yq+7Ook+mpWO+jofoQ/r6+B9WKvMaECDRj+UhNU4p0IAZXdCkhQjJOmgxhwhlbAoxZLVJZFKXLRqcZbRs9qb3hKJXsqI7y7ak2MKk2CADoYuWRYGVMEiX+ZFj2WenupexUfl+/7vx1bf1vTacMIiWyHcYDqkRXpc/TzfyQPw4XBOsbNbwyIPW8gwMVZIORvb8F5IMk20KME8iofZxGu//WwPPPP29sB+r1OjZulJHpJ598Mt7+9rfjm9/85hZv04iv+C233FKah67ZbOKWW24Zk0YFBAQEBAQEBEydOhVr1qwBIM24H330UQAyo0knzuabAyMWh5966qk45phjCvbnGzduxKmnnvqq8XGS/idcMjjMXhwhiGGbAKBvqIpGaruxGqXYQUXG5bGhUUN/U4pweqoNdMdNM7Md7tt+6szkSJxZTyLtDkzsLCiOM6OXSKIMSZeaBa+tIOqjoIlyJ2eA4EJ6E8lGgCjWCFkEUAGqI4ioAI+YYX+yQWuLnXZzsO4EsWJXIsYRdQ9hQyxnausbNbBEnnfUp9gurT+KiIzg07O8mFrtkY56cydJRpckvZv0BFUQWV7nqiPcRthldQEIWxZcRkYat3ABn2kiKGSx1x47jHLEKhKO5ViQJGVoEKBSl9qRejVxPL3kTNZlDobLtTZcRFon60eK0eihOo2K0vqk/H7tWKT8/THa83Udqct0Obofymb5uuy46hAGu2I0EjnQqlEGQHk88Rgk4uB1Nd45gecIzqw2kTKuPJb0GMt7c/nMcEwyL78fUwM7305GBCpRivEqg8GE6iAqKsSWqfozj1GjrSPrOh0XhJeyGpbRK+7SzrG8k2i8QhQfCNx4SPeYhhHThHKbyMx1SQ1r+rvR3ycfKtlALJ8h+t8DCvlQibbMF5nXqsbpH/7hH3DPPffgLW95C04//XScc845+MEPfoBly5YZk8wtjRG/OLWyP/+///s/Y1gVEBAQEBAQMHZ4rWqcbrjhBiMX+vjHP45JkybhoYcewnve8x58/OMf3ypt6vjFaf/99wchBIQQHH744V6m4izLsHz5chxzzDGbpZFbA4QK9cc9d2atGSHOTGioYSMLM06xTrE9PZUGaiw1b/mDSSydhwH0oYpGEqEayxlgTDPUotR4hnBhZ7pcEKwfqjv5qRzdSi7MhnPJiFVi63YsVAb0PiaQZTWbA69JgBhW4FPhiFXutARSVxLX5HIWc2RMgDdKvu52ZYirqTkXPUOeNLkPALBmHwoIyTiNX05Q2ZAZZ/O0iyKtU/BYnSuDiQrK5+NzHb4Jl5F9mY6YUxosHYFHOJD0qFl1Nwc4jBs4GySSddIeO8yfcQoqgMhucx81kYqGA2REpcsaVViGtIeiV7kLxyzzna7hswitNG2tljvZNhxz6cLN/9VK++A5LDu6kOHQjhlzdU15TVMrjcsm+zIN39KCi7TnHE5snsp8F1EIjK8NYk0mjfm6Kk0MJnJADjVi6d2l93Ec5wF5D0fqHqWKbcprk1qh1TbNIumvFzHLMLE6iB1q8j6s0rSwD1WN4iBgOS1T5rFMrdtThrzWqeX4aqNxYsNc88xhsbzjCZQwULr+ol4r3x697u/9PejvqyIbcv6ZrGeGKSRE9TXbMozTaxFpmmLhwoU47bTTTA7cE088ESeeeOJWbVfHL046su6JJ57A0UcfjZ4eG5ZZqVSw22674Z//+Z/HvIEBAQEBAQGvdbwWP9VFUYSvfvWrmDt37tZuioeOX5wuuugiZFmGmTNn4uijj8a0adM2Z7u2Oijj8s/kapMDTjMI2n/JdeqVbJT0+wCAgWaMepyaXHaECOPcS4lAJigGlOaJEIGh1HHxJY5zeKOCZsqQJswcs5A93TBQcr9ETS7jKFPaC6Bn8nq8mFDQVyq6qNRI6ckZZ0CX1OdUuhNkibXaJkRqoUxRTiAqSqMRZ4iY1f7kGYnJO23AK2+SL9rJuBp6nmfoXq2Ytr4MhAPNXmrapKfMghDJIOlTcyZ2JAMqg0LmrAPQVBF2RrdEZaQfoBglYc+TxwJEAFz76lBhdQsKnpM4sTq3iHHjthyzDIxwT4cR9dpchS7KcqsVZtub6IK9ubyZ8scoy2I/0nZY/yXrX+Vu67QeoPU/Aq0iqFrUouqyDBMEvKg6U1+uWZQI9MRN9MdSAxPTDHWlbxtqxsiqFFxHiKp71mWNNQgRnq4pH0VXxryY6Fxmx5sQBKmgZlt33MSEyiDqLCnsnz//Qngq2l+HdtFvAJDmbPqzNv9gs5IxkD8GF7Rk2bKljGQeA6XL5OvMozyKUD/j5bOdxEp7VslUZgBZTggCzomfk3Iz4rX6qe6II47AkiVLcMopp2ztphiMSOPEGMPHP/5x/PGPf9xc7QkICAgICAgIAAAce+yxuOCCC/DUU0/hgAMOKOSs2xqm2yMWh8+ePRt//etfsfvuu2+O9mwziCsZWCUFV6xPq/xQeWiWSO4DbMwYhtJiN2eceLNMppgiM2uCQDNjpizPqI2gc9qjZyE6LJNAsWCqGVlGUavJqJod6/3omtHE/4qpcmM/kzvoejmQqYi7qJpBcMksaVAmkHHVD10p6j2SSaOUoxqnZuboel5p7DBZem8MjRvCml260f+8pIZ6/yZQW8dR3SBndYOTKdKa1Th5eeRgncEFBbpWO15MTJY3LuGRMLnACCCDnXROr0jISaOJjrHRTog5QAVILn+ZPpcKy1Blii1jmcwq7+mAijoS038tosnyy2URRK1yf3WCkeie2sKJ5Br2mG20Si29mtQ+pQxLid9OnsUo6Gqcewko9+6xx3fbSz3n7rynk8t0RZRjcpeMou1PKuiikt3prsp7I4nkPdwciGV0ptLHsIjb/lQ+TsyJsNV6J0Y5Kiw1bdCoKJapK0oQqd9NLvNf6vZ1RQnqLEFMigwoFxSZE02Y1/6UgXU4jjIQRPDri3IskAt3rLRmM7PCsr2+PgMFFCPrWqGgjwIwlFnNaq2r6ecNFPYZTyHAGJDFW8b0WYzBp7rtkXH6xCc+AQC46qqrCtu2lun2iH2cFi5ciPnz5+Pee+/FihUrsGHDBu8vICAgICAgYGyhVQyj+tvaJ7EJ4Jy3/NtamUpGzDjpyLnjjz/esyXQNgWvlpQrOo9YoiLoXN+UjPvsQJluAZBsDaUCmXKWdfNGcU4hhDARWk0nigeQQV+pYpzGdw2hkUboo1JLkThRHkJrd9xDEzhMGceQivSJujh2qvdh/U7rAQCvbOhC6kaMgJiIEUY5UjAIVQ+LM5AoBVezMcoEJnQPqmMUb0d3ZsMoN7O0WpygPm0d+iZK6ujv07pR+XuEyjpZNh6wllRpRUbLablE0gs0dlKRezFHVq+YCEHBAF6BzQdGAKgIQBFJTZORqjBhnOEB5SrueLMQJqzOihNQxlFR+q1KlKIayYNWaOYxAXkXahetGKRW7EtbDDNpzLM9Y62BGklUHSXcm9FTwsHaeOfoMq3q8/yEnHlfGcPQSuvCBUE+WtBn+zjMnFKgGE2XYwYnVAbNsvZbm9K9EWujOjYM1gAAyWAEkRFEFatxdCMua1HqLVcUq9kTN1FhmfFf0tt19G1MM4dRa6KRRaYNWksWO2PU6oAy0BGwD618rsr6BIJ6rGEGYtiqrM1YZC30TbLekjk+sfu59crr648Pry4QNDL73KNEmD4bymKsa8hrxqhAJU7Ns0wIqVNjjoaRMY4sa80yB4wthoaGUKvVtnYzRv7i9POf/3xztCMgICAgICCgBTgIyGsw5UqWZVi0aBG+/e1vY9WqVfjzn/+M173udfjSl76E3XbbDaeffvoWb9OIX5wOOeSQzdGObQ7VKAWLGCgVvs6HSmZN5zJLM2pmXwSSfdFsD2PcYyBIzv+Jws/EnXFiPGMiR/MAAG+cvAovD0lR3PKXJyMZtJeOMGEYE0K0j5Kdveo6B9IYO9QamDXx7wCA56KJ2DBYQy22mp2+RsXUk3Eqo4EgWSMuCJj6nl+tpuitDplzyTg1szYhCDLh6icEarGN7OGCoEdNGsbvNoRsV4p1/TIP38a1NbB+RTERoRzB1bmNSzBx4oBsK83wSrUH2XrZXraRglcFRFX1WUINAUGUhsvmn4PP0DlRdYRynzkkQLWeYFxdnms9SlBjlnHyGCbHb0qfdytQJxrPrNsEIt31Yioeo9X6cu1Hnhkabls7nx0bIccLEVH5dnWindH1eExGgWXIM1CqfifiSreuXUSeZZ1kWVfvVCjv6NYiwjGQSkZ2UnUANZaabYNDFSScWm0ifOd5LghqkXb15ianXE/U8Fgl3Re63nzfRSQzEW2JStxIW7hogwC8A7UGzTF5HPI66D51r4lcn2sTXL1Zm+O0ZUZLWEh3wRmfjAhk7TROghqdYiYIuKAYSOVzZF2jhqE09orraxYx+QzUp2eiH+nwWqqxwGs1qm7hwoW4+eabcfnll+OjH/2oWT979mx87Wtf2z5enABg3bp1uPHGG/HHP/4RhBDsvffeOO2004JzeEBAQEBAwGYAF8QPWtnEOrY33HLLLbjhhhtw+OGHe07h++23H/70pz9tlTaN+MVp2bJlOProo1Gv1/G2t70NQghcddVVWLhwIR544AG85S1v2Rzt3OKoRCmimKEiMjRTZmZvScoQOY7QESTrBFjHbDfxoDtDKZsxGDZLR8E5UXlaS6NnYjO71wKQ0TtraLct7+gwKBGelkq3AQDWN2sYVxlCt8qMvu/EFVjfU0d3JJc3JjWsoL2m3phmdtaqZuKsLuuusMzOtClHEzATPJ153tU+ufnXuuMUG9V67bSs9VK0Z8DkAuSQTJbuo2qUIhPW6binZxB9qp4sq0DUOJhyOucpM9GCOhqRuIyQyldn11udGiEAVdqzKMowoXsQPRXpBt4VJSaiSUcztfI3KmOCXO0PMLw78kgxqgi6dt48Bd3U8JFQgGJE2uw73P5+OastsYytYneJ1bnkt8n2552w2+ud7DW1eidXI6XrcNs+oTqIrihRZSgmVgbMtv6eCtYMRUib8pEbV1Jv35RbB/MKy9Cl7tHuqFFglTzGKdd3kSBocKufy7eR5ViYbBPGC4X2a2s17kv+cTaBu+0ZLs1u5cu5DFc5cmNXUI8h9HPtcScFATCUMcMUUiIQM+uLlTk6XhNVl2O3tk/J9faDF198EXvssUdhPeccSdLOo2zzYcQvTueccw6OP/54/Pu//7tJu5KmKT7ykY9g3rx5+MUvfjHmjQwICAgICHgtQ0fGjbaO7Q377LMPfvnLX2LmzJne+u9///vYf//9t0qbNolxcl+aAGmLft555+HAAw8c08ZtTcQ0Q0QzCEGQEGZyzKUZNQwTAG92KjKKWLloA2rG4jiLp5nVOLGcI7nKYWh0TYRYr5mYZuhLqtihIvmV149bY2Z5/c0Kmknk+Tq50G7mADCUxOhLqiYiZ1w0hJ2qG9GfyWi98fEgesdLLU8ji8BBjKeJPke9b5Mzq8fSPjfq/81MasOML43TRzJCKEOvYnDqUeJFCXFYr5KUUxklpKILuSBIU3nMOMrQU21iUGmysp4ULObSH0f1g84yRxgBICTLBEimiRPLRDFhdE00knXotvfUmhhXHTK6pq6oWXS4drpcR40B7dmfMo1TK3TqnzNSZG2Eop3qjlpvy+mY2uqhhteItGYqnH0dFqF0m7PedQr3I/XKrml5frO8disiHN2KZRrMYlDCsWNNcqupoBhsxBgasJkCNDJOgJQB8jZEhTpeYSQr7UvdZ/ltkdNuva/r48Ry1yxW7FFWFrXWBlwQsBbDhxEga3G9KDqLuqbICp+VaIeaLKNRU+eUH+dcUPNsbWQRBtKK59Glx4DM8mAd0JnKTam/CmScglEOETROmxUXXXQRTj75ZLz44ovgnOPOO+/EM888g1tuuQX33nvvVmnTiH2cxo0bh+eff76w/oUXXkBvb++YNCogICAgICAg4D3veQ++973v4b//+79BCMGFF16IP/7xj7jnnntw5JFHbpU2jZhx+pd/+RecfvrpuOKKKzBnzhwQQvDQQw/hs5/9LE466aTN0cZtAlpnIwSRWc81YwSAOxqn/AyQELuvZH/0b+45wQpOUK8mZrbDqECiZjYxyzCURUhUtMykSj/66lVzDNcJOc0ohCAmx56sy86I+pIKemLJ9gzyGJkgWNfsAgBMqAxgQiy1Rr2RTiqpZ+aSIdHMQV9awdqm1FnlnaxrLMVQFhXcrjVSTg3DpCNV3MgkX/uRoKl0VhsaNaP76q40Pf8dVuEgznkSN/dXbnpAKIfgFEJH3VFf01StpOiuSI3JpNoAhrLIiZbqt/1K8i7Yqo86ZGs87ckItE5lDE27mXgrbcgmRYYojJRBaq+Daj1jz4y+KMdA5C8qgELeNePjpCO6XDYp5xTu1iJaRyq69VJSjHbT6I7kPVZV/ku7da9BX1LB8uZkAECzGUGoCFUBqYvUesKIctSVA3mcYzMo9BgrMk6aTcozTK5zunm+5Jknkg3LOvmRiq3LZYIWmKVNESWXMleifOy7Gqg8i8ic5yMXFImgaHI5+ptZZJ4vADxfNsItEw7I53fCmcekEyIC47QFcPTRR+Poo4/e2s0wGPGz84orrgAhBB/+8IeRpopOjmN84hOfwKWXXjrmDQwICAgICHit47UaVaexbNkyE8n/xje+EQcccMBWa8uIX5wqlQq+/vWv45JLLsGzzz4LIQT22GMPdHV1bY72BQQEBAQEBLxG8X//93846aST8Ktf/QoTJkwAIC2R5syZg9tvvx0zZszY4m3aZLa+q6sLs2fPHsu2bFPQYbxc/zZibmESdQLa8FJ9fqPSCkALyZkSSLuRDDq6tYwyZcQXVEcqLLbiJPEEgInRAGb1rFZ77YRVosdLPJkJaqj4zDENjJn83LGhKd0nh5j8/KRF3huSuhGDT6wMqM8Mtj2uKLVHWRgAwMa0hkgQRzgeoSdumLpSTg0dzlXaAn1MIxp30hh0qbojwpEKaj4X9jWrqDpmnYNpDKY+sXH92cN8FgUIc6+TTYlDiABxPtXEkbWXqEYpxtWG0BPLNkyoDGLlYK9Zjr0wfF5Ydj9nyv73TQJ9M0LR9jNVWZoRd70Lt0z+80ZEimVGi0399NZ2P2fMGqhPMxmobxNg3E2VUDcXbs4FtZ9M85/mcqHqzPm0JY1bW6T4gP85Ll8mJtxYVMQkAxcUDXXPTo778aaJL+GVQTnBXLehy1qREGW86hjG6uPoT3OmrbnlmGSln91K4TwXKOEyVQn8fmt1bvLYFu0+61GSFRyqh/u0VwYuiDeW9BjQ28zxwM3nOlmf/oSvkzPb+vVnuqZKucIhn1v6+e5+zqxQeR7us6rKUiuvMMa3W+pT3Wszqu60005DkiT44x//iL322gsA8Mwzz+C0007D6aefjgceeGCLt2nEL079/f249NJL8bOf/QyrV68G5/6g+etf/zpmjQsICAgICAjQL06j1TiNUWO2IH75y1/i4YcfNi9NALDXXnvhmmuuwcEHH7xV2jTiF6ePfOQjWLp0KU4++WRMmzbNS/T7aoJhnFSaFM3+SPNLK/im1CbqleW4CZ8H5EDXKVgo5Z7dALEejIad0jOqmGaoqzQlFZZhII2xVou440FMjKRIecfqRqxr1JARLeJmSJwJJwM3hm4xzVBhvolgRLgx7UsFNSxRf1pF1THpKxjtkQzjImldEBOOBo/MjDXiGZo8shYDxM7aNBppZPqBOtYLNZYa9okSjjpJMKjalGTMnIsRkzvnIwQgVE4J7rBNLCfeJMQKOwHJOGkx+PjKEHrihmnDuGgIqAN1Vs44ueHeNg2GM0tW1yXPFORZgrwYOb+9HTKHQeEgJsTcbDMnXtzXNwYsF/Pn0Srha9n5uezncLDibbuvqVP4DJM+bp55clplf+YYpnZSep22hbdgxjyzzPw9QTMzFqo0LfTTxKgfB+z4fwCAX/NdMdSQ41pAjsFYjbkaS4wovNyOgHsib2Omqhgkl2Fxr39MU8PCWUbLwt2PkaytXUU+ebN7POYaTA4DDtJmfPjXmoHbYAFSnky7E/hpcqTA3yb5Lf6T6Br9uki5TN2zpcThr1XsuuuupUaXaZpi55133got2oQXp/vuuw8/+clPttqbXkBAQEBAwGsNr9Woussvvxyf+tSn8K1vfQsHHHAACCFYtmwZPv3pT+OKK67YKm0a8YvTxIkTMWnSpM3Rlra45JJLcOedd+JPf/oT6vU65syZg8suu8yj74QQuPjii3HDDTdg7dq1OOigg/Ctb30L++yzz4iPpxknob6X15W2hlGOJGPIqDV09DQHNDOzxYRT9A9WzRw1YtywUzoE3xgvqlmQnnVWo9RL8dAVJWaGNZDFmBzLeibH/VhOJ5tQ5phmnkkbJQIVZaYXUY6IcDNzipQmQ7e/gtRoNOosKbBMrt4iJpmZxcckQ0PYxJhxxrHOCfFNeVGb4Oo53JlchaaYUt0g+4CmYIRjbSKZtkqUFm78iBXZJADIHKPSSpyBUe6dD6PcmAzW4wQTKtKGoTtqIiKZCSOPKceOrM/T0Lh6JZcRGAmLlDePLEurodFKb6MR59gBt/ywYeatnqOkmEk9fz56e16/4ofoZ6pMiX6pBfLMk14LoL3mqdSiQLY0n57Fha/z8dPoFNpWwra594QZN3kWUp3LjhVpiNlTbRjWOs0oOKfmHk6de0dq5njbseSySBQAz7FKbjn3XAu2GYXxq8+xRb+2YRI7Zkxb6ZsUE6XHy3AMk9Y5yWO3Ts8SEw5Qe10o4RgQ1Ovf1GmTa84bqS8CqfmCIJlyylpoysYYAqNP7rIdfqnDKaecgoGBARx00EFetpIoinDaaafhtNNOM2VfeeWVLdKmEb84ffnLX8aFF16Im2++eYtG0i1duhRnnXUW3vrWtyJNU3zhC1/AUUcdhT/84Q/o7pZ+QpdffjmuuuoqLF68GHvuuSe+8pWv4Mgjj8QzzzwTzDkDAgICArZbvFYZp6uvvnprN6GAEb84XXnllXj22WcxZcoU7Lbbbojj2Nv+m9/8Zswa5+L+++/3lm+66SbstNNOePzxx/Gud70LQghcffXV+MIXvoATTjgBAHDzzTdjypQpuO2223DGGWds0nGJYmyi2M6gBlBBpjQ6LqMjBAGjHHUVgcWyCEMsNrObapQaRqSZMWScIGI60kuu1xoel2GqKFZILzd5ZGaL46NBzOheh+UbLQvIwI22BrDf5vWMyX6z99kySgR6lJanytKCkaGr5/F0FpSjCzbK7rlksoxccSLpjJEcgWeOWWEZIsJNSpOd6+sxPho0dWWCYnIs9VwzetZh9WCPbHsugo1F/rkMcIcBoxkm1AfNMZqcgRKBcbFO3NtAnSnDQSIZw3xKCzeVhdYwxVTqI1oxSe1YpLIyrVKY8A7miW5i1Xz5dqlR2iHPNOTr6STyDOjsHF2sT+WErEatrkGzD67myY2y0usMStinfJJgs76sESYSsX0fuKRcTLnHNLnjQjKT3BlPNpKLCYGME2wYrJltvbHUD9arzdIxlqhovbzGiRIOuAaYheS3cr9EMDDVJrttZMxSKSNVMkZajuuc/s1lI7Wpb56p1OfTKsLOa58ZGxz6aZARIeVvznErNEWkDYSdCOBCaiUUzX4rNEOyhRin1yrmzp27tZtQwIhfnN73vvdthmaMHOvXrwcA89lw+fLlWLlyJY466ihTplqt4pBDDsHDDz/c8sWp0Wig0WiY5Q0bNmzGVgcEBAQEBGwCtsK3uk4kMn19ffjc5z6HH/3oR1izZg122203nH322fjEJz5hyjQaDcyfPx+33347BgcHcfjhh+Paa6/FLrvs0nFbVq9eXRrJv99++43spMYAI35xuuiiizoqd/vtt+P44483n9HGEkIIfOYzn8E73/lO7LvvvgCAlStXAgCmTJnilZ0yZQqee+65lnVdcskluPjiiwvrY8qN3qjiMDOa+RlKi13HQcA5Q6Ki6mKWYWL3gFdGR9xpfVPFiRKLaWYi3OQx5QCpKTbE1z6obSTBnl2r0J/K5KErB3q9mRvLzXIj6uslPI2Gk1y0lX+Mm9ahFbvSn1UwlEU2cSYs40SJQBdJvOiVrijBzK41AOCxTbb9ct+ZXa8YLysuCOIsQ0JtfwIw2q6qo4eqxikmVQdNPS8PdaMrSjBepZeps6bRpenzjnPaHBe6/9woJdkGO/PPr8ujnddRoWxJHXmvJi86yjl+BtJxQso8O9COuZJsQVa6rR2GawuDwEupTCcUxzZKrRh9RQvpN7TWKoOf8oPmtFqu58/w4C31MvKYfsJdV9PkMkX6fullkkma1m0naI0sQjNjGBiS9/ArA11YVZHSgh0qfajRpKXmTXqJlTNMZZ5ZMVL7m6RmHK1ujkNDxJgcSw1WjbjlsvY6u3asVZtxkY/MczVNmwKPIW8RZUlhE6zrNlDCkYqivgwoMkzusmbLCd1CjNMYfKrDCPfvRCJzzjnn4Oc//zluvfVW7LbbbnjggQdw5plnYvr06Xjve98LAJg3bx7uuece3HHHHZg8eTLOPfdcHHfccXj88cfBGGvXBDz++OOYO3cu/vjHP0Lk/BQIIciyLc/4jSZdVVucccYZOOigg/C6171uzOv+5Cc/id///vd46KGHCtvy9ghCiLaWCRdccAE+85nPmOUNGzZsFSfSgICAgICAbQnDSWQA4JFHHsHcuXNx6KGHAgA+9rGP4frrr8eyZcvw3ve+F+vXr8eNN96I//zP/8QRRxwBALj11lsxY8YM/PSnPx02B92pp56KPffcEzfeeCOmTJmyTVggbbYXp/yb4VjhU5/6FO6++2784he/8Gi+qVOnApDM07Rp08z61atXF1goF9VqFdVqtbC+K0oQRwQR516ix4hm4DHBkEr6mvcI4oIYnVKVpag5TrNNzpBobyNBIITVNFFIHyddNqKZOS4jAhWaIlXLiaBoKA1PjSXoYUOYWJHM1vMbJyLjFDXFXOlIOv0bsFEjnEuXXO3UPSEeRJSbvbaaQWvnYf3bRZ0l2NCseclV7XlZPZNsf4oZXWsxMbbJc/Mzao1eNoQdq3JGvKbRY9g5WU5Gu1Qqsv0pp2ZmSYlQ3jhy21AcY0JlwCRijUnWVpsykFVMP3Sxhnfe5YxT+1l/K+RZqEKCUweaUSnTdxhdiHElao28d49fT+uZXH5bOx1LO+S9gjIQE3nmR47lPam4TAJbUn8hwWzhGCN7Nvn6MdrS/V1r3ty223Elx0ovk/fp2yf8FX+r7QAAeLnRg5cb3dgQKUf/1CaV3pDWSt3B9XnXkLQdb3nn7URpnKpU7SfstkwQb2zrZwwFKXUjN1GKbn/mx0GZ11Mbt3JX0+QmL2+Hdm7iQFlCap/pqtIUVP171RVZ2Yauz42y85+n6npT+zzbnBhL5/C8JKXVv4N55CUyAPDOd74Td999N0477TRMnz4dS5YswZ///Gd8/etfByAZoyRJPBnN9OnTse++++Lhhx8e9sVp+fLluPPOO7HHHnt0dI5bApvOi25hCCHwyU9+EnfeeSf+53/+B7vvvru3fffdd8fUqVPx4IMPmnXNZhNLly7FnDlztnRzAwICAgICxgw6qm60fwAwY8YMjB8/3vxdcsklHRy/KJEBgG984xvYe++9scsuu6BSqeCYY47Btddei3e+850AJJlRqVQwceJEr74pU6YYiU07HH744fjd7343kq7a7NhsjNNY46yzzsJtt92GH//4x+jt7TUdPn78eNTrdRBCMG/ePCxatAizZs3CrFmzsGjRInR1deEDH/jAiI8X0xQVSg3zQw1TRNGk3ETSuWCEox5lhlHR2ig9Y6GZ70XCqGU3KixDxXH2jgg3njARzdDDGqCRnC70p1W82Jgg21nL0MOG8Lr63wEAq7rH4cWN480xXI8kLqSDt57FVWiGcfEQJlUk21MlPoOjzwmAYZsKETy534BkrtY0ur1zTV1fKZqiUpHntkO1D5PjjW1nrTbnGDfRbxWWosYSy6JxipRSoz2LKEd3pWHPW1BMULP9ej1BlaXmfF2WKX+eNZJibdptZubjo4HC7LvVjD/PII3EDRxAZ0LOlt5FReZFwxuDmxBxp5mwdjot6/BcLOOxXDlvIS6oiabLry9joGgbVqylz1TJtL2VzxQXpKV2ioEXWKa87o86zJPbX710CPt0vQgAeKXSgxfiSVgdS13Ty0NdhtFe0+gBF9YNnBJuHPsBoNeRh7Rjm/RyVfWtYclU/+1aXVNgL7toA60go9qKuqvhvKHcHILtnMmBEh8xJ7K4dOzl74UWUZbS50lFOtMUDNzzoctD655SQY33HWCzCDBadLXe1vHCCy9g3LhxZrkTtqmVROYb3/gGHn30Udx9992YOXMmfvGLX+DMM8/EtGnTzKe5Mgwno9H4zne+g7lz5+Kpp57CvvvuW4jkP/7444etY6yx3bw4XXfddQBgvqNq3HTTTTjllFMAAOeddx4GBwdx5plnGgPMBx54IHg4BQQEBARs3xBkxOLu0joAjBs3zntxGg6tJDKDg4P4/Oc/j7vuugvvfve7AcgotyeeeAJXXHEFjjjiCEydOhXNZhNr1671WKfVq1d39DXo4YcfxkMPPYT77ruvsO1VJw4fa3SimSKEYMGCBViwYMGojzcxHkC1kqgcbMLMOjZmMbggXs43z5uFCJPnTM9MdCdHkdUwbYSfZy3lVOVps0yWZpzqrIke1vB0E88Pym/MQzxGDxtCF5U6pV27XsGqgR5UI8t6abanyRkorH/RTtWN6I4aflSO6xfjzB71bLpM3yN/2/3GsUF5XD1Lht8nvfEQJkaS/RkfDRZYiVb5s7igpq2T4gFUWYrmQGT6r0Izw8rJY1k9WV9SNVF0PayBKk1LI+d09JM+typNPE2LyxyU5aZz0aovO0YHbJDxtRlJNFIblqoTdMRktdFrFaKpHAbC3dZWO4PhdVWtYnXaXos82+noqCiywjXNs7D5tul1+VyFHMS0Y0q8HuPZAF6pySilF6qT8EK//AdGe62tTyQjMJTFaFQiwzqVsTbtmMB224bT47W6vnn2SZb1r6FuZ/76ts2H52icCj5eKOr7CufmjnOHfaJEoKraOz4aRCIYKNfPcOv+rqGf/Yk6vj4nnb+yEW8ZxmksNU6dlxf41Kc+hbvuugtLliwpSGSSJEGSJKDUf6YwxoxtwAEHHIA4jvHggw/ixBNPBACsWLECTz31FC6//PJh23D22Wfj5JNPxpe+9KW2euUtic324jRz5swCpRYQEBAQEBCwfWA4icy4ceNwyCGH4LOf/Szq9TpmzpyJpUuX4pZbbsFVV11lyp5++uk499xzMXnyZEyaNAnz58/H7Nmz237K01izZg3OOeecbealCdiEF6cXXngBhBBD1/3617/Gbbfdhr333hsf+9jHTLmnnnpq7Fq5FSB9nDhi2kQmiI0KI1yyJ6rn3BmQ+/1bg0KAOut0tExX3FSu5PnoJPvtXdfVxZqo0cSL0NGzopXNcdgh3mhmW1WaIiK8MBsDJPs0qdqPKSoybXw0gIRHnpYgzzLZdvGWuqY8A9PLhtAbD2F9sy77xfHBqrMEUysb0MWsfqKgi3DhzFAp4ehR+/WwBjiIiYJpcoYKzdAklmdwvaP6kgr+PiQ/2Y7rGVIO4WnJuQiPQeOCoIs1DaOX98xppxFq1ZcdY0Qs0gjqH+WstVW0XxljUaZJGVYfU+qdNXyEnsEwfdFOd6VHj+dinWMmyximfL35caSj70o9uZSuaxf6CgBgSrQBO1fXAZAO3z1sCC9Hcuw+s3EK1jW7TKTY6uY4rBRS01ilKSbG/RjPBlUbRuAV1kFEZyunbgZe9BVzNKHtjyvK2SjNMOl8nTkfrzz7pPdxt7ssk6tzi2lm7ucqTQAOk2nBjbCNSQYOYnIIJoIpzSoz2wGAt9HZjSm2ggFmJxKZO+64AxdccAE++MEP4pVXXsHMmTOxcOFCfPzjHzflv/a1ryGKIpx44onGAHPx4sXDejgBwAknnICf//zneP3rXz+yxm9GjPjF6QMf+AA+9rGP4eSTT8bKlStx5JFHYp999sGtt96KlStX4sILL9wc7QwICAgICHjNYmvkqutEIjN16lTcdNNNbcvUajVcc801uOaaa0Z0fADYc889ccEFF+Chhx7C7NmzC1+yzj777BHXOVqM+MXpqaeewtve9jYAwH/9139h3333xa9+9Ss88MAD+PjHP/6qeXGq0yaqygcoEcwwPFWaosEjX3ujZ0xqlukyJLHDQjV4hKFMeaMQgaEsMhF4Ogu3jhrrjhqODkhGclWUm29VRKY9zw9MxF5dK81sq0YT4w2l651QlTPQabUNmBgV/ZLy3jN236JPUZmuKa/1qdIEUyobjJs5d6KfIpJ5Xkhu3W6bNBiEYRBc198MBAmPTH8N0Aw15jssa8apzhLUWIIB1R5ARk0ajVOOPXO9eQCgh9koJi5IW1fxPHxNTGcMgPWfGQmL1Hpmn49O2iT2C8V8YS3LeXqmIksxnD5mpDnTCtgE92ntS+WyH4UyuehRvc6Fzzrxwr2ROYwK96IGmee6pe/TAV5BjSTYo7YKAJAKhlVDvYYFWZfUTXQXAMkgUxtN2Mr/aTiUsUj2HIXnoM0FaclY6edhXsdmz7v1Nr89RR8vr02l0Xy+K7kuF9PURBcCkjnKVJ81eGwzHhA9FtRXAPX8NUyTIGiIGI3NY1lYji15rG0E3/nOd9DT04OlS5di6dKl3jZCyPbx4pQkiQld/OlPf2pCAd/whjdgxYoVY9u6gICAgICAgNcsli9fvrWbUMCIX5z22WcffPvb38a73/1uPPjgg/jyl78MAHjppZcwefLkMW/g1kJfVkWSxSrKSqBf5c9a3egFF8SwSDtU+j1dk/QIIeZ3lVjH6oQzM7vqyyrYkNTRpSIzIpohJtxEanTRptEBddMGqiQxuoaNSR0bUuUynEVg4EjUd/cu2sT0rg2mnh0rfSY/FiBndfn8UBpls+lWvjRls2nmbNsh7sP/URkZNJC6OfaKUybapg0APAZBMwMUBKAwmqfBKEYPa2KQWxq3rmaVVZYW8o3J6DjLnln2yT8XXdaF62PULkJrU9imsrK8xcy/1bE0shyjOBKUOTa3ymRfKFeqefHb0Er7JMuWa5BcdqdtNNYmMmpAe0fgVk75fhk/eqsVyvrPHWX6ftb16DH4pq7n0KjHWJd1AQD6shqG1Jg3Tv3OcVtdp068uFptkyyhy0SLlhFuBUbRaU+BYRpBnrsyZYzHWuc8vvI5A7Ur+gCvgEJggEs2uj+tmmdIhaaoUpv5IaYcFPZZMcAraPAIzS0lcdoKn+q2JTSbTSxfvhyvf/3rEUVb1xBgxJz2ZZddhuuvvx6HHnooTjrpJLzpTW8CANx9993mE15AQEBAQEDAGEKM0d92hoGBAZx++uno6urCPvvsg+effx6A1DZdeumlW6VNI35tO/TQQ/Hyyy9jw4YNnpnVxz72MXR1dY1p47YmXhqcgJhWDJvU5LKrmhnzZlvrkrrJeVZniXSjVi/1eT+QKk1RdRzHGREeK+L5BdEMNeVs3UWbiElq8kz9bWgyXml0mfZs5DWzHxcUe3av8iLw8rqhvMagEx8avS4fJSTPw+oHNLpow3jNpIKiWzFgPUrf1OmsHYDpT7etEBQcwvTxuGhI+jMJuTyQxebaVUmCBiwTxeBHCLreTGXMjcwOT8xvPVvXztV51+lNZZpaYaR1tNJIjcTrqR1LlY9wKqu/HVsB+KxIOzfoPAvV0qF6BHDZquHqyWuWhsNIchPa9tBS5g2wY9P0LZHXZhKTGqhJrN/c/+vTLhMp2u5YgO1zrribTWm3i1b+Snn2cUQMU17vSLKOrh1TrJILV88IAA3F6PVlNWSCYFBpTxs8sr5NnCGllttqcH8MDmYxmjxC0myWtiNgbHDBBRfgd7/7HZYsWYJjjjnGrD/iiCNw0UUX4XOf+9wWb9Mm8V1CCDz++ON49tln8YEPfAC9vb2oVCqvqhengICAgICAbQcEaPOJuvM6ti/86Ec/wve+9z28/e1v91K07L333nj22We3SptG/OL03HPP4ZhjjsHzzz+PRqOBI488Er29vbj88ssxNDSEb3/725ujnVscHAQcBClnNgs2JHvCOUFTzUqGsggbEjnjq7EU0+vrzIylO2pgMItN5FeDR2go5ooLggnxIOrKT4QpnY3LFOmcXZpteimZAECyYWsb0iMpzRjWJt1GKwUA49mgmZk1eIyNWU21XbZrp9hmxnaz3LfSM8nlYrRZnmnycokRjqlVmUk7ERQTlGt3Lxsq0VLlo/lyM0lRwgYRIAZMHyECulgD4yGPs57UTf4pSgSqSAwD1sWaHnvm+uuUMS01kmAIRTPXDNSwgoX2tUAxU/vokddvuQyVq4/apLx0JSyV663jYjgWCij3C+rEDbqMefr/2XvveC2Ks338mtmnnMI5R4o0RbAkKoEYRWNAo2IBjRrU/GKNivKa16gYg2j0axIrYi8xrzUGW2KJgo2I4KtosCWivnZNbBAFRaSew3nK7vz+2J3ZmdnZffY5/chc+Zzw7O7szD3b3Pva677vtmqZKvFuccxSUp6qavvSNWDysikCkR9rj0XVPfVBTbmS46DEnFS6JYeoOqoaUkIrywqtTw0pKTooFzSi9YtjyXTNU1LEnYIUGqfUnClTWTs951wfJ2SJ17q14rnMvywA/nmgjIp7tuDmxHre1pNy/HU6uiGPU0/AihUrMHDgwMj65ubmVLXuOgNVa5x++ctfYuedd8aqVatQW1sr1h966KH43//93w41zsLCwsLCwmLjxS677IK5c+eKZf6ydNttt2Hs2LHdYlPVjNOiRYvw/PPPI5fLKeuHDx+Ozz77rMMM625kiCfyAGWIh1wmyN0BgvWlHIqu763J9edayll8VeiDfjlff/B1sV7pU87/VGIU5ZKDvrV+2zrqsyDce3QZRQP1GRIHHj4vN+DLYqPoi2ulyq6DgpcR3uMGNws3R4VNa8u1WB94SlnioV+uOSFXSpRl4jBlPq6UGZvnolmVqY9UY08TfSTaGGqrUbjw4CFPw7w7dbQYjpN1BdMGAHWZAvpmm8U8lahA4kXmwpkSXlOM59Bq9bIhyyVsab+OqT3QWSyZgWqrbZVySclZnc37qzXG4pBYXwzx+qdq2LP26nfa2nccI8ORxFToOdLkY+iCKhF0/Np0wLDGzYus2PxZotgrnbNWlsW/W/wyFlvVroALgq9KfobypiCHHABxX5W0jNkme5M0bHrbCPTDkVKTZ6qT52gsUxyL3S+zPsjTJ+ec86R+mMiZxb8y8P8u1GUK8BhF0ekijdNGxjjtvffemD17NmbOnIn9998f77zzDsrlMq6//nq8/fbbePHFFyN5nboKVTNOnucZqxH/5z//QUNDQ4cYZWFhYWFhYSGBkY756yVYuHAhisUixo0bh+effx4tLS3YeuutMX/+fAwaNAgvvvgixowZ0y22Vc047bfffrjuuutw6623AvBps/Xr1+P888/Hj370ow43sLuQpWXkgorPGeoKpqjOKSrftXPURZmzE4xgfTkv2KBaWkKJUfH9fIMrZ652kaNltAg2yEUfWhIeYZ4WhOdTYhl8VuiLFcU+/phOWXhQNZkSmt081gU6q/WlHFYUGtAYaIr8aLMwVxT3RoHkvDS6l2Zimyp5/dwT7uO0Co9Z91Z13ZQJ8R4qhROUBCgF7UKNmMqeyZFxXFcjvHrDXORs8A7xkOUeNQm1Hq1eVq1dJ+XwisyhAuuRplZYWiQxUGlRkalK6DLCRlW4TuKi8XT9UyVUU5utI2E6V0mZt4HK2qik/kvMkbL+e+I+65dZj1aWwUcbNgUAfKv2CyUK1IGHbMCWlpiDBtoqdIgNzga83bIZmjKBFpG2imPPmSueL6raazMuh5cOE6uoj5XmHIc1BdU8cwpI+Mzul2kOGXrioRQcW/7cpuLLg58tneflyxD/vwukQiSjRfsxevRo3Hnnnd1thkDVL07XXnstxo8fj5EjR6K1tRVHH300/vWvf2HAgAG49957O8NGCwsLCwuLjRqM+X/t7aM3Yd26daipqUls09jYmLi9M1D1i9PQoUPx+uuv495778Wrr74Kz/MwZcoUHHPMMYpYvLejlpaQc/zIOpeFGW4pAfpkVO0Arz9XZA48RgT7s4FmFc+bZwf3+/FzCfEoFpR9ViQXsFUtXh65gM1o9vLI0zJaguzl60shc+VQDyXPwbC6VQCAgpuBCyLq3NU5xZDVomqdOD3SRIYpgi5J02SK5OLtebV2wK9jt96tEfXfkvIncZjyIwEAmMSWscBmaTmOFfHzOOkMmp73JW69K7I2F7wsaugaheHpqKi5SoyF3lZGxEtPzGDdNuo+Kbt5pIp9JWFFTEbyahkkPZ9WV6EtTJcp27YJMksaros/Rptnv0ZNwECt82pQQ8qo47pJUMEatQYRp3z5zebN4TEqGOkGp1WcY4cwlJijMK3+/RO1Nw1zmoZFNGnb0rKPqfRwQVc56iHLXPQJMlG3eDmUXNVmniuOP7vlShFZUgahXZU6HBuVxgnwC/zGgTEGQohROtTZaFMep9raWpx44ok48cQTO9oeCwsLCwsLCx0doVHqRRonAHjwwQfRr1+/7jYjgja9ON1999245ZZb8NFHH+HFF1/E8OHDce2112KrrbbCpEmTOtrGbkGGeshQv55ZwcsoOWuyThhVJW/j2idenTxDPJ9ZCjylnPYtXM7rlM26aPFywjsEQm8tS8pK/qO6TAk55r9lry7UwGNERLDlcyWUmCO8ziwJK4Gbq7ubPbq4CDqT9xanh+Ftm5wWcYxcRpV5miq4x/VjWl+DEjciuo/kXcl6GT43c/4pX6dEoa6Tc94UhNYj/UOoLaxE0j5JbJQe4ZQ4hoja6p4HqikXVFsZo45gmtIc1/b2w8Gvx0rMkx9FZ87+H6lLR4ABGT9PW4FlUWSZUIfHgK9dP9J3VakeTZkN+E/rJgD862CLmq/Fs2KdWyP2KzFHYci8YBx+f5mi7DjaesxM7FJFLWQVkZaKzcQTEcyFTFadp2QLNcyTEg+kHbURLZKx2267GXM4dTeqftLcdNNNmDZtGg444ACsWrVK0GR9+/bFdddd19H2WVhYWFhYbPQgrGP+LNqPqhmnG264AbfddhsOOeQQpcDezjvvjOnTp3eocd2JTTItyGeyyNMySszB2nIoUKOEiezgzW4uzPeU8VBmVHwDp8RDlnjKN3G+H88PJDNArV4WawL9TB0tCJajjhbQ5LRgm/oVAIANXg4ri367VjeDhmyr0CbI7A7gM0VZFnqOsldnipwTvxMyaevwQEHhKToXHRSh10bBhB1y5m29bSoEdtaghBYvjxIJsrbTgqJ5kTVDnG0K5+gpzMsatw4NgQaLM0/83xpaQguVoiPlqLoujOqSWSX9nMpRVLxNxf4SIgLjoJ/vahgfnWnqaKTVh6XRGYlcSu2IdOxoyFnvZbgsvB54/jE5p1YpYLhXFPvAA8XXBZ+B6pdvFtc84M+ZP4tavBzytCQYGJdROMQT7BSQzDpVO6fENinYHQomnq9pQMHE83NIdrXYby31UHDV/0RGauBRDx7tovt+I9M4DR8+HI4TzZTfE1D1i9PHH3+MHXfcMbI+n8+jubm5Q4yysLCwsLCw2Hjx8ccfd7cJsaj6xWnLLbfE66+/juHDhyvrn3jiCYwcObLDDOtuDMqtQW0uAxroW7inU/IcZKkrItUy5RrkMkHm3iDLrIhWIyyIpAuyjjMKUP7b9wJ5xAbP/s01TwOyoRdXQ0qooSUMya32bWCOYEDytIzGTKvi/VEwZEmop+IeZ6U6Vr7N5szg+jYdSWyTrlsZmlsVO0aSPTLWuTVK1uRsUDl9Xdn3kp2MF+asCsZP49G2eHms80J9R6jFCu3sF+jJXEYS+0yqpaZrVtoKPfou7neqvqpgndrKNrWXaUoTOVdtlu6kPhx4yr46u5e0H5CcQbst0K8pFzRkEWL0YaZ7qOhlsKy1UdjXP9cS2BhUNkBYy67VywbPtYCJCdj3gbl1AICs4wrmmLM9ReY/x3KkbTmOOKsVh0rPjapYawkO8TAou0Yst5CckqVdZtY8RpCnZbQ6Uda8U7ARisN7Kqp+cTrrrLNw6qmnorW1FYwx/OMf/8C9996LmTNn4o9//GNn2GhhYWFhYbFxYyP7VNeTUfWL0wknnIByuYyzzz4bLS0tOProo7HZZpvh+uuvx5FHHtkZNlpYWFhYWFhY9AhU9eJULpfx5z//GQcffDBOOukkfPXVV/A8r0eGC7YXWeIiSwgc4idL5OH+PBFcXipdsCFIgOkxijwtK6HCeVoOP9WBik8hesir/xsow6fHv0IfkRyzxcujX2Y9RuR8cXirlxUh8dxWTqt7jCBLXKUQreuZP2skliTQUE2obyWYaPRkWl5NDQD4tn/SOgADsusBAAMy61BDSmiBnyS0xDIAiuF4hnIxcr/8WC8rbaJ89hTjyjaIxIBBf1LfHfUJrhpUkyyzYl8xYTf6Jzw9GCApjUDaz3NpPvfpbTqqrElcf/qycn617pV7WQi0owVoOZI+5eowfqID/GK1RBJtayVrHKjnhT8nyp6frHdIrf9ZanAgA5DBn1tZ4mKDl0Mt8e+nPk4BdU5RKdjN7+ksKcOTEm0WkWnT5zpz2pPOo0vka5SPPSi7Bus8qVC4VEQcCI/vhmwXlVzZCBmnUqmECRMm4JZbbklMhtnVqOppm8lk8Itf/AKFgq/7GDBgwDfypcnCwsLCwqJHgXXQXy9CNpvFW2+9BUJ6ljar6k91u+66K1577bWIOPybBs44AX4IvRye70gJ01rcvBB0I/BG5NT8eVqWvBQXrlRc0t+De4v+Mk9XsMHNhSUOaAZfl/tg0yCxXT0tYEBmnbDTBRHizBpa8hmnwDtc59VGvOaqCqd2ENOki3rThRXrpRNCuzdxWjAgux5ryn6Znyxx0eS0oCVgi/zEo9L+TGVHZJSYf3wBoMXNoY/TKhi7SiVUdCYgLYtAideh7FSSULkrkMQWyUyBiX2K29dU4DVuTh0hvDb3m8RoRbfJSVEdsEgbebsbsD9Own/NKl1PvjhcakPiGTOPEawu1YnfTbkNGJxbK2xwlTQmEMyrC4INXk7cNwOyzdjEaUGzlxft5QSxDgnTnPCAlLRC7yR2Uk+z0lGIG9MhHjZxWmKvz+4qKr2x4bjjjsPtt9+upD/qblT94nTKKafgzDPPxH/+8x+MGTMG9fX1yvbvfve7HWachYWFhYWFBTbaqLpisYg//vGPWLBgAXbeeefIO8c111zT5TZV/eJ0xBFHAABOP/10sY4Q0q0F9zoT3FPi/hSFhxwJmSOHeGGIanBNZoOEaBnipyJQQvx5eeqgrSjiSSjKzAH/Wl5iYYmQLHFBiSd0A1niCvaphpbQ4uXQ5PjhxI3UL6i7Oiit0CppodpSxqCtiAsnbgvTFPap3vRDsquEp7vGrRWJQoEg2afEbpkK+rYEHnOLl8c619cyeIbyFn6i0MqpBarRrKRpb2I00ozB92vLuU2dOLJKNkv36tOyTHHbOpphiiuiW01Zncj50s6Vx2iEkQJ8njr2vFZgJSnR0lGw+PO+zqvB8tZGAEDOKWNAbj3qHF4AWJ2nx6iwqYaU0cdpVTRNrV5YmsQFFc8znrZAL89CxVx1rRwzLlfSxXV2AlXAfI229ZnWEeiIzN+9MXP4W2+9hZ122gkA8MEHHyjbkj7hVVvjjhCCV199NdXXtDYlwLSwsLCwsLDoQmyE4nAAeOaZZ9q03+rVq3HdddehqampYlvGGE455ZTUxE/VL069Qdt044034sorr8SyZcvwne98B9dddx1++MMftqkvXZPjgcIFU5ic2iABmpwoDQj1Rtxz8xiNfpvnzBMIWj2gEJwSShg2BJFeWdeFByIiv+poEZsGGqcaUkSNU8QmAdMCACvdPor+IK70hu6ZmpJfVqNJ4uD7tGXfasG1Xl+79WhlWdSLhJWa9kiaKy9+ytmqdW6N+E3hwQUJ2T3HRZE58Ji/XENKaA1+8+SY/Fg3OBsi9lVT9iQOHclkVaurMiXErDb5pafoejouKq4jNVw6y5TmOJnYKJl9dJkT2SbP3xPRt9G2OhsVp4MyRenFldz5dEN/Uf5pYH4dBmTXRfrj48jXUIk5yNOSKBzO1/H7QLeHwpMSgPqMmCitxGib2aJK11lbnzPVlAqS23YV02TRdhx55JGpA9imTp2aut+qX5weffRR43pCCGpqarDNNttgyy23rLbbDsP999+PM844AzfeeCN222033HLLLTjggAPwzjvvYIsttug2uywsLCwsLCwq47DDDsMdd9yBxsZGHHbYYYltZ8+ebVzvedW92K5bF3Uk4lD1i9MhhxwiNE0yZJ3T7rvvjocffhh9+/attvt245prrsGUKVPwX//1XwCA6667Dk8++SRuuukmzJw5M3U/HohSKFJmT1xGhNck5/xxGfXzKAVeXZ6WVE9R8lC4BkhmZzxGsCFgOkqeIyLs/GUqRe8BCPRxI/OfoYaUBAuw0q3HOrdWiXLhiNM+xHlOaT0q3WNLm5OJQ2cw4nLgmPYLy9KUsd6tUXQYWR5hJ/IuBefS84+17K3zKLo8LaGBtgo2CfA1UKZSHzzKS5+v6TinybWkMwQm5qha3VI0ojI+r5DJBqVtav1Tx+tPKh07WZNj2ub3EdUXhf2T2Lax/SWVfYlhVvg+HiNhHjVDQW2ZjfJZGoTLcYjR2n1Z9HVNyzY0YbO61QCAzfKrlPxvgH9MRLko6TrLEhd1JMxH54KKfHH+XKjUtqzoOuWiw2KunZTrrBrmqKPG60rWiaADNE4dYknno6mpSeiX0nxqi8Nnn32GzTbbLLHNn//8ZxxzzDFV9Vv1i9OCBQtw3nnnYcaMGfj+978PAPjHP/6B3/zmN/jtb3+LpqYm/Pd//zemT5+O22+/vdru24VisYjFixfjnHPOUdZPmDABL7zwgnGfQqEg8lIBwNq1azvVRgsLCwsLC4t4zJo1y/i7Wuy33354/vnnY0mcv/zlLzjhhBM6/8Xpl7/8JW699VaMGzdOrNtnn31QU1ODn//853j77bdx3XXX4cQTT6y263bjq6++guu6GDRokLJ+0KBBWL58uXGfmTNn4sILL4ysd7kegXgRXZKfAZzrCJjYTokLEDkSjyn5ehwpg7XLqOLteYyg4GVEFnIKJgoA19IigBy+LPg5i1rdLAbngxe8PFCCg9Wun59ltVtvZJs4ZJbL5Om2BXrW6Go9MT0LNYcHWpF14uM0OBvQyjJCB9ZAW4VNfk6ncI5Z4qKVZQWrUENLwtPmWddzPIcWyyrsk0OYyJEF+J650G/A977XebViXx796AS6jzS6HFO7tkY/6vvFMVAm5sln0zjjGu+r6uefF3pNa1/cMZGjsyodu0rZ23UGKY5R4vcrZ6TkdpV0T2kjB/1xmKThCtoZ8o65jAr2yW9J4vVOCBkqIDgvoPgiYJxa3Qz6ZnwtZJa4ynxktkm2EQDqSEHLiQZ4cKR2XuQ6ywf3hEf85xy/R4rMUWiPtCxRR7JJbdXG6RpWwLer2FWC6400HYEJq1atwj333IPbb78dr7/+emy7gQMHYv/998fTTz8dSWNw3333YfLkybj88surHr/qK+jDDz9EY2NjZH1jYyM++ugjAMC3vvUtfPXVV1Ub01HQQxT5J0QTzj33XKxZs0b8LV26tCtMtLCwsLCwSI+NMHO4jqeeegpHHXUUhg4diiuuuAJ77rlnYvvHH38cruti0qRJKJVCB/eBBx7Acccdh0svvRS/+tWvqrajasZpzJgxOOuss3DXXXdh0003BQCsWLECZ599NnbZZRcAwL/+9S9svvnmVRvTXgwYMACO40TYpS+//DLCQnHk83nk8/nIehfBt3kGhXUysSl61lyR80nLDq1H6ygsDXzPrOj6pyRDw2i8EnNQcDNoyvpRWzVOSWGJSswRkV0eSIQBiGhwDNFz7UVahqna/D9pkSUuHDC0uP5xqCElJRISLGSdssTP5s5tqaEFJdNxnpSQDSKIPi/1xdflehGBtGlmXSRqSdaFeAiZxC9LjcLTbnA2BHl8qLBB7gPomkzfccyNiXmS2zqEKRmqK53HKEsbMEcxWjHAPH9+XjxGUjN25rkkX+dK1myNJebb9H71uUQjZiuxpZLNMfYJVljWRyaweS5zgIAtpcG1WAq0kjVOGX0yrWIOlKhnMRJlK1+bCYyPn+dMrXsp9+wyKhhxnfFO+/xJqoVYDaq9x0yRnfq6zspab+FjyZIlmDVrFmbNmoX169dj1apVeOCBB/CTn/yk4r59+vTBE088gT322ANHHnkkHnzwQTz44IP42c9+hosvvhjTp09vk01VX4m33347Pv74Y2y++ebYZptt8K1vfQubb745PvnkE/zxj38EAKxfvx6//e1v22RQe5DL5TBmzBgsWLBAWb9gwQLl06KFhYWFhUWvwkbGOD3wwAOYMGECtt9+e7z11lu4/vrr8fnnn4NSiu233z51P5tuuinmz5+PV155Bfvuuy9+9rOf4fzzz8evf/3rNttWNeO07bbb4t1338WTTz6JDz74AIwxbLfddthvv/1Aqf8edsghh7TZoPZi2rRpOPbYY7Hzzjtj7NixuPXWW7FkyRKcfPLJVfXjR10Rv/ZTwDoBvmcos05yBEnJc1BiWfE6SpmneKxyHhcPfv/cAyozP4qOe24Z4okoOkoYMtSF6/n9NGZaxZgtLO9n8UXo9XLWSYeelbczq413FJJ0Tvr6AZl1WFbaBIBffy7LwmRmeel45IiLOlpESdous0g54orlr8v1Qe2/gDmiGwx5jPx/W1kOWVIWObVchJFVfj28epSYf07ztIR6WpAq0CdXWNdZrvYgieWK0zxV7FO73tQoVDV/mXx9mpgnk21CV8Iqzz8uKjFpTjIj5YIoxyFum9humAtQ3f2VGIlqjK6M12CVtDatgW6yMduq9ZE0ZtT2yPlgXmzbMC+aX9szL9XS5PdAq5cNWKeQpeK/SywT0YzJxygN+9ReBtfEJLUn2rS96I7M4TNnzsTs2bPx3nvvoba2FuPGjcPll1+ObbfdNuwzRgZzxRVX4KyzzgLgB2FNnz4d9957LzZs2IB99tkHN954Y+KXqaOPPhpnn302HnroITQ0NFRneIA33nhD/L7yyitx3HHH4dBDD8XBBx+sbKu2VFzVL06Af6D2339/7LXXXsjn8z2qcvERRxyBlStX4qKLLsKyZcswatQo/O1vf+sViTstLCwsLCx6Cp599lmceuqp2GWXXVAul3HeeedhwoQJeOedd4TYetmyZco+TzzxBKZMmaJ8SjvjjDPw2GOP4b777kP//v1x5pln4qCDDsLixYvhOOZgphNPPBE33ngjnn32WRx77LE44ogjqk5x9L3vfU9JlcQYwwMPPIC//vWvIqVSW0rFVf3i5HkeZsyYgZtvvhlffPEFPvjgA2y11Vb47W9/ixEjRmDKlCnVdtnhOOWUU3DKKad06hjcm8zTEvoEntF61IAyJuVqoRV1Djp4Zt8MdVEOvLaCx/xcKkGG8lpaFEzFynIfQ5bsZLdC3l5tHhKZ5ekqTysOjhLdQpAlZfTNNAMAWryc8HqzxBVRcoDvwTc4G4TnC4Qessuowv4MyK5DPS1gnetHyslecSvLosXLi6g7lxE4oIrmie/3n2I/LC80ClagMduK/tl1aKA+C9DgtApWy5RLJ7QzY4xiaivi2KcwuizUH8kRdpWuA/m6Soq6i2Oq4mwzsRuAyg7EMVcm5kZnoaqpTaejrTl9KmWGr6TPkuFKrLZDGUrMQTlY7pspiOzfabLRK/mXYLjmSLid3z+FIJu4HKXqwEMp+E+N54X76Lo/B25473lQ9ILVoD1MU4/WK3VDyZV58+Ypy7NmzcLAgQOxePFi7LHHHgCAwYMHK20eeeQRjB8/HltttRUAYM2aNbj99ttx9913Y9999wUA3HPPPRg2bBieeuopTJw40Tj2rbfeiuuvvx4PPPAA/vSnP+GMM87AxIkTwRhLndyys0rEVX2FXXLJJbjjjjtwxRVXIJfLifWjR48WGicLCwsLCwuLDkQP0DitWbMGQHwB3S+++AJz585VCJTFixejVCphwoQJYt3QoUMxatSo2PyKHLW1tTj++OPx7LPP4s0338TIkSMxaNAg7Lbbbjj66KNjs4YD/me6YcOGYfjw4RX/AODtt99GuZwsmeComnG66667cOutt2KfffZRdEPf/e538d5771XbXa+AiK4DInmdakgJJRIyG0DoNZeYA6pF4YlIL82TyhAXtU4RtY6fI2iDmxNeedlzkHVcoROQ698BmtanEx0mXVMkaxNMiKtVp/eTxFzpbZ0YxoGvb6B+5KFcS6sOxYiH7cCDE+RjcghT8hTJY2zitKCBbhDHvsgc1Af5tepJAfW0IOZZ45SUufTLrEcD8xmlPC350UUlP7qo4GawCvUoOL6NX5f7oF9mPQCgyWkRNfcA1YNuZVmAhXXyOop54n3Feet6hJ18vCpdB/4+qj5F19uZ2vG2fHwT4pgoEwPVGVGL1dQRNNWVq4RKbJOsoQT848dZmhJz/GcQeDRpuC2vH2dQ5RhHmBeiso/ydvm48shhKrR9DrKSZrAkVUNo9vKopwVxz/L8ZwAChthN1Dzp9qdFV9ZA7Eh0pMZJT/QcF10ugzGGadOmYffdd8eoUaOMbe688040NDQoZVKWL1+OXC4X+cyWlF/RhG9961uYOXMmZsyYgblz5+L222/HUUcdpSSwlrHjjjti+fLlIvq/EsaOHYvXX39dMGVJqPrF6bPPPsM222wTWe95npInwcLCwsLCwqLnYdiwYcry+eefjwsuuCBxn9NOOw1vvPEGFi1aFNvmT3/6E4455hjU1NRUtCEpv2ISKKU4+OCDcfDBB+PLL79M7P+3v/0t6urqUvVbLBYrNwpQ9YvTd77zHfz973+PiK3/+te/Yscdd6y2ux4LT+RxCrww/j1fy+sEQGhTWkgOrpdVPD4g9HjztCy8pkh9N3jI0jDCpOBlIjWdeCbxSN4oiQGohs2pFm3tKymTOO/TFCVj2ofPsxLz1M9Zj5Ygt5UToxmS+4jrr4aUkCWuiJQzjxlGVcnHPyc9EwZnVqO/sx7NgVe3xq3DOrcGawMN1IpCH3zuNPlt82sxMLtWGXOdWyPGanJapAiqjKLJai8DJbMKkegxg96JQ9c9xcGDdi0kREeZokPT5vKRGSg5+zgQ1XL5bcK8TX4bNXcTb2NigNLqoqphp+KYJj03nGmb/Gzq47Sib86/jr4q1qM+43vnQ3KrAehsUfSZJEPXG/H2sj38t7yuwCg8EuYvq6P+f6DWuHWCkQL8KDvO3tfRIhroBtCANfY8GmHpq0Ecy1QdU2VuW20EapvRgZnDly5dqiSyrsQ2TZ06FY8++iiee+652Ei4v//973j//fdx//33K+sHDx6MYrGIVatWKazTl19+2e40QQMHDozdtscee+D9999P3dfYsWNRW1tbuSHa8OJ0/vnn49hjj8Vnn30Gz/Mwe/ZsvP/++7jrrrvw+OOPV9udhYWFhYWFRSV0oDi8sbHRWAEk0pwxTJ06FXPmzMHChQux5ZZbxra9/fbbMWbMGOywww7K+jFjxiCbzWLBggU4/PDDAfiReG+99RauuOKKts+lAhYuXNhpfVf94nTwwQfj/vvvx6WXXgpCCH73u99hp512wmOPPYb99tuvM2zsFniMBlFxwQqJedI9Me4x1ZAyWpAX0XAUvqaAe+eUsYg2QHjDJGwP+OwS/83b1Dm+t1jwsoKN4GPrEWYceh24uLpwaZDEKFTqU9Y7RfMgSR6rUsE+Po9TJeYpR1zkpHxKX5SaBAuxidMSaHY80TZubg3OhsR5yTBlN5azTGdJGQ1OOE4dLYhz6jIi6hR+3roJ1pRrsVP9J8K+BsfXSkUixrRIviQPWmdcKtWxk6Fm046OFXceZDsBwzVkcKBNmbjjMo+bGLZKLIJp3knMkol94u38/uLn3tYoPX0/PkYldsPEavHrallzIxoCxmlQdi1Aov2pGcrVYyxncdcholKDWnpJNf5avHAfCoIVZT9HT5a4aPV8W1u9LJyM59e2Q5jzKQ4mfV7aPEwmG+NgOp/ticTs6Tj11FPxl7/8BY888ggaGhqEJqmpqUlhZ9auXYu//vWvuPrqqyN9NDU1YcqUKTjzzDPRv39/9OvXD9OnT8fo0aNFlF1vQ5vyOE2cODE2hNDCwsLCwsKiY9EdCTBvuukmAMBee+2lrJ81axYmT54slu+77z4wxnDUUUcZ+7n22muRyWRw+OGHiwSYd9xxR2wOp56ONr04bQxwQfw/5vjensQ8uQjzM2Wl/EBca8K96wxlAAuXC14mwrbIHniJOVhX9rUs9U4YKUAJAyUMq0p+wrEhudVCJ+AyEvH2k6KeOiP3UhKDpCNumylihmujdMYsCXEaHzmyp8XLodXLimOYJWURxebnfCrH6j0qsRnKvky6Jgz7ydqpmpowsGKNW4cWNxdmgyel2HmLLOfSJRCnpdFtqDSXSl54NXX20jKifttohmg9Ci9N/qek3E961J1J9+S3i+qaKjFQejsTqtHFUOJVxWrIdhW8LPrl/Nxm75cGYlXRF8q69UQ56pwpkqHfS0nRaHEMGc+0LtvEo11LzAGYI/RPoP696Y9FlUg/SphiT6XadXFRf7zvJNsrQd+/6zRO6PI8TjxJZCX8/Oc/x89//vPY7TU1Nbjhhhtwww03VGdAgNWrV+PBBx/Ehx9+iLPOOgv9+vXDq6++ikGDBmGzzTZrU5/tQaoXp759+6ZWv3/99dftMsjCwsLCwsLCAvDzMe27775oamrCJ598gpNOOgn9+vXDnDlz8Omnn+Kuu+7qcptSvThdd9114vfKlStxySWXYOLEiRg7diwA4MUXX8STTz7ZLYV9OwslRuEEbJMHiLwkUcaIKXXrZAYK8D3tgusfZscJmSDuEeWpv2+Ll0PBy6CWloLtof6JEoYNblZE1XG9C++/EjqKZUrqJ6LtSfDi9MzmiflZtIg8nX2qpHUCfNanX2a98Awp8dBAqcJAOcKzKqKVZUXbOlpAiTmooSEjxDOOu4z4eZy0yKSwHqEhUjDwmhucDWj1siLTch0tijGanBZ8WBiEr8t9fPuzbmK0XJQZSM4XJB+HjkK17JObMjpI1zSZdE9yO2EDi2oRFUhZrz1GEjOoy5AZKJ2pSIp44/vGIW20oI4057BPwF471MOyFl9PtKahDoOya5Rr1AURUY6mfk2Rihz8mJSYAxBPYa8cMOWY6VHHfO7y8RyUXYMscbHa9RmykkeRc8LoUf14yeeM26au0+ZpWK9vM8GkfauuWEc70AGf6npBedIIpk2bhsmTJ+OKK65QatYdcMABOProo7vFplQvTscff7z4/ZOf/AQXXXQRTjvtNLHu9NNPxx/+8Ac89dRT+NWvftXxVlpYWFhYWGzM6IZPdT0B//znP3HLLbdE1m+22WZVJdDsSFStcXryySdx+eWXR9ZPnDgR55xzTocY1RPAo+o8BN4X90yIH+fFPV+/hpOPLHF9TY7EKlGE3/dNXnbB80+BHJUC+NnCQ1t8G2TWg2sBAAitThzSZHZuC+Ki4fRtMnzNUnWagrgM5GobX+sVFzEGQMl3lKOhn8gzF4t2cJGjUm4k4iEr+ZXCDsIZkPSZqeU2NbSEHHMj63PExZDsaqwJvO3Vbp2wMUfM/q2cj4hHIuWI22YGpLOhMITMzCiq7aOMUlxNRlP+J76P6E/JV6UyKWnZs0rRY4pNnFWpQuMX7hs+CyrVoTSBM9UDapvxyap+AIAlG/qhwWlVrps49ooSFmGY9GzhojYdQtYJ8I+RzsLrc+GRpQ4YWgM2t9nLYxMpgz6PtjMdvzCflFnX5OulzOeJr097L4j/Hkj7dOd9tDGgpqYmkukcAN5///3UWcE7GlWf8f79+2POnDmR9Q8//DD69+/fIUZZWFhYWFhYSOgBteq6A5MmTcJFF10kKpMQQrBkyRKcc845+MlPftItNlXNOF144YWYMmUKFi5cKDROL730EubNm/eNKvJb1uo8cQ8KjMIDg4eQdeDIEj/3EmeRuBfH2aQsXMW7LTFHYZYy1JV0TaH3l6dl1Doh27TarRNenMcI8qSUSutUbQ6ntLoLUzb0WE89MFPXrhihZWhXGANDtJ3C6EkaFrAqaoORaBX4LFwp+7jKMkS0FgnaCxMEC8Yyoq0LiganNcyozLJhhnUwI5sme72cldLrjyWhUtbo9iCpLzkLOc8+nuYaTYqqqlQHT2eeVE2Tyq4k1e9L0sOYmIy2MLTRfgO7pJqX8j1iYtr4us3qVuPDlb5z++81AzAovxZ9s81hQxZGC8vWeIwEOefi9UCybi6L+GPjMYpS8HwseBnkaVlElq5261AImCUHDKsRPueyxE18vpjYJsHyGezUz4/p+OvniB9n/TyWWcfdK0nojnQEPQFXXXUVfvSjH2HgwIHYsGED9txzTyxfvhxjx47FjBkzusWmql+cJk+ejO233x6///3vMXv2bDDGMHLkSDz//PPYddddO8NGCwsLCwsLi40QjY2NWLRoEZ5++mm8+uqr8DwPO+20U7cmz2xTHqddd90Vf/7znzvalh4FlwXRUcTzvTruZdAyKAgoQk8lZKX8b/GcceJthTekOWFlz0Ep6DcbaKOyhFcDp0KbkKUe6mhRid7j3/7jtUShF8+RNru3CSbvy9OYl/isvEQwbXKOI6MNEkviSh5wBJruSeQ8EvvKEVdQssA7ATvFj5GenVzJHxOTw4fb54EouipZh+ZfG1nFvrhoMmpgUHhfNeiY4tnV1OWqloHqTMYKiEZXApVz+SQxT0msU7VIo5kJIy3NbGWlWmrRyMmgOgFhCgulM1AyNsluQL8+Qd26tX3wYf2m2K6Pv3eelpF1CsYs6JQwuNpqF8QYnVkpmzqVNI5+vn4iIudWleql5wRR6tjpx0M9FmoUXRLTpNsOxDOBUfbYh85ctjUi0qI67L333th777272wwAKTVOJmFWEtatW9cmYywsLCwsLCwM2Eg1Tqeffjp+//vfR9b/4Q9/wBlnnNH1BqGKBJjLli1LrEQsY7PNNsPrr7+Orbbaql3GdSc8xpmiMJoOgP99nkp5SxBqlErMUTxH36vRveSw3hPXA8goSd5LXorsytIyWly/gnWLlxOMk9ynCY4SMRTdXk3+Jb1dbISQwXuW11Ep+s24j6ZPMkLSnHHEZRnnDJKIgkEQQcRklskJt8GT2EFfZxUX2afncKIszOvlEA+DHd/paPUyaGVZtECtQk4ldk1no+LOa3uYI2VbQi6lSK4lUp1XnRTdqIyjsT1KXiEDa2NinYzjy7msDMyTnp1cj7IzX8PtZzLiWKYkttbfX4qsU7Kwh8fYY46/LeaY1NAShjesAgCsWNsHH6/uh7Lnj9uYbcWIupUYkPWdXgeeGMcJ7gfOe0aOg3YM4jKty/vKc+O6JhcUWVIKxvSj8eIiHNNompKYwDQsUxwLKEc5JrXraGysGqeHHnoIjz76aGT9uHHjcNlllyl5JrsKqV6cGGP44x//iD59+qTqlKvfLSwsLCwsLCzaipUrV6KpqSmyvrGxEV999VU3WJTyxWmLLbbAbbfdlrrTwYMHI5vVuZTeBRc0yALNPbqQefIYhRuUoJFnWWIO8rSMPk6YV0mOqqOEIRN8s6fUE/sAqg4I8Nkmzjht8HIiEgXwPbRmz2cuaoj6kmqq/M5zoHxVbkC/zPrEzN3VfK9PZDMSmY7kTNNcT+HAUzxtIPS2BQMk9eOBqHOT6gvqjImvTwr3FToN3pbJfYTRfbqnWkNK4fkFU86HKedSXE4tno1ctbH7qq7rY5ts0RkxUxb3aiL7wn7MbIDM/PnjVNdvnOapvTBFkHH9m7wMJOUaUvtI0iPKzDGV7hGuRZIrDujHaLOa1QCAz5qa8NnXm+C9Vv8rgkM9LG3YBN9uWgEA+Hb98lBbR7R7jQAucwR7U2IUWYkdl1knGmQR5/dIi5dDyVPzUuUDLV+LG+amA9T6kvoxMmUFl1klneVKq2OqxALqzHlcu05DL2SM2ottttkG8+bNU5JuA8ATTzzRbV+1Ur04ffLJJ51shoWFhYWFhUUsNtLM4dOmTcNpp52GFStWCHH4//7v/+Lqq6/uls90QBuj6iwsLCwsLCwsOhsnnngiCoUCZsyYgYsvvhgAMGLECNx000047rjjusUm++IUg1AcDoBQ8fnIYwSgAGVhQkRO2bayLBzioX9uvein1csiy3hou5RckVBkqRdqx4OhssEnvFpaDAsBkxJavJwo7kulsi5pvjrw0h1flhrRx2lFTio9IiNVAksJSWUY9HDsSJmChKSCjvikEm1Dtc8+Cu0ufRZylDI5MJb14HS+Q5j6aY55oNpx5eMUWUZ8/qgnRaXcTYlR1JOSSCnhl5AIPsUSIq4PAGI8fi5qSBGt8D9VuIzEHh99/vJ80qA9n7oi4zKzTWoqCDUQQBZhmyAL85MCF/hnu0qlVapFUmqC9hTx9ber16oSSBL5XJ3uc6ILRwo44cePC6DNEgAA2KbpK6wr5rHyK79oKitSfNqcx7qiLwHIUBfb1vl1wChckQSTQyniSzwpIW8gDQjGoQhTCwBAyXPUfiQpgwsqnoeudgMmFe6NCL8DkX6SOD/pk1zaz6b8eFtxeOfjF7/4BX7xi19gxYoVqK2tTa237izYFycLCwsLC4uejo30U52M7qpNp8O+OMXAAxWehvDkAN+b8ySv1gHqEBap7JtpFqkCeGmUkha+GgwADwTZoBuekDEfiItraEkpNyAX9QVCL4mX7DCJwoGwOCYA0beOtKUMTP2H7aKhv+oYhmNg2BfQEzhoEEL7qMjaF8r6Y5d4aDYAh3lwpPItvA1PYurBEzbnAIBIHjVDIIYN0xHUk6IYr4aU0RCcpwIjyBKGbDD9EgNcwbC4QdHdkCl0GRXnuJ4W0BqIY01CcY72ClEVYXQVzIzO9ihIcrj1chSCDYkJ9QaNZYxkhokHAlTDLsWJwk2JNKmUNqSzkZQctdrxXTihMJuzT4aSIANy6zGiaRXcIB3B2rW18FozWL3WZ6c/re+Hvhk/WebA3NrAlpDRccAE20qlMkWtyCosIBdqc+F3gWXFs5Q/G93gGVVmjnItJaUc4Hbo44jfCeJ8k+DcxCqlYf1cOCh1UcmVjRkPPvggHnjgASxZsgTFolrU/tVXX+1ye7owHMDCwsLCwsKiLeCf6tr719vw+9//HieccAIGDhyI1157Dd///vfRv39/fPTRRzjggAO6xaY2MU5///vfccstt+DDDz/Egw8+iM022wx33303ttxyS+y+++4dbWO3oORRUI9KIac+0+EEpUYEeyF5wVlSRg0tiW2bOC2gDhNs0dfl8LssJQxZuChIHlStpJdZ59aIkhsDMuswIFNQ0hpwVssU8u6CijGLLIM1bi0AX9/glxtJ975cyeMLt8UnnNPBvWF9eyV9iA7KmSWpXwoiEpL6y0HKBzhwmKdoPfw2IXvBWaIi81knV2YYWagH2oS2oEE6TzXEQy5ITZEjoV3+vgwuT5TKGLKkLOZNmZ/gj7NXrcgqIdt1tNjhYfMc4vxXoXFSrhltv6QyH34RX5mBSF9s2sQYqOyoqtOKMoqqTZ2VjiAt4hJrmo5HRGeTqK2Sx1CTuvLnFR9faADh4Vt9vkT/nF/k9+P6fvhkRX+UNvjsz5LVfcV+32lajs1yq1RbiCeK8xYlhrQGJZRImKqgIOuX4D9Xs2IqLkqegwILWfGkNCWmNANhWxJ7jFwW6snitGXtYfu6SuO0sX6qu/HGG3HrrbfiqKOOwp133omzzz4bW221FX73u9/h66+/7habqmacHnroIUycOBG1tbV47bXXUCj4/wFft24dLr300g430MLCwsLCYqPHRlpyZcmSJRg3bhwAoLa2VpR0O/bYY3Hvvfd2i01VM06XXHIJbr75Zhx33HG47777xPpx48bhoosu6lDjuhOMUXiMhpFDIiqMgJIw8qvVy2JF2Y9MaaCtaHJalCSIsr6phYbJEj0QOARCY5APIlPWB2VV1rt5NEvlOQZm1wpNQZaUjUwTt3OdWyMKZ7a4eawp+4zTgOx64z4cpm//1RTONK3Xwf3J2HItadkAjeUowWcfQu0TU/RQPusUJuWTx5LnnecFPPm6ICEmTwY41NmABiqX2QlNcojOEoS/s8RDFh4ER8ajKIPz6IIYI+Y4OqOQaJFlKianbA3YAKXYqql0D+Kj9HRGqpJOKy5BocwWCPZQtkVnwtrILFUq+hvHmlYLXUdlKsztb9ci7vSixdJBMJV5EslfpUSwDvznzeY1PpO0SbYFGerhg88HAQBaNuTwqddX2Oc2EWyW99vmaQkOPDQFjNMXpSZxfTiBPrAl0C15jCBLXaX4dVliocrMQYk/A2lZHJMscRPnXanUjVwSStY1eVrEKj/WSSV2dIho3OC4M1vkt1MxePBgrFy5EsOHD8fw4cPx0ksvYYcddsDHH38MxrrnTbDqM/7+++9jjz32iKxvbGzE6tWrO8ImCwsLCwsLCwkbq8Zp7733xmOPPQYAmDJlCn71q19hv/32wxFHHIFDDz20W2yqmnEaMmQI/v3vf2PEiBHK+kWLFnVa+vNPPvkEF198MZ5++mksX74cQ4cOxc9+9jOcd955yOXCaLMlS5bg1FNPxdNPP43a2locffTRuOqqq5Q2aeGCKB4OjwpzwOAxwBPebS7MUUIzPisUEBL1tODnOPH8yLc6WhA5lbLEVaKqamgJLW7YV9lzwLMtrXdrlGg9OTeOzhhwL4kXBF5RbBDb8rS6GoK+h5/g2aUsnJlqLIPXlkY7IOuWSswRrAeFVG6COX4OHhEpx5dp0DaMCvII9XVJWl6nesc/9jWEoI5wFsZBgZVEVE0Jnq+zCpaLjImSPD6bUEIJ6vHjOZ+aPSoYh6zGJlabXysORq86pngsR1hAlhj3kfeNY8V8Bqd9iIv2VMuNmO+JiD2GKLqksdKiUp4nxQaN1dJ1TnFRfcaIVX2dYoMnsXRyjjSCLFx4AUvaxyngO03LsWSVzzIVixnBhn/VUo/Pc5sIxjrr+KVQvig1GedGiSfpPhlqaElE9zrwUAg0URREYdf0EjFJOshKJVWSdE2Ayuol6cmSWEVXMNZW49SZuPXWW+F5/nVx8skno1+/fli0aBEOPvhgnHzyyd1iU9UvTv/93/+NX/7yl/jTn/4EQgg+//xzvPjii5g+fTp+97vfdYaNeO+99+B5Hm655RZss802eOutt3DSSSehubkZV111FQDAdV0ceOCB2HTTTbFo0SKsXLkSxx9/PBhjuOGGGzrFLgsLCwsLC4uOxWGHHYY77rgDjY2NuOeee3DEEUcgk/FfVw4//HAcfvjh3Wpf1S9OZ599NtasWYPx48ejtbUVe+yxB/L5PKZPnx4pwtdR2H///bH//vuL5a222grvv/8+brrpJvHiNH/+fLzzzjtYunQphg4dCgC4+uqrMXnyZMyYMQONjY1VjemxOA+dR+wEHq9LUQgOY9lxsMati+RW4kwC1wQAvnbEYxR1xGcy1pTrUGBZNJdDXRPP8pshrmCo/LG9SIFVDko81NGiKLpZYlT0w7VXcWyVP++4vE0kkitFbIvJmVKpT/M4Ve4rNGiqh04JU2yijIYReMRnhjgDlQVENF6W+cea66Aa6Qb0c1qwWVC4uY5kkCW8qC9FBg5ooBuhzIUHJsbJESKi6hz4560g6WNqwESGcj9/kb9QFzCLPJ+T25bjAjODVKn4cluh76sWX3YSrzndvqQ2cfbL45vYTuVYaLZWKuZaCXGaJwpmtMVkm8ckjRuhGhMTZbIS7ZM2ucyRNFAq+xSsEjZkiIvGWr86wWqvFq7rj7mhkEWrmxFseD0toMgyxgoERZYJip37d4EDP3qUZwIvMSdkC/l9I927oS4pPnpX3256/lTSNVUTtRi2ick91lUszkbEOD3++ONobm5GY2MjTjjhBOy///4YOHBgd5sl0KZ0BDNmzMB5552Hd955B57nYeTIkV2eAn3NmjXo16+fWH7xxRcxatQo8dIEABMnTkShUMDixYsxfvx4Yz+FQkFEBgLA2rVrO89oCwsLCwuLNmBjKrmy3Xbb4dxzz8X48ePBGMMDDzwQS350R726NmcOr6urw84779yRtqTGhx9+iBtuuAFXX321WLd8+XIMGjRIade3b1/kcjksX748tq+ZM2fiwgsvjKz3eFRdTE4Y7mXoPtdXpT5KVusaUkJNkKvHoUxEl7R4eZFZHABaSB7rGUGGhtnC+wS6mj4Ztb6cBykbMDF76HKkTWOmVfTpb1Pby/mhqoHwDqUIFiAakZcEM6uXxIrEeNrMZ/aE58nC+ThQczh5IKCMSjq1MAN7DS3hW7kvBMPUl+YBEFDU+H0RKjKO82WP8YgiAgcEJZ4/inki6o6KcdRoMH4d1ZCSEnkUGCrsNR1foDKDxKOnAACEiggmf1+iXCeR/Svk4kpCbH0v0IqaEDkXVzW2yTUOqRZhx4+Fvz0+i310HPm4RyNL46DrqCrpqqL7y5Fy4XgOWMUcaHokcFj7T2Wf/Ng4f99MoELrkwuqHjTXwnH8/QkBMlTNl1VPC4Ih80DR7PlMOX+WhM8apv5LwnvRZQRlzxF2luAgHzxR4+Zo1EIa6tDFM5Mq21SJ2eL9xYH/d8KiY3HzzTdj2rRpmDt3Lggh+M1vfgNCoueBENJzX5wOO+yw1B3Onj07ddsLLrjA+NIi45///Kfygvb5559j//33x09/+lP813/9l9LWdGAZY8b1HOeeey6mTZsmlteuXYthw4alnYKFhYWFhUXnYyP6VDdu3Di89NJLAABKKT744IPe96muqSmMnmCMYc6cOWhqahIvNIsXL8bq1auresECgNNOOw1HHnlkYhs5eu/zzz/H+PHjMXbsWNx6661Ku8GDB+Pll19W1q1atQqlUinCRMnI5/PI5/OR9R6I8t1c1yq4Bq+lFGiAmjIb/GWq1lXLooQclxaQEuppAeuCrN5ZWsaQ3Bqsc31moynTIrw0rhcI2RQqeVRlpUJ6DSmhxcsLrylPy+iXaY6dfxzisvbKnp9+TOKYkLTVxv1+03t7OniOLQ45goiCSUybn/mYRx9R4gm2Z7vcMmyVYcgT/5rgeiaIPbXcMkxn7zyUgtwifq06zr6pbEExiPThUXV1tIT+jh+11OzlUWKOyNWVVLvOn7c5342fNTrZozbWUayAOAWSzvKYbNPHT0IJ6dgtk11UGyPuWJhsVvpMmUtI749vi2Qzb0MNPH8frd8U/XiCgQltkzWaDmMh60qD2otOyGyXSv61kcuVUeOUxHOolWVRTwpS1m0aRhYrrJZ/vORrzK836G8vuBm4IMgHbFYtLSqsa5KOSYbMNPljqstpstTHXZNt0UJ1FjamT3Uc5XIZxx13nCKn6QlI9eI0a9Ys8fvXv/41Dj/8cNx8881wnCCRmevilFNOqVqAPWDAAAwYMCBV288++wzjx4/HmDFjMGvWLFCqXsBjx47FjBkzsGzZMgwZMgSALxjP5/MYM2ZMVXZZWFhYWFhYdC8ymQweeughXHDBBd1tioKqNU5/+tOfsGjRIvHSBACO42DatGkYN24crrzyyg41EPCZpr322gtbbLEFrrrqKqxYsUJsGzx4MABgwoQJGDlyJI499lhceeWV+PrrrzF9+nScdNJJVb/QyYit4q55OQBQZhlkiSfqxPVhfl4nHs3mSFXEeVZw7o2tL9egzimK/laV6kVVcgcemr28FBUXZmkO2QjfU2z1smj1siKPU56WE/M3uaBqVIum6UjDDui6A93jA1Svr9q6UNV5eXJdNDV/TUSvJrENQ7N+VuR6UsZqj8EJNE91xEEdyQoGg0fQmeAyhlbmohgwTq2MoiQxBPVSfiZuD9/eyjLIBjqTGlJCK8sK9qKeFuB5/vhcSxLOUdXdyMeKz05nldJmefftrqaeXahNakstQpN+RY6ErASlTps25zj2ilap86qUxVveXq2uKQ1owJTGMiQJ96uawd0LcpQFbLkHqYYcQCmDGzBOXsZDvVNEA/W1kqZoOq5pKnhZZX2JOSh5YUSeykoT//kkPR/Ffl4mMp9K0bpJLHcS2so2cdu6rPbhRvSpTsY+++yDhQsXYvLkyd1tikDVL07lchnvvvsutt12W2X9u+++K5JUdTTmz5+Pf//73/j3v/+NzTffXNnGU647joO5c+filFNOwW677aYkwLSwsLCwsOjV2EhfnA444ACce+65eOuttzBmzBjU19cr23/84x93uU1VvzidcMIJOPHEE/Hvf/8bP/jBDwAAL730Ei677DKccMIJHW4gAEyePDnV2+YWW2yBxx9/vEPGdBkx6pjC5dDbEL8ZBc14SvTaJk6zYBJKcITXVGL+b84G1TkO1rk1KASeVh0thmwCCfcBAn1DcANw9ilkdFw1I7H2UTupHp0+T0XTxPM4SZF0+vHQ+45jmdqqGzBFu0Tmx0wRWWEEIgCAeSJyi4/PMxuvZTk0oqjk9waALGfR9OhKeGgNour8HE4MLYJFcsIoI7gi2o6jhrhiJFmDxffhNnmgSlSn6RyZGKfwmJg95UqgSMgGnsAA6VuqySjf1hqGSbZyGNmrIIt8W6ILAQMD1Q6GKe39okPXVZn6ANSoU485oIwBQRQvghp3OcdfzmfLKGT9Z1E246JfrhkNjs84UXjIEVfUMYzoP0FQCq7dVi+LgpdRs6IHV0gfp4A8LSuZ8vXni65fCseonHsrieVuj1apyxgmDQRo98jdY3n78Itf/AIAcM0110S2EULguu2tS1A9qn5xuuqqqzB48GBce+21WLZsGQC/DMvZZ5+NM888s8MNtLCwsLCwsNg40VlfstqDql+cKKU4++yzcfbZZ4tkke3REPUGpM3aWw5yetTRorI+rJkGKaeK3yfXQwHABjcrGCePEfQJ8i/loWb8BvOUGl26s5wjZeEdtnrZSF2vUIOUHDFkqgcle4J6FJ2uaYrzmivpREz7mLfTaM4aMb7ERgXetAChCuvkMA+tzD8P67w8HOqhBrIX7CLHo9+0g12CB5dH0YEpGawdMEDypougCrNRlI6ZA0+pY1diGRQCj95VoigrM4GxrI3heOqeu5zjKy6vl0M8eAnReKaM2WmYmCT7/Ggt1bZqdCx8H96XDD+TPFOWFRtSshNpmAhj3rKqIkdVW6o5DhFtIfFrYvoduWhxs1hd8KN6C6XwPw1961uUaDf+m9eyk6PquAarECwXvAw2uDlxjzdmWsXzkUe7KvOLYZqqye6uR9Hpz6FKbFO111WXYSP9VNcT0eYEmMA3/4XJwsLCwsKiJ2BjTEcAABdddFHi9s6qkZuEql+cttxyy8SEkh999FG7DOopaGtG2GY3ZJBc+NqZLOWZpT3xxp8lZaxx60QUis8MUWwI9l9XrhEZv2tIWcnyrOsFPIT6Iu6pce1UnpYieYBiaz4ZIoRkb1v21NNomszetRoFJu9vQkXvUNZsRNwpT7TheWsAwCOeH0EU5GAqeaEWyWUUzV4OCLxiF17wP16PrIysnAcJTGQHb9Yih+RzJrIlG/Qg/r/hsfazfZdBEUQoEQ8lj3vwWeRpCS08b04QsRTnmVdk7fT2sn3MzDrF9RnOMb5tW7PJ+7aF11/0XCdrXAAo3jbV2Ks4pq29kXFy7cTEdhX0TXH3qT5nE9sXl2/KZUQw4GXPQYa6aC0Hz6PWLAivsZlr9es3Iqzf2MpyIQvlIdQ7iSi9IFrYzSvZwbPEVVglKjGyMltqer5UQqXIXRNCbWD8s0odQ47yI8q/30TMnDkTs2fPxnvvvYfa2lqMGzcOl19+uTE47Ne//jWeffZZeJ6H73znO3jggQewxRZbAPBLm02fPh333nsvNmzYgH322Qc33nhjJNjLhDlz5ijLpVIJH3/8MTKZDLbeeuve8eJ0xhlnKMulUgmvvfYa5s2bh7POOquj7LKwsLCwsLDg6IZPdc8++yxOPfVU7LLLLiiXyzjvvPMwYcIEvPPOOyK67cMPP8Tuu++OKVOm4MILL0RTUxPeffdd1NTUiH7OOOMMPPbYY7jvvvvQv39/nHnmmTjooIOwePFiJbWRCa+99lpk3dq1azF58mQceuih1U2og1D1i9Mvf/lL4/r/+Z//wSuvvNJug3oaeORWrJet5QdqdbP4quQXPO6TaRW5lwCggbZKuT+oiKwDfC3AejeHlrLPOGWoK/ROrSwT5P0xjR8wPXJ2YIM+iaNiXhotAiqJcQrbcbarsqapEtMUlyslDoq3pzXlOhyfnfDC7Yyi5IUV4ilhIj9SC/P/9QL9Rg0pwSNluCLijSEo9A4HDK3SsW5lmcBTDj3qGurnvMmx5MiPEqNKpB9nnQC/ruE6z38IrS/XIE+z0n6OWnHe4HVXl6Vai8QyPGnLcBTGRkBcg+Y6a5WQpE0R9oicY/H9xOdek9eH+bUcnaVh8XqoSuDMlc6suQZ7I2xcFfdP3PY0bJO8XtYIZuCiWPbnyzyCfK3/7KpxygpzvdarRT0toD7oOkvKYeZw4ii5nDzm5yqrpdHIOUfKZM7Xy8xpWysOpMkJF8faJT1/zPnnurhWXRd/aps3b56yPGvWLAwcOBCLFy/GHnvsAQA477zz8KMf/QhXXHGFaLfVVluJ32vWrMHtt9+Ou+++G/vuuy8A4J577sGwYcPw1FNPYeLEiVXb1djYiIsuuggHHXQQjj322LZMrV3osDN+wAEH4KGHHuqo7iwsLCwsLCw6AWvXrlX+0pY0WbNmDQCgX79+APyIt7lz5+Lb3/42Jk6ciIEDB2LXXXfFww8/LPZZvHgxSqUSJkyYINYNHToUo0aNwgsvvNDmOaxevVrY09VolzhcxoMPPigO5jcBan6mSnlUfDcgQ120ull8sqE/AGBAbj0cMBGlU0NLwttyGUWWuCL6jWsB5JpWYbZdCgRMEt+Xw682Hnr/XMdjyuuTVFnc1EbXGZSVmlPxzFFSFfk0OZwqeXlx++sshFIdXoqs0zVPALCq7NPODXQD4AAewshIFwRZUSssjNZz4PmsoRYJxOFHn/nbisSPCuPHk/8WHrakJ9PZihILvfhSkH/HIaE9vlcfzcycdB5iERwSByxgL+P0TPF9OmDKeXMS9D3V1iaM0wyZriv5vohnXhDUa9Nyn/HjUIWa1tcbmhkqzpbITF2SrintuTOxTekYN4P1jKC54DPe2XwZw/v52fQ3r1uFOlqUrjmq6CZLLBM+40gJBYSMU56WscHNKc9SoYUz5GiSqw6kYSBNc0tigOIY76TnkBvTRs7l1xXoSHG4Xsj+/PPPr1jWhDGGadOmYffdd8eoUaMAAF9++SXWr1+Pyy67DJdccgkuv/xyzJs3D4cddhieeeYZ7Lnnnli+fDlyuRz69u2r9Ddo0CAsX768os2///3vI3YsW7YMd999N/bff/+K+3cGqn5x2nHHHRVxOGMMy5cvx4oVK3DjjTd2qHEWFhYWFhYW6FCN09KlS5WoeFOhex2nnXYa3njjDSxatEis4zmWJk2ahF/96lcAgO9973t44YUXcPPNN2PPPfeMN4WxxEAzjmuvvVZZppRi0003xfHHH49zzz234v6dgapfnCZNmqRMlk9ir732wnbbbdehxnUnGEjVngQlDLmAdQIg8pdwz6rVywpPjdciKwV5nMqegxbJM8sQT8moW/IyxrpNHgiorEMK/q2mxpOMaiLlkvNAmfOlxFc4j9Fs6FFDVVSX5xonj7AgO3SoRQuZBgAesM71NURr3DrkiAtKVQ0Pj5xzQRRWpsicyJx4xFcOrtBG6XmaPJBg33jvmLMdMruytlyDPpmiqO9VCvqQPeekqKu0tek4KxdrG4s+wanEgqljpruPjFnPNRtEZGmF/4D4953K/sTawajKYLFwnDIQYa7i6/fRikxYHFOn3y9J0V7cDhNM95GJGdG1mzW0hIKXQSnI37RZv9XYps9XAIAhuTXYNLMWOaLq9IpShvti8FwrsYwfsSdd11nqxure2lptIPEYJGZ6j94PlZ5J+vNIb896YT7uxsbGqtIJTZ06FY8++iiee+45JRJuwIAByGQyGDlypNJ+++23Fy9YgwcPRrFYxKpVqxTW6csvv8S4ceMqjv3xxx+ntrOrUPWLU0+rUmxhYWFhYfFNR3fkcWKMYerUqZgzZw4WLlyILbfcUtmey+Wwyy674P3331fWf/DBBxg+fDgAYMyYMchms1iwYAEOP/xwAMCyZcvw1ltvKYLytPj000/R3NyM7bbbDpR2oTBfQtUvTo7jYNmyZRg4cKCyfuXKlRg4cGC31I3pDHjMnIdIh+5h+tEpPgpeBuvLYUimByKYglwQicLrkRW8DNYW88gF0SfZvIt8EJHFo+/MXpdjjPqrJtNuaF/ljLtJuqW4iJSkmn+6XbpXHIEhciuurcxOUUbgCQbH89kcnnMGkCIYsz4byDjzQoU3zZdF/0LjJGnO4AmmqISyiLKijCkee2vARCrMoNwPYcjCP//1tCBYw+ZyHnlaBqVBFFMQUadmElfPRxJzGqlnpkeXGb4N0CAaKq5OYCXIkXpp83mJ7W307uMiz/j8BbsnMU1AmAlbAQsj8iLQMsdHGDMDUydsMVz7ac6h2D+GIZHhGe5pvs/aUg1qa3xt35aNKzGq/j8AgE2cFgBh7cQsKaOV5UTVg2Yvr+gxvUC/CQCO4yFLPWTkenQxLFM19SwrsUpJzKrp/Mdr4DQ7jOeoixinbkhHcOqpp+Ivf/kLHnnkETQ0NAhNUlNTE2prawEAZ511Fo444gjsscceGD9+PObNm4fHHnsMCxcuFG2nTJmCM888E/3790e/fv0wffp0jB49WkTZmXDnnXdi1apVSgqkn//857j99tsBANtuuy2efPLJiF6rK1D16xqLufELhQJyuZxxm4WFhYWFhUXbwRmn9v5Vg5tuuglr1qzBXnvthSFDhoi/+++/X7Q59NBDcfPNN+OKK67A6NGj8cc//hEPPfQQdt99d9Hm2muvxSGHHILDDz8cu+22G+rq6vDYY48l5nC6+eab0dTUJJbnzZuHWbNm4a677sI///lPbLLJJrjwwgurm1AHITXjxJXthBD88Y9/RJ8+fcQ213Xx3HPPfaM0Tunzc8QXICx6DlaW6oVnupq4whPzGMUatxbrXV+UV2IUOeqiLuMzUg2ZVhGpUvIcJQLLA1Xz6Eg3Q6VIlDQ5TkyQmQy9bTQyL9nzjeaaSadvAmQWSbc9Gm0lt6FyPTJGQcGQ4RndQVAORI4tbh7rpNxbrdr51Y9vq5dVPOgcKUusoityMTmEoYSypE2Letkc/rkO69PJ9QY5OEOmR9Ppmo243DNx0Gv/yZ59mEMpyI+VwJ7oUHRCFXINpWWV4uqcmVBJQxcyTPFz0rVNpog72SZPa+8xGllnQjWRcon7GvQ4erty8G+tU8SXrX3Qr85nl7asXSnauqBYWuwnasw5GtPKc4kBUS1mlrqgLIwQ1p9jSbrJJK1e3Jz9fklFllvut9L1Vkln1qV5nLoYcUSJjhNPPBEnnnhi7PaamhrccMMNuOGGG1KP/cEHH2DnnXcWy4888gh+/OMf45hjjgEAXHrppTjhhBNS99eRSP3ixJXtjDHcfPPNyptiLpfDiBEjcPPNN3e8hRYWFhYWFhs7uuFTXXdiw4YNioD9hRdeUF7Ottpqq1TpDDoDqV+cuLJ9/PjxmD17diQnwzcNaTVOav4XT/nX06J1vio1KMxIczkvmIOWch51mRL659cDAOpoUdR7kj06bpsenZM22s00z7SQ2YwokxUfuafrAtK2bYu9SZFTGcnbp8QLyUIpS3uLl0ONFx+ay9kgAEKjJrxt5udqaspsAAD0cVpRT/3EclniwkFW8dKzxI1obOR+edtV5XoUglpgekZrfjzj9GRGXZx0jE0aJn9flUL3dXTQ1lVmT/jc5P5M9dR0230bop68PGbcdZ10fYl1cWxGwn9YKOG5mFQdVLidSb8N2ijAuI6f+7QsiYxEJqZSlnHpGVfwMii6DvIZf1ZNmRZRi26dW4P1bo2oguCQIM+cF17LPM8Y12Ly6zOrReLpmqa4aMLQvnRsZFI0YdJ+1UTrxV1H5a5inDayF6fhw4dj8eLFGD58OL766iu8/fbbyue/5cuXK5/yuhJVi8OfeeaZzrDDwsLCwsLCwgIAcNxxx+HUU0/F22+/jaeffhrbbbcdxowZI7a/8MILIhFnVyPVi9O0adNw8cUXo76+HtOmTUtse80113SIYd0NL20eJ+UN3pzjhXtfa8s1IqLIz3Uief7EQ1O2gE2yPlvhgopM3SWPRmtmxXgOlSJKlLZV6if8/qPenNyXbIe+j7w+KXouyYuO06BUjKojDGXIjAENGQMpcfQGN4s1qEWrVA/OkVkORoUubb2bR9HLRDRdX1CfXq53ChhR42tF6gLmibNIBS+LPC2JqDvZM29lWbR4ObQE4ywvNor51WcKKDEH5YCN5HqOuGNcTZRakr5H7oczRpTF76ucf42JiaujaLqmIjqmhMi9pGsw0raCls4EUwStAiZdc56TeDyBeOaqmsjBdPnMKs+VX0/lgEXaxGkROso1bl2EOQIkZt0Ls957TK020OLl4BAm+uK6Jt5WjtTVnxlJWr1qonOT5h33PFPaVGCruiqqrjvSEXQnfv3rX6OlpQWzZ8/G4MGD8de//lXZ/vzzz+Ooo47qFttSvTi99tprKJV8mvbVV19Nle3TwsLCwsLCooOwkX2qo5Ti4osvxsUXX2zcrr9IdSVSvTjJn+d4bgYLCwsLCwsLi67CKaecgosuuggDBgzoVjuq1jideOKJuP7669HQ0KCsb25uxtSpU/GnP/2pw4zrTpQ9CuJFSyhEIJNvzP+UwPehxEPZc/BVMUzdkAuSWhbcHDI0THJZmy+i1ikJ2pcnNpR/p0nqpn+2qYRqhNmR9ilLuSQljauW5k7+/KJ+Okqyh4KJi7/srwTgH+v1bl6IsU3pHFaX6gD46Sb0EhyUMJRd/7hscEPh+Gb51X6BXs3l4+kKlIK/gQCdJxhcV6oRx7DeKYo5AH6qCjmkOilxYNLnTH5k0kCMJRWkrnRe+LxNn9oSP/NWUeQ2uR1RPt2m7T/OLgB+UlXD50SlTUKJIL0MSVxZks4Anzf/NMfhSoJvKn1y6+O0ik9w/BOy2IeFUoIyc5QUAwUvgzwtI0t523Cb/lxLSkxZSeAf10buI65txaS7Cfum3acjQBgDqSIFSFwfvRn33HMPpk+f3u0vTlWHA9x5553YsGFDZP2GDRtw1113dYhRFhYWFhYWFhJYB/31YqTNK9XZSM04rV27FowxMMawbt061NSEpURc18Xf/va3SBmW3gweqmtKrKi3E14lL0MhmlJscLNie5a6or8MdeFISRgB3zszlS+pFHIesTuFKFjdJ334rdjWxtID4rh2cmFMmeWQ13FkqBeKxRkRLkRzOe8n7XN52D9F0csofXAhLYCISFrHKlanjN0n4zNGeVJClmZCoTRTz0OLl8OGoFh00cuI66SkJWYtB+HfaUT7EcZEYor8wseVBc2mvmhQRDmxfcrUASY729Kveaw4Vq76YAR57EQbkg6nvq2D/ptQTQCF/DwqeQ6yPHDMSQAAYQ5JREFUwXVWZBlRaqWP04oaUsI6z3/m+8lwJUG4xhQVvIxyz+RRFqkLdDE4Z6iidkULFCexqZXmWo3AuyNZcIv2wXVdLFq0CN/97nd7VAqk1C9Om2yyCQghIITg29/+dmQ7IaTb0p9bWFhYWFh8k7GxRdUBfm3ciRMn4t1330Xfvn2xbt267jYJQBUvTs888wwYY9h7773x0EMPoV+/fmJbLpfD8OHDMXTo0E4xsjvgMgISlOYA4r0KxWvnVyVvylS2QA57z8AFCOAGnhlPUxBX6FMuI6AnNjSzP/FJ4OJKVbTl+z5fl9br8kAiuopKGpm2QklIqLvzHiQtGoPncc2HyrpwRsfkxZtSK+jgeqeil0GNU8IG19ct1WcKcEFFkkEAIuEpAKwt12J5a2Owr4O6gNEpSqykbwNN1DjFrdPX83PA55mphkHStH2prqMOSMra1msm6RilKR7d0aiG8aqsU0tmyeL6KnsOmos5DKz3E/CuKtejgfqSjBpSgkM8kQDTIxStyAiWseRlRFoNjxEUvYxgS33dpsoyyZomWZOZpGOKY+JNbeO2m9abnl1J16bp2VlNOpd2YSOLquMYPXo0PvroI2y55ZbdbYpA6henPffcE4CfQXzYsGGg9Jtbn8fCwsLCwqInYWNknABgxowZmD59Oi6++GKMGTMG9fX1yna5LEtXoeqouuHDhwMAWlpasGTJEhSLRWX7d7/73Y6xrJtRSYujJFeUWClf7xEyGRl4oSaGQgQuuUEuLF5ugULViegJ4Hj0FJCOYYrTtpjYk7Tf99PqZ0zeeyUvr6OhM4H6vMugSpFatVwGU85vHOPEt6eFzLS1lHMo5xwRVQmEhXsLXgbry3msLtQIe2ocv13Ri9EyJejM2sJolBGNKI29jkjlceJsSdIRVnMtVhw3pRaqo65L8UxIWeoj9hpL8x+6oI3Yny+n2FkUIC/WouxSUWTcZVSURuEJYB2ppJQj3Tse8URUXcHLoOBmUHT9azlHy4ouz1SAt9Izi7fT11d6/qRZrpapTWKeLToH+++/PwDgxz/+sZJDkjEGQghcN5qctbNR9YvTihUrcMIJJ+CJJ54wbu+OSVhYWFhYWHyjsZF+quuJZd6qfnE644wzsGrVKrz00ksYP3485syZgy+++AKXXHIJrr766s6wsVtQdB14rlSYlJjZCUDSDikRdUE/zEGGBt//XQIv0DtR4uunON9gikyKY5FknYC8XW8T2ZYigqQtOoGk/jlYXD9VaF3SajcAwGWhx+0CIBKLpPelnzeTvif2OLSxKLHPPtUJ/ZvHqCgW2lrOoKWcRU0mZKNaAw++UgRjNWVHgPAYcfZNzu+TkyI+c44bGVvXSCn9xuidEr3/BI1LZH0bvPyO2icN+9gW9qya6zsJ1WieuLZvQzmLulwJ/XPNAHx2qTUo3MuZpiLjjGhWKTxe8hyh3dvg5rC2VKPpBJ1IXib/N4mwRpVyw5kLF8ezmPp+adub2ungc9Q1m52FjfVTHZcJ9SRU/eL09NNP45FHHsEuu+wCSimGDx+O/fbbD42NjZg5cyYOPPDAzrDTwsLCwsLCYiNFT5IHVf3i1NzcLPI19evXDytWrMC3v/1tjB49Gq+++mqHG6ijUChg1113xf/93//htddew/e+9z2xbcmSJTj11FPx9NNPo7a2FkcffTSuuuoq5HK5qsdxGQWRvB9X0g14MeyF0DhJXjwlDMWAucpQT3h4vqYp+vov53WK+84vb6vkgRkZpxRefEVmI4FVMrEeMuNEtHnHsVF8X36cqo1ekYvLygVY+Tnk4+pslEfalsW5GkbDIwTlEhXsln4t1GVKynHkjFOlsSpp2OK26d5zczEPQhjqskWxPcmL1/ViiZqrKjM1p21XqU2aPhgjyvVpujb5HZp0HVcjWAjzs4Xr0uiT4qCPTQzPKjF2YHNLMec/nwJbWr2syNuUJS6yJGQcXRC0ellsCDLbry/nBOO0tlSDlnIWjblC0D+Fx+JZ8TiGKY45TfOMqvaZyDTmK06fFseAy3ndOhUb6ae6nigPqppj3HbbbfH+++8DAL73ve/hlltuwWeffYabb74ZQ4YM6XADdZx99tnGtAeu6+LAAw9Ec3MzFi1ahPvuuw8PPfQQzjzzzE63ycLCwsLCorPBP9e19a83QpYH1dbWYt68ebjzzjvxrW99C48++mi32NQmjdOyZcsAAOeffz4mTpyIP//5z8jlcrjjjjs62j4FTzzxBObPn4+HHnoo8vY5f/58vPPOO1i6dKl4sbr66qsxefJkzJgxo+qQRTeoVafDC/QwMnuhe6AiFw71lLZlN8ow6NFbGeoo6+NQrhBdpayL6AjUZRO7wv9lmqdo8sZ4H3K/uqdu6g+Ieu0yeFvONBGJJaoEQhigjamfH7mtzkZxmJiWtDYkgY9RJtHzWOncJx1nuW/TsY7zmvk55LmkSh5FTaYs9HnFSl611G0a5qcSo5m2L45qzklFXV3K/8CYMtMn2VHN9VvJh066bzgEeyZF3cklK2R7SmUHJMuwpljrtwUT2qY6WoRHwlxMq0r1WFHsI7KDlz1H6PPWFtU6dmUt55wMPQeZv64NWiREn2lxfSWx4nJ/cts4e/g5KrtdxDhtpOiJ8qCqX5yOOeYY8XvHHXfEJ598gvfeew9bbLFFpxbe++KLL3DSSSfh4YcfRl1dXWT7iy++iFGjRils1MSJE1EoFLB48WKMHz/e2G+hUEChUBDLa9eu7XjjLSwsLCws2gPG/L/29tHL0N3yIBOqfnHSUVdXh5122qkjbIkFYwyTJ0/GySefjJ133hmffPJJpM3y5csxaNAgZV3fvn2Ry+WwfPny2L5nzpxpLBVTdh2wmKg6IPQ+HOopbWT2glcaN2kMeK4g2eMve1R4+LJWSt/XY0R4eLoXpjNZsq2m9rKdyvxi8pvI3pi8TfaQkzy16H1LQNI54YJBkvuS91X7Dvvl63kOEG6rfIxkNiqNJiTWxJjtEYYgYCJdw3PMz0/CxLVQ9miE+UuyJy7bPUX0muJXL2MELsIIqiz1kKVuqoghnZVLw5jFMU6Ra6cNtehMqMT0tCXijl9HMqPZEWxkR4Nfe4xo7DgL2ZKyS0GIgy829AHgM4wix1huPSiYiKL7ulSPtaVa0b/HCFrKfgSe61HUZsNs+EU3ozDVAJTITR2RyM0K0XBxyzr7x5+XnIVj0jhxz8pKjJNYb6PqOhVcHjRixAghDxoxYkSXyYNMSPXiNG3atNQdXnPNNanbXnDBBRXr2/3zn//ECy+8gLVr1+Lcc89NbEsM/wXmSbLicO655yrzW7t2LYYNG1bBcgsLCwsLC4vORnfKg+KQ6sXptddeS9VZ0guKCaeddhqOPPLIxDYjRozAJZdcgpdeegn5vPr9fOedd8YxxxyDO++8E4MHD8bLL7+sbF+1ahVKpVKEiZKRz+cj/QK+h8I8Kry1OM/b1Twbh3iC6dAZqDS6hJIXam3iNDlA6P24jKLkOsIGh3pwqKd4eMLjTOHFceiMkrzetK+JAY7TCuggGguiR+DFRRh5qKBH0UkeT9U6ce2U3z/fpu6jM1BJqKRv0fuNixJsLmdAwZDPlkXbOE/YeI5i7HUZiei3aLDYUsqhtZRBfd6PonOo5+tTPPkYmeejR+aZIvv0tnEautg5VaNhqkKTVplBVJcJia6Ta0BWw5DpaEsknUl3GD1XwbHWGFZKGNzg/LoehVciWF/wn4XyOSwxig1uDq1B/bmWchZFqaZj0XVQCKI+807ZPw7as0aNpAsYJxbPOOm/Tdt07aLOMJnuE6Zdfy4j2rMy/muW6dwyRuAa5tEp2Eij6rpLHpSEVC9OnZW5c8CAAakm/vvf/x6XXHKJWP78888xceJE3H///dh1110BAGPHjsWMGTOwbNkyQd/Nnz8f+XweY8aM6RT7LSwsLCwsugLE8//a20dvRbFYxMcff4ytt9660+VBldBujVNXYIsttlCW+/Txv8NvvfXW2HzzzQEAEyZMwMiRI3HsscfiyiuvxNdff43p06fjpJNOalMRQNcjgEeAih6kygS4hEQZJ3DGKdyLswiyd0OI2WvnOipXiqTTtVEcjkfgUHNuFK4JkvdlLPSkHD2fUQKjpHtfJoZK3kdnkRRtkmfWOfn2klgGxZRvJ5VWxRAdo9f5MrNSJhtUe+MRtcvEbgH+eS55BBnHE/Yp5leYo6sda2UMaR0FQ2ugTVnfmgu87WDfQAfC+0qTG4gp9ctCttTEAMWxnklsWlrWSb7ejdsT7umKY+j3QazOz/83iYTX28RF0lXKKabvJy/LWfHVZ5GvaeNRlGAAAxEMFGNEyaBPiSd0TPxfEYHpOsg6vCKCz7rxZ5J+/uUoOp19NLH6cVFwyrHQmWVG4HpUzEW/Rz2EbBVv41D1/lf6V/qOrBJ9dDo2UsappaUFU6dOxZ133gkA+OCDD7DVVlvh9NNPx9ChQ3HOOed0uU1dxDF2PhzHwdy5c1FTU4PddtsNhx9+OA455BBcddVV3W2ahYWFhYWFRRtw7rnn4v/+7/+wcOFC1NTUiPX77rsv7r///m6xqVcwTjpGjBiheLccW2yxBR5//PEOGUOOqkvy+PRtsibGA4l4/DIbZerPBFNbPn3dQ3YJASuTRAZG1lxF9EQ0ZLnSRpXotpj2i2PW5LHlf3k/MiOmb9cj8vxo3fQ6IxkqSwMjK2VCYh2wCudWj+rjxyhLXYDGs2hpI4oJUT0jff5rCzXYUPDZg4zjoUaKhioZctPIDIluuyNlnaZSDi1eMzApb078PJPYp+h8lf5Ruf+0fcXBdK21J6ou7vpsj25KNkdhb5k/nuv6V4jrUlDKBPNSly2Kc7yuXIO1xRqsL/nZwTljWCyH//mQIznLHhUXHmUswi7KzJKsVdLzMSnzCFikcC7hsTJFBcvaU5OGkrNEnkcDG7xIv0nPM2WsLsrjtLFG1T388MO4//778YMf/EDRUY8cORIffvhht9jUK1+cLCwsLCwsNipspHmcVqxYIfI4yWhubq46IK2jYF+cYuC6BODemLSeX3b8dLnQIozkmkc0/iI1MRW6txOn1dCvFTmfkYn90W32YtgegMAJOvA8EmYeDmDy7HQ7+JhxdbyEd6kxFvwGqMTuJeVJquTtp2Wjqnm2tJcNEAwkIDIzc3s8SW9SqX6aDCKxCvK14RAG16NY1+pHThUKGWQyvqedy5bhMgpe9imJndNZBAr/2jDVFCSB5iUNe2lihipp6/R9TWOY2Nn2MEOVoknlMdJGZAJqVLLO0LYF+v1CCFMYKMYoimWfLfHKFMiEmqayR4WWiZIM1pdyoR4KXIfnPw8cwsIIOc+/tzmrJOci88dM1rfFVRjgbV3DOTQ9J2SWWz+ujKkaJ8YIvGBuuv6SPwfDbSySt8l1u+c/3hsLdtllF8ydOxdTp04FEJ7P2267DWPHju0Wm+yLk4WFhYWFRQ/HxvqpbubMmdh///3xzjvvoFwu4/rrr8fbb7+NF198Ec8++2y32GRfnGLguVQwTiYtkHL9RSgg/x/XBQhlRh/ZzPqYNR6cNeLLptxCnhbZIW8V/fD/I+pc5JpubpBHisjbg23yGEzx6NRjJGuldHtC3QHEv7JnrnrEGuOVyBhFdVRhP3pbQwcpGYhKEU5pwdkA07x96Cv4sfWX9LkqEVqyV05YqPHwKAplB+Xgus5kPOSCXFFlca2LHYWdOjzis04cLiO+F0gNsc4pIuPSMkyVWKs49kdmGCqNF2djXL+J24HY66q9HEWqWnXaIISo+bXKLkW5GPwngKkMeclzlGzgJc9RIwg9KhhoSl1xLMqgkOtzMte/xnmuI9eL1q5L0vLpObJk1ltmEuX1SbpD11OvBf3Z6h8nid2VnnmEAsyj6jqJGe50bKRRdePGjcPzzz+Pq666CltvvTXmz5+PnXbaCS+++CJGjx7dLTbZFycLCwsLCwuLHovRo0eLdAQ9AfbFKQaCcTIwQTpjYdIc+f8SEC/8Zq54iUTvU2V6AANrxIkDkFiPNeIFGyLNggASn6mA6n2LLMNMNdHzCCBHx5k8F67XcbyoS81tD3I2McGgMBDKFPc4jRZFH55o6yv5gGm1J3q7JNYrDVOh54eSmaS00ZtR/Vj429O9YSmy0w00VbX5UmTfsIaXaq9JU0QRpDiT1zEWZa1iUG1mZqBybqakayZJ6xS3j2mYNumi4uwFYu8RmLZFOgjvnzgQrQ1TbzMUC1mUW/z/BJAMA+CKY5UhnvhdcDNwPaoce5eFyy6jIVMtGNTgmtNsUqLotPOSxC4WJY0U/1fe35SBXobCusv9S88l07i+EJFPFOoBDP7b4Lm2Vt3GBvviZGFhYWFh0dOxkUXVUUorRs0RQlAul7vIohD2xSkGnksANyajNbRIC+5w6K/z4vt5sFl2ViLEULIHKWuK/Ha6NxnDzBgYJ7HN8G0+9MhU7YxgrtJ4/B6B52rZwaVjoDjW1ANF6MgZ5Ucm+w3sgaJNMHWmDJwc8SQYrHbomExIqq+lVK7X2ojjo2mYwn6l7WIlUSKrTJGOMrNVKdJTzk/G+w5tl44nUzOtm7LMy32mzdcUYYVizo2JnTLpWkwwMbZxSLo2qvnvU5xuLQ2YIVccP9y+nFE6/1CvP0K9cH4ugVumKJaCbOA5B3VZv25h3iljnZuP6It4dJnnhcfcoR4cwiLZ/uN0ZXrEZRw7qF+r8vhxLJIJ0Wso+FcwWvJG/ozUPzGoP7zyNyaPdI/CnDlzYre98MILuOGGG2DK59gVsC9OFhYWFhYWPRwb26e6SZMmRda99957OPfcc/HYY4/hmGOOwcUXX9wNltkXp1gwj4C5BCzO9RPONREeiPD8dGaJSG3l/SPtGMDzoUiRc6EnRcS28EXbxMbEe+3GOSSwVeHveNbH1wFIq10C5gbaJd1MPULRo/AIRFs9Gi8uf5E+J3+beR5xzJJMA6v6M4PTWo3+JAZpczEJViBGt5PElPlMocQEMYk1rXBdmPRb8jHiDBPltRMFexHtP4lxUI2odE6jv+X+qtE8sZjtJoYizT2Rdp9KMEf2pds3GvELMR99GyMSa+hSlAsZEK7tAQN1PFEf0WNEZI9vLWdRdqmSv0ipP+cRlMphHiRKGTJB7TqHMsUOV8uLJEc8yrmX9EhI/riU2SXmhddA4rHX2HpxnAAwL/5aiLJN2vOdye26AAzGa7XqPqrAzJkzMXv2bLz33nuora3FuHHjcPnll2PbbbcVbSZPnhwRbu+666546aWXxHKhUMD06dNx7733YsOGDdhnn31w4403ilqzlfD555/j/PPPx5133omJEyfi9ddfx6hRo6qbTAfCcowWFhYWFhY9HJxxau9fNXj22Wdx6qmn4qWXXsKCBQtQLpcxYcIENDc3K+32339/LFu2TPz97W9/U7afccYZmDNnDu677z4sWrQI69evx0EHHQTXjStm5WPNmjX49a9/jW222QZvv/02/vd//xePPfZYt740AZZxigfzdRzgqWkMjodYzz0PorkiRGOZ5N10vYk+iK7BkTch6kHpnSV7YNpiLBsgL5gEQ4HH5xKfMVKmL3mMnE2D4Xhwpy4Yy5OjWIzjyibEsxWqpSYmRZqeli3YqGuL6d/U1qRfMmY2j5uauJ7U/nif8m7pfN14piue0SPR7WIz1fYzjKhLhSodi5i2lXI1pY3ATGKY4nQvSXaFK1Oyux0IVTsoX7hMYRwZUzWaBEzcC55H/DDLgC0heQ9OxhOML2ME64p+hvlS2VGi6pLOnccIPDdkoKie8w4RwkbRJsVlyxftTPe84XkXua41IzxpTLN18J/9Sr/6s4m36yLGqRswb948ZXnWrFkYOHAgFi9ejD322EOsz+fzGDx4sLGPNWvW4Pbbb8fdd9+NfffdFwBwzz33YNiwYXjqqacwceJE435XXHEFLr/8cgwePBj33nuv8dNdd8G+OFlYWFhYWPR0eMz/a28fANauXauszufzyOfzFXdfs2YNAKBfv37K+oULF2LgwIHYZJNNsOeee2LGjBmivtzixYtRKpUwYcIE0X7o0KEYNWoUXnjhhdgXp3POOQe1tbXYZpttcOedd8bmcZo9e3ZFuzsa9sUpBqxMwMqStsigX+IQXp3wRkhsW9G/ECNIno/i3ITeoa6dqnjrVNImGdrFGqy3kbVVfJpclyRpnpQIIcrCgxRhIqAwc4SxKIuT5NCl1ZwYjm/Yjsaze0RlEYh+jgzjmxmraL02NWLNNIGoPbwv8VsnsXTNi9TexPTE5S+SI7FEX6KtVzFMmIProriHb6o3GKd/SmKX9HWRy9TAMLVJy1eJUeoChkmHYoPChAuKMvhXZaAi4j0KQNIUei6FG+QkakVGsEa8XlvM5Wg+9hKDLEcEJ2n1/Kzc0iBEeu4youqRmPpbR5RlTsOqB8uyfk5aFv3odndVrboO1DgNGzZMWX3++efjggsuSN6VMUybNg2777678qnsgAMOwE9/+lMMHz4cH3/8MX77299i7733xuLFi5HP57F8+XLkcjn07dtX6W/QoEFYvnx57HjHHXdc6udMV8O+OFlYWFhYWGxEWLp0KRobG8VyGrbptNNOwxtvvIFFixYp64844gjxe9SoUdh5550xfPhwzJ07F4cddlhsf4yxxBejO+64o6JN3QUrDrewsLCwsOjh4FLRdv0FfTU2Nip/lV6cpk6dikcffRTPPPNMxUi4IUOGYPjw4fjXv/4FABg8eDCKxSJWrVqltPvyyy8xaNCgth6OboVlnGJAXALiahSt9A+HqjsMKXJ9lVhUllUqWtmXmkSvpu9CmhFiNxOnm+JTXBwilHZUcCk2SaJNAGAeiX7OFKZon0JcX8LKNxkFonxP/TjHfXIxfGPQqXx5OTGRpvz00cLxw6Sh6T49yRcDIywqaI02iy7rn7O0hIhyCHqacHn984dynPhnN49GzouxD/jFrNMWaq5UCiXpUk1KXMnkTy9x+yV9kkvxyTCVkR2BCt/JlLI5hJc3Cpoy9dqmWTeMfQnSELiB0Nn1HJHwUhdXM+InulQKgItjTCLh+Uq6gJjPdsZxpAmLbXwfL3pdRlTnJqT59Mrva+OnOkTOAemyT3XMfBFX20dVzRmmTp2KOXPmYOHChdhyyy0r7rNy5UosXboUQ4YMAQCMGTMG2WwWCxYswOGHHw4AWLZsGd566y1cccUV1c+hB8C+OFlYWFhYWFhEcOqpp+Ivf/kLHnnkETQ0NAhNUlNTE2pra7F+/XpccMEF+MlPfoIhQ4bgk08+wf/7f/8PAwYMwKGHHiraTpkyBWeeeSb69++Pfv36Yfr06Rg9erSIsuttsC9OcQhKrgBIFCfrBWoj7ZOcU6I1IKGIWo3I5x5VDGOke8eMJAuqkw1SxzRtQwXHxeDFhV6oKq4kNBhLF2AGNiQlIGVEnqdGK5nsi7OZqBvVEG9tP4LIsQ0dfLNYPA5cGO93GxWP6/37C4FINziGJuYnwlbFXY/S+LECanHphaJu/fJKcvQZI2oiT227acbK5dzGtBppkiLKbdP0WRXz1Flg5nMebpbOPYLr0ZRrI0jBwZkmQv22PMmlMoZ+LBng6ikppDQCEbG9vE55Fugsk+HaE/tpzx9PXiLR61rbrF5U0fNGJPuUdsZrQ9u/ixintuRhMvVRDW666SYAwF577aWsnzVrFiZPngzHcfDmm2/irrvuwurVqzFkyBCMHz8e999/PxoaGkT7a6+9FplMBocffrhIgHnHHXfAcZz2TaibYF+cLCwsLCwsejp0J7mtfVTTvIInWFtbiyeffLJiPzU1Nbjhhhtwww03VGdAD4V9cYqDR9IlNtO9DSK78Yj39qOLAIWouKKWrFA9KlGehUP3nmVhTludoUredBU6AhnEA2SjmHa41MaqhkgZgjMhIpxa82yj3cRDYvrCdXwgw7ixJFhy4eAkmA4ZSWQaSfw2xSb4xVx5U4mxMCUGlPUnkcSb0jGJaMJ0r16zIcm+yLoYHZtZA2XeL3UZDBOLFMcsVX1q4+g9vbOEg2dAhBFVepKOF0/xoazjPzQGxyXwQFEK1juOp5RM0u8rr2zWuSUlqdRtFyVNTKyOrkvT1uskNfGQfAh1Dam+PoF1rMRWfZMTYFqYYV+cLCwsLCwsejgIYyDtFIe3d38LH/bFKQbE4+xItTsavOI0DgllgEciOTTDfiXnSGa1NGZEFO3km72U43ciSILHRjyV7WEGpzzRkZS8PTngTWkTOZYGEYRO4OhtxHrZQ47xuJNEP2kha5N0VkGaKPOi2yNkBo+OImrBVWGvCYxEHe/Y+ZDEMirVsHA6YxF2wi8G8xgmnVJSpF1FG4z7RNkoaJvjxzPc0Ppy6vuUGX/6iwbb5etI0qwBIWPLXAKvTAV74lIGJxcU6g10UHoEYiIDGNE5acuyjQYdk/FaYyR8JjO19FD6z1gm9jahucx+xjBRbfrvRFvgISwB1p4+LNoN++JkYWFhYWHRw2EZp54D++LU0TBpbOKuVdnx8ohGmUR1DIREN4llzrwEZJQirYp4njFsSmeBwawl4IOz0CZFImaKqInRdpn7DnbRNWEG715l84CIvkocw5hzJK/qiGcTk7zuNGRFTGFhtc+EyL0YDz+9ufFtVT1Uwnh+Y8km5SqObI8ghulL1ijFnbAU2hcd7T3vKZ4TYkXc4TYcWCbNRblOZAaKMvU+lKKFXZdCj4yLDmtm6cysn3RsmcQaS88JkUNJh6fu6/9u+wMsFRlq3zUsNNgXJwsLCwsLi56O1J8jK/Rh0W7YF6cY6CRFp+iEpP59pkWLdIkbsz22kOg4ZnqqHTB5mXHeKtfyCFGW1kb/TTQmIK3mRE8+JHnXclOmMQ0hA8X/qaRziaO9+Ji6DdqyaQJaYSTfi2dKMyPjw1dRaQ4VTm+qvEmJWh7D9oSmpgZJuZNUmjZuUwKDZNpsujb07TCzZElBjTyTfLtAmHmesVM0nBzpvOnHVmeglEg6j/9LjVGW+jCqcTHbJVZJL6KrsEwiU3h0Onx7mx5VHfB462rCXqAbModbmGFr1VlYWFhYWFhYpIRlnFKiI4gYE0xRZLFjClqkbT6OTlSYXSeJ+TGNrXSYNFjCss4oJNT2i+ybNmeKyVOXGROZ5ZK2RXRBAWUQ0UDxfiLnyGxfRCul22SAcA5dqJI3guTzw9kyED83mORlpq0xF90YvykR1VyqCmthGFdiJwCN0dE1bLF9R/uoaFPCcYkSYuqaVA5+wjEiaW68uGsLUK9Hk/5JY3qNUXnQGTcDG6TYIPeh7WtimOI0aAzK/U70a6GD0OZnuxZl2NnojszhFmbYFycLCwsLC4ueDvuprsegV32qmzt3LnbddVfU1tZiwIABOOyww5TtS5YswcEHH4z6+noMGDAAp59+OorFYtsG4/lk4vLKdBC4F5E6uqMtf4axCAOIR5Q/KH8w//E+vYTxPPh9KOvVYxlnB7Q/4qo2RuYQ9+dJ40VsSZpX1AZ4ROT1UuwJfitzk/eTxmNe8MfS//F9xViu3y9zU/6J88jtIb5eRfwR6Y9Gr3llLm38S7NvZAztOoqZs3Jck45Lmf9L/T9pG6n0J5/7NH+u4ZoN5mZaF3t98lveeF3oxzDhvleWSfyffp/K5z44hnBp8Be9zpTfhnNhOp68b7gI/ojy57ePOc4x93xVz4hKz91K163FRotewzg99NBDOOmkk3DppZdi7733BmMMb775ptjuui4OPPBAbLrppli0aBFWrlyJ448/Hoyxb0x9HAsLCwuLjRNtTsqs9WHRfvSKF6dyuYxf/vKXuPLKKzFlyhSxfttttxW/58+fj3feeQdLly7F0KFDAQBXX301Jk+ejBkzZqCxsbF9RnSGh6G5O50WxZeSnVVzKKkGGO2Jc9cM3/6TPbvKXbYFsskMJOxc1lXwQZm0k2wD0X4QbRthsfIaY6SbGCfFRGUbA60H4fsq2hXNLml3ubYe4cvcBKIdA33MjkLSXPXrTG4qnSdzXh8Srw9S+qkwJ71vTsTo/ZiWNXPi9otYQLSrg5F4vaOmq9O/tig6KOUhkmCrbpghSk7PrxTbnW6P6Rzq66RthGnrjf1UcV2mOd8diY7uL3YcFj35benDot3oFZ/qXn31VXz22WeglGLHHXfEkCFDcMABB+Dtt98WbV588UWMGjVKvDQBwMSJE1EoFLB48eLYvguFAtauXav8WVhYWFhYWFiY0CsYp48++ggAcMEFF+Caa67BiBEjcPXVV2PPPffEBx98gH79+mH58uUYNGiQsl/fvn2Ry+WwfPny2L5nzpyJCy+8MLrB6OEG6CinXGc9oC52y2d0fc6crTAdi6727KqF6qjH2yt7+3EMg8xWyW1NObHkLOg64jx8wyqjJ851WHp/pqGItj2JoIlLONQhFKBmb+QYq2MTjZEQv9Mirm3s+g680SpFiIpt2smQmUt9P9P1KedU0trG546SHiry9WxqyXVXvM+0n3j08yVrp6CzSOquFRmmjnqetLWf7pY1Jf03qZo+LNqNbmWcLrjgAhBCEv9eeeUVeJ5/15533nn4yU9+gjFjxmDWrFkghOCvf/2r6I8YnhiMMeN6jnPPPRdr1qwRf0uXLu34iVpYWFhYWLQDvFZde/8s2o9uZZxOO+00HHnkkYltRowYgXXr1gEARo4cKdbn83lstdVWWLJkCQBg8ODBePnll5V9V61ahVKpFGGiZOTzeeTz+eoMr+baa4eXYig11vXoovusMyU2fsfpxo9u4PuT8B9df6JrU5LSRafZZGT3tN8JbKXaqYGdMjSPmEy0f7VtjCQPG4GuIUrDYJo87DRjVriI4qrctxskeezIJjkrvcxAGfRNkV7l61GbQGyNQ1lzGMnNpMHTtEeyTinSLyLXJ5H1URWQyDQl7d/Jz6YI618tk9nRsBqnHoNufXEaMGAABgwYULHdmDFjkM/n8f7772P33XcHAJRKJXzyyScYPnw4AGDs2LGYMWMGli1bhiFDhgDwBeP5fB5jxozpvElYWFhYWFhYbDToFRqnxsZGnHzyyTj//PMxbNgwDB8+HFdeeSUA4Kc//SkAYMKECRg5ciSOPfZYXHnllfj6668xffp0nHTSSe2PqGsPYjRD4XJ6D8AUdddeCUp3pSOJLemW6GGmMDZJV5RyoCQvU4k8DBor7U0Zy5Ngsi0FG5PKS29LIFJEo2OOJqzYtcxWRBi5mLZxyxEjozBr8BLsq7Rv3PiJEYLJl2gk+lJmjQgzCycYURk6XQspOjCMzeJZa6bRKTq7Qjy5MaAzSlE7wwH0CMiqjm/SGKbxYvpPfR5SmtMjwODnNmtvHxbtRq94cQKAK6+8EplMBsceeyw2bNiAXXfdFU8//TT69u0LAHAcB3PnzsUpp5yC3XbbDbW1tTj66KNx1VVXdbPlFhYWFhYW7UNHaJSsxqlj0GtenLLZLK666qrEF6EtttgCjz/+eOcYkOZ660IPpV3MjLRzNYxVVbqWShqctmgZTExQgm4nef/4SC/j0ZMZGY35U6dX5UWQpnlbn3VV7BdGdMVouZRGcZ3EjOtpB0lerlaPJKPK45IqMrQi01HB3qQNMZFw/qEmgBdDKSudagyg1G9UuxWdW6hli1qqyKUiLJPETplYj5iJE6/CBZ76eRL01wYWMa0cMF3HKddZfKPRa16cLCwsLCwsNlowdIA4vEMs2ehhX5zSoBqvqFrvo6M/pCfZqkWIVZu9umrvXx6vIyJSUuhYKkhQ2m6DaKNpjSrpdXSQuN9VCjUSx0g2IrHbRM/eoHdKiwj70Ua9WhWoyMDEjdFZ/3GR7yWJKWLiZwydYTKbBkZSxB9Lpv0bNwRvk3SvMy1Sjkg2aCb4pUFi9FHtQFIOKLVhwn4mVPPcbsszvqNgo+p6DHpF5nALCwsLCwsLi54AyzjFoa2eUiXvLo33V02/aTxmXXvCPcWgUjmj2npAjahJ6jsJhraVytsp9b6CHUwONdE8ZHMumeAnDbvmY5lrn0FtCEMbTfvDqNk7N7U19i0zWWmvB3na+j5Ea2Danek/qkNP91mNTFMbr+P2aGIi0ZmR64rEjxGXGZxvDhgdxhDtIAVLHCGdE+ZJPALiQkR0MQdgDgPLaLo1SGyTpIOKPYYG9qYiGV4VO8wNSLG/fM/yn3EkcHueie2Bh/azXbbIb4fAvjhZWFhYWFj0cNioup4D++IUA8JSB/5IO6H9mp227KezUbId8sdYD6AlAlryJ0TL/mo3F2zOA17WLHIxMjwVYIpsYSSwKa3n6Em13/XoNzccg7gEpAxQN1guQ3hnXtYf160JGjsALQZeNB/K4f+ykIFTJhOOqUYYMXgZ/htwCgS0FJ13xLOm4ZhirnFSFZMuSsk6Ha5n4v8M+0RYjyrc1zSRSWlzYyUNk/KeSIzwNLGl8nXTWfdogrbGyFQkjqvpobSOVdJQ0p5VGCO2Hh604+KF9wcp+2wocyRdFfx7zrc1qmlqK2PUpijKhDmlGTOxrXxMY665DinnmAZW49RjYDVOFhYWFhYWFhYpYRmnFIjLCRJBR77MV9EXYZJOiWt7OCFRhjCauIBTBDLr/W3U9ZtlAubDyxJ4uUA74QBeRmJiKFMZEkiMHAWUPDU8k7E8HUk/Rbyw2jop+7+Fd+uF2iR4PiumbJNYIjCEr/6BlyvauqrGycsCzPHt8hx/P3EuKQRrxBwSOcfEC9k5UpbsYwAICTVUgX28LS2FbXlmZnGeiD8mH9fLAW5eO568KTGxThLLIEU4EV0jxu00/JZZm4qMUNL1KIvH9HV8MeLJV0vnIjyIpv50G5MYpo5inJKOs7Y9UvesQvtkG0g61i9NpvXY1OIB0wT+fGEKc0k8STdmYpjSME6czUlzCVQ63wljGo99HFLeO2nG7XBYxqnHwL44WVhYWFhY9HTYF6ceA/viFIfgW321OUFSVdNOidTfzgNtDQA4BYAWoWb35dKEEuCU/O0AQMvqAIwShRGRmQ9GfSaGMyRuLeDWBL/zgJdjUlsW/Bt05YV6CFoCMusJHG5DSWWHTOwTcZmyLB8bRUMke766Ro0ETFNgl5chYJlwORLVxxk7T7WJlpk5czKk9ryty3zGD5LXK3RXBF4GcAOGz81LWrMswDKqTfxY8nMSRkLyPqMiJKNWS7ZV/t2ea7Uaj17sIzFmWl8V96nQviL7YRqDJGyLtQdR+xO2VySDZK1OLKNk2NYW3Zq4TySGSTqPsn4QLLh/+bLDVDsS7QlWmeZe7TWXyCImzzspkjR210r2tTfCzaLXwr44WVhYWFhY9HTYdAQ9BvbFKQ4mrYiEtiR1rvitPY6t8hCNauOek0fgFIBMs7+YafV1TCFrEzIkxPV1TbQUMDgu86PQZPqW1yqjgOeErIyXISjnSajDkfQ5yPlMCwvso5onSosEmRb+G8i2hKyXU2Iq48R8m/n+/jaZcWLK9MXhqnQ+SKhd8lmbkF3zMj6j5rdD1LNl4TGkZdW+yDBMtVepPwYAVDq+GQIvEzBOORLqnTLE15NxdsqBpDVTmSvOPslaKd6nlwVAwzxYiTqbikyGtqxtj5wPdBASOkrMJN0ONiNpvKruexNBlvb+r2acDtBscV0k5cxw2WevAZ8VZlRimHMkjLCrMEalKLRItGHM9RmyXySyzYhYFkm6GSR7jOel4jMlZbsOgk1H0HNgo+osLCwsLCwsLFLCMk4WFhYWFhY9HVYc3mNgX5xiwLQQcL00gbKsCZR16lkIe01UvExry+H2HgnD2ss+XQ5ZGO2FlLr/+c3f5rQyf10g/PbD+dVPXWGSSOZ/VhJzYuKTlecQkByBx0s7EH+cMg2X9QSOtCzR/K3+HxCI0gPa3ykyOEXJvpL6OdG3U/5UJ9nnMU38rYnbCRHrmJ41UD6fREs5IKcgiBHtinFd2QamlG5JpME9BCkQwk91pERAM6Gon6dL4CL98PMcUcThsu3UDT6jBCLzco3/uQ4ASn3CPsVUpM98zJH64t9Xle96kcNgXmE4ZnGJFiuG5McgVbh7hU9EiXZoYxl16AmfKs2DqG2q3j8NKsyz4meomPOkpzRx3PDzOukDlGuIuGZSJSONMS7ps12lpLuJGS0qCvfD61z/9B1rekx/lYIwOgweq3xhp+nDot2wn+osLCwsLCwsIpg5cyZ22WUXNDQ0YODAgTjkkEPw/vvvx7b/7//+bxBCcN111ynrC4UCpk6digEDBqC+vh4//vGP8Z///KeTre88WMYpBk4rAQWB08oFweE2v+xG8FtmmLgnL3v0MnPgqG2UfQNngugsE8IkkHKYPtVC9IV4ucRC0Td8xkYwTi4LQuS5q6Z5fJSAZWWajcDLcqExgZsPxeKQUhVQF2AyQ1YCsut8oToA0CKDw+dSYv6fFN4Pl6mib35sg/UhAyUxUyZ2R2KZuABcLBu9bnmu0nGQ1hOmMS9MstVlmofMVKaLhGOEgvRQhM4cAuZKLJNURoU5RL2eInU3JJMCIT8AZHME5UDEm9ngC875dcMolGSfXhYo1QfbMgGrJeYTHY9Ik6067UZUk5sOsUxGwlDtYJvSbE9EHCtRgdFUutBZGNMwVRxHPS2HsMPUR8AieZmw5ApzfMJU3PtBQlj+bJCvi9ji4CZoKSkq9RM359hAERObpjUWrKt820rBNHKiTyXhr4xiF6nDu+FT3bPPPotTTz0Vu+yyC8rlMs477zxMmDAB77zzDurr65W2Dz/8MF5++WUMHTo00s8ZZ5yBxx57DPfddx/69++PM888EwcddBAWL14Mx3Ei7Xs67IuThYWFhYVFj0cHvDhVGW46b948ZXnWrFkYOHAgFi9ejD322EOs/+yzz3DaaafhySefxIEHHqjss2bNGtx+++24++67se+++wIA7rnnHgwbNgxPPfUUJk6c2Ma5dB/si1MM6pYDTs7XnmRamQjhV8LRAyif4R1NjyIvy55NhTBduQ11A7aIJ1M0MDScVfJDijVWRITHB4wNC9sKdgOAHKLPMgRuVgqXDxI2ChNZqFviTIVgnApAZoOvZwICjRP/XWZ+Ekl+PAMGjLheaKMr2Vv2JHulA6TnI+EME2d4CAk/RCewNaItb6o/mBgL0kFINvDfnqG93B8FQH0jfAYpZJyYQ0BcjYGS9mOEwMRO6NHUfhkXAoeXkyn6TBMQpDWgoQftZQnKecDNB+c0D5Rrg465ti6GPVVWwnCt6p68fJ3HsRvVIs09Y7IBiNe7xB3jahm1Sn0TxFMjDBH2WewWx1R5MesracrEBrW9zogRV2LKM1ATu5Yk9sk0UAKDlmhLG0VfsWyeNHCkjcb8i8PhQiTrzbT6XwA488+TguraV7fQJrOrRwcyTmvXrlVW5/N55PP5iruvWbMGANCvXz+xzvM8HHvssTjrrLPwne98J7LP4sWLUSqVMGHCBLFu6NChGDVqFF544YVe+eJkNU4WFhYWFhYbEYYNG4ampibxN3PmzIr7MMYwbdo07L777hg1apRYf/nllyOTyeD000837rd8+XLkcjn07dtXWT9o0CAsX768fRPpJljGKQa1Kzxksh6Iy5ApMNBiwIiUtSRkDKEXIPQskksiRVLJIAGTAcFGBZFU1NQWavSbq+t+NO0P0xgSWZ8l63AcEowbsiDyb6W0Bwm0VbyvIoCS1K/kkTqFIHpOeGqqzoqUmdBo0ZIXrAuOr+uJ3772yQM8TplEDo0KSddEJPZJHIcKzJMC5RxXZpmAkOUifBxPLQAMQgQDRVx/WZwLkx5KYSxUPYjMEhLGxKGhIDzgEsTz9UyCYcoRFPsAXuBYurmwP2GjmEzojYcNjNMOoqFUbZdc4qJqHzmBlTWOHWefohGLGUOHSDYb7Cu7lpUuH5O98iWo7a8n8KSl4Nr1oEbQsmhbU9JILwO1VA+iRJecuFI+v7Tka5pEOaaixLQEbWUGSi/4HQc9Gjl2uwFVJaUkUAqJywmMTdHRTLpHiEvEc42Wwnlnmjlbzrf52ky5PBQYQ7nURem4Pf3Et7UPYOnSpWhsbBSr07BNp512Gt544w0sWrRIrFu8eDGuv/56vPrqq+FzLyUYY1Xv01NgGScLCwsLC4ueDuZ1zB+AxsZG5a/Si9PUqVPx6KOP4plnnsHmm28u1v/973/Hl19+iS222AKZTAaZTAaffvopzjzzTIwYMQIAMHjwYBSLRaxatUrp88svv8SgQYM69hh1ESzjFIPcOheZjCuiungkmtDgSDohYtLgxCHOOREsg8osCMjjuBLr5XlRDU4CGKUgQoPlh/kJL8wLPTKfJQpLMLCST0EIVolIXlvghQkWKcgjJQrcyrmjPI0x8xhIyZMYJzfUa3leyDoFbRPnR4goaaIcS+4eaMc+9pjpuU4qjcl/Uv+gyLmRxNZgPWHBgfB8RkyQK5ImiwS2865lnRwIgZehoRYtS4WWCfCj62QNU7GRKMWDvVzIojAn9K4lM4NxtHkanN1IriaJKQq9/OD6qiYMLC3TZGKS+DYqjekF162sa+GsQVkTjSmd+Ku5ds8chabuohbJZuqxYUS1l99rwbGVtTRCz1jijHOwjxd0Ie8rjy8fExIUtpaWlbxemm6JykyXVBeNOT7LxPODeRX0TaZSOMbTX+E862ynkudJev4wXnQ4ibzg17zHn1VBN2U/GtjZ4C87xZB1y7YEOecCPaZTVCOWeU63ctnFNxWMMUydOhVz5szBwoULseWWWyrbjz32WCH45pg4cSKOPfZYnHDCCQCAMWPGIJvNYsGCBTj88MMBAMuWLcNbb72FK664omsm0sGwL04WFhYWFhY9Hd2QjuDUU0/FX/7yFzzyyCNoaGgQmqSmpibU1taif//+6N+/v7JPNpvF4MGDse2224q2U6ZMwZlnnon+/fujX79+mD59OkaPHh156eotsC9OMXAKLhzXVbJRczAaempE1794Gq0REwlmZDv0YrumCC+tL8IY4Fb4xu4EkV2EgDgMDL5AQWiJAihyDo+AMAoaeFNOxs/pFEYMSkwLz+jN9RJB5KGsu5K9NDmXFC37jBI/bn4UoKZx4vOr9OAgRIo2IuH3c4NuDEDILOn9pn248HMkNE1QdFZ6XwQQ0Ws+KyJt02yHzEB5BCw4h35epjDDO2cZeB6ncm3IOBUbgFJjUOwXPvvgFBGyAK7GkGiMiRxCpOufAE3/EwcxRaItq6srgjBENEIeRAZ9neWQ2VJaCu5XrmORfnP2hnjqPA21YJX1fGclkzsNGB4EGiA947uU+ywyhsw4SUwQ/y1II66x0dgqxR6pIDRl4Zieox1uKf8baHAoJTaS9+Nl/T9xvoM5iyoHcSyati7yuxJ0nZLEMoEALMOErfoYfnWFwFyG8DrxtBx5pbDwOBDknOMFyAtMRAEDEJUWwjxP/BnW+zROaXHTTTcBAPbaay9l/axZszB58uTU/Vx77bXIZDI4/PDDsWHDBuyzzz644447emUOJ8C+OFlYWFhYWFgYwNrAcH3yySeRdTU1Nbjhhhtwww03dIBV3Q/74lQBpggq2ePTwShNrz8yRWuJZQMDYsxnFGOIpPXh7QnhLikfg/qsDvfcXA+kHLBTGQpa9MCCPE4ej7gT9dRMkw+GZIjWdJO8NFqWNE1cM+ZKc+P2MhY9DsqyByHYkg2Q5w8IbzMV0jwolOzgJFx2aDR/FCHRfYRdysDhT8qiDFRgF/V8GoF4QXSeB5BsSBX4GZ2DHh1f28MPEQ2uW0mKFDIMnDmR6o8pYhol/C7u4o9hlUzrkk6JqX9GIiwGLUm5w8pQs+7Ly0HWfbVmYziUkttM2BA1UGc9GIWiL9OjUHU2SvShz19naZi2jqnbiCypkcb0HH8cj5q3Q2aj+PnVNUNEW9Z/Q2XAlDlJY+pzE5sSbq/E+oCGbYKVc32tUmaDtCyzclIknJ/nTtKQlQGnxKQqDWHOPq7bFNeNbjtF5UjfjoQt8ttjYF+cLCwsLCwsejoYOuDFqUMs2ehhX5zSQLtgGQV4PBRjCHUgxPcIRCwVcUAoAxNRYVG9lABlYF4YZeV7M9xlMuidhD7H4PIwprmInHIggOeFkUQO9fMKBVoQQmkYdcN/K5m41eiuSJ4hWc+jsAOh1+brSTxpmWmRc9I2N8jhJLNwfL6CfZPcb5klcKV5C/GVLpIxubHEvN60H9cZUX58tf3lyD6OtAlA9LxTItrJA8tQkWk94JlEfh6nGEbRZVp8j9qToup0BkL0K7QkwZy49EDTmIgFY1Zm7qmTZIZJvjg8orA/PvMaPf5G7ZEnMQeu+tvXOEnLHoMepeV3yJk2WXxkZkaEnkhq6pSYmZkhiJ77uMtKsEsssk6Mq9kms15y9nmZbeK1MiNsl9ydomkztzHZIIMmsC6JNfqSwKckZ0hn0lgMoS7NVdlHoQvjEYNKnU+mZkHn14Zc21OaDyMQLHt4sTCxkYDZpD4bIeyLk4WFhYWFRU+H/VTXY9BrXpw++OADnHXWWXj++edRLBYxevRoXHLJJRg/frxos2TJEpx66ql4+umnUVtbi6OPPhpXXXUVcrlc1eMxnktHzwoOBgIistT6Xk+gC+E8FN+H+utAgig2ykKxHWNRBiqyPRia3zByFJicAlfX/cg2eIFrDqi6JwDwHF9LQ0NGikgME5EjxJJYmEoMjSlqTZ+bGzJOCpumzzvRBqaxSporLLvjVGLI4jRLvJ3WRskPZdjXuF07RjobIV8Hik4KAaMlZ3d3/FxOfNnLEbg5f7lcE0bVgQREAvemOfvAp+2FOWsiNc4MVePj6taBR4ylRgy7o2XtBgxMh6b9kbfxiDZCfPs580Y4OyHlKFKzP0vLIvO+wT6pvfgNma3TiTUzgxSZFxC5tpUxJVJVYYgQaA+dUJPDCAHyYVuWCdsm1vrjc+KLpls6LWskHTMirdP7ieTiUlhNrUuCCGPIJEKZZQCXR6G6/iOXM45MYZ8C3Z/UGdXFXgg1TT6bF24jbsgEs+B5Y6r20CnwpERb7erDor3oNSTjgQceiHK5jKeffhqLFy/G9773PRx00EEir4TrujjwwAPR3NyMRYsW4b777sNDDz2EM888s5stt7CwsLCwaCe4k9neP4t2o1cwTl999RX+/e9/409/+hO++93vAgAuu+wy3HjjjXj77bcxePBgzJ8/H++88w6WLl2KoUOHAgCuvvpqTJ48GTNmzFDq8qQB9+whdBeh16FnsJVryPkMU/DtnV+oXGMAokR4JTJQEqvEGPxtRG5rYJ+AkIHizJP8aqxn3nY1JgoIbSeGd2qTnsqEpEzclfJXAem8Is6S6YyPPJYSXURC+wn12/F563oiIJqBXO9L/q3owFQb49gpnXHS9WIyg8McGuZtyhB4OQo35y+7OT+/FmdXSn2IyOzMa5eFHfl/RhZAZx48qASDfJ0zRBmJapxuncUi5m1iu2k/GFgnaZv8Q2inRGSnxIh4OgNFFAbK/y0xEDLzwVQbqBadJ/cbzajNomxaDCLZweVriTF44PesXydSOU4MYSSdlDKH2x13HtuS6dvUNu4ciaEkXRUP+pVtZfq1IkUQinOWCVglHkVJAHjho5aEpL9gn3iOL5+OBAjXeRIWMFAIrhnp2UAChokzUp7/O04XZvHNRa9gnPr374/tt98ed911F5qbm1Eul3HLLbdg0KBBGDNmDADgxRdfxKhRo8RLE+Cnfi8UCli8eHFs34VCAWvXrlX+LCwsLCwsehQs49Rj0CsYJ0IIFixYgEmTJqGhoQGUUgwaNAjz5s3DJptsAgBYvnx5pGBg3759kcvlxOc8E2bOnIkLL7wwsl5k+uXCBX69CfZJ1TwBPhsg5yxiIOqFyhBmg2ZMMEl8GYSFzQ3sk7xN7sfIQHE3SGefZK+YR6yZqntXusGSWCUALC07pUFhukxRcEKf5fmsk6xTkpkjA4sGvW+dOeL/StuMbJO2X6QmXoLmS6lFSIiIYmQk3I9RApYJtRN+Nmj/t5ch/h/PBp71GaZybbBd0hvxPEIk7amQTmGEVdJYj6R9FcS1lZz4pCvNGAkn20Fi2kpjMPinXonwkqO1JKYjqnkCmJw9nUnsM4uySmGmdXVWPvPClH7DfGW83+j8I1FplJiZIjEOAy2FE/ey4e3PXPXagEk3ZO62MmKYK2baJkHOpq5nVgcMx4TXyiyrDKLIDg+JRZSf2Zq+TckBJbVVGDLtGSeuNxF57NsTiZ7sLHRD5nALM7qVcbrgggtAgtIYcX+vvPIKGGM45ZRTMHDgQPz973/HP/7xD0yaNAkHHXQQli1bJvojhguYMWZcz3HuuedizZo14m/p0qWdMlcLCwsLCwuL3o9uZZxOO+00HHnkkYltRowYgaeffhqPP/44Vq1aJbRKN954IxYsWIA777wT55xzDgYPHoyXX35Z2XfVqlUolUoRJkpGPp9HPp+PbuARUjwrk/6iTsIfumcuvFeDgxBho/i3dwY/l5GQ4bBwV8Eq8X5DypXFbeOeBZUMYgxwXYlxYipLw1ioL+IMjux1Sd5KhFGqxpOR69zJOabClebflEbX6/8aouBAaAwDZWgbsE2xLJLGOCUxUpFtJnDWwXAdhceeRJgV4SG7AJwwOo54gCcqvwNeXqpmz/UkUl6fjJaFWkpRU8FubT99XSVo7JboJ44d0++jhLEiNe0EgxDdl2uGxBQoZ5nCfaKaJo2BEmyGVJORBOdMGkzJ+G2Cos/jTDREPUJuH6Ohji0pg7+IKuPPHEfvB+HEgzGItCy6q3QtJLU1Levr+HnRIhZV9kfdzrPDAxJrpEdKaswgAJEpXj5nxJXHVfM4RZhBIMLSVZ2jqo1gzGszky/3YdF+dOuL04ABAzBgwICK7Vpa/AqMlKpPCUopvOA/9GPHjsWMGTOwbNkyDBkyBAAwf/585PN5oYOysLCwsLDolZAd4vb0YdFu9AqN09ixY9G3b18cf/zx+N3vfofa2lrcdttt+Pjjj3HggQcCACZMmICRI0fi2GOPxZVXXomvv/4a06dPx0knnVR1RB3APQ8Wei5anpekLNnRvuIGUSkG5tCQoZDZHq530qLsQnvUbcRF2I8+tlyNmuufTKySzjZxNkowJFTdlrbIdVxmbmpwnZNySCVEwYVtJDYrTa6mYFtFXZMOfowp1OsCAJPr5FEmkTM+vcOzHzMqebqMgbCQ9WIewHi9rCDak9fWYg6BUyDwskwsczbCzRGUSMh08EzSIrrKQTR6SWMPZB1JEoikKQommAzTdsO6pMizuIgtI0McaRD2GSFAZIKPqOwTtDFVjRZBtChqyOYSLxQV+YcrOL/QIuwoMZ4PbpvKFIXGimzqPK8cIz7hbNA48dxbYlgq9c3HJYbfBpti825J243nkYUMEKAyQTynV2y+LZkZ4iySNoZSK1NmaCUb/DGYsqwzTGp0JovMN4n9tPhmoldE1Q0YMADz5s3D+vXrsffee2PnnXfGokWL8Mgjj2CHHXYAADiOg7lz56Kmpga77bYbDj/8cBxyyCG46qqrutl6CwsLCwuLdsJG1fUY9ArGCQB23nlnPPnkk4lttthiCzz++OMdMh4teaDCVUOUYeJeiczoVLooZdZCbyu8mvZf2IzoNe+k8eWbx5HEE0CQ24h3YshALrNVEfursLutWchT1ZpLiMqrBjEsEiAty8cZErtEQ9ZOCUxgIZMgalzxvFlSdA4h/v+JiDsX6lwJwm2UwHOIiPRh1I+8A3zGKbcubOsFDJPH2zpAsSnsU8nGzIkSno1bPwQaC+FJy7IWRbZZWVQi0cxjINwU5k9KYH8qgej7poGn7iezICErEj4LIgxJwBTSElP3lfM4VcFaUNc/1mEUoEb1KcfIZ2VEdKamb5PPN2exxLI8aNxtxKTN+jk0sTXBclSLJG2TdUn6tSG1JVJ0cKyWNC2LFHcuXH0fptkUnNtyF+mGPJmSayOsxqlD0CsYJwsLCwsLCwuLnoBewzh1NUjZA5EEQonMEl80eWbKd3d1vwi7pGiNtO2K5kn2zNrAUMlRdIrWR24UUA0iOk/roz2ei2xze3OgmDKcVzM+oOrAaHBsuV2CCWJKG9GPZL9glyQWT4kykjROPvsX9uvXBtSOC9exif/z1zMKkemYEYBSNQqQM0rOBp+JClkFIqKy/GUgty78rTMQTNba0DA6z8saGAmZvNR0UpB0VZzp4HXlIvXJNAZCRtKVHonAYpB0iRoLxiQTtW3Eg8YMaboaLes4ZMaJQc0l5DJQN2RQhJ2Alk0fat4sj4HwcwQgwta5YXZrLxOOD0P0pa9T49dYeO755afcfvp5S6lZM9UTjLBI2vGV+zTpn4xMkKe2M2mYlG0GRipOp2RuywzP4bAtb99ljBMzUGtt6sOivbAvThYWFhYWFj0czPPA2vmpzqYj6BjYF6cYEJcpFbQVxKzWswWb91VZJWV/nWHSf3uGdnx7JMutxFbwTLeM+Wu4nVzzJAwgUY9E2VfZgFhUOg7tIZnkG78atqnSPDlE9XPJq9S1UlrCpTBzMItE4yl7yhF2cq4nBIdE31drg6ANkfJMCVOlJo7IQO43CJkgEjBDITvFrynm8G3BMg3YC0kfE+qfVObKyyBgqyQtjehHXfYzn0PRUilMVdKhlqGRgArD5EHRG4XaJKYsq9ukZSliS2aYohoXaR3fl+ti5Az9JvMNm1iOhnOWyUslbxifu98BLct1DX0qjbDwPGgSO2XgSvmZKuqu9OPPTVDYH/WYAQnMUdDeOH5cv3HbU0fKGZ6tsUyWdG4l8HPe6bCMU4+B1ThZWFhYWFhYWKSEZZzikPLlPlGnxGFgRyvul8BMqR0R9V8tp5LSLdfMREKkTDbHsW2pDkr8tmo9Ht2OalgmQyZmow2V2KhIKmp1WSxREn+uTOWA9OjHmPZKZF4MC2UcJ0Vb0loO1+tZz+X2cjZ1mcGCz1b5+qlwH7mtUodPZ5WomjGds2R6W6aNaUQltkJiDBStkZE50RgK0Y96X1YbBZtY18wJxpSYPgKAydnHuTZJrJD75sssXG4HIrexfivGMEXGfdP0IUO/72X2qNKYOpsEKPdlRLOk9aVfA2K9fm+3R2faFng6rdYGWMapQ2BfnCwsLCwsLHo6mPQ9ul19WLQX9sUpJWI9y6QIrWr3betFLbMkiR5tzDBedJ94fVeCjV6CDbJ9pj7i+m1PLqa2II1tccc4DTMor0rRxghKUu+rsFpif+m3p62TNVd6v9oYsUyWyZ6YSE5jHwlzSUS7tHNt3C9pzAr26nXmhAYrovMy9BNDvBrbxpnRzv+GVsW2pfzvfWKfScNVqSeLa19Re21fPCxgX5wsLCwsLCx6PJjHlM+2berDvvh1COyLUwyIq+ZxEusrXXjt3Z7g8bQpq7iJ4YnUeYv2KzIO6faYmBM5E7kJPJovDdpbxFIZs4PQEX2l6SMNawiIjMZGxOmv4kBjznMFO4xMluizwpiyfquKMatCJbYnNbvX/rHStmVx909bx0IV84yMU80gbRuiGrTp2deWfeT7wIlhx7X2xO2qPE4e2v+pzqYj6AjYqDoLCwsLCwsLi5SwjJOFhYWFhUUPh/1U13NgX5xi4H+qC+ontJPd7IjCve36XJRUXFjfrkPPc2nYn1Xk9bXPR0mfmtJ8rrDo2ah4v8hpIvRNVV7ncdduhX5SfyKs9t5vz6fGcgdd+9IxtXdTO+Cma2Y/1W18sC9OGvgbedkthCt7+4tTR/bTAXZ0WaZdi05Dm7UzkY7auX8XaaK6op8ec0wtqgL/b0VnszlllNp9bssodYwxGznsi5OGlStXAgCee+u67jXEwsLCwqLXYN26dWhqaurwfnO5HAYPHoxFy//WIf0NHjwYuVyuQ/raWEGY/eipYPXq1ejbty+WLFnSKTdBd2Lt2rUYNmwYli5disbGxu42p0Nh59Y7YefWO/FNnhtQ3fwYY1i3bh2GDh0KSjsn3qq1tRXFYrFD+srlcqipqemQvjZWWMZJA7/wm5qavpEPBABobGy0c+uFsHPrnbBz671IO7/OdrJramrsy04Pgk1HYGFhYWFhYWGREvbFycLCwsLCwsIiJeyLk4Z8Po/zzz8f+Xy+u03pcNi59U7YufVO2Ln1XnzT52fRPlhxuIWFhYWFhYVFSljGycLCwsLCwsIiJeyLk4WFhYWFhYVFStgXJwsLCwsLCwuLlLAvThYWFhYWFhYWKWFfnCTceOON2HLLLVFTU4MxY8bg73//e3ebVDUuuOACEEKUv8GDB4vtjDFccMEFGDp0KGpra7HXXnvh7bff7kaL4/Hcc8/h4IMPxtChQ0EIwcMPP6xsTzOXQqGAqVOnYsCAAaivr8ePf/xj/Oc//+nCWZhRaW6TJ0+OnMcf/OAHSpueOreZM2dil112QUNDAwYOHIhDDjkE77//vtKmt567NHPrrefupptuwne/+12R9HHs2LF44oknxPbees6AynPrrefMontgX5wC3H///TjjjDNw3nnn4bXXXsMPf/hDHHDAAViyZEl3m1Y1vvOd72DZsmXi78033xTbrrjiClxzzTX4wx/+gH/+858YPHgw9ttvP6xbt64bLTajubkZO+ywA/7whz8Yt6eZyxlnnIE5c+bgvvvuw6JFi7B+/XocdNBBcN2Upc87CZXmBgD777+/ch7/9je1VlVPnduzzz6LU089FS+99BIWLFiAcrmMCRMmoLm5WbTprecuzdyA3nnuNt98c1x22WV45ZVX8Morr2DvvffGpEmTxMtRbz1nQOW5Ab3znFl0E5gFY4yx73//++zkk09W1m233XbsnHPO6SaL2obzzz+f7bDDDsZtnuexwYMHs8suu0ysa21tZU1NTezmm2/uIgvbBgBszpw5YjnNXFavXs2y2Sy77777RJvPPvuMUUrZvHnzusz2StDnxhhjxx9/PJs0aVLsPr1lbowx9uWXXzIA7Nlnn2WMfbPOnT43xr5Z565v377sj3/84zfqnHHwuTH2zTpnFp0PyzgBKBaLWLx4MSZMmKCsnzBhAl544YVusqrt+Ne//oWhQ4diyy23xJFHHomPPvoIAPDxxx9j+fLlyjzz+Tz23HPPXjfPNHNZvHgxSqWS0mbo0KEYNWpUr5jvwoULMXDgQHz729/GSSedhC+//FJs601zW7NmDQCgX79+AL5Z506fG0dvP3eu6+K+++5Dc3Mzxo4d+406Z/rcOHr7ObPoOtgivwC++uoruK6LQYMGKesHDRqE5cuXd5NVbcOuu+6Ku+66C9/+9rfxxRdf4JJLLsG4cePw9ttvi7mY5vnpp592h7ltRpq5LF++HLlcDn379o206enn9YADDsBPf/pTDB8+HB9//DF++9vfYu+998bixYuRz+d7zdwYY5g2bRp23313jBo1CsA359yZ5gb07nP35ptvYuzYsWhtbUWfPn0wZ84cjBw5Urwc9OZzFjc3oHefM4uuh31xkkAIUZYZY5F1PR0HHHCA+D169GiMHTsWW2+9Ne68804hdvwmzJOjLXPpDfM94ogjxO9Ro0Zh5513xvDhwzF37lwcdthhsfv1tLmddtppeOONN7Bo0aLItt5+7uLm1pvP3bbbbovXX38dq1evxkMPPYTjjz8ezz77rNjem89Z3NxGjhzZq8+ZRdfDfqoDMGDAADiOE/Ecvvzyy4iH1dtQX1+P0aNH41//+peIrvsmzDPNXAYPHoxisYhVq1bFtuktGDJkCIYPH45//etfAHrH3KZOnYpHH30UzzzzDDbffHOx/ptw7uLmZkJvOne5XA7bbLMNdt55Z8ycORM77LADrr/++m/EOYubmwm96ZxZdD3sixP8G2rMmDFYsGCBsn7BggUYN25cN1nVMSgUCnj33XcxZMgQbLnllhg8eLAyz2KxiGeffbbXzTPNXMaMGYNsNqu0WbZsGd56661eN9+VK1di6dKlGDJkCICePTfGGE477TTMnj0bTz/9NLbccktle28+d5XmZkJvOnc6GGMoFAq9+pzFgc/NhN58ziy6AF0uR++huO+++1g2m2W33347e+edd9gZZ5zB6uvr2SeffNLdplWFM888ky1cuJB99NFH7KWXXmIHHXQQa2hoEPO47LLLWFNTE5s9ezZ788032VFHHcWGDBnC1q5d282WR7Fu3Tr22muvsddee40BYNdccw177bXX2KeffsoYSzeXk08+mW2++ebsqaeeYq+++irbe++92Q477MDK5XJ3TYsxljy3devWsTPPPJO98MIL7OOPP2bPPPMMGzt2LNtss816xdx+8YtfsKamJrZw4UK2bNky8dfS0iLa9NZzV2luvfncnXvuuey5555jH3/8MXvjjTfY//t//49RStn8+fMZY733nDGWPLfefM4sugf2xUnC//zP/7Dhw4ezXC7HdtppJyXEuLfgiCOOYEOGDGHZbJYNHTqUHXbYYeztt98W2z3PY+effz4bPHgwy+fzbI899mBvvvlmN1ocj2eeeYYBiPwdf/zxjLF0c9mwYQM77bTTWL9+/VhtbS076KCD2JIlS7phNiqS5tbS0sImTJjANt10U5bNZtkWW2zBjj/++IjdPXVupnkBYLNmzRJteuu5qzS33nzuTjzxRPH823TTTdk+++wjXpoY673njLHkufXmc2bRPSCMMdZ1/JaFhYWFhYWFRe+F1ThZWFhYWFhYWKSEfXGysLCwsLCwsEgJ++JkYWFhYWFhYZES9sXJwsLCwsLCwiIl7IuThYWFhYWFhUVK2BcnCwsLCwsLC4uUsC9OFhYWFhYWFhYpYV+cLL5x2GuvvXDGGWd8o8adPHkyDjnkkHb1MWLECBBCQAjB6tWrY9vdcccd2GSTTdo1lkU8Jk+eLM7Dww8/3N3mWFhYVAn74mRh0UGYPXs2Lr74YrE8YsQIXHfddd1nkAEXXXQRli1bhqampu425RuPhQsXGl9Sr7/+eixbtqx7jLKwsGg3Mt1tgIXFNwX9+vXrbhMqoqGhQVS6726USiVks9nuNqPL0dTUZF9cLSx6MSzjZPGNx6pVq3Dcccehb9++qKurwwEHHIB//etfYjv/NPXkk09i++23R58+fbD//vsrrEC5XMbpp5+OTTbZBP3798evf/1rHH/88crnM/lT3V577YVPP/0Uv/rVr8RnGQC44IIL8L3vfU+x77rrrsOIESPEsuu6mDZtmhjr7LPPhl4ZiTGGK664AltttRVqa2uxww474MEHH2zT8bnjjjuwxRZboK6uDoceeihWrlwZafPYY49hzJgxqKmpwVZbbYULL7wQ5XJZbH/vvfew++67o6amBiNHjsRTTz2lfIr65JNPQAjBAw88gL322gs1NTW45557AACzZs3C9ttvj5qaGmy33Xa48cYblbE/++wzHHHEEejbty/69++PSZMm4ZNPPhHbFy5ciO9///uor6/HJptsgt122w2ffvppqrlXmtc111yD0aNHo76+HsOGDcMpp5yC9evXi+2ffvopDj74YPTt2xf19fX4zne+g7/97W/45JNPMH78eABA3759QQjB5MmTU9lkYWHRs2FfnCy+8Zg8eTJeeeUVPProo3jxxRfBGMOPfvQjlEol0aalpQVXXXUV7r77bjz33HNYsmQJpk+fLrZffvnl+POf/4xZs2bh+eefx9q1axP1KbNnz8bmm28uPo1V82nm6quvxp/+9CfcfvvtWLRoEb7++mvMmTNHafOb3/wGs2bNwk033YS3334bv/rVr/Czn/0Mzz77bPoDA+Dll1/GiSeeiFNOOQWvv/46xo8fj0suuURp8+STT+JnP/sZTj/9dLzzzju45ZZbcMcdd2DGjBkAAM/zcMghh6Curg4vv/wybr31Vpx33nnG8X7961/j9NNPx7vvvouJEyfitttuw3nnnYcZM2bg3XffxaWXXorf/va3uPPOOwH452X8+PHo06cPnnvuOSxatEi82BaLRZTLZRxyyCHYc8898cYbb+DFF1/Ez3/+c/GimoRK8wIASil+//vf46233sKdd96Jp59+GmeffbbYfuqpp6JQKOC5557Dm2++icsvvxx9+vTBsGHD8NBDDwEA3n//fSxbtgzXX399VefGwsKih6JbSwxbWHQC9txzT/bLX/6SMcbYBx98wACw559/Xmz/6quvWG1tLXvggQcYY4zNmjWLAWD//ve/RZv/+Z//YYMGDRLLgwYNYldeeaVYLpfLbIsttmCTJk0yjssYY8OHD2fXXnutYtv555/PdthhB2Xdtddey4YPHy6WhwwZwi677DKxXCqV2Oabby7GWr9+PaupqWEvvPCC0s+UKVPYUUcdFXtcTPYcddRRbP/991fWHXHEEaypqUks//CHP2SXXnqp0ubuu+9mQ4YMYYwx9sQTT7BMJsOWLVsmti9YsIABYHPmzGGMMfbxxx8zAOy6665T+hk2bBj7y1/+oqy7+OKL2dixYxljjN1+++1s2223ZZ7nie2FQoHV1tayJ598kq1cuZIBYAsXLoyddxwqzcuEBx54gPXv318sjx49ml1wwQXGts888wwDwFatWmXcLh8fCwuL3gOrcbL4RuPdd99FJpPBrrvuKtb1798f2267Ld59912xrq6uDltvvbVYHjJkCL788ksAwJo1a/DFF1/g+9//vtjuOA7GjBkDz/M61N41a9Zg2bJlGDt2rFiXyWSw8847i89177zzDlpbW7Hffvsp+xaLRey4445Vjffuu+/i0EMPVdaNHTsW8+bNE8uLFy/GP//5T4WJcV0Xra2taGlpwfvvv49hw4Yp2in5WMnYeeedxe8VK1Zg6dKlmDJlCk466SSxvlwuCw3Q4sWL8e9//xsNDQ1KP62trfjwww8xYcIETJ48GRMnTsR+++2HfffdF4cffjiGDBlSce6V5lVXV4dnnnkGl156Kd555x2sXbsW5XIZra2taG5uRn19PU4//XT84he/wPz587HvvvviJz/5Cb773e9WHNvCwqL3wr44WXyjwTRtkLxe/pyji5QJIZF99c8/cX0ngVIa2U/+ZJgG/GVt7ty52GyzzZRt+Xy+qr7SzMHzPFx44YU47LDDIttqamoixzIJ9fX1Sr8AcNtttykvtoD/YsrbjBkzBn/+858jfW266aYAfI3U6aefjnnz5uH+++/Hb37zGyxYsAA/+MEP2jWvTz/9FD/60Y9w8skn4+KLL0a/fv2waNEiTJkyRZyz//qv/8LEiRMxd+5czJ8/HzNnzsTVV1+NqVOnpjoeFhYWvQ/2xcniG42RI0eiXC7j5Zdfxrhx4wAAK1euxAcffIDtt98+VR9NTU0YNGgQ/vGPf+CHP/whAJ+ZeO211yJCbxm5XA6u6yrrNt10Uyxfvlx52Xj99deVsYYMGYKXXnoJe+yxBwCfgVm8eDF22mknMad8Po8lS5Zgzz33TDWHOIwcORIvvfSSsk5f3mmnnfD+++9jm222Mfax3XbbYcmSJfjiiy8waNAgAMA///nPimMPGjQIm222GT766CMcc8wxxjY77bQT7r//fgwcOBCNjY2xfe24447Ycccdce6552Ls2LH4y1/+UvHFqdK8XnnlFZTLZVx99dWg1JeDPvDAA5F2w4YNw8knn4yTTz4Z5557Lm677TZMnToVuVwOACLXgIWFRe+GfXGy+EbjW9/6FiZNmoSTTjoJt9xyCxoaGnDOOedgs802w6RJk1L3M3XqVMycORPbbLMNtttuO9xwww1YtWpVItMyYsQIPPfcczjyyCORz+cxYMAA7LXXXlixYgWuuOIK/H//3/+HefPm4YknnlBeCn75y1/isssuw7e+9S1sv/32uOaaa5RcQA0NDZg+fTp+9atfwfM87L777li7di1eeOEF9OnTB8cff3zqeZ1++ukYN24crrjiChxyyCGYP3++8pkOAH73u9/hoIMOwrBhw/DTn/4UlFK88cYbePPNN3HJJZdgv/32w9Zbb43jjz8eV1xxBdatWyfE4ZWYqAsuuACnn346GhsbccABB6BQKOCVV17BqlWrMG3aNBxzzDG48sorMWnSJFx00UXYfPPNsWTJEsyePRtnnXUWSv9/e/cPkmgYxwH89w698pJYklJGYSj0hyKaGjKaAikwWgoJfJuKAiFpcWsogoYKoqGyIRBac6hBKIIGaWwoiCQocSgiClstvzcceHmd3Ntd3dXd97M++D6+z6vwRb/v82azEolEpK+vT6qrq+Xs7EySyaTouv7Tc//Zebndbnl8fJTl5WXx+XySSCRkdXW14BihUEh6enqkvr5e7u/vZX9/Px/InU6nKIoiOzs70tvbK5qmidlsNnxtiOiD+mvtKqJ38n1J++7uDoFAAGVlZdA0DV6vF8lkMj++sbFRUIYGgFgshudfj2w2i2AwCIvFAqvVinA4jIGBAfj9/qLzHh4eorW1FSaTqeBYKysrqK2tRWlpKXRdx+zsbEE5PJvNYmJiAhaLBeXl5ZicnISu6wVF9Fwuh6WlJTQ0NKCkpAR2ux1erxcHBwdF1+VH5XDgawG7pqYGmqbB5/Nhfn7+xXrE43F0dHRA0zRYLBa0t7cjEonkx09PT+HxeKCqKhobG7G9vQ0RQTweB/CtHH50dPRi/s3NTbS1tUFVVVitVnR1dWFrays/fnV1BV3XYbPZYDKZ4HK5MDIygkwmg+vra/T398PhcEBVVTidTkxNTeHp6anoOrzmvBYXF+FwOPKfm2g0WlD4DgaDcLvdMJlMsNvtCAQCuL29zb9+enoaVVVVUBQFw8PDBXMLy+FEn5IC/EJRg+g/l8vlpKmpSQYHBwt2C//I6urqJBQK/ZHH0SQSCens7JTz8/OC0j19oyiKxGKx336UDhH9WdzHiciAVCol6+vrkkwm5fj4WMbHx+Xi4kKGhob+9lt7lXA4LGazWTKZzJseNxaLye7urlxeXsre3p6Mjo6Kx+NhaPqBsbEx/mVH9InxFyciA9LptPj9fjk5OREA0tLSInNzc/kC92eQSqXyd4O5XK584fktRKNRmZmZkXQ6LTabTbq7u2VhYUEqKirebI7Xam5uLrqD+NraWtFC+nu7ubmRh4cHEfm67cXzOw2J6ONjcCKif9LzoPi9ysrKF3tDEREZweBEREREZBA7TkREREQGMTgRERERGcTgRERERGQQgxMRERGRQQxORERERAYxOBEREREZxOBEREREZBCDExEREZFBXwBVAp/T6A0mFAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:    (bnds: 2, lat: 180, lon: 288, time: 1980)\n",
+       "Coordinates:\n",
+       "  * bnds       (bnds) float64 1.0 2.0\n",
+       "    height     float64 ...\n",
+       "  * lat        (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n",
+       "    lat_bnds   (lat, bnds) float64 dask.array<chunksize=(180, 2), meta=np.ndarray>\n",
+       "  * lon        (lon) float64 0.625 1.875 3.125 4.375 ... 355.6 356.9 358.1 359.4\n",
+       "    lon_bnds   (lon, bnds) float64 dask.array<chunksize=(288, 2), meta=np.ndarray>\n",
+       "  * time       (time) float64 15.5 45.0 74.5 ... 6.015e+04 6.018e+04 6.021e+04\n",
+       "    time_bnds  (time, bnds) float64 dask.array<chunksize=(241, 2), meta=np.ndarray>\n",
+       "Data variables:\n",
+       "    tas        (time, lat, lon) float32 dask.array<chunksize=(241, 180, 288), meta=np.ndarray>\n",
+       "Attributes: (12/44)\n",
+       "    Conventions:            CF-1.7 CMIP-6.0 UGRID-1.0\n",
+       "    activity_id:            CMIP\n",
+       "    branch_method:          standard\n",
+       "    branch_time_in_child:   0.0\n",
+       "    branch_time_in_parent:  36500.0\n",
+       "    comment:                <null ref>\n",
+       "    ...                     ...\n",
+       "    sub_experiment_id:      none\n",
+       "    table_id:               Amon\n",
+       "    title:                  NOAA GFDL GFDL-CM4 model output prepared for CMIP...\n",
+       "    variable_id:            tas\n",
+       "    variant_info:           N/A\n",
+       "    variant_label:          r1i1p1f1
" ], - "source": [ - "ds[var][-1].plot()" + "text/plain": [ + "\n", + "Dimensions: (bnds: 2, lat: 180, lon: 288, time: 1980)\n", + "Coordinates:\n", + " * bnds (bnds) float64 1.0 2.0\n", + " height float64 ...\n", + " * lat (lat) float64 -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5\n", + " lat_bnds (lat, bnds) float64 dask.array\n", + " * lon (lon) float64 0.625 1.875 3.125 4.375 ... 355.6 356.9 358.1 359.4\n", + " lon_bnds (lon, bnds) float64 dask.array\n", + " * time (time) float64 15.5 45.0 74.5 ... 6.015e+04 6.018e+04 6.021e+04\n", + " time_bnds (time, bnds) float64 dask.array\n", + "Data variables:\n", + " tas (time, lat, lon) float32 dask.array\n", + "Attributes: (12/44)\n", + " Conventions: CF-1.7 CMIP-6.0 UGRID-1.0\n", + " activity_id: CMIP\n", + " branch_method: standard\n", + " branch_time_in_child: 0.0\n", + " branch_time_in_parent: 36500.0\n", + " comment: \n", + " ... ...\n", + " sub_experiment_id: none\n", + " table_id: Amon\n", + " title: NOAA GFDL GFDL-CM4 model output prepared for CMIP...\n", + " variable_id: tas\n", + " variant_info: N/A\n", + " variant_label: r1i1p1f1" ] - }, + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Check to see if it worked:\n", + "ds = xr.open_zarr(target_store)\n", + "ds" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Postscript\n", - "- If you find a CMIP6 dataset for which this recipe does not work, Please report it at [issue#105](https://github.com/pangeo-forge/pangeo-forge-recipes/issues/105) so we can refine the recipe, if possible.\n" + "data": { + "text/plain": [ + "" ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" }, { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "# Troubles found:\n", - "\n", - "dataset = 'IPSL-CM6A-LR.abrupt-4xCO2.r1i1p1f1.Lmon.cLeaf.gr' # need decode_coords=False in xr.open_dataset, but using xarray_open_kwargs = {'decode_coords':False}, still throws an error when caching the input " + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAHFCAYAAAAExnZzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebgdRZ0+/lZV91nukhXIAiGgBBQIiqBo8BEY9hHRYb4yg4phUVFQDBJBXCCMJiwCoigII0NgEHBUUMCBH+iYKAKPBEUBFUeMwEAWCdnudk53V/3+qL27z7nn5t5sUO/zXDjdXV1dXV3d6Xr7/bwfIoQQCAgICAgICAgIGBZ0azcgICAgICAgIGB7QXhxCggICAgICAjoEOHFKSAgICAgICCgQ4QXp4CAgICAgICADhFenAICAgICAgICOkR4cQoICAgICAgI6BDhxSkgICAgICAgoEOEF6eAgICAgICAgA4RXpwCAgICAgICAjpEeHF6lWHBggUghODll18eszpPOeUU7Lbbbpu9PYsWLcKPfvSjTTrOaLBhwwYsXLgQhx56KKZOnYqenh7Mnj0bl112GYaGhjqu54477sCb3/xm1Go1TJ8+HfPmzUNfX9+w+y1evBiEEPM3ltfuRz/6kVf3smXLRlzHSy+9hAULFuCJJ54obNPX99WM/v5+XHjhhdhzzz1RrVYxefJkHHbYYfjf//3fjvbvZFz8z//8D0477TS84Q1vQHd3N3beeWe8973vxeOPP16o76GHHsJHPvIRHHDAAahWqyCE4G9/+9tYnOomYVPG/Xe+8x0QQtDT07OFWhkQMHYIL04Bw+JLX/oS7rrrrs1+nK314vT888/j6quvxlve8hbccMMNuPvuu/H//t//w4IFC3Dcccehk6xE3/3ud3HSSSfhrW99K+677z5cdNFFWLx4MU444YSO23HnnXfikUcewYQJE0ZxNj4OOeQQPPLII/jiF7+4yXW89NJLuPjii0tfnD7ykY/gkUceGUULt2309fXh0EMPxY033ohPfepTeOCBB3DTTTfhoIMOwsDAwLD7dzourrvuOvztb3/Dpz/9afz3f/83vv71r2P16tV4+9vfjv/5n//xyv7sZz/DT3/6U+y6666YM2fOmJ7vSLEp4/7FF1/E/PnzMX369C3Y0oCAMYQIeFXhoosuEgDE3//+963dFCHEyNrT3d0t5s6du/kblUNfX5/o6+srrP/qV78qAIhf/vKXbfdP01RMmzZNHHXUUd767373uwKA+O///u+2+990000CgFi+fPmI294p9DEee+yxEe/72GOPCQDipptuGvuGbeP49Kc/Lbq7u8Wzzz474n1HMi5WrVpV2H/jxo1iypQp4vDDD/fWZ1lmfusxOtZj5+c///mw9W7quD/uuOPEe97zHjF37lzR3d09ls0OCNgiCIzTqxSrVq3CSSedhPHjx2PKlCk47bTTsH79eq+MEALXXnst3vzmN6Ner2PixIn4f//v/+Gvf/2rV67sU926detw+umnY9KkSejp6cG73/1u/PWvfwUhBAsWLBhxewgh6O/vx80332w+Kx166KFj1R1t0d3dje7u7sL6t73tbQCAF154oe3+jz76KFasWIFTTz3VW//+978fPT09o2LrDj30UOy777545JFHMGfOHNTrdey222646aabAAA/+clP8Ja3vAVdXV2YPXs27r///k0+VhmWLFmCt771rQCAU0891VwbfY3LPtXttttuOO6443Dvvfdi//33R71exxvf+Ebce++9AOSnyTe+8Y3o7u7G2972ttLPh8uWLcPxxx+PSZMmoVarYf/998d//dd/jem5DYeBgQF85zvfwfvf/3687nWvG/H+IxkXO+20U2H/np4e7L333oXxR2nnj+0NGzZg/vz52H333VGpVLDzzjtj3rx56O/vH+HZFLEp4/7WW2/F0qVLce211476+AEBWwvhxelVin/+53/GnnvuiR/+8If43Oc+h9tuuw3nnHOOV+aMM87AvHnzcMQRR+BHP/oRrr32Wjz99NOYM2cOVq1a1bJuzjne85734LbbbsP555+Pu+66CwcddBCOOeaYTW7PI488gnq9jn/8x3/EI488gkceeWTYh2uWZUjTdNg/znmHveZDfyLZZ5992pZ76qmnAAD77beftz6OY7zhDW8w2zcVK1euxKmnnoqPfOQj+PGPf4zZs2fjtNNOw7/927/hggsuwHnnnYcf/vCH6Onpwfve9z689NJLozqei7e85S3mJe2LX/yiuTYf+chH2u73u9/9DhdccAHOP/983HnnnRg/fjxOOOEEXHTRRfjOd76DRYsW4bvf/S7Wr1+P4447DoODg2bfn//85zj44IOxbt06fPvb38aPf/xjvPnNb8a//Mu/YPHixcO2eazGxeOPP47+/n7MmjULn/jEJzBx4kRUKhUceOCB+MlPfjJsO0Y7LtavX4/f/OY3w46/VhgYGMAhhxyCm2++GWeffTbuu+8+nH/++Vi8eDGOP/74jj5Bt8NIz2/16tWYN28eLr30Uuyyyy6jOnZAwFbF1qa8AsYW+tPY5Zdf7q0/88wzRa1WE5xzIYQQjzzyiAAgrrzySq/cCy+8IOr1ujjvvPPMurlz54qZM2ea5Z/85CcCgLjuuuu8fS+55BIBQFx00UUjbo8QI/9UN3PmTAFg2D+3PZ3id7/7najX6+Kf/umfhi27cOFCAUCsWLGisO2oo44Se+65Z9v9232qO+SQQwQAsWzZMrNuzZo1gjEm6vW6ePHFF836J554QgAQ3/jGN1oeY6w/1enr62LmzJmiXq+L//u//yu0bdq0aaK/v9+s/9GPfiQAiLvvvtuse8Mb3iD2339/kSSJV+9xxx0npk2b5n2qKsNYjYvbb79dABDjxo0TBx98sLj77rvFvffeKw477DBBCBH3339/2/1HOy4++MEPiiiKvGufR7tPdZdccomglBau+Q9+8IPCp7Q0TUWSJObvpz/9qQAg/vKXv3jr3b4f6fn98z//s5gzZ46558OnuoDtFdHmfCkL2Ho4/vjjveX99tsPQ0NDWL16NaZMmYJ7770XhBB86EMfQpqmptzUqVPxpje9CUuWLGlZ99KlSwEAJ554orf+pJNOwgUXXLBJ7dkU3HPPPWg0GsOWG6kI9W9/+xuOO+44zJgxA9/5znc63q9VdNloo86mTZuGAw44wCxPmjQJO+20E3bbbTfv3N74xjcCAJ577rlRHW8s8OY3vxk777yzWdZtO/TQQ9HV1VVYr9v8l7/8BX/6059wxRVXAIA3Nv/xH/8R9957L5555hmzXxnGalxoRqpSqeC+++5Db28vAOCwww7DrFmz8OUvfxlHH330sMfZlHHxpS99Cd/97ndxzTXXeNd+JLj33nux77774s1vfrPXj0cffTQIIViyZAmOPfZYAMDhhx9u7msXe+yxh7c8d+7cAuvXyfn98Ic/xD333IPf/va3r/oozIBXP8KL06sUkydP9par1SoAmE8iq1atghCi5UtLO03HmjVrEEURJk2a5K1v9wI0XHs2BXvvvXdHnxtGogl57rnncNhhhyGKIvzsZz8rnGMZ9LmtWbOm0AevvPJKR3W0Q9n+lUqlsL5SqQDAiCwUNhdatW24NutPxPPnz8f8+fNL6x7OrmGsxoW+rnPmzDEvTQDQ1dWFQw45ZNgI0E0dFxdffDG+8pWvYOHChfjkJz853Gm0xKpVq/CXv/wFcRyXbnf78frrr8fGjRvN8uOPP46Pf/zjuPvuuzFt2jSzfocddjC/Oz2/vr4+nHXWWfjUpz6F6dOnY926dQCAZrMJQOol4zgu1RkGBGyLCC9Or1HssMMOIITgl7/8pXmJcVG2TmPy5MlI07Tw8F+5cuVmaWsrvP71r++IXbnoootKBet5PPfcczj00EMhhMCSJUs61mHMnj0bAPDkk09i7733NuvTNMWf/vQnnHTSSR3VE2D/Yb7gggtahrTvtddebesYq3GR1+64EEIM++K1KePi4osvxoIFC7BgwQJ8/vOfH+YM2mOHHXZAvV7Hf/zHf7TcrpHvU+3DNHv27JYebp2e38svv4xVq1bhyiuvxJVXXlmoZ+LEiXjve9+7VaxIAgI2BeHF6TWK4447DpdeeilefPHFwie34XDIIYfg8ssvx/e+9z184hOfMOvvuOOOUbWpWq2OiIEay091zz//PA499FBkWYYlS5Zg5syZHbfjoIMOwrRp07B48WL8y7/8i1n/gx/8AH19fSPyctoWMRbsYKfYa6+9MGvWLPzud7/DokWLNqmOsRoX06ZNwzve8Q786le/woYNGzBu3DgAUnS9dOlSvP3tb2+7/0jHxZe//GUsWLAAX/ziF3HRRRcN2/7hcNxxx2HRokWYPHkydt9991HXl0en5zd16lT8/Oc/L+x/6aWXYunSpbjvvvu8l7iAgG0d4cXpNYqDDz4YH/vYx3Dqqadi2bJleNe73oXu7m6sWLECDz30EGbPnu29FLk45phjcPDBB+Pcc8/Fhg0bcMABB+CRRx7BLbfcAmBkn8ZczJ49G0uWLME999yDadOmobe3ty27oGe8o8Xq1atx2GGHYcWKFbjxxhuxevVqrF692mzfZZddDPv03HPP4fWvfz3mzp2LG2+8EQDAGMPll1+Ok08+GWeccQZOOukk/O///i/OO+88HHnkkW2jDbcmFi9ejFNPPRU33XQTTjnllJblXv/616Ner+O73/0u3vjGN6KnpwfTp0/fbAaG119/PY499lgcffTROOWUU7DzzjvjlVdewR//+Ef85je/wfe///22+4/VuACAK664AocddhiOPvponH/++SCE4Morr8TLL7+ML3/5y6bcaMfFlVdeiQsvvBDHHHMM3v3ud+PRRx/12uG+pP397383eqQnn3wSAHDfffdhxx13xI477ohDDjkEADBv3jz88Ic/xLve9S6cc8452G+//cA5x/PPP48HHngA5557Lg466KBN7ptOz69Wq5VaiyxevBiMsS1mOxIQMFYIL06vYVx//fV4+9vfjuuvvx7XXnstOOeYPn06Dj74YONhVAZKKe655x6ce+65uPTSS9FsNnHwwQfj1ltvxdvf/vZNdr7++te/jrPOOgv/+q//akKp24nUxwp/+MMfjHfVhz70ocJ295OOEAJZliHLMq/Mhz70ITDGcOmll2Lx4sWYNGkSPvzhD2PhwoWbvf2bCv05xtWwlKGrqwv/8R//gYsvvhhHHXUUkiTp+PPnpuCwww7Dr3/9ayxcuBDz5s3D2rVrMXnyZOy9994jZkdHizlz5uBnP/sZvvjFL+KDH/wgAPkSs2TJErzjHe8w5UY7Lu655x4AwP3331/qxeVqtp5++mm8//3v97afeeaZAODdM93d3fjlL3+JSy+9FDfccAOWL1+Oer2OXXfdFUccccQmp1HalPMLCHg1gYhOVJQBAR3gtttuwwc/+EH86le/2uqpILYnaObnL3/5C2bOnIkoGrv5jP4H/ZZbbsHpp5+Oxx57DAceeCAAGRW5fPlyPPbYY2N2vICAgIBXOwLjFLBJuP322/Hiiy9i9uzZoJTi0UcfxVe/+lW8613vCi9Nmwgd+v33v/99zDQfP/7xj/FP//RPhfVaAH/rrbeOyXECAgICXisIjFPAJuHee+/FggUL8Je//AX9/f2YNm0a3ve+9+ErX/mKEdEGdIY1a9Zg+fLlZvnNb37zmLFO69atw1/+8hezvPfee3s+SgEBAQEBI0N4cQoICAgICAgI6BAhV11AQEBAQEBAQIcIL04BAQEBAQEBAR0ivDgFBAQEBAQEBHSIEFWXA+ccL730Enp7e0MyyoCAgICAthBCYOPGjZg+ffomm/8Oh6GhIZPbb7SoVCqo1WpjUtdrFeHFKYeXXnoJM2bM2NrNCAgICAjYjvDCCy90nN9yJBgaGsLuM3uwcnU2fOEOMHXqVCxfvjy8PI0C4cUpB50F/Z1vmY+ItU502xaBqJJoxdgNF8i5jcd5ku0lELWTdm4np7ItYHNfd7G5GO7t8Xm0DbD9nV6PNGvgod9cYf7tGGs0m02sXJ1h+eMzMa53dIzWho0cux/wHJrNZnhxGgXCi1MO+vNcFNcQRcWBJYYbtyO44cUIng0k98x2981v22LYxH9ICB/jdgCb3JZtBpuh+R39Q99pv22Oa5ZDvr2b7UViG8FmeRHb3u8Dg+Gv/bDjo9N3jBb1CNrB+CMESIn6uXnH67heOuoXp5Hiuuuuw3XXXYe//e1vAIB99tkHF154IY499lgAwJ133onrr78ejz/+ONasWYPf/va3ePOb3+zV0Wg0MH/+fNx+++0YHBzE4YcfjmuvvXazsHNbCkEcHhAQEBAQsI0jE3xM/kaCXXbZBZdeeimWLVuGZcuW4R/+4R/w3ve+F08//TQAoL+/HwcffDAuvfTSlnXMmzcPd911F+644w489NBD6Ovrw3HHHVfI67g9ITBOLSCowy7lZhIFpqjVTKNkddtZUpvXWHceua3NxMdk5tzB/TzscTptRpt6Stm7duXL2j0Wn8g6vcRt6smPkxFfpxGyTCNiuDoYw0SILTbWO+6bkfThZmTzNttnw9HW28n+nV7TknLueCD552W+fAmlXxhPFH6b3e16dafP+80MDgE+Smp6pPu/5z3v8ZYXLlyI6667Do8++ij22WcfnHzyyQBgGKk81q9fjxtvvBH/+Z//iSOOOAIAcOutt2LGjBn46U9/iqOPPnrkJ7ENIDBOAQEBAQEBryFs2LDB+2s0GsPuk2UZ7rjjDvT39+Md73hHR8d5/PHHkSQJjjrqKLNu+vTp2HffffHwww9vcvu3NgLj1AKCEvmNW88u3ImIO+OgLdbn9pHb3W3DsVhtGtfm2/tIdFObC8Nqrng7mmQE9ZXMbluXzZcrL5hnsmW5klmoXqTCKWt+lbbPY6dIcXu79rZDW/ahbJvTjs3CtHSyf4f1mZ7vZJY/lkzASPq0BWNU2rcjvVajKVtgYEZQ/3BjZKwYr8JzsPzZqst6pTnxtplnXxkdUMY0lWzzjk9KtpfsJ7bQQ5eDj1pqqGvIR45fdNFFWLBgQek+Tz75JN7xjndgaGgIPT09uOuuu7D33nt3dLyVK1eiUqlg4sSJ3vopU6Zg5cqVIz+BbQThxSkgICAgIGAbRyYEslG+sOr9X3jhBS8Ze7XaOoJ8r732whNPPIF169bhhz/8IebOnYulS5d2/PJUBiHEdu2TGF6cWkDEFCKS04v8LKQVc2TWu9spyZVHsXyunsK2fJ1l2/MY5aDclEnUJkX35VmZfB2ixTbFBPnrWpTVDJdXd35ftcD8fQXIMGwVMbPzfNO9cgIQrE37nbKEw7/euXpatyWHYdimjsp3sm1T0OnUWc/w88cvsLstWIMRYkT9WcpO5sp2yrR12B8j0zZ1cC68pM2tlguNaaXtJO339fYTHoPubXEZpTI9U7tr7mwvsFj5/XLP4TJWSZbNtZ3I/fl2qHgZN26c9+LUDpVKBXvssQcA4MADD8Rjjz2Gr3/967j++uuH3Xfq1KloNptYu3atxzqtXr0ac+bM2bTGbwPY/q54QEBAQEDAawxaHD7av9FCCNGRJgoADjjgAMRxjAcffNCsW7FiBZ566qnt+sUpME4twBkBZ1rfRIpsEtWzGaDAIpWxUCgp54KQ4nq3PO1s/62BfFuGi0zzmZ5c5FdplFpZ3aS8TpEv13qdCZoRqj4A4EKub8N0CVXWrDesSL7ZxGcIPN2Iqa5wPoKq7WYjcfrFZ88EIUWmo50+pYwVKcMW8G1qiVbTubIxXrJu1BFnm6jH8q5FOzamrM4CG9niGGactqi+3b759m0qo9Rum6sLdY7bFu2m722YxUL9LaKgizuIzurNn4timPRx9HG3nMZJINvCUXWf//znceyxx2LGjBnYuHEj7rjjDixZsgT3338/AOCVV17B888/j5deegkA8MwzzwCQTNPUqVMxfvx4nH766Tj33HMxefJkTJo0CfPnz8fs2bNNlN32iPDiFBAQEBAQEFDAqlWrcPLJJ2PFihUYP3489ttvP9x///048sgjAQB33303Tj31VFP+X//1XwH4YvOvfe1riKIIJ554ojHAXLx4MRhjheNtLyBCvGqsZscEGzZswPjx4zHnyIsRxTWrUdITRcUouQxUXqvUijUC8lEZuW2bzFa1P6ctjjasT3G9aF+Wl683+7j7D3OM0m2t2uZpP4Zn0UrrLZT3F1uzUcIv6+mfhOwTkW+fQ2HxXP2tWCaO4mx/E5gMU/VYsZ6toqJGW//mftS10ZS1Zf70cis2Ko98ItlOmaN2GqxO9Foa+t7Q2iRCyv2RhkOrvtGHbRdhp47r/XY1TXmdkrNNRNSLmBOO7qmVjkm3wdVE6bJpOoRf/fQirF+/vmPd0Eig/0169k9T0TtK5/CNGzle/4aVm62trxUExikgICAgIGAbx1hG1QWMDuHFqQV4TMBj7eXksDwkx0A52qPST91tGKiy9e3YqjJsts/rndRbxgCp9SRHmpD8Pnl9UhnL1Kr+sqaoa2K0Q8TuT3J6KEHa11XmM6X72duPjLDePMPormB25p3XsXhRfoRAUAGiGyQkA2WaIYgfiZZZJqMws6clLIfedxg2II/CLL8V8oxWO/fnkWplhsFmuVVauk77/akjxEo1UJpt6tSbqVU5IdozjlzY32kGpKldNqyKZZE8a26auy6EONdSgLRin/JMYRk75bZzOGbOGz9OH7vPE0ohQMs99vT1yOtXjWaVmG3Gub7V1wYmf/MtRPlzjF56uDWli68mhKi6gICAgICAgIAOsd0wTmmaYsGCBfjud7+LlStXYtq0aTjllFPwxS9+EVR98xdC4OKLL8YNN9yAtWvX4qCDDsK3vvUt7LPPPiM+XlahILH8Fp7XJbnfwQv6JwAFVqlDfdJwzuOdoKMIN2+HkdVvWBFCQNydRQtWRi/nNDuFKLgSlqnM48huJP7/IY+vS3osTc4ziXBAwGmDw04BkLPPFu7mBVaphHVqB39f/7iiBTPk5eeCPBdzHFGsR/elEGoI6WvG5ey/lEUqY574CFmeDvRRbSOg2hxruHZsciTdaD5dDLdvO91Qu/07YVna1Zlx/3eayuXBIYh8GLkec5UKUK0AVAl2Cc2xTwRg6jlLKcBIi3uQSCZG67AYKUanuW317neHceIA4dxb9s63jJ1y6iVCWB8oKuxzixMQIozrOI8gdayKZTIZIwBwzTZpNoqqZ4zpF7mcbaGI5mwMoupGu3+AxHbDOF122WX49re/jW9+85v44x//iMsvvxxf/epXcc0115gyl19+Oa666ip885vfxGOPPYapU6fiyCOPxMaNG7diywMCAgICAkaHTIzNX8Dosd0wTo888gje+9734t3vfjcAYLfddsPtt9+OZcuWAZCswtVXX40vfOELOOGEEwAAN998M6ZMmYLbbrsNZ5xxxoiOx6sEWYWYGb0XRUdzLFQOeS8il4UQnlYgV6aMvWp5kJJ9vYM6RXPaowI7oZmYwgyw3eFFS4apbXvLyA6vDc4GzUyVbYNmvtQSI9KZm7hbdVECktmVgiiNkGG5RKF5xL1OuQi7kZx32zIFZm74Cg3TZxpKJHvWIj+eLK9AHeZJ7VuInvIimTbxKVsY/26daM0stTn/ETNKo2GSWumINiUnXbv+zUdlZqLlNut+34a1KoueowSI1GN+fC8IyUVSRZJhEjEDKLXeRHFJqHguUk3kdU9us3LPR/NM5AL5CFBvWfUByTNKKhpOOLorj6HlJRfH7Y+8lkst80oknx2Rwyo5Hn35iDvvGaO+PGRsu+EfAsYI280Vf+c734mf/exn+POf/wwA+N3vfoeHHnoI//iP/wgAWL58OVauXOllYa5WqzjkkEO26yzMAQEBAQEBfIz+AkaP7YZxOv/887F+/Xq84Q1vAGMMWZZh4cKFOOmkkwDAZFqeMmWKt9+UKVPw3HPPtay30Wh49vEbNmzYDK0PCAgICAjYdHAQZKOM4NtSEYCvdmw3L07f+973cOutt+K2227DPvvsgyeeeALz5s3D9OnTMXfuXFMun3F5uCzMl1xyCS6++OLC+iwGEGuxIAw3xyP55yeRlf9jDYA1ReHzjEnumv8U53zy08JDa8zWssl2fxfuF4D8avdTl7C0OeGw6T2ghJOOCFPA2VbSHndb4ZxtFK9XD3RIr2oUgWqDKw7PmVoS7i+XnnYmwJq5T3duWhy4nw+I+mqi6yX+VwEBCLcNlKDsc6Hg6pOZ+WRg2z4s2n2m08aUOWuAQjnA+Zyp2ut97hnBJ652gvFOy2u4PHaZyWb+XEeAdsL5jtqTP2YrO4Syess+Xebb750bL5QjQv3IcjsKYT6beccXwrcRyH/CyrLcMUs+DZpPSQyiFstNlQiCMZPIHJSARwS8KtvAIzcsH6ANDtbIiuefO2+SyXuCptwupxwkk/uSlEsrBPdczGdIVwwuZLv1pzlGQSIGUYlM+6HaxykFSASi+tRYCOhPbK4tASW+GFx9puPMbjfllTmmfn5rYbjdLusOLM5rD9vNp7rPfvaz+NznPod//dd/xezZs3HyySfjnHPOwSWXXAJA5sYBLPOksXr16gIL5eKCCy7A+vXrzd8LL7yw+U4iICAgICBgE8DF2PwFjB7bDeM0MDBgbAc0GGPgala3++67Y+rUqXjwwQex//77AwCazSaWLl2Kyy67rGW91WoV1Wq1sD6rEaAiZyKCAZkqklXhMUfgAGvabTQjoIlcpmmOqcmLzJnDhpQJvPNC8bwgvAMUxNW5ZcJ9tscyTsQrm69LlrcLrViuMnhpDcpYGpHfVl62LHWKy0Dpc+EMysxU75jrUCE8Fs7tEyFyTJLbB4yUMFC5dWjR3tz1c80wSZ7ZcGfM3Bd0F1Kw5FmmTRVJtwofb7W93XHKGLPRiLcdtEuqa9ioTiiBTmwR8uLrMqF2GyuBguA5XzbPQukyromkFq7rfaPIL5tlgM4BRikQMSP0FpUIXP+OKXhEwWNZL80ESCZAFasU9dt/ZYlmzjSDw6hkiTPnntDnmHKQJANtqIdgM5F2CJplchkyxTaJzGGg8iJv9cwnUaRYp0gtM0A9t0U1goid84wpeMwciwHbdsJFwU7Gex7lmCrBYJlrCi8wSAvJOW8xXsYY2Rh8qhvt/gES282L03ve8x4sXLgQu+66K/bZZx/89re/xVVXXYXTTjsNgPxEN2/ePCxatAizZs3CrFmzsGjRInR1deEDH/jAVm59QEBAQEBAwKsB282L0zXXXIMvfelLOPPMM7F69WpMnz4dZ5xxBi688EJT5rzzzsPg4CDOPPNMY4D5wAMPoLe3d8TH4xFAYslWZDWAV+R6OwtRBQXANWHFAZpYBkqG2to6RZtk0KWapTzjVILhQuJFO8aJW9ZJLwvub3P3FdyRYGl9T1k7hiMTSK6MSiOS3yYAEG6ZokJ7hD0u4f7slwjbKEIIaCLszDGyv/Xx3RNw2T/NnuUNO80x8tw3yZ2aM8OTaWBadI57jRXbZ9iUMsYkp2spZXIKhqpqWY9D1ySwBctCWtWXD63Pt62VLmskWqqR6q7yRdvpoVz20U0DUmbM6bbHCZ8nKffZn7LrlGMLDfNB3P1EkW1xt3n15a5X4Ro7ByREskx1qWviFYZMaZjSboas4txbHIgGOeKNqW6AbQqlksWpaANM4hWhKTftzMvyqG6jPo8sM8yayDIgyyC0QafHPnEILkAUe0YoARizjFOlYlgswmsAqVoLBSJ1S1lVn5xtM8kEaDPvTOqySLZPNNtk9U+WZdLLcDRQmxuBcdp2sN28OPX29uLqq6/G1Vdf3bIMIQQLFizAggULtli7AgICAgICNje4IOCjTE462v0DJLabF6ctDa4COngs2Sd/FuIwTkTATNo5AY8lQ2XgMCiSoXB+l6Btkl+3nnYosCL2N3HNPKhikRx2hea1PmoCSFW0TBnzYg47mlADrSvwU98WI+5gf5dFsZn2OYwYS/xIR0GgUkHYZTeNAuCycDlmLSsybR2lucmZeZZe27xsyGGIPPZJ5I6RZ/DM9S3R4OS1PPnZcp6lcRvlTtRbsVlQbTUhlwLIB2OVJXotAxujh3yOnfESEuu2kJLyANy0IDTlIM3UMEMkEzZZLFBu7ulqsJhdzmvVvLJcWOrXXQ/Ia+Am4HXTmcQRRI0YjZMgBKLKwCuKZaozJD0qaq4io+hcM9eswpB0y3pp4uj+1H3GlUkkj2V/6WcDyQSo+7vJwRSrQxsxaCMFaUrKngwlwJC0fyHNJkRqOVmRuXwIA1Gsk+wvAUKEZae0ngtyvBEAqKqIQaNbUl3mnCciWngWuGlWBFVpWADoqDo3obtgOUaKwDBSmxuBcdp2sN1E1QUEBAQEBAQEbG0ExqkFRGT/8tFsknHS01DLOIioJMokpynqVLDkFpN1WPFMIW1KnuFwtgs4socsVz4DaAYTBciGpA8VALBEt9nVOhCvXa6fift/7evkJaLNMVXFNguzXs9kNbOi20BTZxacCsvimLLCZ9NasBpUCIjUsgycEaNh45HWvFh9lMdsEf86CFeDovvcmcV758Vz2h8uzLlJXy81o49oS30O8UIHHTauDKWaG591KiaWbqN1ajWzbqfxya8bjmnKszabkEC1cE6qTqtjynn15NkmL3LTLnMagUS0wACZqDN3v0z4DB8hPjvltlNrp5qSTSHcaoZa6rzyWie3Pq0TUnogrWvKaq7gSrJKlk2RfZJV5Iq0RuAxLTn/In3ugLwvqSKCWFOARQQiVsxVRMEYAXMZScOkUpBm4iTmFhAmQbFi9VwtouDmGSYIMd5QSFMgScD6huS2uEtF/ul7GE6iXmFTaalzEZQYlimvYfKi6FRaJ1fzBAqINvZWY4kMFNkouY4t1NRXPcKLU0BAQEBAwDYOMQYaJxE0TmOC8OLUAoLZb9h5/yVppavKOd/AQUSRUHI8PuTkUdMVrQ5c8lszF96yE9lSqqlRh3ES6Bq9kLONpjYKMB60xzDMWlyu/WnHPAlC/Mgy7redutMe5aHk+SiZRJ8+4yX1WWqb8p0hHuPjlE3tzLEAIpkbrl2TmdWJEA6fDtPXXp8w9xMCF5IB56+Fo92SehS1WghwRgszfrNbBo9NM6BSH2MmnkJYhi5/aK2n6YS16WQ8toKbqFW1yfP4KmOAvGOPnGHydEq5fc3xiF2fT9ZqvXqKx/OiJV2Pr4wbdsg9D0GLLIBgaMkammU1/kr9nTSLlU9nr8eqbn9E7fEZAY8pBHOi3yiMNsmNoGUN4et1NEXssKXePU5c5kUzpLqJxDxDCjrHjIBS4jCmsOeq2VhFibv9I5TOS0fVgTGAEBB9rlEEUldi0koM1KrgSuMk2+gwXBxwb1r3muvEva2i6rjbR0rr6juJbzmNU8C2g/DiFBAQEBAQsI0jiMO3HYQXpxbgEUAimG/aQn8DZ0J+D3ei6tpFwgmWj5xpf1zfD0nNKhWr5AYqudqZAv3qyGAEtcfU2iijR0gANghEDauzEe73e2/GKaOAPP2ObrOegTvMG/J9kitv8s9lij3KRfCYajjMrJtwq2lqGZFk2uusy0dNKW0RU/m02BA8BkI4uazy15OkwuTEAqByfOkZfgmD0cK3Sfen0Z1RYWbcgmmdFcx5m/7T7I5zbq6PDOEw0XQ6cstjnpzthX7p0A3ctF2D+bn+4EWM8WK9eeZlJDqmDqLhNLtkWWKimENi6iiwUqYxADLJSALqeuu8a3ktEyc+28Ry0YIFFik3bnV9eQaLW2bFjMPIX7au3cK2KxNyLJuxK8cx0wxURM1Y5RWKrEaRxZaNkiyb04cO4+lG5xptj2ZLHR0oTWC0QHIbkXojkxOPwtV9ebn0GAOYjpTjENzpWy7keVUkq0RqNaC3W27qqiDrriDt1n5V8tobZtv5YqAZJT/fnMMqOQwSjxRjp8/F/Qqh9uUM4FtK4yQoslGFLhcJzIBNQ4iqCwgICAgICAjoEIFxagEeA6SiGKfIMkdmtuU4XfuMU+6VPse2uIXL3La9aLqc6Y8bpWa0RrmK5E9nTzuJlMuOnog2pT+TN3M0zczN5vMzFacNhRx2uT7xGCbdbXkPmHa5y1ytiqHPiIzyMlbFRc2LO/t3I+4IQe7cBEiifGc49yPB2k0tuNxOmZ7FM/AKtVE5BNY5XLF19vyFF1XntxtSp+LaMLsBUYQ4qf4ECBzWyXFpJuDWGdw9H1cL5OpKCudK/Jx95hqWXCs3Gk3rsAAnb5pTDvbaeOyZGU8l2qx8ZJzSKbWNjtN9xHx2qlBOn6CqFtQWErGjQzM228XTlwWcasv6iALCcfY27GReI+P6PTHJanEVGSeUXokNKmZG664AyWhRq48iKQdp5thJxfxk3RXQlIEqN/CsRqWeR0UGC0H8gEjnQUIzebvpSDTtdac7x/goAdLbrkJBMqXn4hGo29eAM25Sy7QBgODgTUPJgsYRAJWmIY4gKipqsKeKrMZM32gNG2e2D7nOWxfBjw7O6ZQk26x+668NrqbJ1UOpbVsqcS4HAR8l18E7Ei0GDIfw4hQQEBAQELCNI2icth2EF6cW4FUAVcksCQaH9VBskzt7NTQC/P9ruMyBLsrlbCzvb2TgsiJ6tpdjdTzkia6crsmrRu0rvYuI0TyVu1fbwwlCLEPiaAjyGcchAOroctyoLxO848o/nBm+p6vKnay3n+lH+YNmADKrgfLYnXy0m9I16JkuzXyGwGNBsqI2xehOKPWctUnGjcbDwGVRPIZRM04oggIkL5xQfcsjyUTp4xJuWSfZNjjjjcGNxpQaNY/S9NiIsuMZJqswPjt7AIsc02Q36P6FE0UpgJTbvnYj55SeyHCpmjnTzJZiguUxfVYrD99jrEQb5zhJIwJQY3abA9bkRi8HKAZWM0XI6cBKNFl6nJhjxTrKzvaJ3G6ZJl02q6scbhm1GqxMSPoj032S60/Yell/E2yQgqn8brzKkNWY8XrKKrAsOCOym009BERH6Jpzkf9Pq7K9WVW1s0JRYQSxbj+jYIpVopRKtlaxcASAl2uv2bTbKAGpVEBi5Q7eVUfWLdmnrMqkO7iWUSXymnDtSVUlJrKw4M2kWUu17DFMzLJMZt/cds6Cbui1iPDiFBAQEBAQsI1jbMTh4S1vLBBenFqAxwKIFbNE/cg5OUPJsUwaeV2QgJkB0pSAKr8TkhKQzIn80GyQnvlEsHqDguNw7pg66gVQEU2O/ihzZoZar6KuekbkjEkzTjRx9svlRCswB0QYXQBTuinLTjgz8FyfuPZTpj6XAWjHpOVIN1dnBQhQEBCdI4sL6S4OFHVE2pvH1eyYyL2cV08ZXJ2O4xxNEgCM+5F1joam4C2DFoyMbp/xuwGIclKmzcyPatMMh9aGRFa3JHUnxF5Dp37dBhshKCR7Y4UnnoZIaj+sxqfMR6ksUq0sjx9JBVhDZ7YXll1JuXSDzo8fAKISgTgWzQJS02L0UML2gdeH+lTgs21es9woO2hGwjkXR7Pm/rslYgra5HacCXsuJMtnXfT3lYWI93/DKsFhnDQLrO9LCGQxBSKH3dX6oVSUMpvmcAKGnaKNFCTJQPVykoENUWQ1+XBIuxz2qSqPbPyKiADhxHuuCGWhpJ8BrKHPmSDphtFWxQ67o2EWncSZpucSHQJMjV+TKe6ySBExEYK8i5q8coCfa5QzojSqsPs63kwFxsmNwCspCyogttDLiNQ4je5T22j3D5AIL04BAQEBAQHbOPgYpFwJ4vCxQXhxagHBhM09B3fWIZS+omQAEsjZXmoZJpIQsCG13PR3k6yH8zvPrphs5GqmoycLVDFiql1SE6FmaplfF+F29kcTnwEgWW7mTdz9hO9eDdjZL3SkofqtWC7bPsnEmHxvIndcV3fFczoCV5uUynbQ1NEiqeg3U6fD6Ghtg162XlG5WTgUS+Tpj3wGp6VPFHG8e6ismySZKSMianNxwbZPMElXUF2WcwjGAJW5njt3oo2Ss+eG1NnOuefjI7U++mRsFJj0vXLHMMmxSPAvjMizc8JqiJxZO0AA5aps6vVcqP2ucyPuWEOApZkNRcqcvgdkn2hQSN8fWIbLsl7q3nBythlmTUXRedF5FOV6MyGky7wzdgVzIsrcKEXV1zy2TAevUEBFb9FUgGptGlM6qby0y/GSKqzzWO1yZsC7x6BlbPr5IqzeUPcDs+0FADYozywaYjLqLvXHOdXRpSm1ec0Us2uGNVHPDlWAOpdTPreAtK6W6wA4QWWj83zSDF1CQVIGoXLOkTi2YyGlQBSBVhXD1F2H6O0Cr8mkkrzCwJU+C0SyX+6zKqsQpHV975UwTO5yCctkziVXFlT4y2TL+TgFbDsIL04BAQEBAQHbOILGadtBeHFqAREpximvvaF5p3BHQ8CJzM2UqKiRBgEbsrng8roZz/8oz4hkjsP3IOB5IxH7/T6rSkZKgybKCVvXR+3MEFzqkWhiyxZcu00HFEk1LwLMYZ+0y7DXLy6b4WwjAtKLyd03D2HLUkcHRpsctKkjiEocqZFrgzuTz0fNOf/3cqvlnbnzecRcJgOS6dFZ7ZFxoF4xs1fisimUgjBuNCY2qkzNxF1H5ZKHm2YfJUNH7cXJlZWMkWVzCtGChHhaK82eaZ2XKa8jtfTsOmUm4z2PqdTSOQxTFufqda434cLcA6yR+W12x0mbnF8ky/zU7ipKzfhkQVhmKIU3NjTzYpzZc87nervsD1JgMv1ITgGm2D4dqaWdujkjXl64/L4F9s/tK9cHK+dJVbgPBWQuNwDEZdq0NkuzURFBVnE8vgTAI7mQ1SloIllaAFLr5GrKKDFML3ecwAGYfJJUjV3XSJ9HAGIdsQuwASAegqnLixCMqfxLVIRgxC31WoPMRafy0WXj62hMqqIxQZZNuqh57hk/KZ3dIVKZH3S/uIy20lh57KjD5uczJoAUGSbjzG/22VIaJxp8nLYRjO4qBAQEBAQEBAS8hhAYp1aIBBAJCCo8axEgrwsS1iVZQEbLKUaHNeB5GHku4sQjbez+ue3uAb3ZqyI5SKpmWLHdBuF4LDUtw8SacubnRhsV4OoscrPefN47t30810cClqES8Gd/RRGMe24l2iJuZ3iGedF6J8PCydm+1sAQIcysXGplHBdsqNm9y9oYV3EO4fo66Rxj3JlWa5YmAUgjARqawiOSfdLaCzdaLyYQGQCt52hmUt+kPW2EcLRTfv8UWLmy62ZYQ5/W9CLJUil+s9GOBKRF+KA5fzN+M8Os0FSAg5u2Wx2SOqbje8YJQIT1RRIkAmtwo6WRohLVR/noR0J8PyNGnGNQORZK+kK7srd0o6cAZ7ZTC1F0gBNJ594Eim3ROiDtuu+ObTi/idM+Ifwcfi6JCVhHfFXW+HIRlLNPIrfstlmdWhZLfZMZP05ZHhOQqnDYZ6I0gqreTCDqU3qovgy8QpHWZUVSO0SsrM78R/6fJkDULxejoaK20827CABC3S9ZzABWV+et2Ky6/CeqOT5CcxzFwE5yfdILj0kr1YhqDWYsPMZMXhtbriX0A5r4DJN3DCqK+Ug3EzJBkJU8O0daR8DoEV6cAgICAgICtnFkYxBVl4VPdWOC8OI0HPSMw52huFSRgI1oa1DQJgFrWAYK1AYm+bms1HIuqs7TArnRHU7kBwDjBwXiR2TRFGCJ3U5Tqy8g+eiPksmHy264ee0AqwfIlzPb3KqFPyMUznqPWcvN1olLy2mNiJ5dczjeTP7+IKrOzFBHjnN4/iRzDw+XUcpUtnntzZQJWae7T6ZFV0qXFJnwQiDjEFWVwT3LQFJVNklBGLXtSzMgYiBDTd18k3tLxEyyTw7zZD1zhIyGypyL2cpzipZeYgtX70SIp7tBpajJMRnuc8clCQcDNf2dgXh5D6H0PrIeGYlmc5mhwHLqdpQFrnoQosCyAABikhtjwtc8Ocyldpx2x4gbBcpjP4oOAoiGFEuYSt8mz3Mp30SHEfVu8Fz5fOSpje4EyrR8rkbQRDeqyMZMOWZnFdmXpXnzhGQCqbpOjFII5vhQCcuW0USujwZt5GYzyo1NV0/kSPBoE4gatl5XV8WGUtBmBq4iS5NxFSQ96ne3r89Ka0DSA6Td6jhMFJk0/Wxi8AaP67+Vj76T+ieRy+5A7HmhhPH1QqMxzE0W8GpEeHEKCAgICAjYxsEFBR9lVB0PUXVjgvDi1AJaW0D0jMKdZbhjN6PGt4lkBCR1ZraOJkhDs0PSe8myQDSB0VDo4xvkGCeZC0ptymQUHRtS9ShvKFcr5cKL5NNt1LNXZ/ZUmkPNaZdbNp8TTOZEa7G/+o/rUO5HF/odZq6BOhfDFBAq2Zdc/2p2DYI7OpCca7Tj4WSWjc6GS18mzRQJxThpsxbKjE+TiOS5E62X4RxoNEAbDVPW7OcwYQAARkEaTaDp6KOUZ42oMIhaxczEoTVZkA7PSLllyEqi/mxEWE4rRYj0F1LMkWDUHsMh+rx9dG60KjW5v7Qzfd4DSB8uqxJvHNHUshVE5RM0eiYOP8dczsHbIO9rxIXVWBVPVTKxxFmAvScEtS7TIrKMjSkjhIlo1RFk+regvl8VccakZJ9b6apUZF9JXrsyeBFhZcywccW2kXw8kgxZWlPLsd7XMihG+6hyO2pId20iI4MhWSvzjOHSf0sj6aa+j1ve+4jZ51M0oBgox/PJuMZnHIIRpD2SoW1MZBjYUVaU9EqWSTOXggl5PlpPpPRF+rfH/BAho5sb1CyaANsMUofqsElZF7d1RZYeN3LB3LPYZbnlSWGLYGt8qrvuuutw3XXX4W9/+xsAYJ999sGFF16IY489FgAghMDFF1+MG264AWvXrsVBBx2Eb33rW9hnn31MHY1GA/Pnz8ftt9+OwcFBHH744bj22muxyy67jOpctiZCVF1AQEBAQEBAAbvssgsuvfRSLFu2DMuWLcM//MM/4L3vfS+efvppAMDll1+Oq666Ct/85jfx2GOPYerUqTjyyCOxceNGU8e8efNw11134Y477sBDDz2Evr4+HHfccciyvHZk+0FgnFqBCvlH9J9cTdRvoTOQJ5Zl0rMqL6M8t7MxEfnf5WlKzJurUHoiTwsEp2wCCNc92tEIuQ7fJFPHzUWuAA4DlpsxuZnCvQMQey5ac2Vm5zlditsmk6OrpAyg2SbnBD2GzJnSub91HY43kwxays2gVPvybIjntq3ZGtdJ2tE4IeNAopggrW/S26llnwiPgYgZBocggqhX7DGHEpljCwBM1KNug2JMlE8NktRG3A1JRoxEcpvvj0RA8wxTHm7+OmrLCEohIurk+CJ+JJujBRKMgEfU6HuSHpZjMqx2hjXlNc3UqfsMjlD+RnIg0UQ5wavj0Ca3LGEeLrtDSY6FzWmy8n5WrmYo10duvrE8myMIwB22JRoSJoIVkNGPps+If64gMDnkChGCGnp8ckgdEeDYbpecDoHHtul7ULNMWdU/AZrKNgNAQgl41We5TSQclww5dyKAaWrbTVOBSLHYSRdBYwJFqhkoyOeMzl2XucwQleNDR/kKClTWE9TWqX0zex+STIDHzJxLs4ci6ZHlmuMFspoTsVbmoUTsdQBylzkW4HrfRGpP5TEJaOYw57Hy66vaB6VlBZXOazgN0xbzcRp9VFwrOWQrvOc97/GWFy5ciOuuuw6PPvoo9t57b1x99dX4whe+gBNOOAEAcPPNN2PKlCm47bbbcMYZZ2D9+vW48cYb8Z//+Z844ogjAAC33norZsyYgZ/+9Kc4+uijR3U+WwuBcQoICAgICNjGoQ0wR/sHABs2bPD+Glpe0AZZluGOO+5Af38/3vGOd2D58uVYuXIljjrqKFOmWq3ikEMOwcMPPwwAePzxx5EkiVdm+vTp2HfffU2Z7RGBcWoBEgmQSLJNxGGcBCdS09RQbrdNR9ekZycumVIRxkW3oO3JbFlXIyB3tNtIfl/nN5SVkauJIO4sidqM2C6j5Z+s89uZ6QqWZ6HcWXyxDjNLbjdLU9ssW5AXgcGL3BPUdy0u1WzpanJu0K2inQrMk+vjlOacrR03Z/N/zRAMyYcNidX0msk8ddqXRnRVLYNDiNQlaUdurW3S9UcMrv4JETUu40TvC/jaJg3FJOn2mWum3bLdyDNCrA8Rz7z2uQwjIPtP1LRbuM39lVVVOSf6yMtr6IxPIYjn3EwqcsZPm5rZyOXOo65Xk2VW9Lg2ZXWuPKOlIt61chkfQ+xEbj/Y7nMj8PS5aMYkqRMwdam0yz5xfNt0PjPTa1pDJGR7WkUGupFnOiqtXVmjH6tQZDWCtGrZPw9Oe3isdU/ldbrtZQ2CuN96vum6ZFni9RmnkLkKVb2Zw2rJe9Y+L7MaAVkLj2UybSAEvMqQdMvBkXZJbRMAZHUBEYtyhkm1zWof1fHMNVXLeixXOTL1jOZcji+i2SgmpKO/qptn1F5flavRe645/UJ0m9KR8jibhrFJuSL3nzFjhrf+oosuwoIFC0r3efLJJ/GOd7wDQ0ND6OnpwV133YW9997bvPhMmTLFKz9lyhQ899xzAICVK1eiUqlg4sSJhTIrV64c1blsTYQXp4CAgICAgNcQXnjhBYwbN84sV3Uy5RLstddeeOKJJ7Bu3Tr88Ic/xNy5c7F06VKzneQ/hQtRWJdHJ2W2ZYQXpxagUQYaZ4BQs+ZU6Vg2RjIqQ0fdZKTlTJFX5Hd6nT2dpARI9CydeLMk7bZsvJbyLFBu2eiKqJpoU7ubIPCjxpxqSuGySJqkEcXzKkTgtainsB/JrdP54IaB1KJYb2tKACgPGEKU9sfRcnk5vJDLr5VzoJZlnGg4z1SHAJpFitQtoqPics7cEAJI1WBIAQwO2UsVMRlZB4BUY98HyWWYcu0y/lCpZoZsFCDJRdEJxsDrMXjFRsrpvuURBY9szjHazEATbvveZaeo77ye1ajUNSmWKa0RJMpDh8fwxophTPKRkgDAlXZGT/Ab0q2aJVqHBYiKq+FxGCcKc65EKO1R7Ot9PKbWGZSCUf+aO3opNzeZ9iqz0ZiqiE4/GBOj7WGJPVfdJkGstsvdL++Blo9m9erRbXCi91xw5rJ9RDmCq22xz8IJ4rB9KhLXsEsCznMLHsOY9EitEhsi9jw0a+TkntPtcyPn3Ag7zTZp/RPvFehndlzR1N6LNKJIxkUYmiS3DU0G0h7ZeM02eZFzKGGZzDbhlBGKkXL2rZTsD1teqAHBmCOAUlkhBHfuU/XvgXecZMswThzEfD0YTR0AMG7cOO/FqR0qlQr22GMPAMCBBx6Ixx57DF//+tdx/vnnA5Cs0rRp00z51atXGxZq6tSpaDabWLt2rcc6rV69GnPmzBnVuWxNBI1TQEBAQEDANg79qW60f6OFEAKNRgO77747pk6digcffNBsazabWLp0qXkpOuCAAxDHsVdmxYoVeOqpp7brF6ftinF68cUXcf755+O+++7D4OAg9txzT9x444044IADAKAjT4lOQRkHZRyCUxnNNiinUGyQgCaW6XDHoZ3Rqtm0/kavGCchYFzGQdUsx/1+7sygPe+TFN6MHi6j5Mzs9WIZ4wPI2VbBoTgPhzUSzr5a3+TlnHN3c2VBueUCI+ewFWXbWzp+l9WlQQHBickrKNxGKiMXHaFDOJXRc3o2ywmI+s2Ve7dhZbTHUwvGB25ONM0+aQ+ooYad4vIMpF4D76rY9jmeS1KLpOt0jqXboCAIsbnwIHN5De5URdqlGNFMmKgqwmVescp62R7aBLKuqFg/gKzKkHRTDE1UepO60jKZiFDHoT7v2Cx8lkl65cC0QTKp6jyZZAUzhy6gnp+QZYZoai9h2mX9iXS9ghZd8wGANQVoUxjWQ+vkWkXSgTg6QCoKeiOT+61CcuNWM3tWO6WPIXNC+kyF6Q/k7g8u+6vM3VpGnlnGicfEZ3iYry/ydIi6Tfo2SJ1nivaQ00OsIq95Ms72kfe8yTFmXn8yWGZIH89pQ9ol0L+zXJF0U9TWyHuANQV4BCRdqly3inAD5L3qRTOjnGVSv4lXVjNOtg26Q4n5PzwQ78Hi/Kaind2W3DfefsPqh8PnP/95HHvssZgxYwY2btyIO+64A0uWLMH9998PQgjmzZuHRYsWYdasWZg1axYWLVqErq4ufOADHwAAjB8/HqeffjrOPfdcTJ48GZMmTcL8+fMxe/ZsE2W3PWK7eXFau3YtDj74YBx22GG47777sNNOO+HZZ5/FhAkTTBntKbF48WLsueee+MpXvoIjjzwSzzzzDHp7e7de4wMCAgICAkaBsTHAHNn+q1atwsknn4wVK1Zg/Pjx2G+//XD//ffjyCOPBACcd955GBwcxJlnnmnIigceeMD79/ZrX/saoijCiSeeaAwwFy9eDMZYq8Nu89huXpwuu+wyzJgxAzfddJNZt9tuu5nfQohhPSUCAgICAgK2R3BBwEfr4zTC/W+88ca22wkhWLBgQcuIPACo1Wq45pprcM0114zo2NsytpsXp7vvvhtHH3003v/+92Pp0qXYeeedceaZZ+KjH/0oAAzrKbGpL06EcoDYN2Mb2qxWOOZnhiqnflk3CaWmtHlMZEis3kYAkvipAERNbmQNIpP2ujS1/p1L0UJywvB8igCR/wyRo9XNJ0hdPnfMQmguHErfPQ4pWY/isvkkkfs/gELy1bbZAsr0mUZ4r8wSTdoS+WGG6+968Gc+RDi2mkIl1VVCbVGW4sS0gYOkzH6qc5P65topYgZeY0h6bKw4zaXr0CH1+RBuUCCtyzYP7sDQGE/MeKQZMel3okGBeEAgqypLgUoFSbc1MuSx/fSU1eSnGm1kqEXH5vq7v4Fcmhx/mXCjiZefh4QNXU8FAWVu6g/hGXLK1B/2OPp3WiNeqqG0G574H5AmjgAQDcjgDb0MqtKClExw9RgzbhPq85qX+kjf844ZLABwQgqf3Nx6C/2F8jYQTkAi+xnNE5YLgqTbfqoTTNoBmM9kbn+p+84TzDvLnNhjQH2m08dhQ+rTrvJj5VV4nzYLn/idz6Tys1quvxwRtiBA1iU7YLBOMLSD3BQNENAEyOrqmI79QLGThF/vMGJw82lPbfdcVdpljy55ryisMl/mtUi8dXUBr05sN+Lwv/71r7juuuswa9Ys/H//3/+Hj3/84zj77LNxyy23AIDxhCjzlGjnF9FoNApmYAEBAQEBAdsSuPpUN5o/vv38k79NY7thnDjnOPDAA7Fo0SIAwP7774+nn34a1113HT784Q+bciP1lLjkkktw8cUXtz02oQJCWfKLQYqsIiB0SgGXNQJKZyymLRG3ZoQZkQyTniSlUrysZ7ysCaDpTpN89sfkcXWM9MzxXdbLZZgU+2Si0QVaMk4AfJaBFE/TzMoByaTkZtiGBXPrFbYdgD2+nUja/pTiVVFkyHQfCBSEzp5hpyO2JrD1iojKBLBu+hZjlinc7LByFaUgkTKgTLntQG3WaeqJILhlp0gSyVQqpl5hDCwFmAzRVhYEzR4qxcf69Lid8XPmMAPKoHBwkiybdisWRjWJNSzTEg8IJF0ESbfsiLQOLwWHdx2YL262zIHLdtk+8bW0xLJOqu2WAZOsCNWuDhWACGLSebiGi0bErRkSJs8PUGk9qGO6WBPgFW6vsdvWjIBkBGxQNriynoA2UBQ7q13KWNhWSa7zwnFO/PN2WU7vhmlzDCNI1zYZLnsnpAWBsR9gimVyEn4XTGlz7I93H9rmSEuPnHmnFti79gPRkAwsSDUzVNWJfYVpg8+G55J8O20QRACx3C+rq/Qn+lkVC7+RBYE34LJIHuMEmMAQbVrckmUqY5XasVAOXGsC18ZgS4ALCj7KqLjR7h8gsd304rRp07D33nt76974xjfi+eefByD9IgAU2CXXU6IMF1xwAdavX2/+XnjhhTFueUBAQEBAQMCrBdsN43TwwQfjmWee8db9+c9/xsyZMwHA85TYf//9AVhPicsuu6xlvdVqta1rqhAqVJ3J6SHvlgZpIlasAhVAooUYuVlmJLzv/8TRCGlrAJJLPmmOy+BpRrw2ubNElUalED7tzqhLZtpwf5YwTpoxapViRQj45+UyXx1M3jQzRIQoMACF83WO05bRy4X029QqQqbyUCZ8Onxcg6QCRHDzWxoDuswVATLqlNcJf0tOlBAv/YlNOsxl0l1tP6DM//qmylsw6fVTYwgCm3omx4B4zJAOf9fJWptA3C/bNTSBIu2WqSwAmyrF0+DltCh51sJrj7vsnrJm+1zNk5qZC8U+EZ0gVhk/6mSutOlXTBN73lnNam6ymoCoWIsBMKWH8dgVxTzEUqOm2ap0PAHbwMAasjBNJYOij+eG5WsrANcWJH+/2WTWJV3ljGOdgNs9b6+oYYV9xq5geeBonkQMlW5Gd1ibezR/v+TuswKEYrrhjzeawrMyaEbIywKL48hZX0iX4jBDPBbFsm4D9f+pbKCvY7K/3bKabWrFMpWxS+14Iy2oFpwgS6gpTBnfovqmDMSx8dj0OgJGj+3mxemcc87BnDlzsGjRIpx44on49a9/jRtuuAE33HADAHTkKREQEBAQELA9Inyq23aw3bw4vfWtb8Vdd92FCy64AP/2b/+G3XffHVdffTU++MEPmjKdeEp0CutNKL9js4pOBcAhMu+jvTVWzEhO9KD+5zATxhRPOfvnJ1gGbtqK/NTWYXtM5Jkz8277ud6ZcOSLEWd74ZDOMQt1le2T1yXpvjAJTf2jGz0PsSaWhMu+N7oLR/NAKYHIhNGFGC2U7noqrB6BERlZ57JIQjgpLoStmAiQjDuJXIVHFZIk8/VQ7dzxCJHpUwAIlSpEG2w2dqyib3qEphqaOiGrPLkStkA3m8BnGQBEA0Dcp07VSXIuIsk2GW1KBGno5+lRnHqB1te4cG6O9klX4I5XrX8RAKLcmHTLOvWzhtxXM286LYg+F+5qYKhQ2hqXgXDa5ra7KpBOEsiaKu1HkyDaKH9Hg5J98lKROM1yTTaN6WOe/XO7xc3BLIykUd7vHpPkX0PiDCV3HJvILccM170PvDRIrt5Lt8+5xplrhilgIh69Y2oytWnr0GaZ+tx4LOvh5ma0Uaj5cWTYppIxl39OesyUez1R3NfXOMn9XHNLkhsDLstUNqRbaZyEsClX0iaDaDLLNFeAKHazW29eZBg9Y/TqtercsthuXpwA4LjjjsNxxx3XcnsnnhIBAQEBAQEBAZuK7erFaYvCzGCkMMBMkAkk42QYCUg/JsCkVjEzkkh4bJPIiEz0C4CmREb/6Jmlmk15KRlKZqDDtzuniXHZqTKKydE9uNFFBR2HIl3K9Bw6HYMXXSRyE7ES/YbZ5DIfTu5bQggIF5aBSAmImsLzyE9pQTMh9UluG9wkvxygWpvEoVglXZg4LBL8yDmtWdL9yZGjDnwWC64XExWGcQKlyLoqGJwqRTv90xiavbC+Sa7PEEFBb+QlvnVm5myIIOqXrJOGToTLIxnFxt0IUE9HYvdpTX2qfYeb6LozeuFcZq0P8Wvzfurot6wK8BovpAwBAETCYy50MtmWLFNuoJLIbueU6FzbAKFgFBBN53huyhNnHJsh7GrEciyO+xuw2XKIZoadey3P/rpsVeEy6EdMQ+qQ9FhJq1ILJvsIRQ2b0xaXseGRekw5z4m8Z5r3bHI0jKxh9XK6XleH6GucRI5lyp2XNx5zJ+1d03bMrh9FV/B1cg9fpm9yy1lyuXT7cE3ZnAif6rYdhBengICAgICAbRxjkaR3LJL8BoQXp2FhiQet2bBMk4GOIKJqZqtZJs3mGMEELEvCiT/DIyh6MnWA4cq7OqrizqqM1hS5H8B9+YHxfWkVleNGwxUiiNwZtJnFKu2GWmFmrzkdiAvu+BwJxTwZf6OGAKXCskicGPaHcCEdqpXGiXdRsCGADmhhi9MHAtK3SUeKMQJeYZaRojARdoIRiMjSWqSZSQ2U6ymlIuyyrhhDO1QwsKNNopt35navh6ddyelCPEd1oXx2UmHar/2g0prSozB7Md1ovVYeTS3RobzCr6s4WycCIJryITJiDpBsk8dOADln/qKuxWcy3MFTZAqEGaBWt5L0cvCIGsZO6Agydyw75yUY/CTHOcLRu2FcBkpFupYl+TX7a2dy7jJ2xXK6bgCIGjaikit20TCMKjGzbgNt2rKFyFXIthc0TxrELtJEMZz6UcbtRiEAuEl/hXpo5FkooHw8udfXLaOuZ8EdHK1ZJJJbNutzx6W5/XXCZ2m9Rswzn0Zc5vTm6v7nBJwTz9sp4LWB8OIUEBAQEBCwjUOAmJe60dQRMHqEF6cW4Bk1zII3o3FmIHrZQP/UDJTWMOlJUt7nKYeWWia13mVtigyO0wRnpuvOFPMeSYUIPOIzGd45wc5K8+sLbRbwCQBXA5FjowQhfoSdwziYnF1mWdgZcyaZF27YFemDRRWTwRrckBU0EyBCIOmWw50zAJzKvHK6HcrbiahIPZLLG2f9l5h1VSYqWk+zZzEFbVLLegkBXlU+Td0RBAGiIcWuqONlpi54UVF+tFSeWfH1JTyy/jtplaA5Tv5OegBeEV7Zgs8OnG0ORmSI3Ant6RxGEIDXdfiWc2zFIBU0MmpHN/+YHSdF9qJM4yKLWCZQqEhDUSVImQDRxkhDAJxceu3uVxml6DC1zv2VZ3A0GyWc+6/0foYladrBJbY0tCeVjqxMu/wCxrNKVeD5UwnVNjcyz31WwG+jZDnVceo231xWQrO7nnSl46xVZCTNnaF3jf0Geb5NuWO4TBUhPsNUGk2nBmDGKdJmZK4ZjThYJUOm9XApRQaAJyUJCDcDwqe6bQehFwMCAgICAgICOkRgnFpAqG/X0g+IgmeWRQInEKlio1xGSfvTODoBN/LL1Ti1zIVV2pgcW+RO6EpmcMS1FsnrMHIsk6uXIQJO7jd4mdbzvkLCPU/1H7esm+Hd86UhkBoIYrcJToozbgCECRBKPA0WG5KVxv2ZjLhTuqW0m6l8b7oWCpJm6hwJhibGyGpE7csVY1VOq0iHcW5+u+UEswwZyYTMP6dOjuqoPq2tEgK0IaflEQEIZ2BNuS3uI0h6KFLVpqQLSMbrY8DpOL9vC9ebSi2LqacXaEyU23hFFH2bnP4tYMQCuxa/AUsUaKqCOatzEXBFt2j1v3YMk1pX5g7dmnmwxxGaFaQAujLolHmCMrAGwN0ppaN30i7aAECYjGjTPk/uPa2Z1UKeOOce8cjqXESb+7uUFGlzqQrsrj6XvAu6eygOT/sjAJv7rYQJdxlR1vDbmLosIkXxoeOOQ9ePqcCsCu+a5r2ZClDbqKuFMvu23paHZqSylHq6NarykqaOzlWkFCLbMvwDF8S4mI+mjoDRI7w4BQQEBAQEbOPIQJGN8iPRaPcPkAgvTq3gzLJ4ahkmkREQlyFxXZDLqiFoyy7ZGamQeh9nNmbmBvoQzpj3PlU7bJS2nirzltEaJtNcXc7N72YnU6Wzu7yWqiVcliQ3gxaOJEAIObPVM3xBrXZCz/D1ctzPQRsqZyAjoABYUy6zJgcbZGhMlJUnXQSCyt88AnhMEA0oZigRACHIqpr9c2egUt+ko+UM2+RoNLjKeYdIngBNlG4JXP7WDuWpKzAh9thQE23BQfW4osToRIxTdQtW0V3OagJZTEw+Oq1rAuBF05n62s3a2zCZpeVIfrnFgMjrluCULdOtlDJZIle2XMek9/Eip/JaJwKTCYBnBIQIcNVXqWYGh5zT1U/JVDG0moFIZLO05s1o3+Azuar1he7xdIhtclMW7J5bXSd9nXPaJe5cfzdaTVC/e0Hg2pcVZEn5HHSmnZagNcf0PKS8Z5DwfhMKPwrZobF9d3DhX1dSdAr3I+d8lsm0rcA4oQC9nTIBQrhdJgJJEtkO1c0dIVEbsP0jvDgFBAQEBARs4wif6rYdhBenYcATKr9ja00Th5xx5DyYDDx2xdfutIyac+rxtCz5mWcuIi6/LwA5OyWwmhJWnMF6x8gRZrponrnKH8fVQGi9Uz5iz/x2dRpCMSp6Jqky1buRSfGg0gH1c6XTcJgiB7SRgSrGiXAOwQgqfbLirGL1TlmFoNInjNcRiGSgbFttJ9BE+FF+OXZFUGIi8KR0g4CrXmNqSm+0XjEzTJNgBIISx2dKMlc6mIumfh+4yLuIe/5LjCAZD1MPrwnroQOtRcnrhJy6OkU7/ZMeR21Ynvwx2zt+t9AtlTBOXtW54xei6vQ1dOgfRiFzUTLZ+Vk3QdakYA3NEAJCXRedt05fXx2lRh3XceGwhR7bi1yXlGmXhK0nHzXr+ae595Y3NuFfB5pjvN3ni1u3+1vvy53DcH+bPqbeJeuy0aGmf5yyeaZKn5xhm9yxoH8SP+sCCEBoST46tc3VLhEiwGhrLZM7TigRhZcJqo4bsQwksowVFwQJEZYh018bttC7CAcFH+WnttHuHyARXpwCAgICAgK2cWSCIBslYzTa/QMkwotTC/BmBLDIeDFZx2+o79pyOc8i5WeZpgzgfxsH/FmnzunVSrvgeqyUoUTfYOBEpZU6Uus2uNFuPHcuZbNVJ9rIjcAjzjpA1ePOaJ3ZKhWS5aluULPFTCAakFN81uBoToiRdmkKx7IykYquo00tiJKMjmGOUmHKxkrb5Gm93FMhsMyQirYrMm1qe0Q87ZaMEpTbeERVGy31JpQeSns9uSIyXiHG5Vmeu+0v01fI/VYaEbdM2u2zTIV9Wq3vJIqupI5yH6giS+RtzrNR3jjPMQul+id/XUGbUsIukLL9y/aFMN5snHHweoamolOjjdT4ImktkjuWtc4JkGPeMH8Rikyvc6rGN6nYfO/eMufcgoFyGSaTpy5/fi6B6rLNOa2UcCJhBYUXAeje/9pbLdWavNiOXREp36YWkY0e9DhwtUmO3ik/ZqjLOFFr5VimaWqlZaLOsTQYEZ43n95Wq/hsFOEEUZyBMaWPU89zLhIEvLYQXpwCAgICAgK2cQSN07aD8OLUCikBUu38TUo0TVqrQgqMkjdT4j6T0FLz4FRpFi3R4uWJy3tFuWVBoLxT7LJxvlXtMfXr3Fi6DjeqjsLX1sBvO3XzecEvK3TKMTfzuj5G/pgMyKoEmYoEq7+cobqq3xwn7WIgFebtC8A4ewsnF1xWpciqWosmWmquTKSP7l9mN/IKhWDCuaZC9qVhlayrOEmFYiHktoxJJ3Gic9lRQMSacVL9k+p2E6RVR2vlOKR3As/7KE9ktmJ32qFdHW5dbfYpi1Aq3aeEZZL7t9cxFd2iy1mkVpF2bberVVElQ8IJeCxXNGscUB5u0UYm9XhqFx39iPw9qNbl9UXu/wVgNYJaKuMyuK4ZtXPva72gyzK5z4CCHs55VriRutqd3M3RCIdx4rFzf6h8d17OQ4eRok0YRl4IqePz+mLYceOwU3osUJ9F0myUyzJRh2VllJcyjUDRu8nbpjrH/RhAnYcrIU6mCApU4xSpur+TJELaZFvMOVwICj5K528RnMPHBKEXAwICAgICArZZPPvss/jiF7+Ik046CatXrwYA3H///Xj66ae3SnsC49QCOhqEAMXoNkfj5Op1CBVy6uIKeIid5nmsh2KzzKyOKpajRaZt4bBIBSbF3UXAj2JzNnPoWXuuPTn9kVlXprFxj63aztXs0zBrPNdeV+Ok6nZnyVkVaI7TLE0MQboBAJVXGqCJnb1yRhDlIut4RXs1UXBHfyQj2NTxMyHz1anlLJbMkNcorWGiAJxZvPaQ4k4knZFhuCygPpeanYtwBuMDRYTynFLLaZUi7SImGknuC3OMkUbqtMrv5v1f/y7Rn7T0WXL30z9HykZ55fNapRb6JrNs688zTGWu4V4T8lF1Zc0mziAFpJdaV2IyBaSNyJRJhWSd3Aq5wyh7jLFybBc5VsqMe2JZGg3DMokc+0ScS6Z82LKqXM7qTp8kAGs6+rzc/e3qqsqi8wiATGvuKKxDeiL9wkzEIJNMoL2/7JinCcBBzLkIo2NyT9Q5qHMPEmo1TkbPpMkedf01y5SPosvnoNPr5amUs02yjPw/U2WE8Mc3g4DQrJRgaCQRmoOyk0Qm/f14cwvlqgNRuQBHV8f2hqVLl+LYY4/FwQcfjF/84hdYuHAhdtppJ/z+97/Hd77zHfzgBz/Y4m0KjFNAQEBAQMA2Di6szmnT/7b2WYwcn/vc5/CVr3wFDz74ICoV6zJ72GGH4ZFHHtkqbQqMUysQRYu4DBIgZ4MZAUnlmztNiGElIJQ2IFIzFAaACft66rqMCwGSEBuNovNI6VmUy2QYtocU1nlRMHDW5ZgQ3T5XL2F1PE7ZElbLgyPJ8dYJ2CicGIUZpjvTphmMGzLJ/PxfSQ9B0iNvjnpvhNrLTVT65NGGJjCTk42mFBggYIMyooUNpuBRHYLKRhR8mohlf2xuMcsyuUwVzVS0lLNNu4zrMrIexxsKkpXKqsRonlymgA0p1kLV0z+VIhnn95GOsDNRSWWMUR5EM1Ql7EsH+3taqVy9QIfsUv4YbRgmWadw6i/TOtnjDMcyedvzTWqha2kXYSeEABEERDOQnCNrKEYhFsi6rMGRHsukqceke39LarKlZ5qQx1Kn6WmRZGXq/xnxdUoMyKrCusNHzvMlBkCoeTYVOsXxZhK54xn228kiYJjeGOBV4bHjbuUu62W0eoayVe0rHTM+G0WoZZQIFW29mVz9E1DUMbksU+kYdvZzwUFK1wFSR1WNUwj13EiGIoAJEFY+zgLGBk8++SRuu+22wvodd9wRa9as2QotCoxTQEBAQEDANg+uxOGj/dveMGHCBKxYsaKw/re//S123nnnrdCiwDi1BKHyTyavgpmdsSEK2iBgyi2YJpYpyKqwPiYOvNxMmdW8FCKZnDHNI2dWrvbhlJtyVDM2ic+IES71BcJoNpz6Y4BX7LSTDchzcaPfDFSEjsumef3DUJyxOhNRweD5PLmzdJHB5AKLhqSPk9YQcWZ1IYOTKQSpIO6TJ1tbl5lyhAvwmCKZIMUemYpeY0oDJajVWYAAaYW21H7k17luxzwiSGvEaEoAt0+kTk2zToJIpstl+DSTBiLrGtK59MbJ8UJKNGPaj6cssq3U58tdbqVncra11UPp1a2YqHbHLtOStGKJyhitnMdOOx0TIcI/1Rb6FvcYeSahbD8AEIIg02xknIErBkcIChELiIqmeQHeoGAOw+NeT8KJlzewGNmp64XHyqqq7S9BLJFF5fOFJmrfjJhoNxEL8Kow0XqFc3WYaKKZ9DwzrNvP3PGo2uD2aUYMsy7iXB96zxFhWVF14oahoQChHFQtM8atxom092ZyNU2ECFCIArNUdr11+Tx05ByjRard7U4apYYVGyBAcyC2osfNDA5i2K/R1LG94QMf+ADOP/98fP/73wchBJxz/OpXv8L8+fPx4Q9/eKu0aft7/QwICAgICHiNQTuHj/Zve8PChQux6667Yuedd0ZfXx/23ntvvOtd78KcOXPwxS9+cau0KTBOw0HN0jTrwwYJsppA2qOZDUBUVb60Sgb0R1ZjQPzZPXF8UsBV9AvVM1IAVDFNAEQ9MzMzMcQk8xVZcZLOOUSIH40njEgJql4BXlftizgEJyANao4pImG+2RMOM0PW/2cDsixNUc7QKAg42/Xpa12Gk9+LDQKVjZa1oU2B5jiCpMepWu3HqZxZZ1U5TFlDRscBAG0ICEaQKt+mrErltdB+SzkfHFfHpM/VjVL0/HaI9fERVLJNnFmmkDuaBiJsxB2E7FNdVkYe2es71EsxuCNUe/2cfbKMM6Y8HxynU3Io6Jt0ed04UlK25NlZyjC1ZJaAIgXp1lWmW7Ljcjg/Jr9sew1Tuxxk7coOB6b1PdxGeokKh9CaIwCkQUEbVLK+KLqIA45uLccICsDvAwFzH9oC8t4hQvjsbgYPmvEx2sqaDZ0jKTUaLGTEPm90FJm+PqnUapr7hsJGxqmIX3uPEIiKsHWV/Vucu97EXa/GOY04WFRkmQAZVedeQ0p5KctkqiX+NW93rUuZqJJ12ixS16Udxom6AKLaRNpkAGslCA0YLYQQeOmll/Dv//7v+PKXv4zf/OY34Jxj//33x6xZs7Zau8KLU0BAQEBAwDaOsdAobW8aJyEEZs2ahaeffhqzZs3C6173uq3dJADhxak1qPAiQjSLxGMg6+EQsWJxmhREaR7iegpezZCtl1FhpEFzXk12VpjXQekcZKIuZzO0mpmZDqcCSKmZqYEIw06QAQZk1r1cqIzjJiKmxkHrqTmMGIyMPoJkcrZoZtTuLDNS59xCU+O5IqtlkxNPszl6du14wsQDQDQokHTJjY1x8hhmwuf0F68CmaMv4hOJ0XbRJpN6JmeGz93RTHzWRhDiRTiRDIa98pgoc3zZvizORehxGC8mkovtlUyRvRbEibhr9lAMTQIyJ78XjwTYkFM3zYmvTP/5DI7HMhHnT8NlAtpFrbnIa50KZXymqi2rlNs/r2PqNFKuTMOU37cVy1DUPNnf7j75FBTSx8e2kTF7D4iMgCRO1JqAjKrSjG0Kr/9o055FoscYc6+NqoZJ/sf1QfMiaN1MALpK/WyIBFDVBmVaEKT6igrJQGv/pdi5hkKyTC5LzGN4einzjEupHPcOI5pnLj3G0rtwuqNUH1EOVlHPOBVFR5WuyL2eZQwTYKPl2l17vV5f27JyIscmlSGfw06fn350p5yCMr7FGCeOMUi5sp1pnCilmDVrFtasWbNVGaY8tq/Xz4CAgICAgIDXDC6//HJ89rOfxVNPPbW1m2IQGKdWUDNC0pMgrqbSswNS39Lb3TCzpI0b6sgGpJAhQYR6bwPZJLmtsa5mItcAHS1lWaM8RCxAq2o2FtncSzTiQBXe7IfWJIWTxBHYqgqifnuMtNvqHoiwjBJlXEUCSUaM6mg3h+3Rv2lCrIcM4HkSAXrWqRY4TBSeLWDrIhnMK3pjPJDWifFJqq4Hquu50SalVUczBIBXLAtGLHGGZi+k344zS6eZO2u3bJSgxOTb0n0iGMBNYj7LHukIQBPlFysmy7ls1uOJ+H2Sn8wxglRpXBoTgLTLYfSYjLA0Wq8EyDRxUNe6sNwMH7Yf2+qY4G9rGSGXZ6o8jIBhKmOy2miYyvbV60ihfHFfoDz/WFnEVdl2Vxuj5Wh6Ji6UUaDeP82s9ogkSs/ksEo8FnDDSV32stK0rKxmMl2tk30WyP+ZXHAOBesxyXD2dSLTDOMhKOBGu6qoT2jNExPWgE17U+ljR0I+Myq2rOluyr1xVhgyDgNWuK5CP7f0s0yYKDpKBBjjJpItH0XHHEo7HxlZxjDlUVbWrO9A75Zxiv5mBU0nFx1zGDLOKYT62xIQYxBVJ7YzxgkAPvShD2FgYABvetObUKlUUK/Xve2vvPLKFm9TeHEKCAgICAjYxqHdv0dbx/aGq6++ems3oYDw4tQKQ9LIKZ7cxKSeAaDX2ZRGZhbS3dPAxlTNSIYYGnGMnh5pUlSbkqB/oIrsFSnSoQ2rjzD53FzNQ1cGFtvv/2Y2yIlijYozqHpvA1l3gqG/y7fw6t8Z4o2WShCUorGrnCFVelNQJpDoWfaGWLanJJoHXLE5rk5J2BmzoDa6jGQE0YBlYnSUmmZ/aApEA/J31BCIBrjJTWfq1oyPICYSqTlB64ZUvRkQ98vfrOnrxEQEpLEzw8/sOcn64euomLO/8MsDdpvOJWdm/sJGShEOwGG5wIBmj9UxQcB4UnF1PKNxU15cXNXPIyDrUtoMpUXxGAndvBJfHFNGr8qVzUc7eoKZvISjpU4pr0NydyrXH7WrtyxarixKbjgNU5l2abgcZWUaL52rTJOjVgsDCJ2LTY8R91RS66OUddsbhA4R8IqNUiMZFNujmEzHT82ws+becm+0Ek2bw0AK6l9CwYR//WMnarZBPXZZ55wz9dYyEFevY+oBCuMkl1dOk2557VCeYaRUskyA9Exyo+fcSDl97VsxS51ESLZkotrkrnORARgYqqDZr4361DhwvhqIlIIPvnr/Gb3kkktw55134k9/+hPq9TrmzJmDyy67DHvttZcps2rVKpx//vl44IEHsG7dOrzrXe/CNddc42mSGo0G5s+fj9tvvx2Dg4M4/PDDce2112KXXXYZtg1z587dLOc2GgSNU0BAQEBAwDaOreEcvnTpUpx11ll49NFH8eCDDyJNUxx11FHo75czWCEE3ve+9+Gvf/0rfvzjH+O3v/0tZs6ciSOOOMKUAYB58+bhrrvuwh133IGHHnoIfX19OO6445BlWatDGzz//PNt/7YGttsXp0suuQSEEMybN8+sE0JgwYIFmD59Our1Og499FA8/fTTW6+RAQEBAQEBY4DRJ/gd+ae++++/H6eccgr22WcfvOlNb8JNN92E559/Ho8//jgA4H//93/x6KOP4rrrrsNb3/pW7LXXXrj22mvR19eH22+/HQCwfv163HjjjbjyyitxxBFHYP/998ett96KJ598Ej/96U+HbcNuu+2G3XffveXf1sB2yTE+9thjuOGGG7Dffvt56y+//HJcddVVWLx4Mfbcc0985StfwZFHHolnnnkGvb29LWorRzS+AdpFML5rEIxyb8AxyhEpVWktThHvsBEAsH5DF7Ihho3qW824CQOYMG4A69R+fHXNfBLS4movcaaAERpmQiBTgnT0M5CMgHfLt/OoO0Ec2zd1wW3SYUHk5x/92YcNELCXJdXMe5qIowxQ4f3NGoMYLH93JhlRgm/NwUtDSntQK5IlAmANeJ8eogEgHpD7xn02GW5jPEXfzgxplyrK5LHcZMdGiJ1CpmXQx6T20xltys8fJskxA7KabQPJbD3awkB/NqGqjR6T73yyyGL7iU2Q3OdCDjD9STKT6VZ025vdBM2JOSGv7hIqP42YepVlhP50Z84dUImhW4i+ywTf3mcz2BNXn8TcoAKSK1/45FH4xOYcx1tfTHHR6jNffhvJrc9/1ikT9XZSpp0hYh4tP/VwCuGk72DUEVRHAmg61h9E3Sd6O3UE/THAE2KuN8mklYZQwQAiIgWbCe+3MarUddtrWthPf4rTn/RIbpvzea7wyVdbF0RyzOnPb27aFp0WRYu4KZW/jV0Kp97zUVo6qMM49gK6je51YYR7ZfOf5joSgQ/z6c29B1pd97LtjErhOlW2DByAl6gdBCTiINH2Z4C5YcMGb7laraJarbYobbF+/XoAwKRJkwDIT3AAUKvVTBnGGCqVCh566CF85CMfweOPP44kSXDUUUeZMtOnT8e+++6Lhx9+GEcffXTbY/72t7/1lpMkwW9/+1tcddVVWLhw4bBt3hzY7hinvr4+fPCDH8S///u/Y+LEiWa9EAJXX301vvCFL+CEE07Avvvui5tvvhkDAwOlmZUDAgICAgK2F+hcdaP9A4AZM2Zg/Pjx5u+SSy4Z9vhCCHzmM5/BO9/5Tuy7774AgDe84Q2YOXMmLrjgAqxduxbNZhOXXnopVq5caRLzrly5EpVKxfv3GgCmTJmClStXDnvcN73pTd7fgQceiI9+9KO44oor8I1vfGOk3Tgm2O4Yp7POOgvvfve7ccQRR+ArX/mKWb98+XKsXLnSe6utVqs45JBD8PDDD+OMM84Y0XF2mrgRUXdTWewLMGcmkiUxGonsuq5Kgmokp5E7TtyIgWaMDeskndI/UEV3V8OwQw3iiIO7M9BqaqmEpqRD0j7JDtFBikiZI5KMgEcCJJXHFOsjJGqSQxMZ2l+XL/5yQhQBemqZTMys6LTBUKskgNI6JnEGkRLLZuQZGNeIj6pZmwmvtiabGRVoTCKGlYg3ErBXYBIhN8ZTpN2qbKxC/B1RdD6k3xVxE+EIbAVAdAqLSLZPi8VB4Kd2yWw9gkmmSm+jiqlyU1doMThnVvytj5nWTXciGpCiUUCzSNagc2gywKv+jNb0LbUsk66YDRFzbrwiPDZAUCdZq8vuuIwS7Lp2dgEkJwZvZRvgVdlC3Js/btk+bYq0NLIELMPQiQVBu6SupeHnLdqhYVg5ygsMnWYUBACRRg7hoI6n7xGX0VG/XQsMmgLcGdv2ILn/e+uEVw+osMxSWVnvpFR5HSiSt5hgwphRRpUMlAjTLMmqWyYlYtzYA2jWSLNMQrTXqXCQjo0rWzFMeVZpLFKqmPapZ3x+30xIdo04bJ97kUVGJFO3hTCWUXUvvPACxo0bZ9Z3wjZ98pOfxO9//3s89NBDZl0cx/jhD3+I008/HZMmTQJjDEcccQSOPfbYYesTQoCUuvF2hj333BOPPfbYJu8/GmxXL0533HEHfvOb35R2ln5znTJlird+ypQpeO6551rW2Wg0DN0IFCnMgICAgICArY2xfHEaN26c9+I0HD71qU/h7rvvxi9+8YtCJNwBBxyAJ554AuvXr0ez2cSOO+6Igw46CAceeCAAYOrUqWg2m1i7dq3HOq1evRpz5swZ9tj5f5OFEFixYgUWLFiw1dzEO3pxestb3jKiSgkhuPvuu7HzzjtvUqPK8MILL+DTn/40HnjgAe97atmxXQz3VnvJJZfg4osvLqynRIbJZo4ZnkaFZSYNh/utHwDG1e3sK0kZ6nEqdRIAhnqrwKCkGGgtRa3eRJrJ5WaTAX0RImWWCeezuQynt2aJrraHcEgtkG4C0doLtZgQiF65Y7WeoBanJkN21kUxlFKT6oNwYpMFEwFBiJOOxRcFsQGKeIMsGw1IdqmixndtbYasQtA/TVImQ5N9SwHkUkgI1W7AZ6BoIvshGrL7MvWOK48pkHSrc6nKsvpKZzV7DJKTIPBYbtP2CSBwmB/ZVs06ZTUBEcMYjDbH29l/NCjrbo5TWo9q2UwXtv9UOhx74sSaeta5TeJszAcdrZLWnrRgftqxSO3Sj7TTJbU8XovipYxTi2OXsQ5aN7WpiVxbMU754wEluhhz2xFkjpivGqUYUimLspQiTSnokEqSTQCSWn0eKKwXJiSLaFjOhmSGfZNYl44CXMsBV9NGqHNOpmltmA6HJRSc2GVmt4EANM5Qq0tauLvaBKPCY17c9CRlfd3uH/FCqhJ92GHYQP96ty7bTr/WSfvatUFDG6FG6osBIQI8peCZTrAOVLoTZCQp3f/VACEEPvWpT+Guu+7CkiVL2oqxx48fD0AKxpctW4Yvf/nLAOSLVRzHePDBB3HiiScCAFasWIGnnnoKl19++bBtmDBhQum/6zNmzMAdd9yxqac2KnT04vTEE0/g3HPPRU9Pz7BlhRC49NJLPRZnLPD4449j9erVOOCAA8y6LMvwi1/8At/85jfxzDPPAJDM07Rp00yZ1atXF1goFxdccAE+85nPmOUNGzZgxowZY9r2gICAgICA0WBrGGCeddZZuO222/DjH/8Yvb295svO+PHjjYP397//fey4447Ydddd8eSTT+LTn/403ve+9xnZzPjx43H66afj3HPPxeTJkzFp0iTMnz8fs2fPxhFHHDFsG37+8597y5RS7Ljjjthjjz0QRVvno1nHR/3sZz+LnXbaqaOyV1555SY3qBUOP/xwPPnkk966U089FW94wxtw/vnn43Wvex2mTp2KBx98EPvvvz8AoNlsYunSpbjsssta1tsqmoAR+U2flSRw7IqbqMVylkEhjOAuyRgyTo3mSUef1FVEybhJ/djwsnz55AkFr1JUY5U6pRJBNCz7oxPxApCzw9TX5JiEtgRA1bInbEj+bo5XM8cGASeycDw5Qy1OzIxa1AiajQhcmXmKpjOzjABAeDNoQeEbS6o2JD0AWwN0rZYNrKxrojmxgkhF7NEUSLoVGxBBmmu20DXRBIg3qiYMyn0z5/JUNsqCXasz0ESgMUExdr0Uac2W5XV/dk9Th/USUBGMqmzF9qdMiwOkPYpFiiTT1pxg6zJJXTkFawKsqVivbi4j4hwmwWia8tqUQQZBBbJedVGrHERHHtEiG+JGtw2XJDePsqS5rcp0ik6T6Laqu53GqUwPQ4gorbeMLSiLsuokOgsAiCCgVCBVFy5iHF01ycokKcNAQoFBlbKoqUI+dWSsYqAAeZ/wqrCaQG2A6V4Ek7QbRteml30T05w2qWzZOwn1fwE/HQhzTCuZQKWaoEedW1fcNFFzZX3U6T+4xaTJ/vJw46wdq9QutYp7XBPJ14ZJ6gRmPGrmTWsUU9vBjHKAbpmouq3x4nTdddcBAA499FBv/U033YRTTjkFgGSPPvOZz2DVqlWYNm0aPvzhD+NLX/qSV/5rX/saoijCiSeeaAwwFy9eDMby2e6LIIRgzpw5hZekNE3xi1/8Au9617tGdE5jgY5enJYvX44dd9yx40r/8Ic/YPr06ZvcqDL09vYaJb9Gd3c3Jk+ebNbPmzcPixYtwqxZszBr1iwsWrQIXV1d+MAHPjCmbQkICAgICHi1Q4jhJ1Rnn302zj777LZlarUarrnmGlxzzTUjbsNhhx2GFStWFIib9evX47DDDuvIRHOs0dGL08yZM0dU6db61HXeeedhcHAQZ555JtauXYuDDjoIDzzwwIg9nACrcdK/U83SqDd2/eZOnRlymlH0DVUxvkuKcuqVIa/O7moTG1UUC4szVCuJ0T/VuxsYaDKZ6gVSL6P1L0RIJoVXisyCITfUpCfeQEFTy4Lo9CKAjPLrqiSox3KWGdMMfXEVDZUyQGs3ANiEn3oWzGVsjvZ1ympEMiwAkBFU1lMr0eBA1Jeh9oqsL+miEGoKLZg8D240TwSsAVTXyuXqWoHKRhXFxAjSOgFRJ5l0A0MT9Xkx6YtjfLDk/yOny7nDVLleTDopMXe2mUg6pS+hTbuNZNSk1eB1boQsCQFEPzVlwQnQnXm+PmZ+RyQTJZqKyRigEBUB0qXYSWY1ZAVtR863RyfDNavaRKK5njplaKUZKtOouJoXd7kd+5Q/Rqs6ARspV8Yy5dklWbaccWp1THddq5m3vtcjdREps8fYyKuIaymasRwsJCMydYrLdmg/skwyFHrsynHvMMWA9WqiAGFu9JZllFpr2lS/tDGU4Zod1kl1I26OEcUZemoNdKlnQTVK20axucll3STIpcfN9W07lsNli8rYJt0ONzKvVT16n+FYFUoEOkmWG9MM1Sg1fZ0QBs6J6fRKV4LJvf1I6djKUlpBAB21e7g6tje00imvWbMG3d3dW6FFmxhVt27dOvz617/G6tWrwblPU374wx8ek4Z1giVLlnjLhBAsWLAACxYs2GJtCAgICAgI2Nx4rSX5PeGEEwDIf9dPOeUUT1KTZRl+//vfdxSVtzkw4hene+65Bx/84AfR39+P3t5e702QELJFX5w2J9YNdYHRKgYbsRdlk8ekngHD4PRUG6hEGWJqozBcUCawwyQp4OEgiB1H8nH1BiLGsTGWgrtad9Mct7G2hsr4BmKltxpc60QVEv//jToH62dgg2oW17R6Kb6yjlWraxA9alrMONBgnuu4njGjScCZE1Un4GuTiDD70SGC6noYk5qkN4aICOIB2d4JfxVoqKS+g5MJsjoxU5+4H+j6O0dlnUpunArwqizb7CFgDevMzRpAVtXsEzHaL0Aycllsl0X+0zmxfaT9nqxPksNG6VX63BqAqAiIitZocatpYQI8cSomQiZJ1b5TXgQdwNdVUF0nN2YVgawnQ0UxkISKInOj/59jhfKsTLvkuoCN9BrOMqWMRSjTjuRRGsXWYYJdz5uphMHKMw9uWZdlGO48Oi3DBUFEuWGYqQCouiniKEOSMqBbDjJOIoiYe9N4PqSiZh0GEwCyqgBnBPA8gdRPJpT+yNG4GcbJavH0fmVjRUMIAqGzE3ACQrmsX9Wr2ctKlKGn2kBXJMWREeVt+8T7B3e4f3uJP264c9FLx0UbfVx+v5Fc27ZMl9OOVuUqLMOkrgEzFjY2aqB1yy7VIunhl8bN0v0DRgcdpSeEQG9vrxGjA0ClUsHb3/52fPSjH90qbRvxi9O5556L0047zeiHAgICAgICAjYvXmuM00033QRA5qqbP3/+VvssV4YRvzi9+OKLOPvss1/1L03r19VBmzXpgwKY/0taRiCqqmg4TtHtzIJqUdJyVpRyiu6KnJ00sgjNjCFWs8yIZZjQlWJyt7TCpkQYxqm/axDdlSbWDck37qGoame5rv8LAFoR4DGHoPLSVhJqWRgKICKga5UDOQN4lUNUdcI3O2MmHNIDSs0WSULBBqjxM2INx6V7SNa1bo/Y1ENTySQBQPWVBLW/y1l716oINBNIeuzQEwSGZcpqUtsEOFGEzihlQ0qjMQBkFWKYJTaknJ2daEPXcVy6fPvXQy/rSDq9n1emIpB1ZyCxmrUzJ0cXkdon7YIuahwsspqXrMmM3klwqdXKlNdT1psh6k4QRcq5ORe92YpRoFQUHJYBeJFoXvvLJvhj/OwcaU64vK6qTLvUqm6aZ5xaMFudMBMaZWyKYS2ccvU4QZIyNBVLmHEdhap24jB6IqEj6ExEFpGspd4eC0CNKTDuaZxcRonk2NBCFCWs5kwIOc70Mo24/HNYrojJtndXm+iJm6gwK6xt1Ze8ZMC0+wc4r4Fyl9vpo0bDFLZqR9nvsjrLtlPltB4pAelGAJUotZpWQfHKhnHIBraMxum19uKkcdFFF23tJhQw4heno48+GsuWLcPrXve6zdGegICAgICAgACDH/zgB/iv//ovPP/882g2/U+jv/nNb7Z4ezp6cbr77rvN73e/+9347Gc/iz/84Q+YPXs24jj2yh5//PFj28KtBJ4yIGEAEaARR1xP7baMIFL5q+KcNqDst37Lr7DMfC+vkQQxywyrFBFe9FFRy5UoM5m6AUCkxOgWdPvMfoxDRByZ2pwNVqyLOCfIYm79Y5gAYm61PhyWfUqI1F2kciPrp6isJ4gG1HESy+hkXcC6PQX4RGUmNcBQX8lA9Ln1U7AhFT2WCPCYIOpXs/YaBa8QM7WnqUBm2B/JKOlIJM6IzwgJGOaNpkA8KHPSAfL/VLuBayJM70v9ZREJx6kZJrIOkBGAJOamj2lks7mDALwng1BsUVxLQQiQDGlfLBtpCCZAJzZMbrAKk7nAtE9YIU9XG41QO5+kTdUpjRYjzR3mapba3T+tmAqK1hqndsfVaDnzVgRS2b5VlqK72jSMzoAgyJoUUU2OeyEIMsXu8CYDSYjNY0dg8lQCgHAi3AiV97DxjCOwjLIa8q4XV6Fl9lEAgBsvuDjOQJ1nShxl6KrItu5Q7zf6JgCgeXt9BzwvAETr6C6O9hF3w6Fd5BzQ2fg113YE5EpZxKVmogZS+QDpb1SwZp01gRZC+fENtgltHEO8Vhmnb3zjG/jCF76AuXPn4sc//jFOPfVUPPvss3jsscdw1llnbZU2dfTi9L73va+w7t/+7d8K6wghW8VTISAgICAg4NUMIUjLVDYjqWN7w7XXXosbbrgBJ510Em6++Wacd955eN3rXocLL7wQr7zyylZpU0cvTnnLgdcEFPOgZ4NuxE815sjUTDLjxJuheP/PRYK4s7GIcgBZWzZAL/dUGqBEYEOf1DgRN+eZ0jVQ7dXChJw9qnrTiSnogGRA2ABB1E+Rqqg6USlmmHchJ5pKkxFJ5qap8kIyxy8p6ZGaHc2mkHqKwXoMCDlTq79MEfdp8QiQdjPwSEX6qdx0Rs9EAJaoYxIBHlPrjcMETBY3KqvPT4Y1C+axRjqKzule4WhHPI8ns05TWZoVUOcdWeYvigh4NTXLGado9FUsG1jNjBaORRy1SmK0THnPIqA9c9Sp83VZFvkt8bAcMeOU0yqZ9Sg/T8/LCsV7rR3KWAyt29FMlnsPp5yq+7Ook+mpWO+jofoQ/r6+B9WKvMaECDRj+UhNU4p0IAZXdCkhQjJOmgxhwhlbAoxZLVJZFKXLRqcZbRs9qb3hKJXsqI7y7ak2MKk2CADoYuWRYGVMEiX+ZFj2WenupexUfl+/7vx1bf1vTacMIiWyHcYDqkRXpc/TzfyQPw4XBOsbNbwyIPW8gwMVZIORvb8F5IMk20KME8iofZxGu//WwPPPP29sB+r1OjZulJHpJ598Mt7+9rfjm9/85hZv04iv+C233FKah67ZbOKWW24Zk0YFBAQEBAQEBEydOhVr1qwBIM24H330UQAyo0knzuabAyMWh5966qk45phjCvbnGzduxKmnnvqq8XGS/idcMjjMXhwhiGGbAKBvqIpGaruxGqXYQUXG5bGhUUN/U4pweqoNdMdNM7Md7tt+6szkSJxZTyLtDkzsLCiOM6OXSKIMSZeaBa+tIOqjoIlyJ2eA4EJ6E8lGgCjWCFkEUAGqI4ioAI+YYX+yQWuLnXZzsO4EsWJXIsYRdQ9hQyxnausbNbBEnnfUp9gurT+KiIzg07O8mFrtkY56cydJRpckvZv0BFUQWV7nqiPcRthldQEIWxZcRkYat3ABn2kiKGSx1x47jHLEKhKO5ViQJGVoEKBSl9qRejVxPL3kTNZlDobLtTZcRFon60eK0eihOo2K0vqk/H7tWKT8/THa83Udqct0Obofymb5uuy46hAGu2I0EjnQqlEGQHk88Rgk4uB1Nd45gecIzqw2kTKuPJb0GMt7c/nMcEwyL78fUwM7305GBCpRivEqg8GE6iAqKsSWqfozj1GjrSPrOh0XhJeyGpbRK+7SzrG8k2i8QhQfCNx4SPeYhhHThHKbyMx1SQ1r+rvR3ycfKtlALJ8h+t8DCvlQibbMF5nXqsbpH/7hH3DPPffgLW95C04//XScc845+MEPfoBly5YZk8wtjRG/OLWyP/+///s/Y1gVEBAQEBAQMHZ4rWqcbrjhBiMX+vjHP45JkybhoYcewnve8x58/OMf3ypt6vjFaf/99wchBIQQHH744V6m4izLsHz5chxzzDGbpZFbA4QK9cc9d2atGSHOTGioYSMLM06xTrE9PZUGaiw1b/mDSSydhwH0oYpGEqEayxlgTDPUotR4hnBhZ7pcEKwfqjv5qRzdSi7MhnPJiFVi63YsVAb0PiaQZTWbA69JgBhW4FPhiFXutARSVxLX5HIWc2RMgDdKvu52ZYirqTkXPUOeNLkPALBmHwoIyTiNX05Q2ZAZZ/O0iyKtU/BYnSuDiQrK5+NzHb4Jl5F9mY6YUxosHYFHOJD0qFl1Nwc4jBs4GySSddIeO8yfcQoqgMhucx81kYqGA2REpcsaVViGtIeiV7kLxyzzna7hswitNG2tljvZNhxz6cLN/9VK++A5LDu6kOHQjhlzdU15TVMrjcsm+zIN39KCi7TnHE5snsp8F1EIjK8NYk0mjfm6Kk0MJnJADjVi6d2l93Ec5wF5D0fqHqWKbcprk1qh1TbNIumvFzHLMLE6iB1q8j6s0rSwD1WN4iBgOS1T5rFMrdtThrzWqeX4aqNxYsNc88xhsbzjCZQwULr+ol4r3x697u/9PejvqyIbcv6ZrGeGKSRE9TXbMozTaxFpmmLhwoU47bTTTA7cE088ESeeeOJWbVfHL046su6JJ57A0UcfjZ4eG5ZZqVSw22674Z//+Z/HvIEBAQEBAQGvdbwWP9VFUYSvfvWrmDt37tZuioeOX5wuuugiZFmGmTNn4uijj8a0adM2Z7u2Oijj8s/kapMDTjMI2n/JdeqVbJT0+wCAgWaMepyaXHaECOPcS4lAJigGlOaJEIGh1HHxJY5zeKOCZsqQJswcs5A93TBQcr9ETS7jKFPaC6Bn8nq8mFDQVyq6qNRI6ckZZ0CX1OdUuhNkibXaJkRqoUxRTiAqSqMRZ4iY1f7kGYnJO23AK2+SL9rJuBp6nmfoXq2Ytr4MhAPNXmrapKfMghDJIOlTcyZ2JAMqg0LmrAPQVBF2RrdEZaQfoBglYc+TxwJEAFz76lBhdQsKnpM4sTq3iHHjthyzDIxwT4cR9dpchS7KcqsVZtub6IK9ubyZ8scoy2I/0nZY/yXrX+Vu67QeoPU/Aq0iqFrUouqyDBMEvKg6U1+uWZQI9MRN9MdSAxPTDHWlbxtqxsiqFFxHiKp71mWNNQgRnq4pH0VXxryY6Fxmx5sQBKmgZlt33MSEyiDqLCnsnz//Qngq2l+HdtFvAJDmbPqzNv9gs5IxkD8GF7Rk2bKljGQeA6XL5OvMozyKUD/j5bOdxEp7VslUZgBZTggCzomfk3Iz4rX6qe6II47AkiVLcMopp2ztphiMSOPEGMPHP/5x/PGPf9xc7QkICAgICAgIAAAce+yxuOCCC/DUU0/hgAMOKOSs2xqm2yMWh8+ePRt//etfsfvuu2+O9mwziCsZWCUFV6xPq/xQeWiWSO4DbMwYhtJiN2eceLNMppgiM2uCQDNjpizPqI2gc9qjZyE6LJNAsWCqGVlGUavJqJod6/3omtHE/4qpcmM/kzvoejmQqYi7qJpBcMksaVAmkHHVD10p6j2SSaOUoxqnZuboel5p7DBZem8MjRvCml260f+8pIZ6/yZQW8dR3SBndYOTKdKa1Th5eeRgncEFBbpWO15MTJY3LuGRMLnACCCDnXROr0jISaOJjrHRTog5QAVILn+ZPpcKy1Blii1jmcwq7+mAijoS038tosnyy2URRK1yf3WCkeie2sKJ5Br2mG20Si29mtQ+pQxLid9OnsUo6Gqcewko9+6xx3fbSz3n7rynk8t0RZRjcpeMou1PKuiikt3prsp7I4nkPdwciGV0ptLHsIjb/lQ+TsyJsNV6J0Y5Kiw1bdCoKJapK0oQqd9NLvNf6vZ1RQnqLEFMigwoFxSZE02Y1/6UgXU4jjIQRPDri3IskAt3rLRmM7PCsr2+PgMFFCPrWqGgjwIwlFnNaq2r6ecNFPYZTyHAGJDFW8b0WYzBp7rtkXH6xCc+AQC46qqrCtu2lun2iH2cFi5ciPnz5+Pee+/FihUrsGHDBu8vICAgICAgYGyhVQyj+tvaJ7EJ4Jy3/NtamUpGzDjpyLnjjz/esyXQNgWvlpQrOo9YoiLoXN+UjPvsQJluAZBsDaUCmXKWdfNGcU4hhDARWk0nigeQQV+pYpzGdw2hkUboo1JLkThRHkJrd9xDEzhMGceQivSJujh2qvdh/U7rAQCvbOhC6kaMgJiIEUY5UjAIVQ+LM5AoBVezMcoEJnQPqmMUb0d3ZsMoN7O0WpygPm0d+iZK6ujv07pR+XuEyjpZNh6wllRpRUbLablE0gs0dlKRezFHVq+YCEHBAF6BzQdGAKgIQBFJTZORqjBhnOEB5SrueLMQJqzOihNQxlFR+q1KlKIayYNWaOYxAXkXahetGKRW7EtbDDNpzLM9Y62BGklUHSXcm9FTwsHaeOfoMq3q8/yEnHlfGcPQSuvCBUE+WtBn+zjMnFKgGE2XYwYnVAbNsvZbm9K9EWujOjYM1gAAyWAEkRFEFatxdCMua1HqLVcUq9kTN1FhmfFf0tt19G1MM4dRa6KRRaYNWksWO2PU6oAy0BGwD618rsr6BIJ6rGEGYtiqrM1YZC30TbLekjk+sfu59crr648Pry4QNDL73KNEmD4bymKsa8hrxqhAJU7Ns0wIqVNjjoaRMY4sa80yB4wthoaGUKvVtnYzRv7i9POf/3xztCMgICAgICCgBTgIyGsw5UqWZVi0aBG+/e1vY9WqVfjzn/+M173udfjSl76E3XbbDaeffvoWb9OIX5wOOeSQzdGObQ7VKAWLGCgVvs6HSmZN5zJLM2pmXwSSfdFsD2PcYyBIzv+Jws/EnXFiPGMiR/MAAG+cvAovD0lR3PKXJyMZtJeOMGEYE0K0j5Kdveo6B9IYO9QamDXx7wCA56KJ2DBYQy22mp2+RsXUk3Eqo4EgWSMuCJj6nl+tpuitDplzyTg1szYhCDLh6icEarGN7OGCoEdNGsbvNoRsV4p1/TIP38a1NbB+RTERoRzB1bmNSzBx4oBsK83wSrUH2XrZXraRglcFRFX1WUINAUGUhsvmn4PP0DlRdYRynzkkQLWeYFxdnms9SlBjlnHyGCbHb0qfdytQJxrPrNsEIt31Yioeo9X6cu1Hnhkabls7nx0bIccLEVH5dnWindH1eExGgWXIM1CqfifiSreuXUSeZZ1kWVfvVCjv6NYiwjGQSkZ2UnUANZaabYNDFSScWm0ifOd5LghqkXb15ianXE/U8Fgl3Re63nzfRSQzEW2JStxIW7hogwC8A7UGzTF5HPI66D51r4lcn2sTXL1Zm+O0ZUZLWEh3wRmfjAhk7TROghqdYiYIuKAYSOVzZF2jhqE09orraxYx+QzUp2eiH+nwWqqxwGs1qm7hwoW4+eabcfnll+OjH/2oWT979mx87Wtf2z5enABg3bp1uPHGG/HHP/4RhBDsvffeOO2004JzeEBAQEBAwGYAF8QPWtnEOrY33HLLLbjhhhtw+OGHe07h++23H/70pz9tlTaN+MVp2bJlOProo1Gv1/G2t70NQghcddVVWLhwIR544AG85S1v2Rzt3OKoRCmimKEiMjRTZmZvScoQOY7QESTrBFjHbDfxoDtDKZsxGDZLR8E5UXlaS6NnYjO71wKQ0TtraLct7+gwKBGelkq3AQDWN2sYVxlCt8qMvu/EFVjfU0d3JJc3JjWsoL2m3phmdtaqZuKsLuuusMzOtClHEzATPJ153tU+ufnXuuMUG9V67bSs9VK0Z8DkAuSQTJbuo2qUIhPW6binZxB9qp4sq0DUOJhyOucpM9GCOhqRuIyQyldn11udGiEAVdqzKMowoXsQPRXpBt4VJSaiSUcztfI3KmOCXO0PMLw78kgxqgi6dt48Bd3U8JFQgGJE2uw73P5+OastsYytYneJ1bnkt8n2552w2+ud7DW1eidXI6XrcNs+oTqIrihRZSgmVgbMtv6eCtYMRUib8pEbV1Jv35RbB/MKy9Cl7tHuqFFglTzGKdd3kSBocKufy7eR5ViYbBPGC4X2a2s17kv+cTaBu+0ZLs1u5cu5DFc5cmNXUI8h9HPtcScFATCUMcMUUiIQM+uLlTk6XhNVl2O3tk/J9faDF198EXvssUdhPeccSdLOo2zzYcQvTueccw6OP/54/Pu//7tJu5KmKT7ykY9g3rx5+MUvfjHmjQwICAgICHgtQ0fGjbaO7Q377LMPfvnLX2LmzJne+u9///vYf//9t0qbNolxcl+aAGmLft555+HAAw8c08ZtTcQ0Q0QzCEGQEGZyzKUZNQwTAG92KjKKWLloA2rG4jiLp5nVOLGcI7nKYWh0TYRYr5mYZuhLqtihIvmV149bY2Z5/c0Kmknk+Tq50G7mADCUxOhLqiYiZ1w0hJ2qG9GfyWi98fEgesdLLU8ji8BBjKeJPke9b5Mzq8fSPjfq/81MasOML43TRzJCKEOvYnDqUeJFCXFYr5KUUxklpKILuSBIU3nMOMrQU21iUGmysp4ULObSH0f1g84yRxgBICTLBEimiRPLRDFhdE00knXotvfUmhhXHTK6pq6oWXS4drpcR40B7dmfMo1TK3TqnzNSZG2Eop3qjlpvy+mY2uqhhteItGYqnH0dFqF0m7PedQr3I/XKrml5frO8disiHN2KZRrMYlDCsWNNcqupoBhsxBgasJkCNDJOgJQB8jZEhTpeYSQr7UvdZ/ltkdNuva/r48Ry1yxW7FFWFrXWBlwQsBbDhxEga3G9KDqLuqbICp+VaIeaLKNRU+eUH+dcUPNsbWQRBtKK59Glx4DM8mAd0JnKTam/CmScglEOETROmxUXXXQRTj75ZLz44ovgnOPOO+/EM888g1tuuQX33nvvVmnTiH2cxo0bh+eff76w/oUXXkBvb++YNCogICAgICAg4D3veQ++973v4b//+79BCMGFF16IP/7xj7jnnntw5JFHbpU2jZhx+pd/+RecfvrpuOKKKzBnzhwQQvDQQw/hs5/9LE466aTN0cZtAlpnIwSRWc81YwSAOxqn/AyQELuvZH/0b+45wQpOUK8mZrbDqECiZjYxyzCURUhUtMykSj/66lVzDNcJOc0ohCAmx56sy86I+pIKemLJ9gzyGJkgWNfsAgBMqAxgQiy1Rr2RTiqpZ+aSIdHMQV9awdqm1FnlnaxrLMVQFhXcrjVSTg3DpCNV3MgkX/uRoKl0VhsaNaP76q40Pf8dVuEgznkSN/dXbnpAKIfgFEJH3VFf01StpOiuSI3JpNoAhrLIiZbqt/1K8i7Yqo86ZGs87ckItE5lDE27mXgrbcgmRYYojJRBaq+Daj1jz4y+KMdA5C8qgELeNePjpCO6XDYp5xTu1iJaRyq69VJSjHbT6I7kPVZV/ku7da9BX1LB8uZkAECzGUGoCFUBqYvUesKIctSVA3mcYzMo9BgrMk6aTcozTK5zunm+5Jknkg3LOvmRiq3LZYIWmKVNESWXMleifOy7Gqg8i8ic5yMXFImgaHI5+ptZZJ4vADxfNsItEw7I53fCmcekEyIC47QFcPTRR+Poo4/e2s0wGPGz84orrgAhBB/+8IeRpopOjmN84hOfwKWXXjrmDQwICAgICHit47UaVaexbNkyE8n/xje+EQcccMBWa8uIX5wqlQq+/vWv45JLLsGzzz4LIQT22GMPdHV1bY72BQQEBAQEBLxG8X//93846aST8Ktf/QoTJkwAIC2R5syZg9tvvx0zZszY4m3aZLa+q6sLs2fPHsu2bFPQYbxc/zZibmESdQLa8FJ9fqPSCkALyZkSSLuRDDq6tYwyZcQXVEcqLLbiJPEEgInRAGb1rFZ77YRVosdLPJkJaqj4zDENjJn83LGhKd0nh5j8/KRF3huSuhGDT6wMqM8Mtj2uKLVHWRgAwMa0hkgQRzgeoSdumLpSTg0dzlXaAn1MIxp30hh0qbojwpEKaj4X9jWrqDpmnYNpDKY+sXH92cN8FgUIc6+TTYlDiABxPtXEkbWXqEYpxtWG0BPLNkyoDGLlYK9Zjr0wfF5Ydj9nyv73TQJ9M0LR9jNVWZoRd70Lt0z+80ZEimVGi0399NZ2P2fMGqhPMxmobxNg3E2VUDcXbs4FtZ9M85/mcqHqzPm0JY1bW6T4gP85Ll8mJtxYVMQkAxcUDXXPTo778aaJL+GVQTnBXLehy1qREGW86hjG6uPoT3OmrbnlmGSln91K4TwXKOEyVQn8fmt1bvLYFu0+61GSFRyqh/u0VwYuiDeW9BjQ28zxwM3nOlmf/oSvkzPb+vVnuqZKucIhn1v6+e5+zqxQeR7us6rKUiuvMMa3W+pT3Wszqu60005DkiT44x//iL322gsA8Mwzz+C0007D6aefjgceeGCLt2nEL079/f249NJL8bOf/QyrV68G5/6g+etf/zpmjQsICAgICAjQL06j1TiNUWO2IH75y1/i4YcfNi9NALDXXnvhmmuuwcEHH7xV2jTiF6ePfOQjWLp0KU4++WRMmzbNS/T7aoJhnFSaFM3+SPNLK/im1CbqleW4CZ8H5EDXKVgo5Z7dALEejIad0jOqmGaoqzQlFZZhII2xVou440FMjKRIecfqRqxr1JARLeJmSJwJJwM3hm4xzVBhvolgRLgx7UsFNSxRf1pF1THpKxjtkQzjImldEBOOBo/MjDXiGZo8shYDxM7aNBppZPqBOtYLNZYa9okSjjpJMKjalGTMnIsRkzvnIwQgVE4J7rBNLCfeJMQKOwHJOGkx+PjKEHrihmnDuGgIqAN1Vs44ueHeNg2GM0tW1yXPFORZgrwYOb+9HTKHQeEgJsTcbDMnXtzXNwYsF/Pn0Srha9n5uezncLDibbuvqVP4DJM+bp55clplf+YYpnZSep22hbdgxjyzzPw9QTMzFqo0LfTTxKgfB+z4fwCAX/NdMdSQ41pAjsFYjbkaS4wovNyOgHsib2Omqhgkl2Fxr39MU8PCWUbLwt2PkaytXUU+ebN7POYaTA4DDtJmfPjXmoHbYAFSnky7E/hpcqTA3yb5Lf6T6Br9uki5TN2zpcThr1XsuuuupUaXaZpi55133got2oQXp/vuuw8/+clPttqbXkBAQEBAwGsNr9Woussvvxyf+tSn8K1vfQsHHHAACCFYtmwZPv3pT+OKK67YKm0a8YvTxIkTMWnSpM3Rlra45JJLcOedd+JPf/oT6vU65syZg8suu8yj74QQuPjii3HDDTdg7dq1OOigg/Ctb30L++yzz4iPpxknob6X15W2hlGOJGPIqDV09DQHNDOzxYRT9A9WzRw1YtywUzoE3xgvqlmQnnVWo9RL8dAVJWaGNZDFmBzLeibH/VhOJ5tQ5phmnkkbJQIVZaYXUY6IcDNzipQmQ7e/gtRoNOosKbBMrt4iJpmZxcckQ0PYxJhxxrHOCfFNeVGb4Oo53JlchaaYUt0g+4CmYIRjbSKZtkqUFm78iBXZJADIHKPSSpyBUe6dD6PcmAzW4wQTKtKGoTtqIiKZCSOPKceOrM/T0Lh6JZcRGAmLlDePLEurodFKb6MR59gBt/ywYeatnqOkmEk9fz56e16/4ofoZ6pMiX6pBfLMk14LoL3mqdSiQLY0n57Fha/z8dPoFNpWwra594QZN3kWUp3LjhVpiNlTbRjWOs0oOKfmHk6de0dq5njbseSySBQAz7FKbjn3XAu2GYXxq8+xRb+2YRI7Zkxb6ZsUE6XHy3AMk9Y5yWO3Ts8SEw5Qe10o4RgQ1Ovf1GmTa84bqS8CqfmCIJlyylpoysYYAqNP7rIdfqnDKaecgoGBARx00EFetpIoinDaaafhtNNOM2VfeeWVLdKmEb84ffnLX8aFF16Im2++eYtG0i1duhRnnXUW3vrWtyJNU3zhC1/AUUcdhT/84Q/o7pZ+QpdffjmuuuoqLF68GHvuuSe+8pWv4Mgjj8QzzzwTzDkDAgICArZbvFYZp6uvvnprN6GAEb84XXnllXj22WcxZcoU7Lbbbojj2Nv+m9/8Zswa5+L+++/3lm+66SbstNNOePzxx/Gud70LQghcffXV+MIXvoATTjgBAHDzzTdjypQpuO2223DGGWds0nGJYmyi2M6gBlBBpjQ6LqMjBAGjHHUVgcWyCEMsNrObapQaRqSZMWScIGI60kuu1xoel2GqKFZILzd5ZGaL46NBzOheh+UbLQvIwI22BrDf5vWMyX6z99kySgR6lJanytKCkaGr5/F0FpSjCzbK7rlksoxccSLpjJEcgWeOWWEZIsJNSpOd6+sxPho0dWWCYnIs9VwzetZh9WCPbHsugo1F/rkMcIcBoxkm1AfNMZqcgRKBcbFO3NtAnSnDQSIZw3xKCzeVhdYwxVTqI1oxSe1YpLIyrVKY8A7miW5i1Xz5dqlR2iHPNOTr6STyDOjsHF2sT+WErEatrkGzD67myY2y0usMStinfJJgs76sESYSsX0fuKRcTLnHNLnjQjKT3BlPNpKLCYGME2wYrJltvbHUD9arzdIxlqhovbzGiRIOuAaYheS3cr9EMDDVJrttZMxSKSNVMkZajuuc/s1lI7Wpb56p1OfTKsLOa58ZGxz6aZARIeVvznErNEWkDYSdCOBCaiUUzX4rNEOyhRin1yrmzp27tZtQwIhfnN73vvdthmaMHOvXrwcA89lw+fLlWLlyJY466ihTplqt4pBDDsHDDz/c8sWp0Wig0WiY5Q0bNmzGVgcEBAQEBGwCtsK3uk4kMn19ffjc5z6HH/3oR1izZg122203nH322fjEJz5hyjQaDcyfPx+33347BgcHcfjhh+Paa6/FLrvs0nFbVq9eXRrJv99++43spMYAI35xuuiiizoqd/vtt+P44483n9HGEkIIfOYzn8E73/lO7LvvvgCAlStXAgCmTJnilZ0yZQqee+65lnVdcskluPjiiwvrY8qN3qjiMDOa+RlKi13HQcA5Q6Ki6mKWYWL3gFdGR9xpfVPFiRKLaWYi3OQx5QCpKTbE1z6obSTBnl2r0J/K5KErB3q9mRvLzXIj6uslPI2Gk1y0lX+Mm9ahFbvSn1UwlEU2cSYs40SJQBdJvOiVrijBzK41AOCxTbb9ct+ZXa8YLysuCOIsQ0JtfwIw2q6qo4eqxikmVQdNPS8PdaMrSjBepZeps6bRpenzjnPaHBe6/9woJdkGO/PPr8ujnddRoWxJHXmvJi86yjl+BtJxQso8O9COuZJsQVa6rR2GawuDwEupTCcUxzZKrRh9RQvpN7TWKoOf8oPmtFqu58/w4C31MvKYfsJdV9PkMkX6fullkkma1m0naI0sQjNjGBiS9/ArA11YVZHSgh0qfajRpKXmTXqJlTNMZZ5ZMVL7m6RmHK1ujkNDxJgcSw1WjbjlsvY6u3asVZtxkY/MczVNmwKPIW8RZUlhE6zrNlDCkYqivgwoMkzusmbLCd1CjNMYfKrDCPfvRCJzzjnn4Oc//zluvfVW7LbbbnjggQdw5plnYvr06Xjve98LAJg3bx7uuece3HHHHZg8eTLOPfdcHHfccXj88cfBGGvXBDz++OOYO3cu/vjHP0Lk/BQIIciyLc/4jSZdVVucccYZOOigg/C6171uzOv+5Cc/id///vd46KGHCtvy9ghCiLaWCRdccAE+85nPmOUNGzZsFSfSgICAgICAbQnDSWQA4JFHHsHcuXNx6KGHAgA+9rGP4frrr8eyZcvw3ve+F+vXr8eNN96I//zP/8QRRxwBALj11lsxY8YM/PSnPx02B92pp56KPffcEzfeeCOmTJmyTVggbbYXp/yb4VjhU5/6FO6++2784he/8Gi+qVOnApDM07Rp08z61atXF1goF9VqFdVqtbC+K0oQRwQR516ix4hm4DHBkEr6mvcI4oIYnVKVpag5TrNNzpBobyNBIITVNFFIHyddNqKZOS4jAhWaIlXLiaBoKA1PjSXoYUOYWJHM1vMbJyLjFDXFXOlIOv0bsFEjnEuXXO3UPSEeRJSbvbaaQWvnYf3bRZ0l2NCseclV7XlZPZNsf4oZXWsxMbbJc/Mzao1eNoQdq3JGvKbRY9g5WU5Gu1Qqsv0pp2ZmSYlQ3jhy21AcY0JlwCRijUnWVpsykFVMP3Sxhnfe5YxT+1l/K+RZqEKCUweaUSnTdxhdiHElao28d49fT+uZXH5bOx1LO+S9gjIQE3nmR47lPam4TAJbUn8hwWzhGCN7Nvn6MdrS/V1r3ty223Elx0ovk/fp2yf8FX+r7QAAeLnRg5cb3dgQKUf/1CaV3pDWSt3B9XnXkLQdb3nn7URpnKpU7SfstkwQb2zrZwwFKXUjN1GKbn/mx0GZ11Mbt3JX0+QmL2+Hdm7iQFlCap/pqtIUVP171RVZ2Yauz42y85+n6npT+zzbnBhL5/C8JKXVv4N55CUyAPDOd74Td999N0477TRMnz4dS5YswZ///Gd8/etfByAZoyRJPBnN9OnTse++++Lhhx8e9sVp+fLluPPOO7HHHnt0dI5bApvOi25hCCHwyU9+EnfeeSf+53/+B7vvvru3fffdd8fUqVPx4IMPmnXNZhNLly7FnDlztnRzAwICAgICxgw6qm60fwAwY8YMjB8/3vxdcsklHRy/KJEBgG984xvYe++9scsuu6BSqeCYY47Btddei3e+850AJJlRqVQwceJEr74pU6YYiU07HH744fjd7343kq7a7NhsjNNY46yzzsJtt92GH//4x+jt7TUdPn78eNTrdRBCMG/ePCxatAizZs3CrFmzsGjRInR1deEDH/jAiI8X0xQVSg3zQw1TRNGk3ETSuWCEox5lhlHR2ig9Y6GZ70XCqGU3KixDxXH2jgg3njARzdDDGqCRnC70p1W82Jgg21nL0MOG8Lr63wEAq7rH4cWN480xXI8kLqSDt57FVWiGcfEQJlUk21MlPoOjzwmAYZsKETy534BkrtY0ur1zTV1fKZqiUpHntkO1D5PjjW1nrTbnGDfRbxWWosYSy6JxipRSoz2LKEd3pWHPW1BMULP9ej1BlaXmfF2WKX+eNZJibdptZubjo4HC7LvVjD/PII3EDRxAZ0LOlt5FReZFwxuDmxBxp5mwdjot6/BcLOOxXDlvIS6oiabLry9joGgbVqylz1TJtL2VzxQXpKV2ioEXWKa87o86zJPbX710CPt0vQgAeKXSgxfiSVgdS13Ty0NdhtFe0+gBF9YNnBJuHPsBoNeRh7Rjm/RyVfWtYclU/+1aXVNgL7toA60go9qKuqvhvKHcHILtnMmBEh8xJ7K4dOzl74UWUZbS50lFOtMUDNzzoctD655SQY33HWCzCDBadLXe1vHCCy9g3LhxZrkTtqmVROYb3/gGHn30Udx9992YOXMmfvGLX+DMM8/EtGnTzKe5Mgwno9H4zne+g7lz5+Kpp57CvvvuW4jkP/7444etY6yx3bw4XXfddQBgvqNq3HTTTTjllFMAAOeddx4GBwdx5plnGgPMBx54IHg4BQQEBARs3xBkxOLu0joAjBs3zntxGg6tJDKDg4P4/Oc/j7vuugvvfve7AcgotyeeeAJXXHEFjjjiCEydOhXNZhNr1671WKfVq1d39DXo4YcfxkMPPYT77ruvsO1VJw4fa3SimSKEYMGCBViwYMGojzcxHkC1kqgcbMLMOjZmMbggXs43z5uFCJPnTM9MdCdHkdUwbYSfZy3lVOVps0yWZpzqrIke1vB0E88Pym/MQzxGDxtCF5U6pV27XsGqgR5UI8t6abanyRkorH/RTtWN6I4aflSO6xfjzB71bLpM3yN/2/3GsUF5XD1Lht8nvfEQJkaS/RkfDRZYiVb5s7igpq2T4gFUWYrmQGT6r0Izw8rJY1k9WV9SNVF0PayBKk1LI+d09JM+typNPE2LyxyU5aZz0aovO0YHbJDxtRlJNFIblqoTdMRktdFrFaKpHAbC3dZWO4PhdVWtYnXaXos82+noqCiywjXNs7D5tul1+VyFHMS0Y0q8HuPZAF6pySilF6qT8EK//AdGe62tTyQjMJTFaFQiwzqVsTbtmMB224bT47W6vnn2SZb1r6FuZ/76ts2H52icCj5eKOr7CufmjnOHfaJEoKraOz4aRCIYKNfPcOv+rqGf/Yk6vj4nnb+yEW8ZxmksNU6dlxf41Kc+hbvuugtLliwpSGSSJEGSJKDUf6YwxoxtwAEHHIA4jvHggw/ixBNPBACsWLECTz31FC6//PJh23D22Wfj5JNPxpe+9KW2euUtic324jRz5swCpRYQEBAQEBCwfWA4icy4ceNwyCGH4LOf/Szq9TpmzpyJpUuX4pZbbsFVV11lyp5++uk499xzMXnyZEyaNAnz58/H7Nmz237K01izZg3OOeecbealCdiEF6cXXngBhBBD1/3617/Gbbfdhr333hsf+9jHTLmnnnpq7Fq5FSB9nDhi2kQmiI0KI1yyJ6rn3BmQ+/1bg0KAOut0tExX3FSu5PnoJPvtXdfVxZqo0cSL0NGzopXNcdgh3mhmW1WaIiK8MBsDJPs0qdqPKSoybXw0gIRHnpYgzzLZdvGWuqY8A9PLhtAbD2F9sy77xfHBqrMEUysb0MWsfqKgi3DhzFAp4ehR+/WwBjiIiYJpcoYKzdAklmdwvaP6kgr+PiQ/2Y7rGVIO4WnJuQiPQeOCoIs1DaOX98xppxFq1ZcdY0Qs0gjqH+WstVW0XxljUaZJGVYfU+qdNXyEnsEwfdFOd6VHj+dinWMmyximfL35caSj70o9uZSuaxf6CgBgSrQBO1fXAZAO3z1sCC9Hcuw+s3EK1jW7TKTY6uY4rBRS01ilKSbG/RjPBlUbRuAV1kFEZyunbgZe9BVzNKHtjyvK2SjNMOl8nTkfrzz7pPdxt7ssk6tzi2lm7ucqTQAOk2nBjbCNSQYOYnIIJoIpzSoz2wGAt9HZjSm2ggFmJxKZO+64AxdccAE++MEP4pVXXsHMmTOxcOFCfPzjHzflv/a1ryGKIpx44onGAHPx4sXDejgBwAknnICf//zneP3rXz+yxm9GjPjF6QMf+AA+9rGP4eSTT8bKlStx5JFHYp999sGtt96KlStX4sILL9wc7QwICAgICHjNYmvkqutEIjN16lTcdNNNbcvUajVcc801uOaaa0Z0fADYc889ccEFF+Chhx7C7NmzC1+yzj777BHXOVqM+MXpqaeewtve9jYAwH/9139h3333xa9+9Ss88MAD+PjHP/6qeXGq0yaqygcoEcwwPFWaosEjX3ujZ0xqlukyJLHDQjV4hKFMeaMQgaEsMhF4Ogu3jhrrjhqODkhGclWUm29VRKY9zw9MxF5dK81sq0YT4w2l651QlTPQabUNmBgV/ZLy3jN236JPUZmuKa/1qdIEUyobjJs5d6KfIpJ5Xkhu3W6bNBiEYRBc198MBAmPTH8N0Aw15jssa8apzhLUWIIB1R5ARk0ajVOOPXO9eQCgh9koJi5IW1fxPHxNTGcMgPWfGQmL1Hpmn49O2iT2C8V8YS3LeXqmIksxnD5mpDnTCtgE92ntS+WyH4UyuehRvc6Fzzrxwr2ROYwK96IGmee6pe/TAV5BjSTYo7YKAJAKhlVDvYYFWZfUTXQXAMkgUxtN2Mr/aTiUsUj2HIXnoM0FaclY6edhXsdmz7v1Nr89RR8vr02l0Xy+K7kuF9PURBcCkjnKVJ81eGwzHhA9FtRXAPX8NUyTIGiIGI3NY1lYji15rG0E3/nOd9DT04OlS5di6dKl3jZCyPbx4pQkiQld/OlPf2pCAd/whjdgxYoVY9u6gICAgICAgNcsli9fvrWbUMCIX5z22WcffPvb38a73/1uPPjgg/jyl78MAHjppZcwefLkMW/g1kJfVkWSxSrKSqBf5c9a3egFF8SwSDtU+j1dk/QIIeZ3lVjH6oQzM7vqyyrYkNTRpSIzIpohJtxEanTRptEBddMGqiQxuoaNSR0bUuUynEVg4EjUd/cu2sT0rg2mnh0rfSY/FiBndfn8UBpls+lWvjRls2nmbNsh7sP/URkZNJC6OfaKUybapg0APAZBMwMUBKAwmqfBKEYPa2KQWxq3rmaVVZYW8o3J6DjLnln2yT8XXdaF62PULkJrU9imsrK8xcy/1bE0shyjOBKUOTa3ymRfKFeqefHb0Er7JMuWa5BcdqdtNNYmMmpAe0fgVk75fhk/eqsVyvrPHWX6ftb16DH4pq7n0KjHWJd1AQD6shqG1Jg3Tv3OcVtdp068uFptkyyhy0SLlhFuBUbRaU+BYRpBnrsyZYzHWuc8vvI5A7Ur+gCvgEJggEs2uj+tmmdIhaaoUpv5IaYcFPZZMcAraPAIzS0lcdoKn+q2JTSbTSxfvhyvf/3rEUVb1xBgxJz2ZZddhuuvvx6HHnooTjrpJLzpTW8CANx9993mE15AQEBAQEDAGEKM0d92hoGBAZx++uno6urCPvvsg+effx6A1DZdeumlW6VNI35tO/TQQ/Hyyy9jw4YNnpnVxz72MXR1dY1p47YmXhqcgJhWDJvU5LKrmhnzZlvrkrrJeVZniXSjVi/1eT+QKk1RdRzHGREeK+L5BdEMNeVs3UWbiElq8kz9bWgyXml0mfZs5DWzHxcUe3av8iLw8rqhvMagEx8avS4fJSTPw+oHNLpow3jNpIKiWzFgPUrf1OmsHYDpT7etEBQcwvTxuGhI+jMJuTyQxebaVUmCBiwTxeBHCLreTGXMjcwOT8xvPVvXztV51+lNZZpaYaR1tNJIjcTrqR1LlY9wKqu/HVsB+KxIOzfoPAvV0qF6BHDZquHqyWuWhsNIchPa9tBS5g2wY9P0LZHXZhKTGqhJrN/c/+vTLhMp2u5YgO1zrribTWm3i1b+Snn2cUQMU17vSLKOrh1TrJILV88IAA3F6PVlNWSCYFBpTxs8sr5NnCGllttqcH8MDmYxmjxC0myWtiNgbHDBBRfgd7/7HZYsWYJjjjnGrD/iiCNw0UUX4XOf+9wWb9Mm8V1CCDz++ON49tln8YEPfAC9vb2oVCqvqhengICAgICAbQcEaPOJuvM6ti/86Ec/wve+9z28/e1v91K07L333nj22We3SptG/OL03HPP4ZhjjsHzzz+PRqOBI488Er29vbj88ssxNDSEb3/725ujnVscHAQcBClnNgs2JHvCOUFTzUqGsggbEjnjq7EU0+vrzIylO2pgMItN5FeDR2go5ooLggnxIOrKT4QpnY3LFOmcXZpteimZAECyYWsb0iMpzRjWJt1GKwUA49mgmZk1eIyNWU21XbZrp9hmxnaz3LfSM8nlYrRZnmnycokRjqlVmUk7ERQTlGt3Lxsq0VLlo/lyM0lRwgYRIAZMHyECulgD4yGPs57UTf4pSgSqSAwD1sWaHnvm+uuUMS01kmAIRTPXDNSwgoX2tUAxU/vokddvuQyVq4/apLx0JSyV663jYjgWCij3C+rEDbqMefr/2XvveC2Ks338mtmnnMI5R4o0RbAkKoEYRWNAo2IBjRrU/GKNivKa16gYg2j0axIrYi8xrzUGW2KJgo2I4KtosCWivnZNbBAFRaSew3nK7vz+2J3ZmdnZffY5/chc+Zzw7O7szD3b3Pva677vtmqZKvFuccxSUp6qavvSNWDysikCkR9rj0XVPfVBTbmS46DEnFS6JYeoOqoaUkIrywqtTw0pKTooFzSi9YtjyXTNU1LEnYIUGqfUnClTWTs951wfJ2SJ17q14rnMvywA/nmgjIp7tuDmxHre1pNy/HU6uiGPU0/AihUrMHDgwMj65ubmVLXuOgNVa5x++ctfYuedd8aqVatQW1sr1h966KH43//93w41zsLCwsLCwmLjxS677IK5c+eKZf6ydNttt2Hs2LHdYlPVjNOiRYvw/PPPI5fLKeuHDx+Ozz77rMMM625kiCfyAGWIh1wmyN0BgvWlHIqu763J9edayll8VeiDfjlff/B1sV7pU87/VGIU5ZKDvrV+2zrqsyDce3QZRQP1GRIHHj4vN+DLYqPoi2ulyq6DgpcR3uMGNws3R4VNa8u1WB94SlnioV+uOSFXSpRl4jBlPq6UGZvnolmVqY9UY08TfSTaGGqrUbjw4CFPw7w7dbQYjpN1BdMGAHWZAvpmm8U8lahA4kXmwpkSXlOM59Bq9bIhyyVsab+OqT3QWSyZgWqrbZVySclZnc37qzXG4pBYXwzx+qdq2LP26nfa2nccI8ORxFToOdLkY+iCKhF0/Np0wLDGzYus2PxZotgrnbNWlsW/W/wyFlvVroALgq9KfobypiCHHABxX5W0jNkme5M0bHrbCPTDkVKTZ6qT52gsUxyL3S+zPsjTJ+ec86R+mMiZxb8y8P8u1GUK8BhF0ekijdNGxjjtvffemD17NmbOnIn9998f77zzDsrlMq6//nq8/fbbePHFFyN5nboKVTNOnucZqxH/5z//QUNDQ4cYZWFhYWFhYSGBkY756yVYuHAhisUixo0bh+effx4tLS3YeuutMX/+fAwaNAgvvvgixowZ0y22Vc047bfffrjuuutw6623AvBps/Xr1+P888/Hj370ow43sLuQpWXkgorPGeoKpqjOKSrftXPURZmzE4xgfTkv2KBaWkKJUfH9fIMrZ652kaNltAg2yEUfWhIeYZ4WhOdTYhl8VuiLFcU+/phOWXhQNZkSmt081gU6q/WlHFYUGtAYaIr8aLMwVxT3RoHkvDS6l2Zimyp5/dwT7uO0Co9Z91Z13ZQJ8R4qhROUBCgF7UKNmMqeyZFxXFcjvHrDXORs8A7xkOUeNQm1Hq1eVq1dJ+XwisyhAuuRplZYWiQxUGlRkalK6DLCRlW4TuKi8XT9UyVUU5utI2E6V0mZt4HK2qik/kvMkbL+e+I+65dZj1aWwUcbNgUAfKv2CyUK1IGHbMCWlpiDBtoqdIgNzga83bIZmjKBFpG2imPPmSueL6raazMuh5cOE6uoj5XmHIc1BdU8cwpI+Mzul2kOGXrioRQcW/7cpuLLg58tneflyxD/vwukQiSjRfsxevRo3Hnnnd1thkDVL07XXnstxo8fj5EjR6K1tRVHH300/vWvf2HAgAG49957O8NGCwsLCwuLjRqM+X/t7aM3Yd26daipqUls09jYmLi9M1D1i9PQoUPx+uuv495778Wrr74Kz/MwZcoUHHPMMYpYvLejlpaQc/zIOpeFGW4pAfpkVO0Arz9XZA48RgT7s4FmFc+bZwf3+/FzCfEoFpR9ViQXsFUtXh65gM1o9vLI0zJaguzl60shc+VQDyXPwbC6VQCAgpuBCyLq3NU5xZDVomqdOD3SRIYpgi5J02SK5OLtebV2wK9jt96tEfXfkvIncZjyIwEAmMSWscBmaTmOFfHzOOkMmp73JW69K7I2F7wsaugaheHpqKi5SoyF3lZGxEtPzGDdNuo+Kbt5pIp9JWFFTEbyahkkPZ9WV6EtTJcp27YJMksaros/Rptnv0ZNwECt82pQQ8qo47pJUMEatQYRp3z5zebN4TEqGOkGp1WcY4cwlJijMK3+/RO1Nw1zmoZFNGnb0rKPqfRwQVc56iHLXPQJMlG3eDmUXNVmniuOP7vlShFZUgahXZU6HBuVxgnwC/zGgTEGQohROtTZaFMep9raWpx44ok48cQTO9oeCwsLCwsLCx0doVHqRRonAHjwwQfRr1+/7jYjgja9ON1999245ZZb8NFHH+HFF1/E8OHDce2112KrrbbCpEmTOtrGbkGGeshQv55ZwcsoOWuyThhVJW/j2idenTxDPJ9ZCjylnPYtXM7rlM26aPFywjsEQm8tS8pK/qO6TAk55r9lry7UwGNERLDlcyWUmCO8ziwJK4Gbq7ubPbq4CDqT9xanh+Ftm5wWcYxcRpV5miq4x/VjWl+DEjciuo/kXcl6GT43c/4pX6dEoa6Tc94UhNYj/UOoLaxE0j5JbJQe4ZQ4hoja6p4HqikXVFsZo45gmtIc1/b2w8Gvx0rMkx9FZ87+H6lLR4ABGT9PW4FlUWSZUIfHgK9dP9J3VakeTZkN+E/rJgD862CLmq/Fs2KdWyP2KzFHYci8YBx+f5mi7DjaesxM7FJFLWQVkZaKzcQTEcyFTFadp2QLNcyTEg+kHbURLZKx2267GXM4dTeqftLcdNNNmDZtGg444ACsWrVK0GR9+/bFdddd19H2WVhYWFhYbPQgrGP+LNqPqhmnG264AbfddhsOOeQQpcDezjvvjOnTp3eocd2JTTItyGeyyNMySszB2nIoUKOEiezgzW4uzPeU8VBmVHwDp8RDlnjKN3G+H88PJDNArV4WawL9TB0tCJajjhbQ5LRgm/oVAIANXg4ri367VjeDhmyr0CbI7A7gM0VZFnqOsldnipwTvxMyaevwQEHhKToXHRSh10bBhB1y5m29bSoEdtaghBYvjxIJsrbTgqJ5kTVDnG0K5+gpzMsatw4NgQaLM0/83xpaQguVoiPlqLoujOqSWSX9nMpRVLxNxf4SIgLjoJ/vahgfnWnqaKTVh6XRGYlcSu2IdOxoyFnvZbgsvB54/jE5p1YpYLhXFPvAA8XXBZ+B6pdvFtc84M+ZP4tavBzytCQYGJdROMQT7BSQzDpVO6fENinYHQomnq9pQMHE83NIdrXYby31UHDV/0RGauBRDx7tovt+I9M4DR8+HI4TzZTfE1D1i9PHH3+MHXfcMbI+n8+jubm5Q4yysLCwsLCw2Hjx8ccfd7cJsaj6xWnLLbfE66+/juHDhyvrn3jiCYwcObLDDOtuDMqtQW0uAxroW7inU/IcZKkrItUy5RrkMkHm3iDLrIhWIyyIpAuyjjMKUP7b9wJ5xAbP/s01TwOyoRdXQ0qooSUMya32bWCOYEDytIzGTKvi/VEwZEmop+IeZ6U6Vr7N5szg+jYdSWyTrlsZmlsVO0aSPTLWuTVK1uRsUDl9Xdn3kp2MF+asCsZP49G2eHms80J9R6jFCu3sF+jJXEYS+0yqpaZrVtoKPfou7neqvqpgndrKNrWXaUoTOVdtlu6kPhx4yr46u5e0H5CcQbst0K8pFzRkEWL0YaZ7qOhlsKy1UdjXP9cS2BhUNkBYy67VywbPtYCJCdj3gbl1AICs4wrmmLM9ReY/x3KkbTmOOKsVh0rPjapYawkO8TAou0Yst5CckqVdZtY8RpCnZbQ6Uda8U7ARisN7Kqp+cTrrrLNw6qmnorW1FYwx/OMf/8C9996LmTNn4o9//GNn2GhhYWFhYbFxYyP7VNeTUfWL0wknnIByuYyzzz4bLS0tOProo7HZZpvh+uuvx5FHHtkZNlpYWFhYWFhY9AhU9eJULpfx5z//GQcffDBOOukkfPXVV/A8r0eGC7YXWeIiSwgc4idL5OH+PBFcXipdsCFIgOkxijwtK6HCeVoOP9WBik8hesir/xsow6fHv0IfkRyzxcujX2Y9RuR8cXirlxUh8dxWTqt7jCBLXKUQreuZP2skliTQUE2obyWYaPRkWl5NDQD4tn/SOgADsusBAAMy61BDSmiBnyS0xDIAiuF4hnIxcr/8WC8rbaJ89hTjyjaIxIBBf1LfHfUJrhpUkyyzYl8xYTf6Jzw9GCApjUDaz3NpPvfpbTqqrElcf/qycn617pV7WQi0owVoOZI+5eowfqID/GK1RBJtayVrHKjnhT8nyp6frHdIrf9ZanAgA5DBn1tZ4mKDl0Mt8e+nPk4BdU5RKdjN7+ksKcOTEm0WkWnT5zpz2pPOo0vka5SPPSi7Bus8qVC4VEQcCI/vhmwXlVzZCBmnUqmECRMm4JZbbklMhtnVqOppm8lk8Itf/AKFgq/7GDBgwDfypcnCwsLCwqJHgXXQXy9CNpvFW2+9BUJ6ljar6k91u+66K1577bWIOPybBs44AX4IvRye70gJ01rcvBB0I/BG5NT8eVqWvBQXrlRc0t+De4v+Mk9XsMHNhSUOaAZfl/tg0yCxXT0tYEBmnbDTBRHizBpa8hmnwDtc59VGvOaqCqd2ENOki3rThRXrpRNCuzdxWjAgux5ryn6Znyxx0eS0oCVgi/zEo9L+TGVHZJSYf3wBoMXNoY/TKhi7SiVUdCYgLYtAideh7FSSULkrkMQWyUyBiX2K29dU4DVuTh0hvDb3m8RoRbfJSVEdsEgbebsbsD9Own/NKl1PvjhcakPiGTOPEawu1YnfTbkNGJxbK2xwlTQmEMyrC4INXk7cNwOyzdjEaUGzlxft5QSxDgnTnPCAlLRC7yR2Uk+z0lGIG9MhHjZxWmKvz+4qKr2x4bjjjsPtt9+upD/qblT94nTKKafgzDPPxH/+8x+MGTMG9fX1yvbvfve7HWachYWFhYWFBTbaqLpisYg//vGPWLBgAXbeeefIO8c111zT5TZV/eJ0xBFHAABOP/10sY4Q0q0F9zoT3FPi/hSFhxwJmSOHeGGIanBNZoOEaBnipyJQQvx5eeqgrSjiSSjKzAH/Wl5iYYmQLHFBiSd0A1niCvaphpbQ4uXQ5PjhxI3UL6i7Oiit0CppodpSxqCtiAsnbgvTFPap3vRDsquEp7vGrRWJQoEg2afEbpkK+rYEHnOLl8c619cyeIbyFn6i0MqpBarRrKRpb2I00ozB92vLuU2dOLJKNkv36tOyTHHbOpphiiuiW01Zncj50s6Vx2iEkQJ8njr2vFZgJSnR0lGw+PO+zqvB8tZGAEDOKWNAbj3qHF4AWJ2nx6iwqYaU0cdpVTRNrV5YmsQFFc8znrZAL89CxVx1rRwzLlfSxXV2AlXAfI229ZnWEeiIzN+9MXP4W2+9hZ122gkA8MEHHyjbkj7hVVvjjhCCV199NdXXtDYlwLSwsLCwsLDoQmyE4nAAeOaZZ9q03+rVq3HdddehqampYlvGGE455ZTUxE/VL069Qdt044034sorr8SyZcvwne98B9dddx1++MMftqkvXZPjgcIFU5ic2iABmpwoDQj1Rtxz8xiNfpvnzBMIWj2gEJwSShg2BJFeWdeFByIiv+poEZsGGqcaUkSNU8QmAdMCACvdPor+IK70hu6ZmpJfVqNJ4uD7tGXfasG1Xl+79WhlWdSLhJWa9kiaKy9+ytmqdW6N+E3hwQUJ2T3HRZE58Ji/XENKaA1+8+SY/Fg3OBsi9lVT9iQOHclkVaurMiXErDb5pafoejouKq4jNVw6y5TmOJnYKJl9dJkT2SbP3xPRt9G2OhsVp4MyRenFldz5dEN/Uf5pYH4dBmTXRfrj48jXUIk5yNOSKBzO1/H7QLeHwpMSgPqMmCitxGib2aJK11lbnzPVlAqS23YV02TRdhx55JGpA9imTp2aut+qX5weffRR43pCCGpqarDNNttgyy23rLbbDsP999+PM844AzfeeCN222033HLLLTjggAPwzjvvYIsttug2uywsLCwsLCwq47DDDsMdd9yBxsZGHHbYYYltZ8+ebVzvedW92K5bF3Uk4lD1i9MhhxwiNE0yZJ3T7rvvjocffhh9+/attvt245prrsGUKVPwX//1XwCA6667Dk8++SRuuukmzJw5M3U/HohSKFJmT1xGhNck5/xxGfXzKAVeXZ6WVE9R8lC4BkhmZzxGsCFgOkqeIyLs/GUqRe8BCPRxI/OfoYaUBAuw0q3HOrdWiXLhiNM+xHlOaT0q3WNLm5OJQ2cw4nLgmPYLy9KUsd6tUXQYWR5hJ/IuBefS84+17K3zKLo8LaGBtgo2CfA1UKZSHzzKS5+v6TinybWkMwQm5qha3VI0ojI+r5DJBqVtav1Tx+tPKh07WZNj2ub3EdUXhf2T2Lax/SWVfYlhVvg+HiNhHjVDQW2ZjfJZGoTLcYjR2n1Z9HVNyzY0YbO61QCAzfKrlPxvgH9MRLko6TrLEhd1JMxH54KKfHH+XKjUtqzoOuWiw2KunZTrrBrmqKPG60rWiaADNE4dYknno6mpSeiX0nxqi8Nnn32GzTbbLLHNn//8ZxxzzDFV9Vv1i9OCBQtw3nnnYcaMGfj+978PAPjHP/6B3/zmN/jtb3+LpqYm/Pd//zemT5+O22+/vdru24VisYjFixfjnHPOUdZPmDABL7zwgnGfQqEg8lIBwNq1azvVRgsLCwsLC4t4zJo1y/i7Wuy33354/vnnY0mcv/zlLzjhhBM6/8Xpl7/8JW699VaMGzdOrNtnn31QU1ODn//853j77bdx3XXX4cQTT6y263bjq6++guu6GDRokLJ+0KBBWL58uXGfmTNn4sILL4ysd7kegXgRXZKfAZzrCJjYTokLEDkSjyn5ehwpg7XLqOLteYyg4GVEFnIKJgoA19IigBy+LPg5i1rdLAbngxe8PFCCg9Wun59ltVtvZJs4ZJbL5Om2BXrW6Go9MT0LNYcHWpF14uM0OBvQyjJCB9ZAW4VNfk6ncI5Z4qKVZQWrUENLwtPmWddzPIcWyyrsk0OYyJEF+J650G/A977XebViXx796AS6jzS6HFO7tkY/6vvFMVAm5sln0zjjGu+r6uefF3pNa1/cMZGjsyodu0rZ23UGKY5R4vcrZ6TkdpV0T2kjB/1xmKThCtoZ8o65jAr2yW9J4vVOCBkqIDgvoPgiYJxa3Qz6ZnwtZJa4ynxktkm2EQDqSEHLiQZ4cKR2XuQ6ywf3hEf85xy/R4rMUWiPtCxRR7JJbdXG6RpWwLer2FWC6400HYEJq1atwj333IPbb78dr7/+emy7gQMHYv/998fTTz8dSWNw3333YfLkybj88surHr/qK+jDDz9EY2NjZH1jYyM++ugjAMC3vvUtfPXVV1Ub01HQQxT5J0QTzj33XKxZs0b8LV26tCtMtLCwsLCwSI+NMHO4jqeeegpHHXUUhg4diiuuuAJ77rlnYvvHH38cruti0qRJKJVCB/eBBx7Acccdh0svvRS/+tWvqrajasZpzJgxOOuss3DXXXdh0003BQCsWLECZ599NnbZZRcAwL/+9S9svvnmVRvTXgwYMACO40TYpS+//DLCQnHk83nk8/nIehfBt3kGhXUysSl61lyR80nLDq1H6ygsDXzPrOj6pyRDw2i8EnNQcDNoyvpRWzVOSWGJSswRkV0eSIQBiGhwDNFz7UVahqna/D9pkSUuHDC0uP5xqCElJRISLGSdssTP5s5tqaEFJdNxnpSQDSKIPi/1xdflehGBtGlmXSRqSdaFeAiZxC9LjcLTbnA2BHl8qLBB7gPomkzfccyNiXmS2zqEKRmqK53HKEsbMEcxWjHAPH9+XjxGUjN25rkkX+dK1myNJebb9H71uUQjZiuxpZLNMfYJVljWRyaweS5zgIAtpcG1WAq0kjVOGX0yrWIOlKhnMRJlK1+bCYyPn+dMrXsp9+wyKhhxnfFO+/xJqoVYDaq9x0yRnfq6zspab+FjyZIlmDVrFmbNmoX169dj1apVeOCBB/CTn/yk4r59+vTBE088gT322ANHHnkkHnzwQTz44IP42c9+hosvvhjTp09vk01VX4m33347Pv74Y2y++ebYZptt8K1vfQubb745PvnkE/zxj38EAKxfvx6//e1v22RQe5DL5TBmzBgsWLBAWb9gwQLl06KFhYWFhUWvwkbGOD3wwAOYMGECtt9+e7z11lu4/vrr8fnnn4NSiu233z51P5tuuinmz5+PV155Bfvuuy9+9rOf4fzzz8evf/3rNttWNeO07bbb4t1338WTTz6JDz74AIwxbLfddthvv/1Aqf8edsghh7TZoPZi2rRpOPbYY7Hzzjtj7NixuPXWW7FkyRKcfPLJVfXjR10Rv/ZTwDoBvmcos05yBEnJc1BiWfE6SpmneKxyHhcPfv/cAyozP4qOe24Z4okoOkoYMtSF6/n9NGZaxZgtLO9n8UXo9XLWSYeelbczq413FJJ0Tvr6AZl1WFbaBIBffy7LwmRmeel45IiLOlpESdous0g54orlr8v1Qe2/gDmiGwx5jPx/W1kOWVIWObVchJFVfj28epSYf07ztIR6WpAq0CdXWNdZrvYgieWK0zxV7FO73tQoVDV/mXx9mpgnk21CV8Iqzz8uKjFpTjIj5YIoxyFum9humAtQ3f2VGIlqjK6M12CVtDatgW6yMduq9ZE0ZtT2yPlgXmzbMC+aX9szL9XS5PdAq5cNWKeQpeK/SywT0YzJxygN+9ReBtfEJLUn2rS96I7M4TNnzsTs2bPx3nvvoba2FuPGjcPll1+ObbfdNuwzRgZzxRVX4KyzzgLgB2FNnz4d9957LzZs2IB99tkHN954Y+KXqaOPPhpnn302HnroITQ0NFRneIA33nhD/L7yyitx3HHH4dBDD8XBBx+sbKu2VFzVL06Af6D2339/7LXXXsjn8z2qcvERRxyBlStX4qKLLsKyZcswatQo/O1vf+sViTstLCwsLCx6Cp599lmceuqp2GWXXVAul3HeeedhwoQJeOedd4TYetmyZco+TzzxBKZMmaJ8SjvjjDPw2GOP4b777kP//v1x5pln4qCDDsLixYvhOOZgphNPPBE33ngjnn32WRx77LE44ogjqk5x9L3vfU9JlcQYwwMPPIC//vWvIqVSW0rFVf3i5HkeZsyYgZtvvhlffPEFPvjgA2y11Vb47W9/ixEjRmDKlCnVdtnhOOWUU3DKKad06hjcm8zTEvoEntF61IAyJuVqoRV1Djp4Zt8MdVEOvLaCx/xcKkGG8lpaFEzFynIfQ5bsZLdC3l5tHhKZ5ekqTysOjhLdQpAlZfTNNAMAWryc8HqzxBVRcoDvwTc4G4TnC4Qessuowv4MyK5DPS1gnetHyslecSvLosXLi6g7lxE4oIrmie/3n2I/LC80ClagMduK/tl1aKA+C9DgtApWy5RLJ7QzY4xiaivi2KcwuizUH8kRdpWuA/m6Soq6i2Oq4mwzsRuAyg7EMVcm5kZnoaqpTaejrTl9KmWGr6TPkuFKrLZDGUrMQTlY7pspiOzfabLRK/mXYLjmSLid3z+FIJu4HKXqwEMp+E+N54X76Lo/B25473lQ9ILVoD1MU4/WK3VDyZV58+Ypy7NmzcLAgQOxePFi7LHHHgCAwYMHK20eeeQRjB8/HltttRUAYM2aNbj99ttx9913Y9999wUA3HPPPRg2bBieeuopTJw40Tj2rbfeiuuvvx4PPPAA/vSnP+GMM87AxIkTwRhLndyys0rEVX2FXXLJJbjjjjtwxRVXIJfLifWjR48WGicLCwsLCwuLDkQP0DitWbMGQHwB3S+++AJz585VCJTFixejVCphwoQJYt3QoUMxatSo2PyKHLW1tTj++OPx7LPP4s0338TIkSMxaNAg7Lbbbjj66KNjs4YD/me6YcOGYfjw4RX/AODtt99GuZwsmeComnG66667cOutt2KfffZRdEPf/e538d5771XbXa+AiK4DInmdakgJJRIyG0DoNZeYA6pF4YlIL82TyhAXtU4RtY6fI2iDmxNeedlzkHVcoROQ698BmtanEx0mXVMkaxNMiKtVp/eTxFzpbZ0YxoGvb6B+5KFcS6sOxYiH7cCDE+RjcghT8hTJY2zitKCBbhDHvsgc1Af5tepJAfW0IOZZ45SUufTLrEcD8xmlPC350UUlP7qo4GawCvUoOL6NX5f7oF9mPQCgyWkRNfcA1YNuZVmAhXXyOop54n3Feet6hJ18vCpdB/4+qj5F19uZ2vG2fHwT4pgoEwPVGVGL1dQRNNWVq4RKbJOsoQT848dZmhJz/GcQeDRpuC2vH2dQ5RhHmBeiso/ydvm48shhKrR9DrKSZrAkVUNo9vKopwVxz/L8ZwAChthN1Dzp9qdFV9ZA7Eh0pMZJT/QcF10ugzGGadOmYffdd8eoUaOMbe688040NDQoZVKWL1+OXC4X+cyWlF/RhG9961uYOXMmZsyYgblz5+L222/HUUcdpSSwlrHjjjti+fLlIvq/EsaOHYvXX39dMGVJqPrF6bPPPsM222wTWe95npInwcLCwsLCwqLnYdiwYcry+eefjwsuuCBxn9NOOw1vvPEGFi1aFNvmT3/6E4455hjU1NRUtCEpv2ISKKU4+OCDcfDBB+PLL79M7P+3v/0t6urqUvVbLBYrNwpQ9YvTd77zHfz973+PiK3/+te/Yscdd6y2ux4LT+RxCrww/j1fy+sEQGhTWkgOrpdVPD4g9HjztCy8pkh9N3jI0jDCpOBlIjWdeCbxSN4oiQGohs2pFm3tKymTOO/TFCVj2ofPsxLz1M9Zj5Ygt5UToxmS+4jrr4aUkCWuiJQzjxlGVcnHPyc9EwZnVqO/sx7NgVe3xq3DOrcGawMN1IpCH3zuNPlt82sxMLtWGXOdWyPGanJapAiqjKLJai8DJbMKkegxg96JQ9c9xcGDdi0kREeZokPT5vKRGSg5+zgQ1XL5bcK8TX4bNXcTb2NigNLqoqphp+KYJj03nGmb/Gzq47Sib86/jr4q1qM+43vnQ3KrAehsUfSZJEPXG/H2sj38t7yuwCg8EuYvq6P+f6DWuHWCkQL8KDvO3tfRIhroBtCANfY8GmHpq0Ecy1QdU2VuW20EapvRgZnDly5dqiSyrsQ2TZ06FY8++iiee+652Ei4v//973j//fdx//33K+sHDx6MYrGIVatWKazTl19+2e40QQMHDozdtscee+D9999P3dfYsWNRW1tbuSHa8OJ0/vnn49hjj8Vnn30Gz/Mwe/ZsvP/++7jrrrvw+OOPV9udhYWFhYWFRSV0oDi8sbHRWAEk0pwxTJ06FXPmzMHChQux5ZZbxra9/fbbMWbMGOywww7K+jFjxiCbzWLBggU4/PDDAfiReG+99RauuOKKts+lAhYuXNhpfVf94nTwwQfj/vvvx6WXXgpCCH73u99hp512wmOPPYb99tuvM2zsFniMBlFxwQqJedI9Me4x1ZAyWpAX0XAUvqaAe+eUsYg2QHjDJGwP+OwS/83b1Dm+t1jwsoKN4GPrEWYceh24uLpwaZDEKFTqU9Y7RfMgSR6rUsE+Po9TJeYpR1zkpHxKX5SaBAuxidMSaHY80TZubg3OhsR5yTBlN5azTGdJGQ1OOE4dLYhz6jIi6hR+3roJ1pRrsVP9J8K+BsfXSkUixrRIviQPWmdcKtWxk6Fm046OFXceZDsBwzVkcKBNmbjjMo+bGLZKLIJp3knMkol94u38/uLn3tYoPX0/PkYldsPEavHrallzIxoCxmlQdi1Aov2pGcrVYyxncdcholKDWnpJNf5avHAfCoIVZT9HT5a4aPV8W1u9LJyM59e2Q5jzKQ4mfV7aPEwmG+NgOp/ticTs6Tj11FPxl7/8BY888ggaGhqEJqmpqUlhZ9auXYu//vWvuPrqqyN9NDU1YcqUKTjzzDPRv39/9OvXD9OnT8fo0aNFlF1vQ5vyOE2cODE2hNDCwsLCwsKiY9EdCTBvuukmAMBee+2lrJ81axYmT54slu+77z4wxnDUUUcZ+7n22muRyWRw+OGHiwSYd9xxR2wOp56ONr04bQxwQfw/5vjensQ8uQjzM2Wl/EBca8K96wxlAAuXC14mwrbIHniJOVhX9rUs9U4YKUAJAyUMq0p+wrEhudVCJ+AyEvH2k6KeOiP3UhKDpCNumylihmujdMYsCXEaHzmyp8XLodXLimOYJWURxebnfCrH6j0qsRnKvky6Jgz7ydqpmpowsGKNW4cWNxdmgyel2HmLLOfSJRCnpdFtqDSXSl54NXX20jKifttohmg9Ci9N/qek3E961J1J9+S3i+qaKjFQejsTqtHFUOJVxWrIdhW8LPrl/Nxm75cGYlXRF8q69UQ56pwpkqHfS0nRaHEMGc+0LtvEo11LzAGYI/RPoP696Y9FlUg/SphiT6XadXFRf7zvJNsrQd+/6zRO6PI8TjxJZCX8/Oc/x89//vPY7TU1Nbjhhhtwww03VGdAgNWrV+PBBx/Ehx9+iLPOOgv9+vXDq6++ikGDBmGzzTZrU5/tQaoXp759+6ZWv3/99dftMsjCwsLCwsLCAvDzMe27775oamrCJ598gpNOOgn9+vXDnDlz8Omnn+Kuu+7qcptSvThdd9114vfKlStxySWXYOLEiRg7diwA4MUXX8STTz7ZLYV9OwslRuEEbJMHiLwkUcaIKXXrZAYK8D3tgusfZscJmSDuEeWpv2+Ll0PBy6CWloLtof6JEoYNblZE1XG9C++/EjqKZUrqJ6LtSfDi9MzmiflZtIg8nX2qpHUCfNanX2a98Awp8dBAqcJAOcKzKqKVZUXbOlpAiTmooSEjxDOOu4z4eZy0yKSwHqEhUjDwmhucDWj1siLTch0tijGanBZ8WBiEr8t9fPuzbmK0XJQZSM4XJB+HjkK17JObMjpI1zSZdE9yO2EDi2oRFUhZrz1GEjOoy5AZKJ2pSIp44/vGIW20oI4057BPwF471MOyFl9PtKahDoOya5Rr1AURUY6mfk2Rihz8mJSYAxBPYa8cMOWY6VHHfO7y8RyUXYMscbHa9RmykkeRc8LoUf14yeeM26au0+ZpWK9vM8GkfauuWEc70AGf6npBedIIpk2bhsmTJ+OKK65QatYdcMABOProo7vFplQvTscff7z4/ZOf/AQXXXQRTjvtNLHu9NNPxx/+8Ac89dRT+NWvftXxVlpYWFhYWGzM6IZPdT0B//znP3HLLbdE1m+22WZVJdDsSFStcXryySdx+eWXR9ZPnDgR55xzTocY1RPAo+o8BN4X90yIH+fFPV+/hpOPLHF9TY7EKlGE3/dNXnbB80+BHJUC+NnCQ1t8G2TWg2sBAAitThzSZHZuC+Ki4fRtMnzNUnWagrgM5GobX+sVFzEGQMl3lKOhn8gzF4t2cJGjUm4k4iEr+ZXCDsIZkPSZqeU2NbSEHHMj63PExZDsaqwJvO3Vbp2wMUfM/q2cj4hHIuWI22YGpLOhMITMzCiq7aOMUlxNRlP+J76P6E/JV6UyKWnZs0rRY4pNnFWpQuMX7hs+CyrVoTSBM9UDapvxyap+AIAlG/qhwWlVrps49ooSFmGY9GzhojYdQtYJ8I+RzsLrc+GRpQ4YWgM2t9nLYxMpgz6PtjMdvzCflFnX5OulzOeJr097L4j/Hkj7dOd9tDGgpqYmkukcAN5///3UWcE7GlWf8f79+2POnDmR9Q8//DD69+/fIUZZWFhYWFhYSOgBteq6A5MmTcJFF10kKpMQQrBkyRKcc845+MlPftItNlXNOF144YWYMmUKFi5cKDROL730EubNm/eNKvJb1uo8cQ8KjMIDg4eQdeDIEj/3EmeRuBfH2aQsXMW7LTFHYZYy1JV0TaH3l6dl1Doh27TarRNenMcI8qSUSutUbQ6ntLoLUzb0WE89MFPXrhihZWhXGANDtJ3C6EkaFrAqaoORaBX4LFwp+7jKMkS0FgnaCxMEC8Yyoq0LiganNcyozLJhhnUwI5sme72cldLrjyWhUtbo9iCpLzkLOc8+nuYaTYqqqlQHT2eeVE2Tyq4k1e9L0sOYmIy2MLTRfgO7pJqX8j1iYtr4us3qVuPDlb5z++81AzAovxZ9s81hQxZGC8vWeIwEOefi9UCybi6L+GPjMYpS8HwseBnkaVlElq5261AImCUHDKsRPueyxE18vpjYJsHyGezUz4/p+OvniB9n/TyWWcfdK0nojnQEPQFXXXUVfvSjH2HgwIHYsGED9txzTyxfvhxjx47FjBkzusWmql+cJk+ejO233x6///3vMXv2bDDGMHLkSDz//PPYddddO8NGCwsLCwsLi40QjY2NWLRoEZ5++mm8+uqr8DwPO+20U7cmz2xTHqddd90Vf/7znzvalh4FlwXRUcTzvTruZdAyKAgoQk8lZKX8b/GcceJthTekOWFlz0Ep6DcbaKOyhFcDp0KbkKUe6mhRid7j3/7jtUShF8+RNru3CSbvy9OYl/isvEQwbXKOI6MNEkviSh5wBJruSeQ8EvvKEVdQssA7ATvFj5GenVzJHxOTw4fb54EouipZh+ZfG1nFvrhoMmpgUHhfNeiY4tnV1OWqloHqTMYKiEZXApVz+SQxT0msU7VIo5kJIy3NbGWlWmrRyMmgOgFhCgulM1AyNsluQL8+Qd26tX3wYf2m2K6Pv3eelpF1CsYs6JQwuNpqF8QYnVkpmzqVNI5+vn4iIudWleql5wRR6tjpx0M9FmoUXRLTpNsOxDOBUfbYh85ctjUi0qI67L333th777272wwAKTVOJmFWEtatW9cmYywsLCwsLCwM2Eg1Tqeffjp+//vfR9b/4Q9/wBlnnNH1BqGKBJjLli1LrEQsY7PNNsPrr7+Orbbaql3GdSc8xpmiMJoOgP99nkp5SxBqlErMUTxH36vRveSw3hPXA8goSd5LXorsytIyWly/gnWLlxOMk9ynCY4SMRTdXk3+Jb1dbISQwXuW11Ep+s24j6ZPMkLSnHHEZRnnDJKIgkEQQcRklskJt8GT2EFfZxUX2afncKIszOvlEA+DHd/paPUyaGVZtECtQk4ldk1no+LOa3uYI2VbQi6lSK4lUp1XnRTdqIyjsT1KXiEDa2NinYzjy7msDMyTnp1cj7IzX8PtZzLiWKYkttbfX4qsU7Kwh8fYY46/LeaY1NAShjesAgCsWNsHH6/uh7Lnj9uYbcWIupUYkPWdXgeeGMcJ7gfOe0aOg3YM4jKty/vKc+O6JhcUWVIKxvSj8eIiHNNompKYwDQsUxwLKEc5JrXraGysGqeHHnoIjz76aGT9uHHjcNlllyl5JrsKqV6cGGP44x//iD59+qTqlKvfLSwsLCwsLCzaipUrV6KpqSmyvrGxEV999VU3WJTyxWmLLbbAbbfdlrrTwYMHI5vVuZTeBRc0yALNPbqQefIYhRuUoJFnWWIO8rSMPk6YV0mOqqOEIRN8s6fUE/sAqg4I8Nkmzjht8HIiEgXwPbRmz2cuaoj6kmqq/M5zoHxVbkC/zPrEzN3VfK9PZDMSmY7kTNNcT+HAUzxtIPS2BQMk9eOBqHOT6gvqjImvTwr3FToN3pbJfYTRfbqnWkNK4fkFU86HKedSXE4tno1ctbH7qq7rY5ts0RkxUxb3aiL7wn7MbIDM/PnjVNdvnOapvTBFkHH9m7wMJOUaUvtI0iPKzDGV7hGuRZIrDujHaLOa1QCAz5qa8NnXm+C9Vv8rgkM9LG3YBN9uWgEA+Hb98lBbR7R7jQAucwR7U2IUWYkdl1knGmQR5/dIi5dDyVPzUuUDLV+LG+amA9T6kvoxMmUFl1klneVKq2OqxALqzHlcu05DL2SM2ottttkG8+bNU5JuA8ATTzzRbV+1Ur04ffLJJ51shoWFhYWFhUUsNtLM4dOmTcNpp52GFStWCHH4//7v/+Lqq6/uls90QBuj6iwsLCwsLCwsOhsnnngiCoUCZsyYgYsvvhgAMGLECNx000047rjjusUm++IUg1AcDoBQ8fnIYwSgAGVhQkRO2bayLBzioX9uvein1csiy3hou5RckVBkqRdqx4OhssEnvFpaDAsBkxJavJwo7kulsi5pvjrw0h1flhrRx2lFTio9IiNVAksJSWUY9HDsSJmChKSCjvikEm1Dtc8+Cu0ufRZylDI5MJb14HS+Q5j6aY55oNpx5eMUWUZ8/qgnRaXcTYlR1JOSSCnhl5AIPsUSIq4PAGI8fi5qSBGt8D9VuIzEHh99/vJ80qA9n7oi4zKzTWoqCDUQQBZhmyAL85MCF/hnu0qlVapFUmqC9hTx9ber16oSSBL5XJ3uc6ILRwo44cePC6DNEgAA2KbpK6wr5rHyK79oKitSfNqcx7qiLwHIUBfb1vl1wChckQSTQyniSzwpIW8gDQjGoQhTCwBAyXPUfiQpgwsqnoeudgMmFe6NCL8DkX6SOD/pk1zaz6b8eFtxeOfjF7/4BX7xi19gxYoVqK2tTa237izYFycLCwsLC4uejo30U52M7qpNp8O+OMXAAxWehvDkAN+b8ySv1gHqEBap7JtpFqkCeGmUkha+GgwADwTZoBuekDEfiItraEkpNyAX9QVCL4mX7DCJwoGwOCYA0beOtKUMTP2H7aKhv+oYhmNg2BfQEzhoEEL7qMjaF8r6Y5d4aDYAh3lwpPItvA1PYurBEzbnAIBIHjVDIIYN0xHUk6IYr4aU0RCcpwIjyBKGbDD9EgNcwbC4QdHdkCl0GRXnuJ4W0BqIY01CcY72ClEVYXQVzIzO9ihIcrj1chSCDYkJ9QaNZYxkhokHAlTDLsWJwk2JNKmUNqSzkZQctdrxXTihMJuzT4aSIANy6zGiaRXcIB3B2rW18FozWL3WZ6c/re+Hvhk/WebA3NrAlpDRccAE20qlMkWtyCosIBdqc+F3gWXFs5Q/G93gGVVmjnItJaUc4Hbo44jfCeJ8k+DcxCqlYf1cOCh1UcmVjRkPPvggHnjgASxZsgTFolrU/tVXX+1ye7owHMDCwsLCwsKiLeCf6tr719vw+9//HieccAIGDhyI1157Dd///vfRv39/fPTRRzjggAO6xaY2MU5///vfccstt+DDDz/Egw8+iM022wx33303ttxyS+y+++4dbWO3oORRUI9KIac+0+EEpUYEeyF5wVlSRg0tiW2bOC2gDhNs0dfl8LssJQxZuChIHlStpJdZ59aIkhsDMuswIFNQ0hpwVssU8u6CijGLLIM1bi0AX9/glxtJ975cyeMLt8UnnNPBvWF9eyV9iA7KmSWpXwoiEpL6y0HKBzhwmKdoPfw2IXvBWaIi81knV2YYWagH2oS2oEE6TzXEQy5ITZEjoV3+vgwuT5TKGLKkLOZNmZ/gj7NXrcgqIdt1tNjhYfMc4vxXoXFSrhltv6QyH34RX5mBSF9s2sQYqOyoqtOKMoqqTZ2VjiAt4hJrmo5HRGeTqK2Sx1CTuvLnFR9faADh4Vt9vkT/nF/k9+P6fvhkRX+UNvjsz5LVfcV+32lajs1yq1RbiCeK8xYlhrQGJZRImKqgIOuX4D9Xs2IqLkqegwILWfGkNCWmNANhWxJ7jFwW6snitGXtYfu6SuO0sX6qu/HGG3HrrbfiqKOOwp133omzzz4bW221FX73u9/h66+/7habqmacHnroIUycOBG1tbV47bXXUCj4/wFft24dLr300g430MLCwsLCYqPHRlpyZcmSJRg3bhwAoLa2VpR0O/bYY3Hvvfd2i01VM06XXHIJbr75Zhx33HG47777xPpx48bhoosu6lDjuhOMUXiMhpFDIiqMgJIw8qvVy2JF2Y9MaaCtaHJalCSIsr6phYbJEj0QOARCY5APIlPWB2VV1rt5NEvlOQZm1wpNQZaUjUwTt3OdWyMKZ7a4eawp+4zTgOx64z4cpm//1RTONK3Xwf3J2HItadkAjeUowWcfQu0TU/RQPusUJuWTx5LnnecFPPm6ICEmTwY41NmABiqX2QlNcojOEoS/s8RDFh4ER8ajKIPz6IIYI+Y4OqOQaJFlKianbA3YAKXYqql0D+Kj9HRGqpJOKy5BocwWCPZQtkVnwtrILFUq+hvHmlYLXUdlKsztb9ci7vSixdJBMJV5EslfpUSwDvznzeY1PpO0SbYFGerhg88HAQBaNuTwqddX2Oc2EWyW99vmaQkOPDQFjNMXpSZxfTiBPrAl0C15jCBLXaX4dVliocrMQYk/A2lZHJMscRPnXanUjVwSStY1eVrEKj/WSSV2dIho3OC4M1vkt1MxePBgrFy5EsOHD8fw4cPx0ksvYYcddsDHH38MxrrnTbDqM/7+++9jjz32iKxvbGzE6tWrO8ImCwsLCwsLCwkbq8Zp7733xmOPPQYAmDJlCn71q19hv/32wxFHHIFDDz20W2yqmnEaMmQI/v3vf2PEiBHK+kWLFnVa+vNPPvkEF198MZ5++mksX74cQ4cOxc9+9jOcd955yOXCaLMlS5bg1FNPxdNPP43a2locffTRuOqqq5Q2aeGCKB4OjwpzwOAxwBPebS7MUUIzPisUEBL1tODnOPH8yLc6WhA5lbLEVaKqamgJLW7YV9lzwLMtrXdrlGg9OTeOzhhwL4kXBF5RbBDb8rS6GoK+h5/g2aUsnJlqLIPXlkY7IOuWSswRrAeFVG6COX4OHhEpx5dp0DaMCvII9XVJWl6nesc/9jWEoI5wFsZBgZVEVE0Jnq+zCpaLjImSPD6bUEIJ6vHjOZ+aPSoYh6zGJlabXysORq86pngsR1hAlhj3kfeNY8V8Bqd9iIv2VMuNmO+JiD2GKLqksdKiUp4nxQaN1dJ1TnFRfcaIVX2dYoMnsXRyjjSCLFx4AUvaxyngO03LsWSVzzIVixnBhn/VUo/Pc5sIxjrr+KVQvig1GedGiSfpPhlqaElE9zrwUAg0URREYdf0EjFJOshKJVWSdE2Ayuol6cmSWEVXMNZW49SZuPXWW+F5/nVx8skno1+/fli0aBEOPvhgnHzyyd1iU9UvTv/93/+NX/7yl/jTn/4EQgg+//xzvPjii5g+fTp+97vfdYaNeO+99+B5Hm655RZss802eOutt3DSSSehubkZV111FQDAdV0ceOCB2HTTTbFo0SKsXLkSxx9/PBhjuOGGGzrFLgsLCwsLC4uOxWGHHYY77rgDjY2NuOeee3DEEUcgk/FfVw4//HAcfvjh3Wpf1S9OZ599NtasWYPx48ejtbUVe+yxB/L5PKZPnx4pwtdR2H///bH//vuL5a222grvv/8+brrpJvHiNH/+fLzzzjtYunQphg4dCgC4+uqrMXnyZMyYMQONjY1VjemxOA+dR+wEHq9LUQgOY9lxsMati+RW4kwC1wQAvnbEYxR1xGcy1pTrUGBZNJdDXRPP8pshrmCo/LG9SIFVDko81NGiKLpZYlT0w7VXcWyVP++4vE0kkitFbIvJmVKpT/M4Ve4rNGiqh04JU2yijIYReMRnhjgDlQVENF6W+cea66Aa6Qb0c1qwWVC4uY5kkCW8qC9FBg5ooBuhzIUHJsbJESKi6hz4560g6WNqwESGcj9/kb9QFzCLPJ+T25bjAjODVKn4cluh76sWX3YSrzndvqQ2cfbL45vYTuVYaLZWKuZaCXGaJwpmtMVkm8ckjRuhGhMTZbIS7ZM2ucyRNFAq+xSsEjZkiIvGWr86wWqvFq7rj7mhkEWrmxFseD0toMgyxgoERZYJip37d4EDP3qUZwIvMSdkC/l9I927oS4pPnpX3256/lTSNVUTtRi2ick91lUszkbEOD3++ONobm5GY2MjTjjhBOy///4YOHBgd5sl0KZ0BDNmzMB5552Hd955B57nYeTIkV2eAn3NmjXo16+fWH7xxRcxatQo8dIEABMnTkShUMDixYsxfvx4Yz+FQkFEBgLA2rVrO89oCwsLCwuLNmBjKrmy3Xbb4dxzz8X48ePBGMMDDzwQS350R726NmcOr6urw84779yRtqTGhx9+iBtuuAFXX321WLd8+XIMGjRIade3b1/kcjksX748tq+ZM2fiwgsvjKz3eFRdTE4Y7mXoPtdXpT5KVusaUkJNkKvHoUxEl7R4eZFZHABaSB7rGUGGhtnC+wS6mj4Ztb6cBykbMDF76HKkTWOmVfTpb1Pby/mhqoHwDqUIFiAakZcEM6uXxIrEeNrMZ/aE58nC+ThQczh5IKCMSjq1MAN7DS3hW7kvBMPUl+YBEFDU+H0RKjKO82WP8YgiAgcEJZ4/inki6o6KcdRoMH4d1ZCSEnkUGCrsNR1foDKDxKOnAACEiggmf1+iXCeR/Svk4kpCbH0v0IqaEDkXVzW2yTUOqRZhx4+Fvz0+i310HPm4RyNL46DrqCrpqqL7y5Fy4XgOWMUcaHokcFj7T2Wf/Ng4f99MoELrkwuqHjTXwnH8/QkBMlTNl1VPC4Ih80DR7PlMOX+WhM8apv5LwnvRZQRlzxF2luAgHzxR4+Zo1EIa6tDFM5Mq21SJ2eL9xYH/d8KiY3HzzTdj2rRpmDt3Lggh+M1vfgNCoueBENJzX5wOO+yw1B3Onj07ddsLLrjA+NIi45///Kfygvb5559j//33x09/+lP813/9l9LWdGAZY8b1HOeeey6mTZsmlteuXYthw4alnYKFhYWFhUXnYyP6VDdu3Di89NJLAABKKT744IPe96muqSmMnmCMYc6cOWhqahIvNIsXL8bq1auresECgNNOOw1HHnlkYhs5eu/zzz/H+PHjMXbsWNx6661Ku8GDB+Pll19W1q1atQqlUinCRMnI5/PI5/OR9R6I8t1c1yq4Bq+lFGiAmjIb/GWq1lXLooQclxaQEuppAeuCrN5ZWsaQ3Bqsc31moynTIrw0rhcI2RQqeVRlpUJ6DSmhxcsLrylPy+iXaY6dfxzisvbKnp9+TOKYkLTVxv1+03t7OniOLQ45goiCSUybn/mYRx9R4gm2Z7vcMmyVYcgT/5rgeiaIPbXcMkxn7zyUgtwifq06zr6pbEExiPThUXV1tIT+jh+11OzlUWKOyNWVVLvOn7c5342fNTrZozbWUayAOAWSzvKYbNPHT0IJ6dgtk11UGyPuWJhsVvpMmUtI749vi2Qzb0MNPH8frd8U/XiCgQltkzWaDmMh60qD2otOyGyXSv61kcuVUeOUxHOolWVRTwpS1m0aRhYrrJZ/vORrzK836G8vuBm4IMgHbFYtLSqsa5KOSYbMNPljqstpstTHXZNt0UJ1FjamT3Uc5XIZxx13nCKn6QlI9eI0a9Ys8fvXv/41Dj/8cNx8881wnCCRmevilFNOqVqAPWDAAAwYMCBV288++wzjx4/HmDFjMGvWLFCqXsBjx47FjBkzsGzZMgwZMgSALxjP5/MYM2ZMVXZZWFhYWFhYdC8ymQweeughXHDBBd1tioKqNU5/+tOfsGjRIvHSBACO42DatGkYN24crrzyyg41EPCZpr322gtbbLEFrrrqKqxYsUJsGzx4MABgwoQJGDlyJI499lhceeWV+PrrrzF9+nScdNJJVb/QyYit4q55OQBQZhlkiSfqxPVhfl4nHs3mSFXEeVZw7o2tL9egzimK/laV6kVVcgcemr28FBUXZmkO2QjfU2z1smj1siKPU56WE/M3uaBqVIum6UjDDui6A93jA1Svr9q6UNV5eXJdNDV/TUSvJrENQ7N+VuR6UsZqj8EJNE91xEEdyQoGg0fQmeAyhlbmohgwTq2MoiQxBPVSfiZuD9/eyjLIBjqTGlJCK8sK9qKeFuB5/vhcSxLOUdXdyMeKz05nldJmefftrqaeXahNakstQpN+RY6ErASlTps25zj2ilap86qUxVveXq2uKQ1owJTGMiQJ96uawd0LcpQFbLkHqYYcQCmDGzBOXsZDvVNEA/W1kqZoOq5pKnhZZX2JOSh5YUSeykoT//kkPR/Ffl4mMp9K0bpJLHcS2so2cdu6rPbhRvSpTsY+++yDhQsXYvLkyd1tikDVL07lchnvvvsutt12W2X9u+++K5JUdTTmz5+Pf//73/j3v/+NzTffXNnGU647joO5c+filFNOwW677aYkwLSwsLCwsOjV2EhfnA444ACce+65eOuttzBmzBjU19cr23/84x93uU1VvzidcMIJOPHEE/Hvf/8bP/jBDwAAL730Ei677DKccMIJHW4gAEyePDnV2+YWW2yBxx9/vEPGdBkx6pjC5dDbEL8ZBc14SvTaJk6zYBJKcITXVGL+b84G1TkO1rk1KASeVh0thmwCCfcBAn1DcANw9ilkdFw1I7H2UTupHp0+T0XTxPM4SZF0+vHQ+45jmdqqGzBFu0Tmx0wRWWEEIgCAeSJyi4/PMxuvZTk0oqjk9waALGfR9OhKeGgNour8HE4MLYJFcsIoI7gi2o6jhrhiJFmDxffhNnmgSlSn6RyZGKfwmJg95UqgSMgGnsAA6VuqySjf1hqGSbZyGNmrIIt8W6ILAQMD1Q6GKe39okPXVZn6ANSoU485oIwBQRQvghp3OcdfzmfLKGT9Z1E246JfrhkNjs84UXjIEVfUMYzoP0FQCq7dVi+LgpdRs6IHV0gfp4A8LSuZ8vXni65fCseonHsrieVuj1apyxgmDQRo98jdY3n78Itf/AIAcM0110S2EULguu2tS1A9qn5xuuqqqzB48GBce+21WLZsGQC/DMvZZ5+NM888s8MNtLCwsLCwsNg40VlfstqDql+cKKU4++yzcfbZZ4tkke3REPUGpM3aWw5yetTRorI+rJkGKaeK3yfXQwHABjcrGCePEfQJ8i/loWb8BvOUGl26s5wjZeEdtnrZSF2vUIOUHDFkqgcle4J6FJ2uaYrzmivpREz7mLfTaM4aMb7ERgXetAChCuvkMA+tzD8P67w8HOqhBrIX7CLHo9+0g12CB5dH0YEpGawdMEDypougCrNRlI6ZA0+pY1diGRQCj95VoigrM4GxrI3heOqeu5zjKy6vl0M8eAnReKaM2WmYmCT7/Ggt1bZqdCx8H96XDD+TPFOWFRtSshNpmAhj3rKqIkdVW6o5DhFtIfFrYvoduWhxs1hd8KN6C6XwPw1961uUaDf+m9eyk6PquAarECwXvAw2uDlxjzdmWsXzkUe7KvOLYZqqye6uR9Hpz6FKbFO111WXYSP9VNcT0eYEmMA3/4XJwsLCwsKiJ2BjTEcAABdddFHi9s6qkZuEql+cttxyy8SEkh999FG7DOopaGtG2GY3ZJBc+NqZLOWZpT3xxp8lZaxx60QUis8MUWwI9l9XrhEZv2tIWcnyrOsFPIT6Iu6pce1UnpYieYBiaz4ZIoRkb1v21NNomszetRoFJu9vQkXvUNZsRNwpT7TheWsAwCOeH0EU5GAqeaEWyWUUzV4OCLxiF17wP16PrIysnAcJTGQHb9Yih+RzJrIlG/Qg/r/hsfazfZdBEUQoEQ8lj3vwWeRpCS08b04QsRTnmVdk7fT2sn3MzDrF9RnOMb5tW7PJ+7aF11/0XCdrXAAo3jbV2Ks4pq29kXFy7cTEdhX0TXH3qT5nE9sXl2/KZUQw4GXPQYa6aC0Hz6PWLAivsZlr9es3Iqzf2MpyIQvlIdQ7iSi9IFrYzSvZwbPEVVglKjGyMltqer5UQqXIXRNCbWD8s0odQ47yI8q/30TMnDkTs2fPxnvvvYfa2lqMGzcOl19+uTE47Ne//jWeffZZeJ6H73znO3jggQewxRZbAPBLm02fPh333nsvNmzYgH322Qc33nhjJNjLhDlz5ijLpVIJH3/8MTKZDLbeeuve8eJ0xhlnKMulUgmvvfYa5s2bh7POOquj7LKwsLCwsLDg6IZPdc8++yxOPfVU7LLLLiiXyzjvvPMwYcIEvPPOOyK67cMPP8Tuu++OKVOm4MILL0RTUxPeffdd1NTUiH7OOOMMPPbYY7jvvvvQv39/nHnmmTjooIOwePFiJbWRCa+99lpk3dq1azF58mQceuih1U2og1D1i9Mvf/lL4/r/+Z//wSuvvNJug3oaeORWrJet5QdqdbP4quQXPO6TaRW5lwCggbZKuT+oiKwDfC3AejeHlrLPOGWoK/ROrSwT5P0xjR8wPXJ2YIM+iaNiXhotAiqJcQrbcbarsqapEtMUlyslDoq3pzXlOhyfnfDC7Yyi5IUV4ilhIj9SC/P/9QL9Rg0pwSNluCLijSEo9A4HDK3SsW5lmcBTDj3qGurnvMmx5MiPEqNKpB9nnQC/ruE6z38IrS/XIE+z0n6OWnHe4HVXl6Vai8QyPGnLcBTGRkBcg+Y6a5WQpE0R9oicY/H9xOdek9eH+bUcnaVh8XqoSuDMlc6suQZ7I2xcFfdP3PY0bJO8XtYIZuCiWPbnyzyCfK3/7KpxygpzvdarRT0toD7oOkvKYeZw4ii5nDzm5yqrpdHIOUfKZM7Xy8xpWysOpMkJF8faJT1/zPnnurhWXRd/aps3b56yPGvWLAwcOBCLFy/GHnvsAQA477zz8KMf/QhXXHGFaLfVVluJ32vWrMHtt9+Ou+++G/vuuy8A4J577sGwYcPw1FNPYeLEiVXb1djYiIsuuggHHXQQjj322LZMrV3osDN+wAEH4KGHHuqo7iwsLCwsLCw6AWvXrlX+0pY0WbNmDQCgX79+APyIt7lz5+Lb3/42Jk6ciIEDB2LXXXfFww8/LPZZvHgxSqUSJkyYINYNHToUo0aNwgsvvNDmOaxevVrY09VolzhcxoMPPigO5jcBan6mSnlUfDcgQ120ull8sqE/AGBAbj0cMBGlU0NLwttyGUWWuCL6jWsB5JpWYbZdCgRMEt+Xw682Hnr/XMdjyuuTVFnc1EbXGZSVmlPxzFFSFfk0OZwqeXlx++sshFIdXoqs0zVPALCq7NPODXQD4AAewshIFwRZUSssjNZz4PmsoRYJxOFHn/nbisSPCuPHk/8WHrakJ9PZihILvfhSkH/HIaE9vlcfzcycdB5iERwSByxgL+P0TPF9OmDKeXMS9D3V1iaM0wyZriv5vohnXhDUa9Nyn/HjUIWa1tcbmhkqzpbITF2SrintuTOxTekYN4P1jKC54DPe2XwZw/v52fQ3r1uFOlqUrjmq6CZLLBM+40gJBYSMU56WscHNKc9SoYUz5GiSqw6kYSBNc0tigOIY76TnkBvTRs7l1xXoSHG4Xsj+/PPPr1jWhDGGadOmYffdd8eoUaMAAF9++SXWr1+Pyy67DJdccgkuv/xyzJs3D4cddhieeeYZ7Lnnnli+fDlyuRz69u2r9Ddo0CAsX768os2///3vI3YsW7YMd999N/bff/+K+3cGqn5x2nHHHRVxOGMMy5cvx4oVK3DjjTd2qHEWFhYWFhYW6FCN09KlS5WoeFOhex2nnXYa3njjDSxatEis4zmWJk2ahF/96lcAgO9973t44YUXcPPNN2PPPfeMN4WxxEAzjmuvvVZZppRi0003xfHHH49zzz234v6dgapfnCZNmqRMlk9ir732wnbbbdehxnUnGEjVngQlDLmAdQIg8pdwz6rVywpPjdciKwV5nMqegxbJM8sQT8moW/IyxrpNHgiorEMK/q2mxpOMaiLlkvNAmfOlxFc4j9Fs6FFDVVSX5xonj7AgO3SoRQuZBgAesM71NURr3DrkiAtKVQ0Pj5xzQRRWpsicyJx4xFcOrtBG6XmaPJBg33jvmLMdMruytlyDPpmiqO9VCvqQPeekqKu0tek4KxdrG4s+wanEgqljpruPjFnPNRtEZGmF/4D4953K/sTawajKYLFwnDIQYa7i6/fRikxYHFOn3y9J0V7cDhNM95GJGdG1mzW0hIKXQSnI37RZv9XYps9XAIAhuTXYNLMWOaLq9IpShvti8FwrsYwfsSdd11nqxure2lptIPEYJGZ6j94PlZ5J+vNIb896YT7uxsbGqtIJTZ06FY8++iiee+45JRJuwIAByGQyGDlypNJ+++23Fy9YgwcPRrFYxKpVqxTW6csvv8S4ceMqjv3xxx+ntrOrUPWLU0+rUmxhYWFhYfFNR3fkcWKMYerUqZgzZw4WLlyILbfcUtmey+Wwyy674P3331fWf/DBBxg+fDgAYMyYMchms1iwYAEOP/xwAMCyZcvw1ltvKYLytPj000/R3NyM7bbbDpR2oTBfQtUvTo7jYNmyZRg4cKCyfuXKlRg4cGC31I3pDHjMnIdIh+5h+tEpPgpeBuvLYUimByKYglwQicLrkRW8DNYW88gF0SfZvIt8EJHFo+/MXpdjjPqrJtNuaF/ljLtJuqW4iJSkmn+6XbpXHIEhciuurcxOUUbgCQbH89kcnnMGkCIYsz4byDjzQoU3zZdF/0LjJGnO4AmmqISyiLKijCkee2vARCrMoNwPYcjCP//1tCBYw+ZyHnlaBqVBFFMQUadmElfPRxJzGqlnpkeXGb4N0CAaKq5OYCXIkXpp83mJ7W307uMiz/j8BbsnMU1AmAlbAQsj8iLQMsdHGDMDUydsMVz7ac6h2D+GIZHhGe5pvs/aUg1qa3xt35aNKzGq/j8AgE2cFgBh7cQsKaOV5UTVg2Yvr+gxvUC/CQCO4yFLPWTkenQxLFM19SwrsUpJzKrp/Mdr4DQ7jOeoixinbkhHcOqpp+Ivf/kLHnnkETQ0NAhNUlNTE2prawEAZ511Fo444gjsscceGD9+PObNm4fHHnsMCxcuFG2nTJmCM888E/3790e/fv0wffp0jB49WkTZmXDnnXdi1apVSgqkn//857j99tsBANtuuy2efPLJiF6rK1D16xqLufELhQJyuZxxm4WFhYWFhUXbwRmn9v5Vg5tuuglr1qzBXnvthSFDhoi/+++/X7Q59NBDcfPNN+OKK67A6NGj8cc//hEPPfQQdt99d9Hm2muvxSGHHILDDz8cu+22G+rq6vDYY48l5nC6+eab0dTUJJbnzZuHWbNm4a677sI///lPbLLJJrjwwgurm1AHITXjxJXthBD88Y9/RJ8+fcQ213Xx3HPPfaM0Tunzc8QXICx6DlaW6oVnupq4whPzGMUatxbrXV+UV2IUOeqiLuMzUg2ZVhGpUvIcJQLLA1Xz6Eg3Q6VIlDQ5TkyQmQy9bTQyL9nzjeaaSadvAmQWSbc9Gm0lt6FyPTJGQcGQ4RndQVAORI4tbh7rpNxbrdr51Y9vq5dVPOgcKUusoityMTmEoYSypE2Letkc/rkO69PJ9QY5OEOmR9Ppmo243DNx0Gv/yZ59mEMpyI+VwJ7oUHRCFXINpWWV4uqcmVBJQxcyTPFz0rVNpog72SZPa+8xGllnQjWRcon7GvQ4erty8G+tU8SXrX3Qr85nl7asXSnauqBYWuwnasw5GtPKc4kBUS1mlrqgLIwQ1p9jSbrJJK1e3Jz9fklFllvut9L1Vkln1qV5nLoYcUSJjhNPPBEnnnhi7PaamhrccMMNuOGGG1KP/cEHH2DnnXcWy4888gh+/OMf45hjjgEAXHrppTjhhBNS99eRSP3ixJXtjDHcfPPNyptiLpfDiBEjcPPNN3e8hRYWFhYWFhs7uuFTXXdiw4YNioD9hRdeUF7Ottpqq1TpDDoDqV+cuLJ9/PjxmD17diQnwzcNaTVOav4XT/nX06J1vio1KMxIczkvmIOWch51mRL659cDAOpoUdR7kj06bpsenZM22s00z7SQ2YwokxUfuafrAtK2bYu9SZFTGcnbp8QLyUIpS3uLl0ONFx+ay9kgAEKjJrxt5udqaspsAAD0cVpRT/3EclniwkFW8dKzxI1obOR+edtV5XoUglpgekZrfjzj9GRGXZx0jE0aJn9flUL3dXTQ1lVmT/jc5P5M9dR0230bop68PGbcdZ10fYl1cWxGwn9YKOG5mFQdVLidSb8N2ijAuI6f+7QsiYxEJqZSlnHpGVfwMii6DvIZf1ZNmRZRi26dW4P1bo2oguCQIM+cF17LPM8Y12Ly6zOrReLpmqa4aMLQvnRsZFI0YdJ+1UTrxV1H5a5inDayF6fhw4dj8eLFGD58OL766iu8/fbbyue/5cuXK5/yuhJVi8OfeeaZzrDDwsLCwsLCwgIAcNxxx+HUU0/F22+/jaeffhrbbbcdxowZI7a/8MILIhFnVyPVi9O0adNw8cUXo76+HtOmTUtse80113SIYd0NL20eJ+UN3pzjhXtfa8s1IqLIz3Uief7EQ1O2gE2yPlvhgopM3SWPRmtmxXgOlSJKlLZV6if8/qPenNyXbIe+j7w+KXouyYuO06BUjKojDGXIjAENGQMpcfQGN4s1qEWrVA/OkVkORoUubb2bR9HLRDRdX1CfXq53ChhR42tF6gLmibNIBS+LPC2JqDvZM29lWbR4ObQE4ywvNor51WcKKDEH5YCN5HqOuGNcTZRakr5H7oczRpTF76ucf42JiaujaLqmIjqmhMi9pGsw0raCls4EUwStAiZdc56TeDyBeOaqmsjBdPnMKs+VX0/lgEXaxGkROso1bl2EOQIkZt0Ls957TK020OLl4BAm+uK6Jt5WjtTVnxlJWr1qonOT5h33PFPaVGCruiqqrjvSEXQnfv3rX6OlpQWzZ8/G4MGD8de//lXZ/vzzz+Ooo47qFttSvTi99tprKJV8mvbVV19Nle3TwsLCwsLCooOwkX2qo5Ti4osvxsUXX2zcrr9IdSVSvTjJn+d4bgYLCwsLCwsLi67CKaecgosuuggDBgzoVjuq1jideOKJuP7669HQ0KCsb25uxtSpU/GnP/2pw4zrTpQ9CuJFSyhEIJNvzP+UwPehxEPZc/BVMUzdkAuSWhbcHDI0THJZmy+i1ikJ2pcnNpR/p0nqpn+2qYRqhNmR9ilLuSQljauW5k7+/KJ+Okqyh4KJi7/srwTgH+v1bl6IsU3pHFaX6gD46Sb0EhyUMJRd/7hscEPh+Gb51X6BXs3l4+kKlIK/gQCdJxhcV6oRx7DeKYo5AH6qCjmkOilxYNLnTH5k0kCMJRWkrnRe+LxNn9oSP/NWUeQ2uR1RPt2m7T/OLgB+UlXD50SlTUKJIL0MSVxZks4Anzf/NMfhSoJvKn1y6+O0ik9w/BOy2IeFUoIyc5QUAwUvgzwtI0t523Cb/lxLSkxZSeAf10buI65txaS7Cfum3acjQBgDqSIFSFwfvRn33HMPpk+f3u0vTlWHA9x5553YsGFDZP2GDRtw1113dYhRFhYWFhYWFhJYB/31YqTNK9XZSM04rV27FowxMMawbt061NSEpURc18Xf/va3SBmW3gweqmtKrKi3E14lL0MhmlJscLNie5a6or8MdeFISRgB3zszlS+pFHIesTuFKFjdJ334rdjWxtID4rh2cmFMmeWQ13FkqBeKxRkRLkRzOe8n7XN52D9F0csofXAhLYCISFrHKlanjN0n4zNGeVJClmZCoTRTz0OLl8OGoFh00cuI66SkJWYtB+HfaUT7EcZEYor8wseVBc2mvmhQRDmxfcrUASY729Kveaw4Vq76YAR57EQbkg6nvq2D/ptQTQCF/DwqeQ6yPHDMSQAAYQ5JREFUwXVWZBlRaqWP04oaUsI6z3/m+8lwJUG4xhQVvIxyz+RRFqkLdDE4Z6iidkULFCexqZXmWo3AuyNZcIv2wXVdLFq0CN/97nd7VAqk1C9Om2yyCQghIITg29/+dmQ7IaTb0p9bWFhYWFh8k7GxRdUBfm3ciRMn4t1330Xfvn2xbt267jYJQBUvTs888wwYY9h7773x0EMPoV+/fmJbLpfD8OHDMXTo0E4xsjvgMgISlOYA4r0KxWvnVyVvylS2QA57z8AFCOAGnhlPUxBX6FMuI6AnNjSzP/FJ4OJKVbTl+z5fl9br8kAiuopKGpm2QklIqLvzHiQtGoPncc2HyrpwRsfkxZtSK+jgeqeil0GNU8IG19ct1WcKcEFFkkEAIuEpAKwt12J5a2Owr4O6gNEpSqykbwNN1DjFrdPX83PA55mphkHStH2prqMOSMra1msm6RilKR7d0aiG8aqsU0tmyeL6KnsOmos5DKz3E/CuKtejgfqSjBpSgkM8kQDTIxStyAiWseRlRFoNjxEUvYxgS33dpsoyyZomWZOZpGOKY+JNbeO2m9abnl1J16bp2VlNOpd2YSOLquMYPXo0PvroI2y55ZbdbYpA6henPffcE4CfQXzYsGGg9Jtbn8fCwsLCwqInYWNknABgxowZmD59Oi6++GKMGTMG9fX1yna5LEtXoeqouuHDhwMAWlpasGTJEhSLRWX7d7/73Y6xrJtRSYujJFeUWClf7xEyGRl4oSaGQgQuuUEuLF5ugULViegJ4Hj0FJCOYYrTtpjYk7Tf99PqZ0zeeyUvr6OhM4H6vMugSpFatVwGU85vHOPEt6eFzLS1lHMo5xwRVQmEhXsLXgbry3msLtQIe2ocv13Ri9EyJejM2sJolBGNKI29jkjlceJsSdIRVnMtVhw3pRaqo65L8UxIWeoj9hpL8x+6oI3Yny+n2FkUIC/WouxSUWTcZVSURuEJYB2ppJQj3Tse8URUXcHLoOBmUHT9azlHy4ouz1SAt9Izi7fT11d6/qRZrpapTWKeLToH+++/PwDgxz/+sZJDkjEGQghcN5qctbNR9YvTihUrcMIJJ+CJJ54wbu+OSVhYWFhYWHyjsZF+quuJZd6qfnE644wzsGrVKrz00ksYP3485syZgy+++AKXXHIJrr766s6wsVtQdB14rlSYlJjZCUDSDikRdUE/zEGGBt//XQIv0DtR4uunON9gikyKY5FknYC8XW8T2ZYigqQtOoGk/jlYXD9VaF3SajcAwGWhx+0CIBKLpPelnzeTvif2OLSxKLHPPtUJ/ZvHqCgW2lrOoKWcRU0mZKNaAw++UgRjNWVHgPAYcfZNzu+TkyI+c44bGVvXSCn9xuidEr3/BI1LZH0bvPyO2icN+9gW9qya6zsJ1WieuLZvQzmLulwJ/XPNAHx2qTUo3MuZpiLjjGhWKTxe8hyh3dvg5rC2VKPpBJ1IXib/N4mwRpVyw5kLF8ezmPp+adub2ungc9Q1m52FjfVTHZcJ9SRU/eL09NNP45FHHsEuu+wCSimGDx+O/fbbD42NjZg5cyYOPPDAzrDTwsLCwsLCYiNFT5IHVf3i1NzcLPI19evXDytWrMC3v/1tjB49Gq+++mqHG6ijUChg1113xf/93//htddew/e+9z2xbcmSJTj11FPx9NNPo7a2FkcffTSuuuoq5HK5qsdxGQWRvB9X0g14MeyF0DhJXjwlDMWAucpQT3h4vqYp+vov53WK+84vb6vkgRkZpxRefEVmI4FVMrEeMuNEtHnHsVF8X36cqo1ekYvLygVY+Tnk4+pslEfalsW5GkbDIwTlEhXsln4t1GVKynHkjFOlsSpp2OK26d5zczEPQhjqskWxPcmL1/ViiZqrKjM1p21XqU2aPhgjyvVpujb5HZp0HVcjWAjzs4Xr0uiT4qCPTQzPKjF2YHNLMec/nwJbWr2syNuUJS6yJGQcXRC0ellsCDLbry/nBOO0tlSDlnIWjblC0D+Fx+JZ8TiGKY45TfOMqvaZyDTmK06fFseAy3ndOhUb6ae6nigPqppj3HbbbfH+++8DAL73ve/hlltuwWeffYabb74ZQ4YM6XADdZx99tnGtAeu6+LAAw9Ec3MzFi1ahPvuuw8PPfQQzjzzzE63ycLCwsLCorPBP9e19a83QpYH1dbWYt68ebjzzjvxrW99C48++mi32NQmjdOyZcsAAOeffz4mTpyIP//5z8jlcrjjjjs62j4FTzzxBObPn4+HHnoo8vY5f/58vPPOO1i6dKl4sbr66qsxefJkzJgxo+qQRTeoVafDC/QwMnuhe6AiFw71lLZlN8ow6NFbGeoo6+NQrhBdpayL6AjUZRO7wv9lmqdo8sZ4H3K/uqdu6g+Ieu0yeFvONBGJJaoEQhigjamfH7mtzkZxmJiWtDYkgY9RJtHzWOncJx1nuW/TsY7zmvk55LmkSh5FTaYs9HnFSl611G0a5qcSo5m2L45qzklFXV3K/8CYMtMn2VHN9VvJh066bzgEeyZF3cklK2R7SmUHJMuwpljrtwUT2qY6WoRHwlxMq0r1WFHsI7KDlz1H6PPWFtU6dmUt55wMPQeZv64NWiREn2lxfSWx4nJ/cts4e/g5KrtdxDhtpOiJ8qCqX5yOOeYY8XvHHXfEJ598gvfeew9bbLFFpxbe++KLL3DSSSfh4YcfRl1dXWT7iy++iFGjRils1MSJE1EoFLB48WKMHz/e2G+hUEChUBDLa9eu7XjjLSwsLCws2gPG/L/29tHL0N3yIBOqfnHSUVdXh5122qkjbIkFYwyTJ0/GySefjJ133hmffPJJpM3y5csxaNAgZV3fvn2Ry+WwfPny2L5nzpxpLBVTdh2wmKg6IPQ+HOopbWT2glcaN2kMeK4g2eMve1R4+LJWSt/XY0R4eLoXpjNZsq2m9rKdyvxi8pvI3pi8TfaQkzy16H1LQNI54YJBkvuS91X7Dvvl63kOEG6rfIxkNiqNJiTWxJjtEYYgYCJdw3PMz0/CxLVQ9miE+UuyJy7bPUX0muJXL2MELsIIqiz1kKVuqoghnZVLw5jFMU6Ra6cNtehMqMT0tCXijl9HMqPZEWxkR4Nfe4xo7DgL2ZKyS0GIgy829AHgM4wix1huPSiYiKL7ulSPtaVa0b/HCFrKfgSe61HUZsNs+EU3ozDVAJTITR2RyM0K0XBxyzr7x5+XnIVj0jhxz8pKjJNYb6PqOhVcHjRixAghDxoxYkSXyYNMSPXiNG3atNQdXnPNNanbXnDBBRXr2/3zn//ECy+8gLVr1+Lcc89NbEsM/wXmSbLicO655yrzW7t2LYYNG1bBcgsLCwsLC4vORnfKg+KQ6sXptddeS9VZ0guKCaeddhqOPPLIxDYjRozAJZdcgpdeegn5vPr9fOedd8YxxxyDO++8E4MHD8bLL7+sbF+1ahVKpVKEiZKRz+cj/QK+h8I8Kry1OM/b1Twbh3iC6dAZqDS6hJIXam3iNDlA6P24jKLkOsIGh3pwqKd4eMLjTOHFceiMkrzetK+JAY7TCuggGguiR+DFRRh5qKBH0UkeT9U6ce2U3z/fpu6jM1BJqKRv0fuNixJsLmdAwZDPlkXbOE/YeI5i7HUZiei3aLDYUsqhtZRBfd6PonOo5+tTPPkYmeejR+aZIvv0tnEautg5VaNhqkKTVplBVJcJia6Ta0BWw5DpaEsknUl3GD1XwbHWGFZKGNzg/LoehVciWF/wn4XyOSwxig1uDq1B/bmWchZFqaZj0XVQCKI+807ZPw7as0aNpAsYJxbPOOm/Tdt07aLOMJnuE6Zdfy4j2rMy/muW6dwyRuAa5tEp2Eij6rpLHpSEVC9OnZW5c8CAAakm/vvf/x6XXHKJWP78888xceJE3H///dh1110BAGPHjsWMGTOwbNkyQd/Nnz8f+XweY8aM6RT7LSwsLCwsugLE8//a20dvRbFYxMcff4ytt9660+VBldBujVNXYIsttlCW+/Txv8NvvfXW2HzzzQEAEyZMwMiRI3HsscfiyiuvxNdff43p06fjpJNOalMRQNcjgEeAih6kygS4hEQZJ3DGKdyLswiyd0OI2WvnOipXiqTTtVEcjkfgUHNuFK4JkvdlLPSkHD2fUQKjpHtfJoZK3kdnkRRtkmfWOfn2klgGxZRvJ5VWxRAdo9f5MrNSJhtUe+MRtcvEbgH+eS55BBnHE/Yp5leYo6sda2UMaR0FQ2ugTVnfmgu87WDfQAfC+0qTG4gp9ctCttTEAMWxnklsWlrWSb7ejdsT7umKY+j3QazOz/83iYTX28RF0lXKKabvJy/LWfHVZ5GvaeNRlGAAAxEMFGNEyaBPiSd0TPxfEYHpOsg6vCKCz7rxZ5J+/uUoOp19NLH6cVFwyrHQmWVG4HpUzEW/Rz2EbBVv41D1/lf6V/qOrBJ9dDo2UsappaUFU6dOxZ133gkA+OCDD7DVVlvh9NNPx9ChQ3HOOed0uU1dxDF2PhzHwdy5c1FTU4PddtsNhx9+OA455BBcddVV3W2ahYWFhYWFRRtw7rnn4v/+7/+wcOFC1NTUiPX77rsv7r///m6xqVcwTjpGjBiheLccW2yxBR5//PEOGUOOqkvy+PRtsibGA4l4/DIbZerPBFNbPn3dQ3YJASuTRAZG1lxF9EQ0ZLnSRpXotpj2i2PW5LHlf3k/MiOmb9cj8vxo3fQ6IxkqSwMjK2VCYh2wCudWj+rjxyhLXYDGs2hpI4oJUT0jff5rCzXYUPDZg4zjoUaKhioZctPIDIluuyNlnaZSDi1eMzApb078PJPYp+h8lf5Ruf+0fcXBdK21J6ou7vpsj25KNkdhb5k/nuv6V4jrUlDKBPNSly2Kc7yuXIO1xRqsL/nZwTljWCyH//mQIznLHhUXHmUswi7KzJKsVdLzMSnzCFikcC7hsTJFBcvaU5OGkrNEnkcDG7xIv0nPM2WsLsrjtLFG1T388MO4//778YMf/EDRUY8cORIffvhht9jUK1+cLCwsLCwsNipspHmcVqxYIfI4yWhubq46IK2jYF+cYuC6BODemLSeX3b8dLnQIozkmkc0/iI1MRW6txOn1dCvFTmfkYn90W32YtgegMAJOvA8EmYeDmDy7HQ7+JhxdbyEd6kxFvwGqMTuJeVJquTtp2Wjqnm2tJcNEAwkIDIzc3s8SW9SqX6aDCKxCvK14RAG16NY1+pHThUKGWQyvqedy5bhMgpe9imJndNZBAr/2jDVFCSB5iUNe2lihipp6/R9TWOY2Nn2MEOVoknlMdJGZAJqVLLO0LYF+v1CCFMYKMYoimWfLfHKFMiEmqayR4WWiZIM1pdyoR4KXIfnPw8cwsIIOc+/tzmrJOci88dM1rfFVRjgbV3DOTQ9J2SWWz+ujKkaJ8YIvGBuuv6SPwfDbSySt8l1u+c/3hsLdtllF8ydOxdTp04FEJ7P2267DWPHju0Wm+yLk4WFhYWFRQ/HxvqpbubMmdh///3xzjvvoFwu4/rrr8fbb7+NF198Ec8++2y32GRfnGLguVQwTiYtkHL9RSgg/x/XBQhlRh/ZzPqYNR6cNeLLptxCnhbZIW8V/fD/I+pc5JpubpBHisjbg23yGEzx6NRjJGuldHtC3QHEv7JnrnrEGuOVyBhFdVRhP3pbQwcpGYhKEU5pwdkA07x96Cv4sfWX9LkqEVqyV05YqPHwKAplB+Xgus5kPOSCXFFlca2LHYWdOjzis04cLiO+F0gNsc4pIuPSMkyVWKs49kdmGCqNF2djXL+J24HY66q9HEWqWnXaIISo+bXKLkW5GPwngKkMeclzlGzgJc9RIwg9KhhoSl1xLMqgkOtzMte/xnmuI9eL1q5L0vLpObJk1ltmEuX1SbpD11OvBf3Z6h8nid2VnnmEAsyj6jqJGe50bKRRdePGjcPzzz+Pq666CltvvTXmz5+PnXbaCS+++CJGjx7dLTbZFycLCwsLCwuLHovRo0eLdAQ9AfbFKQaCcTIwQTpjYdIc+f8SEC/8Zq54iUTvU2V6AANrxIkDkFiPNeIFGyLNggASn6mA6n2LLMNMNdHzCCBHx5k8F67XcbyoS81tD3I2McGgMBDKFPc4jRZFH55o6yv5gGm1J3q7JNYrDVOh54eSmaS00ZtR/Vj429O9YSmy0w00VbX5UmTfsIaXaq9JU0QRpDiT1zEWZa1iUG1mZqBybqakayZJ6xS3j2mYNumi4uwFYu8RmLZFOgjvnzgQrQ1TbzMUC1mUW/z/BJAMA+CKY5UhnvhdcDNwPaoce5eFyy6jIVMtGNTgmtNsUqLotPOSxC4WJY0U/1fe35SBXobCusv9S88l07i+EJFPFOoBDP7b4Lm2Vt3GBvviZGFhYWFh0dOxkUXVUUorRs0RQlAul7vIohD2xSkGnksANyajNbRIC+5w6K/z4vt5sFl2ViLEULIHKWuK/Ha6NxnDzBgYJ7HN8G0+9MhU7YxgrtJ4/B6B52rZwaVjoDjW1ANF6MgZ5Ucm+w3sgaJNMHWmDJwc8SQYrHbomExIqq+lVK7X2ojjo2mYwn6l7WIlUSKrTJGOMrNVKdJTzk/G+w5tl44nUzOtm7LMy32mzdcUYYVizo2JnTLpWkwwMbZxSLo2qvnvU5xuLQ2YIVccP9y+nFE6/1CvP0K9cH4ugVumKJaCbOA5B3VZv25h3iljnZuP6It4dJnnhcfcoR4cwiLZ/uN0ZXrEZRw7qF+r8vhxLJIJ0Wso+FcwWvJG/ozUPzGoP7zyNyaPdI/CnDlzYre98MILuOGGG2DK59gVsC9OFhYWFhYWPRwb26e6SZMmRda99957OPfcc/HYY4/hmGOOwcUXX9wNltkXp1gwj4C5BCzO9RPONREeiPD8dGaJSG3l/SPtGMDzoUiRc6EnRcS28EXbxMbEe+3GOSSwVeHveNbH1wFIq10C5gbaJd1MPULRo/AIRFs9Gi8uf5E+J3+beR5xzJJMA6v6M4PTWo3+JAZpczEJViBGt5PElPlMocQEMYk1rXBdmPRb8jHiDBPltRMFexHtP4lxUI2odE6jv+X+qtE8sZjtJoYizT2Rdp9KMEf2pds3GvELMR99GyMSa+hSlAsZEK7tAQN1PFEf0WNEZI9vLWdRdqmSv0ipP+cRlMphHiRKGTJB7TqHMsUOV8uLJEc8yrmX9EhI/riU2SXmhddA4rHX2HpxnAAwL/5aiLJN2vOdye26AAzGa7XqPqrAzJkzMXv2bLz33nuora3FuHHjcPnll2PbbbcVbSZPnhwRbu+666546aWXxHKhUMD06dNx7733YsOGDdhnn31w4403ilqzlfD555/j/PPPx5133omJEyfi9ddfx6hRo6qbTAfCcowWFhYWFhY9HJxxau9fNXj22Wdx6qmn4qWXXsKCBQtQLpcxYcIENDc3K+32339/LFu2TPz97W9/U7afccYZmDNnDu677z4sWrQI69evx0EHHQTXjStm5WPNmjX49a9/jW222QZvv/02/vd//xePPfZYt740AZZxigfzdRzgqWkMjodYzz0PorkiRGOZ5N10vYk+iK7BkTch6kHpnSV7YNpiLBsgL5gEQ4HH5xKfMVKmL3mMnE2D4Xhwpy4Yy5OjWIzjyibEsxWqpSYmRZqeli3YqGuL6d/U1qRfMmY2j5uauJ7U/nif8m7pfN14piue0SPR7WIz1fYzjKhLhSodi5i2lXI1pY3ATGKY4nQvSXaFK1Oyux0IVTsoX7hMYRwZUzWaBEzcC55H/DDLgC0heQ9OxhOML2ME64p+hvlS2VGi6pLOnccIPDdkoKie8w4RwkbRJsVlyxftTPe84XkXua41IzxpTLN18J/9Sr/6s4m36yLGqRswb948ZXnWrFkYOHAgFi9ejD322EOsz+fzGDx4sLGPNWvW4Pbbb8fdd9+NfffdFwBwzz33YNiwYXjqqacwceJE435XXHEFLr/8cgwePBj33nuv8dNdd8G+OFlYWFhYWPR0eMz/a28fANauXauszufzyOfzFXdfs2YNAKBfv37K+oULF2LgwIHYZJNNsOeee2LGjBmivtzixYtRKpUwYcIE0X7o0KEYNWoUXnjhhdgXp3POOQe1tbXYZpttcOedd8bmcZo9e3ZFuzsa9sUpBqxMwMqStsigX+IQXp3wRkhsW9G/ECNIno/i3ITeoa6dqnjrVNImGdrFGqy3kbVVfJpclyRpnpQIIcrCgxRhIqAwc4SxKIuT5NCl1ZwYjm/Yjsaze0RlEYh+jgzjmxmraL02NWLNNIGoPbwv8VsnsXTNi9TexPTE5S+SI7FEX6KtVzFMmIProriHb6o3GKd/SmKX9HWRy9TAMLVJy1eJUeoChkmHYoPChAuKMvhXZaAi4j0KQNIUei6FG+QkakVGsEa8XlvM5Wg+9hKDLEcEJ2n1/Kzc0iBEeu4youqRmPpbR5RlTsOqB8uyfk5aFv3odndVrboO1DgNGzZMWX3++efjggsuSN6VMUybNg2777678qnsgAMOwE9/+lMMHz4cH3/8MX77299i7733xuLFi5HP57F8+XLkcjn07dtX6W/QoEFYvnx57HjHHXdc6udMV8O+OFlYWFhYWGxEWLp0KRobG8VyGrbptNNOwxtvvIFFixYp64844gjxe9SoUdh5550xfPhwzJ07F4cddlhsf4yxxBejO+64o6JN3QUrDrewsLCwsOjh4FLRdv0FfTU2Nip/lV6cpk6dikcffRTPPPNMxUi4IUOGYPjw4fjXv/4FABg8eDCKxSJWrVqltPvyyy8xaNCgth6OboVlnGJAXALiahSt9A+HqjsMKXJ9lVhUllUqWtmXmkSvpu9CmhFiNxOnm+JTXBwilHZUcCk2SaJNAGAeiX7OFKZon0JcX8LKNxkFonxP/TjHfXIxfGPQqXx5OTGRpvz00cLxw6Sh6T49yRcDIywqaI02iy7rn7O0hIhyCHqacHn984dynPhnN49GzouxD/jFrNMWaq5UCiXpUk1KXMnkTy9x+yV9kkvxyTCVkR2BCt/JlLI5hJc3Cpoy9dqmWTeMfQnSELiB0Nn1HJHwUhdXM+InulQKgItjTCLh+Uq6gJjPdsZxpAmLbXwfL3pdRlTnJqT59Mrva+OnOkTOAemyT3XMfBFX20dVzRmmTp2KOXPmYOHChdhyyy0r7rNy5UosXboUQ4YMAQCMGTMG2WwWCxYswOGHHw4AWLZsGd566y1cccUV1c+hB8C+OFlYWFhYWFhEcOqpp+Ivf/kLHnnkETQ0NAhNUlNTE2pra7F+/XpccMEF+MlPfoIhQ4bgk08+wf/7f/8PAwYMwKGHHiraTpkyBWeeeSb69++Pfv36Yfr06Rg9erSIsuttsC9OcQhKrgBIFCfrBWoj7ZOcU6I1IKGIWo3I5x5VDGOke8eMJAuqkw1SxzRtQwXHxeDFhV6oKq4kNBhLF2AGNiQlIGVEnqdGK5nsi7OZqBvVEG9tP4LIsQ0dfLNYPA5cGO93GxWP6/37C4FINziGJuYnwlbFXY/S+LECanHphaJu/fJKcvQZI2oiT227acbK5dzGtBppkiLKbdP0WRXz1Flg5nMebpbOPYLr0ZRrI0jBwZkmQv22PMmlMoZ+LBng6ikppDQCEbG9vE55Fugsk+HaE/tpzx9PXiLR61rbrF5U0fNGJPuUdsZrQ9u/ixintuRhMvVRDW666SYAwF577aWsnzVrFiZPngzHcfDmm2/irrvuwurVqzFkyBCMHz8e999/PxoaGkT7a6+9FplMBocffrhIgHnHHXfAcZz2TaibYF+cLCwsLCwsejp0J7mtfVTTvIInWFtbiyeffLJiPzU1Nbjhhhtwww03VGdAD4V9cYqDR9IlNtO9DSK78Yj39qOLAIWouKKWrFA9KlGehUP3nmVhTludoUredBU6AhnEA2SjmHa41MaqhkgZgjMhIpxa82yj3cRDYvrCdXwgw7ixJFhy4eAkmA4ZSWQaSfw2xSb4xVx5U4mxMCUGlPUnkcSb0jGJaMJ0r16zIcm+yLoYHZtZA2XeL3UZDBOLFMcsVX1q4+g9vbOEg2dAhBFVepKOF0/xoazjPzQGxyXwQFEK1juOp5RM0u8rr2zWuSUlqdRtFyVNTKyOrkvT1uskNfGQfAh1Dam+PoF1rMRWfZMTYFqYYV+cLCwsLCwsejgIYyDtFIe3d38LH/bFKQbE4+xItTsavOI0DgllgEciOTTDfiXnSGa1NGZEFO3km72U43ciSILHRjyV7WEGpzzRkZS8PTngTWkTOZYGEYRO4OhtxHrZQ47xuJNEP2kha5N0VkGaKPOi2yNkBo+OImrBVWGvCYxEHe/Y+ZDEMirVsHA6YxF2wi8G8xgmnVJSpF1FG4z7RNkoaJvjxzPc0Ppy6vuUGX/6iwbb5etI0qwBIWPLXAKvTAV74lIGJxcU6g10UHoEYiIDGNE5acuyjQYdk/FaYyR8JjO19FD6z1gm9jahucx+xjBRbfrvRFvgISwB1p4+LNoN++JkYWFhYWHRw2EZp54D++LU0TBpbOKuVdnx8ohGmUR1DIREN4llzrwEZJQirYp4njFsSmeBwawl4IOz0CZFImaKqInRdpn7DnbRNWEG715l84CIvkocw5hzJK/qiGcTk7zuNGRFTGFhtc+EyL0YDz+9ufFtVT1Uwnh+Y8km5SqObI8ghulL1ijFnbAU2hcd7T3vKZ4TYkXc4TYcWCbNRblOZAaKMvU+lKKFXZdCj4yLDmtm6cysn3RsmcQaS88JkUNJh6fu6/9u+wMsFRlq3zUsNNgXJwsLCwsLi56O1J8jK/Rh0W7YF6cY6CRFp+iEpP59pkWLdIkbsz22kOg4ZnqqHTB5mXHeKtfyCFGW1kb/TTQmIK3mRE8+JHnXclOmMQ0hA8X/qaRziaO9+Ji6DdqyaQJaYSTfi2dKMyPjw1dRaQ4VTm+qvEmJWh7D9oSmpgZJuZNUmjZuUwKDZNpsujb07TCzZElBjTyTfLtAmHmesVM0nBzpvOnHVmeglEg6j/9LjVGW+jCqcTHbJVZJL6KrsEwiU3h0Onx7mx5VHfB462rCXqAbModbmGFr1VlYWFhYWFhYpIRlnFKiI4gYE0xRZLFjClqkbT6OTlSYXSeJ+TGNrXSYNFjCss4oJNT2i+ybNmeKyVOXGROZ5ZK2RXRBAWUQ0UDxfiLnyGxfRCul22SAcA5dqJI3guTzw9kyED83mORlpq0xF90YvykR1VyqCmthGFdiJwCN0dE1bLF9R/uoaFPCcYkSYuqaVA5+wjEiaW68uGsLUK9Hk/5JY3qNUXnQGTcDG6TYIPeh7WtimOI0aAzK/U70a6GD0OZnuxZl2NnojszhFmbYFycLCwsLC4ueDvuprsegV32qmzt3LnbddVfU1tZiwIABOOyww5TtS5YswcEHH4z6+noMGDAAp59+OorFYtsG4/lk4vLKdBC4F5E6uqMtf4axCAOIR5Q/KH8w//E+vYTxPPh9KOvVYxlnB7Q/4qo2RuYQ9+dJ40VsSZpX1AZ4ROT1UuwJfitzk/eTxmNe8MfS//F9xViu3y9zU/6J88jtIb5eRfwR6Y9Gr3llLm38S7NvZAztOoqZs3Jck45Lmf9L/T9pG6n0J5/7NH+u4ZoN5mZaF3t98lveeF3oxzDhvleWSfyffp/K5z44hnBp8Be9zpTfhnNhOp68b7gI/ojy57ePOc4x93xVz4hKz91K163FRotewzg99NBDOOmkk3DppZdi7733BmMMb775ptjuui4OPPBAbLrppli0aBFWrlyJ448/Hoyxb0x9HAsLCwuLjRNtTsqs9WHRfvSKF6dyuYxf/vKXuPLKKzFlyhSxfttttxW/58+fj3feeQdLly7F0KFDAQBXX301Jk+ejBkzZqCxsbF9RnSGh6G5O50WxZeSnVVzKKkGGO2Jc9cM3/6TPbvKXbYFsskMJOxc1lXwQZm0k2wD0X4QbRthsfIaY6SbGCfFRGUbA60H4fsq2hXNLml3ubYe4cvcBKIdA33MjkLSXPXrTG4qnSdzXh8Srw9S+qkwJ71vTsTo/ZiWNXPi9otYQLSrg5F4vaOmq9O/tig6KOUhkmCrbpghSk7PrxTbnW6P6Rzq66RthGnrjf1UcV2mOd8diY7uL3YcFj35benDot3oFZ/qXn31VXz22WeglGLHHXfEkCFDcMABB+Dtt98WbV588UWMGjVKvDQBwMSJE1EoFLB48eLYvguFAtauXav8WVhYWFhYWFiY0CsYp48++ggAcMEFF+Caa67BiBEjcPXVV2PPPffEBx98gH79+mH58uUYNGiQsl/fvn2Ry+WwfPny2L5nzpyJCy+8MLrB6OEG6CinXGc9oC52y2d0fc6crTAdi6727KqF6qjH2yt7+3EMg8xWyW1NObHkLOg64jx8wyqjJ851WHp/pqGItj2JoIlLONQhFKBmb+QYq2MTjZEQv9Mirm3s+g680SpFiIpt2smQmUt9P9P1KedU0trG546SHiry9WxqyXVXvM+0n3j08yVrp6CzSOquFRmmjnqetLWf7pY1Jf03qZo+LNqNbmWcLrjgAhBCEv9eeeUVeJ5/15533nn4yU9+gjFjxmDWrFkghOCvf/2r6I8YnhiMMeN6jnPPPRdr1qwRf0uXLu34iVpYWFhYWLQDvFZde/8s2o9uZZxOO+00HHnkkYltRowYgXXr1gEARo4cKdbn83lstdVWWLJkCQBg8ODBePnll5V9V61ahVKpFGGiZOTzeeTz+eoMr+baa4eXYig11vXoovusMyU2fsfpxo9u4PuT8B9df6JrU5LSRafZZGT3tN8JbKXaqYGdMjSPmEy0f7VtjCQPG4GuIUrDYJo87DRjVriI4qrctxskeezIJjkrvcxAGfRNkV7l61GbQGyNQ1lzGMnNpMHTtEeyTinSLyLXJ5H1URWQyDQl7d/Jz6YI618tk9nRsBqnHoNufXEaMGAABgwYULHdmDFjkM/n8f7772P33XcHAJRKJXzyyScYPnw4AGDs2LGYMWMGli1bhiFDhgDwBeP5fB5jxozpvElYWFhYWFhYbDToFRqnxsZGnHzyyTj//PMxbNgwDB8+HFdeeSUA4Kc//SkAYMKECRg5ciSOPfZYXHnllfj6668xffp0nHTSSe2PqGsPYjRD4XJ6D8AUdddeCUp3pSOJLemW6GGmMDZJV5RyoCQvU4k8DBor7U0Zy5Ngsi0FG5PKS29LIFJEo2OOJqzYtcxWRBi5mLZxyxEjozBr8BLsq7Rv3PiJEYLJl2gk+lJmjQgzCycYURk6XQspOjCMzeJZa6bRKTq7Qjy5MaAzSlE7wwH0CMiqjm/SGKbxYvpPfR5SmtMjwODnNmtvHxbtRq94cQKAK6+8EplMBsceeyw2bNiAXXfdFU8//TT69u0LAHAcB3PnzsUpp5yC3XbbDbW1tTj66KNx1VVXdbPlFhYWFhYW7UNHaJSsxqlj0GtenLLZLK666qrEF6EtttgCjz/+eOcYkOZ660IPpV3MjLRzNYxVVbqWShqctmgZTExQgm4nef/4SC/j0ZMZGY35U6dX5UWQpnlbn3VV7BdGdMVouZRGcZ3EjOtpB0lerlaPJKPK45IqMrQi01HB3qQNMZFw/qEmgBdDKSudagyg1G9UuxWdW6hli1qqyKUiLJPETplYj5iJE6/CBZ76eRL01wYWMa0cMF3HKddZfKPRa16cLCwsLCwsNlowdIA4vEMs2ehhX5zSoBqvqFrvo6M/pCfZqkWIVZu9umrvXx6vIyJSUuhYKkhQ2m6DaKNpjSrpdXSQuN9VCjUSx0g2IrHbRM/eoHdKiwj70Ua9WhWoyMDEjdFZ/3GR7yWJKWLiZwydYTKbBkZSxB9Lpv0bNwRvk3SvMy1Sjkg2aCb4pUFi9FHtQFIOKLVhwn4mVPPcbsszvqNgo+p6DHpF5nALCwsLCwsLi54AyzjFoa2eUiXvLo33V02/aTxmXXvCPcWgUjmj2npAjahJ6jsJhraVytsp9b6CHUwONdE8ZHMumeAnDbvmY5lrn0FtCEMbTfvDqNk7N7U19i0zWWmvB3na+j5Ea2Danek/qkNP91mNTFMbr+P2aGIi0ZmR64rEjxGXGZxvDhgdxhDtIAVLHCGdE+ZJPALiQkR0MQdgDgPLaLo1SGyTpIOKPYYG9qYiGV4VO8wNSLG/fM/yn3EkcHueie2Bh/azXbbIb4fAvjhZWFhYWFj0cNioup4D++IUA8JSB/5IO6H9mp227KezUbId8sdYD6AlAlryJ0TL/mo3F2zOA17WLHIxMjwVYIpsYSSwKa3n6Em13/XoNzccg7gEpAxQN1guQ3hnXtYf160JGjsALQZeNB/K4f+ykIFTJhOOqUYYMXgZ/htwCgS0FJ13xLOm4ZhirnFSFZMuSsk6Ha5n4v8M+0RYjyrc1zSRSWlzYyUNk/KeSIzwNLGl8nXTWfdogrbGyFQkjqvpobSOVdJQ0p5VGCO2Hh604+KF9wcp+2wocyRdFfx7zrc1qmlqK2PUpijKhDmlGTOxrXxMY665DinnmAZW49RjYDVOFhYWFhYWFhYpYRmnFIjLCRJBR77MV9EXYZJOiWt7OCFRhjCauIBTBDLr/W3U9ZtlAubDyxJ4uUA74QBeRmJiKFMZEkiMHAWUPDU8k7E8HUk/Rbyw2jop+7+Fd+uF2iR4PiumbJNYIjCEr/6BlyvauqrGycsCzPHt8hx/P3EuKQRrxBwSOcfEC9k5UpbsYwAICTVUgX28LS2FbXlmZnGeiD8mH9fLAW5eO568KTGxThLLIEU4EV0jxu00/JZZm4qMUNL1KIvH9HV8MeLJV0vnIjyIpv50G5MYpo5inJKOs7Y9UvesQvtkG0g61i9NpvXY1OIB0wT+fGEKc0k8STdmYpjSME6czUlzCVQ63wljGo99HFLeO2nG7XBYxqnHwL44WVhYWFhY9HTYF6ceA/viFIfgW321OUFSVdNOidTfzgNtDQA4BYAWoWb35dKEEuCU/O0AQMvqAIwShRGRmQ9GfSaGMyRuLeDWBL/zgJdjUlsW/Bt05YV6CFoCMusJHG5DSWWHTOwTcZmyLB8bRUMke766Ro0ETFNgl5chYJlwORLVxxk7T7WJlpk5czKk9ryty3zGD5LXK3RXBF4GcAOGz81LWrMswDKqTfxY8nMSRkLyPqMiJKNWS7ZV/t2ea7Uaj17sIzFmWl8V96nQviL7YRqDJGyLtQdR+xO2VySDZK1OLKNk2NYW3Zq4TySGSTqPsn4QLLh/+bLDVDsS7QlWmeZe7TWXyCImzzspkjR210r2tTfCzaLXwr44WVhYWFhY9HTYdAQ9BvbFKQ4mrYiEtiR1rvitPY6t8hCNauOek0fgFIBMs7+YafV1TCFrEzIkxPV1TbQUMDgu86PQZPqW1yqjgOeErIyXISjnSajDkfQ5yPlMCwvso5onSosEmRb+G8i2hKyXU2Iq48R8m/n+/jaZcWLK9MXhqnQ+SKhd8lmbkF3zMj6j5rdD1LNl4TGkZdW+yDBMtVepPwYAVDq+GQIvEzBOORLqnTLE15NxdsqBpDVTmSvOPslaKd6nlwVAwzxYiTqbikyGtqxtj5wPdBASOkrMJN0ONiNpvKruexNBlvb+r2acDtBscV0k5cxw2WevAZ8VZlRimHMkjLCrMEalKLRItGHM9RmyXySyzYhYFkm6GSR7jOel4jMlZbsOgk1H0HNgo+osLCwsLCwsLFLCMk4WFhYWFhY9HVYc3mNgX5xiwLQQcL00gbKsCZR16lkIe01UvExry+H2HgnD2ss+XQ5ZGO2FlLr/+c3f5rQyf10g/PbD+dVPXWGSSOZ/VhJzYuKTlecQkByBx0s7EH+cMg2X9QSOtCzR/K3+HxCI0gPa3ykyOEXJvpL6OdG3U/5UJ9nnMU38rYnbCRHrmJ41UD6fREs5IKcgiBHtinFd2QamlG5JpME9BCkQwk91pERAM6Gon6dL4CL98PMcUcThsu3UDT6jBCLzco3/uQ4ASn3CPsVUpM98zJH64t9Xle96kcNgXmE4ZnGJFiuG5McgVbh7hU9EiXZoYxl16AmfKs2DqG2q3j8NKsyz4meomPOkpzRx3PDzOukDlGuIuGZSJSONMS7ps12lpLuJGS0qCvfD61z/9B1rekx/lYIwOgweq3xhp+nDot2wn+osLCwsLCwsIpg5cyZ22WUXNDQ0YODAgTjkkEPw/vvvx7b/7//+bxBCcN111ynrC4UCpk6digEDBqC+vh4//vGP8Z///KeTre88WMYpBk4rAQWB08oFweE2v+xG8FtmmLgnL3v0MnPgqG2UfQNngugsE8IkkHKYPtVC9IV4ucRC0Td8xkYwTi4LQuS5q6Z5fJSAZWWajcDLcqExgZsPxeKQUhVQF2AyQ1YCsut8oToA0CKDw+dSYv6fFN4Pl6mib35sg/UhAyUxUyZ2R2KZuABcLBu9bnmu0nGQ1hOmMS9MstVlmofMVKaLhGOEgvRQhM4cAuZKLJNURoU5RL2eInU3JJMCIT8AZHME5UDEm9ngC875dcMolGSfXhYo1QfbMgGrJeYTHY9Ik6067UZUk5sOsUxGwlDtYJvSbE9EHCtRgdFUutBZGNMwVRxHPS2HsMPUR8AieZmw5ApzfMJU3PtBQlj+bJCvi9ji4CZoKSkq9RM359hAERObpjUWrKt820rBNHKiTyXhr4xiF6nDu+FT3bPPPotTTz0Vu+yyC8rlMs477zxMmDAB77zzDurr65W2Dz/8MF5++WUMHTo00s8ZZ5yBxx57DPfddx/69++PM888EwcddBAWL14Mx3Ei7Xs67IuThYWFhYVFj0cHvDhVGW46b948ZXnWrFkYOHAgFi9ejD322EOs/+yzz3DaaafhySefxIEHHqjss2bNGtx+++24++67se+++wIA7rnnHgwbNgxPPfUUJk6c2Ma5dB/si1MM6pYDTs7XnmRamQjhV8LRAyif4R1NjyIvy55NhTBduQ11A7aIJ1M0MDScVfJDijVWRITHB4wNC9sKdgOAHKLPMgRuVgqXDxI2ChNZqFviTIVgnApAZoOvZwICjRP/XWZ+Ekl+PAMGjLheaKMr2Vv2JHulA6TnI+EME2d4CAk/RCewNaItb6o/mBgL0kFINvDfnqG93B8FQH0jfAYpZJyYQ0BcjYGS9mOEwMRO6NHUfhkXAoeXkyn6TBMQpDWgoQftZQnKecDNB+c0D5Rrg465ti6GPVVWwnCt6p68fJ3HsRvVIs09Y7IBiNe7xB3jahm1Sn0TxFMjDBH2WewWx1R5MesracrEBrW9zogRV2LKM1ATu5Yk9sk0UAKDlmhLG0VfsWyeNHCkjcb8i8PhQiTrzbT6XwA488+TguraV7fQJrOrRwcyTmvXrlVW5/N55PP5iruvWbMGANCvXz+xzvM8HHvssTjrrLPwne98J7LP4sWLUSqVMGHCBLFu6NChGDVqFF544YVe+eJkNU4WFhYWFhYbEYYNG4ampibxN3PmzIr7MMYwbdo07L777hg1apRYf/nllyOTyeD000837rd8+XLkcjn07dtXWT9o0CAsX768fRPpJljGKQa1Kzxksh6Iy5ApMNBiwIiUtSRkDKEXIPQskksiRVLJIAGTAcFGBZFU1NQWavSbq+t+NO0P0xgSWZ8l63AcEowbsiDyb6W0Bwm0VbyvIoCS1K/kkTqFIHpOeGqqzoqUmdBo0ZIXrAuOr+uJ3772yQM8TplEDo0KSddEJPZJHIcKzJMC5RxXZpmAkOUifBxPLQAMQgQDRVx/WZwLkx5KYSxUPYjMEhLGxKGhIDzgEsTz9UyCYcoRFPsAXuBYurmwP2GjmEzojYcNjNMOoqFUbZdc4qJqHzmBlTWOHWefohGLGUOHSDYb7Cu7lpUuH5O98iWo7a8n8KSl4Nr1oEbQsmhbU9JILwO1VA+iRJecuFI+v7Tka5pEOaaixLQEbWUGSi/4HQc9Gjl2uwFVJaUkUAqJywmMTdHRTLpHiEvEc42Wwnlnmjlbzrf52ky5PBQYQ7nURem4Pf3Et7UPYOnSpWhsbBSr07BNp512Gt544w0sWrRIrFu8eDGuv/56vPrqq+FzLyUYY1Xv01NgGScLCwsLC4ueDuZ1zB+AxsZG5a/Si9PUqVPx6KOP4plnnsHmm28u1v/973/Hl19+iS222AKZTAaZTAaffvopzjzzTIwYMQIAMHjwYBSLRaxatUrp88svv8SgQYM69hh1ESzjFIPcOheZjCuiungkmtDgSDohYtLgxCHOOREsg8osCMjjuBLr5XlRDU4CGKUgQoPlh/kJL8wLPTKfJQpLMLCST0EIVolIXlvghQkWKcgjJQrcyrmjPI0x8xhIyZMYJzfUa3leyDoFbRPnR4goaaIcS+4eaMc+9pjpuU4qjcl/Uv+gyLmRxNZgPWHBgfB8RkyQK5ImiwS2865lnRwIgZehoRYtS4WWCfCj62QNU7GRKMWDvVzIojAn9K4lM4NxtHkanN1IriaJKQq9/OD6qiYMLC3TZGKS+DYqjekF162sa+GsQVkTjSmd+Ku5ds8chabuohbJZuqxYUS1l99rwbGVtTRCz1jijHOwjxd0Ie8rjy8fExIUtpaWlbxemm6JykyXVBeNOT7LxPODeRX0TaZSOMbTX+E862ynkudJev4wXnQ4ibzg17zHn1VBN2U/GtjZ4C87xZB1y7YEOecCPaZTVCOWeU63ctnFNxWMMUydOhVz5szBwoULseWWWyrbjz32WCH45pg4cSKOPfZYnHDCCQCAMWPGIJvNYsGCBTj88MMBAMuWLcNbb72FK664omsm0sGwL04WFhYWFhY9Hd2QjuDUU0/FX/7yFzzyyCNoaGgQmqSmpibU1taif//+6N+/v7JPNpvF4MGDse2224q2U6ZMwZlnnon+/fujX79+mD59OkaPHh156eotsC9OMXAKLhzXVbJRczAaempE1794Gq0REwlmZDv0YrumCC+tL8IY4Fb4xu4EkV2EgDgMDL5AQWiJAihyDo+AMAoaeFNOxs/pFEYMSkwLz+jN9RJB5KGsu5K9NDmXFC37jBI/bn4UoKZx4vOr9OAgRIo2IuH3c4NuDEDILOn9pn248HMkNE1QdFZ6XwQQ0Ws+KyJt02yHzEB5BCw4h35epjDDO2cZeB6ncm3IOBUbgFJjUOwXPvvgFBGyAK7GkGiMiRxCpOufAE3/EwcxRaItq6srgjBENEIeRAZ9neWQ2VJaCu5XrmORfnP2hnjqPA21YJX1fGclkzsNGB4EGiA947uU+ywyhsw4SUwQ/y1II66x0dgqxR6pIDRl4Zieox1uKf8baHAoJTaS9+Nl/T9xvoM5iyoHcSyati7yuxJ0nZLEMoEALMOErfoYfnWFwFyG8DrxtBx5pbDwOBDknOMFyAtMRAEDEJUWwjxP/BnW+zROaXHTTTcBAPbaay9l/axZszB58uTU/Vx77bXIZDI4/PDDsWHDBuyzzz644447emUOJ8C+OFlYWFhYWFgYwNrAcH3yySeRdTU1Nbjhhhtwww03dIBV3Q/74lQBpggq2ePTwShNrz8yRWuJZQMDYsxnFGOIpPXh7QnhLikfg/qsDvfcXA+kHLBTGQpa9MCCPE4ej7gT9dRMkw+GZIjWdJO8NFqWNE1cM+ZKc+P2MhY9DsqyByHYkg2Q5w8IbzMV0jwolOzgJFx2aDR/FCHRfYRdysDhT8qiDFRgF/V8GoF4QXSeB5BsSBX4GZ2DHh1f28MPEQ2uW0mKFDIMnDmR6o8pYhol/C7u4o9hlUzrkk6JqX9GIiwGLUm5w8pQs+7Ly0HWfbVmYziUkttM2BA1UGc9GIWiL9OjUHU2SvShz19naZi2jqnbiCypkcb0HH8cj5q3Q2aj+PnVNUNEW9Z/Q2XAlDlJY+pzE5sSbq/E+oCGbYKVc32tUmaDtCyzclIknJ/nTtKQlQGnxKQqDWHOPq7bFNeNbjtF5UjfjoQt8ttjYF+cLCwsLCwsejoYOuDFqUMs2ehhX5zSQLtgGQV4PBRjCHUgxPcIRCwVcUAoAxNRYVG9lABlYF4YZeV7M9xlMuidhD7H4PIwprmInHIggOeFkUQO9fMKBVoQQmkYdcN/K5m41eiuSJ4hWc+jsAOh1+brSTxpmWmRc9I2N8jhJLNwfL6CfZPcb5klcKV5C/GVLpIxubHEvN60H9cZUX58tf3lyD6OtAlA9LxTItrJA8tQkWk94JlEfh6nGEbRZVp8j9qToup0BkL0K7QkwZy49EDTmIgFY1Zm7qmTZIZJvjg8orA/PvMaPf5G7ZEnMQeu+tvXOEnLHoMepeV3yJk2WXxkZkaEnkhq6pSYmZkhiJ77uMtKsEsssk6Mq9kms15y9nmZbeK1MiNsl9ydomkztzHZIIMmsC6JNfqSwKckZ0hn0lgMoS7NVdlHoQvjEYNKnU+mZkHn14Zc21OaDyMQLHt4sTCxkYDZpD4bIeyLk4WFhYWFRU+H/VTXY9BrXpw++OADnHXWWXj++edRLBYxevRoXHLJJRg/frxos2TJEpx66ql4+umnUVtbi6OPPhpXXXUVcrlc1eMxnktHzwoOBgIistT6Xk+gC+E8FN+H+utAgig2ykKxHWNRBiqyPRia3zByFJicAlfX/cg2eIFrDqi6JwDwHF9LQ0NGikgME5EjxJJYmEoMjSlqTZ+bGzJOCpumzzvRBqaxSporLLvjVGLI4jRLvJ3WRskPZdjXuF07RjobIV8Hik4KAaMlZ3d3/FxOfNnLEbg5f7lcE0bVgQREAvemOfvAp+2FOWsiNc4MVePj6taBR4ylRgy7o2XtBgxMh6b9kbfxiDZCfPs580Y4OyHlKFKzP0vLIvO+wT6pvfgNma3TiTUzgxSZFxC5tpUxJVJVYYgQaA+dUJPDCAHyYVuWCdsm1vrjc+KLpls6LWskHTMirdP7ieTiUlhNrUuCCGPIJEKZZQCXR6G6/iOXM45MYZ8C3Z/UGdXFXgg1TT6bF24jbsgEs+B5Y6r20CnwpERb7erDor3oNSTjgQceiHK5jKeffhqLFy/G9773PRx00EEir4TrujjwwAPR3NyMRYsW4b777sNDDz2EM888s5stt7CwsLCwaCe4k9neP4t2o1cwTl999RX+/e9/409/+hO++93vAgAuu+wy3HjjjXj77bcxePBgzJ8/H++88w6WLl2KoUOHAgCuvvpqTJ48GTNmzFDq8qQB9+whdBeh16FnsJVryPkMU/DtnV+oXGMAokR4JTJQEqvEGPxtRG5rYJ+AkIHizJP8aqxn3nY1JgoIbSeGd2qTnsqEpEzclfJXAem8Is6S6YyPPJYSXURC+wn12/F563oiIJqBXO9L/q3owFQb49gpnXHS9WIyg8McGuZtyhB4OQo35y+7OT+/FmdXSn2IyOzMa5eFHfl/RhZAZx48qASDfJ0zRBmJapxuncUi5m1iu2k/GFgnaZv8Q2inRGSnxIh4OgNFFAbK/y0xEDLzwVQbqBadJ/cbzajNomxaDCLZweVriTF44PesXydSOU4MYSSdlDKH2x13HtuS6dvUNu4ciaEkXRUP+pVtZfq1IkUQinOWCVglHkVJAHjho5aEpL9gn3iOL5+OBAjXeRIWMFAIrhnp2UAChokzUp7/O04XZvHNRa9gnPr374/tt98ed911F5qbm1Eul3HLLbdg0KBBGDNmDADgxRdfxKhRo8RLE+Cnfi8UCli8eHFs34VCAWvXrlX+LCwsLCwsehQs49Rj0CsYJ0IIFixYgEmTJqGhoQGUUgwaNAjz5s3DJptsAgBYvnx5pGBg3759kcvlxOc8E2bOnIkLL7wwsl5k+uXCBX69CfZJ1TwBPhsg5yxiIOqFyhBmg2ZMMEl8GYSFzQ3sk7xN7sfIQHE3SGefZK+YR6yZqntXusGSWCUALC07pUFhukxRcEKf5fmsk6xTkpkjA4sGvW+dOeL/StuMbJO2X6QmXoLmS6lFSIiIYmQk3I9RApYJtRN+Nmj/t5ch/h/PBp71GaZybbBd0hvxPEIk7amQTmGEVdJYj6R9FcS1lZz4pCvNGAkn20Fi2kpjMPinXonwkqO1JKYjqnkCmJw9nUnsM4uySmGmdXVWPvPClH7DfGW83+j8I1FplJiZIjEOAy2FE/ey4e3PXPXagEk3ZO62MmKYK2baJkHOpq5nVgcMx4TXyiyrDKLIDg+JRZSf2Zq+TckBJbVVGDLtGSeuNxF57NsTiZ7sLHRD5nALM7qVcbrgggtAgtIYcX+vvPIKGGM45ZRTMHDgQPz973/HP/7xD0yaNAkHHXQQli1bJvojhguYMWZcz3HuuedizZo14m/p0qWdMlcLCwsLCwuL3o9uZZxOO+00HHnkkYltRowYgaeffhqPP/44Vq1aJbRKN954IxYsWIA777wT55xzDgYPHoyXX35Z2XfVqlUolUoRJkpGPp9HPp+PbuARUjwrk/6iTsIfumcuvFeDgxBho/i3dwY/l5GQ4bBwV8Eq8X5DypXFbeOeBZUMYgxwXYlxYipLw1ioL+IMjux1Sd5KhFGqxpOR69zJOabClebflEbX6/8aouBAaAwDZWgbsE2xLJLGOCUxUpFtJnDWwXAdhceeRJgV4SG7AJwwOo54gCcqvwNeXqpmz/UkUl6fjJaFWkpRU8FubT99XSVo7JboJ44d0++jhLEiNe0EgxDdl2uGxBQoZ5nCfaKaJo2BEmyGVJORBOdMGkzJ+G2Cos/jTDREPUJuH6Ohji0pg7+IKuPPHEfvB+HEgzGItCy6q3QtJLU1Levr+HnRIhZV9kfdzrPDAxJrpEdKaswgAJEpXj5nxJXHVfM4RZhBIMLSVZ2jqo1gzGszky/3YdF+dOuL04ABAzBgwICK7Vpa/AqMlKpPCUopvOA/9GPHjsWMGTOwbNkyDBkyBAAwf/585PN5oYOysLCwsLDolZAd4vb0YdFu9AqN09ixY9G3b18cf/zx+N3vfofa2lrcdttt+Pjjj3HggQcCACZMmICRI0fi2GOPxZVXXomvv/4a06dPx0knnVR1RB3APQ8Wei5anpekLNnRvuIGUSkG5tCQoZDZHq530qLsQnvUbcRF2I8+tlyNmuufTKySzjZxNkowJFTdlrbIdVxmbmpwnZNySCVEwYVtJDYrTa6mYFtFXZMOfowp1OsCAJPr5FEmkTM+vcOzHzMqebqMgbCQ9WIewHi9rCDak9fWYg6BUyDwskwsczbCzRGUSMh08EzSIrrKQTR6SWMPZB1JEoikKQommAzTdsO6pMizuIgtI0McaRD2GSFAZIKPqOwTtDFVjRZBtChqyOYSLxQV+YcrOL/QIuwoMZ4PbpvKFIXGimzqPK8cIz7hbNA48dxbYlgq9c3HJYbfBpti825J243nkYUMEKAyQTynV2y+LZkZ4iySNoZSK1NmaCUb/DGYsqwzTGp0JovMN4n9tPhmoldE1Q0YMADz5s3D+vXrsffee2PnnXfGokWL8Mgjj2CHHXYAADiOg7lz56Kmpga77bYbDj/8cBxyyCG46qqrutl6CwsLCwuLdsJG1fUY9ArGCQB23nlnPPnkk4lttthiCzz++OMdMh4teaDCVUOUYeJeiczoVLooZdZCbyu8mvZf2IzoNe+k8eWbx5HEE0CQ24h3YshALrNVEfursLutWchT1ZpLiMqrBjEsEiAty8cZErtEQ9ZOCUxgIZMgalzxvFlSdA4h/v+JiDsX6lwJwm2UwHOIiPRh1I+8A3zGKbcubOsFDJPH2zpAsSnsU8nGzIkSno1bPwQaC+FJy7IWRbZZWVQi0cxjINwU5k9KYH8qgej7poGn7iezICErEj4LIgxJwBTSElP3lfM4VcFaUNc/1mEUoEb1KcfIZ2VEdKamb5PPN2exxLI8aNxtxKTN+jk0sTXBclSLJG2TdUn6tSG1JVJ0cKyWNC2LFHcuXH0fptkUnNtyF+mGPJmSayOsxqlD0CsYJwsLCwsLCwuLnoBewzh1NUjZA5EEQonMEl80eWbKd3d1vwi7pGiNtO2K5kn2zNrAUMlRdIrWR24UUA0iOk/roz2ei2xze3OgmDKcVzM+oOrAaHBsuV2CCWJKG9GPZL9glyQWT4kykjROPvsX9uvXBtSOC9exif/z1zMKkemYEYBSNQqQM0rOBp+JClkFIqKy/GUgty78rTMQTNba0DA6z8saGAmZvNR0UpB0VZzp4HXlIvXJNAZCRtKVHonAYpB0iRoLxiQTtW3Eg8YMaboaLes4ZMaJQc0l5DJQN2RQhJ2Alk0fat4sj4HwcwQgwta5YXZrLxOOD0P0pa9T49dYeO755afcfvp5S6lZM9UTjLBI2vGV+zTpn4xMkKe2M2mYlG0GRipOp2RuywzP4bAtb99ljBMzUGtt6sOivbAvThYWFhYWFj0czPPA2vmpzqYj6BjYF6cYEJcpFbQVxKzWswWb91VZJWV/nWHSf3uGdnx7JMutxFbwTLeM+Wu4nVzzJAwgUY9E2VfZgFhUOg7tIZnkG78atqnSPDlE9XPJq9S1UlrCpTBzMItE4yl7yhF2cq4nBIdE31drg6ANkfJMCVOlJo7IQO43CJkgEjBDITvFrynm8G3BMg3YC0kfE+qfVObKyyBgqyQtjehHXfYzn0PRUilMVdKhlqGRgArD5EHRG4XaJKYsq9ukZSliS2aYohoXaR3fl+ti5Az9JvMNm1iOhnOWyUslbxifu98BLct1DX0qjbDwPGgSO2XgSvmZKuqu9OPPTVDYH/WYAQnMUdDeOH5cv3HbU0fKGZ6tsUyWdG4l8HPe6bCMU4+B1ThZWFhYWFhYWKSEZZzikPLlPlGnxGFgRyvul8BMqR0R9V8tp5LSLdfMREKkTDbHsW2pDkr8tmo9Ht2OalgmQyZmow2V2KhIKmp1WSxREn+uTOWA9OjHmPZKZF4MC2UcJ0Vb0loO1+tZz+X2cjZ1mcGCz1b5+qlwH7mtUodPZ5WomjGds2R6W6aNaUQltkJiDBStkZE50RgK0Y96X1YbBZtY18wJxpSYPgKAydnHuTZJrJD75sssXG4HIrexfivGMEXGfdP0IUO/72X2qNKYOpsEKPdlRLOk9aVfA2K9fm+3R2faFng6rdYGWMapQ2BfnCwsLCwsLHo6mPQ9ul19WLQX9sUpJWI9y6QIrWr3betFLbMkiR5tzDBedJ94fVeCjV6CDbJ9pj7i+m1PLqa2II1tccc4DTMor0rRxghKUu+rsFpif+m3p62TNVd6v9oYsUyWyZ6YSE5jHwlzSUS7tHNt3C9pzAr26nXmhAYrovMy9BNDvBrbxpnRzv+GVsW2pfzvfWKfScNVqSeLa19Re21fPCxgX5wsLCwsLCx6PJjHlM+2berDvvh1COyLUwyIq+ZxEusrXXjt3Z7g8bQpq7iJ4YnUeYv2KzIO6faYmBM5E7kJPJovDdpbxFIZs4PQEX2l6SMNawiIjMZGxOmv4kBjznMFO4xMluizwpiyfquKMatCJbYnNbvX/rHStmVx909bx0IV84yMU80gbRuiGrTp2deWfeT7wIlhx7X2xO2qPE4e2v+pzqYj6AjYqDoLCwsLCwsLi5SwjJOFhYWFhUUPh/1U13NgX5xi4H+qC+ontJPd7IjCve36XJRUXFjfrkPPc2nYn1Xk9bXPR0mfmtJ8rrDo2ah4v8hpIvRNVV7ncdduhX5SfyKs9t5vz6fGcgdd+9IxtXdTO+Cma2Y/1W18sC9OGvgbedkthCt7+4tTR/bTAXZ0WaZdi05Dm7UzkY7auX8XaaK6op8ec0wtqgL/b0VnszlllNp9bssodYwxGznsi5OGlStXAgCee+u67jXEwsLCwqLXYN26dWhqaurwfnO5HAYPHoxFy//WIf0NHjwYuVyuQ/raWEGY/eipYPXq1ejbty+WLFnSKTdBd2Lt2rUYNmwYli5disbGxu42p0Nh59Y7YefWO/FNnhtQ3fwYY1i3bh2GDh0KSjsn3qq1tRXFYrFD+srlcqipqemQvjZWWMZJA7/wm5qavpEPBABobGy0c+uFsHPrnbBz671IO7/OdrJramrsy04Pgk1HYGFhYWFhYWGREvbFycLCwsLCwsIiJeyLk4Z8Po/zzz8f+Xy+u03pcNi59U7YufVO2Ln1XnzT52fRPlhxuIWFhYWFhYVFSljGycLCwsLCwsIiJeyLk4WFhYWFhYVFStgXJwsLCwsLCwuLlLAvThYWFhYWFhYWKWFfnCTceOON2HLLLVFTU4MxY8bg73//e3ebVDUuuOACEEKUv8GDB4vtjDFccMEFGDp0KGpra7HXXnvh7bff7kaL4/Hcc8/h4IMPxtChQ0EIwcMPP6xsTzOXQqGAqVOnYsCAAaivr8ePf/xj/Oc//+nCWZhRaW6TJ0+OnMcf/OAHSpueOreZM2dil112QUNDAwYOHIhDDjkE77//vtKmt567NHPrrefupptuwne/+12R9HHs2LF44oknxPbees6AynPrrefMontgX5wC3H///TjjjDNw3nnn4bXXXsMPf/hDHHDAAViyZEl3m1Y1vvOd72DZsmXi78033xTbrrjiClxzzTX4wx/+gH/+858YPHgw9ttvP6xbt64bLTajubkZO+ywA/7whz8Yt6eZyxlnnIE5c+bgvvvuw6JFi7B+/XocdNBBcN2Upc87CZXmBgD777+/ch7/9je1VlVPnduzzz6LU089FS+99BIWLFiAcrmMCRMmoLm5WbTprecuzdyA3nnuNt98c1x22WV45ZVX8Morr2DvvffGpEmTxMtRbz1nQOW5Ab3znFl0E5gFY4yx73//++zkk09W1m233XbsnHPO6SaL2obzzz+f7bDDDsZtnuexwYMHs8suu0ysa21tZU1NTezmm2/uIgvbBgBszpw5YjnNXFavXs2y2Sy77777RJvPPvuMUUrZvHnzusz2StDnxhhjxx9/PJs0aVLsPr1lbowx9uWXXzIA7Nlnn2WMfbPOnT43xr5Z565v377sj3/84zfqnHHwuTH2zTpnFp0PyzgBKBaLWLx4MSZMmKCsnzBhAl544YVusqrt+Ne//oWhQ4diyy23xJFHHomPPvoIAPDxxx9j+fLlyjzz+Tz23HPPXjfPNHNZvHgxSqWS0mbo0KEYNWpUr5jvwoULMXDgQHz729/GSSedhC+//FJs601zW7NmDQCgX79+AL5Z506fG0dvP3eu6+K+++5Dc3Mzxo4d+406Z/rcOHr7ObPoOtgivwC++uoruK6LQYMGKesHDRqE5cuXd5NVbcOuu+6Ku+66C9/+9rfxxRdf4JJLLsG4cePw9ttvi7mY5vnpp592h7ltRpq5LF++HLlcDn379o206enn9YADDsBPf/pTDB8+HB9//DF++9vfYu+998bixYuRz+d7zdwYY5g2bRp23313jBo1CsA359yZ5gb07nP35ptvYuzYsWhtbUWfPn0wZ84cjBw5Urwc9OZzFjc3oHefM4uuh31xkkAIUZYZY5F1PR0HHHCA+D169GiMHTsWW2+9Ne68804hdvwmzJOjLXPpDfM94ogjxO9Ro0Zh5513xvDhwzF37lwcdthhsfv1tLmddtppeOONN7Bo0aLItt5+7uLm1pvP3bbbbovXX38dq1evxkMPPYTjjz8ezz77rNjem89Z3NxGjhzZq8+ZRdfDfqoDMGDAADiOE/Ecvvzyy4iH1dtQX1+P0aNH41//+peIrvsmzDPNXAYPHoxisYhVq1bFtuktGDJkCIYPH45//etfAHrH3KZOnYpHH30UzzzzDDbffHOx/ptw7uLmZkJvOne5XA7bbLMNdt55Z8ycORM77LADrr/++m/EOYubmwm96ZxZdD3sixP8G2rMmDFYsGCBsn7BggUYN25cN1nVMSgUCnj33XcxZMgQbLnllhg8eLAyz2KxiGeffbbXzTPNXMaMGYNsNqu0WbZsGd56661eN9+VK1di6dKlGDJkCICePTfGGE477TTMnj0bTz/9NLbccktle28+d5XmZkJvOnc6GGMoFAq9+pzFgc/NhN58ziy6AF0uR++huO+++1g2m2W33347e+edd9gZZ5zB6uvr2SeffNLdplWFM888ky1cuJB99NFH7KWXXmIHHXQQa2hoEPO47LLLWFNTE5s9ezZ788032VFHHcWGDBnC1q5d282WR7Fu3Tr22muvsddee40BYNdccw177bXX2KeffsoYSzeXk08+mW2++ebsqaeeYq+++irbe++92Q477MDK5XJ3TYsxljy3devWsTPPPJO98MIL7OOPP2bPPPMMGzt2LNtss816xdx+8YtfsKamJrZw4UK2bNky8dfS0iLa9NZzV2luvfncnXvuuey5555jH3/8MXvjjTfY//t//49RStn8+fMZY733nDGWPLfefM4sugf2xUnC//zP/7Dhw4ezXC7HdtppJyXEuLfgiCOOYEOGDGHZbJYNHTqUHXbYYeztt98W2z3PY+effz4bPHgwy+fzbI899mBvvvlmN1ocj2eeeYYBiPwdf/zxjLF0c9mwYQM77bTTWL9+/VhtbS076KCD2JIlS7phNiqS5tbS0sImTJjANt10U5bNZtkWW2zBjj/++IjdPXVupnkBYLNmzRJteuu5qzS33nzuTjzxRPH823TTTdk+++wjXpoY673njLHkufXmc2bRPSCMMdZ1/JaFhYWFhYWFRe+F1ThZWFhYWFhYWKSEfXGysLCwsLCwsEgJ++JkYWFhYWFhYZES9sXJwsLCwsLCwiIl7IuThYWFhYWFhUVK2BcnCwsLCwsLC4uUsC9OFhYWFhYWFhYpYV+cLL5x2GuvvXDGGWd8o8adPHkyDjnkkHb1MWLECBBCQAjB6tWrY9vdcccd2GSTTdo1lkU8Jk+eLM7Dww8/3N3mWFhYVAn74mRh0UGYPXs2Lr74YrE8YsQIXHfddd1nkAEXXXQRli1bhqampu425RuPhQsXGl9Sr7/+eixbtqx7jLKwsGg3Mt1tgIXFNwX9+vXrbhMqoqGhQVS6726USiVks9nuNqPL0dTUZF9cLSx6MSzjZPGNx6pVq3Dcccehb9++qKurwwEHHIB//etfYjv/NPXkk09i++23R58+fbD//vsrrEC5XMbpp5+OTTbZBP3798evf/1rHH/88crnM/lT3V577YVPP/0Uv/rVr8RnGQC44IIL8L3vfU+x77rrrsOIESPEsuu6mDZtmhjr7LPPhl4ZiTGGK664AltttRVqa2uxww474MEHH2zT8bnjjjuwxRZboK6uDoceeihWrlwZafPYY49hzJgxqKmpwVZbbYULL7wQ5XJZbH/vvfew++67o6amBiNHjsRTTz2lfIr65JNPQAjBAw88gL322gs1NTW45557AACzZs3C9ttvj5qaGmy33Xa48cYblbE/++wzHHHEEejbty/69++PSZMm4ZNPPhHbFy5ciO9///uor6/HJptsgt122w2ffvppqrlXmtc111yD0aNHo76+HsOGDcMpp5yC9evXi+2ffvopDj74YPTt2xf19fX4zne+g7/97W/45JNPMH78eABA3759QQjB5MmTU9lkYWHRs2FfnCy+8Zg8eTJeeeUVPProo3jxxRfBGMOPfvQjlEol0aalpQVXXXUV7r77bjz33HNYsmQJpk+fLrZffvnl+POf/4xZs2bh+eefx9q1axP1KbNnz8bmm28uPo1V82nm6quvxp/+9CfcfvvtWLRoEb7++mvMmTNHafOb3/wGs2bNwk033YS3334bv/rVr/Czn/0Mzz77bPoDA+Dll1/GiSeeiFNOOQWvv/46xo8fj0suuURp8+STT+JnP/sZTj/9dLzzzju45ZZbcMcdd2DGjBkAAM/zcMghh6Curg4vv/wybr31Vpx33nnG8X7961/j9NNPx7vvvouJEyfitttuw3nnnYcZM2bg3XffxaWXXorf/va3uPPOOwH452X8+PHo06cPnnvuOSxatEi82BaLRZTLZRxyyCHYc8898cYbb+DFF1/Ez3/+c/GimoRK8wIASil+//vf46233sKdd96Jp59+GmeffbbYfuqpp6JQKOC5557Dm2++icsvvxx9+vTBsGHD8NBDDwEA3n//fSxbtgzXX399VefGwsKih6JbSwxbWHQC9txzT/bLX/6SMcbYBx98wACw559/Xmz/6quvWG1tLXvggQcYY4zNmjWLAWD//ve/RZv/+Z//YYMGDRLLgwYNYldeeaVYLpfLbIsttmCTJk0yjssYY8OHD2fXXnutYtv555/PdthhB2Xdtddey4YPHy6WhwwZwi677DKxXCqV2Oabby7GWr9+PaupqWEvvPCC0s+UKVPYUUcdFXtcTPYcddRRbP/991fWHXHEEaypqUks//CHP2SXXnqp0ubuu+9mQ4YMYYwx9sQTT7BMJsOWLVsmti9YsIABYHPmzGGMMfbxxx8zAOy6665T+hk2bBj7y1/+oqy7+OKL2dixYxljjN1+++1s2223ZZ7nie2FQoHV1tayJ598kq1cuZIBYAsXLoyddxwqzcuEBx54gPXv318sjx49ml1wwQXGts888wwDwFatWmXcLh8fCwuL3gOrcbL4RuPdd99FJpPBrrvuKtb1798f2267Ld59912xrq6uDltvvbVYHjJkCL788ksAwJo1a/DFF1/g+9//vtjuOA7GjBkDz/M61N41a9Zg2bJlGDt2rFiXyWSw8847i89177zzDlpbW7Hffvsp+xaLRey4445Vjffuu+/i0EMPVdaNHTsW8+bNE8uLFy/GP//5T4WJcV0Xra2taGlpwfvvv49hw4Yp2in5WMnYeeedxe8VK1Zg6dKlmDJlCk466SSxvlwuCw3Q4sWL8e9//xsNDQ1KP62trfjwww8xYcIETJ48GRMnTsR+++2HfffdF4cffjiGDBlSce6V5lVXV4dnnnkGl156Kd555x2sXbsW5XIZra2taG5uRn19PU4//XT84he/wPz587HvvvviJz/5Cb773e9WHNvCwqL3wr44WXyjwTRtkLxe/pyji5QJIZF99c8/cX0ngVIa2U/+ZJgG/GVt7ty52GyzzZRt+Xy+qr7SzMHzPFx44YU47LDDIttqamoixzIJ9fX1Sr8AcNtttykvtoD/YsrbjBkzBn/+858jfW266aYAfI3U6aefjnnz5uH+++/Hb37zGyxYsAA/+MEP2jWvTz/9FD/60Y9w8skn4+KLL0a/fv2waNEiTJkyRZyz//qv/8LEiRMxd+5czJ8/HzNnzsTVV1+NqVOnpjoeFhYWvQ/2xcniG42RI0eiXC7j5Zdfxrhx4wAAK1euxAcffIDtt98+VR9NTU0YNGgQ/vGPf+CHP/whAJ+ZeO211yJCbxm5XA6u6yrrNt10Uyxfvlx52Xj99deVsYYMGYKXXnoJe+yxBwCfgVm8eDF22mknMad8Po8lS5Zgzz33TDWHOIwcORIvvfSSsk5f3mmnnfD+++9jm222Mfax3XbbYcmSJfjiiy8waNAgAMA///nPimMPGjQIm222GT766CMcc8wxxjY77bQT7r//fgwcOBCNjY2xfe24447Ycccdce6552Ls2LH4y1/+UvHFqdK8XnnlFZTLZVx99dWg1JeDPvDAA5F2w4YNw8knn4yTTz4Z5557Lm677TZMnToVuVwOACLXgIWFRe+GfXGy+EbjW9/6FiZNmoSTTjoJt9xyCxoaGnDOOedgs802w6RJk1L3M3XqVMycORPbbLMNtttuO9xwww1YtWpVItMyYsQIPPfcczjyyCORz+cxYMAA7LXXXlixYgWuuOIK/H//3/+HefPm4YknnlBeCn75y1/isssuw7e+9S1sv/32uOaaa5RcQA0NDZg+fTp+9atfwfM87L777li7di1eeOEF9OnTB8cff3zqeZ1++ukYN24crrjiChxyyCGYP3++8pkOAH73u9/hoIMOwrBhw/DTn/4UlFK88cYbePPNN3HJJZdgv/32w9Zbb43jjz8eV1xxBdatWyfE4ZWYqAsuuACnn346GhsbccABB6BQKOCVV17BqlWrMG3aNBxzzDG48sorMWnSJFx00UXYfPPNsWTJEsyePRtnnXUWSv9/e/cPkmgYxwH89w698pJYklJGYSj0hyKaGjKaAikwWgoJfJuKAiFpcWsogoYKoqGyIRBac6hBKIIGaWwoiCQocSgiClstvzcceHmd3Ntd3dXd97M++D6+z6vwRb/v82azEolEpK+vT6qrq+Xs7EySyaTouv7Tc//Zebndbnl8fJTl5WXx+XySSCRkdXW14BihUEh6enqkvr5e7u/vZX9/Px/InU6nKIoiOzs70tvbK5qmidlsNnxtiOiD+mvtKqJ38n1J++7uDoFAAGVlZdA0DV6vF8lkMj++sbFRUIYGgFgshudfj2w2i2AwCIvFAqvVinA4jIGBAfj9/qLzHh4eorW1FSaTqeBYKysrqK2tRWlpKXRdx+zsbEE5PJvNYmJiAhaLBeXl5ZicnISu6wVF9Fwuh6WlJTQ0NKCkpAR2ux1erxcHBwdF1+VH5XDgawG7pqYGmqbB5/Nhfn7+xXrE43F0dHRA0zRYLBa0t7cjEonkx09PT+HxeKCqKhobG7G9vQ0RQTweB/CtHH50dPRi/s3NTbS1tUFVVVitVnR1dWFrays/fnV1BV3XYbPZYDKZ4HK5MDIygkwmg+vra/T398PhcEBVVTidTkxNTeHp6anoOrzmvBYXF+FwOPKfm2g0WlD4DgaDcLvdMJlMsNvtCAQCuL29zb9+enoaVVVVUBQFw8PDBXMLy+FEn5IC/EJRg+g/l8vlpKmpSQYHBwt2C//I6urqJBQK/ZHH0SQSCens7JTz8/OC0j19oyiKxGKx336UDhH9WdzHiciAVCol6+vrkkwm5fj4WMbHx+Xi4kKGhob+9lt7lXA4LGazWTKZzJseNxaLye7urlxeXsre3p6Mjo6Kx+NhaPqBsbEx/mVH9InxFyciA9LptPj9fjk5OREA0tLSInNzc/kC92eQSqXyd4O5XK584fktRKNRmZmZkXQ6LTabTbq7u2VhYUEqKirebI7Xam5uLrqD+NraWtFC+nu7ubmRh4cHEfm67cXzOw2J6ONjcCKif9LzoPi9ysrKF3tDEREZweBEREREZBA7TkREREQGMTgRERERGcTgRERERGQQgxMRERGRQQxORERERAYxOBEREREZxOBEREREZBCDExEREZFBXwBVAp/T6A0mFAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" ] + }, + "metadata": {}, + "output_type": "display_data" } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.13" - } + ], + "source": [ + "ds[var][-1].plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Postscript\n", + "- If you find a CMIP6 dataset for which this recipe does not work, Please report it at [issue#105](https://github.com/pangeo-forge/pangeo-forge-recipes/issues/105) so we can refine the recipe, if possible.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "# Troubles found:\n", + "\n", + "dataset = 'IPSL-CM6A-LR.abrupt-4xCO2.r1i1p1f1.Lmon.cLeaf.gr' # need decode_coords=False in xr.open_dataset, but using xarray_open_kwargs = {'decode_coords':False}, still throws an error when caching the input " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 4 + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.13" + } + }, + "nbformat": 4, + "nbformat_minor": 4 } diff --git a/docs/pangeo_forge_recipes/tutorials/xarray_zarr/multi_variable_recipe.ipynb b/docs/pangeo_forge_recipes/tutorials/xarray_zarr/multi_variable_recipe.ipynb index f5a8e9de..1d8791ae 100755 --- a/docs/pangeo_forge_recipes/tutorials/xarray_zarr/multi_variable_recipe.ipynb +++ b/docs/pangeo_forge_recipes/tutorials/xarray_zarr/multi_variable_recipe.ipynb @@ -1,3842 +1,3842 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# NetCDF Zarr Multi-Variable Sequential Recipe: NOAA World Ocean Atlas\n", - "\n", - "This recipe is a little bit more complicated than the {doc}`netcdf_zarr_sequential`.\n", - "You shold probably review that one first; here we will skip the basics.\n", - "\n", - "For this example, we will use data from NOAA's [World Ocean Atlas](https://www.ncei.noaa.gov/products/world-ocean-atlas).\n", - "As we can see from the [data access page](https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/bin/woa18.pl), the dataset is spread over many different files.\n", - "What's important here is that:\n", - "- There is a time sequence (month) to the files.\n", - "- Different variables live in different files.\n", - "\n", - "Because our dataset is spread over muliple files, we will have to use a more complex File Pattern than the previous example.\n", - "\n", - "## Step 1: Get to know your source data\n", - "\n", - "This step can't be skipped! It's impossible to write a recipe if you don't understand intimately how the source data are organized.\n", - "World Ocean Atlass has eight different variables: Temperature, Salinity, Dissolved Oxygen, Percent Oxygen Saturation, Apparent Oxygen Utilization, Silicate, Phosphate, Nitrate.\n", - "Each variable has a page that looks like this:\n", - "\n", - "![screenshot from NCEI website](ncei-woa-screenshot.png)\n", - "\n", - "For the purpose of this tutorial, we will use the 5-degree resolution monthly data.\n", - "We can follow the links to finally find an HTTP download link for a single month of data." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "download_url = 'https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav/5deg/woa18_decav_t01_5d.nc'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's download it and try to open it with xarray." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "--2023-02-27 10:13:30-- https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav/5deg/woa18_decav_t01_5d.nc\n", - "Resolving www.ncei.noaa.gov (www.ncei.noaa.gov)... 205.167.25.171, 205.167.25.172, 205.167.25.168, ...\n", - "Connecting to www.ncei.noaa.gov (www.ncei.noaa.gov)|205.167.25.171|:443... connected.\n", - "HTTP request sent, awaiting response... 200 \n", - "Length: 2389903 (2.3M) [application/x-netcdf]\n", - "Saving to: \u2018woa18_decav_t01_5d.nc.8\u2019\n", - "\n", - "woa18_decav_t01_5d. 100%[===================>] 2.28M 462KB/s in 5.3s \n", - "\n", - "2023-02-27 10:13:36 (437 KB/s) - \u2018woa18_decav_t01_5d.nc.8\u2019 saved [2389903/2389903]\n", - "\n" - ] - } - ], - "source": [ - "! wget https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav/5deg/woa18_decav_t01_5d.nc" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Failed to decode variable 'time': unable to decode time units 'months since 1955-01-01 00:00:00' with 'the default calendar'. Try opening your dataset with decode_times=False or installing cftime if it is not installed.\n" - ] - } - ], - "source": [ - "import xarray as xr\n", - "\n", - "try:\n", - " ds = xr.open_dataset(\"woa18_decav_t01_5d.nc\")\n", - "except ValueError as e:\n", - " print(e)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\u2757\ufe0f Oh no, we got an error!\n", - "\n", - "This is a very common problem. The calendar is encoded using \"months since\" units, which are ambiguous in the [CF Conventions](https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#calendar). (The precise length of a month is variable by month an year.)\n", - "\n", - "We will follow the advice and do" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.Dataset>\n",
-              "Dimensions:             (lat: 36, nbounds: 2, lon: 72, depth: 57, time: 1)\n",
-              "Coordinates:\n",
-              "  * lat                 (lat) float32 -87.5 -82.5 -77.5 -72.5 ... 77.5 82.5 87.5\n",
-              "  * lon                 (lon) float32 -177.5 -172.5 -167.5 ... 167.5 172.5 177.5\n",
-              "  * depth               (depth) float32 0.0 5.0 10.0 ... 1.45e+03 1.5e+03\n",
-              "  * time                (time) float32 372.5\n",
-              "Dimensions without coordinates: nbounds\n",
-              "Data variables:\n",
-              "    crs                 int32 ...\n",
-              "    lat_bnds            (lat, nbounds) float32 ...\n",
-              "    lon_bnds            (lon, nbounds) float32 ...\n",
-              "    depth_bnds          (depth, nbounds) float32 ...\n",
-              "    climatology_bounds  (time, nbounds) float32 ...\n",
-              "    t_mn                (time, depth, lat, lon) float32 ...\n",
-              "    t_dd                (time, depth, lat, lon) float64 ...\n",
-              "    t_sd                (time, depth, lat, lon) float32 ...\n",
-              "    t_se                (time, depth, lat, lon) float32 ...\n",
-              "Attributes: (12/49)\n",
-              "    Conventions:                     CF-1.6, ACDD-1.3\n",
-              "    title:                           World Ocean Atlas 2018 : sea_water_tempe...\n",
-              "    summary:                         PRERELEASE Climatological mean temperatu...\n",
-              "    references:                      Locarnini, R. A., A. V. Mishonov, O. K. ...\n",
-              "    institution:                     National Centers for Environmental Infor...\n",
-              "    comment:                         global climatology as part of the World ...\n",
-              "    ...                              ...\n",
-              "    publisher_email:                 NCEI.info@noaa.gov\n",
-              "    nodc_template_version:           NODC_NetCDF_Grid_Template_v2.0\n",
-              "    license:                         These data are openly available to the p...\n",
-              "    metadata_link:                   http://www.nodc.noaa.gov/OC5/WOA18/pr_wo...\n",
-              "    date_created:                    2018-02-19 \n",
-              "    date_modified:                   2018-02-19 
" - ], - "text/plain": [ - "\n", - "Dimensions: (lat: 36, nbounds: 2, lon: 72, depth: 57, time: 1)\n", - "Coordinates:\n", - " * lat (lat) float32 -87.5 -82.5 -77.5 -72.5 ... 77.5 82.5 87.5\n", - " * lon (lon) float32 -177.5 -172.5 -167.5 ... 167.5 172.5 177.5\n", - " * depth (depth) float32 0.0 5.0 10.0 ... 1.45e+03 1.5e+03\n", - " * time (time) float32 372.5\n", - "Dimensions without coordinates: nbounds\n", - "Data variables:\n", - " crs int32 ...\n", - " lat_bnds (lat, nbounds) float32 ...\n", - " lon_bnds (lon, nbounds) float32 ...\n", - " depth_bnds (depth, nbounds) float32 ...\n", - " climatology_bounds (time, nbounds) float32 ...\n", - " t_mn (time, depth, lat, lon) float32 ...\n", - " t_dd (time, depth, lat, lon) float64 ...\n", - " t_sd (time, depth, lat, lon) float32 ...\n", - " t_se (time, depth, lat, lon) float32 ...\n", - "Attributes: (12/49)\n", - " Conventions: CF-1.6, ACDD-1.3\n", - " title: World Ocean Atlas 2018 : sea_water_tempe...\n", - " summary: PRERELEASE Climatological mean temperatu...\n", - " references: Locarnini, R. A., A. V. Mishonov, O. K. ...\n", - " institution: National Centers for Environmental Infor...\n", - " comment: global climatology as part of the World ...\n", - " ... ...\n", - " publisher_email: NCEI.info@noaa.gov\n", - " nodc_template_version: NODC_NetCDF_Grid_Template_v2.0\n", - " license: These data are openly available to the p...\n", - " metadata_link: http://www.nodc.noaa.gov/OC5/WOA18/pr_wo...\n", - " date_created: 2018-02-19 \n", - " date_modified: 2018-02-19 " - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ds = xr.open_dataset(\"woa18_decav_t01_5d.nc\", decode_times=False)\n", - "ds" - ] - }, + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# NetCDF Zarr Multi-Variable Sequential Recipe: NOAA World Ocean Atlas\n", + "\n", + "This recipe is a little bit more complicated than the {doc}`netcdf_zarr_sequential`.\n", + "You shold probably review that one first; here we will skip the basics.\n", + "\n", + "For this example, we will use data from NOAA's [World Ocean Atlas](https://www.ncei.noaa.gov/products/world-ocean-atlas).\n", + "As we can see from the [data access page](https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/bin/woa18.pl), the dataset is spread over many different files.\n", + "What's important here is that:\n", + "- There is a time sequence (month) to the files.\n", + "- Different variables live in different files.\n", + "\n", + "Because our dataset is spread over muliple files, we will have to use a more complex File Pattern than the previous example.\n", + "\n", + "## Step 1: Get to know your source data\n", + "\n", + "This step can't be skipped! It's impossible to write a recipe if you don't understand intimately how the source data are organized.\n", + "World Ocean Atlass has eight different variables: Temperature, Salinity, Dissolved Oxygen, Percent Oxygen Saturation, Apparent Oxygen Utilization, Silicate, Phosphate, Nitrate.\n", + "Each variable has a page that looks like this:\n", + "\n", + "![screenshot from NCEI website](ncei-woa-screenshot.png)\n", + "\n", + "For the purpose of this tutorial, we will use the 5-degree resolution monthly data.\n", + "We can follow the links to finally find an HTTP download link for a single month of data." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "download_url = 'https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav/5deg/woa18_decav_t01_5d.nc'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's download it and try to open it with xarray." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.DataArray 'time' (time: 1)>\n",
-              "array([372.5], dtype=float32)\n",
-              "Coordinates:\n",
-              "  * time     (time) float32 372.5\n",
-              "Attributes:\n",
-              "    standard_name:  time\n",
-              "    long_name:      time\n",
-              "    units:          months since 1955-01-01 00:00:00\n",
-              "    axis:           T\n",
-              "    climatology:    climatology_bounds
" - ], - "text/plain": [ - "\n", - "array([372.5], dtype=float32)\n", - "Coordinates:\n", - " * time (time) float32 372.5\n", - "Attributes:\n", - " standard_name: time\n", - " long_name: time\n", - " units: months since 1955-01-01 00:00:00\n", - " axis: T\n", - " climatology: climatology_bounds" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ds.time" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "--2023-02-27 10:13:30-- https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav/5deg/woa18_decav_t01_5d.nc\n", + "Resolving www.ncei.noaa.gov (www.ncei.noaa.gov)... 205.167.25.171, 205.167.25.172, 205.167.25.168, ...\n", + "Connecting to www.ncei.noaa.gov (www.ncei.noaa.gov)|205.167.25.171|:443... connected.\n", + "HTTP request sent, awaiting response... 200 \n", + "Length: 2389903 (2.3M) [application/x-netcdf]\n", + "Saving to: ‘woa18_decav_t01_5d.nc.8’\n", + "\n", + "woa18_decav_t01_5d. 100%[===================>] 2.28M 462KB/s in 5.3s \n", + "\n", + "2023-02-27 10:13:36 (437 KB/s) - ‘woa18_decav_t01_5d.nc.8’ saved [2389903/2389903]\n", + "\n" + ] + } + ], + "source": [ + "! wget https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav/5deg/woa18_decav_t01_5d.nc" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We have opened the data, but the time coordinate is just a number, not an actual datetime object.\n", - "We can work around this issue by explicitly specifying the `360_day` calendar (in which every month is assumed to have 30 days)." - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Failed to decode variable 'time': unable to decode time units 'months since 1955-01-01 00:00:00' with 'the default calendar'. Try opening your dataset with decode_times=False or installing cftime if it is not installed.\n" + ] + } + ], + "source": [ + "import xarray as xr\n", + "\n", + "try:\n", + " ds = xr.open_dataset(\"woa18_decav_t01_5d.nc\")\n", + "except ValueError as e:\n", + " print(e)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "❗️ Oh no, we got an error!\n", + "\n", + "This is a very common problem. The calendar is encoded using \"months since\" units, which are ambiguous in the [CF Conventions](https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#calendar). (The precise length of a month is variable by month an year.)\n", + "\n", + "We will follow the advice and do" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.Dataset>\n",
-              "Dimensions:             (lat: 36, nbounds: 2, lon: 72, depth: 57, time: 1)\n",
-              "Coordinates:\n",
-              "  * lat                 (lat) float32 -87.5 -82.5 -77.5 -72.5 ... 77.5 82.5 87.5\n",
-              "  * lon                 (lon) float32 -177.5 -172.5 -167.5 ... 167.5 172.5 177.5\n",
-              "  * depth               (depth) float32 0.0 5.0 10.0 ... 1.45e+03 1.5e+03\n",
-              "  * time                (time) object 1986-01-16 00:00:00\n",
-              "Dimensions without coordinates: nbounds\n",
-              "Data variables:\n",
-              "    crs                 int32 ...\n",
-              "    lat_bnds            (lat, nbounds) float32 ...\n",
-              "    lon_bnds            (lon, nbounds) float32 ...\n",
-              "    depth_bnds          (depth, nbounds) float32 ...\n",
-              "    climatology_bounds  (time, nbounds) float32 ...\n",
-              "    t_mn                (time, depth, lat, lon) float32 ...\n",
-              "    t_dd                (time, depth, lat, lon) float64 ...\n",
-              "    t_sd                (time, depth, lat, lon) float32 ...\n",
-              "    t_se                (time, depth, lat, lon) float32 ...\n",
-              "Attributes: (12/49)\n",
-              "    Conventions:                     CF-1.6, ACDD-1.3\n",
-              "    title:                           World Ocean Atlas 2018 : sea_water_tempe...\n",
-              "    summary:                         PRERELEASE Climatological mean temperatu...\n",
-              "    references:                      Locarnini, R. A., A. V. Mishonov, O. K. ...\n",
-              "    institution:                     National Centers for Environmental Infor...\n",
-              "    comment:                         global climatology as part of the World ...\n",
-              "    ...                              ...\n",
-              "    publisher_email:                 NCEI.info@noaa.gov\n",
-              "    nodc_template_version:           NODC_NetCDF_Grid_Template_v2.0\n",
-              "    license:                         These data are openly available to the p...\n",
-              "    metadata_link:                   http://www.nodc.noaa.gov/OC5/WOA18/pr_wo...\n",
-              "    date_created:                    2018-02-19 \n",
-              "    date_modified:                   2018-02-19 
" - ], - "text/plain": [ - "\n", - "Dimensions: (lat: 36, nbounds: 2, lon: 72, depth: 57, time: 1)\n", - "Coordinates:\n", - " * lat (lat) float32 -87.5 -82.5 -77.5 -72.5 ... 77.5 82.5 87.5\n", - " * lon (lon) float32 -177.5 -172.5 -167.5 ... 167.5 172.5 177.5\n", - " * depth (depth) float32 0.0 5.0 10.0 ... 1.45e+03 1.5e+03\n", - " * time (time) object 1986-01-16 00:00:00\n", - "Dimensions without coordinates: nbounds\n", - "Data variables:\n", - " crs int32 ...\n", - " lat_bnds (lat, nbounds) float32 ...\n", - " lon_bnds (lon, nbounds) float32 ...\n", - " depth_bnds (depth, nbounds) float32 ...\n", - " climatology_bounds (time, nbounds) float32 ...\n", - " t_mn (time, depth, lat, lon) float32 ...\n", - " t_dd (time, depth, lat, lon) float64 ...\n", - " t_sd (time, depth, lat, lon) float32 ...\n", - " t_se (time, depth, lat, lon) float32 ...\n", - "Attributes: (12/49)\n", - " Conventions: CF-1.6, ACDD-1.3\n", - " title: World Ocean Atlas 2018 : sea_water_tempe...\n", - " summary: PRERELEASE Climatological mean temperatu...\n", - " references: Locarnini, R. A., A. V. Mishonov, O. K. ...\n", - " institution: National Centers for Environmental Infor...\n", - " comment: global climatology as part of the World ...\n", - " ... ...\n", - " publisher_email: NCEI.info@noaa.gov\n", - " nodc_template_version: NODC_NetCDF_Grid_Template_v2.0\n", - " license: These data are openly available to the p...\n", - " metadata_link: http://www.nodc.noaa.gov/OC5/WOA18/pr_wo...\n", - " date_created: 2018-02-19 \n", - " date_modified: 2018-02-19 " - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:             (lat: 36, nbounds: 2, lon: 72, depth: 57, time: 1)\n",
+       "Coordinates:\n",
+       "  * lat                 (lat) float32 -87.5 -82.5 -77.5 -72.5 ... 77.5 82.5 87.5\n",
+       "  * lon                 (lon) float32 -177.5 -172.5 -167.5 ... 167.5 172.5 177.5\n",
+       "  * depth               (depth) float32 0.0 5.0 10.0 ... 1.45e+03 1.5e+03\n",
+       "  * time                (time) float32 372.5\n",
+       "Dimensions without coordinates: nbounds\n",
+       "Data variables:\n",
+       "    crs                 int32 ...\n",
+       "    lat_bnds            (lat, nbounds) float32 ...\n",
+       "    lon_bnds            (lon, nbounds) float32 ...\n",
+       "    depth_bnds          (depth, nbounds) float32 ...\n",
+       "    climatology_bounds  (time, nbounds) float32 ...\n",
+       "    t_mn                (time, depth, lat, lon) float32 ...\n",
+       "    t_dd                (time, depth, lat, lon) float64 ...\n",
+       "    t_sd                (time, depth, lat, lon) float32 ...\n",
+       "    t_se                (time, depth, lat, lon) float32 ...\n",
+       "Attributes: (12/49)\n",
+       "    Conventions:                     CF-1.6, ACDD-1.3\n",
+       "    title:                           World Ocean Atlas 2018 : sea_water_tempe...\n",
+       "    summary:                         PRERELEASE Climatological mean temperatu...\n",
+       "    references:                      Locarnini, R. A., A. V. Mishonov, O. K. ...\n",
+       "    institution:                     National Centers for Environmental Infor...\n",
+       "    comment:                         global climatology as part of the World ...\n",
+       "    ...                              ...\n",
+       "    publisher_email:                 NCEI.info@noaa.gov\n",
+       "    nodc_template_version:           NODC_NetCDF_Grid_Template_v2.0\n",
+       "    license:                         These data are openly available to the p...\n",
+       "    metadata_link:                   http://www.nodc.noaa.gov/OC5/WOA18/pr_wo...\n",
+       "    date_created:                    2018-02-19 \n",
+       "    date_modified:                   2018-02-19 
" ], - "source": [ - "ds.time.attrs['calendar'] = '360_day'\n", - "ds = xr.decode_cf(ds)\n", - "ds" + "text/plain": [ + "\n", + "Dimensions: (lat: 36, nbounds: 2, lon: 72, depth: 57, time: 1)\n", + "Coordinates:\n", + " * lat (lat) float32 -87.5 -82.5 -77.5 -72.5 ... 77.5 82.5 87.5\n", + " * lon (lon) float32 -177.5 -172.5 -167.5 ... 167.5 172.5 177.5\n", + " * depth (depth) float32 0.0 5.0 10.0 ... 1.45e+03 1.5e+03\n", + " * time (time) float32 372.5\n", + "Dimensions without coordinates: nbounds\n", + "Data variables:\n", + " crs int32 ...\n", + " lat_bnds (lat, nbounds) float32 ...\n", + " lon_bnds (lon, nbounds) float32 ...\n", + " depth_bnds (depth, nbounds) float32 ...\n", + " climatology_bounds (time, nbounds) float32 ...\n", + " t_mn (time, depth, lat, lon) float32 ...\n", + " t_dd (time, depth, lat, lon) float64 ...\n", + " t_sd (time, depth, lat, lon) float32 ...\n", + " t_se (time, depth, lat, lon) float32 ...\n", + "Attributes: (12/49)\n", + " Conventions: CF-1.6, ACDD-1.3\n", + " title: World Ocean Atlas 2018 : sea_water_tempe...\n", + " summary: PRERELEASE Climatological mean temperatu...\n", + " references: Locarnini, R. A., A. V. Mishonov, O. K. ...\n", + " institution: National Centers for Environmental Infor...\n", + " comment: global climatology as part of the World ...\n", + " ... ...\n", + " publisher_email: NCEI.info@noaa.gov\n", + " nodc_template_version: NODC_NetCDF_Grid_Template_v2.0\n", + " license: These data are openly available to the p...\n", + " metadata_link: http://www.nodc.noaa.gov/OC5/WOA18/pr_wo...\n", + " date_created: 2018-02-19 \n", + " date_modified: 2018-02-19 " ] - }, + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds = xr.open_dataset(\"woa18_decav_t01_5d.nc\", decode_times=False)\n", + "ds" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.DataArray 'time' (time: 1)>\n",
-              "array([cftime.Datetime360Day(1986, 1, 16, 0, 0, 0, 0, has_year_zero=True)],\n",
-              "      dtype=object)\n",
-              "Coordinates:\n",
-              "  * time     (time) object 1986-01-16 00:00:00\n",
-              "Attributes:\n",
-              "    standard_name:  time\n",
-              "    long_name:      time\n",
-              "    axis:           T\n",
-              "    climatology:    climatology_bounds
" - ], - "text/plain": [ - "\n", - "array([cftime.Datetime360Day(1986, 1, 16, 0, 0, 0, 0, has_year_zero=True)],\n", - " dtype=object)\n", - "Coordinates:\n", - " * time (time) object 1986-01-16 00:00:00\n", - "Attributes:\n", - " standard_name: time\n", - " long_name: time\n", - " axis: T\n", - " climatology: climatology_bounds" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.DataArray 'time' (time: 1)>\n",
+       "array([372.5], dtype=float32)\n",
+       "Coordinates:\n",
+       "  * time     (time) float32 372.5\n",
+       "Attributes:\n",
+       "    standard_name:  time\n",
+       "    long_name:      time\n",
+       "    units:          months since 1955-01-01 00:00:00\n",
+       "    axis:           T\n",
+       "    climatology:    climatology_bounds
" ], - "source": [ - "ds.time" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will need this trick for later.\n", - "\n", - "## Step 2: Define the File Pattern\n", - "\n", - "We can browse through the files on the website and see how they are organized.\n", - "\n", - "```\n", - "https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav/5deg/woa18_decav_t01_5d.nc\n", - "https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav/5deg/woa18_decav_t02_5d.nc\n", - "...\n", - "https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/salinity/decav/5deg/woa18_decav_s01_5d.nc\n", - "https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/salinity/decav/5deg/woa18_decav_s02_5d.nc\n", - "...\n", - "```\n", - "\n", - "From this we can deduce the general pattern.\n", - "We write a function to return the correct filename for a given variable / month combination." + "text/plain": [ + "\n", + "array([372.5], dtype=float32)\n", + "Coordinates:\n", + " * time (time) float32 372.5\n", + "Attributes:\n", + " standard_name: time\n", + " long_name: time\n", + " units: months since 1955-01-01 00:00:00\n", + " axis: T\n", + " climatology: climatology_bounds" ] - }, + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have opened the data, but the time coordinate is just a number, not an actual datetime object.\n", + "We can work around this issue by explicitly specifying the `360_day` calendar (in which every month is assumed to have 30 days)." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav/5deg/woa18_decav_t02_5d.nc'" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:             (lat: 36, nbounds: 2, lon: 72, depth: 57, time: 1)\n",
+       "Coordinates:\n",
+       "  * lat                 (lat) float32 -87.5 -82.5 -77.5 -72.5 ... 77.5 82.5 87.5\n",
+       "  * lon                 (lon) float32 -177.5 -172.5 -167.5 ... 167.5 172.5 177.5\n",
+       "  * depth               (depth) float32 0.0 5.0 10.0 ... 1.45e+03 1.5e+03\n",
+       "  * time                (time) object 1986-01-16 00:00:00\n",
+       "Dimensions without coordinates: nbounds\n",
+       "Data variables:\n",
+       "    crs                 int32 ...\n",
+       "    lat_bnds            (lat, nbounds) float32 ...\n",
+       "    lon_bnds            (lon, nbounds) float32 ...\n",
+       "    depth_bnds          (depth, nbounds) float32 ...\n",
+       "    climatology_bounds  (time, nbounds) float32 ...\n",
+       "    t_mn                (time, depth, lat, lon) float32 ...\n",
+       "    t_dd                (time, depth, lat, lon) float64 ...\n",
+       "    t_sd                (time, depth, lat, lon) float32 ...\n",
+       "    t_se                (time, depth, lat, lon) float32 ...\n",
+       "Attributes: (12/49)\n",
+       "    Conventions:                     CF-1.6, ACDD-1.3\n",
+       "    title:                           World Ocean Atlas 2018 : sea_water_tempe...\n",
+       "    summary:                         PRERELEASE Climatological mean temperatu...\n",
+       "    references:                      Locarnini, R. A., A. V. Mishonov, O. K. ...\n",
+       "    institution:                     National Centers for Environmental Infor...\n",
+       "    comment:                         global climatology as part of the World ...\n",
+       "    ...                              ...\n",
+       "    publisher_email:                 NCEI.info@noaa.gov\n",
+       "    nodc_template_version:           NODC_NetCDF_Grid_Template_v2.0\n",
+       "    license:                         These data are openly available to the p...\n",
+       "    metadata_link:                   http://www.nodc.noaa.gov/OC5/WOA18/pr_wo...\n",
+       "    date_created:                    2018-02-19 \n",
+       "    date_modified:                   2018-02-19 
" ], - "source": [ - "# Here it is important that the function argument name \"time\" match\n", - "# the name of the dataset dimension \"time\"\n", - "def format_function(variable, time):\n", - " return (\"https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/\"\n", - " f\"{variable}/decav/5deg/woa18_decav_{variable[0]}{time:02d}_5d.nc\")\n", - "\n", - "format_function(\"temperature\", 2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we turn this into a `FilePattern` object.\n", - "This pattern has two distinct `combine_dims`: variable name and month.\n", - "We want to merge over variable names and concatenate over months. " + "text/plain": [ + "\n", + "Dimensions: (lat: 36, nbounds: 2, lon: 72, depth: 57, time: 1)\n", + "Coordinates:\n", + " * lat (lat) float32 -87.5 -82.5 -77.5 -72.5 ... 77.5 82.5 87.5\n", + " * lon (lon) float32 -177.5 -172.5 -167.5 ... 167.5 172.5 177.5\n", + " * depth (depth) float32 0.0 5.0 10.0 ... 1.45e+03 1.5e+03\n", + " * time (time) object 1986-01-16 00:00:00\n", + "Dimensions without coordinates: nbounds\n", + "Data variables:\n", + " crs int32 ...\n", + " lat_bnds (lat, nbounds) float32 ...\n", + " lon_bnds (lon, nbounds) float32 ...\n", + " depth_bnds (depth, nbounds) float32 ...\n", + " climatology_bounds (time, nbounds) float32 ...\n", + " t_mn (time, depth, lat, lon) float32 ...\n", + " t_dd (time, depth, lat, lon) float64 ...\n", + " t_sd (time, depth, lat, lon) float32 ...\n", + " t_se (time, depth, lat, lon) float32 ...\n", + "Attributes: (12/49)\n", + " Conventions: CF-1.6, ACDD-1.3\n", + " title: World Ocean Atlas 2018 : sea_water_tempe...\n", + " summary: PRERELEASE Climatological mean temperatu...\n", + " references: Locarnini, R. A., A. V. Mishonov, O. K. ...\n", + " institution: National Centers for Environmental Infor...\n", + " comment: global climatology as part of the World ...\n", + " ... ...\n", + " publisher_email: NCEI.info@noaa.gov\n", + " nodc_template_version: NODC_NetCDF_Grid_Template_v2.0\n", + " license: These data are openly available to the p...\n", + " metadata_link: http://www.nodc.noaa.gov/OC5/WOA18/pr_wo...\n", + " date_created: 2018-02-19 \n", + " date_modified: 2018-02-19 " ] - }, + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds.time.attrs['calendar'] = '360_day'\n", + "ds = xr.decode_cf(ds)\n", + "ds" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.DataArray 'time' (time: 1)>\n",
+       "array([cftime.Datetime360Day(1986, 1, 16, 0, 0, 0, 0, has_year_zero=True)],\n",
+       "      dtype=object)\n",
+       "Coordinates:\n",
+       "  * time     (time) object 1986-01-16 00:00:00\n",
+       "Attributes:\n",
+       "    standard_name:  time\n",
+       "    long_name:      time\n",
+       "    axis:           T\n",
+       "    climatology:    climatology_bounds
" ], - "source": [ - "from pangeo_forge_recipes import patterns\n", - "\n", - "variable_merge_dim = patterns.MergeDim(\"variable\", keys=[\"temperature\", \"salinity\"])\n", - "\n", - "# Here it is important that the ConcatDim name \"time\" match the name of the \n", - "# dataset dimension \"time\" (and the argument name in format_function)\n", - "month_concat_dim = patterns.ConcatDim(\"time\", keys=list(range(1, 13)), nitems_per_file=1)\n", - "\n", - "pattern = patterns.FilePattern(format_function, variable_merge_dim, month_concat_dim)\n", - "pattern" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 3: Write the Recipe\n", - "\n", - "Now that we have a `FilePattern`, we are ready to write our recipe. As described in {doc}`netcdf_zarr_sequential`, a recipe is defined as a pipeline of [Apache Beam transforms](https://beam.apache.org/documentation/programming-guide/#transforms) applied to the data collection associated with a `FilePattern`.\n", - "\n", - "First, we'll import the transforms provided by Pangeo Forge that may be used to transform a `FilePattern` collection into a Zarr store." + "text/plain": [ + "\n", + "array([cftime.Datetime360Day(1986, 1, 16, 0, 0, 0, 0, has_year_zero=True)],\n", + " dtype=object)\n", + "Coordinates:\n", + " * time (time) object 1986-01-16 00:00:00\n", + "Attributes:\n", + " standard_name: time\n", + " long_name: time\n", + " axis: T\n", + " climatology: climatology_bounds" ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "import apache_beam as beam\n", - "from pangeo_forge_recipes.transforms import OpenURLWithFSSpec, OpenWithXarray, StoreToZarr" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Define an Input Preprocessor\n", - "Above we noted that the time was encoded wrong in the original data.\n", - "We might have also noticed that many variables that seems like coordinates (e.g. `lat_bnds`) were in the Data Variables part of the dataset.\n", - "We will write a Beam transform that fixes both these issues. This is achieved by creating a [composite transform](https://beam.apache.org/documentation/programming-guide/#composite-transform-creation), which is a subclass of the `apache_beam.PTransform` class that overrides the `expand()` method to specify the actual processing logic. \n", - "\n", - "In this example:\n", - "* `expand()` operates on an `apache_beam.PCollection`, performing a one-to-one mapping using [`apache_beam.Map`](https://beam.apache.org/documentation/programming-guide/#pardo) of input elements to output elements, i.e. for each input element, it applies `_fix_encoding_and_attrs()` that produces exactly one output element.\n", - "* As the preprocessor transform will be preceded by the `OpenWithXarray` transform in the pipeline, each input collection element will be a `pangeo_forge_recipes.transforms.Indexed[T]`. In this case each tuple will contain an index and an `xarray.Dataset`. The output tuple will contain the original index and the preprocessed `Dataset`." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "from pangeo_forge_recipes.transforms import Indexed, T\n", - "\n", - "class FixEncodingAttrs(beam.PTransform):\n", - " \"\"\"\n", - " Fix issues in retrieved data.\n", - " \"\"\"\n", - "\n", - " @staticmethod\n", - " def _fix_encoding_and_attrs(item: Indexed[T]) -> Indexed[T]:\n", - " index, ds = item\n", - " ds.time.attrs['calendar'] = '360_day'\n", - " ds = xr.decode_cf(ds)\n", - " ds = ds.set_coords(['crs', 'lat_bnds', 'lon_bnds', 'depth_bnds', 'climatology_bounds'])\n", - " return index, ds\n", - "\n", - " def expand(self, pcoll: beam.PCollection) -> beam.PCollection:\n", - " return pcoll | beam.Map(self._fix_encoding_and_attrs)" - ] - }, + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will need this trick for later.\n", + "\n", + "## Step 2: Define the File Pattern\n", + "\n", + "We can browse through the files on the website and see how they are organized.\n", + "\n", + "```\n", + "https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav/5deg/woa18_decav_t01_5d.nc\n", + "https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav/5deg/woa18_decav_t02_5d.nc\n", + "...\n", + "https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/salinity/decav/5deg/woa18_decav_s01_5d.nc\n", + "https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/salinity/decav/5deg/woa18_decav_s02_5d.nc\n", + "...\n", + "```\n", + "\n", + "From this we can deduce the general pattern.\n", + "We write a function to return the correct filename for a given variable / month combination." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Define the Recipe Object\n", - "The recipe pipeline of transforms applied to `pattern` is similar to that described in {doc}`netcdf_zarr_sequential`, with the following modifications:\n", - "1. Due to the decoding issue described earlier, `decode_times=false` is specified to `OpenWithXarray`.\n", - "1. The new preprocessing transform `FixEncodingAttrs` is included in the pipeline." + "data": { + "text/plain": [ + "'https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/temperature/decav/5deg/woa18_decav_t02_5d.nc'" ] - }, + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Here it is important that the function argument name \"time\" match\n", + "# the name of the dataset dimension \"time\"\n", + "def format_function(variable, time):\n", + " return (\"https://www.ncei.noaa.gov/thredds-ocean/fileServer/ncei/woa/\"\n", + " f\"{variable}/decav/5deg/woa18_decav_{variable[0]}{time:02d}_5d.nc\")\n", + "\n", + "format_function(\"temperature\", 2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we turn this into a `FilePattern` object.\n", + "This pattern has two distinct `combine_dims`: variable name and month.\n", + "We want to merge over variable names and concatenate over months. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A place for our data to go" + "data": { + "text/plain": [ + "" ] - }, + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pangeo_forge_recipes import patterns\n", + "\n", + "variable_merge_dim = patterns.MergeDim(\"variable\", keys=[\"temperature\", \"salinity\"])\n", + "\n", + "# Here it is important that the ConcatDim name \"time\" match the name of the \n", + "# dataset dimension \"time\" (and the argument name in format_function)\n", + "month_concat_dim = patterns.ConcatDim(\"time\", keys=list(range(1, 13)), nitems_per_file=1)\n", + "\n", + "pattern = patterns.FilePattern(format_function, variable_merge_dim, month_concat_dim)\n", + "pattern" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 3: Write the Recipe\n", + "\n", + "Now that we have a `FilePattern`, we are ready to write our recipe. As described in {doc}`netcdf_zarr_sequential`, a recipe is defined as a pipeline of [Apache Beam transforms](https://beam.apache.org/documentation/programming-guide/#transforms) applied to the data collection associated with a `FilePattern`.\n", + "\n", + "First, we'll import the transforms provided by Pangeo Forge that may be used to transform a `FilePattern` collection into a Zarr store." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "import apache_beam as beam\n", + "from pangeo_forge_recipes.transforms import OpenURLWithFSSpec, OpenWithXarray, StoreToZarr" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define an Input Preprocessor\n", + "Above we noted that the time was encoded wrong in the original data.\n", + "We might have also noticed that many variables that seems like coordinates (e.g. `lat_bnds`) were in the Data Variables part of the dataset.\n", + "We will write a Beam transform that fixes both these issues. This is achieved by creating a [composite transform](https://beam.apache.org/documentation/programming-guide/#composite-transform-creation), which is a subclass of the `apache_beam.PTransform` class that overrides the `expand()` method to specify the actual processing logic. \n", + "\n", + "In this example:\n", + "* `expand()` operates on an `apache_beam.PCollection`, performing a one-to-one mapping using [`apache_beam.Map`](https://beam.apache.org/documentation/programming-guide/#pardo) of input elements to output elements, i.e. for each input element, it applies `_fix_encoding_and_attrs()` that produces exactly one output element.\n", + "* As the preprocessor transform will be preceded by the `OpenWithXarray` transform in the pipeline, each input collection element will be a `pangeo_forge_recipes.transforms.Indexed[T]`. In this case each tuple will contain an index and an `xarray.Dataset`. The output tuple will contain the original index and the preprocessed `Dataset`." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "from pangeo_forge_recipes.transforms import Indexed, T\n", + "\n", + "class FixEncodingAttrs(beam.PTransform):\n", + " \"\"\"\n", + " Fix issues in retrieved data.\n", + " \"\"\"\n", + "\n", + " @staticmethod\n", + " def _fix_encoding_and_attrs(item: Indexed[T]) -> Indexed[T]:\n", + " index, ds = item\n", + " ds.time.attrs['calendar'] = '360_day'\n", + " ds = xr.decode_cf(ds)\n", + " ds = ds.set_coords(['crs', 'lat_bnds', 'lon_bnds', 'depth_bnds', 'climatology_bounds'])\n", + " return index, ds\n", + "\n", + " def expand(self, pcoll: beam.PCollection) -> beam.PCollection:\n", + " return pcoll | beam.Map(self._fix_encoding_and_attrs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define the Recipe Object\n", + "The recipe pipeline of transforms applied to `pattern` is similar to that described in {doc}`netcdf_zarr_sequential`, with the following modifications:\n", + "1. Due to the decoding issue described earlier, `decode_times=false` is specified to `OpenWithXarray`.\n", + "1. The new preprocessing transform `FixEncodingAttrs` is included in the pipeline." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A place for our data to go" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'/tmp/tmpmkk0h21h/output.zarr'" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import os\n", - "from tempfile import TemporaryDirectory\n", - "td = TemporaryDirectory()\n", - "target_root = td.name\n", - "store_name = \"output.zarr\"\n", - "target_store = os.path.join(target_root, store_name)\n", - "target_store" + "data": { + "text/plain": [ + "'/tmp/tmpmkk0h21h/output.zarr'" ] - }, + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import os\n", + "from tempfile import TemporaryDirectory\n", + "td = TemporaryDirectory()\n", + "target_root = td.name\n", + "store_name = \"output.zarr\"\n", + "target_store = os.path.join(target_root, store_name)\n", + "target_store" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "<_ChainedPTransform(PTransform) label=[Create|OpenURLWithFSSpec|OpenWithXarray|FixEncodingAttrs|StoreToZarr] at 0x7fed26e108b0>" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "transforms = (\n", - " beam.Create(pattern.items())\n", - " | OpenURLWithFSSpec()\n", - " | OpenWithXarray(file_type=pattern.file_type, xarray_open_kwargs=dict(decode_times=False))\n", - " | FixEncodingAttrs() # New preprocessor\n", - " | StoreToZarr(\n", - " store_name=store_name,\n", - " target_root=target_root,\n", - " combine_dims=pattern.combine_dim_keys,\n", - " )\n", - ")\n", - "transforms" + "data": { + "text/plain": [ + "<_ChainedPTransform(PTransform) label=[Create|OpenURLWithFSSpec|OpenWithXarray|FixEncodingAttrs|StoreToZarr] at 0x7fed26e108b0>" ] - }, + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transforms = (\n", + " beam.Create(pattern.items())\n", + " | OpenURLWithFSSpec()\n", + " | OpenWithXarray(file_type=pattern.file_type, xarray_open_kwargs=dict(decode_times=False))\n", + " | FixEncodingAttrs() # New preprocessor\n", + " | StoreToZarr(\n", + " store_name=store_name,\n", + " target_root=target_root,\n", + " combine_dims=pattern.combine_dim_keys,\n", + " )\n", + ")\n", + "transforms" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 4: Run the Recipe\n", + "\n", + "Execute the recipe pipeline using Beam." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 4: Run the Recipe\n", - "\n", - "Execute the recipe pipeline using Beam." - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" + ] }, { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" - ] - }, - { - "data": { - "application/javascript": [ - "\n", - " if (typeof window.interactive_beam_jquery == 'undefined') {\n", - " var jqueryScript = document.createElement('script');\n", - " jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n", - " jqueryScript.type = 'text/javascript';\n", - " jqueryScript.onload = function() {\n", - " var datatableScript = document.createElement('script');\n", - " datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n", - " datatableScript.type = 'text/javascript';\n", - " datatableScript.onload = function() {\n", - " window.interactive_beam_jquery = jQuery.noConflict(true);\n", - " window.interactive_beam_jquery(document).ready(function($){\n", - " \n", - " });\n", - " }\n", - " document.head.appendChild(datatableScript);\n", - " };\n", - " document.head.appendChild(jqueryScript);\n", - " } else {\n", - " window.interactive_beam_jquery(document).ready(function($){\n", - " \n", - " });\n", - " }" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:apache_beam.coders.coder_impl:Using fallback deterministic coder for type '' in '[14]: Create|OpenURLWithFSSpec|OpenWithXarray|FixEncodingAttrs|StoreToZarr/StoreToZarr/DetermineSchema/CombinePerKey(CombineXarraySchemas)/GroupByKey'. \n", - "WARNING:apache_beam.coders.coder_impl:Using fallback deterministic coder for type '' in '[14]: Create|OpenURLWithFSSpec|OpenWithXarray|FixEncodingAttrs|StoreToZarr/StoreToZarr/DetermineSchema/CombinePerKey(CombineXarraySchemas)/GroupByKey'. \n", - "WARNING:apache_beam.coders.coder_impl:Using fallback deterministic coder for type '' in '[14]: Create|OpenURLWithFSSpec|OpenWithXarray|FixEncodingAttrs|StoreToZarr/StoreToZarr/DetermineSchema/CombinePerKey(CombineXarraySchemas)'. \n", - "/home/derek/anaconda3/envs/forgerunner/lib/python3.9/site-packages/xarray/core/dataset.py:2081: SerializationWarning: saving variable None with floating point data as an integer dtype without any _FillValue to use for NaNs\n", - " return to_zarr( # type: ignore\n", - "/home/derek/anaconda3/envs/forgerunner/lib/python3.9/site-packages/xarray/core/dataset.py:2081: SerializationWarning: saving variable None with floating point data as an integer dtype without any _FillValue to use for NaNs\n", - " return to_zarr( # type: ignore\n" - ] - } - ], - "source": [ - "with beam.Pipeline() as p:\n", - " p | transforms" + "data": { + "application/javascript": [ + "\n", + " if (typeof window.interactive_beam_jquery == 'undefined') {\n", + " var jqueryScript = document.createElement('script');\n", + " jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n", + " jqueryScript.type = 'text/javascript';\n", + " jqueryScript.onload = function() {\n", + " var datatableScript = document.createElement('script');\n", + " datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n", + " datatableScript.type = 'text/javascript';\n", + " datatableScript.onload = function() {\n", + " window.interactive_beam_jquery = jQuery.noConflict(true);\n", + " window.interactive_beam_jquery(document).ready(function($){\n", + " \n", + " });\n", + " }\n", + " document.head.appendChild(datatableScript);\n", + " };\n", + " document.head.appendChild(jqueryScript);\n", + " } else {\n", + " window.interactive_beam_jquery(document).ready(function($){\n", + " \n", + " });\n", + " }" ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 5: Check the Target\n", - "\n", - "All the data should be there!" - ] - }, + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:apache_beam.coders.coder_impl:Using fallback deterministic coder for type '' in '[14]: Create|OpenURLWithFSSpec|OpenWithXarray|FixEncodingAttrs|StoreToZarr/StoreToZarr/DetermineSchema/CombinePerKey(CombineXarraySchemas)/GroupByKey'. \n", + "WARNING:apache_beam.coders.coder_impl:Using fallback deterministic coder for type '' in '[14]: Create|OpenURLWithFSSpec|OpenWithXarray|FixEncodingAttrs|StoreToZarr/StoreToZarr/DetermineSchema/CombinePerKey(CombineXarraySchemas)/GroupByKey'. \n", + "WARNING:apache_beam.coders.coder_impl:Using fallback deterministic coder for type '' in '[14]: Create|OpenURLWithFSSpec|OpenWithXarray|FixEncodingAttrs|StoreToZarr/StoreToZarr/DetermineSchema/CombinePerKey(CombineXarraySchemas)'. \n", + "/home/derek/anaconda3/envs/forgerunner/lib/python3.9/site-packages/xarray/core/dataset.py:2081: SerializationWarning: saving variable None with floating point data as an integer dtype without any _FillValue to use for NaNs\n", + " return to_zarr( # type: ignore\n", + "/home/derek/anaconda3/envs/forgerunner/lib/python3.9/site-packages/xarray/core/dataset.py:2081: SerializationWarning: saving variable None with floating point data as an integer dtype without any _FillValue to use for NaNs\n", + " return to_zarr( # type: ignore\n" + ] + } + ], + "source": [ + "with beam.Pipeline() as p:\n", + " p | transforms" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 5: Check the Target\n", + "\n", + "All the data should be there!" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.Dataset>\n",
-              "Dimensions:             (time: 12, nbounds: 2, depth: 57, lat: 36, lon: 72)\n",
-              "Coordinates:\n",
-              "    climatology_bounds  (time, nbounds) float32 dask.array<chunksize=(1, 2), meta=np.ndarray>\n",
-              "    crs                 int32 ...\n",
-              "  * depth               (depth) float32 0.0 5.0 10.0 ... 1.45e+03 1.5e+03\n",
-              "    depth_bnds          (depth, nbounds) float32 dask.array<chunksize=(57, 2), meta=np.ndarray>\n",
-              "  * lat                 (lat) float32 -87.5 -82.5 -77.5 -72.5 ... 77.5 82.5 87.5\n",
-              "    lat_bnds            (lat, nbounds) float32 dask.array<chunksize=(36, 2), meta=np.ndarray>\n",
-              "  * lon                 (lon) float32 -177.5 -172.5 -167.5 ... 167.5 172.5 177.5\n",
-              "    lon_bnds            (lon, nbounds) float32 dask.array<chunksize=(72, 2), meta=np.ndarray>\n",
-              "  * time                (time) float32 372.5 373.5 374.5 ... 381.5 382.5 383.5\n",
-              "Dimensions without coordinates: nbounds\n",
-              "Data variables:\n",
-              "    s_dd                (time, depth, lat, lon) int32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
-              "    s_mn                (time, depth, lat, lon) float32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
-              "    s_sd                (time, depth, lat, lon) float32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
-              "    s_se                (time, depth, lat, lon) float32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
-              "    t_dd                (time, depth, lat, lon) int32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
-              "    t_mn                (time, depth, lat, lon) float32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
-              "    t_sd                (time, depth, lat, lon) float32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
-              "    t_se                (time, depth, lat, lon) float32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
-              "Attributes: (12/39)\n",
-              "    Conventions:                     CF-1.6, ACDD-1.3\n",
-              "    cdm_data_type:                   Grid\n",
-              "    comment:                         global climatology as part of the World ...\n",
-              "    contributor_name:                Ocean Climate Laboratory\n",
-              "    contributor_role:                Calculation of climatologies\n",
-              "    creator_email:                   NCEI.info@noaa.gov\n",
-              "    ...                              ...\n",
-              "    publisher_type:                  institution\n",
-              "    publisher_url:                   http://www.ncei.noaa.gov/\n",
-              "    sea_name:                        World-Wide Distribution\n",
-              "    standard_name_vocabulary:        CF Standard Name Table v49\n",
-              "    time_coverage_duration:          P63Y\n",
-              "    time_coverage_resolution:        P01M
" - ], - "text/plain": [ - "\n", - "Dimensions: (time: 12, nbounds: 2, depth: 57, lat: 36, lon: 72)\n", - "Coordinates:\n", - " climatology_bounds (time, nbounds) float32 dask.array\n", - " crs int32 ...\n", - " * depth (depth) float32 0.0 5.0 10.0 ... 1.45e+03 1.5e+03\n", - " depth_bnds (depth, nbounds) float32 dask.array\n", - " * lat (lat) float32 -87.5 -82.5 -77.5 -72.5 ... 77.5 82.5 87.5\n", - " lat_bnds (lat, nbounds) float32 dask.array\n", - " * lon (lon) float32 -177.5 -172.5 -167.5 ... 167.5 172.5 177.5\n", - " lon_bnds (lon, nbounds) float32 dask.array\n", - " * time (time) float32 372.5 373.5 374.5 ... 381.5 382.5 383.5\n", - "Dimensions without coordinates: nbounds\n", - "Data variables:\n", - " s_dd (time, depth, lat, lon) int32 dask.array\n", - " s_mn (time, depth, lat, lon) float32 dask.array\n", - " s_sd (time, depth, lat, lon) float32 dask.array\n", - " s_se (time, depth, lat, lon) float32 dask.array\n", - " t_dd (time, depth, lat, lon) int32 dask.array\n", - " t_mn (time, depth, lat, lon) float32 dask.array\n", - " t_sd (time, depth, lat, lon) float32 dask.array\n", - " t_se (time, depth, lat, lon) float32 dask.array\n", - "Attributes: (12/39)\n", - " Conventions: CF-1.6, ACDD-1.3\n", - " cdm_data_type: Grid\n", - " comment: global climatology as part of the World ...\n", - " contributor_name: Ocean Climate Laboratory\n", - " contributor_role: Calculation of climatologies\n", - " creator_email: NCEI.info@noaa.gov\n", - " ... ...\n", - " publisher_type: institution\n", - " publisher_url: http://www.ncei.noaa.gov/\n", - " sea_name: World-Wide Distribution\n", - " standard_name_vocabulary: CF Standard Name Table v49\n", - " time_coverage_duration: P63Y\n", - " time_coverage_resolution: P01M" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:             (time: 12, nbounds: 2, depth: 57, lat: 36, lon: 72)\n",
+       "Coordinates:\n",
+       "    climatology_bounds  (time, nbounds) float32 dask.array<chunksize=(1, 2), meta=np.ndarray>\n",
+       "    crs                 int32 ...\n",
+       "  * depth               (depth) float32 0.0 5.0 10.0 ... 1.45e+03 1.5e+03\n",
+       "    depth_bnds          (depth, nbounds) float32 dask.array<chunksize=(57, 2), meta=np.ndarray>\n",
+       "  * lat                 (lat) float32 -87.5 -82.5 -77.5 -72.5 ... 77.5 82.5 87.5\n",
+       "    lat_bnds            (lat, nbounds) float32 dask.array<chunksize=(36, 2), meta=np.ndarray>\n",
+       "  * lon                 (lon) float32 -177.5 -172.5 -167.5 ... 167.5 172.5 177.5\n",
+       "    lon_bnds            (lon, nbounds) float32 dask.array<chunksize=(72, 2), meta=np.ndarray>\n",
+       "  * time                (time) float32 372.5 373.5 374.5 ... 381.5 382.5 383.5\n",
+       "Dimensions without coordinates: nbounds\n",
+       "Data variables:\n",
+       "    s_dd                (time, depth, lat, lon) int32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
+       "    s_mn                (time, depth, lat, lon) float32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
+       "    s_sd                (time, depth, lat, lon) float32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
+       "    s_se                (time, depth, lat, lon) float32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
+       "    t_dd                (time, depth, lat, lon) int32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
+       "    t_mn                (time, depth, lat, lon) float32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
+       "    t_sd                (time, depth, lat, lon) float32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
+       "    t_se                (time, depth, lat, lon) float32 dask.array<chunksize=(1, 57, 36, 72), meta=np.ndarray>\n",
+       "Attributes: (12/39)\n",
+       "    Conventions:                     CF-1.6, ACDD-1.3\n",
+       "    cdm_data_type:                   Grid\n",
+       "    comment:                         global climatology as part of the World ...\n",
+       "    contributor_name:                Ocean Climate Laboratory\n",
+       "    contributor_role:                Calculation of climatologies\n",
+       "    creator_email:                   NCEI.info@noaa.gov\n",
+       "    ...                              ...\n",
+       "    publisher_type:                  institution\n",
+       "    publisher_url:                   http://www.ncei.noaa.gov/\n",
+       "    sea_name:                        World-Wide Distribution\n",
+       "    standard_name_vocabulary:        CF Standard Name Table v49\n",
+       "    time_coverage_duration:          P63Y\n",
+       "    time_coverage_resolution:        P01M
" ], - "source": [ - "ds = xr.open_zarr(target_store)\n", - "ds" + "text/plain": [ + "\n", + "Dimensions: (time: 12, nbounds: 2, depth: 57, lat: 36, lon: 72)\n", + "Coordinates:\n", + " climatology_bounds (time, nbounds) float32 dask.array\n", + " crs int32 ...\n", + " * depth (depth) float32 0.0 5.0 10.0 ... 1.45e+03 1.5e+03\n", + " depth_bnds (depth, nbounds) float32 dask.array\n", + " * lat (lat) float32 -87.5 -82.5 -77.5 -72.5 ... 77.5 82.5 87.5\n", + " lat_bnds (lat, nbounds) float32 dask.array\n", + " * lon (lon) float32 -177.5 -172.5 -167.5 ... 167.5 172.5 177.5\n", + " lon_bnds (lon, nbounds) float32 dask.array\n", + " * time (time) float32 372.5 373.5 374.5 ... 381.5 382.5 383.5\n", + "Dimensions without coordinates: nbounds\n", + "Data variables:\n", + " s_dd (time, depth, lat, lon) int32 dask.array\n", + " s_mn (time, depth, lat, lon) float32 dask.array\n", + " s_sd (time, depth, lat, lon) float32 dask.array\n", + " s_se (time, depth, lat, lon) float32 dask.array\n", + " t_dd (time, depth, lat, lon) int32 dask.array\n", + " t_mn (time, depth, lat, lon) float32 dask.array\n", + " t_sd (time, depth, lat, lon) float32 dask.array\n", + " t_se (time, depth, lat, lon) float32 dask.array\n", + "Attributes: (12/39)\n", + " Conventions: CF-1.6, ACDD-1.3\n", + " cdm_data_type: Grid\n", + " comment: global climatology as part of the World ...\n", + " contributor_name: Ocean Climate Laboratory\n", + " contributor_role: Calculation of climatologies\n", + " creator_email: NCEI.info@noaa.gov\n", + " ... ...\n", + " publisher_type: institution\n", + " publisher_url: http://www.ncei.noaa.gov/\n", + " sea_name: World-Wide Distribution\n", + " standard_name_vocabulary: CF Standard Name Table v49\n", + " time_coverage_duration: P63Y\n", + " time_coverage_resolution: P01M" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Just to check, we will make a plot." - ] - }, + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds = xr.open_zarr(target_store)\n", + "ds" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Just to check, we will make a plot." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHFCAYAAAA+FskAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxD0lEQVR4nO3deVhU1f8H8PeAMOyIoCzK4r6bhkuouWSKiqZZ7rlnuaXkbpbiiitSlmuGWq7lkmkiVi7hLmJfU9NUBFQQV0BUtjm/P/gxOcwdmGEGZkbfr+e5zyPnnjnzObPgh3POPVcmhBAgIiIiMnEWxg6AiIiISBtMWoiIiMgsMGkhIiIis8CkhYiIiMwCkxYiIiIyC0xaiIiIyCwwaSEiIiKzwKSFiIiIzAKTFiIiIjILTFrI4K5evYqJEyfC398fZcuWRbly5dCiRQv89NNPanVv3bqF4OBgtG7dGmXLloVMJsP69euLfI5nz56hRo0akMlkWLJkicq5kJAQyGQyjcfWrVs1tvvBBx9AJpOhS5cuaufS0tIwffp01KhRA3Z2dqhYsSJ69uyJixcvqtQ7f/48goKC4OPjA1tbW5QrVw4BAQH44YcfJJ8zOzsbYWFhqF+/PmxtbVG2bFk0b94cx48f1xjnpUuXIJfLIZPJcPbsWZVzbdq0KbT/ycnJGtvV1fr16yGTyXDz5k2DtSll/vz52L17t8bnL/gaGMuTJ08QHBwMLy8v2NjYoGHDhoV+3gpKSUnB4MGD4ebmBjs7OwQEBOD333/X6rF+fn7K93jMmDHF7YJeNm/ejPDwcKM8NwA8fvxY5bNe8HcDmb8yxg6AXj5RUVHYt28fBgwYgCZNmiAnJwfbtm1Dz549MWvWLMyYMUNZ99q1a9i0aRMaNmyIzp07Y8uWLVo9xxdffIGMjAzJcx9++CE6duyoVj58+HBcv35d8hwA7Nu3D7t374aTk5Pk+a5du+Ls2bMICQlB48aNcevWLcyePRsBAQG4cOECfH19AeT94vT29kbfvn1RsWJFZGRkYNOmTRgwYABu3ryJzz//XNlmbm4u3n33XURHR2Py5Mlo3rw5MjIyEBMTo7F/ubm5GDp0KNzc3HDnzh218ytWrEBaWppK2dOnT9GxY0f4+/vDw8NDsl1TNn/+fLz//vvo3r27sUMpVI8ePXDmzBksWLAANWrUwObNm9G3b18oFAr069ev0MdmZmaiXbt2ePz4Mb788ktUqFAB33zzDTp27IjffvsNrVu3LvL5O3fujC+++MJo7/HmzZvx999/Izg42CjP7+joiBMnTiApKQk9evQwSgxUwgSZladPnwqFQmHsMAp17949yRiDgoKEnZ2deP78ubIsNzdX+e8zZ84IACIiIqLQ9k+dOiWsra3Fjz/+KACIxYsXFxlTXFyckMlk4oMPPpA8//jxY1GxYkURFhYmfH19RVBQkMr5f//9VwAQn3/+uUr58ePHBQARFhZWZAzNmjUT3t7eKmXLli0TFhYW4sSJE0U+Pt/ixYtFxYoVxZdffikAiDNnzhT5mPXr1wsA4ttvv9X6ebQREREhAIi4uDiDtluQvb29GDRokMbn1+Y1KGn79u0TAMTmzZtVytu3by+8vLxETk5OoY//5ptvBABx/PhxZVl2draoU6eOaNq0aZHP7+vrK/kalaagoCDh6+tr8HafPn2qU/24uDitfzeQeeH0kBH9888/6Nu3L9zd3SGXy+Hj44OBAwciMzMTwH9D31FRURg6dCjKly8POzs7ZGZm4t69e/joo4/g7e0NuVyO8uXLo0WLFvjtt9+M3CvAzc0NMplMrbxp06Z4+vQpHj58qCyzsNDtI5iVlYWhQ4di9OjRaNy4sdaP++677yCEwIcffih5fsKECfD09MTYsWMlz1tZWQEAnJ2dVcrLli0LALCxsSkyBjc3N5Qpozq4+eWXX6JVq1Z44403inw8APz777+YMWMGVqxYoXFESMq6devg4OCA3r17a/2Ygk6ePIkWLVrAxsYGXl5emDZtGrKzsyXrbtu2DQEBAbC3t4eDgwMCAwMRGxurUmfw4MFwcHDAxYsX0a5dO9jb26N8+fIYM2YMnj59qqwnk8mQkZGBDRs2KIf927Rpo9JWeno6Ro4cCTc3N7i6uqJHjx6So1AladeuXXBwcEDPnj1VyocMGYI7d+7g1KlTRT6+Zs2aCAgIUJaVKVMGH3zwAU6fPo3bt28XK67Dhw9DJpNh8+bNmDJlCjw9PeHg4ICuXbvi7t27SE9Px0cffQQ3Nze4ublhyJAhePLkiUobQgisWLECDRs2hK2tLVxcXPD+++/jxo0byjpt2rTBvn37EB8frzJFky8rKwtz585FrVq1lL+zhgwZgnv37qk8l5+fH7p06YKdO3eiUaNGsLGxwaxZswAAP/74I5o1awZnZ2fY2dmhSpUqGDp0aLFeFzJPTFqM5K+//kKTJk1w8uRJzJ49G/v370doaCgyMzORlZWlUnfo0KGwsrLC999/j59++glWVlYYMGAAdu/ejRkzZiAqKgrffvst3n77bTx48KDQ5xVCICcnR6vD0A4dOoTy5cujQoUKxW5j9uzZyMjIwJw5c7R+jEKhwPr161GtWjXJIfbffvsNGzduxLfffgtLS0vJNnx9fdGtWzcsW7YMhw4dwpMnT/DPP/9g7Nix8PHxQZ8+fSSfNycnB/fu3cOKFStw4MABTJkyRXk+MTERN2/eRP369fHZZ5/B3d0dZcqUQd26dbFhwwa19vKTri5duuCdd97Ruv///vsv/vzzT/Tp0wcODg5aP+5Fly5dUk5drF+/HqtWrUJsbCzmzp2rVnf+/Pno27cv6tSpg+3bt+P7779Heno63nzzTVy6dEmlbnZ2Njp37ox27dph9+7dGDNmDFavXq2SXJ04cQK2trbo3LkzTpw4gRMnTmDFihUq7Xz44YewsrLC5s2bsWjRIhw+fBgffPBBkf0y5Pfh77//Ru3atdUS0wYNGijPF/X4/LpSjy+4dkpXn332GVJSUrB+/XosXboUhw8fRt++ffHee+/B2dkZW7ZsweTJk/H999/js88+U3nsxx9/jODgYLz99tvYvXs3VqxYgYsXL6J58+a4e/cugLxpyRYtWsDDw0P5Pp04cQJA3nehW7duWLBgAfr164d9+/ZhwYIFOHjwINq0aYNnz56pPN+5c+cwadIkjB07FpGRkXjvvfdw4sQJ9O7dG1WqVMHWrVuxb98+zJgxo0R+V5EJM+o4zyvsrbfeEmXLlhUpKSka6+QPfQ8cOFDtnIODgwgODtb5eQ8dOiQAaHUYcsh/7dq1AoD48ssvNdYpanooNjZWWFlZicjISCGE9kPA+/fvFwBEaGio2rn09HTh5+cnpk2bpiyTmh4SQoisrCwxfPhwldeoQYMGGl+njz/+WFnP2tparFixQuX8iRMnBADh5OQk6tSpI7Zv3y4OHDgg3n//fQFArFmzRqX+8uXLhYuLi0hOThZCaD81MmXKFAFApymognr37i1sbW2Vzy2EEDk5OaJWrVoqn5WEhARRpkwZ8cknn6g8Pj09XXh4eIhevXopywYNGiT5mZg3b54AIKKjo5VlRU0PjRo1SqV80aJFAoBISkoqtF/5j9fmKEr16tVFYGCgWvmdO3cEADF//vxCH29lZSU+/vhjtfL8KciC004FaZoeyv/Od+3aVaU8ODhYABBjx45VKe/evbsoV66c8uf8z+nSpUtV6iUmJgpbW1sxefJkZZmm6aEtW7YIAGLHjh0q5fnf+Re/G76+vsLS0lJcuXJFpe6SJUsEAPH48WPpF+AFnB56eXGkxQiePn2KI0eOoFevXihfvnyR9d977z21sqZNm2L9+vWYO3cuTp48qXGYviB/f3+cOXNGq8PLy6vQtgr+JSqEkKy3f/9+jB49Gu+//z4++eQTreKUeq6hQ4eid+/eCAwM1Omx69atQ5kyZTB48GC1c1OnToWVlZXK4mBNRo4ciR07dmDZsmU4cuQItm3bBmtra7z11luIj49Xq//ZZ5/hzJkz2LdvH4YOHYoxY8aoXM2gUCgAAM+fP8evv/6Knj17okOHDti+fTtef/11zJ49W1k3Pj4e06ZNw+LFi+Hu7q5133NycrBhwwbUrVtX6ykoKYcOHUK7du1UntvS0lJtuunAgQPIycnBwIEDVT4bNjY2aN26NQ4fPqzWdv/+/VV+zl+weujQIa3jKzjylD86IfW+vKhr165afx+0ITUtqs05Qz2+MAWviKtduzYAICgoSK384cOHyimivXv3QiaT4YMPPlB5Tz08PPDaa69JvqcF7d27F2XLlkXXrl1V2mjYsCE8PDzU2mjQoAFq1KihUtakSRMAQK9evbB9+/ZiT5cZy9GjR9G1a1d4eXlBJpNJXg1XmCtXrqBt27Zwd3eHjY0NqlSpgs8//1ztd39mZiamT58OX19fyOVyVK1aFd99950Be2JcvHrICB49eoTc3FxUqlRJq/qenp5qZdu2bcPcuXPx7bff4osvvoCDgwPeffddLFq0qNArBxwcHNCwYUOtnrfgMHdB+es88kVERKglBgcOHECPHj3Qvn17bNq0qdi/eMPDw3Hjxg1s374djx8/BgDlFTLPnz/H48eP4ejoqDa9c//+fezZswdBQUFqr8vp06exYsUK7Ny5E8+fP8fz588B/Det8/jxY9ja2kIulyMyMhLr1q3Djz/+iPfff1/ZRocOHeDn54eQkBBERESotO/j4wMfHx8AeVd1AMC0adMwaNAglC9fHq6urgCAWrVqKa88AvL+cwoMDERoaChSUlJQoUIFjB49GvXq1cN7772n7H/+uo8nT54gNTVVbb0NAPz6669ITk5WmZYqjgcPHkh+rgqW5U8V5P8HU1DBNUxlypRRvg4F2yxqqvNFBduQy+UAoDbtUFC5cuUkX7ficHV1lYw5fw1XuXLlSvTxRSn4eGtr60LLnz9/DgcHB9y9exdCCI3JcpUqVYp87rt37+Lx48fKtgu6f/++ys9Sv/NatWqF3bt346uvvlKu/atbty6mT5+Ovn37FhmDsWVkZOC1117DkCFDJP8QLYqVlRUGDhyI119/HWXLlsVff/2F4cOHQ6FQYP78+cp6vXr1wt27d7Fu3TpUq1YNKSkpL9UUGpMWIyhXrhwsLS1x69YtrepL/Ufv5uaG8PBwhIeHIyEhAXv27MHUqVORkpKCyMhIjW0dOXIEbdu21ep54+Li4Ofnp/F8wb8+K1eurPLzgQMH0L17d7Ru3Ro7duzQ+AtLG3///TdSU1NRvXp1tXNffPEFvvjiC8TGxqolZN9//z2ysrIkF+BeunQJQgi8++67aucSExPh4uKCZcuWITg4GOfPnweg/p9x2bJlUa1atSLXKwB5o2OrVq3CjRs3UL58eVStWhV2dnaSdfNHrfL/k//7778RHx8PFxcXtbpt27aFs7OzMpl50bp162BtbY0BAwYUGV9hXF1dJfd3KVjm5uYGAPjpp59UEjFNcnJy8ODBA5WkI7/NgolISdiwYQOGDBmiVV1NI4n56tevjy1btiAnJ0cl4b9w4QIAoF69ekU+Pr/ui7R9fEnJX1j/559/KpPBF0mVSbXh6uqq8XeTo6Ojys+a/rjp1q0bunXrhszMTJw8eRKhoaHo168f/Pz8VBYwm6JOnTqhU6dOGs9nZWXh888/x6ZNm/D48WPUq1cPCxcuVC46r1KlikqC6Ovri8OHD+PPP/9UlkVGRuLIkSO4ceOGMhkt7He4OWLSYgS2trZo3bo1fvzxR8ybN0/5i764fHx8MGbMGPz+++84duxYoXXzp4e0UdT0UGFX70RFRaF79+5o2bIldu/erdUvtsJMnTpVbRQnOTkZffv2xYgRI9C7d29Uq1ZN7XHr1q2Dl5eX5C+Ljh07Sk5B9OnTB5UrV0ZoaKiyzfzX4uTJkyr/GT948ABXr15Fu3btiuzDoUOHYGFhofzFU6ZMGXTr1g0//fQTbt68qfzlIoRAZGQkqlatqvxsbN26VTkSlC8yMhILFy7EqlWrULduXbXnS05Oxq+//ooePXronQC0bdsWe/bswd27d5V/cefm5mLbtm0q9QIDA1GmTBlcv35d678mN23apHLV1ubNmwFA5QohuVxe5KhJceRPDxnCu+++i7Vr12LHjh0q02YbNmyAl5cXmjVrVuTjR40ahVOnTinr5uTk4IcffkCzZs2K/D6WlC5dumDBggW4ffs2evXqVWhdTe9Tly5dsHXrVuTm5hb5OmhDLpcrN6Q8cOAAYmNjTT5pKcqQIUNw8+ZNbN26FV5eXti1axc6duyICxcuSP6xdu3aNURGRqrsR7Nnzx40btwYixYtwvfffw97e3u88847mDNnDmxtbUuzOyWGSYuRhIWFoWXLlmjWrBmmTp2KatWq4e7du9izZw9Wr16t9pfHi1JTU9G2bVv069cPtWrVgqOjI86cOaP2AZbi6Oio06XCxREdHY3u3bvDw8MDn332mXKUIl+dOnVULtfN3yk3//LJs2fPKq9yyZ+KqVWrFmrVqqXSTv4urFWrVlW7BBYATp06hYsXL+Kzzz6TvCrIw8NDcsrDxsYGrq6uKm326NEDM2bMwMiRI3Hr1i28/vrrSEpKwuLFi/H06VOMGzdOWfejjz6Ck5MTmjZtCnd3d9y/fx8//vgjtm3bhkmTJqmsY5ozZw7279+Pjh07IiQkBE5OTvj222/x119/Yfv27cp6UutR8vvv7+8v+Z5u2LABOTk5Gi/zBvJ2D541axYOHTok+Rrm+/zzz7Fnzx689dZbmDFjBuzs7PDNN9+obYDn5+eH2bNnY/r06bhx4wY6duwIFxcX3L17F6dPn4a9vb3y8lUgbypi6dKlePLkCZo0aYLjx49j7ty56NSpE1q2bKmsV79+fRw+fBi//PILPD094ejoiJo1a2qMV1uurq4GG9Hp1KkT2rdvj5EjRyItLQ3VqlXDli1bEBkZiR9++EHlMzhs2DBs2LAB169fVybBQ4cOxTfffIOePXtiwYIFqFChAlasWIErV64YdSuDFi1a4KOPPsKQIUNw9uxZtGrVCvb29khKSkJ0dDTq16+PkSNHAsh7n3bu3ImVK1fC398fFhYWaNy4Mfr06YNNmzahc+fOGDduHJo2bQorKyvcunULhw4dQrdu3SRHPF80Y8YM3Lp1C+3atUOlSpWUm/BZWVlptfGeKbt+/Tq2bNmCW7duKZPTiRMnIjIyEhERESrTP82bN8e5c+eQmZmJjz76SGXt240bNxAdHQ0bGxvs2rUL9+/fx6hRo/Dw4cOXZ12LMVcBv+ouXbokevbsKVxdXYW1tbXw8fERgwcPVm6+punqkOfPn4sRI0aIBg0aCCcnJ2Fraytq1qwpZs6cKTIyMozRFRUzZ84s9CqMQ4cOqdQvrG5hirpCYPjw4UImk4nr16/rFL+mq4eSkpLEmDFjRLVq1YSNjY3w8vISQUFBalflfPfdd+LNN98Ubm5uokyZMqJs2bKidevW4vvvv5d8vgsXLoigoCDh6OgobGxsxBtvvCF++eWXIuMs6uqhGjVqCD8/v0I3I5wwYYKQyWTi8uXLRT7fsWPHxBtvvCHkcrnw8PAQkyZNEmvWrJG80mz37t2ibdu2wsnJScjlcuHr6yvef/998dtvvynrDBo0SNjb24v//e9/ok2bNsLW1laUK1dOjBw5Ujx58kSlvfPnz4sWLVoIOzs7AUC0bt260Ncg/4qZgp+1kpaeni7Gjh0rPDw8hLW1tWjQoIHYsmWLWr38K6cKvm7Jycli4MCBoly5csrPwsGDB7V67qKuHvrxxx9VyjW9dvnf33v37qmUf/fdd6JZs2bC3t5e2NraiqpVq4qBAweKs2fPKus8fPhQvP/++6Js2bJCJpOpfIezs7PFkiVLxGuvvSZsbGyEg4ODqFWrlvj444/Fv//+q9IPqe/f3r17RadOnUTFihWFtbW1qFChgujcubP4888/1eqa+tVDAMSuXbuUP2/fvl0AEPb29ipHmTJlVK64EyLvCr2LFy+KzZs3i4oVK4qFCxcqz7Vv317Y2NioXGG1Y8cOIZPJdN6gz1TJhChiopaIXlpNmzaFr68vfvzxx1J/7sGDB+Onn35S28iMisfPzw+tW7fGunXrYGFhofPGjS+LnJwcxMfHo1q1ali8eDEmTpxo7JDUyGQy7Nq1S3lbim3btqF///64ePGi2qiwg4ODxosrfvjhB3z00UdIT0+HpaUlBg0ahGPHjuHatWvKOpcvX0adOnVw9epVyWkmc/NqfqqJCGlpafjrr79UhpfJvG3cuBFWVlYad3Z+2T1+/BhWVlaS69tMWaNGjZCbm4uUlBRUq1ZN5SjsalAhBLKzs5WLxFu0aIE7d+6o/CFw9epVWFhYaH21qqnjmhaiV5STk5PylhFk/n755Rfl+6nPrtPmLH99Xz5vb28jRqPqyZMnKiMgcXFxOH/+PMqVK4caNWqgf//+GDhwIJYuXYpGjRrh/v37+OOPP1C/fn107twZmzZtgpWVFerXrw+5XI6YmBhMmzYNvXv3Vl6t1q9fP8yZMwdDhgzBrFmzcP/+fUyaNAlDhw59aRbicnqIiIiohB0+fFhyu4lBgwZh/fr1yM7Oxty5c7Fx40bcvn0brq6uCAgIwKxZs1C/fn1s27YNixYtwtWrVyGEgK+vLz744AN8+umnKvc+++eff/DJJ5/g2LFjcHV1Ra9evTB37lwmLURERESliWtaiIiIyCwwaSEiIiKzwIW4BSgUCty5cweOjo5636CMiIhebkIIpKenw8vLq8QuM3/+/DmysrIM0pa1tbXKGhhzw6SlgDt37pjUinMiIjJ9iYmJJXJZ8fPnz1HZ1wHJKbkGac/DwwNxcXFmm7gwaSkgf/v81zaOhqXdf/fLsdqgfqM6AKgcfEWt7MTZWhI1gZFvHVQrWxGr//bT8n/VP3yZ1Z9L1ATcyqlv5HX/oYPedaU0r3pDslzq9bG+L/0Xiq32N/rF4zek+yx7pH6jRk3PJ/W6Sb0OAFDDJUWt7Ph16Tvelj2p/h5pilfq/dRE0/usbQzPNOxgL9Wuprh0iUHqtcz5VfreW1KxZbkpJOsKF/W/QqXed011Nb3HunzepZ7PtepDyboPrqvfsVkqLkC3902KLr8LpD7TgG7fWV1o+n5LfTc8f7GSqAk8K69+iw5dfhdoIvXeSb0+2RlZ2PHO9kJvvaKPrKwsJKfkIi7GF06O+r3maekKVPaPR1ZWFpOWl0X+lJClnRyW9v8lLWWspN9gawf1L4GFhg+DjYP6y21hp/8Hx1Ku3oaF9M2DYWmfrV73uXQMutSVIvXaANKvj6Vc+stoqcONoTX1WfZMvRFNzyfVhtTrAGh47zW8n5bWOrxHEu+nJpra0DYGSw33sZR8HTTEpVMMEq+lkIgr7/kknstGQ9Jip/5+Sr3vmupqeo91+bxLfs7spV9gqe+AVFyAbu+b5HPp8LvAEN9ZXWj6fkvFXMZKOmmxtFZPWnT5XaCJ1Hun6fUBNN+Z2lCcHC30TlpeBkxaiIiITFyuUCBXzw1KcoV00m9OmLQQERGZOAUEFNAva9H38aaAY01ERERkFjjSQkREZOIUUEDfyR39WzA+Ji1EREQmLlcI5Op51x19H28KOD1EREREZoEjLURERCaOC3HzMGnR4MH1cip7E4ge0hs/9XSKVyu7XMNdsu6XUZ3UyqptfSZZt8wd9V2Xbg7wkazr932CWtmV8dI7M96D+gZINv9I70Xh/Lv6Doyud6Q3n8rxUt/t6sJr9STrVv0rQ63swWv2knXd96v3DQDS/SuqlT1+IL2HwptvXFIrO/pvNcm6UmqXuytZPsr9D63KAKBJO/U9Js5kSu8NctK/qlrZuTRfrWMY/O1Yybp2Ejtq2km/nXgA9c9Epd/V3zcAwLy/1IrK+Gi/M+iV8dLz7PJ7+g0EC1fp76xM6nOiYbO28q7pWj+f1Hfr/lXphqVik4wLwDOJvfccW9zTOi5NW57de6B+RqoMACARr+sR6X1TbvdQ/1xX3Cld92kF9T1WAOnXImu49E509SW+n5cfSv8Orl1d+rss5XWJ3+2bbjZVK8vNyNS6TX0oIJDLpIXTQ0RERGQeONJCRERk4jg9lIdJCxERkYnj1UN5mLQQERGZOMX/H/q2Ye64poWIiIjMgtkkLTk5Ofj8889RuXJl2NraokqVKpg9ezYUiv9yRyEEQkJC4OXlBVtbW7Rp0wYXL140YtRERET6y/3/q4f0Pcyd2SQtCxcuxKpVq/D111/j8uXLWLRoERYvXozly5cr6yxatAhhYWH4+uuvcebMGXh4eKB9+/ZIT9f+skUiIiJTkysMc5g7s0laTpw4gW7duiEoKAh+fn54//330aFDB5w9exZA3ihLeHg4pk+fjh49eqBevXrYsGEDnj59is2bNxs5eiIiItKX2SQtLVu2xO+//46rV68CAP766y9ER0ejc+fOAIC4uDgkJyejQ4cOysfI5XK0bt0ax48fN0rMREREhqAw0GHuzObqoSlTpiA1NRW1atWCpaUlcnNzMW/ePPTt2xcAkJycDABwd1fdCdHd3R3x8eo7G+bLzMxEZuZ/OxqmpaWVQPRERETFp4AMuZDp3Ya5M5ukZdu2bfjhhx+wefNm1K1bF+fPn0dwcDC8vLwwaNAgZT2ZTPVNEUKolb0oNDQUs2bNUit3vmIBS+v/BqKeuUlvdb/qnyC1sszy0vlsVYkt+6W26weAnIRbamWV5qmXAUCO5HNJbx/uFR6nXlhdsirQVUO5hKP/VlArkz2Qfh0e17ZVK7vWa6V0wzO1j6HuNyMly0//InE7gVrPtW43wudPDWektybXVhO59OObyCVuXVBW+nYGUjFUmic9sii1tb7U5wwAKu3S8HRa0tSulKrB2tctKZpuO3C3k/qtM6S21QcgceODQtyTuE2ChvftwcfN1cqcO/+r9VMduKN+mwUACOwxUK3seh/176YmtzXc2kRqC/6nFaQH9R+1lP4eSt1aJP1eecm61y+VUytzTpJuV+rWIppiOAr1W31I9U3xXPvfJaQ/s5kemjRpEqZOnYo+ffqgfv36GDBgAD799FOEhoYCADw8PAD8N+KSLyUlRW305UXTpk1Damqq8khMTCy5ThARERWDQhjmMHdmk7Q8ffoUFhaq4VpaWiovea5cuTI8PDxw8OBB5fmsrCwcOXIEzZur/6WSTy6Xw8nJSeUgIiIyJbn/Pz2k72HuzGZ6qGvXrpg3bx58fHxQt25dxMbGIiwsDEOHDgWQNy0UHByM+fPno3r16qhevTrmz58POzs79OvXz8jRExERkb7MJmlZvnw5vvjiC4waNQopKSnw8vLCxx9/jBkzZijrTJ48Gc+ePcOoUaPw6NEjNGvWDFFRUXB01HRzdiIiItNniJESjrSUIkdHR4SHhyM8PFxjHZlMhpCQEISEhJRaXERERCVNIWRQCD2vHtLz8abAbJIWIiKiVxVHWvKYzUJcIiIierVxpIWIiMjE5cICuXqOM+QaKBZjYtJCRERk4oQB1rSIl2BNi0wI8RJsN2M4aWlpcHZ2hu/CubCw+W9XxrKXpTNc9/2adirVji47h2ry7N1mamW2GnaElNqBN92/omTdB3Us1cocW9zTOq57D6Sv2pLa7VIT2/vS5WdnathBV0K17R+rlbnVkN6JOP2Y+q6bft9Lv8f7Tu7TOobSFOj1mrFDeLm9UUKv70npnWs17WhbmqS+Q/J70r8TpXb2ldrVF9C8u/DF0erfb6kYAOnvstT3WBNNv2OkfrdfGa++c7Li+XPET/kcqampJbLPV/7/Sb9f8IG9o34jLRnpCrSrn1BisZYGjrQQERGZOC7EzcOkhYiIyMTlCgvkCj3XtLwE8yq8eoiIiIjMAkdaiIiITJwCMij0HGdQwPyHWpi0EBERmTiuacnD6SEiIiIyCxxpISIiMnGGWYjL6SEiIiIqYXlrWvS8YeJLMD3EpIWIiMjEKQywjT8X4r7EnK9YwNL6vw+IXYr0XRtyvFzVyg7s3FhicUkz/o6ZOmmnfdUhCW9qXVfTjpnXeq3Wvo2r6m1o2rVYaudZQ+xe+jLvaFtSu7vq+5ppiivojSC1sn2l/v02Pl2+QxgtVaj/+65TDA31fjpgpnbV0tJz4TLFAM9HWmHSQkREZOK4piUPkxYiIiITp4AF92kBL3kmIiIiM8GRFiIiIhOXK2TIFXpuLqfn400BkxYiIiITl2uAq4dyOT1EREREVDo40kJERGTiFMICCj2vHlLw6iEiIiIqaZweysPpISIiIjILHGnRoNx3p1BGZlV0xTde3t1LS5OmnW8vP3SXLK92Unr3W21p2kG1po/67rc5BmhXasdV7nybR5fXzBDPp4t9J/eVSLtknqQ+qzkiG8CNEn9uBfS/+kdhmFCMikkLERGRiTPM5nLmP7nCpIWIiMjEGWYbf/NPWsy/B0RERPRK4EgLERGRiVNABgX0XdPCHXGJiIiohHF6KI9Z9eD27dv44IMP4OrqCjs7OzRs2BAxMTHK80IIhISEwMvLC7a2tmjTpg0uXrxoxIiJiIjIUMwmaXn06BFatGgBKysr7N+/H5cuXcLSpUtRtmxZZZ1FixYhLCwMX3/9Nc6cOQMPDw+0b98e6enpxguciIhIT/mby+l7mDuzmR5auHAhvL29ERERoSzz8/NT/lsIgfDwcEyfPh09evQAAGzYsAHu7u7YvHkzPv5Yv309iIiIjEUhZFDou0/LS3CXZ7NJu/bs2YPGjRujZ8+eqFChAho1aoS1a9cqz8fFxSE5ORkdOnRQlsnlcrRu3RrHjx83RshERERkQGaTtNy4cQMrV65E9erVceDAAYwYMQJjx47Fxo0bAQDJyckAAHd31R1U3d3dleekZGZmIi0tTeUgIiIyJQoDTA1xc7lSpFAo0LhxY8yfPx8A0KhRI1y8eBErV67EwIEDlfVkMtXhLyGEWtmLQkNDMWvWrOIHdtI0t2cvqW3NS0qEz5+S5W88fF+y3K3GA7Wy+1ddtX4+za9PybyfpvCZMAV8HUgbrUZ/pHVd212n1As13F7lwM6NamXm8pk0zF2ezT9pMZseeHp6ok6dOipltWvXRkJCAgDAw8MDANRGVVJSUtRGX140bdo0pKamKo/ExEQDR05ERESGYDZJS4sWLXDlyhWVsqtXr8LX1xcAULlyZXh4eODgwYPK81lZWThy5AiaN2+usV25XA4nJyeVg4iIyJTkQmaQw9yZzfTQp59+iubNm2P+/Pno1asXTp8+jTVr1mDNmjUA8qaFgoODMX/+fFSvXh3Vq1fH/PnzYWdnh379+hk5eiIiouLj9FAes0lamjRpgl27dmHatGmYPXs2KleujPDwcPTv319ZZ/LkyXj27BlGjRqFR48eoVmzZoiKioKjo6MRIyciItJPLqD3SEmuYUIxKrNJWgCgS5cu6NKli8bzMpkMISEhCAkJKb2giIiIqFSYVdJCRET0KuL0UB7z7wEREdFLLv+GifoeusjJycHnn3+OypUrw9bWFlWqVMHs2bOhUChKqJdF40gLERERqVm4cCFWrVqFDRs2oG7dujh79iyGDBkCZ2dnjBs3zigxMWkhIiIycQIyKPRciCt0fPyJEyfQrVs3BAUFAci739+WLVtw9uxZveLQB5OWl5Quuzya8u65Jxv+pHXdVms17KLZS78YNL0+5rKTpikx5c8amQ6pXW7L+FSSrJsjVSixUzlg3t/Z4kzvSLUBQO12NXK5HHK5XK1+y5YtsWrVKly9ehU1atTAX3/9hejoaISHh+sVhz6YtBAREb1CvL29VX6eOXOm5FW3U6ZMQWpqKmrVqgVLS0vk5uZi3rx56Nu3bylFqo5JCxERkYlTCBkUQr/pofzHJyYmquz+LjXKAgDbtm3DDz/8gM2bN6Nu3bo4f/48goOD4eXlhUGDBukVS3ExaSEiIjJx+Xdq1rcNAFrfsmbSpEmYOnUq+vTpAwCoX78+4uPjERoaarSkhZc8ExERkZqnT5/CwkI1TbC0tOQlz0RERKSZIaeHtNW1a1fMmzcPPj4+qFu3LmJjYxEWFoahQ4fqFYc+mLQQERGZOAUsoNBzckTXxy9fvhxffPEFRo0ahZSUFHh5eeHjjz/GjBkz9IpDH0xaiIiITFyukCFXz5EWXR/v6OiI8PBwo17iXBDXtBAREZFZ4EgLERGRiTPGmhZTxKSFNO4SaW67lx79Zo3ebZjzjpklzdw+D5o0njVSrcwuJVeyriE+U2QYOQm3jB2CUQkD3OVZ8C7PRERERKWDIy1EREQmLhcy5Op5w0R9H28KmLQQERGZOIXQf02KQhgoGCPi9BARERGZBY60EBERmTiFARbi6vt4U8CkhYiIyMQpIINCzzUp+j7eFDBpISIiMnHG2BHXFJn/WBERERG9EjjSQkREZOK4piUPkxZ6JXHnW8PR97XUZaddQ7xvZ++s1L7db/R+OgK/b4aggAG28X8J1rSYf9pFRERErwSOtBAREZk4YYCrh8RLMNLCpIWIiMjE8S7PeTg9RERERGaBIy1EREQmjlcP5THbHoSGhkImkyE4OFhZJoRASEgIvLy8YGtrizZt2uDixYvGC5KIiMgA8qeH9D3MnVkmLWfOnMGaNWvQoEEDlfJFixYhLCwMX3/9Nc6cOQMPDw+0b98e6enpRoqUiIiIDMXskpYnT56gf//+WLt2LVxcXJTlQgiEh4dj+vTp6NGjB+rVq4cNGzbg6dOn2Lx5sxEjJiIi0k/+vYf0Pcyd2SUto0ePRlBQEN5++22V8ri4OCQnJ6NDhw7KMrlcjtatW+P48eOlHSYREZHBcHooj1ktxN26dSvOnTuHM2fOqJ1LTk4GALi7u6uUu7u7Iz4+XmObmZmZyMzMVP6clpZmoGiJiIgMg5c859EqaXn99dd1alQmk2HPnj2oWLFisYKSkpiYiHHjxiEqKgo2NjaFPveLhBBqZS8KDQ3FrFmzDBYnmR5uIa47qa31S+p11KVdXbb8p5LF7xUZg1ZJy/nz5zFhwgQ4ODgUWVcIgQULFqiMXhhCTEwMUlJS4O/vryzLzc3F0aNH8fXXX+PKlSsA8kZcPD09lXVSUlLURl9eNG3aNIwfP175c1paGry9vQ0aOxERkT440pJH6+mhSZMmoUKFClrVXbp0abED0qRdu3a4cOGCStmQIUNQq1YtTJkyBVWqVIGHhwcOHjyIRo0aAQCysrJw5MgRLFy4UGO7crkccrnc4PESEREZCpOWPFolLXFxcShfvrzWjV66dAleXl7FDkqKo6Mj6tWrp1Jmb28PV1dXZXlwcDDmz5+P6tWro3r16pg/fz7s7OzQr18/g8ZCREREpU+rpMXX11enRo01vTJ58mQ8e/YMo0aNwqNHj9CsWTNERUXB0dHRKPEQEREZggAMcMNE81esq4ceP36M06dPIyUlBQqFQuXcwIEDDRKYNg4fPqzys0wmQ0hICEJCQkotBiIiopLG6aE8Oictv/zyC/r374+MjAw4OjqqXJkjk8lKNWkhIiKiV4fOm8tNmDABQ4cORXp6Oh4/foxHjx4pj4cPH5ZEjERERK80bi6XR+eRltu3b2Ps2LGws7MriXiIiIioAE4P5dF5pCUwMBBnz54tiViIiIiINNJqpGXPnj3KfwcFBWHSpEm4dOkS6tevDysrK5W677zzjmEjJKOR2vHSlHck5Q6dJUuX9760d8/V93Npyp9rIoAjLfm0Slq6d++uVjZ79my1MplMhtzcXL2DIiIiov8IIYPQM+nQ9/GmQKukpeBlzURERFR6FJDpvU+Lvo83BTqvadm4caPkfYWysrKwceNGgwRFREREVJDOScuQIUOQmpqqVp6eno4hQ4YYJCgiIiL6Dy95zqPzJc9CCJUN5fLdunULzs7OBgmKiIiI/sM1LXm0TloaNWoEmUwGmUyGdu3aoUyZ/x6am5uLuLg4dOzYsUSCJCIiItI6acm/guj8+fMIDAyEg4OD8py1tTX8/Pzw3nvvGTxAIiKiVx0vec6jddIyc+ZM5ObmwtfXF4GBgfD09CzJuIiIiOj/cXooj04LcS0tLTFixAg8f/68pOIhIiIikqTzQtz69evjxo0bqFy5cknEQyaupHYk5W62xlFSO8Ga2w6zQW8ESZbvO7mvlCMhkiYMMD30yo20AMC8efMwceJE7N27F0lJSUhLS1M5iIiIyLAEACH0PIzdCQPQeaQl/wqhd955R+XS5/xLobmNPxEREZUEnZOWQ4cOlUQcREREpIECMsi4jb/uSUvr1q1LIg4iIiLSgFcP5dE5aQGAx48fY926dbh8+TJkMhnq1KmDoUOHckdcIiKiEqAQMsi4T4vuC3HPnj2LqlWrYtmyZXj48CHu37+PsLAwVK1aFefOnSuJGImIiIh0H2n59NNP8c4772Dt2rXKrfxzcnLw4YcfIjg4GEePHjV4kERERK+y/CuA9G3D3OmctJw9e1YlYQGAMmXKYPLkyWjcuLFBgyMiIiKuacmn8/SQk5MTEhIS1MoTExPh6OhokKCIiIiICtJ5pKV3794YNmwYlixZgubNm0MmkyE6OhqTJk1C3759SyJGMgNSO9qa266oL7uX+f3Q9/Ony863uuzebG6vOXemNl0cacmjc9KyZMkSyGQyDBw4EDk5OQAAKysrjBw5EgsWLDB4gERERK86Xj2UR+ekxdraGl9++SVCQ0Nx/fp1CCFQrVo12NnZlUR8RERERACKuU8LANjZ2aF+/fqGjIWIiIgk8OqhPDonLRkZGViwYAF+//13pKSkQKFQqJy/ceOGwYIjIiKi/KRF3zUtBgrGiHROWj788EMcOXIEAwYMgKenp8pNE4mIiIhKis5Jy/79+7Fv3z60aNGiJOIhIiKiAnj1UB6d92lxcXFBuXLlSiKWQoWGhqJJkyZwdHREhQoV0L17d1y5ckWljhACISEh8PLygq2tLdq0aYOLFy+WeqxERESGJAx0mDudk5Y5c+ZgxowZePr0aUnEo9GRI0cwevRonDx5EgcPHkROTg46dOiAjIwMZZ1FixYhLCwMX3/9Nc6cOQMPDw+0b98e6enppRorERGRIeWPtOh7mDudp4eWLl2K69evw93dHX5+frCyslI5X1I3TYyMjFT5OSIiAhUqVEBMTAxatWoFIQTCw8Mxffp09OjRAwCwYcMGuLu7Y/Pmzfj4449LJC4iIiIqHTonLd27dy+BMHSXmpoKAMqpqri4OCQnJ6NDhw7KOnK5HK1bt8bx48c1Ji2ZmZnIzMxU/pyWllaCURMRERWDIeZ3ivH427dvY8qUKdi/fz+ePXuGGjVqYN26dfD399czmOLROWmZOXOmVvW2bNmCd955B/b29joHVRQhBMaPH4+WLVuiXr16AIDk5GQAgLu7u0pdd3d3xMfHa2wrNDQUs2bNMniMxC3BqfRIbZev6fOny9b6+n6GSzuG0uwblTJDTO/o+PhHjx6hRYsWaNu2Lfbv348KFSrg+vXrKFu2rH5x6KHYm8sV5eOPP0azZs1QpUoVg7c9ZswY/O9//0N0dLTauYKXYAshCr0se9q0aRg/frzy57S0NHh7exsuWCIiIjO0cOFCeHt7IyIiQlnm5+dnvIBQjIW42hIltIvNJ598gj179uDQoUOoVKmSstzDwwPAfyMu+VJSUtRGX14kl8vh5OSkchAREZmS/B1x9T2AvD/OXzxeXCLxoj179qBx48bo2bMnKlSogEaNGmHt2rWl2Gt1JZa0GJoQAmPGjMHOnTvxxx9/oHLlyirnK1euDA8PDxw8eFBZlpWVhSNHjqB58+alHS4REZHBGPLqIW9vbzg7OyuP0NBQyee8ceMGVq5cierVq+PAgQMYMWIExo4di40bN5Zm11WU2PSQoY0ePRqbN2/Gzz//DEdHR+WIirOzM2xtbSGTyRAcHIz58+ejevXqqF69OubPnw87Ozv069fPyNETERGZhsTERJVZBblcLllPoVCgcePGmD9/PgCgUaNGuHjxIlauXImBAweWSqwFmU3SsnLlSgBAmzZtVMojIiIwePBgAMDkyZPx7NkzjBo1Co8ePUKzZs0QFRUFR0fHUo6WiIjIgIRM54W0km0AWi+F8PT0RJ06dVTKateujR07dugXhx7MJmnRZo2MTCZDSEgIQkJCSj4gIiKiUmKMuzy3aNFCbef5q1evwtfXV79A9FBia1p8fX3VNp4jIiIi8/Dpp5/i5MmTmD9/Pq5du4bNmzdjzZo1GD16tNFi0jlpSUxMxK1bt5Q/nz59GsHBwVizZo1Kvb///puXDhMRERmCEW4+1KRJE+zatQtbtmxBvXr1MGfOHISHh6N///4G6VJx6Dw91K9fP3z00UcYMGAAkpOT0b59e9StWxc//PADkpOTMWPGjJKIk4iI6JVlrLs8d+nSBV26dNHreQ1J56Tl77//RtOmTQEA27dvR7169XDs2DFERUVhxIgRTFqIyCRo2h3WFHaCLakY9N091xReGyrEy3CbZj3pPD2UnZ2tvDzqt99+wzvvvAMAqFWrFpKSkgwbHREREdH/0zlpqVu3LlatWoU///wTBw8eRMeOHQEAd+7cgaurq8EDJCIietUZcnM5c6Zz0rJw4UKsXr0abdq0Qd++ffHaa3nDiXv27FFOGxEREZEBGWEhrinSeU1LmzZtcP/+faSlpcHFxUVZ/tFHH8HOzs6gwRERERHlK9Y+LUIIxMTEYPXq1UhPTwcAWFtbM2khIiIqETIDHeZN55GW+Ph4dOzYEQkJCcjMzET79u3h6OiIRYsW4fnz51i1alVJxElERPTqMsT0zkswPaTzSMu4cePQuHFjPHr0CLa2tsryd999F7///rtBgyMiIiLKp/NIS3R0NI4dOwZra2uVcl9fX9y+fdtggREREdH/40gLgGIkLQqFArm5uWrlt27d4t2UiYiISoIB7/JsznROWtq3b4/w8HDlvYZkMhmePHmCmTNnonPnzgYPkEhfmnZG1dbLskuoVD/0fW3MEXeCzfMq9pnMn85Jy7Jly9C2bVvUqVMHz58/R79+/fDvv//Czc0NW7ZsKYkYiYiIXmlC5B36tmHudE5avLy8cP78eWzZsgXnzp2DQqHAsGHD0L9/f5WFuURERGQgXNMCoBhJCwDY2tpi6NChGDp0qKHjISIiooK4pgVAMTeX+/7779GyZUt4eXkhPj4eQN600c8//2zQ4IiIiIjy6Zy0rFy5EuPHj0enTp3w6NEj5ZVELi4uCA8PN3R8RERErzyZMMxR2hQKBa5evYro6GgcPXpU5SgOnaeHli9fjrVr16J79+5YsGCBsrxx48aYOHFisYIgIiKiQpjhmpaTJ0+iX79+iI+PhyiwClgmk0lun1IUnZOWuLg4NGrUSK1cLpcjIyND5wCIiIjo5TNixAg0btwY+/btg6enJ2Qy/dfU6Jy0VK5cGefPn4evr69K+f79+1GnTh29AyIiIqICzHAh7r///ouffvoJ1apVM1ibOictkyZNwujRo/H8+XMIIXD69Gls2bIFoaGh+Pbbbw0WGBEREf0/M5weatasGa5du2bcpGXIkCHIycnB5MmT8fTpU/Tr1w8VK1bEl19+iT59+hgsMCIiIjJfn3zyCSZMmIDk5GTUr18fVlZWKucbNGigc5s6JS05OTnYtGkTunbtiuHDh+P+/ftQKBSoUKGCzk9MZC502ere3LZGL6l4Tfn2AOb2HulL03sh9TqU8akkWXffyX1aPZ5KkBmOtLz33nsAoLKnm0wmgxCidBbililTBiNHjsTly5cBAG5ubjo/IREREenIDJOWuLg4g7ep8/RQs2bNEBsbq7YQl4iIiChfSeQJOicto0aNwoQJE3Dr1i34+/vD3t5e5Xxx5qiIiIioEGZ49RAA3L59G8eOHUNKSgoUCoXKubFjx+rcns5JS+/evdWeTN85KiIiItLMEDvalvaOuBERERgxYgSsra3h6uqqsk+LTCYrnaSlJOaoiIiIqBBmuKZlxowZmDFjBqZNmwYLi2Ld6lCNzkmLOaxlWbFiBRYvXoykpCTUrVsX4eHhePPNN40dFhER0Svj6dOn6NOnj8ESFqAYScuePXsky2UyGWxsbFCtWjVUrlxZ78CKa9u2bQgODsaKFSvQokULrF69Gp06dcKlS5fg4+NjtLiIiIheJcOGDcOPP/6IqVOnGqxNnZOW7t27K9ewvOjFdS0tW7bE7t274eLiYrBAtRUWFoZhw4bhww8/BACEh4fjwIEDWLlyJUJDQ0s9HiIiIn3JYIA1LQaJRHuhoaHo0qULIiMjJTeXCwsL07lNncdsDh48iCZNmuDgwYNITU1FamoqDh48iKZNm2Lv3r04evQoHjx4YJQ7PmdlZSEmJgYdOnRQKe/QoQOOHz8u+ZjMzEykpaWpHERERKSf+fPn48CBA7h79y4uXLiA2NhY5XH+/PlitanzSMu4ceOwZs0aNG/eXFnWrl072NjY4KOPPsLFixcRHh6usgNeabl//z5yc3Ph7u6uUu7u7o7k5GTJx4SGhmLWrFmlER6VMFPYhVWX3UdfZpr6W5rv0av2mmtiiNeBr6UJMMNLnsPCwvDdd99h8ODBBmtT55GW69evw8nJSa3cyckJN27cAABUr14d9+/f1z+6Yip4++v8aSsp06ZNU44YpaamIjExsTRCJCIi0p4w0FGK5HI5WrRoYdA2dU5a/P39MWnSJNy7d09Zdu/ePUyePBlNmjQBkHc76kqVpO9hUZLc3NxgaWmpNqqSkpKiNvqSTy6Xw8nJSeUgIiIi/YwbNw7Lly83aJs6Tw+tW7cO3bp1Q6VKleDt7Q2ZTIaEhARUqVIFP//8MwDgyZMn+OKLLwwaqDasra3h7++PgwcP4t1331WWHzx4EN26dSv1eIiIiAzCDPdpOX36NP744w/s3bsXdevWVVuIu3PnTp3b1DlpqVmzJi5fvowDBw7g6tWrEEKgVq1aaN++vfJa7O7du+sciKGMHz8eAwYMQOPGjREQEIA1a9YgISEBI0aMMFpMRERE+jDHHXHLli2LHj16GLRNnZMWIG/NSMeOHdGmTRvI5XKN60WMoXfv3njw4AFmz56NpKQk1KtXD7/++qtZbIpHRET0soiIiNCq3rFjx9C4cWPI5fIi6+q8pkWhUGDOnDmoWLEiHBwclNv6f/HFF1i3bp2uzZWIUaNG4ebNm8jMzERMTAxatWpl7JCIiIiKzwwX4mqrU6dOuH37tlZ1dU5a5s6di/Xr12PRokWwtrZWltevXx/ffvutrs0RERFRUV7ipKXgZrWF0Tlp2bhxI9asWYP+/fvD0tJSWd6gQQP8888/ujZHRERERchf06LvYe50Tlpu376NatWqqZUrFApkZ2cbJCgiIiKignReiFu3bl38+eefagtbf/zxRzRq1MhggRHpyhR2YdVElxi4+ygZS07CLWOHAED6+/LKfy/McEfckqBz0jJz5kwMGDAAt2/fhkKhwM6dO3HlyhVs3LgRe/fuLYkYiYiIXm1muE+LtnS5Alnn6aGuXbti27Zt+PXXXyGTyTBjxgxcvnwZv/zyC9q3b69rc0RERPQSevbsGZ4+far8OT4+HuHh4YiKilKpp8tC3GLt0xIYGIjAwMDiPJSIiIh0ZI6by3Xr1g09evTAiBEj8PjxYzRr1gxWVla4f/8+wsLCMHLkSABAenq61m3qPNJCREREpcwML3k+d+4c3nzzTQDATz/9BHd3d8THx2Pjxo346quvitWmViMtLi4uWs85PXz4sFiBEBER0cvj6dOncHR0BABERUWhR48esLCwwBtvvIH4+PhitalV0hIeHq7894MHDzB37lwEBgYiICAAAHDixAkcOHDAKDdJJCIieukZYp+VUh5pqVatGnbv3o13330XBw4cwKeffgoASElJgZOTU7Ha1CppGTRokPLf7733HmbPno0xY8Yoy8aOHYuvv/4av/32mzIoIiIiMhAzvHpoxowZ6NevHz799FO0a9dOOdARFRVV7C1SdF7TcuDAAXTs2FGtPDAwEL/99luxgiAiIqKXy/vvv4+EhAScPXsWkZGRyvJ27dph2bJlxWpT56TF1dUVu3btUivfvXs3XF1dixUEERERFcIMF+ICgIeHBxo1agQLi//SjaZNm6JWrVrFak/nS55nzZqFYcOG4fDhw8qhnpMnTyIyMpI3TCTSwSu/wye9Msr4VJIs17QDL78b6szxkueSoHPSMnjwYNSuXRtfffUVdu7cCSEE6tSpg2PHjqFZs2YlESMRERFR8TaXa9asGTZt2mToWIiIiIg00mpNS1pamk6N6rK7HRERERXBTNe0GJpWSYuLiwtSUlK0brRixYq4ceNGsYMiIiKi/+SvadH3MHdaTQ8JIfDtt9/CwcFBq0azs7P1CoqIiIioIK2SFh8fH6xdu1brRj08PGBlZVXsoIiIiKiAl2CkRF9aJS03b94s4TCIiIhIIzPcEbck8C7PREREZBaKdckzERERlR5uLpeHSQsREZGp4/QQACYt9AqQ2hL8wJ2/jBAJlRRdtn2Xeu+5bbzhSH+39P++8T0igGtaiIiITJ6x92kJDQ2FTCZDcHCwwfpUHMVKWv7880988MEHCAgIwO3btwEA33//PaKjow0aHBEREcGoO+KeOXMGa9asQYMGDfTqgiHonLTs2LEDgYGBsLW1RWxsLDIzMwHkbd0/f/58gwdIRET0yjNS0vLkyRP0798fa9euhYuLi97d0JfOScvcuXOxatUqrF27VmUDuebNm+PcuXMGDY6IiIgMKy0tTeXIH3yQMnr0aAQFBeHtt98uxQg10zlpuXLlClq1aqVW7uTkhMePHxsiJiIiInqBIde0eHt7w9nZWXmEhoZKPufWrVtx7tw5jeeNQeekxdPTE9euXVMrj46ORpUqVQwSVEE3b97EsGHDULlyZdja2qJq1aqYOXMmsrKyVOolJCSga9eusLe3h5ubG8aOHatWh4iIyOwYcHooMTERqampymPatGlqT5eYmIhx48bhhx9+gI2NTcn2TQc6X/L88ccfY9y4cfjuu+8gk8lw584dnDhxAhMnTsSMGTNKIkb8888/UCgUWL16NapVq4a///4bw4cPR0ZGBpYsWQIAyM3NRVBQEMqXL4/o6Gg8ePAAgwYNghACy5cvL5G4iIiIzI2TkxOcnJwKrRMTE4OUlBT4+/sry3Jzc3H06FF8/fXXyMzMhKWlZUmHqkbnpGXy5MlITU1F27Zt8fz5c7Rq1QpyuRwTJ07EmDFjSiJGdOzYER07dlT+XKVKFVy5cgUrV65UJi1RUVG4dOkSEhMT4eXlBQBYunQpBg8ejHnz5hX5BhEREZmsUt5crl27drhw4YJK2ZAhQ1CrVi1MmTLFKAkLUMzN5ebNm4fp06fj0qVLUCgUqFOnDhwcHAwdW6FSU1NRrlw55c8nTpxAvXr1lAkLAAQGBiIzMxMxMTFo27atZDuZmZkqi5DS0tJKLmgiIqJiKO1t/B0dHVGvXj2VMnt7e7i6uqqVl6Zi74hrZ2eHxo0bGzIWrV2/fh3Lly/H0qVLlWXJyclwd3dXqefi4gJra2skJydrbCs0NBSzZs0qsViJAO7mSebNFHaQ1hQDv1uvFq2Slh49emjd4M6dO7WuGxISUmTCcObMGZXk6M6dO+jYsSN69uyJDz/8UKWuTCZTe7wQQrI837Rp0zB+/Hjlz2lpafD29ta2C0RERCXPBO49dPjwYT0D0J9WSYuzs7Py30II7Nq1C87OzspkIiYmBo8fP9YpuQGAMWPGoE+fPoXW8fPzU/77zp07aNu2LQICArBmzRqVeh4eHjh16pRK2aNHj5Cdna02AvMiuVwOuVyuU9xERESliXd5zqNV0hIREaH895QpU9CrVy+sWrVKuRAnNzcXo0aN0nmxq5ubG9zc3LSqe/v2bbRt2xb+/v6IiIiAhYXq1doBAQGYN28ekpKS4OnpCSBvca5cLldZ/UxERETmSed9Wr777jtMnDhRZeWwpaUlxo8fj++++86gweW7c+cO2rRpA29vbyxZsgT37t1DcnKyylqVDh06oE6dOhgwYABiY2Px+++/Y+LEiRg+fDivHCIiIvNmxHsPmRKdF+Lm5OTg8uXLqFmzpkr55cuXoVAoDBbYi6KionDt2jVcu3YNlSpVUjknRN67YGlpiX379mHUqFFo0aIFbG1t0a9fP+Ul0URERGbLBNa0mAKdk5YhQ4Zg6NChuHbtGt544w0AwMmTJ7FgwQIMGTLE4AECwODBgzF48OAi6/n4+GDv3r0lEgMREZGxyP7/0LcNc6dz0rJkyRJ4eHhg2bJlSEpKApC3tf/kyZMxYcIEgwdIREREBBQjabGwsMDkyZMxefJk5UZsXDNCRERUgjg9BECPzeUAJitERESlgZc859E5aalcuXKhm7XduHFDr4CIzBl35yyc1OtT2rut8j16uUh9fvgev7x0TlqCg4NVfs7OzkZsbCwiIyMxadIkQ8VFRERE+Tg9BKAYScu4ceMky7/55hucPXtW74CIiIhIwkuQdOhL583lNOnUqRN27NhhqOaIiIiIVOi1EPdFP/30E8qVK2eo5oiIiOj/cSFuHp2TlkaNGqksxBVCIDk5Gffu3cOKFSsMGhwRERGBa1r+n85JS7du3VSSFgsLC5QvXx5t2rRBrVq1DBocERERUT6dk5aQkJASCIOIiIg04fRQHp0X4lpaWiIlJUWt/MGDByp3fiYiIiID4V2eARRjpCX/rsoFZWZmwtraWu+AiIiISBVHWvJonbR89dVXAACZTIZvv/0WDg4OynO5ubk4evQo17QQkcFwV1PToctOxrq8b4bYDZmfk1eL1knLsmXLAOSNtKxatUplKsja2hp+fn5YtWqV4SMkIiJ61fHqIQA6JC1xcXEAgLZt22Lnzp1wcXEpsaCIiIjoBUxaABRjTcuhQ4dKIg4iIiKiQmmVtIwfPx5z5syBvb09xo8fX2jdsLAwgwRGREREebgQN49WSUtsbCyys7MBAOfOnVPZXI6IiIhKGKeHAGiZtLw4JXT48OGSioWIiIhII503lxs6dCjS09PVyjMyMjB06FCDBEVERET/kQlhkMPc6Zy0bNiwAc+ePVMrf/bsGTZu3GiQoIiIiOgF3BEXgA5XD6WlpUEIASEE0tPTYWNjozyXm5uLX3/9FRUqVCiRIImIiIi0TlrKli0LmUwGmUyGGjVqqJ2XyWSYNWuWQYMjIiIiXj2UT+uk5dChQxBC4K233sKOHTtQrlw55Tlra2v4+vrCy8urRIIkMiZuE16y+PqaJ0O8b3zvdcCrhwDokLS0bt0aQN7OuN7e3rCw0Hk5DBERERUDR1ry6Lwjrq+vLwDg6dOnSEhIQFZWlsr5Bg0aGCYyIiIiohfonLTcu3cPQ4YMwf79+yXP5+bm6h0UERERvYDTQwCKcclzcHAwHj16hJMnT8LW1haRkZHYsGEDqlevjj179pREjERERK+0/OkhfQ9zp/NIyx9//IGff/4ZTZo0gYWFBXx9fdG+fXs4OTkhNDQUQUFBJREnERERveJ0HmnJyMhQ7sdSrlw53Lt3DwBQv359nDt3zrDRScjMzETDhg0hk8lw/vx5lXMJCQno2rUr7O3t4ebmhrFjx6qtuSEiIjI73FwOQDGSlpo1a+LKlSsAgIYNG2L16tW4ffs2Vq1aBU9PT4MHWNDkyZMlL63Ozc1FUFAQMjIyEB0dja1bt2LHjh2YMGFCicdERERU0l71qSGgGNNDwcHBSEpKAgDMnDkTgYGB2LRpE6ytrbF+/XpDx6di//79iIqKwo4dO9QWAkdFReHSpUtITExUJjVLly7F4MGDMW/ePDg5OZVobERERFSydE5a+vfvr/x3o0aNcPPmTfzzzz/w8fGBm5ubQYN70d27dzF8+HDs3r0bdnZ2audPnDiBevXqqYzCBAYGIjMzEzExMWjbtq1ku5mZmcjMzFT+nJaWZvjgiYiI9CFE3qFvG2ZO56SlIDs7O7z++uuGiEUjIQQGDx6MESNGoHHjxrh586ZaneTkZLi7u6uUubi4wNraGsnJyRrbDg0N5e0HSIk7dBKRKeLmcnm0SlrGjx+vdYNhYWFa1w0JCSkyYThz5gyOHz+OtLQ0TJs2rdC6MplMrUwIIVmeb9q0aSr9S0tLg7e3dxGRExERUWnTKmmJjY3VqrHCkgMpY8aMQZ8+fQqt4+fnh7lz5+LkyZOQy+Uq5xo3boz+/ftjw4YN8PDwwKlTp1TOP3r0CNnZ2WojMC+Sy+Vq7RIREZkUbi4HQMuk5dChQyXy5G5ublqtg/nqq68wd+5c5c937txBYGAgtm3bhmbNmgEAAgICMG/ePCQlJSmvYoqKioJcLoe/v3+JxE9ERFQaZIq8Q982zJ3ea1pKg4+Pj8rPDg4OAICqVauiUqVKAIAOHTqgTp06GDBgABYvXoyHDx9i4sSJGD58OK8cIiIi88aRFgDF2KfFVFlaWmLfvn2wsbFBixYt0KtXL3Tv3h1LliwxdmhERERkAGYx0lKQn58fhMSlWz4+Pti7d68RIiIiIio5vHooj1kmLURERK8U7tMC4CWaHiIiIqKXG0daiIiITBynh/IwaaGX3oE7fxk7BCIi/fDqIQCcHiIiIiIzwZEWIiIiE8fpoTxMWoiIiEwdrx4CwOkhIiIiMhMcaSEiIjJxnB7Kw6SFiIjI1PHqIQBMWoiIiEweR1rycE0LERERmQWOtBAREZk6hcg79G3DzDFpoZdeq9EfqZXZ7jplhEiIiIqJa1oAcHqIiIiIzARHWoiIiEycDAZYiGuQSIyLSQsREZGp4464ADg9RERERBJCQ0PRpEkTODo6okKFCujevTuuXLli1JiYtBAREZm4/H1a9D10ceTIEYwePRonT57EwYMHkZOTgw4dOiAjI6NkOqkFTg8RERGZOiNcPRQZGanyc0REBCpUqICYmBi0atVKz2CKh0kLERHRKyQtLU3lZ7lcDrlcXuTjUlNTAQDlypUrkbi0wekhIiIiEycTwiAHAHh7e8PZ2Vl5hIaGFvn8QgiMHz8eLVu2RL169Uq6uxpxpIWIiMjUKf7/0LcNAImJiXByclIWazPKMmbMGPzvf/9DdHS0nkHoh0kLERGRiXtxpESfNgDAyclJJWkpyieffII9e/bg6NGjqFSpkl4x6ItJC730uGV/6SvjI/2LLSfhVilHQkTFJYTAJ598gl27duHw4cOoXLmysUNi0kJERGTyjHD10OjRo7F582b8/PPPcHR0RHJyMgDA2dkZtra2egZTPFyIS0REZOryd8TV99DBypUrkZqaijZt2sDT01N5bNu2rYQ6WTSOtBAREZEaYYLb/jNpISIiMnHF2dFWqg1zx6SFiIjI1PGGiQDMbE3Lvn370KxZM9ja2sLNzQ09evRQOZ+QkICuXbvC3t4ebm5uGDt2LLKysowULRERERmS2Yy07NixA8OHD8f8+fPx1ltvQQiBCxcuKM/n5uYiKCgI5cuXR3R0NB48eIBBgwZBCIHly5cbMXIiIiL9yBR5h75tmDuzSFpycnIwbtw4LF68GMOGDVOW16xZU/nvqKgoXLp0CYmJifDy8gIALF26FIMHD8a8efN02kiHiIjIpHB6CICZTA+dO3cOt2/fhoWFBRo1agRPT0906tQJFy9eVNY5ceIE6tWrp0xYACAwMBCZmZmIiYnR2HZmZibS0tJUDiIiIjI9ZjHScuPGDQBASEgIwsLC4Ofnh6VLl6J169a4evUqypUrh+TkZLi7u6s8zsXFBdbW1soNcaSEhoZi1qxZJRo/vTo07gTr5apXu888bSTLHWNua/1cZe48UCtL96+odbu60NhfiXJNfdN3J2NN74UuJPtx8i+tn0/TDsC61CUCYJTN5UyRUUdaQkJCIJPJCj3Onj0LhSJvIm769Ol477334O/vj4iICMhkMvz444/K9mQymdpzCCEky/NNmzYNqampyiMxMdHwHSUiItKDIe/ybM6MOtIyZswY9OnTp9A6fn5+SE9PBwDUqVNHWS6Xy1GlShUkJCQAADw8PHDqlOpfZo8ePUJ2drbaCMyL5HK5Vne4JCIiMhquaQFg5KTFzc0Nbm5uRdbz9/eHXC7HlStX0LJlSwBAdnY2bt68CV9fXwBAQEAA5s2bh6SkJHh6egLIW5wrl8vh7+9fcp0gIiKiUmEWa1qcnJwwYsQIzJw5E97e3vD19cXixYsBAD179gQAdOjQAXXq1MGAAQOwePFiPHz4EBMnTsTw4cN55RAREZk3AUDfS5bNf6DFPJIWAFi8eDHKlCmDAQMG4NmzZ2jWrBn++OMPuLi4AAAsLS2xb98+jBo1Ci1atICtrS369euHJUuWGDlyIiIi/RhiTQrXtJQiKysrLFmypNAkxMfHB3v37i3FqIiIiKi0mE3SQkRE9MoSMMBCXINEYlRMWoiIiEwdrx4CYCY74hIRERFxpEVLGnc6ldrF8o3XJOveamev9fO5XspVK9Nph1ANMWjazVNKie3aKRWbDnEZgqb3c9/JfWpldb8ZKVnX9r72z2eXIvF+Jj2XrKtph1gpmna0lWIL9d1dNX2mcrRuVQMNO+JK9e1Oa+nNH8tWaK5W9ri2/nd8k99T/1tN03sp9XzydupxAUCl3zPUyq7NqyBZ1yVa/XV45uajdbvX+9hK1n3zjUtqZRE+f0rWrfr7EPV220VI1g16I0it7B8NfSvvmq5W1t/vtGTdL6M6SZbXDFP/PXO3k/Tr47r6uHqhht9/10ZbqpXZ/CP9fZN63Uv795QKBQDN+6Rq34aZY9JCRERk4nj1UB4mLURERKaOa1oAcE0LERERmQmOtBAREZk6jrQAYNJCRERk+pi0AOD0EBEREZkJjrQQERGZOl7yDIBJCxERkcnjJc95OD1EREREZoEjLURERKaOC3EBADIhXoJeGFBaWhqcnZ1RfdJ8WMr/2945s7z0ZKBwzVIrk9qiG5Deyv1pBfVtpQHgmZt6md/3CZJ1pbZy17Q9+7N3m6nX1bCdvNSW11JbdOvKebadeqGG7bFTf60uWa5pW3Apn5SVft20tfyx9PbhUt6wvS4dw+W+amW6bG1e9rL2g6JSnx1A+jN8rddqrdslepVU2/6xWpnULSByM5/j38WfITU1FU5OTgaPI///pLerBqOMpVyvtnJyM/Hb9fASi7U0cHqIiIiIzAKnh4iIiEwdp4cAMGkhIiIyAwZIWsCkhYiIiEoaR1oAcE0LERERmQmOtBAREZk6hYDe0zsK8x9pYdJCRERk6oQi79C3DTPH6SEiIiIyCxxpISIiMnVciAuASYvWaobdkiy/OUB9t1RNO5KW6fZQvUzD811s+JN64WhN0Un4RtMJ6Z1nS9VOXSobP15NO+pK7ZR78llVybq1y91VKzuX5itZV2qX5bMzIwoLkYiKKdDrNcly+XQTm4jgmhYAnB4iIiIiM8GRFiIiIlPH6SEATFqIiIhMn4ABkhaDRGJUnB4iIiIis8CRFiIiIlPH6SEAZjTScvXqVXTr1g1ubm5wcnJCixYtcOjQIZU6CQkJ6Nq1K+zt7eHm5oaxY8ciK0v9SgwiIiKzolAY5jBzZpO0BAUFIScnB3/88QdiYmLQsGFDdOnSBcnJyQCA3NxcBAUFISMjA9HR0di6dSt27NiBCRMmGDlyIiIiPeWPtOh7mDmzSFru37+Pa9euYerUqWjQoAGqV6+OBQsW4OnTp7h48SIAICoqCpcuXcIPP/yARo0a4e2338bSpUuxdu1apKWlGbkHREREpC+zSFpcXV1Ru3ZtbNy4ERkZGcjJycHq1avh7u4Of39/AMCJEydQr149eHl5KR8XGBiIzMxMxMTEaGw7MzMTaWlpKgcREZFJ4UgLADNZiCuTyXDw4EF069YNjo6OsLCwgLu7OyIjI1G2bFkAQHJyMtzd3VUe5+LiAmtra+UUkpTQ0FDMmjVLrfz08G/h5Gj5X4Euu9HSK0HTTrmSdKnr86fuwRBRsRy4o2nXbe12405Lz4XLYsPFoxF3xAVg5JGWkJAQyGSyQo+zZ89CCIFRo0ahQoUK+PPPP3H69Gl069YNXbp0QVJSkrI9mUym9hxCCMnyfNOmTUNqaqrySExMLJG+EhERkX6MOtIyZswY9OnTp9A6fn5++OOPP7B37148evQITk5OAIAVK1bg4MGD2LBhA6ZOnQoPDw+cOnVK5bGPHj1Cdna22gjMi+RyOeRyuf6dISIiKiFCKCCEflf/6Pt4U2DUpMXNzQ1ubhruLviCp0+fAgAsLFQHhiwsLKD4/0u4AgICMG/ePCQlJcHT0xNA3uJcuVyuXPdCRERkloTQf3rnJVjTYhYLcQMCAuDi4oJBgwbhr7/+wtWrVzFp0iTExcUhKCgIANChQwfUqVMHAwYMQGxsLH7//XdMnDgRw4cPV47OEBERkfkyi6TFzc0NkZGRePLkCd566y00btwY0dHR+Pnnn/Haa3m3Fbe0tMS+fftgY2ODFi1aoFevXujevTuWLFli5OiJiIj0xKuHAJjJ1UMA0LhxYxw4cKDQOj4+Pti7d28pRURERFRKFApApuealJdgTYtZjLQQERERmc1ICxER0StLGGCfFk4PERERUUkTCgWEntNDvOSZiIiISh5HWgBwTQsRERGZCY60EBERmTqFAGQcaWHSQkREZOqEAKDvJc/mn7RweoiIiIjMAkdaiIiITJxQCAg9p4cER1qIiIioxAmFYQ4drVixApUrV4aNjQ38/f3x559/lkDntMekhYiIiNRs27YNwcHBmD59OmJjY/Hmm2+iU6dOSEhIMFpMTFqIiIhMnFAIgxy6CAsLw7Bhw/Dhhx+idu3aCA8Ph7e3N1auXFlCvSwakxYiIiJTV8rTQ1lZWYiJiUGHDh1Uyjt06IDjx48bunda40LcAvIXKqU9Mf/tjomIqGTl/19R0otcc5Ct94a4OcgGAKSlpamUy+VyyOVylbL79+8jNzcX7u7uKuXu7u5ITk7WLxA9MGkpID09HQDg+/pN4wZCRERmIz09Hc7OzgZv19raGh4eHohO/tUg7Tk4OMDb21ulbObMmQgJCZGsL5PJVH4WQqiVlSYmLQV4eXkhMTERjo6ORntj0tLS4O3tjcTERDg5ORklhpLCvpkn9s08vcx9A0yjf0IIpKenw8vLq0Tat7GxQVxcHLKysgzSnlTSUXCUBQDc3NxgaWmpNqqSkpKiNvpSmpi0FGBhYYFKlSoZOwwAgJOT00v5iwZg38wV+2aeXua+AcbvX0mMsLzIxsYGNjY2JfocBVlbW8Pf3x8HDx7Eu+++qyw/ePAgunXrVqqxvIhJCxEREakZP348BgwYgMaNGyMgIABr1qxBQkICRowYYbSYmLQQERGRmt69e+PBgweYPXs2kpKSUK9ePfz666/w9fU1WkxMWkyQXC7HzJkzJecZzR37Zp7YN/P0MvcNePn7ZwpGjRqFUaNGGTsMJZl4GW5GQERERC89bi5HREREZoFJCxEREZkFJi1ERERkFpi0EBERkVlg0mJE8+bNQ/PmzWFnZ4eyZctK1pHJZGrHqlWrVOpcuHABrVu3hq2tLSpWrIjZs2eX+H0wiqJN3xISEtC1a1fY29vDzc0NY8eOVdv10RT7JsXPz0/tfZo6dapKHW36a6pWrFiBypUrw8bGBv7+/vjzzz+NHZJOQkJC1N4fDw8P5XkhBEJCQuDl5QVbW1u0adMGFy9eNGLEhTt69Ci6du0KLy8vyGQy7N69W+W8Nv3JzMzEJ598Ajc3N9jb2+Odd97BrVu3SrEX0orq2+DBg9XeyzfeeEOljqn2jfTHpMWIsrKy0LNnT4wcObLQehEREUhKSlIegwYNUp5LS0tD+/bt4eXlhTNnzmD58uVYsmQJwsLCSjr8QhXVt9zcXAQFBSEjIwPR0dHYunUrduzYgQkTJijrmGrfNMnfyyD/+Pzzz5XntOmvqdq2bRuCg4Mxffp0xMbG4s0330SnTp2QkJBg7NB0UrduXZX358KFC8pzixYtQlhYGL7++mucOXMGHh4eaN++vfJeZKYmIyMDr732Gr7++mvJ89r0Jzg4GLt27cLWrVsRHR2NJ0+eoEuXLsjNzS2tbkgqqm8A0LFjR5X38tdfVe/LY6p9IwMQZHQRERHC2dlZ8hwAsWvXLo2PXbFihXB2dhbPnz9XloWGhgovLy+hUCgMHKnuNPXt119/FRYWFuL27dvKsi1btgi5XC5SU1OFEKbftxf5+vqKZcuWaTyvTX9NVdOmTcWIESNUymrVqiWmTp1qpIh0N3PmTPHaa69JnlMoFMLDw0MsWLBAWfb8+XPh7OwsVq1aVUoRFl/B3xHa9Ofx48fCyspKbN26VVnn9u3bwsLCQkRGRpZa7EWR+v03aNAg0a1bN42PMZe+UfFwpMUMjBkzBm5ubmjSpAlWrVoFhUKhPHfixAm0bt1aZXOlwMBA3LlzBzdv3jRCtNo5ceIE6tWrp3KTscDAQGRmZiImJkZZx5z6tnDhQri6uqJhw4aYN2+eytSPNv01RVlZWYiJiUGHDh1Uyjt06IDjx48bKari+ffff+Hl5YXKlSujT58+uHHjBgAgLi4OycnJKn2Uy+Vo3bq12fUR0K4/MTExyM7OVqnj5eWFevXqmUWfDx8+jAoVKqBGjRoYPnw4UlJSlOfMvW9UOO6Ia+LmzJmDdu3awdbWFr///jsmTJiA+/fvK6cekpOT4efnp/KY/DtwJicno3LlyqUdslaSk5PV7hTq4uICa2tr5V1Fzalv48aNw+uvvw4XFxecPn0a06ZNQ1xcHL799lsA2vXXFN2/fx+5ublqsbu7u5t03AU1a9YMGzduRI0aNXD37l3MnTsXzZs3x8WLF5X9kOpjfHy8McLVizb9SU5OhrW1NVxcXNTqmPr72qlTJ/Ts2RO+vr6Ii4vDF198gbfeegsxMTGQy+Vm3TcqGkdaDExqwV/B4+zZs1q39/nnnyMgIAANGzbEhAkTMHv2bCxevFilTsHbjIv/X6hasFxfhu6bVHyiwG3TS6tvUnTp76efforWrVujQYMG+PDDD7Fq1SqsW7cODx480NiX/P6URl/0JfU+mEPc+Tp16oT33nsP9evXx9tvv419+/YBADZs2KCsY+59LKg4/TGHPvfu3RtBQUGoV68eunbtiv379+Pq1avK91QTc+gbFY0jLQY2ZswY9OnTp9A6BUcPdPHGG28gLS0Nd+/ehbu7Ozw8PNT+esgfKi34l5a+DNk3Dw8PnDp1SqXs0aNHyM7OVsZdmn2Tok9/869muHbtGlxdXbXqrylyc3ODpaWl5PtgynEXxd7eHvXr18e///6L7t27A8gbffD09FTWMdc+5l8VVVh/PDw8kJWVhUePHqmMSKSkpKB58+alG7CePD094evri3///RfAy9U3UseRFgNzc3NDrVq1Cj1sbGyK3X5sbCxsbGyUlxEHBATg6NGjKusnoqKi4OXlpVdyJMWQfQsICMDff/+NpKQklbjlcjn8/f1LvW9S9OlvbGwsACj/09Cmv6bI2toa/v7+OHjwoEr5wYMHzfo/gMzMTFy+fBmenp6oXLkyPDw8VPqYlZWFI0eOmGUftemPv78/rKysVOokJSXh77//Nrs+P3jwAImJicrv2svUN5JgtCXAJOLj40VsbKyYNWuWcHBwELGxsSI2Nlakp6cLIYTYs2ePWLNmjbhw4YK4du2aWLt2rXBychJjx45VtvH48WPh7u4u+vbtKy5cuCB27twpnJycxJIlS4zVLSFE0X3LyckR9erVE+3atRPnzp0Tv/32m6hUqZIYM2aMsg1T7VtBx48fF2FhYSI2NlbcuHFDbNu2TXh5eYl33nlHWUeb/pqqrVu3CisrK7Fu3Tpx6dIlERwcLOzt7cXNmzeNHZrWJkyYIA4fPixu3LghTp48Kbp06SIcHR2VfViwYIFwdnYWO3fuFBcuXBB9+/YVnp6eIi0tzciRS0tPT1d+pwAoP3/x8fFCCO36M2LECFGpUiXx22+/iXPnzom33npLvPbaayInJ8dY3RJCFN639PR0MWHCBHH8+HERFxcnDh06JAICAkTFihXNom+kPyYtRjRo0CABQO04dOiQEEKI/fv3i4YNGwoHBwdhZ2cn6tWrJ8LDw0V2drZKO//73//Em2++KeRyufDw8BAhISFGvyS4qL4JkZfYBAUFCVtbW1GuXDkxZswYlcubhTDNvhUUExMjmjVrJpydnYWNjY2oWbOmmDlzpsjIyFCpp01/TdU333wjfH19hbW1tXj99dfFkSNHjB2STnr37i08PT2FlZWV8PLyEj169BAXL15UnlcoFGLmzJnCw8NDyOVy0apVK3HhwgUjRly4Q4cOSX6/Bg0aJITQrj/Pnj0TY8aMEeXKlRO2traiS5cuIiEhwQi9UVVY354+fSo6dOggypcvL6ysrISPj48YNGiQWtym2jfSn0wIE9xelIiIiKgArmkhIiIis8CkhYiIiMwCkxYiIiIyC0xaiIiIyCwwaSEiIiKzwKSFiIiIzAKTFiIiIjILTFropdOmTRsEBwe/VM87ePBg5T1yisvPz095o8fHjx9rrLd+/XrlbSLI8AYPHqx8H3bv3m3scIjMCpMWIgPZuXMn5syZo/zZz88P4eHhxgtIwuzZs5GUlARnZ2djh/LSO3z4sGSC+OWXX6rcg4qItMe7PBMZSLly5YwdQpEcHR2VdwE2tuzsbFhZWRk7jFLn7OzMpJGomDjSQi+9R48eYeDAgXBxcYGdnR06deqkvI098N90yIEDB1C7dm04ODigY8eOKn8N5+TkYOzYsShbtixcXV0xZcoUDBo0SGXK5sXpoTZt2iA+Ph6ffvqpcioAAEJCQtCwYUOV+MLDw1XuWp2bm4vx48crn2vy5MkoeLcNIQQWLVqEKlWqwNbWFq+99hp++umnYr0+69evh4+PD+zs7PDuu+/iwYMHanV++eUX+Pv7w8bGBlWqVMGsWbOQk5OjPP/PP/+gZcuWsLGxQZ06dfDbb7+pTH/cvHkTMpkM27dvR5s2bWBjY4MffvgBABAREYHatWvDxsYGtWrVwooVK1Se+/bt2+jduzdcXFzg6uqKbt264ebNm8rzhw8fRtOmTWFvb4+yZcuiRYsWiI+P16rvRfUrLCwM9evXh729Pby9vTFq1Cg8efJEeT4+Ph5du3aFi4sL7O3tUbduXfz666+4efMm2rZtCwBwcXGBTCbD4MGDtYqJiDRj0kIvvcGDB+Ps2bPYs2cPTpw4ASEEOnfujOzsbGWdp0+fYsmSJfj+++9x9OhRJCQkYOLEicrzCxcuxKZNmxAREYFjx44hLS2t0PUIO3fuRKVKlZTTMbpMByxduhTfffcd1q1bh+joaDx8+BC7du1SqfP5558jIiICK1euxMWLF/Hpp5/igw8+wJEjR7R/YQCcOnUKQ4cOxahRo3D+/Hm0bdsWc+fOValz4MABfPDBBxg7diwuXbqE1atXY/369Zg3bx4AQKFQoHv37rCzs8OpU6ewZs0aTJ8+XfL5pkyZgrFjx+Ly5csIDAzE2rVrMX36dMybNw+XL1/G/Pnz8cUXX2DDhg0A8t6Xtm3bwsHBAUePHkV0dLQyqczKykJOTg66d++O1q1b43//+x9OnDiBjz76SJkkFqaofgGAhYUFvvrqK/z999/YsGED/vjjD0yePFl5fvTo0cjMzMTRo0dx4cIFLFy4EA4ODvD29saOHTsAAFeuXEFSUhK+/PJLnd4bIpJg1Ns1EpWA1q1bi3HjxgkhhLh69aoAII4dO6Y8f//+fWFrayu2b98uhBAiIiJCABDXrl1T1vnmm2+Eu7u78md3d3exePFi5c85OTnCx8dHdOvWTfJ5hRDC19dXLFu2TCW2mTNnitdee02lbNmyZcLX11f5s6enp1iwYIHy5+zsbFGpUiXlcz158kTY2NiI48ePq7QzbNgw0bdvX42vi1Q8ffv2FR07dlQp6927t3B2dlb+/Oabb4r58+er1Pn++++Fp6enECLvbuRlypQRSUlJyvMHDx4UAMSuXbuEEELExcUJACI8PFylHW9vb7F582aVsjlz5oiAgAAhhBDr1q0TNWvWVLmzd2ZmprC1tRUHDhwQDx48EADE4cOHNfZbk6L6JWX79u3C1dVV+XP9+vVFSEiIZN38uxU/evRI8vyLrw8RaYdrWuildvnyZZQpUwbNmjVTlrm6uqJmzZq4fPmysszOzg5Vq1ZV/uzp6YmUlBQAQGpqKu7evYumTZsqz1taWsLf3x8KhcKg8aampiIpKQkBAQHKsjJlyqBx48bKKaJLly7h+fPnaN++vcpjs7Ky0KhRI52e7/Lly3j33XdVygICAhAZGan8OSYmBmfOnFEZgcjNzcXz58/x9OlTXLlyBd7e3iprZV58rV7UuHFj5b/v3buHxMREDBs2DMOHD1eW5+TkKNd8xMTE4Nq1a3B0dFRp5/nz57h+/To6dOiAwYMHIzAwEO3bt8fbb7+NXr16wdPTs8i+F9UvOzs7HDp0CPPnz8elS5eQlpaGnJwcPH/+HBkZGbC3t8fYsWMxcuRIREVF4e2338Z7772HBg0aFPncRFQ8TFropSYKrAV5sfzFKYSCC0JlMpnaYwtOOWhquzAWFhZqj3txmkob+YnSvn37ULFiRZVzcrlcp7a06YNCocCsWbPQo0cPtXM2NjZqr2Vh7O3tVdoFgLVr16oklUBeUphfx9/fH5s2bVJrq3z58gDy1sSMHTsWkZGR2LZtGz7//HMcPHgQb7zxhl79io+PR+fOnTFixAjMmTMH5cqVQ3R0NIYNG6Z8zz788EMEBgZi3759iIqKQmhoKJYuXYpPPvlEq9eDiHTDpIVeanXq1EFOTg5OnTqF5s2bAwAePHiAq1evonbt2lq14ezsDHd3d5w+fRpvvvkmgLy/yGNjY9UW1b7I2toaubm5KmXly5dHcnKyyn/058+fV3kuT09PnDx5Eq1atQKQN/IQExOD119/XdknuVyOhIQEtG7dWqs+aFKnTh2cPHlSpazgz6+//jquXLmCatWqSbZRq1YtJCQk4O7du3B3dwcAnDlzpsjndnd3R8WKFXHjxg30799fss7rr7+Obdu2oUKFCnByctLYVqNGjdCoUSNMmzYNAQEB2Lx5c5FJS1H9Onv2LHJycrB06VJYWOQt/9u+fbtaPW9vb4wYMQIjRozAtGnTsHbtWnzyySewtrYGALXPABEVH5MWeqlVr14d3bp1w/Dhw7F69Wo4Ojpi6tSpqFixIrp166Z1O5988glCQ0NRrVo11KpVC8uXL8ejR48KHWHw8/PD0aNH0adPH8jlcri5uaFNmza4d+8eFi1ahPfffx+RkZHYv3+/yn/I48aNw4IFC1C9enXUrl0bYWFhKnt9ODo6YuLEifj000+hUCjQsmVLpKWl4fjx43BwcMCgQYO07tfYsWPRvHlzLFq0CN27d0dUVJTK1BAAzJgxA126dIG3tzd69uwJCwsL/O9//8OFCxcwd+5ctG/fHlWrVsWgQYOwaNEipKenKxfiFjUCExISgrFjx8LJyQmdOnVCZmYmzp49i0ePHmH8+PHo378/Fi9ejG7dumH27NmoVKkSEhISsHPnTkyaNAnZ2dlYs2YN3nnnHXh5eeHKlSu4evUqBg4cWGTfi+pX1apVkZOTg+XLl6Nr1644duwYVq1apdJGcHAwOnXqhBo1auDRo0f4448/lMmwr68vZDIZ9u7di86dO8PW1hYODg5avzdEJMFoq2mISkjBBbEPHz4UAwYMEM7OzsLW1lYEBgaKq1evKs9HRESoLDwVQohdu3aJF78e2dnZYsyYMcLJyUm4uLiIKVOmiJ49e4o+ffpofN4TJ06IBg0aCLlcrtLWypUrhbe3t7C3txcDBw4U8+bNU1mIm52dLcaNGyecnJxE2bJlxfjx48XAgQNVFv0qFArx5Zdfipo1aworKytRvnx5ERgYKI4cOaLxdZFaiCtE3mLXSpUqCVtbW9G1a1exZMkStdcjMjJSNG/eXNja2gonJyfRtGlTsWbNGuX5y5cvixYtWghra2tRq1Yt8csvvwgAIjIyUgjx30Lc2NhYtefftGmTaNiwobC2thYuLi6iVatWYufOncrzSUlJYuDAgcLNzU3I5XJRpUoVMXz4cJGamiqSk5NF9+7dhaenp7C2tha+vr5ixowZIjc3V+ProEu/wsLChKenp/Jzs3HjRpXFtWPGjBFVq1YVcrlclC9fXgwYMEDcv39f+fjZs2cLDw8PIZPJxKBBg1SeG1yIS6QzmRDFmJgnesUpFArUrl0bvXr1UtkF15T5+fkhODi4VG5xcOzYMbRs2RLXrl1TWeBM/5HJZNi1a5fet2cgepVwnxYiLcTHx2Pt2rW4evUqLly4gJEjRyIuLg79+vUzdmg6mTJlChwcHJCammrQdnft2oWDBw/i5s2b+O233/DRRx+hRYsWTFgkjBgxgtNERMXEkRYiLSQmJqJPnz74+++/IYRAvXr1sGDBAuViWXMQHx+vvOqlSpUqysWlhrBx40bMmTMHiYmJcHNzw9tvv42lS5fC1dXVYM+hq7p162rcGXf16tUaF/+WtJSUFKSlpQHIu7T+xSuqiKhwTFqI6KX0YpJWkLu7u9reL0Rk+pi0EBERkVngmhYiIiIyC0xaiIiIyCwwaSEiIiKzwKSFiIiIzAKTFiIiIjILTFqIiIjILDBpISIiIrPApIWIiIjMwv8BAw83nKm3twkAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ds.s_mn.isel(depth=0).mean(dim='time').plot()" + "data": { + "text/plain": [ + "" ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\ud83c\udf89 Yay! Our recipe worked!" + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHFCAYAAAA+FskAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxD0lEQVR4nO3deVhU1f8H8PeAMOyIoCzK4r6bhkuouWSKiqZZ7rlnuaXkbpbiiitSlmuGWq7lkmkiVi7hLmJfU9NUBFQQV0BUtjm/P/gxOcwdmGEGZkbfr+e5zyPnnjnzObPgh3POPVcmhBAgIiIiMnEWxg6AiIiISBtMWoiIiMgsMGkhIiIis8CkhYiIiMwCkxYiIiIyC0xaiIiIyCwwaSEiIiKzwKSFiIiIzAKTFiIiIjILTFrI4K5evYqJEyfC398fZcuWRbly5dCiRQv89NNPanVv3bqF4OBgtG7dGmXLloVMJsP69euLfI5nz56hRo0akMlkWLJkicq5kJAQyGQyjcfWrVs1tvvBBx9AJpOhS5cuaufS0tIwffp01KhRA3Z2dqhYsSJ69uyJixcvqtQ7f/48goKC4OPjA1tbW5QrVw4BAQH44YcfJJ8zOzsbYWFhqF+/PmxtbVG2bFk0b94cx48f1xjnpUuXIJfLIZPJcPbsWZVzbdq0KbT/ycnJGtvV1fr16yGTyXDz5k2DtSll/vz52L17t8bnL/gaGMuTJ08QHBwMLy8v2NjYoGHDhoV+3gpKSUnB4MGD4ebmBjs7OwQEBOD333/X6rF+fn7K93jMmDHF7YJeNm/ejPDwcKM8NwA8fvxY5bNe8HcDmb8yxg6AXj5RUVHYt28fBgwYgCZNmiAnJwfbtm1Dz549MWvWLMyYMUNZ99q1a9i0aRMaNmyIzp07Y8uWLVo9xxdffIGMjAzJcx9++CE6duyoVj58+HBcv35d8hwA7Nu3D7t374aTk5Pk+a5du+Ls2bMICQlB48aNcevWLcyePRsBAQG4cOECfH19AeT94vT29kbfvn1RsWJFZGRkYNOmTRgwYABu3ryJzz//XNlmbm4u3n33XURHR2Py5Mlo3rw5MjIyEBMTo7F/ubm5GDp0KNzc3HDnzh218ytWrEBaWppK2dOnT9GxY0f4+/vDw8NDsl1TNn/+fLz//vvo3r27sUMpVI8ePXDmzBksWLAANWrUwObNm9G3b18oFAr069ev0MdmZmaiXbt2ePz4Mb788ktUqFAB33zzDTp27IjffvsNrVu3LvL5O3fujC+++MJo7/HmzZvx999/Izg42CjP7+joiBMnTiApKQk9evQwSgxUwgSZladPnwqFQmHsMAp17949yRiDgoKEnZ2deP78ubIsNzdX+e8zZ84IACIiIqLQ9k+dOiWsra3Fjz/+KACIxYsXFxlTXFyckMlk4oMPPpA8//jxY1GxYkURFhYmfH19RVBQkMr5f//9VwAQn3/+uUr58ePHBQARFhZWZAzNmjUT3t7eKmXLli0TFhYW4sSJE0U+Pt/ixYtFxYoVxZdffikAiDNnzhT5mPXr1wsA4ttvv9X6ebQREREhAIi4uDiDtluQvb29GDRokMbn1+Y1KGn79u0TAMTmzZtVytu3by+8vLxETk5OoY//5ptvBABx/PhxZVl2draoU6eOaNq0aZHP7+vrK/kalaagoCDh6+tr8HafPn2qU/24uDitfzeQeeH0kBH9888/6Nu3L9zd3SGXy+Hj44OBAwciMzMTwH9D31FRURg6dCjKly8POzs7ZGZm4t69e/joo4/g7e0NuVyO8uXLo0WLFvjtt9+M3CvAzc0NMplMrbxp06Z4+vQpHj58qCyzsNDtI5iVlYWhQ4di9OjRaNy4sdaP++677yCEwIcffih5fsKECfD09MTYsWMlz1tZWQEAnJ2dVcrLli0LALCxsSkyBjc3N5Qpozq4+eWXX6JVq1Z44403inw8APz777+YMWMGVqxYoXFESMq6devg4OCA3r17a/2Ygk6ePIkWLVrAxsYGXl5emDZtGrKzsyXrbtu2DQEBAbC3t4eDgwMCAwMRGxurUmfw4MFwcHDAxYsX0a5dO9jb26N8+fIYM2YMnj59qqwnk8mQkZGBDRs2KIf927Rpo9JWeno6Ro4cCTc3N7i6uqJHjx6So1AladeuXXBwcEDPnj1VyocMGYI7d+7g1KlTRT6+Zs2aCAgIUJaVKVMGH3zwAU6fPo3bt28XK67Dhw9DJpNh8+bNmDJlCjw9PeHg4ICuXbvi7t27SE9Px0cffQQ3Nze4ublhyJAhePLkiUobQgisWLECDRs2hK2tLVxcXPD+++/jxo0byjpt2rTBvn37EB8frzJFky8rKwtz585FrVq1lL+zhgwZgnv37qk8l5+fH7p06YKdO3eiUaNGsLGxwaxZswAAP/74I5o1awZnZ2fY2dmhSpUqGDp0aLFeFzJPTFqM5K+//kKTJk1w8uRJzJ49G/v370doaCgyMzORlZWlUnfo0KGwsrLC999/j59++glWVlYYMGAAdu/ejRkzZiAqKgrffvst3n77bTx48KDQ5xVCICcnR6vD0A4dOoTy5cujQoUKxW5j9uzZyMjIwJw5c7R+jEKhwPr161GtWjXJIfbffvsNGzduxLfffgtLS0vJNnx9fdGtWzcsW7YMhw4dwpMnT/DPP/9g7Nix8PHxQZ8+fSSfNycnB/fu3cOKFStw4MABTJkyRXk+MTERN2/eRP369fHZZ5/B3d0dZcqUQd26dbFhwwa19vKTri5duuCdd97Ruv///vsv/vzzT/Tp0wcODg5aP+5Fly5dUk5drF+/HqtWrUJsbCzmzp2rVnf+/Pno27cv6tSpg+3bt+P7779Heno63nzzTVy6dEmlbnZ2Njp37ox27dph9+7dGDNmDFavXq2SXJ04cQK2trbo3LkzTpw4gRMnTmDFihUq7Xz44YewsrLC5s2bsWjRIhw+fBgffPBBkf0y5Pfh77//Ru3atdUS0wYNGijPF/X4/LpSjy+4dkpXn332GVJSUrB+/XosXboUhw8fRt++ffHee+/B2dkZW7ZsweTJk/H999/js88+U3nsxx9/jODgYLz99tvYvXs3VqxYgYsXL6J58+a4e/cugLxpyRYtWsDDw0P5Pp04cQJA3nehW7duWLBgAfr164d9+/ZhwYIFOHjwINq0aYNnz56pPN+5c+cwadIkjB07FpGRkXjvvfdw4sQJ9O7dG1WqVMHWrVuxb98+zJgxo0R+V5EJM+o4zyvsrbfeEmXLlhUpKSka6+QPfQ8cOFDtnIODgwgODtb5eQ8dOiQAaHUYcsh/7dq1AoD48ssvNdYpanooNjZWWFlZicjISCGE9kPA+/fvFwBEaGio2rn09HTh5+cnpk2bpiyTmh4SQoisrCwxfPhwldeoQYMGGl+njz/+WFnP2tparFixQuX8iRMnBADh5OQk6tSpI7Zv3y4OHDgg3n//fQFArFmzRqX+8uXLhYuLi0hOThZCaD81MmXKFAFApymognr37i1sbW2Vzy2EEDk5OaJWrVoqn5WEhARRpkwZ8cknn6g8Pj09XXh4eIhevXopywYNGiT5mZg3b54AIKKjo5VlRU0PjRo1SqV80aJFAoBISkoqtF/5j9fmKEr16tVFYGCgWvmdO3cEADF//vxCH29lZSU+/vhjtfL8KciC004FaZoeyv/Od+3aVaU8ODhYABBjx45VKe/evbsoV66c8uf8z+nSpUtV6iUmJgpbW1sxefJkZZmm6aEtW7YIAGLHjh0q5fnf+Re/G76+vsLS0lJcuXJFpe6SJUsEAPH48WPpF+AFnB56eXGkxQiePn2KI0eOoFevXihfvnyR9d977z21sqZNm2L9+vWYO3cuTp48qXGYviB/f3+cOXNGq8PLy6vQtgr+JSqEkKy3f/9+jB49Gu+//z4++eQTreKUeq6hQ4eid+/eCAwM1Omx69atQ5kyZTB48GC1c1OnToWVlZXK4mBNRo4ciR07dmDZsmU4cuQItm3bBmtra7z11luIj49Xq//ZZ5/hzJkz2LdvH4YOHYoxY8aoXM2gUCgAAM+fP8evv/6Knj17okOHDti+fTtef/11zJ49W1k3Pj4e06ZNw+LFi+Hu7q5133NycrBhwwbUrVtX6ykoKYcOHUK7du1UntvS0lJtuunAgQPIycnBwIEDVT4bNjY2aN26NQ4fPqzWdv/+/VV+zl+weujQIa3jKzjylD86IfW+vKhr165afx+0ITUtqs05Qz2+MAWviKtduzYAICgoSK384cOHyimivXv3QiaT4YMPPlB5Tz08PPDaa69JvqcF7d27F2XLlkXXrl1V2mjYsCE8PDzU2mjQoAFq1KihUtakSRMAQK9evbB9+/ZiT5cZy9GjR9G1a1d4eXlBJpNJXg1XmCtXrqBt27Zwd3eHjY0NqlSpgs8//1ztd39mZiamT58OX19fyOVyVK1aFd99950Be2JcvHrICB49eoTc3FxUqlRJq/qenp5qZdu2bcPcuXPx7bff4osvvoCDgwPeffddLFq0qNArBxwcHNCwYUOtnrfgMHdB+es88kVERKglBgcOHECPHj3Qvn17bNq0qdi/eMPDw3Hjxg1s374djx8/BgDlFTLPnz/H48eP4ejoqDa9c//+fezZswdBQUFqr8vp06exYsUK7Ny5E8+fP8fz588B/Det8/jxY9ja2kIulyMyMhLr1q3Djz/+iPfff1/ZRocOHeDn54eQkBBERESotO/j4wMfHx8AeVd1AMC0adMwaNAglC9fHq6urgCAWrVqKa88AvL+cwoMDERoaChSUlJQoUIFjB49GvXq1cN7772n7H/+uo8nT54gNTVVbb0NAPz6669ITk5WmZYqjgcPHkh+rgqW5U8V5P8HU1DBNUxlypRRvg4F2yxqqvNFBduQy+UAoDbtUFC5cuUkX7ficHV1lYw5fw1XuXLlSvTxRSn4eGtr60LLnz9/DgcHB9y9exdCCI3JcpUqVYp87rt37+Lx48fKtgu6f/++ys9Sv/NatWqF3bt346uvvlKu/atbty6mT5+Ovn37FhmDsWVkZOC1117DkCFDJP8QLYqVlRUGDhyI119/HWXLlsVff/2F4cOHQ6FQYP78+cp6vXr1wt27d7Fu3TpUq1YNKSkpL9UUGpMWIyhXrhwsLS1x69YtrepL/Ufv5uaG8PBwhIeHIyEhAXv27MHUqVORkpKCyMhIjW0dOXIEbdu21ep54+Li4Ofnp/F8wb8+K1eurPLzgQMH0L17d7Ru3Ro7duzQ+AtLG3///TdSU1NRvXp1tXNffPEFvvjiC8TGxqolZN9//z2ysrIkF+BeunQJQgi8++67aucSExPh4uKCZcuWITg4GOfPnweg/p9x2bJlUa1atSLXKwB5o2OrVq3CjRs3UL58eVStWhV2dnaSdfNHrfL/k//7778RHx8PFxcXtbpt27aFs7OzMpl50bp162BtbY0BAwYUGV9hXF1dJfd3KVjm5uYGAPjpp59UEjFNcnJy8ODBA5WkI7/NgolISdiwYQOGDBmiVV1NI4n56tevjy1btiAnJ0cl4b9w4QIAoF69ekU+Pr/ui7R9fEnJX1j/559/KpPBF0mVSbXh6uqq8XeTo6Ojys+a/rjp1q0bunXrhszMTJw8eRKhoaHo168f/Pz8VBYwm6JOnTqhU6dOGs9nZWXh888/x6ZNm/D48WPUq1cPCxcuVC46r1KlikqC6Ovri8OHD+PPP/9UlkVGRuLIkSO4ceOGMhkt7He4OWLSYgS2trZo3bo1fvzxR8ybN0/5i764fHx8MGbMGPz+++84duxYoXXzp4e0UdT0UGFX70RFRaF79+5o2bIldu/erdUvtsJMnTpVbRQnOTkZffv2xYgRI9C7d29Uq1ZN7XHr1q2Dl5eX5C+Ljh07Sk5B9OnTB5UrV0ZoaKiyzfzX4uTJkyr/GT948ABXr15Fu3btiuzDoUOHYGFhofzFU6ZMGXTr1g0//fQTbt68qfzlIoRAZGQkqlatqvxsbN26VTkSlC8yMhILFy7EqlWrULduXbXnS05Oxq+//ooePXronQC0bdsWe/bswd27d5V/cefm5mLbtm0q9QIDA1GmTBlcv35d678mN23apHLV1ubNmwFA5QohuVxe5KhJceRPDxnCu+++i7Vr12LHjh0q02YbNmyAl5cXmjVrVuTjR40ahVOnTinr5uTk4IcffkCzZs2K/D6WlC5dumDBggW4ffs2evXqVWhdTe9Tly5dsHXrVuTm5hb5OmhDLpcrN6Q8cOAAYmNjTT5pKcqQIUNw8+ZNbN26FV5eXti1axc6duyICxcuSP6xdu3aNURGRqrsR7Nnzx40btwYixYtwvfffw97e3u88847mDNnDmxtbUuzOyWGSYuRhIWFoWXLlmjWrBmmTp2KatWq4e7du9izZw9Wr16t9pfHi1JTU9G2bVv069cPtWrVgqOjI86cOaP2AZbi6Oio06XCxREdHY3u3bvDw8MDn332mXKUIl+dOnVULtfN3yk3//LJs2fPKq9yyZ+KqVWrFmrVqqXSTv4urFWrVlW7BBYATp06hYsXL+Kzzz6TvCrIw8NDcsrDxsYGrq6uKm326NEDM2bMwMiRI3Hr1i28/vrrSEpKwuLFi/H06VOMGzdOWfejjz6Ck5MTmjZtCnd3d9y/fx8//vgjtm3bhkmTJqmsY5ozZw7279+Pjh07IiQkBE5OTvj222/x119/Yfv27cp6UutR8vvv7+8v+Z5u2LABOTk5Gi/zBvJ2D541axYOHTok+Rrm+/zzz7Fnzx689dZbmDFjBuzs7PDNN9+obYDn5+eH2bNnY/r06bhx4wY6duwIFxcX3L17F6dPn4a9vb3y8lUgbypi6dKlePLkCZo0aYLjx49j7ty56NSpE1q2bKmsV79+fRw+fBi//PILPD094ejoiJo1a2qMV1uurq4GG9Hp1KkT2rdvj5EjRyItLQ3VqlXDli1bEBkZiR9++EHlMzhs2DBs2LAB169fVybBQ4cOxTfffIOePXtiwYIFqFChAlasWIErV64YdSuDFi1a4KOPPsKQIUNw9uxZtGrVCvb29khKSkJ0dDTq16+PkSNHAsh7n3bu3ImVK1fC398fFhYWaNy4Mfr06YNNmzahc+fOGDduHJo2bQorKyvcunULhw4dQrdu3SRHPF80Y8YM3Lp1C+3atUOlSpWUm/BZWVlptfGeKbt+/Tq2bNmCW7duKZPTiRMnIjIyEhERESrTP82bN8e5c+eQmZmJjz76SGXt240bNxAdHQ0bGxvs2rUL9+/fx6hRo/Dw4cOXZ12LMVcBv+ouXbokevbsKVxdXYW1tbXw8fERgwcPVm6+punqkOfPn4sRI0aIBg0aCCcnJ2Fraytq1qwpZs6cKTIyMozRFRUzZ84s9CqMQ4cOqdQvrG5hirpCYPjw4UImk4nr16/rFL+mq4eSkpLEmDFjRLVq1YSNjY3w8vISQUFBalflfPfdd+LNN98Ubm5uokyZMqJs2bKidevW4vvvv5d8vgsXLoigoCDh6OgobGxsxBtvvCF++eWXIuMs6uqhGjVqCD8/v0I3I5wwYYKQyWTi8uXLRT7fsWPHxBtvvCHkcrnw8PAQkyZNEmvWrJG80mz37t2ibdu2wsnJScjlcuHr6yvef/998dtvvynrDBo0SNjb24v//e9/ok2bNsLW1laUK1dOjBw5Ujx58kSlvfPnz4sWLVoIOzs7AUC0bt260Ncg/4qZgp+1kpaeni7Gjh0rPDw8hLW1tWjQoIHYsmWLWr38K6cKvm7Jycli4MCBoly5csrPwsGDB7V67qKuHvrxxx9VyjW9dvnf33v37qmUf/fdd6JZs2bC3t5e2NraiqpVq4qBAweKs2fPKus8fPhQvP/++6Js2bJCJpOpfIezs7PFkiVLxGuvvSZsbGyEg4ODqFWrlvj444/Fv//+q9IPqe/f3r17RadOnUTFihWFtbW1qFChgujcubP4888/1eqa+tVDAMSuXbuUP2/fvl0AEPb29ipHmTJlVK64EyLvCr2LFy+KzZs3i4oVK4qFCxcqz7Vv317Y2NioXGG1Y8cOIZPJdN6gz1TJhChiopaIXlpNmzaFr68vfvzxx1J/7sGDB+Onn35S28iMisfPzw+tW7fGunXrYGFhofPGjS+LnJwcxMfHo1q1ali8eDEmTpxo7JDUyGQy7Nq1S3lbim3btqF///64ePGi2qiwg4ODxosrfvjhB3z00UdIT0+HpaUlBg0ahGPHjuHatWvKOpcvX0adOnVw9epVyWkmc/NqfqqJCGlpafjrr79UhpfJvG3cuBFWVlYad3Z+2T1+/BhWVlaS69tMWaNGjZCbm4uUlBRUq1ZN5SjsalAhBLKzs5WLxFu0aIE7d+6o/CFw9epVWFhYaH21qqnjmhaiV5STk5PylhFk/n755Rfl+6nPrtPmLH99Xz5vb28jRqPqyZMnKiMgcXFxOH/+PMqVK4caNWqgf//+GDhwIJYuXYpGjRrh/v37+OOPP1C/fn107twZmzZtgpWVFerXrw+5XI6YmBhMmzYNvXv3Vl6t1q9fP8yZMwdDhgzBrFmzcP/+fUyaNAlDhw59aRbicnqIiIiohB0+fFhyu4lBgwZh/fr1yM7Oxty5c7Fx40bcvn0brq6uCAgIwKxZs1C/fn1s27YNixYtwtWrVyGEgK+vLz744AN8+umnKvc+++eff/DJJ5/g2LFjcHV1Ra9evTB37lwmLURERESliWtaiIiIyCwwaSEiIiKzwIW4BSgUCty5cweOjo5636CMiIhebkIIpKenw8vLq8QuM3/+/DmysrIM0pa1tbXKGhhzw6SlgDt37pjUinMiIjJ9iYmJJXJZ8fPnz1HZ1wHJKbkGac/DwwNxcXFmm7gwaSkgf/v81zaOhqXdf/fLsdqgfqM6AKgcfEWt7MTZWhI1gZFvHVQrWxGr//bT8n/VP3yZ1Z9L1ATcyqlv5HX/oYPedaU0r3pDslzq9bG+L/0Xiq32N/rF4zek+yx7pH6jRk3PJ/W6Sb0OAFDDJUWt7Ph16Tvelj2p/h5pilfq/dRE0/usbQzPNOxgL9Wuprh0iUHqtcz5VfreW1KxZbkpJOsKF/W/QqXed011Nb3HunzepZ7PtepDyboPrqvfsVkqLkC3902KLr8LpD7TgG7fWV1o+n5LfTc8f7GSqAk8K69+iw5dfhdoIvXeSb0+2RlZ2PHO9kJvvaKPrKwsJKfkIi7GF06O+r3maekKVPaPR1ZWFpOWl0X+lJClnRyW9v8lLWWspN9gawf1L4GFhg+DjYP6y21hp/8Hx1Ku3oaF9M2DYWmfrV73uXQMutSVIvXaANKvj6Vc+stoqcONoTX1WfZMvRFNzyfVhtTrAGh47zW8n5bWOrxHEu+nJpra0DYGSw33sZR8HTTEpVMMEq+lkIgr7/kknstGQ9Jip/5+Sr3vmupqeo91+bxLfs7spV9gqe+AVFyAbu+b5HPp8LvAEN9ZXWj6fkvFXMZKOmmxtFZPWnT5XaCJ1Hun6fUBNN+Z2lCcHC30TlpeBkxaiIiITFyuUCBXzw1KcoV00m9OmLQQERGZOAUEFNAva9H38aaAY01ERERkFjjSQkREZOIUUEDfyR39WzA+Ji1EREQmLlcI5Op51x19H28KOD1EREREZoEjLURERCaOC3HzMGnR4MH1cip7E4ge0hs/9XSKVyu7XMNdsu6XUZ3UyqptfSZZt8wd9V2Xbg7wkazr932CWtmV8dI7M96D+gZINv9I70Xh/Lv6Doyud6Q3n8rxUt/t6sJr9STrVv0rQ63swWv2knXd96v3DQDS/SuqlT1+IL2HwptvXFIrO/pvNcm6UmqXuytZPsr9D63KAKBJO/U9Js5kSu8NctK/qlrZuTRfrWMY/O1Yybp2Ejtq2km/nXgA9c9Epd/V3zcAwLy/1IrK+Gi/M+iV8dLz7PJ7+g0EC1fp76xM6nOiYbO28q7pWj+f1Hfr/lXphqVik4wLwDOJvfccW9zTOi5NW57de6B+RqoMACARr+sR6X1TbvdQ/1xX3Cld92kF9T1WAOnXImu49E509SW+n5cfSv8Orl1d+rss5XWJ3+2bbjZVK8vNyNS6TX0oIJDLpIXTQ0RERGQeONJCRERk4jg9lIdJCxERkYnj1UN5mLQQERGZOMX/H/q2Ye64poWIiIjMgtkkLTk5Ofj8889RuXJl2NraokqVKpg9ezYUiv9yRyEEQkJC4OXlBVtbW7Rp0wYXL140YtRERET6y/3/q4f0Pcyd2SQtCxcuxKpVq/D111/j8uXLWLRoERYvXozly5cr6yxatAhhYWH4+uuvcebMGXh4eKB9+/ZIT9f+skUiIiJTkysMc5g7s0laTpw4gW7duiEoKAh+fn54//330aFDB5w9exZA3ihLeHg4pk+fjh49eqBevXrYsGEDnj59is2bNxs5eiIiItKX2SQtLVu2xO+//46rV68CAP766y9ER0ejc+fOAIC4uDgkJyejQ4cOysfI5XK0bt0ax48fN0rMREREhqAw0GHuzObqoSlTpiA1NRW1atWCpaUlcnNzMW/ePPTt2xcAkJycDABwd1fdCdHd3R3x8eo7G+bLzMxEZuZ/OxqmpaWVQPRERETFp4AMuZDp3Ya5M5ukZdu2bfjhhx+wefNm1K1bF+fPn0dwcDC8vLwwaNAgZT2ZTPVNEUKolb0oNDQUs2bNUit3vmIBS+v/BqKeuUlvdb/qnyC1sszy0vlsVYkt+6W26weAnIRbamWV5qmXAUCO5HNJbx/uFR6nXlhdsirQVUO5hKP/VlArkz2Qfh0e17ZVK7vWa6V0wzO1j6HuNyMly0//InE7gVrPtW43wudPDWektybXVhO59OObyCVuXVBW+nYGUjFUmic9sii1tb7U5wwAKu3S8HRa0tSulKrB2tctKZpuO3C3k/qtM6S21QcgceODQtyTuE2ChvftwcfN1cqcO/+r9VMduKN+mwUACOwxUK3seh/176YmtzXc2kRqC/6nFaQH9R+1lP4eSt1aJP1eecm61y+VUytzTpJuV+rWIppiOAr1W31I9U3xXPvfJaQ/s5kemjRpEqZOnYo+ffqgfv36GDBgAD799FOEhoYCADw8PAD8N+KSLyUlRW305UXTpk1Damqq8khMTCy5ThARERWDQhjmMHdmk7Q8ffoUFhaq4VpaWiovea5cuTI8PDxw8OBB5fmsrCwcOXIEzZur/6WSTy6Xw8nJSeUgIiIyJbn/Pz2k72HuzGZ6qGvXrpg3bx58fHxQt25dxMbGIiwsDEOHDgWQNy0UHByM+fPno3r16qhevTrmz58POzs79OvXz8jRExERkb7MJmlZvnw5vvjiC4waNQopKSnw8vLCxx9/jBkzZijrTJ48Gc+ePcOoUaPw6NEjNGvWDFFRUXB01HRzdiIiItNniJESjrSUIkdHR4SHhyM8PFxjHZlMhpCQEISEhJRaXERERCVNIWRQCD2vHtLz8abAbJIWIiKiVxVHWvKYzUJcIiIierVxpIWIiMjE5cICuXqOM+QaKBZjYtJCRERk4oQB1rSIl2BNi0wI8RJsN2M4aWlpcHZ2hu/CubCw+W9XxrKXpTNc9/2adirVji47h2ry7N1mamW2GnaElNqBN92/omTdB3Us1cocW9zTOq57D6Sv2pLa7VIT2/vS5WdnathBV0K17R+rlbnVkN6JOP2Y+q6bft9Lv8f7Tu7TOobSFOj1mrFDeLm9UUKv70npnWs17WhbmqS+Q/J70r8TpXb2ldrVF9C8u/DF0erfb6kYAOnvstT3WBNNv2OkfrdfGa++c7Li+XPET/kcqampJbLPV/7/Sb9f8IG9o34jLRnpCrSrn1BisZYGjrQQERGZOC7EzcOkhYiIyMTlCgvkCj3XtLwE8yq8eoiIiIjMAkdaiIiITJwCMij0HGdQwPyHWpi0EBERmTiuacnD6SEiIiIyCxxpISIiMnGGWYjL6SEiIiIqYXlrWvS8YeJLMD3EpIWIiMjEKQywjT8X4r7EnK9YwNL6vw+IXYr0XRtyvFzVyg7s3FhicUkz/o6ZOmmnfdUhCW9qXVfTjpnXeq3Wvo2r6m1o2rVYaudZQ+xe+jLvaFtSu7vq+5ppiivojSC1sn2l/v02Pl2+QxgtVaj/+65TDA31fjpgpnbV0tJz4TLFAM9HWmHSQkREZOK4piUPkxYiIiITp4AF92kBL3kmIiIiM8GRFiIiIhOXK2TIFXpuLqfn400BkxYiIiITl2uAq4dyOT1EREREVDo40kJERGTiFMICCj2vHlLw6iEiIiIqaZweysPpISIiIjILHGnRoNx3p1BGZlV0xTde3t1LS5OmnW8vP3SXLK92Unr3W21p2kG1po/67rc5BmhXasdV7nybR5fXzBDPp4t9J/eVSLtknqQ+qzkiG8CNEn9uBfS/+kdhmFCMikkLERGRiTPM5nLmP7nCpIWIiMjEGWYbf/NPWsy/B0RERPRK4EgLERGRiVNABgX0XdPCHXGJiIiohHF6KI9Z9eD27dv44IMP4OrqCjs7OzRs2BAxMTHK80IIhISEwMvLC7a2tmjTpg0uXrxoxIiJiIjIUMwmaXn06BFatGgBKysr7N+/H5cuXcLSpUtRtmxZZZ1FixYhLCwMX3/9Nc6cOQMPDw+0b98e6enpxguciIhIT/mby+l7mDuzmR5auHAhvL29ERERoSzz8/NT/lsIgfDwcEyfPh09evQAAGzYsAHu7u7YvHkzPv5Yv309iIiIjEUhZFDou0/LS3CXZ7NJu/bs2YPGjRujZ8+eqFChAho1aoS1a9cqz8fFxSE5ORkdOnRQlsnlcrRu3RrHjx83RshERERkQGaTtNy4cQMrV65E9erVceDAAYwYMQJjx47Fxo0bAQDJyckAAHd31R1U3d3dleekZGZmIi0tTeUgIiIyJQoDTA1xc7lSpFAo0LhxY8yfPx8A0KhRI1y8eBErV67EwIEDlfVkMtXhLyGEWtmLQkNDMWvWrOIHdtI0t2cvqW3NS0qEz5+S5W88fF+y3K3GA7Wy+1ddtX4+za9PybyfpvCZMAV8HUgbrUZ/pHVd212n1As13F7lwM6NamXm8pk0zF2ezT9pMZseeHp6ok6dOipltWvXRkJCAgDAw8MDANRGVVJSUtRGX140bdo0pKamKo/ExEQDR05ERESGYDZJS4sWLXDlyhWVsqtXr8LX1xcAULlyZXh4eODgwYPK81lZWThy5AiaN2+usV25XA4nJyeVg4iIyJTkQmaQw9yZzfTQp59+iubNm2P+/Pno1asXTp8+jTVr1mDNmjUA8qaFgoODMX/+fFSvXh3Vq1fH/PnzYWdnh379+hk5eiIiouLj9FAes0lamjRpgl27dmHatGmYPXs2KleujPDwcPTv319ZZ/LkyXj27BlGjRqFR48eoVmzZoiKioKjo6MRIyciItJPLqD3SEmuYUIxKrNJWgCgS5cu6NKli8bzMpkMISEhCAkJKb2giIiIqFSYVdJCRET0KuL0UB7z7wEREdFLLv+GifoeusjJycHnn3+OypUrw9bWFlWqVMHs2bOhUChKqJdF40gLERERqVm4cCFWrVqFDRs2oG7dujh79iyGDBkCZ2dnjBs3zigxMWkhIiIycQIyKPRciCt0fPyJEyfQrVs3BAUFAci739+WLVtw9uxZveLQB5OWl5Quuzya8u65Jxv+pHXdVms17KLZS78YNL0+5rKTpikx5c8amQ6pXW7L+FSSrJsjVSixUzlg3t/Z4kzvSLUBQO12NXK5HHK5XK1+y5YtsWrVKly9ehU1atTAX3/9hejoaISHh+sVhz6YtBAREb1CvL29VX6eOXOm5FW3U6ZMQWpqKmrVqgVLS0vk5uZi3rx56Nu3bylFqo5JCxERkYlTCBkUQr/pofzHJyYmquz+LjXKAgDbtm3DDz/8gM2bN6Nu3bo4f/48goOD4eXlhUGDBukVS3ExaSEiIjJx+Xdq1rcNAFrfsmbSpEmYOnUq+vTpAwCoX78+4uPjERoaarSkhZc8ExERkZqnT5/CwkI1TbC0tOQlz0RERKSZIaeHtNW1a1fMmzcPPj4+qFu3LmJjYxEWFoahQ4fqFYc+mLQQERGZOAUsoNBzckTXxy9fvhxffPEFRo0ahZSUFHh5eeHjjz/GjBkz9IpDH0xaiIiITFyukCFXz5EWXR/v6OiI8PBwo17iXBDXtBAREZFZ4EgLERGRiTPGmhZTxKSFNO4SaW67lx79Zo3ebZjzjpklzdw+D5o0njVSrcwuJVeyriE+U2QYOQm3jB2CUQkD3OVZ8C7PRERERKWDIy1EREQmLhcy5Op5w0R9H28KmLQQERGZOIXQf02KQhgoGCPi9BARERGZBY60EBERmTiFARbi6vt4U8CkhYiIyMQpIINCzzUp+j7eFDBpISIiMnHG2BHXFJn/WBERERG9EjjSQkREZOK4piUPkxZ6JXHnW8PR97XUZaddQ7xvZ++s1L7db/R+OgK/b4aggAG28X8J1rSYf9pFRERErwSOtBAREZk4YYCrh8RLMNLCpIWIiMjE8S7PeTg9RERERGaBIy1EREQmjlcP5THbHoSGhkImkyE4OFhZJoRASEgIvLy8YGtrizZt2uDixYvGC5KIiMgA8qeH9D3MnVkmLWfOnMGaNWvQoEEDlfJFixYhLCwMX3/9Nc6cOQMPDw+0b98e6enpRoqUiIiIDMXskpYnT56gf//+WLt2LVxcXJTlQgiEh4dj+vTp6NGjB+rVq4cNGzbg6dOn2Lx5sxEjJiIi0k/+vYf0Pcyd2SUto0ePRlBQEN5++22V8ri4OCQnJ6NDhw7KMrlcjtatW+P48eOlHSYREZHBcHooj1ktxN26dSvOnTuHM2fOqJ1LTk4GALi7u6uUu7u7Iz4+XmObmZmZyMzMVP6clpZmoGiJiIgMg5c859EqaXn99dd1alQmk2HPnj2oWLFisYKSkpiYiHHjxiEqKgo2NjaFPveLhBBqZS8KDQ3FrFmzDBYnmR5uIa47qa31S+p11KVdXbb8p5LF7xUZg1ZJy/nz5zFhwgQ4ODgUWVcIgQULFqiMXhhCTEwMUlJS4O/vryzLzc3F0aNH8fXXX+PKlSsA8kZcPD09lXVSUlLURl9eNG3aNIwfP175c1paGry9vQ0aOxERkT440pJH6+mhSZMmoUKFClrVXbp0abED0qRdu3a4cOGCStmQIUNQq1YtTJkyBVWqVIGHhwcOHjyIRo0aAQCysrJw5MgRLFy4UGO7crkccrnc4PESEREZCpOWPFolLXFxcShfvrzWjV66dAleXl7FDkqKo6Mj6tWrp1Jmb28PV1dXZXlwcDDmz5+P6tWro3r16pg/fz7s7OzQr18/g8ZCREREpU+rpMXX11enRo01vTJ58mQ8e/YMo0aNwqNHj9CsWTNERUXB0dHRKPEQEREZggAMcMNE81esq4ceP36M06dPIyUlBQqFQuXcwIEDDRKYNg4fPqzys0wmQ0hICEJCQkotBiIiopLG6aE8Oictv/zyC/r374+MjAw4OjqqXJkjk8lKNWkhIiKiV4fOm8tNmDABQ4cORXp6Oh4/foxHjx4pj4cPH5ZEjERERK80bi6XR+eRltu3b2Ps2LGws7MriXiIiIioAE4P5dF5pCUwMBBnz54tiViIiIiINNJqpGXPnj3KfwcFBWHSpEm4dOkS6tevDysrK5W677zzjmEjJKOR2vHSlHck5Q6dJUuX9760d8/V93Npyp9rIoAjLfm0Slq6d++uVjZ79my1MplMhtzcXL2DIiIiov8IIYPQM+nQ9/GmQKukpeBlzURERFR6FJDpvU+Lvo83BTqvadm4caPkfYWysrKwceNGgwRFREREVJDOScuQIUOQmpqqVp6eno4hQ4YYJCgiIiL6Dy95zqPzJc9CCJUN5fLdunULzs7OBgmKiIiI/sM1LXm0TloaNWoEmUwGmUyGdu3aoUyZ/x6am5uLuLg4dOzYsUSCJCIiItI6acm/guj8+fMIDAyEg4OD8py1tTX8/Pzw3nvvGTxAIiKiVx0vec6jddIyc+ZM5ObmwtfXF4GBgfD09CzJuIiIiOj/cXooj04LcS0tLTFixAg8f/68pOIhIiIikqTzQtz69evjxo0bqFy5cknEQyaupHYk5W62xlFSO8Ga2w6zQW8ESZbvO7mvlCMhkiYMMD30yo20AMC8efMwceJE7N27F0lJSUhLS1M5iIiIyLAEACH0PIzdCQPQeaQl/wqhd955R+XS5/xLobmNPxEREZUEnZOWQ4cOlUQcREREpIECMsi4jb/uSUvr1q1LIg4iIiLSgFcP5dE5aQGAx48fY926dbh8+TJkMhnq1KmDoUOHckdcIiKiEqAQMsi4T4vuC3HPnj2LqlWrYtmyZXj48CHu37+PsLAwVK1aFefOnSuJGImIiIh0H2n59NNP8c4772Dt2rXKrfxzcnLw4YcfIjg4GEePHjV4kERERK+y/CuA9G3D3OmctJw9e1YlYQGAMmXKYPLkyWjcuLFBgyMiIiKuacmn8/SQk5MTEhIS1MoTExPh6OhokKCIiIiICtJ5pKV3794YNmwYlixZgubNm0MmkyE6OhqTJk1C3759SyJGMgNSO9qa266oL7uX+f3Q9/Ony863uuzebG6vOXemNl0cacmjc9KyZMkSyGQyDBw4EDk5OQAAKysrjBw5EgsWLDB4gERERK86Xj2UR+ekxdraGl9++SVCQ0Nx/fp1CCFQrVo12NnZlUR8RERERACKuU8LANjZ2aF+/fqGjIWIiIgk8OqhPDonLRkZGViwYAF+//13pKSkQKFQqJy/ceOGwYIjIiKi/KRF3zUtBgrGiHROWj788EMcOXIEAwYMgKenp8pNE4mIiIhKis5Jy/79+7Fv3z60aNGiJOIhIiKiAnj1UB6d92lxcXFBuXLlSiKWQoWGhqJJkyZwdHREhQoV0L17d1y5ckWljhACISEh8PLygq2tLdq0aYOLFy+WeqxERESGJAx0mDudk5Y5c+ZgxowZePr0aUnEo9GRI0cwevRonDx5EgcPHkROTg46dOiAjIwMZZ1FixYhLCwMX3/9Nc6cOQMPDw+0b98e6enppRorERGRIeWPtOh7mDudp4eWLl2K69evw93dHX5+frCyslI5X1I3TYyMjFT5OSIiAhUqVEBMTAxatWoFIQTCw8Mxffp09OjRAwCwYcMGuLu7Y/Pmzfj4449LJC4iIiIqHTonLd27dy+BMHSXmpoKAMqpqri4OCQnJ6NDhw7KOnK5HK1bt8bx48c1Ji2ZmZnIzMxU/pyWllaCURMRERWDIeZ3ivH427dvY8qUKdi/fz+ePXuGGjVqYN26dfD399czmOLROWmZOXOmVvW2bNmCd955B/b29joHVRQhBMaPH4+WLVuiXr16AIDk5GQAgLu7u0pdd3d3xMfHa2wrNDQUs2bNMniMxC3BqfRIbZev6fOny9b6+n6GSzuG0uwblTJDTO/o+PhHjx6hRYsWaNu2Lfbv348KFSrg+vXrKFu2rH5x6KHYm8sV5eOPP0azZs1QpUoVg7c9ZswY/O9//0N0dLTauYKXYAshCr0se9q0aRg/frzy57S0NHh7exsuWCIiIjO0cOFCeHt7IyIiQlnm5+dnvIBQjIW42hIltIvNJ598gj179uDQoUOoVKmSstzDwwPAfyMu+VJSUtRGX14kl8vh5OSkchAREZmS/B1x9T2AvD/OXzxeXCLxoj179qBx48bo2bMnKlSogEaNGmHt2rWl2Gt1JZa0GJoQAmPGjMHOnTvxxx9/oHLlyirnK1euDA8PDxw8eFBZlpWVhSNHjqB58+alHS4REZHBGPLqIW9vbzg7OyuP0NBQyee8ceMGVq5cierVq+PAgQMYMWIExo4di40bN5Zm11WU2PSQoY0ePRqbN2/Gzz//DEdHR+WIirOzM2xtbSGTyRAcHIz58+ejevXqqF69OubPnw87Ozv069fPyNETERGZhsTERJVZBblcLllPoVCgcePGmD9/PgCgUaNGuHjxIlauXImBAweWSqwFmU3SsnLlSgBAmzZtVMojIiIwePBgAMDkyZPx7NkzjBo1Co8ePUKzZs0QFRUFR0fHUo6WiIjIgIRM54W0km0AWi+F8PT0RJ06dVTKateujR07dugXhx7MJmnRZo2MTCZDSEgIQkJCSj4gIiKiUmKMuzy3aNFCbef5q1evwtfXV79A9FBia1p8fX3VNp4jIiIi8/Dpp5/i5MmTmD9/Pq5du4bNmzdjzZo1GD16tNFi0jlpSUxMxK1bt5Q/nz59GsHBwVizZo1Kvb///puXDhMRERmCEW4+1KRJE+zatQtbtmxBvXr1MGfOHISHh6N///4G6VJx6Dw91K9fP3z00UcYMGAAkpOT0b59e9StWxc//PADkpOTMWPGjJKIk4iI6JVlrLs8d+nSBV26dNHreQ1J56Tl77//RtOmTQEA27dvR7169XDs2DFERUVhxIgRTFqIyCRo2h3WFHaCLakY9N091xReGyrEy3CbZj3pPD2UnZ2tvDzqt99+wzvvvAMAqFWrFpKSkgwbHREREdH/0zlpqVu3LlatWoU///wTBw8eRMeOHQEAd+7cgaurq8EDJCIietUZcnM5c6Zz0rJw4UKsXr0abdq0Qd++ffHaa3nDiXv27FFOGxEREZEBGWEhrinSeU1LmzZtcP/+faSlpcHFxUVZ/tFHH8HOzs6gwRERERHlK9Y+LUIIxMTEYPXq1UhPTwcAWFtbM2khIiIqETIDHeZN55GW+Ph4dOzYEQkJCcjMzET79u3h6OiIRYsW4fnz51i1alVJxElERPTqMsT0zkswPaTzSMu4cePQuHFjPHr0CLa2tsryd999F7///rtBgyMiIiLKp/NIS3R0NI4dOwZra2uVcl9fX9y+fdtggREREdH/40gLgGIkLQqFArm5uWrlt27d4t2UiYiISoIB7/JsznROWtq3b4/w8HDlvYZkMhmePHmCmTNnonPnzgYPkEhfmnZG1dbLskuoVD/0fW3MEXeCzfMq9pnMn85Jy7Jly9C2bVvUqVMHz58/R79+/fDvv//Czc0NW7ZsKYkYiYiIXmlC5B36tmHudE5avLy8cP78eWzZsgXnzp2DQqHAsGHD0L9/f5WFuURERGQgXNMCoBhJCwDY2tpi6NChGDp0qKHjISIiooK4pgVAMTeX+/7779GyZUt4eXkhPj4eQN600c8//2zQ4IiIiIjy6Zy0rFy5EuPHj0enTp3w6NEj5ZVELi4uCA8PN3R8RERErzyZMMxR2hQKBa5evYro6GgcPXpU5SgOnaeHli9fjrVr16J79+5YsGCBsrxx48aYOHFisYIgIiKiQpjhmpaTJ0+iX79+iI+PhyiwClgmk0lun1IUnZOWuLg4NGrUSK1cLpcjIyND5wCIiIjo5TNixAg0btwY+/btg6enJ2Qy/dfU6Jy0VK5cGefPn4evr69K+f79+1GnTh29AyIiIqICzHAh7r///ouffvoJ1apVM1ibOictkyZNwujRo/H8+XMIIXD69Gls2bIFoaGh+Pbbbw0WGBEREf0/M5weatasGa5du2bcpGXIkCHIycnB5MmT8fTpU/Tr1w8VK1bEl19+iT59+hgsMCIiIjJfn3zyCSZMmIDk5GTUr18fVlZWKucbNGigc5s6JS05OTnYtGkTunbtiuHDh+P+/ftQKBSoUKGCzk9MZC502ere3LZGL6l4Tfn2AOb2HulL03sh9TqU8akkWXffyX1aPZ5KkBmOtLz33nsAoLKnm0wmgxCidBbililTBiNHjsTly5cBAG5ubjo/IREREenIDJOWuLg4g7ep8/RQs2bNEBsbq7YQl4iIiChfSeQJOicto0aNwoQJE3Dr1i34+/vD3t5e5Xxx5qiIiIioEGZ49RAA3L59G8eOHUNKSgoUCoXKubFjx+rcns5JS+/evdWeTN85KiIiItLMEDvalvaOuBERERgxYgSsra3h6uqqsk+LTCYrnaSlJOaoiIiIqBBmuKZlxowZmDFjBqZNmwYLi2Ld6lCNzkmLOaxlWbFiBRYvXoykpCTUrVsX4eHhePPNN40dFhER0Svj6dOn6NOnj8ESFqAYScuePXsky2UyGWxsbFCtWjVUrlxZ78CKa9u2bQgODsaKFSvQokULrF69Gp06dcKlS5fg4+NjtLiIiIheJcOGDcOPP/6IqVOnGqxNnZOW7t27K9ewvOjFdS0tW7bE7t274eLiYrBAtRUWFoZhw4bhww8/BACEh4fjwIEDWLlyJUJDQ0s9HiIiIn3JYIA1LQaJRHuhoaHo0qULIiMjJTeXCwsL07lNncdsDh48iCZNmuDgwYNITU1FamoqDh48iKZNm2Lv3r04evQoHjx4YJQ7PmdlZSEmJgYdOnRQKe/QoQOOHz8u+ZjMzEykpaWpHERERKSf+fPn48CBA7h79y4uXLiA2NhY5XH+/PlitanzSMu4ceOwZs0aNG/eXFnWrl072NjY4KOPPsLFixcRHh6usgNeabl//z5yc3Ph7u6uUu7u7o7k5GTJx4SGhmLWrFmlER6VMFPYhVWX3UdfZpr6W5rv0av2mmtiiNeBr6UJMMNLnsPCwvDdd99h8ODBBmtT55GW69evw8nJSa3cyckJN27cAABUr14d9+/f1z+6Yip4++v8aSsp06ZNU44YpaamIjExsTRCJCIi0p4w0FGK5HI5WrRoYdA2dU5a/P39MWnSJNy7d09Zdu/ePUyePBlNmjQBkHc76kqVpO9hUZLc3NxgaWmpNqqSkpKiNvqSTy6Xw8nJSeUgIiIi/YwbNw7Lly83aJs6Tw+tW7cO3bp1Q6VKleDt7Q2ZTIaEhARUqVIFP//8MwDgyZMn+OKLLwwaqDasra3h7++PgwcP4t1331WWHzx4EN26dSv1eIiIiAzCDPdpOX36NP744w/s3bsXdevWVVuIu3PnTp3b1DlpqVmzJi5fvowDBw7g6tWrEEKgVq1aaN++vfJa7O7du+sciKGMHz8eAwYMQOPGjREQEIA1a9YgISEBI0aMMFpMRERE+jDHHXHLli2LHj16GLRNnZMWIG/NSMeOHdGmTRvI5XKN60WMoXfv3njw4AFmz56NpKQk1KtXD7/++qtZbIpHRET0soiIiNCq3rFjx9C4cWPI5fIi6+q8pkWhUGDOnDmoWLEiHBwclNv6f/HFF1i3bp2uzZWIUaNG4ebNm8jMzERMTAxatWpl7JCIiIiKzwwX4mqrU6dOuH37tlZ1dU5a5s6di/Xr12PRokWwtrZWltevXx/ffvutrs0RERFRUV7ipKXgZrWF0Tlp2bhxI9asWYP+/fvD0tJSWd6gQQP8888/ujZHRERERchf06LvYe50Tlpu376NatWqqZUrFApkZ2cbJCgiIiKignReiFu3bl38+eefagtbf/zxRzRq1MhggRHpyhR2YdVElxi4+ygZS07CLWOHAED6+/LKfy/McEfckqBz0jJz5kwMGDAAt2/fhkKhwM6dO3HlyhVs3LgRe/fuLYkYiYiIXm1muE+LtnS5Alnn6aGuXbti27Zt+PXXXyGTyTBjxgxcvnwZv/zyC9q3b69rc0RERPQSevbsGZ4+far8OT4+HuHh4YiKilKpp8tC3GLt0xIYGIjAwMDiPJSIiIh0ZI6by3Xr1g09evTAiBEj8PjxYzRr1gxWVla4f/8+wsLCMHLkSABAenq61m3qPNJCREREpcwML3k+d+4c3nzzTQDATz/9BHd3d8THx2Pjxo346quvitWmViMtLi4uWs85PXz4sFiBEBER0cvj6dOncHR0BABERUWhR48esLCwwBtvvIH4+PhitalV0hIeHq7894MHDzB37lwEBgYiICAAAHDixAkcOHDAKDdJJCIieukZYp+VUh5pqVatGnbv3o13330XBw4cwKeffgoASElJgZOTU7Ha1CppGTRokPLf7733HmbPno0xY8Yoy8aOHYuvv/4av/32mzIoIiIiMhAzvHpoxowZ6NevHz799FO0a9dOOdARFRVV7C1SdF7TcuDAAXTs2FGtPDAwEL/99luxgiAiIqKXy/vvv4+EhAScPXsWkZGRyvJ27dph2bJlxWpT56TF1dUVu3btUivfvXs3XF1dixUEERERFcIMF+ICgIeHBxo1agQLi//SjaZNm6JWrVrFak/nS55nzZqFYcOG4fDhw8qhnpMnTyIyMpI3TCTSwSu/wye9Msr4VJIs17QDL78b6szxkueSoHPSMnjwYNSuXRtfffUVdu7cCSEE6tSpg2PHjqFZs2YlESMRERFR8TaXa9asGTZt2mToWIiIiIg00mpNS1pamk6N6rK7HRERERXBTNe0GJpWSYuLiwtSUlK0brRixYq4ceNGsYMiIiKi/+SvadH3MHdaTQ8JIfDtt9/CwcFBq0azs7P1CoqIiIioIK2SFh8fH6xdu1brRj08PGBlZVXsoIiIiKiAl2CkRF9aJS03b94s4TCIiIhIIzPcEbck8C7PREREZBaKdckzERERlR5uLpeHSQsREZGp4/QQACYt9AqQ2hL8wJ2/jBAJlRRdtn2Xeu+5bbzhSH+39P++8T0igGtaiIiITJ6x92kJDQ2FTCZDcHCwwfpUHMVKWv7880988MEHCAgIwO3btwEA33//PaKjow0aHBEREcGoO+KeOXMGa9asQYMGDfTqgiHonLTs2LEDgYGBsLW1RWxsLDIzMwHkbd0/f/58gwdIRET0yjNS0vLkyRP0798fa9euhYuLi97d0JfOScvcuXOxatUqrF27VmUDuebNm+PcuXMGDY6IiIgMKy0tTeXIH3yQMnr0aAQFBeHtt98uxQg10zlpuXLlClq1aqVW7uTkhMePHxsiJiIiInqBIde0eHt7w9nZWXmEhoZKPufWrVtx7tw5jeeNQeekxdPTE9euXVMrj46ORpUqVQwSVEE3b97EsGHDULlyZdja2qJq1aqYOXMmsrKyVOolJCSga9eusLe3h5ubG8aOHatWh4iIyOwYcHooMTERqampymPatGlqT5eYmIhx48bhhx9+gI2NTcn2TQc6X/L88ccfY9y4cfjuu+8gk8lw584dnDhxAhMnTsSMGTNKIkb8888/UCgUWL16NapVq4a///4bw4cPR0ZGBpYsWQIAyM3NRVBQEMqXL4/o6Gg8ePAAgwYNghACy5cvL5G4iIiIzI2TkxOcnJwKrRMTE4OUlBT4+/sry3Jzc3H06FF8/fXXyMzMhKWlZUmHqkbnpGXy5MlITU1F27Zt8fz5c7Rq1QpyuRwTJ07EmDFjSiJGdOzYER07dlT+XKVKFVy5cgUrV65UJi1RUVG4dOkSEhMT4eXlBQBYunQpBg8ejHnz5hX5BhEREZmsUt5crl27drhw4YJK2ZAhQ1CrVi1MmTLFKAkLUMzN5ebNm4fp06fj0qVLUCgUqFOnDhwcHAwdW6FSU1NRrlw55c8nTpxAvXr1lAkLAAQGBiIzMxMxMTFo27atZDuZmZkqi5DS0tJKLmgiIqJiKO1t/B0dHVGvXj2VMnt7e7i6uqqVl6Zi74hrZ2eHxo0bGzIWrV2/fh3Lly/H0qVLlWXJyclwd3dXqefi4gJra2skJydrbCs0NBSzZs0qsViJAO7mSebNFHaQ1hQDv1uvFq2Slh49emjd4M6dO7WuGxISUmTCcObMGZXk6M6dO+jYsSN69uyJDz/8UKWuTCZTe7wQQrI837Rp0zB+/Hjlz2lpafD29ta2C0RERCXPBO49dPjwYT0D0J9WSYuzs7Py30II7Nq1C87OzspkIiYmBo8fP9YpuQGAMWPGoE+fPoXW8fPzU/77zp07aNu2LQICArBmzRqVeh4eHjh16pRK2aNHj5Cdna02AvMiuVwOuVyuU9xERESliXd5zqNV0hIREaH895QpU9CrVy+sWrVKuRAnNzcXo0aN0nmxq5ubG9zc3LSqe/v2bbRt2xb+/v6IiIiAhYXq1doBAQGYN28ekpKS4OnpCSBvca5cLldZ/UxERETmSed9Wr777jtMnDhRZeWwpaUlxo8fj++++86gweW7c+cO2rRpA29vbyxZsgT37t1DcnKyylqVDh06oE6dOhgwYABiY2Px+++/Y+LEiRg+fDivHCIiIvNmxHsPmRKdF+Lm5OTg8uXLqFmzpkr55cuXoVAoDBbYi6KionDt2jVcu3YNlSpVUjknRN67YGlpiX379mHUqFFo0aIFbG1t0a9fP+Ul0URERGbLBNa0mAKdk5YhQ4Zg6NChuHbtGt544w0AwMmTJ7FgwQIMGTLE4AECwODBgzF48OAi6/n4+GDv3r0lEgMREZGxyP7/0LcNc6dz0rJkyRJ4eHhg2bJlSEpKApC3tf/kyZMxYcIEgwdIREREBBQjabGwsMDkyZMxefJk5UZsXDNCRERUgjg9BECPzeUAJitERESlgZc859E5aalcuXKhm7XduHFDr4CIzBl35yyc1OtT2rut8j16uUh9fvgev7x0TlqCg4NVfs7OzkZsbCwiIyMxadIkQ8VFRERE+Tg9BKAYScu4ceMky7/55hucPXtW74CIiIhIwkuQdOhL583lNOnUqRN27NhhqOaIiIiIVOi1EPdFP/30E8qVK2eo5oiIiOj/cSFuHp2TlkaNGqksxBVCIDk5Gffu3cOKFSsMGhwRERGBa1r+n85JS7du3VSSFgsLC5QvXx5t2rRBrVq1DBocERERUT6dk5aQkJASCIOIiIg04fRQHp0X4lpaWiIlJUWt/MGDByp3fiYiIiID4V2eARRjpCX/rsoFZWZmwtraWu+AiIiISBVHWvJonbR89dVXAACZTIZvv/0WDg4OynO5ubk4evQo17QQkcFwV1PToctOxrq8b4bYDZmfk1eL1knLsmXLAOSNtKxatUplKsja2hp+fn5YtWqV4SMkIiJ61fHqIQA6JC1xcXEAgLZt22Lnzp1wcXEpsaCIiIjoBUxaABRjTcuhQ4dKIg4iIiKiQmmVtIwfPx5z5syBvb09xo8fX2jdsLAwgwRGREREebgQN49WSUtsbCyys7MBAOfOnVPZXI6IiIhKGKeHAGiZtLw4JXT48OGSioWIiIhII503lxs6dCjS09PVyjMyMjB06FCDBEVERET/kQlhkMPc6Zy0bNiwAc+ePVMrf/bsGTZu3GiQoIiIiOgF3BEXgA5XD6WlpUEIASEE0tPTYWNjozyXm5uLX3/9FRUqVCiRIImIiIi0TlrKli0LmUwGmUyGGjVqqJ2XyWSYNWuWQYMjIiIiXj2UT+uk5dChQxBC4K233sKOHTtQrlw55Tlra2v4+vrCy8urRIIkMiZuE16y+PqaJ0O8b3zvdcCrhwDokLS0bt0aQN7OuN7e3rCw0Hk5DBERERUDR1ry6Lwjrq+vLwDg6dOnSEhIQFZWlsr5Bg0aGCYyIiIiohfonLTcu3cPQ4YMwf79+yXP5+bm6h0UERERvYDTQwCKcclzcHAwHj16hJMnT8LW1haRkZHYsGEDqlevjj179pREjERERK+0/OkhfQ9zp/NIyx9//IGff/4ZTZo0gYWFBXx9fdG+fXs4OTkhNDQUQUFBJREnERERveJ0HmnJyMhQ7sdSrlw53Lt3DwBQv359nDt3zrDRScjMzETDhg0hk8lw/vx5lXMJCQno2rUr7O3t4ebmhrFjx6qtuSEiIjI73FwOQDGSlpo1a+LKlSsAgIYNG2L16tW4ffs2Vq1aBU9PT4MHWNDkyZMlL63Ozc1FUFAQMjIyEB0dja1bt2LHjh2YMGFCicdERERU0l71qSGgGNNDwcHBSEpKAgDMnDkTgYGB2LRpE6ytrbF+/XpDx6di//79iIqKwo4dO9QWAkdFReHSpUtITExUJjVLly7F4MGDMW/ePDg5OZVobERERFSydE5a+vfvr/x3o0aNcPPmTfzzzz/w8fGBm5ubQYN70d27dzF8+HDs3r0bdnZ2audPnDiBevXqqYzCBAYGIjMzEzExMWjbtq1ku5mZmcjMzFT+nJaWZvjgiYiI9CFE3qFvG2ZO56SlIDs7O7z++uuGiEUjIQQGDx6MESNGoHHjxrh586ZaneTkZLi7u6uUubi4wNraGsnJyRrbDg0N5e0HSIk7dBKRKeLmcnm0SlrGjx+vdYNhYWFa1w0JCSkyYThz5gyOHz+OtLQ0TJs2rdC6MplMrUwIIVmeb9q0aSr9S0tLg7e3dxGRExERUWnTKmmJjY3VqrHCkgMpY8aMQZ8+fQqt4+fnh7lz5+LkyZOQy+Uq5xo3boz+/ftjw4YN8PDwwKlTp1TOP3r0CNnZ2WojMC+Sy+Vq7RIREZkUbi4HQMuk5dChQyXy5G5ublqtg/nqq68wd+5c5c937txBYGAgtm3bhmbNmgEAAgICMG/ePCQlJSmvYoqKioJcLoe/v3+JxE9ERFQaZIq8Q982zJ3ea1pKg4+Pj8rPDg4OAICqVauiUqVKAIAOHTqgTp06GDBgABYvXoyHDx9i4sSJGD58OK8cIiIi88aRFgDF2KfFVFlaWmLfvn2wsbFBixYt0KtXL3Tv3h1LliwxdmhERERkAGYx0lKQn58fhMSlWz4+Pti7d68RIiIiIio5vHooj1kmLURERK8U7tMC4CWaHiIiIqKXG0daiIiITBynh/IwaaGX3oE7fxk7BCIi/fDqIQCcHiIiIiIzwZEWIiIiE8fpoTxMWoiIiEwdrx4CwOkhIiIiMhMcaSEiIjJxnB7Kw6SFiIjI1PHqIQBMWoiIiEweR1rycE0LERERmQWOtBAREZk6hcg79G3DzDFpoZdeq9EfqZXZ7jplhEiIiIqJa1oAcHqIiIiIzARHWoiIiEycDAZYiGuQSIyLSQsREZGp4464ADg9RERERBJCQ0PRpEkTODo6okKFCujevTuuXLli1JiYtBAREZm4/H1a9D10ceTIEYwePRonT57EwYMHkZOTgw4dOiAjI6NkOqkFTg8RERGZOiNcPRQZGanyc0REBCpUqICYmBi0atVKz2CKh0kLERHRKyQtLU3lZ7lcDrlcXuTjUlNTAQDlypUrkbi0wekhIiIiEycTwiAHAHh7e8PZ2Vl5hIaGFvn8QgiMHz8eLVu2RL169Uq6uxpxpIWIiMjUKf7/0LcNAImJiXByclIWazPKMmbMGPzvf/9DdHS0nkHoh0kLERGRiXtxpESfNgDAyclJJWkpyieffII9e/bg6NGjqFSpkl4x6ItJC730uGV/6SvjI/2LLSfhVilHQkTFJYTAJ598gl27duHw4cOoXLmysUNi0kJERGTyjHD10OjRo7F582b8/PPPcHR0RHJyMgDA2dkZtra2egZTPFyIS0REZOryd8TV99DBypUrkZqaijZt2sDT01N5bNu2rYQ6WTSOtBAREZEaYYLb/jNpISIiMnHF2dFWqg1zx6SFiIjI1PGGiQDMbE3Lvn370KxZM9ja2sLNzQ09evRQOZ+QkICuXbvC3t4ebm5uGDt2LLKysowULRERERmS2Yy07NixA8OHD8f8+fPx1ltvQQiBCxcuKM/n5uYiKCgI5cuXR3R0NB48eIBBgwZBCIHly5cbMXIiIiL9yBR5h75tmDuzSFpycnIwbtw4LF68GMOGDVOW16xZU/nvqKgoXLp0CYmJifDy8gIALF26FIMHD8a8efN02kiHiIjIpHB6CICZTA+dO3cOt2/fhoWFBRo1agRPT0906tQJFy9eVNY5ceIE6tWrp0xYACAwMBCZmZmIiYnR2HZmZibS0tJUDiIiIjI9ZjHScuPGDQBASEgIwsLC4Ofnh6VLl6J169a4evUqypUrh+TkZLi7u6s8zsXFBdbW1soNcaSEhoZi1qxZJRo/vTo07gTr5apXu888bSTLHWNua/1cZe48UCtL96+odbu60NhfiXJNfdN3J2NN74UuJPtx8i+tn0/TDsC61CUCYJTN5UyRUUdaQkJCIJPJCj3Onj0LhSJvIm769Ol477334O/vj4iICMhkMvz444/K9mQymdpzCCEky/NNmzYNqampyiMxMdHwHSUiItKDIe/ybM6MOtIyZswY9OnTp9A6fn5+SE9PBwDUqVNHWS6Xy1GlShUkJCQAADw8PHDqlOpfZo8ePUJ2drbaCMyL5HK5Vne4JCIiMhquaQFg5KTFzc0Nbm5uRdbz9/eHXC7HlStX0LJlSwBAdnY2bt68CV9fXwBAQEAA5s2bh6SkJHh6egLIW5wrl8vh7+9fcp0gIiKiUmEWa1qcnJwwYsQIzJw5E97e3vD19cXixYsBAD179gQAdOjQAXXq1MGAAQOwePFiPHz4EBMnTsTw4cN55RAREZk3AUDfS5bNf6DFPJIWAFi8eDHKlCmDAQMG4NmzZ2jWrBn++OMPuLi4AAAsLS2xb98+jBo1Ci1atICtrS369euHJUuWGDlyIiIi/RhiTQrXtJQiKysrLFmypNAkxMfHB3v37i3FqIiIiKi0mE3SQkRE9MoSMMBCXINEYlRMWoiIiEwdrx4CYCY74hIRERFxpEVLGnc6ldrF8o3XJOveamev9fO5XspVK9Nph1ANMWjazVNKie3aKRWbDnEZgqb3c9/JfWpldb8ZKVnX9r72z2eXIvF+Jj2XrKtph1gpmna0lWIL9d1dNX2mcrRuVQMNO+JK9e1Oa+nNH8tWaK5W9ri2/nd8k99T/1tN03sp9XzydupxAUCl3zPUyq7NqyBZ1yVa/XV45uajdbvX+9hK1n3zjUtqZRE+f0rWrfr7EPV220VI1g16I0it7B8NfSvvmq5W1t/vtGTdL6M6SZbXDFP/PXO3k/Tr47r6uHqhht9/10ZbqpXZ/CP9fZN63Uv795QKBQDN+6Rq34aZY9JCRERk4nj1UB4mLURERKaOa1oAcE0LERERmQmOtBAREZk6jrQAYNJCRERk+pi0AOD0EBEREZkJjrQQERGZOl7yDIBJCxERkcnjJc95OD1EREREZoEjLURERKaOC3EBADIhXoJeGFBaWhqcnZ1RfdJ8WMr/2945s7z0ZKBwzVIrk9qiG5Deyv1pBfVtpQHgmZt6md/3CZJ1pbZy17Q9+7N3m6nX1bCdvNSW11JbdOvKebadeqGG7bFTf60uWa5pW3Apn5SVft20tfyx9PbhUt6wvS4dw+W+amW6bG1e9rL2g6JSnx1A+jN8rddqrdslepVU2/6xWpnULSByM5/j38WfITU1FU5OTgaPI///pLerBqOMpVyvtnJyM/Hb9fASi7U0cHqIiIiIzAKnh4iIiEwdp4cAMGkhIiIyAwZIWsCkhYiIiEoaR1oAcE0LERERmQmOtBAREZk6hYDe0zsK8x9pYdJCRERk6oQi79C3DTPH6SEiIiIyCxxpISIiMnVciAuASYvWaobdkiy/OUB9t1RNO5KW6fZQvUzD811s+JN64WhN0Un4RtMJ6Z1nS9VOXSobP15NO+pK7ZR78llVybq1y91VKzuX5itZV2qX5bMzIwoLkYiKKdDrNcly+XQTm4jgmhYAnB4iIiIiM8GRFiIiIlPH6SEATFqIiIhMn4ABkhaDRGJUnB4iIiIis8CRFiIiIlPH6SEAZjTScvXqVXTr1g1ubm5wcnJCixYtcOjQIZU6CQkJ6Nq1K+zt7eHm5oaxY8ciK0v9SgwiIiKzolAY5jBzZpO0BAUFIScnB3/88QdiYmLQsGFDdOnSBcnJyQCA3NxcBAUFISMjA9HR0di6dSt27NiBCRMmGDlyIiIiPeWPtOh7mDmzSFru37+Pa9euYerUqWjQoAGqV6+OBQsW4OnTp7h48SIAICoqCpcuXcIPP/yARo0a4e2338bSpUuxdu1apKWlGbkHREREpC+zSFpcXV1Ru3ZtbNy4ERkZGcjJycHq1avh7u4Of39/AMCJEydQr149eHl5KR8XGBiIzMxMxMTEaGw7MzMTaWlpKgcREZFJ4UgLADNZiCuTyXDw4EF069YNjo6OsLCwgLu7OyIjI1G2bFkAQHJyMtzd3VUe5+LiAmtra+UUkpTQ0FDMmjVLrfz08G/h5Gj5X4Euu9HSK0HTTrmSdKnr86fuwRBRsRy4o2nXbe12405Lz4XLYsPFoxF3xAVg5JGWkJAQyGSyQo+zZ89CCIFRo0ahQoUK+PPPP3H69Gl069YNXbp0QVJSkrI9mUym9hxCCMnyfNOmTUNqaqrySExMLJG+EhERkX6MOtIyZswY9OnTp9A6fn5++OOPP7B37148evQITk5OAIAVK1bg4MGD2LBhA6ZOnQoPDw+cOnVK5bGPHj1Cdna22gjMi+RyOeRyuf6dISIiKiFCKCCEflf/6Pt4U2DUpMXNzQ1ubhruLviCp0+fAgAsLFQHhiwsLKD4/0u4AgICMG/ePCQlJcHT0xNA3uJcuVyuXPdCRERkloTQf3rnJVjTYhYLcQMCAuDi4oJBgwbhr7/+wtWrVzFp0iTExcUhKCgIANChQwfUqVMHAwYMQGxsLH7//XdMnDgRw4cPV47OEBERkfkyi6TFzc0NkZGRePLkCd566y00btwY0dHR+Pnnn/Haa3m3Fbe0tMS+fftgY2ODFi1aoFevXujevTuWLFli5OiJiIj0xKuHAJjJ1UMA0LhxYxw4cKDQOj4+Pti7d28pRURERFRKFApApuealJdgTYtZjLQQERERmc1ICxER0StLGGCfFk4PERERUUkTCgWEntNDvOSZiIiISh5HWgBwTQsRERGZCY60EBERmTqFAGQcaWHSQkREZOqEAKDvJc/mn7RweoiIiIjMAkdaiIiITJxQCAg9p4cER1qIiIioxAmFYQ4drVixApUrV4aNjQ38/f3x559/lkDntMekhYiIiNRs27YNwcHBmD59OmJjY/Hmm2+iU6dOSEhIMFpMTFqIiIhMnFAIgxy6CAsLw7Bhw/Dhhx+idu3aCA8Ph7e3N1auXFlCvSwakxYiIiJTV8rTQ1lZWYiJiUGHDh1Uyjt06IDjx48bunda40LcAvIXKqU9Mf/tjomIqGTl/19R0otcc5Ct94a4OcgGAKSlpamUy+VyyOVylbL79+8jNzcX7u7uKuXu7u5ITk7WLxA9MGkpID09HQDg+/pN4wZCRERmIz09Hc7OzgZv19raGh4eHohO/tUg7Tk4OMDb21ulbObMmQgJCZGsL5PJVH4WQqiVlSYmLQV4eXkhMTERjo6ORntj0tLS4O3tjcTERDg5ORklhpLCvpkn9s08vcx9A0yjf0IIpKenw8vLq0Tat7GxQVxcHLKysgzSnlTSUXCUBQDc3NxgaWmpNqqSkpKiNvpSmpi0FGBhYYFKlSoZOwwAgJOT00v5iwZg38wV+2aeXua+AcbvX0mMsLzIxsYGNjY2JfocBVlbW8Pf3x8HDx7Eu+++qyw/ePAgunXrVqqxvIhJCxEREakZP348BgwYgMaNGyMgIABr1qxBQkICRowYYbSYmLQQERGRmt69e+PBgweYPXs2kpKSUK9ePfz666/w9fU1WkxMWkyQXC7HzJkzJecZzR37Zp7YN/P0MvcNePn7ZwpGjRqFUaNGGTsMJZl4GW5GQERERC89bi5HREREZoFJCxEREZkFJi1ERERkFpi0EBERkVlg0mJE8+bNQ/PmzWFnZ4eyZctK1pHJZGrHqlWrVOpcuHABrVu3hq2tLSpWrIjZs2eX+H0wiqJN3xISEtC1a1fY29vDzc0NY8eOVdv10RT7JsXPz0/tfZo6dapKHW36a6pWrFiBypUrw8bGBv7+/vjzzz+NHZJOQkJC1N4fDw8P5XkhBEJCQuDl5QVbW1u0adMGFy9eNGLEhTt69Ci6du0KLy8vyGQy7N69W+W8Nv3JzMzEJ598Ajc3N9jb2+Odd97BrVu3SrEX0orq2+DBg9XeyzfeeEOljqn2jfTHpMWIsrKy0LNnT4wcObLQehEREUhKSlIegwYNUp5LS0tD+/bt4eXlhTNnzmD58uVYsmQJwsLCSjr8QhXVt9zcXAQFBSEjIwPR0dHYunUrduzYgQkTJijrmGrfNMnfyyD/+Pzzz5XntOmvqdq2bRuCg4Mxffp0xMbG4s0330SnTp2QkJBg7NB0UrduXZX358KFC8pzixYtQlhYGL7++mucOXMGHh4eaN++vfJeZKYmIyMDr732Gr7++mvJ89r0Jzg4GLt27cLWrVsRHR2NJ0+eoEuXLsjNzS2tbkgqqm8A0LFjR5X38tdfVe/LY6p9IwMQZHQRERHC2dlZ8hwAsWvXLo2PXbFihXB2dhbPnz9XloWGhgovLy+hUCgMHKnuNPXt119/FRYWFuL27dvKsi1btgi5XC5SU1OFEKbftxf5+vqKZcuWaTyvTX9NVdOmTcWIESNUymrVqiWmTp1qpIh0N3PmTPHaa69JnlMoFMLDw0MsWLBAWfb8+XPh7OwsVq1aVUoRFl/B3xHa9Ofx48fCyspKbN26VVnn9u3bwsLCQkRGRpZa7EWR+v03aNAg0a1bN42PMZe+UfFwpMUMjBkzBm5ubmjSpAlWrVoFhUKhPHfixAm0bt1aZXOlwMBA3LlzBzdv3jRCtNo5ceIE6tWrp3KTscDAQGRmZiImJkZZx5z6tnDhQri6uqJhw4aYN2+eytSPNv01RVlZWYiJiUGHDh1Uyjt06IDjx48bKari+ffff+Hl5YXKlSujT58+uHHjBgAgLi4OycnJKn2Uy+Vo3bq12fUR0K4/MTExyM7OVqnj5eWFevXqmUWfDx8+jAoVKqBGjRoYPnw4UlJSlOfMvW9UOO6Ia+LmzJmDdu3awdbWFr///jsmTJiA+/fvK6cekpOT4efnp/KY/DtwJicno3LlyqUdslaSk5PV7hTq4uICa2tr5V1Fzalv48aNw+uvvw4XFxecPn0a06ZNQ1xcHL799lsA2vXXFN2/fx+5ublqsbu7u5t03AU1a9YMGzduRI0aNXD37l3MnTsXzZs3x8WLF5X9kOpjfHy8McLVizb9SU5OhrW1NVxcXNTqmPr72qlTJ/Ts2RO+vr6Ii4vDF198gbfeegsxMTGQy+Vm3TcqGkdaDExqwV/B4+zZs1q39/nnnyMgIAANGzbEhAkTMHv2bCxevFilTsHbjIv/X6hasFxfhu6bVHyiwG3TS6tvUnTp76efforWrVujQYMG+PDDD7Fq1SqsW7cODx480NiX/P6URl/0JfU+mEPc+Tp16oT33nsP9evXx9tvv419+/YBADZs2KCsY+59LKg4/TGHPvfu3RtBQUGoV68eunbtiv379+Pq1avK91QTc+gbFY0jLQY2ZswY9OnTp9A6BUcPdPHGG28gLS0Nd+/ehbu7Ozw8PNT+esgfKi34l5a+DNk3Dw8PnDp1SqXs0aNHyM7OVsZdmn2Tok9/869muHbtGlxdXbXqrylyc3ODpaWl5PtgynEXxd7eHvXr18e///6L7t27A8gbffD09FTWMdc+5l8VVVh/PDw8kJWVhUePHqmMSKSkpKB58+alG7CePD094evri3///RfAy9U3UseRFgNzc3NDrVq1Cj1sbGyK3X5sbCxsbGyUlxEHBATg6NGjKusnoqKi4OXlpVdyJMWQfQsICMDff/+NpKQklbjlcjn8/f1LvW9S9OlvbGwsACj/09Cmv6bI2toa/v7+OHjwoEr5wYMHzfo/gMzMTFy+fBmenp6oXLkyPDw8VPqYlZWFI0eOmGUftemPv78/rKysVOokJSXh77//Nrs+P3jwAImJicrv2svUN5JgtCXAJOLj40VsbKyYNWuWcHBwELGxsSI2Nlakp6cLIYTYs2ePWLNmjbhw4YK4du2aWLt2rXBychJjx45VtvH48WPh7u4u+vbtKy5cuCB27twpnJycxJIlS4zVLSFE0X3LyckR9erVE+3atRPnzp0Tv/32m6hUqZIYM2aMsg1T7VtBx48fF2FhYSI2NlbcuHFDbNu2TXh5eYl33nlHWUeb/pqqrVu3CisrK7Fu3Tpx6dIlERwcLOzt7cXNmzeNHZrWJkyYIA4fPixu3LghTp48Kbp06SIcHR2VfViwYIFwdnYWO3fuFBcuXBB9+/YVnp6eIi0tzciRS0tPT1d+pwAoP3/x8fFCCO36M2LECFGpUiXx22+/iXPnzom33npLvPbaayInJ8dY3RJCFN639PR0MWHCBHH8+HERFxcnDh06JAICAkTFihXNom+kPyYtRjRo0CABQO04dOiQEEKI/fv3i4YNGwoHBwdhZ2cn6tWrJ8LDw0V2drZKO//73//Em2++KeRyufDw8BAhISFGvyS4qL4JkZfYBAUFCVtbW1GuXDkxZswYlcubhTDNvhUUExMjmjVrJpydnYWNjY2oWbOmmDlzpsjIyFCpp01/TdU333wjfH19hbW1tXj99dfFkSNHjB2STnr37i08PT2FlZWV8PLyEj169BAXL15UnlcoFGLmzJnCw8NDyOVy0apVK3HhwgUjRly4Q4cOSX6/Bg0aJITQrj/Pnj0TY8aMEeXKlRO2traiS5cuIiEhwQi9UVVY354+fSo6dOggypcvL6ysrISPj48YNGiQWtym2jfSn0wIE9xelIiIiKgArmkhIiIis8CkhYiIiMwCkxYiIiIyC0xaiIiIyCwwaSEiIiKzwKSFiIiIzAKTFiIiIjILTFropdOmTRsEBwe/VM87ePBg5T1yisvPz095o8fHjx9rrLd+/XrlbSLI8AYPHqx8H3bv3m3scIjMCpMWIgPZuXMn5syZo/zZz88P4eHhxgtIwuzZs5GUlARnZ2djh/LSO3z4sGSC+OWXX6rcg4qItMe7PBMZSLly5YwdQpEcHR2VdwE2tuzsbFhZWRk7jFLn7OzMpJGomDjSQi+9R48eYeDAgXBxcYGdnR06deqkvI098N90yIEDB1C7dm04ODigY8eOKn8N5+TkYOzYsShbtixcXV0xZcoUDBo0SGXK5sXpoTZt2iA+Ph6ffvqpcioAAEJCQtCwYUOV+MLDw1XuWp2bm4vx48crn2vy5MkoeLcNIQQWLVqEKlWqwNbWFq+99hp++umnYr0+69evh4+PD+zs7PDuu+/iwYMHanV++eUX+Pv7w8bGBlWqVMGsWbOQk5OjPP/PP/+gZcuWsLGxQZ06dfDbb7+pTH/cvHkTMpkM27dvR5s2bWBjY4MffvgBABAREYHatWvDxsYGtWrVwooVK1Se+/bt2+jduzdcXFzg6uqKbt264ebNm8rzhw8fRtOmTWFvb4+yZcuiRYsWiI+P16rvRfUrLCwM9evXh729Pby9vTFq1Cg8efJEeT4+Ph5du3aFi4sL7O3tUbduXfz666+4efMm2rZtCwBwcXGBTCbD4MGDtYqJiDRj0kIvvcGDB+Ps2bPYs2cPTpw4ASEEOnfujOzsbGWdp0+fYsmSJfj+++9x9OhRJCQkYOLEicrzCxcuxKZNmxAREYFjx44hLS2t0PUIO3fuRKVKlZTTMbpMByxduhTfffcd1q1bh+joaDx8+BC7du1SqfP5558jIiICK1euxMWLF/Hpp5/igw8+wJEjR7R/YQCcOnUKQ4cOxahRo3D+/Hm0bdsWc+fOValz4MABfPDBBxg7diwuXbqE1atXY/369Zg3bx4AQKFQoHv37rCzs8OpU6ewZs0aTJ8+XfL5pkyZgrFjx+Ly5csIDAzE2rVrMX36dMybNw+XL1/G/Pnz8cUXX2DDhg0A8t6Xtm3bwsHBAUePHkV0dLQyqczKykJOTg66d++O1q1b43//+x9OnDiBjz76SJkkFqaofgGAhYUFvvrqK/z999/YsGED/vjjD0yePFl5fvTo0cjMzMTRo0dx4cIFLFy4EA4ODvD29saOHTsAAFeuXEFSUhK+/PJLnd4bIpJg1Ns1EpWA1q1bi3HjxgkhhLh69aoAII4dO6Y8f//+fWFrayu2b98uhBAiIiJCABDXrl1T1vnmm2+Eu7u78md3d3exePFi5c85OTnCx8dHdOvWTfJ5hRDC19dXLFu2TCW2mTNnitdee02lbNmyZcLX11f5s6enp1iwYIHy5+zsbFGpUiXlcz158kTY2NiI48ePq7QzbNgw0bdvX42vi1Q8ffv2FR07dlQp6927t3B2dlb+/Oabb4r58+er1Pn++++Fp6enECLvbuRlypQRSUlJyvMHDx4UAMSuXbuEEELExcUJACI8PFylHW9vb7F582aVsjlz5oiAgAAhhBDr1q0TNWvWVLmzd2ZmprC1tRUHDhwQDx48EADE4cOHNfZbk6L6JWX79u3C1dVV+XP9+vVFSEiIZN38uxU/evRI8vyLrw8RaYdrWuildvnyZZQpUwbNmjVTlrm6uqJmzZq4fPmysszOzg5Vq1ZV/uzp6YmUlBQAQGpqKu7evYumTZsqz1taWsLf3x8KhcKg8aampiIpKQkBAQHKsjJlyqBx48bKKaJLly7h+fPnaN++vcpjs7Ky0KhRI52e7/Lly3j33XdVygICAhAZGan8OSYmBmfOnFEZgcjNzcXz58/x9OlTXLlyBd7e3iprZV58rV7UuHFj5b/v3buHxMREDBs2DMOHD1eW5+TkKNd8xMTE4Nq1a3B0dFRp5/nz57h+/To6dOiAwYMHIzAwEO3bt8fbb7+NXr16wdPTs8i+F9UvOzs7HDp0CPPnz8elS5eQlpaGnJwcPH/+HBkZGbC3t8fYsWMxcuRIREVF4e2338Z7772HBg0aFPncRFQ8TFropSYKrAV5sfzFKYSCC0JlMpnaYwtOOWhquzAWFhZqj3txmkob+YnSvn37ULFiRZVzcrlcp7a06YNCocCsWbPQo0cPtXM2NjZqr2Vh7O3tVdoFgLVr16oklUBeUphfx9/fH5s2bVJrq3z58gDy1sSMHTsWkZGR2LZtGz7//HMcPHgQb7zxhl79io+PR+fOnTFixAjMmTMH5cqVQ3R0NIYNG6Z8zz788EMEBgZi3759iIqKQmhoKJYuXYpPPvlEq9eDiHTDpIVeanXq1EFOTg5OnTqF5s2bAwAePHiAq1evonbt2lq14ezsDHd3d5w+fRpvvvkmgLy/yGNjY9UW1b7I2toaubm5KmXly5dHcnKyyn/058+fV3kuT09PnDx5Eq1atQKQN/IQExOD119/XdknuVyOhIQEtG7dWqs+aFKnTh2cPHlSpazgz6+//jquXLmCatWqSbZRq1YtJCQk4O7du3B3dwcAnDlzpsjndnd3R8WKFXHjxg30799fss7rr7+Obdu2oUKFCnByctLYVqNGjdCoUSNMmzYNAQEB2Lx5c5FJS1H9Onv2LHJycrB06VJYWOQt/9u+fbtaPW9vb4wYMQIjRozAtGnTsHbtWnzyySewtrYGALXPABEVH5MWeqlVr14d3bp1w/Dhw7F69Wo4Ojpi6tSpqFixIrp166Z1O5988glCQ0NRrVo11KpVC8uXL8ejR48KHWHw8/PD0aNH0adPH8jlcri5uaFNmza4d+8eFi1ahPfffx+RkZHYv3+/yn/I48aNw4IFC1C9enXUrl0bYWFhKnt9ODo6YuLEifj000+hUCjQsmVLpKWl4fjx43BwcMCgQYO07tfYsWPRvHlzLFq0CN27d0dUVJTK1BAAzJgxA126dIG3tzd69uwJCwsL/O9//8OFCxcwd+5ctG/fHlWrVsWgQYOwaNEipKenKxfiFjUCExISgrFjx8LJyQmdOnVCZmYmzp49i0ePHmH8+PHo378/Fi9ejG7dumH27NmoVKkSEhISsHPnTkyaNAnZ2dlYs2YN3nnnHXh5eeHKlSu4evUqBg4cWGTfi+pX1apVkZOTg+XLl6Nr1644duwYVq1apdJGcHAwOnXqhBo1auDRo0f4448/lMmwr68vZDIZ9u7di86dO8PW1hYODg5avzdEJMFoq2mISkjBBbEPHz4UAwYMEM7OzsLW1lYEBgaKq1evKs9HRESoLDwVQohdu3aJF78e2dnZYsyYMcLJyUm4uLiIKVOmiJ49e4o+ffpofN4TJ06IBg0aCLlcrtLWypUrhbe3t7C3txcDBw4U8+bNU1mIm52dLcaNGyecnJxE2bJlxfjx48XAgQNVFv0qFArx5Zdfipo1aworKytRvnx5ERgYKI4cOaLxdZFaiCtE3mLXSpUqCVtbW9G1a1exZMkStdcjMjJSNG/eXNja2gonJyfRtGlTsWbNGuX5y5cvixYtWghra2tRq1Yt8csvvwgAIjIyUgjx30Lc2NhYtefftGmTaNiwobC2thYuLi6iVatWYufOncrzSUlJYuDAgcLNzU3I5XJRpUoVMXz4cJGamiqSk5NF9+7dhaenp7C2tha+vr5ixowZIjc3V+ProEu/wsLChKenp/Jzs3HjRpXFtWPGjBFVq1YVcrlclC9fXgwYMEDcv39f+fjZs2cLDw8PIZPJxKBBg1SeG1yIS6QzmRDFmJgnesUpFArUrl0bvXr1UtkF15T5+fkhODi4VG5xcOzYMbRs2RLXrl1TWeBM/5HJZNi1a5fet2cgepVwnxYiLcTHx2Pt2rW4evUqLly4gJEjRyIuLg79+vUzdmg6mTJlChwcHJCammrQdnft2oWDBw/i5s2b+O233/DRRx+hRYsWTFgkjBgxgtNERMXEkRYiLSQmJqJPnz74+++/IYRAvXr1sGDBAuViWXMQHx+vvOqlSpUqysWlhrBx40bMmTMHiYmJcHNzw9tvv42lS5fC1dXVYM+hq7p162rcGXf16tUaF/+WtJSUFKSlpQHIu7T+xSuqiKhwTFqI6KX0YpJWkLu7u9reL0Rk+pi0EBERkVngmhYiIiIyC0xaiIiIyCwwaSEiIiKzwKSFiIiIzAKTFiIiIjILTFqIiIjILDBpISIiIrPApIWIiIjMwv8BAw83nKm3twkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.13" + }, + "metadata": {}, + "output_type": "display_data" } + ], + "source": [ + "ds.s_mn.isel(depth=0).mean(dim='time').plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "🎉 Yay! Our recipe worked!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 4 + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.13" + } + }, + "nbformat": 4, + "nbformat_minor": 4 } diff --git a/docs/pangeo_forge_recipes/tutorials/xarray_zarr/netcdf_zarr_sequential.ipynb b/docs/pangeo_forge_recipes/tutorials/xarray_zarr/netcdf_zarr_sequential.ipynb index c511508a..ab91599b 100755 --- a/docs/pangeo_forge_recipes/tutorials/xarray_zarr/netcdf_zarr_sequential.ipynb +++ b/docs/pangeo_forge_recipes/tutorials/xarray_zarr/netcdf_zarr_sequential.ipynb @@ -1,1988 +1,1988 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Xarray-to-Zarr Sequential Recipe: NOAA OISST\n", - "\n", - "This tutorial describes how to create a recipe from scratch.\n", - "The source data is a sequence of NetCDF files accessed via HTTP.\n", - "The target is a Zarr store." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 1: Get to know your source data\n", - "\n", - "If you are developing a new recipe, you are probably starting from an existing\n", - "dataset. The first step is to just get to know the dataset. For this tutorial,\n", - "our example will be the _NOAA Optimum Interpolation Sea Surface Temperature\n", - "(OISST) v2.1_. The authoritative website describing the data is\n", - ".\n", - "This website contains links to the actual data files on the\n", - "[data access](https://www.ncdc.noaa.gov/oisst/data-access) page. We will use the\n", - "_AVHRR-Only_ version of the data and follow the corresponding link to the\n", - "[Gridded netCDF Data](https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/).\n", - "Browsing through the directories, we can see that there is one file per day. The\n", - "very first day of the dataset is stored at the following URL:\n", - "\n", - "```text\n", - "https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc\n", - "```\n", - "\n", - "From this example, we can work out the pattern of the file naming conventions.\n", - "But first, let's just download one of the files and open it up.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "--2023-02-27 10:22:47-- https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc\n", - "Resolving www.ncei.noaa.gov (www.ncei.noaa.gov)... 205.167.25.171, 205.167.25.172, 205.167.25.168, ...\n", - "Connecting to www.ncei.noaa.gov (www.ncei.noaa.gov)|205.167.25.171|:443... connected.\n", - "HTTP request sent, awaiting response... 200 OK\n", - "Length: 1714749 (1.6M) [application/x-netcdf]\n", - "Saving to: \u2018oisst-avhrr-v02r01.19810901.nc.3\u2019\n", - "\n", - "oisst-avhrr-v02r01. 100%[===================>] 1.63M 403KB/s in 4.3s \n", - "\n", - "2023-02-27 10:22:52 (393 KB/s) - \u2018oisst-avhrr-v02r01.19810901.nc.3\u2019 saved [1714749/1714749]\n", - "\n" - ] - } - ], - "source": [ - "! wget https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc " - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.Dataset>\n",
-              "Dimensions:  (time: 1, zlev: 1, lat: 720, lon: 1440)\n",
-              "Coordinates:\n",
-              "  * lat      (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n",
-              "  * lon      (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n",
-              "  * time     (time) datetime64[ns] 1981-09-01T12:00:00\n",
-              "  * zlev     (zlev) float32 0.0\n",
-              "Data variables:\n",
-              "    anom     (time, zlev, lat, lon) float32 ...\n",
-              "    err      (time, zlev, lat, lon) float32 ...\n",
-              "    ice      (time, zlev, lat, lon) float32 ...\n",
-              "    sst      (time, zlev, lat, lon) float32 ...\n",
-              "Attributes: (12/37)\n",
-              "    title:                      NOAA/NCEI 1/4 Degree Daily Optimum Interpolat...\n",
-              "    source:                     ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pathfin...\n",
-              "    id:                         oisst-avhrr-v02r01.19810901.nc\n",
-              "    naming_authority:           gov.noaa.ncei\n",
-              "    summary:                    NOAAs 1/4-degree Daily Optimum Interpolation ...\n",
-              "    cdm_data_type:              Grid\n",
-              "    ...                         ...\n",
-              "    metadata_link:              https://doi.org/10.25921/RE9P-PT57\n",
-              "    ncei_template_version:      NCEI_NetCDF_Grid_Template_v2.0\n",
-              "    comment:                    Data was converted from NetCDF-3 to NetCDF-4 ...\n",
-              "    sensor:                     Thermometer, AVHRR\n",
-              "    Conventions:                CF-1.6, ACDD-1.3\n",
-              "    references:                 Reynolds, et al.(2007) Daily High-Resolution-...
" - ], - "text/plain": [ - "\n", - "Dimensions: (time: 1, zlev: 1, lat: 720, lon: 1440)\n", - "Coordinates:\n", - " * lat (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n", - " * lon (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n", - " * time (time) datetime64[ns] 1981-09-01T12:00:00\n", - " * zlev (zlev) float32 0.0\n", - "Data variables:\n", - " anom (time, zlev, lat, lon) float32 ...\n", - " err (time, zlev, lat, lon) float32 ...\n", - " ice (time, zlev, lat, lon) float32 ...\n", - " sst (time, zlev, lat, lon) float32 ...\n", - "Attributes: (12/37)\n", - " title: NOAA/NCEI 1/4 Degree Daily Optimum Interpolat...\n", - " source: ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pathfin...\n", - " id: oisst-avhrr-v02r01.19810901.nc\n", - " naming_authority: gov.noaa.ncei\n", - " summary: NOAAs 1/4-degree Daily Optimum Interpolation ...\n", - " cdm_data_type: Grid\n", - " ... ...\n", - " metadata_link: https://doi.org/10.25921/RE9P-PT57\n", - " ncei_template_version: NCEI_NetCDF_Grid_Template_v2.0\n", - " comment: Data was converted from NetCDF-3 to NetCDF-4 ...\n", - " sensor: Thermometer, AVHRR\n", - " Conventions: CF-1.6, ACDD-1.3\n", - " references: Reynolds, et al.(2007) Daily High-Resolution-..." - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import xarray as xr\n", - "\n", - "ds = xr.open_dataset(\"oisst-avhrr-v02r01.19810901.nc\")\n", - "ds" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can see there are four data variables, all with dimension\n", - "`(time, zlev, lat, lon)`. There is a _dimension coordinate_ for each dimension,\n", - "and no _non-dimension coordinates_. Each file in the sequence presumably has the\n", - "same `zlev`, `lat`, and `lon`, but we expect `time` to be different in each one.\n", - "\n", - "Let's also check the total size of the dataset in the file.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "File size is 16.597452 MB\n" - ] - } - ], - "source": [ - "print(f\"File size is {ds.nbytes/1e6} MB\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The file size is important because it will help us define the _chunk size_\n", - "Pangeo Forge will use to build up the target dataset.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 2: Define File Pattern\n", - "\n", - "The first step in developing a recipe is to define a {doc}`File Pattern <../../recipe_user_guide/file_patterns>`.\n", - "The file pattern describes how the source files (a.k.a. \"inputs\") are organized.\n", - "\n", - "In this case, we have a very simple sequence of files that we want to concatenate along a single dimension (time), so we can use the helper function {func}`pangeo_forge_recipes.patterns.pattern_from_file_sequence`. This allows us to simply pass a list of URLs, which we define explicitly." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "from pangeo_forge_recipes.patterns import pattern_from_file_sequence\n", - "\n", - "pattern_from_file_sequence?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To populate the `file_list`, we need understand the file naming conventions. Let's look again at the first URL\n", - "\n", - "```text\n", - "https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc\n", - "```\n", - "\n", - "From this we deduce the following format string." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "input_url_pattern = (\n", - " \"https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation\"\n", - " \"/v2.1/access/avhrr/{yyyymm}/oisst-avhrr-v02r01.{yyyymmdd}.nc\"\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To convert this to an actual list of files, we use Pandas.\n", - "At the time of writing, the latest available data is from 2021-01-05." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Found 14372 files!\n" - ] - }, - { - "data": { - "text/plain": [ - "'https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/202101/oisst-avhrr-v02r01.20210105.nc'" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import pandas as pd\n", - "\n", - "dates = pd.date_range(\"1981-09-01\", \"2021-01-05\", freq=\"D\")\n", - "input_urls = [\n", - " input_url_pattern.format(\n", - " yyyymm=day.strftime(\"%Y%m\"), yyyymmdd=day.strftime(\"%Y%m%d\")\n", - " )\n", - " for day in dates\n", - "]\n", - "print(f\"Found {len(input_urls)} files!\")\n", - "input_urls[-1]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we can define our pattern.\n", - "We will include one more piece of information: we know from examining the file above that there is only one timestep per file.\n", - "So we can set `nitems_per_file=1`." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pattern = pattern_from_file_sequence(input_urls, \"time\", nitems_per_file=1)\n", - "pattern" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To check out pattern, we can try to get the data back out.\n", - "The pattern is designed to be iterated over, so to key the first key, we do:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{Dimension(name='time', operation=): Position(value=0, indexed=False)}" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "for key in pattern:\n", - " break\n", - "key" - ] - }, + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Xarray-to-Zarr Sequential Recipe: NOAA OISST\n", + "\n", + "This tutorial describes how to create a recipe from scratch.\n", + "The source data is a sequence of NetCDF files accessed via HTTP.\n", + "The target is a Zarr store." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 1: Get to know your source data\n", + "\n", + "If you are developing a new recipe, you are probably starting from an existing\n", + "dataset. The first step is to just get to know the dataset. For this tutorial,\n", + "our example will be the _NOAA Optimum Interpolation Sea Surface Temperature\n", + "(OISST) v2.1_. The authoritative website describing the data is\n", + ".\n", + "This website contains links to the actual data files on the\n", + "[data access](https://www.ncdc.noaa.gov/oisst/data-access) page. We will use the\n", + "_AVHRR-Only_ version of the data and follow the corresponding link to the\n", + "[Gridded netCDF Data](https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/).\n", + "Browsing through the directories, we can see that there is one file per day. The\n", + "very first day of the dataset is stored at the following URL:\n", + "\n", + "```text\n", + "https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc\n", + "```\n", + "\n", + "From this example, we can work out the pattern of the file naming conventions.\n", + "But first, let's just download one of the files and open it up.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can now use \"getitem\" syntax on the FilePattern object to retrieve the file name based on this key." - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "--2023-02-27 10:22:47-- https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc\n", + "Resolving www.ncei.noaa.gov (www.ncei.noaa.gov)... 205.167.25.171, 205.167.25.172, 205.167.25.168, ...\n", + "Connecting to www.ncei.noaa.gov (www.ncei.noaa.gov)|205.167.25.171|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 1714749 (1.6M) [application/x-netcdf]\n", + "Saving to: ‘oisst-avhrr-v02r01.19810901.nc.3’\n", + "\n", + "oisst-avhrr-v02r01. 100%[===================>] 1.63M 403KB/s in 4.3s \n", + "\n", + "2023-02-27 10:22:52 (393 KB/s) - ‘oisst-avhrr-v02r01.19810901.nc.3’ saved [1714749/1714749]\n", + "\n" + ] + } + ], + "source": [ + "! wget https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc'" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:  (time: 1, zlev: 1, lat: 720, lon: 1440)\n",
+       "Coordinates:\n",
+       "  * lat      (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n",
+       "  * lon      (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n",
+       "  * time     (time) datetime64[ns] 1981-09-01T12:00:00\n",
+       "  * zlev     (zlev) float32 0.0\n",
+       "Data variables:\n",
+       "    anom     (time, zlev, lat, lon) float32 ...\n",
+       "    err      (time, zlev, lat, lon) float32 ...\n",
+       "    ice      (time, zlev, lat, lon) float32 ...\n",
+       "    sst      (time, zlev, lat, lon) float32 ...\n",
+       "Attributes: (12/37)\n",
+       "    title:                      NOAA/NCEI 1/4 Degree Daily Optimum Interpolat...\n",
+       "    source:                     ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pathfin...\n",
+       "    id:                         oisst-avhrr-v02r01.19810901.nc\n",
+       "    naming_authority:           gov.noaa.ncei\n",
+       "    summary:                    NOAAs 1/4-degree Daily Optimum Interpolation ...\n",
+       "    cdm_data_type:              Grid\n",
+       "    ...                         ...\n",
+       "    metadata_link:              https://doi.org/10.25921/RE9P-PT57\n",
+       "    ncei_template_version:      NCEI_NetCDF_Grid_Template_v2.0\n",
+       "    comment:                    Data was converted from NetCDF-3 to NetCDF-4 ...\n",
+       "    sensor:                     Thermometer, AVHRR\n",
+       "    Conventions:                CF-1.6, ACDD-1.3\n",
+       "    references:                 Reynolds, et al.(2007) Daily High-Resolution-...
" ], - "source": [ - "pattern[key]" + "text/plain": [ + "\n", + "Dimensions: (time: 1, zlev: 1, lat: 720, lon: 1440)\n", + "Coordinates:\n", + " * lat (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n", + " * lon (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n", + " * time (time) datetime64[ns] 1981-09-01T12:00:00\n", + " * zlev (zlev) float32 0.0\n", + "Data variables:\n", + " anom (time, zlev, lat, lon) float32 ...\n", + " err (time, zlev, lat, lon) float32 ...\n", + " ice (time, zlev, lat, lon) float32 ...\n", + " sst (time, zlev, lat, lon) float32 ...\n", + "Attributes: (12/37)\n", + " title: NOAA/NCEI 1/4 Degree Daily Optimum Interpolat...\n", + " source: ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pathfin...\n", + " id: oisst-avhrr-v02r01.19810901.nc\n", + " naming_authority: gov.noaa.ncei\n", + " summary: NOAAs 1/4-degree Daily Optimum Interpolation ...\n", + " cdm_data_type: Grid\n", + " ... ...\n", + " metadata_link: https://doi.org/10.25921/RE9P-PT57\n", + " ncei_template_version: NCEI_NetCDF_Grid_Template_v2.0\n", + " comment: Data was converted from NetCDF-3 to NetCDF-4 ...\n", + " sensor: Thermometer, AVHRR\n", + " Conventions: CF-1.6, ACDD-1.3\n", + " references: Reynolds, et al.(2007) Daily High-Resolution-..." ] - }, + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import xarray as xr\n", + "\n", + "ds = xr.open_dataset(\"oisst-avhrr-v02r01.19810901.nc\")\n", + "ds" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see there are four data variables, all with dimension\n", + "`(time, zlev, lat, lon)`. There is a _dimension coordinate_ for each dimension,\n", + "and no _non-dimension coordinates_. Each file in the sequence presumably has the\n", + "same `zlev`, `lat`, and `lon`, but we expect `time` to be different in each one.\n", + "\n", + "Let's also check the total size of the dataset in the file.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As an alternative way to create the same pattern we could use the more verbose syntax to create a `FilePattern` class.\n", - "With this method, we have to define a function which returns the file path, given a particular key.\n", - "We might do it like this." - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "File size is 16.597452 MB\n" + ] + } + ], + "source": [ + "print(f\"File size is {ds.nbytes/1e6} MB\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The file size is important because it will help us define the _chunk size_\n", + "Pangeo Forge will use to build up the target dataset.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 2: Define File Pattern\n", + "\n", + "The first step in developing a recipe is to define a {doc}`File Pattern <../../recipe_user_guide/file_patterns>`.\n", + "The file pattern describes how the source files (a.k.a. \"inputs\") are organized.\n", + "\n", + "In this case, we have a very simple sequence of files that we want to concatenate along a single dimension (time), so we can use the helper function {func}`pangeo_forge_recipes.patterns.pattern_from_file_sequence`. This allows us to simply pass a list of URLs, which we define explicitly." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from pangeo_forge_recipes.patterns import pattern_from_file_sequence\n", + "\n", + "pattern_from_file_sequence?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To populate the `file_list`, we need understand the file naming conventions. Let's look again at the first URL\n", + "\n", + "```text\n", + "https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc\n", + "```\n", + "\n", + "From this we deduce the following format string." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "input_url_pattern = (\n", + " \"https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation\"\n", + " \"/v2.1/access/avhrr/{yyyymm}/oisst-avhrr-v02r01.{yyyymmdd}.nc\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To convert this to an actual list of files, we use Pandas.\n", + "At the time of writing, the latest available data is from 2021-01-05." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from pangeo_forge_recipes.patterns import ConcatDim, FilePattern\n", - "\n", - "def format_function(time):\n", - " return input_url_pattern.format(\n", - " yyyymm=time.strftime(\"%Y%m\"), yyyymmdd=time.strftime(\"%Y%m%d\")\n", - " )\n", - "\n", - "concat_dim = ConcatDim(name=\"time\", keys=dates, nitems_per_file=1)\n", - "pattern = FilePattern(format_function, concat_dim)\n", - "pattern" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Found 14372 files!\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can check that it gives us the same thing:" + "data": { + "text/plain": [ + "'https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/202101/oisst-avhrr-v02r01.20210105.nc'" ] - }, + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "dates = pd.date_range(\"1981-09-01\", \"2021-01-05\", freq=\"D\")\n", + "input_urls = [\n", + " input_url_pattern.format(\n", + " yyyymm=day.strftime(\"%Y%m\"), yyyymmdd=day.strftime(\"%Y%m%d\")\n", + " )\n", + " for day in dates\n", + "]\n", + "print(f\"Found {len(input_urls)} files!\")\n", + "input_urls[-1]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can define our pattern.\n", + "We will include one more piece of information: we know from examining the file above that there is only one timestep per file.\n", + "So we can set `nitems_per_file=1`." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc'" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pattern[key]" + "data": { + "text/plain": [ + "" ] - }, + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pattern = pattern_from_file_sequence(input_urls, \"time\", nitems_per_file=1)\n", + "pattern" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To check out pattern, we can try to get the data back out.\n", + "The pattern is designed to be iterated over, so to key the first key, we do:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 3: Create storage target\n", - "\n", - "Here we will create a temporary directory to write our output dataset to. We could also write to cloud storage." + "data": { + "text/plain": [ + "{Dimension(name='time', operation=): Position(value=0, indexed=False)}" ] - }, + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "for key in pattern:\n", + " break\n", + "key" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can now use \"getitem\" syntax on the FilePattern object to retrieve the file name based on this key." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'/tmp/tmp3x0x1m53/output.zarr'" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import os\n", - "from tempfile import TemporaryDirectory\n", - "td = TemporaryDirectory()\n", - "target_root = td.name\n", - "store_name = \"output.zarr\"\n", - "target_store = os.path.join(target_root, store_name)\n", - "target_store" + "data": { + "text/plain": [ + "'https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc'" ] - }, + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pattern[key]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As an alternative way to create the same pattern we could use the more verbose syntax to create a `FilePattern` class.\n", + "With this method, we have to define a function which returns the file path, given a particular key.\n", + "We might do it like this." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 4: Write the Recipe\n", - "\n", - "Now that we have a file pattern, we are ready to write our recipe. A recipe is defined as a pipeline of [Apache Beam transforms](https://beam.apache.org/documentation/programming-guide/#transforms) applied to the data collection associated with a `FilePattern`.\n", - "\n", - "First, we'll import the transforms provided by Pangeo Forge that may be used to transform a `FilePattern` collection of NetCDF files into a Zarr store." + "data": { + "text/plain": [ + "" ] - }, + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pangeo_forge_recipes.patterns import ConcatDim, FilePattern\n", + "\n", + "def format_function(time):\n", + " return input_url_pattern.format(\n", + " yyyymm=time.strftime(\"%Y%m\"), yyyymmdd=time.strftime(\"%Y%m%d\")\n", + " )\n", + "\n", + "concat_dim = ConcatDim(name=\"time\", keys=dates, nitems_per_file=1)\n", + "pattern = FilePattern(format_function, concat_dim)\n", + "pattern" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can check that it gives us the same thing:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "import apache_beam as beam\n", - "from pangeo_forge_recipes.transforms import OpenURLWithFSSpec, OpenWithXarray, StoreToZarr" + "data": { + "text/plain": [ + "'https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/198109/oisst-avhrr-v02r01.19810901.nc'" ] - }, + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pattern[key]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 3: Create storage target\n", + "\n", + "Here we will create a temporary directory to write our output dataset to. We could also write to cloud storage." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Define the Recipe Object\n", - "A recipe pipeline contains a set of transforms, which operate on an `apache_beam.PCollection`, performing a one-to-one mapping using `apache_beam.Map` of input elements to output elements, applying the specified transformation. For creating a Zarr store from a NetCDF collection, the recipe pipeline will contain the following transforms applied to the file pattern collection:\n", - "* `OpenURLWithFSSpec`: retrieves each pattern file using the specified URLs.\n", - "* `OpenWithXarray`: load each pattern file into an `xarray.Dataset`:\n", - " * The `file_type` is specified from the pattern.\n", - "* `StoreToZarr`: generate a Zarr store by combining the datasets:\n", - " * `store_name` specifies the name of the generated Zarr store.\n", - " * `target_root` specifies where the output will be stored, in this case, the temporary directory we created.\n", - " * `combine_dims` informs the transform of the dimension used to combine the datasets. Here we use the dimension specified in the file pattern (`time`).\n", - " * `target_chunks`: specifies a dictionary of required chunk size per dimension. In the event that this is not specified for a particular dimension, it will default to the corresponding full shape.\n", - " \n", - "Here, each input file will correspond to a single `time`, so we're going to specify a `time` chunk size of 10. This means that we will need to be able to hold 10 files like the one we examined above in memory at once. That's `16MB * 10 = 160MB`.\n", - "\n", - "To avoid retrieving all of the collection files here, we initially prune the pattern." + "data": { + "text/plain": [ + "'/tmp/tmp3x0x1m53/output.zarr'" ] - }, + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import os\n", + "from tempfile import TemporaryDirectory\n", + "td = TemporaryDirectory()\n", + "target_root = td.name\n", + "store_name = \"output.zarr\"\n", + "target_store = os.path.join(target_root, store_name)\n", + "target_store" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 4: Write the Recipe\n", + "\n", + "Now that we have a file pattern, we are ready to write our recipe. A recipe is defined as a pipeline of [Apache Beam transforms](https://beam.apache.org/documentation/programming-guide/#transforms) applied to the data collection associated with a `FilePattern`.\n", + "\n", + "First, we'll import the transforms provided by Pangeo Forge that may be used to transform a `FilePattern` collection of NetCDF files into a Zarr store." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "import apache_beam as beam\n", + "from pangeo_forge_recipes.transforms import OpenURLWithFSSpec, OpenWithXarray, StoreToZarr" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define the Recipe Object\n", + "A recipe pipeline contains a set of transforms, which operate on an `apache_beam.PCollection`, performing a one-to-one mapping using `apache_beam.Map` of input elements to output elements, applying the specified transformation. For creating a Zarr store from a NetCDF collection, the recipe pipeline will contain the following transforms applied to the file pattern collection:\n", + "* `OpenURLWithFSSpec`: retrieves each pattern file using the specified URLs.\n", + "* `OpenWithXarray`: load each pattern file into an `xarray.Dataset`:\n", + " * The `file_type` is specified from the pattern.\n", + "* `StoreToZarr`: generate a Zarr store by combining the datasets:\n", + " * `store_name` specifies the name of the generated Zarr store.\n", + " * `target_root` specifies where the output will be stored, in this case, the temporary directory we created.\n", + " * `combine_dims` informs the transform of the dimension used to combine the datasets. Here we use the dimension specified in the file pattern (`time`).\n", + " * `target_chunks`: specifies a dictionary of required chunk size per dimension. In the event that this is not specified for a particular dimension, it will default to the corresponding full shape.\n", + " \n", + "Here, each input file will correspond to a single `time`, so we're going to specify a `time` chunk size of 10. This means that we will need to be able to hold 10 files like the one we examined above in memory at once. That's `16MB * 10 = 160MB`.\n", + "\n", + "To avoid retrieving all of the collection files here, we initially prune the pattern." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pattern = pattern.prune(nkeep=15)\n", - "pattern" + "data": { + "text/plain": [ + "" ] - }, + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pattern = pattern.prune(nkeep=15)\n", + "pattern" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "<_ChainedPTransform(PTransform) label=[Create|OpenURLWithFSSpec|OpenWithXarray|StoreToZarr] at 0x7ff8b511a5e0>" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "transforms = (\n", - " beam.Create(pattern.items())\n", - " | OpenURLWithFSSpec()\n", - " | OpenWithXarray(file_type=pattern.file_type)\n", - " | StoreToZarr(\n", - " store_name=store_name,\n", - " target_root=target_root,\n", - " combine_dims=pattern.combine_dim_keys,\n", - " target_chunks={\"time\": 10}\n", - " )\n", - ")\n", - "transforms" + "data": { + "text/plain": [ + "<_ChainedPTransform(PTransform) label=[Create|OpenURLWithFSSpec|OpenWithXarray|StoreToZarr] at 0x7ff8b511a5e0>" ] - }, + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transforms = (\n", + " beam.Create(pattern.items())\n", + " | OpenURLWithFSSpec()\n", + " | OpenWithXarray(file_type=pattern.file_type)\n", + " | StoreToZarr(\n", + " store_name=store_name,\n", + " target_root=target_root,\n", + " combine_dims=pattern.combine_dim_keys,\n", + " target_chunks={\"time\": 10}\n", + " )\n", + ")\n", + "transforms" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 5: Run the Recipe\n", + "\n", + "Execute the recipe pipeline using Beam" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 5: Run the Recipe\n", - "\n", - "Execute the recipe pipeline using Beam" - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" + ] }, { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" - ] - }, - { - "data": { - "application/javascript": [ - "\n", - " if (typeof window.interactive_beam_jquery == 'undefined') {\n", - " var jqueryScript = document.createElement('script');\n", - " jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n", - " jqueryScript.type = 'text/javascript';\n", - " jqueryScript.onload = function() {\n", - " var datatableScript = document.createElement('script');\n", - " datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n", - " datatableScript.type = 'text/javascript';\n", - " datatableScript.onload = function() {\n", - " window.interactive_beam_jquery = jQuery.noConflict(true);\n", - " window.interactive_beam_jquery(document).ready(function($){\n", - " \n", - " });\n", - " }\n", - " document.head.appendChild(datatableScript);\n", - " };\n", - " document.head.appendChild(jqueryScript);\n", - " } else {\n", - " window.interactive_beam_jquery(document).ready(function($){\n", - " \n", - " });\n", - " }" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/derek/anaconda3/envs/forgerunner/lib/python3.9/site-packages/xarray/core/dataset.py:2081: SerializationWarning: saving variable None with floating point data as an integer dtype without any _FillValue to use for NaNs\n", - " return to_zarr( # type: ignore\n", - "/home/derek/anaconda3/envs/forgerunner/lib/python3.9/site-packages/xarray/core/dataset.py:2081: SerializationWarning: saving variable None with floating point data as an integer dtype without any _FillValue to use for NaNs\n", - " return to_zarr( # type: ignore\n", - "/home/derek/anaconda3/envs/forgerunner/lib/python3.9/site-packages/xarray/core/dataset.py:2081: SerializationWarning: saving variable None with floating point data as an integer dtype without any _FillValue to use for NaNs\n", - " return to_zarr( # type: ignore\n", - "/home/derek/anaconda3/envs/forgerunner/lib/python3.9/site-packages/xarray/core/dataset.py:2081: SerializationWarning: saving variable None with floating point data as an integer dtype without any _FillValue to use for NaNs\n", - " return to_zarr( # type: ignore\n" - ] - } - ], - "source": [ - "with beam.Pipeline() as p:\n", - " p | transforms" + "data": { + "application/javascript": [ + "\n", + " if (typeof window.interactive_beam_jquery == 'undefined') {\n", + " var jqueryScript = document.createElement('script');\n", + " jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n", + " jqueryScript.type = 'text/javascript';\n", + " jqueryScript.onload = function() {\n", + " var datatableScript = document.createElement('script');\n", + " datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n", + " datatableScript.type = 'text/javascript';\n", + " datatableScript.onload = function() {\n", + " window.interactive_beam_jquery = jQuery.noConflict(true);\n", + " window.interactive_beam_jquery(document).ready(function($){\n", + " \n", + " });\n", + " }\n", + " document.head.appendChild(datatableScript);\n", + " };\n", + " document.head.appendChild(jqueryScript);\n", + " } else {\n", + " window.interactive_beam_jquery(document).ready(function($){\n", + " \n", + " });\n", + " }" ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 6: Examine the Target\n", - "\n", - "Now we can examine the output of our pruned execution test. Here see that:\n", - "* The `time` dimension matches the pruned pattern length.\n", - "* The `time` chunk size is as requested." - ] - }, + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/derek/anaconda3/envs/forgerunner/lib/python3.9/site-packages/xarray/core/dataset.py:2081: SerializationWarning: saving variable None with floating point data as an integer dtype without any _FillValue to use for NaNs\n", + " return to_zarr( # type: ignore\n", + "/home/derek/anaconda3/envs/forgerunner/lib/python3.9/site-packages/xarray/core/dataset.py:2081: SerializationWarning: saving variable None with floating point data as an integer dtype without any _FillValue to use for NaNs\n", + " return to_zarr( # type: ignore\n", + "/home/derek/anaconda3/envs/forgerunner/lib/python3.9/site-packages/xarray/core/dataset.py:2081: SerializationWarning: saving variable None with floating point data as an integer dtype without any _FillValue to use for NaNs\n", + " return to_zarr( # type: ignore\n", + "/home/derek/anaconda3/envs/forgerunner/lib/python3.9/site-packages/xarray/core/dataset.py:2081: SerializationWarning: saving variable None with floating point data as an integer dtype without any _FillValue to use for NaNs\n", + " return to_zarr( # type: ignore\n" + ] + } + ], + "source": [ + "with beam.Pipeline() as p:\n", + " p | transforms" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 6: Examine the Target\n", + "\n", + "Now we can examine the output of our pruned execution test. Here see that:\n", + "* The `time` dimension matches the pruned pattern length.\n", + "* The `time` chunk size is as requested." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.Dataset>\n",
-              "Dimensions:  (time: 15, zlev: 1, lat: 720, lon: 1440)\n",
-              "Coordinates:\n",
-              "  * lat      (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n",
-              "  * lon      (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n",
-              "  * time     (time) datetime64[ns] 1981-09-01T12:00:00 ... 1981-09-15T12:00:00\n",
-              "  * zlev     (zlev) float32 0.0\n",
-              "Data variables:\n",
-              "    anom     (time, zlev, lat, lon) float64 dask.array<chunksize=(10, 1, 720, 1440), meta=np.ndarray>\n",
-              "    err      (time, zlev, lat, lon) float64 dask.array<chunksize=(10, 1, 720, 1440), meta=np.ndarray>\n",
-              "    ice      (time, zlev, lat, lon) float64 dask.array<chunksize=(10, 1, 720, 1440), meta=np.ndarray>\n",
-              "    sst      (time, zlev, lat, lon) float64 dask.array<chunksize=(10, 1, 720, 1440), meta=np.ndarray>\n",
-              "Attributes: (12/34)\n",
-              "    Conventions:                CF-1.6, ACDD-1.3\n",
-              "    cdm_data_type:              Grid\n",
-              "    comment:                    Data was converted from NetCDF-3 to NetCDF-4 ...\n",
-              "    creator_email:              oisst-help@noaa.gov\n",
-              "    creator_url:                https://www.ncei.noaa.gov/\n",
-              "    date_created:               2020-05-08T19:05:13Z\n",
-              "    ...                         ...\n",
-              "    references:                 Reynolds, et al.(2007) Daily High-Resolution-...\n",
-              "    sensor:                     Thermometer, AVHRR\n",
-              "    source:                     ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pathfin...\n",
-              "    standard_name_vocabulary:   CF Standard Name Table (v40, 25 January 2017)\n",
-              "    summary:                    NOAAs 1/4-degree Daily Optimum Interpolation ...\n",
-              "    title:                      NOAA/NCEI 1/4 Degree Daily Optimum Interpolat...
" - ], - "text/plain": [ - "\n", - "Dimensions: (time: 15, zlev: 1, lat: 720, lon: 1440)\n", - "Coordinates:\n", - " * lat (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n", - " * lon (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n", - " * time (time) datetime64[ns] 1981-09-01T12:00:00 ... 1981-09-15T12:00:00\n", - " * zlev (zlev) float32 0.0\n", - "Data variables:\n", - " anom (time, zlev, lat, lon) float64 dask.array\n", - " err (time, zlev, lat, lon) float64 dask.array\n", - " ice (time, zlev, lat, lon) float64 dask.array\n", - " sst (time, zlev, lat, lon) float64 dask.array\n", - "Attributes: (12/34)\n", - " Conventions: CF-1.6, ACDD-1.3\n", - " cdm_data_type: Grid\n", - " comment: Data was converted from NetCDF-3 to NetCDF-4 ...\n", - " creator_email: oisst-help@noaa.gov\n", - " creator_url: https://www.ncei.noaa.gov/\n", - " date_created: 2020-05-08T19:05:13Z\n", - " ... ...\n", - " references: Reynolds, et al.(2007) Daily High-Resolution-...\n", - " sensor: Thermometer, AVHRR\n", - " source: ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pathfin...\n", - " standard_name_vocabulary: CF Standard Name Table (v40, 25 January 2017)\n", - " summary: NOAAs 1/4-degree Daily Optimum Interpolation ...\n", - " title: NOAA/NCEI 1/4 Degree Daily Optimum Interpolat..." - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:  (time: 15, zlev: 1, lat: 720, lon: 1440)\n",
+       "Coordinates:\n",
+       "  * lat      (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n",
+       "  * lon      (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n",
+       "  * time     (time) datetime64[ns] 1981-09-01T12:00:00 ... 1981-09-15T12:00:00\n",
+       "  * zlev     (zlev) float32 0.0\n",
+       "Data variables:\n",
+       "    anom     (time, zlev, lat, lon) float64 dask.array<chunksize=(10, 1, 720, 1440), meta=np.ndarray>\n",
+       "    err      (time, zlev, lat, lon) float64 dask.array<chunksize=(10, 1, 720, 1440), meta=np.ndarray>\n",
+       "    ice      (time, zlev, lat, lon) float64 dask.array<chunksize=(10, 1, 720, 1440), meta=np.ndarray>\n",
+       "    sst      (time, zlev, lat, lon) float64 dask.array<chunksize=(10, 1, 720, 1440), meta=np.ndarray>\n",
+       "Attributes: (12/34)\n",
+       "    Conventions:                CF-1.6, ACDD-1.3\n",
+       "    cdm_data_type:              Grid\n",
+       "    comment:                    Data was converted from NetCDF-3 to NetCDF-4 ...\n",
+       "    creator_email:              oisst-help@noaa.gov\n",
+       "    creator_url:                https://www.ncei.noaa.gov/\n",
+       "    date_created:               2020-05-08T19:05:13Z\n",
+       "    ...                         ...\n",
+       "    references:                 Reynolds, et al.(2007) Daily High-Resolution-...\n",
+       "    sensor:                     Thermometer, AVHRR\n",
+       "    source:                     ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pathfin...\n",
+       "    standard_name_vocabulary:   CF Standard Name Table (v40, 25 January 2017)\n",
+       "    summary:                    NOAAs 1/4-degree Daily Optimum Interpolation ...\n",
+       "    title:                      NOAA/NCEI 1/4 Degree Daily Optimum Interpolat...
" ], - "source": [ - "ds = xr.open_zarr(target_store)\n", - "ds" + "text/plain": [ + "\n", + "Dimensions: (time: 15, zlev: 1, lat: 720, lon: 1440)\n", + "Coordinates:\n", + " * lat (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n", + " * lon (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n", + " * time (time) datetime64[ns] 1981-09-01T12:00:00 ... 1981-09-15T12:00:00\n", + " * zlev (zlev) float32 0.0\n", + "Data variables:\n", + " anom (time, zlev, lat, lon) float64 dask.array\n", + " err (time, zlev, lat, lon) float64 dask.array\n", + " ice (time, zlev, lat, lon) float64 dask.array\n", + " sst (time, zlev, lat, lon) float64 dask.array\n", + "Attributes: (12/34)\n", + " Conventions: CF-1.6, ACDD-1.3\n", + " cdm_data_type: Grid\n", + " comment: Data was converted from NetCDF-3 to NetCDF-4 ...\n", + " creator_email: oisst-help@noaa.gov\n", + " creator_url: https://www.ncei.noaa.gov/\n", + " date_created: 2020-05-08T19:05:13Z\n", + " ... ...\n", + " references: Reynolds, et al.(2007) Daily High-Resolution-...\n", + " sensor: Thermometer, AVHRR\n", + " source: ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pathfin...\n", + " standard_name_vocabulary: CF Standard Name Table (v40, 25 January 2017)\n", + " summary: NOAAs 1/4-degree Daily Optimum Interpolation ...\n", + " title: NOAA/NCEI 1/4 Degree Daily Optimum Interpolat..." ] - }, + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds = xr.open_zarr(target_store)\n", + "ds" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Total chunk size: 331.784724 MB\n" - ] - } - ], - "source": [ - "print(f'Total chunk size: {ds.isel(time=slice(0, 10)).nbytes / 1e6} MB')" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Total chunk size: 331.784724 MB\n" + ] + } + ], + "source": [ + "print(f'Total chunk size: {ds.isel(time=slice(0, 10)).nbytes / 1e6} MB')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "👀 Inspect the Xarray HTML repr above carefully by clicking on the buttons to expand the different sections.\n", + "- ✅ Is the shape of the variable what we expect?\n", + "- ✅ Is `time` going in the right order?\n", + "- ✅ Do the variable attributes make sense?\n", + "\n", + "\n", + "Now let's visualize some data and make sure things look good" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\ud83d\udc40 Inspect the Xarray HTML repr above carefully by clicking on the buttons to expand the different sections.\n", - "- \u2705 Is the shape of the variable what we expect?\n", - "- \u2705 Is `time` going in the right order?\n", - "- \u2705 Do the variable attributes make sense?\n", - "\n", - "\n", - "Now let's visualize some data and make sure things look good" + "data": { + "text/plain": [ + "" ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" }, { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHFCAYAAADSY6wWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9eZwcVdn1ubeql5nJTFbIRgiRTSDiwr4mkMwkQVCMiIKyy4uCQkBAET4MCEHiAi4I6vsKiKIoq0BWtigCGmRTVBQMIYSEkHVmequqe+/3x13qVnX3TM8+k9T5ZX6Zqa6uqq6uqnvu85znPEQIIZAgQYIECRIkSJCgS6ADfQAJEiRIkCBBggRDEQmJSpAgQYIECRIk6AYSEpUgQYIECRIkSNANJCQqQYIECRIkSJCgG0hIVIIECRIkSJAgQTeQkKgECRIkSJAgQYJuICFRCRIkSJAgQYIE3UBCohIkSJAgQYIECbqBhEQlSJAgQYIECRJ0AzsUiXrmmWcwf/58bN26tey16dOnY/r06f1+TP2Fm2++GXPnzsWUKVNACOnwsy5duhRHHHEE6urqMHz4cJxwwgl49dVXy9YrlUr49re/jalTp6KhoQFjx47FnDlz8Mwzz5Ste9VVV+H444/HxIkTQQjBmWee2eXPsGHDBpx55pkYM2YM6uvrcdhhh+Hxxx8vW8/zPFx99dWYMmUK0uk0Jk+ejCuuuAKFQqFL+/vhD3+I97///chkMpgyZQquueYa+L4fWeftt9/GvHnzMG3aNIwYMQKEENxxxx2RdebPnw9CSKc/+jt59dVXcf755+Owww5DQ0MDCCF46qmnyo5v3bp1uOqqq3DYYYdhzJgxaGpqwgEHHICf/vSnYIzV/Dn/+9//Yu7cuRgxYgSGDRuG5uZmvPDCCxXX/c1vfoMPfehDyGazmDBhAubNm4f29vZBua/uYLfdduvWtTnY0JXzXAkvvPACZs6ciWHDhmHEiBGYO3cu/vvf/3b6vjfffDNyTd977709+RjdxoIFC/Dggw8OyL4B4MEHH4ych+eff37AjiVBH0PsQPj2t78tAIhVq1aVvfbqq6+KV199tf8Pqp+w9957i4985CPi7LPPFjvttJOYNm1axfUefPBBQQgRJ554onj00UfF3XffLfbee28xcuRI8frrr0fWPe200wSlVFx55ZXi8ccfF7/73e/EAQccIFzXFX/+858j69bX14tDDz1UfOELXxDpdFqcccYZXTr+YrEopk6dKnbZZRfxy1/+Uixbtkx8/OMfF67riqeeeiqy7ty5c0U2mxULFiwQy5cvF9dee61Ip9PihBNOqHl/1113nSCEiCuuuEI8+eSTYuHChSKdTotzzz03st6TTz4pxowZI2bOnClOOeUUAUDcfvvtkXXWrFkjnn32WfNz//33CwDiy1/+cmS5vv7uuOMOMX78eHHccceJE044QQAQTz75ZNkxPvzww2LSpEniyiuvFI8++qhYtmyZuPjiiwWlVJx11lk1fc4NGzaICRMmiP3220/cd9994tFHHxVHHnmkaGxsFP/6178i6/7yl78UAMTnP/958cQTT4jbbrtNDB8+XDQ3Nw+6fXUXkydP7vK1OdjQlfNcCf/85z9FY2OjOOqoo8Sjjz4q7rvvPrHffvuJCRMmiA0bNnT43lWrVgkA4qqrrhLPPvus2LRpU299rC6hoaFhQL/HzZs3i2effVZcddVVAoBYuXLlgB1Lgr5FQqJ2EDDGzO/77bdfVRK19957i/33319wzs2yN998U6TTaXHqqaeaZcViUTiOIz73uc9F3v/OO+8IAOLCCy+suv/uPOBuueUWAUA888wzZpnv+2LfffcVBx98sFn27LPPCgDiu9/9buT9CxYsEADEsmXLOt3Xxo0bRTabFf/zP/8TWX799dcLQkiEbNufa+XKlRVJVBx6oPn2t79d8XV7m7/73e+qkqjNmzcLz/PKll9wwQUCgHjrrbc6PA4hhLjssstEKpUSb775plm2bds2MWbMGHHyySebZUEQiPHjx4uWlpbI+3/1q18JAGLRokWDal/dxfZAomo9z9XwqU99SowZM0Zs27bNLHvzzTdFKpUSl19+eYfv1dd2Z/dAX6MvSFQQBKJYLHbpPbfffntCorZz7DDpvPnz5+Oyyy4DAJPSstMk8XSeDkt/+9vfxo033ojddtsNdXV1mD59Ov7973/D93187Wtfw4QJEzB8+HB84hOfwIYNG8r2e88995i0zLBhwzBr1iy8+OKL/fGRI6C0869606ZNeO211zBnzhwQQszyyZMnY+rUqXjwwQdNmohSCkophg8fHtlGU1MTKKXIZrNd3n9HeOCBB7D33nvjsMMOM8tc18XnPvc5/OUvf8HatWsBAH/6058AAMcdd1zk/ccffzwA4L777ut0X0uWLEGxWMRZZ50VWX7WWWdBCBFJE/T0c1VCrdscOXIkUqlU2fKDDz4YgEw1doYHHngAxx57LCZPnmyWNTU1Ye7cuXj44YcRBAEA4LnnnsO6devKzsmnPvUpDBs2DA888MCg2lccd9xxR6dp1GpobW3FpZdeatLDEydOxLx585DL5cw6H/7wh3HUUUeVvZcxhokTJ2Lu3LldPubuotbzXAlBEOCRRx7BJz/5STQ1NZnlkydPxjHHHNOtc6+h09qvvPIKPvWpT2H48OEYNWoULrnkEgRBgNdeew2zZ89GY2MjdtttNyxcuLBsG7V8F4QQ5HI53HnnnRW/4/Xr1+O8887DLrvsgnQ6bVL19nnRz/+FCxfiuuuuw5QpU5DJZPDkk0+Cc47rrrsOe++9N+rq6jBixAjsv//++P73v9/tc5Ng6GKHIVGf//zn8eUvfxkAcP/99+PZZ5/Fs88+i4985CMdvu+WW27Bn/70J9xyyy343//9X/zrX//CCSecgHPOOQfvvfcefv7zn2PhwoV47LHH8PnPfz7y3gULFuCUU07Bvvvui9/+9re466670NbWhqOOOgr/+Mc/Oj3mIAhq+hFCdP/EWPA8DwCQyWTKXstkMsjn83jjjTcAAKlUCueffz7uvPNOPPjgg2htbcWbb76Jc889F8OHD8e5557bK8ek8fe//x37779/2XK9TGu2qn0G/fcrr7xS074A4AMf+EBk+fjx4zFmzBjz+mDFE088Add1sddee0WWxweTQqGAN954o+p5LRQKRgejP3N83VQqhfe///1l56Q/91ULPvrRj5p7Xv9873vfAwDst99+Vd+Xz+cxbdo03HnnnbjwwguxePFifPWrX8Udd9yBj33sY+beO+uss/D000/jP//5T+T9y5YtwzvvvFNGCOPgnNd0r3emdevKea6EN954A4VCoer7X3/9dRSLxQ6PoTOcfPLJ+OAHP4j77rsP5557Lm666SZcfPHFOPHEE/HRj37UkMCvfvWruP/++837av0unn32WdTV1eG4444z3/WPf/xjAJJAHXzwwVi6dCmuvvpqLF68GOeccw5uuOGGis+sH/zgB3jiiSfwne98B4sXL8b73/9+LFy4EPPnz8cpp5yCRx99FPfccw/OOeecilrbBNs/3IE+gP7CLrvsgl133RWAnDXutttuNb1vxIgRePDBB010YOPGjZg3bx7e//7346GHHjLr/etf/8LNN9+M1tZWNDU1Yc2aNfjGN76BL33pS/jBD35g1mtubsaee+6Ja665Bvfcc0/V/b755puYMmVKTcf45JNP9ooofuzYsRg1apSJ5mhs3brVDFybNm0yy2+66SYMHz4cn/zkJ8E5BwDsuuuueOKJJ7DHHnv0+HhsbNq0CaNGjSpbrpfp49p3330ByIiUff6efvrpsuPvaF+ZTAYNDQ0V91fLNgYKy5Ytw1133YWLLroIo0ePjrzmOA4cxzF/b9myBUKIms6r/r/aum+++eaA7asW7LTTTthpp53M36+99hquv/56HHPMMbjpppuqvu8HP/gBXnnlFfz5z3/GgQceCACYMWMGJk6ciJNOOglLlizBnDlz8NnPfhaXXXYZ7rjjDlx//fXm/XfccYcpuOgIZ599Nu68885OP8e0adMqFhlodOU8V0Jn514IgS1btmD8+PGdHms1/M///A8uueQSAMDMmTOxbNky/OhHP8L999+PT3ziEwBkZuCRRx7Br371KxPFq/W7OPTQQ0EpxU477YRDDz00su/58+djy5YtePXVV814MGPGDNTV1eHSSy/FZZddZp4hAJDNZrF06dJIxPdPf/oTPvCBD2D+/Plm2axZs7p9PhIMbewwJKq7OO644yLplX322QeAnNna0MvfeustTJ06FUuXLkUQBDj99NMjYeJsNotp06bhySef7HC/EyZMwMqVK2s6xr333rum9ToDpRQXXHABvvnNb+Kb3/wmzjvvPLS2tmLevHnI5/NmHY3rr78e3/nOdzB//nwcddRRaG1txY9+9CM0Nzdj2bJl+PCHP9yl/QshymbarhteonaKMQ792pw5c7DHHnvgq1/9KsaOHYuDDjoIzz33HL7+9a/DcZzI8cfTGo7jmO3Usq/BhhdeeAEnn3wyDj30UNxwww1lr1dL43Tls1ZbN768P/fVVaxfvx6zZ8/G+PHj8cADDyCdTldd95FHHsHUqVPxoQ99KPKZZs2aZeQAc+bMwejRo3HCCSfgzjvvxDe/+U1QSrFlyxY89NBDuPDCCyPXcSXMnz8fX/rSlzo99sbGxpo+Y0+v3768/nVqXWOfffbByy+/HCGarutijz32wOrVq82yWr+LjvDII4/gmGOOwYQJEyLbmDNnDi699FKsWLEiQqI+9rGPlaXMDz74YDz66KM4//zz8fGPfxyHHXZYJPWZYMdCQqI6QXxGph+41ZbrUPe7774LADjooIMqbrcz3Us6ncaHPvShmo7RnvH3FFdffTXa29tx3XXX4eqrrwYgCeNZZ52F//3f/8XEiRMBAP/85z9x9dVXY+HChbj00kvN++fMmYN9990Xl1xySadEMY4777yzLO2hQ/SjR4+uOIPevHkzgPD7SKfTWLx4MU477TS0tLQAABoaGrBgwQJ885vfNMcPoOzhePvtt+PMM8/E6NGjUSwWkc/nUV9fX7a/Aw44oEufqz/w4osvmijnokWLKqZk4xg5ciQIITWdVx3V2rRpE8aOHVu2bqXIxUDtqyO0tbXhuOOOg+/7WLx4cZmmL453330Xr7/+ekXtGSAj0xpnn3027rvvPixfvhyzZs3Cr3/9a5RKpZosE3bddVfssssuna7XGYHpynmuBPvcV3o/IQQjRozo9Dg7QqVnZ319fZmOMp1Oo7W11fzdle+iGt599108/PDDNW+jUsTtiiuuQENDA375y1/itttug+M4OProo3HjjTeaCFmCHQcJieojjBkzBgBw7733RgSetWIg0nmAnAF+73vfw7XXXotVq1ZhzJgxGD9+PGbNmoUpU6aYB/3LL78MIUQZSUylUvjgBz+IFStWdHnfJ5xwQtXo2wc+8AH87W9/K1uul02dOtUs22OPPfDss89i7dq12Lx5M3bffXds27YNF110EY4++mizXnxf+nxrLdTf/vY3HHLIIeb19evXY+PGjZF9DQa8+OKLmDlzJiZPnoxly5Z1Sgw06urqsMcee1Q9r3V1dXjf+94HIHpO7Jl6EAT417/+hVNOOWXQ7KsafN/HJz/5Sbzxxhv44x//WBNpGTNmDOrq6vDzn/+86usas2bNwoQJE3D77bdj1qxZuP3223HIIYdEPkM19FY6ryvnuRJ233131NXVVX3/HnvsUUZ2+gtd+S462sb+++8fSbnamDBhQuTvSqTVdV1ccskluOSSS7B161Y89thj+PrXv45Zs2ZhzZo1ZROvBNs3digSpWfnXTVd7A5mzZoF13Xxxhtv4JOf/GSX3z8Q6Twbw4YNM4PZCy+8gMcffxzf/e53I8cHyEqqadOmmeWlUgkvvPBCTQNUHKNHjy7T8Wh84hOfwPnnn48///nPhtgEQYBf/vKXOOSQQ8oefgAwceJEE3m66qqr0NDQgHPOOce8Xm3WOHv2bGSzWdxxxx0REqUrvE488cQuf7a+wksvvYSZM2dil112wfLlyzFy5Mguvf8Tn/gEbr75ZqxZswaTJk0CIKM1999/Pz72sY+ZNNQhhxyC8ePH44477sCnP/1p8/57770X7e3tNVWf9ee+KuGcc87BU089hcWLF1cUTlfC8ccfjwULFmD06NGdTmocx8Fpp52Gm2++GX/84x/x/PPP4yc/+UlN++nNdF6t57kSXNfFCSecgPvvvx8LFy40+3vrrbfw5JNP4uKLL67p8/QFuvJdZDKZis/5448/HosWLcLuu+/e5XulEkaMGIGTTjoJa9euxbx58/Dmm2/WRJoTbD/YoUiUJgXf//73ccYZZyCVSmHvvfeuWWfQFey222649tprceWVV+K///0vZs+ejZEjR+Ldd9/FX/7yFzQ0NOCaa66p+v50Ot2roeHnn3/eCHJbW1shhDBuwgcddJCJlj311FNYuXIl9t9/fwgh8Je//AU33ngjZs+eHXnIH3nkkTjooIMwf/585PN5HH300di2bRt++MMfYtWqVbjrrrsi+1+xYgXee+89ALLse/Xq1Wb/06ZNi4h+K+Hss8/GLbfcgk996lP41re+hZ133hk//vGP8dprr+Gxxx6LrLtw4UKMGzcOu+66K95991389re/xYMPPoi77rorks6rhlGjRuGqq67C//t//w+jRo1CS0sLVq5cifnz5+Pzn/982UNSfw5d9fT8889j2LBhAICTTjqp0/3Fkc/nsWjRIgCSpALy/G3cuBENDQ1G9/Haa69h5syZAKQ+7T//+U+kOmz33XePnFfXdTFt2rSIy/ull16Ku+66Cx/96Edx7bXXIpPJ4Fvf+haKxWJEOOs4DhYuXIjTTjsN5513Hk455RT85z//weWXX47m5mbMnj078hn6c1+EkE4jNN/+9rdx11134ctf/jIaGhrMeQVk+X+1gW/evHm47777cPTRR+Piiy/G/vvvD8453nrrLSxbtgxf+cpXIkT77LPPxo033ohTTz0VdXV1ERLYEXbbbbeai106Q63nGYApAHn99dfNsmuuuQYHHXQQjj/+eHzta19DsVjE1VdfjTFjxuArX/lKrxxjd9CV7+IDH/gAnnrqKTz88MMYP348Ghsbsffee+Paa6/F8uXLcfjhh+PCCy/E3nvvjWKxiDfffBOLFi3Cbbfd1ukE8IQTTsDUqVNx4IEHYqeddsLq1atx8803Y/Lkydhzzz3741QkGEwYEHeqAcQVV1whJkyYICilERPDadOmRQwoqxkiPvnkkwKA+N3vfhdZXs1U7cEHHxTHHHOMaGpqEplMRkyePFmcdNJJ4rHHHuuTz1cNZ5xxhgBQ8cc2xvvTn/4kDjnkEHO8U6dOFd/5zncqmjpu3bpVXHnllWKfffYR9fX1YueddxbTp0+vaIY4bdq0qvuvZCRZCevXrxenn366GDVqlMhms+LQQw8Vy5cvL1vvmmuuEbvvvrvIZDJixIgRYvbs2eIPf/hDzedK4/vf/77Ya6+9RDqdFrvuuqv4xje+UfE8VPtc1W6vzsw29euVfiZPnmzW09dcLd+rPs5KJquvv/66OPHEE0VTU5Oor68XM2bMEH/9618rHtvdd98t9t9/f5FOp8W4cePEhRdeKNra2iqek/7YV1tbmwAgPvOZz1TchkZH1799nJXMNtvb28VVV10l9t57b5FOp8Xw4cPFBz7wAXHxxReL9evXl+3r8MMPFwDEZz/72Q6PqS9R63mePHly5JrSeP7558WMGTNEfX29aGpqEieeeGJZx4JK6Mhs8xvf+IYAIN57773I8jPOOEM0NDSUrT9t2jSx3377RZbV+l289NJL4ogjjhD19fVl3/F7770nLrzwQjFlyhSRSqXEqFGjxAEHHCCuvPJK0d7eHvkcle7R7373u+Lwww8XY8aMMc+Gc845J2JuqpGYbW7/IEL0kslQggQJEvQzFi1ahOOPPx4vv/xyma9Xgv6H1nL+3//9H04//fRIxeuOBKEqjX/xi1/gnHPOwcqVKxPR+XaKHcZsM0GCBNsfnnzySXzmM59JCNQgwznnnINUKlVTh4DtEQ899BBSqVREg5lg+0QSiUqQIEGCBL0Cz/MiXQF6S8A91LB169aIzmzfffdNqva2UyQkKkGCBAkSJEiQoBtI0nkJEiRIkCBBggTdQEKiEiRIkCBBggQJuoGERCVIkCBBggQJEnQDO5TZZi3gnOOdd95BY2PjDlmamyBBggQJaocQAm1tbZgwYUKnPVG7i2KxCM/zemVb6XR6wFr3bI9ISFQM77zzjmmVkCBBggQJEtSCNWvWdKvdVWcoFosYXTcMebBe2d64ceOwatWqhEj1EhISFYNuAfPqa//pk3YwCRIkSJBg+0FbWxv223vPPhsvPM9DHgynYyLSPVTgeOD4xfq18DwvIVG9hIRExaBTeI2NjWhqagIA0BqyejwxikiQIEGCfkMtz+WO0NvP7L6Wf6RBkSY9TBcm41SvIyFRVUBJ127SjtbVNyslCdlKMDjR2bWeXLcJBgN6Spz6Ylu9eUwdwSEETg+JmgOSEKleRkKi+gH2TRa/4ZLBKcFAotYBwF6vP6/ZWo9vIO6jgTonOyr6i6wMVlACOD08BxRISFQvIyFRA4wkOpVgoNDdQak/yENXj60/CU2lY0smRwOLWi6X5CtJ0BdISFQNqPV53t2bNCFSCYYqNHkYTNdvX95PXY3cDabzMpRR6bx3dQ4QX3+ofTW9ls5L0KtISFQVEPTsJu3qDbq9EaneasmYeHX1DXo7NdKb129vHFtfkJjuHNdQu68r3beD8R6MHxGt4Rh57LNVesdg/qqcXkjnOb1zKAksJCSqRnR2k1a7QQfyphyIB2Jv97Pu6vYG0wO/o2PvjeOMb7+3Pnt3Z+yDkTAMhmPqyTH01Xfclfuqr46hu7D3Hn8uVzs0IaLrxp/XlbbdneNJsOMhIVGdoJYZjr1eLbMdoO/JVbWHpL28Nx+GvU2euotqx9FXD/7ufu6OBib9WqVlXT2WWj93R2sRDI4Zek/IHTDwZKpWdPRdd+X+7at7ciCjVXov9nM5vmsSOz5BiFlHv1QLoRpsSNJ5gxMJiaoCSoi50Wq5buM3Z2c3ZqWBqbdmzbU+PIUQPX741bKv7nym3k439QV57M1BqtK2emP7lQhZ/NzWcjYGMrJa7fgGQ7S3VtR6b3c3QtRVwt3b6OhZ0tvR5ErP5ThxguDha7ZBZeQ8RbcHDG5ClaTzBieSBsQJeoS+moEOhajBQKc1uouhcG41BssZHuzl9UII8zPQsI+lO8fTX5+j0u1ba+YhQQKNJBLVB+jJbKan0aiBeIgSQqrudzAN2D0lPZW+m0rbHAwDWRzxSAEXITEQqJ2s9GVqrzsRMr1eX57xagSq1khYrffAYLxuuoK+0EMSE9m307Kic7JTo7M3IWFESiMemepsX/1FvJJ03uBEQqI6QVdSeUA5gdJ/deXSrUXD0V3dTLXtVILedk8ejoNB2Fsreaol2lCLH9BAp1ZqRZxI2ehMI1XpPUDt33dn57rSy/HByr7XOiJSPbn+aimt76t9JwD++FZrl9afuVtT1ddEledAfLF9yw6myBRBz1NHg+fTbD9ISFQVEFIbgerRPtT/XXnOxgflvhykB4IA9HbapDcIVFzMag/e1d6nB8/eIKK1ojPy1hUNXC3kv9JrAh0TKft8dbTtgR68uhoVq0SkukKg+vL6eHpNG46c1AgugGfebou8dvgujWXL4jhyUnlj3d6YKDy9puP9dgePvSlJ14wpwwGEWikOUntk01pRiPJlHa3fl0giUYMTCYnqY9Qq2q31MdSfg/JgPoZa0NP0XbVKIIqQTFUjwvFoYkcpz94AISSyz77eX9XjQHUipY+v0nkt206Fgay7sI8l/r3UQtoH47BTiaA983YbDt+l0fxuoxph6YxAVXvvUbuGEZ9arjW9DU3I+oJA2Xh81Tbz+1G7NsEhAlA2B/rassXotUapEiSIY8gIy4MgwFVXXYUpU6agrq4O73vf+3DttdeC87AKQwiB+fPnY8KECairq8P06dPx6quv9vmx2VErXdVn/9jLq26jwjLdBNn+CfdJyn5657OUb9fedvz33tx3b0aheotAdYQIuaplmzUZAlb+6QoMWanwXVXaX9Xj7dI+rWpW9VPp2o0TKH3vxH8ix9HBa7UfX3kPy94gUML6qbbPzvYVJyC1fPfPvN1W9mMv7wscu9twTJ/chOmTm0CJTLXpn6fXtHX4o2H/rbfVF4hHz5jkUOBCGFKuo1bdARHC/PQXdHVeT3+6gltvvRX7778/mpqa0NTUhMMOOwyLFy82rw/UmDuYMGQiUTfeeCNuu+023Hnnndhvv/3w/PPP46yzzsLw4cNx0UUXAQAWLlyI733ve7jjjjuw11574brrrkNzczNee+01NDaWh6Q7QtkNYpXMyhXK+We165MSQKgXK4VjO7sP7fSRvglE5HW1/9i2a0nf2LP0P77VGnmoRfYBOdusFGHobBZaaQCpFqXQiB93fL/6s/WVZ40tttbnnxJivqtq2jcbfaWHqRZF6eh76ehaqLS9rp7BSsUUXYqw1uKDZREvbZ5Yi5VI1e3VsE6Hx9PF9StdwzZquV4GqiJ0xpThkefUitXdJyAaT/XCNqrBJm6UVD9em0hNm9xUkeTHEb9W+4tISRLUs++/qxYHu+yyC771rW9hjz32AADceeed+PjHP44XX3wR++23X6+OuUMVRAz2nIzC8ccfj7Fjx+L//u//zLJPfvKTqK+vx1133QUhBCZMmIB58+bhq1/9KgCgVCph7NixuPHGG3HeeefVtJ/W1lYMHz4c7657B01NklAQwWsiUQDkevqU6vcQClAHoqOKEes1M1hUM8xUg7keQPRalQZRO82j4cQeEHboW2sJ9PafWt2KY3cbjifelOscu9twcCHAOhgMOoLWZ+jjrVr5ZCJ46m9UfujqtIJNqro70HQ1MtFdMbFdFNDRuesNgXYcHZ2bnpCojmB/jGqDFKl0z1TbnkknR8lbpf30Bbr7wOyIQMVf16gUVZo2uQkOIeaeBIDmXeux/K18N4+sMmziZO9re4J+flBSTvodK/VnI/5cbm1txdhx47Bt2zYzZvQm9Jh0bf37kCU9c3oqCoar8//t0bGOGjUK3/72t3H22Wf3ypg71DFkIlFHHnkkbrvtNvz73//GXnvthZdffhlPP/00br75ZgDAqlWrsH79erS0tJj3ZDIZTJs2Dc8880y3v1BDoMoeempZnFwBIDxQ7+EgLIBw0wB1ASdVdXAwWyc0MqCQCtvXpIwiOhOPD6iuI/elSdLMycPMzuztNu9ab35fbq3rCI7mXeshBDPrCAiAEAiIqhGwip9PHacdZu8KAehs1qrJIo8Nn11pWVGLGLqzgbqWAbZSerTSoGrvt9KxVYtEdSV1ZB+D/X47EtdTdGs7gpffK2qZuT+U0LYSD7Wjh5XQFRuSWtfsqZlmrfeDjqrMnDwMj61uN/dm86RseM4Ex/I1xdo2aEFPojS2V/IEyHSigCRLFPJZzokDNkCRps7Qm2abra3R52kmk0Emk+nwvYwx/O53v0Mul8Nhhx3WZ2PuUMOQIVFf/epXsW3bNrz//e+H4zhgjOH666/HKaecAgBYv349AGDs2LGR940dOxarV6+uut1SqYRSqWT+jl9cgtAokYkoXnlImOwHPg/U/xzgDMvWEwBM/VSeNRqCY4NQOZhZ+9fRLCIkmdFESub7y7UnQIWyXyGPS38WQeVl8NjqdsyYMlxuW+9TRGmJIKSmUaW3hNUdRasAmYKcZqUgO9tvd5zL48fQ0bsIOi/zr5jerLDVzohVV17rCHG7DP15e5NI1QxCI9eeTQrKVtXHrf62I1Qd6Q9rIVBdvVL7InXblYhq/HnSPCnb8/0LISdR1O2Rfmgwwo6yEQIQJp/ZhDpykqmX28/CGr2n+gq9WZ03adKkyPJvfOMbmD9/fsX3/O1vf8Nhhx2GYrGIYcOG4YEHHsC+++6LZ555BkDXx9ztDUOGRN1zzz345S9/ibvvvhv77bcfXnrpJcybNw8TJkzAGWecYdbrqi7ohhtuwDXXXFPxNROFIhQANw944hcAFoDwAIT5WLK1CfqxO2tkO0AdLN1UB8BBy05Ayzj5miRT5Q+8mZOHgQhuCJI9GMibOnrz6nQerHSGHrx1SFoA8JgoI1Wu/kULS8yHpXJGy/zyyJvWYVE3kkKpVOkUT9c4BCHJ64QodKTZ0WH3Sr4xemZ+7G7hLFrGyjr32qpFMxZus3Po3VXz+opvLxRjh6nZWqJOldCT9CAl0e+CmQGmPK0K1KZH0uvJ7YTLKr1NEGJFmMoHK0HlHLpSVEC/1yZVXE0uKrX06Arfsc9ZV0hqrROGSt9Z/JxXw2Or2wHI58nMycMAQg3Z6UoUSgrFSUga9HHwAILQqpVrQxGyUk/+TvWVoIqThIpyulReT1wAAkQ+gxEjVMCAk6qeYM2aNZF0XkdRqL333hsvvfQStm7divvuuw9nnHEGVqxYYV7vjhZ3e8KQIVGXXXYZvva1r+Ezn/kMAOADH/gAVq9ejRtuuAFnnHEGxo0bB0BGpMaPH2/et2HDhjKmbOOKK67AJZdcYv5ubW3FpEmTyiNMQoDmN4H4BRC/JFNajgsQitlNm7GkdRQAYOkWGVFq2cnHsvdSWPZeCgDQvEsGzRPD9JygrtRJUTcy0+EghhzpAcB+iAkBcF6uSYo6+oavMQAOJUhRld+3ByrBJCkMSiFBjOu/CIVQx2lHoexbpLPSdT3gxkPRAgAI6dIs/qhdmyoSqemTm4yGS69nPkIH5KLaDV9tAIsPNnF9TlxXUS0qRSC/F70dWXwQbkuv5fPKLTAqkbOeuMZXIwt6m0xEH5YCoiqpjH//HT1PVUBV/m4TKSByHer+Z/F7Qb5mra8HfSHPr15PE3mg61FCuQ1Rdg6qrd+Zga19/errtNqgY4udO0ppC+qACIGZuzXVHDUyUWe5BfmPEDCur205PKywNJNDHYwLCPUYc8y9HGYcuCJM+hqyq/nkpMeJ6PgIl5Pp/gDthXSepn262q4WpNNpIyw/8MADsXLlSnz/+983OqiujrnbG4YMicrn86A0yvwdxzEWB1OmTMG4ceOwfPlyfPjDHwYAeJ6HFStW4MYbb6y63Wq5YMICQAgIKm8uEhRBS21m1gIhpN7JqXwKNXnSWP62TBm2TFACc8EBxkGYL/cnOEB8OE4K3EkB1uBChJADDGfqRqaRgYoJIB2rXDLvVWk7wn1JlvQNT6ghcvrzAOphov4XbgYgFIGQ3kg6xF1Jh1JNg1IpWqHTRHrNShWH8r1lbwUQFYPa27QrcOyBavrkpsjg251IT7WX9XdTad14VEq/VjHVJHjYKNV6PUXDM6UF/dWqJOU6HX8OG11N/8UJZ3xX+pWy71xE14+Tbft6LUOs4CKSgrG/f0IA4oTRKCvQah9PZ5WllYiS3F71KGm1df/4VmtFo0o7qmpfp0dOaoyQLK3Z6ewrnTFleKQ4pFYIgTClrwjDU9upBsr+Hsq+S50BgBWJExyEUJAYEedCwAVAghII8+R6pfZ++ASDx2xTCIFSqdTtMXd7w5AhUSeccAKuv/567Lrrrthvv/3w4osv4nvf+x7OPvtsAPLGmDdvHhYsWIA999wTe+65JxYsWID6+nqceuqpXd4fKW4DzanIDA9AAs88lQkPJBkhVGmLKOYM2wBBXRORiqNlJ0mWlr0DAAwtEzR54RBOWpIWJwVOHPPU1DNCHbGQ+2UgPABVZEik6kHdDICQaFG9HvOsD0QlcXJDrYRwM5IgqRkZDUogzDcEygcFYzLK5VA56LrqoUJjj3Zijch2yq8aMepKi5VaiIEmUNHZtToeFeHQgzCxjqpWzqGJHxdCmm1aAzq3DtA286sEovOwgsPMC2OaOsKZWjdMM0A/0LkAQ/l30Nk5qiRC70xvVgmaSFX6Hlk3thduVxEfPRmQuWz5Wmyg11YTZZV91rpAecZawyagtVYr1nJ+9TqamB21a1MZ8dTbdAgpsxNZsVrq+6ZPbsJTq1tN5OnY3YaDCYFpk5vM/WeTdyJEl4lUxNFbcDy+un+IwEDBoaRMMxr/6gV1zDXmUEdNWmV2gBA1WAoOWmwD8Yvm2U/8Qj9/mv7D17/+dcyZMweTJk1CW1sbfvOb3+Cpp57CkiVLen3MHaoYMiTqhz/8If7f//t/OP/887FhwwZMmDAB5513Hq6++mqzzuWXX45CoYDzzz8fW7ZswSGHHIJly5Z1z6/CSYEwD8RTNwihgKNCvVCzaSUsF9QFOAGo1ETplJ7GrNEFgEM90WWEatk7LFJNo/VQVMgb0zzABQcJpPYKzJNVfqrqD4JDuNkwBK9mSZpAkcALt+2mIdwMGE1FBp+UCGR0zcr3E8GBoIQ0dRT5kulHjjDUH0lrqSiKHSnQ0Omt+ADDKgxKXc2j2w9FrevQs2shZGWRTarsSF6cuMRtI4DyyIkNexC3Z4fyfMRXjglTVdpUVFoHIXnS2jQCJiOGhIISB1B6L/scdkY446SnkiFntTRUV76XrnpOVdp0pVSpjjyVnetOQAgiDvNO7PPHj7vSa5Vgi/G1FlATKdujSEdAwnWIuS4d6/MBiJAqre974s1tpkIuXjmnodN3ulqvIxy723B5TpgPMB8kKIKwALPGAGB+2bNre8EKZdWiSTiFMCQIUBo6LhBwAYfK55yr5BVUMBC/ZCbPtJQDICehIpWFyFSooO4D9GZ1Xq149913cdppp2HdunUYPnw49t9/fyxZsgTNzc0AennMHaIYMj5R/QXtybHx9VcwvD4LEhRNlZ1JfaloEFQqDtQBqAueaYBI1UFQ16TzZo1WJEyNBCIzTJIaJyVTZzwIn6IijHzJKJciOG5avh54AKVGvyT37UoS56QgqCvDzEERRN3ocFIQaWVP4KQixyJTkl5UA6WOA7YTfLYR3M2AcQHPGrkdSuAQKVbXItSI2FIRFQ4CJkQZkYrDLvfvSKdEIsvsNJ3cblw7Mn1yUyior4K4HsmOYtiHEh/gzTKjdXOiKSd9rVTR+gCIaioixI6GywiR59JJIeBK9FqDVspG3PE+jlqNSzsTjtpRmUrfWbgeKUs/Ax2c407QkQC6GkEGOhb/VzufZelia/14qtU+By5BeJ/rY1F6w7IJiH6fikxqvZedptSkrDPEq3+19pH4BRVll4R96eb6KlvYfmBPrOLXDFMkClD3LvPVZDovxwDIcyeoC5HKQKTq0draip13mdznPlE/HLEH6nroE1UQDF/e+nqfHeuOiCETiepvkMADmBrEKDUickARBkZNNArKIoB4BblOiqJlJx/ULwBBGPEQTgpgHogVCTECdgBggSRJgAwXCyHF5yqiJCNEsQE3UNGpVFZ+m4RAOGkga0U9CttkZE0fLxB6V1UqJyc0VCDqzyYEXHCZ10OUqMycPCyMrlA3JHmKQHGLQAGdRzYqGYSa19T/oSg7fBg6hFRMaTyl0iQE5QSreZcMQAiI1ohpcbOwI0Iw1WGVBmpBiNQzCS5n+IBFtD2A80hqLpKmA8LKTErl+baJqEWgBKGKDISEpzul9dVMSWslVtWW2xYJ5vgs+hSPTulIpoxWWhGxCsehUypAOaGqtH5cq6YjUrbAXB9r/LjsyKl93FxEyZNOodkEyv5fR5/09ScAlT53QKgT+RyPr9pWFmkiQkRE4jMnD8Pjb7Z3STyuof2k9ERHV91RHUlmAUBUJTF1sewd1qXtD2bYFi+ahAqQisRdklz1TKEOaEml7hDep8LNyPHASYMwT2pl+wGDRROVIIqERFUBYR6ISId/66o1xqLEx4oKkaBkKu5IrPxVismFrOwTHMLNgMb8muSKFpEBlyF3nVaLQxMfTbwK2+SxESrDzK4UzAsnLY9fpfjk7MqPRI6EkwJhJWv6Kz/X0k0OgKL6icKYdGpbBCiSo8+J0hZQ6sKh0Zl23NCu7PzbHzP2e1z/VMuAUq3tgxH8jxMg1A2jdWqg0Q/OiKaKWAO5TYY1ceKBtMDQVY80nD0SwbF0YybUyL2XwqwxoU9ZtCIN4aCnyawO6ROCgFcXmMcRr7jrjMjWEpWKr1Npu3EPKgCmMjGy7Qq6pniEyv7b1gNVEvebSr/I5ICUpVrjZF3EluuXNfnWeqXpk5sgRHVR91G7NlX8XiRBkyQ9Tujt7WjC07xrffiMUNfGY2+2ymufMxW51pEqK3yqQUj4OmcghJtriXLlc8etiRQLFGmoQ/NEaQ68/O2S8YvSpJiitvtuMMA+Tk1UjbZRo0rUUzhpeU7s5yXzwypczsOMRIIdEgmJqgauUlqURiIGJFBkwprR6dcAgJTa4ajBUzgp8MywyCCqo0sRKwG1LLr/MIRv/o4TN0JBggKIDyV+l2SG8AAiXQeeHgaRUpWH1FWpP6Wz4UFEl0P9gtmm9L2KQs9QdbRGpiBoWOLLPDmbVceptWLCzYC4aZnmtEgbodG0BBBaIegUnSZajIuKXd+7U5FUFZpkKt2ZoC6ItnawfGLk9xa+LSw8CCsftV7N3vbSTXXG9gKIVm8KQkMrjInRqk67XVCkvB8hMXFI9YhRHB0Roa5UpcVf6yyyZZMSuwehjgjYJFUL9StZJVRL61VKz+gIoe2rFkel9JsNrUGZPrnJED/dBineT86GXZl35KTGCInX2idNwCIdA5SHnCY68p4kkWcNIK99HQG2CYCeFGg07yLv/7DzAgcRhfD6tNL2sKKks0blgaK8z1vGUsAvgBAqA9RqO7PGeABnQyoFqCOfhJKywh1D3tX/NCiZ5yQIgUjVKRIlSRXRz+B+UsQ46AVNVCLe6XUkJKoKRLoeIpWNDobK1VZ4RZB0NowO2FVwAMB8SRq0/YEVmTEPPJsUATAdigFDcgxBY0HEmkD/r0kK9IyUEBCuHpZtm+BkSzJvTyjgpMNZuR3tUORncX5cxfMwa1ReDuRMp5pUBICFhA2BZ2ks8sb6QRMsoSNVTtoIpEGoidbZhEo/0PpzltsyngA8JD+CchCHQ5AOXJ+tVCxhvjwHKhoFhKRaf4ezxpQqDuJAzA7DGijlgChnuc271puog6PTf8oOI+BCCmBjZKBSk+aekK1aCZX+Ox7lsf+MtCtS1Y7yfdWbrEaMIKtEn+IfjwkAVgovvuWySFRsAwzh52A8JPg6CqrTkNMmNxmyr6NVlYi/hu5JOX1yE5jaZlzbFL8H4rqmzkTkQNRaJfyQoebRpKhiKWQzKeSBLIpBWJ2so1uEeQChmDWSDwlBevOkLITgeGy1TIm6xCLdgoPojxefrOoCD78URqoBeT64329mpLQX0nkdOfkn6B4SEtURdOREkQ/hcICnoVNbJq3HQ/2ACJTvk5uR0QIei0oAkb+FrYFR5AnMA1VVgcIiLqAxYwFFpAih4Ok6c6y0lANxc5F+fNARE8HLomeVptOzR7SqFCQkwXNUVaBOUemoS+DJcLYWtjtp+bkDXx534IOgAHjtivRlJSlLZUOfKvUZ+js90DKWGc2XSd8BgDo2nsoiUF4ALiURLyJJWmhIHoOSSZnq7Zn/BaCf0C07+VK/ZtLDihzrgoGgaK675okpeX6EkCkEnSrkHITKdR0nDepmwJ2UGuTl5rgIiU2cSHXWqLkS+eoIHVWzlZMWEok8Vnum27vm1uBtR6OqiYPL3lfhmLTuya5WtM9ZdDt2WlJZfaj0GiUUM3drQiBCAvuUlW62P4u9af2a9lzjQuDY3YaDQk2gBDcu5HbVrE7zPba6Hc2TsjU5kzfvkoHQEx4jAQDAdaq6XKOHDp4NBvreoU4kyjpYsXxNEc2TsoZMxV3wzfPQKiISevIJmMyEaRFjIvBJOm9HRkKiqoAERYCl1QPHshUAQDL1agAMbx7BwxtQ+D6ImwLSddbDyIr+aB0CDQdaQagUKRbbIPySHHdNKk7NFPVxaFsFvW8lchSEggRFFZ2ynHT1QzE249S/L2nfOfLZDYFSomahqwMFl6RJaX+M67rSXtlpPZFpkKTKRKbSUpvl56MEw3FBlXBz1miodjl9i+ZJWRmO90pA4IWfDwjJnSYgUIM9Z/BBkZLTcjiaUCobDMIDeR5UZFBeL1Z6UG1fvkdeN0s312N2U5shw+Z86winJlb2jFhHELTRKw9AfCloJ27GVAc6YXBHjYOhqFpqrao7xVciXUD3DUk1qNlOuUi8IyKkj1mjo5m//ZKetbMqH7Sjz6PTJtVcwqdNbsIK1WtSHpSs6jpq16aw/ZLWz+l0JUh56kdETR2la3i5/vGx1e2RSNTM3ZoAHphlRhulCzys68ZU4LIqkyh9HPHiEkB9EItQCS6j3eo90FpPwTFrVH7Qpva0viuiL6xGEE1aT0XLCQUJPHnedKU2YCalZZPkPkKvWBwkgaheR0KiqkBQN3zgMC98SOnoDw8ggqLUN1GqyJMHBD5E4EOkUqBOTg6s9s2qH2pqtiOykhwR9RqYH96k6gYVJBVWbek0niqxtQdYWyQqnJD4mCo8ezC29Ek2Zo1sl+0eTBgbxiNFOOpBRB0IixyS2MOUMB+CeYCbgUg3gKestJjgoH4egjMs26yd4vueOAG2lxRTM/jQqV5GpSiWrRNonkSgtQ52axaHEBC/hOVrJQlq2ck3JdDCScsUsKrYAQ8AD+Z3GhHwCsBxMGdYOxa3SgI7u3GjfI26UrhACHSRgRlUqSoi4Dw60Jq0KkJhP4CIlkYRNL1YfiRRE5GqFrWqFGWKg0fIGEKxd1z/DBr723pT7NeOqvPiAnWl4TafUw8iRhiMkGxpE1ZbI6NTc3FojZPW5c2YMhxuXMcIIb9zEvaf09HW5klZQ5w5CJ6I6fu0Tmq5lbKz03czpgwHp6lIqyP9PiG4iVA1T0xh2TqBlgkulq0nYVqPBxB6UmiTACVilxMkea2ZZxMhgGXxaqfwAajI1OAkUcvX+mF1Yhz6/rFlF9yX5JZ5AAvCiB2PFhYJJw04/dP2pVeq85J0Xq8jIVEdQLdnIToCQKg03OQEopSDKBVBUimZ8WIMwgtD66JUlBGpTExXoy0LqAPAB/GKMmqlcu2CcwjfA3EcmRp00uahrHUw5nfAzC5NWkiDUCmENAckyvoBLtk2IvKW2cO3AoKGaUjzXm5C97oUn/qF0M+KuliytQktO/mSTNhRMkWghPocJPDAUd/vM9Zqg6HGsndDzYidImmelDUhBYfowgK5rkxfpKAHjpYJqhKPIbSG0E738YeXIlRz6tdL/Zh+KJuZLQWghas8nAVr0PLBwFRmAhGCrAsIqEkbQ6bGRHk0RqeuCCER36547zhKEIkQVYou6fWATqJHgkdTz4AZpKi59qOCcfO7kMdghOlWVR4BBbPSbGX7VaeCKrd/xpUtgX6/AJ7qRHekI0+aTE2f3GTYGSVh81r9urYnEOZ+kiaPZddnTCZgo3lSFmB+WSPzGVOGY3mMjGnCry0Llr3D0LxLJjQL1sUgep+QJ4XE961JuEppy2OnofAaCCdWgwgzJw8L74sqE8dIxB6IkkL1vCN+2OYlTIm6lUlZgh0KCYmqBju0rR8OTthnjih9kigV1SosjAJxBuExEDdlPJ4AgLjpcPDzrVSgbwnT7TSfFm/ylCEhRuQIJgdrO2djIkzEGohhRalUBR8A4Ub1C7MbNwIkHSmpj4f7dfrNmPMp6Go+SSpGmKjK0o2Z0GyUSH8VnlE6jy3RKqK+RkcEqiOUa046MLvzi8rLS5miOqlocYLg5vzr6OTiwvjIJuYM2yB/sR74Oq0gnFQkBWxgP8zjD3UtdCc8uj11bVQSWmuRun6tGgHSqU65fSvKVOE4IiQn1u5GSsbC6JqwBuq4/qna8Wg3fQIVSYJuRFxO6MK/zScEEQKMC3lLOcS4VVfDzN1kP8Z4hah9nU2b3IQVb0oBua7oM7o/M0ETFa/N5WuKaJngoGU8kdFRO4piG/0qNO9aX0ag7GPVhSqPrW6PEgEgnCgilkq0I5pAJDolTyAFAhJubxDBnG+VBo10AbAnGNoIV4vlIynzopzgMEsaYXvrqQizqdjuYyTpvMGJhERVAfFLkX55ABBvjwLACMkliWIREiRMQZ2jHj5yHWGtR6gTETKadQBJtFSrErgMSFkDVJzgaYJl6570w1GnI81BW4O5homcqAeC0lgBsBoSp8sHSVp+CYlUPajXHjkukaozM+eZk4fh2N2yNTktDyVQvwBh2gApUqDTuVrLllbniwdY0jambBuLY/o0jdmNGwGRhcg0lM+ATZQgRk5i68QjOICIkCBTIakjSrEHrhbU28Jwk9wRqDwwW1EOAhgfNfsajmh4EBKmeMl5vCJPH6+teRKIuk7L40RIruz717q1ieDIuinVN00OqE9UiUI1T5TR584sNnTK74k3t5k2LuGBhvdjNb+z8Jz4xuMpPODaIyDx7Zp09DiYKKi5rW0yZaf17GeOOg7tOVdJ9znQiLR80hGmSp0B7BQsBcA4qJcD8QoQ6TqQIPo8BQ+MNjac7PaXJipJ5w1GJCSqCgjzZWNJHXanrtFEyYdOOEBECBQgB1DGAPgm3SeJUuxm41YagzNJqNwUiONIUqVE6qBFEOpCCEsbFX9wWbPByG2i/aH0665K5cUH8AqRjIi3DACUEPoiqQfS4ljD5eZJWXBSj6VvyRQXzwyTD+1NYeqhltLsoQrhpiHcrCGvAq7sW2iR1GXvOpg1smvnwFT+BSkIF6GZq3UtRNIVgsmXrO9TV4FpRPsfIuLZBCAqhLbTa9b7ytr9KLIYqVjSpK4C4UaMQNnrR6JP6vggwvQbgIglgm6Hk6KyEMCkNs05FOVpasAcl8N9OABIsQAEHmaN4RV9kGipHSi1w9bUdYb4hCESeRPSikGK1SXh0cJxk7LTOjKlSVy+JprKW/5WvqbeeTaWrScAHLTspDWZIkoYIgccI+26KldUJnbNu2SQQxrPvN0/bt6VoElu8671JoIfdW8Nj10XidBim9SLpTLhdci8iN7UNi+Vlcrbj7t7gq4j6Z0Xg+5TtOWFx9DUoPQ8ymRN9tFjMvqkCI4IPPm3jkgx6wYDpPA8lTK/axD7d51ac1MgmToQXdXHfKmzog5Idhh4trHs4RZ1HBaVH36ERGdNStgMziP+ULObNqsKO0UO3VQ0YmU9gKr5SgHoVluK7QUtExwE6WF9FmWb3bRZpnaV35bWqBFLE2daFGkHdksPUqnnX1kqJ05oUE587RSJsKpGQahpbGuistRV1ZmxEnh7MgAY4qW9jbSZZWTcE5BNuiu83/58NCghYmKrB1G9HVcOkkRbRwguiwJ4IPukMT9MualBVNipHPWZuqvta56UNedOUEemEkUYNdM99uzzrlsU2WSUCF6mjeouIn0+ARPdFI4bjTiLaJVuxMNOkWWRygBOekDax8zcranyuQNgyx8I8yQZhCJRQPnnQewZC0TF5Zxh2+ZNGHXYx/u8d949Y/dBfdyUuYvIc4ZPv/vPpHdeLyKJRFUBb90MjkaQuobIchH4EIWcSckJzowuSr6Rlc1MhA8ZXTKDiroRKMXSYYdgdvFFgDMsSX8Qx7mrwkEJAKgfkixbxKkiYgikc655j4iWMEuRsROZRcl1onoRAFjSOgpz6taFs3VGIjN34aTK3pMgimXvMEyf3HfnaEnrKFUAwGPO8vKamjWyPdIuJg6dEqtKoGxYBEVrgCIkRg0iRBGOSJTHtBSBNC9VERRz3erUn02ieBAZdHXkzNX7ImGjjkql5VJbFTt+Fr0nyiNmXmgWax+P0RZa586uftXH0M1qtOVrilLgLTggKCghxqGfEgIIVjWqpD9Pb0d0l26qUy2IorqhMlJdKW0XW4eoiraWcTri1X+wjYrLYEdWg6jMwZjnWrooowGzNKdET3ADH8L3IEr9o+8kDgHpzGeks20k6bxeRxKJikGz/o2P/wpNDfUg6SxIJmuIDC/kwLa8JwePTFam27R43NY16b+1oZvjmGgQcdNY2nRYp8dyXHo1dGVcZBDQkSXOyzUJJLRg0OvH0y16G3rmHy+Bj7tumyo8EvaTA4BFpUkVj3vm5GHgxNnuNE9DBS3jdCSBhlYX1gzW/g713xHEyUQMskpJgBZbZcobYUrM9I6Ml4xrg1UV7YEasOyqyK5AN5U1LvFaExbXCNoTmliqinDVJ0618OB1w8Moi17PMsA1g6s9sDoOWN1IiMww2ZhW3UNdaUmkReNciem14WalCJPdIkZQt+aIrxZa13xMqv0Q8fJRTZQmUbqptog9gwCAVG4d1R+IREgJDc2BK0waSam9LAIluxZEU9hawhAxVfaKZvLcmi9i9NEn9Xkk6t5J+/VKJOqkNa8mkaheRBKJqgKSykiTy8CDCDxFpupk9MmLVWNocThQFoUijoNlY44BALRsXoFlo6bVtP855N8QBfUwV2aQhEqhsmlmzAMgKBlxuyFsVDqI6woe08A4ok0JCZGZqVMqGywLjkWlSYbEhS7sKRCtEUtlgGoTMEITAjUIICs6SZRUQ6WA1hTNgKwjGsbMsQKBMlEoCIAz0FK7JFBqu5R58t5w02F7n3i6h/kgTsrSGXV/QOiIPEhbCjVZ0B8hEvWiYSqHMyzdMkxWRQZ1qsI0E2kKLQsErCpLHoBARqUWt+8MtAPyZuheRGL5W3m0jCcgqbpIqq6SI3kkpShCV3Nb8A/IdCAJSiBBURpFllpNSiveX6/iMa315XlMZaUWz5xPtX8KqbNUpMOQEB6Y4ojmXWTKVAvZ+wPx6FzLBCei84pH7YEYgTKRehqJdgqvGGpU9d9QUowKdiMJdhwkJKoDEDctZxyWTYEIPGlvoITltlO5LRwn6sbSBApAzQQKABaLvcIxRgBzxD8By5ZA3/hGn8WYjHbJ1SFYTh2XPM4l9QfiOOd1wImlXewHCQujXXPq1mFRYXL0oHxJ7kgqA+Fm0TwxVfkBWSncn6DfEKZPqg+WekC1B+2O0kOhM7dK0ymTUVuPR3hgNFDwtdZEVnAZImcul77zCYv4fCkdkSZ0UY2O9vmCRYYklm6U52f28K3lfmpNm+XnQYDZw7f2SBs1a3RBTmwCNWinGyIRqOZJWYBQs0yTR014BXVkayKISJNjIHTpNj081X1Za4sWbbMAu/UJUBbRgyp60KRkTv16LM6PQ+q918HrhqN50s41tafpTWgCZ2ilEDB2GjyQdiR+obzvKXWAQDYUF5Wq7iiVEgo3FU6eg/4x24RDzbjSbZAk8dTbSCh0FYjAjxAo/Tc4N5EhU6GnxeZqZvvYpOMjqbzewGKyDxb5U7CoNAmLixMlgdKzI8ZMRaBgUqPF823y+L2iZcPAjfBXlKR4VhRz4LlW8G2bwLe+B1HKY1FpEggPZCQqfhxiLyzyJpsUYFnptsLM3ZrMa9MmJ2HjwYblb5ew/K18h15INh5ftQ1PvLlNtpXRkSYNXc2nm13rNI+6H+SLHGAMi9t3rmrj0BdY/nYJy9cUsfztkkxNdRFxAgVIXdqS1lHmc2gCNbtpc9XtzJgyHDMnD0PzxBRaxgkT6Vq6qU5G79y0JJ8VTC6Xv5Uvu884cfDY6nYwVZHIhTT+tLF8rW/kAHpbRHAsey8VibRVg47iVKye5IEx+tV6MtNJwXExp26d3GVQ7H8CNTFlIk2h/k77dqhigaAkU7mBLwtpOIdwXOnrpjWlll+fPVEldQ3SRFnrW/spEkUokbqonvz0UFOVoByJJioGWxPVWJdRKSwnKiQv5AyB0RCcy3XdFJZPPK5fjnWO+KdpNRNJKVIHS7IfBgDMav+zsU6gSiS/iO2B2d7LWJL+IGa1/xlLhx1Svm3ybxkN6wTVtBYzpgzvki4kwdDBtMlNSIsApLBNDkbMC3VEekAJZNWb8EsAZ1hM9hm4A+5HNO+SkVqrYhsID8AzDRCZRhNJ0tHbWaML8n51UqaaUjhpqatSBJUyX5IY6nR4L+lJSjwS1TKWheTH1koqgbzINnZKcEybGCBM6QGhTjLwZPeCCoUClQhoX6FlnKio37P90kyaLiiCFttAvEJ51JzoVi/WxDNGouCmZc9N3wcoRWt7DqOPnNvnmqj73rc/GpyeTcxzjOGT/30l0UT1IpJ0XhWQVAY02yB1UTqao6sxdAqNqwqPdFam+AK/fCbZh1hM9gHSwOzgeandUnYINBtWFDojdzbHtIjtYZYvSX8QACoSKAA1ESig3P9GI6Hm2y/0YN2863CpyWOe6a9oDAmt6IXwPczmL4IXc1g24siBPPQ+RfNEleJRGqIlW5vQMk56L+nJhk5/60bbc4ZtUO2c0pJwpeq6NPnQNhC80g2nI1C6jN/hlpjfAdB5hEinP1vGibDIxUkDTkoKyqlFzuyqyz6GbsdkSGHc7gIIDYS9vCT7Sg+ldWLxylCbCIqYpYFgDCSVVn5+ktiKICe7UPQTqENAe2g5TmuMPCeoHQmJqgLt7SSKeVWJUahIknQqDQCMG3k/Y0n9gWjZvEKJHn0sGXEkWjavAK1vApxGAFEC1deQPlFJFGp7x/K38rKlCEtJg1HlsUR8LtsKCQegLmgqA1FoA/GcLhVXDDVIgqRFX1KzJPVp1bVm5anNaDSps6q6x1dtw8zdmvBEhdYxy9YJNE9MgbiQxNZoOx0TMau1SnLZeoJZY4KwRY+lk5LWJzxCpCq58fcWWsYJIChF7RYqETf1mWl+i5nVRVJ88UpODVKexjMvpbPha/0MQnuuiYo3707QcySaqCrghTx4vhW8bYskUFxWqQnOzY+5kbT2gzp4fM9PD8jxCt+X+XrHwczVD2HZqGng+VaIwO93ApVgx8Fjb7aCuxksX+tj2Tqh7gPVd5ExOaunrjX4cDSvXTSwBz2EUEuVa7VKxZax2jQ3oyJdwyBSWbSMk/YUumqyVpuJpRszWPaug2XrSVjlRqUjP5SpqyYgun9mb6NlPAmjnX4RxCtIchh4qlIwJEbEL0oLA6v5OmEehFeA8EsQxZz8KeXDbANTP9rvjzogqbSMQlEnfP5rQ+LAg/D6tw9ogsGFJBJVBTzfBsFckyIrm3lYppqCyf52fUmgZrX/Gc7InSGctBSWx14TmSyWjTgSs9r/DKorAwdgxr+jOpXvyLDTT0u3DMPsEa3SKsPLmeVs2ybjjda8dhGa1y7qN+3gjoAZU4aDMt/YJYAHquWTLAQwVZjckWk4Lv29OjLC7KiNjLDE6uD9U53WMkGmSo1buh1R0u70XgnUz4OUpG51MdkHc9hbQDor7TUAZVXgYUn6g5idf14uU+22BBAWDjHZiou4qWgVNmdS2qEyEzzfP61tknTe4ERCojqCm5buz9oTxLY28K3SWLsHXg2Y8ca9eHz3k7p0KEuHHYJZW/4MZ/hozCH/NjczSWfB01mjbaqmcUqQoKeYI/4JAJ2KxJdsbcIcsh68kANJpbDYmQoMC6OhCXnqfeg2N827ZLDs7RJaxlHT6Fk7eBNFNqQGq3OLAxKU0DLBKWvd0jJOyL6Q1JWkhgUqehNEolE9hfbJahmvjFTjBMrSQhE/Dzhp0PwWBBvWAIDR3y12pmJ22/NYUn+g+mAAlJRpSf2BmNX6rCy+yUidGqHUNIwPrQy0g7kT61DRf3YuusKuR9tISFSvI0nndQBTiaFnJtrGAFD+S2F7gCf2Pa32DXOGmasfwsw1j6B53dKa3yaKeTkwUS3YlelFLRJPkKAvsZjsA1AHc8i/MUf8U5L5GObUrcOcYRukWS3kNTqr/c/9fag7JJa/LSsldRpPtycxpEOvo3RBnbVjWb7WB/xipFl2y06+9P7yi0qw7YV6KCCiLZo9fGu3P0vLBBn9bxmvjtHXYnChhOHyb1rYBrL5bfDVr4L/90UEG9aYvqTN7z5mnq+GQFXA0qbDwi4NkbZcVprTNJm3LG1ieqkEOyaSSFRnUPl2E4FSqTsA5sZ7Yv+za97cjP/cA5JtMERo+fhZtR8LpSCOIzVOBJiT+adqeVH7JhIk6C6Oc14HaCoaaYh5FQpXiswp56CNI8BzSXq3rzFrVB4ikA+BZesEACfS+ifShBm64i5T07aXvZfCrJElWWWYbgAKYepWEyeiolBh54OeDSvNE1OAlwfVbXt0iyrmgRbbwDatBw88440XbfYO44u3fOzMmvdJ6hrks15p9wTnRgMFq+E8L+YUkeJhtCrVeVSvNyAjUT0UliMxQu5tJCSqGizxYBzC97tFoABIAtXNCo9lo6ZhVvufMadBkqfFztQuvT9Bgq7iuMwaWX3FGSAyKkVEIBwpHp9D15o+eYK6ECQT9uUj1OhMZq55BLxtixyQADOwPzH1jIH5YNsRaGEbBPMAjDDLlq0naBkn27AINyvPt1WZ1TJOgPhFY7XQEZZuGYaWnXzTY9BokFQ/OhJY6S1luNmTrgUyylSKVPvRUg68dTNY4EmvPusZDOqYbg36uU0cB83vPgZw1ulE9TjndQjuhBEmSCsb4jjhGMC5NF5WNjcAQsE575+2NokmanAiIVFVoFN3uiovErrtSXmrDhsrIXhXYTRPvWeGniBBVegm03OyayWZ0iXWdi9G3eRYcBC/BDiqbYZfMr3GTApa+asRmqRBeoLjMlL3IyvVKBZbxpYt4wkQeFi2PqX+9iCEJL3NE1Nhg95UFi1jWU3VecveS6FlrCJLQnlGIWwhVdbkXGH2iNYuNyMmvqp2U9ujxTaIQpskMSojQFIpCB9Rw2Pfk6QGiEyAm999rGJUanbxRZBUCrzoqx6pvhSSZ+uVsbKKhLkp48NnIl/aH0pFo/oDhPTccZzwhET1NhISVQWilAdPESkm960eYQpdjUDN+M89crvUwWNdCDMnSDAYQPwCREpFLYQAYTLNYkelEHCQoAhR9LFI7IU57O9W6sMxUSnuBfjDoRcM6OcZyjgus8ZEaETgAw0jMDu9EUvaxkj9UokChKBlnIoIBRzElam+lglqI1rDRF20TFDVvJaAvGLHAdUyykQaVd852eg61tC8m9GolrEMpCg1V7rfoSi0QZSKINQB1623KI0QKQGEaUvjnh+Sw9nFF2XKDoDISesXpLMQJWltwNu2yI/YODIkYr4yMA5807GCpFJAKiVNNrURs99/DZYTDD4kJKoatH2BXdqq0FUCdcxLPwMamgDOBsxHKkGCnoAXckAhJ9MmDSMBAMQrSJ2MAtEaFs4wh/9dLnRlKpBksiDZBjy596kDcfjbFQR1QbxcWDXslwAnhTn164GiTNktLoxXVhOyeo5nhmHWKAoUuEntCV2hR3UUKYxSPL5qG5p3rZfpsLdLRmNFS+2mobEhS8rmgABhdZ4SmwsnjVmjCzWlDQGAsECmJ0uyTQ5XE1hhkXGbHJEUIHyEzddZ2BSemHWk07goFYDAV/Y1DBRQ22XGykZYldcklY70HoWbAjWaKSvN108+UdShoD3URFGR1JL1NhIS1Rn0zYuukydAEihap3RQA+BymyDBsf+4q2vVowrHpVZBZBpUv7Gd5cAdhLoYEfhAioME1kzckb0mTVskVlCO/0U8NvnjvfipdkzMGbYBCLiJgJBUCtD6ISXoXlSaJLVsJdfYG1A/D0GocRKfPaIVoA6WbsyYHnstE1SfOerIps2q359uREzzKlojlNiaKIUND8zfptGv6gcoU761aQ9advIlMS/lIQo52eQ3lgEgbsoiVZY2ypH9QcGYsaIx/UzTWUmcfE8SJUU+OST5itrVqMmzikDp9CGoI3uo6kb0CsL3TESur9ErFgciSef1NoYULV27di0+97nPYfTo0aivr8eHPvQh/PWvfzWvCyEwf/58TJgwAXV1dZg+fTpeffXV7u/QuNbSbhEoQLYJ0GJyIyhPkKAPMOONezFz1f2Yufohs+zYf9wVim5rxKzWZzG7+KIUCavIgkjXQWSGAXVNof6lTmldBJdpvVQGIl0n36f6SgIAcdMmlZKg+5hTvx6klAMKrcarSLCw3F6n6HS6j6gefouLE2VDaBaaYi7Z2oSlG2WFntFE8UA2k2Y+mnfJoHlSFs27ZCSJ9vKgRWUqyZhaTzU/D2KCcyHMvogiGC07dZ7yIsyXn081TI+0W6GOTOHpZvCBH+rtUmkT8QSgCA81ESbetgVs0zppihl4sn2Km1JNhCWx0s9mScpCTyjipkCzDSYCxXOt4IWcTPX5Hni+DbyQ79L3mGD7wpAhUVu2bMERRxyBVCqFxYsX4x//+Ae++93vYsSIEWadhQsX4nvf+x5+9KMfYeXKlRg3bhyam5vR1tZNR1m7c3dPUMl3pBMc+4+7MP2Fn/Rsvwl2GMxc84gxBrQjPsRxunTdtWxeIQm/XbatI09OGLiOCImtZfrH3j9xU8a7J0H3MCe7VqbgVFSvKngQ1SIRijl16+TvHfRNW7ZOhO7ftgM5IcawM7IN+ztW7yOKTBvYxKoW6G3wGp+5ej1NoHQaT7VoAWREyUSOLJJlIqU8JhTnLBSwUxqm7ewUoi6SUMVHPR4faoSORPX0J0HvYsiQqBtvvBGTJk3C7bffjoMPPhi77bYbZsyYgd133x2AjELdfPPNuPLKKzF37lxMnToVd955J/L5PO6+++6u79CVg0hXB6FKsGdFNb8nUwearZd6qgQJOkDz2kWSqGQbJJHSy999DHDTNevw5rC/wxm5M8iInUHqGmVkwi+Bqv5kkbQdUCYcJiwACSzhMSBd/+saQBsaMdt7udufEQCOfeXnPXr/UAdhHniuVVaKGeNHbkrzTUTKOv/akqIWF3ETqWKBtBlgvvRnUlWYcoM83C7CSJMWlmsxODiT14PeluCYNaa6dqhlJ1+mHovtMsqjo1BW9ZuJQtnERl3vwg+tB+CmjDicuCl5DaazFSezESIVS9eJYl4aHOfbTEZCRr3SYSsw6xj6GloT1dOfBL2LIXNGf//73+PAAw/Epz71Key888748Ic/jJ/9LCQYq1atwvr169HS0mKWZTIZTJs2Dc8880zXd2jl4juc+dUALXQU8UGoA+jZDvf7py9VgqGJ5rWLzEOdpFIgdQ0yHZd/HrSuoWp7oZbNKyJ/z2F/DwcHAGB+9HpVg6NNkIgeXAmVKZxSO8S2DeBtm+UKds9J1ci1u5i28tZISn3aylt3mEjtcalVgPJJsrsklOmCbM2lJfA2y0nHUQjdYBiAbObrF6Uw3ctj6caM1Mel6yBcy3DV2qdJ8XHpT0WCkvzxS2a9WWNKmD18a3mDYseVzYG1qNtxKkd4TKpNepBJwXgx+tktOxojoVApPp1mNuJz3RePKy2VivTxghTu80JOidUVUdUWB9oSIdsAWtfY4XlNsH1jyAjL//vf/+LWW2/FJZdcgq9//ev4y1/+ggsvvBCZTAann3461q9fDwAYO3Zs5H1jx47F6tWrq263VCqhVApnSK2t0mGZ51ohHFlRx0rdr754Yt/TMHPV/RBuGoRSHPvKz8EDH0995DwAcjAQjIMVPfi5AohDkW5qwGOHfxnTVt6KFQd9sdv7TrB9Y+bqh4BsgxTgBr4RvwJygNUNfzVmvHGvJOduGsJNYVbrs1jadBhm558H5wzOcKULKbTKAVpvy0nJVFJJtRxKWZVWdtRDuzsDQCpMj2hT2NnFFzHLk/vsqtidpqKPqhUHfRHTVt6KaStvBXEoCKV48kPn4thXft5t/eJghUnhqWgIOFcaISf07QLk36rizrYbkAtqtxsgPIg0GCZCTuR4tlG2ewlKEGkXpKgmeLqHHWeAk5LVg8yDKOaU3oiD5rkkYE5aWiJQF7ObNmNJ6yi5G68g9VCViJNJv6lUm1kuP7tMPdsRqdCIU0fo9KRUb0dv1/gBuumoqFxFmIhuTFzMywiZ5R+IwIMAILx+muj2RjouEZb3OoYMieKc48ADD8SCBQsAAB/+8Ifx6quv4tZbb8Xpp59u1iOx2ZYQomyZjRtuuAHXXHNN2XJdYcQDH4JxTH/hJ4b4dBUi8EHcdGiXAODIP34fgnHwtCv/ZwzEofjz7K+ZdRIClQAAZq66HyTbAFHM4bEpc81y/YAHIAeUwIeAnC3b5oIz3rhXrq/6ghGlIRGcYVb7n8G1maxXlASrkDMtNAgPIKD+DzxwxkBd1TIkKIE4qdAjyE3JKAXnkYjCHPZ38EIOLNcG4RUxY93dkXuhI8x4TaXiG6SIfdrKW0FTUrhOYsRq+gs/AYdK+1EHIvDw5IfO7eLZHnzQBErY0RYgTC8B4fdaLW2n++jVABKUILJpGfUR3AjQ7W2LeGsXi6wRv2CMKQnU80/17xO0JAsQ3CyEm8WsMSUIxwVtaw3JCxBGltTkIB7VjIrIlTVBIRe1ptHRI98zzYUlAVURKVjkSkWWwko91XPQTckJtbaT0Kk7HQErFcGL/eRYTghoD802aSfRyARdx5AhUePHj8e+++4bWbbPPvvgvvvuAwCMGzcOALB+/XqMHz/erLNhw4ay6JSNK664Apdccon5u7W1FZMmTYJQBIpQCuJQCFb5oX/Ikm9FiE9F6PBvqQAe+OBeAOJQPH3URR2/L8EOgxmv3R0OhG407aUjPDo1YYTCu+wBvm2TqlrKqr5evMyd2TRVtXQcJJWWpMdUdnGwtq3yDXpflAJ+CeB5sFyrrLJLpWTkQUeqmA+44SBLh40IU4FqoBGBbwYi4/pMa1cSCMaAUtGKOtkiXzmAEuqA+wEE4xCMm3t2e4jmmuhLNeKpz4ct9tZCcJ3SE7xm4kqUt5RI10dE5svWCcweXopqpCzSI7/zsGrQEPzAg9BRUkJBfJXiU21jAEj7DPvzUEdWd2rSEvjln9+KuopS0ZAwnZYDEBolG18nBkEtW4NMXUiqDHGTFXs8V5BeUbZvlCJhev/cK4IVCzWd1wTbJ4aMJuqII47Aa6+9Fln273//G5MnTwYATJkyBePGjcPy5cvN657nYcWKFTj88MOrbjeTyaCpqSnyAwCsJMkO9wOwogdWLPcCOezx73TaEPLYv98JQFdy+AhyRfOwT5AAkJEmPXDY+gz9sCZuCrRxBJyRO2MO+TeIl5M/qQxo4wjpQ5bJgrhp0PqoPmPGf+6pMLv3ygcXyIiH/ClAWFVHopCLFkVoAqUrnOyUEaGAm5EkzGqNIcXlTaryT/YcO/bvdxpbBgCVhedaS0Ud0JRrnZN0mNICIlEa7gfgVorl6Odu6cK3MfiwdNghWDrsENUyR0daohogYgwzIYmPFoRbrXkWi71q2t/i9p1B/ALAPCxbH4tc6Eq8oCiJmVc014HwPXn9KOsBnVrTom9RzEmC5uWAYhvQthFi2wYgvzXU39mkTG/HK0qncv26dg9XVZ+aQOltGHsNE62iRjMWaVjMubzWvaK8J5SOSvi+ueZNFEpHV3UqT2kQNWnvDxCH9spPgt7FkDmjF198MZ577jksWLAAr7/+Ou6++2789Kc/xQUXyPYRhBDMmzcPCxYswAMPPIC///3vOPPMM1FfX49TT+26S7IWdHM/MBfeocsXmtcPe/w7oJ2Uth77j7tMqXiY3qAIiiUwz8dhj3+ny8eVYPvCzFX3m4EIQFQgq/+2IkiiVABv2wq2bZMhLzpCtbTpMCypP9C8dcZrd0fSD/Ht8kLOCJUjg4ublm0t3DBVRLMNctAoFRFsWg+2ZQN4rk0ONoW2UHvDA4AHYYTLTYE2NMEZuTPosBGgDU2g9Y2ykjCTBQIPvJDDsf+4C2zT+sgh6jQkHTYCJJMFrWsArWuIpnMUBJfRJyeblmRL3bOCyQjMUCdSAEDTWUmSlV8SydRFqjENmbXL961m0KbfXg1Ysm1ExZ56RsNktVaRmq2C1R5F+TipfnOa9BitUsRxPIz0hAQpdBEXxXxImNxU6A9le0ZBpbY1wabUVOORTF1ZP71IY/kgJHpQlXki8GTGwJpAc68IXszj8b1PlWnDwJPvY7zfin90A+Ke/iToXQwZEnXQQQfhgQcewK9//WtMnToV3/zmN3HzzTfjs5/9rFnn8ssvx7x583D++efjwAMPxNq1a7Fs2TI0NnavekLwcJZBHAonlcKhyxfiiKduAgBwdTPa5CoCXUXD1AOBM9CUi+eaLwcAOOn+KY1NMDgx4417w4ofNbCYwUJHpWIQXlESioYmE3kQgW/E2zYe3/vUcDBVqcLIttXsWzAWGmM6DmhDI2hDI0gqI3/qGkCHjzZtMRD44Lk2sG2bwNsloePbNhpiw3Ot4Ns2mVm8NJqtk9upb5QDmxroSLZBteXgERI1c9X9EKUCHt/z01g+flYYcfJ9U+IvU+OypxpNZ0EVodAidDtCsD0QKVLXoM5dKHo2UT/qqD55sgjGrjqz/Z+Oc17v8XEsaRsjrQ8IBUmHWiM7Oibs9JtFjswxqZRZSLC8aPQIkBEkfZ3YxCuTDa9FwGybZFVvPB5LXZroFg/TgjrdbFU1Ro5fkSO9nac+cp7RxD4x9Qx5bwUeaLr/FDGJT9TgxJAhUQBw/PHH429/+xuKxSL++c9/4txzo6JRQgjmz5+PdevWoVgsYsWKFZg6tXxwqRVBQUaMBOMmPeBYJoTPzrgUAKqGc7mqqrFTIVqf4dZlyiqOEuw4mLnmEfmLFVEwKTDLh0YWJaRA65uk+V8xH5IuweUA05FPjTVwicCPaD90pVEkpcfUoFYqSm0TdUFUVZXcHjeNWWXrEQ+8bSt4u5WSQWhyqPVQCEqSOGWy0o1aR6oQinWfmHoGABlBE17RVO/NeO3ucOav0in2BEdXbZUJrytgKHtNLSb7AIFnoo3CSYNnGkI7AyAkm/r8OinTIBhARWLeHQhVhSeclBG+E6s6NAJL/yZKBWkboFPHvg87UiV83yw3KVtARYJyYRSOOuY6FbFUn46MiZLUKmlNoI4w6WulYmoUKh1sSS5o2q1op2Ffgwl2XCSjeBX4bTkE6ZRVySFvRuo44IwZAqVx8KML8JePfr1sO+GNGr3h/nj4l/vw6BMMZjSvXQSks6HzsRKrkkydmn07MrVAHQChLgSUmlYTyLfJCExDY8UolMbje35aWiEYQoaoRiQAQJUOSz0NROCZiJWc8UuxsT3YRFybVWqQ+vJ9JCXNDQVnKg2YDnUquppKVzulZVRME6iZqx+S1YDprIzUlQqWz5oX2beNeNQ4JFjlg9xs72UsSX+whm9q8EF/10vSHwSKwBxqpUDtijmr0oxkKUQqA3AXhDKgc67ZKYTjmhQuyWTDFJlO6SF89kVMWq3XjR2GIkahjYEfdbnX6UHGpDxC2TzodKFevywVyDkcxwHqm2QKDohomPQklvsBRNEzKWC7QAEAuBdUvI4IpQhyxX7XRPVoG3xIxU2GBBISVQXae0ZftIRSM0OxL2RWlL2Y7LDusa/8HEG+AJKVMyltk5DMWhI0r1sapu502bXWI2ktBxAODGqg4JyZ9UWpKEW62YYyLygbM9c8YtLIJpXHGQR3IikWo7fS/kNWg1cSlCAKbQjathryYzQmWpzupqVWyQJJS70TqWsI92tHKaz9a0PQ5nVLjT8VyTYAWvBrxPZWNZZthqsIlH1/xQcbE73SVg7d9/0cVFicHyfNOIHQaoK66vxy8FwrKHWwuDQpNFTtDWiHcsFBGkaCqnYzopgD/ND12/7OiKpmA3S6Mbz2NExVnSL3er1QsxdGXY0JMmfyc3EGnmsLhe6Mhz0G9X4dakiRruLUhQiapBjyxBjAGATjZWm7Y/9xF5ghW73ASmuAnNP00OIgGYJ6HQktrQK7mkGLUzXsyh9CKf7y0a8jMyLUXbFSyTy0NYECULHCL8GOg5aNT5rKNNPzSzsvq0EPCJutAjBkg+dDDRJv3yoHq84QMSYMq+kieiSdQqRW01ZNjgCASf0T37YJbNsmmSKhVGpylNjbGT4aJFsPIBr5IbpM3YouyGOh5hgemzIXzWsXyQiUXaFlVd6Z6BzkYByPFJiPmHbL7EiIIyc4dtSBvbfWVARuD1jkT8Eif4rUQxEKnq4DSWXCSE2pgFntfwbbtqnmCr3OoAXmoK4x0TTp2UzWkHaSzhrDSyNvKOQi1hpG0K2q4MqqRot5SaIz4QRDeEXwfBtEMWcmFTzfJi0HSiXzrOWBD17IGX2TLQTXk2LuBeCKLOkf5vnhOoyZ6KcuBnpi39Ow4qAvyvd1wcg0wfaHhERVAXVTYRSqwqxW4y8f/boRmh/x1E048o/flzYGnqzs0JYG3A/A/P4xZUsw+NC8dhEEY1g25piQhFgkgTiOKgOXvboirSwqRHBsMXg1lKUgNFFy03Kgs9uw6Nk750o7FZ1dm0GxrgF02Ag4jSNkBZ8W/7rKnFFrrOxB0Gp7pNMqj02Zi8cmfxwz/nMPuBokbbGxKOYiZeemylVV4RGHgqZcUEXezL4Yj6Q9IuJyNYD6G9+Fv/FdANi+yBTbA4sL47GkbQwWeZOjPeA6a1zcDSxpHYUl20bIaJTuoedK/zHS0KSuCaVXK+Qgcq1huq2kCBOlsrhB6aBMoYPWMOXbZBUpAJptgPB9sE3rJaEv5BQh80zFqvEJU5kDms5CcG6q7DS5IpSCeb7UvfpSK6iJFGfyXtBk/dkZl+IPh16AaStvLZNxCM4jk+q+BKGkV366ghtuuAEHHXQQGhsbsfPOO+PEE08ssxoSQmD+/PmYMGEC6urqMH36dLz66qu9+dEHNRISVQXxEK09S+HWg/ngRxeAM4YgV8Sfpl8M5vlgvvwJCiU8fdRFCAolBIWSqcpLsOOBF/MQxZxM5yGMNpFYeoW3bQHbskHOsC0tiZ2OI+ksSKauw16Ms1qflb/EolHSpym03Yg0YA28sErPqg6kjSNAh4+W/+sKKGY11Fb6FO3tI3wVdVBkT+RajZB4Sf2BIG4aLZtXSAsDHa1CGGEwmhblrWYsGKB0iUpPRhuaZKPudDZSpGHfqxr24CkYB025mPHa3eCFnPTS2h6h/IxE4GHZqGmyyrEPsKRtDISbgUjVySKEzDCQVCZ6HHFS7sRa1tip5cCLeJbpKJQIfBmFzbUaQqZTu1ovF49O+q2t8FvzAGShUFAsGcd7u4rPTuHZEStb57rioC/iyD9+Hwc9fF142F4AwQX6A5T2QgPiLpjcAsCKFStwwQUX4LnnnsPy5csRBAFaWlqQy4WR8IULF+J73/sefvSjH2HlypUYN24cmpub0dbW1tunYFAiIVFVIASPEic/kDlwddMd8OC1AGQkivsB/jT9Yvk+dQM+13y5mbU8O+PSshlMgh0Lj+9+Eh6b/HFV0eZjadNhKs0hBwwt9o54RgFhWktX7Gk9larKM2TJwuz88yDprIzSxFtmuGlTAQXOpFGnFpHrtJ4mbHr/gKqya5ORgXybEbpDk0EtQrciUTqqxlT1HjjDrNZnwYs5Y6QYIXlctu6QPkCh0Fiu5yttV1qSucaRIalURqO2mFynbypFpIgTJa+mSe12BlO5WalirpchUlnZzkX30DPVgCwk60BYGaqqQG2CpUm0JkvhdeZIYt62xUQyAYTXpn4+Fz2TqtMRIq81Z3z5DGFSr8UJV7zqc+UJV0VeP/KP3ze/f+S++QDk89+ty2B7xZIlS3DmmWdiv/32wwc/+EHcfvvteOutt/DXv/4VgIxC3Xzzzbjyyisxd+5cTJ06FXfeeSfy+TzuvvvuAT76/kFCoqqAEBqKDv0A3OTKA/z1xKvx1xOvNuvabV+ea7688zYwCXZYCK8oCQWAZSOOlPYArZuMTqSSSNV2L6f1jXK9Yk4OBoVybZQkOq2q2k+nDKNpspBUKd8orVmyrBW0a7PRsRRzYXl64IPWN8nqO03sUinjWSR8aW3A27ZKgXm2HiSTlfqULRvkMpXKMQRRHWcYKVNES2ttLDJofJD0Z1NFIDQdupoDMM29tVbKDLZeEY/vfSpYrr3DiN5QhjNyJ2MT0LL16b7dmbJZIDyQbuciWj0nlFllGGH05PWRazWaKVjrR7R09gQDurBApgl1oY9O7zrZtCFJtnzC1tHp9FtcpsG9wHSpqFQExDzfFBy98Mn5Zvlfpl/YBye0HL3pE9Xa2hr5KZVKNR3Dtm3bAACjRklN3KpVq7B+/Xq0tLSYdTKZDKZNm4Znnnmml8/A4ERSndcBpOAwjEa9ePK1A31ICYY4Ht/z05G/g03rjYnfzFX3h/3GgHCGbv1OMo0galCye4RpzPjPPeDKh8kZubPRDJmBCgCoA5qpA8+1gsSjXvCN1QJv3wqKEWq/WRMlI45j0pE8L0P2NJ0NPX/clHQ3z6uIlJuW+1YEietGs24atEGmGMEZkG0AHaZIXTEnI0/pbDRaoQZWAKpRsmy8rAs4NJGqNhjazb6P/OP3wR0KUchh5qr7I82dtwcsYntgTurvkmD2kj9UNSzZKttlzSEbJUFOK9LrpqU+qaT60AHm+zQVc5ZJpu3OH5kAWP9r0s5KJal7ghsxWDW6Juu7D4oeHOVkHxRLkSo9bWOjZRrVqqh1xKmSlU1/oFcsDtT7J02aFFn+jW98A/Pnz+/wvUIIXHLJJTjyyCON/+L69dJiI96fduzYsVi9enWPjnWoICFRVfCX6Rdi2pMyfMv9AC995rpO3pEgQddR3LQt/MNNy7L+OGyiwzloXQO4HoSsVE3zuqUQbqzNUEOTfH9JpUWUbQAvKEPMQs6UvetBjTaNAnEccISC7oh2S1UVsi3vgbdvlUSncYSptqJNo5To3OptV8iB26lJqAhbQyOIm5aEzpW2D7aDO61riLirE91X100BqZQUGpdKFVMzgIweOOlURDBMKEVQKIE6Dp4+6iIc/dwtcLuoFRkKaN61Hti8M2gpV0a2+wqiVJBFEsYHTLVfcayUsop82u1bygoSLAf/CGyTTCUgj1vOBMVoVCUoevL6SMFkFRyli2LK2kDECFQ1U1KvtYaq2CGANWvWmD6xgIwedYYvfelLeOWVV/D00+VRTUKignUhRNmy7RUJiaqCDz1yI3hWPuz7q/oiwY6HuO2FNBQMe9bp/425pSZHbgpAKur7Y+mfTEQr8CXpAaxoDje9z0TgGz8mUGqiAqBOxPuJpLOgjSMiFV46Gmbabrhpk8KRpCgF2jhSRo9yreBtW8Jj175UsdYggsmUoyjmjF8UUZEpYqd3AKnvKuSkUNiJVknZwnJNoKjjgNm6GABHPfNDcMbBi3nMeONe41m1PWD5W3nMqVdNoamjQpp9DM7lbpSGjeoqUDcd6t+0jQYQeo4pc9DQC60gf7cjj6pYAUCZ/klfE6bDhF9+LWhfJ/0atciXbWVDKI1Mmg9Z8i3QlAvuOAgG0KbGTuv3ZBsA0NTUFCFRneHLX/4yfv/73+MPf/gDdtllF7N83LhxAGREavz48Wb5hg0byqJT2yu2v+lXL8F2q33l9G8N8NEk2F4RfygazyjrR9sSRAwyAflaxhJFK4sAnRaRpeOFaOWTFn3r1AmiFgQAEOl5Zn6kGNsQPL2OOa6wGbJJHWqRejVhM5fHZyqrOA81NDo1qM5JRwJpe/s2eTIO1IxVjCzoBuJmAC0VZIuZ7QlCMqeeDr5dQqyPnjGRtTVtjtK+Wd+dTBMrUm5624WpP1Eqhn5PXHo5BUVZ+eznCmBFr6wzhF1Jbad4tVQDsFKAFimzockV8/2IFra/0ePKPPXTFQgh8KUvfQn3338/nnjiCUyZMiXy+pQpUzBu3DgsX77cLPM8DytWrMDhhx/eK597sCOJRFUBD5TPU2KQmaAPkWqowxFP3YQ/Tb9YDiA6/aGE07rvl4bg3BAKWz81c80j0h2cUnAVVRJ51QBYtcAwKTEnTJUYh3TAEvOqKIEmaNoUUXlCiVJRWhjoaJGbMn3KQKkRpOvWL8IaDOPpGl7My5mc1eKDUKpSdQhTlm4aIq/cqD0WrTiMIVKVZ5Wwc8oqkgmTEgp8IJUue30oY3FhPI5Lr8Yitkef7mfm6ofw2OSPyz8sd3JeyMkqQd+PVp7aEwR93Wl38ZI0zNRXt3BT4MW88d6ziwQiPmAVmgHbpJoVPXDOQSkFR2D+TtVnI35PNO3iI/fNByt6oCkXPgDRJm0xDnr4OhQ2tcLNpvtf4tELmih08f0XXHAB7r77bjz00ENobGw0Gqjhw4ejrq4OhBDMmzcPCxYswJ577ok999wTCxYsQH19PU499dSeHesQQUKiOkCig0rQr1CVVDoiZITj9mxdpeaM4zlnaNm8AtCpN2WWaYtzBecqIhWaG0b6kun/jU2BjCRRbQJaCo9BN3wVgR8Oemo9YuluiHZit/62ReFEfV5w5VStTBpBs4acgVriY906RpNAu2IPocmmMVuM6VyIQyMiYsE4GHxwxuDWZVS0T1o7NK9b2meeSgOBRd7kPt3+sf+4C5rKiMAL02+lIhD4sjJTVW4Km0irogOp0cvBb8vDyYb6Ni0c1w7iOnIYFEuRvpM0FXWqt0XiNphVyQfAECo7esU5B2EcjEkdFUdg3ku9AG62CX8/c2Hvn8RBiltvvRUAMH369Mjy22+/HWeeeSYA4PLLL0ehUMD555+PLVu24JBDDsGyZcvQ2NiIHQEJiaqCv33y/6G+89USJOgRtFZH/SGjP7YBpfbSgU7JpCIRIuH7kugwBpFvNdsVpaIkBTaR0W0zfMvc0tKTEFXVh5ISn3MGWt8kq+mUhxNX0aD49qSDelj9Z/cAtJcb7ZNXBLHWk1EqGka2vGLo4u57IZkDAMcidCrqoQdR4lDTZFULj21iZSPSYDYr9Vki8PHYdkSg+hrHvPQzgDp4Yv+zZeuehiZj0yHJccqYahJKI7IsSeblNcz9wOiZiENN25V4eo46TqQhMGccnMnKO0CSHaBcxyrJmDouq4Ec5xzcyjZIch3IaBXnRu/ipGQFoK7MO+DBaxHkiiAORb4nJ7ALiIvou7uNrkCIzoV0hBDMnz+/0+q+3sJdd92F2267DatWrcKzzz6LyZMn4+abb8aUKVPw8Y9/vF+OwUZCohIkGGBw9XBfPn4WWrY+DeJw8Hwx1ofOEsHaBAVSkGsTImNIqJelLK0VlJjXiuroxsBaZC6KOQjfA+VcisVzrdL40O6pp5zDO/hQkvxADpamtQtnUrxOo1EqICp4twXy2gGd+wEcXUVEZSSOIAVwLgfjWPSBOFQ2d0ZImAxh1KRLC5KLHrgXgHpFHPvKz/HE/md3+J3tKJi55hHwLRsQ5GW61oiyVfQHKTeMUnpFsMAPLSsACM8qlFBtYKSPmFUgwRmIR+GkVWWp8vZifqygp2iRJS9sBC8Yh3BkpR2Pv0e9Hmi9lOV+T9MpcM/qCqAmIwDAdDSMcbjZNJxsGsShOPjRBXK/2bSp8KP9JPnoTWH5UMWtt96Kq6++GvPmzcP1118Ppr6vESNG4Oabbx4QEjW0z2iCBNsBIg/+SjofrVHSzYIhLQdofaP0Y1LmhDpVVYa4a7n5Xw4oOtqj3cJFISeNEfOtYJvWyVYbuteZOU4eCsjjx6zF64EvheO6D54y6tSRKvNAt/yEtLhca8FItgG0cQRIOisJlBbMq+iUJoTaFDdeqk4dR/bYU3qZCDHVKT6d3vED2evSMt88dPnCSJuPHQkz/nOPsRTQBOTpoy6Sra1UdVyQL+KJqWcAkB5oj+9+Eh6bdHzYvkc1AJYEXBEri4wLzkHSWeMgThwKzlg5gUIo8AYAJ+2a3qRBrmgIFPcCBIoQ6/cERQ/cMt5kRQ9+rhghUDa5CvfHwH3fWCSkG+vLmtIzL4Cf7x/7iATAD3/4Q/zsZz/DlVdeCceKsh944IH429/+NiDHlESiEiQYIBz86AKItIs/z/4ajnrmh7JUf9c9JTlIZ8MKJU0yGpqUa7d0g6Z1DTLqpHUo1JFExSI1BIhWtakUYPh3tK+ZCMIWHbyQA7FSZja0YzQxESELlt5KqIpBkm0IW32o18J1AJLWRophyse0n6EOKGfS/dy0CPHkOUnBGG3K44o1HFbpUg6YgZqmo332mDWY6mjIjDfuBR02AsubL8dhj3+n8hc4CHDEUzfByabxh0Mv6NXtzlx1Px7TxrBKUjVt5a044qmbECjC6iKMopZBC8cB402mCbB8nYb2Bpyb6jrqu/Ba8xCMw61LS2F3TuniHArmBXDU92f8nwBAraPJF1OEzM8VjKs5oHsvupHogT2Jibjda6+xYgm+Q1G/80ikGurgteXAFOF++bMLkG9vA278RVdPcZchCVzPWvgQp8r3NUSwatUqfPjDHy5bnslkIv38+hMJiUqQYABBKMWhyxfCGT1cuosHHuBIrxzbvZlQClovhZpabM3atirvHC4jM9agpLcNIBoB0H/He9Mh6rejYUdlbNh9yChCCyIt+hbckZYI2vyTc3l8SvNkytcB41EV2X4QamJotl5F4WSVFnXV9jiDYNRoRfRgaKq31IDNGSt7LfIZ/WgbEO4FcAIPopjDzDWPAHu9v+I5GGgc8dRNYL4Ux+sKz97AnOxaLI65tx/93C1SP6Tc3qXvkl92LjUe3/0kzFx1f6SdkAh8cw0AkC2MvCJ421aUtrbLSFSRmlSeHSE0KV/VegsAuOcbUqHXt6tPg6IniVk6dDPXqBa1NfeO44Aqo1kOH6UtbSg01mPYxJ0GrJF8bzqWD1VMmTIFL730EiZPjhZLLF68GPvuu++AHFNCohIkGAAc9vh3wNXArx9stEGa30nvpKhPDgBZ6VTXAOI4sqnvtk3h64EvBdc0JAnU7oXHQjE3AEOgTO8xS5ekYYt6qwmzZUqMgXC9bxVtYspOINtghOSAGrx0bzRAWhdoLZYmccq5XW+LKx2VGTCVQznVwnnqgDhhuw8nnYq4k+vPUcsAosXN2LIFTjaHJz90ble/2n7BAQ9eC9aQNaJ56jj4yH3zIz3duovFxYnl+xrRGCFN+v9qfUKPfu4WsGyYeiZ1DSYaBajroKgiB+r69tryVoUli/S7E4yDQuqwNMmyCY9g6hrnPLxOiiVwJqvtAKmjooqI6IKDSv3zZHECB02lQBwKx5E6vNLW9iFPQoY6LrvsMlxwwQUoFosQQuAvf/kLfv3rX+OGG27A//7v/w7IMSUkKkGCAYDW4gjG8Vzz5Zj+wk9MBCdiiAmYWTwv5uCoJr7GgNAWewNK52QNDpxBlELCBITibNtDKd60t0PSFHtde1AZghZP/QU+RK41dE5Xtg3SiFOm7wTnMhVJKYhTDM02rWo+oYhZxBvItIgJI2a67Uelz1UJtkAZAAJfNq8luQKOfu6WXk+V9RQHPXwdAi+Aj6JVleabNFdv468nXo1DlkjDYR21c7JpCMZxyJJvqbRZ0Rg5rjzhKvzh0Asw/YWfKG2SB9dYaMhIEWcMQWsr3Po6wE0h1ZCF15ZHqj6L4mbZCikoeqBWIYD2iLL1UjrSFGkqnEIoHlcpQKr0bxyAo37Xy/X7jAEn43DSLjh8wIckU5SC+z4KG7Zg359ejFRDHV7+7II+Od/VQCk156Mn2xjKOOussxAEAS6//HLk83mceuqpmDhxIr7//e/jM5/5zIAcU0Kihih2uep0EIdizTV3dOl99Z8+AQDAfIbS/Yv64MgSdIZDlnwLXLWh0A9x0wzVdh2HEpNbM3heyIHn2ozbc+ijlJZ95Ap5K9UWprG0EFYwbpq1aoLBvQAcctbvZNOmdNsW0ZptxLRHNpGydVM6bSNUs2Qe+KBU2RToyFpdQ8SFXQSe/Bx29E2RQJTCz+nYJM1qPqyPw0Qu0q75/HrgjbT6iKcQLXI4WFs9HfzoAvgFqVv764lX44AHr4WTkjqivoySBFZlHGccxAsidgKCc3B1Pg96+Do42TR4Y0NE7E8cCqeuXhlbFk3LI7ceRrhtg3s+mIomphrqzHGYqlKL1GtfKDetPaOi2h/9OrUmAXo5jW0DiBJuxmTDYppKgRVLEYF7f2JHT+cFQYBf/epXOOGEE3Duuedi48aN4Jxj5513HtDjSkjUIMbeP7gAr114i/l74hWngTMhb/A6t8sEavQFJyPHxIA8ABKEMF44bR6EjiQUPbilgnTMtnxspHO5jMAQnfriDEIFXsLoD5WpLzsFolyYnWwapa1tcLOZyIzeyWQi14KZ6Stjw0pRHFt7FPfwEZSZYzYaGBqaK4YkSZI7xyp119ouonujlaJNZDUpEqxkjkNGB6TzdEV7A4R6GurQMgPGeKWe/bt+32C7V7RPkUa8Dcl+/3cpXj2n94Xw3AvMvj7826vx1xOvxv6/+JoUaWtSbpERB2HUijMG1iZTdxlIewTbRdzuDOG15StGDKPXn19WQGAfp74uIu83BqvR5XEiXek60dvVxJqpJsb73HYR/vmF73dw1noXOzqJcl0XX/ziF/HPf/4TADBmzJgBPiKJhEQNUkz6xpkopSh2X3gugmKA1VffDuYxMF8+pDjvejdRoQgUZ/3RiTRBRwjUwOEwbiqswDlEqRi6Owd+qBtBSlakcS6XaauDTFamvgIffnsOQaFkBiUdUcmMHAavNQ+acuGmXfi5Aty6DJy6egC+IidhtIk60rzS0Q24Y81cg0IJ1HHgZNNmAGVFz7g7O27Y4kVfadRNSZG6SvsRR0YjNFhRWjRoTYqJJOkohyph159JRgbccHD0/YixpuAchCkPKOv47QFSR6Uq9UrTy6ulAAcb9vjuefKXEY340G+ugteag5vNwMmm8eLJ1/Z4+y+efC32/sEFMnXXUId9f3oxAoQDiE1G9Hllng8nLdsX6RYqehAPckUw3zeVd/n1m0LBuiIrbp26xh0HzA9MJCyazuXmNeYH4ACIFf3isahRGdnW0VgVkSIOjVTuhbYLHKxoF1kM7Sq3oYpDDjkEL774YpmwfCCRkKhego4SrVv4y17ZXlAIIBiFn/Ox9oa7AADrvyubo46+4GRsuOnXNW9r9AUnAwD84uBMUexIOGTJt6Tmxsy8c+BsFFyHGssA4YeaDlHIAW4KTrZBkSVPRXiknYEmItwLUNrSBsE5vNa8HFBU9RJxZFm3W5eJpCJIKgUSeCaaA8AQJ+LIyBf3ijK64Aeyk70W9GoSVdcgU4x+YGRJNOWG0SfOQNw04KZkFZ8StNuCbw274s8WusfTicz3QVgYMeNMGm1qwsWsVJyt4TKfy4kOnPa+9e+cDR0Ctdt1Z8NpqgPzA7x6zncw9Q5ZPcb8wOjDeoLmtYsQvLcWT1pR8f3+71I4FinScOvS5hrSZFxHp9x6ZU2QL4KmXRS3tqF11TpQhyK/KQcnFTbI1eSHUAqqvs8Aoc2Bfs0Qa0v/ZqfmJAFnIA6BYCLyvzxGdT0osmR/Hr0dCsDPlSC4MJmAgYjoENILZptk6EaiAOD888/HV77yFbz99ts44IAD0NDQEHl9//337/djSkhUL2HtDXdh3FdOxS5XnY63r+uZZ8jEK04DYxyCEXAmMO4rp2L9d+/GThd+Rj3cuxZJEkzIKJbHwDyO4JElPTq+BN3DwY8uALcG69KWNgDAszMuxbSVt0qyodJyLNduDfwlU4FE6xqMcaHWlQQF2WPMa5NNWrlFPPTsnSrPHABhxEb5RUnzwQJoShoYCs7h1tdBBJ5JlemqNc4YHFW1BAAs14YgVwy3rSJEkfSYVSWno0g2yoTqOorghTot7gfwWnMmHWlHwOwWIPb7dTSqknWDhk2k7GV6O2yQaqNsOGlJaHXq/+9nLsQ+t10EP1csi7J1FTNXPwRkGyJVih/+7dVgVpsVynQExzXRRI2gWJLGln4AOqIRhQ1b4OeKcLNpFDe1ori1gFTWRSrrgjgEzFPpXJ+DOkxGLK0AUMSl3DwLY95gMVcOSYQk0XLTqcj6miTp99r/62uj1FoA8+2ejAKCMTCHoD+xo6fzAODTn5beZRdeeKFZRgiBEAKEEONg3p9ISFQ3sdOFn8F7P/iN+XvUFz4FlpZpip5AR7QAgDgEFLJzxU4XfsYQIcEFms78BAgl2Pbz+zvc3qgvfEql8eQ2EwI1MDh0+UIIhxqDQJNyUoP7ioO+iGP/fqcxv7QjRtKNe5MU347UWpI8fCUmFpyjuKkVXlvOPOilqWAqTI0pHYpOkwXFEsTGzeZ34kjxrjkm6oDlC+Y92hGcOBSOEvl6W9vldmyRvA94CNMkbl0G8KOtXeLpQVu8HqZ0LANMlTbU0S5JcpQ+xQsipMnepj53lUCccp2UJnp6OXEoXBVVGcyoNDAGBRlhfOPyn3Vrm81rF6kCB4blY2cCAPb/xdfAOYfHYu7eaRVldLiKgAaR74L5AVzVNqW0tV2SqoYsWFHr24j5DE4a5nnlF4NIdEpGkVTDYX09OVHiwzxWRooBHdkSketNXwOV1qXW9REUAzNxJQ7g1rmJJGKAsGrVqoE+hDIkJKobGPeVU0GyboRIbb7td9j54lMQFAPsfPEpXUq32dAzsbA6Cir0HJgHBAcH8zlQw428+bbfYeS5J5ntDj97bqfEK0HfwCYkWqdjRwp0+4wjnroJmVHDAQDetjapQ1IDjlPIg/sB/FwBfq6I+p1HglBqhLl6PzSVkh3qmexI7+48EsShkfJ/r5gzgxFNu2FLjWwaIvDgteXKfJbs3nOcMbNfwbiZ31MWRp6CQincbipljC+NV48VLYIRy9NQIM/D9i325wusaEeclHHOTXTEhtFSQRHKePpGpfGclAuhnLGHwsydewz/+J+bzN8TrzgNfGS2jEBp3ZRgvENyNf2FnyCgFLSuAXSErHz64K++Di9fiIjtw0pGH77S4Gmy6zbURdqqcCrTr76q/LQRFAM4qfD7lak5AuExMMhIm4z+CElwUm6ou4pZelBHRLYTRzxyZa/DGYejyJPUBGbAfR/ZkTIlCMiq5oEiUEkkCoNKC6WRkKgaMP7yz4H5DBtu+rXUF2V1E8xo6HDDTb/GqC98Cm6di4lXnAaadrpcQQfYzsnacVnArVPlxVyAUoJSqwe/GKD+0ycgf8/DHW6PMw7m6QdfZQfqBH0HbWkQqH5j+Q1bwIp+xVQSoBy2Ax/cU53tOYefKyKlzBWDgkyRsKJndFBMRZOAsDks5xyUSl8dTYiMRkhph/QMPoUseCqQjtSKxNjVSADgwIVwQmJj65XCazYAt1IulSwSNGGKHI9NmHTUTP0d5GUvPZ1aE4ybfmVuNl3WZ417PoTjwKnweJNkz2oDoqINdlTKtPtQlY1DAZOvPQurr74dgJQWTL72rMjr77vh81J0rTRB1XDUMz8Ep1RdL9tQTx0c9Jfr4MGqkLO1R9pbCYDwAwiLJIXXY8qkZGFtx22oQ7qhiFJrCZwJUIcYzZGTdhRBY2CpMCrEfA5a9MGtVJqcXAoV0SImWq+3SSiB4AKEEpPak8cXdffX96KTTYOmUyoKma1agbfLVad3/sX0InR0rKfbGMr4xS86lsqcfnr/fidAQqI6xaRvnGmKYkdfcHIoRIR8II2+4GRsuuW3Zv2gGMBJO3K24nU9P2vPFPQDRebjte6Aw61zwXwuZ0UAMnOP69TziTpErU/RdOYn0HrHA10+tgS1YZ/bLoJgHP+64Ic44MFrwR2KoOAZp2U/V4Kf80HTDt686ueR99WPGw2eTaOwYYtJvdmDFiAjLzqVl1u/GUDUx0c43IjKA88H9wOUtrSrwSFM6/n5oiRfup+YL4mb7h+n+4QF1sCoBx03mzFNaAGYKJJgskaPKmKiozsAQHlIhHQVlB2J02TGjqppCC8Uv9ukjFtEUC4LTUq5IWgMNJ0ypM6JiYftKBog4xQ07cJJuQPW4qMrYH75c0YTKkBGpjyH1KTV9FpzpoFvZuQweO9tAIBIZIb7AZgXmImAo/oeap0aALS9vRWNu4wATblINWTNck2ac+s2qe0wQ5ZonatSufoac83zj/mWFYfPwIvCpPoEF2CcgTBijkVHizgToeZJSRo4Qm8ofUzGydyR/encbBqZEcOqOrID6LH2NUHXcdFFF0X+9n0f+Xwe6XQa9fX1A0KihjYt7QdQh8gfStTsiFivVYoiKBG3CvvqyrhaMPqCky3BpCRJ+uFhSBMXCAqBCXlrZOYe18FnoCB6lqcsDna6cGDcXXckfPBX0tNHd5hnfmC0JJyJilFKwWTUSf9oywE7WsP9AL7SK3mtOUOEmDXTF5wbUgUobxutV9HbUekVpgZNrV+xBxdbZK2PTVoolEwky45QaI2WjlBw+3r2om08uPUDRO8nmyBpewMbVPfL41z6BtltPygFMeeMdWhVENdTaWgNz4zX7q7hmx5YcCbKUkw7X3wKACk96NK2VKWmviaCQglufUiCIho5Sy+ko1tOSpLPYmvJkGFNrrgfqBQzQ3FrAaXWUoQcAYqspaNpK+6xyPenJ5cy2sTNMuZzE4XqamVlRBsXK3AYLCCUyGu7Rz/9K4bvbWzZsiXy097ejtdeew1HHnkkfv3r7kloeoohS6JuuOEGEEIwb948s0wIgfnz52PChAmoq6vD9OnT8eqrr/ZoPzqVlhqWRirrwknJh7O2MqAOxchzTzLrt9/1IIpbivDbfXg5D4IJjPrCp7q0T78YwC8GhiyFg5F8WMnKFWrIkZNyIpqCOLb87F4AMA86rgTqCZHqfex50xdDkavq9K59mwLVqR4IH9B73vRFvP+WLwMAHBXd0T+lrW0obmpFUCwhyBXhteWRW7cJ7WvfQ35DK0pb28CKvin55h4z/lO6Si802CzBzxVQ2tqmtrsNxU1t8lrwA7MvvzUvo09q/UAROUB6+wRFD6Ut7ShtaQ8/lyZhOv1W9ODni+a9WpRum3TqwdqOJNkDmX0e9H7MAB7z/TGVf4oAyn350l3a6HfCaI0mioKHP2Z7VkpRu2QPdgSFoIyQb7jp19j54lPAfI61N9xVc9SEK6IcFEvw2vIovLfVpJO5rys0JXliPoeX883zyWsron1dK1rf3gbBBNrfaUNpq7xOvLY8Slva5T78AKXWkrJx4QgKgSmaAUIS4+d82HYE3GPmRzA5mQz0c1It93O+2U5I1sOolP05bfIHIFKJqScUgwkkEi3r/s/2hj333BPf+ta3yqJU/YUhmc5buXIlfvrTn5Z5QixcuBDf+973cMcdd2CvvfbCddddh+bmZrz22mtobGzs1r78ds/MjjS00SVxCIJCAOIQDDvtRLTf9SAAIH/Pw+AnHY+6kdlKm6yKTbf8FuO+cqrq98TMMhsyWhXe+PKm6HzGlLv798jMPQ6cCRAqo2U69J2g9yDJgY9Ug+xP5+cKKpXEyqI8GjTlYv9ffA2OmvELzpVZpiTspa3t4Fw2Ui1s3QKvNQ8AZqbPir5J6RBGADAzCKQasiqVKNOHQcE3Ql0AoGndrNWLRGxk1Z5nolzEcUw1FQBQLVDXfj0OBRRx0+vZwmINPbDZs30KVw7EnjJLdMKoGgUi2i4NxkJypCNf8f3E/yacgyJVZtoYT1Vqc8h0UwPi7UMGIyp50+104WcggEgFcWfY7/8uhRgxDNz3kaqvQ2bEMARFD21vbTCaO30N23pQP+ejbkw9Sq0l5DcWQNPSBsDL+cC7uUhBAvcDeIocgRI1KdSkJxR9Cyu65jgEzAuvG1s7pf/WaUFqZQrC5yQHrxAv0KSdMBJJmQvGIejgikIl6BiO4+Cdd94ZkH0PORLV3t6Oz372s/jZz36G6667ziwXQuDmm2/GlVdeiblz5wIA7rzzTowdOxZ33303zjvvvC7tp+F/TkGD46KUdZUGSab0NIHa6cLPgKZohNDYRKp47yNwTzsxUqJbC7ShprYmiEOTqtEXnCyjUIzC91in4nIAcFIOOLONCEmij+ojMD+A4/lh5Eml1wLmGW3G+Ms/h/8s/CXef8uXwdMpEGVoKVhIRBzrby0iD4oBCCXS14lJAhUUFOlIO+AeQ6lV9SWrK8lZOhPINKXBfG7S0rbjN1RvYKmVKgB5GDdpbaqoSZuTcsERGB2WTuHpYTUoeEZjwlQKx/au0noo5lvO4yqCFE3j+IDSZ+m0nSZ0OioCRCMIGvF7Tq/r1LtwsmnT4sZ+TQ/KbkMWqYY6+XowNAsxukKe9v3pxfL6rK+Tou5sBq4qYvBb85C96ija121DfmPeRMAplZNIv90HZwJ1I7NSNuBZRIgLFDbmUTemXl2XJWNdINPFwqyr/ycRIiT98mziDUiZhU2MTGEDE3Bi/k1ym9bfehJspbb0ZECngBmAzCCL2iTVecDvf//7yN9CCKxbtw4/+tGPcMQRRwzIMdVEojQp6Qpuu+22PmkMeMEFF+CjH/0oZs6cGSFRq1atwvr169HS0mKWZTIZTJs2Dc8880yXSZRgAnDkbEWn1XSFHBCSmeFny3OjZ0c2KdGESq8TR9OZnwAgyc2Wn92LnS78DJwUxfrv3o3Nt/2uw+OLR6hqAVH6LkBqrLprw7AjQn+HHdlDTL3jcpQUsQkKPpyUFJLrCIqe7Xoq1Rv/DjWp0F47UoAuU2JezkeptYSUqgxNNaQsk0mtw+Mgliu9k3IMuQqKAdLDUrJaKRZ50QQpFSEwWr+kBhwW+k3Z5IMhMO1VzEDEpVCbIiRCenAynzX+t2WgqQXvcnkp2sNPp+DikaZYqTtJK3dsS3APSDKmx1PdLsQmd1pkHBRLUtRfP7QHnc6wx3fPA0u5yjpA+oo5ynS18J40xiSUori1gPZ3ZDrO931kR2bltapsV5jPkN8oI6TMZ8g0ZUAcgtK2EtrfaTeR72JryVTe6WeRYASgJEKeNDTRstfXFYb6mQsATpqaaJVg4XY4E9EsgjUxpQiJlEkpQ7aNgR+YScRgQeJYDpx44omRvwkh2GmnnXDsscfiu9/97oAcU00k6sEHH8TJJ5+MurraNAJ333032tvbe51E/eY3v8ELL7yAlStXlr22fv16AMDYsWMjy8eOHYvVq1dX3WapVELJanba2tpqfpeDhFXV4XFTRmvW4WG+nXuyWq7h1I8hd/fvUf/pE+Q6dS5GfeFTEWKkCRRnAo6KAnRl9tgdeDnfVOkNtsaqgxmjLzgZPhcdRuz2/sEFCBwKVvRNex2pFwqiD26HwMt5ZrYOaBG1b8TeOnolZ/UMXs5DUAhAKVGzeEcVGpSMvs23DAHdOlfqPWhY1cQ8Bq/dNwORm3WNPw9xCDylJXHSjhxE1HsEF6BpJ6zKq0tbInGhohSSvAQF30QpZGQpPD92KTlXTumEygE7FN1LvZPfmlNVX8qqQZHLoOBFtmVHwbjR0wCphmzEz0inbRylDTMu7pQiHo0CAK81L1NZMVH19gg/5yGg4Rfltebg50qgDjWaTgAobCmC+QyEhq7i+Y15U43svevBVVF7rvRKxCGS2DsE+U0FOCkHNG3ZI4AaUk8VMQojU7FUq7U+s+4dMym0lsW3wTzAraNmfZ36k5F5bhl0Rp+Jg45EOU7EL6272xjK4INw3Ko5nfeDH/ygZlJ07733dvuAqmHNmjW46KKLsGzZMmSz1R9shMRCucoOvhpuuOEGXHPNNRVfs8PA8saMltHq5XoGTNQNzoq6jFvNnKwHjzlO5V3ipCgyTf3vRcM8Dn7sDNAnHu/3fQ8ljDz3JCBN4aoIUMOpH4ObdVHcWjS2EuO+ciqKwzNh1ZBKSXg530SCdKl2pdk2ZxzED+C1Fow+RJMcGWWSDaedlAMKWaWpBwPOZRRKkzKj83CI0hnJ9Z2Ug5KKAmgiFhQDU5ggGEfgUBNtdVLlM1ZZih4SHq2xoqAIqw45HMexRMJhio55gYpaBGHftWxGicYZmFXVpyNLWshs90DTgx6hFMIPlDiemeIKarWloSk5QwlyBbPMa8uZ5U42bfRjhFNQpuwe0jIaQ9LbN4nSZAcAchvycFLUeNFpLahODXvtPtw6F5mmjIlKEYcgOzKL1jVtSDdQJQbn8IsB6kZmUZd2UNhSNB5NKZWeZT4HVwSMUpmaYz4DVZEhLZtIpeXfvi+Uk7+UVAgmn506pRc+g6N/a2i/qHg1oPafCv2jeFn0sjPUnfnpLp3zBN3Htddei0svvRT19fWR5YVCAd/+9rdx9dVX9/sx1RTbe/LJJzFq1KiaN7p48WJMnDix2wdVCX/961+xYcMGHHDAAXBdF67rYsWKFfjBD34A13VNBEpHpDQ2bNhQFp2yccUVV2Dbtm3mZ82aNQAqz2yclBPRWgw77UQrJB29OTNzj0Pu7t+r9IwcQBtO/VjZ/utGZuGknS6XIncX2oCOeQy0A3KZAKZXoR5oRn3hU3Cz0i0505Qx6zGfo7StJEu2PW6IT6m1JKNIqpLJ6Ee8sKxfw88V4eU8eO0+2t/NoW1du1rfM2XkzJczaC3a1SRNOzkDMjLq5Xz4Od8QKG69riuhdHSLeUySNVUWrqucAjURkFEF33JsDhAUfPO6XMbCaI92l+bClJrryJXt1M7VMj9fMFWLxvbAtyN5UcG7jo55OQ/FrQX4OS/iIm1sDWLnVxNAk7ZRtgh6v0AYmaIpd9BFIXoTI889CcPPnoudLvyMqQJue6cdpdYSClvk55Yp3gBbV7eaayzTlDYTPlmVJ8mMtH8Jn4vphjSoQ+REoBCYZ6T97DRpQDURiEeeKFUaVJWq1n9Lzzz5Xet+dramzYb9d1CQ96C+jqmaZFTy2NLH8eo536npfNJ0/6TIkuo84JprrkF7e3vZ8nw+XzUY0teo6YxOmzYNrls7Mz/yyCORyWQ6X7ELmDFjBv72t7/hpZdeMj8HHnggPvvZz+Kll17C+973PowbNw7Lly837/E8DytWrMDhhx9edbuZTAZNTU2RH6DcN0bfdBrDz55rZjdu1oWTdgzxSmVdlO5fhPpPnxC5wXN3h6K4bT+/X6VSZM5fC8r7EnqAZB5HwWPIBYO/8mig4MwJtXXaTsLuQZi1Ki/f+8FvzOxY+3sFxQClbaVI+bb0/WIqnRqm+Ly2oiFEWiQeFGQVU2FLUZGzsGxbEzutk9KEhvmqt6Iq69ZEiVtRUB2d0kROEzCtqQJCzUm4XQ4v58HPeREX/aDgm89h/q9QDKE9qpgpT+emilFHtmxH92jZOZMpp2JgCKkhjipFqT8z85l5L/d9BLmCNI/MFSSJYzGvKi7b6TA/6mDupCVRTjc1QHhFtGx9uusX0CDHtp/fLwm0uo70eWU+R3FL0VTgCcaR35RH27p2OGmpsctvLJjzzZlA27p2MI+bNDZX119+Yz6svItdHyT2PAVgIomcC/OjJyCcS2uX+HvsyBK3SLteX+9fpxi1vkr7SsX9tfQ93BXkfto/2tKERFXPLL388stdCvT0JrpVncc5x+uvv44NGzaU5SiPPvroXjmwOBobGzF16tTIsoaGBowePdosnzdvHhYsWIA999wTe+65JxYsWID6+nqcemrXozwdCfh0dRQgHw5u1g0HOc6BCnlnwYRxFrf71wXFAG7WxS5Xnd7nDricCbCAg4kABcbhcYGGPt3j0AVbvAxtJx2P9LAU4MiZrB4k3CyJRKIAu+dhaHsRn3nHU7qANEUMlJbESTsmxSFd77lJpehZv9Q+cRURI2BMvaa27aQdEErk4ONxc30BMAMlTTtGlKsjR1rrF2quZHosPcyxiCCHWyeUfoUjYNy48+v0iV35JBSxDIpe2NYDHLBOg/FsskTsgCL8KgWq03hArPQ9TQEV9dPRVSflqJ59ISFjkFWLjhJQM9UXD1BieHW/6lJ8zjhSDVnTqkSUtq+oVNw3ziYaFPJa3/jaZmRHZs35DgoB2ta1m2sl1ZCWJDsVbsdusWKngwkNJRDhZCC85mzY14Em+bIRe7RZtE47at88J0UNCatobxGzRrDB9PbU9SaPvYgP/urrePmzCzo9n0k6r+8xcuRIEEJACMFee+0VIVKMMbS3t+MLX/jCgBxbl0nUc889h1NPPRWrV6+GEFEWTwgBG0BflcsvvxyFQgHnn38+tmzZgkMOOQTLli3rlkeUdM0l5sGgc+d6IHV07l7f5A5F8d5HzPuzJx1v2hjYhm+AnAVm5h4HpipYdCSrryEJlIDHBRxCACSdyDtC8d5HwD4+B/5Di42hqq6US7d7kUrMTbf8VlVXyu/RSTkInCCSMpPkWz7MtSWFrrYrbSuZB3i6IWUMVaU1grIt8JgRgKeHpaxBIxwEtX2AJkxANKqqRd9w5DbRIDUqOtIWOpRLYbomj6msa4onhOXboyGjsNYgl9Yl7EGY0kk7UnXCwkFWi9G1aFn3ONMRBn3v6PfpZTqtaY7BkZFglmbG4VwXUhBKAC98n+0TpasNqfYJ4vK8u9lMaN65dQNmtN6Dx/fcfgbLYaedCJ4KbQEA+Z0VtxTh5X20BxzD8j7qRmSMybBMJ+vUXJjCIw5B2qpc1t8jEEaX9KRAG1xW0gbqSKqGbYbJmIwy0nQYMQQPdXiSaEV1UMakkws4upF7hcgTwIGYBlCT/8EE7Tre020MRdx8880QQuDss8/GNddcg+HDh5vX0uk0dtttNxx22GEDcmxdJlFf+MIXcOCBB+LRRx/F+PHjOxRt9zWeeuqpyN+EEMyfPx/z58/vle0TRwqKNUmKRxJa73gATWd+AtzjoGnZk455DLm7f29m64AcYPRsT0ejZGWI7aDb94SGPvE4vOnHAgAcAkWkEnQEnb7Ss/f6T58gXbtbXaQaUhEi5WZd1I+pQ35jwZAYL6dEucZ9WaB47+LIPvxigNy7OQAwpeGANDGU7VxCksRst+ZCYITguhrNWBqo1IWefUsRObVm+cIcl6P8zsLKKWEGJq70WMQhcFSaj0UqC4Uy7LRIjx5A09H0jQ1NkuyIhVAieXvbpn+kWqy3TSGX6b91n8rStrDSVp8fKReWETAnDXDKTf884jgRETGhFG698kjKFeS+tmwBTQ85S71OoYkOdQgCTxh9FADUOQRMyOvMSTlw0qHFgG4zowdk5snIKPND5yabKOvUnSZFnHG4addcG/p7ijuIx1PDJs3sBZHt6nWlrYaKOoHH0tMczOJE8W2HpM9qdlwsYdI3zkR+Y76ipYyusN5W4/nuKXZkn6gzzjgDADBlyhQcfvjhSKnCkMGALj8Z/vOf/+Dee+/FHnvs0RfHM2iQrk8h5bqd+jW13vGAiVLolEv9p0+QszblnxMXL2bmHgekdAqBGMI18YrTUGwtYdMtv0Vx+rFwCJB68gnzvty0Y1BgAmOefqrbnyv7VLi9JJXXOdjiZQDkd5ZqSINDDhqFLUU0jK2P2B6sW/hL7Hbd2ca5WXDZTNVJU2N4KZYtj2yfs7ASSjApRgdg9CeaGMVn2DZBAuTgAcD0RjQd7GMPTb0+0QJrpXtxs650blbpSEAONJqk2YSGW3ouO36q04taCGwPWjLlpgY6K50ojykUvfPIIBpWNNopHupQE/PSBE+ndgBJpLhFEHQETK/vNEQfe/FzJDhH4AcmEuEOsohEb0CnP/MbC2CBTO3XpSVZIkwgpb4frooYNAnW6VINQ951oYFjpdQsgmxXj9qpPZP+jaW/9brRfoqS6FErDRg15hRgTIDwkKzp93MuDMES1v0R7kuRKEqM1kswjlTWRSrrYqcLP2MsaHTXCEZDC4cE/YNp06aZ3wuFAnw/aoarNc39iS6TqEMOOQSvv/76dk+itv7wLnjDOk8D1n/6BPhpBw6LPgDk4BkSK2LN4gCAUAHCOPycbMPhpBwl3vXhzGlBWqUL/WOORYEJ83dPCFSC7kOnsqR4WUYW/ZwfcakHgPymAlrfbouUjmvECZSNupFZ5DfmI7NzvyhF4X6JgZKQTOj/OQCiSYQ1KJgZfQXNifYJ0wRHp910pFWn04yQ3opc2QRKWPuFOS+WTsHngDXA2PdA2iHG88f2WbOjUNwaCLWGyhxLTFcFFpaqy21x41cFqGiiIm6AbLOjvac0edUeVYD0wjLfmanmC3D0c7fgD4deUPU7HErQurnNBR8OIRjmhpEmJ+2oyFJY5OCkacQvTE8OAJgCGaA8oq6/v3h6j3u6gbDW2Alw8AiJ1+/XeihdjUdSbmhzUYHAxAmUiTpR7SnFjLicGoKuJiGWbqrUWoiQPADY7bqzkVcTHL19wvqHRBFaPinqzjaGMvL5PC6//HL89re/xaZNm8peHwg5UU0k6pVXXjG/f/nLX8ZXvvIVrF+/Hh/4wAfKwmrxfnbbO/L3PBypwrMHOk2g5GuhxgrQM0EZ4mYNYYqGq/RIWj3cqcfBBEeaElhZlAT9CGdOC4TS7ehUlo6k2AQKAHLv5lBQKTxHEFCifY0qP7xKrSW0rWtHuiFlNFMmmuQxFIuB0bClhRrkEBIT+3/78tCeZdq/TA8UxCGAD6O1khohGlohKBG3FqhrA854ubhO/1EaRp8YQm2V1rAYwqcGNZqmEFkXgkltVaQSL+bhE0+fG31MBYF+mabQgSmRN07XyhVbWyjQVApUtfrgyuhUbj8UnmvDT3lOh2YqpBKoQ1HYWoJDCJqU4WqEiHMp1pfFABIylcZqPg92BaopvKChSJzQUKMUSePF2rLYgnJjgaCuJQ19fdkFHpFIlKWbCs9BeZ892+ut1GrbX8h1tWmoTqtv+/n9yLe3AQfvWdM56Ql2ZE2UxmWXXYYnn3wSP/7xj3H66afjlltuwdq1a/GTn/wE3/rWtwbkmGoiUR/60IdACIkIyc8++2zzu35toIXlAwWdurM1A0aLoiISjqNm4ykn8qDK37sIecgQsZOWPlShJ490g84+sgSkpRnpIGFR/Q1nTgtSDWnpR+RZTsqUlhGjpjM/gdZ384b0pJ6URqbSpjW6TeJIk9UtGwsoeAzpNg+UEGSGp41oWxM2hxBVEACkaYx4WI2kNWH3S+r6EQJQUQSPCVPRp0XCsmItfKhKbVTYSobGts98bkTygPTHsdNomjzp4wornWDWp3bEwrwvahRqR8DiqTwgOsjq30PX6XL9lf4sgHIzdyhoSjYi1vYG2vJADzKEUkAJz5nngzoOuB9g2spbseKgL2IoQ0fP2wOOOiUQNxFyO4Jnpb3kOeTmf13JWMknz45K2dFRQH13TjxyKECoNGmNkym7CtqGfV1osq6Juw0ecyE3qWgeRk6jLWi07YcwlhnEIaaZvN0qS8s4EvQfHn74YfziF7/A9OnTcfbZZ+Ooo47CHnvsgcmTJ+NXv/oVPvvZz/b7MdVEolatWtXXxzFk4cxpAXMo3KyuMKLGCZo6BEXGkQU1lUFxNJz6MVm5knJUywSOlKrOAuQDpuHUj8Grc8Hatj9txmAHW7wMdaedaOlAaGRwAOTD1Mt5KOR8+JzDISSiPXPmtIAtXia1cAA8JsBKviHYdelw8GCeToFR+DyA5BrqNUWkHCIMsXJEmIIx/lBcgAmZAvY5BzyAODqdpnUvYTpNR6CoOg6qSJNdlarTLFrfF08L2KLhiI5FWYDo6iztIRSp7NPXuscjkSt5tqOl7Xpg1WaeNpGqFHnQbiOCcQiTzktBMIbAmvARR54TosiS3dJY9wKEB9Pfb6gie9LxYJyj/T3Z584hlq7OFMPIeI1g0hKFOg7i+iHH0eeFGjsM6pBQ7wZq0qh2dbKOtmtyrbVZOoqprw9TVQmYaxSIaq0iOrmY5WElUbqOHgHyfmFMmOiUSS8ze19hOnn11beXnUtdbNJfINQBoT1s+9LD9w80Nm/ejClTpgCQ+qfNmzcDkN6UX/ziwExuaortTZ482fysXr0aEydOjCybPHkyJk6c2GGPuu0ZxCEmBVOtJ52pMlJmixr2TWtSHjpkHYkwJHYEAwXuSXKcHZE1g4VfDOC1+xh+9lz4xQClVg/51hKYCMX7qY/PARBNA5kUrhCScFlpKE1USm2eHFgUgbKCNuZvj4vwR2lX/BIDs6KVkkzJ34UamLTYXAvWtQGmXEeTGG1GGY142c7gGnqgEWrmHhRDPy3pvRP1/AFkhNVX65m2NYpg6d9NhMkyJo1HIyLHwUWEvIV6mMqeQYJz2VxXsSxKKWg6ZSr1dMrPmOUqY07uB5h6x+VVj2Owg/nSoNTTwntCDFmKur6rikw3TGWG8gRhIqVaN1XtuRcUpLWHbhwdPgd5JH2rW8XYTviaKNtGs+H6wlwzNuxldkWgYMKI20VMf1e+7aiTeX/Yz9QE6vTOzxDG+973Prz55psAgH333Re//a2smnz44YcxYsSIATmmLidIjznmGMP+bGzbtg3HHHNMrxzUUIKu3tIPmPggk42JH/U65SXfoecJoDQ3SkvjF5XZoUiI1EAgf8/DxjnZV/3suMdkFd6mAlrXtmFbW0ig3ONnY+S5J8F/SFoZ6Ae2FukCISkKCgE8n8HnIcnQxEgTJkBaUmjI5WF0qsAEcgFDgXEUmPQCk5EquX78WtPHUdhSVJ+LQXtMAdFZvC0M14TLvsZ13z4dQZDrRgdJvY4ezHREQOsAzUBnXKb1hMSKCsTTOTT0b9O/6+OtZOIIQKUxAwTauiCmddKaqND8U7qos6JnWsZ4rTlwz8cuV52O8Zd/rmwfgxnu8bOly7vPVMo5/H6ZiNsLaJG9K9O+ad0sOEz16etBG64CcsKhr3GdEtNpQT3JFOr+qdRkWL+mUcn6RV4X1cmT/tteXm0SKljojm6sGxxqNFBO2omk8AYUlPbOzxDGWWedhZdffhmAbNn24x//GJlMBhdffDEuu+yyATmmLsemq9mub9q0CQ0NO2bRvF15BCDyoNGoJCzW+gvtg+Nm3UgqQ2/DhKATX6cBQ1AIwBtCt2XjIP7QYhSmycmD/oqDR5YA2vbi2BmghMA/5liAUnAhQAkxPl1cESWHAFwIOfNniESfKiH+Wpxsye3DVHVq4TChwgjkuRCRKqtKuhabRJnScISkxkSiTBUTRVn0hwujTaGoNKnQFVjlPdQ04inUzkApiVgxmMhFQZGDbBrMD0B9H6lUXbgfzgHOpbu5akoMKIE5pREDxq62BxlIOHNaAIfCLzG0B6HWDgB8zuU1KISxrOBMwDWC/GgjX53qA2Qxg92goaNovL0OADhOmEqMNqkmZeTJjo4BUb2UWSemlbP/t2GT7I7sCXRz7gSDBxdffLH5/ZhjjsG//vUvPP/889h9993xwQ9+cECOqWYSNXfuXABSRH7mmWdGeuMxxvDKK6902KNue0bwyBKTurEhmIiINqWYlkX67Nnr2k1fgTA6FRQC8CQKNeDQQlMdSfE5hzftGDAhzQnTKQfO8bMRPLIE+U158GNnqJSa1Ek5QqDAuCE2AFTUCCpFx9GgBjYZUZIkyCEw6RcgFJpXPEYBE4XS+2EBByXE9NEzkdBAwMv7SDGpx2MeooRKCX21P4+tnZHrhARKl40DUQKkJwgm2sDDij17QGS8PL3CGCJRDqB6iXbcT4hzYUUTlDt6UTu4hxEz7gVgqQBOypV6KM8HcRwIat2fqgBZcI5ApQAzTZmye3gwQ5//du0J5VBTpKCvLSbMRwUQE4bzUKMpmDDPI8o0wQGYjmp5dlQyOsHUzvZOmkIwAsGYJVuIptSIQ01UKy5Ql8cUreIz+/A1YbfWc6LkKX69RExfVSQ105Tu81ZcXQFxHJN+7sk2hip830dLSwt+8pOfYK+99gIA7Lrrrth1110H9LhqJlHaZl0IgcbGRtTVhbO3dDqNQw89FOeee27vH+EQgU7dANKYsWIYWvkEBQCcuceVzXK04FJXRdkPLI+LiFg5Qf9Ck2GTchAiojkCgILHkFXfcfuWonldjyE6PVdgwkSKQgIlTDRKa50kSGQ/YaQpTMPov+OvxeH5DE6gBhFFxApMwGEcI9IOHKpNMUOBra6y0wOcY5WV26/pCJT9P2DbMDBVQQXl1h96PVWzMgBQRtziiJa/h9EF7aNFKwjgARgrB+YH4K05pBpk9ZXupcc5B6XSR8pJuyolJH+clAuakv0Ox1/+Oaxb+MuKxzZY4MxpAWMCBSUJqKtQ4KLJt3mPLnZwiJk8RNK4KmVsvMIAQyq1OF3/Llg0ZWdX72lyVt5DT+D/s/fm8XIVZfr4U1V9zu2bGxKCYd/D4siigmwBsiIBFFQyCA6CooAbDigCXx0VGGVREBFEUWZURGXkx+YoIwgSCCTsm4AoSIAhw2ogJOTm3tvdVef3R5236q06p/vezt0l7+fTn+4+fU6dOkufeup9n/d5BZHXdQapKizpwIM7yh71cgihx5JCvmG7wrVFEwGrVO6PRSVyTAEoAEPDaRrHnKgkSfD444+PapWUMhswiPrZz36GLMuQZRm+//3vr1E9ureK9V33e1QOPtB9LxsA+q77PQCbLeNGyKjkhVWA9tyXtTZ6pm+8GXq/97qairpuAo+QzsJrRCCIwnYElpSwIKqT3RP00QIpz3dKm3hd+HY0+PH9cJN5yJD6WDPWE0Y1FGl535s1dKyTBsWHM22gAUciJmFOwBc95oKVAJMrqPlSNa4v8Po9cdmX2GPhhRB9bTygPGTDB0lSvg7D63wAt1laQgpU0iRv00D31iDTvNaltMclUwuWCEAJJaGqKXRvLdBRGtO233uhASyvNdx95z2befYm7L1kNc3s92Siyr2WBDY8V1PrcHIAeM6cz34LAbDIOZ5kXIwYCCVifJv+XtJKQIF5rFTooeT8OSD0TsUZo3b/urCMb59MTLHWxp597GMfw09+8pNR04Qqs7Y4UVmW4corr8RXv/rVtSBqAMZTe5s9bHnRYkqBNzpzywmMreVDjb6RXABxSLhxANU7e24ujloEvkoIdKoQIFnwYwe10LMk2GfudaJ9NgdaBPDqET+FQjnWE2VcWz3aINUZMlXMZqNQs0rTIG2dvAV2PR+y5iFsbjY13gJQ8gRlSvgSNzzsDa/vFAtBAiHRvMCxgkESSRFIJQoDb6OnjkpnAiFlzssqF9TMtIGpNyDzxyUpmwspkHT5ANif3rMv3vXgosL2o2nk2VzVCIE7EPLqlLByLCSNkcBnBwO5llLOa7P3f+4dzflVlOVn8qQH02e5f46Lx+8PCq1J32aZ8bAg8fkAy6UiwMY9Ye6Y6b6RPnRXVO4PpTPcecjDjB2TOgq/jbpJOQSeqPFNLK/VavjP//xP3HLLLdhtt90KPOzvfve7I96ntkCUlBLbbbcdXnvtNWy33fArtI5na9xwEwBAzNt/wLPVvut+7woU83YkgOpwdHKttWVpoqAbJvA6xZe2Ny/wrBkxPJUEgjMkObncrhPynKwsJ9gyRN89qCIuFQ/rla1PHifbh5xjlaetKwMnDKozAv35PhIEnB87uOTZS2zw4ZwVysai8I9KpSugLPNBk5sn6Hu+DeD5N/H6caKG0RmSKCTuPVHFwcKqZXuTqqgALaTViiK+VKat4Kb1UNk0fSkl0nUmAFgNU9N4x49Owl8+cxFSKbBkz5nY5t47CvseLZNCoIcEUPMQnPVEhutxjyqfsIXCrsatA4DdV97bSWFiKYQrFdP3Zs3dD8E+uYyA9OE9KmPcjKBelrzgjteR4YuJPvx4TKBcLlltPaumPxaVvdcqlgOPP/44dt11VwDAU089Ffw2WmG+trPzzjvvPJx66qm49NJLsdNOOw1Hn/6hLLv5FoicbDwQ4wBqrY0d6509FxMnpoEOU1k4TwlLMifBy4Bnks/M0YjBkzc/iJV7sew7APDPHrQRsIr3TV4rGsekElAN7+FSAs5jkGmDOvyAU6lWXJgPAHQtBE1571z6OhmpW/PPmRbOe0WALBA4ZAMnDah5ADE4FySO6NbVWVAGpMzKdKZof6QPZQFUntChNWSaOIFN3VtzXiiZhwJ1XcPUcl0sUQS+w2lUpLxH23ttyp23l65HfDuyHu0nABw0kReKkhBIwJUI3nVjCjxAwAInEpkliz0/5MUFLFhv9BiXjapSBc00/cu8U5mOWO+5UVgwKNDNPFCtjHujqJpElmuVrbWxabfddttod6FgbYOoo446CqtXr8a73vUupGkaEMwBlGpIvdVtoABqOO2pPWZAZ8A77r9ztLsyLq16+wKrYj13PwdieOitZjxHqkd7MAPQzD0feSIQxo28QmQxKGq1nO8rBlKcc9Us/KczSzxPYbP50KchhUAyMfHK1DUiAWfIjM+WIrHZMqPkCAq7KDYQWtCV97seDlxFfgwL8SkOxIwrQGy9HaowgJuardNHA23albgixO74qfyL1DD1hucApQlMvQFdb0D39hUyyEgclCyVAq/sMwsbLl5Yej6G0kjBnq4zgaqaydC10A42xpUL8iHiGGDHZrIMUnvCv4RxIWyaLNB9pjMB5OAqlf43ALZwNvNm9mobPjZ9foJBXCoCbDLKxgR8KRoqy5PFwFtnIJBtIKFKkgl4mRh+f1CoT7FyXJXOMapKL4aAWC7GL7Gc29NPP40lS5Zg5syZ6OzsbCq9NBLW9t3yve99bxi6sdaG057ba6bLAHt8t32x0wNji7cxXkwdNA8Q3svkQU+Wc50EdCbc8liagCwke8feKvrkyehAFgIx9rvf1nvEfFveW8VJ5ApMRiPzx1AzGVRJfUbuUeJlQei7iLhGfMCCW49xWxhXsGwdCvsYnYGcCTFJ2S3LQRX5rEhzKpM+U5C8WZQhKFxVAPv4s2DO5Os28hR3K3sgpbQZfKw4sV8/P6Z6A+/40UnAfXdi2b6zhzwJZPmM2QE4nnSHBUgE3smagSOOKblXimeP0uWIyeImy5Bp4cBTLLXBgbn3xgrohsGqhgkkOsgbWuD2NUIPJl03V34o4MJZ4E2hP1frMCo1BNiQnVeuZ5IaOvxdSuHuq0xnqHRW8LcvXtr0eoyavcWz8wCrR3n44YfjtttugxACf/vb3zBt2jQcd9xxWHfddXHBBReMeJ/aBlEf//jHh6Mfa20Ybat77sBfdp8RzBLXWvtmGHGWzqMdELy3hwaUqpJu5g0MLDGAewr8Ml7yJfRw8QGxlXZUbKRxxe+FTiWdtAIdg2Eq1gYW3OiaB0kESCh7y3kMAg8B7dOntlO5kPyovBcgIgnH2W+ZsVlZpeTvXGtKKAGRssysnOtit7PLGz310n6RCSWhUIFMKzDGyztQH7wnxOSabxqNnhq2OuuTwKLbsXzG7P4uwYDtlX1mIZUiz6qzoIXa56r0za69XHArsPesIEOU1uf3Fd1b5GENPZ+hQj5PdKA+xfc5TTS89yoEaPS/4WaynICuyQNWbmFWngnVPgvrUlahLGSAZjSjyM3eB6apFtlaG3374he/iCRJ8Pzzz+Md73iHW37EEUfgi1/84qiAqDVimWmtce211+Kss87C2Wefjeuvv95Vb19rQ2+UtTcY05nVzRk/8oBjzwKSbYm0Af9s3Gy7KDsQC6dySQMa6MoGRc9/8p4wDoQSKd06Mh/MpCiSiE0JmKb1iRQshSWgByrmsqg2bt+9l4qnw5dZZozXHappB6jIo9AqCYNI6gU5BV2shWZMFoQIufJ/o7eBRk893792/db1hvU0BcdjHEeK+hD2Kc82rDdcjTUlBJbtO7vpcQzUXtx7VgBCCOT2aJttRyV+gBC0xBZmgtp33i4H50FNRvai9bj50F7xfiZVdOq3L0UUcgXj/0Km4/IzDMgz3lx/quh2Pc7P89wnDqb4u0okOiZ14Lmv/bTftkfDiFg+2Fc7dscdd+CQQw7BJptsAiEEfvOb3wS/Z1mGM888E5tssgk6Ozsxe/Zs/PnPfx7Cow7t5ptvxre//W1sttlmwfLttttu1Gr3tg2inn76abzjHe/Axz72MVx33XW45pprcNRRR2HHHXfEkiVLhqOPb3kjsnl3Xl5kTWynBxa5gffeXd6ayvKDsZUz7bnns2ueLcfNDxR2AEvYgyue4bfyUPEQSziL98vjdhMpXWo5EX6btWlBmx/M+HeRe4E474QGrjA0kheirfnisjzjLibq6ppx4IWLNHJFbJ7W3qzocQykvJfL1+VzYoqG94sGYv/uih7nUgZUb83WzeuD5vXzjPdC6bpxKuiVqtcVoms/FECKh95sbcSiRpPfb3n4mMB5WbscVMWAiT57gObv1zKwxicTnN/H/yt2n6G3CvBgKtAKi3Tz3PIm7nQZ3bOxR4nX16OwnedJSTz3tZ9iyWn/Udr2mLBRKEDc3d2Nd73rXbjkkktKfz/vvPPw3e9+F5dccgnuv/9+bLTRRth///3x5ptvDsURl/ZnwoQJheXLli0LqqiMpLUNok488URss802WLp0KR566CE8/PDDeP7557H11lvjxBNPHI4+rjXAiuYNQSiOZok377TX4Bt7C1lnzpno0XYwA0LPEA9pcJDFPUKSaT+RtcOfKfMG8H3WjSUAGzYwxfuj9QnYEUDjwA8Iy2zoHPRwLSfuHXDp7fkAxqULAuDiiNi+Dc5vaqYtRZ4HXsw27gf3YNFgyQdMqqPHtzV5f0j4E8hBWL4/U9Ood/ei3t2HencfGr21gKtjs8y854oGYMqSGww3aun0WVFygiWIe69O3t/MZ9Vxb1R9ztwB7Sf0pIb99YkSYfg6vld0hvx/4T1XHPjT/UWljEJFfm9WFkE5AB9brJoOhICK7g1fqiZzL9dGXrxY17RTsxdKIu0qSf0ba0Y6UYN6tTfkH3TQQTjrrLNc2TduWZbhe9/7Hr761a9i/vz52GmnnfDzn/8cq1evxpVXXjlURx3YzJkzccUVXkleCAFjDM4//3zMmbPmTobBWNsgauHChTjvvPOw3nrruWVve9vb8K1vfQsLFw5/Rspb1chTMBjb8+G7ArLxrTuHQOrOd00fVPv/qNY7ey7SxJbBiMm4PE08kRJpokpn/iazOjlcRwcIOSpAODun3zl4iknB3Ph6ZaFHu30M4orb8xBLwIuKQnW6pp3kA9+mnntrdM1ANyyoCzOprMUhFQ6MqPwM7ZcTy3kox7UhhfM8cC9UmfnBtqhb5dqVEvXeBmrdddS6a+hb2Ydad92H/4ztI63T/eqb2OxrHyuc11f2mVXah/4s5r5RFp79LbyGBK4A5KE+42QMaPvwHio+R0IvUxgujr1U8THSuhwcFcG75/u1ApeZtvcMLyHDX9yElAy4F9eh62yBeOa8jkDugawbB9i4J/GtYCtXrgxefX19bbfx7LPP4uWXX8a8efPcso6ODsyaNQt33XXXUHbX2fnnn48f//jHOOigg1Cr1XDaaadhp512wh133IFvf/vbw7LP/qxtYnlHR0epq27VqlVI07fWjTjSpoTN1GmmBzNQI7E9nWW4/Z3T3bK1qujlRoVaKTRG58qqf3tiLT2QySvAgZRkYTOdAYplKJXpQtH1KSOmx+Vl4rR1DtLK6u7ZgS5zHoJQfypfloMQ2pfMIys8N895gfLt630RLykfMMnr5bxWDasPxMMvFLrJ8iZisneZZ6K4jszDcr4+ml1PBDX04sE40waNnGBO+5EqrKVmdAbUtA1F5orrZH0r+tzgvPFpR9nswkW348W9Z5WG3QZi3jtYXA6ERG3KfvMgJQzrec9QmLjAJwDcqG2q8UjL+D5tvzLY2o52Gcl0ef5T2XGFEwzepiOWwwJxocPwXEH2gjS7VChf4AE7A1TwWXxSSRgYd1/IVOHJE39Q7OwYs6EsQLz55psHy8844wyceeaZbbX18ssvAwA23HDDYPmGG244bPykHXbYAY8++iguvfRSKKXQ3d2N+fPn44QTTsDGG288LPvsz9oGUQcffDA+9alP4Sc/+Qn22GMPAMC9996Lz3zmM/jABz4w5B1ca9bkgluhB+iib2VKAHs/cnfudfIP1B6dYWJlfKvZDpcRt4gPRgANcsINTkDO48my0sFT14zzNNHAwwfLgYR/4kHPD2ahxYWMCfCFoccicKZB1pfw8O1LEQ5qMSm4R3vBxQTF48ncuWH9rxkX9osHSa4xRd+58rmpaR9aM7bci0rDQSYkwpeV+bDyDFZc0iaGGd2HtKu4rq5pm+2XAynKRFSpgkoVVi/rQaOn4XSGeDr/YIz4a6Q/FgMauicprAfYc79s39mYuuj2CDwX247vvTDrL1yH/8YV8eOSMmUcLN5n3m8+wajVtcsQ5SFlXj4mqIsoZSnIynQI9Lm8BQB3n4ybUB6Qh/MG+YzOt1+6dCkmTZrkFg+GTxTrMw23ZtNGG22Ef//3fx+29tu1tq/IxRdfjG222QbTp09HtVpFtVrFPvvsg2233RYXXXTRcPRxrTHT2ZqHCIBYANJaj86w32P3QGfAA7vug+f2molX9plVIMYmHzwIADDl+MPWeP/jzah2IfFCLP/DOH4HASYlfBiJE8k5P8kEA1VMUrfL13TQJe8D90Rw/gon/TYzGtCojEdMFDZZloOeLC9/44+tNwIovOixYaCMD5pAWF+STDBtH9ce++y8Vzxk6TxZPiTIPxvjXwDy4ro2nd2HgrwHI9MZ+41xanSGek4ml1IEoUiVSDR6G+hbWQuOZzD/V8ATw2MAEq5TLt5K2/PQG38vkyIgYESlgmh/BNDoMxfdJJBk2w49qXw7338R3AtChYCzZjIIJQvXnawZuTxMOsiCkJ5dRokIVmCz0lkZ22TyYbJJkyYFrzUBURtttBEA75Eie/XVVwveqaG05cuX4zvf+Q6OPfZYHHfccbjgggtGVeS7bRC17rrr4r//+7/x5JNP4pprrsHVV1+NJ598Etdffz0mT548HH1ca7nxWeGa2m4PLc7b8unSBz9xr/s9ESIvD2K1aZbPmI3uWXNQnzMX9VV1VA87GLXuGrDfewd7OOPCdE2jbowTOCQvEueY2OVwQII8ESH3yYOSZhlO3MsVDzgt+9jCixVnEJaBqfhYwvVCEEZgkHu4/DrF7ctCmtx4CC1cLoKQHLdAJ4jxYHTduHAevRMACjIE655Qbj+XCYxa3hMNxJJ5MQgwkUYWke5Ji4jqCU5ddLsL/bYLpAhkWO+hX17mzYmX0/WsmQxLp89yyza5a2HpvcKBEPWXgyraT3wp6DfuheJeWM6jouPxr7CtWl3n4UMfhgZCIG2/h5wnzo/jSQf8mmbGBPcY1VdU6TjyQgGjkp3XyrbeemtstNFGuOWWW9yyWq2GhQsXYu+9hycDfOHChdh6661x8cUXY/ny5Xj99ddx8cUXY+uttx41TvYa69tvt912a4sQj7BVb1+Anly9eDB217vLb3DyjvjQj3340YO1bgzEyj7rCciyNRMZG0emDpoHre35oPAUn217Dog/d3VjoLRxxYqFEkG9PQp58bALDVplIZAhOQ7h1c1DcFTM/qJjikvKcKDEB+uY+8WNnxegCKJCJXS7cpmQpvvddsa2FYV6HMAxGbiAImXomZoXXXRlWlbVbHhOChhjQ0Uy75dQXnIh017QUSW2jpwxGZTKQ5Q5GKP1G70NV0ic+G7t/mdD3lCGVEooUSR2c05dDED4dVciw4t7z2Lte3DNNZxo3+TZikPYFNrloIrrS/GkimaAibdn8okGT6iY2FHBit4GdE07EO0KC5eJZlI5GJLJgHQinLGelFASuqZR6axApcrVRRwPJqSCGCQIanf7VatW4emnn3bfn332WTzyyCNYb731sMUWW+ALX/gCzjnnHIcHzjnnHEyYMAFHHnnkoPrZzE444QQcfvjhjhMFAFprfO5zn8MJJ5yAxx9/fFj228ravoO01rj88stx66234tVXX3UFOckWLFgwZJ1ba0Wjh+iLe8/CJnetGfLe+5G7cOvOe2He4/cU2k4iT5d9wDKdo4aBbuAtY7ZgsP0clrzwgwQQenjIc5HpsPwJD92FHqH+R9iiFysr2XcGrp5O/YwH3rjdkONV7vkioEcDZbzPYn/Dtvsz4rz4gjKy4IUSjA8VLo9J4GG5D1omtC0PQ0rVhl1PIp7zTK/YpBIkpm3BE7y+VFE7KzwXABxHaSBWfm2L5sF86MEMw2sDQ3D+XvTn3d/n4b0Tl3FpFyTG90aceVwGzJsB7Fbmy8KUgO+1yuT92gMPPBBIB5x88skAbOWSyy+/HKeddhp6enrwuc99DsuXL8eee+6Jm2++Geuss86w9GfJkiW49tprHYACAKUUTj755ED6YCStbRB10kkn4fLLL8f73/9+7LTTTqNW9O+tapzLMBjb77F7Csv2fsSmpf5l9xlY1cgwOfGhBNI5ogy1REqYufvZshL/gNYx/33oqxlUOivoutm6q8lTQ0AoVBj3A0GtrlFV9q8Vcos8qZxCIHz2zrOryMrIyaEEQgjSyOtB/YmztIrr+218f+Lfw33xdmifMbiLSchJfm7IG8XLycThvDJOVCtrpXLOxTXj9mSLQTQO8RG4qvc2oOsaMpW2Rp/xoSMJQKUSmalYgvnBB2LSHbfl9fRQIF+3Mrqv4lp1SoTHwEndHNDyQ+U6T5zgzT1PZcTvwjmJQsHcIwlw7lMRhIXt+G0l84h1KvuMyXSGTldQWgZ8pqaeSuO5dZLVZSi7N6SSUIltZ0zWyGtmYgiI5aK97WfPno2sBQgXQuDMM89sO7NvTW3XXXfFX/7yF7z97W8Plv/lL3/Bu9/97hHpQ2xtg6hf//rX+P/+v/8P73vf4EuRrLX2jZ7tNZPhub1mYqt77hjyfbzj/jvxl91nQAlgvVRBVSR0w0BVJFQWCkjW58xFcts/lvdxwhGHoK5taG5CV4IG4LglQMwB8UCIL6v36UK5C4ADJb8+DYRxCCdUfA77SJ6eokfKy1dw74RfP8zm4iEgvzzcXwzYW3keyjg7zdaNPU2FFPZIjbzZ9mWZfc3W99sYxmsiTpX2qfL5MVvyeK6GXjeo51pRQF7yxekO2ULHKicsN3oa7reJFYkVdT1gjxAQ8txiMEXL4s/cq6kzYPO7raf6lX2s1ILVjgo9XECYjWe/F3l78bsH6B6I+W39OmVG7fNC3PTZRPc0UA6EeMYeX69VIWyhJFSigvDveLLRCOeNNTvxxBNx0kkn4emnn8Zee1mdw3vuuQc/+MEP8K1vfQuPPvqoW/ed73zniPSpbRCVpim23Xbb4ejLWhuAbX73QjegD1Z8s5WlUmBiRWLiRKv9xTWBeAFalQn0zp6L6u3jH0gt23c2UilQmdThBkB6KJM8QJniOAEQLlvgs/mywsBifysOqGVggw+k3HsQ/hZylXx/aD/FsIkHQj4E6AEh7a8YYiEvV3+hOs6FofcyUU3uabDrlBQXzlXCW2lFhUVpM8eLIoI4D904snndIE2VlTXIhRjpNyt9YKDzzypRwfa1VXWo1GbjufCtMWj05l6pVAE1Db3fewOy9uO77YudHljU9LyR0fXhmm48HMzvJ3+t7bJN7lqI5/aaiaXTZ2Hzuxdiw8ULHbGdy1vY/QBl4eSQb+X3xcFcfL/y9WNxzTItsrheI30GSL1cotJZcTIYsdEzqBmA5kkBdl27nLahkj1rbfzYv/zLvwAATjvttNLfhBBOYmGk6vm2DaK+9KUv4aKLLsIll1yyNpQ3SjaQdPXB2jb33gHs9143yKlUQtdMMLsj3k/1dh/SWzlzjstkGyrrnjUHXQuHtk1uL+49CxMr0g1OjZ6GmyH3Lu9Ffc7cfAAJt4s9MvEAZdcBijyTYsiFe5ZiawZeaiYOz9C+qA8eZNF+/XjDQ4ehUGNZmI/3kR8/tVUkQpeT5cmIUEzZVCoNvULNjJOHoTOoXN83BlNCGqdQLZSE4p7CmnacKUsil8jqDZdh5zxW2pe9oXfej0avLfti/x/K/Ud0TSOdmACpcqE+AiCdbXhAKGRM6uOxtwiA03bzwFzgqT1m5Pv06xOQonu4zJNF++OeTAJodM95EB56n+y7CIBU6O0q7lOx33nYW+UTNem0nIQTYeVldwAEumFxFh4VtvZhPtrGfvq/s0aHQ7PGRmVfBtvGOLZnn312tLtQsLbP6KJFi/CrX/0K22yzDQ455BDMnz8/eA2XnXvuudh9992xzjrrYIMNNsCHPvQhPPnkk8E6I11RerSMQniD5UW1ssmfnI9KZ6W0+CsZ/TbQOl0DNZo1d8+a4/gkQ2U0wJAt2XMmgDCjqVcbJ/+wMk+9tr+FbRW5QUWgEXp+MresOKsvygT438qPpQygEAgKlcpjj1JxQwI+RdJ7uE6zNmIAGJ6PsHwMmcmyoCxMMwBVBEgyIAiX1c+j9TMW6st05rL0bCjI5CE8E4T5Yo0pwALrRp4xVtQe8nUCCXAZnaG+qu76QpIhnUrgub1mlh4nNw60y6oJTE4U1ksVJnZUHDDj4qrb33cndAY8t9dMt78NFy8MtJ/I4nChB9O89EsoVRAb5/XZ/hePJTYvPGvr6gX3bO555Nca8PcCqd3HvwMoJB+o1K+j66GHeVwZiW0O9jWObcsttxzwa6SsbU/Uuuuui0MPPXQ4+tLSFi5ciBNOOAG77747Go0GvvrVr2LevHl44okn0NXVBcBXlL788sux/fbb46yzzsL++++PJ598ctiyBUbLOAF4uI10V7hYpBQ+dV9nVqEaGHxaPpXKWDlzTt526MUZjP3pPfsilQIP7LoPdntoMf6y+4yC1EAza8XtAUJeVDGtWyCelfuMJ++1IWsWNvTclfKOcI8UeRAoDBl7nJoBcB6C4W3yfRT5NEVeVjv3AZGJXV5eEw5MvkOXvk5mPRXGlfbItEGWD7JZzpNRUhRCe1kOdGQqnXeCFyO28gU6X64dKCNvWJZ7sSqdNm0eOYASSqDR00CvNkHYTWfA5ERiVaO1t40bBzS8xBCFzzPYmXBtr5luH6kUroAx2VN7zMD2992JDRdbntSLe88qDcfxennxdSfQEwtt+u1bg3X+H+Lbc08Y/QZ4sKwNnJcy0wYqrQRAifSiuEeqGU9O5PfB6mWrm53yMWtDWfZlPNsLL7yAxYsXl6oDnHjiiSPen7ZB1M9+9rMBrbd48WLstttug5KT53bTTTcV+rHBBhvgwQcfxMyZMwsVpQHg5z//OTbccENceeWV+PSnPz0k/RhLpjPrSdnm3qEll0844hDo3GUulUAjD2MUCJ+510ZnmeVFDQFZk0IKNoxh3LLBhvSe2mOGC9kRqZtr2tA+y8JpPAuvZkwJ6OGfCUSIAlDxoRIOipqXfIk9U+WZdc3WF2xQ8v0qA0/e21EkEJcdXzzolfPEwt8d10UXQzcU2ou1oMjKCOZlKuexUnW8DW0nwXlROTFcZbmnyQCoWDHO/GV0hnp3DSpR0HXNwtqe/6RSFYb7tAcbnCc00Aw9Oj+8kDC/ntyWTp/lriGQMYFOCvvaPhCQAjxviofpWoVfdYZcpb8Yiub8pzikx7en4yqE9ZqEA4msTyYo1MoAVKwDxevpAXBhYrCMvd7lvWv5UOPUfvazn+Ezn/kM0jTF2972toBSJIQYFRA1bL6Mgw46CC+88MJwNY8VK1YAANZbbz0Aa15Ruq+vr1DRerxYMw7NYCz54EF5SQQZZL/wTCoilwslCrPHwVqnkgG4IBus990S5SmkIvHUHjMCwEb74C8gTP8ucoaK5jkn4eAXZu/Z8IUN8cjg+LgQJ7dm+40Hs7Ct0CvWOquuCNiaSStwYjN9b2Z8MNUs+4qDyXg/HCDF5V349zCkZ3I+EgEpE7wavTYcZ1w4zjjRTV3XDEDZkjC0vq7ZYsO6ZlDrrruwo4kAk+VZicL/hI6fE6cHMhmgIuP8ujcLs/r7uDzcRvd4fF9tdc8dLgTYzDMZ7j98j/8/obin73N8/3myefi/oG0toM6vY+5V4pmVzhMYqZVzmQMhKRPPh/LouvYu74WumSGnIQy7jTHF8tGw008/HaeffjpWrFiB5557Ds8++6x7PfPMM6PSp2GTa22lLTEUbZ988snYd999sdNOOwFY84rS55577pgqZjhQoxlcj86CGeZgbeIGNjRqdBiyyGqN0pkqV2SO66e1a92z5kRgw7gSKwDWOAvwqT1mBLySbe61IQ3iinCQVOZdoVBGj84Yd4qvR4Nb8xAZ4HknZSDNr0v7zKLt+xc0tNv6/lA7HKDR/mPj4T5al2fqNTuugXBfyjwTfDk/Vhoo9Y03Qx1kJ0RxWKaM+wQWZoNSRf5VHt6hLL9Gb8PypaiAsTZBijwRxnVdQ9dDjSIK67HWrTJ9lHghlEDCttF1YwngA7yP6b6j+zMkfYfnMdzOZ4Ry4KOEcJm9FLoDEHiyX9x7FhNUjUE6D0P7ezcOdXupjaKQaxzGC71QwmXlxR5ElagAJMUhOwoHc6I5eQtFrkpO94mlJujxJ80yFCBonIOo1atX4yMf+QjkGOJ2jZ2etGGf//zn8eijj+K//uu/Cr+1W1H6K1/5ClasWOFeS5cuHfL+DocpYb029SwLXP6DtQlTO3PCrXEza5XaOlOAf4DTw4tm25xPsSbWPWtOwWtBbQ2WQE+DQZnWDh8YyDPkZ9S+L7wGWOix8qAqHFgEG2DCQsBF4BQCtvgcFgfN5vdzKyDHBz2/vGlTA16Pt8/XL89CzILfyUNj4mOMAFQcyqNBtKx+Ggli0u+6rt36JLLY6G2gnnumAEtktoDJvuq5Jwooq99mv9eNQd0YR5qvG+N4gvZ/oyxoy4Earze4fMbs1icUtvYe/Q84gG+mDUf3H3mH4msSg6sYwAK+vh4HWYBv1+qZiWBSQr/H+4q9t2WeUH4/EIAC4LKCqeA1t9g7Cfii0QACzhoA1Lvr9np319C3ss/VfuyeNaf0PK61sWvHHnssrr766tHuRmDjp3BQbv/6r/+K3/72t7jjjjuw2WabueW8ovTGG2/slvdXUbqjo2PIeFsjafRAW9XoZ3Rrw7a78LN4M3d5ZzpDpVphZTMyqN5GU48CeUDWFETFACrOFnIio2sgoUDbc84TLwhLM2bPYQlTuZuJTcZaSDVj152c+MEh9h5wbxTN+JvVn2uWKk7vZeeaZ0fxvrfyQnlPHMC9WFyEMfZmhX0pakJxjwU/b3EbBJ50lkFVQpXqGEDZEE9YDoYTioWUkMjDejqDUL4NSy63GlKuPExNo6YziN4GkqrXI8oCqQWWGag1FEuv9x4VAtl07wBJXqONrFbXgYcHGFgZmO3vuxPP7TUTNgQMTKyEN8or+8xiHisb0oszP/11KePJFXmV29x7h2sX8FmbnSrkDbb6r4f3DefANfNKWm5chYFl7tHjFoCq3HtY4MtpjcwIKCjU8+eZ0Rl6atoBvnQMeTMGYkLK0rJH7bYxnu3cc8/FwQcfjJtuugk777wzkiQsIP3d7353xPs0bkBUlmX413/9V1x//fW4/fbbsfXWWwe/84rSu+yyCwBfUfrb3/72aHR5WG37++7E8hmzMTmReL2mXcbZYEz31lFnhEsiyxJXJIkyYtx6LqRVTszuz7gXig+0SoTFT9eUd7XTA4vw1B4z8sHOppjHXCh6sHJCNA+50WC3ZM+ZrohwpwJ45mDNZFjVMKgZGegB8dm4DU/aAa9HZ4xEnwX9iLWmCNiVeQjikEu8HfWBn8dm3qxmbVkTwfKydPZweQis46SEujHBulIJGLSXfs7r7alEgbAPAZhKZ8UBKedZcjwb6TTB6qvqqHRWgsHYhuesl8kpa+fe2VrdA6TQy2IBu6wZd3wEsuLQVn/ePd5+M4HOYsjNn09/nT2A4cKbOrM6UzqD+09wU8J6vWzGrPdC0WSB9yHejr/ThIOOnQOxYiZrCJpsGDUsJMwFNmPOpsug1AZIFQDLVav1NNw1s/8901YZnjFhYgjCeWJ8h/POOecc/OEPf3BlX2Ji+WjYsIGooT6gE044AVdeeSX++7//G+uss47jQE2ePBmdnZ0QQox4RenRtil33g6972ysqBtX025NbauzPolVr/Wg3l0PvE+U0k2p27phgkwqoQQUBNAw7sHYTqFVwD5k6YG2quE9E8QDAQY+4DQz4vjUooE79tyU8Ti42QwlwINGfwx+nQyAwcSKLKiT88GWzA4q1L8QOPJjj8Fd/Hv8PfQClXuTyqwZKPKDcbknob/++L6E7SghoCqhcjnnuHCjQRUoEouFzMDVrd09KiVMTw31Ppttx71J1B+dZUiUcCRyyjpVWgT3BvosACRQFPLcOJAKw7ZlZOtUCqycOQdKoCXZvFX27SZ3LcSLe89CDHD5Z37d7f4I3HoPbwygCPjEUghl90bR4+h/o234/5lPEvi9bj2R1ttoQMBIunvBq8lLJ38gZBaW68l5UFzhPuawkSZV5/jGE29J++53v4uf/vSnOOaYY0a7K86Gzbc31MTySy+9FCtWrMDs2bOx8cYbu9dVV13l1jnttNPwhS98AZ/73Oew22674YUXXhjWitJjwVIpMDmxPJ7Hd9t3jdtZ+X9vom9FnxvISIQwNl7vKhZQLOP7tLJX9pmF5TNmByER/uLeF9t+1OdcS2ogRgNRrwlFLanPfp/WK7SiboJ1uE2sSExOVBDu4nwj640qZhdy0U7vmYpDl95bxQdbzsUii8FV/Nkv416t8tCKF0v02xR1fsp5MHywLB9kW3soJWsz00VRTru8WBC40dNwBHAATgyzNw/fCAJFOT+qZjLU6tp5qcgLReeW2upuaHf9YgmKYsZiCBr4deXb0T3Ow2LcBsKRKjPyKnGuE58MUJg61EMLPZhlod7QixTuMw4vxxxC3p+y7Dv+exKFlyj70RPGw+seh/Zi41mTPEmAjtNzxcrlPsa0CWELCA/qNc68b5F1dHRgn332Ge1uBNa2J6qnpwdZlmHChAkAgP/93//F9ddfjx122CGQF3jzzTeHrpcYGCgb6YrSY8FW1K3H4/WabvuhsMNlX8TqV1dg2ZOvo6GEqw+mEgmzMgtm8kKxB2fOXXFp28wLBQy8ph8np5LHppiV1nqQbsfiMBi3Hp1BibJQg0D1du8l8OTacADlIYuasSCM1qdloXfND8p236FHjFsMQsJwWla6XTz4+UHci2kSJyQOAcX7LjtfsfE+ccDRn9eLjEAPWRzSiWUNDAszm7y0Szzg8nWpjyr3ojZ6GpYInlEYNwNqGl2dlWDd2Gtm6TYkMpsVfudGWWplZX9C76T3+mxy18IBna/YQq5S0dtZdj8QmKMwdmy0vm87vE+a3RPNlpcBMl6AmOuE0bXVNQOVktCkcBmUEl5DSioBXQq8rQeLiqdLjcBjP+7qfRIQGmwb49hOOukkfP/738fFF1882l1x1jaI+uAHP4j58+fjM5/5DN544w3sueeeSJIEy5Ytw3e/+1189rOfHY5+rrUmtqKuASikUqC7DYmBzc84Bt1KYPWyHjvIpApC+u15GCUzxqYYB+EWg3pfyAshGwiIemWfWYFGUlnojHtamnmh2qnVt9MDi/DArvuUauYQIKIBxQsWZm4fxA2Jj7c4C/fckVhV3gMLEfxGx8jb4V4FDoBoH3y9eP9criBcXgy9lYw//VoY8vRej3idst/oM4FwkgUg7hEtbyZtEJQeyjIInTkB8ywHpByElXGsehkQIs9fzQDVmkER5GSFZfHxE7COw8Je3TvUGIu9nHRPkmeJlMWB1uHx0KNaFEyl76Re7z2P4X0T33e0LATsoZHnrWaM+x63w79zr3J8DrmHm64nLwIu8k65sJ4SQRiPG/HaqJZhzWRQdc08hUOvr7fWRsbuu+8+LFiwADfccAN23HHHArH8uuuuG/E+tQ2iHnroIVx44YUAgGuuuQYbbrghHn74YVx77bU4/fTT14KoEbbuPL4fq2j3Z/VVNfStrPlaUrlYIJlgAxZ5qGiw4wVB44FlIA8nUg8vej2AgZDTB5uazAETGQ0qZeEaAmmU9VR2nik8wNPLY40lGmR6tFeV5uR2fw39RrEulW+veM3LBqh436G3yg+8oZcu3rbcK0OfWxGlW3minBdCh9/LLAD1zDOlswxo2PAPcZlSGZaR4V4u0r6i5jjRXwkEYqDxdSgLa9H9kEofFqT7uMzDF4Od+PxRG6/sMysPGdv74rm9ZpZKG5R5rnyIz3sRudeXe1F5Rqrtn2+HAywbdo7vA+9B5t4qvp2qSKQNE3i6+H3PjZINZN6JeNJmvY05mHLrGFcAuhD6k1ap3P/n/CRpTSYOo22ZkMgG6Uka7Pajbeuuu+6w1uhdE2sbRK1evdpxjG6++WbMnz8fUkrstddeLUUt19rw2J4P34Xb3zkdU5KBsyTX+8yHoVNK/TWo9zacECE3Xj6Dk3hpeew94mn84fwgtHg2DoQz+LL16UEdP8Tbtd0eWozHd9s38JDwh7oNrYX94p/LZ+QhWbqsGCvniPQ4ABDW3AvbtN4kDk7KAJ7ff3n/eL9Cjo4otEPLqZ2Bhoe5RyHmX8VeJ6AcLPGwDhASy+NQnvud8ZV0b6Po0WRJCirzx08ZmPx8EAgIuUwxGZyfQ89lI6Vwey74OezvvJV7kqyJwvkcqG24eCGW7Ts7b9d7VcOkiWag13+O/6f2Xs2iey0UaOVhvyQnf6s0QW1VLTjn/t4teoQTeC6UyTIkSgbhWi5/wbPxZKocYPbyGAKJlKgZzfq9Zs+OUbe14bwBl50bSWv7jG677bb4zW9+g6VLl+IPf/iD40G9+uqrmDRp0pB3cK31b7MfvXtAD4WuIz+ACUccgpX/96YrwMnF7Ig7YlglegCBUrDdhofxilwmnQEd89/XtB8xsbYslMdLVRD4iEUEO5VEV6X9FJvQY+DNh884AVe48hBlgJHa48fWDGz5+mQedMTZe3E/uQchBk18UCzzksT9894Qf86bAVdqc6CDTTMvlCw5DzICWhxU8c9U+Dr2PsRgPy5d4sESD6OFiQoEYPs7ZlKqp88rctVxAltURigmb9Pxx0R++r0IXLkHp/j/AJBn4bVv8X+L30e8D3RvxkAqlGcIwXqzkjL0nYji3DvFy8Twd/rdZPbZE4PtWH5C16y4aZ2Ja3JvFHnZK52VSM6kvLTSmDchhuY1zq3RaOCPf/wjfvzjHzvu9YsvvohVq1aNSn/aBlGnn346TjnlFGy11VbYY489MH36dADWK0X6TGttdKy/MFit2+pA6ZyIC6Cgv0LGlaDLOCUu3biZZ6aMqep+94NNcyKzKDxklbCp8PQQpxp+7ZqfjYYApFlfyAYSqiz3BhUHspi7Umbt8jaaeS2akZ85VydWoG5nH/1dgv6uU3ycJisOoECRC9Xs/HCQ0ipsU8bXarUdAQqvXl/MamwGKgAU9hUCp6J3MP4PDIX3pBUZvswDGwO/2DsWhwGpnwEIrHnOVNwXILw/3PnPk1UG8h/QGYEq7YVUnYcqK9x7cf/W2vix//3f/8XOO++MD37wgzjhhBPw97//HQBw3nnn4ZRTThmVPrUNog477DA8//zzeOCBB/CHP/zBLd9vv/0cV2qtjbw1E+MD7Ax26fRZeOm1Hqxe2Wdd7InMX3ZWH3MMyByQqpWTOIHygZXSisvXL25fxuchT0LZAK9E/+nOzfcfergodMVDK1xmgDwWnOzLQzY+JIT8vVg2hnu5yLvBQYxdr7y/zcBd7EUaGMgrerfoPJTtp4ww7n9v3td4m/je4ee1mYcv9krx76TXxQdxfi5juYzY8xMfBwcJ3FMTgxg6V9wDRV4cWq9TSXSmquQ+D8N9Ybt+P3RfcI8NeW9f2WdWoLbfn3Egws8Bv0eLx1icBKxqWCFZvm3ZsTlvcUU6UdK6MQUpA9ofkAPihkF3Q7v7kLScaiZzAImeTc4zye6HujFOTDPTWcErlUjpgW6ikLZBfxgzJuXQvMaxnXTSSdhtt92wfPlydHZ2uuWHHnoobr311lHp0xqJbW600UZYtWoVbrnlFsycOROdnZ3YfffdR00xdK1Zi2dXlMFGXo8enZckqdmq9kJZgcNKtYLMmMB7JJWAS3mCzrNijKuKXpZSTKaEzbRp9nctG/xjr5Dnm4ggLKPg+TpUp4z288o+swKg07x/Re9TK48FtV0WFmnGR4pDaB4w0KAmggGT2rbXMB5QfZ95aCoGBtRWESQ08zj4QbO/4/fHHIZ2ir9zsnxWGs7jXCae+s/7qrOsMPC6Ons1ne87K5xnz13y11UJuLI/tE5MpNdZFnGH/PESqO5UAut32P8EBzi0rhQCKj/mSi6VoGsaFLb1YaTwuMtAagws4xBbf/d6XPqFt+H7TI3GwNf2jwPLWKKDO5optE4ZdnTuM505VX7VBOATmbxHe5BGRv3vzDJIDWidufY5Z4/65rJ98wmfUCKX7fRSHjrLctV5iebTvLFpa4nlwKJFi7B48WKkaRos33LLLfHCCy+MSp/aPqOvvfYa9ttvP2y//fZ43/veh5deegkAcNxxx+FLX/rSkHdwrQ3c9nz4Lty7y94AgN7Zc9GjTT6j84PBy70aK+safStraPQ0kBkTVD6XSgRhPF7sk4MsPgvkYRF6QJcNntya8TRCL4D3EjjvDdOkomNqN1uPcyLIOxTzZWIwQgNWzJmJB7uiN8e+U0kYzq+JeWRly3kfgXJl6dagNMwM4+cgPI6s8N7KsxWuFx5DM28S/x6CnnIvGoX1eBtCSfT2th7+igDEezZ9aZ6wH6m0BORqPhD7MjwiaIeKVCfSvmQeVqbiuaoSPlI5r49f2/44bOSRkSIUiOQA9pV9rIe5zDhgovXLvIrN+HtxO+WyIL7Pqxo2M9J5j6Lv/JyXGZ9sWM+XYYAtc8Wey/5fPOEk05nzfumGcSr1dWPc+See1lobf2aMgda6sPz//u//Rk1Uu21P1Be/+EUkSYLnn38e73jHO9zyI444Al/84hdxwQUXDGkH11p7lghb2iEECX6g69EGqfT1p7SBrVxfM7bwKy+4mpvJuQZWody61GU0uJCRdyEBMOmYQ7Hy8utL+8nDMP2F92gZDeyJlIDxiuK8ZMZABQtJZoDCJFwc02fPFR/Y1N9N7loYDGCU8UWDTbOixbxeVxiW8/u20ghFxfPQGxX+Rv1rxjtp5qGy/SzfF9++eI1j4IaWRiWDgGJRZH8OQrFT3m9Xr66nwYr9kk4RT7MHyENVfm+WXwvAA7xUCkysyABA2P56hW33/8knFhRaVqmyyue5N0RG/aDsz7h/1G8eaqUsV3ud/P3pw822f8tnzMaUO293x/HKPrNc/3kok+5R7sWxemVeaZ3f4zxsx3lg3KitohSHB4y+1mSYIUr3OWWo0v+eTyi4545+S2UOWkXITasZn7Hp7x1A6jAbMNNZS0/6mLW12XnYf//98b3vfQ+XXXYZACuwvWrVKpxxxhl43/uaJzPtuuuube1HCIHf/va32HTTTftdt20QdfPNN+MPf/gDNttss2D5dtttt1biYIzYqoZxD8Z4xv2O++/Ei3vPcoVUK6qCWncdgK90T14pErMzzAOktBdFLAuh0GAA9MeLCoFGzG2hUAMNjjyEIJQATBnIsX3or3YfHxy7KlYJWTV8TT27Pw5sDHr2nV3oM2+Pc13KPD62bR9y6GEZS0UvlAjS8Mm81wmFbf06xRBXbPwalf/uz38MpvqzmGMTWzHEJIJBjwNEv88MyL14OiORTH8cvJwO/eY9MV7jiQMXkiWIvXG0jIQpOYik4ylTVqeUel3TXgA0zesBGt8PaisGimSJlA7M8b7xSQTfpowv6O8Re8/FYDXWL0ulgFywAL2z56J6+wLonAYQe824Z86fE99OXPeRzvOKur1upA3H6w7S9Y89vPE18Vp49t4ktfl4ssEBdnCNtL836fyuakOod0zYWhCFCy+8EHPmzMEOO+yA3t5eHHnkkfjb3/6GqVOn4r/+67+abvfII4/gS1/6EiZOnNjvPrIsw7e+9S309fUNqE9tg6ju7m5X8oXbsmXL0NHR0W5za22IbdeHFmPp9FnB7JDet7/vTgDARtUKVKLcrLksg4WKDhO/wD2c8gLEMVDwn/2DisBZbETA9rPe4vYEnkLRwnyAaIQKyb2z5zqgNZDBfr1UufVMlkFBMPX0zA2wfJDXWeZCes/tNbPghbKzbPuAD2fCdjkNIBMrIveCcU8BDQQi2F+Ylu1Dm+E5b29GHQMzbtwT4b05fjvab9k5LgMjtB6V9GgWIix6ZIr9qkUFtvmgS4M3AU/aJgRjoZcjBh8xSFF5iI4DKx6ilgw8Ucg7Jr/HhW/LjpG8KGXHTf8j72kBAxP+OAA4AMTPKffucGDNQXunEpALbsWyfWdjYh6KnHTHbUFdSg8sQ16ZD6OZkvvSG5HEV9R1sD3dZ7E3iU8W+Hni14nMe9EyN+HpZFII5HlyoqJ5ySqhBDqzrK2KB2tt9G2TTTbBI488gl//+td48MEHYYzBsccei49+9KMB0bzMTj31VGywwQYD2k87EbW2YenMmTNxxRVXuO9CCBhjcP7552POnDkttlxrI2V8pplKge3vu9MBKADoXLcDSVcCIT0BFiiW2ci0YVIG/gHWSlmau+sBoHLwgYV1asyL1CrVmEIAtl0/MPdoAlF2nertC9gM3W7btKDrfu91D/8eneH1mkZPLYyx0wNXZ0By2wLHj+HHuPndC91ATqBQZ3AaQvFxTKzYY4nDHuF6RS8BN35N+aDFwzF0rug33gdqI/RwlO+DtxPynlpf+3hbwHObwkEx9JbF3oPYwxF7qzxoLvahZrySdpnCfBHw5aRw5xUJ9a04COFCjkAY9ua8G93wGkYxGCi79nQ83MNLfUikLNVhmliRhZAk7SMOvxFA9OfRnicCEFMX3V6oJUfAxu4PWL9DoauzEgGdUKWfn1/Oh6L9lXnNeAYlf37EvC6+zJ/Lcq8n53BxMjpgr6FKVcGTNuZt0MWHh8CTNcp2xx13IEkSfOITn8All1yCH/7whzjuuOOQJAnuuKOo6E/27LPPYv311x/wfp544glsueWWA1q3bU/U+eefj9mzZ+OBBx5ArVbDaaedhj//+c94/fXXsXjx4nabW2vDYP1lqFXXrULXDUxNWyG6rgR9K/ugumzGQ6wdRfXI4kGVBgTOaYgBRDMCp848J4UeZnHokdYrm7XSdnw9DlBSKQKuiDrIisJ2a+NASHlBYh/K01kWpJMT3yp+yPM+U0kR3mcOeuIZtj/+MOxH68bWqSgkYtv2HjN/HloNDAMZNMqOi/cn3hcP//FjikNWfBCPvSP8vRmPqZzTFWoQ0X0Qe3h8qKnoldEZXFZdXOuQ2g4U1/NGOZjSjRAsxWEmHurln2OvHRmVpwHKNbF4HTz7v/C/b7h4IV7ce5a7x3n75O1pFe4GEHpnZs2BEhLV2xdAHHwgdJY5ygDJPdhjRrBPwIJZA4ALCvDQPwEoJQQmJyKYIPFzSe9lnD++Lv0/gKLQK1fDB2A150yG+py5SG4b+8WIMyGGIDtvPKHGos2ZMwcvvfRSwaO0YsUKzJkzp5R0DmDAgIhs8803H/C6bV+RHXbYAY8++ih233137L///uju7sb8+fPx8MMPY5tttmm3ubU2CpaZDPXuWk4ot0Cq0lkJwRNLL48f4sXBIfSE0IOu0dMoiG4+tceMYBC263uPCl8eh388cPODIAEhChl4j5ndhjxSK1fX0Z2Tklc1DFbUvc4QZWTxWW1ZH6l/2993pwNXfGbPs6jic9HMePshKOGepxCwcvBX5mlp9b3sc3gdyvvtQRADHiK8Vrzd2HsVg8fi+gjaDbcLM+y8hyk8F3wQJ69gDF7DDMwiqKTsOp4VGA/GrlhyfkA8VBnff0Hbpd7H2IsYHgedBz9RoX77xui+I2V92hcvYUOeID7ZGKh1LbzNeakaN9zkPEt0PNxTxvdJ+5EI7x/uJeMebu6NonND54S+8/vdaj8J8HuHr8+NsifJaHI4UJHZtTY2LMuyUiml1157DV1dXQNq46abbsKiRV5X8Qc/+AHe/e5348gjj8Ty5cvb7tMa60R94xvfWJNN19oYsNoqz1WiWVnSlaJvZV+uq+K9UX6AKCvC6r0mcQiBsr6UQFBHT2c2s+3FvWcF/I7QC8E9REX+VVV5IT/ert+eHvDeM7aibtyMmXusPO/EA7MiKAzDA92zbPbjlDtvd6U4OKeDp7KnUrLZdeg14mYH+PAY/HHwYwxDMjGYIfOZTeUhuzLPVQjoshbbFHW9ysI08XYxr4V79FqDuxD40P69DEEIPP29mDlPSQEslXikAF8MOQ5HBjX96Le8Nl9MqObH1CxsS33lnikgDCVzDx+tU5b5ybc3c/eDXHArNly8EK/sM8vdAxsuvh3P7TWzAGbXxMjTTdIiPIxpjytDj6ZQX5HrRObBoD+PdH6srld5dqU75lRC6Ay6r1EKhCiU6sJ6fdqBqaRacc++Rk8D3bPmBFm+Y9LewsRyKjoshMAxxxwT8K+11nj00Uex9957D6itU089Fd/+9rcBAI899hi+9KUv4eSTT8aCBQtw8sknt12fb43O6J133omjjjoKe++9txO4+sUvfhGgu7U2Nm3i0R9yAIm8TVw3hWpSOY2o4MEVz/h4anOYml3GR1my50xHXg3bZMR1EfKkeOiQ1q90Vmx6OVtO4Yl4cJ66yAKd2EPAB1fNBkkCQdSeV3bOQdR+74USIkgpp/X49jRAxNwlfhzFgV0E584eT9FbRct5O7HXjrfZDJT5cxy3hcKAF7fVDDz5NssBUpHoXLp5wTg45Z4LGqT5PeOvre8rv47xOWnWD36fc82qolelPP3fH2/Ra5QmKug3rSOFcB6W+JyRx4eD43ifUgiIefsHy+g/sNU9d0Bnls83FMavIQFanhVMmlpl/3n+HodQmwHq+HnCifshwA/vP9+W1ZsSSrr6iyqVUKkMyOhj1oR4y9bOmzx5MiZPnowsy7DOOuu475MnT8ZGG22ET33qU/jlL385oLaeffZZ7LDDDgCAa6+9FgcffDDOOecc/PCHP8SNN97Ydt/a9kRde+21OProo/HRj34UDz30kEsDfPPNN3HOOefg97//fdudWGsjZ42eBoSUQeiOCORSCdR6GjnXQ7L6VXa90IPgH+RlQIevqw6aB33jzZichERY790KPQ1kIQ/Lb0PSCTFHgs/QabBaPmN2MIjSQ54DFoDPpm0m2KocePG2lQCS2/4IzcQ9+XHH++czcPIgOQVnN8CHvBWKfnLAxY8/tuI5KwNnxXVagRcO/Frtlw9W3ksZAuA4NEr3Dh/kQrAZ9qEcGPq+kSejjDgfejjDzLIYpPB7OgxF0lq+H829cuGJ59fBeyFzcU4loBq0Qvkx0nkKwWuxXAsphdN7rWZQhfcYLZ/hM+8G64XiVr19AbpnzfH/8xKwzr24zbxy8X1W5sX018Rep5rJgJoOzoNtr/wzv6Y2lGeQaQNdswKuUowD8c23sCeKvENbbbUVTjnllAGH7sosTVOsXr0aAPDHP/4RH/vYxwAA6623HlauXNl2e22f0bPOOgs/+tGP8B//8R9IEh+o2XvvvfHQQw+13YG1NrJGZFjOeXK1qNjMTtc0AxVhiMrPCuPv/qHIH54yVTBz9wu8BSSISeUeSISwSEb2facwTXdDu8rtNZO5dOw4pEfLOJeCD870mThSvp4dgvZofQJJZW5/3jbgJQ/C0BsRaKXzgnHvHU/Rj/cf7idelhW8MbScn7vYWxavE7fPPS7xOYuvDQ/5lrVJ+4w5XXF/Q8mH0DwYDsuz8PvNn9fwXuSewDCMF+6Il6Th3qYwgywE9tQ3IORPuRBhBK6EEoWi3nRv1BlRnq6XFMJxtVRFoquzEqil831I4WU/KNzGyd9D5YUio/8CnwiR0f+uUwlMTlTp/9Aeuz8H8Wd+PwzkHvPXzZ+3Mk4bcTVdTb4sCzhla21s2hlnnDEoAAUA++67L04++WR885vfxH333Yf3v//9AICnnnqqoH85EGsbRD355JOYOXNmYfmkSZPwxhtvtN2BtTZyNuGIQwCEpV0ABDo39J20mGgQIeJ2K64MENYUS6VwCs/phMQpFnPz4ZVwcAOK2Xbcq8H3T+tvc+8dmFjxRWHD7DtRGMgp/OAHgIy16T0t1Mcpd96O3tlzA/mEiZWi9yHm7/AHO2+fHxsddwxg+Pq8PVrO90vrcDXruE06F8XfwnMZgzU/kPH9hBeT3yf0WzF93ScBxNevzLy3yV9HajdeL16HzkuxzRDIeWAWgyV+zv22ZZ4h+o2bEnl4TQknoQB4YnoZ4Ar6XpHBNtzKBD/rxgTh904lYebuB5WHCIcLJND/KAa23HjILg5VF73NIVCn9angc3z94vA3N8f5lNKBaF3TaOSlg3iCwFgnmFPtvMG+3up2ySWXoFKp4JprrsGll17qVMlvvPFGHHhgUZKnP2s7nLfxxhvj6aefxlZbbRUsX7RoEaZNm9Z2B9bayBo9cIX2fCgSDCReFJHJgXAQKfeMZOCFTP06+Sw0la5sjAVWflsquaKzDFPSCurGYFWj6NEivgIfnDnfpWaApdNnYfO7F2JiRbpCpp4f4b1YZKRVZb1ClvzNZ7NxeKhT2dAgEcoBBNwTvg0dk/euheeLE/TpOGlZ+JsoDCz82MPrULw2fF2eds7PAQeKZZ4/aoMD6DDMWQS/HJjFgx1f5gF4+eDlB2QevvNeTytaGvbTn08/cNPgSWn5/JxRmIuuU8y7GujA2owAbTJbPDeuGVhWW5IAF+AJ7mVeFANA56K3sUgutc+9WFUlnMr/cBh5Qula9pcBabfx1zf8XgTM9BvP3rXrZoF3lf+XOpX16vGQJ7WZ6QyNnkaQrefO837vBW794xCenSE0IQH51gznDaVtscUWuOGGGwrLL7zwwjVqr20Q9elPfxonnXQSfvrTn0IIgRdffBF33303TjnlFJx++ulr1ImxapOOOdR9blYDbjyZ0RmUEoVZbbBOIZwWfuf8Fc4h4WDBqQML/9Bf1dco8CKI/FszluDZ2+PBTyplSbgrw6oGkc/9A5QXN63evgCv7z0rD18Ip2Js2/CD8KqGyVXDrZfAelHsPra514q2UXZTpxKYNCFBvU9jRV0DeSYP1wmKycOrGn4wozAhB0uxh8Met38vG3j4fmIujveclW9H59CuX/ytzIsyEPPHw4+Fp+MXCcfUDyKFcxFS2xe/HT+mMu9D7Mnj9xiBdH9MwvXFAawJCTJtoHSGFb2NghekjHMTh51p/TiMTOeizAMoC2AhC+rvUY1KwKfjx/vTWQaVFUECfTdZ5sRB4/DhUNqUO2/Hyplz3Lnh16AsNGuvgf/Mnxv2/xl6EmOvMBkHvGXewBiokblnHJNfCcr35BzOtfaPac8//3zL37fYYou22msbRJ122mlO2Kq3txczZ85ER0cHTjnlFHz+859vt7kxaxv827GoVCuB6/cfweKHMQGBzNiHdlk4J/zMvQjh7A/wAxV5YQCDBJ7UWlXSEs3ZA8y62MNpMgcd3INRxhmi38gbtcldC7Fy5hwH0no0V7CG8zrRA79XWw9YGV/HFimWqHRWoGsWrE2shMcQz5DpmEjfaWJFBCE2klvwBWGbXy8+ALuBs8TzQ8dSBFPhoMI9BOF+wlBkbLFKOt9/HErh4dRWnjQe8ouX8/PCrxdvQ4kYWPj7hjhiHGDxGnvVagUyVTnAEBA6Q1rTgWxCfP75vvnxJFI6FWwAqHfXSs5rzmvKvaSx6j9v3w7oEtC6ELajBBDVEAxEsDBjXtZEpTIACa0mTkNhcekUM3c/95nuKV7uqRhuhwv38+sahqkzxDIg9rCK91Yrzy2dKy5dIZVAvU9DKmUB51j0SL2FieVl1tvbi2q12vZ2W221VanWFFkzwc5m1tYZ1Vpj4cKF+NKXvoRly5bhvvvuwz333IO///3v+OY3v9nWjse61VeHdd+qhx08Sj0ZGqsedrBzX8chgFbWDEyFYKb4gC7ymuzAI1RONGczyE4lA0HP2PsUezCUsITWFXWN13MCPBCSZmP+Ex+wyRvhQzZ+Zv+O+315nA0XL/S6PTXPN1FCoLungV5tAqAQD/p0zsp4X/H5bXUOyWIuU3g9RLDP/qyM2FvWL74u5wJ5YBt7E/w2IYHdAz3yEIUCjeHAyfvAAShdNwK33AvBz68jkVckkg7luHm0n0pnBUm1EnABO1NVkKGg4/bH788RAb1KZwUdkzqQdiWoVCtIE4V4EC8L38VWBnQy7fmJ3OL6ldzi/3csVTISJhfcCoCXjbHXi148Yy/UkireBxxQx8ArDOV6TxgQP7c8NzH21gFAvU9DZ1ng/RuoTf3KJ9s4M4OwtWVfYIzBN7/5TWy66aaYOHEinnnmGQDA17/+dfzkJz8ZUBsPP/wwHnroIfe699578aMf/Qjbb789rr766rb71NYZVUrhgAMOwIoVKzBhwgTstttu2GOPPQZUGXm8WaazYZ+9jaRJJSCUbOrWj4ullj3MuJV5M8q3teJ29GCj8xoMzCz9Og6JlLnjaZ0NFy8Mssye2mOGW2fqotvZw7MIALnXhYOD8uMBNKuvF4MD/s4zx6hf/FhjnZ/4mMpsoLycZtejne0Hck1j7pPfT/9t8nPf3zgV34N0nfgAXAZM/TbCEYdN1GcRcUsybSCVYOC6+XHFoJK0htz6qQq25d6OOKOuUJokBkBZ80G9GTDnbYz2cywGoMVX/4rhza5z8Xu4P748toDUzwqaA+z87ffewnZTjj8soHls8MV/GdisZa0NiZ111lm4/PLLcd555yFNU7d85513xn/+538OqI13vetdwWu33XbD8ccfj+985zu4+OKL2+5T27B05513dujvH9l0Q6Pe20BmMog8nDOeTSgBleRgJQqdxRXoeRoyD0/F4Z7YY1AGWpSwOixJh01x7m5orHizL3juVDorUJWiKF/I+wlT9MlIQJD6wa1HG8TFg214zc+GyVsBICjSDNg0cdpfre4lH1a4z1nkTQnVme3+igOyHzzQ1DigLPM4hJwjLg1Q7tGKw2Eh0AtfvK/8d74tv4XKABH3DPh1/ABHnomisCoP49KxUlg1HIg554nuD9pfKi1AqRuDWl0HGYHcpBIuocLoLMjior7G55F/l0JASBlMUETuJeNW6bThw0pnBcnEBKpinykq9VIFIp/oAB7U0W9S+cLHBAqVgJM64GZ0FvzHhRJIOhRG2uSCWwvXn3uh4lfRsyiiVxkYK/5HBgLSCZTSfwfwzwF+Hanm5vonfgRTjj8MJr9XJh1zKNb7zIehazqYYA2rrfVE4YorrsBll12Gj370o1DK39PvfOc78de//nVQbW+//fa4//77296ubWRw9tln45RTTsE3v/lNvOc97yloNkyaNKntToxF0zVjk1nYrHLCEYeg3ttAo6dhZ3djLWbexN52wuGopwpSSaQTE9RW1Z3EgYF0NfQAeigVs8oAz2vwA7B3m4fZM1nw0COSrM4yV7POD4gSKlEwNY1M89mjf5hSZhlxjGrGFgaOCy03e2jSAEt9JrDmyM51Xaqf4wFh5ojiPMQVhhP8cfPQE2+Ln5My4rTvU3lR2tgbRGFOu1357DsGT8VjLJ4rvjwEUkVvVEjcDt8pdEfgkoAhJQ7480bbhRy4sJ3iw5/uRcuVCcM5FKqxnDgTkPvJhBIQ2gIgAi0GgDKhVAf3hvrrmC9PrXBtpo3jFQJA0qGgcy6lSiXSrgQyJ4yTd0ilMhd7tDwnUtGWSiDLSxv5vto+qjT0Jpsss1IIWdGrFa9bM1lQgmkkLLltATBjdn6Nw8mFPTzv1SPj69jvGbtviiHVsuxOPokreOrY90RKwJhgGXnu6Px3zH8fGm+bAF3XLpuZ1htJT9/aAsTACy+8gG233baw3BiDer1eskXRYkHNLMvw0ksv4cwzz8R2223Xdp/aBlGko/CBD3wgIGdRYcB2SVlj2YzOIPKHHplKVC7WpqEOPhCNG24axR4O3Ozs1BJeVSpR66YiYdqRVXUDhQE8HvBJGiAkdqLw3T4w80GxtxEMyiQs6bRl6uE9Q4DEf/fcKSUy6Mx6FZ7baya2uucObHPvHfjL7jMKYpN8UCXPBh/oKSynBDCl5JzxkB2RkgmI8dky956sqJsA2JQZ92jEwIOfy9hiYNXMU0TLimGo4r7K+1e27/Lf4v3EfZ9YkQ6A0TmPAVkIUAisFwF1mv/3qCYaAf7Yc1TGebH3gfWCVKsVF96WyoMZ8kgR54ra6G7ooB9lHCd6RthB1UCmCqrPbkdlRhp5NQACNkZnjpAulEBSrUAokXuRLKhDShMMW67EAj8fEq+ZDCmTO4jb55l+PTrD4GQK18zKJgtkMX+JngmheUAbe1O58WdQnMmZSBmERqUS0AR4JXn/fIakyTIomiTWDHqW90LXNVSiAo+gSqTzTq214bcdd9wRd955J7bccstg+dVXX41ddtllQG2su+66BWJ5lmXYfPPN8etf/7rtPrUNom677ba2dzIeLdMZMpMF3hEy+hO2Qz4cLZt0zKHoZp4nAO5B4KvQN38IcG8MH8RjkMOTgXSWOcVuDz7CGmf0AOzRBtVVdTejnphJkGgjH1yLpULCAfsd99+Jv+w+A0v2nOkkCrwHKswEI88FKaVzMjkZqaCT9EH4wM4Cbxr9xvlZcRgv1ifixkOVYTiNl/0oeqz4Onyb2FqBombLyj6XgWven7JMtmaTdO4lKBLo43Xy5TkQic9RDEQJ4NCgSV4q8lDFoXkbjsuQMW0m2taw+54DOTKjMwgpXQiNAAvh59JQW13nHikLsCpVG9YTymqqZcY4jhV5xwhA0eDPdZ8oDEXAEGwi2+q/PdLGvddAfM8UJ2R+G7h1+O8cdPP7JJwshaAaYOcJxj3D6ZpycMWNnp+6rpEZG8I1PQ1IlSAbKdL+2uw8nHHGGTj66KPxwgsvwBiD6667Dk8++SSuuOKKUu2nMosxjJQS66+/PrbddltUKu3TdtreYtasWW3vZDyarmtAKei6Dkuk5H8mmY48x2BNrBYBKACBi59CB/HDlrwbPnxV5MUA3GvktXdUyR+VwBgHC/SgW5lzjCaaDFUlc0DmH5Rl4pT0AF2272xXLDiWQOBhl+JxZdjqnjuanrdJd9yGZfvORs34cBE/7lYWAyY6R/H54wMAHRsXxQyBa1lZjZAL1IpnVX7tuLeH97+4fRk4i/kpcd946LMZcPRE/DIvaLjfTBtWFqV4fDqzEhqxrpLrJ/GQkuJ/l7w+IvcyS+YcpbBhmihHGqd1pBK5J4tqseVh8ppmPCc/eFM4qJG/p10JKp0VCCnQ6G246gEqUb5QuPKeEgNf61IJgURGbcP+1qsN0kwEk0D6n4y0TV10e15jz36PQU2zLEO/bgjO+f1B7zHw4lzK2AiQEnDVNV3w4qmKdGBLKAualLTPf157VNc09EgBVSEGX0B4nIfzDjnkEFx11VU455xzIITA6aefjl133RW/+93vsP/++/ffAIYew7QNoh599NHS5UIIVKtVbLHFFujo6Bh0x0bbjM5g4OPf9AcT0s/04kyasWZdR34AmRIwUf6AVALa5OnTfLCpyCC0FpdYCD0NoYp5zfh6cXxbepjRb5zfRFYWZor5K3ZbPzgTsOFu+3c9uAh/2X0G/rL7DLzj/jsZeGler62V+XAfzyAK+Rl0PqznLLwfQqDZOsTW3GMThhF538JMPw9oykJuZB64CfbZ/0Zt0T4J+PJ1y66X56yJwr5i40Ri6p+9PqF3LfbA2TR0FNbhnCU3GAIBEAKsJ0slinkf8gmREoBSEDJDpkzwGwAInSFRIpg4qVTlg690Xg1uNpQm85Ch7xNgPV9SWY9YdUrVhZHq3fW8JJNwfeqY1IHVr60OwBmFARMVEqHpeaRSiWrNetG4FtJoWhlwB+C0s7hXKdzOP3Oa3U+ureA/WgRrrlqDe895efl1FUp4DyKtI2UQdXCgNJ9g22VrPVEjaQcccAAOOOCAtrb57W9/i4MOOghJkuC38kIphwABAABJREFUv/1ty3U/8IEPtNV22yDq3e9+d0uhqiRJcMQRR+DHP/7xGglhDYX98Ic/xPnnn4+XXnoJO+64I773ve9hxowZ/W/YxDJjAJYJQIBqOFWAB2tdR37ApXfzGD6Z9a4Zx7WIJQ6A0DNQxgWyHqM43AcQcXhVI3PrxO3SQE7fUymsvk6Day95wEXEYMArjpMng5PM33H/nXh8t33x1B4zsP19d2L5jNkupEg20CKsfDOuUWXPgReUnHTHbVi19yznSSrTqSlrt+y9VUYeB5Y8G9D3qxjmoN+48dAH37ZskCqGSLxngG9bJMH7zyEnLdbyiQdJ2rB1f2gbfo8mUpaGtIh3xMNmgAUkQduphE1YboQcqZyzRGCHQj5SCXRMSh1IkqlyBHDah1ACHZM6bPKEzmB6GsiMsVl6XSkqnRXUV1lCrGSDuQsvpRJJVwqVaBcKlIDzVOmagYQBz+pzAI6dvNGWayEvMXnnOP+IT97CiVR5aLgshE3bSeFrdpYpvQfyE6l0IMnozHmZ4slx3E5cOusf3YZ6PB2M3X///TDGYM899wyW33vvvVBKYbfddivd7kMf+hBefvllbLDBBvjQhz7UtP014XW3fRdcf/312G677XDZZZfhkUcewcMPP4zLLrsMb3/723HllVfiJz/5CRYsWICvfe1r7TY9JHbVVVfhC1/4Ar761a/i4YcfxowZM3DQQQf1K/VeZk5jJn94AQj+aPX/vnGouz8kNuGIQ4IYf2wcWAE+PECE3Vikkns8AO/did3o9jfvWfCDs3/ROlRihZdbWdXXyDOpTGn4i7fdazKsbJSnre/0wKICyZxrCw3UNr97oWvH86xsOwTEqL1N7vLAjKfncysDM/bYYoBGvzfvLPceEZjk1gx8+PBbCL74e9n+4/PJ12l2Tvm+YvK39z6F/SvrO7dEyqBf/jhCjiJ5D8oAFJc1iL0TsYkoPMgL1iZdKSpVG4qTuZdLpTZkSPuWSqBSrViJg3wfumbyDF/7v6t0VrwSeSIdaKP9pV0JOiZ1oGNSmr93WG2qfH8u5MSOQSjbjlQiAA6jZdS1WPeKzkl8XWmboueWg25RvGdTadtKvQeJdLzc90T5Vyqdcr0/nwSI/TUg4xPRmCYx3DYaBYiHcjwdCjvhhBOwdOnSwvIXXngBJ5xwQtPtjDHYYIMN3OdmrzVJjFsjiYOLLroocKe9853vxGabbYavf/3ruO+++9DV1YUvfelL+M53vtN2hwZr3/3ud3HsscfiuOOOAwB873vfwx/+8AdceumlOPfccwfcjlQCAj5OXsaLGi8WgyZaxo0AFA8f0SrEUeKDPgEhMg6MyEND6zYbID1pnYfr7Mo8qysGSkpYtztdhdjTBFj9qFf2mVXwsLQCJrEtnzEbgAdQ9A6EZS0AW2ePH58jIjcJhfF1Oe+J+Dd2OcAJ9dyaHYfPgmsO2mi9uJ1mJN9iO6E3KjyGYlgw3q4ZUCsjERdkIioSCgLahYBEkJlGgAKQUMqH98h8sW2/L5IeAHLwkXuNAOIKsv++NlBpBZWuBGmXF/vLDMvyMzazTuSDOYE4rylkH7tpVwqjDaqTOiCUgFmR90Fa4OPCdlW7fr23gUonLABTAo2ehiPF07EhVUBNM3CoxsRkj65zjzboBAqaTM5zFhQP90CflsWhad62vQ8kVOpDdeSli0EbB9R0nu1y5Yuyg8jnnjMqEYIqDqqH3UYhnDdU4+lQ2RNPPIFdd921sHyXXXbBE088scbtvvHGG1h33XXXaNu2r8hjjz1WSC8EgC233BKPPfYYABvye+mll9aoQ4OxWq2GBx98EPPmzQuWz5s3D3fddVfpNn19fVi5cmXwAhC4dSmbbaxzoABb3qXsT+0y8YzJM0w8ENQ1X5usLDQDkMcj1CPq0RnT3wEL2YRcpNgtT+0RgAKQ17TLXMkU7zkSwTb0imuivbj3rNLzET+Mm3lUYuueNcd9XrLnTCzbdzZWzpyD3tlzUZ8zNyhRsWzf2YUwnH8PhSmbnVfahtal9uh8kzeHr8szJ/2yVvvqXx2a94tbDJC4LhMt76/t0DPp9ZxUpfwxpITIEw18v53HpiIt0bvCvQzea8Q9QYKF+SyA8uKa1J7nNllQlVQrTtuJc6iEsuG1jhz4APDejdyjIaQFYpXOCiZMnYBKlUBTguqUKtKJCTqnVHOxTdt+55QqOqdULW8rB10yP5ZKp/VkpV0ppJKQSjrvFxHlVeK3Ic/KWHlmLdt3NibdcZu7V5rxE7m4KIFj/lKCBDnhQnaJlJYEzkj8dM3IK0j3B78XyAy7/ipV9rwq4d5Vfi9w3hSnclAYcLxZPOb19fUV1lmT8XS4raOjA6+88kph+UsvvTTgzLpvf/vbuOqqq9z3D3/4w1hvvfWw6aab4k9/+lPbfWobRP3TP/0TvvWtb6FW80U26/U6vvWtb+Gf/umfAFjX2oYbbth2ZwZry5Ytg9a6sO8NN9wQL7/8cuk25557LiZPnuxem2++OQC4PxzNJunPM9at7A+dGeNeTp08H0xoFlZlYoZ80PbL/HJSiiZAE9fC8mE3OEDkZ5PFAZkAQY+2oparGmGB4IkVGRDRqR8S5AErD+uR8dDjQMeUOPxHPCzuYaPbgbKeuHp5HNLjgNGfz+JsulkmIW0TEsmFWy/UxSlynsLzwdsvltXhbfDrGXrIioCqrN/F8Au7lyqhoGR4bvz9x4nRJvMVBAhwEACKQ3MUouFClpRBp+vav2o6AB0qkQy4JO6VdKX2vVpxWnGkESRTD5wo7NY5peoAlO2XRFKtoFLNVcsTmYMxC4qSiamrwUcDOg3elWoFE6Z2Yp2NJ9pt88E9yUOFNoRo+5BULbAiMDfaRv+ProW3uWXNvDkuBFsphigJcBNw4uV2yu4jen7zz82kaWKwmZkMQuZgKiUZCpWDLRnwqTompYX2hsOs2ObgXwCw+eabB+NemVdpTcbT4bb9998fX/nKV7BixQq37I033sC//du/DTg778c//rEb52+55Rb88Y9/xE033YSDDjoIp556att9ajuc94Mf/AAf+MAHsNlmm+Gd73wnhBB49NFHobV2Og3PPPMMPve5z7XdmaGyMiGtZmT4r3zlKzj55JPd95UrV2LzzTe3D0XIfFZLIzjL2JGDdKsOg1UPOxhaZ1CyfIbEwxj9EU2VKIbJ4nALnxWWEao5SLJhKd4W3xcvBOy3SaV0IS3Ak8sJmOnMzkxX1DV6dIal02cFpHEOxGibgRof8AHvZZuchP3XGXmi7PeJFRnwo5ZOpzCfPQe8TdqPfS8Lg3qV7/icxcfo22tOKOfhU75t3EZ5yLH4nQsjxoAp3m8ZcZ08RnQv0rUmDxWAoHBu0uI/F/OhAP8ftfugrDvmQdA2O1UlWSHkLQisRnwiIYUDThldq5rOy7r4/dlMwFA6hLwdqfssXSkm6rdKJTLty79QUWOVKiRdVQgl0bO81+0301nQRtBXbZB2pVjd9KyNvBGQqs+ZiwQhUIqlV2hZfG0NQtDjrjcLzwGev+q2a/HME7L1tSdvo9ENF/KrdNrr18hGxhOVZfY12DYAYOnSpUF1kVYZ9e2Mp8NtF1xwAWbOnIktt9zSiWs+8sgj2HDDDfGLX/xiQG289NJLDkTdcMMNOPzwwzFv3jxstdVWBcL6QKxtELX33nvjueeewy9/+Us89dRTyLIMhx12GI488kiss846AICjjz667Y4MhU2dOhVKqQJKfvXVV5t6xjo6OkpvIGMltUv+wP5POdaslVuZz/QoTZpnyAgloDIB4qz06CwYOPngSQMoH0h5eIt7MIg43snOlxW6zPLPHhABCMQ5yciVT6GtVQ0DC6wkOpXAqkZ5CHKTuxbixb1nIfSAIBDkLLPe2XMdMNxw8UJsGP0Wc4KmLrodK2fOAZc9INv87oVYOn1WfjwZuEwBv4W48CBZHIqMz7NdHnqABnJb8uxI3q/WAKy5R6v4mQPAcBvucSuUKSnhWvm+eo8UF6r04MiuL5R0g2xmDAxk4G6nyQUpi9My1DRkLsKZtfBqxr+RsKYt46KAlPqRgwC+vtGQqhIMzuTxADwXStc0lBJQaejhsF60hhfizLcznRX3WdcNjDYwNZsB2LXBBCxvejSjZ8ltCwAA2X7vLfUMNQNUZSZUc3DtS/HophNfG7rzvxltIJUMQH4M9rzml4Tpa7Q+2DFokyZN6rdE25qMp8Ntm266KR599FH86le/wp/+9Cd0dnbiE5/4BP7lX/4FSTKwokZTpkzB0qVLsfnmm+Omm27CWWedBcCCwxEhlgPAxIkT8ZnPfGZNNh1WS9MU73nPe3DLLbfg0EMPdctvueUWfPCDH2yrLclSoTn5kP5qY02tvHrYwcjgHzgE+JoBK8rGS5UvY+CF+TJfkqVE2A4oCjxyjwbXa6HnHpcI8OVbwAZz/zsPBcWcKAoddSqvGL5eqvIQYPEhSxIEK2fOCbg4rYzrYy2fMRtT7rwdAPDi3rOwXqpyUOfXX57XBkulwJQ7b3PlaMg4f2n7++xyAlb8vPhzXt4vJeLCv/3fgzHHrSwsVwbw/LrlXqQwFFjsRxmgjI/LZBnQyAqii83EF10Jl/x7AILcTvLQHFMljwdfP6HIZQGYhElZEkYry7QFarqmC14rAjTcKAOM9m/yCxJ7SrhXJTNZrknVcLIM6cQkJ6obJKnnQZF3yugMHZNSTNhg8oCPZVTs1j82BVJl1tKb1AKMkRApl6oB8nuoiSfP/h567lUi0ehtQGs4PptsAeKG0kj3a7BtDNSGcjwdSuvq6sKnPvWpNd5+/vz5OPLII7Hddtvhtddew0EHHQTAerTK6vL1Z2sEon7xi1/gxz/+MZ555hncfffd2HLLLXHhhRdi2rRpo3pyAeDkk0/G0Ucfjd122w3Tp0/HZZddhueff75t0Jd0VJDkRDVd14VsDQCYePSHsOoXvxniI1hzK9OE4uq6QE7Mpdh+9IAXSkBq4qOgkGlH1iyjinseCEyR1AEN/jWToVMRIAh1qLgG0qoGABhMThTqpsh54gBuclLuiQJ8lt7Eig89Tqz0/8Amj8/URT40Z4GEf5DxcBgdZ+/suZicSCydPgs1k2Gbe+/IPWdWeoFs87sX4rm9ZhaAkAeRxRBbp6JrUfRm8b7w5Xz7ePzhoUUPpMLr26y8TGxcr4m3URaq5dvEn71ie+yR8v3j803DBjk+iDoBShjEmbVxgdl4m2bLVCKdJ8oEg6uBBjw/KvdimKjupl3f5OE6EYT6DLxXjQCUbUsEoSajjRcNlQJCGcf98iEnA13PvSnjgPRssgxS83JaXvMKCD2OQDEKEF/HUL4lvNbkOaTzLyIPFP9cBo5kHpIF4KQrRGNkPFEZ4n/FmrXRjg3VeDrU9sQTT+D5558PuNnAwIQyL7zwQmy11VZYunQpzjvvPEycOBGADfOtCQ2pbRB16aWX4vTTT8cXvvAFnHXWWc79NWXKFHzve98bdRB1xBFH4LXXXsM3vvENvPTSS9hpp53w+9//vjSjsJXJVKLSUXF/LKMNlBTI8odaZsaO2GbH/PeV/jmkEoXivjx8J5RyYQ0SKDRNBrwyU8IrdVtyufc80aBPgygPQxGg0TmXwKuCg2X7Wa8MkcY9SPBhPyUy5pkSqBkUeFG8r8ltC6Bnz3VK2c2MvCgEBCj8t+HihXn5Cj/gcyFJOvZOJTHlzgWuPc4X40beqmX7znbnzJ4HrobOAVJYuJjv0/POvBeRtqG2uVepqAlV/OzfywEU8dZij2FsvrxLGIb0wJgfV3NvGIBcRDEcVLkIJhl5bLI85d0t175AMOATSHi9Ox6uoXbssiRogzw+Kt93o6eBdGIa8Lwsab3I/YnvwExTsWLhvFuABW60fZYDKK8BJ91AL5SATCqQVQldbwCoo9ZdQ8/yXmx11ifx3Nd+2vT6jLbJBbcCsAO8mbc/shtvQuXgAwcAnqS7DjGvqowD1Sycl5kMUPZ8lgGpQhkhAqypgmTk/39EG6rxdKjsmWeewaGHHorHHnsMQghXt5A4WgMJxyVJglNOOaWw/Atf+MIa9UlkbVZP3GGHHXDOOefgQx/6ENZZZx386U9/wrRp0/D4449j9uzZWLZs2Rp1ZKzYypUrMXnyZNy63wx0CRX+qWqhQJ/OH7ArfnrdyHeUWcf897myEJQ1AjBNHFfnyfc/IGAyfoiuGZjMSw1wnSbvVaCMOeGUw8l8ZlqGyXlmUI82WNXI3AC/6cQUmc6wvNZwXhziTL1es6Bp/Q7lAArxs7isgQcsHuxYwFVUJF+27+yCsjd5jlIp0KMzTKxI9zBfOXNOvty4UB5Z96w5ATCccuftrn5f7+y5qN6+APU5ljdF7Q3ESFKBgGPRa0PvxfAa5w0BCEAU3z4EUWH75V4k/1tZ6Z8QeInSfvD1+DHxkj3FUGFWup0SFkTxAsKaqY5zLyyvUxcU781r3HEQBfiBEUDgCdE1w4jLuUwCA1aZMS4rDwCSPLOOsve48jgNumTGZJDSe174fggY+LT7oseEBn0a6GVSgUoraPTW0OipY/VrPVi9rGdMecsHahZEcZHTokeNe5G4N4qDKg6weaYiv9Ze0iAEWWXeKOoTJRGoVGG11pjzxzuwYsWKfnlGa2I0Jj3/4suDbn/lypXYYpONhq2vw22HHHIIlFL4j//4D0ybNg333XcfXnvtNadL2UxJvb9SL9yGvezLs88+61jx3Do6OtDd3d1uc2Pe6E9ktAcg9HADgEbv2CEVugdHlJWijQdQJBYY8i8EgHDW50Mq9p2HZyj9X4oQmHgpAQSFe+0rg87y7ZTNsAlJ6Xa/MQeLTGdwEgMTI10hGnTLyNmAJX6TcCZ5oSYybRmd+YF46fRZOYHdKij3zp6Lv/dpKGGJ6jyslEoBM3c/dCq7HmCzjjiQIGDVn1HWUvesOVGZFA8iigWWY8I/gcwiuVvl3CX6zAneRcBVrFvI37nF23LgxdfhbfJ9cm9aq3Ak/04DWZxxp6OQXkDg1r54L+cblXGgyjL5ABJa1ME25MWyRYMlTM0E3iE/iOfPkZiYbjInCFmsJJCh0dOwAE35Z5ALKcJYjzgMlPISDpm2y6X0Qp3jzRo3WG9UM+NldbgFIqpls4WojVAzKgRN3AvFQRkBKJkXLzZyZCISWZahTZ9HaRvj2e6++24sWLAA66+/PqSUkFJi3333xbnnnosTTzwRDz/8cOl2rUq9cBuRsi9bb701HnnkkcLyG2+8ETvssEO7zY1daxLPcjNLWa43MtI24YhDBhxWJCE6soHW04rJ3eFv9p0DGbKiTpD3JlEVeq8t5cnX/fWjmZeGjGQFyEhN3PfD69BI5T0e9TlzmZilPwZuk+64rbDPWOOJ2hPz9g/0t9qxsnAbD7PFYKNMAyvsI28n9DQV99v8vo7PdTt/AX4/DHybtlZvafH9zoFQWZ212Jr9zyzPqjn3iPhRAAJPVNn3gfC0/H75RCjkP5Hu1PL/uKbp9uPFyAPYKguPrxt8LwnhtXpux4kAZet7cD2yfDOTDc1rPJvW2nGYpk6dihdffBGAFft+8sknm27XqtTLYMu+tP2EP/XUU3HCCSfgqquuQpZluO+++3D22Wfj3/7t39ZIqGo8WNmfxRib3qoShbedcPgo9Crvh/ZSBc1KEAgpvZoxm1EF67AHBWWflQ2mMWDgGWWkIs1FN4nvxOvvUcjQtsc5Mx4skPeCe7eUIGHPUNG8LMTEFcypODEdGwBXy0woK94XKiKLoHbg5ncvhBJw3iZ+6ih0GcoRWJBGIoiVgw+EOihU/W1mXQtvK60zR5+3uueOQg1ADlBjUNXKc8WPJdYAo9+4p6jMykBXs8QDvr/m7TGgWxIyLCOPu+9ZlnuovJgslVqxoTXvjXVtJirwRpDHVtdM0D6J1ZLaf7OBVSiRZ9KxNusapmaCCRh/pz5Z4U/OySmeLOJimjxcqGvagSmR88Uq1RQqVZi0xdTiCR5H1rjhJveZc8r6A1PNQFJ8PvvTjuqvbc5JW2sjYzvttBMeffRRAMCee+6J8847D4sXL8Y3vvENTJs2re32ent7B92ntn29n/jEJ9BoNHDaaadh9erVOPLII7Hpppvioosuwkc+8pFBd2gsGWXXFJWQPelzDRMch8z604YKBQT9bLUso8XAhyAonEeDczwYWnBE2XuWw9MJG0JRNR2AK54KrzPLhQIsILKFRz1YIgHPmEQdZ4wRIODgwetNhR4t4kRRZp0UlgQMALqvjqRDucGLuFl8/7wGX33OXPc7B3A8NNlVybOzcj0uZ/u9F73aDCi8R8aJ9oDdP2XpcdDJPU38nayMHF6WBed/iwsEe++Vb0uUrNf8WJqNVxxwx55Mvk+vE5W56weAZUvmIEUIFr7Lit4JkhYAAK0BKKgISFFGLuBDdgBKJyH0eyt9KV236uacz4WcI8VDfJS9RyBQ5CEju58QdMX9yIzVkap0pkiUxIQN1m3an/FiBKQ65r8vl5kJQUvZ9SVr5YWK5WtUE9kTDo45T423J3WLm36IbZw7kgZtX/va1xxt6KyzzsLBBx+MGTNm4G1ve1tQyqWVaa1xzjnn4Ec/+hFeeeUVPPXUU5g2bRq+/vWvY6uttsKxxx7bVp/WCEYff/zx+N///V+8+uqrePnll7F06dK2dzzmjQEnB5qoJlPiyylUqpWmisEjZSLoqwjAEgdSDkAxvhSZ0Vb6wJbSsJ6ZRMoAoHA5AgJHMvIYUAmZOBuNZ4Vx47olqfQlZQDiVYVeFdpPp5JuXepbImVQgmblzDmOC0V9qBkLpHTDQLMyLlRqgjL9aJ+dSmJyogp95x6isuMzWWYH44Zx3pGBhn+7Ft7mAOjmdy/EVvfcgU3uWph7xHzfNr97YQknyZ8P7hmLrcwj1YwEzrchsOOX8RqJIZhpFhJt5eHyXKkWgKSmnWZOme4NLSvwY3JzXtuahqnpwANEGa3cq0v/G/pvAa3lEES0L9fvukGjp4F6d92+r6rbdiOyeb23EWTV6ppBbVU94F8GpGoXIjcw9QZMrQGZVNDoqWH6rSNfBH44rO+637uSLc3+R2Uq5mS8Zh4nk1ONPG6tQnr0rpKcDtBGFYTB2ls1nPfoo4/C5P/BAw44APPnzwcATJs2DU888QSWLVuGV199FXPnzh1Qe2effTYuv/xynHfeeUiZoO3OO++M//zP/2y7f4Ma/adOnYoNNthgME2MaXPFPvPZRzwLseuIwuxoNCwgpBoTvMcP/NL6ejpjsy46ZsmAVFgXj4BUPW9LCQHdMDB5KIM8SjyE5EnmHpDZTLSwth197lTCCWpyYKCEDx3y8GLdmGgfftCfdMdtbrDnLwCo9+kg1GmPxwKors4KOlMVyCJwMBcDqVT62l+kb8UH+gHiKExddLsDguT9ogw+OhfL9p3trgOvZRi+wmPyXj7v4SpelzLgU3z68mvL9xUTyMsAEw/V+mU+yYBvw48hHvD6E+Z036NQd6DRVNNWQDGvpQd4oEXbZjor6E3xd1ss2LiMvLLySlZFPQ/F1U0Olkypd4VnpdErDjFSP2MCva43XPjx7v2Kqdz/CNZKG4pPGinJJv49LvOSmaInkScTxSWKKLNyrQ2/7bLLLi7rf9q0aXjttdeC39dbb722ytBcccUVuOyyy/DRj37UJWQAwDvf+U789a9/bbt/A4pF7bLLLgPu5EMPPdR2J8aiqYqCcrW34odcCEKkEqOqxeKqkyP0NHGLAVV/fACX+p1KoAZolnZPoMZ7m7wHQunMPdQVUxHnmkKdSgYgxncj9ErRvrhHww3yDYOkQ6FWD1XRu3LpBe4toVp2JEdARs/VmgEU89hx0AfYgYnCgeSxifsbDOYN4zx0AbkeAmmisGrWnKAYazObuuj2XJcK0Dkfi3S5yLa6546A/2WPqzzMFmozFY+zLIQXc6V8CFEU1i3zNPZnzTS0bP9syJBnhwI5UMjCc889b3E5mVhHSDS573XNFKQQ+DyTZ73ydx7i03XD2tMONHGhTjL7HywPx/OyMVwGodHTABVUdh6VKNXf1DRM0kCmDfa86Vu498Avl+5jvBk942KPX8bcsYG0RdlzMAfTZeE7kjngEhJl25M6/UjLmL5Vs/PWXXddPPvss9hggw3w3HPPOa/UmtoLL7xQqkxujEG9Xm+7vQGBKJ4e2Nvbix/+8IfYYYcdMH36dADAPffcgz//+c+jWnR4qI10RWJeEY/L0zsVIB0tix/srSwOK4V6UaZwbFYSQUL1ksfJAygpRC7O6fkqbkbeMMxzZQdDXgqEe3N8+C70SNn1vHo6GQ32urfhwkgEroQSSCBRM9p5aLoZaKGK8rHV5sxFoiXrjz0mXTPO2xYqrPu+cFK815+yg3kqfdiz3XqLDkBlWXQuPTC1tQFjj1DId4rDfc2sLPxWXL94Dvg+4vBg3F6QiMA8hc2SGDgfzGQZwK5H2PfWgp9lgpzFdSxoEokC2BDJPVJKem5h/H8jQcxGrhhO/6ekakV7VaKcp4sDr0wbXwevn3gLCXGKvO1Q+8jKlJj81eitobZyNfa65Tzcs/9pLdsdrxYnyJjoWgFF7yXpfJFHisDtmpDEMz34UiwDNQMMGriNff36ov3zP/8zZs2ahY033hhCCOy2226BB4nbM8880297O+64I+68886CYOjVV19dKt/Unw1o5D/jjDPc5+OOOw4nnngivvnNbxbWWbp0adsdGKtW6VSoJJWAwNrMxkI4j4w4HfxBzwsnC9W8Nhg9hPk7mQU24YzfZdhVCHD5BxgHTD78V8y2su8eKMS8IyWswGLNaMb3IVFP35bzFOUlVnjtv1QKqIPmQaYK9f++sXDcy/adjU4lQArq3DNiAsDkPTOxMKU/TqBr4QKYuftZ8AlA1nw2l66ZAXmh/DkoAg0Ch5YvFq7nf4/b8YCm3CtV9EBxz1MLp2WQFUh9C0N1RY8Wrevfy8OFdlu/jYkALD82MkoecHtXpCtlyeb0/PWgI3Ne3DiDj2pmuvBaCXgqM9recWeQq5ZrW3/ThZB0FnqbjHZcG/pOxv/HFhTmWWs8zJirmgOA7u1Dn9aYsMGUfvs7How078qsWfkfbmFYLqyjJ5p4Q6lN2r6YpDCyxPK3ol122WWYP38+nn76aZx44ok4/vjjsc4666xxe2eccQaOPvpovPDCCzDG4LrrrsOTTz6JK664AjfccEPb7bXtPrn66qvxwAMPFJYfddRR2G233fDTn47d8gLtmKuszl3GTaxdD8NQW/xgb/WQ5zNXyeYlFAYAygcSKYQDJnS4JFZJledpXcACH+MGbJ9lVnYaOSDgA6MSQJqnoKd5BiD3sngw4NsJpQYA5CE0suSDByHtSlCpVpzSPHmnPJjyfeuJntq8D814QsRhUuzhSyGHujFoVmtcHTTPzqBThcYNN6Fr4W3onT03B43+eAAfXvT79Z4ny/0qcopioMq9Wxws+f2Ug7SyY45lDUKw7NuLt2sFzvi9Fm9Hx9WKE8Wz+Ypk71id2qucN3obYUIGC4EDzTNimw3g8TOE/oMm+P/lyR7uuSPdulzJnPe6WX9Iudx6rRrQ9Tr2vfMiLJpxUmm/x4tZEBqG9MhiQUwAyFT+/KISOqookVH2pGzlkaJEI5epLQXE4KjFA7Yss6/BtjEe7cADrfDqAw88gJNOOmlQIOqQQw7BVVddhXPOOQdCCJx++unYdddd8bvf/Q77779/2+21DaI6OzuxaNEibLfddsHyRYsWoVqttt2BsWpUT4mrGwOAKCkqqmsaMlWjwouKCwzTg9ZERFj+ILZ9Dh+8/QkNCiWQKuU8PXy7TBsnkUAPMxMRhz1huTgwhnpQfsCvKoV0YgKjM1Rhr0Wjp+FCiN6jYflWqiJd/zzYAau2nmcu5tyVyZ+cbwm+3TUY7ZXQk9uYBEHMX9rvvQCA7obGpDtuB+D1owgs0ODOH+wqZWn1edX6TGfArX/01yhVQK79w00JX96Gc6I42d+vy3WzwjaaARkCYDz02gwoNg9nlnvmePtUPJnzy3g/+fWMPZLFfhf7RuFl+kwWlwTp71639e7Kt28Wymtm5G0iwc0yRWzftyLJnDLS4r4IJa03S2fItA68LJKF5Bu9NdS7e1Gpdgyov2PdmgFYnj0Xy0/QdlT42a7nsyzLMjdjQFZ2DQjwthJaHUobiuy68ZidR9ZoNPDLX/4Sp5xyCnbaaadBtXXAAQfggAMOGJJ+tQ2ivvCFL+Czn/0sHnzwQey1114ALCfqpz/9KU4//fQh6dRYMF0zgZw/yRhkSgSDHE+NHi1ieejOL5JXgeJA0m+b/GGfz/ykEtB5dJO8UPG+CEjFFod4+AAbax4BdjmFKiQMMl7EtZEFgzfxs2TuYch0hmr00KPZP39gNnobLuNJJQrrTO6wGlnz32dT0Pu0zTI8aB50zaC7odFVUTBZ5rxEYTmTELiYLIOCr0wvYZDCexYMAMzbH9nNtyD54EH+vGttwdqtf3S1+JL8GscgyQMpC1DoXPN32o6AUngN+Dox8Cl6seLj5Os18wrFAKsc5IWeLM5zi0F3ed8G5g12oZzceBjIIJZCKEqBlAEoX6OvuK1ru0naPA3aGvaZopQF3FSzLx70qe9SRSRoCheqMLSXaQPdG1a6/0ey+LkWA16aAAee+pLrGrfZSsF+bVbe6FilUsGWW265RqriALB8+XL88pe/xMc//vFC3cAVK1bgiiuuKP2tP2vbD/nlL38ZV1xxBR5++GGceOKJrl7N5Zdfji9/+R8jCyQ2IX0asci5CirPjgEwqqTy3mvKY7g8ZZ8/XJvxt+jhHD+EuVFYjwAU7YNKMvhsIZvib4U0vd6UJ5VbLakk9x7Rb10VFWwDIBcptN4uw8ArHzRTaeUYZKq8Snj+UmmU3pz6YrGU1m5Tz+2gRR4jXbOZhXLBrb64c+7paFVYmA/w5A3hZNeya8TVzFVeqFYxUlNy2wLn3eMAx+7Hvvj5Jc8Zly2Iv3NuW3w+AQoJegkKd56j9Zy3jwG65uekPDxH+yvrC/dOuWV53cMy4/cn57DEySGx5EHBgxEU/G0ymLL/QLPfAeQq5/0Rxss9ZM20rmy/Ig90UvGeFwJXSQWm1hgxb8lw2YQjDgm+S3ZdC5pQ5EUypnQdApexmRKJCn4fcS9fuL+RCudlQ/Iaz/a1r30NX/nKV/D666+3ve0ll1yCO+64oxQkTZ48GXfeeSe+//3vt93uGl39ww8/HIsXL8brr7+O119/HYsXL8bhh49e6ZPhtviP46t+exChaxrbXvDpUephUcIgHkTssvLLXTYIZMEDWrJjFa5kStxmOEu2gIRq1CUdyuk6SZH/RoU8hddXEsr+7oBOT8MKItYM6n3aheuaDqLKt83T2vkD1WireE36P+SNavQ03P4Ay8dSB81zITfOQzJz9wNQ9AxJIdwgzwnNFPKkFOuyWmBcVkKmynmnACvpEKf1c+MaW5ZHFYb8/Hr+vWzsjxXDOQHda1HxtsP9FAFe+XUqA3JxH+P1m5lqApzIYo0gPqiWD8JhcVsKA9OrGWhqBoS8qKNvlw/KlE1HpWnKwVQ4yeEK6dJ5Vug3v65UEvXVPah392CvW84rP4HjwDjI5WLBoYcpnDgCRQHUZtcn3lfZvTTaJV7MEL3Gs1188cW48847sckmm+Dtb387dt111+DVyq699lp85jOfafr7pz/9aVxzTfu1Jsdnie8RNqEEKtUUMrHibY2euv1DKbgH32hn6AUq5ZA2AyiafcV95NvIVLHZl5/N0naO6Ko8MTeezZXpacUDWKZFDnCkyyTSNQ2p/WBH5WdcllFNo14gllujZ6LRGVDTkJ0VJF1WhbZvZV/ejwyqWoFQIq83ZoLyN2UlWuiBbHRmM+0qElLnop5z5hYI0QQ4TJZBarj9UltFImzz68H1cKjcRX3BrUgOmofe3kaB38S9Xqn0IdLktjxLkJHO7fphGFCJYmiP1qP2qaZgnEUXe4p4OZxYoqCZxaFA6ktTr1Wj+VDQDBABcSKF11WLB9pCBlagdl0M85Cnt9Rz64BYueYQWKa2UHkJGErSgHSaVRz0mQIp3kApFegb8f9svbsX9e5eVKvthSnGinUd+QH3mcu5cH5UGbCNAW/ZhJLAbbOMPqlklABQcn8NUrdooJZhCIjlQ9KT0TMut9SuLVmypMDl5rbddtthyZIlbbc7IBC13nrr4amnnsLUqQMraLnFFluU6jCMJ+Nxc8FmegaWqCyTCjJjoOqqQAQeLRNS2vAUfPpuUFtL+8KohYweJYJZSqaLdaqA4kMk1JbyGX78IR6TNWVKfYPzbFmlcw+syvZFFqfLKxGqNjv+muO7hJo/vKSG719Jhk/JgEnkbp2FXhvAa0TxzEEAQCMLOGSOf4NwEIjFHPnv1cMORtZZQeKKN2eBByYI+wirT0XeMup3XO+Pnz/+eCXPEwdRABe1ZKKnAakdbj1uZaRzvk0zADcQnlMzj2TsTcrXLnhYbQd1U+9S2SAsUwVRIrhrUJQGCftUDtLs9v6eNSjybkKPSN4OFTKmbfP7JxTftH2qvbl63EodlAFUMpI94ARyWu7WSVVwXWhyF3sH6bN2OlJensKtE2VPSiWgxNiRuPlHNy631K4ppfDiiy9iiy22KP39xRdfhBxgwgi3AYGoN954AzfeeCMmT548oEZfe+21NSZ/jSUjwU0ALrNGpZX8NwltTCAZYMYImLJEyswVVS3LNBFaFkKA3FoRNv06svBwzyL1ZP5ZKgGkyp2zIHXcgSAZ8IFiI2+UzjIkUgahQX4c9ADMdK5bVddA3feTQnnufCgJIAyl8PZi7wcPi5FXqGYydC1cgOUzZruyN9xCQJtB5+c1u/kWJIcdXBgADKTjatFvXHuKn1cD5IT7PLyWZyqWeYLKuFAxUIqFT8NsulgHyl8bfm74cu/1KssoLJc6oPUp644DJi5w2IoEDLABVQnomt8GsNehLDTtvJDaizbydcq01LiXqD/Zk1ZZeqQRxb1PVDQ5rtNZpBoUtd4ynaHR3YNGb1/LPo1Fm3j0h4LvXJHcad/J+BwI54Xy/w/mlVIqEimNJ4ZZIZSnElko+TXS1qxWZLttvFVtl112wW9+8xuXEBfb9ddfP3ximwDw8Y9/vO3Gx7NJRSRy4cJaUqX5b5bH4AX1VMG7MZIWu7V1zSBTvho8PWJkqgK1Xhqk+bYmGuiLvAAfcqPv5AEDQl4CEOrvxG0QWFKJgpDeQ8RnlS4kUvecJJeplnOH4v3x/WR52EYz0EHHFlvZw5Qb96jEtefot5Uzrcp4jzao3n673ziXRnD9pIdZw14fqQSgVIGEHheTJuAqU4VGT8N5LsqMSNb8O4ERE4Eg76GyXqkyHapWSuYxWLPdb+bRQrCeBWso/MY9bVJHwCfavwvLojmAEVJCpWFGrWbn1J2nfgBQWRJGvC2JacZ6c6EEQbgfKW04jydocHHIeH/xoJ5pg1iEzG4noOsN1Fauxsx7foA79jqh5fGNReOTnPj6BBI0UZgPYNmT7Jq4+0UbVNIKm3R5mQinIo88+sA8WsRdk6mCGiHdgAyDD8eNdwglpWxZgq6V8+bzn/88PvKRj2CzzTbDZz/7Wad6rrXGD3/4Q1x44YW48sor2+7TgEDUYGvVjEcLXb0Rd0VJZPVG/tmThf/39PYrQA+HEQdHSEuoJk94pbOSSzSwQYRd2ma1qQrtR+tRW/zdkT9RdK9bQUkJBeVDJAAyY0dTF5aQebo/cpJ3zp+i8J9MFZKqvYUpy85+No50G4ZvRAEYxsRvbpo8ZSWAASBgAcShsNLSMjk5Xczb34EA7l1ZfdXvXAZSocgsP5fMi8ZDsGFmWQhSXQHdHIzEs1EVgC0fqoukxIIsu2LZF//bmlgMpuJjaXov9gt4QmBlw13c+1QWJstBugyX23NcBFAxcLLLLJeGe4piAFUM2ckCb0so7jk1yJT3jsdhrrLnFABUqnbyV3tzNWQ6vmiw8QQMQPDMoGcJtJeZ0CWKDq4uHrsmQglAFz2Bfj/hM4yW8QmPVAKiRH9trQ2PXX/99cH3er2Ohx9+GD//+c/x7//+7y23/ed//mecdtppOPHEE/HVr34V06ZNgxACS5YswapVq3DqqafisMMOa7tP4+sfNcJGacOVzjRIGQaANKmg741VsJl5dTeYjwVzD30Gfo3OsPLy6zHx6A9BKjbgMu6Nc5EzNO88T242Fw4ecVmZeJuCKKHWDvAYneUqwhKZ1m5w4PXFMiPcTJAy7kjFWdeMK3FDxwLkYdVU+eVNQowEPCitOfaiFUKEOQDh4ScCE/bVBEDlVjn4QAtidWu3PB84/MDASvhom7JO4pz2tGaB9ERw3EyMEUDBOwWwEj4RGIoV4OOQHl+Xmy/5M7i5b2mtx5LlgL+2vIwLhbM4B43uWwqVAmFISKXSTYx4+KisP7HxTC8+OHMAVdiG8Wso7BRmBgooKdDIS9QIyYEAu7eldLQDT5yWDjiZeh2N7l7MffSnWPDOTzY9hrFik445NPhOoNKbf+rE54xvI5Unj0uEzwIS4i1bxsPqQMT/lL58D0YoCPFWF9sEgA9+8IOFZYcddhh23HFHXHXVVTj22GNbbn/22Wfjgx/8IH71q1/h6aefRpZlmDlzJo488kjssccea9SnsTPyj0GjFOFCzD21PnMCVFJJqGqzYh4jZ2WeodhsiKsY0ipTN4+3a1VaJhj4c7c3SvqjmxTJ5p6hsjRyQYANxnnQbN0zgXhsMjorEH/jgThWbKd9x+Ggspkwmc9IKz+mMqOwRH8WcHKih3zcng8vheCJHvrUVgwgYw9b/N0Wfg775cFVSApvFeorA2G8rfgzb78/DxQH7O1aMzIyAShusbJ1sa0WvzUBe9xC/lOzY14zAjM/znp3D1TumRrvxv9L4b1vl3lJhNbXhsKo8TL3udm2uXdL6hEilmdDULZlnIOoZrbnnnvi+OOPb/r7o48+ip122glSSuyxxx79AqY///nPePvb345KpX+ItDatoIlJKaGSCmRagVAKMkkgkwSVagcq1RQqqSDpqto/UarQMWXNa/kMpTXTqikrvEtWSAVmmjixl0eyGRp95gMaaUjFxFggHDy4UjRAniaVzwRDjSeqVs+J/nbWnYfiSjINOQE4BlA2pON1YKgSu8lsAWPOS4oJ6DLSN+Kp+P1lkzVuuMkdXyudq1bLuQwFL/hM60h2XK3a5uR9Civy804Wi6TSy4t2lh+7EmGGnV+v/5BfM3mDsnMTH3tsZerkJrpn+P0fcAJLaAyC3VvN9snXtesVPaGuwHDUN9vn8P9rE1ps6DomlvNj8G0ZBqwVhPL/mXp3LxrdvU37PJbMZx9GYF+FWl8F8eNqpeBNAoolXGQ+SQbs9aCXSvyzSOTPd8naj7dda6NrPT09+P73v4/NNtus6Tq77LILXnvttQG3OX36dDz//PMDWnetJ6qJxX8aIPdMpRXIpIJGrTdfz57CyijO7vqu+z065r+vsJxmz33X/T5Y7o/LBFyCWB2ZltE4xJfFwMg9cCKviUSYPaUSZetYsXT+uKI6mQv7BX0XDjhxVzyFcGz4QkElEo0e5O1nwXr8sjoQ2AgHMQoZ8WVCiUIYrnr7AgBA96w5BckDbskHD7IJCMgJ/joDGjlpOF+nlbdDpgomFwiNzwUvAE3gSuSAlvPfyLyERFYysIhSLpgSzNNUsfsgqQO/DoXwwJaFx6EzCvVl0TZxOFE0BZr8eNbEA8WN7sNm596U3Ot8/8SDIsJyLKhZ2vcIQMUyIfZdulCe0caFoWJSug9L+lAeVzK3siZ0vRV0bw21N7vbPU2jZnR+m13vZoK1QD4xS8oz6uLnFr8GcXYwJ6XbcGpI+u+PlzdUZpDBDNKVNNjtR9umTJkSEMuzLMObb76JCRMm4Je//GXT7bIsw9e//nVMmDBhQPup1QZeKmktiGpirQqMZtpAE7E85xw88pGzRqpr/RoRy5sZD1GR8KU1E4WOrGtcoVy3ic/Kqd3wd8th4N6ASqetLq9rJti3I85GgAfwwAtKgfhTlGnFjQAScSAIIMUP4NjDoAKhUa8yHmZHMbmDfMDnhYm7Ft6GOAOPG82cM+M5NpkOzxeV8JlwxCElWZL5vqMsSO2uI8lGGKfD5Y+nGPYLvGv9cDqEEkjyQdzkhZWpCLQUAnVjIk9U8d7zv4cZjkAxjNhsGZ03Csf2523j5kBw5GnioS6RVhxZmc5zkhTr1xXu80ivqZXFACrm69F1ooHb9i0rEqJLjoFMpRXXTqZDaU7K0hsvFotd0rG4cx6sywBUEnKdWklg8LA3t6IYrsgzacsJ/MNt2RCE88a7wsGFF14YgCgpJdZff33sueeemDJlStPtZs6ciSeffHLA+5k+fTo6OzsHtO4agaglS5bgZz/7GZYsWYKLLroIG2ywAW666SZsvvnm2HHHHdekyTFnRM7kacMyD2+ZegMkJmlqdSQTBnayh8uqhx2MDLnUAkJSeOyF4hanSMdKyJSFIqRAo7fhlntwEZPMfXYSLWsGBqhGHLc4O5WTvbn+TqYEVA5CKDQjlUClWkGaq5WbHEwQU83oDFmt4QZS68EJycT22GRL8VRVsXIO5IEKLM/AK7O+636PCUccks+MNTLlQWC8NzqmIERT017qIM9QBGxZHCLD6ppmYMpLH8TXqSAgygj0lO1E58hkGRIlXVYgB1ySeY1aWTOvUrPlcXHrmNxt/3vlHolWNeL6I4UDoaeDBuKm4pmU8aVDgNNqwG5mQQichHKZRILvn3HFhluZkB5EZcpAJjmPU0roegPv/vXXxtTErz9zwEUhkJNpxnfioXr6zi3TGUSaT65MhiQtlsjiky9FXsZIYV4oWXxwrbVhs2OOOWaNtrudy80MsbUNoRcuXIidd94Z9957L6677jqsWrUKgCVuDUZNdCxanD6sqilkWoGqpuhYdyKSCVVU3zYZHVMmjmIvQ9I3cYdaASghfSV7q9FUzjkQMkynDt9bP8SbewR8GRmnoUMzbucet79XmHwBmZdfkEi6Ejfgk1Izd68TR8sdt4oHJP+AJe4DhcF4CIfztlpxYPqz1Vf9DkSQdxpXJQJ+nEtGPCXOIXPHK722TZlEAzehhAtR0zly3JKS43JePCEKy8jqRMjOwRDVDeRGACsARWx9d63YMtpXGeeI+k8curJjdveX4l5WuPMHlMtIcPCTVCuloq/cQ1Tcb1nh4zgMF3IFm10zvg8O1oJjLCR3eP26mPNFZoxx4Gr33419EMUBKpBnzyXKcZLiF+CzIqUKuY+cd8m5aWRx2auyvlAf/DYjJ/9D2XmDfY1nu+mmm7Bo0SL3/Qc/+AHe/e5348gjj8Ty5ctHpU9tg6gvf/nLOOuss3DLLbcgTX08Zc6cObj77ruHtHNjzShbT6UVRzrvfNvkMZXtQoCqlQcqM8WSLjxUAqCUS1AckGJCtwVGYZo3+8wGPpd2XOCR+GLHPNVcpTIARHEGnUolVCKdXAGAAATG2/mQSTHsF69LPCgCIsltJV6oAVr3lb91XjOVqJaEf133FeXt8dljiT14cbiJzK8vc1Iy0+Ui8JS3RQArJusCnmBP2wllwVIifaHnwKsnhP1NeIBE/eTAqQyI8wEuBkJlg1sMlHgiwUC8TrEMCD9GapvfF4bdW2Rx6RAasIthH5FnlGbBf6dZRl4cJiSgEHhMpAwAli8fw9pPE1AY3NTqyLSGrjfQ6Klh12vPbHmORtOyJiN+GQ/JTwxCAEXGARUHXJS00soGM3EaSqNw3mBf49lOPfVUrFy5EgDw2GOP4eSTT8b73vc+PPPMMzj55JNHpU9tg6jHHnsMhx56aGH5+uuv3xb7fTxZprn7WDqvR9JVzf+EoydvQMU5Y1BRZlOOD4XE7OBoPH+IMlPyh0pYmiLMhikb0HxbsjBbJ5DC90EPNCAclDx5UzoAQKBDJXkYlROsWb0wPqDQQ5h7XQAK00jnEerPuP5SK9AzUFt91e+c7lWZ8dCaruuAB5V2JahUKzm/yrjjqnRW3KARh61UooLzReCRey1j4MCBiFQC6cSkcM15qIv2T9IJ3ItFIDQGCxws88zAovcprI1YJizq+xP2O/YOlYGVZoVsm3kZygb3eMAu608r40Ty8t9btxNoQzE+FGBDeJn7T1gvlanVUXtzNUy9gem3fqdl30bDJn9yvvscEuXjMC4niAvIVIInnJSJm1pvllUkj72BZTyoGMz2B+yHy4hYPtjXeLZnn30WO+ywAwDg2muvxSGHHIJzzjkHP/zhD3HjjYN/Nq+JtX0HrLvuunjppZcKyx9++GFsuummQ9KpsWLxg4gIm/THSbosF6pjvckj3rcpxx+GScccWsioA+wg3cqE5DIF+QxNhgNVSF4N9+EH3SIZU6Z+Jujbki5TpmnJCyWRdqVIuxKoRLqMnEq1gkqnfdED0nmTWImMVrWtqGSDDV1yr4EIwiJF3o10AGWo62apRDn+VmxEMKc+ecVxmffFhzDp3AQaXuzcJlUPrijbkbxv9rz580LAtpCdlCqYklCH80rlwqZSCSQTE3duVSqhKlbOgYewOMhz5zn3UlowFoZmORjixxgPoLxf8XHScrI15S2Vhw/5BKBcFqG4rPmjN+YWGpZwwZ8/cYJEmXq5UDIP4dksvUDyoV5Ho7eGxupevOtX/9a0P6NhMR8sPq9lQFoqP+GK1eBdPcJcxoB7Wm37oVRGTOyPjSZuIxnOW2tAmqZYvdomRvzxj3/EvHnzAADrrbee81CNtLVNLD/yyCPx//7f/8PVV18NIQSMMVi8eDFOOeUUfOxjHxuOPo6a8Xg8L32TaeNCeDKpQHR2jUr/dE33O8PlFnAqchVk5z3ohwfAtyOjLTggCwZIyj5rQu7kfCOZ+lBFpbOCvhV9+eBcLKVhB/2c0+VmkzJsT1kSqNHGZdVkSrA+V5wUAlBxA5IraZOvp1iZjFYZm+3a8v+4puXvVPKGk1sFk4LIjMk5Y5IdswVMuhZxYpQlsRNZXRbAiARq2oZNEwKpGlACjRtuQh1WbZ3WV7mYquNS5e2F/LPcMwhj1dTzWn+xN0ql0qXpG1jQV+9tsGMKARC/GzkXkOosBuePvQeq/E0I5mVhtUybQsIF90z09//jg7mJBmNXBYBd47I7rOy/GdfS4+E8e238tdBR4eH4PjYs23isWBkPjKwsYxYIPaOxGZNBKTuhis87ACfF0qwvTfupJMQIxcjWZucB++67L04++WTss88+uO+++3DVVVcBAJ566qmWOlHDaW2PCmeffTa22GILbLrppli1ahV22GEHzJw5E3vvvTe+9rWvDUcf8dxzz+HYY4/F1ltvjc7OTmyzzTY444wzCloOzz//PA455BB0dXVh6tSpOPHEE9vSeygzoWw2nk3Lb9jPxkCliQ8jmZHNzljvMx9mIZ5QaA7wIb7+jEAPWVkmS+BRYoOHVNKF2GIeFC/iqXKgEhdipXY46ZNc7ipRSCdar1Q6MQ04C+StqHRWHLiK05mtAGoOqiikRzNR2o/jZpEnSzkAwT0YfDDmHqLhNg50XDkcV0TZnnvulSAAQaE+Mu5xq1QrEbgSzrNHHiiXpZiHrTvmvw/Vww52v5OHiZPR6Xw5j1ak3xWHU3340Wdcxtw0wdqOzwu9iCs3kFA2F4/lfSmTvegvXMM9E808WsRlI+AUAyjv8Qw9upx/VtZmmcV8KH4cAGBqDUc2FyoHrAw00e87XX5aafujYZzbRNbMyxcTvTNtYEyGOKzdyjgAi88/56IRry2o7zlCRoLAg32NZ7vkkktQqVRwzTXX4NJLL3XRrxtvvBEHHnjgqPSpbU9UkiT41a9+hW984xt4+OGHYYzBLrvsgu222244+gcA+Otf/wpjDH784x9j2223xeOPP47jjz8e3d3d+M53bDxfa433v//9WH/99bFo0SK89tpr+PjHP44sy/D973+/7X3aFHnLdXJ/rlzaQCV+AMi0QdbXi7lP/AILdjh6iI64uU3+5Hwgn025B33uaYlnzGUWz6KbcQyC7/Xm2wklkNW9AB1vg969uKMvAsrbL5tpczCga34dKfNaekqh3l23bv/UhyIzFbr5g/Tk3DSYZ4M8VaxCO2raFRi15ywktY+ECRWGjqjoMpGSOQAhD5tQArrusy5tO9LdH1ChHhb39Nn7WnpBwXzA4sVcuWq9kL6uHBkHcgCgoQMhUJkqmJp2oEEwcCyVlbGIw9Nuee5p4sBWIhxUY1BHfYr7SdsniQhrL7bh1W1loVcoQzz0O7AYbFMMy1Mb/P8WZrf6FqyOmgyeS+4eyb1S5PFz22jLjarD8j5VMnZkA+NJUTMAxSUm4nNNkzINOP6TYP8VHiK1+xHOQz9QW6taPrK2xRZb4IYbipPZCy+8cBR6Y22N/zXbbLMNttlmm6HsS1M78MADA5Q5bdo0PPnkk7j00ksdiLr55pvxxBNPYOnSpdhkk00AABdccAGOOeYYnH322Zg0aVLb+xVKuvp4gJ2xUTZMo6cPKk0gkwp0Xx+GljHT3GLvEQA38MWz61ZtDMS8NyDMduEEZvq9bB+BSB7bntSX4/Rl23YcbvLeLAIItG8PFCwnypgs8ILEyupKecI8fyhLlYMHUDFlBIOcTBVW/eI3AzpnQ2XdV/4WXUd+IAhrZe5YvMIycdlII6rR03B9BuC4Yo3eRqC0DHjuTTxw2BCdBZGVTmkLOkO5bMng3KiisCst46E+JzDqgL8MtrXXJwfdUDC64SQcJOBU80lQ1faFOEKtQIj3fsWTBqEEhC7y+uJjiY3u97L7tz8ryx6MQfFAxDtjDwgVH1YqVN+O1+dAirxSje6e4Dk31oz/d/kylwlZUu0A8DyohJWBseelKFUQA9eyPvjPId9zpICUNv5/MJg21trQ2oD+Oe2kDn73u99d4860YytWrMB6663nvt99993YaaedHIACgAMOOAB9fX148MEHMWfOnNJ2+vr60NfnOQNETpOORB7qJNkZsXFhvUR58c3htredcDgyFZZdIaOHb7O04Ni4aF9ZmIDP1Lgr2+7LAyQ7yEmYPNRkFckzvzzSViFPEuDBVCsj0njcRj3ng7mwkQm9IADQ0A0HMny6vnFgI+aIQWfQNe0BSC7G118K9HBZ95W/xcSjPxQsy/L+a517QWn2nHuV+PVUSfEBT6nu/Dw53h955dw22gq4KuFAGk/Pp305Inp0X/IwX723AVKZ58AJzsOSOY5aZrxiOAFE0+vXQwI3GNL+uKcuPN6QyM6X22NvzXexx9E8I67Ynj+XwbqsyC3vj+f3eFBc2s80JIXHfXAZqTr0NPH3wHOlzZgGTnTdY8AJRFnD0v//YzI5TcgMvOwE0ERUGM2vswWnkV4eB7EjBKKGIhw33sN5Y9EG9C96+OGHg+8PPvggtNZ4+9vfDsCSupRSeM973jP0PSyxJUuW4Pvf/z4uuOACt+zll1/GhhtuGKw3ZcoUpGmKl19+uWlb5557Lv793/+99Lf4oQPHqbDASanUzgBrDZja8BMzuaeBD3Y2JNGaFzLpmEMBWQydlT3QyQhAZar4xyMgxcMNVCS13ttwYImrK9NDznF84DWdAgJuNBhXOiuWlNxiMIv77vk11hOTdiUBANC1EOS5TB0GPPojf4+ErfrFbzDpmEMdpyscJCPCfa5NxMNJjnPGZCtMIt055Vw1V58tDcGB9Qx5j5jWPhxoFdNZqRLyJjGvGQDIunYlf8pqNPrvEtpoVmg65231NgqEcA5yyJPG727vkeGemShRoklYh9+DcaZY7MksA2llA70b8HXGzo8/T60AXXzMsaI97xOf0IV1+RSoZJJvT+VcKRUkz4ymbXzaUdDRpA0IPX988sSfC/zYCdwrFYaubZuh174MvLrrGpdNKvECrrW3rg3o6t92223udcghh2D27Nn4v//7Pzz00EN46KGHsHTpUsyZMwfvf//729r5mWeeCSFEy9cDDzwQbPPiiy/iwAMPxIc//GEcd9xxwW+ipIRElmWly8m+8pWvYMWKFe61dOlS25YrjqudTpRMrcCmKfkzmXoDcx/9aVvH366pRAUDJw2QBKjoAbPy8uv7bYseuhxEWKVu6X6nz62kA/jnGCxZkniYVkyDhSdzS+ZpCkm/3GICvVTSSQ9UWHX7WLnbSS6w9PmY5MvJ7R2TO7D8P64ZEwAqNjpGEhQl2QYAzttGpPtYK4eORyjhrjMHXc3KYwDIMyfDxAGyphlNDJDQtab0cytXoZz0RBDKUj57znlBpd8+zVXqy8IvnHROIRypPHme+hUTx+Ni4wS2wzp7mftPcB5fTGzmy/yrXFeN94fvp+z3shCd7WscMi+Kj8afhfLHa+p1u1+tx0y6Pl2rWGE8oATI4nsZEC2cD+JGuZBpeB+VeReB0KtHWlt8+UiYyTLoQb7WeqKG3tr2515wwQW4+eabg2J/U6ZMwVlnnYV58+bhS1/60oDb+vznP4+PfOQjLdfZaqut3OcXX3wRc+bMwfTp03HZZZcF62200Ua49957g2XLly9HvV4veKi4dXR0oKOjo2UfgvR3JaFrDUBJyHwWp+t1KCTIRiBLj8JRPGxDgIK8VO1a2Syae6eM9sVey1SY3XaSBkD/0Jd5KKhUU0oJiNSG/yww8Cn8vH1K0QfgCPQV1ja57GG0GxQzbRyp1O1LCphaWPg39qS9euF/rdE5HE6rVCs+RMfCHFZ4NPIc5iE9e178tdrgi/+CRnT+K50V25aOEgUikBSLp1K4k7xEjZ6Gb4t7c+AV6U3sNWO6ZEIJ1LvrLhypEolGfp/LVNr+Gc+Bq3XXnPeJ82J0TSMzmQtViqjAM3mrCKjweoycgO69ZSZYJ7ayUFM8yIfrs2SAfjLHmsknlJV6KQNXZcDLAwENmdhMTVqHvFGjbZt97WOuqHYsD0H3t+UsWimSAvdLiYJnIAZKOn9Oc05gM/AEIJi8lXmdYr2u4TJbtmWw4bwh6sxac9Y2iFq5ciVeeeWVQqHhV199FW+++WZbbU2dOhVTp04d0LovvPAC5syZg/e85z342c9+BhndzNOnT8fZZ5+Nl156CRtvvDEASzbv6OgYsjBjOKPJZ3J5erBG3XqjHv85Fuz08SHZX2wvnfdLTP7kfDewaU0eCeaV0uUPZspS40YDU8yr4OExzm1q9qDhPCeePUSeBQuCyIviPUXk/eEFf+PQYjyTFgow+aBN/CACkJn2QpEiB5ZERndZeqnl5/D9Emj4+8W/HuilGFF7/UdXY/0TPxKAWTvoF0OzBj5cGvNFOiZ1oG+l5f9RiI/WpQLTPIzBgRgBHsuLMmj0NHK9qMyBd5tRyUIvQODdJOMAgTyJJAlAEwL6jfbB+TFcpDQOBRrYc0QcPVoOWI8a7QcAhDSF8I7PEmw9ISrj6Lj/jyzqFXESfRyupt+sTtfAiMrNMtZc/xiRXCgFU7flXlxIL58AjnXjemP0XcKDv9bgNvKgmgxQYegu+FwSKm7mAXQSB0quLUA8wnb//ffj6quvxvPPP1+QMLruuutGvD9tg6hDDz0Un/jEJ3DBBRdgr732AgDcc889OPXUUzF//vwh7yBgPVCzZ8/GFltsge985zv4+9//7n7baKONAADz5s3DDjvsgKOPPhrnn38+Xn/9dZxyyik4/vjj1ywzr2TGERPIdb2OoFr6CLh2fSqvcQMeDy2s+Gn5TUQkZBKgLCOg9/dg5mZDi+GDzZgMSbVSELOzJT1CTooLc8gw3MHXc8TQ3EsEkDs+L7OjlJtFkheEb0Np+3T8yEOHUgpACjcwZzrD6z+6ekDHPVrGvU66pt1sm4NOAoVpVxIMMoLxmTqnVFHrrvswiAMmifcWVf1+AO/9NNpAJdKBJaNNDlQ9Ud0B/DzkSEr1BMq4R42DQv5d5VIMKlXWmxh5xtKuBLpuAvBNv3kCsG8nTohw+9LlSRWAtoR9dv+QybTIv3PH3Q87oln2rJMo6SdMSp5w357PyCusG3t0pfc2UThPIkEmdYFfNZpm79kMQFhc2gJb473OQDBh4s+ipm0PJOux4NkKPVAqreQe85E/X2uz84Bf//rX+NjHPoZ58+bhlltuwbx58/C3v/0NL7/8cmk5upGwtkHUj370I5xyyik46qijUM/j6ZVKBcceeyzOP//8Ie8gYD1KTz/9NJ5++umCKmmWuzeVUvif//kffO5zn8M+++yDzs5OHHnkkU4CYU3MZ+YpxxmgFyn8Jl2dCB7lI/wwIhIwDTpTjj+swOeZ/Mn5aIBqqBWJtXwg5stjbxQtl9J6fBo9XgUaSkGw9PfYi8Rn+nwZyQs4EmienUUAyXrLiEzrxTXrvQ0k1VAhu9Ipg/0Q+CKARa57oaQl46uibtVYtZcvuBIbn3YUAEa0Z9eeXyu6FzjJmw/8HBhwwjiXMCBw7om1/h6w60nnzeqY1BFIUPB+ZDrLQZkFRPXeBtKuNL9/Gm7flWoFDaZUHnONQi+ohMjlLMpkBnjImwMtWtcdi/LL+XEreA8d9SXohyoup++xFyqU6yhm1kpVJDuXAihV7qFqJrBpP/uMMhvCS6LfrebdWFErn3buceirUVam54LROXNZdszTBPhkh1YWFzpvlVATbldyzglIjbCtzc4DzjnnHFx44YU44YQTsM466+Ciiy7C1ltvjU9/+tMuAjXS1jaImjBhAn74wx/i/PPPx5IlS5BlGbbddlt0dQ1f6ZNjjjkGxxxzTL/rNRPiGgrjMzviEmSqZPYzwi7ygWs+eUI2AMcL4NlxlE1H32MPAC1vNtvzD77wicZTiANRS2o7IoUKaUUjlRSMU8OKCqtwwAn0oBjvhbSVHIk2CmlykDAezHN3PKmevJI0EJAnsKy4MZ0HApaZ8zCVP1gJFGRs8AmI2cQtycOynLBf1AmzA510YV4ZCnE6L02ZdlixNp6uh7+XicZS31uGvShcXaIdxMOCZYAJKHKf+MDeypoN2qUaRZII7UWPy0AHc+d9ktJl4cWUiNGwLb/xiQDgOMHWNASAZeCpzHjYNHjuqNZyLrxd57VrcX4452ykvHhEDh9sG+PZlixZ4hLYOjo60N3dDSEEvvjFL2Lu3LlNM+2H09ZYKKSrqwvvfOc7h7IvY8q4IB03KpfAl1eqHTAEHEboD1Wd1BHUGLO7Lq9SD9DDhaUI514el5kVcQOEkkDdczz8bwzs5A8SPmhLJYCSbL5AkgEA135SShUecrxenlAClTTJdYCMa88P6mw/eRvaaEd8znKuSWZ8WNCF9OrtCyaOlr1w7i+w6VesKj55c3TNQNdtmKw6qcPVqCPz2k7aF3burAQZaGE2ow/TSkb+JuPK7WFmlAVwzvMjBYwOZ/4Esvg9akzmwo1kZaExrj9GAEmzcKHOkXCcrSVMFrTFyeAk2JpJkr3woDDIBFPF7fk+Ymsm7EnvpUTwfjTe4m1agaeyQZ28TgAAYyCltJnGNS9R0QqcDJeRd5xkWkgfTCo+4QqfN/Q7P2fNvH/2e/n1523GYTuvzl/kg7p2k8q44JX9I9l6663nuNebbropHn/8cey888544403XGHikba2QdScOXNaSgYsWLBgUB0aS2bqdUh4FzifBVLpF/7Htr8Nb4aL0QaVtOIGLQJSZZlCZLHODQ1SIi1uY7k3DOCwsEb84LaDOAJQBYTcDxkNRBS+8651z4GSSQVa1+1+EYYehZSQKRxxPlYp9hljEgaNgGBPnhLAPvgs4MtnvqbehBczNq1jUofLSCTita7lMhIpv1ZeAsHoRl7rzl7zTGdIJyIAWzS4U9hEpSI4byS2GYbtih4j7l3yfCgJ4sJxjhqBIb59QgO99PeUUvn6VNsw92JxDp6re6gEdL0GnsxAIInao/s4LhFC4UH6DoTZm7y/odetxPuRg/vif0Y5T6vbNx0reVH7ydzjJtOK85z455MqXBvyOgklIbX0pWCUHHHvOQC8/eITAMBmjGrk4WnlREnrvQ3kzEcWdisp/ZIDqWbK8lLJwPtdKJUDFJbHoWOlZACY4vI5I2UGg8+uG++Qb8aMGbjllluw88474/DDD8dJJ52EBQsW4JZbbsF+++03Kn1qG0S9+93vDr7X63U88sgjePzxx/Hxjw9PVtpomCtYmrvAgTAWTsU8da0efB9O2/QrR6M3z3biD3X+x2im6WQfJlZZnA8YUsmi5op7IKmAvBkrQlPqbwAi2aDIU8oDoJaTSjjwoT4aGrxSBeSJF6RSTf1wadk6fKj52l8V119ttPNGUR94FhknZI8HU9UEycQUpqbdLJ4yEXmqPgfV3OtHgEZBMW9kWF+O1qfzRJwyyrQjDhtl6InUP0YSJmqaVCtIuuyFq+fnmMKQQHiv2JBsJfCEcZ4SlHJeMNKRUonK7xPNjo1K3cgcSAGNHkayV8IBfwXGCcs9W7G0gM0ctMG+wPNkykPWdJ7LjBIp6ByGpWrKvV3xb/wZFA/+9J0/s2IBzdjjJBPbnh5Bjs92F34WIq1A10JPen2V/cMTkHLnh93TZRl5ccg/zpb0hac9eOTc1maeO/5Zpkm+jXYT5ZEuQqxNBj1IFDXY7VvZ2Wefjf/5n//BI488gjRN8cYbbxTWef7553HCCSdgwYIFAW85TdNigyV2ySWXoLe3F4DVeEySBIsWLcL8+fPx9a9/fSgPZ8DWNohqVujvzDPPxKpVqwbdobFmpFQOIMjE0zVbNqQCG86L9Y2G2jY+7SjonMPCvUMqH0SA/M8Og41POwovnfdLAMBWZ30SrwNIJiZQiUINNZf1ZLcJlbBjtzgfmAArL8AHLE7qzLSBrFZ8+EaHHgD/uWSGnlSC9ZznScqg4ryQ1gvIH5CW7Ou9gip/UGrZKHXF0+yUQOFohDHW1P72xUuxzXnHo7emoesWSDl5glw7Kc4o8xyoDELROfalLLikATcub2BFMpPgd12z2XmhErR0iQYEulzWXaI8MKtb+QTK6uNgTiSVILRFywk0ZjmoI+0w7qkQSiKZmDpQSF4rIAxVulCwNq7IMv2rKARq+2g9c5Ri71TMtf8PxP8hvh4vMRIALcnrD4Zhz1YmpIRMkmAwt+ePUu4VA32eA2WM9WA7L1yt4UpbEbAYKcVyB3LqDZcpTOeQS6EAvswRqby34prFaubEdeQipD5LMdTXigFYmamkMl7ok6NitVoNH/7whzF9+nT85Cc/Kfyutcb73/9+rL/++li0aBFee+01fPzjH0eWZfj+978/oH3wUm9SSpx22mk47bTThuwY1sSGrHjSUUcdhT322GNQ2XBjyeyfTEEllUI2RqYNdG8Nla6qBQ7MNZ7V682aXGPb7Gsfg4YNIahEBZkrktUzy7SVGVDKgq5MG/Qp6fSASMk55jVRMVddC0tz+JCGz5Jr9HheFA9L8Jm+C9/kTxzqH585x5wDd97ZrI5CppRWbAA3mzQ9Nd9W5G7nn7kXitoiUGa5RBYIbHfhZ/G3L1465NduOIykGWwYK+aKhJ4U0nryGjk56EyARm8NnrjrQQltI5Sw4c9qEszuZZoDh4iwq+s6kC0QUoSK+FVPhnfCmnnoyRY5DnlstD8S5iQxTXf/5iBCVW3H670Np7NktHF1+SRTLLfk9pDjV+nMj41I7qmCoP8Tu3f5/c1D1TwMWmbERYtLx5DciG2jGFrn/xf3/MlxLHlGHJDTvs5nmWW6nCjt7pu0AjEC3qh3/OgkIPXPGJ6RqVLpNMB0aic4Jn8mcSHXGLTzc0hUC6MN47j5QvJcH0swXlhML4gpHDwcSu+mVocNnY4MtMqGIDsvG0ZiOZG6L7/88tLfb775ZjzxxBNYunSpq3F7wQUX4JhjjsHZZ589YCmiJUuW4Gc/+xmWLFmCiy66CBtssAFuuukmbL755gX9ypGwIZuC33333ahWq0PV3KibSiqoVFPHORBKBiE7mVTcIB8ArEatWZNDYuQdimuQGZMV/vhCSdS6a0gm2icv97oIJfLQinSlOOwDyH/358KGfpKuDqQTEyct4CQHcq5MyLvK3ef5AJNFoQv3SiOBRlVM5VbVDrceXY9iiQYFmSQOQAkpUelMkXRVbcmXahqGPqR0dd/GkyeKTLBzRjw2Dnwq1dQtA+BCXw5ophU2sIiA40eeOgKdlc7UeyTTivtvVDoTt57MuT6u/AzzXBEPqNLp+YX0GwEF4m8p1h6VhuHbidzTRhMDOi4OlAB7j1lAFZb5EBHIpN/pPFA7/D9AIMmVqsn/O7Rfex2yoD3hMkt9QkUzbTbAZ8n2dz8S38kBu9zbJNPQSyil977QZ8A+t+jFuT3WwzX8BYllkjiPPiW16IgmYO9p5cLBdF/QdZfKvxM1gQMo96wYwP/ahT/zkl7cYyXYeTPGhv5sJQQfLh1J09nQvEbL7r77buy0004OQAHAAQccgL6+Pjz44IMDamPhwoXYeeedce+99+K6665z0a9HH30UZ5xxxrD0uz9r+18TC2pmWYaXXnoJDzzwwKjFJIfD3AOIPVg4mZD+dDa0V4dKE5fp8t5nr8Mft55f1uwama4ZUBkTAI5QDhZioFImtE6mDeq9DTR6rC4Pd4s7cm7CQYVwZGU6fl3ryT97EcOky8/6JePb8AcWnyHTAzHIyMpDbnwWzGeD1F7gYUnyQZc9+Al0lRJOlXIDi72OCXRvHzRlIxl/7gCMGy8U4Hlvum6c6jz3CFY67fUWWkJVw4ESQC40ac8dnTkb2iLuH4KQKRAXsvXeDzKZDzwqrUAmjbyfFTR6ci25zsR7H1PPUyGrVFMbfm3CUXH7iPkwKryH3bqpgtDChTqd0Ka0sheFbXQs6CpzPlQ930/MUwrbcFliUQkREsWlRAdOdLbntZixyM8N/Q+4ETenbBLngFUagiQuyBnzfeLJ10hYo7dmS/R0Vpj3Gi47Dyp87iiwWpBRyZrYaLmqJr7GHZMsiMnlMbcMADjvCQBMrY7MGP8cUkXgOp5s5cqVwfeBlD8brL388suFEmxTpkxBmqZ4+eWXB9TGl7/8ZZx11lk4+eSTsc4667jlc+bMwUUXXTSk/R2otQ2nJ02ahMmTJ7vXeuuth9mzZ+P3v//9qCHB4bTwIR3OTpo9dIYjcyOO33O+Ev1Oyyi7JdOZIxz7sh3xTDycsTnujLSudRf+i2apfHZPg1ugIyTjQq1lDyo/41O51y8+3vgd8LNHlQNZwGZSmrp1r6tqh+NYZTp88PFr0zGpw4Uvx5PZDEPveeFZeWTu/LB7NTMm+E7ruNm481rZ86pKrgd9tn2wXiq6DklXFZWuTvuee68qnYkDCnz/knm5PPfKe8fovgwABTvO2GNjAZwKjyGpOC8qAe5KZ4KkKw3uXfsuAhDm+sC8HNzDxF+2n9zb5YsPl2lehcfgkwDIO0TnRnHPCDteGsBjDhN5Yvh65GEqAxu0D8W86iNhFgB50EkFxGNF9/DYvSex0pmGx8nuEQ78K50pKtU0omLwElMq2NaruavgOebWL3n2S8mkI4bZSGxzsC8A2HzzzYNx/Nxzzy3d55lnngkhRMvXAw88MOBjKMvsz7KsZcY/t8cee6xUmXz99dfHa6+9NuB+DKW1ffWbxTv/0Sx+oPAHEx8M7MNVBetkfT1D3h+pBOr1DAo2LOBUuPPYv64bl0lEatOqajOq0q4Uuq5RW1V3gnUUZnCzwFqkAaQkZFdHkL3CPRdU78zzEYrk7czk3KjcHLeJ8aO4qrLlGESzZPaQyhihVsI+9FRSQR3+fPOwlO7uRaY1ZGq9UBZM2cwOR1zPCdXTzj0Oz3zlPwd7mUbEiFxudOZCq1QWhmcsAsgzoCJPRf5ZMqBJv6nA+8dAVASAZZr48786vN85N6dSTdFAzXPico9XswGb3yMEpKw3M08WAJHofUamrjdy4FG1CR91S5pGreHu4UZPPQ8ZVvJyNVZ3TFUTmO4+5y2NPUNO8oFxrWJNszJdK38uilpT4e+hThF5nso0iII0/JwwTteKzg8PZ8eemszkQDrPXo2v6UiAAaEksl6vC0XnlBILVCJdVq/jgzEahSKgmYZeOBNxvvgEzYBLeajCOeckffqNi5IKFi5VlM3ISoCNFPgcyuy8pUuXBhykZl6oz3/+8/jIRz7Sss2tttpqQPveaKONcO+99wbLli9fjnq9XvBQNbN1110XL730Erbeeutg+cMPP4xNN910QG0MtbX9r5k2bRruv/9+vO1tbwuWv/HGG9h1113xzDPPDFnnRtOEKIanVBqGOOI/kak37MDTGFpyeZw+rWvapZcDcKEccoVTiK1jcofNhnIDR8RzIs8RAxScUM4fTJnxxG738FEGqMFxjnjKsFASChVoNBypVSYViKothkoAyg0eUiLLwREZ1frixP1Gb54GnSaO66GqHY7kqappkM0HhKRaGnylktBMJybpGl5X9lAb55gFWWH5IAOQd6ZSCAnFiRKx58Kwa8YHFzrfVCaEeFfKdED32sLGUnqgbUuNVFCBDd/wRAEH4IxPzOB9Ii8MAIgIDFA4mI7XyTx0dUJVDXRvn/euJd5bWckJ6BKASCvIklympNdqk8mkgkzlofMcjFhPlvHSIdoTmH0dyPhzUUqgLCOVrhG98ywy/nsMpnjGsLtuDBSVgWM613Hf+Ps9+49MlpO9tyzHUiqJendfnvRQBKiAPzcmT+Khe5KyFE294ScG9Kzg3qWSyEBLT3fsbUoTBzDj54tQEiIbeX7UYG3SpEkDInJPnToVU6dOHZJ9Tp8+HWeffTZeeuklV6Ll5ptvRkdHB97znvcMqI0jjzwS/+///T9cffXVEELAGIPFixfjlFNOwcc+9rEh6We71jaIeu6556BLChX19fXhhRdeGJJOjQUjTkFhuZLIEqtxErvJM21c9szcx3+OBTsNXjdry298Appms5KLH3q16TTX4ql118HDBQSgVJoPCKnnYVgicDFUGZSyiR76NLBRDS5TazgCt0wSG1IjD0JSyUUvPdmzUu1wDyF6kOt6wz+gUAEYz4MG64Dbwc65THymnUwTN6gLw0NAlMWk3DGQPAXN1t3xjiPzId080cDY8K3qsoMMza5V5OkjXkcm87I/hZCQygv3anfu/G8+rMuvTaWawtTquXfK+mR0Hj6k7RyAqnqwyq+LDcWyUhrsPnPehnodqppCwXsUTK1uwzvVDgfg+P1B4ZmkC+4edYAjIRCXD8q5pzUANrnAK91r3KNUqabufqfJAnm6uEeQwBFNAIBo0C4BUPy68IkMmVX995MLnqkaXk8vAZKxa8I96c0y94bLyBPIeZGucgHdXzkXzYVbWfZgoaxUDn65x8iul5PvkRS2ARB4m/h3Io2rpAKjZBAStN7aNHgmyaFLcm9pY7123vPPP4/XX38dzz//PLTWeOSRRwAA2267LSZOnIh58+Zhhx12wNFHH43zzz8fr7/+Ok455RQcf/zxA87MO/vss3HMMcdg0003RZZl2GGHHaC1xpFHHomvfe1rw3ZsrWzAV/+3v/2t+/yHP/wBkydPdt+11rj11lsH7NYbDybZgBEbPXhi0UeVD+KQCiJJhgxI0T65RlSlM7PidEoh6UoC0i2BJJp5A3BhMZthQqUVwtk9ED6YFfMQGMANgBzIKOZREloWeDQEsNzASBpO2qbXS+0f5pzjkCnjwhV8MCbgSiEbAmSVauqEA2kdOn4KAZlaHZWuTgA90LWG89I0ehvQtQZ2/Mkp+POx40Oig1LkAbq2BK4bYRguHlRlOFibXCxWsIEDsIN06FWyEwQCqVLn/wFVnK27dWBBi/3dD5i86C0fxLmgIZlKKk5x3HHeWMi2rg0qefZmpq3IgCnh3lHlAeHuNx9yTLqq7hj5lk47KCFuWcUdb6YNRNWrWRMop8kHvwbcO1IW1uPg1IXi3D3fWn+OA6i4VBX/P/F+0LKybYfTdr32TDTYfebCtsyTHYNI/nwNwSKbKLD7ie4NU2tAsBAwv6d4tqLKATAHVPReqaZNScPO+6ckKv1VPx4iG4rsuuHMzjv99NPx85//3H3fZZddAAC33XYbZs+eDaUU/ud//gef+9znsM8++wRimwO1JEnwq1/9Ct/85jfx0EMPwRiDXXbZBdttt92QH89AbcAg6kMf+hAASwyLlcmTJMFWW22FCy64YEg7N5oWk0ztsvwvVQgvaKg4U0MqiI7BCXBud+FnUYMFRSq1WUUksKgSCZNaQcOOSZ05QPFZP0DolnYzXS0hVPFhK9iAQQ9yImSTqaQCY2h2B6DaEaRam3x7CrUZUwRmBb2tegMKPN0+nBm7bdmDLxwMfdgmbt+FZJBzxZRyD1A6H6ragaTegO6tQ6d9g7peI2lhnUGDJOf+WC5aOACH9wTVDpTRAEWDUuQNyrfThfBUeK4JsNIy+l7v9pwTg3qQGk73E+1fJRWIqvXY8D649XNvEwcDKqk4nSjql4jqW1qRRO+x5P3kWZymVrfe0/zYJOBEXPl/hLYnTxcQCjryiQQQhpCDqgdEE+DeuTyE7cUzy7mZdB6595v/Hm8nWXiUn1sbskx87c9hst1/d5YTqsyMgaD+1BqQnakLI/PnDx1HHAale6WhvQ6Ugn828bAm/f+l9F5vd+z5RJiSENBbCzxRjqzO+E/BuXPhvrWeKMDypfvjTG+xxRa44YYbBr2vadOmYdq0adBa47HHHsPy5csxZcqUQbe7Jjbgq08Pu6233hr333//kMVJx6o5NziALH8wuj9Srwn/VJErPWvUACkhOjoH1Qdf7DgXtqzlIpisJpRKlBtERB5ec2RNTublD5doMKSHOIVkAP+QNqycCj30+Cwuk5xfoZwHSEiZk+D9gBGfX/4OwOm76Foj6INgAyd/cEklgWrq1Jd5ezHBmh6WdB7oPdM6X0ej3t3b3gUaRbMPcTuImJp2YTVV7UCmdYGMy8MWxKmhMJvJ32OCOX127VTTQHpC8/BUxN3hxG+Re2gbvWz2nodEpGHlN/JrUsmvaXyPVFTqBj4aIPkARiG3MoI0HR+11cg9oYAHlFJKR0Hm3DDJgLw7vqoK7jWZVvJz7z125FWjxAYO9tzko2TywENQHHQahF4Udy3Z8VNbsYitu5YsjMmXcwmE4bBGTw2ZMWj09tn7tcvfU453Z4x75hFvzimws/shzkzMtAlI4PF9SNdSmBCAu/YSptzOCjJzo3Yt/8pP2GKwutaG177whS9g5513xrHHHgutNWbNmoW77roLEyZMwA033IDZs2ePeJ/ahtDPPvvscPRjTJrzhqR2tusGhpKZBz3c3XaDdI9vfsYxaLDSFbpuvMgf/flzTgyFtABPAOegj1u6ThcavaHHhVzpNMsPiKf8c/QA51wEAFDazwQ56DFsgOTb0rvjNUWzPcCCJRsSzLNiUL4ufW/UvBeCgFajpxaAgUq1Azr3vDgPQVdHwFkZy/aOH50EwwZ2gwYqnX6AruSgmM+8lcoHTzbgABTqyq9HEoaT+EDvQ1o5IFEmuOf4PVLQUysBNw4s5BphHEDw7Xg4l/c5Dvvwdmkdeo95b87LJsPv5MXiGaA27KwcELX3czTZkD6DVFC2IONnSSmROR5hPeJceTcSgVrBrlUQBuX9z8+VYV43SnzhMhJk/n+Se8eVgtEasqRY8VDb7r87C7V6A43empuo+Akey5bjXkrmnat0daLR7UPwZd52gHlX8/vR1BuodFVRqaaorVxt10k8BYALjtJ9zidpMVDi/wuyTBtkGFh6/mDNmCwofL2mbYxnu+aaa3DUUUcBAH73u9/hmWeewV//+ldcccUV+OpXv4rFixePeJ8GBKIuvvhifOpTn0K1WsXFF1/cct0TTzxxSDo22ha7bMuIl7reQCWvlWG0hshnKQYNKKmAQaiX82KygK1yXp1iHwg23BGWkbDbSIA9aDkxl2bEduDyIQ03G06isA970POHSSWt5hwpRizO3fGVzhSNnlqgQg62bcBt4CDI5F6vfABwJPIqKY5XHFhQKKZ+O24FG4DpfFQmWL5LAzmJmB6UdQRAYbzNKsmbU+nqzL0cNkOOjqFMQ4i8EMjBIuf1xQCDX2NaHn/mgJu3AcB5FN3vOhyI4nNNgxYR/+MQCb9WSVfVZeSRN4zvP87QomPl56FSTQuAT0jbdr2719VJU9XUJSyg1rDASIcAjN9DNBkhi3Wb/CCduEmLqYXn2YW0onPEJyJ0ruJnFG3Riuvk2tW8lMrw3fveG2wz6VQ1CUKhvE90XripqtWFavTWXBao3Ybx4yg0SpM36cF3peonSEJJIE+eLisgXKapFU8eYw+pqY8MJ8oMASdqnGMoLFu2DBtttBEA4Pe//z0OP/xwbL/99jj22GP7xSbDZQMCURdeeCE++tGPolqtNi1ADFi+1D8KiMq0cYRWLwCooNlM3all55NJ/6dquBn+fkuuwa3bHNbWvrf8xicAwGkA6bqtlZZOmuCAUW1lT8DrIdkAmSYuLOdc/0nolZBaujCdm5WzQY8/SGLgE3shAn4KhRVl+MARUWiGiODkWZLEWdIGIvEeiEqnF+CkQZSrb9NAE+83Ju9WJlQh84ewVBKNXD/KufoZKXUwNuMuW0RTJhUs3P2zg2rr/2/v3cPsKsqs8VW1L+ec7nSHQIAkkoTbgMPAoKJgBETuICroeBsZSMRhfnhBHS8o6kiYx9sIqJ+MzuBcEHz8Bv1GkBEEuSMMgoAIqICgxMSYCEIgTae7zzl71++PqrfqrTr7dHc63enupNbzdNJ9zr5U7UvVqvWuems8oPsBmIzKXUKmgAs7j0UUbSgIsPfFfsdCo/T807eUGJOOQfeYnjseXgrVQ0XPliHLXOkt2fEodMzJQslJRZb6s0tpm6YflgP8zpJIDCf/ti71HAkzPUsA0swyrVLIPBWVXTdvfU1zbcL3pGO2b+m3P+HAju8b3iMiuJWz/Cj8mLtlkqYKh1z/BTuQorLq5Zga3jIq1E7RNhS+o580ryPtraO1cZP1LZVssMXrSESc6toaHPKuWVLPLfkOc2qFgwEqC/3eQf4TCdGc/PVSI6qx66674le/+hUWLlyI66+/Hl//+tcBAJs2bbIzkbc2xtVr8BDe9hTOA5jHxoTJwhEbycdJ5qaD26nzW9AnJ1licxcJyo2UZTa7MADbUKT1HK2iQFqv2fCBpxLITu8FmITNpzvT/6Gngnd69Dd9Ro2/kNJ2OFWNkj1GIpH390IV2iOhGzot8yfWP9P0Gzc2auersMsM2hdliCuF/qjxk0mCwkxrp7Jm/T021YJIJFqDwzo9Q9PPLzVeHPnzf0Mx3HQkQZY44l69jMxUkCneUbcGhyCSBHl/L5obB1E2W0h6Gzb0w8PM5NUhyCxFUehny1tuhd0nWibHyw9WuM5dyFE69EQbfgGjWDISQ+ezRKZwKqE3fZzIWeaURI60kdv3APCJvCUHLPM3Bx2bnvWst65JdZdwEb0vgJ7RRws4l5TgM0utMZ1mmHptApmWpcv4XnAPTtZ5Pv5/YghPCV99rQph2s8Kv85e/StUl8lGWq+hLAq0h0escpTUa3ZQo4rCpjWxA6MK5cfWs78HhZl4wEueMDJI96g91ETZamPE3KcweWzoCwvBST4n/jzMPJ6ByWRhphvLtwbe+c534q1vfSsWLlwIIQSOPfZYAMA999yDF7/4xdNSps3u5v/xH/8RH/nIR9DT0+N9PjQ0hAsuuACf/vSnJ61w04mw0eWNIf+OXq6yKGy2Z9sZyQQoN0/q3f0zZwBS2IVdRVKdhYQaIiIfXuLKihxXXgObaDUqrKNMJIqielSqitKFCisaOd0ZJd6UeFueRHrhNgCuw5FSzw5qtc02Jp9TUA46dlWyOwBWoqeOgZNaW366doY4ts3+REI3F6+++2v62LlbywvQSUi3VsNqs1Bnc0zYQoc7QlXEMyAHJvwQoULS8X3QuYfHp+9C1cR7Z7gfqZA2J1nHPlJ2PLs8fEbpBez3LDzj9m3bRLGU/TxUX6R5ZkKFLLwu/Np55Sql+5+dH3BqB9+v6r5QOQCe5z+YCEIqXFi24J7Q+1KlXIX7TWUom9Q7wM/vNN4UDoSyKJEY7xkpi/ZYRECZOh2Gcvl1sNcqIFLh9rwO9veq0N5WEqIKpVBsIQna0v2nGytXrsT++++PNWvW4C1veYvNtJ4kCT7+8Y9PS5k2m0Sdf/75OOusszpI1KZNm3D++edvOyRKyA4plxp/Gl2RysFBXpIkyXVWYbl5EmOSJ3pEbM6d1GtI6jWkvQ07agP0SFi/7In9m2aphR0P/W87hyztIIPu/P7SL6RGdJST5bWh/3lzxBuyULHgITkKKaTGLyESk3vHXFs+/VqajOSq1BK9PRdrMLPehq+UJBIJMiADyiy1x1VFiRROzZN5tllhjcPvutgk7Swgh7VJt2NWUCJxxL3/Mqlq1IHf/gSK3oZNnEkoW21k/fqd5J1G1t+jFb/BYRuCS/p6vP2q8kpVkdPw+25E3fPoMM9PVadF23APUHj/AJh3Idf3j/VaRIJtnUu/w7Qzr+zfncSCK1xh2DNUpfiajFxtlfDXGrTKRc5C1dKFnnkCR5qgQefjy92E+er4+8rDkCFEIq3nKSQQYR2ncoq+e14SvQB4q42k2YLoqdtwb1mWXuiTiEnVfbK/s2s/FmRwX7zyyc72sTCLoduJROb+lNxOwMjn1howRWi8+c2d9pgw7dLWxGa/Pd0WC3zwwQex4447TkqhZjqooycFitQAerEKswacGN6EZDPSHLz4a2ejnUiTEFLDrtQuSxTQhmHyUwjpVKrO0Xd1DB+At3wNjcq5lE778lBaEYRfOKyhNk+RZBmQJP4070A2L5ttFMNN71hpo4aSZdfmZZfQxv204WbshB0yhRHJ76CK0ubuouNkpGK16B7mNmSoihKoj2/pl8Pvuhhls21CabKjcS+lm2QgEolX3/01/PiV7wWALU7ASh4SCi1TBvL2cNOFVRPdWZfNts2RRPeiLErkxmwPAOQm4cR2LNhZSux5AWCVsFCZtGXKM/s99+KEoXB+//1OLrGkmA9e0nrNEm4iyHwfJAlKWXjEnJ7P9vCINopnqX2XbXmT3JKvkIQAwYCDKaScuHB1lxZppjoXrRbSMrchPerIXUqFThWPriu/D3Q8PtiQWarbIboP0s3E81Q0KSE2c6A3Xhz10H+iYCFOOh8lRwXCHGadoVMl/ZAloJ9VWrC8imTZOg53Kn4hCQqf4aoBKJFsYczqZCmgyQ2jKX2TiTg7b2Zi3CRq3rx5dtXmffbZxyNSRVHghRdewFlnnTUlhZxO8JeQv+Tca1I19bU9NKI7sb4dxjzHK2/8Ioaeeg6Dw023vpeUkD06iWbBwleS+Zs6Rtt59UygjjpJiYQ1wGH4QY/uazaJqCpKyBZrkIk4jtIAElkKk/glWeYTvkARs4bSoDOXgDciTxs1OxIvi0J3IrJwjW9SdtSf19d2KL0NyDxFc+MmNAc2VV4vADj0Njehok3rdRnS6AhK4XXkpTHNE4761beAcZCU8cBOIMgypkpq8mTXlaMZb0iB3joKs34ddcJlUSDrbdh7xGe6AS5JKyEMa3DymPIp6ex32sOGaTNHbItmS3f4eVrZEMlRQj3Wd2iOlfCMk6buvBwUak+yzKqZXE0igk4KpyUrmb5OnAh45fDIvj8rUCUu3Eh5j0gpDYkMHQugDOlOMfXaIGYcRxN2/UcA9l0Vicnoz64fTwZM75w+XrLZavm4kWZIYNRO8oEZ36atA4P3fBUuZUNS95ddyft67LZtZhDn9eODWt4ekfKp1+wbduSqMKlhpFOk6DoCLgWIXbLKhFW3pgpVYBIylk9KSSI4xk2ivvKVr0AphTPOOAPnn3++t+xLnufYfffdsWzZsikp5HQhnM1CDSt1mECnxMwJhkwSlIMbcfRj/xc37/sOAMBhd/wf42Uasi/kyOAwNj21wcj9NS+hHknb9DvPXxIu8+CFJLqQvyqlIRx5UUMjikAVoOOwxptICwBvpGuvSYUEnwTbEHieFipHSNYANrWeOhQylJrZZPQ9T5ZYttou/MEXNTbHIPWqCstuvtDrrOiY1PHaddXgh1I7UJZbpEIdfO3nUPT3oGy2kSad4QSe4oKHoexyRAjCu+z/tLeOkdIlNaTRdmjG1edxuX3sd4lEOFWfrlWSO6LJVRoK5QJ+hyqKinQYLFsIlZkmdFQ9v3RODq9DZbmC0kbNKZlZhgItL39SeC4qG73rpALxCRyAS5ZLSxJR2Yi80fnCdzLJM6S9dYjBYbSHRzoyiofvc5XCVPUsh4PApFazvs1b/vKMju3Hiyp19ejf/DeQ5VBwYceUEahw9l3JQmi8bkkYMpYSWW/DqogdsykTp3jS+8A9czQD1FPdGSEnbxV9XhWypm3TnrohqkOI2H4xbhJFMcc99tgDr3rVq5AFS4Jsy6CGttvsLXrRqhSa9qZhyFZbS9sjIygAm/m2PdzEyHMvoG1Gv3l/bydhgZ9tmb/w1AnQ76OpUGEDZT8PZHXqKKgB4fl5bPjI7FOaRWx52MxT6IxCQL4YCsFU5cEh8kP14Qk6eRl10lO9hAjvmOl8ACBTvcAu+X1ojT3ysaVsrTRV6rXXUqPmvPS7n8YDb/1HAMBB3/9Hm9GbL0dBaoaXmJS8QwHJJRL5mp9dAqRb9s6IREKWEshTL/8Qn1nHR89Zb92qGqp06wuWReGNoun/tF5zGbsZMSeiAJh8aGw/rhqGipAl44ZYEqm1+1YQTiJufFueFJEjgU+gaDvBnp0wlMzPJ/MUicw9Akf3lT+H3EMkM700DeCIN5E6fo6QsFNZ6HicFHFlkEJxMs0gszYSGsAVWrnj5DCp53YAIaSfeDMEv5Z2m0lSoG7ZfzmOfvw7gEwg6BnP9UzHYsPTWskzMxPtO0x1MGqTMGQnMdeZ8u8RKlVARlpD3xj5z4R0ucSQuUk3ZavthWqrwrUySVDaAYq5R2yb0Ac61Yiz82YmNtsTdcQRR9jfh4aG0AqM1eNdjXmmgxJScvMz+Z3sNmw2Ggd13u3hEciiAIZGkDbalgAVzZYmT8NNncE4kajN6/PWw+Ivsyf9hx1Y8Lcul5+Th8BntnlT2uGP0u1otuzs8Dy1qiw7OsUQnlJll3KQnicqXOIjVDh8c67zg9C+AJD2aB9Z2W4BaQbRhs20bY9D65wxP45IJERdIjOpFohIAWZqc1KaEJkOlRABs6NnIglSdr0GdH2VLLbIEyUzHXYUplyEsiiBorRJIbUiZkgpWxw6VJKoHlQ+maW4+/AP4JU3ftH7DnDqH0iBLWipE7dEi2QL9IbeJk855IOCCsIfEmwKz9K95veuynQt4Uh6N88L78jD/UUikdRqUGVh6xkqYYDz4YVmdkv8m+6Z53Xk3iV+fekcMk/1c8zrmDGimLg8SnyAoYYD0zRXrILf7TUpiykJ54k0A2SC9gsvAHDezqy37qVB0fmiWjZFiJf9nrU14QQWCXf9iKjy68/Dl/QMWC9Z4tS7stlGu2ia0HzaQeA9UmXIbJJnaG4c1O1BvWbbnqlGnJ0HvOY1r8EZZ5yBt7zlLWg0ts51HwubTaI2bdqEc845B9/97nfxzDPPdHxfbKUVracaMkuR1jJP7eGqjx2RB7OybEPPwm3STMuVeYqi1cLIhhfQGhw2jUrDLhNRVQbbeDDFxRpa63nnPhUdA6lQaUMrDXzNM2oIgOpQX4iQ7IQNDv8/vAZV6gCvqy1D5od3ZJoBqSFIlkQlUG23nIvo7YcaGYKglBIyQdLoAaSEag77SzzIpCMUmvf1Iu/rRXNg0N4rTu7awyPIehvasMt8GHbWWLcZUuxa3fqSM3Hkz/8NR/1Cr3S+OWTq1Xd/DUWSoDZvjl3CAoBNcUEeIC/sw4gMkUD6vmpkTyB/GTeP0wDA6/gzP5UGJ7v8HFYZhL6uMs2gysLch8KpOVnqpa9Qo+SgsucPyAvfjnt/ws+pDPrvxJVHuudHmDrRPS5b7coEm3YwYN4FGkSlZpZtOCjgqjbtb5Wvphvc2Mz7bCDAjeAyzSAavVBDg9XKLAtb8e/sdaT6T0ZUgRExkWYQWY5iw1MYelrbFGo7zNGDxR369KmNIpf21iGGKV0FOu5nmFy387SJI6qSkWs45ThFZwhU1CVkK0Vb6hmDad1fxJr+F4XzdtJEkaSe28F0Us+RbCViUpYKxXZuLD/ooINwzjnn4Oyzz8Zb3/pWvOtd78IrX/nKaS3T2L1mgI9+9KO45ZZb8PWvfx21Wg3//u//jvPPPx+LFi3C5ZdfPhVlnBbILLFKBoVo+Egw9Fx4nQf5bJptbz02mpXWHNBqQlpBgng4Ieut2wSA/Bzc7yLNcWzm6nBUX6EUFSzMpWV0bYhO2HIw1MhVqWGd18pXfOizhHlBANPoy8TzGji/mSFHaQ7Z6IXM6zqkkWYQtTqQZpB1P62GSPXxZb3HLrEj8jpEkgBSQjR6vTKmPQ09xZzKwK5J2tNA2tNA1ttAY5d5aOw8z46YiTSlPXVbTq7khctHUJjBEjxzrlff/TVNEspiwgZzL5xbunUJaYSf5JkeHddr3iwuut9po9ZxH23YttRJQpN6rn1Cxq9D33EV1qpIgWrE1SciK/p6J450mb/1uROr/Nj7aX5CckrvHylgSa3mfedNHODPWhLej8SEnnJ4M9Pos9S9lzLVodu0p+GRRp6riNeXqxbhNaGyJSYLOr0fdExSx4jo03GqZs/RdURZOMXMXBu6fvx6kWrFn3kikeTX3BLcvNebXZnSHEgzFAPPoSz04tJZb8N6ojihK4ab3ozNSsU7SXR6kwr/WKhGhvcDcO1Tx75Gsarv0GcHkp6RHLDvi7U1mGcryTOkjVrHuSOmFhdddBHWrl2Lyy+/HE8//TRe/epXY7/99sOFF16IP/7xj9NSps1+An7wgx/g8ssvt7La4Ycfjr333htLly7Ft7/9bZx66qlTUc6tDmUYOx/9lcb4wlfxpqVgqPEsWm1PDWoPDrsEeoXO18P9LADcwpmFM0UneWqzehdNvQJ5lVlUryuljZRo+UoULcvBO3UyxnuSPlxjVLbadtaUSLQPg4yc9toU/oiPK0+u8TMdFVPSVFnYjiupu7CNVpoyiFKTH8gEIgMUy7YsMt2xqVZTZ1uv1TUZKfVisarV0sSJiENmltVITKNeFpqIpZkjWRQykYn2K5Wl9VEAOucUzUZM8szVKels6L2OzpyjHBp0Spw5tzKdnsDmj/7T3rp+nmjWklE7st66UxOpM68Iq1nyJTvXC7Sz1WRp0zEcdsf/8cN3PBxSEUbj74m9JlyhoL+DBLRCSusX4wQGgFMW+TFoOykhysJTXPh5FBFrUxZPyaBnX0rAPAc2tMW/A+xzmfZoNTT0cnEFjJSKjhAiD9UzrxifJZg0emySWaeSObLEr6kw5VVs0gkvAy9XeO0IajMTAY+JNIdIM8hGL1S7iZENAzZlQ9bfg5ZRUMuW8UfSZTdKHyl0JXyfGK8fr1HVwK5K+esGar9o1p3nezQWDpmnyJifTM/sLLx3QKZbZ7mRYhKUqC3dfyYgSRKcfPLJOPnkk/H000/jkksuwT/8wz/gE5/4BF772tfi/e9/P4466qitVp7NJlHPPvss9thjDwDa//Tss88CAA477DC8+91Tv17Y1kTViB2gMIYJRZRlR8JNTynKUrsmnd7WrWEXep8AeASHj6AptxHge54AOMN2QKCElDYTdNlqu2SWbKYhJ0C04Cz3E1RNM+9QHnhIh8IkgXfJg5QQaY5yaJNuiAyB4SQIAESt4TpcOiZtl2ZQbWgyZY6JstSkSSYQ9V67j8gA1YI+NhGqgnWYpU5aqtpMaZGJVSCKkRFHAmXiZjVRudzF0qERprJ0fNdq6X3a/jMzFtKeBlRZ2ISaPP0EPUOU1kEGJL2KMAPVM7hCIzYNEvh+QOArqxjh2xCZV4mAONL94Z+ZZ8Bmt6b7ExbUqHmC7icYSWPEiBM5IYsOYkflEm34BMpegwTK/I8kgTTkzJ+1SF47/TcpZP60+wQygyW3VqEDUDZ1aB9lgaRWc34oql/lO5S465XmEGVhQ5H2uTP/E5n0rg1TAycLIs0ge/she/vQWv1rjDz3ggnhuQS4qijRHhrxCDyt45fN6UXZbqG1cZMdTFLNw1CkNwCgcDAzjVc9/3xBbfrc/l5KLw8dtx/kc/s6yD8lTa0K8U4VIony8dOf/hSXXnop/uu//gu77LILVqxYgXXr1uH1r3893v3ud+PCCy/cKuXY7JjCnnvuiVWrVgEA9ttvP3z3u98FoBWqHXbYYTLLNq2QqQs7hfJ+2PgkWeYk86TTg2FXFjfqAYHCMNQxAs4rULTaaA9pmTvv67FhPd5wqKI0SR+H3VpkPKyUSJtMU5vYnVTdbVo0b5wAeLmnAH9UzUGhE6SZ1/BzI7i9bpQgsFaDbPTqDop5meh/kWb2B3QPQqKV1/UIOMshsgyqKHRIL6+bTkMTJ9HotcfUapJRo8x+MGqUtOV35UhqOjmgrZcJMdr9eOddRa5Mub1tZIIjf/5vHdfxuD/d6v19zO+uxtGP/V+trFDqjNxNy+9mkObKBODnyAqVE06ywnsr8xR3H3uOFyIazTtHamNHJ22uOV1vCtHa69Ru2efCr4t/zYBOtcqeyxBVTZYzu53IMv2T63PabczxRabDT+GzBbClSuj4tboN+XnlYCFL2lby5ynV55f1HvZsSoha3Yau7X55Xb8X7Phe6FFK+yMSUyazveDPI+1LYcrQ+0THmQQc+8eb9DXI61BFgXJwwLZPIpE2rxofzHGkvfreJL19nvG8CnyQ4E1gYHXp9MElXmgz3JeHWClULIn0m2cDqRsg2Xs7itIVMfl46qmncNFFF2H//ffH4YcfjqeffhpXXHEFVq1ahfPPPx/f+MY3cPXVV+Nf//Vft1qZNluJeuc734kHH3wQRxxxBM4991ycdNJJuPjii9Fut/GlL31pKsroYWRkBIcccggefPBBPPDAA3jJS15iv1u9ejXe+9734pZbbkGj0cA73vEOXHjhhcjzTu/RWBB53WuEVSG1rA9YHwIRHsCZcQG98KXNR1L4C6qGYTE9ojUKEBvdiEJaibk2rw9JnqFobuhoLArKf5SnQOFn903NavPNgUEIZnjvFoqg/z2/Evc05XVb93B/umYegm258gMpIXv7IOq9WgGikR7veMtCEyAzelbNwqkU7ZYjRIDpDEjRMqoPV7EAAKYjLQuoNIeQQaio1rA+Kl0macOIcmTYV5nSDLTsvCoK09mzzsuED22I0isHXbtEm8ylxC37naaPNeJyzhzzu6uhmsO6vmzfKh9GaK4FOhWnMOdTRzgXPmG+41VnA9ALLMNkgifwLPeqLD2jtr2PocIYEGQdcmvZz+CVh5EmAKCQrQmVqpHCKir6mSo8UiukLoMaGbLPFt1Lew573sSpnjKBMNPk7H2l7XMXQiZypT8rXR0qnnd7DK4Qtd211OQmc8e0z5L5m1Y9aDc7ysSPK7JMh/eqBjmcQHGCNc6160bDsX+8SV/fRi9ErY5ycCNEoxe9C3fCyHMDaA+N2PBY2WzbQZyXzLfeY5Vimac26SkN9sIZtWg5fxnQqaCGBnuueHZtA811KdstlO0WZF6HCK9RkkDPfDGEd2gQsrl1JlPpSbhbqkRNUmGmCbvtthv22msvnHHGGVixYgV23nnnjm0OPvhgvOIVr9hqZdpsEvX3f//39vcjjzwSjz76KO677z7stddeOPDAAye1cFU455xzsGjRIjz44IPe50VR4KSTTsLOO++MO++8E8888wyWL18OpRQuvvjizT6PHqHSSIR1uMaHoF/ItjZFMvOjM+G2tdk3T+2SKVzSpv9HnnvBnjNt6AahPcTmUxvILLVGdFKwSLEixUnmeuYYNShpb91M1S7RMgnheOiRQkBVZk2RVMjfppFW7VZHQ2RhOk0ANtxpR3S2MtJd11odIsv1yvRNs5iylPoc7aZuyBq9QKsF1W7p0XzaZZ07mViPDPmmPC8VKVBlATSHAXMeXW7q+M01Nv4Or+Pnigj5sUxDy6GIyFWFS1rVYbyjfvUtXYxaA0c//h0TrmxZD5itIutM+PlC75PvU5K2Top33qx80nHCSnQLW3iz3Ci0xjtpIjbmetnvKAQFONLrHdhXsTwzfkDQ3GehMqQnF9jON3gOVZn4zz79ntf1NaXWscI7JLLcu0dE7gWVNc2qyROBrpUZKMCEPlVh/m43vfpp9UqOHgaWOnTtXTPAdPzwn8lQ+Z0Ajl33IxdKrTUg670QtR6dgyyvo7boRRDJOjQ3DmqyxNIUyEYNEswET0SRDxZYSpK0vx9ot9DeNNShoNtwpgm3A44Y2WeWlLs2IBLun/N9dBomnGoGz951IkJu1ERL0rcCYjgPuPnmm3H44YePuk1/fz9uvfXWUbeZTGzx1IIlS5ZgyZIlWLNmDc444wz853/+52SUqxLXXXcdbrjhBnzve9/Ddddd5313ww034Fe/+hXWrFmDRYsWAdBO/hUrVuCzn/3s5uev8jrUDJAmQWNz2JptRcKyNBPBMZ1WMezUqNaGFzzvE3WE/P+0L7frvvGp4u1Nw7ZTJKM5qQ5lq43mxkET8utFOmcOmhue040WJVY0hEcVpVXKAO2pKVttgK11ps3TzvcVohgcsPWjY3oEqaKB12blojMEQw1qq6XDKya0o5rDtmOleyDrvVBpC2rTRsi5O0H29KHc+KxTaCTlbkoM6dBKge00TYjEkqZW091b6M6UN95ElhTr+K3qRY0zf07MPqosXWcI1mmXLrs9hRwtMSJyQH8btaFDkYO/7AcHjci9tduC0bVVRahe4TFMqJIUMcLRj/1fL1s7DynbEBrvsLnaCLAwLOu8w9+rwqDhdoCnJIks9+6ZQtBx0nU1CkR4vwA48luhgvI62X3NoIDCVlpRaumyGAVLAZrAU1mtl69TvbUEMq/r+x4qGhRu5oOO8DpR/bkaFt4Pe50DYtruHKyNB8f+8SZ3PczARtR7IGp1KJkCjX6gLCDn7IDk+Wcgh1wOtnyHOVZhJ+Va9s3TZZEJ1HATQvppIJJ6jmTuTiiHNyGFM/eTjzMJwsfhoMZ+bnyP3qSHCjJJijsNnr3BFH+urMIaQ3pbC2MRqOnApM3PfPbZZ3HZZZdNGYn64x//iDPPPBPf//730dPT0/H9T37yE+y///6WQAHA8ccfj5GREdx///048sgjK487MjKCkZER+/fGjRsBACKrOfmeNXSQEqAQD2DzyPCpsWkjR8E6MlqlXBOhHqQ9dZStts3rw7Noj5CSVZR2nS3KVJz19YDPJJOZW3SWFJvM5E6ifEY6M7quH88+zvNPqcJlEaYO0mZqZn4DIngyryORCYqREa8hsrl22k1LmqzaRReYRtdSQm3aCNUcdr4n1rBRJ0UNnyoLiJ5+yHqvZy63oPtkQ2cl1IhRtmoJZG+fGTkOo+QdGzWo1EEaFYEaTR3WKyF7+kw5Knw7bFSr7GcJws5ZAFDUqZvjlO2WMyZKZ6hWI0OQjV7bUdl1yJjp2J4/IXNxkC+Jd5xMHayEuRakgt20x5v8OgbhPsGJT3gPjAnbJyU0onehTUX30ZCQDsWnIzTmH0+x8HrnkugOduZeSCIqfid1ybtvrAPl95jvA0CHiNHsqDudo1PJLD2iD8CRJmYn4CqeqPeacOaQH8JqN9mzJ/V9NqFw1Xaf0/UA4Ct3mwGtSJvnMK9rM3mjV187IQFV6nflhefMYNItMJ3M2wVJcG0EqZk0+MnrSAEUsmkUQe1pFGUJtJue2VwVpb02qt30Bw2lm0hgbQAU1iPyDqDaCyc98umFn0ntpu+yiV3HzcX2qkS99KUv9dbqHQ0/+9nPprg0nZgVSS6UUlixYgXOOussvPzlL7fGdo7169dj11139T6bN28e8jzH+vXrux7785//PM4///yOz2VvH2SjRysbAXiHn9ZraDadGTyFHjnVduhDe1gvQpz3adKX5CnqO81FUs/RHhxGPrfPdopkLM2LEk06xo5z7fdJPdcjPgojmHBU2ps7j4YhH5lpSJrPD9iV3GnZDh6ykb369reHRpA2akh7jNpWln7SUMrlRGqa6dxklgYj7MQ1UtDqBqUy6Jh1VZa60W8NAlkG9OjRK3mNqLOAlCgHN7rOuSxQUtiPmYcpFEgzwFS7BZC/yPhpRAYd4jOhEgWjaEhNQlRz2MrzIkmgqD7mulPHT7moVKvpzehzz0bdkZ/Q5wWtvjnS5xNQasztdUpzwPhgFOA6EDJwU8chffWJz5D0vEbSJZasBPv86N/8t/4odSE5CtG67Rk5sgS5M3xlQ2q5f20sgQq271BSEJjeeWdYMkJF25FawM3rIQljx/SUKp7ks+I6uec7A5gPkO6DT9rctfMUDQTKJiM9woQTZaNXH29k2CkomSNdlmS1m5rAebPw/DqEqRKojCFZHhdkApGUUDDheJr4kZo0G0qTw+HVq2zb4e3e2+e9A75SS8SxRDon7yA4qii0GV8mKIb8BcO92Zll6dJmcIIUqkZ0/NRFElRZajLMB2VU7xRQbSLmpm0ogmNOEbbXZJunnHLKdBdhVEwriVq5cmUlgeG49957cdddd2Hjxo0499xzR922iq0qpUZlseeeey4+9KEP2b83btyIxYsXWw+C9dRUZGK3xnFmfNRTevtsOKxVlGjspBdrFonUCRvTHJltZFuu86vVkUrKM5NANHohR4aRFHqxUG5eFvVeZ5QcHtSNRllY5QZAxywWb4mIokQ6Zw4AIKkPWyVLjQwBZsq1N32ezZYhOd3Ck8X90Z2dMWcaKgEKV0nPzGvvF4UHKA+U+QxoAXldEyhj+uZeIRtuyzKokWGIPNGhzJEhqEKHCV2jXTIzOJtGnmaeYkHhBvt/rWFN7B1Tz1nIAFKa/D2MYHmqirTlJx8RkZqb930Hjv7Nf1tjtGeqNmUEYKbkS6dMwvckCXYurxOidAFMXVGGfMtGL27a40045ndX622HBh0pojKHISdOkLuodPQ8CnN9dagThvz4oUKrmFHKAYYORYmrBERY2ecAzDPH7lGgDHI/ki1HmtmyhZ4p53eTdls/q7b25YXqliVNtbp9fkWWOzM5L6PdB25yS63uiGyrVamuKE9ZajlDNb+ONFGDBh3jxDFrrsFNi1+n/2i37Ptj37s006E8VQJl25afrAlZX4/OD7XhKcjefmum16lOBp0CSETPzqbMzYCRERqpvV+JnONbCNLMM+Fb3xntY96pjjAmXRN6nqy/yhFxem/CMK3I65By6yhR2yvOO++86S7CqJhWEvW+970Pb3/720fdZvfdd8dnPvMZ3H333aixDMUA8PKXvxynnnoqLrvsMixYsAD33HOP9/2GDRvQarU6FCqOWq3WcVwP1JgBQNJwki4AyAS1HeeiBt3ItTbo2XNJ7xyIRC/FqorSS2FgVYNcN6bO75DZEJZOVmc6nlodCWA65pYJPUnX+PPRcOr8E6ookM1zDa/93tSnHDRhy1oDSa1uZiNmKI0vCUDHTEKRSL2UCoF7UgwRoLKroUEb9hRslAdTbwB+BnKZ6LxPsvDCF/wa2WnpVN8wRCTNdSHztvlbE8umUW/MVPaKpS44IbH1ag53kC0KLwKsUQ1SX6hWNYGi66xMaEKNDFvyR7h5rzfb30kNolAF5cWyuYtYo66VNZox6F8zusaUM8uWk9WDVAk5dydW9mCZEzI9B/WyoaQk8b+jsGtlCCfRYSge1rLXiYdTE+c54wSJOjro68qVP9sBJgkUcqt68cEQqZAoE+avcwSNElp6149dL0tgmAKkiVnm3l9Wjo7nlcOoHPS7De0ar5Al2oGh3pLsotDl4IZ1ft2oLOz4m4WywDFrrjEqmbkmmSZBmuAZAmXuWTm8yWVQTzPIebtADg/qLOZDg0jMMyZMyglLWjhp6jE+Vrq+ZjUDkddRDm9CssMOQLuJ8oXnbDGtt5LautIpcNQeVIW07eDC3ovMay/dDMyKsLAcX6hpS1GoSQjnzfK182Yixk2i3vSm0WXf5557brNPPn/+fMyfP3/M7b761a/iM5/5jP37D3/4A44//nh85zvfwSGHHAIAWLZsGT772c9i3bp1WLhwIQBtNq/VajjooIM2u2wQFJ4wIxH6mL6nRsp4AZDmSMmDQwkfU7O0Q173G2OYRhiwaROsOZUUiDQYeZeFJiZlAT2VnxOj3L3w0kjT5DUiwkHhAlJKmsN6VpFVBlgupi6QWaqleNNBqFZTj0qpI6T8TACKdkt7H1j4QB+EhRpYOEJfcumNpoVMoNByjT4pL9zzY0atllTw+2PvhfPhiNQsBVOWdqaaYp2xd488xYE1qLLsaIhtuUZLvGfr4Ua7YSjr6Mf+r78MBw918A4+2I9USKtk8DBJOC2eldMqYH/2Nq+ox677EQqu2ljVwzen24SavIPm9Q0QKk88pNaxH/eeAL6Cxn+3dQ6OV7GtnUXH80+ZY/PuxYZVww7XnlM6JbgM7gW9x/T7eM3HXL3yQt/aP+WIRtah4NIECQr7ekSy4vje4GpzwAkaZY0nLxSVRUr7Tsu8bqwRvVBpZn2KHfU27Ravnx0QAHowlSRAvVdbGtotTd6SBGAkajQfHUDtnDlut3eVE3FeJ/qdrvFWxvbqidpxxx3x61//GvPnz8e8efNGjSxR8u+tiXGTqLlz5475/emnn77FBarCkiVLvL/nmDDUXnvthd122w0AcNxxx2G//fbDaaedhgsuuADPPvssPvKRj+DMM8/c/Jl5gBlV8Q7UeGKk3yBK7OD8Cr39HVJxOmeODU1ZM2ZiYul106HTaNPbUU/bFXnddoilTLR6Qw1/rQ45ZwdjNDWNE207PAiR5pr0FIUORTEvhGq1UPxxtamf8w6oVtOGJQF4ngaR1yF6+jUBMApBe/AFGxqUvf36GgCMfJAnpLQmbRpxWkLXblpFh6Z5E2lRZaFJKMBIVGK9URT2tK8Vmf/NfVNsJG+JmFGmKtURQwqJPNsknTTFvCwBq5YF06elDiGCqRCKh2dkoK5wPw2pU0HHRp48mfvJPT1iSqhSGHgYgxFLmkWmn7VAfRvhoU8qD3tGKjOIMz+Up1CWnaTGqAKqLD0vCm3vgamrvqEv6eww4YfFrIIIPxxvFU1SJdg19dImkPIV7OfOaZ4zbiymbZKG76esIjBS2nexYxt2Pns/TH407vdSLAuJ9fdJWX1tSD3j3ikEobqxQM+Q8ULpSQTm2VClJlPmuEk9RzJvZ4jefktekp0W6DqZySdkKKcEqFpRbGrVnaXkUK2mS1li6q/DzYltR1Vz2KX7kNJ77lTTEKOatgqoVgvYtNHLd+ZBJs7UTrN+CRT2N7aACZHRCWB7JVFf/vKX0dfXBwD4yle+Mr2FqcC4SdSll146leXYYiRJgmuvvRbvec97cOihh3rJNicC1W4CjT7deRkSVA6SodmFdWx4xSR/1J2TU6l4ZySyTrWHq1xe2MdI0eSFsB4pE7ZQZYGkbwcbxhC9/YaoaRKRzNtFf5fkkK0hIK1BCQnRMknsevtQUEdO5uxWU4evKHTFysQTKdqGKM2QjAxBJAnkDrvo7YYGra8JgO4E8zpEWaDcNOA+I/8LNfA8UWe7yTwhJmQQpAZQ7ZbuXEwDZ0fuYWNY8bcKVBi6pxRW0P4yNpUdYOdnhnFuWqZrVBZ+h031MF6NcKKCVbfSHBge7PDe2Y47nMFmngk/WWUVgWI+ow411CSRZSTg+I0/QUHPACVvpGPZ4/pG9SoFThNhF87yRvaczJeOVGulUIcLK1WCbkqpTFiiSXrXcoRKk1d2yQhW4KWiGaZAd+JU+Vl4f9j39KxZU78l1E1LaivVQtPxUyoQG/5Nys77HVyTKiLFTfp0jcdFoKQJ1VO+NWoX0xxKphCqBBT57XS3kszbBbJvnq5j3qfrw9pEOyvPQBjVyhIk9rmXz43aq2FHomSjF+XABruPHgyZwYyZlGPvr2lTyrJwA8IwbE3PJlvZwPdCZnbwjPYsz2A5w7F8+fLK32cKZsXsvBC77747VEVsd8mSJbjmmmsm5RzC5CeSvX06NcDIsPXU2BlOaQYEUr5oNz0Sodot3SkAOqZvlCNAT2PvCHdR3L/eAzW8yVMLyEMkAL2ArR0tZXo0qFzDKvIGVKaJE4zcLliHK3v7kez8IiR9O+jvm8MoB54zM4J0Y2OzZ1PDb+oj+3bQ1yDN/ZEhk+qlSXJoZxSVjJBQpwlY1cZeTxBJdR2ZvSdkmq8KE9FsH3YvwAgE1YNmNbrwiK8QiDSHSpmnispD5+GdIPlpzD33QoioCPNQPazyY/wblkj4pOyY312tlSweXgjSOoTEpPI8pT+jzqZRMGEtCuWdsOk+lO2mCwPVewE57JmnbdgwnBJuiKcaGTJLu+T2PntT+1no1v5PqpFZroVChN1Cc/b6Bn87XxmbEUfPcqC+8CVUPIJVRd64QlXx7PEZj16rxO8V9zBRSLTtnjMetrehVlI/jQFb5HWUgZpnQ4qdpfYIBzeh030QeR3H/vEm3LjrMVV7+3WkiTY0qKPcTFnNmslBIT2lFRpp/FOq1UK5aUBP+DDL5thJEqQQWbXXkCs2A1n2zUOx4SmoZqHbnryuvZs8cSwl5SWwxb/58+oWsM4g+3YAyhLl0KA12vMJKuChR6b+kS/N3vfm1iFR7VIh2UIlqT0LlahuGBoaQitIXjyhqNMWYlaSqK0BkWRGOaoBwy9ANYd1jiIpdXzeLPfgjVil1NP1TYfuScemMZO9fbZTLmGIFGXcbcMSFCETKCldw0PT7GUCZEE2bSFtAybyBpRgYaSiDZWkgJBQaQZANzQCQLZod0u+Smi5nxQltJsozf82lGNM0c7gWmiyR0ZyHhqhGVNEvoqALAKgMB+gQxZqZNiMRP1whEemqIGTEgkbySqTtsCbQs/PQ8ciTwfg6sIhpU/mzGf2ubAEiikJNDKmDpB7Voh0eOdgRvKy1GEa2j7NcfTj39EdP6CJTNBZeKNyXr9Q3WGkhbYPlS7uv7Ijcio3z9/VblnDL31nw4+mQwdcqNrWs8rvFPh5II1PiZKukvJCihIqfF2Afw35/QIswfVmQdrPS18douNxEsSuKS9naIB3584q1IxRlKLwevC/g884aZd1lzvMlpc6dMCSMDLU82vkpc+gZ3A0Dx+vS63u+RFZ4TSBYlCtEd028hmApQ4jCpO2wWUWTyDqbKZrWejBhwn/84k4IjOD0CxnarAedAIsPGuuo5A6h5PI61phJyJo1D2bqsJ8z9OkiFTnwlJF4RFfu+wQfVYmENLlGZxKbK/hPI7BwUF87GMfw3e/+10888wzHd8XFbPopxqRRI0FVboOhdZVs42UaeDMSwgwFWVoEKrVcguJNnpdLqAsQzHwnJbGjW8JgFaeYDrmvG4ydZvv7VR4CWQ1N+qjMgJ6irHwGzmVpPBmzlAnIARUomV40RoBLdoq6zqhZzk8qJPb5XXXMed1q1yFYTXbSBHS3HXIMoFs5FBlXY/u2k1GAJgSYeBm87nOxJKkeo9ZX8sQspEh2+BWhda48mBnJpKXyiTxQ7upR6NAh7/BzXbjIR/nmfGXi6gwItPnbH+d76q0o3GRZlCUC0sGaxNWhHu9mWpUJsB6n0J1jcpKISYqC89OfsLwAyjJT0bn5ykTckd+vOV5qJzhNYJTmVS75XuogmsG0CCEVAIiQ1nHsTr8J15dfbKr2OfefQrIJzesu2VboFXGQK0M82x1ELBQ3eR1DEiaTfPAfU1WPUyYaZ/Uoxa7RlnHMW1iTSJ2ZvacU+Gkr9hy/9cY4O8PHYsM5d69Ne2MnLuTe3YSo1zVKkLtMkiDwu6xYM9DMm8XZ4egdrRvniVYNIASMN4oc1xvJi8jQvwZtKH8NEM5PKgHDGAknSllPFWLrm4M5W1NnHPOObj11lvx9a9/Haeffjq+9rWvYe3atbjkkkvwhS98YVrKFEnUKFBFAbRG7HILIs0AIR2pgJueTY0VeaNQq7sRL81iMSN3u8ZWlkP29FnjZTm40ZmSM520sWNGUqLLQLNhyIug/zANohC6wRQSkKnnWQAAlEadAvQ2xgxKCpio1bWlnlQVACBFjLxXQ4OmQYJtdCyRMX4ha3AtC92oygRqcCPzV5UoaUajIW8AYHMbmQZVjQybc2mTZ0f+m3YTEr268axYyoLuHXnUBA+jWB/bgD9yJh8R5cPJcus36wY7pZpChWzECvKS8NF/hQ8D5N0AWPiRdZzMm8b382a92YWiWXhXFq6TTxJ/BiCgOw9S8hrw7z0dl5QMKf1rBejzFIUbuYf1Cj+jrNdWvfQz0IfLBNGAxcsIz89NnwWdcGf4tXS/2/2DRLDmOkFKL9Eoncszr4f14ikIeCoCUwb+jAOGwNk1+vwZmHYZmIAsh8RRsGWL9GzWirAkU3roGDfMPxLHPXcnxsIJm+7TzwKrm30/qf1g7YtIM6S7LkZ77W98ZZKUY0NS6Vp5153aWdaOAGCzlzUZorAeAKuEE2kqrdKc23aZq8UiSHRqnweZQJDiWhZuEXpTX0qC6pW1lkDUJrZ8zuZie022yfGDH/wAl19+OV7zmtfgjDPOwOGHH469994bS5cuxbe//W2ceuqpW71MkUR1AzVElHvFQMkUQkg9E8WM3CmbNe8YhMnADUNKnN+BPmtYhQtJpg3gvbCpByo7I5qaSzNgpNQkz9uI7VWlTBlCJcq2m5YsE4j6HEgieGbmoDXNj5iRXb3HeiB0FuWmF1rSjVrmq0IUXkgzqKwByRQFktAV4EZ5HffBGGsLP7s1kVUhJVDvBVLTeQy7EBsZV60MnxpiavxtXe87XSvKBh4u68Bm0XlKBSk9nNBYvw7LjM5VMkNIVXPYmfDhZvB56hq4n6rFysDOz8O8YYNvjhESqONfuMeEDntcpxGoKV46BgrlUSg7dSN2Hj70EntWXG9tlK4Kd7I0CsEkgKqQUmeGdqYc0S8s5GhJALs23rZeWgzyQjFiwstgwvuWUAWEq+McXNk0g4yOdBXmd49U0sQGW5/Stj1qZFiTDRv+Mu8I+aY4IWWk5bhnb+8gqyFOLH5hrQHetSMCBej/C+ZVFNJ6IrVdIXPvqhlguMkbMlChdVso6m4A46V6SDNAphB8MMknVySZSbpJFghNyErTJtFMX282aNYAsgTICsiyQEkhP1p2qSiMPzAFmkM2jKg9fzWIUdaEnkwUSm1xnqfZnifq2WefxR577AFA+58opcFhhx2Gd7/73dNSpkiiukDO2QGikWujbAo70w1GuRBWoWJmTZi4vJmxBkkz68iQyuXwVDcAZVsfVwhP/lYtIymb1AQAQMsq6P1lp5TOvgOgvQqGSFnFiQzoZARVJVRW1yZxmUK2h6GSHCqrQSQ5REHLHyQQecOY11OIHXaBbA2hHBxA8fwzer2rBToVRbHhKU0meRoBanTt//BIAy3DYhvfoUEALS8JpTXQFy2rCupFCaVtpEsAaEpjzu91ioktR6obx5ZZ+mV40F4znv+IoMpCb2vKqP+v8KuUbuZe2KF7ExHgh48gEz/MQc9Aio5Rr/c7/7vd1I08JWG1ZWOEMFCmPJSlWaDZKEKkHNCahUwJoxCTl1+M6gnY8G8H+HXiJC8oD10r520JVBWm7KjwPnjnY6oTD+uyEI0uQ4XaUxY+oaJryMsZZIH3lS1WFqa0ISDX1ujtXROuzPmePI/4hcpZxfVB2/8MgCYY5tcbdjyic3+GE4tf+ASGE56q50ifWLc3ZQlp/JKi3XJpCHgonxNbOqZpI5SoQ9RabnKL2V5P2nGDQ1G29XPY6LUDPFFr6HVNTVuCwqjPRsGy64byyRZJCiQpxJydkPTodD6UgV0WTdteh8+9kilUNkqy5ohJxZ577olVq1Zh6dKl2G+//fDd734XBx98MH7wgx9ghx12mJYyRRLVBSqrA/VerZwYpQhJ4nxHZQmRsRBZCMo1ZIzegjxJRGaEAJTSxyOPDOBCETWaWu/8T1w50tK/edGZ58mSK1VqtaxsQ7DwH2wul9SX4WUKRXwlYY0Zcoia1MQqSSBaI1BJBpXmUHkDImsggW7EVN98iHYTaZpZcuWFfYRwdTFhKr4wsPU2EcrCTbEvaRZbGLpk/6cp5BxNspDoZShETUK1RlwIVpUQNZ1ri3xrenejVrU71SVvaQmOoHOkzt/bl4zNVZ0OdXj1HmvQLweec5MITE4fChnza2OXEiEjbkisAvWH73/M767GTUtPBqDVCFKhvDCjRwhN/Vi59aLIlBW6i0+Jf85JJXvebe6r0RB6nbqR2FH28xSUKngdu9mODwJKp5h1hJ/Me+Pl3mLfc7XaqkQt51PqKG/wv0dcgrBiR8oMrsLZsC7zQIXnHAtMdUVZ+osrm3ZMCekrQ9AkW87dCeXAc7q+FWF2+yyweimZ6gFd2daDtlKnbaF6ihS6vaK2iwZUMoVKMoii5VJrJBmEyUuniHQmGQT8RbwVtC1CyRRlvU8PHOn4QkKVNYii7dpWo+KLsu3a062AaCwH3vnOd+LBBx/EEUccgXPPPRcnnXQSLr74YrTbbXzpS1+aljJFEtUFKkm92WzKvKiOdGhi4XYobbI5IVPdUKU1lHlDv5Am9GcJTNk222dAkkO0h7XKQmZLNtIhAiaMeqTgRvJULlE0dafLUZZA4kiVp0DRyMqU3f4kiV2JHUqZ0E1iPVTIalBp3W6v8gaw82LbkKgkBRr9kEY1K4cHtUE+a3SMOkWaaZM8YBMK6jw4pLxl1otEsjyQ2eR+3vWn22COJ8q2VgvNxIBwWRZ9bj+Dsp0swCcbhcTI3m6WqbubIlLVQVbM4KLwBqlpNgRIM6zstl1ICVDdwfO1w0xdaL/jnr3dhnZoYgMnEuHCyn59Sy8cacOSZefyLaOCqybm2ozWxFtfEat3h7/JHLdDKaq4BhiNgNH3Fb8LRqy8ex+uH0j1ozB0QMhsuKrL/pWzOjmZJiXcHFMFAzHuu+J53iAT3LDDYdV1ZnCLYDOfl70G0g6m9HHb+hkuWs5c3ttvn+ty04BV13hItsO2QOSk3TKDoB5DpFr+feYeT+j3XiU5oJTeP625wWFiztkcZoPNClVU6Dbc83kBtq3U7WYJRaPNFjrsElOJSKKAv//7v7e/H3nkkXj00Udx3333Ya+99sKBBx44LWWKJKobjMKjMjciAWDJkn7phJ39JlrD+p2TCZQ0hCtJgCR3pASwf5M/xSpbSQ7k5rxgs36YgiXM/ygLp2aZRgKqhDDJJgWI5KWaoNG5+QjOyuZSEzBzLs+wTudLmJJG5afRGv8xU52VCRuKHRcibY8YFSvV6RZkqhvlJIeiGYJFW/ueDJGyKlyu1+RSrWc1ITChAEUeJSJ87PqqxHRYRct4RDSp88KXREzNOnvceErL8diZUMa4q1NVNDtDegHZCBMI8un0/HNvqZmydGWwyfzM8QCXFZmyvNtnlPt0nALAiZo3s48RASKPgmaPAo6QSBYmNoSSk0PFiZMpYyVCgkJqA3x1xeVcK22na9f0I+WmyvPECdRohn++TiIRMR7qpO1Cgz7PjwWmXFTNyGLEhft4BE+SGpRfVBE4RgBDHyCpK0Ri+TI3eoZfkPmcE5/gPMc9d+eYROr6XHdKJ4pfdy7aKxOXOsW0QbK1CRgZAU+xYfM3bRpAR242KhNT6UTZBpraIyh65nokRecfq7n33aqGKVRaN37V4YD0mHKmGQR5twA9qFPKtn0AXPtkFf9g8g1g1SeYnHx6cLl1UhxEdGLJkiUdK5psbUQSNRrCmSdVxIJIDKBfSArtsDCcKG1P5KTfjlQEecc5hUlaZ9MSEBmiZIkJu33SvMzU0DO1yVaHnduToDnJo/LIVM8mZN9TA+ON1vixDIERRctuq7K6O7ZSesSY1iFk0ylrSQpZn2OVJhuGSPLOkZ5MrPTecR2pbIW5V2mGUkiotA459Lwb5QrT+ZCXYcgdW4dncudHsykhXGfkLS7M1QWubHBDsi1e4kiDVyfpPg/CGzTLUbXgZjpxgy4QeIYS7zOemDKc3SdqDeOFqiAg3L8FQ/qY3yqZtwvKgQ3OZ8VJIS8H1T1cb8z6BOHKG14rOg5d24AIdhjMK8zinfsQKWMdPbveVUuAhB6vjhQTPMRGn4Uz/cL9+d+sbB2/G8LXseagyd9m65DCfzbDUKYMVK6xQqi8fOHAQCb+e0d/txzBVO2WF2qkcLWFUR1p5qxqwyYlViNDUM1hJMZHZZNw5nXvvRfmf8WV/SS1qVtQmr/TOlA07YBSZQ3dLgFAE051F0K3c2ZQageqdJ6QSEnp2pytgO1diSrLEt/85jdx5ZVXYtWqVRBCYI899sCb3/xmnHbaaaOuqTeViCSqG/hLY/72oEooT9GpaeLR1iN8S6woFKdYqEJIl4kacDPlAq+SAgBhzOG0TZJDZUwJCqDY/rwuNr7PPVll4QheGNsXZjFgaqQYYeIkyjueIUQwahkRFnt+o8xBJoBK9fVj15pmwKispnNXmWtgw1t5XTeIgDP88vQO1MAWTdOg5lBpTdejtckogtR5JFDIgLwBmWZ2CQkAusEmAmXqTwZ7jVZn2I6HSwJ0ZEWXfjZ2myoCzI9lyyJhs73TSJ6fM1Rn6HeuRvFknqTCpGwpDEb4aFIDD6m68J15HyivTrsJNfAcUDqFxguZJv6sOUrvYJfnCdQtp/SE12D0Dr8q7OV5m0KyA1jywfexy4Sw7yrVotFA+1XNNOVlZn4cvl94LJdWpXQKNK8T1WsUcllVvh/1LxurJv7xq+pAbZRSgCqghIQ0k0/U0IDdTg1u1GQpdwMEnkhTe5dc/jGbasO0ewCs74nDvtuqhGgO6XuY1R2pgiZOtp0UQitWeY85gGmTCriBKh+cCeFIG79+Rr0i4/l4E5ZuKQpVotjCcxVbifBNNpRSeMMb3oAf/vCHOPDAA3HAAQdAKYVHHnkEK1aswJVXXonvf//701K2SKLGAU0iDMulKaL8YSSCkusXVjZf8MJH7hjSjtq8mXXtthvxByTIepZI8SKyIpyx0YIM4Ux+dgQngVLm/FUvUrCPNVDKFBT2IzN8B0FjZbINijGc2s1M3TSRUUbp0tdIGNIDmWoPGcxorywguO+C1ZOHHa0fiz6TqR8qlSnKzDScRdORVvJLCAnJQpJeRnAJfc1ahRsx806Kz+7iISiuSnmdunTbsP3cWoVOkSGDuQ0jlgVUs/CUrHCpkY6wIVsg1c3yZGFBTnJ4x8+mnyv2GU/cKHv6UQ4853KjlQUg6y70E4Ye6Tz82lWQh47EmJUEowtRqCJeFccICV+HssLv61joCNOZAUhwjMqFmAHnfwxTUhBRTujdpOOl1epa4c+gq1pLcnM8ayfW1+p3pVVRLnrXE0CYGb0QEmWtV/sRi5Y2mwNQI5tcOY1xu/jTH+xgRQ92MohaL1CWkJkekJZZTU8EaQ6xEFpq2yWV5va8ImxnafBH9SarQa3XGwhaxZwGZ97Fkk5t4rMK6R6YVDFbC9tznqhvfvOb+PGPf4ybb74ZRx55pPfdLbfcglNOOQWXX345Tj/99K1etkiiuoH7oCj2bWZ36e8FI1QKKFv6ZcxqUO1h2PQCgHuZGYGCkZ2tlEygGWx0msT5VTyDOOBm4VEDkeR+mIvNhtOfoYMAceM6HdOOwvj1CMmXbYAEfvSMJj7H7Woabes7UjYsqY+RutErV47o3BQubI24xT2LFkRWgxoa0OpdVgJILHnyiJo5r6JUEHRdy7ZL7VBAlzHLbflVWkdpiKscGazuaGi2H91TynAuEzfDjIVTbI4tNguLL5JsPT90bckTws/tzYyqNrhz/5LNC0ThorLQYSWZuHObBW9hO26TsoBP/TdmZZ7jyhqh09wkI3TmYVqyRatSXAGS/vWh408yqpaE6QBdXx4ao7Ja8l1BzKpUmCAE2DV1BFflQgIlJCDhhe+4OmeVF3rf6TmndytvWJXGlj+YfUi+S338YLHlccAbpFWQNiqPaDddG2SS+6LR77yaaQ00qUZlPZDNF/QkilodIm+gzBtQaQ0ltUVFyxElQKdaaQ5pNZjee5qwY8pT1vr0+27aKZrgYwebZlBg3/kSTinnpLRLHiUbIoRRwGQK2Rw0g7FRlL+IScF//dd/4ROf+EQHgQKAo446Ch//+Mfx7W9/O5KomQQdymIKC6CJT2HkZfMPvUSiOaRfqkSPjqz3hpScNNcvKxkZ+cyPhIX82OjH/m+2F0XbNepGXfIa2TC8VxHu62gkqH68oWY+AOdnYkQr8UnG8fO1sVKBEbjENIBl23mU0Km02dmKGXxCxOR73WnUofJeXTbjdXCNKJveXLZd+ZgaRuRQCGnyYhmiZcKOigz4YsgSUduJlIUbscoEqOmRKRl/ef4qADYRn2q3dFJVwM93A6a2BDO8+JI6AFAODerwWa1uiZtdPsgL+TllxYUHdfJXuxI9ACQNfykMuqeFI3Ud2bsBjzjYzPClXobHqmLko2r0ulANJVXknqeAcPDZeQDcckq0bWCW3yxwpa1bZxcSBa4esvp3gFTELj6qrnm++LuauHfP86wJaZ9j0R7peA/tLGD6nSZKBGX2cpIlCTBaotkQquyon72GZOym/02okSa/cD+jDbHRYZMcct6uVm2y2yapDcWh5WbNKgCqMReiPawVIdYu0qBMZXWgaLMBm1Heqaz83gsJCNcO8nZHJRkjS75PVWX+86PSGlCmUOnWyVhelApyO/VEPfTQQ/jiF7/Y9fsTTzwRX/3qV7diiRwiieoC+2KXBQQKoBS281dpDiVzF2ZLa7pDGWlCFE3zN5kPWXoA8jHJFKK5SXdItRQg8zVrOGBm/ZHPyhIoUoSI/AjpZwsGYE2S9CdrcFBlvqMRHME2KqUmapxkUVSTSej2HELqlAoAaMYMyjYw8oLXOUAIZ1qnbanxpFGmySVkl6fJdrSSuzbws9l2FPITEqI15Ihi2AFLqe8NC1fqUWrbmu6VkEylSfSxksQZhck71OjT07lJyRDOq+ISULKFgK3SxDrYdhNqxOXxETAKFilaTHkSjT4k9V4Uz6x315x8RBX5f2w6gFpFmKJScWEEhsJBxhtVte6cWyuO3UdD9mRedx21IQaq1bLXUNTYVH0zw8+WOTzmlo7yw+VjQjIQhvrGIk4hWIjSmtUNvMWg9Qed/zNPoj0elcE8e3ZQRse1EzIY6aL9K4z0lChYFE1NqqHXSry+/tKu1TqxvtZ43boY7gNLAA+rW9LBySK1IcarWDbmupUX2EDRtql5jz2HGBnU73iSATUa3Lh3nNoIz+AtJACt8lvrBFcMhfDsERZm8KePbY2K/tJZlK4mzSHaTZRZxTs2BWiXgNhCEtSenZYoPPvss9h11127fr/rrrtiw4YNW7FEDpFEdQNNy6fRFtxLqWPoNTv6KmSGNKtDtUesl4e/mJYAqVLH5A3JEu2mVapE4U+V5+Ey17h0hhUp0y41UqJosxgBPLlZwXW4tkEIiJH9jsoQkCUOb3YgKzc/lm745rBG3nQGZeF8CVR2aIJEIQEBZ0wnczeZxVGa0F/Zdgb4NHflLQvfo0Vl5t4jSnYqUx2uM0qVvZZEhIWEKIdtygiUbSBvAEXuDP5lO+iAU4hMWnVK5PWOzkU0TUiQqQM2iSagE42yTlJlDSTzdkb76bU6u3te13m8gnXsnDE7WL6Fk5TQmxXexiQByFzPw1ZmQWy37p25z8ObjLfLLbXjGcSNoVxkGaSZdWXzQpmO3ypsYQJPPsuRJwQNlDSdxLPay9RVheoIj25GuNFTetnsxCCkVrkPnxBB4ERKldprpMyC5kwhAQCUbT3YSHPIkUF/Xxa21CTepBVRpV1qZywCJdggUJ+P1Y8RIy8VitKhdmqvbEoWqluHAp3Y7/QgqgTQ1u8Ynce0tTTzDkkOxd7L8Nq5CTpSt4WKZjLnumhEuEw76YXjytJvb4JwqSVjTAlTWR1IZ6e6M5tQFAXStDtdSZIE7fbW86dxRBI1GoxqovXiEpAZADOSSmuQLZ11u1AKSVrTCd7aqCYdqvR8PILCeFWjNrN9xyEo9AUTIrNllP42HGHnwZWLcD87O6rLtajYFuH5aPPA8G07E2pIZeLqAHQQKq8uhtAQiSLFyza+VGgKCRRtCFHahpSIpx9SkkZdTCwBA+Dl56JMxjYcQOSOMhYLV+YwYaBthPlImxNjmpWUm1Bak2WWTjJAtgBZ2PX7dIbwun7GpFsompfZA/mgRgmFeQSKKRh20WW+tA51opKM64YcmhCSVwZDtjxPDiUSpTxYVhFyKlfVkjubMxV/NFTmdgrDdxzsOez4O/wuPFb3QvjPS3iMinNon19mJ2R42bIBhL5Ca/xmoTzFzklh2hOaD9o8UONCGN7k7zZTqjvasW7Xwft7DBLCbBT23GywYxVpPriEdO8oWGJk2pYIYJAKwr6jMrGzh0PFXfD6CQm1labWb8/hPKUUVqxYgVqteomdkZHpy9W1hVr5tgtFMq9wYR/RHtG+m6KpFSrjuSkV0BQpVGMuVN6wSoqWoF3iNy53q7QGlfdakyKNnjqy8paFGyEZxUVL+UyBMse021BHxT1Vo3hKPB+WkB0NCydDYxopiXTY35VtmCwJlKnzSViJP9PXIuuBynqMOpSz62CMpnnDzMpJbWPnnRtw3gpbN3OtAl+EynvssUDbZXW9f6oVrzJruMNzwsavXZrpUCMRAn69yOxvOxhhSYRKcqi8V6/zR2pN1rAJQ0XCfE9loZWr9ghkvRdy7k52PTLyR3X4pEAkhRFHCkd6niNOpkpjPM/9ZwsBESHlLNMLvoIWPg68T3oh6Bwyr0PWe22qBlKtRF63/8t6r1tAmdeF+6oIxqhPP+7zgMyEaQ3Y//YeVtTLA++07TuS8gN416lrSDAciPCfquMQSaBQMi07lWYoa71WAe1KXMxSLIAbDJBHDwBeW1vTuQ+A64Zf5NeTl5vCvjLFdUML9e90z1ibSfUR/IfaURpE2frToCK1yYirBkf2O+M7te2qaTuQsHeeBlSpXgdU5Q2oeh+bqBPk7BNukKSMKg1qkyq24xBbaVFfyhO1pT9TgVWrVuFd73oX9thjDzQaDey1114477zz0Gz6frHVq1fj9a9/PXp7ezF//ny8//3v79imCsuXL8cuu+yCuXPnVv7ssssu02IqB6IS1R2G6GhZfcR5nACjgCRmBkkC1S7RKgEkKfJan8tSzht0LzSkCUEJgVIpJFLoRGGU5I22YyqIQkVDG3RyXmNMBKVy1Cy90J5Httg23vYhBwu37zb65A1mCZTG0C3aI0AOiJFBpwTxY7SEDfmprEcT1jRHWeuDbA3p65n4pnirEiU5hGzbbey14vJ8qAiE16nid2HInFUUKUdN0QZ5LJziZlQuuo6tEXMOZUOJNmWEIQ2ytw5V79O5xsogcSKpUYA2bptUEHwR2w7DOZi6U+GX4vfXhuaMb0SY8I/XYZQFVBt6xmFwHrvqPfca8ZmGXloI80zQ+ciQniRQhXRELCTrPFkkGfoBnd2aiB+dm7Yj0z/gjP+sPpW/V4GFj7xcafQd/V+l7lkfDrsHTG3l4fNKGViVuk1RJSDdeUXTTVbQnieWsZwpNaJs6+sqpH5uzKSIUavL/Faurr7/6sSe9bhuYAFOnPOUG4iEChFtzy0CNNOVrkGa+20mkRLeHvBwJX1XuoEKVAkh9QoTdpavnbXsyKT2j9JsaXZsIm5GVfLtDlQfM9HIhCq7tq/bIR599FGUZYlLLrkEe++9N37xi1/gzDPPxODgIC688EIAOiR30kknYeedd8add96JZ555BsuXL4dSChdffPGox7/00ku3RjUmhEiiuoBedBglQQB6VGIy4Bal0i9tQOz1NN4GSqHDfAJAkgoI8gDZDUuU0CZspZzKYRtC6uSrGtiqhioE/1xITSbMeS26heSqjhl+xEhLJbgnQikoKXWRZaJHbkmmQz05a6h4bi0hAaGgan0ewSICZWfTsWsFMjuTXF9VL8FGoIBtzL1rTcSIlDRAJ+kTbOkdytsFANjU0Zh66pYq9RI0lHeLPEZZw3joUogsg+iZi9IodVwpkr39Ost70YRqjdgy6mvmlB+awi4olFdwMpF3EgWPKCfMb8RmDHKyTibqJLE5oOysPlKjKJeU9BUiu13CDOmUiypj5IcTJTZlXxM3XV+RZS4ZI2CX3rEJLKmcnMRxlYjM/vR3N1SkGPCenSoyxd8L/vgFz6IXdg/Dhl1gj1u2/baEZnTaWamyc3uuWKU50Bp0g4oAJ/Q/q9dsbI34M1T5vTHHO7GxDmibpXpGG0ix+qmsrpddaQ6acrt0I/p5A9yMWD3Q8HKLkX9RInjn3CLIQplkyDJBmdbQLBQSAWSi6LiXdgUEIlCUo66LpcL6JvnPVsBMDuedcMIJOOGEE+zfe+65Jx577DH8y7/8iyVRN9xwA371q19hzZo1WLRoEQDgoosuwooVK/DZz34W/f39U1K2qUYkUV3QhkQbEmlaMy+ncCEo6qyFRMFYVCIEAImWAgrj9xFCQCroqfVAQIq6n9+TkHlagC6jnjCxpTtHQLS6Ea9wRBVuw/cLG5CxRtJA4JESUEkGSSNsUvxarn42XBnK+qE/gRJ2qlJPaabRdxfy6TX0VJ6wsCzXlT03JQ7ko1OaKUmjaJBaFZSRkomqUi8HZBQeMrVTw1zmDWtUpxXsRV63CQIB8xw1h+yMTB1Oo3X/alCtEajBjT6BsqpPl8zTwZIsamRYL0zc6HX1J+WpLCxJ8RSfWt0RJS+E6Lw0RJZ0qgVHkOwadWXh8lWZNBH2+ME6drZcoUJhtrVqDN1H4xHqzLNlvENEQIJnpcq7ZJ9leqdpm7JwxKnqXah498a9ZEjRtN4jTfBJraFZZm07AOMqkkoyl4JC0VIrEmW7CdVu4bXZk/hhaw/vVNdv3BEnzH3OldkQKDvTlJ5FMygQSvuRIJgiZytYTTCUTCGSXCtr9tq4mcfeLGKZaHsFT/TL2zajtnnvtx0Q6etUlAoy0cf02lZ7PD4bx1gQKLecadftPpTJnAh+1QSbKcBkJtvcuHGj93mtVuvqN5oonn/+eey4447275/85CfYf//9LYECgOOPPx4jIyO4//77K3NAzQZEEtUF7VKhXWoFJa/N0ekJVGkSvqXIzAK6QikIIZBLQFawItnNc6hKJDLRipbnwA02Y+qHR47Y/yr8mx+Ad+4hEarYrnIbThyCOnSoUaxxc+USHb4Nq74J6atwfGHjsq0XdjZTiL3FQem4cI2580SZGWKUk6sLeeKNvdeZSalzXiVpx3YQEipl051pxGzKQftTHdwsSn9ZCW/2IqWDYMcoa72aFLFtdaZ2AdQMOWgOObKR1jQJS2v6eTF5qQRTj1S7hSqztiU/lNPKbG89NbzjkgBKNxvQqkiAM5JzdYnOVRRQrab+nMpMubWIoJGR3TwTSrnJGDbMo9isyXDmIy8n/W8Jr4SSNaDMtLLR9mc0hs+Efa6J8AYKlN2WD44or1O4kgDbtgNjEQ4aEFA4mPu/yEsUlosIMy2Qzq6baI/YJVfUyJBHVF+b/w4qreG6TQvMYr6iuky8vPRucVWbK3KM6ApVokx1Pic5/LwhKiwFRZCaxbsmpFAptxSL984zBcoSWkN4ZNFCnqSQPP8dO35H2yDctXRtrv6shICUqR7MyBRKCGtRmE1YvHix9/d5552HlStXTtrxf/Ob3+Diiy/GRRddZD9bv359R5qCefPmIc9zrF+/PjzErEEkUV1QKv2TAHokpNwyJdp46F52IkomUo4kTBROvYvwaZZQCqkAuAfANgysoa5UT6pIgW30kg7VwY6YA3XKSt9E0vhxq8gT+91bD5CXie9jyiRUidKQRim0F6yEhJSJJp9WMXDERZgGzi3lYKR9Ik2Apwr6BDBIlBoqA3x0yT+nY0j3uUpSF97zro9yHqz2sK4DyxpPoRRNvHIXgqSOUUgoGEVG6WenNNmdUZYQRUtnd26NaFMsYJbYMIlMZQoMD2ivlDHAqySFzN3CyWp40CpLVnUhUCiwLHX2aLtOmyYt1lvCE8RWpBCwKpFMIGRhvUAuR5Z51kz2dm9RZxu2TDuXV5ImYSIZqgGz/IYhqxS+qTD8h6FzlML6rEgd7OplCYiDHQAEKogOAyXwVIqgHN4x2YCmIxTYDYHqo0Tm71KWgAyUV8AtgE7tSQF7vb017Iy699raGqAscd2mBQCAH22YgxPnbNLrypGZvDTZx+macF8bYEPcoj3slBq656wd06RQk2dOotx7Hdw7Xi9DXCzfEgkEG8h4pCrJoGQCWbSQokRp3zV+fL5aRECoqJ50fmUMGEKiNM9tUaoxJxdOFopSbXGeKFKy1qxZ44XPuqlQK1euxPnnnz/qMe+99168/OUvt3//4Q9/wAknnIC3vOUt+Nu//Vtv26pFgpURImYrIonqAikYOUoy3aeaWLwyZADQ5KRUetvSvE1SCDvqKYM3TMnENgB2VoengpgO1TbIzmBtj9GF1HiqDh3XNv6uEwgX1eSz7zgE/56pKlUI1bBwRKmE1A0O9DWh6yMENEExdafORbSNh4PNjqMdyqwRJNZjyTWpIbTXT3U0xPxY3lqIPDwUkC5ONu3fonQJ+0xnZf8G/BQJ/Dh0vXh5jYfKJlYsDXEpS4jWEFTe0KZ6piiqXI/0RdH07h2tPwgAsiygRoYZYQqTSxqPEV/glUbW4fViBMomy5QJkNZcfjQpoUpGoIQEEgmRZCxTehCipevBCRSFd/g6iWEONo8kG1Jsrz1TrlSpby2tGlC2UTbm6u/aTZ2g1T4T/uDF88kp5p1RdA/N9mWXd5IlZPUGLKEyPAr48+zlZQIgyhZEa8SVL80CdceFq8jbCQAiN2pOcwgnFr/AD0f27zjvdS/sopNuAnB+MzbII0Iq0akS8/AoKU5GDbMLj5ew4WufBPkj0BvXDOPYJT3m/IlHWpSxSuhr4t5DIrhFqf2XOmIA/56a43vXWVc2uHbuc5oMZL2S6GzjpwpKKagtJFHKlLW/v39cHqT3ve99ePvb3z7qNrvvvrv9/Q9/+AOOPPJILFu2DN/4xje87RYsWIB77rnH+2zDhg1otVqjJtKc6YgkqgsSKfSsOejQHgSfpaRQei+yQqH0PgA8n5T+HvZlJSKRQAAmHGi3Y6NTT04Wyi2hEr7o/DxC2hBjZ/iv9OXvEKEChc5RGG+AOsIbYXmqpHl+Ov5V0bJKkwA6Tc1Fy5lJTeOooBvTpGx5qpMd3VOoUZWwylzHItL6f4/ohIoDXQ8K8XXk2SrhL6jMCHAiXYdB52IGX6emSVdX+klSY6DXJnM5PKDTH6Q13ekzxUHVKHmlmTloTPAQEiobAeSAM4sHKRAAaE9VkunzpXWorOYWfQ1BSoYwClbKkpRKc02y1CeQRhXwr33ZQdIt6LySEWJDfrRRmC1SDQBF4fxAMu1QrrRXTq+RqJIMsjmIst6nBwYjg7rLllIfx4Ti+LvmvXdVKEvPn+cNOoIlkrqar0cD34fIMD2nlnxKF/rlRN+qzMF7a1QkAUC1mzih+SBkb3+HP+q64RfhtckTet+8Vy8UrEqddqEszStg/FB0vyn8SbMl6f2ueseKtk4rQlWlgQprII5d7L73PEE2qZsZkLFyKyG1mGlUK1j1yn/W+DWiSS/UhnYqksJ6ivggeWtlXipLtcULCG/u/vPnz8f8+fPHte3atWtx5JFH4qCDDsKll14KGcyuXbZsGT772c9i3bp1WLhQp8e44YYbUKvVcNBBB21WuWYSIonqAtvAQytNahyjjSrTnzCxPMFIlkAnvwhVHj4CDuP+lYqKHal2KaeQIE+B95kqHeEZbWoxVww4qkbTVJ4gvCJl4hFMmrFowyKBCkAhJQE4GR/GzKl0A0aaCjf6KiEg4IhfWCU21WdcdbagGY4gUuUIlW6IK6RqL7SnU13YhVFVsAYg3yfRioIEUAq9NiPKQpMoId0ajEE5Kc8Nfa5qvRCNXpQDG1yiy7ZZzoUykptQGmVQV0kOIUZ8r1tAbJWQEHlwfSgkR+pR0WbT7v2OHYXrAzVpZLMD08wpG6TuyUTXOZGWDFFmetl8Qfun7Cw0oTv1JNfrnZl6UPJTb5HuJENZm2P+bAJNF2oNF/jVFTBKSRUZElwZk9XvRrA9x5iz2/g7SKQN8J9hfgwTDqX3RxRNm6XAHier6Xxjw4NQ7RZOrK/FdcMvwolzntIkqT0CCJ3LTmU1TUqTFCKBm2HJq6QcoSzTPv28Dg/o45gyATDrYLLBhGKDPCE8tZy3jWQF4LB/mzZWwClGUoiOtjZU8q26rAAFwch9oKYrOFsEMKqXdXvDH/7wB7zmNa/BkiVLcOGFF+Lpp5+23y1YoEPExx13HPbbbz+cdtppuOCCC/Dss8/iIx/5CM4888xZOzMPiCSqK4g8AeMjUGDbE6TQ+1qvFNwIZtwJ2tiIKByhWd8Ia7iVHZU5/1XowfAkbVJTmKrik6DuhK3je2oghUQpnNeJtqfGTsHMlhGJ3jthIQhVGlUjccZNSSqGVvkSoWsnpNCdsU1macgTDJFSsCEY34vmN/yeaufVlXWEfJ+EdcJ0KdjI2gsB2ZMoQ5ry6rAjV6bo2IlEWe8HGjtYzxVtR8kL7ZqDgJsqbs5H6qOo90G2m3aBWgXoPEt5w8xAcuFQUTSt6VplNZ2awdwjFK1OQs/KS8ll7fPK8zYVhSZKXKmxYVwKabJrkdYdsacwL/PBIavra65KlEJApC1geACiNWQUMGWfKZfF2lya1ChtXJUBdEhOSBuStQpUOICgZyJhqh4PHQZKkEeC6Du6bGOF9cyzx4/rbUvXiEzmwT0BSm/BcFGY0CU9jyaNi6hDG86LJl6bPQlVuMkcKqs5JZAWJKb7RWTOvoOkkimIooUy74VIUqNGGcU47/GVSa6oUXZ2Vo9Sat8TAPveK9MWhO+tUuj4rCgpFx+/8K6d0PdBuUvZpW0ulY5AJDzqjM52f6qglBp3XzTaMaYCN9xwA5544gk88cQT2G233SrPmSQJrr32WrznPe/BoYceikajgXe84x02BcJsRSRRXaANg6M/cGO9POSVouM0yVJipCjyRVX5ndy6TYFyZA9euO1HG+2yY3Z+4XeIRqD2OnZPrQlB34fnEdIYxwEpEit5hyFQIYBESCRpDe2SyBGsIbQolUfhSqVMfi59DQUzz5cwPhUzkqSGsKvPwSt/YPhnHUKHD6xDdas4fuGM+vZ+itLlHuMhwbADtQRMj8alKk0Yy5EllTeAIgPaI24NR1Xq34GOdRhV3oDsmWvVCEpAqaTO6GyTNlKH3Xb7ez4gNtvKfk7nENIRKH7NGMFQIvOulwstpZ33hQYHLHSls7m7tBDUgavaHK3W1Xohhwd8Izx1lknusnxTGW1KAH3dZDEASuqqSR5LGWAmEdBxNXkVzhck2PXgqm5YV36P6fkY6x0WZgYgLXvEfUYJbH073nNak9DeFwUhhh3pKgq9ELg5lmDPmOdVSnKT5qWhn4HWsD6cWYJJURk5yQWA1rAlviozi7Sz5xRm9Qc7sCCyK321OYVy+eWg3+1O+mSqbOrGfZcA7IQWsIEWtRnaK+U8ml1nSkO3WwWEVdQng9iMF6qcBE/UFDG+FStWYMWKFWNut2TJElxzzTVTUobpQiRRE8DmPIfetrZjByC1L4o6Wp57BoA/PTgYCTsVibxA45/Z4I2S6bMKo69FlULFytxBTkwHJU2y0cKM3kZraIqSjfCEZIQIHY0hoD9vK03QpGBmT8Db1iZdDAz8leSIZ/m29Xb14f9X7s+PTx0989KocAo44PuSOhQEONWptcnvaM3nylPEpO2kuCIojBHbqkRJAhTO/A64DpOOz2c/6iU1mFG5bJtwIMsFxUM67Fp5z2nCjOtUB7uembAkxYZxqU6cqJGC4akXUi/Pk2QQWQNlfa4O65lEjqLQaw5SKgnar6zNMZnhS60sqlLXS0hHWBUtzdNj6i2csZ3VXxjPnIeSkXN6tsJ3gNQXehbCPFjeMRMoGlepUj9bFD4N19EjogvzLLM8RnamqeftM54qIqYquJ9l24XUZapVQBYStZNYYMgSYFVGUbZ1Yk1ocq9Y2M4awjPnceOhNT3IMhNrmMJM5KoKCnBtTkC1SiMdcT8TeaZ4E1OiIgSoNj8yEbF9IJKozcRkEPlSQYeazDBIClk5+KkMM9Go1C5+K/xBr2VGnSbOKqO4DYMZMzonRR0hP1ausJxcHheQHeb6Kihj4gTcTEgyb0pjMuceCF1vN/OtMGpXuyyt38yVSXi/c4m+U10KQpRhMklOpKr2B7tXhhhU3jt+PekSmk67MlSjSpRZXfu128NuhhMdJ8mNT4jybI04JcVObW8ZlUqrBqVMIbEJdv26tp9Ly+sQhQRsNnHmjyLPEmAJBz8OPx5UaX1MNvTD1S1GShVTgdy9cYMKl0DT5QCy6p5BKRKUUiKrSV33sm0yqPvvgUprrjxFU5efZzinMHBm1k5L654aWAkijza8mgBw5Nwt91OhOlll0oXmwnCvYNsKlDp0bJfqMelA2DUm8oPCDCbCTOehT42In5AuIz2VgSYtyFQrgnTP0hxomfBvmuvM+oYMqYzWETXXIK1BKaBVKmQy0a+ZEGZAZPIvlW3ATAQgkzdZAxQjPzY0C3gLXXNfKp/sA7Od+07ZY3Eixeec0N/jGQhuDUyHsTxibEQSNU5M1rNnyYKRhZWJ8YtRjh96ngQC/0wVGKmhXCpctQpHdsp8ooQwHoKE8yavAbKNKZXHHJsUpEKhI3QHuPAmh042SmXSIT3b8Cl/pmPV/io4TsK+dyE94fulWD06VD7AkR06RxBuqZqhaMltGJYKPTEclsRSSKfa3K9MCoGOpKJUft65h2WiBJBhPWhdQiRWCbCHDMtYNHWIz5RPpZl33QSpRlRfbtwmmOzPNsyZZJ7SogTbJyT+IcFkfjlr52LPSWK8crTkh2AhMEtCzUxKJSRkoRXDojHPmtWFKqFqlLuKETmWgFRwjxgrn96n03DdodzZwoeqUDVUWjflZlnLiZiFaiD9X7b1SgD884oFxClVAR2HhxntNWAZukXRtktggSYz0ODMbpfb9oTQ9lRnncKiKJXxOgIpU6IKHT9DQe990I7Y8aL5v6qNduln3D6l8VLRcW0bQ6+e+dXdpplBPHhTsiXHiJhcVAyJZi6uvfZaHHLIIWg0Gpg/fz7e9KY3ed9PdIXo0UBJNycDRACINIy6qjZrwLyZazCkIPisNB4jvk1bsZEZU62U0pJ1CWFCafqHfEim7dKpBJgJmv+U0MdXCrYcrVKhVepGj7wCyoziqBhV15MaqUK55HUup5T74cfiPxylUraORJ7sdzB/M/JiR+/UuXpqUeJ3IPxa2ASg5juuZgEVx0rdT0DK9EUoYdMwBBnFSwi9bqNRYzwCzVUs2s8SpbYN73mz3XjnyBf6NSqJncBgFAgAesZdkmoCFRJ4Ia0/hhMJR7QdKdIeHUagApJkQ0b82tIPXY8ks8+2fXaZp0WURUC+KJyYeNevI7dRVrchQ71OZm6JqP3Je1DW+90SUNxXaJ8V7SOie+2ZwgF3zblamqTm+ub6p+r5MPcbxsumsppR7gz5pvtNZWDPAa2fZw9H9yWEZN42fg2N6qTSHCj1rFKV90IlGcqsYZPM6jBzbkkuoTDheRogtUuFZlGiWZS2nSgUMKIkRkrdlthVI4wXkn7s38q1GaN5WOm7UpGCDdtG0b7UltBxqb2ZKQQqYuZi1ihR3/ve93DmmWfic5/7HI466igopfDwww/b77dkhehu4KOYyUbCDqwU9MyoihfWjrYZ8QK0/M2n44axfZo5YgdwTAq3xzb/21i/J4XrtAz0SUKz7UyZYBskZWdN8wZnc6+ZJVKBabPbdt2OoYSws3Yk8zbY62bycwFOjesYnjEiEHaAmhyNohZQaMSaZIMZd6rsVHrouIDOacTN/QZlklkPibeYNBEUYTq/svQ7QO5L4pMYEpfYlNQMmxU7q9mwpM243jH7imVdr+qM6ZzwyYIN3xklwysnHygE4T5v/+ARCD1znCyGaqMAzEuhlSTRHnbbtYYByfahw6a5u59kgib1RbGZc14I2a0AoNhn3MsFwdRDTkAFyxIfXFvPv0gDKb49nZN8R/QsUhn5+QE3qzRU/ipSDJSGVArRdJn5hQzIkjQz5CQkE3holnIigCwRaBXUjrG6jaJYV6FbW8D359sQUavcHv529Hk3cHVra2Emz87bnjErSFS73cYHPvABXHDBBXjXu95lP993333t75O9QvTWCB0LIaCUVm9Iag7zmvAYPXkBSJLWX3R2IqHxMjRUdpAnajQgQCn4tczNvhNAJoVRelwjU/VSjnXtRmt4tvQlp7AeZZCXxnTu6qw/A+CRKd7BcJN/h/8LsNt45IvMzoCf1ZmzWkM+O9QLTtQ6FC3GjGkfYabfg0IsCctf03akhBOTqs7SmN+FNH+39fntOn5hh+uVMYES/qK9pFJwVKWT8I8lXaJSu5PwzqmYCsXfA9g6w5vabkPYtB1dM/L9hapjmuvtyrZXfmvcp8+lISulUeiMIV3ZZJLMVyiEvvyq9Jb7saodoGe60YxLQ1qsIsqIPF830IKnyWDPmxcaZs/1aKsNePuacKy3BA99Z2d00tIvwl57wAyozMsvzGBGCjeAIQuDFHoQ2e1dr2ofeJtiV5IY47Nw33BAzP/e3PZ+NGV9qhA9UTMTs4JE/exnP8PatWshpcRLX/pSrF+/Hi95yUtw4YUX4i/+4i8ATHyF6JGREYyMjNi/w9Wtp+KZC0dERanVHN24oKs/ynoD+LHg+4YSRhpCz0DoLwqVI6s0mVEjSeDmQ0uwxjNSm0zwRnA8oPKT34HqysmV3pCOa4grrcNlO3BDsvhSI3QOwYy+LFTlZjGy0JoqXcgFTE0IFJbR/DCUVwuAS54Y+HH0orFslhWgM0Lb4wNKNvTUchYeUtRxMmJTZZ4IZ5B6Zaf/U3+GGApO2vzQnVO4RFc1qxSJvU9lhZLgKRmhGkv+wQqlyiVxbbhrSakihNQz9zwCqushWm7hYpWYpKle+NUQKJmyyRrCKIyw3wHQyh8YcQphz6+Cv0tzHrD1PHO3TVV9q64vVxNJYaOQMimboSfMgPyPHFU+yEL530l0V4OA8Sn/oxEl/nfYXlRtExGxpeiiw88s/Pa3vwWgF0P81Kc+hWuuuQbz5s3DEUccgWeffRbAxFeI/vznP4+5c+fan3B168kEf2m7vcCF8QHYeL8Nm7ltFPvhsfxSadJAnyPYhp+7KvRW5T8Ky8/9AxPF5uwflntz9+VeidAX4a5hhTctDCEJ30/Vsa31HYUsNzQRuxAMH+n78mOo5hBppXpA+9W4qmN8P4q8P9bXY3xJqZ6qX9bm6JQAWcOZgQ2pUGndqlDWC2S8WC7HVeKOycNvgbJkO96EpWLg15OOSWXgfi7hfGeaOCnrkeFeO7qfhfFF2bLwZwb+7NWwDJ6qyLxTKq27cBWlOTBpJWxd2fI/zsfFsm3LxC0ELIT7znqi/GeJZg0qk3zWC91R+QKlktenyptn96X97TbCGfTpXuQ9UHnD5g9DkqPMe92zQsfjpzWHGu/6cVXv8FSQGU6gtmbIbSpBeaK29CdicjGtJGrlypUQQoz6c99996E0jdUnP/lJ/NVf/ZVdm0cIgf/3//6fPd5EVog+99xz8fzzz9ufNWvWTH5FA4xHQuYdhTdtt+wkNyFJ4AQqPG83gtStjFOJLSFjYxGq0fwDY16DwOfBZ4FxMuWZ7asM46GSYD83HZj11/hGcr8ifqdljdRh2Xkoh5+fOm0b+knMWnlpB+HxymI6fJXmLlcUN6jba9M9kaQ+ZuqVoZKE2rImTpUi4oqx3xMixsq+V8r73ZW1wjsFuOvmKT2ufnxSAYQEiBgaMkQqm3f9pVNyvOOHM+NMfb38WIx0eWXtdt3CcH5Qj65KF+1vcl4pXkYi0bze7JqFlgMiuFuKqWh3thneMBkEapu5GDMH0xrOG+8K0QMDAwCA/fbbz35eq9Ww5557YvXq1QAmvkJ0rVZDrVabaBU2G6NJylUSNCE0SFK4aqxzjdawzbT3aUsI1eaMNjvCmJ5tySTvNIUJsx7bz1jIrmMRaf47N3YDlsy0IQEFSJnZGWVdOzoTvqGzkCdOUBoKwbJGC9mRWZsMzuTb4UZ0Xj5lCILN+ZTm2s9DuZ14RxqG5vhMRAqX0XlY6JErNrZ65OkJwkXcvzHWhIISQuddC7+DWSqoIoGiPTfge+LKNmwuKpso04T5aDtSoZLULn8CtPV6iuQpMkvlCNnWYU3aL1zEWsKFz0o/ZGqLTPfWKEpKpmYZH5ajy4tl+s+kB06CpbSE2nqxjApWpjU0C+1rSo0SZf2WXUzahPG8k1PZ/sy0tm0yUCo1/uXCRjlGxORiWknUeFeIPuigg1Cr1fDYY4/hsMMOAwC0Wi2sWrUKS5cuBbBtrhBd5QXi3oLQt8SXmAm3n8mYjDKGxxgPGeXblQo2+Sk3Lletz6WPw/4QLJmnkH5XLowXKRjJp4BbJBUmzKJYHi/FVpNXOpmoTT9BZSsVAIlE+HnGvJxXkp1bJnapE/13CiXJC6RACSlD8qeSzC0gS3VgSUV1eUtL2nRdBBRye96y1ueWiuFKj0zM7FG9PBD508rSddKhB6/KIKyUQls5NVqZRb8r751wiRzpWvN7o8kSI7RloQ3lgTmfMqp7swAtEclQJpmW+oum76ETUicgDYin9ii13SxL8523nE5J+5vZd9bzZuotU62UUfnYsT2ljfZLUm+NQQqvKiHRLJT1a1LZ+WQTjqp3eDa0PRERW4pZYSzv7+/HWWedhfPOOw+LFy/G0qVLccEFFwAA3vKWtwDYdlaIHq3h6RbGG8++2xvGMxLmi0MDTrUgBY86ZJ7Akzp52++a3xXcWohcmXFKhz+TSQjYNAyAW9tL0DbhjLwKD0kiYFNb2ESIhpDo/RJXJjoUNHEhRUokpSN9vNxp7tY4o46YTMyiM/dRGEpULCeWEgLtUl+XsgSk2a5UgGqbkBMjP+Ah6YpJDFVqbjilvTCEiq6RK6dPoDqgfPIESuDBZzsaEsRnsWmBSHr70l8qreu0ANzMH5BPfu2IGKkktcqW+5KFTwuzTEpWd+Urzf9GRXQmd/q+MAsGU8gu1/45Id1agkIvIK4MkZNCh+tCVA3yIqYOSk3C2nlRiZp0zAoSBQAXXHAB0jTFaaedhqGhIRxyyCG45ZZbMG/ePADb7grRQBzlTRShWlEFTpbCjpu+o1mRNkzH/Tb8HBAm8ztTpVhnTekKTDTEm0WpzPES4ZMq2r6bDM/N5lQHm9QV+sB8zyQIHyqZACkjWWUbkKULuxUtAIULZfF8UTyNQ+DDocStMIS0xWI/BTohoWwixjAMPZ5nvapD91YFAGzesHAZILdDRcJVwIQ66z7Bou/ZwrkeETIJLq3XKWWWAQqpwpFPSoUAAKDwHJ/FSdtndVtWSBN6IyWsbNvQoqJFg2HUPiSQRQtCtWzolEKOVh20s/4kWjZ03f06R/K0dTGTFyDenjFrSFSWZbjwwgtHJUXb4grREZODsfxmVgkJDOdEiMiDFiYrFfCVDgB2ar0+HvvCkjWet8qcx8wYD2cJUgiPn4EIhhe+4qTDlFWhioDoMJcUiQ2hcSRZHZKF/GyYLq1pIgF4Iatw+RVSvqwRH65+VkGTnWXm12JLkrZWhflIbaS8RQJA6l3QLukFBPuuKm2FUppkWh9YsNCwIWWamyTMG0ZkhWTM0veyUYgtJGXcF6VKvdiyUZe0eCnBlSoKyYrCqYY8Az8ty0LqKc//JEVFmhN2XUNUWQ4iIrYHzBoSFRGxpRivcb8qCR950LiHyv1u1CB7MHhBQvpcBMSCzuWVg7aFT7ZC0lVVbj4LlROSys+JHAahy6JQkCK15DBJoTvstKbJVdGyhKAUiQ5/MtVCsItQRRTDMnerS1VdNxf83tm6CnediMwJ+GZ8Wx5SiYJ1CV1yUEaG2PeOfDF/nFKByiUcUSt4gk+2zh8zifNwqQJ0+gGRQMgE0iyU3bGMDRE9ZWhkkqHM6lBKL6uiCn+pKEDqZ79wSux4CNSdawbwqt36ojI1xShLQGzhS1FWjBcitgyRREVEVKBbBmT+N188GXBkJFS2CGGqjYmM3quOPVoKj7B89FmoeFWFNQulUIgUOqmjApIMwoSY2kpPKvPJpF+vsWaHckykbxjvkkwdfiqloITLvaaT3LIwp1n+hhQsKZ2qQ+tGSh6GCyYN2Fl+qjSsjRnW6XtCB2kzihfNaizbhpGbRJiMYHmTEkr4vi2TLsFmtgdQJhlG2qV3PcjvZ7OKj/JM8uf1zjUD9vdX7dZXuX3E5CIu+zIzEUlUxHaFbmpUN/9U1dpeHOFn3E8VHjuYt2fNz1UIs8NXnWM08sS36VbGbvvwY/Prokp/piIpcGEYbrSp7xyT0elOdG1LIlO0vFEpyPcmAZlbH1oioFNJKLeAd6mUZ97vgDH0KyTWxG6PlySWqFmliKeIMCBi1hJ6pl0mDJGTmd02FYY7kYk/yAdlczwZYtUufWUpkcJev/EQ+jvXDOCwxX2WQB22uC8Sp4jtHpFERcxKbIkHY6xZRZPVMdDx7/q9DndUHTckVhxjjRqnclRZOY29ImHA5pZhMjvdbsR3c85htzXqFAdNKigsK3RhS5rFyeE9T/w77qNTzrvkESduUqfZixBol6UhtNp43lZAKrVHSpRtSO5JEwmkUZ+UTO2sUe5946STL+/UcT26gAjU4Uv6O7P8R0wpeDR4S44RMbmIJGo7xmw1g4bkp9uCpN3qtDW8G+M9x3hmEG4JJpNobemxZltyxa4Z77njLTD0jwVSt5IkcwlW+Uw9Q4qKUtnVCSQUWkJCKM3N2gqASL3FyikUCWhlqq0AzuTG408b7zU8fEl/DAtNA8pSTYInKt63yUYkUdsp7vr9gPf3TJDmJ4PUhfUiv0bVObivo2rbqn04qgjQllzD0YzvEyFb3cKBo52fY3NJXTeFb7qfq/FivHmPxmuMr4IwObMKBSRCIklcONCmqSiVl5epVPofMsJTwsuSZhsKgUwKm22fFhqvqkbV4GI894e/V5FATQ9iioOZiUiitjOEJINAhKIbkZhqhB0XhcD47/Q/eTMI9HdV3arIIu3Tbdtu14BmId31e/98fPtu17fqc16HzUFlWLCixxzNVzXa8cYihKGPZiKd8kzGWOUfjehuDgHzQ4XV29C1LpWeNZdIP+2AVarsOtc6/DdZS67w5zbOwIuI6IRQcVjhYePGjZg7dy6e/P26WZXpfCzwDr9bR08YL5GaiHI0ViNcRW5mA8ZzXceDKmI1UVIy1Z6v7R1huouJkq+JoNusSP57twXZN1d5ApxSPVstAFOJjRs3Yo/dFuL555+fkj6D+qR933MFklrPFh2rGNmEx77+9ikr6/aIqERt4wgbw/F09KNtU0WwJtp5zFbCVIXJIFAAOlS2LUFVyoGIyUOVgjfaNR5vuHA8GGuGKc0+DLcf7zPABwXdnseJzoyMmBjiAsQzE5FEbWOYrM58c48/XvVqWyJOUwV+jSaDUMWObuoxoRmBDJvrhZvojNTNASdS8RmKiKiGHHuTiJmAscjRXb8fmHICNRrGM7qOBGrzceeaAXtvab0yKWD/jtg2YH1PwU+3bbYm4ns7M0DG8i39iZhcRCVqFoDIETdbV30/XSC1ZDR5PzbEW47wGvKkh4TYRkZsLqTwJ5ZUkfOxQnsRUw+lJmF2XgznTTqiEjWJmAploMrTNFsUCFJQIoGaWty5ZsD+zJZnI2L6Qaom9+FRe0PPUwj+WSTsERFRiZoUhMuEbEnjwkeF3cBHjdOtQnXDTC3Xtg5KwxARMRp4mxWqS6MtJxQxfVCl2uJkmTGcN/mIJKoLqJHptmo5rSEV5isaDbRt+BxPlHBMN1HpJu1Pd7m2d/DrPxOSqEbMHIxHqbxj9UYcvqQfd6zeOPUFmoUI1butpf7GBYhnJiKJGgWjqUL0+eaEqra1sFaVJycSqJmFbs9cVKsiwkEgX1x4cxO0bkvoNnAG9DUipS4qdhFAJFFdcffaF9DzfHxJxkI0ms5OdJukELFtg+eq2hwVnYPI17ZIpGg1Ak6aqn4Htr6qE5d9mZmIxvKICSMkUNua0ratY7rTYkTAS1vBU1fQz1ShVO59FULg8CWd2au7DZC2dhhra4Cud0iUuv1Of9+5ZgB3r31hq5SxNJ6oLf2JmFxEEhUxYfCQZiRQsxNRjZo+jJbJn8+2nCqyQveevE9HLNVEqopQheXbFrA1yOpkQpXFpPxETC5iOC9ii7CtNKgREVsbpXLhIwL33AAuZDTaBBc6VjfQvnx7/js/PydQo73bk7k80dbE9rAEVcTWRSRRERHbKaIKVQ2+WPdEEXbW3UjOlobE+fbdykuEZzTSo5TC7avHf+7Z5onaFsjTZChJUYmafEQSFRGxHSESp7HB1RrAXbPQP8avJc8PV9Vhd8sfR2rUZKCqfDx5ZojZRCAmA+H96WYYn6lQZTkJJKqcpNJEECKJiojYThAJVHdUEZ9QuaG/hRDezCzqnMPQ3HhDXlPViW/vkwb4Pa26FyFZjoiYCCKJiojYxjEe38z2gNFIxWQRGZ6INwR16lX3YbZ06LPFBxWS4qpyz/RrHUIVBVSxhUrUFu4f0YlIoiIitmHMlk5vshB2nuPtKCezQx1tWvy2hNFI4XRiPLPtZuN9UWoSPFEqkqjJRiRRERHbMGZaBzdZII9RGLKJmHyMRcSrSMt0PHdjkaf4fERMBSKJiojYzjFTOsHxgK9bdtfvB+Iab5uB8WQonyzlcksXYp/I+YBtmyjF2XkzE5FERURswxirM+s2eh9rVL+1SRYvT1V+o4ixEeaG6jZbcLKST24tIrW9GOgjiZqZiCQqImIbRrd1zsKOMlxMdax1wcabB2ksjMfDNJopOBKpzUOYtqEKm3svxyJdU0WmthfyFDGzEUlURMQ2jvFMtd/SxVTHS6pG63C7hWLGypwd0R1VZClcM3FLU1+MRZB4fqaxtu32fPA0EtsrohI1MzFr1s779a9/jZNPPhnz589Hf38/Dj30UNx6663eNqtXr8brX/969Pb2Yv78+Xj/+9+PZrM5TSWOiJg54GQjVJ2mAuHCuuNZo4yyavOfiC0DESZOnF61W5/3s7Vw55qBjvLwBZdHQ1ws2yXb3LKfqUu2+YY3vAFLlixBvV7HwoULcdppp+EPf/iDt8222EfPGiXqpJNOwj777INbbrkFjUYDX/nKV/C6170Ov/nNb7BgwQIURYGTTjoJO++8M+68804888wzWL58OZRSuPjii6e7+BER046o2kTMRCISn8vxoSwLYAuVpHIKlagjjzwSn/jEJ7Bw4UKsXbsWH/nIR/DmN78Zd911FwBss320UFuq428F/OlPf8LOO++MH//4xzj88MMBAAMDA+jv78dNN92Eo48+Gtdddx1e97rXYc2aNVi0aBEA4IorrsCKFSvw1FNPob9/9JXJCRs3bsTcuXPxnZ8+jp45cSQcEREREdEdm14YwNsO/jM8//zz4+5nNgfUJ+100mchs/oWHatsDeOZaz85ZWXl+J//+R+ccsopGBkZQZZlk9ZHzzTMinDeTjvthD//8z/H5ZdfjsHBQbTbbVxyySXYddddcdBBBwEAfvKTn2D//fe3NwcAjj/+eIyMjOD+++/veuyRkRFs3LjR+4mIiIiIiJhJ2PJQnvNUhX3eyMjIpJb12Wefxbe//W286lWvQpZlACbeR890zAoSJYTAjTfeiAceeAB9fX2o1+v48pe/jOuvvx477LADAGD9+vXYddddvf3mzZuHPM+xfv36rsf+/Oc/j7lz59qfxYsXT2VVIiIiIiIiNhuTSaIWL17s9Xuf//znJ6WMH/vYx9Db24uddtoJq1evxtVXX22/m2gfPdMxrSRq5cqVEEKM+nPfffdBKYX3vOc92GWXXXDHHXfgpz/9KU4++WS87nWvw7p16+zxqgyzSqlRjbTnnnsunn/+efuzZs2aKalrRERERETETMCaNWu8fu/cc8+t3G68fTThox/9KB544AHccMMNSJIEp59+ujfzdyJ99EzHtBrL3/e+9+Htb3/7qNvsvvvuuOWWW3DNNddgw4YNNm769a9/HTfeeCMuu+wyfPzjH8eCBQtwzz33ePtu2LABrVarg/1y1Go11Gq1La9MRERERETEVKEooOQWGsPNAsT9/f3j8iCNt48mzJ8/H/Pnz8c+++yDP//zP8fixYtx9913Y9myZRPuo2c6ppVE0QUfC5s2bQIASOkLZ1JKlGbK5rJly/DZz34W69atw8KFCwEAN9xwA2q1mvVNRUREREREzEYoteWz8zZ3AeLx9tHV59IKFPmtttU+elZ4opYtW4Z58+Zh+fLlePDBB/HrX/8aH/3oR/Hkk0/ipJNOAgAcd9xx2G+//XDaaafhgQcewM0334yPfOQjOPPMM2et6z8iIiIiImKm46c//Sn++Z//GT//+c/xu9/9Drfeeive8Y53YK+99sKyZcsAbLt99KwgUfPnz8f111+PF154AUcddRRe/vKX484778TVV1+NAw88EACQJAmuvfZa1Ot1HHrooXjrW9+KU045BRdeeOE0lz4iIiIiImLLMJOTbTYaDVx55ZU4+uijse++++KMM87A/vvvj9tvv93aZbbVPnpW5Inamoh5oiIiIiIixoutlSeq/4iPQKRb5t9V7RFsvP3CrZInanvBrFCiIiIiIiIiIiJmGmbNsi8RERERERHbK1RZAlsYjpvKtfO2V0QSFRERERERMcOhJmHtPLWF+0d0IpKoiIiIiIiIGY5IomYmoicqIiIiIiIiImICiEpURERERETEDEdZFhBRiZpxiCQqIiIiIiJihkMVJSC2kEQV0Vg+2YjhvIiIiIiIiIiICSAqURERERERETMc07F2XsTYiCQqIiIiIiJihkOVxZaH86InatIRw3kRERERERERERNAVKIiIiIiIiJmOKISNTMRSVRERERERMQMRyRRMxORRAVQSgHQK3NHRERERESMBuorqO+YMhQtbPEZitZklCSCIZKoAM888wwA4J1HvWyaSxIRERERMVswMDCAuXPnTvpx8zzHggULsP5X352U4y1YsAB5nk/KsSIAoaacPs8uPPfcc5g3bx5Wr149JS/EdGLjxo1YvHgx1qxZg/7+/ukuzqQi1m12ItZtdmJbrhuwefVTSmFgYACLFi2ClFMzV2t4eBjNZnNSjpXnOer1+qQcKyIqUR2gl2Du3LnbZOMAAP39/bFusxCxbrMTsW6zF+Ot31QPuOv1eiQ+MxQxxUFERERERERExAQQSVRERERERERExAQQSVSAWq2G8847D7VabbqLMumIdZudiHWbnYh1m73Y1usXMXmIxvKIiIiIiIiIiAkgKlERERERERERERNAJFERERERERERERNAJFERERERERERERNAJFERERERERERERNAJFEMX//617HHHnugXq/joIMOwh133DHdRdpsrFy5EkII72fBggX2e6UUVq5ciUWLFqHRaOA1r3kNfvnLX05jibvjxz/+MV7/+tdj0aJFEELg+9//vvf9eOoyMjKCs88+G/Pnz0dvby/e8IY34Pe///1WrEU1xqrbihUrOu7jK1/5Sm+bmVq3z3/+83jFK16Bvr4+7LLLLjjllFPw2GOPedvM1ns3nrrN1nv3L//yL/jLv/xLm2By2bJluO666+z3s/WeAWPXbbbes4jpRyRRBt/5znfwwQ9+EJ/85CfxwAMP4PDDD8eJJ56I1atXT3fRNht/8Rd/gXXr1tmfhx9+2H73xS9+EV/60pfwz//8z7j33nuxYMECHHvssRgYmHkLLg8ODuLAAw/EP//zP1d+P566fPCDH8RVV12FK664AnfeeSdeeOEFvO51r0NRTO9q5mPVDQBOOOEE7z7+8Ic/9L6fqXW7/fbb8d73vhd33303brzxRrTbbRx33HEYHBy028zWezeeugGz897ttttu+MIXvoD77rsP9913H4466iicfPLJlijN1nsGjF03YHbes4gZABWhlFLq4IMPVmeddZb32Ytf/GL18Y9/fJpKNDGcd9556sADD6z8rixLtWDBAvWFL3zBfjY8PKzmzp2r/vVf/3UrlXBiAKCuuuoq+/d46vLcc8+pLMvUFVdcYbdZu3atklKq66+/fquVfSyEdVNKqeXLl6uTTz656z6zpW5KKfXUU08pAOr2229XSm1b9y6sm1Lb1r2bN2+e+vd///dt6p4RqG5KbVv3LGLrIipRAJrNJu6//34cd9xx3ufHHXcc7rrrrmkq1cTx+OOPY9GiRdhjjz3w9re/Hb/97W8BAE8++STWr1/v1bNWq+GII46YdfUcT13uv/9+tFotb5tFixZh//33nxX1ve2227DLLrtgn332wZlnnomnnnrKfjeb6vb8888DAHbccUcA29a9C+tGmO33rigKXHHFFRgcHMSyZcu2qXsW1o0w2+9ZxPQgLkAM4E9/+hOKosCuu+7qfb7rrrti/fr101SqieGQQw7B5Zdfjn322Qd//OMf8ZnPfAavetWr8Mtf/tLWpaqev/vd76ajuBPGeOqyfv165HmOefPmdWwz0+/riSeeiLe85S1YunQpnnzySfzDP/wDjjrqKNx///2o1Wqzpm5KKXzoQx/CYYcdhv333x/AtnPvquoGzO579/DDD2PZsmUYHh7GnDlzcNVVV2G//fazRGE237NudQNm9z2LmF5EEsUghPD+Vkp1fDbTceKJJ9rfDzjgACxbtgx77bUXLrvsMmuU3BbqSZhIXWZDfd/2trfZ3/fff3+8/OUvx9KlS3HttdfiTW96U9f9Zlrd3ve+9+Ghhx7CnXfe2fHdbL933eo2m+/dvvvui5///Od47rnn8L3vfQ/Lly/H7bffbr+fzfesW93222+/WX3PIqYXMZwHYP78+UiSpGNE8dRTT3WMvGYbent7ccABB+Dxxx+3s/S2hXqOpy4LFixAs9nEhg0bum4zW7Bw4UIsXboUjz/+OIDZUbezzz4b//M//4Nbb70Vu+22m/18W7h33epWhdl07/I8x957742Xv/zl+PznP48DDzwQ/+f//J9t4p51q1sVZtM9i5heRBIF/XIddNBBuPHGG73Pb7zxRrzqVa+aplJNDkZGRvDII49g4cKF2GOPPbBgwQKvns1mE7fffvusq+d46nLQQQchyzJvm3Xr1uEXv/jFrKvvM888gzVr1mDhwoUAZnbdlFJ43/vehyuvvBK33HIL9thjD+/72XzvxqpbFWbTvQuhlMLIyMisvmfdQHWrwmy+ZxFbGVvdyj5DccUVV6gsy9R//Md/qF/96lfqgx/8oOrt7VWrVq2a7qJtFj784Q+r2267Tf32t79Vd999t3rd616n+vr6bD2+8IUvqLlz56orr7xSPfzww+qv//qv1cKFC9XGjRunueSdGBgYUA888IB64IEHFAD1pS99ST3wwAPqd7/7nVJqfHU566yz1G677aZuuukm9bOf/UwdddRR6sADD1Ttdnu6qqWUGr1uAwMD6sMf/rC666671JNPPqluvfVWtWzZMvWiF71oVtTt3e9+t5o7d6667bbb1Lp16+zPpk2b7Daz9d6NVbfZfO/OPfdc9eMf/1g9+eST6qGHHlKf+MQnlJRS3XDDDUqp2XvPlBq9brP5nkVMPyKJYvja176mli5dqvI8Vy972cu8acuzBW9729vUwoULVZZlatGiRepNb3qT+uUvf2m/L8tSnXfeeWrBggWqVqupV7/61erhhx+exhJ3x6233qoAdPwsX75cKTW+ugwNDan3ve99ascdd1SNRkO97nWvU6tXr56G2vgYrW6bNm1Sxx13nNp5551VlmVqyZIlavny5R3lnql1q6oXAHXppZfabWbrvRurbrP53p1xxhm2/dt5553V0UcfbQmUUrP3nik1et1m8z2LmH4IpZTaerpXRERERERERMS2geiJioiIiIiIiIiYACKJioiIiIiIiIiYACKJioiIiIiIiIiYACKJioiIiIiIiIiYACKJioiIiIiIiIiYACKJioiIiIiIiIiYACKJioiIiIiIiIiYACKJioiYZKxatQpCCPz85z+fkuMLIfD9739/wvvfdtttEEJACIFTTjll1G1f85rX4IMf/OCEzxUxOug+7LDDDtNdlIiIiAkgkqiIbQorVqwYkxhMNRYvXox169Zh//33B+BIy3PPPTet5Qrx2GOP4Zvf/OZ0F2O7QLfnct26dfjKV76y1csTERExOYgkKiJikpEkCRYsWIA0Tae7KKNil112mREKSKvVmu4iTBsWLFiAuXPnTncxIiIiJohIoiK2K9x+++04+OCDUavVsHDhQnz84x9Hu92237/mNa/B+9//fpxzzjnYcccdsWDBAqxcudI7xqOPPorDDjsM9Xod++23H2666SYvxMbDeatWrcKRRx4JAJg3bx6EEFixYgUAYPfdd+9QIV7ykpd453v88cfx6le/2p6LryJPWLt2Ld72trdh3rx52GmnnXDyySdj1apVm31tBgcHcfrpp2POnDlYuHAhLrrooo5tms0mzjnnHLzoRS9Cb28vDjnkENx2223eNv/2b/+GxYsXo6enB2984xvxpS99ySNrK1euxEte8hL853/+J/bcc0/UajUopfD888/j7/7u77DLLrugv78fRx11FB588EHv2D/4wQ9w0EEHoV6vY88998T555/v3b+VK1diyZIlqNVqWLRoEd7//vePq+5j1euZZ57BX//1X2O33XZDT08PDjjgAPzXf/2Xd4z//u//xgEHHIBGo4GddtoJxxxzDAYHB7Fy5UpcdtlluPrqq234LrxmERERsxMze6gcETGJWLt2LV772tdixYoVuPzyy/Hoo4/izDPPRL1e94jLZZddhg996EO455578JOf/AQrVqzAoYceimOPPRZlWeKUU07BkiVLcM8992BgYAAf/vCHu55z8eLF+N73voe/+qu/wmOPPYb+/n40Go1xlbcsS7zpTW/C/Pnzcffdd2Pjxo0d/qRNmzbhyCOPxOGHH44f//jHSNMUn/nMZ3DCCSfgoYceQp7n474+H/3oR3HrrbfiqquuwoIFC/CJT3wC999/P17ykpfYbd75zndi1apVuOKKK7Bo0SJcddVVOOGEE/Dwww/jz/7sz/C///u/OOuss/BP//RPeMMb3oCbbroJ//AP/9BxrieeeALf/e538b3vfQ9JkgAATjrpJOy444744Q9/iLlz5+KSSy7B0UcfjV//+tfYcccd8aMf/Qh/8zd/g69+9as4/PDD8Zvf/AZ/93d/BwA477zz8N///d/48pe/jCuuuAJ/8Rd/gfXr13eQsG4Yq17Dw8M46KCD8LGPfQz9/f249tprcdppp2HPPffEIYccgnXr1uGv//qv8cUvfhFvfOMbMTAwgDvuuANKKXzkIx/BI488go0bN+LSSy8FAOy4447jvi8REREzGNO7/nFExORi+fLl6uSTT6787hOf+ITad999VVmW9rOvfe1ras6cOaooCqWUUkcccYQ67LDDvP1e8YpXqI997GNKKaWuu+46laapWrdunf3+xhtvVADUVVddpZRS6sknn1QA1AMPPKCUUurWW29VANSGDRu84y5dulR9+ctf9j478MAD1XnnnaeUUupHP/qRSpJErVmzxn5/3XXXeef6j//4j446jYyMqEajoX70ox9VXoeq8gwMDKg8z9UVV1xhP3vmmWdUo9FQH/jAB5RSSj3xxBNKCKHWrl3rHe/oo49W5557rlJKqbe97W3qpJNO8r4/9dRT1dy5c+3f5513nsqyTD311FP2s5tvvln19/er4eFhb9+99tpLXXLJJUoppQ4//HD1uc99zvv+W9/6llq4cKFSSqmLLrpI7bPPPqrZbFbWuxvGU68qvPa1r1Uf/vCHlVJK3X///QqAWrVqVeW2oz2Xl156qXd9IiIiZg+iEhWx3eCRRx7BsmXLIISwnx166KF44YUX8Pvf/x5LliwBAPzlX/6lt9/ChQvx1FNPAdBm7MWLF2PBggX2+4MPPnjKyrtkyRLstttu9rNly5Z529x///144okn0NfX530+PDyM3/zmN+M+129+8xs0m03v+DvuuCP23Xdf+/fPfvYzKKWwzz77ePuOjIxgp512AqCvzxvf+Ebv+4MPPhjXXHON99nSpUux8847e/V44YUX7HEIQ0NDth73338/7r33Xnz2s5+13xdFgeHhYWzatAlvectb8JWvfAV77rknTjjhBLz2ta/F61//+jG9aeOpV1EU+MIXvoDvfOc7WLt2LUZGRjAyMoLe3l4AwIEHHoijjz4aBxxwAI4//ngcd9xxePOb34x58+aNeu6IiIjZjUiiIrYbKKU8AkWfAfA+z7LM20YIgbIsux5jopBS2vMTuMk6/C4sJ6BDfgcddBC+/e1vd2zLScpYqDpXiLIskSQJ7r//fhuCI8yZM8cep9s15iDywY+9cOHCSq8Q+anKssT555+PN73pTR3b1Ot1LF68GI899hhuvPFG3HTTTXjPe96DCy64ALfffnvHPd3cel100UX48pe/jK985Ss44IAD0Nvbiw9+8INoNpsA9GSCG2+8EXfddRduuOEGXHzxxfjkJz+Je+65B3vssUfXc0dERMxuRBIVsd1gv/32w/e+9z2vo7/rrrvQ19eHF73oReM6xotf/GKsXr0af/zjH7HrrrsCAO69995R9yFfUlEU3uc777wz1q1bZ//euHEjnnzySa+8q1evxh/+8AcsWrQIAPCTn/zEO8bLXvYyfOc737Fm7Ili7733RpZluPvuu60it2HDBvz617/GEUccAQB46UtfiqIo8NRTT+Hwww+vPM6LX/xi/PSnP/U+u++++8Y8/8te9jKsX78eaZpi991377rNY489hr333rvrcRqNBt7whjfgDW94A9773vfixS9+MR5++GG87GUv67rPeOp1xx134OSTT8bf/M3fANDE6/HHH8ef//mf222EEDj00ENx6KGH4tOf/jSWLl2Kq666Ch/60IeQ53nH/Y+IiJj9iLPzIrY5PP/88/j5z3/u/axevRrvec97sGbNGpx99tl49NFHcfXVV+O8887Dhz70IUg5vlfh2GOPxV577YXly5fjoYcewv/+7//ik5/8JIBOlYiwdOlSCCFwzTXX4Omnn8YLL7wAADjqqKPwrW99C3fccQd+8YtfYPny5Z4Scswxx2DffffF6aefjgcffBB33HGHPRfh1FNPxfz583HyySfjjjvuwJNPPonbb78dH6Up9H8AAARySURBVPjAB/D73/9+3Ndszpw5eNe73oWPfvSjuPnmm/GLX/wCK1as8K7LPvvsg1NPPRWnn346rrzySjz55JO499578U//9E/44Q9/CAA4++yz8cMf/hBf+tKX8Pjjj+OSSy7BddddN6Z6d8wxx2DZsmU45ZRT8KMf/QirVq3CXXfdhU996lOWhH3605/G5ZdfjpUrV+KXv/wlHnnkEXznO9/Bpz71KQDAN7/5TfzHf/wHfvGLX+C3v/0tvvWtb6HRaGDp0qWjnns89dp7772t0vTII4/g//v//j+sX7/eHuOee+7B5z73Odx3331YvXo1rrzySjz99NOWZO2+++546KGH8Nhjj+FPf/rTdp3WISJim8I0ebEiIqYEy5cvVwA6fpYvX66UUuq2225Tr3jFK1Se52rBggXqYx/7mGq1Wnb/I444whqpCSeffLLdXymlHnnkEXXooYeqPM/Vi1/8YvWDH/xAAVDXX3+9UqrTWK6UUv/4j/+oFixYoIQQ9ljPP/+8eutb36r6+/vV4sWL1Te/+U3PWK6UUo899pg67LDDVJ7nap999lHXX3+9ZyxXSql169ap008/Xc2fP1/VajW15557qjPPPFM9//zzldeom9F9YGBA/c3f/I3q6elRu+66q/riF7/YcT2azab69Kc/rXbffXeVZZlasGCBeuMb36geeughu803vvEN9aIXvUg1Gg11yimnqM985jNqwYIF9vvzzjtPHXjggR3l2rhxozr77LPVokWLVJZlavHixerUU09Vq1evtttcf/316lWvepVqNBqqv79fHXzwweob3/iGUkqpq666Sh1yyCGqv79f9fb2qle+8pXqpptuqrwGIcaq1zPPPKNOPvlkNWfOHLXLLruoT33qU+r000+3ZvFf/epX6vjjj1c777yzqtVqap999lEXX3yxPf5TTz2ljj32WDVnzhwFQN166632u2gsj4iYvRBKjcMMERER0RX/+7//i8MOOwxPPPEE9tprr+kuzpi47bbbcOSRR2LDhg1bJdnmmWeeiUcffRR33HHHlJ9rNuKb3/wmPvjBD864jPYRERFjI3qiIiI2E1dddRXmzJmDP/uzP8MTTzyBD3zgAzj00ENnBYHi2G233fD617++I2nkluLCCy/Esccei97eXlx33XW47LLL8PWvf31Sz7GtYM6cOWi326jX69NdlIiIiAkgkqiIiM3EwMAAzjnnHKxZswbz58/HMcccU5nde6bikEMOweOPPw7AzT6bTPz0pz/FF7/4RQwMDGDPPffEV7/6Vfzt3/7tpJ9nvLjjjjtw4okndv2ePGrTAVqkOpwVGBERMTsQw3kRERHbNIaGhrB27dqu34822y8iIiJiNEQSFRERERERERExAcQUBxERERERERERE0AkURERERERERERE0AkURERERERERERE0AkURERERERERERE0AkURERERERERERE0AkURERERERERERE0AkURERERERERERE0AkURERERERERERE8D/D8Y5rmpIy4iFAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ds.sst[0].plot()" + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHFCAYAAADSY6wWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9eZwcVdn1ubeql5nJTFbIRgiRTSDiwr4mkMwkQVCMiIKyy4uCQkBAET4MCEHiAi4I6vsKiKIoq0BWtigCGmRTVBQMIYSEkHVmequqe+/3x13qVnX3TM8+k9T5ZX6Zqa6uqq6uqnvu85znPEQIIZAgQYIECRIkSJCgS6ADfQAJEiRIkCBBggRDEQmJSpAgQYIECRIk6AYSEpUgQYIECRIkSNANJCQqQYIECRIkSJCgG0hIVIIECRIkSJAgQTeQkKgECRIkSJAgQYJuICFRCRIkSJAgQYIE3UBCohIkSJAgQYIECbqBhEQlSJAgQYIECRJ0AzsUiXrmmWcwf/58bN26tey16dOnY/r06f1+TP2Fm2++GXPnzsWUKVNACOnwsy5duhRHHHEE6urqMHz4cJxwwgl49dVXy9YrlUr49re/jalTp6KhoQFjx47FnDlz8Mwzz5Ste9VVV+H444/HxIkTQQjBmWee2eXPsGHDBpx55pkYM2YM6uvrcdhhh+Hxxx8vW8/zPFx99dWYMmUK0uk0Jk+ejCuuuAKFQqFL+/vhD3+I97///chkMpgyZQquueYa+L4fWeftt9/GvHnzMG3aNIwYMQKEENxxxx2RdebPnw9CSKc/+jt59dVXcf755+Owww5DQ0MDCCF46qmnyo5v3bp1uOqqq3DYYYdhzJgxaGpqwgEHHICf/vSnYIzV/Dn/+9//Yu7cuRgxYgSGDRuG5uZmvPDCCxXX/c1vfoMPfehDyGazmDBhAubNm4f29vZBua/uYLfdduvWtTnY0JXzXAkvvPACZs6ciWHDhmHEiBGYO3cu/vvf/3b6vjfffDNyTd977709+RjdxoIFC/Dggw8OyL4B4MEHH4ych+eff37AjiVBH0PsQPj2t78tAIhVq1aVvfbqq6+KV199tf8Pqp+w9957i4985CPi7LPPFjvttJOYNm1axfUefPBBQQgRJ554onj00UfF3XffLfbee28xcuRI8frrr0fWPe200wSlVFx55ZXi8ccfF7/73e/EAQccIFzXFX/+858j69bX14tDDz1UfOELXxDpdFqcccYZXTr+YrEopk6dKnbZZRfxy1/+Uixbtkx8/OMfF67riqeeeiqy7ty5c0U2mxULFiwQy5cvF9dee61Ip9PihBNOqHl/1113nSCEiCuuuEI8+eSTYuHChSKdTotzzz03st6TTz4pxowZI2bOnClOOeUUAUDcfvvtkXXWrFkjnn32WfNz//33CwDiy1/+cmS5vv7uuOMOMX78eHHccceJE044QQAQTz75ZNkxPvzww2LSpEniyiuvFI8++qhYtmyZuPjiiwWlVJx11lk1fc4NGzaICRMmiP3220/cd9994tFHHxVHHnmkaGxsFP/6178i6/7yl78UAMTnP/958cQTT4jbbrtNDB8+XDQ3Nw+6fXUXkydP7vK1OdjQlfNcCf/85z9FY2OjOOqoo8Sjjz4q7rvvPrHffvuJCRMmiA0bNnT43lWrVgkA4qqrrhLPPvus2LRpU299rC6hoaFhQL/HzZs3i2effVZcddVVAoBYuXLlgB1Lgr5FQqJ2EDDGzO/77bdfVRK19957i/33319wzs2yN998U6TTaXHqqaeaZcViUTiOIz73uc9F3v/OO+8IAOLCCy+suv/uPOBuueUWAUA888wzZpnv+2LfffcVBx98sFn27LPPCgDiu9/9buT9CxYsEADEsmXLOt3Xxo0bRTabFf/zP/8TWX799dcLQkiEbNufa+XKlRVJVBx6oPn2t79d8XV7m7/73e+qkqjNmzcLz/PKll9wwQUCgHjrrbc6PA4hhLjssstEKpUSb775plm2bds2MWbMGHHyySebZUEQiPHjx4uWlpbI+3/1q18JAGLRokWDal/dxfZAomo9z9XwqU99SowZM0Zs27bNLHvzzTdFKpUSl19+eYfv1dd2Z/dAX6MvSFQQBKJYLHbpPbfffntCorZz7DDpvPnz5+Oyyy4DAJPSstMk8XSeDkt/+9vfxo033ojddtsNdXV1mD59Ov7973/D93187Wtfw4QJEzB8+HB84hOfwIYNG8r2e88995i0zLBhwzBr1iy8+OKL/fGRI6C0869606ZNeO211zBnzhwQQszyyZMnY+rUqXjwwQdNmohSCkophg8fHtlGU1MTKKXIZrNd3n9HeOCBB7D33nvjsMMOM8tc18XnPvc5/OUvf8HatWsBAH/6058AAMcdd1zk/ccffzwA4L777ut0X0uWLEGxWMRZZ50VWX7WWWdBCBFJE/T0c1VCrdscOXIkUqlU2fKDDz4YgEw1doYHHngAxx57LCZPnmyWNTU1Ye7cuXj44YcRBAEA4LnnnsO6devKzsmnPvUpDBs2DA888MCg2lccd9xxR6dp1GpobW3FpZdeatLDEydOxLx585DL5cw6H/7wh3HUUUeVvZcxhokTJ2Lu3LldPubuotbzXAlBEOCRRx7BJz/5STQ1NZnlkydPxjHHHNOtc6+h09qvvPIKPvWpT2H48OEYNWoULrnkEgRBgNdeew2zZ89GY2MjdtttNyxcuLBsG7V8F4QQ5HI53HnnnRW/4/Xr1+O8887DLrvsgnQ6bVL19nnRz/+FCxfiuuuuw5QpU5DJZPDkk0+Cc47rrrsOe++9N+rq6jBixAjsv//++P73v9/tc5Ng6GKHIVGf//zn8eUvfxkAcP/99+PZZ5/Fs88+i4985CMdvu+WW27Bn/70J9xyyy343//9X/zrX//CCSecgHPOOQfvvfcefv7zn2PhwoV47LHH8PnPfz7y3gULFuCUU07Bvvvui9/+9re466670NbWhqOOOgr/+Mc/Oj3mIAhq+hFCdP/EWPA8DwCQyWTKXstkMsjn83jjjTcAAKlUCueffz7uvPNOPPjgg2htbcWbb76Jc889F8OHD8e5557bK8ek8fe//x37779/2XK9TGu2qn0G/fcrr7xS074A4AMf+EBk+fjx4zFmzBjz+mDFE088Add1sddee0WWxweTQqGAN954o+p5LRQKRgejP3N83VQqhfe///1l56Q/91ULPvrRj5p7Xv9873vfAwDst99+Vd+Xz+cxbdo03HnnnbjwwguxePFifPWrX8Udd9yBj33sY+beO+uss/D000/jP//5T+T9y5YtwzvvvFNGCOPgnNd0r3emdevKea6EN954A4VCoer7X3/9dRSLxQ6PoTOcfPLJ+OAHP4j77rsP5557Lm666SZcfPHFOPHEE/HRj37UkMCvfvWruP/++837av0unn32WdTV1eG4444z3/WPf/xjAJJAHXzwwVi6dCmuvvpqLF68GOeccw5uuOGGis+sH/zgB3jiiSfwne98B4sXL8b73/9+LFy4EPPnz8cpp5yCRx99FPfccw/OOeecilrbBNs/3IE+gP7CLrvsgl133RWAnDXutttuNb1vxIgRePDBB010YOPGjZg3bx7e//7346GHHjLr/etf/8LNN9+M1tZWNDU1Yc2aNfjGN76BL33pS/jBD35g1mtubsaee+6Ja665Bvfcc0/V/b755puYMmVKTcf45JNP9ooofuzYsRg1apSJ5mhs3brVDFybNm0yy2+66SYMHz4cn/zkJ8E5BwDsuuuueOKJJ7DHHnv0+HhsbNq0CaNGjSpbrpfp49p3330ByIiUff6efvrpsuPvaF+ZTAYNDQ0V91fLNgYKy5Ytw1133YWLLroIo0ePjrzmOA4cxzF/b9myBUKIms6r/r/aum+++eaA7asW7LTTTthpp53M36+99hquv/56HHPMMbjpppuqvu8HP/gBXnnlFfz5z3/GgQceCACYMWMGJk6ciJNOOglLlizBnDlz8NnPfhaXXXYZ7rjjDlx//fXm/XfccYcpuOgIZ599Nu68885OP8e0adMqFhlodOU8V0Jn514IgS1btmD8+PGdHms1/M///A8uueQSAMDMmTOxbNky/OhHP8L999+PT3ziEwBkZuCRRx7Br371KxPFq/W7OPTQQ0EpxU477YRDDz00su/58+djy5YtePXVV814MGPGDNTV1eHSSy/FZZddZp4hAJDNZrF06dJIxPdPf/oTPvCBD2D+/Plm2axZs7p9PhIMbewwJKq7OO644yLplX322QeAnNna0MvfeustTJ06FUuXLkUQBDj99NMjYeJsNotp06bhySef7HC/EyZMwMqVK2s6xr333rum9ToDpRQXXHABvvnNb+Kb3/wmzjvvPLS2tmLevHnI5/NmHY3rr78e3/nOdzB//nwcddRRaG1txY9+9CM0Nzdj2bJl+PCHP9yl/QshymbarhteonaKMQ792pw5c7DHHnvgq1/9KsaOHYuDDjoIzz33HL7+9a/DcZzI8cfTGo7jmO3Usq/BhhdeeAEnn3wyDj30UNxwww1lr1dL43Tls1ZbN768P/fVVaxfvx6zZ8/G+PHj8cADDyCdTldd95FHHsHUqVPxoQ99KPKZZs2aZeQAc+bMwejRo3HCCSfgzjvvxDe/+U1QSrFlyxY89NBDuPDCCyPXcSXMnz8fX/rSlzo99sbGxpo+Y0+v3768/nVqXWOfffbByy+/HCGarutijz32wOrVq82yWr+LjvDII4/gmGOOwYQJEyLbmDNnDi699FKsWLEiQqI+9rGPlaXMDz74YDz66KM4//zz8fGPfxyHHXZYJPWZYMdCQqI6QXxGph+41ZbrUPe7774LADjooIMqbrcz3Us6ncaHPvShmo7RnvH3FFdffTXa29tx3XXX4eqrrwYgCeNZZ52F//3f/8XEiRMBAP/85z9x9dVXY+HChbj00kvN++fMmYN9990Xl1xySadEMY4777yzLO2hQ/SjR4+uOIPevHkzgPD7SKfTWLx4MU477TS0tLQAABoaGrBgwQJ885vfNMcPoOzhePvtt+PMM8/E6NGjUSwWkc/nUV9fX7a/Aw44oEufqz/w4osvmijnokWLKqZk4xg5ciQIITWdVx3V2rRpE8aOHVu2bqXIxUDtqyO0tbXhuOOOg+/7WLx4cZmmL453330Xr7/+ekXtGSAj0xpnn3027rvvPixfvhyzZs3Cr3/9a5RKpZosE3bddVfssssuna7XGYHpynmuBPvcV3o/IQQjRozo9Dg7QqVnZ319fZmOMp1Oo7W11fzdle+iGt599108/PDDNW+jUsTtiiuuQENDA375y1/itttug+M4OProo3HjjTeaCFmCHQcJieojjBkzBgBw7733RgSetWIg0nmAnAF+73vfw7XXXotVq1ZhzJgxGD9+PGbNmoUpU6aYB/3LL78MIUQZSUylUvjgBz+IFStWdHnfJ5xwQtXo2wc+8AH87W9/K1uul02dOtUs22OPPfDss89i7dq12Lx5M3bffXds27YNF110EY4++mizXnxf+nxrLdTf/vY3HHLIIeb19evXY+PGjZF9DQa8+OKLmDlzJiZPnoxly5Z1Sgw06urqsMcee1Q9r3V1dXjf+94HIHpO7Jl6EAT417/+hVNOOWXQ7KsafN/HJz/5Sbzxxhv44x//WBNpGTNmDOrq6vDzn/+86usas2bNwoQJE3D77bdj1qxZuP3223HIIYdEPkM19FY6ryvnuRJ233131NXVVX3/HnvsUUZ2+gtd+S462sb+++8fSbnamDBhQuTvSqTVdV1ccskluOSSS7B161Y89thj+PrXv45Zs2ZhzZo1ZROvBNs3digSpWfnXTVd7A5mzZoF13Xxxhtv4JOf/GSX3z8Q6Twbw4YNM4PZCy+8gMcffxzf/e53I8cHyEqqadOmmeWlUgkvvPBCTQNUHKNHjy7T8Wh84hOfwPnnn48///nPhtgEQYBf/vKXOOSQQ8oefgAwceJEE3m66qqr0NDQgHPOOce8Xm3WOHv2bGSzWdxxxx0REqUrvE488cQuf7a+wksvvYSZM2dil112wfLlyzFy5Mguvf8Tn/gEbr75ZqxZswaTJk0CIKM1999/Pz72sY+ZNNQhhxyC8ePH44477sCnP/1p8/57770X7e3tNVWf9ee+KuGcc87BU089hcWLF1cUTlfC8ccfjwULFmD06NGdTmocx8Fpp52Gm2++GX/84x/x/PPP4yc/+UlN++nNdF6t57kSXNfFCSecgPvvvx8LFy40+3vrrbfw5JNP4uKLL67p8/QFuvJdZDKZis/5448/HosWLcLuu+/e5XulEkaMGIGTTjoJa9euxbx58/Dmm2/WRJoTbD/YoUiUJgXf//73ccYZZyCVSmHvvfeuWWfQFey222649tprceWVV+K///0vZs+ejZEjR+Ldd9/FX/7yFzQ0NOCaa66p+v50Ot2roeHnn3/eCHJbW1shhDBuwgcddJCJlj311FNYuXIl9t9/fwgh8Je//AU33ngjZs+eHXnIH3nkkTjooIMwf/585PN5HH300di2bRt++MMfYtWqVbjrrrsi+1+xYgXee+89ALLse/Xq1Wb/06ZNi4h+K+Hss8/GLbfcgk996lP41re+hZ133hk//vGP8dprr+Gxxx6LrLtw4UKMGzcOu+66K95991389re/xYMPPoi77rorks6rhlGjRuGqq67C//t//w+jRo1CS0sLVq5cifnz5+Pzn/982UNSfw5d9fT8889j2LBhAICTTjqp0/3Fkc/nsWjRIgCSpALy/G3cuBENDQ1G9/Haa69h5syZAKQ+7T//+U+kOmz33XePnFfXdTFt2rSIy/ull16Ku+66Cx/96Edx7bXXIpPJ4Fvf+haKxWJEOOs4DhYuXIjTTjsN5513Hk455RT85z//weWXX47m5mbMnj078hn6c1+EkE4jNN/+9rdx11134ctf/jIaGhrMeQVk+X+1gW/evHm47777cPTRR+Piiy/G/vvvD8453nrrLSxbtgxf+cpXIkT77LPPxo033ohTTz0VdXV1ERLYEXbbbbeai106Q63nGYApAHn99dfNsmuuuQYHHXQQjj/+eHzta19DsVjE1VdfjTFjxuArX/lKrxxjd9CV7+IDH/gAnnrqKTz88MMYP348Ghsbsffee+Paa6/F8uXLcfjhh+PCCy/E3nvvjWKxiDfffBOLFi3Cbbfd1ukE8IQTTsDUqVNx4IEHYqeddsLq1atx8803Y/Lkydhzzz3741QkGEwYEHeqAcQVV1whJkyYICilERPDadOmRQwoqxkiPvnkkwKA+N3vfhdZXs1U7cEHHxTHHHOMaGpqEplMRkyePFmcdNJJ4rHHHuuTz1cNZ5xxhgBQ8cc2xvvTn/4kDjnkEHO8U6dOFd/5zncqmjpu3bpVXHnllWKfffYR9fX1YueddxbTp0+vaIY4bdq0qvuvZCRZCevXrxenn366GDVqlMhms+LQQw8Vy5cvL1vvmmuuEbvvvrvIZDJixIgRYvbs2eIPf/hDzedK4/vf/77Ya6+9RDqdFrvuuqv4xje+UfE8VPtc1W6vzsw29euVfiZPnmzW09dcLd+rPs5KJquvv/66OPHEE0VTU5Oor68XM2bMEH/9618rHtvdd98t9t9/f5FOp8W4cePEhRdeKNra2iqek/7YV1tbmwAgPvOZz1TchkZH1799nJXMNtvb28VVV10l9t57b5FOp8Xw4cPFBz7wAXHxxReL9evXl+3r8MMPFwDEZz/72Q6PqS9R63mePHly5JrSeP7558WMGTNEfX29aGpqEieeeGJZx4JK6Mhs8xvf+IYAIN57773I8jPOOEM0NDSUrT9t2jSx3377RZbV+l289NJL4ogjjhD19fVl3/F7770nLrzwQjFlyhSRSqXEqFGjxAEHHCCuvPJK0d7eHvkcle7R7373u+Lwww8XY8aMMc+Gc845J2JuqpGYbW7/IEL0kslQggQJEvQzFi1ahOOPPx4vv/xyma9Xgv6H1nL+3//9H04//fRIxeuOBKEqjX/xi1/gnHPOwcqVKxPR+XaKHcZsM0GCBNsfnnzySXzmM59JCNQgwznnnINUKlVTh4DtEQ899BBSqVREg5lg+0QSiUqQIEGCBL0Cz/MiXQF6S8A91LB169aIzmzfffdNqva2UyQkKkGCBAkSJEiQoBtI0nkJEiRIkCBBggTdQEKiEiRIkCBBggQJuoGERCVIkCBBggQJEnQDO5TZZi3gnOOdd95BY2PjDlmamyBBggQJaocQAm1tbZgwYUKnPVG7i2KxCM/zemVb6XR6wFr3bI9ISFQM77zzjmmVkCBBggQJEtSCNWvWdKvdVWcoFosYXTcMebBe2d64ceOwatWqhEj1EhISFYNuAfPqa//pk3YwCRIkSJBg+0FbWxv223vPPhsvPM9DHgynYyLSPVTgeOD4xfq18DwvIVG9hIRExaBTeI2NjWhqagIA0BqyejwxikiQIEGCfkMtz+WO0NvP7L6Wf6RBkSY9TBcm41SvIyFRVUBJ127SjtbVNyslCdlKMDjR2bWeXLcJBgN6Spz6Ylu9eUwdwSEETg+JmgOSEKleRkKi+gH2TRa/4ZLBKcFAotYBwF6vP6/ZWo9vIO6jgTonOyr6i6wMVlACOD08BxRISFQvIyFRA4wkOpVgoNDdQak/yENXj60/CU2lY0smRwOLWi6X5CtJ0BdISFQNqPV53t2bNCFSCYYqNHkYTNdvX95PXY3cDabzMpRR6bx3dQ4QX3+ofTW9ls5L0KtISFQVEPTsJu3qDbq9EaneasmYeHX1DXo7NdKb129vHFtfkJjuHNdQu68r3beD8R6MHxGt4Rh57LNVesdg/qqcXkjnOb1zKAksJCSqRnR2k1a7QQfyphyIB2Jv97Pu6vYG0wO/o2PvjeOMb7+3Pnt3Z+yDkTAMhmPqyTH01Xfclfuqr46hu7D3Hn8uVzs0IaLrxp/XlbbdneNJsOMhIVGdoJYZjr1eLbMdoO/JVbWHpL28Nx+GvU2euotqx9FXD/7ufu6OBib9WqVlXT2WWj93R2sRDI4Zek/IHTDwZKpWdPRdd+X+7at7ciCjVXov9nM5vmsSOz5BiFlHv1QLoRpsSNJ5gxMJiaoCSoi50Wq5buM3Z2c3ZqWBqbdmzbU+PIUQPX741bKv7nym3k439QV57M1BqtK2emP7lQhZ/NzWcjYGMrJa7fgGQ7S3VtR6b3c3QtRVwt3b6OhZ0tvR5ErP5ThxguDha7ZBZeQ8RbcHDG5ClaTzBieSBsQJeoS+moEOhajBQKc1uouhcG41BssZHuzl9UII8zPQsI+lO8fTX5+j0u1ba+YhQQKNJBLVB+jJbKan0aiBeIgSQqrudzAN2D0lPZW+m0rbHAwDWRzxSAEXITEQqJ2s9GVqrzsRMr1eX57xagSq1khYrffAYLxuuoK+0EMSE9m307Kic7JTo7M3IWFESiMemepsX/1FvJJ03uBEQqI6QVdSeUA5gdJ/deXSrUXD0V3dTLXtVILedk8ejoNB2Fsreaol2lCLH9BAp1ZqRZxI2ehMI1XpPUDt33dn57rSy/HByr7XOiJSPbn+aimt76t9JwD++FZrl9afuVtT1ddEledAfLF9yw6myBRBz1NHg+fTbD9ISFQVEFIbgerRPtT/XXnOxgflvhykB4IA9HbapDcIVFzMag/e1d6nB8/eIKK1ojPy1hUNXC3kv9JrAh0TKft8dbTtgR68uhoVq0SkukKg+vL6eHpNG46c1AgugGfebou8dvgujWXL4jhyUnlj3d6YKDy9puP9dgePvSlJ14wpwwGEWikOUntk01pRiPJlHa3fl0giUYMTCYnqY9Qq2q31MdSfg/JgPoZa0NP0XbVKIIqQTFUjwvFoYkcpz94AISSyz77eX9XjQHUipY+v0nkt206Fgay7sI8l/r3UQtoH47BTiaA983YbDt+l0fxuoxph6YxAVXvvUbuGEZ9arjW9DU3I+oJA2Xh81Tbz+1G7NsEhAlA2B/rassXotUapEiSIY8gIy4MgwFVXXYUpU6agrq4O73vf+3DttdeC87AKQwiB+fPnY8KECairq8P06dPx6quv9vmx2VErXdVn/9jLq26jwjLdBNn+CfdJyn5657OUb9fedvz33tx3b0aheotAdYQIuaplmzUZAlb+6QoMWanwXVXaX9Xj7dI+rWpW9VPp2o0TKH3vxH8ix9HBa7UfX3kPy94gUML6qbbPzvYVJyC1fPfPvN1W9mMv7wscu9twTJ/chOmTm0CJTLXpn6fXtHX4o2H/rbfVF4hHz5jkUOBCGFKuo1bdARHC/PQXdHVeT3+6gltvvRX7778/mpqa0NTUhMMOOwyLFy82rw/UmDuYMGQiUTfeeCNuu+023Hnnndhvv/3w/PPP46yzzsLw4cNx0UUXAQAWLlyI733ve7jjjjuw11574brrrkNzczNee+01NDaWh6Q7QtkNYpXMyhXK+We165MSQKgXK4VjO7sP7fSRvglE5HW1/9i2a0nf2LP0P77VGnmoRfYBOdusFGHobBZaaQCpFqXQiB93fL/6s/WVZ40tttbnnxJivqtq2jcbfaWHqRZF6eh76ehaqLS9rp7BSsUUXYqw1uKDZREvbZ5Yi5VI1e3VsE6Hx9PF9StdwzZquV4GqiJ0xpThkefUitXdJyAaT/XCNqrBJm6UVD9em0hNm9xUkeTHEb9W+4tISRLUs++/qxYHu+yyC771rW9hjz32AADceeed+PjHP44XX3wR++23X6+OuUMVRAz2nIzC8ccfj7Fjx+L//u//zLJPfvKTqK+vx1133QUhBCZMmIB58+bhq1/9KgCgVCph7NixuPHGG3HeeefVtJ/W1lYMHz4c7657B01NklAQwWsiUQDkevqU6vcQClAHoqOKEes1M1hUM8xUg7keQPRalQZRO82j4cQeEHboW2sJ9PafWt2KY3cbjifelOscu9twcCHAOhgMOoLWZ+jjrVr5ZCJ46m9UfujqtIJNqro70HQ1MtFdMbFdFNDRuesNgXYcHZ2bnpCojmB/jGqDFKl0z1TbnkknR8lbpf30Bbr7wOyIQMVf16gUVZo2uQkOIeaeBIDmXeux/K18N4+sMmziZO9re4J+flBSTvodK/VnI/5cbm1txdhx47Bt2zYzZvQm9Jh0bf37kCU9c3oqCoar8//t0bGOGjUK3/72t3H22Wf3ypg71DFkIlFHHnkkbrvtNvz73//GXnvthZdffhlPP/00br75ZgDAqlWrsH79erS0tJj3ZDIZTJs2Dc8880y3v1BDoMoeempZnFwBIDxQ7+EgLIBw0wB1ASdVdXAwWyc0MqCQCtvXpIwiOhOPD6iuI/elSdLMycPMzuztNu9ab35fbq3rCI7mXeshBDPrCAiAEAiIqhGwip9PHacdZu8KAehs1qrJIo8Nn11pWVGLGLqzgbqWAbZSerTSoGrvt9KxVYtEdSV1ZB+D/X47EtdTdGs7gpffK2qZuT+U0LYSD7Wjh5XQFRuSWtfsqZlmrfeDjqrMnDwMj61uN/dm86RseM4Ex/I1xdo2aEFPojS2V/IEyHSigCRLFPJZzokDNkCRps7Qm2abra3R52kmk0Emk+nwvYwx/O53v0Mul8Nhhx3WZ2PuUMOQIVFf/epXsW3bNrz//e+H4zhgjOH666/HKaecAgBYv349AGDs2LGR940dOxarV6+uut1SqYRSqWT+jl9cgtAokYkoXnlImOwHPg/U/xzgDMvWEwBM/VSeNRqCY4NQOZhZ+9fRLCIkmdFESub7y7UnQIWyXyGPS38WQeVl8NjqdsyYMlxuW+9TRGmJIKSmUaW3hNUdRasAmYKcZqUgO9tvd5zL48fQ0bsIOi/zr5jerLDVzohVV17rCHG7DP15e5NI1QxCI9eeTQrKVtXHrf62I1Qd6Q9rIVBdvVL7InXblYhq/HnSPCnb8/0LISdR1O2Rfmgwwo6yEQIQJp/ZhDpykqmX28/CGr2n+gq9WZ03adKkyPJvfOMbmD9/fsX3/O1vf8Nhhx2GYrGIYcOG4YEHHsC+++6LZ555BkDXx9ztDUOGRN1zzz345S9/ibvvvhv77bcfXnrpJcybNw8TJkzAGWecYdbrqi7ohhtuwDXXXFPxNROFIhQANw944hcAFoDwAIT5WLK1CfqxO2tkO0AdLN1UB8BBy05Ayzj5miRT5Q+8mZOHgQhuCJI9GMibOnrz6nQerHSGHrx1SFoA8JgoI1Wu/kULS8yHpXJGy/zyyJvWYVE3kkKpVOkUT9c4BCHJ64QodKTZ0WH3Sr4xemZ+7G7hLFrGyjr32qpFMxZus3Po3VXz+opvLxRjh6nZWqJOldCT9CAl0e+CmQGmPK0K1KZH0uvJ7YTLKr1NEGJFmMoHK0HlHLpSVEC/1yZVXE0uKrX06Arfsc9ZV0hqrROGSt9Z/JxXw2Or2wHI58nMycMAQg3Z6UoUSgrFSUga9HHwAILQqpVrQxGyUk/+TvWVoIqThIpyulReT1wAAkQ+gxEjVMCAk6qeYM2aNZF0XkdRqL333hsvvfQStm7divvuuw9nnHEGVqxYYV7vjhZ3e8KQIVGXXXYZvva1r+Ezn/kMAOADH/gAVq9ejRtuuAFnnHEGxo0bB0BGpMaPH2/et2HDhjKmbOOKK67AJZdcYv5ubW3FpEmTyiNMQoDmN4H4BRC/JFNajgsQitlNm7GkdRQAYOkWGVFq2cnHsvdSWPZeCgDQvEsGzRPD9JygrtRJUTcy0+EghhzpAcB+iAkBcF6uSYo6+oavMQAOJUhRld+3ByrBJCkMSiFBjOu/CIVQx2lHoexbpLPSdT3gxkPRAgAI6dIs/qhdmyoSqemTm4yGS69nPkIH5KLaDV9tAIsPNnF9TlxXUS0qRSC/F70dWXwQbkuv5fPKLTAqkbOeuMZXIwt6m0xEH5YCoiqpjH//HT1PVUBV/m4TKSByHer+Z/F7Qb5mra8HfSHPr15PE3mg61FCuQ1Rdg6qrd+Zga19/errtNqgY4udO0ppC+qACIGZuzXVHDUyUWe5BfmPEDCur205PKywNJNDHYwLCPUYc8y9HGYcuCJM+hqyq/nkpMeJ6PgIl5Pp/gDthXSepn262q4WpNNpIyw/8MADsXLlSnz/+983OqiujrnbG4YMicrn86A0yvwdxzEWB1OmTMG4ceOwfPlyfPjDHwYAeJ6HFStW4MYbb6y63Wq5YMICQAgIKm8uEhRBS21m1gIhpN7JqXwKNXnSWP62TBm2TFACc8EBxkGYL/cnOEB8OE4K3EkB1uBChJADDGfqRqaRgYoJIB2rXDLvVWk7wn1JlvQNT6ghcvrzAOphov4XbgYgFIGQ3kg6xF1Jh1JNg1IpWqHTRHrNShWH8r1lbwUQFYPa27QrcOyBavrkpsjg251IT7WX9XdTad14VEq/VjHVJHjYKNV6PUXDM6UF/dWqJOU6HX8OG11N/8UJZ3xX+pWy71xE14+Tbft6LUOs4CKSgrG/f0IA4oTRKCvQah9PZ5WllYiS3F71KGm1df/4VmtFo0o7qmpfp0dOaoyQLK3Z6ewrnTFleKQ4pFYIgTClrwjDU9upBsr+Hsq+S50BgBWJExyEUJAYEedCwAVAghII8+R6pfZ++ASDx2xTCIFSqdTtMXd7w5AhUSeccAKuv/567Lrrrthvv/3w4osv4nvf+x7OPvtsAPLGmDdvHhYsWIA999wTe+65JxYsWID6+nqceuqpXd4fKW4DzanIDA9AAs88lQkPJBkhVGmLKOYM2wBBXRORiqNlJ0mWlr0DAAwtEzR54RBOWpIWJwVOHPPU1DNCHbGQ+2UgPABVZEik6kHdDICQaFG9HvOsD0QlcXJDrYRwM5IgqRkZDUogzDcEygcFYzLK5VA56LrqoUJjj3Zijch2yq8aMepKi5VaiIEmUNHZtToeFeHQgzCxjqpWzqGJHxdCmm1aAzq3DtA286sEovOwgsPMC2OaOsKZWjdMM0A/0LkAQ/l30Nk5qiRC70xvVgmaSFX6Hlk3thduVxEfPRmQuWz5Wmyg11YTZZV91rpAecZawyagtVYr1nJ+9TqamB21a1MZ8dTbdAgpsxNZsVrq+6ZPbsJTq1tN5OnY3YaDCYFpk5vM/WeTdyJEl4lUxNFbcDy+un+IwEDBoaRMMxr/6gV1zDXmUEdNWmV2gBA1WAoOWmwD8Yvm2U/8Qj9/mv7D17/+dcyZMweTJk1CW1sbfvOb3+Cpp57CkiVLen3MHaoYMiTqhz/8If7f//t/OP/887FhwwZMmDAB5513Hq6++mqzzuWXX45CoYDzzz8fW7ZswSGHHIJly5Z1z6/CSYEwD8RTNwihgKNCvVCzaSUsF9QFOAGo1ETplJ7GrNEFgEM90WWEatk7LFJNo/VQVMgb0zzABQcJpPYKzJNVfqrqD4JDuNkwBK9mSZpAkcALt+2mIdwMGE1FBp+UCGR0zcr3E8GBoIQ0dRT5kulHjjDUH0lrqSiKHSnQ0Omt+ADDKgxKXc2j2w9FrevQs2shZGWRTarsSF6cuMRtI4DyyIkNexC3Z4fyfMRXjglTVdpUVFoHIXnS2jQCJiOGhIISB1B6L/scdkY446SnkiFntTRUV76XrnpOVdp0pVSpjjyVnetOQAgiDvNO7PPHj7vSa5Vgi/G1FlATKdujSEdAwnWIuS4d6/MBiJAqre974s1tpkIuXjmnodN3ulqvIxy723B5TpgPMB8kKIKwALPGAGB+2bNre8EKZdWiSTiFMCQIUBo6LhBwAYfK55yr5BVUMBC/ZCbPtJQDICehIpWFyFSooO4D9GZ1Xq149913cdppp2HdunUYPnw49t9/fyxZsgTNzc0AennMHaIYMj5R/QXtybHx9VcwvD4LEhRNlZ1JfaloEFQqDtQBqAueaYBI1UFQ16TzZo1WJEyNBCIzTJIaJyVTZzwIn6IijHzJKJciOG5avh54AKVGvyT37UoS56QgqCvDzEERRN3ocFIQaWVP4KQixyJTkl5UA6WOA7YTfLYR3M2AcQHPGrkdSuAQKVbXItSI2FIRFQ4CJkQZkYrDLvfvSKdEIsvsNJ3cblw7Mn1yUyior4K4HsmOYtiHEh/gzTKjdXOiKSd9rVTR+gCIaioixI6GywiR59JJIeBK9FqDVspG3PE+jlqNSzsTjtpRmUrfWbgeKUs/Ax2c407QkQC6GkEGOhb/VzufZelia/14qtU+By5BeJ/rY1F6w7IJiH6fikxqvZedptSkrDPEq3+19pH4BRVll4R96eb6KlvYfmBPrOLXDFMkClD3LvPVZDovxwDIcyeoC5HKQKTq0draip13mdznPlE/HLEH6nroE1UQDF/e+nqfHeuOiCETiepvkMADmBrEKDUickARBkZNNArKIoB4BblOiqJlJx/ULwBBGPEQTgpgHogVCTECdgBggSRJgAwXCyHF5yqiJCNEsQE3UNGpVFZ+m4RAOGkga0U9CttkZE0fLxB6V1UqJyc0VCDqzyYEXHCZ10OUqMycPCyMrlA3JHmKQHGLQAGdRzYqGYSa19T/oSg7fBg6hFRMaTyl0iQE5QSreZcMQAiI1ohpcbOwI0Iw1WGVBmpBiNQzCS5n+IBFtD2A80hqLpKmA8LKTErl+baJqEWgBKGKDISEpzul9dVMSWslVtWW2xYJ5vgs+hSPTulIpoxWWhGxCsehUypAOaGqtH5cq6YjUrbAXB9r/LjsyKl93FxEyZNOodkEyv5fR5/09ScAlT53QKgT+RyPr9pWFmkiQkRE4jMnD8Pjb7Z3STyuof2k9ERHV91RHUlmAUBUJTF1sewd1qXtD2bYFi+ahAqQisRdklz1TKEOaEml7hDep8LNyPHASYMwT2pl+wGDRROVIIqERFUBYR6ISId/66o1xqLEx4oKkaBkKu5IrPxVismFrOwTHMLNgMb8muSKFpEBlyF3nVaLQxMfTbwK2+SxESrDzK4UzAsnLY9fpfjk7MqPRI6EkwJhJWv6Kz/X0k0OgKL6icKYdGpbBCiSo8+J0hZQ6sKh0Zl23NCu7PzbHzP2e1z/VMuAUq3tgxH8jxMg1A2jdWqg0Q/OiKaKWAO5TYY1ceKBtMDQVY80nD0SwbF0YybUyL2XwqwxoU9ZtCIN4aCnyawO6ROCgFcXmMcRr7jrjMjWEpWKr1Npu3EPKgCmMjGy7Qq6pniEyv7b1gNVEvebSr/I5ICUpVrjZF3EluuXNfnWeqXpk5sgRHVR91G7NlX8XiRBkyQ9Tujt7WjC07xrffiMUNfGY2+2ymufMxW51pEqK3yqQUj4OmcghJtriXLlc8etiRQLFGmoQ/NEaQ68/O2S8YvSpJiitvtuMMA+Tk1UjbZRo0rUUzhpeU7s5yXzwypczsOMRIIdEgmJqgauUlqURiIGJFBkwprR6dcAgJTa4ajBUzgp8MywyCCqo0sRKwG1LLr/MIRv/o4TN0JBggKIDyV+l2SG8AAiXQeeHgaRUpWH1FWpP6Wz4UFEl0P9gtmm9L2KQs9QdbRGpiBoWOLLPDmbVceptWLCzYC4aZnmtEgbodG0BBBaIegUnSZajIuKXd+7U5FUFZpkKt2ZoC6ItnawfGLk9xa+LSw8CCsftV7N3vbSTXXG9gKIVm8KQkMrjInRqk67XVCkvB8hMXFI9YhRHB0Roa5UpcVf6yyyZZMSuwehjgjYJFUL9StZJVRL61VKz+gIoe2rFkel9JsNrUGZPrnJED/dBineT86GXZl35KTGCInX2idNwCIdA5SHnCY68p4kkWcNIK99HQG2CYCeFGg07yLv/7DzAgcRhfD6tNL2sKKks0blgaK8z1vGUsAvgBAqA9RqO7PGeABnQyoFqCOfhJKywh1D3tX/NCiZ5yQIgUjVKRIlSRXRz+B+UsQ46AVNVCLe6XUkJKoKRLoeIpWNDobK1VZ4RZB0NowO2FVwAMB8SRq0/YEVmTEPPJsUATAdigFDcgxBY0HEmkD/r0kK9IyUEBCuHpZtm+BkSzJvTyjgpMNZuR3tUORncX5cxfMwa1ReDuRMp5pUBICFhA2BZ2ks8sb6QRMsoSNVTtoIpEGoidbZhEo/0PpzltsyngA8JD+CchCHQ5AOXJ+tVCxhvjwHKhoFhKRaf4ezxpQqDuJAzA7DGijlgChnuc271puog6PTf8oOI+BCCmBjZKBSk+aekK1aCZX+Ox7lsf+MtCtS1Y7yfdWbrEaMIKtEn+IfjwkAVgovvuWySFRsAwzh52A8JPg6CqrTkNMmNxmyr6NVlYi/hu5JOX1yE5jaZlzbFL8H4rqmzkTkQNRaJfyQoebRpKhiKWQzKeSBLIpBWJ2so1uEeQChmDWSDwlBevOkLITgeGy1TIm6xCLdgoPojxefrOoCD78URqoBeT64329mpLQX0nkdOfkn6B4SEtURdOREkQ/hcICnoVNbJq3HQ/2ACJTvk5uR0QIei0oAkb+FrYFR5AnMA1VVgcIiLqAxYwFFpAih4Ok6c6y0lANxc5F+fNARE8HLomeVptOzR7SqFCQkwXNUVaBOUemoS+DJcLYWtjtp+bkDXx534IOgAHjtivRlJSlLZUOfKvUZ+js90DKWGc2XSd8BgDo2nsoiUF4ALiURLyJJWmhIHoOSSZnq7Zn/BaCf0C07+VK/ZtLDihzrgoGgaK675okpeX6EkCkEnSrkHITKdR0nDepmwJ2UGuTl5rgIiU2cSHXWqLkS+eoIHVWzlZMWEok8Vnum27vm1uBtR6OqiYPL3lfhmLTuya5WtM9ZdDt2WlJZfaj0GiUUM3drQiBCAvuUlW62P4u9af2a9lzjQuDY3YaDQk2gBDcu5HbVrE7zPba6Hc2TsjU5kzfvkoHQEx4jAQDAdaq6XKOHDp4NBvreoU4kyjpYsXxNEc2TsoZMxV3wzfPQKiISevIJmMyEaRFjIvBJOm9HRkKiqoAERYCl1QPHshUAQDL1agAMbx7BwxtQ+D6ImwLSddbDyIr+aB0CDQdaQagUKRbbIPySHHdNKk7NFPVxaFsFvW8lchSEggRFFZ2ynHT1QzE249S/L2nfOfLZDYFSomahqwMFl6RJaX+M67rSXtlpPZFpkKTKRKbSUpvl56MEw3FBlXBz1miodjl9i+ZJWRmO90pA4IWfDwjJnSYgUIM9Z/BBkZLTcjiaUCobDMIDeR5UZFBeL1Z6UG1fvkdeN0s312N2U5shw+Z86winJlb2jFhHELTRKw9AfCloJ27GVAc6YXBHjYOhqFpqrao7xVciXUD3DUk1qNlOuUi8IyKkj1mjo5m//ZKetbMqH7Sjz6PTJtVcwqdNbsIK1WtSHpSs6jpq16aw/ZLWz+l0JUh56kdETR2la3i5/vGx1e2RSNTM3ZoAHphlRhulCzys68ZU4LIqkyh9HPHiEkB9EItQCS6j3eo90FpPwTFrVH7Qpva0viuiL6xGEE1aT0XLCQUJPHnedKU2YCalZZPkPkKvWBwkgaheR0KiqkBQN3zgMC98SOnoDw8ggqLUN1GqyJMHBD5E4EOkUqBOTg6s9s2qH2pqtiOykhwR9RqYH96k6gYVJBVWbek0niqxtQdYWyQqnJD4mCo8ezC29Ek2Zo1sl+0eTBgbxiNFOOpBRB0IixyS2MOUMB+CeYCbgUg3gKestJjgoH4egjMs26yd4vueOAG2lxRTM/jQqV5GpSiWrRNonkSgtQ52axaHEBC/hOVrJQlq2ck3JdDCScsUsKrYAQ8AD+Z3GhHwCsBxMGdYOxa3SgI7u3GjfI26UrhACHSRgRlUqSoi4Dw60Jq0KkJhP4CIlkYRNL1YfiRRE5GqFrWqFGWKg0fIGEKxd1z/DBr723pT7NeOqvPiAnWl4TafUw8iRhiMkGxpE1ZbI6NTc3FojZPW5c2YMhxuXMcIIb9zEvaf09HW5klZQ5w5CJ6I6fu0Tmq5lbKz03czpgwHp6lIqyP9PiG4iVA1T0xh2TqBlgkulq0nYVqPBxB6UmiTACVilxMkea2ZZxMhgGXxaqfwAajI1OAkUcvX+mF1Yhz6/rFlF9yX5JZ5AAvCiB2PFhYJJw04/dP2pVeq85J0Xq8jIVEdQLdnIToCQKg03OQEopSDKBVBUimZ8WIMwgtD66JUlBGpTExXoy0LqAPAB/GKMmqlcu2CcwjfA3EcmRp00uahrHUw5nfAzC5NWkiDUCmENAckyvoBLtk2IvKW2cO3AoKGaUjzXm5C97oUn/qF0M+KuliytQktO/mSTNhRMkWghPocJPDAUd/vM9Zqg6HGsndDzYidImmelDUhBYfowgK5rkxfpKAHjpYJqhKPIbSG0E738YeXIlRz6tdL/Zh+KJuZLQWghas8nAVr0PLBwFRmAhGCrAsIqEkbQ6bGRHk0RqeuCCER36547zhKEIkQVYou6fWATqJHgkdTz4AZpKi59qOCcfO7kMdghOlWVR4BBbPSbGX7VaeCKrd/xpUtgX6/AJ7qRHekI0+aTE2f3GTYGSVh81r9urYnEOZ+kiaPZddnTCZgo3lSFmB+WSPzGVOGY3mMjGnCry0Llr3D0LxLJjQL1sUgep+QJ4XE961JuEppy2OnofAaCCdWgwgzJw8L74sqE8dIxB6IkkL1vCN+2OYlTIm6lUlZgh0KCYmqBju0rR8OTthnjih9kigV1SosjAJxBuExEDdlPJ4AgLjpcPDzrVSgbwnT7TSfFm/ylCEhRuQIJgdrO2djIkzEGohhRalUBR8A4Ub1C7MbNwIkHSmpj4f7dfrNmPMp6Go+SSpGmKjK0o2Z0GyUSH8VnlE6jy3RKqK+RkcEqiOUa046MLvzi8rLS5miOqlocYLg5vzr6OTiwvjIJuYM2yB/sR74Oq0gnFQkBWxgP8zjD3UtdCc8uj11bVQSWmuRun6tGgHSqU65fSvKVOE4IiQn1u5GSsbC6JqwBuq4/qna8Wg3fQIVSYJuRFxO6MK/zScEEQKMC3lLOcS4VVfDzN1kP8Z4hah9nU2b3IQVb0oBua7oM7o/M0ETFa/N5WuKaJngoGU8kdFRO4piG/0qNO9aX0ag7GPVhSqPrW6PEgEgnCgilkq0I5pAJDolTyAFAhJubxDBnG+VBo10AbAnGNoIV4vlIynzopzgMEsaYXvrqQizqdjuYyTpvMGJhERVAfFLkX55ABBvjwLACMkliWIREiRMQZ2jHj5yHWGtR6gTETKadQBJtFSrErgMSFkDVJzgaYJl6570w1GnI81BW4O5homcqAeC0lgBsBoSp8sHSVp+CYlUPajXHjkukaozM+eZk4fh2N2yNTktDyVQvwBh2gApUqDTuVrLllbniwdY0jambBuLY/o0jdmNGwGRhcg0lM+ATZQgRk5i68QjOICIkCBTIakjSrEHrhbU28Jwk9wRqDwwW1EOAhgfNfsajmh4EBKmeMl5vCJPH6+teRKIuk7L40RIruz717q1ieDIuinVN00OqE9UiUI1T5TR584sNnTK74k3t5k2LuGBhvdjNb+z8Jz4xuMpPODaIyDx7Zp09DiYKKi5rW0yZaf17GeOOg7tOVdJ9znQiLR80hGmSp0B7BQsBcA4qJcD8QoQ6TqQIPo8BQ+MNjac7PaXJipJ5w1GJCSqCgjzZWNJHXanrtFEyYdOOEBECBQgB1DGAPgm3SeJUuxm41YagzNJqNwUiONIUqVE6qBFEOpCCEsbFX9wWbPByG2i/aH0665K5cUH8AqRjIi3DACUEPoiqQfS4ljD5eZJWXBSj6VvyRQXzwyTD+1NYeqhltLsoQrhpiHcrCGvAq7sW2iR1GXvOpg1smvnwFT+BSkIF6GZq3UtRNIVgsmXrO9TV4FpRPsfIuLZBCAqhLbTa9b7ytr9KLIYqVjSpK4C4UaMQNnrR6JP6vggwvQbgIglgm6Hk6KyEMCkNs05FOVpasAcl8N9OABIsQAEHmaN4RV9kGipHSi1w9bUdYb4hCESeRPSikGK1SXh0cJxk7LTOjKlSVy+JprKW/5WvqbeeTaWrScAHLTspDWZIkoYIgccI+26KldUJnbNu2SQQxrPvN0/bt6VoElu8671JoIfdW8Nj10XidBim9SLpTLhdci8iN7UNi+Vlcrbj7t7gq4j6Z0Xg+5TtOWFx9DUoPQ8ymRN9tFjMvqkCI4IPPm3jkgx6wYDpPA8lTK/axD7d51ac1MgmToQXdXHfKmzog5Idhh4trHs4RZ1HBaVH36ERGdNStgMziP+ULObNqsKO0UO3VQ0YmU9gKr5SgHoVluK7QUtExwE6WF9FmWb3bRZpnaV35bWqBFLE2daFGkHdksPUqnnX1kqJ05oUE587RSJsKpGQahpbGuistRV1ZmxEnh7MgAY4qW9jbSZZWTcE5BNuiu83/58NCghYmKrB1G9HVcOkkRbRwguiwJ4IPukMT9MualBVNipHPWZuqvta56UNedOUEemEkUYNdM99uzzrlsU2WSUCF6mjeouIn0+ARPdFI4bjTiLaJVuxMNOkWWRygBOekDax8zcranyuQNgyx8I8yQZhCJRQPnnQewZC0TF5Zxh2+ZNGHXYx/u8d949Y/dBfdyUuYvIc4ZPv/vPpHdeLyKJRFUBb90MjkaQuobIchH4EIWcSckJzowuSr6Rlc1MhA8ZXTKDiroRKMXSYYdgdvFFgDMsSX8Qx7mrwkEJAKgfkixbxKkiYgikc655j4iWMEuRsROZRcl1onoRAFjSOgpz6taFs3VGIjN34aTK3pMgimXvMEyf3HfnaEnrKFUAwGPO8vKamjWyPdIuJg6dEqtKoGxYBEVrgCIkRg0iRBGOSJTHtBSBNC9VERRz3erUn02ieBAZdHXkzNX7ImGjjkql5VJbFTt+Fr0nyiNmXmgWax+P0RZa586uftXH0M1qtOVrilLgLTggKCghxqGfEgIIVjWqpD9Pb0d0l26qUy2IorqhMlJdKW0XW4eoiraWcTri1X+wjYrLYEdWg6jMwZjnWrooowGzNKdET3ADH8L3IEr9o+8kDgHpzGeks20k6bxeRxKJikGz/o2P/wpNDfUg6SxIJmuIDC/kwLa8JwePTFam27R43NY16b+1oZvjmGgQcdNY2nRYp8dyXHo1dGVcZBDQkSXOyzUJJLRg0OvH0y16G3rmHy+Bj7tumyo8EvaTA4BFpUkVj3vm5GHgxNnuNE9DBS3jdCSBhlYX1gzW/g713xHEyUQMskpJgBZbZcobYUrM9I6Ml4xrg1UV7YEasOyqyK5AN5U1LvFaExbXCNoTmliqinDVJ0618OB1w8Moi17PMsA1g6s9sDoOWN1IiMww2ZhW3UNdaUmkReNciem14WalCJPdIkZQt+aIrxZa13xMqv0Q8fJRTZQmUbqptog9gwCAVG4d1R+IREgJDc2BK0waSam9LAIluxZEU9hawhAxVfaKZvLcmi9i9NEn9Xkk6t5J+/VKJOqkNa8mkaheRBKJqgKSykiTy8CDCDxFpupk9MmLVWNocThQFoUijoNlY44BALRsXoFlo6bVtP855N8QBfUwV2aQhEqhsmlmzAMgKBlxuyFsVDqI6woe08A4ok0JCZGZqVMqGywLjkWlSYbEhS7sKRCtEUtlgGoTMEITAjUIICs6SZRUQ6WA1hTNgKwjGsbMsQKBMlEoCIAz0FK7JFBqu5R58t5w02F7n3i6h/kgTsrSGXV/QOiIPEhbCjVZ0B8hEvWiYSqHMyzdMkxWRQZ1qsI0E2kKLQsErCpLHoBARqUWt+8MtAPyZuheRGL5W3m0jCcgqbpIqq6SI3kkpShCV3Nb8A/IdCAJSiBBURpFllpNSiveX6/iMa315XlMZaUWz5xPtX8KqbNUpMOQEB6Y4ojmXWTKVAvZ+wPx6FzLBCei84pH7YEYgTKRehqJdgqvGGpU9d9QUowKdiMJdhwkJKoDEDctZxyWTYEIPGlvoITltlO5LRwn6sbSBApAzQQKABaLvcIxRgBzxD8By5ZA3/hGn8WYjHbJ1SFYTh2XPM4l9QfiOOd1wImlXewHCQujXXPq1mFRYXL0oHxJ7kgqA+Fm0TwxVfkBWSncn6DfEKZPqg+WekC1B+2O0kOhM7dK0ymTUVuPR3hgNFDwtdZEVnAZImcul77zCYv4fCkdkSZ0UY2O9vmCRYYklm6U52f28K3lfmpNm+XnQYDZw7f2SBs1a3RBTmwCNWinGyIRqOZJWYBQs0yTR014BXVkayKISJNjIHTpNj081X1Za4sWbbMAu/UJUBbRgyp60KRkTv16LM6PQ+q918HrhqN50s41tafpTWgCZ2ilEDB2GjyQdiR+obzvKXWAQDYUF5Wq7iiVEgo3FU6eg/4x24RDzbjSbZAk8dTbSCh0FYjAjxAo/Tc4N5EhU6GnxeZqZvvYpOMjqbzewGKyDxb5U7CoNAmLixMlgdKzI8ZMRaBgUqPF823y+L2iZcPAjfBXlKR4VhRz4LlW8G2bwLe+B1HKY1FpEggPZCQqfhxiLyzyJpsUYFnptsLM3ZrMa9MmJ2HjwYblb5ew/K18h15INh5ftQ1PvLlNtpXRkSYNXc2nm13rNI+6H+SLHGAMi9t3rmrj0BdY/nYJy9cUsfztkkxNdRFxAgVIXdqS1lHmc2gCNbtpc9XtzJgyHDMnD0PzxBRaxgkT6Vq6qU5G79y0JJ8VTC6Xv5Uvu884cfDY6nYwVZHIhTT+tLF8rW/kAHpbRHAsey8VibRVg47iVKye5IEx+tV6MtNJwXExp26d3GVQ7H8CNTFlIk2h/k77dqhigaAkU7mBLwtpOIdwXOnrpjWlll+fPVEldQ3SRFnrW/spEkUokbqonvz0UFOVoByJJioGWxPVWJdRKSwnKiQv5AyB0RCcy3XdFJZPPK5fjnWO+KdpNRNJKVIHS7IfBgDMav+zsU6gSiS/iO2B2d7LWJL+IGa1/xlLhx1Svm3ybxkN6wTVtBYzpgzvki4kwdDBtMlNSIsApLBNDkbMC3VEekAJZNWb8EsAZ1hM9hm4A+5HNO+SkVqrYhsID8AzDRCZRhNJ0tHbWaML8n51UqaaUjhpqatSBJUyX5IY6nR4L+lJSjwS1TKWheTH1koqgbzINnZKcEybGCBM6QGhTjLwZPeCCoUClQhoX6FlnKio37P90kyaLiiCFttAvEJ51JzoVi/WxDNGouCmZc9N3wcoRWt7DqOPnNvnmqj73rc/GpyeTcxzjOGT/30l0UT1IpJ0XhWQVAY02yB1UTqao6sxdAqNqwqPdFam+AK/fCbZh1hM9gHSwOzgeandUnYINBtWFDojdzbHtIjtYZYvSX8QACoSKAA1ESig3P9GI6Hm2y/0YN2863CpyWOe6a9oDAmt6IXwPczmL4IXc1g24siBPPQ+RfNEleJRGqIlW5vQMk56L+nJhk5/60bbc4ZtUO2c0pJwpeq6NPnQNhC80g2nI1C6jN/hlpjfAdB5hEinP1vGibDIxUkDTkoKyqlFzuyqyz6GbsdkSGHc7gIIDYS9vCT7Sg+ldWLxylCbCIqYpYFgDCSVVn5+ktiKICe7UPQTqENAe2g5TmuMPCeoHQmJqgLt7SSKeVWJUahIknQqDQCMG3k/Y0n9gWjZvEKJHn0sGXEkWjavAK1vApxGAFEC1deQPlFJFGp7x/K38rKlCEtJg1HlsUR8LtsKCQegLmgqA1FoA/GcLhVXDDVIgqRFX1KzJPVp1bVm5anNaDSps6q6x1dtw8zdmvBEhdYxy9YJNE9MgbiQxNZoOx0TMau1SnLZeoJZY4KwRY+lk5LWJzxCpCq58fcWWsYJIChF7RYqETf1mWl+i5nVRVJ88UpODVKexjMvpbPha/0MQnuuiYo3707QcySaqCrghTx4vhW8bYskUFxWqQnOzY+5kbT2gzp4fM9PD8jxCt+X+XrHwczVD2HZqGng+VaIwO93ApVgx8Fjb7aCuxksX+tj2Tqh7gPVd5ExOaunrjX4cDSvXTSwBz2EUEuVa7VKxZax2jQ3oyJdwyBSWbSMk/YUumqyVpuJpRszWPaug2XrSVjlRqUjP5SpqyYgun9mb6NlPAmjnX4RxCtIchh4qlIwJEbEL0oLA6v5OmEehFeA8EsQxZz8KeXDbANTP9rvjzogqbSMQlEnfP5rQ+LAg/D6tw9ogsGFJBJVBTzfBsFckyIrm3lYppqCyf52fUmgZrX/Gc7InSGctBSWx14TmSyWjTgSs9r/DKorAwdgxr+jOpXvyLDTT0u3DMPsEa3SKsPLmeVs2ybjjda8dhGa1y7qN+3gjoAZU4aDMt/YJYAHquWTLAQwVZjckWk4Lv29OjLC7KiNjLDE6uD9U53WMkGmSo1buh1R0u70XgnUz4OUpG51MdkHc9hbQDor7TUAZVXgYUn6g5idf14uU+22BBAWDjHZiou4qWgVNmdS2qEyEzzfP61tknTe4ERCojqCm5buz9oTxLY28K3SWLsHXg2Y8ca9eHz3k7p0KEuHHYJZW/4MZ/hozCH/NjczSWfB01mjbaqmcUqQoKeYI/4JAJ2KxJdsbcIcsh68kANJpbDYmQoMC6OhCXnqfeg2N827ZLDs7RJaxlHT6Fk7eBNFNqQGq3OLAxKU0DLBKWvd0jJOyL6Q1JWkhgUqehNEolE9hfbJahmvjFTjBMrSQhE/Dzhp0PwWBBvWAIDR3y12pmJ22/NYUn+g+mAAlJRpSf2BmNX6rCy+yUidGqHUNIwPrQy0g7kT61DRf3YuusKuR9tISFSvI0nndQBTiaFnJtrGAFD+S2F7gCf2Pa32DXOGmasfwsw1j6B53dKa3yaKeTkwUS3YlelFLRJPkKAvsZjsA1AHc8i/MUf8U5L5GObUrcOcYRukWS3kNTqr/c/9fag7JJa/LSsldRpPtycxpEOvo3RBnbVjWb7WB/xipFl2y06+9P7yi0qw7YV6KCCiLZo9fGu3P0vLBBn9bxmvjtHXYnChhOHyb1rYBrL5bfDVr4L/90UEG9aYvqTN7z5mnq+GQFXA0qbDwi4NkbZcVprTNJm3LG1ieqkEOyaSSFRnUPl2E4FSqTsA5sZ7Yv+za97cjP/cA5JtMERo+fhZtR8LpSCOIzVOBJiT+adqeVH7JhIk6C6Oc14HaCoaaYh5FQpXiswp56CNI8BzSXq3rzFrVB4ikA+BZesEACfS+ifShBm64i5T07aXvZfCrJElWWWYbgAKYepWEyeiolBh54OeDSvNE1OAlwfVbXt0iyrmgRbbwDatBw88440XbfYO44u3fOzMmvdJ6hrks15p9wTnRgMFq+E8L+YUkeJhtCrVeVSvNyAjUT0UliMxQu5tJCSqGizxYBzC97tFoABIAtXNCo9lo6ZhVvufMadBkqfFztQuvT9Bgq7iuMwaWX3FGSAyKkVEIBwpHp9D15o+eYK6ECQT9uUj1OhMZq55BLxtixyQADOwPzH1jIH5YNsRaGEbBPMAjDDLlq0naBkn27AINyvPt1WZ1TJOgPhFY7XQEZZuGYaWnXzTY9BokFQ/OhJY6S1luNmTrgUyylSKVPvRUg68dTNY4EmvPusZDOqYbg36uU0cB83vPgZw1ulE9TjndQjuhBEmSCsb4jjhGMC5NF5WNjcAQsE575+2NokmanAiIVFVoFN3uiovErrtSXmrDhsrIXhXYTRPvWeGniBBVegm03OyayWZ0iXWdi9G3eRYcBC/BDiqbYZfMr3GTApa+asRmqRBeoLjMlL3IyvVKBZbxpYt4wkQeFi2PqX+9iCEJL3NE1Nhg95UFi1jWU3VecveS6FlrCJLQnlGIWwhVdbkXGH2iNYuNyMmvqp2U9ujxTaIQpskMSojQFIpCB9Rw2Pfk6QGiEyAm999rGJUanbxRZBUCrzoqx6pvhSSZ+uVsbKKhLkp48NnIl/aH0pFo/oDhPTccZzwhET1NhISVQWilAdPESkm960eYQpdjUDN+M89crvUwWNdCDMnSDAYQPwCREpFLYQAYTLNYkelEHCQoAhR9LFI7IU57O9W6sMxUSnuBfjDoRcM6OcZyjgus8ZEaETgAw0jMDu9EUvaxkj9UokChKBlnIoIBRzElam+lglqI1rDRF20TFDVvJaAvGLHAdUyykQaVd852eg61tC8m9GolrEMpCg1V7rfoSi0QZSKINQB1623KI0QKQGEaUvjnh+Sw9nFF2XKDoDISesXpLMQJWltwNu2yI/YODIkYr4yMA5807GCpFJAKiVNNrURs99/DZYTDD4kJKoatH2BXdqq0FUCdcxLPwMamgDOBsxHKkGCnoAXckAhJ9MmDSMBAMQrSJ2MAtEaFs4wh/9dLnRlKpBksiDZBjy596kDcfjbFQR1QbxcWDXslwAnhTn164GiTNktLoxXVhOyeo5nhmHWKAoUuEntCV2hR3UUKYxSPL5qG5p3rZfpsLdLRmNFS+2mobEhS8rmgABhdZ4SmwsnjVmjCzWlDQGAsECmJ0uyTQ5XE1hhkXGbHJEUIHyEzddZ2BSemHWk07goFYDAV/Y1DBRQ22XGykZYldcklY70HoWbAjWaKSvN108+UdShoD3URFGR1JL1NhIS1Rn0zYuukydAEihap3RQA+BymyDBsf+4q2vVowrHpVZBZBpUv7Gd5cAdhLoYEfhAioME1kzckb0mTVskVlCO/0U8NvnjvfipdkzMGbYBCLiJgJBUCtD6ISXoXlSaJLVsJdfYG1A/D0GocRKfPaIVoA6WbsyYHnstE1SfOerIps2q359uREzzKlojlNiaKIUND8zfptGv6gcoU761aQ9advIlMS/lIQo52eQ3lgEgbsoiVZY2ypH9QcGYsaIx/UzTWUmcfE8SJUU+OST5itrVqMmzikDp9CGoI3uo6kb0CsL3TESur9ErFgciSef1NoYULV27di0+97nPYfTo0aivr8eHPvQh/PWvfzWvCyEwf/58TJgwAXV1dZg+fTpeffXV7u/QuNbSbhEoQLYJ0GJyIyhPkKAPMOONezFz1f2Yufohs+zYf9wVim5rxKzWZzG7+KIUCavIgkjXQWSGAXVNof6lTmldBJdpvVQGIl0n36f6SgIAcdMmlZKg+5hTvx6klAMKrcarSLCw3F6n6HS6j6gefouLE2VDaBaaYi7Z2oSlG2WFntFE8UA2k2Y+mnfJoHlSFs27ZCSJ9vKgRWUqyZhaTzU/D2KCcyHMvogiGC07dZ7yIsyXn081TI+0W6GOTOHpZvCBH+rtUmkT8QSgCA81ESbetgVs0zppihl4sn2Km1JNhCWx0s9mScpCTyjipkCzDSYCxXOt4IWcTPX5Hni+DbyQ79L3mGD7wpAhUVu2bMERRxyBVCqFxYsX4x//+Ae++93vYsSIEWadhQsX4nvf+x5+9KMfYeXKlRg3bhyam5vR1tZNR1m7c3dPUMl3pBMc+4+7MP2Fn/Rsvwl2GMxc84gxBrQjPsRxunTdtWxeIQm/XbatI09OGLiOCImtZfrH3j9xU8a7J0H3MCe7VqbgVFSvKngQ1SIRijl16+TvHfRNW7ZOhO7ftgM5IcawM7IN+ztW7yOKTBvYxKoW6G3wGp+5ej1NoHQaT7VoAWREyUSOLJJlIqU8JhTnLBSwUxqm7ewUoi6SUMVHPR4faoSORPX0J0HvYsiQqBtvvBGTJk3C7bffjoMPPhi77bYbZsyYgd133x2AjELdfPPNuPLKKzF37lxMnToVd955J/L5PO6+++6u79CVg0hXB6FKsGdFNb8nUwearZd6qgQJOkDz2kWSqGQbJJHSy999DHDTNevw5rC/wxm5M8iInUHqGmVkwi+Bqv5kkbQdUCYcJiwACSzhMSBd/+saQBsaMdt7udufEQCOfeXnPXr/UAdhHniuVVaKGeNHbkrzTUTKOv/akqIWF3ETqWKBtBlgvvRnUlWYcoM83C7CSJMWlmsxODiT14PeluCYNaa6dqhlJ1+mHovtMsqjo1BW9ZuJQtnERl3vwg+tB+CmjDicuCl5DaazFSezESIVS9eJYl4aHOfbTEZCRr3SYSsw6xj6GloT1dOfBL2LIXNGf//73+PAAw/Epz71Key888748Ic/jJ/9LCQYq1atwvr169HS0mKWZTIZTJs2Dc8880zXd2jl4juc+dUALXQU8UGoA+jZDvf7py9VgqGJ5rWLzEOdpFIgdQ0yHZd/HrSuoWp7oZbNKyJ/z2F/DwcHAGB+9HpVg6NNkIgeXAmVKZxSO8S2DeBtm+UKds9J1ci1u5i28tZISn3aylt3mEjtcalVgPJJsrsklOmCbM2lJfA2y0nHUQjdYBiAbObrF6Uw3ctj6caM1Mel6yBcy3DV2qdJ8XHpT0WCkvzxS2a9WWNKmD18a3mDYseVzYG1qNtxKkd4TKpNepBJwXgx+tktOxojoVApPp1mNuJz3RePKy2VivTxghTu80JOidUVUdUWB9oSIdsAWtfY4XlNsH1jyAjL//vf/+LWW2/FJZdcgq9//ev4y1/+ggsvvBCZTAann3461q9fDwAYO3Zs5H1jx47F6tWrq263VCqhVApnSK2t0mGZ51ohHFlRx0rdr754Yt/TMHPV/RBuGoRSHPvKz8EDH0995DwAcjAQjIMVPfi5AohDkW5qwGOHfxnTVt6KFQd9sdv7TrB9Y+bqh4BsgxTgBr4RvwJygNUNfzVmvHGvJOduGsJNYVbrs1jadBhm558H5wzOcKULKbTKAVpvy0nJVFJJtRxKWZVWdtRDuzsDQCpMj2hT2NnFFzHLk/vsqtidpqKPqhUHfRHTVt6KaStvBXEoCKV48kPn4thXft5t/eJghUnhqWgIOFcaISf07QLk36rizrYbkAtqtxsgPIg0GCZCTuR4tlG2ewlKEGkXpKgmeLqHHWeAk5LVg8yDKOaU3oiD5rkkYE5aWiJQF7ObNmNJ6yi5G68g9VCViJNJv6lUm1kuP7tMPdsRqdCIU0fo9KRUb0dv1/gBuumoqFxFmIhuTFzMywiZ5R+IwIMAILx+muj2RjouEZb3OoYMieKc48ADD8SCBQsAAB/+8Ifx6quv4tZbb8Xpp59u1iOx2ZYQomyZjRtuuAHXXHNN2XJdYcQDH4JxTH/hJ4b4dBUi8EHcdGiXAODIP34fgnHwtCv/ZwzEofjz7K+ZdRIClQAAZq66HyTbAFHM4bEpc81y/YAHIAeUwIeAnC3b5oIz3rhXrq/6ghGlIRGcYVb7n8G1maxXlASrkDMtNAgPIKD+DzxwxkBd1TIkKIE4qdAjyE3JKAXnkYjCHPZ38EIOLNcG4RUxY93dkXuhI8x4TaXiG6SIfdrKW0FTUrhOYsRq+gs/AYdK+1EHIvDw5IfO7eLZHnzQBErY0RYgTC8B4fdaLW2n++jVABKUILJpGfUR3AjQ7W2LeGsXi6wRv2CMKQnU80/17xO0JAsQ3CyEm8WsMSUIxwVtaw3JCxBGltTkIB7VjIrIlTVBIRe1ptHRI98zzYUlAVURKVjkSkWWwko91XPQTckJtbaT0Kk7HQErFcGL/eRYTghoD802aSfRyARdx5AhUePHj8e+++4bWbbPPvvgvvvuAwCMGzcOALB+/XqMHz/erLNhw4ay6JSNK664Apdccon5u7W1FZMmTYJQBIpQCuJQCFb5oX/Ikm9FiE9F6PBvqQAe+OBeAOJQPH3URR2/L8EOgxmv3R0OhG407aUjPDo1YYTCu+wBvm2TqlrKqr5evMyd2TRVtXQcJJWWpMdUdnGwtq3yDXpflAJ+CeB5sFyrrLJLpWTkQUeqmA+44SBLh40IU4FqoBGBbwYi4/pMa1cSCMaAUtGKOtkiXzmAEuqA+wEE4xCMm3t2e4jmmuhLNeKpz4ct9tZCcJ3SE7xm4kqUt5RI10dE5svWCcweXopqpCzSI7/zsGrQEPzAg9BRUkJBfJXiU21jAEj7DPvzUEdWd2rSEvjln9+KuopS0ZAwnZYDEBolG18nBkEtW4NMXUiqDHGTFXs8V5BeUbZvlCJhev/cK4IVCzWd1wTbJ4aMJuqII47Aa6+9Fln273//G5MnTwYATJkyBePGjcPy5cvN657nYcWKFTj88MOrbjeTyaCpqSnyAwCsJMkO9wOwogdWLPcCOezx73TaEPLYv98JQFdy+AhyRfOwT5AAkJEmPXDY+gz9sCZuCrRxBJyRO2MO+TeIl5M/qQxo4wjpQ5bJgrhp0PqoPmPGf+6pMLv3ygcXyIiH/ClAWFVHopCLFkVoAqUrnOyUEaGAm5EkzGqNIcXlTaryT/YcO/bvdxpbBgCVhedaS0Ud0JRrnZN0mNICIlEa7gfgVorl6Odu6cK3MfiwdNghWDrsENUyR0daohogYgwzIYmPFoRbrXkWi71q2t/i9p1B/ALAPCxbH4tc6Eq8oCiJmVc014HwPXn9KOsBnVrTom9RzEmC5uWAYhvQthFi2wYgvzXU39mkTG/HK0qncv26dg9XVZ+aQOltGHsNE62iRjMWaVjMubzWvaK8J5SOSvi+ueZNFEpHV3UqT2kQNWnvDxCH9spPgt7FkDmjF198MZ577jksWLAAr7/+Ou6++2789Kc/xQUXyPYRhBDMmzcPCxYswAMPPIC///3vOPPMM1FfX49TT+26S7IWdHM/MBfeocsXmtcPe/w7oJ2Uth77j7tMqXiY3qAIiiUwz8dhj3+ny8eVYPvCzFX3m4EIQFQgq/+2IkiiVABv2wq2bZMhLzpCtbTpMCypP9C8dcZrd0fSD/Ht8kLOCJUjg4ublm0t3DBVRLMNctAoFRFsWg+2ZQN4rk0ONoW2UHvDA4AHYYTLTYE2NMEZuTPosBGgDU2g9Y2ykjCTBQIPvJDDsf+4C2zT+sgh6jQkHTYCJJMFrWsArWuIpnMUBJfRJyeblmRL3bOCyQjMUCdSAEDTWUmSlV8SydRFqjENmbXL961m0KbfXg1Ysm1ExZ56RsNktVaRmq2C1R5F+TipfnOa9BitUsRxPIz0hAQpdBEXxXxImNxU6A9le0ZBpbY1wabUVOORTF1ZP71IY/kgJHpQlXki8GTGwJpAc68IXszj8b1PlWnDwJPvY7zfin90A+Ke/iToXQwZEnXQQQfhgQcewK9//WtMnToV3/zmN3HzzTfjs5/9rFnn8ssvx7x583D++efjwAMPxNq1a7Fs2TI0NnavekLwcJZBHAonlcKhyxfiiKduAgBwdTPa5CoCXUXD1AOBM9CUi+eaLwcAOOn+KY1NMDgx4417w4ofNbCYwUJHpWIQXlESioYmE3kQgW/E2zYe3/vUcDBVqcLIttXsWzAWGmM6DmhDI2hDI0gqI3/qGkCHjzZtMRD44Lk2sG2bwNsloePbNhpiw3Ot4Ns2mVm8NJqtk9upb5QDmxroSLZBteXgERI1c9X9EKUCHt/z01g+flYYcfJ9U+IvU+OypxpNZ0EVodAidDtCsD0QKVLXoM5dKHo2UT/qqD55sgjGrjqz/Z+Oc17v8XEsaRsjrQ8IBUmHWiM7Oibs9JtFjswxqZRZSLC8aPQIkBEkfZ3YxCuTDa9FwGybZFVvPB5LXZroFg/TgjrdbFU1Ro5fkSO9nac+cp7RxD4x9Qx5bwUeaLr/FDGJT9TgxJAhUQBw/PHH429/+xuKxSL++c9/4txzo6JRQgjmz5+PdevWoVgsYsWKFZg6tXxwqRVBQUaMBOMmPeBYJoTPzrgUAKqGc7mqqrFTIVqf4dZlyiqOEuw4mLnmEfmLFVEwKTDLh0YWJaRA65uk+V8xH5IuweUA05FPjTVwicCPaD90pVEkpcfUoFYqSm0TdUFUVZXcHjeNWWXrEQ+8bSt4u5WSQWhyqPVQCEqSOGWy0o1aR6oQinWfmHoGABlBE17RVO/NeO3ucOav0in2BEdXbZUJrytgKHtNLSb7AIFnoo3CSYNnGkI7AyAkm/r8OinTIBhARWLeHQhVhSeclBG+E6s6NAJL/yZKBWkboFPHvg87UiV83yw3KVtARYJyYRSOOuY6FbFUn46MiZLUKmlNoI4w6WulYmoUKh1sSS5o2q1op2Ffgwl2XCSjeBX4bTkE6ZRVySFvRuo44IwZAqVx8KML8JePfr1sO+GNGr3h/nj4l/vw6BMMZjSvXQSks6HzsRKrkkydmn07MrVAHQChLgSUmlYTyLfJCExDY8UolMbje35aWiEYQoaoRiQAQJUOSz0NROCZiJWc8UuxsT3YRFybVWqQ+vJ9JCXNDQVnKg2YDnUquppKVzulZVRME6iZqx+S1YDprIzUlQqWz5oX2beNeNQ4JFjlg9xs72UsSX+whm9q8EF/10vSHwSKwBxqpUDtijmr0oxkKUQqA3AXhDKgc67ZKYTjmhQuyWTDFJlO6SF89kVMWq3XjR2GIkahjYEfdbnX6UHGpDxC2TzodKFevywVyDkcxwHqm2QKDohomPQklvsBRNEzKWC7QAEAuBdUvI4IpQhyxX7XRPVoG3xIxU2GBBISVQXae0ZftIRSM0OxL2RWlL2Y7LDusa/8HEG+AJKVMyltk5DMWhI0r1sapu502bXWI2ktBxAODGqg4JyZ9UWpKEW62YYyLygbM9c8YtLIJpXHGQR3IikWo7fS/kNWg1cSlCAKbQjathryYzQmWpzupqVWyQJJS70TqWsI92tHKaz9a0PQ5nVLjT8VyTYAWvBrxPZWNZZthqsIlH1/xQcbE73SVg7d9/0cVFicHyfNOIHQaoK66vxy8FwrKHWwuDQpNFTtDWiHcsFBGkaCqnYzopgD/ND12/7OiKpmA3S6Mbz2NExVnSL3er1QsxdGXY0JMmfyc3EGnmsLhe6Mhz0G9X4dakiRruLUhQiapBjyxBjAGATjZWm7Y/9xF5ghW73ASmuAnNP00OIgGYJ6HQktrQK7mkGLUzXsyh9CKf7y0a8jMyLUXbFSyTy0NYECULHCL8GOg5aNT5rKNNPzSzsvq0EPCJutAjBkg+dDDRJv3yoHq84QMSYMq+kieiSdQqRW01ZNjgCASf0T37YJbNsmmSKhVGpylNjbGT4aJFsPIBr5IbpM3YouyGOh5hgemzIXzWsXyQiUXaFlVd6Z6BzkYByPFJiPmHbL7EiIIyc4dtSBvbfWVARuD1jkT8Eif4rUQxEKnq4DSWXCSE2pgFntfwbbtqnmCr3OoAXmoK4x0TTp2UzWkHaSzhrDSyNvKOQi1hpG0K2q4MqqRot5SaIz4QRDeEXwfBtEMWcmFTzfJi0HSiXzrOWBD17IGX2TLQTXk2LuBeCKLOkf5vnhOoyZ6KcuBnpi39Ow4qAvyvd1wcg0wfaHhERVAXVTYRSqwqxW4y8f/boRmh/x1E048o/flzYGnqzs0JYG3A/A/P4xZUsw+NC8dhEEY1g25piQhFgkgTiOKgOXvboirSwqRHBsMXg1lKUgNFFy03Kgs9uw6Nk750o7FZ1dm0GxrgF02Ag4jSNkBZ8W/7rKnFFrrOxB0Gp7pNMqj02Zi8cmfxwz/nMPuBokbbGxKOYiZeemylVV4RGHgqZcUEXezL4Yj6Q9IuJyNYD6G9+Fv/FdANi+yBTbA4sL47GkbQwWeZOjPeA6a1zcDSxpHYUl20bIaJTuoedK/zHS0KSuCaVXK+Qgcq1huq2kCBOlsrhB6aBMoYPWMOXbZBUpAJptgPB9sE3rJaEv5BQh80zFqvEJU5kDms5CcG6q7DS5IpSCeb7UvfpSK6iJFGfyXtBk/dkZl+IPh16AaStvLZNxCM4jk+q+BKGkV366ghtuuAEHHXQQGhsbsfPOO+PEE08ssxoSQmD+/PmYMGEC6urqMH36dLz66qu9+dEHNRISVQXxEK09S+HWg/ngRxeAM4YgV8Sfpl8M5vlgvvwJCiU8fdRFCAolBIWSqcpLsOOBF/MQxZxM5yGMNpFYeoW3bQHbskHOsC0tiZ2OI+ksSKauw16Ms1qflb/EolHSpym03Yg0YA28sErPqg6kjSNAh4+W/+sKKGY11Fb6FO3tI3wVdVBkT+RajZB4Sf2BIG4aLZtXSAsDHa1CGGEwmhblrWYsGKB0iUpPRhuaZKPudDZSpGHfqxr24CkYB025mPHa3eCFnPTS2h6h/IxE4GHZqGmyyrEPsKRtDISbgUjVySKEzDCQVCZ6HHFS7sRa1tip5cCLeJbpKJQIfBmFzbUaQqZTu1ovF49O+q2t8FvzAGShUFAsGcd7u4rPTuHZEStb57rioC/iyD9+Hwc9fF142F4AwQX6A5T2QgPiLpjcAsCKFStwwQUX4LnnnsPy5csRBAFaWlqQy4WR8IULF+J73/sefvSjH2HlypUYN24cmpub0dbW1tunYFAiIVFVIASPEic/kDlwddMd8OC1AGQkivsB/jT9Yvk+dQM+13y5mbU8O+PSshlMgh0Lj+9+Eh6b/HFV0eZjadNhKs0hBwwt9o54RgFhWktX7Gk9larKM2TJwuz88yDprIzSxFtmuGlTAQXOpFGnFpHrtJ4mbHr/gKqya5ORgXybEbpDk0EtQrciUTqqxlT1HjjDrNZnwYs5Y6QYIXlctu6QPkCh0Fiu5yttV1qSucaRIalURqO2mFynbypFpIgTJa+mSe12BlO5WalirpchUlnZzkX30DPVgCwk60BYGaqqQG2CpUm0JkvhdeZIYt62xUQyAYTXpn4+Fz2TqtMRIq81Z3z5DGFSr8UJV7zqc+UJV0VeP/KP3ze/f+S++QDk89+ty2B7xZIlS3DmmWdiv/32wwc/+EHcfvvteOutt/DXv/4VgIxC3Xzzzbjyyisxd+5cTJ06FXfeeSfy+TzuvvvuAT76/kFCoqqAEBqKDv0A3OTKA/z1xKvx1xOvNuvabV+ea7688zYwCXZYCK8oCQWAZSOOlPYArZuMTqSSSNV2L6f1jXK9Yk4OBoVybZQkOq2q2k+nDKNpspBUKd8orVmyrBW0a7PRsRRzYXl64IPWN8nqO03sUinjWSR8aW3A27ZKgXm2HiSTlfqULRvkMpXKMQRRHWcYKVNES2ttLDJofJD0Z1NFIDQdupoDMM29tVbKDLZeEY/vfSpYrr3DiN5QhjNyJ2MT0LL16b7dmbJZIDyQbuciWj0nlFllGGH05PWRazWaKVjrR7R09gQDurBApgl1oY9O7zrZtCFJtnzC1tHp9FtcpsG9wHSpqFQExDzfFBy98Mn5Zvlfpl/YBye0HL3pE9Xa2hr5KZVKNR3Dtm3bAACjRklN3KpVq7B+/Xq0tLSYdTKZDKZNm4Znnnmml8/A4ERSndcBpOAwjEa9ePK1A31ICYY4Ht/z05G/g03rjYnfzFX3h/3GgHCGbv1OMo0galCye4RpzPjPPeDKh8kZubPRDJmBCgCoA5qpA8+1gsSjXvCN1QJv3wqKEWq/WRMlI45j0pE8L0P2NJ0NPX/clHQ3z6uIlJuW+1YEietGs24atEGmGMEZkG0AHaZIXTEnI0/pbDRaoQZWAKpRsmy8rAs4NJGqNhjazb6P/OP3wR0KUchh5qr7I82dtwcsYntgTurvkmD2kj9UNSzZKttlzSEbJUFOK9LrpqU+qaT60AHm+zQVc5ZJpu3OH5kAWP9r0s5KJal7ghsxWDW6Juu7D4oeHOVkHxRLkSo9bWOjZRrVqqh1xKmSlU1/oFcsDtT7J02aFFn+jW98A/Pnz+/wvUIIXHLJJTjyyCON/+L69dJiI96fduzYsVi9enWPjnWoICFRVfCX6Rdi2pMyfMv9AC995rpO3pEgQddR3LQt/MNNy7L+OGyiwzloXQO4HoSsVE3zuqUQbqzNUEOTfH9JpUWUbQAvKEPMQs6UvetBjTaNAnEccISC7oh2S1UVsi3vgbdvlUSncYSptqJNo5To3OptV8iB26lJqAhbQyOIm5aEzpW2D7aDO61riLirE91X100BqZQUGpdKFVMzgIweOOlURDBMKEVQKIE6Dp4+6iIc/dwtcLuoFRkKaN61Hti8M2gpV0a2+wqiVJBFEsYHTLVfcayUsop82u1bygoSLAf/CGyTTCUgj1vOBMVoVCUoevL6SMFkFRyli2LK2kDECFQ1U1KvtYaq2CGANWvWmD6xgIwedYYvfelLeOWVV/D00+VRTUKignUhRNmy7RUJiaqCDz1yI3hWPuz7q/oiwY6HuO2FNBQMe9bp/425pSZHbgpAKur7Y+mfTEQr8CXpAaxoDje9z0TgGz8mUGqiAqBOxPuJpLOgjSMiFV46Gmbabrhpk8KRpCgF2jhSRo9yreBtW8Jj175UsdYggsmUoyjmjF8UUZEpYqd3AKnvKuSkUNiJVknZwnJNoKjjgNm6GABHPfNDcMbBi3nMeONe41m1PWD5W3nMqVdNoamjQpp9DM7lbpSGjeoqUDcd6t+0jQYQeo4pc9DQC60gf7cjj6pYAUCZ/klfE6bDhF9+LWhfJ/0atciXbWVDKI1Mmg9Z8i3QlAvuOAgG0KbGTuv3ZBsA0NTUFCFRneHLX/4yfv/73+MPf/gDdtllF7N83LhxAGREavz48Wb5hg0byqJT2yu2v+lXL8F2q33l9G8N8NEk2F4RfygazyjrR9sSRAwyAflaxhJFK4sAnRaRpeOFaOWTFn3r1AmiFgQAEOl5Zn6kGNsQPL2OOa6wGbJJHWqRejVhM5fHZyqrOA81NDo1qM5JRwJpe/s2eTIO1IxVjCzoBuJmAC0VZIuZ7QlCMqeeDr5dQqyPnjGRtTVtjtK+Wd+dTBMrUm5624WpP1Eqhn5PXHo5BUVZ+eznCmBFr6wzhF1Jbad4tVQDsFKAFimzockV8/2IFra/0ePKPPXTFQgh8KUvfQn3338/nnjiCUyZMiXy+pQpUzBu3DgsX77cLPM8DytWrMDhhx/eK597sCOJRFUBD5TPU2KQmaAPkWqowxFP3YQ/Tb9YDiA6/aGE07rvl4bg3BAKWz81c80j0h2cUnAVVRJ51QBYtcAwKTEnTJUYh3TAEvOqKIEmaNoUUXlCiVJRWhjoaJGbMn3KQKkRpOvWL8IaDOPpGl7My5mc1eKDUKpSdQhTlm4aIq/cqD0WrTiMIVKVZ5Wwc8oqkgmTEgp8IJUue30oY3FhPI5Lr8Yitkef7mfm6ofw2OSPyz8sd3JeyMkqQd+PVp7aEwR93Wl38ZI0zNRXt3BT4MW88d6ziwQiPmAVmgHbpJoVPXDOQSkFR2D+TtVnI35PNO3iI/fNByt6oCkXPgDRJm0xDnr4OhQ2tcLNpvtf4tELmih08f0XXHAB7r77bjz00ENobGw0Gqjhw4ejrq4OhBDMmzcPCxYswJ577ok999wTCxYsQH19PU499dSeHesQQUKiOkCig0rQr1CVVDoiZITj9mxdpeaM4zlnaNm8AtCpN2WWaYtzBecqIhWaG0b6kun/jU2BjCRRbQJaCo9BN3wVgR8Oemo9YuluiHZit/62ReFEfV5w5VStTBpBs4acgVriY906RpNAu2IPocmmMVuM6VyIQyMiYsE4GHxwxuDWZVS0T1o7NK9b2meeSgOBRd7kPt3+sf+4C5rKiMAL02+lIhD4sjJTVW4Km0irogOp0cvBb8vDyYb6Ni0c1w7iOnIYFEuRvpM0FXWqt0XiNphVyQfAECo7esU5B2EcjEkdFUdg3ku9AG62CX8/c2Hvn8RBiltvvRUAMH369Mjy22+/HWeeeSYA4PLLL0ehUMD555+PLVu24JBDDsGyZcvQ2NiIHQEJiaqCv33y/6G+89USJOgRtFZH/SGjP7YBpfbSgU7JpCIRIuH7kugwBpFvNdsVpaIkBTaR0W0zfMvc0tKTEFXVh5ISn3MGWt8kq+mUhxNX0aD49qSDelj9Z/cAtJcb7ZNXBLHWk1EqGka2vGLo4u57IZkDAMcidCrqoQdR4lDTZFULj21iZSPSYDYr9Vki8PHYdkSg+hrHvPQzgDp4Yv+zZeuehiZj0yHJccqYahJKI7IsSeblNcz9wOiZiENN25V4eo46TqQhMGccnMnKO0CSHaBcxyrJmDouq4Ec5xzcyjZIch3IaBXnRu/ipGQFoK7MO+DBaxHkiiAORb4nJ7ALiIvou7uNrkCIzoV0hBDMnz+/0+q+3sJdd92F2267DatWrcKzzz6LyZMn4+abb8aUKVPw8Y9/vF+OwUZCohIkGGBw9XBfPn4WWrY+DeJw8Hwx1ofOEsHaBAVSkGsTImNIqJelLK0VlJjXiuroxsBaZC6KOQjfA+VcisVzrdL40O6pp5zDO/hQkvxADpamtQtnUrxOo1EqICp4twXy2gGd+wEcXUVEZSSOIAVwLgfjWPSBOFQ2d0ZImAxh1KRLC5KLHrgXgHpFHPvKz/HE/md3+J3tKJi55hHwLRsQ5GW61oiyVfQHKTeMUnpFsMAPLSsACM8qlFBtYKSPmFUgwRmIR+GkVWWp8vZifqygp2iRJS9sBC8Yh3BkpR2Pv0e9Hmi9lOV+T9MpcM/qCqAmIwDAdDSMcbjZNJxsGsShOPjRBXK/2bSp8KP9JPnoTWH5UMWtt96Kq6++GvPmzcP1118Ppr6vESNG4Oabbx4QEjW0z2iCBNsBIg/+SjofrVHSzYIhLQdofaP0Y1LmhDpVVYa4a7n5Xw4oOtqj3cJFISeNEfOtYJvWyVYbuteZOU4eCsjjx6zF64EvheO6D54y6tSRKvNAt/yEtLhca8FItgG0cQRIOisJlBbMq+iUJoTaFDdeqk4dR/bYU3qZCDHVKT6d3vED2evSMt88dPnCSJuPHQkz/nOPsRTQBOTpoy6Sra1UdVyQL+KJqWcAkB5oj+9+Eh6bdHzYvkc1AJYEXBEri4wLzkHSWeMgThwKzlg5gUIo8AYAJ+2a3qRBrmgIFPcCBIoQ6/cERQ/cMt5kRQ9+rhghUDa5CvfHwH3fWCSkG+vLmtIzL4Cf7x/7iATAD3/4Q/zsZz/DlVdeCceKsh944IH429/+NiDHlESiEiQYIBz86AKItIs/z/4ajnrmh7JUf9c9JTlIZ8MKJU0yGpqUa7d0g6Z1DTLqpHUo1JFExSI1BIhWtakUYPh3tK+ZCMIWHbyQA7FSZja0YzQxESELlt5KqIpBkm0IW32o18J1AJLWRophyse0n6EOKGfS/dy0CPHkOUnBGG3K44o1HFbpUg6YgZqmo332mDWY6mjIjDfuBR02AsubL8dhj3+n8hc4CHDEUzfByabxh0Mv6NXtzlx1Px7TxrBKUjVt5a044qmbECjC6iKMopZBC8cB402mCbB8nYb2Bpyb6jrqu/Ba8xCMw61LS2F3TuniHArmBXDU92f8nwBAraPJF1OEzM8VjKs5oHsvupHogT2Jibjda6+xYgm+Q1G/80ikGurgteXAFOF++bMLkG9vA278RVdPcZchCVzPWvgQp8r3NUSwatUqfPjDHy5bnslkIv38+hMJiUqQYABBKMWhyxfCGT1cuosHHuBIrxzbvZlQClovhZpabM3atirvHC4jM9agpLcNIBoB0H/He9Mh6rejYUdlbNh9yChCCyIt+hbckZYI2vyTc3l8SvNkytcB41EV2X4QamJotl5F4WSVFnXV9jiDYNRoRfRgaKq31IDNGSt7LfIZ/WgbEO4FcAIPopjDzDWPAHu9v+I5GGgc8dRNYL4Ux+sKz97AnOxaLI65tx/93C1SP6Tc3qXvkl92LjUe3/0kzFx1f6SdkAh8cw0AkC2MvCJ421aUtrbLSFSRmlSeHSE0KV/VegsAuOcbUqHXt6tPg6IniVk6dDPXqBa1NfeO44Aqo1kOH6UtbSg01mPYxJ0GrJF8bzqWD1VMmTIFL730EiZPjhZLLF68GPvuu++AHFNCohIkGAAc9vh3wNXArx9stEGa30nvpKhPDgBZ6VTXAOI4sqnvtk3h64EvBdc0JAnU7oXHQjE3AEOgTO8xS5ekYYt6qwmzZUqMgXC9bxVtYspOINtghOSAGrx0bzRAWhdoLZYmccq5XW+LKx2VGTCVQznVwnnqgDhhuw8nnYq4k+vPUcsAosXN2LIFTjaHJz90ble/2n7BAQ9eC9aQNaJ56jj4yH3zIz3duovFxYnl+xrRGCFN+v9qfUKPfu4WsGyYeiZ1DSYaBajroKgiB+r69tryVoUli/S7E4yDQuqwNMmyCY9g6hrnPLxOiiVwJqvtAKmjooqI6IKDSv3zZHECB02lQBwKx5E6vNLW9iFPQoY6LrvsMlxwwQUoFosQQuAvf/kLfv3rX+OGG27A//7v/w7IMSUkKkGCAYDW4gjG8Vzz5Zj+wk9MBCdiiAmYWTwv5uCoJr7GgNAWewNK52QNDpxBlELCBITibNtDKd60t0PSFHtde1AZghZP/QU+RK41dE5Xtg3SiFOm7wTnMhVJKYhTDM02rWo+oYhZxBvItIgJI2a67Uelz1UJtkAZAAJfNq8luQKOfu6WXk+V9RQHPXwdAi+Aj6JVleabNFdv468nXo1DlkjDYR21c7JpCMZxyJJvqbRZ0Rg5rjzhKvzh0Asw/YWfKG2SB9dYaMhIEWcMQWsr3Po6wE0h1ZCF15ZHqj6L4mbZCikoeqBWIYD2iLL1UjrSFGkqnEIoHlcpQKr0bxyAo37Xy/X7jAEn43DSLjh8wIckU5SC+z4KG7Zg359ejFRDHV7+7II+Od/VQCk156Mn2xjKOOussxAEAS6//HLk83mceuqpmDhxIr7//e/jM5/5zIAcU0Kihih2uep0EIdizTV3dOl99Z8+AQDAfIbS/Yv64MgSdIZDlnwLXLWh0A9x0wzVdh2HEpNbM3heyIHn2ozbc+ijlJZ95Ap5K9UWprG0EFYwbpq1aoLBvQAcctbvZNOmdNsW0ZptxLRHNpGydVM6bSNUs2Qe+KBU2RToyFpdQ8SFXQSe/Bx29E2RQJTCz+nYJM1qPqyPw0Qu0q75/HrgjbT6iKcQLXI4WFs9HfzoAvgFqVv764lX44AHr4WTkjqivoySBFZlHGccxAsidgKCc3B1Pg96+Do42TR4Y0NE7E8cCqeuXhlbFk3LI7ceRrhtg3s+mIomphrqzHGYqlKL1GtfKDetPaOi2h/9OrUmAXo5jW0DiBJuxmTDYppKgRVLEYF7f2JHT+cFQYBf/epXOOGEE3Duuedi48aN4Jxj5513HtDjSkjUIMbeP7gAr114i/l74hWngTMhb/A6t8sEavQFJyPHxIA8ABKEMF44bR6EjiQUPbilgnTMtnxspHO5jMAQnfriDEIFXsLoD5WpLzsFolyYnWwapa1tcLOZyIzeyWQi14KZ6Stjw0pRHFt7FPfwEZSZYzYaGBqaK4YkSZI7xyp119ouonujlaJNZDUpEqxkjkNGB6TzdEV7A4R6GurQMgPGeKWe/bt+32C7V7RPkUa8Dcl+/3cpXj2n94Xw3AvMvj7826vx1xOvxv6/+JoUaWtSbpERB2HUijMG1iZTdxlIewTbRdzuDOG15StGDKPXn19WQGAfp74uIu83BqvR5XEiXek60dvVxJqpJsb73HYR/vmF73dw1noXOzqJcl0XX/ziF/HPf/4TADBmzJgBPiKJhEQNUkz6xpkopSh2X3gugmKA1VffDuYxMF8+pDjvejdRoQgUZ/3RiTRBRwjUwOEwbiqswDlEqRi6Owd+qBtBSlakcS6XaauDTFamvgIffnsOQaFkBiUdUcmMHAavNQ+acuGmXfi5Aty6DJy6egC+IidhtIk60rzS0Q24Y81cg0IJ1HHgZNNmAGVFz7g7O27Y4kVfadRNSZG6SvsRR0YjNFhRWjRoTYqJJOkohyph159JRgbccHD0/YixpuAchCkPKOv47QFSR6Uq9UrTy6ulAAcb9vjuefKXEY340G+ugteag5vNwMmm8eLJ1/Z4+y+efC32/sEFMnXXUId9f3oxAoQDiE1G9Hllng8nLdsX6RYqehAPckUw3zeVd/n1m0LBuiIrbp26xh0HzA9MJCyazuXmNeYH4ACIFf3isahRGdnW0VgVkSIOjVTuhbYLHKxoF1kM7Sq3oYpDDjkEL774YpmwfCCRkKhego4SrVv4y17ZXlAIIBiFn/Ox9oa7AADrvyubo46+4GRsuOnXNW9r9AUnAwD84uBMUexIOGTJt6Tmxsy8c+BsFFyHGssA4YeaDlHIAW4KTrZBkSVPRXiknYEmItwLUNrSBsE5vNa8HFBU9RJxZFm3W5eJpCJIKgUSeCaaA8AQJ+LIyBf3ijK64Aeyk70W9GoSVdcgU4x+YGRJNOWG0SfOQNw04KZkFZ8StNuCbw274s8WusfTicz3QVgYMeNMGm1qwsWsVJyt4TKfy4kOnPa+9e+cDR0Ctdt1Z8NpqgPzA7x6zncw9Q5ZPcb8wOjDeoLmtYsQvLcWT1pR8f3+71I4FinScOvS5hrSZFxHp9x6ZU2QL4KmXRS3tqF11TpQhyK/KQcnFTbI1eSHUAqqvs8Aoc2Bfs0Qa0v/ZqfmJAFnIA6BYCLyvzxGdT0osmR/Hr0dCsDPlSC4MJmAgYjoENILZptk6EaiAOD888/HV77yFbz99ts44IAD0NDQEHl9//337/djSkhUL2HtDXdh3FdOxS5XnY63r+uZZ8jEK04DYxyCEXAmMO4rp2L9d+/GThd+Rj3cuxZJEkzIKJbHwDyO4JElPTq+BN3DwY8uALcG69KWNgDAszMuxbSVt0qyodJyLNduDfwlU4FE6xqMcaHWlQQF2WPMa5NNWrlFPPTsnSrPHABhxEb5RUnzwQJoShoYCs7h1tdBBJ5JlemqNc4YHFW1BAAs14YgVwy3rSJEkfSYVSWno0g2yoTqOorghTot7gfwWnMmHWlHwOwWIPb7dTSqknWDhk2k7GV6O2yQaqNsOGlJaHXq/+9nLsQ+t10EP1csi7J1FTNXPwRkGyJVih/+7dVgVpsVynQExzXRRI2gWJLGln4AOqIRhQ1b4OeKcLNpFDe1ori1gFTWRSrrgjgEzFPpXJ+DOkxGLK0AUMSl3DwLY95gMVcOSYQk0XLTqcj6miTp99r/62uj1FoA8+2ejAKCMTCHoD+xo6fzAODTn5beZRdeeKFZRgiBEAKEEONg3p9ISFQ3sdOFn8F7P/iN+XvUFz4FlpZpip5AR7QAgDgEFLJzxU4XfsYQIcEFms78BAgl2Pbz+zvc3qgvfEql8eQ2EwI1MDh0+UIIhxqDQJNyUoP7ioO+iGP/fqcxv7QjRtKNe5MU347UWpI8fCUmFpyjuKkVXlvOPOilqWAqTI0pHYpOkwXFEsTGzeZ34kjxrjkm6oDlC+Y92hGcOBSOEvl6W9vldmyRvA94CNMkbl0G8KOtXeLpQVu8HqZ0LANMlTbU0S5JcpQ+xQsipMnepj53lUCccp2UJnp6OXEoXBVVGcyoNDAGBRlhfOPyn3Vrm81rF6kCB4blY2cCAPb/xdfAOYfHYu7eaRVldLiKgAaR74L5AVzVNqW0tV2SqoYsWFHr24j5DE4a5nnlF4NIdEpGkVTDYX09OVHiwzxWRooBHdkSketNXwOV1qXW9REUAzNxJQ7g1rmJJGKAsGrVqoE+hDIkJKobGPeVU0GyboRIbb7td9j54lMQFAPsfPEpXUq32dAzsbA6Cir0HJgHBAcH8zlQw428+bbfYeS5J5ntDj97bqfEK0HfwCYkWqdjRwp0+4wjnroJmVHDAQDetjapQ1IDjlPIg/sB/FwBfq6I+p1HglBqhLl6PzSVkh3qmexI7+48EsShkfJ/r5gzgxFNu2FLjWwaIvDgteXKfJbs3nOcMbNfwbiZ31MWRp6CQincbipljC+NV48VLYIRy9NQIM/D9i325wusaEeclHHOTXTEhtFSQRHKePpGpfGclAuhnLGHwsydewz/+J+bzN8TrzgNfGS2jEBp3ZRgvENyNf2FnyCgFLSuAXSErHz64K++Di9fiIjtw0pGH77S4Gmy6zbURdqqcCrTr76q/LQRFAM4qfD7lak5AuExMMhIm4z+CElwUm6ou4pZelBHRLYTRzxyZa/DGYejyJPUBGbAfR/ZkTIlCMiq5oEiUEkkCoNKC6WRkKgaMP7yz4H5DBtu+rXUF2V1E8xo6HDDTb/GqC98Cm6di4lXnAaadrpcQQfYzsnacVnArVPlxVyAUoJSqwe/GKD+0ycgf8/DHW6PMw7m6QdfZQfqBH0HbWkQqH5j+Q1bwIp+xVQSoBy2Ax/cU53tOYefKyKlzBWDgkyRsKJndFBMRZOAsDks5xyUSl8dTYiMRkhph/QMPoUseCqQjtSKxNjVSADgwIVwQmJj65XCazYAt1IulSwSNGGKHI9NmHTUTP0d5GUvPZ1aE4ybfmVuNl3WZ417PoTjwKnweJNkz2oDoqINdlTKtPtQlY1DAZOvPQurr74dgJQWTL72rMjr77vh81J0rTRB1XDUMz8Ep1RdL9tQTx0c9Jfr4MGqkLO1R9pbCYDwAwiLJIXXY8qkZGFtx22oQ7qhiFJrCZwJUIcYzZGTdhRBY2CpMCrEfA5a9MGtVJqcXAoV0SImWq+3SSiB4AKEEpPak8cXdffX96KTTYOmUyoKma1agbfLVad3/sX0InR0rKfbGMr4xS86lsqcfnr/fidAQqI6xaRvnGmKYkdfcHIoRIR8II2+4GRsuuW3Zv2gGMBJO3K24nU9P2vPFPQDRebjte6Aw61zwXwuZ0UAMnOP69TziTpErU/RdOYn0HrHA10+tgS1YZ/bLoJgHP+64Ic44MFrwR2KoOAZp2U/V4Kf80HTDt686ueR99WPGw2eTaOwYYtJvdmDFiAjLzqVl1u/GUDUx0c43IjKA88H9wOUtrSrwSFM6/n5oiRfup+YL4mb7h+n+4QF1sCoBx03mzFNaAGYKJJgskaPKmKiozsAQHlIhHQVlB2J02TGjqppCC8Uv9ukjFtEUC4LTUq5IWgMNJ0ypM6JiYftKBog4xQ07cJJuQPW4qMrYH75c0YTKkBGpjyH1KTV9FpzpoFvZuQweO9tAIBIZIb7AZgXmImAo/oeap0aALS9vRWNu4wATblINWTNck2ac+s2qe0wQ5ZonatSufoac83zj/mWFYfPwIvCpPoEF2CcgTBijkVHizgToeZJSRo4Qm8ofUzGydyR/encbBqZEcOqOrID6LH2NUHXcdFFF0X+9n0f+Xwe6XQa9fX1A0KihjYt7QdQh8gfStTsiFivVYoiKBG3CvvqyrhaMPqCky3BpCRJ+uFhSBMXCAqBCXlrZOYe18FnoCB6lqcsDna6cGDcXXckfPBX0tNHd5hnfmC0JJyJilFKwWTUSf9oywE7WsP9AL7SK3mtOUOEmDXTF5wbUgUobxutV9HbUekVpgZNrV+xBxdbZK2PTVoolEwky45QaI2WjlBw+3r2om08uPUDRO8nmyBpewMbVPfL41z6BtltPygFMeeMdWhVENdTaWgNz4zX7q7hmx5YcCbKUkw7X3wKACk96NK2VKWmviaCQglufUiCIho5Sy+ko1tOSpLPYmvJkGFNrrgfqBQzQ3FrAaXWUoQcAYqspaNpK+6xyPenJ5cy2sTNMuZzE4XqamVlRBsXK3AYLCCUyGu7Rz/9K4bvbWzZsiXy097ejtdeew1HHnkkfv3r7kloeoohS6JuuOEGEEIwb948s0wIgfnz52PChAmoq6vD9OnT8eqrr/ZoPzqVlhqWRirrwknJh7O2MqAOxchzTzLrt9/1IIpbivDbfXg5D4IJjPrCp7q0T78YwC8GhiyFg5F8WMnKFWrIkZNyIpqCOLb87F4AMA86rgTqCZHqfex50xdDkavq9K59mwLVqR4IH9B73vRFvP+WLwMAHBXd0T+lrW0obmpFUCwhyBXhteWRW7cJ7WvfQ35DK0pb28CKvin55h4z/lO6Si802CzBzxVQ2tqmtrsNxU1t8lrwA7MvvzUvo09q/UAROUB6+wRFD6Ut7ShtaQ8/lyZhOv1W9ODni+a9WpRum3TqwdqOJNkDmX0e9H7MAB7z/TGVf4oAyn350l3a6HfCaI0mioKHP2Z7VkpRu2QPdgSFoIyQb7jp19j54lPAfI61N9xVc9SEK6IcFEvw2vIovLfVpJO5rys0JXliPoeX883zyWsron1dK1rf3gbBBNrfaUNpq7xOvLY8Slva5T78AKXWkrJx4QgKgSmaAUIS4+d82HYE3GPmRzA5mQz0c1It93O+2U5I1sOolP05bfIHIFKJqScUgwkkEi3r/s/2hj333BPf+ta3yqJU/YUhmc5buXIlfvrTn5Z5QixcuBDf+973cMcdd2CvvfbCddddh+bmZrz22mtobGzs1r78ds/MjjS00SVxCIJCAOIQDDvtRLTf9SAAIH/Pw+AnHY+6kdlKm6yKTbf8FuO+cqrq98TMMhsyWhXe+PKm6HzGlLv798jMPQ6cCRAqo2U69J2g9yDJgY9Ug+xP5+cKKpXEyqI8GjTlYv9ffA2OmvELzpVZpiTspa3t4Fw2Ui1s3QKvNQ8AZqbPir5J6RBGADAzCKQasiqVKNOHQcE3Ql0AoGndrNWLRGxk1Z5nolzEcUw1FQBQLVDXfj0OBRRx0+vZwmINPbDZs30KVw7EnjJLdMKoGgUi2i4NxkJypCNf8f3E/yacgyJVZtoYT1Vqc8h0UwPi7UMGIyp50+104WcggEgFcWfY7/8uhRgxDNz3kaqvQ2bEMARFD21vbTCaO30N23pQP+ejbkw9Sq0l5DcWQNPSBsDL+cC7uUhBAvcDeIocgRI1KdSkJxR9Cyu65jgEzAuvG1s7pf/WaUFqZQrC5yQHrxAv0KSdMBJJmQvGIejgikIl6BiO4+Cdd94ZkH0PORLV3t6Oz372s/jZz36G6667ziwXQuDmm2/GlVdeiblz5wIA7rzzTowdOxZ33303zjvvvC7tp+F/TkGD46KUdZUGSab0NIHa6cLPgKZohNDYRKp47yNwTzsxUqJbC7ShprYmiEOTqtEXnCyjUIzC91in4nIAcFIOOLONCEmij+ojMD+A4/lh5Eml1wLmGW3G+Ms/h/8s/CXef8uXwdMpEGVoKVhIRBzrby0iD4oBCCXS14lJAhUUFOlIO+AeQ6lV9SWrK8lZOhPINKXBfG7S0rbjN1RvYKmVKgB5GDdpbaqoSZuTcsERGB2WTuHpYTUoeEZjwlQKx/au0noo5lvO4yqCFE3j+IDSZ+m0nSZ0OioCRCMIGvF7Tq/r1LtwsmnT4sZ+TQ/KbkMWqYY6+XowNAsxukKe9v3pxfL6rK+Tou5sBq4qYvBb85C96ija121DfmPeRMAplZNIv90HZwJ1I7NSNuBZRIgLFDbmUTemXl2XJWNdINPFwqyr/ycRIiT98mziDUiZhU2MTGEDE3Bi/k1ym9bfehJspbb0ZECngBmAzCCL2iTVecDvf//7yN9CCKxbtw4/+tGPcMQRRwzIMdVEojQp6Qpuu+22PmkMeMEFF+CjH/0oZs6cGSFRq1atwvr169HS0mKWZTIZTJs2Dc8880yXSZRgAnDkbEWn1XSFHBCSmeFny3OjZ0c2KdGESq8TR9OZnwAgyc2Wn92LnS78DJwUxfrv3o3Nt/2uw+OLR6hqAVH6LkBqrLprw7AjQn+HHdlDTL3jcpQUsQkKPpyUFJLrCIqe7Xoq1Rv/DjWp0F47UoAuU2JezkeptYSUqgxNNaQsk0mtw+Mgliu9k3IMuQqKAdLDUrJaKRZ50QQpFSEwWr+kBhwW+k3Z5IMhMO1VzEDEpVCbIiRCenAynzX+t2WgqQXvcnkp2sNPp+DikaZYqTtJK3dsS3APSDKmx1PdLsQmd1pkHBRLUtRfP7QHnc6wx3fPA0u5yjpA+oo5ynS18J40xiSUori1gPZ3ZDrO931kR2bltapsV5jPkN8oI6TMZ8g0ZUAcgtK2EtrfaTeR72JryVTe6WeRYASgJEKeNDTRstfXFYb6mQsATpqaaJVg4XY4E9EsgjUxpQiJlEkpQ7aNgR+YScRgQeJYDpx44omRvwkh2GmnnXDsscfiu9/97oAcU00k6sEHH8TJJ5+MurraNAJ333032tvbe51E/eY3v8ELL7yAlStXlr22fv16AMDYsWMjy8eOHYvVq1dX3WapVELJanba2tpqfpeDhFXV4XFTRmvW4WG+nXuyWq7h1I8hd/fvUf/pE+Q6dS5GfeFTEWKkCRRnAo6KAnRl9tgdeDnfVOkNtsaqgxmjLzgZPhcdRuz2/sEFCBwKVvRNex2pFwqiD26HwMt5ZrYOaBG1b8TeOnolZ/UMXs5DUAhAKVGzeEcVGpSMvs23DAHdOlfqPWhY1cQ8Bq/dNwORm3WNPw9xCDylJXHSjhxE1HsEF6BpJ6zKq0tbInGhohSSvAQF30QpZGQpPD92KTlXTumEygE7FN1LvZPfmlNVX8qqQZHLoOBFtmVHwbjR0wCphmzEz0inbRylDTMu7pQiHo0CAK81L1NZMVH19gg/5yGg4Rfltebg50qgDjWaTgAobCmC+QyEhq7i+Y15U43svevBVVF7rvRKxCGS2DsE+U0FOCkHNG3ZI4AaUk8VMQojU7FUq7U+s+4dMym0lsW3wTzAraNmfZ36k5F5bhl0Rp+Jg45EOU7EL6272xjK4INw3Ko5nfeDH/ygZlJ07733dvuAqmHNmjW46KKLsGzZMmSz1R9shMRCucoOvhpuuOEGXHPNNRVfs8PA8saMltHq5XoGTNQNzoq6jFvNnKwHjzlO5V3ipCgyTf3vRcM8Dn7sDNAnHu/3fQ8ljDz3JCBN4aoIUMOpH4ObdVHcWjS2EuO+ciqKwzNh1ZBKSXg530SCdKl2pdk2ZxzED+C1Fow+RJMcGWWSDaedlAMKWaWpBwPOZRRKkzKj83CI0hnJ9Z2Ug5KKAmgiFhQDU5ggGEfgUBNtdVLlM1ZZih4SHq2xoqAIqw45HMexRMJhio55gYpaBGHftWxGicYZmFXVpyNLWshs90DTgx6hFMIPlDiemeIKarWloSk5QwlyBbPMa8uZ5U42bfRjhFNQpuwe0jIaQ9LbN4nSZAcAchvycFLUeNFpLahODXvtPtw6F5mmjIlKEYcgOzKL1jVtSDdQJQbn8IsB6kZmUZd2UNhSNB5NKZWeZT4HVwSMUpmaYz4DVZEhLZtIpeXfvi+Uk7+UVAgmn506pRc+g6N/a2i/qHg1oPafCv2jeFn0sjPUnfnpLp3zBN3Htddei0svvRT19fWR5YVCAd/+9rdx9dVX9/sx1RTbe/LJJzFq1KiaN7p48WJMnDix2wdVCX/961+xYcMGHHDAAXBdF67rYsWKFfjBD34A13VNBEpHpDQ2bNhQFp2yccUVV2Dbtm3mZ82aNQAqz2yclBPRWgw77UQrJB29OTNzj0Pu7t+r9IwcQBtO/VjZ/utGZuGknS6XIncX2oCOeQy0A3KZAKZXoR5oRn3hU3Cz0i0505Qx6zGfo7StJEu2PW6IT6m1JKNIqpLJ6Ee8sKxfw88V4eU8eO0+2t/NoW1du1rfM2XkzJczaC3a1SRNOzkDMjLq5Xz4Od8QKG69riuhdHSLeUySNVUWrqucAjURkFEF33JsDhAUfPO6XMbCaI92l+bClJrryJXt1M7VMj9fMFWLxvbAtyN5UcG7jo55OQ/FrQX4OS/iIm1sDWLnVxNAk7ZRtgh6v0AYmaIpd9BFIXoTI889CcPPnoudLvyMqQJue6cdpdYSClvk55Yp3gBbV7eaayzTlDYTPlmVJ8mMtH8Jn4vphjSoQ+REoBCYZ6T97DRpQDURiEeeKFUaVJWq1n9Lzzz5Xet+dramzYb9d1CQ96C+jqmaZFTy2NLH8eo536npfNJ0/6TIkuo84JprrkF7e3vZ8nw+XzUY0teo6YxOmzYNrls7Mz/yyCORyWQ6X7ELmDFjBv72t7/hpZdeMj8HHnggPvvZz+Kll17C+973PowbNw7Lly837/E8DytWrMDhhx9edbuZTAZNTU2RH6DcN0bfdBrDz55rZjdu1oWTdgzxSmVdlO5fhPpPnxC5wXN3h6K4bT+/X6VSZM5fC8r7EnqAZB5HwWPIBYO/8mig4MwJtXXaTsLuQZi1Ki/f+8FvzOxY+3sFxQClbaVI+bb0/WIqnRqm+Ly2oiFEWiQeFGQVU2FLUZGzsGxbEzutk9KEhvmqt6Iq69ZEiVtRUB2d0kROEzCtqQJCzUm4XQ4v58HPeREX/aDgm89h/q9QDKE9qpgpT+emilFHtmxH92jZOZMpp2JgCKkhjipFqT8z85l5L/d9BLmCNI/MFSSJYzGvKi7b6TA/6mDupCVRTjc1QHhFtGx9uusX0CDHtp/fLwm0uo70eWU+R3FL0VTgCcaR35RH27p2OGmpsctvLJjzzZlA27p2MI+bNDZX119+Yz6svItdHyT2PAVgIomcC/OjJyCcS2uX+HvsyBK3SLteX+9fpxi1vkr7SsX9tfQ93BXkfto/2tKERFXPLL388stdCvT0JrpVncc5x+uvv44NGzaU5SiPPvroXjmwOBobGzF16tTIsoaGBowePdosnzdvHhYsWIA999wTe+65JxYsWID6+nqcemrXozwdCfh0dRQgHw5u1g0HOc6BCnlnwYRxFrf71wXFAG7WxS5Xnd7nDricCbCAg4kABcbhcYGGPt3j0AVbvAxtJx2P9LAU4MiZrB4k3CyJRKIAu+dhaHsRn3nHU7qANEUMlJbESTsmxSFd77lJpehZv9Q+cRURI2BMvaa27aQdEErk4ONxc30BMAMlTTtGlKsjR1rrF2quZHosPcyxiCCHWyeUfoUjYNy48+v0iV35JBSxDIpe2NYDHLBOg/FsskTsgCL8KgWq03hArPQ9TQEV9dPRVSflqJ59ISFjkFWLjhJQM9UXD1BieHW/6lJ8zjhSDVnTqkSUtq+oVNw3ziYaFPJa3/jaZmRHZs35DgoB2ta1m2sl1ZCWJDsVbsdusWKngwkNJRDhZCC85mzY14Em+bIRe7RZtE47at88J0UNCatobxGzRrDB9PbU9SaPvYgP/urrePmzCzo9n0k6r+8xcuRIEEJACMFee+0VIVKMMbS3t+MLX/jCgBxbl0nUc889h1NPPRWrV6+GEFEWTwgBG0BflcsvvxyFQgHnn38+tmzZgkMOOQTLli3rlkeUdM0l5sGgc+d6IHV07l7f5A5F8d5HzPuzJx1v2hjYhm+AnAVm5h4HpipYdCSrryEJlIDHBRxCACSdyDtC8d5HwD4+B/5Di42hqq6US7d7kUrMTbf8VlVXyu/RSTkInCCSMpPkWz7MtSWFrrYrbSuZB3i6IWUMVaU1grIt8JgRgKeHpaxBIxwEtX2AJkxANKqqRd9w5DbRIDUqOtIWOpRLYbomj6msa4onhOXboyGjsNYgl9Yl7EGY0kk7UnXCwkFWi9G1aFn3ONMRBn3v6PfpZTqtaY7BkZFglmbG4VwXUhBKAC98n+0TpasNqfYJ4vK8u9lMaN65dQNmtN6Dx/fcfgbLYaedCJ4KbQEA+Z0VtxTh5X20BxzD8j7qRmSMybBMJ+vUXJjCIw5B2qpc1t8jEEaX9KRAG1xW0gbqSKqGbYbJmIwy0nQYMQQPdXiSaEV1UMakkws4upF7hcgTwIGYBlCT/8EE7Tre020MRdx8880QQuDss8/GNddcg+HDh5vX0uk0dtttNxx22GEDcmxdJlFf+MIXcOCBB+LRRx/F+PHjOxRt9zWeeuqpyN+EEMyfPx/z58/vle0TRwqKNUmKRxJa73gATWd+AtzjoGnZk455DLm7f29m64AcYPRsT0ejZGWI7aDb94SGPvE4vOnHAgAcAkWkEnQEnb7Ss/f6T58gXbtbXaQaUhEi5WZd1I+pQ35jwZAYL6dEucZ9WaB47+LIPvxigNy7OQAwpeGANDGU7VxCksRst+ZCYITguhrNWBqo1IWefUsRObVm+cIcl6P8zsLKKWEGJq70WMQhcFSaj0UqC4Uy7LRIjx5A09H0jQ1NkuyIhVAieXvbpn+kWqy3TSGX6b91n8rStrDSVp8fKReWETAnDXDKTf884jgRETGhFG698kjKFeS+tmwBTQ85S71OoYkOdQgCTxh9FADUOQRMyOvMSTlw0qHFgG4zowdk5snIKPND5yabKOvUnSZFnHG4addcG/p7ijuIx1PDJs3sBZHt6nWlrYaKOoHH0tMczOJE8W2HpM9qdlwsYdI3zkR+Y76ipYyusN5W4/nuKXZkn6gzzjgDADBlyhQcfvjhSKnCkMGALj8Z/vOf/+Dee+/FHnvs0RfHM2iQrk8h5bqd+jW13vGAiVLolEv9p0+QszblnxMXL2bmHgekdAqBGMI18YrTUGwtYdMtv0Vx+rFwCJB68gnzvty0Y1BgAmOefqrbnyv7VLi9JJXXOdjiZQDkd5ZqSINDDhqFLUU0jK2P2B6sW/hL7Hbd2ca5WXDZTNVJU2N4KZYtj2yfs7ASSjApRgdg9CeaGMVn2DZBAuTgAcD0RjQd7GMPTb0+0QJrpXtxs650blbpSEAONJqk2YSGW3ouO36q04taCGwPWjLlpgY6K50ojykUvfPIIBpWNNopHupQE/PSBE+ndgBJpLhFEHQETK/vNEQfe/FzJDhH4AcmEuEOsohEb0CnP/MbC2CBTO3XpSVZIkwgpb4frooYNAnW6VINQ951oYFjpdQsgmxXj9qpPZP+jaW/9brRfoqS6FErDRg15hRgTIDwkKzp93MuDMES1v0R7kuRKEqM1kswjlTWRSrrYqcLP2MsaHTXCEZDC4cE/YNp06aZ3wuFAnw/aoarNc39iS6TqEMOOQSvv/76dk+itv7wLnjDOk8D1n/6BPhpBw6LPgDk4BkSK2LN4gCAUAHCOPycbMPhpBwl3vXhzGlBWqUL/WOORYEJ83dPCFSC7kOnsqR4WUYW/ZwfcakHgPymAlrfbouUjmvECZSNupFZ5DfmI7NzvyhF4X6JgZKQTOj/OQCiSYQ1KJgZfQXNifYJ0wRHp910pFWn04yQ3opc2QRKWPuFOS+WTsHngDXA2PdA2iHG88f2WbOjUNwaCLWGyhxLTFcFFpaqy21x41cFqGiiIm6AbLOjvac0edUeVYD0wjLfmanmC3D0c7fgD4deUPU7HErQurnNBR8OIRjmhpEmJ+2oyFJY5OCkacQvTE8OAJgCGaA8oq6/v3h6j3u6gbDW2Alw8AiJ1+/XeihdjUdSbmhzUYHAxAmUiTpR7SnFjLicGoKuJiGWbqrUWoiQPADY7bqzkVcTHL19wvqHRBFaPinqzjaGMvL5PC6//HL89re/xaZNm8peHwg5UU0k6pVXXjG/f/nLX8ZXvvIVrF+/Hh/4wAfKwmrxfnbbO/L3PBypwrMHOk2g5GuhxgrQM0EZ4mYNYYqGq/RIWj3cqcfBBEeaElhZlAT9CGdOC4TS7ehUlo6k2AQKAHLv5lBQKTxHEFCifY0qP7xKrSW0rWtHuiFlNFMmmuQxFIuB0bClhRrkEBIT+3/78tCeZdq/TA8UxCGAD6O1khohGlohKBG3FqhrA854ubhO/1EaRp8YQm2V1rAYwqcGNZqmEFkXgkltVaQSL+bhE0+fG31MBYF+mabQgSmRN07XyhVbWyjQVApUtfrgyuhUbj8UnmvDT3lOh2YqpBKoQ1HYWoJDCJqU4WqEiHMp1pfFABIylcZqPg92BaopvKChSJzQUKMUSePF2rLYgnJjgaCuJQ19fdkFHpFIlKWbCs9BeZ892+ut1GrbX8h1tWmoTqtv+/n9yLe3AQfvWdM56Ql2ZE2UxmWXXYYnn3wSP/7xj3H66afjlltuwdq1a/GTn/wE3/rWtwbkmGoiUR/60IdACIkIyc8++2zzu35toIXlAwWdurM1A0aLoiISjqNm4ykn8qDK37sIecgQsZOWPlShJ490g84+sgSkpRnpIGFR/Q1nTgtSDWnpR+RZTsqUlhGjpjM/gdZ384b0pJ6URqbSpjW6TeJIk9UtGwsoeAzpNg+UEGSGp41oWxM2hxBVEACkaYx4WI2kNWH3S+r6EQJQUQSPCVPRp0XCsmItfKhKbVTYSobGts98bkTygPTHsdNomjzp4wornWDWp3bEwrwvahRqR8DiqTwgOsjq30PX6XL9lf4sgHIzdyhoSjYi1vYG2vJADzKEUkAJz5nngzoOuB9g2spbseKgL2IoQ0fP2wOOOiUQNxFyO4Jnpb3kOeTmf13JWMknz45K2dFRQH13TjxyKECoNGmNkym7CtqGfV1osq6Juw0ecyE3qWgeRk6jLWi07YcwlhnEIaaZvN0qS8s4EvQfHn74YfziF7/A9OnTcfbZZ+Ooo47CHnvsgcmTJ+NXv/oVPvvZz/b7MdVEolatWtXXxzFk4cxpAXMo3KyuMKLGCZo6BEXGkQU1lUFxNJz6MVm5knJUywSOlKrOAuQDpuHUj8Grc8Hatj9txmAHW7wMdaedaOlAaGRwAOTD1Mt5KOR8+JzDISSiPXPmtIAtXia1cAA8JsBKviHYdelw8GCeToFR+DyA5BrqNUWkHCIMsXJEmIIx/lBcgAmZAvY5BzyAODqdpnUvYTpNR6CoOg6qSJNdlarTLFrfF08L2KLhiI5FWYDo6iztIRSp7NPXuscjkSt5tqOl7Xpg1WaeNpGqFHnQbiOCcQiTzktBMIbAmvARR54TosiS3dJY9wKEB9Pfb6gie9LxYJyj/T3Z584hlq7OFMPIeI1g0hKFOg7i+iHH0eeFGjsM6pBQ7wZq0qh2dbKOtmtyrbVZOoqprw9TVQmYaxSIaq0iOrmY5WElUbqOHgHyfmFMmOiUSS8ze19hOnn11beXnUtdbNJfINQBoT1s+9LD9w80Nm/ejClTpgCQ+qfNmzcDkN6UX/ziwExuaortTZ482fysXr0aEydOjCybPHkyJk6c2GGPuu0ZxCEmBVOtJ52pMlJmixr2TWtSHjpkHYkwJHYEAwXuSXKcHZE1g4VfDOC1+xh+9lz4xQClVg/51hKYCMX7qY/PARBNA5kUrhCScFlpKE1USm2eHFgUgbKCNuZvj4vwR2lX/BIDs6KVkkzJ34UamLTYXAvWtQGmXEeTGG1GGY142c7gGnqgEWrmHhRDPy3pvRP1/AFkhNVX65m2NYpg6d9NhMkyJo1HIyLHwUWEvIV6mMqeQYJz2VxXsSxKKWg6ZSr1dMrPmOUqY07uB5h6x+VVj2Owg/nSoNTTwntCDFmKur6rikw3TGWG8gRhIqVaN1XtuRcUpLWHbhwdPgd5JH2rW8XYTviaKNtGs+H6wlwzNuxldkWgYMKI20VMf1e+7aiTeX/Yz9QE6vTOzxDG+973Prz55psAgH333Re//a2smnz44YcxYsSIATmmLidIjznmGMP+bGzbtg3HHHNMrxzUUIKu3tIPmPggk42JH/U65SXfoecJoDQ3SkvjF5XZoUiI1EAgf8/DxjnZV/3suMdkFd6mAlrXtmFbW0ig3ONnY+S5J8F/SFoZ6Ae2FukCISkKCgE8n8HnIcnQxEgTJkBaUmjI5WF0qsAEcgFDgXEUmPQCk5EquX78WtPHUdhSVJ+LQXtMAdFZvC0M14TLvsZ13z4dQZDrRgdJvY4ezHREQOsAzUBnXKb1hMSKCsTTOTT0b9O/6+OtZOIIQKUxAwTauiCmddKaqND8U7qos6JnWsZ4rTlwz8cuV52O8Zd/rmwfgxnu8bOly7vPVMo5/H6ZiNsLaJG9K9O+ad0sOEz16etBG64CcsKhr3GdEtNpQT3JFOr+qdRkWL+mUcn6RV4X1cmT/tteXm0SKljojm6sGxxqNFBO2omk8AYUlPbOzxDGWWedhZdffhmAbNn24x//GJlMBhdffDEuu+yyATmmLsemq9mub9q0CQ0NO2bRvF15BCDyoNGoJCzW+gvtg+Nm3UgqQ2/DhKATX6cBQ1AIwBtCt2XjIP7QYhSmycmD/oqDR5YA2vbi2BmghMA/5liAUnAhQAkxPl1cESWHAFwIOfNniESfKiH+Wpxsye3DVHVq4TChwgjkuRCRKqtKuhabRJnScISkxkSiTBUTRVn0hwujTaGoNKnQFVjlPdQ04inUzkApiVgxmMhFQZGDbBrMD0B9H6lUXbgfzgHOpbu5akoMKIE5pREDxq62BxlIOHNaAIfCLzG0B6HWDgB8zuU1KISxrOBMwDWC/GgjX53qA2Qxg92goaNovL0OADhOmEqMNqkmZeTJjo4BUb2UWSemlbP/t2GT7I7sCXRz7gSDBxdffLH5/ZhjjsG//vUvPP/889h9993xwQ9+cECOqWYSNXfuXABSRH7mmWdGeuMxxvDKK6902KNue0bwyBKTurEhmIiINqWYlkX67Nnr2k1fgTA6FRQC8CQKNeDQQlMdSfE5hzftGDAhzQnTKQfO8bMRPLIE+U158GNnqJSa1Ek5QqDAuCE2AFTUCCpFx9GgBjYZUZIkyCEw6RcgFJpXPEYBE4XS+2EBByXE9NEzkdBAwMv7SDGpx2MeooRKCX21P4+tnZHrhARKl40DUQKkJwgm2sDDij17QGS8PL3CGCJRDqB6iXbcT4hzYUUTlDt6UTu4hxEz7gVgqQBOypV6KM8HcRwIat2fqgBZcI5ApQAzTZmye3gwQ5//du0J5VBTpKCvLSbMRwUQE4bzUKMpmDDPI8o0wQGYjmp5dlQyOsHUzvZOmkIwAsGYJVuIptSIQ01UKy5Ql8cUreIz+/A1YbfWc6LkKX69RExfVSQ105Tu81ZcXQFxHJN+7sk2hip830dLSwt+8pOfYK+99gIA7Lrrrth1110H9LhqJlHaZl0IgcbGRtTVhbO3dDqNQw89FOeee27vH+EQgU7dANKYsWIYWvkEBQCcuceVzXK04FJXRdkPLI+LiFg5Qf9Ck2GTchAiojkCgILHkFXfcfuWonldjyE6PVdgwkSKQgIlTDRKa50kSGQ/YaQpTMPov+OvxeH5DE6gBhFFxApMwGEcI9IOHKpNMUOBra6y0wOcY5WV26/pCJT9P2DbMDBVQQXl1h96PVWzMgBQRtziiJa/h9EF7aNFKwjgARgrB+YH4K05pBpk9ZXupcc5B6XSR8pJuyolJH+clAuakv0Ox1/+Oaxb+MuKxzZY4MxpAWMCBSUJqKtQ4KLJt3mPLnZwiJk8RNK4KmVsvMIAQyq1OF3/Llg0ZWdX72lyVt5DT+D/s/fm8XIVZfr4U1V9zu2bGxKCYd/D4siigmwBsiIBFFQyCA6CooAbDigCXx0VGGVREBFEUWZURGXkx+YoIwgSCCTsm4AoSIAhw2ogJOTm3tvdVef3R5236q06p/vezt0l7+fTn+4+fU6dOkufeup9n/d5BZHXdQapKizpwIM7yh71cgihx5JCvmG7wrVFEwGrVO6PRSVyTAEoAEPDaRrHnKgkSfD444+PapWUMhswiPrZz36GLMuQZRm+//3vr1E9ureK9V33e1QOPtB9LxsA+q77PQCbLeNGyKjkhVWA9tyXtTZ6pm+8GXq/97qairpuAo+QzsJrRCCIwnYElpSwIKqT3RP00QIpz3dKm3hd+HY0+PH9cJN5yJD6WDPWE0Y1FGl535s1dKyTBsWHM22gAUciJmFOwBc95oKVAJMrqPlSNa4v8Po9cdmX2GPhhRB9bTygPGTDB0lSvg7D63wAt1laQgpU0iRv00D31iDTvNaltMclUwuWCEAJJaGqKXRvLdBRGtO233uhASyvNdx95z2befYm7L1kNc3s92Siyr2WBDY8V1PrcHIAeM6cz34LAbDIOZ5kXIwYCCVifJv+XtJKQIF5rFTooeT8OSD0TsUZo3b/urCMb59MTLHWxp597GMfw09+8pNR04Qqs7Y4UVmW4corr8RXv/rVtSBqAMZTe5s9bHnRYkqBNzpzywmMreVDjb6RXABxSLhxANU7e24ujloEvkoIdKoQIFnwYwe10LMk2GfudaJ9NgdaBPDqET+FQjnWE2VcWz3aINUZMlXMZqNQs0rTIG2dvAV2PR+y5iFsbjY13gJQ8gRlSvgSNzzsDa/vFAtBAiHRvMCxgkESSRFIJQoDb6OnjkpnAiFlzssqF9TMtIGpNyDzxyUpmwspkHT5ANif3rMv3vXgosL2o2nk2VzVCIE7EPLqlLByLCSNkcBnBwO5llLOa7P3f+4dzflVlOVn8qQH02e5f46Lx+8PCq1J32aZ8bAg8fkAy6UiwMY9Ye6Y6b6RPnRXVO4PpTPcecjDjB2TOgq/jbpJOQSeqPFNLK/VavjP//xP3HLLLdhtt90KPOzvfve7I96ntkCUlBLbbbcdXnvtNWy33fArtI5na9xwEwBAzNt/wLPVvut+7woU83YkgOpwdHKttWVpoqAbJvA6xZe2Ny/wrBkxPJUEgjMkObncrhPynKwsJ9gyRN89qCIuFQ/rla1PHifbh5xjlaetKwMnDKozAv35PhIEnB87uOTZS2zw4ZwVysai8I9KpSugLPNBk5sn6Hu+DeD5N/H6caKG0RmSKCTuPVHFwcKqZXuTqqgALaTViiK+VKat4Kb1UNk0fSkl0nUmAFgNU9N4x49Owl8+cxFSKbBkz5nY5t47CvseLZNCoIcEUPMQnPVEhutxjyqfsIXCrsatA4DdV97bSWFiKYQrFdP3Zs3dD8E+uYyA9OE9KmPcjKBelrzgjteR4YuJPvx4TKBcLlltPaumPxaVvdcqlgOPP/44dt11VwDAU089Ffw2WmG+trPzzjvvPJx66qm49NJLsdNOOw1Hn/6hLLv5FoicbDwQ4wBqrY0d6509FxMnpoEOU1k4TwlLMifBy4Bnks/M0YjBkzc/iJV7sew7APDPHrQRsIr3TV4rGsekElAN7+FSAs5jkGmDOvyAU6lWXJgPAHQtBE1571z6OhmpW/PPmRbOe0WALBA4ZAMnDah5ADE4FySO6NbVWVAGpMzKdKZof6QPZQFUntChNWSaOIFN3VtzXiiZhwJ1XcPUcl0sUQS+w2lUpLxH23ttyp23l65HfDuyHu0nABw0kReKkhBIwJUI3nVjCjxAwAInEpkliz0/5MUFLFhv9BiXjapSBc00/cu8U5mOWO+5UVgwKNDNPFCtjHujqJpElmuVrbWxabfddttod6FgbYOoo446CqtXr8a73vUupGkaEMwBlGpIvdVtoABqOO2pPWZAZ8A77r9ztLsyLq16+wKrYj13PwdieOitZjxHqkd7MAPQzD0feSIQxo28QmQxKGq1nO8rBlKcc9Us/KczSzxPYbP50KchhUAyMfHK1DUiAWfIjM+WIrHZMqPkCAq7KDYQWtCV97seDlxFfgwL8SkOxIwrQGy9HaowgJuardNHA23albgixO74qfyL1DD1hucApQlMvQFdb0D39hUyyEgclCyVAq/sMwsbLl5Yej6G0kjBnq4zgaqaydC10A42xpUL8iHiGGDHZrIMUnvCv4RxIWyaLNB9pjMB5OAqlf43ALZwNvNm9mobPjZ9foJBXCoCbDLKxgR8KRoqy5PFwFtnIJBtIKFKkgl4mRh+f1CoT7FyXJXOMapKL4aAWC7GL7Gc29NPP40lS5Zg5syZ6OzsbCq9NBLW9t3yve99bxi6sdaG057ba6bLAHt8t32x0wNji7cxXkwdNA8Q3svkQU+Wc50EdCbc8liagCwke8feKvrkyehAFgIx9rvf1nvEfFveW8VJ5ApMRiPzx1AzGVRJfUbuUeJlQei7iLhGfMCCW49xWxhXsGwdCvsYnYGcCTFJ2S3LQRX5rEhzKpM+U5C8WZQhKFxVAPv4s2DO5Os28hR3K3sgpbQZfKw4sV8/P6Z6A+/40UnAfXdi2b6zhzwJZPmM2QE4nnSHBUgE3smagSOOKblXimeP0uWIyeImy5Bp4cBTLLXBgbn3xgrohsGqhgkkOsgbWuD2NUIPJl03V34o4MJZ4E2hP1frMCo1BNiQnVeuZ5IaOvxdSuHuq0xnqHRW8LcvXtr0eoyavcWz8wCrR3n44YfjtttugxACf/vb3zBt2jQcd9xxWHfddXHBBReMeJ/aBlEf//jHh6Mfa20Ybat77sBfdp8RzBLXWvtmGHGWzqMdELy3hwaUqpJu5g0MLDGAewr8Ml7yJfRw8QGxlXZUbKRxxe+FTiWdtAIdg2Eq1gYW3OiaB0kESCh7y3kMAg8B7dOntlO5kPyovBcgIgnH2W+ZsVlZpeTvXGtKKAGRssysnOtit7PLGz310n6RCSWhUIFMKzDGyztQH7wnxOSabxqNnhq2OuuTwKLbsXzG7P4uwYDtlX1mIZUiz6qzoIXa56r0za69XHArsPesIEOU1uf3Fd1b5GENPZ+hQj5PdKA+xfc5TTS89yoEaPS/4WaynICuyQNWbmFWngnVPgvrUlahLGSAZjSjyM3eB6apFtlaG3374he/iCRJ8Pzzz+Md73iHW37EEUfgi1/84qiAqDVimWmtce211+Kss87C2Wefjeuvv95Vb19rQ2+UtTcY05nVzRk/8oBjzwKSbYm0Af9s3Gy7KDsQC6dySQMa6MoGRc9/8p4wDoQSKd06Mh/MpCiSiE0JmKb1iRQshSWgByrmsqg2bt+9l4qnw5dZZozXHappB6jIo9AqCYNI6gU5BV2shWZMFoQIufJ/o7eBRk893792/db1hvU0BcdjHEeK+hD2Kc82rDdcjTUlBJbtO7vpcQzUXtx7VgBCCOT2aJttRyV+gBC0xBZmgtp33i4H50FNRvai9bj50F7xfiZVdOq3L0UUcgXj/0Km4/IzDMgz3lx/quh2Pc7P89wnDqb4u0okOiZ14Lmv/bTftkfDiFg+2Fc7dscdd+CQQw7BJptsAiEEfvOb3wS/Z1mGM888E5tssgk6Ozsxe/Zs/PnPfx7Cow7t5ptvxre//W1sttlmwfLttttu1Gr3tg2inn76abzjHe/Axz72MVx33XW45pprcNRRR2HHHXfEkiVLhqOPb3kjsnl3Xl5kTWynBxa5gffeXd6ayvKDsZUz7bnns2ueLcfNDxR2AEvYgyue4bfyUPEQSziL98vjdhMpXWo5EX6btWlBmx/M+HeRe4E474QGrjA0kheirfnisjzjLibq6ppx4IWLNHJFbJ7W3qzocQykvJfL1+VzYoqG94sGYv/uih7nUgZUb83WzeuD5vXzjPdC6bpxKuiVqtcVoms/FECKh95sbcSiRpPfb3n4mMB5WbscVMWAiT57gObv1zKwxicTnN/H/yt2n6G3CvBgKtAKi3Tz3PIm7nQZ3bOxR4nX16OwnedJSTz3tZ9iyWn/Udr2mLBRKEDc3d2Nd73rXbjkkktKfz/vvPPw3e9+F5dccgnuv/9+bLTRRth///3x5ptvDsURl/ZnwoQJheXLli0LqqiMpLUNok488URss802WLp0KR566CE8/PDDeP7557H11lvjxBNPHI4+rjXAiuYNQSiOZok377TX4Bt7C1lnzpno0XYwA0LPEA9pcJDFPUKSaT+RtcOfKfMG8H3WjSUAGzYwxfuj9QnYEUDjwA8Iy2zoHPRwLSfuHXDp7fkAxqULAuDiiNi+Dc5vaqYtRZ4HXsw27gf3YNFgyQdMqqPHtzV5f0j4E8hBWL4/U9Ood/ei3t2HencfGr21gKtjs8y854oGYMqSGww3aun0WVFygiWIe69O3t/MZ9Vxb1R9ztwB7Sf0pIb99YkSYfg6vld0hvx/4T1XHPjT/UWljEJFfm9WFkE5AB9brJoOhICK7g1fqiZzL9dGXrxY17RTsxdKIu0qSf0ba0Y6UYN6tTfkH3TQQTjrrLNc2TduWZbhe9/7Hr761a9i/vz52GmnnfDzn/8cq1evxpVXXjlURx3YzJkzccUVXkleCAFjDM4//3zMmbPmTobBWNsgauHChTjvvPOw3nrruWVve9vb8K1vfQsLFw5/Rspb1chTMBjb8+G7ArLxrTuHQOrOd00fVPv/qNY7ey7SxJbBiMm4PE08kRJpokpn/iazOjlcRwcIOSpAODun3zl4iknB3Ph6ZaFHu30M4orb8xBLwIuKQnW6pp3kA9+mnntrdM1ANyyoCzOprMUhFQ6MqPwM7ZcTy3kox7UhhfM8cC9UmfnBtqhb5dqVEvXeBmrdddS6a+hb2Ydad92H/4ztI63T/eqb2OxrHyuc11f2mVXah/4s5r5RFp79LbyGBK4A5KE+42QMaPvwHio+R0IvUxgujr1U8THSuhwcFcG75/u1ApeZtvcMLyHDX9yElAy4F9eh62yBeOa8jkDugawbB9i4J/GtYCtXrgxefX19bbfx7LPP4uWXX8a8efPcso6ODsyaNQt33XXXUHbX2fnnn48f//jHOOigg1Cr1XDaaadhp512wh133IFvf/vbw7LP/qxtYnlHR0epq27VqlVI07fWjTjSpoTN1GmmBzNQI7E9nWW4/Z3T3bK1qujlRoVaKTRG58qqf3tiLT2QySvAgZRkYTOdAYplKJXpQtH1KSOmx+Vl4rR1DtLK6u7ZgS5zHoJQfypfloMQ2pfMIys8N895gfLt630RLykfMMnr5bxWDasPxMMvFLrJ8iZisneZZ6K4jszDcr4+ml1PBDX04sE40waNnGBO+5EqrKVmdAbUtA1F5orrZH0r+tzgvPFpR9nswkW348W9Z5WG3QZi3jtYXA6ERG3KfvMgJQzrec9QmLjAJwDcqG2q8UjL+D5tvzLY2o52Gcl0ef5T2XGFEwzepiOWwwJxocPwXEH2gjS7VChf4AE7A1TwWXxSSRgYd1/IVOHJE39Q7OwYs6EsQLz55psHy8844wyceeaZbbX18ssvAwA23HDDYPmGG244bPykHXbYAY8++iguvfRSKKXQ3d2N+fPn44QTTsDGG288LPvsz9oGUQcffDA+9alP4Sc/+Qn22GMPAMC9996Lz3zmM/jABz4w5B1ca9bkgluhB+iib2VKAHs/cnfudfIP1B6dYWJlfKvZDpcRt4gPRgANcsINTkDO48my0sFT14zzNNHAwwfLgYR/4kHPD2ahxYWMCfCFoccicKZB1pfw8O1LEQ5qMSm4R3vBxQTF48ncuWH9rxkX9osHSa4xRd+58rmpaR9aM7bci0rDQSYkwpeV+bDyDFZc0iaGGd2HtKu4rq5pm+2XAynKRFSpgkoVVi/rQaOn4XSGeDr/YIz4a6Q/FgMauicprAfYc79s39mYuuj2CDwX247vvTDrL1yH/8YV8eOSMmUcLN5n3m8+wajVtcsQ5SFlXj4mqIsoZSnIynQI9Lm8BQB3n4ybUB6Qh/MG+YzOt1+6dCkmTZrkFg+GTxTrMw23ZtNGG22Ef//3fx+29tu1tq/IxRdfjG222QbTp09HtVpFtVrFPvvsg2233RYXXXTRcPRxrTHT2ZqHCIBYANJaj86w32P3QGfAA7vug+f2molX9plVIMYmHzwIADDl+MPWeP/jzah2IfFCLP/DOH4HASYlfBiJE8k5P8kEA1VMUrfL13TQJe8D90Rw/gon/TYzGtCojEdMFDZZloOeLC9/44+tNwIovOixYaCMD5pAWF+STDBtH9ce++y8Vzxk6TxZPiTIPxvjXwDy4ro2nd2HgrwHI9MZ+41xanSGek4ml1IEoUiVSDR6G+hbWQuOZzD/V8ATw2MAEq5TLt5K2/PQG38vkyIgYESlgmh/BNDoMxfdJJBk2w49qXw7338R3AtChYCzZjIIJQvXnawZuTxMOsiCkJ5dRokIVmCz0lkZ22TyYbJJkyYFrzUBURtttBEA75Eie/XVVwveqaG05cuX4zvf+Q6OPfZYHHfccbjgggtGVeS7bRC17rrr4r//+7/x5JNP4pprrsHVV1+NJ598Etdffz0mT548HH1ca7nxWeGa2m4PLc7b8unSBz9xr/s9ESIvD2K1aZbPmI3uWXNQnzMX9VV1VA87GLXuGrDfewd7OOPCdE2jbowTOCQvEueY2OVwQII8ESH3yYOSZhlO3MsVDzgt+9jCixVnEJaBqfhYwvVCEEZgkHu4/DrF7ctCmtx4CC1cLoKQHLdAJ4jxYHTduHAevRMACjIE655Qbj+XCYxa3hMNxJJ5MQgwkUYWke5Ji4jqCU5ddLsL/bYLpAhkWO+hX17mzYmX0/WsmQxLp89yyza5a2HpvcKBEPWXgyraT3wp6DfuheJeWM6jouPxr7CtWl3n4UMfhgZCIG2/h5wnzo/jSQf8mmbGBPcY1VdU6TjyQgGjkp3XyrbeemtstNFGuOWWW9yyWq2GhQsXYu+9hycDfOHChdh6661x8cUXY/ny5Xj99ddx8cUXY+uttx41TvYa69tvt912a4sQj7BVb1+Anly9eDB217vLb3DyjvjQj3340YO1bgzEyj7rCciyNRMZG0emDpoHre35oPAUn217Dog/d3VjoLRxxYqFEkG9PQp58bALDVplIZAhOQ7h1c1DcFTM/qJjikvKcKDEB+uY+8WNnxegCKJCJXS7cpmQpvvddsa2FYV6HMAxGbiAImXomZoXXXRlWlbVbHhOChhjQ0Uy75dQXnIh017QUSW2jpwxGZTKQ5Q5GKP1G70NV0ic+G7t/mdD3lCGVEooUSR2c05dDED4dVciw4t7z2Lte3DNNZxo3+TZikPYFNrloIrrS/GkimaAibdn8okGT6iY2FHBit4GdE07EO0KC5eJZlI5GJLJgHQinLGelFASuqZR6axApcrVRRwPJqSCGCQIanf7VatW4emnn3bfn332WTzyyCNYb731sMUWW+ALX/gCzjnnHIcHzjnnHEyYMAFHHnnkoPrZzE444QQcfvjhjhMFAFprfO5zn8MJJ5yAxx9/fFj228ravoO01rj88stx66234tVXX3UFOckWLFgwZJ1ba0Wjh+iLe8/CJnetGfLe+5G7cOvOe2He4/cU2k4iT5d9wDKdo4aBbuAtY7ZgsP0clrzwgwQQenjIc5HpsPwJD92FHqH+R9iiFysr2XcGrp5O/YwH3rjdkONV7vkioEcDZbzPYn/Dtvsz4rz4gjKy4IUSjA8VLo9J4GG5D1omtC0PQ0rVhl1PIp7zTK/YpBIkpm3BE7y+VFE7KzwXABxHaSBWfm2L5sF86MEMw2sDQ3D+XvTn3d/n4b0Tl3FpFyTG90aceVwGzJsB7Fbmy8KUgO+1yuT92gMPPBBIB5x88skAbOWSyy+/HKeddhp6enrwuc99DsuXL8eee+6Jm2++Geuss86w9GfJkiW49tprHYACAKUUTj755ED6YCStbRB10kkn4fLLL8f73/9+7LTTTqNW9O+tapzLMBjb77F7Csv2fsSmpf5l9xlY1cgwOfGhBNI5ogy1REqYufvZshL/gNYx/33oqxlUOivoutm6q8lTQ0AoVBj3A0GtrlFV9q8Vcos8qZxCIHz2zrOryMrIyaEEQgjSyOtB/YmztIrr+218f+Lfw33xdmifMbiLSchJfm7IG8XLycThvDJOVCtrpXLOxTXj9mSLQTQO8RG4qvc2oOsaMpW2Rp/xoSMJQKUSmalYgvnBB2LSHbfl9fRQIF+3Mrqv4lp1SoTHwEndHNDyQ+U6T5zgzT1PZcTvwjmJQsHcIwlw7lMRhIXt+G0l84h1KvuMyXSGTldQWgZ8pqaeSuO5dZLVZSi7N6SSUIltZ0zWyGtmYgiI5aK97WfPno2sBQgXQuDMM89sO7NvTW3XXXfFX/7yF7z97W8Plv/lL3/Bu9/97hHpQ2xtg6hf//rX+P/+v/8P73vf4EuRrLX2jZ7tNZPhub1mYqt77hjyfbzj/jvxl91nQAlgvVRBVSR0w0BVJFQWCkjW58xFcts/lvdxwhGHoK5taG5CV4IG4LglQMwB8UCIL6v36UK5C4ADJb8+DYRxCCdUfA77SJ6eokfKy1dw74RfP8zm4iEgvzzcXwzYW3keyjg7zdaNPU2FFPZIjbzZ9mWZfc3W99sYxmsiTpX2qfL5MVvyeK6GXjeo51pRQF7yxekO2ULHKicsN3oa7reJFYkVdT1gjxAQ8txiMEXL4s/cq6kzYPO7raf6lX2s1ILVjgo9XECYjWe/F3l78bsH6B6I+W39OmVG7fNC3PTZRPc0UA6EeMYeX69VIWyhJFSigvDveLLRCOeNNTvxxBNx0kkn4emnn8Zee1mdw3vuuQc/+MEP8K1vfQuPPvqoW/ed73zniPSpbRCVpim23Xbb4ejLWhuAbX73QjegD1Z8s5WlUmBiRWLiRKv9xTWBeAFalQn0zp6L6u3jH0gt23c2UilQmdThBkB6KJM8QJniOAEQLlvgs/mywsBifysOqGVggw+k3HsQ/hZylXx/aD/FsIkHQj4E6AEh7a8YYiEvV3+hOs6FofcyUU3uabDrlBQXzlXCW2lFhUVpM8eLIoI4D904snndIE2VlTXIhRjpNyt9YKDzzypRwfa1VXWo1GbjufCtMWj05l6pVAE1Db3fewOy9uO77YudHljU9LyR0fXhmm48HMzvJ3+t7bJN7lqI5/aaiaXTZ2Hzuxdiw8ULHbGdy1vY/QBl4eSQb+X3xcFcfL/y9WNxzTItsrheI30GSL1cotJZcTIYsdEzqBmA5kkBdl27nLahkj1rbfzYv/zLvwAATjvttNLfhBBOYmGk6vm2DaK+9KUv4aKLLsIll1yyNpQ3SjaQdPXB2jb33gHs9143yKlUQtdMMLsj3k/1dh/SWzlzjstkGyrrnjUHXQuHtk1uL+49CxMr0g1OjZ6GmyH3Lu9Ffc7cfAAJt4s9MvEAZdcBijyTYsiFe5ZiawZeaiYOz9C+qA8eZNF+/XjDQ4ehUGNZmI/3kR8/tVUkQpeT5cmIUEzZVCoNvULNjJOHoTOoXN83BlNCGqdQLZSE4p7CmnacKUsil8jqDZdh5zxW2pe9oXfej0avLfti/x/K/Ud0TSOdmACpcqE+AiCdbXhAKGRM6uOxtwiA03bzwFzgqT1m5Pv06xOQonu4zJNF++OeTAJodM95EB56n+y7CIBU6O0q7lOx33nYW+UTNem0nIQTYeVldwAEumFxFh4VtvZhPtrGfvq/s0aHQ7PGRmVfBtvGOLZnn312tLtQsLbP6KJFi/CrX/0K22yzDQ455BDMnz8/eA2XnXvuudh9992xzjrrYIMNNsCHPvQhPPnkk8E6I11RerSMQniD5UW1ssmfnI9KZ6W0+CsZ/TbQOl0DNZo1d8+a4/gkQ2U0wJAt2XMmgDCjqVcbJ/+wMk+9tr+FbRW5QUWgEXp+MresOKsvygT438qPpQygEAgKlcpjj1JxQwI+RdJ7uE6zNmIAGJ6PsHwMmcmyoCxMMwBVBEgyIAiX1c+j9TMW6st05rL0bCjI5CE8E4T5Yo0pwALrRp4xVtQe8nUCCXAZnaG+qu76QpIhnUrgub1mlh4nNw60y6oJTE4U1ksVJnZUHDDj4qrb33cndAY8t9dMt78NFy8MtJ/I4nChB9O89EsoVRAb5/XZ/hePJTYvPGvr6gX3bO555Nca8PcCqd3HvwMoJB+o1K+j66GHeVwZiW0O9jWObcsttxzwa6SsbU/Uuuuui0MPPXQ4+tLSFi5ciBNOOAG77747Go0GvvrVr2LevHl44okn0NXVBcBXlL788sux/fbb46yzzsL++++PJ598ctiyBUbLOAF4uI10V7hYpBQ+dV9nVqEaGHxaPpXKWDlzTt526MUZjP3pPfsilQIP7LoPdntoMf6y+4yC1EAza8XtAUJeVDGtWyCelfuMJ++1IWsWNvTclfKOcI8UeRAoDBl7nJoBcB6C4W3yfRT5NEVeVjv3AZGJXV5eEw5MvkOXvk5mPRXGlfbItEGWD7JZzpNRUhRCe1kOdGQqnXeCFyO28gU6X64dKCNvWJZ7sSqdNm0eOYASSqDR00CvNkHYTWfA5ERiVaO1t40bBzS8xBCFzzPYmXBtr5luH6kUroAx2VN7zMD2992JDRdbntSLe88qDcfxennxdSfQEwtt+u1bg3X+H+Lbc08Y/QZ4sKwNnJcy0wYqrQRAifSiuEeqGU9O5PfB6mWrm53yMWtDWfZlPNsLL7yAxYsXl6oDnHjiiSPen7ZB1M9+9rMBrbd48WLstttug5KT53bTTTcV+rHBBhvgwQcfxMyZMwsVpQHg5z//OTbccENceeWV+PSnPz0k/RhLpjPrSdnm3qEll0844hDo3GUulUAjD2MUCJ+510ZnmeVFDQFZk0IKNoxh3LLBhvSe2mOGC9kRqZtr2tA+y8JpPAuvZkwJ6OGfCUSIAlDxoRIOipqXfIk9U+WZdc3WF2xQ8v0qA0/e21EkEJcdXzzolfPEwt8d10UXQzcU2ou1oMjKCOZlKuexUnW8DW0nwXlROTFcZbmnyQCoWDHO/GV0hnp3DSpR0HXNwtqe/6RSFYb7tAcbnCc00Aw9Oj+8kDC/ntyWTp/lriGQMYFOCvvaPhCQAjxviofpWoVfdYZcpb8Yiub8pzikx7en4yqE9ZqEA4msTyYo1MoAVKwDxevpAXBhYrCMvd7lvWv5UOPUfvazn+Ezn/kM0jTF2972toBSJIQYFRA1bL6Mgw46CC+88MJwNY8VK1YAANZbbz0Aa15Ruq+vr1DRerxYMw7NYCz54EF5SQQZZL/wTCoilwslCrPHwVqnkgG4IBus990S5SmkIvHUHjMCwEb74C8gTP8ucoaK5jkn4eAXZu/Z8IUN8cjg+LgQJ7dm+40Hs7Ct0CvWOquuCNiaSStwYjN9b2Z8MNUs+4qDyXg/HCDF5V349zCkZ3I+EgEpE7wavTYcZ1w4zjjRTV3XDEDZkjC0vq7ZYsO6ZlDrrruwo4kAk+VZicL/hI6fE6cHMhmgIuP8ujcLs/r7uDzcRvd4fF9tdc8dLgTYzDMZ7j98j/8/obin73N8/3myefi/oG0toM6vY+5V4pmVzhMYqZVzmQMhKRPPh/LouvYu74WumSGnIQy7jTHF8tGw008/HaeffjpWrFiB5557Ds8++6x7PfPMM6PSp2GTa22lLTEUbZ988snYd999sdNOOwFY84rS55577pgqZjhQoxlcj86CGeZgbeIGNjRqdBiyyGqN0pkqV2SO66e1a92z5kRgw7gSKwDWOAvwqT1mBLySbe61IQ3iinCQVOZdoVBGj84Yd4qvR4Nb8xAZ4HknZSDNr0v7zKLt+xc0tNv6/lA7HKDR/mPj4T5al2fqNTuugXBfyjwTfDk/Vhoo9Y03Qx1kJ0RxWKaM+wQWZoNSRf5VHt6hLL9Gb8PypaiAsTZBijwRxnVdQ9dDjSIK67HWrTJ9lHghlEDCttF1YwngA7yP6b6j+zMkfYfnMdzOZ4Ry4KOEcJm9FLoDEHiyX9x7FhNUjUE6D0P7ezcOdXupjaKQaxzGC71QwmXlxR5ElagAJMUhOwoHc6I5eQtFrkpO94mlJujxJ80yFCBonIOo1atX4yMf+QjkGOJ2jZ2etGGf//zn8eijj+K//uu/Cr+1W1H6K1/5ClasWOFeS5cuHfL+DocpYb029SwLXP6DtQlTO3PCrXEza5XaOlOAf4DTw4tm25xPsSbWPWtOwWtBbQ2WQE+DQZnWDh8YyDPkZ9S+L7wGWOix8qAqHFgEG2DCQsBF4BQCtvgcFgfN5vdzKyDHBz2/vGlTA16Pt8/XL89CzILfyUNj4mOMAFQcyqNBtKx+Ggli0u+6rt36JLLY6G2gnnumAEtktoDJvuq5Jwooq99mv9eNQd0YR5qvG+N4gvZ/oyxoy4Earze4fMbs1icUtvYe/Q84gG+mDUf3H3mH4msSg6sYwAK+vh4HWYBv1+qZiWBSQr/H+4q9t2WeUH4/EIAC4LKCqeA1t9g7Cfii0QACzhoA1Lvr9np319C3ss/VfuyeNaf0PK61sWvHHnssrr766tHuRmDjp3BQbv/6r/+K3/72t7jjjjuw2WabueW8ovTGG2/slvdXUbqjo2PIeFsjafRAW9XoZ3Rrw7a78LN4M3d5ZzpDpVphZTMyqN5GU48CeUDWFETFACrOFnIio2sgoUDbc84TLwhLM2bPYQlTuZuJTcZaSDVj152c+MEh9h5wbxTN+JvVn2uWKk7vZeeaZ0fxvrfyQnlPHMC9WFyEMfZmhX0pakJxjwU/b3EbBJ50lkFVQpXqGEDZEE9YDoYTioWUkMjDejqDUL4NSy63GlKuPExNo6YziN4GkqrXI8oCqQWWGag1FEuv9x4VAtl07wBJXqONrFbXgYcHGFgZmO3vuxPP7TUTNgQMTKyEN8or+8xiHisb0oszP/11KePJFXmV29x7h2sX8FmbnSrkDbb6r4f3DefANfNKWm5chYFl7tHjFoCq3HtY4MtpjcwIKCjU8+eZ0Rl6atoBvnQMeTMGYkLK0rJH7bYxnu3cc8/FwQcfjJtuugk777wzkiQsIP3d7353xPs0bkBUlmX413/9V1x//fW4/fbbsfXWWwe/84rSu+yyCwBfUfrb3/72aHR5WG37++7E8hmzMTmReL2mXcbZYEz31lFnhEsiyxJXJIkyYtx6LqRVTszuz7gXig+0SoTFT9eUd7XTA4vw1B4z8sHOppjHXCh6sHJCNA+50WC3ZM+ZrohwpwJ45mDNZFjVMKgZGegB8dm4DU/aAa9HZ4xEnwX9iLWmCNiVeQjikEu8HfWBn8dm3qxmbVkTwfKydPZweQis46SEujHBulIJGLSXfs7r7alEgbAPAZhKZ8UBKedZcjwb6TTB6qvqqHRWgsHYhuesl8kpa+fe2VrdA6TQy2IBu6wZd3wEsuLQVn/ePd5+M4HOYsjNn09/nT2A4cKbOrM6UzqD+09wU8J6vWzGrPdC0WSB9yHejr/ThIOOnQOxYiZrCJpsGDUsJMwFNmPOpsug1AZIFQDLVav1NNw1s/8901YZnjFhYgjCeWJ8h/POOecc/OEPf3BlX2Ji+WjYsIGooT6gE044AVdeeSX++7//G+uss47jQE2ePBmdnZ0QQox4RenRtil33g6972ysqBtX025NbauzPolVr/Wg3l0PvE+U0k2p27phgkwqoQQUBNAw7sHYTqFVwD5k6YG2quE9E8QDAQY+4DQz4vjUooE79tyU8Ti42QwlwINGfwx+nQyAwcSKLKiT88GWzA4q1L8QOPJjj8Fd/Hv8PfQClXuTyqwZKPKDcbknob/++L6E7SghoCqhcjnnuHCjQRUoEouFzMDVrd09KiVMTw31Ppttx71J1B+dZUiUcCRyyjpVWgT3BvosACRQFPLcOJAKw7ZlZOtUCqycOQdKoCXZvFX27SZ3LcSLe89CDHD5Z37d7f4I3HoPbwygCPjEUghl90bR4+h/o234/5lPEvi9bj2R1ttoQMBIunvBq8lLJ38gZBaW68l5UFzhPuawkSZV5/jGE29J++53v4uf/vSnOOaYY0a7K86Gzbc31MTySy+9FCtWrMDs2bOx8cYbu9dVV13l1jnttNPwhS98AZ/73Oew22674YUXXhjWitJjwVIpMDmxPJ7Hd9t3jdtZ+X9vom9FnxvISIQwNl7vKhZQLOP7tLJX9pmF5TNmByER/uLeF9t+1OdcS2ogRgNRrwlFLanPfp/WK7SiboJ1uE2sSExOVBDu4nwj640qZhdy0U7vmYpDl95bxQdbzsUii8FV/Nkv416t8tCKF0v02xR1fsp5MHywLB9kW3soJWsz00VRTru8WBC40dNwBHAATgyzNw/fCAJFOT+qZjLU6tp5qcgLReeW2upuaHf9YgmKYsZiCBr4deXb0T3Ow2LcBsKRKjPyKnGuE58MUJg61EMLPZhlod7QixTuMw4vxxxC3p+y7Dv+exKFlyj70RPGw+seh/Zi41mTPEmAjtNzxcrlPsa0CWELCA/qNc68b5F1dHRgn332Ge1uBNa2J6qnpwdZlmHChAkAgP/93//F9ddfjx122CGQF3jzzTeHrpcYGCgb6YrSY8FW1K3H4/WabvuhsMNlX8TqV1dg2ZOvo6GEqw+mEgmzMgtm8kKxB2fOXXFp28wLBQy8ph8np5LHppiV1nqQbsfiMBi3Hp1BibJQg0D1du8l8OTacADlIYuasSCM1qdloXfND8p236FHjFsMQsJwWla6XTz4+UHci2kSJyQOAcX7LjtfsfE+ccDRn9eLjEAPWRzSiWUNDAszm7y0Szzg8nWpjyr3ojZ6GpYInlEYNwNqGl2dlWDd2Gtm6TYkMpsVfudGWWplZX9C76T3+mxy18IBna/YQq5S0dtZdj8QmKMwdmy0vm87vE+a3RPNlpcBMl6AmOuE0bXVNQOVktCkcBmUEl5DSioBXQq8rQeLiqdLjcBjP+7qfRIQGmwb49hOOukkfP/738fFF1882l1x1jaI+uAHP4j58+fjM5/5DN544w3sueeeSJIEy5Ytw3e/+1189rOfHY5+rrUmtqKuASikUqC7DYmBzc84Bt1KYPWyHjvIpApC+u15GCUzxqYYB+EWg3pfyAshGwiIemWfWYFGUlnojHtamnmh2qnVt9MDi/DArvuUauYQIKIBxQsWZm4fxA2Jj7c4C/fckVhV3gMLEfxGx8jb4V4FDoBoH3y9eP9criBcXgy9lYw//VoY8vRej3idst/oM4FwkgUg7hEtbyZtEJQeyjIInTkB8ywHpByElXGsehkQIs9fzQDVmkER5GSFZfHxE7COw8Je3TvUGIu9nHRPkmeJlMWB1uHx0KNaFEyl76Re7z2P4X0T33e0LATsoZHnrWaM+x63w79zr3J8DrmHm64nLwIu8k65sJ4SQRiPG/HaqJZhzWRQdc08hUOvr7fWRsbuu+8+LFiwADfccAN23HHHArH8uuuuG/E+tQ2iHnroIVx44YUAgGuuuQYbbrghHn74YVx77bU4/fTT14KoEbbuPL4fq2j3Z/VVNfStrPlaUrlYIJlgAxZ5qGiw4wVB44FlIA8nUg8vej2AgZDTB5uazAETGQ0qZeEaAmmU9VR2nik8wNPLY40lGmR6tFeV5uR2fw39RrEulW+veM3LBqh436G3yg+8oZcu3rbcK0OfWxGlW3minBdCh9/LLAD1zDOlswxo2PAPcZlSGZaR4V4u0r6i5jjRXwkEYqDxdSgLa9H9kEofFqT7uMzDF4Od+PxRG6/sMysPGdv74rm9ZpZKG5R5rnyIz3sRudeXe1F5Rqrtn2+HAywbdo7vA+9B5t4qvp2qSKQNE3i6+H3PjZINZN6JeNJmvY05mHLrGFcAuhD6k1ap3P/n/CRpTSYOo22ZkMgG6Uka7Pajbeuuu+6w1uhdE2sbRK1evdpxjG6++WbMnz8fUkrstddeLUUt19rw2J4P34Xb3zkdU5KBsyTX+8yHoVNK/TWo9zacECE3Xj6Dk3hpeew94mn84fwgtHg2DoQz+LL16UEdP8Tbtd0eWozHd9s38JDwh7oNrYX94p/LZ+QhWbqsGCvniPQ4ABDW3AvbtN4kDk7KAJ7ff3n/eL9Cjo4otEPLqZ2Bhoe5RyHmX8VeJ6AcLPGwDhASy+NQnvud8ZV0b6Po0WRJCirzx08ZmPx8EAgIuUwxGZyfQ89lI6Vwey74OezvvJV7kqyJwvkcqG24eCGW7Ts7b9d7VcOkiWag13+O/6f2Xs2iey0UaOVhvyQnf6s0QW1VLTjn/t4teoQTeC6UyTIkSgbhWi5/wbPxZKocYPbyGAKJlKgZzfq9Zs+OUbe14bwBl50bSWv7jG677bb4zW9+g6VLl+IPf/iD40G9+uqrmDRp0pB3cK31b7MfvXtAD4WuIz+ACUccgpX/96YrwMnF7Ig7YlglegCBUrDdhofxilwmnQEd89/XtB8xsbYslMdLVRD4iEUEO5VEV6X9FJvQY+DNh884AVe48hBlgJHa48fWDGz5+mQedMTZe3E/uQchBk18UCzzksT9894Qf86bAVdqc6CDTTMvlCw5DzICWhxU8c9U+Dr2PsRgPy5d4sESD6OFiQoEYPs7ZlKqp88rctVxAltURigmb9Pxx0R++r0IXLkHp/j/AJBn4bVv8X+L30e8D3RvxkAqlGcIwXqzkjL0nYji3DvFy8Twd/rdZPbZE4PtWH5C16y4aZ2Ja3JvFHnZK52VSM6kvLTSmDchhuY1zq3RaOCPf/wjfvzjHzvu9YsvvohVq1aNSn/aBlGnn346TjnlFGy11VbYY489MH36dADWK0X6TGttdKy/MFit2+pA6ZyIC6Cgv0LGlaDLOCUu3biZZ6aMqep+94NNcyKzKDxklbCp8PQQpxp+7ZqfjYYApFlfyAYSqiz3BhUHspi7Umbt8jaaeS2akZ85VydWoG5nH/1dgv6uU3ycJisOoECRC9Xs/HCQ0ipsU8bXarUdAQqvXl/MamwGKgAU9hUCp6J3MP4PDIX3pBUZvswDGwO/2DsWhwGpnwEIrHnOVNwXILw/3PnPk1UG8h/QGYEq7YVUnYcqK9x7cf/W2vix//3f/8XOO++MD37wgzjhhBPw97//HQBw3nnn4ZRTThmVPrUNog477DA8//zzeOCBB/CHP/zBLd9vv/0cV2qtjbw1E+MD7Ax26fRZeOm1Hqxe2Wdd7InMX3ZWH3MMyByQqpWTOIHygZXSisvXL25fxuchT0LZAK9E/+nOzfcfergodMVDK1xmgDwWnOzLQzY+JIT8vVg2hnu5yLvBQYxdr7y/zcBd7EUaGMgrerfoPJTtp4ww7n9v3td4m/je4ee1mYcv9krx76TXxQdxfi5juYzY8xMfBwcJ3FMTgxg6V9wDRV4cWq9TSXSmquQ+D8N9Ybt+P3RfcI8NeW9f2WdWoLbfn3Egws8Bv0eLx1icBKxqWCFZvm3ZsTlvcUU6UdK6MQUpA9ofkAPihkF3Q7v7kLScaiZzAImeTc4zye6HujFOTDPTWcErlUjpgW6ikLZBfxgzJuXQvMaxnXTSSdhtt92wfPlydHZ2uuWHHnoobr311lHp0xqJbW600UZYtWoVbrnlFsycOROdnZ3YfffdR00xdK1Zi2dXlMFGXo8enZckqdmq9kJZgcNKtYLMmMB7JJWAS3mCzrNijKuKXpZSTKaEzbRp9nctG/xjr5Dnm4ggLKPg+TpUp4z288o+swKg07x/Re9TK48FtV0WFmnGR4pDaB4w0KAmggGT2rbXMB5QfZ95aCoGBtRWESQ08zj4QbO/4/fHHIZ2ir9zsnxWGs7jXCae+s/7qrOsMPC6Ons1ne87K5xnz13y11UJuLI/tE5MpNdZFnGH/PESqO5UAut32P8EBzi0rhQCKj/mSi6VoGsaFLb1YaTwuMtAagws4xBbf/d6XPqFt+H7TI3GwNf2jwPLWKKDO5optE4ZdnTuM505VX7VBOATmbxHe5BGRv3vzDJIDWidufY5Z4/65rJ98wmfUCKX7fRSHjrLctV5iebTvLFpa4nlwKJFi7B48WKkaRos33LLLfHCCy+MSp/aPqOvvfYa9ttvP2y//fZ43/veh5deegkAcNxxx+FLX/rSkHdwrQ3c9nz4Lty7y94AgN7Zc9GjTT6j84PBy70aK+safStraPQ0kBkTVD6XSgRhPF7sk4MsPgvkYRF6QJcNntya8TRCL4D3EjjvDdOkomNqN1uPcyLIOxTzZWIwQgNWzJmJB7uiN8e+U0kYzq+JeWRly3kfgXJl6dagNMwM4+cgPI6s8N7KsxWuFx5DM28S/x6CnnIvGoX1eBtCSfT2th7+igDEezZ9aZ6wH6m0BORqPhD7MjwiaIeKVCfSvmQeVqbiuaoSPlI5r49f2/44bOSRkSIUiOQA9pV9rIe5zDhgovXLvIrN+HtxO+WyIL7Pqxo2M9J5j6Lv/JyXGZ9sWM+XYYAtc8Wey/5fPOEk05nzfumGcSr1dWPc+See1lobf2aMgda6sPz//u//Rk1Uu21P1Be/+EUkSYLnn38e73jHO9zyI444Al/84hdxwQUXDGkH11p7lghb2iEECX6g69EGqfT1p7SBrVxfM7bwKy+4mpvJuQZWody61GU0uJCRdyEBMOmYQ7Hy8utL+8nDMP2F92gZDeyJlIDxiuK8ZMZABQtJZoDCJFwc02fPFR/Y1N9N7loYDGCU8UWDTbOixbxeVxiW8/u20ghFxfPQGxX+Rv1rxjtp5qGy/SzfF9++eI1j4IaWRiWDgGJRZH8OQrFT3m9Xr66nwYr9kk4RT7MHyENVfm+WXwvAA7xUCkysyABA2P56hW33/8knFhRaVqmyyue5N0RG/aDsz7h/1G8eaqUsV3ud/P3pw822f8tnzMaUO293x/HKPrNc/3kok+5R7sWxemVeaZ3f4zxsx3lg3KitohSHB4y+1mSYIUr3OWWo0v+eTyi4545+S2UOWkXITasZn7Hp7x1A6jAbMNNZS0/6mLW12XnYf//98b3vfQ+XXXYZACuwvWrVKpxxxhl43/uaJzPtuuuube1HCIHf/va32HTTTftdt20QdfPNN+MPf/gDNttss2D5dtttt1biYIzYqoZxD8Z4xv2O++/Ei3vPcoVUK6qCWncdgK90T14pErMzzAOktBdFLAuh0GAA9MeLCoFGzG2hUAMNjjyEIJQATBnIsX3or3YfHxy7KlYJWTV8TT27Pw5sDHr2nV3oM2+Pc13KPD62bR9y6GEZS0UvlAjS8Mm81wmFbf06xRBXbPwalf/uz38MpvqzmGMTWzHEJIJBjwNEv88MyL14OiORTH8cvJwO/eY9MV7jiQMXkiWIvXG0jIQpOYik4ylTVqeUel3TXgA0zesBGt8PaisGimSJlA7M8b7xSQTfpowv6O8Re8/FYDXWL0ulgFywAL2z56J6+wLonAYQe824Z86fE99OXPeRzvOKur1upA3H6w7S9Y89vPE18Vp49t4ktfl4ssEBdnCNtL836fyuakOod0zYWhCFCy+8EHPmzMEOO+yA3t5eHHnkkfjb3/6GqVOn4r/+67+abvfII4/gS1/6EiZOnNjvPrIsw7e+9S309fUNqE9tg6ju7m5X8oXbsmXL0NHR0W5za22IbdeHFmPp9FnB7JDet7/vTgDARtUKVKLcrLksg4WKDhO/wD2c8gLEMVDwn/2DisBZbETA9rPe4vYEnkLRwnyAaIQKyb2z5zqgNZDBfr1UufVMlkFBMPX0zA2wfJDXWeZCes/tNbPghbKzbPuAD2fCdjkNIBMrIveCcU8BDQQi2F+Ylu1Dm+E5b29GHQMzbtwT4b05fjvab9k5LgMjtB6V9GgWIix6ZIr9qkUFtvmgS4M3AU/aJgRjoZcjBh8xSFF5iI4DKx6ilgw8Ucg7Jr/HhW/LjpG8KGXHTf8j72kBAxP+OAA4AMTPKffucGDNQXunEpALbsWyfWdjYh6KnHTHbUFdSg8sQ16ZD6OZkvvSG5HEV9R1sD3dZ7E3iU8W+Hni14nMe9EyN+HpZFII5HlyoqJ5ySqhBDqzrK2KB2tt9G2TTTbBI488gl//+td48MEHYYzBsccei49+9KMB0bzMTj31VGywwQYD2k87EbW2YenMmTNxxRVXuO9CCBhjcP7552POnDkttlxrI2V8pplKge3vu9MBKADoXLcDSVcCIT0BFiiW2ci0YVIG/gHWSlmau+sBoHLwgYV1asyL1CrVmEIAtl0/MPdoAlF2nertC9gM3W7btKDrfu91D/8eneH1mkZPLYyx0wNXZ0By2wLHj+HHuPndC91ATqBQZ3AaQvFxTKzYY4nDHuF6RS8BN35N+aDFwzF0rug33gdqI/RwlO+DtxPynlpf+3hbwHObwkEx9JbF3oPYwxF7qzxoLvahZrySdpnCfBHw5aRw5xUJ9a04COFCjkAY9ua8G93wGkYxGCi79nQ83MNLfUikLNVhmliRhZAk7SMOvxFA9OfRnicCEFMX3V6oJUfAxu4PWL9DoauzEgGdUKWfn1/Oh6L9lXnNeAYlf37EvC6+zJ/Lcq8n53BxMjpgr6FKVcGTNuZt0MWHh8CTNcp2xx13IEkSfOITn8All1yCH/7whzjuuOOQJAnuuKOo6E/27LPPYv311x/wfp544glsueWWA1q3bU/U+eefj9mzZ+OBBx5ArVbDaaedhj//+c94/fXXsXjx4nabW2vDYP1lqFXXrULXDUxNWyG6rgR9K/ugumzGQ6wdRfXI4kGVBgTOaYgBRDMCp848J4UeZnHokdYrm7XSdnw9DlBSKQKuiDrIisJ2a+NASHlBYh/K01kWpJMT3yp+yPM+U0kR3mcOeuIZtj/+MOxH68bWqSgkYtv2HjN/HloNDAMZNMqOi/cn3hcP//FjikNWfBCPvSP8vRmPqZzTFWoQ0X0Qe3h8qKnoldEZXFZdXOuQ2g4U1/NGOZjSjRAsxWEmHurln2OvHRmVpwHKNbF4HTz7v/C/b7h4IV7ce5a7x3n75O1pFe4GEHpnZs2BEhLV2xdAHHwgdJY5ygDJPdhjRrBPwIJZA4ALCvDQPwEoJQQmJyKYIPFzSe9lnD++Lv0/gKLQK1fDB2A150yG+py5SG4b+8WIMyGGIDtvPKHGos2ZMwcvvfRSwaO0YsUKzJkzp5R0DmDAgIhs8803H/C6bV+RHXbYAY8++ih233137L///uju7sb8+fPx8MMPY5tttmm3ubU2CpaZDPXuWk4ot0Cq0lkJwRNLL48f4sXBIfSE0IOu0dMoiG4+tceMYBC263uPCl8eh388cPODIAEhChl4j5ndhjxSK1fX0Z2Tklc1DFbUvc4QZWTxWW1ZH6l/2993pwNXfGbPs6jic9HMePshKOGepxCwcvBX5mlp9b3sc3gdyvvtQRADHiK8Vrzd2HsVg8fi+gjaDbcLM+y8hyk8F3wQJ69gDF7DDMwiqKTsOp4VGA/GrlhyfkA8VBnff0Hbpd7H2IsYHgedBz9RoX77xui+I2V92hcvYUOeID7ZGKh1LbzNeakaN9zkPEt0PNxTxvdJ+5EI7x/uJeMebu6NonND54S+8/vdaj8J8HuHr8+NsifJaHI4UJHZtTY2LMuyUiml1157DV1dXQNq46abbsKiRV5X8Qc/+AHe/e5348gjj8Ty5cvb7tMa60R94xvfWJNN19oYsNoqz1WiWVnSlaJvZV+uq+K9UX6AKCvC6r0mcQiBsr6UQFBHT2c2s+3FvWcF/I7QC8E9REX+VVV5IT/ert+eHvDeM7aibtyMmXusPO/EA7MiKAzDA92zbPbjlDtvd6U4OKeDp7KnUrLZdeg14mYH+PAY/HHwYwxDMjGYIfOZTeUhuzLPVQjoshbbFHW9ysI08XYxr4V79FqDuxD40P69DEEIPP29mDlPSQEslXikAF8MOQ5HBjX96Le8Nl9MqObH1CxsS33lnikgDCVzDx+tU5b5ybc3c/eDXHArNly8EK/sM8vdAxsuvh3P7TWzAGbXxMjTTdIiPIxpjytDj6ZQX5HrRObBoD+PdH6srld5dqU75lRC6Ay6r1EKhCiU6sJ6fdqBqaRacc++Rk8D3bPmBFm+Y9LewsRyKjoshMAxxxwT8K+11nj00Uex9957D6itU089Fd/+9rcBAI899hi+9KUv4eSTT8aCBQtw8sknt12fb43O6J133omjjjoKe++9txO4+sUvfhGgu7U2Nm3i0R9yAIm8TVw3hWpSOY2o4MEVz/h4anOYml3GR1my50xHXg3bZMR1EfKkeOiQ1q90Vmx6OVtO4Yl4cJ66yAKd2EPAB1fNBkkCQdSeV3bOQdR+74USIkgpp/X49jRAxNwlfhzFgV0E584eT9FbRct5O7HXjrfZDJT5cxy3hcKAF7fVDDz5NssBUpHoXLp5wTg45Z4LGqT5PeOvre8rv47xOWnWD36fc82qolelPP3fH2/Ra5QmKug3rSOFcB6W+JyRx4eD43ifUgiIefsHy+g/sNU9d0Bnls83FMavIQFanhVMmlpl/3n+HodQmwHq+HnCifshwA/vP9+W1ZsSSrr6iyqVUKkMyOhj1oR4y9bOmzx5MiZPnowsy7DOOuu475MnT8ZGG22ET33qU/jlL385oLaeffZZ7LDDDgCAa6+9FgcffDDOOecc/PCHP8SNN97Ydt/a9kRde+21OProo/HRj34UDz30kEsDfPPNN3HOOefg97//fdudWGsjZ42eBoSUQeiOCORSCdR6GjnXQ7L6VXa90IPgH+RlQIevqw6aB33jzZichERY790KPQ1kIQ/Lb0PSCTFHgs/QabBaPmN2MIjSQ54DFoDPpm0m2KocePG2lQCS2/4IzcQ9+XHH++czcPIgOQVnN8CHvBWKfnLAxY8/tuI5KwNnxXVagRcO/Frtlw9W3ksZAuA4NEr3Dh/kQrAZ9qEcGPq+kSejjDgfejjDzLIYpPB7OgxF0lq+H829cuGJ59fBeyFzcU4loBq0Qvkx0nkKwWuxXAsphdN7rWZQhfcYLZ/hM+8G64XiVr19AbpnzfH/8xKwzr24zbxy8X1W5sX018Rep5rJgJoOzoNtr/wzv6Y2lGeQaQNdswKuUowD8c23sCeKvENbbbUVTjnllAGH7sosTVOsXr0aAPDHP/4RH/vYxwAA6623HlauXNl2e22f0bPOOgs/+tGP8B//8R9IEh+o2XvvvfHQQw+13YG1NrJGZFjOeXK1qNjMTtc0AxVhiMrPCuPv/qHIH54yVTBz9wu8BSSISeUeSISwSEb2facwTXdDu8rtNZO5dOw4pEfLOJeCD870mThSvp4dgvZofQJJZW5/3jbgJQ/C0BsRaKXzgnHvHU/Rj/cf7idelhW8MbScn7vYWxavE7fPPS7xOYuvDQ/5lrVJ+4w5XXF/Q8mH0DwYDsuz8PvNn9fwXuSewDCMF+6Il6Th3qYwgywE9tQ3IORPuRBhBK6EEoWi3nRv1BlRnq6XFMJxtVRFoquzEqil831I4WU/KNzGyd9D5YUio/8CnwiR0f+uUwlMTlTp/9Aeuz8H8Wd+PwzkHvPXzZ+3Mk4bcTVdTb4sCzhla21s2hlnnDEoAAUA++67L04++WR885vfxH333Yf3v//9AICnnnqqoH85EGsbRD355JOYOXNmYfmkSZPwxhtvtN2BtTZyNuGIQwCEpV0ABDo39J20mGgQIeJ2K64MENYUS6VwCs/phMQpFnPz4ZVwcAOK2Xbcq8H3T+tvc+8dmFjxRWHD7DtRGMgp/OAHgIy16T0t1Mcpd96O3tlzA/mEiZWi9yHm7/AHO2+fHxsddwxg+Pq8PVrO90vrcDXruE06F8XfwnMZgzU/kPH9hBeT3yf0WzF93ScBxNevzLy3yV9HajdeL16HzkuxzRDIeWAWgyV+zv22ZZ4h+o2bEnl4TQknoQB4YnoZ4Ar6XpHBNtzKBD/rxgTh904lYebuB5WHCIcLJND/KAa23HjILg5VF73NIVCn9angc3z94vA3N8f5lNKBaF3TaOSlg3iCwFgnmFPtvMG+3up2ySWXoFKp4JprrsGll17qVMlvvPFGHHhgUZKnP2s7nLfxxhvj6aefxlZbbRUsX7RoEaZNm9Z2B9bayBo9cIX2fCgSDCReFJHJgXAQKfeMZOCFTP06+Sw0la5sjAVWflsquaKzDFPSCurGYFWj6NEivgIfnDnfpWaApdNnYfO7F2JiRbpCpp4f4b1YZKRVZb1ClvzNZ7NxeKhT2dAgEcoBBNwTvg0dk/euheeLE/TpOGlZ+JsoDCz82MPrULw2fF2eds7PAQeKZZ4/aoMD6DDMWQS/HJjFgx1f5gF4+eDlB2QevvNeTytaGvbTn08/cNPgSWn5/JxRmIuuU8y7GujA2owAbTJbPDeuGVhWW5IAF+AJ7mVeFANA56K3sUgutc+9WFUlnMr/cBh5Qula9pcBabfx1zf8XgTM9BvP3rXrZoF3lf+XOpX16vGQJ7WZ6QyNnkaQrefO837vBW794xCenSE0IQH51gznDaVtscUWuOGGGwrLL7zwwjVqr20Q9elPfxonnXQSfvrTn0IIgRdffBF33303TjnlFJx++ulr1ImxapOOOdR9blYDbjyZ0RmUEoVZbbBOIZwWfuf8Fc4h4WDBqQML/9Bf1dco8CKI/FszluDZ2+PBTyplSbgrw6oGkc/9A5QXN63evgCv7z0rD18Ip2Js2/CD8KqGyVXDrZfAelHsPra514q2UXZTpxKYNCFBvU9jRV0DeSYP1wmKycOrGn4wozAhB0uxh8Met38vG3j4fmIujveclW9H59CuX/ytzIsyEPPHw4+Fp+MXCcfUDyKFcxFS2xe/HT+mMu9D7Mnj9xiBdH9MwvXFAawJCTJtoHSGFb2NghekjHMTh51p/TiMTOeizAMoC2AhC+rvUY1KwKfjx/vTWQaVFUECfTdZ5sRB4/DhUNqUO2/Hyplz3Lnh16AsNGuvgf/Mnxv2/xl6EmOvMBkHvGXewBiokblnHJNfCcr35BzOtfaPac8//3zL37fYYou22msbRJ122mlO2Kq3txczZ85ER0cHTjnlFHz+859vt7kxaxv827GoVCuB6/cfweKHMQGBzNiHdlk4J/zMvQjh7A/wAxV5YQCDBJ7UWlXSEs3ZA8y62MNpMgcd3INRxhmi38gbtcldC7Fy5hwH0no0V7CG8zrRA79XWw9YGV/HFimWqHRWoGsWrE2shMcQz5DpmEjfaWJFBCE2klvwBWGbXy8+ALuBs8TzQ8dSBFPhoMI9BOF+wlBkbLFKOt9/HErh4dRWnjQe8ouX8/PCrxdvQ4kYWPj7hjhiHGDxGnvVagUyVTnAEBA6Q1rTgWxCfP75vvnxJFI6FWwAqHfXSs5rzmvKvaSx6j9v3w7oEtC6ELajBBDVEAxEsDBjXtZEpTIACa0mTkNhcekUM3c/95nuKV7uqRhuhwv38+sahqkzxDIg9rCK91Yrzy2dKy5dIZVAvU9DKmUB51j0SL2FieVl1tvbi2q12vZ2W221VanWFFkzwc5m1tYZ1Vpj4cKF+NKXvoRly5bhvvvuwz333IO///3v+OY3v9nWjse61VeHdd+qhx08Sj0ZGqsedrBzX8chgFbWDEyFYKb4gC7ymuzAI1RONGczyE4lA0HP2PsUezCUsITWFXWN13MCPBCSZmP+Ex+wyRvhQzZ+Zv+O+315nA0XL/S6PTXPN1FCoLungV5tAqAQD/p0zsp4X/H5bXUOyWIuU3g9RLDP/qyM2FvWL74u5wJ5YBt7E/w2IYHdAz3yEIUCjeHAyfvAAShdNwK33AvBz68jkVckkg7luHm0n0pnBUm1EnABO1NVkKGg4/bH788RAb1KZwUdkzqQdiWoVCtIE4V4EC8L38VWBnQy7fmJ3OL6ldzi/3csVTISJhfcCoCXjbHXi148Yy/UkireBxxQx8ArDOV6TxgQP7c8NzH21gFAvU9DZ1ng/RuoTf3KJ9s4M4OwtWVfYIzBN7/5TWy66aaYOHEinnnmGQDA17/+dfzkJz8ZUBsPP/wwHnroIfe699578aMf/Qjbb789rr766rb71NYZVUrhgAMOwIoVKzBhwgTstttu2GOPPQZUGXm8WaazYZ+9jaRJJSCUbOrWj4ullj3MuJV5M8q3teJ29GCj8xoMzCz9Og6JlLnjaZ0NFy8Mssye2mOGW2fqotvZw7MIALnXhYOD8uMBNKuvF4MD/s4zx6hf/FhjnZ/4mMpsoLycZtejne0Hck1j7pPfT/9t8nPf3zgV34N0nfgAXAZM/TbCEYdN1GcRcUsybSCVYOC6+XHFoJK0htz6qQq25d6OOKOuUJokBkBZ80G9GTDnbYz2cywGoMVX/4rhza5z8Xu4P748toDUzwqaA+z87ffewnZTjj8soHls8MV/GdisZa0NiZ111lm4/PLLcd555yFNU7d85513xn/+538OqI13vetdwWu33XbD8ccfj+985zu4+OKL2+5T27B05513dujvH9l0Q6Pe20BmMog8nDOeTSgBleRgJQqdxRXoeRoyD0/F4Z7YY1AGWpSwOixJh01x7m5orHizL3juVDorUJWiKF/I+wlT9MlIQJD6wa1HG8TFg214zc+GyVsBICjSDNg0cdpfre4lH1a4z1nkTQnVme3+igOyHzzQ1DigLPM4hJwjLg1Q7tGKw2Eh0AtfvK/8d74tv4XKABH3DPh1/ABHnomisCoP49KxUlg1HIg554nuD9pfKi1AqRuDWl0HGYHcpBIuocLoLMjior7G55F/l0JASBlMUETuJeNW6bThw0pnBcnEBKpinykq9VIFIp/oAB7U0W9S+cLHBAqVgJM64GZ0FvzHhRJIOhRG2uSCWwvXn3uh4lfRsyiiVxkYK/5HBgLSCZTSfwfwzwF+Hanm5vonfgRTjj8MJr9XJh1zKNb7zIehazqYYA2rrfVE4YorrsBll12Gj370o1DK39PvfOc78de//nVQbW+//fa4//77296ubWRw9tln45RTTsE3v/lNvOc97yloNkyaNKntToxF0zVjk1nYrHLCEYeg3ttAo6dhZ3djLWbexN52wuGopwpSSaQTE9RW1Z3EgYF0NfQAeigVs8oAz2vwA7B3m4fZM1nw0COSrM4yV7POD4gSKlEwNY1M89mjf5hSZhlxjGrGFgaOCy03e2jSAEt9JrDmyM51Xaqf4wFh5ojiPMQVhhP8cfPQE2+Ln5My4rTvU3lR2tgbRGFOu1357DsGT8VjLJ4rvjwEUkVvVEjcDt8pdEfgkoAhJQ7480bbhRy4sJ3iw5/uRcuVCcM5FKqxnDgTkPvJhBIQ2gIgAi0GgDKhVAf3hvrrmC9PrXBtpo3jFQJA0qGgcy6lSiXSrgQyJ4yTd0ilMhd7tDwnUtGWSiDLSxv5vto+qjT0Jpsss1IIWdGrFa9bM1lQgmkkLLltATBjdn6Nw8mFPTzv1SPj69jvGbtviiHVsuxOPokreOrY90RKwJhgGXnu6Px3zH8fGm+bAF3XLpuZ1htJT9/aAsTACy+8gG233baw3BiDer1eskXRYkHNLMvw0ksv4cwzz8R2223Xdp/aBlGko/CBD3wgIGdRYcB2SVlj2YzOIPKHHplKVC7WpqEOPhCNG24axR4O3Ozs1BJeVSpR66YiYdqRVXUDhQE8HvBJGiAkdqLw3T4w80GxtxEMyiQs6bRl6uE9Q4DEf/fcKSUy6Mx6FZ7baya2uucObHPvHfjL7jMKYpN8UCXPBh/oKSynBDCl5JzxkB2RkgmI8dky956sqJsA2JQZ92jEwIOfy9hiYNXMU0TLimGo4r7K+1e27/Lf4v3EfZ9YkQ6A0TmPAVkIUAisFwF1mv/3qCYaAf7Yc1TGebH3gfWCVKsVF96WyoMZ8kgR54ra6G7ooB9lHCd6RthB1UCmCqrPbkdlRhp5NQACNkZnjpAulEBSrUAokXuRLKhDShMMW67EAj8fEq+ZDCmTO4jb55l+PTrD4GQK18zKJgtkMX+JngmheUAbe1O58WdQnMmZSBmERqUS0AR4JXn/fIakyTIomiTWDHqW90LXNVSiAo+gSqTzTq214bcdd9wRd955J7bccstg+dVXX41ddtllQG2su+66BWJ5lmXYfPPN8etf/7rtPrUNom677ba2dzIeLdMZMpMF3hEy+hO2Qz4cLZt0zKHoZp4nAO5B4KvQN38IcG8MH8RjkMOTgXSWOcVuDz7CGmf0AOzRBtVVdTejnphJkGgjH1yLpULCAfsd99+Jv+w+A0v2nOkkCrwHKswEI88FKaVzMjkZqaCT9EH4wM4Cbxr9xvlZcRgv1ifixkOVYTiNl/0oeqz4Onyb2FqBombLyj6XgWven7JMtmaTdO4lKBLo43Xy5TkQic9RDEQJ4NCgSV4q8lDFoXkbjsuQMW0m2taw+54DOTKjMwgpXQiNAAvh59JQW13nHikLsCpVG9YTymqqZcY4jhV5xwhA0eDPdZ8oDEXAEGwi2+q/PdLGvddAfM8UJ2R+G7h1+O8cdPP7JJwshaAaYOcJxj3D6ZpycMWNnp+6rpEZG8I1PQ1IlSAbKdL+2uw8nHHGGTj66KPxwgsvwBiD6667Dk8++SSuuOKKUu2nMosxjJQS66+/PrbddltUKu3TdtreYtasWW3vZDyarmtAKei6Dkuk5H8mmY48x2BNrBYBKACBi59CB/HDlrwbPnxV5MUA3GvktXdUyR+VwBgHC/SgW5lzjCaaDFUlc0DmH5Rl4pT0AF2272xXLDiWQOBhl+JxZdjqnjuanrdJd9yGZfvORs34cBE/7lYWAyY6R/H54wMAHRsXxQyBa1lZjZAL1IpnVX7tuLeH97+4fRk4i/kpcd946LMZcPRE/DIvaLjfTBtWFqV4fDqzEhqxrpLrJ/GQkuJ/l7w+IvcyS+YcpbBhmihHGqd1pBK5J4tqseVh8ppmPCc/eFM4qJG/p10JKp0VCCnQ6G246gEqUb5QuPKeEgNf61IJgURGbcP+1qsN0kwEk0D6n4y0TV10e15jz36PQU2zLEO/bgjO+f1B7zHw4lzK2AiQEnDVNV3w4qmKdGBLKAualLTPf157VNc09EgBVSEGX0B4nIfzDjnkEFx11VU455xzIITA6aefjl133RW/+93vsP/++/ffAIYew7QNoh599NHS5UIIVKtVbLHFFujo6Bh0x0bbjM5g4OPf9AcT0s/04kyasWZdR34AmRIwUf6AVALa5OnTfLCpyCC0FpdYCD0NoYp5zfh6cXxbepjRb5zfRFYWZor5K3ZbPzgTsOFu+3c9uAh/2X0G/rL7DLzj/jsZeGler62V+XAfzyAK+Rl0PqznLLwfQqDZOsTW3GMThhF538JMPw9oykJuZB64CfbZ/0Zt0T4J+PJ1y66X56yJwr5i40Ri6p+9PqF3LfbA2TR0FNbhnCU3GAIBEAKsJ0slinkf8gmREoBSEDJDpkzwGwAInSFRIpg4qVTlg690Xg1uNpQm85Ch7xNgPV9SWY9YdUrVhZHq3fW8JJNwfeqY1IHVr60OwBmFARMVEqHpeaRSiWrNetG4FtJoWhlwB+C0s7hXKdzOP3Oa3U+ureA/WgRrrlqDe895efl1FUp4DyKtI2UQdXCgNJ9g22VrPVEjaQcccAAOOOCAtrb57W9/i4MOOghJkuC38kIphwABAABJREFUv/1ty3U/8IEPtNV22yDq3e9+d0uhqiRJcMQRR+DHP/7xGglhDYX98Ic/xPnnn4+XXnoJO+64I773ve9hxowZ/W/YxDJjAJYJQIBqOFWAB2tdR37ApXfzGD6Z9a4Zx7WIJQ6A0DNQxgWyHqM43AcQcXhVI3PrxO3SQE7fUymsvk6Day95wEXEYMArjpMng5PM33H/nXh8t33x1B4zsP19d2L5jNkupEg20CKsfDOuUWXPgReUnHTHbVi19yznSSrTqSlrt+y9VUYeB5Y8G9D3qxjmoN+48dAH37ZskCqGSLxngG9bJMH7zyEnLdbyiQdJ2rB1f2gbfo8mUpaGtIh3xMNmgAUkQduphE1YboQcqZyzRGCHQj5SCXRMSh1IkqlyBHDah1ACHZM6bPKEzmB6GsiMsVl6XSkqnRXUV1lCrGSDuQsvpRJJVwqVaBcKlIDzVOmagYQBz+pzAI6dvNGWayEvMXnnOP+IT97CiVR5aLgshE3bSeFrdpYpvQfyE6l0IMnozHmZ4slx3E5cOusf3YZ6PB2M3X///TDGYM899wyW33vvvVBKYbfddivd7kMf+hBefvllbLDBBvjQhz7UtP014XW3fRdcf/312G677XDZZZfhkUcewcMPP4zLLrsMb3/723HllVfiJz/5CRYsWICvfe1r7TY9JHbVVVfhC1/4Ar761a/i4YcfxowZM3DQQQf1K/VeZk5jJn94AQj+aPX/vnGouz8kNuGIQ4IYf2wcWAE+PECE3Vikkns8AO/did3o9jfvWfCDs3/ROlRihZdbWdXXyDOpTGn4i7fdazKsbJSnre/0wKICyZxrCw3UNr97oWvH86xsOwTEqL1N7vLAjKfncysDM/bYYoBGvzfvLPceEZjk1gx8+PBbCL74e9n+4/PJ12l2Tvm+YvK39z6F/SvrO7dEyqBf/jhCjiJ5D8oAFJc1iL0TsYkoPMgL1iZdKSpVG4qTuZdLpTZkSPuWSqBSrViJg3wfumbyDF/7v6t0VrwSeSIdaKP9pV0JOiZ1oGNSmr93WG2qfH8u5MSOQSjbjlQiAA6jZdS1WPeKzkl8XWmboueWg25RvGdTadtKvQeJdLzc90T5Vyqdcr0/nwSI/TUg4xPRmCYx3DYaBYiHcjwdCjvhhBOwdOnSwvIXXngBJ5xwQtPtjDHYYIMN3OdmrzVJjFsjiYOLLroocKe9853vxGabbYavf/3ruO+++9DV1YUvfelL+M53vtN2hwZr3/3ud3HsscfiuOOOAwB873vfwx/+8AdceumlOPfccwfcjlQCAj5OXsaLGi8WgyZaxo0AFA8f0SrEUeKDPgEhMg6MyEND6zYbID1pnYfr7Mo8qysGSkpYtztdhdjTBFj9qFf2mVXwsLQCJrEtnzEbgAdQ9A6EZS0AW2ePH58jIjcJhfF1Oe+J+Dd2OcAJ9dyaHYfPgmsO2mi9uJ1mJN9iO6E3KjyGYlgw3q4ZUCsjERdkIioSCgLahYBEkJlGgAKQUMqH98h8sW2/L5IeAHLwkXuNAOIKsv++NlBpBZWuBGmXF/vLDMvyMzazTuSDOYE4rylkH7tpVwqjDaqTOiCUgFmR90Fa4OPCdlW7fr23gUonLABTAo2ehiPF07EhVUBNM3CoxsRkj65zjzboBAqaTM5zFhQP90CflsWhad62vQ8kVOpDdeSli0EbB9R0nu1y5Yuyg8jnnjMqEYIqDqqH3UYhnDdU4+lQ2RNPPIFdd921sHyXXXbBE088scbtvvHGG1h33XXXaNu2r8hjjz1WSC8EgC233BKPPfYYABvye+mll9aoQ4OxWq2GBx98EPPmzQuWz5s3D3fddVfpNn19fVi5cmXwAhC4dSmbbaxzoABb3qXsT+0y8YzJM0w8ENQ1X5usLDQDkMcj1CPq0RnT3wEL2YRcpNgtT+0RgAKQ17TLXMkU7zkSwTb0imuivbj3rNLzET+Mm3lUYuueNcd9XrLnTCzbdzZWzpyD3tlzUZ8zNyhRsWzf2YUwnH8PhSmbnVfahtal9uh8kzeHr8szJ/2yVvvqXx2a94tbDJC4LhMt76/t0DPp9ZxUpfwxpITIEw18v53HpiIt0bvCvQzea8Q9QYKF+SyA8uKa1J7nNllQlVQrTtuJc6iEsuG1jhz4APDejdyjIaQFYpXOCiZMnYBKlUBTguqUKtKJCTqnVHOxTdt+55QqOqdULW8rB10yP5ZKp/VkpV0ppJKQSjrvFxHlVeK3Ic/KWHlmLdt3NibdcZu7V5rxE7m4KIFj/lKCBDnhQnaJlJYEzkj8dM3IK0j3B78XyAy7/ipV9rwq4d5Vfi9w3hSnclAYcLxZPOb19fUV1lmT8XS4raOjA6+88kph+UsvvTTgzLpvf/vbuOqqq9z3D3/4w1hvvfWw6aab4k9/+lPbfWobRP3TP/0TvvWtb6FW80U26/U6vvWtb+Gf/umfAFjX2oYbbth2ZwZry5Ytg9a6sO8NN9wQL7/8cuk25557LiZPnuxem2++OQC4PxzNJunPM9at7A+dGeNeTp08H0xoFlZlYoZ80PbL/HJSiiZAE9fC8mE3OEDkZ5PFAZkAQY+2oparGmGB4IkVGRDRqR8S5AErD+uR8dDjQMeUOPxHPCzuYaPbgbKeuHp5HNLjgNGfz+JsulkmIW0TEsmFWy/UxSlynsLzwdsvltXhbfDrGXrIioCqrN/F8Au7lyqhoGR4bvz9x4nRJvMVBAhwEACKQ3MUouFClpRBp+vav2o6AB0qkQy4JO6VdKX2vVpxWnGkESRTD5wo7NY5peoAlO2XRFKtoFLNVcsTmYMxC4qSiamrwUcDOg3elWoFE6Z2Yp2NJ9pt88E9yUOFNoRo+5BULbAiMDfaRv+ProW3uWXNvDkuBFsphigJcBNw4uV2yu4jen7zz82kaWKwmZkMQuZgKiUZCpWDLRnwqTompYX2hsOs2ObgXwCw+eabB+NemVdpTcbT4bb9998fX/nKV7BixQq37I033sC//du/DTg778c//rEb52+55Rb88Y9/xE033YSDDjoIp556att9ajuc94Mf/AAf+MAHsNlmm+Gd73wnhBB49NFHobV2Og3PPPMMPve5z7XdmaGyMiGtZmT4r3zlKzj55JPd95UrV2LzzTe3D0XIfFZLIzjL2JGDdKsOg1UPOxhaZ1CyfIbEwxj9EU2VKIbJ4nALnxWWEao5SLJhKd4W3xcvBOy3SaV0IS3Ak8sJmOnMzkxX1DV6dIal02cFpHEOxGibgRof8AHvZZuchP3XGXmi7PeJFRnwo5ZOpzCfPQe8TdqPfS8Lg3qV7/icxcfo22tOKOfhU75t3EZ5yLH4nQsjxoAp3m8ZcZ08RnQv0rUmDxWAoHBu0uI/F/OhAP8ftfugrDvmQdA2O1UlWSHkLQisRnwiIYUDThldq5rOy7r4/dlMwFA6hLwdqfssXSkm6rdKJTLty79QUWOVKiRdVQgl0bO81+0301nQRtBXbZB2pVjd9KyNvBGQqs+ZiwQhUIqlV2hZfG0NQtDjrjcLzwGev+q2a/HME7L1tSdvo9ENF/KrdNrr18hGxhOVZfY12DYAYOnSpUF1kVYZ9e2Mp8NtF1xwAWbOnIktt9zSiWs+8sgj2HDDDfGLX/xiQG289NJLDkTdcMMNOPzwwzFv3jxstdVWBcL6QKxtELX33nvjueeewy9/+Us89dRTyLIMhx12GI488kiss846AICjjz667Y4MhU2dOhVKqQJKfvXVV5t6xjo6OkpvIGMltUv+wP5POdaslVuZz/QoTZpnyAgloDIB4qz06CwYOPngSQMoH0h5eIt7MIg43snOlxW6zPLPHhABCMQ5yciVT6GtVQ0DC6wkOpXAqkZ5CHKTuxbixb1nIfSAIBDkLLPe2XMdMNxw8UJsGP0Wc4KmLrodK2fOAZc9INv87oVYOn1WfjwZuEwBv4W48CBZHIqMz7NdHnqABnJb8uxI3q/WAKy5R6v4mQPAcBvucSuUKSnhWvm+eo8UF6r04MiuL5R0g2xmDAxk4G6nyQUpi9My1DRkLsKZtfBqxr+RsKYt46KAlPqRgwC+vtGQqhIMzuTxADwXStc0lBJQaejhsF60hhfizLcznRX3WdcNjDYwNZsB2LXBBCxvejSjZ8ltCwAA2X7vLfUMNQNUZSZUc3DtS/HophNfG7rzvxltIJUMQH4M9rzml4Tpa7Q+2DFokyZN6rdE25qMp8Ntm266KR599FH86le/wp/+9Cd0dnbiE5/4BP7lX/4FSTKwokZTpkzB0qVLsfnmm+Omm27CWWedBcCCwxEhlgPAxIkT8ZnPfGZNNh1WS9MU73nPe3DLLbfg0EMPdctvueUWfPCDH2yrLclSoTn5kP5qY02tvHrYwcjgHzgE+JoBK8rGS5UvY+CF+TJfkqVE2A4oCjxyjwbXa6HnHpcI8OVbwAZz/zsPBcWcKAoddSqvGL5eqvIQYPEhSxIEK2fOCbg4rYzrYy2fMRtT7rwdAPDi3rOwXqpyUOfXX57XBkulwJQ7b3PlaMg4f2n7++xyAlb8vPhzXt4vJeLCv/3fgzHHrSwsVwbw/LrlXqQwFFjsRxmgjI/LZBnQyAqii83EF10Jl/x7AILcTvLQHFMljwdfP6HIZQGYhElZEkYry7QFarqmC14rAjTcKAOM9m/yCxJ7SrhXJTNZrknVcLIM6cQkJ6obJKnnQZF3yugMHZNSTNhg8oCPZVTs1j82BVJl1tKb1AKMkRApl6oB8nuoiSfP/h567lUi0ehtQGs4PptsAeKG0kj3a7BtDNSGcjwdSuvq6sKnPvWpNd5+/vz5OPLII7Hddtvhtddew0EHHQTAerTK6vL1Z2sEon7xi1/gxz/+MZ555hncfffd2HLLLXHhhRdi2rRpo3pyAeDkk0/G0Ucfjd122w3Tp0/HZZddhueff75t0Jd0VJDkRDVd14VsDQCYePSHsOoXvxniI1hzK9OE4uq6QE7Mpdh+9IAXSkBq4qOgkGlH1iyjinseCEyR1AEN/jWToVMRIAh1qLgG0qoGABhMThTqpsh54gBuclLuiQJ8lt7Eig89Tqz0/8Amj8/URT40Z4GEf5DxcBgdZ+/suZicSCydPgs1k2Gbe+/IPWdWeoFs87sX4rm9ZhaAkAeRxRBbp6JrUfRm8b7w5Xz7ePzhoUUPpMLr26y8TGxcr4m3URaq5dvEn71ie+yR8v3j803DBjk+iDoBShjEmbVxgdl4m2bLVCKdJ8oEg6uBBjw/KvdimKjupl3f5OE6EYT6DLxXjQCUbUsEoSajjRcNlQJCGcf98iEnA13PvSnjgPRssgxS83JaXvMKCD2OQDEKEF/HUL4lvNbkOaTzLyIPFP9cBo5kHpIF4KQrRGNkPFEZ4n/FmrXRjg3VeDrU9sQTT+D5558PuNnAwIQyL7zwQmy11VZYunQpzjvvPEycOBGADfOtCQ2pbRB16aWX4vTTT8cXvvAFnHXWWc79NWXKFHzve98bdRB1xBFH4LXXXsM3vvENvPTSS9hpp53w+9//vjSjsJXJVKLSUXF/LKMNlBTI8odaZsaO2GbH/PeV/jmkEoXivjx8J5RyYQ0SKDRNBrwyU8IrdVtyufc80aBPgygPQxGg0TmXwKuCg2X7Wa8MkcY9SPBhPyUy5pkSqBkUeFG8r8ltC6Bnz3VK2c2MvCgEBCj8t+HihXn5Cj/gcyFJOvZOJTHlzgWuPc4X40beqmX7znbnzJ4HrobOAVJYuJjv0/POvBeRtqG2uVepqAlV/OzfywEU8dZij2FsvrxLGIb0wJgfV3NvGIBcRDEcVLkIJhl5bLI85d0t175AMOATSHi9Ox6uoXbssiRogzw+Kt93o6eBdGIa8Lwsab3I/YnvwExTsWLhvFuABW60fZYDKK8BJ91AL5SATCqQVQldbwCoo9ZdQ8/yXmx11ifx3Nd+2vT6jLbJBbcCsAO8mbc/shtvQuXgAwcAnqS7DjGvqowD1Sycl5kMUPZ8lgGpQhkhAqypgmTk/39EG6rxdKjsmWeewaGHHorHHnsMQghXt5A4WgMJxyVJglNOOaWw/Atf+MIa9UlkbVZP3GGHHXDOOefgQx/6ENZZZx386U9/wrRp0/D4449j9uzZWLZs2Rp1ZKzYypUrMXnyZNy63wx0CRX+qWqhQJ/OH7ArfnrdyHeUWcf897myEJQ1AjBNHFfnyfc/IGAyfoiuGZjMSw1wnSbvVaCMOeGUw8l8ZlqGyXlmUI82WNXI3AC/6cQUmc6wvNZwXhziTL1es6Bp/Q7lAArxs7isgQcsHuxYwFVUJF+27+yCsjd5jlIp0KMzTKxI9zBfOXNOvty4UB5Z96w5ATCccuftrn5f7+y5qN6+APU5ljdF7Q3ESFKBgGPRa0PvxfAa5w0BCEAU3z4EUWH75V4k/1tZ6Z8QeInSfvD1+DHxkj3FUGFWup0SFkTxAsKaqY5zLyyvUxcU781r3HEQBfiBEUDgCdE1w4jLuUwCA1aZMS4rDwCSPLOOsve48jgNumTGZJDSe174fggY+LT7oseEBn0a6GVSgUoraPTW0OipY/VrPVi9rGdMecsHahZEcZHTokeNe5G4N4qDKg6weaYiv9Ze0iAEWWXeKOoTJRGoVGG11pjzxzuwYsWKfnlGa2I0Jj3/4suDbn/lypXYYpONhq2vw22HHHIIlFL4j//4D0ybNg333XcfXnvtNadL2UxJvb9SL9yGvezLs88+61jx3Do6OtDd3d1uc2Pe6E9ktAcg9HADgEbv2CEVugdHlJWijQdQJBYY8i8EgHDW50Mq9p2HZyj9X4oQmHgpAQSFe+0rg87y7ZTNsAlJ6Xa/MQeLTGdwEgMTI10hGnTLyNmAJX6TcCZ5oSYybRmd+YF46fRZOYHdKij3zp6Lv/dpKGGJ6jyslEoBM3c/dCq7HmCzjjiQIGDVn1HWUvesOVGZFA8iigWWY8I/gcwiuVvl3CX6zAneRcBVrFvI37nF23LgxdfhbfJ9cm9aq3Ak/04DWZxxp6OQXkDg1r54L+cblXGgyjL5ABJa1ME25MWyRYMlTM0E3iE/iOfPkZiYbjInCFmsJJCh0dOwAE35Z5ALKcJYjzgMlPISDpm2y6X0Qp3jzRo3WG9UM+NldbgFIqpls4WojVAzKgRN3AvFQRkBKJkXLzZyZCISWZahTZ9HaRvj2e6++24sWLAA66+/PqSUkFJi3333xbnnnosTTzwRDz/8cOl2rUq9cBuRsi9bb701HnnkkcLyG2+8ETvssEO7zY1daxLPcjNLWa43MtI24YhDBhxWJCE6soHW04rJ3eFv9p0DGbKiTpD3JlEVeq8t5cnX/fWjmZeGjGQFyEhN3PfD69BI5T0e9TlzmZilPwZuk+64rbDPWOOJ2hPz9g/0t9qxsnAbD7PFYKNMAyvsI28n9DQV99v8vo7PdTt/AX4/DHybtlZvafH9zoFQWZ212Jr9zyzPqjn3iPhRAAJPVNn3gfC0/H75RCjkP5Hu1PL/uKbp9uPFyAPYKguPrxt8LwnhtXpux4kAZet7cD2yfDOTDc1rPJvW2nGYpk6dihdffBGAFft+8sknm27XqtTLYMu+tP2EP/XUU3HCCSfgqquuQpZluO+++3D22Wfj3/7t39ZIqGo8WNmfxRib3qoShbedcPgo9Crvh/ZSBc1KEAgpvZoxm1EF67AHBWWflQ2mMWDgGWWkIs1FN4nvxOvvUcjQtsc5Mx4skPeCe7eUIGHPUNG8LMTEFcypODEdGwBXy0woK94XKiKLoHbg5ncvhBJw3iZ+6ih0GcoRWJBGIoiVgw+EOihU/W1mXQtvK60zR5+3uueOQg1ADlBjUNXKc8WPJdYAo9+4p6jMykBXs8QDvr/m7TGgWxIyLCOPu+9ZlnuovJgslVqxoTXvjXVtJirwRpDHVtdM0D6J1ZLaf7OBVSiRZ9KxNusapmaCCRh/pz5Z4U/OySmeLOJimjxcqGvagSmR88Uq1RQqVZi0xdTiCR5H1rjhJveZc8r6A1PNQFJ8PvvTjuqvbc5JW2sjYzvttBMeffRRAMCee+6J8847D4sXL8Y3vvENTJs2re32ent7B92ntn29n/jEJ9BoNHDaaadh9erVOPLII7Hpppvioosuwkc+8pFBd2gsGWXXFJWQPelzDRMch8z604YKBQT9bLUso8XAhyAonEeDczwYWnBE2XuWw9MJG0JRNR2AK54KrzPLhQIsILKFRz1YIgHPmEQdZ4wRIODgwetNhR4t4kRRZp0UlgQMALqvjqRDucGLuFl8/7wGX33OXPc7B3A8NNlVybOzcj0uZ/u9F73aDCi8R8aJ9oDdP2XpcdDJPU38nayMHF6WBed/iwsEe++Vb0uUrNf8WJqNVxxwx55Mvk+vE5W56weAZUvmIEUIFr7Lit4JkhYAAK0BKKgISFFGLuBDdgBKJyH0eyt9KV236uacz4WcI8VDfJS9RyBQ5CEju58QdMX9yIzVkap0pkiUxIQN1m3an/FiBKQ65r8vl5kJQUvZ9SVr5YWK5WtUE9kTDo45T423J3WLm36IbZw7kgZtX/va1xxt6KyzzsLBBx+MGTNm4G1ve1tQyqWVaa1xzjnn4Ec/+hFeeeUVPPXUU5g2bRq+/vWvY6uttsKxxx7bVp/WCEYff/zx+N///V+8+uqrePnll7F06dK2dzzmjQEnB5qoJlPiyylUqpWmisEjZSLoqwjAEgdSDkAxvhSZ0Vb6wJbSsJ6ZRMoAoHA5AgJHMvIYUAmZOBuNZ4Vx47olqfQlZQDiVYVeFdpPp5JuXepbImVQgmblzDmOC0V9qBkLpHTDQLMyLlRqgjL9aJ+dSmJyogp95x6isuMzWWYH44Zx3pGBhn+7Ft7mAOjmdy/EVvfcgU3uWph7xHzfNr97YQknyZ8P7hmLrcwj1YwEzrchsOOX8RqJIZhpFhJt5eHyXKkWgKSmnWZOme4NLSvwY3JzXtuahqnpwANEGa3cq0v/G/pvAa3lEES0L9fvukGjp4F6d92+r6rbdiOyeb23EWTV6ppBbVU94F8GpGoXIjcw9QZMrQGZVNDoqWH6rSNfBH44rO+637uSLc3+R2Uq5mS8Zh4nk1ONPG6tQnr0rpKcDtBGFYTB2ls1nPfoo4/C5P/BAw44APPnzwcATJs2DU888QSWLVuGV199FXPnzh1Qe2effTYuv/xynHfeeUiZoO3OO++M//zP/2y7f4Ma/adOnYoNNthgME2MaXPFPvPZRzwLseuIwuxoNCwgpBoTvMcP/NL6ejpjsy46ZsmAVFgXj4BUPW9LCQHdMDB5KIM8SjyE5EnmHpDZTLSwth197lTCCWpyYKCEDx3y8GLdmGgfftCfdMdtbrDnLwCo9+kg1GmPxwKors4KOlMVyCJwMBcDqVT62l+kb8UH+gHiKExddLsDguT9ogw+OhfL9p3trgOvZRi+wmPyXj7v4SpelzLgU3z68mvL9xUTyMsAEw/V+mU+yYBvw48hHvD6E+Z036NQd6DRVNNWQDGvpQd4oEXbZjor6E3xd1ss2LiMvLLySlZFPQ/F1U0Olkypd4VnpdErDjFSP2MCva43XPjx7v2Kqdz/CNZKG4pPGinJJv49LvOSmaInkScTxSWKKLNyrQ2/7bLLLi7rf9q0aXjttdeC39dbb722ytBcccUVuOyyy/DRj37UJWQAwDvf+U789a9/bbt/A4pF7bLLLgPu5EMPPdR2J8aiqYqCcrW34odcCEKkEqOqxeKqkyP0NHGLAVV/fACX+p1KoAZolnZPoMZ7m7wHQunMPdQVUxHnmkKdSgYgxncj9ErRvrhHww3yDYOkQ6FWD1XRu3LpBe4toVp2JEdARs/VmgEU89hx0AfYgYnCgeSxifsbDOYN4zx0AbkeAmmisGrWnKAYazObuuj2XJcK0Dkfi3S5yLa6546A/2WPqzzMFmozFY+zLIQXc6V8CFEU1i3zNPZnzTS0bP9syJBnhwI5UMjCc889b3E5mVhHSDS573XNFKQQ+DyTZ73ydx7i03XD2tMONHGhTjL7HywPx/OyMVwGodHTABVUdh6VKNXf1DRM0kCmDfa86Vu498Avl+5jvBk942KPX8bcsYG0RdlzMAfTZeE7kjngEhJl25M6/UjLmL5Vs/PWXXddPPvss9hggw3w3HPPOa/UmtoLL7xQqkxujEG9Xm+7vQGBKJ4e2Nvbix/+8IfYYYcdMH36dADAPffcgz//+c+jWnR4qI10RWJeEY/L0zsVIB0tix/srSwOK4V6UaZwbFYSQUL1ksfJAygpRC7O6fkqbkbeMMxzZQdDXgqEe3N8+C70SNn1vHo6GQ32urfhwkgEroQSSCBRM9p5aLoZaKGK8rHV5sxFoiXrjz0mXTPO2xYqrPu+cFK815+yg3kqfdiz3XqLDkBlWXQuPTC1tQFjj1DId4rDfc2sLPxWXL94Dvg+4vBg3F6QiMA8hc2SGDgfzGQZwK5H2PfWgp9lgpzFdSxoEokC2BDJPVJKem5h/H8jQcxGrhhO/6ekakV7VaKcp4sDr0wbXwevn3gLCXGKvO1Q+8jKlJj81eitobZyNfa65Tzcs/9pLdsdrxYnyJjoWgFF7yXpfJFHisDtmpDEMz34UiwDNQMMGriNff36ov3zP/8zZs2ahY033hhCCOy2226BB4nbM8880297O+64I+68886CYOjVV19dKt/Unw1o5D/jjDPc5+OOOw4nnngivvnNbxbWWbp0adsdGKtW6VSoJJWAwNrMxkI4j4w4HfxBzwsnC9W8Nhg9hPk7mQU24YzfZdhVCHD5BxgHTD78V8y2su8eKMS8IyWswGLNaMb3IVFP35bzFOUlVnjtv1QKqIPmQaYK9f++sXDcy/adjU4lQArq3DNiAsDkPTOxMKU/TqBr4QKYuftZ8AlA1nw2l66ZAXmh/DkoAg0Ch5YvFq7nf4/b8YCm3CtV9EBxz1MLp2WQFUh9C0N1RY8Wrevfy8OFdlu/jYkALD82MkoecHtXpCtlyeb0/PWgI3Ne3DiDj2pmuvBaCXgqM9recWeQq5ZrW3/ThZB0FnqbjHZcG/pOxv/HFhTmWWs8zJirmgOA7u1Dn9aYsMGUfvs7How078qsWfkfbmFYLqyjJ5p4Q6lN2r6YpDCyxPK3ol122WWYP38+nn76aZx44ok4/vjjsc4666xxe2eccQaOPvpovPDCCzDG4LrrrsOTTz6JK664AjfccEPb7bXtPrn66qvxwAMPFJYfddRR2G233fDTn47d8gLtmKuszl3GTaxdD8NQW/xgb/WQ5zNXyeYlFAYAygcSKYQDJnS4JFZJledpXcACH+MGbJ9lVnYaOSDgA6MSQJqnoKd5BiD3sngw4NsJpQYA5CE0suSDByHtSlCpVpzSPHmnPJjyfeuJntq8D814QsRhUuzhSyGHujFoVmtcHTTPzqBThcYNN6Fr4W3onT03B43+eAAfXvT79Z4ny/0qcopioMq9Wxws+f2Ug7SyY45lDUKw7NuLt2sFzvi9Fm9Hx9WKE8Wz+Ypk71id2qucN3obYUIGC4EDzTNimw3g8TOE/oMm+P/lyR7uuSPdulzJnPe6WX9Iudx6rRrQ9Tr2vfMiLJpxUmm/x4tZEBqG9MhiQUwAyFT+/KISOqookVH2pGzlkaJEI5epLQXE4KjFA7Yss6/BtjEe7cADrfDqAw88gJNOOmlQIOqQQw7BVVddhXPOOQdCCJx++unYdddd8bvf/Q77779/2+21DaI6OzuxaNEibLfddsHyRYsWoVqttt2BsWpUT4mrGwOAKCkqqmsaMlWjwouKCwzTg9ZERFj+ILZ9Dh+8/QkNCiWQKuU8PXy7TBsnkUAPMxMRhz1huTgwhnpQfsCvKoV0YgKjM1Rhr0Wjp+FCiN6jYflWqiJd/zzYAau2nmcu5tyVyZ+cbwm+3TUY7ZXQk9uYBEHMX9rvvQCA7obGpDtuB+D1owgs0ODOH+wqZWn1edX6TGfArX/01yhVQK79w00JX96Gc6I42d+vy3WzwjaaARkCYDz02gwoNg9nlnvmePtUPJnzy3g/+fWMPZLFfhf7RuFl+kwWlwTp71639e7Kt28Wymtm5G0iwc0yRWzftyLJnDLS4r4IJa03S2fItA68LJKF5Bu9NdS7e1Gpdgyov2PdmgFYnj0Xy0/QdlT42a7nsyzLMjdjQFZ2DQjwthJaHUobiuy68ZidR9ZoNPDLX/4Sp5xyCnbaaadBtXXAAQfggAMOGJJ+tQ2ivvCFL+Czn/0sHnzwQey1114ALCfqpz/9KU4//fQh6dRYMF0zgZw/yRhkSgSDHE+NHi1ieejOL5JXgeJA0m+b/GGfz/ykEtB5dJO8UPG+CEjFFod4+AAbax4BdjmFKiQMMl7EtZEFgzfxs2TuYch0hmr00KPZP39gNnobLuNJJQrrTO6wGlnz32dT0Pu0zTI8aB50zaC7odFVUTBZ5rxEYTmTELiYLIOCr0wvYZDCexYMAMzbH9nNtyD54EH+vGttwdqtf3S1+JL8GscgyQMpC1DoXPN32o6AUngN+Dox8Cl6seLj5Os18wrFAKsc5IWeLM5zi0F3ed8G5g12oZzceBjIIJZCKEqBlAEoX6OvuK1ru0naPA3aGvaZopQF3FSzLx70qe9SRSRoCheqMLSXaQPdG1a6/0ey+LkWA16aAAee+pLrGrfZSsF+bVbe6FilUsGWW265RqriALB8+XL88pe/xMc//vFC3cAVK1bgiiuuKP2tP2vbD/nlL38ZV1xxBR5++GGceOKJrl7N5Zdfji9/+R8jCyQ2IX0asci5CirPjgEwqqTy3mvKY7g8ZZ8/XJvxt+jhHD+EuVFYjwAU7YNKMvhsIZvib4U0vd6UJ5VbLakk9x7Rb10VFWwDIBcptN4uw8ArHzRTaeUYZKq8Snj+UmmU3pz6YrGU1m5Tz+2gRR4jXbOZhXLBrb64c+7paFVYmA/w5A3hZNeya8TVzFVeqFYxUlNy2wLn3eMAx+7Hvvj5Jc8Zly2Iv3NuW3w+AQoJegkKd56j9Zy3jwG65uekPDxH+yvrC/dOuWV53cMy4/cn57DEySGx5EHBgxEU/G0ymLL/QLPfAeQq5/0Rxss9ZM20rmy/Ig90UvGeFwJXSQWm1hgxb8lw2YQjDgm+S3ZdC5pQ5EUypnQdApexmRKJCn4fcS9fuL+RCudlQ/Iaz/a1r30NX/nKV/D666+3ve0ll1yCO+64oxQkTZ48GXfeeSe+//3vt93uGl39ww8/HIsXL8brr7+O119/HYsXL8bhh49e6ZPhtviP46t+exChaxrbXvDpUephUcIgHkTssvLLXTYIZMEDWrJjFa5kStxmOEu2gIRq1CUdyuk6SZH/RoU8hddXEsr+7oBOT8MKItYM6n3aheuaDqLKt83T2vkD1WireE36P+SNavQ03P4Ay8dSB81zITfOQzJz9wNQ9AxJIdwgzwnNFPKkFOuyWmBcVkKmynmnACvpEKf1c+MaW5ZHFYb8/Hr+vWzsjxXDOQHda1HxtsP9FAFe+XUqA3JxH+P1m5lqApzIYo0gPqiWD8JhcVsKA9OrGWhqBoS8qKNvlw/KlE1HpWnKwVQ4yeEK6dJ5Vug3v65UEvXVPah392CvW84rP4HjwDjI5WLBoYcpnDgCRQHUZtcn3lfZvTTaJV7MEL3Gs1188cW48847sckmm+Dtb387dt111+DVyq699lp85jOfafr7pz/9aVxzTfu1Jsdnie8RNqEEKtUUMrHibY2euv1DKbgH32hn6AUq5ZA2AyiafcV95NvIVLHZl5/N0naO6Ko8MTeezZXpacUDWKZFDnCkyyTSNQ2p/WBH5WdcllFNo14gllujZ6LRGVDTkJ0VJF1WhbZvZV/ejwyqWoFQIq83ZoLyN2UlWuiBbHRmM+0qElLnop5z5hYI0QQ4TJZBarj9UltFImzz68H1cKjcRX3BrUgOmofe3kaB38S9Xqn0IdLktjxLkJHO7fphGFCJYmiP1qP2qaZgnEUXe4p4OZxYoqCZxaFA6ktTr1Wj+VDQDBABcSKF11WLB9pCBlagdl0M85Cnt9Rz64BYueYQWKa2UHkJGErSgHSaVRz0mQIp3kApFegb8f9svbsX9e5eVKvthSnGinUd+QH3mcu5cH5UGbCNAW/ZhJLAbbOMPqlklABQcn8NUrdooJZhCIjlQ9KT0TMut9SuLVmypMDl5rbddtthyZIlbbc7IBC13nrr4amnnsLUqQMraLnFFluU6jCMJ+Nxc8FmegaWqCyTCjJjoOqqQAQeLRNS2vAUfPpuUFtL+8KohYweJYJZSqaLdaqA4kMk1JbyGX78IR6TNWVKfYPzbFmlcw+syvZFFqfLKxGqNjv+muO7hJo/vKSG719Jhk/JgEnkbp2FXhvAa0TxzEEAQCMLOGSOf4NwEIjFHPnv1cMORtZZQeKKN2eBByYI+wirT0XeMup3XO+Pnz/+eCXPEwdRABe1ZKKnAakdbj1uZaRzvk0zADcQnlMzj2TsTcrXLnhYbQd1U+9S2SAsUwVRIrhrUJQGCftUDtLs9v6eNSjybkKPSN4OFTKmbfP7JxTftH2qvbl63EodlAFUMpI94ARyWu7WSVVwXWhyF3sH6bN2OlJensKtE2VPSiWgxNiRuPlHNy631K4ppfDiiy9iiy22KP39xRdfhBxgwgi3AYGoN954AzfeeCMmT548oEZfe+21NSZ/jSUjwU0ALrNGpZX8NwltTCAZYMYImLJEyswVVS3LNBFaFkKA3FoRNv06svBwzyL1ZP5ZKgGkyp2zIHXcgSAZ8IFiI2+UzjIkUgahQX4c9ADMdK5bVddA3feTQnnufCgJIAyl8PZi7wcPi5FXqGYydC1cgOUzZruyN9xCQJtB5+c1u/kWJIcdXBgADKTjatFvXHuKn1cD5IT7PLyWZyqWeYLKuFAxUIqFT8NsulgHyl8bfm74cu/1KssoLJc6oPUp644DJi5w2IoEDLABVQnomt8GsNehLDTtvJDaizbydcq01LiXqD/Zk1ZZeqQRxb1PVDQ5rtNZpBoUtd4ynaHR3YNGb1/LPo1Fm3j0h4LvXJHcad/J+BwI54Xy/w/mlVIqEimNJ4ZZIZSnElko+TXS1qxWZLttvFVtl112wW9+8xuXEBfb9ddfP3ximwDw8Y9/vO3Gx7NJRSRy4cJaUqX5b5bH4AX1VMG7MZIWu7V1zSBTvho8PWJkqgK1Xhqk+bYmGuiLvAAfcqPv5AEDQl4CEOrvxG0QWFKJgpDeQ8RnlS4kUvecJJeplnOH4v3x/WR52EYz0EHHFlvZw5Qb96jEtefot5Uzrcp4jzao3n673ziXRnD9pIdZw14fqQSgVIGEHheTJuAqU4VGT8N5LsqMSNb8O4ERE4Eg76GyXqkyHapWSuYxWLPdb+bRQrCeBWso/MY9bVJHwCfavwvLojmAEVJCpWFGrWbn1J2nfgBQWRJGvC2JacZ6c6EEQbgfKW04jydocHHIeH/xoJ5pg1iEzG4noOsN1Fauxsx7foA79jqh5fGNReOTnPj6BBI0UZgPYNmT7Jq4+0UbVNIKm3R5mQinIo88+sA8WsRdk6mCGiHdgAyDD8eNdwglpWxZgq6V8+bzn/88PvKRj2CzzTbDZz/7Wad6rrXGD3/4Q1x44YW48sor2+7TgEDUYGvVjEcLXb0Rd0VJZPVG/tmThf/39PYrQA+HEQdHSEuoJk94pbOSSzSwQYRd2ma1qQrtR+tRW/zdkT9RdK9bQUkJBeVDJAAyY0dTF5aQebo/cpJ3zp+i8J9MFZKqvYUpy85+No50G4ZvRAEYxsRvbpo8ZSWAASBgAcShsNLSMjk5Xczb34EA7l1ZfdXvXAZSocgsP5fMi8ZDsGFmWQhSXQHdHIzEs1EVgC0fqoukxIIsu2LZF//bmlgMpuJjaXov9gt4QmBlw13c+1QWJstBugyX23NcBFAxcLLLLJeGe4piAFUM2ckCb0so7jk1yJT3jsdhrrLnFABUqnbyV3tzNWQ6vmiw8QQMQPDMoGcJtJeZ0CWKDq4uHrsmQglAFz2Bfj/hM4yW8QmPVAKiRH9trQ2PXX/99cH3er2Ohx9+GD//+c/x7//+7y23/ed//mecdtppOPHEE/HVr34V06ZNgxACS5YswapVq3DqqafisMMOa7tP4+sfNcJGacOVzjRIGQaANKmg741VsJl5dTeYjwVzD30Gfo3OsPLy6zHx6A9BKjbgMu6Nc5EzNO88T242Fw4ecVmZeJuCKKHWDvAYneUqwhKZ1m5w4PXFMiPcTJAy7kjFWdeMK3FDxwLkYdVU+eVNQowEPCitOfaiFUKEOQDh4ScCE/bVBEDlVjn4QAtidWu3PB84/MDASvhom7JO4pz2tGaB9ERw3EyMEUDBOwWwEj4RGIoV4OOQHl+Xmy/5M7i5b2mtx5LlgL+2vIwLhbM4B43uWwqVAmFISKXSTYx4+KisP7HxTC8+OHMAVdiG8Wso7BRmBgooKdDIS9QIyYEAu7eldLQDT5yWDjiZeh2N7l7MffSnWPDOTzY9hrFik445NPhOoNKbf+rE54xvI5Unj0uEzwIS4i1bxsPqQMT/lL58D0YoCPFWF9sEgA9+8IOFZYcddhh23HFHXHXVVTj22GNbbn/22Wfjgx/8IH71q1/h6aefRpZlmDlzJo488kjssccea9SnsTPyj0GjFOFCzD21PnMCVFJJqGqzYh4jZ2WeodhsiKsY0ipTN4+3a1VaJhj4c7c3SvqjmxTJ5p6hsjRyQYANxnnQbN0zgXhsMjorEH/jgThWbKd9x+Ggspkwmc9IKz+mMqOwRH8WcHKih3zcng8vheCJHvrUVgwgYw9b/N0Wfg775cFVSApvFeorA2G8rfgzb78/DxQH7O1aMzIyAShusbJ1sa0WvzUBe9xC/lOzY14zAjM/znp3D1TumRrvxv9L4b1vl3lJhNbXhsKo8TL3udm2uXdL6hEilmdDULZlnIOoZrbnnnvi+OOPb/r7o48+ip122glSSuyxxx79AqY///nPePvb345KpX+ItDatoIlJKaGSCmRagVAKMkkgkwSVagcq1RQqqSDpqto/UarQMWXNa/kMpTXTqikrvEtWSAVmmjixl0eyGRp95gMaaUjFxFggHDy4UjRAniaVzwRDjSeqVs+J/nbWnYfiSjINOQE4BlA2pON1YKgSu8lsAWPOS4oJ6DLSN+Kp+P1lkzVuuMkdXyudq1bLuQwFL/hM60h2XK3a5uR9Civy804Wi6TSy4t2lh+7EmGGnV+v/5BfM3mDsnMTH3tsZerkJrpn+P0fcAJLaAyC3VvN9snXtesVPaGuwHDUN9vn8P9rE1ps6DomlvNj8G0ZBqwVhPL/mXp3LxrdvU37PJbMZx9GYF+FWl8F8eNqpeBNAoolXGQ+SQbs9aCXSvyzSOTPd8naj7dda6NrPT09+P73v4/NNtus6Tq77LILXnvttQG3OX36dDz//PMDWnetJ6qJxX8aIPdMpRXIpIJGrTdfz57CyijO7vqu+z065r+vsJxmz33X/T5Y7o/LBFyCWB2ZltE4xJfFwMg9cCKviUSYPaUSZetYsXT+uKI6mQv7BX0XDjhxVzyFcGz4QkElEo0e5O1nwXr8sjoQ2AgHMQoZ8WVCiUIYrnr7AgBA96w5BckDbskHD7IJCMgJ/joDGjlpOF+nlbdDpgomFwiNzwUvAE3gSuSAlvPfyLyERFYysIhSLpgSzNNUsfsgqQO/DoXwwJaFx6EzCvVl0TZxOFE0BZr8eNbEA8WN7sNm596U3Ot8/8SDIsJyLKhZ2vcIQMUyIfZdulCe0caFoWJSug9L+lAeVzK3siZ0vRV0bw21N7vbPU2jZnR+m13vZoK1QD4xS8oz6uLnFr8GcXYwJ6XbcGpI+u+PlzdUZpDBDNKVNNjtR9umTJkSEMuzLMObb76JCRMm4Je//GXT7bIsw9e//nVMmDBhQPup1QZeKmktiGpirQqMZtpAE7E85xw88pGzRqpr/RoRy5sZD1GR8KU1E4WOrGtcoVy3ic/Kqd3wd8th4N6ASqetLq9rJti3I85GgAfwwAtKgfhTlGnFjQAScSAIIMUP4NjDoAKhUa8yHmZHMbmDfMDnhYm7Ft6GOAOPG82cM+M5NpkOzxeV8JlwxCElWZL5vqMsSO2uI8lGGKfD5Y+nGPYLvGv9cDqEEkjyQdzkhZWpCLQUAnVjIk9U8d7zv4cZjkAxjNhsGZ03Csf2523j5kBw5GnioS6RVhxZmc5zkhTr1xXu80ivqZXFACrm69F1ooHb9i0rEqJLjoFMpRXXTqZDaU7K0hsvFotd0rG4cx6sywBUEnKdWklg8LA3t6IYrsgzacsJ/MNt2RCE88a7wsGFF14YgCgpJdZff33sueeemDJlStPtZs6ciSeffHLA+5k+fTo6OzsHtO4agaglS5bgZz/7GZYsWYKLLroIG2ywAW666SZsvvnm2HHHHdekyTFnRM7kacMyD2+ZegMkJmlqdSQTBnayh8uqhx2MDLnUAkJSeOyF4hanSMdKyJSFIqRAo7fhlntwEZPMfXYSLWsGBqhGHLc4O5WTvbn+TqYEVA5CKDQjlUClWkGaq5WbHEwQU83oDFmt4QZS68EJycT22GRL8VRVsXIO5IEKLM/AK7O+636PCUccks+MNTLlQWC8NzqmIERT017qIM9QBGxZHCLD6ppmYMpLH8TXqSAgygj0lO1E58hkGRIlXVYgB1ySeY1aWTOvUrPlcXHrmNxt/3vlHolWNeL6I4UDoaeDBuKm4pmU8aVDgNNqwG5mQQichHKZRILvn3HFhluZkB5EZcpAJjmPU0roegPv/vXXxtTErz9zwEUhkJNpxnfioXr6zi3TGUSaT65MhiQtlsjiky9FXsZIYV4oWXxwrbVhs2OOOWaNtrudy80MsbUNoRcuXIidd94Z9957L6677jqsWrUKgCVuDUZNdCxanD6sqilkWoGqpuhYdyKSCVVU3zYZHVMmjmIvQ9I3cYdaASghfSV7q9FUzjkQMkynDt9bP8SbewR8GRmnoUMzbucet79XmHwBmZdfkEi6Ejfgk1Izd68TR8sdt4oHJP+AJe4DhcF4CIfztlpxYPqz1Vf9DkSQdxpXJQJ+nEtGPCXOIXPHK722TZlEAzehhAtR0zly3JKS43JePCEKy8jqRMjOwRDVDeRGACsARWx9d63YMtpXGeeI+k8curJjdveX4l5WuPMHlMtIcPCTVCuloq/cQ1Tcb1nh4zgMF3IFm10zvg8O1oJjLCR3eP26mPNFZoxx4Gr33419EMUBKpBnzyXKcZLiF+CzIqUKuY+cd8m5aWRx2auyvlAf/DYjJ/9D2XmDfY1nu+mmm7Bo0SL3/Qc/+AHe/e5348gjj8Ty5ctHpU9tg6gvf/nLOOuss3DLLbcgTX08Zc6cObj77ruHtHNjzShbT6UVRzrvfNvkMZXtQoCqlQcqM8WSLjxUAqCUS1AckGJCtwVGYZo3+8wGPpd2XOCR+GLHPNVcpTIARHEGnUolVCKdXAGAAATG2/mQSTHsF69LPCgCIsltJV6oAVr3lb91XjOVqJaEf133FeXt8dljiT14cbiJzK8vc1Iy0+Ui8JS3RQArJusCnmBP2wllwVIifaHnwKsnhP1NeIBE/eTAqQyI8wEuBkJlg1sMlHgiwUC8TrEMCD9GapvfF4bdW2Rx6RAasIthH5FnlGbBf6dZRl4cJiSgEHhMpAwAli8fw9pPE1AY3NTqyLSGrjfQ6Klh12vPbHmORtOyJiN+GQ/JTwxCAEXGARUHXJS00soGM3EaSqNw3mBf49lOPfVUrFy5EgDw2GOP4eSTT8b73vc+PPPMMzj55JNHpU9tg6jHHnsMhx56aGH5+uuv3xb7fTxZprn7WDqvR9JVzf+EoydvQMU5Y1BRZlOOD4XE7OBoPH+IMlPyh0pYmiLMhikb0HxbsjBbJ5DC90EPNCAclDx5UzoAQKBDJXkYlROsWb0wPqDQQ5h7XQAK00jnEerPuP5SK9AzUFt91e+c7lWZ8dCaruuAB5V2JahUKzm/yrjjqnRW3KARh61UooLzReCRey1j4MCBiFQC6cSkcM15qIv2T9IJ3ItFIDQGCxws88zAovcprI1YJizq+xP2O/YOlYGVZoVsm3kZygb3eMAu608r40Ty8t9btxNoQzE+FGBDeJn7T1gvlanVUXtzNUy9gem3fqdl30bDJn9yvvscEuXjMC4niAvIVIInnJSJm1pvllUkj72BZTyoGMz2B+yHy4hYPtjXeLZnn30WO+ywAwDg2muvxSGHHIJzzjkHP/zhD3HjjYN/Nq+JtX0HrLvuunjppZcKyx9++GFsuummQ9KpsWLxg4gIm/THSbosF6pjvckj3rcpxx+GScccWsioA+wg3cqE5DIF+QxNhgNVSF4N9+EH3SIZU6Z+Jujbki5TpmnJCyWRdqVIuxKoRLqMnEq1gkqnfdED0nmTWImMVrWtqGSDDV1yr4EIwiJF3o10AGWo62apRDn+VmxEMKc+ecVxmffFhzDp3AQaXuzcJlUPrijbkbxv9rz580LAtpCdlCqYklCH80rlwqZSCSQTE3duVSqhKlbOgYewOMhz5zn3UlowFoZmORjixxgPoLxf8XHScrI15S2Vhw/5BKBcFqG4rPmjN+YWGpZwwZ8/cYJEmXq5UDIP4dksvUDyoV5Ho7eGxupevOtX/9a0P6NhMR8sPq9lQFoqP+GK1eBdPcJcxoB7Wm37oVRGTOyPjSZuIxnOW2tAmqZYvdomRvzxj3/EvHnzAADrrbee81CNtLVNLD/yyCPx//7f/8PVV18NIQSMMVi8eDFOOeUUfOxjHxuOPo6a8Xg8L32TaeNCeDKpQHR2jUr/dE33O8PlFnAqchVk5z3ohwfAtyOjLTggCwZIyj5rQu7kfCOZ+lBFpbOCvhV9+eBcLKVhB/2c0+VmkzJsT1kSqNHGZdVkSrA+V5wUAlBxA5IraZOvp1iZjFYZm+3a8v+4puXvVPKGk1sFk4LIjMk5Y5IdswVMuhZxYpQlsRNZXRbAiARq2oZNEwKpGlACjRtuQh1WbZ3WV7mYquNS5e2F/LPcMwhj1dTzWn+xN0ql0qXpG1jQV+9tsGMKARC/GzkXkOosBuePvQeq/E0I5mVhtUybQsIF90z09//jg7mJBmNXBYBd47I7rOy/GdfS4+E8e238tdBR4eH4PjYs23isWBkPjKwsYxYIPaOxGZNBKTuhis87ACfF0qwvTfupJMQIxcjWZucB++67L04++WTss88+uO+++3DVVVcBAJ566qmWOlHDaW2PCmeffTa22GILbLrppli1ahV22GEHzJw5E3vvvTe+9rWvDUcf8dxzz+HYY4/F1ltvjc7OTmyzzTY444wzCloOzz//PA455BB0dXVh6tSpOPHEE9vSeygzoWw2nk3Lb9jPxkCliQ8jmZHNzljvMx9mIZ5QaA7wIb7+jEAPWVkmS+BRYoOHVNKF2GIeFC/iqXKgEhdipXY46ZNc7ipRSCdar1Q6MQ04C+StqHRWHLiK05mtAGoOqiikRzNR2o/jZpEnSzkAwT0YfDDmHqLhNg50XDkcV0TZnnvulSAAQaE+Mu5xq1QrEbgSzrNHHiiXpZiHrTvmvw/Vww52v5OHiZPR6Xw5j1ak3xWHU3340Wdcxtw0wdqOzwu9iCs3kFA2F4/lfSmTvegvXMM9E808WsRlI+AUAyjv8Qw9upx/VtZmmcV8KH4cAGBqDUc2FyoHrAw00e87XX5aafujYZzbRNbMyxcTvTNtYEyGOKzdyjgAi88/56IRry2o7zlCRoLAg32NZ7vkkktQqVRwzTXX4NJLL3XRrxtvvBEHHnjgqPSpbU9UkiT41a9+hW984xt4+OGHYYzBLrvsgu222244+gcA+Otf/wpjDH784x9j2223xeOPP47jjz8e3d3d+M53bDxfa433v//9WH/99bFo0SK89tpr+PjHP44sy/D973+/7X3aFHnLdXJ/rlzaQCV+AMi0QdbXi7lP/AILdjh6iI64uU3+5Hwgn025B33uaYlnzGUWz6KbcQyC7/Xm2wklkNW9AB1vg969uKMvAsrbL5tpczCga34dKfNaekqh3l23bv/UhyIzFbr5g/Tk3DSYZ4M8VaxCO2raFRi15ywktY+ECRWGjqjoMpGSOQAhD5tQArrusy5tO9LdH1ChHhb39Nn7WnpBwXzA4sVcuWq9kL6uHBkHcgCgoQMhUJkqmJp2oEEwcCyVlbGIw9Nuee5p4sBWIhxUY1BHfYr7SdsniQhrL7bh1W1loVcoQzz0O7AYbFMMy1Mb/P8WZrf6FqyOmgyeS+4eyb1S5PFz22jLjarD8j5VMnZkA+NJUTMAxSUm4nNNkzINOP6TYP8VHiK1+xHOQz9QW6taPrK2xRZb4IYbipPZCy+8cBR6Y22N/zXbbLMNttlmm6HsS1M78MADA5Q5bdo0PPnkk7j00ksdiLr55pvxxBNPYOnSpdhkk00AABdccAGOOeYYnH322Zg0aVLb+xVKuvp4gJ2xUTZMo6cPKk0gkwp0Xx+GljHT3GLvEQA38MWz61ZtDMS8NyDMduEEZvq9bB+BSB7bntSX4/Rl23YcbvLeLAIItG8PFCwnypgs8ILEyupKecI8fyhLlYMHUDFlBIOcTBVW/eI3AzpnQ2XdV/4WXUd+IAhrZe5YvMIycdlII6rR03B9BuC4Yo3eRqC0DHjuTTxw2BCdBZGVTmkLOkO5bMng3KiisCst46E+JzDqgL8MtrXXJwfdUDC64SQcJOBU80lQ1faFOEKtQIj3fsWTBqEEhC7y+uJjiY3u97L7tz8ryx6MQfFAxDtjDwgVH1YqVN+O1+dAirxSje6e4Dk31oz/d/kylwlZUu0A8DyohJWBseelKFUQA9eyPvjPId9zpICUNv5/MJg21trQ2oD+Oe2kDn73u99d4860YytWrMB6663nvt99993YaaedHIACgAMOOAB9fX148MEHMWfOnNJ2+vr60NfnOQNETpOORB7qJNkZsXFhvUR58c3htredcDgyFZZdIaOHb7O04Ni4aF9ZmIDP1Lgr2+7LAyQ7yEmYPNRkFckzvzzSViFPEuDBVCsj0njcRj3ng7mwkQm9IADQ0A0HMny6vnFgI+aIQWfQNe0BSC7G118K9HBZ95W/xcSjPxQsy/L+a517QWn2nHuV+PVUSfEBT6nu/Dw53h955dw22gq4KuFAGk/Pp305Inp0X/IwX723AVKZ58AJzsOSOY5aZrxiOAFE0+vXQwI3GNL+uKcuPN6QyM6X22NvzXexx9E8I67Ynj+XwbqsyC3vj+f3eFBc2s80JIXHfXAZqTr0NPH3wHOlzZgGTnTdY8AJRFnD0v//YzI5TcgMvOwE0ERUGM2vswWnkV4eB7EjBKKGIhw33sN5Y9EG9C96+OGHg+8PPvggtNZ4+9vfDsCSupRSeM973jP0PSyxJUuW4Pvf/z4uuOACt+zll1/GhhtuGKw3ZcoUpGmKl19+uWlb5557Lv793/+99Lf4oQPHqbDASanUzgBrDZja8BMzuaeBD3Y2JNGaFzLpmEMBWQydlT3QyQhAZar4xyMgxcMNVCS13ttwYImrK9NDznF84DWdAgJuNBhXOiuWlNxiMIv77vk11hOTdiUBANC1EOS5TB0GPPojf4+ErfrFbzDpmEMdpyscJCPCfa5NxMNJjnPGZCtMIt055Vw1V58tDcGB9Qx5j5jWPhxoFdNZqRLyJjGvGQDIunYlf8pqNPrvEtpoVmg65231NgqEcA5yyJPG727vkeGemShRoklYh9+DcaZY7MksA2llA70b8HXGzo8/T60AXXzMsaI97xOf0IV1+RSoZJJvT+VcKRUkz4ymbXzaUdDRpA0IPX988sSfC/zYCdwrFYaubZuh174MvLrrGpdNKvECrrW3rg3o6t92223udcghh2D27Nn4v//7Pzz00EN46KGHsHTpUsyZMwfvf//729r5mWeeCSFEy9cDDzwQbPPiiy/iwAMPxIc//GEcd9xxwW+ipIRElmWly8m+8pWvYMWKFe61dOlS25YrjqudTpRMrcCmKfkzmXoDcx/9aVvH366pRAUDJw2QBKjoAbPy8uv7bYseuhxEWKVu6X6nz62kA/jnGCxZkniYVkyDhSdzS+ZpCkm/3GICvVTSSQ9UWHX7WLnbSS6w9PmY5MvJ7R2TO7D8P64ZEwAqNjpGEhQl2QYAzttGpPtYK4eORyjhrjMHXc3KYwDIMyfDxAGyphlNDJDQtab0cytXoZz0RBDKUj57znlBpd8+zVXqy8IvnHROIRypPHme+hUTx+Ni4wS2wzp7mftPcB5fTGzmy/yrXFeN94fvp+z3shCd7WscMi+Kj8afhfLHa+p1u1+tx0y6Pl2rWGE8oATI4nsZEC2cD+JGuZBpeB+VeReB0KtHWlt8+UiYyTLoQb7WeqKG3tr2515wwQW4+eabg2J/U6ZMwVlnnYV58+bhS1/60oDb+vznP4+PfOQjLdfZaqut3OcXX3wRc+bMwfTp03HZZZcF62200Ua49957g2XLly9HvV4veKi4dXR0oKOjo2UfgvR3JaFrDUBJyHwWp+t1KCTIRiBLj8JRPGxDgIK8VO1a2Syae6eM9sVey1SY3XaSBkD/0Jd5KKhUU0oJiNSG/yww8Cn8vH1K0QfgCPQV1ja57GG0GxQzbRyp1O1LCphaWPg39qS9euF/rdE5HE6rVCs+RMfCHFZ4NPIc5iE9e178tdrgi/+CRnT+K50V25aOEgUikBSLp1K4k7xEjZ6Gb4t7c+AV6U3sNWO6ZEIJ1LvrLhypEolGfp/LVNr+Gc+Bq3XXnPeJ82J0TSMzmQtViqjAM3mrCKjweoycgO69ZSZYJ7ayUFM8yIfrs2SAfjLHmsknlJV6KQNXZcDLAwENmdhMTVqHvFGjbZt97WOuqHYsD0H3t+UsWimSAvdLiYJnIAZKOn9Oc05gM/AEIJi8lXmdYr2u4TJbtmWw4bwh6sxac9Y2iFq5ciVeeeWVQqHhV199FW+++WZbbU2dOhVTp04d0LovvPAC5syZg/e85z342c9+BhndzNOnT8fZZ5+Nl156CRtvvDEASzbv6OgYsjBjOKPJZ3J5erBG3XqjHv85Fuz08SHZX2wvnfdLTP7kfDewaU0eCeaV0uUPZspS40YDU8yr4OExzm1q9qDhPCeePUSeBQuCyIviPUXk/eEFf+PQYjyTFgow+aBN/CACkJn2QpEiB5ZERndZeqnl5/D9Emj4+8W/HuilGFF7/UdXY/0TPxKAWTvoF0OzBj5cGvNFOiZ1oG+l5f9RiI/WpQLTPIzBgRgBHsuLMmj0NHK9qMyBd5tRyUIvQODdJOMAgTyJJAlAEwL6jfbB+TFcpDQOBRrYc0QcPVoOWI8a7QcAhDSF8I7PEmw9ISrj6Lj/jyzqFXESfRyupt+sTtfAiMrNMtZc/xiRXCgFU7flXlxIL58AjnXjemP0XcKDv9bgNvKgmgxQYegu+FwSKm7mAXQSB0quLUA8wnb//ffj6quvxvPPP1+QMLruuutGvD9tg6hDDz0Un/jEJ3DBBRdgr732AgDcc889OPXUUzF//vwh7yBgPVCzZ8/GFltsge985zv4+9//7n7baKONAADz5s3DDjvsgKOPPhrnn38+Xn/9dZxyyik4/vjj1ywzr2TGERPIdb2OoFr6CLh2fSqvcQMeDy2s+Gn5TUQkZBKgLCOg9/dg5mZDi+GDzZgMSbVSELOzJT1CTooLc8gw3MHXc8TQ3EsEkDs+L7OjlJtFkheEb0Np+3T8yEOHUgpACjcwZzrD6z+6ekDHPVrGvU66pt1sm4NOAoVpVxIMMoLxmTqnVFHrrvswiAMmifcWVf1+AO/9NNpAJdKBJaNNDlQ9Ud0B/DzkSEr1BMq4R42DQv5d5VIMKlXWmxh5xtKuBLpuAvBNv3kCsG8nTohw+9LlSRWAtoR9dv+QybTIv3PH3Q87oln2rJMo6SdMSp5w357PyCusG3t0pfc2UThPIkEmdYFfNZpm79kMQFhc2gJb473OQDBh4s+ipm0PJOux4NkKPVAqreQe85E/X2uz84Bf//rX+NjHPoZ58+bhlltuwbx58/C3v/0NL7/8cmk5upGwtkHUj370I5xyyik46qijUM/j6ZVKBcceeyzOP//8Ie8gYD1KTz/9NJ5++umCKmmWuzeVUvif//kffO5zn8M+++yDzs5OHHnkkU4CYU3MZ+YpxxmgFyn8Jl2dCB7lI/wwIhIwDTpTjj+swOeZ/Mn5aIBqqBWJtXwg5stjbxQtl9J6fBo9XgUaSkGw9PfYi8Rn+nwZyQs4EmienUUAyXrLiEzrxTXrvQ0k1VAhu9Ipg/0Q+CKARa57oaQl46uibtVYtZcvuBIbn3YUAEa0Z9eeXyu6FzjJmw/8HBhwwjiXMCBw7om1/h6w60nnzeqY1BFIUPB+ZDrLQZkFRPXeBtKuNL9/Gm7flWoFDaZUHnONQi+ohMjlLMpkBnjImwMtWtcdi/LL+XEreA8d9SXohyoup++xFyqU6yhm1kpVJDuXAihV7qFqJrBpP/uMMhvCS6LfrebdWFErn3buceirUVam54LROXNZdszTBPhkh1YWFzpvlVATbldyzglIjbCtzc4DzjnnHFx44YU44YQTsM466+Ciiy7C1ltvjU9/+tMuAjXS1jaImjBhAn74wx/i/PPPx5IlS5BlGbbddlt0dQ1f6ZNjjjkGxxxzTL/rNRPiGgrjMzviEmSqZPYzwi7ygWs+eUI2AMcL4NlxlE1H32MPAC1vNtvzD77wicZTiANRS2o7IoUKaUUjlRSMU8OKCqtwwAn0oBjvhbSVHIk2CmlykDAezHN3PKmevJI0EJAnsKy4MZ0HApaZ8zCVP1gJFGRs8AmI2cQtycOynLBf1AmzA510YV4ZCnE6L02ZdlixNp6uh7+XicZS31uGvShcXaIdxMOCZYAJKHKf+MDeypoN2qUaRZII7UWPy0AHc+d9ktJl4cWUiNGwLb/xiQDgOMHWNASAZeCpzHjYNHjuqNZyLrxd57VrcX4452ykvHhEDh9sG+PZlixZ4hLYOjo60N3dDSEEvvjFL2Lu3LlNM+2H09ZYKKSrqwvvfOc7h7IvY8q4IB03KpfAl1eqHTAEHEboD1Wd1BHUGLO7Lq9SD9DDhaUI514el5kVcQOEkkDdczz8bwzs5A8SPmhLJYCSbL5AkgEA135SShUecrxenlAClTTJdYCMa88P6mw/eRvaaEd8znKuSWZ8WNCF9OrtCyaOlr1w7i+w6VesKj55c3TNQNdtmKw6qcPVqCPz2k7aF3burAQZaGE2ow/TSkb+JuPK7WFmlAVwzvMjBYwOZ/4Esvg9akzmwo1kZaExrj9GAEmzcKHOkXCcrSVMFrTFyeAk2JpJkr3woDDIBFPF7fk+Ymsm7EnvpUTwfjTe4m1agaeyQZ28TgAAYyCltJnGNS9R0QqcDJeRd5xkWkgfTCo+4QqfN/Q7P2fNvH/2e/n1523GYTuvzl/kg7p2k8q44JX9I9l6663nuNebbropHn/8cey888544403XGHikba2QdScOXNaSgYsWLBgUB0aS2bqdUh4FzifBVLpF/7Htr8Nb4aL0QaVtOIGLQJSZZlCZLHODQ1SIi1uY7k3DOCwsEb84LaDOAJQBYTcDxkNRBS+8651z4GSSQVa1+1+EYYehZSQKRxxPlYp9hljEgaNgGBPnhLAPvgs4MtnvqbehBczNq1jUofLSCTita7lMhIpv1ZeAsHoRl7rzl7zTGdIJyIAWzS4U9hEpSI4byS2GYbtih4j7l3yfCgJ4sJxjhqBIb59QgO99PeUUvn6VNsw92JxDp6re6gEdL0GnsxAIInao/s4LhFC4UH6DoTZm7y/odetxPuRg/vif0Y5T6vbNx0reVH7ydzjJtOK85z455MqXBvyOgklIbX0pWCUHHHvOQC8/eITAMBmjGrk4WnlREnrvQ3kzEcWdisp/ZIDqWbK8lLJwPtdKJUDFJbHoWOlZACY4vI5I2UGg8+uG++Qb8aMGbjllluw88474/DDD8dJJ52EBQsW4JZbbsF+++03Kn1qG0S9+93vDr7X63U88sgjePzxx/Hxjw9PVtpomCtYmrvAgTAWTsU8da0efB9O2/QrR6M3z3biD3X+x2im6WQfJlZZnA8YUsmi5op7IKmAvBkrQlPqbwAi2aDIU8oDoJaTSjjwoT4aGrxSBeSJF6RSTf1wadk6fKj52l8V119ttPNGUR94FhknZI8HU9UEycQUpqbdLJ4yEXmqPgfV3OtHgEZBMW9kWF+O1qfzRJwyyrQjDhtl6InUP0YSJmqaVCtIuuyFq+fnmMKQQHiv2JBsJfCEcZ4SlHJeMNKRUonK7xPNjo1K3cgcSAGNHkayV8IBfwXGCcs9W7G0gM0ctMG+wPNkykPWdJ7LjBIp6ByGpWrKvV3xb/wZFA/+9J0/s2IBzdjjJBPbnh5Bjs92F34WIq1A10JPen2V/cMTkHLnh93TZRl5ccg/zpb0hac9eOTc1maeO/5Zpkm+jXYT5ZEuQqxNBj1IFDXY7VvZ2Wefjf/5n//BI488gjRN8cYbbxTWef7553HCCSdgwYIFAW85TdNigyV2ySWXoLe3F4DVeEySBIsWLcL8+fPx9a9/fSgPZ8DWNohqVujvzDPPxKpVqwbdobFmpFQOIMjE0zVbNqQCG86L9Y2G2jY+7SjonMPCvUMqH0SA/M8Og41POwovnfdLAMBWZ30SrwNIJiZQiUINNZf1ZLcJlbBjtzgfmAArL8AHLE7qzLSBrFZ8+EaHHgD/uWSGnlSC9ZznScqg4ryQ1gvIH5CW7Ou9gip/UGrZKHXF0+yUQOFohDHW1P72xUuxzXnHo7emoesWSDl5glw7Kc4o8xyoDELROfalLLikATcub2BFMpPgd12z2XmhErR0iQYEulzWXaI8MKtb+QTK6uNgTiSVILRFywk0ZjmoI+0w7qkQSiKZmDpQSF4rIAxVulCwNq7IMv2rKARq+2g9c5Ri71TMtf8PxP8hvh4vMRIALcnrD4Zhz1YmpIRMkmAwt+ePUu4VA32eA2WM9WA7L1yt4UpbEbAYKcVyB3LqDZcpTOeQS6EAvswRqby34prFaubEdeQipD5LMdTXigFYmamkMl7ok6NitVoNH/7whzF9+nT85Cc/Kfyutcb73/9+rL/++li0aBFee+01fPzjH0eWZfj+978/oH3wUm9SSpx22mk47bTThuwY1sSGrHjSUUcdhT322GNQ2XBjyeyfTEEllUI2RqYNdG8Nla6qBQ7MNZ7V682aXGPb7Gsfg4YNIahEBZkrktUzy7SVGVDKgq5MG/Qp6fSASMk55jVRMVddC0tz+JCGz5Jr9HheFA9L8Jm+C9/kTxzqH585x5wDd97ZrI5CppRWbAA3mzQ9Nd9W5G7nn7kXitoiUGa5RBYIbHfhZ/G3L1465NduOIykGWwYK+aKhJ4U0nryGjk56EyARm8NnrjrQQltI5Sw4c9qEszuZZoDh4iwq+s6kC0QUoSK+FVPhnfCmnnoyRY5DnlstD8S5iQxTXf/5iBCVW3H670Np7NktHF1+SRTLLfk9pDjV+nMj41I7qmCoP8Tu3f5/c1D1TwMWmbERYtLx5DciG2jGFrn/xf3/MlxLHlGHJDTvs5nmWW6nCjt7pu0AjEC3qh3/OgkIPXPGJ6RqVLpNMB0aic4Jn8mcSHXGLTzc0hUC6MN47j5QvJcH0swXlhML4gpHDwcSu+mVocNnY4MtMqGIDsvG0ZiOZG6L7/88tLfb775ZjzxxBNYunSpq3F7wQUX4JhjjsHZZ589YCmiJUuW4Gc/+xmWLFmCiy66CBtssAFuuukmbL755gX9ypGwIZuC33333ahWq0PV3KibSiqoVFPHORBKBiE7mVTcIB8ArEatWZNDYuQdimuQGZMV/vhCSdS6a0gm2icv97oIJfLQinSlOOwDyH/358KGfpKuDqQTEyct4CQHcq5MyLvK3ef5AJNFoQv3SiOBRlVM5VbVDrceXY9iiQYFmSQOQAkpUelMkXRVbcmXahqGPqR0dd/GkyeKTLBzRjw2Dnwq1dQtA+BCXw5ophU2sIiA40eeOgKdlc7UeyTTivtvVDoTt57MuT6u/AzzXBEPqNLp+YX0GwEF4m8p1h6VhuHbidzTRhMDOi4OlAB7j1lAFZb5EBHIpN/pPFA7/D9AIMmVqsn/O7Rfex2yoD3hMkt9QkUzbTbAZ8n2dz8S38kBu9zbJNPQSyil977QZ8A+t+jFuT3WwzX8BYllkjiPPiW16IgmYO9p5cLBdF/QdZfKvxM1gQMo96wYwP/ahT/zkl7cYyXYeTPGhv5sJQQfLh1J09nQvEbL7r77buy0004OQAHAAQccgL6+Pjz44IMDamPhwoXYeeedce+99+K6665z0a9HH30UZ5xxxrD0uz9r+18TC2pmWYaXXnoJDzzwwKjFJIfD3AOIPVg4mZD+dDa0V4dKE5fp8t5nr8Mft55f1uwama4ZUBkTAI5QDhZioFImtE6mDeq9DTR6rC4Pd4s7cm7CQYVwZGU6fl3ryT97EcOky8/6JePb8AcWnyHTAzHIyMpDbnwWzGeD1F7gYUnyQZc9+Al0lRJOlXIDi72OCXRvHzRlIxl/7gCMGy8U4Hlvum6c6jz3CFY67fUWWkJVw4ESQC40ac8dnTkb2iLuH4KQKRAXsvXeDzKZDzwqrUAmjbyfFTR6ci25zsR7H1PPUyGrVFMbfm3CUXH7iPkwKryH3bqpgtDChTqd0Ka0sheFbXQs6CpzPlQ930/MUwrbcFliUQkREsWlRAdOdLbntZixyM8N/Q+4ETenbBLngFUagiQuyBnzfeLJ10hYo7dmS/R0Vpj3Gi47Dyp87iiwWpBRyZrYaLmqJr7GHZMsiMnlMbcMADjvCQBMrY7MGP8cUkXgOp5s5cqVwfeBlD8brL388suFEmxTpkxBmqZ4+eWXB9TGl7/8ZZx11lk4+eSTsc4667jlc+bMwUUXXTSk/R2otQ2nJ02ahMmTJ7vXeuuth9mzZ+P3v//9qCHB4bTwIR3OTpo9dIYjcyOO33O+Ev1Oyyi7JdOZIxz7sh3xTDycsTnujLSudRf+i2apfHZPg1ugIyTjQq1lDyo/41O51y8+3vgd8LNHlQNZwGZSmrp1r6tqh+NYZTp88PFr0zGpw4Uvx5PZDEPveeFZeWTu/LB7NTMm+E7ruNm481rZ86pKrgd9tn2wXiq6DklXFZWuTvuee68qnYkDCnz/knm5PPfKe8fovgwABTvO2GNjAZwKjyGpOC8qAe5KZ4KkKw3uXfsuAhDm+sC8HNzDxF+2n9zb5YsPl2lehcfgkwDIO0TnRnHPCDteGsBjDhN5Yvh65GEqAxu0D8W86iNhFgB50EkFxGNF9/DYvSex0pmGx8nuEQ78K50pKtU0omLwElMq2NaruavgOebWL3n2S8mkI4bZSGxzsC8A2HzzzYNx/Nxzzy3d55lnngkhRMvXAw88MOBjKMvsz7KsZcY/t8cee6xUmXz99dfHa6+9NuB+DKW1ffWbxTv/0Sx+oPAHEx8M7MNVBetkfT1D3h+pBOr1DAo2LOBUuPPYv64bl0lEatOqajOq0q4Uuq5RW1V3gnUUZnCzwFqkAaQkZFdHkL3CPRdU78zzEYrk7czk3KjcHLeJ8aO4qrLlGESzZPaQyhihVsI+9FRSQR3+fPOwlO7uRaY1ZGq9UBZM2cwOR1zPCdXTzj0Oz3zlPwd7mUbEiFxudOZCq1QWhmcsAsgzoCJPRf5ZMqBJv6nA+8dAVASAZZr48786vN85N6dSTdFAzXPico9XswGb3yMEpKw3M08WAJHofUamrjdy4FG1CR91S5pGreHu4UZPPQ8ZVvJyNVZ3TFUTmO4+5y2NPUNO8oFxrWJNszJdK38uilpT4e+hThF5nso0iII0/JwwTteKzg8PZ8eemszkQDrPXo2v6UiAAaEksl6vC0XnlBILVCJdVq/jgzEahSKgmYZeOBNxvvgEzYBLeajCOeckffqNi5IKFi5VlM3ISoCNFPgcyuy8pUuXBhykZl6oz3/+8/jIRz7Sss2tttpqQPveaKONcO+99wbLli9fjnq9XvBQNbN1110XL730Erbeeutg+cMPP4xNN910QG0MtbX9r5k2bRruv/9+vO1tbwuWv/HGG9h1113xzDPPDFnnRtOEKIanVBqGOOI/kak37MDTGFpyeZw+rWvapZcDcKEccoVTiK1jcofNhnIDR8RzIs8RAxScUM4fTJnxxG738FEGqMFxjnjKsFASChVoNBypVSYViKothkoAyg0eUiLLwREZ1frixP1Gb54GnSaO66GqHY7kqappkM0HhKRaGnylktBMJybpGl5X9lAb55gFWWH5IAOQd6ZSCAnFiRKx58Kwa8YHFzrfVCaEeFfKdED32sLGUnqgbUuNVFCBDd/wRAEH4IxPzOB9Ii8MAIgIDFA4mI7XyTx0dUJVDXRvn/euJd5bWckJ6BKASCvIklympNdqk8mkgkzlofMcjFhPlvHSIdoTmH0dyPhzUUqgLCOVrhG98ywy/nsMpnjGsLtuDBSVgWM613Hf+Ps9+49MlpO9tyzHUiqJendfnvRQBKiAPzcmT+Khe5KyFE294ScG9Kzg3qWSyEBLT3fsbUoTBzDj54tQEiIbeX7UYG3SpEkDInJPnToVU6dOHZJ9Tp8+HWeffTZeeuklV6Ll5ptvRkdHB97znvcMqI0jjzwS/+///T9cffXVEELAGIPFixfjlFNOwcc+9rEh6We71jaIeu6556BLChX19fXhhRdeGJJOjQUjTkFhuZLIEqtxErvJM21c9szcx3+OBTsNXjdry298Appms5KLH3q16TTX4ql118HDBQSgVJoPCKnnYVgicDFUGZSyiR76NLBRDS5TazgCt0wSG1IjD0JSyUUvPdmzUu1wDyF6kOt6wz+gUAEYz4MG64Dbwc65THymnUwTN6gLw0NAlMWk3DGQPAXN1t3xjiPzId080cDY8K3qsoMMza5V5OkjXkcm87I/hZCQygv3anfu/G8+rMuvTaWawtTquXfK+mR0Hj6k7RyAqnqwyq+LDcWyUhrsPnPehnodqppCwXsUTK1uwzvVDgfg+P1B4ZmkC+4edYAjIRCXD8q5pzUANrnAK91r3KNUqabufqfJAnm6uEeQwBFNAIBo0C4BUPy68IkMmVX995MLnqkaXk8vAZKxa8I96c0y94bLyBPIeZGucgHdXzkXzYVbWfZgoaxUDn65x8iul5PvkRS2ARB4m/h3Io2rpAKjZBAStN7aNHgmyaFLcm9pY7123vPPP4/XX38dzz//PLTWeOSRRwAA2267LSZOnIh58+Zhhx12wNFHH43zzz8fr7/+Ok455RQcf/zxA87MO/vss3HMMcdg0003RZZl2GGHHaC1xpFHHomvfe1rw3ZsrWzAV/+3v/2t+/yHP/wBkydPdt+11rj11lsH7NYbDybZgBEbPXhi0UeVD+KQCiJJhgxI0T65RlSlM7PidEoh6UoC0i2BJJp5A3BhMZthQqUVwtk9ED6YFfMQGMANgBzIKOZREloWeDQEsNzASBpO2qbXS+0f5pzjkCnjwhV8MCbgSiEbAmSVauqEA2kdOn4KAZlaHZWuTgA90LWG89I0ehvQtQZ2/Mkp+POx40Oig1LkAbq2BK4bYRguHlRlOFibXCxWsIEDsIN06FWyEwQCqVLn/wFVnK27dWBBi/3dD5i86C0fxLmgIZlKKk5x3HHeWMi2rg0qefZmpq3IgCnh3lHlAeHuNx9yTLqq7hj5lk47KCFuWcUdb6YNRNWrWRMop8kHvwbcO1IW1uPg1IXi3D3fWn+OA6i4VBX/P/F+0LKybYfTdr32TDTYfebCtsyTHYNI/nwNwSKbKLD7ie4NU2tAsBAwv6d4tqLKATAHVPReqaZNScPO+6ckKv1VPx4iG4rsuuHMzjv99NPx85//3H3fZZddAAC33XYbZs+eDaUU/ud//gef+9znsM8++wRimwO1JEnwq1/9Ct/85jfx0EMPwRiDXXbZBdttt92QH89AbcAg6kMf+hAASwyLlcmTJMFWW22FCy64YEg7N5oWk0ztsvwvVQgvaKg4U0MqiI7BCXBud+FnUYMFRSq1WUUksKgSCZNaQcOOSZ05QPFZP0DolnYzXS0hVPFhK9iAQQ9yImSTqaQCY2h2B6DaEaRam3x7CrUZUwRmBb2tegMKPN0+nBm7bdmDLxwMfdgmbt+FZJBzxZRyD1A6H6ragaTegO6tQ6d9g7peI2lhnUGDJOf+WC5aOACH9wTVDpTRAEWDUuQNyrfThfBUeK4JsNIy+l7v9pwTg3qQGk73E+1fJRWIqvXY8D649XNvEwcDKqk4nSjql4jqW1qRRO+x5P3kWZymVrfe0/zYJOBEXPl/hLYnTxcQCjryiQQQhpCDqgdEE+DeuTyE7cUzy7mZdB6595v/Hm8nWXiUn1sbskx87c9hst1/d5YTqsyMgaD+1BqQnakLI/PnDx1HHAale6WhvQ6Ugn828bAm/f+l9F5vd+z5RJiSENBbCzxRjqzO+E/BuXPhvrWeKMDypfvjTG+xxRa44YYbBr2vadOmYdq0adBa47HHHsPy5csxZcqUQbe7Jjbgq08Pu6233hr333//kMVJx6o5NziALH8wuj9Srwn/VJErPWvUACkhOjoH1Qdf7DgXtqzlIpisJpRKlBtERB5ec2RNTublD5doMKSHOIVkAP+QNqycCj30+Cwuk5xfoZwHSEiZk+D9gBGfX/4OwOm76Foj6INgAyd/cEklgWrq1Jd5ezHBmh6WdB7oPdM6X0ej3t3b3gUaRbMPcTuImJp2YTVV7UCmdYGMy8MWxKmhMJvJ32OCOX127VTTQHpC8/BUxN3hxG+Re2gbvWz2nodEpGHlN/JrUsmvaXyPVFTqBj4aIPkARiG3MoI0HR+11cg9oYAHlFJKR0Hm3DDJgLw7vqoK7jWZVvJz7z125FWjxAYO9tzko2TywENQHHQahF4Udy3Z8VNbsYitu5YsjMmXcwmE4bBGTw2ZMWj09tn7tcvfU453Z4x75hFvzimws/shzkzMtAlI4PF9SNdSmBCAu/YSptzOCjJzo3Yt/8pP2GKwutaG177whS9g5513xrHHHgutNWbNmoW77roLEyZMwA033IDZs2ePeJ/ahtDPPvvscPRjTJrzhqR2tusGhpKZBz3c3XaDdI9vfsYxaLDSFbpuvMgf/flzTgyFtABPAOegj1u6ThcavaHHhVzpNMsPiKf8c/QA51wEAFDazwQ56DFsgOTb0rvjNUWzPcCCJRsSzLNiUL4ufW/UvBeCgFajpxaAgUq1Azr3vDgPQVdHwFkZy/aOH50EwwZ2gwYqnX6AruSgmM+8lcoHTzbgABTqyq9HEoaT+EDvQ1o5IFEmuOf4PVLQUysBNw4s5BphHEDw7Xg4l/c5Dvvwdmkdeo95b87LJsPv5MXiGaA27KwcELX3czTZkD6DVFC2IONnSSmROR5hPeJceTcSgVrBrlUQBuX9z8+VYV43SnzhMhJk/n+Se8eVgtEasqRY8VDb7r87C7V6A43empuo+Akey5bjXkrmnat0daLR7UPwZd52gHlX8/vR1BuodFVRqaaorVxt10k8BYALjtJ9zidpMVDi/wuyTBtkGFh6/mDNmCwofL2mbYxnu+aaa3DUUUcBAH73u9/hmWeewV//+ldcccUV+OpXv4rFixePeJ8GBKIuvvhifOpTn0K1WsXFF1/cct0TTzxxSDo22ha7bMuIl7reQCWvlWG0hshnKQYNKKmAQaiX82KygK1yXp1iHwg23BGWkbDbSIA9aDkxl2bEduDyIQ03G06isA970POHSSWt5hwpRizO3fGVzhSNnlqgQg62bcBt4CDI5F6vfABwJPIqKY5XHFhQKKZ+O24FG4DpfFQmWL5LAzmJmB6UdQRAYbzNKsmbU+nqzL0cNkOOjqFMQ4i8EMjBIuf1xQCDX2NaHn/mgJu3AcB5FN3vOhyI4nNNgxYR/+MQCb9WSVfVZeSRN4zvP87QomPl56FSTQuAT0jbdr2719VJU9XUJSyg1rDASIcAjN9DNBkhi3Wb/CCduEmLqYXn2YW0onPEJyJ0ruJnFG3Riuvk2tW8lMrw3fveG2wz6VQ1CUKhvE90XripqtWFavTWXBao3Ybx4yg0SpM36cF3peonSEJJIE+eLisgXKapFU8eYw+pqY8MJ8oMASdqnGMoLFu2DBtttBEA4Pe//z0OP/xwbL/99jj22GP7xSbDZQMCURdeeCE++tGPolqtNi1ADFi+1D8KiMq0cYRWLwCooNlM3all55NJ/6dquBn+fkuuwa3bHNbWvrf8xicAwGkA6bqtlZZOmuCAUW1lT8DrIdkAmSYuLOdc/0nolZBaujCdm5WzQY8/SGLgE3shAn4KhRVl+MARUWiGiODkWZLEWdIGIvEeiEqnF+CkQZSrb9NAE+83Ju9WJlQh84ewVBKNXD/KufoZKXUwNuMuW0RTJhUs3P2zg2rr/2/v3cPsKsqs8VW1L+ec7nSHQIAkkoTbgMPAoKJgBETuICroeBsZSMRhfnhBHS8o6kiYx9sIqJ+MzuBcEHz8Bv1GkBEEuSMMgoAIqICgxMSYCEIgTae7zzl71++PqrfqrTr7dHc63enupNbzdNJ9zr5U7UvVqvWuems8oPsBmIzKXUKmgAs7j0UUbSgIsPfFfsdCo/T807eUGJOOQfeYnjseXgrVQ0XPliHLXOkt2fEodMzJQslJRZb6s0tpm6YflgP8zpJIDCf/ti71HAkzPUsA0swyrVLIPBWVXTdvfU1zbcL3pGO2b+m3P+HAju8b3iMiuJWz/Cj8mLtlkqYKh1z/BTuQorLq5Zga3jIq1E7RNhS+o580ryPtraO1cZP1LZVssMXrSESc6toaHPKuWVLPLfkOc2qFgwEqC/3eQf4TCdGc/PVSI6qx66674le/+hUWLlyI66+/Hl//+tcBAJs2bbIzkbc2xtVr8BDe9hTOA5jHxoTJwhEbycdJ5qaD26nzW9AnJ1licxcJyo2UZTa7MADbUKT1HK2iQFqv2fCBpxLITu8FmITNpzvT/6Gngnd69Dd9Ro2/kNJ2OFWNkj1GIpH390IV2iOhGzot8yfWP9P0Gzc2auersMsM2hdliCuF/qjxk0mCwkxrp7Jm/T021YJIJFqDwzo9Q9PPLzVeHPnzf0Mx3HQkQZY44l69jMxUkCneUbcGhyCSBHl/L5obB1E2W0h6Gzb0w8PM5NUhyCxFUehny1tuhd0nWibHyw9WuM5dyFE69EQbfgGjWDISQ+ezRKZwKqE3fZzIWeaURI60kdv3APCJvCUHLPM3Bx2bnvWst65JdZdwEb0vgJ7RRws4l5TgM0utMZ1mmHptApmWpcv4XnAPTtZ5Pv5/YghPCV99rQph2s8Kv85e/StUl8lGWq+hLAq0h0escpTUa3ZQo4rCpjWxA6MK5cfWs78HhZl4wEueMDJI96g91ETZamPE3KcweWzoCwvBST4n/jzMPJ6ByWRhphvLtwbe+c534q1vfSsWLlwIIQSOPfZYAMA999yDF7/4xdNSps3u5v/xH/8RH/nIR9DT0+N9PjQ0hAsuuACf/vSnJ61w04mw0eWNIf+OXq6yKGy2Z9sZyQQoN0/q3f0zZwBS2IVdRVKdhYQaIiIfXuLKihxXXgObaDUqrKNMJIqielSqitKFCisaOd0ZJd6UeFueRHrhNgCuw5FSzw5qtc02Jp9TUA46dlWyOwBWoqeOgZNaW366doY4ts3+REI3F6+++2v62LlbywvQSUi3VsNqs1Bnc0zYQoc7QlXEMyAHJvwQoULS8X3QuYfHp+9C1cR7Z7gfqZA2J1nHPlJ2PLs8fEbpBez3LDzj9m3bRLGU/TxUX6R5ZkKFLLwu/Np55Sql+5+dH3BqB9+v6r5QOQCe5z+YCEIqXFi24J7Q+1KlXIX7TWUom9Q7wM/vNN4UDoSyKJEY7xkpi/ZYRECZOh2Gcvl1sNcqIFLh9rwO9veq0N5WEqIKpVBsIQna0v2nGytXrsT++++PNWvW4C1veYvNtJ4kCT7+8Y9PS5k2m0Sdf/75OOusszpI1KZNm3D++edvOyRKyA4plxp/Gl2RysFBXpIkyXVWYbl5EmOSJ3pEbM6d1GtI6jWkvQ07agP0SFi/7In9m2aphR0P/W87hyztIIPu/P7SL6RGdJST5bWh/3lzxBuyULHgITkKKaTGLyESk3vHXFs+/VqajOSq1BK9PRdrMLPehq+UJBIJMiADyiy1x1VFiRROzZN5tllhjcPvutgk7Swgh7VJt2NWUCJxxL3/Mqlq1IHf/gSK3oZNnEkoW21k/fqd5J1G1t+jFb/BYRuCS/p6vP2q8kpVkdPw+25E3fPoMM9PVadF23APUHj/AJh3Idf3j/VaRIJtnUu/w7Qzr+zfncSCK1xh2DNUpfiajFxtlfDXGrTKRc5C1dKFnnkCR5qgQefjy92E+er4+8rDkCFEIq3nKSQQYR2ncoq+e14SvQB4q42k2YLoqdtwb1mWXuiTiEnVfbK/s2s/FmRwX7zyyc72sTCLoduJROb+lNxOwMjn1howRWi8+c2d9pgw7dLWxGa/Pd0WC3zwwQex4447TkqhZjqooycFitQAerEKswacGN6EZDPSHLz4a2ejnUiTEFLDrtQuSxTQhmHyUwjpVKrO0Xd1DB+At3wNjcq5lE778lBaEYRfOKyhNk+RZBmQJP4070A2L5ttFMNN71hpo4aSZdfmZZfQxv204WbshB0yhRHJ76CK0ubuouNkpGK16B7mNmSoihKoj2/pl8Pvuhhls21CabKjcS+lm2QgEolX3/01/PiV7wWALU7ASh4SCi1TBvL2cNOFVRPdWZfNts2RRPeiLErkxmwPAOQm4cR2LNhZSux5AWCVsFCZtGXKM/s99+KEoXB+//1OLrGkmA9e0nrNEm4iyHwfJAlKWXjEnJ7P9vCINopnqX2XbXmT3JKvkIQAwYCDKaScuHB1lxZppjoXrRbSMrchPerIXUqFThWPriu/D3Q8PtiQWarbIboP0s3E81Q0KSE2c6A3Xhz10H+iYCFOOh8lRwXCHGadoVMl/ZAloJ9VWrC8imTZOg53Kn4hCQqf4aoBKJFsYczqZCmgyQ2jKX2TiTg7b2Zi3CRq3rx5dtXmffbZxyNSRVHghRdewFlnnTUlhZxO8JeQv+Tca1I19bU9NKI7sb4dxjzHK2/8Ioaeeg6Dw023vpeUkD06iWbBwleS+Zs6Rtt59UygjjpJiYQ1wGH4QY/uazaJqCpKyBZrkIk4jtIAElkKk/glWeYTvkARs4bSoDOXgDciTxs1OxIvi0J3IrJwjW9SdtSf19d2KL0NyDxFc+MmNAc2VV4vADj0Njehok3rdRnS6AhK4XXkpTHNE4761beAcZCU8cBOIMgypkpq8mTXlaMZb0iB3joKs34ddcJlUSDrbdh7xGe6AS5JKyEMa3DymPIp6ex32sOGaTNHbItmS3f4eVrZEMlRQj3Wd2iOlfCMk6buvBwUak+yzKqZXE0igk4KpyUrmb5OnAh45fDIvj8rUCUu3Eh5j0gpDYkMHQugDOlOMfXaIGYcRxN2/UcA9l0Vicnoz64fTwZM75w+XrLZavm4kWZIYNRO8oEZ36atA4P3fBUuZUNS95ddyft67LZtZhDn9eODWt4ekfKp1+wbduSqMKlhpFOk6DoCLgWIXbLKhFW3pgpVYBIylk9KSSI4xk2ivvKVr0AphTPOOAPnn3++t+xLnufYfffdsWzZsikp5HQhnM1CDSt1mECnxMwJhkwSlIMbcfRj/xc37/sOAMBhd/wf42Uasi/kyOAwNj21wcj9NS+hHknb9DvPXxIu8+CFJLqQvyqlIRx5UUMjikAVoOOwxptICwBvpGuvSYUEnwTbEHieFipHSNYANrWeOhQylJrZZPQ9T5ZYttou/MEXNTbHIPWqCstuvtDrrOiY1PHaddXgh1I7UJZbpEIdfO3nUPT3oGy2kSad4QSe4oKHoexyRAjCu+z/tLeOkdIlNaTRdmjG1edxuX3sd4lEOFWfrlWSO6LJVRoK5QJ+hyqKinQYLFsIlZkmdFQ9v3RODq9DZbmC0kbNKZlZhgItL39SeC4qG73rpALxCRyAS5ZLSxJR2Yi80fnCdzLJM6S9dYjBYbSHRzoyiofvc5XCVPUsh4PApFazvs1b/vKMju3Hiyp19ejf/DeQ5VBwYceUEahw9l3JQmi8bkkYMpYSWW/DqogdsykTp3jS+8A9czQD1FPdGSEnbxV9XhWypm3TnrohqkOI2H4xbhJFMcc99tgDr3rVq5AFS4Jsy6CGttvsLXrRqhSa9qZhyFZbS9sjIygAm/m2PdzEyHMvoG1Gv3l/bydhgZ9tmb/w1AnQ76OpUGEDZT8PZHXqKKgB4fl5bPjI7FOaRWx52MxT6IxCQL4YCsFU5cEh8kP14Qk6eRl10lO9hAjvmOl8ACBTvcAu+X1ojT3ysaVsrTRV6rXXUqPmvPS7n8YDb/1HAMBB3/9Hm9GbL0dBaoaXmJS8QwHJJRL5mp9dAqRb9s6IREKWEshTL/8Qn1nHR89Zb92qGqp06wuWReGNoun/tF5zGbsZMSeiAJh8aGw/rhqGipAl44ZYEqm1+1YQTiJufFueFJEjgU+gaDvBnp0wlMzPJ/MUicw9Akf3lT+H3EMkM700DeCIN5E6fo6QsFNZ6HicFHFlkEJxMs0gszYSGsAVWrnj5DCp53YAIaSfeDMEv5Z2m0lSoG7ZfzmOfvw7gEwg6BnP9UzHYsPTWskzMxPtO0x1MGqTMGQnMdeZ8u8RKlVARlpD3xj5z4R0ucSQuUk3ZavthWqrwrUySVDaAYq5R2yb0Ac61Yiz82YmNtsTdcQRR9jfh4aG0AqM1eNdjXmmgxJScvMz+Z3sNmw2Ggd13u3hEciiAIZGkDbalgAVzZYmT8NNncE4kajN6/PWw+Ivsyf9hx1Y8Lcul5+Th8BntnlT2uGP0u1otuzs8Dy1qiw7OsUQnlJll3KQnicqXOIjVDh8c67zg9C+AJD2aB9Z2W4BaQbRhs20bY9D65wxP45IJERdIjOpFohIAWZqc1KaEJkOlRABs6NnIglSdr0GdH2VLLbIEyUzHXYUplyEsiiBorRJIbUiZkgpWxw6VJKoHlQ+maW4+/AP4JU3ftH7DnDqH0iBLWipE7dEi2QL9IbeJk855IOCCsIfEmwKz9K95veuynQt4Uh6N88L78jD/UUikdRqUGVh6xkqYYDz4YVmdkv8m+6Z53Xk3iV+fekcMk/1c8zrmDGimLg8SnyAoYYD0zRXrILf7TUpiykJ54k0A2SC9gsvAHDezqy37qVB0fmiWjZFiJf9nrU14QQWCXf9iKjy68/Dl/QMWC9Z4tS7stlGu2ia0HzaQeA9UmXIbJJnaG4c1O1BvWbbnqlGnJ0HvOY1r8EZZ5yBt7zlLWg0ts51HwubTaI2bdqEc845B9/97nfxzDPPdHxfbKUVracaMkuR1jJP7eGqjx2RB7OybEPPwm3STMuVeYqi1cLIhhfQGhw2jUrDLhNRVQbbeDDFxRpa63nnPhUdA6lQaUMrDXzNM2oIgOpQX4iQ7IQNDv8/vAZV6gCvqy1D5od3ZJoBqSFIlkQlUG23nIvo7YcaGYKglBIyQdLoAaSEag77SzzIpCMUmvf1Iu/rRXNg0N4rTu7awyPIehvasMt8GHbWWLcZUuxa3fqSM3Hkz/8NR/1Cr3S+OWTq1Xd/DUWSoDZvjl3CAoBNcUEeIC/sw4gMkUD6vmpkTyB/GTeP0wDA6/gzP5UGJ7v8HFYZhL6uMs2gysLch8KpOVnqpa9Qo+SgsucPyAvfjnt/ws+pDPrvxJVHuudHmDrRPS5b7coEm3YwYN4FGkSlZpZtOCjgqjbtb5Wvphvc2Mz7bCDAjeAyzSAavVBDg9XKLAtb8e/sdaT6T0ZUgRExkWYQWY5iw1MYelrbFGo7zNGDxR369KmNIpf21iGGKV0FOu5nmFy387SJI6qSkWs45ThFZwhU1CVkK0Vb6hmDad1fxJr+F4XzdtJEkaSe28F0Us+RbCViUpYKxXZuLD/ooINwzjnn4Oyzz8Zb3/pWvOtd78IrX/nKaS3T2L1mgI9+9KO45ZZb8PWvfx21Wg3//u//jvPPPx+LFi3C5ZdfPhVlnBbILLFKBoVo+Egw9Fx4nQf5bJptbz02mpXWHNBqQlpBgng4Ieut2wSA/Bzc7yLNcWzm6nBUX6EUFSzMpWV0bYhO2HIw1MhVqWGd18pXfOizhHlBANPoy8TzGji/mSFHaQ7Z6IXM6zqkkWYQtTqQZpB1P62GSPXxZb3HLrEj8jpEkgBSQjR6vTKmPQ09xZzKwK5J2tNA2tNA1ttAY5d5aOw8z46YiTSlPXVbTq7khctHUJjBEjxzrlff/TVNEspiwgZzL5xbunUJaYSf5JkeHddr3iwuut9po9ZxH23YttRJQpN6rn1Cxq9D33EV1qpIgWrE1SciK/p6J450mb/1uROr/Nj7aX5CckrvHylgSa3mfedNHODPWhLej8SEnnJ4M9Pos9S9lzLVodu0p+GRRp6riNeXqxbhNaGyJSYLOr0fdExSx4jo03GqZs/RdURZOMXMXBu6fvx6kWrFn3kikeTX3BLcvNebXZnSHEgzFAPPoSz04tJZb8N6ojihK4ab3ozNSsU7SXR6kwr/WKhGhvcDcO1Tx75Gsarv0GcHkp6RHLDvi7U1mGcryTOkjVrHuSOmFhdddBHWrl2Lyy+/HE8//TRe/epXY7/99sOFF16IP/7xj9NSps1+An7wgx/g8ssvt7La4Ycfjr333htLly7Ft7/9bZx66qlTUc6tDmUYOx/9lcb4wlfxpqVgqPEsWm1PDWoPDrsEeoXO18P9LADcwpmFM0UneWqzehdNvQJ5lVlUryuljZRo+UoULcvBO3UyxnuSPlxjVLbadtaUSLQPg4yc9toU/oiPK0+u8TMdFVPSVFnYjiupu7CNVpoyiFKTH8gEIgMUy7YsMt2xqVZTZ1uv1TUZKfVisarV0sSJiENmltVITKNeFpqIpZkjWRQykYn2K5Wl9VEAOucUzUZM8szVKels6L2OzpyjHBp0Spw5tzKdnsDmj/7T3rp+nmjWklE7st66UxOpM68Iq1nyJTvXC7Sz1WRp0zEcdsf/8cN3PBxSEUbj74m9JlyhoL+DBLRCSusX4wQGgFMW+TFoOykhysJTXPh5FBFrUxZPyaBnX0rAPAc2tMW/A+xzmfZoNTT0cnEFjJSKjhAiD9UzrxifJZg0emySWaeSObLEr6kw5VVs0gkvAy9XeO0IajMTAY+JNIdIM8hGL1S7iZENAzZlQ9bfg5ZRUMuW8UfSZTdKHyl0JXyfGK8fr1HVwK5K+esGar9o1p3nezQWDpmnyJifTM/sLLx3QKZbZ7mRYhKUqC3dfyYgSRKcfPLJOPnkk/H000/jkksuwT/8wz/gE5/4BF772tfi/e9/P4466qitVp7NJlHPPvss9thjDwDa//Tss88CAA477DC8+91Tv17Y1kTViB2gMIYJRZRlR8JNTynKUrsmnd7WrWEXep8AeASHj6AptxHge54AOMN2QKCElDYTdNlqu2SWbKYhJ0C04Cz3E1RNM+9QHnhIh8IkgXfJg5QQaY5yaJNuiAyB4SQIAESt4TpcOiZtl2ZQbWgyZY6JstSkSSYQ9V67j8gA1YI+NhGqgnWYpU5aqtpMaZGJVSCKkRFHAmXiZjVRudzF0qERprJ0fNdq6X3a/jMzFtKeBlRZ2ISaPP0EPUOU1kEGJL2KMAPVM7hCIzYNEvh+QOArqxjh2xCZV4mAONL94Z+ZZ8Bmt6b7ExbUqHmC7icYSWPEiBM5IYsOYkflEm34BMpegwTK/I8kgTTkzJ+1SF47/TcpZP60+wQygyW3VqEDUDZ1aB9lgaRWc34oql/lO5S465XmEGVhQ5H2uTP/E5n0rg1TAycLIs0ge/she/vQWv1rjDz3ggnhuQS4qijRHhrxCDyt45fN6UXZbqG1cZMdTFLNw1CkNwCgcDAzjVc9/3xBbfrc/l5KLw8dtx/kc/s6yD8lTa0K8U4VIony8dOf/hSXXnop/uu//gu77LILVqxYgXXr1uH1r3893v3ud+PCCy/cKuXY7JjCnnvuiVWrVgEA9ttvP3z3u98FoBWqHXbYYTLLNq2QqQs7hfJ+2PgkWeYk86TTg2FXFjfqAYHCMNQxAs4rULTaaA9pmTvv67FhPd5wqKI0SR+H3VpkPKyUSJtMU5vYnVTdbVo0b5wAeLmnAH9UzUGhE6SZ1/BzI7i9bpQgsFaDbPTqDop5meh/kWb2B3QPQqKV1/UIOMshsgyqKHRIL6+bTkMTJ9HotcfUapJRo8x+MGqUtOV35UhqOjmgrZcJMdr9eOddRa5Mub1tZIIjf/5vHdfxuD/d6v19zO+uxtGP/V+trFDqjNxNy+9mkObKBODnyAqVE06ywnsr8xR3H3uOFyIazTtHamNHJ22uOV1vCtHa69Ru2efCr4t/zYBOtcqeyxBVTZYzu53IMv2T63PabczxRabDT+GzBbClSuj4tboN+XnlYCFL2lby5ynV55f1HvZsSoha3Yau7X55Xb8X7Phe6FFK+yMSUyazveDPI+1LYcrQ+0THmQQc+8eb9DXI61BFgXJwwLZPIpE2rxofzHGkvfreJL19nvG8CnyQ4E1gYHXp9MElXmgz3JeHWClULIn0m2cDqRsg2Xs7itIVMfl46qmncNFFF2H//ffH4YcfjqeffhpXXHEFVq1ahfPPPx/f+MY3cPXVV+Nf//Vft1qZNluJeuc734kHH3wQRxxxBM4991ycdNJJuPjii9Fut/GlL31pKsroYWRkBIcccggefPBBPPDAA3jJS15iv1u9ejXe+9734pZbbkGj0cA73vEOXHjhhcjzTu/RWBB53WuEVSG1rA9YHwIRHsCZcQG98KXNR1L4C6qGYTE9ojUKEBvdiEJaibk2rw9JnqFobuhoLArKf5SnQOFn903NavPNgUEIZnjvFoqg/z2/Evc05XVb93B/umYegm258gMpIXv7IOq9WgGikR7veMtCEyAzelbNwqkU7ZYjRIDpDEjRMqoPV7EAAKYjLQuoNIeQQaio1rA+Kl0macOIcmTYV5nSDLTsvCoK09mzzsuED22I0isHXbtEm8ylxC37naaPNeJyzhzzu6uhmsO6vmzfKh9GaK4FOhWnMOdTRzgXPmG+41VnA9ALLMNkgifwLPeqLD2jtr2PocIYEGQdcmvZz+CVh5EmAKCQrQmVqpHCKir6mSo8UiukLoMaGbLPFt1Lew573sSpnjKBMNPk7H2l7XMXQiZypT8rXR0qnnd7DK4Qtd211OQmc8e0z5L5m1Y9aDc7ysSPK7JMh/eqBjmcQHGCNc6160bDsX+8SV/fRi9ErY5ycCNEoxe9C3fCyHMDaA+N2PBY2WzbQZyXzLfeY5Vimac26SkN9sIZtWg5fxnQqaCGBnuueHZtA811KdstlO0WZF6HCK9RkkDPfDGEd2gQsrl1JlPpSbhbqkRNUmGmCbvtthv22msvnHHGGVixYgV23nnnjm0OPvhgvOIVr9hqZdpsEvX3f//39vcjjzwSjz76KO677z7stddeOPDAAye1cFU455xzsGjRIjz44IPe50VR4KSTTsLOO++MO++8E8888wyWL18OpRQuvvjizT6PHqHSSIR1uMaHoF/ItjZFMvOjM+G2tdk3T+2SKVzSpv9HnnvBnjNt6AahPcTmUxvILLVGdFKwSLEixUnmeuYYNShpb91M1S7RMgnheOiRQkBVZk2RVMjfppFW7VZHQ2RhOk0ANtxpR3S2MtJd11odIsv1yvRNs5iylPoc7aZuyBq9QKsF1W7p0XzaZZ07mViPDPmmPC8VKVBlATSHAXMeXW7q+M01Nv4Or+Pnigj5sUxDy6GIyFWFS1rVYbyjfvUtXYxaA0c//h0TrmxZD5itIutM+PlC75PvU5K2Top33qx80nHCSnQLW3iz3Ci0xjtpIjbmetnvKAQFONLrHdhXsTwzfkDQ3GehMqQnF9jON3gOVZn4zz79ntf1NaXWscI7JLLcu0dE7gWVNc2qyROBrpUZKMCEPlVh/m43vfpp9UqOHgaWOnTtXTPAdPzwn8lQ+Z0Ajl33IxdKrTUg670QtR6dgyyvo7boRRDJOjQ3DmqyxNIUyEYNEswET0SRDxZYSpK0vx9ot9DeNNShoNtwpgm3A44Y2WeWlLs2IBLun/N9dBomnGoGz951IkJu1ERL0rcCYjgPuPnmm3H44YePuk1/fz9uvfXWUbeZTGzx1IIlS5ZgyZIlWLNmDc444wz853/+52SUqxLXXXcdbrjhBnzve9/Ddddd5313ww034Fe/+hXWrFmDRYsWAdBO/hUrVuCzn/3s5uev8jrUDJAmQWNz2JptRcKyNBPBMZ1WMezUqNaGFzzvE3WE/P+0L7frvvGp4u1Nw7ZTJKM5qQ5lq43mxkET8utFOmcOmhue040WJVY0hEcVpVXKAO2pKVttgK11ps3TzvcVohgcsPWjY3oEqaKB12blojMEQw1qq6XDKya0o5rDtmOleyDrvVBpC2rTRsi5O0H29KHc+KxTaCTlbkoM6dBKge00TYjEkqZW091b6M6UN95ElhTr+K3qRY0zf07MPqosXWcI1mmXLrs9hRwtMSJyQH8btaFDkYO/7AcHjci9tduC0bVVRahe4TFMqJIUMcLRj/1fL1s7DynbEBrvsLnaCLAwLOu8w9+rwqDhdoCnJIks9+6ZQtBx0nU1CkR4vwA48luhgvI62X3NoIDCVlpRaumyGAVLAZrAU1mtl69TvbUEMq/r+x4qGhRu5oOO8DpR/bkaFt4Pe50DYtruHKyNB8f+8SZ3PczARtR7IGp1KJkCjX6gLCDn7IDk+Wcgh1wOtnyHOVZhJ+Va9s3TZZEJ1HATQvppIJJ6jmTuTiiHNyGFM/eTjzMJwsfhoMZ+bnyP3qSHCjJJijsNnr3BFH+urMIaQ3pbC2MRqOnApM3PfPbZZ3HZZZdNGYn64x//iDPPPBPf//730dPT0/H9T37yE+y///6WQAHA8ccfj5GREdx///048sgjK487MjKCkZER+/fGjRsBACKrOfmeNXSQEqAQD2DzyPCpsWkjR8E6MlqlXBOhHqQ9dZStts3rw7Noj5CSVZR2nS3KVJz19YDPJJOZW3SWFJvM5E6ifEY6M7quH88+zvNPqcJlEaYO0mZqZn4DIngyryORCYqREa8hsrl22k1LmqzaRReYRtdSQm3aCNUcdr4n1rBRJ0UNnyoLiJ5+yHqvZy63oPtkQ2cl1IhRtmoJZG+fGTkOo+QdGzWo1EEaFYEaTR3WKyF7+kw5Knw7bFSr7GcJws5ZAFDUqZvjlO2WMyZKZ6hWI0OQjV7bUdl1yJjp2J4/IXNxkC+Jd5xMHayEuRakgt20x5v8OgbhPsGJT3gPjAnbJyU0onehTUX30ZCQDsWnIzTmH0+x8HrnkugOduZeSCIqfid1ybtvrAPl95jvA0CHiNHsqDudo1PJLD2iD8CRJmYn4CqeqPeacOaQH8JqN9mzJ/V9NqFw1Xaf0/UA4Ct3mwGtSJvnMK9rM3mjV187IQFV6nflhefMYNItMJ3M2wVJcG0EqZk0+MnrSAEUsmkUQe1pFGUJtJue2VwVpb02qt30Bw2lm0hgbQAU1iPyDqDaCyc98umFn0ntpu+yiV3HzcX2qkS99KUv9dbqHQ0/+9nPprg0nZgVSS6UUlixYgXOOussvPzlL7fGdo7169dj11139T6bN28e8jzH+vXrux7785//PM4///yOz2VvH2SjRysbAXiHn9ZraDadGTyFHjnVduhDe1gvQpz3adKX5CnqO81FUs/RHhxGPrfPdopkLM2LEk06xo5z7fdJPdcjPgojmHBU2ps7j4YhH5lpSJrPD9iV3GnZDh6ykb369reHRpA2akh7jNpWln7SUMrlRGqa6dxklgYj7MQ1UtDqBqUy6Jh1VZa60W8NAlkG9OjRK3mNqLOAlCgHN7rOuSxQUtiPmYcpFEgzwFS7BZC/yPhpRAYd4jOhEgWjaEhNQlRz2MrzIkmgqD7mulPHT7moVKvpzehzz0bdkZ/Q5wWtvjnS5xNQasztdUpzwPhgFOA6EDJwU8chffWJz5D0vEbSJZasBPv86N/8t/4odSE5CtG67Rk5sgS5M3xlQ2q5f20sgQq271BSEJjeeWdYMkJF25FawM3rIQljx/SUKp7ks+I6uec7A5gPkO6DT9rctfMUDQTKJiM9woQTZaNXH29k2CkomSNdlmS1m5rAebPw/DqEqRKojCFZHhdkApGUUDDheJr4kZo0G0qTw+HVq2zb4e3e2+e9A75SS8SxRDon7yA4qii0GV8mKIb8BcO92Zll6dJmcIIUqkZ0/NRFElRZajLMB2VU7xRQbSLmpm0ogmNOEbbXZJunnHLKdBdhVEwriVq5cmUlgeG49957cdddd2Hjxo0499xzR922iq0qpUZlseeeey4+9KEP2b83btyIxYsXWw+C9dRUZGK3xnFmfNRTevtsOKxVlGjspBdrFonUCRvTHJltZFuu86vVkUrKM5NANHohR4aRFHqxUG5eFvVeZ5QcHtSNRllY5QZAxywWb4mIokQ6Zw4AIKkPWyVLjQwBZsq1N32ezZYhOd3Ck8X90Z2dMWcaKgEKV0nPzGvvF4UHKA+U+QxoAXldEyhj+uZeIRtuyzKokWGIPNGhzJEhqEKHCV2jXTIzOJtGnmaeYkHhBvt/rWFN7B1Tz1nIAFKa/D2MYHmqirTlJx8RkZqb930Hjv7Nf1tjtGeqNmUEYKbkS6dMwvckCXYurxOidAFMXVGGfMtGL27a40045ndX622HBh0pojKHISdOkLuodPQ8CnN9dagThvz4oUKrmFHKAYYORYmrBERY2ecAzDPH7lGgDHI/ki1HmtmyhZ4p53eTdls/q7b25YXqliVNtbp9fkWWOzM5L6PdB25yS63uiGyrVamuKE9ZajlDNb+ONFGDBh3jxDFrrsFNi1+n/2i37Ptj37s006E8VQJl25afrAlZX4/OD7XhKcjefmum16lOBp0CSETPzqbMzYCRERqpvV+JnONbCNLMM+Fb3xntY96pjjAmXRN6nqy/yhFxem/CMK3I65By6yhR2yvOO++86S7CqJhWEvW+970Pb3/720fdZvfdd8dnPvMZ3H333aixDMUA8PKXvxynnnoqLrvsMixYsAD33HOP9/2GDRvQarU6FCqOWq3WcVwP1JgBQNJwki4AyAS1HeeiBt3ItTbo2XNJ7xyIRC/FqorSS2FgVYNcN6bO75DZEJZOVmc6nlodCWA65pYJPUnX+PPRcOr8E6ookM1zDa/93tSnHDRhy1oDSa1uZiNmKI0vCUDHTEKRSL2UCoF7UgwRoLKroUEb9hRslAdTbwB+BnKZ6LxPsvDCF/wa2WnpVN8wRCTNdSHztvlbE8umUW/MVPaKpS44IbH1ag53kC0KLwKsUQ1SX6hWNYGi66xMaEKNDFvyR7h5rzfb30kNolAF5cWyuYtYo66VNZox6F8zusaUM8uWk9WDVAk5dydW9mCZEzI9B/WyoaQk8b+jsGtlCCfRYSge1rLXiYdTE+c54wSJOjro68qVP9sBJgkUcqt68cEQqZAoE+avcwSNElp6149dL0tgmAKkiVnm3l9Wjo7nlcOoHPS7De0ar5Al2oGh3pLsotDl4IZ1ft2oLOz4m4WywDFrrjEqmbkmmSZBmuAZAmXuWTm8yWVQTzPIebtADg/qLOZDg0jMMyZMyglLWjhp6jE+Vrq+ZjUDkddRDm9CssMOQLuJ8oXnbDGtt5LautIpcNQeVIW07eDC3ovMay/dDMyKsLAcX6hpS1GoSQjnzfK182Yixk2i3vSm0WXf5557brNPPn/+fMyfP3/M7b761a/iM5/5jP37D3/4A44//nh85zvfwSGHHAIAWLZsGT772c9i3bp1WLhwIQBtNq/VajjooIM2u2wQFJ4wIxH6mL6nRsp4AZDmSMmDQwkfU7O0Q173G2OYRhiwaROsOZUUiDQYeZeFJiZlAT2VnxOj3L3w0kjT5DUiwkHhAlJKmsN6VpFVBlgupi6QWaqleNNBqFZTj0qpI6T8TACKdkt7H1j4QB+EhRpYOEJfcumNpoVMoNByjT4pL9zzY0atllTw+2PvhfPhiNQsBVOWdqaaYp2xd488xYE1qLLsaIhtuUZLvGfr4Ua7YSjr6Mf+r78MBw918A4+2I9USKtk8DBJOC2eldMqYH/2Nq+ox677EQqu2ljVwzen24SavIPm9Q0QKk88pNaxH/eeAL6Cxn+3dQ6OV7GtnUXH80+ZY/PuxYZVww7XnlM6JbgM7gW9x/T7eM3HXL3yQt/aP+WIRtah4NIECQr7ekSy4vje4GpzwAkaZY0nLxSVRUr7Tsu8bqwRvVBpZn2KHfU27Ravnx0QAHowlSRAvVdbGtotTd6SBGAkajQfHUDtnDlut3eVE3FeJ/qdrvFWxvbqidpxxx3x61//GvPnz8e8efNGjSxR8u+tiXGTqLlz5475/emnn77FBarCkiVLvL/nmDDUXnvthd122w0AcNxxx2G//fbDaaedhgsuuADPPvssPvKRj+DMM8/c/Jl5gBlV8Q7UeGKk3yBK7OD8Cr39HVJxOmeODU1ZM2ZiYul106HTaNPbUU/bFXnddoilTLR6Qw1/rQ45ZwdjNDWNE207PAiR5pr0FIUORTEvhGq1UPxxtamf8w6oVtOGJQF4ngaR1yF6+jUBMApBe/AFGxqUvf36GgCMfJAnpLQmbRpxWkLXblpFh6Z5E2lRZaFJKMBIVGK9URT2tK8Vmf/NfVNsJG+JmFGmKtURQwqJPNsknTTFvCwBq5YF06elDiGCqRCKh2dkoK5wPw2pU0HHRp48mfvJPT1iSqhSGHgYgxFLmkWmn7VAfRvhoU8qD3tGKjOIMz+Up1CWnaTGqAKqLD0vCm3vgamrvqEv6eww4YfFrIIIPxxvFU1SJdg19dImkPIV7OfOaZ4zbiymbZKG76esIjBS2nexYxt2Pns/TH407vdSLAuJ9fdJWX1tSD3j3ikEobqxQM+Q8ULpSQTm2VClJlPmuEk9RzJvZ4jefktekp0W6DqZySdkKKcEqFpRbGrVnaXkUK2mS1li6q/DzYltR1Vz2KX7kNJ77lTTEKOatgqoVgvYtNHLd+ZBJs7UTrN+CRT2N7aACZHRCWB7JVFf/vKX0dfXBwD4yle+Mr2FqcC4SdSll146leXYYiRJgmuvvRbvec97cOihh3rJNicC1W4CjT7deRkSVA6SodmFdWx4xSR/1J2TU6l4ZySyTrWHq1xe2MdI0eSFsB4pE7ZQZYGkbwcbxhC9/YaoaRKRzNtFf5fkkK0hIK1BCQnRMknsevtQUEdO5uxWU4evKHTFysQTKdqGKM2QjAxBJAnkDrvo7YYGra8JgO4E8zpEWaDcNOA+I/8LNfA8UWe7yTwhJmQQpAZQ7ZbuXEwDZ0fuYWNY8bcKVBi6pxRW0P4yNpUdYOdnhnFuWqZrVBZ+h031MF6NcKKCVbfSHBge7PDe2Y47nMFmngk/WWUVgWI+ow411CSRZSTg+I0/QUHPACVvpGPZ4/pG9SoFThNhF87yRvaczJeOVGulUIcLK1WCbkqpTFiiSXrXcoRKk1d2yQhW4KWiGaZAd+JU+Vl4f9j39KxZU78l1E1LaivVQtPxUyoQG/5Nys77HVyTKiLFTfp0jcdFoKQJ1VO+NWoX0xxKphCqBBT57XS3kszbBbJvnq5j3qfrw9pEOyvPQBjVyhIk9rmXz43aq2FHomSjF+XABruPHgyZwYyZlGPvr2lTyrJwA8IwbE3PJlvZwPdCZnbwjPYsz2A5w7F8+fLK32cKZsXsvBC77747VEVsd8mSJbjmmmsm5RzC5CeSvX06NcDIsPXU2BlOaQYEUr5oNz0Sodot3SkAOqZvlCNAT2PvCHdR3L/eAzW8yVMLyEMkAL2ArR0tZXo0qFzDKvIGVKaJE4zcLliHK3v7kez8IiR9O+jvm8MoB54zM4J0Y2OzZ1PDb+oj+3bQ1yDN/ZEhk+qlSXJoZxSVjJBQpwlY1cZeTxBJdR2ZvSdkmq8KE9FsH3YvwAgE1YNmNbrwiK8QiDSHSpmnispD5+GdIPlpzD33QoioCPNQPazyY/wblkj4pOyY312tlSweXgjSOoTEpPI8pT+jzqZRMGEtCuWdsOk+lO2mCwPVewE57JmnbdgwnBJuiKcaGTJLu+T2PntT+1no1v5PqpFZroVChN1Cc/b6Bn87XxmbEUfPcqC+8CVUPIJVRd64QlXx7PEZj16rxO8V9zBRSLTtnjMetrehVlI/jQFb5HWUgZpnQ4qdpfYIBzeh030QeR3H/vEm3LjrMVV7+3WkiTY0qKPcTFnNmslBIT2lFRpp/FOq1UK5aUBP+DDL5thJEqQQWbXXkCs2A1n2zUOx4SmoZqHbnryuvZs8cSwl5SWwxb/58+oWsM4g+3YAyhLl0KA12vMJKuChR6b+kS/N3vfm1iFR7VIh2UIlqT0LlahuGBoaQitIXjyhqNMWYlaSqK0BkWRGOaoBwy9ANYd1jiIpdXzeLPfgjVil1NP1TYfuScemMZO9fbZTLmGIFGXcbcMSFCETKCldw0PT7GUCZEE2bSFtAybyBpRgYaSiDZWkgJBQaQZANzQCQLZod0u+Smi5nxQltJsozf82lGNM0c7gWmiyR0ZyHhqhGVNEvoqALAKgMB+gQxZqZNiMRP1whEemqIGTEgkbySqTtsCbQs/PQ8ciTwfg6sIhpU/mzGf2ubAEiikJNDKmDpB7Voh0eOdgRvKy1GEa2j7NcfTj39EdP6CJTNBZeKNyXr9Q3WGkhbYPlS7uv7Ijcio3z9/VblnDL31nw4+mQwdcqNrWs8rvFPh5II1PiZKukvJCihIqfF2Afw35/QIswfVmQdrPS18douNxEsSuKS9naIB3584q1IxRlKLwevC/g884aZd1lzvMlpc6dMCSMDLU82vkpc+gZ3A0Dx+vS63u+RFZ4TSBYlCtEd028hmApQ4jCpO2wWUWTyDqbKZrWejBhwn/84k4IjOD0CxnarAedAIsPGuuo5A6h5PI61phJyJo1D2bqsJ8z9OkiFTnwlJF4RFfu+wQfVYmENLlGZxKbK/hPI7BwUF87GMfw3e/+10888wzHd8XFbPopxqRRI0FVboOhdZVs42UaeDMSwgwFWVoEKrVcguJNnpdLqAsQzHwnJbGjW8JgFaeYDrmvG4ydZvv7VR4CWQ1N+qjMgJ6irHwGzmVpPBmzlAnIARUomV40RoBLdoq6zqhZzk8qJPb5XXXMed1q1yFYTXbSBHS3HXIMoFs5FBlXY/u2k1GAJgSYeBm87nOxJKkeo9ZX8sQspEh2+BWhda48mBnJpKXyiTxQ7upR6NAh7/BzXbjIR/nmfGXi6gwItPnbH+d76q0o3GRZlCUC0sGaxNWhHu9mWpUJsB6n0J1jcpKISYqC89OfsLwAyjJT0bn5ykTckd+vOV5qJzhNYJTmVS75XuogmsG0CCEVAIiQ1nHsTr8J15dfbKr2OfefQrIJzesu2VboFXGQK0M82x1ELBQ3eR1DEiaTfPAfU1WPUyYaZ/Uoxa7RlnHMW1iTSJ2ZvacU+Gkr9hy/9cY4O8PHYsM5d69Ne2MnLuTe3YSo1zVKkLtMkiDwu6xYM9DMm8XZ4egdrRvniVYNIASMN4oc1xvJi8jQvwZtKH8NEM5PKgHDGAknSllPFWLrm4M5W1NnHPOObj11lvx9a9/Haeffjq+9rWvYe3atbjkkkvwhS98YVrKFEnUKFBFAbRG7HILIs0AIR2pgJueTY0VeaNQq7sRL81iMSN3u8ZWlkP29FnjZTm40ZmSM520sWNGUqLLQLNhyIug/zANohC6wRQSkKnnWQAAlEadAvQ2xgxKCpio1bWlnlQVACBFjLxXQ4OmQYJtdCyRMX4ha3AtC92oygRqcCPzV5UoaUajIW8AYHMbmQZVjQybc2mTZ0f+m3YTEr268axYyoLuHXnUBA+jWB/bgD9yJh8R5cPJcus36wY7pZpChWzECvKS8NF/hQ8D5N0AWPiRdZzMm8b382a92YWiWXhXFq6TTxJ/BiCgOw9S8hrw7z0dl5QMKf1rBejzFIUbuYf1Cj+jrNdWvfQz0IfLBNGAxcsIz89NnwWdcGf4tXS/2/2DRLDmOkFKL9Eoncszr4f14ikIeCoCUwb+jAOGwNk1+vwZmHYZmIAsh8RRsGWL9GzWirAkU3roGDfMPxLHPXcnxsIJm+7TzwKrm30/qf1g7YtIM6S7LkZ77W98ZZKUY0NS6Vp5153aWdaOAGCzlzUZorAeAKuEE2kqrdKc23aZq8UiSHRqnweZQJDiWhZuEXpTX0qC6pW1lkDUJrZ8zuZie022yfGDH/wAl19+OV7zmtfgjDPOwOGHH469994bS5cuxbe//W2ceuqpW71MkUR1AzVElHvFQMkUQkg9E8WM3CmbNe8YhMnADUNKnN+BPmtYhQtJpg3gvbCpByo7I5qaSzNgpNQkz9uI7VWlTBlCJcq2m5YsE4j6HEgieGbmoDXNj5iRXb3HeiB0FuWmF1rSjVrmq0IUXkgzqKwByRQFktAV4EZ5HffBGGsLP7s1kVUhJVDvBVLTeQy7EBsZV60MnxpiavxtXe87XSvKBh4u68Bm0XlKBSk9nNBYvw7LjM5VMkNIVXPYmfDhZvB56hq4n6rFysDOz8O8YYNvjhESqONfuMeEDntcpxGoKV46BgrlUSg7dSN2Hj70EntWXG9tlK4Kd7I0CsEkgKqQUmeGdqYc0S8s5GhJALs23rZeWgzyQjFiwstgwvuWUAWEq+McXNk0g4yOdBXmd49U0sQGW5/Stj1qZFiTDRv+Mu8I+aY4IWWk5bhnb+8gqyFOLH5hrQHetSMCBej/C+ZVFNJ6IrVdIXPvqhlguMkbMlChdVso6m4A46V6SDNAphB8MMknVySZSbpJFghNyErTJtFMX282aNYAsgTICsiyQEkhP1p2qSiMPzAFmkM2jKg9fzWIUdaEnkwUSm1xnqfZnifq2WefxR577AFA+58opcFhhx2Gd7/73dNSpkiiukDO2QGikWujbAo70w1GuRBWoWJmTZi4vJmxBkkz68iQyuXwVDcAZVsfVwhP/lYtIymb1AQAQMsq6P1lp5TOvgOgvQqGSFnFiQzoZARVJVRW1yZxmUK2h6GSHCqrQSQ5REHLHyQQecOY11OIHXaBbA2hHBxA8fwzer2rBToVRbHhKU0meRoBanTt//BIAy3DYhvfoUEALS8JpTXQFy2rCupFCaVtpEsAaEpjzu91ioktR6obx5ZZ+mV40F4znv+IoMpCb2vKqP+v8KuUbuZe2KF7ExHgh48gEz/MQc9Aio5Rr/c7/7vd1I08JWG1ZWOEMFCmPJSlWaDZKEKkHNCahUwJoxCTl1+M6gnY8G8H+HXiJC8oD10r520JVBWm7KjwPnjnY6oTD+uyEI0uQ4XaUxY+oaJryMsZZIH3lS1WFqa0ISDX1ujtXROuzPmePI/4hcpZxfVB2/8MgCYY5tcbdjyic3+GE4tf+ASGE56q50ifWLc3ZQlp/JKi3XJpCHgonxNbOqZpI5SoQ9RabnKL2V5P2nGDQ1G29XPY6LUDPFFr6HVNTVuCwqjPRsGy64byyRZJCiQpxJydkPTodD6UgV0WTdteh8+9kilUNkqy5ohJxZ577olVq1Zh6dKl2G+//fDd734XBx98MH7wgx9ghx12mJYyRRLVBSqrA/VerZwYpQhJ4nxHZQmRsRBZCMo1ZIzegjxJRGaEAJTSxyOPDOBCETWaWu/8T1w50tK/edGZ58mSK1VqtaxsQ7DwH2wul9SX4WUKRXwlYY0Zcoia1MQqSSBaI1BJBpXmUHkDImsggW7EVN98iHYTaZpZcuWFfYRwdTFhKr4wsPU2EcrCTbEvaRZbGLpk/6cp5BxNspDoZShETUK1RlwIVpUQNZ1ri3xrenejVrU71SVvaQmOoHOkzt/bl4zNVZ0OdXj1HmvQLweec5MITE4fChnza2OXEiEjbkisAvWH73/M767GTUtPBqDVCFKhvDCjRwhN/Vi59aLIlBW6i0+Jf85JJXvebe6r0RB6nbqR2FH28xSUKngdu9mODwJKp5h1hJ/Me+Pl3mLfc7XaqkQt51PqKG/wv0dcgrBiR8oMrsLZsC7zQIXnHAtMdUVZ+osrm3ZMCekrQ9AkW87dCeXAc7q+FWF2+yyweimZ6gFd2daDtlKnbaF6ihS6vaK2iwZUMoVKMoii5VJrJBmEyUuniHQmGQT8RbwVtC1CyRRlvU8PHOn4QkKVNYii7dpWo+KLsu3a062AaCwH3vnOd+LBBx/EEUccgXPPPRcnnXQSLr74YrTbbXzpS1+aljJFEtUFKkm92WzKvKiOdGhi4XYobbI5IVPdUKU1lHlDv5Am9GcJTNk222dAkkO0h7XKQmZLNtIhAiaMeqTgRvJULlE0dafLUZZA4kiVp0DRyMqU3f4kiV2JHUqZ0E1iPVTIalBp3W6v8gaw82LbkKgkBRr9kEY1K4cHtUE+a3SMOkWaaZM8YBMK6jw4pLxl1otEsjyQ2eR+3vWn22COJ8q2VgvNxIBwWRZ9bj+Dsp0swCcbhcTI3m6WqbubIlLVQVbM4KLwBqlpNgRIM6zstl1ICVDdwfO1w0xdaL/jnr3dhnZoYgMnEuHCyn59Sy8cacOSZefyLaOCqybm2ozWxFtfEat3h7/JHLdDKaq4BhiNgNH3Fb8LRqy8ex+uH0j1ozB0QMhsuKrL/pWzOjmZJiXcHFMFAzHuu+J53iAT3LDDYdV1ZnCLYDOfl70G0g6m9HHb+hkuWs5c3ttvn+ty04BV13hItsO2QOSk3TKDoB5DpFr+feYeT+j3XiU5oJTeP625wWFiztkcZoPNClVU6Dbc83kBtq3U7WYJRaPNFjrsElOJSKKAv//7v7e/H3nkkXj00Udx3333Ya+99sKBBx44LWWKJKobjMKjMjciAWDJkn7phJ39JlrD+p2TCZQ0hCtJgCR3pASwf5M/xSpbSQ7k5rxgs36YgiXM/ygLp2aZRgKqhDDJJgWI5KWaoNG5+QjOyuZSEzBzLs+wTudLmJJG5afRGv8xU52VCRuKHRcibY8YFSvV6RZkqhvlJIeiGYJFW/ueDJGyKlyu1+RSrWc1ITChAEUeJSJ87PqqxHRYRct4RDSp88KXREzNOnvceErL8diZUMa4q1NVNDtDegHZCBMI8un0/HNvqZmydGWwyfzM8QCXFZmyvNtnlPt0nALAiZo3s48RASKPgmaPAo6QSBYmNoSSk0PFiZMpYyVCgkJqA3x1xeVcK22na9f0I+WmyvPECdRohn++TiIRMR7qpO1Cgz7PjwWmXFTNyGLEhft4BE+SGpRfVBE4RgBDHyCpK0Ri+TI3eoZfkPmcE5/gPMc9d+eYROr6XHdKJ4pfdy7aKxOXOsW0QbK1CRgZAU+xYfM3bRpAR242KhNT6UTZBpraIyh65nokRecfq7n33aqGKVRaN37V4YD0mHKmGQR5twA9qFPKtn0AXPtkFf9g8g1g1SeYnHx6cLl1UhxEdGLJkiUdK5psbUQSNRrCmSdVxIJIDKBfSArtsDCcKG1P5KTfjlQEecc5hUlaZ9MSEBmiZIkJu33SvMzU0DO1yVaHnduToDnJo/LIVM8mZN9TA+ON1vixDIERRctuq7K6O7ZSesSY1iFk0ylrSQpZn2OVJhuGSPLOkZ5MrPTecR2pbIW5V2mGUkiotA459Lwb5QrT+ZCXYcgdW4dncudHsykhXGfkLS7M1QWubHBDsi1e4kiDVyfpPg/CGzTLUbXgZjpxgy4QeIYS7zOemDKc3SdqDeOFqiAg3L8FQ/qY3yqZtwvKgQ3OZ8VJIS8H1T1cb8z6BOHKG14rOg5d24AIdhjMK8zinfsQKWMdPbveVUuAhB6vjhQTPMRGn4Uz/cL9+d+sbB2/G8LXseagyd9m65DCfzbDUKYMVK6xQqi8fOHAQCb+e0d/txzBVO2WF2qkcLWFUR1p5qxqwyYlViNDUM1hJMZHZZNw5nXvvRfmf8WV/SS1qVtQmr/TOlA07YBSZQ3dLgFAE051F0K3c2ZQageqdJ6QSEnp2pytgO1diSrLEt/85jdx5ZVXYtWqVRBCYI899sCb3/xmnHbaaaOuqTeViCSqG/hLY/72oEooT9GpaeLR1iN8S6woFKdYqEJIl4kacDPlAq+SAgBhzOG0TZJDZUwJCqDY/rwuNr7PPVll4QheGNsXZjFgaqQYYeIkyjueIUQwahkRFnt+o8xBJoBK9fVj15pmwKispnNXmWtgw1t5XTeIgDP88vQO1MAWTdOg5lBpTdejtckogtR5JFDIgLwBmWZ2CQkAusEmAmXqTwZ7jVZn2I6HSwJ0ZEWXfjZ2myoCzI9lyyJhs73TSJ6fM1Rn6HeuRvFknqTCpGwpDEb4aFIDD6m68J15HyivTrsJNfAcUDqFxguZJv6sOUrvYJfnCdQtp/SE12D0Dr8q7OV5m0KyA1jywfexy4Sw7yrVotFA+1XNNOVlZn4cvl94LJdWpXQKNK8T1WsUcllVvh/1LxurJv7xq+pAbZRSgCqghIQ0k0/U0IDdTg1u1GQpdwMEnkhTe5dc/jGbasO0ewCs74nDvtuqhGgO6XuY1R2pgiZOtp0UQitWeY85gGmTCriBKh+cCeFIG79+Rr0i4/l4E5ZuKQpVotjCcxVbifBNNpRSeMMb3oAf/vCHOPDAA3HAAQdAKYVHHnkEK1aswJVXXonvf//701K2SKLGAU0iDMulKaL8YSSCkusXVjZf8MJH7hjSjtq8mXXtthvxByTIepZI8SKyIpyx0YIM4Ux+dgQngVLm/FUvUrCPNVDKFBT2IzN8B0FjZbINijGc2s1M3TSRUUbp0tdIGNIDmWoPGcxorywguO+C1ZOHHa0fiz6TqR8qlSnKzDScRdORVvJLCAnJQpJeRnAJfc1ahRsx806Kz+7iISiuSnmdunTbsP3cWoVOkSGDuQ0jlgVUs/CUrHCpkY6wIVsg1c3yZGFBTnJ4x8+mnyv2GU/cKHv6UQ4853KjlQUg6y70E4Ye6Tz82lWQh47EmJUEowtRqCJeFccICV+HssLv61joCNOZAUhwjMqFmAHnfwxTUhBRTujdpOOl1epa4c+gq1pLcnM8ayfW1+p3pVVRLnrXE0CYGb0QEmWtV/sRi5Y2mwNQI5tcOY1xu/jTH+xgRQ92MohaL1CWkJkekJZZTU8EaQ6xEFpq2yWV5va8ImxnafBH9SarQa3XGwhaxZwGZ97Fkk5t4rMK6R6YVDFbC9tznqhvfvOb+PGPf4ybb74ZRx55pPfdLbfcglNOOQWXX345Tj/99K1etkiiuoH7oCj2bWZ36e8FI1QKKFv6ZcxqUO1h2PQCgHuZGYGCkZ2tlEygGWx0msT5VTyDOOBm4VEDkeR+mIvNhtOfoYMAceM6HdOOwvj1CMmXbYAEfvSMJj7H7Woabes7UjYsqY+RutErV47o3BQubI24xT2LFkRWgxoa0OpdVgJILHnyiJo5r6JUEHRdy7ZL7VBAlzHLbflVWkdpiKscGazuaGi2H91TynAuEzfDjIVTbI4tNguLL5JsPT90bckTws/tzYyqNrhz/5LNC0ThorLQYSWZuHObBW9hO26TsoBP/TdmZZ7jyhqh09wkI3TmYVqyRatSXAGS/vWh408yqpaE6QBdXx4ao7Ja8l1BzKpUmCAE2DV1BFflQgIlJCDhhe+4OmeVF3rf6TmndytvWJXGlj+YfUi+S338YLHlccAbpFWQNiqPaDddG2SS+6LR77yaaQ00qUZlPZDNF/QkilodIm+gzBtQaQ0ltUVFyxElQKdaaQ5pNZjee5qwY8pT1vr0+27aKZrgYwebZlBg3/kSTinnpLRLHiUbIoRRwGQK2Rw0g7FRlL+IScF//dd/4ROf+EQHgQKAo446Ch//+Mfx7W9/O5KomQQdymIKC6CJT2HkZfMPvUSiOaRfqkSPjqz3hpScNNcvKxkZ+cyPhIX82OjH/m+2F0XbNepGXfIa2TC8VxHu62gkqH68oWY+AOdnYkQr8UnG8fO1sVKBEbjENIBl23mU0Km02dmKGXxCxOR73WnUofJeXTbjdXCNKJveXLZd+ZgaRuRQCGnyYhmiZcKOigz4YsgSUduJlIUbscoEqOmRKRl/ef4qADYRn2q3dFJVwM93A6a2BDO8+JI6AFAODerwWa1uiZtdPsgL+TllxYUHdfJXuxI9ACQNfykMuqeFI3Ud2bsBjzjYzPClXobHqmLko2r0ulANJVXknqeAcPDZeQDcckq0bWCW3yxwpa1bZxcSBa4esvp3gFTELj6qrnm++LuauHfP86wJaZ9j0R7peA/tLGD6nSZKBGX2cpIlCTBaotkQquyon72GZOym/02okSa/cD+jDbHRYZMcct6uVm2y2yapDcWh5WbNKgCqMReiPawVIdYu0qBMZXWgaLMBm1Heqaz83gsJCNcO8nZHJRkjS75PVWX+86PSGlCmUOnWyVhelApyO/VEPfTQQ/jiF7/Y9fsTTzwRX/3qV7diiRwiieoC+2KXBQQKoBS281dpDiVzF2ZLa7pDGWlCFE3zN5kPWXoA8jHJFKK5SXdItRQg8zVrOGBm/ZHPyhIoUoSI/AjpZwsGYE2S9CdrcFBlvqMRHME2KqUmapxkUVSTSej2HELqlAoAaMYMyjYw8oLXOUAIZ1qnbanxpFGmySVkl6fJdrSSuzbws9l2FPITEqI15Ihi2AFLqe8NC1fqUWrbmu6VkEylSfSxksQZhck71OjT07lJyRDOq+ISULKFgK3SxDrYdhNqxOXxETAKFilaTHkSjT4k9V4Uz6x315x8RBX5f2w6gFpFmKJScWEEhsJBxhtVte6cWyuO3UdD9mRedx21IQaq1bLXUNTYVH0zw8+WOTzmlo7yw+VjQjIQhvrGIk4hWIjSmtUNvMWg9Qed/zNPoj0elcE8e3ZQRse1EzIY6aL9K4z0lChYFE1NqqHXSry+/tKu1TqxvtZ43boY7gNLAA+rW9LBySK1IcarWDbmupUX2EDRtql5jz2HGBnU73iSATUa3Lh3nNoIz+AtJACt8lvrBFcMhfDsERZm8KePbY2K/tJZlK4mzSHaTZRZxTs2BWiXgNhCEtSenZYoPPvss9h11127fr/rrrtiw4YNW7FEDpFEdQNNy6fRFtxLqWPoNTv6KmSGNKtDtUesl4e/mJYAqVLH5A3JEu2mVapE4U+V5+Ey17h0hhUp0y41UqJosxgBPLlZwXW4tkEIiJH9jsoQkCUOb3YgKzc/lm745rBG3nQGZeF8CVR2aIJEIQEBZ0wnczeZxVGa0F/Zdgb4NHflLQvfo0Vl5t4jSnYqUx2uM0qVvZZEhIWEKIdtygiUbSBvAEXuDP5lO+iAU4hMWnVK5PWOzkU0TUiQqQM2iSagE42yTlJlDSTzdkb76bU6u3te13m8gnXsnDE7WL6Fk5TQmxXexiQByFzPw1ZmQWy37p25z8ObjLfLLbXjGcSNoVxkGaSZdWXzQpmO3ypsYQJPPsuRJwQNlDSdxLPay9RVheoIj25GuNFTetnsxCCkVrkPnxBB4ERKldprpMyC5kwhAQCUbT3YSHPIkUF/Xxa21CTepBVRpV1qZywCJdggUJ+P1Y8RIy8VitKhdmqvbEoWqluHAp3Y7/QgqgTQ1u8Ynce0tTTzDkkOxd7L8Nq5CTpSt4WKZjLnumhEuEw76YXjytJvb4JwqSVjTAlTWR1IZ6e6M5tQFAXStDtdSZIE7fbW86dxRBI1GoxqovXiEpAZADOSSmuQLZ11u1AKSVrTCd7aqCYdqvR8PILCeFWjNrN9xyEo9AUTIrNllP42HGHnwZWLcD87O6rLtajYFuH5aPPA8G07E2pIZeLqAHQQKq8uhtAQiSLFyza+VGgKCRRtCFHahpSIpx9SkkZdTCwBA+Dl56JMxjYcQOSOMhYLV+YwYaBthPlImxNjmpWUm1Bak2WWTjJAtgBZ2PX7dIbwun7GpFsompfZA/mgRgmFeQSKKRh20WW+tA51opKM64YcmhCSVwZDtjxPDiUSpTxYVhFyKlfVkjubMxV/NFTmdgrDdxzsOez4O/wuPFb3QvjPS3iMinNon19mJ2R42bIBhL5Ca/xmoTzFzklh2hOaD9o8UONCGN7k7zZTqjvasW7Xwft7DBLCbBT23GywYxVpPriEdO8oWGJk2pYIYJAKwr6jMrGzh0PFXfD6CQm1labWb8/hPKUUVqxYgVqteomdkZHpy9W1hVr5tgtFMq9wYR/RHtG+m6KpFSrjuSkV0BQpVGMuVN6wSoqWoF3iNy53q7QGlfdakyKNnjqy8paFGyEZxUVL+UyBMse021BHxT1Vo3hKPB+WkB0NCydDYxopiXTY35VtmCwJlKnzSViJP9PXIuuBynqMOpSz62CMpnnDzMpJbWPnnRtw3gpbN3OtAl+EynvssUDbZXW9f6oVrzJruMNzwsavXZrpUCMRAn69yOxvOxhhSYRKcqi8V6/zR2pN1rAJQ0XCfE9loZWr9ghkvRdy7k52PTLyR3X4pEAkhRFHCkd6niNOpkpjPM/9ZwsBESHlLNMLvoIWPg68T3oh6Bwyr0PWe22qBlKtRF63/8t6r1tAmdeF+6oIxqhPP+7zgMyEaQ3Y//YeVtTLA++07TuS8gN416lrSDAciPCfquMQSaBQMi07lWYoa71WAe1KXMxSLIAbDJBHDwBeW1vTuQ+A64Zf5NeTl5vCvjLFdUML9e90z1ibSfUR/IfaURpE2frToCK1yYirBkf2O+M7te2qaTuQsHeeBlSpXgdU5Q2oeh+bqBPk7BNukKSMKg1qkyq24xBbaVFfyhO1pT9TgVWrVuFd73oX9thjDzQaDey1114477zz0Gz6frHVq1fj9a9/PXp7ezF//ny8//3v79imCsuXL8cuu+yCuXPnVv7ssssu02IqB6IS1R2G6GhZfcR5nACjgCRmBkkC1S7RKgEkKfJan8tSzht0LzSkCUEJgVIpJFLoRGGU5I22YyqIQkVDG3RyXmNMBKVy1Cy90J5Httg23vYhBwu37zb65A1mCZTG0C3aI0AOiJFBpwTxY7SEDfmprEcT1jRHWeuDbA3p65n4pnirEiU5hGzbbey14vJ8qAiE16nid2HInFUUKUdN0QZ5LJziZlQuuo6tEXMOZUOJNmWEIQ2ytw5V79O5xsogcSKpUYA2bptUEHwR2w7DOZi6U+GX4vfXhuaMb0SY8I/XYZQFVBt6xmFwHrvqPfca8ZmGXloI80zQ+ciQniRQhXRELCTrPFkkGfoBnd2aiB+dm7Yj0z/gjP+sPpW/V4GFj7xcafQd/V+l7lkfDrsHTG3l4fNKGViVuk1RJSDdeUXTTVbQnieWsZwpNaJs6+sqpH5uzKSIUavL/Faurr7/6sSe9bhuYAFOnPOUG4iEChFtzy0CNNOVrkGa+20mkRLeHvBwJX1XuoEKVAkh9QoTdpavnbXsyKT2j9JsaXZsIm5GVfLtDlQfM9HIhCq7tq/bIR599FGUZYlLLrkEe++9N37xi1/gzDPPxODgIC688EIAOiR30kknYeedd8add96JZ555BsuXL4dSChdffPGox7/00ku3RjUmhEiiuoBedBglQQB6VGIy4Bal0i9tQOz1NN4GSqHDfAJAkgoI8gDZDUuU0CZspZzKYRtC6uSrGtiqhioE/1xITSbMeS26heSqjhl+xEhLJbgnQikoKXWRZaJHbkmmQz05a6h4bi0hAaGgan0ewSICZWfTsWsFMjuTXF9VL8FGoIBtzL1rTcSIlDRAJ+kTbOkdytsFANjU0Zh66pYq9RI0lHeLPEZZw3joUogsg+iZi9IodVwpkr39Ost70YRqjdgy6mvmlB+awi4olFdwMpF3EgWPKCfMb8RmDHKyTibqJLE5oOysPlKjKJeU9BUiu13CDOmUiypj5IcTJTZlXxM3XV+RZS4ZI2CX3rEJLKmcnMRxlYjM/vR3N1SkGPCenSoyxd8L/vgFz6IXdg/Dhl1gj1u2/baEZnTaWamyc3uuWKU50Bp0g4oAJ/Q/q9dsbI34M1T5vTHHO7GxDmibpXpGG0ix+qmsrpddaQ6acrt0I/p5A9yMWD3Q8HKLkX9RInjn3CLIQplkyDJBmdbQLBQSAWSi6LiXdgUEIlCUo66LpcL6JvnPVsBMDuedcMIJOOGEE+zfe+65Jx577DH8y7/8iyVRN9xwA371q19hzZo1WLRoEQDgoosuwooVK/DZz34W/f39U1K2qUYkUV3QhkQbEmlaMy+ncCEo6qyFRMFYVCIEAImWAgrj9xFCQCroqfVAQIq6n9+TkHlagC6jnjCxpTtHQLS6Ea9wRBVuw/cLG5CxRtJA4JESUEkGSSNsUvxarn42XBnK+qE/gRJ2qlJPaabRdxfy6TX0VJ6wsCzXlT03JQ7ko1OaKUmjaJBaFZSRkomqUi8HZBQeMrVTw1zmDWtUpxXsRV63CQIB8xw1h+yMTB1Oo3X/alCtEajBjT6BsqpPl8zTwZIsamRYL0zc6HX1J+WpLCxJ8RSfWt0RJS+E6Lw0RJZ0qgVHkOwadWXh8lWZNBH2+ME6drZcoUJhtrVqDN1H4xHqzLNlvENEQIJnpcq7ZJ9leqdpm7JwxKnqXah498a9ZEjRtN4jTfBJraFZZm07AOMqkkoyl4JC0VIrEmW7CdVu4bXZk/hhaw/vVNdv3BEnzH3OldkQKDvTlJ5FMygQSvuRIJgiZytYTTCUTCGSXCtr9tq4mcfeLGKZaHsFT/TL2zajtnnvtx0Q6etUlAoy0cf02lZ7PD4bx1gQKLecadftPpTJnAh+1QSbKcBkJtvcuHGj93mtVuvqN5oonn/+eey4447275/85CfYf//9LYECgOOPPx4jIyO4//77K3NAzQZEEtUF7VKhXWoFJa/N0ekJVGkSvqXIzAK6QikIIZBLQFawItnNc6hKJDLRipbnwA02Y+qHR47Y/yr8mx+Ad+4hEarYrnIbThyCOnSoUaxxc+USHb4Nq74J6atwfGHjsq0XdjZTiL3FQem4cI2580SZGWKUk6sLeeKNvdeZSalzXiVpx3YQEipl051pxGzKQftTHdwsSn9ZCW/2IqWDYMcoa72aFLFtdaZ2AdQMOWgOObKR1jQJS2v6eTF5qQRTj1S7hSqztiU/lNPKbG89NbzjkgBKNxvQqkiAM5JzdYnOVRRQrab+nMpMubWIoJGR3TwTSrnJGDbMo9isyXDmIy8n/W8Jr4SSNaDMtLLR9mc0hs+Efa6J8AYKlN2WD44or1O4kgDbtgNjEQ4aEFA4mPu/yEsUlosIMy2Qzq6baI/YJVfUyJBHVF+b/w4qreG6TQvMYr6iuky8vPRucVWbK3KM6ApVokx1Pic5/LwhKiwFRZCaxbsmpFAptxSL984zBcoSWkN4ZNFCnqSQPP8dO35H2yDctXRtrv6shICUqR7MyBRKCGtRmE1YvHix9/d5552HlStXTtrxf/Ob3+Diiy/GRRddZD9bv359R5qCefPmIc9zrF+/PjzErEEkUV1QKv2TAHokpNwyJdp46F52IkomUo4kTBROvYvwaZZQCqkAuAfANgysoa5UT6pIgW30kg7VwY6YA3XKSt9E0vhxq8gT+91bD5CXie9jyiRUidKQRim0F6yEhJSJJp9WMXDERZgGzi3lYKR9Ik2Apwr6BDBIlBoqA3x0yT+nY0j3uUpSF97zro9yHqz2sK4DyxpPoRRNvHIXgqSOUUgoGEVG6WenNNmdUZYQRUtnd26NaFMsYJbYMIlMZQoMD2ivlDHAqySFzN3CyWp40CpLVnUhUCiwLHX2aLtOmyYt1lvCE8RWpBCwKpFMIGRhvUAuR5Z51kz2dm9RZxu2TDuXV5ImYSIZqgGz/IYhqxS+qTD8h6FzlML6rEgd7OplCYiDHQAEKogOAyXwVIqgHN4x2YCmIxTYDYHqo0Tm71KWgAyUV8AtgE7tSQF7vb017Iy699raGqAscd2mBQCAH22YgxPnbNLrypGZvDTZx+macF8bYEPcoj3slBq656wd06RQk2dOotx7Hdw7Xi9DXCzfEgkEG8h4pCrJoGQCWbSQokRp3zV+fL5aRECoqJ50fmUMGEKiNM9tUaoxJxdOFopSbXGeKFKy1qxZ44XPuqlQK1euxPnnnz/qMe+99168/OUvt3//4Q9/wAknnIC3vOUt+Nu//Vtv26pFgpURImYrIonqAikYOUoy3aeaWLwyZADQ5KRUetvSvE1SCDvqKYM3TMnENgB2VoengpgO1TbIzmBtj9GF1HiqDh3XNv6uEwgX1eSz7zgE/56pKlUI1bBwRKmE1A0O9DWh6yMENEExdafORbSNh4PNjqMdyqwRJNZjyTWpIbTXT3U0xPxY3lqIPDwUkC5ONu3fonQJ+0xnZf8G/BQJ/Dh0vXh5jYfKJlYsDXEpS4jWEFTe0KZ6piiqXI/0RdH07h2tPwgAsiygRoYZYQqTSxqPEV/glUbW4fViBMomy5QJkNZcfjQpoUpGoIQEEgmRZCxTehCipevBCRSFd/g6iWEONo8kG1Jsrz1TrlSpby2tGlC2UTbm6u/aTZ2g1T4T/uDF88kp5p1RdA/N9mWXd5IlZPUGLKEyPAr48+zlZQIgyhZEa8SVL80CdceFq8jbCQAiN2pOcwgnFr/AD0f27zjvdS/sopNuAnB+MzbII0Iq0akS8/AoKU5GDbMLj5ew4WufBPkj0BvXDOPYJT3m/IlHWpSxSuhr4t5DIrhFqf2XOmIA/56a43vXWVc2uHbuc5oMZL2S6GzjpwpKKagtJFHKlLW/v39cHqT3ve99ePvb3z7qNrvvvrv9/Q9/+AOOPPJILFu2DN/4xje87RYsWIB77rnH+2zDhg1otVqjJtKc6YgkqgsSKfSsOejQHgSfpaRQei+yQqH0PgA8n5T+HvZlJSKRQAAmHGi3Y6NTT04Wyi2hEr7o/DxC2hBjZ/iv9OXvEKEChc5RGG+AOsIbYXmqpHl+Ov5V0bJKkwA6Tc1Fy5lJTeOooBvTpGx5qpMd3VOoUZWwylzHItL6f4/ohIoDXQ8K8XXk2SrhL6jMCHAiXYdB52IGX6emSVdX+klSY6DXJnM5PKDTH6Q13ekzxUHVKHmlmTloTPAQEiobAeSAM4sHKRAAaE9VkunzpXWorOYWfQ1BSoYwClbKkpRKc02y1CeQRhXwr33ZQdIt6LySEWJDfrRRmC1SDQBF4fxAMu1QrrRXTq+RqJIMsjmIst6nBwYjg7rLllIfx4Ti+LvmvXdVKEvPn+cNOoIlkrqar0cD34fIMD2nlnxKF/rlRN+qzMF7a1QkAUC1mzih+SBkb3+HP+q64RfhtckTet+8Vy8UrEqddqEszStg/FB0vyn8SbMl6f2ueseKtk4rQlWlgQprII5d7L73PEE2qZsZkLFyKyG1mGlUK1j1yn/W+DWiSS/UhnYqksJ6ivggeWtlXipLtcULCG/u/vPnz8f8+fPHte3atWtx5JFH4qCDDsKll14KGcyuXbZsGT772c9i3bp1WLhQp8e44YYbUKvVcNBBB21WuWYSIonqAtvAQytNahyjjSrTnzCxPMFIlkAnvwhVHj4CDuP+lYqKHal2KaeQIE+B95kqHeEZbWoxVww4qkbTVJ4gvCJl4hFMmrFowyKBCkAhJQE4GR/GzKl0A0aaCjf6KiEg4IhfWCU21WdcdbagGY4gUuUIlW6IK6RqL7SnU13YhVFVsAYg3yfRioIEUAq9NiPKQpMoId0ajEE5Kc8Nfa5qvRCNXpQDG1yiy7ZZzoUykptQGmVQV0kOIUZ8r1tAbJWQEHlwfSgkR+pR0WbT7v2OHYXrAzVpZLMD08wpG6TuyUTXOZGWDFFmetl8Qfun7Cw0oTv1JNfrnZl6UPJTb5HuJENZm2P+bAJNF2oNF/jVFTBKSRUZElwZk9XvRrA9x5iz2/g7SKQN8J9hfgwTDqX3RxRNm6XAHier6Xxjw4NQ7RZOrK/FdcMvwolzntIkqT0CCJ3LTmU1TUqTFCKBm2HJq6QcoSzTPv28Dg/o45gyATDrYLLBhGKDPCE8tZy3jWQF4LB/mzZWwClGUoiOtjZU8q26rAAFwch9oKYrOFsEMKqXdXvDH/7wB7zmNa/BkiVLcOGFF+Lpp5+23y1YoEPExx13HPbbbz+cdtppuOCCC/Dss8/iIx/5CM4888xZOzMPiCSqK4g8AeMjUGDbE6TQ+1qvFNwIZtwJ2tiIKByhWd8Ia7iVHZU5/1XowfAkbVJTmKrik6DuhK3je2oghUQpnNeJtqfGTsHMlhGJ3jthIQhVGlUjccZNSSqGVvkSoWsnpNCdsU1macgTDJFSsCEY34vmN/yeaufVlXWEfJ+EdcJ0KdjI2gsB2ZMoQ5ry6rAjV6bo2IlEWe8HGjtYzxVtR8kL7ZqDgJsqbs5H6qOo90G2m3aBWgXoPEt5w8xAcuFQUTSt6VplNZ2awdwjFK1OQs/KS8ll7fPK8zYVhSZKXKmxYVwKabJrkdYdsacwL/PBIavra65KlEJApC1geACiNWQUMGWfKZfF2lya1ChtXJUBdEhOSBuStQpUOICgZyJhqh4PHQZKkEeC6Du6bGOF9cyzx4/rbUvXiEzmwT0BSm/BcFGY0CU9jyaNi6hDG86LJl6bPQlVuMkcKqs5JZAWJKb7RWTOvoOkkimIooUy74VIUqNGGcU47/GVSa6oUXZ2Vo9Sat8TAPveK9MWhO+tUuj4rCgpFx+/8K6d0PdBuUvZpW0ulY5AJDzqjM52f6qglBp3XzTaMaYCN9xwA5544gk88cQT2G233SrPmSQJrr32WrznPe/BoYceikajgXe84x02BcJsRSRRXaANg6M/cGO9POSVouM0yVJipCjyRVX5ndy6TYFyZA9euO1HG+2yY3Z+4XeIRqD2OnZPrQlB34fnEdIYxwEpEit5hyFQIYBESCRpDe2SyBGsIbQolUfhSqVMfi59DQUzz5cwPhUzkqSGsKvPwSt/YPhnHUKHD6xDdas4fuGM+vZ+itLlHuMhwbADtQRMj8alKk0Yy5EllTeAIgPaI24NR1Xq34GOdRhV3oDsmWvVCEpAqaTO6GyTNlKH3Xb7ez4gNtvKfk7nENIRKH7NGMFQIvOulwstpZ33hQYHLHSls7m7tBDUgavaHK3W1Xohhwd8Izx1lknusnxTGW1KAH3dZDEASuqqSR5LGWAmEdBxNXkVzhck2PXgqm5YV36P6fkY6x0WZgYgLXvEfUYJbH073nNak9DeFwUhhh3pKgq9ELg5lmDPmOdVSnKT5qWhn4HWsD6cWYJJURk5yQWA1rAlviozi7Sz5xRm9Qc7sCCyK321OYVy+eWg3+1O+mSqbOrGfZcA7IQWsIEWtRnaK+U8ml1nSkO3WwWEVdQng9iMF6qcBE/UFDG+FStWYMWKFWNut2TJElxzzTVTUobpQiRRE8DmPIfetrZjByC1L4o6Wp57BoA/PTgYCTsVibxA45/Z4I2S6bMKo69FlULFytxBTkwHJU2y0cKM3kZraIqSjfCEZIQIHY0hoD9vK03QpGBmT8Db1iZdDAz8leSIZ/m29Xb14f9X7s+PTx0989KocAo44PuSOhQEONWptcnvaM3nylPEpO2kuCIojBHbqkRJAhTO/A64DpOOz2c/6iU1mFG5bJtwIMsFxUM67Fp5z2nCjOtUB7uembAkxYZxqU6cqJGC4akXUi/Pk2QQWQNlfa4O65lEjqLQaw5SKgnar6zNMZnhS60sqlLXS0hHWBUtzdNj6i2csZ3VXxjPnIeSkXN6tsJ3gNQXehbCPFjeMRMoGlepUj9bFD4N19EjogvzLLM8RnamqeftM54qIqYquJ9l24XUZapVQBYStZNYYMgSYFVGUbZ1Yk1ocq9Y2M4awjPnceOhNT3IMhNrmMJM5KoKCnBtTkC1SiMdcT8TeaZ4E1OiIgSoNj8yEbF9IJKozcRkEPlSQYeazDBIClk5+KkMM9Go1C5+K/xBr2VGnSbOKqO4DYMZMzonRR0hP1ausJxcHheQHeb6Kihj4gTcTEgyb0pjMuceCF1vN/OtMGpXuyyt38yVSXi/c4m+U10KQpRhMklOpKr2B7tXhhhU3jt+PekSmk67MlSjSpRZXfu128NuhhMdJ8mNT4jybI04JcVObW8ZlUqrBqVMIbEJdv26tp9Ly+sQhQRsNnHmjyLPEmAJBz8OPx5UaX1MNvTD1S1GShVTgdy9cYMKl0DT5QCy6p5BKRKUUiKrSV33sm0yqPvvgUprrjxFU5efZzinMHBm1k5L654aWAkijza8mgBw5Nwt91OhOlll0oXmwnCvYNsKlDp0bJfqMelA2DUm8oPCDCbCTOehT42In5AuIz2VgSYtyFQrgnTP0hxomfBvmuvM+oYMqYzWETXXIK1BKaBVKmQy0a+ZEGZAZPIvlW3ATAQgkzdZAxQjPzY0C3gLXXNfKp/sA7Od+07ZY3Eixeec0N/jGQhuDUyHsTxibEQSNU5M1rNnyYKRhZWJ8YtRjh96ngQC/0wVGKmhXCpctQpHdsp8ooQwHoKE8yavAbKNKZXHHJsUpEKhI3QHuPAmh042SmXSIT3b8Cl/pmPV/io4TsK+dyE94fulWD06VD7AkR06RxBuqZqhaMltGJYKPTEclsRSSKfa3K9MCoGOpKJUft65h2WiBJBhPWhdQiRWCbCHDMtYNHWIz5RPpZl33QSpRlRfbtwmmOzPNsyZZJ7SogTbJyT+IcFkfjlr52LPSWK8crTkh2AhMEtCzUxKJSRkoRXDojHPmtWFKqFqlLuKETmWgFRwjxgrn96n03DdodzZwoeqUDVUWjflZlnLiZiFaiD9X7b1SgD884oFxClVAR2HhxntNWAZukXRtktggSYz0ODMbpfb9oTQ9lRnncKiKJXxOgIpU6IKHT9DQe990I7Y8aL5v6qNduln3D6l8VLRcW0bQ6+e+dXdpplBPHhTsiXHiJhcVAyJZi6uvfZaHHLIIWg0Gpg/fz7e9KY3ed9PdIXo0UBJNycDRACINIy6qjZrwLyZazCkIPisNB4jvk1bsZEZU62U0pJ1CWFCafqHfEim7dKpBJgJmv+U0MdXCrYcrVKhVepGj7wCyoziqBhV15MaqUK55HUup5T74cfiPxylUraORJ7sdzB/M/JiR+/UuXpqUeJ3IPxa2ASg5juuZgEVx0rdT0DK9EUoYdMwBBnFSwi9bqNRYzwCzVUs2s8SpbYN73mz3XjnyBf6NSqJncBgFAgAesZdkmoCFRJ4Ia0/hhMJR7QdKdIeHUagApJkQ0b82tIPXY8ks8+2fXaZp0WURUC+KJyYeNevI7dRVrchQ71OZm6JqP3Je1DW+90SUNxXaJ8V7SOie+2ZwgF3zblamqTm+ub6p+r5MPcbxsumsppR7gz5pvtNZWDPAa2fZw9H9yWEZN42fg2N6qTSHCj1rFKV90IlGcqsYZPM6jBzbkkuoTDheRogtUuFZlGiWZS2nSgUMKIkRkrdlthVI4wXkn7s38q1GaN5WOm7UpGCDdtG0b7UltBxqb2ZKQQqYuZi1ihR3/ve93DmmWfic5/7HI466igopfDwww/b77dkhehu4KOYyUbCDqwU9MyoihfWjrYZ8QK0/M2n44axfZo5YgdwTAq3xzb/21i/J4XrtAz0SUKz7UyZYBskZWdN8wZnc6+ZJVKBabPbdt2OoYSws3Yk8zbY62bycwFOjesYnjEiEHaAmhyNohZQaMSaZIMZd6rsVHrouIDOacTN/QZlklkPibeYNBEUYTq/svQ7QO5L4pMYEpfYlNQMmxU7q9mwpM243jH7imVdr+qM6ZzwyYIN3xklwysnHygE4T5v/+ARCD1znCyGaqMAzEuhlSTRHnbbtYYByfahw6a5u59kgib1RbGZc14I2a0AoNhn3MsFwdRDTkAFyxIfXFvPv0gDKb49nZN8R/QsUhn5+QE3qzRU/ipSDJSGVArRdJn5hQzIkjQz5CQkE3holnIigCwRaBXUjrG6jaJYV6FbW8D359sQUavcHv529Hk3cHVra2Emz87bnjErSFS73cYHPvABXHDBBXjXu95lP993333t75O9QvTWCB0LIaCUVm9Iag7zmvAYPXkBSJLWX3R2IqHxMjRUdpAnajQgQCn4tczNvhNAJoVRelwjU/VSjnXtRmt4tvQlp7AeZZCXxnTu6qw/A+CRKd7BcJN/h/8LsNt45IvMzoCf1ZmzWkM+O9QLTtQ6FC3GjGkfYabfg0IsCctf03akhBOTqs7SmN+FNH+39fntOn5hh+uVMYES/qK9pFJwVKWT8I8lXaJSu5PwzqmYCsXfA9g6w5vabkPYtB1dM/L9hapjmuvtyrZXfmvcp8+lISulUeiMIV3ZZJLMVyiEvvyq9Jb7saodoGe60YxLQ1qsIsqIPF830IKnyWDPmxcaZs/1aKsNePuacKy3BA99Z2d00tIvwl57wAyozMsvzGBGCjeAIQuDFHoQ2e1dr2ofeJtiV5IY47Nw33BAzP/e3PZ+NGV9qhA9UTMTs4JE/exnP8PatWshpcRLX/pSrF+/Hi95yUtw4YUX4i/+4i8ATHyF6JGREYyMjNi/w9Wtp+KZC0dERanVHN24oKs/ynoD+LHg+4YSRhpCz0DoLwqVI6s0mVEjSeDmQ0uwxjNSm0zwRnA8oPKT34HqysmV3pCOa4grrcNlO3BDsvhSI3QOwYy+LFTlZjGy0JoqXcgFTE0IFJbR/DCUVwuAS54Y+HH0orFslhWgM0Lb4wNKNvTUchYeUtRxMmJTZZ4IZ5B6Zaf/U3+GGApO2vzQnVO4RFc1qxSJvU9lhZLgKRmhGkv+wQqlyiVxbbhrSakihNQz9zwCqushWm7hYpWYpKle+NUQKJmyyRrCKIyw3wHQyh8YcQphz6+Cv0tzHrD1PHO3TVV9q64vVxNJYaOQMimboSfMgPyPHFU+yEL530l0V4OA8Sn/oxEl/nfYXlRtExGxpeiiw88s/Pa3vwWgF0P81Kc+hWuuuQbz5s3DEUccgWeffRbAxFeI/vznP4+5c+fan3B168kEf2m7vcCF8QHYeL8Nm7ltFPvhsfxSadJAnyPYhp+7KvRW5T8Ky8/9AxPF5uwflntz9+VeidAX4a5hhTctDCEJ30/Vsa31HYUsNzQRuxAMH+n78mOo5hBppXpA+9W4qmN8P4q8P9bXY3xJqZ6qX9bm6JQAWcOZgQ2pUGndqlDWC2S8WC7HVeKOycNvgbJkO96EpWLg15OOSWXgfi7hfGeaOCnrkeFeO7qfhfFF2bLwZwb+7NWwDJ6qyLxTKq27cBWlOTBpJWxd2fI/zsfFsm3LxC0ELIT7znqi/GeJZg0qk3zWC91R+QKlktenyptn96X97TbCGfTpXuQ9UHnD5g9DkqPMe92zQsfjpzWHGu/6cVXv8FSQGU6gtmbIbSpBeaK29CdicjGtJGrlypUQQoz6c99996E0jdUnP/lJ/NVf/ZVdm0cIgf/3//6fPd5EVog+99xz8fzzz9ufNWvWTH5FA4xHQuYdhTdtt+wkNyFJ4AQqPG83gtStjFOJLSFjYxGq0fwDY16DwOfBZ4FxMuWZ7asM46GSYD83HZj11/hGcr8ifqdljdRh2Xkoh5+fOm0b+knMWnlpB+HxymI6fJXmLlcUN6jba9M9kaQ+ZuqVoZKE2rImTpUi4oqx3xMixsq+V8r73ZW1wjsFuOvmKT2ufnxSAYQEiBgaMkQqm3f9pVNyvOOHM+NMfb38WIx0eWXtdt3CcH5Qj65KF+1vcl4pXkYi0bze7JqFlgMiuFuKqWh3thneMBkEapu5GDMH0xrOG+8K0QMDAwCA/fbbz35eq9Ww5557YvXq1QAmvkJ0rVZDrVabaBU2G6NJylUSNCE0SFK4aqxzjdawzbT3aUsI1eaMNjvCmJ5tySTvNIUJsx7bz1jIrmMRaf47N3YDlsy0IQEFSJnZGWVdOzoTvqGzkCdOUBoKwbJGC9mRWZsMzuTb4UZ0Xj5lCILN+ZTm2s9DuZ14RxqG5vhMRAqX0XlY6JErNrZ65OkJwkXcvzHWhIISQuddC7+DWSqoIoGiPTfge+LKNmwuKpso04T5aDtSoZLULn8CtPV6iuQpMkvlCNnWYU3aL1zEWsKFz0o/ZGqLTPfWKEpKpmYZH5ajy4tl+s+kB06CpbSE2nqxjApWpjU0C+1rSo0SZf2WXUzahPG8k1PZ/sy0tm0yUCo1/uXCRjlGxORiWknUeFeIPuigg1Cr1fDYY4/hsMMOAwC0Wi2sWrUKS5cuBbBtrhBd5QXi3oLQt8SXmAm3n8mYjDKGxxgPGeXblQo2+Sk3Lletz6WPw/4QLJmnkH5XLowXKRjJp4BbJBUmzKJYHi/FVpNXOpmoTT9BZSsVAIlE+HnGvJxXkp1bJnapE/13CiXJC6RACSlD8qeSzC0gS3VgSUV1eUtL2nRdBBRye96y1ueWiuFKj0zM7FG9PBD508rSddKhB6/KIKyUQls5NVqZRb8r751wiRzpWvN7o8kSI7RloQ3lgTmfMqp7swAtEclQJpmW+oum76ETUicgDYin9ii13SxL8523nE5J+5vZd9bzZuotU62UUfnYsT2ljfZLUm+NQQqvKiHRLJT1a1LZ+WQTjqp3eDa0PRERW4pZYSzv7+/HWWedhfPOOw+LFy/G0qVLccEFFwAA3vKWtwDYdlaIHq3h6RbGG8++2xvGMxLmi0MDTrUgBY86ZJ7Akzp52++a3xXcWohcmXFKhz+TSQjYNAyAW9tL0DbhjLwKD0kiYFNb2ESIhpDo/RJXJjoUNHEhRUokpSN9vNxp7tY4o46YTMyiM/dRGEpULCeWEgLtUl+XsgSk2a5UgGqbkBMjP+Ah6YpJDFVqbjilvTCEiq6RK6dPoDqgfPIESuDBZzsaEsRnsWmBSHr70l8qreu0ANzMH5BPfu2IGKkktcqW+5KFTwuzTEpWd+Urzf9GRXQmd/q+MAsGU8gu1/45Id1agkIvIK4MkZNCh+tCVA3yIqYOSk3C2nlRiZp0zAoSBQAXXHAB0jTFaaedhqGhIRxyyCG45ZZbMG/ePADb7grRQBzlTRShWlEFTpbCjpu+o1mRNkzH/Tb8HBAm8ztTpVhnTekKTDTEm0WpzPES4ZMq2r6bDM/N5lQHm9QV+sB8zyQIHyqZACkjWWUbkKULuxUtAIULZfF8UTyNQ+DDocStMIS0xWI/BTohoWwixjAMPZ5nvapD91YFAGzesHAZILdDRcJVwIQ66z7Bou/ZwrkeETIJLq3XKWWWAQqpwpFPSoUAAKDwHJ/FSdtndVtWSBN6IyWsbNvQoqJFg2HUPiSQRQtCtWzolEKOVh20s/4kWjZ03f06R/K0dTGTFyDenjFrSFSWZbjwwgtHJUXb4grREZODsfxmVgkJDOdEiMiDFiYrFfCVDgB2ar0+HvvCkjWet8qcx8wYD2cJUgiPn4EIhhe+4qTDlFWhioDoMJcUiQ2hcSRZHZKF/GyYLq1pIgF4Iatw+RVSvqwRH65+VkGTnWXm12JLkrZWhflIbaS8RQJA6l3QLukFBPuuKm2FUppkWh9YsNCwIWWamyTMG0ZkhWTM0veyUYgtJGXcF6VKvdiyUZe0eCnBlSoKyYrCqYY8Az8ty0LqKc//JEVFmhN2XUNUWQ4iIrYHzBoSFRGxpRivcb8qCR950LiHyv1u1CB7MHhBQvpcBMSCzuWVg7aFT7ZC0lVVbj4LlROSys+JHAahy6JQkCK15DBJoTvstKbJVdGyhKAUiQ5/MtVCsItQRRTDMnerS1VdNxf83tm6CnediMwJ+GZ8Wx5SiYJ1CV1yUEaG2PeOfDF/nFKByiUcUSt4gk+2zh8zifNwqQJ0+gGRQMgE0iyU3bGMDRE9ZWhkkqHM6lBKL6uiCn+pKEDqZ79wSux4CNSdawbwqt36ojI1xShLQGzhS1FWjBcitgyRREVEVKBbBmT+N188GXBkJFS2CGGqjYmM3quOPVoKj7B89FmoeFWFNQulUIgUOqmjApIMwoSY2kpPKvPJpF+vsWaHckykbxjvkkwdfiqloITLvaaT3LIwp1n+hhQsKZ2qQ+tGSh6GCyYN2Fl+qjSsjRnW6XtCB2kzihfNaizbhpGbRJiMYHmTEkr4vi2TLsFmtgdQJhlG2qV3PcjvZ7OKj/JM8uf1zjUD9vdX7dZXuX3E5CIu+zIzEUlUxHaFbmpUN/9U1dpeHOFn3E8VHjuYt2fNz1UIs8NXnWM08sS36VbGbvvwY/Prokp/piIpcGEYbrSp7xyT0elOdG1LIlO0vFEpyPcmAZlbH1oioFNJKLeAd6mUZ97vgDH0KyTWxG6PlySWqFmliKeIMCBi1hJ6pl0mDJGTmd02FYY7kYk/yAdlczwZYtUufWUpkcJev/EQ+jvXDOCwxX2WQB22uC8Sp4jtHpFERcxKbIkHY6xZRZPVMdDx7/q9DndUHTckVhxjjRqnclRZOY29ImHA5pZhMjvdbsR3c85htzXqFAdNKigsK3RhS5rFyeE9T/w77qNTzrvkESduUqfZixBol6UhtNp43lZAKrVHSpRtSO5JEwmkUZ+UTO2sUe5946STL+/UcT26gAjU4Uv6O7P8R0wpeDR4S44RMbmIJGo7xmw1g4bkp9uCpN3qtDW8G+M9x3hmEG4JJpNobemxZltyxa4Z77njLTD0jwVSt5IkcwlW+Uw9Q4qKUtnVCSQUWkJCKM3N2gqASL3FyikUCWhlqq0AzuTG408b7zU8fEl/DAtNA8pSTYInKt63yUYkUdsp7vr9gPf3TJDmJ4PUhfUiv0bVObivo2rbqn04qgjQllzD0YzvEyFb3cKBo52fY3NJXTeFb7qfq/FivHmPxmuMr4IwObMKBSRCIklcONCmqSiVl5epVPofMsJTwsuSZhsKgUwKm22fFhqvqkbV4GI894e/V5FATQ9iioOZiUiitjOEJINAhKIbkZhqhB0XhcD47/Q/eTMI9HdV3arIIu3Tbdtu14BmId31e/98fPtu17fqc16HzUFlWLCixxzNVzXa8cYihKGPZiKd8kzGWOUfjehuDgHzQ4XV29C1LpWeNZdIP+2AVarsOtc6/DdZS67w5zbOwIuI6IRQcVjhYePGjZg7dy6e/P26WZXpfCzwDr9bR08YL5GaiHI0ViNcRW5mA8ZzXceDKmI1UVIy1Z6v7R1huouJkq+JoNusSP57twXZN1d5ApxSPVstAFOJjRs3Yo/dFuL555+fkj6D+qR933MFklrPFh2rGNmEx77+9ikr6/aIqERt4wgbw/F09KNtU0WwJtp5zFbCVIXJIFAAOlS2LUFVyoGIyUOVgjfaNR5vuHA8GGuGKc0+DLcf7zPABwXdnseJzoyMmBjiAsQzE5FEbWOYrM58c48/XvVqWyJOUwV+jSaDUMWObuoxoRmBDJvrhZvojNTNASdS8RmKiKiGHHuTiJmAscjRXb8fmHICNRrGM7qOBGrzceeaAXtvab0yKWD/jtg2YH1PwU+3bbYm4ns7M0DG8i39iZhcRCVqFoDIETdbV30/XSC1ZDR5PzbEW47wGvKkh4TYRkZsLqTwJ5ZUkfOxQnsRUw+lJmF2XgznTTqiEjWJmAploMrTNFsUCFJQIoGaWty5ZsD+zJZnI2L6Qaom9+FRe0PPUwj+WSTsERFRiZoUhMuEbEnjwkeF3cBHjdOtQnXDTC3Xtg5KwxARMRp4mxWqS6MtJxQxfVCl2uJkmTGcN/mIJKoLqJHptmo5rSEV5isaDbRt+BxPlHBMN1HpJu1Pd7m2d/DrPxOSqEbMHIxHqbxj9UYcvqQfd6zeOPUFmoUI1butpf7GBYhnJiKJGgWjqUL0+eaEqra1sFaVJycSqJmFbs9cVKsiwkEgX1x4cxO0bkvoNnAG9DUipS4qdhFAJFFdcffaF9DzfHxJxkI0ms5OdJukELFtg+eq2hwVnYPI17ZIpGg1Ak6aqn4Htr6qE5d9mZmIxvKICSMkUNua0ratY7rTYkTAS1vBU1fQz1ShVO59FULg8CWd2au7DZC2dhhra4Cud0iUuv1Of9+5ZgB3r31hq5SxNJ6oLf2JmFxEEhUxYfCQZiRQsxNRjZo+jJbJn8+2nCqyQveevE9HLNVEqopQheXbFrA1yOpkQpXFpPxETC5iOC9ii7CtNKgREVsbpXLhIwL33AAuZDTaBBc6VjfQvnx7/js/PydQo73bk7k80dbE9rAEVcTWRSRRERHbKaIKVQ2+WPdEEXbW3UjOlobE+fbdykuEZzTSo5TC7avHf+7Z5onaFsjTZChJUYmafEQSFRGxHSESp7HB1RrAXbPQP8avJc8PV9Vhd8sfR2rUZKCqfDx5ZojZRCAmA+H96WYYn6lQZTkJJKqcpNJEECKJiojYThAJVHdUEZ9QuaG/hRDezCzqnMPQ3HhDXlPViW/vkwb4Pa26FyFZjoiYCCKJiojYxjEe38z2gNFIxWQRGZ6INwR16lX3YbZ06LPFBxWS4qpyz/RrHUIVBVSxhUrUFu4f0YlIoiIitmHMlk5vshB2nuPtKCezQx1tWvy2hNFI4XRiPLPtZuN9UWoSPFEqkqjJRiRRERHbMGZaBzdZII9RGLKJmHyMRcSrSMt0PHdjkaf4fERMBSKJiojYzjFTOsHxgK9bdtfvB+Iab5uB8WQonyzlcksXYp/I+YBtmyjF2XkzE5FERURswxirM+s2eh9rVL+1SRYvT1V+o4ixEeaG6jZbcLKST24tIrW9GOgjiZqZiCQqImIbRrd1zsKOMlxMdax1wcabB2ksjMfDNJopOBKpzUOYtqEKm3svxyJdU0WmthfyFDGzEUlURMQ2jvFMtd/SxVTHS6pG63C7hWLGypwd0R1VZClcM3FLU1+MRZB4fqaxtu32fPA0EtsrohI1MzFr1s779a9/jZNPPhnz589Hf38/Dj30UNx6663eNqtXr8brX/969Pb2Yv78+Xj/+9+PZrM5TSWOiJg54GQjVJ2mAuHCuuNZo4yyavOfiC0DESZOnF61W5/3s7Vw55qBjvLwBZdHQ1ws2yXb3LKfqUu2+YY3vAFLlixBvV7HwoULcdppp+EPf/iDt8222EfPGiXqpJNOwj777INbbrkFjUYDX/nKV/C6170Ov/nNb7BgwQIURYGTTjoJO++8M+68804888wzWL58OZRSuPjii6e7+BER046o2kTMRCISn8vxoSwLYAuVpHIKlagjjzwSn/jEJ7Bw4UKsXbsWH/nIR/DmN78Zd911FwBss320UFuq428F/OlPf8LOO++MH//4xzj88MMBAAMDA+jv78dNN92Eo48+Gtdddx1e97rXYc2aNVi0aBEA4IorrsCKFSvw1FNPob9/9JXJCRs3bsTcuXPxnZ8+jp45cSQcEREREdEdm14YwNsO/jM8//zz4+5nNgfUJ+100mchs/oWHatsDeOZaz85ZWXl+J//+R+ccsopGBkZQZZlk9ZHzzTMinDeTjvthD//8z/H5ZdfjsHBQbTbbVxyySXYddddcdBBBwEAfvKTn2D//fe3NwcAjj/+eIyMjOD+++/veuyRkRFs3LjR+4mIiIiIiJhJ2PJQnvNUhX3eyMjIpJb12Wefxbe//W286lWvQpZlACbeR890zAoSJYTAjTfeiAceeAB9fX2o1+v48pe/jOuvvx477LADAGD9+vXYddddvf3mzZuHPM+xfv36rsf+/Oc/j7lz59qfxYsXT2VVIiIiIiIiNhuTSaIWL17s9Xuf//znJ6WMH/vYx9Db24uddtoJq1evxtVXX22/m2gfPdMxrSRq5cqVEEKM+nPfffdBKYX3vOc92GWXXXDHHXfgpz/9KU4++WS87nWvw7p16+zxqgyzSqlRjbTnnnsunn/+efuzZs2aKalrRERERETETMCaNWu8fu/cc8+t3G68fTThox/9KB544AHccMMNSJIEp59+ujfzdyJ99EzHtBrL3/e+9+Htb3/7qNvsvvvuuOWWW3DNNddgw4YNNm769a9/HTfeeCMuu+wyfPzjH8eCBQtwzz33ePtu2LABrVarg/1y1Go11Gq1La9MRERERETEVKEooOQWGsPNAsT9/f3j8iCNt48mzJ8/H/Pnz8c+++yDP//zP8fixYtx9913Y9myZRPuo2c6ppVE0QUfC5s2bQIASOkLZ1JKlGbK5rJly/DZz34W69atw8KFCwEAN9xwA2q1mvVNRUREREREzEYoteWz8zZ3AeLx9tHV59IKFPmtttU+elZ4opYtW4Z58+Zh+fLlePDBB/HrX/8aH/3oR/Hkk0/ipJNOAgAcd9xx2G+//XDaaafhgQcewM0334yPfOQjOPPMM2et6z8iIiIiImKm46c//Sn++Z//GT//+c/xu9/9Drfeeive8Y53YK+99sKyZcsAbLt99KwgUfPnz8f111+PF154AUcddRRe/vKX484778TVV1+NAw88EACQJAmuvfZa1Ot1HHrooXjrW9+KU045BRdeeOE0lz4iIiIiImLLMJOTbTYaDVx55ZU4+uijse++++KMM87A/vvvj9tvv93aZbbVPnpW5Inamoh5oiIiIiIixoutlSeq/4iPQKRb5t9V7RFsvP3CrZInanvBrFCiIiIiIiIiIiJmGmbNsi8RERERERHbK1RZAlsYjpvKtfO2V0QSFRERERERMcOhJmHtPLWF+0d0IpKoiIiIiIiIGY5IomYmoicqIiIiIiIiImICiEpURERERETEDEdZFhBRiZpxiCQqIiIiIiJihkMVJSC2kEQV0Vg+2YjhvIiIiIiIiIiICSAqURERERERETMc07F2XsTYiCQqIiIiIiJihkOVxZaH86InatIRw3kRERERERERERNAVKIiIiIiIiJmOKISNTMRSVRERERERMQMRyRRMxORRAVQSgHQK3NHRERERESMBuorqO+YMhQtbPEZitZklCSCIZKoAM888wwA4J1HvWyaSxIRERERMVswMDCAuXPnTvpx8zzHggULsP5X352U4y1YsAB5nk/KsSIAoaacPs8uPPfcc5g3bx5Wr149JS/EdGLjxo1YvHgx1qxZg/7+/ukuzqQi1m12ItZtdmJbrhuwefVTSmFgYACLFi2ClFMzV2t4eBjNZnNSjpXnOer1+qQcKyIqUR2gl2Du3LnbZOMAAP39/bFusxCxbrMTsW6zF+Ot31QPuOv1eiQ+MxQxxUFERERERERExAQQSVRERERERERExAQQSVSAWq2G8847D7VabbqLMumIdZudiHWbnYh1m73Y1usXMXmIxvKIiIiIiIiIiAkgKlERERERERERERNAJFERERERERERERNAJFERERERERERERNAJFERERERERERERNAJFEMX//617HHHnugXq/joIMOwh133DHdRdpsrFy5EkII72fBggX2e6UUVq5ciUWLFqHRaOA1r3kNfvnLX05jibvjxz/+MV7/+tdj0aJFEELg+9//vvf9eOoyMjKCs88+G/Pnz0dvby/e8IY34Pe///1WrEU1xqrbihUrOu7jK1/5Sm+bmVq3z3/+83jFK16Bvr4+7LLLLjjllFPw2GOPedvM1ns3nrrN1nv3L//yL/jLv/xLm2By2bJluO666+z3s/WeAWPXbbbes4jpRyRRBt/5znfwwQ9+EJ/85CfxwAMP4PDDD8eJJ56I1atXT3fRNht/8Rd/gXXr1tmfhx9+2H73xS9+EV/60pfwz//8z7j33nuxYMECHHvssRgYmHkLLg8ODuLAAw/EP//zP1d+P566fPCDH8RVV12FK664AnfeeSdeeOEFvO51r0NRTO9q5mPVDQBOOOEE7z7+8Ic/9L6fqXW7/fbb8d73vhd33303brzxRrTbbRx33HEYHBy028zWezeeugGz897ttttu+MIXvoD77rsP9913H4466iicfPLJlijN1nsGjF03YHbes4gZABWhlFLq4IMPVmeddZb32Ytf/GL18Y9/fJpKNDGcd9556sADD6z8rixLtWDBAvWFL3zBfjY8PKzmzp2r/vVf/3UrlXBiAKCuuuoq+/d46vLcc8+pLMvUFVdcYbdZu3atklKq66+/fquVfSyEdVNKqeXLl6uTTz656z6zpW5KKfXUU08pAOr2229XSm1b9y6sm1Lb1r2bN2+e+vd///dt6p4RqG5KbVv3LGLrIipRAJrNJu6//34cd9xx3ufHHXcc7rrrrmkq1cTx+OOPY9GiRdhjjz3w9re/Hb/97W8BAE8++STWr1/v1bNWq+GII46YdfUcT13uv/9+tFotb5tFixZh//33nxX1ve2227DLLrtgn332wZlnnomnnnrKfjeb6vb8888DAHbccUcA29a9C+tGmO33rigKXHHFFRgcHMSyZcu2qXsW1o0w2+9ZxPQgLkAM4E9/+hOKosCuu+7qfb7rrrti/fr101SqieGQQw7B5Zdfjn322Qd//OMf8ZnPfAavetWr8Mtf/tLWpaqev/vd76ajuBPGeOqyfv165HmOefPmdWwz0+/riSeeiLe85S1YunQpnnzySfzDP/wDjjrqKNx///2o1Wqzpm5KKXzoQx/CYYcdhv333x/AtnPvquoGzO579/DDD2PZsmUYHh7GnDlzcNVVV2G//fazRGE237NudQNm9z2LmF5EEsUghPD+Vkp1fDbTceKJJ9rfDzjgACxbtgx77bUXLrvsMmuU3BbqSZhIXWZDfd/2trfZ3/fff3+8/OUvx9KlS3HttdfiTW96U9f9Zlrd3ve+9+Ghhx7CnXfe2fHdbL933eo2m+/dvvvui5///Od47rnn8L3vfQ/Lly/H7bffbr+fzfesW93222+/WX3PIqYXMZwHYP78+UiSpGNE8dRTT3WMvGYbent7ccABB+Dxxx+3s/S2hXqOpy4LFixAs9nEhg0bum4zW7Bw4UIsXboUjz/+OIDZUbezzz4b//M//4Nbb70Vu+22m/18W7h33epWhdl07/I8x957742Xv/zl+PznP48DDzwQ/+f//J9t4p51q1sVZtM9i5heRBIF/XIddNBBuPHGG73Pb7zxRrzqVa+aplJNDkZGRvDII49g4cKF2GOPPbBgwQKvns1mE7fffvusq+d46nLQQQchyzJvm3Xr1uEXv/jFrKvvM888gzVr1mDhwoUAZnbdlFJ43/vehyuvvBK33HIL9thjD+/72XzvxqpbFWbTvQuhlMLIyMisvmfdQHWrwmy+ZxFbGVvdyj5DccUVV6gsy9R//Md/qF/96lfqgx/8oOrt7VWrVq2a7qJtFj784Q+r2267Tf32t79Vd999t3rd616n+vr6bD2+8IUvqLlz56orr7xSPfzww+qv//qv1cKFC9XGjRunueSdGBgYUA888IB64IEHFAD1pS99ST3wwAPqd7/7nVJqfHU566yz1G677aZuuukm9bOf/UwdddRR6sADD1Ttdnu6qqWUGr1uAwMD6sMf/rC666671JNPPqluvfVWtWzZMvWiF71oVtTt3e9+t5o7d6667bbb1Lp16+zPpk2b7Daz9d6NVbfZfO/OPfdc9eMf/1g9+eST6qGHHlKf+MQnlJRS3XDDDUqp2XvPlBq9brP5nkVMPyKJYvja176mli5dqvI8Vy972cu8acuzBW9729vUwoULVZZlatGiRepNb3qT+uUvf2m/L8tSnXfeeWrBggWqVqupV7/61erhhx+exhJ3x6233qoAdPwsX75cKTW+ugwNDan3ve99ascdd1SNRkO97nWvU6tXr56G2vgYrW6bNm1Sxx13nNp5551VlmVqyZIlavny5R3lnql1q6oXAHXppZfabWbrvRurbrP53p1xxhm2/dt5553V0UcfbQmUUrP3nik1et1m8z2LmH4IpZTaerpXRERERERERMS2geiJioiIiIiIiIiYACKJioiIiIiIiIiYACKJioiIiIiIiIiYACKJioiIiIiIiIiYACKJioiIiIiIiIiYACKJioiIiIiIiIiYACKJioiIiIiIiIiYACKJioiYZKxatQpCCPz85z+fkuMLIfD9739/wvvfdtttEEJACIFTTjll1G1f85rX4IMf/OCEzxUxOug+7LDDDtNdlIiIiAkgkqiIbQorVqwYkxhMNRYvXox169Zh//33B+BIy3PPPTet5Qrx2GOP4Zvf/OZ0F2O7QLfnct26dfjKV76y1csTERExOYgkKiJikpEkCRYsWIA0Tae7KKNil112mREKSKvVmu4iTBsWLFiAuXPnTncxIiIiJohIoiK2K9x+++04+OCDUavVsHDhQnz84x9Hu92237/mNa/B+9//fpxzzjnYcccdsWDBAqxcudI7xqOPPorDDjsM9Xod++23H2666SYvxMbDeatWrcKRRx4JAJg3bx6EEFixYgUAYPfdd+9QIV7ykpd453v88cfx6le/2p6LryJPWLt2Ld72trdh3rx52GmnnXDyySdj1apVm31tBgcHcfrpp2POnDlYuHAhLrrooo5tms0mzjnnHLzoRS9Cb28vDjnkENx2223eNv/2b/+GxYsXo6enB2984xvxpS99ySNrK1euxEte8hL853/+J/bcc0/UajUopfD888/j7/7u77DLLrugv78fRx11FB588EHv2D/4wQ9w0EEHoV6vY88998T555/v3b+VK1diyZIlqNVqWLRoEd7//vePq+5j1euZZ57BX//1X2O33XZDT08PDjjgAPzXf/2Xd4z//u//xgEHHIBGo4GddtoJxxxzDAYHB7Fy5UpcdtlluPrqq234LrxmERERsxMze6gcETGJWLt2LV772tdixYoVuPzyy/Hoo4/izDPPRL1e94jLZZddhg996EO455578JOf/AQrVqzAoYceimOPPRZlWeKUU07BkiVLcM8992BgYAAf/vCHu55z8eLF+N73voe/+qu/wmOPPYb+/n40Go1xlbcsS7zpTW/C/Pnzcffdd2Pjxo0d/qRNmzbhyCOPxOGHH44f//jHSNMUn/nMZ3DCCSfgoYceQp7n474+H/3oR3HrrbfiqquuwoIFC/CJT3wC999/P17ykpfYbd75zndi1apVuOKKK7Bo0SJcddVVOOGEE/Dwww/jz/7sz/C///u/OOuss/BP//RPeMMb3oCbbroJ//AP/9BxrieeeALf/e538b3vfQ9JkgAATjrpJOy444744Q9/iLlz5+KSSy7B0UcfjV//+tfYcccd8aMf/Qh/8zd/g69+9as4/PDD8Zvf/AZ/93d/BwA477zz8N///d/48pe/jCuuuAJ/8Rd/gfXr13eQsG4Yq17Dw8M46KCD8LGPfQz9/f249tprcdppp2HPPffEIYccgnXr1uGv//qv8cUvfhFvfOMbMTAwgDvuuANKKXzkIx/BI488go0bN+LSSy8FAOy4447jvi8REREzGNO7/nFExORi+fLl6uSTT6787hOf+ITad999VVmW9rOvfe1ras6cOaooCqWUUkcccYQ67LDDvP1e8YpXqI997GNKKaWuu+46laapWrdunf3+xhtvVADUVVddpZRS6sknn1QA1AMPPKCUUurWW29VANSGDRu84y5dulR9+ctf9j478MAD1XnnnaeUUupHP/qRSpJErVmzxn5/3XXXeef6j//4j446jYyMqEajoX70ox9VXoeq8gwMDKg8z9UVV1xhP3vmmWdUo9FQH/jAB5RSSj3xxBNKCKHWrl3rHe/oo49W5557rlJKqbe97W3qpJNO8r4/9dRT1dy5c+3f5513nsqyTD311FP2s5tvvln19/er4eFhb9+99tpLXXLJJUoppQ4//HD1uc99zvv+W9/6llq4cKFSSqmLLrpI7bPPPqrZbFbWuxvGU68qvPa1r1Uf/vCHlVJK3X///QqAWrVqVeW2oz2Xl156qXd9IiIiZg+iEhWx3eCRRx7BsmXLIISwnx166KF44YUX8Pvf/x5LliwBAPzlX/6lt9/ChQvx1FNPAdBm7MWLF2PBggX2+4MPPnjKyrtkyRLstttu9rNly5Z529x///144okn0NfX530+PDyM3/zmN+M+129+8xs0m03v+DvuuCP23Xdf+/fPfvYzKKWwzz77ePuOjIxgp512AqCvzxvf+Ebv+4MPPhjXXHON99nSpUux8847e/V44YUX7HEIQ0NDth73338/7r33Xnz2s5+13xdFgeHhYWzatAlvectb8JWvfAV77rknTjjhBLz2ta/F61//+jG9aeOpV1EU+MIXvoDvfOc7WLt2LUZGRjAyMoLe3l4AwIEHHoijjz4aBxxwAI4//ngcd9xxePOb34x58+aNeu6IiIjZjUiiIrYbKKU8AkWfAfA+z7LM20YIgbIsux5jopBS2vMTuMk6/C4sJ6BDfgcddBC+/e1vd2zLScpYqDpXiLIskSQJ7r//fhuCI8yZM8cep9s15iDywY+9cOHCSq8Q+anKssT555+PN73pTR3b1Ot1LF68GI899hhuvPFG3HTTTXjPe96DCy64ALfffnvHPd3cel100UX48pe/jK985Ss44IAD0Nvbiw9+8INoNpsA9GSCG2+8EXfddRduuOEGXHzxxfjkJz+Je+65B3vssUfXc0dERMxuRBIVsd1gv/32w/e+9z2vo7/rrrvQ19eHF73oReM6xotf/GKsXr0af/zjH7HrrrsCAO69995R9yFfUlEU3uc777wz1q1bZ//euHEjnnzySa+8q1evxh/+8AcsWrQIAPCTn/zEO8bLXvYyfOc737Fm7Ili7733RpZluPvuu60it2HDBvz617/GEUccAQB46UtfiqIo8NRTT+Hwww+vPM6LX/xi/PSnP/U+u++++8Y8/8te9jKsX78eaZpi991377rNY489hr333rvrcRqNBt7whjfgDW94A9773vfixS9+MR5++GG87GUv67rPeOp1xx134OSTT8bf/M3fANDE6/HHH8ef//mf222EEDj00ENx6KGH4tOf/jSWLl2Kq666Ch/60IeQ53nH/Y+IiJj9iLPzIrY5PP/88/j5z3/u/axevRrvec97sGbNGpx99tl49NFHcfXVV+O8887Dhz70IUg5vlfh2GOPxV577YXly5fjoYcewv/+7//ik5/8JIBOlYiwdOlSCCFwzTXX4Omnn8YLL7wAADjqqKPwrW99C3fccQd+8YtfYPny5Z4Scswxx2DffffF6aefjgcffBB33HGHPRfh1FNPxfz583HyySfjjjvuwJNPPonbb78dH6Up9H8AAARySURBVPjAB/D73/9+3Ndszpw5eNe73oWPfvSjuPnmm/GLX/wCK1as8K7LPvvsg1NPPRWnn346rrzySjz55JO499578U//9E/44Q9/CAA4++yz8cMf/hBf+tKX8Pjjj+OSSy7BddddN6Z6d8wxx2DZsmU45ZRT8KMf/QirVq3CXXfdhU996lOWhH3605/G5ZdfjpUrV+KXv/wlHnnkEXznO9/Bpz71KQDAN7/5TfzHf/wHfvGLX+C3v/0tvvWtb6HRaGDp0qWjnns89dp7772t0vTII4/g//v//j+sX7/eHuOee+7B5z73Odx3331YvXo1rrzySjz99NOWZO2+++546KGH8Nhjj+FPf/rTdp3WISJim8I0ebEiIqYEy5cvVwA6fpYvX66UUuq2225Tr3jFK1Se52rBggXqYx/7mGq1Wnb/I444whqpCSeffLLdXymlHnnkEXXooYeqPM/Vi1/8YvWDH/xAAVDXX3+9UqrTWK6UUv/4j/+oFixYoIQQ9ljPP/+8eutb36r6+/vV4sWL1Te/+U3PWK6UUo899pg67LDDVJ7nap999lHXX3+9ZyxXSql169ap008/Xc2fP1/VajW15557qjPPPFM9//zzldeom9F9YGBA/c3f/I3q6elRu+66q/riF7/YcT2azab69Kc/rXbffXeVZZlasGCBeuMb36geeughu803vvEN9aIXvUg1Gg11yimnqM985jNqwYIF9vvzzjtPHXjggR3l2rhxozr77LPVokWLVJZlavHixerUU09Vq1evtttcf/316lWvepVqNBqqv79fHXzwweob3/iGUkqpq666Sh1yyCGqv79f9fb2qle+8pXqpptuqrwGIcaq1zPPPKNOPvlkNWfOHLXLLruoT33qU+r000+3ZvFf/epX6vjjj1c777yzqtVqap999lEXX3yxPf5TTz2ljj32WDVnzhwFQN166632u2gsj4iYvRBKjcMMERER0RX/+7//i8MOOwxPPPEE9tprr+kuzpi47bbbcOSRR2LDhg1bJdnmmWeeiUcffRR33HHHlJ9rNuKb3/wmPvjBD864jPYRERFjI3qiIiI2E1dddRXmzJmDP/uzP8MTTzyBD3zgAzj00ENnBYHi2G233fD617++I2nkluLCCy/Esccei97eXlx33XW47LLL8PWvf31Sz7GtYM6cOWi326jX69NdlIiIiAkgkqiIiM3EwMAAzjnnHKxZswbz58/HMcccU5nde6bikEMOweOPPw7AzT6bTPz0pz/FF7/4RQwMDGDPPffEV7/6Vfzt3/7tpJ9nvLjjjjtw4okndv2ePGrTAVqkOpwVGBERMTsQw3kRERHbNIaGhrB27dqu34822y8iIiJiNEQSFRERERERERExAcQUBxERERERERERE0AkURERERERERERE0AkURERERERERERE0AkURERERERERERE0AkURERERERERERE0AkURERERERERERE0AkURERERERERERE0AkURERERERERERE8D/D8Y5rmpIy4iFAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" ] - }, + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ds.sst[0].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAHFCAYAAAD8Jo2EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACjyklEQVR4nOzdd3wTdR8H8M8lnXQxCh2MUrZlD4Wyyt7bDQqID8rDXiIIQkGWbETcylIf8RHBATwUGZUtUxCxMgpUpCIIHYyO5Pf8kdz1Lrkkd8klTcr3/Xrl1eZy97vfXZK7b36TY4wxEEIIIYQ85HTFnQFCCCGEEG9AQREhhBBCCCgoIoQQQggBQEERIYQQQggACooIIYQQQgBQUEQIIYQQAoCCIkIIIYQQABQUEUIIIYQAoKCIEEIIIQTAQxYUHTx4EMnJybhz547Va+3atUO7du08nidPWbFiBQYMGID4+HhwHGf3WHfs2IFWrVohODgYERER6N27N86ePWu1Xl5eHhYvXox69eohJCQEUVFR6N69Ow4ePGi17owZM9CrVy9UrFgRHMdh6NChqo/hxo0bGDp0KCIjI1GqVCkkJiZi165dVuvl5+dj5syZiI+PR0BAAOLi4jBt2jTcv39f8b6Unq+1a9eC4zjZR2ZmJgAgOTnZ5jriB7+Ps2fPYuTIkUhMTERISAg4jsPevXut9n39+nXMmDEDiYmJiIyMRHh4OJo2bYoPPvgABoNB8bFeunQJAwYMQOnSpREaGorOnTvjxIkTsut+8cUXaNSoEYKCghAbG4vx48cjNzfXK/fljKpVqzr12fQ2as6znBMnTqBTp04IDQ1F6dKlMWDAAFy6dMnhdpcvX5Z8pr/66itXDsNp8+fPx5YtW4pl3wCwZcsWyXk4duxYseWFqMQeIosXL2YAWHp6utVrZ8+eZWfPnvV8pjykdu3arEmTJmzYsGGsfPnyLCkpSXa9LVu2MI7jWL9+/djWrVvZ559/zmrXrs3KlCnDLly4IFn3+eefZzqdjk2fPp3t2rWL/fe//2VNmzZlfn5+7MiRI5J1S5UqxVq0aMFGjBjBAgIC2JAhQ1Tl/8GDB6xevXqsUqVK7NNPP2UpKSmsb9++zM/Pj+3du1ey7oABA1hQUBCbP38+27lzJ5szZw4LCAhgvXv3Vrw/pedrzZo1DABbs2YNO3TokOSRn5/PGGMsIyNDsvzrr79mANiYMWMky/nP39q1a1lMTAzr0aMH6927NwPA9uzZY7Xv7777jlWuXJlNnz6dbd26laWkpLAJEyYwnU7HXnjhBUXHeePGDRYbG8vq1q3LNm3axLZu3cpat27NwsLC2G+//SZZ99NPP2UA2L/+9S+2e/du9t5777GIiAjWuXNnr9uXs+Li4lR/Nr2NmvMs59y5cywsLIy1adOGbd26lW3atInVrVuXxcbGshs3btjdNj09nQFgM2bMYIcOHWK3bt3S6rBUCQkJKdb38Z9//mGHDh1iM2bMYADY0aNHiy0vRB0Kih4SBoNB+L9u3bo2b/K1a9dmDRo0YEajUVh2+fJlFhAQwAYOHCgse/DgAdPr9ey5556TbP/nn38yAGzs2LE29+/MBWv16tUMADt48KCwrKCggCUkJLDHHntMWHbo0CEGgC1dulSy/fz58xkAlpKSomh/Ss8XHxSpuejxN47Fixc73Pd///tfm0HRP//8IwReYqNGjWIA2NWrVx3m5ZVXXmH+/v7s8uXLwrKsrCwWGRnJnnrqKWFZYWEhi4mJYV26dJFs/9lnnzEAbNu2bV61L2eVhKBI6Xm25cknn2SRkZEsKytLWHb58mXm7+/PpkyZYndb/rO9Zs0ap/OvBXcERYWFhezBgweqtnHm+kCK10NTfZacnIxXXnkFAIQqEXG1hGX1GV8MvHjxYrz55puoWrUqgoOD0a5dO/z+++8oKCjA1KlTERsbi4iICPTv3x83btyw2u/GjRuFapDQ0FB07doVJ0+e9MQhS+h0jt/qW7duIS0tDd27dwfHccLyuLg41KtXD1u2bBGqZXQ6HXQ6HSIiIiRphIeHQ6fTISgoSPX+7dm8eTNq166NxMREYZmfnx+ee+45/PTTT7h27RoA4MCBAwCAHj16SLbv1asXAGDTpk2K9udqfl2hdN9lypSBv7+/1fLHHnsMAPDHH384TGPz5s3o0KED4uLihGXh4eEYMGAAvvvuOxQWFgIADh8+jOvXr+OFF16QbP/kk08iNDQUmzdv9qp9WbJXzemo2jw7OxuTJ08WqmMrVqyI8ePH4+7du8I6jRs3Rps2bay2NRgMqFixIgYMGKA6z85Sep7lFBYW4vvvv8fjjz+O8PBwYXlcXBzat2/v1Lnn8dXIp0+fxpNPPomIiAiULVsWEydORGFhIdLS0tCtWzeEhYWhatWqWLRokVUaSt4LjuNw9+5drFu3TvY9zszMxMsvv4xKlSohICAA8fHxmD17tuS88Nf/RYsWYe7cuYiPj0dgYCD27NkDo9GIuXPnonbt2ggODkbp0qXRoEEDrFy50ulzQ7zHQxMU/etf/8KYMWMAAF9//TUOHTqEQ4cOoUmTJna3W716NQ4cOIDVq1fjo48+wm+//YbevXvjxRdfxN9//41PPvkEixYtwg8//IB//etfkm3nz5+PZ599FgkJCfjyyy+xYcMG5OTkoE2bNvj1118d5rmwsFDRgzHm/IkRyc/PBwAEBgZavRYYGIh79+7h4sWLAAB/f3+MHDkS69atw5YtW5CdnY3Lly9j+PDhiIiIwPDhwzXJE++XX35BgwYNrJbzy/g2T7aOgX9++vRpTfPF69WrF/R6PcqWLYsBAwbgl19+cct+lNi9ezf8/PxQq1YtyXLLm8P9+/dx8eJFm+f1/v37QjsS/ngs1/X390edOnWsjteT+1KiZ8+ewneefyxbtgwAULduXZvb3bt3D0lJSVi3bh3Gjh2L7du349VXX8XatWvRp08f4bv3wgsvYP/+/Th//rxk+5SUFPz5559WAZ4lo9Go6LvuqK2YmvMs5+LFi7h//77N7S9cuIAHDx7YzYMjTz31FBo2bIhNmzZh+PDhWL58OSZMmIB+/fqhZ8+eQlD36quv4uuvvxa2U/peHDp0CMHBwejRo4fwXr/zzjsATAHRY489hh07dmDmzJnYvn07XnzxRSxYsED2mvXWW29h9+7dWLJkCbZv3446depg0aJFSE5OxrPPPoutW7di48aNePHFF2XbqhLf41fcGfCUSpUqoUqVKgBMv+qqVq2qaLvSpUtjy5Ytwq/3mzdvYvz48ahTpw6++eYbYb3ffvsNK1asQHZ2NsLDw5GRkYFZs2Zh9OjReOutt4T1OnfujJo1a2L27NnYuHGjzf1evnwZ8fHxivK4Z88eTRqJR0VFoWzZskJpC+/OnTvCjejWrVvC8uXLlyMiIgKPP/44jEYjAKBKlSrYvXs3atSo4XJ+xG7duoWyZctaLeeX8flKSEgAYCoxEp+//fv3W+VfC9HR0Zg+fTpatGiB8PBwnDlzBgsXLkSLFi1w4MABNGzYUNP9OZKSkoINGzZg3LhxKFeunOQ1vV4PvV4vPL99+zYYY4rOK//X1rqXL18utn0pUb58eZQvX154npaWhnnz5qF9+/ZYvny5ze3eeustnD59GkeOHEGzZs0AAB07dkTFihXxxBNP4H//+x+6d++OQYMG4ZVXXsHatWsxb948Yfu1a9cKHRDsGTZsGNatW+fwOJKSkmQb3fPUnGc5js49Ywy3b99GTEyMw7za8tJLL2HixIkAgE6dOiElJQVvv/02vv76a/Tv3x+AqeT++++/x2effSaUsil9L1q0aAGdTofy5cujRYsWkn0nJyfj9u3bOHv2rHA/6NixI4KDgzF58mS88sorwjUEAIKCgrBjxw5JieyBAwdQv359JCcnC8u6du3q9Pkg3uWhCYqc1aNHD0l1xiOPPALA9MtTjF9+9epV1KtXDzt27EBhYSEGDx4sKZYNCgpCUlIS9uzZY3e/sbGxOHr0qKI81q5dW9F6juh0OowaNQpvvPEG3njjDbz88svIzs7G+PHjce/ePWEd3rx587BkyRIkJyejTZs2yM7Oxttvv43OnTsjJSUFjRs3VrV/xpjVL2E/v6KPqLhKzxL/Wvfu3VGjRg28+uqriIqKwqOPPorDhw/jtddeg16vl+TfshpBr9fb3Yecbt26oVu3bsLztm3bomfPnqhfvz5mzpwpCZzd7cSJE3jqqafQokULLFiwwOp1W9UmSs6ro3Utl3tyX2plZmaiW7duiImJwebNmxEQEGBz3e+//x716tVDo0aNJMfUtWtXofq9e/fuKFeuHHr37o1169bhjTfegE6nw+3bt/HNN99g7Nixks+xnOTkZIwePdph3sPCwhQdo5rz7I7t7eGrsnmPPPIIfv75Z0ng6Ofnhxo1auDKlSvCMqXvhT3ff/892rdvj9jYWEka3bt3x+TJk5GamioJivr06WNVRf3YY49h69atGDlyJPr27YvExERJVSPxbRQUOWD5i4m/gNpazhct//XXXwCARx99VDZdR+1GAgIC0KhRI0V5FP8id9XMmTORm5uLuXPnYubMmQBMAeALL7yAjz76CBUrVgQAnDt3DjNnzsSiRYswefJkYfvu3bsjISEBEydOdBj4WVq3bp1VNQNfJF6uXDnZX7j//PMPgKL3IyAgANu3b8fzzz+PLl26AABCQkIwf/58vPHGG0L+AVhd7NasWaNJd+yqVauidevWOHz4sMtpKXXy5EmhFHLbtm2yVaCWypQpA47jFJ1XvtTp1q1biIqKslpXrmShuPZlT05ODnr06IGCggJs377dqk2cpb/++gsXLlyQbbsFmEqOecOGDcOmTZuwc+dOdO3aFf/5z3+Ql5en6DNVpUoVVKpUyeF6jgISNedZjvjcy23PcRxKly7tMJ/2yF07S5UqZdUOMSAgANnZ2cJzNe+FLX/99Re+++47xWnIlYhNmzYNISEh+PTTT/Hee+9Br9ejbdu2ePPNN4USLOK7KChyk8jISADAV199JWnwqFRxVJ8Bpl9oy5Ytw5w5c5Ceno7IyEjExMSga9euiI+PFy7cP//8MxhjVkGfv78/GjZsiNTUVNX77t27t83Ssfr16+PMmTNWy/ll9erVE5bVqFEDhw4dwrVr1/DPP/+gevXqyMrKwrhx49C2bVthPct9KT3fSjDGPNZY++TJk+jUqRPi4uKQkpLi8EbPCw4ORo0aNWye1+DgYFSrVg2A6fzzy8W/pAsLC/Hbb7/h2Wef9Zp92VJQUIDHH38cFy9exL59+xQFIZGRkQgODsYnn3xi83Ve165dERsbizVr1qBr165Ys2YNmjdvLjkGW7SqPlNznuVUr14dwcHBNrevUaOGVfDiKWreC3tpNGjQQFLFKRYbGyt5LheE+vn5YeLEiZg4cSLu3LmDH374Aa+99hq6du2KjIwMlCpVSsHREG/1UAVF/K9nNYP4Oatr167w8/PDxYsX8fjjj6vevjiqz8RCQ0OFm9OJEyewa9cuLF26VJI/wNRTKCkpSViel5eHEydOKLrhWCpXrpxVOxhe//79MXLkSBw5cgTNmzcHYLpJfvrpp2jevLnVxQwAKlasKJQMzZgxAyEhIXjxxReF1931qy49PR0HDhxAp06d3JK+2KlTp9CpUydUqlQJO3fuRJkyZVRt379/f6xYsQIZGRmoXLkyAFNpytdff40+ffoI1T7NmzdHTEwM1q5di6efflrY/quvvkJubq6i3lWe3JecF198EXv37sX27dtlGxLL6dWrF+bPn49y5co5DJr1ej2ef/55rFixAvv27cOxY8fw/vvvK9qPltVnSs+zHD8/P/Tu3Rtff/01Fi1aJOzv6tWr2LNnDyZMmKDoeNxBzXsRGBgoe53v1asXtm3bhurVq6v+rsgpXbo0nnjiCVy7dg3jx4/H5cuXFQXBxHs9VEERf5NfuXIlhgwZAn9/f9SuXVtxPb0aVatWxZw5czB9+nRcunQJ3bp1Q5kyZfDXX3/hp59+QkhICGbPnm1z+4CAAE1v2seOHRMaqGZnZ4MxJow2++ijjwqlWXv37sXRo0fRoEEDMMbw008/4c0330S3bt0kF+3WrVvj0UcfRXJyMu7du4e2bdsiKysLq1atQnp6OjZs2CDZf2pqKv7++28Apm7KV65cEfaflJQkaQQrZ9iwYVi9ejWefPJJLFy4EBUqVMA777yDtLQ0/PDDD5J1Fy1ahOjoaFSpUgV//fUXvvzyS2zZsgUbNmyQVJ9pcb46deqEtm3bokGDBkJD60WLFoHjOLzxxhuK9mXp3r172LZtGwAIVXCpqam4efMmQkJChHYTaWlpQuA1b948nD9/XtL7qXr16pLz6ufnh6SkJMko4JMnT8aGDRvQs2dPzJkzB4GBgVi4cCEePHggaUiq1+uxaNEiPP/883j55Zfx7LPP4vz585gyZQo6d+4saVfl6X1xHOewBGXx4sXYsGEDxowZg5CQEEnVZnh4uM0b2fjx47Fp0ya0bdsWEyZMQIMGDWA0GnH16lWkpKRg0qRJQpAOmD6nb775JgYOHIjg4GBJUGdP1apVFXf+cETpeQYgdIi4cOGCsGz27Nl49NFH0atXL0ydOhUPHjzAzJkzERkZiUmTJmmSR2eoeS/q16+PvXv34rvvvkNMTAzCwsJQu3ZtzJkzBzt37kTLli0xduxY1K5dGw8ePMDly5exbds2vPfeew5/0PXu3Rv16tVDs2bNUL58eVy5cgUrVqxAXFwcatas6YlTQdypOAZHKk7Tpk1jsbGxTKfTSQbFS0pKkgzQZ2uAvT179jAA7L///a9kua1BurZs2cLat2/PwsPDWWBgIIuLi2NPPPEE++GHH9xyfLYMGTKEAZB9iAdaO3DgAGvevLmQ33r16rElS5bIDhJ4584dNn36dPbII4+wUqVKsQoVKrB27drJDq6XlJRkc/9yAxPKyczMZIMHD2Zly5ZlQUFBrEWLFmznzp1W682ePZtVr16dBQYGstKlS7Nu3bqxH3/8UfG5Ykz5+Ro/fjxLSEhgYWFhzM/Pj8XGxrLnnnuOpaWl2Uzb0eCN/Otyj7i4OGE9/jOnJJ+MMQZAdhDKCxcusH79+rHw8HBWqlQp1rFjR3b8+HHZvH3++eesQYMGLCAggEVHR7OxY8eynJwcq/U8ta+cnBwGgD3zzDOyafDsvZ/ifMoN3pibm8tmzJjBateuzQICAlhERASrX78+mzBhAsvMzLTaV8uWLRkANmjQILt5ciel5zkuLk7ymeIdO3aMdezYkZUqVYqFh4ezfv36WY1oL8fe4I2zZs1iANjff/8tWT5kyBAWEhJitX5SUhKrW7euZJnS9+LUqVOsVatWrFSpUlbv8d9//83Gjh3L4uPjmb+/Pytbtixr2rQpmz59OsvNzZUch9x3dOnSpaxly5YsMjKSBQQEsCpVqrAXX3xRMlgmjwZv9D0cYxoNckMIIR62bds29OrVCz///LNQEkyKD98W8uOPP8bgwYOd6tFZEjBzT9r169fjxRdfxNGjR6kRto94aAZvJISUPHv27MEzzzxDAZGXefHFF+Hv7694BPmS5ptvvoG/v7+kDSPxDVRSRAghRBP5+fmSUeO1atDsa+7cuSNpp5WQkEC90nwEBUWEEEIIIaDqM0IIIYQQABQUEUIIIYQAoKCIEEIIIQTAQzZ4oxJGoxF//vknwsLCHsqupIQQQpRjjCEnJwexsbFum9rnwYMHyM/P1yStgICAYpuqxRdQUGThzz//FIbGJ4QQQpTIyMhwanojRx48eIBywaG4B4Mm6UVHRyM9PZ0CIxsoKLLAT/mRfuowwsJCizk3hBBCvFlOTi7iG7Vwy3RRgGmYg3swYDAqIsDFFi/5MGJ95jXk5+dTUGQDBUUW+CqzsLBQhLvpQ04IIUR7jNOu+opjRnXru7m5RQB0CHD1+GgAHocoKCKEEOITtAx6vGlfSug5DnoXAy89OAqMHKCgyAbG6YQvhdpfDIQQQrThbcGJJU/lT8cBehcLo3QABUUOePenzUuIAyRCCCGeQddd4mlUUqQC43RUakQIId5MTbd4o+9czzWrPiN2UVCkElWpkZJIyS9y+swTr+TK2EBy23ppoKTXoPpMr01WSjQKipxEpUakJFBTPUE/CIhXcdNAiVbpemmQRNyDgiIXeCQwciZ9qocnCjjbXoOCI+IpHDPKf05tBURKPtNqP7c6nVcERlR95hkUFLlIs8BIyxuMOC1nLhIUVJV41IDVOXLnjYJD97IKjCwDIrWfZcv1lbx//D6LMTii6jPPoKDIRV4XEMmlbeuiYWu/FCS5n61z74FzrVVA5FNVyBqcb1vnzafOg1mxBndqf7ShKG+SfFtuK5eWkmNyJkgCigIluj6WKBQU2cLpiopN7RSfOn1B9ORF1NV92bqIFWfwJBfs8flRulwuTZ67j4UupJ7F6ZR/DpSwuCZ4e5Wio0DYZr7t/ahSvHM750Tle8IxY1Fy/Cb2thW/746oKTEqBlR95hkUFDnCfwmcqVe2d0FR82WV29bRft1FyQUOKJ6gwt65djZNUkSmAardYMCTnwd7LPOm8EYsBBLiqhPxObBzPsS8IVByOg9avG9KrnX8tdK8XkjXOU7vLnfXXFNarlar8fnyEhxcH1iQQiLHKChSw0avBJs3BkdfSnuvu/ILTYsLmcVFyqnt7bFX4iS3jod4201N66oZp6vOHPwokM2nneompZw+dnvbqcmXvSDI3roOsiI+LvF+tayOdyWwELu7Y6aQ1t0dM2XPn8OSMtE2IV2SNcmXLaEdZyB35xzrKjd77x+/jtrvhwevDVRS5BkUFNnCjIpLhsRfPrUXNVsXE6aTvjWeujELx6DkIuFKnpTuw9nknajOsNlmRO/n8LPgrvfHlXQVBR9qqgMcNDZVHXA52rejkijZTDh/vmTbrVgeqzg4tJd/8XYyAaXmgRCKgg1xEKNJuqK0xP/fTUkW/rc6BlFpnLuDIDmhnWdKnt9NSQYMMu8vYHp/ZK5Hks+e+Pi8qPSIaM9ngqLCwkIkJyfjs88+Q2ZmJmJiYjB06FDMmDEDOvPFiTGG2bNn44MPPsDt27fRvHlzrF69GnXr1lW/Q3GbIks22hMA5huoJbmLqEVRPHNQMCq8bpmWKB9KLq4Oe3Ewo/W+FKatmpZtPGSIe604yr/d8yK3zAM3OVfJ5cOrep1ZVkdZEn3PHP7gcKZBrWUSos+K3dIFpcGQaJllwOXKZ8RRkKFlQCQnd6cp/RCLwMNX8Oc+pEsycnfOQWjHGQBE1W6SlXVgEFU7yZXge+g7Rb3PPMNngqI333wT7733HtatW4e6devi2LFjeOGFFxAREYFx48YBABYtWoRly5Zh7dq1qFWrFubOnYvOnTsjLS0NYWFh6nbI10nrzR94yy+Dn5+wnlCqw4yA3t/0lzGA40zbGA3gjIXSC6LeXBrEjJJfIkwfIKQlLOersZjRlB9xtZa4FspRjbP4lxCnk9xoQttNkayau2chwBXlK6Rj0QVQ/AvRKm1bnCxBs8fejYV/TVUwxHOx262tvHtDsGRVbaOk1AOQBjCWwb2z+7ZMV44o+HcYeLpwc5L8sOF/EInTdfTe8cfhoDTN1c9AcZS68HJ3zRX+5wMJX2HrvIlLlCyPKSd1SdF1WXTttCo58hBTUORq9RlxxGeCokOHDqFv377o2bMnAKBq1ar4z3/+g2PHjgEwlRKtWLEC06dPx4ABAwAA69atQ1RUFD7//HO8/PLLqvbH/ALB/INNT4QLuAHQmT5WTNSQL7zlKIfpZR9cLQQ4DABnLDSn4y/5gjGdH8JbjkL2wdVFkxmzol+afMDFGQuLtpMrcZGpmuIDn5wflwEAwtpOtJnf0PZTZZfn7poLZr7gq/l6Wv56lQRW9tpPiW5Oti7EskGaC2wOGGdnfUty23tLsOR0IKig1FT1fvl0VVTjqQ2I7L2XtoJnyVPx5vaO1dUxbGS+x8UZBFnytUBIjZz9K4ue8D9qZT5nnOV7xOnA9P4eyCHxFJ8Jilq3bo333nsPv//+O2rVqoWff/4Z+/fvx4oVKwAA6enpyMzMRJcuXYRtAgMDkZSUhIMHDzoVFIW1meBSnrMPrpY8D281Rlhu9cvUAh9o8WlYFrszTmc3KLEV1ADSYCj7wCqEtxoj7McywMvZv1J6kTAWmkqQDIVWv9zt3XzEDR+tuBAQ5e6cUxQ8QkGAYRGA2VrflXZilts74qhKReuqOSX7UcxOda6Eq3NMqalKs2Dvs2nr3EreP5l8ahbIyqVj/oyqDYj4HzvQ6RHWepzTWcrZtxwAXL7++Yrsg6vBxMExpwNghBANi3+UwrKqXW+qHfAAqj7zDJ8Jil599VVkZWWhTp060Ov1MBgMmDdvHp599lkAQGZmJgAgKipKsl1UVBSuXLliM928vDzk5eUJz7OzswEAFTtPAsdXZSkgDoD4kh4AADMKwZD4davtzcGJOL3wlqOkaQGSL6xVXbfwuqn6yzIwytm3XNqI0Px/9oFV1vnmk2VG8z6M4IzGomo8C2pu/oDCm4r5ZmTZaFIstPNMU7G+0husihu/UwGRTNAl27DTksJGxe5su2Sr3YviYMlWSZLl685Om2ARGInz6IijY1ESHDta12aJp70fA0qq5hzI2bccYW0m2C35VSOszQTk7l2kSVrejC8dkgRENkohmfVSj7Ul4lHvM8/wmaBo48aN+PTTT/H555+jbt26OHXqFMaPH4/Y2FgMGTJEWI+z+NAwxqyWiS1YsACzZ8+2Wn5t51JU6jZNdhtJ4GAOeiwDHSVVapL17QROttLiq9gc7YvPb5iCPInTyj6wynShMBqKgiFmtH9Ds1UNItMw2V6JhZobvrgUyW6JlEq2qsXspi9zobQKjMTVRfxyUds1xvkVXZwddIO3lU9XWKZnN6Cw1WXdKJN/PqixVV1mrxpNo+kVrKrJRD8SlLRRc8jRepzO/nqic3w3JVlRaZEWJTq5excJbSP5qvncPQtNLzIjQju85vI+vEXuzjmmz1nBfXOHGr59qPk+wWRCIMvg1Zs6LBBNcYzJfQK8T+XKlTF16lSMGlV00547dy4+/fRT/Pbbb7h06RKqV6+OEydOoHHjxsI6ffv2RenSpbFu3TrZdOVKiipXrgy/+oPslhQJbYRgHdA4Yquqypvwx2e6QIraMPEXBoOpTZTdX/0KSgSU9hAT35BtlRzl7pwjeY3vJaNF0OD0iMBy21s24pX7K2woUzrn7l6BDmjSg008WrxSKoZFcMuchBp1JlDTvo4/1/ZKS52VfXA1OEM+OEOB9DMmCsjdsd/idHeH+XjMHU2g0wHm67y49Fxgr/0ax4Hp/BDW4mUUnvkMWVlZCA8P1zzP2dnZiIiIwKKw6gjmXKsAu88MmJJz0W15LQl8pqTo3r17Qtd7nl6vh9F8oYyPj0d0dDR27twpBEX5+flITU3Fm2++aTPdwMBABAYGqs6PXFWT2u29mVWbJgSCKywKHqE3Co3FgULpxkpLkiyqjBxVUfDL+JuIcFHjbxwWv2b5C7qWpUcCmeOw2eBaLgiSe873ZOR/sZp/nUpuWjLtXjzNZvsKNcQlSRpNnSD+LCkNsPn1bVJzfDINpIWbsGgd/vPLr2OrNEgo0XBTqYQu/y6M5s4kD0P7Iav3QnRuhc+ErSBIHKyaexUzTqf6B7ErqPrMM3wmKOrduzfmzZuHKlWqoG7dujh58iSWLVuGYcOGATBVm40fPx7z589HzZo1UbNmTcyfPx+lSpXCwIED3ZInPjAS9ywTvyYmLh3y9oBIzGbV3YFVgNH8q8XoV1QfbyyUVpOYCUGPnVIOW1Ubtm5yRfMgSX/RCl2Hxb+4LUpa1AYUNquQ5MarErqu+xX9IrVKUFcU/Jify/1S5YyFYHr/osAI2gZDfDDnSoNytT31bJ5DJSNGK6hGkwt63DE+k+T9NkqH1lAygOLdlGQwTmdVGpO7ay5CO85waylN9sHVCPWh65AWmM5P+hk3Gk1tqc3tJmVLigCL0kJT6ZAngyHiWT5TfZaTk4PXX38dmzdvxo0bNxAbG4tnn30WM2fORECAufjTPHjj+++/Lxm8sV69eor3wxdVOqo+s9rOTnWareoyvjG1LxOq2YRqtQKA04Ez5EuL443WPThkSxwU9lKyGmBPXP1k0QZC3DZC8tcifdW9sixLgMwPobRH7tcnVzSulaK2YPy5NRSY23cVmkuPCu1uW9yUNEx22EZJRcNsJQ2plUzhIvs5tLNvy+pfuVIfyyEjQrokS0o7hRJNmTm77PUidYb4OmXvR1xJJX4vmN5PaFMkCYhslMYw848cHn/OmCHfI9VnKyJqaFJ9Nj7rAlWf2eEzQZGnOBsUAebSE0730Fxg7Mk+sMpUvWY0FAVISqrVxBcn/pe35S84ueBG1BBSrvt+7u75ttvrAI7zJq7m4f8XbqDmi6pOD6YP0PT9F7ft4gwFQlDkTGmXp6htAO5qKY7NwEbFtg7nxxJ9JuU+X0rHyrLaj2UDXnPArHUwxPOF9oyeIBm9WucnnVZJXH2NovfMVumQp4KiVaW1CYrG3KGgyB6fqT7zBSW5SNVyyAFHhDGZDqwyjeNhUdJhEycNjvhgg+8RwhkLpXX8fGBjKLRf3WBez/KGlrt7vukfPz/5fAkXTtFzPSTr8iVD/MCb7sJ0fqYWAcZCgD8FTgQeiraxdy7411UGM1pXYTnTtslyG9kG8HI9jewE3I4CIr70SGgjBAD6ABj9gxHeagxy9q90aVwhNex9PktCybUjuXsWSkvKxJ8Bi+ps8f/ecF6oTZFnUEmRBVdKih42ai+iQukRYN3jRVyEbfFLDQBgKEBY0mTk7l0kjMydu3u+Zl2Fc35cJiqV4oq65fLVYOILKTNCmMbFvMydAZG4Go0rzJM2upYrMZKpHnGKOPBUkZbDAMWFbveK2gc5mKdO8XbiaiyLz5mjKS/EgZJVUMTpHH5uc/cuAuN0CEuaDKBoLCJ3U1qS5MsBlGVgJFSL2Wjj5+g4PVVS9E6ZmpqUFI28fZ5KiuygoMjCwxwUefJCl7NvuSkwAgBmtL4wGQ3CDcET+MAjvNUYYTBLNdO4eErO/pXCuFGSqV7MbYw0rVKz0x3dXhWZojZYjlhWVyqhZqJWGxMqS3oLWpQWhLafKhlkVUlQbqvBNd/OTUk1mfiz6U18MTDK3T1fWiXPWff4VPsDx1NB0ftlaiJY52JQZDTgZQqK7KKgyMLDHBR5mjCFCCApgdFqZF6lfK2dheUYUuC4ohIkQDZA0mzcHgu2hlSQJRdsyCZqp1u0mK1ARw4fZDmYssNymAer9mz8en6BTld5iYMpIciF/bkIvZUvBkaAOTgSl06bgw1n3lNPBUUflq2FUi4GRfeMBgz/53cKiuygNkWk2C5s/AWoOIOS7AOrfO6iLhl13HKsLKMBnDmAEIYhcHLOMCUcTgViq0pKrtG7zZ1YbCNUueqgqju/5XoWU4YIwZDOzzQhtPl8Wd4oc/avBAwFRdNEcMrHq8n5cRkYRO+becgFbysFUooflsRXvkPi6UvEAZGnxxwi3ouCooec3AXNExc5y0DIkxfXnB+XgTMWCg1dfZnVtCyihqOm3n+Fkkbkro7XJMeqsbJcoGIZ2FgGOHIlQeL1LJcxG8GQXC9FW2nqLUqB+N5GOj+7JQZyr+WkLgHzC5R8nnL2LTc1jje3oxPPT8ZPuqpVb8Xi/GHhC4GRuHRO0v3ehwIiTSaEpXbWDlFQ9BCzdSFz58WNH7ZAvB/Lv27HcUJjbXvketx588U/vNUYU575m7vev6i3nrmKRgiU1ARDahpaW45QbRl0cDKDVIoGpWScrmikdDWlR+J8ihvw28qbKADiq05gNJjy58Ss52FJk4VZ6vlG+6YhFAzy62vcaFrpZ9Idn19XRvb3lNAOryF3z0JpZw43d5DQmia9z1zc/mFAbYosUJsidcQNTxWtX0xBRc6Py5xqsyFc8M03XF+5gIrxDceFeewM+abACHCptEi2PZG4CkocuFjuw7K3jxgfwInHqRIHZpa96yzHrbIoDZOwHF9KFBRp1S2e70TgUrsjUS9LX+DN7fJy9yyUBsHm4TO0+j57qk3RusjamrQpGnIzjdoU2UElRcRptn4hii+QcusUR2DkbCNWb7zIK5Wzb7m05MRoUDy6tFWgA1jPeA+YAgshEdHwCuY2OfyNJ/vAqqJ9ywVIYnysw0RBj7iHkCTjrKhkidNJgj1JPsX74m+Q5sBM69ICJaVAjoJ0XwqIBF46mKh4FHlfnqaDqs88w8WBTEhJobYIXOkvQ3HVmDDvGzMKVQ3EPYRqNHFAZCwE+FIifm46nc403YFfAKD3MwUROtEM4n4BpnT0AYB/kOm5f1BRaZA+wBQA6QOKHn6Bwo1HeP9bjQEzl8xIRg82Y5wOYa3HmR5tJpjT8jeV4oh/HZtvcGFtJpjW8ws079/f/H+QKa/C8fgB+gAw/1LmR7CwDfT+TgVEuXsXCW2CnFU0mbI2nP0+aVX1Fd5ylNeNsJ67a27R4KyApITIF/HVZ64+iH1UUkQAaFsiosu/K/mla5m2L/5KU8pb2hzxeeB7SAEGIZARJu0Vj9XC90zjH3rRGC46PThDAULbTSka+E7cLojTwTRQrt7mgHdWc+TJDI5na9LknP0rAU6+l5dVTzy+ezXfsNwcnGn5vhgDQlxOQ64kyDKPtkqT5I7FG0pC3THpriv4QTWLvgMl+9pDtEFtiiw8DG2K3F3/72z7HeI+kjGhGDNXSemt2+VYVLHxpTqW72dO6hJhrjdA+fQRliUT3hBAOsLn35vyLtdhobhZdkzISV3i0QFY7eHb1bkjKPJUm6KNUY9o0qbo6b/OUZsiO7wrtCceYesGpRUKiLxPWOtxRaVCen9T1ZE+AGGtx0mrtMxVSsIyUU+u3N3zkZO6xFRVo9MLVU9KqlCzD662Kgmy1ebMG/GBkfh4hZHP3bQ/u8wlbN4SEAEypXY6vVvPkT2y1ZteVpKlFqfnNHkQ+6j67CHlC13MibbEPaEk77u5OozpA0xVXJJ7h6kqKid1CSRFyjZGerZFbsBJb7up26J02Aq1PTFd5Y0lst4wZlH2gVWAoQC5u+eD+QcjrM0EZSOuezmdnoNO51pQo6M2RQ5RUPSQc1TtoXRdMU9NXkmUsSp1YEbJeym+kWcfXI2wVmOEG67QHkOnF6YU0aI7s1vHwiqmm7KWAZGj/PPTukgmNzW3F9NqkmRnWJ773D0LFc3vpiXL9yFn33LNhlsgJR8FRUSWrRuL+AbLGfJlgx8KiLyLrRtszv6V4AruS25a/Lp8CQR/M8nZt1wY/deVaghPBCyyjbxtvObtbP3ACGs7UZhUlh+ywBu68VuWFDH/4GLLC9+OrsRcj/Q6cGomVZbDqWtCXLVqVVy5csVq+ciRI7F6tXUV7969e9G+fXur5efOnUOdOnVU7bu4UFBEZNm6eShpj2Q55UHurrlCTxDiPcJaj5N2Wba3rvnG4moboOKahsIT7JWQiqvWcvavVFxyYSu9nH3LEWp+LXfnHIAzSqayKE5CWzFbI4u7Wc7+laYhHkpYTzNO53qbIA7qtj969CgMhqJR2X/55Rd07twZTz75pN3t0tLSJA25y5cvry6jxYh6n1l4GHqfFYfcnXMQ2nlmcWeDaESYDNWHpknwBMuBSzljoWwAZNl7zHI78ZAKjubmyt01FwDc8sOjuNsHqVFco2p7qvfZpmoNEKJ3rffZXYMBj1867XRex48fj++//x7nz58HJ9M+iS8pun37NkqXLu1SXosLBUUWKCjShi9dTInz+Ju2ozZGD8PnIXfvImEkb8uJYZVW4Xhrezw1758nghNvqhL1VFC0uWZDTYKi/ud/RkZGhiSvgYGBCAwMtLttfn4+YmNjMXHiRLz2mnyJJB8UVa1aFQ8ePEBCQgJmzJghW6XmrSgoskBBkeu89cJO3IOfDd7RuDnePD+WL/N0KayjAOlhCIDFPBUUbandWJOgqF/aSavls2bNQnJyst1tv/zySwwcOBBXr15FbGys7DppaWn48ccf0bRpU+Tl5WHDhg147733sHfvXrRt29alvHsKtSkimqOA6OHCFeYhrH1RmyNbN0VfGpfIl3i6WtphwONl030Qa3IlRY58/PHH6N69u82ACABq166N2rVrC88TExORkZGBJUuW+ExQ5NsDNxCvkbtzTnFngRQTy95rjnp/5aQuQU7qkqLeU8RlubvnI3fvIk3TFE+PoYa7xmpSOxCkZQDOP88+uLrYBpV0hU7PafIAgPDwcMnDUVB05coV/PDDD/jXv/6lOt8tWrTA+fPnnTrm4kBBEdEENaImcmTn6UqajLCkyR4fv6YkC+3wGpjeX9OSuLDW42TTU7IPZwMqW9QOjCn3uZNMTu2DPdOKc0TrNWvWoEKFCujZs6fqbU+ePImYmBin9lscKCgihGhK/IucqlI8J6zNBHDGQpuvOxMwKR3N2yovNgIqpfhqWKEdmsog5mFq0+RuRqMRa9aswZAhQ+DnJ21xM23aNAwePFh4vmLFCmzZsgXnz5/H2bNnMW3aNGzatAmjR4/2dLadRm2KCCGaEv8iBx6+hrfFyd74R66+B558H+nzYs1U0uNaOQYH9T9SfvjhB1y9ehXDhg2zeu369eu4evWq8Dw/Px+TJ0/GtWvXEBwcjLp162Lr1q3o0aOHS/n2JOp9ZoF6nxGiLW/qPl1SqQ1YPNVt/mF4vz3V+2xb00cRonetHOOuoRA9jh91W15LAiopIoS4la2G1w/DDdNdLANNJedSbiJedwYu9P5qi+M4cC5OCMsZaUJYR6hNESHEo5TexIlt/Dm019NPbkJnW42PLdfN+XGZltklxGdQUEQIISWAXBBk+XrO/pVCd3R7DaH5CYG16M1GY1NpQ6fXafIg9lH1GSGElAByQZB4mfh/uWozubZfVKLnPVzpUi+kwaj6zBGfChuvXbuG5557DuXKlUOpUqXQqFEjHD9+XHidMYbk5GTExsYiODgY7dq1w9mzZ4sxx4QQUjzsBTRy1WiWbY20GuCQRjInvsRngqLbt2+jVatW8Pf3x/bt2/Hrr79i6dKlkpl4Fy1ahGXLluHtt9/G0aNHER0djc6dOyMnJ6f4Mk4IIV5AaWAiBEitxmgaGBHXFOfgjQ8TnwmK3nzzTVSuXBlr1qzBY489hqpVq6Jjx46oXr06AFMp0YoVKzB9+nQMGDAA9erVw7p163Dv3j18/vnnxZx7QgjxbnJBk5YjP/vi1BrehNoUeYbPnKFvv/0WzZo1w5NPPokKFSqgcePG+PDDD4XX09PTkZmZiS5dugjLAgMDkZSUhIMHDxZHlgkhxGs4Kq2x1RNNs/2bS55y9q/UfBoQQrTiM0HRpUuX8O6776JmzZrYsWMHRowYgbFjx2L9+vUAgMzMTABAVFSUZLuoqCjhNTl5eXnIzs6WPAghpKRRU33mzHaK0m41BmGtx4Hp/KjkSC0tqs6o+swhnwmKjEYjmjRpgvnz56Nx48Z4+eWXMXz4cLz77ruS9ThO+qYzxqyWiS1YsAARERHCo3Llym7JPyGE+CJ3lCCFtxwFcDpqgK2CjuOg07n4sHMvJCY+ExTFxMQgISFBsuyRRx4R5l2Jjo4GAKtSoRs3bliVHolNmzYNWVlZwiMjI0PjnBNCiPO0ChycmQbEnVO00CCexBv5TFDUqlUrpKWlSZb9/vvviIuLAwDEx8cjOjoaO3fuFF7Pz89HamoqWrZsaTPdwMBAhIeHSx6EEOItiiNwCG85CtkHVlHQ4kU4vU6TB7HPZ87QhAkTcPjwYcyfPx8XLlzA559/jg8++ACjRpm+tBzHYfz48Zg/fz42b96MX375BUOHDkWpUqUwcODAYs49IYT4Fls9z6jKq3jo9JwmD2KfzwRFjz76KDZv3oz//Oc/qFevHt544w2sWLECgwYNEtaZMmUKxo8fj5EjR6JZs2a4du0aUlJSEBYWVow5J4QQ7bgSlGjR64tKj4oHjVPkGRxjjBV3JrxJdnY2IiIi4Fd/EDh9QHFnhxBCZKmd4T774GpwxkKEtR7nxlw9fJghH4VnPkNWVpZbml/w96R9vTsg1N+1mblyCwrR5rvdbstrSeAzJUWEEEKK8O1+1GA6baa7pCo0z6M2RZ5BZ4gQQnyUqqk4mNH00GK/VIXmcTq9Fu2KivsovB8FRYQQ4sP4BtGOSm84Y6Gm03YQUhJpU5ZKCCGkWNkrvck+uBphVLrj0zgdB07nWkNpV7d/GFBJESGElEDuHHiReJ5Op8GEsDq65TtCZ4gQQgghBBQUEUJIiSU3XYdWcnfO0TxNYhuNU+QZFBQRQkgJFN5ylNDbjDMWap5+aOeZVsuoq777UJd8z6AzRAghJRXn2Us8tV0ivo56nxFCSEllLiliHg6OiPY4nQ6ciw2lXd3+YUBBESGElFDhrcYgZ/9KhNH4RD6P70HmahrEPgqKCCGkBOPuZxV3FogWtGgTREGRQ3SGCCGkBJNrEE0IkUclRYQQQoiX43SulxRRmyLHKCgihBBCvBw1tPYMOkOEEEIIIaCSIkIIIcTrmQZf1LuYhkGj3JRcFBQRQogPshw9mgZOLNm0GJGaRrR2jM4QIYT4mOyDqxHecpTw4JcRQlxDQREhhPiQ7IOrAWakIOgho9PpNHkQ++gMEUKIj8jdOQfhLUeBK8xDeMtRFBg9RIpjQtjk5GRwHCd5REdH290mNTUVTZs2RVBQEKpVq4b33nvPlcP2OGpTRAghPoIfiDEsaTKAonZE1J6o5CuuNkV169bFDz/8IDzX22nsnZ6ejh49emD48OH49NNPceDAAYwcORLly5fH448/7lSePY2CIkIIKQFy9y4CjIVg/sFg+gAKlIgm/Pz8HJYO8d577z1UqVIFK1asAAA88sgjOHbsGJYsWeIzQRFVnxFCiA/LPrAK2QdWwRgQgtAOr4HpA4Q2R9kHVhV39ohGOE4nDODo9IMz3fKzs7Mlj7y8PJv7PX/+PGJjYxEfH49nnnkGly5dsrnuoUOH0KVLF8myrl274tixYygoKNDmRLgZBUWEEOLLOB3A6SRVaeGtxgDMaHqNlAhatimqXLkyIiIihMeCBQtk99m8eXOsX78eO3bswIcffojMzEy0bNkSt27dkl0/MzMTUVFRkmVRUVEoLCzEzZs3tT0hbkLVZ4QQUkJRFRqRk5GRgfDwcOF5YGCg7Hrdu3cX/q9fvz4SExNRvXp1rFu3DhMnTpTdhuM4yXPGmOxyb0VBESGE+DDLwCd35xyEdp5pKi0iJYaWDa3Dw8MlQZFSISEhqF+/Ps6fPy/7enR0NDIzMyXLbty4AT8/P5QrV059hosBla0SQogPyz64Gjn7VwrP+R5qpGTR6XWaPFyRl5eHc+fOISYmRvb1xMRE7Ny5U7IsJSUFzZo1g7+/v0v79hQKigghxIdxxkIwajtE3GDy5MlITU1Feno6jhw5gieeeALZ2dkYMmQIAGDatGkYPHiwsP6IESNw5coVTJw4EefOncMnn3yCjz/+GJMnTy6uQ1CNqs8IIcSHMZ2fqVE1KdE4HQfOxRGpOZ26dj1//PEHnn32Wdy8eRPly5dHixYtcPjwYcTFxQEArl+/jqtXrwrrx8fHY9u2bZgwYQJWr16N2NhYvPXWW5p2xz99+rTqbRISEuDnpyzc8dmgaMGCBXjttdcwbtw4YUwExhhmz56NDz74ALdv30bz5s2xevVq1K1bt3gzSwgh7sKMsu2Hcn5chrC28o1hie8pjsEbv/jiC7uvr1271mpZUlISTpw4oWo/ajRq1AgcxwkNuB3R6XT4/fffUa1aNUXr+2RQdPToUXzwwQdo0KCBZPmiRYuwbNkyrF27FrVq1cLcuXPRuXNnpKWlISwsrJhySwgh7iMXEOXuWYhQCohICXXkyBGUL1/e4XqMMdSrV09V2j4XFOXm5mLQoEH48MMPMXfuXGE5YwwrVqzA9OnTMWDAAADAunXrEBUVhc8//xwvv/xycWWZEEI8KrT91OLOAtFYcU3z4W2SkpJQo0YNlC5dWtH6bdu2RXBwsOL0FQVFfJChxnvvvYcKFSqo3s6RUaNGoWfPnujUqZMkKEpPT0dmZqZkNM3AwEAkJSXh4MGDFBQRQgjxWfyI1q6m4ev27Nmjav1t27apWl9RULRlyxY89dRTiqOtzz//HLm5uZoHRV988QVOnDiBo0ePWr3Gj40gN5rmlStXbKaZl5cnGeI8Oztbo9wSQggh2uD0eujsTMaqNI2SLDc3F0aj0akxmHiKq8/eeustxUHOV1995XSGbMnIyMC4ceOQkpKCoKAgm+vJjaZpbyTNBQsWYPbs2ZrlkxBCCCGe8+uvv2Lw4ME4ceIEOI5DQkIC1q5di6ZNm6pOS1FZ2p49e1C2bFnFiW7fvh0VK1ZUnRl7jh8/jhs3bqBp06bw8/ODn58fUlNT8dZbb8HPz08oIZIbTdOy9Ehs2rRpyMrKEh4ZGRma5psQQghxlZZzn5U0L7/8MkaPHo3c3FzcunULAwYMkIyfpIaiM5SUlKS4jz8AtG7d2uZcKs7q2LEjzpw5g1OnTgmPZs2aYdCgQTh16hSqVauG6OhoyWia+fn5SE1NRcuWLW2mGxgYKAx57uzQ54QQQog7UVBUpG/fvrh27Zrw/O+//0afPn1QqlQplC5dGj169MBff/3lVNpO9T4zGo24cOECbty4AaNROmhY27ZtncqII2FhYVZd60JCQlCuXDlh+fjx4zF//nzUrFkTNWvWxPz581GqVCkMHDjQLXkihBBCiGcNGjQI7du3x+jRozFmzBiMHj0adevWRVJSEgoKCrB7925MmjTJqbRVB0WHDx/GwIEDceXKFavBkziOg8FgcCojWpgyZQru37+PkSNHCoM3pqSk0BhFhBBCfBqn06D3mYvbe4unnnoKXbp0wauvvormzZvj/fffR0pKCvbu3QuDwYCpU6fi0UcfdSptjikdFtKsUaNGqFWrFmbPno2YmBirRswRERFOZcRbZGdnIyIiAn71B4HTBxR3dgghhHgxZshH4ZnPkJWV5ZbmF/w96Y/3piI82LVmKdn381BpxEK35bU47N+/HyNHjkTnzp3xxhtvoFSpUi6lpzpsPH/+PObPn49HHnkEpUuXRkREhORBCCGEEOJOt2/fxvHjx1G/fn0cP34cYWFhaNy4MbZu3epSuqqDoubNm+PChQsu7ZQQQgghynE6zvWG1ionhPVWGzduRMWKFdGzZ0/ExcVh+/btSE5OxjfffINFixbhqaeecm9Da/GstGPGjMGkSZOQmZmJ+vXrw9/fX7Ku5XxkhBBCCHENtSkq8uqrr+KTTz7BM888g+PHj2PYsGHo06cP6tSpg9TUVHzwwQdITEzEpUuXVKetKCiSm5V22LBhwv/8a8Xd0JoQQgghJVtOTg5q164NAKhevTru3bsnef2ll15Cv379nEpbUVCUnp7uVOKEEEIIcR2n04PTuTjNh4vbe4shQ4agZ8+eaNeuHY4dO4bnn3/eah1npxlTFBTFxcUJ///4449o2bKl1WCOhYWFOHjwoGRdQgghhGhApzc9XE2jBFi2bBnat2+P3377DUOHDpVMBO8q1eMUtW/fHtevX7eKwrKystC+fXuqPiOEEEK0ptOZHq6mUUL07t0bvXv31jxd1WfI1gSrt27dQkhIiCaZIoQQQgix9NZbb+HBgweK13/vvfeQk5OjeH3FJUUDBgwAYGpUPXToUMncZgaDAadPn7Y7xxghhBBCnMPp9eD0LrYpcnF7bzBhwgQ8++yzCAoKUrT+lClT0KVLF8UzWygOiviBGRljCAsLQ3BwsPBaQEAAWrRogeHDhytNjhBCCCFKUZsiAKYYpGPHjoonqb9//76q9BUHRWvWrAFjDIwxrFq1iuYTI4QQQohHzZo1S9X6ffv2RdmyZRWvr6qhNWMMn3/+OaZPn05BESGEEOIpOp0GJUW+39BabVCklqozpNPpULNmTdy6dctd+SGEEEKIBX5Ea1cfxD7VZ2jRokV45ZVX8Msvv7gjP4QQQgghxUL1OEXPPfcc7t27h4YNGyIgIEDS4BoA/vnnH80yRwghhBAAnAYNrTnfb2jtbqqDohUrVrghG4QQQgixiXqfeYTqoGjIkCHuyAchhBBCSLFSHRQBpsEat2zZgnPnzoHjOCQkJKBPnz7Ql4CBoQghhBBvo0VD6ZLW0NpgMGDt2rXYtWsXbty4AaPRKHl99+7dqtNUHRRduHABPXr0wLVr11C7dm0wxvD777+jcuXK2Lp1K6pXr646E4QQQgixg6rPrIwbNw5r165Fz549Ua9ePdkpyNRSHRSNHTsW1atXx+HDh4UBkW7duoXnnnsOY8eOxdatW13OFCGEEEJEaJwiK1988QW+/PJL9OjRQ7M0VQdFqampkoAIAMqVK4eFCxeiVatWmmWMEEIIIcSWgIAA1KhRQ9M0VYeNgYGBsjPO5ubmIiAgQJNMEUIIIaQIPyGsq4+SZNKkSVi5ciUYY5qlqbqkqFevXnjppZfw8ccf47HHHgMAHDlyBCNGjECfPn00yxghhBBCzHQ616u/Slj12f79+7Fnzx5s374ddevWhb+/v+T1r7/+WnWaqoOit956C0OGDEFiYqKQgcLCQvTp0wcrV65UnQFCCCGEELVKly6N/v37a5qm6qCodOnS+Oabb3D+/Hn89ttvYIwhISFB83o9QgghhJhR7zMra9as0TxNp8vSatasid69e6NPnz4UEBFCCCFuxOn0mjzUWLBgAR599FGEhYWhQoUK6NevH9LS0uxus3fvXnAcZ/X47bffXDl8u/7++2/s378fBw4cwN9//+1SWqpLitwxWBIhhBBCvEtqaipGjRqFRx99FIWFhZg+fTq6dOmCX3/9FSEhIXa3TUtLQ3h4uPC8fPnymufv7t27GDNmDNavXy/EInq9HoMHD8aqVatQqlQp1WmqDorcMVgSIYQQQuzgNGhozanb/n//+5/k+Zo1a1ChQgUcP34cbdu2tbtthQoVULp0abU5VGXixIlITU3Fd999JwwJtH//fowdOxaTJk3Cu+++qzpN1UGROwZLIoQQQohtzlR/yaXhiqysLACQjFNoS+PGjfHgwQMkJCRgxowZaN++vUv7lrNp0yZ89dVXaNeunbCsR48eCA4OxlNPPeWZoMgdgyURQgghxDOys7MlzwMDAxEYGGh3G8YYJk6ciNatW6NevXo214uJicEHH3yApk2bIi8vDxs2bEDHjh2xd+9eh6VLat27dw9RUVFWyytUqIB79+45labqsjh3DJZECCGEEDv4aT5cephu+ZUrV0ZERITwWLBggcPdjx49GqdPn8Z//vMfu+vVrl0bw4cPR5MmTZCYmIh33nkHPXv2xJIlSzQ5DWKJiYmYNWsWHjx4ICy7f/8+Zs+ejcTERKfSVF1S5I7BkpRYsGABvv76a/z2228IDg5Gy5Yt8eabb6J27drCOowxzJ49Gx988AFu376N5s2bY/Xq1ahbt65b8kQIIYR4hIaDN2ZkZEgaQTsqJRozZgy+/fZb/Pjjj6hUqZLq3bZo0QKffvqp6u0cWblyJbp164ZKlSqhYcOG4DgOp06dQlBQEHbs2OFUmk6NU6T1YElKKGkFv2jRIixbtgxr165FrVq1MHfuXHTu3BlpaWkICwvzeJ4JIYQQLWgxTQe/fXh4uCQosoUxhjFjxmDz5s3Yu3cv4uPjndrvyZMnERMT49S29tSrVw/nz5/Hp59+Koyb+Mwzz2DQoEEIDg52Kk3VQZHSwZIOHDiAZs2aOYxAlXLUCp4xhhUrVmD69OkYMGAAAGDdunWIiorC559/jpdfflmTfBBCCCEPg1GjRuHzzz/HN998g7CwMGRmZgIAIiIihKBj2rRpuHbtGtavXw8AWLFiBapWrYq6desiPz8fn376KTZt2oRNmza5JY/BwcEYPny4ZumpDoqU6t69O06dOoVq1aq5JX3LVvDp6enIzMxEly5dhHUCAwORlJSEgwcP2gyK8vLykJeXJzy3bIBGCCGEFLtiGNGa770l7t0FmAolhg4dCgC4fv06rl69KryWn5+PyZMn49q1awgODkbdunWxdetWzXqsf/vtt+jevTv8/f3x7bff2l3XmflY3RYUubMhtlwreD6CtWyJHhUVhStXrthMa8GCBZg9e7bb8koIIYS4rBiCIiX38bVr10qeT5kyBVOmTFG1HzX69euHzMxMYYRtWziOg8FgUJ2+T06Za68VvOVgkowxuwNMTps2DVlZWcIjIyND8/wSQgghxHVGoxEVKlQQ/rf1cCYgAnwwKOJbwe/Zs0fSCj46OhpAUYkR78aNG7LjGPACAwOFRmdKG58RQgghnsTpdJo8SpL169dLmr/w8vPzhTZOavnMGWKMYfTo0fj666+xe/duq1bw8fHxiI6Oxs6dO4Vl+fn5SE1NRcuWLT2dXUIIIUQ7nKtjFOlNaZQgL7zwgtC+WCwnJwcvvPCCU2m6rU2R1nOiOWoFz3Ecxo8fj/nz56NmzZqoWbMm5s+fj1KlSmHgwIGa5oUQQgghxctW85g//vgDERERTqXpMw2tlbSCnzJlCu7fv4+RI0cKgzempKTQGEWEEEJ8G8epntBVNo0SoHHjxuA4DhzHoWPHjvDzKwplDAYD0tPT0a1bN6fSVh0U3b9/H4wxlCpVCgBw5coVbN68GQkJCZLu8Dk5OU5lyBYlQRbHcUhOTkZycrKm+yaEEEKKFafTICjymRYzdvG9zk6dOoWuXbsiNDRUeC0gIABVq1bF448/7lTaqoOivn37YsCAARgxYgTu3LmD5s2bw9/fHzdv3sSyZcvw73//26mMEEIIIYQ4MmvWLABA1apV8fTTTyMoKEiztFWHjSdOnECbNm0AAF999ZUwDtD69evx1ltvaZYxQgghhJgwTqfJoyQZMmSIpgER4ERJ0b1794Q2OikpKRgwYAB0Oh1atGhhd5BEQgghhDiJqs+sGAwGLF++HF9++SWuXr2K/Px8yev//POP6jRVn6EaNWpgy5YtyMjIwI4dO4R2RDdu3KAxfgghhBB34DhtHiXI7NmzsWzZMjz11FPIysrCxIkThYIaZ9sWqw6KZs6cicmTJ6Nq1ap47LHHkJiYCMBUatS4cWOnMkEIIYQQosZnn32GDz/8EJMnT4afnx+effZZfPTRR5g5cyYOHz7sVJqqq8+eeOIJtG7dGtevX0fDhg2F5R07dkT//v2dygQhhBBC7NDpTA9X0yhBMjMzUb9+fQBAaGioMJBjr1698PrrrzuVplNnKDo6GmFhYdi5cyfu378PAHj00UdRp04dpzJBCCGEENuoobW1SpUq4fr16wBMTXtSUlIAAEePHkVgYKBTaao+Q7du3ULHjh1Rq1Yt9OjRQ8jQv/71L0yaNMmpTBBCCCGEqNG/f3/s2rULADBu3Di8/vrrqFmzJgYPHoxhw4Y5labq6rMJEybA398fV69exSOPPCIsf/rppzFhwgQsXbrUqYwQQgghxAbqfWZl4cKFwv9PPPEEKleujAMHDqBGjRro06ePU2mqDopSUlKwY8cOyQz1AFCzZk3qkk8IIYS4AwVFEgUFBXjppZfw+uuvo1q1agCA5s2bo3nz5i6lq/oM3b17V5jiQ+zmzZtO1+ERQgghhCjl7++PzZs3a56u6qCobdu2WL9+vfCc4zgYjUYsXrwY7du31zRzhBBCCEFRSZGrjxKkf//+2LJli6Zpqq4+W7x4Mdq1a4djx44hPz8fU6ZMwdmzZ/HPP//gwIEDmmaOEEIIIQDjOJd7j7ESNnhjjRo18MYbb+DgwYNo2rQpQkJCJK+PHTtWdZocUzL9vIXMzEy88847OHHiBIxGI5o0aYJRo0YhJiZGdQa8TXZ2NiIiIuBXfxA4fUBxZ4cQQogXY4Z8FJ75DFlZWW6Z1YG/J938/STCzVNsOZ1WTg4iazV2W149LT4+3uZrHMfh0qVLqtNUXVIEmMYpmjNnjjObEkIIIUQtamhtJT09XfM0nTpD+/btw3PPPYeWLVvi2rVrAIANGzZg//79mmaOEEIIIaC5z2TMmTMH9+7ds1p+//59pwtuVAdFmzZtQteuXREcHIwTJ04gLy8PAJCTk4P58+c7lQlCCCGE2EENra3Mnj0bubm5Vsvv3buH2bNnO5Wm6jM0d+5cvPfee/jwww/h7+8vLG/ZsiVOnDjhVCYIIYQQQtRgjIGTKf36+eefUbZsWafSVN2mKC0tDW3btrVaHh4ejjt37jiVCUIIIYTYpsXcZSVl7rMyZcqA4zhwHIdatWpJAiODwYDc3FyMGDHCqbRVB0UxMTG4cOECqlatKlm+f/9+YVRJQgghhGiI07k+y30JCYpWrFgBxhiGDRuG2bNnIyIiQngtICAAVatWRWJiolNpqw6KXn75ZYwbNw6ffPIJOI7Dn3/+iUOHDmHy5MmYOXOmU5kghBBCCFFiyJAhAExd8lu2bClpyuMq1UHRlClTkJWVhfbt2+PBgwdo27YtAgMDMXnyZIwePVqzjBFCCCHEjLrkW0lKSoLRaMTvv/+OGzduwGg0Sl6Xa+rjiKqgyGAwYP/+/Zg0aRKmT5+OX3/9FUajEQkJCQgNDVW9c0IIIYQoQEGRlcOHD2PgwIG4cuUKLMeh5jgOBoNBdZqqgiK9Xo+uXbvi3LlzKFu2LJo1a6Z6h4QQQgghrhoxYgSaNWuGrVu3IiYmRrYnmlqqq8/q16+PS5cu2R1emxBCCCEaopIiK+fPn8dXX32FGjVqaJam6jM0b948TJ48Gd9//z2uX7+O7OxsyYMQQggh2uInhHXtUbJGtG7evDkuXLigaZqqS4q6desGAOjTp4+kqIofRMmZOjxCCCGEEDXGjBmDSZMmITMzE/Xr17fqhdagQQPVaaoOivbs2aN6J4QQQghxAVWfWXn88ccBAMOGDROWcRznUiGN6qAoKSlJ9U4IIYQQ4gItJnQtYdVn6enpmqepOig6ffq07HKO4xAUFIQqVaogMDDQ5YwRQgghxIxKiqzExcVpnqbqM9SoUSM0btzY6tGoUSPUqVMHERERGDJkCB48eKB5ZpV65513EB8fj6CgIDRt2hT79u0rtrwQQgghvkrt/TQ1NRVNmzZFUFAQqlWrhvfee8+t+duwYQNatWqF2NhYXLlyBYBpGpBvvvnGqfRUB0WbN29GzZo18cEHH+DUqVM4efIkPvjgA9SuXRuff/45Pv74Y+zevRszZsxwKkOu2rhxI8aPH4/p06fj5MmTaNOmDbp3746rV68WS34IIYQQV7ne80z9hLJq76fp6eno0aMH2rRpg5MnT+K1117D2LFjsWnTJi1OgZV3330XEydORI8ePXDnzh2hDVHp0qWxYsUKp9LkmOUwkA489thjeOONN9C1a1fJ8h07duD111/HTz/9hC1btmDSpEm4ePGiU5lyRfPmzdGkSRO8++67wrJHHnkE/fr1w4IFCxxun52djYiICPjVHwROH+DOrBJCCPFxzJCPwjOfISsrC+Hh4Zqnz9+T/srMdDn97OxsREVHK86r2vvpq6++im+//Rbnzp0Tlo0YMQI///wzDh065FLe5SQkJGD+/Pno168fwsLC8PPPP6NatWr45Zdf0K5dO9y8eVN1mqpLis6cOSNbjxcXF4czZ84AMFWxXb9+XXVmXJWfn4/jx4+jS5cukuVdunTBwYMHZbfJy8ujsZYIIYQ8NCzveXl5eVbrOHM/PXTokNX6Xbt2xbFjx1BQUKDdAZilp6ejcePGVssDAwNx9+5dp9JUHRTVqVMHCxcuRH5+vrCsoKAACxcuRJ06dQAA165dQ1RUlFMZcsXNmzdhMBis9h0VFYXMzEzZbRYsWICIiAjhUblyZU9klRBCCFHMNHij6w8AqFy5suS+J1fq48z9NDMzU3b9wsJCp0ptHImPj8epU6eslm/fvh0JCQlOpam699nq1avRp08fVKpUCQ0aNADHcTh9+jQMBgO+//57AMClS5cwcuRIpzKkBcv5T/gxC+RMmzYNEydOFJ5nZ2dTYEQIIcSrMGZ6uJoGAGRkZEiqz+z1GFdzP7W1vtxyLbzyyisYNWoUHjx4AMYYfvrpJ/znP//BggUL8NFHHzmVpuqgqGXLlrh8+TI+/fRT/P7772CM4YknnsDAgQMRFhYGAHj++eedyoyrIiMjodfrraLYGzdu2Cy5CgwMpCEECCGEPDTCw8Mdtily5n4aHR0tu76fnx/KlSvnWqZlvPDCCygsLMSUKVNw7949DBw4EBUrVsTKlSvxzDPPOJWm6qAIAEJDQzFixAinduhOAQEBaNq0KXbu3In+/fsLy3fu3Im+ffsWY84IIYQQ5xkZg9HFoiI12ztzP01MTMR3330nWZaSkoJmzZpZTcGhleHDh2P48OG4efMmjEYjKlSo4FJ6To3ktGHDBrRu3VoyLsDy5cudHhdASxMnTsRHH32ETz75BOfOncOECRNw9epVrwziCCGEECWYRg81HN1Pp02bhsGDBwvrjxgxAleuXMHEiRNx7tw5fPLJJ/j4448xefJk5w/cjvT0dJw/fx6AqWSLD4jOnz+Py5cvO5Wm6qCIHxege/fuuH37tjAuQJkyZZweF0BLTz/9NFasWIE5c+agUaNG+PHHH7Ft2za3jHxJCCGElFSO7qfXr1+XjFkUHx+Pbdu2Ye/evWjUqBHeeOMNvPXWW8IcZVobOnSobE+4I0eOYOjQoU6lqXqcIneMC+BNaJwiQgghSnlqnKKrf2ozTlGVWOXjFHm78PBwnDhxAjVq1JAsv3DhApo1a4Y7d+6oTlN1myJ3jAtACCGEENsYY1BZhiGbRknCcRxycnKslmdlZQm1WGqprj5zx7gAhBBCCLHNyLR5lCRt2rTBggULJAGQwWDAggUL0Lp1a6fSVF1S5I5xAQghhBBC1Fi0aBHatm2L2rVro02bNgCAffv2ITs7G7t373YqTdVBkTvGBSCEEEKIfSWsoMdlCQkJOH36NN5++238/PPPCA4OxuDBgzF69GiULVvWqTRVN7QW02pcAG9CDa0JIYQo5amG1hczriPMxfRzsrNRvXJMiWlo7Q5ODd7Ii4yM1CofhBBCCCGq3LlzBz/99BNu3LgBo9EoeU08hpJSioKixo0bK5635MSJE6ozQQghhBDbqPeZte+++w6DBg3C3bt3ERYWJolTOI5zX1DUr18/4f8HDx7gnXfeQUJCAhITEwEAhw8fxtmzZ4t1ElhCCCGkpDKaH66mUZJMmjQJw4YNw/z581GqVClN0lQUFM2aNUv4/1//+hfGjh2LN954w2qdjIwMTTJFCCGEEGLPtWvXMHbsWM0CIsCJcYr++9//yhZJPffcc9i0aZMmmSKEEEJIEca0eZQkXbt2xbFjxzRNU3VD6+DgYOzfvx81a9aULN+/fz+CgoI0yxghhBBCTLQYfLGkDd7Ys2dPvPLKK/j1119Rv359+Pv7S17v06eP6jRVB0Xjx4/Hv//9bxw/fhwtWrQAYGpT9Mknn2DmzJmqM0AIIYQQotbw4cMBAHPmzLF6jeM4p6b6UB0UTZ06FdWqVcPKlSvx+eefAwAeeeQRrF27Fk899ZTqDBBCCCHEPup9Zs2yC74WnBqn6KmnnqIAiBBCCPEQ6n3mGaobWhNCCCHEsxg0aGhd3AfhBqmpqejduzdq1KiBmjVrok+fPti3b5/T6SkKisqWLYubN28qTrRKlSq4cuWK05kihBBCCLHn008/RadOnVCqVCmMHTsWo0ePRnBwMDp27Cg071FLUfXZnTt3sH37dkRERChK9NatW041cCKEEEKINSNjMLrYJsjV7b3NvHnzsGjRIkyYMEFYNm7cOCxbtgxvvPEGBg4cqDpNxW2KhgwZojpxQgghhLiOwfXqr5IVEgGXLl1C7969rZb36dMHr732mlNpKgqK3NHCmxBCCCHEWZUrV8auXbtQo0YNyfJdu3ahcuXKTqXpVO8zQgghhHgODd5obdKkSRg7dixOnTqFli1bguM47N+/H2vXrsXKlSudSpOCIkIIIcTbaTFNRwkLiv79738jOjoaS5cuxZdffgnANG7ixo0b0bdvX6fSpKCIEEIIIT6pf//+6N+/v2bpUVBECCGEeDkjGIwuFvW4ur23OXr0KIxGI5o3by5ZfuTIEej1ejRr1kx1mjR4IyGEEOLlXB64UYvqNy8zatQoZGRkWC2/du0aRo0a5VSaTgVFFy9exIwZM/Dss8/ixo0bAID//e9/OHv2rFOZIIQQQghR49dff0WTJk2sljdu3Bi//vqrU2mqDopSU1NRv359HDlyBF9//TVyc3MBAKdPn8asWbOcygQhhBBCbON7n7n6KEkCAwPx119/WS2/fv06/Pycax2kOiiaOnUq5s6di507dyIgIEBY3r59exw6dMipTBBCCCHENqo+s9a5c2dMmzYNWVlZwrI7d+7gtddeQ+fOnZ1KU3UodebMGdk5RcqXL49bt245lQlCCCGE2EYNra0tXboUbdu2RVxcHBo3bgwAOHXqFKKiorBhwwan0lQdFJUuXRrXr19HfHy8ZPnJkydRsWJFpzJBCCGEEKJGxYoVcfr0aXz22Wf4+eefERwcjBdeeAHPPvss/P39nUpTdVA0cOBAvPrqq/jvf/8LjuNgNBpx4MABTJ48GYMHD3YqE4QQQgixTYvqr5JWfQYAISEheOmllzRLT3Wbonnz5qFKlSqoWLEicnNzkZCQgLZt26Jly5aYMWOGZhkTu3z5Ml588UXEx8cjODgY1atXx6xZs5Cfny9Z7+rVq+jduzdCQkIQGRmJsWPHWq1DCCGE+BojY5o8iH2qS4r8/f3x2WefYc6cOTh58iSMRiMaN26MmjVruiN/AIDffvsNRqMR77//PmrUqIFffvkFw4cPx927d7FkyRIAgMFgQM+ePVG+fHns378ft27dwpAhQ8AYw6pVq9yWN0IIIYSUDBxjvhk6Ll68GO+++y4uXboEANi+fTt69eqFjIwMxMbGAgC++OILDB06FDdu3EB4eLiidLOzsxEREQG/+oPA6QMcb0AIIeShxQz5KDzzGbKyshTfZ9Tg70l7z15BaJhr6efmZKNd3Ti35bUkUFRSNHHiRMUJLlu2zOnMqJGVlYWyZcsKzw8dOoR69eoJAREAdO3aFXl5eTh+/Djat28vm05eXh7y8vKE59nZ2e7LNCGEEOIELaq/qPrMMUVB0cmTJyXPjx8/DoPBgNq1awMAfv/9d+j1ejRt2lT7HMq4ePEiVq1ahaVLlwrLMjMzERUVJVmvTJkyCAgIQGZmps20FixYgNmzZ7str4QQQghxjzt37uCrr77CxYsX8corr6Bs2bI4ceIEoqKinOoRr6ih9Z49e4RH79690a5dO/zxxx84ceIETpw4gYyMDLRv3x49e/ZUtfPk5GRwHGf3cezYMck2f/75J7p164Ynn3wS//rXvySvcRxntQ/GmOxyHj/wE/+Qm0eFEEIIKU5GxmBw8eGukiKlnaEsDR061Oqe36JFC8X7PX36NGrVqoU333wTS5YswZ07dwAAmzdvxrRp05w6FtUNrZcuXYqUlBSUKVNGWFamTBnMnTsXXbp0waRJkxSnNXr0aDzzzDN216latarw/59//on27dsjMTERH3zwgWS96OhoHDlyRLLs9u3bKCgosCpBEgsMDERgYKDiPBNCCCGeZpqmw9XqM40yY0FJZyhbunXrhjVr1gjPxTNlODJx4kQMHToUixYtQlhYmLC8e/fuGDhwoPoDgRNBUXZ2Nv766y/UrVtXsvzGjRvIyclRlVZkZCQiIyMVrXvt2jW0b98eTZs2xZo1a6DTSQu5EhMTMW/ePFy/fh0xMTEAgJSUFAQGBnqsWo8QQgh52HTr1g3dunUTnlerVg1paWl49913HQZFgYGBiI6Odmq/R48exfvvv2+1vGLFinabzdijepyi/v3744UXXsBXX32FP/74A3/88Qe++uorvPjiixgwYIBTmXDkzz//RLt27VC5cmUsWbIEf//9NzIzMyUH3aVLFyQkJOD555/HyZMnsWvXLkyePBnDhw+nVvaEEEJ8msGozQMwFW6IH+LORlqx7Axly969e1GhQgXUqlULw4cPx40bNxTvIygoSLZzVFpaGsqXL68qvzzVQdF7772Hnj174rnnnkNcXBzi4uIwaNAgdO/eHe+8845TmXAkJSUFFy5cwO7du1GpUiXExMQID55er8fWrVsRFBSEVq1a4amnnkK/fv0cRqmEEEKIt9Ny8MbKlSsjIiJCeCxYsEDTvPKdoUaMGGF3ve7du+Ozzz7D7t27sXTpUhw9ehQdOnRQHKT17dsXc+bMQUFBAQBTu+KrV69i6tSpePzxx53Ku9PjFN29excXL14EYww1atRASEiIUxnwNjROESGEEKU8NU7RtycuIkTUbsYZd3Ny0KdJdWRkZEjyaqttbXJyssPe2UePHkWzZs2E53/++SeSkpKQlJSEjz76SFX+rl+/jri4OHzxxReKap6ys7PRo0cPnD17Fjk5OYiNjUVmZiYSExOxbds2p+IS1W2KeCEhIWjQoIGzmxNCCCGkGISHhysK4LTsDKVETEwM4uLicP78eUXrh4eHY//+/di9ezdOnDgBo9GIJk2aoFOnTqr3zVMdFLVv395uF/fdu3c7nRlCCCGEWDPC9d5jRpXra9kZSolbt24hIyND0jRGiQ4dOqBDhw6q9ydHda4bNWqEhg0bCo+EhATk5+fjxIkTqF+/viaZIoQQQkgRg5Fp8nAHJZ2hAKBOnTrYvHkzACA3NxeTJ0/GoUOHcPnyZezduxe9e/dGZGQk+vfvr2i/Y8eOxVtvvWW1/O2338b48eOdOhbVJUXLly+XXZ6cnIzc3FynMkEIIYQQ38R3hrpw4QIqVaokeU3cbDktLQ1ZWVkATJ2jzpw5g/Xr1+POnTuIiYlB+/btsXHjRsmYQ/Zs2rQJ3377rdXyli1bYuHChVixYoXqY3G6TZGl5557Do899hj19iKEEEI0xjQYkdpd878PHToUQ4cOVbX/4OBg7Nixw6X93rp1CxEREVbLw8PDcfPmTafSVF/pZ8OhQ4cQFBSkVXKEEEIIMTMwbR4lSY0aNfC///3Pavn27dtRrVo1p9JUXVJk2U2OMYbr16/j2LFjeP31153KBCGEEEKIGhMnTsTo0aPx999/Cw2td+3ahaVLlzpVdQY4ERSFh4dLep/pdDrUrl0bc+bMQZcuXZzKBCGEEEJsM2pQfeauCWGLy7Bhw5CXl4d58+bhjTfeAGAaIuDdd9/F4MGDnUpTdVC0du1ap3ZECCGEEOdo0XvMXb3PitO///1v/Pvf/8bff/+N4OBghIaGupSe6jZF1apVw61bt6yW37lzx+k6PEIIIYQQZ5UvX97lgAhwoqTo8uXLMBgMVsvz8vJw7do1lzNECCGEECmqPjNp0qQJdu3ahTJlyqBx48Z2B5M+ceKE6vQVB0XisQB27Ngh6QZnMBiwa9cuyXDfhBBCCNGGFr3HSkLvs759+wrztPXr10/z9BUHRfzOOY7DkCFDJK/5+/ujatWqWLp0qaaZI4QQQgiVFPFmzZol+79WFAdFRqNp1pT4+HgcPXpU8XwohBBCCCG+QHWbovT0dHfkgxBCCCE2GI0MRhd7j7m6/cNAUVD01ltv4aWXXkJQUJDs5GtiY8eO1SRjhBBCCDExatCmiGIixxQFRcuXL8egQYMQFBRkc0JYwNTeiIIiQgghhPgiRUGRuMqMqs8IIYQQz6KG1p6huk3RnDlzMHnyZJQqVUqy/P79+1i8eDFmzpypWeYIIYQQAhgYg8HFoMbV7b3RH3/8gW+//RZXr15Ffn6+5LVly5apTk91UDR79myMGDHCKii6d+8eZs+eTUERIYQQQtxu165d6NOnD+Lj45GWloZ69erh8uXLYIyhSZMmTqWpepoPxpjsCJI///wzypYt61QmCCGEEGIb3/vM1UdJMm3aNEyaNAm//PILgoKCsGnTJmRkZCApKQlPPvmkU2kqLikqU6YMOI4Dx3GoVauWJDAyGAzIzc3FiBEjnMoEIYQQQmwzQIMRrTXJifc4d+4c/vOf/wAA/Pz8cP/+fYSGhmLOnDno27cv/v3vf6tOU3FQtGLFCjDGMGzYMMyePVsyzUdAQACqVq2KxMRE1RkghBBCCFErJCQEeXl5AIDY2FhcvHgRdevWBQDcvHnTqTQVB0X81B7x8fFo2bIl/P39ndohIYQQQtSh3mfWWrRogQMHDiAhIQE9e/bEpEmTcObMGXz99ddo0aKFU2mqbmidlJQk/H///n0UFBRIXg8PD3cqI4QQQgiRR73PrC1btgy5ubkAgOTkZOTm5mLjxo2oUaOG3TEV7VEdFN27dw9TpkzBl19+iVu3blm9bjCUtFpLQgghpHgZjQwGmuZDolq1asL/pUqVwjvvvONymqp7n73yyivYvXs33nnnHQQGBuKjjz7C7NmzERsbi/Xr17ucIUIIIYQQJe7cuYOPPvoI06ZNwz///AMAOHHiBK5du+ZUeqpLir777jusX78e7dq1w7Bhw9CmTRvUqFEDcXFx+OyzzzBo0CCnMkIIIYQQeQYNSopc3d7bnD59Gp06dUJERAQuX76M4cOHo2zZsti8eTOuXLniVEGN6pKif/75B/Hx8QBM7Yf4yKx169b48ccfVWeAEEIIIfbxQZGrj5Jk4sSJGDp0KM6fP4+goCBheffu3Z2OR1QHRdWqVcPly5cBAAkJCfjyyy8BmEqQSpcu7VQmCCGEEELUOHr0KF5++WWr5RUrVkRmZqZTaaoOil544QX8/PPPAEyjSfJtiyZMmIBXXnnFqUyokZeXh0aNGoHjOJw6dUry2tWrV9G7d2+EhIQgMjISY8eOtZoLhRBCCPE1BqMWpUXFfRTaCgoKQnZ2ttXytLQ0lC9f3qk0VbcpmjBhgvB/+/bt8dtvv+HYsWOoXr06GjZs6FQm1JgyZQpiY2OFwIxnMBjQs2dPlC9fHvv378etW7cwZMgQMMawatUqt+eLEEIIcRdqU2Stb9++mDNnjlBjxXEcrl69iqlTp+Lxxx93Kk3VJUWWqlSpggEDBqBs2bIYNmyYq8nZtX37dqSkpGDJkiVWr6WkpODXX3/Fp59+isaNG6NTp05YunQpPvzwQ9lIkhBCCCG+a8mSJfj7779RoUIF3L9/H0lJSahRowbCwsIwb948p9JUXVJkyz///IN169bhk08+0SpJib/++gvDhw/Hli1bUKpUKavXDx06hHr16iE2NlZY1rVrV+Tl5eH48eNo3769bLp5eXnCMOEAKIAihBDidaikyFp4eDj279+P3bt348SJEzAajWjSpAk6derkdJqaBUXuxBjD0KFDMWLECDRr1kxo6C2WmZmJqKgoybIyZcogICDAboOrBQsWYPbs2VpnmRBCCNEMDd5oW4cOHdChQwdN0nK5+swVycnJ4DjO7uPYsWNYtWoVsrOzMW3aNLvpcRxntYwxJrucN23aNGRlZQmPjIwMl4+LEEIIIe5x5MgRbN++XbJs/fr1iI+PR4UKFfDSSy9JaoDUKNaSotGjR+OZZ56xu07VqlUxd+5cHD58GIGBgZLXmjVrhkGDBmHdunWIjo7GkSNHJK/fvn0bBQUFViVIYoGBgVbpEkIIId7EwDSoPishc58lJyejXbt26N69OwDgzJkzePHFFzF06FA88sgjWLx4MWJjY5GcnKw6bcVB0YABA+y+fufOHdU7j4yMRGRkpMP13nrrLcydO1d4/ueff6Jr167YuHEjmjdvDgBITEzEvHnzcP36dcTExAAwNb4ODAxE06ZNVeeNEEII8RbUpqjIqVOn8MYbbwjPv/jiCzRv3hwffvghAKBy5cqYNWuWe4OiiIgIh68PHjxYdQaUqFKliuR5aGgoAKB69eqoVKkSAKBLly5ISEjA888/j8WLF+Off/7B5MmTMXz4cISHh7slX4QQQognUFBU5Pbt25IaoNTUVHTr1k14/uijjzrdFEZxULRmzRqnduAper0eW7duxciRI9GqVSsEBwdj4MCBst33CSGEEOKboqKikJ6ejsqVKyM/Px8nTpyQdJjKycmBv7+/U2kXa0NrZ1WtWhWMMTRq1EiyvEqVKvj+++9x79493Lp1C6tWraL2QoQQQnxeoZFp8nCXqlWrWnWUmjp1qt1tGGNITk5GbGwsgoOD0a5dO5w9e9bhvrp164apU6di3759mDZtGkqVKoU2bdoIr58+fRrVq1d36jh8oks+IYQQ8jDzheqzOXPmYPjw4cJzvqmLLYsWLcKyZcuwdu1a1KpVC3PnzkXnzp2RlpaGsLAwm9vNnTsXAwYMQFJSEkJDQ7Fu3ToEBAQIr3/yySfo0qWLU8dAQREhhBBCXBYWFobo6GhF6zLGsGLFCkyfPl3oyLVu3TpERUXh888/l53olVe+fHns27cPWVlZCA0NhV6vl7z+3//+12FAZotPVp8RQgghDxN+8EZXHvzgjdnZ2ZKHs2P6WHrzzTdRrlw5NGrUCPPmzbM7IXt6ejoyMzMlJTqBgYFISkrCwYMHFe0vIiLCKiACgLJly0pKjtSgkiJCCCHEyxkYc3mcIX77ypUrS5Y7231dbNy4cWjSpAnKlCmDn376CdOmTUN6ejo++ugj2fX5mSYsxxGMiorClStXXMqLKygoIoQQQh4iGRkZkqFqbHVISk5OdjgN1tGjR9GsWTNMmDBBWNagQQOUKVMGTzzxhFB6ZIvljBOOZqFwNwqKCCGEEC+nZUPr8PBwReP3KZ11Qk6LFi0AABcuXJANivi2R5mZmcKAywBw48YNu7NQuBsFRYQQQoiXK47eZ0pnnZBz8uRJAJAEPGLx8fGIjo7Gzp070bhxYwBAfn4+UlNT8eabbzq1Ty1QQ2tCCCGEOO3QoUNYvnw5Tp06hfT0dHz55Zd4+eWX0adPH8mMFHXq1MHmzZsBmKrNxo8fj/nz52Pz5s345ZdfMHToUJQqVQoDBw4srkOhkiJCCCHE23nzOEWBgYHYuHEjZs+ejby8PMTFxWH48OGYMmWKZL20tDRkZWUJz6dMmYL79+9j5MiRuH37Npo3b46UlBS7YxS5GwVFhBBCiJczMCMMRqPLabhDkyZNcPjwYYfrMYvecxzHITk52eWeb1qioIgQQgjxckYNSoqMbh7RuiSgNkXESvbB1cWdBUIIIcTjqKSIWAlvOaq4s0AIIUTEYGTQeWmbopKEgiJCCCHEyxUaAc7FoKbQPU2KShSqPiOEEEIIAZUUEUIIIV6Pqs88g4IiQgghxMtRUOQZVH1GCCGEEAIqKSKEEEK8HpUUeQaVFD3EaDwiQgjxDfzgja48aPBGxygoeojReESEEEJIEao+cxJfykKBBSGEEHczGJnL4xRR9ZljFBQplH1wtRAAZR9cDbhpYr2SLPvAKnCFeWB+gQCno4CSEEIUYoyBuRjUWE7ISqxRUGTDtZTFCA8PBzhzDSMzIvvAKuF/AOAMBaYbPTOCmdcLbzVGWC+81RghvewDqyTPH0YcM5oe+XfB/IOLOzuEEOJQzv6Vput7Mf+QM2rQJojaFDlGQZEjMiVCnLGw6K/5Rg+dHzhjIXJ+XAYYCgDA9D/HAUYDYCgo+nIBD12AlH1glem8GAsBHX3sCCHeQVwLYCln/0rTNR4AmFFyDRe2z85GVMxn7s8o8Qi6O9nAFeaBMxQUBTWiEiPOWAim8wOMhaaACABnyDcFRoUPTIGUzq8ooDJvyxAADgZTmg8JviQNhXmmvwZTQAmjn92LESGE2GPVpMFMfE0RSvf5H6Pi1/htzLUAlj9Uc/avNF37mRHgzCUsHGe6jomqoTgPNaVgjLlc/UXVZ45RUGQDV5hnCnAASUAkVJ0V5gM683Ij/6UoLErAWGhartOZv1Q6oYSJcTrhF0dJLjHK2b8SMBSYAkbzsfPnjDMWAgbO6mJkL1CSraqkwIqQh4a4gwtnLDRdE4yFpuuLoQAwX1vDWo8zrWduzsAZ8k3bH1hlup6Lr+XmaxNfKgROZwqGzAERZ16XcTpw/LWe357TgSt44JFjZ0YN2hRR9ZlD1CXfHv6Dz3/pLH8R8F8QnU4aIPEP8XNDIWAODsTVbiVtrKDsg6uRfXA1cvavNJe25RcFiPxDOK8GU7ssi3Mg/LqzWGa6+BnAmc9hTuoScIV5yNm33FOHRwjxAP4awv/P/+UM+UIwZPrBVWC6JhTmma4LhnxTUwXRNYErzBOuNZyhQCjt558Lj4L7pr98Wvy12mi6dgvXMv6v+P5ASgwqKbKFGYtKesSMosBIp5M+t2T5utFYFIYaDWB+ftaBlq8TXXCEC4fcOTIHhQwQfsWJl4tLkCQBEf+LTfRLDShqv8V0fuCYUfilSAjxHULJr/lHU86+5YAh31zqnG+6rgBCGx/ZNp+GfID5CUEVV3Df9ALfNoj/n7/uiEuO+P/Fy0XbAJD+GLaRB3eghtaeQUGRI+IvgPl/oQrHXkAk3pYnCrBM1Uc6hLWdqGVuPY6/iGUfXG36hcVfgOwFRIDwC4szX3iERumGAlNQBRT92uOr4PjibvHFSlwEzukAnan9F1WrEXeiz5dyttr78PjgJaz1ONO1hP8RxIwAK/pum6655lIZ8f+yP14LAaOf6ZoiDlzMJU0ApNcnfntDofR/exxd/zWmRfxV0n6Du4NPVZ9t3boVzZs3R3BwMCIjIzFgwADJ61evXkXv3r0REhKCyMhIjB07Fvn5+TZSU0nhF8BhoztxzwUf+oTy1WLZB1YJF7mc/StN1VjmvwAkVY2coVD+fIjr5SVF0wZJsCMUa4uLqvmHQWYZX0rFF3sT4iYUEDmWfWBVUTW6ve+j+Xufs3+lqNq9oKg6THyNsKyysmymwP/PXwsK84qCH0lThkLrUny5tMz44UQsl5n+8anbKHHAZ0qKNm3ahOHDh2P+/Pno0KEDGGM4c+aM8LrBYEDPnj1Rvnx57N+/H7du3cKQIUPAGMOqVdZtVJwlbugrh39NvJ5kG50fmM4PTO+vWZ60JDQ2ZAxM71/UUJEPTDgdwLfj4dsFiUtthN54Ni6Clo3T+ed8cTbfa8/yZ5G9YmwhbdH/RoP6gyeEOE08qC3HN3wGzD9iTEGFuBE0IOqMYZT5fstdA8SlQkZpoMKX3puq5c0lSXZK9CVV8YDsdd0yfav9eRD1PvMMnwiKCgsLMW7cOCxevBgvvviisLx27drC/ykpKfj111+RkZGB2NhYAMDSpUsxdOhQzJs3zzQQowaUfBGEbvrmL514G9MgYKaabXu9p7IPrpb0VnNHLzWhyynHgekDTI0Y+V9WorY6XP5dUz50fgAM5l9vFj3yZC48skGhCMeMpmueqIcexEXbPMsASo7la+Z2SXy7ALl2RjRVCyHaELf7sywBF4IOIwCduVrcYogTYQVbP3jERM0Y5PYjrKNDUZBmo1RevNwySLK3ruQ5tSkqUXwiKDpx4gSuXbsGnU6Hxo0bIzMzE40aNcKSJUtQt25dAMChQ4dQr149ISACgK5duyIvLw/Hjx9H+/btZdPOy8tDXl6e8Dw7O1tRnpSOTSH5ZWEsGvARRgNyUpcABfeRs285wtpMEOrWAZh7OJhLYfT+RTd4aHMTF36h8W17CvOkvSjEjZktLyx2Ll4Oz4vM+sImljGP5YVR7kJpJ1Dix5PizG2SxCPT8sdRkodEIMQThN6ifFU3UNQGiMeKurZLiKvCALvBkN1ri+iHnGVaasYRcmbMIU+NU0Q8wyeCokuXLgEAkpOTsWzZMlStWhVLly5FUlISfv/9d5QtWxaZmZmIioqSbFemTBkEBAQgMzPTZtoLFizA7Nmz3Zp/CX40bKDoS2zUCSNhCwNDwnLEbAOg0yOszQTZ0iU+aLIXMPHF23y3U1Ndva1qLsiUAElLwHhyFwXLX1z2iqGLknfi4iJTDQeYAyIAOnMXXACm86vTm7cznc+cfcvB9AFUWkSIszidqR2QRVUXJw5UhB9R/HhlfhbLrb/7qoMNmcCoJAUsNE6RZxRrC7Hk5GRwHGf3cezYMRjNX5jp06fj8ccfR9OmTbFmzRpwHIf//ve/QnqczEjRjDHZ5bxp06YhKytLeGRkZDjMt+UXTVXdsmXdOd9AuPCBMBq20KjPMqhgzBQ8iZZnH1hlquIS/0oTyT6wSjLuj9B4Ue5Xm3hf5saGdouo+cNwUBevlN3GjGpZtkXgi+n5Qdk4HcAYNZL0UULD/xI2zpdPkvuOiq8vctVMdq4/gBPf+2L8HnusbZE5KHLlAQqKHCrWkqLRo0fjmWeesbtO1apVkZOTAwBISEgQlgcGBqJatWq4evUqACA6OhpHjhyRbHv79m0UFBRYlSCJBQYGIjAwUHGexY3yxG2HHJGUjhgs29gYpdVA4uCGv3iItzf/zdm33NQF3vw6g3m8Hp2+aH/GQlMwtW85UHC/KCDiGyTaKLWxVcojXmav/t0eR6VG4nNsecGxtb+iKjjRCOL8OCTiYyl8IDR2588TlRL5DqGtnWiMGZps2bOE94D/XvG9y8TXJ75BNN/Y2bJESAfJD0RXridFidgvvdaERWmUJxtbGxkD52JDaSM1tHaoWIOiyMhIREZGOlyvadOmCAwMRFpaGlq3bg0AKCgowOXLlxEXFwcASExMxLx583D9+nXExMQAMDW+DgwMRNOmTTXJr6NAQem2ls+FMY90oosHpyuq2rIYJIwDkLt3EZjRIOqaWljUe8uoK5pWxPIXmUU9uysXD7Xb2guAXN2HVWNu8Xm0XGYuNWKiqVfoxur9JDdjxoreQxQ13mU6Pwpy3Shn/0rTjyvR900Y9Zkn7touUw1vmgPRheoy8XpqghK5awIhFnyiTVF4eDhGjBiBWbNmoXLlyoiLi8PixYsBAE8++SQAoEuXLkhISMDzzz+PxYsX459//sHkyZMxfPhwp3ueeao+WtI7Q2AdyBQpLCo5suiiCqNpTjbOYjtVxyLXaFHN63KbOBjGwFFplWTfwgoK82A5Mq0kLXN7Lj448oFB+Wz2WDTPDRfWepxPHIfT+A4IonYr5rdSOjo60QRfRSn0TjWX/ohHhwbfgcFYKB3J33LAWyXUXF+UBjpqAy5b48nJlFx7dEJYV9sUUUmRQz4RFAHA4sWL4efnh+effx73799H8+bNsXv3bpQpUwYAoNfrsXXrVowcORKtWrVCcHAwBg4ciCVLlji1P9U9HTTg6MIhDZ5sl/7I/QqzSe4i4OjYLBtPOlhf3DXf1mt282bvdYsic9PNUSZNfj3L/QnHoDf1TvPQBc4ZtgIdoddiYR7A6Uy9Gg35pkbkOj+rEjBhFHJz6Rg/NhXT+TlsrF+smBH83HdW3b7NLwvHr/enUiMNSKbY4avebZTImqqk/cwl1qJEjCoDIldeV7oPW/mxdX3QOg9OoIbWnsExCh0lsrOzERERgZsXTiM8LMx6BU8P2GWjntzl+ndXqAgK5fKpuGG2kuPjS4HMaUrS1okCIZmgr2hATb3kdW+eN42fFNPyxsTPCSXBl6JwOtMxAuZq2QLTc/FccqJej2FJk92Sb1cCFKHqzGgwtQsTT8cAFL3H4vdWp5cNCol9QuN1JprH0KK0xHJoC44ZEdpuCnL3LpL2apWZH9Kylxqfpuxzy/XsUVNa5Ey1mw3ZOTmIrNEAWVlZmo2HJ0nffE9q+MpX0AeGuJSWIe8ufl78hNvyWhL4TEmRV3AlILJXqmLnNaUDibmVZf6cqDqTa49lrwTJ5oVIbt+2Ake+1IgPmiz+8lUwjNMBrGjQuZwfl5lGHOeKxoWynL8pZ/9KoSSCr7bij0eLm7D4xiSMKs6MpgbGjJnya35d9ibDtyXjqzmM0iCKb3cGQCgB4KuicvcuKmqIbg6U1AY0Vo1xzTObqz03kglCxQ9AerPl266Yb9ZC9ZqhQOh8wG8X1maCqjw8LIRequZgyPQ5M0q60fOfBx4/d2PurrnI3TUXKHgAAEVzERpsfNfFP6zEARH//VR7fVNzTZILuGxt70Ulx0YjwLk8eKNGmSnBqKTIgt2SImfrxC2/WHIXAYsSD6e4qVrPbtru2qflrzqL/TC9+eIsM2yAJBlOZ12dZplfvi2E+LlQHaA33RyAooa9ooBDsh+Yq/Asx2CRpGtqiRHWZoJVkGA5TQJnKDANPmk5yre9z5Z4ub3PneVzuXPCl7rozBNrip7zwSAAIWgTNhWCFnPgxnHCOQRgGm/LXBrHH7M4DX6kd3FeTQGheWJgR1PIWJYKio6TryIUSs6Akt8Gyw7xcQsTMPNVlIB19Zj5uyhXmng3JVn+86ikfaJWwYfltcLyf8s82bvOKMyTp0qK6k38L/SBpVxKy5B3D78se5JKiuygoMiCw6BI68BF7UXE2d0qaKtke2MHxyz3ur2SMbl17OXBMvjQSW90oR1nmC7I4qTt7ddy/jVYl14BAPQyA8zpdOAMhbJDBQh5k5Rg6Ioaw1vcrJk+QJThonMh22tQXB1hq7RMrsRICblZxsXpiv7yAR/zCywqTZA5Brn/hXOk9xemrpGM4m5OQxi8VPSemAYcfWAuuXBwbEqCYItlkiEaHrLqNqHdEFDUiJ1vsM5/NnR+CG0/Fbl7FyG03RTJ9rk758iPVi2mpmpLa5bXW6XXGwqKHkpUfWaLzIVTWO5qupbPLb987izxAaxuGszoIDByFAzau0krqQZzsG+rQEXnJ1yYc3fPR+7OOUXVYIDV8YknpxWGPxDT6YqyIApquELrnkzMaB1wSbonG4rmq4PeNLltaOeZkqCNmZdzlqVT4p3InQrGT4lilB6nrXPtaFoUy1nCLY9HZ/3ZFNozFRatKyEuWRAHeOY8mhpEG8BxxqJJhfnASgieWFHpknkb4XUl5f+WQam90jRzXoX5/HR+khIrLVhWvRYnyxIxoVoWAD/Mgex5Nn9WLQMiALKDxlrx0I8/2X3Y+oza4kVVZmLO1CrKpUHso6DIG6j8ZWKTndIZyY3O8nXxD3t7edAqWLMTbNqqnjLl0zrvoR1eQ+7u+WDmEiOx3F1z5eda0/tZl45YBlLikiNx6Y9MiQozQgiAhNOn95OUBkkG+7So/jEFVEbbAYstlmNbKaGwUYFVTz6LagWrG6FMVbDkfeTbmKCoGlLYlzhwAuRLvcw3alVdu/njlZks2FbexXmRTFzKr6qwJEncjR2F5rkVOU6YJV5N+yrLoMreJNJyr0sCH9HQE5L3kQ+IjIWynxHL7xYvd+ccadWzGp64Q5egKMBoZBq0KXJPxdDevXttzi/6008/4dFHH5V9bejQoVi3bp1kWfPmzXH48GHN86gUVZ9ZEKrPLv4i3/vMFlv12PxzMS2r39RsKgqKQju8ZvW6UAwO6U3cqX3b+WXIpx3SJRl3d8w0LdP5AXo/Sb740hVJCZC5XYPcL1Z77qYkW5UkyQZRgKSdEl/iw+crd9dchHacgdzd82XfV2G93fNNAduehaZqh51zTKuItrFq7yT3q5ZfZtF2ylapmNW2ogDM0Zx1lq/J9uSzTF8p/rOj5AeAOF2hWsfiPVHK3vmR259cSS6KPrOW7auK8mluqK/3lxwbxwdEzGhqqMzpJO3UwHGStjqy2RMXEXC6orZaoobwQhBqJvQOEwen4hI5vb/QdkhSoieupjWzFxApKiUq4TxVfVZn9EZNqs9+e/tpzfOan5+Pf/75R7Ls9ddfxw8//IBLly7ZnGpr6NCh+Ouvv7BmzRphWUBAAMqWLatZ3tSikiI1xBctpdVgjtKRS8vR+nIlQvbyJmLrAgfAupqH/2Uvsz/hxmQuIbHZ4NnypmKRt5Cuc2zmh183tPNMm+soFdIlGUBRUCOHX567a25RlaKNm6o4eBOCKZnXQ9tPNf2VOYbcXXOtgwS5G7TMeZWMWSVuIyVuwwSY3h+LwMgR8WjnwvslWxUnyiefrs7BJcXRTVTue2S0EQxZvjeWA5nazINFqZ8k4Cia5V1SvSYOMOS+X0IVlLhK0qKxsrFQSEfYjNOBExqk84Gu3jRsgkU+LH+wMHF+mLEoWAJM+xFNfiwuneOY0VR6xU9OLeRPdP74757Mj6cSzU5wanebh1xAQACio6OF5wUFBfj2228xevRou3OPAqaptsTbFjcqKbKgqKTIUUmQWva+VOKLnpLtRRdycSCiNrAQl6zIViXxpTb8Pi0DI9E5EvcUsywZeeguugoIpVD8+2ooVD+lirn6zvTETtAq3sYyCJZ5zYpco2adn3xwIOaovZOohEzRfm1xtB9X2Pte2nqN/87Yel28XC5QtlhX8p7ZWp///ur8zKPgm98PfqwnyzZYKr6XfEnvwyw79y4iq9dze0lR7ZFfaFJSlPbOM25vaL1p0yY89dRTuHz5MipXrmxzvaFDh2LLli0ICAhA6dKlkZSUhHnz5qFChQpuy5sjVFJki/giA9gvYtdiX0p/fVqyUdwPuFbCwpesWOKrgST5clBCJFSbcNJzSgGRDfbeb0c3SjO5HnJ2x4Wys1z8mlVwZHlDBaxLSOTWlWM57pA4TSXb20tPS0K6FumLfzCIS1/41wDr74zlNUb83FFwxESN0C2WW/3PD+0g+gEjPZYiqr6XzpSslDQeOn4tJ4TNzs6WLFc7MbojH3/8Mbp27Wo3IAKA7t2748knn0RcXBzS09Px+uuvo0OHDjh+/Lim+VGDgiJH5H51Kak6U7sP8YXPXlWYnf04UyKklq30c3fNFXpxWZUsibe3U31HTMTnSFI1Z27TIplR3E6QpGQkcbVk2zXx+AlAbZGr7rJ8zV4go2QdR5wtYZIZmVlR+pZVm0oCXrm8WA5CqobRCKG7oIJj4D9zSr6rxTqyPnGaZbAya9YsJCcnW62XnJyM2bNn203r6NGjaNasmfD8jz/+wI4dO/Dll186zMfTTz8t/F+vXj00a9YMcXFx2Lp1KwYMGOBwe3egoMgRy5uOZVWVeLmzFwe5X3Yy1V93U5JlG3PbKtXxJLkLqGWpEpUMqWfvxsT3rrM7Qrjoc+LMzcutNz25AIUPPlSVKtmp2rPqWm5RcuMob5YlKvaCI3vjPdnbzl5eJDPO66TXHMvSKHsc7VvmuqJEaOeZVIXmIVrOfZaRkSGpPrNVKjN69Gg888wzdtOsWrWq5PmaNWtQrlw59OnTR3X+YmJiEBcXh/Pnz6veVisUFClhq7TIsuGxXP2+E/sS93gSNwwO6ZJcdCMU79dLhXaeacovs+4uT1wnW6Ikd/NTeaMTNrNoJK+YveBAa3L7cTZIsBekiV+3bMyuhOWkzWa2xs2SpC+3H5mAyFHJoGwJrkWD6tzd801tiswdBBx52AOikK5zwAzW45m5A2MaBEXm6rPw8HBFbYoiIyMRGRmpKv01a9Zg8ODB8Pf3V52/W7duISMjAzExMaq31QoFRbaIghyrwEP8XHRxsSwJyd05RzoYICuafFMuLb5xrDgdy2BC6CFlLoVxd3WZqygY8gzxeRZ6ENoogVTCVnskh+y0VVEcRCitJnM2IIK0Z52kJ5/cPiyrwFzctyIqAiI1bcQcDcuhpjT3YQ+IqNeZtd27dyM9PR0vvvii7Ot16tTBggUL0L9/f+Tm5iI5ORmPP/44YmJicPnyZbz22muIjIxE//79PZzzIhQU2cBEPTtsjSUj7sIte4ExByzCmDXmX/MMRdMYiPehJoDw9mCIFJ+QLsk2q1qF52Keuri7uwRJZVBiGTQ4HBhSLjhSsU9N2ng5UU1vOd4U/VBxga37ggcwI3N58EVXS5oc+fjjj9GyZUs88sgjsq+npaUhKysLAKDX63HmzBmsX78ed+7cQUxMDNq3b4+NGzciTM0YgRqjLvkW+O6PfvUHgRPPTUWIDxK365IMlyBm4+Yse9N2pTeYXBq2KE3bQX7kGoYrHZrAYT4V5FHxCNxybY4U7t/hhMji9Mwl4EwfIMxw7yybE8D6MsuSe0Ay/pfcj1FmyEfhmc/c3iU//sUN0AW41iXfmH8P6R8/T3Of2UElRYSUYLZKFC0n0JUje0O3rEJSGxipDIgUjZlkIw9yJUHiNOxVOzkMZBwct+rG6XLpKWlMbmZ5PHZHI+fMc71ppaR0y+dLgVSO1URKFgqKCHkICSN8i6Z2kaOoSklhCQ0A21VoMnPUKcqTwoBISf6strHVU03rgMje3Hpyvd8s8iA+vzbfK2F7AIZ87arQSkJAJGo76s3NErTsfUZso5ZihDzEQjvPFNrPSdrRicgGC+KHxbr2Smhkt5cJMuzlR0l1lL3tbb1ucxtxHhWUjFmeT/6cWJ0bcyPu0I4zTDdjvR9CO84A8wsS5viD3s+6itBGHhwGRKLt5aamUcube74qwlclcjqEdEn26oAIAIzmNkWuPoh9VFJECAGgbERrpWzdMFXPcg9p1ZCtOfScyYtq9rrVqyDOv7jEhq+uCUuaLCzL2b8SXP5dQG/Rdd5igEXJmGCWbLS74ufec7qayGKwVp/AlwqZA1BfwowGMNH8ds6mQeyjoIiQh5gnGss6LDkyUzIekt2AyIlG4JLRwWF7bB97+ZOtKhTlxZXAIaz1ONnlVjd0i4l/BfaGDNk936k8WbEcTJJf5kXBEtP5UVshoggFRYQ8pJQ0tnaWM0GA4l5hcmQCIlvtmhwFaeJqFMsSGKXzxzEUBSPQmZ5zoqCFY0ZNYwahBEk0fpl44Fd72zi9z44zpJ8hufHcvCEw4oqqKX0ZlRR5BgVFhDxE3BkIucTefH/8YnulRA4aaispnZKdq09hOxN+pHmrMc0greISD4sgO5mri8T5dXcQkLtzju2gx8lR1DVh2fC8BAREAMCMRg2CIi8IUr0cBUWEPGwUBCAeJy5VsHWjVVC9pnRKEqFNj0aNa23ddCVVVOI2OOb9OyrN8WZ2z7Ojz5W7SpEsBlf01XNLig8FRYQ8BIRqIP6GbPFL3l7DaMvXbd4Mi7F0QNKLTO9nVXJUXD2LLKfsyd01F8woGu1eg15gxcF0HDYGj3T0OZALiLQMkkpo2yFmMIAZXCwpcnH7hwEFRYQ8JOxVIdlqpGyrS7xsWloHROIbpaOu+Zbj+5gnVPY2tuYy9DVCleDu+WDmtlKc+L2S+58n99lxNSASjzXko+fUEcY0aFPEKChyhIIiQko4oS2LktGhAdsDCIoGDlRaTaWYrdIFmfYh4pIubwx8Hibi8y+UehnN7aVsfOY0Z/6M8AOSEuIKCooIKcHsBUSK2ZhiQsvAiOn87E/pYadrOfEO4gmyGUyjdNucb89VPjIKtZao95lnUFBEyMNAPJaM6IYCQHZuLGFdOaJpKRS1NbJDnAehG7utXlwUDPkEy+orvmee5PPhTJAk+qyFdElG7s45D01ABFBQ5CkUFBFSgvE3Db4rfkhXU4Pr3J1zJKUvAsv/bQZG5r8udPGVVIeZ9xfafqrT6RHvJA6ShJJLhdO3WDb0lww58BAFRMRzKCgi5CEQ0iVZ0tNJzQ0ld89C0z9Wc4IVCtNPgBmLSnok6xT1UGJ6i8sNp5OkSQFRySf0urOclkRnPe0JkaKSIs/wmaDo999/xyuvvIIDBw4gPz8f9evXx9y5c9G+fXthnatXr2LUqFHYvXs3goODMXDgQCxZsgQBAQHFmHNCvIOzNxy5YCV3z0JpkKTzK2r83G5KUSClgzlgQlE1GAU/Dz0q5VGPBm/0DJ8Jinr27IlatWoJAc+KFSvQq1cvXLx4EdHR0TAYDOjZsyfKly+P/fv349atWxgyZAgYY1i1alVxZ5+QEsVRYEOBDyHaMhoNgItBkZFKihzykuFs7bt58yYuXLiAqVOnokGDBqhZsyYWLlyIe/fu4ezZswCAlJQU/Prrr/j000/RuHFjdOrUCUuXLsWHH36I7OzsYj4CQgghhHg7nwiKypUrh0ceeQTr16/H3bt3UVhYiPfffx9RUVFo2rQpAODQoUOoV68eYmNjhe26du2KvLw8HD9+3GbaeXl5yM7OljwIIYQQb8K3KXL1QezzieozjuOwc+dO9O3bF2FhYdDpdIiKisL//vc/lC5dGgCQmZmJqKgoyXZlypRBQEAAMjMzbaa9YMECzJ49253ZJ4QQQlxCDa09o1hLipKTk8FxnN3HsWPHwBjDyJEjUaFCBezbtw8//fQT+vbti169euH69etCehxnPe80Y0x2OW/atGnIysoSHhkZGW45VkIIIYR4t2ItKRo9ejSeeeYZu+tUrVoVu3fvxvfff4/bt28jPDwcAPDOO+9g586dWLduHaZOnYro6GgcOXJEsu3t27dRUFBgVYIkFhgYiMDAQNcPhhBCCHEXgwFM52JJD00I61CxBkWRkZGIjIx0uN69e/cAADqLkXd1Oh2M5i6GiYmJmDdvHq5fv46YmBgApsbXgYGBQrsjQgghxBcx5nrvM5oQ1jGfaGidmJiIMmXKYMiQIfj555+FMYvS09PRs2dPAECXLl2QkJCA559/HidPnsSuXbswefJkDB8+XChdIoQQQgixxSeCosjISPzvf/9Dbm4uOnTogGbNmmH//v345ptv0LBhQwCAXq/H1q1bERQUhFatWuGpp55Cv379sGTJkmLOPSGEEOIafvBG1x40eKMjPtH7DACaNWuGHTt22F2nSpUq+P777z2UI0IIIcQzmAaDN1LvM8d8oqSIEEIIIcTdfKakiBBCCHlYMaNRmGDZpTSIXRQUEUIIIV6Oqs88g4IiQgghxMtRUOQZ1KaIEEIIIQRUUkQIIYR4PaPRAI5KityOgiJCCCHEyzGDEeBcDIoM1NDaEao+I4QQQggBlRQRQgghXo/mPvMMCooIIYQQL8eMBterz6hNkUNUfUYIIYQQAiopIoQQQrwelRR5BgVFhBBCiJejoMgzKCiywBgz/TUUFHNOCCGEeDv+XsHfO9zGUACX90D3NYcoKLJw69YtAIDh1y+LOSeEEEJ8RU5ODiIiIjRPNyAgANHR0cjU6J4UHR2NgIAATdIqiTjm9vDWt9y5cwdlypTB1atX3fIBL07Z2dmoXLkyMjIyEB4eXtzZ0RQdm2+iY/NNJfnYAHXHxxhDTk4OYmNjodO5p+/SgwcPkJ+fr0laAQEBCAoK0iStkohKiizwH+qIiIgS+WUHgPDwcDo2H0TH5pvo2HyX0uNz9w/ooKAgCmQ8hLrkE0IIIYSAgiJCCCGEEAAUFFkJDAzErFmzEBgYWNxZ0Rwdm2+iY/NNdGy+q6QfH7GNGloTQgghhIBKigghhBBCAFBQRAghhBACgIIiQgghhBAAFBQRQgghhACgoEjinXfeQXx8PIKCgtC0aVPs27evuLOkWnJyMjiOkzyio6OF1xljSE5ORmxsLIKDg9GuXTucPXu2GHNs248//ojevXsjNjYWHMdhy5YtkteVHEteXh7GjBmDyMhIhISEoE+fPvjjjz88eBTyHB3b0KFDrd7HFi1aSNbx1mNbsGABHn30UYSFhaFChQro168f0tLSJOv46nun5Nh89b1799130aBBA2HAwsTERGzfvl143VffM8Dxsfnqe0a0R0GR2caNGzF+/HhMnz4dJ0+eRJs2bdC9e3dcvXq1uLOmWt26dXH9+nXhcebMGeG1RYsWYdmyZXj77bdx9OhRREdHo3PnzsjJySnGHMu7e/cuGjZsiLffflv2dSXHMn78eGzevBlffPEF9u/fj9zcXPTq1QsGQ/HOFu3o2ACgW7dukvdx27Ztkte99dhSU1MxatQoHD58GDt37kRhYSG6dOmCu3fvCuv46nun5NgA33zvKlWqhIULF+LYsWM4duwYOnTogL59+wqBj6++Z4DjYwN88z0jbsAIY4yxxx57jI0YMUKyrE6dOmzq1KnFlCPnzJo1izVs2FD2NaPRyKKjo9nChQuFZQ8ePGARERHsvffe81AOnQOAbd68WXiu5Fju3LnD/P392RdffCGsc+3aNabT6dj//vc/j+XdEctjY4yxIUOGsL59+9rcxleOjTHGbty4wQCw1NRUxljJeu8sj42xkvXelSlThn300Ucl6j3j8cfGWMl6z4hrqKQIQH5+Po4fP44uXbpIlnfp0gUHDx4splw57/z584iNjUV8fDyeeeYZXLp0CQCQnp6OzMxMyXEGBgYiKSnJ545TybEcP34cBQUFknViY2NRr149nzjevXv3okKFCqhVqxaGDx+OGzduCK/50rFlZWUBAMqWLQugZL13lsfG8/X3zmAw4IsvvsDdu3eRmJhYot4zy2Pj+fp7RrRBE8ICuHnzJgwGA6KioiTLo6KikJmZWUy5ck7z5s2xfv161KpVC3/99Rfmzp2Lli1b4uzZs8KxyB3nlStXiiO7TlNyLJmZmQgICECZMmWs1vH297V79+548sknERcXh/T0dLz++uvo0KEDjh8/jsDAQJ85NsYYJk6ciNatW6NevXoASs57J3dsgG+/d2fOnEFiYiIePHiA0NBQbN68GQkJCcKN35ffM1vHBvj2e0a0RUGRCMdxkueMMatl3q579+7C//Xr10diYiKqV6+OdevWCQ0HS8Jx8pw5Fl843qefflr4v169emjWrBni4uKwdetWDBgwwOZ23nZso0ePxunTp7F//36r13z9vbN1bL783tWuXRunTp3CnTt3sGnTJgwZMgSpqanC6778ntk6toSEBJ9+z4i2qPoMQGRkJPR6vVXEf+PGDatfRr4mJCQE9evXx/nz54VeaCXhOJUcS3R0NPLz83H79m2b6/iKmJgYxMXF4fz58wB849jGjBmDb7/9Fnv27EGlSpWE5SXhvbN1bHJ86b0LCAhAjRo10KxZMyxYsAANGzbEypUrS8R7ZuvY5PjSe0a0RUERTF+Wpk2bYufOnZLlO3fuRMuWLYspV9rIy8vDuXPnEBMTg/j4eERHR0uOMz8/H6mpqT53nEqOpWnTpvD395esc/36dfzyyy8+d7y3bt1CRkYGYmJiAHj3sTHGMHr0aHz99dfYvXs34uPjJa/78nvn6Njk+NJ7Z4kxhry8PJ9+z2zhj02OL79nxEUeb9rtpb744gvm7+/PPv74Y/brr7+y8ePHs5CQEHb58uXizpoqkyZNYnv37mWXLl1ihw8fZr169WJhYWHCcSxcuJBFRESwr7/+mp05c4Y9++yzLCYmhmVnZxdzzq3l5OSwkydPspMnTzIAbNmyZezkyZPsypUrjDFlxzJixAhWqVIl9sMPP7ATJ06wDh06sIYNG7LCwsLiOizGmP1jy8nJYZMmTWIHDx5k6enpbM+ePSwxMZFVrFjRJ47t3//+N4uIiGB79+5l169fFx737t0T1vHV987Rsfnyezdt2jT2448/svT0dHb69Gn22muvMZ1Ox1JSUhhjvvueMWb/2Hz5PSPao6BIZPXq1SwuLo4FBASwJk2aSLrZ+oqnn36axcTEMH9/fxYbG8sGDBjAzp49K7xuNBrZrFmzWHR0NAsMDGRt27ZlZ86cKcYc27Znzx4GwOoxZMgQxpiyY7l//z4bPXo0K1u2LAsODma9evViV69eLYajkbJ3bPfu3WNdunRh5cuXZ/7+/qxKlSpsyJAhVvn21mOTOy4AbM2aNcI6vvreOTo2X37vhg0bJlz/ypcvzzp27CgERIz57nvGmP1j8+X3jGiPY4wxz5VLEUIIIYR4J2pTRAghhBACCooIIYQQQgBQUEQIIYQQAoCCIkIIIYQQABQUEUIIIYQAoKCIEEIIIQQABUWEEEIIIQAoKCJEc5cvXwbHcTh16pRb0uc4Dlu2bHF6+71794LjOHAch379+tldt127dhg/frzT+yL28e9D6dKlizsrhBBQUERKmKFDhzq80btb5cqVcf36ddSrVw9AURBy586dYs2XpbS0NKxdu7a4s/FQsPW5vH79OlasWOHx/BBC5FFQRIjG9Ho9oqOj4efnV9xZsatChQpeUUJRUFBQ3FkoNtHR0YiIiCjubBBCzCgoIg+V1NRUPPbYYwgMDERMTAymTp2KwsJC4fV27dph7NixmDJlCsqWLYvo6GgkJydL0vjtt9/QunVrBAUFISEhAT/88IOkSktcfXb58mW0b98eAFCmTBlwHIehQ4cCAKpWrWpVStCoUSPJ/s6fP4+2bdsK+xLP0s27du0ann76aZQpUwblypVD3759cfnyZdXn5u7duxg8eDBCQ0MRExODpUuXWq2Tn5+PKVOmoGLFiggJCUHz5s2xd+9eyToffvghKleujFKlSqF///5YtmyZJPhKTk5Go0aN8Mknn6BatWoIDAwEYwxZWVl46aWXUKFCBYSHh6NDhw74+eefJWl/9913aNq0KYKCglCtWjXMnj1b8v4lJyejSpUqCAwMRGxsLMaOHavo2B0d161bt/Dss8+iUqVKKFWqFOrXr4///Oc/kjS++uor1K9fH8HBwShXrhw6deqEu3fvIjk5GevWrcM333wjVJdZnjNCiHfw7p+yhGjo2rVr6NGjB4YOHYr169fjt99+w/DhwxEUFCQJRNatW4eJEyfiyJEjOHToEIYOHYpWrVqhc+fOMBqN6NevH6pUqYIjR44gJycHkyZNsrnPypUrY9OmTXj88ceRlpaG8PBwBAcHK8qv0WjEgAEDEBkZicOHDyM7O9uqfc+9e/fQvn17tGnTBj/++CP8/Pwwd+5cdOvWDadPn0ZAQIDi8/PKK69gz5492Lx5M6Kjo/Haa6/h+PHjaNSokbDOCy+8gMuXL+OLL75AbGwsNm/ejG7duuHMmTOoWbMmDhw4gBEjRuDNN99Enz598MMPP+D111+32teFCxfw5ZdfYtOmTdDr9QCAnj17omzZsti2bRsiIiLw/vvvo2PHjvj9999RtmxZ7NixA8899xzeeusttGnTBhcvXsRLL70EAJg1axa++uorLF++HF988QXq1q2LzMxMq6DKFkfH9eDBAzRt2hSvvvoqwsPDsXXrVjz//POoVq0amjdvjuvXr+PZZ5/FokWL0L9/f+Tk5GDfvn1gjGHy5Mk4d+4csrOzsWbNGgBA2bJlFb8vhBAPKt75aAnR1pAhQ1jfvn1lX3vttddY7dq1mdFoFJatXr2ahYaGMoPBwBhjLCkpibVu3Vqy3aOPPspeffVVxhhj27dvZ35+fuz69evC6zt37mQA2ObNmxljjKWnpzMA7OTJk4wxxvbs2cMAsNu3b0vSjYuLY8uXL5csa9iwIZs1axZjjLEdO3YwvV7PMjIyhNe3b98u2dfHH39sdUx5eXksODiY7dixQ/Y8yOUnJyeHBQQEsC+++EJYduvWLRYcHMzGjRvHGGPswoULjOM4du3aNUl6HTt2ZNOmTWOMMfb000+znj17Sl4fNGgQi4iIEJ7PmjWL+fv7sxs3bgjLdu3axcLDw9mDBw8k21avXp29//77jDHG2rRpw+bPny95fcOGDSwmJoYxxtjSpUtZrVq1WH5+vuxx26LkuOT06NGDTZo0iTHG2PHjxxkAdvnyZdl17X0u16xZIzk/hJDiQyVF5KFx7tw5JCYmguM4YVmrVq2Qm5uLP/74A1WqVAEANGjQQLJdTEwMbty4AcDUOLly5cqIjo4WXn/sscfclt8qVaqgUqVKwrLExETJOsePH8eFCxcQFhYmWf7gwQNcvHhR8b4uXryI/Px8Sfply5ZF7dq1hecnTpwAYwy1atWSbJuXl4dy5coBMJ2f/v37S15/7LHH8P3330uWxcXFoXz58pLjyM3NFdLh3b9/XziO48eP4+jRo5g3b57wusFgwIMHD3Dv3j08+eSTWLFiBapVq4Zu3bqhR48e6N27t8O2XUqOy2AwYOHChdi4cSOuXbuGvLw85OXlISQkBADQsGFDdOzYEfXr10fXrl3RpUsXPPHEEyhTpozdfRNCvAsFReShwRiTBET8MgCS5f7+/pJ1OI6D0Wi0mYazdDqdsH+euNGx5WuW+QRMVWxNmzbFZ599ZrWuOOhwRG5floxGI/R6PY4fPy5UefFCQ0OFdGydYzE+mBCnHRMTI9vWhm+PZDQaMXv2bAwYMMBqnaCgIFSuXBlpaWnYuXMnfvjhB4wcORKLFy9Gamqq1Xuq9riWLl2K5cuXY8WKFahfvz5CQkIwfvx45OfnAzA1rt+5cycOHjyIlJQUrFq1CtOnT8eRI0cQHx9vc9+EEO9CQRF5aCQkJGDTpk2SG/fBgwcRFhaGihUrKkqjTp06uHr1Kv766y9ERUUBAI4ePWp3G75dj8FgkCwvX748rl+/LjzPzs5Genq6JL9Xr17Fn3/+idjYWADAoUOHJGk0adIEGzduFBonO6tGjRrw9/fH4cOHhRKz27dv4/fff0dSUhIAoHHjxjAYDLhx4wbatGkjm06dOnXw008/SZYdO3bM4f6bNGmCzMxM+Pn5oWrVqjbXSUtLQ40aNWymExwcjD59+qBPnz4YNWoU6tSpgzNnzqBJkyY2t1FyXPv27UPfvn3x3HPPATAFUufPn8cjjzwirMNxHFq1aoVWrVph5syZiIuLw+bNmzFx4kQEBARYvf+EEO9Dvc9IiZOVlYVTp05JHlevXsXIkSORkZGBMWPG4LfffsM333yDWbNmYeLEidDplH0VOnfujOrVq2PIkCE4ffo0Dhw4gOnTpwOwLsXhxcXFgeM4fP/99/j777+Rm5sLAOjQoQM2bNiAffv24ZdffsGQIUMkJRWdOnVC7dq1MXjwYPz888/Yt2+fsC/eoEGDEBkZib59+2Lfvn1IT09Hamoqxo0bhz/++EPxOQsNDcWLL76IV155Bbt27cIvv/yCoUOHSs5LrVq1MGjQIAwePBhff/010tPTcfToUbz55pvYtm0bAGDMmDHYtm0bli1bhvPnz+P999/H9u3bHZauderUCYmJiejXrx927NiBy5cv4+DBg5gxY4YQVM2cORPr169HcnIyzp49i3PnzmHjxo2YMWMGAGDt2rX4+OOP8csvv+DSpUvYsGEDgoODERcXZ3ffSo6rRo0aQknQuXPn8PLLLyMzM1NI48iRI/9v7/5dUu8CMIA/DWrmFyerL5UgRtLWVEYKESTRENbSUuiSY9RUSxRENEhTQYOT/QM5NOQQJEhLNDlUkpMRQT8IcwgqeN6p7/veW733Xm731r09H3A63x/HMz3gc45YXl7GwcEByuUyNjc3cXl5aYUmn8+HQqGAYrGIq6urT30MgciH9k5dJpFfIh6PE8CzTzweJ0nmcjl2dnbSbrfTNE3Ozs7y4eHBur+3t9cqFj+JRqPW/SR5dHTEUChEu93O9vZ2bm1tEQCz2SzJ50VrklxcXKRpmqypqbGeValUODo6SrfbTa/Xy3Q6/UXRmiSLxSLD4TDtdjsDgQCz2ewXRWuSPD8/ZywWo8fjocPhoN/vZyKRYKVSeXGNXit+V6tVjo+Ps66ujo2NjUwmk8/W4/7+nvPz8/T5fLTZbDRNkyMjIywUCtY1qVSKzc3NdDqdHB4e5tLSEk3TtMYXFhbY0dHxbF63t7ecnJxkU1MTbTYbvV4vx8bGWC6XrWuy2Sx7enrodDrpdrvZ1dXFVCpFksxkMgwGg3S73XS5XOzu7ubOzs6La/C1b32v6+trRqNRGobBhoYGzs3NMRaLWeXpw8NDDgwMsL6+ng6Hg4FAgGtra9bzLy4uGIlEaBgGAXB3d9caU9Fa5OOoIb+jTCAir9rb20M4HEapVEJra+t7T+ebcrkc+vr6cHNz81sOb0wkEjg+PkY+n//l7/oTpdNpTE9Pf7gTz0U+I3WKRH5QJpOBYRhoa2tDqVTC1NQUQqHQHxGI/qulpQVDQ0PPDiH8WSsrK4hEInC5XNje3sbGxgbW19ff9B1/C8Mw8Pj4iNra2veeiohAoUjkh1WrVczMzOD09BQejwf9/f0vnv78UQWDQZycnAD4d3fVW9rf30cymUS1WoXf78fq6iomJibe/D3fK5/PY3Bw8NXxp47Xe3j60+Cvd72JyPvQz2ci8le7u7vD2dnZq+P/t5tNRD4XhSIRERERaEu+iIiICACFIhEREREACkUiIiIiABSKRERERAAoFImIiIgAUCgSERERAaBQJCIiIgJAoUhEREQEAPAPbWfxk+B/Oc4AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ds.ice[-1].plot()" + "data": { + "text/plain": [ + "" ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Postscript: Execute the full recipe\n", - "\n", - "We are now confident that our recipe works as we expect.\n", - "At this point we could either:\n", - "- Execute it all ourselves (see {doc}`../../recipe_user_guide/execution`)\n", - "- Make a {doc}`../../../pangeo_forge_cloud/recipe_contribution` to {doc}`../../../pangeo_forge_cloud/index` to have our recipe executed automatically on the cloud.\n", - "\n", - "Hopefully now you have a better understanding of how Pangeo Forge recipes work." + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAHFCAYAAAD8Jo2EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACjyklEQVR4nOzdd3wTdR8H8M8lnXQxCh2MUrZlD4Wyyt7bDQqID8rDXiIIQkGWbETcylIf8RHBATwUGZUtUxCxMgpUpCIIHYyO5Pf8kdz1Lrkkd8klTcr3/Xrl1eZy97vfXZK7b36TY4wxEEIIIYQ85HTFnQFCCCGEEG9AQREhhBBCCCgoIoQQQggBQEERIYQQQggACooIIYQQQgBQUEQIIYQQAoCCIkIIIYQQABQUEUIIIYQAoKCIEEIIIQTAQxYUHTx4EMnJybhz547Va+3atUO7du08nidPWbFiBQYMGID4+HhwHGf3WHfs2IFWrVohODgYERER6N27N86ePWu1Xl5eHhYvXox69eohJCQEUVFR6N69Ow4ePGi17owZM9CrVy9UrFgRHMdh6NChqo/hxo0bGDp0KCIjI1GqVCkkJiZi165dVuvl5+dj5syZiI+PR0BAAOLi4jBt2jTcv39f8b6Unq+1a9eC4zjZR2ZmJgAgOTnZ5jriB7+Ps2fPYuTIkUhMTERISAg4jsPevXut9n39+nXMmDEDiYmJiIyMRHh4OJo2bYoPPvgABoNB8bFeunQJAwYMQOnSpREaGorOnTvjxIkTsut+8cUXaNSoEYKCghAbG4vx48cjNzfXK/fljKpVqzr12fQ2as6znBMnTqBTp04IDQ1F6dKlMWDAAFy6dMnhdpcvX5Z8pr/66itXDsNp8+fPx5YtW4pl3wCwZcsWyXk4duxYseWFqMQeIosXL2YAWHp6utVrZ8+eZWfPnvV8pjykdu3arEmTJmzYsGGsfPnyLCkpSXa9LVu2MI7jWL9+/djWrVvZ559/zmrXrs3KlCnDLly4IFn3+eefZzqdjk2fPp3t2rWL/fe//2VNmzZlfn5+7MiRI5J1S5UqxVq0aMFGjBjBAgIC2JAhQ1Tl/8GDB6xevXqsUqVK7NNPP2UpKSmsb9++zM/Pj+3du1ey7oABA1hQUBCbP38+27lzJ5szZw4LCAhgvXv3Vrw/pedrzZo1DABbs2YNO3TokOSRn5/PGGMsIyNDsvzrr79mANiYMWMky/nP39q1a1lMTAzr0aMH6927NwPA9uzZY7Xv7777jlWuXJlNnz6dbd26laWkpLAJEyYwnU7HXnjhBUXHeePGDRYbG8vq1q3LNm3axLZu3cpat27NwsLC2G+//SZZ99NPP2UA2L/+9S+2e/du9t5777GIiAjWuXNnr9uXs+Li4lR/Nr2NmvMs59y5cywsLIy1adOGbd26lW3atInVrVuXxcbGshs3btjdNj09nQFgM2bMYIcOHWK3bt3S6rBUCQkJKdb38Z9//mGHDh1iM2bMYADY0aNHiy0vRB0Kih4SBoNB+L9u3bo2b/K1a9dmDRo0YEajUVh2+fJlFhAQwAYOHCgse/DgAdPr9ey5556TbP/nn38yAGzs2LE29+/MBWv16tUMADt48KCwrKCggCUkJLDHHntMWHbo0CEGgC1dulSy/fz58xkAlpKSomh/Ss8XHxSpuejxN47Fixc73Pd///tfm0HRP//8IwReYqNGjWIA2NWrVx3m5ZVXXmH+/v7s8uXLwrKsrCwWGRnJnnrqKWFZYWEhi4mJYV26dJFs/9lnnzEAbNu2bV61L2eVhKBI6Xm25cknn2SRkZEsKytLWHb58mXm7+/PpkyZYndb/rO9Zs0ap/OvBXcERYWFhezBgweqtnHm+kCK10NTfZacnIxXXnkFAIQqEXG1hGX1GV8MvHjxYrz55puoWrUqgoOD0a5dO/z+++8oKCjA1KlTERsbi4iICPTv3x83btyw2u/GjRuFapDQ0FB07doVJ0+e9MQhS+h0jt/qW7duIS0tDd27dwfHccLyuLg41KtXD1u2bBGqZXQ6HXQ6HSIiIiRphIeHQ6fTISgoSPX+7dm8eTNq166NxMREYZmfnx+ee+45/PTTT7h27RoA4MCBAwCAHj16SLbv1asXAGDTpk2K9udqfl2hdN9lypSBv7+/1fLHHnsMAPDHH384TGPz5s3o0KED4uLihGXh4eEYMGAAvvvuOxQWFgIADh8+jOvXr+OFF16QbP/kk08iNDQUmzdv9qp9WbJXzemo2jw7OxuTJ08WqmMrVqyI8ePH4+7du8I6jRs3Rps2bay2NRgMqFixIgYMGKA6z85Sep7lFBYW4vvvv8fjjz+O8PBwYXlcXBzat2/v1Lnn8dXIp0+fxpNPPomIiAiULVsWEydORGFhIdLS0tCtWzeEhYWhatWqWLRokVUaSt4LjuNw9+5drFu3TvY9zszMxMsvv4xKlSohICAA8fHxmD17tuS88Nf/RYsWYe7cuYiPj0dgYCD27NkDo9GIuXPnonbt2ggODkbp0qXRoEEDrFy50ulzQ7zHQxMU/etf/8KYMWMAAF9//TUOHTqEQ4cOoUmTJna3W716NQ4cOIDVq1fjo48+wm+//YbevXvjxRdfxN9//41PPvkEixYtwg8//IB//etfkm3nz5+PZ599FgkJCfjyyy+xYcMG5OTkoE2bNvj1118d5rmwsFDRgzHm/IkRyc/PBwAEBgZavRYYGIh79+7h4sWLAAB/f3+MHDkS69atw5YtW5CdnY3Lly9j+PDhiIiIwPDhwzXJE++XX35BgwYNrJbzy/g2T7aOgX9++vRpTfPF69WrF/R6PcqWLYsBAwbgl19+cct+lNi9ezf8/PxQq1YtyXLLm8P9+/dx8eJFm+f1/v37QjsS/ngs1/X390edOnWsjteT+1KiZ8+ewneefyxbtgwAULduXZvb3bt3D0lJSVi3bh3Gjh2L7du349VXX8XatWvRp08f4bv3wgsvYP/+/Th//rxk+5SUFPz5559WAZ4lo9Go6LvuqK2YmvMs5+LFi7h//77N7S9cuIAHDx7YzYMjTz31FBo2bIhNmzZh+PDhWL58OSZMmIB+/fqhZ8+eQlD36quv4uuvvxa2U/peHDp0CMHBwejRo4fwXr/zzjsATAHRY489hh07dmDmzJnYvn07XnzxRSxYsED2mvXWW29h9+7dWLJkCbZv3446depg0aJFSE5OxrPPPoutW7di48aNePHFF2XbqhLf41fcGfCUSpUqoUqVKgBMv+qqVq2qaLvSpUtjy5Ytwq/3mzdvYvz48ahTpw6++eYbYb3ffvsNK1asQHZ2NsLDw5GRkYFZs2Zh9OjReOutt4T1OnfujJo1a2L27NnYuHGjzf1evnwZ8fHxivK4Z88eTRqJR0VFoWzZskJpC+/OnTvCjejWrVvC8uXLlyMiIgKPP/44jEYjAKBKlSrYvXs3atSo4XJ+xG7duoWyZctaLeeX8flKSEgAYCoxEp+//fv3W+VfC9HR0Zg+fTpatGiB8PBwnDlzBgsXLkSLFi1w4MABNGzYUNP9OZKSkoINGzZg3LhxKFeunOQ1vV4PvV4vPL99+zYYY4rOK//X1rqXL18utn0pUb58eZQvX154npaWhnnz5qF9+/ZYvny5ze3eeustnD59GkeOHEGzZs0AAB07dkTFihXxxBNP4H//+x+6d++OQYMG4ZVXXsHatWsxb948Yfu1a9cKHRDsGTZsGNatW+fwOJKSkmQb3fPUnGc5js49Ywy3b99GTEyMw7za8tJLL2HixIkAgE6dOiElJQVvv/02vv76a/Tv3x+AqeT++++/x2effSaUsil9L1q0aAGdTofy5cujRYsWkn0nJyfj9u3bOHv2rHA/6NixI4KDgzF58mS88sorwjUEAIKCgrBjxw5JieyBAwdQv359JCcnC8u6du3q9Pkg3uWhCYqc1aNHD0l1xiOPPALA9MtTjF9+9epV1KtXDzt27EBhYSEGDx4sKZYNCgpCUlIS9uzZY3e/sbGxOHr0qKI81q5dW9F6juh0OowaNQpvvPEG3njjDbz88svIzs7G+PHjce/ePWEd3rx587BkyRIkJyejTZs2yM7Oxttvv43OnTsjJSUFjRs3VrV/xpjVL2E/v6KPqLhKzxL/Wvfu3VGjRg28+uqriIqKwqOPPorDhw/jtddeg16vl+TfshpBr9fb3Yecbt26oVu3bsLztm3bomfPnqhfvz5mzpwpCZzd7cSJE3jqqafQokULLFiwwOp1W9UmSs6ro3Utl3tyX2plZmaiW7duiImJwebNmxEQEGBz3e+//x716tVDo0aNJMfUtWtXofq9e/fuKFeuHHr37o1169bhjTfegE6nw+3bt/HNN99g7Nixks+xnOTkZIwePdph3sPCwhQdo5rz7I7t7eGrsnmPPPIIfv75Z0ng6Ofnhxo1auDKlSvCMqXvhT3ff/892rdvj9jYWEka3bt3x+TJk5GamioJivr06WNVRf3YY49h69atGDlyJPr27YvExERJVSPxbRQUOWD5i4m/gNpazhct//XXXwCARx99VDZdR+1GAgIC0KhRI0V5FP8id9XMmTORm5uLuXPnYubMmQBMAeALL7yAjz76CBUrVgQAnDt3DjNnzsSiRYswefJkYfvu3bsjISEBEydOdBj4WVq3bp1VNQNfJF6uXDnZX7j//PMPgKL3IyAgANu3b8fzzz+PLl26AABCQkIwf/58vPHGG0L+AVhd7NasWaNJd+yqVauidevWOHz4sMtpKXXy5EmhFHLbtm2yVaCWypQpA47jFJ1XvtTp1q1biIqKslpXrmShuPZlT05ODnr06IGCggJs377dqk2cpb/++gsXLlyQbbsFmEqOecOGDcOmTZuwc+dOdO3aFf/5z3+Ql5en6DNVpUoVVKpUyeF6jgISNedZjvjcy23PcRxKly7tMJ/2yF07S5UqZdUOMSAgANnZ2cJzNe+FLX/99Re+++47xWnIlYhNmzYNISEh+PTTT/Hee+9Br9ejbdu2ePPNN4USLOK7KChyk8jISADAV199JWnwqFRxVJ8Bpl9oy5Ytw5w5c5Ceno7IyEjExMSga9euiI+PFy7cP//8MxhjVkGfv78/GjZsiNTUVNX77t27t83Ssfr16+PMmTNWy/ll9erVE5bVqFEDhw4dwrVr1/DPP/+gevXqyMrKwrhx49C2bVthPct9KT3fSjDGPNZY++TJk+jUqRPi4uKQkpLi8EbPCw4ORo0aNWye1+DgYFSrVg2A6fzzy8W/pAsLC/Hbb7/h2Wef9Zp92VJQUIDHH38cFy9exL59+xQFIZGRkQgODsYnn3xi83Ve165dERsbizVr1qBr165Ys2YNmjdvLjkGW7SqPlNznuVUr14dwcHBNrevUaOGVfDiKWreC3tpNGjQQFLFKRYbGyt5LheE+vn5YeLEiZg4cSLu3LmDH374Aa+99hq6du2KjIwMlCpVSsHREG/1UAVF/K9nNYP4Oatr167w8/PDxYsX8fjjj6vevjiqz8RCQ0OFm9OJEyewa9cuLF26VJI/wNRTKCkpSViel5eHEydOKLrhWCpXrpxVOxhe//79MXLkSBw5cgTNmzcHYLpJfvrpp2jevLnVxQwAKlasKJQMzZgxAyEhIXjxxReF1931qy49PR0HDhxAp06d3JK+2KlTp9CpUydUqlQJO3fuRJkyZVRt379/f6xYsQIZGRmoXLkyAFNpytdff40+ffoI1T7NmzdHTEwM1q5di6efflrY/quvvkJubq6i3lWe3JecF198EXv37sX27dtlGxLL6dWrF+bPn49y5co5DJr1ej2ef/55rFixAvv27cOxY8fw/vvvK9qPltVnSs+zHD8/P/Tu3Rtff/01Fi1aJOzv6tWr2LNnDyZMmKDoeNxBzXsRGBgoe53v1asXtm3bhurVq6v+rsgpXbo0nnjiCVy7dg3jx4/H5cuXFQXBxHs9VEERf5NfuXIlhgwZAn9/f9SuXVtxPb0aVatWxZw5czB9+nRcunQJ3bp1Q5kyZfDXX3/hp59+QkhICGbPnm1z+4CAAE1v2seOHRMaqGZnZ4MxJow2++ijjwqlWXv37sXRo0fRoEEDMMbw008/4c0330S3bt0kF+3WrVvj0UcfRXJyMu7du4e2bdsiKysLq1atQnp6OjZs2CDZf2pqKv7++28Apm7KV65cEfaflJQkaQQrZ9iwYVi9ejWefPJJLFy4EBUqVMA777yDtLQ0/PDDD5J1Fy1ahOjoaFSpUgV//fUXvvzyS2zZsgUbNmyQVJ9pcb46deqEtm3bokGDBkJD60WLFoHjOLzxxhuK9mXp3r172LZtGwAIVXCpqam4efMmQkJChHYTaWlpQuA1b948nD9/XtL7qXr16pLz6ufnh6SkJMko4JMnT8aGDRvQs2dPzJkzB4GBgVi4cCEePHggaUiq1+uxaNEiPP/883j55Zfx7LPP4vz585gyZQo6d+4saVfl6X1xHOewBGXx4sXYsGEDxowZg5CQEEnVZnh4uM0b2fjx47Fp0ya0bdsWEyZMQIMGDWA0GnH16lWkpKRg0qRJQpAOmD6nb775JgYOHIjg4GBJUGdP1apVFXf+cETpeQYgdIi4cOGCsGz27Nl49NFH0atXL0ydOhUPHjzAzJkzERkZiUmTJmmSR2eoeS/q16+PvXv34rvvvkNMTAzCwsJQu3ZtzJkzBzt37kTLli0xduxY1K5dGw8ePMDly5exbds2vPfeew5/0PXu3Rv16tVDs2bNUL58eVy5cgUrVqxAXFwcatas6YlTQdypOAZHKk7Tpk1jsbGxTKfTSQbFS0pKkgzQZ2uAvT179jAA7L///a9kua1BurZs2cLat2/PwsPDWWBgIIuLi2NPPPEE++GHH9xyfLYMGTKEAZB9iAdaO3DgAGvevLmQ33r16rElS5bIDhJ4584dNn36dPbII4+wUqVKsQoVKrB27drJDq6XlJRkc/9yAxPKyczMZIMHD2Zly5ZlQUFBrEWLFmznzp1W682ePZtVr16dBQYGstKlS7Nu3bqxH3/8UfG5Ykz5+Ro/fjxLSEhgYWFhzM/Pj8XGxrLnnnuOpaWl2Uzb0eCN/Otyj7i4OGE9/jOnJJ+MMQZAdhDKCxcusH79+rHw8HBWqlQp1rFjR3b8+HHZvH3++eesQYMGLCAggEVHR7OxY8eynJwcq/U8ta+cnBwGgD3zzDOyafDsvZ/ifMoN3pibm8tmzJjBateuzQICAlhERASrX78+mzBhAsvMzLTaV8uWLRkANmjQILt5ciel5zkuLk7ymeIdO3aMdezYkZUqVYqFh4ezfv36WY1oL8fe4I2zZs1iANjff/8tWT5kyBAWEhJitX5SUhKrW7euZJnS9+LUqVOsVatWrFSpUlbv8d9//83Gjh3L4uPjmb+/Pytbtixr2rQpmz59OsvNzZUch9x3dOnSpaxly5YsMjKSBQQEsCpVqrAXX3xRMlgmjwZv9D0cYxoNckMIIR62bds29OrVCz///LNQEkyKD98W8uOPP8bgwYOd6tFZEjBzT9r169fjxRdfxNGjR6kRto94aAZvJISUPHv27MEzzzxDAZGXefHFF+Hv7694BPmS5ptvvoG/v7+kDSPxDVRSRAghRBP5+fmSUeO1atDsa+7cuSNpp5WQkEC90nwEBUWEEEIIIaDqM0IIIYQQABQUEUIIIYQAoKCIEEIIIQTAQzZ4oxJGoxF//vknwsLCHsqupIQQQpRjjCEnJwexsbFum9rnwYMHyM/P1yStgICAYpuqxRdQUGThzz//FIbGJ4QQQpTIyMhwanojRx48eIBywaG4B4Mm6UVHRyM9PZ0CIxsoKLLAT/mRfuowwsJCizk3hBBCvFlOTi7iG7Vwy3RRgGmYg3swYDAqIsDFFi/5MGJ95jXk5+dTUGQDBUUW+CqzsLBQhLvpQ04IIUR7jNOu+opjRnXru7m5RQB0CHD1+GgAHocoKCKEEOITtAx6vGlfSug5DnoXAy89OAqMHKCgyAbG6YQvhdpfDIQQQrThbcGJJU/lT8cBehcLo3QABUUOePenzUuIAyRCCCGeQddd4mlUUqQC43RUakQIId5MTbd4o+9czzWrPiN2UVCkElWpkZJIyS9y+swTr+TK2EBy23ppoKTXoPpMr01WSjQKipxEpUakJFBTPUE/CIhXcdNAiVbpemmQRNyDgiIXeCQwciZ9qocnCjjbXoOCI+IpHDPKf05tBURKPtNqP7c6nVcERlR95hkUFLlIs8BIyxuMOC1nLhIUVJV41IDVOXLnjYJD97IKjCwDIrWfZcv1lbx//D6LMTii6jPPoKDIRV4XEMmlbeuiYWu/FCS5n61z74FzrVVA5FNVyBqcb1vnzafOg1mxBndqf7ShKG+SfFtuK5eWkmNyJkgCigIluj6WKBQU2cLpiopN7RSfOn1B9ORF1NV92bqIFWfwJBfs8flRulwuTZ67j4UupJ7F6ZR/DpSwuCZ4e5Wio0DYZr7t/ahSvHM750Tle8IxY1Fy/Cb2thW/746oKTEqBlR95hkUFDnCfwmcqVe2d0FR82WV29bRft1FyQUOKJ6gwt65djZNUkSmAardYMCTnwd7LPOm8EYsBBLiqhPxObBzPsS8IVByOg9avG9KrnX8tdK8XkjXOU7vLnfXXFNarlar8fnyEhxcH1iQQiLHKChSw0avBJs3BkdfSnuvu/ILTYsLmcVFyqnt7bFX4iS3jod4201N66oZp6vOHPwokM2nneompZw+dnvbqcmXvSDI3roOsiI+LvF+tayOdyWwELu7Y6aQ1t0dM2XPn8OSMtE2IV2SNcmXLaEdZyB35xzrKjd77x+/jtrvhwevDVRS5BkUFNnCjIpLhsRfPrUXNVsXE6aTvjWeujELx6DkIuFKnpTuw9nknajOsNlmRO/n8LPgrvfHlXQVBR9qqgMcNDZVHXA52rejkijZTDh/vmTbrVgeqzg4tJd/8XYyAaXmgRCKgg1xEKNJuqK0xP/fTUkW/rc6BlFpnLuDIDmhnWdKnt9NSQYMMu8vYHp/ZK5Hks+e+Pi8qPSIaM9ngqLCwkIkJyfjs88+Q2ZmJmJiYjB06FDMmDEDOvPFiTGG2bNn44MPPsDt27fRvHlzrF69GnXr1lW/Q3GbIks22hMA5huoJbmLqEVRPHNQMCq8bpmWKB9KLq4Oe3Ewo/W+FKatmpZtPGSIe604yr/d8yK3zAM3OVfJ5cOrep1ZVkdZEn3PHP7gcKZBrWUSos+K3dIFpcGQaJllwOXKZ8RRkKFlQCQnd6cp/RCLwMNX8Oc+pEsycnfOQWjHGQBE1W6SlXVgEFU7yZXge+g7Rb3PPMNngqI333wT7733HtatW4e6devi2LFjeOGFFxAREYFx48YBABYtWoRly5Zh7dq1qFWrFubOnYvOnTsjLS0NYWFh6nbI10nrzR94yy+Dn5+wnlCqw4yA3t/0lzGA40zbGA3gjIXSC6LeXBrEjJJfIkwfIKQlLOersZjRlB9xtZa4FspRjbP4lxCnk9xoQttNkayau2chwBXlK6Rj0QVQ/AvRKm1bnCxBs8fejYV/TVUwxHOx262tvHtDsGRVbaOk1AOQBjCWwb2z+7ZMV44o+HcYeLpwc5L8sOF/EInTdfTe8cfhoDTN1c9AcZS68HJ3zRX+5wMJX2HrvIlLlCyPKSd1SdF1WXTttCo58hBTUORq9RlxxGeCokOHDqFv377o2bMnAKBq1ar4z3/+g2PHjgEwlRKtWLEC06dPx4ABAwAA69atQ1RUFD7//HO8/PLLqvbH/ALB/INNT4QLuAHQmT5WTNSQL7zlKIfpZR9cLQQ4DABnLDSn4y/5gjGdH8JbjkL2wdVFkxmzol+afMDFGQuLtpMrcZGpmuIDn5wflwEAwtpOtJnf0PZTZZfn7poLZr7gq/l6Wv56lQRW9tpPiW5Oti7EskGaC2wOGGdnfUty23tLsOR0IKig1FT1fvl0VVTjqQ2I7L2XtoJnyVPx5vaO1dUxbGS+x8UZBFnytUBIjZz9K4ue8D9qZT5nnOV7xOnA9P4eyCHxFJ8Jilq3bo333nsPv//+O2rVqoWff/4Z+/fvx4oVKwAA6enpyMzMRJcuXYRtAgMDkZSUhIMHDzoVFIW1meBSnrMPrpY8D281Rlhu9cvUAh9o8WlYFrszTmc3KLEV1ADSYCj7wCqEtxoj7McywMvZv1J6kTAWmkqQDIVWv9zt3XzEDR+tuBAQ5e6cUxQ8QkGAYRGA2VrflXZilts74qhKReuqOSX7UcxOda6Eq3NMqalKs2Dvs2nr3EreP5l8ahbIyqVj/oyqDYj4HzvQ6RHWepzTWcrZtxwAXL7++Yrsg6vBxMExpwNghBANi3+UwrKqXW+qHfAAqj7zDJ8Jil599VVkZWWhTp060Ov1MBgMmDdvHp599lkAQGZmJgAgKipKsl1UVBSuXLliM928vDzk5eUJz7OzswEAFTtPAsdXZSkgDoD4kh4AADMKwZD4davtzcGJOL3wlqOkaQGSL6xVXbfwuqn6yzIwytm3XNqI0Px/9oFV1vnmk2VG8z6M4IzGomo8C2pu/oDCm4r5ZmTZaFIstPNMU7G+0husihu/UwGRTNAl27DTksJGxe5su2Sr3YviYMlWSZLl685Om2ARGInz6IijY1ESHDta12aJp70fA0qq5hzI2bccYW0m2C35VSOszQTk7l2kSVrejC8dkgRENkohmfVSj7Ul4lHvM8/wmaBo48aN+PTTT/H555+jbt26OHXqFMaPH4/Y2FgMGTJEWI+z+NAwxqyWiS1YsACzZ8+2Wn5t51JU6jZNdhtJ4GAOeiwDHSVVapL17QROttLiq9gc7YvPb5iCPInTyj6wynShMBqKgiFmtH9Ds1UNItMw2V6JhZobvrgUyW6JlEq2qsXspi9zobQKjMTVRfxyUds1xvkVXZwddIO3lU9XWKZnN6Cw1WXdKJN/PqixVV1mrxpNo+kVrKrJRD8SlLRRc8jRepzO/nqic3w3JVlRaZEWJTq5excJbSP5qvncPQtNLzIjQju85vI+vEXuzjmmz1nBfXOHGr59qPk+wWRCIMvg1Zs6LBBNcYzJfQK8T+XKlTF16lSMGlV00547dy4+/fRT/Pbbb7h06RKqV6+OEydOoHHjxsI6ffv2RenSpbFu3TrZdOVKiipXrgy/+oPslhQJbYRgHdA4Yquqypvwx2e6QIraMPEXBoOpTZTdX/0KSgSU9hAT35BtlRzl7pwjeY3vJaNF0OD0iMBy21s24pX7K2woUzrn7l6BDmjSg008WrxSKoZFcMuchBp1JlDTvo4/1/ZKS52VfXA1OEM+OEOB9DMmCsjdsd/idHeH+XjMHU2g0wHm67y49Fxgr/0ax4Hp/BDW4mUUnvkMWVlZCA8P1zzP2dnZiIiIwKKw6gjmXKsAu88MmJJz0W15LQl8pqTo3r17Qtd7nl6vh9F8oYyPj0d0dDR27twpBEX5+flITU3Fm2++aTPdwMBABAYGqs6PXFWT2u29mVWbJgSCKywKHqE3Co3FgULpxkpLkiyqjBxVUfDL+JuIcFHjbxwWv2b5C7qWpUcCmeOw2eBaLgiSe873ZOR/sZp/nUpuWjLtXjzNZvsKNcQlSRpNnSD+LCkNsPn1bVJzfDINpIWbsGgd/vPLr2OrNEgo0XBTqYQu/y6M5s4kD0P7Iav3QnRuhc+ErSBIHKyaexUzTqf6B7ErqPrMM3wmKOrduzfmzZuHKlWqoG7dujh58iSWLVuGYcOGATBVm40fPx7z589HzZo1UbNmTcyfPx+lSpXCwIED3ZInPjAS9ywTvyYmLh3y9oBIzGbV3YFVgNH8q8XoV1QfbyyUVpOYCUGPnVIOW1Ubtm5yRfMgSX/RCl2Hxb+4LUpa1AYUNquQ5MarErqu+xX9IrVKUFcU/Jify/1S5YyFYHr/osAI2gZDfDDnSoNytT31bJ5DJSNGK6hGkwt63DE+k+T9NkqH1lAygOLdlGQwTmdVGpO7ay5CO85waylN9sHVCPWh65AWmM5P+hk3Gk1tqc3tJmVLigCL0kJT6ZAngyHiWT5TfZaTk4PXX38dmzdvxo0bNxAbG4tnn30WM2fORECAufjTPHjj+++/Lxm8sV69eor3wxdVOqo+s9rOTnWareoyvjG1LxOq2YRqtQKA04Ez5EuL443WPThkSxwU9lKyGmBPXP1k0QZC3DZC8tcifdW9sixLgMwPobRH7tcnVzSulaK2YPy5NRSY23cVmkuPCu1uW9yUNEx22EZJRcNsJQ2plUzhIvs5tLNvy+pfuVIfyyEjQrokS0o7hRJNmTm77PUidYb4OmXvR1xJJX4vmN5PaFMkCYhslMYw848cHn/OmCHfI9VnKyJqaFJ9Nj7rAlWf2eEzQZGnOBsUAebSE0730Fxg7Mk+sMpUvWY0FAVISqrVxBcn/pe35S84ueBG1BBSrvt+7u75ttvrAI7zJq7m4f8XbqDmi6pOD6YP0PT9F7ft4gwFQlDkTGmXp6htAO5qKY7NwEbFtg7nxxJ9JuU+X0rHyrLaj2UDXnPArHUwxPOF9oyeIBm9WucnnVZJXH2NovfMVumQp4KiVaW1CYrG3KGgyB6fqT7zBSW5SNVyyAFHhDGZDqwyjeNhUdJhEycNjvhgg+8RwhkLpXX8fGBjKLRf3WBez/KGlrt7vukfPz/5fAkXTtFzPSTr8iVD/MCb7sJ0fqYWAcZCgD8FTgQeiraxdy7411UGM1pXYTnTtslyG9kG8HI9jewE3I4CIr70SGgjBAD6ABj9gxHeagxy9q90aVwhNex9PktCybUjuXsWSkvKxJ8Bi+ps8f/ecF6oTZFnUEmRBVdKih42ai+iQukRYN3jRVyEbfFLDQBgKEBY0mTk7l0kjMydu3u+Zl2Fc35cJiqV4oq65fLVYOILKTNCmMbFvMydAZG4Go0rzJM2upYrMZKpHnGKOPBUkZbDAMWFbveK2gc5mKdO8XbiaiyLz5mjKS/EgZJVUMTpHH5uc/cuAuN0CEuaDKBoLCJ3U1qS5MsBlGVgJFSL2Wjj5+g4PVVS9E6ZmpqUFI28fZ5KiuygoMjCwxwUefJCl7NvuSkwAgBmtL4wGQ3CDcET+MAjvNUYYTBLNdO4eErO/pXCuFGSqV7MbYw0rVKz0x3dXhWZojZYjlhWVyqhZqJWGxMqS3oLWpQWhLafKhlkVUlQbqvBNd/OTUk1mfiz6U18MTDK3T1fWiXPWff4VPsDx1NB0ftlaiJY52JQZDTgZQqK7KKgyMLDHBR5mjCFCCApgdFqZF6lfK2dheUYUuC4ohIkQDZA0mzcHgu2hlSQJRdsyCZqp1u0mK1ARw4fZDmYssNymAer9mz8en6BTld5iYMpIciF/bkIvZUvBkaAOTgSl06bgw1n3lNPBUUflq2FUi4GRfeMBgz/53cKiuygNkWk2C5s/AWoOIOS7AOrfO6iLhl13HKsLKMBnDmAEIYhcHLOMCUcTgViq0pKrtG7zZ1YbCNUueqgqju/5XoWU4YIwZDOzzQhtPl8Wd4oc/avBAwFRdNEcMrHq8n5cRkYRO+becgFbysFUooflsRXvkPi6UvEAZGnxxwi3ouCooec3AXNExc5y0DIkxfXnB+XgTMWCg1dfZnVtCyihqOm3n+Fkkbkro7XJMeqsbJcoGIZ2FgGOHIlQeL1LJcxG8GQXC9FW2nqLUqB+N5GOj+7JQZyr+WkLgHzC5R8nnL2LTc1jje3oxPPT8ZPuqpVb8Xi/GHhC4GRuHRO0v3ehwIiTSaEpXbWDlFQ9BCzdSFz58WNH7ZAvB/Lv27HcUJjbXvketx588U/vNUYU575m7vev6i3nrmKRgiU1ARDahpaW45QbRl0cDKDVIoGpWScrmikdDWlR+J8ihvw28qbKADiq05gNJjy58Ss52FJk4VZ6vlG+6YhFAzy62vcaFrpZ9Idn19XRvb3lNAOryF3z0JpZw43d5DQmia9z1zc/mFAbYosUJsidcQNTxWtX0xBRc6Py5xqsyFc8M03XF+5gIrxDceFeewM+abACHCptEi2PZG4CkocuFjuw7K3jxgfwInHqRIHZpa96yzHrbIoDZOwHF9KFBRp1S2e70TgUrsjUS9LX+DN7fJy9yyUBsHm4TO0+j57qk3RusjamrQpGnIzjdoU2UElRcRptn4hii+QcusUR2DkbCNWb7zIK5Wzb7m05MRoUDy6tFWgA1jPeA+YAgshEdHwCuY2OfyNJ/vAqqJ9ywVIYnysw0RBj7iHkCTjrKhkidNJgj1JPsX74m+Q5sBM69ICJaVAjoJ0XwqIBF46mKh4FHlfnqaDqs88w8WBTEhJobYIXOkvQ3HVmDDvGzMKVQ3EPYRqNHFAZCwE+FIifm46nc403YFfAKD3MwUROtEM4n4BpnT0AYB/kOm5f1BRaZA+wBQA6QOKHn6Bwo1HeP9bjQEzl8xIRg82Y5wOYa3HmR5tJpjT8jeV4oh/HZtvcGFtJpjW8ws079/f/H+QKa/C8fgB+gAw/1LmR7CwDfT+TgVEuXsXCW2CnFU0mbI2nP0+aVX1Fd5ylNeNsJ67a27R4KyApITIF/HVZ64+iH1UUkQAaFsiosu/K/mla5m2L/5KU8pb2hzxeeB7SAEGIZARJu0Vj9XC90zjH3rRGC46PThDAULbTSka+E7cLojTwTRQrt7mgHdWc+TJDI5na9LknP0rAU6+l5dVTzy+ezXfsNwcnGn5vhgDQlxOQ64kyDKPtkqT5I7FG0pC3THpriv4QTWLvgMl+9pDtEFtiiw8DG2K3F3/72z7HeI+kjGhGDNXSemt2+VYVLHxpTqW72dO6hJhrjdA+fQRliUT3hBAOsLn35vyLtdhobhZdkzISV3i0QFY7eHb1bkjKPJUm6KNUY9o0qbo6b/OUZsiO7wrtCceYesGpRUKiLxPWOtxRaVCen9T1ZE+AGGtx0mrtMxVSsIyUU+u3N3zkZO6xFRVo9MLVU9KqlCzD662Kgmy1ebMG/GBkfh4hZHP3bQ/u8wlbN4SEAEypXY6vVvPkT2y1ZteVpKlFqfnNHkQ+6j67CHlC13MibbEPaEk77u5OozpA0xVXJJ7h6kqKid1CSRFyjZGerZFbsBJb7up26J02Aq1PTFd5Y0lst4wZlH2gVWAoQC5u+eD+QcjrM0EZSOuezmdnoNO51pQo6M2RQ5RUPSQc1TtoXRdMU9NXkmUsSp1YEbJeym+kWcfXI2wVmOEG67QHkOnF6YU0aI7s1vHwiqmm7KWAZGj/PPTukgmNzW3F9NqkmRnWJ773D0LFc3vpiXL9yFn33LNhlsgJR8FRUSWrRuL+AbLGfJlgx8KiLyLrRtszv6V4AruS25a/Lp8CQR/M8nZt1wY/deVaghPBCyyjbxtvObtbP3ACGs7UZhUlh+ywBu68VuWFDH/4GLLC9+OrsRcj/Q6cGomVZbDqWtCXLVqVVy5csVq+ciRI7F6tXUV7969e9G+fXur5efOnUOdOnVU7bu4UFBEZNm6eShpj2Q55UHurrlCTxDiPcJaj5N2Wba3rvnG4moboOKahsIT7JWQiqvWcvavVFxyYSu9nH3LEWp+LXfnHIAzSqayKE5CWzFbI4u7Wc7+laYhHkpYTzNO53qbIA7qtj969CgMhqJR2X/55Rd07twZTz75pN3t0tLSJA25y5cvry6jxYh6n1l4GHqfFYfcnXMQ2nlmcWeDaESYDNWHpknwBMuBSzljoWwAZNl7zHI78ZAKjubmyt01FwDc8sOjuNsHqVFco2p7qvfZpmoNEKJ3rffZXYMBj1867XRex48fj++//x7nz58HJ9M+iS8pun37NkqXLu1SXosLBUUWKCjShi9dTInz+Ju2ozZGD8PnIXfvImEkb8uJYZVW4Xhrezw1758nghNvqhL1VFC0uWZDTYKi/ud/RkZGhiSvgYGBCAwMtLttfn4+YmNjMXHiRLz2mnyJJB8UVa1aFQ8ePEBCQgJmzJghW6XmrSgoskBBkeu89cJO3IOfDd7RuDnePD+WL/N0KayjAOlhCIDFPBUUbandWJOgqF/aSavls2bNQnJyst1tv/zySwwcOBBXr15FbGys7DppaWn48ccf0bRpU+Tl5WHDhg147733sHfvXrRt29alvHsKtSkimqOA6OHCFeYhrH1RmyNbN0VfGpfIl3i6WtphwONl030Qa3IlRY58/PHH6N69u82ACABq166N2rVrC88TExORkZGBJUuW+ExQ5NsDNxCvkbtzTnFngRQTy95rjnp/5aQuQU7qkqLeU8RlubvnI3fvIk3TFE+PoYa7xmpSOxCkZQDOP88+uLrYBpV0hU7PafIAgPDwcMnDUVB05coV/PDDD/jXv/6lOt8tWrTA+fPnnTrm4kBBEdEENaImcmTn6UqajLCkyR4fv6YkC+3wGpjeX9OSuLDW42TTU7IPZwMqW9QOjCn3uZNMTu2DPdOKc0TrNWvWoEKFCujZs6fqbU+ePImYmBin9lscKCgihGhK/IucqlI8J6zNBHDGQpuvOxMwKR3N2yovNgIqpfhqWKEdmsog5mFq0+RuRqMRa9aswZAhQ+DnJ21xM23aNAwePFh4vmLFCmzZsgXnz5/H2bNnMW3aNGzatAmjR4/2dLadRm2KCCGaEv8iBx6+hrfFyd74R66+B558H+nzYs1U0uNaOQYH9T9SfvjhB1y9ehXDhg2zeu369eu4evWq8Dw/Px+TJ0/GtWvXEBwcjLp162Lr1q3o0aOHS/n2JOp9ZoF6nxGiLW/qPl1SqQ1YPNVt/mF4vz3V+2xb00cRonetHOOuoRA9jh91W15LAiopIoS4la2G1w/DDdNdLANNJedSbiJedwYu9P5qi+M4cC5OCMsZaUJYR6hNESHEo5TexIlt/Dm019NPbkJnW42PLdfN+XGZltklxGdQUEQIISWAXBBk+XrO/pVCd3R7DaH5CYG16M1GY1NpQ6fXafIg9lH1GSGElAByQZB4mfh/uWozubZfVKLnPVzpUi+kwaj6zBGfChuvXbuG5557DuXKlUOpUqXQqFEjHD9+XHidMYbk5GTExsYiODgY7dq1w9mzZ4sxx4QQUjzsBTRy1WiWbY20GuCQRjInvsRngqLbt2+jVatW8Pf3x/bt2/Hrr79i6dKlkpl4Fy1ahGXLluHtt9/G0aNHER0djc6dOyMnJ6f4Mk4IIV5AaWAiBEitxmgaGBHXFOfgjQ8TnwmK3nzzTVSuXBlr1qzBY489hqpVq6Jjx46oXr06AFMp0YoVKzB9+nQMGDAA9erVw7p163Dv3j18/vnnxZx7QgjxbnJBk5YjP/vi1BrehNoUeYbPnKFvv/0WzZo1w5NPPokKFSqgcePG+PDDD4XX09PTkZmZiS5dugjLAgMDkZSUhIMHDxZHlgkhxGs4Kq2x1RNNs/2bS55y9q/UfBoQQrTiM0HRpUuX8O6776JmzZrYsWMHRowYgbFjx2L9+vUAgMzMTABAVFSUZLuoqCjhNTl5eXnIzs6WPAghpKRRU33mzHaK0m41BmGtx4Hp/KjkSC0tqs6o+swhnwmKjEYjmjRpgvnz56Nx48Z4+eWXMXz4cLz77ruS9ThO+qYzxqyWiS1YsAARERHCo3Llym7JPyGE+CJ3lCCFtxwFcDpqgK2CjuOg07n4sHMvJCY+ExTFxMQgISFBsuyRRx4R5l2Jjo4GAKtSoRs3bliVHolNmzYNWVlZwiMjI0PjnBNCiPO0ChycmQbEnVO00CCexBv5TFDUqlUrpKWlSZb9/vvviIuLAwDEx8cjOjoaO3fuFF7Pz89HamoqWrZsaTPdwMBAhIeHSx6EEOItiiNwCG85CtkHVlHQ4kU4vU6TB7HPZ87QhAkTcPjwYcyfPx8XLlzA559/jg8++ACjRpm+tBzHYfz48Zg/fz42b96MX375BUOHDkWpUqUwcODAYs49IYT4Fls9z6jKq3jo9JwmD2KfzwRFjz76KDZv3oz//Oc/qFevHt544w2sWLECgwYNEtaZMmUKxo8fj5EjR6JZs2a4du0aUlJSEBYWVow5J4QQ7bgSlGjR64tKj4oHjVPkGRxjjBV3JrxJdnY2IiIi4Fd/EDh9QHFnhxBCZKmd4T774GpwxkKEtR7nxlw9fJghH4VnPkNWVpZbml/w96R9vTsg1N+1mblyCwrR5rvdbstrSeAzJUWEEEKK8O1+1GA6baa7pCo0z6M2RZ5BZ4gQQnyUqqk4mNH00GK/VIXmcTq9Fu2KivsovB8FRYQQ4sP4BtGOSm84Y6Gm03YQUhJpU5ZKCCGkWNkrvck+uBphVLrj0zgdB07nWkNpV7d/GFBJESGElEDuHHiReJ5Op8GEsDq65TtCZ4gQQgghBBQUEUJIiSU3XYdWcnfO0TxNYhuNU+QZFBQRQkgJFN5ylNDbjDMWap5+aOeZVsuoq777UJd8z6AzRAghJRXn2Us8tV0ivo56nxFCSEllLiliHg6OiPY4nQ6ciw2lXd3+YUBBESGElFDhrcYgZ/9KhNH4RD6P70HmahrEPgqKCCGkBOPuZxV3FogWtGgTREGRQ3SGCCGkBJNrEE0IkUclRYQQQoiX43SulxRRmyLHKCgihBBCvBw1tPYMOkOEEEIIIaCSIkIIIcTrmQZf1LuYhkGj3JRcFBQRQogPshw9mgZOLNm0GJGaRrR2jM4QIYT4mOyDqxHecpTw4JcRQlxDQREhhPiQ7IOrAWakIOgho9PpNHkQ++gMEUKIj8jdOQfhLUeBK8xDeMtRFBg9RIpjQtjk5GRwHCd5REdH290mNTUVTZs2RVBQEKpVq4b33nvPlcP2OGpTRAghPoIfiDEsaTKAonZE1J6o5CuuNkV169bFDz/8IDzX22nsnZ6ejh49emD48OH49NNPceDAAYwcORLly5fH448/7lSePY2CIkIIKQFy9y4CjIVg/sFg+gAKlIgm/Pz8HJYO8d577z1UqVIFK1asAAA88sgjOHbsGJYsWeIzQRFVnxFCiA/LPrAK2QdWwRgQgtAOr4HpA4Q2R9kHVhV39ohGOE4nDODo9IMz3fKzs7Mlj7y8PJv7PX/+PGJjYxEfH49nnnkGly5dsrnuoUOH0KVLF8myrl274tixYygoKNDmRLgZBUWEEOLLOB3A6SRVaeGtxgDMaHqNlAhatimqXLkyIiIihMeCBQtk99m8eXOsX78eO3bswIcffojMzEy0bNkSt27dkl0/MzMTUVFRkmVRUVEoLCzEzZs3tT0hbkLVZ4QQUkJRFRqRk5GRgfDwcOF5YGCg7Hrdu3cX/q9fvz4SExNRvXp1rFu3DhMnTpTdhuM4yXPGmOxyb0VBESGE+DDLwCd35xyEdp5pKi0iJYaWDa3Dw8MlQZFSISEhqF+/Ps6fPy/7enR0NDIzMyXLbty4AT8/P5QrV059hosBla0SQogPyz64Gjn7VwrP+R5qpGTR6XWaPFyRl5eHc+fOISYmRvb1xMRE7Ny5U7IsJSUFzZo1g7+/v0v79hQKigghxIdxxkIwajtE3GDy5MlITU1Feno6jhw5gieeeALZ2dkYMmQIAGDatGkYPHiwsP6IESNw5coVTJw4EefOncMnn3yCjz/+GJMnTy6uQ1CNqs8IIcSHMZ2fqVE1KdE4HQfOxRGpOZ26dj1//PEHnn32Wdy8eRPly5dHixYtcPjwYcTFxQEArl+/jqtXrwrrx8fHY9u2bZgwYQJWr16N2NhYvPXWW5p2xz99+rTqbRISEuDnpyzc8dmgaMGCBXjttdcwbtw4YUwExhhmz56NDz74ALdv30bz5s2xevVq1K1bt3gzSwgh7sKMsu2Hcn5chrC28o1hie8pjsEbv/jiC7uvr1271mpZUlISTpw4oWo/ajRq1AgcxwkNuB3R6XT4/fffUa1aNUXr+2RQdPToUXzwwQdo0KCBZPmiRYuwbNkyrF27FrVq1cLcuXPRuXNnpKWlISwsrJhySwgh7iMXEOXuWYhQCohICXXkyBGUL1/e4XqMMdSrV09V2j4XFOXm5mLQoEH48MMPMXfuXGE5YwwrVqzA9OnTMWDAAADAunXrEBUVhc8//xwvv/xycWWZEEI8KrT91OLOAtFYcU3z4W2SkpJQo0YNlC5dWtH6bdu2RXBwsOL0FQVFfJChxnvvvYcKFSqo3s6RUaNGoWfPnujUqZMkKEpPT0dmZqZkNM3AwEAkJSXh4MGDFBQRQgjxWfyI1q6m4ev27Nmjav1t27apWl9RULRlyxY89dRTiqOtzz//HLm5uZoHRV988QVOnDiBo0ePWr3Gj40gN5rmlStXbKaZl5cnGeI8Oztbo9wSQggh2uD0eujsTMaqNI2SLDc3F0aj0akxmHiKq8/eeustxUHOV1995XSGbMnIyMC4ceOQkpKCoKAgm+vJjaZpbyTNBQsWYPbs2ZrlkxBCCCGe8+uvv2Lw4ME4ceIEOI5DQkIC1q5di6ZNm6pOS1FZ2p49e1C2bFnFiW7fvh0VK1ZUnRl7jh8/jhs3bqBp06bw8/ODn58fUlNT8dZbb8HPz08oIZIbTdOy9Ehs2rRpyMrKEh4ZGRma5psQQghxlZZzn5U0L7/8MkaPHo3c3FzcunULAwYMkIyfpIaiM5SUlKS4jz8AtG7d2uZcKs7q2LEjzpw5g1OnTgmPZs2aYdCgQTh16hSqVauG6OhoyWia+fn5SE1NRcuWLW2mGxgYKAx57uzQ54QQQog7UVBUpG/fvrh27Zrw/O+//0afPn1QqlQplC5dGj169MBff/3lVNpO9T4zGo24cOECbty4AaNROmhY27ZtncqII2FhYVZd60JCQlCuXDlh+fjx4zF//nzUrFkTNWvWxPz581GqVCkMHDjQLXkihBBCiGcNGjQI7du3x+jRozFmzBiMHj0adevWRVJSEgoKCrB7925MmjTJqbRVB0WHDx/GwIEDceXKFavBkziOg8FgcCojWpgyZQru37+PkSNHCoM3pqSk0BhFhBBCfBqn06D3mYvbe4unnnoKXbp0wauvvormzZvj/fffR0pKCvbu3QuDwYCpU6fi0UcfdSptjikdFtKsUaNGqFWrFmbPno2YmBirRswRERFOZcRbZGdnIyIiAn71B4HTBxR3dgghhHgxZshH4ZnPkJWV5ZbmF/w96Y/3piI82LVmKdn381BpxEK35bU47N+/HyNHjkTnzp3xxhtvoFSpUi6lpzpsPH/+PObPn49HHnkEpUuXRkREhORBCCGEEOJOt2/fxvHjx1G/fn0cP34cYWFhaNy4MbZu3epSuqqDoubNm+PChQsu7ZQQQgghynE6zvWG1ionhPVWGzduRMWKFdGzZ0/ExcVh+/btSE5OxjfffINFixbhqaeecm9Da/GstGPGjMGkSZOQmZmJ+vXrw9/fX7Ku5XxkhBBCCHENtSkq8uqrr+KTTz7BM888g+PHj2PYsGHo06cP6tSpg9TUVHzwwQdITEzEpUuXVKetKCiSm5V22LBhwv/8a8Xd0JoQQgghJVtOTg5q164NAKhevTru3bsnef2ll15Cv379nEpbUVCUnp7uVOKEEEIIcR2n04PTuTjNh4vbe4shQ4agZ8+eaNeuHY4dO4bnn3/eah1npxlTFBTFxcUJ///4449o2bKl1WCOhYWFOHjwoGRdQgghhGhApzc9XE2jBFi2bBnat2+P3377DUOHDpVMBO8q1eMUtW/fHtevX7eKwrKystC+fXuqPiOEEEK0ptOZHq6mUUL07t0bvXv31jxd1WfI1gSrt27dQkhIiCaZIoQQQgix9NZbb+HBgweK13/vvfeQk5OjeH3FJUUDBgwAYGpUPXToUMncZgaDAadPn7Y7xxghhBBCnMPp9eD0LrYpcnF7bzBhwgQ8++yzCAoKUrT+lClT0KVLF8UzWygOiviBGRljCAsLQ3BwsPBaQEAAWrRogeHDhytNjhBCCCFKUZsiAKYYpGPHjoonqb9//76q9BUHRWvWrAFjDIwxrFq1iuYTI4QQQohHzZo1S9X6ffv2RdmyZRWvr6qhNWMMn3/+OaZPn05BESGEEOIpOp0GJUW+39BabVCklqozpNPpULNmTdy6dctd+SGEEEKIBX5Ea1cfxD7VZ2jRokV45ZVX8Msvv7gjP4QQQgghxUL1OEXPPfcc7t27h4YNGyIgIEDS4BoA/vnnH80yRwghhBAAnAYNrTnfb2jtbqqDohUrVrghG4QQQgixiXqfeYTqoGjIkCHuyAchhBBCSLFSHRQBpsEat2zZgnPnzoHjOCQkJKBPnz7Ql4CBoQghhBBvo0VD6ZLW0NpgMGDt2rXYtWsXbty4AaPRKHl99+7dqtNUHRRduHABPXr0wLVr11C7dm0wxvD777+jcuXK2Lp1K6pXr646E4QQQgixg6rPrIwbNw5r165Fz549Ua9ePdkpyNRSHRSNHTsW1atXx+HDh4UBkW7duoXnnnsOY8eOxdatW13OFCGEEEJEaJwiK1988QW+/PJL9OjRQ7M0VQdFqampkoAIAMqVK4eFCxeiVatWmmWMEEIIIcSWgIAA1KhRQ9M0VYeNgYGBsjPO5ubmIiAgQJNMEUIIIaQIPyGsq4+SZNKkSVi5ciUYY5qlqbqkqFevXnjppZfw8ccf47HHHgMAHDlyBCNGjECfPn00yxghhBBCzHQ616u/Slj12f79+7Fnzx5s374ddevWhb+/v+T1r7/+WnWaqoOit956C0OGDEFiYqKQgcLCQvTp0wcrV65UnQFCCCGEELVKly6N/v37a5qm6qCodOnS+Oabb3D+/Hn89ttvYIwhISFB83o9QgghhJhR7zMra9as0TxNp8vSatasid69e6NPnz4UEBFCCCFuxOn0mjzUWLBgAR599FGEhYWhQoUK6NevH9LS0uxus3fvXnAcZ/X47bffXDl8u/7++2/s378fBw4cwN9//+1SWqpLitwxWBIhhBBCvEtqaipGjRqFRx99FIWFhZg+fTq6dOmCX3/9FSEhIXa3TUtLQ3h4uPC8fPnymufv7t27GDNmDNavXy/EInq9HoMHD8aqVatQqlQp1WmqDorcMVgSIYQQQuzgNGhozanb/n//+5/k+Zo1a1ChQgUcP34cbdu2tbtthQoVULp0abU5VGXixIlITU3Fd999JwwJtH//fowdOxaTJk3Cu+++qzpN1UGROwZLIoQQQohtzlR/yaXhiqysLACQjFNoS+PGjfHgwQMkJCRgxowZaN++vUv7lrNp0yZ89dVXaNeunbCsR48eCA4OxlNPPeWZoMgdgyURQgghxDOys7MlzwMDAxEYGGh3G8YYJk6ciNatW6NevXo214uJicEHH3yApk2bIi8vDxs2bEDHjh2xd+9eh6VLat27dw9RUVFWyytUqIB79+45labqsjh3DJZECCGEEDv4aT5cephu+ZUrV0ZERITwWLBggcPdjx49GqdPn8Z//vMfu+vVrl0bw4cPR5MmTZCYmIh33nkHPXv2xJIlSzQ5DWKJiYmYNWsWHjx4ICy7f/8+Zs+ejcTERKfSVF1S5I7BkpRYsGABvv76a/z2228IDg5Gy5Yt8eabb6J27drCOowxzJ49Gx988AFu376N5s2bY/Xq1ahbt65b8kQIIYR4hIaDN2ZkZEgaQTsqJRozZgy+/fZb/Pjjj6hUqZLq3bZo0QKffvqp6u0cWblyJbp164ZKlSqhYcOG4DgOp06dQlBQEHbs2OFUmk6NU6T1YElKKGkFv2jRIixbtgxr165FrVq1MHfuXHTu3BlpaWkICwvzeJ4JIYQQLWgxTQe/fXh4uCQosoUxhjFjxmDz5s3Yu3cv4uPjndrvyZMnERMT49S29tSrVw/nz5/Hp59+Koyb+Mwzz2DQoEEIDg52Kk3VQZHSwZIOHDiAZs2aOYxAlXLUCp4xhhUrVmD69OkYMGAAAGDdunWIiorC559/jpdfflmTfBBCCCEPg1GjRuHzzz/HN998g7CwMGRmZgIAIiIihKBj2rRpuHbtGtavXw8AWLFiBapWrYq6desiPz8fn376KTZt2oRNmza5JY/BwcEYPny4ZumpDoqU6t69O06dOoVq1aq5JX3LVvDp6enIzMxEly5dhHUCAwORlJSEgwcP2gyK8vLykJeXJzy3bIBGCCGEFLtiGNGa770l7t0FmAolhg4dCgC4fv06rl69KryWn5+PyZMn49q1awgODkbdunWxdetWzXqsf/vtt+jevTv8/f3x7bff2l3XmflY3RYUubMhtlwreD6CtWyJHhUVhStXrthMa8GCBZg9e7bb8koIIYS4rBiCIiX38bVr10qeT5kyBVOmTFG1HzX69euHzMxMYYRtWziOg8FgUJ2+T06Za68VvOVgkowxuwNMTps2DVlZWcIjIyND8/wSQgghxHVGoxEVKlQQ/rf1cCYgAnwwKOJbwe/Zs0fSCj46OhpAUYkR78aNG7LjGPACAwOFRmdKG58RQgghnsTpdJo8SpL169dLmr/w8vPzhTZOavnMGWKMYfTo0fj666+xe/duq1bw8fHxiI6Oxs6dO4Vl+fn5SE1NRcuWLT2dXUIIIUQ7nKtjFOlNaZQgL7zwgtC+WCwnJwcvvPCCU2m6rU2R1nOiOWoFz3Ecxo8fj/nz56NmzZqoWbMm5s+fj1KlSmHgwIGa5oUQQgghxctW85g//vgDERERTqXpMw2tlbSCnzJlCu7fv4+RI0cKgzempKTQGEWEEEJ8G8epntBVNo0SoHHjxuA4DhzHoWPHjvDzKwplDAYD0tPT0a1bN6fSVh0U3b9/H4wxlCpVCgBw5coVbN68GQkJCZLu8Dk5OU5lyBYlQRbHcUhOTkZycrKm+yaEEEKKFafTICjymRYzdvG9zk6dOoWuXbsiNDRUeC0gIABVq1bF448/7lTaqoOivn37YsCAARgxYgTu3LmD5s2bw9/fHzdv3sSyZcvw73//26mMEEIIIYQ4MmvWLABA1apV8fTTTyMoKEiztFWHjSdOnECbNm0AAF999ZUwDtD69evx1ltvaZYxQgghhJgwTqfJoyQZMmSIpgER4ERJ0b1794Q2OikpKRgwYAB0Oh1atGhhd5BEQgghhDiJqs+sGAwGLF++HF9++SWuXr2K/Px8yev//POP6jRVn6EaNWpgy5YtyMjIwI4dO4R2RDdu3KAxfgghhBB34DhtHiXI7NmzsWzZMjz11FPIysrCxIkThYIaZ9sWqw6KZs6cicmTJ6Nq1ap47LHHkJiYCMBUatS4cWOnMkEIIYQQosZnn32GDz/8EJMnT4afnx+effZZfPTRR5g5cyYOHz7sVJqqq8+eeOIJtG7dGtevX0fDhg2F5R07dkT//v2dygQhhBBC7NDpTA9X0yhBMjMzUb9+fQBAaGioMJBjr1698PrrrzuVplNnKDo6GmFhYdi5cyfu378PAHj00UdRp04dpzJBCCGEENuoobW1SpUq4fr16wBMTXtSUlIAAEePHkVgYKBTaao+Q7du3ULHjh1Rq1Yt9OjRQ8jQv/71L0yaNMmpTBBCCCGEqNG/f3/s2rULADBu3Di8/vrrqFmzJgYPHoxhw4Y5labq6rMJEybA398fV69exSOPPCIsf/rppzFhwgQsXbrUqYwQQgghxAbqfWZl4cKFwv9PPPEEKleujAMHDqBGjRro06ePU2mqDopSUlKwY8cOyQz1AFCzZk3qkk8IIYS4AwVFEgUFBXjppZfw+uuvo1q1agCA5s2bo3nz5i6lq/oM3b17V5jiQ+zmzZtO1+ERQgghhCjl7++PzZs3a56u6qCobdu2WL9+vfCc4zgYjUYsXrwY7du31zRzhBBCCEFRSZGrjxKkf//+2LJli6Zpqq4+W7x4Mdq1a4djx44hPz8fU6ZMwdmzZ/HPP//gwIEDmmaOEEIIIQDjOJd7j7ESNnhjjRo18MYbb+DgwYNo2rQpQkJCJK+PHTtWdZocUzL9vIXMzEy88847OHHiBIxGI5o0aYJRo0YhJiZGdQa8TXZ2NiIiIuBXfxA4fUBxZ4cQQogXY4Z8FJ75DFlZWW6Z1YG/J938/STCzVNsOZ1WTg4iazV2W149LT4+3uZrHMfh0qVLqtNUXVIEmMYpmjNnjjObEkIIIUQtamhtJT09XfM0nTpD+/btw3PPPYeWLVvi2rVrAIANGzZg//79mmaOEEIIIaC5z2TMmTMH9+7ds1p+//59pwtuVAdFmzZtQteuXREcHIwTJ04gLy8PAJCTk4P58+c7lQlCCCGE2EENra3Mnj0bubm5Vsvv3buH2bNnO5Wm6jM0d+5cvPfee/jwww/h7+8vLG/ZsiVOnDjhVCYIIYQQQtRgjIGTKf36+eefUbZsWafSVN2mKC0tDW3btrVaHh4ejjt37jiVCUIIIYTYpsXcZSVl7rMyZcqA4zhwHIdatWpJAiODwYDc3FyMGDHCqbRVB0UxMTG4cOECqlatKlm+f/9+YVRJQgghhGiI07k+y30JCYpWrFgBxhiGDRuG2bNnIyIiQngtICAAVatWRWJiolNpqw6KXn75ZYwbNw6ffPIJOI7Dn3/+iUOHDmHy5MmYOXOmU5kghBBCCFFiyJAhAExd8lu2bClpyuMq1UHRlClTkJWVhfbt2+PBgwdo27YtAgMDMXnyZIwePVqzjBFCCCHEjLrkW0lKSoLRaMTvv/+OGzduwGg0Sl6Xa+rjiKqgyGAwYP/+/Zg0aRKmT5+OX3/9FUajEQkJCQgNDVW9c0IIIYQoQEGRlcOHD2PgwIG4cuUKLMeh5jgOBoNBdZqqgiK9Xo+uXbvi3LlzKFu2LJo1a6Z6h4QQQgghrhoxYgSaNWuGrVu3IiYmRrYnmlqqq8/q16+PS5cu2R1emxBCCCEaopIiK+fPn8dXX32FGjVqaJam6jM0b948TJ48Gd9//z2uX7+O7OxsyYMQQggh2uInhHXtUbJGtG7evDkuXLigaZqqS4q6desGAOjTp4+kqIofRMmZOjxCCCGEEDXGjBmDSZMmITMzE/Xr17fqhdagQQPVaaoOivbs2aN6J4QQQghxAVWfWXn88ccBAMOGDROWcRznUiGN6qAoKSlJ9U4IIYQQ4gItJnQtYdVn6enpmqepOig6ffq07HKO4xAUFIQqVaogMDDQ5YwRQgghxIxKiqzExcVpnqbqM9SoUSM0btzY6tGoUSPUqVMHERERGDJkCB48eKB5ZpV65513EB8fj6CgIDRt2hT79u0rtrwQQgghvkrt/TQ1NRVNmzZFUFAQqlWrhvfee8+t+duwYQNatWqF2NhYXLlyBYBpGpBvvvnGqfRUB0WbN29GzZo18cEHH+DUqVM4efIkPvjgA9SuXRuff/45Pv74Y+zevRszZsxwKkOu2rhxI8aPH4/p06fj5MmTaNOmDbp3746rV68WS34IIYQQV7ne80z9hLJq76fp6eno0aMH2rRpg5MnT+K1117D2LFjsWnTJi1OgZV3330XEydORI8ePXDnzh2hDVHp0qWxYsUKp9LkmOUwkA489thjeOONN9C1a1fJ8h07duD111/HTz/9hC1btmDSpEm4ePGiU5lyRfPmzdGkSRO8++67wrJHHnkE/fr1w4IFCxxun52djYiICPjVHwROH+DOrBJCCPFxzJCPwjOfISsrC+Hh4Zqnz9+T/srMdDn97OxsREVHK86r2vvpq6++im+//Rbnzp0Tlo0YMQI///wzDh065FLe5SQkJGD+/Pno168fwsLC8PPPP6NatWr45Zdf0K5dO9y8eVN1mqpLis6cOSNbjxcXF4czZ84AMFWxXb9+XXVmXJWfn4/jx4+jS5cukuVdunTBwYMHZbfJy8ujsZYIIYQ8NCzveXl5eVbrOHM/PXTokNX6Xbt2xbFjx1BQUKDdAZilp6ejcePGVssDAwNx9+5dp9JUHRTVqVMHCxcuRH5+vrCsoKAACxcuRJ06dQAA165dQ1RUlFMZcsXNmzdhMBis9h0VFYXMzEzZbRYsWICIiAjhUblyZU9klRBCCFHMNHij6w8AqFy5suS+J1fq48z9NDMzU3b9wsJCp0ptHImPj8epU6eslm/fvh0JCQlOpam699nq1avRp08fVKpUCQ0aNADHcTh9+jQMBgO+//57AMClS5cwcuRIpzKkBcv5T/gxC+RMmzYNEydOFJ5nZ2dTYEQIIcSrMGZ6uJoGAGRkZEiqz+z1GFdzP7W1vtxyLbzyyisYNWoUHjx4AMYYfvrpJ/znP//BggUL8NFHHzmVpuqgqGXLlrh8+TI+/fRT/P7772CM4YknnsDAgQMRFhYGAHj++eedyoyrIiMjodfrraLYGzdu2Cy5CgwMpCEECCGEPDTCw8Mdtily5n4aHR0tu76fnx/KlSvnWqZlvPDCCygsLMSUKVNw7949DBw4EBUrVsTKlSvxzDPPOJWm6qAIAEJDQzFixAinduhOAQEBaNq0KXbu3In+/fsLy3fu3Im+ffsWY84IIYQQ5xkZg9HFoiI12ztzP01MTMR3330nWZaSkoJmzZpZTcGhleHDh2P48OG4efMmjEYjKlSo4FJ6To3ktGHDBrRu3VoyLsDy5cudHhdASxMnTsRHH32ETz75BOfOncOECRNw9epVrwziCCGEECWYRg81HN1Pp02bhsGDBwvrjxgxAleuXMHEiRNx7tw5fPLJJ/j4448xefJk5w/cjvT0dJw/fx6AqWSLD4jOnz+Py5cvO5Wm6qCIHxege/fuuH37tjAuQJkyZZweF0BLTz/9NFasWIE5c+agUaNG+PHHH7Ft2za3jHxJCCGElFSO7qfXr1+XjFkUHx+Pbdu2Ye/evWjUqBHeeOMNvPXWW8IcZVobOnSobE+4I0eOYOjQoU6lqXqcIneMC+BNaJwiQgghSnlqnKKrf2ozTlGVWOXjFHm78PBwnDhxAjVq1JAsv3DhApo1a4Y7d+6oTlN1myJ3jAtACCGEENsYY1BZhiGbRknCcRxycnKslmdlZQm1WGqprj5zx7gAhBBCCLHNyLR5lCRt2rTBggULJAGQwWDAggUL0Lp1a6fSVF1S5I5xAQghhBBC1Fi0aBHatm2L2rVro02bNgCAffv2ITs7G7t373YqTdVBkTvGBSCEEEKIfSWsoMdlCQkJOH36NN5++238/PPPCA4OxuDBgzF69GiULVvWqTRVN7QW02pcAG9CDa0JIYQo5amG1hczriPMxfRzsrNRvXJMiWlo7Q5ODd7Ii4yM1CofhBBCCCGq3LlzBz/99BNu3LgBo9EoeU08hpJSioKixo0bK5635MSJE6ozQQghhBDbqPeZte+++w6DBg3C3bt3ERYWJolTOI5zX1DUr18/4f8HDx7gnXfeQUJCAhITEwEAhw8fxtmzZ4t1ElhCCCGkpDKaH66mUZJMmjQJw4YNw/z581GqVClN0lQUFM2aNUv4/1//+hfGjh2LN954w2qdjIwMTTJFCCGEEGLPtWvXMHbsWM0CIsCJcYr++9//yhZJPffcc9i0aZMmmSKEEEJIEca0eZQkXbt2xbFjxzRNU3VD6+DgYOzfvx81a9aULN+/fz+CgoI0yxghhBBCTLQYfLGkDd7Ys2dPvPLKK/j1119Rv359+Pv7S17v06eP6jRVB0Xjx4/Hv//9bxw/fhwtWrQAYGpT9Mknn2DmzJmqM0AIIYQQotbw4cMBAHPmzLF6jeM4p6b6UB0UTZ06FdWqVcPKlSvx+eefAwAeeeQRrF27Fk899ZTqDBBCCCHEPup9Zs2yC74WnBqn6KmnnqIAiBBCCPEQ6n3mGaobWhNCCCHEsxg0aGhd3AfhBqmpqejduzdq1KiBmjVrok+fPti3b5/T6SkKisqWLYubN28qTrRKlSq4cuWK05kihBBCCLHn008/RadOnVCqVCmMHTsWo0ePRnBwMDp27Cg071FLUfXZnTt3sH37dkRERChK9NatW041cCKEEEKINSNjMLrYJsjV7b3NvHnzsGjRIkyYMEFYNm7cOCxbtgxvvPEGBg4cqDpNxW2KhgwZojpxQgghhLiOwfXqr5IVEgGXLl1C7969rZb36dMHr732mlNpKgqK3NHCmxBCCCHEWZUrV8auXbtQo0YNyfJdu3ahcuXKTqXpVO8zQgghhHgODd5obdKkSRg7dixOnTqFli1bguM47N+/H2vXrsXKlSudSpOCIkIIIcTbaTFNRwkLiv79738jOjoaS5cuxZdffgnANG7ixo0b0bdvX6fSpKCIEEIIIT6pf//+6N+/v2bpUVBECCGEeDkjGIwuFvW4ur23OXr0KIxGI5o3by5ZfuTIEej1ejRr1kx1mjR4IyGEEOLlXB64UYvqNy8zatQoZGRkWC2/du0aRo0a5VSaTgVFFy9exIwZM/Dss8/ixo0bAID//e9/OHv2rFOZIIQQQghR49dff0WTJk2sljdu3Bi//vqrU2mqDopSU1NRv359HDlyBF9//TVyc3MBAKdPn8asWbOcygQhhBBCbON7n7n6KEkCAwPx119/WS2/fv06/Pycax2kOiiaOnUq5s6di507dyIgIEBY3r59exw6dMipTBBCCCHENqo+s9a5c2dMmzYNWVlZwrI7d+7gtddeQ+fOnZ1KU3UodebMGdk5RcqXL49bt245lQlCCCGE2EYNra0tXboUbdu2RVxcHBo3bgwAOHXqFKKiorBhwwan0lQdFJUuXRrXr19HfHy8ZPnJkydRsWJFpzJBCCGEEKJGxYoVcfr0aXz22Wf4+eefERwcjBdeeAHPPvss/P39nUpTdVA0cOBAvPrqq/jvf/8LjuNgNBpx4MABTJ48GYMHD3YqE4QQQgixTYvqr5JWfQYAISEheOmllzRLT3Wbonnz5qFKlSqoWLEicnNzkZCQgLZt26Jly5aYMWOGZhkTu3z5Ml588UXEx8cjODgY1atXx6xZs5Cfny9Z7+rVq+jduzdCQkIQGRmJsWPHWq1DCCGE+BojY5o8iH2qS4r8/f3x2WefYc6cOTh58iSMRiMaN26MmjVruiN/AIDffvsNRqMR77//PmrUqIFffvkFw4cPx927d7FkyRIAgMFgQM+ePVG+fHns378ft27dwpAhQ8AYw6pVq9yWN0IIIYSUDBxjvhk6Ll68GO+++y4uXboEANi+fTt69eqFjIwMxMbGAgC++OILDB06FDdu3EB4eLiidLOzsxEREQG/+oPA6QMcb0AIIeShxQz5KDzzGbKyshTfZ9Tg70l7z15BaJhr6efmZKNd3Ti35bUkUFRSNHHiRMUJLlu2zOnMqJGVlYWyZcsKzw8dOoR69eoJAREAdO3aFXl5eTh+/Djat28vm05eXh7y8vKE59nZ2e7LNCGEEOIELaq/qPrMMUVB0cmTJyXPjx8/DoPBgNq1awMAfv/9d+j1ejRt2lT7HMq4ePEiVq1ahaVLlwrLMjMzERUVJVmvTJkyCAgIQGZmps20FixYgNmzZ7str4QQQghxjzt37uCrr77CxYsX8corr6Bs2bI4ceIEoqKinOoRr6ih9Z49e4RH79690a5dO/zxxx84ceIETpw4gYyMDLRv3x49e/ZUtfPk5GRwHGf3cezYMck2f/75J7p164Ynn3wS//rXvySvcRxntQ/GmOxyHj/wE/+Qm0eFEEIIKU5GxmBw8eGukiKlnaEsDR061Oqe36JFC8X7PX36NGrVqoU333wTS5YswZ07dwAAmzdvxrRp05w6FtUNrZcuXYqUlBSUKVNGWFamTBnMnTsXXbp0waRJkxSnNXr0aDzzzDN216latarw/59//on27dsjMTERH3zwgWS96OhoHDlyRLLs9u3bKCgosCpBEgsMDERgYKDiPBNCCCGeZpqmw9XqM40yY0FJZyhbunXrhjVr1gjPxTNlODJx4kQMHToUixYtQlhYmLC8e/fuGDhwoPoDgRNBUXZ2Nv766y/UrVtXsvzGjRvIyclRlVZkZCQiIyMVrXvt2jW0b98eTZs2xZo1a6DTSQu5EhMTMW/ePFy/fh0xMTEAgJSUFAQGBnqsWo8QQgh52HTr1g3dunUTnlerVg1paWl49913HQZFgYGBiI6Odmq/R48exfvvv2+1vGLFinabzdijepyi/v3744UXXsBXX32FP/74A3/88Qe++uorvPjiixgwYIBTmXDkzz//RLt27VC5cmUsWbIEf//9NzIzMyUH3aVLFyQkJOD555/HyZMnsWvXLkyePBnDhw+nVvaEEEJ8msGozQMwFW6IH+LORlqx7Axly969e1GhQgXUqlULw4cPx40bNxTvIygoSLZzVFpaGsqXL68qvzzVQdF7772Hnj174rnnnkNcXBzi4uIwaNAgdO/eHe+8845TmXAkJSUFFy5cwO7du1GpUiXExMQID55er8fWrVsRFBSEVq1a4amnnkK/fv0cRqmEEEKIt9Ny8MbKlSsjIiJCeCxYsEDTvPKdoUaMGGF3ve7du+Ozzz7D7t27sXTpUhw9ehQdOnRQHKT17dsXc+bMQUFBAQBTu+KrV69i6tSpePzxx53Ku9PjFN29excXL14EYww1atRASEiIUxnwNjROESGEEKU8NU7RtycuIkTUbsYZd3Ny0KdJdWRkZEjyaqttbXJyssPe2UePHkWzZs2E53/++SeSkpKQlJSEjz76SFX+rl+/jri4OHzxxReKap6ys7PRo0cPnD17Fjk5OYiNjUVmZiYSExOxbds2p+IS1W2KeCEhIWjQoIGzmxNCCCGkGISHhysK4LTsDKVETEwM4uLicP78eUXrh4eHY//+/di9ezdOnDgBo9GIJk2aoFOnTqr3zVMdFLVv395uF/fdu3c7nRlCCCGEWDPC9d5jRpXra9kZSolbt24hIyND0jRGiQ4dOqBDhw6q9ydHda4bNWqEhg0bCo+EhATk5+fjxIkTqF+/viaZIoQQQkgRg5Fp8nAHJZ2hAKBOnTrYvHkzACA3NxeTJ0/GoUOHcPnyZezduxe9e/dGZGQk+vfvr2i/Y8eOxVtvvWW1/O2338b48eOdOhbVJUXLly+XXZ6cnIzc3FynMkEIIYQQ38R3hrpw4QIqVaokeU3cbDktLQ1ZWVkATJ2jzpw5g/Xr1+POnTuIiYlB+/btsXHjRsmYQ/Zs2rQJ3377rdXyli1bYuHChVixYoXqY3G6TZGl5557Do899hj19iKEEEI0xjQYkdpd878PHToUQ4cOVbX/4OBg7Nixw6X93rp1CxEREVbLw8PDcfPmTafSVF/pZ8OhQ4cQFBSkVXKEEEIIMTMwbR4lSY0aNfC///3Pavn27dtRrVo1p9JUXVJk2U2OMYbr16/j2LFjeP31153KBCGEEEKIGhMnTsTo0aPx999/Cw2td+3ahaVLlzpVdQY4ERSFh4dLep/pdDrUrl0bc+bMQZcuXZzKBCGEEEJsM2pQfeauCWGLy7Bhw5CXl4d58+bhjTfeAGAaIuDdd9/F4MGDnUpTdVC0du1ap3ZECCGEEOdo0XvMXb3PitO///1v/Pvf/8bff/+N4OBghIaGupSe6jZF1apVw61bt6yW37lzx+k6PEIIIYQQZ5UvX97lgAhwoqTo8uXLMBgMVsvz8vJw7do1lzNECCGEECmqPjNp0qQJdu3ahTJlyqBx48Z2B5M+ceKE6vQVB0XisQB27Ngh6QZnMBiwa9cuyXDfhBBCCNGGFr3HSkLvs759+wrztPXr10/z9BUHRfzOOY7DkCFDJK/5+/ujatWqWLp0qaaZI4QQQgiVFPFmzZol+79WFAdFRqNp1pT4+HgcPXpU8XwohBBCCCG+QHWbovT0dHfkgxBCCCE2GI0MRhd7j7m6/cNAUVD01ltv4aWXXkJQUJDs5GtiY8eO1SRjhBBCCDExatCmiGIixxQFRcuXL8egQYMQFBRkc0JYwNTeiIIiQgghhPgiRUGRuMqMqs8IIYQQz6KG1p6huk3RnDlzMHnyZJQqVUqy/P79+1i8eDFmzpypWeYIIYQQAhgYg8HFoMbV7b3RH3/8gW+//RZXr15Ffn6+5LVly5apTk91UDR79myMGDHCKii6d+8eZs+eTUERIYQQQtxu165d6NOnD+Lj45GWloZ69erh8uXLYIyhSZMmTqWpepoPxpjsCJI///wzypYt61QmCCGEEGIb3/vM1UdJMm3aNEyaNAm//PILgoKCsGnTJmRkZCApKQlPPvmkU2kqLikqU6YMOI4Dx3GoVauWJDAyGAzIzc3FiBEjnMoEIYQQQmwzQIMRrTXJifc4d+4c/vOf/wAA/Pz8cP/+fYSGhmLOnDno27cv/v3vf6tOU3FQtGLFCjDGMGzYMMyePVsyzUdAQACqVq2KxMRE1RkghBBCCFErJCQEeXl5AIDY2FhcvHgRdevWBQDcvHnTqTQVB0X81B7x8fFo2bIl/P39ndohIYQQQtSh3mfWWrRogQMHDiAhIQE9e/bEpEmTcObMGXz99ddo0aKFU2mqbmidlJQk/H///n0UFBRIXg8PD3cqI4QQQgiRR73PrC1btgy5ubkAgOTkZOTm5mLjxo2oUaOG3TEV7VEdFN27dw9TpkzBl19+iVu3blm9bjCUtFpLQgghpHgZjQwGmuZDolq1asL/pUqVwjvvvONymqp7n73yyivYvXs33nnnHQQGBuKjjz7C7NmzERsbi/Xr17ucIUIIIYQQJe7cuYOPPvoI06ZNwz///AMAOHHiBK5du+ZUeqpLir777jusX78e7dq1w7Bhw9CmTRvUqFEDcXFx+OyzzzBo0CCnMkIIIYQQeQYNSopc3d7bnD59Gp06dUJERAQuX76M4cOHo2zZsti8eTOuXLniVEGN6pKif/75B/Hx8QBM7Yf4yKx169b48ccfVWeAEEIIIfbxQZGrj5Jk4sSJGDp0KM6fP4+goCBheffu3Z2OR1QHRdWqVcPly5cBAAkJCfjyyy8BmEqQSpcu7VQmCCGEEELUOHr0KF5++WWr5RUrVkRmZqZTaaoOil544QX8/PPPAEyjSfJtiyZMmIBXXnnFqUyokZeXh0aNGoHjOJw6dUry2tWrV9G7d2+EhIQgMjISY8eOtZoLhRBCCPE1BqMWpUXFfRTaCgoKQnZ2ttXytLQ0lC9f3qk0VbcpmjBhgvB/+/bt8dtvv+HYsWOoXr06GjZs6FQm1JgyZQpiY2OFwIxnMBjQs2dPlC9fHvv378etW7cwZMgQMMawatUqt+eLEEIIcRdqU2Stb9++mDNnjlBjxXEcrl69iqlTp+Lxxx93Kk3VJUWWqlSpggEDBqBs2bIYNmyYq8nZtX37dqSkpGDJkiVWr6WkpODXX3/Fp59+isaNG6NTp05YunQpPvzwQ9lIkhBCCCG+a8mSJfj7779RoUIF3L9/H0lJSahRowbCwsIwb948p9JUXVJkyz///IN169bhk08+0SpJib/++gvDhw/Hli1bUKpUKavXDx06hHr16iE2NlZY1rVrV+Tl5eH48eNo3769bLp5eXnCMOEAKIAihBDidaikyFp4eDj279+P3bt348SJEzAajWjSpAk6derkdJqaBUXuxBjD0KFDMWLECDRr1kxo6C2WmZmJqKgoybIyZcogICDAboOrBQsWYPbs2VpnmRBCCNEMDd5oW4cOHdChQwdN0nK5+swVycnJ4DjO7uPYsWNYtWoVsrOzMW3aNLvpcRxntYwxJrucN23aNGRlZQmPjIwMl4+LEEIIIe5x5MgRbN++XbJs/fr1iI+PR4UKFfDSSy9JaoDUKNaSotGjR+OZZ56xu07VqlUxd+5cHD58GIGBgZLXmjVrhkGDBmHdunWIjo7GkSNHJK/fvn0bBQUFViVIYoGBgVbpEkIIId7EwDSoPishc58lJyejXbt26N69OwDgzJkzePHFFzF06FA88sgjWLx4MWJjY5GcnKw6bcVB0YABA+y+fufOHdU7j4yMRGRkpMP13nrrLcydO1d4/ueff6Jr167YuHEjmjdvDgBITEzEvHnzcP36dcTExAAwNb4ODAxE06ZNVeeNEEII8RbUpqjIqVOn8MYbbwjPv/jiCzRv3hwffvghAKBy5cqYNWuWe4OiiIgIh68PHjxYdQaUqFKliuR5aGgoAKB69eqoVKkSAKBLly5ISEjA888/j8WLF+Off/7B5MmTMXz4cISHh7slX4QQQognUFBU5Pbt25IaoNTUVHTr1k14/uijjzrdFEZxULRmzRqnduAper0eW7duxciRI9GqVSsEBwdj4MCBst33CSGEEOKboqKikJ6ejsqVKyM/Px8nTpyQdJjKycmBv7+/U2kXa0NrZ1WtWhWMMTRq1EiyvEqVKvj+++9x79493Lp1C6tWraL2QoQQQnxeoZFp8nCXqlWrWnWUmjp1qt1tGGNITk5GbGwsgoOD0a5dO5w9e9bhvrp164apU6di3759mDZtGkqVKoU2bdoIr58+fRrVq1d36jh8oks+IYQQ8jDzheqzOXPmYPjw4cJzvqmLLYsWLcKyZcuwdu1a1KpVC3PnzkXnzp2RlpaGsLAwm9vNnTsXAwYMQFJSEkJDQ7Fu3ToEBAQIr3/yySfo0qWLU8dAQREhhBBCXBYWFobo6GhF6zLGsGLFCkyfPl3oyLVu3TpERUXh888/l53olVe+fHns27cPWVlZCA0NhV6vl7z+3//+12FAZotPVp8RQgghDxN+8EZXHvzgjdnZ2ZKHs2P6WHrzzTdRrlw5NGrUCPPmzbM7IXt6ejoyMzMlJTqBgYFISkrCwYMHFe0vIiLCKiACgLJly0pKjtSgkiJCCCHEyxkYc3mcIX77ypUrS5Y7231dbNy4cWjSpAnKlCmDn376CdOmTUN6ejo++ugj2fX5mSYsxxGMiorClStXXMqLKygoIoQQQh4iGRkZkqFqbHVISk5OdjgN1tGjR9GsWTNMmDBBWNagQQOUKVMGTzzxhFB6ZIvljBOOZqFwNwqKCCGEEC+nZUPr8PBwReP3KZ11Qk6LFi0AABcuXJANivi2R5mZmcKAywBw48YNu7NQuBsFRYQQQoiXK47eZ0pnnZBz8uRJAJAEPGLx8fGIjo7Gzp070bhxYwBAfn4+UlNT8eabbzq1Ty1QQ2tCCCGEOO3QoUNYvnw5Tp06hfT0dHz55Zd4+eWX0adPH8mMFHXq1MHmzZsBmKrNxo8fj/nz52Pz5s345ZdfMHToUJQqVQoDBw4srkOhkiJCCCHE23nzOEWBgYHYuHEjZs+ejby8PMTFxWH48OGYMmWKZL20tDRkZWUJz6dMmYL79+9j5MiRuH37Npo3b46UlBS7YxS5GwVFhBBCiJczMCMMRqPLabhDkyZNcPjwYYfrMYvecxzHITk52eWeb1qioIgQQgjxckYNSoqMbh7RuiSgNkXESvbB1cWdBUIIIcTjqKSIWAlvOaq4s0AIIUTEYGTQeWmbopKEgiJCCCHEyxUaAc7FoKbQPU2KShSqPiOEEEIIAZUUEUIIIV6Pqs88g4IiQgghxMtRUOQZVH1GCCGEEAIqKSKEEEK8HpUUeQaVFD3EaDwiQgjxDfzgja48aPBGxygoeojReESEEEJIEao+cxJfykKBBSGEEHczGJnL4xRR9ZljFBQplH1wtRAAZR9cDbhpYr2SLPvAKnCFeWB+gQCno4CSEEIUYoyBuRjUWE7ISqxRUGTDtZTFCA8PBzhzDSMzIvvAKuF/AOAMBaYbPTOCmdcLbzVGWC+81RghvewDqyTPH0YcM5oe+XfB/IOLOzuEEOJQzv6Vput7Mf+QM2rQJojaFDlGQZEjMiVCnLGw6K/5Rg+dHzhjIXJ+XAYYCgDA9D/HAUYDYCgo+nIBD12AlH1glem8GAsBHX3sCCHeQVwLYCln/0rTNR4AmFFyDRe2z85GVMxn7s8o8Qi6O9nAFeaBMxQUBTWiEiPOWAim8wOMhaaACABnyDcFRoUPTIGUzq8ooDJvyxAADgZTmg8JviQNhXmmvwZTQAmjn92LESGE2GPVpMFMfE0RSvf5H6Pi1/htzLUAlj9Uc/avNF37mRHgzCUsHGe6jomqoTgPNaVgjLlc/UXVZ45RUGQDV5hnCnAASUAkVJ0V5gM683Ij/6UoLErAWGhartOZv1Q6oYSJcTrhF0dJLjHK2b8SMBSYAkbzsfPnjDMWAgbO6mJkL1CSraqkwIqQh4a4gwtnLDRdE4yFpuuLoQAwX1vDWo8zrWduzsAZ8k3bH1hlup6Lr+XmaxNfKgROZwqGzAERZ16XcTpw/LWe357TgSt44JFjZ0YN2hRR9ZlD1CXfHv6Dz3/pLH8R8F8QnU4aIPEP8XNDIWAODsTVbiVtrKDsg6uRfXA1cvavNJe25RcFiPxDOK8GU7ssi3Mg/LqzWGa6+BnAmc9hTuoScIV5yNm33FOHRwjxAP4awv/P/+UM+UIwZPrBVWC6JhTmma4LhnxTUwXRNYErzBOuNZyhQCjt558Lj4L7pr98Wvy12mi6dgvXMv6v+P5ASgwqKbKFGYtKesSMosBIp5M+t2T5utFYFIYaDWB+ftaBlq8TXXCEC4fcOTIHhQwQfsWJl4tLkCQBEf+LTfRLDShqv8V0fuCYUfilSAjxHULJr/lHU86+5YAh31zqnG+6rgBCGx/ZNp+GfID5CUEVV3Df9ALfNoj/n7/uiEuO+P/Fy0XbAJD+GLaRB3eghtaeQUGRI+IvgPl/oQrHXkAk3pYnCrBM1Uc6hLWdqGVuPY6/iGUfXG36hcVfgOwFRIDwC4szX3iERumGAlNQBRT92uOr4PjibvHFSlwEzukAnan9F1WrEXeiz5dyttr78PjgJaz1ONO1hP8RxIwAK/pum6655lIZ8f+yP14LAaOf6ZoiDlzMJU0ApNcnfntDofR/exxd/zWmRfxV0n6Du4NPVZ9t3boVzZs3R3BwMCIjIzFgwADJ61evXkXv3r0REhKCyMhIjB07Fvn5+TZSU0nhF8BhoztxzwUf+oTy1WLZB1YJF7mc/StN1VjmvwAkVY2coVD+fIjr5SVF0wZJsCMUa4uLqvmHQWYZX0rFF3sT4iYUEDmWfWBVUTW6ve+j+Xufs3+lqNq9oKg6THyNsKyysmymwP/PXwsK84qCH0lThkLrUny5tMz44UQsl5n+8anbKHHAZ0qKNm3ahOHDh2P+/Pno0KEDGGM4c+aM8LrBYEDPnj1Rvnx57N+/H7du3cKQIUPAGMOqVdZtVJwlbugrh39NvJ5kG50fmM4PTO+vWZ60JDQ2ZAxM71/UUJEPTDgdwLfj4dsFiUtthN54Ni6Clo3T+ed8cTbfa8/yZ5G9YmwhbdH/RoP6gyeEOE08qC3HN3wGzD9iTEGFuBE0IOqMYZT5fstdA8SlQkZpoMKX3puq5c0lSXZK9CVV8YDsdd0yfav9eRD1PvMMnwiKCgsLMW7cOCxevBgvvviisLx27drC/ykpKfj111+RkZGB2NhYAMDSpUsxdOhQzJs3zzQQowaUfBGEbvrmL514G9MgYKaabXu9p7IPrpb0VnNHLzWhyynHgekDTI0Y+V9WorY6XP5dUz50fgAM5l9vFj3yZC48skGhCMeMpmueqIcexEXbPMsASo7la+Z2SXy7ALl2RjRVCyHaELf7sywBF4IOIwCduVrcYogTYQVbP3jERM0Y5PYjrKNDUZBmo1RevNwySLK3ruQ5tSkqUXwiKDpx4gSuXbsGnU6Hxo0bIzMzE40aNcKSJUtQt25dAMChQ4dQr149ISACgK5duyIvLw/Hjx9H+/btZdPOy8tDXl6e8Dw7O1tRnpSOTSH5ZWEsGvARRgNyUpcABfeRs285wtpMEOrWAZh7OJhLYfT+RTd4aHMTF36h8W17CvOkvSjEjZktLyx2Ll4Oz4vM+sImljGP5YVR7kJpJ1Dix5PizG2SxCPT8sdRkodEIMQThN6ifFU3UNQGiMeKurZLiKvCALvBkN1ri+iHnGVaasYRcmbMIU+NU0Q8wyeCokuXLgEAkpOTsWzZMlStWhVLly5FUlISfv/9d5QtWxaZmZmIioqSbFemTBkEBAQgMzPTZtoLFizA7Nmz3Zp/CX40bKDoS2zUCSNhCwNDwnLEbAOg0yOszQTZ0iU+aLIXMPHF23y3U1Ndva1qLsiUAElLwHhyFwXLX1z2iqGLknfi4iJTDQeYAyIAOnMXXACm86vTm7cznc+cfcvB9AFUWkSIszidqR2QRVUXJw5UhB9R/HhlfhbLrb/7qoMNmcCoJAUsNE6RZxRrC7Hk5GRwHGf3cezYMRjNX5jp06fj8ccfR9OmTbFmzRpwHIf//ve/QnqczEjRjDHZ5bxp06YhKytLeGRkZDjMt+UXTVXdsmXdOd9AuPCBMBq20KjPMqhgzBQ8iZZnH1hlquIS/0oTyT6wSjLuj9B4Ue5Xm3hf5saGdouo+cNwUBevlN3GjGpZtkXgi+n5Qdk4HcAYNZL0UULD/xI2zpdPkvuOiq8vctVMdq4/gBPf+2L8HnusbZE5KHLlAQqKHCrWkqLRo0fjmWeesbtO1apVkZOTAwBISEgQlgcGBqJatWq4evUqACA6OhpHjhyRbHv79m0UFBRYlSCJBQYGIjAwUHGexY3yxG2HHJGUjhgs29gYpdVA4uCGv3iItzf/zdm33NQF3vw6g3m8Hp2+aH/GQlMwtW85UHC/KCDiGyTaKLWxVcojXmav/t0eR6VG4nNsecGxtb+iKjjRCOL8OCTiYyl8IDR2588TlRL5DqGtnWiMGZps2bOE94D/XvG9y8TXJ75BNN/Y2bJESAfJD0RXridFidgvvdaERWmUJxtbGxkD52JDaSM1tHaoWIOiyMhIREZGOlyvadOmCAwMRFpaGlq3bg0AKCgowOXLlxEXFwcASExMxLx583D9+nXExMQAMDW+DgwMRNOmTTXJr6NAQem2ls+FMY90oosHpyuq2rIYJIwDkLt3EZjRIOqaWljUe8uoK5pWxPIXmUU9uysXD7Xb2guAXN2HVWNu8Xm0XGYuNWKiqVfoxur9JDdjxoreQxQ13mU6Pwpy3Shn/0rTjyvR900Y9Zkn7touUw1vmgPRheoy8XpqghK5awIhFnyiTVF4eDhGjBiBWbNmoXLlyoiLi8PixYsBAE8++SQAoEuXLkhISMDzzz+PxYsX459//sHkyZMxfPhwp3ueeao+WtI7Q2AdyBQpLCo5suiiCqNpTjbOYjtVxyLXaFHN63KbOBjGwFFplWTfwgoK82A5Mq0kLXN7Lj448oFB+Wz2WDTPDRfWepxPHIfT+A4IonYr5rdSOjo60QRfRSn0TjWX/ohHhwbfgcFYKB3J33LAWyXUXF+UBjpqAy5b48nJlFx7dEJYV9sUUUmRQz4RFAHA4sWL4efnh+effx73799H8+bNsXv3bpQpUwYAoNfrsXXrVowcORKtWrVCcHAwBg4ciCVLlji1P9U9HTTg6MIhDZ5sl/7I/QqzSe4i4OjYLBtPOlhf3DXf1mt282bvdYsic9PNUSZNfj3L/QnHoDf1TvPQBc4ZtgIdoddiYR7A6Uy9Gg35pkbkOj+rEjBhFHJz6Rg/NhXT+TlsrF+smBH83HdW3b7NLwvHr/enUiMNSKbY4avebZTImqqk/cwl1qJEjCoDIldeV7oPW/mxdX3QOg9OoIbWnsExCh0lsrOzERERgZsXTiM8LMx6BU8P2GWjntzl+ndXqAgK5fKpuGG2kuPjS4HMaUrS1okCIZmgr2hATb3kdW+eN42fFNPyxsTPCSXBl6JwOtMxAuZq2QLTc/FccqJej2FJk92Sb1cCFKHqzGgwtQsTT8cAFL3H4vdWp5cNCol9QuN1JprH0KK0xHJoC44ZEdpuCnL3LpL2apWZH9Kylxqfpuxzy/XsUVNa5Ey1mw3ZOTmIrNEAWVlZmo2HJ0nffE9q+MpX0AeGuJSWIe8ufl78hNvyWhL4TEmRV3AlILJXqmLnNaUDibmVZf6cqDqTa49lrwTJ5oVIbt+2Ake+1IgPmiz+8lUwjNMBrGjQuZwfl5lGHOeKxoWynL8pZ/9KoSSCr7bij0eLm7D4xiSMKs6MpgbGjJnya35d9ibDtyXjqzmM0iCKb3cGQCgB4KuicvcuKmqIbg6U1AY0Vo1xzTObqz03kglCxQ9AerPl266Yb9ZC9ZqhQOh8wG8X1maCqjw8LIRequZgyPQ5M0q60fOfBx4/d2PurrnI3TUXKHgAAEVzERpsfNfFP6zEARH//VR7fVNzTZILuGxt70Ulx0YjwLk8eKNGmSnBqKTIgt2SImfrxC2/WHIXAYsSD6e4qVrPbtru2qflrzqL/TC9+eIsM2yAJBlOZ12dZplfvi2E+LlQHaA33RyAooa9ooBDsh+Yq/Asx2CRpGtqiRHWZoJVkGA5TQJnKDANPmk5yre9z5Z4ub3PneVzuXPCl7rozBNrip7zwSAAIWgTNhWCFnPgxnHCOQRgGm/LXBrHH7M4DX6kd3FeTQGheWJgR1PIWJYKio6TryIUSs6Akt8Gyw7xcQsTMPNVlIB19Zj5uyhXmng3JVn+86ikfaJWwYfltcLyf8s82bvOKMyTp0qK6k38L/SBpVxKy5B3D78se5JKiuygoMiCw6BI68BF7UXE2d0qaKtke2MHxyz3ur2SMbl17OXBMvjQSW90oR1nmC7I4qTt7ddy/jVYl14BAPQyA8zpdOAMhbJDBQh5k5Rg6Ioaw1vcrJk+QJThonMh22tQXB1hq7RMrsRICblZxsXpiv7yAR/zCywqTZA5Brn/hXOk9xemrpGM4m5OQxi8VPSemAYcfWAuuXBwbEqCYItlkiEaHrLqNqHdEFDUiJ1vsM5/NnR+CG0/Fbl7FyG03RTJ9rk758iPVi2mpmpLa5bXW6XXGwqKHkpUfWaLzIVTWO5qupbPLb987izxAaxuGszoIDByFAzau0krqQZzsG+rQEXnJ1yYc3fPR+7OOUXVYIDV8YknpxWGPxDT6YqyIApquELrnkzMaB1wSbonG4rmq4PeNLltaOeZkqCNmZdzlqVT4p3InQrGT4lilB6nrXPtaFoUy1nCLY9HZ/3ZFNozFRatKyEuWRAHeOY8mhpEG8BxxqJJhfnASgieWFHpknkb4XUl5f+WQam90jRzXoX5/HR+khIrLVhWvRYnyxIxoVoWAD/Mgex5Nn9WLQMiALKDxlrx0I8/2X3Y+oza4kVVZmLO1CrKpUHso6DIG6j8ZWKTndIZyY3O8nXxD3t7edAqWLMTbNqqnjLl0zrvoR1eQ+7u+WDmEiOx3F1z5eda0/tZl45YBlLikiNx6Y9MiQozQgiAhNOn95OUBkkG+7So/jEFVEbbAYstlmNbKaGwUYFVTz6LagWrG6FMVbDkfeTbmKCoGlLYlzhwAuRLvcw3alVdu/njlZks2FbexXmRTFzKr6qwJEncjR2F5rkVOU6YJV5N+yrLoMreJNJyr0sCH9HQE5L3kQ+IjIWynxHL7xYvd+ccadWzGp64Q5egKMBoZBq0KXJPxdDevXttzi/6008/4dFHH5V9bejQoVi3bp1kWfPmzXH48GHN86gUVZ9ZEKrPLv4i3/vMFlv12PxzMS2r39RsKgqKQju8ZvW6UAwO6U3cqX3b+WXIpx3SJRl3d8w0LdP5AXo/Sb740hVJCZC5XYPcL1Z77qYkW5UkyQZRgKSdEl/iw+crd9dchHacgdzd82XfV2G93fNNAduehaZqh51zTKuItrFq7yT3q5ZfZtF2ylapmNW2ogDM0Zx1lq/J9uSzTF8p/rOj5AeAOF2hWsfiPVHK3vmR259cSS6KPrOW7auK8mluqK/3lxwbxwdEzGhqqMzpJO3UwHGStjqy2RMXEXC6orZaoobwQhBqJvQOEwen4hI5vb/QdkhSoieupjWzFxApKiUq4TxVfVZn9EZNqs9+e/tpzfOan5+Pf/75R7Ls9ddfxw8//IBLly7ZnGpr6NCh+Ouvv7BmzRphWUBAAMqWLatZ3tSikiI1xBctpdVgjtKRS8vR+nIlQvbyJmLrAgfAupqH/2Uvsz/hxmQuIbHZ4NnypmKRt5Cuc2zmh183tPNMm+soFdIlGUBRUCOHX567a25RlaKNm6o4eBOCKZnXQ9tPNf2VOYbcXXOtgwS5G7TMeZWMWSVuIyVuwwSY3h+LwMgR8WjnwvslWxUnyiefrs7BJcXRTVTue2S0EQxZvjeWA5nazINFqZ8k4Cia5V1SvSYOMOS+X0IVlLhK0qKxsrFQSEfYjNOBExqk84Gu3jRsgkU+LH+wMHF+mLEoWAJM+xFNfiwuneOY0VR6xU9OLeRPdP74757Mj6cSzU5wanebh1xAQACio6OF5wUFBfj2228xevRou3OPAqaptsTbFjcqKbKgqKTIUUmQWva+VOKLnpLtRRdycSCiNrAQl6zIViXxpTb8Pi0DI9E5EvcUsywZeeguugoIpVD8+2ooVD+lirn6zvTETtAq3sYyCJZ5zYpco2adn3xwIOaovZOohEzRfm1xtB9X2Pte2nqN/87Yel28XC5QtlhX8p7ZWp///ur8zKPgm98PfqwnyzZYKr6XfEnvwyw79y4iq9dze0lR7ZFfaFJSlPbOM25vaL1p0yY89dRTuHz5MipXrmxzvaFDh2LLli0ICAhA6dKlkZSUhHnz5qFChQpuy5sjVFJki/giA9gvYtdiX0p/fVqyUdwPuFbCwpesWOKrgST5clBCJFSbcNJzSgGRDfbeb0c3SjO5HnJ2x4Wys1z8mlVwZHlDBaxLSOTWlWM57pA4TSXb20tPS0K6FumLfzCIS1/41wDr74zlNUb83FFwxESN0C2WW/3PD+0g+gEjPZYiqr6XzpSslDQeOn4tJ4TNzs6WLFc7MbojH3/8Mbp27Wo3IAKA7t2748knn0RcXBzS09Px+uuvo0OHDjh+/Lim+VGDgiJH5H51Kak6U7sP8YXPXlWYnf04UyKklq30c3fNFXpxWZUsibe3U31HTMTnSFI1Z27TIplR3E6QpGQkcbVk2zXx+AlAbZGr7rJ8zV4go2QdR5wtYZIZmVlR+pZVm0oCXrm8WA5CqobRCKG7oIJj4D9zSr6rxTqyPnGaZbAya9YsJCcnW62XnJyM2bNn203r6NGjaNasmfD8jz/+wI4dO/Dll186zMfTTz8t/F+vXj00a9YMcXFx2Lp1KwYMGOBwe3egoMgRy5uOZVWVeLmzFwe5X3Yy1V93U5JlG3PbKtXxJLkLqGWpEpUMqWfvxsT3rrM7Qrjoc+LMzcutNz25AIUPPlSVKtmp2rPqWm5RcuMob5YlKvaCI3vjPdnbzl5eJDPO66TXHMvSKHsc7VvmuqJEaOeZVIXmIVrOfZaRkSGpPrNVKjN69Gg888wzdtOsWrWq5PmaNWtQrlw59OnTR3X+YmJiEBcXh/Pnz6veVisUFClhq7TIsuGxXP2+E/sS93gSNwwO6ZJcdCMU79dLhXaeacovs+4uT1wnW6Ikd/NTeaMTNrNoJK+YveBAa3L7cTZIsBekiV+3bMyuhOWkzWa2xs2SpC+3H5mAyFHJoGwJrkWD6tzd801tiswdBBx52AOikK5zwAzW45m5A2MaBEXm6rPw8HBFbYoiIyMRGRmpKv01a9Zg8ODB8Pf3V52/W7duISMjAzExMaq31QoFRbaIghyrwEP8XHRxsSwJyd05RzoYICuafFMuLb5xrDgdy2BC6CFlLoVxd3WZqygY8gzxeRZ6ENoogVTCVnskh+y0VVEcRCitJnM2IIK0Z52kJ5/cPiyrwFzctyIqAiI1bcQcDcuhpjT3YQ+IqNeZtd27dyM9PR0vvvii7Ot16tTBggUL0L9/f+Tm5iI5ORmPP/44YmJicPnyZbz22muIjIxE//79PZzzIhQU2cBEPTtsjSUj7sIte4ExByzCmDXmX/MMRdMYiPehJoDw9mCIFJ+QLsk2q1qF52Keuri7uwRJZVBiGTQ4HBhSLjhSsU9N2ng5UU1vOd4U/VBxga37ggcwI3N58EVXS5oc+fjjj9GyZUs88sgjsq+npaUhKysLAKDX63HmzBmsX78ed+7cQUxMDNq3b4+NGzciTM0YgRqjLvkW+O6PfvUHgRPPTUWIDxK365IMlyBm4+Yse9N2pTeYXBq2KE3bQX7kGoYrHZrAYT4V5FHxCNxybY4U7t/hhMji9Mwl4EwfIMxw7yybE8D6MsuSe0Ay/pfcj1FmyEfhmc/c3iU//sUN0AW41iXfmH8P6R8/T3Of2UElRYSUYLZKFC0n0JUje0O3rEJSGxipDIgUjZlkIw9yJUHiNOxVOzkMZBwct+rG6XLpKWlMbmZ5PHZHI+fMc71ppaR0y+dLgVSO1URKFgqKCHkICSN8i6Z2kaOoSklhCQ0A21VoMnPUKcqTwoBISf6strHVU03rgMje3Hpyvd8s8iA+vzbfK2F7AIZ87arQSkJAJGo76s3NErTsfUZso5ZihDzEQjvPFNrPSdrRicgGC+KHxbr2Smhkt5cJMuzlR0l1lL3tbb1ucxtxHhWUjFmeT/6cWJ0bcyPu0I4zTDdjvR9CO84A8wsS5viD3s+6itBGHhwGRKLt5aamUcube74qwlclcjqEdEn26oAIAIzmNkWuPoh9VFJECAGgbERrpWzdMFXPcg9p1ZCtOfScyYtq9rrVqyDOv7jEhq+uCUuaLCzL2b8SXP5dQG/Rdd5igEXJmGCWbLS74ufec7qayGKwVp/AlwqZA1BfwowGMNH8ds6mQeyjoIiQh5gnGss6LDkyUzIekt2AyIlG4JLRwWF7bB97+ZOtKhTlxZXAIaz1ONnlVjd0i4l/BfaGDNk936k8WbEcTJJf5kXBEtP5UVshoggFRYQ8pJQ0tnaWM0GA4l5hcmQCIlvtmhwFaeJqFMsSGKXzxzEUBSPQmZ5zoqCFY0ZNYwahBEk0fpl44Fd72zi9z44zpJ8hufHcvCEw4oqqKX0ZlRR5BgVFhDxE3BkIucTefH/8YnulRA4aaispnZKdq09hOxN+pHmrMc0greISD4sgO5mri8T5dXcQkLtzju2gx8lR1DVh2fC8BAREAMCMRg2CIi8IUr0cBUWEPGwUBCAeJy5VsHWjVVC9pnRKEqFNj0aNa23ddCVVVOI2OOb9OyrN8WZ2z7Ojz5W7SpEsBlf01XNLig8FRYQ8BIRqIP6GbPFL3l7DaMvXbd4Mi7F0QNKLTO9nVXJUXD2LLKfsyd01F8woGu1eg15gxcF0HDYGj3T0OZALiLQMkkpo2yFmMIAZXCwpcnH7hwEFRYQ8JOxVIdlqpGyrS7xsWloHROIbpaOu+Zbj+5gnVPY2tuYy9DVCleDu+WDmtlKc+L2S+58n99lxNSASjzXko+fUEcY0aFPEKChyhIIiQko4oS2LktGhAdsDCIoGDlRaTaWYrdIFmfYh4pIubwx8Hibi8y+UehnN7aVsfOY0Z/6M8AOSEuIKCooIKcHsBUSK2ZhiQsvAiOn87E/pYadrOfEO4gmyGUyjdNucb89VPjIKtZao95lnUFBEyMNAPJaM6IYCQHZuLGFdOaJpKRS1NbJDnAehG7utXlwUDPkEy+orvmee5PPhTJAk+qyFdElG7s45D01ABFBQ5CkUFBFSgvE3Db4rfkhXU4Pr3J1zJKUvAsv/bQZG5r8udPGVVIeZ9xfafqrT6RHvJA6ShJJLhdO3WDb0lww58BAFRMRzKCgi5CEQ0iVZ0tNJzQ0ld89C0z9Wc4IVCtNPgBmLSnok6xT1UGJ6i8sNp5OkSQFRySf0urOclkRnPe0JkaKSIs/wmaDo999/xyuvvIIDBw4gPz8f9evXx9y5c9G+fXthnatXr2LUqFHYvXs3goODMXDgQCxZsgQBAQHFmHNCvIOzNxy5YCV3z0JpkKTzK2r83G5KUSClgzlgQlE1GAU/Dz0q5VGPBm/0DJ8Jinr27IlatWoJAc+KFSvQq1cvXLx4EdHR0TAYDOjZsyfKly+P/fv349atWxgyZAgYY1i1alVxZ5+QEsVRYEOBDyHaMhoNgItBkZFKihzykuFs7bt58yYuXLiAqVOnokGDBqhZsyYWLlyIe/fu4ezZswCAlJQU/Prrr/j000/RuHFjdOrUCUuXLsWHH36I7OzsYj4CQgghhHg7nwiKypUrh0ceeQTr16/H3bt3UVhYiPfffx9RUVFo2rQpAODQoUOoV68eYmNjhe26du2KvLw8HD9+3GbaeXl5yM7OljwIIYQQb8K3KXL1QezzieozjuOwc+dO9O3bF2FhYdDpdIiKisL//vc/lC5dGgCQmZmJqKgoyXZlypRBQEAAMjMzbaa9YMECzJ49253ZJ4QQQlxCDa09o1hLipKTk8FxnN3HsWPHwBjDyJEjUaFCBezbtw8//fQT+vbti169euH69etCehxnPe80Y0x2OW/atGnIysoSHhkZGW45VkIIIYR4t2ItKRo9ejSeeeYZu+tUrVoVu3fvxvfff4/bt28jPDwcAPDOO+9g586dWLduHaZOnYro6GgcOXJEsu3t27dRUFBgVYIkFhgYiMDAQNcPhhBCCHEXgwFM52JJD00I61CxBkWRkZGIjIx0uN69e/cAADqLkXd1Oh2M5i6GiYmJmDdvHq5fv46YmBgApsbXgYGBQrsjQgghxBcx5nrvM5oQ1jGfaGidmJiIMmXKYMiQIfj555+FMYvS09PRs2dPAECXLl2QkJCA559/HidPnsSuXbswefJkDB8+XChdIoQQQgixxSeCosjISPzvf/9Dbm4uOnTogGbNmmH//v345ptv0LBhQwCAXq/H1q1bERQUhFatWuGpp55Cv379sGTJkmLOPSGEEOIafvBG1x40eKMjPtH7DACaNWuGHTt22F2nSpUq+P777z2UI0IIIcQzmAaDN1LvM8d8oqSIEEIIIcTdfKakiBBCCHlYMaNRmGDZpTSIXRQUEUIIIV6Oqs88g4IiQgghxMtRUOQZ1KaIEEIIIQRUUkQIIYR4PaPRAI5KityOgiJCCCHEyzGDEeBcDIoM1NDaEao+I4QQQggBlRQRQgghXo/mPvMMCooIIYQQL8eMBterz6hNkUNUfUYIIYQQAiopIoQQQrwelRR5BgVFhBBCiJejoMgzKCiywBgz/TUUFHNOCCGEeDv+XsHfO9zGUACX90D3NYcoKLJw69YtAIDh1y+LOSeEEEJ8RU5ODiIiIjRPNyAgANHR0cjU6J4UHR2NgIAATdIqiTjm9vDWt9y5cwdlypTB1atX3fIBL07Z2dmoXLkyMjIyEB4eXtzZ0RQdm2+iY/NNJfnYAHXHxxhDTk4OYmNjodO5p+/SgwcPkJ+fr0laAQEBCAoK0iStkohKiizwH+qIiIgS+WUHgPDwcDo2H0TH5pvo2HyX0uNz9w/ooKAgCmQ8hLrkE0IIIYSAgiJCCCGEEAAUFFkJDAzErFmzEBgYWNxZ0Rwdm2+iY/NNdGy+q6QfH7GNGloTQgghhIBKigghhBBCAFBQRAghhBACgIIiQgghhBAAFBQRQgghhACgoEjinXfeQXx8PIKCgtC0aVPs27evuLOkWnJyMjiOkzyio6OF1xljSE5ORmxsLIKDg9GuXTucPXu2GHNs248//ojevXsjNjYWHMdhy5YtkteVHEteXh7GjBmDyMhIhISEoE+fPvjjjz88eBTyHB3b0KFDrd7HFi1aSNbx1mNbsGABHn30UYSFhaFChQro168f0tLSJOv46nun5Nh89b1799130aBBA2HAwsTERGzfvl143VffM8Dxsfnqe0a0R0GR2caNGzF+/HhMnz4dJ0+eRJs2bdC9e3dcvXq1uLOmWt26dXH9+nXhcebMGeG1RYsWYdmyZXj77bdx9OhRREdHo3PnzsjJySnGHMu7e/cuGjZsiLffflv2dSXHMn78eGzevBlffPEF9u/fj9zcXPTq1QsGQ/HOFu3o2ACgW7dukvdx27Ztkte99dhSU1MxatQoHD58GDt37kRhYSG6dOmCu3fvCuv46nun5NgA33zvKlWqhIULF+LYsWM4duwYOnTogL59+wqBj6++Z4DjYwN88z0jbsAIY4yxxx57jI0YMUKyrE6dOmzq1KnFlCPnzJo1izVs2FD2NaPRyKKjo9nChQuFZQ8ePGARERHsvffe81AOnQOAbd68WXiu5Fju3LnD/P392RdffCGsc+3aNabT6dj//vc/j+XdEctjY4yxIUOGsL59+9rcxleOjTHGbty4wQCw1NRUxljJeu8sj42xkvXelSlThn300Ucl6j3j8cfGWMl6z4hrqKQIQH5+Po4fP44uXbpIlnfp0gUHDx4splw57/z584iNjUV8fDyeeeYZXLp0CQCQnp6OzMxMyXEGBgYiKSnJ545TybEcP34cBQUFknViY2NRr149nzjevXv3okKFCqhVqxaGDx+OGzduCK/50rFlZWUBAMqWLQugZL13lsfG8/X3zmAw4IsvvsDdu3eRmJhYot4zy2Pj+fp7RrRBE8ICuHnzJgwGA6KioiTLo6KikJmZWUy5ck7z5s2xfv161KpVC3/99Rfmzp2Lli1b4uzZs8KxyB3nlStXiiO7TlNyLJmZmQgICECZMmWs1vH297V79+548sknERcXh/T0dLz++uvo0KEDjh8/jsDAQJ85NsYYJk6ciNatW6NevXoASs57J3dsgG+/d2fOnEFiYiIePHiA0NBQbN68GQkJCcKN35ffM1vHBvj2e0a0RUGRCMdxkueMMatl3q579+7C//Xr10diYiKqV6+OdevWCQ0HS8Jx8pw5Fl843qefflr4v169emjWrBni4uKwdetWDBgwwOZ23nZso0ePxunTp7F//36r13z9vbN1bL783tWuXRunTp3CnTt3sGnTJgwZMgSpqanC6778ntk6toSEBJ9+z4i2qPoMQGRkJPR6vVXEf+PGDatfRr4mJCQE9evXx/nz54VeaCXhOJUcS3R0NPLz83H79m2b6/iKmJgYxMXF4fz58wB849jGjBmDb7/9Fnv27EGlSpWE5SXhvbN1bHJ86b0LCAhAjRo10KxZMyxYsAANGzbEypUrS8R7ZuvY5PjSe0a0RUERTF+Wpk2bYufOnZLlO3fuRMuWLYspV9rIy8vDuXPnEBMTg/j4eERHR0uOMz8/H6mpqT53nEqOpWnTpvD395esc/36dfzyyy8+d7y3bt1CRkYGYmJiAHj3sTHGMHr0aHz99dfYvXs34uPjJa/78nvn6Njk+NJ7Z4kxhry8PJ9+z2zhj02OL79nxEUeb9rtpb744gvm7+/PPv74Y/brr7+y8ePHs5CQEHb58uXizpoqkyZNYnv37mWXLl1ihw8fZr169WJhYWHCcSxcuJBFRESwr7/+mp05c4Y9++yzLCYmhmVnZxdzzq3l5OSwkydPspMnTzIAbNmyZezkyZPsypUrjDFlxzJixAhWqVIl9sMPP7ATJ06wDh06sIYNG7LCwsLiOizGmP1jy8nJYZMmTWIHDx5k6enpbM+ePSwxMZFVrFjRJ47t3//+N4uIiGB79+5l169fFx737t0T1vHV987Rsfnyezdt2jT2448/svT0dHb69Gn22muvMZ1Ox1JSUhhjvvueMWb/2Hz5PSPao6BIZPXq1SwuLo4FBASwJk2aSLrZ+oqnn36axcTEMH9/fxYbG8sGDBjAzp49K7xuNBrZrFmzWHR0NAsMDGRt27ZlZ86cKcYc27Znzx4GwOoxZMgQxpiyY7l//z4bPXo0K1u2LAsODma9evViV69eLYajkbJ3bPfu3WNdunRh5cuXZ/7+/qxKlSpsyJAhVvn21mOTOy4AbM2aNcI6vvreOTo2X37vhg0bJlz/ypcvzzp27CgERIz57nvGmP1j8+X3jGiPY4wxz5VLEUIIIYR4J2pTRAghhBACCooIIYQQQgBQUEQIIYQQAoCCIkIIIYQQABQUEUIIIYQAoKCIEEIIIQQABUWEEEIIIQAoKCJEc5cvXwbHcTh16pRb0uc4Dlu2bHF6+71794LjOHAch379+tldt127dhg/frzT+yL28e9D6dKlizsrhBBQUERKmKFDhzq80btb5cqVcf36ddSrVw9AURBy586dYs2XpbS0NKxdu7a4s/FQsPW5vH79OlasWOHx/BBC5FFQRIjG9Ho9oqOj4efnV9xZsatChQpeUUJRUFBQ3FkoNtHR0YiIiCjubBBCzCgoIg+V1NRUPPbYYwgMDERMTAymTp2KwsJC4fV27dph7NixmDJlCsqWLYvo6GgkJydL0vjtt9/QunVrBAUFISEhAT/88IOkSktcfXb58mW0b98eAFCmTBlwHIehQ4cCAKpWrWpVStCoUSPJ/s6fP4+2bdsK+xLP0s27du0ann76aZQpUwblypVD3759cfnyZdXn5u7duxg8eDBCQ0MRExODpUuXWq2Tn5+PKVOmoGLFiggJCUHz5s2xd+9eyToffvghKleujFKlSqF///5YtmyZJPhKTk5Go0aN8Mknn6BatWoIDAwEYwxZWVl46aWXUKFCBYSHh6NDhw74+eefJWl/9913aNq0KYKCglCtWjXMnj1b8v4lJyejSpUqCAwMRGxsLMaOHavo2B0d161bt/Dss8+iUqVKKFWqFOrXr4///Oc/kjS++uor1K9fH8HBwShXrhw6deqEu3fvIjk5GevWrcM333wjVJdZnjNCiHfw7p+yhGjo2rVr6NGjB4YOHYr169fjt99+w/DhwxEUFCQJRNatW4eJEyfiyJEjOHToEIYOHYpWrVqhc+fOMBqN6NevH6pUqYIjR44gJycHkyZNsrnPypUrY9OmTXj88ceRlpaG8PBwBAcHK8qv0WjEgAEDEBkZicOHDyM7O9uqfc+9e/fQvn17tGnTBj/++CP8/Pwwd+5cdOvWDadPn0ZAQIDi8/PKK69gz5492Lx5M6Kjo/Haa6/h+PHjaNSokbDOCy+8gMuXL+OLL75AbGwsNm/ejG7duuHMmTOoWbMmDhw4gBEjRuDNN99Enz598MMPP+D111+32teFCxfw5ZdfYtOmTdDr9QCAnj17omzZsti2bRsiIiLw/vvvo2PHjvj9999RtmxZ7NixA8899xzeeusttGnTBhcvXsRLL70EAJg1axa++uorLF++HF988QXq1q2LzMxMq6DKFkfH9eDBAzRt2hSvvvoqwsPDsXXrVjz//POoVq0amjdvjuvXr+PZZ5/FokWL0L9/f+Tk5GDfvn1gjGHy5Mk4d+4csrOzsWbNGgBA2bJlFb8vhBAPKt75aAnR1pAhQ1jfvn1lX3vttddY7dq1mdFoFJatXr2ahYaGMoPBwBhjLCkpibVu3Vqy3aOPPspeffVVxhhj27dvZ35+fuz69evC6zt37mQA2ObNmxljjKWnpzMA7OTJk4wxxvbs2cMAsNu3b0vSjYuLY8uXL5csa9iwIZs1axZjjLEdO3YwvV7PMjIyhNe3b98u2dfHH39sdUx5eXksODiY7dixQ/Y8yOUnJyeHBQQEsC+++EJYduvWLRYcHMzGjRvHGGPswoULjOM4du3aNUl6HTt2ZNOmTWOMMfb000+znj17Sl4fNGgQi4iIEJ7PmjWL+fv7sxs3bgjLdu3axcLDw9mDBw8k21avXp29//77jDHG2rRpw+bPny95fcOGDSwmJoYxxtjSpUtZrVq1WH5+vuxx26LkuOT06NGDTZo0iTHG2PHjxxkAdvnyZdl17X0u16xZIzk/hJDiQyVF5KFx7tw5JCYmguM4YVmrVq2Qm5uLP/74A1WqVAEANGjQQLJdTEwMbty4AcDUOLly5cqIjo4WXn/sscfclt8qVaqgUqVKwrLExETJOsePH8eFCxcQFhYmWf7gwQNcvHhR8b4uXryI/Px8Sfply5ZF7dq1hecnTpwAYwy1atWSbJuXl4dy5coBMJ2f/v37S15/7LHH8P3330uWxcXFoXz58pLjyM3NFdLh3b9/XziO48eP4+jRo5g3b57wusFgwIMHD3Dv3j08+eSTWLFiBapVq4Zu3bqhR48e6N27t8O2XUqOy2AwYOHChdi4cSOuXbuGvLw85OXlISQkBADQsGFDdOzYEfXr10fXrl3RpUsXPPHEEyhTpozdfRNCvAsFReShwRiTBET8MgCS5f7+/pJ1OI6D0Wi0mYazdDqdsH+euNGx5WuW+QRMVWxNmzbFZ599ZrWuOOhwRG5floxGI/R6PY4fPy5UefFCQ0OFdGydYzE+mBCnHRMTI9vWhm+PZDQaMXv2bAwYMMBqnaCgIFSuXBlpaWnYuXMnfvjhB4wcORKLFy9Gamqq1Xuq9riWLl2K5cuXY8WKFahfvz5CQkIwfvx45OfnAzA1rt+5cycOHjyIlJQUrFq1CtOnT8eRI0cQHx9vc9+EEO9CQRF5aCQkJGDTpk2SG/fBgwcRFhaGihUrKkqjTp06uHr1Kv766y9ERUUBAI4ePWp3G75dj8FgkCwvX748rl+/LjzPzs5Genq6JL9Xr17Fn3/+idjYWADAoUOHJGk0adIEGzduFBonO6tGjRrw9/fH4cOHhRKz27dv4/fff0dSUhIAoHHjxjAYDLhx4wbatGkjm06dOnXw008/SZYdO3bM4f6bNGmCzMxM+Pn5oWrVqjbXSUtLQ40aNWymExwcjD59+qBPnz4YNWoU6tSpgzNnzqBJkyY2t1FyXPv27UPfvn3x3HPPATAFUufPn8cjjzwirMNxHFq1aoVWrVph5syZiIuLw+bNmzFx4kQEBARYvf+EEO9Dvc9IiZOVlYVTp05JHlevXsXIkSORkZGBMWPG4LfffsM333yDWbNmYeLEidDplH0VOnfujOrVq2PIkCE4ffo0Dhw4gOnTpwOwLsXhxcXFgeM4fP/99/j777+Rm5sLAOjQoQM2bNiAffv24ZdffsGQIUMkJRWdOnVC7dq1MXjwYPz888/Yt2+fsC/eoEGDEBkZib59+2Lfvn1IT09Hamoqxo0bhz/++EPxOQsNDcWLL76IV155Bbt27cIvv/yCoUOHSs5LrVq1MGjQIAwePBhff/010tPTcfToUbz55pvYtm0bAGDMmDHYtm0bli1bhvPnz+P999/H9u3bHZauderUCYmJiejXrx927NiBy5cv4+DBg5gxY4YQVM2cORPr169HcnIyzp49i3PnzmHjxo2YMWMGAGDt2rX4+OOP8csvv+DSpUvYsGEDgoODERcXZ3ffSo6rRo0aQknQuXPn8PLLLyMzM1NI48iRI/9v7/5dUu8CMIA/DWrmFyerL5UgRtLWVEYKESTRENbSUuiSY9RUSxRENEhTQYOT/QM5NOQQJEhLNDlUkpMRQT8IcwgqeN6p7/veW733Xm731r09H3A63x/HMz3gc45YXl7GwcEByuUyNjc3cXl5aYUmn8+HQqGAYrGIq6urT30MgciH9k5dJpFfIh6PE8CzTzweJ0nmcjl2dnbSbrfTNE3Ozs7y4eHBur+3t9cqFj+JRqPW/SR5dHTEUChEu93O9vZ2bm1tEQCz2SzJ50VrklxcXKRpmqypqbGeValUODo6SrfbTa/Xy3Q6/UXRmiSLxSLD4TDtdjsDgQCz2ewXRWuSPD8/ZywWo8fjocPhoN/vZyKRYKVSeXGNXit+V6tVjo+Ps66ujo2NjUwmk8/W4/7+nvPz8/T5fLTZbDRNkyMjIywUCtY1qVSKzc3NdDqdHB4e5tLSEk3TtMYXFhbY0dHxbF63t7ecnJxkU1MTbTYbvV4vx8bGWC6XrWuy2Sx7enrodDrpdrvZ1dXFVCpFksxkMgwGg3S73XS5XOzu7ubOzs6La/C1b32v6+trRqNRGobBhoYGzs3NMRaLWeXpw8NDDgwMsL6+ng6Hg4FAgGtra9bzLy4uGIlEaBgGAXB3d9caU9Fa5OOoIb+jTCAir9rb20M4HEapVEJra+t7T+ebcrkc+vr6cHNz81sOb0wkEjg+PkY+n//l7/oTpdNpTE9Pf7gTz0U+I3WKRH5QJpOBYRhoa2tDqVTC1NQUQqHQHxGI/qulpQVDQ0PPDiH8WSsrK4hEInC5XNje3sbGxgbW19ff9B1/C8Mw8Pj4iNra2veeiohAoUjkh1WrVczMzOD09BQejwf9/f0vnv78UQWDQZycnAD4d3fVW9rf30cymUS1WoXf78fq6iomJibe/D3fK5/PY3Bw8NXxp47Xe3j60+Cvd72JyPvQz2ci8le7u7vD2dnZq+P/t5tNRD4XhSIRERERaEu+iIiICACFIhEREREACkUiIiIiABSKRERERAAoFImIiIgAUCgSERERAaBQJCIiIgJAoUhEREQEAPAPbWfxk+B/Oc4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.13" + }, + "metadata": {}, + "output_type": "display_data" } + ], + "source": [ + "ds.ice[-1].plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Postscript: Execute the full recipe\n", + "\n", + "We are now confident that our recipe works as we expect.\n", + "At this point we could either:\n", + "- Execute it all ourselves (see {doc}`../../recipe_user_guide/execution`)\n", + "- Make a {doc}`../../../pangeo_forge_cloud/recipe_contribution` to {doc}`../../../pangeo_forge_cloud/index` to have our recipe executed automatically on the cloud.\n", + "\n", + "Hopefully now you have a better understanding of how Pangeo Forge recipes work." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 4 + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.13" + } + }, + "nbformat": 4, + "nbformat_minor": 4 } diff --git a/docs/pangeo_forge_recipes/tutorials/xarray_zarr/opendap_subset_recipe.ipynb b/docs/pangeo_forge_recipes/tutorials/xarray_zarr/opendap_subset_recipe.ipynb index ce0bba0e..cf594694 100644 --- a/docs/pangeo_forge_recipes/tutorials/xarray_zarr/opendap_subset_recipe.ipynb +++ b/docs/pangeo_forge_recipes/tutorials/xarray_zarr/opendap_subset_recipe.ipynb @@ -1,279 +1,279 @@ { - "cells": [ - { - "cell_type": "markdown", - "id": "9de6a449", - "metadata": {}, - "source": [ - "# NARR: Subsetting and OPeNDAP\n", - "\n", - "## About the Dataset\n", - "\n", - "This tutorial uses data from NOAA's [North American Regional Reanalysis](https://www.ncei.noaa.gov/products/weather-climate-models/north-american-regional) (NARR)\n", - "\n", - "> The North American Regional Reanalysis (NARR) is a model produced by the National Centers for Environmental Prediction (NCEP) that generates reanalyzed data for temperature, wind, moisture, soil, and dozens of other parameters. The NARR model assimilates a large amount of observational data from a variety of sources to produce a long-term picture of weather over North America.\n", - "\n", - "For this recipe, we will access the data via [OPeNDAP](https://earthdata.nasa.gov/collaborate/open-data-services-and-software/api/opendap), a widely-used API for remote access of environmental data over HTTP.\n", - "A key point is that, since we use using OPeNDAP, _there are no input files to download / cache_. We open the data directly from the remote server.\n", - "\n", - "The data we will use are catalogged here (3D data on pressure levels): \n", - "\n", - "Let's peek at one file. Xarray should automatically do the right thing with the OPeNDAP url. But just to be safe, we can pass the option, `engine='netcdf4'`, which is needed to open OPeNDAP links correctly. (We will need this again later when writing our recipe.)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "56b4633d", - "metadata": {}, - "outputs": [], - "source": [ - "import xarray as xr\n", - "url = \"https://psl.noaa.gov/thredds/dodsC/Datasets/NARR/pressure/air.197901.nc\"\n", - "ds = xr.open_dataset(url, engine='netcdf4', decode_cf=\"all\")\n", - "ds" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "ce43c11e", - "metadata": {}, - "source": [ - "This is just one file.\n", - "But it's a very big file (several GB)!\n", - "We will want to break it up by specifying `target_chunks` when we write to Zarr." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "62bdc5d5", - "metadata": {}, - "outputs": [], - "source": [ - "ds.air._ChunkSizes" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "df877352", - "metadata": {}, - "source": [ - "This tells us that we can subset in the `time` or `level` dimensions, but problably should avoid subsetting in the `x` and `y` dimensions.\n", - "\n", - "Also note the presence of the `Lambert_Conformal` data variable. This should be a coordinate. So we will need to write a custom transform to make that change.\n", - "\n", - "## Define File Pattern\n", - "\n", - "We are now ready to define the `FilePattern` for the recipe. There is one file per month. So we start with a function like this:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "23de17b4", - "metadata": {}, - "outputs": [], - "source": [ - "def format_function(time):\n", - " return f\"https://psl.noaa.gov/thredds/dodsC/Datasets/NARR/pressure/air.{time}.nc\"" - ] - }, - { - "cell_type": "markdown", - "id": "c7dd39e3", - "metadata": {}, - "source": [ - "To keep things short and simple for this tutorial, we will just use one file, and subset it into many chunks.\n", - "But we could easily add more months to build up the entire dataset.\n", - "Since each file is monthly, and the number of days per months varies, we cannot set `nitems_per_input` in the `ConcatDim`.\n", - "\n", - "```{note}\n", - "It's important that we specify `file_type=\"opendap\"` when creating a FilePattern with OPeNDAP URLs.\n", - "OPeNDAP is actually an API, so there are no files to download. \n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "1dcaf511", - "metadata": {}, - "outputs": [], - "source": [ - "from pangeo_forge_recipes.patterns import FilePattern, ConcatDim, MergeDim\n", - "time_dim = ConcatDim(\"time\", [\"197901\"])\n", - "pattern = FilePattern(format_function, time_dim, file_type=\"opendap\")\n", - "pattern" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "977bcb43", - "metadata": {}, - "source": [ - "## Define the Pipeline\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "9c33246c", - "metadata": {}, - "outputs": [], - "source": [ - "import apache_beam as beam\n", - "from pangeo_forge_recipes.transforms import OpenURLWithFSSpec, OpenWithXarray, StoreToZarr" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "26e6808c", - "metadata": {}, - "outputs": [], - "source": [ - "from pangeo_forge_recipes.transforms import Indexed, T\n", - "\n", - "class SetProjectionAsCoord(beam.PTransform):\n", - " \"\"\"A preprocessing function which will assign the `Lambert_Conformal` variable as a coordinate variable.\"\"\"\n", - "\n", - " @staticmethod\n", - " def _set_projection_as_coord(item: Indexed[T]) -> Indexed[T]:\n", - " index, ds = item\n", - " ds = ds.set_coords([\"Lambert_Conformal\"])\n", - " return index, ds\n", - "\n", - " def expand(self, pcoll: beam.PCollection) -> beam.PCollection:\n", - " return pcoll | beam.Map(self._set_projection_as_coord)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "69e978e1", - "metadata": {}, - "source": [ - "We now define a target location for our recipe. Here we just use a temporary directory." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "898329cc", - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "from tempfile import TemporaryDirectory\n", - "td = TemporaryDirectory()\n", - "target_root = td.name\n", - "store_name = \"output.zarr\"\n", - "target_store = os.path.join(target_root, store_name)\n", - "target_store" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "b04aaaa5", - "metadata": {}, - "source": [ - "Now we put together the necessary PTransforms. In this pipeline we're adding in the argument, `target_chunks`, which is a dictionary describing how we want the output dataset to be chunked. In this example, we are specifying single time chunks (`{\"time\": 1}`)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e6f2acde", - "metadata": {}, - "outputs": [], - "source": [ - "transforms = (\n", - " beam.Create(pattern.items())\n", - " | OpenWithXarray(file_type=pattern.file_type)\n", - " | SetProjectionAsCoord()\n", - " | StoreToZarr(\n", - " store_name=store_name,\n", - " target_root=target_root,\n", - " combine_dims=pattern.combine_dim_keys,\n", - " target_chunks={\"time\": 1}\n", - " )\n", - ")\n", - "transforms" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "16262be0", - "metadata": {}, - "outputs": [], - "source": [ - "with beam.Pipeline() as p:\n", - " p | transforms" - ] - }, - { - "cell_type": "markdown", - "id": "a7abe582", - "metadata": {}, - "source": [ - "## Check The Outputs" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "cce52842", - "metadata": {}, - "outputs": [], - "source": [ - "ds_target = xr.open_dataset(target_store, engine=\"zarr\", chunks={})\n", - "ds_target" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "fce7f2cc", - "metadata": {}, - "outputs": [], - "source": [ - "ds_target.air.isel(level=0).mean(\"time\").plot()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "ae6f405c", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.9" - } + "cells": [ + { + "cell_type": "markdown", + "id": "9de6a449", + "metadata": {}, + "source": [ + "# NARR: Subsetting and OPeNDAP\n", + "\n", + "## About the Dataset\n", + "\n", + "This tutorial uses data from NOAA's [North American Regional Reanalysis](https://www.ncei.noaa.gov/products/weather-climate-models/north-american-regional) (NARR)\n", + "\n", + "> The North American Regional Reanalysis (NARR) is a model produced by the National Centers for Environmental Prediction (NCEP) that generates reanalyzed data for temperature, wind, moisture, soil, and dozens of other parameters. The NARR model assimilates a large amount of observational data from a variety of sources to produce a long-term picture of weather over North America.\n", + "\n", + "For this recipe, we will access the data via [OPeNDAP](https://earthdata.nasa.gov/collaborate/open-data-services-and-software/api/opendap), a widely-used API for remote access of environmental data over HTTP.\n", + "A key point is that, since we use using OPeNDAP, _there are no input files to download / cache_. We open the data directly from the remote server.\n", + "\n", + "The data we will use are catalogged here (3D data on pressure levels): \n", + "\n", + "Let's peek at one file. Xarray should automatically do the right thing with the OPeNDAP url. But just to be safe, we can pass the option, `engine='netcdf4'`, which is needed to open OPeNDAP links correctly. (We will need this again later when writing our recipe.)" + ] }, - "nbformat": 4, - "nbformat_minor": 5 + { + "cell_type": "code", + "execution_count": null, + "id": "56b4633d", + "metadata": {}, + "outputs": [], + "source": [ + "import xarray as xr\n", + "url = \"https://psl.noaa.gov/thredds/dodsC/Datasets/NARR/pressure/air.197901.nc\"\n", + "ds = xr.open_dataset(url, engine='netcdf4', decode_cf=\"all\")\n", + "ds" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "ce43c11e", + "metadata": {}, + "source": [ + "This is just one file.\n", + "But it's a very big file (several GB)!\n", + "We will want to break it up by specifying `target_chunks` when we write to Zarr." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "62bdc5d5", + "metadata": {}, + "outputs": [], + "source": [ + "ds.air._ChunkSizes" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "df877352", + "metadata": {}, + "source": [ + "This tells us that we can subset in the `time` or `level` dimensions, but problably should avoid subsetting in the `x` and `y` dimensions.\n", + "\n", + "Also note the presence of the `Lambert_Conformal` data variable. This should be a coordinate. So we will need to write a custom transform to make that change.\n", + "\n", + "## Define File Pattern\n", + "\n", + "We are now ready to define the `FilePattern` for the recipe. There is one file per month. So we start with a function like this:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "23de17b4", + "metadata": {}, + "outputs": [], + "source": [ + "def format_function(time):\n", + " return f\"https://psl.noaa.gov/thredds/dodsC/Datasets/NARR/pressure/air.{time}.nc\"" + ] + }, + { + "cell_type": "markdown", + "id": "c7dd39e3", + "metadata": {}, + "source": [ + "To keep things short and simple for this tutorial, we will just use one file, and subset it into many chunks.\n", + "But we could easily add more months to build up the entire dataset.\n", + "Since each file is monthly, and the number of days per months varies, we cannot set `nitems_per_input` in the `ConcatDim`.\n", + "\n", + "```{note}\n", + "It's important that we specify `file_type=\"opendap\"` when creating a FilePattern with OPeNDAP URLs.\n", + "OPeNDAP is actually an API, so there are no files to download. \n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1dcaf511", + "metadata": {}, + "outputs": [], + "source": [ + "from pangeo_forge_recipes.patterns import FilePattern, ConcatDim, MergeDim\n", + "time_dim = ConcatDim(\"time\", [\"197901\"])\n", + "pattern = FilePattern(format_function, time_dim, file_type=\"opendap\")\n", + "pattern" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "977bcb43", + "metadata": {}, + "source": [ + "## Define the Pipeline\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9c33246c", + "metadata": {}, + "outputs": [], + "source": [ + "import apache_beam as beam\n", + "from pangeo_forge_recipes.transforms import OpenURLWithFSSpec, OpenWithXarray, StoreToZarr" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "26e6808c", + "metadata": {}, + "outputs": [], + "source": [ + "from pangeo_forge_recipes.transforms import Indexed, T\n", + "\n", + "class SetProjectionAsCoord(beam.PTransform):\n", + " \"\"\"A preprocessing function which will assign the `Lambert_Conformal` variable as a coordinate variable.\"\"\"\n", + "\n", + " @staticmethod\n", + " def _set_projection_as_coord(item: Indexed[T]) -> Indexed[T]:\n", + " index, ds = item\n", + " ds = ds.set_coords([\"Lambert_Conformal\"])\n", + " return index, ds\n", + "\n", + " def expand(self, pcoll: beam.PCollection) -> beam.PCollection:\n", + " return pcoll | beam.Map(self._set_projection_as_coord)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "69e978e1", + "metadata": {}, + "source": [ + "We now define a target location for our recipe. Here we just use a temporary directory." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "898329cc", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "from tempfile import TemporaryDirectory\n", + "td = TemporaryDirectory()\n", + "target_root = td.name\n", + "store_name = \"output.zarr\"\n", + "target_store = os.path.join(target_root, store_name)\n", + "target_store" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "b04aaaa5", + "metadata": {}, + "source": [ + "Now we put together the necessary PTransforms. In this pipeline we're adding in the argument, `target_chunks`, which is a dictionary describing how we want the output dataset to be chunked. In this example, we are specifying single time chunks (`{\"time\": 1}`)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e6f2acde", + "metadata": {}, + "outputs": [], + "source": [ + "transforms = (\n", + " beam.Create(pattern.items())\n", + " | OpenWithXarray(file_type=pattern.file_type)\n", + " | SetProjectionAsCoord()\n", + " | StoreToZarr(\n", + " store_name=store_name,\n", + " target_root=target_root,\n", + " combine_dims=pattern.combine_dim_keys,\n", + " target_chunks={\"time\": 1}\n", + " )\n", + ")\n", + "transforms" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "16262be0", + "metadata": {}, + "outputs": [], + "source": [ + "with beam.Pipeline() as p:\n", + " p | transforms" + ] + }, + { + "cell_type": "markdown", + "id": "a7abe582", + "metadata": {}, + "source": [ + "## Check The Outputs" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cce52842", + "metadata": {}, + "outputs": [], + "source": [ + "ds_target = xr.open_dataset(target_store, engine=\"zarr\", chunks={})\n", + "ds_target" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fce7f2cc", + "metadata": {}, + "outputs": [], + "source": [ + "ds_target.air.isel(level=0).mean(\"time\").plot()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ae6f405c", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 } diff --git a/docs/pangeo_forge_recipes/tutorials/xarray_zarr/terraclimate.ipynb b/docs/pangeo_forge_recipes/tutorials/xarray_zarr/terraclimate.ipynb index 08b493e4..3b49a4d3 100755 --- a/docs/pangeo_forge_recipes/tutorials/xarray_zarr/terraclimate.ipynb +++ b/docs/pangeo_forge_recipes/tutorials/xarray_zarr/terraclimate.ipynb @@ -1,1026 +1,1026 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Complex NetCDF to Zarr Recipe: TerraClimate \n", - "\n", - "## About the Dataset\n", - "\n", - "From http://www.climatologylab.org/terraclimate.html:\n", - "\n", - "> TerraClimate is a dataset of monthly climate and climatic water balance for global terrestrial surfaces from 1958-2019. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time-varying data. All data have monthly temporal resolution and a ~4-km (1/24th degree) spatial resolution. The data cover the period from 1958-2019. We plan to update these data periodically (annually).\n", - "\n", - "## What makes it tricky\n", - "\n", - "This is an advanced example that illustrates the following concepts\n", - "- _Multiple variables in different files_: There is one file per year for a dozen different variables.\n", - "- _Complex Preprocessing_: We want to apply different preprocessing depending on the variable. This example shows how.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import apache_beam as beam\n", - "from pangeo_forge_recipes.transforms import OpenURLWithFSSpec, OpenWithXarray, StoreToZarr\n", - "\n", - "from pangeo_forge_recipes.patterns import FilePattern, ConcatDim, MergeDim\n", - "import xarray as xr" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Define Filename Pattern \n", - "\n", - "To keep this example smaller, we just use two years and two variables, instead of the whole record." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "target_chunks = {\"lat\": 1024, \"lon\": 1024, \"time\": 12}\n", - "\n", - "# for the example, we only select two years to keep the example small;\n", - "# this time range can be extended if you are running the recipe yourself.\n", - "years = list(range(2000, 2002))\n", - "\n", - "# even when subsetting to just two years of data, including every variable results\n", - "# in a dataset size of rougly 3-3.5 GB. this is a bit large to run for the example.\n", - "# to keep the example efficient, we select two of the available variables. to run\n", - "# more variables yourself, simply uncomment any/all of the commented variables below.\n", - "variables = [\n", - " # \"aet\",\n", - " # \"def\",\n", - " # \"pet\",\n", - " # \"ppt\",\n", - " # \"q\",\n", - " \"soil\",\n", - " \"srad\",\n", - " # \"swe\",\n", - " # \"tmax\",\n", - " # \"tmin\",\n", - " # \"vap\",\n", - " # \"ws\",\n", - " # \"vpd\",\n", - " # \"PDSI\",\n", - "]\n", - "\n", - "def make_filename(variable, time):\n", - " return f\"http://thredds.northwestknowledge.net:8080/thredds/fileServer/TERRACLIMATE_ALL/data/TerraClimate_{variable}_{time}.nc\"\n", - "\n", - "pattern = FilePattern(\n", - " make_filename,\n", - " ConcatDim(name=\"time\", keys=years),\n", - " MergeDim(name=\"variable\", keys=variables)\n", - ")\n", - "pattern\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Check out the pattern\n", - "\n", - "The following cell demonstrates one way we might iterate over the contents of the file pattern created above.\n", - "\n", - "Note that each item in the pattern includes a dimensional index key with a corresponding source url as a value.\n", - "\n", - "By using `curl` to check the sizes of these files, we see that the temporal and variable subset we've selected\n", - "results in a total of about 500 MB of data. This is an small/efficient scale means that you should be able to\n", - "execute (and experiment with) the notebook yourself locally in a reasonable amount of time.\n", - "\n", - "In production settings that capture more meaningful temporal and variable extents, the scale of data would be\n", - "orders of magnitude larger." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{Dimension(name='time', operation=): Position(value=0, indexed=False), Dimension(name='variable', operation=): Position(value=0, indexed=False)} http://thredds.northwestknowledge.net:8080/thredds/fileServer/TERRACLIMATE_ALL/data/TerraClimate_soil_2000.nc\n", - "108.193531 MB\n", - "\n", - "{Dimension(name='time', operation=): Position(value=0, indexed=False), Dimension(name='variable', operation=): Position(value=1, indexed=False)} http://thredds.northwestknowledge.net:8080/thredds/fileServer/TERRACLIMATE_ALL/data/TerraClimate_srad_2000.nc\n", - "138.559588 MB\n", - "\n", - "{Dimension(name='time', operation=): Position(value=1, indexed=False), Dimension(name='variable', operation=): Position(value=0, indexed=False)} http://thredds.northwestknowledge.net:8080/thredds/fileServer/TERRACLIMATE_ALL/data/TerraClimate_soil_2001.nc\n", - "107.922421 MB\n", - "\n", - "{Dimension(name='time', operation=): Position(value=1, indexed=False), Dimension(name='variable', operation=): Position(value=1, indexed=False)} http://thredds.northwestknowledge.net:8080/thredds/fileServer/TERRACLIMATE_ALL/data/TerraClimate_srad_2001.nc\n", - "138.840558 MB\n", - "\n", - "\n", - "Total: 493.51609799999994 MB\n" - ] - } - ], - "source": [ - "import subprocess\n", - "\n", - "total_mb = 0\n", - "for key, filename in pattern.items():\n", - " print(key, filename)\n", - " curl_info = subprocess.check_output(f\"curl -Is {filename}\".split()).decode()\n", - " n_megabytes = int(curl_info.split(\"Content-Length: \")[-1].split(\"\\r\")[0])/1e6\n", - " print(f\"{n_megabytes} MB\\n\")\n", - " total_mb += n_megabytes\n", - "\n", - "print(f\"\\nTotal: {total_mb} MB\")\n" - ] - }, + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Complex NetCDF to Zarr Recipe: TerraClimate \n", + "\n", + "## About the Dataset\n", + "\n", + "From http://www.climatologylab.org/terraclimate.html:\n", + "\n", + "> TerraClimate is a dataset of monthly climate and climatic water balance for global terrestrial surfaces from 1958-2019. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time-varying data. All data have monthly temporal resolution and a ~4-km (1/24th degree) spatial resolution. The data cover the period from 1958-2019. We plan to update these data periodically (annually).\n", + "\n", + "## What makes it tricky\n", + "\n", + "This is an advanced example that illustrates the following concepts\n", + "- _Multiple variables in different files_: There is one file per year for a dozen different variables.\n", + "- _Complex Preprocessing_: We want to apply different preprocessing depending on the variable. This example shows how.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import apache_beam as beam\n", + "from pangeo_forge_recipes.transforms import OpenURLWithFSSpec, OpenWithXarray, StoreToZarr\n", + "\n", + "from pangeo_forge_recipes.patterns import FilePattern, ConcatDim, MergeDim\n", + "import xarray as xr" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Define Filename Pattern \n", + "\n", + "To keep this example smaller, we just use two years and two variables, instead of the whole record." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Specify Output Directory\n", - "Here we will create a temporary directory to write our output dataset to. We could also write to cloud storage. \n" + "data": { + "text/plain": [ + "" ] - }, + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "target_chunks = {\"lat\": 1024, \"lon\": 1024, \"time\": 12}\n", + "\n", + "# for the example, we only select two years to keep the example small;\n", + "# this time range can be extended if you are running the recipe yourself.\n", + "years = list(range(2000, 2002))\n", + "\n", + "# even when subsetting to just two years of data, including every variable results\n", + "# in a dataset size of rougly 3-3.5 GB. this is a bit large to run for the example.\n", + "# to keep the example efficient, we select two of the available variables. to run\n", + "# more variables yourself, simply uncomment any/all of the commented variables below.\n", + "variables = [\n", + " # \"aet\",\n", + " # \"def\",\n", + " # \"pet\",\n", + " # \"ppt\",\n", + " # \"q\",\n", + " \"soil\",\n", + " \"srad\",\n", + " # \"swe\",\n", + " # \"tmax\",\n", + " # \"tmin\",\n", + " # \"vap\",\n", + " # \"ws\",\n", + " # \"vpd\",\n", + " # \"PDSI\",\n", + "]\n", + "\n", + "def make_filename(variable, time):\n", + " return f\"http://thredds.northwestknowledge.net:8080/thredds/fileServer/TERRACLIMATE_ALL/data/TerraClimate_{variable}_{time}.nc\"\n", + "\n", + "pattern = FilePattern(\n", + " make_filename,\n", + " ConcatDim(name=\"time\", keys=years),\n", + " MergeDim(name=\"variable\", keys=variables)\n", + ")\n", + "pattern\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Check out the pattern\n", + "\n", + "The following cell demonstrates one way we might iterate over the contents of the file pattern created above.\n", + "\n", + "Note that each item in the pattern includes a dimensional index key with a corresponding source url as a value.\n", + "\n", + "By using `curl` to check the sizes of these files, we see that the temporal and variable subset we've selected\n", + "results in a total of about 500 MB of data. This is an small/efficient scale means that you should be able to\n", + "execute (and experiment with) the notebook yourself locally in a reasonable amount of time.\n", + "\n", + "In production settings that capture more meaningful temporal and variable extents, the scale of data would be\n", + "orders of magnitude larger." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'/var/folders/tt/4f941hdn0zq549zdwhcgg98c0000gn/T/tmpnyitlkv9/terraclimate.zarr'" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import os\n", - "from tempfile import TemporaryDirectory\n", - "\n", - "td = TemporaryDirectory()\n", - "target_root = td.name\n", - "store_name = \"terraclimate.zarr\"\n", - "target_path = os.path.join(target_root, store_name)\n", - "target_path\n" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "{Dimension(name='time', operation=): Position(value=0, indexed=False), Dimension(name='variable', operation=): Position(value=0, indexed=False)} http://thredds.northwestknowledge.net:8080/thredds/fileServer/TERRACLIMATE_ALL/data/TerraClimate_soil_2000.nc\n", + "108.193531 MB\n", + "\n", + "{Dimension(name='time', operation=): Position(value=0, indexed=False), Dimension(name='variable', operation=): Position(value=1, indexed=False)} http://thredds.northwestknowledge.net:8080/thredds/fileServer/TERRACLIMATE_ALL/data/TerraClimate_srad_2000.nc\n", + "138.559588 MB\n", + "\n", + "{Dimension(name='time', operation=): Position(value=1, indexed=False), Dimension(name='variable', operation=): Position(value=0, indexed=False)} http://thredds.northwestknowledge.net:8080/thredds/fileServer/TERRACLIMATE_ALL/data/TerraClimate_soil_2001.nc\n", + "107.922421 MB\n", + "\n", + "{Dimension(name='time', operation=): Position(value=1, indexed=False), Dimension(name='variable', operation=): Position(value=1, indexed=False)} http://thredds.northwestknowledge.net:8080/thredds/fileServer/TERRACLIMATE_ALL/data/TerraClimate_srad_2001.nc\n", + "138.840558 MB\n", + "\n", + "\n", + "Total: 493.51609799999994 MB\n" + ] + } + ], + "source": [ + "import subprocess\n", + "\n", + "total_mb = 0\n", + "for key, filename in pattern.items():\n", + " print(key, filename)\n", + " curl_info = subprocess.check_output(f\"curl -Is {filename}\".split()).decode()\n", + " n_megabytes = int(curl_info.split(\"Content-Length: \")[-1].split(\"\\r\")[0])/1e6\n", + " print(f\"{n_megabytes} MB\\n\")\n", + " total_mb += n_megabytes\n", + "\n", + "print(f\"\\nTotal: {total_mb} MB\")\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Specify Output Directory\n", + "Here we will create a temporary directory to write our output dataset to. We could also write to cloud storage. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Define Preprocessing Functions\n", - "\n", - "These functions apply masks for each variable to remove invalid data.\n", - "\n", - "Although we are only running two variables in this example, mask values are provided for all variables. Therefore\n", - "you should not need to alter this preprocessor if you'd like to explore additional variables on your own." + "data": { + "text/plain": [ + "'/var/folders/tt/4f941hdn0zq549zdwhcgg98c0000gn/T/tmpnyitlkv9/terraclimate.zarr'" ] - }, + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import os\n", + "from tempfile import TemporaryDirectory\n", + "\n", + "td = TemporaryDirectory()\n", + "target_root = td.name\n", + "store_name = \"terraclimate.zarr\"\n", + "target_path = os.path.join(target_root, store_name)\n", + "target_path\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Define Preprocessing Functions\n", + "\n", + "These functions apply masks for each variable to remove invalid data.\n", + "\n", + "Although we are only running two variables in this example, mask values are provided for all variables. Therefore\n", + "you should not need to alter this preprocessor if you'd like to explore additional variables on your own." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "from pangeo_forge_recipes.transforms import Indexed, T\n", + "\n", + "def _apply_mask(key, da):\n", + " \"\"\"helper function to mask DataArrays based on a threshold value\"\"\"\n", + " mask_opts = {\n", + " \"PDSI\": (\"lt\", 10),\n", + " \"aet\": (\"lt\", 32767),\n", + " \"def\": (\"lt\", 32767),\n", + " \"pet\": (\"lt\", 32767),\n", + " \"ppt\": (\"lt\", 32767),\n", + " \"ppt_station_influence\": None,\n", + " \"q\": (\"lt\", 2147483647),\n", + " \"soil\": (\"lt\", 32767),\n", + " \"srad\": (\"lt\", 32767),\n", + " \"swe\": (\"lt\", 10000),\n", + " \"tmax\": (\"lt\", 200),\n", + " \"tmax_station_influence\": None,\n", + " \"tmin\": (\"lt\", 200),\n", + " \"tmin_station_influence\": None,\n", + " \"vap\": (\"lt\", 300),\n", + " \"vap_station_influence\": None,\n", + " \"vpd\": (\"lt\", 300),\n", + " \"ws\": (\"lt\", 200),\n", + " } \n", + " if mask_opts.get(key, None):\n", + " op, val = mask_opts[key]\n", + " if op == \"lt\":\n", + " da = da.where(da < val)\n", + " elif op == \"neq\":\n", + " da = da.where(da != val)\n", + " return da\n", + "\n", + "class Munge(beam.PTransform):\n", + " \"\"\"\n", + " Apply cleaning transformations to Datasets\n", + " \"\"\"\n", + " \n", + " @staticmethod\n", + " def _preproc(item: Indexed[T]) -> Indexed[T]:\n", + " \"\"\"custom preprocessing function for terraclimate data\"\"\"\n", + " index, ds = item\n", + " \n", + " # invalid unicode in source data. This attr replacement is a fix.\n", + " fixed_attrs = {'method': 'These layers from TerraClimate were derived from the essential climate variables of TerraClimate. Water balance variables, actual evapotranspiration, climatic water deficit, runoff, soil moisture, and snow water equivalent were calculated using a water balance model and plant extractable soil water capacity derived from Wang-Erlandsson et al (2016).', 'title': 'TerraClimate: monthly climate and climatic water balance for global land surfaces', 'summary': 'This archive contains a dataset of high-spatial resolution (1/24th degree, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. These data were created by using climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim version 1.4 and version 2 datasets, with coarser resolution time varying (i.e. monthly) data from CRU Ts4.0 and JRA-55 to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity.', 'keywords': 'WORLDCLIM,global,monthly, temperature,precipitation,wind,radiation,vapor pressure,evapotranspiration,water balance,soil water capacity,snow water equivalent,runoff', 'id': 'Blank', 'naming_authority': 'edu.uidaho.nkn', 'keywords_vocabulary': 'None', 'cdm_data_type': 'GRID', 'history': 'Created by John Abatzoglou, University of California Merced', 'date_created': '2021-04-22', 'creator_name': 'John Abatzoglou', 'creator_url': 'http://climate.nkn.uidaho.edu/TerraClimate', 'creator_role': 'Principal Investigator', 'creator_email': 'jabatzoglou@ucmerced.edu', 'institution': 'University of California Merced', 'project': 'Global Dataset of Monthly Climate and Climatic Water Balance (1958-2015)', 'processing_level': 'Gridded Climate Projections', 'acknowledgment': 'Please cite the references included herein. We also acknowledge the WorldClim datasets (Fick and Hijmans, 2017; Hijmans et al., 2005) and the CRU Ts4.0 (Harris et al., 2014) and JRA-55 (Kobayashi et al., 2015) datasets.', 'geospatial_lat_min': -89.979164, 'geospatial_lat_max': 89.979164, 'geospatial_lon_min': -179.97917, 'geospatial_lon_max': 179.97917, 'geospatial_vertical_min': 0.0, 'geospatial_vertical_max': 0.0, 'time_coverage_start': '1958-01-01T00:0', 'time_coverage_end': '1958-12-01T00:0', 'time_coverage_duration': 'P1Y', 'time_coverage_resolution': 'P1M', 'standard_nam_vocabulary': 'CF-1.0', 'license': 'No restrictions', 'contributor_name': 'Katherine Hegewisch', 'contributor_role': 'Postdoctoral Fellow', 'contributor_email': 'khegewisch@ucmerced.edu', 'publisher_name': 'Northwest Knowledge Network', 'publisher_url': 'http://www.northwestknowledge.net', 'publisher_email': 'info@northwestknowledge.net', 'date_modified': '2021-04-22', 'date_issued': '2021-04-22', 'geospatial_lat_units': 'decimal degrees north', 'geospatial_lat_resolution': -0.041666668, 'geospatial_lon_units': 'decimal degrees east', 'geospatial_lon_resolution': 0.041666668, 'geospatial_vertical_units': 'None', 'geospatial_vertical_resolution': 0.0, 'geospatial_vertical_positive': 'Up', 'references': 'Abatzoglou, J.T., S.Z. Dobrowski, S.A. Parks, and K.C. Hegewisch, 2017, High-resolution global dataset of monthly climate and climatic water balance from 1958-2015, submitted to Scientific Data.', 'source': 'WorldClim v2.0 (2.5m), CRU Ts4.0, JRA-55', 'version': 'v1.0', 'Conventions': 'CF-1.6'}\n", + " ds.attrs = fixed_attrs\n", + " \n", + " rename = {}\n", + "\n", + " station_influence = ds.get(\"station_influence\", None)\n", + "\n", + " if station_influence is not None:\n", + " ds = ds.drop_vars(\"station_influence\")\n", + "\n", + " var = list(ds.data_vars)[0]\n", + " \n", + " rename_vars = {'PDSI': 'pdsi'}\n", + "\n", + " if var in rename_vars:\n", + " rename[var] = rename_vars[var]\n", + "\n", + " if \"day\" in ds.coords:\n", + " rename[\"day\"] = \"time\"\n", + "\n", + " if station_influence is not None:\n", + " ds[f\"{var}_station_influence\"] = station_influence\n", + " with xr.set_options(keep_attrs=True):\n", + " ds[var] = _apply_mask(var, ds[var])\n", + " if rename:\n", + " ds = ds.rename(rename)\n", + " return index, ds\n", + "\n", + " def expand(self, pcoll: beam.PCollection) -> beam.PCollection:\n", + " return pcoll | beam.Map(self._preproc)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create Pipeline\n", + "\n", + "We are now ready to create the processing pipeline.\n", + "\n", + "Below we chain together multiple processing steps.\n", + "1. Initalize the pipeline with the list of input file patterns\n", + "2. Use Fsspec to open each file url and create Fsspec file objects\n", + "3. Pass the Fsspec file objects to Xarray to open as Xarray Datasets\n", + "4. Pass the Xarray Datasets to our custom preprocessing function (named `Munge`) \n", + " to apply our preprocessing and cleaning logic\n", + "5. Pass the cleaned Xarray Dataset to the `StoreToZarr` method to combine and\n", + " write the Datasets to a single Zarr Dataset\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from pangeo_forge_recipes.transforms import Indexed, T\n", - "\n", - "def _apply_mask(key, da):\n", - " \"\"\"helper function to mask DataArrays based on a threshold value\"\"\"\n", - " mask_opts = {\n", - " \"PDSI\": (\"lt\", 10),\n", - " \"aet\": (\"lt\", 32767),\n", - " \"def\": (\"lt\", 32767),\n", - " \"pet\": (\"lt\", 32767),\n", - " \"ppt\": (\"lt\", 32767),\n", - " \"ppt_station_influence\": None,\n", - " \"q\": (\"lt\", 2147483647),\n", - " \"soil\": (\"lt\", 32767),\n", - " \"srad\": (\"lt\", 32767),\n", - " \"swe\": (\"lt\", 10000),\n", - " \"tmax\": (\"lt\", 200),\n", - " \"tmax_station_influence\": None,\n", - " \"tmin\": (\"lt\", 200),\n", - " \"tmin_station_influence\": None,\n", - " \"vap\": (\"lt\", 300),\n", - " \"vap_station_influence\": None,\n", - " \"vpd\": (\"lt\", 300),\n", - " \"ws\": (\"lt\", 200),\n", - " } \n", - " if mask_opts.get(key, None):\n", - " op, val = mask_opts[key]\n", - " if op == \"lt\":\n", - " da = da.where(da < val)\n", - " elif op == \"neq\":\n", - " da = da.where(da != val)\n", - " return da\n", - "\n", - "class Munge(beam.PTransform):\n", - " \"\"\"\n", - " Apply cleaning transformations to Datasets\n", - " \"\"\"\n", - " \n", - " @staticmethod\n", - " def _preproc(item: Indexed[T]) -> Indexed[T]:\n", - " \"\"\"custom preprocessing function for terraclimate data\"\"\"\n", - " index, ds = item\n", - " \n", - " # invalid unicode in source data. This attr replacement is a fix.\n", - " fixed_attrs = {'method': 'These layers from TerraClimate were derived from the essential climate variables of TerraClimate. Water balance variables, actual evapotranspiration, climatic water deficit, runoff, soil moisture, and snow water equivalent were calculated using a water balance model and plant extractable soil water capacity derived from Wang-Erlandsson et al (2016).', 'title': 'TerraClimate: monthly climate and climatic water balance for global land surfaces', 'summary': 'This archive contains a dataset of high-spatial resolution (1/24th degree, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. These data were created by using climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim version 1.4 and version 2 datasets, with coarser resolution time varying (i.e. monthly) data from CRU Ts4.0 and JRA-55 to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity.', 'keywords': 'WORLDCLIM,global,monthly, temperature,precipitation,wind,radiation,vapor pressure,evapotranspiration,water balance,soil water capacity,snow water equivalent,runoff', 'id': 'Blank', 'naming_authority': 'edu.uidaho.nkn', 'keywords_vocabulary': 'None', 'cdm_data_type': 'GRID', 'history': 'Created by John Abatzoglou, University of California Merced', 'date_created': '2021-04-22', 'creator_name': 'John Abatzoglou', 'creator_url': 'http://climate.nkn.uidaho.edu/TerraClimate', 'creator_role': 'Principal Investigator', 'creator_email': 'jabatzoglou@ucmerced.edu', 'institution': 'University of California Merced', 'project': 'Global Dataset of Monthly Climate and Climatic Water Balance (1958-2015)', 'processing_level': 'Gridded Climate Projections', 'acknowledgment': 'Please cite the references included herein. We also acknowledge the WorldClim datasets (Fick and Hijmans, 2017; Hijmans et al., 2005) and the CRU Ts4.0 (Harris et al., 2014) and JRA-55 (Kobayashi et al., 2015) datasets.', 'geospatial_lat_min': -89.979164, 'geospatial_lat_max': 89.979164, 'geospatial_lon_min': -179.97917, 'geospatial_lon_max': 179.97917, 'geospatial_vertical_min': 0.0, 'geospatial_vertical_max': 0.0, 'time_coverage_start': '1958-01-01T00:0', 'time_coverage_end': '1958-12-01T00:0', 'time_coverage_duration': 'P1Y', 'time_coverage_resolution': 'P1M', 'standard_nam_vocabulary': 'CF-1.0', 'license': 'No restrictions', 'contributor_name': 'Katherine Hegewisch', 'contributor_role': 'Postdoctoral Fellow', 'contributor_email': 'khegewisch@ucmerced.edu', 'publisher_name': 'Northwest Knowledge Network', 'publisher_url': 'http://www.northwestknowledge.net', 'publisher_email': 'info@northwestknowledge.net', 'date_modified': '2021-04-22', 'date_issued': '2021-04-22', 'geospatial_lat_units': 'decimal degrees north', 'geospatial_lat_resolution': -0.041666668, 'geospatial_lon_units': 'decimal degrees east', 'geospatial_lon_resolution': 0.041666668, 'geospatial_vertical_units': 'None', 'geospatial_vertical_resolution': 0.0, 'geospatial_vertical_positive': 'Up', 'references': 'Abatzoglou, J.T., S.Z. Dobrowski, S.A. Parks, and K.C. Hegewisch, 2017, High-resolution global dataset of monthly climate and climatic water balance from 1958-2015, submitted to Scientific Data.', 'source': 'WorldClim v2.0 (2.5m), CRU Ts4.0, JRA-55', 'version': 'v1.0', 'Conventions': 'CF-1.6'}\n", - " ds.attrs = fixed_attrs\n", - " \n", - " rename = {}\n", - "\n", - " station_influence = ds.get(\"station_influence\", None)\n", - "\n", - " if station_influence is not None:\n", - " ds = ds.drop_vars(\"station_influence\")\n", - "\n", - " var = list(ds.data_vars)[0]\n", - " \n", - " rename_vars = {'PDSI': 'pdsi'}\n", - "\n", - " if var in rename_vars:\n", - " rename[var] = rename_vars[var]\n", - "\n", - " if \"day\" in ds.coords:\n", - " rename[\"day\"] = \"time\"\n", - "\n", - " if station_influence is not None:\n", - " ds[f\"{var}_station_influence\"] = station_influence\n", - " with xr.set_options(keep_attrs=True):\n", - " ds[var] = _apply_mask(var, ds[var])\n", - " if rename:\n", - " ds = ds.rename(rename)\n", - " return index, ds\n", - "\n", - " def expand(self, pcoll: beam.PCollection) -> beam.PCollection:\n", - " return pcoll | beam.Map(self._preproc)" + "data": { + "text/plain": [ + "<_ChainedPTransform(PTransform) label=[Create|OpenURLWithFSSpec|OpenWithXarray|Munge|StoreToZarr] at 0x1a18092e0>" ] - }, + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transforms = (\n", + " beam.Create(pattern.items())\n", + " | OpenURLWithFSSpec()\n", + " | OpenWithXarray(file_type=pattern.file_type)\n", + " | Munge() # New pre-processor\n", + " | StoreToZarr(\n", + " target_root=target_root,\n", + " store_name=store_name,\n", + " combine_dims=pattern.combine_dim_keys,\n", + " )\n", + ")\n", + "transforms" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the next step we will create a `Beam` pipeline and pass our in of transforms to that pipeline." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Create Pipeline\n", - "\n", - "We are now ready to create the processing pipeline.\n", - "\n", - "Below we chain together multiple processing steps.\n", - "1. Initalize the pipeline with the list of input file patterns\n", - "2. Use Fsspec to open each file url and create Fsspec file objects\n", - "3. Pass the Fsspec file objects to Xarray to open as Xarray Datasets\n", - "4. Pass the Xarray Datasets to our custom preprocessing function (named `Munge`) \n", - " to apply our preprocessing and cleaning logic\n", - "5. Pass the cleaned Xarray Dataset to the `StoreToZarr` method to combine and\n", - " write the Datasets to a single Zarr Dataset\n" - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" + ] }, { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "<_ChainedPTransform(PTransform) label=[Create|OpenURLWithFSSpec|OpenWithXarray|Munge|StoreToZarr] at 0x1a18092e0>" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "transforms = (\n", - " beam.Create(pattern.items())\n", - " | OpenURLWithFSSpec()\n", - " | OpenWithXarray(file_type=pattern.file_type)\n", - " | Munge() # New pre-processor\n", - " | StoreToZarr(\n", - " target_root=target_root,\n", - " store_name=store_name,\n", - " combine_dims=pattern.combine_dim_keys,\n", - " )\n", - ")\n", - "transforms" - ] + "data": { + "application/javascript": "\n if (typeof window.interactive_beam_jquery == 'undefined') {\n var jqueryScript = document.createElement('script');\n jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n jqueryScript.type = 'text/javascript';\n jqueryScript.onload = function() {\n var datatableScript = document.createElement('script');\n datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n datatableScript.type = 'text/javascript';\n datatableScript.onload = function() {\n window.interactive_beam_jquery = jQuery.noConflict(true);\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }\n document.head.appendChild(datatableScript);\n };\n document.head.appendChild(jqueryScript);\n } else {\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }" + }, + "metadata": {}, + "output_type": "display_data" }, { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the next step we will create a `Beam` pipeline and pass our in of transforms to that pipeline." - ] - }, + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:apache_beam.coders.coder_impl:Using fallback deterministic coder for type '' in '[7]: Create|OpenURLWithFSSpec|OpenWithXarray|Munge|StoreToZarr/StoreToZarr/DetermineSchema/CombinePerKey(CombineXarraySchemas)/GroupByKey'. \n", + "WARNING:apache_beam.coders.coder_impl:Using fallback deterministic coder for type '' in '[7]: Create|OpenURLWithFSSpec|OpenWithXarray|Munge|StoreToZarr/StoreToZarr/DetermineSchema/CombinePerKey(CombineXarraySchemas)/GroupByKey'. \n", + "WARNING:apache_beam.coders.coder_impl:Using fallback deterministic coder for type '' in '[7]: Create|OpenURLWithFSSpec|OpenWithXarray|Munge|StoreToZarr/StoreToZarr/DetermineSchema/CombinePerKey(CombineXarraySchemas)'. \n" + ] + } + ], + "source": [ + "with beam.Pipeline() as p:\n", + " p | transforms" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Check and Plot Target" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" - ] - }, - { - "data": { - "application/javascript": "\n if (typeof window.interactive_beam_jquery == 'undefined') {\n var jqueryScript = document.createElement('script');\n jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n jqueryScript.type = 'text/javascript';\n jqueryScript.onload = function() {\n var datatableScript = document.createElement('script');\n datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n datatableScript.type = 'text/javascript';\n datatableScript.onload = function() {\n window.interactive_beam_jquery = jQuery.noConflict(true);\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }\n document.head.appendChild(datatableScript);\n };\n document.head.appendChild(jqueryScript);\n } else {\n window.interactive_beam_jquery(document).ready(function($){\n \n });\n }" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:apache_beam.coders.coder_impl:Using fallback deterministic coder for type '' in '[7]: Create|OpenURLWithFSSpec|OpenWithXarray|Munge|StoreToZarr/StoreToZarr/DetermineSchema/CombinePerKey(CombineXarraySchemas)/GroupByKey'. \n", - "WARNING:apache_beam.coders.coder_impl:Using fallback deterministic coder for type '' in '[7]: Create|OpenURLWithFSSpec|OpenWithXarray|Munge|StoreToZarr/StoreToZarr/DetermineSchema/CombinePerKey(CombineXarraySchemas)/GroupByKey'. \n", - "WARNING:apache_beam.coders.coder_impl:Using fallback deterministic coder for type '' in '[7]: Create|OpenURLWithFSSpec|OpenWithXarray|Munge|StoreToZarr/StoreToZarr/DetermineSchema/CombinePerKey(CombineXarraySchemas)'. \n" - ] - } - ], - "source": [ - "with beam.Pipeline() as p:\n", - " p | transforms" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Dimensions: (crs: 1, lat: 4320, lon: 8640, time: 24)\n", + "Coordinates:\n", + " * crs (crs) int16 3\n", + " * lat (lat) float64 89.98 89.94 89.9 89.85 ... -89.85 -89.9 -89.94 -89.98\n", + " * lon (lon) float64 -180.0 -179.9 -179.9 -179.9 ... 179.9 179.9 180.0\n", + " * time (time) datetime64[ns] 2000-01-01 2000-02-01 ... 2001-12-01\n", + "Data variables:\n", + " soil (time, lat, lon) float32 dask.array\n", + " srad (time, lat, lon) float32 dask.array\n", + "Attributes: (12/49)\n", + " Conventions: CF-1.6\n", + " acknowledgment: Please cite the references included here...\n", + " cdm_data_type: GRID\n", + " contributor_email: khegewisch@ucmerced.edu\n", + " contributor_name: Katherine Hegewisch\n", + " contributor_role: Postdoctoral Fellow\n", + " ... ...\n", + " time_coverage_duration: P1Y\n", + " time_coverage_end: 1958-12-01T00:0\n", + " time_coverage_resolution: P1M\n", + " time_coverage_start: 1958-01-01T00:0\n", + " title: TerraClimate: monthly climate and climat...\n", + " version: v1.0\n" + ] + } + ], + "source": [ + "ds_target = xr.open_zarr(target_path, consolidated=True)\n", + "print(ds_target)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As an example calculation, we compute and plot the seasonal climatology of soil moisture." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Check and Plot Target" - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/tt/4f941hdn0zq549zdwhcgg98c0000gn/T/ipykernel_22660/2916827166.py:2: PerformanceWarning: Reshaping is producing a large chunk. To accept the large\n", + "chunk and silence this warning, set the option\n", + " >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", + " ... array.reshape(shape)\n", + "\n", + "To avoid creating the large chunks, set the option\n", + " >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", + " ... array.reshape(shape)Explictly passing ``limit`` to ``reshape`` will also silence this warning\n", + " >>> array.reshape(shape, limit='128 MiB')\n", + " soil_clim = ds_target.soil.groupby('time.season').mean('time').coarsen(lon=12, lat=12).mean()\n" + ] }, { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Dimensions: (crs: 1, lat: 4320, lon: 8640, time: 24)\n", - "Coordinates:\n", - " * crs (crs) int16 3\n", - " * lat (lat) float64 89.98 89.94 89.9 89.85 ... -89.85 -89.9 -89.94 -89.98\n", - " * lon (lon) float64 -180.0 -179.9 -179.9 -179.9 ... 179.9 179.9 180.0\n", - " * time (time) datetime64[ns] 2000-01-01 2000-02-01 ... 2001-12-01\n", - "Data variables:\n", - " soil (time, lat, lon) float32 dask.array\n", - " srad (time, lat, lon) float32 dask.array\n", - "Attributes: (12/49)\n", - " Conventions: CF-1.6\n", - " acknowledgment: Please cite the references included here...\n", - " cdm_data_type: GRID\n", - " contributor_email: khegewisch@ucmerced.edu\n", - " contributor_name: Katherine Hegewisch\n", - " contributor_role: Postdoctoral Fellow\n", - " ... ...\n", - " time_coverage_duration: P1Y\n", - " time_coverage_end: 1958-12-01T00:0\n", - " time_coverage_resolution: P1M\n", - " time_coverage_start: 1958-01-01T00:0\n", - " title: TerraClimate: monthly climate and climat...\n", - " version: v1.0\n" - ] - } + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.DataArray 'soil' (season: 4, lat: 360, lon: 720)>\n",
+       "dask.array<mean_agg-aggregate, shape=(4, 360, 720), dtype=float32, chunksize=(1, 360, 720), chunktype=numpy.ndarray>\n",
+       "Coordinates:\n",
+       "  * lat      (lat) float64 89.75 89.25 88.75 88.25 ... -88.75 -89.25 -89.75\n",
+       "  * lon      (lon) float64 -179.8 -179.2 -178.8 -178.2 ... 178.8 179.2 179.8\n",
+       "  * season   (season) object 'DJF' 'JJA' 'MAM' 'SON'\n",
+       "Attributes:\n",
+       "    coordinate_system:  WGS84,EPSG:4326\n",
+       "    description:        Soil Moisture at End of Month\n",
+       "    dimensions:         lon lat time\n",
+       "    grid_mapping:       crs\n",
+       "    long_name:          soil_moisture_content\n",
+       "    standard_name:      soil_moisture_content\n",
+       "    units:              mm
" ], - "source": [ - "ds_target = xr.open_zarr(target_path, consolidated=True)\n", - "print(ds_target)" + "text/plain": [ + "\n", + "dask.array\n", + "Coordinates:\n", + " * lat (lat) float64 89.75 89.25 88.75 88.25 ... -88.75 -89.25 -89.75\n", + " * lon (lon) float64 -179.8 -179.2 -178.8 -178.2 ... 178.8 179.2 179.8\n", + " * season (season) object 'DJF' 'JJA' 'MAM' 'SON'\n", + "Attributes:\n", + " coordinate_system: WGS84,EPSG:4326\n", + " description: Soil Moisture at End of Month\n", + " dimensions: lon lat time\n", + " grid_mapping: crs\n", + " long_name: soil_moisture_content\n", + " standard_name: soil_moisture_content\n", + " units: mm" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As an example calculation, we compute and plot the seasonal climatology of soil moisture." - ] - }, + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "with xr.set_options(keep_attrs=True):\n", + " soil_clim = ds_target.soil.groupby('time.season').mean('time').coarsen(lon=12, lat=12).mean()\n", + "soil_clim" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/var/folders/tt/4f941hdn0zq549zdwhcgg98c0000gn/T/ipykernel_22660/2916827166.py:2: PerformanceWarning: Reshaping is producing a large chunk. To accept the large\n", - "chunk and silence this warning, set the option\n", - " >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", - " ... array.reshape(shape)\n", - "\n", - "To avoid creating the large chunks, set the option\n", - " >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", - " ... array.reshape(shape)Explictly passing ``limit`` to ``reshape`` will also silence this warning\n", - " >>> array.reshape(shape, limit='128 MiB')\n", - " soil_clim = ds_target.soil.groupby('time.season').mean('time').coarsen(lon=12, lat=12).mean()\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.DataArray 'soil' (season: 4, lat: 360, lon: 720)>\n",
-              "dask.array<mean_agg-aggregate, shape=(4, 360, 720), dtype=float32, chunksize=(1, 360, 720), chunktype=numpy.ndarray>\n",
-              "Coordinates:\n",
-              "  * lat      (lat) float64 89.75 89.25 88.75 88.25 ... -88.75 -89.25 -89.75\n",
-              "  * lon      (lon) float64 -179.8 -179.2 -178.8 -178.2 ... 178.8 179.2 179.8\n",
-              "  * season   (season) object 'DJF' 'JJA' 'MAM' 'SON'\n",
-              "Attributes:\n",
-              "    coordinate_system:  WGS84,EPSG:4326\n",
-              "    description:        Soil Moisture at End of Month\n",
-              "    dimensions:         lon lat time\n",
-              "    grid_mapping:       crs\n",
-              "    long_name:          soil_moisture_content\n",
-              "    standard_name:      soil_moisture_content\n",
-              "    units:              mm
" - ], - "text/plain": [ - "\n", - "dask.array\n", - "Coordinates:\n", - " * lat (lat) float64 89.75 89.25 88.75 88.25 ... -88.75 -89.25 -89.75\n", - " * lon (lon) float64 -179.8 -179.2 -178.8 -178.2 ... 178.8 179.2 179.8\n", - " * season (season) object 'DJF' 'JJA' 'MAM' 'SON'\n", - "Attributes:\n", - " coordinate_system: WGS84,EPSG:4326\n", - " description: Soil Moisture at End of Month\n", - " dimensions: lon lat time\n", - " grid_mapping: crs\n", - " long_name: soil_moisture_content\n", - " standard_name: soil_moisture_content\n", - " units: mm" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "with xr.set_options(keep_attrs=True):\n", - " soil_clim = ds_target.soil.groupby('time.season').mean('time').coarsen(lon=12, lat=12).mean()\n", - "soil_clim" + "data": { + "text/plain": [ + "" ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" }, { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABlgAAAMWCAYAAACdmov2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZxlVXUv/l17n+HeW2NPdAOCgIoDT9HnFMUJGrq7fprnU6NxSDT6wIDGCIgMIqOMQYZoTHyaoIQMvjwTk/eSdDcIzqhxNhok+hyRsenumu5wztl7//5Ye+9zzq1b3XR3dVdVs7+fT32q6g7n7DPtvdb6rvVdZIwxCAgICAgICAgICAgICAgICAgICAgICAgICHjUEIs9gICAgICAgICAgICAgICAgICAgICAgICAgOWGQLAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBATsIQLBEhAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQsIcIBEtAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQMAeIhAsAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBe4hAsAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBOwhAsESEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBCwhwgES0BAQEBAQEBAQEBAQEBAQEBAQEBAQEBAwB4iECwBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQF7iECwBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQE7CECwRIQEBAQsOxw6aWXgohARIiiCKtXr8ZLXvIS3HTTTej1erXPvuxlL8OZZ55Z+999t/pTFMUBPoqAgICAgICAgIAAtm2f+cxnzvu/w9/8zd9ASonTTz/9wA0uICAgICAgYJcIBEtAQEBAwLLEcccdh/vvvx+//OUv8bnPfQ6vfe1rcfXVV+OFL3whpqend/nd0047Dffff3/tJ4qiAzTygICAgICAgICAgD3HzTffjHPPPRef+tSn0G63F3s4AQEBAQEBAQgES0BAQMCSx6c//Wk8/elPR7PZxKpVq3DyySdjdnbWv/+JT3wCT33qU9FoNPCUpzwFf/qnf1r7/nnnnYdjjz0WrVYLxxxzDC666CLkee7f/973vocTTzwRIyMjGB0dxbOf/Wx885vf9O///d//PY477jikaYqjjjoK119/fW37Rx11FK666iq87W1vw8jICI488kh87GMf209no0QURVi3bh0OO+wwPP3pT8e73vUufOELX8APfvADXHvttbv8bqvVwrp162o/AQEBAQEBAQEB+x/Btt07/PznP8ddd92F888/H095ylPw6U9/erGHFBAQEBAQEIBAsAQEBAQsadx///14wxvegLe97W24++678fnPfx6vfvWrYYwBAHz84x/HhRdeiCuvvBJ33303rrrqKlx00UW45ZZb/DZGRkbwyU9+Ev/xH/+BP/7jP8bHP/5x3Hjjjf79N73pTXjc4x6Hb3zjG/jWt76F888/H3EcAwC+9a1v4XWvex1e//rX49///d9x6aWX4qKLLsInP/nJ2jivv/56POc5z8F3vvMdvOMd78AZZ5yBH/3oR/Me11VXXYXh4eFd/nzpS1/a4/P1lKc8BRMTE/iHf/iHPf5uQEBAQEBAQEDA/kWwbfceN998M17+8pdjbGwMv/M7v4O/+Iu/2KftBQQEBAQEBCwMyDhLJiAgICBgyeHb3/42nv3sZ+PnP/85Hv/4x895/8gjj8S1116LN7zhDf61K664Av/6r/+Ku+66a+A2r7vuOvyv//W/fCbf6OgoPvzhD+Mtb3nLnM++6U1vwsMPP4zbbrvNv3buuefiX/7lX/DDH/4QAGf5vfjFL8att94KADDGYN26dbjsssvm1Yfevn07tm/fvstjP/zww9FsNge+d+mll+If//Ef8d3vfnfOe+effz4+9KEPedmEl73sZXjmM5+Jm266yf9/1113IUkS/53f//3fn5O9GBAQEBAQEBAQsLAItu2js237/9da46ijjsKHP/xhvPKVr8S2bdtw2GGH4T/+4z/wxCc+cZf7DQgICAgICNi/CILzAQEBAUsYxx9/PNavX4+nP/3p2LhxIzZs2IDf+q3fwooVK/Dwww/jV7/6Ff7H//gfOO200/x3iqLA2NiY///Tn/40brrpJvzkJz/BzMwMiqLA6Oiof//ss8/GqaeeiltvvRUnn3wyXvva1+IJT3gCAODuu+/GK1/5ytqYTjjhBNx0001QSkFKCQB4xjOe4d8nIqxbtw4PPfTQvMe1cuVKrFy5ct9OzjwwxoCIdvmZN73pTbjwwgv9/+Pj4/tlLAEBAQEBAQEBASWCbbt3uO222zA7O4uJiQkAwOrVq7FhwwbcfPPNuOqqq/bbfgMCAgICAgJ2jyARFhAQELCEIaXE7bffjs2bN+NpT3saPvzhD+PJT34yfvazn0FrDYClFL773e/6nx/84Af42te+BgD42te+hte//vWYmJjAP//zP+M73/kOLrzwQmRZ5vdx6aWX4oc//CFe/vKX484778TTnvY0fOYznwEwmKwYVPjoZBcciMiPbxD2p4zC3XffjaOPPnqXnxkbG8MTn/hE/7N69eq92ldAQEBAQEBAQMCjR7Bt9w4333wztm/fjlarhSiKEEUR/vVf/xW33HILlFJ7vd2AgICAgICAfUeoYAkICAhY4iAinHDCCTjhhBNw8cUX4/GPfzw+85nP4Oyzz8bhhx+On/70p3jTm9408Ltf+cpX8PjHP75WrfGLX/xizueOPfZYHHvssTjrrLPwhje8AZ/4xCfwqle9Ck972tPw5S9/ufbZu+66C8cee6zP8NsbnH766Xjd6163y88cfvjhe7zdH/3oR9iyZQsuuOCCvR1aQEBAQEBAQEDAfkSwbfcMjzzyCP7pn/4Jn/rUp3Dcccf517XWePGLX4zNmzfjFa94xV5tOyAgICAgIGDfEQiWgICAgCWMr3/967jjjjuwYcMGHHLIIfj617+Ohx9+GE996lMBcIbeH/7hH2J0dBQTExPo9Xr45je/iR07duDss8/GE5/4RPzyl7/Epz71KTz3uc/Fv/zLv/gMPgDodDp473vfi9/6rd/C0UcfjXvvvRff+MY38JrXvAYA8J73vAfPfe5z8YEPfAC//du/ja9+9av4kz/5E/zpn/7pPh3XQsgoFEWBBx54AFprPPLII/j85z+PK664As985jPx3ve+d5+2HRAQEBAQEBAQsPAItu2e49Zbb8WqVavw2te+FkLURUhe8YpX4C/+4i8CwRIQEBAQELCICARLQEBAwBLG6OgovvjFL+Kmm27C1NQUHv/4x+P666/3+sunnnoqWq0WrrvuOpx77rkYGhrC05/+dJx55pkAgFe+8pU466yz8Ad/8Afo9Xp4+ctfjosuugiXXnopAJZpeOSRR/DmN78ZDz74IFavXo1Xv/rVuOyyywAA//W//lf83d/9HS6++GJ84AMfwKGHHorLL78cv/d7v7cIZ6OOH/7whzj00EMhpcTY2Bie9rSn4YILLsAZZ5yBNE3957TWiKKw3AUEBAQEBAQELDaCbTsY/fZq9f+bb74Zr3rVq+aQKwDwmte8Br/927+NBx98EGvXrj1g4w0ICAgICAgoQWaQ4GhAQEBAQMBBgqc85Sk49dRTcc455yz2UAICAgICAgICAgLm4PTTT8e9996Lf/7nfx74f0BAQEBAQMDSRWhyHxAQEBBwUOKhhx7CLbfcgnvuuQfr169f7OEEBAQEBAQEBAQE1DA9PY0vfvGL+Id/+AecfPLJc/4PCAgICAgIWPoImikBAQEBAQclNm3ahB07duBDH/oQnvWsZy32cAICAgICAgICAgJquPjii/HXf/3XeNWrXoXTTz8dF1xwQe3/gICAgICAgKWPIBEWEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBCwhwgSYQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAXuIQLAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBATsIQLBEhAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQsIcITe77oLXGfffdh5GRERDRYg8nICAgICAgICDgMQZjDKanp3HYYYdBiD3Phwr2bEBAQEBAQEBAwGJjX23agIDlgkCw9OG+++7DEUccsdjDCAgICAgICAgIeIzjV7/6FR73uMft8feCPRsQEBAQEBAQELBUsLc2bcD+wys2DKPZIPzv/zO92EM5KBAIlj6MjIwA4Id/dHR0kUcTEBAQEBAQEBDwWMPU1BSOOOIIb5fuKYI9GxAQEBAQEBAQsNjYV5s2YP/gjjvuwJe/3oFSBl/96lfxghe8YLGHtOwRCJY+OBmF0dHR4JAGBAQEBAQEBAQsGvZW3ivYswEBAQEBAQEBAUsFQbJ26cAYg/e99+U4950r0OkavO+c9bjzy7PhGu0jggBeQEBAQEBAQEBAQEBAQEBAQEBAQEBAwEGM//N//g9+cW+Bd506jrNPH8f37+7hs5/97GIPa9kjECwBAQEBAQEBAQEBAQEBAQEBAQEBAQEBBymUUrjwvNfhwjNXYqglMDYqcd4frMT73vubMMYs9vCWNQLBEhAQEBAQEBAQEBAQEBAQEBAQEBAQEHCQ4m//9m8xM6tx6ptKCeF3/N4Yfv1Agc985jOLOLLlj0CwBAQEBAQEBAQEBAQEBAQEBAQEBAQEBByEyLIMl7z/bbjkvauQpiUd0GoJvP+slXj/+W+AUmoRR7i8EQiWgICAgICAgICAgICAgICAgICAgICAgIMQH7/xcUgTwu+8ZmTOe297wxh6mcFffuTwRRjZwYFAsAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQcZGi327jyxu24/LxVkJLmvJ8khEvOWYnLrnsEvV5vEUa4/BEIloCAgICAgICAgICAgICAgICAgICAgICDDB+++kgctjbCq/6/oXk/84ZXjWBkWOBj1x9xAEd28CAQLAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEHESYnJ3Htn+zAFResAtHc6hUHKQmXn7cKV960HbOzswdwhAcHosUeQEBAQMByw8ZnX4J8ZRPJw22o4RSqKUHK+PdFpvl3r4CJBFSDp9p4exswBhACqpUAgmAkwRBABjAE3PH59y3KMQUEBAQEBAQEBDx2sOn4i5AdMgQ5W0BOdqDGm1CtqG7TdhVEJ4eJJdRQDABIHpgClAYiiWJFCzq2OZt9QZs7PnfBATuWgICAgICAgMH44GXH4PinpTjlpa3dfva/bRzCtR+O8aGrHo8Lrtx2AEZ38ICMMWb3H3vsYGpqCmNjY5icnMTo6OhiDycg4IDjpFOu4T80QNrAiIqzNKjmTdvXdfn+nbefv38HuY+YWHM61M6dEM0m6JDV0CMtiHYPppkAxoDuexhopEAcQ48NwTQi6EQCAHQiQMrADNCt3GNUzx0AMgYwAAgw1kklY3DHncFBDQgICHgsYV/t0WDPBgTswqbts2dJGba7rE0mcgUqDEDA7V95/wEd855g0+q3Q09OgZIEIIJYd4i3aXUrBQCI+x4CRoahR1rQzRgmFjAEmHgB7dlB0JW/l4l/EBAQEBCw8Ag26eLioYcewhOOWYctnzocL3hO81F9584vt/HaU+/HT3+2DStWrNjPIzx4EAiWPoSHP+BgRtXR9BB9/wMgpWFiUSNNas5pH6FS3aYoNKjQMJGw1RlzHTcypnxd7B+Ha+PQm7F19i8BABuSNwIA5GFroR9+BNAGFEegleOAkFCrR31WniM34skuV5804/KYDzTcdalcg0HjCA5rQEBAwMGFQLAEBMyPee3Z/tdQ2rSeTNidPVvZhiNaTDzXpiXnQjtP2hhA0H5JitnY/F1s7dw6vz07OgJEkm3aQ0ahmnWbNmrnUI1o8ezZPUCwaQMCAgIOLgSbdHFx5ttX4P/9Isc/3XLYHn1vw+vuxfOe1cBVf7x9P43s4MOyIViKosCll16Kv/7rv8YDDzyAQw89FL/3e7+H97///RCCLUVjDC677DJ87GMfw44dO/D85z8fH/nIR3Dcccc96v2Ehz9gucA5l1QYiFxDR+Qlpwaiz+FccAdLs7NJyrCTSQQjaP4KGF0hWiqZbetPuhpUaOhYgpTmY6pUc1Bh5be6CpAE0clB7R6Q58iOXoP4Wz8GHbYWKBT0r34NSAkoBZAABEGMj8HMzIKSBKbXAx2+Dtm60aXjdA4iv+zvfmKqH8EpHYyTTrkmnJuAgIBlhUCwBDxWULVn4x0dqOF0rk1rbSBoAyP7DKD9YbtVbFpSBkaAbVq37/ns2QruvKPPpq18pmrPyk7B5E0kIae7oG4OZFndplUa+lf3AUaX9uyKcZjpGa5ekQKm3Vl6Nu186E8gGoBgt81FsGcDAgKWI4JNunj45S9/iSc/+Sh89V+OwDOelu7Rd//tO12c/Fv34if/7z6sW7duP43w4MKyIViuvPJK3Hjjjbjllltw3HHH4Zvf/Cbe+ta34oorrsC73/1uAMC1116LK6+8Ep/85Cdx7LHH4oorrsAXv/hF3HPPPRgZGXlU+wkPf8BSxPqTrp6TIWeIfPZclaQYRFzsKSi3FSz9rxcGpJlAMVIAxLIK0Y52+SFjYNIYOol4nNYphSAvf+XHDAACXoaBx8/H5/8GWNO5/3sAZE8BxkC0c6iRhN+PBGCAaKoLMd2FaSbQzRiqGZdEFBFgDJJ7fs1EzOPWIl/Z3H/O6KAMy73ZRuW7joyqXmfKNV8fCyMIpA0++8ULcfJLr4Ih+OuQ/PxhwBhs/vmNezmggIMBJ51yDagwSH58P3pPPYz//s/7sPnXH659bsPzLkcxxs8YFSboqgcE7GcEgiXgYMX6E6/mPwbYs8CBsWnns2dlOwd1s/JzykCnMUwqYSLpiR9nk89JIrLVMQNt2j4J2CpkT0E1JWS7gOjmUEMs+eUIpmiyy0TNPPZsvLMLengHkOX736bdVwyogHdkVM2mLcqELQCAMbjj8+8r7x8CYPgapD9+AACw+Zc3HaCDCFiKOOmUa/zzToVB8qN7sfn+j9Q+M/HUC6CHG8jHOdAYbNqAgP2PYJMuHv7Hm8bQ6Rj81Z/uHUHy6rfehyMOj/DhP9+5sAM7SLFsCJZXvOIVWLt2Lf7iL/7Cv/aa17wGrVYLt956K4wxOOyww3DmmWfivPPOAwD0ej2sXbsW1157LX7/93//Ue0nPPwBi4X1J14N2clZXksIiF4OFBrU7gBZjs2//jA2vOAD3GiSCLoZV5y2UqaACg0yBjqW0ImoNZwcmNGmWT5B5Boggo6IHbdUzq2GsU4RV6nw90gZlgMjK7kQ2R04p7JCqlQzD8mUus+kDERPwUQCOhJzpccGjdkSCSbqy240mKOx7bW1HSyp4797MKBC4vheLv4F+6vQEJmC6BagqTagVSBYDjKcdMo1SO+dxOa7r57z3sTaM2DWrQbtmEZxxOryeQMHdyhTUEMx4u/+P9Ahq4FOF9kxhyCazbH1G5f47ZzywitgYgE5m0Hc+xB6Tz9yWWZUnnTKNRCZRrSzA/z819gyeXPtPaCcm6LtszAPP4It2z62WMMNeIwhECwByxnrT7waoqcgsgImEhCdHNAaNDmLzb+8Cae88AqIrAAA6EYMM4AMIA2WwLIkiK6QJPPas5Y0EUVZdTLQpt2FPQtjfIKKS9pxZFD5fWtk2dccSeR+i56CjgXbvLuSea3as9VjmsemHWjPWvv9oLZpKzBEELmC7BSgHvtNmOFEr0CwHDzYlT0LcD9Nc9ga0COTKB5/SM2mjaYztme//WPQ2jVszz5hLaLZHPjBT7C1c6vfjrdpZ3oQ9z6EzQ/+2QE5voXGSadcg+SBaZif3YutM7fUXnfwNu1DUzAPPowtU59YjKEGPAYRbNLFwT333IPjj38qvv+5I/HEo5O92sYPftTD8yd+hR/96Gd4/OMfv8AjPPiwbAiWa665Bh/96Edx22234dhjj8X3vvc9bNiwATfddBPe8IY34Kc//Sme8IQn4Nvf/jae9axn+e+98pWvxPj4OG655ZZdbL1EePgDFgMTTz4fakULgHX2tIZuxNCxgOwWkDvaQJYBJGCGG6BcQbcSmCSCIYJsZ+zUZQUgANNILOlhswKVAWnrrRgDIyVMJLzT4mQKVDPy1Sa7kqLaHaiwzqmVVxC9wjuFaij2TqDItNe03tcMxQDUAwaADUzwn6JXQLQzvtZKY/M918y7mYMVVScD4Cqg5SK3MHHMOeg9YbX/X2RMlsEYFCOlwVQNvohc4bNfvBAAsOn4i2CEgBpNB5KY0gaD4odmkB3GFZ8+61cDybd/guw5TyyfWRuoSn/84H4n6VygzsQC0WQXW757+X7bV/89UoXIuL+U6BUQv3gAmx/+6H4bR0BAIFgCliMmnnoBrzVj3ESVtAY0YBIJHQsO7j2wk23a0WGg3YFeNQqdctKQnOb+dyDihCNJbOtWqkCczUrGJvjY90gbUK58oo9Oo11L1Q5CX+9Bt12XqCI7BWBtrKo9Szl/uJZEFGzafUOfRK4jwmSngNg5y6SXUtj8sxsWe6QHHINsleVi004c+k70/ssRtdeYjFUgZZCPpnPIxKo9O3H4u2BWj/M8M5JAx3KuZJ82SB6cRu/wUZ9I6OxZUWhE3/0JsucdO9emveeB/U7SrX/ZVbzfiNim/d4H9st+dmXPAnzOqTAQvRz0418GsiVgvyLYpIuD171yBOOjAh+9bu0+bect73oAUgKf/NTUAo3s4MWyIViMMXjf+96Ha6+9FlJKKKVw5ZVX4oILuKTzrrvuwgknnIBf//rXOOywsnnP29/+dvziF7/A1q1bB2631+uh1+v5/6empnDEEUeEhz9gQeEzpbfNgozB5v+4yr93yguvgMg5UGpiCSMFjAB0Kv1nqDCQ3QLULSC6GVeCJNL3OzFCAJEAdCXlSwOIJVQr4SaduSrfakRWEoErVgbJge0OssNjplzDJBKqyeN1hv3JL70KcjaDiSU31oxobuPR/uw8h+CQ7hlcEEDpeiYkEUSmcPtX3r+Ig9u/cA6Eu++q/+/Oudgb9DuutX1UAjP7y8Fdf+LVMBGVzXpREiGkDOKHZ5CtKyUx4x1dFKMpZ3w6cqDN8ifFihYMwTudUTuH6LA0iU4loumMJRSsfMfBio3PvcxLRewO8Y4uAICyAtnaYQBBJz5g/2BPndFgzwYsFDYOv6WWAd2P9S+7CvHDg+1ZR6hAMNngKpyrdqbscMUk5QqkNSgrYGLJyUC9DKaVwiQREymaqzPcbxPLUjbMkS/Wbubfe05qiB4HdinXgF1XVSOC6CncfhfbT+tPuhpyJocajnntnceeHSgBFmzaPYcjVfz/7Afd9rWLF29MBwAnrb8GZAzuuJPjG+tPuhp33HnBAbFngfmJm0GfWwjbZ5BN60iP5AFLkFg4e1Z2ChStGCJXEF0FMcvrXrGqxX5tIhBNZ2zPDqdsz071kK9oABpI75u/Kma5Y0/sWQCIt3f4WcsKZIeNBHs2YL8hECwHHt/5zndwwgufjXvuOgqHHxrt07Z++oscT3/ZL/Dtb/8QT33qUxdohAcnlg3B8qlPfQrvfe97cd111+G4447Dd7/7XZx55pm44YYb8Ja3vMUTLPfddx8OPfRQ/73TTjsNv/rVr7Bly5aB27300ktx2WWXzXk9PPwBC4mT1l/js7BEofHZL7yPCYhv3QP9jCchemQGphEDhYZpJb6SxEhRk9JyIGUQTWesE22z/ADMzZYjAoSw2TmSHV9j+LWIpQt0RHMlDNzX+5wb0oarU2LhZRegjXdAd4eTX3IlZxoBweFcIFCuaxVHLtPSOWcHC/aHc7knWOpOh3N2q+dpT8c8qMJnMXCgx+Hn5z3BAKmXpX6PBCwv7KkzGuzZgAOFk065pmbPrn/ZVYi+8SPoZz0ZcqrDNmYsuRo7jb1cbb98K2D7nnQ4gYj/5+QdaDDZ4cgKl0AkJXTDki+VimwTkU8s6Zfa8vsylepezRXWOrbVMkrbviz6UQXxXWB4oOxXwN7DXa9K5cpBZ88OsjkqpCFQqd7YD/fWcrFVgj27F/vbG3sWGNjnMyBgIREIlgOPifVDeNqxCa67ZM2CbO8PLngIDz6s8Pf/PL0g2ztYsWwIliOOOALnn38+3vnOd/rXrrjiCvzVX/0VfvSjH+21RFjI+AvYF2xacSr/YR0/oxRICNDqVYDRvnfKIPRnCG4cerN3JElYhy+x0j+RBKII6PaAJAaUApTmv7McGG7BTM/AdLr8vUYKarHkGIzh7ycJ0OkCnS5MUfjGmLWqFzsdmOprfdhVViMAbEjeyMcOwFQarotGCooiQARPdMGgtb/ntkx9AptWnApqpHMaOh4M8M/aAFASA80GzMwsPxcLhC07/nze95aDDMNyxkmnXOP7JB2o87yre+zRYMuOP593G7u6lwICBiFUsAQcSPTbswDYJpQStGKc/y+KgfI5c+zZ4bfU3icheDtpwttMU7ZHk5g/kOX8d1EAcQw0UpjtO9mmFWwL0/BQ2W9wqMW2bLsN5AUgZWnPClvNvQD2LMC2uckLez40jDYQzQYojnf73YA9ROVabZm8GRNrzwDiGJvv/dAiDmrhsWnsbeU/A3wiSmIgTdmmXaAwze5skGDT7j8cNPasm18RbNqAPUcgWA4svvSlL+Hl/9/L8JOvHYXVq+Tuv/AocP+DBY59wc/xhS/+G57znOcsyDYPRuxbrdABRLvdhugzQqSU0NYYO/roo7Fu3TrcfvvtnmDJsgxf+MIXcO2118673TRNkaaPvpQy4ODGxLp3wGS5dSoFKE0BonmNe2eAmKLwrxmlQFoBQsL0eti08jRAKZiigMky3JZ/ip1PY2qkCoiwdeYWfk9Kfj1NSnIlto9rswF0ezDtNqgo+P1mg0mVqRkgjmBGh2CMAWWKDaKiANodIM/9viiO2Gl0z5XWvF8AJOVA4qWqz7px6M3l+8rKj5EACQJkYvt/aCCKPGEUyJUFhFIw9rwbpdhhi5fNlL5H2K2j0GpCj49AFApmtr1H296Vk+D2mz3niXu0zYB9x2I4+vPdC4/KUdV6l59z7wWnNGB/IdizAVVMrD2DqzkepU3r7Vml6m9obe06CXQ6mFh7BvRsGybLcVv2N55M6SdVAJQ2bRRxM/gk4b/TmMfUajLRgpztVCFsQlAMWruabVohYFaMwCgDygugUMDMLH8eYOKm3551JIsQbM/a4wCwe3u22ryeCNAGopEyUVMUEM3E28oBC4i++25izel8DZZHHuijxsbht/A9aUwpfdfvG7WaMGPDIK0XzKYN9uziYSnZs8CjsGnns2cr92mwaQMCli6MMXjfORtw9unjC0auAMChayO8823juPC9L8XWz80u2HYPNiybaNxv/uZv4sorr8SRRx6J4447Dt/5zndwww034G1v4ywQIsKZZ56Jq666Ck960pPwpCc9CVdddRVarRbe+MY3LvLoA5YiNq04FSDClu0fx8S6d/CLRKChVunoCbF7416yA2dcxhwRZ9SR4t/u+0SgNC1JlX6NZljDWwhvsEysPQOm24Xp9kBC8D528GfFyDDQSFkuocWVLkIbILONzLMcppWyg7lz2pMrxlhZhSyv77xq4PeRK1VHdNPoW9kBJ2LiBPCEEDXS8rxleY14ClgguKBBmgJFAZPn7KxJyc3rtx181SvueRhk8JPNgKWsAOLIZ8i6+5uiiO9XY+oZWVKAogibVr8dUHqgkxAch8cuNq041V//Xd0HPlgC1LOnd4GT1lvJiP3crycgIOCxgYH2rDZAJPbMppUCpHk+qxEtRcFJHd2yQoqS2NuswOBKkU2jb2WbdvvHAdgkJkuOsD27E4C1Z9OEE5OGG77PilAtIMtqvVlACajdLm3oQfYsMK9NWyNWbLJT3Z51B0igZsMnB1GwafcPpACR4OuvNEyWeQLLdHvYMvlnizzAhYWrmnK+FFVtBsF2KYxhmzaSbMPa+25eexbYrU0b7NnHLqr2LLALEq5aWVXFIJu2ct86yUiIYM8GBCwFbNmyBXf/OMP//avDdv/hPcS571yBJzz/5/jCF76Al770pQu+/YMBy0YibHp6GhdddBE+85nP4KGHHsJhhx2GN7zhDbj44ouRWBklYwwuu+wy/M//+T+xY8cOPP/5z8dHPvIR/Jf/8l8e9X5C+drBiaoRWjNKiTg4liYl6dGwGaBaA70MxX0P4Hb1v+Zsc+Jp72MnsNCgXobNP7mO9zX6VgB1Z9OTI6hLErjPDoLRGltnbsGG5I21LEEXzNsyeTOP43F/CL1mBcRMB2bHTiZ1AFCrCbNmBR/j1CzQ7nCGn5MHm49Q8QNgp9Ptpx+DJCDYkVcwFZkSdywkZahgWQgoBRofA9KEr7c2TPAZDRoZhlozDlIKW781V4v/YMOmFacyodJsAGTvrTwHsqwkWJIYmx8sHfSNz7oEYrrNkiQAf7aX+feDE7q84PSt99Wp29vtbFpxqidWtuz4c3ZQhYCamoZoNvznvJyM1vPOqQEBVeyrPRrs2YMX1ezhee1ZV5X8KGxab88aA8pVrQH0prG3DSRlnI26u8+5sQFst24cerMPIldfB4CJI97N2fvNBDTbnWvTrh7nvx/aPr89644VqI3HaO3lVPvRL9HrPluzaSuETqjIXjjQ+CiKw1Yi2jYD7JxkYlAKlnsdG4FaPXLQN7Z32DT2Nib1Gml5v820S4Klz54Fdm3TBnt2+WEhpNr2yZ61qK4tptPhpD6gnP+k5AozbTyBHhCwKwSb9MBAa43nHN/Cm14zgrNOX7Ff9nHljdux5XOz+PLX26ABCeOPdSwbguVAITz8yxc+86L/lnaOHMBGO4At2z5WZvkBLJkwoG/FxJPO5T+Unld7GgAmjjkHZtsjvG3rvO2KPHFwTtweIYpKaQQ79mqVTC2DejfObk0ezH5vd8G/9S+7CiDCHZ/jppMb4teD0hQmyyGsU0CtJtBs8hc6nVrWY8BeQmvQ2CjU4avQW5miaAqM3LMD9PAO1isfaoEKhc33LG4z+MXCoOqWvXEuFypg/1jBo5HPWo5O/iknXAHVipB+9+cAuPIvO/4YiJyr9z77hffN+c7EUWexfE0v8yQzOZKl1QSyHHpyyn+epOSqKycJ6X5HEhDsvJo0ASKBLd/7wH4/5uWATStPQ/bsJwA4+J/RQLA8duGJ20GIIw5C24bxNXvW2nbz9WGbeNK5/JlCYfNPPzj/Z2ZmYdod3r61CefNbt4TVO1dSwiZ+ezZXWG+jOrqe4/Cpl1/4tWAMbjj8zyfb2y8iaVuY64UcH0QqdXkOdwYmEd27H58AbsFrRhH/rgV6K1KMbtOorFdY+Q/pyB2TAHNBvRwAyg0tn7n4E8WGoRNo2+tEXnBnj0w2J1Nuxzt2fUvuwpGCqQ//GXt9d5xR4K0AQi4484Lau9NPOlcjjVkuV8LvEoFwH2wuj2YnZP8v6v4c3asEBxzcb1XpYCRbOeaSGDrNy/d34e9LLBpxanInvPEx8QzGmzSA4O/+7u/w9lnvgn3fOXxaDb3TyLIzKzGE5//c9z8yX/EK17xiv2yj+WMQLD0ITz8ywsDSQzroBmtIVxTTFedMijLzRh28Gz2jyNIJo46i4NcRcFZ8VrDdLq+mbiTBtv84J9h4qizoLdt32OyxCiFrbN/+ajImIHfn8cBr2bguc/1yzh4WZsKIbO3mdUbkjeyRncUMRllz02V+OnX9fbnaj7mO2QHzgGNj0KtGYfICuhGhN7KBsgA+bBEPF0gnilw+5cvXOxhLjomDn8XNv/6w3v13eCQwldhLASWizM6se4dPE/lOQcvbcNkShKWVQRYxsTp8pOd76SoBTsB8P9ZVlZEkuA1pNvjbeUFB+/i2PfDQpLwZ6TkBtAAbzuOYIiAWMJIWpaVaRNHnslZtUUBIoHND3+0DB7tplJyb3CwNOsNBMtjC/MSGJUG7lXJqjlztLHzVpazzJKFrw456ixro7F8rZltc5byytPYXoskNt//EUwcfTbMzqndSh3OgZWTndPAu0p4PFrMt+9+EqWaXDQAezuvuJ4sotVi/0Apvg7zJS8FO3aPQatWoFg7Bso1RDdDMd5EtiKBEQQdEaKuhsg0Prf1vMUe6qJiYt07sPmBP92r7wZ7dt+bvXsso+rjicPfxXOS87ur81UU1V+jik3rqh2JSptWG9snC6wW4Gzgbga0uT+QyXJWV2ikvP0k5spDIWrfMZLXLiMEV0wCuO3fll912sQT38vnxFZQVlUQgIX1ew4WexYINumBQFEUOO4pLZx9+gqc9jtj+3VfH/r4DnziU1P4zr935vRJf6wjECx9CA//8oIjJrZMfaLUgpasWQtBftEHbAZakgC9nm2GSUwGAHOaKwLg7QwP+T4Xrp+KIyuM1l72ZcuOP6+RJAMJjQGTz3wVLFXiZVffr26j+tvBN5d36K9YcX9j7x3RXcFlA8JobO3+NcuKKY2tnVvn/46VaqiNPUzcAMD3Y7MBPdLA1JNH0R0XSGYM0p0KySQThIMy6wMCdoeFcEIPNJniggcOu3JCJo4+G2a4iS3/fiUmjjmHX5ydZeLXESpAGfSvBgWddExFEgGCgDjmahP3/aqEjNuWa+7cy8ptd3v8vTQptxVF7LDFETukyvb0iiN2SolgpFwW2bwnv/QqxL/eAT3WAoSA2DYJs32n15c3Ss1dc+PIO+TUSIFmE5t/+kF2ZAEvwflYQiBYHltwxMSWyZvrJEUceXkW0+uVklkrx3kuKfhZMkbXyOE5cDat1kCez60sdvKzVu5lnytWKo3mTZ5j68wtNUnF3WJQT6vdfa9CgAySAttXOOJl6+xf1v7e5XeqfbqAYM9a0PAQ0GpCjzSQrWyiuzpCd4WAyIBkRiPdyb1GPr/lsU2wBOwd9tWmXYzkoKpNu7ug+hyb1iYCIbeEcNXHr4b63FxU7QXr7FdbpTevPSvZHjZEIEcqaAN0OmzDRpJ9/khaezaGaaYguw0TCRgpuf+g7dmy1JOG1p94NZJ7dwBFAbV2HEYIRNumYbZtBwSxTdtHsFAS+6RSajTYvpUSm39yXbBpg026X/HnN67FtR/egR984fGI4/0r3dXtajzlhF/gj66/Fa9//ev3676WGwLB0ofw8B988MSHlLzodXu7lSCokRqVLFtHsJQfNOxo2X4kVT3q/v0PIlN2JRH2aEiWXUqMPRqN6ErvgKUIf+2C3jUAJgn1oaswe+Qw2odIqBRobDdIpxREZiB7ClRoiK5alllBAQcGm1a/vdTr3sNnaynNFetPuhpG0q6JladeYDPNKgF9Y5g4r5Ir/UE8peoEr23EW6tmiWTprLrt8pvl91yVC8CkietP1WzYfetSUsF9P478500cAZHw2X9L3RkFWI4iuefXpcOtNJNIeQHjMiEr55yShDMes5x7SaUp0GywM3rMOYBWZTKEO5c2SzJbOwIjCHfecXBk+FURCJaAQXAkBbWabM8+2kqTau+QeXqUbJ25pZYsNIik2C3xMkiqCwCUKivAHfqTfSqkzF5jCWea98s+PZZRtWezUYG8RSgaQDIDxLMasmcgcwORGXx+87mLPdyAJYxNq9/uiWcAy9emPfFqL789CBNPvYBtWWdXVUmQQrGtVKh6jMMRLIPkxPvfb/T1WQGYMBGl5JeJKklHhQbaHUAbmJEhUKFKG61CqlT3bSJr0wIwREveVz1p/TVIf7md/YgksUlVdm0rCpYEriQrUGSTpPKcjzlJfKKVJ1ic7e/OrZQwaYRs7TCAg7fiLNik+xfdbhfHPmEE11y0Gq//7yMHZJ83/+0krv3wDvzHPbOIXa/RAESLPYCAgH3FxJrTOVAmCFu2fWzO+/0Ooq90wfwSWw6e2IhjUJpwRUyWzWmUOYhYqe5/0+hba1UmtYqbeVDLeMNc2a/qGEkIr/XvF3pjAKXKBvMOLkN4eAiYnvHaqksR7twBmJv5/Bh0UE27A9HOIAqDZMZAd9gRBQAjgKIhEc8aFGPJIo90aSHIJNSxZdvH5mbVOljJKmNlZPZXJvCeYtA17NeMBoBTXnQldEQgbRBvm+UXqxUqwOCKxWrQ0TWHBryz6OTBiKzZVHVQXWafrmYJ2vecnILbf1IxQCMJ6EqGkXNoi1LWgYyBsWPa+t0r5o57CcL1MwB4vRVjozDjY6CZLkgxWWKyrDwnkZVFS2IQgM0/u8F/3/WJmDj6bP68GHDPBgQcJJhY9w4f3JpPFqgaEKzJOe6q9x5V5iGlgIh7P7nm7VVCYnfzfX+FTe3/KkHSP65+Ga1BRErlNbLBvjmVNm5+tsfp7VnXN2Yp24b2GgR7tm7PRh0DGED2gKgHkAZABB0BoreHUnUHOYI9Oxdbtn2sPgc5EIGSmG2OolhS5Ov6k64GULdj+8mVU064ggkKYxA90gZiyT68tc0B1O1LV/kMzF0P+udhl0RUtWOdjSUrldr9hLAGEFG5PZssRMbARJJ/E8HN9lTo+rZIcVW2MrhtGVRk9yfvbBp7G2jlOPTqMYjZHh9bdY1qsC3rfICqPQuUlSsTR5/NL4iK9HBAwD7go9cdgRXjAq/7b8MHbJ9vfu0oPviRHbj5jx+H3z/nwQO236WOUMHSh8CuLm1sWnlaWfpqNUKJBEyvx2TILvSY+0kRB1d94rArsmQh4PSuna6zG1O/xNggVLML3ffc+MXqlUAUQT/wkP9sPxypM58DvVS1PjetOBU0NsIZ0NMz/OKg4PBBBIoilhBySBKYoRRqrIXO2hSdlRLJrAYMELc18pbAV//2PYs34CWM4JCW2LTyNCZQqjIC1V4jSoPGR+c4BUsVXlLB+Y7aILlvkp0bY9j56fXqWX1urXDvV+CccEqSUoO6up64ahP3I4XV5jf1fTq5BhL1jD63v8huR+vatgwRSPN10CMNkLJZf0Rz5ME2PudSmEjgtq8tnQzAk9ZfA9Jm11mY697B/VjSdK97JT0WECpYDn5sWnka27FuXpGSq7xchdcuen0MChRuGntb/TsL3N+oHxNrTud5qyiAvKjta06lSh+2TN7sq3Hc96rEDa1aCaQxzH0P+s9X4cilXWWgn/ySK/HZLy6tvnSbxt4GGhsFlIKenLLSkwc/wUJDLfsHy2uaoRTFyiG016XojQoYCcjMQBSAyLnx9lf/Jti0/Qj2bB2bVr8dlKalfGKVoNUaGB/D5nuu2c1Wlg5OfsmVIM1JcwAQPzjtbUgjiQmLwlb1msq86uzLagKRqwqO4zqR4j5fJU+cVK3739mt2tTJGWf3um0APJaor+8qkZcCI62hWwnb6ZL3b4SYU71yyguvwO13vX8vz9zCY/1JVwMGSH72EDb//MZ5Pzdx+LtYAuyXNx24wS1DBJt0/2F6ehpPOHoF/vzGQ/CKUw4cwQIA//v/TuM9l2zDj//fFJrN5gHd91JFIFj6EB7+pYdNK071DtSm1W9nQsU2zPXBqmozNodqsMt9xvX2wO6z9Bw2JG/EbdnfMJHhJMGav1sPoAmao8NclfZyICnZaQRgHtnOjY7nqWjZVXVNlSTpJ4hISt9obvOvP+z1Pn2TTilhEittoxRopsMNTR2WUIZPFRNPfK9trNeDmZrmFw8mp1QKNoKtpJAZakGPpKBcwSQRiuEYRUtCS5YKUikh6mh8+e/PWeyRBywDTKw9w1elUMLEnckyngfs/EmrVi66I7q74MHEk86dE0CsaUm7ZprOuSPrkLqMvyr5YQz3RjGmbPyZW+m0qK/AtyoV6TLOAM72c31ZrD41tK6vRYOc4CSeI0GmWwmMCw4YAxQaVBQwaQydRAABop1DzHR4nI4kc9t1PV8iuUtncMPzLmcSB1YTO5LQiSV3jIGRfP4+d9vead/vVubiiHfzPK4UaOU41OoRf9xLyblebASC5eDEptG3evttYt07WL/dVhsDdSlY47KMjeHEnGpWcqVX3Z7YbBubv4utnVv9OFwvEd55GXybY9M68sPNNVKC1qxi6dxt23ku6m90399DZQCMUj4haKD8mJRcoW0DWBNPe5+XHTSx5GbJRKCsAE23OQlHVfa5BG3aiWPOYXmZLOOqm4NRNqzPplWHrgTlCtrbswI6FlAJUDSJK1hy4Ot/efZijzxgGWDiyDOBThcmyyyZYjguILnXmz50zaL3rFt/oq1S2ZU95KpzXaX1gJ4nPlHHJeYYU69WqdrEM7PcH9CY0p510j1u7nbbMKaWsOoJFldJGMm69FqVnKna08b4noTOljONCCaJvF3JlSycUKTTiG1PAmRPQcx0QZkqJXSd/FmaAELs1i/Z+KxLQErxepBEUCknYIpc834E7fIa7ArrX3YVQLv+/sTh7wK0hlk5jmL1EJ8qZXD7l5cWub/YCDbp/sMHzluNLZ+bxRf/6XGgA1wNpbXB8zb+Cm96zQjec+nDB3TfSxWBYOlDePiXNibWvQOm0/XNw7wT5QKENguwRr5U3q8SLA5V2S1PWgxoXrmx+buWELHZF9awICmBKCodRJe1p3U5zgrEyhVAFMHsnPSkx5btH/cEy+5ky9x++okVB5IStO4QJlFsY2TSGig0EAnoNIaJBSjXEFkB2jkNMzk9cFtLSZsWsCSLEEC7w05ptZHfcgQRyBqQkBIYbnGQNZbQCQc9e2MRQMSGoiRoSRCF8TJIX/l0IFgCdo+JY89jZ3SGZbMoinxTZJISmx/+6P7b95PPr8kV9Dd3nHiqdVzsnN07chxASbJMPJl/b77nGiZYXOYeidrcXqsEkX0BK+sQkqo4sNoAWWaz76LSUXTrStVIrWpSO/RXuLgs9L51CUqVzjBRSa64fiSOsEkS+/3KulF1fgGgl7PTXBRzq3A86SNKnW4hfJWImz/V+BBEN+Pm05GATiPomMfgiCkjCLKrQLkGFXrBdLInjjqL70PXALTVgl67AjqW/hiCU8oIBMvBj00rTi3Jleq84TTuY54rTGab6FaCbzVbtl9fH/WKD5fwU61s3tj83TIRCfD2KEkJk2XY2v1r/u7K08r9FPVgG61ayT2jtu9k+9iuJbvt02IxqHJlDqQEjljHRAqYFBad3M5dFXu2k0PsmBpsz9r1ZykRLROP+0P+o5eV13c527PAvDatTiIUI7G1ZwFRGBjBEmAgcOKQYGmwr98aCJaAXWPiyefzPDnTrtm0npAYGcbm/7x2/+z7qReUc7W1webYtC4h0Bhkj1sBMsBnv/C++vvaYPNPP8g2UZUscehP5PGys/b16hiqvztdnpPdNqsyhIN6XlXt2uo+o6i0Z6tJrIJ4HaiS2HHMr2d5mSSYxGUze8BLh0FyXMKBsgKU5bw9rer7cShsooHte+hltux9oBsJKCt424klb4QAiKt+3LUQGfcppUJjy3cvn3Nt9wYTR7y7XBeHh1CsGfVjNwJLroJyMRFs0v2D7du34+ij1uAfP3koXvrC1qKMYfMds3jLux7AT3++I1xbBIJlDpb6wz+x9gxsfvDPFnsYi4KJI94NM9v2WXKDiAjnjPpAllJ1ksNpNleaCvvt2KbH/J4rf9VMpFT3Iaj2Pkhga+dW/75rtmeUYtkdG8CjOPKyVlRtJGcDZCbL2CjK8oHHVnOM5yFXAFi9+1GosaY3aEQvBykD3YigGhFMLCAyDZEpyPu3w0xO+6oXZBn3mnHHm8RL6p6bePL5ZWZOlnO24nKVCyMCjQ57Q9Y0E5gk4oBnIqEaEu1DIggFRB1tq1cAUQBf+d9BOiFg93CZXdRj6SvOms39PLo/n+1Nx11Y14rua7DpstI8wWLn5M13X11/HfDZfZv/89oy4w8oK0hstp13pipVLcYFK53sjjKls2fhx+md1gFE9yCSpXpMjvAZVL1SdaDdGqV1vRF0EvM2bF+E2r6qAVTnNFcqZcyA8fp1zmVHE7E+tH3NxDbDMJVcxRJzpp+xVXJRu4Bs81qw9RuXzD0f+4CJx/0hVw8BfNytJkwS8/zXjKETXmOr/Vwea3gsECyPaZv26LNhHtlRl7cFSnJFCFCalnOKoFLa0Rhf3eKqWHwTYUfWGE7yoajUg58jK1OxhV0VXr+87MTaM9gm1BrUSLkniuAscQCswQ+Uc5pSLHMmJSiJuUKn2kgZfeTPbsgYWjkOvXIEatj2ZCEgmsmgkwi6IaEjwVnQvQLygR2eYJlj09qA4lJKHJo48kw/l7tKJgDLl2iZz6ZtxMjGYnTWRCAFyJ6BTgiGANIGX/vrYM8G7B4bn3sZV/YqBcpt4kqh2K61FRj9ZMdCYdMz3s9VGP19Tir9RTb/+I8AlAQKUOkjd0xfMpydhzf/7AZMHPrOuZJdVRvQVSe7xCJZmR+qlSQk+LeTxB3Ub7Afbv2o7sv3SxEl6eHIlkG2qxB1+1YKJl2I2Fd3Y67up2rPurEWfeOtVvS4fVXHKCTHTXxVpSgJlkjYJFMBHfHnZTuH6LBNu+V7H9j9uXmUqJEsaWLt2cgnMLlqnX6i7bGG5WCTLkec+wcr8b0f9rD5bw9ftDEYY3Diq+7FSS9u4dLrHlm0cSwVhCb3ywyPVUd00+q3l9qijiQZUIniM/CiCBgf5VLZdocrWoB6pjEA0+lUvm/mOKKmKidDfQ6PM2ZQlzHbsu1jAPpIEKPLZvNaM1EkZZnppRVo3SFArwezY9J/bVAflWqvln64gBoVijVPE4loZwe0cwZopJBZAVIpiuEEpDjAqFePgcaGoZoxSBmIB3dwALaCiSedCz3cXPRyawAwKTtu5DIvk5jHuxwlFoyBmZoBtZrAyBA7DERAI0Y03YPssqatTgSKhvAOqch3XeUUEAAAm555MUwSAZEATbfZQWs2+Hcv2+96wdTLyuaPSVLOmZGoZadtvvtqJmOsk+QqVuZIPxrDjquVN/SfcY5Vv1yYWytqgyIAA/JK3HecjrR5lCXW1eBkdax+7NbhFcQj0RUntNoIGrBOcTHXAXUYJAdRRV8yAMgAsM6/c0C7PX++yDDR5GYTEgBpglGATiQ7hLnymeP7iolD3wmT5yC7bhpTronodEFKM/HViDhgOtvD+hOvRjYWIZ5WMBFBpQJUGMQzOeR0tiTWpIC9x2PVpp1YewZMXgwkV1wls7GEOFnZP7N6nCWwpmY4IacaEAPKZCL/ugClke/xYfK8ljRErncUqsE5g02r3+7tWKC8RoNkv4xSwMwsb8vbsyzJtekZ7wfavdKeHCBltttKF9vMnrICpBLoRCDa0YVo9yCkgB4q7Vk4e3aUJVpUK6nbtHauXUr2LJoNvv6F4utsDFdnF8VBZ9Om23uc6JWyPWsEL7Oi2P1mAwK8PRtLiHaPE1GSBGa4ASfNuuXfr9xv+6dOxkkhrvKjmkwjRV1WtijtuIkjz7TkgiirpCtyYBPr3sHfMSxxNjAxBijlvkgDus8+VXUCu0aADLIXBxE5jsQBmFQxBlB9CVKOXKmi+r/fvykJB5+QauYmClVtZ/f9KuHSP34nmSkEl4dUq17s+DmRSgLGxkNyBTRiqKY9l4UGFtCm9dXiQHn+shwEwBCTTKohEc3kkNNdrD/xauSjEaK2gpYEnQokO3PIdr7giUwBBz/uv/9+fOTmnfj8Zx63qOMgIlxxwWq84nfuw7vOfwSrVq1a1PEsNgLBMg9efdQfIjryyAUrIQzYNxAJGKi52Qu2UgSAz+jbOvUJborumqG7zzsY48vxq44mSdjMD12+10eukOtX4AN+7JSavE5IAJgrxVAU0NbRJCm9fj41G0wSuGBgq8kBwb0pLutrlmkiAeoVMJNToA43sRZpiuiw1VCtGCYimCiGnLX7zhWQxKDhIa7o6WUweQGKIxTjDdYihYvbsdzO7V85sJr5W75/BTvuhWJ5o0YDJss5U7MvQ36pgxKri+uMs04XNK0QtTlDVA+niDoSBREo5Uw/mRnIPBQeBuwaG553OYQxIK25VF5pwOSlkyZo1xvYB0wceaaVEVCljJ9WVkaAe34AYC1962CRI0qqzpe24xyU4e2y46oyXf2PPFGtSoXlCggUWYpFa99EvkaA9FepuPH0o0aEVGTF3I9SlYxDmrMOVRMGaqjKIxCV87rWZdWHP6bKejTomnoCquK0S8GZfwBXV2aFdUrtLo2BzjTUEFeTGKI5zaInnnpBraoIsFUprlLTyZRZTXSQANKknKMBkKlcc1eVaDQEEbLDRhAXGrKTo5EpkDZQqYSOCPFsgXjbLKB0TWrjYMNrnrgwUjmvecJZiIZGYcZHgk27lCCorLqu2LNV0sXkObbs+HNsWnkaaKYDCJbwgquCdhV3LsilDc9zXp5Qw1QynGt2rSglYNgWViARAXmBTStPw5btH68Nt0qObGz+bpm4BK4SpKLgwHoUcbZ2k6vlfHPzvbBp2eaWPDfZ74vZLsz2HYA2EGmC6PA1UEMJy+FKwcuA4vmMsmKOTYuKPUtuSMaACnPAe0Btvucalu/010SAmg2Y6ZnSpnXrxhK3aSmKKvJCc21aPdqE7EoYQUADIGUQZYDshYShgF1j0zP4uSQXYHdVelnGz0gkMSfBZIEwceSZ/IdL4gTqlWZODi+S/Flnz1RtG9/vUJSV5P3jFTSXXHGozgMVW22OTK2zK/vlI2v7mec9QWynu6b2tepsl0hkd1yNNbhkx2pljx+XqFTDVJKhYu7VQkUB6ub2+30nvtq/q7p29BM9plKFackOQlo7T7LQMCKFIZYQgyRseMEHcNtXL/KbnTjqLLYlbeLZxNozeAxO/kzIUprXVeOkCYDMJwIAsGsyr40CYNu/FSEbS5AQgZRGPF1wNVQsoRMg2j4LUsbb1YvdC3N/4TVHn7nYQzjocPfdd+PQtRGefXxjsYeCFz2/iZFhwn/+53/iBS94wWIPZ1ERCJb5UBSgqTY2vOADKIbjeRvuLiYm1r2DM52kBI2N+KDMrprbLiYmnnz+Xi8a/f0BJtacznIJfVUtzmBx1SQTa04HJUktg9kY7RuoURSxdIDTy3SB66qEgiNXBJXBrL4G97uDkxDb2HjTnNcmjj0P2DEJDAF6xSjEbBdodziz5fB3ef18hy1Tn5i3ioVGh2FGh3jhtoaTHmlAqFWcZWgISFN2OptRafBoQHSLsiIkjqzxowBByNcMoxiOWI9fwwclBek5RsoBgao7nZSmXP1TMcZIyqUtHUbE2YuuxBkomwkWBRt1Gogmu4BJUbQEAAIZQBwAh3R3zcYPNkw86dyBr2/+8R9xEBdYVoHc2/7tYmx8zqXcHB2AGR8GtXtWSoGdwU1PvxAmihYsk9efJ6AkV/ohqC7PpWymnRF1J9E5lP0VIqLyGQAAMYFUjT1Rvcm9e41/GxiIssm75PmvGvgf6LSifM017fSoOlywwUZ3TG477jhU37PrXneEh2ti6qA1Z69bshyNtJT5cXJBZHhun3OuRb1KpnpOK8dHWsPkgLAVoEYSREdz43vrPFNRHu/EMeewI26v3cSh7yy3ryyRVu3t4OTXKlmdtfNShdKg2Tbi7dxs1a1lOuZjEAVX9Bki0GzbZi1KbDruQuiRFKoRzZEV23T8RaWciLTET55j889umHvOlgAmnnQuzI6dC5ZlafIc6PZAs/GStWknHveHXu6TVq2wz4TYbzr6C4GJo87aa3u7Wrkzceg7LQGawbTb9cCb5OfDkR0Ta04HgLL6JBIciG82mEBwfZ18cE+zXWvKxKGazG1FMmwOyb0LbO3cyr0Krd/hEoomnnw+MDnFz/pwA2rFMEQnZnLIGEwceWatcnLL5M27rmIZbsGMNEE5k6wwgB5qQOwQgASTtlkBasQsbSjAtqtSED0buIujmk07rz0LhQ2/wQTkbV+7eLfnYMFgjL0eyt/3SGKQkxq2FU1kzNK1aV2wMZKDbdo8B3QT0SRXtBYtAdg+grIb7Nn9gYkj3s1/VJ7nzfd+iBMhbIB68/0fWaTR7Rm2fP8KbHr6hTZgbmCaCatY9HqcdGJiIIk9EbPl+1fs8z4nnvjeMr4wqDdqVVqrKEp7d9BnHSnkEm+AuXKy1c+6gH1/VXb1e6L6uint5vmI2P5+K25fLunGq3QoS2rbsXlVD/JSvD724foLOjiiy0n32nm3HEP1GAlQLCPI0muSr2f19LnzUD2ntURb+7eTTwN4PN1ePQZgDKIpcDW24P8pL/2Tam/ATWNvq5FL1LLbr16rvCirhKKKRJmD+2yhIKa7SJSBGk2hI+6hikLDuCrywsBEEWhmGk5KbdPxF0ENpTCxGCgptuF5l1sfw65d7cxLKy9FeJvWJZUGLCiWUu6F2I/Jm8sJoQdLH5w+4Pqx30W8Zp3X01xMTBzx7lLX2GWMVSo3SLIx62Q3eFGLeeGLIqAoakaUa8K+lHSIq9g49GZAKd9gc1/gAz81GZYCJst9k2cza2XCKg2Ja1l+AECidEr7jSIpSrkyK12zZeoT/u1NY2/jypoBcl9ujHp6BuKQNTDDDdAjk3y947KqZfOv/njO92pGgJNFW7MS+ZphiExBzHS5pNkdy0wbGGpCHbqypklqiBDNZr7xGxQ3gUOPs4mRJDCR9EFRPZJCNWPIDvd1Uc0IslPYpnKcnUHKHJBS143PugTCOu5QCuj2WB/c9t7x2UDA0lqBADbckpilk9KEj6HbgxkbASSBZrrY/NMPYsMLPgCdSOSjMVRCSHYWiCe72PrNS/fLsJwjChzczqhvQtmPaoCp+nfViag0WN9fes8LjY3PvQzUzriZZCRh0pjJF8lzgIlon5oxThx7HgeupbBN2FX9PFYrJ2zPlM3/eS0H5PolBvwzy+SJb4DZT3xHEiZmCbQaKSNsk3u3PaBCwjOhAK1LIrpfpmAQrDNr5IDMQlvN51HVka7KIDh5iNq9VHHMqjIT1rE0sZU8MIadOksoeO1xoN7wvkYUibpWN+D7LPiKljiqSYA53WoqNHQjKs8XACjD8627Ru0OXzsp2XEqCh5TldCpVupUnf/+jMxqpY47F0kCPdJgDWvJWtoi10wA9QrIyQ43UE5jiF4OE0uuzCRCPNnloGyuWB6oqlGuFQdl3P3qKqKkQH7EKhhBiB+exZYf7j+5kV1h4qkXADsmUQiNz97/P/e5B8vJK9+KKG4AY6NLIjPSE3Q594MyReGrgClJyspOF0AZapVzSpqwTVshNvolrZYSNq08jUkPoxfGpnVZtYCtEitguj0mWIyBnrKV2zYb2vVjMa6aDiXJQklS3zhRGZRyQS3bLLnqLwyqbvHjO+LdMFPTTI6uWwPdSCAemeQ3G6ldF/QccnMOyeJ6vKxZiXz1EPcLnOoC3YxJo+kZUKsFtW6l1dsnrowggsg1RK/gXg1al7+tTWtazV3as6S4GbLr50U5z19bv7UwiQjzwfcXdD9FAfQy35vFOLk4e36WFIi4zyQR27TuGe72gNFhmEhgy/evwIbnXQ7djJCNx1AxobE9R7ydfbD9VV130inXgAqDOz53we4/vIzhpaZcULlqS1UrKhz6X7PB/+VAumx65sWcKNjNyv4rrSZ0Gvsg/r48rxNPPt8mhugyCWhgwlCFZCHC5l/exMH6/l4i1c+7CpZBdqcUPE+6KhL3nUFBy4p0Lv+v67b0rqrf3NrqKjOq/VH6+mX5bQ2yYft9JV99Y3+7+apSYWQi6a8RZcpXtEBr/t9VJ7lqmv7qdUH1ys3qsfjkIVHutzI200z89oywBMdsl7/vpBmjiO2MXsaVR1E02KZ1Y3A2tqzvy5PNrkekFDBpDDWcQqXSJwQIZSAyDTnVg2lw/1XRK2CkQD7CFa6i0JAdxfGVorKm2X3RdIfJKXeOIgmzYxLquGM4gSqSiB7YuWj+6sRTLwCmZlAgx2fv23ubNmAu7rzzTpx+2ib86CtHLfZQAACPf/bP8Hef/uJjvoIlECx9WOwGTBOHvpNlmbJsbhZZf6AIqAcNgJoD1d+kt79Z+0JCxNEc53FD8kbINau41N1JclUNFKdHav8mV5FSgZPkco4iSQkaGQZGh3kxJOKsgywHxdG8et4Tx5xjS3J12VBSKRAJrmhxWVbGzNXEro5pkJFTMUKomllRQa2hp60+qVZbAPDGmxgb5QXdlUK7xd5BqYGZtxuH3wKxYhym04E56jCooQTx/3sAMAbqiDUwkYToZIAQyMdZXkJXgpCu2aRQHCykgrP7YAzkTA80OQMzM+uzgGl8DHqkBT2UQE5xoMtEEsKW+7qg3f7MBDz5pVdBdAouG7dZ6NTLgelZIM/r2ZzA0nNKpSgzUV0VVbX/DRFozSoUq4ehrUFGyuCOOw9uR3Eh4DLZAMCVipMLUvvXKpUHzlB394qt3qqVqbt51Rncg8roiZZEEHNv8ZJXXgfR05BdBZFpiFx5MsIIlroyEVc29MsDbnrG+zkYVVjnIy8bC0OK8j63Ga6lPIo9h32EgG9O75r/Kl06Uc6Z6a/4AOokiHN4Cs1OnRClc+IcpELVKjI85pNScPdKJEtSQNqmmu7jyjqhzkkHBjvqFVLIB0bcOYokijUj0CnPEaQNZKcA9XKuZnGfdcfgnHagcm9XjqHqRAt7HaOoXv3jnhN3zgBAgJ06baBHm5wx/sgkj7kSNPWEhdOkdkECJxumFI/H3RfuXFafoWqygiOcnNyMO3/VaiZH3lSf2yrZZtf7OQGAKPIBCR/cd73ZfCaqJc/cGGpzgS4bjle+47dhq3Uojn1Q1FSzXB2iCDQ2Ar1qFMVwUqu+We5N7ieOeDcnDfR6fH4GJK7UUK0MrnzO24UHyKYdZM8C1qY9bC3M5DQncgAwxVx52DnHVXuLE3XE6DDboKOjfJ/PzAKFgsmy8t4RopasU8XEundY+a9KADC2WbZ9PQeNz8LuO49S1pNQgHqWczVwV8kEBpEnWDatPI1f91KQ1gdxEjiCIFauKANWlXFBCkDpeXuBbRx+C8T4GFfqH3koitGUbVqloI4+FKKdwQiBYpylMUxkt6vhg1ekAVFw0g8pPgdyugOanOVqoQH2LBUKop3NsWnd3LS/koc2Pvcynm+Kco7xlXfTMzxPOfsFWHr2rF1X5rVpiUCrV0KtGoYRnKywGLJsyxG+Lx1QrkFK19d8t8a5Ndgltbj5wTUir/qc1eSGQTEGYI6KwnLC+hOvhuwWbLPkqny2Kj1LTCS5EjCWtcS1iSefb+1O149E1wP6QMV+Y5ti80+uKyXFZOUzQHl9qtet+p777SqAq9uvBu+r87i3aUS5zagyV1eJGkeaOwK92uPEz8nWzkmT+pxfKCYbqt+rnof+bbntVI8vjoE05nk1ifxcxz6DBhXKky+c7KnLc1SNdVX72FRjMlWiyI/D/l+9dn2kY7FqGFRoyO3TMK20nHPznPfnjrvVLPcbR5x46rbpYg2OWMvz8vy5cx5HQBTBJDEfvwDflzbRy1fGV234qi0K8PFmeZ0ctclI3rdwfS8riRImz8tz4Pr/RlHplznSz9kUbp2RElu2f5x7ChtWBqE0ZbvfJgHUiH8pgeEhFKuGoZoRimGJL/5TqWyw2DbpwQhHsPzHV45c7KEAAI5+9s/xd5/+0mOeYAkSYUsIE0e8e+7iVTF0SFSyW6uOD1AL9hmtQUUBU43hPBpHtL/fiDOO+0mRAdB5gQ3x6wESkGOjMJZJVw8/Uvkq1R3nqrNsNIyeu22jFAgShvjYKLEl6F3b4LNQdhHLYbK83kyuInew+acfxMTRZ/N7sV3YtQHyHFQAptI02ZXjl4aTO4AB5MqcU1geE8UxKIlh8gITx57Hmda/uo8X0uq+HJFCAls7t2LT6rfz2BopjzdN5+zHNwuW0pNKXqLh2PNgjOEezUMtoN2BmOXGxtTjTJ9IEm772sU4ceO1+NzW8/CyiT8CaYPPbzkPL/3N68r+zmQd1OEYcryJaOcwZ0oUnHkq2j2Q1jaLOEK0swPq5lArh6BjbkZ8yglX7Lc+LZ/9wvtwyguvsDrVBlpI3Pbdy8vqhLwvoOWcjKUCpWH6JYOqMAbo9XD7V5ZvwP5AYdPxFw0kO3hONaXhWnUenRNjM/mdkcsv2fkv5TmXs4YUQFFZxebm62qPDUF10qAS0N4fJdwbfuNyLqmXZQbv7V/e+0oUKnjeu+Pz/Gz5gI+dC40Q/CO5LwcV5bkV4PcJNsBuNEsROwcNACB4Tq06fe4c2evhCRJ77fy5rmaouV4DlUCCJzioIhumwU6Qy5DrlE1KfXVIZHtiUcEyCG5cg0gABykByHoGo903iGCgQRDgJvf2fvGC0LL++f41K5J+/DqV0JGAKDRgwMdorB2gDMs4Vu9tT2JRuV5XNbDdeRI2a9CRi+482b8hUMqgFZaYlJId4emOPy9m2/a63WKPjcbH7PkvKxX8/OuIj6qT2J85addpf0x5wdtywYQq0VbNCnUOYzUw0p+JCZRBaMnVmex8GhsY1nODxUqVyR5K1YlalMQKhPA9Mzy5Y6uKSRCgI87udk63DYZQJ0cErso0sUTnsCZ6oq/fzjLCxJFnAllWJ1f6Iah0zIG5wSZjbCIMB1f2yKadT+YVu7dpq/bsbdnfsHzZbBsAoO570G/bX/P59j1g20YbkAQTNELADKX87A0PcZDGsBSUswsn1p5R34A9N5sf+FNMrD0DBJZrqREtqNuiHp68tlXXu0o86fcxrHwgWUJ109MvBO59sHyW3faM4c8lCUyWYevsX2Li8HfxsbmqhjiuEc0Ta8/wCU9VOWBv0x59NnwuYKsJtDuQkx1uJExsz2795qVYf9LVuOPOC3wVrlAGd95+Pl428Uc1m1YORRArWmyvTluSpWLPgmhem1bku7DX9hFbv3EJNj3z4vJ8a15Pt9x9NSaOPpv9hSyvrIFLzJ616/W8Nq1SQLuD25aw7N9SwqbjLizXYC/TVLFFBKGakOJhjLVn3TqpACd/HVdiCP0BcLeOV20dpVmWMJJzCQFj5k1q3Bc4MskkvLZv+d4H9npbRhDLhn71IvYRgNIWlcInDfGHDTY+51K2OQEI31vEqoGQYvuw349wCTFV4hgo53/nG9iANH+nkqxRRe2aCIDs9lyFhtLwdiRZGynLAV2UJIb3T1Q5NmdDV32jaoypapvVCHcCQHWCzn0eqN8v3sasnItI2nNn7eJYQqfc/9VXfSvj+yKyLeYuXuU8S2tH8z/l+CrH4pQ2atU12oC3jHKurPY4SxOQ1pDTHU5ievCR0r6zaxmkADWbJXFl7VFyFSNCcsKvG4/drykKkJX88ufFGJvcpUCzeS2Rj+x3TRz5z3h7vlrNU733vM1uX2+kQKw9KWRmZn2CBUlZJu+6c2Clzky74+Uoq8QZ2fli68wtvsrUFAVIx7wW5zkoHq7Z7UayRLIoNGSXcMoJVwBE6K1K0KPla9MGBOwJAsEyDza+8UPQK1r4+q1n75ftn3TKNVCxAGmDdFsHYvuMX7AoSdhBcxOmy0AhKrMjjWbH1DkqVirA6d4bgCd229RSxOWCWa1uqTmp/VUwgypcq9Uyg2A09PQ0b85nP/AY/L769lPb9qBNKoAMByNMUYC6PV4kkgSI+RhJqXrmv1bg4BfYST32PD5X/ljd4h8B7TYIbIg5B5WqDct2AVdVYwYEcnxz0tVv54yCuP649Ve7UBLzAiYEkEb8HVv2DHBgTbcSlklQKWcg9LK58hhucXQLvc2yNhGXp1Ku/D4/t/U8AJzh52y2L/zf9+Ilr7wOupIBaISAlgSVDkOsanFmeycDKcMyQxqAMVBDKagZoxiOoSX50tf9CuKALOUaEFYKKU1Armx8nkrtpY6lKuG31LDp+IvmBLfLwKxtYu6M5WrGUxx5OaT+bDRDBMS2hNv2MOGsJksmOBk9U5kLXRabywZy+/LzguCqGsEB7kcj8XbSKdfYwHfpHM2RuSACROngVMmV9S+7yp4T+7bi7fBv931AxwImFhzI1wYi10yeEOoBcEc429drslgAdIOdFdOMQZ0cJAXLsrigtYPRgLKVhVLANGKukCEqnVEbcHd9oHg+p9r+/LVzwXZHNEkJ04i8ZCF6/DoM8TXsZbYiATD25BCsEyjd2muvr5O8GlTZojQgNUya+LXGz+e2gsU04pK8aCSVKhZt1yl4iS0jiStKIuHlaURWlzLzPVFyAmDvMWUq58ONsc8Jtb991UrV6Yd1bG0W4cDAnf2smOnwucsAMzVdr/awtwaIYKamQI0Gf6+RcoC1mhDin0dwJUgVgkpZsqrD7xx1CZ7Xqxrb1YzJvgx+KOWDKqbfzsgrdoMqg75+m9UxESe52DMPIuHlrbxjqjVXqSYxSCalrKvLgASAJIFaOQQjBXorE15HY0LU0Vyl1C6QTBUgNaA6Yi+w6bf/GKLVRNEU+Npf7R+b9qW/eR2oMEgfbkNsm2RyxQamqJLAAqB08oVgOTBtykCMI56UKnXtFWdgDrJpnT07h3Cp2pm7sml3BaOxIX69rfIQEE1bKVEUMHlhyRJZJ2zcmAAAypM6tfcVgJ4GoghichZIE9ahjyQH0dEGupptRtdDqU/+ZeLQd5bPaGR7SsXwEqk0z/NbD571rV9A/XjcPOD+Lwps3v5xrp4ZlHDUt31qNnzPGKQJMNNm32XVSl5/04TlH7UGxSwxuGnlaZw4VO27aO1Xvw8pYZKI7dlKX6dqZW+VCPn85nPx0pf/USkjBrb3dTwMWsXyY6Kbl/YssEubdn9iy3cvZ5JFSr+ubzr+Iia2rB+4XFGt5A+YH5uOu5DXcWefaNQThKpSTdV1Po5KG4kqcqaFBrk1NpJl3znfR8KwLeJsHTfnujgE7LperYC1QfSJo86ymfByt5XbG599Ce+3KLy/CUlz+6U4O5qoRq5sfM6lXtbJOFlYi1p1CgCTREyQKg0og43PuoTXbSIfyIbSICI+xxXfwZ1rE1nyJY1420IwyeKC3X7n5M/7xLHnsb1ThXtmHbHjCbIKyV0lKaqkmRRWCrdMJKFepdG6NoAsCSMAFT9HlnEVAa5IrpFnlXnejSeSlqRhu9oIu7b4ni8CoLi8/5xvUl2f3Hakiz3Imr0pejmQlXadiSWgnA1aJa76CEB3nirnG4BPGIL7vrC+QLWqu7+6xW6TjIGc6vIYHniY42fOPhfk+/eaqWmOPY0M83PW4PUMSgFpvfqrWrFnoGyMStuKGEumuPFG0iY0yTIB2B4TuRBtp2ufc/ZBEUk+Nhcj0gbGWLKn02E7SZCVJi3Pp9EcK4Mx0LNtTgJucDUKuQSg2Q4nSFvbzWS5V12hZqOehFQUMEMt6KEUxUgCHROKIcl9EiX3mjECMBRDZhqyq5H02/oBCwIDAzVPDPVA41GETh8TCATLPEimcqhU4wVvuJ4DUJIWjGw5ceO1ABHi2YIJeZdtYjSQExCxAWJ6mV9ATW5llwAmVoQApCNgJC/oeQ50uqyt7OQ1AF8CD1jmOS84q9Bl0lW0mXeJ3cke9H/WV5BQmYE4j9SDg2/AWX8RgF3AlILpZWVWj8vSabVADVf5I1Dtam+SGKYZe4NTpxE7VFNdG/Ti4A9pASSc6WGUYsdfSl5EqhmYlQwOV4FCTt5Firla4FkOo2eB6RnfDI3cdhxpViVb7DF6ws1qalMkgVaCfM0w4ocBTE4DBWf9TRx9NsxwkwNnVsIlebAHTE2zjn0jQjHEC6DM9ECJqTvv4Kyhl/7mdZxkrgxnnxMgeqx7r2OCjiUolZCxgOhx8FNOdUBKoremZYN4hCIlxDMKUafAhuddDtWKoBps3H/hXwY3FN8bcCCydDJMJIAWyzzQbAdz5vqllvWHQKbsKap9YhJYp6n6Aa3LEnPnHEgmLh2pYhJuvmgSyTq4uS4D1QLQgkkHF5ARUoAyxbrPQsBEZTDZzwnVzM0585jh7QsmLE954RUwET9P7tnrx523n4/1J13Nc4Y2MBHNadZ621cv8p9f/7KrmFSxRjcZ3q8R/ExynyXT16AdEJnm6UjZ5vPO/7DHY1Imp10fDCNLEovcua6SMGAHl9q9SiCgEiBTmoPkJLgk30qwkNuGzSwk77iZ+jrgzrt1mEyFlDFCwKSSNY5jAco1pIvV54qd8zRhh68imWEi/j4VilllBY6E+qadlTm6v3rCyks4B99I8sfkJLi0Ddb78+Xu01zxvRgJJmWEPc+i7CtgYuc4A7KnQD3lyRQDTtQAUa1fVi3T1WbemSpJ5q4FMUFjiEB9QYuac+ucOmNYrsZmvNUqZpSCyQtQEpdJCk6Sc/U48KsHODHAVXBoVXeiHeyl9mNw94/LziwKdjjtNfGa3lT2SwBQXqeqNMp8Qfb+gImDfY6d0wrbw4haTc7Un22zrRBFZa+Qmba/N8lKhyBNuVrBZTHmCjqRSLdznzQ1xOtjkRIwFiGZVijSeSok9hAy0xCkAQOc8FsfBBlAJYSv/u17FmT7L3nldYi6iqvfjOGqW22fZ2djEsFkmSdbXBDCZBn3XXHBjzSFaaagTo+fD0u6UFUq1VVMAECWQ8/MWlKBoKuSfLvDPDZt1QZ1PUl8r0NHsGUsQdpPrvR/fyDcXGYM66YrxUFHe39TmtarY/qD6knCdmskff8hTM8CRQFKk5r96MZubHUXExmqFjwtx2VKebJGyrZ2HGHzg3X7xBQF6P5tQCO1voko7SobNKQ4glF2P1kOuEomALRzkj+zchxmqAGyvosPTEWSA7dpyuvzSAuUK8QPz7AdHcfIxxvcJFjpmqweAL4PAZ+M8LKJP+KG6oUBwSBqK6hUwCQ8L6hUsD2baRtUBFeuzGPTOntWpxJaEr7wrwtnzwJ2nhYAtCOWeX0RSgOTfR9egvYsEGzaPYVPpjEGiTFl0B8AYOrSlzbh0Aev7dpnJAeyvS3h7o3YeEkiB+oWFXvNlOukTTjwiQgu6agSJyBHkDspOIuJp73PJyUN6n+y9VuXMXloE05c8/ONz7oEiISX3nOV3pueeTE2PfNiL41MAAja9tdjG1H08tL+BEqSJCvgqtC9veuq+5yNBGfTskRYCTMnocYkgm1/b1ugtPH75lGTRN7+g0saAuAlT6uxhCpZUJXQ9VUP/OybNGbfu7BS6XZNpVyViSbVxEreYElYuKrequxXP3lhq/dMM/GJYCCCMVydjkL48+GOxxDNldtNY/6uS3iyldLcp9USZBUSiTJVymRFgpOgAJ6f+5rcuyQxv31hr48QnGjrbFgitinyyjVzx+jPc+mT0PYp6Lx6zQSTjOBYEDVSG7/RvhpTrxkD/eJ+XqubDZtIG/M+++1GtzZW7kMAZeKvI1uU9nK0uhFBeLWWiqScSzSqSnpV7z+juWLNkUWmvN9cvIosWWe6PbbJmw2YRDLRkudMrgw1uOJ/cqqcKyLBsag0gRluQjdTQLBfYmTEiUEFr6kmFtCCSRfVlIhmFff+DQh4DCAQLPNAdgqIGQUZsWGdDQs8/803cE8KYJ+yAF3VAMBkSyEaUGtaiDoK0SQzzjQ1C2q1fJkfucxHgHtLdHscyADgsiZdgKUMJKiyKSgRkGXc2N1KfTjSA5DzV6s4VBzRXTqP/ZIkbnySOENBWANngBwYUIuTDxiPKYN3SpVZ3bGt5PHlm3bctnmvkdL+FtCJQD4SwYgEDUGIttvFp9molZWWgT02UJ2T73q3cIDQBsxcJgkAKM1alf1jzrK5/Vn65SWkYG3LouDMA3es0zOcOaAU5L3bIMZGgCkOcNHIMMz4MLZ8/wrO5BdgObDtO9k5tkEJ0ckREbFslwZOfsmVtYbW/c3MScMGNe1hiDLoyhnvxE61XbijXIEemURzirObOXsohpjtgdodmLFh5CtS6ETACOBFr/4gSBt86R/fi32FiQTH32CHFAnAAHGu/Hkb2JzwACM4nAsPd99ufNYlbOj7yhJTk0tBJGEaMfRQCtWMuKm7dXqqRSju/mRigl8jZSBynmsEJIwN0nuDU8Bnu9aebdcU3TkgLlu/4vQZ8Prykv92na8W++L/qT8TvfEY8ayd7wBP+ADAiRuu5b5DVkbLfwb2GOznjQsuaQAEX7XhxkFag3p2braBfZFbbWQNDvBEonbe2KEHKIf9HM+JLjjkGzD6IH9FWs1VbgjOUPSN7p3cmjEgYdgRjmSZ+WX364kVt7ZYyTLnFBr7vpYEEpKbRhYaVEjoZsx9ZfqD+sqASPN1KMiPj2+Mvs9GLO3krqX7vhpKIHd2ICY7dm2KoVsxxy8ckQMb2BPgqh3r3BsimIT8OsU9bwjFUMTXo6chleZqo1HOkKRCc38AVcnwVnbtt/edbiR+++wIM1lhnDMLgOyz4wlGL41hSoe90HMrQxzxpeCTJ0ja4LNSoEbK0gp5zgGHsRGY7TsBR84A7Li6Kt0q+vW1vdQWZ767e9dfAw34h9Y5s8aUY7bVvj4ZAij1o+PYV014rWp7/b3EA2CJHmtvdbpsN0QRMNxC+5gVYAk3QvNXM1bznYPaJolK0rdXlEGgJIKJBQdrY0LREDAExB0mQiO9MOuWyDVEZLgqAoAt2cULX3e9/8xdf7f3ZIvT2H7ZxB8B1IBe3UI0k0NOdTiY1umxDTQ8xDYtwGuzJSlNu8PXAWCywT3vaWLJcXboWcopA4aGeMfttg1GEEvJWpJlPvtyV7JhA0HCExTUarJ97d6yyTLodGC0qG1nUKLQQEkzIiYV8gLo9XibLlAWxyWx6Kqs0pTJScFVfyaNOXM0aiF9QIB2TDPJEkU14sfL0GrD5IuTunNso3/WLDEvpZegNVk+2KYVgisD3fPXF+T3z3eawgC1fnh6ts2k2iM7QEND3NsvL/j+GB4CZtvY/PMbMfE0Jk5E29q0WcbXo9VENJtzwNEYnPLCK2p9PAY2M1e8PpLhdb56LEaA+1yB100jWE53PpsWsUS+IuUgkgBOeO31IGXw5X84Z+5+9wbS2QgaJhJQLa5ujPMB1ZSLhGDPLhxOWn+NJz9c8tump19oA8soq0rdcxrH3p7Via20rtqiAr5KuWhyRrmzE0VXQXTsfOIy/R2qPq7bV8UvrfUGrdp22gDC/c927ykvvAIiK+ZUaqtWAjnbgylQEj4Vu3jD8y6HcESGC6qb8nk1lUpV0S3KHhj90Bqi06sF310fOeMqQoCaRBjbti4RqQz4e1JACBCVCatOypX6bMmaTWsJFCMEy9Q6KShvS4nSzqnOpS6RyalPRDbhKxZAw85VhWFb1lXyOcLBElg8RlctCl5D86Kcq90aVq1csWPQSYRiLIGcLRDtmPV99Uwsff8U/iB4+05uttC++t+fPysvx0ma0icOiYwrO0hIn+gm20xyaCnL+1hrkJXuNVAwdg1094RPXJNV6dwBvYmqiTfaALoAMl3GrYwjJcrrSZAwsx0Y0S3tgNERa9MWoPExmEd2+CRoMTLM0vCu31hVJaF/rXRSxZHkZ9wmRVGmgY62CgBZeR+5n57tCeNiUKiM31UDxzHbDbaiFQBXsHhyTMIn+M52gG4PNDrCw1o1ivaRI5zUR0C6YwwiU75KzBDBpNITwrCy0q4SG5HgZNyIKz5VIrinZ6ERFYsfiwkIOBAIBMs8UI0IwrhAMyAzwAgDHfEi/Pw338BNwV0gjoCv/+Weky5VsuU33nQ96PAURhBG/zOGbkaIdrSZQXZ65E5uxQXwgLLhstdZtw5ZmgDVSlVLvlCrydkjeVFKMACYI7OwKymwAZ/xDiUJn31HI8PsEOYFzGybHSRbOeP22d/QdJeoLlIOSgPKlke6hdQ6k6QNkAJG2XJ7zdlrRUsiH4kheinElIYvs9aVBbm6H5etbAw7/9LMHYexFUaIy+/4MVYkxLzGZSXISaIsK45jNmi1hul2S613IVgHfLZdVmUYzkyaOOos6ENXckZfrkCjIxxDaSacWZ1z5r0w0maO7CaLQJmaFEL1PgWA9SddXWZDE6DGW5BE3BtHsdEkuzkH0mbboCyHGG9gdl0MlRBL400ZnLjxWsRTGajQe9041Gfla82VOk0JzspPIOQYhFLcJLVavnyAEZzRhcNJp1zjiZVNT7/QVxCQMmXVCsD3Zhx5x0a1EuiGRD7MwUwt+d51pLmOgSLlYIsoAJmzg8pNcg1EIUC5QQJwxlUli9qTJi4DjKjmdBlNdYNYKUABwkjoWPp52pMXVRBQtCQfn2EJP79d2ySWA/jlsYAA7WSm3EtGc/aQIzDc8AoNp23sxuwz0QFfUeG3o0tSipyBTSxtZWJ2BslJsxHZSgMnVWDXLRnDNBNs+f4VmHjqBeWzWXV03L5hCW6fQSVL6QtL+PB+JZMPgjxRZqrXmJhIkFrZjEjUyCLEgFFWH1lqdozcsJxz5tYH6RxeS+Bb55cKDT2UglociNWJrJEr/F1iB9Cdn6hy7m0VldCGicDIEloGEMpAu0oWa3MYkpCptEQLO0AAOHiQWGfWEisuaGCkCxoQjw8ARQTRha1gMj57muPwFYmIBlcmoNPlzDgnwUiC13RXxaINSAqWK8pylsua5WA4rV3DWejtTv2cKsV9W2yPB7TbdRJMG2C2DawYY1mhCtHmA0vuWkalg09dAkj5sTHpYiuTkgSUZZy0kudcnRBFAJVBJiM0qOoTOjvLkTIAMNNG81ccPFHDKfLVTVDu5L7ySoAn8/eObiTQqeRgrs3IjLoaKiFu2RMTlFqgtcpYksXG1dw9Ja0MqIrZphUFO9RG0l7Zs5/fXGbyv+CN10NkDRhBaD3QRTTVg25EkDvaTJIkCVwzZqoSdy7Y4+aCqELKNlK2a6ufN4bJmrwAlCXqbOP5eWXD5kOVdKlWYbvkJSmg1o5DNSLIdgH50A6+b4Fa375B1hVV7nWKozLYUSUrgTKxxz1zgM9Q9dt1SVMARE9BxwL5qiEkuQKmZgBpM4CdXT2I3NEGFMd839v+Y/6cggNLfp/VrGj3Oec3DJK5ccdsA3aUpiwXaJOHjFJ8Drq9sjmw3aZJJChPMLHuHTBrV0GnMaTqAsMtkGnaTNsI1MshtCWo40FnvA6hjK9s6a8YXX/i1XCyl0YAMIBa0YKUgsfXZ9NCa2/PamvuJ9OcMCe7ioNR+2DTwq1DxgBg0lVHgs9FEvN58wcW7NnljPUnXQ0QlTatkwdzc5u7D+x93m/P6pgTMnREPjtcWPtNR4SiKSAKg6ijIRQQVXIQoAxg/UNfIQPwGlgU5fxje02QJ11kmbhWzZDXGqQlTBR5QmIOBDFRaTKb0GGw9fuXlW/3ch8Mp8lZn5hj0oTHqhSQWTJewEuqokK0uCpzfzxVuVFJZdC7gnqiBryUqnHyT4XmOdVVbzt7QxIMWVs0ltj6jUuw8VmXQDiJLn9gvE0vT1aJ2fh92217Wzp2CUPkSTSXAEaFgSDtORVo9wZ5u9mRD56gs0k/NbsLsHJenAiihmwiZMxJOLohka0dYdmnWEBkqm7TarY3/f+u6sURT/bYVCPy9raO2P4ALLFt/3ZEN+UasluUld5Wopz7TCb+XvQ2rbUbdCzZzlfaVnFXb3aU5CDf/HwOHKnU6fj4Gbn1xCVAACBjz//MLKjHySLU6fG5O2wt6N77ffKtsYk64tC1MElcnv9KkgEfsAFmZkFjI1zJKmRJ/hgNWHue7aGKTVJ5NmsV4E7eryisrBhZCVZOuKDqmu3u+8ImNjQbXqpZ7JhFUzLppZoSOhFQqeSkO20gMmVVI7hCSidczakanJwHw9dY2PXWkb2GCDo68OvVYwV6rl5LwCIiECzzoLM6QRxFPInbzCe3CLKmIK9lNs4BGHgHVWQGonj02fkveOP1nGUsCV/7y7PxvLfcgPYRLeRDAo2hCPFM7ssp40dm2Q+IOCgwVydd+OxalynoJ22n0y8Fs9UAjDHwzZzzAiQGaFnPA98wywzWofYLmZNYcNmhtSHLvt8W8ziEZVkyOPBRlNmgRikekzZM6hhepFgyjccmAGhBiNr8v27EbIBkRbkIurH7bAPn4LOePinDRILToXTVQrCGaVwheQC4/jjGlo1SHLOD7K5LNTOh3eHshKEmkDZAQy1g5yRn/w0wVs3MLEQjhTpkBYpWDJUKiFYEkWvff0D2VGnoEr9m5mvOinoAtx8nv/Qq3gw4YMuGFKEYjqEakT9unbDRLzKN5JEO0OF7WCVsIMYdQPY0G2q2t8XGZ18ysKx8dxBd5QPbouBqAx0T8pEYMRFE9bwdYGd0y44/x6YVpx6w/VXlo05+6VX8bCqD27/y/t18c/ngztvPZycU8P1QUNFedmXrrNHOGWY6EV7OQyUElbLcnYq5CoOJc/CNrYGoa30VxVUfhsDPE7GTQQLsSFpHuEpmiMpYyAXSnaNXzdK35L3IFUQuoBOCS7w+4bWcWf6V//0efPnvz8FLXnmdzawFXvzfryud75idOyGM7/9IBtw/KeZArch5PVLNyAePAHBViwEHgg189QvAzhspKmV7YJ2iqvSYfc2ICBRL78SaiKAF92XiyoiodJTcvKhYR9o1My0rfyqBPHuOyAYXXMNT4yS5XIacIBtksJmcggkpbXuSakvoUiEgM83zUiFrmZvuurjj4utWSp8Z52C7Y7RZjya2AQ57b8kuYFpcISWs8+eri5y0gfsuSiLOER2clan8fUQ9Y+8zgmpIRNM54p3d8lxqzfd5wgENF6h3cmXULUAuG7qX8zHHCZQNGji7QxBgEuujk6u4KgMWvjrG6bkT+eAsXJNyY5igGB3hcWV5qRGuNK9rSAChgPFRtj/y3EpoWmJ0egaUxNArh2EOGeVG1lb6yN8bk9NsAzjSzQWjIuL9aktYNJIy4D3b9bryaDYA9GymH7Gsl1Lcl8fNJ4L4obdjN9BlM3btCCiu6DEjLeSrh5nA6BUQ3RxiNgMkeUkR3zvPZrAyQcjZxdm4RDyrWbMaJcFhRNkvYl+RD0eVXlIGsqchcw2jOChHEdVJU23wgjdeDyocuWzmVNbNhxf+9vWe3PzKp9+D573lBvRWJuitTKBSgcZIgmgmh2pEUKlAsrPH1l8t0O4mRwKEleUA+B7K81LLHvD64ZAZfFPYTFgSRu3ennUJPiSYaNAGNNQsyRApy+poF0iTXHUkxoaZ0Khc43lhbUXjnisXNK3Od+7vSgUVAJb7MAYGVvbG2rcuyUV2Fc8RI01OdMlZOoR0mRVbS8Jy+4pjJnmyzH5HlcFThzTxlUUeQnDSCtkATiMtA0D+WLiiEZ0uTKfLtmyrxcGcR3ZwFUt/1Uu7A5pOoVeMgkaaUMMp3yetCCJrcSVfV3EQVjABLoocKu7redCHKvFXhbeR3AtUPnfFUALViEB6yFcV6oggcoPGvZM1ezaZ0Yg62q+t+2rTUlbJzBc22GjAa2AVB9Ke1RpbJm+uVzMdAEysPcPu3/jqjc33fuiAjmF/4o47L8Cmp1/YZ9PaGINL2EkjH+z39mwibcIMyz2qxEo4RwCMndcN90KQGSB75KuUPfqD0ELaBcASysRrKrnPOskx1yfLz2OVuUVrXvcAXxmy4QUfgEol7vj8+3D7ly/EpmdeDJpu+zFMHHlmaVsCQJpAjzaB8WFOMI3KKl+RK590aFJOIHQVL64qxR+ek/6qBOqrZIZxCSh23nVVQCpKAEKN3OBqCxvvcLZh9TwCgNbcZwbwElY1cqf6FXdMQsDLXFlpWHd93TqqbGWrUI6c4DVZKMmVzT0BSmRpw1ekjkkZGEe0OIIB8Ekf7jy55KhiJIZqCGvPalvxz36EzDS0lbYUBZ8HTlwtbUSujC4JCpfUA4DJGZu8YKx0VDxTsHKLgyVKuIehsdUQskwSMqU8GGU2BpPG3v7ne9KOx9gqDZdUU60ccbLRFelbX91s12lqpBBrVvH7eQ6T5d5GQLdnY0xse2PFGMiudcbZho/sAK1bAzXWgm6yHySnu3zv50VZQTQ1Uyac+OdGlESY0Sz/m1obrog5BmU0j83JkwkC0iZ/z41PKU5AFMTLk3uOAS9rj4wTfwiAHmuhd+QYX+9ugWgmr0sfW5+IyFUnCZ8opBOBbERA9kqbRihjnyWCKQjGOaoBAQc5AsEyD4ohdtijDoCK88nZBjxva7KBG80LH2l4h5QMZ6YM6nXxotd80Gco+ubDmqma3/idGzhZosk77KyJ0F0VQSiDeEZDJyPQchTxbAE5m/nFmQoNMdWBiSOYBl9W0ZFl9YNjwItKpgpRGTSII1Bke430epgXzgklghgeqpWYkltUXGWMlFxxMTXNZZXOKR6UDdcPd76rzrFzNn2JsoCxTR/JaWQ7I9xl1tiFRGjDRmouIXoFtAtIOSOpErDz17nabNkaKLoZw8SCK4tmuqUuZn+Zss+SAP9OEg4CCOEbmvqmdfZciOmuP06zY5KlU2xTVbdNstIoJs9LI/ORHRCNGJEkqDTlZrlt7e9ZzjRgo6Qqo7CnOPmlV9WCxYANSsMGOVPywV3VEFANDv5moyPQMZC3+H5PZjTSHYoJFhfUMaYmW7QnqOrril6BWGmvzS1muqW8xgI7o5RyAM/rhvfBZfktRLbf+hOvLjOdiR2pz285Dy955XX8AWODww0JKIOT1l/DcUfN7218Ljv5e51RuYSw6fiL+nqImLJXSCRhmjF0I4ZqSi9tV3VU8mGBosGOqImYXFEN+ExUkfPf2s7/7FgYWyVlCZaozCbjHhm2IgaAI4tdxqyvVKg+N4JLp6uNeN2a8II3XO+nkhe84XpeX2xWkK+4MAZk+BgoIm4X4gLN9n0OngMi5ux1XW3wK1HJdhQ+Q9/18iDFGY+kjCctXBWFy04y1rknDV/xJnJLmmrDTkIOmDSGia3TrdmBJZTzXi0Ty46d1xT+rKEyE86TEzbIqWN27F1/KOcYqgZBxdYhlYBq2Mx0JRC3DZJpS3wA9hh47RBFKbMGLSFyVVYFpdWxkiecdMTVMlw1Y3urWXKbCgOdSoge+AG1+3ROJ9kMQNnOS4kPwXOamM1gYgk5a7ykmZjtcX8Pd+6MAY2NQDnJBmN4Halk0yOOvGNkbIDBzdPcDwhQVjJHKm2JDDsWxeNx0m96KIGYzUBDLXZGe0yg+OCy65GhNQdeK8kPxpEYgK+wpRVjHFifnmEZhm4PeGgbaOckxCGrWd6skfBa3e7Vg+uu7wtQW7chDHQUW5JVAkkEEbF+OmUKJo1s9iuV9x8Rr7VZ5oPppE2ZpGIbnvr71PbjcPrZsluw7IpSZR8jSdy7yAYGuGmpsEGMFL0VMYomIW4bdFeUhCAARD0DSQL5Aq1Z2Sj3JCJlkMxoqGqWiyNy7D3BgZOSYHZZiC969QeR7sgHyi+96NUf9POJq6QzlqSRAIoWB4hAhNl1CUjHXCWYGXTTJmhVA8lk7mUSRa+AeHBHuYNGygEDrSpzg2D70yW6wJIhEmXCT5bV7Nl+soUElaRKErMd7PTU/T1lCRj7zMlt05DGwAw3vf69Ty5yyTju79rOyAcmHBkJrct9Ava7pmwQDLDkV7XCRAjuGdjLIEeGeO4bSpkUzgoOLCUN3keufACx1ggY4OfSBqbkVAc00ynXqf5K8b7KFABsnwrhe+a4YKEPKBrDNrJrqrt9B1eyDHFPExKCK9tIwGSZ7/2CHZMQeQG0mCxSrQgqiSDbXZCVFTIxB5pv+7eL54zr0cLbs45IM9wXgIOJmjOuI+nXXdVguwEEdFetQj7Ef6fTGsnO0p51a+y+2LRAhYy1wUTRKTgg2r9eLhB8H6ks52sBlIE4wN8DW2du2ed9TTzpXDgZJDXc4D4a26ew+Vd/jInD31UGOVeMAGtX8fju3wZX3TZx9NkACWz+6Qf3eSyLjU3PYJ9sfptWQI212J6tJnkKa+/ETK4UDX5PJ2zDFg3YRAEAYJtIFATZMV7+CgA/twU4Gz2NyyAvUM4HljgBwBWpqZX1dAkWFTvDkQiix1KbE08+HxKAVIobwAO2z50o50tXpUjaX3sx04NJI+jhZkkM2ICub/4tqazadRXNRIBNJnAJMKQB0cm4QjiNoZoRSIPtR1PO1zoWZSIR4G1+ZxOSlWj1jqt7PCyRUXteJKtmGJsrUFaWkO/34u1Z+1sntlogEVApX1tnq7vKeq5ms+PTgFAS8axE1Fa+v6KOhI1vuORg+GQqNyWVZITxtrSOCDoV0JITk4yUiGcUr8uKbVUd21hJV3G+gTIgm5nk7Ajn1xhR7iNq5/xdAKKnmLAyBmKmy2uPI7lGh1huzN2C7QxRlRAxxvfPrCXWGbs/wXEHKgTIFPXqcftssQQnJ0LpkRRy+2yZtGOTYAng5Bt3zw8PgWZmSyLE9XZxv+MYZmyY7cwdk9CT0zDtNnDv/ZDNBmSaAsMt6DSGWTXK93gnrzerryb2OggDRAkTKk3upwsiUDPmffUKtmnd2u6OtZHyuB0hZAkUZHkZG/OSpAS0mp6gjDrKS4JBGX8OyT5Tbm4wNmmjaEoUQ5LnIAP0RgX7VcpAurZqbZZ5U/uwJgYELCcEgmUeFA2CbrLR4h1ON5cTbOYY/82Ln4HMbJCTCAYGd9x5AdafeDVkt0BnXdMvdBAc4BAF/MLFAQ8O7BF4QZI9FyDlYFk2KlGkEqSB1kOwGVVuESYkO1NEO7u+3wg0OHuVyiZjXAqs2WGrNAN1jUepUDCTU7bUUXktaUoSlq0aanKWS56XDWermXtag7o2EKI0G+rGeD3KWpafy+Zzp7VatugCRP061pUsOnIZNMI2moeEsXrwvsGuMUAGW+If+2odGrLEhWt6HAmr7Vo6bzXyy2p8UqHLpnpAWUVUzUR02T2AdyJYTsRlP9rgQP+CKGyQp9UEuWxO+5tGR8o+M1JwpsTktNXsFsD2KchMQQ7HUIlAMRSxEZNz1jUZg9v6yJWJtWdg84N/NvD+HwQqtD8XrvGaGmlYOSDte5+YtJrND6iU8LW/OhvPOOtGxLNs/JM2EIVmsjKWc3R69wjOAVAs30Y9+5oGaHp2XgJkb0FRBIwMQ48NsezL/du8Q7o7MqUqb/VocMoJV/gsEZXy8yFswP4lr7zOZxaRMqwrTnzOAXgnzRlJgG0mKbBXWZVLARufdYk3z/xz5GDnuWIoRtGKoBrCV2a4ChSVEHpjhHwENtPPBuFjQKU2rizL19Gt75+zWwGAA6hawpbu8/59cN6glJAkmjeDFuBqFR3bfbu4hlMZ1LxGOMJd5NbR07zG8HxiK3AcwWKYrHdj1RFAVl/eV17a131ljiOhyD23TCDIzGZQElecOac+b7kMyZKAMjYQK7vKB4OoKEBtVTokQEn268rc5+B6f7h50s6juiHhmrfytRfW0bPrXyyQN4UPernjMpqzpwrXwsw6YYYEZM7ruhGwVT5McMkez00Q8Lr8PAi7iYj89lEhn4wATEIoTMTVJwreRjAxO4OOUKmR+bDOi3tP2Ob2KTtSrkImmuGECgLK/mqCgJk2ZDcrx5llJfFvCX1yTqElVajQkMogH45QtFhWQSgXYCQIWMe04IaVBuCmlwLIVzYRC4BaadnI1X7WV5n2Zwq658L106lm7tl7gIaatpF4DNPtwjy0DYIEjNHcjy5N2PkuNEszuMA48fh8cJcIVBQQk7NAI/ESZb7SQDU4OJ4VZcKJk11wfZsqa4ZvBl7YoLhLjLCggol8liqJYFLyY3EVLEZKa19wtVIxHCEfZlnDomkDZE1A9uxclBBkalC4XkD7iKJJUEMEKvi5clUqbi0mzfYrAEtW2ufaPh9uHr3jcxdg/cuuQjTZQ/uokZpNK5TxWbZ8zARd6/UEPie6nIOKJiFvCaQ7NWBin/kq8hiNrODKI4CvSxzD975rNoCE+1LQTKfeyJaIpei0AWUxP0/O1nV9B22iECUJqNWE6fXYvgU4qOLIOW2DgU4Ox2jABoMIgJPNc88Kj8/eMwCoUtFhhOY5pL+HRpbDIPe2LKVJGbR0QRD3PBOVSUyw55MIwsnXtlmyRDdYJ58sqeJlOVxiVaGtNKSBaOcl2ewShaqNhasSQO78EvnzBNefAOD53hGMAJ+vRgpqNtgvALjfCgAaG/V2MXV7wNS0TfSybmmnC4pYLgaRgBqOOShnE8T6yZWJY87Zo4A7VxeyfUQ5B3DVUArZVjZb2tlUBCVEGdRUwF3/6z3enqWibs+SWQCb1kFrUM+GpGw2vKnOrwuwfdfTBs0GijWjiB6aBB7a5n2zXREqp7zoStz+5Qvnfb8fE+vewQHKZoODgr0CcrLNa10jZeLEEtemESNbM4xk2yzff7ZKyowOeUmriSPeDTM6jC0/vHKfT8ViYNPxF/EfzrboS/IDAJNEyEZjrsR15DU5G46rsbMRQtGwldc2yTPq8ppS66Np52r+XwAJlbaHsbZjVAZQywz6Cuk6FPkm9PNh4knn8nbcvCEFIKKyms7ZgMbAlw0LAFQhkqVLiimrLlzVn06iiq0LluB10qdEgDU1i+GYkwZyAx0z6awTWfPtqYC1sVxFmo2/ZJw0JHsKosdyVZQVkDZZojoe/79GvRpGEnxZetV+rfZ/sXa6kWz3qUQwmdsUKBqwEq+O4AFcD1Qd2/8Nb0dLK2sMfs1XY+caIrc2XCJstYn1D4j/dpVQLjnJ2bM6AgDu4SO7uiR7IgIpYWkmXdrrgK1wgB8HnO/ViPx51xFX6EQzFRUWaztSJ0PkpLGUZnvR+Q4W1EiZEAZ8jxw+r4IlwgGIjO81X6FUjbW4hAxBoJ6CGh+CBFhq1BEOhb3vCsWEorISpUqX1SFEZVN7bUqpU4B75UrJtme3x4keec6KGkrxPDjUhB5qsC1tCUkvG1chK8nGwmj7FKTtK2uaCUvoGQMyqbWtVVlp6qpgnf2SY46/7KVWG63y5VxBzujys5L4tGl78Vy/G2K/i5Nr2SfkZC3ihMUIEIqQa+fH8mdVvrCJAQEldK2hVsBiIxAs84AMeDEBGz3f+chZeO7bbigz7FSZFQDhsoW5R4sogMZD7ExUs/1e+pvXsRHhMiZt9YsjWEgZCOWyouEzBwFYY5+QjfL7jZ2CyzcbAt0VAtNHEmAkWg80YCJgzbdn4KUzKiWhJhUQZDP+XANVa8xCg7Ul3WJiKiWlThc7Zu18qJQdnWrGHgDfnNNlgVZlt5K41D4nAWgFmu2UVRpuAXSyIbZpGIDBlSwAO2TEBIvPgHMXUFBp0FUzehPOKnVVNy7zhbLClw27bBaumbTluL2CgzvOke50ym1Gst77wf24LF6ru+5gqhntNktNO/kVrQFXCtqO/XE6mTIozRUxw0MlcWNsQ2hVGliyXdgFUJQVWBX0kysbn3sZdBpVdP4r95/mvgBsaIMzE9ttiGgNdDNB/Mtt/MFWE8XKIXZKG6LMfAHw/RvPwgt/+3rEswrxDEuyGSlw21cvmju4PcDWb16KDc+7vAzlWAOAjdu+4MBCQBDU2rG9GveekCv1fQKQhCIlWy1nQDlfE5lZDVprUYtMc+Z9UWrUVvvP7EtW5WJiw/MuB0WCS4ytw2dsVptrnMg6sE66y/ZUkS57mufVbBTIxjnwHs0QNIAfXXKW38+TrrkRRqImueWC587B9cSKm4u8UwUfQCTryHRWSrzwt69n2bomOzLf+li5Pyc5yf/AB/152zy/aAkfyHdEv69GEfAkj6soc2Os9pjxfSSc46UBE7FBDPddAy8pFnc0B7Q0y0zoVKBIhA0IwxIwphy8ASgpJxqROW8K3DPDBRb7S/WBkmxWupROiETZTLM6X1aqC03ERn7REChapXPojs870lZyQ8d8nEWDiSkmU+xQIvJkm44lO2iAD0gbgq2eKa+PjshLy7nroSONyKpfyI6taBAE3YhKiTiXoGEdUNc/iOzxu7WHlIFqSBRNgWw8RutegB7hddEYzdJBVnpyTlN4d/g2ucGMDrF0mDIANIqhBDoVlapDyeM1xicZCEcKgY+dlAEJDTWUwESCSfxuDifXQL0McKSAl3GyJ09prlDRGkCvzNxPU9CKcXb2uj1gZIgdXXcMeQ798CMcpMU43wdxhGLVMKL7dgCwGX3QfJ9Vm8dOzfDa7BxiIYDZNo9zuAXTSlmCJC+sTWJtD9Vn2wgCkSx7vjRSG5ws+/DAE+GsVQ1Nvv8ZbBKHSm1mtiX1dMRzQtECP1OSn0mKee5YKIKFlMF3PnIWjv/DG21wBPj2R8/G83/3BgCEeJaDMGR4HAA/YyrloN3Qd3+NzT+/EQBwx+ff57frbFpSPEcIbe1WZQDJf3tS2pI05ZjYDspbhHQnEHUV8pEI2bDA7FqB6JiVGLm3QG9UYvhXXST37uBrktsAhzYg20eHAxy6TFypSt1EEctZ2F4pNSLGZl77Js6uQjiNajKq5BKJKtUfTK4kXL0BGwSZaQNDnEzlbTXNVQeUZZzs0d+g3NmscQRqNsvmtJ1ueb8pXb8n3TgUy4OwTEcESeT/FpmCE+jnXlA8jxoCKBagwkBOd8q+ZS6gRGRtZ1Pa/lVU5GYB+OeAfYpKYNEYtu2dDW6rvXxiVJpY4gosVTY8xFnFQy34qrm4Uk1mANHlfkaDJG4HkSsbn3sZn49E2rWZfS7osioQQoCmp4FOF+Jwtmfl9i7EtkneSKuJYgUHoLgqll+ez54FsM827ZYfXolNz7zYa/C7ymUT90nK7S2c1GVRcGJbs4HNP/6jPd7MnpArAOBJwyzzPbkgJPfBsjAjLWuzcmVgMc7ZEZENTFJuq3iKgufhQX3rlgEmnvY+IIlsRYbiy2orRZ1NC0FWzpO/oxJhg97wNkeREnpj7n8gngXymPDdP2Eb8/gzb6wQCjYAbmMDRoH9TeujeUUMp1Tg5jHnwwqB3uGj2PTMi8t70Wa4b/nu5eXBUWXttP+zkgJ8Nr0PfDubyJh6EqKUnK2vwfLi7pl3/TFsQgoAPh7DFXuIWU5WW7ICAJQgm0TAktk6YjJDtgsvLaUtecBVzPD9mnj9ElzhY+diygvu8xYJTtK0vaDIVM+XtVFTJwPGEkpONtgRtjx+KmVBJZNmRcpECtuIZCvhrY1gbUcXK9I5kA8J6NxA9kyN5CYhoBqAyOz3k4o/ZO8hruTnc6DSMgbl/Ih0kuNPomereWwykk4jiJ7223J2usx0eZy2IgcAZKahUgkdE4qGQDYWoXUfEG2fKuM0loDn8zIgcEHk138z2rL2uQblBpntY2sEoJoR5Cwno/rG71U/whgYIW1SgIJppXy/2X1QoUHtrCIfaZOS3TZcP78sszEZe082Upg1K/h6tTvQ4yOgosnJSC5OlOcsH9bpMhFDVJLbspSxq8XPhOD5Li84KWGmw69Hkm2FkSFOHJq1qh22FQAKxUlKJDji65KeqnKhUtjkEPIS/GxPoaxYcY+prY5yid9FS7LUtuB7QjW5ek4nABWcNESGfXFRAHqBZG8DApY6AsEyD7504zsxOjpae+0bN5+N/3r6jaW+IMFXthjibNiv/u17Bm5vw/MuxxdsxtWL//t1PhDH7HO50HEwzKCadeKc8SJlVlj2ABUT1KoYvTGB3ji/rhNg6hgAwkD2hkAKaD1YwESE6cdFGL5foXXvbKlFDvDvyFgtRgCF9KWExvbY4IGY0sH0GS+mLNF0jpkxgNF1ssFLHVSZdcvUOxkstz2lYVaPs+bpI1MwUzMwWVY6bHabvhImy20FNO+HnKakHbMxGqSZzPELTR5zIKaRMlkEeGLDRJGXUgGssxiTZYYjkLT9PnrtUoPWSSX09WOpOfK6lCOrlVhaQ0zHgiV2nJFhYdIEvsGwlWCrGaR5Dtimb1t+eCU2PudSiIybqonZHkwrYZmIWOKUE66whpoe6AAaIsipDoSU0ENJrbEeyJU6s5FmRpogYzN6bDaZ6XZBsx1ESkNOSphGgnw8hWpIvOjVH4QoDNIuG163f/lC1qpdIMLdZTNuesb74dVPlFm4TL8KHk3Vz55WqsyH27/yfm7AClhHxs4HmWEpIgIH/7SB7BScaTTdBU13YIZS6GZqg48WtrphOcLEAsgtYSQEtJXw0LEtp0/ZkHeOAeAy/ODlkIom0FtpoBMDURDuufis2j6ecMMNHExzBImwQXkSMJXV0meOSf5bWEe1Wg0ClNWPRYPQG+eguuwBz33rDfwdZbhxKdnKJLd9uya4KhF/DmTp/DjyhMkelPIRliiBqBA+GiBh+8lUz6ngTDgvAVYAUQ9IphSijvKyVSYW6I1KDgJXpC11xPee0TazTRIoYbm0SBCE4LlaxNI6ohXH2znwQEn2SwEyAsZm/etYlD3QXLafc0Qj3k/REMiGWSIMltziY+PrHvUMog4Hjgnl+fDnWlfIEQKvg87Jt06EJ0GMPU4CdEJw8jHaSs0ZQciGJKJhgXhGIxEE2Sn89kwkvSPqKmF0xGMXufG9wQCgGJJIpgrE0zlkT/Dz/eAOrgZ1QVAHtyb4gAOfZ+MK8nsZqB0BrRQgDdOMAQFEbQU5W/CcLgmqKSHbNrAqAWMSaLtGeUk24nuNqvdrTdNZstNZJegr/dpcI1Ao2+9NKQ6w2QAstu+ErwoFgDiCOGQ193LYtp3vkTRl49VVChSVNVdKW7Vig+9alQSee19rYOdUGXA3Bmg1OVNRc9+22tpRlUxyVVZJzCRgGnuClwdDKIZsMNkYGEr83yoRNpjDQZTeOHlnVDXKZ1DYauhH2Q5vt/jCR/4AAPC9D9Xnu6/fejae93s3+AxWslVdAP++6+8G27MAVwx8wQa1X/zfr6s9d6XsmK0eJEBoZ+MaP08WDZ5/ZM7VVL0x6aVEixSYOjICKaC7JgVoJYwgJNtmYSKB7mHDaDzQhpjqlNewKtUaRUBs7TpXcVK1yYDyGXLScJa8c+/73nzV7yZJuZ9uxiSP22YU+SAlIK1NmcI02J6Sj8wAU9NlVa1L9HGNnGfbfkxcVV5OVBRHZQW3m+t7GVewTHWAkQbyFRyMFrnmAK1rlCzJrmHOngdEpiAaCYzNzKZoyNqUjqCs2OvVahaAn4fcVt34psnkbS8fDNVFGXR047ZBME8UqaIW7KlKa239xiXY8LzLIXscWBftDDqNQUrhlBdewUPp5fNX5BoDMdWFiCXUcFoGDmGzyV027kiL14autWdn2pwl3OsBM7OI1ErIqdKmrdqzotA1e3ZfZMuqcAHrWm+OfIHa2JqyF9CjlbDd+KxLsPU785znR4nN938EE2tOhyM2kdg+Wbavg0li6KG0vL8jwdWWUx0m71oJkNlEN5HyPaQWaJI8wDCOXHFyXUJA29dMLKAaVi4qLm1AHcP3DTQEFC1CNgrkI2xXGgH84Lr6HF80ANlln0HbJCQAfg4WmV3rHOEIcP+JStP76rMpuyyx3T20iXRbjwPu3YIJI0eY9JOASntCwgf/Bfg5J7fO234oLunRViboBvfMq1ZIOCUF6ncgrU/tgviukoNcJUqm+PuJhE4k93dqcM8TGFNPatVchams7UCFAJGGSSSoqPj0jqgyBVwFi5dllBIsn6WhkggqEZzIQLpuy7pkKUt8cGIY2fhSSfRoyQlBZAzfB67PoCRImwhFEtxvwyfqsn0qImPvISolx2y1qesl5SpjjAQX3hCv0SqVSGYMEsPyUcbY2BQMVFOUCWLE2+40uBI8ni3t2XxYIpksEE9lUK2IZYjbCtHD07z+ulhRRWKytt5UExOEADodttNaqX+e4qkccjbz94FuJZBZAfRyTxC6fjcwZc8e15+Or3NlPzGT/D4Jx/U8qd7f7u8st3a35gSeJGYif9vOsoI/tvuJItDqVUCvB7NzEiQloqha1WTv5UjC2xFWRg4q4mczigDYeBARMDVTxsUs0YPUAMjY76omSzjT1tm1eVESK8LZ//Y7Gmz/22eEE/5E6YMlAirl5LZ8iJUgVIN/l9LTTLYUBVAsU0J8qYO57uW5Fh6sCATLHuLbHy2Nl+f8jxv4D7eI78IbrhrdX/rH92LDb1yO2752se+h8KV/5AaiL3r1B8sycyoDZE5jXihA5sDsoQLZGMrPRgDIcNmoBiafyItzPhyjvRbIHpdh9r4E8bGjGPu5xugPtnNQJAJP+r6viWWmbTUI2QXBKOV7WZA2rNXqQJUJUwqgEDxJ92tRu3XLkyk22JEX0CuHueG8YXKpGImh1w6h8XAH4v5HmPF3vV2iiEvac8409TIMlYbMvgTUOX8VR9XkOQecej1Q1mAH0VaheHkwG1RzAU0SEhDa9/CUeZOb71YXLRcwdJOc07esZCSUFTKiLGd251CWWT41mQUAvnlrocoMXYC33+1h870fwsSx50FIdhpdNjF1eizzIgVEI+V+CJHAKS+8AqQ1bvtaeV86nXsSArrJGqS+ebcANLivCSnDTu7KEZZX6GQwK0ZAswlX9fR6oKkMVCikI8Oc5ekCUSkH2TY873Lctj9kqiqEIBUsTURJvGAyYY/WGV0IcsWhWgV34oZrAQCyp9iQBEqiDtYJL2xGqZW8Y3KyJAyXkzzYhhd8gCtQJFcqSG1AmZWfSSSKVgSdCmTDAvmQ8GS0zN28abPzU54jeysANWp7F7XLLNgnXnsjAEC4Mmjr6GjJvTzIynBxlYOVg7SBQsBwVQ3/ydsmlKX34CoRkbPh6RwZ78xZo1XFBLKyZVyVUiFInIMdVYgfG6An59TJcv9cKWmndBdUUtxEu6yAKX88iMejUoF8WHrJLD8eSyYYweeT5VH4i875J2MQNbjiRWSSs9nyCLJtG/faTMNa43sAnqRXmpsyGtaQdpmaThIMgCfUqlUpMByoZQeUCRUvwakIMofN2ARcxp2XWnDxP5eBDVgJTyo/b+d5V9EDAlTMGX8qtdfIHZJ95ly1mbb3L6zT7u6LosVOi44ISW4QT+U+s1pmKajg3jlUWKm/4RZf647NXnMZ7f0BY4cqyVIUoB6vR6LQiAAYKRDtbDNBbvuCUaFhYgnVipkgj1mywldDGYOorTlDXpJ1Tu21FeSz5mrJFc6ucAFiKcpMdrc2d3uc1e56U+Q5B+DsPI7hIZY6y3MOfLY7PLePtGDSGOKRaV8tgNQ16FWlQ5zE5b56PZ/F59YGimPen6+CKB1KL5tiCSSTSC8Nwusj37uu0adKhSfCnV2oY4kiJRRNASOBzipCdw18zyeVGkRtfqbzYeA/rjwLU1NTGPuzsmJkf+DfPnk2ACZ9kxl+zVVp7wrVigFnv7rkoZo9K4CvfPocnPBb7vNWTswGlpJpoL1aojfOz1rUdYEfeOJ3dq1Ae00DRgDD90dor5HoHAIM/XoEcWcY49/QlV5rsnK9RCnhAZT3pAve5AVnfyaJrUqeAZoNrmipVNKhsNVRQCkp5+Q8CisdZnsKUF5AjQ9BDcW28oLPYz4SQx/aQuOhUUS/eKhuv9qKKHJjdL9r7LrxPWY8tGF7dvsOiOkYSXvU23i+D5mtlvOyhs5Edr0UM8UmbFYAYOkXH8zqJ1fcMyuFlzEzLmhk1xwfvLFNhg3AGd/VYBnAz6YP5AigGfv5gAxh879fiU3HXwThst8tMSusRFtUaF/h6MiNOQSAMbZSIgI1Y0CTbcjLRJrrk2XSGEaOcDbzTJePbbgF6sR8f3S6oKnc27TJcOPA2LP2vBrtgstq3+3ZSqByT/qp7Cu54rD54Y/6v31z84T7UoIIcqrL9l4acx87V6ngAvBE/Cxae2E5yYPV7NnxBmS38BWOIJYlLFoRVzsPS+RDvB7EbeP7bxjJ9qSRQDYGdFcbVs+ICcnOcv1/7ltvgGoQaMTaQhKgnin9cOKYAsviWrkn5ze7qjT3/Ht/XSDa2YGJJZIdGbKxBMlUzm2qHFnks+FF6Q/LMrBt3ACq0lr2GTcx+/CuiTxp7eVqRabZJk8kEyWuwq5C3roG69zfjs+X6Gluvj0eQ3YlZKfwwWFXMcLV3oKleQ0Qt7WXPnLbBvgYRVYAUpeJlNUkVHdqXUWL1kBuYGTEZJYjdGHlwNJSXcIl07KsMKyiCbwsmIpNzVZ3a6NbJ1VC9coYa68VthhY2CoDV42tIyAfIpDhILqTJc5GAG2D4y6BOOeFCSIXLBXsDtnuy51HQyz7qSO+Z5OdWSkrXqS+J6FyiVNKQ480+N6bdWXflSq9agykSrK4ZNYs99Ly1OU5QTwyxXN2s8Hrepbx+qJ02deoEUO3EghLFhopfCKFl5q1PXWom9uKGbcm9iVcALUEAdPrccJEltnkWyvx6b7nFGJIsK2RWPtk2w62UYeb0M2Ye9M4uzkpEzdIFWWybZKUkrxWghNO+SWSpTpM9Tl2tq17dqqJQ4LPLVeW2XNu5fPZVxQsO69cfJJ9MJUCeZPVIUC2GjsxkB1rewgmgb/3obPZpv3L/WvTBgQsBQSCZR/wzb84e85r60/ibPPuyhhf+fQ5837XBba/+E/vrb3+5X84By/+79fhS//4Xrzo1R/kYIog1pY3nInitPqjWUA1beasNFANA9EjiJyQ7ASSadhFHaCZCNmhOdQxBYRqYuQnrrm91TOVZLP1NDAyDJqZZZLFBiE8M17pgQKgblxozZOyQ7UEkT809zvNBvRoE6rFfRP8JwnIxiV0OoRGIhFtmwG1O763iwu+uObHtf24hU/rkjiyWacEycdUdVJjm1lryQ9vANsfl7GtE8HlsAAw2oAgAk3P+pJNuAwD2ACRK0kFSuPSamL7bByXmWBY/x6NiPs+CG3lyKx+ZlUf3jZoY1mHgrPCjjmHz3eeQxQKenwIphFBTLYt8SS8NA9nLxMMBDuGjvzTmstkh1KA5i//3/AbnFlHyvgqEZpucyBjZLi8HnkBMzUF7OBzJkaGgUPG/XZOWn8N7rxj4YgIANjyvQ+wrjERIE0ZEFiIbS9As/p9hQs6ix5rsrvGimT/NpJgmjHUipZ9Xy+MFvgBxMbnXAqf8e8ryeybzkgkq+falOiNCWQjZaDcVa34KpCEDb6iBeQjPDdQIfCzd70HR330g6CcIAXx3Fnw3Eq5dWAEz69sNPI8IDrwvQb4nFvnxJCXfNSxczxKAsAIIOqgRqD40n+UFRAyM54YctsQiokRFRFMCu9YuSoVAyqnV81BfdeomnutkG9Q7500ww6UtM6VSuxxppxdn7dc5iSTQwBXALmKGfDubZ8y+CAeKdb+NoIQddgJo5ylqGAswZMa70BXM1Bd9p8nmzVLZhVDUdl8VBuf2WksIRV1rIxjYbP4jAtcUxksVkwAVQu43LnQEl7Wzb3uHG9j+0s4KbG8yeSPSsmft3yE35MdXqNdP7aiSYhmXfCd1xB3vtIdBWSPe1LInoKcySEf2uGdoWRnCtNK2bmx67QaSiBbCcSDqJMs7vzZniU1OJJF2YByOwdJAVkoqBUtqLGm79Mkpm3PCx1Bag1KYyv7FsHExBUvHQXRySrSVxHLa1oHjJoNbsjpyA7nyGW5T7ogKeHlRB1clp8L5DrZJl9lYHupNNKyGqGXgbZPsR0wNsL77XW4uqSZgKask6sNMDtb6+EGpUFRxA6uk5wBynFpVQaKXGWOG2dlfjKCnXPKAEgOQmgZwyQcoHESgDI3KJoCvTHiOSm192jEzqiJTGkXLEIi2jc+MdeePfmlV4FyjWw8ARnsspcUUBIrDl/+h3Pwold/EC9+1Qfxlc+cgxe95oP+2IomobldsT68AOJ22URc2z4wTl6CCg56xbMc+BIFk1E7n0woViiM/SABRRK6kUA3Y56nMwXqZqBOxo3VJ6e4+ssFJJyd6KQ3uj3b70QBvenStnQVF444bKTlPbBzhmW9IgkYDT0yAjWScGZ0U5QyM/a6ZiMCKmmiFa1DfP8k27RFUfY0dMk+DnMywfuzynVp0xYK6OUwjcQGh3gudZr5Ijc1iUMQQVUkZYUQXO2cAjTbKwkkUElMOVvSnTdXLe7ikLb6hKstnAQXrDQKleu3g7PPnK2sNDbfcw0AsESWPWYSwpIgkv2USrDLJCznRlDY9Iz3Y8v3r/Cbp0IDrSZ0K4Gh/5+9P4+6LKvuA8HfPsO99733DTHkyCAGk2DAkqAZJEDNlOTwVcnWai/La7WqlmxXWW1bbsvKFGIUU0JmQgKJuqpVsqilll3dZXdXWavbLldFAgKBjFAZyRosIxmBmMk5I+Ib3nDvPefs/mPvc+59X0QmmWREDuI7a2VGxDe8d999796z9/5NhE8cyiEEgGte+T5RzOf8glpBlcVyqGnzMkZr2rNSz166Xd6vi1HPAsAdf3yzKLPz0OzR1LPfJbhy0ZYhza3S3i8TMAIDSXoZWIM0rZBqB+rTuhXVk2Rd9+J3CeDotNcrREAM5AOtEWJj0G1ZUeU6qTN7YCDWVGLRGkd7CCdCqhh/+t4b8aJ/9BGYIC2uW0qWq1HCEQXJCqLAagtl4NrhnkJdKPWoWJdB9uQ8mPauDGcpsIAr2YqwqAhz/83yvka575S+l0Z2hRpCn7wdwGgiyY5VG0MKUeop3btJGfuFTGYgirnitkAwfUKshRjCjoR8RYD1BGzaQT0OIDRGVdzynojtrYIHWq/mjBQYHvJsgUNqCwz5K073Bx1QZ/Iq9UmC7KeS6RR9ngPI6869hm3leXNOr/wMFdvfrGDPFrPQW2tm3CY39AOA1OuZyJGtm0S9JI8VpgMYEzaAfjPB9AS7JKlnV0Jci5VYQrlFLATg5MU2mBJQnw7wS4I7CHAHndgsaj1rdydIm41k1s3yHunQb3q4zRrVnZB77oPNc4BzlSyA7MvZYnDWIJ3YBHVqyZXtxioB1/P8ivoediWqFptz3lhA99RUgyWdMeDG637WD4BhBiZyjcBcrPFLbVpVCnpozTCboFhxauYxQv49JwrqvpecFWs0b1DVN5UDpYQ4qWFXQcBo9iWDRUDNuH6Ocr3iRoSTrMYlue+W2tq7cu1QSMBCSFfwDticSm/AovrKmZDJiho5eZlPpmr02YT0lqbHYE19tI7W99gi5iNN0Xjt7e1he3sbu7u751iEPdL16r/2QfzWv/75h/yZl/8tsYoxPRfve0A3s0aY2d2meHQDsiFKyJkMhcIGECYMu1LffR0yuqUMe/wc8HMuw69uS4aP9RmG0zDw6iBh+vV90P1nwYulDD82N9B93wnYRYA9EEaR+OLyOks2by69IvQhDtYBGSnPN3dgAAnyxgSAT2yJlHN3OcgdAXAtm11/vBY2tZXGevb1fRkEZcnxSn2tEw9DkRDK14r/5DmAjy7vxce68aUIZG9LwZRDs0WeKYxUea+ExWsfOECWtxf23ljZAuggypSvFbZOvvoIoD5JEZkgxWJmLLQRZtEW25Xshf5w1/UvfDtgCXFrIh7W3p7XIuy6l757GNoz444/eu/wvZe8q/z9sAJi57lvloa0KHfUDsa7otZBEkZSLjwBrD3+xVjXv/DtAlDNF2K98QgXNTUwmQDz+cOyBTta3/26/gd08EGDz3hm0mdmnASbCugYt6eIGx7LSyqsThqxf0oAOLPBZegday4ZGV/5WRkgPvNXPgQ0Edwb2IWB2zcwvdxbi3XUaFckBSKyksQtoMN8DCw6XVHBFPmePG8JoM8DfB0gFiszkt+JXpueMPxs9l3Ox5QVNPI69T6ZHWoSgAS4lktROx7UxkrBGDs0chQHdmMujE2QvSU2+ncnj2Nb+XpSgMe2w/lmK02biUC26TJBGnxp8hmuHQ5m8LfWL2jgpqhAuPw7gxxhaoqCqChI8vF2+l7o84I1vHsEZGWAzgQByrI1UTlven7zuaM0WHf2U1MUOyX8s8osLQWdatmDTasASy/NhT/QsNQgwBUT0JyJmP75WWFW589OHuRntSVz8ZhPl2zLNaFsXnYGZtmD7jsDXq7OVa2cZxEZVYdYwFjwlgKw/WADR10cGtXDDEJmUQbkPTRnS+T9fGwfRCT76cZEGrY2SH3Q9+th3ZOJKgwc0lSsYqgLwlxedIPyJB9DtnDKjV8+V/mYjQVvNPo4cSBX5MZYMzCo0obW2cEaAZDj904GyNqUltDh0V5eshCKhZyRa0mbb7YGsXFKzCBVSUmQfbdpsDohxJiS5TMamlAUcC6qc2larfCVm972XdejF7KeBYDX/Oe34TP/64ODLC//W7frYEiu+Ry6S0HqpljLuQo5ny0B/iBKrbtpRMUSgWpPrr9+QkUZURjJkeFWAygaagGl/YIVlGHUD3TwZ5agXZXkxARsTLF6+jH4vRZmpSHxGgrPOvikyALkdcoC7ToB5ca2hkTyGTpc4+lKV55Ev93An12WMPkMCHAln/X2eI1uW3ICjv/xWTnOqpIcvWULcBquwfFQ53yZcof/7b34sauSRT6TYhVm2gBa9kizGnHmy1CREkueUiffp5yVlRmvuSav5FqhTgbfrLlMnK1URjZDct5HdsIKSiJnDS6FcftIgunzuu7F7xqez5xbk+ZV7LV0sLQG3uhxHq5Dd577ZnntGSAuKjataVW1slbPEl30ehbQ3I7dffBi+ch/OSXQ8W1gvlxTkRyti7Ou/34lqI3A3MxEpxhHNa0MQdO0QpxVWJ2s0B4TAkkm1oQJoZ+ikH7YAn/yvhvKc73wzR+B7aX28AuGWzBcm8QWzBOsEgOzbSOIxHYvsgLRoRyTWCENg2OeipIWmqPHXoa94wEzK8sdlgbihbfidMBc7jMDICD/FlvZnOkgBBRgqNdsKz029WnorXWx7s9Z3Zy8EHAoyOwkWQGjTA+02wK+uJbLvuGWCqRYJeJELvbvmVSZgQiKXILe7SoUq7G1+mR0LuRep6/FQBUeYkWWLbrCZFAQ5b0tgyZ+zgV0KY8NBdd8PndAsQl26/VsfiyjSnuj/QsbIRkljzJHyucgKvjSHWckL2RdtwawANWB1PND7yC9RHM2YfblM0K0BNbnROP9a2OGNK0RjjWItdiiI0HycJYB/s6zMks4vA6DKnlPqaphb9qeCTEg16jqVLIGyhzOfswAfyb6ZHLSWPEBiBJEQQgKcchdyapZq2oRY8S2elYL6bHtkZoK9mA1gB15Xw1BnjfPzDT/DVmd6Bx4a4qk4Aq1+vUMgmQws22HY87XJZE8fq5tx2rsscKMTKnBEaKAMoaQVcBcO7BzxXklk4+TG2y5223JgBbXBv3sjUCWaldJRDqbDGGFL9323de0R+vc9alPfQr/l797HX7vs1c83ocCAHjhS+/Cv/z1f4tXvOIVj/ehPK7rSMFyEdd3Ald+5K9/CM4NDU7x2rSE4AhhatBvCDJsOhlecWZUM4qNAvFooLVQcEXvuWEKrE4QUg10Wwx2CRtfN2jOJrh5hImMfmax99xtbDphsOGeBxAv28Lq0hrVrhRNsbaIE6fsZoPJvR2qO3eVwhyFKaANJ2e1RW5ER6H2ZWMpw3gHrhzCZgWz6GQTUZYyMcNERhUj3IFH2PBYnXRYfN8m/N4EFBPcvC8M6BLGmzesPNSJEJAly1YyG89lNYsCAKteislVAK0CWFlTqbbg7OeaawYv0trkDdKV2+InenouTHIzMFzlh1E2veI9m2Wt5Zi5NOHEXE6PqFoIpx6FPJ9CBBsLe9CCifDx3xvAlZ2n/2OgrnDqyx8U2569uUi3NyYSZEgktgkJhYlz/Q/8ggJNCaf+9Fac+rMPDI/3rBvlvdecAALAbr3wBIDustl3/Xoe7rrjCzdj53lvERku8yNuSrnvccddv3SRju7JsV5/zfvX/n0hrc+u//63D4WfMsAAvQ6SfG6pj0gTX6z7yEWgF/aaaSPq3QC2Thg0bvAPjhOIoq8nfOmNN6w979f+3hvxrP/XrUBrYNoBpEha3+bBXwk/NwoeBPlTQkZJQR0qUv7SPGIADnJDk4EW241ABX1esXzI4Ic8hun1Xp6Zhwq09JMMIsgQM9u/5EwYQAvckTMTgEGdYRQkycIBC70fDUBNyseve01h8CmwcLghzMBWadgy847kPhn1/mdCLMcOR+cB60Whk5wpjWZufvup/JxttVl0yvDTUE+TVfuZQVUaUzmXObgzZIZgz2rhJj9WwLL8OtxgDZbPHxJK1krKfUsL+AiklpCZhGEDwFz24GxXxgalee83DFbft43mWxAGWn6jDmc9AMK+bvyQAxESTB+RGgc7nQzN1fnW2KLT0LDv1sICRx9EAVJXQg4AZMhbWSEtLFdFOTmEZNpiDbTWgI5tB7Rh5WwjGlmIA4VFF3TIGgBbAasORtUpbAlm3g7Hnm071Qoou4usDXgmFagLSBsNwmYle3JlMPnGnvzsUmyMaGEGJS4wgCttOwxQV63sf7NNGVCrXcTHfu/duOZHbpZ7UhSQi50Mc/JwqGSsGVUktVLLxcaq0oUK+NrrNZgmCRREPceG8eU33Yi//O6PFHvDP/i5f4jtm544dgoPBa4crmdN4HKNCyklodu0CBMZrLglw3RJA2/FitC2cl8NjarGIiNaAixAPeT6mqgVyQwS7myAS/4owa4STGCEmcXesxtM7vcw3Qaau+eg3QN0l29ieakTtcyesDDDUzbQHbNo7g+o79obhhYZbLMNaNUONS0gn6GqkmuqHWUNEYF7IbCEDQu3cKDVSuyxFAykmGCYUUeGW3l0Ww4Hz95CfWYCSgy714r9EdNwDwP09+NgETsGMw+ThoiAVuysoKQhs7ccBjpOrGtMFweLnvw0xoiKOiuTiyULj8DVDICTDMey6qo/n3UKxN5K696s4iYinPrCIwdWykvMTGRm3PHvB0XDzhU/La+xqXHqS7fJuVwsZTg2m0o9yJrwop78Oy94m9wLjMGpL75/rZ4F1MYqWxZaA2qDDJ6UyQ5mdJdc/HoWAE79yS3YedaNwrBuu+/8C+NlzCMmZ/1FWyXPUNfYfvdCrOu//+2jJlH+yJ9VhAhqA9K0HrIfjFwLAIQlvgyoTwOUvOR1REY/NcAERSX8H25fr2cB4AsfuAEv+kcfKeCKCVzqQdOJpZPpGeyBOLGq3rCwrRAsSC1N09QB0UvPp4TKzOSHM4V4WGwTQ86XG9kpZmDGGcSZE5tpA82YC2L/lcPC4ZDM6H7BAyCRLXiTNyA35HxkwCMrQ3O9lsPbc6RLtqCMlaqDrNazSnwqdlmjTAip1ajUr1kYThhqcLZGs094vQY6z0reFCsyOSaown4AV2zHBSShxHArsWDNP1+cNKwcuyEuFmjJDD1PqZetKqiV6AAoGaHU69IX5do9+vJRERDlDCFVVBQqhdyrvcj4vcq1dz8zWD59G5OvQ1w9mHG+bKQ0rbF8+gZMl4oFKcUkBKTGwc0aIR6N14OdX6Ihu2XSDMqLqhKwI6tPq0pqvFU7qJQz8TaM6tJsaZf/fojckzOT0JHu6XGwM8sq1KoC9QH2bCiEXaNEgqz2ZO/E7tAZdY2xwKjWhFqG8bRG3KhF9T6x8AdhsAWPvbYmLHVrJhPVtdi0Ayg5aRk8qitwXRUy1akvvh/X/+A7JF8mxAE4BeQY8mlmBlMmoAh6R5rflBwh1KqoaxhxKpZ+ZmnAlvHnbxRS4wvf+hG5Tivg9978D7F92xOnpj1aR+tirScVwPLtb38bb37zm3Hq1Cksl0s897nPxa/+6q/iJS95CQCAmfGe97wHH/3oR3HmzBn80A/9EH7pl34JL3zhCx/nIz93vXbnNnGe6IdBUx5iZYZBspBhVZ83t8FfMyoDQZgFBNNJOHFzmtHcHwAC5lc6rC4hdE9vcfKSfRy3EXfftw3+ZgPbSbFjugjTCniyeNoMqxMWJ39PBhkbX96TIVvjxTezyVkHBDYVYnMC1QMr2N1F8YLkzD5ICRwjuOukWJtMhmbQucF/ensL3YkJwtTANRXsUhtWRfplyBpgFh3MooLpGwlDPe7QbhtQarD5jU6CTwHQfCUMgL4vofZl0yQWkMDawlTlbQkFpS6oz6aGLFpC2PAIE7s2NCWmUozEysDoBkxWg+1WvWyspJWeMwLOqCoFgIIsNBQOzAVoKcHBCkjY/ZV4Qj+KlVl7513OrrMw1UaGALFmiEk278oPstY8XACw87y3rD3+qa/efs5TFCYXUF7zhRzUP9Q69cX3CyNxOhGbifniIQvi8Vobxn2Prvw+vf6a91/w90wCIodroMjpkzRgpRC1Ik2mBCBgAOsYMG1EtUugZNFuScCj+ABrs/Eg77UMfUb/HoESgAIfygSjJMycaCEZKUab3aLUoGHeVRQqKOzDrCzMYfKlSaGB7ZMbJIoD04dYPJIFRJCDbc6mUXYIITkGgvw72wZEQwIgZJAn2ykAxXZsrYHk4VjGtgSpGkCXfFzl/BhVsuj3xueRayBOAQq6PzXCImRjRflzyD6+5MCQsNFjPeS8ZHUPk9oFRf2ehTSiKy7h8/K+0ejcQC3feLCY0+eTkGfJZhG1UA40Vf9tr7k9NJxXNqKMSk4+D0jy+twBisKpy1Zhnbz+DH6tWccx0G1a8NO3MY0M7B2cO0zdmCFtNmBvJeD30OeYWgJXHlTXkkcyXoez4LJF2GQCNLVkrVgrQ5VpvdYMcy0MewOAlisBV9SWiC0GkgIw7OdjZpzaB6VZI8BQF+V5Dt9L8+vJ6hJrBDgNNHzfu8KMXWOFJoZp+6IeK5YdfYTba0uQbppWMMtebdYIxCM/6r6XgPByXHrx1ZU0pDlw2Etj+eof+yBcbQVDyqBKtsXLNxJV2plOfL1z0DsbAX9zkGwG/VIlyqev/czPrZ2a//TuYYC2t7eHJ8uybRrqWaAAe8kRkoa1miCKacmnScPwiQRgcgsuZCKKQLUf1S5FbAHnl1nMn0porwiAZ8AlmPsrNA90os4ICW7hYVqPftNi+TSHftNh46sGbr/Fsf8wBzuHNPEy/PKEbsMA7BCbY/B7PfwDc1DtC3GIu14D5qUWSn0vbO+6ks9LEvCD2xZ08gTaSxp0Gwb1fcN9V0BHVT4sO9g2wO4Cbq/B/Ps2sDrp0W0ZmNBg82sV/N36vmeb28xOHfv+n09llpmrOkiilRM1WeXVNs8jbIllnm0jjA5sskqUnQHD6g2LiiVZHrZSGwagZQRkD/lUGZDBOuM8K8FIrYi7R+cbMrYBW1tjRWBeMYpXf7bbBcrQiYDBAi5G7DzrxnNq2FPf+MVzniarwjNj+GJYgz3oUrY0WfvdKVm+h1cGVK5+3a0XHFwBZHB52OGBvZW+1KoC1ED2FQCUxOIuX0vUR9iWUO0SwsQi1QZ+kbA6kVGDB3/uohReJZguqU1qGgDQmEDWaiYJFfss4wyIXVEZUp8k+N4mHe7LfABQ0MKpGmQRpCjM+RvKbDd9UtBDiDJhKsCHM4zOedkn2uHmYNqITEgkzebK9VgiEhJTGOwzM/mm1LQKEhdAHyhEokxAzfVacgTDXMCqoiDR20Vo9FyloW5LHuhrg9gQ7IphK7EuM7WF6WPJEslKVqlBrWSsNAahMUXpISCPgiK5ptVDThbwS8Cu0mDTRoPaJVY0/Kwb1aZan+bPBwGFuMVGiAvZ+rd8hmj4LGV1ASuZyh8MxxQmQFarZ8JZtlMUUjAQ1Sqq37TAs49h+gf763sSAGzOEDcnSBMHvx9gl+fJkGLJGqGH6s8Pf09zVngiOa+GjsnX+yC1aFNJHWhoUMYouHLO447r5rFiO0akpkI43sAeKLDh1V4r555YOyha9HepJRxWl2cFZ7G/rhzSVIjN5qCVczCpFISMsLsLWGPgmRE3GslAUSULWwLBDM+xWA6Eq8Qy3a1rmd1UXj4vjV7HlcPVr7sVzluAvWTvqtpHbADlYcQGXu3IASE7qhIrTMQajtXhgD2AacRX/vabz3nbvnDrk7OmfTIt6fIe3mzraD0260kDsJw5cwavetWr8LrXvQ6nTp3CZZddhj//8z/HsWPHys/cdtttuP322/FP/+k/xXOf+1y8733vwzXXXIMvfvGL2NzcfPwO/jwrb06FzRyTFOxqg8VOAu3disuAiTh7c+pmzWIBJpufDK78XFh8uaEPM8bm9hKXTOcIyYCISxixzYOJyLDLANMZuEVCd/kG7DxImFtgmFUPHxP8HqH2wlJJ3siQyDSonIHdtaD9uQQwKquPjJFg+q6XPX0y0RdPMqQ/sYX5M7fQT6WI7I/VstHsL6RxKbkmakUQggxQLIGCSG0XlxmceV6N4wao7lsMctQ1Ft2h4VXxWNcAM23AUHlw5RBnAqykKvusk9p/AAk8MI4gw0xAhqn9ZRuo7t6TJpQIvKF2CkGKr3EQeTJSOMr7L28uhTQMQ+n8ftEXeo2byTv+6L3Yef5bxfPTGDkvWQK7XJVMHppOBoYIM3auUlarynIPN6h3/PEQQrkGtjxG69SffQA7L3ibDiSrIUxPF49ZqICwFHXIdrQu4sqWfvmaVPsUWukAxlukJlsqaMOhrFMAw6AHKDkbScPm2Urw51d+9ufO+9TcWVCgQZZPAqhktQGpWmEUbSK/p8CDbWWAzkbsoLKVQGENRm088gxMG7aiiND6niv5nQx42A4wByh+8DxS0riV3INcx+BO7HbEi3sAAYptjtqA5WMiCWqR59HXkr9XAA6DEmwJjIATBTmyUsV08rO5STQY9jEqyhUgTRlhKjksMlAmUBSwRSy9BmbhOQAGScHOClDYVr4fZsM5lsG1KZYI4wBn+QH5XwaV5DMClJwwZsQKRf1COsi1K5YIA2UUBrUpGjyn5fhz1krxy+4loDvbO2VVkeTAMOCoNO2cK69sFzCy5MB0gtUzjiPVBtXpdrCiyRZhpNk0Ew/YbdDpPfDqPCD84QEsIOGeTQX2BuzqwqwUooUOZaMOVI0B6mpoeLPd5zjXKh93/rf+GY41ha2PQijQ/dwdKjszmJIzzFjzpDJjUI8J0D1Shz4wYilG7UjFmhKol8dIVYM4qwpTPxEBsxq06M4bjHz997+9qFDyULk7Wev5kXNPCUiVKUxXsLCF2QDUD/lBZdBSGYSp/BcrGaz88YdvOOe5/yKsfB4AyKBA/0pJgF0TGdTrZ9hI1oDtZBAQKwGqbc9yv4jyGfD7sQyxuu0KsSaEDQY8g3wEWRmWhamDjwxWVXK118MtAprTBskZhK1ahiMpKDgXYZY94Az8rkeqLPpNi37bg/0m/NlW8uuaej3nL5NMspqkltcKa5Ge8zTsXrWBfkbwC0Z3sobdXwLOS51pCKChDoQBaNnDz6MOvQjzyw36509xAoC/72C4hsc17bhWGbNsx99TNXmxrckq0BFLlw0JKBgHW1hq46DMMAyGqN2KXW2+/+hrLs+ZwXyo3Y/hwuAvh+bMg1p5Xah16pDi+NSXbhMFyug94xAG5VFKoH4y2LMkxs4zb5B+bGRtfE5Nq/ePnRe8rZAQHqt16ssfFNKQc9KLZEtmQK67XgG2/BkApM/Lr/FordcJF3LFONQXeVip9S3Xrtj2mZX2WBmkzHu/gShZughHAPcJsTKwnUWsgT/6xQffO8SONcEfaJ/G0nvGqZP7L7LVKZVaqZ8Y8KaoK90yIdvQ+nlURaAGmquSxHSS35IagzCVYXjOvMszijC1xUI7NHYgHTkSJSIbHdJr6Liy4+WcyR9sBchJBAFYqkE1PK6zs3VXUZow5BpgAGRK3W3bEckm1/sEBQoEiAKENMmqFGGr+34gcAV0jYFpGH4uz0mNASV9fZnkw0rUUUAmNGrpZdRSVt1HQFrXG6DbGOpTAGAzyoTV85HzGQEUpbsQPoe6vKjJoYTcrKzN9+Ecc1SN5k7I5xulLs8EKBOl1s/nI3+djfQcmTyW1baxIs2YPLRPzaZYPvM4Yk2oz/RwZyW8PVtB5z3KECFOHMykEbDgYa40ayR3zRDirJJjCrq/A6KsXLXDdUYswETez80IpMhkn5wzpgSDuFUj1hb+gYU8Xs4UJCq2u0hxzZKLnUW2Ny1LM/uQAEJUArU8DlcW1AZRlOS9KQy1teXlGlGJK1GaSr5mOsfGfOdZN8rrIBL1LAD0hP7kDCDALoO4lrQBvDEpfQV1QWzBQhqICmrHaZjBtkGYWoSJqFeSB774jr+YNe3ROlqPZj1pAJYPfOADePrTn45f+7VfK1975jOfWf7OzPjFX/xFvP3tb8df/+t/HQDwz/7ZP8Pll1+Of/7P/zn+3t/7exft2F5/zfuBhEfEYvrNjwnK+7rrRI7OhZUhzSV0oGQIg+e+U+mmEUZzcmIH5hdpzbc/OUKcGIQpkByj7Ry+/sAJxGiQzlawSxn6xMaAQy50pKiz837wix6Hs7VRbAXU5sq0PZpVh3DFMSyvaFBNHPxEWWFdAB2swHt7IKcFZh/E76aqRN2yvYnFM7YQaiMgEgFxYtBfMoE38hgA1ofcylxnI/ZpeXPvtoHdZ9XY8AbTg+W5AMvYiiYXstlrMjciapOSaleYQ3loJzY5uaDgIScAKIV6ljLLMFjYhmah7EBvkTaaoloZ7EJImAo5j0Cl2szAx373XQ/7s3Qh1nUvfpc00N4WAIm9k8BiPV/U9cKWViksAGQ7N3DCOAg4W0sdVj3c8cc3F1/sx3Kd+pNbAADX/+A7xFJmHOR4sBqYHxl8swanvnTbY36cT9T1cNQr17xqYJV+4rcfBjhoSIrPpDe+kARcSQncDAOhHKzHGtBre2HoSdC5+MBmCyhAhvQggB3jGb96G6g3+Nrff2N52mf+kw/BBFMss0SGz8UijAJgOiogCzseBuIA7FK+53qAeultWMNIS7MzbmxGtzDboShfxPNZ7h0yUMSarD8/1tDgJFR7AaZLCDOnwIjR4aTsEXBU2GuAqmHy/C7pbZHlNebXXkCfUY5JGn991LQBKHZoY0WOBHVjyJ9hAJD3K9byX5hiUHMEGagWdQiNjgd6zPn59blSblAxNIKxUUUhDb/rF9nDGkU5ksGiPLjNwFcsORkjoKRN8HOGW1oB1LwMN/Lz5+wZ0gbUdvn9zvdxg9iMPgMEgEkBGGGZUhDGvwxpa6QTG2WoH2c1Um1gFwJ6cN6Dx0AMIM2Vt6CmBvW9DNYOM/zGw9euAxIQp64ABKyM2uA9jDfFY9lVFji5AXd6PvhRjx/vQfLMeDToy6xTImHrEVAGtWsATYIq1YaBIKvFiHyIBTjJr50CFxBmsBo15fxlkCP7tjORZKJsVTB9wicfZG/lyoEr+bzc8Yc3CcNvrohkYcsOwzBhrWZrEmGtjlm1qVYfeB2U/P6vPDma0Gyj80gZ3r/5sTefU88CELav/kl6nVAWZFRCBLIt69ANcKtUBlYZ1AozL2zgidx/TedhV+JtUu1DrUwcqjMrCbZXG6dcj2RQQDIQgBJI3PZwIcGsOjSrFvGK41heMUGyBF9n1rZcK/6+Oej+04PVR4yi8koMvvISHHzfDMkB1X4Sn3oAcXsqwKUxoLYXQHniJftIAUWxjDHl/rG6BDj9/Ck2Nzya+5YwD+xjmNrqyp/7xCgTnDHQOQZBrRnAFaAMQ9mS2K4VhYo8Tr7WJD8Pw/UaeWDgjoGWbBFkRZ0iN800KEL1OC42uHJ47Vz1pnPvh5UHqTq+KPNW7brSKK/sYa9fe/3V7wfMei106k9ueXzqWbUx27nqTTLgy576zokl1aqV98CYQbF/GNj+Hl6f/NTDu7ftXPUmgOgc27gHXTrMzFkOAiZbAVp0v2IicO3lOtP+mHpRcaTal17VdAnJiWbU9IxYE77/5z4C0wN/9N+s7yWv+vEPY6K1IYBir9Ufq4A8U0gA1HI1TCTTLlYDyYjJoN4T2/CcFWJbA9vKvWesTDEhifUXck+rfTVLLVqG+4yiVJTjQvk7R1Wn9JJRlWqnhJvB7gvAGsGUDZX6jWloP01kmDYXqvJSKYlCWciRYledFdpikwXYLoF6hlsJiJ+cKUqZXgmStktynJrFF2tRlAAY1C95fqOKF1GdYKih4+hnoGWPG/6T86uzmwYD8Qhq+d4xktVfJiqgRn5sMwLNiblYhMnxcanrxaoNRSUuxzrU9oDU92PFd3KiSBdV6Yg0FtU5ZSVZazmbFrMpwiWbSnaJiBs1Yk1wiwSzzDIY6ffkM5GGDLTAQt5U+9qsNKEMeJSD1L1u1YJiRGrUIozU9vfQvc6ECbA5FfLrYln28HOUNiUrKK3tHaaLsJYE/ABkb3BOfs7nPDaV+CcewBUlAhWl58g2PuezlYy5TLYaH9coU4VC0l6Hil0fe8DM24e+PznZw079yS249uU3yYyvj2XGxo2QjU0bAGuQmgrFzlPzX3LGWtgUy7Jse/Dv//snR017tI7W47GeNBXXv/7X/xrXXXcdfvzHfxyf+cxn8NSnPhU//dM/jZ/6qZ8CAHz1q1/F3XffjWuvvbb8Tl3XeM1rXoPPfe5zDwqwtG2LdmSx8V3L18zDs9F5w2tu0cZfvUVNDn6kMmgarFpk+J6ZJLGx6GcWlKiwmm0nIbrjYsYExmpqlGlLaM82on7Zt9j8NmF2LxeVDCe96TNksK43e3Yy2AQAs4qCsockhZP6x2K5hPtmj82zM6SJx+qKGbptCzaEai/CH5xEe8xj48tnga/fCQ5BlAHeobtiE/MrHOrdhH4q1h9ZecM0FfuCjLBrUQoAbA36DYvVCQvbMTbulOlhrAntCYfJrBFf2F4Yg5QM4EeNZ/aJzxv0KNA2D3nYCeskhxrn/ATTQx9HABsmrIU1F8a3MnJzkxqOT8sQxqjVwprFA6C+1gDb8wfQX+z1Mc14ue4l75JmGZDj0e9T5YRRseyGEDagMDzKOpg/5PNc9+J3gcy51mKP1TocRHrdi98F3p4BUA9tK4XMHX9402N+bA+2Xn/1+x9bC4rvYl3zqvedd+D6UCt7sQMCcpLaeHDjkWoPrqyAKLXVpkaKYrckmMYWRltypLki0pzIgwNcJ7hZD2MYf+n/fQviyuLZ/yMDPy4dm6gkWAAUBVnAEEsjAKYnzQ8SoBo+AZFgVnYAChKEhTSef/FosM9j0IA0oJkLoxsKtJS/8/B7hWnsRkGYOpAzfYKxAgyYqA2lDiT7nBfFEAAo7yf94PcsDPJRsR91/8g+y7oPGVXnAAIwmH4EvihQQxCggTQjTCQtgN+XJjDWQL/Buj8RspJmzaI5AySMoeHg/DkZ7q0FdDIDuFOaSYtir1YyVfSxTdSweQ1NBYkFh2VpdNgL2JD3z9iYsge4pVqJQZrdrFCxrTxuqAmb3+rRfGtXj9chTcWCCKqyMSFhcXmF5UkDvxjyWJAi+NgmDp65Adsz7DIJkPZAK4HTWVGR9+mkg2JABmkR4Fkjffe+BnonFpY2IDYynITosDFDPD5Fqtcp17HWocLMlsFrty15a/W2R3WmEya+ApJrapXDA8xsrWUNUk16DSU5Vhbgg0csPEoKgqiFUAFonIA9YhdKYltUhjY6EFbfaTY5JHcAW9gZhO0K7bYTJmZgfOZ/eehMvPEA+OrX3qIfPoidS6IyAAdQBjGZRcoEfPoOIc28duc2Ia8Y4LO//kY8luuC1LM6NH+4Njq5pk21Paeezda3wKimVYWUXUWxYGUBMm2XCvM5AyBmFUVxUgtj0nZyX6n2ABDgDzKQysWaxS4gtnAZAFBwkvNQwhhRZ+eg4gxMLFew37wPG2clIH6p+SyhEdvC5rIafr6N1UmHY3+6D/ryNwXUNITu8g3MrzRwy9H9PjHakxWo9/DzAOor2HmrvusJcAxEUfKsjhuYHti4K4LvBsLEYH6lA2iCBoA5c7CuvC177aHrDxhq3FznRgGsUqNDLM7vC8nm0bNcSxnIVCJTOc5eBzF1pWpsIG3WiI0TRnseAuXnjnHtWJio1JeP5coEmZ1n3YiikgUKEYiYRV2fLdiANesYyv76k+acx87r+h8QIsnjVc+ejwS08/y3yvDPGHBlwQq6PKit2mO8rn79rQ8b4Hg8V1HmP5Klw8xyE+h6UExIW5PSD7Lmu7XHGx3wJxgNbCcFMXNPLqQ9eajogX5LHvp57/0I6jPAU//Fl+WaftWz5YcIsv8bAntT7o0UND/Byx6fnJBLshICQLEntx3DLqMMyw1UQZPKvdKkqP16GtwdwEUVwwoCwAzDfR5bX2vtFmu1KNM+vfy+05/RmjfbojMPNaEEwKOAR6aNZX6ARLDal3fbrgTWizWnZvYFBYYNwWRCqRHCY1aPm5D0/IubiO0i2EoeYD81iDVKLiPboQ4QlRAQ1HlwsDTT85w/KzpbKEpyN9TxtsVg3TVSq+TMFTk+qWuyijo5oNe8FLuSZ8mEhmRpcEwhBWVIntP2WSEDcAS6DWDjLsbm14SsmrxBnDgBxtTJQxQ4jMVlHqsTBLuSzw0TEE/MsPec6WBX1yZUZ/uiEoKlonTMVlli95pAHMXSi2d6/Fyuo3J95fw+AGhqxM1G9npAwLpst5+JEDrLihMnCvXFhliv782HmnHNVpdVxaJ7mt7/zUpzSgoQogQp3U+yNW22gh8+tLkmMgKoWAKMEG0pDdeVZAIOpOayXzlbiElpo0GYepg+wvTpIWdFY9XldS9+F65/0TtB2Wq3FkLEOL+YG480rUpmYt6zr/mRmwvoCQzk8KP1xFvpCWMR9kQ5jsd3PWkAlq985Sv45V/+Zdx4441429vehs9//vP4mZ/5GdR1jZ/8yZ/E3XffDQC4/PLL137v8ssvx9e//vUHfdxbb70V73nPoyv+H0k2AQVpSHJo1Kc+KYXma3duGzZhBkhDwEwb1U9VChhTG3BmzEZtSjsugWF5YMdWNumv/OMb8az/+4fh9g02vwE0pxNsm8pmnxc7wid+c2BiXf3aW7TRIvzGbw1fv/773y6KjNrDMgMHC+BgAdNXaADY1QT9pkW7bbH3DIfFFcDus0/ixJ9uodrtEaYOqTboJwbVfoJfJCQrDWU/JXQzg2QJ1T7B9+JnDkCYfrVDv1UhNJl9QXBLgl8k1Gd72IUg83BOFBbWAMYCXQderQa/dWsGZppKPFkHJnYZYGYevCHM08xAyT7gwkBCKYZL8RQZdhWkIHDamMWEtDkZMbFlsJBBmfHX8sabww8fi/WGV9+sg+DRRq3WEOXvZZimoFA1ss5iVmLlwC7G5gaA818TO899s2TWqPx159lvxKmvfPdBpxdifewP3oPrXvruNSuacejhE2E90cEVQBQrb3jNLQDz2v3iodYdf3wzrn/RO9XLHEPB7UwZuiZv1MdYgAViacx6ryBIpwWisrViJR9VtyBRvtQRm8cWWLUeKRAAEiClSUDIoK10RmItpAdH8nUKVNSBiY38WzOxTA9t8OTPAqwwrykKh0B4LvZXbpnK4DevDNjaPhU/7OSESche2PDRG4jED+Vzmi0DkrLe8vFIoCYK4AHKLDQutmLjcHvTD0BGBq/sSo4/qi1WqlDyZOTJ5ffcEmv2YuUc6nPI+aAC1pzvZ4Bh/4ORzJu8/IEMVd1iaK7H2TJMBOoYZk/OqclqHG2c7CqV94a1ac6NvEkMe6BNtlV1JAP+IAIkTMYShjoG2414ds/ujph88V7wmbNyHrc3kaYnUd25C5zZLWw5f99xNE/ZwuIyj8VlBhvfjMB8CUqM6V0VwoYXNWniITDdSyA1sm1XEFCBeg3RtBbdpVP40wam8sLOW66G+/bmBrA1RSJCmlXoN70wUhMLCOJpZBGkb6mel+QNzj7Hw88dmtONKG4Mwe33cAedHFMZTqgyBUDYrNBvWj3n+qAm25OYQaWig6gxq09UTKYwCQfgJb+fMmSAN6K2LOxZlGE6O4swczh4ihe7pjnjd3/tRjyc9YbX3ALxLY+iTslglIGwdVUR85sffzNe85/dBhDw6UPB758+9Sa86sc/jN/+n89vT3gx14WoZz/56UcWQJprWrA5p57NZJL8GcuDPrm/RVglulCSwHvTxcJoBlFheBLn7BbCH/63N+KHfvJ2UREuE2zHqHY7Gfq1vbAuY8THDg2Ur3nl+3SAZ/Cxz727fP36F70TcaOBjVsCYhwsQH2F5h6CWzYAAd2WQ7dlcfBUj9VJYH75Fk485XmozkpNCwBbX5ebW6zEHqafDRY17AnuQO3OFmIBwrVYk8VKAJx+BgAGfsFoTgf4gyCM35CEsDOZDLZVqxa8WEhNa4ZrSt6QDHZo/dZ1MCuH1NhyLZX3LQ7Xp0iKlDHch4GJn7/Wib88bUyLNY/pY2EiFzuUPDSKCVzZx0w5cc0r31c+Nw86eDoMDjsBBQEAiQtTumQ3jvKjDtdhO89+IyjF8pg7z7zhCREif+pPbxUrXgXaKKU1UPvxXk8GcAVQe7nnPrJhYjn3WVSWNJsDkFwuQFWiQHWmQ9gQIhFI7m2Go1haZqBaldt+wUXd0J5kuLkqd60FQlAFtwyQReU9ImZWBqgMAFsUmKaXWhSREBoUckwGNIgNkr4ImTHI9UCsClHtEZOjcwgboHXgxvQsCgsSYoKosgnsxQIsqfoNyAAFld47mWHfz8NwNnJbynZPeY2BbQF+oLl3MlPI5KJ83MVWuBK1aQaLRGEtGbU2xjWlb7KEZC0oq7Fzxl/Kg4L1elaOR2txC2SrWUBqWbdE6RWKmlz7BYqikgdQbG7zezTuN5ikDhXl+tCvUxzIVCYyzAGXPBcwI4FAfnS8LHV9cwY49h/Pgu6+X57z0uMIT99G860DmLvuK+8xmFFfcQmWT9nA8jKHxaWEzW8k2Hv3MN2uhQzcD0APiJAaC4pGPuMhFYsqsNaS3qF9yjacMTCVAy1aqWezVEnzp3gq6JVkghD86aUQaw8rUkiAjezG0h73mF9ZwR80aO6fyCyGAHt2CdrdH4AN5rJvxa0G/WaF6syq5CVRC6nFAfCkQg67ZyUgZbstZCX2iDhEfRzmR/mz6wyoqfTa0kMPIjljbxE3mwJ09TMDtzT4zP/6nQHgnee9RdQ0jQMnAbO4skJkNEYmwAn42OffiWtf8V5QSOe4p3zis9LPv3bnNnz61HcBOh+to/U9up40AEtKCS996Utxyy3CLHzxi1+ML3zhC/jlX/5l/ORP/mT5uXE+BgAw8zlfG6+3vvWtuPHGofne29vD05/+9At89MN6MOucwzeubDsGQIZrhhAbKZBY2Qi2sDGSADF9KlZVtmP8h9vlddX3CbPOLWWI8m//fw/O5MwqnAdrssd5GoBaSwEFiXf7HWAqDXIz2PgmIVbAvS/xYPLFzsH0wOyeBDcXlpyvLdyGQ/QaAOd0qFg5YTCGBNTKUq/k/RQbl+ExqI8C+FReM1YisFyCc5CuN8DGTLxwc1HHLF6dajkiw8AE0xmxr9QBgciEpUhiDXWjyKKS6YWNaTplwkUZYMHJcMx0Caw/b7p1GWixf0mpvN+P1bIq1/3Y774L17/w7UhbjVwrattCaTQtXWMIj7y3SRhDJfvG2vOy+XaedWNpBhB1eGLNeUNFH+v1sd979+P6/E+WNbZ9y/eJ/DW7jPiNzz4yq4xrX34TyBnFMCOYspWJMHaSU3BlIoqyDA4kB3Sb8lvZrknsE1EaFEAUKDEaWKND4CBdxNf/6+Fe+4xfvU3BFYAdgzRom1QOn5sYuyS4BSnTOjd8Q3NUAu2zzdfIlopH9XVmvOXGKFlpQCny2rUHgjR+mgElrMPBOzvfi4DcwA2WAuPnLbksZnSs/aD0KEzBNIBByULYdNVgt5Y0ADMoQ45t/jlRd8RGwBg3H9Q8bKVBZgNhuK2AYnnGI3sEHs5bVp+wAShn4JDYAFV7DNcy3JILWzFZ6H2UYbsEuxqxEZW9R4FHzfEQyAooeNQYkdp34jduV0n9yyWU3nasQ9DhWAFg486AyZ0LmPvOgnf39eTrwHh0jytNXi02R7HKYBYXWxd28l4bysMHA9Yu3fYR1HYS5NlUgDLyTBs0YyShvXQqwOL+FO6BAwVlEsIVx0qOiASL65DCm6ISkhByKp+l/LPZOmR5CWF5qbzhrgWqXYvmrDyv3+8RJw6rE06uk1YIH5QAu4pDfgywJlnKX0tkBvuQDDbqZz2zTOW64WG/yTYiNQ33oAzO5O95+U/sK4BX/s0PoznTPyQZ5rU7t8Eqi5W6oEpdUeTmzzMwKFU+8789eLP5eIArwGNfzwLnr2kP17Ovu/YDavc1YkxaU6xlTJdgVwFm2UumDoBimZOkVomVwb/7f0rtKrWsZLTU9xyco0zN67qXvacMDB4s026sVr3+B3Uwr/Ym7qBDqh38flSFn8H0PsLyEsK9/wcHv+tgElDtMja/IfYhVZRrItYE0zHCzA73HSfAIMOC2h6kikSxOmM0ZyPsMoMcCWbZgg6WUs9m4s5iKYzexMDxzWFzsUaGPsuV7iM8KM6iqIFY99vCnAW0Dh4BDzFKRkkGuQ4pUtAHmHlbrNjyPS4Ph4rqJWld+xhFf2S7sgyuXP/Ct4OWrZyT/Fryn2PlXTl/VM4b0QDyYrnCznPfvGbDsnPVm0Qln/NPFMzYefo/xqlv/t8emxf8EOtwn3a0zl3X/MjNMPNuUO/rvWLnuW+Wz0zX4dS3/ptH9Jg7z3sLUI1AebVoo7YHaleIC36/g91dwrQeYbtRdQBEmbzsZXCcrbi8LTki/kDA2Pos0JxloO1w6r5/snYMr73+A5pTKjl9YTKoLYV0oxa3K1E8EA91QL5nCfEk98KalaIuCwQUuzMb8u+aoq5mR8i2qBTEXpdZn1+JQmK9Ldkq2WKsqL2VDJSts3KtXEgXBgUMMTzcukA0BN07AqnyJChAf7jWsR2XWmNYUkdTkOOyqyivXa1FWAEvt2I47T3knA6kn/wacp8wBliSB6C1dFaUixIFSqhSNb6TPLKczVjyDpXEZOLwmOxyPT7Yd3UbBNsN1sNZ/ZMJWJlYlXNhMiC28W3GJf/uAdB9Z0anRB837yUjMD9VToihJEoY0uyqvN+JWkV6GdK8ELJCsrDzHOois5I0aWCWPfzuCmGjQtiu4A4q2F21mQ8RMAbx+BTtyQaZkFydWUnwe1aWjBQf5fGZQX2CW4rtXrdp0B6byHXVM6pjFaqzE7gzC6RphdVlUk9nFxnTKxiU81Gmk7IHZ0JztvwsJNkwEE9LhmKMkhfDubGUfB+2FlxZfOKzb8frr36/zGa0NqJecgfDpke3YYTsGxmv3bkNbhHwG585/6zu+h98B8iqUkjrY/m71F4l70jnad/JOeUIXDlaR+uRrScNwHLllVfiBS94wdrXnv/85+PXf/3XAQBXXHEFAODuu+/GlVdeWX7m3nvvPUfVMl51XaOu6wf9/uO2CqPbqG0WVFrMxc7FrlJRt1BgyS+wBJCHnye84v/8YYSGMJkS/uCXbnhYT/tI1DgA1qT/1//AL8gm1Ce1CItFWtg/IAMPYMSYABAmwmigBPi9gIpZGDeQAZRpe9CqBzsLO+/gvYTFynlRpsleCzNvpalbroTZp962vBrsMnLzSVyDZxLeScsOCEGKRmuBuoIjAU2yLNa0UW17dDiV2QeMMhygDNQAwjYEwLVm0hSlB5B086UR649hADd4yl/3svcUBsTFHP5/7HffhZ2n/QwAIG5P5LiAwSriPL7UxctcJbmDlDYOhZch7LzgbSjZOznYOKYBiAEKG/toPTlWdec+7vjCzdh5wdtQeYvrXvpuOG8RNnxhuTyS9fHPvxPXvvwmwDIoM8C0GE2VQZxahEZBBgthQynDLQ9/c/ZK8iLJz5L6MGHEmkFWrrO66vGf/vY7gb89PP8zf+02kGdwACgaBVMGcIUCCphRckgKm254nLV/K6mOcoh7tj3QhtAfpHLviNr4JmUVC7jLYKOvU8MyQ5MbVpS8KjJQYJbhVvK6I1EBJLJdlgAQQxOaz1UBNbTRKvZe0IZNv95vKbiiwAwbIFVc7BsoUvnd5PPX9PcBwACm02ayHR4bSUmLet5SDQU3UMI/s22B6YHJ/VyAjzwEMy3DZsZh5GI/tHbf0gYnzFyxfyxK0cSa40MIDrCtMDtzdgg3QKhNGUDYTgYSG3clTO/qUN25C37gtDJJ9eQlBu8fwOzuy3tOBqg84lMvxb0v30S/KcxFsTZi8MnjOHjecfQbBm6RSlOXKiuWCollKGh00OkcqO1huyBM/V6JDZA9hZiRtiZItUOsrfit14R+Q0gXXo3Yi/1GRYiVKQBayc1Qj/LmNCM0hH5DVEyhBsJlhMVlFjAWft/D9ECYAfVZRqws/DwVtYvYyMleIs0dARDfczYGZAEkGXr8xue+uyyDXLO87toPlPeYIuPff/Th1TwA8LrrPiDZTn0SCwgiYf4BZeBjRgDRE3U9UevZXD9l+5hsP0tJrfu6KEP7ZTfUBMwgVUunSlRkr73+A6IwcoTf+tcPbfkGPPIsuzFQc/33v13qWWdAkeAOpOZmAvyBQX+fKQCs6bgEQps+wXSd1LITV0KYKbIMJvsomUFEoD6iOhCWeawJ1DPqe+cykA2apdF1QFoUgIVb9YFPSQb8zoGntVxnq3awTyEqSm3qA0xnwVEGuaTWrmXolYdTKQm4kh8j6T0oq2Gy8pvlomDNqRF1kvrOZJJRiECSAc/O899aQNWLNfz/+O+8A9e9bOhHKEQ5Pymtg0SHa84x6zkziNMIoIoR2NvHzpX/EKgroK4FxAqhDO/G2VhPFJDlaD30sv/p67jj/o9KD+QsTOLSD8HZRwyuAMCpL75fwDdlimcyADdV6Rv9vqg/sVyBnFpHd5KBQH0EYgTbujglAEAm+khGFRAmwO/+P85VZb7mr34QcarqURZni1hnMhKjn5lCcBFbJMnRyGSUcfYGW5L7RV4ZMDLD1wYrL7mPpFrnFaO6UizMWe21hDDFJLWuzarp8T0/19gKVsTRvKA4fBiG7fLzqB1apz2rIeQsuawQHwMVyWu+osfQdwDrOX1KvLFtVuEykjVI1XAuc30fJlqf6/tke4CjvEc5HL4ouSOAHmrrNdTKMR+L9htuNdgGGyUdjY+RnRKu7KBuyeBKckDcILGw7UgzceR7QT8Lpb62QNgAJvcAG9+OmH1jAbr/7No9ku47g8m9p9fvm0SIT78U9750A/2GqnEW8p6efellaLeNkiAItgciDAwpGbiLkk+7XGk2rwU6wCxXgHMwc4ZTJQkTIc1qJC920ZQYSa3cw8TAL4SYylZUV4iqGMt2oKoYybMkHxLc3CJMRZGa7eOWlzgsLnOo98QObHXMoNqXz5ifR9hFAFIC105qlOVK9kJnhViQ0lpeFxvCx7/LHN2slLzmVe9TIpEH0ne2uB2vnRe8TVSozOBJVWZQnJIYGrhMbsGao8rRenKvyEfv5RNpPWkAlle96lX44he/uPa1P/uzP8MznvEMAMCznvUsXHHFFfjEJz6BF7/4xQCAruvwmc98Bh/4wMMMqHsCrfPZAr125zaYKAqUzNqkmLQ460ExCjOui3AHkk1igsHmt7rH5Jizx++1P3wT3H4rzZu3CDMPvzeEeMpg1CJMDFYnHap9KYz8vmyE/kDYb6YLoFUPtC1oyYA1qLoA205guwbLk1aHRA5mdyENT+WleQTEWzkP/WOUgPauAxYOZj8HkmWmsQVsAnU9bB9guhqmq8DeqDJF2HjU62Pr44ryRB+DCGmjHgJDk9IGorIYvCmF5cCW05NHBKSog9wI0uLiuhe/66L5V+887WdKE/GJz/0Crv3hm8ogbE2xMlpjT/MClqhyBYAUt8oeoQj5egZrxsFxo8d+IqhYjtb51/U/+A79LGPdDzez0vHIQdnx+vjn31lyf7i2autlxRrLET73/1lngv/QT94uFlsrLmy8pEqJ3LwED2VbMb76Xwx2FM/8Hz6Ar/3kyPLBaLfGUmiadmiUspojS/HLIlF2lIY3AxNEytjN/9av0dAA2R7FZioDNqEZWGdMMvA2joslVWjkPzbCtOrVm1vsWfJzakaIH44RQLEwY93lB09nUXJEtftip02sDt0zeCWsSVGxjG0EkAhxM4Iiwe+LMiV5lKBMad61MVwK2GR6FIufbC+WVTnEAC9RbBEoyTlmBWf8QsAV1+Z7DspeYvqBFV/eIrW0yR7brOqVkjWCPEyggdlJYlNJlagiTS+BnVXH6LYs2i0JLQ0zoNqNqL58t7DcrcWaf7M99CcAVB6rKyboN4DJvYzNb/VojznsPXsKYAoTgK0/XyBseHRbDm4BwEtxZudieVRemwYXZ0tLYkaaODAB/YkaSCzWI1OH9phYhoSpKY0+gJJxIYQNUWf6A1Z1GKldhrzX9W6EWxDc0qDbJHTb8n7mz0M/A+pdoHlAsoUy0z8TD0wfZc9kGS4TIM2vMSCIdc13A86eb/3mxx+ZncvVr79Vc20Ak5Sl2MnxpqlHcoRPfuqteN11HwAlflT3ue/19WA2l2949c1ir7q3BM1bIFsuVRWy4sC0vfw3rVQZYlHft7rox5yBgGt/+Caxf9VBTalp97WmJeh+ZdBvOdSnO7H76RPMKsKyDjqsAcUog4/9FrAG5D2a+yqYUOHgSoc4MehPTFB9cyXggDWiXsmARw4z18V7B6DKg1atXGNjcCVbnQBA34MWKOSfPHxB25XZoDx+HHL1skXsxkRUMwDQtjJgVWZ+sWmMAexsUZHk8G4keQ50PaiuAGdx/Qvfjju+cOFBlute8q61HKVTX3w/dr7vZ4fXc2ifKLYzwJC9UiwN8z4xYkIDMlibL9eGzPoA8t4Y+cwegSxPzLXzvLfIZxgAZSA6f85dVtjHR2X1dupLt2HnOT8PkCt22gDg7p+f87m//kXvlD0yQcmJkulgVr3gfLUD4BAm4kLx+X82gCqv+hsfwm//y0MZX1qDiu1uziYR5YyogxlRFQcFE1BhHJxYb9tWSSaOkJgkO3B0Echg3xTF6Fi1EiaEfjLUXZInwgXQkCxFKSPdapRhlu25oljymsglK0YOUlUepT4lJC+qb2IBfSTX0JTahglAZNS7UYAlAoiF1ZPrvkG5y0iNAC9+gfIzyZtyL2Qrihi0g8IZhmCC2MomC4BZQJjcWmSViJealiKK6gfQ1wMASorKWa5ZpZNV+6bnAjgJMEJFVT1kPI4eh4DQAMaLetyoGsZ2ajVXQUgzEyDMGM1pYOv3vn3uPfJ8A1u9VpaXN+g2gek9jM1v9lhd4rD3rAlAwPEvrtAe8+i2DHjBsEYsQU2X4M4sBHzPoH7UuYAXEmbamgAJ6I/VMCHB7rUgZxCmDm4VRZ3sCG6VYBcROTdVMkws4C36Y00BO9JWDb8vezL1AmQaR6h3Gd2WQ7tl1IJP+jE/T5jdHUQRvwjrJKFWHTiyNSez7qXyb2a+YBm6D+Z282Drmle+D+5+VdKHKLWUsRhbuhOAO373XbjmR25et4Y/WkfraF3w9aQBWG644Qa88pWvxC233IK/+Tf/Jj7/+c/jox/9KD760Y8CAIgIP/uzP4tbbrkFV111Fa666irccsstmE6n+Imf+InH+egvzBpL9Ow86KCORYmhQwxiYci5Ra8sVPuYDwbMvFWQgYHewndhYL3phm2bCnS8RpgQ5ldYGfCwFANuvxeriBiHBnOpDWeIsMxoAPgDp3ZdWf7PYg9WzaSIPjhs+A+Ra1sryhYikHdAUw8WDPMlsGpBkBlZUj9v6kJhR+fhEIVMJ2HJeZlNhyH0iD0t/wZKwOhoZX/9/DjZu1qGDBKedrFAlgyuXPey98DccwYf/8YvAtCh+shff43hl4uhww1rtsPJK+nPZ1/vDK4c9khlBshg5zk/j/ZZJ4+GWI/ByvZe3+lngMHdg1SinQNj2YpXFBvC1a+/tYRBfjcy4jwUed21HyiMtLG/7Iv+rx9Rhh3w+//DjXjZ37l9NCwWFh7xoMwAAAqEr/20NJ/P/GcfgPERWK57ldCebH+2kybyy2+6AVfd+pE1xcpYmQJgCLHUJiZl0lKSbzJJEct2+N2cCWI7eVBpcAQ4kZB2saDKeSRG7ZHGgZmxQlFfAABFtRDoqTDuABQ7hQLyaGOdlCUnjQnWGjZAAY2xioHF7ssvBiUMW2XHNUBqDNgwwkQaNjfXvBbNfyEApOGbrpU/i4WlI31NVBpou+ICWEUvf/p5BlwYfp4KC56i3nuyvWJuuiHgSmZlr4Ecdji/yVMByHJujDSnXN4fsVOQBw0TZaXpOTh7lUf9wEnYbz+gyryR7ePhpfe75t4lLgkN6vtXMPMWbj5Fe6ICBcbk2+L9vLiy0ffCwARGt+3gKgO/24KCQZxVsPNs3WPLIMEsZf83nQSNp8rAHfQlzyVMZdhpW/n85bBRDsqcVWABBkiVBa/UUoQI7qCXYYUziLUtrL/ogdgIuElRhyeJQFODaj8Onu2dZEgM+ShmYBjSQ2QlXMR19WtvUU9wfX8UTGIDGGY5D7VF8gavvf4DAAG/ebQvXZSV87p2nnmDDOKVFSoMUQNKrgx0zKIrWUSP5efm4//7O0XN8hA1bWqEjBNrg/lTa1T7MvyxKyUL6bEDkNdnjahNVi3spEIFYCOyWggaYZ1mhURVgbc3QZqvRBFCZEksAC+RnLv82HUl9yUiqb36XmvKKNtYPu6s7hjXZOOaL//cciVDmtlUyBWj11185lVxnX3pC9CTH7fv5T5Z16DaXxSQJdcR17/onbjjD2+S59CadueKnwbAQrqCnD/0IxKRAtdlZVKUSUDEkN8IAWNobXM5tPQ5dp7+j9FddcWTJnPkybpef/X7H1ZO4dWvvQXVUoFZawDvsPP0fyz/dk5yjfb25euX/4NyXZy6+797xMd06ssfBCAAMojWbHyufflNpWf92B/ehOt/4BcQtyboLpnCLgPsoi8D/RxQ7pap1MSv/rEPotu0cOcpOWwnDB/2UkN+4rNvxw//l7cDzIgNFbtLqT2HepItNNdE6qPeWpjAcCGH2GNU41AhCgFCCkpelNb9lAqhJ4e8m4aK7WuxKfNAAOAIg60WkSpe5L9cx44tbxlSpkWnYImX53fLBJsGNXi2G8tWaVYJWcQMU1NRdsdKa0Xkf6vCJRKa0wlxYoZ6kAAksUUroIsCRBQZcCTZW1N5rAx4xAaar4jBPtcMJKFC5AIKuamAJplANFK5l3ORa/IMzDCKu4npMbw/Xl5cVqLHbP2rjwEAe88ibHz7MlRfuVf24LHi73wrMSZ3LnFp36C5ew7zwB782eNoL20w+dY+QIT5U2pktbgQE0yx5yXtPzCbyv4yWrQKoJTg90zZj8zeCo1m3PqUELcmQi6et8P+BYArUa24g05BOAvTxuIEYxigtoc/swQtO9TOYrrRgCuLblssfI1ax7G6KeRs34E4G7X5G/ZzVovMx8tu/LqXvhtubznsv4CAK02FkgkDgJ3BNT9yM3ABgaCj9cRYymt8QqwH6Ya/5xYxP3k0Rf/m3/wbvPWtb8WXvvQlPOtZz8KNN96In/qpnyrfZ2a85z3vwa/8yq/gzJkz+KEf+iH80i/9Ev7KX/krD/s59vb2sL29jd3dXWxtbV2Ml/Go1nUvfbf8pYRTAkiDVVf2kGZjkKYeYeYfMbPzQq2Su2Ht+vAdAFcOYatGbBz6Ddnl/YE0pGYVBdTQ8PfsJ49s9+UceFYjbk6QGguzinBn5sD+fGj+jAH6HrxYSgOoGzUp8w5RmEI0mwrAokMy3jsATRpge3MoKPNjjpjRxZ6hD0MzCgyvM4Mkk6ZIxWFUtppZf8Dw+nLDmgEWZXSwH8lOxxJdgzW23qNZ177ivTCLDmxM+RztPP+tw3EAA6CSmX6H7cOck3M+CgwtypXDA8hxwa4DhGxBcepLt12Q13S0Lsy6/gffgYG5E2XAAoBPbAl7beoRNjxiLR67Dyd47+Gsl//t2xE9od+Uf5fBfVJFQ6v+xBaImssUJkC/KcwsthKM7hbA/GmMdKJfU688+xdvBwWxhcoDdttiTYFSFB9maIySB5AAvy/MfYooVgiU1E85Yh1M1cbHdkmAKNKBdEWqVJHXkJsyE1iUMdpQddvCOMu2AjkzJdsfuKWoB8JE8j3CRH5+DObGSsGThOIdnSq1JogKsIwYdLYTxqDfZ2WMoTSZbCSLpT0u58m2ag/Qin1Ffg2ulXNiV6IKsasogaOOZJBYE6qDhOpMh35D9gHb5yBstUhQEaDphsyAIchT7ssFMNAhXw6PLD8HoDveIPkhvF38rDX7Js/Y7NAw54E7JWB1XI41NhnoAmZ3Mra+2sLffwA6s39+kCWzyK3VXDBXMoYAlPs+tQGrZxzH3jMqVHPxiG7OREQvIFpz90KtApyGgMfB5zmK0jPbDnHl1vyeS3g15L3Pg50CdADngB/l3/r35A3YyvA4TmzJIYv1OHxeLMVsn7PGEqrTrXhjj8+LkSb7Qu1d3816w2tuQbYiSZVRlirgFkHCP51YSLAdhjWPl//0o61HL2Q9e/Xrb70ow+KdS/++/KXywKQBQigM8p3nqC2GgixcOcRZ/aB5Khd7PVhNK8dVIcw8wlTs/gDAzXux8cskncy09W7IS9mcIU0rhK0GYSLZgNUDLdxdp4cnzuqIEAuYksEC8g7cBwEBZhM9h3o/ajtRbVcVsDmT5851LKehfs3ql1w7Z6CrWLxaISHNF/K7mfHvnLwWIqkNQhhqv7yI1OaM5dhUyZK/l+vhU39yywV5j659+U3y0Mwwd58uSpKdS/8+eAz8jI9xvDLQQgRkm8ecfxOTACzj0PhimTb6d2Y4W/OECL4/WrJ2nvYz631KHkg2tYKn/fDD2rucuuuXHv3zXvUmwDvE7cnAhg9J9m0AaVajO9nALgP8WRk4MxHgDOLUIzmD6r4DUB/RX7qB9mSNf/v/XVevvPqvfbD8nRiaaxXRHvcIE1PU0qYX27DkJOA+5/FVe4zJ6VSyQEwvpAx30OtgXBj7ojAnrSFFGSxWpFAQR4f4jSiQbS/gQj6ufirPaVdSi44tw7OC2S3FPkwyQuiQ3ZgoYWR4r3lvbe4JpJ4zbRqG+aW+k8eOtdHXL3W3CVI/J0dYHRfChW2F9ONWXOpZq48JoOQm5qzEbMMatKZtHgg485erkrcoOStal+prlRqbi9pH3nPpH0wn2TWkxKyiCMrK96lBP1WCkgJD2ZrYhKEvyUSvDDhRBKr9hIOnGqSsrPFA8ozpnYTtrwZs/OGdcl3kmnZMjATOub9hnFelM4LFC67A3jM9mjNimzm9t0f0Bn4e4M4sxJnESi5htsPkaS3zkE4IATypwRO1WVc7d268Wm3q3sVpeP5MNJhNpLZVK7F8P2dnBLwJYXg9Wo/CyHXWz9yQ3agKMEoAhSik3y7I8+bzkOsSS49r7tXO8986WK7nvchZpFld7jWc+wN1VnikCpkLtZ7oM9Yn4/rUpz6Fv/t3r8Vn/+1lj/ehAABe+rJ78Ou//lm84hWveLwP5XFdTxoFCwD86I/+KH70R3/0Qb9PRHj3u9+Nd7/73Y/dQT3EGodCP9p1/Q/8AmA0EHrcGLBZC+lkY2TIxPy43UCHg+GBCXF4k44RdtHDdBF2JSCCWQbNnSGwkWaaugCsAlB7kLNDsFgbYKpeGqCcZ5KLAe9ko9cmk0d5IpwtECCfF14spWnMzVS2tDpYDMeafaVHChyxUkjDxk6kKphM31HLhvkC1CpI4pw8p3fF9mVNJVLUMQDSwKzJDWj2uc1hc9e95F0Fsn40Cpcw9bCGxAotr1UrhQuPP2uHQJXxyoASGWVLZCo9y+NgBNYUewVlgYzO4cNRVxytx251l81Q3TuXQjrbijCDFi0wFYpa0nDLzz4MT/yHu9Jo2B+mw7D7C7fegB+44SOYPCCAelF5GAEJ2hMM9gyzMvjTm24AAHz/z30Ef/yzA7jyzF/5EGwwcAuC6aGB4xhswaBMMh7AFgoDyGN6aQxNr8GZoNLosQESAZRIAt5JGh6r9kv9VJtFVWuMPa/la4MiIzdPmfFXwt9VZWJbDcnU4zCdsB1L8KaeP8LQ4LIDOrXoMr0+Vm74VkNDhoTSHLqVKGxMz4MlmoaB5vMxvZcxvacvll0UNZw1MdxBJ/fxXOhbadDYGWF27x3AVRWaWS3NU1gHK3jWCKBwGBzI/goKJpAZGHLiyyyDcwoJbq6sUJKvl3spUEAEcrIHmC4hZ+T0M4PmTEK3JU15fs3tMcIDf6XB7O4Km38CscxjlnDQcp8zKMq+yqN96hbmV1QCNnVcrB/qe+fwZ1vQ071kOXSM6NUyIzBS7UAhws67Mpwpg9Awuq8mCWenlgcAZsTMpiBqEgByvqxFqpyeL7n/FoCKGURcMsMEyJJrCxD2vPiT5w+v/phmDmXLk3we8mDi8QRWrvmRm4v1huxh+vlhwLZRLM8UiLMrPa/OHLGxdH3yU2/F1a+/FUiMT376/MGqj2TtPOtGqeeskfohBPDZXdxx/0eHH1IiTB5uP1iY/WO2HqymjRFm1cP3CXZl5dpeDWoPinK9psbBZFuqaS01bR9AnVjRmsqIMiXXrNn2pNKbdtsNKgxVnJR/Wyt1W7awKsxsrcMOMYVlMDVY4KxZe+XfmzRA5aWma7vh5zPhiJR0wSzvYx7yjIlO+U+kYYAdXQGoSAfeO89/aznmRwO2mE42O3YG8WmXDN+o1GrtoYCVMnjTvYF0iJg/g4DaDI3Oa/77aGhXHovoYSssjtbFX7y9Cdo7AFbdoD4FZDCblWX5M+zdd5XDct4VE2CSENkqASTZW3zsD2+SvIQYUZ1t0W1XsI2TYW5KMvTd8qjvXxUL7p3nvaUo//J61d/4EFAJ6aE5HeEWAWYZhM2/yJanQy6JCaJiyOoM0wF+yTDZ/qoXgovp02DZ62nIHwXAXnIwYi0Ep2zxOqiJBzVKtsvKXycLGK2Xsxpc8ucULOlU0dwT2AjJp1jIlgG49B5CfCGYCQsw08ken+24xzV2dv3IeYsmcAmaT05tfLU0OP6f5sNsISSkqdyDzULeG3YGOc+KrRXyjDew+yvQ6T34g8tFvdiPgAoA3SVTtNtOQ+xZM1io1KeS1RiRKjNYu3UJYWoAfU2mY9S91i+kr1/fl6z4idVgLZxBqVCLimlyH6PbJMlYtIDphMz2wAsdpt/cAlsLSgnmW/fKg52v97cG4SknsHjKBLZNkvsTGfW3zqI+3cJd5iSHBSi5umwJcaOB1TqeQgJ7q4r3UAALeCc91f5K7N0nFXjWDMRWQOcyGBQl3oOPbw427mvOGyNHDmuRJl7zjhhcObGmdgZupeprXWIhJ9cCdWGYcyi4xEQXxe7y4a7rf/AdA+iTGLw5UftgzZ9Jcs9JTQVYyb4jvaaP1tE6Whd3PakULI/FeqKgq4U53seBZZNv6udBy5/Ig+md5791ndWWmxGrXvJeipM48ei3HIKym4sP/J7mzPSDRYzba6X43BRZZ326R3XPvjSRZGTTXbXgrgd3wvij3PTkhnLcUGW2hnMDoKKgS1k5c+RQEwYA5BwwnQogESJKBsvaz4+ZcUaeS4v6zC6Q51kHXsagCoBhyKbZGLBUWNGADAzHoNtDrWte9T6wM/B37+HUFwUQLKzRxIPVQ2Zrkv6ZDkmIFVyBs8N5O/yejwNTxyuEQQEzsp84UrM8cdZ1L3232rOIVV7caBA2K2Gv1RIUzhb4nX/xc9/xsR7OesVPfBgUgH5GWF5CCFOIdY+XRqg+DRnqKkDQHgO+/OYbHvbjP++mwQqMooAJVuv2bB+QAZUcXA+gMM2kEYQO8vVYRj+TVRAmoAATuTEChPnXT6kcQ7dBhUlY1DTM2pgK07AcbwL8nMWKKaIowkxghKlFu22EiQdpbt1Cnj/bH2TQJ1aSoREnwzn1C/la8vKaTAtU+wKybH5jVYLTU2XgDwKqe+egffXnz9d8DmTv+vUBm6FBhQgMtozKtOa+B3kdJJY9bzS48l6Ypnov4bpCPDaRZoFRQuGzAqPfqgePb5L3AQYwbYTbXUlYZYjCQKud2A7ouQwbHtFLyKkJCfOn1ji4Qlh/IAGjAMAtgc1v9GjuXSDOKmnS5h3smQUwX4BPbGHxzG2wJcwvs2hPSA6L7eWzPbk/odoNCDNhhfr9gPr+JeJM7OyoT2r5pSAVANbQ79hIE2qXQZh5qvosjaWlophhb8rjUR81Q0syULJdl5xvAaCGEEwumSpsqJzrsdJ0PMjNQdbZUiFVDh///Dsf5lV5cVchJORjXAlglZoK4VgjmTR6DXXbFqYHfvt/vjD3s+92PZEULI9mrWV5hSgDgWxRFQJO3fPLaz+/89w349SfPXGzE9dq2vPVs9YizjxSZWBXEbGxYEPoZzLwrHY7+VkCYAj+9BL98QnaEx7dhkG9lzD91hwAxAaFeVC89L1Y3I7rJWuEHKQEH25bICapS0fqC3nAESko16dZsZKXcwKC1wK40KofFC7A8LtjlXP+ej4nzgJGh9ZjBXQBdA7VksqaZlXoUFYJZdDlYSgJrn3Fe0GrgDTxsLvLMvzaufTvg1WxwwrGl1DiURZLWVm5chiocm4doBmDW4eV7Pm8AvL41hzVtE+QtfO0n1n/rMYITCZAU8le6C3QR1CIpS96VM93xU8jWyLxpCrXblGN9hGmlbw19hbUhTVHgYezrn3Fe9FtVwKi9KzkxYDYyAC5qE5tJprQAFyw1EcCbHD5GhgIjRHbL4ZmqWgfGjWvTmvQMDFYHbeItZCHSs06qmcze54tZC9gAXpyTesWCt7oZVPtRcTaoN8wSE7r7pXknIQaJdMvE4EAVZ6rcmXzmz36mYTTx2qwBqMEbHxLCJ6s9sbJEqrdDu7bD4AP5N5LZAq4zW071KfOiSJwuQLv7g/3i7oSUDom8NldccMAwMvV+e8pTQ3emslztQFxe4rF06ZF3U2qzrZdwvzKSsAsT+Uc21Z6BL9kTO7p4XdXoC4gTSu0JxqpX/uIOHFi5buMcPsdUu1w8PQG8yuMqPRJbdkMcPJPejR3HSBsSbi8XQa4swvggTPgy06gu2yzEGZWJx3aYwaT+6LY2m5aTO/p0W9YsAFcy6hOt0iV7EGmS8jWrGbZgVZa0zb6uY9c6jLZD9K6OgaQf48VpDHJ9ZvVJJoBW1xDMiFLv5bVHAAKsEKJYZe9EL5GKwNNZQ5HBK5dATsf77XzvLdILVV7IVVFlnuX9gJpo0F7skGYieWfXabHzdEmrydKTfoXaWUFy2f+7aWP96EAAH7oZfceKVhwBLCcsx7Pi//al980hIiPg2Gz+uJxliE+2rXz3DePGroRuAFIGODEo9+qsbjco59qgJsD6rMMf8Bwq1SGZcSAOwjStG4NQqxqt4e/5wA0X6gdgm6KY+k3sN5QGRrY+Rn8ANbZGrkJy0w9aPEFDAy3kVKmPE5uxkaMtjXQpVglGKTjs/WfObziiNkIaNOq3xuFjpdzag59TQuMwz6hO1e9SYIZn/cWlMyUFIeGvLyeQ8y9fD4O/0xunsc/Xw5q9NqzLUVMg91E/l6xtZHHP/WVD517Po7WRVvZipCNEeaLl8+v6aIOXkUaD0MIE4t+w5Yw9t/9tRsf9fOPAZbViYFplWoJI/T70qhlZUbyktnxhVu/M8hy1a0fgVsMDaRtURQsQ/Kn/FeyTZQ5x0b9iyHKDRmQoTSfWT2SQRe3RLEzMz3DL1JRuvRTg3bLoN9Un2YjTELTyWO6hdihjY8jeiBMJVh+6xsd/G4rdpDKSMr3w3bbiOLAEGzHYAv0U1IbNEY/NVidAFaXMuKEwXVCfY+D35N7rgSSAtO7geYMY/btDtW9+0gbjfgZewM772HPzgU0Gav8nB28/6tKvrZqpfkcD6ScBep6YFeHUOwbue+H+2sOVT58b608eHNahhJx4tSeSp4j1qKgYUMIU4fYCDnBzSMm394XYCiNCAxNDZ41iJsN+k1fwkqTJ7RbpthfjH3BmzMJk/vF/oASo75nIbZY2oztvuhStFsCzMRarOX8kotN3OSBCOoZcWLEpuNsDzvvETYrwAB2GQU0SiOLNL0m+60KyVIBgSgyTBsGBp8zSI0MBDJTlUICRR10Mw9Aiv68DCzExg0ji6yS1ZJt1WIqFp6wCqyUfQGljgHJQCdV9hzW7WO9xorPkh1RObFgqYXZZ1uxsVte3jwkuHIh1ckPtZ7MAEuxs80KjgzsLVfDtZwYpzQn48m4dp6rw4rD9awT+5NsO5IB+Pa4BTHgD/Ra0r0ARmzBwqZHt+XUmpJgOobtEqbfPIA5aOX+mUHsVTvcT3Otl+vdthvup2MQIQ/58sq1awZE1PIrD2uoD8P98ZDN7/g9LMDJ2BrWmAFEHxFnyu/l2g8QsFeHmpnotGbDNR5KjutEZ3Hqq7evHdb1P/iOonQqwIoO4XgEjtDY5ia/jvEaq1jyv7M6Ja882DPr73953MPKfV2Hj/loXfx1/QvfPthNAyXTE94DhoQhT5mUQIgTLxagbXjUYO/Olf8QOceIawfOTgduYPabRbd2HbNzoPTwVHvXvPJ9MF2QY9fA+KzsTbUAvewl3wlmyPPIIe9JLWpLTUtC2KGEUtezqqMBqSFFnZKENMSMVBu02xbLk0KIyja9thWwxbZKSiKxAMvZIqEB+g2paTfuDPAHAbG26GcGtmcFFCTHBZDjipXUZCABVvJx9jMgzFDImcf+PCGqxW2/QfAHQjaa3Bcw/dN7gdojHtM8SWtg95agB3YFEAFk78oAS9eDNgQM4flC8lu9l89RJkx6D96aipr4vjPytb4voHG+F9Ph/jjfE2czhCuPod/06DcsTATcXNS13ZYDaxB7t0mw3aD0r/YZW19r4c8sZbg+b8EbDeLWBKmS/Lys6DEhodty6DatWN6awYINAI5/cYHYyJ5V37Uv9tB9AJzF3g9ehnabChgTPaGaJ/h5QrKEMCHUZyPCVDN8FhF2GUQJbQC7CAoAJpwv5zVO/ZpSW1QmAyjPeV5ihvOWFVXZASQr8rNKPtfLJSdsPNYY1alISQAfg3XywugY42ZTalq29Ljna+284G3lfib5M26oba2c8zSp0G17sCP81r86v8tEzmV5LFxvjgCWC7+OAJYn5npSWYT9RV0ZWCllONEae+X675fBRHfZ5uNzgBdosXfSsCmIULJImIGQYFYBzhjY406ChZVpkpyALSADvx9hGIiNQXfMw7QJbhG1YCSsTngkvwXwFvzZVuwCYgSdPRAf6Nz05aJnDFKMGWf5uIrFSgYYRg2qs+t2ALl4t0ORvAbYYPQ8eeVi3xmY/RW48YOSJf8sD8XyGqAxUrpwtpYeMTdo3MwCkBDuc9+XtDXB9T/wCyA7AoQOgyeHz9P46+OvJZ1MQ5knuRkegyrn+92o1PxxI52HB2Sw82zxGz4CWh6blZnwRIxkDGIjVkJUW5g+CaNemUAOUI9naXhe+l/fjt/71UcHsrCR5y7BmLnp66mAKjlH5M/eLqDKC9/6EQDAX3nTR8TeKn/USH7/jz98A57zwdtV8QW4A/3IdVizOspD5fI8wOCfbKkwvg7bG2TVS1GvdCjWYqQWYaE2JfvDdvJfn4RZlzNWoH0sRQFlMsswWxmE6eDZbJa9DLeNqEriVBrT5nQUz2gjLMVYEawl+EWCXSbxzJ4R/AFh41uEg6cRuu9rEe6v9HkJk3uBepdR70ZU9+6D5i1sFPsp4614J/dqD2OcsJVDGIVVu+H+WVfD0A1Q8JnlngygsIOzDYu14D5IM5pGjLS8cn7JsgO1AWmjBnmjbE0Duwhwu60MGJoK/ZZf89CWxxhUjjSdgCcVUu0RppIHI1Zn6kceADNXj+8g75Fk9BCoT/BdEnCDGWlWg7qA/uQU3Yac854M/Fze72o/iUozQRUTYkU2u7uHv/8AaVKDYoJ/QFQ24eQG4sQjTKzYcikTlAlgT4jWgjsdBta2fD8roCimMsxI3gAKBgEKwjgzWGdZYUjm3B1AP5ckrNDcoIONPi7UI11JB8xrIFfyZri2IKG/jxvQkptvZjAM4AzCzItlnHq3ZyDZrRJe/WMffNCG9FOfeAtef837C9Ay/vr3+rrupe8+P0EEg/XTzrPfCHACH994DI/swi/2Yt+3Vs/GP/amEwABAABJREFUpGHyAcYZVJHRb3p0WxZuyehnMojMNjf12Yjoge5YBbeK8PtBr1Xx9W8nFmw2wWYT1V7U6w/w9x8ACYjHJrAH7ZAFlcHow+AKC8hVspfGtRkRUFWiWLGSEwg7GkBlBeLYAizXufm9zqB6XtYI8BIgYbtq71uOJ0TwfDHUnIePOZ9jTmIFo4tyzXwY8Mnf3z3AzuX/QPaP/LjnsQXLdsGU8tBuBJIcHoImBY9yEZz3qkysGp+Hw7XueVjYO8+8ASA6Aloe45Uzyigk6Xfmqr6NEbR7INfupBH7o80KXPtz+7fvZo36yrg5AQzBtGEYCuvwNjPrf+MzYsF43ctGMwBVa+fP6R1/eBOueZUw6dkbcDIw83ZwOFCFDFUOpk9iPRgYrKBKrMwoV0/C6ZNDqQXYQLNDoLUAlyB1sOas1BZGVS85C8WtJA8xVkCVRnWyFWAmTORe6fXU2w5oLZCmko/i94bHa7dEEeMXXOqIbBXml4zQCIHIzxNC7dAeB6pdYPNbCfMrDQ6eYkp9Xu2KSt30jMm3D0RhsjGD1XsSOyNgQq4tZ1OZE3Q9yDm5X3Yd4L18RtLoXgDI/ShF0IG+MO/L+0DOiaqQCIiZJGN0lsCj+0OEu/8AoE2EmcXqmAFtG1R7CZN7W5g+YXlFg9UJKxmJC8mIcSupuWjRyj3YOYTjU1W/W7AXtXwiSL6cGaziTNAcQ1JLsWUQMo3a+qaNGrSy6C/fQLdBmNwfFdAysFasY+0qAY0BJUK/YdFtEKb3JfgzLdgbkElwux2o7ZE2GnnciUNsrOacaPZiL7Z4plvPE8m2tXlRH4v6jKvBDjdbtRWQhUg/26oWJd13g6qDRuRl9h4mq8rUXnh4QgUYSfqs8br2Fe993ALj5Zgkt41rsfIEGyRvRZGdZL+0XUKEwWv+89vOm5P6ic++HW949c24+rW3FLU7cFTPHq2j9WjWEcDyOKxrX3EeRgpzURZc97L3rEmDn8yqlfG64ws34/oXvRMAiiXJHX/wHvGgZclKoZDgFwnJyQYOoAxZuw1Ct+EwuyvArsSTdHWJsJbrvQR3EGD7hOgN4sQAqOH3CbQiKYhCECVLBlZiXD/AcWOk3tZUGEWjpi4DK4ftAOCHQvo7rcNNKyegi6CuAx/fKp7+5dAK4IP1r2nDRhiqT/GQ1ZyZ7CE7tjmAWFyc+tNb5WvGAIgyIMjNuXODJcRhlcrhc5X/PbZayH/PHuqHm/HEA+tnvApAg1FjOrzonef8PE59+YM4Whd+XfPK9yGjvFS54jOcRrZQFFl9gT3sXguxXALcwsJsm8KIezQgy8v+zu0gK4Pb5Emk8N1gJUBRslZMD1AgPOcDH4HtAGqA57/zIyAP2GxLECCsrxp4/js+AtPIsLzaFYVICYvXATIgTaDJihYMfyYLJDCQCGb0MYVe8tEDVGwMsBZYTwzJZLEAVM1CLZdMENsLg892jOQlqN6t5DVGcYuC6cSGodoTr2k3lwESRbkPZOsH20rTY1pVMhgHSlTAI7eKqPYM/IFFfRY49qUV/H6N+zfkWtz6KqE5kzC9s1VAIWrjKbZfFNPALCMZ2Mt5MDJMG4PTKQ0g6xggzuBzPMT8LaAqFVUMW4DYDAB4vm9WVclvMItOhhSNQ5haxMbCNg5uIQBQbkjB0oz3J6eo1HKLiISR2PewsxmIN0GxLn7jkzuXw/EZeb9yo9VvOnTHK0y/tg+zkiBnaoUggcSY3R3U59tpgKmA5ZN72wJQdls1/ILRfOk+8NYU3ckGzbd2QSEhnNwAe3mefmZgggCcbIbw1qzSkfs2gSGZSOyEAU/RFJYfsXwuzKqX4exmBRsS4sQN4LuCR4MlHQOjtyj5PLSQJlQy0/Q6YdZQ0KTfMwhTg0/f8WZc86r3wXYR1/7wTeiO1fj0HYNVwUt+6iMwgS+I+u2hluSDAUAGoSBDtQw46T71mf/lO+dJHTWfw7r2h2+SvyT9qKQhFy7XfGOv8r8oRIk7vnBzsT+jKEHtO8/Tz0Vh4DJMsLCdAJluxeg2hDGQnILerQw++w0J2bWLKCHLc0JsjFg/bknmgV+o3/2JGfzde3D37onF4mLx4KpjYKhpFRjgGGXIPFIPUxQmes5y5MoBOXdhpD5nZ9a+xmuknn6oA5mBGIDdthxDUXaHqAoaGTRmCy+qqnNPdLbsBcBGXiOVKRrOn3OSwabR+SBjioqlWAab0f51WNmeh3zj83i4HnZu/XcNCdkAkLo+FwpjS7nIgDVH9exFXjvP+Xl5f3sZkqNlYFJJrbA9gY0J2D8QAgggPWLtBFgBELZquDMr7DzvLY/OKsxrn0MEe7Aq1pyyXybESYV+w+mwOuCaH7lZ9mhmAVmc0/oC4FoA0De8+makxpUwbjNvQfNW6jStlShaGGPOsZlmY2AmMmhPGWjpFXjxBHbymU1eVC025/sBJesj1kaBF80yDAl+kTNFVF2yGECbXEdHDVe3vZIzDOBWQ/2QVG0BoCgrsrrC9AmxUlsrIz1BHwluKfWy7QgbdyZs//u7UT/7Etzz0gqzuwQYmtwXlNiUhBw0ncj1uFzJPUjVJjAG1NRSX0YZ5HPOIu3UdjEDq/3oXpfD00lJQ6rGlgPX8x7CkPMKgEkVMlrL8uZUCEzLDnblES+xCDOg3bZYnWjQnJZ9xu+LLTIlglPwKWx4mEUDc8DA2T34/QNgYwZ7YhOpsUUtafpBDS3neCA1sjVYXTHF5CtnJXMLECtda4HEmN4TUO12ovhlsR0DSx9Tne3hd4H9ZzQwAZjcOUeqHboTNZq7JM8mbk6k7q0swtQhTAxMbWQ/0/mG6WOpwyQHVvak5ExRalO2w0Keg2geoCXNxHFCloGChX6ogcuyBIbmMRpVeHmx+c21f3aPEaLVkPGYKlGDvOHVN4OswdWvuxWf/M1BzfLD/8WHYVvGb//LNz74PeFCLCLA8GARb4CogCqivLemlXN2PmBlvB5vhfnRenSLUS6Jo/UEWUcAy2O0Xn/N+2FakUtK8UMPinp/7Hff9Rgf3WO7WDND6DDzK0pD6g4CmBxiJfkLdiWSYqdqlTC1IC34Qi1DWGGiG9T3zGXD1wawMDqCDPopRDBGQ7wM7GRgIWeO5JWVKdqUkrVDmL0hAWty88c8FNLAwPYDRsqQNPw9N3iTBjAG8fh0KHSIShFUGMk52Dn/TEpa+EBYlIX9bYD5amAtZrahtQUwKuAKMITLWYCNBQU9ZmeFsXO46cxr/HVV2azZhJn89cFignMTbgCAhsHr4efIw9i8Y+THDUHCca09akwv8KKUiv0TKltYO2FiSzP1O/9ivWB8w6tvlqall+YqNNIUJUt4yU99BP/+v7/hYT33y/6OMDnZAOyETZeVK1lJYjqx3GIC6tPS1LEdAFgou85osKafq+KjlsBHioCbS6bI5IEEt5BmLYdEslEWXidD5aQMIH8QC9MvVuLnnFeCNn+kAEwOkLf52Kg0qSYCk/t7ycFI0kjajtCc1qkky+W9uESk+24l9zyQ0eNi7D5Lbb6UbW90ECZKFoIlBVIyEKDnxc+H18AktlLbXwGq/Qh2hI07A/j3PeqzCVt/dlaaqvIiB0bkGihtaN3fPwzsv3IfJRLmMiCM4Wy7kkODD1uo5Jym8qGk4T6Wc5ryACs/b98DvbzUigh9rBE2LMLMoj3hBayvCaunirVctsECtlB9I4D3DsBLAVFoEkFtD9tK82hXAXZ/KXY8eSDohdXKlYVd1Fg8ZYrl921g8u05zO5C7ll1Bbffws17pNrBdKkwR/39S5gHdoG6Qjo2w/Z/nAv73DvJDmhlMNg+ZRMUBfzotiz6SWYdKguPxY9ccma4AC6pEqCznypIF4RhWN2r9mW6mAh2KfuB1UBctmInYWYWYWJgc2aQk3FmIrk+87WRgQnZf6MAsGqhYLoItx9gOrdmYZJVRq/4iQ/jd/652HA1ZxNiBbzyb34Yn/ufLk7uSRkyhXzMqQQBp0pe+1EY9cNfV7/2FthVEDYocI71aF4PNw/uSbuIZCPoR7Vjrl0iAw6gPsG0CXEyZAlIZoAoWhylMhDqNgj1LqE+28OfXcIDYG8xqSzYGmH8hiSKZkOA+vQTGTDSAF5bC161g9UW8wAq5GP0HqhrYQETSXZSF+Tnol7P2V4FGOzCvFWQlZFqDxiUjKhS+1kLrivxhM/ASq71FXwqd34iUabMF8NQs+vlfpvPq3dFPc7Zkkwfb3zdpuNbUl7qvgMiGZgSyYBzrM4eE4MOZyzmczQmFY0JRzljJg9fx8rzsW2aGZ3v8Z4XExA77HzfzwLO/YUBHZ9QK7EQQHqUc87OCTFo3p7X+mvn8n8Ams3g9X02+wuAqFgpP9y186wbR58VVz5f1AZgYoAuiMWmAWxkmGWQGtwPtRFFBkOv9ZVmMTkj9k8TAVfsIsAcrARc6bqhRmtqoPJyPQMClvahDI3tgXwtNQ6mdaKCIVE659VtivWvWwFJQ9MjqBCT/ILhFoN1aPIEtyJM70+Iu0JgWFxG6LaBeldAlQymUBKQYHWJkKHcAeDnRqyllgl+HmXQnUbqFb2WTA9kS7NUEUIjP7f1NWDj60ug8qjv3sdlv7+J6nRbbFMpqTIjROnVc15qfp+MBSoaatj89V7sFqny8vWuB+d697CleFa/hSj3qazaU0V3mTcAg82YNQroMIgD6GCJxkhdsrjUivVZQ9h9tlXilpy/xeVAcz/B9ox+wwKYojlYIi0WoKoCVRXMsgWxZPPYZQ+EBOr6waLRULFyZGMQrqhx8JePY/rNBeyZg2I16c+u4M9CP5s1XOKidnC7HezZOXhS4VgbYc8uJNtu5oEoAEZ/soHpI2As4sQiTCVrNwWpJ01UFQurWwdQZjlshWjAQT8PUVRodtGXGQFn9SMzzLwVNYoxgDOIE4c4cQADNohNWc4TBLNksdS6txBAgeFU4cLeFFKRW6oyuzMCgoYooBAzXvNXP1iIOfVZ6ate85/dhs/8bw8NbDyaxZUbMhX7KOS/hKLqOQJNjtbRevzWEcByEVcOns82EpRkYEkh4WOff/fje3CP07rjD2/CNT9ys/rYZ4aBKWALpQS7CmAnTWZyFv0m4O5OqB/oQCHCn45qjzUFyCF50mwDBSL6CLPMKpWk1gQDsEHWDowU3cjXvJlz8ZPZ0mNW9XjIqBYDhVXNDEwaBPV0dXefHV74uFjLjDdAbBkajzStsLq0keDARRSJrM0NnYIfUFZhPr78eBZgCHgEQINQDwFF+fVZi52r3gRuZEhIfZQGeCTHLY+fgSM7ahDzzx0ONz1sj0AGa3KbUsBisHtYA2iUDZ99q0eN+PC8maX9MFVCR+uRrQTASV5C8lSY6bE2Ytk3erte81c/KIGRJ2uYwCU43UQRJUiQ4UM/3cv+q9uVAbWO22WwoqhpGKjOyt9NFPDAqld0bjTESxiFKZfZWsnJ4+ScFRPFr9gtxDuaDUuRn4GRXofGOry2PRcLBFENJPgDKt7FVhUySPLRbafK0FOAxa3Uh1qtCew8wM7FKiBVDtQ7hKkrzUXYEO/iyf0oFl9uKYzlbkuCI00mxbURXFugBcxcwi3p+BRsvRyvvn8mShC6O+hVjSRN7MbXDkBdQDg+BQXGif/YwS46scoY++4TybVJRtiR+b6XrRIzmGKGe0hpKpmHe+3o6zzOElj7DJ5nyDVqAMviJMOJrOIrPvoS6un3peFfXlrh4EqL7jjQXhJRnRHpfLULVHumALlU19I81zXStBKVjrVFHVQa7mSGZnsJ2DZgFhJWl03RXjKBm3oJnW97aXz6DrQwsDmjJEYJjJ404NrB3Hk/+GBeLCNw6THMr6xgLqlQ7wZkr4Pm/h4NIIqZDQIxwR/IEKKcpl5UIxksqc4w2pOVAHeJEY41MJ1XgE/D7lfdsK8lA3gLF+UcuqVVMC6KnYIhxNoiNma4zSt4Y9sIiknuHY1BtE7OQ0iwQcC61DiEDY9uUyxAkye8/G/dLtZ3zHAjodDFWB///Dtx7SveK/UGsfiCE2Twag3YUanZLsa6mI/9WK1s8XbtK94LqmzZ4seM2O+1FWeVsMjnelHkGgZSz6IFbP6M+cGmtdqVYScFYaCvLqtBDDRnMKgmaw+7v4Q5aGHciPUe0sA8rr2CBGlgUQNDbZuV2FmtkWu4PFjsOlBSxXKIIGcLYxkAeHuG/sQEAFDfuavZMpWA+gDSrJJ9pnIwSetnQ0hNhbhVyz7dyT0F6oEv+U/CWM5CFIKR4Gg9PjpYiIUYsEZcKvuJ3rd2nvqP5PvOAV0PU1fD0FLr1Gw3KfmCaTgPY/Dj0OIYZVCaz7MZ9phyzzSEImEd1dAFXMl759oeOCJYFZLUITX90bowK9cmOZzcOxneBl6zYt556j8CtjfRXzKDP3kc2N2HOQPES7aGxzrPZ+TwyuQvAFozQXsbZdAoEYW6bu1zQQDgHLjyBQzI1zmI1IZQhsX5c2jaKNfVspeaoti1CpkOkwap9mvDagpau+l5od7Ddg7Uegkat8rS19rNVYTVcTfYoUaGX4qCWkLuI9xuJ+QJZxA2KgVfDBAZq0tEGds8IPVvJg7ZDlieJBz8pQi2jLQvxD7bMmJlYCLQ3HkA8BRxIgoHQHoRE1hqYwL83EqO4ZRge2Drywu4u06DpxMgMpo7RxkiKQ7Ksvz+WB5l8gz25WtWi3ll4uCDWRRmUmAe7APDtc6jmQIg9aN3gwpbf59yba19r4BNXAhji0sN5k8d+pt+K+l7ZlDtM/x+BA7mCq54yRVsKiAkcOWl9rE85CQmrTHbDogOBGD2jQVWV06wumICe6yGO+ilZ9HgdCSGTQnGOfk8qvNI2pogVQ7uq3cB1sKsWtitGvMrG4TZDPVZsTNO+vny+xHVWel5Qq2Kp270mdd7N8UEdhZVlxAnVkhxLJ+xnJ1ngpwvO+/K8TCRvNaU5Hiz8rtPxToexiBNKyGjRZZesWe4RQCFiFQ7BG8QGwPbJrXEi0Is6UWBDiUcJUd41d/4EFwrKil0AyB4sdbHfu/dYskaWdQ7IYmiRZVgh5U1F3pd86r3PSa5LUfr4a0nShX+nXfK7411BLBchDX25R7//ROfPUKTATkPV79WvLjf8Oqb8RtqHXH9D4qih7oAuzTwRtjYtpMNlZQtQKsAWixRxwg3nyB5sVAQKagFhQBu/GBjU9dSyC6WYE4gMgKyAAPoogXRGGgpTeiIAVjC70ZsutJIOWHE2P2lKFIu39YNOcEerERNc8iOgBuP/rh68napyK/Z6YbPQmuXAYY27apoyY8lWRlJchuyosaMjg0Yjk//Tith95360m249odvgpm3Q+NLVGS3ANZtJzBi4eWVVT6lcQcwVgkleQ3yvRFAM/790bGd98+xEkZlsUfrwq6Pf/6deO3ObZq/IOdd8hXk+zzuTfoEA4PlSWHk2g7SP2o4r1uJN/DL/qvbEVXx8fv/5Ia158uhi4MVETT8m8vzMinrbcnDrk0S2C7BlUB9Rq0I/HCcJTwYKOoPo+wnu9K8hWoI74yVgCYmMBKy/RIjaYq9CTkPhtRSTBQvnHswhrKr5DjCBkABcGeAejfBrRKoZwEwlMlPMcIEC7eSYO2sNpneH+HmQVhThhR0DUiOcOwrEtKeM2EocrF+oD7ArHrJTSUq9mNGmV607GEtlWBvRAaterizS6TawygoADJAaCVovq51uJUGUDU3hKGXRq2EGus1nIHTrG4oA4cR2JJBi3wbGA38CsOv3OMONbbAMNwyFnBUGmPqIygM95swMVg8lRGOB1BrECvG4gqCbQl2FcEbE2BzChiDfqtGd0yGhX5fmigAwMF8sLTJ97WcuBojTNdhes8Z8PFNdJdvyOdfGdpYrgbgW72xUdcCgt+1X6wyaTZF/5euUMYmUO8GuHmAaYMwVQPD3bsL99TjAGpQYsy+MQetOnBTwcxb8ZfXgF5zdon+5Az+IKLbtOi2KlGx7Jviw26XoahOqFMlgg7KjapQ2FtQG8uQxtQeFD1SJeCTbaN4yYekn2m5TuPEIK6cjB51oBknHtGLTVLyoj41gSWbpudy/V/UxdKIMgMgFM/7i61cyXXguB58soAtb3j1zTKcsAami7j+Re8EWYJb9n/x1SkPY33it39BvMvtRPzYNWem1LMpAV2A1eElJQN3fzcoJ4hg95doCIiNg99dyf1Z6zCu1L5rfzHYLWYQpJOBUlGtAOcC1Hnle2y+t3oHXixliFWNsiZSAtDLzzQ1KAT4s0uwtVg+4xj6TWHOT+6RwS8biK2PIdC0Age1e7EyzMpHws4ALPsZp1Rsf8rhFdACAAi0OZPfVRU188iqBxgNskmGo33AqW//t2KpxAyzfwDuV4PqcbwKsDGqj/W8lf3q8BoDI3mNz/l4jR9jTA4aE4dGg+81stHRumDr1Dd+Ede88n2wB9q3ZcLcGDAD5FpQVnt32Qa8ksrs2bmqm4Ttv/PsNxYA9bwK+vFnShX36/0TBtVtPp7RnwSAXQ1a9WBnSy/GzgLODpZFfYRlBrVRmOuZDJeBSOeQppWoZ1daJ0ZV4I4dA5T4Z0IEB81fcmIBCCLEVj7HYSpEqMlZRvNAL7WRDsHNsgV1EXAWjggpMCJbJCfK6+m9YssaGyM2ugkwWo/7Mxa2Bfy+kKDYiMUtIMfs91rYlRWlAjPirAI7A7OKcl/dJfg9jzi16DaFJIEoCg2u5B7KzoIO5uDFUnJVqmoAQEcB6uWadG79flo+Nwmc+hJ6T1F7IgVteQSwZMvzcm0rOEMKfhXyZqmdR2COKrWp7VHftwSbCaInuEUCLjXotxLSJIF6gunELm1xBWBXBLcI4MtPIjUOceLRbct+4fcCrBKyzANLqT/z+w+svVZ7/x5mp/eRtqdYPWUDnatQaWYQ7S4EhI8RBFVLeQ+e1qBlD/ft++RBmhrLqy4VkG7FqHYD7CKokrNH2G6kpj0zh7lsE3zcw0Sgvm8h+9EqiEpSP4tm3iEcEwKqCYx+ZtF7yd9xCwHp2CpZr48Ad/KZ7LVfCUaUS9YCfdQ5ida0IUm9niQzx6pClDPBlYDYCGjm1eWBEwMQgEfsmQXkM70ouU0n1/zFBljKe+c0O8ZbUB8fE9Dj6tffCm4crn6duKFcTCDnaB2tJ+M6AlgewTocaHq+lZvmJ0vz/HitT376beXGfPXrb8UnP/VW3PFH7x2a0hBhegPbGTRnZWhm5i1ody4NFxFo1cItWqDysBsN2ksahO0KtpJNzyx7kLdid9NHKayWCrLADkM+rAMrpTACSrFUCnJjZPDILGwjGhXpOnzkpkLYqCTglxnttoevLbw+HntbrLLEnkQK5wKuZCa4JQ0UlAKu5LCwWD0UBiORFBJOKfu50EujRjuz93JzrQXldS99N+xCGMYSnHyeJn2crXIYXBmv8dfH2S85XS9qsGReo6b2nOFAthAaP+/496z5C8EIfqKs11/zfpFnewOuNUSdaLDDYhQP5h/56x9Cs5DBb/QOsR4Go9naywTBwDJwQYd6zJf+3dsBZGCGi+etSSj5EsHL42XVCljAFkqMfibZLG6uTC7NSvZzwC6lOTMRBZSR4a0AK+yAoLTZbDEmQZGiPDEAoP2V+EkL4CQAjL5OM37c4e9uCQQCYgNUZ4BqT9hV1AvrDswjdpve5yDHK5J3ZRYmBkU7eAHHhOa+JdJZaXjZK3srJZiFWBWw2kHYKPeCfH+gXmyvaCk++GQItKxAfQBWrdx7iOSaXXWD2i57xucm9PB1z7xug5gHCdk27LCqTe9nawzk/DiHQoglH8AOAG1uBMf3Ylix/3BWG2lpMNgb9BsO7TGLfkqY3gWk+z26bSA2DH8WqHclFDQcnxZmG4gw+faBAPjLFmgVENehRdo/PTTITa3vYSrniR7YRb3qwZOqgB00nUgz2ym44p0wKdtOXuOkkceZTuC/+C2gqVF9mQeVUFODjm2C5ivgYA7/5RX8XdPB9rLrxK4CAtLQ1gbSxKM/OQMICFNbLO7sKom9EAO0FDBlDUgPomxBTHJOKwcgDkpJBWIsKciYw0LbzJwF0AHGG/QbVhQi+X1mRqyFCZgbYbZAdITQiTLTtXFQS17MpcAeIQ1s3Yu88j6Va8jxvjXexw5//0d/7PaLelyvv+b9g4pACRZl8dA0P14hrk+W9clPv03sMgPj2pffhI9//p1DPUs03Os7Kl7w/v65EF0UQHC7c9jNmajLQpIh2dTDdUHsTzbEvx4hitVPr8NbK+pCXh4AMRaAOtexGTDgEUGlANiaE8CrJNkneQA7AgjYOcRZhfZkLVabCWi3DKqzVuaCev2k2iIQwfRJQFeg2I7KA+kfRCWnh5JsoGxpUIro/YJTAm3OgN0k2V/jWjsrdgooI8PKa1/xXtj7zgrw7r3cd7NlD3QgmuvOQzUuWW2Htc5fsw4qJ4PXh6+5sDl8DxnXtPnf47zBcR7ZUT17UdY1PyLEPXYSAC02QBbVN06DZw1I+56d572l2DSbLqGfObhdp/fCoFbJY2tUc069AgA7V71JB/G9kFTyZ2CknoE1Ug+kQyCeXsMAhKzgLOKxCUAEs+zKPaP0qZFBHAeb7fzY+pzcqFohKYmljwPRI2dfmlFt5STLFKEHegM0Wr8kIR21G4TmDKPaCzC9Oixo7lQhyViScG2rZMEuYdolUb7kUnGioeMWqM8m2FZqAbcSUpXYkTHqe5agLsDECLs71IsUWSzUVIELZlTzFmwt3LFGLaOiZu5YEQ/1YXCwyOqdAn7kmtUNvTEw9J/GlEyoUrfm69YQCBY8dnPQ318DVzgJLyffU6NkjFCidaW4c4NKO59bAGAgTA3aY2LZevwLBv3MwHZAexzoZ9L3uJYRpg7tyQpuIcSZ6dcPJLtnvhzAdVW2wBjw6TNyb6z8cH/SWtjsLTFZBfDEIzVy/WDWDDazfRAHjtqBiWB6ybilpgHPGkz++FvApMEk2wfHKHaUsxp2v5PHmS/hv76Cv28ijxcCeP9ATuV0KorGiUfYlnqbLSHWBn4eERsD0ybYlarQl0pEzYAVVDHZ96CsgA+9WjMOMxLqepiFXjeGBIhJAMEUwlAmAwhpjZBgYUhUMvD6mTaEMB0IwW7erwXGX6yVQdic6Zjqx2as+8lPSW34htfcgt/4zNvK18d5aFe/7lZkq/HHqqY9WkfribKOAJYHWT/6Y7fDueZBv/9QhfBRkfzw1id/863nNBV3/NF7ce3Lb5LQsVysEECWsHraNuylG9KYnj2QzXMl0lXLjEnbY/+qbbhGVCNOWRcyZHTAqpOGr23LAI/HjU4uhooyRVkIZNYZKLn50wDmItYAgOUKJkRUByuwt1g+fQv91KA6y4ibjVitAOiP1aISKPQ+0jBhKqx99En9SLWIHUlfgQSC+ILCqKLFEkBeCukQ9N967DHK68lWCdqUUtsXBg4BQ4FXmD06eTEYAJsiaT63sFxrKsdNLGsxn2ho7HMDktnoh7MXcsGXm4DC9qIjm7ALvJgIto/KVPZSRBoAzPjf/8f1TISkigFKwk7KIGTyhFgrxlfrtQsABPzxh28ov//Sv3s7XCYU9qxgjh5HtgZTICQ2CnLUMpyf3J9KwUsR4EZ+PvvaZ7VKOVbtbSkOsxA2BIIwoRDke6aX4092AHMSCLBiscWADKaTqGeyTRm4OJwAPcPPNTNqxRJG3yYBhxUkkTDGBIYBLIoSwCylWaa2LyCsYfEGLqGULIGoFEUCDkDUBVmF18nvkkvgZEEk1z1pMywvXpo96oMM9tRWgrK6QsFcEIHqCiXMc5y9Ms7OGvkeF1uF8w0gCjBCcr8cD6Qil98pjWkBbeL64+XnGjGxZXji0B+rsf90j9gQFpeLJdixPwGu+J057v6hGZr7AD8nbH6jh1sE2NNz2LyH9P0QQOoceLkCd10ZPpjZFGY2FasZZrDuO3A6iNmYyc/uH4D2hnBM1DV4ewZaObFhABCvPAEmgrvrNNJ9D8jjffsu0KQBRS/vCZEMfbwH3X8WPF/IcwLA6bOANWX/Iu+FVUnSsLNtwEYaUTePRZHjFkGsM4mwloboFKxzUYZOKUE+nHmPIc3vykBoBK1Gn4EM9kOAP8lrkueHAaiXHBlA7BdAgIkyqI0NEGvAdgp0XGywI39+gAJ0fvLTb3uo37ig63y14fm+9nDIPI9kPWQ9qzewB1PxHPl4P7z1G7/19gKu5HXHH70XAMTGA7KHJB1E2lkNzGpQSKIgZpb7cl5J9uWsLoSqrolIgINVK4OyrIJrGhn2xSh1rd6zUx9Ah64r2ZcNyPMAvBgDghMCUgZuOiP2k0n2MfYG+9/XINaEMLNwS4i15UTqsVQZUJ9gVQFrggxOYcS+xPQJlDRDJoO5JJaHbIywMkbXKAAZ/h0GJMZ7jh47iGC/db/ch+tKzk9eOfsryb6bh6UFxHdueLzDZJ7z2aqVAZ3uQ5pxuFYHH1a35Ocxdhjy5mOvqnNDmI/Wo1vMMKteCCptL+7Em5NzlSd9AGoPmq9gtb8zi3Z4bwFRnQLlc3Tqi0MWy85Vb0LJsgBQrL+YhmwLb6X/iwnGy78BwDywNwzZU5TrhKWfi1Ptf9iXrLOyb+cWVRWmohaLw3EQyfWVIPt1OPS5rr3klIYERCvEQEui/s0FrQIafiFZhvVegulzP6oAR+QBuNHHDxML2ybYeQ/bi2oiNg6mMqBAMPpzyWkeS5TMFdNJbeDmQe6HUVVuzGAluVDbiwLcUgF2SNUodt7L72WbxPlSBvQ5f3U6KYDyWj3Lo/5y/J4XQEJAZ+LRNZ3P80gBN1a+8fjx82cCA0Am99dsF6b3lwzcph7p0m0cPHsLp/+yQayBfjshTSMu/R2Hyz73AA6ecwzzKyzqM8D0LmDj7iCKkIMe1QM9zL1nwctlAU94sSzgOwCxEJtNQZsb8vmPStYJQerOqpL9aL4A7YuFK4jksepKyJx+AKHay6cApmgmFfhr3wb29oHpRB4v72mqhqdlB+rmYo3btusKH1X2UCVqEup6cCOKyazo9/ui7neLCLuMMKt+uD9nopUzIGPkOu56bRZHZM0MqDGDa1UMaZac9F9KgM3Av2y8UrsGISrFxolaBihkon5KsJ1Y3PHqMahnAVFkFwCIHnPLrjG4AhyqI0cv/0LXtEfr3BXxGHzejtbDXkcAy3dYR2DJxV3nO7/sDeLUITkZ1HSbWpwQECYe1ZUVNr45ESnmfityTwA0X8HPN9Eelylpw4BLQ3FAzOI3nQGU7JVdmH0DsMLZ3ma8QbJ6OQNShBap+aiRUqsCGANyFpNvEeppJVkH2w1QWfjTC4BqGQx7KqBKzmEAdAg8BisMgERlkJWXSJGlCGBjwBYw0YOCHWTjgBZwQ0PH3hXGINckKp+scMmvxxiZCJRqntcfay2YfgR+AOfa+ZTf179n2zA3qHlkcn4IqMlFbAaJtDAqKoCjdUHWb378zQAgdgptxKdPPXgw3+f+p5/Dq3/sgwi1fN7AEsAYJkCqgVhBWStS11oFU178Dz8ib7En0CJJ3ok2jMSsQ1ktZhXMoKhACyScPrPfwiQ3ZwKI1GfFWsBl+y8nIEiyUhRbDQXPoYa2Z1WWJLA3CHUOWsTaoKMMxEZKmjAZLMRsNwA6bimNk9gexQKm5ubY9EkYyzGJiiQlGW5XIoWnNkoAa/bZjyxWCBpiKEwlDSEm9dvNLOY0sn1wTq5/YGD5Aljzec/Kk7qS31uu1v2gi3pE2WeJ18HovPTnS3N5KKQ+WzIyS6YJEg/3X71X8EhJWJjXwwMM9gsAKIOuWS04rdFePkO35dBP5fFiLZYTgIXtUGxqjn05YPrVXQHnAWC5QjqYD49tCOycHIM24TkrJoW9cqx5T6DpFDCEdHYXtFyBThwDt12xkMhWE6T+1+Sd2P0wwx6swA+cET/2upbmX1UxvLUBOCNZOPOFNKIhlH2JFKRiVfUwIL+fErBYwqYE6qeoYkR/yQxsCe6gh8ngScJ6rlYy4IlHmNagjVp8rIHCECUIA4313l084pUEwdnKYTxUJCDVRsDJyirAyOBen48Abwx+/5/cCAB4xU98GOzld1/9Yx/Eb/2rn8fFWKx7PpEMc55o4MFhZcu/+Vc3Ynv7PRftOY7WhV1jcGW82BlEzThInsTS1hsktbOszjoZ2IQEt98JAHOwQrykAeDATpUhcwW7vYZmt52qzSr5M4fE5+fNOSqje/K4phXAWEhFrMBuzigkaC0YImhvLkqa2mN2p0GYWVWnOviDKJltBKknJwa2kSGTaUdMbEODegXys9kqt6wEFPtXAzBIGOQ5jDr/HjCAHFbt0jJxiGggEjHJnpGJAll5aqthLxuHXeefG4Mu5yMPHT6Ww68JGGrgw7+f57BJ7HVgjNhBPRbqve+hlQeNO89+IwDg1Fc+dN6fO/WVD2HnmUIAYm/hHliUzwA7u2ZVlMGa8ri1FzvqNgyfFWukWdW/p1mNsCkh4/7+rtj40KKVnjOz3GuvLP4INF4y87w8b2isAJxaz1IQwg4lBlkDilb2d2NAQWpEJo+S4wmUzx/XDnFrIiQhDQkvttNWa7EEUVSvAqZ3D4Np04nFkyhXlaSjYCxFC5sFNhOHNHEgL/c9ignUJ3jIsaeKQIlKJsvknpU4TnRhqGmBAj4UwkpieU1Z/abgDrGFWXXyHp08Lkrs+VwAFkODLVgGE1S9UELo9fXl80T5fpJJgg/xs2Xl30m8bsOW692k4JWCKdzpt3UMx6zWuBsz3PfyY+in0jtRBNxS1L+5R441IVXAsT/r0dw1FyDBGrFBP30WKd//nCvqkVLTjjIF11SORKCNGdLd9wnZ5/JLBjVzvj8uVyAFYVizW9lb2C7BLgPw7XsERJlOpZ5NSfJwnAHtL4GFKGl4sZT9RvsKUhsADppvWPlCADNtB1qJspOdQTgxE3vaZZDPTLYWtlbAe6CE26fNRm75GcxPsSiF2AkoXhQgWteyt6LGIqP5aAmmotKTmk6Uz3YVhGSruTYmMv7gv5N69v/4f/pQyTN67fUfwKfvePN57z0XYrFVYgIDn/jcEysPJatc8rpYNe3ROlpPxHUEsDzI+jf/6kZsbW093ofxPbdef837EU+IFUFoVHZZE2IjQ1W2QHIGthM/TkoTVLsB/swStFxh8vWzAG9jeZlHe0w+3m4hXtFEBJND/gBpbhSckcHVeLBXdM/y9zQaCiYtuChpKB0G2fWY4RYCiAwMEbpLp1gd95jc14GNQXX/AmlSIcwcuk0rVkwr7Q9ZazMvEu8EgKIW7NGMiuFhoJWHtGwIaeJgD9pBLgto+JkUwjwKSpTXqizkRgeDCcp+T+cG+ZWCMqAEUBxuMoH1xrkwu2gY3CrrLw/noKwoRGHpC+gkv3fHn4rUf+cFwpQQVsmRguVirIdToP3wf3k7nCV0m4R+UwYr/aaoRdgCyXPJTzEd4YvvuAEvfPNHULFmqUBVMGBpyBT0iBWhm5EAKjVk+JSxzySPvzpBYtNFQLchqpVqX4Ig6z1pgNgRoieEiSlZLKTACSVRq1BiIHIZahALQGOCgC8Z1IueEDdJPHg7hmsFUElWMyoMwy5keEyMIlnPPr7yYpVJmJlyzAAs0AeY3QUwa6QB6aMU92rdxEQwKZV/l6tssRyuucxMHA+3QxAVRB4UZX/nzNIjkhNqjdwDc/BvsXIZNZEhDKqNHKIKrA/FMns3M3mBNYCVkzzvGJqhcdOJtW+cH2Tp82PIPTU/DxOh37Botwn1LsMfRNivRjBlhnWEaXtc8bl92Hv3pOkmkubv+LY0i6tWwA9l8DHWB5KmqaXpm03B8wWSBi+TIZD3YAD9i5+D6ltnZIjYdmKV4DVHAQpA9T3QdjDlnOpAzyubLgPzqpAEMGR+HVqcFYlkJHNs/2C4t84XoPseAFUVvHrOlwFQHib28r5x5aQZTQIEhplHmFj4gwDbBflMOiOWmnq+19jcXhpURAaBkRqr15Iy05OAmFmdSWBwEIuxnCMkD6z/EUA9n+8lP6qVLRChAalPBr/oT33iLdjb27sgj3VUzz4+67qXvAvdySmwXSNVQhhKVkD6fmYRPaE6SDCdg9+TwS0raYdCwvSrZ8Deoj8xLQNUbjxoby6Du6zGqh3iZgO3WIJXqtDOQHAGsnPofTLytazWHmcJhiA/l0GLpFMlZqDtRbU6d4h1g+WVDtWci40QK2FoeamB6Q2aM0kITrLVAzBgDzCPlB4Z8DVYs+iRcwAdcjuQs4Nv/mGFiT1cy5IopZ0bbM/KPetQTZr3P4cRqcesP+b5iET57/n5syVUHtwxSw1dFNxcato7NHNy53lvkXuw1vIULvx972g9OLCS186zbixqebPqwI0TcM+5gbhWZeuriI/97vuw8/y3ymeoD6BAxaYUwNrnM2d8mVWE1Zw06oQYkY7N1I5IQMg0q9GebERduwxiIxUZsbEQS00qrgc2sSiRdd9GgpA3IouyAFASoNomqRqDG4/+5BSrEx5+noSkmO1XgVJ/ygEmmFXS/Vsy1vL+T70O3CkPd+Xaoj7AnZkDNCs1KcUkWW19kvuAIcRabLFDY1HtdrB3nR5qxgxq+NF4agTkwEkYe8m3IQKiEyWNd0i1B1kagOTcK+d+OGqWU0xS0wKj51aw2Siwe/g9HVkwltoaOLefBoZ7zBqALCBLURiOlSte5gfceCwuAza+zZg8kMTuK8nnwB0EUBdw7N/dha0TG6LYWa4kB2VSAdUmaL4E1bU4dYze27zMbCoWt3UFbM1Ap/eQzpyVU6V99erlz8Hkq2ekZu3V5aLy8p63nYDu3ikRLKH6VhDQJEaYzY0CzA+vW8/vqpVzbw0o2YEkVIAr6eHSwXzoBQ7mwOkzUoOfOCZDy4SinOLKAgkwoS/vLyk4mmY10tYEZm8px51fCwAiL9eTM+IIkPMsASGxAUiNVzAnIU4UYA1RlCtG7d1HBLG1zwCLHbS5CPUscFTTHq31xTi3nT5aj+86AliO1hNqfeoTb8Gr/9oHiyc+WxTGentchrexIZGIKrtjfoUDpQYn/qSGu/ss/H4P0zNWlwjIkmoDu4hw1CNhInto2wGVB9WVSGnP8VA+j0LCiuyUc8PJg71CyUcZr6yYOSDUXYA/7WEOWgndS0lYRmaKdMJhdcyg3k0gFiskSzKUirUFqe2C6dW6IUp2S6wzywZgRzL0NQTbJlDtQRUXSfma1/64GEwJIAtMBks2YrUgGsmwyzLQYG1zLsNvPHwl+dm1oa0WpBLYaEpmAojAkUXKbrjIXUGEO/7D+wAA173sPaBKmT4KyhwxcR/79fpr3o/01Ko0e6EGvvCBGx7yd17w9o8UcIASAAKi1yEKyzWcPCFMCGEm17pUt8oYCvIfkqhITCdATawIfsGY3i2hm6YX+7xUGfz/2fvzeNuysr4X/o5mzrnavffZp60WqoCiExVREQRpyqLq6Hs1mpubm3jVa2Ji9yYINnQaAQsKEKrQxDTqTWOaa64x5iZvPFWFIKCigiBIW3TVV512t6ubzRjj/eMZc6619t6nqY6qA+v5fM5nn732auZaazbPeH6dbknorkvlMaYIMeg+qsQCUxa/k+B7E2RQVGdy+EShlYRI1rZ9Jg/oEglVVKBLsCNZQAKSu+RjaHhtpRAXdvViG23mpON6UsywcqfnEGXFsqA5t9RASK0+qQc3MF2URnA3RNXJXGBvzcibBV1mQ35ryz8/XWCH2hfZual6b0ep4MWaRke2cB0kC7IYrVnB9euAsHhrVmB9+8y2NuerncM0Hwg6squdsCmzMwW6TFBVkOD6+N3ZocOOZAFt1kfQSmWhnhcCZgzHcn7SilAU+KKmFOoZgB38JJf3YDSq10WDDDEHQ3xUlCQf+0IEZqYAewABYKINQgPgzKojlUK1xWu9sQbbGsg5OJ+xuKkZiLPXpcZ2Qq4zsxWit7S677h8J/X3MsmprR5Q0W9aayEK6BSdyXegigjK+LhYjdY9NYtwjpVdD0Ljbbr0WOSYaYDHqMQKWRxUWUUynH7GduyxY4e3+lEPum+sCeLzXgwL0UV9ddRtHxWm5suuf3tUVNKA+j7aYeYrmmASXEuTbpSUBzNcomglmvT4FrhA1U+afC4AEwfC4cCKKN20qL7N6hJsbMquHnY0bzPnjlBfG8zMdcAHQu13W2dgZWpGRYwMXccl6Zahd7wGQ+LTRzJD0JAvQ1Calp4SGkwuP30q2VkGpmQCowTsnSXmRGBG7NHiOYtkep2yviFCNPa+9Xupe9xZ6y4XFSyzqugQH9cAJYrGVjd+Do09bv18ML021fePIeSz58agYNepLH7313/zG1GtZEq+KN3ivPQ41NHDPwEry/I950UzNL71k28562NuePYbBDxrVFGakCXChK+zPkDY8ZGIoyMg4RMjxIWtoSjFMslrU/mEYDXZ6bHYhk1ydBzi2zTFHV6m7KcNiUdXMUPNx0BwkMF9Ulu6BgEaKk8oNKSa0LJU/YzhJSneKslmc0HyWep9uSYSRgu/YDWkcc2nZBjd9KiJRYh2ftq7RaWDXRvGDBg/95N4nOu8gspjjUKNy3miEDS9Hr5qhvoheCGt1H3ojE2sEJfkXKZr+y5j5q3RZnrjUJaEotzz+1VaCJVhkjdrfmBqrzWb1TJrBaaUbEPd89bgt5o5L9V5LPJE8p3VgI3zoBxqOGHpLiF62aFDLJA1dlBhNybyPOMxestIuLzzQhKyBgYjUU1tbuPzyfR1mpdUkkNblqg8RVlLWF2SnnY0xq+tQ/C0PvQ5/GyODIiqJUunqvdSiFxhPGmU3mgldrkQbcqN5Bl6J72n0WI7W1WEopzvaWevV/X6gdjfxn0snDqD2kyn25EkqLFrwG2G42Y/Uq0MFVLZT8pKMhXra4OPQIwTC92QWkiYIcURSW8eQ4WuNHasMMNSemUPqqowo0L2Z61It6fbb/KAicflY5HDsuhpF7WoJ34tAJZFPeHqg/9d7EFe9P3vFK/nlqJYhvJIiUodk5EVa4JtGbyWPciPVGw8o81T/+9K1BulxyxZYcX3NTqToZtpWxLnCEsSGKqKsvFlnWUtA9JsRxaF3DCzXJoFFbxkNFCU0Y5gRwM2HMEQ9DrCvslSua/RJJXHHMio2qCCsB3sBHQlg2JVrzWtxqcSzKwC+FTjUt1IxpvNqoIwJWsP1Zo5XxN0aol5ZBbrwk8ZTiBsrRpEmWXe1xUCQYXGxmjqgxvm2Xo+CJASn+vYZ97aPMUrvvXNhNTg2lGe68JZ/d9BhhM2syirRXYbv45rX3ZTE7B6rscv6tGpOi/pm//+zfzp705zWZ7+5lvwCVQ92Rnu/Efyt6f+ys3oUmGDgBNBQ9GP+SU5jS0YCZRtkbwHDclAgIuiL0ObdEuAj7ITwccykAwD3obGnktVAiYqHahpSKbwJCMt1mHjev9GBuq6VtEwtZEKsk3KS3McjKbqWrKNeO4opkqVoJCfNRBTxWBP72SYXE2VJ1O/ZqbDm/o4qf9eW4TUx5vzjbpuDkjJi+njZgGIGXCzYcfVAPAsoBrZ0UDjdzz3d+capmBwbh4UaMCQ+QWDLJKC+OjP2jk0dwjT565B1tnF1M78pb1qL0tA72EwIgXsdiIWAaWTRVOWUOxrTRdM44m8pxkFitm/D3fiDAD24AH86bU4pJsfTIYa3CgK1OYWyiYQ/BwjPEzyCJgIOCOghyzida9LKIrpgrJ5XqJlxRqq20ZlmWxjvyM+1c7J4jVmhjWPm/0uZp9rR4XKw0RDGkRNaa0od2ZDR8tKrm/WyuyxzgSqmZHx+1OAz5Lp9xeBlWBNk8kkNg2iwNG5sC6Vi9esmvFaAt5S2y3UZcfia61cwKX6UbNV2CtUflGL+krXH90m+/JLvusduJbGWyhXBUy0Iyh6CpcYJqsyqBzvV2xebVj9nEUFaD04pOpnVD1LupZTHV5GFQ7fMiR5SbWUxeuLMK9Dnosd30ypeugYc6Ya0BZ2s62NEhVMXgDRfix40NITm80RrcpR7GvhWho7rIT1HUA5jU+h6kAe5PqbDH3MOZs/j+tCgOgQldUuArw6nrfNuIoKF8mJqi2PlAtzw00J6HaRfDADftRKHJgnF+iZ62b999nh7ixhqmbAh9AoXo7df0vz2kef+TpCavHtCFrHnMSz2cW9/Nq3YVKLDgG9OWk+8ybLA3CHlrj9z/d+/KIenTp68Mc5dupfcvTpr92Vy3LdC2/EZ4YQe8T3vee1XPftN04zVErXZFY2eaFR7aIq4rUw2mcajTm9iV/pYoY5am0rqj9F5aRy6bHMg2uyLxTFnPJA5QXGGtSkhVvK0LmQd3x8brfSktB5FVXVSmyMUDLcDakocmrHhKAVdhwwhZ+qVULMUqmUKAKshknM7wNUXklofOxR6wwZFdXNAoa4qRKk7jeihRnOS86fUvI7TDM26552JwGwVpd4P7Xnqpw4MdTWh6GcKpqVmgbFzwTKN/13WU37qVnFROxn5+3A4+3OC9lwpgefU1fX39FOZdvMfRpFtkYArMbq1UdAKxIaIzintgesfHYgThRbOfr0BvQ65JcuS8+VWTiwghqMUWMFm1v4rQGc9OhDB6lOnsJeegnhxMk5pbNsewAEDAl5DtvbEUjPZJ8tStm+8RiUnqoffRAlyWCIbmWodks+y7IiVOUcacg/cBy9b0WyXAC/3BELMyfPK/mFnlCV0896toKfZorMrQtcjbkLmau+ud2KquxZECWucTIr14/Yf8v5WU33sXY6Rw5q9usaSIyqNUblPHjqkdlGBO2Ut3PkODOWY9TkDqfVXPD7I61FT7uoRV0cpULYOQ352q6trS2Wl5fZ3NxcWCo8gepJv/UrHLpsnWftP8ElrU3uHq3ysQcuJx+mpJ2SLKnY3uhw9b8LpGdGwmTvpkwOZhQ9zfigomqBa4s///KXHemWsEPsoMR+8X7c+mbTjDQWC3WTMTs4O0upxEZWoNllkaWSZLpomwVntIZ+j+pgn41rOsJWiSy3ZCwLyZp5T6iHusSg1Kjw0QpdZ0rMXOS1AzNx8yqU+FixSoqKmFjNArn0wriqg0jVNPslGNPI5ZULwnSuMyJmvPirfoLOHXZYTlmKVuMzi88MPtHN0OFsdd2L3iJZGolG567xC6Z+njjYC1bsFRYsjq9cPfcnBVTxiWSulH0oDpcoHTCnE5QXdUoyYAoABvm/LqFzIkytu7zMXKuO5LgkQ2ite1koVjJ8FasEke7bkSPZLqNtmI7hh6BdEJavUhT7Usb7jQTYu4CqwE4EUHQtCeKu2rIYzbY8JoZ2KxdItkp0UeG6KVUMGpXXFjZumF1LlRHEdKFhFeqi9jVTjeVdnWcxF6AJDUjZ2P7BNPy32jH8AqjzOOJxO2fbVb9mw+JVu2+v/88ME69hH85YRdSMtDkgYfe5b25RqvTUu7quWTCg9nmeBaxn1C6z58Wdi9j6vForcpqQ4hji2bAYlYJ2W/zM6+ebRGuAEAjDEW5rW/JWIktbGTNVr5yr9lA1nlX5OBOi7Gs7sD3upxPbfC663YYslUD72e919vPf+TzAnnlhsXSnI57YNcu6XvxXETyD6eukiXhn9zq4pRbBGhnmRKswgtiY1IvQOnTUp0b8wev5ZBkk5DZ36GGBHk7kNawhZAnVcouqbRoA5cXf9050IcdgvQh96dF3nDMH6kLqq2Eh+kj70UU/+8Stq2+5mXAoJ22X2A/3OfjxAtc2bF5lmOyH7Ay01gPd4xXZ6TFqUlCtdhkfypossLoXrEOOzcRRLlm6nz6Jv++BacD9jp4W5Hwxd06fGcTVf0dpIRqlSZOhVQ8ww/7l2H/pqTrTQ7GaMT6UULVEQZqMpr2rHQVsLoHWZlw1JIWgpY+rrZBcS+xY7NBhtwt0XgoDXjNnfVu/fg24SGi3bwauobbRrcO463NpJ5th4pupjWLd76aJvFYRB3c+gjf1+TpeO0MrwcfA8AuxVz36rNdT7eugRyV6Y1tA7BBkMDyrSu20YTTm2H2/9sh3tEWdt44+6/U0KuPYl/h2Qn6gJRl/Zwrwkp1W23DV/RpGlKCStRZV/bNrnq4Mr/UwR22PZCBcM+2NbiyXSBPodmQgvTWWXi/uHypLJUekVm30OvL6VkPlxdbMi9rLZwmuXw+OiVkRohwrlkUFo7wQiZL1CWpcTo+N+nyQJfJeKi8gitGQl9JjWTs9V8za7znf9FmA3O79HNlH7SAYhRoAmemHZ8kkKrokzNlywXwfPbum1joqdmOfmBdCqJrkNAqWs/RRczW77p+tnfmssz3tLAFzpicPO5Qgs881+3po1YDfqtcVsECJIiS0U8mws1rOU3lO6HbkHLUxoHrgODqx+KJAZy1Rr+xQYu/1Hve+WU2z/naqS2qgxrn522f+pluZ9NVZBmlC2B5M1xM7PsNdz8HufnY29xClxbI3TabKbJDvtSyn37OKn2ViZTt6XTlXd9IpQO89alIROqmoKgOyr0SQUo4RxF6+dNPZShmJB16O39BK8L0Wt//ZLwLwkv/lVzATh85dk/H30qPvwA7LR5T5NxsS/7Xc0y5qd73vfe/j7/3oK/iDDxx+vDcFgGuff5z/+nt/wgte8ILHe1Me11ooWBZ1UdTdPyqqluf891/i2y8reO7SvWwVLT4zvoTnXPIghTN8vjKg0+YxqnLoKsgg2MLkcMB3HGAlTBtI1nOqfopd6qO2BvjCMdXwxsFePWTcoxGYA2GQZkqpaJWTqIZRHmprFq2mvrH1a/gtsYB+WgeTB8o2uJai0ApTgihOZIgbFLhERe9d4iJWoRMwpcKOPaaIfthWQSqqGBWDDKnAFjF4NDYivlbCeKSRmFG0NOyOWfuwOmgQhJVjNV6pRpVCDd4EhNFuFF7H4LjUNIO585aXQR2jSoIV6yE1oEYaYxTBGFw/JWjFtS99K+99/+svbIda1MOub/xHtzSKFB0AL8ClHhmCCehKNeGMupyG0btUABlCBPlCaIaypgSzGUi3okJlIGAI0Kiwai9bXbhpEHdlUM7gEyP7cTeJzbMMdXQVRAW3pFBOkw48yVD2/2QQ8IlYnalEYSZiDVb1E+xQAEQzESa+rjRVJ7JrHY2CxRTiUV1bm+hy5rjRKsrDDbqQEHt5AqYDFZB9uqjiY3QDxAobskKNiykTbxZMiYvO+QXczOLRMbOICjMDtJr9Nz/An81NqZ9jr5Dk3Yy4meF+8A1zul6o1YsxLTeyi9Ox18Jz1qZlBgQKTryfFUbYcyEqMWqGYlXB1nbjn61M9Hmu36O1mG5H7M52vIdz1l7gyuw2nQVomR0W7PybiiGk9XfoRyNUnovaxc9/hrvUQzu+n9n/zy5Gm+2sw04rYa3P2Y/VA4KiJBSboiw70KXsJyQDhbY6htqWTU6Q2RhhQKxREtOc130qihaX6ThAnWF/zgxDZ32p//j3f5bv+J5fwSfTz/CRgitwcS9CF/XVX19+1asBeNZ/eyPjI4HRkYRsw8l10kKwAk607t9CbQwgTbDrisxqtq9MqdqKfB9kG8SAeTDDkrJvqQ4tY06dkXNizVqOtTOTpa6GVT17rptVtvTbM6HJHrW+LZYvlYsWWfK39mZKst1jfLjFeL/B5MLmr1r18a1J86pRifqWFcvRCKwUSxpv5Dpr22Izlj6Qo0xkF8GUrBDCtC/0RBBGgJiGOFC6JgiZWXDfMM3+05qQ2WaIpio3tU8zEZxOIriUl9SspaAzIS2lew8rd1ZIDGZYyDV91nKzGVjG63i0vDn61J/bpa5Y1KNb1z/vl8RWKq7dQFT6KjGYkZNA6+2JgA112HflIK2t56agnxqLGiNklqDEAllVHtdJMOsjwnJPVCP9bi20lgHwDMBQgyvEXifEvqbJ9DFiBaWg2W8UxG1xokTdyHAHV0BD1ZfhvJ44WieGkuUUh8MNiady83kbw7iGrSvLpOfwUeEbAlQlVGpqw2e0rL9rAlAENJrMi0Qs8WqgZZfSGqaEnLp/qkk/PjRKErXDghZoeihVP1ehpkSdGXuuPdW/Mz3UbB8L0/5uxwPi80QVRd3Tqj3WtLPWYLNVZ1/NARRKtrcoYCCPDWUJ2wPpY+v7JKIMYiA2cyz1sQf3E/ICPXvuPh+ItEcpY+YIVap27a23NexeIzR/Rz4/ZQzBe1G8GD1ni3tB21aTXHc+piZwqSkQRVlKL+9co76p1zghhClpbGWJcl8bn5pGHUkAnUVr59SQrI+j4myP73EmF1LPrl8SS7DR2jLWB/7Hz/HSo++YI7Y+Gv0sLHraRS3qYqoFwLKoi6omecLHT1/OmX6P7zz4Ob7n8Cf43PgSEuWw2rNVXY7aHEhzmFuS1JB0Woz3K3zqSVZy8kLjMkW6PkFvjXHdhJAmEvxWFHPMjVCVc43QOYdxtU81sSnbaSZfN29GT7MRfGhkzUGLVVK+LHZJJgdfqmZNaUfSxFVtTdmt1SsQDKhK4XNZYHorw2UUuNSIAib3kckfB6ZGNfeBqJoxAEasW2Lmxa53q+Uxc+oV76lWOwKcGIWuPHrkZKabaLy1uJah6hhRJbiw64m/43t/BTtycw2EqAEqVB49el1s8IyRJrsEZYW9tdN6YlGPXX38n76Kb/7Rm4EI9CEAit2W78AUojwh3q4LGRhpR/O9BwuqlN+Dkftka5UAahpUFQSgiBJtXQdlgyxkY8ZJmFToxOBTS0g0ZT/adHhRplStGHjfATOh8YgXFp9YkXgrxxRIngoKXGZItnJ0Dj4xKDMFYHThCXZqxaAqD+XMwRLXZj7RhETLe7Fx+AOgVaPMkjyYgK6SuHiXZt9lBpM7zJabB2J8kMWpQRarOxaQdc2xvnYuinYFzM8sPnfW7O3nWVzVr9ucK3etS2XQp8IOReCO7Z4+rZqzs2mUGDXgUoqXttKywG8W7CAWByBDjtqKIG5rw9CL5+ALUq/MWknUShqt4oBghmlnpvff83Ob+T14LUzEmW1rcm7O8hnOP80ewMvs+0xsBJckFLbJ06lfQ0/3qznF0GBIcnwLWBLA0AV8ZjF5iRrlmNriRClUmaG0Fg/vdkq13CJ0LNoFUUEGsYpUQeM7KT6TYeqsXcIL//a70ImaHh+PQtV2hota1BO9Rusd7KUjqmsmDD60HzsE1/FMtKJ/H6jtEWF7IMOqtUBWeYJZZnQkYXi5wo6ln2vfP0CPCpKoulRLfRnUMjv4mmeInxdc9gEMqDSRc2yaiKKlPockFqL1SpNzEgJ6UqKrDBSUXY3L5O7Kg0+V2MNuS27MZF9CsRQJCUby2XScY0uOkwXfB8AOi4YI1AyoXZi3poy2mMFqISnUTPrashPiucvJ4yrfKF1CrYrupAIoF15yDsqoZJnkcq5NRZGuB2PY9Biz+9x19Fmvh/GEY3fePL2xtiWeBZ61FtVlEYkU7VRUDoMRVPmu513Uo1t1TtLRq15NrbpQxkDpSDYnTb8JRJvLUogRBdNMnrKKmSTT/asGV9TpNbhkP6GVyDWuE1UuNekgtahJJSBgfCxLPUAAOTXKCWfWCdQW1DOEibpm7WKdh/EEsz7AL3dk83pW8MH1oezD9f3q/dB76Q1idh+OeQu+WrkSiRjNdkIEW6J6uCYOJUl8DQfLfflsxhNR7pRV0/MENyXNyQ1+/uds/+MFOJ1TQ4CoDmqL6zll+ExG6l69MLvPf7uILbj5HqtWJteqwFmrL80u1feuavo0N/c8TR4U8hyhKKYAVfycmm3Lp3OFAGJBDmLLVuf5FcX5AZaZnlanaXOO99vbuz+bs4BTc8+F9LR+PJ7213sQU8+9SbuvR/V3p4yRntYJ6Y28iFkuxXwWTl01OWySo7cGmKWWEN6iur/qGLJJhR7m2OMTCF7sNa1BlZWApK10CrgYuWbIB6bBO3w7wXVTfDLNj/z2v/UudKbEIv1Rqln1yqIWtaiLoxYAy6IuqvrC3/oFnva7N9KyJd9w6d1suA63j57Npa1Nzkw6dNZG0gCWFbgUXbTQZcAUgAlcvn+d01mJ+9QKemNIWN8gNRoGo6i2MDsswc7Ncq4brOD1dLgGsTmaYbXUCpC6mZplByWWkFq2rlLNQtTU9vcKfKIouwoz0QSLWJ21ZLGaDCDZDuT7FMGCyxTaiRpFVwFTyuONib9PPMrXA175SQA7kkGuy2SRqUtpRGof/eZtxYWo5LdUzcIjaCWT9tqnNlpG1NYPPtW4RO4TtGxTPQR7+XVvw/ct73vPa3nJd78D5QLvv/U1Z/WwPvrM180N41RRoYOZY5Es6rGtv/wtYd9+3c/fIkCfEUBQFwKw+ARcJiBKvgJVV7zmzUTULgqwXpHEDBUz8diJ2MDV+1st2zbDXPazGYCFKAVXAEZj0pTQyfCpAHnic6/Il8QP3kyEDWwnAe2gSsQy0BSiVLFjsS0BsNvldN9WCu0j6JJqXCsy810EaWpLsDoUVGuwWlw/hqU03orGNqy2tvOZoWqLkktXATt2mDHgJUNpulibYd3OlFKakMTBuZtBruq/zypK/M6/7V7wnE2yP3f72SwHmvPkOdCAmecV0OAstmOzr+3i+dUHML4ZnMkCPg4RaxVJbU1RAwu1uieGaE4XvG4KWsQFpnxW5uyLYubvX2ey1ItwnVhQGt1uEUajeNf4eZyHqTcHoKgdCpSzbQN7fC/Nf/d4bFESVDVV8uwEY2piQO1DXZaozS1sYikP9TDjEj0uUBsDeX+17zpI4Ge7Da1UBppGFJNmEo8f70XhmBjZ91Ozp5VjUKKGe/Hf+BX++L/93Nnf/wXUYjG6qIupzLrFDQxrGxmd2NMBmLGidaaE0ViGSJF1rja3yazGtZcpljXeatqnNL21bcmkGo4lAJhoQQhCSrFWAN2obNybma1nrg8y0FLtlgxMfWjsgkIraRi6zRnHe3ldI8z98X7D6LBc+3UJ6SYopyTo3mrypQ5VSzW9Akp6hNZGwFtRaruWolCaspuiq0DrjCIZVJJ3oWKouJLrrk/k2qAKh87j9UBDyAw4jVJOWM0x76C2WPJRKdrYiMVSlcf3OwLK5BOx7DEGUiMB4kWFih9vaKccvfKnOXbPuwE4euVPQ5pw7M6bOfrUnyNkKbd++i3c+und4elHn/5a+ewSK8BKDVrF7IpFfWWqBsKOPuv1sm94jx5VU5WHjYqVdkvss7wooUNixDIsMWK3Nc5BRytND2q5jyoqQiaggxoV0+ySGmSbVX3AdL1YFI3jgbgiJDGzrlbSzPTFdfaIiT1jVaG3xiQhYNqpEPWUillF1dTqbjbjzU+PDxxTy61ZC1YQRU2jwo4/s0TOCzqbAolRUSZqbCfWrlGBMveas6rbsw3zVZi2mDOgh8I0YGtT8fGzNoh7qrHPUg1wMn/jWe8LTrbtvETMebWznIuDvAejReWj1PR8H98jWqEzIcyEGcvZpj+uazyWPL3E7m1Nu3vj5VpQlfhILq3teHW7RRgML+jzmn2+Jj9l5vJyzp62eeh5Xqe2loOYo+Mly2Wngnwn6ch5wnCE3pqgU0PZtdhRRbpZYk5vw/agARZVtyNE22gFWa9BVVnGfja+RDuVa04rwWdmF5lHBcAFXvLd7+AD//MRWt1e+zbQC/XKos5fjvMfZ1+JCk+Q7Xi8awGwLOqiq0Mr2zxr33G6qqDUhis7awyrjPs/cQnXnL5TmkNjpAlVamo9UilWW2OW0px71EoToheOnxLLlNnclXpIVwfknSN/pWnGghImywzzpMkZgIbZ3rD9IDbX0izboYAPYokkQ+qgZYEajHhyqwD5PlEEtM6I7dJkVWFHxIEx6NGUKehTUBW4RGOKQNXW6Co+b0vhba04CBH8UNJDBI0KoHMvYYiB+awLJ7YPGHl/ygdCUNPgbyu3NedZJxkx3sbsGA3DS1K+9f+8mQ/HxuGF/9u7MIna1Svv+rytbgatt378zdzw7DfIZ9tanNS/0vWpd7wKgGtuvIV0WwYponCS/S5YQIMdyz7pMgm/rbNX0Ipsw5NuSTi8nkwVS7o+jopyuribPW5qplySCHt+KaPsW/IVQ9GrF2yipkm3AyYX5VRQNBZ6wUD3wRIzdrIANGKHpEfRFzsuqlUpx0GITb6qF71eLEpUERfI1hCwYss3LtBamIy1PRJA1bVUbQFrAJKhj8eMZCmZUYnKJawdmLLbqmo3468uHc89sOtctdMSpgaNmzpHrsf57jf3tz38qud/3ePInrmPgCVm+jxzbEZD4+NtrSyaalBlht3XlNFTq63a2mDH9jWKmlrRYpM9rSBl43ZbJNSDyjrnIAwcupVFCwxREF3QInfHZ1E/79k+pwuuWZ9zaD6nhghQDxxcVBWZKUMgOIcqSnyi0bnGrG9BngsLvoz7oZJssbDUwXXT5njQpUdPyobt51N9TnClyRaLh+zDUZ/MgvWwWIwu6uKpYCC0PKSeqgeb+wJmoli6K9D69P34wTD2kch5bzRGZRl20BMm7kqFS2eyqUYj2NxqwOXG2z+xAhaUFSqxuJr5DLtA9blrxiQXFUiTvyDh3HWIMSDXSR+m9kkI2Ud5Guy/7Erf6lNFlUlPYHIolmJ/uyE/x/sVrbWAVqJiNXkkRpQBn2l8rsFKr+lNVAl4IsAiFi7BT4Pra2UMqUE5P81wyWJ2TAgCyBSl9BvGQGVw/bbkp42i9UytkNRKcqVqy19r5FzXbXPDc97ArZ98SwO03PDsNwhINRqf/fu3BuUl9+XWT7+Fo898XRxMm3ki1qK+InXsM28F4IbnvEHy27yT76Imu0T1UxOeHm2UJausIrQzXFeY73aYQ+VQkwI1yuUYipkrjboimbGLrVUgRSE/05QwGgnIOasSq6YkhxB8JO5pOQ7bLXw3EwXWYIxedw3AE2pr3tkQeB/m7erkSeMAO1rlVX5etebDFGTxHjptyaJoZwSr0XWui9YwGkcAU7Yz1FPqGdsutdPtAXYTevbqU2dC3OeAix12qXvagM3evoeF1/mBhd3WsHu+zs5+dtebkP5WzX4n0a2h7teUMQIq7JGHOAswhBnlkU7TaQB93f/uVJ7HnnYWFAlxf1BFgUpTVN2cqSD3e4j9rPz3IfSzZ8mGkTel51TYe5Gipt/9rPIooPIC5Tri5OED9lTMwDImApzxs+1kuG5kukYSXWOdXmdfdlJcJ8G17a4sWXFbmP5+7ctv4r3ve2j5sE0/e+2in13Uoi7WWnRvi7ro6pqVkzytfRKHIlGOly59jg8PriZbiw1NLU9OU8aHW9iJZ+WLDjtK+GjvSl789C/KgstalLWEvEBlGWE0mlGkxAtptJeZW3Tu1bzVcmEDczJlmAbfhxCbYTNtqCMrWw0m7P9MRdXSuJZieETFUG3wKTgN+X4wYxqLI9eKIIyBUCAL2YAMuH1AlTJcDgrKnqJyqrFIcvXaOCC5F4WAJ95OLclQcrsdCbvfp5FVNfLyPOk0mLNWutQBcSFRKK+m4d1G1QTtmHshrx00PP+HbsbHvLrgFCHAS77rHXzgD/Zmftz6yXkW4F6swEV9Zevzv/AqvuknbgGmg9KgYHIQXNtjB5pkKEoSe1p207Ir/+xYHmBGBWownloQNEw6N/293YoLXSNgRjuVUM9eQrGcUPQ0+ZKiWJKHmBySkTxWRZCvVsi4VPZPbzW2itYjKmYV1YvXmknoPXa7wIwUVT+FGTDx1o+/WewlkkQYtVVkOkVFlSqdKFtSy3v+5A28+PveiU/qY2YK9iivoQrS0NfnjnphWweBVhWzvtP1z3qhudMCBmTRJN7Fu0GCnbUnMHOhDLYLYcvtVdFbeVfeSP23ZEebUu8X0QaiCXKO26qMwY8nu19vL1uz2cVldY7tP581QmQi+vF4ulBGPsNz2Xw95NebPvEeN+0YUtTs553kgL0W29AMFxvv9Ukudo/jcjrwyTLUUh81GArA1W7hehk+0SgX1VxueoyF1DYA417gygv/t3eBEovKD/3ez/Liv/HQ8gZ2qlUWC9FFXWzlM4/pl2jjqdoJfn9Bel9G7/6CMBrLcVmzxTUSeN1KyR7cov3gQfJnjEGZ6XXTxwFqUTY2hgFQzkjo8Hjc9LXNOXcPi0FgHrw2ZmovZKL1ltFTRr9zKBevSZWnf3+FnZioRIHRYYRwoaT/rLqQbEv/KgpRAWBUEHAmGXqyLRkAB6ua63ewCj9jv6KsWNMGLUQhsfDUDcCM0pLPFq/lOqpOfbTotGcGsLUt58uVJWHhzw68y6hiqK2Uykj2MAZM0pzfKOU+N3z9L0iv30qFJKKEtHX0Wa9vhveztbN/PfbZmx7WfrSoR7du/eRbOHrFK+UXH0An+H4L103R40oC7ysnwElihaCTWEI7wSea9L51ASOGoylw55yoEIbjqcVorzvvbNBpA21CGhUwdRZQU0osnGfDvCORL/Q7+G6GnkQwxImCVA1zscKzEYQpK1G21vl1s9lEIXDr+m9xffeHpvt/XVrL78aglObY8X8OiKsAxqCca3rXkBrUiGnOSvBNHxu8n+tLGrAp9k7T7NO9+8/dIMnUqnW2gp/pc3bknpwVXJm97VzDfvbetnr7GnX1DMBR5+4BU8LUbDknxKDZ24MSMHwvcGSH08bs9jfPsVfey+x73P2m4g8tlunRWvIR1YWAMuf5rKmzbPew3xXlpdq9nfX6QSkoSvSkxBiF3coFXAFIEwEwxxPI0ng+R8BIF6b5XdCoM8V+Uu0CV170/e8UC2gCf/w/fp7v+J5H2M++d9HPLurCKqDwewHVi3rcagGwLOqiq3/zLf+Gf3XHS7i/2ocPmpd3HkDj+d32i6M3fwmtjPLIEpN9huUvT7DrI8ykR9HP+NDJZ3H4RJTkxyA5pbUALpGlp4yR0LRY80OzGTZ0lCHX/w8O1CxbOvrDqlrJMifBnjKLKUu6nzkpNkfdjGTQxrUUkxWNa0OxL+ATj6qMACITGkWAqmRRmm0EXEuBh2QsQfe6gqqtGjDDy2yYqi2LXVVJwLgbK1wiQAxKbhclgiJJFMkoYAqPGXtMDOsOs4153VRrYrA3BBeEyaFUoxoIRhbRLo2swgDJWGzLmsG8VsKaWdRFVR/7F6/iuT95C6aQYPnRZQHz5CHdrGBzvYu+K6N1BnoPVIxXDWUpQEjRU3QVEhBaVdDKot1XZNx6TzCGkEoAoR5X6KLC9TImB7O4PyuKJU3ZFguy2nLEpxGQdBpd1TkuKjbQgJf8FTNJ0KV4sesQCFmCGheEdiID42iFp5QiHYtc3HfSxr+7sZe44pVyrHfbMnSSB3Hrx9/cfE5lpx70RHDUMbVIoAZVRFFDzM2gLAn1grhelM5YTDSqgvPVzhDMHb+flXX3cBQUF1J1cCXTheiu/JhojTN9jJIFUVES8lwWs2kqAz4TQfFzgDkPdfv2XNjuVfVA4EK+h0dY57VcCF4Aoz3e7172FzUwpaJtiIqsP7s5kWtiuzXH2KXbEWCvlTTnfuXjvhuBqpBaCbC2hvf8yRv23MwP/T8/w7f9wLuazKYLtQdbACuL+mqpu378Z3nq/3Mj1fE2vfsVg4OBZBOy+7amd4rHnu51YXVFwJOipPtAID+QsXR3QROUPcOMr1V8OjWoNJEBVZMlVQ8Cpy+zF3lIaS9sdaAJ2YaoAE8a4AKl8Fm8ZitF674BrQcVrptSdSxmkuCTqFjRUC4FlBf1tSmmfayKpKCqJVa1ZVSjZpseNXRUXcNkn8GUM5lpqShdwONT3aigfaJxLSE36TLgE4VrWZJtUYrqkxsCHgO0Mjn3OQFx9CTmIMz2uDXIUmc8GIVvi12aSuR1VF7KebCo5G+AqoHmRV1UdezeXxW7N63wK10GT+6RL2vSQaB7nxYW/HAEK0ui1EgSsJpkPQKjufS0oSjFesiK/Vsz9E1TKCt8fcymKardarJTVOUbUlHQWo6tGuyrgb56+JulBGtxLStgZFERVnrSv8b8oLDSl5yJwXCGtCNqFaU1pAm3nv5NAG4b/jYA17d/ULa3Pu615ta135z7nGolmHJClmi6k7i9jfLaOcLswBp2gxl1/uleyuRz1NlUKnPPXd/3Qnu0h9FHzmW4zhGeBASqwbTgw7TXDbXVlYAhyk4tHPdUQc/27udTO5+vfz2X9e9XqJ+Vzdib0FV/RrIdD3FbjBbgL0tjblKFrbyci/tdAU/yckpK0Bpqd4762KrJQtH+2XdSUWO///W7Xu5P/uvP8sK//a4G7Pvgf79wu9vZnnbRzy5qURd/LQCWRV109Zl7L8Ooq/kPD76Ap/dP8Ld6m/zp4Br6d8U7dDsi82xZsf/ZyvHdDNeRRdnyFxSdExNpOMeT6OMpDY7Zv0+a5e0hKob+heF42tDUg76qQnysoWGF1wHKTgIaam9/YAqqAKGKFkN11RZAwxHKOcz2iP7aEN/LSC7rgbIErXAtI4vRXIaz3iIh4g6SoQy1g4ZsO8giNZXXyTY8ujJM9olyJN0W5UuZAlYyMpKBLGiLJfmbLuU2W8niVTtItj2mZkYpBYQpW8kIS1C2QUmQvVLgEBbIDLLuooJFVzEXY+SjXZM89k9+72cemx1nUY95jQ+BruT7DZdOePaR4wB83hlKlaEc5MsG7cS2q+zEfWtTMlXCck+CA9sJrmWmoJuNSpIAJtXYbTj+rR2KfVOwMd8H1ZIDBTpXqEJhCoXzkCvZR9NtFfc3eUy26bEjR7AKp03DWnIdjWrZKA2PipQYmqs3tiMbKpl770ef+nNyfigryEtCK228oV/xbW8GpVh/Rhff1bTPOFGWdTUqVbgskCowY1mIqsqJ57sPDbhSg7LNAsTNMJDPAYDMLjbnmX+6uW2WxTxnD6M0dcbUY1E7t63JAJhlGjqHWerJZ9HvEZY6sLEt59AIrISiiOfjc+SePBzbrT0Wqw2j77ECnc5Ts2C/bFLgvIBL/djZ+82GtsYAUWpWepYKiBJZ2aHbEnVZVYl6LLFThZYP0XrHzWUR1R70ZwNXXvB33hXziOS69e3/6zv50//ys+fc/sUidFFfbfW9f/L/pRpdwSV/BkEHJpmTjL3tIT6fUYy0MmG3R9sid+kqZVex71OK9MRABq9OwBCAUFYoYzCH9uGuOIge5oTUYkYF4f7jMvSth7dFIcB1Vc0N/hr1YK2CmT33xMBvFa9NMgCuZEgVwtRGywXsxpjslKFcbrHx1Exy0cZKrEIdECLpR8dLpoZQKsaZQlf1ddqDEhvN9hnH8LBtrG+lHxbVdGktZuyxowqfasqeoWoJAJNtVNhxhRlX6I2hXGMBul05nxUFoSdB0WoSCVaj8TRQvB4MRwWtfA7Tz0NNKjkPGhnElX3Jvnj/rfNM50VdPBX6XdAwuaTL9pUGl4jNXfc+CJlFFRaVF9FKqxKCgaYBQUPwUyutKipG0vnesQYv1eqKWM5FAk/VF6uiet01tSqy8rO25XNCGPSdSBSyU8WWKqvG6lavbwlTv85zsjbmT8QBfzH/3q/v/pAM2ssIsEa1zNHDPyHHeZYS+h05XrbHsu2JkYwkbVHWgDONvV4Druw1tG/UxLttsOY+qwvM85gNR6+Bjl0EorM/wbnJNBdau2xy5VxbgzA6seiVZQHNt4eEwRAFU/vGC3j9OWDi4ajInwA97YUohWaBq/M/nWqIsspamQn12vjUggbXTqCbYLdzlNbNMRISAcKDqRXZlYAwWhNSseELSvGHH9gNrrzob75TiKOJXKNe9P3v5E/+67n7WWCRsbKoRX2V1gJgWdRFV89IupxyJ1jP2xzaLyy/3/mrb+HpH9uQOyiFqjzZ8W3UYALjMeHQKrpIaZ/2kdEeBGCp5c81e3upT7BxMZsLEyeABMAZg05k8RWaPITpgKpuPhUzzaEX364AkZ2iZBGsQsNaV8pOw5tr4GU8QTtHW2uUa9M5aRgd0mKlNY7MdxWDw4tA2RVwRFfy97KjCQaSemgabVR9AuODEZiJzbRPoOiLjUPZA5+FmKUhTH9dgM3FS79SCXZURZWJgCIAZd/iMtk+FPhKwrvrftalCpcpXCK3m6IOHRf7MV2GRxwGt6jHv8peECu4oPC5oWVK+jbnnnSF0bKnammUg/EBhc2Fudo+5dCjArfSxXUTXCb5JMWSZKm0Njx2HC2+co9rGYp+h0/e/Cqu/tWbcZkotHzLQ6dC6YAPiRxO7YBpKewg2uMpGcL4RMJ1vQXXNlQKTO4xE1m06qhYwcd/Gqa2IXKs1qqVuo59UeTgL7/ubRR9y2Sfpn9fiR2UvOdPfwGAZ/6TWwgGiiVD1ZE8mnQdWmtKgoA1skB3ThbjM8AszCyiZhhyjWT+XLYGdZjl7MJzx0J1DmjZadOlz55B9VBr5yK3WThphbIzjMwIJulWhrv6UszmGLfUEsBWSyh9mOQzDL+vDNPurIy+R2NBfqGvf76Fppq3TNhzKDF37YrXn1q9YkUx5pbamK1xzEWqxH7TGmHzaWQxqhWqillENbiSySK13u/3qj/7vwVIf/4P3ixDUseeoaALtcqivppr4iwERbrh2LgmoRwnHP6Uw59Za5i1KknkOJ0Z2prjsHxnm3zZUO7vkp7ZJIzHDfNWGYNe7uMuPYBrW8KMClAZg8+3sQdWBWCZ5EBoriPKJjKArdWFTd8a1dgQr4NCAMB5sTLSmpACQRM6GaqomsB5VVSklaff0qASyp6QHOwQgpVrsYk9QTBiGRaUEILsxOMTUZvWmU1JJOZULUUyDg0A4w2oROEyg8s0VVtRZXK911W0IHIBf3gZ005R69sCGIN81oOxAPe1WiDeTsydQmtopfEzUNIreC9KAe/BaNxSi6qX8Ee3L4CVi71CO5HrnQ+4TBRYNodiNaOzPoI0xXdbqBBQw4nsA1sjUddaOyWXxUGvGo0hL6aWWSoqcJEe8oZnvwE1KdEu4DNLsZKIWwCgvI0/A7pwMSswkhtAhsKTCrU5mO67dVYdNNkpTS8LNDZjIXDr1r+Ze++3DX9bwJR2S9Qvp9YJec6xE/+iuc+1L7uJoBW2m1F1ElxLkwwqzKgkdDsokL6gVrHMhs3vtC/d9eHv7mkfcuj6jE1YAxzvZSc1W7PqkIfZ050LINK9HqrTBmMIq0tyOxAm+bkV2Du270KJNXs+fi5PcI+e9ivUz8oGnJ3EdS5gZa/3PwuuYMQWk0TU1OMjbbQDM3KYiSMkBt9ORfWYO5TzAr6EgBlXDcHIpzZmv6qzEob+5PcETPn2//WdaAe68Fz7spv2tMatjxlgAa4s6lGrJ0rI/aKkFgDLoi7KWtFj/vfL/5IfX74fgP4nU/SpB2VQFH2rlbWEyUQk2ac1aWop+l25+E1KaXhry5OgpPEbjVG60yxSQzWV5wbnxGM/y+akv3WzpjO7u1EJvpFWB+fmrcZqRUwdlln3MtbGYEXdXNR9AiYP6FKRDoTN5xMtgWoBJvstxYosUJWXcFHlhdWnC7CTIJZgTtQpysf7OgFkqo4salWIzMLafsxB4sGbGiTRjde1vHfwmVg2ED/GOlicCQ2D48Xf905UJDfqShiHduL54P+7t4T24QQdL+rxL+UUvu2xA0Xv0ykfPv0M/CU52gRCz1H2NSooXEf2w/aaDEZCain3ZQwuTdi6WsCQ1mnYusZB17H/4BaawMbHD9K7FyYH5PW+/MpXc81bbpH9dKDxmxkuRUC+NIKbNlAui697sGDyGHwbQRMzcXHBKgotNYmspRheiokDq7xEOc+xL7/znJ/B+97zWp7+y7eQ73f85f81P2D57JtfBcCT/8U7SQ+NObQ04P7j+6juyvAPatItiz3DdJhTL8SjVUkTBA/N4nQX82wXa05f0EJslxJiJjg0uAtYzJ0N2Nnj73OLptnBn555DmOkXbRWZPrOo794nwwYIQ4mEsG+0gR16WHCidOE0Wi3rcJDtQZ7OPWVZP/NgGy7VCkzt+31t12fSz1I1fF6lCaElT7lSgu7maPyOEBMZKEaUivHhUYGTyBZW/E5gpJr2Xv+/OzgSl0v+DvvIh17dBkggHahCfZkj69scU1Y1Fdb+aDQ24bREcXmsyrMyYT2gyPwAdXKUFkqhJ6ibM6PYSx9rR0fjpO5IMPbwTBa0cpAMxSlKFesJliFGRbozRE+2mK54ycwhw5KjznJ587LqpVJD12Hvze2jaJODsGj0HFgGvtea4S8VNuqqJhz1pEBsm+nFEvSKyov/WU6DCQDh0s12kmw/Xi/kHV8KnyDfNmgyxAzBEUhbSehUaKawqPKgCkdOncyvFIC/OoykE2C9ARWUXUNZd9gJh6bGtK8IrQSYeBXFWG5iyqcqBPqLylLmmH4sTvextFrXiPnyhAke8VqQtty61++8azf83XffuM5AedFPUErBEKiad+3zaGyx/iQqE+8AZ8l6LKSa9Uk9mzjiYAaZQXtNvS7+HaC3hpTHezjk2W2rm4RNOz/6Cb69IbsRy1Rq9z66bdw9Kk/hxrnJPcX2LWUarVL0AqfSN6QTxU6N5jMYIclapiLFZfWqOFEtmF2DVtXrXjRWizsvKgXbt3812d9+8dO/Ate9oq3M9lv+bMZq9u66gHy83/wZoolRdkFM0nonMroPpBjobG7VSEQfDX3+LMGxZ+tp73AXm7WfmvutZSeW7vPveYe23Wh6u355zoP2ad2sxiNCCdPTbfVGJRN0O026rIjhOOn8MPRuZXZD6cejnr7sa4dlsXnUxtdCLiiOm3otCkO9ymXE4q+oX2qRJdOrolG4TMjSkijUKW8Z136RpUZWhYf7anPF1b/4r/xK6QjL9dALYDnK77tzajS4bMEn8m1b3YOvuhpF7Wor85aACyLuijrOWmb56QCrpx0A9qngtiabA8IeSEy3DSVUDLvYTRGrw9IV1v4VHw2sWbq5R+9qinLKXMcpgzC2aC3an54N9dQhTDXrNXB9wB1IDwqWi/YGeVK9OYFhE3nanm3ZC64JNop+EC66Ug3S1wmC8XRAUPZh2AD3imqtoAmAKqCbMs3eQ/FksIOZZDljcJOAsnQM7jMkG5CuhnDRqOCvbEkcyKLd6nCJ0ZUJ86gfKDoaYolYeArJ8O2v/jtV89/YSFgSgFwfAIf+s9ntwHbyVhe1ONTP/mx/4N9dkSiHZpAGQwbZYeBS/k33/Jv+LbbXsefXz8NZH3GG29BtWThqRws3ePZ/xnH4NIWm9cEsqcMqJ6bM7m3S+9e2Q+Vg3yfYXxoieElinw14C8f02oX/PXfeGPz3Mfvv5Q7yh7//uAL+eN7rsZ9oc81N96CncDnbxTQ4hv+8S2yn1rZ16uWouoIqFJ1Pa4TmLRBF1rs78YBO/aYcSW5Qi5ISKf3EkyfWrE6wMSFIWAvbLF1xy++6px/v+snBHj8ttteh0k8xYpHVRpdpQS9TLrZxp4UdZ4qChluh6mtA9HSkPHkgjyS63PU1IZrt3oFaFR4oKc2hjuzWs5Su5hmNXDi/HQYVZ8b6wFYff7bq5KYheUc+gv3ELxvcmjUDGgdnENVJfr4KdSBVbjkEHZzuwnFDJO8GSjqOMQIZXXuUPuLoXYuSG0yDc5lD1uFPby3G2/12u4rBtkHozCjOBBpR7Z2Gfez2q+9BtlrMNIoXJbslTV71jKFKN5M4dGFAIn1cJRAo5CExUJ0UV+ddf/GMj4JnH4u7L9ig+2PHkB5j+51G2CFeJ4D5P9lRSgr0pNDwpEeygcBCZb6EmJfFI2tlx6OUEstfA1eOydZD9Eey29uiQXQbJZg5WGsUL1utD2qphkMsZpwbaC2FqxzIoJScq2MQ17XTUU1kurGEsyl8lOU2J50q6JqG4ZHLK4VCT8V4KHKFDZeOkweyDZlSFu1NelWhS5EzWKHJWpS4Hstqk4CJvbN8XVU7KUhqlxaBr/cwXUSbD2QTi3lgRQzLtHG4NsJk4OteT/9EGIujnymt37il8/5HV/37TfCIlbwca2vf/UtlD35f1CimjJjIYN96h3Sr33r/3kzH/6307XLDd/wi4QswXUs9uQWrU+u0ep1cft7jC7tsPF1yyzfYSTwfjSWfSIEGfIuL0Gvg88SigMd/ijm9dXbYscwenIfe6hDdmKIyksB7irXkHiOXvFK1CQnGeaEboZvZ4REUy7JNbnqiDIt8R697TCb40ax0gArPlpy1Rlrxghpx3vJjDHn7+0uRIn1F/9ePrdn/uIt8fjVJKME5Tro1KJHHdjcivkviCraMUfkkTpP9sps33OBvSlKyzr8LKDBWUGeqN6u/39exc05N2Hai/nRCEaj+dfCgK/i+Tf2s/v3YY4chI0t+U5Hcm735RSkqtVPlNXUsvxirRmr9UaBsiOLZy9gpf67bmUSWm9jX9vt4Pst0Aoz8XTG8tlUHbHD1YWAIQYvYHzhUZVHRYKb70imkWvpC3LY0NES3Q6LKUEPhBznPTqnAVlUCOcFbBa1qEVdvLUAWBZ10dfNp7+ddODnmsrG89ZNwZKwsUnr0znu8gMSYDmRjIM6TK9ZMNYDwQiE+MGwuYDXg8omeG0WTKn9nBs58nRBS+0FaowMwbSeMoZ1fN04qCLPo8+9RpWObC0nGMX4gBHWfd37hYBrck/AJwGdy+A6GU2VIpJvIioWbxQ2D5g8SOB3CLiWsI7sWPIsir6AINmm3Kbie/RWNfkpxKBubxQuE7XLp/7pOYbKcfGqK/jT3z23L+likPb41o9/9Ad5ZvdBLstaXJWdYr/Z5mQlMvbttM2nhpfxd/78H9KyS3zLsdczKlJCgOSbAiYoVGXIdZu1ZxjapzXJIGDGiqX2hJP372P/5xSmkH2q7CgGT1KUfY/vVNz99+eb2L/5oZ9kI29xVf8VdE3Odtmi2ypYW3Jkp40Ma2J94tdexcuvexujQwn5ssZlYCeymNalJihwnUC+KoMbOxY2bEh0M/dXzqAqCZsMiRFmoo1M3MQ0Ad6PVv359TfxlJtvJh0o7FjAoXxVgB2f7hNgclTJAr6IfvfWQoi2EM6hY0DmWYGWOSsAZNoUVTC7WGI16AFNLtWu55ld0M7eVtt81edRPT2HkiSE4Wjqw01Uq6TR+sYHkfI7Nz3/rq5QrXSwp7cJa+uoThvlHKEGlZyff29lidrYktfQCpVl8phWhhqNcdvb+PG42d4avNmz4mL6nPd5AtTc92e07Le1zc/5FEcxALQBV4wRFm20v1HeUy1lKA96XEASF/KVRxUxayA1jdJSoVGVx3XPb43z0qPvgBBIPIgNpRdLEaUIqSHoMGdptLgmLOqrtfJJCh0H25aitNhJJNYYTRjVPq7RTidmpNTnJu66n9b2qmQsjMaEyUTsvqLVo0pTOQcXFTr+JE3nelqKcvfQEgGh/dZguqE+yDWwDv/Vegq6NFa0AZ8lhEzyl5TVhCCB8iExBKWwE0/nVGCyKtdXl4Jra0KO2INm0ebLi4LFbEE68CRDAWF1KZlPPjUSbO8DOq/QwzgY05qyn1L2IghvoWwp0m0hE0nPK9vrMsXosg4u0+j9qViEqqjQVgm3//k/2fM7Ky5bwW7moOG2mcH52WqhXHl867k/dQv5EVmngKxzXCvgUkW2Ac/5mVskE9LA83/oZghQdhX+xauSRzkKVJ2DtE70MOsjyenLFL37cszGUNZueTxWrSXs68csB8PtH57uQy97xdsBWDWKqqPRVUBVAkBqo9CDfK6nOXbvr3L04I+Lgto7TARadFEz8LVY4fUyGQwPJ2Jvl2WSKxGB1ka1EtVtChOVwf6CAJaHUp/95Vfxwr/9Lsmj0IqyZ0lCAKtR7RS9lhIiuKBqUmGs4H0k9zvgHL3XXuqWswEtO+xSZ3ujvSxUZ8GV2eeof+pkmnu4k0w591w7tke3W6iD+2FzG7e51ZzDVWqmtmkzYEIoCtjYlPNzDGpX7Zb0tUUhjhqjkdhCzr7Pvdy+Yh+rbCIWZE/gaoAoa+sbOJ8iqFFst1uy/wO0MiEHRcv4+tsoliTT1o69ZG5WYj9NCOjSTRWaVuMTjU/UBYEr1337jaT1Lx50UTZEgxC3gWS6ny3AlUU9miWTya+AU8MF1IJLIrUAWBZ1UdfLP/093P2ZS7h6rcCt9jE+ELa25nILGuWI8/j1DdTGJh6mdjTRg1aliTxuNALnpQmivnjPN3s1g1onqmmKfFmhE9sM5+ZyD2pQJglxqBW3rw4MDkEag6qa5rA4CTvU3tNygXTTSiPgJVxeOUUy9ujjgbJrAE26CdmmZJzYiYAougz4RNQnyThQdBWTFSX22T0Z6qabsqBFwf7POoq+pugpWWw6YiC3ADW6ElAlqOljzHl6tj/+/fOHvS3qiVFXtNY5aLfp6pzPT47wp6dfyOe/eCm9L1m6DwTSbY8deyarhslhTTqBlS8V6NxR9RNwAZ9B2fHky5rxfkW54skrS7JmOfDXA27/s18873b88If/Ps9ZOs3vffkbmfzzy5isaNa/LtC7W8HXF+RPcoR7Ur7hlbdw4K8n2D//DAmwb7nPseP/vHmep7zrZnwWCJknPWkbdVcSrUmUEz/rYMT+Dq3xS5ZghIFUdae+7cWy2b2hO+qZv/8mPvt9vwTAk3/9XehS8eWffvVZ7/+lV8//7Zt+7BbKjoVgaW14sg1NtSwMYFV5zHaB3tiWhfFVl4vi5u4H8OMJwPntBGqGMrERmlVB1OxGZhaMxshj6vOf2sNOwSAD/jSdV+e1MspLV1h7ZpvDHzgJgxGq36Va7VIsJaggAK7ygWRtjH7gNCGXbCx/6gwAPrHofSuE7QGq20GtrsjwACAvZJFZFFBVUwClkuHgWReTTaDq2T+j5rN8olYEtVRU+ghAJQOKEBU7Z/XRtlZyHdKkAasCxKB6h5ooVOXQmyO5JlmL77Xx3ZT3fGRvD+oLqZfeIAMm7UJc2Hr+8INv4LoX3iibGwK3n8XjelGL+qqs+1vQ9dhtTed3l0lGDr22De0Wut8jrG+IJZiv7f+iX73Scs6/974pC7zOCgFUuy09bVGiT26gQ8CfPoNvcghsY6UooLiAtLVKEOQ6omwSB4rl1CasVmKbGPauo4IlMYSWWAiGTE9zImK4tTEaXQlreDVk2LGX30vfqGH699eqaE3ZnipNdeHRrlbNyTUbpag6lqpj0VWg6mhcqkm3HclQPgc7gm7MDXQtyYwKRlF2NKYIDaADCt3TmEnAlAE7OvtX9t737w45XtQTt1wq+0HnQeg9UNF+YCzAyGg8v+ZqZdDriL3X9iAOpW1UaBlY6uF7GdtX9Rhcquk8GGA84di9v3rebXjR33wn1aGE7gM56d2bTVaPnlSoU+tUVx3Bt1Ps2pCjV70aBiP89jYAt03+Y/M8R5/+WlAlVAbtHHaUE7JUyEBai5JtawhpSmj3UWsb06EzQKctx2xZQWI59tmbOFc9/4dubhwJXn7d21BV2DNXYrZmHQqe/4M3o13ADAvJhikKUcalqQzAQ0CNC7Hn9l6IMtFVAthtgXu22mkjFjz1un2212vAll3EI70n0Dz3/zj4N72u9Lh50WTaqG6HsNIj1ASV0klmzWBIqCrcYAiDoWRjtVuoNMWPx+huB9ot+T68J+QFbnNL3n8N5DgHg/P0o+foaevHPdHBFZQWACmuI4Jz4jCyw9KtrllQS7XFDqxR+2vdkGv1xKGCfL52E7FjtxrXSajahvff+vCzsq574Y1xHiO2YLf/+T/h+m9+Y2OPeetHfulhP/eiFrWoi7cuWoDlpptu4vWvfz2vfOUrefe73w1ACIE3velN/MZv/Abr6+s8//nP59d//dd59rOf/fhu7KIe1Vr3I/bpDgB33nmY1c9pzLBEj3PxSoap9RYIq61ugtKUEEM5g/PTBWP9M0lEhpvnTWMT9pIj1+DJLOii1bSRieHMYUbKi1bC0KkZ3iY2dLVyxWjQiTRViSXYOMz1oPNSGBWpZFjgAkGBmTh0rmitaXSlsCPINj0metqrQPQV1XirYqg3jI4QLceEzVVbKzkNZVcLgzBEuyUtQEvZpbFa8BqqrtiHyWcM1778pgUr46ug3vDs/x+/+rnv5Iujw/zB55+NvqtNVkG2Af27J2Id5D2ENqhEPM5PDFEnzmC3tiXYc98yYalLSAyjK/u01zTD+/dheswx089Vd26vopXnk9/zJvie6e1X/dN38X3f+Fd8fO0y7gyHSLdkkaYvOUw4s4Y7szb3PF/6GVkcPun/egc+Wqlna9A+maN8EA/elrCalA9UXRNVYQJC5suafPncagB//BoAfv7EcxlvfRPXvOUWqk5Ao0i3FFe/+2Z8Erjrp85ujVdX1ZXjqX0m0DojiywzqTBbE/LLlpgc7JOdyTCTCj0qqFbaJPkh1D33E6ryrCy2s9bOhebOPzs3v7DZwytZ/umpesRaOZ9ZQ7GcMLoEisN91MEew8tblO3IU8wU/fsrOndtoc5syrlZKXSviwptOU+Xpdg+OkfY2kbN2n7tDOqsgYWv9qptFKJiKHgvSsN6EGTtvJXlrL1PVCkpK0CYUopANc1hqRyqDsatnAxj8gI9ybntr84/SDrnZoeoGlOg1FSl8p4PCcP7FS84t9XOohb11VZ2qHAHHWrN0L97THJqAAPx3VdZGnMTducSBOcEzK5V18E3ypX6XKhsVA+Ox3LOjIBKOAvbO0RG+Ryje2Yo1yj6gjB+JYfFCFHISlC2qqZgiSolFwKtCanFWyV9cMxR8akSJcpYoStPsl2iT5Sk/ZTJgYyyp0mGnmQo2SrKI9f6wuE6iQTfdzT5ihaL2iAWYgTpjyWvIioyTcwQNEpUM6mospWHYKDsKUwutwetyTYVR5/5uvMOoBf1xK+/vuVVPP+HbqZ/9wR7eij96yRvVLV1KaB2EwjjCX6SNyCjSixsbaOzjOX1If0vdCWf7wLLjjxVa3eOw3d+x1vw+y+j6hqxyaSLPRMIm9uihtmh8jh2h1go3/CN/ySy4i2hZdHbE9jaRo2sACohCGFiqS+uCLV9mVL4XksGwOXZG8Wr/++34rcTekcs3/Rjt2CKgD2QkA48L3vF2wmaCxpMJyMvuUg2Zr1FYILhGDVKpwRIYwgrS6jhaPreo3XhQ+pnYZ4gs+NcN6dQ2cM2da/71qqKxrqqlUUFkEO1MgFIQIAiILRS1FokehqD7rTRnY6AMVFlVxNb/NZAetqinOtpg3uCE3weg2o+3/p3pQnWolK/6zhobN+0zHVUmjRrziacvmUjga6C0snxoJW4E4SAHive/4FHBpbXlpg6eIKX88FtMYvr+ucuwJVFfeXKPxR/5kU95nVRAiwf+chH+I3f+A2+/uu/fu72d7zjHdx8883823/7b7nmmmu48cYbue6667jjjjvo9/uP09Yu6tGuGlwB+KZn3oV+VuCvL38aT/6fBntiE0AWlsQGJcqi96xoEaZMVJJ02jDTdDfMvuCb7AKVZQ0zIhRFI2HdKREOZTUdTqpkyvirg+2raW4LSSJsnsjQw2qqlTZmVKJysVeQcDRF1dISCqyRYNAy0Fr3tNaF2WfygBlXEtSGeH76TEujUQFe8lJMtASzOeJ1HfuaKoNkLKGgQUHZVxFokcEvWizEgoVKT0Gaxm90URd9/cGJr+OLxw/S+qs2vQcDZVeRbUYW6TCHRJighED7RC4Li0rygvx4gtYauh2KIx3M2GFaikN/VYp10PnFK1z1z96F7xzk+AOX8rzfuIWP/ubUfu7Of/Qz3PLZV3DlJWvcap7FHZPLaZ1psa/ah2lnmLzghm/4RVwvm7Pm0CODzwLVPke2bgmJxmwWKBcol1KKvqHsqSZI19uprV7VgqoH5VLgBbe/lm8/fCdXZGd4RvYA17Ur3j9RfGL8JP7LJ76JfR9OWf5yiWtpxvvFmqx1SoJJj37wlWgC//M7fo0n/davkO2b0Gvn5KVleLyH2dYkfcXKlwIrn9oQxl8rEzvD8YRsa0C63MettKm6KSaGCpeH+9hTLcJ2+bA9ooE5pt55LaZmSvKujJxnfSCsLhHSqLhToEtkYaMU/S8OyQ+0WHtWwvggtNY1apQTtgfTjJV60JcmqDRtLBUAqFUqXyt1jgwV+RevK2H6vaskafIB5AbVDFcaa0prGuBFwdSSwUf7tUkug4M63PkCWLoX/p5k4Knc/L56Icq2RS3qq6le8l0f5y+OX8nk7lU2n9rGXNlm+XMZ6q4HCHkRwYyz9K/1cR3taiTXYGaoWA//xpIPUWdw6ZodrDS6152eG6J1jy/nj8ua9T2njKvzwJJIavJBcsxKB4mh6lpc16KqgE80rqVxqViz2LFDlYGybwhGrrfJlijadF4SWpZk4Ei3K1TpGzKBqrwANS3bnD+Ul77UTgJ24jFjjy49wSrKdrTVhahwket61VLUQcPKExXekh+nneQ/2bESVvmivipq6ctj7PENWd8liWSV+FllrpJdwnsh2UUlcGgyTKLlXgxO16c3Lvia+IpvfTO2bVk6M+GG57yBWz/5luZvf/hBUWx+x/f8Cq5t0GVAd1J0py2vm8L1vR9GJQm3rv9W8ziVlwSt8cttGfBuT+Q4zgt5b2kKnbYoWmpS02AkSpFWgltpE3oJLz36DsquJl/W+FRR9GHwnJxQWMzQ0D0eaK07VBUwuZN1ngaC4oX/27sYXK6xI/jYv3wV177sJsq+xSeKzScbWuuB/lYloPF4Mj2evBel8mAowFWaoJSWzz9LReEyGErG4CPpZ2FXT/twnq/Jt/NRGVHvE94TxmPUJAdrCKsr+G6G2ZoQNjZj1l+JygUoVzEjJAzH8wShfPLI3uPFVHtZDNe3q2hjFz/rEPzUdjit77ajr01EjY21uG6Gqmcz9f0iGUAVpRwX7VZz26x938MuF9DBi3Xujj/d9lfnt49c1KIW9dVZFx3AMhgM+IEf+AF+8zd/kxtvvLG5PYTAu9/9bt7whjfw/d///QD8u3/37zh8+DD/6T/9J37sx37s8drkRT2G9XtPeQ8Ab1+5i9+/4zvZ/8X7UfECHqpK5MZRMhpiJouqGXXONeGhyhhUkuD7LfS4K810XFCGoqQOu1NZhu73oHL48RiVZfL3udD7OsPA7R5SxteRHIUQ5elOfldKQA6lCFqj80q2OzH4zOJTQ9UxshhsK2EDArr0olSJw6oQgRhAPERjMHfVEZClfcZjck0wEjJsCsnCkLwWWWwyCmIx5uR3bcRSqV6cag1M4NM3nSN3ZVEXba2kE5b7Y3I6tNYddiRM0aqfYEYF40t7YBTd+3NUgOpAD5vnqODR7Ta0WxQHu8CFsdx21b6Cr7viQQ49Z5sP3fr1u/78T2+/AZ949EpBemDMqRe0yPd1OPhXhvT0EN9OqHoJL/nudwDwgf/589ihxrUD2MBkFSb7Evqnx+hxTrCaqq1xiUYFGcZ4q8SHO14lq27gy698Nc/8/TfxB3c+k6fsP8O/OvMiJvf0yU5pkgFcdq+jfWqMKj3pGU/rlAywy56l7Bnu+PiV4BXP+w+3cKgyeNNj4+ldgoWVLyl69zvaJ3PsPacgF6UGIUhgapKI3cDGJvrLHru6wvjrr6Bqi5d3srqCGo1ABYKbV9Q95KrtBs4DtDR/SxNUpyPnNGvwrZRgNZSO1skJBz/RIv3MvfiNTbCWzoFV7OQQJ57XkvOYUrL4BKjU1B6izpa5mIM7H606V5hrVA/VTFBljNi/RWseebyAK6JcMTJkqpVGwU5BfxfkcdaIIqi+z6NQf3Tba3j5tW+Ta4wW/+trX3bTeS1HFrWor9a6bt+nGLuEPz64zHpmsGPQRZ/lMz3C5jZhkp91KBiKchoG7KuZPMEIelsjA9alJdTSEnhH2BoQxhO5T6cjuQBlJdeVfn8ezK5fJ/a0vhSlmzII8JoosSY0hpBGho5z+G5K0RcQRJdebGaNwieKMuYQVpmiailMObVXwYPvpLi2XHRV6QmJpkpSLKC35XqIR7JXSk/rtMeORIFqSmHLA7hW0qi2dalJBhXJtliFVS1L98ESO3aSYbGlGVxi+di/XPSzX63lMoOtr3EhWjUnUYVgTBMWHoYxHyQqFECUYkJaUBw78S8e8muHRFO1DW41pX3/3vdp3z+QtV9iqJZa6NYh7Kk2nF6TdaLRHD38E0J2OP7PoazEAtAFFIGQWJS1QlTxkkekiD1aJEmQikOCmpSoqsUffvB1vOR/+RV8ojAlVB1orQXa70uZrCq6JwIrn1yX7KayEvCm0ya0U8p9bUzhqdqabD1w/XN/iaSoqNrLbD3Fojws3ZWT3rMGm9syLI/boXpdyccbjfHDEQyGYl04Gsn6upVJdt5AMqCaPNNH0gdGkuTs7+cqlWWoOtM19qbifuEI2wPwHh/zAFVUUegQ0HofPkvkfQyGYp2Y56IsHI4W/eysAv5s5CFm1Dvxs22UZiFMCbP1cZkk0OtMwZU481CVF6u2qGipyQDKBcJDUJ+dq27/sFiCYUQRdsPX/wK3/vWN533coha1qK/uuugAlp/6qZ/iu7/7u/nO7/zOOYDlzjvv5Pjx47ziFa9obsuyjJe85CV86EMfOivAkuc5eR1ODmxtbT12G7+oR73+27DLfzzxAt79pN/n/T9yDdyKMKXLKg4n/TRsWWsBWWoJqp9e6EMlNjRoDVkKwxFhNJphN4m8WbUy+bsXxonYqlTzoU47LHQaKbJjGjgYG7cmZFBrgtYiXfcepRT5SoZ2ATsQe7CqZ6lakhOhPFRtWTx6Y0FFawQFugI30tiRvG+fCCMvaJrgQZ+InYIdC8BSZQrloGpLMLidBGH8ZYp028vjlIQ9/uVvnT1PYlFfHfUtK3fypM4Z/tvyCxkdMIyOKCYHA6pKWfl8woG/3EAVFb6dUBzo4LIEwn7svV7UC1aTnBpy66ffsufz3/DsN5z1bwBpu+SyTlSj7UEi/fIr5/fBJ/+rdzJ4kmeyP2P/pxL6d0/wRhGsYrJi+IafvgV/hdjmhSDhuQC+k2A2KsxWTpqKfcif/u7P8E0/dgtbVwdCAurwBJtW+HHCVf/hJswDS3QfgHtYZul04OCmAzxm4jDDCjPMoaqZaXIM6nFBumm57I/a2FGFHZSYrTFozYGPafGpzyNQG+1hGrZwCDAcScjlch+lDeHMGv7MGq0/HUiwY7tF2BqIHUFmI7hccb5wyPPWebJKGnA6ywj7RCUq4ZAGPS7RwwlUjvYd91BtbqFbWbMgUpVn5UuOdLOaMqiJyr/GI/tryyLh4VRNFKiJA2glw4wZReGtm/+aG5Z+JAbb66k/dVnKojNaJqC0KFjKklBVjTLm2F23PGrbq3xAyyEjr/kQlFKLOnct+tmLr0Y+Q6sAHce+v9C0zziGhy2Db7yU3kfvww+GcsedbN8dNWulE5wTclFZieqjnaFOr83lUiljJDegncow1hhhj9fqlnMFSWs1HXL5AMqjnJxTfCvFdWy036qP9QBEdahRMdNP4y0kI0i25SIfUoNLE8YH0mj3JaoXFcAlGtNPxaLUiZrWtwwuM/g0WpKNRL1SrGQEJeQjl2pM7rGbE6yHkBnsRAbNunD84SO0iFnUxVH5akL2oJX1W6eN77ZQ3qPXt0UpkedTN4NU8skwBsaTxlr6tvV/t+dzX9/9IQBuG/723i+uxKouaJoh8M667aPzbPfrv+VNVAf76OUO6o675EYvYfFHr/xpCfFWShRfqZW1Y8xLoygEELElxz57E0eveQ2+38KnFteeqr9edv3bwSiSoad1akIwQuzTW2NCalDDnHBmjVD3Z4lFTXJUu0XiHD5Zon9PIBl6ASOMIhlW7PuiItksSO49I2BEGcmC0aKQEFAHVqHbRa8sw3iCP3WGUBRCwqnX6PF8owzn7UUvqC40yyWu90O9PofmfFfPFppz5IySuCa4+G6KjuSWUJTTDKtF7U0Umr2tnpFEpXVtqa5Aets4k7l1/be44cA/lP41qy3xPD4RAF+VvlGqzP2rxNXk1o+/+dF7S5XHpxZsmFeOL2pRX8FyuzRUi3o866ICWH7nd36Hj33sY3zkIx/Z9bfjx48DcPjw4bnbDx8+zN13333W57zpppt405sWMr6LtW6847sZfnQ/az9sOfb0P+DoFT+AfvAMYTDE5xO5OJeVDCGJze0sq7u28/KBMBqhBxOxRqmqqcentY0vqDIGqqh6iT63TYO1cxEan1fN2N8H50QqXbOjIpNKFQX0W6hcbgtKYUcVrm0p+ymupSl7YjfkrSw4J/sUxTINeJJuSwZLMJAvG5Kh2IfpSpQqQcN4vwTVm1wep5Y0Jg9oF3CJwk7kviCgS83yyPdJsP2nb1qAK4+krnvRW3jPEzzE+QW3v5ZvO7SPL24fJNmS/SHdUriW2GiUXYXaGsFwiO52sVmCzjX25CaUJWpzIEP0ST73vDd84z9h/TkrDC9RXJae+9KTP9jlj9zT6LRzDv71+VdVd/3Yz3LNjbdQPCnnRC9h42kdPvfGV3Hty29iss/wiXe/iif/9tsxWcWzLjnJHa3DbGy0yTaTZh83o4o/fc9reenRd2APWdonFYNnFTz3ivvxQfHZE4fJ11skBaRbgaUvT7DDEjUpUHk1tWup8yt8gG6bYDU697A+pHdmMBMGnKLyUsCV7SFhIhYKdWgm0KgPQp4L6/jqKyXUvjn3KAGSo6WWXupDt4MqSvyZNebC6R/DEoaewnUEudJ5iZ4U8j6yBLV/H/qqS+W+HtQox26M6Z0ZofICf/ykBNPXC/AnYp0rBPXRfI1z/nlHA11n38yWD81+c+vmvwZkAFTbZuIik1THgUBZykDDGLFP8FquUc5z7PRvPCpva65CQBcxqwEB5L7zJW9dDDofhVr0sxdfrZgRma7I7k5ZumtCcnLA5pMPcO/3Oa4Il9H94DCSfWhsvZShyQVoyDtKC2smhtOHXGwXVStDIWoXjEaFyNaPyjRVRGZ6rSA8m9Xr7HnPObEg8h6Gw+lQyRjJ2s5TVIi2uKWT7CUTsBPpVb1VETgJVC1F1bNTa04D+YrGpZCMFO0zjnzJkC/rGHhvSLYdPlEMLk8oOwo7BhQkPY2uRJHdOS2vK8PfOPhSAT2pyPe3qDqGP/3d82eiLersdfSKVz661pGPUb3kf/kVkipInxR7NFXZKaEuzxtLZ3yIuWTIOlAr2d/d/PX+6OGfmIZqn6f0sCALgaqboDdHF7TNt33kl7juhTdSrmRkRw5x7PNv54Z9P4qyhmP3vJujz3o9JAbfTnAti04MdjwBN5RjPl7vj1750wKcFhVuucX4cIIuAumW2H7ZwqOcx2yMYG1DrJmi+wNaT0ERY+Q8klgBZAdjWnc7spOpbMNSGwLocUX79BA1HMFwPAVXfJ15asQZ4r4H0QdWKZ60Hztoo7YHhKFrCCPA1KIbRJVt+Ir0s/J6bqqqjuCSjionum1CvyPgda2WGOa4Q0vocYk9sYk7s/6EV6s0mVqPY087vVvt2aimKhUzdSMBUF5za+xJr+/98NSyr84Xqjy6BjDrn1os3OucsmN33vyovbW6glKS9euFQPCKb3szt//5o2A/tqhFLeqirYsGYLn33nt55Stfye23306r1Trr/dSOxUEIYddts/W6172OV796OjTe2triiiuueOQbvKjHrPSRzzeh0letrPG54X6+/0M/wRde+m+57+VLXPnfJ4STp4EIcARPKIqGjRtq5t0so6auwUj8d4tCHptMs1xUK5OLv3NihzOe4Eej8zclTX6LLIRDbB6awZj30oRqjVtuy0OMlkBPwLU1ZUfAFRVEhVIsweQg+CRED2kolyBbk9BOl8n9dClgDEFC6n0KKAjRDkwFAFHCuITGJmx4xIAHmweqtiLfJ+Gfi3pkFfboNa99mYSoPhFscp70r98BrPL7x1fQZ1JWTwWSUcCOHbowbF0NgysCxZP3k96Rw2iEPSmD2nDqjBwnuQzWb137TQCOXv2z4B1qkrOiFOmgf35v2n5JCOA+sErvE2fxVNhRn/+FV3HVf7yJF33rZ/nk6Ut4yjtv5kszgaJ3/dBr+O4P/mP+90s+zOmDS/xqdS0bGynZVoLJA+2TOdc/75cIl/ZorTs2nm4hKD5/+iD7uiPKsUXl4jetq8jEH+awNZAhdb1Yr5lsZQHrRWM9gXOwXUIrw11xkGJ/hhk5imVL+2QPe88pwmgkSruyziBJoy2BACXqgROQpcJqNhrd7RAOrBJacp7yiRy3qnToEAibW/jx+NFdlO4RBBomOb6bsnV1h9aZis7nN2VoB9Bu4Q70GVzZIRk4dBnwWY9Tz7Ec/GRF++7N5r0+EUPqJUQ+oBMrSp2qitkDVkJKB4NH/vlewCK0tqHwEbiU60nM/qqZfjXzb9YaDKb3q+IQyZiGbXvD8t+Tz74ljMGQWVSeSdbYY1ByPQqoGghS6lGza/har0U/e/HV9179cTrqmfzh0jfgMk1aOZbvqth8huHEtxiefOJK9GfunCpZ6lK1V31UpcUBUxOSXOcLxsc1iu46n7AoZG1UlIT9y6itEWF9Q47NncHSO0hDqICaza+Ig2lCQFmDGWWkmxbXFlWoN9HSNoiqxCcaFAKMAONVg0/EfjbUWYAdyFcVBIOdBCb7NcqBSw3j/WKVWyxN8wBdKja4JpcslXF8omQY8GlgdFkHM/FoF5jst1TZ4pzzWNXRS34KtObY/f/08d4Urvv2G8mcR49L6Umcg7FDOU9Y6eGXO+h6QDoYyj6d+wjGTMPSb5v8R0Cul/W1VUUl6FmVK3Vp6RfTUyPYvHBV4Xs+9Atc+9K3Mn7KflF9z2SwHPvMW3nFt70ZlxmqnsXtS+gWy2gfogV1va4UEoXf10OFQLrpptZ9pUdVLn42pYBMtS02RBJGJBDWdtqRFBjGE6gqVKeNWV4ipIaQJfhWQnAWVaYCsFADw2pqw1YUBOfwp06TRtWNH48h+CmoErM36vW6ikDXVN38GFbcDtXtTPv5+JmGTpvi0r702fGc51qGfNVy5lma1c96lj8nam0XLc6eaKVsIt+lTdC9XswYMihrcRsbj24/uwfxdHo3+Y59VK0r7adEAGNk3QMCjnjPsUgYAlBJIvOZsgIlqpTb/upN3PANvyjXQStENp8K6E9iCMbs2oZHo0Jm0JOoxA+asFASLGpRX/N10QAsH/3oRzl58iTPe97zmtucc3zwgx/kn/2zf8Ydd9wBiJLlkksuae5z8uTJXaqW2cqyjOwxGiQs6rGva/d/lo9d/hTsnW2++9KjdF92Cv+HKSpNpiGF0Yt2jo1TL05hTn3i1zeE+edD09CpVIamYTiGdkvUMHkurO29GpE9LMJmmce15BVj5Lm0lnyFyIQJceBUtQ2ubciXNGVPLLx0GXAtWXx6K5ZgAL7l0UsFo06KGUu+ik8VuhYR6Olwv1a52AlkG6JsmawqJgcCyUAR1hSuBXYobIx8HxQrnjv/0YLt90irDrSs69qX3zT9/xMgi+Duv/fzPOVdN9M6pTCFqFeUF7u4ZKRINzWjywLjgynpvW2xEuq2UKWb+gxTorTm+u4PcdvwtwlbW6hWS3yjL7QUVJsZyRCOffmde96lthm79uU3UbUNo0OWf/hzf8zXte5jLX8pn8lWdj3mf37Hr/Fbn38xT0pP8byn3s1f2cvR97bp3acYXNJm+e6EZKvivX/0Op79mlso9muG9/cYtjskJxKyMzIU0mUgWBkeKRVl60UpIGySiMVgBBhUbTNQ2yH1uwQrHvRbV2ZM9kPrdIfWlVfQ/+Iwqj9KqgM9zCBH3Xtc1Cta4YcjCdQMnlA4fBii05Tx1Zc3AKwdCkpq7SraGvQZcMMLAIIfas3mTuU5ZmOMKdqkGwV+pQuqx+RIh8ERy/By2HeHp1gWJvJkH+z/TEXnY/fEob8nVBWm38dtbz+62/kIq7ENQVjgev8++S6LEjoZppURRmP8rKXkuWpW7Vj/fq67z7IMZ7IYgg8EX8kiNZiGRX7r+m9xw9KPcOvWvwHg+tYP1A/gtuF/3P38rUweayMBwRgZuPrHZojhreSbeZDshRD4ww88sVV9F0st+tmLs65tO9SRMcVyi1YroX3vgEMfXmbt2YHtqzqs3NtDjUaSIRA8ErRnmoGjCjPWt7Gac9ZojK8tbZChoKqtGkdjWF0RRer2QGwp9yKk7ehp6+euLW6V0oRQTYeRQaxt7QCqXkKZaVxL7Gl1GXDR0isZyDZNVgUw0RWoQraxainKLkz2K9qngQD5igAwVRuqLkICGguhSEdlqbcKLOTLivEhyM4olu8OjPcbsk1P0DA6oPjkzYu8lUdae6lXjl72j5pr0dFLfopjD/76V3qz5uo9f/oL3PD1v4AaxCBxFe3tyhI1LgipJXQy1DAjDMdCXIgZmaGYKimub/0At03+I348Qbey5vp6IRWMkTyIojpnhkvdMx+9+mchsfhOxslrV9j3+aoh0cxWzZJ/2fVvx1vD5FAH20vRVcBsTyR7Yn2TYw/+Otc/95dQzpKuF2KNtp0LGSoSNGpQIUATBt84MAQ/zYFyrsmpAcRCLQSU1qgsRbdbspa1oohVINZirZb0euOJgC1aiWJ5fUPOXSoqDUDs2eI+VJ+Nantv5QOhepR7kz0UHKGqBEzqdqIKp54bILbdRuNTzdZVLcb7FWUfVj8X2PdnD8JYQuxNr/eEBFlCVU6vD5McfXB/7GkLzIH9hOHo4ROzdvazO37XiW3A/51/FxJQCU5DKo4jt67/Fjfs+9FGjQ2inKv71p0grhoXkj1Wk3esxiWpOHacxZ7vkZbsC2LTF5RaqFcW9RWvEBRuLwbv41CPzVF28dVFA7Bce+21fPKTn5y77Ud+5Ed4xjOewWte8xquvvpqjhw5wnve8x6e+9znAlAUBR/4wAd4+9vf/nhs8qIew6pVLC/ufIF3rua07mzzuU9cyX/73nfzk1f/NEsnlgGaELrga8Zs3UDF7IC6yai9q4sZn1Slp9YpzsWmT0mTWMvJYW8Z8MyCtLFygOiBb1BZtGjodsB7QiqZBMEoXCehXLIUfU3ZVlQdcK0aIIl5KhZMoaaKiE6FzRx55mGk0ROFLsAUwuzzCeAj897Jz3QzYPNAvqzJ9wfsFUOKicWlLUwhShaUvO4CXHls6/EGVmbLTGRJk24GkpGn6Bt8nKfoCsxIM1mF7qElzPaE0ZOWSAYV9k6NLwrZ341pGH+3Pgybobt+8LXn/PsL/u670M9a5RUv+GVUotm+vMXwcvjw+lWwDzaL1ln32YlP+MDwGQAcPrDFgxspk/2G7v3IEGdVLB98CnqiBcisFFXP0zmuaZ/xJCOPcgG31EZbi17XhMFwGqA6a3GQSdgw2kjjH/2vVYDugw470owOKSb7NetP65NsQ7YVWLq7wK5FRqXRqLRF2N6Wc9WsT/TmFmbiGB1K0KUAo2gldhTpKrbdwtx/fBdwUTMF6++rZhWet2Z9p2fY0ur0Gq21PsEq9EaB67XIlzQbzwwsP2ON5GPLpBsl2Zph3+c86b1rcdgR8FG5YtKvgExuJ8Bxvrsbg+73JZugrAiTiShYjJbQ2BBQWYpZXpIHjCe4za0m62BXzby2Oh+jLm5rzfQDWaD6chpM1DDK4+/X9354x8sFbi/+09lfw0arFCeMV5UYfCvF24Tv/I637AKFH069/Nq3AeBTjTJKAq2VFvZsvvAmX9TXdukjn8flb2d0SNO7O8Gc3KJ/d4vx/haTFUV15SFsVeE3NvHxPN2QgABfSn/b9LMzfwtF0ZxzlFbT830ZCQGDkfS0VRVVKG7v68AsyLLDqnBn5hNehlmq8uhCo52mSDVVW6Eqha4k2N5bhR17IXPkHl1Jv+kTsf0K25BuQWvdEZTBW0XVBpSot3VeW2kK0KIcVD3pd/N9UFyZUy4l6MqgPBR9hcsW4MpXop4I6pWmXLRu9VMFl/RpHjUuJYMsTVCtjFAUElAeAu7MWgQWHLeXvwNw7mvpWer2D5974Hr06p+F4NGHD3H0ileKkrTVplppoUtA7c5oqeval92EsgozdoREU3WsKM5Ti5qU0n+CqGgqL4iFR97zdimq6UQAjeCc/N8YUbbVJMX63BJtRdXMujg4J31DmkgPsbElyp4sE9vBVgaJWACqtS3pl4wMwFX9+AjeKJugum35XqyV80rdS8cM1VlXiV193CyZUemz92A7aycpEqTXy3MZmteq4U4bupJ9oyqHKRxLd4KdpJhJoHv3dkOm8mX1leln4RH1tHgBVjCmUeGrJMH0e1CU+PEYP548bILWdMbiojJyem1RNhElfjzuZkG92uHjhtV/IEqi2SrLcxL2glKEJL6uVQSjCVqhnH/U7Luuf94vyRqwlwmgqBRUEBYZLIta1KK4iACWfr/P133d183d1u122b9/f3P7T//0T/PWt76Vpz3taTztaU/jrW99K51Oh7/7d//u47HJi/oK1F+Mr0I90CLbDCx9IHDbtV/Hk3/2c5z8mSdjv1CKr38TFj3DTolNs7Ialdhp8+ing6vakqVuytXKMn61R9VNMYMcPv3FGf/Ssy9IGxaQ0SJr7bRlMJem+F5GSGt7H02xkjLZZyi7iqIPLvYV3oDPAtWSF5q6U2ADQQdUKXYLrtKoicaMFemWLDiDkcWmqgRsMZMIsJSyiN1eVeSrwGVjksThKkN1SUE1NJiRxkzEPmxRj0299317Aysvv/ZtoOF97zk30PBY1Off8Cqe8zO30D4jdk4bTzGMLgvoQlRTyUCyWPIDGVkAXXj0JAKQcfhTL0YfSb30vT/L+6/dW73irWK8XzHZ16NYgrIHBPj4x67mr9KruOvHfvasz3tFusayGXFZtsFar8vvHF+h80nD6mdH6GGBPrPJ0Steif4/niwP6JfgFV7B4EpF60ydS5Qw2Sf2Je3TbdIHtgVgGY5kEdppQ7tF/uRVTnxTRjqA5S+XuJZmcImhasHy3Y7OyQqfJLgMJquw/cyKQa5RPiV9QKOW+jAeiz3V5hY6UdFyUMmCU2uStTHVlSnGwOhwSueEMJF9aigP9rD2UviUqDwbYLkOj9RalHTpPrGS2NzG55OzfzGzwDGmYTb6zS2yv74bv7mFB0y/z77jLXR5BZsn93Pg5AC9NcEaxeTSfvTEV/jxONo3elHaPBYVwShljLy3h7AgDc7ht7fFJiyNIdCAUlpyhtptyJKGLae6bUy7RRgMcZtbZ3+dekG/l51Cvc2JlQEp86xObYo5e0uV2On3GbO9bjjwDwmDIUorrm//YDMcuW2wI6i3qkR1NaPKCamJg07Dy17xdv7o9tcAorg72zlrZ738OgFV3vee16JirpiuBJgMRlSaqvJnHRwtalFfS9XuT0iGidj1lCXpl05wKBxi7VltNp7eYV91BD2eRAb3dHDYMMuDB0w8z9HYGdZDK0DOKVkGzqHbbdwVh8EozOltwvoGvqymOQN7VT2I9EEsEmFOVaeyFNIUVVWokSfEUO3RQUPZk57WjqF9WhQnwyMGFQy6ABX965ULmFJyAv0IyQgsAr37S4JRjA5Zqo4i2VYyfI6nTJ/CcFmyAst+wC05QqnRTjG8TPrfdFOIR4t67OpswMrRgz/OsVP/8iu8NVK3fvotHD3yk/JLr4vvZHKdBMnPizkhylpZ73kvWSzGEHz1qPSz5yQr1Nf9RKxHQ2rwWYIuPStfrvjA//i5sz7ve//odbzs+rcTErGRJlHoTSd5ooMh/swa17d+APX0q1E+4DKDDhCCQfU60sflhdh9dTvTLKb1DZjkhKKU+2iF7nUJRw7g24nY0J7ZEhVM5QS4Umpqb+scdDqEflveS1EJiNVpizoEGqKiTqX/EzszsctGKxSGkNJkDO4CWWolSw2szPamxqBb2YUrMXbk6wXnJMu1BrNjVqoGrAsywPce5Rxd5xle1pK1fGIJozFKq8eun515z8qY6YzjAmtXT5smsgYIQYhgqRHQJbHoNBEr4vHkoalx6s9zDxCsBlt0r9vYKofxmBAt+lRiZeaSpdKbWsvRa17Dsc+/vTmOj17+j4W4ptR8rkoIkcAj/XjQ4gaighAEHZZXvOCXuf3PflGe5yHkSN3wDb8ISnHrx9/cqK/1pCRojW8ZlFK850O/cOGf0aIW9SiW54kC7i0s8uAiAlgupH7+53+e8XjMT/7kT7K+vs7zn/98br/9dvr9/uO9aYt6DEof+Tw/egTekr2L7Ss12Qb8h998BYe/9x6++OOaZ7x5SYadM2zf+uJe56JQlcKaSRNUmor/aFS6SCC9eMiqLIOqQp9YRycJfrmL6nXxa+uYXhs32Jsp0zCPtRJwpZVNVTFRwuoyQ9WRQ3GyzzA+KCy9sgchEQsvFPjlkrRXUE4soTToVsXK8gilAusbXVxuUE7hU1lsllp++kQAlWRbfpo8hth3FOMjgWrZsdKdMJ6kuI00MpwUdqSwQ/j02xZsv690ve+9r21Y349HVR0IWtieZgLJlmqAuc6JyDbzsHlNh3TL0/7SGXwuLK/3+N99yK/3q5/7Tj64JrlKV3bWuOUbf4d7T63y7P/3jQzv79H/oqF/vzTqH/rPP8Nf/Paredkr3i77aoCqazATz/uP/fx5X+t7r/44//mL30KiHA9Oljl0aAu9tb9h04fBEJUmLN3lCUYzIcWvlGQrEw49eZvtuy/BjhVFX3PqBY5gA6sfzdifO+xWjiorYSB2Mu7/zlW2v6HAtoboVsn2/1ihf29B94R8vsm2I1+xmDyQbgfSbYUpLKNLPWuvmHDqeat07j/Ayhc9y584hW5lceFPVDaIIk7ffwr7jCVcpiAoRkdSdBEwZUCVAZ/2SL7ciWqLTAb3k1zUdImVRYxSsLyEXurDA8eFtQbTBdIORV69iJ1dKLu19WYx69fWMUt9lj9+knRrFVVUqNEYkoT2F09DXuCPrEpWzL4+alLi7r5vqtB5FEpnLRlGKi0ARVXtXvRdQMBn857yCUTbxfq6wda2nOPTBHVwPyFLUEqh2i3scp/qnvv3ZloaMzcU2HMIEFnhKstQ+1cJ7Qw1GqMmOX57IEOROrBaixqoyWApyoatqyKYBYjdwqyXe7QsOfrkV8njXWhe27UeQcMeWezXvegtTduvYlCwa1lQj51lw6IWdbHVZ7/vl+D74IZv/CfQ78KZddIvn+RAdZD1p7cZXtmhP7kU9YW7Z9jbUQFX97NRmd2o0pg5rwRPcDQWuFopzP2nZKhbZwwUhTCwzwFAy3k/giw6BhLXFXvdkNop4OxjTqARgk+tUlE+/nSgnViCFX1QQZGtCznI5qCrQNnVmDJQZZqir/AJtM7Q2GJ6K89VdpHzilPgFWZkaJ2W+1dtUYInTzzHnq+JerzAlV1VVqjCoCon+/skl33YGELwqF5X1BvxOHm49dKj78COKoKC977/9ZhxxXUvvBEzzFHbY1HUIDZr9YD46BWvBEANA2ZbiDrv+ZPzh3L/0W2v4SXf9Q45jMeSsUJZTRUmSqO3xxIA7lJCovGZgJ9mnKFPbQjI0spwB/q4zJAqBafOSM9kDHr/Kv7QCq6b4lqGoBWtyqNOnBF74BhEjnONxRrbA1RVYdot3HKHcFnss0cFam0LVT9mxuJQhu9i560SK/aDaTLNeFIz55yortGJnT9nzZCIdK9HGI+nqt9z9ZZ1BkwkDvkZEktwcu7zG5voohRAwlpR4rVTlj6/hao85YEuyWgFYw/g7rn/0e1n03SqXoy9eyjP0tOe5zXne9oJbEsfq7YGTf6NWl6aOnh0O5g0EdDpQgGdeM1ptmlGka17PVhZiu4dDhUD7VVRyrwlSwXsqxUhlePoVa+GdsxgrhU30IAvAMe+8A4ArnvRW5p+Mxp/ELTCt8y82vIcGc2734/sgzc8+w0QLd1V5VF4QmqmvfOiFrWor/m6qAGW97///XO/K6V44xvfyBvf+MbHZXsW9fjUi771s3z8Pz+bYBSX3n6a8R2XEL5Xc/y6Ixz+z+uooiRUZbzQz/h+1otS5whjh6rtwWaUJ7XHvR8MUeNJo3bRoxHsW0EPhtKEnCvjIDKHAWH6AHTb+E5K1c+oOoaqYyh6itERRdkDnwYBR2wgtB22U3Fk3zaTyrL5YAc7UVSHAkoFWrbCb6TgJdA+6EDVEfsw1/F4GzAjjaoU2aY0GUFD2ZG/q0qxed+y2CwMRLVicsjWWbD9vkbrs78soNqLvv+dfOLXXsU3/+jN6BK2rlJsPkWRboIuDemWp/PAiHBmHYD3uP+867left3bGB1KGB3STA5Csez5By/9I/7bPV/PqEh51TPfy/35ET51/AghKOylnn91x0sI4XrCR5Y5clegfbIABVVb8/Jr38b73vvahlV/9FmvZ3LFMjq/cL/gv/3Uj/DjH/1BRlXKyXv2sXxQs+99J0DrRtK+8tGTbD3pCL7tUNbT6+T8rcs/xq896bvINjWT/YrLrz7FP3jSn/C2fdezkffpnkgJqs/gUsvaNzhWn3SGZa8YjTMmecKRz46wa0N8O6FcaYMGU3gBV85MQEP/7oStJ2ecfJGldckQfwncf3UbOMhyHAiEST71y4/nln1/dQbfSdHDnPzyZfJlizfR6zpVZJccho0tQlXJ+SxNpwvw2hoiLmR1r4vSWhh4M4u1OVDA6Ca0VFkbn2eGtaa0MEKLgtbxIWo4gcoRlrqE1KLyEp8YwhUH2Xh6l/1/cQq91AMfxKcb5HmsxY8eGhOwBlZ8UUy3uZoH2mufcZ1YAdcfold2qMpmQR4ABoWoWg7thzPrshDcOaCZYVqqxMow4ix5LLXVhVlZEcBuqSP3L8T2Q/sOYZILaB9Z6SHPgTgABWG771wMn43NmYg1HkasFLyNxIBq+h4uVL0CgAY9jkxg71G5E0sQYzBOWIa3feSXLvz5FrWor4EaX9Gn89mTAlCMRtgv3s/BtRVGV60wumqZ7qkl/MnTwA5QdgZkwTlhnqdJ87f63FKfE91g2AwKVZYKmzgEdLs9Bdf3KqWpw70pYu7KjH1QsBrXTVEeyn5C1dGoaE9rx1GRUgUmqxpTQP+eElN6xgcSfKIJGpJxwJ7xDRCDEtVqvqIpVqDYF0iGitaZgHYCsFRtyXAxE3lMNTYC3hSRZFSAeQwJ5Yt6Ytex4/+co4d/gmNffqfkxFQVdNrQ70VrVy+8Wx/VC3Egv7OnvWH5702JKZ02odemWu1StQ3JQB4zuqSFVaALR1CKF/ydd9G3GntqC8YTuQZH0sPRS35Ktu/BX2+Y9EcP/jgSQnHhw98P/MHP89Kj7yAYhd2uILG4tY2m5/APnkA99UqI6lGfGFxL41qW1kCG1qHbwrUsVc9iVrqYSS6q2OU+7uAKITWo0mOIWWprW0L0iCBOrSyBqcUW4zG63cYYje+kEjzeSjFpKiCFyhv1UHM+877JTFXGCMhSr93rbJbYp6vaRWLWrpbY19ZAi7W7lH+7aodF2E778DkyTFGgrJG+zMo5q+pn6EJIWdXlB7BnBnJOhd397EO03Gr62bKa2jzGz3h2+5uett16yD2zvNf4PWLwZY7yG3I92N5GdTrntREWxdd5QAal0e2W5OS24vWplOuI6nQgc9DrCmDhkSxAH2JGYLSyrS0pY5+7q89Grhc6iPIKrfBWEVxAlwGfTL/rY/e8+4I+mxu+MdqKhSDgSlRPqSB5nMr581oBLmpRi/raqYsaYFnUogD+/fN/i6/7vVvE17ms6HzmQa5ZX+XMc3qo/auwNZhrwHSaztuGhdisVP6czUHDGjQGtdTHP3hCFpben7VZmvendQSjUSYlZAmum1J1jPjS+8DwUk2+L1CtVtiu2BKlqSNLKnqtnKVswol7D9M+rvEpVIVme9iizErMWAAU1/ZgoqVY2+ONsPmUi+GgGdCGsi/3aZ0wogDoyOI3GYAdQToIECQ8dFGPT73vvV95e7Cd9Sf/Vay2/vK3Xs3TbrqFy771ftbHbT7x//nl8z72O7/jLeiJI/GeLNVULYUuFd37NP/h+LUs3RXoWHjnx7+fZBP6WwGXKT5+5Ol8pH8NT/kvY+ypEzAYSjOd2HkpeKzyQJc/uu01D/m9/cvn/Xuu/rV3sfxFjcmZC2O94et/Addr4Vpg1y1V5pkUln/xme8gu3qLk+0etDxq3OKHn/Yhfvhp8OStt3N6KCqy9LJtnr5/jdte8m4A/tUdL+Gmv/gu9HBESC16VJCtbYPSJPu6oBT6xDq0MnSasG9S0V5r4ZIOxZLGHFQMLofeXSuYjaEAF2MJF8bGc9DWAD1JIbFkf303GQhYcWQ/1WoX/8Bx+b1W8M0szlRhCCZHlRJ+GYpSwJXZvJC4sGsUEyCLF+eZ89U2yXTBXFWyrWVclEWljL7rQTAae1IWn/vvbMHyEmrfioBcW9v4rW2IjGtlk8Yuq1YYNts1u6iLt89anIXKo+ICdTabQKUpOrIcVZpglMJFSy1lEwh+jsG4F0vQPPlKCAF/3wMCyOe52BOsrsjnsrk1t426laE7HbmfUgLMxCGKTpJmuFM/BiKjMwbQAzLM6HbEiqcfF5+NVVg9UI2M3PFEBhRpen4GsfMxK0jjU0NIhKVuJo7rv+VNe4IhszZgs/Wi738nrcKjCicLZBAF0zhHtVJcZhprn0UtalHT+sD/+DmOPu3nZeDUahFGY3jwJJ1JQXHl6tTCJ5YyZk6lMrVtdKgws8Sbzc6qb6pKKCSc2g+Gctt57HSCcwLaGiPn9trOx1rI0sbytuwnYufVEgWJT6A0ArR4JVZdvQcrWg8OCZkhbRnKjqLsKaoWtM54dOXJly1BK4q+YrI/9q2nFOmmADUqxJ5129M6I6rbfEWJJe44KmBiVotykkm4qK/NqtWax+7/pxy95jWUR5bQE4fZHnPsszed87HX9364uQYrhKimRmNUUZKMCxJjGnvYpbUuTApRyFjDUrGMvu+kHGPOCzmllZ09n1Arjt33aw/5/b3/2M9z/be8CT3MwfkmL+b67g81ZBw1qVAqQePQlecPP/B6rv+WN6Ey6R3MsGwyIW94zhskl6adElLDe/5ELM5e8HfexdIXtvHrG9J/GCO9Zb2u9tIThggI+NEIdb8AuzraY6OVKBXKmP8U1QE41wSUKx2zM4yBKjTPS61iiWoOQjm3dm9AkQiyyG1nOa/tDGXf9WfVPHdwDmWizdnh/fJW2wnKBZI7TwqppiwJG1tw6ABqdUXOkzv6WbPUxw9HZ+1pd6qq5/pZx9TutraP3dHTqnarAdHP2s/Wr7Ozp33S5fh7RXUdihJW9zW2s7g9ZiRKN8H1QKOub9SV9d1m8sGCcygQu9gkgvNpqzm+gtUEG0Pjg0KVbtovGi0zG2vOecz61OBTARF9IgCLriAYhS48L7/ubbv61qNXy3r32Jfnramv/+Y3CpBijKiuqpnPzHlIjOQbLWpRj1PFju/x3oxFzdQCYFnUV0V96h2v4nn/8BbM0/bTOj5Ef+ZODj0oQfc7WSs75a2zDYPpdnYNFmcbmhAZ3+7ESWlatKI6fnLvjarZLpWEBepWhk46+COr+MxSrKSMDxiqlqLswviIJyxVHD68ySW9LVbSMUtWGquPnLqSz33pUpJTidh/9QUAKSeWMreQBkwVA09bnpDI/7M1TboR/axTsUnwFuxAblNBGH/9+0qCAtfWFD3NZEWyV3zGoxYKt6iLu6qe59SgR1karn/uL6EHY8KJU80CwVx2RPb5PCfkObasGmZr+/Mlrch+mj2OlDGsZhm628EPR43KoG7Cqx3hk69I/nduL3+H6/TfaqzIHkkI95f/8c80/3/yb7+d7vIYoz2D13VQOvDkfzWJ2vLAe9//xnM+V+cLKXYInZOefKXPl67sw0vkb9u+BU6hHzyFHwzxUVWnbAL3ResBa5thuD7h6dwRF6zOs885zOWX8uB3XUY66LH6sTWR1I8nhLwQNthoLAt8IyyvUBTy+M0tjFa7F1czuVGhEmAFJww8nJdF04zFRGOlGK0RJDRWVH4oAV5Upy3WY74GJRRsbssCMMsEeFnbgp6ES4WoqKEoUcMRYWu7AX70wf2E1SXUfccl1yXaNaI09rJLoZUR1jdEzXMetl5tE6YThep1ceubUBT46EFdb69ZXpLA57KaWk/UQfQ+SCBnuw3LfRgMCSdOoZb66CddQTizBpccZPPrVik7ChTo6jD7Pr3dsN68NVRWUS4ltO8doDdlqIk1hHaKOrkGwxHBewGnGhuIErW+DdYSDu8nJEbCNI0Su43NQWM50liEKcWta795zs9l/kPyYBJ8S9pCu1lgjQwy9gJXnv+DN6MPJOgy8OK/8SuoGA8GYKuAGRZin1DI8CTEQaxbapGvtvjAH5zfzm9Ri/parGNfeIdY9sU8k5AX+BMnSTY2d4U77xwcNrmAMSBat1tTxvSs3U098MpzXF77Hmr8JD87u3pGBWNW94k6rd0Sm7GOZC0EY/CZoVgyuFT6UJfSZPkNLxW/loN/XZGu5WCFRR9UVLmMRI0yvMRiJ4F8STcEoO6DYjcG0DpdkZ2eSLaD92LPYhS+m1H2U1xbU7U0ZVfhDZRLQoC240fjG1rURV+Vw25OpEfZHnLD0o9MlSs1YcEK6LCTnOFj6HldzRC+Vu5G1Wxt58S9D8h8eJasMZ40/Sww19PWQNDDqdlrdZ0ZoZ5ypRA6vnQPIByQ2Sy2sylJ1fYIhmPUMMGO2s3trbUKlZdNxhPRBqs598QeTj4XDa5owJd6va0Ti2q3Ub0uyvsIQMTPyxXiIhF8Y9NdP7YJsecCwGCvpT9t3tBuQKEBJ4yZKrNry9xZUgtMb6sc6vhp6PcwmwN5v0s9AQvWRM1PWRHOrEUyjZ7rZ936pvT8Z+lpXf0cZ31fQezN436ml5eoTq81Pa2JxCF7YJVQlJKL44Rc2oDh0IBVqt8TW8rtIUxy9OWXEk6eRi31Ka4+hE8NdlhiBjl2XBBOnJoCXVGJpTvtpn9XSQZpQhhPmn6+/u5UYkV1ba2AE6mlOrzc5KUo5zHjSvrGSD4SEEauPbd+/M3n/Gzq8olcZ4IGb+T/LpW+XCWGD/zP3f1nceUqKkzJgcpFYEcDlUfXyF3lICqyqDSumy2yVxa1qEXN1QJgWdRXTX30N17FN//9mymWluDpz6Z3zwR7x70X/HilFaGs0K1slxS2ZgTOgjEqePxk59ByR9V/m2GM+8xS9hN8onCpourExd9yRWdpzCW9LVazIZdmm5wpu3zizGVsDNvSLJhAvhpILxvSMh7vFUWeYDa0eFEnCt9x6HaFHySAFv/pjjQawdIoVkwOySDQOSkDsHLJUvRlm3wq9//0TYv8lUXBC//2u9i3qhlsLVMueYZXBbp3A/dVEoyb2BiQ3SZsD3bZEs0thFS0MYm3h9Ho3HL2mUVpffw9nJyX89XSx1PyfSnDKwqCV2THEwiThs133oqKr6KnSbcD2k0XgoYAlZIFR1E2n0cN/gYQpZsxYlUYpkqGetHqHzzBvs8fZHQkwS21MS5IrlNeQJ5HNUmINl1q+lgc4QI9mc+q4At+zhKMqmoWbvWgTm53U9sxH8DMsBHLSgA0a1FLPcJKH3pt9MageU6i0g/ncMdPojc2USvLhNkFZ/BU9z/Q/FoPQXZWc3t832bfsnz+k1wWpe12MyhR7ZbYptVZJVqhguQSqDr3Jk3kPec54cHRdLhoDcEaqmc9ieFlLcb7I7BuhWi39bQeduRJhq6xsctXDCbv0JpEm7dJgTqzScgLQs3SBPmbl9wcrIVWim8n+HTGR9olmHqxCqJCiYGzF1pHn/pzkKYCggBmkKMmlYRU9+cp3y/+vnfiUoVKxGrERfzTjrwsXj2yQB6XYLX4waMIrRTfz8j3t/Zc3C5qUYua1rG7buG6F96ItUaY8gCTHL9xHuuXmpBQhwkjw8ydAPuc6q+2l9lpWbhX1SDNYIhqt+V8bYycw1Ir9kNGUfQUZV+uifmK2NGGJGCGmv5diqqlUUspPlEMLrN4Kxlvugq01gLJKOASyX4LQL4ELlG01gPptqN97yYhtVRLGbr0mM0xjApMXqEqz7jdYbJPi+WulfOSt4uedlFww+o/ELKIn8kLMUaG4vUxoMQ+ek7BsEd/NDvwj3cSN4RzbcCMDXVdj0VPq0a5gJ8g9qzMAysXVLW96ozFqvIBVb/HGWsuZn6X/057/Z3nFf//Z++9w+y6yrP9e621y+nT1btsyQXjjg0GDDayJPhIviQQiAkQCBACIWAHCMEQSsCm2uQjlA8IBEj4QvlBCEkk2zQDNsXYGBsX2ZYsySqjKZpy6m5r/f5Y55yZkUbSqLd9X9dcmnLOPvucGe3zrvW87/NEMULXbB651xQ0hGxOQEx9zScLWGb/mspUpsm+m/z5ZNsvhG0AsSc36X7GTNRkrQnwZg0p6g3bICQEMkmIzloA3UvxdtgGHlEqYkYSiOMp9ayCqSLKHjXtdEjPm3hN4gjhZJBzZ2NGx+w0jBSo7i70eAVRLGDGxm0uoOO0p4JatsCilWPiOBCEtjmrXMGEEbKvx9qzLV9E2J0lKjnIUBMXXGTYnK7uKNlp68YkK0nHOntQrtj3nXAaOzZh62vh+5DNYJymyK8E2pPW0lhLVH1SU46rrPiiJCKc2S//6ufehClZ0T7xZfv6v7/ba1eic45tOg3susm+8LSnZ4wQoJq2zErYhoK8QPtqX4dOSTlmJObECLlPk4gsqcCSckqhItv9pgJDVHRhxQJkONfa7yQJ8c7+ve80uUteiqYntW+taXwfU6tNKoQnFqAH6p6ZbhTXRBEi0oQlhzhnp0TiHEQFQ1/fGLPyFeZmx+jzKnQ4NSKjqEcuUeggAolTF0TzGizqHqF/vIRUhmJnhaFCBqdmLZi0Y/CzEfVxDyNoZroABmubEIIMwK0a/HGNjAy12S7VuaLdQfjAx9JFaMoE2V0Bha0JXY84REWHzGADuWOIOAxtV5Rqds2Pju81ATa5SwyaE2SHEPo4Xb7LkeT+m6f5m3/nzO//0Af3/X/mc49cQfc9Dkmluu/n3lqYT7fJZTQ6aJDZMkJU6AWw4/P5jBUFWh3Ik6dXJvszH+zrPc3tTRDYBY/nth/DLjh1O+y4lefSvl42J0eAtq+/kAIRBEgh0N1FK2BIiXEUYnTcHjuKIIxsh1+9jursJBkbt4vM1jH3cR2ePCHlzJlFMjjc/p6Y1Uu4tAcjBd5ADbVzsJ1JQxxjEt2eLBLZrD03pex0SMa3i1Uh7GZnZDs4CULiRb2MnJUj6LDvQSK2djTGhco8iTdu1e3MSAJC0OgWJK6LU8njDJahVrMTK54L82chGpENnZUCMzJmH891MEJYj++8S6uWtl7v2bY4ZHynbdMz4+nDlhjjSDt1EiU2I+U37+N5V94IWDuwKG/Dbdt30wanptGOIMlIVEPj1GK7EHfVXt2Gz7vyRmSclt8pKTPh9rvexepL3wc5z1rsSYUUAqk1phGQlMt732mSYNKua5VCMiHW71W7tvNbDsCk9wUdxUjqoPVE8HSUYHIe2rfdyHEO6rM1JqPB00gvIfEd9LamHVGQUJ3jU+8DbxQQEOWF7WTWGqHBrWm7SeaC0wAVWsG+Mb+E9uw1R9XqVtxvWaNFCVoJ6rOsNZlThYffn9a0KRYThnayoFKdmOSK43au2hQbvenqsck/39PeaYYc7XoWJgK/D/n+m2+Z9vvergqMjLUnzffJAZoPTcJElmDr9kqBlmDsBv1kgeuw2eN8bFh8UyQz2j4upml1O8larG1FNvn6Z6ZM6mhjENoQdHt4W2JoBFAsIOMCplrD1OvtelbmcjOraZvTUK38FWfubPTIaDPDxDa+JGcvpjY3g9CQGQpwnxiwexZJArU6uhG0J8+F709qzElsM47w29dv0QggiogX9DK+PEdYFPjjBqXArSSEXRm0K3C6c3jbRhD5nLVwdh1MMWeFiEaj2YAV2mn87q7mVHizGcv3mxOHCSKKMUogEoNWAu3bvC47MRMgagG6q0DiK2SkkWHM8579wQO6FhhpRX6bNdR8vsLw869Zx4Jn/PHHAXjOmg8jE2MzWlxhm4MaCdqTmA4PVYuRtci+92qNkZL1939gymNd/ZwbEWm4fUpKyh6kAkvKKYUKDCqAu75u30ivufz9toPWcWy44L5oLjDFpGJROI4tSvI5TL2Oqdan2C/MuOhrWYVpA2GEqjQQJm+781qHUAbPSfBUwkhog/Eio4iMoidXpVzJIAOJaO6ZVkKfSjmDm4lZ0DlKfZlLteKjY0mxs04UK7zdCqcBYclaL6CtNZhXthkrTk0jEkOjxyHxbLe1jODez6YL0RTL1VfdhFECdyxAVhsoR+H1GyhXMdWanVwxGl0PJ4Jxp9ucP8RF6GRWyRcDR6fT72jytPXvJHyil/kP12f2GuznNmZwmPwTvr1OJdp2dhV8u8Feq1vBg2YmihQH30myx+bCXj9OEmhMmrBo3SeZNAGzx7VRyAnbjPZUThiiB4eRUWzFC9+HjjzJwj5U/wh0FhGbnrQLUiGtAGL0JHFu8nXaxcQT5z05j6AlqAulEN1dRHNKVOd4jK4QZAY95twlkDuHrZBeb1iBQ6lmWDzgeyCb9gSO0/xctEM3hTHovk5GV2SpzrNdckKDW7dBzY1OQZK3Indm2G4MOrUEb1xQmy0QOodaksWt9eGNRYjEoGqRPYdCFuMrlOdZL3ffR+f9drecjA2JL4lKLk45QDjKdnR3ZGysmLQLzKufcyM/+PH+lcLWRszqi99DXPL5wQ/f2/7Z9+94J1dfdZPt0owMYKezIiVb8WV20xNwqzFqPEAkyV4L0daxrrr6Q/s9l5SUlKloz+H2X78XgLVLr7cWNfurPycH3qNsV7iQIMyEfdGBNkf3x57vEc0ObxE3r+9SIBODbGafGAFCtnIMBEE3dD2ubSi0tIK0VzZoR6CzEOWbIdoG0JBkQCaQGdHISBOWFHGfIjOiye6sIcdqVuDP++18Q2HAG7eT2NM2T6Scdqwpvcp+0grKxgorYGtUo83E33az4WVaDrOWhZO3nrX2wI12TXZYtJwdhJiYwAXb6Dg5W+posKcQ3bJQFHLC+rZ1jntO4Bs9ETTf+rsJQ9wN2xBnzLc2ybO6QWt052yEMchHt9hJ/abAbZq2jdPVtEA7t69tcW408Y6d7XNQHQo9q0TQ61ObpajOB3c8xxw5G2/TgLU5c12U51oRBGxzlOs2xeikWc9Omr5QEt1VYnx5jvLC5vSgFOT7IfPkODrvU12cR3sS6MLbNmInpJo5POGsHKorh0i0nYBWAsLm6ygESdYK67IaIIIYk7HT+HHO5mzJ0GAcgRqvw1jZ/l3EOVTDTiUaIUgyzrT5KZNp5Zc+448/joxMez+oxV3f+Bueu/rDqNBOXWNARoYkIxHNRgOtBAqQDWvTTJywfo9sFoAf/Pid7SaklJSUlBapwJJySnHX1/+GNb2vY03v6xCdHcicb31kjbG++btH9ttBrqMYWW/YgOYgsIVVHCNyOYTrIFsFUfP20vP2ynSZ7ritDUY814ZcRxqvQvPNXaIdSSN2yKiISuQjRZasiuhvlHCkRilt1wQO6MBhdyWHqTkEgWIgV6CQCShlG3RnauSciMdGehnLGDACGdluarcM/hj4oxoV2cVsvVcSlkS6AD1FWbvyHazbcPAbmquu+AAyTHCb+Qki1hjXweQ85K4R4p27Zr64OgKL0SnnNsmr+mRg145OZt8P7vYR4gPffL/ochn55E5EId+0VMgR9mRReQ93VxnGm3knQqDL5b09p2fCPkLdTZLYjf49N9dmcPwpdostkToIMOWKtRtQEqT14q9fMI/Cg4MwZxayf8DmocSR7fRLkr0sIiYvQCfTXqC3OrZrdZwRh2zOwSiXsCgYuKyD7gc9vK27bSjovG5kPbJZKNmsPS9HgW+ndtD2/UD3doAxyPE6lcV56n3NxagzYUcjI4Nbg+p8gTcGwkCjS2J6JG7VkN9hyA7FqFDbjjtH4pUbiDC2ntOJQTZiTM5HOArtu+isnWKRoW5vsCa+RGc92z3YzEwxjg33lLHNjZkpxlXIxsQLfOULPmJDQX2FjO20o3YEqqFJvKadWGBwqhFGSb5/hxVyVl84vad7SkrKwXHr3e9hTddrWNP1mrZ3vWkGJO/3+j45b0VOdIibZl6CUAqMmLieGj0hVh+I1v3VhDc+SQJaI+sR3pgiznioQKAaApEotAFRSkAYwi4N2l5LrCWLvT46DStCa8dOnmgFSdZmB7oVm+US5RVBh8AfM2SGQ0QtBCnROZ+oN0tYdDAS7vzWWw/rdU858VidfTm31r96aPfNv8J+MrnZRylbX8zEGu8ocbLVs7LawIyP26mEIzBZYutK+3k7D8Wx2XemmQd1RKdYpjy4XfO3r49iYnIGJkQOe9OJEPc97RVbgnYyvBsnmyFcOQ8Ra6KiS+JLMkMBzqK5yJ2D1qLWdTFBsM+atv26TEI4rp3CltZiy4QhariCL23WVOJLwhLselqWhVsdUJJ4Xjci0qggtM1CrekV3wXctnBAFKF7OxFaU11apDK/KR4p636hXUHSaW3Kg5Kg0S3p3mBwClmE9tG+CxJEU2TXvgOutLWk59h61hjQ2KawjGev2VmXJKswEivIRxo5niBGyta2TAjkztjaiZXyJHn/oKZFMiN725Q9+/c/ihGgpM1jAUgyVmQSiUEGCaoWYzzF7XfaXJU1597A+kc/vM/HSSdYUo4/Ap2G3J9QpAJLyinH+qHPAU2f3arHup2fYu3cNwIgM/5EsNx0GI1uBEjPtDuZjTaI5mblXoGiMyz6pOs0Q6BzRCXfbsDFtgtZ5m2X3bzCOCsLuxiLswTaocOpU3ddNuyeRTDuI3KaJAs4mjhSGGVACxqhS7EQECQO5dBHG0HOC9ndHSF2eTg1+1j+GPhjtmMjLMrmYlUQZw94+iknGdc87f222PUP/hK/+tL3oWoholpr2hRJ26WUz9nN23Jln5vwx4prvGuRTR9h3RyHn+kiddUzP0iccxDG4A7V4eHH0WF4VBa55/zHexFJnszuZKKL7DAwSYIeryCbmSBy3EN0+pSXZPG6PXJbfOTQKMJxkHFMUqkcxoNNM4mU2A2yyd17sLcP+XRfT3ft1PUGUilEqWDtrVxJZZ6DW+7Gf3KE+IIzcDftQg8NIzwPXa0h/Ux7SqYtrkx3+pMmWYS0m5LU6mQHR3BWzKe8OEtttqC8JEO2OBt3LMTdOWYXnRl/QphoZdoYY/8fGIX2HUSkiWeVqPe0JkqsxiG0XZgGJWtrozOG2tyIuODhlsEba173Y2zouyvxhxqoip0A01nrRy6S2Fp1TcpSEZGmJZcYASI2SKGJ8w7Ss52XCDu5grEWXkjrMT2TLKE97cQSv9lFHhkr6kQa7VubMG8sJslKZKz3smy49Tfv2+djtLoLU1JSZsb6kS8AsKbj1aAU63d/3jYRKXVgQWTyJuKUGnaazK2DeC8XSjVFFiuO43tQbyClRBQ9EFYkMRJ0Z4T0EjwvxuQEzi4X7RlC17XBw0CcEbg1g4yN7WaOrPAiEytaJxmo90hUCBjI7E4QsUaXMhglSbKKOKvQrtirYznl5Gd14ZUTGRkHe9/8K6baPLUa3mBicuE4skq+eOL/E7QtTmdak7auC9CcDm5ORxzpmnb1he9BqtaER3NK+nCHTJqib+tYAmz2ne9bW8MwpJWBelRouVfsUaNOyX2ZXOe2BJ9J9eXEoQx6cBinu0h1cZGgQzK2XNCxMUvHRgiXnUn+wQHM8Ii1ofVcdKU6o5q2ndeYgKnVUIUCBCFO/yilSgO3UqK8yCXohPKFc/CHQ7zto7Z+dd1JNmxmak3ru3ZyJesiw5hGt5zIKzG2OROgsijbzGcVhB3Q/zSHzu4Ocrtia1drmiKJo5BBjGjmDRq3KV5E1roRgMTYqR5jcJqii4g1IklsuH3UfA2SBBMY2+TqOAjfRSQa7Smes+bD/Hj93+73VzvdlEvL4lZojYi1tbM1EOcUIjEYV3Lbr6bWwesf/OB+H+f2n+3fsiwlJeX0IxVYUk5Z1u/+fPtz0wisJ2prBPxAwfR7BNibBNtit6eH6342+NqIZji050I+236DV4EmLEoaPRDOjsmomJwM6cpUGYnzdKg6+DA6lsMddsiuHKMrX2OkmsNzY2qeRxg6OCqhHPqMjuVJyi74CSaW9j6D1vYL7OSKE2gSVxD7trs5O6T57T8e28Xoqmd8gNvvetcxfczTjVaBuObcgy/8ZDWw/srVGiaKEa6D6O5ExAliqDZlYmtGGzxHARNH6NqEX7FQitX5V3Br9Sv7vd+a7tfizOlDjUvESBk9ONR+Pi3LBjhytg3BxhL5QUF2x5i1VDgCmNgGrSObWSDaThFU5zgkXomS1oixCiKXRYZhe7F+xGh1QU9jJSYcd2JBOtkqbJpMmdZ1WFeqyDhGBCGe1uRLDrU5LtV5sxEG/OICcvfZ4zilYvPvMkLEsRXBZ/LcWqHvcYyuN1D3bKDrtw7ds3oxOZ+xczoJCxm8oot2bQZAZijA3TlG5Zxe62892EANVzCugzNUgTCk+tS5REVrcWMUyNBuCBppNxcTH3TGPvc4Z/CHBcXtMU4tsV1v2nbtoQRJR9ZmrLh2olEkrvWAboR2iswYZJTYvE0pMI6wIqq2/2pHWrsd6+JlvaXBdg1KwdVX3cQPfnhgkWUyP/u27QJ/1h98DBlLnHqMbObttLr7DpYD2TukpKRMz/qxL0580RRNzEyaHIwG1JRO/Zl0Te8TIe1HcyMU37eTfq6xGVBNcVpG9loovQTpaBItyecDzGiWsSWKOAtO3U6pgBWpjRDI2KBCcOoGjEEFdpMuM6LJDEUkvkQmxvr1u3byUcYadzziJ/95EMFpR4A1595wwA24lMPn1sqXWZ19+aHdOUnQUdyuO2Qrl+FoTEUcIm371Eki0DXetdwWfm2f91mdeZn9RCk7QRbHE8+TI29DJkfLzamHeGp9d7hMEjns19a+UPg+RmsIoyMj5uzv8Scfe5JNnP1STFiBTfr+nsdASJvdumEzfukstOvhVgTjywRDF2WQoaCvMIeuuxJbuxszUdOG4dSadn/XddHKQrRT5WZgkOwWRc7zMHN6GL6khyifwS/1YZTACNr1bDy7g0avtVDMDDRQQ2WM5+IMV6DeICx22OtwK74rtLm2iWebMb2yIcmCUxOEBQE4eGVtLcdjgwgTm1fiKhsQL2w9jeeABhm0Js6tM4KsBhNPyxgYt01hojVxY0x7UtLmchlkrNGO5LmrP8yPbt2/yDKZq597Ez9tNhpd+YKPIKXNfxGJRkaSH90282NNZtUzP5iKLCkpKVNIBZaU04L1I1+w/rsH6oBqdTYpNRFgp6YuTA+W9tizkBBEOJUQoyT12S5BpyToMWR66uSckIZ26XXKVESGcpIhaVY5cUGzevEjzHLHuWPoTKQwbDcdBHWX8dEcjp/Y+q4hUSOOtQMbBX/UIAzI0OAEGhEZ4g6F9uxi9hf/duw7/VJx5dhxsAv/tUuvhyhGj5dtOKIUNpdCG2vpNF6ZMgE2I4HxKLGn7ZRpBAe2W0gSzPZ+TJKQNLv8pqPdUehYz+B92VKsLrwSjEHX63s97vOuvJG+hRlKGyuIjdvaXt9HAhPFyILCOApVjyk+Wief96jN8WnMLZCNEghCRDYLk39fRyALZ9LB7L9CTtgohOHU6ZYDhZxq2bRc0BBFiOEx8koxfnaJyhyBkRBnHHKPZqFcAddFFAvWWXFsHGGM7diM4qblzYRf9hSLsCDAhBEy41thqmlBAdjXaygi8ST1Poc4K4iyEBazdCS2m7o6W1GZX6DrEQdvx1i7C1BEdpPPCeyCNPGtjY1sapBxHkQoyGzz6HpUk9tZR1WbP9S2u884EiMEOqOai2Eb9pm4DqLTJbfdbjIa106OGEfa2ym7cDVS2GMJ2t8jsZ3gMmxupjZvf6hox1qYJXn7/2Em0zD7IhVXUlIOn/VjX5zxhrNQaqr9zZGYPG0KrbTe1/zmFKLnkGQUsS9sbsqwoO76RNkE4RgSX5GPYfyCEKTB3eYjI8gMQWa3RhhIvOa1PytwaobMbo3T0HhjEbIeoxqSsMMjKrpoTyADazl2oKypo0Eqrhw7DsUe7BrvWvvJpM3y9rRHyx7sBGHKuTQ3/fdX07ZrrGlC2CezSr54Im8EuC36932ewzXete06avLjrul+LcJzMfUGuhEc2VrSPhkQzQw8rSEIwPdtc2Ki99nkeLSYdjp7BkK20RLCCBkmOA2NCiT1OQY5q4HvR4zUOnBr88htLlvByvcQzTw/U6kiopikUp1k4bh3PSukQI+N2ymYbMauVQp5K7gAuaGE2BfUZikrjrgQdGTpTEy7Rqz2KSrzmjVt/zjtXEUBqmH/TTyIctjzkBAVbS2pAvB3Q3ZY44/EqMBmcLWahYyUaE+18wK1Y/P6vPGm8B5EGClhco+WaE4wSQn5PCbrW8El0e0JG4xB1WO0qyDDQde0k+vWJCNRDUlc8DBSHLK4AukES8rxx874zdwOOuXokwosKacXM+i4aY1pS9c5/O7vVvByGIJSiDBsjsJqvLKm1icRiSCKFH1+hcgodid5hqICAKNRFh1LepaMcFXpQX44fi4aQTX0GB3NYXb7yEAQZe0OW2ZYkhm2nX/+qMapa5ACdzwizirqfS7lRXZD7jefuv7Qn1fKqUkjsNMBvo/yfUQ2A1pjxsbbVlwnOq3FZGsxNHmR2LL8m4lgarSBpufxNe5L28/9dv1NrnFfOmG3ske3YAuVzdL5YMZ23/k++gh2S5o4Qo+NIx0Hp2aD4OXOQXLMJ+xwibtyOI0QEScYpdq+40elC7A1jTLlWzNfCJskQcQCErt4lwO7KWYc3GqGRqey2SVLe3DHCzYcsx5aq67uEmK0jKg3YGx8oruwdc1tTitOtrIRs3oRYQT5LDrnkWQ9nHpC4ivccoRxBOWcLYsaPYI4l8epG+I8NLoBk6HTEQSdLk41wbgCoa2wohrW0ibxm13bEcQZKG6S9N4f4G8btQtgIUBKjNfs8JPWw1kYYzu/jUHHCrKKKK9Isk67C9A0hQ4jQHtWNBGJnWKxz735j6YZHt0UWKSy/mWHwBUv/jh3fvNveNb//ijGcexmZkpKysnBZDukVqbA4WxSTtqoRduNWCEElKv2uuxbEVYYO8UnIhCxQNbsOSTSQcQwf95utu/swjgGYju1ol2BCg0yMoRFiXbsItUrJzYDqh7b6yQQ5yRBp8RIQWFbdFzElZSTgJawMtmC6zjnrhwsq9RLpq9nD+Y5tDb/9zhe65jXuC+dOGbrcSfVtMJx200sR2uapJUx0rIfI47Bs1ZaBHaNa/QxsCWeVNPud2plX3dPEiuwVBLyuyRBlySOs9RKHq4D44sVcaZEdiCLU4uQtdDWeF0l5GgZGUYTv4c96lnp2qlBkyTWdnxOH4QRppBFZxySnL3+euO21kx8e61udAmGLrD1rBEQFSDoAsjQKQVBt61poVnPhraGDUu2GVMFNgtLu+APQeemGH8wsBMpwooqrQxANMhIW6sxYxBeU2jxJLJKcyrF1sEYg1EKkSQYzyFe0tduOlJBYp0TomQi6yvWyFjbqW330DaUn/37H+Vn330bz1n7EfsSn0CTbCkpKacGqcCSctqwfvxL7SKy1Q3SKlbbhWTTHkwoDyOEnTrhMDq/W13angKtbbBbxkH7iihnvU6FBh1JfBExGBbY1uhEG4krE+4fmgfjLsV5Ab+rL+Q3u+ezeaCHZNxD1iWqLvHGwK3YzbrEtVY1UU4QFRQyVPhjGhHZ0OMoZwNE3cOIZkg5dTFBaEUFz7MTF2FEMjZ+XCdVZszk/5+TPp9skzDZ3mwmxzOxZs/Se2LRuf8Vpq7X29MjshnUfiTRYQijY8hC3lpgJRpnsIyRRUSibQdYvT5lU4FmOPERF8qmmWY5mPvpKEZSt52lxqC2DeGLPrTKkPiCLc93yW/16HnIRyamaZ0VQUcB4XnIfB5qNfTomJ2Imeyl3d4UcKxNpKPQhQxRyScqOTS6rK9/nHGJs9Zf2i1Dvl8TZ6w1gnYAgfW3XuiBgSjvkDStRmQEmVFN0CFxy3ZBGpbsInXOnWXUzmF7/RfCfvgeYEUPEVkRzAbd20Vn4isSX6IiQ5xzSDLS/kxYu4eW/ZdWwh6yKagYKax1TtP6YPICVBjDc6/5MKoR75WZsj/80Yhn/tHHEEKglcFk0y6plJQTgfZ7SrOhYK96FtpWPsJ1bD07OVT5cGpasLYtStlrWpJYmzAmNqyiPAQ9BqMMIrHXSn9Y4DRg+85unJ0emWG7eWeEIPGs2OwEhsxoYifnlCAsKhCKZK6HaFpiRnmBdgX+mEZFJ8dGecrxoZ0XMsPmmhOG1nnuo5496OexvwmXA901jtrXm5YV7BFnUl6UnQQJ7XVGCDvJEobY7KipFl5HhWkah2Z8P0Bu7cfPZVFBD1E2S2WhsNewjGHs/Jigo8HIb4v0PuAg4wxOPUHVE5BFpOtCuYIeGd2rnm1biBl7TSeKrZCS9wg7PIIuhXYEccYh8SEq7VHP+raGTHwbYN/ogvGl9roalBwM1uZWNQyJL1ANW1s2eqxo7o1B1+MxmYF6u4GnJZgYJZFB3J7EtjWpbNeh3mANWW3AeBmR8TH5HMZzms1FCuPbhiIjsLWuI5Ch3T8RGmup23q8xCBNwjWXvx8RJPvN/dsTbzTiyhd+tN2QdDjT3SkpJwotx5vjjkn/P0EqsKScZrSzAfbYX7xdf7NdZBpt2t1OhgghPbu5VKsd+gMLgchlSeZ0U5ufI+iQJK4gKkCSMRgtebQymx3VEuP1DI3AJRr1yexw8AXsGOngm+GFDI8UYCCDX7YhxjK2Hta5QY12BdXZgkYPBItCTCJwRh0KWyQychDa4FUNYodIOzZSpkVXqnZxEzYDFQlOiqmVmTCTReTRQgeNo3PcZq6U7Chay5bdo7hS2ImV0TG78eU4tsOYCZHliFjETMdhLEp1FCNaEx6VKs4OiZefzeASH4whM2KQicEIwdgZOYJOQfHJxHpLP/yk/dv1PNs9mMvZaaUotpMrylqLUcyj8z6NviyV+S5xvmmjmBiinCTototOI6D4pEH4gr67R+h/Vhe1eYb8DoE/qlGB7c4LOhXCNEUYJcjvjAk6FLVZdhMxv9OgBkasuKKbr7frTnhKG4MRkiTn2EmVJokviHMSGRmMVER5SdzsRHQaBhM3w0dbjeSODR8FIAQhjP2dt37vjiBxbYehCg6u+P3h7e/gqlUfmvJ1SkrK8Wdf782T69kWdoqv+XlzAuWgGg6mPLAV6kU+Z6dWWu8nngdOsympaZmIAW9EogJwq5Ad1Bgl8Dd7eGPgjYMKDYhmfhQ0s6kMIhbEXQ5RTlDvtddmGYFbsTY1aPDKGlU7cvabKacWbfvSVlD6ySKuHIDjWc8e1YarVui905wQj2Jb27ZySYRByOZk7tGeZjnUehaIh3YjlMIBusNOnKDAyEqBOafC+XN3UIk9Hi0VmtdJyfhihzgLxSczdN45hh4d36uepZk3abRG5nLWSiufQWddgh6f8kIrqmSG7dR10GknTrSCwnYDQiAjQ9cjVXZdVqA+V+Nuk3jj1kLcSEGctVPjwlgnDCMFUdFee91xKG3RuOUY4yhMMxellfMHNIUViXHtdKHNyJIknsAdVVCrg+tiijl03kd7ylqLGWOPFxuMa+vZ9mQ20mavBAkmttmTxlNoz/5unIPMAf3+He9k1RUfQDcnaw7H8jYlJSVlOlKBJeW04vbk61MK072K1NbEShQhXBfhunZjzHWQxtgNzUPtGvI9jCupzFVEBTAOBN0G7RrUkMvd1eWIRCADuwlWGrKTJlEeyjtzDLpZZCDtz+t2g82rwG8+dd2Uh1v8hY8i6gpvRJEZhtLWBH84QDYSok4fp6iIM6nCnDKVlm2AaVqAnCrCyimN0Va8KQturX4FgLVz32gXK1E8MY1kDMJxJqZXoniqyHykvbQP8X5GS5v1E0bIJMHfqMjNnUfQK8iMJshQWzEk79Hogb77QmSk0YvnILcNoMsVK2a7Tvu5kyTgOphaHZHxAR9vLCSTk7jbNE41wu0fx1/ew8BFLtqz9glD5ykbwOx1Mr7coH0bFO3UNTLUuKN1hM4RdHq2G7DRnCCJ7aLUHzXkBmLrIQ3W4kBK+z7gqeYiVFlxJaNs048SaAWJJ9EKwHYcJt6E9Zi1fBDICGRsF82JJ2x3YdlmbtlsFmvJgLECjHEEh9PglAorKSknFnsKKdNuujbFD5Mk9j0gnwVtEJ6LHhg87HMwxVzb6kVnXbSnUI2E/A5IfI/EFajI5gBmRjVONSEqKDK7Faphr2Gta6bQhju/9da9HuOcd94CsmnDGNopbbD3teKyOuznkXLqsacVVsrJg0kSbk++3nadsNaEeko2iRWK1VQbrz0C6g//RA6jnk0g2bYDtvfTNTQPoefS35mj1ueScyK0Zxg+r5UFGEMsKG0RxAt7caIIPV6eqGdbGSla25wSwIyO2WllR5IZbJD4OZxqQvbJMepLOtl1kQMeRCXD0PmqbfM1trxA2NfMdtHgNGxN69QTxhdlSRwQicCtGWQCrTF+p2EnmlUjxrSad1pZKsI2dumsM2Fn28oKVLY+1VkH2dtJkvdsRosrJ2pSYa//2rHuG0aCV9Fg7ISJbk6ZCG0nt5NMM5NQgKodfGFrlEiFlZSUlKNGKrCknNJMFxA4XXffZEySWL9XQGaztnsGELkcJAk6DA/OZkdITBihB4dx4oTZjS4ac/KEHYpaWVJe1hRLRhQygEfed91eh1j5/luIcwYZ2849GdvNtj3FFYAtr3nbXt9bffF7kLUQnVGEJduh8sw//Bg/+/bei9mUU5tr3JditOH25Ovt7+1lKZJqKycVLXEFgDix9m7QnkRqb+43baqEUlNEtGPiaz0T9gy+Hx2j+26X8qJZDFykSDIZ8tsFIoHuhzWqGmKkJOrI4DILUe+CbTsx9Ya1GAhDO83TnGRhYAgxOIySktLOTvt4Y2VwHbKPRCwY7mTk3ALV+YL6bE0UCqKiICnEIA1hUdHoccgMReishzdUoySsbVjiCZKMIOiQxHl7jU78ph1YYD228Vzb8a0UOusSF1y0a6cRtW8Xm4nXnIhxAYGdXBG2EzHOQZKx134V2E5ukdgwUotA+tbiwakZtGcnJRETYsz37zi4rILJ0yspKSnHlz1r2gPVsxPBy6EVWHI5ey10XeTomJ1iOYSJRhOGUK7YIOJcFqREao328wAkWYVbMXQMRPzo1r0DhC9+7S3WzrClP8eGn/+/v5n2sR66ce8697zrb0F7grBDUdoMz7vyxoO+tqWc/EyxzJrm+yknJ5PXJ9birVkbygk72na+TjuIfpLYcrSmtA+GSfUsQUBhS52ebI4NtaXEcwOWnruDZ/Q+wUPlueyslOjf0o12BPU5GXLRbGS1c0o9i2la3CUJJgxt89TwCLJsPb9Lu/J2v6JaI1cNWDRYYuScApUFgvrcBJRBlSJ6Ois0IofxkRxhhyLoUHgVO92S79dU50q0C1FWEBYhzlthI85Cda5H4Uk7TULTyquF9lW7WSjJyrbVl30tDImv0H05jBDIWKMdQdhpGz61Y5uT/DFNlLPNQEJLRMZOr6iGRiuBLjQtc12JjA1CG277xd8f1K/lec/+4JTzTkk5FdAnSMh96o9jSQWWGXD1VTfxgx+mSvfJyJ5FN0wtyPcqwpsFmUmAMEIDsq8H01GwHdFGI6uy7Wu9vwKuHSzaPK6u1+2idGCI7GM+uY4SpTnd5AYK1GZLfvuJvReRLTb8/b5/NhNuved9rD3773B3juEMu0R9+bTr7xRldeGVALZ7H0AKTL2BbgRtH+o9J7lSTgAOo/Nu8qbbusHPArA68zJ7uCCwx5aTFhTNzr/2NSqKMQc5Zn80sH7+EpnNIHJZ+81qndxOQ2ZEU52jqM4DJFTnSZxGgfzjI/ij1aZns4LF8zDKZlKFvTncsQA1MA46sUKHUhBFRAu62H1OjtxAgj9qhSh3d53EE6gaZPslYQcEvQnOmELEVvTYdZnBZCR+f47Ox7J4ZU3QRVMQkUQF6NhkKG6qEfb4hIu6cQcriCDG+A4662McSZJ30L7NVtGOICgJwpK1YzASELS7+7TTtJJ0DMY1yEAitM2LwdjbigSiBBwp0DHNjUu7CMVAnJHc9fXpNzBnwlWrPpROsZwirF3w16zb9n+O92mkHAL72kjer9DSbJrQtRrSGMzyRQSzc2THyzA61sym4KDee3QYWkvHWs2GLWcziEwGtxqA6/D9O/YvzN7z+cOraU0zFytxYXS5YtbYibG5kHLkaU8xNNmzue2AImPKSUerpr0t+nf7tXoJkExp/hKTatqWsNL63kFlAR4Nmk4ACGlzEnNZRKLJDSUEHQ5h6NP/+AK+XlhAPDegu6fCCy+5j9t6V8LvinBBEaOKoHvxxqCw0+DUNZnBAGesgQhj2zhUrYGUmCAgXtDF8Hk5SpsjtCfJ9tdJfEF9WcjTz9rIwuwIyzMDlHWGR6tzuN+bx864i9qZxoovgx4991vXDN1cPoYdtn7MP2lf17GlgrCQobgtxq3EVjRx7ZRKq5kn8QRxRhBn7XXaqQEGarMUCJvvYqQgzkGcgSRr3TpUQxBnJvYlolZGrSOQsUSFZsoUduIJfvFvB98kKhsJQmtWX/webr1n5tktKSkpKTMlFVhmQCqunFq0ivHpCvIpWSxxZBem5YoNB8141jtUBTCDzci2ADPJw9UkCUI1sxMag8hKlY7GbH7+/z545J7gvgjs8xGuY0OiQ82qZ36Q238288DjlBOb1flXgBDcWvly+3trOl4NzXH7Fuli9ASjeY1oWR7ApE2EGQove3Zytv31mws94bhTRRZod3EJKY5v10nrHH3fWjNm/LYQQr1BfmdMvc/BaRhm/zrBKMGuSxTDZyvCQg9exVrPIEAGCe5oAzFWJzM8ju4qoXuK1OfmCEuK/LYG2re+z07dUJulUIEmzim2PztDZthOgNRLEBcSMrsUYac1pY7zAlWXyLIkyRjKiwT5HZI4B90P2d+PN279q2U9whsRRAUHlfeRUmI8B+Pa7jutRDOMVBDlBY1uQViCJGewyr7NgtGeAdnqygTjakwsiEqAsYtSjM3iQlq/ba9uO8NVZO13wqLk5187eHHlqlUfAg0//EEqrJxKpOLKqcP+6tnJPwf7nqLrddTgCJkwtpkpSoE+tAwT08oECENMFCOqdWSpwLpdnznk5zNTnPrE5pxTgajksPrC9xxU2HHKiY/dWJ+YaGh/PUloTOvZU5Mp03pm0uQKrW+ZtqAi9qht7YT2MTnNaRFKIQt5RD6HntVJVPRtrkklodAvqYeSRo8VH7K/9Wn4Pv/z1Cw9HVXkZXXCROGphEbsMLKrSNjp4lYUckkOGeVsBpV1iyWzW+NWEirzXSoLYfQshQwESSmD6qjx9MVbuLxzE3kZ8NvKIh4am82iwghP7dlBI3ZwZULWixgsFKjuKpFkILvLTkzHOdvoI7W1aETY626jSzWtu2gLLNqxt41ytlEoztIWwRHW3lEriPLW2gtpp6+1Z0WdKD/xGEKD9gSqYXMHhZkaRm8E/PKr1x/072X1Je9FGJMKKykpKUeVVGBJOS3ZV8dTq6CbsiAdr1iL0cjaIAjPs3Y70QEWpa2CcI+NUaONHRkGTCPg1geOgbgC1hbCCAgjZN0GIOu83/7xmt7XAbB+6HPH5nxSjjhTrKKarB/74nE4kxSY2ATY7wbAFHHFfi2UQjjuHmGiB2FLyN4bEHt29Akp7LVMm+OXt7NHgKiQ0k6ueK79meeB75J7fBjt9SIM5B4fpbqiC6OsdcH4EoFbUWSHbIebdhz8oos37KHKdWS1AUqS25rglXx73VOCOOeiIoN2IMorgk6JDKE2FxLfkBkS9D4gqXdDo89AMSIOFU4hQvkR4VgGp+YhEuh6VJMdCnFGGoSzclTnuNQXFchuq5DdXbXCipQYYUM/TfMjLEiCDjuJEhUhKiU2hyuy1l9CC3QhwSiDCCQkAhUqtGMwHREkAlN2kJEgdG32ij9ig6BVYG0VMIbEPfhpxeddeSNCHj2f6tTSJyXlyLC/Dv7patpkYAgVx1AqIgt5+72RsUN67MmbnCZJjom4Anaqz3ZDg2q+TcYd/pTbtKY4b2382zE5p5Qjz+TGoOm+Tjl2zKiencyeAfGHYdm1L0GtbW+7Rx19XCdYmvZkIpeldsECRs50cOp2+S1jkJHBHzfEOYGMwR81lBcLlKPpyNTxZEIjcZiVrbAwO8LDpTk83tVLdVceZ0yBNIhEkPgGndF2ujorcIo1CvkGnrKCycU9T3Jubjs5GXLr7qfw08eXo0NFR2+FZ/VtZEWmn8XZYVZkdrLcHeRrI0/nv39zOdkB8McMXgWioqAxP6IiHApbBJkRY2tTYydIjLL/ascKLUEJ4gLEWUOS0zYfxQjcCsgQjGdrXe22joEVYTKGuJSgKlYcMsrgVgXemH3NVGjFGyPt62ecg7P4uuZp77efSMltvzo4S7GZsHbF37Lu0Q8f8eOmpMwEgyAxqe3diUQqsKScthxIZGl9bpIEU6lCGCG6OxEdfVCuIrXGBMHMNif39INtFYTH0CN23WMfYe05dkNL531ElCAie+5rul/bvt2a3teBNqzf/fljdm4px4602+/EZPJG1T6ZwTTLTHOnTGIF3uPmU90SkpSy56BUMyhTW/FaCMhmSDqyqKEy2f66vdvwCLltHk61RH1hTPZJh+yQITsUYxxBrVdR61MY6eM5AlWLMFKiM4ok61iP6z6HoNTMNnFsp5xTN2SGBYEBtyzouy9C1WP6r3ZYtGiQvBviyYQ/nftzZqkyH9j8ArY/vgivopGxwR2uYRyJjDReRSNigwhjzMCQnczJ50g6rUd2klHUexRhwQbY23Owi2aRCGQgrMWXAFlTYKwFGMaKLmQ0WgsIJTIQyNh6VhtF21rMCLvgFUbwqy8fXKffqmd+EI5yCOhkceWap73/qCx6U1JOF6atZ5s15nQ1rR4dI1m5gMZ5ffjDId6DW0lGR4+f2H6Q3H/LdTzl7bfYDT7XbvKJSXuqa7pfC44DcWwne5MkFVpOQdJ69tTmgPXsHo2MxzU/Ukik61jLxNl96I4c1dnNTBIfgg4bOC8SQWGrFQ5EDLnBhKDToRopuv06v96yiLjisq27TjxH0enVOWf2Lh53eyiXsihXk0QSx0so5hvkvZDlpSEWZEZxRcK2Rhc76yUGgiLz/RwP1ubz4wdWosoOi87byRsX/5jfyw/hCxcKI82Tz9Dd8xP+S1yOUbZBJ84JvFE7Hag960WbHUpw6gmJJ0l8SeRJawmWtRMoSdaKJsYzYGw9qwIrhBvZFEpqE5mCRtnplCSjUbkIHdg1jlGGUIEMRdueFwANpf6IH6/fO9drX7TFFThqdeZkcWXtsreybtPHjsrjpKSknBykprWHyapnHqPpg5Sjwu36m+0P2CM3pflz61+dgOMQz+9h/NweTGcB2VGyC9g9u3SmoW3RA1M3NGdw3yNJUsgwdl4PYysKJAUfkokVaVtQ0Wav1yHl1CBdjB5b9hXAui9Mc5rEJMke0yt7cIDrxv4sY1q0rm3Hhaa4IjM+wnXAcew1R0pMFFlrMK0hTlBjdZLuIghBknVt1/WOIRb8qEbHQw5u2QoLQaciLErirKDRJajMcajPzlCflyfoyxAVXJKMJG6Gb3plQ3ZIU9ymyezW+KMJnZsCMkOAhvFFLv2XZ1myaIDzu3bw8nm/4P2Lvssf5cs8KwM5J8KtQGYoJLutgogSdNYj8ST5LRWyW8cQsRWLTL1hQ6aNQbuSKCuJMwLjWDsyax0hcMsStyxw6s2uvQaomsCpCdyKwKk3hRctEOMOzoiDUxfICJyqDb7H2NdDxobElwSlg3uPuerqD9mA0eZ7w9VX3XTEf/17koorJwZrlx28n3nKicOe9eyeFrWt27Rq2vLiDENPUUQdLmb+rHYG1oyYJPYfr25x7UKjx1CfA/VeSdhpa+zVhVcilJqwSj3eeQwpR4W0nj22HGw9i9FTPw5xvTtdPTvdOcz4vI4GrZq2qxNRLJD0Fgm7szgNO6GiGuBWwakJ4mJCeakh6IKgBypzHArbNO6GLPftnEcSKoSriRoOG0d7GArybC93EIQuhWKDp87fwcoFu1jYM8K8wjh92Solp8FgWODukcU8Nt5Lf6XILzYv4Z6xxWgjWLxkkCue/hBvW3orLy6MWXFlD+aqLE6tmZkisDWqgsJmQXGjxKmBamhUNcapxsjEWIHbt3Zgcd7WnkYZRCRwqhK3YkWkxLe2X0ZZS7AkO9EQFOc1ZDWm2YFvHNMWy+MchJ3Q6IIoa6/540u9Gf9aphNXrnn6Pxzqb3lGpOJKyvEgQZ4QHymW9JU4TPbMr1h94XuO05mkHC6362827btU2+e3hdGmGRZtR2EbCzqgVEB4zSJlf4WjkKjOTlRHCelnpt72GG9w3varv2d0uaTRJcAYhLaP3xZXjAFzHC2DUo4a6WL0BGWaa8Be+SuHyOSF6f7CkY84LeF5z/Nvfk9IYad1nKa44nnguQjPbQsteC5kPIyrkGGMGqvjlAN0Rw5yWdyN/cz/r37m/WQMoWH4XEllriTKQ9gBlUWw+yzJ2DKHRrdDnFdEeSuw+OMaFUG9T9LokgQdkkaXYnyRR3kJVBcnjJ5lqM3XXNL7JOcXtnKut4PzvGz7qWwYmEVuQKOqISLW6KxLWHIxUiDqkbVfTLR9LmA/1xojBYlvp2dU3U6mqIYN+XTH7eLWqYA7Zn/u77b/umPgjTTDQOsCGTY7A5sfbhn8EZtN4FYMmaGAO7/5N/zi3yayV65a9aH2v63P9+SHP3gH3//JDe0w0T0z6K66ev/h1SknL3tuDEyebE05udhTZNlrglEb/NGE7BDUuxWNOXlksQjs3Wi0F0IiPa8tyBxw8vIo8dAHr7NTfpH19g+L9rxlIc+6wc/az/t6bfZY2jR0SpHWs6cfewotx6SmnVzLTlePT65pPRfT3Yme20NtXpbxxR5xxjbQRAVo9ECct8qBjES7/qvOs7Vo90OazB1FSASdvRV0LBmvZNhVKZJoweKe3czvGKO/WqQeuXT6DeZmx5mXGWNztYexKMtTO7bjSI3nJMzvHeWFvb/l1T0/4y1Lvs/angc4zxvc51O9P9LNrBMISpKoABgobLdrFKENRglrzyVs9h/Gih5J1lrrJp7BOFZMkbH912nWqIlnr9NGQlQ0aNfYYygQXoJ0NEhj81m0rXG1a1877YNx4L5/uo57P3Nd+5xbdey+mp1v+9Xf79XAc9vP3z3l69WXvHe/fwIpKSkpB0sqsBxh0oDFk5z9deMlCc6WAbyxhNEzXHZdOct2qyi13wWmkAIyPsnyeci+HmQ2M2GNc4wnWAAeuvE6VABhp0cyOYOltZkirPiypus1x/zcUlJOVfa76Gt1+E363Giz7+vRQQize1rH7Kvzb0rn8xFCSLHX4rQ1zScKeYTr2A/PRWQykM9DLtu0C2tZBSiIEmvLuLuC9hThgi6Cs+ZTfkoftQV56r2COG/QHjgNyAxDZsgu8IIOCIuC8gJJdY6kOsfaiI0vFoydH1FebO20nMAQdArC+SGiFGEcg1GGl3T9ktX5x0kQfLPSwYNRjU+OLkI/VCQzHKMzLo25BcKeHChBVFSMPbWb2rwcJushfPuBkqAhyUga3cLaKfiAsKKKUU2xJbD+124VssMGrwz5ncZ+r94UWBp24Qp2csUfgeJ2TWlrTOdjDYqPjeOM1Nq/h4tefwsXvuEWRlbY6/0Pb38HP7x9/8H13//JDdN+/0gG3q++OG1IOZFJbUJPEfbxfpHbPIY/Zqj3CrY91yNesQDpeQesS4UUiGwG4ftI1zmuIsvGv7meWfcmdGyOKTzZsN9M7PNdc94NmFIBceYShFKsKb3quJxjSsqpxiHVikegoXA6K8T91bRHnGkEFyEFslDAPGU55bO7GDm3xOgy1RROhM0qaV5StWcQpQgVQG7A4I1B2GUYW2HY9TRBZaFB5SIagQt1h2RXltFHuxl6vIcNT8xl83A3Owc7qEUejtDM9se5pvMBLu7cystn38U/zPodnV6DeuTylK6dPCOzldkqYTTJk5cBi5ziPp/ap3c9l6gIlfk2izAqQNANQxdIGj2QZISdFO/yiIqOnXRuiUdzEpLeiCSn0Z4mzmuSjM04FDFWCJ/Ut+nUBEILayUmDMpNyGVDAGQsUHXRzF2x6x8jmhMvTS76y6k17Z7NznuyvynpW3/93v3ed6akQk1KSkqLNIMlJWVPmh1/17gv5bbo39tF2jXetZixcXKPuIyumE+YhdoFC8j9OkaPjLY3RPc6XJKQ7BpEdpcgn0UmCaZWB62PaQD5mo5XM/iS81CBwREQZyU/uetd9mddr7HCihB73ScNST/5Sbv9jh/TeUjvkz1ymow+/JDQPX/30309+fwOZ1E6XZd0+5xbmSueiyzkbYC9aYpHworQLXGXREMcQy1BOBIciZ7VifZdwk6PyjyXoNMu7tyybYLzd9trlwrAaRjijPXk90esGBF02i471WjaFcTgb3PJDEJ+V4xT08QZl0rFwRRiVCTQXSFnOgkFmWe+ksxT2/lhfSHf2X4B3phd9IVdHpW5DjI2RDlBkrFPKbfLkOR9nEIek8+AEMSdGRqdtjOw0WdQdRv+6Y3RDKc37a6/3FCMVoKgw/4NaKfZMYjt2HbHRXvyJTOqcWoJ/nADESSIOG5bfD1nzYdxZrvEOcG9n57o/IOm/VdTwPvBj4994LwsN475Y6aknK60rvWta/ya0qvoBCpze0AannxenoXiLNT9j6Prer81LcYgPA8DiKagcVv41WP2XNYuegu6pwNZCygaA1HEuiduBkDX66w98+0I17Ed165CFguYSpXVmZelWSwnOWk9e/yYXC/uK8f0aD/+nuexv5r2sOvZPa3NJtWzADLjI2fPYvziuYwtlcgIENbWqmXX6pbtZLGMoJIVaC0IOw1DvQa8BKcjoKNYpzdXZVelSKXqE8cS42hkoBAJ6IyBSFLflQdA9WoyKiIyitEkR1E1KCdZ7gkrbBnvYrySYWO5l1qfJCMMkVFc5g8AhX0+3/EoS6MvQXaFhKFCOBrpaHQsYbdHPGqtbeOMIvEFIoGwBI0+TWneOHNL42we7iao+FB2kKFAJnZyxQls1mDLRgwDSVajsxqhDEZLolhBPkZLx7qFxNaiTIQGhODBm2z9evHrboFm79bkmnbNU+1+hlHquDQ7G5n2rKccHwygzYnx95caslpSgSUlZTqMRiiP1flXcGv1KwDcFn6Na7xrUUGAVhBcWiXcliU7uwdRqyOSxG6I7mNBKkbKkM1AHCMcx1rgHEP2J5SsH/nCxARLa9OzaVO0uvBKZHcXGMO6J//xaJ9myhEmXYwefw5KZJlMK7hzT6HlEM9hfz87Et1+t+tvtu0VJzqaFUYbaymT8e0khxCYYh6Tcewme+uaE8Wg7eYdjm1XE0GMLmZIcq71cHYEYQeoCDofi/DGIoIej1qfQgXWxqDlHZ0ZNuQGIqpzXYRpBsE3w+DdKrg1cOqGoENRme9QnQeyt0Ey7qJdQ0dXjS0xbE8ydMoal/sFFjrDlEOf+mxDZbeLWzMkHpQXC5IzaiQNB3eHh2oIkqyDyvkkBZ+ww2N8iWs7A0sGnU1ASoSR1uJr2JDdnaDqmuo8lygn8Soa7QpUaJCJIZECEYNXttM5TctqZGxw6okVV8KY9Q9au4S1Z7yNTD5D0N1JktgbT7YGExy8sPK8K2+cElB/OBj/6JWga+e8gXX9nz5qx09JOdHZawNUSK7xruW28GsA6EaAGh4jM9KNf9UwQ9s76b8sx4KBWbD5SYTU+65po8hOYbeu3erYLu7Xbf3EPn/Wyl5Ze8bbENog+ocxRmPiGKNNe5Jl/fiXjsWpphxB0nr2+HOk6sUjcR77+9nhnmOrnhVK2azAJia0kxaqpxvT10Uwq0ijS1JZliA7QpwnsojYCisqsMJKnLcbj25ZEOQVujvEy0XEoaKrWOMZc54g0A6bBnqJqx7UJf5uhfYg6o7J9dSoj2YhElBIMEbgy5jZ7jiBcZFCsyns4/FgNgtLo1zU9yTP7niUs9w8j0UV5rkjzFL7FlcAfq/vPu7vm0dnocZZ3QO8qO/XPNSYx/d3ncUm00c0lMGt2No6LEBcgGBxyPKFu1heHCarQnbXcgzVXEQocMt2KjvsgjiytXfYYUDayRSd1QhXg4AklOjYxctFhAISRyJiCbFg05snbG4veNMtuJFBJhBlbU3bElYA1t//gYP+PV9z+fu57RdHIAdQHd0pzrUL35zuwaSknCSkAktKyiSmdMQIuxG4uvDK9oLttvBrrDn3Bgo7NONlj4GLBCLpoGN4DBEEGB3vfdCmfYIeGER2lMB1IZcl6dl/sXMsOOddt7D4/25g3eBnWb/786zpfR1CKNYNfpbVhVcC1o/b1GoI3z/A0VJONNLF6InD/jruDsgxyGo6kI3YwSCksJtvTrPECAJrKeM6NpMk45N0ZDGutJMWWiNqgZ1a0c3cEsdpT7SIIMIJY4zvoh0fDER5GLjYRSQubhW0tOGZKrDZJF7F4JUTtCMIOgRB94T3tTBWoEh8iPKC+iwQZ5fpK1YJY8VgvROTiVjZPcibH3sJO8dK/MEZ93P5rPvJyJiS32B4Vsh44ONUhQ3sXFHl2Us28vDuOfQH3SSDDjK2z0sZgyhaQT3s1JhCgqgoZEMimh1+MgG3bCdP/FGJdiVxRlrfake0w0RbvtdCgwoM/qgmMxigyg1ElLDuoRsBWLvgryEIIevh1A2m6Sl2IGuwA3GkxBWA9Q9M75t9JEjFlZSUqTVtK/uqNcVxW/g11p7zTjo2BTx5by9nPXMLG4KFVM/qJdc/gIni9mbinpgwAtd2Fgt30rX+OPLMP/oY+fX3t5ui1j3+Udb2vR4Tx6wf+QKrsy9HZnzb8JRmspx0pPXsicOe03An4u/mSGSytGpZ4XmIvh5wFMnjm1FdHcTL5hH0+iS+nUoWhYhZ3WX6Gw75DbYulVEzBD5ns0pEDGpMkRgIqw74mrwXUnIaZGTEXzzlp/xocCWbhntolDwQkM1GaCPA0RgfHD+mL1fh4uJmcjIgMg6BdqnEGXrdCn8zfz2XT2peKUq41B9if9MrAM/Pb+HOpY/R6db48+47OdMtcJl/HwD/r1IgcDLW0rZuAEFcAKE0Z5YGOTu/k4GwRBA7mEihoqYtmmg2FHVE9vV0NUYLSATKS3AzMVIYkkQSBQ5JIiERiMRObG9+oxVXznnXLYgE/BhUaGwN37QcOxRRZTJHRFxh72yXI00qrqTsjxMnYP742MWeaBz/ijgl5QTkdv1NVmdfjphm5HP9gx/kihd9DOFqvOVlMuus8CB834bAxZM2Q1ve1ELaXIFsBhyHcF4Hjb5jJ1gs/eTHQYBxDCIS+EMS1QAnhOHnr5h4bkOfm3I/4Xk2IFQb1m3/ZGoZlpJyiOxpw3UiLgEuo+8AAQAASURBVEhbHE733+3J1wFrL9gKeBeeh8g2vbOEwJTyaN92P8clH2c8sD/L+FZgAYznYjIOaJBBhM65RCV7zfTGbUdcnLN3Uw0wOQh6DNmdgsKOmMSzgfa6KKj3QTI3wMQSGXrIiAlLryyE8yKePm8bAA8NzYbQjrrUYpfy1+cj5kFxpbWzyouITr/B01dsYnxJhoeenItJBM9dspGz8/08vHsOJIKwC8qLM3SN+GAMMjJkRjSFzZKwQ9rFdvOtQnsQFgRGCVQ9xq1K6r2SOCtsrkwNEM2g0Nbgo4HcYII3GiHCBLRuiyuAnQASPklHzopUJi16U1JOV27X3+Qa79q9vr/uoRtZdcUHKD1h4JngjUqM1LBwHrJWx2zv36umbSG7uyCKIJfD5I9tA87Z77Y2MUGXAWWQDUlhriL31DOn3K4Vdg9MmbJZP/4l1pRelU6xpKQcAnvWhydyTXs49ext0b8DNs8p6s6jHYnsPZcw79LocdDK1pKVhYZCqUGkJT1zxmg82kttzsSkcVwwxEUNyqDGFLKm0B0xxZ4qrkrYGXTgyZglmWGWFYZZXNjNRYUtPN6YzS8GlzA3P85QI48nE2qxy8L8CN1OhU5Zo2Z8toY9JEgWeMNTxBWAUS2IjGRWU1N+1dZn8azOR3l1adeU2/XIPDfN+wFDieZM14oxHdInI2JW9gxy9+IcMvLJ72jmBTZADPn8cPMKHuqcQ4fXQEqD9GPigkQkChmBdjXZjgaukyClodbwCEYyaAlKhrhOgp9NiHOS3UNFu1chYcvr3to+t7BoX0u0bZKyNfwh/UpTUlJSjjonityVknJCYpJk2gXYnd96K2hBY3uBseU+4Rlz7CZiS0xp0rbJMRrZ2cHg1QuJ53QS5xxkdPS70pd85mMs/eTHcccl2X5JdrvCH5bQDKcDG8L39D/5OM/+vY9Oue+tlS8jOopWdIljm9PiOnbjNCUl5aDY7+LzAKHCx4PDXSyvH/uinUBR0oornmtFZkeR5H3CDoeg2yPOu4jQrpRMxsXkfIzvYTyHqDNLY16epCPbFCkS/OGQwvYIFYEMaU+zuGXoegg6tiQkvqTRJUl8QeJDMDciWwhs95yEKAeNLkFUsuKGLCt2Vkssyw0xq1ABQAaS+x9dSN8vhnHH4bmFh9gYV/inwedSiTxe3Hc3/7z8W1y+/AkyhZBQ20Xt3MI43YtHSVZWGT1DUF9QIpxTZPQMn8pcidA2N8WpNReoif3QLoRFh7DDo97rEuUFiSsw2AW8VzbkBjReGbK7rVjjjseoWgRK7DUNsm7zLVDME3R7IAQjK068v7GUlJRji9FmrwyS2+98F0LDI4/PI1leZ/hch2BBCVrWONO8P6mOEltesYT4jPkks0okpewxOf+zvv1+Vn77/cR5K67ofILOaOKumEYPVBfkeN6zP8jale9g7cI3T7nvrZUvY6IYtGF15mUYrdPg+5SUQ+BEFVP2xWHXsw98ECMg8SXlxVnGlrpUZwnirG2M0VnNWb0DPGP2Zi7s2w4agr6E+ryEOGdFFqe7wdzFw+RWjGF6A4gEtbrHtpFO7h1YQD2xVl9PK27kksJmulWFDqfGhT3buLhjC2eVBlhWGOZ5szfwyp47We4OcplfZZ4zyoW5Lfxex71cntmx17krDMM6x4NRjQvufim/+/xT+ODdz5/2eXbJHEucTPtrX7j8aceD/PW827nszM00VjSoLLBNS9WlMWJOHaMFI9Ucu6pFpDBkciGiFBGVNFHJQFYjpSFOJGGkEMIgAokadKnuzlGrW3E+60aQCKSbsOU1b5tyXo//7XU8esN1BN1QmS8IOgWV+WnTUEpKyonJSTPBctNNN/Htb3+bRx55hGw2yzOe8Qw+/OEPs3LlyvZtjDG8733v43Of+xwjIyNcdtllfOpTn+Lcc889jmd++KxSL8GZPxcyPuse/fDxPp3Thlvr+w/s3PzKv+Wp3/t76gskI1tKrHwiiwhDO8WSTM4gAOG4EEbU5gqKTzrIxBB5R9ei4NJ17wS68UYluZ12EzLJQmN+DKGkOC7xxwz1HkHQKZGR4WmvvJlfffn6iYM0w0tFsQBJYm0hlGJN92tZv/vzR/X8Uw6Pk20BlHLqITzXWsd4XvM7GhKNqoU4dZc4KzECjCMRIYhGZCdcfIek5BN0OQSd0oa3RwmNXp+xpQqjoNELUW+E9BKENDS2ZslvFxglGV8q0A6UNtlrsFcKKWUDav0FtG8onxUjawp3rDlJEgk0gkX+MOOlLJs6+ogdh/wmF7F7nNm/znLtj/6CUk+V8lgWNxOzfNkQs1SBa2f9AikuY2V+F7PdMZ7Ts4Fal8evRpby2x3LCTsVtT6X8jKDdjUoIJPgb/Fw6hB7NhNGO1CbpXDqVoRRIUhp7FRLYO3AVKhx64I4A7/6l7/Z5+veQud96r2Ku794PUv+Ja0dUk4MVqmXoEpFRC7Luu2fPN6nc9rQyl6Zjru/eD1nfOMDfPySb/GNpZdyX3wOfaKXbLmCCcN2DlirrjVhSGOWISy5ZHaFxEVvn8c+Uiy/+WbiUpZCX5VaXmNcA1rgDSl7HTcwfI5EnZGja4NP8f5drF16PeueuHnKcYTrYPREg1M6yXLik9azJx4nShbLsUJoQ9DtMLZcEBUN3pho2oAZOh5W3Nu1gFVnPMJYmKVjs6a0VaAdgTCGwYugo1jHVzGljgYbhvOIQLJi7gBX9z3CSJTn4vwTvCA3hisctidlalqw0B3hQs8hMZqbjaISZ0iM5Gw3oSAz1E3AfBVysVcDHCp672zXM90Cm2PFS+99Dd1fylO4ZzOdj83mz1dcwT8vvHOv27ti6tZgj8xzRQbu7Xqc+/Nzqc91cboaPHPxFrrdGr6yDVL/88TZdOXrOFITBC5JMSaJBEJYcUU2uzqlMJhMgkkUIrE/V1Jz56oD16hxd4xZEvLIS25gyVc+dMDbp6ScDhgESepScEJx0ggsd9xxB2984xu59NJLieOYG264gWuuuYaHHnqIfD4PwEc+8hFuvvlm/uVf/oUVK1bwgQ98gFWrVrFhwwaKxeJxfgaHTstypcWa7tcishlMuYKY3ce6xz5ynM7s9GbFB27h0Xe9nxff9Zf8elsR3VVCJhopJSaKbPinNpg4shkKjmL+D6uMrcghEigvFJz97lt4+B+uO6jHXdP9Wmj6wg6+8EwGL0/4yHO+wdf6L+O7z/yn9u3uXjthF7P4ix/BycVsfOne/vmXvOZm/DHD+BJF4sP5b7mF0paEsCAZf+VigPYmyNr5b7Kd6E3hZe2Zb4dEs27Txw769Us5eqSL0ROTyQvSE9lSAQ4/hwUmcjDWnv13ECcQJOA6iHqIjLIoKfBGGojd4zZ/xXXBdRFaI/M++W01SveVqa3oo/8FRYIlAbP6djP4eA89vxEE/S5hl0uSMSy67EnWznmQnw6fyeiOOXi/zVNdYMUL54E8v3j/u/Z7ri//5Ws4x9/Oazt2cnZ+B5965Eq6/6sAUqJqEaX7cyz/o61sdzvIuBHnebZj+wW5Bi9YfEf7ON+r5fhdfQGxlqi6ILsrxKk7GKkIOxUiBpEowk5ozI/aSfUb3v02rnzBR/BGQ0SkEVqT5Fy+/5MbDvn1v/Xu97Q/X/ZVA392yIdKSTli7FXTdr0GU68jCvm9bEpTjg3Pe/YHefwn70L3f4XBrkf4+flL6c9m6Sksp/BEGTU8jh7aDcbYXBYpWflP/Wz547l0PVrCSHjGH3+cu75xYOF3Mu0JEqWILlzO+GKf3EBM/+Uuxc2GX//zRMPPxusnPj/3Hbfw4If2rp3Pe+stdD4eox3BY6+dR64frn7uTXjbRkBKxMqlrL/v/e3H3lNoMVq3MxdTUlL2z8lS0x6JerZVi535zQ/gOQnhxiLdD2mCTklYgk9c+nU2BHP5waaVnPGbAXRHjqAng4wMpcd9Grt6yT6WMDpf4T67ylufcTt/WtpMVvj0JxW+MHIJc5wxLvdhviraZpwmO3WV3y/+lshIflxbya31Pl68/B7yQH7SOZaa/+r+FUxmVTaGuzrI3/EgRmu8bR4//dFT4RV7Cyz74hx/O7lMSM3JYrRkoF6gv1Yk0vZEn7ngCWb74wTa4SNrvsmSz30Up6wQGqJxB11M2Pyqtx/CKz/B5tdOTLYs+yrwisM6XEpKSspR4aTxjFi/fj1/9md/xrnnnsv555/Pl770JbZu3co999wD2OmVT3ziE9xwww384R/+IU95ylP48pe/TK1W42tf23fX1snI+t2fZ932T9pR90bA2jPfzupL3nu8T+u049F3XcctD1/D6+b+GBELa3PjuoiMbz8cx9rjOC4IianVcbbsIrM7ISwKuh7TbZuu/bFnwSo8F9HVCaUiTgP8rgYvLozxnTNu2+cxtrz67dOKKwC//sL1eGMx3RtisoNQ2hyT3V6jtLGGU4UlX/4wZ3/nffbGWoOQrNv6CQDWPfaRVFxJSTlcjkGI/cFwpLsS1z18k80EkdIKshs+RJxVBJ0KNJha3U7HCWEzn6II1T+CGhgHbfBHArIDkC0EuCrBeJqRc6H81JDojDragY2Pz+U72y5gR7lEVLbhoIWtUNpkEDPwav7qZV9gUzSL/65luCCzhbP6BqxIriRJ3sMtw4M/OoPBx3pYXBjZ53GWuUO4ImF+bpRoQUCj10Ur8EcNhScNXRs0uV0Gfxgy213ym522HYLQoH1F1OmT5L0Ziytrul5zwNsIM4M3m5SU48D6kS9gkgSimDW9r2NN7+uO9ymddnz/Jzew7Jab2Z6UAdCBQ26nnaqrLi4SLe5D9nbbrEHHxUQRZniE3gdidj4LRGJwGjN7H5tS03ouLJ6H6OvBCEGUFwxc5DLvim2MnbnvjszpxBWABz52HSowZAdDFvwoJPGg3ueR9BbRBZ/aoqLNb2kipGwLKuvHv5SKKykppxhHup597MXv4ozeIZJSQr1PkdmtefgfruMFuQZv6dpINhNihnYjogRvNMDfMcacHw8y72dVZGxQAUS7M2wLu8kKa481RxX4y+579spPaaEQfGf8Qr44/ExckbAt7NnvOco5j+71vUafgSSxdbjnImO4s6Gp6MaMnvfV2YQ/WfJrli4ZIJ9vUA4y9I+X2LpxFlu39fJEpZv7RhfwkfObr7cA7RninEH7ZsbiylWrTr3JlFVXfOB4n0JKSsox5KQRWPZkbGwMgO7ubgCeeOIJ+vv7ueaaa9q38X2fK6+8krvuumufxwmCgPHx8SkfJwu31r/Kuif/kXWPfQTZv5u1y9564DulHFHe1LWJq7MJZ1+02eYE+C74nl2EZnyE6yJcB9lZQngeenSM/P076Hw8pDJP0ugxLPnK/sdi9+oKKuQxGRfdmaf4RI1g1KdugsN6Hj+67W+543tvo/c343jjMfV5WaoLszgN8LZ7dOQaLPn0x1i381Os2/QxLvrLWw580JTjxu36m6fV6P7Jyun0O1r38E32/erJfwRAuwIVGmQ1aC76hP233rDTLnECOgEg8RXagTkd4/yv+Q+wYNkgPecMcemKzTheQm6HwBt02L69m0rDLlhVAxIfooLgoRtnNiX4yjPv4q33vYjHwjl8avF/MHqGA45DbbZPdT54YyBiwe/1/mafx+iUCQu83azM7eLMhbvYfZakOleh3eZmobD2X5ndsOHvr6O4dUL4+PG6t1vhqcthZOXMMw3Wj3xhRre76uqTZ+G6Z35CyoE5mevZ26J/Z/3YF+0ESxTbSd2UY0ppxQjzVZE/KW7FJII4Z0XfKC8JO1ySOV2Ini5kbzeyswNTb5C/Zytz7oSh8xXD5zqc9d4D14ZT3vcWzEFnfXQpizvWwB83aA+evHsB8YKZbfztyY/XvZ3v3/FOfrz+b1l46whCGwYuLjB0USflBQ71uQkXvvEW1o9/ifXjX2Ltir89pMdJOXacTrXSyczp8nv63rM+yebXvY17P3MdP/u23XvRaH7egMrGToTvYZTAOIqkM0c4q0BtboZ6r6LRDeRiIjPVJrxH2lmUjXFlr8erGrgwt5lnFB8nIyKuO3vfDZUt9hRZnn/VPYjODgCSjixx1rB+/Kk8fhBh8dd3PcGNZ3yb5y9+iIXFURyVYCQQSDbu6OPB3yxp33bza9+GzmrIx6jOme9R/PD2d8z4tieLGHP7ne9i1TNSkSXl6KGRJ8RHiuWksQibjDGG66+/nmc+85k85SlPAaC/vx+A2bNnT7nt7Nmz2bJlyz6PddNNN/G+973v6J3sMWB15mWIXA6RzbB25TtYt+HkeMM5FXDmPM7Kb78fKQxLRmu2AzubIZ6XR9VCRD20XdBhCIQIpTC7R/F35uhr5MjszjKy0uOiv7iFe//vvjcBW0Xr6kvfh8har2sRxuA7FHprjOmI/Px9/53vi7Vz3whas27XZ+w3jKHR7VKZryg+meCPafK7DAN6FpvfZc/vqlUfouhKLvnzm/HKhpGzJMlTKySJZONLDt3OJiXldEQ4LhhtO7iPM8dycawCgzdcR9TqGNVcaMbNlZ4QNrdFKsh4aN967M/KVvnb7sf5047f8IZNL+LerQthRwbtgTirzKVzdnLf9vkgoLJY4++WyPAgz+veIo1zXWapAoVrdhH/vMTIWZJrX/QjfrhrBZFW/FG+POU+b991Ib/fcQ9XZCSDiUunqrI7zluvaQfiplbij9rAeiPhns9bu5tffsX+u/ri9xD05Wj0udT7BIlv7W4e+NjBWUjuC6MEIjmJplhE6id8sJwq9SxKIT2PtXPfyLqdnzrep3TacN8L/oHzru/mBX92J12/dcjt0gQdkignGF3h4I0W8cpFwhIUtms6f53BDI+Q6w9wGi5jix2qS5Kmfe6Br1sX/cUtlObkyewoIyoN8F0SD4LFIdnHPB7/0787qPNf2/d6TBxPFZy1nRQPuqBjk8Yf18QZh998yp7f2nPeSTyrxKorPoDQhkZfBu0KhAYZaO74n8OztElJSTk+HGux5ycNxQ2P/gGZAQHGIHeXkRkfnfHQJY/qHEXQBUGfJl9qEOjpt+C65d6blMudAsudkM3xMMsW7JzxOY3oGl0yB8A/zrubZ1/6Ooq/2ML48jz3veQTFGQGyOz/IHtwphtwcf4J6onLb4N5qLJCZzSbrp1wyTjnnbdQn6cRRY2XD8lmQi7473dz3wv+4aAe65QiLWlTUk4bTkqB5a/+6q+4//77+dnPfrbXz8Qei3JjzF7fm8zf/d3fcf0kX9/x8XEWLlx45E72GHBr499Y2/d6SDTG2zvgLOXgWaVespdP+L5Y0TfIpv9ehs6OIkeqJL0lxlbkMCJH4gm8iqawLcAZrSPqBduhXQ9xB3aTzS+lMs+lMoM/Od2/gg2vfS1nfTJExBqEQYQJpWyDOapwUM9v7ey/ZN2uz+y1eXHrr997wPv+8PZ3sHbBX5Pd0cnu8zvRDoRDWUQhYum/3oS7JcOjNxyZTcGUQ+dE9UI+3VmlXoKQgtuifwds8PDp+LsyEnRGoVzXitCJASHtJItS4DjguxjPQTsCfxQcaUWo+aqINoKedRmcumH0DEEcOuyqF4gGsuR3SoKn1HnkTdPbIu6Phz5wHW/+za+gYyf/ds6XedFT307flTt4V+8jvKv3kfbtNsYVVt3+Foo9VZZ1D/NQZj5XZHbSKSMapkZRNRip50gyBqEFKrQhqVoJfv7/9s4pMMpOrtT6BEnWht4/eNORuY5efdVNCKzIcrLQsqE8kTmYOuFYcKrUs2s6Xm2/UGr/N06ZMQcTSP2d715BFnDrGqNAxjC2UhDMTsjNqiIE7NpUYmz5XIpb5qACQ8dvBxlfNBuyCckZIVf/6Hp+8Nyb9/kYun8FY1e9ko4vOohaYJuQpCDOCpQfE3TPfC3TaixbN/jZvX62/v79dw2ve+hGrnna+0lyDvXZPo0uSfHJiLBDEcx2ufxlH6fzwbF2bkvK8eF0rJFOFlq/m5Mhi+VokhjJouIov8nNxtTqdj89TmyTkCcRBsIug+6MMQZ+NzoX5kw9xod3n8GLSvfRNUljed22Z/CHPb/m+Ut/x7KDPKeeedum5LE85Z2/5edfvYjg2eWmuHLw9Mg8l/o7+KU8g2AkQ88jgnv/71QHFa8MNdfgFwM8J6HghzMKsZ8prcmVk6lp6PY7958Debw50erZlIMjMSfG9MjJ8z/y6HJi/DYOgje96U3853/+Jz/60Y9YsGBB+/tz5th3qdYkS4uBgYG9plom4/s+pVJpysfJiEkS1m36GOsf/ODxPpWTnmvclyLkzDeivvesT/Lgh65j91M7GH7WPMpn5FGBofOxOv64ptElGVmRpbyik2huB2R8GCujqzUSXxBdWoGzK3xz48V8e+OFU479T49cxQ83r2wXSF+85gsYx8E0O1wqS/MoefD5De2JlT1Y8ul956mc885buOgvbmHNeTeA5yGCiI7Haiz+nzJo8DZlKPwmgzcKl7zGLqz3ZSW2ds4bDvqcUw6O02VU/6TD2Byja7xr29+6XX/TTrKcRmhPYhzZFFcS0M0pHiEmpheEwCiBCjX5/pg7Nyxv3393I4d2QSaG7BCIrVm2bpxFZkDSsVHvM3NqJtQTOyW4xCkyutLwX2fvvej4o4+/jbNvGqbrnwts/O5ybnnw6vZ9LvcdXlYc4GVLfsXFz3yURl+CWzFoR1Dvm77sqi3IUZkvCbuwm5rRIZ/+FHT/Cm7/2pf488/9B2v+8Y4jc9BjxNolJ7ZQf6ItRk+ZejaMWDf4WdZt+z/H+1ROCVapl1jxegY8cPN1bHj3dZS2xsS+YNflgp1XCPJPCpZ9PcH9UQfV0SyXXv4otTNDooKg+EQFRq1t8++fdx+/d9b9aCN45a/+nLf/dupG62Uvv5lzbrB14R+cdT/uSABBCI4i6SvhlQ1mR5bM8Mxr8P1N7T/v2dOviS5+3S1cfdVNrL70fRhHIrTBqWu6H65jlKDeLVGBofRYFVFttGvW6WwWJ7+Xpxwd0nr2xGeyqHI6/r4WOWPMyYyR2Q1Ga1u/dhaIOzM0uhRBByQZDRhquwps2tXLnXvkVrki4Z8Gr+Rv+i/iHbvO56J7XsId3z+f5y/93RE5x0/P/yWfue6TPPSMf93rZy98dA1n/ezlXLfzYgKz/wJ0kVOkoBogDU6w95aqUzMYR6OkJooVlcA7IucPtqb9/le/yJ9+6r/o/sDWI3bcY8HzrrzxeJ/CPjnR6tmUlJOZk2aCxRjDm970Jr7zne/w4x//mKVLl075+dKlS5kzZw633347F15oN6nDMOSOO+7gwx8+cqr5icr63Z8/3qdw0rGvjr5WZ/nBMvjciL4fuZQ2jCPCmHBOkdEzJdkB0B6EBYFTdXA8124oGkN+4yhC+qzoG+QTm57HGR1D/Kr6Iqqxz7zMCJdkd7LEGQeKADwnY3jk33/Cx9a9kPyTgre//uu8rLh72kC7g2X5zTcj54Ys+fKHwYBXDHn0j97NmvNuYP0DH7QBzC40FnSQ2T6O8V3iootTjphzl8RIQ+nxGrV5GYIOyaorPoC7LMeFb7iFxIckA4u+9NiUx1w7/02s2/7Jwz73lJSTCSHF9BteQh6XwPvjsRiu9Sq0AneXawWVltCSKBAJBAEoCTkPERu80ZDuO3OcMfx6fv+5v2K0miVZJogGFEZAZhC8JxxUYKadEDkYPnfJl9uitqrvvdH3ydFFzP+fXaA1+QcHyD8keKx3Ljxj4jY/b8DPdp9JqBW5eRWCxzso7NQEjmDJZz/G5tdP7firzlXEOcCAU4UHPn744sLXHr+MlzaHGxc6wzze2HezyQlJtX68zyDlOHBr/avH+xROOvY3oXIoGyc/+e7bOP/Nt5DfCiqA3IAGCeNnakTZ4bGRXkwkye1KkJt3YsKQ3vvt/9c3997BX4y9hDt/9BTk8grf2/Q+5C9K5AYMA8+JWbxkEICrSg/y7ZddRt89BURi2PV0kL0N/AezPPSBw7/+rfyHW4h/L8slf34zbt0wskLyyHvtcRvdMLIyQ2G7g1uO0a5ExAYRa3Kbx4AO8o+PwPBIW/Bf0/1akqefyXPWfoQkI8nd/sCErSWwOvtyMJpbG/922OeeknLSsWdNe5zqWTg+Ne2ZboHnd/6W9V1PA2MwUYRoRPbakhiSjCA7t4qUhnB7B0kjy7s3/m9iI/nJU/4DgOcXfsfrd1zLli19ZLe4ZAfhsU8f3rVQznl0yhTL5f70W3+bbl+KX4VbH3gaK6/t5/Ud2/d73Nd33c0dS87gicZclv2fj7Ppryfq7vxAQv0xl3qlhHYMj7zx8GryFpOfx1eevJy5+ZMnZy4lJeX04aQRWN74xjfyta99je9+97sUi8X2pEpHRwfZbBYhBG95y1u48cYbOfPMMznzzDO58cYbyeVyXHtt2l2UsjdHugDb/Iq/hVfYz9cuegvxsk7qC2IuecEG7v/auRS3hcRZRdKZxal3IKpVCGIEPi+acw/v+cXvUfIbjIZZHu6fjZCGJxb1sTQ3SH/QwS1z7wHg9R3bef1LP8vtdYdV2YNIpzsAG6+/nmWfuJncgED7UF9oF5XrH7AdgA9+aO8ib+0576SxsINf/Ov1e/0MrHUD1RqUCvQ/t491/Z9m7Zw3sK7/0/YGORtOsKb7talImHLaYJIE4U21vzleVmHHq9Pwns9fxznvugV/pIi3rekpLSUmjq21gjKQaEgMQhtUNaRjs0NY8vj2vRfh77QTP+WlhuJGQXbU4JU1d37rrft8zIOhtSiVMbhi6u/qTZ1b+dwfvIBF39gOSjLytNkY1/D7j63muoW38Z3dl/C9X19A130OUQFq5wWIpRqvIvHHDLltipX/cAsb3j1xTW1lAhwtflQ5h/7w5JxoSElJ2T9H4zr+23+cuCY9/dqPU+91yS4o84/nf52//Mbr8BMYWQHZgYU4m3fhDFXpb3SwyCnyrsX/xfW1P2ZJxwgPDsym0WeoLtZcsHIrL5z1WwDWZEMef8ln+cX/jnnzQy/lLUt/xa/HlvDLTecekfPf8O7ruOLFH6f04DA666IaxfbPpqtn15z/bqKuLLfvx1Zs7aK3AFA/Zy63Vr7M6szLuC38GgAin8U0bJjz6szLUqEl5fRhuoah00hcAVszrupfAeeWEU17SzMwhNeRI8nkcSuSymgWOerghSAjwa7xItcseYRHoiqPhLPYEJzB1g2z6XxU4Y0b7v7i9GvrQzm3yeLEdKz5o19yx2cuw1s1NK24Mqyr3BeUuDprrXpnqQIvX/BLPjq2inBTkWf+0cf42f9n6+87vve2I3Le+2N3LUfePciQxeONSQ2UUo48BtBpyM8JxUkjsHzmM9bS6DnPec6U73/pS1/iz/7szwB4+9vfTr1e5w1veAMjIyNcdtll3HbbbRSLRVJSjiUt//gln/8oP71/JbkibPpjBb7GxB7ZJ+cz+9cxmR0V1C+LvPwZQ9x33n18fM69AHyydxEPV+fylPx2cjJkOCryjl3nc33vncxq5q1MFleuedr7ue1Xfz/tuaxdch3rNk9v1bUnm95y8MXcj279233+bDrrhra4AlCuACAK+YN+3FOd1YVXgjHcWv3K8T6VlCOM0QaRJKzOv2LK7/d0866uz9Y0elw8KW0YseNg4tiKLMpaCogkQY0HCK0RscEfg8agi/YM2jdox+A0FP64bi/ujjQ3Dl3AAm83r+2YCBd9zSvXcds3noouZRl4mqC4fIRd1SI3bX4+m369kK5NgvyuhLAmMb/zqc811OZAdpcgOwC1ObDkKx9i8yvecVTOGaBHlQH4Xi3Hbf1nkXUizvvP9/DA750kQegHYdWZkpJy9Pj512wH8lnvvYU3xtfynWs/zgrH45Eo4gO/97946Hsr6P1dzPZv9sLbf8gVGckvL/yWvfMyeMPCy5DC8Cfdv6BH1dkaaxY5dm12ue/wzfO+xIaoi4tmb+anC85g7Yq/Zd2j07sPrJ37xr3yA/fFnd88iM7pWPODH+/fWnLPbKg9RRSZtU1Dwvdn/rinCdd417bFqJRTk8k5DqdbPdviGQufoL+jRLKgF/nIFuS2AXJhN0Z1gnHxR0GFhqggGJmT49GeWXzHu5Bep0wlztD5kKK0NeYn/3n0RYrJfHzOvZzXeRkvmDfVEePuIOKbo0/DFxFPK2wCau2f/VlpgF8s3MT3Gysx4sjZgB2IH9QVGTemGnms/Pb72fCH0+9/nHDsJxM6JSXl1OGkEVjMDFRfIQTvfe97ee9733v0T2gGrOl6Dcl4OfU1PI3Z/FpbIF39o+t579L/pEfVOcu1YsKLVz2PLf98BvN+VuX8+C+pXNSgHGf46f+cTzAroWfxCPeKhTx/wYPMcsdZ138OV248j6wfcc2CR7i69CA5EZKR8RRxZdUzPsDtd02Eqc1UXDkU1j10eH6i6/o/zZoL/p71Wz/B2kVvOSmCjY8VJghASFZnX962TDmYoNqUExuTJIhm19817ksP2ZrwUDhR/obkrAa12Tk6OkuY3aM2g0VJ+7oI0e6AlM0QZCfr4lVcsrskwgichiDKwT2fO3rTH2Gn5qt3XYGIBA9d8ev2JOGbuzbzf1++luwgGKkZ29qBP6yIt0HRhTgLYVEyeqYgyRjcskA1wDjgVAxGCPr6xrl03Tu5e+2+r6NrF70FwnCqMD1DflQ+h5Xunbz5p3+OGnJRi6s8+qJ3H+pLcexxT69cohOd1dmXo8MwrWlPY1oWW7c/8TXOdRPO8xy+vuwH8OYfcMm9f0zn5zq45L1/yci5Gn9IUnr6IPpbvdRmCfQlZa4sbeCKjOTfK13cMPxUZvll/nfnvZzpCkLj4IrEis6vmHjMlk1ti5mKKwfL4WZYrh/6HABr+17P+rEvTqndUmzNM7nWSevZUwchBUZP7NMc68DsE+nv6Po5t/PWkatRjoKOIlTriPEq/u4cuUEbLN+xsQ7aIKM8GxqL2L60A9dJ2L27wBP/dPyy515w7V0A/Ec1T2Qc/mXHM9hZLpH3Qp7Wt4XzvF20LMtbvLD7NzzUN5snn9/L1VfdxA9++Hf7fYzVF76HpOTz/TsOPSfxdXe9AjHo4yw4uWpak+orKSmnBSeNwHIysn7kC8f7FFJOEH7w3JsBG/we7FyGKxy+uez7/NUbx/nBf19Mx0ZDbr3P7/7nPLqEob8Xhrd1ktvs8NXuK+k4ezeVmk+0M4faJflWz9P5z8XnceG8bTyluINLmfAmvfXbAO/a16mccKy/7/2sOfcGhJpZCOvpQmsRujrzskO6/zXetVPH9vc3rn8cvZJPO4RESGEtBJRkdf4VxyTg/kRagLZ46oId/Hb5cnoX9uAKCfU6xIkVn6SARCNiDdUaptFAGUMpMWhVBAFd9wyji0evU/jy+16EcQwyELhjkq21bl7w6Fr+e8U6AB76y89w1p0vR20sUNgKs385jhypUFvZx+hyFwzEOYPuDck85FPcpjECjBT4IzC4uZvi/DIX/Pe7ue8F/7DvE8nlDun8v/3o+fyHfCrOgItTFYQ7Du04xw1HsfaMt7Hu8Y8e7zNJIc1GSZlg1dKHAXjV3a9iaXaY8STLt5/6zzz3xX+N/5jDsm+HxDlF9EgP26+JWbBomDn5Mr+rL+A/hy/gzPwAv96+kHhzgW93XsS8Bbt51uyNnJWdmBJc/rGbEYkgeV338Xqah8S6wc+ypvd1x/s0TjhuT77ONe5LD+m+17gvnXk9m3JsEbJZ12qMNqxSL7H121HkRKxnW5zr5qhecx7Fe7fbxiGtkUriDpQpeJJGlwva4GwbokdrtFtkVHSAgM6HJBzaku+I8KHZv+VZD/wB33roQvSoR+kxRXmZJrtikHKcYVj7LJl0+0eiKg1TZHlpmL6VVR567hk8Z82H+fH6fTtbyGoDnTv4NU9rj+PfK12w28MbE4Ty5KppjStZ9cwPcvvPbjjep5JyKmEEiUn30E4kUoElJeUY48/dBMCmbXP5n/vPw1OAge5f9LPusY8A8I77X8TF+Sf4+OPXEH+jD/FgN+ElGlyDiCG/XVAPi/w6WYReIHngyQXMUYavj6/kVR0byfavYFhX+WZ5BfeWF9PtVvnI+SduQSq0xhRPrkLpWHGoPt5CKYRSdirAaBBue9FjtGl+b/KCdeqCaHI3WvMbkw4up3aspYvdg6f12guBSeKjOsVyoi5GXz33p3zlaZoNW1Ywf1cZJmWamzCyjrJhCMa0p1pkpYF2iwyfB7/8yuF1HB+IXdu6EECS01MCPHX/uvbnly7Yyq8eO4ewBNWFedzuDMYR5Ps1CPDGJJHxkBGEeYlbNzh1jZNR5DcryqaIP6fGM7//dn72vI9Mefw1593A+sOY6jt7zi42fnc50VxD2GmmPIeTgaM5fZmSknL4fOnSLwGw9N9u4vu/uBy52BD0aLQryfRXueMea0c42f//grtfylApj9HCiteDLjt0Dz9IFHf7i/jI/7uFoFvjLK5T/GGe8WWC/u3zeDLx+Mi2tTw20rt/QfoEQCgF2czxPo0TjkOtcWw9a+tSkyT29W3VUMZu7O9vU39KPTtdvZqKN4eFUAqRL5CMjAHTrB+OICdqPTuZsWWK4v0ORmu7DgsjRL2BvzHC7SkS512IItRwhb57IM4UGT875jefPnY1mpwzYQU2+fqccSKSqovTHVC+WKIbip27OgkTxb3FxVzsTYjgix2H/qTCgswIFdfn8fNHkT/OsvrS93Hr3e+Z8ngtu/J9WT/OlHXD52FKMWHinnQ17Q9vP3qWwCkpKScOqcCSknKcWLZgJ5v/bPqffeip30L3r2DRWf/OSy/4K878Wo3Cdo+g08GtxSSewKkrRkoZfhUs5oWP/xUvPf/XxEbxX9UyLy6M8UBY4BvbLma0kaWUaRzT53awrHv4JlZfepLkAhxj1nS8GoxBN4IZLyzWznkDwnPtxrTbLPKlBM+dyLmo1hGufQswWttAcfuF/VfsuUBS7YWs9Lzm7ZLmXeTU+x6I6QIxW5yqi1sh28GXQimbL2EMCGF/R6ENazzSvtUn8mL0hcvu5wW5FXzvTT/n5kevJXevzQxBCkw9sIHBUiALechnSWZ3Yhx1xII/D8SW1xzYA/vpHRv5lTmHfL8hyQiqcz2yQ9p6bOcECNCeIegS1GdZizBvVKHqYBR4uxVRp0Pf7CqvuvtV7Q1LYIotzqHwF/N/zFs6lmMcg3YNSz/5cZ5408mzIN1fDkNKSsqJwxMv+7upnddvmvrzySHL9176NVb+6xtw6gK3AmEnCC+hO1ujFnmEK+p0d1Z54cLfsWHhbBbndjNLFfjcyFncu3UhSUMds+d1qKzb9RnWLnzz8T6NE47WRLaO4oOqTUQ2a+1Do9ja5ypla6eMj1AKXa3Zerf5fZMktqZtiy+T68pmAHlTBGhNFLfEm8nCzUFzukyDtyaxPQ+RzSAyGUx3CRXFJJVq+2Z71bOt5qwkOaSHPZHrWZi4zlUuaMB/N9dXSQJBgAkChOchazW8UhHiBGp1VL3BAx8/+hkikwWV/bH5NwtYeKdm4OIcZz3zCX732ALEmEvUqRiKi8CEwJIVPs/JGJ6T+R0/bW4zfPcPL2HZf7CXyHKkGmbmZ0dBGnRGn3Q17aorPsDtd548DiMpJw8JJ8YEiyH1wYNUYElJOWGRcx7lMsC4H+PRP82BNHQ8Iul4QuOWE2oXKDoWjhGELt7Pinx76xXMf/o23tz7E+4LXX5dO5cdIx2ENZdGwd0rmwX29rY+rmjN6ovfw633pELLZNaPffHg71QqYub2IYPILjIdhcm66IxLnHMQicHfMmxvqw3CUXazvxGA1u0PE0b2c2nfuE0UWXEFMPUGorXP0RJjJk3B7DXdMo2oIpTaazHaFmsmvnHwz39/NBd4E4ffz6TO4TyGUhML0FbgraNsroTWmEZzNdJakBrdXohOWZROnhY6wLmd6IvP6ZBzHuWF/SuY95lP83d/+lrcDdugEdsMltY+RxRjFpQYvKhI0HX0z2lN92tZv/vzM7rtx366lkwI40sFQbfh7PM2Myc7zr27FhDf2c1z/te99LhVzsru4E+KQ8jmk/pquZf33Pn7dN7jMTLH5ZLOLazI7DzAox3k88iGfPBP/pW//e9rQQu8Uck5N9yCkfDwP1zHVas+dMJ21K1d+Y5UXElJOYVobfDd/sQ5PPann2V93eNTT17FQLXALy/8Vvt2Xxyfzec2PYt/+emzmLV0Nzct+B7r6z38Zmwhcc1BVRRrz/471j1805Tjn3CZJ77H2mVvZd2mjx3vMzlhONSJ7OBpZ+LvqiJGywhtMMU8SWeW6oIs9V5JdlCT629gpEDVYoynMBJkI0FECXJkHKp1TBzbmrbZ7EKSgOtAFEMc26ajZq1lJv/b4gDTL7a2VPue4DgK9ezE47Ye4sC14sE+hpAChER1dUBHCZRE5zwas/PUZjsYBbnBBLGwRO7hAeLNW6atZ4UU1hJXyInp+n1wMtazYK9zG5+3gmXjr+Psjwbo/kGgWcdGMVRriHKl2TiUO+rB5wdT5715x6V0PwBxRhAuDPjGmd8lu8LnP6p53vqrF5OT4T7v+6wM3JsZ5n9+72b+ZPGr6fqnwpF6CsCEeHXjrPv5hnMROpla0869K+CHPzgx61lIxZWUlNOJVGBJSTnB2fz6twKw7BM3ExVgZIVDba4hKcWEYzlMxcV0QZw3XDnrcYrCoSwSHqzMI5cNiQKHKHS4/a69A+VOGHEF2pv4KYfPukc/zJUv+Agq1MhQY6RAe5I4K9GOQCbg9JVsvoUxGCntItR1rNCSaIgThNcUWJqIpCmuxDEo2RZUhKK5KBWTugJb95u62GwvBNtCh5piWdYWbcwe99/Doqwl9Ojm5McBbR9ajz1psQjYBXbzvodsazBZtGkteF0H4TiIXBYyPjQCTBQhfA8yWYSxj2WaXZaTmdzx1z5XE+3z4U/WhWgLOedRLu5fwZPPy7FsA6AUMpuxmyBhBBmfqOgTdEKj7+hZT0Bz+kvNvENajSucClQX2d/h47v6iPskHdkGAx58ev4vJ9164u9xdW4z75GG4raERo9DQ7sscYeP1NNoU5J1xKwAU3WIigKnJhAxnPt3t8DFRy+/5nBZt+FDx/sUUlJSjgKrlz6E7l/BBd5uvnXm9/DFVD/+V5d2seys/49XD76KWEu+MX4BDe2ijaCjr8K4KOwlrsAJmBEkBKi0m/NIsPssj8wsl9yuPE4tJuxwifKKsChQgSEqCMaWZzESnIZBaJAxyEijHYFXzuGUI5zRms15y3qEvXm8gTIisKKLCCNMrWbrXyEQSdKeHm9PXOxn+npyXSmknlILmihu1nnT1LPN406paWdaz076mVDKPlaS2McDTLzvuvGATKqVrQVYlvDshQTdHm41QQYJMjYkvqDRDUIrZAyZ7gJsnjjMnhMsKGkntk9BcWUy33vhJ7j+X1+P7B8Ex0FKOeEmIAQ4jm1+O4rXiKtWHVwd9cMnz6R3V8zoGS65YoNvVebz8uIQ/ztf5W3S8PkNz+DNl2/e5/2/u+Op3FtYhKcObUJpprh+TOC5xPmJmnbXpSduPbvqmR9MxZWUlNOIVGBJSTlJ2PSWCVucq390PVuHusnnAhpZF7mlCAj+9aFL+ftnP0zNVFiU3c1Gv4eyymL22JNcc+4NrH/wBBJXmrTGidc89V2IetjOpEk5eHa+KiAY8/H7fZw6uE33pTgLMoSwkLdZEDWNMCBjjQw8RGKQYYIIIkTgWIGlJQLE0towGIMo5O0BE40xzdtoDXFsxRYmTacI057CENIuLNqLDLADpcZYq7Lm55O7CK1Yo9r3F46L7CiC5yGjCNMIMPX6VNuBPYUUsLZcrcecLOgZAUohtNn34vYATPEEl2JCXPE9K7AYg8hmMYUMojFpMkjv/7H2trewnAoL0D151vN/y/av9CG0gYyH8RxELUB35Gj0+UQl0Lmju3DDdUHZ13tfkyyT7W6uvvK3/OrLF1DYLNEe1OMcjw1kUXWB6TS8fdeFvLX3p8xSE918r9/2dG578By6fuXhjTaQoeKZhQ1c3NxgOZIUZYPVKx7i/t3zGBgrElUKZIbtn7w58Z12UlJSTkHknEeZ1/x8sv9/i1/WltPTW6Z8by8P9Mzn6Z0bWZIfZriRo5qbupG2duGbWffkPx6Dsz5IpGwLxWsXvQWMOTHP8yRg2R8/ztbxTrY80oNb9nDqgIYkY4WUOIctJDVWHNHg1MCpSxIXnIYiO+SQzTuoemIbjvIK0ZNHRk1BJU5Q4znb1KENRBFEEUJrRDJhkYvRE/mGLRHFc21N2bIucx1b3/keaIOpVK21mRAIY+w0Q7NebVmUyUIefA8Zx5h6A11v2LyZvZqSaH/NpK+F79vHjWJr21UsEG/dfshWZ60cR5REeB7Mn02j16PRpYjyksxuwcgKl+p8Q2ZI4DSaC839TGSYJEHEYtpzOtVq2nPdHEMX5JnzRMnagRULiDC0f1dNy2bjqqM+wdJif5MsrZr2Q+d9m/8z/hJ674/ZeE6BR5fNgeIQAF+7/Au89v6X81c7nsY/zfvVtMd5Ysss9GLB4EAHfv7oFJiBibh6yaP8tjifwbECYVggOwA6rWdTTlMMoE3azHEikQosKSknIT947s1Tvl75u1twx8H5TZ4PP+UMrso/TGQUUhik0v8/e28eJ1dVp/+/zzl3qb33JftGwhLCDsqiIBCSuH7VcXR03NdxmREERVFElEUF4oyOOuroqKOjvxmdUWdMIIgiiCiL7IQAIWTtJN3ppfa7nPP741RVdyedkIQOSaCe16te3X3r1q1zq29VPec8n8/zEJZHKwSXHf1JVk5Q/fdssLT9vQjPZUXf1/f7GHKw0Ph95QNfmIxhvaBx04vt/+KOykyeDjq4ZduRDFeSOEYwsC1H8LSHN6RIDEmEBhUYnLKDjAyqEuMUJMJzIDZ2ghlEdpJgjLW6krUckThGRLEVVqJ4tBNJjWaONCaS2lihwXPtfvWbMfY4WtvJaF2wiWOk72OMtpZkteOYWmUh6SSELiKKMUqNOn86zmgXgusgGnYEZlTYUNLaoynVEDlMFI2+gLvz4d5TfkxNwBFKIZIJ2/7vueiUh25Lo/JlRKGCGRyyr08yOWpVsTsYjalpCs9mArpYvqHhD36oTmS/Nf0OFr3+75h+0xBIiDM+5HyqHT6D8yVBZ8SsOdsO7CBcGz4K7NYmbOyC4D9O+z2ncwL+sGFktoDuCt1tBYpVj3LJ4+aNC8ioCpd3Ptp4zO/WHYHT54GB0hSP0oyYY7xBIDv5pyM0Z+UeJ9IKYwR98yVROYUMrLPfCR9ZjtDwl3++cNKfu4kmmmjimbBzNsA1j7yc3/fPZ2B9Gy3b4cH+KcxM7iA0iqQTkkiMVuUvm3PRAREtliTeAkI+u66YUrnx64r1X3n2g3oB42fzVgFwzcwFdDp51lc7WF9upxK79FdSSGEYqiQJI0WsJWGkKAz7qBEHGYKbFxghiRIeKhhbceZaYcaAU44xjkJEMSLSyFIAhRIyWeOAUjT4qVAKE0ajeXqpJHgecXuaOOGgPQkGtCNQocbJB8hiFZPwkENFGBrBVGudMXHcyH8Rnmf5dRCOz+xT9W4Yt8FdG4hjWyDke+B7iLQC18H4lgebaC8Elt3xWiWRySS05ihNy1JpU5S7oDzFFlHJwJDaLOi+t0KUcSj2KMJWH6cuQO0Mo0e7ztl/TrtzTuGhymnf/fe/4n/vOAuxdcBeJ8mEnYckE5hMEuNIjPPcuDfsySaszmlfkapwQ8rB31bEuA6f736osc+pvsvfzLub/3jyFH6YXctba8JLHU9GBVJtZbQRuFs8yh0H5jx84fLKtvvIORXulLPZPB/CUgandOjy2VW3X3awh9BEE008h2gKLE008TyAcaA4S2OU4ds3nc9/zDsFgJGhFKaqELEYzTfZXxuknbA09047wUj4tgLHGBvqWVssX7Hln/f6WEtO/Ky1p2pi0jDTsYu1MzODwCCfaH+ClWWPb28+m8HBNGGrtTDQnsApgVcArQRCG1xHgAZVrYkQkUYKURNEADz7P48NIoxsq3tsF6ZFpGzVnufVslwMwuhGOzw16wI8104sYoMoV0eFjFhboaUWAI/nNYQTU6lagcaxIZmiXGmcr6g/n5R2ounUridpq/xEFNvjhWHjeiXWjQpAU6tatJ02YyY8O9sy1LJVGtWDtYmx0QYhDCibu0IygUn56LRPmPMIcg6ZtSGs32LHrvaunf3ZThzHTUQPYXGljne+YyU33v4SnB1FZDkk7EzTf6yiclSFI6ZupzNROrAD8F1wHZZ2vo+V/d965t2Fy9BJIenVLms+PTqpe+dd72RzqYVIS27bPo8PB1m+NvXPhCbib4+6i1nH9/O99Wewfls7F8x/jLyWrNZFjpnk03k86KGiXXwZkfMrbJNZqu0GpyTwB0GGICPDye9bzj3fOrQmpU000cQLD5885td872efxxlSFKeAvK+dnxZPIpOuUij6RFVn0vOjlqTfZheqdxJVliTf2vh9X8SWZUdc8pxVpr+Q8MmOuhhn88o0mv7YcoIHgxbuLs/hqVIX26sZ1vrtlLI+YcFDxC7agWq7wB8SqIr93ovrWS0xuAWBSipURSNig+MqpFsrlgF7fVCz/HIVxAajBDrlEScc4oQiyDlUW6TNiVECI0FVDSpwETpNlBD4w2myqx3EwKA9pjaN4iGqtRxEY2w3Sl3gUNLyVSVrfDse7YCuc2XXtYVProPOJRHhBLZmO1ntAqh0yp6jELYjPY7RtaB6oRS0t1Ke00Z+lkthOpgFRRbPeRxfRvzvH06i5+4KqlAlSqYxQiAis1u73Unls5N0zAOJD7Zu5PsntdL5f9sxQ8OIRAKSCXQ2hU579v88SXPyPWFfPi+f+hvB1JUtPP3ujwEfB0YFmE+0P8En2p+gakJgvLXjPCfDilO/yRSV5HXeK8nfMWMyT2FcYdNJ3g7+gKYrWaRvOEe1w+AWRJPPNtFEE4cEmiuaTTTxPMCaT13I2//8bh4a6KV8Wyfuw21UOiAlrfjy6JUXwvvtvs/W2/6ozy2n6y8RmelTEAOD6EIR2d6G6WihMDdH7Av++B8fs2JLFFn7piDgxuIPACvMxIXCOFIsK8GEntpN7D/G2hjVsTlso8svcOT0rTy5bjYA2gNKIDSNiaZWECckRglkqJGAMbZDxAgB9YorrcGtdWAYgwg9CCNMwrX2TnGtMyWI0dkEUc63lYIjFeK0R5R2EbHBrVX3ibGVdrEefY5KFahV72HtGBDCbs+kob3Vtt7XBRPPsxPRaq3StVY5Zlxl/baNgSCAcsUKjvXOE9exYkwcN6rvds6PkfXJNtjukziGekFevWtH1gQcY9CeIkwr3HxElPVxXccKRrG2Y6jbTExCKOlEVX2H6uRzadt7WDn4ncbf9ev1oran+NfzljLrfyqIHSO4QNCa5LS5T/Mfc27Zpdp5MrHsmE/Z60Hr3YorS9vfy68fGb/t8jN/ybveefu4bUkVcmLbRv4yOJ3VT07lSaeHtwQpPtD7O/6+/S/kZJIlR/2YO2b38ES1l1/kj2cwTPOlSZyTjugybz5iDbetO4JELmRqYpBK5PBU2UVt8NCOnYyKGGyTeRN1LOv6ACu2f3PX7b0ftFY/W79xEEbVRBMvDKx5/WeY9d0vIQSIgsJ9PE0+mcIpCqSAW1bZxbMVT93wDEfaM5aecDkiiCyHLRRtEQcgUin7XV7rtl2x4R+t2GLsAvRN4U8AuMB7MyYKd/2eLRSfVUd3E+MxEZ8FkMiG/eZ8d4i0XE2Xk+fPI3MpZV2qyTJbnSzlikREwtpTCYFTBKdsBRCtIDFkiJKSOAEiLZERhDkHWfXxB2vcNNIgwXgOle4EYVoSpgQyAgxESUGYhqAFjBKI2NqXgUAG9m+nDG5JEHRncB2JKAe28AhGC38AUeOHQttuB8B2RNU7yOudLrUiJmCUQyoJkUZUQ2QygS5XRu3Nxogt0nWQLTlob22IgaZmYSb7sNy9vZWwJ0ulwyHIQjA94PQZ69layTIzNYg7pUTQmsAVtgMoMaRQ5RCkaHRe7y8OJz4L40WMcTayH72Dex47AXn/4wCIdArjKqK0Q5yQ/P4Xlxyw8dSxJ3Hl3MXXcvMY7Xjtsu8g37lnnv1AAG+9+62sPnO86Fwv7Ft912zmDFcmeuh+4/y3voubf/hdOwfYNJXTMmtpccqUIpdHSi56U6LJZ/eAZb0fnPA7adnci1mx9rqDMKImJhMxz00nXBN7h6bA0kQTzxN8/7R/ZcHPPk/yjB0MbGwhvU6R2mYI08++iu5Fb72Boz7yMN+beRt//6ZpLPdfTY9sJ9mXwlm/DVyXsC0JAoKM5NhLlvPQbmwbVo58jwvcN40TWuriyq/WHsc//79XNy3CDhDWlHt5fcddrM5M5YdrZ6FdQeyCWzI2hiQ0yBCMFDWLA00jmFsKK6YI7GRMG4QW6IREe3aCKKsxsmr9hbVrhQbt2OtP+6P7VKZmiD1BNSeJPYGMXdKbffz+iu1eAdvZEkWISr2ar5aNIaUVVaIIYo1uSaF9F1kOrbd1PVhWCEStyhBHov26OGNtz2StWo8wrOWjJGz3SxhiqoEVP7QZrVqUNqelYelVE1Aar03NGowx2TIIQZh2iJICL29QpajxWBOGCMcZtVTbDRbLN0w4qZyoku9ww+5Elgc/+M8cF3+IWd8dhCAk96Qge/bkTtYmwopHrq7lU+1ehF6549u7LPS8I7erbdnXT/p3Tvr1pxnY3ILf5xDMCHhquIOvxItZ3PkI56UeY76b4YlqL9+8aTFyaokZnYPPOMalx3+Glfd//hn3W3bkpcBbgEu55EbFDGcAV0TcLI7Cz1SJEi66KIgSAqfcnIzuArmb700hWNH3dZZN+8i4BbEVm776HA6uiSae/3j6XR9n1ne+TNcRAxQqPvrxHMltED/LLONl8z/O5mVTGD42InduG72351GVAJFOAbC05V2jNqL1x8y+cMIOlpuCH7NYvXEXoaW+kHXlQ6/mjr89gZX3XfnsBt3EHhGaiG/uOJOsqpBRFaTQdCcKjIQJwoxiUyqBjgUikIRaoh1BmLE2mWgQRuAWqHFIafPJDLhliapqK3gIgXYlpR6XcqdAO6B9iD1Qgc01q3YY1LQSPW0jbBloId7hgxaoqsDNC1QVtCsI2jyMK5GBJkpaTqmq2uYAOhKnFCIqESiBkRKhNVJJ2wEuBMZ1QDJalFTnqnFsu8CDyBY59XajRvKYYqmR+1LPQZQtOWjJolOePY7WtS7vGJHL2G6WTJI44YAQxD50dQ9zYm4Dfxycy21b5hJsTRH54AcaGUTIFgftOyjPw5TLu/yfdsdn6/cd7phIZLm6+wEW/L8zmHd/bafYzpNiP0mQPXDBIbesunSvOlduWXUpuu+7e9xnZ4HzybCbYCDB659c3LDvq+PUz/wdcx4roUrhzoeZEOedew2/ueWTe9ynLhad/9Z3Addy8w8zzHX7ycoytzKfRDpAu4kmn90TdtNRuWLtdSybc9Goq4MxrNj4T437ly34BCvWfPG5GmUTTTwv0BRYmmjieYQ1r/8Ms//5erzeEuUgRXK7wCnDoouW8+AN+94uu+TUzxGlXYJjkvxxw2yYeRuvyqzmBvFq0k/nLYlvyYIjcQq2jD/2BFFasmz+xxk8rYehBRIj4LHLL2TZEZew4okvIxwX0ZJjx5uO49QVn+L9827jXbmtHOUVmuLKJGJnUnxtj2X47eoJvpsSqAC0C4VpAi8P2Q0GFWi0Y4UREdtg+jih0K5Ehhojhe1siTSqRmRNzVJMexLt2dUPo2wHTJhRVNpsRWB2QxUZakZmOCDsQkmYhjghCLIuuYTELcaIyCBijVOs+U7XbL6I7OTRpGsVfVpjXIVxJRoX4whrO6YNMjLgKkRNCDHK2jagAUdiEq7tJNE1iztH1ewNYkQYIapVCEKby1LPbQHb4SLk6HbXQSbGrPgIYUPtU0nC9hSVTocgK0jskKjBArguJgjtOYHtenmGar/6pPT5MAEFK6wArBz8zoRB8hJJaUbcCIz1CoaBavqAj2vJiZ+1otwk4d6Xf4GFn1iOcSByY+a0DNBfSfOzzSdyW3I+nV6RX69ZSOd9MDyS5reXf/oZj7k34grA/936c15x9usA2BB28Nr0RnZUYoqBj44lprY4ZByIfbGTL30Tu+tQqVtfNgWVJpo48Hj6PZdw+k2Xcv6sNfxq+DhYXws4308s7XwfoqOdlqcj/vKpbzMv9U56bwczNGx3UKP5bCaKLEeoFU0s6/0gtLVgfJeV913ZsJGUroNIpSiccyQnv3c5A6fEZKfk+c7xP+CIRDeXN8WVScHuulgAXOEwxRtiMEoz2+vn3PRqHg+6+MXASQRaoab3M1BIUy56xL6DLijcEWnr3A1EKUDYrhYZGiJf2L+rtpNFxAYElDoVQ0eB9gzekEBEUO2OLa8EvO4yL5rxNMfnNtDfneWeHTPYms9SDR2qm9KIyNryYhROWeGPGGKXRkC8keAWrdAihcC4EiMFMqgV+gSyYQlmRREzahFWX0A1BpN0ibI+CFDtaeRIBVksWQ4tBPgexvdqRVOi1t1tRZY4k4BcAlmJ0AkH7QqqLYLSnJCX9aznNdn7WVfp4N7HZpHcJgkzBu1JhFEYKYiSCsfzYAKBBZ5/fBZGBYDdiRqvWvxnVl/fbv9XNWs37QjC5IGzERzbwTIZqL//VodFKrqbby+2osy6KM9MJ41E8oa159P5l2FksbrXrhTPJK4A3PxD+1xWYLFY6KYoOxVyXoU4logmn90j9mTbvqdO0Ka4cjhAoE2zg+VQQlNgaaKJZ8DeevEfKhCtAcnbMqgKpPojIl8S5Pbvg3fdq3KoACpdBp33mPdf78cI+Kuld3Lr6hfR/uDIaHVV/zBewWdwQTexBwNn9lLqEoRpg55S5bR33EC779lKiaPmsvZ1rVSmRKT+2MXxCzcA3uS+EE0AowGyYyemvapK52s3sHmoBdeJWdjRz92rZ+ONOHh5iXYFkQ8yVngjAqdUs8tyBFoJorRChjUhI9SIyE4+qYkvRljrhSitKPYoghx2EptIkNoeE6atJVmUhmqnRivQjp2g+YMSf0TjFGN0ZJDGjNqNSQlKEKdq1X/VCCOlfWztebUnrdVZZMfWQI1vO5G2XS6eMxouWW/UEQItfVsZWOvGEZVg1MpLSnAdiGpVgAC+bzNnwHbVCAkJj6g1Rdgy6lEcpiVJUeuCqXloG1ObIAsJ7NlP4fk0GUVrVg5PXDFXn8T97pXX8/6j30jhq91sPS/kH3ruPuDDuvEvn5vU483+4bW0lnyMhNKIR6QVU1Mj/HHDbJ4sdiOGXZ76yMfgTXDcRcv36piNLK09oP5eH2sHee/6mfSFLfQPp4kDBdKAse/TOiY712AiLDnxs5P+Oj/XWDbzo+A4u9gqXHCaXUi96c+Xc8FpV3LTny8/CKNrook947l4n08mPnXEr/nahnMReQe3ZFDV/V8803OnY1yJNxiw+M3vZF5s6Dsry7TtWcxw3nbm+h4mDG01b2uakRN6EBpSW8qUpiYpdSqWHvdphFIsbX8vYsEctpzbwfB8Tcvj0H6v4oIPPUyrrFLR7jMPqom9xkR8to6PtK4f81eKhW6RvH6U+4ozAejPZFi9o5v+HVmML4gTAtFomLZ8zinXulGkvQltO1OMKwjTkvxsQdQdgDBUEg6qIBGhQCc1Mhkxr7uf43MbODX5FIlUyEuzq7m7OJe7BmfxSOBQ1QmqGmRg8yKilC1O8kdsBqJbMsjQ2C5y3woW2rViDwbbeR1pa2MrhOWhcb2TWtocFiXRvkOYdQiyEqE9VDWJU25BxAYZ2YyZeqe6kbWCqZLCOJIw4xAlJU7VIEJN7EuqLXDEnD7mJrfTrgTHpzfwu/YjqIzkqOQFiVaXRL/BLcTIqNYJM9b6tm5NVvv7ecVnAVWOJwwyr/PZ63vv5cTvvJGpl0SEXRmCVo8gJ591N96esL+f8f9ZaOGNE2zXfQsY0EVuLCxkOE7y8vTamj1flku3Hs/PVp/Ak2+8DO62XQ97i/Nedg2/+e3uRZax7/XRc7oU3beApPDZVGwhjhSuYZTPmr3rjJkMHG7fpztj2dyLwehdRJZlx3zKzpWBlQ9fxZJTruDGu684CCNsoonDD025q4kmngGHk7gCkMlWqLRDYQaUuhT+UETswZyvXs/sH+xaifCrtcfx/cfPmPBY7/6rm3jow9/g+FOehFDiDUpEa8Ci1AYGFlfYsLQFnXQYWZBlyytn8PTruhk4NaLcYyj2CFQILU8Kum7yaV1dsN0EgBwYZuaKIi0PO7ScuY3jXEnVhLhN39QDhrHZFS3CZdXR/8vDp/+In534HT4w5bectfBx+k80DM2TFHsE1TZBqUtQba19TQiIkoowowgykjAtibIu2lN2AtbqEqUdtCOJUpJKh0O53QaIpvsM7Wtiqu1QaZPWmzq0NzWlDJmIqDWm3AVBztru2G4Z0J6DTrj2Zy5B2JkmaPWIkoo45aITygaNOtIKQK4gTCuqrY71OPYksSfRbu1+30EnndpPz1qHqZpYEo+5/hxJnEkQd+Yw7TnIZaEli0mnIJWElpy9JROYpIdJ+ZhsCpNNotM+cdpBVjVuUYOBcodC55LgeTZDxnUQwlYjmnoOSx1CgqjluewnDmWv6rHiys7dK3XMdLIs7n4Up6QRIw5X3P9KwE621m2c8pyMc1+w+IxdO+8S6YBKJ4QZSGxV3HP3Edz62HyqQz6UHSuu1PDAXnYY7q24Mvb9/r67385JM9dzw8PnoSOJKTuoku0q08pWz6oASj0HRuRefNZVo+NL2QXHxWcemp2K1lptz1ix/isTelbf9OfLG58lTXGliUMVh9ti0CtSFf5h5s28/WW/Z2BxBadimP2N65jzo10rpKO+I+jbNJW3/uk9Ex5r4+IsA4vSGClw+4vECUW5C6pzuxGd7bW8tiSiu5Ntf72Qp946lU1LDH2nS7acmaHUpUgOxOiEB9kMIplAhDHdd5fIPSEZnq+pvnyYZbkHGNAJWlXxQL88L0jsbRbbW7P9fKLr95yUXsei7CZmtgyh3BjjGOJcTNgRof3avKSWpSc0tgLe2N/LnYpSl6IwRVCdFdgcwT4f/Jg4YfD7JULZYwSx4kh/C72qwLGeZmkyYKo3yIz0IFM6h4gzEfRUiKYE6AVFRo4JCVusbZgKDG5RowKb9VLnrMaVRAmF9pW13q1Z4Nbtw3AUxlMY30GnE0RtliOHNZ5ebZGUuhRD81wGF3gMzk8wPC9BfpZPfrpLpcOh2upa8bDXp9LhUOpRDM1xqHS6VNol5SmalBPiihgXyWsyj/OiaU8jp5YIcxBkFUHORTsCWYkx5QpCWttc4bg278XzduW5Y3/uAYcynwXGiSu7+3x9Ua8VAEVsRbTk9oj2R6ucd+41nP/SqyZ8zMHA/w4cz9L29+6yfVOcp2vqJmIEoVb8ujiXVWWH/ysl2BGmcd3RIrF96XrYk7jy2IapgH2/j33PD2yejuxdwwc2nk45cInLDjIY5bNOFUq9B65oc+fuoMnuFposLD3hmXnoirXXTdjBsuKRq0EJdNaqgE1xpYkm9h5NgaWJJp5nePDVn+Oxyy9kzWUXUu4Q9B/r1YIZDUJpzvnNxQBs3zyNkc0zeaLay3yvD923YFylyM+fPJFOJ8+vSikWdz6CyoZUpoa8eN5T3LzjGHItZaIUVDo8+l4eIJcNMGvJOjqmDhN3hZSnGoKstYHKraugNu+otadLiGOcp7bQ+UCVUEtc4eALl61xYnen1cQkoE5QM3L0dZ7nZMjrBDOSg7jdZYwCt2hvVlQRBC0OlXaHaqui1K1IDMVkni7jFCO0K1GBxinFaEVtH4f8DElhhhX63KIhc99mptxRpuXJCp0PBbQ9HtL5UIR5Ko3yY1RrleqUkGqrPUaUcTBKohOKoN2nMCdNcXqqJuQotC+JfUWUVERpRZyo2YnVRJLYE4SpWnVebOx2DVHKsVZmTj0nBbTv1B4bI8IYma8iR8rIILLvHdeKI1F7GpPyMEnP2iokPeK2VM2mTBFnE8RpnyjtEmZqDaK1SboKjX2ehAeuW8uUkY2MF5lMoLJZVDaL9DxrG6ZfuILjndWIf197Gn5/hSm3g3wgwwl3vYnFj76SHw2ffMCed8kpV+zX4278+Q922bb6dZdTmR3wyFUXktlg6LxH0HKPj7/VZd37L36WI90V966fucu2ZXMv5lunfB+Ax153OTrvQWQrYh/5woU4ZfDyBi+vURW9y+MnA2O7ZFb94dPjfh5qGNv1sztccLq1aVty6ue44LQrG50rADf98TNc8OKmJVATTUwWZO8aXj7nIa449hd0thXYdI7AuAblxiz+nRWm6/xVIkkIxV93/ZmRzTMpbpnVOM6cf7+G0lFVCucX2HpakqFFbay/wMU5aoTtx/vodAKRShHM6uDRS1tY9O6HeNcbbuLUhWuRc4vkF4aUerGiv7b5FKRToA1qsETLuphkn2Ru+wAvScCLfYculT9YL9vzHnsrsigh6I9yVLSLxJDLVPBbquAYZFHhDUrSmyC3XpMY0Hj5GC+v8fMaGRgKM2B4viF+UZ6XHb0akXfovF+TfswjuVWS7Advs4valODJx6fw84GT+XNlJklhFyZfnn6S49MbSDohfmuVtrYiC2dv4iPH/Y5MRwmwXTIqMKiqteHVjkT7Eq0ERmA7t30ruDTswOoii1vLBqx1eOuEotjrUGmVBFn7/StjQ5SESheUe6AwXZCfISh3CsrtgkqrJEoKqi2SSrvNW0FCpVVQaRN0zR+g3S9R0h4VE7M1VmRUQE9bnmqHptImqHQ4hBllebPRiOOPQi5cgOrqsF3bRo92tMDo7+bA8I5DDb9fPw+KZZxNAySfHiK5fhivL487UEJW9tzBvr/Yn4V/X0W4v9h1Lj5j2hbOXXwtCRFy1XE/52tPnMMnH30d/9Z3FptKLax+3eQWlbzqto+wsngM3x3pGbf93MXX0jF1IwDfOuX7FCo+CMMjV43yWbdo37vPBW5ZdekhW7SwN9lfy462AteyYz7F0oWXsXTRqFi48oEvYKRscN4mDk0YIEYcErcX7qrFeDQFliaaeB7j4S9eSOX0IrEPqfUKsd2nGjv855Mn0yHTZGSCYxIbSYvRMLr6RHWGO8iaSi9F7fPy9GpeOu9xOqaMMC05zH1bpzG4NUuY0wRZyYwpO1BCk1AR5057nPOPeZTOI/vxX7wDZ0k/a1/vUzxhWiPrAs8F38N/eoBwVSen/uUNvHvDmawJerh3/Uz+88kDt4D6QsdEk9IZ7iA97giuG+EUIbMlIt0X4+WtQJafLin2SkpdNqw99cQQztNb8TYO4W8r2p/bSxhpJ2jFqVCcFxEfVcSpQHJbFaIYd+1WvLXbSDyxneSTA4jIYBzDjK4dnDRjI8nWCuWpMf0nGQaOdijM8BmZ7TN4hMPgAkl+uhVGjMB2pXjCdqXUxBIZaJxyjJeP8UdiVGCQNWHFKNvdEqVsR4tRkjipiDIuccJB+y467aOTLibh2ErWMEaWQxvwmXQIWtxRv+s4Rqc8glafOO0RtCepdCcIWzzCnEu5XTK4wCM/Q1GYAVFC2AwYqE2MVSMgW7XkkNkMIuGDUpg4tuLKC2TiuTNk7xqeDLoZHkqhduS546cfY/XnLqTyQBsb7phBSga79WJ/tjC1bJy9WSTviwt8c3gaD4cl7qxGE+6z7u3WKiHIWjuS+79yIWs+dSHzrt+95/H+4LIHXsfjQQ9/qOhx7/GdOy3Wvf9icAxRJubYjy9HBbWKyqpGHpg5Pjf/flfrjMnAeS+7hvNeNr6K/dzzDnwloVF2wnnjXZ+1nSo7Memb7rycxWddxflnX33Ax9JEEy8k/Hnp1Zx3+oOIQBCVXbQR/PqpY8ftk5NJXpGqkJEJksJvcNq3n3An06fsYPVZP+Td71xB3/kx3Yu24SiN1DB8TI5gXg9bzkzwD6f+houn3Mg/tD3Gh6f+hnce/UfOXvgYRy9+go3nOwwemyNsTRB3ZAimthD2ZNAK0lsMDzw2kw9uehE3DM5BIxnaPIPtm6cdpFfs+Y29EVl+nj+CO4fmsj3IEmiFp2KMFoiCIvOUpG21pu2xCumNZfzhCHckItEf4OU12oWgTRN3hExpHea3jx5FZp3ELWra1sS0rDWoiiG9CdKbQY0oHuqfwoOlGRR0BYBeleGk5NMc27qFl856ksXTHuOC7kfYFuQo9mWQIQQ5qLRLopRCe5LYF+haA7MMDSKqcVkslzWuwngOOuGhUx466aKTLmFbguE5PoUZgpF5huJ0Q2kKhGnRsD4LWgzlHk25V1PpMlQ6regSZATlTqi0W94fZKE4HUozNC2JMhf13sQbc3+hW2XYFmfYVs0SRArjGGQM2gGnqhGRRp90NBiDGCmhdwxhqlV0EByw6+BQRv0aDQMHUyhiBodZ8cjVrHzwKkSxhBguoJMOL/7byeWEY7EvQssbO/7E6r6eCe+7ZdWlfPioWwAYHkmxY1uWn53xdVa89B85ecXk8bxj/ucKWr0y/7nxJN6z4LZdxjAWj772s2AEx3xqOTI88Hx2ojE8E/bm9T938bUHpTNGp32WnPxZe00+fNVollMNq+74NDf98TOW0x5CnVZNNHEoo5nB0kQTz3OEBQ+VNKiywB8QbNnUzk8yLyI95fec6g9yjKfZHu/qE32y5/GfRlDSHnmjaHXLDA2leDA9heJTLbQ+JcjPNvSfAB2By5tn383Z6dWc4NnKl21TCrRIH1+4cCLM73k7C64QgABRa92Vgq77KsSP5Lj3qE5O+MAGTvAS5HWeo//7c5Y4NXHAMd+JWecNsKinj7tm5EgOKOsFHRhMSqA9EDEktxtaHxpGjBSsQFCuIPIFwK4xyjhDnIBqh8Zrq4CAjoc07tqtDTEhmtXNyJwkYUqw48SYl592L7MTA6RklUArHtU9aC0otitK03zb9u1rdEJTqUrcoiTdFxElJGFKIrTtELFija38A5CBQbs0qv+0LzECSl2O7dIpGYS2gaLuSGTDRGtjNMZBC9EQU4yUyFDbjp2Ei6xGCG0a/rSADaxMCYKsDbWvtkKYBTG/QEe2SL/qof1RB7VD22q+ahUcB9HZAcUiphpYu7Aw5NniULdTqGNP+Vb3FmfTfmsCqqOT8sxGeMn7/sw/tK07YGO66c+X75W4otGsLM7lxu0L2ZRr47jUBm5ZdyTnzn5swv0fWD7eAuzJj100KeMF+Js730fWyfLG4+7a435H/vxKqttT9s2aiQkzimS/zU8yjmh0f+0v9taLen89q3d+3M7WEucuvpZbfjN6/zN5e+8vxtqBnP/Sq5BYy7OxXTmrbr+M885pCixNNDHZ2F7JQCrGywQc07KVF/lDQOoZH3d556O8LPMoAMcmNjB9Rj+b+trwnkqQKUH/CYK+s1xaZ+5gSeZhjnLTALwkAS9JPAHtT9gDzVvF4hNfycDPZuAWDaL2sakdCFOC3GqHOx4+iZtmGf739deTk2lCE/GBe97KN0/+4QF4RZrYE96YXcvvhxYghcaRmpGyT9SXJLlFkt2kSW+qgDaUpyQwUuDvCJHVGGJDmJboRISXDpHC4K/zaFkXoyqaKKVs50YnRAmIWmI6Zg1y1pS1LExtomAiMrUxnOx5nNx777hx3RME/HfPcUTbW3ALUG0FkLhFgYxAVQ1GGWRkuarRtmvFOKrGyWvd2imHKKWIfEmlXRLkIE5AnIvB1VSTiiglUWVB0B5jEhqhDCaUxEIQp0FWJW5eEKXBKNAhxEmIZ5XJZCrMy/ZzhCtJiiwAZyRK3N/6FFtLGQYq9jn9YYh8ycBJrbQ/MIJYuwkdBJgofFbd2IcLn4U9cxv/oaT9ZSfr3/6XzaD7net44rEZkz6eW1Zduk+L9H+oaG4cOZGoqpj9b19k3Tt2n6Xy5Js+Ne7ve5ZNzuL77G9eB8kkP/x/33nGfc/5zcWs29SJMZI4aTu1nms+uzfY3XHGPsfO+0z0/Aci72Ws9deSUz+HkJIlp36OG+8av/6y6vbLOO/cXW05mzg0cOiE3Itn3uUFAGHqK0pNADAyMkJLSwvDw8PkcrmDPZwmmphULPzFFVy2cAVvygwCsKrs8Pv8UVx13M855zcX8/QjU0hsl2jHBj1qByrTIggk2aekDWVMQrnH8A/Lfk27KnBvcTYtTpmMqpCVFc5IPclCd8+T3fdtPIOzW1Zzf2kWD/3tEWx9aSdDR2nSGySpbQa3oKm0K4rTwM3Dg9ftXT5BE3uPegfAoC7xX/l5PFKaykNDU6jGVnfPV3xGhlKYogsxyEAyY1VE6t6nrUAghO3y0MYKEfUbgBBsWzaHkXkw70f9iG07ANj+yvlMecdTnNr2ND3uMMNxit/2LyAf+Hxw9q10qRF+OXgS9w5Mp29Hjrji0NE9wsfm38z2KMtP1p9C35ouOu+1E1C3oBtBpCo0EBu0J4iSNl9ChtpW/9WCSmVsCHIO5XZLxjHgDxlS2yKcUjQ6/to5iNggYo0RAhnGEGmi1gQi1rj9RYhidDpRU5ck1Q47QU+tG4KRAqUTZ7D+TRGJVEBlY4b5Py6htg5DqWTDSB1lLfMc281iBgYxpdJoJstOHSx709VyuExGl7a/d7f5K7vDuo1TmOlkx23bW5uQfcUFp3+em/74md3e/+CG6SyasZFb1y3gjtIRDIRZMqrCFcf+4oCMZ0+Y99OrkNLw+Bs+3ZhM7zwJe/GNn8RRMX07ckQVl1SuTPRIC+mN1lLBH44RkSFOSG7/+b7bl+3ueZ/tceoTyp0nlvsy+dzdvpMx3rE4/6VXjevWOfe8a0Hu/3M8Wz7a5LNNPJ9x27ojODOx66JC/TvhwQ3TuejJN/D441NRIwoZCOKUwZleJNqUQrsGf7uiMi1k9cu/YYuBniWO+MkH6HgAdlxQ4c0L7+JnTx5P8HgOb0gQ5EDPKLP2zZ965gM1sU/Y247W2yrwlU2LWTvYTvHRNrr+Yuy8JiGIPZuFImLLJ4WuiRhC0H+c4G+W/Z6bvvwSck+UCHMuGy5wefsFv+M1ub+wyEs2nuNXpRQDUYZ35Lbt1Zhe8/gSHt3SQ1jwkCWFiAT+DoFbsDmFiUGb2aECg6roRkg9gBGCaptDpV1R6YDizJijF26gHLpsHGhFKoMUBq0FQclDDFt+L6uCOKMR2RCpDPGQR/pphayC9rFd3y6UZsQkNypSW6HyimEefNGPAVgf5fnY+tdyz0NzyK52aH/cdvCGKYk/GKEqEc79T6LLFUwcI+TooltdbGnY4O6B0x4ufBbg/LOv5uZb9+29fdkDr+Pz3Q8Bdl68odjKjWd/ZdLHdsGLr+SmO/ds4VV/D317eApfXPEaWlcL7v3mcz/3XvSx5cQJeOSqC601lTETjv21f/gQnox5tL+bYslHrEuRXV/js0OHJp+tb9uZ0+6rmDIRH56M8Y7Fzny2vg0h9vk6r6PJSScft9xyC29816u45NcvPdhDAeDq837Hip/fwumnn36wh3JQcajIXU000cRzgIdfcwVvPuJPjcC4JXMe4arjfg7A7867jim3Q9d9EdNurTLzVzuY9X8jTLlF0v6QJLHD4BYMqW2Gzvvgn+5/Gcf5mzg39wgbK23cNTSH3w0eyTe2n7OLZ+rO+Nb0O3hLdgdf6vkL617XiQxAaEGUstkZ2hOoqiG1xba0L/jC8ufg1Xlhob4I8VjosTFo54l8F4PlFNXQwVcRLckKfipEpEPIRujWkChpQ9mJItDaiitAOLeHcO6Y/7kxdNyfZ87P8w1xBaxoFxnJSJzkoeJ0toU5Wr0yPakCj5ancnd5DiNRgnLoYmKBkwxpTZQZilP8z+bj2fZQN4ltEoyt7pORrR41ShD59rox0oovQhu0ay0X4oT1s44TEqcU4xU0MgAZ2Wo9sBPp+oR69KYhNoioNgGUVrTRviJqS0EYIofyiCBClAK8HVVUVRN2ZSCXIfXQFtp+n6C6Pou/Q9rjRBGkUsTTOykdO4VwRjuUKzCShyiy4grYSWct7N4OUI6bpE6Ew2kyihQTBmnuCW96+B18cNOLDtCAxsOIPb/Wi2ZYD+hbC0cx1R3ipPQ6Tk8/zr88djZv+dO+ndezwdx/uh6zOUnUl2TuP10/4T4Lf3EFg8UkWwdzPPHXn2bd2z5BFCmCrojCTChOEYRpSZRW+zUZrWMyJnc7+1nvrrpvT9i5YnNvHjsZlXk7T0bHdtM00UQTk4uXzH6iwWXH3upYNGMjff87k2k3SWbeFDL7f4vM/mWAe3eGxDZJcrPCH4Tcwy6X9r14Usb0xJu+Sfj6QeKKYl2pAyUN2rOWSyoAXXU4c9Xuq8Kb2D/s/L/fHWY5eWamdnBc1xai1hhVtVxPRtbmSmgwDmx9acS20yy/dMqazAb45b++lJY1BUSkMUqgZhX5dOfqceIKwKtSpb0WVwAunHETMzoHQQtkRaDKwnZDZUC7tisqSghi1xYPRSlFmHEIsw5RWln7Wweq7YbTT1zDUbmt7CiliKoOYcUhqDgEZRdKClWSOAVpi4wFYEBHAhEJoiR4echuMGQ2G7LrDcmNijALlQ5wbmnh3IdfzQ/znfxg6FRybhmv3yGzRRO7gq0nOQzPlQzP9XD7RjBRLYulzltrfFZIYbc9Q7j9YcVna9jXrtUf3fciznvkVfyk0MaizEY+NevXB2Zge+E2LHvXsD7Kc276ca555X8w522PM/tbX+bIzz938+9jP77crjUU4ZhPLcfUOrZ2xuk3Xcr6kVaeGOrggVddyZNvvIyoO2RkjqEwVRBmDk0+O/a4e3v8iTqQnumxk2EtNpG1782/v2x8IWITTTQxIZoWYU000UQDd/z0Yyw7+pMYR4IGGVTIPQFBW4Iwo/AHQ4bmJ8jPBSEM39h+DkkV8sRwJztKtmtlWsswMxI7eDh8alwny6Au0SZ37Wy5+m0/4NL7Xocueqg+D6OsyAKQ2hYTphVBR8zJKy6jM1U8INU9L1TI3jWcAfzfA6+jr5ilUPZRUhMbSRRLqmUXXVUIT6MSMXHCbXSqRPOmMrAoBRqGjja0rhb0rHes6BLHqKc22ywRKRCOA46DUzFsHskRaUkYK1wVU40dioHH+uFWkl7ISCVB2gs4aYGdLD80MIUv33UBanOC1FbbVVVtFcSeQKUFGHAqBqdsq/xiX9RCta1llzDgFm31H7HBKUWI2KAChygpcMq1bUGMcUZDREWkrYe0MaBHKwZlOQDt2pDbbMoKMLGBMEJFMbJYxXgOcS5BOKOFOAmpjYL0VoMIrDAVzGwnPytBui/EXb0BXSgilEJXqo3/jdEGIccHgjbEl+cJhNp14rQnbNnUxkjZ5yU7pvLNo370jJ1yzwar7ti7EPZC7PPjzaeRcQPmZ7YxFCZZO9zB/P/8Ao+/4cAGuR/9meUkQ4mRtvJWu7DhPJ/HL7VVh+effTUYw9TYsSmIAniDfeyav/oMs79+HWFLjBEKIyWJgf0fy3Md8jnR8+3LxHXnfX5zi7USe7YWDM+VrcPhhBf6+Tdx8PDgdRey7JhPYZTNPVPFgLbHHKqtksSgZuAYRblXk1TP3pqzjntP/ilf3HEET5c7GNmexq3aog8AKpLedJ5frT2OMxI7GmHNTUwO6iKL7lvAiC7zYOCTk1UWeUnKpsqwdpib3M6RqT5u8+ejyqM5fttO15x/8kMMBilWzf4lf79hGU/8+WhkYOj6SwlZDNApl7DNo9rm0Nu6/VmN9cGgTIuMeGkizT/N/ylvKb6LkSCHHFHICJyi7WAxNX0iTghMBCas2R+JmiCkbCGae0QeR2ju3Dabkf4MlBQmF2IQUFbIskQFEHsgIoEIBCa2PrpWSLJcOrk9RFViRGxIDHoEWUmpWzJyWoVXdz/JL7efwD1rZpHIVWl9zNDyyBAbL2inMidg+q8U2dufRI8UxvFV27UyvpNll9D7wx3GIPbRHsfd7LE26OXqlW8izMCj7/vGARnaTX/euwD6Ye0woFNkVZkXtT5F35wsfSM9HHnlch67/MB3s7gFe51rxxbAbX1xmgduGH3e88++GiMgJVpI1rI3WVa7MxLELXZOOSIkif79H8fhzmf31BmzL5ioM8ZIwXnnXM1vftfsxDxUUA+5b+LQQVNgaaKJ5wGWHv8ZVt7/+Wd/nPb3IlwH4XmQSWGkJE7aj4k4ISh3eSQHYspditJgghtXH4PjWRIdBQrHiymnXB7JT+VIfwutso/VQSu/HDyJP/TNYWFHH6/suJ+TEpuY51h34puGjiXoT5Jeq0gO2IVyt2QwEqKU7Vbwusq8bc6f+FDrOnTfr3k8LNCuBB0y3Rj7gbIKeiHgquN+zv+u/wxKaqQ0KKFxXE2YCihrHyEMUmkGFwhaHu5m2+mt5GdD5/HbaEmUOTO7nVu2nGIPVutwMfWJU6xZ0f/1XZ5zzo+ugR0eIhIgIM7ECC9Guppp04Y5Kr2FqnZZtfEYOu90GZkL1TMKxKHCTwSU1rSQWytwi6MTTRlZuwEVWpFFO7ZST4YGpxAhgxhZCXGKElVx0Z5CO4IoqVBSIEMrpBhHoH0F2mavyADbeSIEIoxRgf0dIcCVUKpCGIK2goxQEhyHKOuR2RiT2lJBVkLEjhFwHYSBlifLOJsHa3ZgAl0uj7NOAMb7Vj9PrMHqEKnUPldCPf2uj7PwF1ewaUs7ixY/NwtT311zFllV5g3z7pnw/i8db1/32d//Ivfo2fbfJAAtmP0v19lQ+QOEuiAitBUejQNawrGXLOehL1+IUQIRWYsTjBmXEQKw7oMXM/ufr7eLOBLu+faFz5vF8H2xVxiL/T33+jEnmug+F0GlTTTxfMJkfQ4t6/oAKIlwXcimMZ5ju1uVoNitcPMQn1xkQaIPjUZOgrHDk1GB/9t8LBvXduENOLgFu3gtNJTnaF7U+hSvSFWA1B6trZqcdv8he9dw/7oF3JxfyECY5uzcY7SqIikRMNvrJyvLvOmEu/iftWcSZgwvfsmj/GrGijFFYCmyTgUjLa80EoyvkEHM71Z8fMwzfbnx297alH11aCavyTzMIm/U7nShm+K+U3/ChdNP5hd3n4R2FbJqg+lFnfoZiF3LbVXVCiVGCgpTBUErhPkEf3hyruUfSmOSQK1ACtegE5oQiXENsiIQsUBoYR0EIgEahLFd2mqkiohjUgMFklKSSzhU2lv5/5InYlZn6XnU4BUUmYf6QEranojpegAS6/oxoVUT6wLLRPZgjQ7t5xFkJUYn9q1o6PFLL2TO167Hy8NDX7oQOPAixhFfXI6qMqFgcvzMDQAc/d+fo1LyMCUHshqdEMz52vW4I5I1nzpwY0wMabRTa68y4I9oznjj9dzx049xwWlXIhwJrs3TFLFpFMYArHvvJcz+9peRse38er7xWdh3fjrZfBbgN7/7VDNfsIkmngFNgaWJJp4HmAxxpQ4ThAghIIoxOY9Kp49RgkqbpDgVtGeQVVB5SaxdQmU/RoyEUAv6hnPkA58NhfMItSJf8QlCh0pfitu2Z3m8t4uedJ5jc5sBuOn2E+l42HYSGAlO2eANBgRtHmFKUJpqOG5KHx9pXU/d1XC+m9ll3PXJTXNSun+4/5WfZ/YPr4VIUvJ82tsLHNOzla3ZDP0jGXwvxDm1zMZiJ+5LdxANZNjan2PeEf38bccd/LrrZAhHrcN2F15ex1Nv+SQLL12OjGrhsBkH7TlEXSHrBtv5n+B4OhIlRNWKJOHUgHcceTexkby65S98wH8L5qlO0n2BtXMSIKsxTqARxmCkwHMsEZehRpZCRBxbewchcCJNtSdFpcNev/5wTGJ7BVGJwJFEaddagaUcVFXj5AUijkEo+xMQYa1CL4obnTtEkZ1gGoM3NIyvFCaMbIdKoQhS4AyNQByjtUYohQlq1bM1EcXETJjBMuG2wxWe9btfdsQlrHjiy8+w8ygefs0VB2hAE2N1eQqLcw/xyIZpfGP7OTw4OIXBcpL7Xzn+MzexzkOV7e9xgpotzIFppT/lPTegXYFTNTU7PGuJR+3pqq2ShZ9cTq8BhGDV7buvNFv3oY9xzKeX88jVdtK8L7YFh+vEdV+tGfangnB/nu/5ihf6+Tex75isa8YYDdXI1nYGIcZ3CdOSMAvDx0R0TxukM1GhwymwJS4yTdlF76oJkQhcMfE0+b6gwi3Fo+ly8sx1t3GKH+MKxf+VMnzhsb9i6L4uEoHdV5WtwKIVTJs+wIfaHgH8Zxx7k9M+O5w9ew2X3nQphYpPvifBKS3rmOEOMM0Z4gRPcE73A0x50xBZWalZeo3viD0ytZX7ImtBO5Fdzs6QvWu44+m55HWCVlnmCDecsGt/S9C6S5bcuONkQnQqotgloaBw8gpbRQQ6oSEWuAVphRdju1yS20FVPCpzArp6hgm1YmQ4iVqfJE4YdDqGhEYnY/xclcpQAllUtrgpATIA7QuENshqjKyGltcODkMQIIxhzj9tQbS3AUXIFzDVAF0qgZCkt/VDHGOEQHgeOo6fkc/aDJbnD6eV1RDjyn3OYnnqwx87gKPaFVFvQGfvEK/4/d/z5C1zSG4Dt2T4879d1NjH3J8jXQQRQ5S2xTtRkr2yGtsfvOhtNxB70LqpStDq4pRtcVtiW5Uw5/Kit91Aaxhb54BI7rYjZ917L+GoK5bz6JX7xmdfKNhbTvtM9ze7V5poYs9oCiyHAZYd8ylWPNJUi5s48Fi549ssbXsPOA4m6aGTHtUWSewJZAhhi8btLRFtSKOTGgSovEKGgiitMZ5Ga0EUS9Zt6kL1u8QdIQiDKknksGLrSCfbOrI8ke4k5QUYaexi4aDBG4kwUlCcniDICvKzIHPUIEdmt+71Oei+Bc0J6X5i3VsvZfbXr8MIQxRLUirgjK6n+IsznXLkMlxK8vAXx1cvLbn1o3xz2znE3SErNn11n57PLdpKPO1a7+fYh6DsUixnKLX4BB0OvfMG2NaWZUrHCL4MaVFl7irPoVD2aSkb3B12Vdt4DiKMEdVwNABUjbH7CkJQytp91ULl46QiSgrcosYpxnZbzkdWI9yhCnHao9rhU005GEfgDlYxvkREyj5XpK2o5CiQAiKBKVesyBLY1RUj5Hhrr0hbwcV1rMgShKMTzN2IKvUwUCHF6GSV0ZDQVfFP9+l1PyQQhOC5+ySuHAysXH80m7pbWdr+IJsrLWweaiHIe8y/dnnDigsgs8GKHZEvMMpORqO0YMFVy1lz2e4r/s479xow8JvffnK3+9Rx2jtuQGhwNIiSRobUbOxsla0ITcNbvZqzwuTeTPR7/zRqTTdZE7CDjcnyz94XHM6i03OJvQncbaKJycDK/m+NclrfwySsNaiqQtuUEZZOf5SEDOlSI4QG7gkCNketxEYwwx1krjNqbftwWGJFfhF/23I/txQXsWrb0URaknEDpiSH6XCLFGKf2EjihMEfFHjDlt+Uu6DaYfi7mXeSFM8sroxFk9PuP/54wbXM/Y+rGQqSVLVLrzNMl6rgCitw/MNRN+/ymLqw9Q9t67jw3y/a5f494eb8sTxV7kAJgyNipvrDfKj93nFCy9XdD+x+vFvnoNYlrfCRNMiqwBuxBWzaAxlJRAT+UK1rVVgrpditdZ94MRm/yuahFswOnyitEVrg9jtEWTt/m9s5wEAqzdZNrYhIQioiCiSq6lJulyS3O8iKiwglBIHNUoljTKWKKBRHg+nrHSgmhAqIhI8plzHV6uj9ExUJ7Qm1+w9HTiuKFYTv7tIpfMihKulIFnl1z/3864sz9K/pwBuUHPHlG3jiEnu999wTEfk2yyTO23xUmbHX4TGfXs4jX5iY0y455QqM3L0AsjPOev11iNjgSoFb26YqGlnVOGUr9KmqIvKFtWuODDfed8Uejzn1D6N8tm6TuzcC6aGMyeKV+5pl2OSzhwsE2hwaHYHNiB6LpsByGKAprjQxmTjvZdfsdjFvadt7EI5DNLObsMUj9gVR0rak+8OGZJ8kKGUQ0iBCgTck8Yag2gbGMRALgrJLUPKQgy5+v0Bs9zDCVvAZAWFVElYTlHyfQjqm+4gB+tuyyFsTZB8ZwSQchua1MrQoJjd1hFN7N9DjjrAtLtCtdu1cmQjNCen+Y90HRy2NPnLvW2hzi6w6Z/chh41MnFP3/bnu++qFnPb2GwCBDA1CC0QMqz97MXO+ej1bq62k20vM6e2nFHqs2LKQWZlBtlUyVAYTeJ0Cb1aW1OaSzYXJeEjfQQ2VEeWqFTGUhEpgLbwcBZ6HziSIsva6VFXLBuKERLs+QYtDYofEH6ng1KzAKl0+YUYhQxdVCBFagwTjqppNmEInXWQpQFQDjBR2ojnG4muXgHptaoJPxG4xJth+XFAotfwSow/LiWgD2rBswSdYseaLB3sku8UDr7qS2T+4lrvSM3FUTLQxTbpPIKtwwoeXc9/X7ETz7u9cxIv/9gYSJY32avYbhkYl3e5g1N775rpFm3+kQoMMDELbTq16Bovx7bWhHbGLELov2JtJVXPytSuar8feoSmuNDFZeKbPoTqnjad3EmU9tLL5bVrB8LpW7stN54yOJwmNw33VXv5cnMdIlGBucjuuiMnrKgkRMqRT3DJyIrf3zWXVtqN4eqCdYMQHaZBuzKNeDy3pMsd0bOUVMx7mifYu/vSno8huNFTaJOGxRd5xzJ95b8uW/TrPJqfdf6z9G1tk8J01LyEhIuZO3/P/4Nm8zpcf+0vOuvnjGCPQRrAh0cblx/6SVU8dTbcqsMhL7vaxDwZlpmRG2NbbirfFRVYEcVpjChJ/EMK0LUJKDICXN2gXMBDkBEEbhG0xShn6CxmbX5+JSLeVKQ4lSWz1UBVJOZFgpCVBV6rAcFuCyo4kcthFhpZ7xx5U2l1EZMjP8mnHWjHpNU9itLEFPtT4aL1DRZuG+7/wfXS5MvEJjuGzo5tqXSxjcNhy2ihClqssOfVz3HjXZw/2aHaLde+7hNnf+xJrtnajtcAZkcgQ/B2j/5tbf3UJS065gtL0NNqVBLGt3Ik9eOjLu+eWIoj2KQlCRgYRGWSkURWb2YkB40kCTyIyDkGL4p5v7z2fVcXxc6rDXVw5WGjy2Saa2H80BZbDCMvmXMSKp2442MNo4jDHniqlVw5+hwtO/zw7jk0TJa2lQZgFpwSZLZrEgCJMA0bgDtvqPFELT3byCvIKhEFEtkLQqdjQOhUYRM0XFWm7CuJQECrDq2Y8xP0t01lz33yq03LESUnQAqcuepJlnQ+yKLGR0EiUaAZ4Pdf46kk/OuDP8efvT1wh6OYlcVVQLmV5ciRJ3f9oWyaL50YI15CfF1NtVWQ7szhlY8M7NaT7PPztJYyrrB3Y9ggCG0SvO1soT0kRe/Y6dMqG2BdUW1XNagnQoFMeIoyR5QBvSBJmHWJf4Q6UMFKCIzGexPjCCi5A1JrE3eEgpESmUsSFoj0ZoxuTyIZg4jogRMOvehzGCiuOresyUdh4vFCqNtk9jEPvnZr4dRiUu6x726UsuHo5lbTBHRGk+mzXSJQUnPaOGxrWCqpq8HeERGmFkQrtTt5n1jlLv4gjRa1bRSODWl5QbW0izLiEGckd/9/+2U3sq2ByuEy+mkLQoYulCy9j5cNXHexhNHEY45ne2ysHv8MFp13J8IIMkS/Qrl2kVlVQFUHGrRJqh9uLC9hQaWMwGM316wtaGQqTFCOP/kqazcMtFPpTbBtxUBVbcR0nDDqhCBKaEWlIO1Xe3XYnpVbJO47sZFvcie6u8E+n/H+13JUmDhbes+C25+R5bj//S7ts+/ftZ7Ck/SE2xUXmuzsAUBhmj7EKKxqXN/bexczUILd2zqMSuGQSAUOZDPFmjzhhC9vUZmvpBLZordQrCHtCnHSAcjRhpEgnq6RqHnVFAVEGZBX8bQ4bRQeFnrwdQ1Hh91ueEvsQtIFYbzthU30hYWcaJx+gpk0hWr+x0ZWysyhi4lrEcq3wZxzGdFwLz7O8NwjtY6QY5bRxfHhzWrA5NtXwYI/iGbHunR9nwVXLMRmDjCG73s6fTnn3Ddz9r5bPijDGHwwJ0w7aVbU5056PK0KbKbk3eNkFX0TKWn5mqBGRRmB/D5VLmFX7zWcXn/EFVt3x6cNifrGvaHLaJiZCfIh0sDRhsV8Cy7ve9S7+8R//kWx2vIdosVjkIx/5CN/97ncnZXBNjEdTXGniQGPpCZdTnp2l0m7FkKDNIANBYgdECUHs23Z0qHn2OoCBVB81uxoa5EpGBhXYgHEV2FBRFdjjaGXJvElo3tl2F27b3XzsDa/gD4uOYN7MLSyfvZLFyfrCs1f72dSDXyg48vPLQcGTF1/EwkuXAx5R2l5v1YxLORVb+wIDUdqQnylwKgKnBN6IodKu0F4aoUFVYlQpgZCWfERZjygh0S6oANxCjFMRGGU7AYSG2JeYjiSqHGGUJGh1iZICp6TRSRcjJTKMIdIIJWzVVhAhi4DvWa/3nSeKO4V6mjCy4btKgRGj+4+1UBCy1oWjIBCNLBekgDg47ILtd0E1sK/XIYyjPrec1Z+9sBHseeIHl+OPaDDglAVCw0teex23/ffF/OE/P8biM74AEsKMREa7TjQnsgSrB6FPNGk679xrEJFGSQFSYISoCSy1HKAYiA2OFLAP3TC7w/Nt4naonM/is66yXv774M3+fEdTXGniQGPposuozmyh2mKtGysd4A9a/hlnNENBkgdHpiGFQRtBKXIZKKf5S2EaQdGDskKEwgaOVwTJ0BYNGWmPIUNriRt5moQXcmSqr5GvcecJ/8WmRflGrksTL0y84Y6/Q+Pz5iP+xKtu+wiRkeTcKr2JYY5JbabXHaaofYbiFKFRdHgFTpuynoFqmsFKklLGI5hiLWidIWULglrsd70R1r4JadCRtLdQUS25SMegnBjlxQQzqpB3ELFAJmKMEfaa9zRxwhYXuXnwhyH72CAohelKUZzqk1mvEcP58dx0rK1t7W9dKOxqASbGFxbJbMba9ZXK1k4Xay2G1uhC8fDmtKmkjQk9xIsBG5z2slFO6xa0FYx9wZl/dR1/+K+LWXn/57ngxVeiPIkMpC2U1Lue25KTP4tRipv+fDlhV4abf38Z57/0qt12jpx3ztXIyCAdy2kBRKwRsa5ZOsc4SmCc/XwdBY08wudj98qhwmn3JaOwiSZeaNivFcvvf//7XHvttbsILOVymR/84AdNgaWJJg4znLv4WptlIQTVFkXQCkYZ4rS2eRNxTWDxbDeLUwYt7QK1Uzak+mNEZBmNqPFu7dpqFxHZ8GXhCWJf4hYN2hNEoeWhnTKBL1x+OOtWmHXrpJ1T01Lh8MVjnxltB+941AptQVYRpgRBTlJtHZ3E2eonK/ipqr0mVYAl2DULpaglgcj4tUURZcl9bEVAtxhZCwRXYhyBkQKtBNqTGOkSpSRRUhJk7fYomcYraBJbioggAiUwSiEiexxqQg5xLcA+GlPNVqv8E6r+t6lNMBRCSITRo/7WjYdoqHXI1HNbiOGm8CcH4JV/DhHVBNRqcHDH8QyYenuVRR9bjgqspV3rE0HND12iqhqh7WLb2a/6Mrf+6hKMK4lSijAp0A4sumg5Ru1kq7CbeePOIsv5Z1+NjHTDCky7EoFB1Kr96hlDyFonYbz/1XoTTZKalXKTh1W3P/8m+k00caji/LOvxhksARCmFUEW4iSEGYNTELaiPxcwUk3QX0wjhP063jGcQW/38XdIsiO2C1uGtlDISFvZL2LbvSg06ABELNAJ+6WeEOOr1ydTXGly2sMT/3nGNxq/P/b7uWgHomyMbAv4U/tsulIFHDnK+YJYUYpcioHPSClBMJhAVCUiFqAF1TasZVNd21AgRhyMcDDSIAOJiG0weeBpSMYIV0MuREhDJlvBdyJcJybqVAQJD2e7S3ojdi63bQd0tJGfYS31jCMxlSrS89DVnbqwaoVDo3a4tcKPWmfKOAhZ63AxCNdBKNstZuIYE0WHrzVYDaYurBziXRM7c9qWp+xnVsPK2xGc/fIvceuvP472FFFS2SwW13YAHnfRcpwy3PuNXW276vN/oyTnnnctt/xmlD8uPvMLCG1QxoAQSGM5Ldh1AhEbOwcTAhnEOIX9E1jilDMhb1266DIQgpUPfGG/jtvEeDTnBk08W1xzzTX8/Oc/Z/Xq1SSTSc444wy++MUvcuSRRzb2Mcbwuc99jm9961sMDg7yohe9iH/+539m4cKFjX2q1SoXX3wx//Ef/0G5XOa8887j61//OtOnTz8YpwU0vp73DiMjIwwPD2OMIZ/PMzIy0rgNDg7y61//mu7u7gM11r3G17/+debMmUMikeDkk0/mttuem7bg5xpL0m872ENo4nkCJx8gKhGl2VmGj6h5+vsG49ggZRFDmBGWgBXBGzZktmgyW2LSfRH+QIA3HOINBrgjAU4pwinHqIpGBdr6rBrbgRB7AlUGpwBUJGsmskiaJNTDKps4fOEOh/j9VdtpUjZ4w5DcBsntkNhhq1G9vBX+VNXUbhoZGmRoxb3YV8RJhXbtIoiqatxCjDcY4AyVUfkKzlAFZ9hev95wgJMPMY71a489CFMwPE+w7WRB/7EOle4UJuWNTqaUgiiGIIA4RnguQinbcTIGjYmn0TaHRdQWyZUEx6lZh8mdqgVrz1GbxN5YOfDWbU1Y3LLqUh68/kJkBKe+6wbCjMJIKxZHKbtYIEMDseGlr/4ylQ6PwhSHMFPPzAEZj1Z7GSX4zS3ju1cAClM9Sj0eL33Nlxv3ySBGhLohnAhtap7V2i5SxPZ5jZRoRxInJae9/YbGcz0bvOhtzY7ZycayI5sT0t1haef7DvYQmngeQY1UEZWQyvQWilMkQkOYNeikxjgQ5gxCGraPZNi+vYVt69sYWNOJsyZJdq0k+7Qht16TWxeSWxeQXR+Q3RiS2RSRGIzxR4zlHGGtsKMsqAQuFeM+8+CaeMEiswFanoT0BgV9CbZsauPBddO4b9107l8/jQc3TWHN1m7Wb+tg2/Yc5cEEzg4HJy9xCtYFQLs28N7UKvVVGbxBid8vSfYpklsEya2CZJ/A71e4WzzENh9TcjBaUK54lAKPfDGBkAYvV8Uog1M1jQVyRgq0PVrESDs/lJk0wnWQ3piO490E1u8irIzdt1YshJQ2E1EKiGNuLP5g0l7jJvaMnTltlJQYAVFaoaoxqhIjDJbPdvoUpjpUc7Zg0jj2uosStQB5IM74jVD7eiFJYYZPpcPlvHNGM4TrXLbOW2FXTktsbCd2bJDVmHOWfpGlC/etOMXtL++y7bxzriZqSx3y3UWHG5bN+IeDPYQmqNWTIg6J277g1ltv5UMf+hB33nknq1atIooiLrjgAorFYmOfL33pS9xwww187Wtf46677qK3t5fFixeTz+cb+3z0ox/lv//7v/nJT37C7bffTqFQ4JWvfCXxQbSc3KcOltbWVoQQCCFYsGDXhUshBJ/73OcmbXD7g5/+9Kd89KMf5etf/zpnnnkm//Iv/8KyZct45JFHmDlz5kEd22RiSebtCN8/2MNo4jnAksRbDviCapxwkJWIwhRFmDF4IwLKEgYkLWsNXkFTbZGoisArGtxCjKraYDoR1oIOJbW/Y9CglLBZFcpWqWi3liWhbJCiUSAiwe9KR7LIW3/Azq1Z9Xf4YPFZV+1S6V3u8dEOlDskRtlqUrdkanZ0NtC73kWAsYGcMrDCHga7EF3/GRuEURglEJFBlSNEqWrb0pWEqq2ewlWIpGutE2JJpU1QbYcwp3F6y1RIEWYVyU0RCIFOuah8BeM7iCgGESMSPiKZQOcLmLIl/EKpcdV+Yoz2UrcwA6yQUu9iMQbhOGAMK4vfO2Cv/XONFeu/wrKZHz3Yw9hr1Kv1znrdddz664/zktdeR5QQlLtcK+qF9dD5euaUaOSjGDkqpOyu6uvP37+Ic5Z9CREbawsWG8u3FHbiWbu2hTYIY2rb7D5GSOKUIsjaTqtbvr/3C/kLP7EcceJ4LvHiv70BYQzV1uZi4WShKa7sHst6/g6R3H34cxPPLyzJvJ0bC98/YMc/86+uI+0rTORQbVOoiuWc3qDtNk1ut0J3RSbQgDcicYrgFsEtGNySwS1q3EJkOUIQgcZ2q0pJnHJqnEMRIIhd+xkvgKo+sJ+ZTT57eOGC065sLD6D5QZG0LCcQynQ9nrC2NxLoyxnldpyW2+YBscV2ha81YU9tF301qrWzR2DU89nUbbTKkpCmBboskOYlYTKEKbimkKDzW6pCJLbQ5Lrh8H3IZ1EbR0mMZii2pkkOdwCSQ/Z14/e3j96grsRWXa+ry66mEoVM3eazdsoVVnx+K55NYcrVj58FUuP/wzGOTyyECbitKUezxanxYzjszIEI21xpHABQcPudCLb0z/94CIWn3UV6DF81ql9SGqzW04rtEa7DlHOCnlGin2yEj3rddchZo/vGjzvnKsxroTIELan9u/FamIXHE7ztyYOTaxcuXLc39/73vfo7u7mnnvu4aUvfSnGGL7yla9w2WWX8brXvQ6wLlo9PT38+Mc/5v3vfz/Dw8P867/+Kz/84Q85//zzAfj3f/93ZsyYwc0338ySJUue8/OCfRRYfvvb32KM4dxzz+VnP/sZ7e3tjfs8z2PWrFlMnTp10ge5L7jhhht497vfzXve8x4AvvKVr3DjjTfyjW98g2uuueagjm0ycSAnJ00cWrix8iMWqzcesPbp0998PZlQU5qZJU5Aot9mWaS2G/zhGG9HFe1KZOQSe6JB4lU1tkHLUYxRElWKENUQEcSWPNWq8o0jEZ6DcSSxL9GuQbvCVmBJ+OWW49hUbeMd7XdwlJt+5gE38bzFzuLKnK9djzrFtqXrRIwIBW5e4g0JVKVm31G3oNPWJkkYUEHNQkmKWnWUFf2EHrVbglogY6Vqn8yx4oeoBa8LV4EQBLnRa9W4hqgvSXKHIPNUgTibID8rQW5tCZ3wMJ7CCWJwFCbZgk55qOEyPL0RXakiUyl0eYzFgtGNSa7RelRkURIhndFqKylZOfidA/raHwysWP+Vgz2E/cJLX/1lnKqm3O5SmiLACLIbDInBGKdshbHYt51JYdJevxPZbY31MD538bWo2DS6mowAXAnR6DVifaprk1MNwhhr4ZB2qeasEBgl4ZhPL+eRL1zIUVcstx2Ida1OwCNXj9o6HHfRcoSiIQTVxyjDMZWsO+Fwsw07/+yrD43ck1rmUhO7YsXWbzzzTk08b3Ag5y8vW/JFEtUYUY2J2tN4wzFhSuCUBdmNGreoiT0rtMjAdra4RXCLBrdocCoaWdU4pQhZCSfktEJ7IAXaEWglCdO2ultrwaPFXv4vsakZaN8EwDhx5ejLlyO7bBaQ9iFOGLRj+auqCmQgUFWQkWCs05w/ZH9qz4orTsXmW6qq5QJG2WMCiAjcoq3atR3YtuhCBpaHeIOSKANRQmGUIdEviH0XfwicUoxO+phcEqe/AK6DPxwxMstjaF4vURLSfW20rzREOwZtN4sU6DqH3g2EFODUlpuEQITx89amaeX9nz/YQ9gv1DntwNEeCMbxWaFtIRvCNDr6tSc479xrxnVjwyg/PO+cq20jPsJaNdf4rIhNrRhuYk5rXCtgBzmnUTR3+t9czx//w4bdH335cmQAqa1WBMLAn354EQBnv+JLkJDEteyWBvcTtqDOSDGhb88hwxH3Ejtbrx00OE6T0zYxIYIgYGRkZNw23/fxn6ExYHh4GKChLzz11FP09fVxwQUXjDvO2WefzR133MH73/9+7rnnHsIwHLfP1KlTOfbYY7njjjsOD4Hl7LPPBuwJz5gxAykPrTdWEATcc889XHrp+A+eCy64gDvuuGPCx1SrVarVUXKw8wUxFsvmXNQMmm/ioOEC900YbRBSYLSZFMFl4aXL0fMkhanpWmA49NwV4o4EdnIZG4yrbBtvoG07t66189baeEUYo4aG7AJSvR3PceyCteeBIxvtvk5J1kiTxCnbysGn4mk8mevhd73zWTx1NeflHuZ0P8AXk1cJ2Kz6O7Rx7uJrQbMLaXzyr/6F1WGRO8pziWurwOurHdy2fR79+TTDI0nkkINTkDbgfhjcYo24a1uBJYIYYUwjiJ64tnJcE/8aWSB1Gy5HYVI+UcZWUDllg4gEiX7ouduKN4VeyfBRGdyCxstrNp+VobAoIP2oR3J7krZHS8hSSJx0MCqNU+qA/h0wcwrFo9rJ3bURvX3ATjzGWuTVrRWcWrC91qwcfn5mmi2b/3H7ixCsWPPFgzuYfcDtP78YgHOWfpHc+oDWJzRh2kH70vpIa4NT0shYYqQhdiUta3efM3PLqks57e03kK4F2GP1GisWRsZGrIS2U1CEMULXOwYlUUuCcrfPyAxJtcMKJY9/clRACbOG9EYr1mjPHvPoy20mDBpMm7VtrD+mLpwEGYFTBRkYznr9dVak1KAqB6/den9xqEycV6y9jqUt72Jpy7sO2Ht6X/gswNLjPv28Xehq4tDGBd6bwWiE56Er1Unhs8d8ejn+PI+WtQFRKk1+lkulHab8sYIqhMiqXbUOutOo0JDuE41uVxFqVDVGVCJkJbCFF7vjtDvxWaEliUGo9GX43ZZjubVjPp9tLXFK9wbe2vkHzkxM7ly5yWcPfSxdeBlIWPngaPX9y/7fPWwotrG5kMOVGkfFlEOXIHSItaBa8Yi2+/gDEq8EqmK7tVN9NrBSe8IWE0WmZsEc2SKhevaaqnHfSFtuKwREmqDbVu3LQBMlFYVpLjI2tDxRxhmpopMuxWnJ2j4RYkeZuCvH5pdkyK3TdNyXJz8vzcAim1OYOXYW3qMSPZxHtrYgWnOwYTO6XB6TxWIhpO3Skckkulxm5Y5vPwev/sHB0uM+DdLOK268+4qDPZy9xlhOO/UP5V34rIhjjDv6WYcQ5NZVbQbgTqjz2YySIA26nhEYG9u0ouwawjhOO8bGJ2xPUpjqEaYFqmq4+18vaty36GPLMVnbuRUlRUNsPOON1xOmBGaKXdK8+zv2MXXuF7Q41sUAiHzJ2a/4Uq1zxhaKHm44JMQVapy2/b0HexhN1FBfIznYMAh+8IMfcM4554zb/tnPfpYrrrhi948zhosuuoizzjqLY489FoC+vj4Aenp6xu3b09PD008/3djH8zza2tp22af++IOB/Qq5nzVrFgClUon169cTBOMXD4477rhnP7L9QH9/P3EcT/iP2N2LfM011+y1rdnBElcOdDt9E4c+6r63wmh0OHlhgG4BYh/yR0W0POyQXW/sJLNeVYIN7jNKNqqchcESpjC2tyCCILQL1boW2m0MOA7GUdZrVwkbbleJbTWJhigl0S6ookQ7iuFSgo2VNobSKWByg68HdJEdG6bSqSQdUzdO6rGbePaoV/BPhKPcNEe5W9kWFygZwwY/S2gUT6c62JTJMdyapFT2qBZcKiMO1VZJNZcgORDjlGLcAohKaDsBYj3aseJ7iDDChCFCSOsNLQSkkiAEqhiCMfgjgnKHxMsbgozEy2u6/ryDTee10z6gSa0dJMh1UZrhUJqqiZKSjvtjxLpNeH0+wZHTMC0ZxHCeTYs7caqQ832E72NKpVErsLqdgpC2kyWOWTny/LEE2xkrHv8Sy468lBWPPfu8kIMBYexn4823forzX3oVofII0xIVGlvZ7Aj7GSqwVXMTdITUBY0/f3+0Aq8+abUWYaBqVg3CGJBgkOBI4qRDucuj0mat8+rWIWPhlAQPLLfiyZyvXo/JxPgbXR77zK7hpGMRpezn9Z3//jHOet11VvDRphE+CrDkxM/aMQEr77uy8djDrcPlucSBFkv3hc8CB01cWbrosnELj0288CATPiYIJk1cAUgMgD+kyc/wKPdAcivknrbFQSKOLQeQtQXqUtz4PJOBtgvLdT5bqe6Z0+6Gz3p5MJskQTHJjrzHH0IHR8bQfucBEVmAptByiGLlw1ex7Ojx1f3v6fw9fW05/liYz0CYphj5bKtkqEQOlcilqDQjFUUVB+1I3AJoV+AWHZyKtra2gUaV49Huqmo0PtdECAgjK2wIgUn5eNtKyEqAcRUq4REnJU5Jo31FZUoGdzgg98enieb0IkZKkC9gulsIs1DqluTWRLTe9jQtj7ay9Yw2Kp0eXiqFbMmx/axuWtZWcTfX8wbjRiEgUOsKV5hq9Xm/jrHygS+w5JQrDitxZSyEYZTPCrcm6Fkuay3Aa50mTNwJUkedz56zdLRwSkj7mYkGaYxdY9DacshaDqX2HMKswqkYYl80nAbqcMrgD42KLguuWk6UAbqrrP2b3RfSaEcgjO0q/+OPP8bZL/8SpjYeaxdt3z9LT7jczrvGcJNDplvkEMXzWTBtYv/xtre9jeXLl4/b9kzdKx/+8Id54IEHuP3223e5T+yUnWRq9th7wt7scyCxX4xv+/btvPKVrySbzbJw4UJOPPHEcbeDjX35R3zyk59keHi4cduwYcNzMcR9wvOdlDSxF9hpEXZJ5u0sybz9WR1y2ZGXMnRcRP6IGHfAIchCqi+0k81yCGFcy6+wtjUitlUnMoiRlQhRDu3CdXXMRLQxXjPmsdauidg0qkgQNcslYUmTrErCisOOaoqi9ie1ewXg18VZ/KZ0JCnhovsWNG5NHDrYeVF25/9Pt8ow28lyil/lzOzjnNr6FFNSeRJuSHuuSGtPHndWgcpRFYaONORnKopTXEpTEkQ533ZSRTGEoa1KrQaYHUMQRpgowsTx6HVbDpDVsHa9a1Rgr9dyp8DLR4wc2YoKwN9eQad9Sl0C7RiMY72K45SL6OogmjMFGWq07yISPh2PhqS3xIQ9WUQuY7tUoCaqCPvTtXUPz2dx5fkCWZuY3fz7y4gSkigliXxJlBBECVtxGvuCgYU+24+35HJPAfTakw1xxji1CaawP40SGFehky5R1iNo8yh1KwozIMzZbCIx5iN44SeXo6pw7CXLOeZTy3EKEuHGnHD+Y/z0iVP3eF5G2snoBaddye0/v7jWDWbPV1UiK67UO8KMYckpV7D0hMsb57anc9wXTNZxDhSW9X5wvx63tO09kzwSi8OBzwJNcaUJRDqFzFqv/Hpn17PBsrkXs+PFAf3HS0pTbAhzkIX0pioiipGloJaPJpDVGFWKcAohqhShSsF4PhtGe+S0u+OzYKurvWFwhhTFwSQP7JjK7aUF9MWFZ3V+Y1E1ISPa5rqN5bNNTntoYcWjo7bkum8BJ3gJzkuUOCX9FHOT25mX2k53okBvKk9nskjKC0GCKtuiiSgFYQbK7TVe4EmipLKdBEFkr9dK1d6qta6rkTyUy41tYqSI3LIdKlVEGCOrIU4xRkaaaotDfrqLrIaY1hyyHEC+AJ5LnHTwhiG9Vdu5oOtQmpUlsznCG44gCCge2UHnXTvw1m23OYHOmJrdmrAiM9b2uclnDx/c/PvLiFKKKCGJPUGUtDxWu9JyWg/LaRftmdNqT9rOF1XjsELYz8949HPVKIFxJDrhEKddRmY5lLrsh6kZczkd/9HlxD5UOgTHf3Q5x358ue1AmVrii6f9jD89PWeP56SVIHYF5599Nbf++uM1fg0Y2yFe57QIwdJFl7FswSc479xrQNrzeyFw2mWzJy682t32OppdLIcADGgjDokb2NiQXC437rYngeUjH/kIv/zlL/ntb3/L9OnTG9t7e3sBdmmS2LZtW6OZore3lyAIGBwc3O0+BwP7JbB89KMfZXBwkDvvvJNkMsnKlSv5/ve/z/z58/nlL3852WPca3R2dqKU2uM/Ymf4vr/LRdBEE4caGiH3RttqoCB8VsLbksRbiFtSvOqU+zh+0Tp67opt90oltpZKQWStaGoCiQxjZDVCVCJEJaj5UocQBHbBGmyVnxSjVVRxbDsGjK18RlIjWXb3+qKdKoNTFsRlh63FLE9WeyjoyfOvXh/l+a++k/lF3/HcXkmMu68+Kb1l3ZGT9nxN7Bv2lXAmhc8x3jbm+1vZUU2ybUsrA4MZjBFkklWyuTJqdpHhhRFDRwpGZkkK03zC9hQm7VtRQ4hdqv6EkPZ3x4oexpFEaZdKh0O5GwaPgUonDBzjU5wiaVsTgBIMHpsjP1djfHurWzzpFmvLoIbK1nJEKdzhAH9HgAx1I2sDGC+uHMSKi+cah2v3CsBvb/yEDfB8mV1EcSqaxGDcqIozEsJkza/agQdvuJCjPrt8j90d1dyowFIXWbRnr8Mo7RGlPaqdPuUuj2qLAgFu3n6GygBWf3Z0IlTpMmhlc4r84ZqQ7WpOaFnPMf4Wfvj4i3c7Dq2gntW8+IwvWLuy2CArcWORRlQDKFcQlbAWAj2+RWfZMbaicOcq3j1hrECzN50w55999V4f+0BgRd/X9+txKwe/w9LcO1na9p7GbTLQ5LNNHC4wYYguFFHpFBjzrLq7LvDejG5J84uXfY25pz9N+6Oarvs1Xp5G1XSjEwUafFaWQ2S5uiufrVvW7IbT7pbPRlZgccrglICiQ/9IhgdGpvNg0PqsXq+xuLTvxVy8+TwGdHGX+5piy8HHsiMu2e19rnBolwWyskJChsxJ9dPilvFUjDYCOejS8jikN1uLMIBqK4zMUpQ6FdUWRZRy7DUZRfZ6jWyhA2Fov4eNqV2rcS37q8ZppUT7LkHOYXi2T5iWOFVDtTtN1JFCbh+2/DeXIfYlqa2GxECAKFu7vPQDW8j8aR2JB57GlMqkH9yC2D4IpfJogRKjgfayow2SCfAmt2DuUMbh2r0CltOO5bNuPkZo+zmnHUGYFgQZiXYtv30mThvkFLEnGvvbosqaUOM7aN/BeA5R1idKe8QJhaqCqeUC3vuNUT5b7oRqzQHILRiS/cZ+xgIznR0c7e7e6qvcpai2yIYgfv7ZV1tOq0EGo5yWcsV2hAnRmAeOxb5y2p357DNx2oMtvqxYt3yfttexcse3ucB9U+O2JPGWAzG8Jp6HMMbw4Q9/mJ///OfccsstzJkzXiidM2cOvb29rFq1qrEtCAJuvfVWzjjjDABOPvlkXNcdt8+WLVt46KGHGvscDOyXRdgtt9zCL37xC0499VSklMyaNYvFixeTy+W45ppreMUrXjHZ49wreJ7HySefzKpVq3jta1/b2L5q1Spe85rXHJQxNdHEZOHG8g8n71iVH7HsiEv41QPH8ZKjH6eyvoiZnalNJsfsWK/WqzOT2AowDfIe61FrJbBEvj4ZrUMpcCTGURinbq2gwYARNiBUxCBiQRArBsMUJRORmaRz/a/8cWzKt1Ao+3xFLObuzif4+7aHSYpRNf1MP6Rv01R6p22epGdtYm+xO8Ipe9fsdpFgjpMiNNvRRuBud5GxSz7nI7sqtGTLLJzSR9QjeejpqVRMAhELVNVDhimcfMkuthiDSKdsSJ9UllArifEcOwntSFDqdqh0CKpthtYjd1CuugTlHG4etC+pOrZ7xXga4dkF5igFlU6PdNWSdpPy0J5Crt2A7GpDBgI5MGLfS0phal1pIuHXPLOjZrXf4QIxamNw668u4fyzrybu9Ihr6wnaE1RbbaDtnK9ej+dIFnxhOXHC8OTFF4071HEXLke0iIb3tFMVSGWIfUnsC6KEtTqotlnxw82DjLBhtxW4/5/GV5k5RWHt8Wo+1U5REK5Psnl+G//LcbSoMreuW8DjQQ8/3XwK8VW2COWWVZfSc3cJoyRCa26643LOPe9au6DoSkQ+sp1gwoqCxDGiyriwS3/9EGhtF5qkZNnRn8RIuYsn/VjsafJ57nnXIrThN7/ddWJ7uAWU1rFy5HsNYWXl4HcO8miaaOK5xcr+b03asW4Kfsyyrg/wpnvewylTN8DaEZtDcVSrtVyUjOabGZsbCOyez8KeOe3OfLZsLXVFLImSglAJZGTDysPAYSRIsC3KATue9bneWY24u38mWwezvK+a5tqZ/818d2K23MxqOThY8cSXd9k2ls/2OiU2RFY9SckqoVYUI5+UGyCrgvTWCBEZglZFpU2Sn20ou5DeIHBLhjghidMeTtW338WVKhhb6Gbi2BYLAahaEY/vYVJJdNonynqEGUF+trUQzWwytYzNGDIpKFcwUuIWQmRsUOVaRmAY2i4Zz4VMGvO07Y4UroOJY0wQWKcDpewYXId4aidq+9CkvtebOLDYhc8mPHRtpVC7gjBjuwPjJMz9yg24jpiQ0x7/0eWIVoFKWssvp2KQkUF7tvNPq5pALSHMSIQGp6RRVYMK4K7vjufHTi2TyKnWea/ltMX+BLcWj+JBp8DWh1/JI4Up/OGBBRz1lSHAWvW1PVrGKNlY27j51k9x7uJrrdjjKVS+UuO0EoIAEUZQz0SkxmdrHYw7c1phDCse2bXQZ2c+u7MNdv33nTnv4Wqxe1P4E5Yk3oIOI24Kf3Swh9PEYYIPfehD/PjHP+YXv/gF2Wy20SDR0tJCMplECMFHP/pRrr76aubPn8/8+fO5+uqrSaVSvPnNb27s++53v5uPfexjdHR00N7ezsUXX8yiRYs4//zzD9q57ZfAUiwW6e7uBqC9vZ3t27ezYMECFi1axL333jupA9xXXHTRRbz1rW/llFNO4fTTT+db3/oW69ev5wMf+MBBHVcTTRxKWCzfgNPRAaITR8ZselkOpwRuXiKrskEcgHGVySI2jSqlBsZOPuuVH0LWQsQVOuEQpT20W6vWN0BsbFZB1U4AjAJ8TUeqyIzEDrrV5Mgrd1VDtgU5ejJ5lNBo7BjGiitgq8q6VQbdt4ABXeTn+SN4/5G3TsoYmph8SCRHuWnm5/pZl5qKHJG4Q5Ig4zB/Zj/H5TbyUH4qfiqk3K0QxsWpSJyKhxpMWQJtjF1QqYVwGkdhki5xyiVs8Sj0OpR6odqlMe0B07LD9Dtp+pM5VAXClF34diogyxLtSShLVLV2jdda4cOchztQhISPqIYYz7FVhVqD6yAi27UiavYKK5qetocN6gv+5yz9Ir9b+Qkb5FlflwshTtjrR7RXUY6mkvYQVQmO/Qyd89XreeojHwOg3AOPX2pFkuMuXA55g1SCMCMod0LQatCpmFRPgbntO3j46akk1/ggIPZ2HZutgDUELYJyRlDuMTz5MTtp/cA9b2VGYpDeVIEj0wXec85tnHvVtY2cmJt/f9kux6vbOtQFkmVHf7LhnY0UEGv89UONrqRlsy8c970ghMEgWHLiZxsT3RvvGc0L2XkyWse5i624g8FWVxrDb343XlA5bEWWwe8cMLuwJpp4oWCxfAMqm6WcTzA7NcBjxx5Dqdt+N3vDE3DaWofKM/JZmJDThjl/HJ8VkV00NNLYam1huxaNNDhuTMYN6HWGJ+VcH6lOoz1RYsBJs72c5s7KbOa7/bvdf2yRSlNsOTQwz8mQ97awKWplKE4Rug4Zp0K7V2RdrpcoKXELMd5QTOwKopYYWZHESUG1xV6fquIigwQyii2XrNvchhEGah0uIHwPkgl0LkG1zafU41BtFWjXFmqowFo/I6xVE6mktSkrBqhSrTu1fmxtEG4SCkVrB1YXLXWNSwMoZWPnujoYmZniD3++/CC9yk3sD275zaXj+GxtyoyMLJ+NkrXu6LYQ4WgqOTWO09ZR6h3lsyd+aDlG2m5qsHZj1RZBlLTXYLXNELVH+Jtdktvsc+yMzGaDP6yJEoIgK6m2CIpTYd3fXQxczKUP/BUnpp5mQWILP3rvt1n6tc/Yoh7YhS/ujHoW3bIFn4CImiW7wl+/gxWPf8neN/Oj9nofy2mxuZ7LjvkURghWPjxaPDQRn63/fCah5XAVWW6s/IjF6o0HexgvSBgE8f6ZUh1UfOMb3wDgnHPOGbf9e9/7Hu94xzsA+PjHP065XOaDH/wgg4ODvOhFL+Kmm24iW7OYBVi+fDmO4/DXf/3XlMtlzjvvPP7t3/4NpXbtRHuusF8Cy5FHHsljjz3G7NmzOeGEE/iXf/kXZs+ezTe/+U2mTJky2WPcJ7zxjW9kYGCAK6+8ki1btnDsscfy61//mlmzZj0nz79YvXHSAhubaOJAYZX+T5Z1fYDemxzu75pGcYam9dGaV6oS4CrM2M4UUw+8r2Uc1SehyuazoGsVzfVqPyWtr2rSJ2zxCdMKYWxInokNKFHLLLBEP/YN0ovpThY4Kbluv89Lo5FjvmTmugEnp9cxO9FPaBQz3AHOTfYDEzC4Gjpkmve2bEH3LeC7Iz184ebX0HmPJNUf42+vsuqOT+/3+JrYN+ypiwXgvNZH+N3UI6imfGRJ4WUCjkhvIzSKvlIWz41ITx1mwMlRqnqI2MEdSaMqka04DW3QLY5EuwrtK6KUojDFoTAdqrMDFs7exGt7/8IZybV8ZsNr2NLZQdgJ1XYHf8C2smefEuRnO/iDgtQWUBVt29+VRBVDS8Z934ouQc3WwXEaFX/Uqv6agYGHJ2RsOPvlX+LW2y/jrNddhz9iiJKCagvQFpDJVsgmqrgdMZXIpX84zewfXovUHvNuuMFm94jRz60oBSqwC3XVNivSyM4qvW155rX248mIx5MhQYtnQ5t3ckc49pLleAbihEA7UJpmED0VXvqbS/j9eV/mmyfv2g2584SubhVhal2NWkp+e8snAFhy8mcRrv2sF7XKvsaNmrii7ec8Uo4uxIDthFEKEcYsXXRZQ6RZef/nd/v63rLqUs4795oJO1jqOP/sq63AVa9SnEAkOpSxtO09h1wnS5PPNnE4YJX+T5Zk3s6snwqeWNBF/8kGnY1ou9udmNPuDZ+tW4o5zq6cNmsn7TI0ENv94oTtXqlbQhoHjDIYLWhxy0xzRoB0Y8wjukxG+uP46t6gxxnmxe1PMSM9yOzEAC9PPz3uuHvCWC71gY2n88fNs3nw1Z/bwyOamEyM5bMneAlmOAOsDkq0qhKhUUx1h1jRdQyl7gy+L3DKhighEFWJMyJtF2uP7WRVVQcZ+7jGIIWoZayEmLG5QbUFYZ3wqHYmGJnhkJ8FZlaZTKZMeGc7ANVW13YaJB1k1ZIJla/Y7+mhgq3qFxIjNZRt541QClOpQsIftQZzHYzWCM8j7m3jD/918XP46jYxWdiZz3p5TZyQVHNQ6TbolhAvE5DwQlpTZYLIaXBatd3blc8mrXVirC0fDdOCoAWCHMQpjclFKCcmTjkELaIh6tRxwoeX4wFRop4FYwWcaGqVc35zMb877zquPe6/xj1mZz55+puvRwYGp95tKGz3TJ1TLjn5s0glazx2/LpHI4NkIk5bEyZFGFuBRtnvkom6Wsai3tGy267tnezCDjfBZUnyrZPqutLE8xNm5wKXCSCE4IorruCKK67Y7T6JRIKvfvWrfPWrX53E0T07CLM3Z7cTfvSjHxGGIe94xzv4y1/+wpIlS+jv78fzPL7//e/zxjcevgrmyMgILS0tDA8P77d/dXNS2sThgmVHXMLTfz0Vo6DlKYM/HOOOhKhSzcu3VgGC1qAZzWWBWj4LiHrGSo14NBasPWUJU84h9gUYWy0FliiFKUmUgnI3BG0xbleFE6Zt4m29f+AVqX3LYCmbKndUUiREyJmJyVXx37n+Jdz1i2OZfksBEUREuQRBi8Nt/7N7n+UmJhd7Elku3HIyK586mspQgs4pw7xtzp8oaY/b+49g40gLWku0ERS3ZEhsUbQ+oXGLthVdxAYZabQrrRWTZy2f8jMkIwtDTjryaS6ZvoIX+7YW4X+KaS5a+be0zh6iGjiU8z5qm1cLJhVkn6Zh7yBDW83qDYfIYmCDRnNZGyIKoDUmCBudLE0bhcMbZ7/K2oI4hYjYl5R6XArTBdXjSvh+yMLurZzR9iSPl7t5dKiHTYOthJtTVhBwNeveN/7z5Ph/WI4KoDgVqu2a5NQCXbkCbX6ZwWqSDVva0RUHmYh46m/HCw/HfHo5IrbiTJzUmJaI+TP7eHHHOgA+v+i/dxn/S/7flxmc7+DlIdkf4xZi3HyIcSRGQJxQhBnVWDRZevxn7APrljtRzYM9CO1PIexks7ZAaRxVs+qxC5Ui0lZsxOYdmYSHdq3tTpR2+d2Kj+/T679zHsvNt36KC158JQjBTX/8zD4d61DBs+WjTT7bxAsJy6b/PeveNccW7XjQ+eBuOO0z8NnGtnpVf+0zy7iKKOVS6XStf3+ord2NI4iSkiAtbDB5FsKsIUpryETMmb6dN027m/e2bGmMdVOcZ5rKTnAWz4xBXUJj6JB7J6xMhIVf/zvCrCFzzCCvmvnQhN8JTRwY1Pls1YQ8FQW4wtAuJXkdc+3W81l164m0PipIDMaUehT52YbkFoEKa/kUAvwhQ3IgxhsOUSNVZLFircKCYLQzW9au3c5Whhe2suMoSXRkibPmrKXVLbFixWnIADofiG03dlljlLDf/SMBshwitmy3C8tg7cFq3V86X0B4HiKTxhSKDeHShCGyq4PSsVO49VfNOdLhirF8VnuSUrdLYZqg3GswnVUcP2Zudz/ndK1hQ6V9lNNuSWFcw7r3jxfXTn7vclRgCHK1Dj/Pzv3jpMY4BhEJ/B2SoNWw9h/G24Md//c20D5KYS3KMoY4pZk9v4/FvatxRczHj1kx7jHHfnw52rMFcN4IeMO2A8YtxLZjC4iSiiit+MN/2i7ypQsvs98JUTzakVXPNzKmIbSPFd0bXDfW9r1R63isW00bTxFm953PTpTHMtZm7HATXOqYDE7axHjccsst/NU7X8N7frn0YA8FgG8u+T9u/O/fcPrppx/soRxU7FcHy1veMhpgdOKJJ7Ju3TpWr17NzJkz6ezsnLTBHepY1vUBVmz/5i7bV8U/5QLvzdwU/Pg5H9MF7pu4KfzJc/68TRx+WNb1AeJ5UynNisGPyWxykUEtlF7ZbpQ44djOk2ptIUyrhr2LiI1dJBaCOO3ZSsFax0u9atBW9Uki31ZCC2MwUhD7EKYhSltxReRCOlsKzMtsp9cZITQSV+z9x9PWOCAky0w1DJOW3mLx9u7budM/FtU3CMbgaChOzXHKe27g7u9c9MwHoFnN8Wyxp06W17Xdw192TGdT4GCMQBuJwtBXzDK8vgWhBd7UIonuEhWVpFi0nSZewdhg2pr1kTA0vIExkGit8IaeuxviCsBJfh/ZGSNIYZDSMGf6dp6iC2erR2Y9uCWDDIydnAYxUdpFBDEyXwLPg8Fh6+0bWL9s4hjh+xN+jxxIHO4k/VBEfTHhJa+9zmZMCRs+H1cVKhnQ5pU4I/U4070Bvn7Svz/j8e7/xwt3e9+lD/wVW3P9/HHDHHITiNFRyi7CyHkFou1Jcm1Fzuxcy2tz95KVEb9YewKvmXvfuMfc9j+XcMq7b0A7Au0JopQi+fQQKx61nSxnvf46qi2S4z+6nPu/ciEr7/88i8/8AiLWqJHK6CSzHrZbn3gCOA7CUY2/611baF1bDPIxQiC0JnY9gty+t3XXLcKWLrSdK+effTU339m0J9lbLOv5O1Zs/cYu21fFP2XZ9L9nxcZ/es7H1PzebGJvsazrA5jeDipdmrtfv5zTbvs74seSE3JaVdkDnwWQtqOVWkYAgFHSFmLUOlWMABnbzymtIEoKgqzltFHaEGc0TluF9lyJebkBYuQ4UWWayjKiy+RNtIvQMqLLbI1jhrTPqf6uAeFtMvWsXqsRXWb6zUWCDp+Nqo0FC7bsU17L0hMuZ+V9Vz6rMbyQUeezvnA5ynUp6AoZmaBNwktb1vCbGUcSbEzjliUiAlURJHdYQcVIKHY7tetNIgOFKtUWeusdWjsFdItiBX9HBHgopSlEPjuqKcKsRoaCUrciMWgXlIOMtF0zkcEfKDRsx+wis67ZgdmFZBMEMBzXhBfdEF+CWZ3PubiyrPeDEOvnnEs/XzGOz5ZjENbiyykIghaFSEa0+yXOSD1Bn9fyjJz2nm9bPnvCR5bvkhcIMPsH11JpEZhI7HIfEmIHijM17pQS8dYkyZ4iS6Y8wt+2/IWUUNy1fjanzlzXeMhDX7qQYy5bTuzbQiNVFsQJgVsc7Vo58w3XE6YEp77rBu767kXorG8D7/MVK56M5bN10XIMp20UoMKo+BhrkAkwBhlEaCBO+Jz5husbQs7eoD43W3rC5fb7y1WHrXVYE028ELHXK5gXXbR3C4kAN9xww34N5nDDzl/k9Uq/JYm3HBRxpYkm9haL1RtxOttRIxWSm7KUe+12GWiEppaLItG+JepmTEAo2PtFrcLDKEnQ6qKdUWJkBLVsAEGYEoRpW7Gi3VHv3zitiTMxXjags6XAi7vXsSz3ACd7EwQKjMH/z957hkl2VWfb994nVu443ZPzjHKWAAkkoTQzYMDAi42NAYMNH8Fgi2SRMSCBSTJgg7H9GgMvTjLZMCONAkJCAgWUR2ly7Bwqnrj392NX9+TR5KCp+7r66u6qUyfVqVNr72etZ4U6xhPbB52xTphuZeixKmTE4RVXGjrk7Tf9JZ3PNjNYwghZbaCtEt6Yeu4VNGlNEh06exNZptlVlvQ+yc2cylg9wy/6T2dKpkqSSqxAYgWCMO/hFUNkPqY+1Wo2V5wo8QY0k9lNcdYmaoc0kfTHJWB0clubkhyOnTJeyTBnyjC92Qrlbp/hejthm0WSE2bAG5jqrbDNISz5ZIaz5J4ZNdlRjunBohsBIuMfnZO3KwpOQLvWEwIt4JfLP8SFb/kKTh2sIZeKEvxGzKbDPZ+p7tghb6PLqfDq0oPM8Md4ptqz2/PPfMQMYK+8433c9tqP8+pfv5u53iBzbUFW5oD+Pa73gf+75zhv7te/zLofmIzEMz50I4tuuJFnPnKtERC1Juz0ya5tfk6aGX+TIiKY5rjNXi1C7JAF2LQHE5FE+DZBd45Gt03iCy595Rf51U/3f5Jm2UKTIShgcoLpqkuvP+Gswo4Vu4orE/HssrnvOybiCrCztVyLFnvhavk67CndiFST2yT542f/D+mw6bO3x5hW7DmeFYqmwGyZXio7xrRNsUXZgqhgrG60aFYU2MYGJy5plK/AVfilgPldQ5zZtpWLcmuY7wzhN21z1iRVxpTLqnAmq4MeLsit42y3nxHlsCnpALK0yTpZGR2R8/W29b+HjFO8/gbtT+SZ/ppR/nZkAf9612d59nXPbYHbElcOnR3j2bz0aeiQWxvt/LYyj/ZCnYH5GRASpwr+oLGjs4IUkWp8VxIWTQyb+pI06yDqDiJJTHwJzYnhxFzrjo1TiSlscBjN5/hdMBMdW+S2SBq9ps+GU0lJM8a2OXUFMnZwRnxk2UanRrgRjgNtRbPekTF0GE4+ruMGOk4Qi+eSFHYXBY84rrt7P6UWh4wW8MsVf81Fb/4KVgO8UUh9mygWPMhM/se9kJwdsr++NQ9/fS+JQ6FFsbdCtbr7mOiRvzOvOe8XH2N6YZyfvfbrvOPBN3JBZt2kOH3+HqYNVl2/9ySl+V/6Cmuagsd577iR0z98I70ZBzIOqjOLv37ExJET8WyaQrLD9bVrTBvH260mowg8m6g7S5y3CUumCvwlr/4Sd/1o/2zzlp36YWMhDWjXQjTD6ZbI0qLFicF+CywPPfTQfi0nxMkxIFra/ufGN3wHz3zRbKZzc/D9Y7VbreqVFvuHVqQjo8goZsqDbYwuckBr06hbAKo5GLWFeSxrGd/SpOlBimnsCZB6gqDNLDvhnaoFxrffhrhpmZDkNSqjwE+xvBTfj2jPNejK1FhYGOS83Hpm2hVg77YJo6pOf6qZYaXkpU9ZNShK00/FObiCvH3ysf4XUVwrsCJlJgTjBBoB7Y+YapZlM/8SomiPmb8tDj8Tg9K+tEqvlWdU1SkIeHv7Q/Q44/z9s5ezfrCTRruDbSnT2ycUiIpNGElkPibtigmUQ+oJZASIpuDnSwqRQjkQFzUqtPnvTecxwx3mtbkKADEWc9tGeKxheo0lysKRikxPjUbRQY25pK5F2OYjY9NgPCpC6lnIsET2mQhqdUSp0Cw5F8bD+qifyKO/yZOFu39oBlD3f/t9vPg1X0LZFrXQpRxarJCncnb31kPexgdOvRmALWvO3au1y9sfeDMdnsl0fl3PA7RZNeJmj6qaPrAKkbk/jbnip2Zg9/gXrjUVUB+BO2756z0uv6znnYhc1gw2d2zAmyo0yjQSTRITMwkBaWp85HtyoE0lmBUqLl/6twgNd9y8+3Z2q8IKo+0ZhlJy650f4apLTdPRa170mUmbsKsv/uxufbT29NjJxrI517J8/Y2T/1vtJQCWrzt2CVM31757zLbd4sQiGRzGShJm/k9E8MhUOuZa22NaQFgCZUuUJUiLthFdJpo4a5CpWW7CKjT1xKSoAsZqBmF+T1SqpBmNcjTaN3Gtl4tw7RTXSZhVHGNWdoQup4IvY3yRUlGa+0OXTdFChpIC6xpdSDRr7SkArI+6qCuXktWgZnl0W2W2pGMHbSW2J746OodEG8uzsMMjM6J497++A6EgU4NL/vvLFJ4enWz83OLIIXuf4UOPvI7/eeJcLpm/lqs6VrG+1kl7po67OGGT103n/Tb+mG5WVwusVGPXUmQsUHZTZPEsZMFD2hISZeI7IRD1EKIY7TmIWFFaGyJTj9pUn7BDIyPIbRLEGVO9LWONFWrshtm/qDuLX8kh7ObYyvdQOQ+RGDFHxD66EaDrDUR3JyKMiDoyxNljEGBKYRKHWhxWJuLZ+77zPl7y6i+RVAR2IKlNt4nDLLeIxXTk63DWoW1n/dv2nUyz8KbPcsHMAWZnRwB4Q+e9WEJxkEY8zPtRnWv++9Pcct8n+N0/XrvPGHBZzzsRnmuqrneMaePEJMsBaNsILdLEs2Y+ME+cFQgFTkNjBYrLXvYFhGY3y7BrXmR6xkza2TYCkJZJRmpWWu5oEbaj0LKr6NISYU5O1HEysG/J3Ib9vjPdcccdR3I/Tjj21Iy0VbXS4kRCpymqWsXvq9F4cRvlc2Lqq1yKG01/Cm2Zhp2pKxAanJoGV5NkJVqaYFxoSJ1mRp/btFdqDkKRZuI6yWqSthSrEFPMBRQzAZ1+nTa3QYdbY5Y3wjxvgDn2MLPs5/aU7rbAa9qHTYgrh8q1287n0dFpFN2Qp2+bz/RLN/HqqQ9zy3+9gI6+FH8gaAY8JkNFVBomsyUI0UnCkvybkfkcdLQ9Z3O7FofGpe96O9M/uJr/mHs7oVYMphZZmRIoB9dKOX3WBqb7Y9yy+RRkbIJbuyqRY5IQENmEpDsmzdhYDQHKXN9CQZy30MKUk6uqzVg+wy9GzgIe5bW5CnPsMvNzg6zPtmNLRaTMRHXeD8l4MSOJpDHNfABK6zRWpMn2mybkSc5CZz1EGKErVYTnopMENaXtqJ/DYxl8nyz2ZOe//UYe/OEHeOEbvoxQkvGsJIot1pQ7gYOvrtjx/L1m/kO7PQ7wrW9/jVNzZ7BWdgPwxwt+S7htHo4wgsvpTpZrXvQZtCVZefee92HJhX/Dzfd/cnJbe9uPta+2Wf+uD3DW+25ERvDw3187KTgvPf2jiCiGMEKkKaQpOkmadiLKNOSVwujyjYDMhnHcsQzakaS+hfJM5t+VV3wOlEZGChkliDjFVQoRJqZyJQi3Nyd1HJY/bfbt1l991JznHXqw7HEQLQVXv/j6vZ6Lk4EdxRWg1ROqxYmFVuhqDVEsYgUpYQmqixKCVS7FDSlW1IxpHWOBaDcUaGHiWYHpyaabMatnBJbUNRUqE4jmLSbs0KTdMXYmJu/H5P2QrBPhWwm2VBSdgA63RrtjqlB8EVPTNoGyWRtOYWPYSX9YpJ64lNwGBatBX1xiKC5gCUVdpFRTnyfTadRz63C8AaZYB1adfe228yknPguyg9z84cv4h3/4Km99/E0MbGknv8ZmZm0Y1ZtBS8hv0rhVjR0o/M1VRKXOsqnvZnjJfKa/bQ0/uuQfDvOb1WKCx14xncWqj7s+fgpf/L1f8L/ybIaDLGFsIyITv9Z6BYVN2iR6KY3dSBFVRZK1J21uk5yLZVuIKDV9hJRCOLZJPEhTZATakWT7E7Sw0UKgbRAJZsxmC0SqcSsamWiE0ihPotrzyHEJ5Qo0NLIRTFbFYFnbJ55dh3B2J0Ib690jzdLSW1kx/q+T/+/6/XU0WdbzThN3HKtKz6PABX/+FR5oVl+88A1fBi0ZXyRIYouhcXNv2ptt/nOxbLGJLyfiNmhWcDR7oaz66BRE6uHOTrmy8AQAL5mzejdHg6VnfpQVj12/x23samu48tc7x4FWPWLpWR/j2Td1sOYD7+Oc95h49nffunanBMqdYlrb3i60pArd/IKYiGe9LWWsWhbtTIj3RiixQsXVF38WkShkaEpTpFLmvjvrr7Zb/QFYkhVPbD+mCZFlx5h8b/H5832M1aLF8czxIXe1OGSW+G947oVatNgFnabILYO0P6XxNrrUZyq2Xa4ZOtNibJ6kOl0StAvinCDKC8KSpNEpzE+XpNEpCdsEcdH4nIZdmmCKJujRNHoUwbQEPTOgY/o483oHOXPKNi7s2sglHWt4QWktF+bX8YLsas52+znTzSCf45bULrPkhYs6TBr5RR97By/863dw9zcvYvRHM1j3g/nYNVi9rpe/++kr6LkvJLuxgj1QNv6qVnP/kgQ813h0x7H53/dI2g/NG7vFc3P3Dz/AA79exC8DQa+VxxGKH5XP5t7x+cwsjnFBcQMlu0GlksEbFmS3QWmNprhOk1tnhLlsWwNdjFEuyNgIIFGbptFpqrCsEGQoCeoujw5N4+/WXsUfrr2Srw9dRtaKmJKrckH7Rl7X8wBT82UAqo1mJUoq8EfAG0soPVOl7ZFhcpsbZLc00I4FGd/4WGezqHkzuPnBvzkq521PTROPBbevvO6kCPxL60IAfvP992M3NDIQaC1IleTKO95H9MkxPvTI6wBTbbIjV1z9+Z3er13fuz2dvx3P68IZWylYDc7IbaZvyzQAvKlrJ5eVvc8Yi7x9WGroXaqR93r9FEw/g6hofnZkxRPXs/zZL5j7pmOD4yAcB+E6CNtGOLaxHRHCVLTUG1iVBlbZnLs4K0ldibIlVpgiEjXZcFQkygxEJ/q9AAjB8rVf2mkf7LEGS8/ct3ByrIWVZT3vPKbbP95Y2vG2Y70LLU5AdJpCFGGP1Oh4JqXwtEPUBtsukQyfZjM+x6I6XRrb2qwkKpr4NugUNLpNPBu0SaKi6acStkPQCVGbaa4cFSHsAGtOjd7eMRb2DnJWz1ZOae9nVn6U6dlxpmfH6PKqTPfGOCuzkZnOMA4pgbapKJ9Y25QTn2riIYWmlrisC7rZHHXQUC7jSYbxJMsjlRkMxzkGkwL3h130pVXAVHHHOtnt2N/fdx4vu/p1vGzJH7Js2R/x5P93Kpv/aj63fOhSlCN41V3vou2zWRb9W8SMW8tmci/RyFiTHUonq9BV1oFGgK7VqfUK/mr6yqP7Jp5kLN/4dwD03iV58+o/4JRCH45MGdjahj9oERWNvbJTV9jlEGewhttXxtk2jr+ljDdQQyYK5UpTrWUJSBQiUWjXxLsiSpsiS4pTiSmuD5nyUExxvUImYEVGVIyKFmHJiJBaCkibvYviGB3FqPEyamQMXamixyumub1tmyrsegNv4wiNbveAek0cCktLbz0q23kulvd/83ktrgCU1oSTf0/GtKHAshRJaDH/K19h9fsWA3DmTz+502uXLb5uUkSZfGzhzhUcO4orAMuf/JyJHaOIDX/2IYglA4ERctZuNg4CO/aMkr3PmOv8AFhy/id3eyzNNXsRFXaPZ2GXmNayTEzruTvHs1Ka2LQRTMazspEgE4WMNUnGmvysasdC29LEs/YOOe9ag7TMtnbBGWnscd8nONbjq2te2LKQbNFCaN0yrdyRcrlMqVRifHycYnEPd9cWLZ4nXC1fN/m3uuw8hNJEJdPofuhMl9rZAXOmDbFuczdi3MFqSLTUKE+jLY1QYjJTSRUT3EJEW65Bzg3J2jF5J2JmdpSFfh8z3WF6rTLdVswUmTmgBvYHwq79WfaHNUmVdzz7ejY8MIPcFkFum8JuKIQGf2sVWW5AvWGyr7vbiaYUcMbMZLm1dQRdqYIQpKfNIej2aHTIvfYyaHF4uPrF1xPnbbb8WczTL/kuP6/79Ccl3lrc3lvi2m3nc8uPLqKwUeOWFVFBEucFoy8IyRYDgrqL3OKT6RdYoZlAiQvNapOsRvWESFuD0ORzAUlqEccWf7j4d9w3MptabEx/tw21YbsJwZiPSAT+VpvuhxO80RhlS6I2Gy0FYUnQ/mQd5Vo4wzVEIzKTzlHM8tVfPFan8qhysmdVLbnzrzil2M+9/XOZ3zbE9+f8cvK5YVVjbexSVj45GfJUOI2hpMCri48ww/LwhMNVbzQTCjtaBUz8vyMTz8lIoWzJ7beZ56+67IbJZvB7Y1erqF0rjva23bnf/xwA697w4T2u96XX/C0i1WaQGSaTYolINSJKTLbiDtQXd1GbYpEZTsmtHQdAWxY3P3TgguSyBR9Eey5pW4Y0a4Ni8pwczxxqPNqKZ1ucLOwYz1ptbSazHiCfQ7sOG1/dReaSISyhGX68CysQpnmyp02Vijbf/WB6qihPoT0T4MqahTMuUZ7Gnl/llfMfY1Gmj4WuiTf6khIpklQLLKFps2rMt0eYYTt4wmFjUqMvzRBohzsqpzEWm0QcW6ZsrrezuVoi60QU3ZAgtYlSC6UFfeNFwoaJZ69a9DS/3/kg3972EmbnRnhBfjVb43aervdyRm4L7yhtYUta4a7GLG4eOYOH/uMMen9TRcSmIbnybESSImuhiT2EIO3Moy1Jo8enOt0ity0lt7GOtbEPXJen/3YKt77k60y3MjsJ9C0OL8tm/qVJMtCaNe+Yw01v/ApvfuxPKa9pY8bpffSPF/B/WWDqL4cR5ZqxKrYsY0dk2yRTSiQFB6uRYI81zPubJOA4YFtoS6D97T1KtGNNfvfGbR61qS52w1StoMGppaSexKkkOKMNRN8QOjT9gITnmongQs4kCtXqpv+JMh8eXcpTn108oP5pJzLLZv4lyzd99VjvxjHj0ts+SE+myrOjXcwsjvGThTfzn9V2buq/gC2VEo6VUgk8KutLaMvYKXrFkHOnbyFrh/T9iekhuPzpz7Ns3gdAit3GQ8umv8css+Xru1W7LFv4oT2KEJOvXXzdbuLNbuvYQwXN3L//MtpVrH/73q/jK67+fNM6XWGP1hFpczo1VTtXoQCq4BP0mh6DmYGEzGaTmKc9Z7JS/EBYtvg6tO+QFnzSjHXCjKtaMenh5/bbb+e1b3kVf/qTlx/rXQHgX5b+lFt+dBsvetGLjvWuHFOOzCxnixYtjntWqpsAMzAdOtsnbIMpv0uI8xbVeSn/33l3MRAVGalnqfkeSdjs6ik0Qmi0MhnZSE13V5kZxXHm54fodcfwRUxWRkx3RphjjzHDdsgIHziyTb0PVFy5P4wZSLu4qucp/n1xAbWtDW8sweurmiywWt1M/CUJZDMgJWGHQ+pJrFBhxbEpxXddlGusJhpdJ0cfqmOJvb4fO5uh+3+m8IL8/+GGU35EpLd/nT0YRbygsJaV5y1m3CmR6bdIshCVgIZNvZHHGTV2YFEJ7BqkvrG4m+x/qwRCpuSyIZ6dUsoEODJlVWUqF7Rv5Edrz8K2FNJSRA0HtxCRxpJgOgwnNvnNFtm+mPyaMknRQwufkdNylNaGJG0ZLMtCKGXsHI4we5tYv/qSz+5WKn8k2Ztn8MnCzZf9HR999DUMDhVw7YT/rLbzqlwfGeGxKbHosEIWOwmPRR515dJlV5hv51FNc/Fbv2csMa64evs69yR87Pr4FVd/Hhmp5xRXwFhtTAxad32fVN8ibv2e+XvH7EGAOVOHiNWee7uc+b4bcWe7NKYYy53clu2WNM54jD0e7lS7qC2BDBX+mLHy0Z65rx/MQBRg+eovsvSsjyHSZkaA3OF8HUdiy7Led7G87xtH/XPZosWJzo7xrPBcypfMxR+JcdcNovMZ6rMS3jf/V9xXnsctPUWS0EKoid4qJmEIbf4XXoqfi/C9GEemhIlNreYjpGJh9yCLMn3MdIYpyICcSMjKiIrysND4IqbDCumQkowwVa1z7AI1XcfXCdXUI2NFlOwGm4J2qonLcCXHqMhC+xgAWTvGlgpKQAmk0AyGeT751CsB8K2YHwfn8Wj/NCr9eZZnTue73WUqgYfWcOWsZ+n4vS1s6JhO730J2dUjiLpEhM2J91RBxke5FqOLs0RFk1ySOhaF1c3ncxlOn7GNNXEbJVnhGHSKO2lYvumrLJtzLSCYek/MdS95DbNLozwRtjPe8NFPFkBAMK2An2pEIzQZ9LZlrDMbMW6UIBqx8SWZaHTfFG1EClopI6yI7f01tSURsSLbH9PosvHGlLHR80wvzqjNQdsCly7EWMVUNiWJsUZKFbVTukjdLgpPjpprK4rRjmVefwTZ1R5sf587EkyIK8sWfPCkSZTakV9d+UXe8eAbuX/9AvRs+HndZ6Y9zOJCP6cVtiGF5p6huZT9AmiYOWuIeuSyrV5gfjHkyh8/xEKvn2WLgTiePJ9Lu94OmN7GOk0nLUuXP/357RUxcbJbxfKuTCw/8XvisQlU3yJ+fufEfzvE0G0RqL2P5V/wpq/gFG0anRZWpCk9o5FhjAgSYxEmhPmMCmGqwKRExibZTybaVJcJcfAx7dOfZ8m5n5wUTfeVcHWs2NEG+YorP3/cxNktWhwNWgJLi4NiSeaN3Nz43rHejRaHiam/HOX87z7O93suZtodgj+4+Df8dcdqvj42i2nFHsbcDEkqCRObIDSTXVqb4CPjR5w/ZRNn5LZwmr+FOXaZgpRIBHnh4ogD844+kqhmk2eAjUmFgpSkVJnhjCCExi1rrEZimkOWK+C66FodHcdIpRGNgIIwZb0kCh3H6DRF1+s4Iw3igj3ZIPJ45Gr5usmJiBOaOIZKSunXDaL+Xt73vj/gjQvu4+EoYHnlLP7pt5eS66gzvW2cNQtcUjeDcjWqM4aahVWTiBTSgiLNQeqbZrZCGWuktJgiHUVvR5mBsQJ1LSjkApQWZO2Y0SRLqiS+m3DejM08sGEWcdUFS+F3NmgEOay6xK1YVOcXaXRYjC3WJO0xQpnMWqfuI1Iozz7yTp17m1g/VpO4x8sA4Fhw/Vk/5PpmQ9BLb/sgK4tDXFJaTY89zlWZCp5wmGJVeUF2Lee75lrZ1TpxT+dPNO08dn1ub+d6154jy077iMmMDSN0KcfSsz7G7c1Gx1dc/flJcWdv3HHFl/f4+KmfuBHLhvGF8ILLVnFNxxP884YXs/nZKWS22uS2WuS3WHhDDUQjRmddlGuhmp7wQm0XIA+lT8pE0+Yrrvz8bua4+2oYejRZ3veNfTZbbXFk2LVqq8WJTTo8iluZxbo/10z5xQza79nK/3nBU7y12M/qoIe2jhppKgkjmzi0m8kUJnHI9lLacg06szXydoRvxSgE9cTFt2K63BoFGSDR+CKlJKGWKsbSLDkZ0iYbOGgsdp6c65aKQKdM90bpi9qopCbZSGmBVoIUQawsck5E3gkpOQ1mZUfIWyGLMn08XJvF2tEOxvqKjFayJOMeVtnCAsSYRf9YF9pTZLrqbG600ZOtsrGokaERlUWcQBRDGKJT06fD6YNsh0t2SJC6An8kRlQbpjKi1mDV1l78mTFDqaLzaL+J+8HzJp6dQFpkV/Ux/g+z2HqVwo0EldXtLPxxmSTvkmQt0lLGOBULYSZpU41QCiKFUAptWWjXCClCa0hStGcb4cO3kXHTZrN5fWpLIpTGG0uxIkWct03l6IjCHU9IXUmac7FDY20rPBed89m0rJ13vvlnfO3xl2J/uwTS2O5VZkgq845sE5Z9CShHU1zZkZNRXJngH8//Hpxv/n7RLTGvnPEojkjJWiEznBHuSBfitgecO30Lpxa2sabWTY9f4Y/b78URin8ZesluVSYT7Nj/ZPKxvSy7I8u63wGFPDrjIdi9kmXZqR/m53f8YK+vX/cne67EBnjhn3wFAdS7LYYvjMl11oluLZEdVPhDMc5YA9mIIVWovIvyHbRtRE2h9PakOq0PKaadqObeNbnqeIlnJ8SVK6/4HLffvvfz2eJwIFC6ldx7PNESWFocHLL1QX6+sFLdxJLMG/nRf76E05euo3zzTJ4Ynwo9j9BtV7igfSPV1GMszrCm3EVf5KCV8V713JiuXI2LCuu4PLuGOXYBKBzrQ5pEobgvVLzQs9mSVgi0YL5tBJ9ZdoGBtMo9jen8qO9c6k+1URhTRG0u9qiDqAjU6JhpYqc0aRQjLAsRxQgpzGQkJsNGuC5pxqE2xcYfPX5dF58vg9Hl/d9kWe+7wLFxB6qUB9tIFwh+Wj4XT8YUu2oEoUPRDTl/9iZ+J2aiIgs0YOtJYUUUYnQiSazmc1qAm+J3Nsj6EY5MyWYievIVuvwaz452k7VjHhmejmunBJGN0gLbTbDWZEh9TZpJkJFAphDnJP0vUlx14SNsqxdZ9ehs6r2mz0vqCiPGHYWGoC2OT3515Z4H5d7mqZzvuHt93a7NPQFW/vvEc/ueYLjmD0y/FwF859mL6bbLfGvL5Tz7p/NRrqZz8RD/esZ3eN8fvmOngZvsfWZyu7tWr+yLxoIQnUjmzennizN+Tq+V541n/JjG6SGvX/1KHls/nfEtHp2PO/hDMUGXw2/+n7FYvOwVX9xuuwAoR3LZy7/AnT/f7t99wJl7u+qZzf8vfdUXEYkG59i2JhQ7ZCT++AfvOqb7ctIgWvHs84WV6iaulq/Du381/oWnMXiepv2XETdvOIUv9DxEl1Phop6NhMpm1XAPw1EerSVCKBw/IZ8JmZov0+1XmeWP0GFXkUITKodA21hoClaj2U+litX0ya0pD0uYz+6zcRu+iDnbDchLI6RYzWqCHnuc0TjH6toUgtQmUdJUhDcnR3wrwbdiinZArC2qqcdj9ZmsrnRTb3jk1ttEJQsvEMgI4mKzsXIM2oMwcHiir5c0tmh7SuD1V43Hf5yYnhlJYqoZghBRrpCvN0BKdL1uKhMch/CM2aSeJJ+rMKayKCSLj83buU+eL/EsNCtHF3wQpEPpoQFqU3tpdEN+gyDNOsgwhYxF1O7iKdNjheZ3o5YS4QiUsMGWpvreEugU8Gy0a6OlJMk2e7IojXIlMlJoKVCuwAqadnihwq1J7HqKO1gn6s6ays9m9efgpb20v3ETb+n5LdOcUZJNOarTBMqB8YUabW+31mtx8nHvNbuLH19b/RGWzHuKZe2PUFMeN289lTanwTmuz6iq8+bOX+8W0/7icfN74vHHogZnupk9bvPlF78SVErj/1o4Vsq6gU6SzyzgFRc9xFen3W+Wuew1u/WBOdiYtjJTIFJo9GoWzOvjJd1r+GVhIRsfn4Y/6OGNeLStjrCChKDb4+4ffGDytZe94ovIMDW2uFKipbHPveOWvwYOXyXK8RLPAky0zG3FtC1OJloCy2Fk6Vkfm8ySPKLbKb4FLIsVo/9yxLe1N26ufZel7X8OSqGThJtr3z1m+9Li0FFhwKx/epLhDYvJjUesemQ2jYUhW+M2Snadkl1nLM4QJSbbTymBbNop2VJxurelKa4cX1RVSF/SxRqrnx7pMN3a2aJsipWnpjxGgiwiFSRZSepp/LyPNSQmBxVo81tFpokqgJACq60NbIvwtJn0X+gRtsPqv271XzlqWBZJWxbppTxemc76cgcz8uPkvIhiJiBvh5Rjn+72CvXIoTycwypbpDmFKMa0t9eIE4tazZvMYvX8mN5SmRd3r2VjowPXSrm8+xkGoiJrRBfV2EUIzbLZq1iU6WP50JmEVQ/b1STtCTPaKmwZ84hzNlYoOPesdfzTjHv4w7VX4o5KUs9YkvkV01zUH24NRlvszJwZ23Z7bE+iyqFw8/98B4BzvvBOLn7D7/jRm7452cPqiZg9VlEcyCB0gvVv2nGQaKpcVN8iMsLjJwtvZs3cKs/GHXzkzFczsLp9sg8CwJ0/+yBnvv9GajM9Zv8iRtmCsN3m/LffSJKBR7567U7b2p/B6Z7611xx9ecRicZupMbO4Rhyy70fP6bbn+Caiz7NLfd94qhs61j72C9f9xWWnvlR0xjalqx47Ppjti8tDp0JkWX2f/cRzWiDOEbd28boBXUGoiKeTKgkHrXQJW3YiMBCSYswMnUnUc6ixy1zQW4t8+0RUgTDaYZNianjOM0ZZlzZFGRCVriApmgF9FrjpAieDqdSsAJm2uvwhE1CytrYJStjilbAVHeMZ6o99NcKpErguQlRYiHR2E3BxpMJSklGohxjUYaN421EZZdsFUCQusZuUaRGaLFCQZgx1TDRsI/Mx8Q5SHMeIlFYUToprkwkDak0NT00MPGsLBUJzplN0GmT+bOt3Lz4P7izMZ1XzHv0WLyNJyeWBKWxa+DZkN+qTHWqIxHaVKoqz0ZYClmPEWlqGmXLZq8VSyIsASEIodBSol2bsNsj8STeuEkMS3yJLUBZAplqtBRUexyigiC/LcWpxGAJgk4bBKZ3j9Zk/3gbN5/yc34ZCN5611vofNJUf/tjCvmkJMoLMsMC/vwYn8cWxw33L7thp/9fN9/8vvbh15O3Qi7NPwXsu0H97H3NVmoFccKrpz/GT995JfEbLdb9/j/ttMjeql4OJqZ94nPX7vaY6lrEV6fN4YnaNMajDPc/PJ/cJhe1i2v5nT/7IBf/4ZdpnJGl+yEjfqe+5IVv+DK/+f77EbHp3aKl2G+xZceYdk/x7KWv/OIx7Yl02x2t6pUWJx8tgeUwsuLRz3LlSz8HAm47kuVw7oH1mThipCkryt8GYIn/Bm4Ovn+Md6jFoaDKVQobAkSqmHanw+mld/IHZz9Iu1PjgbE5bKmUGKtliANz27AshdaQKEmbDIHj5LrcgaLMYAnNmHKZZu25siRUDpf1ruYH8/OEm3Pk+jWyGoBtI3IZdBCaZo4ApJNiC1jge4SnTGX9y11kCJmBo3JYJz1Li29BZJqZobUQb3UHD2RnUsoGjIQZ+gZKUHaozXGZ3z5Me6ZOIy6C1FiBIM2D4ydknJiiF7Coa5CsFaEQzMyMYqFQWtDh1nh8uJfvPPVCvnruf9JIHaTQZK2Yl5cewREJq/M9PJHvpRELvFLIwFgBEUrqiyJEe4MfzF8JwJ/03ssHxSJkCtkBTeqZrD+ZHljF0xL/DQD7vN+aTEjJ8mf+9iDPcIvjjX0NBHcUX3bMytvT62791cRrjMDiXD3EytWn8NSU23ki6uV18x/kzMO433tix32cb+eZb0csPf+/eEfPi/inC76z07KPfflaFv/w04wtLJDfmhKWBGEJZGyeHzjXY8pD4W7Cyb6sEXZ8/IqrP0/Q4WBFGhop+jipzr195XVc+tJPHbPt33LfJ1hy/idBbbeieD4jUs3yJz8HmKa6y7d8/RjvUYtDRfcN4Hg22Da99za44pK38IZ5D/DDvnMYrWUIRn2cERsrEGgB2rIIAostTsLM7BgAntCAxrLq1LWLLxJm7ZJMNM2qsj4WDKscBRHQ44wzyx4BYFgFeEKyJu6lrlxGkjxSKNrdOutVO9XAQ0qNSiW1yGVqrkzRDihYAVkr5MnxHtYOdxJFNiKUyBjsOpP9YqwQrDpoB2Rkkp+ssoUuxMR5UxEnw9gkBrkOIk5QYbjDSVIgJLJUJDp7HiOnunT83hZuO+1nhNrDn7jRtjiiLJvxXtNTRUrQmtLakKDLwRtLkI0IESTIok/Y4ZG0O7hjMcKzEIFpsq1diZbNng+2hXKtyf4PypGkjsCKFO5IgBaCRrdDkLGQicYOTCFnkjGV10IZ67A06yBSqE53qE7rpDZN8PjpxrLpPLeOGHeQicYKNYW1NerTssR505PiQFhaeitoPTmfsNvzxbcA7PX5FicmN57zn3t8fE/xbFGa6pVn4yqLZ27dafnl67a/7htX+OSfAV62/fVHizeVVhEXH2eKlWf9rB9z1a/ew9o/3t2e+Z7/ej+n//WNpBkb5UiCDovUNXHn4LkZuh8OuP223eNZ2Hfi0MRyQbuDFW+PZyfWfaw51jHt8xkNKH0cVCsBcHxcb8ea4+XdeN5w2x0fPmziyrJZf7XHx1cM/dNkw68DZWJy7nAwEews7XgbIrPn0s0WJwYr1U3oJAalSfIOxceGWPAvKcu/dzG+SHhmqJvRWoYotCEV0Gxwn6QWSgsCvefmxscDm6IOAFKtUSg2JhW+X+ngsahBVQV02RUKVkBcd7AbmtzmOiIy2TRC7HCLnBBWhDS2YLaDrtVxxkL8QYG2NY99effMlhaHn8mBlmUhhsboeiwlrHo0IodG4jCluwyuYmwkxyn5Ps5r28SijiFAEBcV2lHYVkqQ2BTckFd2P8wnpv+Cr81czg1THuX17feRtSJCZaO1wPdifJFwRm4LN/TeyV90/oqFTpU2GTLVHWNq2zheKWR25wi/t/BxuhcM4xVDvnfudrumec4QcZtC2SbzVDlmgiTxDz4Y2dt3BNASV04iZO8zkz+7ctGKfTe2v//cm2hfmeG0mVt43fwHj9Qu7sae9vcfZ9zLF1Yt281T+unXmEqKxBeIBOwAgm6Y880voS0jsuwoqNy+8rr9tle4feV13PNf70cLiEoOYcnebfv74kCWPVD+9yfHthry5gf/5rCKK8tm/uUeHz+U6pW9rfNAWb7KZNkuPecT6K62w7LOFseOleom0lqdcGqRxpkzcJ/dRteXs3xrxdUMjhYIRn3sURu7KrBr5p5iN0A2JLWaz6Z6G2vDKWxKcqxNijwcTmdL3IHcg6fnFMvYzt5ePp0V5bPotKpc6DnMsgtkhUVdpwwmBVYHPdw7Oo8fbDqXX2+Zy8DWNqK1BeobC6SbswwOFhkKcozFWTYFHQxERYYbOYKaqbRBgFMzTctFCjIBbxRyfRp3DDLbJJlnPJyKwF6TofMJhawGiErDWNoqjU5MBYOeSBoSErujHWb04g7VaF+dMFLPAsZi91XzHj4ab9dJz/LNXzMV80kKcYw7UCEzEGHXEpKSD7ZEBAnaEtSn2ISdTQtRvYOY0UwOULYg7PQoz/EZn+dR73GwQ407FqOFQNsSLSDOC8I2Sb3LImizsAPThFsLUK5E25LRxZKBi1NqUwW/9wf3TG4q0ClWQxDlxWTVZ5IxlVUHPKG7wzFMiCm70hJXTh72Fs8+Fdf4ZX0hX33qqr2+9n/f8kV67g/3Gg8fKWTvM3RO28zaxCT+VZTNxy74BfP/8waWTX/Pbss/8bfXIlKNMxoiY01lFpzyyRuxQui/wDdN4VdeB2p7PLs/Me3tK6/jnv9+P1puj2eTrNzvOPVIxrNw7GPaFi2OFi2B5XjGdVg27wPPvdxxwLG0K2tx+LDH6mghIAxx+it0PBnzXxvPJ4xNM1AVS5AaYSmUEqSpRGtBWXlHbR9jnVBW+9dJvqwaOCKlojwcYSGRPBu38ePB8/j05lewLtH8n/xG7hudg7PVJWwXVOZmUdnm8UiB8M3fwnWRjj0prgjHRjg2yrUQCax5fytwOJqoWh09MAS5LNteJPHyIUoLxusZXDvh1MWbOXX2NqZ7o3xmyuN8ZfaP6ewuk51VYdG8bZw6ZYB5pRGWdD/BxZn1zLfztEszsXC6k6Vk1VlT6SJJJXkvxBEJBSugKDPMsgv0WnlmWBbz3AHmF4eZP2WI3kyFiwvP8qY5vyEOba7f/HusaJiB8D31+eRnlQmnxtSnCJIMJFmwA81lr/iiqX7cD24Ovr+9ekXvOVNw+eovsmzhh/b43K4sOf+T+7Vci8PDNS/89BHfxsTg8nuVLnKuyVa+6tLruepSY320q93YA/9y7O5duw6CP3Ta8j0OJB/6h2tJfIEVa9xxM8noDltYIaTN2/UVV3/+oHsa3f3DD3DXjz7APf/9frOuK/c+0Lzyis9x5eVmQv5YNRA9UTlcgsgke7kHHvTqhGDFI585rOtscYzQCnekQZy30GGI+9Rmen6jUalARBIrEogJF1hpfoSGNLTorxZ4tDqT9XEXY2mW+2vzeKg6m05r77HnhloHK7acyqpg+uRjRZkh1aZSeltQYvVwF8PlHPWKhzPkkNssaH9CUnpW4GzxWLOtm2fGullb7eS2TYvo29iBtc3D3erijFuI1FStgEnSsOuQHUhoWx1RXK+wAgi7FYUNkF9dNvdDS5rKiCQxvr5CYs+chj1rOvb8OaRzp5HmXJK2DJUZNp6dUFUBuakbjuCb02I3lII4RheypIUM2haknkleizuyJCUP5ZgKzkanqVJRGYekLUNtZo7aNJ+wwyXo9gjaJcqBymxBnBOIWGEFCSJNTf+VVCMjQJuKldQVpI5A2aL5WRAkGYuoTSMzCZkh+O/fXsS/lnsA+Pb4OcQdCZV5mspMYbY/VRLnIb854qXX7H+Cz4ryt/cpoKwof3uvwsueWFp6634v2+LQWXrOkbUSnYhnX/1vH+DusYWETd+tpaW3Tr7XO1ZE337bsYvJLp69loYOKcmETrvKmtd/ZK/VsLfe+RHSvGM+f75GOSaWTX1AwpUv/RxWIzmo/bj7B9vj2dw2Y2u+N/Hkiqs//5wVMi1atDgwWhZhx5B9WViAmSQ73BwJG68VI/982NfZ4uizUt3ENe4f4xRPQbUXkZU63khI+SdTsK8Zp9AWMNxXQvoJQmp0KkiEsTWIsZjsZHaEcYTNLY0853iDTLd2tmp4Iq4Ta8lZrktdRfSnKedlNjCWZtiYhCx0HOY7Y/TVCozVM3TPTsnLPOe2beIJaz6pD3FGGOlZKfREI3vXQViWOcI0AmlsJ3RPJ0nOQR5cDNTiELi5+h2WTX8PQy/uoffsfgbLeQp+SMaJqEUerl/nC7N/yELHZJeOpDYzCuN0eDVe0/kgdeWxKe7gZfknd+sftDGpEGub2blRfCuhx6/wbNSLL3a2y8hLn9PdQYpd9/C7xhx+NbKQr6y5mhn5cTLZiHVjHdycOZNUP0FdeSjdbHCfAdXMQLVrTe/hg5go3Ffm9/Jnv7Bf67j5wee//c/JypsX3sObF5q/hYKVd3/0oJp67o2rLzE951b+evd+LfvLvuzMduX+b+8sBL3gTV+h3i1Q7g4PyueOrQ4VcYC2fgfDidYQdNni6/bqcz7Bkeizsnzz1w7r+k4GO7SThZXqJpb4byAvFkFPNwyNkN9UZ9qUKn12EYazaBsS14grE7ZbaEiVYFujyO/sOczyRuh1xzjT38QpTm6P2/r9XI1a90N8atMr+NG2c7gs9wynOyZho03adNhV+hoFHDvFd2KsgqYvlaSjLtkBRZyVpBmN6yW0+Q22VYsEj7XTvsXYISa+iRdSD2SsseuCRgGSDFiNBBkpkqxFkgXtGtsvMBZhaG0m7tMUhEAW8+i2AqJch0aAKGUJSy61aTb1HqDhU9UJxaPzNrVosnzL11k251qSjhz1Hg+3nKAyEm8kQjmS8fk+I2eY9zQ7aESQNOsQlRzqPRbKBqdqLIGUCzIy/f7cskJomr1bJMqzUFYzWaGmSTxB6gm0BdoSCCWJ8+b6mfprxfDpPrWpkNls84VHr+G+OasZDPM4hQgx6ICGqCBQFvjD4G0dJ23LHtQ52JvQciAVLCvG//W5F2pxwvH0x3d3iFgx/q+HLaZd2m4aBx1KwvBEf8FZtsecGQ8/5/I7Ot5c9Oav0Ogyn12rkSKaPWCvvPwGnNHGCZ/4caLFtCca6XFizXV0ZgKPf1oCyxFgfwf3R0spXrbgg0dErGnx/EMnMfaGfnRHG4QRVv84Ms5z4bRN/HbzbObMGsCSim3jRYKGSxLajImDC6QPhZdnA6Cw2+NPRT2sDnt41h2k2y5ziRczqgL6kiIDaZaFDsyxC5zduYXbKosoSZMJ8welB/i3KReT7XNxK5qoM4uXKGOtoFJEEKIbgaleadrhCcdm26WdPPz3LVuwY4ZSODVNNXSJ6g5DaY6FvXXOaOsjRUyKKwBnuhl6/AqPjUzl76pXMbcwwpn5zXTI3b8Guy2XN5VWMV54jL40Q6Ad+pI2fBlPNgKfYI5dYI4NfckoWyolBgZKbKt1MXX+EDPy45yW3cqGqItA2zh2imiYjERtgVUBhMBqJIg9RCVLz/oYKx797GE/bS2OHbf85ug0Dt+VlXd/dPLvgxmI7lr1AnDzDyb+2l1gufqSz+6X8LJjPxbVt4glr33Tfgs2v/3u7pU3V1z5+UmRBfY/zrry8htACG6748PP+Zpb7/wIV112A1dddgO33rlvC7aD5faV11Eul4/Iug+EZad9ZNI+a188l7hyOFm28EP7LSC3OLlRUYS9sQ862tBpirVxgOvm38n7y68jmh1Cw0JEcnJWQKQmwaa3UOGyrmfwRUyHXeNif+NuvVd25Q2FEf6xo8zqNVN5e/wnvGvuL3lDYYSizHCev4G/r15OFFvUxzJk2xo42ZhgikOSk0RtCmdanXOnbWZ6Zpx1Q52IBNyKxqkqlG16tkUFid3QOHVNA0HYAXHJwR8IsGKNTEEGkrAEKusgK3UIQlAK4boI24ZSAWoBemwcYVnIcgM1Pcvw2ZqZp23jV1d+ETg231MnPUmKbCTI1MWKFDLWhB0uItU0ugRdpw4yOFQg6PBxqi52XeFUE4rrUuK8RepLUh9SB5yqxhs1VSm1XgehnUkRMckKZKxxqhqdMRXVVgjKhvoUQdgJuc1QWh3SYfn0XySwGiZB6NHhaTRim6Th4GhwK2BFIFPI9RubM1kOdju0K6/43JHtT9vimLDi4SNflb3H7e4gpB1MTHvTmvOZYlUoyIBA2/zNw5qHg1l7XHZp19sRQrJ88B/3uc5d49mXnXH5flv63/edHeLZjze3e/bHscYStJRcefkNaEvuV4XOjvHvc8WzE/0Lj3Ri0vES07ZocTRoWYQdAQ7kBnWk/Q7hyFTCtHh+slLdRDIwhN6w2TTFbDRoWxPwwA/OYNm8Vdx++k9Zeer/srBrCGkpqNvEIz6/a8w56G1WVUBV7R6MHwyvzo1TTXz+s/8i7q0tZEA12JS6VFQGf4cyk0/03M5pPf2sjk2GyClOjs6eMjKGOCdQniRuz6BzHngeuC6ikEerpp+E61C/YC7lS/bPqqzFEUJrxhZKsm4MGpIRn1XPTufxsV6yVkxDhzstflFxLf1DRTb+diYrHz2Nmzafx/1hfrfVZoRHu8wyxy7wQs/GQtNm1Zhmj6F28CAaSKuTf99ZXkw1cHGzEWefuZ7XznyIkttgKCmwLWpja9BO3gshnxAXTDm4FUHqCZDbfax3OjzXZulZe55sXtrxtp3+n6gmaHHkeD6c48NRubLrOlTfIlTfIoa3zpj8e3/ZddlDqYYBuP2263bqxbK/aEuCYNL667k4UsLK8cb+iCsT7K8t4aHSElda7C8r1U0kQyOo9ZshitGNgL+44094y6n38rPL/563XXInsisEYZrEy1CgY0GbG/CawqO8q20zr8+PPqe4MsGp7f3YZYvhB3r47GMv48HI2LOc7tjMbRshimyQGq0FaSyxa8JUpUwJmFKqMDs7wmWFJ3nBjA2EUxManQKhNJmBEG8sxQ60aWCswamCFlCZYROVXOxqgj8MdkWSZiAuONCsWkEIsCR6WjfB/C6SnhIAOopIS1k2LRN89xXf5Jen/+SIvRct9oM0BUugmvGgUw6RkSL1JVYM43WfUnudoAOCDou4YOGMBmSeGaTw5CiFtXWcqka5JolHaAhLgrBNUOs1v4WG1IU4K1CuQDmCoMtYE1khNHo1cVHhjyrCTpehsyRJb4Q7BlFflr51nYz1FdGJIM0p4iwE7QK7DrktIaQKEe+hrF9prrlo75Pxy2a89wid1BZ7Y3/jneOZg41px9MsZeWTIrl49loWODG9zjivveddLPqfzzDnW19i8Q8/ze3rF/O9R3+O1s/tP7trPHuw/ZInX//IZ1j+5OdQRR8ZqQO2P9vfOcaWNdiJj9LiuPhpYWgJLMeY1k2txXGHVujmQFSHEe6qTUy/o8LPVl7E2zdfDMCPFtzC4t4BUOCMWPx4y9kMq9pBbS4vffLS3+/lPzt0Cv9WnrLH54bSOu1ODVsoRpMct9fncmv1NEaSHEURTS43xcrziu5HGEjN5PpdAYw+1YlMwIrBrhrLBcD4ImsN2Qwyk0F0tFG+cjFbLrdZ+0cnxyTb8ciy7negZvbQOCUgSi1sP0E7Cn+Lw/onprGm2sXaJJ1cPtQxby324/oJMgK332HbcGk326890WHVWZqJON91qaiYWCfEOplsbvuNsRn8tn82WgsWThnkrdPupiADclZIyapzZfEJ/qDjt5zVsZUpPeNoW+MPgD+qUbYgdeUebYdufuBTACw9/aMsPf2jOz23ozXjhW/5CkG3x9Uvvv5gTmWL/UTEB9ng4zhjybkH3ndnx0Hs3gSUP3j6Dyb/vvkH3z3wHTuMHGhsdftt13Hb7R/mtl/u/z19V5FlosfNwbCjD/aJSkv4aHFcohU6idFxgg5DFv9LyP/936t55Z3vJlAObzzjt4hEICOBFYE9ZvNo31Qei3p2W9X6pMLP6z7/OD6dvh0SLCZY0v4Y7twKUVeCa6f0JcZoS6F5Y+899LRXuOq0pzitpx817lLYoCmuhTSyOKN9G4v8PnwRk7NDtDC2YMqRph9gqvHGUqxQgzCN7t2ymSyPSjbaFojE+Pl7o+Bvq5rG6crE9MQJYrSC11fFHqwgXAe9aDYbroNvXPNvXOLLo9oYusXOLJv+HmgrkuQdrFiTehbaEvh9NaxAIRIIhzLUGy5IqE2H8mxpxLMkQdQbWLWQJCOoT1dUZguSLCCNzZyMjVWolhC2Q3W2pjpVoqWx9tKYdarpAfm1En8koTrNJnf+MHLYxQ7AHZfIUsTMOYOctWgTqi0hagO7oel+oIKzccj436rdY6XbfvkRZC1k2cy/3GMvrh3tHpctvo5lp7XGV0caq/788Lc+mL47f77oLgBG0izfevoyhlLFA7W5vLzrUaKGQ++vBPO6hrnc13TKHL94/JeHea/3n1vu/Tgr79n/5KOJypUDiYN3XfZQ4tHnQzzbosWh0BJYWrRosRMr1U2Tg1HR0YbubMfaNsyC743wzKdPZ+7/msz562b9AgR4o7BpfTf/Xj51j+v7fqWDH9QKfHV0DmuS3QekB8L9YcyPN57FY/UZe3z+vyqnMRAVKbkNPBHzcG0WqyrTqKjtAk5ZNaiqgEA7jDQFlpf4cMnFq2h0gVtJkVGKbMSmQahs3iYrVXAdBq6exdZLQSQtpf5YsbT0VnSSEPRmsb0UickIFYFFmtHoUsKVnU9OeqADk7Zep/b0o21TPdJZqnGJv+evwR0rVXZczxQrz4MRbEu3Vy99d/0LSVLJtLZxEi25q7KYbrvMadmtvK20nst9zSW+5IL8ev5o9gPQFiETCNoEYZvEihT2aH2P+7Hi0c+y4onrWfHE3idvh87TDJ9uE5WcvS7T4tC55b7nh23KwfSZ2J+qlJd0rzmY3Tng7Ryv3Pqrjz73QnuhlWzTosWRYaW6CZ2m6DRFTunCWr2FhV9+hlM+uJkVX3kJD47OYtaZW5EJuGPgDwkaAznuqiwm1DEDaZUVDZe7Anj/htfwlz/5U77+/VdyyY/ez2vXXM1/VttZk1RZk1SZbo/ypsW/ZeqcYVwn4dbx01nRcHkgtPhNdQFTslUWZfuJUovMNov8lgSnrnEzMb1emenOCK5IqcQ+/jab/NYUu5aim1UobjlBxhqRglMDb1Tj1JoT56LZV2NMEOehNq8EvgdRbJKEtIYwRK/ZiNqyDYDV73d4+EXfJtWSm6qlY/tGncQsm/puSBK0LUl9C7RGKI1IFGnWpT7FJug29m/RcIbU0wS9qbGIa/PAkpAq0oJPZRa0zx/FPXuM6iyNskw1i7KNsNLoFDhlkLGgsiil3gt2AwQQn1rH9lLa1qUoW4CGkQ1tqGxKoxt6X7CV1S/9N351xo95Ycc6nExM1BPjjWuswTFzMBMVU3tgxRPXs3zTV1m+6av7nBQvn9mFyrp7fb7F4eH5EtMeTN+dl//qvfzTlsv47sAlrKpPY0XtNNbWu5jpDHPh/A1suyLl54uWH9J+ncjx7KHEpK14tsXJTqsHy2FiV6W2dXNpcSKzUt3E1fJ1iOFRRKkAGR+kJLOlyin/KFj2zT+iMr9Ibr6kelpE/mmXrxVeytpFj3NBfh2hdsjKiBufvZL6nd1YEdSnav6u8yrsXMx5MzfzgekruNDb+4Twdf1n89j4NJQWzC8McePUe+ixAk7v7OP+oVl81Rvh9wqP8+X+K/nlhoU0xnzsbEI+32Be+wj9jQLrRzsoZgK6vCobkxJl3QAs+pIiNw+ezpzcMPdU4I87fsNpha3cL09n+FQbf9im64ExU+aulBm82B5pdxtRCbSf8uy733/03pAWOyEyPuOXzmd0sSQeFAw2HLx8SPeCIc7p2swbOu/do3CiUHx+1o/4s4v+hKG7pzJ+fzcfmnouX+h5CIBRVefW+lQAzvO3MN/ebh/2cBQwmObJigiQPBL18N2xWTxd6yHnhswsNqjGLmsHuuivFqhPdXhRYTWOMF+zw6rGnxYH+NuRBZwyq49gms261b3IQOKWXexyuNv+PhcTwbtueyvekx6NLpsXv+ZL3P3DDxzwulqc3Hzj6ZdioXhZ/hmmyAze1LWTz01cZ1UV8D/VWWyMOnlR7lkWO6P8LuzlB0MX8OCWmaSp5MkZUzmntJF/e+qFPP2afW/zRB58TjBRtXIo4soEx0vceNWl16Nlc4JMipZvfosTnomYVg0OI6ScnADu/OHjxD+ETLvN7CkVtry0gN2AabcJ/sc7j+qZLr1emQ2NDgAeenwup3x7hLTgk2ZtBu+Yy+dnL6A6R7H4nI28dfrdxMpmQWkIhWCmP4IvYj6+5vcZ/dl03LLmO1MWUDs9RHQrar02/pgie2ee/1h1OTfVLqewRZPfFDCnPAaA9iyUZ2OFKSJJ0ZbAqUvsUKOlQKQKfyhCRim5bZDbBo1uB6GaVbFtRUQjQI2NQyMwFk65DMNLF5COKv547cv40SX/cCzelhaYhCGR8dE9naisi99XR7kWyrNoTMsxfKpNY7pCC41TkSTavK/5NRZxAfrP8+hNunHXDWBvHqK0ZiYDvSWEqyhtNCJJ0AFRu7GWywwI3HEorIek30JLqE0zdnPeI1n8EdAyJc5ZtD/VwB/xGFtoEbVpXjntUQCueOKVOFbKnRd/g5f+6wepd0NjyUzanzKJR+625+61sKdJ8f9afSF3lhcT585jzR+UmPO9z7P+jcfH92KLE4fTPnIj2ga0qfRbdcPOvVKf3jSNmbkrueXX5+D3mx5c8bk12vJ1bqi9jHWbpuC17TwmW9mwWbKPbe4Yz5ZVg6LMHMYjOjocaO/CfXG8xLMnAxpQ+jipmWh1uQdaAss+OZCGTxPLTdycdhRcTqSbzJILPoWWEqHUpD3Nriyb+m6Wb2sF4ycD6fg4MgiRvd2AZx7UGpFqKjMlURHkuENtXoLvpIxEOXrtcabbZR4OZzBayeJhStJlLJA1i+7po/xJ7707iSsTPtXnuyZjaX1S4abHzsPa6pNmFM+099AfFDm7uJly7DNcyfHPT1/MN9OXkG7IgQZbg8hHCAHDgak4SFJJkNj0BUWe9qeSlREV5fO78mzWj7UzUM/Tm6tAByzJP8635l+K3e8ilABLgG2hXQ/SFBHE9L+wQOOiGp35w9MzpsVBIgTeWIJMXKyGJM2mTGsbZ1Z+jJn+KHXtsjEZJSclT0UZLvEloY55PNasCudwYddGfjSnE3+9y28GZ3N/230sdhJWxw731+ZRjn0edWeytPgoF3mKJ+KEJ8Jp3DW+mKITcFpmC3eMnsLmWonRRhalBOd3bqZoNRhtZBmrZpiXGcSXMc/GVRY624WaM/zNLJjez7/3vZDzz1jHSJBh/IkZZAreAZ8GheLXgUSMO8Q5CDoFQluH80y3eJ6w5NxP7rFy5WdrzyLQDvPdBh1WHQdBVUc8s2kGZ87cvNOgMS996srlrsH5/HTjmbRn6tQij76NHciahXI0v23M5UF/Bgv+pgHPIbDs2BB0R1TfohPHqqY5UXskG94fLq586ee47Y7nFksmxKIrX/o50NuP7XAOvo8GSzveZnoaAGjNivK3d1vmGvePuSX696O8Zy2OFapeR2azCGvn70nVWSQpueS3avpfqEldiT3ocM/WufzhvN/xktKzbIvbuCMRxB1Z0zdNCmq9FuWFKb3zhnnHjDt5RbbOZxtw10OngKWxz1bMcwdYv7qXuU9GWI0Et+whlEdcMPZeaE1pTUz7MxpnPEQGiYk5U43KeaBARs3rWIGMFE5doQUgwK6m2FUTQztljRYCPcWh3mWRKWURYYxIlTlmy0IIAUoztkiw9KJHGI9PvInA5x2WhQgTZLP6Q1iCqOQTFiVWhJkEFpD4oGyNW5MIBf6gqT4J2x2ckTxivEpxfUjQ6VM5K0LG4FY03jg0qoLUB7sOVqTxxhRWrKl3W8RFQbYf/DGFN5oiE8XwqR5W5OAPx6RneDgLKvx2dB4r/C0EicOGbZ1c672SJKupzIXiasHA+RkqC1Jm/6zjoE7Dxx56FUlkMTXQ6NkNXOv5Ycva4vCztPTW3US606+7EZmAcEDEpk9V6sEZH7yRx79oRBbVt4gnoh5uX78IukIa0iO3UeI8kmOkPcsIkB0R1E/RPBHXJx0MbjzvYpaM7n1/doxnV8UOd9YWcF5mPem6MyiIgJfMWX1EzsOR4Eg3vG/R4vlOS2DZBwdzczmRbkhXXNkUgeT2/VaejYgVsrb3bOo9iSvLFv01y5/52yOyny2ODZMZf2GAGBlD+B44lplQ0hqZQJrRZDcL6tMsgjjLr4N5/HnPrzjFyZEVG+ko1hmY5yHzMSqVkArO6tzKK7Lb7ZAufOh11H7bhRXCBa9+nG/Puosnom5K7XXGyg4UElCC362byQPhHKyKjYhBKIE3ApYDYYdGtSVMKdaRQjNWzxDFNpalSJVk1VAPtlB0uDU2N9pZPdJJeTyL21Hh6q5VXOg5fHboTOxtHpkByG9TpDkXEcZE3VncwTqqaFNZoHjR7A18/wX/vI8z1+JooCVkBjROVVAPXPrbCvi28RMeivP8KDUC3rPlbpb0PAlAimBdvZuMFZFtaxAWHEZrWb6ydQklp8FolOWpoSkIoZFS099T5O7sAADr6t08NjKVDr/OY2NTqUYecWpRq3tcNGsDVxcfY1Uwgxf1rOOpTA9P1aZSkAEf638V/2fKA7wuD0/FNS7zA/LS57tKUnQD5hQa/C4zw/gzHAB/9Ju3s7HyWrY+NYX8eomyIehRreyRFntkb7ZgdeWRIqkpj7E0xy1hD56MqaY+gZ7DTCtiipXnsajB7bVT+dXIQmqRRy1wGRksoBOBcBQytI3/vyNRttynpd3+MDFQPZ6FlgVfuBFelmH1X197SP1Xjhb7I67sa/njOb5dNuuvjAWSUizf8nXzoBSsGPnXfVrR7ElcWdr19kNuTtvi+GMipiVJ0GAqWQBch2BanlqPRecjFUpPC4bOLSATQVRvZ3VvN+3FGudm1yPaIrZemsGuGouu8UWal5z3FB+etpxTnJyxxP2Xl3LKyiGE1tz7hjMoLgtAm6oSpypRjqkgcKrg1jRuOcEeDZBBBEEIGR9tS5Rnk2ZsRKKRUQKpRjsWVj1GC9COREYKqxYhogRtWWBLojaXqCDIb0vNWC6KoV4HKU3flVAjinnCKQlv6Lz3hJr4e94iJSiFqDTAkkh8ZKKRicatQHYQ0JrEF8QDRmxBg1PXODWNcgQq42DVbOyxgK5HJU7NJduf4lYSRKLxxh2ivIkV3arGLafEBSM0Os2CE6emsOsJYwt9xk9LCdttSussMgMwNpbhwU0LuL99NufP38jgWJ4H7l1E2hlT6qrC6g7iPPTOG2Zs4Z77ZO6LS1/5RaYlLt5IgAgDttZzpC2BpcVe2JstmFCmN5VT03jjiiQjaHRKTv3EjTSmpmj3z8l2NExypgC3KlBOU3gMBMrCNFCo2Hxo3Wt538xbuHruk6zYh7gywURC3Qs9mxd6q/nk4OnE2uLKwhPHfUw79+tfRv++w/p3v7/VP6VFi0OkJbCcxNx+23W7V9xkbaxawvInP3dA62qJK89PJgakaaWCXB8jZ06DJIVm9Ym2NHZD0HO/RtmSgQs9fteYw0v89cyyC/zmnP/h3+ZNYVvcxi+2ns5gOc9wlJtc/0BaJV7ZhR+ZZp73bJjLu6yIddVOFrYPsdWNaMQOI4MFrM0exS0mW6veC8o1r0E3G4Fa2vhaOzFB5GBbKd35KmNBhkolw9P2FOa3DRGlFklqYbspF/eu4xX5p4ACdeWSZhX16QKEJLtNEE4zDUqTkk+cs8lukqxZ3MVZP/sEj77i08fgHWkBQJIiU41QEOcgyWui/jxPDuZY0x7QXapSCTyi2CbamOcbbT0IW+FkEkrZBuP1DNFQBjpjHDvlkW3TiAIblUjjkwBYfsKTbg9PjPSSpJJq4CGl5tUzHuEnW85i8L5e7NPHedmCJ/jDjt+yKpzOv6+/gOHRPIVig9NKffyw71yk0NxdXsRYupm3lbZNHsLvTXmU/rjE9568iN71CTJI9/vwX3fPO3lmpIfaqg56H1LIOGX4DMtUclWPkzLhFsc933r6Mk7zRnmgMY/bhxYTKYuheo564BLUXGZcNMJ/NabxwNBMPDvh6Y29kJrPh5s3GdMilmihSNoT0yy3o0FPqcLfP3UFf3HK7fvcfrht3qSF3p44XgeiE4gUlKe56rIb9uo53+LosHzj3xmRhYl+BilCSJZ2vR0sixUj+58U0RJXnr9M2t8qDa6JY0WqaHRajC0SFDb6uKMBPbdvA9ui/9IprCt38oqOh1maifj5pX/PmzvezOC6DtwRC5VJObOwhVOcHB8ZOItbv3oxU39jxBVShT8EP/vtueTXWtR6wM3YOA1NZkRhBworSJFBapZXGoQ0MbYQ4AqEojmZrsGWYAlEIzETgdpGpM3eKlKifZuo5BJ02UQlYKsRZHBtRJIgUoVOEiOy5LIUnrb5yYXn8z8P/RFfPfc/juXbclKjk8S8/0KYyqisR1L0sGvmfW50O7jjabP3jp60fkvyNnHG9PBzx2JkJUR7LtqzcCoRnY8lJDkbGZrY0q6luOMxKLOO1Lcpz7IonxuSedZjyoMNonaXLZdlSM+uYiWS7MNZooIg6ITOex3iPLDeY9WzC1HdCnpCCoWAF01dz/KLCghXMbCqm1nPxAd0Di5f9gXceoI9UkMMNmey60VzzbdosR8s/vSNxD2a3GZBYXOCXU2RcYorBSL1iEpGmHSGHMQ6h2wD/BFN0A5pxtjoycQI30qCDCUbR9tZWTqDf7znXQSJzc8v/dpetz/vP26grfRWLurZwKWlZzjd3Uo19bh980JuuMBY6x3PMa1IBdpWLXHlhESgDjRLs8URpfXNtRd+71Vf2ePju954jrcb0cHsz+0rr9uemaggzdjbq1t24MqXbhddrrno0yw5/5MHvZ8tThxWqpsAUGGA2rgZtXUbjI4z9dYheu8LaWdHAAEAAElEQVSBzIhCRpqgTeCOSf7xpmW8ds3Vk6//0+IAF2TXkndDppQqJEpONrt//+aX441q/DFNZijFWpVjxarTeXpjL7/bNIMt67oY3lZExxKZmsbkSQ5S38yDpy7I1DRwlHZKFFsMV3JENYe8H+HZCXFixJTh8RxPDvcwWM+TpJJcNmReZpCtic+KhktWRuRnl5l+9jbqF9ZJ8mbiz2ok1KZ7RCWL7IBm25Z2yqPZ3U9Ui6PC1fJ1qHod77GNZIZT4oKxTMhsschstIkqHlsH2hgfzBNuzVF6VlD6nUv+IR/nvjzDT3ehn8mT2WxhDzqMbisSDGSh30cOu4iyjajYpKMeW7Z0MF73SbUkji0cO+X7ay9gy9puhILo2SI/v/VC/uSHf8H1N/8+g4Ml8vdniH/Twb39c3n68Zk829fNQyPTeaoxdafjKFgBllDEDQctBTJ87gHpBx75Q668431sKLcTRg4IjbYEMtFYIbijEus53Ov2lc3d4uRgybmf5PLbPoAlFOvjLn41spDHN0zj6aenM7K6g2hdATHk8e0NF3PLxsVsWDWVp5+agRx2sYYdLD/FcxOkm2K1RQhbIesWIhJYUrGoNMi2qI3rn/i9fe5HWe+5UvYHtcKROOwjgnI0t975kQld9rjk96/cewLMlVdsj+uuvPyGo7E7+83Ssz52YC+QguVbvm6qrC0JUiCE+b206+27Lb5s6rvN7+nvMXZiLU4adBKjwxDVCNBRROeK1cy8NcIKEkScQhyjHYvC5pjoW1N5312vB+AUJ8fFvetwexrEcwLIpKyum2z9/3z4ArrvGTST5XECYUjnExFdD0hK6xWFzYrcQIIWYIUKbyjAqiUo30I7Ftq2wLaaggloWyJShQwTRKJQno2WAuXbiKT5eKpAgXYslGuhHYkVaLL9xuYsKfk0puVJp3ag0xRSBaUiSMgMae4bmkVf0Gpuf6y4Wr4OHUXocgXKFbAs4s4sSdYIIzJMccdS7FqCU4lwB6u4fWXcvjKZtWMU1lbI9DVwhmuIegOhFAiBtiQiShFKoxwLbUvsekLiWwTdHknOoTbVwRvT5J706HgyxR4P8QdDen8T0fsdn+6f+rQ/E5DrS4lLmuL6iI5VEZkhjbagZ9EQF8zdyLyOYcbjDG4xotReI7dZkNkw9pzH/oI3foUXv+ZLvPSav8UZj7DqMSJM0EmCDiPccYmInvuLdYn/hsPwTrQ4kVlaeitxwdw3nRo45QQrSJBRihUkOJUUpwzuiIVMwa5Brl/jVjWZYU3qQdymCKakphfRGOQ2CRobCtyy+RQe2zqVNUNdnPbjT+11H9SIx9hYlt/0zWH58Jk8E0+hkTqMDxbYmFSO2rk4WLSl0a46riuVW7Q4UWhVsBwgu954jvcb0TUv+gykmlvu+8Qen99x/29feR1XXPl5MziA7X/vwXLmlvs+wZILPnUkdrnFccikXVizV4oaGISBQYprfcTiuYyfWsIKwRuF9mcTNm2cz/0f/8Vkn5WrMwm/7VzLs7UptDkNflE9jfe0bSRRFl5ZYddShAZn3CJIJFgKvS2DPyqI2jXK0aAgKkBUYrKcV7kmixhA2gqtBUlokSmEdGeruFbKlEKFaugxPJZnbDAPAiwvxc81GE1y3F47ldP8rbw4/zTl2RmWFB/l83IZgTcN4ViknjQT4LGm0WX6yIikdes8pqQpaE1ma432p4so2/glBO0Cb7ODjB3suikVz/Wlk5OfQkNhiyTKG4uxbL8gbLPRFlihEe2SnEDZRszTwqI+3SLuDLBtRZpKKlsKYGniksKqSbLbzPUYdAuouojUXJuDj3dT2CqIRnIkF9X4cu/vuCsAX8T0pSV+PnwWQeoAmvIci7t/uGcLJ4DhrTNol1l63blUwvkMDhfQVYf8gMAbiVGexApBJEz6DO+NvZXVtzg5WPCFG0muzTJfVvj1+AKeHe9m87NTsMsW3qixVkgyELXB2G29iBTa6tDoAm8cEg+SeobAyWArc62HHSZIcMoWDVXgV+l8Lp29hoyMWXjTZ3n2dWaifMm5Jiljwq7sO+NnMNsdoihN/5eciHkqmsK/972Q185fuV+9WK6+5LOs/PUBTsQfJp798LXM+/cbTEKKc/jylRZ+/ka0ABUcnl5fqb/376sdG9jf9svjrIeM3j34XHrmRxGpZvmq3cWg5etv3P533zdY1vsukCCwQGmW9bzTZIlbFihlbHmA5Vu+vkcBpsXzk4l4Vjf786hGA9Vo4NwxgtXRju7qANdFBDH+1hrZwVHyG7t41fwlfGveD/h8728AWFvtIlIWz5a76EurWF6Kdm1Eo2n1pRR2NQYcUk+Q7Y8QibmmZaRQjiTscM2EXyUyFrxKGRGkOUkOpoAlzXkkWfM5lonCqsbIemQ+I5aFsgRagAwVDiC0sYJKMzbVGQ5YguzqZt+ZJEUXfJKsYLzhk3Oio3n6W+wBHTfFsijCLodIzzb3KiHwt9VMAk6qjHCnUlOFojWijFnObt7jGwHSsdCegwgiLFuibYFVN9eLcgpEJYv6FJvaVEHb6pTcthTlStKCi10Osdf1gesgzphKkjPrLT0tsOsJMkwYPMfl0pc/zHic4cFNM5jROcamchvptgzjrk9Bg7b2Lows+MKNaKnJdQmsUGDXYqxaCImCRmCOUUrsGjzzkfc/57m7Ofj+4XgLWpygXPBnX0H98ZnYNcj2Q2ltZMTJyIjlynOQqaa4MSEzYpG6YIXGVs9uaDKDKXZgUZ0myQ5qogLEGcgOatyqJNrYgShCMDvCzUfM+caXWP+uDwCwtPgWAFaUv012iySqZigPedw1mOfhjulUKz6ZtQ53NWbzhsLIc8a0x9KedN173s+8/7jhiCSOn/YxE5vFaat/7RFBQ3qcZHm1XMoNrVnC5zm33Ptxllz4N1zzwk+TZhxuu+PDLD3nE6x4eM/2Rrffdt1kRuOE0DLh9XrbHR/eqUnqzQ986igcQYvjhYlKlqvl6yYfU2GAWLUaZ/a5yFgTh5IoL+l8pMK7rn8v4/NBuZrvvPobvKX9fv5Jv5AOu8aWsJ2vj8HD26YxZ30F7dokeYeoDWbNGmTbSAkdm4GncjTkE6KsIJqlAY016OKNCtMgFOObGo17UNqeEb2lUsKSCkcq6lFzQQE6luClxEpSTX0ckZIVIfPsMq8qPcglvmT6gv/iVRd8gK5HFMoW1LsFtemQFk0/mHXvee6gv8WRQyuNqtURa7fQlmqCqTmCThunZiqaJqs4BIhU41ZStC2QkcIT4BZslG3sNzLDTP6tHIgzJkiRqRFhrMAiGskhAqPr2CVzTYoU4vaUsR6Fv8VBxqaSKskaEdAfEigXwq6UN80xEzK3Vk5nqjvGQFwkSm3WjXUgHcWjX9m3KFJRKRYN1ja6GatlYMQlt1nS+VSCW46pzPaNp7yGs997I498bd/rey6WzfxLAJZv+uohrafF8cVFb/4KzmxBUreoRR73bZ1NbSSL32fhVMAra+wAEAJVh/wWjbLNdV3YCG5FoVyBU1NEBQstICoKlC2QkRG7naokquW5z53FxdPWsahngJfe/n7Koc+Mr4/T45tMvmW/+ksSdRphalNyAxItcWXKpnIbI5tLMH/fx3L1i69n5d0fPebWXPO/oUEnpL59yI3ur7r0ejYuzRpRQJnP8+FAxieoj31TAFl61sdY8ehnAVjx2PUsO+0jLD3742gp99pbCIzIAhhhRe5wnaQpWNb2Xi20bMFONvYUz+o0JRkawYoT9NQpiEaIrAVgW8inNxJcN4fXd15L9R3jfPP07/MDeQGeTLhrYD5vfOb1iPVZRG0MKqZCGylpTPUZPQ3ymwSZAYHyBGHRQlsWScZFS8hvSRBBBIrt97NUI6PUVK04lolfYoWWwtiCyeayqQYLUEa00Zbpy4IvibMChM3YIk1tqs3c+8yEfTqlyOD5BcYXK4oCll/a+p4/ZgiJVhqhm/ZtjQA5IhF539i7AbLa2Pk1SkMcG3FtwlosTcGxjfBSriFs87fVFGlEI4I4xhkSFCsO2pYUNjpG1AF0JM33vmsjpnQg0hRlC8KiJCwJcv2KOG8TTfOpzU1pc+rc+sxiGPSJ2yt0ZmsM54tkNjko19yn94ZJjjPXuR00K7EaEdQb6EoVnabIjA/AaR+9kVXXH1o8uyT3JgBurn33kNbT4vhj2akfJregg9EFNpkhyPUZUduqm75UpArR/Bw5tRRvNEa5kiRjoWyBW0mQkcIOUtxxid1IqU3zEKmxE/PGFd4YyFQzErnUFwLZlHlf+zLOuCT92FlYISy64UbcGHJbwdycXZTj0jmmKa0N+Kz7h7zhbd/c+3HM+wDL134JZvQehbO2d+b86/ZEoUNtdL/k3E+y9Yo2M4ZwQdvA/jtht2hxQtMSWJ5n7OlmePP9O1t57SuzBEALYfqzXPl5I7i89HM7ZRLuKLLsyJILPtUSXU4Cdh2Y6iQm9+QQ4ex27NBChook59D92xEyQyUaXRbv3PZu6uc0+MlLvsHpTpaPDJzFVx+6Amd1Btm3Ft1RJO7xCXtSXti1nl+reWzzMqSuAKEpdVa5sHcT41GG322agUgFVgBuWZNkzER26lskjgNa0Bh3CUOJyiisthDPi+lqrxImFuWxLK4X05Wt8cR4L7ZQrGt0cV5hA6d4WwHNKU6Ocy59hk2PLaA8S1KfqVC+mfEScctZ8ZijFToM0VGMFUTYDR9vXCBTSZwItBRoC9CQZCXueILWYlIstuvbozyRmv5BYO6NdkOaBrISUk+gXIE7BoVNisQ3GXdJRpD6kHYqpJOSZGz8QUHYAcE5DRCa5Jlsc9JZ8J+bL+DXYwu4oLiBUDlsDtoZi3yybsTv/uizezzEJRf+DTff/0l+svYcuq0MGxKb3/bPJl2fI79FmOyqkRBtmworOzQC0aGKK9ASVp6v1HsEqQfOqMXQ+BQzgAzNhIdbAW9cmyzoSOBUwSunhEULBXhlhTcam8k7pbECB2UL7MDCCo1AqSXEeYGIIfpdOyuG8hS7qkipGRvMM7y5DacthAtg7VAnWguimovtx6hEolIJFRt/0KKsGhRlZq8Zfyvv/uhOv48VE9u/5kWfQR1CFcuiG25ELzPWk6Ip7h4utNxBkDqBWPHIZ8zvR3e+R+6pemVvLJv3AcjlWL72Syybcy3L199orME8zzzf806W9+8+8bFs5l+27oMnAbsJLVqRjpexHRuKBag3IE0Rvoe1aj25UgH/0+287eL38vF3/z9em6tw5eA8Nv16Jp3PaKhUUdUawvMQne2MzbMonDJCNe0gv9nCijWV2YL6oggqNu2rJG45QUQpRJHpwSIFIknRiQJXo4WpQBCJIs25aEuQ+jZaSqx6ZAQY10JbAquRmMSSRCMTm6ggSfOKwqnj8C2B7mwn6MmQuqZiN06sY3j2W6DVpMhCHIMlEY0GIgwRQoDrmp6Xzb4rpGqy5w7pDrOVaTpZ8UKqQRkBRjSMcGL6+kji7jwiUThbx7CaggyWRFsC7doo30G7FlYlILupSvUFJZQDTl2RZC3qPRJ3GP777hciNMiegKwTkSiJiCSpC099cvcYdEn+zdxc/Q6n//WN2ArcbZDvS/CGQuR4Hao1dBxPVpXhOFghPPalQ49nW8LK85dwWomwKHHLmtxAil1NkHFqxJVmJdQEWgpk1OxHhBGkrapJytSWhfAthAKnprAbysyV6aad43CAXfcZrbjUe43DgT9oYmaAWq9AaJPcJxON3XREyAwluH0V5vw44JIXvIZfn/XDPca0y9d+CWCvyc9Hi4k5xKsuvR7lHfx3w5kfuBG1tM1UVngw0R5EtASWFicJJ8RM4fr16/mzP/sz5s6dSyaTYf78+Xzyk58kinYua964cSOveMUryOVydHV18d73vne3ZfYXq54cjl0/rpj02pbSWIex554tt9923U6/ARCCKy+/gdvu+LCpZNnBt3uClrhycrFS3TQ5OE1Wr8XbPI431CwdEAIRp/jDEdqCzidi5v6z4E8/837m/fDtrPjnSyjek8EbBd0IECNl7IYiu8Hi5k2nkHdDivPHiBc0sDpDSpmA4TDHQ5un4zyVpbABnIbGG1fGWqwKVkMgqjaiauGMW2T6BNmNFum4i+8mzG8b4rSufvxcRNaPyNoxo40s60c7uHvjPL634QX0JW2Tx3dV5ypGTpc4l46gbY07ZCMkkE2Z8929e9q3OPJMDMJkPge1Bu7mUXLPjlB8ukxxXUR2MCUzmJIZMv7VMkxxxkJEohBKI8MUuxJhj0fIIMUKU2TTr9oKFHY9xQ41QoGMTNBsxD4zGe2PgDcCmXUOuuwgUoEdQNIb8anzf8opU/uJ2hVRm0Y7mo2buni4bzobww7WNrr5lwv+jZWX38jdV31hr8c4IYwPJ3libRNoG0totEmsQqYmsFe2bO63fs7+Ky1ObmQC7jjktkBxPbQ9rfGHjWe1W1NYkcIbT8j1J+T6FM54jDee4o+muGOJsaUJYqzxBu5wA28kJLulQX5zTGYobf5ovHHIbYbSQw7ej9pgRQcdv3XJrbWxnshxxgdvJF1dINmSxVvvYj2Vw9qYwd3k4Q9YeMPgiBMiPN1OqpHBwY8en/nItZMilbJN9cpD73v3Ydu9wynYHC9M9AG8+uLP7vT/jixf+6XJyYtJCzHLgjBk2fT3sLz/m8ZKbNfXtcSVk4od41m0IhkcgrHy9koBqznZpDTWmq1M+/YT/MvrX8m5N7wT/cUept4T4w8n6Cg2k91JAo5NfqtibGsRNaNB38WSoTNs6rPN+LJ9laT7/gruptHt1khamW01K66E0iZuiVNELUCGCdqSpBmbpOCgXBvlWk2bVBDKVAQ4Iw38gYDEE8hSxDUznkJN7aZ8RgdagD+qoT2i4IdcftsHjvr5brEHtIZUGaGhWc1BrWZEEK2b1rhq56rNyYonZa7VeJdeflIa2zmtwHNMMpEQaM9FSzlZBSMShawEWGMNZC1CxClyYIzxBRqZAEoTFSS16RAXFNgaZ2qdtlKNwVqeO674Muvf8QGe/fCeBZGbq98xuxMbO15/TGEFCpGo7QmcTRFJSLOPdv1wntwWz0dSXyJjKG6McEdCrCABpdBCmH5WloRUYzUSnPEQESWI1IwBrWqIbMTIRoxVaWDVY+zBCt5IhF1XeCMxTq0Z0wmBN1BjyoN1Zt4eMvWeiI6nQ/zhhPymgFy/xhvTeGWFP6rM68spdt0IPSJKmFUYO6bn6kCwahHOSOO5F9wLj33pWtDGxn3yx4YHPnb4YtoW29GA0vK4+JlU005yTogKlqeeegqlFN/61rdYsGABjz/+OG9729uo1Wp86Utm4JSmKS9/+cvp7u7m7rvvZnh4mDe/+c1orfn617/+HFvYHaE0V1/8WVbes3dv70Mtn9sTRzLLcMJre8eKlv3Z/4lqlYkGqDs2u98TSy74FKR6n9YNLZ4/TPpZb+3HCjuQjawpbU8V9lgDf8SjOs0hOyjo/s0wU+5MQAri7rxpvthsMuo/upFZfR1Unm1j24wOkizQrUkKCZvTdjapDvxnfDIDJptaC1COAGWySbJ9kI7IyYkku2ECeeXYVDs9qrFHpCzi2KKS+gy7WVIlkFIRVDP0bcnxaO9MXp8fBaDXGaf3BVupRS7ZTRZhu8YrBTz9mj33M2pxdNFKmyqWeh3humBZSNvGG8nitBVQWccMJCUgBbIRIpSxRhCJQoQxIojNMo4NjoVybbRtMkjTjIXlismGnk5NIVOod1kIrZGxwKkZCzGr6Ux3+twt9CcltlRKKF+hPeicMcbw5jaqQ1lufNV/HvBx3jm2mErR5yXZZ7h06hp+MFQgHvVJfEGSdwg6bOKsxIo0D/zfQ8/2a/H85JoXfYbi1AxxzghyTl3jjUQEXS4y1lihwq4lyCAmzTqk/vaJO5kYv3ftSERTRJD1yGT4WebzoJtZsHZD4ZalyaBONXYtQTmSJG/jVoytWJwTxk6sJrEDTeKbijC7YSz2kJAR3rE9YQfI3vrcHQg72oLNuCOEvzjkVe7ElZffsNc+K/t67mBZeuZH92kVc6jc/KCJMSfi9In/n4vlm78GmCqVZTPeC46z12WXLfyQmbSU1qRQ0+L5y0Q8C5COl5G+t71vT5oaIaSQR9Tr6CfXMvVpMxksfA9cFxWEJgEkiqBvkPbfxmQGuxifm0HbzV5W22ycKky5r4wcGodoh0nxVJntSBtZqUOtWYGgNYQRsiyQno1yJDJRiDQ1919bGuuwCUuoJMYeChE6S7HYYE2tm+qCIgCZ/oBGV45sIeQ3S/Y9nmtxFNAKnYKQwoghSplrSGto6GZ82xzYTIgtSYJOU0QzEUFrZex3lDa2X7a1vcolMVZJKI07GoBSiKgpxtg22rPNtRPHiChCxO6ksCiUydIPOm2qMwXuqeMkmwogNY6d8uCyA7y/S8gOKVJP0Oiy0VLg10JEGCESY90oshmiBT089I1WPNti7yyb+ZdkOop4noNQatIuTzuWsVtMEjPWSxLscWV6/DgWIknNvTNKJkVNANGI0a5lBOokNZ8JMPfWKEFWQ2QlwE5SsC10xkVlXUScku23QGMqZKRA2RIZK+OQkM9QnV/gj7ruOIZn68DY31hqX2jLiCpgqnlm3dKA9xzyalu0OCE4IQSWpUuXsnTp0sn/582bx9NPP803v/nNSYHllltuYdWqVWzatIlp06YB8OUvf5k//dM/5frrr6dYLB7QNn9821/z2qVf2+vzE5Uf+xJZDkaA2Zu4ctWl13Prr46tvcNtv/yIOaZd7MGuuswILxPe4zc/8KnJZrYtTh5UI8AKQ9hcRlomuBeRR36ji9PhYQWKpC1jskeCGHu4jhgrk6YpQitUuYKo1SkOj5PvbkdlHeKiS6PbpjLDoT4rxQrADjQy0pNWd9mhlNQTyNhYJKWOIHWNbZi2wSlDY22Ox4Zmoy2NiAQ4mgGpmdkxSjXyGIsldl1SS7ZP6j1Un00jchjuL+J5oB2MzVSLY8rkBIhW6IkKxThBCIGOIkRdIC0LWTdZoNqxzIRDtYGoNozlQpxAvW4Ca9tCOA7YNhYYuwTXQaQ+qSNxLIEVKdMU0RVYkelLYTfMBLJQErthrOqe6Z/ClkqJseEcIhKcf85aXtC2ju9EL6A2ljmo41013EPRDrgi9xS97hil9jpjcy2ikk1UcE3Wu2UmZ1u02Bupb2PXU6xAIZsZfVYlIj9UMxN0rm0mXsIELSXKsZqVUQKhtt9vzYA1NbY5QoBMkVqbiSHLwqqZwahuCi8AltbYVRu74qA8y1j4NTOutYCoIElSgRZGeNECXvLYq7nrzB8B7Fez++OBJRf+DVqIgxZbnv74tcy78SvISHD7yuu47CWHJ4766YoP8ppX/P0+e7rIRD9ngs+EbeH+si9xZcm5nzzmSTh7qlJZtuCDoPT2qpdnv7D98RYnBZNJQ2mKjiLTI0MKY98FCM9tevs7CNcxywUhulpDJ0Ys0UpDGMLwKH4U4w0UoSmE1GcVqMywzARf8146WYmQJEacge39NZrxNABRZKoM6jFCmcoWbUuEY6EdiXJtrEZiKlxjUylTqfo80D+HWbHJrNZC4FY0lUdL8Kqjempb7MJO8Wya7mz7JQRaKUQQbu8h1bxOdGoa3WuaQoxqBoBSohNTCSWENNdT83HSFFGPEHGyvdJFaWNPB+ZaTBIj4igFjk12iyB1TAXk9Ks28qHZK/hax1VUIo+NAx0HfLy5Po3d0NR6JG7FxNTatxE6B56LUJp4Rjvjc0+sBIsWxwDPiBsyUQilzH0wTIz4YQnzdxwjXBdtY2wXAakUpNqIMklqPgupQiROs49RhEyMUGL6HTUrC5N0e7VVIhFJihWnaMfCHdhebqU9C+FayChFS0nS5mPXFZ+8/TW8/pXfwBISToCYdtnc96GzGVY8cXBJMquuv5aFn7+R1Dc9S2/75Ue4/OKPH+a9bDGBas1PHVecEALLnhgfH6ejY/uX+7333ssZZ5wxKa4ALFmyhDAMefDBB3npS196wNtIc3s/PYe7cuW5mBBXjrWP9u0rr9tNUNkTx3rg3OLoo5MYNTZuBgVJMjkoFdv6ybguzJxG3JMHoVGeg11uoKs189rmwEJjfAtlHCMdB6tUAF2kMtPFHbbIb1H4IynKEaY/hgPuUALS9A6KimbyTtYVaSqIs6YXhz8o0EMWutmwOXUhiHLQMUqSSoStSQop1dQFYH1S4dnaFGJlUeioU9ECGpJwvBX0H0/o1PhKix0bGCttfoSCWCFqje3NQMMIMgrC0FROKWXsCGwb4dhmEColIoywtMYVAis22X1aCLRtGTEla7L67UBjhSnecER9qkc8kKE2BcS4g12VtLt15noDXDB1E9951f89qGO8f9kNLP7hp3lsdCoz82OEkU2xq0ot61EVGTLbBFYISaYVXLXYM0vP/jgy72E1jI8/qTZWCWEEgSm/Er5nrv84xhoHGUSonLnfadtUCooJ//eJrFgAaZmBKkAaIpLETORMbDybMZmwFY2d5MCWJpPQMuJn6lmIxMZuSGSiSV1BkpVE/97DBf47eeN7l3NVfhXvvPVDbHmqh3V/8f7Dem6WnP/Jw5KtB6Y6eMmFh7auuT8JJitJJhoQHw603Pf9YX/iSi0O3z1mIkY8nOf/YFhy/ieR9YjlT5pMfp3zd+o5OMHy1V882rvW4lgzMekN6BQgRSfNLH/XRWR8Ey8IYQSVZjyCVpMJIDqKTD/6Zoa1KBVodEgywwoxPI4OAjMRPlFxkKTodLtFtXCM8D0pwlguot5A1Nku+FgSC0jaMmhrez854di4ZU065ONUJYiUuGCRZCVoyAwc1bPZ4jnQaYpuBEjHBttuCicarRVCSVOlMtGLZcd7lNp+nYpJuy2Fhkm7OTEhsITRdhHFts21OtH7Z6IKII7NZLLvYYdN+9BAo7QgJ0P+fPpdvGrewwd1jL/5f+/jmhd9BnfcVGGJxOxvmvdRmTwiVlRnZfaZDNCixbKFHzL3w0ZgEn4AYVuTorKwm5aOsRGxJ/4Xyjb3WjAJdmG0/XoPQtMDybK2C97NeFcnO96TnZ1ETRGb74CJKjOdSGRDIirGYksXMlhZl3n/7XD5L9+N8+d9TM+N88BdnyUe8Vn//x0+i8ZlM947WaF7qCxf9xWWnv1xli344EHHP7NuNr7Ve+rb3KLF85kTUmBZs2YNX//61/nyl788+VhfXx89PT07Ldfe3o7ruvT19e11XWEYEobh5P/lcvk5t79j35J9CS1HQoRZefdHufKln0Ok6ohWtOzLHm1CWJkQe/YltLQ4uVBBiHRdM1BoCiaAybrbtBU37EJnXDOQDKPmxPf2wQFAWqsj4wThOohinjhvYQWmOdrE5JsWJsvZCjUyMc3ohNbYDdNsWSiNnGxGb4QYZYPVMP00ECC0ZP1gJ66b0DmljCMVPV6FUMcEWlJyGswujVKNXSxLmaqE6gl5y3x+oxU6TkxQbNsmyI1jUBKk8dqfzPaLIqjWUFFkltcKLSTCStCRNINQy0LYNqQpdhBhew7Kd1FZB20LhCcQqalkkaHCqSXYo3XysUKoDElfBn9Q4lTh1idPQZ6q+c5FByeuTND+wzybzsmzobcTrSSRl5A2TMWNUMYK73ffOjQ7hWte9Bluufe5s4uWdb+D5YP/eEjbanFkWdb9DpN9J2Uzyy/BLjuTg09E04okSdCNwFzzcWyquyYGrQ2w6iGilEX5DiJVyEaMqIdmIDrRUJfUfOYcG5IAGgFaK3StYe7hSkEmY54HI+w0moNay0JmXJwxY88HTTsGpQimmGrH//7MEr7+gqX4s8uIVLDgvz/LIy/5Z3JTNxzyeVp6zie4eT+aii49/aP7ncWnheCaiz590FUsO9p0/XTFBymVPruPpXdmX/Hs3nrngYlprVqyT0tcODw2aLty84N/c1SqWZYtvo7lT+/ec3BC3Flywae4+YFPseKRzxzR/WhxYqHTFGFZRkDRavIxOWEZNnFPbU5i6x1eN0FarmA1BRI1sxsrBivQ6FLBCNETk3VpaibRJybJRTODmh0m1q3U3NetZnVCc70CsDxnsg9UWsyY7bnC9JGLIGiXzabDAjvQ2PXWLPbxwI62dGhlktNS1fwON9eAlk2xPUnQahfhPVWTMa3WyiQdTfTxSVNzXTZ7tExOHk/0FIJmj6Htwo2OYmOvFLi4FY07luIP1Nl4x0y+7C3lBxf//+zdeZhcVZk/8O85d6mq3rMvkA0hQFg1OEzEEUjI0uDOsAhiWEQRETUgq4SwJGRkU5lhZtRh86cDKuoMS2eRgBgEBiKbRFkkSEISsvXetdx7z/n9caqqq7qru6u7q7uqur+f5+kn3bXcPlWprnrPfc9537sH9XitLTtgjalFUFcB2R4HAg1dacGrsqFcCS8i4ESH77W5uGppukcMlZ76/S813wgBeB6070NEIiaJmFykCSkhbBs6Ff+kXuMZ76XCSvZkiYTNdb7Z4aJTSUch0u+tIpngTCfY29rN35VjQwPm+lSC0gtMgiaZZBHSApQpJ6mDAGhqhjVuDERVBHZ7Ah13T8KmD0+FN8mH1S4x8/5/wbtLrxz88zTz23knV/JNxGhbApXhAce0XRMr/Y1picpVUc8WrlixAjfc0Puk6oUXXsAxxxyT/nn79u1YsmQJTjvtNHz5y1/Ouq3IsbpOa53z8pRbbrmlxzH0lSAZ7l0sKcORCc6caPdU6iy14vGkT5gTD8UuYUYlQCuoeO5O20FbG2QiATmmDnAc6I6OzlVXyWBfK50OgkQkDG0JRHYn4LSZkkjQgNMWABrpxuTQ2pS0CVuQvoaV8CHjpn6qcs394nUW/LAwvQY8s4MlvFcg+lYlohUa7SEFUe3hD/JDmLf1ULR3hDCxrhU1oRgumPYMwiKBW/+2GM8u6n6ChoZf1oQUZvdU0B7Aqqo0deFicaiODqhYvPudUydJ/NQkNUiX9cgiJGQ4BBEKQUbCEONqoVwLFds9aFvAr3TQPtkGhI3wPgdepUT1Fgm7A3DaNULNAZy2EJ595WjgmO6Hz9fHT70N7TMsOO1A6IUwAKB1lgOM8RDe3dkjpj9Sq+xT5X4WHndzZwmKPjC5UhqW1JwHoLNUSGrlndkNqExyY2wddHNrcvdW8m8huStCx+LmvTp5MkZEUyVIOruh6yCAjIRhpSajQpjGuKnJqkwmWVLHrK2CsG2IllZowKz6i8WBjqg5URkOmTF6PoJmc/JfphIvtg0ZSZbRcx1U7o1AR1xEtgnUbjYnioLqDrx5fggREULT9mk4s/7cXk+ILznyu1jzas+TuTV5JFcAYM3rK3HqHy/G2ZOeRbsK4ZyDnstqqJ65A2MokhD56i2eXfixm/FETwkUhT6TK0NpOHY8ZyZXcsW0a19cAcAk3RAEQ9o7hspLZrIkRUWjEJ5verS4jmlOrhSEFFCezopp0+9xkTCsfe0Yu7EF/uQ6+OMrYbk2ZEccaG4xye5UWTCZPElum5OEWgfp/izp997U7obkiUTpeaafkG1B2xKqMoRQo48Za0xT55YDwmiZJeDValS/I/DKDwrb44KLLwYuM6bVvmdi0mQMCq2hY4n052y6dFHqtqmTwL3FtEJCOja0SJ5ADocgwiaeND2mpJmXja0xr73mNgQTx6D63agp59zcihn/q7D7lVnA/wz8cdZP+TpQXQUoDWvbnvROWMuvhhOx0TIrjHBjkC5Jmq8lYy8EtMaaxp+Y3zP5YjTszC8RxORKaaif9DWT3FPKvAZDLnQ8AZ1KDAIQ1VVAwoOORs37X2o3FoAg3tyZXEwSMploEQI6tfu6rb1zJ3bnDdNzIGFZ6SRKKl4VrgvtmeSm8HxoL9m/xXUgbBv+7r0AOuNZ2LbZ5WhZgCOg9+yDbLKBqgpUN3ag+i/SJEarQnjjK9Xwdx6IT837NBq23NH7c3TQFemypV01vHtn3s91w7Yf4pF3jsQpFTHIyW+aHUHJhVMN730/fbti7i6m/lFsLl9SippgueSSS3DmmWf2epuZM2emv9++fTtOPPFEzJs3Dz/60Y+ybjd58mQ8//zzWZc1NjbC87xuO1syXX311Vi2bFn655aWFkybNq33gReh1n0xe7D0lUjqOq6FHzcT01SAxB0ulKKDADqegKiqNIFPwkuv+BOWBWFLCNcxdYTjCYimNthSAjpsAiQB2O1+ekuwjPlm90qyAYXwFayOZONyW0IEpuY0ANhu8sShALwKCT9k+rPYbQIisOBXWni/bQIQUoDUeL9pPHa0W1i+cwI+Ov09JldKTNckC7RKntA1J3ZzJlf6K9VQNGFW7ruNraZHS1017OYYRFCFICJhdwSQARCvkwhCQMUuBS1NOToMYiHekqOXI/7hOrTPVIASmPBSgNgYC0GNDyE1wnuBcFOAp/+nf/0BRNwzvWmS1j9TvJOr1H+LK7+UTnKYhDSgVfL1n5w0qmgMcl8TYFlmMprcmZVqnqvSdf4VtK86X6apsjNSQNimv0B6dR+QPsGnAQjL9C5KS50cFKY8jfZ8k8hJJExN+HgcsqICKhpL/+7UOITSUEBnKROlzCreVIkcz4Pd3I4Zj+wHfBKokRF85dePYslhasA1ovvj4Y/djRv//GmcUfsiHt9yOCbe/Y/46bE/weK516eTLcWejPYaz/aSQBU5SmINtSVHXVe03SK9xbS5km71c66Bdqx0P6/+9KGhkUsHAbRSkBUVQCQMsa8JqrW1s2SpkJCOSDYpt6CjMbPgLxIx728JU6oRQWB2D/q+2RGTTGKndyEmvKzSUDrz/RgAbNHZoyWeADzTN8tqjyPsJU8iCoExm32EGyvQPNMqeHIF4OKLwcoV0yIIoJMN57u9h3fZ/d8XU7ZZme3/gYLuiKZX+IuQCyQSEG3SxACeD9keR3S/MXC2NwG2haAqBGUP/CTekvFfgaiqhKqKQPg+RLMHnfBMrBBxEYRNCV63JcCT6/q3ol9YlkncJOWbXKHSsKTmPJOUSMaTWqvOZEugoJKvE7S0mvl9Rzwdq2b9DSTj2TTLMn2GMnpoIVnCPJOQCoDVmZzpcj0sCwKpcxhxqGRfFmFZkFVV6d+dGc8CSO6IScbevg+Rjn1NbxfZEcX+66qx55MduPB3T2LJ+K9gzZ7s85tZChirfeqAV6F2zobaORu/ftpDZMoW1M9aZvrNWVbOHb9ElJ+iJljGjx+P8ePH53Xb999/HyeeeCLmzp2Le++9F1LKrOvnzZuHlStXYseOHZgyZQoA0/g+FAph7ty5PR43FAohFOpfX4UNTwz/zpWuSYyeEi497TYptIXH3Zw+KXfSJ1ZCqM4dLes3Xpve1UKUSQcBhGND1UQggrCpBxyNpq8X4ZAJRBLJ8mGxOERHHJadrNUrABn3k30EzJZc7bqQCR+WFweSze7SCRbHgrYk7ChgxRSUK6EcU97JSgjIZHUHKwbEBOC3SwQAIAB3t4WKDwDxViXejh4C/GNRnjLqBxWLQ8hE52qnjAlp14C6T6nJa8KsoEJyK7pKJCC2W7DG1iHsBUhMrkaixoaWAqFm8zvidRKxsQLxusE9HhFNILI3QGiPDSsKRHZGYcXDsFpsQAChZpWuYd0fva3qp9K1yD0LQMaqPMD8m0yaIAg6e19ZFnTCg/Y7dwrKSCS56s9L7+TqKjURTZXQg6+SE1Od3rGik2VHIIRZYR1PAC0J04zX6ozNUomVFK00glRJh66SE2qdvL1IhEwz0lCos5xZwkPl/72L45Z9FW1ntkA9U4fpiR2on7Ws28q/+tlXYs2b/zKQp7lHyw//X1y06Rx8uOo91I97DQ+9/VGs3fQCFh+zoqC/Z6B6i2d767HyxIbhr4+dmVxZ/NEbciYtMuPMobTgxFvSO8Pr51wDaJ3uyQIADZtXmZ0tQEFPcFCZ05093IIxFbASyXg284Sfbaffo7VS6X5Vsj3Z+8rz0+/fIhIBbC+r3j8SXX4GOhuaA8nm5QqwVGevOU8lV4ELiIQP7ZpyN9YHTaja147Kd9yhekaowJTnm3J0QpjeD8nXESSA/HMryb5AAoB5Lar2DggpkklCs+NKRsJmDbTrQk8Yg6DCRWRHB4Kx1UiMC6NluoNEzSAejOcD8QRkLAF4vunVmZzriY44rGgIjisHlPBncq88LY6cY77RyiSfXSe5UEh1Jhat5O4rz4dWftauLWE76bJ6uaSSilol/2C6xr2pJI3SEHZyR7bWnecghEi/n2ulzMK9rjFtS2vu352KZ5OlxdKLj1K/I7n7pvr593Dcxq+j8vkK7Cfe6LGcaf3BVxW8F5yc/CbUztkICQdq52w0bHkT9QdflRXHE1H/lcVf0Pbt23HCCSdg2rRpuO2227B7927s3Lkzq7fKokWLMGfOHJxzzjl46aWX8MQTT+Dyyy/HhRdeiJqawUQEnVI7M0pBT7tZekquLDmssLtfMie9PY3ld7+/hrtXqLuaajQfUoOmw2qhx9YlawInV3m4jtkhkJqgSmFqASd8WB2JdHJFxD2IVKIFMAG6F0AkPLPN1fPN9QkfMhFA+Boy0BC+hhVTcFsUQk0aVszsMkhUA0HY9LPQjkLl5DYkxgbQFhDep+C086RKKVqvfpl9QTIpohKJ3MmVHk4q90TI5OpT34eKx0xJpVQDW98HojG4O1oQ2R5FxfYOVL4fR6jRhx8WiE4w1coie4CPntfHtu+Dc79v64iL8K4oqrZquK0AhIBMKIR3CYR3CUhfw6/oZ30wKl+ZK1ZVsj60Mj2IUk1rZWUFYFnplXSZq/tUNAoVj3Vf9SokhO2YyWpqlV9y0pruPSCFKZngupCRiFnxatuAH0A1tSBobIba1wi9rwk6GkPQ1tb97y35t5P+yrwqCNITZx0EUNEYgn2N0E2mEbSOJ6CjMaimFtQ++mdM/p6L6b/9ALoyjMSM7IU6i+dej4YCJ1dS/mPuT/HVg3+PDU2HIoDEOc9/GWtfXJEuMZVp0T/emPVvqZm/oDRWKPa0I6S35Eoh4/HMsrsNm1flvI0Wosf/ZxrFbBvR2RPQvr/ZxSIjkfT7qLAsEz8kk9LQ2pTwsiREIuishpAq/WRJoKICoroKIpkoTb9XZ+5YSSVSAPP+7/tml4vnmZOBjgNUVpp/pUTbATXY/Q915v06ZhYiUWnKGdMmEiaRp0wZOtOzR/dr9wqAzj6FMKXFVCKRfF2qzr6ZybhWRBOwG9th7WpBUOlg3yEOvCqgcqfGvLNu7+M3JXfZdiUldCwOtLZn78pSyjQiT87R4nVOvx4XlTGt0uXsUokVJJPOwnEgKyogpISKRrNeq+m7p5ItuRInGcmT9LwtFdMmbyOk2W0tI+F0qUUVi0PH49DRqPk3CEzJ6Y6O3mPazIuTZf5Sca2KxaGiMajWVqjWNrM7J+GZmHZvIw68zcd+j+6EmjEZTR+ZkHWs+v2+AQBDtqNETn4z/b3aORsNb6zuMQ5acMKqrH+pdCgtSuKLZ8uMskiwrFu3Dm+//TY2bNiA/fffH1OmTEl/pViWhcceewzhcBjHHXccTj/9dHz2s5/FbbfdVrBx9LYCsBTNX9j5ZjzUJSC6Pjfsx0I9UXWVaJ8i0TJDwptUZRIrqRXXnp9dhzpZ318EunPHip06AWi22IpUg9DUazxZgxpadyZgJBA4Epan4LR6cFsCuK3K7GSJw+yM8QC7QyCy1QGerUXFdgvCB57978vwx4cuK8pzRQOTakqrU5PQHAFwn8ewk+WPgiArWBeWBWvyJCQ+fAASsyYAgYK1qxHW3jbYLTFYsWRJug6g5m9A9dYATh/NZHsKnLUt0Ty7Ch0TBcL7FJRrQWiNmr8r1Pxdw2kN8Mwv+docLVITw3QyIm4mbemTJQlzgk1WV0FYVo/9sLoSUnSfIOZaEZhxYs+svjM7CWVdDaxxYzpP+hQo3tDKrCTU0Zj5N5V8icUhX3oDeucuQKnOcgxJw1Gq6yfH3IfVf1mM57fNwOIPmwTBkiOy4551zy3P+rfUFGM39mBk7ozWQzh7ydy9kjIcfWKo/AjLgldlwauUUJFk7JmMZ4Vjd66GTr1HucndI8ldCNqxO3tZCQE4NnRFxDRirqyEqK02CZdI2PTVSjVXTp4MND23zPsiZLKBM2Dezx0bKuJAegqVOwOo2go0vPf9YSmpSIUjQqF0aSIky4Cmdp7kfYzMxRMZ8WzqZ6uyAnLKJIiKCrPqfl8T0NQCtLdDJgK4LRrjX0ugZksUbmvfsfTa9gdyDEJAVFUCFRGTDNTaJI4AoL0dVlscTnOCMe0oojw/PU/TiQRUayuCtnYE7R0mweH7JtksZDrO7ZPoHhxkJVbQmXTRSneWgobZpSLDIchIJOu6fldA6D6Azt/r++nETSqWx5/fht65C9qW3foPNbx/1+B+dx5SSZafto5H/QGXAzA9DLt64qlrsv4lotyKWiIsX+eeey7OPffcPm83ffp0PProo0M/oDKRuZslMxtdP+eabpcNlcx+LNzNQgCgHAuR3RrhpgB2Szxdz18rBSTrk6b6sCCVPIklIMKuuY1INnj0fbMCJe6ZRIrSprlnyIFybchoHFCmFqrwNXSFgIhqWFEfyrEgNBBqDmB5ElAS0IDTDtS866Nq8x58sGBycZ8oGrD0iqWBSm3pBtL9JGRyR4ysqoQ/bQICRyLUGjOvR9c1J3pjppSHHdWo+TtQ8YGPICSyFp/263FIieh4AekBVVs7oIWAsm3YUQ1A97sRKI0Mnauas8seaF8haA8gYvH+1WZPNU7u6XqlIZA8iScktOWldx5qbd57hWUlT/bB7KgZrGRpBTPJ9dM70tKPK1mfXmzfBWdfGPWzrwT8AGhtG7ZyIa9+Krkz5VTzDxujD63MhTuZ3w9lj8L5C1ZnJaKWHHUdtJTQIatkE2c0OFl9MPqgJ4+D2xKg+q1mszMk5JqGyImEiVdT74WpkivJxT8IlNnBIpHcCegDtg0ddjoXEdky3fcHSkFGPbPSvyMKxBOduxkAk6TRGmjrAKqr4E0bCxFoWC1RVG1uBzwP/n7jCvYc0fBJnYwFkF51nyZk37Fu1xPOUkCmEn1amUVuY+vSrzOR3PmUWtRmtScw7hUfsqkd/qRayMQgYutI2JywTjYvN8OTyV24qij9wKj4Uq/vzLmbSphScunYMu+DqZxJlkzpvyGtoFOHziyLlVz4qX0vv7+xfowrK6ZNJXmSu13km1sxZmsY9YdeDX9sJex3PxiWBAtgkixLJwNL3zE/s5R0+dAQUEO56oj6rSwSLFRYXRMrCz++csh25+Rz3EX/eCMnqqOENXYM0BZDzRZhkit7m6FTK/e07gyMpEyXChNAug4rQg5goXMyKQDR0g5ICzoSgo44UGHH9FqJ2JBx3xwfgPA0hNLwq1x4NTYCV8Bp19AC+NN/Fr7hJxXRIIPh1I6qdANvKSDgQAgJuC4SY1zY0QDWzkYgFIKqDEMkfKjKEIKQRGRfAJHaPOVpyP5Vckhb93/LcfzJ34MMNKw9rWZFqluF2BgJ5Qq4LUywjBaL3LPSNdPTE75cr/OuTT7zZOqwd048e1yxZ0kIx4H2POiODnOZ0oDrQEiR3wrDgUr1Z8lMtrRHTT33pmZTHm1s3dD9fipJWcmW41cVdDFP110+mb1jchmuvjFUfDISgQ67Jg6Neemd18J10iePU4TjdMa5QOfJvGQT5NTJbPjJk8yOBeXa0LaEciWCsEm0hLc1QyACuC5ER4fpWTi2BirsIqiwIT2FRK2L3z9+xTA/GzRUujXxHkA82XlCOVkdwEq+FpXppaYrKyCUaXwvQi5QWWF2mTgORFsUQgjokAuhNGR8YAHtmn0/Rv3ki01/jUSiszSelBAVEQSREDqmRAZ0bCo/mTFtOomSowTXQOLZ1LkEIUVWLJuVnMy8LFmOHMlKGqlbmb+9AU7g+hhbtxhbK+iODvO30dQMe18l1HQu9CQqR0x3UdFLn3VNrpRKw1gqvOCQGRAxD1bUh2iLQicb3KcaJouKCsiqSnPjZF+BzhXLGkJraMdCUFcBXVsFXRlKJ1dUdQhBhYMgZCFR6yA+xoFXE4Jf7cCvsqFCEvGxLmLjXfgRAS2B2FgLz/2M29EpN2FZECEXIhw2DWirKgAAkffbAABqQh38cVXQYRv++Er41S60LaAFoCxAuQLaEvj9I98Z8BhCjXGE39lryjW0tsPd1oiKPeZvgq/dUaiPlXkD1iVhkzkRTX8vTHJFhJJ9iaLRdF+XoLV1aJIrmRPuzJraqauTpdIAmM+LXXtyljag0aHYO6VzJVdOOp71ykciceAMyL2tCL/baBIkyRXXACDCIdOvamwd5IRxJo6wLHNSOVDJxIqAijjwJ1RDja2GjrjmxDdMzx9YAtoxyZX4GBuxcTa8cZXwJ9bAn1yHYNYUJA6cjNjUasTHh5Goc9AxJczkCuWW6qPmOObLtk2iT2uIPfvMboFUbzWloCsiZkdVVQSqrhKqJowgZA2qPJBOxg060dlvTScS0LEYhNbY+OvLC/iAqaSlYrtUsmGIYttU/JoruZL6/cK2oRIJ0yslbnoIDtVioVT8KqTo9pjN34PpT6QTHsQb75ZU/2ciyg93sFDJ6a2J6JKjl2PNy6XZMJZ6Z1VVwbeEWe0fS5hmm0GyxEGywb2oMCew0dZugv7UqhY/WWYh2QNAhWwALrQUkLapMx1EbChHQIUkAteUVVIhiXitKX2jLNPEPlWvnyenR4b16pf9KunRb5ZlToYkG3HqaBSixYGaVIn3ltSg5l2Nig88KFtAOwLC04AtzGswAGR8cLtprN0t0Lv3mr+D5IrV8I5qCD9coAdIZSFVSiD5/dD8Cg0InZ74Cavzd2mlIaQpy6WjMSjPL1zphD7GJKQCkOzVJe1u5SLSOx2lgKiuQgNLG1AJKXbShwpPRiLQrm3eK6Mxs9of6NzFEg6bfirVFdCWBdnYAt3WDqECs+MveWIbQsCvtCFtAemZflIi4UO7NoKwDW0LsyPbFpC+RsfUEJQtYMU1nA4FBBraEXj6fwa+iINKy5DHtEKYhGCqp5rSUO0dkKEQYkdMR+iDNoh2k/DQGgiqQvArbEhfwYoOsvyn52fM51KxhYRIeJB7mgf5wKjcDGlMqxW0SvbOTCVZbKfzvTeV4AsCIIFhiWdzjs2ysn9vcpeaUAoiEsb6jdeifto30bD1B8MzNipLSrOiRSnhDhYqCYv+Ib+kCZMr5UvF4nC27AIAiGjC1M93k2UTAFN+yfOARMIEHK4DrZXpheG6gJSmNrUCZNSHlgJBhQ2/NgS/ykFQYUooaCkgAo1Qo5c+ue2HAKGRbGqvmVyhXgnLMlvFg8C8JlNfsTiEkNCREBoPchEfrxG4gLJNYq9jvIVErQUrruC0K/zhN5cPejVpw9u3mkbm8bhpAtnRAWvLdvz+Ma5SHS0Wh88eup0rfRGdE1StNFQ0iqC1FdCq5xWBQyCrqW/XJr2p66MxQGss/igbklPxzF+4uthDoCGmEwmIv20zJ4u1Nv2flIJO/Zz8EjEPst30aks3qA+56X6BWoj0SesgbMOrceHXhOFXOfAjFrQUgADsqEJkjwctBZQFaAsIXAFtM7lCvUvFswDSC9bSJ5Yz6LoqBJHkPMuyoB0L8Sk1EIGC05rAExuuxrpnrxvUWNY039O5cyXVeFwraM9Hw5Y7BnVsKh+L3LOGLabN2o3t2OndW8J1ze6ZIICKx4ZlLFkyd413fS60Sv99Ljnyu9j5qZnDOzYiGhTuYKGSsO7/2INlpNO+B93cAj11LHQQgvB9MylNllRIr0K2TP8VoUXnBMBxzFZ1y4J2JERgmt17VTacNh/SU5C+ArQpyySTFVSF1gg1+rAiEtoyiZdnfsUt6NQ709Q7+b3nd65KjYSBSBj++EoEIXN9xxQBO2bBimsoW+DZ/15W8PGsS/wcALDQOgPrg4cKfnwqfaYhZnY96YLTCkLa6e/Tk750kkVBeRnlufrTeHSA40klU1K7Gbv9zoyJqVYKQgi0T6sc2nER9WLD+qv6vhGVtVRCV6RK2qaa1yevE0qbXa+B6uy3kurDYltQFS786hC0LQAFKEcgUWND20Bon2/6rnkKSLWpCJBcOOQjCEsoy5Qiffp/mVyh3pkdqSLdTF6ne58ko1xLJlfRazitPrRlpftcPrnuyoKPZ533IAATz2b+TKNP1x4pBT9+5u4QIU2MmFGVwDSyT14/HLtXMuLqnH1nUrtoRHKXjW0jOq0GYohDbSIqLO5gIRqkJWO+XOwhDNji8NlY5Jw5bL9PVEQABQgvAKTVeUUQmO268Xg6qIBrel/oiWOBkAPR2gGZ8KFCFoKIY+7mCChLQCYCyFhgVvtpQCaSzZADDelp2HHzL1E+dBCYJrXJ12W6nEIQQFeEoKVA7bsBat8wE1Q/ImAlNCL7hjZAZ3JldFob+5n5ZhhW/KVXlWZKNQFFcsI6zNKJlYxyZZnjNKXDzAkkVEbQPmX4x0g0EtTPLvwJ1eGyuGrp8MazkbBJniQSJpmSLLcEz0/2lYibPoN+siyYnXxfChSEryACBa/KRqLO9AiMTpCIjpNmEZGnIBMKOplIkb6GFgLS07ASGtJnPEt5SPW30LrzMzTrhG7yc1NKiD1NcN9vTve6FDFvSIe2PniIMe0olVo0NpyEFMkeWIFJdEuZczf0cNCZ/WWRHXcLy0onRREKoWWGA7D6E/VBQZTEFxlMsBD1oX6/b/R6/ZrGnwzTSApvbexnBV89JCwrZ8BiTxgPhEOwtu8BWtqAjg4gnuisg5ratp7woGur4c+YiPihUxGfWoOgNgKEQ9COBb/SRsusEFpmRZCoFvArLAQVNlTIghUPEN4dQ2hvDEJps2tFawhfw/I4KR2p1qtfFvaAWkF1dCBoazfluTzfvE59H6KpDXZbAlZUofp9HxNe8lD7dgxOq9lJRTQUUkkWYVmmjvQQTQq170H7nmn4mUiYn1PNP5M/DxshO8s7ZJwUSiVUAJN8UZ5vvmJx6N17Mfb1KOZ+5c7hGydRGVl4XM89ihre/JdhHElhrW27f0hWw+eKae3p+0OMHwu9r8nErJ5vmhOnYtmEl1ykkXzfqqqAqquGP6EGqiYCnSx560cEmmda+OAYGx2TAeUA8RoJv9pBELYgfQW3yYPTnIBI7pARvollBcONEatgMa1W5vM8Fjefj6lSm1qZpF+g0vEt/ABoboHcvgeiIw5VzT5/NHRSSRYhRY/nDQYrXYoufZ7B/C3ojg7oaLT/u7AHO8asHdfdFzNlxrM64UE3NmHSHxtR91Ych1zPmJaoXDDBQj1aNO+mYg+hJDS8f1exh1DSujZjFK6bc6utjsVNM1DfN/0kfD/9lV5VApjeLPuaYDV3wGmKw2lJmPu7NqAU7HYflrkIlbsChPcmYLX7kPEAwg8gox5kzIeM+7A6zOXQGlqaPixEeUtNThOJ5CRUAa4DEUvAbUoAGvAqLUQnhhCELdhRnvGgobMu8fPOZp299T8p1EQ1WQe6WxmDYZSagPZURqJz90ry+fB8uO/uZjKdulkw/5ZiD6EkrH/mu8UeQsnK1Vw8Z0wbjZmv5M5WBMkeLEFytwpgerDYtlkp7QcQSkE7En6VC782BG2JZFlbwIoD1X/XqN0SILLHh93qwYoFyV3YCtIzu16kp6AFzH2J8pXcuZL6LM886WyuTvYPAkz/y4qQqTRANITWeQ/2vWBosPFsaudzZpIlYwFRn7Ftxu+Xjp1/MijzNn3cPjOuz1xUpD0PYuceAEif9yDqymyeFSXxRQZ7sFCPBtvMjkaZZO1QFYvnvFp1dECmalR7fregxvS9CKAB6NY2iHgCMuRCj62DjjjQUgJCQMYCVL/TYUosaA0RS5g61al2Ab6ClhIyCAApEVSHIT0NoRWeXFu+5S+od+vVL3OeHCkYmWxS69gQiQB2Yzu0LWCFbchEAL/ChlfN0kQ0dBZXfgmwbYhAQSWCnI0xi1HuoGD6GHtmSbBc1wkLEDXV6DhiKhoPHZIRUhl7YsPVxR4ClZNeYtqgsRkyHOpMqCRPWpvSLqk6+na6lwX8ACKagB4TQRCxAa2hQhLKFqjcoeG2KLjNPqQXQPgaws/YsaeT5cF0gCAsIJSGCDT+wP4rI1rBY9oun6/p/hfJ16j2zO5UM6+KA9VVhfvdRDksjpwD4TpAIKGjQed7Z0qBkiuFohIJSNeFVn5etxeW1bk4qIfHkv7c6HZnCVlbg+iR0/DuFzSsUMdAh01Ew6yMZ+JEVGypJoUAkKuUSyYdBFDRKFQ0asrOpLaqC2lOGroOYHXpy+IHEAnPTDYlAK1htcVg72mFta8Vsj0OEfMg4gmIQEPbdrK2qum/AqUgYx7sDg9Oc+7ED40cBS8VliQdG8J1zWvWtYF4HIjFzYkQbSaoQmk886vLh+T3E6Wsbbu/syktuiQbyjm50g9ZpRUyGobKygoE+49HokrCrxi+HSz1U74+bL+LiIbGIvesrJ97i2m175lYNrUSOmNnAKSAcF2IcMj0E7Stzkb3UkA5Al6VBa9CwulQqNzuIbw3AREo00dQmhhW2xIqYkM5Vjqmlb7pJyi4Q29UKGRMm97taVnpVfjW2DqzcCjZpwUi2fvBssy/RENsTfM9kLU1kOGQuSDVF6VU4tmM938ZCpv39lQiva+dKbbTWQItdZllmTllRuzeNckipIBwHfizJqNlpgO3IoEj999ewAfVs0X/eOOw/B6ikaxE3r1KVzk3fCQaaultrXlumU1v0c1s5lYZgaysgIxETOBiJ7fgSgmtlTmRHfcgArOqT8Q8UytYSjMhkBK6IoTYtFq0z6pGfL8a+GMqoCpDUJUhU1ahLYZ1zy0f0ueCSkOhkyzCskyJEGFOfIiEDzWhDomZExAfH0LgSmgh8NQaflbQ0Frb/gCA1GvS6VZWIKu8wAjR02NKP17HhqyogKysgBhTh7ZpFbASGu9+/bLhG6Qsn1B6/sLVxR4CUUmSlRVZCds+d9RllFiCkBCuCxkOmRPWrgPhOIBjm5PVjg0ddmB1mFhWOQLSB5y2ADIRQLkSKmRBOxJByEJiTBhtMyJonR5G+/4RxMeGoUI2lC1gxQP8/vErhvrpoJFCZCzISL2uLfOl2tpNg3vXgayogKiqBJLxbsMb/KygobU2+lPzjetA1tV2SzIAKFp52m6Sfzfa87PL5ub6nEheli7BFwTpmDWdSMq6uUh/hgjXhQiFICsr0L5fGG6rBv5ahd8c929D9tCyBzOy5hCjRbFLg6W+NBvdA2CJsD6Vc8NHoiEnJERyYYawrH7V6peRCEQoZJIoAGBbEEBnHWClzAe9UkDcg1BmRwpS12sJKA0dsqEqXDMGpU1j0HgAnVqJBWDNaysL9YhpNMkIkoVlAQnTh8WrC8GvsCA8DRlobHjiqiIPlEYVyzI7p1LvuSNUupF9xuq+zJ4s6Qm4ZUFURBCfNR5BSMBzhjfAL6c+bRvW872KKBcRMgkSJBcBCSmgu5asyXU/KSAj4Z4TrZYF7ZgdASIeQHoaToeCjCvIRLI/gBRQlgAsARWS8ColvAoBZQOiSkDbgHYErJjCE09xMQcNQMaJYCE7TxQLKSEiYSAUMrunlEbD1h8UcaA06ghpXn/IUQI2j/fgYaGV6R+bGXP3MK5U+b1UYiVFRiIAAOX5kI4NCJ1edCosmOS8ZUE4NoIZU8xux4iAGMaHz/YARINXPsvuiuCk41cVewhEpS0ZXAjXhaiM5B0ECctKlwMTQnZuT7etZKkwmQ4yTJIl6Gwq6vnJxqLKfB9oyI4E3L1RuC2+KdsUJEs3BRprXuZ219GmkLtYtOpsYitCIVOeKdAQyiT02NeHhp0UpvRM1xIFyZ9H4i6WXJcJ24GsrjKfEwCkF6B9ssCeBSwHmQt3rxD1TCc8834SiZhdgpH8YtrUjmsAJnYVojOmDVR6EZBybeiQBekpOM0e7A4TyyrXxMKWp0x/FaVhdyi4rQrSS64lsgUCVzLeGIUGHc92fQ1LAa2UiWVTn61Oct6lNBre+/7gfh9RP6kxlVDjqk21gAyZpbVKhbAd0x/FdXvevZKZzAyFzG2B5N+dKRFmbtpZBUS4DkR1lTkHIgSE1mjdT6DxxCjiMxnTUu+KvXMl3eSe1UsBMMHSq9/9/ppiD4Go9AkJYdvQ7dH8bp5KnCjVZSVI8l3ZtrPKhAEwiRTPMye6hTBb2B3bTAhsCe1YUCEb0IAVTe5w8RVkLFHAB0qjTsbEVFREgLF10LZJsMi44lZqKoo1e34EEXIhHDu7lE3X5qClUsMayH8sWgFadZ74yXE/YVnJkpIOdDzV/0DD2d4EKwFY28IFHPjIwd0rRL2QAqiqhBg3xpyEztHcvqt0CVGlAKUgHMecIEstAtIa2rEQhG1o14KWElbUg9Xhm1JhrgWv2oJXaSEIW/CqLPghCT8ikKiWUA4gApidLAHPXNDAaKUzShoJiHAoXUUAlmVer37Q2SuIaBit3XQD4uMjpkxYlyQLgNKIZ4VMx53SdSGqKntc/JN1biNIJjNdF0JK81kBZO1wkZUVps9newd0wgOEgGyPI1EH2G4AKzRyd6oTjUT8JCWiQRFSQB08E7K2Op8bJ08IJsu9JBJQHR3QiYRZ8ZdKqOiMiaRO7iBIBiWorkQwthI6ZJvrtIZ2bShHQnqm5ILwFGBLrHn15gI/WioXg171l7EbQKvU68wCFCDjPux2D081sA46FYnWEKGQWfWWXOWXeRKltwRFyeq60jZVGiKj6WnmSj9ICe155rahEKIHTUDrTA2rn4v96ve/tDDjJ6KyJUIh6IoQdFUEcsoksyu71zuYk2ap3djQurO0bbLHBSJhc7Is0XmCTHgBhGd+btvPQfMsC/FaCS9iSoPFxkhEx0t4lQCESbCIAPAjXNAxWq1Xv0x/BkrXTa+Iz0uOXa2iS1yg43EgkUDDljsKMVyifvMrJPwZkyCrKtO7RKCViflS77EDTLQIyzIN51NfyWOmj93LMTNvrz0fOuFB+55JnOSQKpXerbm9bUMHAVQ0Zip0ZIwJ0yabpL7nQVgW1OTx2PrJCdAfakfI9VERyX+x6PwF3KlMVGxlNPMmolKTKvXVMa0CqK7qczuvSJW2QTIICZRJnmhtVg8CgO93Ng9NrgpMSyZgZMyHiCaAeAKiLQbZHofTFIPVEoXd2A6hFNa+cP2QPGYqH5mT0n4H5V1O9mrPh9jdCFVt6gSvf+a7hRomUb/pcWOA2mqzs8pKJh4yT6IMZWIl829qKFYWZu7IyXVsraGjMfO4wyGISATetLHomGSj+u8CTmt/fx9PXBKNepEwVNhFfFIlgvHVJonb24m3zBN/UkIrBR2NQccT5vJwCLoyDAQaIrmbBTLZG1AC2paI1wkkaoEgLBCETa195QLaQjpRrC1AOcBzP7tsGJ4EKlXrg4cgwyGT1EuVCO1LD7fRQWD6XSYXLABAwwf/XsjhEvVLEBJoObACqKuFqIykExRCCgjHhnTsAZW/TSUxzN+Ok24on16wY2df1k0yyQMAKmF2TAvbSffq6kl6F4tO7mRMeIDSnSXAHNuMx3UgogmICeMgJ0+EnjoB759Uh+hHoqiIJDC+qg2vffqG/B8wz+yOOhrFLw2WLhFGANjknogGQ5h6035YoOOg8Qi9+17ft8+kTT1S2Lb5SjZeBGAmolKayzMTLdEYRBRmO3vyGCLmmZ+Tgczav9xS0IdJ5S29C6V/d0r/K1zHlLUbU4tEXQhPrWEddCouoXWyTKJlGtYKCQjdfRdIT7tC+vwFEuuDh3q8eqF1Rs779Ph7C9SkVKRPUJrJt47FoRGFV2kjOk4gvE/D6ejf3zob+hJRKtGqLAFtSfhTxkK8vxPaz+f9UpjyL0DnLm3XhRYCQiloWBCBglcbgghZkF4AbQnYUUC1mD4rXqUAlEmoQJt/tcnF4MX/WDZ0j5vKhtkxJSFS86S+5FqkoDWQSq6EXCDkYs27dxZ+sET9YEc1WqZLqJoIZLwSSHid5wOEMOXs4nFoledrP0lIke6Ntbbt/h5vl45pM3dOAxk7XILORIwlTeWNPuJa7XvQQnbmPFLlz1OkmV+qqghgCcgPOiCURsf+GvNmbUG1HevXYwVYCpaoFDDBQkQDJsIh00tFCrTOcBCpqEDQ2svy4WQCRFhWutlbut+KEEDIhfC8dM1Scx+dLLmQDEo83/ycuty2O0uKaY0GThQoaZF7VjogFlJB97OMbboBoesCNdVQFS6TK1QSGjavwknHr4JtS6Cl1SQctOj9Nd7Hitf+lNVLJV9Sk9KuuxezxpFvUieXdN14md4BKVzXTLaFgEgm5ive2gNtT0DrNBsv3MuTkUTUP96UWtMXJSTRNj0CEQA1f61E0NSU+w6p96ZUrOo6EI7TuSjIkvDGR6CFgNOaAAJtkjdhCRk3iWIRANI3iRRtm3+V1ZlcERp46YffHpbHT6Wtfvq3TEIkfcK3Pf87pz4/U2WaU6VFLYtzJioJf/jN5Zj1r7dj4ibblMBLvo8Kx+wWEa5rdoFkytV/MKm/ZaLXBw9hoXVG8u/EyT6uJSF05xxSuK7ZAZYPraA83/RtkdLcT2lz/kQIIBSCPyZsypxXuVCuhQkvAn8/bAxuPPB/MH/mG/16HERUfEywENHACbPLRDkw9aJ1/1YOpxuEWrJzVVUkbIIm3zerVTzPBFi5WBa060Aok7hpeIcTBepkEiRmEgmlsxt95nPf5GRUJxIQHVGsfet7Qztgon5omxZGFQD7PdH5+k7JSEyYfwRkRQVUNNaZ/NBq0L2KUomWxeGzO39/avVf8l+TfLFM3ep8aAWtOk8IpRrfA2a3jnBs89kTCZtdPNEYVF0l3GYPL/3vdwb1eIhodArCNkSgkaiSiNcKSA+oraoEekqwJAnb7lwEVFlhdl/7gWlu70p0TLLhtlgI70lA+tqUDFMagSvgRDWkD0AAgSPgVQGJWtNzxe4AXruVyRVKcpPJO9sCQgFkWztUPL8V7iaZIiEcU5IIrsudm1RynCkdACTgeeYcgO9DA8mysFGzkCg5r0vtLNG+B61kYePZyDnmAmkDSkNGIul+sTLimqoGkbFQO3bmd2CtoBIJSGlidWgFHYubv0VLwquyIT2N1hlhVL8XR/sUgda/j8f8k5hcofwosDxXKWGChYgG5IT67yF0wH6QHQlUbfNQsVOYLbO90MpMLDWC9Oqp1NZdyOS/sbiZRFRVmOuaWqC9aLr/CkSycZxtmVUt7R1cgUU5rY39DEvGXgjh2NCeDwlTQzdFSGFWw6fK1EkBBCbwhRRY2/5A8QZP1IN/+txtkL5G9b447F0tpta/75sdLCrZpyocwpqWe7Gk5jysabkX9RMuMpNT30+XzFuX6LkEWL/ZNta13Y8lNecBANa03IuF1hmQjm3e961+JFiStNIQ0iSKhO2Yv0/LMjWwHQc64gJCIDZ9EqSnseGJ0iyNUD/9W+kSlw3bfljcwRBRN//zztFo/Oan0LSnCmhXGPeyhfGbmkyMaTs9v3el+jdZlolRgwCwHGjXAaRE+IMOOK0OEnUuds2NYNKLUbNLxhawAIT2+QiSze1FoCGUgPSBV37AxApla3j7Viz82M2ITwjBbUzA8TyIllYEbe1ZC4JkVaVJxihlyi7H4xCWxR4rVLL+843j8bfYROg3P4bWmRp1bVUQ0ZjpY+L7kGPqzCLKnXejfs41aNi8Covm3QTlSDhb9wLRGBp23l24Ac05AGs33YAFJ6yCFfOhN2/B2vYHsMg50yxUamqGnDwR0nWz5pQ9Si50UjHztygc2/ydOg7U+FpYMQW/QqJil48PPhpGbDzw9wuuKNzjKbD5C1env2dJMqLuhNb9XHI+wrW0tKC2thbNzc2oqakp9nCIStbxJ38PlqfgNMXRNqMSNS9/gODvW3veJZDcoi7sZD+LZFkw4didvVYAIBaH1ipdAgZx01QuXRJMCgghTYJFSjS8f9fwPnAqS0vGXggdjzNpQiNG/f6Xml0c8QQQTyamgwA6GoOIhAs74czDkprzzImdQJkTjUKY9+5AAVJAxeJ5939Jf5tscgrbNqtvk58TWpvSEdGjpmP3h128fktpn5Cc8907AQUEYeCN5fmNdbDxKONZovy8tW0qNicm4v/tnIfXd03CuPurUPFuK+T2XVAtbTl3CgjbgaysgKisAFzXxKRKmfc914EO29CuDW1JaEsgNt6FFVOwEgoi0PDDFrQjoGyBeI2EsgW0Dfzp30v7vYyKb/ExKyCbO4DWtmH/nCcaKgf+y50I7QOqtykoW6BqewKhv2yHHleLNa/cNKxj+afP3gq/QiK0z0fkpXehJ4+HiCbMOYrWNmDGVGDLtt7LoqdkxLRWZQVEJAzU1UJVh+HVhuHsi0J2xLHnYxPRdHIH3jrtu0P4yApjzm9XQAjg9c+syPs+jEkLb8OGDfjU0lPx8f+3tNhDAQD8/rT/wpP/sw7z5s0r9lCKijtYiKjf6md+G5GaSmjLAmyJmtf3Qu3c1ef9UtvUzckys/UWSpsunqm+KgCEMKuukFnyxpJYs+dHQ/SIaKRbs+/HxR4CUUE1bPsh6mctMyf1qqugK8OAEFjz8o1FGc+alnsBAIurlpqyjpY0m9alND23gBwNd7skXLpcn5VcqaqEHlcL0REH9uwz1yvAbR6CB1Ngm2/+Nj50+x3QNvChO+6A2L8Db59e+pNoopFu9qo74Rz2FUyoasOkijbYloL0NUQQAKmSSl0TLMKUKhS2DTg2dGUIUIBImB6CQilT2VCaBAqkQKjRAzQAAfhhC79/vHRXKFNpW/viimIPgajg3FbA8oDmAyTi4zWaPxTCG+uLs+v3D7815WbrD70aiIThjYkAYyJw//YBEh85EE5L3Cxmsqzs8rhddY15hQCqq5CYUoOOqSHsO0TigP/XCO3YsBIa+t2KIX5khbH5sytw2P+swKG/uQEA8JfPXV/kERGVDiZYiKjf/KnjYDd1AELAj7iQ21qSO0x6aCaeqsOfbkiXDEZS9Uil7H5ZptSuFSIiSmvYckexh9DN2rb7TUkyADqVSI/H0+XC0pK9Vnra1ZIq3SfCIYjqKnjTx6N9agg1b7ZAtrpAyEVoZyteWnfzcDysQdMWoC0NLQHnrUosPmYFT5QRFdmxC17Hxrc+hEYrwPxJb+L5Vw7EmEBBhxxTQrQiYsrVpMqECQmZSq4Apt+KbZuEjBCAbUE7FmBl10TXloDwFFSO64iIRrvNN5fe7r2Gv9wCAJh31u1QloA7Zhq0BNy9HZCTJwIAdGsbdCJhvjKreHQ5byEjYYixdUhMG4vGg8PYd1SA2mn7oB+yAcdC1bY4nvvZNcP6+AbDDyRsS8GSCvMXrma5MKIknrEkon7zqxzAD+CNicCrddNlEUzzuS5SpcEyrtOeB+350J7feTulTEO7IDDlX5JJmdQXLIn6KV8fhkdHRESDobUy5cFgdo+tbX+gc9V36st2zPt76t9UOTCYHjIyEoaMRCCqq+BPGYuOSSE4HQpy5z7ADwBpQbR2FPNh9ss731oGd58Ju/0Kjbe+WIP6OeUzmSYaiT5e9xZ0m4P5+7+Fj1e9gdBuC3YsMImQkGPi1aBz1ZCwLPON1tC+D8TikI0tZmedENAVIWjXJF9kzIPV4QNKQ1kCKmQhCEv4IYF5Z91ejIdLRET9JBMaVlzDjwhsfPhyrHn5RujqSqgJtRBTJkLW1UJWVJjYNRSGTPb3FFLAqqqEPWUSxIemo+PQydh3aBj7PuJj8gF70fz3OoiEB20JOLvyKDdWQt74/HJMrG5F2PGx9St+Vm8WGl5Ki5L4IoM7WIgobwd8/w6ocQlMGe8g/HeBxBgX0k+uSA7MCbXMiSiAdPPFdMPiAGaXiu+bySgA4ZtdK6n7pvuyKNW5m0WYBsdERFTacpVzXBv9KZaM+XK64Tu0NiUjU7sXk+/1QgqzcryqEnpsDeKTq9A6zUHF7gAV7zRBt7VDVESARML0Pigjbyz/NmbdZU6sOi0Cfzt7AuZceyc2ryy9lZtEI5naORsAMCekAAF8vu5FPNZyNNwmQAQaMu4Bjc1QzS3Zu+y02aWtY3HIcMjEsPGEiVEdG1AKIh5A+CZ+VRUhCN053RYaUK5A4PJkBBFROXjmV5d3u2zN6ytxwpJ/gRULIOsqYO9ugfA8E8umYtuKCLRjwauLoPlDYTQdJCAOasPBE/bijb9PwdjXJFRNBDLqIagrj/JgmaZWtmCnqMa+lgq8c5bErH+9HVsuuazYwyIqKiZYiChvi/7pJTzxzsGwOywkptTAjwjUvNEK1d4B7XvZ5V+S0okVIZMJlMBsm00GIEJraJ1xP5GcdKaSKSowtxW68zoatPrp30LDe98v9jCIaBQR4ZBJngNAEHQ2rY/FTO8C2wZcB3BsBBPHoG1WJdqmSlRtV6h4twWiPQ5UVZrPB0uaz4dyIwDpA6FG00Mm1Nz9c5OIhsdWfxyWHPMK6qwYHnzlGOz3noLV4UG89R6CaLTboqHOODeAisU7e7Ekd2SLGDqTxq6brhUhNAANCF9D+EBQyXi2UOYvMCunNzzBEjVENHzapzqQvgM7qoGpYWhLILI7ARFo+BELsfEOrJhCdIKFlgM0ps3dhv0rm/GHlw/BlKcEQo0JtM2qhlBAeG+i2A+n3yaGWrGzoxp+zIHVaIObGIjKsERYPB7H0UcfDSEEXn755azr3nvvPXzqU59CZWUlxo8fj0svvRSJRPm9WRGVqrv3ex4f2X8bAleiZVYYjbOTbyG+nzO5AiBZZ1+nd7foIEiuAAzMLpbMXSlKmbILQQAEQeeJOAAIFBq2/mDoHtwow+QKlQOWBRxZGnb8G/T4OgTTJ0JPGAOEQ4BtmR5bljTJlSBAYuYEvPvZajQeLDFxUwdqN74LsXOPWUkeCgG2DVgWGt69s9gPqd+2XHIZRCBgx4DIHgUtgONOux3Hf+pWHLHsTvzjF0uvrw7RSGVB4dsTn8BhTgXQZiPyQQyysQ1Be0fuuFar9Jf2TblbFY2aJHEsDgQqq4+gCDSEpyC9zl0wdlxh04+5a61QNjxxFZMrVPJYQmnkeeGeZdj9EaB5pkSi2pyzEL6CtgSCiIWKDxKo+dNONB6mcN7JGzB33Da88uBhOOTuZtS+ug9BxELbfhbaJ1v43e/Lr2TsnUc/iKZYBNoXsKICdrvAwTfdiYNvuhMfuu0OzPzRrZj5U77uh5IGS4SVmrLbwXLFFVdg6tSpeOWVV7IuD4IAp5xyCiZMmICNGzdi7969WLp0KbTWuOuuu4o0WqKR5cY9h+L/3pmBWXs97JsTgjiqBcGTIaRTJNrsVEn/mylHI2OtdGdj0JRU+RgRAJZON71v2P0fQ/KYiKh0Nez4t2IPgQpszSs34cRF/wI34UNEEyZh4roQsTgQj0PH4gCAym1A1Y4Azru7odvaoYMAaz/49yKPvjDcJkALQNnClAxygHjIgraA5/7fsmIPj2jUePCDf8BpH1oPAHDGx6ClBBLJhvZaQViWWfSTimlzxLLQ2iRWRHK3i2UBSJa59QLIhNndoqokhNJ4+n+uGOJHRUSlhk3ARyZV5yHR5sJtFVCOQHR8BewOjYpdPtydrWg/fBKggT/uPQBv7JyI/d70IPa1AAD+8JuVRR794O19bwysuIBQgBUHoAAIID5RoXpyG1779A3FHiLRsCqrBEtDQwPWrVuHhx9+GA0NDVnXrVu3Dps3b8bWrVsxdepUAMDtt9+Oc889FytXrkRNTU0xhkw0osSUg9pnw7DbWxGbbEPGHMhEkL3KL1dyJSV5ebpsGGBKLFiWSaQIAZHsvaKDAAIApGByhWiUqp/0NTSMkJPq1OnJdVdm/bzoH26ETIQgEj6waw9kQmHMG3E4+6LQHR3Qvo+17Q8UabSF9U+fvRWhSTbsmIbTrmAlNLQlEKvj6i+i4fRwezVeem0WXp4Ww9Fu2ORJwpbZQZ2UlVwB0t8LKTr/VTodtyIIIEIuYFuA65iG90JAKAURaO60IBql5i9czSTLCPTuudnx7OxVd8JpFQjCDoSqxdP/+x3M/I/b8Ncdk2C9XQG3uQPwPDTsvLtIIy6cw666E+GIBSjA7gCsBAANtE3XmDxzLw4ft6PYQxz5NLh7pMSUTYLlgw8+wIUXXojf/va3qKjo3gTq2WefxeGHH55OrgDA4sWLEY/HsWnTJpx44onDOVyiEWn1kb/CbybdifeWVOPgQ/+Ot3dMBAJtJphaQKfmpBlJltQkVKvspItONzQ2DUPXRX8+bI+DiMoDkyujw7r/W57z8iWHXQsxpg4iEh/mEQ2NY790B2REwm3XcNoC2B0KKiRhdQQISeCFe7s3UiWiwpOT38T6F5di8qy96cu0NqtwEQpBui5UPJa8wuxkAWD+Te3UzqCDwCwQAqDjCazh7ksiysDkyujw5jXdyz++e5GJ7eZccyd2H12B2tqZwzyqoWElTE9BKw64LRpepUB0AuCP8TGhog0/Oea+Yg+RaNiVRYJFa41zzz0XF110EY455hi8++673W6zc+dOTJo0KeuyMWPGwHVd7Ny5s8djx+NxxOOdE/eWlpaCjZtopDnhicsROroCcc/G+HA73mhxYLW1md2gtgMAWQ1BhRTpiWhnoqVLTWshsS7B5AoR0Wi3ZMyXASGwZt+PAQBrXjflE5bUnm+uA7Cm8SdFG99ghff6CEISsbECMiHhNnlo29+BHZWQ3uCa3TOeJcrfv/51PuZWB5hVsRt10sNbng/x9wqEPtgH2Bbk5AnAjg+gPD+dTBGu23kA1SXJorXpIwVgzZ4fDedDISKiEpPquZOZWNu8yiRfFs+9Hid9YiVEoLH+me8WZXyFEISA2DgNoQQqdgi0zVIYc9A+WAkHj/wTWzTQ6FTUJvcrVqyAEKLXrxdffBF33XUXWlpacPXVV/d6PCG6b4/SWue8POWWW25BbW1t+mvatGmDflxEI9X2xlq0vluL+N4IfGXB3W0DLW3mSkuaJIuQ2eUUupQME1Kkky1UOhacsAoLTryl2MMgotGsh3htTfM9nf25ytjvH7sCG399OV78yTJ0TJJoOSCM2BiBtv0knvnV4HavMJ4lyt/zzQfgqcaDsT02Bk3Kwb2NH0Pdmxrig72AbUGNrYaoquzcsQIASqd3ssCS2fGu0t0a3FPxzF+4mk3Fiajocr0Prd10A6yobzqUl7HXb/k2/nb5MlTO2YeWQwLUfKgJH5/8Dl7/zIpiD20UEdC6NL7IKOoOlksuuQRnnnlmr7eZOXMmbr75Zjz33HMIhUJZ1x1zzDE4++yzcf/992Py5Ml4/vnns65vbGyE53nddrZkuvrqq7FsWWdD0ZaWFk5KiXpgvVoFaQGxSRqbd0+C2wRTWzoUArSGDjobggopOneraC99jPXql1goT0tPSrl7pTQ88dQ1xR4CEY1yqZ0rhy6/E1YUCDdq1L0ZhbOnHZi1P+AFfRyhtJx0/Cp4NWZ3p7KAwDWfe26LD2u6i1idgBUHXv7X7iUl+ovxLFH+Nv7foVAVAaZO24eIdSxeadoPAKD2m4DEOFOK2lVTYO1uhG5phfZ86CDoLBuGZDxrnQHAlA7T7R2MaUsEyzERUTGl3oOOW38ljlt/JbzAgtbA3r+OR+U2AX1CDcKN5ZVhOaH+e/ArJKLjLMTGAl4N4DQDbQdX44QP/wVTws1YfeSvij1MoqIqaoJl/PjxGD9+fJ+3++EPf4ibb745/fP27duxePFiPPTQQzj22GMBAPPmzcPKlSuxY8cOTJkyBYBpfB8KhTB37twejx0Khbolboiou8OuuhNWAPiVACyN9vYQqhMAnIzSYFIAAbKTK10slKdhvfrl8A2ciIjKigjMxE1oYXa1RGOAFYGIlk8vloXH3QxYAk6LB7/ChpACkd0JOHvasOa1lThi2Z3waoHXrh98cgVgPEuUr4NvuhMuJBICaI+7aPIqELZ8JKoFYpMqIZSG2xSHCALTrN4yje+FFlkLjhnPEhFRb7zAwq5dtUC7BVHtwY4JVG1XiNdJhPeVz87sBSesgiUFtADsqITTJiAC4M+3fhuf+sM3cPLYV3HGgS8Ue5hERVcWPVimT5+e9XNVVRUA4EMf+hD2339/AMCiRYswZ84cnHPOObj11luxb98+XH755bjwwgtRU1Mz7GMmGmmcNkDbADoAEZPQsRBq/u4DiQR0EEB7vrmhzhEsdGkIulCeBgCcmBIRUTcTNyXgVVkINftw3tsDeD5Ec7tJtJQJESiI5ObNUIcHbQkEESd9/Wt3FCaxQkT94zYDygG0kIhNcbC5aRJ2NVWjwgdUSMJp8WHtbATiCeh4AsjsLZjcpZ3CeJaIiHryf0tW4ehL7oQd09AyDLdNwW0OEGr0EdrdUezh5U0mFCAAx1eQgYayHfgVpiwU+60Ul0JplOfSJTKOYiuLBEs+LMvCY489hosvvhjHHXccIpEIzjrrLNx2223FHhrRiBBq1lAOkKgSCO82ZU5CjXEgnoCQEjojgZLavZLZ5F53bQhKRESUg9PqwUooaEtAV1dA7G0GEgkg5PZ95xKw5MjvQkoJbUuokA3ZFIWQgIz5WPPaymIPj2hUCzVpBCEBLYHo9gq8H7Uhd4ZQ8YFC4ArYtjDJFc8zzeuBznK4vg94PrTv9f5LiIiIAET2KUgPCFwNZQvIQAMa8GvDxR5aXhZ/+HpIS0C5NmLjQ+iYaMGrAP78PS4UIuqqLBMsM2fOhNbdyw9Nnz4djz76aBFGRDTyOe3mZJf0ATtmMtRWe5fdKzDJlXRiJYMpG9aZZOFqPyIiymX9M9/Fgvm3IF5rw6uqQ1XMA2JxwHX6vnORLTnyuwAAEU0ArgXLCyD8ANq1sOblG4s8OiJy2jXsGCA9ASsuEW8Nw24HrEQApz2AsycKHYsDSpkEi2VBuI5pcB/tnH+mkiyMZ4mIqCfP/vwyHHfa7UjUSMRrAC0c2DGT6C9lSw67FnAsCJjdCfHxIbRPtuC0l/7YRwsNQLHBfEkpywRLMdQfdAUgJVR1GGtfXFHs4RANq+P++TbYMQVYAtIztTeF0pDNHdC+n06a9JRcSe1iEVJgnceJKBER9e6JDVfj46eaXcg6ZGPNm/9S5BH1rv7gqwCtITwPuioCHbIhGlvNiveQC6FKJzk0f+Hq9PdsBk2jybyzbofTbkqdWHEJ6QlIX8BuB5zWAO6edog9TWbxkFImqWJJiFRca9vpIhhsaE9ERPl45peX4chv3wnlAn5E4P/uX1bsIfUoHc8CgFJITKpGbLyLICQQbjT9YwK2/CPKiQmWPOmwA5EIIHyWOKLRJ9TsQ0sBBCaBIgMF4SlTQkHl+JvQChCy12b3REREvdn48OXFHkKf6mdfCVjSrHbviJqESk0lRHMbkEig4YN/L/YQiSgpvNdHarGnUAAgoS3AbdWwWxNmx0pGjxVoDSQ8aNeBELbpwQJACK4YJSKi/L16Z2mX1MqKZz0PcBwE1RG07x+GUBpOu8IffvudYg+TqKQxwZIn1sym0Wr+gtUQgYLlJRMpQkC50jQ780x5hMwkSrr/ipVxuVadu1uIiIhGgPqDrgACZcqXJRJQrW2QUyZBNLdBt7VjzZ4fFXuIOXHXCo1WMqEgk/GstgQQ2NDSgpXQkLEERNw3f9NJOlkmTMABtIZOmNK4wi2PflBERER9Scezqd5jgQJcgcQ4k1ypfb0Ja165qdjDpBx0qZQI45pqAIDs+yZENJpteOIqOE0xWG1x89Uag90cg4yZD2Ahe3gb0cokVoKAu1iIiGhEqT/gcrNbJRo1q/0CBWHb5jIA4OceUclxGqOwWpMxbUscbosH6WkEjoCqcIEgSCdRMhMtCBR0LJ4si9tllwsREVGZSsezKjCfbwAQcqErQvAqJZw2ZeJcIuoTd7AQUa+WHL0cUCpdHk8LAaEUtG0DQgC2DehoziSKVhrrg4eGe8hEo9b8hau5Op1oiNXPWgb4gSmlIKUpl6kV4NiAtAApsGbfj4s9TCLqKhnPaiEgHAvQplmvHxbQtgVEY9C+D+2ZRKkAAEtCJ3dsr21/oHhjJxpFGM8SDb10PGtb0NUVgGVB2xLKteHVOEjUSAgFPP2/rOZTqtjkvrQwwUJEvRJxz6zElQLISK4I3zfJlfYOs9IvfQdujCMqBalG1pygEhWY55vEiuMASkPrOEQ4DD2uFmhsRcN73y/2CIkoBxH30/GstgS8ageJKolwYwD7/b1Qe/dBJZMrAACtIGSyHBh3pREVBeNZoiHi+YBtAeEQgtoKKMecx4lOcJGoEYAGXrhvWZEHSVQ+eCaUiHq05KjrzDfJyaYKOdCOBdHSDigASkEnEp13yEiupHa0LLTOGK7hEpW81CRxqGROPjesv4qTUaIh0LDth1ATatHw1vcQ7DcOYkwdoDX82jCTK0QlasnRy9PxrA7b0I6FIGLBjmtUv9EItXO3Sa4kS9wKKSBsxywusiyzY42I0oYypmU8SzT0TDxbh4a/3AK/0jYJFgH4FQIdkwRe/C8mV4j6gztYiKhHqWZm9QddAS0lVMSB1epDt7ZBdESho7Hs3Ss9WGidASEF1nkPDvWQiUoaJ4hEI8PaTTdgwfxbgIgNjKnCure+V+whEVEv1rx8Y0Y86wJaw4opRGIK2LEb2vdMcgUAhDTJFUumew0Ky8KSmvOgg4ClwojAmJZoJFj7wvU4Ycm/AFJAC+DJdVcXe0jUDyXT5J4AMMFCRL2on/6tztJgAKx2Ce3akGPHAO0dULG42amS3LkipIBWGkKKzt0smk3RiIho5Fg0zyw+eOLZ64o8EiLKV/30b5mECQAZTSA2tQpNs2xMeqENuq29s5egkGbHikyetHAdCMcBLAvwPAjBkxlERFT+UrvQnmKylKggmGAhop4FARDANO51bHjjKqCFQKixPV0yIXMHS1aje61MkkVIrEv8fPjHTkRFVT/z20AsDp3w2PCbRpR1TKwQlZ8gMEkTx4ZXF0G8Jrk4yDNxrFkkJM0ioSThOBC2bXouAWj44N+Hf9xEVFRLjl4OKAXhKzRsXlXs4RAVDHehERUWEyxE1LPkhBK2DRVx0DHJhRXXCHke4HkAuuxaSRES0IqJFaLRzPOBQAG+jyVjL2SShYiIikfKdDwbneQgCAlUbQ8g4h4QCgHxOCCS8axlQbguhOsAtg0EARp2/FuxHwERFYFoiya/EVhy2LXQYRtrN91Q3EER0ainAagSKRGm+77JqMBufUTUM9sCQi50xIVfE0ZsjITdEQCJBHTCS5YP6/I20vVnIhp16id9DfB9aN8HLIvJFaI81U++uNhDIBqZbKsznq2TCBwBp11BBBrCdU1SJbVYSAhAKbNLO49eg0Q0MtXv9w0gngASHuD7EPEEkytEeUqVICMaLbiDhYh65rrmXynhRywoF9COBJSG9jwz6eypxwoTLUSjFsuo0Eh20vGr8LvfXzMkx27YefeQHJdo1HPdrHhWSUALANGYWQyQ6imYSrJoDXi+2aXtcMpMNBo1vH9XsYdANGTmL1w9pGXCWIJsiGkTqlDpYLRIRD3SrgURaEApWJ5JpOw91EbFSy7Q1m5uJCSENNdppbE+YFkwIiIamRbMv6XzBCwRlQ3tWlnxbGIMoG0BRGNAEHRLouggwNr2B4oxVCIioiHF3SVEhccECxH1aM1rK7HoH26EUArCU7BigPQAVFZAtLRCJxLmhsmeK0IKLHLOxDrvwX7/rsXhswGYJE0mkSxDtjb608E+HCIiokF5YsPVxR4CEQ3AmtdWYvExK9LxrJZA+2QbFePGQGhtdrAA0FoBgYIQAktqzsOalnv7/bvqD/yO+SYIOpeXOg5gW2j4yy2FekhEREQDwt0lRIXHBAsR9Uo7EsqyACkQalaIjZVQNRGIvQ6QSKSb3KcVqjSYVp3H4mphIiIiIhqEoMJJx7NepYQfARKTqxGKxgHfB5QyyZZkyTDdUxncvlhmtwy0BgJlvhcCkCyfS0RERIUgoMDzZKWEUR4R9UpbAloKQANum4Id1dh3eDWixx4I8aGZpjEoYJIhyYTIIvesQf5Slf6XJRqIiKgcLJjPlelEpSwzng03aigH2HNUCM3HTEEwdazp0+I65l9LQlgWloz58sB+mRDmSyUTLAkPDW+wJAsREZU2lg8jGhjuYCGiXv3u6Wux4ERz0kjGFUJNAh0TLew9zEFN1VjU7muC8PzsZvcD2MWyNvazrJ8XVy3F2rb7BzV2IipdqeCdW9RpxGCjSaLSJsxKz1Q8G4QstE0D2qcKCFWB6qhndrHEPCBkFhAJ1f8/7K6JlPoDLkfDO7cNfvxEVJIY0xIRERMsRJQfAUhfwWkHQs0CQUhi3xwJoQ5AzfNboVvbMnqyDH6rIpMrRCNXaiIqAp6RppHjiSfZn4Wo5GXGs00CfkSiY5JA63QLTns1EtUWwns9OM0xCC+jh8ogMLlCNHJxtT+NNEwUlg+tWSKslDDBQkR9Sp00WnDCKghfw20JoCUQuBIt0yWAaXBbfITf2g20tkFrhSXjvwIAWLPnR0Uc+eDMX7i6xwCDK5WIBo5/N0RENNx6imeVJeGHgcaDHQQu0LZ/CFXbHLgtPqSnseCEVdCOLNvPrnziWYCfzUQDwb8bIiIC2IOFiPrhiaeugdAa0tcI7wtQuyVAZK9GbIxExyQHbUdNRvzImdAzpkBMGAdMmYAlR12HJUddV+yhD0g+AfP8hau5cqkf+FwRUamYv4DvR0SjUa54tmq7ht0B2B3mNu1TJVpmuIhOdBCbEEK8zsHxn7q1uAMfoHxPADOmzR+fJyIqFXw/Gp00AKVFSXyRwR0sRNQvT2zILoFy0vGroAUAaWpZd0xx4c9yYcWB8F4fdocPmVC5D1bGelsJyJVMPeNzQ0SlYsMTfD8iGq1yxbMA0jGtH7EQHW8jOk5C+kCoRQGxIgx0iPUWlzGm7RmfFyIqFXw/IioNTLAQ0aD87vfXAACWHHYtrMoQtAwDY2wIpeFVWYAAfv/UFUUe5fBhgENERERUXlLxLAAsOeJaWFVhaFsAwoJQJvHy+0e+U8QRDj/GtERERET5YYKFiApizesriz2EssUVgkRERESlYc1rjGkHijEtERHR8NC62COgTOzBQkRUZBvWX8XaqURERERU1hjTEhER0WjEBAsRUQnghJSIiIiIyh1jWiIioqGntSiJL4CN7oEyS7A89thjOPbYYxGJRDB+/Hh8/vOfz7r+vffew6c+9SlUVlZi/PjxuPTSS5FIJIo0WiKi/uOElIiIiIjKHWNaIiIiGi3KJsHy8MMP45xzzsF5552HV155Bc888wzOOuus9PVBEOCUU05Be3s7Nm7ciAcffBAPP/wwLrvssiKOmogof6xZTURERETljjEtERERjSZl0eTe931885vfxK233ooLLrggffnBBx+c/n7dunXYvHkztm7diqlTpwIAbr/9dpx77rlYuXIlampqhn3cRET9xQkpEREREZU7xrRERERDx5TnKj6tiz2C/IwdO7ZftxdC4E9/+hNmzJiR1+3LIsHypz/9Ce+//z6klPjwhz+MnTt34uijj8Ztt92Gww47DADw7LPP4vDDD08nVwBg8eLFiMfj2LRpE0488cRiDZ+IqE+pMgqcjBIRERFRuWJMS0RERKWmqakJ3//+91FbW9vnbbXWuPjiixEEQd7HL4sEyzvvvAMAWLFiBe644w7MnDkTt99+O44//ni8+eabGDt2LHbu3IlJkyZl3W/MmDFwXRc7d+7s8djxeBzxeDz9c0tLy9A8CCKiXnASSkREA8V4lohKBWNaIiIiKkVnnnkmJk6cmNdtv/GNb/Tr2EXtwbJixQoIIXr9evHFF6GUAgBce+21OPXUUzF37lzce++9EELgl7/8Zfp4QnTfHqW1znl5yi233ILa2tr017Rp0wr/QImIiIiIhgjjWSIiIiKi0UNpURJf5UIplXdyBQBaW1txwAEH5H37ou5gueSSS3DmmWf2epuZM2eitbUVADBnzpz05aFQCAcccADee+89AMDkyZPx/PPPZ923sbERnud129mS6eqrr8ayZcvSP7e0tHBSSjRKpEoYpHDFHRERlSPGs0SjV9d4FmBMS0RERDScippgGT9+PMaPH9/n7ebOnYtQKIQ33ngDH//4xwEAnufh3XffTTebmTdvHlauXIkdO3ZgypQpAEzj+1AohLlz5/Z47FAohFAoVIBHQ0TDqRD1nTn5JCKikYDxLFF5ykyODDQuZTxLREQ0yujyaS5fqt5//30888wz2LVrV7pyVsqll17a7+OVRQ+WmpoaXHTRRbj++usxbdo0zJgxA7feeisA4LTTTgMALFq0CHPmzME555yDW2+9Ffv27cPll1+OCy+8EDU1NcUcPhHlKdcKvJSuk0dOJomIiIioFPUU0zKeJSIiIique++9FxdddBFc18W4ceOyWosIIUZuggUAbr31Vti2jXPOOQfRaBTHHnssNmzYgDFjxgAALMvCY489hosvvhjHHXccIpEIzjrrLNx2221FHjkR9SbfCWjm7TkZJSIiIqJS0Z9FQqnbM54lIiIiGn7Lly/H8uXLcfXVV0PKwrSnL5sEi+M4uO2223pNmEyfPh2PPvroMI6KiAplw/qruk02e5qsFqI8GBERERFRoeUb0zKeJSIiooHQAHQZNZgvNR0dHTjzzDMLllwByijBQkQjU2oSmppk9rYCsOv9iIiIiIiKLRWX9jemZTxLRERENLwuuOAC/PKXv8RVVxUuDmOChYiKIt9ESleciBIRERFRKWA8S0RERFRebrnlFnzyk5/EmjVrcMQRR8BxnKzr77jjjn4fkwkWIhp2/ZmMZq4I5GSUiIiIiEpBX/GsCDS0Zcp3MJ4lIiKiwhEsETYIq1atwtq1a3HwwQcDQLcm9wPBBAsRDYt86kxvWH8VFpywCpAC2hJZt+VklIhKVeZJNp5EIyIaufLtm7Jh/VVYcuR34Y2vTCdZ8rkfEVGx9BTPQgEbnuB7FxGNHHfccQfuuecenHvuuQU7JhMsRDTkMoO13lb7zV+4GhueumY4hkQ0KvT098YTPN0Votmw8BROOn4VlCsBNbgkS67/O/6/EREVTz7xrIwHUCHLvP+/evNwDY1oROtt/sjYKFsh4lkrGmDhx1ciiFgQvoa2xYBjWs5FiIaOLvYAylgoFMJxxx1X0GMywUJEQ6bfdanV0IyDaLTI92+u6+1G2iRn8UdvAACsfeH6vO+T6zlITSZTz5cINJ7YcHX659BftiN+6FQ4+6Lwa8PQjuwMdGXnMfr1OxesTt8313h6u+9AdP19XY/b23jyVW6vr0KcnCCikSXfz1cVspLfDOFgiEa4/swhR3JMWz/nGkBrNPzllrzv01M8m7ouHdP6Gk88aWJa9/k3kDj2YIS2NSMxuQZBxErfV9ui23Hy+Z0nfWJl5/thDoWOafN5HQy0Z1Zfxy1ljGmJcvvmN7+Ju+66Cz/84Q8LdkyhtWbSK0NLSwtqa2vR3NyMmpqaYg+HqOykAxeFPk/KpYI8fuATDUzXycmAkpqy8/4jRep5sDp8BBVmLUlmLfySksd7Za77CGUmxgs/vhLrN17b7SYLj7sZEALQOv0c5HvsVBmIhcfdDOVaWZPrIVUiJSiGIpHVX4ONRxnPEg1evjFt5ufvSPosJRpOuZIA/ZL8Ox1Jf4PpeLbdR1DZGcuVZEw7kHg2qbdzAoNJimQeb8GJt0BLMehFQ3kpkXgWGBkxLXW3YcMGLPni6Zj1r5cWeygAgHe+cjuefmQN5s2bV+yh5O1zn/scNmzYgHHjxuGwww7r1uT+17/+db+PyQRLF/zjJxq4rAColyBrJAW+RMNp0AmVPFjRIGvlWup3lbKcz8MgJnqlTvgaEOg+uc54zKmSDuWoFF9vw70YgAkWouLKJ6YtxfcqonIx1DFtqlxfplL/m831HJRkMqWQ8ojXy/k5KMXXXLnFtNRdKsEy865vFnsoAIAtX72t7BIs5513Xq/X33vvvf0+JkuEEdHQkN1P8FnRAEEvW4WJKFuvPYsKULopl67Jlb7G0asCrybs1zhGaHIFQM+JE5nHbcpAX2XLiIiGlcw+wSc8Be2M4A8ZogLrK34bigVDucpTlUo825+xlGtiIW95vJWW83PAmJaoNA0kgdIXJliIqGC6BgwL5mfXi808cTt/4Wo4e6JY+9INwzI2olLX70lfOZzbKcAYh2LSTSUu83Wj8nsNZH7+DEU5BE6IiUaX3mLazOTK/IWrYXX4kHEfa19cMVzDIypZIzJuS/7Jn3T8Kvzu99cM6BAj8nmhvvUzpu3WC5ExLVHZYIKFiPqttwZ3C05YBUhhVpr0sNokdX9vfIQ1q6ksLTnqOkAIaFti7YsrsHju9fDqIv0uIcLJVjY+H9RNnkm6nl47/U3OENHo0dv7w4b1V+Gk41dBS2F2BOaIaVP3DypsqJDFmJbK0knHr4IWJnHYW6muvl7XoyGGyze5MhqeCxqAPGLaXqsX9DM5Q6MAG34M2N69e7F8+XI8+eST2LVrF5RSWdfv27ev38dkD5YuWB+QqFPXD/HUh/b8havNVmlg0CvUU2XERKDxxIarB3cwGtWGsolf/bRvAo4DXRnCmtdW9vn7eyMCDS2GqclisfXQ5LF+9pWIzxjTvabyCO6bQqWvlCam7MFCVFjzF66GjAdw/rYTDe/flb5MBBrQhSmrmPpMY0xLgzVUybolR10HLSV02IaWAuuf+W6vv5+SemlavuSo65CYWJkd0zKepSIqpXgWYEw6FNI9WH5YIj1YLiq/Hiz19fX429/+hgsuuACTJk2CENlx4NKlS/t9TO5gIaK+dQkSsxItg6SlKOtmzKPFScevgnJlzv/70Kt/R/zIGbm3NGdMSHK9XnI1VAcAmVBQbueLzm5NwNrbBv9vWxAsmNvneFO/K7NOemp8iyu/hOCYQ3I+nm6PLzn+hq0/SF8+2Nd9OdcR7pcck8sF82+Bs7cD3v51AHI8F5yMUhHNX7gaVruPoDIZHme8hkttskpEg5frM38wn0NaMKYtdV3jWaBLTPu3PYh/aHz363PEs113e+SKaYcyngV6jml7imfXvHJT1rGZSMlTjveF+QtWw2mJwx9XAaBLTMt4looo/b7RdSFbEmPakUPr8ow3nn76adx6663YtGkTduzYgd/85jf47Gc/m77+3HPPxf333591n2OPPRbPPfdc+ud4PI7LL78c//3f/41oNIoFCxbg7rvvxv7775/XGDZu3IiNGzfiqKOOKshjAriDpRtmV4l6SZzkWL2z4MRbCrrqL/TWB2h4985BH4/6p2uCoX7S1+AdMi1rUph5fU+7m3o7dlF0OVki4wGs9gS8sZGs2widDEC7nFDlxHPwMl8bC05YxcbANOIMxUSVO1iICiPn5/gQxrMAY9piy4xp62ctQ2LG+G6xR08Jlq7X5TpuUeRI/vUa02bslGY8Wxjd+jIV8D2DqBQMVeKFMWnhpXawzPjBt4o9FADAu1+7tV87WBoaGvDMM8/gIx/5CE499dScCZYPPvggqxG967oYO3Zs+uevfe1reOSRR3Dfffdh3LhxuOyyy7Bv3z5s2rQJltV9AW9XH/3oR3HXXXfhH//xH/N/oH1ggqUL/vET9T2B6Gk1RNoAVgCmVmZxRcXwyKeGa9Zt8vw/TZfH4ApOQu8nMIhGqkJ8jjHBQlQYvX329BnPAoxpy0BfvXQGEs+mMJ4loPfG40QjUeq9sxRiWuqu3BMsmYQQORMsTU1N+O1vf5vzPs3NzZgwYQJ++tOf4owzzgAAbN++HdOmTcPjjz+OxYsX9/l7X3jhBVx11VVYvnw5Dj/8cDiOk3X9QF6rLBFGNAQGEnSV0iSsr5OiWhR+oqEtCeGpvm9IhdXDRLPb/3uek9HUiQpORke3zBMaC+bfMnrKohEBBZuQEpWC/sa0pfba7y2mHYp4FmBMO5z6Sp4MNJ5NYTw7umXGs/MXrGbpLxo10q97xrQlrVS2SwzFMJ566ilMnDgRdXV1OP7447Fy5UpMnDgRALBp0yZ4nodFixalbz916lQcfvjh+OMf/5hXgqWurg7Nzc2YP39+1uVaawghEARBv8fMBAtRiRjKBt0F1zW47DKhEVrjifVX929SLgEE/BAvpJ6eyyU15yE0ZRLi0+tgxXP3QCEaqKzJ6MLVAJMrRESjRn9KiBZdrpOljGlLTo/x7JgvA8ccCHd7KxJTqxnTUkF1i2eZXCEi6lEikUBLS0vWZaFQCKFQqN/Hqq+vx2mnnYYZM2Zgy5YtuO666zB//nxs2rQJoVAIO3fuhOu6GDNmTNb9Jk2ahJ07d+b1O84++2y4rouf//znOZvcDwQTLESD1FOjw0z9bQrfrxUyOepI52PB/FsAAE9suLrnceSYJM9fuDpru3yqeaNMKDhvbEPDzrsH3jRRivTv5YR0YJaM+TLWNP4k5/OfvuzYg9OXcSJKhcayCTTa8fOLylHXXmy9xbT9eZ/vz20H8rez6B9uhHYtrN94bd7j6C2ehTTfO3/dioYP/p0xbREtGfNlJI45sNvl6f+P5HWJqdUAGNNSYTGeJWJMW9J0CTW518ADDzyAE044Ievi66+/HitWrOj34VJlvwDg8MMPxzHHHIMZM2bgsccew+c///meh5HcfZKPP//5z3jppZdw8MEH933jPDHBQiWrrFbA9aHfAVp/VsjI3Mfv7fla+PGV0CELQuucCSK7zYNflV2DECoj8SNMTWKZCKBtM1jlSsSPmD6gYDRVA1sLMaBa19RpTeNPsn7m5ICIaOiIQEMEGso2J2bLOVahoTOqY9oCHLun5+uk41dBVznQQuRMoACAFe2yq6FrPBtoyHhnPAskY9ojZzCmLbLMBUOMZ4mIho4INKA0tCXTn1vlHKvQ8PvSl76EO++8M+uygexeyWXKlCmYMWMG3nrrLQDA5MmTkUgk0NjYmLWLZdeuXfjYxz6W1zGPOeYYbN26lQkWGp0G09ckV/mtQpXkyrxvf1f1DaWexiECDTjmg1ND5Lx9EO7+1iC0TteqTvVTCOzCvIWk+zPw5FTe5i9YDfvpl7HOezDn9VaHDxWy2PuCiGiIyITC735/TfrnUvn8p9JXiJh2KOPZ1M+l8prOOQ4FCEvkjHMyb6/cnjMc6Xi2onBTYsa0/TN/4WpAAc5zm7G2/YFu11vRAEHIYqKKiGiICE/hiacYz9LguK47oMbw+di7dy+2bt2KKVOmAADmzp0Lx3Gwfv16nH766QCAHTt24M9//jO+973v5XXMb3zjG/jmN7+J73znOzjiiCO6Nbk/8sgj+z1OJlho2PW126KvZMhgf1fOyxasxoYnuk8k+zMxyqdUWCnI54R7roaOQ32iPrXij3q3uPJL8I89FBACwceP6nZ9+rVXwJMFRESEPkty8mTq6DJ/4ers2CXH62MoY9qeYtyefs+Ii2m7LBTqSbfYchhO1DOm7Vv9hIsQP3Jm+v/D/4dDu91m/sLVAMt+EREVXG8xAePZMlIqJcLyiMcytbW14e23307/vGXLFrz88ssYO3Ysxo4dixUrVuDUU0/FlClT8O677+Kaa67B+PHj8bnPfQ4AUFtbiwsuuACXXXYZxo0bh7Fjx+Lyyy/HEUccgZNOOimvMaTKkJ1//vmdj0IINrmn4kglJbpdPoCJWE/3GbZJXa4yW6p/hyjllX+lLlX3mh/mfcu1ui+FrzciosLKOlHKFdQj0uIPX4+1L92Q87q+PlezTqL3ULI132MVSiF+D2PagWNMm5+G3f/R6/V8vRERFRaT/1QqXnzxRZx44onpn5ctWwYAWLp0Kf793/8dr732Gh544AE0NTVhypQpOPHEE/HQQw+huro6fZ8777wTtm3j9NNPRzQaxYIFC3DffffBsvJbmLFly5bCPigAQmutC37UMtbS0oLa2lo0NzcP2famcrNg/i2mNJTkBIsKJFWTuo/VwNSzslhdSkRUxop5gnSw8Sjj2dwW/eONCMI2tMNsGRUA49mCYExLRDS0yjmmpe42bNiAJWefjml3Liv2UAAAf//69/CHRxswb968Yg+lqLiDZRTqd+Bq5e7TQZSmACseQDkS2hYQngJkdl1sruTLVqi/Jf5NEhHRaNXvz8Bqd2gGQiNHHzEt49lshYxDGdMSERHlRwPgdon++d///V/U19d367fSk8cffxwnnngiIpFIXrdngmUUSQetqdJX0jQO1MkGkVoIiEBxVR/1mxX1gedfgwSwPnio2MMpSZw0EhERFUbXz1ThKUAIaGlOggvNMhg0MIxpe8d4loiIiMrR5z73OezcuRMTJkzI6/ZnnnkmXn75ZRxwwAF53Z4JljK08OMrEYSsnmuBKzOxhM5oVp7cwp6quygTCtoSUK45iLYEoMDkCmXJVaeTK/f6xsknEVH5yyxbk+vyXPgZ2T/zF6zuu7dNxsKgrpcLraGFgLZk521UjsbmNOp1jWn5t5ofxrREROUvV0zLeHYE4A6WftFa49xzz0UoFMrr9rFYrF/HL5sEy5tvvonvfOc7eOaZZ5BIJHDEEUfg5ptvzmqM89577+HrX/86NmzYgEgkgrPOOgu33XYbXHfklAOo3/9SYPrE3iejEtAQ3S4DzIRTBBq6S/mmzNsQpeQ6QTF/4WpY0QDrN15bhBENzKJ/uBHW1g8QP3xaj7cpRBDBSSgR0cgzf+FqOI0x6FffxLrEzyE8BaE0VCi/JoqUW/3MbwMHTer7hj3FpxLQSnS/nvHs6JXqiZJD15h2pMazAGNaIiLKbf7C1bDbPKx79jqIQANKc5E1jRpLly7t1+3PPvvsfvUNKpsEyymnnILZs2enkyff//738clPfhJ/+9vfMHnyZARBgFNOOQUTJkzAxo0bsXfvXixduhRaa9x1113FHn7BNGz7IeYvXA3hZZfyEr6G9BSEHyCIOJ07V3Lgqr5RqKfVnz3IbDIpfJOQE0rDivnwq5w+J6PzF66GjAdw3tgGf/cerFe/HMTgBy49Oax14df2Phmdv3A1RKDxxIarB/57iIhoRPLGhIHjj8T8BasReuN9wLIQP3QqAK7yG6iGd+/EghNvyYpZRaDNl6+gQlbfMSvPCVCmHK+HrMbpChBKQ8YDBJV2XsmVzJi24YN/L/CA8zd/4eq84tnUbRnTEhFRLn6VY+LZbU2A1ojPHAuA8SyNfPfee++QHr8sEix79uzB22+/jXvuuQdHHnkkAGD16tW4++678frrr2Py5MlYt24dNm/ejK1bt2LqVDPhvf3223Huuedi5cqV/co6FcOS2vMBKSGmTERQFUZQYUM7MuebXOZl9RMuAiwJPWkctJQIqt1ekys0SmVMOHOV/UpLTjwB8zpb5J4FAFiX+HmPh+5pIqZtieCAqVhfpMnoQnka5MePzm+FccaKx8Vzr8faTTcM6diIiKhMdF2gIJG1epyT0WxLxl4IaA0xeQKC6gi0a0HZoseY9oknzQng+v2+AVgW1IRaaMuCithcEES962W3Sur6zJh2cfhsrI39rMeb95ZYSMW0xbJQngYsmJvfjRnTEhFRT1KfERKIzxiTvpjxbHnSmrFyKSmLBMu4ceNw6KGH4oEHHsBHPvIRhEIh/Od//icmTZqEuXNNsPnss8/i8MMPTydXAGDx4sWIx+PYtGlTVimxUiRcF96c6emeKCldg/2ub3wNu/8j/X39hIsgtIKYMA6JKTXQloDdnEgna4gAs4PJbvPgVzndr5SAlsKUTejwIZB/ckUmFJQtYcUD4I8vm98FMyksxg4Wq6oKCSfP8i0ZJfT86hDqD7oCDW99L6+7LrTOQOZvkZEw5JRJ8CfUmNW3THgSEZUdTjQHRoRceLP36xbPAr3HtA3vd+42rz/gclhaQddWwa8NQ9kSkIDV7vNzlTpJwOrwEVT0MJ3tGtOqnguVd31t9hTTFotVVYUg3xsPIqZdXPklZM4ORCRs5pWTa/h3R0RUphjTEg2PskiwCCGwfv16fOYzn0F1dTWklJg0aRLWrFmDuro6AMDOnTsxaVJ2HecxY8bAdV3s3Lmzx2PH43HE4/H0zy0tLUPyGPqSSpQsOexaqJpw7pPfMBOAXG+QS8Z82XwjBPQHe+Ds3gsAWLPnR1n3BZI7GESOmtU0avT0+sqkHIl8q8tbHT6s1/6GNS2dW+4WytNyfp8r2bJQngad3G0i4wGcrXvRsOWOPH97tvQk+diDB3R/bUnAzr+u/vrgoV6vX+ScmfWzrK6GqKyAHleLxISKAY2RiIgKz25NYN1zy4s9jAEpmXh2x78BABZ/+HqoCqfnk9/IHdPWT7go/b1o64DzgQVICSiVPnbqvgD63sVAI1pvr69MypGwtOr7hug9pu0rnk3dplxj2rXtD/R43ZKa87J+FpUVQCQCNaYS3tjIgMZHRESFl1pMy8QK0fAqaoJlxYoVuOGG3rctv/DCC5g7dy4uvvhiTJw4EX/4wx8QiUTwk5/8BJ/85CfxwgsvYMqUKQBMIqYrrXXOy1NuueWWPscwnNa8vnJg92v8Sfr7JWMvzEqspC4L1dUiPms8Sy5QXrQlof7xMNTvfykatv0w5216+9BOTTznL1wNpykO+Are+EjOEgzuEYekd5uokAVEwnnvfEmtTAzCNkSggEHu1gq9ty/vlX758E84uttlwtdcCUhEVGL8arfYQxiwUotn1740sLFk7sxeMv4rED7QsPvfsm5TP+EihGqrEZ8xjskVyou2JNS8I3q8vq+TUKl4dPFHb+g1ngUGHtOmjmdFAwQhq+Ri2kSOJA/jWSKi0pPPYloaIYq5vZa6KWqC5ZJLLsGZZ57Z621mzpyJDRs24NFHH0VjY2O6l8rdd9+N9evX4/7778dVV12FyZMn4/nnn8+6b2NjIzzP67azJdPVV1+NZcuWpX9uaWnBtGl9Nw8sZWv2/bjHyxbNu4lvuJQfCSjHQjB1PBbMvyUrMRfa1gy15T2oRAIyFIacNB7xgyZhw/qr0qv7UhPJrOaiSV37wCQmVnZeLgT0zt39KiuWWsGoZY6JaB+rW/Nd2bHQOgPB/A+bcfoaIlAQz7yavqw/OBklIqJCGpHxbJfFQimpJAxjWspbMqZdcOItWTFY13hWRMIQNVU9xrReXSjrsLn6Gg40pk0dK4iY5Ey3mDaP3Vr5xLSL3LPgH296mqbiWRWy4Gx8Hd7HD+vz/pkYzxIRlSb3g7ZiD4GopD3wwAM444wzEAplx3aJRAIPPvggvvSlL/X7mEJrXfI5r0ceeQSf/exn0dzcjKqqqvTlBx98MJYuXYprrrkGDQ0N+OQnP4lt27ald7Q89NBDWLp0KXbt2pV3k/uWlhbU1taiubk57/sUSo8roV58O+fl/pEH5Kxx3aOujVqJBivXZE8BVixHTezkbctpq2pmCRIRKPYyIiIaBUrhc2qw8WgpxrMAEHr171k/6yCAf9jM/sWzAGNaKqyekhe5YlrGs0REVCZK4bOqmDHpSLVhwwYsPut07Hfr5cUeCgBg27dW4w+PNmDevHnFHkreLMvCjh07MHHixKzL9+7di4kTJyII8u5+l1YWPVjmzZuHMWPGYOnSpVi+fDkikQh+/OMfY8uWLTjllFMAAIsWLcKcOXNwzjnn4NZbb8W+fftw+eWX48ILLyybP+JcK/0BIHHMgdiw/iosrlqadbm16Q38ru3+rMvmL1gNpymKoCrUfbLKWJoKLddrSvZQE1uaeqD1ky+Gv2t31lX92a2Sj95O7mTKFXDkvK/sYXcMERGNOJmfA6UwMS03PcWzABA/cgY2rL8KS8ZeCCTXeNmvvpNV6hZIxrPNMQgvgF8XYUxLQ6un11OumLaXeBYo8ZiW8SwR0ajCmJYot57aiWzbtg21tbUDOmZZ7GABgBdffBHXXnstXnzxRXieh8MOOwzLly9HfX19+jbvvfceLr74YmzYsAGRSARnnXUWbrvttm5bfnpTDtnVxZVmq1JPjQjzDcSJhpNMKGhL9NoDSPga8vd/yrtO9WC5L76NxDEHAgCcPVF449mkk4iIejccE9Ry3sHSH0tqz8ea5ntyXsd4lkpRPvEskF9MW7DXuALcPzGmJSKi/A1XwqVcYtJywh0sA/fhD38YQgi88sorOOyww2DbnQtpgiDAli1bsGTJEvziF7/o97HLJsEyXAbyx9+tv4Rntl47e6IQSkHs2gfV2gY5eSJUdQWE7wPbPoBOJDLuJNIr+VJSCZQlRy9HYkLF4B4YERERERWc8BS0JXOugh/o5LUYCZZu8WxGA2unKQ4oBbm3BWiPAmProKrDEL4C3tvRGcMq1XmAjLh2Tcu9ABjTEhEREZWi3uJZoHgxLXWXTrB8r0QSLN8unwTLDTfckP73sssuy2pD4rouZs6ciVNPPRWu6/b72GVRIqzU9fRGM3/hasiEguPVQkwYA/3u+8BOhfR0UwjI6fvBG18JFbKy7is8hQUnrDI/jOEKJCIiIqJS1Fs/g8GU9xluvY1h/sLVEJ6C41dBj6mB3L4LYu8+QGmTSNl/EvwxFd3jWd9cz5iWiIiIqHT11Z8rn5i2FOJZot5cf/31AICZM2fijDPOQDgcLtixmWDpwSc/cwdsu/sT3Vtd6dT1ub7vKnUMuzUBZ8suAIAaX4eg2oW2JZsPEhEREY0S8xeuhgg0tBCABHw/VpDj9hTPAr3HtF1j2L5iWrvNg7N1LwBAja1GUJmMZ20BoPdSSkRERERU/lJx5VDEtESFtHSp6XGeSCSwa9cuqMxd+ACmT5/e72MywdJPfWVt+1tL16924R8yZTBDIiIiIqIy11dPh0LrLWbtdzxb5cA/cOJgh0REREREZW64Y9rRiYuYBuOtt97C+eefjz/+8Y9Zl2utIYRAEAT9PiYTLERERERERERERERENKKde+65sG0bjz76KKZMmQIhBp+sYoKFiIiIiIiIiIiIiKgc6L5vQrm9/PLL2LRpEw455JCCHZONPoiIiIiIiIiIiIiIaESbM2cO9uzZU9BjMsFCREREREREREREREQj2r/8y7/giiuuwFNPPYW9e/eipaUl62sgWCKMiIiIiIiIiIiIiKgclEqJsFIZRz+cdNJJAIAFCxZkXc4m90RERERERERERERERD148sknC35MJliIiIiIiIiIiIiIiMqBFsUeQdk6/vjjC35M9mAhIiIiIiIiIiIiIqIR7w9/+AO++MUv4mMf+xjef/99AMBPf/pTbNy4cUDH4w6WLrQ2xeN8P17kkRARERHRaJSKQ1NxaX8xniUiIiKiYhtsTEs0FB5++GGcc845OPvss/GnP/0J8bh5nba2tmLVqlV4/PHH+31MJli6aG1tBQA8u3F1kUdCRERERKNZa2sramtrB3Q/gPEsERERERXfQGNa6hlzVgN388034z/+4z/wpS99CQ8++GD68o997GO48cYbB3RMJli6mDp1KrZu3Yrq6moIMfLq2bW0tGDatGnYunUrampqij2cUYPPe3HweS8OPu/Fwee9OPi8F8dIf9611mhtbcXUqVMHdP+RHs8CI/81UIr4nBcHn/fi4PNeHHzei4PPe3GMhud9sDEt0VB444038IlPfKLb5TU1NWhqahrQMZlg6UJKif3337/YwxhyNTU1I/YNvJTxeS8OPu/Fwee9OPi8Fwef9+IYyc/7YFb5jZZ4FhjZr4FSxee8OPi8Fwef9+Lg814cfN6LY6Q/79y5QqVmypQpePvttzFz5sysyzdu3IgDDjhgQMdkk3siIiIiIiIiIiIionKgS+SrDH31q1/FN7/5TTz//PMQQmD79u342c9+hssvvxwXX3zxgI7JHSxERERERERERERERDSiXXHFFWhubsaJJ56IWCyGT3ziEwiFQrj88stxySWXDOiYTLCMMqFQCNdffz1CoVCxhzKq8HkvDj7vxcHnvTj4vBcHn/fi4PNOfA0MPz7nxcHnvTj4vBcHn/fi4PNeHHzeacA0AD0y+ywOl5UrV+Laa6/F5s2boZTCnDlzUFVVNeDjCa11mW7oISIiIiIiIiIiIiIa+TZs2IDFXzgDU1deUeyhAADev2Il/vBYA+bNm1fsoeTt/PPPxw9+8ANUV1dnXd7e3o5vfOMbuOeee/p9TPZgISIiIiIiIiIiIiKiEe3+++9HNBrtdnk0GsUDDzwwoGOyRBgRERERERERERERURkQrEfVby0tLdBaQ2uN1tZWhMPh9HVBEODxxx/HxIkTB3RsJliIiIiIiIiIiIiIiGhEqqurgxACQgjMnj272/VCCNxwww0DOjYTLERERERERERERERENCI9+eST0Fpj/vz5ePjhhzF27Nj0da7rYsaMGZg6deqAjs0ECxERERERERERERFROWCJsH47/vjjAQBbtmzBtGnTIGXhWtMzwUJERERERERERERERCPajBkz0NTUhP/7v//Drl27oJTKuv5LX/pSv4/JBAsRERERERERERERUTnQotgjKFuPPPIIzj77bLS3t6O6uhpCdD6XQogBJVgKtxeGiIiIiIiIiIiIiIioBF122WU4//zz0draiqamJjQ2Nqa/9u3bN6BjMsFCREREREREREREREQj2vvvv49LL70UFRUVBTsmEyxEREREREREREREROVAl8hXGVq8eDFefPHFgh6TPViIiIiIiIiIiIiIiGhEO+WUU/Cd73wHmzdvxhFHHAHHcbKu//SnP93vYzLBQkRERERERERERERUDkpl90ipjKMfLrzwQgDAjTfe2O06IQSCIOj3MZlgISIiIiIiIiIiIiKiEU0pVfBjsgcLERERERERERERERFRPzHBQkREJW3FihUQQmDJkiXdrvve974HIQROOOGEbtdt27YNruvikEMOyXlcIQSEEHjuueeyLo/H4xg3bhyEEHjqqacK8RCIiIiIiNDe3o4rr7wSBxxwAMLhMCZMmIATTjgBjz76aNbtXn/9dZx++umYMGECQqEQDjroIFx33XXo6OjIut3MmTNzxrPf+ta3csbHREQ0QhS7uX0ZN7kHgN///vf41Kc+hQMPPBAHHXQQPv3pT+MPf/jDgI/HBAsREZW8KVOm4Mknn8S2bduyLr/33nsxffr0nPe57777cPrpp6OjowPPPPNMzttMmzYN9957b9Zlv/nNb1BVVVWYgRMRERERJV100UX47W9/i3/913/FX//6V6xZswannnoq9u7dm77Nc889h2OPPRaJRAKPPfYY3nzzTaxatQr3338/Fi5ciEQikXXMcDiMK6+8crgfChERUVn6f//v/+Gkk05CRUUFLr30UlxyySWIRCJYsGABfv7znw/omEywEBGVkF/96lc44ogjEIlEMG7cOJx00klob29PX3/vvffi0EMPRTgcxiGHHIK777476/5XXnklZs+ejYqKChxwwAG47rrr4Hle+vpXXnkFJ554Iqqrq1FTU4O5c+fixRdfTF//8MMP47DDDkMoFMLMmTNx++23Zx1/5syZWLVqFc4//3xUV1dj+vTp+NGPfjREz0aniRMnYtGiRbj//vvTl/3xj3/Enj17cMopp3S7vdYa9957L8455xycddZZ+K//+q+cx126dCkefPBBRKPR9GX33HMPli5dWvgHQURERDSKMK7t7pFHHsE111yDk08+GTNnzsTcuXPxjW98Ix17aq1xwQUX4NBDD8Wvf/1r/MM//ANmzJiB0047DY888gieffZZ3HnnnVnH/OpXv4rnnnsOjz/++JCOnYiIaCRYuXIlvve97+Ghhx7CpZdeim9+85t46KGHsHr1atx0000DOiYTLEREJWLHjh34whe+gPPPPx9/+ctf8NRTT+Hzn/88tDb7Ln/84x/j2muvxcqVK/GXv/wFq1atwnXXXZeVdKiursZ9992HzZs34wc/+AF+/OMfZ03Czj77bOy///544YUXsGnTJlx11VVwHAcAsGnTJpx++uk488wz8dprr2HFihW47rrrcN9992WN8/bbb8cxxxyDl156CRdffDG+9rWv4a9//WuPj2vVqlWoqqrq9SufrZjnn39+1ljuuecenH322XBdt9ttn3zySXR0dOCkk07COeecg1/84hdobW3tdru5c+di1qxZePjhhwEAW7duxdNPP41zzjmnz/EQERERUW6Ma3ObPHkyHn/88ZxxKQC8/PLL2Lx5M5YtWwYps0/XHHXUUTjppJPw3//931mXz5w5ExdddBGuvvrqIWncS0REJUYD0KI0vsrQO++8g0996lPdLv/0pz+NLVu2DOiY9mAHRUREhbFjxw74vo/Pf/7zmDFjBgDgiCOOSF9/00034fbbb8fnP/95AMCsWbOwefNm/Od//md61dt3v/vd9O1nzpyJyy67DA899BCuuOIKAMB7772H73znO+m+JAcddFD69nfccQcWLFiA6667DgAwe/ZsbN68GbfeeivOPffc9O1OPvlkXHzxxQDMysI777wTTz31VI+9Ti666CKcfvrpvT72/fbbr8/n55Of/CQuuugiPP3005g7dy5+8YtfYOPGjbjnnnu63fa//uu/cOaZZ8KyLBx22GE48MAD8dBDD+HLX/5yt9ued955uOeee/DFL34R9957L04++WRMmDChz/EQERERUW6Ma3P70Y9+hLPPPhvjxo3DUUcdhY9//OP453/+Zxx33HEAgDfffBMAcOihh+a8/6GHHoqNGzd2u/y73/0u7r33XvzsZz/jQiEiIqJeTJs2DU888QQOPPDArMufeOIJTJs2bUDHZIKFiKhEHHXUUViwYAGOOOIILF68GIsWLcI///M/Y8yYMdi9eze2bt2KCy64ABdeeGH6Pr7vo7a2Nv3zr371K3z/+9/H22+/jba2Nvi+j5qamvT1y5Ytw5e//GX89Kc/xUknnYTTTjsNH/rQhwAAf/nLX/CZz3wma0zHHXccvv/97yMIAliWBQA48sgj09cLITB58mTs2rWrx8c1duxYjB07dnBPDgDHcdJJkHfeeQezZ8/OGktKU1MTfv3rX2dNPr/4xS/innvuyZlg+eIXv4irrroK77zzDu677z788Ic/HPRYiYiIiEYzxrW5feITn8A777yD5557Ds888ww2bNiAH/zgB7jhhhvSyaDeaK0hRPcVwxMmTMDll1+O5cuX44wzzhjw+IiIqDyIMm4wX2yXXXYZLr30Urz88sv42Mc+BiEENm7ciPvuuw8/+MEPBnRMlggjIioRlmVh/fr1aGhowJw5c3DXXXfh4IMPxpYtW9Lb/X/84x/j5ZdfTn/9+c9/xnPPPQfANMQ888wzUV9fj0cffRQvvfQSrr322qxGmCtWrMDrr7+OU045BRs2bMCcOXPwm9/8BkDuCVuqjEOmVOmFFCFEr+UIClUiDDBlwn75y1/i3/7t33D++efnvM3Pf/5zxGIxHHvssbBtG7Zt48orr8Szzz6LzZs3d7v9uHHj8MlPfhIXXHABYrEY6uvr8xoLEREREeXGuLZnjuPgn/7pn3DVVVdh3bp1uPHGG3HTTTchkUhg9uzZAJAzZgWAv/71r1k7dTItW7YM0Wi0Wy8bIiIi6vS1r30NDz74IF577TV861vfwje/+U38+c9/xkMPPYSvfvWrAzomd7AQEZUQIQSOO+44HHfccVi+fDlmzJiB3/zmN1i2bBn2228/vPPOOzj77LNz3veZZ57BjBkzcO2116Yv+/vf/97tdrNnz8bs2bPx7W9/G1/4whdw77334nOf+xzmzJnTreTAH//4R8yePTu9ym8gClUiDAAOO+wwHHbYYXj11Vdx1lln5bzNf/3Xf+Gyyy7LKv8AAJdeeinuuece3Hbbbd3uc/755+Pkk0/GlVdeOajHSkREREQG49r8zJkzB77vIxaL4eijj8YhhxyCO++8E2eeeWZWH5ZXXnkFv/vd73DLLbfkPE5VVRWuu+46rFixImdteSIiIjI+97nP4XOf+1zBjscECxFRiXj++efxxBNPYNGiRZg4cSKef/557N69O12DecWKFbj00ktRU1OD+vp6xONxvPjii2hsbMSyZctw4IEH4r333sODDz6Ij370o3jsscfSq/gAIBqN4jvf+Q7++Z//GbNmzcK2bdvwwgsv4NRTTwVgtkl+9KMfxU033YQzzjgDzz77LP71X/910KvgClUiLGXDhg3wPA91dXXdrnv55Zfxpz/9CT/72c+61c7+whe+gGuvvRa33HJLt9WKS5Yswe7du7PKThARERHRwDCuze2EE07AF77wBRxzzDEYN24cNm/ejGuuuQYnnnhiOg79yU9+gkWLFuHUU0/F1VdfjcmTJ+P555/HZZddhnnz5uFb3/pWj8f/yle+gjvvvBP//d//jWOPPXbA4yQiohLHEmED9sILL0Ap1e1z8vnnn4dlWTjmmGP6fUyWCCMiKhE1NTV4+umncfLJJ2P27Nn47ne/i9tvvz1dsurLX/4yfvKTn+C+++7DEUccgeOPPx733XcfZs2aBQD4zGc+g29/+9u45JJLcPTRR+OPf/xjVi1ny7Kwd+9efOlLX8Ls2bNx+umno76+HjfccAMA4CMf+Qh+8Ytf4MEHH8Thhx+O5cuX48Ybb+y2E6TYKisrcyZXALN7Zc6cOTkbk372s5/Fvn378Mgjj3S7TgiB8ePHw3XdQg+XiIiIaNRhXJvb4sWLcf/992PRokU49NBD8Y1vfAOLFy/GL37xi/RtjjvuODz33HOwLAsnn3wyDjzwQFx99dVYunQp1q9fj1Ao1OPxHcfBTTfdhFgsNhwPh4iIqOx8/etfx9atW7td/v777+PrX//6gI4pdK5CpEREREREREREREREVBI2bNiAxWeegf2vu6rYQwEAbF1+E/7weAPmzZtX7KHkraqqCq+++ioOOOCArMu3bNmCI488Eq2trf0+JnewEBERERERERERERHRiBYKhfDBBx90u3zHjh2w7YF1U2GChYiIiIiIiIiIiIiIRrSFCxfi6quvRnNzc/qypqYmXHPNNVi4cOGAjskm90REREREREREREREZUCw4ceA3X777fjEJz6BGTNm4MMf/jAA4OWXX8akSZPw05/+dEDHZIKFiIiIiIiIiIiIiIhGtP322w+vvvoqfvazn+GVV15BJBLBeeedhy984QtwHGdAx2SChYiIiIiIiIiIiIiIRrzKykp85Stf6fU2p5xyCn7yk59gypQpfR6PCRYiIiIiIiIiIiIionKgRbFHMOI9/fTTiEajed2WTe6JiIiIiIiIiIiIiIj6iTtYulBKYfv27aiuroYQzAYSERER0fDSWqO1tRVTp06FlP1fD8V4loiIiIiKbbAxLVG5YIKli+3bt2PatGnFHgYRERERjXJbt27F/vvv3+/7MZ4lIiIiolIx0JiWeqGLPQDKxARLF9XV1QDMH39NTU2RR0NEREREo01LSwumTZuWjkv7i/EsERERERXbYGNaonLBBEsXqTIK/5+9Pw2z5KrOROF37R3DGXKoKlWpkIRAMggM+sDQgEEIIyipVJluY3fbtz8w2KjBzFwmGSRAoAlNIJBku7G5Brcb09Dt6/762t2PXSUJZAtjG9NgBj/NfJkMaFZV5XCGiNh7fT/W3jt2nMysSVmqrFKs56mnMk+eEyciTpzY71rvu941MzPTJqRttNFGG2200UYbbRyzOFJ7rxbPttFGG2200UYbbbSxUaK1rD0K0XawbKhoDfDaaKONNtpoo4022mijjTbaaKONNtpoo4022mijjTYAvPvd78aWLVsO6bktwdJGG2200UYbbbTRRhtttNFGG2200UYbbbTRRhttnPDxiU98Aueeey5OPfVU/PCHPwQA3HLLLfiLv/iL8Jx3vetd2LRp0yFtryVY2mijjTbaaKONNtpoo4022mijjTbaaKONNtpoY4MH8cb5dzxalf3BH/wBLr74YvziL/4i9u3bB2MMAGDTpk245ZZbjmibLcHSRhtttNFGG2200UYbbbTRRhtttNFGG2200UYbbZzQ8Xu/93v46Ec/issuuwxa6/D4M5/5TPzzP//zEW2zHXLfRhtttNFGG2200UYbbbTRRhtttNFGG2200UYbx0Mch50jGyW+//3v4+lPf/qKx/M8x/Ly8hFts+1gaaONNtpoo4022mijjTbaaKONNtpoo4022mijjTZO6DjzzDPxla98ZcXju3fvxpOf/OQj2mbbwdJGG2200UYbbbTRRhtttNFGG2200UYbbbTRRhttnNDxjne8A2984xsxGo3AzPjCF76A//Jf/guuv/56fOxjHzuibbYESxtttNFGG2200UYbbbTRRhtttNFGG2200UYbbRwP0VqEHXG84hWvQFVVuOSSSzAYDPDSl74Up512Gn7nd34HL3nJS45omy3B0kYbbbRxmLHrmVei3NxBdt8AZiqH6WqQYTARiBlUWZAFqDDgRMF2NMBAuncIWAsoBTOVwyYEEDW2/Zm/ftcxOqo22mijjTbaaKONNh4pMffU96DYPgW9XEHvH8Js6sL0EpCpKzZqZKCGJZAoVFMZwIzsnkXAWHAvD3iWGGDtMK17eYtp22ijjTbaaKONjRZVVeGTn/wkXvSiF+HVr3417r//flhrcfLJJz+k7bYESxtttNGIHTtvCD+T4TpZOlhYhKlOd9z+zvXfsXWM+W2vg9m3D6rbBW3fBjvThVoag7sZAIB+ci/QyYE0hZ3tgzsJbKYBADZTwGwHAFBs64Vt+vPEILCW56KrG+8bP3/VsMCO8935jyZkbfTz2UYbbbTRRhtttLHRwmNaMiJ+Ya0Awgps6wkFdqIXVVmwkp83Mkkwt/U1sPsXQEkKaAV18jbY2T7U0jBgWvz0XtD0FHh2CrabwmYaTABrBdraBwCYfgLTnw7bjc+P/C0uGRDGj55dsS8NEa2V/87fcX29PQvc8ZkWz7bRRhtttNFGG8c2kiTB61//enzjG98AAGzdunV9trsuW2mjjTaOiwjkiY0eVGiQI7AAGQtOVUg0fVDF4GQNwkXVz7ngvOvAitZ+7kQcDQJhV//luHX5TwAAF2YvBQDoU7fD3vcAYFnIlS2bRIGXahSn1ckin3QG0oUxOFEwnWTlcSgcnVhjuzHptVq0BEwbbbTRRhtttPFIiTXx7ORjqDEtoEKnsSosWFPAuQ28qxwhwIAeVdj1rKtgUy24WBFAEDaBWbo2CIAiUGVhc310MG33N3Hr8BM1nn3UyYJn2YLyHGp6CkhTwBogUShO21Tv29YzoZdKmF4CKHfM7lwxDlFEdbixxvYPhmeBFtO20UYbbbTRxqEGtRZhRxzPfvaz8eUvfxmPfexj122bxw3BUlUVrrzySnzyk5/E3XffjVNOOQX//t//e7znPe+BUoLimBlXXXUV/vAP/xB79+7Fs5/9bHz4wx/G2WeffYz3vo02Hlqcv+P6ZjLnkkJiBhiS8HmCI1bhrUUETD6uJn42azwPAJW2aQNgGcn+cf18C+n4SJVkdj55VbK/IYmNtr3j/BvCa+PnEB/4WFRhAWboQSm2BRBFHgCkT/oZzD/xnbC9HPzMJ8N2NKxh8M+cHLaff/MnQDUCVVMr1IzlpnyVE7dx4o7b34nzd1wPJmoUGshGqywBsIzP/M27cf4LrxfVprtusv/9I8Aydt/3kWOy/21sjNix8wZQaZF9926Mn3QqqGJk3/4pdv/k9xrP2/Wsq8J3gire0IreNtpoo402Nm4ETIsIv06QIquSJath2kN5zGHauNMYVjpalPWYGlClhV4ag4YFwCz4tTLgbg6VJUCpYPNE7LAsi5BI1VjYptK1vPN519bbLDy547rCFerXRKSOKi1MrpEsFlCjArafg4nCa5Mnnon5J78b9JSzYLsZTGXAp2+VbViGun8RWFgEVxVougeeycHReahms1VO1MMcUZ4SY26PKXbsvAFkOOQEyVIJGAa0nGcyFrd9/nLsfO41oQtJCC8K2PfTd777WBxZGxskPKblVAme/eaPsfuuDzeeM/+kd8FOdVpM20YbbbTxCI83vOEN+O3f/m38+Mc/xjOe8Qz0+/3G35/61Kce9jaPG4Ll/e9/Pz7ykY/g4x//OM4++2x88YtfxCte8QrMzs7iLW95CwDgAx/4AG666Sb8p//0n/CEJzwB11xzDXbu3IlvfetbmJ6ePsg7tNHGsY3zX3Ad9KAClaI+o1EBKgywtIx0OMKeBz+KC59zNdTyGCCS5EtRoyefrAVVQjpwqmHzRNRrRPKYVisTTytWCFRaSVgSJSo8RStIB0mESRIeOMsFw6hm88Z7xMRIg1TxsQZZwoSQTAI+CV79+fBJsVawuQ6P+e2XmzvA5k79uEIzoTOM8ZNPW2XDx0fs2HkDMGnf5hP3qCBByhNYBD02UMMCalA8vDvbxsMWO3begPzH+7H7G9ev+Nv89teDH7UV9MB+VI89GZwoIFFgrVCdsR3J/gKmn4KXljH/xHcCgyGKx21Hslzi1v91RdjOzudegwvOuw56uYD68b0YP+Uxx6XidMfOG6AKi+TBZfD3/iV0vPm/AXKfUCOD5L4F2Lvuwa1LHz9Wu9tGG220cdzE+TuuhxobwZaaBNsyg0qDz3ztGux83rWgSpgPm+mabPDEhvuZLBy2pGDvBawhvHEiHbB0rYBq4mQS07JW4NSJkixDVQwyFma6A0zlYE2gigVfMguholXYP/mdgvDJJjW+ZgXo5QK2k8J0k5XEQoRrqeJ6W3BEyGwWusk9kVNu6QqmNlZwuO+mUYKfi1NnwY/dvL4f4lGKFblFQsEeNwisDKPqpTLX0AvHEiUd8pkK5yVsg1oV74kWB8KzgNg986nbQPfvQ3XGdrmuUg3WqsazywPMP+FSwbOPfxSSpQL4wY9x6/ATYTsB0y6NoX58L3bf8wcP1yGua+zYeQPSB4dQP72/QSpNWn+rwkLvHYD2LawQU7XRRhvHW5BrVd0IsVH249DjxS9+MQDgzW9+c3iMiMDMICIYY9Z66ZpBzHxcwJFf+qVfwvbt2/FHf/RH4bFf+7VfQ6/Xwyc+8QkwM0499VS89a1vxaWXXgoAGI/H2L59O97//vfjta997SG9z8LCAmZnZ7F//37MzMwclWNpo43JmD/rEpjNU5IYVhZkLUw/B6cKelBCPbAIDN2A9NkZYHEJvHUTuJOBEwW9fyjJ4LgCtILtZfUcEABkTCi6kxVLLE5cdmfd3wGYfiYJaWSbcCR2WH7gu/xsoQobiBbb0SG5otLWpM9aREobhx7uHIbhpFYSd6oYemkE2rso15Ax2H337x/TXT0WMWlNccft78SOnTccF+TA/ClvxPj/c3r4XY0NVGFAhlHO5M0CjveQLw0+/dnLAABzP/desFIw05mobOPvmhUbFJtpZPcsYnzaTMMqEBbIvvhtFD//hNpWxX2H82/djd0/uuWoHvv5L7gOemxgU4Vk/wh7vvq+o/ZeB7IvUWMDqliG/X7nBy3Z0sZRjYeKR1s828axiLmnvgdQKuBJWBb8pxVsqqAKA700BisF7iRBmOPXFD2swIlYeanShC4O1hSEPB7jeNKDFYSIAUCVcUSIm5lH1OjyPmhMWOYC0TwWZiSLYxEyAag2deU93BoKeLIIgF1D1NTGYQcZrsVkUSc2AIA39oycoxWrYZXjBdPOnX0ZilObwldVWOeQwKimUgATeLayoTtp/jFvBW+ZAWuC6a+OacnymnhWVRbJV7577DDtC4V85lRBL4xx65evOirvczA7PiqtEMuVgb57L3b/4Oajsh9ttAG0mPRoxB133IG5F78Ej3nHxlgDf3Dd1fjb3X+Fc84551jvyiHHD3/4wwP+/Uisw44bguWGG27ARz7yEdx22214whOegK9+9au48MILccstt+DXf/3X8b3vfQ+Pe9zj8E//9E94+tOfHl73K7/yK9i0aRM+/vHVCyHj8Rjj8Tj8vrCwgNNPP7398rexrrFj5w1QY4P0/mXAWOz+Vg16LjznfaCiko4M5/EMIphoQDpVDL1cQo0K0NIIYJf1JQlQVfJ/mgBODRhsuRIN7qaAYXkPQLoc8lTeyyWuNjv8DFAPTbBY4EyH/fXA/oLzroMelLCprkmVqMMEwMrf2ziy8IUFp3aUX0iUSsMCt37p6ID3jRA+gfDXXfz7oXh9H25MJq6N94gKM0crwT3/hdeDE2pYbKjCwmYKZBjZ3S6hdJHuHaGayUOxSo2MdMEpoNoibbC+QJQsF1DDEmYqh801koWxdIKd4INpdz3zSjnOQ4j0waEk6OMynOeNXsxo4/iMw01GWzzbxnrF/PbXH1DFff4Lr0e6dwgA2POVq8PjO593bU2okHQ8e6usuDtZD43glVIwK6dafiaCTbUQK4kS7MosXSOAkDKZli4OF56c8XNQDmiPu0aosYgVfLcNE8F0E5CtrYMueP610IsFqtl8Rac2EOEv1zXjySCs0g3exkEiIrbAzorNXT8n+nq7GqZ9uPBs/P6H8rz1+Cw8pm10dZXSpZU+OESxrReem+4bo5rOoEYGpptAVRZ6UIJcV351Uk/uIZkSq7018Gz+07W7Yo73uPCc9wWC6lAiWZRzR5VFublzwn+/2jh20RIs6x8twbIx47ixCLv00kuxf/9+/OzP/iy01jDG4Nprr8Wv//qvAwDuvvtuAMD27dsbr9u+ffsBmanrr78eV1114hYf29ggYQGba4xPmZGEAZKIqi9+HXj6z0LtXRaP5+UR7HQHtpsFVQ0g7fPBNmDbFMgykn0jqFEhxEpZCbkSuk5cwmctMCzFBihLJCG0krD4xM/v32p+15IsQuwWHJlClmEzDZsQVAVAE27/3GUrDnk1H+QLnn+tKI38+7XEykMOsXYThabMn5EZOSeaD/XBksvJv693MrpW0vFwJyNrKTV37LwBn7njXY3jPtx927HzBmC69mm/9YtXHtE+PtRYrdPoaEY5e2jkCgCUW7ryg+2GxyYLIm20cSyixbNtrFcczCKHE0JxUi8QHee/8HpkX/8R+ImPhh6WgkUTBSoFL/p5CN7SSQQ5GkAabBiJhNhQRSVdKiMLJE2QSMyAsbCpanY1RLZixAy2q9uHNbbjbMFsqlxHtwVYgazF7f/w3hXH7LtBfew89xqYThLIJE6VaJ8a79sSK4cbvrjOrlBOhvGZOzZG8Wi94lDwafychwvPHuxvR/K8g8WBuo9aPHv4UfUOnVwBgMqfI3d/bPFsG20ch3FctEtszPiTP/mTA/795S9/+WFv87ghWP70T/8U//k//2d86lOfwtlnn42vfOUreOtb34pTTz0VF110UXgeTcx68P5pa8W73vUuXHzxxeF3r/hro41DibnNr5IfnMUWW0Eo6uRtgDXAaIzdd//+qupv9aVv4tbRJ8Pvu7q/GZJPRQRSSjpTAFCaAEkCHo9BiVgqwDKQpfJYrwdeWgaPZT4LZRmoJwVAYgaUAnVyYDQGD4egsgJp7bZjgzowPob4saDEIzqoLc6F2UtDhw1HA9dVJ0eSJIBqWZV1C2vBxoCUwp6FP8bclleDup0T0lM3++J31/wbZSnQ7YCXpENsvWLP3o+t+beNZsPg9+Wh7NNGOR6v1qSKRdl4tN/P3Z/D/fwhxFrbONC11EYb6xEtnm3joUS4d9mJNVQp0ElutkdVYfcPbl6xVqT/9B3s3v8f623NvCLkXhqAVgrQCtTpCJbMUmA4ArJM3m9cyGPWAp1cHt+3H3Z5AFIKlOfA9JRsnC1UrwsaF8DSsgx1JwU2polbJ4+F6+5e//OehT8+6HnZ1XmZbBs1plWdHDrLoA/0wjYOP6yVz1NrwbQzrwi5zIkUB8KzwNHBtAfDIBsN0wInGJ6Nus6P6vsdTTxrbcjhW0zbRhttnAjhZ7n7KMsSg8EAWZah1+ud2ATLO97xDrzzne/ES17yEgDAU57yFPzwhz/E9ddfj4suugiPetSjAEgnyymnnBJed++9967oaokjz3PkeX50d76N4ybmH/UGcFFK8qVdUkeE3T/+3VWfv2fvxzC3+VXgsmr+oSwBrcDjAnOzr5TkzFjYosDt5k+xqy9f1l3d35Tnu+Hxty7/CXb1Xy7kCpGA7CSRhDNNQEsK6HaA4UiIkqIUoiTPQHkGWlqW50/35RgqeV9UlSSzZSnvpzUoTWS/PeHhgBP52S1RYsrGrCBX/DEAAJcVSBFASv7XmbOJsECShONpyZV1DGMCGcbWYm7zq4R8myyOnABx0ESh14XdNA1VGfDy4LC2faAkwb9v8czHH9Y223jocSyS47WuhUNKVN13cK3wf2uT0jaOVrR4to045re/XrpbDxHTejy7JkmRJsBwhPlT3ggeDAFmKYLPvhJgxtzMK+ouavf/nv3/UbBJ5lTVWQZoBSRa8KnDs1Ak75OImMhO5aDuNqh9i/L7JrGzpKKSTurBUDq3fSgCVptDOok5/bFo3bgX75q6qHncxgCkZLukQHniZr8YUJbVx9nG+oQTerER62G2lVxPWXrCnetDwhNHAdO2ePbYxUbCs8AhXINr4dnoftpi2jbaaONEiL1796547Dvf+Q5e//rX4x3veMcRbfO4IVgGgwHUBFDWWsM6sHzmmWfiUY96FG6//fYwg6UoCtx55514//vf/7DvbxsbP+Y2vwogwp4HP4r5R71BHiQC9XtCSCgl/w42pkgrIStcYgBFQmSUAHtCg2vV267ubwZCZTJ29V8u++RUdXNbXwOMC/DefSCtpaDu7gNqqg+kqRA5PSmqEDNQlEKqjMfgfg/QJMPNy1L2z4o9GBdl883j79eE6q9BrPhE1HfZAELKEEmXjD9vRQmuJoinNh56eCIsz+U6NQZw598Ohyfk4G0P4FcD/L5wQ0UlJGSeNa5vSpKgbA0FJEC+t0ki3zFjV00S2sThkRtzm18VPv8DXQe7pi5qktJKHZTk3HG+s4w4yvN62mijjUdGrIpnLYtN1+FgWh0JbiLbLfjC93gs2wUAIiFX3M+rCWj8eustx+Yf/WagqsDDkWx//4K8fHYGmJL5CWaqA87knqqtBY1KUGlApYHtZbAdBb2wVL+JseBDVfkr1bifi0CqrEVAPly3dcC0QItpj0b4NTNNZB0djUMHC4hApLD7rg8f671c1zgQngVWwbRZenA8CxwU07Z49pEbMZ4F1r4WjgTPAk1M2+LZNtp4mIMB2iAWYSeKHOKss87CDTfcgN/4jd/AN7/5zcN+/XFDsLzoRS/Ctddei8c85jE4++yz8eUvfxk33XQTXvlKAfdEhLe+9a247rrrcNZZZ+Gss87Cddddh16vh5e+9KXHeO/bONYRg9BJUDq/7XVA7hRpRNItAgTbguqnd626zfknv1sGc247CVgeYs+PbgEgAMUuLa9MYh2hcuvwE+GhmKyIwz9+6/KfYKd+sXS9TIkVnk8Ed9/9+7Ifp71JlHVLI/C+/ZJI79sP6nZAvS7YQLZvWZJD142yglBhBlsLUip0RnjrqTh8AX9X/+WhsyXeLy5L8GgcyBdAOixI67aDZT2CGTTVl+t07z5JQrUGGwO1dQt2PeMKqEFxQg5wnEwKfFEJAGg4FsVpmgJFUT9JEfbc99HwK59xGtTiQIhIuBFDpmjVWMdprJdf9OR2DvU6oDQNieievR+TgqNSMAuLUN1O83kA5mZfiTsiK5022mijjcONeL1aE89qK+KLCUxr7rl3xfbmn/xucJYAj34UYAz2/PO1jffifQv1NiIctye2BTvEDr5mUViKebv/5XdkP868GCrVMImC3j8E3f9gLQaangJPuXuqExM9VMIjFLtnXrHSQswXFosy2O82ntPi2YcezKDpKVSP3orkvgXA2xd7AdpUDzufew1u//v3HNv9PAqxGsZYFdPGMYFn9+z9GHY9/Yo1MW2LZ4+/WA+rtvXGszwcBsvyxnPRYto22mjjxAytNX76058e0WuPG4Ll937v9/De974Xb3jDG3Dvvffi1FNPxWtf+1pcfvnl4TmXXHIJhsMh3vCGN2Dv3r149rOfjdtuuw3T09PHcM/beLhjbvOr1lZcKNVQ+sUxf8bbAKWl04PEL9onfavF7q9fh53PvQa6siBmzG19Dfbc/4eH3UFw6/KfBPIkDspk8Nzt5k+xU78YqtupSQp3fB78EAAeDOuOGQAoStCD+4RNNhZcFMFHGnDdLkAzacQhelL3Xx5ULmxMUJvxuBBypd8F9XpiY7W4BC5KUKdNRh9q7Nn7MczNvAKjJ50KVkD3myV4YQlcFKBuB0gS3PqlR9iQY2OBwVBUtVrVdiguVgzr1QQ73YPau+Beo8N3oE1GT/y44LzrAqmtv/StcL9eK6G94LzrwCTqIJuoFfO0/DUzv/318oDW4KJokCsApLOKCHZxSVSCSgFaw5x9JlgTPn3nu9f5SNtoo43jOXZ1XoZbR588OHGxFp5NtGDZQ8C0u79+HXaeew3AgF4eY/7x7wCWlrH77t8/rHWxQaDEODwmZXzhLktldoojSea2vgYAQGWFZCEBBkPwaBzWcx4MoO92GylKcENIsTa+PNj+x9ZmHiOT1nIvHxfg8Riq15MOG2bYe+6vLc/aOOIIePZnT8HCGRmmf5SiW5bg/YtAUQmmJXVCkisHjNUwrYsVeBY4IKZt48SP819wXVCvJ//8fex58KMHJGguOO86+YEZNtUNTLsWng3zYGMB5iqY1jz18S2ebaONYxHt7f6I43/8j//R+J2Zcdddd+E//If/gHPPPfeItknM7Qocx8LCAmZnZ7F//37MzMwc691p4zDC+0DzBLkSFBmAAE9F2HP/H4qNgu8eIVq1DX3+rEvkh6oCKrNmcjp/xttg738QQNThEZEmMShpxCrdKwf7G6Vpg0jx227MOZkYVL/inKz2XBd7DqJEueD514IV4TN/IwDqwvQloCyTIn+WgbQWS4quG0w5dElyGw8trAXNzsCcugXjkzowHYWpb+8F3bcX6OTgfg9UGez+1g3Hek+PSaxWhDoSwmS9OiIeKXEofuLHI3F1wfOvhc018q/8AADAbFH83M9AldK1t1oCOX/G22SugCvKAZABvcxArwsUJayzxAFcEc9boxDVhZFEC9mvCJxnQKKw56vve1iOe6PHrv7LUT73yQBO/O/oQ8WjLZ49fuNA91VKEjBbkFO3777vI5g/5Y2N56xlqzR/1iVyj6kMdn/vg6s/5wmXCrnhZj8czNLoiMN33/ouFOs6brwQaJ06RA60/uw4/4aGrc2F2UtBigTTlpVYhMHdx929nB9Y6dfdxmGGx7OnnYTxlhxLp6bo7DWY/pbDtN0OuNdtMW0ULZ59eOJg97njEc9e+JyrUfUz5F/7AZhdzm8ZxdMftyamXRXPxsKh1TBtJz8gnoVS4DRpMW0U86e9CeMnn/aI+I62mHT944477sDc//cleOxvv+tY7woA4Afvvxqf3f1XOOecc471rhxyTI4gISJs27YNO3bswIc+9KHGbPdDjZZgmYj2y398xaqdH57MYIaa6tcdFsBKwoI5WGd50sITJPOPeav4UVcGcASBn3ExN/MKGRSfJJLcPuatsA8eQdJlLG4dfqJ5HAciXR5CeMsub+u1wnMaBydX1oqd+sVhyD0AUJrIwPXYdsxMTCCN9yG+Dfl9au0XVgRtmoHZtgmqqGA7CcZbOiAGyimNdLFCulTh9s9ddqx385jH/Glvwu6f/N4RvbZNSNe3kHa8JKPzp7xREsJxIQmom1VFWVrPHFBUW0m6DpTGLC1/72IGxk5d3e3Kc8aF+MuzBcpK1qVUBvhSmsjw57KUbfpB5Vq86VmT2PcohVv/1xUP30lZp5h/9JvlvLq1ePd9HwmKR28feaRrz2qxHhYbGyFaguWRFWvedyOMFGaC+MJVfG/yc0jKEjyuuzuCKvnMi0WJbCxgDXhhCXse/Cjmtr5G8FqSYPePfxfzP/N2sZs9AqJjhQXY4UQk9mFjapvZSTy82rzANfbxSNcfPytR9Xq1ta7WK8RLQGSBOxkthj1geDxLpYEajGG29DHekgMMVH3BtMmgwqc/+8jGtC2efWgROtTW4ft4vODZuS2vFvLad/nFjhWexFYqzNwiUrKGOOeM8Fz/2qKQ37NMXuM7IycxbZatjWcV1e9JBE7k/+ORaJk/6xJgOBLxLbDCOWE9r5MTBc8CLSY9GtESLBszWoJlItov//EVnpi4denjYUA8KQX49n236AOA6nbFm3pcSMJEFBLIFcV/iLqYpqckWS2rJlBxCa9PqvYs/PGqZE8D1KwW0bbi5/B4jNvK/7r6Ng8jVpAocceKB5vu9/UscPm4MH2JgDzLuK34lCStbHHr6JNrvsYntuGzBIJP9yM9aKoPdDuw/Q4WnjSD8axCuszo7DVIFwTgPdKT0TaOLNaDVHm4k09fPPBxoCRk/syLwTN97Pnq+yQ5MhYYDNyAZFPfg32h0s8acI+FBNQPiSaSeT9JArBdacdh2T1fS0I5ijz8R2MpjuZZ/bwkkYQtTYBuR/aBGZylQKrBROBU47YvXL76AW6g2HnuNUh+dB/4pFkwEdQD+6Vg65N75noWmD9vSSLJKpEUkft97P7eB8WqCMDu7954DI/o2ERLsDyyYsWcEn8P0gqU5/J98fgVAJ20We4lvqPZcoMcXhFaCYYAZDujcWOmCjkbmN33faSxPwcjMQ41wnGtNgcwfh//XvGQ5Unh0SHsy9FYj3b1Xw5ArH3nZl4BtvagtsCNAu/EDJtHcgQ8O91BcVIPo60JRpsU0gEj32eQ7a8A5tAt30YbhxPeQvtI41iQKTGmPVhRff6MtwF5jt3fugHzp79F7OQWlprzo6L7Z7D2ivPp+PwQie3Xan9zfw8EiRMjrcC0SSJ/Xw3Pxpia3Rql1IbvUNtx/g3I/2UvQASzuQfWCsn9S+D7HpDcIE1XuHRQltZ2k52OnAetsfu7N7aYtsWk6xqeYDnj4o1BsHz/A8cfwXL11Vfj7W9/O3q9XuPx4XCIG2+8sTGO5FCjJVgmov3yH38xt+XVIZk8FEDkiZhVYzKJc7+T1mIZUDmiheiwZq1MEiWBEAIcAbG6fdha81lWC+WU0jwc1ZuIhtXHnSGUZ8D0FLC4BLu0fNhzYx7OCMRZJ2+CtEdo0CknY/nxm1FMK9iEkC9YkGFQxSAGkuUSNtcnjOJlPaJV8a2MNVV9rqOCjQFKKXAcylymox2H+hleeM77YDoJyDKS+5cBADQYyrH4MAawjlhZqxgJhHt/6FJRqk4QQycL1fYHwMpul0SDlZKZVyYiYrSqn++fOxnM4DwFp5IQH4/dK7umLoKa6gNbNgFLA2A4kiKw85Vna6H6PbGbcLH7+zet2M78mRfL+QufhQbyFOXJ06vOxjkRoiVYHnkx/+g3u5kphN13//5Bn98gxq1t3MuCdSzQVCMTBWtCHo5ERXyYApuYAIqHIR8swnN9xK+ZIF68PRcPhiutb303iVLyvKk+sLQcnrtRleb+8woFOL8uPUIxrcezVUfBZgSbAOkyQ1UsuJaBZKnCZ/56YxSPNkK0eHb1CLNBY1y7QfEscGif4/k7rgdVFlQxkvsX5Z5njOCnWBjq3Ti8WAho3i8n7/9xTJIsnoBRFOYArXiNf47fB2uFVPH36Vg8M0mcKyXioqrC7h/cfKBTtCFjbvaVoM2zsNs2QS2NgKUBeGk5/J2m+nJ87tyshmcBh2lJCTGlFThLUJwsAogT9bvdYtL1j5ZgeeihtcZdd92Fk08+ufH4Aw88gJNPPhlmFRH+weK4GXLfRhtAPWelAaC0AooKbG3d/eBjAhTcuvRx3Lr8J43HGgTGYRInhxrxNuc2v0radxMBfR7srSBSiFYnZqYuCuRL43V5BmSZLPRrHMeuqYsAY9ZMPs9/wXUbTi126/KfYG7zqwS0VAZ2334pVp7gXS2UJPKZ+sgycD9HNduDTQllTyFbsqg6hHSZUWzS+IdP/fax2+E2jouY2/oaSaCSpJGgeV9/GAv0+9izhj//sYq1Eo6g+HM5HHUSZHcv1KSGjzjh8wU8/5iNipJVJf7wnbzuuIjDEy5EdXLk1xmt6u1NkDZMBIr+7u0RYBhQsk+sFKAAMqJANNMdUGnl76vEhee8D6wIt//dxhkCfP4LrwcI+MwdAvZXW4fmH/UGMOSa23MIRWRg7SS1jTaO55jb+pq6Ow6Q+4BTw/oOCZoogAEIhcJJLOdfEz//aHQnx8OQ5097UxAgxfuzgvxBE+feuvTxRteO3/9AFPV7cr9dHgDWrjgO/9y15s0AG89eZc/ej2Fu62uAPAcZI93xxoCAE55koX6kDnV4ttzcg8kIxTSBNSEdMGwKqAoop1SLads4aMxtfhUoSUBZVhfz43lOM1PYswEL+QfCtGRq/JjevVDjV48tvcAnxpmKQNB1F6M/fl8vmXw+EAkvXZe2jp5HJNgz7ojxsZooyZjQhQygxs5Kyd/8/BZyvycrS5BzT7sce75y9Vqn7GGPHTtvAJUW2f97T5jBu9p6Orf1NaBeD7t/dMshb7vFtG2sa2yUdomNsh+HEcws9YCJ+OpXv4otW7Yc0TbbDpaJaNnVjRe7pi4KRZq5za8S786icGpgX1VziQlHIEBH/tRs5TmR9dShqlh26hfjdvOnDWLDW13F733r8BMr9nsySGvQ5lnZpb37g9rkcDpVgNpCbLX3IeXsJLTC7rt/X1QSgJwv37qbJqKKtha0NATvq4fUrZbIboSYf8KlziJjDN67Xx48kRJSrWQmg2ux5n4PdjoHlQacJaimUlQ9DVYEqwGTE5Ih43P//e3Hes/bOA5ifvvrw7wpP1ckWCX65GrrZuz+xvXHdD8PpuqbP+uSlTOb/D8g3OOZCNAUkjsqTF24iwgVDIfyWJrK/95uJ02b2wcalj2N5FGroPRjIlA1oXaJ99dbIzgbS7+frDVsLxXihRlkATIWNKrAnQQmFyJHD0vo/UNgXIovtk9+J2zL1hpgDQgx49+bE/HCZk2wmsCRQOHOv7pkzW0cKM7fcX0gWFaL+dPfIt7dxoA2zcJsnZHPCsBt//DeI3rPEzHaDpYTM+bPugS7v/MB+fmUN8r8v8jOdtVwlrQcqZJjtfbhdGzMzbwi2NreuvTxlXjW3UMnydFg7+UjSUDbTpLduff+ZkeL75AEmjZfq4XWTYLFH7Inl7SWIfNpgt0/uBnzT3pXwLOcarDWgCZQUYEWB+DFpXoeDbAhMa239EFZSdeNn/FyIsUEpjWP2hzwbDmdwXQVrCbYhFBOEVQFJEPG3/1ZS6q0cfCY3/56cFkBVQXK8zALxJMJtO2kY24/dShdKiswbcNxosazFMgjrsmMUOOI/q+q+l5SVfUc2klB0Wqd0/51sZ1X3BXjYxJHA3VXtid0et3aUjd0cLtj6OS1oGhciZ2YjTqb2daEj9YHnUE097TLQeNSsGyWwHZSkGW53yQiXrr9749MiHTBedeBCQcUn85tfQ1gLGjrFlQnz4Tz2s5EbUaLSdc/QgfL2zZQB8ue46ODZfPmzSCicD3GJIsxBktLS3jd616HD394bRHPWtF2sLSx4SNO8ihJYIfDZvIUh1dE+KGU4YWqASbY2pqYiFpm/Xvt6v6m/D78BG43fyrPc179uzovA0fEDWk0EiNvf+AH+MbBxkjxzflxHkknRtjHAxEym2eBRGPu7MuAmb4QKYZlWLKznKHSgKpVFC1KhWPYSEnp7m+/X0iWbgdkWTp1jnd+2Hve+oHZUz3YbioAMdOwmUIxk4AJUBWHIqguGSgAPoH4pTaOcszOSBKzbMBFKR1SjhggUsF3/2jE/FmXhGGQwErl1vyTHDC0jBzA+DGbGsrj+SfK/yFZthyR5mgq+iwcsYL6fp8l9eyPyjY7WwDZNz/MPk0AT5BMJp9xt0pILm1D3UcqVv+55xqut6nEnoeJQMsDkGUpVCoCVdKxRlWUSGsFLqra8WJUive1MXXi623G/DBSY4RQc5YNXnk3/4RLxbJscw9qVIKUgoUGa4CVI1dI9pEV8MJd74cqLFRpDytRPCC5csbbAolFWgPWgJhhSTqOdp57zYbqyGmjjfUOT64AkPuCFS96Appz+QD3HaZgb+Nj0gqnMS/FPdboJnHd33sW/jiIi7gosavzsvActgxSFqSzBtkzt/U17k2piWmLAlQUQurG/vxhg+5YJnFw1JUz2cHtH2+8j7XgTTNAqrHr6VeAp7tQrphm8xScKlBpoQzXVoxxKLWiU+ZYx+5/+R1HsmhQnsmQ5CB4OI6B3WqYtpeBU41qKsV4NgGIoCqG1QBrAlkgW5TOlRbTtnEoMf/4dwCzM6DhCLy0LKLLtMZ5pPVRI1fmnnJZ3THtyINJYdL8k961Jp4FDoJpYVfFsxzmpkK6oWMyBIiwoKq7qbWu1xUfMRnjI+78iWNyjmxsQRkJWv38Lq4q+dkYYDBc3fqWCBiO6mJm5cki29guswUZAMaKFbyisO55+8xAVM+Iw4VssYI2LOIl5fC0AnY96ypQUUkOYO0hi8k+feeBXT3mH/1mOe9EwGgMNSqF+FcKFzz/2nYuahttbNC45ZZbwMx45Stfiauuugqzs7Phb1mW4YwzzjhioqjtYJmIjc6uzm1+1YZJEB7umD/tTeDBUNR+q6knosU3TlI5Vs7512jVJECYRQnDtjEAjic7YOAKaHHHDKlG98rcllcDxgiZkqayv05tJ37+qh4k5+1ivCe9G/S72kyWmGg6ELmiZmeA2WmYGd+OS6BRBbIWnCUw3QQ211I4G1bQ9+4F718UhaDW0iHiVCSAeEXvvucP1ny/hzs8cMV4LINalwfHr/KPCDQzJZ87EbibCbmSJ7CpgukmGJycQBkgGVjYRAqgZNGq/No4pJh72uV1B4fv0HCqPxh7dImVJ79b3ssXvHxC5u6Du7/9fnmeJ1jcPdsnPuFxIFgj7P72+6UrL9h96Xr4fKLBmlYUqVh7UgSiArRWElf/FAshvq1dua+T4e/93p/a/7xaYSx+TrxtreTnqmomsG7mANxchIbd5cR5CF7cq6yFDfVfbA+hlNg0eFVklsB2HJmbathUbFo4ESI3XTZIlmQexHor8XwXixBOKdDrgjtCLpteCnaF2key9/4joYNl1zOuwK1fuupY78YxifmfeTt4wXUPx0rkqChFqfO1r4wQn2W1UlE8WWiDkCdgK6SJ1nXBzZga1yLCs9G9edJGd/5RbwA7UpfyHHY4FCLEFdWo123ayDBLV4abncfD0QpMe6h4FgDUplnwSbMw04JpWQF6UMJmCWxH7vmqsFCFgb7rwTDomfJM9rEsG5h2I+VQ80+4tFadl5V030zaIB9PcQBMW8xmGG5zeHYoeJY1QBXw9/93i2fbOHjMPe3ycJ+hsSvKl0504h4/Wvnq3M+9F1QK8cxEgVwJAhegiV0PhGeBtTGtn2US49nVLMHC+3tcW+9HmPd3IDwbY8d4XspqJEtM/E/OegFWEimKAukSZuc1Os2je1tE7oS5iJPv79/Dd9v74ySqhbVpAqQpOE9qy113/nwOoIaliJSAdSXgQicqHNnUycUGMU3AnUQ61DviQLHRbNgfzjgeMOnxFqGD5a0bI1f6/o3HTweLjzvvvBPnnnsuklVsC4802g6W4yw2UmLwcIZvv2x0pUzOWnFkCikFZCloekoUFMORJKXRa4JKziVd5B/XeuXwtklg4hd3y6HYNjf7ytDtsefBjwKYSBrZQtoQxCqBB0NRlmSpJL6VBT3qZLFN2b8Q9nE1G7PYQmEyAjnkQBUnGnphCNq3JIW1ykIRBRsaThXstk2gTdMw3RRUWah79oY2XR/zZ10CO9XFrV8+9oUQToVEI0A+gyyV/T0eE1Jm8MKSFCim+wLeiYBOimRxDD02IMuwmQpDQJkkOW2jjYPF3NMuh80SEGvQ0n5JRLodIKmAcXFYfsFHFKNCkl92nSE+4kQLkpTOnX2ZJKxEou5jbg6CBwBmUS56b2mgTtycPddqiShNOu9YUR6ynUgKiaRLhVnu15NB1Pw/6pJpJKGx9YL2+zLhga1cYhivL/5c+ecZbr5frDxsDA6lmqiHf4pT/8UdNcyyJjqrSEI03sXdP9kCbBjIFZgAKi04Wx8Ce/6UN4ZCcfhMvQXFcCRFAmZQnoCMgV4usGPnDSimE6TLRuxkMoIqGNlCCb003lB+3W0cfjxiyZVtr6u98hVFmNIXyKSAxcxSsEk0eOsmscBaWq4xDxDuk1wUUTebK0K6YfYAZN6HV0oDDaGQdK/IPsxve12DePdqYY89vTiJ3H7ywmLoxPD35j0Lfywd1ONC9tXdryZtxw5Grvh9p6ICGQubKiT7hqBhAaUU7FQOM5XLrCpm2JNmQNM9gAimk4Gshbp3XwPTbig82xGrSKoSgAqxEF4eCokFnFCYNt87buBZk4lgKClbnWcbB4+5p75HupFJQy2PRWTnxBlIEmA0xu4f/+5Re38ajAU/wRPf0TB46Gb3XoQVfbdKo2ZxIEy7Gp51z20Q8N5+ixgMBSLXtQFIZ3SMhVfDs/G+cCREDURKszOG2awkZFaLmOTxa1sck/h1rW3Fz/PHagFWFmS90Al1d7w7P8QMzlJQSkDlt61hM113VCbrhGm3v17qSN4NwHfKu5oTAeAsAXcU9HIBNSiw89xrUMxmSJdKsCKYbgI9rJAsl7j1f12xLvvVRhttHHpMT0/jG9/4Bp7ylKcAAP7iL/4Cf/zHf4wnP/nJuPLKK5Fl2UG2sDJagmWN+LUz3wp1xumP2ORvowWRApNrd40L6a5TJISzQJibeQWwNKgf9+o9T8RMqiRIidUX1yROSESpBk1BCTgx/2U17+yGQq/7m7Kvw2GtKHRKRMpz8Sl2IIO6HdBEgfCQw7flu7CZQlIa8OISaDgCAdB5Bpy6FaafijVMoqCX3XtVFsgzEKZE9TcuwGUFShNUmzo4/wXXgfxuMYMMP+x2Lnu+dg3mnvoe+ZwUgTodcFFKx9Ak+NzgQW4OQwB7wxFo0SAZjAGlYKcAPdKCjXMCGUCXDFW1CWkbB44Lf/5qKGbpXHOEqnSvuEKTPnrfj/kzL5b7pu/Q8N/JVAhlb3UQSBWWAXMhOYw3RgTYVdRywZYmIj0mDynaJgD5uyVQApnD56wT5W8k7xwXOXni5/j9gXrmSqwU1KoeYO+sCAAhu8M+APK+wZd6Imk1ptkp49SMqIyzALP14NBorSBSDZKloRp0XUP1uaoV7WoEIZ2MBiuALGDHClVPw/QEJk5aXMw99T0h4d3zv68FIIr80DWjVW394CPPAJYB3khU8/xaC4wLkGVoAKPTZkDGQi9X6BTyOZlcg1ONZGiQPCBzFuYf/w7A8gFnzhyv8Ws/e2QzcCbjVx/7JqSdKfCWTeGzauPYhidXpKvZqWy9TRQQOq8JwG43GJ32LcmLjW3el4pSnu+6Uwi6vn9EGLlBrgD1e0d/Jw3weLyCZAHQEPzs6rwMNhYoucHF1O8BaYr5My8GdTtyjJ0c1MnXxLQUYbXYPgyA3Lf8vZMZrBVoWID37gMsQy1kwKO2yvwqt7YoR6ATs1jCJAloql93skR4FoBg2mOJZ3/uvXUXiyLB4EUhn5sx9fnY4CIi8nZ2QC2oGI5ASxbJYAw70xU866woiQE9YuhxKxhq48Cx6+lXOJzFgIbDFi6PL8smblvnmD/tTbLtspR82JMhWovAj5KABcN8KKAu5geM5gltrv/5mMS0Hs/GpAdRbRPmQ5NgNyVkfMC0OnovYGVXiA9H0IAj0YudIFe81ZZVYOWIe4rJJYTXefy5osskvnf5nxXJubJ13SVsM3SHr0JahWOf2B5RsOIlZsAm9fGUGgqZYPMsBTRh7mmXNwQ68495KwAE4dn8o95QdxMpEkKtdGIBXwvKMiGzlLuhBXLJYXMUImrNNUw/AxmGGpXIS8kNZIaYQnbvUk22GbPCRvlEiV99zP95rHehjTZWxGtf+1q8853vxFOe8hR873vfw4tf/GL86q/+Kv7sz/4Mg8EAt9xyy2FvsyVY1gguC6iFIXY+9xqYfnLAAWXHKua2vgY8GstQ85lpV3BWBx0Gdqxi/pQ3Yvddhz8oCMCKRM/7cQb1qwMRXBQA6kRwfvvrhbAAIlUGh4STjJFBzz7MyiTUB3klRgA8bnE/hEKltxDb1XlZ6Jbxj82fdQl47z5ROmyeFpXMcCSL7SrnLBBIaCajbC1oekq2UZoAxOxUB+qkzYCfWZJlMn/FJuK7T5DkclQJKEmTekaAUxuX26ZQTSWg0rrhy3IOFFlceM77HvbBxL5NO8w1yFKQI1n850weGG3UIHJ2PbpORn2nVVUBaQoyLGpN00HVc0pOBvT46BMshzKc8USK+bNWL2bu/s4HBPQCx1Uh97YvXI5dz7oKNnfeyJumQcujegCm1ph72uXgVK+bamr+CZfKD6SEFAHqYrub+cJJlBQxAwZu1kiUPEWEOGuSWVHA6gU6igba+9/d8MzwPvH7aYjazxMfPkFdxWqr0UEzQarEZA6DQiJWKwijbhK/Pxb1fBW/Xb9vLrEO5Iy3fmB2Q+g1FLPcM3xS6m0xrIVnvgmqPk/OpqVxH/SfRZysM0MVFbg00iGoCbowMLmSgqZlUYi7mH/CpTWpxFbmqnjrssqdC39vjkkkP2Mg+uwmP0tYA1oaIr9PbBWUMbAE2NRZdFYs+5Uo0OIyfNfR3FMug5npwnQS3PGZ5j1r7mmXA6Wbf+YFEmW1Yb/L80+4FNi7H0jXaYNVJVhxcRm7nnklys2dDXdfn3/MW8FLy6IM3jQrD2qF3V+/7tju2AHiocwL2nP/H4af5095o4iHjIV1GDYUtpxgxj9/bsur5e8TFiuUue6RuPvYdaZ4POutwWiyKBY/rtyclbUsEl3cOvpkPb8lssmdf9K75NotCnCvC7t1BnopAxYFf84/+s0NlfmtSx8XPOvvmxN2rzQzBZ7u1UQ4M+xUF2phUQqteSbdLR2xVSULIW+LCjQupSDrMC10H1SZg+JZAA87pgUJsQJACKGqAgZDsLUNm2M6AiXlwxJ+/xO9Nqa1QLpvBOIOqn5Nmqni6BMsjzQ8C7g5JRNrbMCz7ju/UdfAybj1y1eJqMORDtzNRIg4HAULbqgkYFBvP/tQYv7Mi4NIhKMZWGxMLQKqagxFvsgf2YI3CA4/N8VyjY8Bh/9U1I0t+XewsfXkSoxz/esgz2FrQ6d2A9NGndQBt/q/TYaxgKEgXgw4NHTBMCgQBwjHjdWws19jlKrJj7ijZjXxjxMUwLIjcprXLsXnaFL45GePkSNn/Bxeh3WpKF1nS1Kfwwijz5/+ltBBPr/99VGnjrNuZ4WGGKoogliXSDXt2eJzYywwGEJbC9XvSF3FMEA25EKqcttdWAp4ff6J74Tt5eBc47bPX77io5o7+7KmLdzy8Og7EjyEmP+Zt0uda6OuXydA0Cpf6TYOLb797W/jaU97GgDgz/7sz3DeeefhU5/6FP7u7/4OL3nJS46IYGlnsEyE9wc8f/Y3kW4/9agNSTucmH/0m2WhsLa2uopUaaQdmI19lTPXEeG8m2OCYlf/5YDlxtyQjRS7pi4CjF2X/Zt/9JtXgoSqkiHPWoPZgoej+gVEYZh9CNfFEtR+E9FICCN7hMbxMK/wtQ77+Kg3wC4tQ207Cdzrgh7cF4gQr37xQ4rjaFiFEck1sH0bym19qMJCLw7Fa9SplLE0AKZ6qE7ZAk7Iqf3kePSwgiqNKK6NkSJg4VRBaQJOtIATItjpHKaXQg9KURW79lZOZHtkLGClwHu0Y9fTr4Badp9fZYDhEDwa1zNwNjLJQiTf0ywTRQ0gFnGz04Am0OIAu79/Ey58ztWwmUY5lcJ0FPJ9JZKFMW794pVHZbd8Igqc2MnoaskngEhtNvFzPDg3DFgn7P7ujUd/Z9chLjznfVDLYyFfEwXuZKFlnrX8O9Bw8oNFsPXypHdVNZMuX9hXdZK0++vXyZyW6Hw3yAuXbEihbMIb2hXWOUskUfE+1O54Vnzv3dwV8rYDhmsSxJMDBwvffeNIkAaZEr/eDVte4dPt3zvujozterQKhalg45gkYZ9pLApnTrXcoytTExc++Yv3ww879e/j//dWmFqJgi6N5o4lcoxUWdiOI3VdxxxVsq6AhAiiwVje23lNU6TAl/Ngo2N2P8fzIsLQVlsn4p7UUhroZLD9HKYrYgAoAlUWrBX0qILeP4TtZbIeDStYN0gZBGQPjoSIL43sl+869efA76t/3ywF71tA+fTHAQxkP9m3LkWaI4m5sy8DPbgPlTL49E//r4c8g+X86Zch0R3Q7DR2/+Dmo7DHhxfzZ17sSK4yzKjzs/Uoy2RdJKoJwm6nts/LMsG0UWFw/vS3rIqRNkLMP+ldsN//Edgybis+9ZC35wfOkxP4sL/XZilgGXZpWf6uKBTzxC9/JclCScTgRWtaA9O6gcXeAtfvQ0wQNY739LeIzS0RaPs22H4H6r697rNLg23M5HXoh9CHIBKybcsmVFv6UIUBDQrQcCz7ujQAuh2YU7cIlk1qPKtKCzUq5R7p8ay73sAslkJAjWe7KfSwxrNkGKpw6yTJPYeYj7p9y66nXwE1Lut7k1Pn87gIsxlDEXej4Vr/eRHJdzTP5FyPxsDMFDhR2PO1a0S02E1QziSwCSF/sES6fwRW6qjlDI8UcmX+zIvlh7gQPRlrdTQcZ5h21zOvBA1LuR+UZVgngp2pUtjz1fcd8fbnz7pErl2i0DXc6A52hW0/V9W7R+z+0S2SW4zG9XNjkY8XeNgIG012dnQ7UecINWeJ+J/jcN13HteuRaJ4PBq6uv0tJMJhYVZj3FVSRfWQGMtNXEvB8tKHn8Pia1FAs5Pab89h+UBIxO8RR9ypEudm/n/f6e3f0z/mO4m8gHQyxxuO5Nofj2tSJk3qWZV+tq9/L2/f6Wtwcbe5Px++83ySXMozcL8D20mc8EpqJlQaqIWhzCHMU9C4lLktPcFCZCzUsKzXM79v/r2Go9qqDBBXlE4Oe9IMbCY5RXLfAnZ/5wM4FjH/hEvBD+6F0YxP3/uxdgbLOoafwXLmWzbGDJbvffD4m8EyMzODL33pSzjrrLOwc+dO/NIv/RLe8pa34Ec/+hGe+MQnYjgcHvY2W4JlIjbCAKb5M94mhVZfNHELQ7C1mvTxjG/qkzFRxFnNymqtCJ7MLm4r/+sRHc+BYlf3N5tKuYYPqQJ1O2Gmyfxpb5LEI88O22d1/vHvqBcjY4RU8Qsn0LBaYT+MeK3ZKxNB8eIL1MDI/72Tg0/ZtqZXfDgH5BfGBDQ7U2/LR1kCed5QKQSSRWuxYEhTIM9QnroJyf3LwE/vkWKFG2DPeQYz24XpJ7CaRO1HkpBSJWo+WIYal1ALMr8GgAyTd4UzyjPwts2ye1mCYmsPnX/ZL4WufgYqrZA1EEB3tJImr87X+wcCJsuqLl4Oh+DBUEiWSUC3gYKy1M3EiJoJh6NA+lGegbdsgtnURTGbgRNCtq9Aetf+YwaUjseIragaynqgvjZWI1V8eC/hWHmmasL1eEhIV4vzXnQjqJLk7K9vuxS/8G8/CDW20K5bgSo+rCHjYYhnZdzaFa1ZXqWn60L67q9f1/hsVnSeuH80LmsyAQhJCzuCBYmS5NB3tiklSUWcaFZWlM4xSRP7Sft7R6wsVLq2vPL7NFG4aCSt/v3i96gm1twoQQuki18znIVa3NFiZrtiL2alywTMcpzMkmg5UQBi20u2tYIysrhs2Hd5Yi1LhGCxqFWOEDKFjGmQL1QakGHYbgoaVVCLAyHgPenk96mUGT/hvE6qF711nD8HQbmpG4kotJaCiapt5fxn6Dt9WGsgUVJ8tVauB2trcYG3EGmoOVWz4GpZEvNNM2Eg7eGGVz3uvu8joqJddhalM1NHvM0TYcj9/BMulWKTtcFipVGgiK9ZoL5eo4IfgAbWJa3roenGSmEXouJFVdU412FfTyroqT6MIyAA4Hbzp+t6rBdmL13x2G3Fp3Bh+pKwP5SlwT52ftvrpKB5BEOZ/Twjrqrm7BUgslepf18N+wdrLx/uezhp2eW/O36wPXU7a3bK75q6qCZZXaGLsgw0Ox1Z0FgpYBnbxLMxyaIVqNMJxTezfRP0/iH47vukaDfVAzo5zGwXVT+TTkdfXARApYUem0B207gELQ4kt/L3Jkzg2SRBsa0HPaqQ3r8cyFtV2nDPhVJHhWjZ9ayrYFMNPSgAt46RV82XJVBW4PFYBESAfBYT3T7HPDzJsgamXQ3P5g8WSO5p8ezhRAPPNrpDfRF7It+J176428DjhNBtoAPOPV46WybjgvOuC4SD6SRI9w0F2wCAOryZX/M/83bBg+NC7rUTNQFvyRpyzDzD7h/cLDWccbHy++nFRa4OEXBgg4DRMiAdqK1iEw1OkwYhwko1cSZzLRoKJMUqeBaoMXj83v4aKKuVa4nH8ZPYzYe3BpsUKvlif0xApKnrJtS10Mjvf7S9xu+T+Zjfd3/OvH2XdufK5RHBhjc+3+58BtLHnQPby0UIkGVhO+F1VeXOS3ReJzppeDzReapIjttjbjdHzZM3rN1nzSxY1XfGpxqsCWrgrrksrbvFy0rOV2VWYlpmIViMESI+TUG97hE72sxteTXAHOY+zz/6zbUVX7dzxN0yGwGTnmjREiwPPXbs2IHTTz8dF1xwAX7rt34LX//61/H4xz8ed955Jy666CL84Ac/OOxttgTLRBzrL//8KW+UuRexTYCLMKjSTixI/mY/aQUwAQZ8kgmgaRGwyt8PN0jrFeq8C7OXQm87CXb/QiAsOPaWn9zGKvsUFHVekUAkdmh51GY4HIHHY5DWayaq82ddIvtQVbUyI/JGDe2/nsyaVE9MElsxWJ1ISBvqMvdZxeq/MNQz7qoBArGkpqcbntMCSJzS0Pllr+bPuav/cqgtm2XOy5mnoZrKkH33bsBamMecDNYKalgASqHcJADOxrY6BLGCsQJMyNjwu14ag/YtynBVV7ijTbOw0z3Yfga9IEpiTjTUSCwqfPvrau2t6xXnv+A66FEV1DtUWdCwkOJWVQlRsRHVfj6064yKri+OLT6IQNtOQrV1CjbXsImCquxD6jR4pMTcUyPrFua60O67AD3w9gA4LgQD9TBuperOCX9f9Z0Y8X0iKiJvhM7HI41z/92HoMcWemyhCivKYWODtRUrP2MEK+xx5p52eVMx7Gdw6KgY5L6PnGjs+d/XhmJBsD+IkidfVFejYlWCpTHvJIoVRE1ESvjPLexjUM0ZrOiSWcv/2e+HT5jc8SAiI3wSSu5+uOJ94ud50mMiAeZEo3jUNExHAQwow9AjI92Do6KxX1Sa5jlaJQkMHThKXif+zzr8HvbHkUSesArJPDPMdAeqMFD37689yCu3nlaVHIONZsNUpk6oY0Vkg+iyTaUfIGueU+H7+TXkX7ciGa8FCmGN9+fGRp9pSH5VSG5DATP+vP29wHWzUpbW3RT+b1W1QgQTfx7s7NAoy6ToaNk9f8IaJE1AMzMwJ8+g6mcNe7PjnWCZP+1N4PFYZoTEx70KARBjV48FG5j0YH9fx9D9XqML2ceF2UuhT94KHo3AS8tr2skCWIlzvTe9vw+6ArSangJvPwl0zwPynR+Pa4x1IEz76DeL8GWyUMerkylY5VyuIFfCvjfxbdjvcN9LgvDJF2Li63pSpKQ2b5LvW6wG7nbkyVW1pt/8rqmLoLZukXN9+imw/QzJ9++Wlz12uyh6kyaelXkqACtIR7VlqJKhKnfPZ0h39/5l8GCwKp6lykANiiamZZZ7JY5ed/YFz78WVInAiYoq3KPJMGhhIMKh5UHdybIBCZag6l8N0xKBtm5BtXUaNqvJ0xbPHjzWxLN+zY+Jk9iaKsxas1hBwHosEheA/XN9HCcdLWvFjvNvgB5V0tFWVLVFqz9u38WbJbCpxu1/X5/n+Se9Cxi7brJSRD7sZ3+GTlyuSRYngJw//S0rhSVAjcc8jonszWtRjaq7LIBaZBA6QCK8a6xgo0TV8/6sy3EOhmf9ewJ17QMAckfu+E5nj+OMqfd7ArvJGlTXUxprhg+/32kK9LsihPGkUGVqIsNjYE/++ZgkgwKm1bXgKqt/bmB8v7+xqNb/rjTsbF+cO/YuCrnlSaTKBKwHZiFf/HfNY38/i8cLauJccXIGjbNJlv8jcW+8Xk8e82rdPJMuK1GNjI2pc9zJY0VdP/TON41O2HimcXRd3rr08eAsE94rsoDkeE6Y1qCpPnjzNGw/x3hzjjv/qrbfPtaY9ESMlmB56PG1r30NL3vZy/CjH/0IF198Ma64QkQ0b3rTm/DAAw/gU586/O7zlmCZiGP55Z9/9JslaR8XgYVeQbDEqiBgJbPvF7tYxYe1E1FSVP9ttaQrfny1v01syyv0ViwAk+81GXEHR5TohYHwDjCqXk+Ua37h8AWO0Vhu8ptmazASLca7v3F9c8aCT/5KAU4BIIRhn2ss7I3jUSufG/9Na1CWih3ZyVsFCP3LTwUIuAUpVgd6W7S5La+WY+52whC1xufsrbDKctUEfP4Jl8LOdFFN58juXgCWBuDN07JfzmLGTHdx2xcux/k7rsdn7ngXXjD/AZBl/PWtl+K8FwmYZgJAEMKltNAjg3TvELQ4rBWK3Q64k8J2U9g8kXkhoxJmS1/8sJ239dEcHLrzude47hsbbAbmf+btwHgMHgzr4t1xGhvF1mWjRxgUCzQVYb57IRRTIwujcI9QAbTXCn53L8hdshMnMJMqtLgzww9uXJE40REr2Q8U3jOe3fwOJuAzf/PuI97e83/lRpAF7vyf78D5L7hOSJayJqT9UEabSDGLyvrc0thIYb6onM2UqVVXPjw5FXWwAAjkSugE8Z7MnjQNqvSJpCWeieJFCESAt3dxRIEnCWhYhHsCp0lto+Bb7n2CEyedq9kVJIncm9NotoxSokwjCsppGOn6qIeyTh7HxLVD1NjWaHsfNiOoUlSZunDE17iqk0jfORITLMDK69qdI7GE02A/18RyUD+GAoT73sh2hHTnRMH2c+h9Ayk8sAUGw5o8IKqtNGemVybmPhnVuj6ncVIeEyCdvEGihWQ5Sq795xu6eOLvtidNJomc+Nz4aygiZbis6sQ4HibuiyqeePFroN9mZPOx58GP1rMyAMFEaSpWI/7a8a9xxBpPdcC5WLtyqjE4tYuxGuOL/+09xyXBMv+Yt8oaPBytFAW5oPhaiP8eqzJ9lwvbFZ0pwAFIllVwaxApVeWKv02Gx6G3lf8Vc0+5DPTgAsy9900+aW2CZfJ50T6F4wagTtpSryfeMs0Nrac0BeVZ/Z3w1yszdv/4d6WrG6i/Sx53T4qFgJWkJNDsCJok/lZJDYN9m2Vg2xbYH/1EXuu/+0rJEGjfUVRWuHX4Ccxve50UIfNcjttjW1/EGgylO10r7L7791e87/wTLoXtd4RguXdBZpNsmanx7GwXt33+cpz3ix/AnX91CV544fvB7pT/zR7BtOwhPAF6aKFHleDVxUF9z3d4FkSwnWRVTKtKe1Tns+x83rWS64yrQOrc9oXLQ7GXH3gwfK4bkmQ5SLR49tAjYNoD4dnJNd9HEBK4L4JbG9nZEYeitn9uLCzyAgl/37JGCt+TbhM4Ot3bu555pbMCpXD9H2nsOP8GEDM+c8e7MPfU98g9w82r5TwJeMjjrtApay30/mHdjQvIXClfKwAaaz8lCZCl2P2T36vvyxFGbZAZ/jObxLRuW2GAuscbXsCjgLhD2ncX09B15DkxShCSrYVn/b5PXjdEQLfbJOL8z7GYJJ7DYm3TKismgybtsRSJnWwvrzsO3X4EjBxb6E4QffU5jTtDdJhRyLl0YpMxQqYV0TUefxd897KxYg3b74AWlmXddfNvG5+NUrIOe+s2n/v586k1eBRZzTdOaXROvEjHkyx+H/y58efcd1jH7+HOywobNv8+fh1wrw3rubOWbGAr5hrL+jqW74iJrwVILcuLTeZmXxmeQ3kuJFNlamLWk11aAXkutaE8hRqOwUmC8fYehnmJL/yP97YEyzpGS7AcvRiNRtBaI03Tgz95Itoh92vEhb/xu+DZHv7xExcfle3v2HkDbCLDY7P7B1B7a9sCylKwUTLey9t8+IUmIh+EgU5rAObsF0gpMMuwMK+wmxwcuWpyOpEErhqxUnSt8FZS/j2dRcNBE+FgYxb9jZSQEU5NwUUBGjgVRJY51Q2k0FREr4sVsYD4/PukzxeaLJw3uxtYRwrsXttQ64V9iUDQJPEVJTx+KCUB2H3Px6TQUhRA0l2xvcb7aC0LmAdXY+fh6pR+jeIWS/KNslzph03R8GJj3dBJ51Gdp6JK1k3lmIoGL9/5P9+B5//KjbCawEoIFqXE39rmU6CtfeixgRoWYheTJYCVc2L6OaiboppKYTVBmYdhgKUiOR4LQInVAnVzGRI62Sp/HIVvzW3jwDH3c+9dWXQPij4rwD10qEUJQ5rU3Q+xTZgvRrtWbc6SMFuIvArWd2lwdH3FINm/vw9mAMoN6ZTv4qHM0Nmx8waXUHHYt0nLLo6PHU1yZcfOG8BEYTd1YQEGGmCbAJsq2MyRJgBgGDt23hCGHvvnep/7cNgTgJxzDYYGehnU8hisE5BWcv4nkyVmuS8TgTsJ4oGecZLbSJD8OY66MxqDP5mDXZXNE7l/GSXD4f1280S6SlzCypB7R/CP11GCx8p1MqnVlYBV1UjwoKN9ZwMYwHbzeu4LhKgIpIs7J777hbUjsBINm8jxqYrl83fXtk2lm4WMAlUAJ578QH0fjEPV+8vKqTUTFT6DcG0Bzt7LNEkLoC6GMkMNCiE8xgAvLoXvFvukO8tA0MDSsnSaWpb/nXAktuMM67QnKyYLPa5jk8qICPXXvDsuq5L6WsmdKtJCrjsvpIhVjCv+r4vNdTeAK5gkauUakiQAKnmO1kLIxF0zcNadWdosXDMD/b78nKeotvTBicJ4cwqygE0IyVAS4WRQIV00IFNhPWLuxb8Dmuqh6tBRw7Tn/esPAAx07htKd5O3k8jSMLgWgFxzWVoXZXx3sld1clRgsGJTFwituAjgCwCAKOQjKzD5Q4RnPbasJr8ca4fvlLkwfQlAqjGzJMw0WQUrr45z3bF6Rb8jjSh1RZYkCR1blCSyjaJodG4HctId+/zpb6l/9zMYmUFFIdektx+ZIEvY2hUe/uy/74jIllWITy4K7Nn7MSFM4oJhvB3/PSKZMTc3+0rZbpaFTnOe7su9Mk/F2s/Y4Hk/v+11QKKx+64PN0+hghRCnXqYs6TGs25fglKWIIS027dJTAtWYJUEPKsK28SzwAEx7dGM2z93GS48531BEMCpws5zr4HqZFBm4npbRfi1kaPFtIcWKzAtcHA8C9R2nQ5HNdZTb6npr+8yKt56gYYXMHC0zdAJwTUO8F0GSmH+Se8KgpCDzTw5/4XXB8xB/q014dN3NgVBrBRAvIJcufA5V4f5cNAERJaAalgG4snjd9tJkLoifiCrFMntJm3t5QABAABJREFU2MpMO04BUAIkDruRw9sWsJ0MlGogz0COZKGicHWV5n2AjQHGVu5fvoDui+mTXRlRzh8+Y/9YEMXUgg1OtGBkpUT0UtXdbbAAJVoELynVmJZSufevhmf9+6yGaa0BtHfMcH/zXRGThBCzkA9uW4KfIO/r7W7TtLbtAmoxlnE4LpwDU+Nk/xn5682TKnFHdmxz6zqQWCtZS4w7t8oCfqaMmrByj2pitDyS+tLi3oagwxM5xCzES1GCuh2EOTnLgzo/8OHJF49VURMo5DFtnKeGTiiqP3t/nbLLedznDQWQVYBGLaTw159/juuwCkI/CEkyKaAIBD3kPBPc5+W7jSNi17uuUJY1tgsA6HeBLIOd7Tk8m0MZhs0U9MCANUF3E6hhhWRQobsQzSZqY33j6EKTR2R0Op0jfm3bwTIRXvH3gmddBmyeFkCeEMopV3xy95XP/+f1SVJfeOH7oUorN6NhhWRhLIvPohuoU0Q+5i68ws0X4kNniy8UerbadbFQngcCBoAoCp2q2BMwqyaFa3SurLDyigfoArWC1SvaYgXdGpYKk/Ne/GON90yS2uvUL1h5LolZmjYXLUA8S90AX5tJUclmCmVfClmd+wskDy5Lsc23gAI1AJpU1fpFJ1YHRMU+IiV+2GW5ortlhYUYsEJ5RqlTRFeV+CxHnzn1uuG4eXYatH8RvDwATU+BN01hz9euwdzPvVcKX6MK9MBe8Ngl6JtmZKhaN5WuEoezPv3Zy1Z8DgBCB4t8VnCWCxwGiIIATgiqYOihFICyexaBhSWZ9eKSX5unMlR7MATPTmG8vQ+Tq4Z1w9/++TtW3YfDifN3XA8woEoLVoBNNcgykoUR1AML4IWlFWD4WESbXK5fTA4t3fX0KwBAlEtVreaNFWbcSeuB2Q6YA02OxGZyfXqbEdmmsxgpDFTFUMtFsEsK7zVpeQME8A+i8DxOFDhxMy+0FMtNNwnfC7LAZ/9H8zvxvF/9INJlI0kfEL6Hf33rpXjhhe93SYlPXCDfz6C6hysq1VYptEpySDEX5AbeBw97ZhkiHIZs1skVMaDGlSS31sqx5ToUh9SoEqsTb2XgkmJf+GJN2PPP14q1WFTY90PqWSn5TIdF/Tl6JZ9Szed6ckMRbELgVMFknqgRElnmQ4nt2Yp7gvev9l0ck3ZbccQdJ3AFgVTD9DLo5XF9zGmCclu/PsfxfRSAquTa4cSdVxK8YVIlSYomlFManAB6xNClPN/fw8kCeixkDbv5KWSdvWMlx2Mz6TgKn7Wxcj2wu5aYhcSpjHQgVVWtkgxzXOrzDEA+j737ZSbApMWBW9fIzWpAlolYYHZGLDYWFuR5rkjkE1Z2+ESIDbcW+vUVkMLtVDes535t9laU9fHV30eqpHuJqqpZmPJrb1kJxsoyIdzKsh4WCtTWYN6P2133ARN0chG2TPew/LhNck4J6P14WWY+FJLscp42rysicJ7ATHWE2Mw1bKZQdeQ+kAwt9MiiMiN87o4rH3IHywuf+W5Qvw+ba5hcsGzZV2CNgGn/8U8eOqY97xc/AFUxbEpIBtLxGubhFIUUOYr6uyz/E3hhSfCPV+8mUTEkLiR65Wm3gzCUVinwwmKwX+M15o3Itg4R00YRW3o18Cywaqf2AWPi/SlNQHled2l7643IfgZAjU/zLAgDOE9heinK6RSsCd27BlAPLEqBzN+7Yuw9WZD13zm/Tsb2eDFejW1D4kJgpHBdNXxnkpu1wkURcgIQCabVGpiZAhaWGniWxhV2f+sGwbRKiUXkg/ukGzxJgNlpmG0zh4RngZWYVli56Akk92I1NuG+mP10v5DEq2BapBrj7X357mp5vjKMz/7FQ8ezwCqYNhebsGTvCPTDn9YW0n73j0Bd+VCjxbPrFx7PAmtg2tKsjmd7mROSOPzgOeWA0QDTVaCKw/XuRW/Kdxu7NTKsT76QHneLenvP2OYTqIvnQbShYFMd1hmywF/fdmnjWM970Y3QA7GdDQIft4b/9W0O0zqLam//HLodHLHihVE0qoSAB5p4zuMXIAhuqIysk9Kkni1HJKSqpoCT1LgSC1aH3ZlI5iGNxisG3vs5LDFG3PPgRzG39TW1/aAXD3gi3HcmKFUr/lVUD0iTYP3FUQ3DZqrG9pD7g8d6qpzAtGvh2bgDH6jXAzfvLs5Pql6K7IEBaN9i3anQ7cBOdWqyL+qiDqIc31XuOoI41WFunhcPsVZQpRGcyixkGSD3ekfcNMRyYfsM7qZyXsh1MFtIfaej5b5ZGPkMh6V8bloFAUJ9jbjPzHeUj8aw+xcjQYzUtAI28Hb13Q5oqi+Coc2zghcfqIkZwbPUsOmKa2Ih/GfRyev9iyOuO03GpMPKBPEeLOsmsVCMCSZrUopA3a78vdtB8ZgtAEtOnO4d17aVjlDiTNciMeb6fpRp2FS+/1VPQRkRD6VLBnpYoTJjfPZzV7cdLOsYoYPlzRukg+VDx0cHy5YtW/Dtb38bW7duxebNm4UYXiMefPDBw95+28GyRthMQbFTMhhAFRzUolYTnv3ym+SJrgDNhCNSBsbg45yXfghkOmANzHwnCQO8yc3NADNQlm6hcgUEUrXyzxdRslQSMq8cjFVuzFL4qCrpdjHGKQNrG5dAbBysUyV6jrQb1mrPkERNT8mCMy5c4SJKDJzqlbR23TYR224FOLgdqvfFgZHQdmltPVBZToh7nl943TH7oqFh6JGF6WqUUwnUOIf2ijSvdl1tsVMUEkWUpahjV/kyhkf8guV/nwDH4Rji7Xc7QZlBnVxeMxzJ5+MLkssDYHlQ54bM4DzF/Blvgzn1JEARdGmA2Rk5p91MSJdSWmYVkkaxbc0w3FDq/fWtTZB8/o7rXcFNjrDa3EdCJMTfuHTguBQrh+UBqCihNnWw/KgUJpMiYLbIeMHc+5HtL0CVPeLBodJV4IqJnUTmFQAA50jUJqiyEquwYxhtMrp+sWPnDSEJnXvKZfJ9SsSOLqjwAPkueUWfK37bjnzvbUoyf4jqAqNNgSoXhauqIMVs9sV5hqoUqGRkAKgwcu/08yv8/dkr6vzvbj9YR8o6wKmyAcUCRuFtj/UqCzwBVU8Hu72YgLEJQXvSBHDvSYB2xIqO7oe+CJ+QW7fcGmK4zjvYF/CjbbpjkEKWK+5T/HyXxCoFzl3xGwCVdScQ3OBxOHWldd0ut33+cux6xhWyLwpgTNybNIGhQV4B58kUb+Wg4GbCSMJmUyFabEqOaKqLX2CCskoKsJqcYgz1fTwF2Cel2ori019KcYHSq7kdYeSHrFuXsNs8BWWJO9caqvTrGBrXmxDNaCZeLDhDEcO4YrsvBpJlWI0wTF4IFcB05Nr3M3PkWtZyPEldaPHJOCshn2xEMlrD0CPIWmjk+mFIF23o8nLqVyaCXh41EzdneUVK1Wt8kojqr6oEHwyGQKJBJ22RdcEO6uTRWcnRSVuA3FkQ+WGr7vqFMaDBGHZTH1Rap2hXzsoyKvz6a5wIyDX0UD4/m5CoUV1BgFMN7uVQg0QK9UPX1dTrgWgYCB8Rq6xipeJJgCQBLQ7Q/4EIN6rpHMVJXagyBxhIlgrBHpUFlWN4z3fbyWBzDU4ofLZ6bGEyd+1qgq0RxEMK00mQeDsowwLVChZ4pAisgZ//9zc1is5f+Pjh49nYa/vZL78JeHQO1kD/rhLp/jFML0WydwS1PAL35KZH4xIUz0qb6CYU5an70uRZ3RWlqO7S6Hbk2vZdLgWwqnDoYJh2NdIlWNe64tumWSHkikJwxdBZg6xmsbtCTKRXiokmSHmxBolUzv5cAM4zXoX1hQwjWa5Q9RJU0xnSQQ5aXK63FZMmRC5ZqbdLnY5Ym0ziUQDxQGfy22s+ofk+Mb4NAihnb+utgwERd3krXodnQ1gL1hqkLebPeBt42ybYTAtBOj0VYdoENKqgjLc5PITvSYRpV8Oz/lik65FhZnvQWsnna2wD08LagGdtKpdnvt9ix84boMZG7rXrgWkrC9tLaqFAlSHtdRuk1wp3gochWjy7fjEpFloV0/oOVo9nEwXby2A6iXQf5womFWEJgIDdbEqoOiR4diyCGDIMnSmoTIgXVbk5e0UFKLfiKAWQqe9NMdHruwk4EiK6exFbK+YQ7nr1+xMHK8D0dN2VCrHxCxHfDo3ftuAQX6gXQZHHANFsNED+VlWCX4JAxpEkXvgYze2TPBbNjjwnwpCivQokDnmSQrvOSo+hoQEt5233XR+uLcLi+6pfyzzmi9cmP6Dd7183g80S2I6z482U5CuaBAPC3co1QY+FTFqBaQ+AZ8P59XUFT4akGtWUL5JL93S5pQuayYXs1c7218LZl0ky4OdEIe6OdJ8JAdLJ3UlrkVZUg+DUOYd4XJ1KFwqNTU2eOQFVjf1dDuOxnMsBrJsNKdeOlaU4dLzQSicY4nre7Ug6K+p1P+pWBUDKAtAifi1KEfcuDeQzPmU7cNc9YLhropS6mtqyuZ7pUhkh5xqdaQweDoWw8QSmvzZCLateT+Va5mZ+aUyz0wcAsWyD2YbXhVkrvls8XATOScXjWa2B0RjZXQtyXntSQ6pmOyGXUcNSPgcj88Lke5LB9NLwPeKEkAysiHGBIBQw9uFfr9poY7W4+eabMT09DQC45ZZb1n37LcGyRgy35UiTxKlBBZgwfMEGddHDPUYWeM5v3CRK51KUpnf+z0NTMz3nZR9yRQ/CFz51MZ798psweHQfVZfQeSBBsliG90seWAIAUGajpMndfD3BkYoXqFeg+EJUYJuzTBa+ohSyoDKiRPX+ogcIP2cl2I45CwPK3NB5T0747SRaPF87KUgr0LCZPFOc7E0O4XQelA2LDa9wVlZaJRGBvFidl2UAnFUZEShRcpO3cKoH2abNE1AvA42pwcbHnqns99NY8Ww1LO3C3pOUue5uyVLnUW3rhdF1D3FRukF4Wa2YDZ+dUx8vD2Sh7/WAfg5M9UAP7pO5PKsELy1D7cthTtmCciaFzRXUVAJlpJgrhTcD8u3h/vM5gGLzQNftBeddJ+cUkgR6RbvpJ7Cd6VCgsZmCyRX02CJ7YAgMS7BWMJkksMlI7IqI3XYqi13PuAK3fumqNd97rVCjWvmuKvn+2Vyh6sn3V62lsHwYYs/ej2Fu86setveLk7ULzrsuJD5HcwbOwx133P7OMLfDz7hAbP3i1FNiISKF+aAS1wSTEUwuRXiTSnHRJgBryIVt5fr0yagnFFgRiFhUs5rkBe76l86XuoAZ1gffrcFA6BTw9wwr76VKA1UqmLy23jr3330IAPB3f/bb+Nz/7+14/q+4uUia8Lxf/WCdhHaEdFCFDe/PJODWk0jKyPtWXXcPIDnO0L1gUFs2+K41K7M+TDzvwh+fI1/8ObHdBORIFVaSvNpEgZWBcsA/JoA80QMAF/781VKUTwAyEfsAR5woBYIF56lTv6maUAmt9qKAtKkU1q0mmE7dtWMTuQ+qjoIuGGqsoKpEPie3hHgy33fyeAWlFDdccu5+rgu/KuyTzYVQUWMjKjqgPp/ktu8PLVJKemLAJiqoT/31QxVDVxwU1SZTSJcM8r0j9znLumQ6CaquDtdYnByr0oqlGIRggWXYrobp6NBJCACqsCAj+60BUXuyEcJL62DDZiPVJ3U7YvmDtLZz6uSg2Rl4MQiSpD5nPrFTlaxrgKyLrkDNVQVaXALSTTCzPXCmoZYLqMG4Tj6thd63DE4TsTrp+E4cue4CWciMakrWalaE1Kl1UVnY6VxU6IaBFDCbe6Ayh1oa1xgjTes13xNE3o41+txgLXiqi/HJfajCQI8N9KBCsjgGa12rMROZ9cN5XWSAAkxHY7xJI12OCuCuyMvENUH2EGO4NUOSZu66dN95IxSayRDuCaFjFcCzXnGTdEiVUuD6+z/97UN6r+e++ENyL9ViR/bM37oJxbTGaEsfZZ/Q2ZsiW+jCdDSsBjr3jZFURgrZXs0b+4N7DAsI7oqtsvzQWK0EN7ECkRwnFyVIrdGdHYUvqDTw7ORMkvBkt0+JBnRHPlNv5YrVCgfRY76ryj/kCQxjZSkxgLCrqhYONYgYj2MKZ3/niHAGkqGR++B0LvU172Ufd417UZIPY4BODur3HIlgahwbd4+7jjJmWxcLFUmhyYuF0rSJd2MyxomEqJPL96DXBe9frEUvET7j5QFUJ4ed7QF5KveyXIO39EFlV4o1I6fohyuwFQzTPXAquxamjfFsKPApckRpBttNAO43ipy6tMh/stDAs/nAQg9rYYd0HPC6Y9pyKkXqrkGKO/Eepni48SzQHO7OWQKbJY1B5Md73HH7OzH3lMsOiGk5WOJp1xGgYHJnKaoQMK1JKVyTnKC2hh25+74vJZCrW/jtayUiGFRglQVBie9Eliet0bHtxRcRaeGL8SaX33/h334QTMDn/vvb8dm/eAfO+9cfaHSJv3DX++XYPQ5VgE00ylQ5MUUtBtFDIzULS6Kad3ORwNoV5xlUyBwSqdk4saVhwQz+dqOU6+6tnUmktqNgKQ3HKGKNBNphICpT1/laInRVeoKHGfOnvDGsISsiuucH+yx3D427ts10FvIVThXKrsfICJ+vF37psYIeWehSNwRBXpAl+BsinKps+Ds7O1lydo42S6R7upug6gqe1mMLO5OASd4rXTZQhRAgcs4pYCLpJHZF/OieTt4uy4l8mFzBnZzwY7mEXhyFffW42rsEQGvYLAn4jSor9QxASEEA3HUzEH1OkiqowmFXtzSQtx6zXA+vdx3x4V6q3TF4oVmaQG2aQW1/VgtwuapEGJJnAClZR8tS1kX3HeaFRVCawm6ahu2mUOMSamEoJL0jRghKBMip65aeJDV9LUzpetaJx9MmqjNNCh5MRFD5cwuEGWpxB1awJWMGuh2Yk6ZElDsuQaNCrjVnxVY7RAiGtb6bSCtU/QTjGYV0wCJUhOBJq4TsBYvwr42jEBF2b+PQ4qKLLlr15/WKlmBZI6oeASkhGcAVRKLaD0lBDpDHyEIWD+OG0Dobj/NfeP0Kv3wAeN6vCdjwKlsC5GbOhGf/5k0AQewbFDDYnoK2JlAlkC1UsPksWBH0sBLm2A2qpdJCL41qL0oH8v0NVvzhHXCzLgFzXTBIEvHwzFJJUscH8Eh0tgYAoKb69bDWPJeFoDKBrWe2wPJQFqGZaWe1scYlF7HvUoQzALnC1mRbsvNIZ2Lx2nT2XGHx1KpOLh34IQ8mKhkO7AtFYbFQbntZNKfFLeIBiFgL6wBduncovp0om62nfqGLk02tAJ1LEppooJPD9rIw28GDTL04rIuZe/eJ+q/Xq099kogaAgBG46BE4L37oHo5Uq0w6mQwXQ29vwSB6/kLrih5IBuFg8UF510XFEXhY9MA4LoB3EwhKXAqmA6hmNEoZhKYDKi6crFnSxb5XgM9FgUSmB0YPrKFN1YpqXGF1FjwwIHApVE97Hidw6szvZ3MZHiV33qo/c5/4fXO1kc+U5sS/mbPpSFxIVcUp44GDGPH+TcIuHH3pl3PkiT/SBWVGynmfu69DWJW7hdyc+ZEg7spbCeF6erw/WIl32PTUSinFKoOCamSyL3cdKSDBQBUKT/LTAQIYV6w65JyBAtL4dZbSFr3z1/CPgECA8nINouXvtDmBpYDkmzYRPbvOS/7ECiR15/z6x+SNSaVQrJN6uTKv49NCeiK3U+wN4NLNDRAVoo0HKnfwusAN+PD7Z+tiaVkaKFMXXwlCzfQ3h1vSsFqKhA1pQ3Xov9sgk2auxf78wfftWJFWWg11R7MFm7+hesQccm+J1Rkx2VbXtlnUikysJaisZBLCISLrNFAuqyQLlmx53LnQhlppw/zTgDAarEw8IlqhrrYEBXiPNFjUyH2vG0iVTasGV6tBsBZpBmQJ9VZ7Oc8yc6pgmIrc2P8oZayTiVLhZADPiyDT5oCunUyny4WIZFmTaDMfQ8csS4kFNz+yneA/HpobLDcku+YO15ny1FNpVCFAfdyES7EMzPcvA0QScKYO+uDsqrncRgnFCilW4RnpkTosbAIXqpgBwNQVUHvS8EnbwF3MpjNsgaqYVkXeXweHKlQ2V8bGrCuAM0JwWgNqG5QlvsOq0lFvp3pgsZuxkeegWwXGI0jQtTW67nrXEHqOnpGFfRyEcQCAEDaiDVYZRvdbpxqmE6CYnOGqkNIly3Gs1qU8Ea+a7oANCmU6yQOKKcINpdCUjJytyBXZJOdle8JeQslD2es7BNZ4Nz/44PI91dBaR3H837tg+HeJGu64OHnvOxDMiIvE2JXF0AxrTCeERJEl0DV7SLZliPbV9Zqy8oi2TuoiyCelALkegHCuaeyCgUTsdoSsoSd3aodjbGiO9sftrOZJaVA01OhI0aO3brZOs5mo5K5Jry0DCwuicWVV3TH+G+tiD9KywidLh6jEwf/9GAZFguHYiGPHYIqA2Ut1FDBdv3gahtmOYFIrkVHIjdsFV3RUQrWGsleJWpcwCnBraiy43OF6HtDJIQJkRSGPLaNj585qIIBwC4ugbJMzpsPl0uEgb4A+MF9UOMC6DoCK+mIUnuhrNXZ7nweyhyztWIFnmW5F/p10OYKJhHi2iYkop2u3GCGW09C2Zf7Tb4oeFYVcq6DEOEoYdqAZ9eZXAn5xvLympgWWB88e8Hzr5X3tCLG8u4Cn7njXTLgfFjKmj7Vgd0i9//0QbkfEPMJh2cBHBDTmk1dmF4S8ILHnqajQpdK1SHY1GFa7TBtInqGJJWidzpkqCUh7ADAzzVigtwDddbsrCAES1lPagZCxX8PE9c1nNezCgHBEmQJ573oxlBQf96vfVDWBk0wrtDq8ZUISwjsOsK8cAkupwEQuiOo9HjYWcM6EYkv3qpSN3IlskAyqECVgc0T2a5F6B4F3PslzumCETreyAr2t5kTLmYJqEpBRdq4bzUK3hzdVxqdfVExOxBTzgosUeF+bHIN03GWoYl01stxSH5tvSgCBF2ugmm1m93n8SyjJl38xxvYtVSwrMthTEfV+F4rJEMOBAsrQjUlhEuybGqLLzf7pr52o2tFCS5Ww1KG0BPVHVMWIqAZDOvz1e+Bp/L6EhwW0Mujup7ivhNhBo8n9txxMsl1YnMNNVa1bbSNPg9PahHB9nOoogLlOVS3K2u9v4d7e31rQR3nxOLWZXbiXz+bB3kG2jQDGo3Bi0vg5aEIl++9D7SwgCTP5dg6TnBsWIQNvmamyP1zx6PlXKJ0pI6fKZvE63AlOuI0rYkYwO2/ro83mrHm8ToZ1F2qSVILR9xn5W2OJWdQ4Ttq87TufHKPF5tylFMaVZegx4zBVh1EI3LdAOmQoRWvG6Zto431DmMM/vzP/xzf+MY3QER48pOfjF/+5V+GPkKs1RIsa4TJCHaKUOVeAYywMIn6w4N8uXmQgrTlgZ0KQoYRX/D8a5HsHWD58ZuD6heuKKWquBDHoqROKXTKyALpAA4RxlsSZ68E5Ps0gBxVR4XktXtfjvyBEWwqpItSAMYISb2ocLUkXYkCMg1YZ9NgrfNgL2Af3BvssoKdQZKIOnV6Sm7Gw1GdULn5J0EJ4Ia+hsIEUBdYgDpJ9Ew7UC+eXgniChkEyILnh336cJ0fRDK8i2FWJIDhZ2bQuApFJwBAJ6uVQj751NGQ4chfH8wgcmoeY5GMq/oYSpdge79pH3Fbpy/EhC4S7ZQqBN/mGsBWrwtMdUG+iDYUlR9tmgHSVObKaAItpcDefaJGUAp4YD90ZaGnU1RdQtVPgs+tL8ZOkitzM6/AnoU/PqTvA+AKhk6JrZw/rZnuALACwrQrZucqqI1UyTA54fP/+WI89W03I12WAjZZaU1nkmvzoSTK4VoyDCpL0Ng9ZgFaPHCyeCRBSQJMT8HO9gW83XV/ILsOlnzG9laHEjvPvSao5E3ulOguEfmFf/tBNxdKgLQUyaSIDCAkaV5NCThfZ4UjUlVuhNj19Csi1V10/wBccqZR9VNUPbGK88V+321hMsJ4llBOO0KF4ewHAJO7+65GKMZj1Hz/esB7k1jx5Ibfj0AsMKNMFP7hU2urv8956YdElUb+sxPyR8h7WU9sR9RZqkIg1ILi1r23XUGwILrHAPFslqBwpPo5obXeFVVZSXLlQ1fSJVM5ksqkCOuYqhiqYCSWoEbOO9uym3/hiHKnZAtKxzgJhST4YeilRl2sIlEqyrH6/Rc7AFH4yWdQ9qQAFtT4BLHBUkDZg7sW5BwwqaDMZyX3KVXBqfbk3gQF2DxSBVoGSDf2gZUrTrg1mjMCsXbkCkIFWwj7Zsdm6DgCuU4nsVNgrmfeeCGGTTSSQVWTTKZOmvSgQMf7b7tCiC+GsFKgThLIfJtQuH5UaVFOaZSO+BaFq6yhigiKGTS0MmiddZRMSTFX9XOoogvflYRSlKUI63WU8LkiNflh906JRwtL4TujPLZINDAuQPfvC1aj6OTgPIPt53IOKykOEzPY3euRICh6lWGkD4xgMw1VGNhUQ+8fCs7pZWJ3MDKSWBeua6Cqag96Xxj2w+ud4i/MgHPCACF8KuhFh7F0bfdH1gph4+5LXuXHmlD1EpR9BVUwqo6CyQDTIahS7kOqIOicUVVHVqCdDJMTbE9wp8lJGiVMPWhYdhjhegYDyZjFVsZ1STCJ2nrHzhsAC5QzSRPTehs+V8QJJG50X9FjG659mxHKLqGcIvTuBcim4fOzmtDJNbL7Bm4mlCMAE7lxeb9/9sIOotrmlqRQQK6LSi8PQ3c2eRtYZ1lF3Q4wPSWf8ySO9QKdyoBK6fYGc7C48p0rlKZB0BPPZ5mcTdKYRRh1krDz4w/XuvLqrbDSOZLFvdba0G1CpVxfivtSfB67OYtuJgIBoXAHIBRoqbLCOVUW2vuqe1VsjJ/jCDlP/Z1cMXjYH18ceSa5g58B6Ypp1OvWsyPLUh73fvVFId31ZQnVScQKqZcKge+EY3u+fE3jbS58ztW47fOXr9zvNULu0SyFVI9np/K6YOgG9cq1rGr7JdfN5fEsVXLMHs8SH11MezTxbLGth/zuziFj2sPFs7ueeaUo5TPpwiA3g8wXznc980ohxt1A72JTFrqzfPffCYln/a1hDUxbzGawuRR2Pb6z2nWt5ITxDKGcEUxLleRYIPk9FDpLgMcO+xFAcKKgBHLtOrwpOxIPoo/IYyJQUWH3N64/4HF5C2llZN00HSegiY/TiXJ8x7SIexiwHjOhrhm4NYYVYFIFRKQc4PGqYEHBtHKeyr7cq1TFwUqVPQaykO86AZwKmeE7bryoCmOLpHR41s9yGzhLpspEA+Ndnk+m7mgBmtZNWtcWUFnasOXyXUl+zkrV0yh7bk6aw7JiXUyCS1PAONMQYz0WVTJj0eU0ITe0cB3KkPej6HxSnSd4EVrZp7B+w4knkxEDFYfn24RQ9bUI0MgV4f11U9omziVy9m51XcBqDXQSJEtFbW0fEVTKzy8BZN0N3c/yeVLmZ5HpkEuo0sJ0dLAIJ8Oh44ItQFVZfxZubScAZAzMVA7NLC4rXtTg37Msa9IsIlfC55ylNem9uOxqSgzqd0X4m2fg0ai2E/Vip25HrodODhhPkBjXdSMEEo2j82AtsLhUE+txzSkmaMLxmVogEluVxnbS3pITKRrrd2nkusxTEVf5e5IntSC4wrqOsbKvUEwJ1jMpoeoBVUfEPOEzT9cX07axSvDBn9LG6vHd734Xv/iLv4if/OQneOITnwhmxre//W2cfvrp+Mu//Es87nGPO+xttgTLGqEq8cS2GcCW8MWPvQ3PeuVNUsAycBZMqO0pVLRQEWPqH78PoFnUPu9FNwJKFnXpiuCoA4YBZ9vgPbGVA+6AezxXGG8S9akqxe6knCKMNxEGpzDUOEP/rgxWAyf/k6jRiBlsSYB5KmBNAcCoksGjflheloEKIUUoyyKlnFdj6toqoN+RjpfK1AuPe69QUPFgAmjYhcEaUa1RtKhOdrVwvWg0FgYfEbkCRSCfkHo7Eu8nCaBhVwZ3PhMdlMjB5gouOQ2JOyL/WKcGKQzIGpfgcW2rkKY1SPDv4ZWuPmlXqqE4Y3KFT19MSxRYdQScOGUhACg3N4c7Kbx6l6HA3Rxkp2vloGWZdYC6wKqHVVD2rGYJNkmuXPjzV4MdwPN2M+GUW4YKbeEALY2AwQAq2QbbzZD8+D75W6+Laosk+36GgAfBX7v5bXjuiz+EdNkgXRI1ESuF2/7hvSs/48OIW794pVgN+Qe89Y+mupNpPUMRzPbZI9rvw0lGm+8JQHvCF8G6UJtIpeQAkipsU1nkrY0AubbXydf/4Y65n3uv7H/qVMa+IO/mX3AiqiVvfwRyM1V0M0kpZoBikxAXeiRFzW9d/rbwPo9//82wJWA99+vv8RmFIr3vALAJMHk65R7uE1khdf7Va28WZWEKwAJf/d36/ayurcF8+NeTrUErK0CTsywDwufNBEeyNLfDGiGRBEgSLHc8otCDqP1d545/ri5EbZQtykwPr5qr+homF6WkyVxXZwXAsTNkEEhAYh3mgcBIETq0rbtulNCt4u+PVjyTQyE6EVuW2uoA4d7KTi3vyZWqK+RK1UGwniDrPhpPTHkSSgNVR/ZfyBT3OSSu4yUFbFrvP2dRYcBfR7pOSH0XgJBBgB4TkqEclxpX9dwTLcRO2I5qekb7c12rCeW5ximnx1sS9O4qoPe5GQu+wL80lAKz+07EinoiAkZygGa247qHAFUwimkdknRWUoxIhhaqcspRlUKXRggf5QsVFnokxFM5k0KVmXTTuvVRjUvAOj/uUQGw9yxXANt6rsmgANKk7srsig8uigLc74ly0N+3KwPetx+U59BVP9ilFLMZ8nsGUJAiLRuEOTNy/RP00hggQrI0ChafammMtKhgpzqopjLogYJyVhMoSiFXPP5xw2yJ3KBan4TmeS0EcbOB4iKCKiys0uCpLFLAKjcnSD5fPZYZKFWXUHUJJgcol2uU3Pyc9UpGieWe83NvvVmcHRTwpQ9fjGe+6iawcvjGWeH62VQ2kf1IRlJw8rOf4jXMY1owRNDgu8AcIaNMjYulCM3helOGYVIl3eJE0CMh/MazCouPJcDmmPpJBlaE/j0Vuj9eqq8Jv8a7AiQVjlxhliJSJ62vf8ugRAve8KSfF7+kKbjfceRC1O0hL65xnXsu2NY+/ICzonXBFjQY1rP04s4na4FxsWI4ef1aua+Rf21lwGVRF2OAICAKVl1hH9LGefCECpViM0REsK7bz+NBcvaBev8AVJjaH94Xu2PFXiwcCgQjNXF7LEhCRLb0u/V56Mh3Oih+Y5Jdazl2r6SN3o+8itwy1HDsyOKVisLVyJVdz7zSKdZ966acs9CpyLwCz5p+Br1/DLrXdfSsgmmBNfCsu16OKqY9zvHspC209bMhrKwz3NFhzSTLMLkUjm3qOkpPEDy76xlXhA7d0O00gWmhSDqxHSlgM485KWDEqkMoZoFiVs5ruiidLN94n2DMJ159M3y3Ilkn4tEESx4HutmACWBdPq9KAYmsGNqnz+4eM3jsDHaee418H7o6dI3Ec1R8Ryl5oqZ00/W4xtM+Arnir3H3emgR8/g1xfrOkjQ6ie7+yKmS+3zF4EzBdEX8UvbIEftAWrm1qbCuC0RBORK17KqAbZMRB9ESp4QK2nWpirWViEkcEZ0m9bUYSOaoKE5KXDF8jp/XNqPxDEG4bh3rhHRlX6HsESrf7OfwLGuHYQPmhOQVheQ6SgPJWO7vgFvLNWCTeoZjEFL4dRuyDZnhA9jMdzjL+yRjn18IPiQreIA1oZhJAqkjb8jBmtbPkeJUBQtcKq3Y26UKpqtQzCbo/pSg9+6vr51BPZPLD2qvP2/XfeJdVtxcFzk2Gzp3WDsxkRLrM3LXIgpH1nhhQCrrpEIhc/E2TwkW9B1b3gYu3gfrcLqG4EM3k4t8p2nubDeNESzZ70m357gQOzEAcEJmShKx1LUWdttmqH2LjijxJyOqqXkxs8f5HptYKwRPnsn66Ykqcmu0MXW3Snwc2mFarQSzWBbSqpPKGpuosJ7Z1OUpTmyjCi/gErGQdfmpTYRcMR0nWEwkR2Tt0je9fpi2jTbWM9785jfjcY97HD7/+c9jy5YtAIAHHngAv/Ebv4E3v/nN+Mu//MvD3mZLsKwRd374/8TMzEzjsf/1Hy/Gv3rdzTIIlp0IoKqLLmSBv/+/V1cqz29/Pe685w8AAL/wb26MCl+oi0bKP+aUI0ShkKNKRtUR1QIZoOwTxjNKioWzQgRVfYNiC1zBpgdiYOonBqwJC6crTP/Eov8vw6AqDjduwKlTE7H/8u2FHPmI+mKCG7gufue2Ji/iZMnYmv1vRFTsdqoHAAJSovZS7ktLOC2PJGGNbRqAeiCXK9iFIgeR88OMmPjYWiEeSucWIM5EoUyF/I2IgKKS9Y287Q8BcMdcukR8MHSLnHZKBFWrir0Cwu+DU0VwaWThjBJTr2i1mZJiOUc+t0Rh5oso2URpSNbUCbwtpCoDYM9XrsaF57wPppNI8rw8hu2mQsokChecd10gBT9957tXfjwK0IsjKKVg+5lTjnrrFRYViC8WTndFcV1U0KUk6DwagZaHSIyF3q/BnQzlphymo/G8X/0gVMXIRzJQ8fbPXeYSjFW/Locdt31Bkuu5p76nBieGm8n6OsVu9z0+UByusm+tuP3v3oPzX+jUYkZsBFlJgTRdqkKhFkAAt3pxBFocgvs5bFdanAOkYSmGH4/hiRWxCFKwHVEw2VSSEpsrmExF91EBfCZ3iYYCqi4w3sKwudgXfOdtFzfe42duvkluJUxQ1r0+c4m/r9FE927fMUJVXcwPySN7MkOSw2IKrgAP/KvX3uwsJSHDKONtuvXEFzpDd4mSzkq49/F/C90zUfIad3GwS878GsWotymguN6WWAgxsv0GydA49ZkUlsazbpBqVJQnhWhHXILmyC49lO+6IoIqVSj2iQrTFR6NsCEyQBL1fdwXBXWd1ApJoeoE0c1bqTqSSPthw7GVp/+uaC1/D1ZnUc3Q21EATjypEe79vlAsc1QmC9CO4HJkvNXyvGJKQxca2ZJGuqCE6E7qJDNYyzlySMgqKSapok6ATEchWzRQFSMZAcnAILt/WZIpP28trDWMoICL/1ZKcRmjCjotgZ5UJ0yuAQLSZUY6MI6kI5RTkgmpisEpA+i4Y/TWa/L5MFiIXOOS6dI6cqUmN4htbdeptSj9g0o+Ksj6gmvqiuKLTQIJWQbavEmS1YVFEXtkGXJnKWeJRJhACEQzlaZW7ruOXSI3R0cRqDDQDyxBB8xiwFNdcDcTMjDgFAKpNPws1yjJMSVuCG6eNtSZAFDMpsGCjxjQI/ni2ZSEhCQhVkab3P0pk3uTJ3BVIT8fZHzIIcff3vxGAMBXb3lb4/EvfuxiPP0NNwdrMjIQazoSbPv5T67deff8X7kRn3WzLX7h39wIZVHfgwImlhsNE4fOymBJE/CvI/xmNIoZEREBkpwvnSY/mzxBlc+ALKNzfwFOFRYfnaF3T4XOXcsRmeFOmO9ucR0AMApIIIR1wLQcCXGc6raKthGLZiyLOGjyca8cBRz+zOtiBSB4Nk3AXZkhpR9YAu/dBxSldLR4jO32iQe1Tax/jNKkLt5ZC7hiCVkFHo6kUwoAel2YWanIUVE5fOvmNmi5d5pUOeEJQ1UKsF1QZaHv3RvEQNKZrmrCKrbA9eHxJ+CweE2qBBU+O9waY2GP0f35jC26ImLYP3f3d2/E/JPfHWz2vCiMSoMLf/5q+ahHBfZ8rdnNEodeGEIlSQPT2gRQkWcbT3dluSwNkv0jmYV4AEwb41kyXONZW2PRhxprYtp1jkPBs8D6YNpbv3hlKM6zIpRTkm9SxVAFZH4ZSVEUDOiRCZgW1p54eNbKNRcwT4Rp/RzLGvO5+YEZQl2g6olgqJxhmFzwyTff3sS0psvS+UBSPwgzWrwNkmUY1PjGJ4l6ZOReHrow5Pusx2KzufToHNmis2Y0jBfMfyDYUXnr1MSte9paWK6xOfm3sRys1W1E/gYBC0lnpxcayd8dVjIQW0W/7obOYqDsCRFFDsuky4JnAUiR2A3Cqnpia+TPsTIcusetdtbXuWybYkxQJgG/kq3zLzlP7t7pcZgXC3XcTCdAcnJn4xjuSc7qzKaEou9wdrSeshZ86ruRQoeSjfC+O37rjsd3tctaTGF7gMP9Uc5gtYiO5BpB6H6qpqTelC4R8v1i8Y3oNUGI6r6KNpFrLBmxPNfd/8spjWzBINs7gsoTqEq6svX9C+CyFNGAljwhzL+Bq/mQcuIIhyk0A0UBGmqgm0l9QidIBgZ6WIb7i800tGUwNNiv8W49DR1EoSucoarKERJckxRpWg+p96EIZBWQJ0KyGBlqD3KWc0UR8Cz27Zf10M9FAwCtobZsFqv3ffsBonpWrLeZU1I7Qiev39vPYAlrr5J1lMgJg4Zh/0T46207K5n1Enemhr/Jz9wV4ZLcf7XMJ4qs42TekHxfq14SSF/jHEvEEl6IFZPLfYeMEL7hGlxHTNtGG+sZd955Z4NcAYCTTjoJN9xwA84999wj2mZLsBxm/NNH6gT1mb91EwC3QAG1r+kqEYPYv/3zd2B+++ux+54/wC/8Gxle/Lf/z9sBuGFwgFsAEACJFDcI3iN/uLW2uWHNsKkVTkQLObPwBFkEixmN8UkMnDrE4Mcd5Gf1Mf2jHjZ/bR8QKShoUhlURQoNvz9lKQQAM9DrgtMEVJQyxB6IPDjLZhLqu1Wsy+JtVFxzdgD2pBnYvL4cq34Km0whf3AEfe+CsxwzoYUS3Y78XFJdRFcEeGUbW/k5Hhjmu2H8ELI0AcFXCzmAnZigIY4+B4YsylkCqvK63TOyEgNQF7kSIYLCNp1SOx5UCCBYzsWqn1Bc8qewrGqlgldEKiX/BkPs/vHvYv5J74JSClS5bqRhAT0Yhy4h1c3CsOjzX3AdyHKjw4oMgwZjUTx2U7k2yF0jrp1csQAIzhLwlmm5boYFePM0aDkTS7PxGLRQgCqDfHoK6GRBvWNzIdN2Peuqo9PWH392lbRyU5aum63CofpPrwe54iOe4/TCC2UYpB4b6OVaCeqtn7x9ThgUHFSP/lqj48pOYdczrnB2Jxrcz6CGFah0aqNMi3omVyimVJhbpUqGLv19E85KQYB/sRkwM478HdXs3lnX3wwQkNi6I8GHny1gU4Q5Bbqsi/6SsLknR2QGXDeCTzxUCZgunO2TUxL61xGcFZTbjOu0ANxx+I/QDy6lKKniehsU5QBhloJy22L3dhxtI7IVC/+sgOZySqPquMQ8JadyqwkZv80EcHNZEI43GRHSTEEXCmpsoQstRIMnuCvrul9i0p3C37wdoy7qe6NNVBj6bdJ65k08l8bblQFyPtkVipWpE8vaLs2d87RZ7JUT6c6lS5jkXHt5JYduFZvA2XS48+tz+AQgVuFDtKnrCiE5RyaVZFY8/eW6ypYZ2YIJiu1iNpFEP3EWYobFygCQ+V++YJm4AgjX60woxgJCypPMagCJkj1xHbicELIHxlDjEqafBZUwJwpVV6PqavF476pQECELJEMLPXb2dZmGYoA5kcJuZWW9IiWfr1+f/UwLQNZGn4CWpRNljARvKCDMUguiDqeyq4zgiLKEumevWIfNdlD1EmR7R0GlaXricU1j8ZImdt7R3o+7LF2B1wbRiNg5uCJzNIsjqAWJwrrurTo5rYfp+uvXJspdVyp4nttMAYaDOtUmwGgLYbRV7gtiUchIBnLNllPA1699GxYWFjD7B6uIIdYxvvz7gmmf8eqbwcQBzx7MbuCzf1EPDv/bP5efz3uR4Fnf7fIL/+ZGsAL+7r+9Hc//lRuD/Ri5e6LJpYNw+RSF8Sb5nqoxpPBoIarXChhtkdktZICpXgdLpxIGj7bo3p0iXdqEU26/vy6zBtLE/a41gLIeGu87kSoZVEyDsXyeMZngyQKl6u4wjx+jv4dr1V8rrrPbbJ6C6aeBXGACqn4Cc2oPnQc2If3R/SA//J3cte2x3QTBEn73BRzfPWVlTgqXpVjqDYbQ4ylwnsk9P09heqnrBiSY1NkJO2tDmxKyTEkh1cxA3buvvvYBwCqA4wUF9ffAF2ciL/tQ6HT7LF2KVX3Oor/B2555u7P4OB3G3/2jWzB/5sUAKSH9KiPHORoD1kIPhkJoKRISghl7/vna5v4yg/Yvg/JMbKfgiO6UYJXsA1mG7WWgVAueHYyls2m6tyamzaY6DTx74XOuxm1HC1dNYtpjgGeB9cO0t/9dPaB+x84bAEj3phpWaMw4m8S06fGPZy98ztW1Y0EngR4bkBNViNDOYdpMbFiLvmCGZMhBNW8TKb6bVPDseIsFd9x3KMK0P3vVzSL6yGobWSaCTeTm64kWZRy5UHCwdxQrSenwkE5e8s5dAAPVVIJkaFH2lXQBg8CGQyekYDY0bLzAUnAVQRIDvqhPDm9ZFgGHWytVwVBa9tWmcFhQyANVwmHJaPsAvDDGi5ysFr2Mx7NgmWXrw5M4NnHnxglYlRFOvuq4NT0TzKbHGrpwnd2+S8MTLR5bqDg/p9p2PFUBN7ITmBhnleexqMkcrvTzICuPQ2vCw2PMeC1l5S3D6hxCNuCPDWGeYrAQjnKP0AVPQNUX4g6I3kvJz7og6DG584xgQwby8x4RZgHpgpEsVdLtwADZDKqwMN00XFtghp3tQ2mpY8BKdyYr16W5SjA7uzMSHEhaSBLl1k61OAaVFbiTQnmLsFTD9HNQL3PH7vG4nzvnhEKOnAHYCWlQkytxhzjgviQ2uKyQ707x5IcnWbyzirK1Falf57sdsXkvSvDSsogp8kwIvdLjU1MLGGKCxZr4pAjBE2z4IZajfn99Z6iimjjKs7B+214WOlakW8XNt0zEytXPawSAZBwRbKlyVnaE8ayIF4lFMGQzCz2sZ4M+nJj2ERsteXXEkec5FhcXVzy+tLSELO5UP4xoCZaHEF/8o4tXPHb+C68HCBhtSfF3/+3ta77WEy4+MfXxt//P2/G8X/0gPvfffxvn/h8fDIr1su/ApokWVoO64KYATi1opKAKhWRJBjT74cVmfwZsK1E8psRS2cfsNxNxdnCFShBBDQuxUtg0C+xfdN7QvDqJwNKYzR03A8RasSIDap9yHyFB0DVx4Betbgd2KoftpKJmcsksK0KxScPmPeR5gmTfUBIf3/5YuJZIn+jRxP5BNZM6RZIwwtbPNxaciSotDKL1PuoKQYVjM3+CpbCtFGB1pwYF4zKoIqRw5FQNia6VZ+QsRLQjV5Jofx2pwppEwQUEn+ngCe+P2x9T1Gq6+64PY/6sS9z1UYLKCtXWaVA3hX5wOZwjKsXSzfRS19kjMz7ihMdOdYVcoZUzW3x45WCwnyICLQ4EOExP1ee3rMALC8BeARxqego4eVPYzo7zb8Adn1k/IgIA9nz1fWIlRSQql1il8VC3vQ7DPR9qSIcTQ41dUdBwUN+SccqvbiqDoVlmsDwkL/BjEHNPfU8o0Ija1t3jmDE5ZNx0xVKmmK4L5b5rxSu/rFNkVT2gnHIsAwM/eONv44yPfBCqICSsRDVeuaQmbsBzyYcviicjeb3YTnFNNkyEJ3hCdwhQ35PJkxEcEh+buATKHW/cCeP3wybR4y4x8qS7nyXlh1J76yufOHnVW4Og4Xh/5F+VAyZTKPvUeD8ZKlrvp3hCO5zP9fOUQSBmbKKgnTLPe20DACW+uGXrQqgPhdCa7j2zq64OhEoYOpzVxIoUICSp8wpEFrcqhEHd1crPKU7EPbnkHydFTgHobSrkbyaTF1mn8jMZUDqHq2QgHUqqkm2WfRVskkwmszZ80t7ZZ8P6nC5VSJcrJPcvu3PCSBZyIT1yLa/tKJRTHSTTKTp3k6yHIdnzBV+qkyxPsvj/rQWNKiQLFaAANc5RbO6g2JRBlwmotEj3y9AhmydIXJGFWMEmLKrEIYtKcCRDnYkZNhPLTU4UmFJQxsAIUpgOA2CdOMLPMvHJXpaJQs9be3oRASDFU2YgcXihLF3CmgXRAlUW6X1LSDTBzPZARmaqUKZhegnUuJK5LaWBWh7VNkgeg/gk1FqxnSidOMRbLYTzqmvRyMQ550SubVVIx1dSWrB2qkrllbBitVF1CcU0BZVfTK5wyq5gURdBHs740kfftuKx83dcD1jGeIvgjc/997UxLQDc+T8n8OyfvwPnvehGnPevP4DP/uUleP4v3xg6+sq+nM9sAa4TimA69T3NZnUnjxoB+QKQLVg3P4igh4TB6QboVTjldriCfz3vxts/gQjo9wAMHI6qFeMNQmPye2OMXMNAA/cGog0ATFUXYqwF97phIHXV08GqxSuyyykF08nR6WxHfteiWFMtu660rvODiWeaOJGIvH8uuNd7wgMA+S5IfzwshWjXZc5aOesZ14mYKREKuHtpaV3hZFMXKRHU/fvd90LLjV1FGJZt0zosJldUdI7iwrjW4Jzqjnnf4c22Fgr5ApA757vv/n0AwPxj3uoKQrLI8HRPClB+IHJlACrA073wHZ47+zLs+d81yUKjCsgz2NkeWBFu/9xKTLvzuVH3CxE4S0HD8UEw7b6VeHadupYnYwWmPYHwLICAZ/1g7LUwrc2T4xLPAsCuZ13VICFDcXtCTMfKdwvrBqaVbhMn9Inx7DSDc2et6jDtmb/3IagxIVEkA+6HEZ51uDPM8IjxI+Cs81zBPVfOtYCj2Rn1EHRWQnSEgn1C4MrXKRgwcM4MTZKWHYyjioWLSAmm460AHSbzFmZOzKQLDgJWWzbFHo1ubwAi8GHpbO5LF7K34dQjRtlPkYzczL1EMJpNI5xrIpzt8KZJAXQJApxE7KMKC+VmNUmupd19joPYtGFh7Oz9OFFiY5w6oY3vnnb3ZbGuRejSsbo+cZ548d0AVNWYHKjzh5BzmPr5NkGwyAUQ7OKY3LWg6uuqmjaABtRAQY8INJb3qzoE3VNIBhZkSGzlEnJCCUZnn0G6TNBjK5j27oWA+5J9mRDZlYXupq5LS6OaSpH0UiT3MLA8kO6QeJ5uEK66Y7EsBEwFWVPKSrqOiUB5KnjPJCDDUEvOSsxamSHpBUmJCsQUVdJpT0UVOp9r8ZKr5xTRDGF25JnHqR5PxjN2/L77rhWtnZWnqrte/XqYpU7sC6n1DIYiIujkdd0nS52wx9mh+vDb8LU6oHadARx+1s11m0yw0ee0Ps9ipamCNaOqXEIJgNiiyuV7UniiEGKxbFNgvFlswQCXFyXsBLr1tXksMG0bbRxq/NIv/RJe85rX4I/+6I/w8z//8wCAf/zHf8TrXvc6/PIv//IRbbMlWNY7CEF58wv/9oMAgGx/ic/c8a41X/LcF38oFJ+UkbXxvF/8ALRTNFQdScqD530iSXl4v4RBFQHGFeet8812yWnvJ6KMIaPBOkMyBIan9Zz/LSHbVyF9cChAoJ+Dky5o85Rj0I1wEmUlxQlALLx0tIiE/6MCKFAvUkCdhPpQWpJC7fyijUV+zyB4mVNlke+V4X7DbRnopAz53hJ6uYReGgGVgZ2RhFT5gfBAvdi5ItVqs0fCvmkl1mCqEqLJkRbSMho/FwEcGWe34FXWSjtygZ2q1XE4SLQkBVkCvTSqB9w7X30BknJ+4mKi96H1RQKyFlQowKTyGZQldn//phWHs/s7Hwg/X/gcR4C4wcf84D7sefCjuOD51wbS5Pwd14MV4dOOXPHzV5AnopI7QBLnrQt2PfNKBFXd8hDIKgcWUqDbAfdICmk+gUgSmXOj60HRRyN8Qso6ev8jCO9Pyt7CZgPEZALvlZtUidKFjFqp4lwjzt9x/QHvS8cidj39CrET8glKKm3KaiSzO/wAb9vJYDM3CLJHQdnlEzSTIcw8MW7otE0BTlkSA0M44w8+CKoIakxQ4zoRja9MkyGASd+x4VVgeizFPm9LBkgC4m0JyADKvUC6KiIbSAc8FQgWch/2CrXgi0xNUOq7aGLfZDkwh/mj+2v8Oq8ajBxR3B/kX8NizCDsS9V1pIvvfvGqpQkiyHcHUeXEe7426AttnhPr6MguBuFExx1DsRe39RYKiXhxc4JgY+DtuELHzFjUl4FAIbiE3J9zl4wbR5SRFAQo+jxhOVxDPjFVECUjK6qvo6Q+bmmFB6qeS24M1YktE5IRMNqkw/uYXNbmfG+F/MGx+1xJLFDitVQBamkMtThCdfIMqq5sQ5fiaW16GZLBeJU1NirY+L85ZT4Zt2PO1gpW5nT5+QRhJgGRWLuNK1GgKYVsLwW1ovKDpks5SWrJyjrqO0xJiZdzLhcKFaau8JhorfakBRE4zcT+x9i6U0W5QnZ8jNaCtYgZyFlTQilwnruiTwLK4mSSZIA1IM/1w1O9vWdV1XMlfLeutzLzVp5xwuyK+PXMFR3W78lxcX6ejidRfQJsOkDZdwWVVPCbzDCpi0SspKvuS2/8LRzz8FYyXGPadKlas5h87r/7UDhm301GVgrQKpEuCuMxrRKbOhM8vF2izkCyJPc4PQbSJchMqBKoeiIe6txLoLs0oDRGj5FODJsqpIsF9P6hYC1HoNmpHOh3XBe0K4A5i9tgwzrptQ44UUvUuRIH25qIi4QyvnMpf6Bw30ME69fOfRrjk3IMTk4x3LoZnQcNuj/YC4zGsLN9KfyMarxBvhunrMRKzxd1fCe3idStRIA1oOWRkASuE87bfAjpLl3ZxByU3qzFto63dJERSWcY2fr6D0UuKRJxqoXcjcmVxvWiVnRisytWSVcf1wRRmqyKZwFg949uCT/Pne2IkcoASYLiZ05GsneEW798FQA3LFwp7Pna1c3XaAL3hKhVg9W7Pm7/e4eBn3O1KOeZ624iQO5TiW5iWmsfNjwLTGDaI8SzAKSTZwPjWeChYdqjRXI9lNj19CukqAvAz2KLbTWDnZ+zmiz7CuWUdAx7PFL2pHDJSU2MmAywucUPX/UOPPY/fgBUKpzxBx+EMgpkhPxIBmhgGum4RXDFICsFUiEcZFaKOBQ44lUBlcNtvvvCR+h+tnJ/k2KqkDqwjnBJCNaq2rrTzfMTu9ZaFe+JaF+o92uOKgR4hjm1ANTYuroH1d3Xbvt+e1VX5lX6uRAmg+tO8eyO2Fh50sZ3lZPx9liRjSUBXErHH2sGDwUDsVLgisK+rxYhj/EWYEqsYcueCvde3wkSz/LVjtCwrgtItuUwuMfjtv5cTacuZAvWcM83dR0IQDgPHn7HFmIyfwUwPQvuiOUqxjWxxxDhUNklVLmWWSuuuThbtOjeXyK7byDX97AMNRM5ARZYWIJ6UNZKfdJm8OYeyJjQ4SJ4zNRdkkAD+wXiQKOu7TC7NVCIECpENEP+cT9rd8wAKhFMKBHvKYVAzJNxhL23YK9MY11HmgrhkTjBpp/NgkK4LE+6JM5iP01EeEvWzeszIiZydSd30buLVYTGGI3rdTzRYldbunPia0cet/hOcE+uMIv4wJ+XJHHd4BrI3ZpdWXetZ2FerydYbJ408jCZJR3lTgWgXUtx6KSyHsOKmw5rDgI/xQQYEcIoP4NlI2HaNtqYiN/93d/FRRddhHPOOQepc1eoqgq//Mu/jN/5nd85om0S80NAaydgLCwsYHZ2Fvv3718xg+Vw47x//QHc+ZeXHPA5P3/RTSHx0a5IBAjgMB1nfTNFKPvyfL+geZBV9YFy2grBAke2GEK6SEiWRPWXLnuLE2A8I4WifJ9Lfkn+3rtrhPSeRVEQMIO3zGB02gySQYVkYRxIhdD66tWbfvGrKimkADWb7hO/uDXRLxA+2MJumQZnCfQDS43ki/MEtpOh3JyjnJIBy1QB/Z8MoReG4I4oWdXiuCZ2fII8OQvFvVf9c/S3bgdmtgfbTeoh89qBQsMw/RRVVxYi5QduVtIdoAojXSKAdPP48+LV9/69AOleSfziCilsRao/NZaOFd/N4okeNa6ERBrLgLY48TyUmHvqe8Bao5rNoUdSUFutO2XXM690n58UIPZ8pU5Wdz3jivDzZEv+/BMuBRaXmmDEqTI41TWIcbNg/Dna89X3HdZxHG7MnX2ZI38G4OXBwV8wEdTJRVW6vHzIPtVtHFnMnX2ZFGqUch0D8v31w/aosvXQ3srAzPZgplIMt2YYbVENmyebShdGOQ3YvL73/b+/fTEA4IyP3ihWikONZFkhXQLUGNCu/hLV/sMDvkOEWLolVCWqOrFJaiZ2NpFtqZJDgher63w3TLAJg7PeyhAsC/zgaN/h4Ae3e4LFd5P4ZBFwibSpO3BCAub23Wb1tn1i5bfjf1al/LPa2Zl5goXkHHnLAf8+4JrooXJlcpcMgXQgVl967JIdBoKXfKzopPrYausGKUh4Ek0s2ur9kn1mUVJ6Isd3m7h986RMUMa7pCB0t7hz64kaKUg4qyRFKLsuwXSe1UFFmktiW3UB27GOqCPpYCnkGkgGcp2AJaHnBMgWGLPfXYZaGCEMLfZiMVsn5TAWdirH6NQpmJTc2iOfjR5ZdO5aqrtYfBE0VtpPBHel45MThXJzRxR+45pMp8LUZATcZ+T2L6hYXTHRq4zFg9y6DhVXjCYF7uaw07mznSxAfrhoUdbF4VwSVu6ksM66wds5qEEBGhaSWHrCxHW4+Oc0LIXc38tNHXCqnKe/kWtheQwaO4GIFw94O1HfseKxgEuQvc2Svx81Pht3X7Kpdt8/T/5wwA6mk4QZLKxd90BKKKYVRidRTV4maBRWlJHvn3ENqnY0wveufvcR49H1xLOAECzezna1ePbLb5LrqoRYqThiyauTpQtLYTytUPbd/XRQFw6rvlzf6aKQtcbds5Tvyivl/psM64LfeJaQ72eky3IDSAYW+f1D6cZYGtQ4dGYa48duRuIImDVFJL47wrhuqomZPF79CaXleo+H3gOw2zejms6RLBWuA9kEfMpZAjOVo5jNMN4smHbTtx2e1Rqca9DY1ESQFwoZIwRLVTXFQ6t1b2cZ0O/CdjJw7gopiYbJZXi4qhjFTIqqrwPxrCqZuaCHBsk9++XYFWFFJ3osWCJnqethdUwyeGGL61CkQLJ4JYKVOSdKY/f3Prjm9bRWzJ91CexUVwpqiVoTS8497fJwnwIQulsOiGef+M46f4jV91rXmBZ42PEs4DDt/sUjwrMAZJZVi2cflph7qnMGoFo0KIIhtdKhINGw/RzVVIbR1gzDk3Swq5K5boJnTUdydlbA96L5gQ1Mu6SQLgN6VNtqqSrGR/KYHnPAfHrMIt6gJlkRuhYKDlZcvntFtlXP1gL8e7l81wlTdMlhDfD1DQ55MoJinixgc1W/h9sXVQj5I0SAw9rOMl2sc31HjqwHuhASwKZA1UHoVLG5EBfs1vJ0IOfWpILjyNTEhp9BQq47W7m1R48Y6VD2SZdckyue5EG0jw7PAo4McvNKPKFi8giHOjLFk9V6WJMijfmMrgtFOvXlMVUhdCT5PEg5LK4KuM+ufg8/xD7gD7icpCP/ik1iOaeGGmpESIYU8oJ0CUgGsvYqI8IIAOg+aDH1vQWoRemAFiI8srMCBH9lmWDDmU4QIgjJp6AHpdhU+g7NQHBHPwN1nUEpqTM4gQz38tDdwURBkBrWxUnBrbFN61e/lsdrLCCv6XbA/Z7MKFEAjSo3H9jUZEe3G2zhbU/IFCrFFUUNS/me+2Px66rvTnVCocmwU7kQRuMyCJrEwaWIusIjcsd3rARxkAp2toGkcQII+dmRkLkO30NPBPrvJLl6kE1UjWUzsQ2uOkA5RVh6tD9X7rtgCDZjcYdYRhA7AoAdPjRM28bKuOOOOzD3716Cx71xYwhmv/s7V+Oze/4K55xzzrHelcOO73znO/jmN78J/v+z9+fhllzlfSj8e9daVbWHM/QgqSUxCiM5hnCxwmAmowkN7Y/c5NrX5IvDYzu513FMvuuAjMFADJIMQgIkkcfXdh7utU0S3zhPbmxntARitIE4xNgmMY6Fwcxo7O4z7Kmq1lrv98f7rlW1T59utaRuqWWf9TzQR+fsXbt27dpV7/v+JmY85znPwbOf/exHva0nlYLlW9/6Ft785jfjzjvvxHw+xyWXXIJf/uVfxgte8AIAADPjxhtvxAc+8AEcO3YM3/M934Nf+IVfwHOf+9wnZH8fDlx5xfe/D851hUoOH7MEOLFQaMdyI7a13Oz7di+pUKBAMA3BNoBpSIqrGgAL82VxkNTGhMEuYvwNg2orws0jyDPaVYvN7xhiZeBg2nUUD0zQnL+KxUGHSi/MobIIAwnd8wPC6IEW1X0T9fRnUF9Fkuw8rJVmz9nuZtX3jlSf9Tgo0K6VGMwa0JZaWkW5qJvAKEOA2y7QrhVYHHSYXTCAWy8BAtzUwyw8OHu9aEMXSbZPcZmFmFbypFRGgWnE/5cLaXANe4RRiTh28CtO2C6ec8gcGcqgVrxgHRQYdksCxhK4ws4sN5dpmNgvUBkqMRZgJ4U/SyAZIxYWkd1jksUn5oLblmHcR37v7flvh5/yfwDDAe780ntFIrs9A5xDXBkK8woKnkVIc0zqdx1EuXLnPbfgzi/e2m3vouvlxj9fALFSNpTtbu5aWDfnjR/1+znVddcX3iXN8nAgn8Fs/oiez22Lu+79hTO0d0+OdeVV4pGdBoyn09Ltuue9rfsOGv0ehABY/Q57aUDjsOgaUxeAVlicpg6oNjxADl6H4H7Q2SiwAxAJX37zG5Ze96s/Jow/4wl2oc2L6RqWpOYwHgKEJvuokBobUpCbYAZpuM/ZYqoDLSgz0LptKnM45ZjoYDXL9xOrXZlAdgHNFek1Wul1qBvQppUZgdQDWGLXVLPaCSRwpm8hkOXc3O1XAldSs82945AIWGnbMCKiTA0eRR2cVtL4JjsJBkA9YCUx86JBDlTssscEjApqq2UVAIkOwqpqEjGh++xYh96s788wIxiS/Su7zyIpghJYlI8xSeOb3xe69862a2bFXkBApOhN3l6sGHZOoO3uM6Yo6pPIhHaFsP3MEVa+TvmekZdBZ7UJwK9Wkr0WuuGHCTKoDitVp2LpAys7Wfg6iKXaAzaCi0H2vDeLJmc1kIF6MVuYeQNT18BcPeB8EOb2oMo5KckaQ2yJnFh5Qe5/PHAIw0IICI0BvDaAyf85WXRZA9qewc4bGV4SSZOe2IlqbxAHnX1oDgZOAMjAgdqAMC4l56IyCBVhdF8D00rzGUeVzC4oedqh88Pu24KlL48qSBOIcven/zFe9cp37VAFaMaK1iqZIWjEStTW0PBPi6BBtvJZdt9Dv8KgVrzNo2V88c3X46/ccEc+9//wp/4h1m86e/yqTwauvOL73we7s56NYvEHI5Yv7VhyBWIplmmppg1lb4hk5fqNNg3/dECow7l2TJgfFDuxdl1q2qfdHVFstTC1hx+XmD59jGFpQWGfEHdmc4QDY7RjC9M4mNIhjCvE0qA+WKI60qC8f1t2IERgMu2IRDGCW7UWM0a81pPaKakd0vfPOcSqQLteSL7CXCxb098JgN1mVG2EWxRo1gtsPnuIaqOEaVhCf7XWSkNIADKMXZQy1JkvwByAAFHZAp0VamLI+gAzqxFRAcoothOSmraynUWtvodkZUeFQfOUfTCe4R7cRrbwIsqKlSX7GyAPb/Lx6Nu6EAGGwdABjxHVF5W8ZOX1iBezgMFEuLMHbBx++uvle1wVuPN/vFts3rYFyOFxlclGlOwBe/UsIDXjnffcsvRSh5/1RrlmxN419gmoZ9P+Hb74TY+qngXwqMCsv0grZb6kdbrVLks1bSJOgNVOWWyIWBnlbEkm973vjq0DqmOiaGlWKGfEyfCbwSXjz3/yp4573a/+2E/jGb+sNa1yJLLSV+tR2+iAfaBEGKIMsqTZg2TCUa53AamFJNuwy1UBlBDQolNAI9Vs1ClCWLZpPOAWEWYSOlstQOwLi450SF7rHIMlRXZ0ovxIZKacp5fuMdZkQkMo0Cl9tLZOmYahQGbUh0pe0w/kX0DvywY5g0yy9AD2qT4m+AqwhgBEKa1iV9em9yFyD6n/MyCldWUolWCl5AHb9Op6JQy5eaqluvycqGC20ToUkPeXlNW27dXsvRIwHzO9J5uGQb0MwVh0dbutgeqoWcrcCAMGRYKZ9uxvVXXrFrLNdkSYP3UFw68DZmNb74vphs5CRiACrw6xuHBV7o0+ClmnjbDeSw26OgZtbCETGdJ9ZCfIkn6X6siyBFqdO1irao7Y2XY1DdA2GfBhjhlgEacKvX8mQD2RapKFbFEI2W8galcyvqtnkxI6BoAc0HqYTZ/t82mh9/9ENLYuEwelTyF1KpF7UgZjnRGL4NIg2gGK7VZyV4O4OaAohHShdQlY6/D5ArC+IySp+jIOSlGuq1L37s/8Y1xx7a0gr6CKle9pykgyTZD6meWcliwm+X6bgQAyvqL89zBgYBSAxsAsDNgwvvQmAYG/8+fuyD3X2VbT7q291V8XX3wxLr744tOyrScNwHLs2DG8/OUvxxVXXIE777wT5513Hr785S9j3759+THvec97cPvtt+ODH/wgLrnkErzzne/E1VdfjXvuuQerq6tP3M7vsi4//B7JoW4pI+uJzSFFVcdsSOyB7OmPbhjoFoDxBNPIz4OjjMFR8RmbHnJYnAP4py9wzoFtOBtx34Pr4G8OUMwi3MSDQoRtI9zCYnHQYX7Q4IA2X2tfngIRiAOb5ax+KL6mcy4QqjWUGw3c5kLCYVsvMkdAmtK6AaYz0MpYMkNS0DxRZjXEA6tYnFvJ8GHcGxhpk0hRClMzb2HqAqYdol21aNYlewFcYO1rFtWDMx0ixY71t5s4i4xsOwXQVYXc4EKAmXmE9SH8egUQwa84tCOTixU2BLI6OGD1hE0gl2UJH268SDIDZFjmTLYJ6QpTyk1oHtBkmWpibcjjins3wfc/+JjOtTv/5OYT/3Ena6JpgfkCJoFSaqORmSJBpa6ay3P4kjcvASy72T1c97yeWkY/k8dLxn/nPbeIwmY0BBkjzL9TFO0teZn+JV0JUDkTeTmS37NjaFFoUaisPi6dKr+02E4stl7uQblFoGjRjqVAjFHUF9IYnODFo3RpAsTqLqSZU2q2jP6sIAtKyPWw6IEMgboBIAPJQkzk8fLc1NjBANFT/l3cuf2EEaefWQeNkNdN7DzuAx5AZrOlxjRZdOVMEW3clnJeGDKgS8cnbTMiqySjgh6p2e5bhQG6b9zbRi60xcfZeKgySENJjdgKkO+2kY5z+p8ExlM+XoA2vFbubxQIsOm/WRq80JETJLxSBtnRdcz3HPLaA41ybo3uQyjlc6M5C9ilDMm+l3AYKIjSYw+aWcYW4MdyME2NrLTJxyadYwzUawbxWSOsfo3gjs3ye02AfFgfol0tESuDYrtHEYX8ndjIoHRQiNIjn9fphXonfgBABrw6RBhXCGOXs3H8arkEDsTKwY8cnCWYWYPM6ktNXN4JOi5HrG8N5NcGiKUBBWV5OwtqWe4jKX/NkDSIaRgVojT+ANBKs5itd7QR5cx6FFY6hQAm+TDsrBXrDrVgSIz9qKxDjoVsP9gu5D4q05K0JnBWXocIYegQKwtEAQ+KgZOm03N37+4Pm7UxNo3X1+wGQrEQq9d87gUgqvLpq/9oGbT40xs6QHhrawtPlmXruFzPErJyJ4f72mQzJ/YswqrVYZNFl4PVyLVueESsR6iN4MJgcmGJxblA/bQG6+dMsOYCHnhwDW7KsJMatPAoFx62rtCuFpifV2BwbIjh1zZBbcDKPUfBziAO5XvQji3mByzYVIilFXuxo1OpV1svQ2zvMzuUmwbcNEI6GQ6R80PaFhwC6MA+LM4TxXWx5WCmBPjuHAbkvmcWjeQC1QHNygjzgxbNGoFigdVvBAzvX8j9rW6FLVs3Ulu3rYA9qYYpqFPUAJJHEiGKsbqGYQYPS4RxBXaEdqVAu2KzrU5SFuVshlKU28EC8YI1AZ3qVrYfogQK9wEVfV9Z5QUskYqyTZiqXdhaxKFcfx7LuvNL7939D6lOzbaJCoJ4D5rLuUkK7B5Xz0LUKzsBlt1AiaxOeJzrWQDyfh5FPbu3us/pTFmJ7axp2Ri5L8wbubeoraTklul9M/WFOlA2rdS0YItmTfJO/AgIw5N/ztSYrGImVfD267U8KNV8OBRAQgNCQTBam1IEGIyQ7lcAYmVyPkuXBUigBIyn16CuHkwATChV0e0J7aqFXVBWMyMy3KTNfXKaf1DNiJW8d2iQfSxMV7+hA4CSXZFtpG6DJXnr6RKgAsOoKnEYub+kujyTiJQgs3TMYlf3kReAIajtkR0YIbW2STHdfT4JGAmVWpW5rq6PStIB5Pjk52iN6xbd72Mh2Xeh6vJ4kgo+AznU/ZwVSwGZuCW5hFqv9XqC9HO0EKKW1veDB5FJWc0aIECczqACSx/SItfysdSab2CwuHCM0TGtWZIqhAi8MkBY3YdYWiGfTFqp4fokAs/gUQna0nvDbte1/u9iFJChcOBBId81DOWe40Mm/vCgUEeEhYArSaGSSQB6LiYwJq0EiJDYTPr1SmzRGlWmMisRSO/BmgeTrEMpMDhGneWY/Br5GtDLMgEAuzDo1KAMBKlprB6jWDrE0sHUnN1SiEjqAgXc08yCvQcVatdeluAqnXCUv1OJEENGFelgJW8zkhWwUVca+X5C7/Xpf8h20mLxxqAy4Ct/93hi+T0/++SsaZ9062wpBc6W/XgEi5nxb/7Nv8HHP/5xPPDAA4g7AN3f/M3ffMTbfNJYhP3Mz/wMPv3pT+N3f/d3d/07M+PCCy/E61//erz5zW8GANR1jUOHDuHWW2/Fj//4j5/S6zwaS4WrLpcB9kc/8chR2SuuleF0krrCJna0yTLTzPYoKEtLQyUDJLFg6QLgTCvSVT8w2LzIYPr0CHveHMYwfGvBD1VY+arByrcjimmEXUQJbs/2Xtw1RUAGArJdgQ4fTN0Ciwb+/H2YXzBAsR3gJm0OaXebC5F7piBLQNmv4m8ezlnF9jNHiI7g5t2J7GYRgwdmWQ7JvaEOMSMOHNr1CvU+h3ZMqPeJfVp1DBjfF7D6pS2xZEi2DRls0deg7qaZ/DSFSSRWIH7/AIuDJULyb9XBnOQqQG+w3LOW0Z+9qG2q+6fCpDDIDIzERABR/izZppBAZTYlyxVtTvv2XI/Huu75PysKAe+X9jHboswXQNOC61pu4uPkWacDlRSIag3u/LP3ZKbYrh7LO4JIH8913fN/FtlzFVI40GQhAcdAZquk97G3Tn1liznm42w3dlvZikOZRFwWOaAXgNjwlNKMpuZK8iEkXFLCe42ywqQJ8QPC4iBhfh7D7wswAw8OBl/9kTfn173o52+DXYjqL4HXSfUCICswEpgSSyCWEp4OyxIgOhXpc39IT9rgkF4nEqiRGH2sIEgOmDcKYOhrioIDy02kqigoqOXUXF5P7AV6TSOAHDRP3XMBZJuD5I+bwKHUZAHI9ldGbRJCCbQrXSNIcVlNQ0FBI32tZMGQmtNQSlPKlnMuiW26fZFmDbk57FuXAV2DmECfDOqo8sa06Tjr/psOzHAzuSem95YHiDu2lbaflEo5dyWISiYNxIVJ2h3zBKSZRskPPaULU2e1kPyxsxd2YuO38nrVRsTql8Vesj5noE0Nw69YLPZZuDmj2vRLNl5gyWBJ+TRgRnVkAbMxFbBCH5Mfb013zzMGzVP3YXao1GNJebCQbIKi1h/ldgQIGN63QMqQkPeXTi4s7VM6/9Lf5ocGKDc9TBtgFkHqBR8zQJpXsh8rXb4P5/eZhrARSJaB/dfM90wgHwtqQx72xmGVh1d+pUAoZUj08Q9114L+uvoV78pkhw//3ttx5dW35CGxgCndsU15NaxEg2yVqsciOiMDIiu1nB8RPvvB63d93ZOtx2rx9Wief7J798OtE9WzOceqV9MSJyYvCeDoxP6rmHUDK9sw7EKUve2Kw+ZFFtsXRZhz6wxW41iJp3yMUUzVEq4O+fMyrVpo7AAE+jUtG7NUzy4ODVButnDb8n1KGQm0OQFvbnd1JSA2osaAD+zD1nMPoF2hPByjyCgnEW4SpMaufadkTsNXQ5gfqoQsBGB6vviZDx4C1r4eMXygRvHAtlidNQ042e8mRUxZLCuv0lCoKOR+6gz8+gDN/hKhlNfoW0LaBWfrwbwi5+s4RcbgG5tdWG9SszgLv28kj1dgRmyEe/vWq48TY/bxXEsKbB87q5qkOmr9ievZ9LOeK3d+6b0n/F6cbfUsgL2a9jStq1/+TgCiYDyVdfi73tLZC2pNy6XL7gixdFlBlu7hpolynQLEsaAgxMrAD8Qtwg8ImxczwloABhGYWHz1dcug/Hf+3B3iWhF79SuJfWmyjE2B6VFrs7TS44sJUEy455SRMlo0Q7B3fxd1h1xT0/Wjn12XlBh98ktnNwRRLTQRJs0eVKkeK4swsBo8rzZgFrkuYdfVtcnJw7bd6wcNio+lvPekygi995z3MSCHvCd1dbKkJAhJKIEQbFXpkgiVPdAq1Xi5pkVXw2dljxIuc2A9df/mmrftPqtEwgKJXZite8/Z8TmkuUS2SNaaR+xuOefr+IGRY+kk/yxUyFmVpPcs2wCDY5x7AUDs1lJuT7+WBuS1k70cAAyOeAy+vgG/X66n5CPCSoHFwVKC77e9qCKiADXJhp2dEQCIhHBE2zMhewI7wJDefVxz9PjAGtp9Uj8nyzZiFuUI5LibuW6raTtST1pLtTJJvQx0138ihIMr8KMCxeaiyx9MRIfCdXlvOsNJCuglxafVvF0iUIgdSJN2I1nw9/epd89NwIwQlFlmbSR5iR/+zz+Lnevwc2QemXLS7vrv78KrLrs5W32lz9EEXtrPpZXqAq3hQiXP9QOxbf79X378a9q9dfzKFmGvO4sswj705LII+8mf/El84AMfwBVXXIFDhw4JeNlbv/qrv/qIt/mkUbD8+3//73HttdfiB3/wB/HJT34ST3nKU/C6170OP/ZjPwYA+MpXvoL77rsP11xzTX5OVVW47LLL8JnPfOaEAEtd16hTIYpHia4qm/NUQqNfddnNoDZKU1IYkEkD/u6Cl3xM0w3DNhKIFwZWfZMpD5ZsowN/HfrYlmGaCL/fCrOjJfijA4AAt2UwvI8wvp9zPkD2ui+t5I8YBrzc8FL4rVkEmFYGJCJN1IpgPof7RovVjTHisMDi/DEWBx3aIaHaKlGdN8bigMXKN2sUX7q3u5kUDvNDA8wPGgyORfihycVIu2LAxViAn7nejJMHJBFiadGsOczONSAGhg8xhg8BviLMz7UYHB3CbS5A2z2WnyEAalOW1Cvpc0vMW2UaAejYzGnWY0glw6xDQalsmGS4llgdAMT+oM9kKSzCqMis2txwJgVM7A2KiABHuOu/vuORn4OPcSX/6Gtf8I6O/Jx2GQAlZcG86QofQKWxnAdP8d6Tq20kjHR3puDjsXb6ZF976TvA62MA2mBr1tDjDXCdbF11+c2PCrx9PNe1L3hHN3w51WVNZo6CSHMagmQyVAW4tIilEXvCSoo7AHALUaykIj/ldAQNT2ZlilEZMFqt4WzAc/7tDZhtDXDJLzbAa8e5i8r2AQnU4N4AXe0PhMHGOYzazE3XDO3SWJI2JzlAU7cdvdplAaLCSLWzgjQGECuCdHwS+GDSwFL2JYEEfbsw7m2nn0eTQQbFmNOgPzHX8qfVbxJj97p9azR2APeBD+6Ol1ExQGLp2QZqxUDwA0hwphNQC+gAnbT6wBDSjKu375mpp68XNe4qKW6MF4Aq9pQvHdtSBgSJdWdazrkuhM6jmm36TIU1mE/TpttH45GzctL7aAtgdD9j5Vs+AyB+YLLKBZBzYX6uxWK/MhTVFoLagObcEbYuKmBr1r8xBhtBFB/63ZDX1xMiAgacB4FhVAB+CJNDOU2XNZJYhKZAXBui3lfkwUh6D6HQ70zvO9GsWoQSWOwbYXgkoDra5H3plF4KanBn2yEAkwyJwkCADvIMNDpYNjusj2LM6th8PwbEIin5UzsCQ4FXBXtkYCrvkVOoaQJgnNzP231CxJAwVsbv/PufxsnW3Z/qlJZXXn2LHOco521uQBObMPlRm+59f+IuAW4uP/wehIEAwp/6jRNbap2JdVrqWV2nyvJONW2s7Anr2WRRYr2cD0LqifAjBz+22XLE1pzB6VQjmSYgVjbnW5En4JsDcdtYEIYPAkBAdGK/Rk7qSVEzEYjTNecENW36nmo9u9KrZ5t1m68Fg2OrcJPzUB8osPqnR4GvfRvctKDxCPVT1zB5iuR5hUqug7YRQpQdGbiFg507FBPJKqQYAQcwDJpVg3qf2FWufV2/0yWw2GfgZg52WsEsaqABiAyQ7WF2gEbGdFZ3zsqQJzHDSS1zErhEhGgAi25wygp8ZeUleoNEH0Slrpavi6esIVamC8VOnu2kpKEEQFoDdnjYvuhMrA/94Y0ANIMwWb0kgLcsdAhXdR76wHLmCmx3XE+wzrZ6Nu3T2VzTno1B9Lutq1/+zkdWz0KuMTKY8bmmTZmBXIjqdLd61jSqzlCVgQTBU0egIQBVxHB1Abcv4pLf+Dk0Dw5x8a/ptf7aUUekgdRBmaxDgNE6kZJ6w8h1KuXdRatzAEswzFrzpNwTzgQfoLdNzUUR+y/O2XzJ9jpfx1OubFyuZ/oqtmQZK8dQGfI6BM62rqkWNh3JJ+XtJSVeqm1SXd6vZxPJJ4W+JyVyDuGmrt4FADvrQA5EoEzHbQi0K5wzJkwrdrJLdTeQHUj6lmb5PfZq3b41Jkf5rJLCJitqtOaPtutTuhxIwM2jWDYN5fNLr2u0R2hHJoNVTBDATT930yLblZlWiEWr32gx/PpmBgvCqAQXJiuKo5Oaa3aoxPwcgp2TKogIYX2IyTOHYp9biw29kG0iKOXw6ueRCCpys5F7U1gZwDKDNpNKxHTX6JQzQiQkgpUB2gND+IHVHDGfyRyUredIrLYKC+PFGtduz4HpvNtWAlOSgiX1stbkzC1bK3nHcTcLA8T2UkkOBAgYkbIVU01rZd6XSLaxtEBpswpaZn0x17PQ7aRmhq2VvmIsCtQ05zsRWQhYdi655qU/h6tf9k7AyX2ae+AoIsAFwGS0npfP5RN3ihLl8sPv6ZTIlvDp//enTviae2tvPVnXr/3ar+E3f/M38X3f932nbZtPGoDlz//8z/FLv/RLuP766/HWt74Vn/3sZ/GTP/mTqKoKP/zDP4z77rsPAHDo0KGl5x06dAhf+9rXTrjdd7/73bjxxhsf07599OOn3jyQ1xB1vZh97KPy3MsPv2dpuEdNhNEQWtPoxVyZYrZXCNg6Sghc6A0f1K/dzSUI71n/5Ha4bcLKN4HBMc1eCbI9o/8yAx/pMcyuuvxmJOCoH4h+3fPeJkycqoBlFmbdZAbTlhgAsIshmnWHdsVg81kFphcC208bYvWpz0Q5kUoiFIRmzaCcCMOPTYeI+xGBjUUxNSgsoZi0MBzAIMTKoVkvUK9R9le1C6CYM4aTCDcTtiyMAQ/L7HFpZg0wmyP5gMJ2hUK+kRqIMmcRYOuIes0tDf1ysQhk64t0zAEp8OzcAz7mG2RiLclr6OcaWNgL6YBGyM1amZS5eX4cVmLsmsZ3GS+k1Xj6OTOWOTemfZaxrCBFNBnx6cfu7NfDl7wZJjX4MeLwRdfvain2eK4P/eGNuPaFN3TMvxTmfBatsx1cASQo9poX3wRiPuW8oDv/5GYJoe1nFaXsIi1SY2Ekb0KHXKyM8My612GONEXUWTfVhLCwCCsG561u49h8hBlpMUxAHESwT4W9NmvJyiUBDHngDlA0iBWDWpHL20XHeutUIR2TzjacLXCYWGT0KqdOGSAE+VdCO5GbrWxrpfuQPZgTKEG9f9H9nJrPzDTDjt/1m7wdz11SlUCBEm24kjKGWFQqPjV5uoyX45GyTFJ+DKANrAViIMkK873XxfJ+513j3u/0WmQXBDfp+VWn/Y/ddqTRRw6Vz+8r9DJaLKEtkyKF8r4UM8lySYGbphXmHxux8wJT/iwAZEAmOqA6Cuz7swWK+7YAZvhzV+EvHGL8Lf0dERAjRofWMbtggNm5BotzhKFuNrZRMWO8IqxNUUf22IjKOicv9w3TaFaXejSzNajPqVACkrWQ7nXp8KyP4fcJwaJdcQgVodwOeRgRHWX2oZwvyTdcft76DsLskMPgqINtpK6othjVRpvZgqI+IkS9VzTrDvWakdokWeK5hMp19xQm+fCXrreZ9JC+7wl46c7raAgoDEjJDKwNescUNPBjh8mFBdoxoZgy/uuvnhrT7vLrbgUbQjmTAVk6/jCQHAmtEz7+4Tfjsu97D0DAJ3Zk7X3izjfh5T942xPSiJ6OevaRDj9TTQs2J65nPWeVr6lF0QHWAVVl9LsHYTX3ApUBINlaRCvX3j9/g+TUmBYYPgAMNqRWZpdyk+Sc6wNmwIlr2mtfeMNJ61k/lryE+QGLxXc4LM4DNi86Bwe/sI5yo0F9sEI7Nhgck2uIBMAS2hUJgHVzgl8wKgLsIsDNFRh0Fn4k+X7RAnEs169ymzF4yEumzLxVSysrVlbWyAW1acCLhdiAWNsLtRVAgDMAaGBnHnbo4EcCQqeBVrrepcFd3y6SghK7EstWLXsBIKyv5u+cbYX8lYYyAorJIC0NknLGwhleV13x7nxfOA7Q2XGNgWGxTqyKLowZ0CnzjvpXr0U7vxfH1bPPeuNZkXFytte0TwZwBdDcrctu7vU5D7/u+u/vkpq2p/4XwFnugf16NtU4vjJAJYAIIAQLAApcGoRC6p8wcYirhHNWJjg6G6Gh4dJr5wxB/S6TB1xPNZyBiZ5CIg3xbSLYKFkw1aiSs6G1bc/aNddnCsowobNr9d3xksyPDnCFAicJQIkwHdBCWn84tYmtuuB6oAcuEDobLPVcpdABJjl/BbvUs408L1RdXRz18bHsagxKavEe9iofjmwn7RcFylmE6B8b6vazsw3eUdPOCcV2T9mdWu2oj/Oixu6rZUyAEKUYqhCSnxOhQ/oLygpkENCsGSTyLfuUs7PcI0TXKX1GD0aMvvgQ+KGj8rh9a+C1gygenADHNpFC5WEIxcY+lNsjTA85TC8gjO8D7LEZhg+WaFdcRwLT8ypWVs8RAV4SsMBEMG1ALC3m5w8wNATjHMx0sVTPwlnwaIiwT859Py7gxxZ2Ltk+yTpaFCKcrSpBADlGu1agPVShmA5QHhtn5RjNGrHhVHvTNCcCgDgoEQZOlOSWlIyWgBkjwfcpM61fz0Yg24P11JD9nMj0uYrLQanXC9Ndc0i/DwMLP7JoVg38kOAWjM9+8OSEIQC49kU3dveBGIFgVAXWq/kd4RN3vRmX/fX3IlrC7/7b5e0moOWJqmn31qktwo4ef289orW+vo5nPetZp3WbTxqAJcaIF77whbj5ZkFlL730UnzhC1/AL/3SL+GHf/iH8+N2ynqY+bjf9ddb3vIWXH9913xvbW3haU972mne+26dSGqcLmJpJQYlAGG+GAmaT2xtUoa0WHzF3NSwKmNsw/j8++V9De8TT/hyO6KYRXzyP5z4wpzY8ica6t7135el8FmGr0Mft93oTUV8lle+LnLdjWfLMKjc7Aq98f1in2B8RFEaOA2T7zNWpFAU8CH5sworURgmxZxRTGNuzt2RifhTMkto+1R8q+E9MBwi7BtnJgYbZTZvzTPLEZbEJqfhPHiVQSN34bTF8uDRtNI4y2cQsuKGlTlGJJUWefHXPU7umorxGMHZyPrMLzupwUT40B/eiMPn/gOE77hQ95V1f3psvr5tnPp9Z/ZHTAcKoPPPw+Gnvx53fv39S6913frfAx08IDT3FHRszdkBspwiIPCXfb3qsptBgXH3p96GV112Mz7yybcKSMcMs2jx4VOwBeuva194g7Ar2QAQ0FnCPyXQPjppRlNwvagihCXVjmWY5uZSUCcP4f6wnmqDtrVoo8VsUQITB/INvvoPuyLxWXfIuUeR8nXJJMAkqVKS5cJEcz0SsBK7/xkvdjYJkEkKRAFPKDcZpu1YdglsSU1YaogIXUOWA+lN9/gMsKB7/QzE6FcxZ4ekubYCKH0rq6S26ZR4WGbJUdeYZvVG0TvOljtFzZjEP3q6o4HXz8XUJA1rD/jIDWfal2QfljJgnBT/bIWlZzWXIQXdZ+sh3b8UeA90vxf2H2fbCGngO7YhBRmC+iGhmDHcTMkK6TPQfUuDiFh2n8PoXmD0QMDwwQbuoWluyPrstfQ7wPRs7gBT9xROCYBPZQpJ4HkKjyZPsGojmWw6Y+Ukl6IyKLY9mvUC2FfATQYoNsucT9KcN8L8HKfbVDvRACAybJAMokDdwKdv52HVAq0+wFicBx3KEsoNQnWsgm0Yg40IPyTMDxq14+BsWWFrziqCWLoluybWhpSBbA0hw1zkgbrxnO+RKfck2yUow/djH/2ZrlZS8CP9LRbSiNoWeNlrbsPgWHvS4d4r/+f3whDBtlHsnJwBys4nO4FrSanyyd8+3ms6rSeqEX2861lg95p2Zz17xTW3ylAiA4c2W05EBUbcIsIugtZJy/VsAko//0/kvRUTOTedft9/59/tXtP22fInqmn79//d6lnTWsTKIloHkEExk0yE+15SgEKRbf9G9zOKWUS1wfBDozY3yDVtdCQM9ljCLIIoWSqbr0XlFjA8EnJNbOYtzGQuHutF0dVd83nnMb+2Ci5l4JWIPWbRSP3mO3sR00TYhYExHVHILvS7aeWehyDXHJOsexLj2Aepn0MUgk1k2DqCFsKiTYAE6f9RFKs+8lHY1NkX5wwvku9/yoq7+mXvlAwbBbiPy4ZJy/Zq7qDTy74dIcT66c7/8e7uvy9+E3LA8llWzwJ7Ne2prJ2Wb+lakX5v5wEf2QHSPty65sU3gZzRW3noatod9SxI7BBz7pzaYdlWyCFCflhWopiWUE8qbA0H2Dw6RnFMMsZ22gM99813gAshvYQB8pQn1XdQtYKb9WyzVNEcHXV240khotkbKTMm1auiDlH1Wm+Izo50uA3k3ETGUs6KgAEEKNE0bSOFuYslF2XQA0h/03pS69tOxcJ5LoJenkiuZ52GwfdqZaM5NWHY277rtpsIO6meBaktLgPFFMCUct2RAOpMPKKuh0gKmVzvWwFliolsx9aiGDKB83uPun+25Vyz5po9JvWQAvMJKHNdndKsmvw5pjpf3qOqPPW9tKvpGMrzVr7NWP+D+4GNLQl/ByRPJMrnR4VaUqoTiF8p0awY+EHvcxqWCIVBKLQOtvJhZctIQ1J7+gDWOiCpWcgHFNOA+aEKFCsUW0OUD5UdCbV0aM4ZY35ekffZzeW8DKW8Z8mEMUuWYQKKmXwuzM91mJ8j6mY3ZxSTAYrtBmayAA9KNPvli5FySCjEbDsmuX8EcjarpxnIJJzkVkJI99/uszEBeX6VyQtas4ax7a4/GZzpcolSPqVphbz3cDXtVVe8G9Z1YE3KWQRsV9P2RqMnmwsCT1xNu7f21uOxbrjhBtx44434lV/5FQyHw4d/wimsJw3AcsEFF+A5z3nO0u++67u+C7/xG78BADj//PMBAPfddx8uuOCC/JgHHnjgOFVLf1VVhaqqzsAeP8aV2S/SgCbVRGJrEwNuJmoLuZEEmIUOBahAOYl4xfe/D2FAGA5P3SvxkbLlkwwfECm++FNGlFsBxSTIzaEyGByVmwSwPAQNAyPs5ggUWx4lM0JllRETYOYNzKwR660Y880qJhuIhlEdaWCmEjyK6Qw0YaBw0vg0wkpgjiDnYKY1eFTCjwuYNmowqmifyVnECLiJx0BZKhSlyMnMhvSvFpwmMOxcb8ALnwsKudEKM45Y2XIERJWb5pudgQAUTlmbRlgHcg7EU8qyeLTrrj+6Cdet/z35HL7jQikWQshgz26+p6k5ZRJ7nexbCiAHio6H4kUcIvjBI6BzDoDOO0c+j55/eLax2VtPilV84yju/PP34fCz3oiicLjuuW+DLSzCuHxU5+mHfv8GYVomix8gD19jaRBGNqtVoiO4RewG9IDanmiYZEGZlSZ5KsnSizBvCxhifPUn3gj8RPf6z/ont4MLyQiRghfZZisHhabZS2ps2g60SGHx/SI1q9TUxz5Zl6W8i5wtYrvGL9sfWAVHFLyNDggj9X6mTinSb7QYXWMjx6/bZgJcgA7AYKczbmWWJSAmAR6I8pjMvusBVxJEzd3+9t43F4zABKt57ZyaZc1wsbWwB/uZLsQAvGwnATdGH5fZkQBMI9ulZEFWUf6sSNUpqelMn5NkeMhrJUAunR/peKSGOWXj+CHBjUg9pbvPwA/V5mwANGuMwUOE8b2M0QMe1YMzuZZbUYEmD+m1h6Yy7HcSyl4/dR0PXlqhWQfcRNiRFBjh0D4c+64VNGtiEQQI8MJksmpSBp5efJ+J8r9cWAHwAwkrHlIz+JVSbLoqaXJjIerQZOUhL5KaccrncQIU03lKkTG8n1CMCM262ORFJ2DL4hx5XLlpQR7wK0CxCdiSZHAw5zyIEaZizENOIMp3K7H+tMH8yCcfXUZDajCvuOZWVcCJDcPnPvCGU97G5dfdCquKOFPLgeBMJEjH5Oynh52t9WxSpBxX01r5rGxkuImHXXgBVKIOMywBVMB4RjGJeNnfuk3A0AHhD/7pw3++j5Qtv1s9a5SMk2taK8qm9n4l/OhQkKKERbMqwwcbAoIkew3S74JZBJhG8ljctEG1WYJJVHWmjigfmooVa9sCixqs2UpUONle03Q7XNcgLhHHAwGFZrUEugOAtZIvYg0cie97GDpRX9eSY5br2TT80nBbAEBgmLlaEDkHOCCujzKIwkr6SpZ9OQfEkLx2+r4w45qX3JTv87v5xZ+O9dGPvSUPx4EewATkfgrMSmCgpZojL2vQt7zt27AlT/sMqJygnj1bQJa9dfJVfnsbd33hXTj8nLeCiVA6g2tfeANcYeFXiuMUcKeyPvzZt+OaF98EWCEvAEBSQoaRFbUKyfXC1AGxJCUPqlWpqnNDKQCET1l7JUvt1RhsbI5BhvFnP/MGYMfl7XlvvAM8ABDF0osAtGNkZXQCAqyShFLN2c/jS6rDfl5WzhQ03A2II6t7RleX+5Fa9zrKCpEUaM9WAPWsoEh5LKF7LIDu5wRoABngSEpWNgA1vf2E1E1OyTYMAqWfXQeehH1Sx8h+SR25pEzW2j/VoKZNYAZyDW8bgHrAS6gAlF09m45jqDqle36ckee5hWarJHv3/N6kni0UvJID0tUdGeQynRKlq6lZ/5vQrABW1faZcEUk2YA9KznbSFbN+NvAyrcDRt+YiGKk1I3GCEymcJOpqla0gDYGi2fsxwMvKNGuCljnprKvR5+/D+2YBPiA1LGxVJJq7PJHKEZQqltTTVs6FFsNTOM6FeRIFCR+aOUeOxTbzmZVXsO0ABViBRos53yjbDMa5L7LpASgEBGdkKqiJfgh0I4L8AUFyu0hTGA0qxblVshkqWRVLx+szNvkOOgH44XkKzMQqXE+/Htvx6NZS/Ws6erZ//zrpw5wXHnVLfK9TJnKmn/YWdXjSVPT7q1HsPY+zke9fvAHfxC//uu/jvPOOw/PfOYzURTF0t//4A/+4BFv80kDsLz85S/HPffcs/S7L37xi3jGM54BALjoootw/vnn4+6778all14KAGiaBp/85Cdx6623Pu77+1hXYmH11+WH3wPrgd/9tz+Nqy6/OaPgFCKoFnYoecDUHm5qgIHktYy/1e7yCqd/3fXfJBDwmpfcBLddizS9sPDjAsWW6QoGAkJl4YcG83MdwEA5iSg3JGC92G6lwfYKWrQeNF+AiFBOK5hmBcZXmJ1nQQz4kUO1NZeGqiylMQ1R2GXqf0lMQNOANrZA8wrllnp5tindTaaIpm7htgDTlvAjJ82jNpzGM6hZvrGK1LUrIHlQIgeVAUiBZDIQM9m7NgWddhY3BMSgRabanBHh2kvfsdT0n8513frfw12bvwIA+PDvvV2AnQQI9RUrvZWbVOauuWTuvEuNeogagIhA5x7sHsM90Ka37b2G9Oxd1z33baAU5pdWDIAp8nfgVANAd1sf+v0bcN13v11UK5UG2lc2h1ruZM287DW3gU1iLUmjGnsNUrb8ioCbGHzpJzrA+Jm/cNuSeiU/vgee9K2zxD+6azTT0D+UvdeDPDeAOmaZpfy1lgE2ZcuC6Cir4FLYaB9gQewUMtGpYmKgO7MwIL3nc3+f02uZHfuaGjcrwIMwBpeb6tTIUk/p0rcqADowiQtWsIXBpWzT1EZBGQYHCHssdvvQD6N3C4AVZOlbiBG6xy+pRfRxOTSau/cp+QWQzId0LS4T0IIeI1Mb+4EAVQlMyZZhvcbel6kpJri6a+TbkQSe+jEQ1gKKrzrs+x+TZRZ0lvvrkDHbXhAYEfNDBZp1YHg/sPqtgPkBg61nlmoLAKx/xaNZs9o0IpMo7CxkG4MUopkCNZMFpgykAT+WxrPa9IiVQb1mdUhB2avbqHczoEPhABRTzrZMwrIXpp9Rq4lQEdpjhHaV0Kx1Aw1h5wNFAwweFNConKQhrdgHmUaGyeQj0Aa5ZlgLRgQCAQXhI588PRaIH//wif2od1tXXfnu7CVu1bbCLCTANI4kq+ajH3sLrrj2VlDkJ421zdm4dqtnAQG2KDDcXIg5CAwT5DOgEMCwoCbAAaCg5JRosPKtZtftnc7Vr2ftwp+4pu3Vs/W6WN8mQMY0MthwOuA3TYRZNKBZLde9mcXK1y3cvMLsHLEii6MSdmsqWXfGSJC9BrRzCN2QKwTw5rYQh2bqJ6+5RFByT6qBLTOoLWXY5Qi2Dlpfd9lKycqwD0wwEXhUZQZxJjuFiDCQmxEFhkm2hpqTlNRkS/WxZiNd85KbHvXw6WRrZ7bHhz/7dsmG69ecUUhMS6BK+nu/nt3phJBq2jSQivGE9SyAs8YubG8tr+ue/7NLaiYAQNOCrF2yUXss1/p03vVr2jAUy+nP/Ovl+vMVPyDniKimZdgeim4/TACi1jPlMYN7/o/u+d/1s3fgf/zcDpA5KjighBw3Z/iB1mQRMEp8UdG4kFuSwiUCsVVHhp5CmI1c45bOcO5qqMTOT44O7SjVPvr3QnMnCrECD0mRXqc6TR7YD2rPKumi93pJOb6DDCIWSt2+pM8xgTOpJjYtYBaA8Z1avQ/m+JUIagnFttRgptF6yWudajpiTMpYlOwVQjukJSBnyTqYkbMJyXdko5QLuLSIBEQ38uYoaIC8qgsli1GK9ERMSsBPUudE3Q8/0PpsKq9nW8n4S6Sher/Uu34cUfwZYfTVbZi6FXJqmtXYJBfqrcIhjirMzi/Qrkrtt/rNiMV+qWlNy9j35QbNqkWzZuSYRQJxhNv2sLNWBv1Jka3vO9XMsTCgENGuKrFiq1HwzsC2icQgtWZSSbtpEPBFQ9iTDX6qZ1mfY1uW3DCSz8GvEZp1AzdL55zB4FjA4IgX1efc5+sERXEoIa9K7ELmQ9wGIYJEAhd02ggEj6aelQMoJIKseE/Eh0KucXs17d4629bv/M7v4L3vfS8+97nP4d5778Vv/dZv4W/+zb+Z/87MuPHGG/GBD3wAx44dw/d8z/fgF37hF/Dc5z43P6aua7zxjW/Er//6r2M+n+Oqq67CL/7iL+KpT33qKe3Dj/7oj+Jzn/scXvva1+4acv9o1pMGYHnDG96Al73sZbj55pvxmte8Bp/97GfxgQ98AB/4wAcAyDD39a9/PW6++WZcfPHFuPjii3HzzTdjNBrhh37oh57gvT89q2+74KZ6Z/bpop9GehEIAdbKjTp6e9oGGKe6zLSW/YkMtBZFo0BHb2hvByVon3hX1+sq6QwWbk5wE/WeToGThZPGsRU5viPCwBJMW+hQTppeagMwKBH3j2G21btzZ0ha+tIkX8+iAA8r8LAAOwO7tRAfewAu2XwFCVpNwWacfDiTxJMFeOGRpgb2mtW8CEgBYv3VvwGCU3ivNrilBaw9YyBLAleuvfQdoD//Bj6k/33d83/2uOIn7R9C955zEZYe07dayM12ek4nh83b6v17+Nk/jfoZB084iNlbp29dedUtD3ucX3WZWDEWiakDABxx+Omvz58jNQE8kIEJa65R39v+VFcKX73y6ltUIk/4ZC/X4AU/dgdSLsV//dc/hZf9rduQrJ8oNSIs7CjWoE07J9zzdmk+L/o/bwMXDDs3S69bbEnnlWT8f/LON+A5b7sDyaZK3rP2LsmCS4f/UPAgqURsD1Sgnawg7oLAk1VBKMWaIDW7oeIMWEVPebjPhvV/ACpR2+z0ajZ9Fl56aWXEQZtjacSUuTcnCTFVMAMEwAGUQkqTuE69oY3O93yvWmDLoDIiVlE8oVsD8pQBo7QNCoDpA0HcvW4a0APobNmiHl9SNYsyAhNokoEvdMeuU+sQbKssTZaGPlms+VEKedbX5uX3mo+bKnWanjWFHyujdCCB7NOnArN7Rxh/fXrcYC3f5/o/G4Phgy0OhgKDh1oUG3O42QiLgw7kgdH9whKfHnIZ9LKNejWrfRZbsRcxmovAGpjJBprT5mHrAu2KAxtCsdnCzmMeQABpWCCNJ5MAKFiIQoaaoO/dghedL7qbtGLT5gz80ObQ7+iAdkQ5JDaxXqMFioUMBcjLfZPasJQzJqCjBcxjA2cf7UrklMTOTWG6lFjtBgLyFgaXX3crQMDH9xrRM7KS3dq1L7whf28ocA4bJ2agDXJ9D1HBO/u4DgY+/Htvx3XPe9tJa1o7KEH7K4QBYXauQTFl2FouwpIrIyo0xCj1qLXAXBBnd8xiGAE3le8uJ4AErQ5yCmBtIFZhakHbZeNJ3cWzOWBILFwGlTwn1WPzBbCoJS/EQLKL2iAWuk3Qx2mdlpTL3gPGgpyFBLdA673kaU/HX/sg9+TMmjUA2phrWrIGcViArTsjIEs6J6668t346MfegmtfdGNW1h5+zltl/6NMlZfY4bvVs5plk2+2QFfTRumxTljPstxzDz/7p1FfdHBviHWG105g7WSP03JDWd0Bhy+6Xj6vwgmY2XiwMXjVZTfnQf1xeT6nsNJ5Jyz05d79xT96e65l/stvvBEv+1u35cwzqXW4u7e3QhxxU8Kf3iD17HfedAfCkDFYHD8AcouOnGJrxn/9levxnLfeAUBqz2SnG1x3z05KX1YLWbYEP9Bg+0YtRVmvywxYz3KtaSNMy+JCUZqcowqIQsZXSV0OmECZqBNSVooRVW1WFjNlBUl3f9Z903rWxK42l7oZkPofua4BFJjSOjtts5gBTnNG2Mhj0s+xhNQ8JGqLdlUsYBOgkxS9ttWhvoJB0QKxlXxBP1CltJ5kKS8whd3bGbLamlKPke556bNIYFZWGjGMKoAQuLNXI1FJxkBAsh9TgpTYbaJTgUuple18JeNGNpmU/huXGAyOrWD49QmMDzlvS95Ir28iAlcOsIThgx4UHYYPtnDbLYpJicUBi7UvT4EITC5cyS4DtmU0KwZMDiUgRJYYEYcF7NZCZjvDEmAP18h90jRpJwF3bIHxrM3/7ddLUWnNvSgylZxB0YEm/rh6VjJOSAk/Ua2HDYqJQbtps1VfsqD3Q9KsYws7a7PlpRCFvKo+9Z7hbJ75PFHWjK+67GYsXQ0S0SH9Z6HkxcLiimtvBe/VtHvrLFrT6RTPf/7z8Xf/7t/FD/zADxz39/e85z24/fbb8cEPfhCXXHIJ3vnOd+Lqq6/GPffcg9XVVQDA61//evyH//Af8K/+1b/CwYMH8VM/9VN49atfjc997nOwiQB+kvWf/tN/woc+9CG84hWvOG3v60kDsLzoRS/Cb/3Wb+Etb3kLbrrpJlx00UV4//vfj7/zd/5Ofsyb3vQmzOdzvO51r8so14c//OH8AfxFWNc9X9Dx5MWe2Gx3/okMRA9/11tkqLXQBnAn++BxWCmn5fBF1wvr0NvlmzQgA6GFxeh+oJjKye9mEXbhhcloAEQCDEsuyWgozIFWFC1ucyG2LqsFQmFgq0IsJZgFXAHkxtcmFYvV5jR0mSzWAlUBHji5gdYtsD0FBlVm6ZlGG0qgU28EIGW8ZJsrIpD3YP1KUZAqkK0wX9LnlYr2PIRNQMbOZjVGUDBgI2yE67777Xk/5ADitNmHUQig0RDXfffbcdcf3YS7Pv9z2eLrOPYfx+6/gV6DqdYKhtQOJjWzjCWmnyFpVPuAm0zJUX396Gl5P3vr5OtUQKwEyh6+RFk06VxQ0I0VAOTSIVaSt0Qhnmhzp7ZfvYLvpX/7NkRHaFdI7lJBuocX/d3bUUCaHeOlK6FIiEFsnCQ8UxrTS//hHbA1o3qqQX0w4stvvD5v/6/ceIdkRTTdcP/S192BQWKbKbMveR8n6y2vTDk3F2ZYygIRBUCvOUR/+E+58Qvlsi0Vk4ArsUrDRQJRaqR61wTLoqYx6VoELAW5Nx3QECoGFwzEFPoMxCIKAJX2zXaB89n2zACUvKmV7Wi8Hnqr+xaEARhaQjgYQWUAvHz3Q8VItmimFYZYapJtLXYJsRABlNfeaXAUGBxh1OuEdg2gFijm+pno4J6VbSZ+1LqvREve4qz2Z2wAWIhFY3IzSNi6DjXS6jfz6XNMn1v6vBGTXYd+Pg2h3R9w5DkW7XgVo/taVA9Mu2Fb/3rZG4IWD81RHFuI/V1VoNhqUByrs3x/8uw1tCvA4KgSEOqo9gTd5wUI4EJM+bOXXB8BMawXoCQxAa1aXSX2I5hBdciEhFh09j7ig240/8LDpv9mlnB3HWDYRcoR6gDGBHpREMsBtiRzZCUlZNtM55QJbvDhz55+Bvuprr51RDSM4IxkkNa678NSLEgNdaquvXXKg8xHug4/561iK0gEqGd4qiGve/7PynekDoC3MCmT5XFeD1fTmsbDzi0GDwF2sVzPZnuRZJHHDB4UIEPAfAFqAuz2AmwGCAMnSueqBE1nsvEYgelMakznwK3Utxyj1pxQQMqKlVdRSF3atlL/1o3UtJakRl54ra9lX/K9vWl0eGS696avm9UxzsEB4EEB05Q5SyfnLfRYsykIONvJquUL6zXymhfftHSMT+c14cqrbwH2VZmcdOef3NzlpiwpVk5Qz0aVU56wpj1JPZtUMgCqr+7VtGd6neo16WN3/4z0z0RyLseYlWFpsbXgwuS808dqoZNY6C/9odvEqnSFQIXkixkviuyOMLMjw0+xVD8g2LkAM27OKJ4uA+M/fu8bll7ruW++A2YEJItbPySpl1eVaFKhUy9DAYpS6pykrCi3OVuJ2YazRRYA9C2yWQkJYST5bYkYlerRdiRDfKkRCMydZWhScCeQgTyAngKdnZBrim0p/kKFTsmiSpwEQHS5LbI/yb7QzaVm8UPZZlIF21q2GV2P1KM1oJsAzT4lozTI7wUQckrK95OMKek/DFShE3WIv5CQ+MFRj81nlVLD6ueaVdP6eVtVDUuQeToHFAyaRznGrVo5AprdkgpCwFgDxwpmeeR60SjQlNTySVnEJOfd4FhEu2JU7SSOE+1qxJHnOKyN1rD+hQBqu35edozyPqTrfPXQHOWGZOtyYeCmLdY2alAdMH3WKhYHCNUmIxZ6/KnbjmlDVjTGqgA5A64KwIvCEz5ITVAVct+LEeZYnfN1y2nd2XRZk1Xd1IZcQ/TrWfTqWTl8lD8LAduFdEYsvVe2yWQBaQxRlpJRVXQK9UzQYtz1+Z/b5QrwOC2Wc6mvnCeOWXkpucNd9vDe+gu40kzgSbgOHz6Mw4cP7/o3Zsb73/9+vO1tb8P3f//3AwD+2T/7Zzh06BD+5b/8l/jxH/9xbG5u4pd/+ZfxL/7Fv8CrXvUqAMCv/dqv4WlPexo+8pGP4Nprr33YfXja056GtbW10/em8CQCWADg1a9+NV796lef8O9EhBtuuAE33HDD47dTJ1lXXn0LKPCjYsDsXMknNltThUR5CEvhiwCkaGwDPvxHNx23ncd1paYs/dwHCEKAnbUwTZCGlAhG5ZhyE5DhrbDsPLgqEE0FM69BtfzOLnyWXrPTYxMArpwcnwbda4YeK8MHKRysBaZzmK1JBknk7x52a5GPNwFdA5Wk5SF2dgzpvRkDrpTNsFDgwmvDSolB0QNaIpZVIqkIAEQm3LNpIOacfZIsDq59wTvyDf6xKFzag2MUxoh/d1rTuTTr3GtAdjah/ZVUN2S0odbJbgZQdoAssqGuiNPjf6aGOHvr0S1/zircQ9tyHiQLjRhBdQOuSj1nhfnziY+ePqVcZnk1DD8icAlQJPzRz78BL/zfbsdgowvGTMGbfiBZEbEQf+M//AVpQF/0927Hn97QWStccvMdsF6KftOmMO+O8UMmNWoACAiqyDANYBS8sTPk8M+UjyLMQ21sjP6rChex/BJ2W2p05cXkf2JHRjBtB3yI9H+5YuJC9zMIiCFWA/I303b1fnQy9SZP+TW4YLCLiCOAvIGZGZiWOmuyoDWazpbSxigi25FlFUkAUBtR2wRCdb/D+NtYaijbsbyXaiPC1VGzOKDKEvlfMQkYPDCDX6skqJ05Wy9IJgBQ73fZZiKFo0bLgvxAQQYWm7akLkrAUlpu2g0WombMyAHt+ujUtBuvQJDVJnwT8GNCawE4BjyhWWdsXExoVkscaIURhwiUD2z3PoSY79dcWCwuGGJyvoOrJVjTeIabRZRHFqiOtqjXSxRTbaaNKidT4GwbM4sOAGIpLEKZwCjznCSfJSlFSO3E4sDK+6o9UhYKhQDbWsTS6b2IciMrTFUGEefMsPS52Jaz+sctuJe7AAU35cDaOsIsWtkHazXo9IkNX776Fe/K+yn3MPkuGVXasAGaAwPEkuBmer9y5snas5z21Q9gPR1K0+ue9zYdBuo5SQS0wJ1f3GHpm4gtzE+I4um4fdmtpj1ZPet0yGG0NlTLvDiuQMaAGmHIGgVH+wpIblsJG1Y/aPY6LNJBP6dBMWu2yHwOTKZI5CqiNAiKoMm8ex9k5J7uQwcMJEvdGBVg0G2nsOP0mK1t0LyAXQxgrQzIeOC6XBMiAbkZAAiU6t1Uv0boNTpd6+T4XPuiG+VahsdWz6bcJxDQHtgRVtpXnpysnuWouYknqml7z99Zz1rT1bTMp6QY3luPz2rOG6N8YCqfUbK+ZRagM0RgVOU6kAvCx3/7TSff4CmupDxAlKG/CTIM/8N/cT1e8trb86A31YXZjrYS4km1AXz2g0IQeukP3Yb//N5lq7HnvPWOXNLYRsGSaSrgREUQohCEErEoqZw5CvnFLQBXC7BjrIIubbKrglh56ZCevGRdtEODMKBsx5Utv/T2mgAailiy+8r5hXmeofteI4NPKeepfwM2qjanVnqDBCL4EWXFjSiPGbYldOCVPi+IbVoKC09qYZ3+5+NvArDvS7Woe1WFFwfyRzttOuVrlD5fgDkB5+z2AnRsG8Wxg527SI9A2R4YoV0rRNUYUpaVyZ+H5NG2OX8j5WNxYUDoLF4lF0f7r9KIwkXVysmOLTpSNbEco3pNSFfVhoJXA4iFMIB6H3DkuQaj+8Y596O4f9Jdpy3lWQYMwM5gfv4Q00MWbq5WZgysfGOBYhLgFhbFrCPk2Fr2PTqDWFpQIJi6zQRTWjTSyxkDKuTYmmkNhAgeFOCh2K+nzNxMDmghoIdh8FiZW4n0uqOeldmSyc83LYMLKX8RGEWtLiNRrG7DwMLWAAeFZAoLzictAeaJBVauftk75Rzv2RsKEBfB1sCvJsJvutd137m9tbeeDOsrX/kK7rvvPlxzzTX5d1VV4bLLLsNnPvMZ/PiP/zg+97nPoW3bpcdceOGF+Kt/9a/iM5/5zCkBLLfddhve9KY34Z/+03+KZz7zmadl359UAMuTbT3WQfFS/gERyJpuahQi7rznFlEa9BcRYAl3feFdj+m1T8e686t34PAz39D9IqluACk6jAAU5IXxFUZOAlCLDuwwTQG78MqOIcShk8a1DeJtWxHasUG50YCdeNxQ7ZWJZ4GCgNkc3CZdsTRAFE1nG8YsTWQIwHAIHleg7VkHrFjba6Rj11Alpp+yoOKwQKycDLL6ihQFTvIxAEBslkEdZvU7ZbAHKNPgjwdW8sAhsSKNedQ2Yq965bsAa9AcHKHa2Mbhp/0j8HwOOrBftt3ErlnsvZ8ldkv/94AUX1CgKFlFwC43t6nxT+9Jt1997dgjfg9768ytuz8jA63Dz/5p+UUfECysDoQiPnHXYweR+8vWEbYRwMEPOysiANLQVcrEYc4h3s26NpBt17ABwH/9leuXtk0aFp/sp4DeYF1VK0nFki2pdPbkSMAVm9j7yu5nywilAqJJAaEgS7KaigUyQy2pTcBi/xAqkkZH1SvkobZaAhqwKijYsShTNBw+2z3oe7ILKKhiEFZkaEwNgTwhjgKojKI4YdlWcIwAYbKZSQfuJFsxtvIaxNr8tvJ7T4CdWAzvIwwfYowe9BjcN+vUfjGi3T8AIlBszBGHJdgAxUPTfC1H75pY3tegvJeRgOgcHhkBuxghFhZhZFGvW0BZe2hZFEEVLX1WqXmPZQ9kIRk8xKTQIeRMkqSSiaU03W7O8EM5p2wjDfn8oPp899RIbIH5eUB9b4HBkQZ+aDF/+jrcPMDOPcxEmeZWLLYmFzpsXMIoNwjllmxnfD/Bzh1CZTA4pveGwAroRbi5DF6p0ZB7ZrnPWUIsZYppYxQyARhkWC6xPaAFULCOrVxuG6+gTJDhZw9EkRki9QLokQcWMHLdpyCDFzsXdn76PHOjD7EWozaAe2y/U/GmTirKM7HIBzlNnFWVVQTNdWBdWLRrpdidqAe+CSff3l/G9Zhr2v/pH8uAJKkaUs0QIu788/d1isneYmvPWA7dI10nqmlPWM8WqoTq1Uq2dmJTYgDjDOyRNitB/dgBQ8bo27XUeClLZVELmJLqpyXmvQ71mcELIclQUQBtkGFVVQJVBcxmy6BQAmgAAWLSPvoAIEjQcbIaW9RC+mF9fE/JYZwFhgPEQSnXjQTYpjmWlSFkGvJQ6MkF07ai9gS9ehZ45EDLVZffvHRYUJD0Ucw6HDRA8EsDqV3r2VSfnqimtSepZ9N29DPaU2afPStdv6573tvE/o6j9IoKjMWBAwzB+IiP/7tHloFwskWBYRPBQy02rfLZQpG+I6q+1mwQP9DMMyOEobT+8788PuyaothfJdtTo2pTu4jgA07U0HMZWif1CGtNJ5mGWttZgmHOtVS0EDtSAMm6igU/lSyMpPCG1DmR5HnFlEEV5TpXMktkG8lSNCm4k81tAmNMQK47qs0IVxOaFUJUuy+3EABGlOWMoGrsdH2JVh4brexH1PyNfs1dzITcAiLYWkLPQ2EwaIHhQwHlpkfxwKRzzfAedlBlMA5lCawOpZbamiz79SsJzX7j/u5aAeTrbll7FBulXJ9LB79voMdbgKtYiOWaaSLMXPaNGAgDqduNU7vYOqKYeISBg51JBkmyi/UrJdzQIZaEcqMVRVbhUG0KoFRMI5gcFuek805U7xwJzb4C1ZEaflzAP2Md5VYLO6mF6IrYvR8A0/MtNr6TUR0lFBPJw6yOObQrFsOH4lJejV1oPTv3MI3Px4kCA60HlwVQGNBsDoQAKgpw4YDCiiJyIffEnAmWCLMhAnULsgZUuoetZ9P3ZbeatthqjqtnozMwqvxGjJplIqShh6tpzzRhNEcDsBCqzEJYdlxY+NUSYWgQSqOKOO4UUHsqlr11hlfTNNja2lr6XVVVqKrqEW3nvvvuAwAcOnRo6feHDh3C1772tfyYsiyxf//+4x6Tnv9w67WvfS1msxm+4zu+A6PR6LiQ+6NHH3kdtwewnKXruudploE10vCkhkZv0onll9QrV7/iXbj7U2/LVmFny7rzq3cICLQzQDJyHhgZvWmhKCSotzLih6ny1mJW5BsECKC1AnYWcgMXC8LkGUMMjhRw2y1ooLk0Cw9qWqAohAXYt+JKAz4jjSnaFqw3ddpQzW1ia/jkU52W7UCHqEPB0qokVZpFdgYItAy0AN1Qsb+SbNUKiyaFGaf9XAJXgMzIyJYTWvSkphQ49ca0eGiKOK5gvn4f7rz/lwBIQCeSJQKgzQctN5LosTih+xAgAFcgZDl5OtbZemEXYCaBVlq4Hb7kzQAz7vyz95zSe9hbj8Mq1dfKOSlyxwOElQqxMAiVwWV//b1gA/zOv/vp0/JydhG1wbNdxogB/upP3wFeBUxrFMiQc6kdA1949xtOvlFd97z9Dfju/98dIp8nVTSAwD21SLLgIka2quqGzcjXJiW+gSN1wInpzY9S85kbT4AX4h2d1DbMQKxYck08gYyMcpIKwy4IpjWQEEVpBoqpgClMACf/5V5jSgGg2ihLjBBLFtm/Xu5SfgsKGfRxQXAzC/KSDZMzXKjb95VvCIAVnQAy1Saw/uVGLLJ6bzcOC7AxKO+fiMQfADUaBNl6AYCsQVwp4MeFWDpsLkDTBXhlKEq/6QIpX8BtzAFjEBZlDm2xbUSz5tCOrdhAoAPgklQ65+YoGdsP5PcmAMWEUcw42zSwJdRrRsPgldAQOiYlMcHNCLxYDkg1NdCuGBQTq8N5kxlkBqIOnD5FCspQAIMjhMERYfP5gQwG2rVCwDkiuGlAudkIeAIAzAgDB+dVRqSACFsDP3L5fmpVvYIYVXkloA47VU9ag6BWCsbpfcp3CptsGWQgVgJqkSUAP/IQ0ngGWhbro4UEkfet0BKYQq2yOk+hCe2vMwWupH0SxqkOeheNMlNLhFUHiozqWAs/kqwZ0wKf/n+PH2btrUe+rvvut3e1Qqpp02LOgeCprn3VK9+Fj/zO255Y240TrONqWuDE9ezIysDPJRAdoOBQbQaxL/EOfrVEcWyB6MRuxw8tzLPPxeCbm7JtzQukEEWhEnskn1QTaq4LJbWJ92IhBojqZWurA2V2DgOJwAgg2A5AsTaDHWjarh5NTwsB1DTIdkshSkCyAqrsnKhaFPiBJWEB9y22lCyUGd6png0hi54Pf+fP5FryzntuedjPhq3JzPfyoWk+fzJBpK/IPlk9y3pdO1FNm8kBO+rZyPl4SI6LAGSHn/VGwJq9mvYsWQL8O5B3mt1BiOMKflwiltJ/vvx/lWvSp//NGx/z65lWBs3ZPrVhFBOxvA2VAvosygo/7FS0p1rTfuGWN+AFf/+OrMCIKUeiJbW2IlU105K1VuafsNR1bIEIymAKRQFSurqSc1aF8UAxiSgZQGTE0qBeM5r3h5zzARBMJgxK7WW8gD0Uu9dxC84K3qyA8Qxig1CoTWwDFDN5TChJlePdMY4FIQ67XBezJYqhlFESLcEtALSMwZFWVUNiO2nrCDcLKI7OxM3BaZ9fKcg8X3S9LGv95HvXDSLJ8knX4MlUgBgjda+8LxK1VK1AeO1QpBoqRsRhBX9oKKBXBAwkdywNxkUVTwilKjFsCSbATQOKY3PQXGweXRgjlhZuEhFLg3bFghiotuQ9+qFBqBSMa+TztZrp06wYuKmTelbBHWoCbOPhD4xRHyjhh6TnGTB4kMQasxViUr3fwQ8JxVT2uTwm9WzK/wvjAmHk4CYNaC4EHR6NEEsJjTfMGUChpl0iBIBZPhslt7KzakmpKpgQtIa1u9ezup0T17S919tRz8pJJvX0qdpZnmk3jgRUcbSgutVc1AJhUIIio9xo0Y4d2lWx8rQN41O/8divZ3vr7Fxnk53xP//n/xyXX3750u/e8Y53PGqHqZ2h88x83O92rlN5TFrvf//7H9V+nWztASxn0br20nfkgQcB8rMG3gkYQMfbgem6+1OPPFz68Vppn9PgHEBuSlJwGGdggtCsWfiBeMiGAmhXSNg4DbIND1YMyolkpBSTiFgSZucVsOsOo/sWMK2yEIYFsDKUgV0Kp+wHtQMKaCiLrZGA+6W/E4llQgJcNHgYVlkRGtprZ03XsFoBRTg3cLKdSLaTxGphT/39AHQIustF4UR5LYFBtNw898GWvHTz/eyWO//kZly3/3/Hncf+b2lmUyPt/TJLMjWM3Buo9QcMgFRrMWXS9BiRSXWzAyjKdhshSlFKcelvh5/907mhTQOYvfX4rOue97Z8PrIxgEqvUwgoFzI4MGqP1A5liPSy19yGz/zr0zeUTNkOSRGS/Jvbce9vCoQ8//V34PPvf/iG9PmvvwOuBjgz6jjbYEX1qCZVOVAScEV5HbbIQe5RwywZysBLp64O9qMqWbINFQM2gR/6v7AeEcYBVEQABJ5amJbQjiPMwkjTw4CbCYATSoJfi2iZUG4Cbib7045lfyg3mwSrYICoeQhxzDDbQkEM4wC3WmM0lOtd3To07QhAAq6AUIqXtfHA4Aiwcq/H/KBVz2sSduG0lXNCQQWEqAxIBs0bxFEJWAv70DbivrGw1CyBqwJhVMCvFkCQ88hAmFekHswABKQOFjwoYKcNBrM2Xy+pHSC6CqYhxJLQjuVY2xrZa5yifk6ma+TtDKi2GFZty8rNRo9xiXbF6vHjDFTVawYUgXJTP2x0AFW5zSi3I+p9ThrYoy1sHUAhIqyPcOyvDOGHer44oNwA7EIaPNtwF2ZvxMoh+Z2zkWslBcDUQe4npZZrBvm6GCsDD0gGUmIwajMYC4swludEK41yVISNDAkzMNl6pfuWZlxER1mtQwxQG2GbCLsQJjqFqIw+iB2QAjmJNZjUpjCEqy6/GWzN2WOT42PORIvjCmFUiCVGG/Nn50f2pODKlVfLsHfPzvLE65oX35Rz69Crc7IFiK7dSEEf+Z2zt54FdtS0wO71LCCA69gilpIl4Af6OLZw8whuZcDXrK6g3PSw8wg2hMVBh3rfQRTzCFOvC9gymYkyxTm5nzRtV1eltYtChfq/S4SiXRZz7JQs6XFJOdN7jwA667H0mt7n/5EhkLFAXcLvG2mgsGSLSehYun6HpXqWAi/X5mkf9PGHL3mzDDrT4MsImN2vZz/20Z/BtS94Rxdun2rayFKbppr2VOpZ4MQ1rRyE4+vZ2LMiTl6VUY+V96J+IsKdX7l9189gb525de0Lb9ChNCGOhPhhWieK4TZmNbatGWyE6MdWLbl2UY08kpUHX8yqlCb4ERSo6NtBd/+rNhgv/8HbTgnkf+H/fruoetPXPCmgA6vVKACQ1hzymJhy+BRcSYHoUPW2qEI6FQqTKHpF2amMeK0NjKpuXUFYDAzadQE53EK+AvU6iWpkLtcit4i5hhJQSexzhw9JTcnWIAys5mMA1SYJQEUyyI8W2eqzmIqdkx8a1GuExbkKsFiW2rCQGtCPgOH9AuSM7m9RPDABnEEYV2JdVRhYrWfFAjwKkOJcd10qCvndfCHuIr2AczjJwOKBkopquVYvOWUA3eMBuV5utHpdM7CBUTqDMBSAg1uCXUhzYRcRlgWkC6rSaFaNWg8Tik2j19MI8+AxDKYLhH1jNAcqqelZwLK4atGuyLldbqTzkzIg4RaM+blSz47ubSRLD4DfN8Kx7xyiXekua+zEvi7Zg6UMRiEhJWs407N+h9SOKS9kKAyzZGkbRtIPkAvg6EDeK2mVAWeXMkZSvckRkrsSgb6FWSytOqIs17Pp+7hbTXuyejbNesCMay99B+KoeMItS9lKX5jukXFUIY6KTDQwtUehBAdf0QnBlb16dm+d7vXDP/zDuOOOO5Z+90jVKwBw/vnnAxCVygUXXJB//8ADD2RVy/nnn4+maXDs2LElFcsDDzyAl73sZaf0Oj/yIz9ySo+75ZZb8A/+wT/Avn37HvaxewDLWbCufdGN0gTYXqGOXrDmd70FIEJz3soTtYunZXHhpCjRm2MGF5SxYMjDTg1MU4BHUgDEEmgKwFQyIHJzKRKZgFBalJMIN4ugqYAzi/0Ws/PVR30eYbxIU6v7WTyoB5UU0otWGCm5mSMQbO+m2rNDICPflFREKeDFapHESTK7w5aFfMzNYCrs2RCYTQ43BjMY8rfMGOyvtD9B2Rn9BjCi80dN7G0DIOW4AMuP584jf+lzeeZTxLrD9pQzO5vNVGikfdq5/X6TCpadM6TASa+g3LlNQBtdVcD07chSY09GGIDYA1oeryXgH6uvsEUYyK3ClFYaqroFamSgxY8s/FDO3Ze89nb83q9d/5hePwc6KtMuqiqEgqi6g6oRAGHvAcDz3ig387/243d0VgNC3gMbsQp73k/dIfbzVmwCJFtEX8cB5AgxWSRoA5htG0gBliqBp/p3ktdIA3FAfo/eV1mC5uV/3TGGKFYcoxy18I1FJIvoGFxEcCsbDkMNipyRNueMuBbgj1qU2wxuCDSQBpJHQBgw3JQ6YIqE+ec9wcwN3BxYDAgH1qY4urkC85UhmnM9yvPnqO1Awuy9SP5NI4366jcDiq1Wrouan+KmAaZWBpUrwAMjqoDtOTAogcLBbNeI4wpxdSRNQFJUOANqI9zE5+tAHBad5N1ZYW4rkE2AsNXSQItIGFpbAW5OWBywaIeEMJJ7hpsB1WbKcBFWqJsLe9LWgFtEuO1W7g8bc8S1AcJAmpKojaCt5fnlVGwqAOTwWQCaJQMUEw+nwZjC8LQwnlAfKBEGsh9JrWJrAWRiIU0xBYYfGPgRoXgwoNhu5L4YGW5jATNv4feNEIYF/NDCLYKeq6TnH0kjbuQYmsKA2GVAhUnsQlJYL1tCNLaz03CmyyXRBjSx7WNBeu4w3ELuXeKPLl8MijJkEVal3vP03kmq7IylMAfToOSqK96Nj3789NoJnvLSrId8z3UGfqzNqJdhUSxMHgC98m+894SKvJRHkhrT/u//sq8ErOQqgUgu2kxZUZDyV/zB0RO2n6djceHEqmS3enbh4YzRMGkCj0y2yRGGt3ynikmAHxm0a8Kmd7PuO94ODXjFgO0+APtQHlkIazVG0MZE6rVBJSqT+ULUKoBktBCJsmUHoYVjzIqXDnghUb8kMhegtWcLBIiiBQLCLK0+cBMj0LbKLmZgHuFaj7gylGt7VlzLdYJCyIOh/v5lVchOsCOFGfceS3EXIhIRrr30HaJiP1FN+3D1bP/3u9W0PR//vIIOApeOd5RzPy3d1uGnv14Ic19dHkDsrTO4guaKGYNYibLMNvKZGQaMZpyxM3AA/NCgHfVkHo9hpXug5G10xBe34M7qqqCc+/eHvyg17Ut/6DYAwCt+4H1ZPQ3Iff1Tv/lGvOjv3Z7v3xQZxSxmpUk/d4ECw3nOagWxIOudvgng0fzBBPIY09U7Nmiwe8M5UzA6gnWEqCoL20S4BcGPpUa2iw5ckrwTVbYosYkVyPED6U2ZALMIYCfHql1zaEeEaivC1DGr1okEsAml1HJ2ERCqAu0qwc2A8beA6VMI80Pdaw8fEEJMMYkoj8xB0xl4PIKZt1K7N1aUCn1HhdaLPaI1UpN6L9//QbX8fU8ALLNYlAOi+u+7OKSMq7QULO7mPgLq2O05gCFiWYqjx9Cg2PKyzz4ijEssDgxBLMRTKqA2lEZeY74AigJxfSRqkaEVIE9VVNHJDKXakJdNQAigf6uj2Odq1ku7WsA2EfNzStTrwOCY9EdhQOBGatpiKsomYqAdCZnAPMAYPLhA0Fxat12D6hZhdQgYgh+LJatdqEonipoxrBQwTbIhExYbJYArna6qRoYlwGj+V4yIpUMc2BzmHl2y+doBrkSGMea4mtZYc1w9S0Ey+hJwk51KdHeufeENT1y2oNYXiBE8KIUsZKkjYJWaB9dEOJgT1rR79exfkLU7d+YJWWVZnpbQ+Isuugjnn38+7r77blx66aUAxH7sk5/8JG69VRTvL3jBC1AUBe6++2685jWvAQDce++9+OM//mO85z2nVzV888034zWvec0pASzEfAI601/StbW1hfX1dWxubp6WkyOtq658N8xC2KUJCX8k1hl/UdZ13/32LizNR3zoD2/MOTJsTPYkbVcd5gct5udq/kIrvvspMI1CYqkAxQQYPRhRbbQojspQLg4KYVE0QZhyrTRzVDfSjCbWXc8Ka6l5TM2YNR2rryyB0RBxbZgtXEzTfZ4IEkQHFukmzVugsAijUopcfZ0cVFw5KbQjZEi9InY5di5NZnqcSGB76pXc+KWqCNLk9y04kq8wRyn8rAEKCTROwF1ahy95swTIJeZ5GnKGKIqe2LtE7LRD6GdypH97AZ8ApCC1Nit+8hAibSM11f3XCH0mYG+76WdrceeX3nui02xvPYp13fN/tgcaqnrFEvy40JwLwu/+1jID5toXvAMwBn6lRH2g0Kara/h+7/85NebfK37gfbk4SEwnIAEchGa1uw6ARLEBqGOUAUwtA3S3ELaeWzCKSci2Ac26RTuS84eChHm6mSjgTGCEyqAdy4u6hQYc9rIYUhMbKkK9TjmjJX1/2fZUJOo3nfye07/GiwoiWTSEUprcMOoBLxFozvMo9tfgr4xRbAPtiuyDmwH1X50j1BaYWQzvtXCzzke7PiCbMC0yMJV9pwE0+yNAQHnM5L+t/TkwetCDGNh6uoObM4ZHYm6uYAimjjBthJ23uanJQeFRMqLSoMwsGtDWVL7PZSGWCek6UTfdtSGB0tYKcJIHk0lhqAzCVq/VwwF4ZYg4rBAHAviJtYMAPTDA7LwC00MG9QEgjBjUSsNnWsCPGbFgDB4wGN0v4Fq5HTC4fw57ZAI+tgFaXUH79HNQ7y+yosRN1Is73TcMCYvRWXDpEMYVFocGMHXE8FvbYl/ADK5KxHElTLrKCZDhBIQpHpqCjmzK9XjfqgDzG1vAeITmKfvQrjlUD9UII8lqCAOLxQGxXRBLjA4AtHXMeS1pkBEqo7lERkEiUcpURxuxGSIdolgSm7HEBLSU/yeMUmnE07mbbDrZKBCRmOcsf3OzoICLgfExX+tDaXKTFwsBhPzQwA8p5yO9+EdvV3YqHjM4e6J1zYtvkkGKl/spNPCUnXien1UqG12PtR49U/UsIKxHU0veED8C24y/aOvaF7wDbEWZ/KHfv+G4epYHDmHgck3brBPKTUa1GbMi2y6iDHTHBs2qweBoRLXhUWzVMAsFTawAsskGBjGIwiQxpFu/lNNCxkj24M56rDfko0ElqpgExLTtEjs4K0kArdn98t/7Kyvttd50DlyVMpRyTgkIqe6LnTVYX3FjTHcv6AMiRFKLht5zStnvZCuXP48X3iD1fs8C8YQ17Ynq2f5x2q2mrard69m0f0GVL/0V4u71Mglos0ceOv3rmpfclFnsSa3phzZbcu6mDrn6Fe8CmBFGDov9Rde3MR6Rvc5LXns7kh0Rm27ACwig4GqxI2WrygIndV4opPZIhB4mwvBoQLEdYHxEqCzasYEfSa8pBIiI6kgDU3tl7hNiYSXLQ90hYmkkN62J+ZyNpe3UEulr2GP6t2MBmNyMEUvKhKKUq+EWEcVmC9PKwDmWYl3KSaHIwPwci8U+wtrXA4pJECILA6aOmJ1fYHauKGPKbcbKt1oUW40Gths0+0rJxgtS40hWnhAiWJUbIEKx7UXNWxlUmx527hEri2bNYfz1Kahud79u9a5xrASMlAVFTZBrRdMuf7CJ+JeuUTtr2j6o3Xec6P+cwO1Ce+N0zUxAfdOChyXC2hDN/hLt0MAERjsyuc5rVgmLg9JTVBtyLlUbHoOvHEH8xrdAVQVaXwNWRgjrQ1HoaH4tzRt5b8n+XO8BXFoc++6DCCWw+s0W5UMzOXdGBfyK1MUUGH5kMhgHBgZHGhQPbCMOSnBhYR/cAAYV6gvXEUuD8tgC7XoljgdECCOLxT6LWCS1FWeXgGIS4BYhX1ujE9DDj60o3QMEzFuoLVrOc2HpJVJujoJicVAijks06wVgCG7qxdp6IMr0PmksKcgpIitbums8xD6u8aK0V3IZrNznm3PGuX581SvfhTB0AAMf//Dpy3LauZZqWuCsr2eBM1uT/mVdH/vYx3D4f/3/4tl//wkir+1YX/zFm/A7H/ptvPSlLz2lx08mE3zpS18CAFx66aW4/fbbccUVV+DAgQN4+tOfjltvvRXvfve78au/+qu4+OKLcfPNN+MTn/gE7rnnHqyurgIAfuInfgL/8T/+R3zwgx/EgQMH8MY3vhFHjhzB5z73OdhebtRjXaurq/j85z+PZz3rWQ/72D0FyxlcKeDqqivevRRySSHgQ5+98Qncsydu3fVHN+HqV7xLBpPZDsVkJQbFKKH2jlBtEqKzaNZliOhmIm+mKEPU+TkGYZBC71IRA5Bv4WZNzi7JmSUhdo1ZYp60rTRChkDRgJsmF0jknLBWlA2YPFmpbkEknvfUeLFuYWHK+dUS9X6V135rJgXswIn/qHqQcs9fPxbyFWRLaFesFBpeGRPJukVTBRlmWSGTizWAYbvQNw3l6xrXKM2mswAZXPe8t4EHpWQd1C0wqvL+pM8DUNbIEsOGuwJ1B6PkuOY9mWjv/LtBtrteAlX6QFD/8T2LEek4WN7H3jr9S49zLC1iYWU4bGUgGnqWLgBwxTW3SoF6aAzbRs1rQA8kAR6O+veyv3VbBz5orQ493aMGq4Ol+K42eSkTwjQCdiRwQRpNZKsvitCGWv41DaNgZFVHUrik5tcPDPxAfYP13Esh18KuQrZ5sjXAA2UhKoDCkL+3K/JcW4vntWkJbq5MvgAMjokFRSwlRN14gm+7955AkvaBIaqFbLvckucvzgVWV+eYuRJNrEDBZiXP+H7G8AgwPY/gVzQUlQSENl6eb1qDdhXwQ4ZtCOtfYqx9tYEfi6LhwJ/W+XN0E7Hiihpwmh0IUyBx+k4SybUFEHVKGqD1lWhNg+x1H1muAcnX31lQa7thVH+ABnR+1sMB4rACLKnqKAI+Hdco5ytJcLZpAbNNsHM5nvX5Xj6gQUQdChifzh0j7MW6Aa2ugFdH8EMrjWgTVUHFWRWY9y82QEugBcEtWgx9RH3OAPX5Kyg2C5iZZHvYyQJoPWzhZNBKJGH105k01lUFuu8hxMlUVIfew5y7inqtgq+GqDa8WHRFxvAB+TyaNYdm1QIk/ucS1CrfGVFhiE0YFwblBrA4pxDGHgPN/lLs2AJ3ypa2+9KmeQF5hkM3vDFtepy8Dgpl45KG3SuDlNqojR3BFxZOiQJ2Iew/P7TwIxkM+UoCcl/wY3fIawT9nu2YSZ7O9eHPvh3XvPTnpN4g1nMGMtSwAoCdyVDSMx14+nislI2SmI4CLlM3wP5LuOKwVEa6khJ21LNYeFgg17SSn0QY3yuqQDtrgBBgzlmBaSxszWoXqLVeCKDa520iMqAe/mDWvBQWJXXovkDZ2itdc/WaSsaIwiXVWD6I4iTEziasv6oCvCqMBjq60Q0Es3WY1m0aFI6iAA8KxFEpyleiHL4sloPcDRIBZdzK75N1HwDZVrL0quvjcntSNuDhS94MrkRVQo0HaQgxme6c3LWmPVk9m14D3XFbqmlPVM/uHOBmZnvv+9HPrQLkeO4EY/bW6VkRgCNwIZZTTIAfmBz0ntbl192aCRt0sIRR686kxKSeCvRk68U/cnuuC4l6r8EMt5BfGs+otrTP85JdElNLQ0LeMQGaIScB5Nk6NNl2RrEaNapUcZMggIAOgtkahJGVDI2ZfP9J8yZM3ea8KKodzCLAlRahSsx/ZIIUMTA9JIBUKJXoM9eaQN0h3LSFmSwAAGF1qIHsVm27pDgeHmG4WgiIqV6oD5SYXCg9um0VuGmi5HXUHnaygKssvHUCqFAHMts6gmYRTt9nGMj3e3TfAna7QRyXsPOA8UYNM627DBRnM5CSFgUGxwjD3VB/KVulv6h33dD5Qv59uqb2QdpE4NxpLdgHV9LjEsERUOIhg5oAN/GSw1gH8HkVtp5pEUrJSmz2CzAfC1KgBaK4cS7nwcRhIddFW+r+RLkGtV5IT87Kv0UBmgP7/rTE7CkjzTdckfvR3MMugswlAsNNTQ6DN02AmbeIKwOEoYP7k6/J+2pa4MJ1bF5UwF7oMHowiO2efj8GR6Uub1cs2rGQocqtKCptALbW+pEFECm3WoShzd9jEODXKpjGySwmqEtJsjf3BAQH03qYRQM7KTQbl+V4xAguHdr9Q/ixk49Fz+lkFRtLiziQ/MJiqsBKGzK4woUDCos4LBAqg+/9m+8V4p6hXIefydWvacXWTH7/eNSzwF+MmnZvPfHr93//93HFFVfk/77+eiHZ/ciP/Ag++MEP4k1vehPm8zle97rX4dixY/ie7/kefPjDH87gCgDccccdcM7hNa95DebzOa666ip88IMfPK3gyiNdewDLGVh9md1VV75bbpqBcfdnnli/xrNl3f2pt+Gqy28GnDbsXxBFxXXPF0UPNR52blDo1NU2yiyfa+PZRLh5gG0LLPYZtQISpgFXwoZmitl/NjVyufAxaTJqgGAAE48vlgBpNtl0Q75FDTQCrthUHKk0FUSIwwK2Dqg2gVAYTJ4xRrMiA8FyO6KYqOUYIwfX5aI+MKxamgHIhYAUc0lVkphU6tmbMjKIQBTFDSlGafjcjq92ys1QKwdaNCCIDd01L74JZiGsobRt6heK/SwWcAd6pJWKy1R8RiB3ncpyl+PNQOw1tP3np/3tF7C9zyLbR6TfmR2F7956zOuu//ZOXHnVLVo4S5MVy/Q5QMPgZRkfEdlgcY5ah7UyHGVVr9hGrARe+rdvE/ULA5/9Z8cz003bARjJ1oA0BCSF0FMUVhOMNJ/EgK+s2GURYBoBIlJYPcDwIDDpoDwq+15nyZI5IUzBNDdvVjUUtGGkC0FmLhKpx7AAvNHJayS1TizlZY3mqnDJ8GMJrC82gOqYyOjBopwwnvM8RQI6KavyyAODex3KzU6hRz6xvIBj963CzMWCSqwf9DFRAkKbsctqF0DUL2zEC7uYAOW2sCf9WPbZ1rIj7ERh0I4l7Ns0HmZjCtq/glg5UBDLm2xj2Gc3a+YHw3Wgb7JECFGUf4A0mU2rKpXQNXrWdo2pD92QT1nQcDY3NggACgujioswdIhOBgOmYQyOyvUwVAKEUQTK/Qv4xiIsHGLBmD6VMf6GQXTA9KI10DOERRULUl9yUWOYWoKoQSRWQEn1mKwh1G/fNg1G9wbwgTU054xhnYXdmsv+LmpgUcscPzHNqxKYLxAfPJK/BzQewX/HhYiFgVswqo0WbrsB1QE8cCAfYR7ahLnwAEDi7TH6xgS08OBRCTNZIA5KQIPtzcYCzbkjFJOAep/F/ICF8Zz9ykHUA5FECWOamG+B3EbYhVEQJfbIEITIwvxLLEK7EFYkOyOWPSyDlVAZFNOQ73NcqO2YQQ7CNXpu2lotTU6OyT72xTKUZYZc49Ry6Ewz/VJN2K8NnyyN6ateuax47b+Hszn77/FauZ7FCerZGIEdNW3U4RTFKCSd7SnKwHDDAhQY7f6hbJygdWZQBUmQ644Sc45jV6e1mzFBAjaSRRgAXtRSN1qbh32cEQOACicAz3Qmzz1nH+KwAsUIc3TSAenOCkBTOFHuAXmYnAFcp4PNpMhOYEWEqFzS1cfoG48QAL5pj7feAjoyDpBtee784q245iU3Sb3coMv9OWFNe4J6Fjh5TZtVNrvUs2nf0rEh6h6XVt/uN2VA7q3Tvj782bfj8sPvyQx1qd0AECH06lkuxLLUGLGZFpIO5/q0mAYwKSnISD12omwU20J6/oiOMKCgifFRXqdlmDbALALi0OUMtVgazM4rMDjiQVpnAsgEB0CIEagjKFJWr9q5DowLCy5EsdMOjdg2RQYpIBIdwRgDBPm+kGY0cYxZ3cqOMiGUC7HqbgYQIGQTKKastlJSO1AbgLpVtXMrx9LLgBcEVd94RB0Am0YG2G4eMb7P5HD7VGNIHSCvb+ft0vcmllZ7ZS9ZcyzD/lg5+JHTzy1mJU+aC5D3AigMKrmmMWVbKUQWK0FmISkmW8G+VWI+UbirZ/M1IC7/d3qoTy4S3fVK6toe+ShlkO5wZ4AVkN7Ma814NUokIswPMfw5HhwI1BBCxZgdIrg5wU1aYGUE2r+KsDpAfVDyV4rtoFkuBrS9Dd6eaM5MABqdJbQtyFqYhzax8uAG4v41zJ+2glhKDqJpI8zWQtTc6XrVNKLEXh3BbNagrxyT97i2iulzzpX7HESdZFqGm3nYrRrtgaFY/H57E/VT94FdAdMC429MgRhhJnUGzdkS3JZH2DeEnUs92a461PsL2HlEMYFaYQK2DSAiINTyuTRN7kVoUYta06syKQSQtSh8BPEYobJwMy+2x16+S0LOhai3FqS9gBUyGSA1txFFd7tqlZDUqcnhH4fruta0j2c9Cxxf0z5Z6tm/0OtJWkZcfvnlOJmZFhHhhhtuwA033HDCxwwGA/z8z/88fv7nf/4M7OGjW3sAyyNYV159S24GTrTSRWbvYnPy9dFPvBVXXSFBoVdd+W589GNvwV2f/7muKfUBppWQ54EOgUzLsHWAnbXC2tlcoNgawo9tDnszvhCZaIhS+CWVifpkZ2WHs6JeaVpRrSQrm4R2Ji/r1meGHikIwLO5KFkGAym2QpTnGyPy7RWH+UENViPAD4HouqI9sYNMAKBFtV1E2DbJPCnfNCXEWyXLqYBjFhai7TVwLctwzSP7ZWegIqdvKzCjdhYgwnXPfRuoF57MkZafC8jzU0G1sxntr/7vE6OVdEIeCQhRCtm0drKB+q+bh658/LaJAGv22BOncb3qle+S87NQebERICKUAlL0/Q0u+773oFwEGGcQChluWyPNZFQxl5lDbbBIgIwdheZL//Ztqjbowi4FpGEAEdFZtJUoUNycYbzJdlwpjyUpSsiorzOAYgpAA+pjAVAUcEQUGDpgAtRnF4hBbaRCstpKjEFkn+nEuOqCNeW1ZChM3Wt5yUnxBojDiGLLoNgWAMjNVX2XsjCMADy+IlFcNKqqaQkpy0VC7eW9gASooSiNiB8AzaoAJsMHZBBQr1sUM8ZgQ15DLCcoW04UEwaOSbOw2E9wc2HIGQNECDMMBFEeBM4gCIUIWvgc/smqIBM1HXcqwSBh7DQadt9dldBLE6lDp4hl25kEnjKD1RqMEUFGAjDhxe7FRL0ml6IICaMCMQHUEUuM1DAEmnVVs3xhBcMFsDjICGsBZmbh5vK4Zk0Y424hahA3bWVYsRAVCmuYKJwBNhedB7ezyIq6dE0+solq0Qp7e1CCKgY5I3YMdaNWiTJM49ZLgzccIuUouD/7JlBVKL+MzhqtLMGrY/ELn0zh/rzGygNjDZQO8rhvi1rTjIbg9VVgVKI+NAaTvL9ixoiOs5UI6XAk57IkpacCKaYNYm+Q/gYB4PLzGlEPUSugDC18HmQaks8i5dmYYEBtOh8pf2+JBYz1DjCDFL7LS0rfM7Z0YEqI2av7TK90n9qtGb3yqltyQ7zz76/+G7ef0f3a6bmdVlJvffQTbwVw9ofOP9HrpPVsUo6kmrYxsNBh07EZcHRDNrKoYQZyIyvnDfzBFfgVDeNWwo2p225ApGA0ABlq+c4qZalmS+d3yhIxJOoWUhuxEMAhLOe19JcxQFkirg7AWiu2qwNUM0nLTrai6bFx6HIwMhQIpySzM5J/lAa7okjt5RBmQCJ2JBpnAW+695Zq2p0KE2Zc/fJ3wm0tlq27dvy8tE5Wz6a/p9WvaRVU2bWeTT/3c1pMImr57vF9kMWapevA3nrs68qrb5F7VmEQSyHnhBI55D2t7/2b74UJ8n0MQ4dQaq8WJLcilb5GM0iEMHT8OfPiH5Vr9VKmHwNgRhgY1KXUwYOjLKz6NoqVdIzAWLMmPGNw1IMiY65OCOV2BJJlawRMkII5WUubVogJXIgKJVZqDRYYaCBf+UReitoDlj3Lvt53QEgkAJQoBR0whxFQbAHFTHJQogXICEEplg5GQdV0HTA+giOJehXIg2ohBcl7KY8tUGxJH0tRhtSxECDBTCXc3CTyhrWAkl+gBCCpR0XxYaY17Kzs7MABkCXQvBWANn1eIeSak4Du933gNV0n+s4VsXf9SN/zpayqHtDS325/20SA1dcgfzxAk+0VbXbRgOaE+LFDuyJKovG3CM12AdNIjRsrRnUEGByJMG2APzBGIpKNvrYlx2O+6MB4a2V2AYC3trvPPmVw6bXNPLSBcd0iDgvEgdyHeCj/UozAdC7HpiwF0J7N5TVWVxDXRxj/wTeBlRFWv8Byv2q9KNFXhnDTRpRF0xmqL85RfXPY3dMmUzlVRkNgZQxUDnG1EgDQCHBXHW3gx04IPtNGvztRMn5DlDo72aZ7L19GYwC/6M4D/RvVDeyWA40KqYFrPV8MgAYwhYEJYgfJlsDDIqtUxY7PaN8IsfGtrVxPJu0ZV7DkpSTux6ueBZZr2qV6tvffuxGKznRNu7f21tmy9gCWE6xX/43b4dxg9z/GkyPEe0PfU1sf/fhbjrs43/X5n8M1L75JbqTaSDGJyIQdoR4VoDUHNxfWjp17YXa4En5ImJ9TopgGlSFLA2m0UKHW6zRWC6eiAIwG3be+Y5zstqyRaZ1VyzDPyLY3LAUEDQoJl44MCg6xIEwPWSkWmFGvm8z+adY0w8UrS6rUBpQoe9GjjTlkDRFIvtUy9IogqG+uScCJhP8tvQPbKwiZO5sJSDEcR6XY5BBlBcuSZUKyRTDomtvUVPZtFXYqTtJxSUUpa8MfqQNQUrGaGub+se+rWqIWSXkoS3s2Yad5sSGYxsP6TtEQSgMKfHwonrKSjI8o5hI0KQ2SACqi6tDBrAHAwOf+r0698rK/dRtcLSwfapNHte6HZkAA0KBtYfuGSs6NYiKPlyZZ8lXAHVOQPLKNoHzxkuWCAppITWYCU2To6+YMN9dGI3SWDKk8jk72pQu2JxhO3xcBQsW2ASAmuIlFudnbF0CHSd3xjoUoTGwNlBMBdcpJFPl/RUgBvqZNzxEghjxQ1hDwaSaqGAoMN+9eyw/l2lBMGIVeEVwt3/0YCKUzwhoMAaaVbJDFuQOxXmjl+87rKzKcanw32Iuxu4akAZM2oBQiuNRhW7pu6eNyY9sfPCUWdtsbOvVDQXue+Ok18yBPLRdNYEQyWOw3mF5AmF/AiEUAVj2qcQP7uVVc8JkFHvhrAwyOEMy3HVbuFQVkudGKFYBXRd+ixwZv5f2S93KtGg6A0TCD8qgbcNvKYJML+Zv3wGQK2oqw6do3HIDXV0BlASwaIAb4p54Digdgv300q1j4vgclD6HfvA8qwDnQkWPg2RzcejDmwMaWAP5FIftQlrJ9J8B5KCXANwwN3FxAhHISYecRbtY71mkVRsPuSfzPvWTuUBCLOC6MKHsgoIpdhG5YwiwDViTArVOpMMk1xOXPUJi/0UHuZyyHLlSiqrLNsk/9GVm9IWiyDUogwuOxdqsNd6slTwR8PNp10no27ccJ6tY9cOXU1onqWQDLNS1kQBlLg/b8NRQAMJmqbYvWmHUN92AE8apa9xQCehmAWiPXCRdAbSvXBfZdbYoEbkdwZPQEKbKCDEdBRliDGXgJvW1AhntBXkMGuS3gHNoL90nOk6ptACCMS8TKCnnId0ApRVVpkxIJ2giKATlPUIetBAjIYnogiLVa18q9RY6N7HfO6UtLB6F2a66qSQtodk0G9vs1reGT17Npm/1/gWVA5kT1bJ/YtFtNa3jZwlcBrL11ehcTwbZB7ETJISrx7DjlSRp8k/RuTmewpmWtSwmLA0kdITXgp/9Nl8XyktfeLux8/e9UO0bq7LZCCdTrBGKS/JWFBTGw+qUpTN2K4qISlWzOQRsIoBCtDHk5MuA66y6wfs8Mq61W0EynVJ8RTAo314wUAJo9Zjsrw6h1lSEh08QogKaTunlwLKLaUkJO7H+3u5fKrg+2s8Q2dYBVq26urLSQjrq6kLrtIIq1qWkjyAeQDsCp8fKdLwFEEjJHrj97/WoEkKzPWiF8mDRwT9+1stTvZMwEyqVzIF2PogGM2vYRyc8IyI7XO8G1nYBL335xqQfmbNtIO/8GLF3P4koFvz7AxncM4IdiD9zsj9j/3wmH/ssEW88aYXbIYPAgMNgAVr9Wwy48zLEJTAjgzW0hjpYlUJWiVGzbLt/QOZjhEFRVObeLFYgiY7p6dmsCcyzApP0cDsGrQ0TnhDykNfP86evgYj+GX90Af+3boO0JMB7J9a8VUhKvDMHOSS+xPQM2txFnM7VM1PMvkUOdKCcxX4DsqCM7EVAcW4CdQXEsSObjXG3dY+zUQLaQz61tu8+jr0hMYBIAFE76oFn6Apvcg7ISDqMFqDSI3sHUAv6FcSGqoDYiFgamLVCvi/UwzWJHgD3TK51bT0A9CxxfN56ojjzdNe3e2ltn+9oDWE62HgZI2VuPfe12MebCIIxcDjdrVjsWQDsm2AVj1DJYA3rFYohRbURsP7VAs0ootxmDI4CLrdyYrQIQCyB5/3NhQRtbwibOL66DvGQPZG1my3GytEkMwaaRRjUVA8ygOqBYeJhG/acBtCNhE9XrIrceHOPsuctqexQLA0fIqhY2ApbkZQDEbviclsi7qQvstcLcycWg/p5C6ILQnIavWikkoilhtxdL4Iu8plKN05i5D6Ykm5z+Y4GOLbnTAiw/X39OtmHqiSsM6F6xuVM9kxpqp7Jh050Te+uxr1SUXfvCG2DqgLs/fmI7w0/+h5/GFdfeinasSoagQ9KhNJKxRA5XJ4+sFnjxj9wuH/9QckmM+swn//VYGPiRBRsZuKZtswVilFDQMKBO8RJUeu6BUMjjxBaKNWheG2SZ3khDFllmOJERCoOonsASlilAi9iUIedfxILQrEizbHUGL89XJZqXr5ut9fW3ZZBMXh5nW6gtoNgjRCv2TOW2XN/akViUlVuMdr/JXtcpV8a0Al4BArBUG5I75RYM20SYRgfGrgO1bC1NdbKWoAjYuVznkjohOsL8qStws4DywRlsrSxKVj9/wzJsr1tpkhYqu08NWQjCerM2gyXUWrmGZm9pGfRlVhmgAKnrVIMJgIFcb1MTyiw2GDBGXpsMYCoBeRCBUYF2xWLrGRb1fvn8iy0CkwVvWbTDEuUcag8CjL/NWPvKHG5zATYGZlYDm1vguskqktx4qdqR5zpt2Z7k3AJK1pBDGVjHI0dBkwp0YB94vgBVOixTO4IUiolxBS7V7mtagzc2l5pdlPohj4bgQQHamADzCXi+kHtU8vEnAbB4UcvvjJFmNkRgvoB7iEFxDHogYH7hGADDzSTbLA0zllSNGZSzCOcNUGwre1QVKhxFiQNAg+67oUwsDFAIKMkwGQCj0Ck15aRjmMii1GoNiA2ICZ/7wBvytSHq8Oh7/5f34Xd/69TDhB/J4mQFQgzQ2Qce7FS2/Md/dz3W1288Y6+xt07vOtGx3a2mDZUQGJr1gxjcNwK1MjDCfCHXoUUNMy0BLhFGBcLAwEGrMRYLyg6M0Gtriy57Jb94xFIOSCYGRSBIrUuqaiFgaShEeq1B3WT1XnHfFtywRBw4cEmSv5CBI62zdQDctzaSoG/qXAD7ymX0alnDAq5YAlsBb00IAuYnclQfvLBWcg0VwOeqlwm0cxiaalq9DuT92FnP9vdtt5o2b/v4elZIUnTimlZz4ZbqWWdxMmeEvfXIVwqXvvpl74RpIz71m7uHTf/ub70Rl/1/3oN27CSPTutHsZ0ltEMCVCUtdaU8L+WtoESuNykiK0ONZ4TSZOtRMFBuik1XKIG1r9WSS+QMEIF2rYCbeJhWQsSHR0K3nYI0l0XOIbuISJkq8p0SG2kh5BnJgxo4qTXrkJUqoi51olZmVnU6dEAchTQUOIMsdhEw/nbMpCQYEqWJqkmK7QZmXsugnUiY+waIlRNypCrcESHKFCYh8KRlSJR9swa7EvxSvQUgkQDT9yTZe2WVWqu9udaVNJ9JDQboUF2vH953dWzsvvdZDZjA0qzo6M8HErgaO8JQWok8pHZb+XfpMX1yIzMQtMdJdTAgQMSwxOzpq9myOAxI1esyR6AEHDNw7h/XqL52DJjOgBjBdSP1Ygh6TY/gupaZQgj5HkCAgBupPleAw4xGUs/OhqCD+8Gb21LnJivfpgFtBtBoiFgV4BUnFrYRKI7UwDfvF1LQ+ip4dQQYA39oVQCRIzOpuVsv9bTmiEn9GUBMiK0HWQtyTuryugHVNcxcVfHGglflZzOp5V6ZzpkEsiTVUVHIuaDKmCVL4nQP0fODFi3IBjlfSyf/ZgCQ1S4biI2BacTuNlvjGgMy8l36/f9byIiX/fX35hyUy77vPfjkb79p12vP6Vjcu5edzfUsICDLmahp95asvovD3joz63u/93sxHA5P6bF7AMsJ1n/8d9djbW3tid6Nv3TryqtvQThQIZTC4GEjNjphIFZbbIDCEvxI/DGjI7XyAUZbDQYbFpOnGLWNERm0m0iCHhcWVDrQXJhwYaWCW10B+iyK3Hy23c/ZagF6Y9aHhCBs5taDykIKPGUTGPWEtnPxwW1WDPwQcEwIJaHairlYblYJ3hgdlEqzGxlAob68gFoRERBMl8HSY0hEZY6LvZgTJlNm0ei+KzODNbMgs8wT+6EqumLFmU4+3l+5oPQ6ReflIjOtFHoKdA1qn+mntmvZXiIowyQV99qkAsBd/0M8zQ8/R0AAttQNcPfWaV0f+v0bHvYxr/j+98E6Qjs2aFblM2pXBARgq/8qsGEa4L/d/AZc+ro7UABwM2X3FfK9lYEKgAhtPCWAPBTIqpBkcRCd/qyzDF9KQ1dMI6o6ik+uke2mPIeoirCUe2QC5wZvaWgc5TluGnIQLhtCqAwW51rU+wm2BtzRKIqzguAH8h5t01mFAcje3em9AALCSI6NgiAkrzc4FsHW5GyZZLGWWMe21vdMKqCrGavfbDMjMdktxMKKJ7Oy+UrfdjYtQAZ/YUWtYryTgXpJ4LEFMEK0KbycQIYBrwzCRQM0DXgq18kckJzYjKTMs8J1gEusl+0WiQAU+kZ6FggpjCYxpw3ysK+/71jI9sh7oCzAQwEx2rHB5OmMsBIw+rrD6tcZg2MBoUhB9mJ7degPapg6wB2Zic92acHDEnQ0CmAzlFwTrmsQGWm2E8i+uiIKyPEQ2JogHt2QwUAGYwzav3Yxym8claHCopb7SVnIcZnMxPu5aUB1A/Ze2IV6z6E0BOip9FJgLS9qOd6GOiY6R3BvcImmAba21VqCgMkU5sEjoLLAoLhABi+NFwBe81zSgIDV+x0ArCE0aw7hQIFq02crTmk6kdVeYo/WvX6yvoScqvI9WrAOpBgILDkubWIQyvdgSa2iYGayPTndK9nFoDQAi9rgbF8f++jPYGtr67Rsa6+efWLWlVffglAaYJeatlmV71O1yTDtQEN9K7jtUoZHMYIePAZblaCDa4jDEnGgymcAIPGQpyLVWUaU2NiRy7IztB49ApEhIQkBcj1HZx22q52W9woAWdQXrqDcEPaw21wgDhxoWKDZV4gqdBo6QhDJXrNjcDS5Ts72XYCG9Mr9JJZO6tlCato4dLCTWtXc3ZAQpEPcHuGGEsBRuE7xqAO440hEJ6pndwbTA8fXtCerZ4ET1rR3fWGvnn0818Nln37v//I+sZNisRDzA4JtAV9JDqAoioU4ZBrgj3/+DXjB378DFqIe7quvU3QQkAazQDuU/rWYCwnJzaU2nTy1QrG/yBZfzarF5AIHN2cUswinmZwCTMpjyFAm/tgm5txCAEKmC8gKE+Pl73bSZuAiDgrU+ws0q0asx4BszStkIiNtripZqOHOdot6gImCHXaykOuBEmjIB9imBa0MBdCIUYhGfQeCXs/I0YLqFrSd5AO9ZazaywbQvEdszGqT0BF3kqpNwUoK3DkgJGBUVcloW6kvQxRVR1+RBjl+ZC2oqjqnhKXges6kyyVF9m59sCG5roRuNgBAXhcQi8Z0HexdSxb7DEb3exSTNhPK2tUCbuphpgvs//QW9q2NQUc2c82KqgStr4rtVeGkxuyB6PqCoMJ1qufhAJjOEbe3c33JkdG86GIMvqLq6tk8g8FkLRBEsW7aUo7pooZpWnBdgyPD7FuT16k9WDNzpAEjOVeU4Apvl9TrmVgVII9LOUBNA2xNAGtgVldAHDtFYz8rp5/nmJwYRkOQHcj2Fr4DWpwDYJeVhCHKOUsK0BMhDgRosYuIMOiu62YhyqpYOYgdoFm25oryfQ2FQTHdRTV+GtaTsqa9+/TVtHtrbz3W9UjOxdQ//fZv//YpP2cPYNlbZ9X62N0/g1f+z+/Ngzu2UG9LoNknA8gwVMXHXIajsSDUa0C9PsDoQbmxhhJYHLCIJaHUHAmxviHQqICde/hxAVywD3ZrS9nAvUKLjDSeqcmytgsCTUNGoPs5BNDa6tJwyDQBbhHAU4KtGeWEJLA6MOwiwkUZtLYrDvUa4GoBNUwLWBLWUKgsqNQAxlYLi8BgZ9Q6QgZk7IQllVjDMaIbWgUGolmyJ+qCxWV7sBIKnllDgcGkf+svo0Oz5CndB1iWjp88NjMre8UoO5vDmEX2S+DAorIxLAUWABDhrv/2TgDAtS+6MWfFpCZ2j4n7+K+rX/EuhKcNYHwX8P7597/hpM95/j+6o8PY1JYjVHKuGgUW2MjwyQ/lfxKiLc+xLUveSQ9sAQC7ILg6otj2EkjeY6DG0qJdKzKj0DSd7RG1UbxxWcM6NZTQNGJrYFRx0K6WaNYtFgcIYSj2X7aRQHCxOpD3YBtpTv1AhmZQUCcHebeqUhvrcFktlJLCppiKoo0Co9xWkEqVaCkQnKKoVoqJ2j2oTUSycRJQJ2jD3QukB5TtrAMeZ4SlGOV929Iqna0LMyefmmsPms2B2Rw8XyAu6m4Yl5eVYVxSVFjfKVOUZZxVgFEveIBYq7QJzLXIUwplLqZtZjZj/zriPaixMLMW1WbA4AGHpk2+6QrUVQTbANUxL0wzL5J98gGYzkBzI8CEbjNubiOmhjRd+/VfDkEaUmuA9VWYGAX42FIbBgDFH/yZOHAkG4ioHt/DlPXVyHOaVgCSDK4QaFAhWTRQWYhdECAMPmsFUG8a2Y9dBnEcWf21k5ecqk6shf0KslqIigKYyPePBwXYAqYNaqWiQ5mRbN/Og/iXswD8sCSfGdBZAel1niPDoGPRiZ99FA/7oPe7qdjMcelkiOM5K9sAAV7tIi5ZBJ6ula0JdLNPhkZ0b/3FWKlG2bWmrYBYQcDgwqGYSUju4twKpo0Yf6UAPbShVoURdnMGPjDOCkRDJEPANGSyFlQGkDKDAeTrTF69n8noYD+xmDmKPQ4YzCxAhSFQ7D1fB5s0nWH4TZIhmpNrlAkB7CyiI9TrhNIJwA3IPd7Uck2ImnFhAGEA6/4nUAWUCEPUMfabKMxiILPYsyK7D65E8eknEluyzuNT/xbRTcCBE9ezRB3gAhxf056knk2K7BPVtMAu9aylvXr2CViveuW7EC4YSH2pdrW2Bf7LP7/+hM+59HV3gCyQlNEU1c7WivLYtFqHFFLLRs19cTPG/ByCCYSVb3lEJ3/nkUG5LfVrtckYPtigODITG1QNrg+rA7RrpQAmTYStI0wTuqzRVOpVVurZFuBCajwz1aD00iGWBvODVgCfaQJjGG4m9lopc47akGtGAEK0IQJCkPo7ZfHNFzK0TvVZDEAMMBMg5+ullVQDvYE2NRo+n0CQBEJYBThbBVESEJJto/XxfdUCUQ6Hl8cwEHtZJ22Qmsp7sVVMio6dAHRAp6hGhZxZldQy1sg10aDbdr5mdP+dMlthGRwUnNW8q6XnJLILR5D3oHmD8X1if25nLWLlwNai3Gxhpo0cm+lcypnxSP5tWnlfiwVgLeJ0BvZJRdNTLPZJo0ED4cdDEEtNG7e3AQDlp78gp1S6N6RjXhRy36hFPcJNA27arJgBGclN0XOFgoF7aCLvN9Xbxui+1sfvo+4nByxbW3IEgkHc2gbN5qBk95b2K2XX7FAOUeoffJB8lxBAsN05AwCsVmrpHPYxO56YNgLwMIbgZoCdebmmK3Bu6xZcFYimQHmsC3eyTYSdtNIH7JyhnIa1V9PurV3X6T/V/kKvffv2LTsF7bJSLRx2KsNPYe0BLHvrrFu/8+9FZvmK738fQiWD12YdqA+1AAG+NoiFhZsAxhP8GJg/rcW0iOD/XGH4EKNeIzQrQHQGzVgGOuW2DHBswwAqhEIYR240EuZfXatkHyBYke6WhTSxTSsZLbpIm7rM5gZkcMdDcFkIY7gqAAaKzTbfzP1IQ8EXUeyRAICdhDKvKkseDBMIsexAEXIGsWQpqhmIpUEoTWZN5cUQz1tDORScImtAcfewFFZsOIX9KVskh5WyDNQsMsNQHsDCptKchVTYL4WIJna72h5QYNz5JzfnTVzz4pvApUUYCjuEAp/Uiu+Ka2+Fq8TzVQLl5PdXXfHuzBrZs/I78+vql78Td3/6H+Mlf+e2/B0FgL/yjjtkUDSQ8+TL10tz+p033SGNpVGwhAA/ErWGbQE26jeNTu0RSkK1yXDziPkBYT9VGwEmAF6Ds+1cGsyUT5SG54Ay74IoVQoAobIwjXhTpwBAHljJnLAKAER030VD2Ss/OlGesQXsvGcf5hnWMyiKiidUBDeLYgumsn9XM7hF/g62Y8lckaZWGnAToO9BGvRksRCJYCNgJ1HBFlI2lBTuyc4hhe5K8KdkklAQtiHVvmsiUpMRpaGiogAXDjRw2SpQGkMZuFMjz6VpLV7Os45dmOxk5GB310AyJgcmU7oOJEac5q8QsOx9DKBjC4dli5bUOLME30vGjjb5OvAzAIbfNthfjFHvS9ZqjOpYC+wrEB3l92MmOnTc2ETcFNaKOXgA/oEH5fM6dB74oSPdIKz3fqHsPGxvC8ChjXMCS0BGrMFSgylPBDcN4qKGPbhfmlAvNl8xs/a02dawe8lRceD9q6B5I/Ob2TyDKyDTMRF3sKvZL/+3HHcBaYhZGs/Cq7d2AC0AggA/RCRWCcxwQ2HkmWkDmssxMyGCY0QYVx2r0BLYdYGaUTOP2KYMMlGWkVdv9VrUMGiDMGuj0UwkWW4R5dx2BsEAr/wb7z0+++lRrN1C5ffW3nq81241bbsK+JHeEyzBj/S75IB6v8HgGQdw/qctzKwBbU6A4UDubRwQxjIsLdqhZKQMB92gM5OAdnTbZDqweycppj+EA+Qayyx1ceGEIQ10A8G6AR0RMJ1iAbQtyDm5bx0s4dWeyNUE45OlkZFbktaNbACj9kGsAdfJViU6ub5QBEg97mNRKnu/tw29NybCgGk0Q8J07z0DtkHvKen5+v5PWM+m47NLTXvXf39X3v61L7oRsZRwcSYFnplP6IW/s55Nr3PV5Td3nwsBH/3Y3tDsTK6rX/EufORTb8NL//Zt+N1/u3yveclrb0copW4DA3/0f74Bz//JOwAVSpDOcaVu65THEZBeqhAljOQSAge/0GDzWSXcHFj7aotiu0WzX3JDE3mo3F4mtFHKvIOS9aYtYmWF/OB7eR1VIUSJZNkJwCyCKJj757mS8lzNKOZCXDKqXKHGgxYeZtYgjitxe/BKHGyCDMcT8STtX8q80O+GsIfS4FrymvpEG1Ho9q49SSWWVAVLKpEEBMjvxSJVrkdLttGAXJvSfiWgNH9nY6ce8SEDAnJMYvevXt/S++OUHZJUav0VIhgxA0ZLr7/bUnUKIwCwUtelYV26vqTjFiMwnWHwrUJq5nkD81ANGAt/4X55SulA5+wHJjNR48zmiFOp0e3+dfijx+AOHoQ/eqwDztPxTq/NEbFpQPM5kqol24gBQhzaCTzVtahlqkpIQU2ba1OOAiKTIcRv3isqlpWx9FEHxjDzVs6X7Um2MMvgSv+zSMf+uOAwgEzs7NxVMZjrcf2c82dLarHeCMiBts1kKE4zD+D4LFcjwBkb/TIbFiW3Zt9SIhj0QRMf9fzvzgE3aWEaAWNiVeDql73zYZV0p7r2atq9tbdOz/r4xz9+Rre/B7DsrbN2feo334gX/+jt8EPAjxnjgzM879B9OFoP8cUvXwBAAIxmf8Bo/xzGMKKr1PdZWOf1AYCVRe5mFn4khfDwQbHfaVcK+OFTsPJ5Axw5tmRNw62X4qxpc8HG/SIQyKFxDAAzYZUQgOTF6jYWgAEW549lv/r34cxiEel5dABFgmYkwhrK0m0ypIx+qww/8fKWMOEOSAFJQxk0ZNy0+lx9TApdNEE9dUmYgKTFYhoIg6K+XhQbp7Sc5p9YEuuDVgIJGcrOTDYPySuXCPAR133322UoV1jEgUUsLMLAaiAqjguH3bliaWDqBOJI8JzYocl7uPKqW/ZAljO87v60FIi/9/8sh4SmvJIwjEAkXHLzHXIeWWlEKUDAlSoNQ4BqK2QxQzoPo9qLUWAUkwA/NLA1o5gGOU/IydDcC+MuF7wKUqThSCwsYinNQT93gtT6rj5QSmi9E8stsLBeTVAPeCdDHj8yqPcB7aqoV9oxoZhTFyavCpZ2TGhHNntwJ8VN7N1dqZSQXz80MC1Lc+v1O8h6DBMg6oVJ6RaagWFIQutXDcqNVtUqqjDxMTMdM8Oul5OytII2sSGC2hbUOHBZgEsFlRsvzbQO0Hg22+GTjPxzVvcpky+Hd1qbAZfu8dqop0YosabT4CsGbZwTuNuBK7uudI12DlS3cLOYPcvdVIAa2wpIZ5ogntUxdtYQZMC+hb/3vm6T/Wt/YtBR5/+d3j9Hn20N+iqX/F59z1qyt+10bOLOLBV9H3IcWAaWjQBSrHZi3XHdHVw54WJtOlu1n/DifS3ZMN0xScCW8QGFAm7EDB5WEhLLrMH3AWHoFFhZvgeljKFooeqUCGoi7EyUKx3YR5kAsLSrBnk4SZF2ezd7a2896Ve/pm32MfjcGm1tsfYnRR7GNvuAdl8AW4v5U8YYfcWDjAWCqlgGJdgZ+JEDMIQdFrCbcwFCIMoWns5ENbcTMA7idb+TMbz0mMj/f/b+O262q7zvhr9rrV2m3u10dYRErwbTDQYB0rHfxzbEjmNw7NiPwcbOGyyKqabYdJAOTuw4D05iO3FJXBKX940a2IAppgtEEwh16bT73HXaLmut549r7T1zt3OOGpJgrs9HH517yp49e2b2vtb1azLMmghk9nEElmAR45j0r6+Z2Hkh5yklZITKDhPkuofy4uZThJ7W63FudKRr0oOL5T+xA/UQa2w4z+jSo3NPNSJziar7X1PZVdoQpB16QwF92b6n3amf9eP35cPQrRqqeaW45PG/WQ+KfaPKNAsDTCN9yUXPffeOzOKN/ayqFTsVaHSq50/rntc1n5C8gk//+au33OfVWIkC8ORfuhwdejgT1nFVzwaiLta5xzZ0/X2UDJZwrYyE2KcL+c4K8cdhMiX9YlBvKueFZNBtoKtsysKiRjk6fI8rElH13fGRouwk0kPH1XdQByWzlZ+6MfjIYBtCNjSjoNipMtWq73I15DdBiVU6USs4H0h3jEkxtXetGfeeVQWFhPQO4b4y9BKmsoh19fq6yj/ZknMEG5TYwBigqdo1GKumCcBPRYDMxqoCynIcbr9DD7UBlPahB60JQ5t6aqUAg9dOzo2T2XbVMajIS5vIQ2ri3/V7DOpnBZJpUwaFjZNzYHR0dZyDaEyw2bLjz85ayuOLcmhWVra+xwkgadzPCpgxOffYTBTacowC0LLhmNXZtRodRzWxR3XamBPSa/qllRpc2ZILtvnYV/ux3WdiLb4oUCqRPKu8GB/nSXcRP85LxHtUkghZaxIQc16yDyNxxXAtsR6u1paV6rTOB7KbyGtai8oKxmB5eG0fabmeGDde60xrWtN6wNRznvOc+3T7U4BlWg/o+uwfCRv+3P/8ftppTsMUPHH+BPoCzzf9mSLpnsnR2jMaxXRD05uuerIFRXagoDkvQcWjwrAw06c3Sul/e0aC40pF0Y5oHp1HHVusmRsbJK+VzUKwXtm2XGC7DEBZK1LaXl+YIXFMakztw1xZ9lRetjM3K5L1hN6BELidCoMvGklAtslk6CqB9OOG3SZjOxUJDKf25K2CGPWEckUshcBRLT5DzolWEFHnV1Rs+Hpwq8av47XGJ6LCmWRxKO9r6y6vFGU3lsyD/sQgXKnAUJQB9sf+/uQM5Rc8651ixRRLo6+zUoCbSKOsDNurBYba6XOZ1n1ST/6/JZTaJRAFKyyfyhdNLekQ8C7WCCiwDQJzVMBEk3vKVNUWXsoTQuNlwFC0DXHfEQ0EXNG5JV7zeKOJBgV6TYBLn04MeUC+u9bi0gZl08j330uuiC7c2DLPyAJaB7WLKoPNXiIWWqIAk/1JT8h+u1hAIsFu5PWSdWGl5V0ZCkn2EWQzmngoVkk2VTSW5bWLthYffiOWEdoGBYr1EhxqZaGuc1G4+RAqakaOds8SrWdiCWE9Ki82DMhrL+pqeD5Z1RCssm0oxI9YgJZwDKvFWxjQVT7R29X4PBgGdiDnTeVqJYt8HhOLrzxHkYwXrcTjx0yqWqrwUevGCyKY8NtW9eNU6UiXM5KVHLM6BKModrXrY1LMpOhGRHy8Lz7gzgtzr2I/RmJ54CrG3uSC0ruxMmSHHAMZRE4e5412DJXFmHd+WzsEHU9YXkQyvPTHT9Rsu/rxJwFVJvMUtlQST1hVmPGgILAPNwwMvMM4i59pUyy0cInBjMSqovJhV0nF0g7XGi2DRRts7KqyqQ6/t2ADUrG/Y7lW6NLXrP6nvfQyIiPXvCoM9Nk/9v4d3+/p1pTpN60HYk32tLt39Tijs8Z1xbns/4So8LJ5hY+kbxMAPpxDCwdxVPdePlLk8wnKxjRDzhJxBFEHVVrcKBsHCGs1AdAqxn6xm68TegwwB5tBX5Y1acgXZfC5V6KcgbGPfhgSdr5xgsauDtmelLwj52sXQx4rknWN1nJ98yqQGUJ/Kf3cmCBUnU90GZSjVs45Oh/vs9h0hoF2ZaGLADaE6/h2PW2l1K76WQDlrewPjPveYJmE97jqcdYKUGwULo2FzKFVHap+snrBs96Japq6n1Vl2BcX4cK0XgLW9bSn/S7WU//15fKPqpXxIBayEkgP0rOaTP4vGZ++VhebTHo9H8LfdSG9nmxMUXQNyZoTZbNCAEQljzVDR9Qf91ouMQKUtBP0qED3hvg0wTaiOpPFteJgG20x6yN0EtXXcpdGuNRgGxEuNiR5BSpIxmCyEob5RqOLoHQJ6yq8hKirvKzZ/PLmJ4ACo8ZqlPD+CJmek+H0Y3u9TYSfqr/zXggkFfGnIjBOAhKTrzuhftngIAFjxZlSkmlS2z3JutyH3m/H2g5IcFryVavXmdx/qO1bK4WLr5hmMN7fSt1QEZ92qopURFia9wcCHGgl9lUVOBWLWpAsEzVyLDl/41B76r9P+T636Wnrh1Xzj821SQWz430hN1D1B2EtUZ7ytTdco+rd9ZsfJMc9vG9AjpF1Y6V3BR5RiKtIlTUTxzKPseH7WGf4mJoYWtnk+UjVID4eURs6J/ZikYfhhGVdJOfziuB50Q+/C23E7v3KL/+23Pa8d3Pxk97KVV94+47H/FRV24Ix7WmntX09YELuHyj7cYr6yle+wmMe8xi01nzlK1856WMf97jH3eXtTwGWaT0o6pZfkmHMY//urTzzzBt54vztLJ7ZZvHwLI864wjOK25dmScaNEmXLbapaSwaRnsMZz90mQtnjnN2YwnnNR8++nBu2tPExRHNo4rBPuid02L2pg7l8RNMylNrBvM2DUXN5J5kMTsnC9JWC9I4sIAsZrknzWFkQuOkoZmAUkTrOUmk8WcnEkhnoGwI0BKNFLGW5l2HIaxNZJhrY7FWkqBtUenEAyeZEL5q/seLaReYxjosngFpJKpG0TH23q2awQqEqRpb76XpqRgZGoi0hIkH2y+qxa4PTBCjcNpIKFxYPGxmMG9bzouHd2BBq2LcpKuBxhjZd9tN8Fpx0Q+/a0dbhmnde/Wklx8iCvZXJgtEtAzMeoQ3MhgS+z65P1kXAKVMBRjU1gc1i8g3KqarhHuKOkMXnrhX1pkiQBisuLAADCGRuQ2D23G4rLIeMyzq71jZNrW9WJR5UEhGRJVjUgqjVg8tthFRdGNhkypoH/UBRIEy1URZWEQXDjOy6MKRrGrKpjTl1RormzW1VZmzKoSSyqCsbIq3fNnURKOxR6/YnHgJO/ZQzMSYkSXqFfhYYwYFen0kC6xJX+oKcKjW6NVCFzYugiu7g0mv6KIIHtgWPxzVn3HtEz0xvN8RXJ4oVQ3hJplp1WJvgsGoKkZjtb/hd12FjwLjRXL17+pxURR8nC2s9zHr/WBx5WA4Ijm8SJLKuZVY2GnVsVJpgmm35HXCYPAuK0NC6TgK1ggbF6Pyb1GcVP9tt22llXhJh8/Drfe2P36Tz1d6A4izWVlUv/7kNanKDguAii/KMbgyObDIC9ziEtp5/J4O2VxEYzlsM41kIBiUYPHyCJQwZ23DjFVoia4JADUAH37nlQ88EFSmUv/8p6/mmT91GS4ZH8NJC8K7W9NF6LQeyFX1tD/1qVfQ3NdnuDDD3HcK1h4S4zsFZTsQWbKgmosMKi9QRYRrJ3gNg92GxrLYA6kceVwjgUaK6o0HbZvPDeHGel/G949ZzhsGbN4LUBvsebx3gUWs8b6oQXBfFKg8J8oylJvHJm2xL+qakK8mfUHkFdEgnM9juZ7q3FO2IkZzuiYr6EIR9x1m5AR8qUgQZZWn5sMgfDyErftLzY497eZ+VjLZ5AkKjffBKjRkwsibC4PcQkAgtMbH4b/T6WcBnCdazTf0syoDNSzqfrZSeXuteP5z3sWHPzbtae/L+sFfuJwoAHg2UTW4UgEgykGy5oNyRdTJPlLSw8bj7dhUMod04SmbWvrgoSdZl3VMNLS16l5IP4FkkweQI5A5JCuUMcCXxCgvfaHuZwJYthJZW41yVG5R/VHdR2jApwnl7jYAxXyzVqlEvUKC6UFswColTKUELx30h+NhPmxUF8ME0DDxe6qIL0ZP2IZVqpTQ/wUQobbanlC5bABWJnulKmfJ+bHyrspEqbYx+XcgkCg7OeyfIPls2v5OPW197vMON8o23Fcr+6wN7LLwuWm9QT1RV/Uak/Zo4fF1fkjVm4fBvw8ggLxWfyNJpjpm/YFY87aamE5b7LFq4OKu5wVU73tS3bLlerFTjzx5zajcPvpDvB5t7GdPooypq7LdnfhsakJUtX2jwWh5z9VxKsuN1zkL3gppTHU7uJmmzDoKO5HTI8ffpTFmNVghe4+2prYKU96PVZDh/trWuLqOTIBnH/noG3n+s985tlvn3rN7nPa005rWvVdPeMITOHLkCHv37uUJT3gCqgLoN9U0g2Va3xc1ymKuXTyLs7sr/Mx5n2f1rBa3DhdYSPqc2Vrlq73H0bp5BZ9EtG/RwCzfnt1Pcp7lx+e/yBnRGotFh5vu2EPnVkVjyTPYJ4CF3zMPx0+MB1+VT+gEg/ikQ0YrVmEqjmqGz4ZQ4qDewCT4NJbm2XqxzEo1ZQuKNrhEhtZmBD6SxZxXYpfkEkXeVtiG2LFUDCM3UpIR4cbBoIAsDr0MeCfD7UHVaHcV9I0BkABSSsSuYPN71LJNZb009qFZKRdawUNboUuHHsiQ2McaF0XYhpH8GSWqgc0bfvaPv59oYDc0EKp04mOaBbl0sGPDhGDtAlTk8I2olsZP676vL3zoUp72s5ePQblgX5esyJTVDCRjBQLIEhh/upLRKyjaGhMstVzwWk9XSpKlIbYl4fRilYQwi2obLMYZH2FRVtkYeRXjGxFqkKMHORFgWzFFW5N3NdHQYwpbW5SgFHpU1plGXktei0tjylQHJZwl6suCMF6V59lGJIvdwEDVIzAjE4BI2d+4pyk6orKK+7ZWtjijiQei+HGxgDG2oXGxsCB14Vk/J6VoKdJVR7tXYtaHY+XJRDA7zo0XkBMMQT+x4NugDIkjOYaTOShRFM5z4RhW26+AmO2oKJsXSxP/3hYcmHhcZYHgQ6g6pQz7t9gDGFN7LHutwar6trqck+dbUeLgPb5aDFeh8NUxqL4zEyqOKo/AjbIN5/hta8JeQceR2JOZAJZPvreK8DzhZ72tVQPgncb2BxszbTYwzbdnCFb3bQFe2DQUjSIZjhgzHmzkxYSP9cRxmdy99R7pbcsoOytgn/WU3QQ9zDGrGeb4mjzQGOLCEsWyaLWthHwuwSVKFJXBA97HAoC6Ziys2kjz0St+o369p/7c5egYavbnvVCnspyc1rQeKHXj6gL7Z9fY/a+O8KVPPIx4HRrNnP4ejYuEsexHowBiDIXTYgzepGRz4LWheTzCHF2R81EayzUzicfXC8I5ddOQbNt+dmLApbQDAkBbD7eUWCdVllyTv9tqDRoyIsTySFF0RAkglksKm4wVGmWsKeblxFk25bGiSlHonPG5LWzLxgpTSI5hlS3oEjVWQgZ7Fi84NyftaSuRQelCOLj0s64Z15Yv1fW+HswZhW0nuEiGbzrbfuH9wqf/NmpUctWXxqxlVTq5np+kn3VINo2L9QZV4LTum/rcH4qi7Ide9AHw1PbJ0pPJWiwahWy/kCnmUoPROtiEqbHdK2G9FtZgyaolXc6wjSjYDUmeSqWmlieINR2F5Nf5vBQyQmzwSUS+r0u82BOFbrheq1Epa6Mqv2QiH1RyBT1mLcK1YspuDMpgRhZTKVOq1/SB4FP1MVUvObnNKu8lCueBYuK1YGN/VZ0jqtvKUhQYWkmeU0XoCeUn+tYKCNlyTpoMZ/duK3ZgqXunDUSdyR5sYls7nvNg3Mc6jzJsqwTZYAlbZegZI6DIpr5sC0gwkYPlnZN/B8uvSnlS98jWjnu1oILeTHTygJp03ai2PZlvslNtyp4ROy0N4bmbrbl2IgptOH4YsRCrwJkdH3fXS1VEISuqIJ/lwS6sHINeG0gB4TPIC3ETaTdwaRwUjBEuMehBgR5kmOV1AWJcA1UpyRtxbRmmAqBPtd7SCrzCJ7EovybqOT/6PnQzwsX3Ho1/Ur0yrWltW55tl+vT2rluuukm9uzZU//73q4pwDKtB1V9+6fezNOvfj270h6Pb9zKLcVuThRt1ssGn7j1fB7yyVsgy8E7tNLsywoaKwt87eAZ2LM1j45bXLb/i3zktoex+yuQHFlnIdKotT6MMkynLYPIOJYL+HAkwEiWbduY1YFsXoXhWmigimLMTkmDr2eQcfskouymwsgL9gjZjGZwtkV3c1ypYWTQQ4POJTzca4jXteQ4tDw+AjOQht3FnmRFUXQVqpRQ0SpvRWyQkMF01UMGsMUFglLc9zSWAQW2qSiQ/VQedCbhw3gCM1AWIGYYFpxhMVCVsrJt24g2ZMI4I17ZLpIwc69lsOa1WGZ8/G9fyzP+5WX80E+8H114Pvb//w2u/uxbtv0OXPLYN9Wsnyuv/S0uefSbUElUe2FP676vf/6TV234+1FvPET79hDuHsig8llD/4AGJ4tVgKIjwb7KI0G4Q0e6XBIvDdFZgV4bbmS/5cXGBWRVkwoFM7YzyPe2RVGi5btnMs/MiVyC4cP3umhHomxpamEdll7CvI3GDCxmYLEtUwfn4n0I2jWkh9fEi7r2bS/rgGHfiHHNFJNb4hMDYRuG76U3Gm8ShnsMeUeRzyJWYX1hSCoPJZrGsqVzh0VnEqbok0iOSa8voeeTi75Ni1MYL4z85MIUYODqUMh6sVIFhlbKkjQdL3r9pgXV5OLUO8R4WtfhlttaDkwuXCs2tbUCgGwCEuoF3gTTr17Aai02Xt6jO22Ym5XPfCRBnfViy1pUI0U1GjAYile0tXWw/MZFnyxIq8GjMsk4gH6TR/Sk7YLL8/HgctMCVbdbwuL2ssB0m4cR2xybscWYHffHm49ldby3qx2sHlQYpLj+gLE/tR8HXUP47C1+wpfa5zksLpEUBeWZu9CjnPQ7R8VCTikJi7UWFUcoPUc526BoNwG5NkSrFjMs0AM5Rq6VYFsxNjUbgJWqTBZsLS380E+8n7hv7zI4UgEqU1uwaT3Y6sRil2E3ZnXUxLYc5f4C3U+Y/+eU2c/ciltckr4xDHaUtZgsR9lZ8tmE4QFPazEh/laGH4TrRFnWg7/63DzhU48K51PYBLiMGdA6jsbnFucEvK6Y7EqJXYrZOFBVUbAqiiNG+5oM9hjyLnVP6hIFyjOa15TNBtHQM9yjKVNoLIfeIVwTbUN6BR8pbKzH24jk//FgrFhFUeddmJy6Z93S0zpC9oWrVS6ieA02iOWYre8SE4bnLuReSDaWi02tWPFKwpS9EmsY5akVJ1d/+jd57gvfy3N+5H3o0vOPV79u2552Sz/72Deh1sppT/tdrn/636/Z8Pczf+oyokAUg2DlCpRtySFTIUvPpbomtWnra3u7ZLUkXs/RwwKzuD7+7U32s5vIDSiFimPJhWilsmZUMHjIHOlS6H+yUpQsxYTtVSyh6Bgt4GAgPZi1IXpQCGCjtViBFWKFh9ayfivKsGauekkn1/jKarYiCVbni4q0UgW8Gy0gShSJRSEEC9qgWM6yCSXJBABi3bYAhjxg4yBegIdwiDZlc8jfdgsBJdy5LaC80TLRbX0ek33ZyWqip93mtTeAMZvyTqQPC9+DoMquyFGTqplxbz1+bg12hP57vM9ja/O6Zz2Z6mSiBx2rgDb2tBVJSgAndt7epuOw5fidJPfrtKp6T67EDwZhM+PjUH+mE39Xr+WzHLU+xM82yLtNon5JdGxNMgkBP8rwRYHWGt+ewXZSecnSCglvmG8EBptp7Zpw1efftmE3XaJxsVxrnv1j7yfq27ucDzvtZ6c1rfu+zj333G3/fW/VtHub1oOuzp89wbnNEwB09Yjnzn6Dm7K9fOTOx+IHt6GaDVkMAfn+LoM9moVPpvza6i/wp//X7/G0NMJ7JbJpDWq1B9bh1nuyCAPx60xiXK9fMzq2b+ykaqWK98KYSGIZtFUMlVYTSodvxhSzDcq2hBxWQEg08jTuNNhmExoeN1vinNzpNZA4ii7Ea4HVFgIYfQTKqgBkhMF2UMDgwabhdlOxBwEC095LHoayIUQ7DMX9RB8UjbSwtwpfW7jodVt78fqGsOGrbIs6qyUsQER9E1iPVf8eS8A4XvbrqT93OU5I4Xir8B6e8yPvq/34N9eV171z499fe+e2j5vWd6++/q5Leca/vAyQ76RXAp4M98igJFkDvQxm5ElX5fuZdwSAaR1TMuDISwE0K8ZctSANSo06sDD43hLH+LAILdsxLjVivdUWOxK8gInRyIuqKrPy1Xce1YooWgJuto6PbRpsSxj2OndgJbQ0Xpf7TV+G+KKCcCI3tyVXfOu9HNz/q3LOsA6TVYsmsXjRfRsWyoqPXvEbPOnlh3CJgJ/VIsQlitJDOvLE6yU6k/1RhZXmPsvxRSGS+GpxUqtMAMZWVBuB4InFHIwXurqsWXOTtcUDmwnAZjsG24Qa42S2BEq7ieHdpvuqfahYfJMKnChCtZrC4M6LCVWIh+EIv7o+truq7LqMwa4e27JgnHwv47/HipsNj9+8MD/FIMBbQHlcr4eK4jEwE3yx73KdagE6sQjeKYPFT4JFTLx378QvMvy7Zqo7vVF1OcpkmDPKx+BKswmNBDXKoShw7ZSyFeFjNc4Oym0YeoolmEsjfPjub65n/MvL5NqlFf/0V6/mh37irmWvbGb2TRei03qwVdwomW2NaMU5y/Ntztm/xC237KF9xMrgswqVB2GnpwmkCXppnc4dc6xewFj8FWxnVBSNfflrJYoMRiUTagL4PakfvmRs+eo6EzINlNYVfhHsWswEeKPAOlo3rJCstHGRWH71zoyp7GzLBvQPKKKhougKaIIWCzHlg50t4Rqp5ProJfpFFAYGRnMhBJyg2taAh2TdCWAcykfUNqTKeqJR6FFjGTin6yP0eja2MAwD5EphoErpBSrVrPI6KMFFtVApFlQh9qHPe8F7UKUXVWzoe5X1XPS8d29rFbOln71u2s8+EOqTf/lqLnreu/EqOBwYRdnSZLMC9jVOlJiRI1krsE3pPfOZiLyriIehpxwWqLXBGGwIeSTVtVm1mjUwgtLSMzYTXBpjOzFlO8ImQkpTPiFaL1CFFgAF5LocAE3fTChnG7hEE63nwRYPWXtlhSz5okhUL1kuQE/dzwb1RwBArjj+n7i48/PSg20Od69+4zriiuP/CYCDD3mVvIeKGKXVmLAxCa5UqusKXJnoTSZJOtVgf7u+q3psdY6azAOsasNwfUJNsW1w+k51d9UWE+9hcjv1PtRKjI1EKV/lDm45LlEgF22zP9uoyWsQpjzF/p9CjVL39CfJarlLdZo97cme77chZo3v3qy4EUBGxZF8N4sCXThsA8lzHWWylmykqJmu5N60m6JOjDXKii17/f2vyGiRCdcavwVceeZPfgAfi6rzk38Z+tm7cPim/ey0pnX/1Xe+8x0++MEP8o1vfAOlFI985CN55StfyUMf+tC7tb0pwDKtB1396VP/gN/95vO4Md/Lkm3z0zNfYqns0LkpyHsHQ1QSUz70TI4/PiVZhXTNsetaxb858Av87MM/R/aVOVAjaUBHGVgnqpU8l6Z3bgZW1kIomt0wjKwaIQlXs2N2YAjS84UALEppYRY1UvHPdg4fQIgqn8HGul6A7fqaJZvVFB3FaLfIS8qWhxi89qhEmBlRX2FGMqSuABQXyWLUNuRvk4Mq5d82BZd4GThXPYgTpYuOxM7JDiXTpWgHEKVShzcVcV+yXXQxHv4q72t/UjkoYQg76eATa8arcMJiVPbVhgUzHuKBQzk1lthrhXrApHVN63TrU3/xap720sswmQATvXOguGBIFFsGSw3wEZ07oHtLRj4bkc8YBg1F2VT4WIsSxDpIE3y7USu+VB7CYI2SBWKwRrCzLbI9DfFlD4tfGxMWw/JdVKXCG48uIxIbrPBsCM114ptdNDVmpCjSuLZx8CErJmsbomFMevtQ9s+52k5BdVpc8fV3AXDFkf8IwCULL5PzRLMBzUZtn3LldWObEJtS2b3jY/Dht2ZyiIZOFsdZyAwZhSD7PDCoJhcVAeTE+9pa4LSqWnxUjLhJoKYakhkTtm9Q2DHb+STbrGunQHiz5eYNQZU1uFIFFVsnp46yDPYSZVjE+3GmShXC3GrJudto3HC0lVE4wWjbvBA75Xs52d+bnreBCXgf1tbMl+33ZceaeA8bnj9p7+EceqVPrRSr7Nm8l3yxblOyH5yc5AVkF6sdAJ9E2KYAljsx+D71F6/m6S+5rAb//+lvTi97ZboQndb3Sn37p97Msz78G9x0ZDfxzQ3YL3lm7VvXhWzgHb4IQ8VOG797DtUbwmBI9/YSm0Q0j+f1ebw+/0wO8YINlZ9U8p1KcVjfFHLQqgFTdZevAO1JRk5UD6NUf0Bc5Q0aTTRo42JDNh+Rdw3D/Z5kVaEzUaxIdt/YlkkX0Fh2jBY0zkCUy3adEYtcr0GXQqSogu69gVzpYJcrt4uiwKMLcGkYVjuIeyXJ0R5qkEES40y04TqoinD9mchzwSH9R2Dw+0RjU1HL0pBrpi59DfbUQMxkaPK0HjT1kX94A8+76D0oD9mMYbBPk82LfTNENI8VJMeHlO0u0dDiUk3eFYWT8sh3qyyh3RS7oWB3W1lnegKAV1jJqGynZLsbOAM20RRthYsUUeYpWprJ0BftM1G7KIVPI1wjErJDpNB5JIHdlcVRYVGDDD8TRoVYc6sAAQAASURBVD6r62MlRRzVoIeKxqDJVb0/BuDi9s/Jfk+Qca5c/a8bD1QFsDq/0cYVts9aOcmwfRIc2VDbWdPuUDtaVLEDUeju1o7qYbWV2FLdZ+oH1b0pgGqkcqyGI1mYO4/yGwGX0339k+7vdtazO/TB0kPe9/3sqap2CrkLpbQK4IoZWw7nJfFaAPq67WA7HcCTVrPOCBQiHlBZg1VzDqPxsYDwVYD9ZH3yr17D0156WT0/Od1+FpiG2E/rntd0bHa366qrruLHfuzHeMITnsAzn/lMvPd86lOf4tGPfjR///d/zwte8IK7vM0pwDKtB1197tbzsFzAH3z7mZw1s8rrFm7g9nyBuRtDwzg/R3nGPCsXNklWoXW8ZLAnoncONNOc//qlZ7Dveo/pF6j+YGwvk+fw6Avon9UhGljMQhvTW0CdWJVAuW5HGNVFge/J4MkPR9KcWCTYXsttfpQJUFNJpkth/ai8JOoXtUd0VIqllo8Mcb/E5AaOQ+cORd7VDPYrsjmFs5K5olxQrhjxCHaJ/BsHZQtQsjCt1C0+MAZRMmj2auOi1EeQzUHcg7KhKGZkuzqT26JheJ1IkayVmFEIhlbBEi0X2wSvheFVDaiVA49nO5zEBgWLLiEeeKKBE+VMeP4n/vrV34Vv0bTui+qdKTZ2LoLs3IzHnnUY5xU3ml24O2YkAH4+FtXW0KOdfBfNIPj+znWE9Z5EArpYD41YFhulG3umO8eJJ3QpOqLC8hqyBSg6HvDEfRncxAMEvJuXRW+8VhL18wAQyvcPqL+/eLEXceH32TpWkBwfCLgSmmvV649D5ifq4L5XjAf+w9HYMsFoLn7y23CNmBOPaeFa0DzucTEMd8vwpmjK7xbAxQYzylH9DJwVcCGoNzawt1S1cN3BVzrUyRaaqhqaMcnQClaGZVHbdtVWAfdCbdif2vtZiTVjXoiXdbWPRYlfXUe1m+gkgT0LlAttzNoQtbwubDKlRWkIp7UY3clbe9vaZpFfH4t7a5F+F2uz6ui0n7cBSBkrWOq/jRbGqtaS3xDHYw/1RioL/+Az6TsNCdqtcr2KoF6pwBWl8Ins507gyjN++jIB2hMB+5/1Lz7AJ/76Nds+tqrpInRa32v1pq+8mF72aDqfbQqwgMdrj+6NcMEKRcURKk1RMzPSc+UFLMzhIsXMLSXx8Z6oHPO8th/ygfxj5meh24HhCBXytnx/KL/9Kjy5BrXZFnz11o5DpquqLHCtQwJOQlXnpwnCBMMR8WAISSLWZt0GUV8JaKGkD7XN0DfmcmmLhp5sVmNTiNeDsiX0wMm6ZzQvCti4L5sRwKUiMCjivsfGirwjwEq8Ds0TQhSKBpbkWF+sgbXkQ6GUDKXDkE2VLvQgrlaxVDlwNBirtYMVqbJerMkcKO9xRpQ7AB//u9MftE3rgVVl24CCbFYz2hWyWUby/fSxxs40Uc5TNg2qFKtLZb0onkHINla+F64Z4dtB2VRKhpApc4hElXL8BzqSVRTWZ/mMfJ+bxxTJGnit8UrU2qYZoYelEPe0DjkvEPVLIatpjVdKMn9C6aPL+NFI9ieAJr4oaxWw39TTXtz+uTGRpwJRgEt2v1wIhEks708pUcVoFXqyoDQnC0REtlVHwxiAqJR2FTFkS7+5CUw4VT86qXSZfLwoX7axYD2dAPa7UiEXZXO5osQkCTTDuqbTxs+2UcvrNTnUDQbj59+V/TnVY3ciFN3b7/2u1qTF19147pabjJEcXaXEtrLVxHdbuEYclIYGNxfLOiIPeT3xGGCvM2bLsv6tEIU8SKO2BVee/jOX4SKFCxboz/zJD/DJvzp5PwtMbcCmNa0HQL3+9a/n0ksv5T3vec+W21/3utdNAZZpfX/Uk5KEI+UxBsOUsw8sA/Dfv/g0HvnZWwL7PcUbRfOEJVktiFZHoGbonWNYX2vCyJDNBVZaf9x8qiRh7YIZshlN0tOYLKIRaeKlNezaOqo/wDz0XBmarq3XTBzvPCrRcGCv5CUcPi5e2M7JIjMvIE3leVrkqd4GuwalcKkw35xRmMyBh6jviQYaiIgGCmc02cKY2ecS6gyVKpfFJaJa0YUEinqDLF4VQSUj4IdNPbqEaCDNhIsg7worsGiL2kUngYHlwReSY2ETjZtNMFnwpC587VdtG0a8R6MAsFiPtgpvBWSpZO42lkBIkwdwZeTEWibkrkzrwV35XPiHA19o5pIh+xrrrBcpt+3p0DqiKdqa4W5FsuYxGbSOW3Q/w861xbZDKVwiIfGDPYbmkiNZKTDeowc5PjaUC22+8KFLedSbDxERmKoNsLMWrz2oCBPJdzpqQDRS2NjQ1MIqtYnGpgo98MRDh001uvAhvN4SVQvQvET1R2NmK8jgmYIrDv/ehvd+xdHfB+DiJ7+N0e4maw9JmPtWRnJiUEvJH/aOQ9iWp2wpig6UHUe6qElWRU2TzRl0GaGLRNQrwUsfEAbyBjDFbhyan4zhtx0bcHJRNflvr8Z5KbW9DHd/AcQOw/2qKoClCineXEaTP/58okFRh8UapcSianV9Z/uEydcPWQQ1qOTV3Vaa7Pi8k6lb7sWqBqfykjuwojf5f0/evu1tWmx/6uMfAC/fbaHWB2NP9U67tuXzRs73XimikcWMJMfAR1ryCyK9rSVOVZ/6nwKkP/0ll8l1q/Q894Xv5R+vft2Gx03VKtP6Xq6j+QwgQMH6udCyEQtf0fiji/IApceqsuEQ+g4fwJJkdQabyHAW74KFl66BYNVsCrgSR2BjsEYyQxji8hyTite8L8sN5/bNCpfqGlCVd07OF27MsFYTOU5oA81I9icXtSGlA3Li4306iaHoJBRtIQC5aiY7lDwybUVNnc0FdUopIIaLK9KPgLJlA7JZ6YvjfiBbKHl8HRCvpcctuqCtJhoEdcuBDmls0EeXAygSrnNZAYHkoQqHcm6soA0Mj8oWzBtRwygnvYMqq2wX+bw+/nfTnvbBXi6StZApvHy5fPiulR4zsuSzMaOFCG9AF7K2aiyV0qs2kxqIzPe06J8R01i2RD2LdqAzyer0SYSPDV/6vUt50ssPMZoPoGMKxYwjWdOUpViV2VQRDTRRqokSjSqDwqwKmXeeeGUEhSXKC1hb30jOCVlCk6W0DPMr1UpVV/X/Gwf3vUJIFq2m5DtlGVcufqh+zCWPe7Nsr93ANWPKTowZSv6LygKZqVKxnKK2DbjfuKPbP+6ubndzTapJTjcr5DQsrbbrmXWSoPbtwc210Yur+E4zAM0BCKoya06l2Nhwfr77vXm1r/dr+Z0thGHienQKpTwgFr0mXDODcoU4xqcxoz0pJvMkKxl6VIiteSq/PZQSVVmwe9RZIcA6CPgS8sa2A1cAPv3n0s8+9V9fjsnlGvacH33ftnONaU87rWk9sOob3/gGf/EXf7Hl9l/8xV/kgx/84N3a5hRgmdaDsmb0iB+54GscOvAFlt2A5g0JfjjCPuo89KggWhmKWiMrUUtrdNYGKLePW86IULGTgWwzxjRSVGnq4F5demHFWwnfNr1MLMQAXxa4m25FH9gHxmBX18YhyYBrp5hlyXOpLXbKMgxkCXkSciFXNtgGRJIFo0tdW2S5VJpmlwYj6kqdmgWWXi7qkjprxUkYqGtZ2UbQIItNkkeViqgfABMHPlMSBDoSpUsF2HgtgIoZymNtQ+6PfAgsb4hSxSWOqG9lWwEgyuYljBGEPaisx2SeT/y9MPd+6CfejyoVWsvCRJcQjRwf/9vtmX1VyNu0HlylrKhIooFi9msxn1p+FPrcAdo4fLek6CREmTBNdSl+6XGvxCtFMZ/SOzNm7TyFstA6AiuPdrgUWvsynNOYzy0w+x1HNifN9dffcSlP/NVDKCu/ifxEhG0GT/fAjC3bou6KGmBTgy6F2Vq0hQlrBlaAz9wJI9CGDAmQ32ylqBiOUGW5BVjZXFd9/m089PLL8QeGfPH337jhvm+9+VIAHv6/fou55giH4kR3hvJoQrwOLtJEQ4MZRqhmIgyqauGsVFCThI1tCZ1n67+hXrhsGbhXVmFajRnKMM7u2O7z3WmgL3du89q+vm/Dc6vAZeeFPQlbmI31Zo1BFxazOkR/e1EGdsZIDkGnjcoiYVKesRfuPIbv9SVcfjMTW2lhSE7s0726sPxuLlInQbHJOhnwstPgYFJFVPnBd9q4bgu9Pqgt8Wpmut/4OalgueeVgtgIuGLUScGVqp75U5eRjITJC6BLx/Of/U6x72tuVepMrwnT+l4rjafXT2nMQn52zuFbdnH+zZmAKHGEaqXiPV8U8tu0wYveWvQohHB7j0pTUVQDYMbWPFkeckU0uFK2E37/bjBAN5tUeQcbchCC+to7F8CRUFX+nnNb1XQTAdgbKo5FjRlJcLsAs9J7RkOI+x5n5P+m8GQzmqIN2bzYbblEegJdQh5LD1yF3itL3Seb3NM+ZqVPjSqltiJdlvOLSxT5jLxHr0EXDdLVVIZnWSkqg5mGZK5oJYoVkOBwJX9f/c9v4QXPeEcgcih0dWyc58Mff9OOn/O0p33wlnKe9p0F6arBJkqIYZnDDKvcNvnuyfC2IDkxEMVn0qGcbzHak5J3NMsPVygXkZ/lgIiZL7eYvckSDSy2Ib+7L3zoUh536SHUENIVKFM9diwIbgI2UdihAHxm5DBDjy5kXWsGJWplvSb31WH1kxX+9qG/vHLtD3d871cc/X0u/sG3U3YSPvKP79ly/5VfeQcAFz3v3aydl7L0GDADxfy3mix8pqwVdRWIs+3xvav2rXfBGuu0gYeT9FNb9ucuvH7di4UeWCWxWIbnQR1x62EBuEO2lUoSTJKgztyPP3Ic1x9sVbLcm+DKA6W26Wknj93EjTtuorYFC+CKiiVjxe7qkO1u4I0iGhSoUSnAX+WWkASbx0rB4gWw9FpDMibDXvWlt5/0LTz9Zy4jGYpKEi95Yc+76D1io6tkXrI5k2V6TZjWvVUPFBPSB8p+3JXas2cP1157LRdeeOGG26+99lr27t17t7Y5BVim9aCsH2rADx34AgAGRdkC+8hzie5cHrN4ANUf4VfXwHva18HCmWey8owRLoZ8NsIc2CWgyMoaPstoHh7RO6MtoZmAHuRinWKM+Os7D72BLH4ng6OtxfRG+OUVsQebHEbFsXjWaw2xMHsr9q9LDMr6+vU8ovYw4bnRyFO0FLZFaABkYZmueWwij81nw0spUKnFthQ6VzgjapZkRTJbKuuuuAfRSCySopEMyHpn6joXolq0RgOxWDJZyKsIKhQXyb5rK5L4om3IZjQml8eh4LN/stHmq2KAKS+LhIq9vF1tZndM6/6pl37mZczGQ1qmIFKWWFnWygZ9m/Kfn/xH/OAVb+RzB99VP/5Rbzok1hmRR1nFzM2WXV+19M5ssXqBInlEj+zpOcVXO+z7bCFKKC+ZRL2Hz7N+jiGbhezcHBU5vvn28YD2qpsexddHZ/F3c4/lpkfuoXNdyuMuPUTchy99SECLZ/2LD9A+Kt/TsqnIuwKi+EgAyEIL2KJcRLrmBVzJvAzvB4GtFNiqFCU+ieX32mnIAKvPGCw9RX3nVa866f3Xv/gtADz+//eb6Nhim45oqHERDHcbbNKg0TRE7RRzZLlmAaoJGTvey36ephJjgy91BS74SUuGsACsz12b2qTTUMZMWompOJK5V1FuVdpMbnunxaFWIvMHzBe/hSvH71UZI0PGEHqphgoNqL274cx9RCdWxfZxlMl/gRGokhitdXjezkDSg6K8A8YDzs3hqZuDY8fPqZ4wYQs2Aa6oRgPiKLBrvViAVJZo1WMDo14XHgpRXaIVZRqJkjE5vRZblx6sxwzLkFcwcV/ucMl436cL0Wl9L9ZnjpxD2U/on+NozQyx180SrQ7RnTZuOISK0WwtfhhA6fB3dHwNu7tLFXStmg0Zqk6EAauiEIu/6hzs/Aamtt+sAKyuCXmOSlMBdLbJNKjsBGuANhK/e8ksEXUL1UApMuIiZgzemNp2yRvQuSfuyXC4aGv6BzQ2EcWJj8ElDrwmGig5BRWQriJWSg7inscU0scm6450MZPsp0STrAb7IaNwiSKbNWQzleoEAW86TcqZlGhdzmleKVzLoPMAriQR+VzCx/7PRiayLpxYk7FzxlRVz7to2tPe33Xe73+AdN+AsjDYUSQ5lKsROlPc8LpAfPntQ1z/m5fWz3nWiz+ATRW+gOYdQ9I7CiERNGOKmYT+mQ0aiwUz3xlIHpn16KHYbbldMxTzDfJuxGhe8/n/PO4JL/zLd1AMYwb7YLRg6NxhiHueZ/2LD2CGjq+E79rTf+Yy4oEjmzWUjeBMoGG0IFbPedcQ9zXtI55ofUDjqMWsCrjji5IqU69WnFW9XaWIq/59irrqc2895WMqQsVD/uTd2FKz2Igxoz10bm6JTVlvAP0BPsvAVWQX+f+kfeupLG831E5Ek4mg9pOSgk5SW6zFTsMmd0uQ/eR91W3O4e84gndOgJWqf1dauJRh3/WdR1ELc5gDe2F1PZz/R/gsE9V2dcyiuM5q8e67o6K+z2oiL7E6XjXha6fPeqJUmo4zV7QS5VWa4pUiXitISulVXSvGG4XOJ9ZOIR9JLG+tgCHNuLYFu/rTv3nK3Te5zDhM7uT64cUCPrwASozT68dPe9ppTeuBUS972ct4+ctfzo033sgznvEMlFJ84hOf4L3vfS+vfvXdiy2YAizTetDX14sY5SRU3a+syoW1KOEEeGOE6ddswmDA/r+9ke4d52ATsR1ShRWGjVaoNMU2IxrLAj6kyzJgchOBgN5a8fv3Dt1IpakJDYC//bDskHXjbHetg4olgtQIW0KrYKelg+2Bqj2c0WKhVXlNx30XwuE1wz3UAIaNg3okFhm53C4Sdj3SxOuqthPTuQAmFXBiMk/c82grLIuyJd7Cyot9mI8gWVLEfeqwUBBbhio/pWiN81ZsKoqBL/4/Ow+VfbBM0CV88i9P7ks6bTru33rpZ17G+a1FzmxEnNdYpKuHrNoWs2aAQ/ON4Rn80uf/DZ10F0+64k2M8hitPI1nym/E5BGDRpvjKqJ5zJCuenQO3daQpa/t5sDnChrHBqAUthWz/PAG2Zz4TX/7DZdu2JeH/6/fohhFzM+/iN2tPsMiwSSO0R5oHgkD2lCf+OvXcMlj3yRBoQsN8BFmpARUKWVh6lLonwV2UdE65ik6mrLVJBqkxD2LLgVgMX2xInOJGbPrG4nYh9yL9eX/z29zwXsPEY0k6DcaCugZjeRHl88mmMYeorURqrDo48th0ew2BbmfxPJqYsHlLbWSY9vHqXg8iLPjxeUGtcfJgj2r/ytdAye6IYseP8rqxbPCjgf84Ryt4hgVRWMQZfcC5e4u0XIf7jiCmp2RIV5e4L2T/0/uQFHC0orYZQAkMardQrWaom5cWcGX8vlVykNf7rAYnbDZ+W6E1t/jUnpstVbt+05B1lVVtmBhEKCiCNpNaDbEKiE2kMai6OqN8J0mrp0Km89INoGokBDSgB4PMndSJlb13Ivfi3KepPSBNODRowKxBzQbB0BMrwnT+t6t1eU2ZJp4VTOYazCzjPSlWkFZ1ue4ClSpS2nc4aOYwVD6zFG2FVypAPmyHP/OjcGVxYQtS2VBuZlFbgXc2TxUDL1cDbTCBoBWgJYAsIRrFXkO2uAbMRhFvF7iogQXh3NGsJYtOmKd6aIqY9Chc03UVySroZ+11HkrKheLsbjvRHGeyXHzkaJoazmvFEICUl5639ZxX+ewAOR7WxQdg000cU96eV040Kq29txcriEAjC4913z01OemUwEw07pv6xFvPcTMk9c4e3aFkY24fXmOIotwQ028bnjkbx5ClyJkevTrDtUKfh5j0Dk0Fz367A7JSkG0noH32FTTvm1IdGxVXiSO8JEQEIqFltgmp5pP/K/xeucHfvkQSd/T3Num5cSVQBceZWUdFQ1FLVPVp//81Rx82Osw5y0w2h0JyJIqXA5oKJugvKLoGJITCnN0RX5zSSLkFhuyP60dg5+EYb/z+Mra716sm372DTz8tw+hCxjtUri4TWOpQbzaRg8L9PIafnVdzg9B3VJf753HW2rwZUewYDvF9jY5IpsJRTsBJJMgzJZQ+on7NgAoSJ7KhvuUFmJRBTh7X1vEqdkufraDWlqTTFdrUe2WfEYhYxFrayKnzzIBVk4sS/ZrmqCaDVQjRQ1HMosYDnHZaOP73/4NPvj62SgKNpR+gy3u+CFblTsqSSZsKsP1SCt0XkIm16x8oQkKzMjio3GukM7KsXMB1EoTH2mu+dSbT7nLP3zJe4nDfEbnDjMo6izCihzrJ75L0552Wvd6fQ8I2e6v+s3f/E263S6XXXYZb3iDkAXOOOMM3va2t/Hv/t2/u1vbnAIs03pQlTvysC23fW54PrqA/lkN5r8ZS2g9oDpt3OpaDaDQbOCOn6D54evkQhyaznqgN9MlGogMXOeO+DtH8Os99NwMrPdwwX7Bl4U0UpEwtLEWlSTjxkUrGYB6h9LxuMly4ueMBWU18TAnm08pW3IBFka/bEK5sIgsPPHAY9fG+QQmC1gKISh+PVgoZBrd0yTLYgEWDQRQ8UYWrMoGxYoTVr93Ev6ZzcjjdSGKF2UhWRkvZvGyDRsr2ZaW/4sFmZDRr7ts42B8c/3T/z512Nu0HhjVjUZ0zQjnmySqZOBS/vbI41kdNVkbNBgdb2HWNbpUqLC+cDGs7S5ozI/I1lNwimyvJZ9TRH0ND+0z0xjB16F10wpXfP1dG17zUW8+tAVcefZHXstj9ve5dXWO7Jo9fPvJbfxSSucmTf8sz+AsyVZ56s9dzmf+m4B7KisxuUXNN1BOVFO2VJhMbMJ0Jv9lcwgooaB91FE2FcNdCS6BxrLDZKkAlLmrg2tdw/CR02Dy3dWq2JNP+LeHMJmvm3GQhrzsRNhGGxcr4l1tol6OXumj1nvjjUyoFk4n6HLS73jD4tJaFCawmDcuajYM3iZqcjC3ZahvNKrVhJkuankVn+dig9BpS/BkGgaAsYHCQn8EK6tid5NG6MLCKEN1O6KkyAt8OcQXBcoYzNycLKK6HWGLHVsUxUy7KYHOeYEfDCSLYAIkOqXH9YbHPUCrOs7Voj4EVns4pX13netQ/aeV2KwpJbYJaYweCcioViRom2BH6ZMQ0mvDbRoZamq1JT9lu3rOj7wPE3zjdenl+hhsjkAGTF6D13q6CJ3W93y1Z0b0fQNdGrrXpqQrXgaizQYacGu9+lwsoHAh51oDLjCaN7CrKxawMcLo9R5Ksbr06z18WcrtYag3ydCugVkQRvXEAKvO46quHd7XAKuoKQtRqkSBuW2MDLnyPKhmnAygvSfulUSjRAgFQy+/eaPQhSisy6b0FMoqop4iWZHeNVn30oMauTaaQohCYjsr5+yiG1N0DHlH3ke66ohGDjNy5LMRXkGyXjUuUHZMIAspynZE1C9RhePqz75lx8/sdOwPp/XAqaLrmYlL+kXCiX6b8sYO6ZqidUQyAPE+KPWFce6VWDVnM5oykMkGe0SpHw8ShrtEsd/+dh9W17ni+H/a8po/9KIPbFj3PP7XD+HaoJxiz5dGDA4kxD1RXKnSke1rsnpeRPswXPTcd/ORfwzfseGI5PgAb9qoGbEoQwkAZMLvp3l4JOQfpYVFUwhZQTUaY1C2UpWBDP+V4spbP3ifHO9KBfSUf3N5TSJEK2w3wcfz6Jk2qrBC0hgMJbO0LPFYlIkD8GJrdfVp1cn63p3AlQmly9a7wnlxU3+rjEHPzsDsDHq9J/sO0uc2m2P727yA4SgE1ivUKEPFcQCbFSpO5TMJJM3KolElCWamC87hVtfk9iorK8/lfB9to6Q/xfuHB3g/C6A0Oo5kPpPE4DxKKcg2fn7bqZJUHI0tNL0LsxkX/vNitwwky6oGvcp2LK9ZOLG6zUJeWMgo2ilvZXM950ffR5S7OrNFWZn5KC37g5eZCR7+4ZrptWNa03qglVKKSy+9lEsvvZT19XUAut3uPdrmgxZgefe7380b3/hGXvnKV9YBNN573v72t/OhD32I5eVlnvrUp/J7v/d7PPrRj75/d3Za91rp/d+qQZbClzznKz+N84pdX5VMEHf2PvRtR8NgbRikoqF5Go4ECBmO6gGdaqQCyHgPjRSVl7S+swzW4ZZXZFiXF2PmTxgg6oY0PKrVxBcltj+omyPColVBDaxQaBSgSodrxpBG5LMJtqklrD7knESZD3YsoEKAphk5GiugSx3C61XIS/GBAaWwTbCJxuQBLMmpbRDifmWTIIehbIl9knJineQjaB4j5LeMH++i8DpOFrRlS+5XVgCbmkWo4LGvOsR1l58cZJnWg6O08mjl6EQjvtw7h08eeQgr315g7puKAzfmxKsD9Kgk39Ni9byUpO+Y/foqapBJqKfPca0EHxl6ZzfIu7CctjiSlPgDil1ma3P89Xds/e44r0h0yeJ3dnH+F4fM3RBz4tGa5qJncAB84rENRXTcc/BRb8TddBsAqpHy0evHlhyPfc0h8hlZkKbLomYxI+jc4Rjt0qRrjmxGo7xn11dH6GGJa0bh96AouhFeQ7xu+eFL3stHrzz5EPn8P3sXN75Eslce9g5h8n3z7af+bVz7u/KYJ73sEHa3QXlDuuJIlwtcorGJptyT0IgUcelgtiVAS3+AW1uXxYgJKpXTAFnG/xwz/5QBX7oNYEq9mNlBwVIvPCcft8EzWZGfMUvcSlGrPfxMm2xvm8HeWIYFodpHSpq3WJTS+PUe9sgxlFa4NEXvXhA2XyNF7ZqvF0uMMvxgiDuxJOfzJAGjJYfF+VqxQpXz8r1WYZBaM8irAcrkZ7VNLo4y1H7f9UBUqZp1qXOxFxGLzCqBWuMTwzWf2Dln4FT13Ivfi/Zy7arIBNd88s288Om/Lfvv/WlZMUxrWt8r1V9t4AuNyWDuRosZWtRKT37LaYpqFDAc1jkpsFEtKOfqAMBoNT6fGy2DJgv4PDCeR1vPz4wZ2RXDWYD6oh54jQdzZmIoGYZYVd5gMrGcLIU5jwsDLu8FbB+VIX/Q0Vhy0j/aMNj2EA98TfQBUF4Trwm4YnJf97DxUFTeugz2tanY1mazmrKpxPqzFCtcbT3NwwPKdozJgy2aUtimRufy2rrwuFieh/P4WHPxE996Ss/9aT04ys5aVnpNjg1niI4kdG9VzNxa0rp5DbU+lHwg5yFNsLs64MAsrtHxDt9p4qMIIo1tRkERkjDYY7CzTczy6ravuYVUJmJNWouW5I4V4sUIO9vC9DPUsSX0/DnoEoqOpnncc/DM/y/2+AkArr7td+rN/MAvH8IbASHjHjSWLbqwqGEOWSa/O+sC0c/iszzYLXn5rSaxXOet4+Aj38AV33j3SY/dJFD0gme8A13Y07IMA/jsH72KH/jlQ7jI4KKUxokc0xuJ2hjwlcq4kcJ6D/IClSbgPW5NCESnRRraoU5q6bVZBbODSnuLSiJNseefQbaQ0roxWKx22tj5FrYZh2G9wyyu43v9oMAoKY+fgOMnBKBpt+R8PhigOm30nl3y2QF+lFEeWwQQsMEYsQWrzt08CICSe1IB/FNK47WD0m/5DDZn9agoll62IgsVXsC6QG7Vo1yuSd7L78R5SGOMUthOfM962he+V8ZDweL2mk+8adrPTmtaD7IaDod472m1WnS7XW655Rb+y3/5LzzqUY/ihS984d3a5oMSYPnc5z7Hhz70IR73uMdtuP1973sfl19+OX/0R3/Ewx72MN7xjnfwghe8gOuvv/4eI1HTeuDUdfmQxyZNYhVx/Lo9zN6gmL2zT7QyEN9MJUFnvgpDrpjMRYGem0XNdsWjNstroMUNh7Cyij1zHn10WZh+IUi0Zr9UodAmLC69x61Ic12x/3wIV1bGCOu6KMdB2dpJYrzWMjBt6CBJVXXAmosEtPBKLLmM8/UC1CZioVA2hLlvMgFDkp6lCCw8M5Km2+QBpPEQZSJBLxuKoqMY7hVGlxkKyFIpXVwiYIuNA0MqkX1QVv5dtAVsiYbCLizbAuSA3L6BdTWtB239xx/4Ey699l9x62CBz3/jPDo3xHQyaB63NG5dESsS74mVohtpTGZRiyu4lVV8XqC0QicJKk2Z+47B755j9qYua+fMULSplVinqtsPL8ABuOnfvhr+7fj2R7z9EA97ys3ctLiLdd0mWVNQWlRbrKBcr7dhO9d9QICLC953CIBiBtp3Qvfba3RuNoz2NzG5fMeXH9ZEeU/rmBULkEKsIPr7NMpHNfi4ua677SwSHP80fCjn7HsqD/vr38aWmvKMmPhExMPeeQiXeG547cmzWWBs+6ALAVNtw2AyS/db62T7u5QtAwtN8tmIeKFJ44bj6NLi1tdrFtzdZf5tJ8Xfskjdzgu5YjvXHsoTj2mk9M5u0NEKe6DDcHeEi+U8N5pXRCPo3FmSnBjJIC4yqNndRFkurMYsFybgcAjDISqO8XmOC5ZjG/b9exVI2VyVT7VWY8ueAK4orfFVFss2AwNlEKZfEosqyGhZfMax5A5Zj6pIB6WFNIb+ENXrc82Xf++e7bevVI9KLk4BbK0WoS98ym/ds+1Pa1oPtsoMulVik5h0KSda6kOey2A0TbZeLyfys8TqcIdzdFkCKURizzjZz9bo5qZz+eTgbjJjcIM6sTqneE8ddF/lrlgn/YHSY6uWNKjFo0iyxLxH5SXpcoltGnQmvvcu0aTDkmhksYkmW4jIZjXRwJOuyWNsLNuMMi85gLmjbBl6ByQI3CuIMgFWlBMAxiso27FYDyLEIZXqYHcrPbBXMJrXxH0BanykSFY0B8/6d1xx+7+/dz7nad1vdfPLXstD/sNldG4Tgk6yZonXSlR/BH0Zgkt2p8Mcc0I6yDJ8r48/fBQ9NwtKct6Y6RItGtq3RMGGyJzq5QFI1jw2VVuAlxc88x2U+89h/eyYbBZwwS7aSmaczzfa0n7x/5F+9vGvPERz0aEzh21G6EUragozQbrwXs4hMM5PiyJ8uyGh6m5n4OKnP/0rfObLF3BmpHjuC9+L8h4daygsF//g2/FGcfU/76zyqsqmkPQ8zSMjouNr4dhKT6ciA+0WPk1Qekb2Z5RJBpxSlMdP3PV+drJOYWt7Vx5bW4DNzrB+XksU5esd1Hwb24wo2wYzcmTzMelKgakU5kajE3GyqOYDk1aPvj+srR1ddX8o9/3Sz4aqs1f82L7ORxEqcfXacuLBG/O/QP5flgFQ1PJdc16+U9aNbSvDb9bASZWKp7XP3uOCArIiANT97NOm/ey0vnulToInT+vk9eM//uO8+MUv5ld+5VdYWVnhKU95CkmSsLi4yOWXX84rXvGKu7zNBx3A0uv1eOlLX8of/MEf8I53vKO+3XvPBz/4Qd70pjfx4he/GIA//uM/Zt++ffzZn/0Zv/zLv3x/7fK07uV6bNKs//0jz/sCMy8c8ucffSYX/neLGuTi9R8upL5qIPNCAkDjaCwbDbfXgXHOM9ybEt8avFOVgCmTIXLKGPT+vfLcKMIfzqVprb2qqwGnxa+siUy0IYtc0hjXSrCtGFU4zEguyi4mBBjKotBFsvAbLmiSniIaesqWMPPKlihJfIyoSZwiGopNWLriMbkoXiqfapsqyjRYeilZTIZkTrEXW5Uge1QAWIKKRZdiSeY1FC25T0x9gz92UgEwcls0DPdP63uiPnzrw1k/3GXXlwzd2wqKtiFZD0BhXoSFpUKXjuTwmiyYSlkceIsAi0mMarQk02RQsvvz/dOWXD/69YdoNFN6nznAD/3u+/mnvxlnOnzzrZfyU596BU8843Y+m59H/4wmM2fPkwaw1OcJB/f/KiQJV0xYIDSPiYolW3B0bxFGvh5mtG7OsTNN3NkNyqYAjPmMwUWG5rGSuGcxc5p8FvpnKB71N2/jkXuPsa+xxvnN47xi7puMfMS3i3n+8vCTuOmWvTRvi9FAWkDli+pHihd98tfoFQnX/PAhzv/3l+FmS5JOjrMKd7iF155kt2bmJk/rWEk0lLBFPbKopTUaR09At4NPE1wyK/lJF+6hcZOB4bBWz92jCgs8NTE4ONk2J9Ur1UJYVVYJVgZ40VDk840TA5o3l9huk+M/2GVwhmf2BkXr9j762Ap+ZRU3ylDrPVFYpCkqjigXl+42i/FBX9t4i9e3q3GGzZjdHm7b8NgAwkAdHqrSVMKvnZMFZyztoKpUl8MRdNvy/HaTK77xwXv+VrxHZ36DF/Vk3dPF7rSm9WCr5z/xa3zi1vNxcYOVCxso12DmxjbJtw/LtdZvYvCeJJdgQ26B0mJJ00jDgMnWCpeKEAQTNmIwDhRm63XEO79hMKgiNR5kwYR6TuzAaDfxaSxgKoiVoFK1XUu8VmByR9kI+SgjIS3pkQUP6VJJ4wTSqxYOMxJVnTca24og0bWVLkC6KkSiaOiJMkfUs5JvGGvJUrMeF7IOi6aWftV6TCl/ey0EJh8ZITfo8TlzWg/+6tyimb3R1opgnVeZF6JeUZgQih3Del/IHWUZlAZDIczNduX7HBv06oArbnj/ab32RT/8LtrNiKhfcPBRb9xgkXvNJyXf4UkvlxwYm8JwX0pnbQHtPd5kXLLwMlQSc8WR/1g/b/56WXu6RGN9RFxlHxUl3joBWtIUgr0URkufHgbNvpXgTMxFz303+WzEaMGQzyiGu6HzAydYuulC2rdqWnf0JaS+sgMNpbTmoue9m95ZKXlX8aXfu5RHv/5Q/Xt0T17HfK5LZ9nTvTlk1QxH0mfkuQC+vUKss1pN2c80HgNWjRR1Yume97OwIylow7n0JBkfypj6b7/eo3GiJJ+RfMbo8BLRKCPtdug9ancN1PrBUKy/SiF6eudRSYwysVg7ThJgsnv+Fh9UtV1PW91WOY44UaGInVosSqH6sWr8uHD9USHTEaeFzFopK6nWrfnYbs0LGexU6q3TfjsOUGF+MlGnA0BOa1rTuv/ri1/8IocOCQn3r/7qr9i/fz9f+tKX+Ou//mve8pa3fH8ALL/2a7/Gj/7oj/L85z9/A8By0003ceTIkQ1SnjRNec5znsOnPvWpHQGWLMvIsvHVbW1t7b7b+Wnd6/U7Z3wOgNZFOX/zpeex+4obcEVg/ITQvCrozA8G+DxHt1uy6FzL8UWJK0ph3Lea2FSRn7eHeKaNGebiD9sfyOIUUHOzZBfuQ1lPcscq+oz9uNsPb2D+VRYNdm1dABkdFrqlFXZxN5WQYA84j8kcRdugQxC9V7LvSc+BUpQtRdFS2Eaw6SKAJ4nkpAx3meBBLVZeKg5ICMHmy1SMYdC5p3lcYTJRpphcwBSbyvadkdskw0U07c4odAmNZY+LIO8K8GIi+ObbprZg34s12xrS76bgmyQrOdHAUDYNbqaJHmW4ffMApDcvye+s0xLbpuFQmKpxLP7PcLea2GyXx501ovHkIWvXLGy5//q/fJiovRbksXc+O2V+75nMXbuIWpRQSJoNLnn0m8AorvzKO2gd8wz2KrQV5UTZSUjuXIS8IBrN0vGe4f6GAJSFxzY1ZduIF7zz5LOKb73pUh7392/hppUFkoWSPz/6ZH5/7dkszPRZXm9hrm8zfxRaxx0mc0QDR9E1lE3NcLcit4bbluZ5zG8cojvS9M6NWdi/wqiMWKNF605N9zbPzHf6Emrfz/BpzPCMDtnus2l/7mbckWNQljQOt7CPOJdsd0pxYJZoaTmwvILSTp8k+P40ajs1y7aPcx7dFMWSD9dS1Q4nqqKALGPmukXcHYdxmbCbdafNvuFeYLeAxp2EZCmCRIApN8pAK9wo27gQ/X6u7T4L74REsCkUvs5W2W5AaIywWqvBy8TCVQUbBUCGTZnkKvjGNp7fd6P+4ZrX84JnvRObCutdZZaLn/y2HcOkp3XXatrPPvjqsZ3bObqny1dn26yfI4P/otVk//Ic6ugJfC/b8fxXZ7MElvekhZh40gu7V7VbqEisvnyeCyteaVQSo7sdKCUwWSWxnMO3ez2lxzkB1RDUGMl+CrYuonorod3CtUNuQD0IkywLnVt8WHp6pcZiGg04hW1GuETU3bpw+EjhYo2yGjMsxZo2d+QzEWboSFdKkjUlVl+5Q2cWH4ecKKegcGK/WzqigUUXHmYUyXKOyeR8FzUiIOVTf/Hqe+tjndYDrCpb46iXSy5IKj2iCtmadAKZYGVNfjfttvQi/QGq28EvzOA6jbtl+TPcm1I2FRAxPyi2fcz89UNcpBntjsm7mt4Fc7TTGH37MblGJzEHHyIK6CtuuhwzsqLKSuR3Zec7mOEIN1oVQmH1+6+u80rJujdYgvpI7D4vet670RYaSxZdGNp3euJPz9DFkqwMie48IYSpSfZ/HEGrSbSWEQ0TGsuW5z/7nRxALP9WL2wx/ESXA5/uYY6vwXqvDnMH6Q9VqynAQ57jl+Scozpt/LkHcM0EnEcbA8qPFSz3pA/cDLJs3tam+1UUQzk+TwIo6/B5TuMbd9JoNnC33UmZ53JOXFunMxyRPHSfbCCKhGDpxzmvPstw98Dy7HuytrGxFSDegtYoZSAx+GJrj6uMwVfPrdQqWkMcjy0qHbKtYDtW5a/cW/UP17ye5130HlwkoO3zn/1OPvzxu285Nq1pTeu7X4PBoHa6uvrqq3nxi1+M1pqnPe1p3HLLLXdrmw8qgOV//I//wRe/+EU+97nPbbnvyJEjAOzbt2/D7fv27TvpwXn3u9/N298+9dl9sNb5V/8i859J+dibDvGGd3+Lg199Ker6m2UwF5ojnSTCHOl2hJEUbLtUItJpZa2oWBZP0Dx+pizu+iOxEev1JZC53YLIYGcaqMIRrWa4bgNVOvRsF3c837lpslaYQ40U5Rzx8T6unUqQKeBjQzRMKFuGaGBxRokNEAK2aCvKFrwi6ovyRJdC1ChT0DFkqQo+1ZDNq5rEgQ+AycgzmlcM9ylc6tGZPF5Z8bsuWrL40EUAV0bSyOhCQkJ7Zxj6BxRffd8UULkndckT3sKV1z6wZcMP++vf5klnrrA2bBBlDWwrIp+JGC4Y1s6bpbnYZeYfrsf3h+KhPNOFNJFBSxVOCPi1da5c+8N6uwfP+XXKs3aTzyU0P3sDVy5+aMd9aN+hGBZNlvfGPPS6rfSurxza+j189OsPcfQpe2ge28vMzY5P//mrOXj2K3H7BaAZ7lIUXWBPRs+kzN8Qk3TaNfM2OrbGJz75Zi559Juw8y1GuxosPk5z/jNuoRPnfOWOMzjvD9+HXp9l9nrN4rUNdueWvf0+9AbsNiNQK+KXXxQCqs7NkHQalO2YdDni6B+fR7SgKGZgtAviNUX2d3tpLTrm1kqS5RFmeSD7VJZQlKg1T/P2I5AXHPvpxxGNPAv/dBvu6CLq81+nQWDbQWDImbEdAdwzv+bTyXKpBm+RQXV3yW2NdGy7EYLTyyc/HB/YZrp05LMxczfkpIfX8Tfehg2hy7XP9N3f6/umqoXgdgvCe/M1Tnr3dnZBE+GfE7Y+AFf1/xsAFzdeKsNQY4S9GhRnyhhZjMYRlHqcx7Lew2c5Vy7/53vpjY1LjwpUafFaco9cGnHxk97KVV+Y9mH3tKb97IOv/q/O17hxuIevch6zN3oWvnCCxafu4pu/OssZH5lj9uPfwS6tTNh76bFdVyjvfG3NWGW12P4A7ZyQzr0Xi8XAyFexACK6OVaDV/mBRPEprxneefG3txY/tLX9kAC3CXZ3l9Fe2XbjyBA9DPkCaYxLIpRR5LvC4DdkDhbdiOGCxjZFNe0jsa9NV4QAhE9I1zxm5DCFJ+pbBvtilId0xeKNJgJcLPa7yUqO9uAjhRpZol4uC97A+i9mYz7yt2+89z7I78O6ZOFlXLn0B/f3bpyynvLzl5N0FNGwUncJ0OeasQSWr63jjy1Kz2QCIa4/GPdxnTZqVHD1de+st3nwgtfi5jvYVkz89Vvx3u3Y07bvHAVSAejF7TNbPvyxrd/Fi3/w7fSfch7xeslH/uENHDzvUvxsB4B8PiHvSC5nlIFyKWa5gVrvjUGQapgfRfhmQr67zWiX/GbinuWiH34XuvQko4xoZQBLK/jQd/qQc+cqBUmVMaoUDEENR+glxczRZekhQq+Hdey69TgUBT7Lg0NElc8XzhnB+kp12qhzzxLV7OIybjjEf+V6tDGoZhM1OyMAUZ6HcyD3HGTZqbZRVVTh8rV6osp0zXOIY/TZZ6C9uD2Q55CmJLcuyf72+g94clClflZBYfNd72ur2zdf0ypwJYqEHGuDkkUZrjj+nwC4uPPz8r0LawpfFPI5VUC/UmKBG9QrlCVEhisO30Ob2+3ehnWYUVi3RHoKskzr/qkH3KL5wVMXXHABf/M3f8OLXvQirrrqKi69VGZMx44dY2Zm5m5t80EDsNx222288pWv5Oqrr6YRmNHbldrkV+y933LbZL3hDW/gVa8a++Kvra1x9tln3/MdntZ9VpNB92ceWKZc28fj//EVfOeiP+T6l7d45Pv24G+cANW0qq3BpKEohJ2CDKKqIGTvPOnhdRkIHlvEO4demJfwueVVmJ9FDwuU9ZTzDaLlEWpRGlJlDL7c2px4a3GjTBrGEdBpgVES9GfFi9W3UiKgbDaxDSMWYbGoRlzksYmibKrApBfQpWhV7w2sF8uuYgaSFQFNynaw7SJYiilFPgdl26ELJcqVIrh+GchnAQWRg7IBZUNjcsl4KRuawX5RzEzrnpXf5lx0yRPeglfqARGoeuG7D6Fch8/e/AgaxxTNYwVmUNIclESDhNWHxKyfrZk5sAd1y53ChF1dk99M5RW9abh7ycLL6tsjo9FZ96TgCoCN5Xu859OG9Nt3nNa+f+09l3Lhew6x5/l3cPMde3jSyw7xhYlw0K8cupTzf+dyztm7xK5zB3x16ULitTmU95hBgTnR4+DZr4S5DmZtiE2bRAO4/htnceD8RYp+DENNckKTrHn0qECfWMOvrst7TmJZjDsnC4PS4o+fQNt5jGkTLw2I15usPrSJcopsHkb7LLZpUE6HEN8gcw+2hX6+Cw7UWg/XH7LnU4u4doo7KiGYKolRjVRerwopryyeshwyJZaJ9+bCafNiqcqeaqSMLtxD2dQ0FnPJ2og0o4WY4R7DYL9YGSZrcg7rnQu7v+xIjhmxtWo2sOvr995+3ktVLT6VMagkLNiMrgeStte/58f3NJRCSitUFNe+3EqHi4GlBk/8pKf6BPDigwJzMk/hqtGfAvL7VDMdwIEL18ooOmnfdI9LKSEn5CUuicYDmGndo5r2sw++Ov+sw8wsvwidSc+nSsfct0cM9jZZfji0jpxJdO0QW2WLBWsvGNvYbLBonDwXWSe5DN7X12dVW6cEdbf3QorIHD4rtweRN4E5SodhUgXEVP/3HhVF6PWMBohKAISpHvKWdGHxRmFGFhzYlmE0Zxju0ox2ByWLhrLlyXZ7yqYmGoq9py4VecegnBB/VLCszbuaoq2JB1qsxhwUs4korUcOUziK2Qa6sOjCkXdFmTqte1Yq3n6EcPCsfwfwgMiveeZPfoDEQXPJkyznqMKiRrl8J2OD66Ro5wT0L0rJ6wx5DzJ09qi19Xowe/CcX5ffzCgT17uiWQ99dypRU3mSO9fwa72TPnayrvrcW3n2j72fwb6Ei374XXzk5kP1ff/0v1/DU37+cvkNGCg6hjioWIgMaCND5UDCsO0UHylMLr9dnTuxgvYenZcbbLPrrJBgu6S0xjtRb1QWo64/kGOTJMEGO5Ict6bYumITIXFE0bgXUUrWQGUpvchaD20FALKrorZUaYrevQCtJj4O57nldXQj3Tan5D4rI0prIGSoBluqZhM338Y1YnxU5aiCbRqOPSFlz1dy0tvX0Gvr43P2A6xUANFVkqDTdEw4jQxueeWeH+PNYNXkNWVSJTTR01YW6/V3jKpvDdcr77lieWLdGMC6WlkVRVxxx3/g4J5fkc8qTUFrfCMO4E0D30rv/ns62dv14nJQATv+1O38tKY1rQdQveUtb+ElL3kJl156KRdddBFPf/rTAVGzPPGJT7xb23zQACxf+MIXOHbsGE960pPq26y1fPzjH+d3f/d3uf766wFRshw4cKB+zLFjx7aoWiYrTVPS9L456U7rvq+fPOtL/MG5B+l+ocHPnP88fvmZ/8hVF/ww6eGjuOFIhn/VBbvVxPX6sugsCmHv2fGFXxmDWlrDLa/U7G93/AR6bgZm2vjFJdTcLMV5u9Aji15ek8Xr5trcRFSBg5ERyxWtcc0YlYunl09jbDMmXitwqcHGBm/EmssmkM8q8hkBV5IV2aaLwaUyhDajsMicc3itiXvi42ubcr9teFwCLnaS2dJTmNEEOzBR2IannC8pBobmUfGjVmuQdxSjXZDtsdz8K6/Z+l6ndZdqM4hy8ZPeWg8XL37iW+93kOXbb7iUx77qEK3jYHKHttIwqtwSDUoaK4b1tsbONDGVBD5N8d7hBwNhInlhIl3c/NdcNfzv+MEA1Wxy5ep/Pe398FHIFVp1G3JUJuuS3S/nysUP8cKn/Ba2FTHcl/Kyt36YffEq71w5SD6zFRG88ZWv4rF/91Z2NQc0nrjEzbNzdG/QzN1gMO2E9PAaqjfkipsu59k/9n5GCxH6JsPx9b3M3KnEJs94CeVNY7RStfUKwXYFHcCmshTGW3+AKYWBFVnPjFZ0bxfgYf1sQz4D2Ry4yGDjJq1Io4oW+VxCspoTLfYk+L3ZwN98GzqohCqGoWo28TMd0GLPQF6Ip3hg3WnnZSh/by9KJ7z+vbWi+NOK0YLBRSlxz5ItRKydo+k/xGLWNXglYC6w66uO2S8cgV6/XtCZbvcBB7JUDD8VPlezZ5cA41mOajaIGimu1xdbs7tzjE+lWgksw81DT+883pWySGUM3l7V+2Mubv9cDXC+MP5X9fu4uvgfW7cfFGeS6RIGtbNdsQu7D8pHWiwyKzujwt7v573vlZr2sw/OenL7Jv4kfRY2VtjZJtFinz3XxSw9PKJ/ZoO5m2ZQw+HYasZ5dFwNgCcsISfyCmrQJQsB99V93tVMdJ/lqIZYO/qQ07JtbQqAri3CwkCpPkeF29RgiBkMMYHx7dMI4gSXRgK8G42NNdGgxIxAdWW7JqMOq6cFbrYkszEsK1wkqk8cIWNQoyzEQ0/ZUEQjT7oqeRou0eQdzXCXpnnC0emXlB2DGYqCO+8qPv9fXsW07lldcfT3t9x28OxXyj+U4uBZ/+5+B1k++Vev4Tk/8j7ifilAQmHl2ma8XDONkiGsGV9fxwNeITP4/qC+pvrBABXHpwRVJksVDlNYKMqTKn4ubryUq0Z/ysEDvyaARSOl+MF9KBsGuJvqs38s3+Gnv+QyvFYUcyk+2SegyUgAVb3c54ob3s8Ln/JbSF6mk/+v56Isc0AAP2trUa3EIgFRb1Q5NYDkYriJ42StnDtUjoojsQpOYlEgdNqS/1QNnvMi2DVpQPJvXH+wUXmbA6OM/Py9KOsxvQy6bVHM9Qfo4eje72e3ywSpAKdmQyzSQj/vOw3KbirHCCjaEcO9Ef19il3fLGl8+RZxyshzTKfzgARZfBlIps6Lbfr8XG2ppQ/sExvolbXTPs4bzv9q4lpUKVOq13VagLKinLhebNy+G2Vird5IwYhiRdZ649/NJbO/WH9ntqwrjR5/h0HAwDkBynx03yAfLhIQswLbpuqVad0vNVWw3O36yZ/8SZ71rGdx+PBhHv/4x9e3X3TRRbzoRS+6W9t80AAsF110Edddd92G237hF36BRzziEbzuda/j/PPPZ//+/VxzzTU12pTnOR/72Md473vfe3/s8rTuw6pULD8z81X+w55LOONjjs9/6mH8+Uv/gT96xgs47/hDMDfegV1dG9slVCFnxuCzAmedeFADLpfmsMpbAcY+1u0WfnkFDuzFJRHR6ihcwMMisyxrFUxdk1YORtesHwDlHB7wUSRNo3Po3KJCQ6dahqKlyLuyqLRNWXS6WJQmcU8swlBjS698RlgUEnwvt8sbEwswF3t0odEjsQbTuQAsykHRBtt2zO7tkRURQ9XG9DUuomZHTcGV+6hCcOQDyR7HyJqSZM2iM0vZivCdCG09Ovck65DPJrTmZmFtDXfOPtSohLXgs+wVKM/V+Z8B1Ez5u1Jfe/fJregueu674XEP4ZLHvgltDOsPbbP6EM2X18/iMV2Fd4rrLtt+G1kR8eXbz0Abj+tabKopuoZkNSymO8E2RUGy5inaCtsTe7GZWxzJeinB81mB77ZQzQZqdR1fWwKIRF01GyJhj2RR5pMIvTog6uXkC03wsOtrBT5SDPYYyoaif0DTO7OJDeDp3msdkXMQx6g0EYA4DNVUkqAW5gQwbkS4RiwL+VUHBEVNWGhowGWjjQciBKRX0nxfFqdnJ7aDl7Xr9UkXh5gsIbn5BAD6obtZuSCFVknr+hRTiDqpfdQx+/XV2hu5UmWY5Lsgk9spNH6nhxuD7nQESCtL/HA0DndupFBa9Pwcuhp+Doa4weDuW7NNHF+llXzWE7kHOo4EkKof7kF5qmXsxc1/vWWT2wErdbUm8nJcsPpREvZ88OGv54rr33P33sdEXfzkt4H1+NRgmzG6cKCpWe3Tmtb3c/34+dfyqvxybKoEfFzv07g9oj0zQzarsQd2YfIcu7wqvaZ3G84BINcdGXSFmwIg6wu/MSi6AlKtg0RBGUKAq6D7u2Jro5QA+ZX9IMh5pKqilEGr0dg0ItuV1OHxyoNLjLB9PcQDTzSSnrfoIHaeI0O6rGgeg7IJ0Uge6430rqYQskM0gqTnMAMruWmRIpvRDPeBbWiiYXjdpsYmegqu3JdVlhDHOxJj7o/SpSdaHqCGYlflU1FNqiqjAUKvJgCB7rSFKLO0XOcWVX3sqdTX29U1n3rzSe8/uP9XZT/n5zi47xXy+4xj3Iz0iSZzOw5tn/azl+MSRTSw2IbGxTG68BijMP0c36xC7lWdaeSVwjUMpudhvQ9pMl73NhuSNZJlMgivVLFhYK2qXCdjhORTPa/6/Q/FXpskWI92OzW5UNmezABrOyg511TKO1EJx7heHzMsyedSVOFQSYRKInSzgVpdg7Xe9sP/zQP90+3Btjnf+VIszpR1Yq8IohbPWujC4WJN1MuJlxxxL2X2BojuDPmPeSHZrtEDc8QmPW17rEArS9lvrcXmuZGiux2xlywK3PETuMFgx+1Ngiu6kcpvK2TgqjiS71Bwk/F5sRHINAZdrT8mSAAV4HPJwsvGYMnE613V++Od32AU7PHyXPJbmjEulp763rLvet5F0he7RKOMwmHQ6oFrBzetaU3r5LV//37279+/4banPOUpd3t7D8yz/zbV7XZ5zGMes+G2drvNrl276tt//dd/nXe9611ceOGFXHjhhbzrXe+i1Wrxkpe85P7Y5Wl9F+p/9R5O6w5F3LOc/78zPvJiw7//2T/gzTf9ErtXB+gsE2Yx1CzgyiYFa6EUEMU0UtRsF7+8Om4WTILat0cGmOedwfpDu2LRpSFZLWnceAeu1x/LiDdXxSz0IYsgkmBfYd55CVpM4jqXwBuNbYoP9WhechpsImCKcgFg2WUZFYp4XVQmLvKYXJHPWWhZXBaDV6TLMigvW5AriJyEiZqhgC9eywJ2cIYiW3A09/dpxCVFaVC7Mso0xg2M2BNNUfH7rHZibl/85LeB9/cL8HLt717K03/mMuLVHOUc/TNT+vu0DDcYW3P4bhNVFJCXqMFQGmkrrLRr3EkGuqdZD738cr7zqh0GIQqy+Zh8Zo5szjBcEHuVz3z8kXw6fiQ3/vrOA5Q0Lul0M7TyxHOrHPv2mTSP50R3LsEow6/3uLjz8+hnPQpdiJWILuX3t36OYdd1JdGooFhoMtwTU6aKhesS9FIK/X4IEBY7AXv2Ho49qcNwn+AuZ/5Tk2i9wKUaU3jSY328MUT9GJtoBvtj1s9RDPdb0kXDYF+CKueJ1jM5vscW0TOdoJZRYSGboEqHbUWo0oNpYxbXZQEbGVRlqVkBLJuAFRAVg56bgTjGHjm2FTDeXJMgS5WZkmXoG27D9HpYQCUJydoaB9z5LC2lRENPuiq2FN7IIl9FEb6/HHJjHLa/8yLuHlX1nuOovh6cbnlrcb1eYI2HQOckEdudXh/VbArQohQ+jlCdNmYwxPf6d12Ns83AoL7NVKCWlgXpxCBUPs9wHQkL24s7Py+B1YQMlqCuqpQtdRWFMFLD9ZAkEaaf9/hGvAFkOfiw13HFt06PsHLxk94KTs5xqnS1wkbnYhGkoL5/WtP6fi9/YATfaqIHhTDQjywyq2Ht4TOsX9BmNtuN6g/CQHLr4FBsDMeDTrHp2QiWKK1Esea92Evu241PItQwx996O64IuUycRMkyqWJRIZch+OQrpeX8CALYxBF+tkM526CYTRjuEkClseRQ1jPcG+MiIfHYRMAVbSFZF0VeOTA0Tsjjo5H43LtYMdwTEQ29BNYr8FqCvgcHEsoGFC0hRJhMiApr50boQixvo+G0ob0va6eMg4MXvJYrbnj/d3lvpP7x6tdJQHxeQKct5DZroXSoLK8tiFQcC/nNO7CBme/Ku0US2lwveNY7ueYTpxjsVkS8SDJUVOloHc35yD+8Ycen/POfvIof/IXLKZui6FIe4vUSnVv0+giWV8U26aFngALbMKjC4SNNOd/CRFqAJ4BmE9IQ6N4fwmCAH1Z9oxKAYW4WnyaiXu8PIc9rNXWt5E5iGI5QNISIGEfynpIY5d1YHeLdhBpvIzhiTvTIz25RtBs0FnO0VrhWjGkmaJC1emXLPUlImfi3SpK7riyugOmgrvEThEvC+4yyDN8VYooaFcRZwejsOaJKNRiOmRuOtnmBe6kmcktO2a9vKm8tbn1djn2zIWQtkHO30fgkkn5NgypitNLofp9ycemkx1IniQB0SstvqALYw3pIRRE+jrFr6/L5NJtiIQdi/xZcR1Sa1pZlePltHjzvUq64+RCXzPwCSmsumf8lIa8qvb2aLDwPJ7MV6WkBBc+9+L3841WvAxDrvY+eXhbX814gffA/XPN6lBcFnC7lWmYTjTeGf7z6dXflo5jWtKb1PVoPGoDldOo3fuM3GA6H/Oqv/irLy8s89alP5eqrr6bb7d7fuzat+6D0/m/xq/vh37cOsfSIhP2fGvKaQy/nBf/3P/OIX/46d970UOLlFZEoT1Rtq1D5VacputUEbYR5XIW95Tnu9sPyWnlOvK+FLj1FW/ykVaeNX11DtZqoXn/bJkeZYO0TPPCpGCPOobzCJ+AiRdkShYCLlQwfo0CEj3ydR1F2HcnuIdlaSunBzRU0OjlaO2wW450M+Mq2DJu9ESagi8VGLBoCQnbGRpB1Id9XotsF+2bWWRk1GZwITSOgStC54ttvmAbbf7frqs+/jYPn33+qoaIVGEhAsi5DDZN5kp4jXRwJG6h05BfuJ17s49d7ta3eNe4v7/LrPeRP3o06keK1x3dLbv43ryNdVDzsXYdoHoG5GwrSRVmsXP3Zt/CRf3hDPcBt3+xxzRis5+rPvuWUr3Xdj72dH7xCGuo7FufR+x3Rei6ZKUWBz0Sinh4fAC2UixnsUZRtWH18QeeOmMaix0WawV5N7xyPi2bZ88+FAE7WoppN+j9wFscfFzHa5/Cdkrk9PaIrG0R3niBaDIuH4UgWahqiVUuyGpGuNllfMqw80nHk4gJ6MY0jDfZeW9L8ToQfZeh2S9iFowwVRaj1IXquKecMrbC7u5IXlUtgqVIKnfTrgOPK1qxmH6dJPRgzZ52BP7Ek2SKw0R5mGw9lVFyD1nZtfQy4BI/y9Gu3sndwgP5ZLeKexWSOqJejBxnl3hmiLEfPd1GjAnvTrfc8yHSidBrOvWGxXX1Ht80XOMlrVotsl+fCihuIrYWKYnyvL8cwilB7duFbKSoomKKZLuUdd+68g9sogbZ9WBTyfYyWYVBlpeEld6cGV1xg/mnqzLH6NQJAc3Hn5zew/64IOUUHD/yaMBgn33ekIZ1oE83G+09aDpT3XPLoN4kFSTX4LRzKyqJXmSnjb1rTArjxJW+ElwjDVtku6sQq+o7jzFpP7/wZRmd0aa4u4I4c2xB4v8E2MAyFa1taxv2u/FvLADQwhNXispz72y0BivNVVJyeVMWyIYx4MoPDOojkekKa1EoGn0TYRoRXYDIfwBDZvC7k72pzRUf61nRZ1CrxQFSkKvStZUsUKCAkp6pcorGJYrhLtl0RoaKhKL5dIn/XXvnT+q7X/QWu1FVZXmYZ2jn5fpa2HppX2XV67x4YDnHrvbuvQgWe86PvIz0+QlnLVV94O9FSn0se92bUIIP+oN6fK47/J6448h8BBAgB/MihRhlqEPORL//2KV/rc3/4Kp72s5cDHjMSAosqrJAksgyUQq8HOzBPUG1H2IWYuBvTONJH9YYQR2RnzIKG5Fgka9a8kP6m3cIvzGAbiQyXEftZsgw/HIkypVLGOSdg1WCIygvI5Rzj52ZkXTEcoXoDnLXAOBcOqDPu/JFj2HQfoOifmRKNPGbkiBJD7HehrcWtro3z8SYsEutzlFKYdgs3yna0pNq2JkCWDedO5SHYjKssl35JKWikNL59FIoSt28eXRToVhN7+53yvHurn02SWrlY5Zf4sthyHdjy9zZV97SDAQR1ik4bqF5fetlGip/vSg5OtwnNlGhhDtZ62OMntsw7dKsltuvNhoCVxYQiJY4EfE8TyDKUVuhmE7VrHt9uoEYFajAUxYzWck2auIZVmUcH970CVVmg6mBn5z0H972itiusf0vnydxCVUALCMCY6LuvnA497Que9U6qTrhyHrFJAndzs9Oa1j0uPyVDP9DqQQ2wfPSjH93wt1KKt73tbbztbW+7X/ZnWvdPPfz53+HIh87HpRFnXHmEL37jidz0bzz+5wyPfGsLtdYL9jdQM/OqBiosOO2JJdTKqtwXFq6+8ieNI8rDR2ksnkC1WqRn7SM70KV4yF7i4Qh3YBccPbbtvtXWLjoMxtb7MuhrhybBe1xiKDomXPyFxedVsPDyirLpKecs3X09itKQ3hljMhi0DK1GTivJuf3oXvCgnVzhy6YAK2XHY1MvNmHrimQlACcKaAMeXBZx+4k5yn5CvBShc2Hsx2sQ3TWy97Tuzborw8x7uSoLjYuf+FY+/nev5QXPeAc6Kxie2WHtoW3SpRI9SomXhqiVXq0KuMb+zy3bOnjg16SxbjYYnT3H+tkxS88foW9vgFNc+PSb0dE+4hVhoZZ7S170yV/DpRew9wuW1p1DzOowZDcYDj7qjVzx9XfV6p6D512KUjNi93Ca9bmD7+LCv3wHAN0bNPl8g+SrS1D9XpVG3XAb7Hk4Radq8mFu7zrDhQV0ETHcbRjtAnNOn7W8Q/PEPM0jTczqkOUnLLD0aI1tePF9dxHrzQYHbrhDcpuMQbWaspjISswwh7V1cJ7OrTGt/QvYdI7BGQnlrGW039LfG9E+sA+/3oNuR7yuR1lYZDjim45Bs4FPI3wSWGFGocJlXrVaAg7AmHFYiMWDD7frVktYho1UFrDD0Xixtl1AZXWsqgVtWJTWi94QcGqW+kS7GxJsrBRlO8YohYs1xXl7WL2gya7PnBB1jvNj1qSXANST2RNsVzptyDm/LMb+3nk+3v8Jn2gdR6gkucte2Rs8p5XHDUfoE8sotYA/toia6W60y9lUwo7dZN2ziW0OCJuvYv/ZMBBSYyY6lV2ZdeP1XVh4ejfBFq13fIcuPPikS3ioByNB9JOPv+Ib7z7dwyPlHL6VSLCwc6i+7LtPIrzWXPX5t9217U1rWt/jVcwmxEfXqTJSuPUw3dUe5Zm7sAcW0Mur9Xl82yGad8Lstnps2wP1ua8ayPnhSMK8kxhdFKhuBz3K0DPd01L5eedQeSGk4FZT8haMrm0xAXwzIZ9vYJvy2vHAAzLwymYlrL6xbPEaRvOGoq3ENbWAeNWjS1GpmMKjCodtRuQziqKtSNYMyWqJixUocLHCGYj7YHJPNFR4Bdp6TE+GD8l6CPae1vddXXHb78gg9o7/IJZc1kG7Cc2O/J5KK+Bbvx/6Iul3rrF/tmE7B8+7FNJUbMa0hsJi51u4RBMvDaGwlLtaJNZj1ofgZCBrIo06sSqAh/O17dElCy8D4MqlP6iZ+JfM/mL4vZ6+MuGf/+RVPPMnPwBANLR4Y2BlTe70Ho4eR519AIgFrEw1o3lNNquJhg3iYY5rJBQzEYM9hmY3onOjqIyJDK7bwFXqliLksKyt48L6ulIJA5LbUkgOoVcalWVC2kuSoGaRbaokEZWDd9LHTOQ4eWtZ+PB3ACgedibZfIyPFGXLgG+RlLvReVHnS03aS3kn9mPKO3wFOO+g/NtQk0oYwjlsG4DE57moJyKxmvOtNCgBQ8bqWXvRa0N0IPdW/awEy8e1UuN0q+pnN9pCshHkmOhpTbt1t7JfXDYS4CC2+KEAHn73HKo/qvtMv2nfdbNZE0lJ0/FnONmjwpi8k8SYmS6UJW62JY8b5tBIZQ2nFLRb8v2q8nvC9qrviC9LlNNC3Kl61s1VPd57sbxTkZBXYy0ZX6FOV73y7B9/P5EGPXRifeYcKrMoa/FpjHJM1SvTmta06npQAyzTmhbA3z7rd3n8Xx6iE2soCtKv38HDPribm39shsHjzyQ9fGTD8Eo3m7WnqgwOK+bLRPMV/GC98xBFkmFQlKheH3NsCb2rTXzjUWmy8hK3AyvOFSX0+tJ8jLI6UFhFBp9G4kFtFCZ3DHcbbKooWiF3RUlAfTlnSedGGOPo3zzD/K3C9NMjTX+UkEYlpq9RhQR4egM+EoAFwIwUqlSo2ptbWILKQ7QS4SOPW4loLiuSVbEWi4Ye5aBsTCkZ91dd8e333d+7UNv3XPOpN/PMn7qMYz+gidfh63/yG6d87sE9vzIhr9cQlaSH14hXUpJem/btA3ykOfGNczlzyZKe6GMbEWs3N7lh9gIecsUxWFyWBVQcoRoNrtwuMLXVvFs2Q9/+qTfzA684xOyNOSazXDX87/V9l+x+OcoYbNPQXHTYMzS6gPzTC/i94JIIPEQ9+NpP/iYAj7v0ECsPbdNYapHNKWzD1xZnb/rKi/mrv/0hsQ+LxLrFr8sCSIVhmVvryfkky9B5wVl/N4TIYOda9M9sYhse32kKI0upoGRwYHzNGmR1TWwcmg2xD8vCIC6KZGFf2SPWrLwJxh9gi7L2UN5pEVgBKxv8kqEORlWJkUGFVrIQai9Q7OtiBhYzKrHNmOTWJYgMZtHCeo/d34lhpgPzcwI6ra3j1tbFojvLgoIjGoc1TwIRUbyFnTiZN+OtRTeb4bnlGLhIEnSw5FBRhAFsf1AzA+ucg80KnvGBwJx7toQq33lYFvAhy0vtmhdrybzY8FzxGJ/wOzfjz0BqPBDdMBwFfHVNKkthBFZWPNaJHUO1oJxYcCqCK4IxW8NAN5UvRem0AZBxDpWVHDzwa9tav1z8xLcCW22+nnvxe4laMaowEizsvSyi+wOY6YQF6VS9Mq1pba6P/f1rufjJb0P3B7VtrTt+gigvZNjV7cCE9eDGgPlquAhgN55DKoB8MoS4sutRCndiKZzD3cnVfEFBp7wTq6U4FlClkdbACoDrNMn3tsi7hryr0RYJrc6DyjJVdW6KSzS68MR9RRkyB03mMbmjbGlcrLDzhtG8wmTQWPZEQ0fZMYzm5DWTdcfCNwswkr8CYAoJ9dZFsBMDfDTtab9fa5LlfvC8S3F75lB5iSotV9x+6KTPPfiQV4nqJAyB62/RYEgUejff66OUJl5dD9mcJUppojzHr6zVSooqa2THa7LewfboFPXJv3oNF/3wu4h6OVg/Bmzmf0k2mxWYvsHrRNTEueOf/ua1POdH3ofa08XFGp07vvAhUc8/94XvJUWIOi6N6yyZ5178XtLb16RHm1grb+7DxJY7OEYsr8hxq3ogrcRKzDkoZWhdPUd5Iey4lTVUHBFde4MMq7xH7d0tFmXHlzbYf23sRys78LFize+wRgc2KonDYyftymoSkXegYiG9dDvj52mNvuWIELScl/nCgX2ouVkBktZ7uLV1ca3IMsxMF9cf7NjTblZVb85PrNTTdQ5N2L+qp1XtFsYYXABZtu1nq9fZ9Lc++wzcbXfKZ9brw+453GxLSDJr/ZqopFPZpp7pwkxXgDJnAcno8e1UFB+D4Xj7Vd5XEdZBDnwa7GjbDWjEdVA8IIB99ZurrmXeixpGq1qtsuNnqsSS3SVG3EG0gPDKC2Dy8b997YanTFqATdazXvwBosyhc4fKhSzktQ45t0qU3tPLyrSmNa2JmgIs0/qeqC//zqU86eWH2HusAUWJvu0oe65tE69tDW6uwZVQk43X5LCuvr0Kn69yApZWSO7o4sMCmJvv2HnHwuDLrfUwC3PQaYsvtdb4RoKLg8coitGCwjYgn/PYtoOGJenknD23ytKgxfKRLt3bAgtRgRkq8kFMP06wTUecmdoaAYIKZV2JPVgmwfY2lfurkNBkTZh/rTshGok/tfKS/VKpaS553Ju58ivvuPsfzrS+J6poiQKqdXznhcol878kQ/wQXg7I78dayDI4XqLygu51YfCtFfOfCU9WGm00uz4jz3ETizRZ8KzxwuQlXJ3/GS+M/1Ud3O2V4pJHv4krv/bOu/yevvj7IiN/wTPewdNeehk2VXzuv76qDjI9uO8VAMwoxeGfvJBrf3dnu7yvHNp435NefohHv/4QX3vPpfzpF57GnhvHUnVflsKS9E4Als0LvCzDHz4qqgSt6F6f4h9yBsOzZ0kXU8yxZVn8lGEbcSwWZ2UpbK21Xq1KETZhuTVEcvL13Jh9WO+XVuPAZNnQWLViDCqSBZ1KJRRzA4ssisT+rNfHN1PMsMQMS7xRxCf62H2z6H6GWi8EHMgy1KKwEVWS4PfuQu2ZRw0y7C23yUK0KNGzM/gJVpsvSnSzsWPWSWWhUB2L6n3gXR1aXytDokgyVirGYxRhyrIOuVVRLAvoKELNz+IWl/BLK/jzz0Tnu3CLJ+S7H2nKs3cRH15FpQuYSk1SFLXNl4pjfH+Adw6ttbDBtR5fqyY/J6/kcY1GyFSIBVyZHJ5WSpNJNl8AXFQSn1Yw75WLHxKLkixDpbFkhZVuvMDdpsr5BjjP85/zLlkYey/AowKdlWJRZ70E2jdilJPHixrt/lPoTWtaD+S66vNv4+DDXw+razVr162uoZUag+ahtrCyJ5SGLs+33gc1COOdhxDmjPOoRopdXj35znlHNURTcSyDxmYD10rlfOBBZxbbjshmI1wMRVtsb3UhAy4XQ3PRE/ddyOMSYo+qLIwakHcV0UgY9lCBLtC9Xa4jUb9gMNOgsWxRpScaWsywwDZjXBSTrgWmcRjYuURyC72eTsKmBSiF7mcwHHHFTZfv+LCD+39VlF7GhGwWhypLscXtDzfZSG0azIP8FldW6j9rICLPN/SxLzA/vUEBfsn8L3Hl8n++y2+rYuQffNjrOPjIN3DFN95db+eS2V/EJAlGK4pHnM2H/4889mP/Z3vC1CQj/+DDX88lT3gLV177WyRLI9R6f4NdFUyciyqJgJo4z9igngYYjoTIE4l62EMdfi5ggxr73WghE1VWr/6OIwIWVMdxJzB4wkLxdMGVDRkusQSl159mpYDRSv4bZdL3jjI4sSQgQ1ni80xIL4tLdT+rDuzd0M/atXV0sKzdrqfdKVOl7mcrolTY/5o0FEXyXfVyLldFIeQ2pSCOMEU5nm9kmexb1c/PdnGLS5S7u0T5btyRY9LPpkYU/ssjfKeBabdQlQVdaXGdJr4R4WItykuj8bGhnGuihyUaxCZuMKzt6ip74nJWyFxqpolrJrKNpYHY6BWFrB0nFTDey//1zllPVV1x4wc4eMFra6tr5QNQGInqxeRbvzfZnChufugn3k+VV688GCtgvx6WQhgK6wUiDbgA3EyvK9O6n2sqzn1A1RRgmdb3TKWrjnxvh6Qo8ccW6X5BgI/yFM+ryjuP2be7Zm9Mskd02kB3GvjBAJTG3nSLNDsTwWxbqlrkhucQFse+lUror/foUiTMNtXYVBaeLvaQOBrdjLn2EKMdpdXogaHohrD7WShnZPi2ttzGDHXNDHSJNKi6FB/rZNUTD8SXF6XIu6CssO+VhUYfFr4xwBtN2RK7srKpxHIhhm3lt9P6vqvmkqVoR+RdxcF9r8DnBX44rNlXuiX5PX6iiQdZtLjhCAYTXvEVY6saZhsjg/2JhUX9mIlFmtITzLhQdwdY2VzXfOrNPPbVhyjb8Og3HCLqy0DnzHpn/EnBFRCQRhcWvdLHt1K6Bzp84UOyQJ3ds85g7wILwXqlWiQpY0QZVy3srA2ydsckq82NMsy3S6LZh1HMp5jDTkAH76Eow6Is2H4FALnOmoLA5juJPULIpFJajYND2cSODtsh2AGoOBYpfxxsElTI7SlleEAcoRbmYJihnGN43jy6dESArRZk6wPx/jca327B0eNyvryxj96zC78wg56dEa9ta7FLy6A00Rn7oZHil1dkcbrT29pkoaBjyc6yy6t13paujrlSqDQV8CvPJd9GVyBFIqCHC5Zc2qDbLVyvj77jOHTaqE4btWcXq4+cp2wq1HlN4p6j+7kMyrK2hEMp/GwbVR0nRE2j4gjfH9Se8LXNWgV8DYbydxykiRXoUQGZzo09wcM5+64MaC7Z/fLADBTWoCqtqKC8r5m/k/VDP/F+dDsC61FOFI/K+tqTWmeyb8o7vFP4xEAzoZxvUcwmfOzvX7tlm9Oa1rRCDUfQaqFMuGYMBvi1dbH9O53yTpR/Wm0PtEwMFqvQYd/bSkjaUiFUWSUxVf6Ab8SU8w16Z6XYWMASk8s5wWSedM1TpgKyuAaUbXCrULQ0zihsQ5F3NGVzrLorm5JHaFMh/OhC9H3D3QZdgE0axOsWHc4/eE/ZTVClJ13K0VmJj0SFahuGsqlxEVOf8mlJFaVYIXWaHDz7lbil5XqQX/VdZtdCUKLmeOvq3Ac/yjaoB4AN4GUNOEw6I2yjUNgw+J+4/+4AK5vrim+9l0se92YuecJbUFkhvUuw3qL0fPhjp7ZGOviQV0FvIEqCJOHK698zvrORbnjPk7lQY2X0pp6//qPAjUDFVtQgcVyrfSt1ndKuBqOq4+kKv/HYnobN1slsWDdYglVARdULxnEALHLZNyXqbADyAl+UosKtesKyFOVG0RMiTktU064/QN14C3rvHvx8Fz07g11erdcA2/W0dml5+/dSjhXRNZCnNHqms7Gn9aJq15227HtZ4vsTxFItvW5FylGtJiQJen4OfXwN322h+138GXtYe2gbmyp6Z3RQDtK1BumJHOXBRRqbalyqyTuajlbEKyOK+SZlJ6KxlqHW+1AU0qcrNX5tpUiO9XBpTDmbSiaf92K1NshkHeF9UFSKahKtTwmsVHXwwt8AY3DtFBcHVb31KKfwhi3qFQAXyXWm/nr4if87sc31RtxAlLW41EASUXbiHUHKaU1rWt+fNQVYpvU9U5/6n6/mMb9xiPaRBrrcx8y31lHfvvW0n6+0wi0uES3MUy4tb2jEXJ6j63yBwNrxDjfMT97kVfd5h1teQc/OCPNDKWH3thNsU5N3FMWMp2x50gN99sz0eMTcMY4Ou3zzyD6c1biWlVzj1DF35hqxtqwNG2RrKemiNFs6gqLlsU1HtD5mOOddjTeQzUK2AHhoH4bmcUf7Tll8l52IoiVhoS4WVuGXf2cacD8tOHj+a2i2U6Jeh6IbSZBhHphUNsjxQzZEtdCq2HzeMrHgqhhigUVVPf9kNWHRVG3nGveX9/p73PW1nKIbkc1KA91cCiGk2wyXty2tsM0INYpRg4xo2KzvyvKYZo+aBVe9j5pNZhl389taHojyLrnpOMXZu8SKxUUopeoFFJOsNsavJXUaYa0BZKlrk6pGGTNmHcaxMLjCZ15bZngvzLPKK9o5yZzRmmZR4o+fAGMw7Ra0mth9cygrigbbiEi8h8PH8KMMe+QYemUVNTeLn1xwerchOF5F8bZvpw54D99FM9+R72wATlSaSoAroDttsWirAIrqO2qMPM5aAZKKAL4cFXafajbFHieOKB91Lv0zGwx3hUW7kwVoesF+ol6OPrE+Bk+SCDU3AyeW68WjL8sN9lyqYkrCGETRaryP1fF2E3aWFVsvisbPPY26ZP6Xxs8JIbSijhKLzMl6zo+8D9vQ+FjjYrHgMLnH9EtU6QLQIhYKPtXCoDQK24rxpkE+F/NP//s1p71v05rW92NdcesHueSxb0IZLUPIhTlYXcetrp38iRM5U5VlWK3M3qZXra7fsGkYudO2q22UpQRfpxGulVA2DXlHUTZEPa2cIh54XKQZ7ZJcwLLtUVYR96DoCCjvZ2G4dwJECeH20dDjtRJVdgx5R0hBuhQbnuaxfJzJAMTrktMS9XJU6bCdlNHuhLIp9i02kZ72c3/4qrvyMUzre7BqMgGgog50WujQq9S2V1FcK1fq63Yx0bdtAikns+r8qdqtSdvRUPdFT6uW1yX/EGCU4YuSq9b+8PQ34L3YeOXFBhWrj3SwStsaBj95jhnbFbLl3DP5HBVFgcwT9ltveuxkvspptLI7veZ2tdkKTJ43oTSftF8sNpKWVFluyNNh7wJqroNaXJHzY5rWoJ09fKTuZw1sBFE29bTblU6S8bqhLEDFmD27REk1HKG0Qne7QgJNEnHYgHEYPNSZKKrZkNuSRMCP4QjWe6KU3rsHH0UUjz2Xwf6E0fxYQQhgG4ai1SAaeUzmUNbjDIzmFco36Hjp/xqH++j1gSjZ81yAsjhGKQOtJr4R49MYl0bYhlilKwc6M3WA/AbbW6PH64pT1MGHvEryKJXCJUZIP06hAsDuNrXGz/jpy/AGXCQKF+WFGIAXkkBUOJTzeKPxjRgd1DS2EeFjTT4zHaVO6/4txQOIPPJA2Y/7uaZnhWl9T5VNYe08RbKiSFZaNNS5aOfQx1YAtm9iJhvlMOCqPVKTWGStSJO3Ib/gdAfDUDPIXX+AjmP8rllcGuONomxoirainCvp7uvxmL2HeXjnKGmgUnwn3kXmYlTkMSNFcnafR+8+wjeX9hIZRzQ/pGglRCNZ2HrjoV3i+wKWjBYUZUusx1zTYQaadEmRrHrSFWGJDPemDPYKMzAeOL74+9NF6LQmqt+HlVWSIydIklgCcofDejijgowfbzeoBgQ42GR/dTJZ/0lq0j7hvqiPXnnPAgqv+cSbdrxPf7HLwteGW5nEkzVp37LDIMyvrBG1mrJYHmWoVCT+dRj9BFvylMOyU9V2C+L6jwCk5F4sa+J4vMjMRP0hgE/YhrXYmwTsVlqhhiP0bBdTlKJeaQmbbnT2LI1RDieW8EMrdo7DIWZuDru6JovMEKi603m4Ut1454n278IeOy7WX86jdu+iOG8XLtakR3roI4v4osT1+mNg0FpUFKPbLbE/M0YGDI0U4lIAAxBWoLVgLcXuNsuPaJHNCntbFwKw2FSxcsH/y957h0l2Vffa7977pModp3vyjLJQAhSQABMkJhljc425cMEifYCxMRjJgMlBgMgajMH4AgaDQTbm2r6Ya2YkISERhCQQKKCcw+SZThVP2vv7Y1dVd8/0zPTkHs15n6efnqo6dc6pqp5Ta+211u8XUHpCIvoC/I12cTQpByilUK3QSoWl9josXMdO0bRvI4RNfpXsSogJKae/3+1Ov67fghTdosjuvFN2YapcV6dbsD25suY4WwxZs+wSWicPY3xpO8vbC6JuPSUNJEmg8EdtkcUIAUpw9S8/OO0wL1z5aVRzX1ZIMjKOXdbf+QnWnPpeu8AUx+B7yHLRLtqF4S5yt0A3np26cChcx0repCnC87reBbt4t+zte3nq4mm7OUK0Yij43WmVNBBoD7SyRZS4BNFgArkUIQ0mUqiWC9pOuTSGBGGfwa3aCZewD7QPRli/FRXaqW3VgMJW672imhqELWAbYa9BqhHbAm9iZceiXo+x4xxkCv6Y4ZZ/ymLajDZRjNYaGg1EvT2hEcXd/xfdyVFj7BRCZ2F3Dz4Z+8qhKKjszLon/vbAnv/o2hnvl7UWjFd3auKZgb00HxotrUm4mHKtkmJyIma2+zpYGD0ZQkdRO6eZ3hQ1SdqNRYUUkKbIKCGt5FDb6RraYwxEUVvtwsazMpebdUzbiWd1nODMH0LvGO16uZIkiIXDhEt60EoQbGsiN2630rxRZNc523JWopBD5POTcWOqbUzruYhioSt9h05JegNGTgmISlZeXCTthiEXopKVfHSrAmGkLYQr6wub+oLiE+CMt2xxD9BLhhBRgoxS+//MGAjttdo4VlJWGEh8WwiXkYPKeYiObJrr2EJQezp+zZJ3sO7xL+z5c1QK4yqM55AGDkjQSnD9Ojtl8uz/+XkAnvMnn+s2h9kCy2QBxhb3Bf5ogluzPk3aU/z4px+YdqgXrvw0bnW2OikZGRnHCsKYTP9nKhMTE1QqFcbHxymXy0f6dDL2gzWDb7GGwH29Vo5rx7jt+BaS5LEn9hyoCYlsG/CZtnSP0QYZ+N3FtKmLpNLz9rxoOmW/QgpkPo/o60EPVLo69FHFpTngsPU5KYOLRxECenMNzujZRJg6pAjuHh3m0fuHUQ2JWlanlG+xfUMPIhX4gw10KpFK01toMlSosqVeYttdgzh1QVwyIA1OVZLbCoVNGq+aEhckrT5FVIQ7r8gmVZ6KrC6/nvX70rHWed7AmyeN0zuyAu2xedMKdzFdPNwcjuT0YPGs11xB7+2j8MiTpG3Tyf1GyK5PCGA7m/M5m0Rpja43rKRFZzLoYCelwnq1dKUUYNIvpO1P0vl76Zph5oKudAEwbQFQeJ6VGxMSBnppnNDHxBKH/JaU0n2jsGkbphVavehO4WRvhe3OqXbkzdrnrIYGMX1lmgtLNIYdoqLtmOu/q4X32A5IEtIFfchmjNg6Am3psq5xc9r2IzEaPVABY5BjdapnDTF6kkI7YBy7EJjbbsiNaJKcYMfpkuJjUHkkQkYpqpUgqyEm5yK3j9v3rzM9Um9MSn11MMZ6xSjV1p+e8piUk0agbQkFpixWdAslezIDncKaZZeAEF1N+ue/5LMAuOMRMtYkeRftSURqiMrKdvo1NW4txijJtT95L0BXq30mLlzxqV1MRDNm5kDj0SyefWqwuvKGbje5UMoWXR2HdHxi79f49neG8DzrCeD7tjPfddCdJonOpjtLQu5pt46LDHxEpYzpKWI8Bx24JEWXVp9Ds99KfoV9YCQkvQnBQJOw6aJbiqGfOajQUFsoaQ2A07ALXEnBoD2DjIUtwoQCbxzyWwylx1p2MS6nkKnBqcV2ElwIjKuIKh6tfockEPz6H7OCylON1X1vYv3I1/bruatyF0+bDhbtRgTTnsQ+LAv4u+FoimfXLHo7plpDN1sH533bSe7Kxjlt35U9+AYeNHbyYJk2bU/n0GbGbXY+J6EUqqcHBvtsfu+7aFfhbJuwcdxW29AjXIe03uj6us7mmjvVH1Z6HhiNHOjHVEqEi8rUFrhEZTt9P/9HGyBJSBYNWNniLaN2kqk9bT5turmd5yXzKgitqS0tMHKK9TkxApw6BCPg1TRxQdDsF4R94NYh2AFhD7ZAXhOoBhQ3GryaRjVTnEZiJ1w8ZVvs2++baiTIZmgLIAXPTkQZOw2d+org0RHM9hHbOOS5UCpicp7102o3FK174DN7fc9e9LxPTItLwRZXhAEZa1RL24KKEmhPoF2J00hRLQ1y0ux+1bkf5apffXi3x8li2tmTxaQHn+uuu47f/+NXcuqr37v3jQ8Dd33rMm645kdccMEFR/pUjijZBEvGU4512/4BsMG48D3Wbfoyaxa+DVwHGfgzd/11MBodRd1FxE7nkp7qazBt89nVJzsdUSLwMfkc2rcd1bIVo3yFkSDyCX35BgNBnYKK6HXq5L2In4+ewIaRHgg0iWtwhSGKHYQyEAviloMbJBgtqLZ8Sn4LR6UkPQkice3YbVOS3wRe1ZDkBUnOwSgry6C9fX+PM+Y2axa+bVK+aR9ZXXnDZAd9J/AXEuG2vSBmuQBzKFnpvcp25AphDeHTdNZJaudagDaYRqPr73EoktwzL12L74Cotya7IA8Eo61nS0d+LYpsAlIsACBzAWa8ao0391VOYZbHNyk282p39U0abLYTwHQyYbTn2DaITXcyZ9a2s6+j4y/GJsg/CI3BQZymJhoukS7rIf+7TejN2xCeaz1PcrnusXdnBgpM684W0vqbiDgmP15DxUNMLPFoDgrGj/PJl4dwx2O8DWOTnX2dqY5U0/U1cW0BSXsKEWuSoQqNAfv/QrYVtWRqu/2afZLUF6SBYfR0g3E8yo/EVsLGGGjGtrCiDTQaXQ8d0ZHk0u33sWtm2m71m+rBIMR0I1DoTr509auFYM3wX8yqyLJzx2rq2s9WuQqRGpx6RJo6aF/hNDXGsZMqP/7p9Omt3RVXgCwRzcjYR9aPfwOAVcXXglKsn/imlfVTappn1oy0vzOkkOA4kwujs2kM2gPCdWxxPxe0F740ztYJVD0ACqS+a6dZfEOa18hiTCnXwnMTajsqpJ4gCewkHFgJMTv9JzCusZMpDYE3YSflUl8Ql12cZmpN7sdCRJhiAock75LmFVFJElYkv/37rGHoqcbqgTfvk+zlVFYFr97Fs8No6/nQkfU6kqyQL58sLjA55T3bmHRV8bXdyVqTpt1JnIMd06457p3TZIAPCp2YUkjru5KCkM6UKY24vdksJuz28/jANAni6Q/vJuefacpcG3S1ivQ9kuOHafV7jJyiGPidT+GebeinLUc9uhldq7f99GyRuytzu4diy9RYV4ctO/nSaEKrRTAyhlOdT21pjsaQpHHKPLyJGGfLuI0POzGl6cjIym4RC0dBKkCAkZJmv7QG7+2wVxjbOBSW25KwBnRgaC0KadYd8DRy3MWpgT9mFTC8sRjVjKEt0QUgwxQZpYg4tUXxVNsCOmCUmjSjj7VtjO3vhVodE0aIag1BcdLoXgjWnPQ3rLv/03v8aHeOS7vvpbBxuowNqpWgPUUiFAiDcQTXXTs9Rt1TcQWymDZjjpCNS8wpsgJLxlOWqZ1OJgyhLfW1i9HdzhhrHq/jqXJgMz9vTwt8XTqBs2p3H3cmy11J4nmEfS5hr8AkkjBxyKm2L4DQDDgT3L99kHRjnvJxY7hOyth4ASk10k9IUxedSsKaj5hwSBLBA5U8hJJgm6LwJBglCHut1ILTNGgX4oLEadku69u+9Nezfk8PBmtOfS/r7vnkYT3msca6DX8HtDtf9xFrgpl0x+LtpEGni//Idvp16P6/60g6KcWq4NVc1fruHp+3KncxopCDMOxORnQSmhXy5d3tDlZi2ntfjIo0dGSgDgbt65PRku5yQ5KA7wMgigVMHCPM7LuR9/X4U6XfukWWjrzCVO+qmaQ1Orc7z4/idlFDIyZq9N/qEM0rsPlcn7gEg/mFVH5j/V6cSrkrf9AxU59q/Lm7v03hee3FyARGmni3jDNwq0IM9qOLPuOnlImKPnF5EKOsVn+wPcTdNE7taQMIDcG2FmpHDeM6OCN1aIXUzppPXLISCkaBiO1ioFHYxUMftGvwxiRu3eA0U+R4A8LIGqROKWKKdpGMJJ3UzI7jrvmrMRqRMt2XpVNEnTrVAlMKo6L7+JpFb2fdk1+c5Yds+fl/WHmw33upnWRxqhEyMSA1P7lq/7qlsm6/jIz946ratyZvTGl+mK20l2629rjtrL8vhLQ6/vk8xnVACUg0JnDRgYN2BKbdAZ0GGn9eA89JEQJ68k0azV6qSyEpaUQsSAv2t2lKjDTIUBBsE/ijEIymaFfgNDXeWISqRjiBY+XAjCEJHMJeBxUbvPGUX155eOPZFz3/8lkZhmccGOu3f9UWWfaDjll6d3q23UBn4uTApVQPFlMbYtrnudJ7FVdHV+72KSu9VwHtRpa2DPXU4kcnpj1ohZaGnZAm1bsUrA4GRhtExzq0M72AjfE6fo6HjJ0lvac0D+1x250fSlP0jlFcz0MkPXgLC4wvd6gPz8eravL5xbi3PYzM5TBpipPPoxuNdtOQbFc09j6V2J16jmLbeDRRpXKXQ89gP+NnDxMXFV7JJfWtMXuwzcazyVCF1qCPSA3+9hBne3Uypg1j4kIBGdFdpxCplXvUgW3IFAZ0LqWvt05aEYxvqFB4whbCVWRw6umkX4kjSX3rr2IcG4tKrcGRiFQjkhTRNEBsZeIkqFjZ5qLARThlRL1pv+vaeSmiLYHrOqw+4/2sv/MTs/6IL1zxKW5sx57P/ePPIZVAxBqhBDKW3PDf++cNmMW0GRkZO5MVWDKOCdZv/2q342+PTA2+22b2U80L94eOWbFod1+IVoxSIVF/ntSXNAesRILRgk3jZVyVEqiEauLzmNtPdSwHjuHs4SeoxQG/GS/QrPsw6uGPSbTrYByDSKx5qNjm2vHdEUOwPUEYaI0rZAIyMdb0E9tlfbiTUSArrhxGOp2vs6Ujo6DjZEpnl2u76tvSJHNhggXYyevFFoNWyJfvOZk02pqZ72Usf4V8+aRJOuw2ye10Rpok3uW4a5a8g1ylgBivo8dmIeWyDxhtkJ6dijNRbBfsnWZ38sJOjLSNWmdTBN6/k7C/28lo53rZlT3YWwLe0eBW7X2lqZUCG6/heg799zhse7pi9GRJ8fESsh5amTrPtQnc6BhCa0ykulOHGDE5PTNFIkw3m4g4scU1IewkCoAUtBYUCXYkaE/SHFDEedtVHZVzVFJrtFwfUtQWFum918HbPNHW5jbIyJpgus32YqJvk1CnaeXH4hJ4o5KBO1JKD4wjRiasl4Ix081RHQdTKZIWfGQzxvj2e0qNNhAjY91z7dIpnHS+zzr/nqqv3fHJ6Ty+cxFmH9COQLuCtOCCgGuv2/9R9CwRzcg4cNZPfNN+/+zt63iq7E7nrn2QApt5l+3u5zhGtGUUdd7DuIo075LkrP+f9kBG9rqjlCZMFCW/hc5p+k7aQd6NeGJbH0QKMeagQhCpQCZWgsY4gBB44yluPUHV7fSfMYa4107OVJf4NPsEwag5Igb2WXHl8LF++1f3+Tkr3Vfaf3QM1aWYXDifA9Mr05h6Lu2Cyx5j2k7hNN6zjFZnQqbDnvwMO+/XzlPdq8uvtzlAFB2amNLYeLVzbTFpZBtjXGdaceywebHsPNEym+N2vKzSFHSKGmtS3Biw7SxF3KMpPC5RoYvXns4giqzXR1smVzesbNhkPDslT+m89vbnqJstRBTbItSU6SfSlGB7TFJQNIYc4rwgCSAqtePZdgNRfb5DbaFD770Kb+O4jReTBJGC0wIjJxUuhG7Ht3l7v5EwsqFC/jGHgU1WEkwmBhnbeBjoHke0j5nkFWmgcByBU4tsPNppMurQnrw2SoEjMYlGajNZYOnEtZ1p8n2MaafGntqxhae06GKE4CdX778HZxbTZswF5ozJfQaQFVgyjjGM3nuQ1AlUbBJ6gAfsdGnHSbfjWMQxxC7uREg6nCf1IPUMwtWEdY/HTB86tQlAGiv8x3zCeSmu0NyxeT56uw8Gclsk3riVpolztvvDHzX4EwYVadxqggxTMKBaiiSviIuKsMcu/t361UyjOmM6nUTGFhnbuu1piolidFSfW8nobugmk+1znZokTisc7QU7GdPep3rFtP11k9ApRYSpEzBgdZLF2Dg6bZs7HkwfxLaUob26xNYzqtlEGI0oFmx3cUf+4gAX02ZzLlOT9+77uw/vc0dyTERganWk65I3hnlpgcY8RW1xnmCHi4xTVEeqbqCMGq0hqjUYG59MhqdM1nQL5p5rk/V5AxAnmEKAzrmkgYNTT0g9iTsRox1BkrP7b/YJ4rMKOE1DUoBWH2ACehxB2OPi1FMQNvlMctZDwKsamoMC7YBbN9Q9wcDtmvJtWzBj45h0J3kvI+z3TZIgJuo4sf2ctBKQGnTRR060/wiVaheHXPv35DoYz2knxjtpgceJnYRJDvyP7rkv+xy/+Pd38rw/+ixGCTvBkpGRcdTQWbTsxLQH9H3QWXhMEiszFtjJSdmMSac0MKWevS5iwFEaJTWBk9CIPYyA0/o3ccf2BaSxhLrCHW/Hs5GVb9GOvbamnvUB0J5EKmWlbXMujXku1UWS+nEpJII733r4m4Uyjg5M+28fsH+/++DldkSZIbacGs/u0xTJlDht51j1Gv19G+NOOebO23VkrjtxVdcN/iBiPxMFpm36Hic2dnMdm0OTHvYiy349tS3tKpohhUerJLkKrR6JTOwiaDJUQfQWUbUWtCKo18FxkJUhGK9CVe8Sz3b+3ZEW6zToyIE+CCPrGRh46LyHMAZvPMZIiPN2ma/VJ0jOtPGsEUzGtDqg1xhagz5uLbUTKq5VvDASEt+G58JAEgDSEGxyKD4OxQ3xtHhQGIMMU0RiurExSWqnzY0izSnSnIPQBhlrSI2d5G5PbBshMO7k65XGYBxlt3Gc9t9EPOmH6O6lYXY3POfln+fG7/81v/fSz2Icx55vRkZGxkEkK7BkHDOsH/16d2G008HXCVa7gWS7o0m0je7tWHK6//qv7Y4W2dayF93RXvuwiDUyBrcuSI019YxGAkRoTd/8HZLiEwbtKq657xTUhoD8DvCq4LQMKgKnYc3atCdIPYmMNUZAq99DaIPTsFr5uh2LyNg+NyNjd3SNHKNon4oSR5Sduv86TJNJ2MfXMVMSvnNyujt0FHV17mW7UHVQ6RRZXAd0W9IgiqHe9pjy3HYnnZVdOORFFtitjvXenme0tO+VsvIAYmwCKQSBq3AnFA+93KfwuE/f/Sn0ecjYym0Zp4zyXGSpCLU6enRs+msV0iajYDu4WxE4irTgEZdc4pJDs0/iNgxJ4JHkIC6DW4XCZt2W+bIFEySEvVBd7IGxiat2bfIpY8htT2kOKvwRK5XQ6hM4Naj88gnM+MSunXpTp08CH3IBOm+NSK1BqsAZbUwmzr6LcRUogUhsJ59xFUYKZJSiPYV2O9OJBhmlqI1tYxglQQhWnftRRCvaJ1kFfyTmuX/8OXtNcLFSDxkZGUecrgRje9Fxl3gWutOEQk1ZJO2YR+9nTGuv89pOZUt7bTFK2IUwbdCeIC5DNJCSG6pTCkKEMGgj2LS5B29Ccv/YPLZv6MHf6iAjW6CWifVhcRvGmiO7gqgkiUoS7UCS81ERqJadFmwNGlRPSFJzD8K7mfFUpBOPdCSfjrSh/YFyIPHsHidc9vbUKUWpznTFQcd0PFhE998kdlq3E8d1ppIPW5FlP59jxsYRvo/UKeUHFebEImGPoD6sGDs+T6sfSo+X6L+zgYjKqGoTwhgKOWQugDAkHR1HupNesEK2G3K6n4NniyuAKfikpRxx2SWqOMQFQZwXRBVwa1PiWc/6raQu3Zh2YnkAQFyw77GMwa0ZKNgpFLDT2AjwRwSVhzX5zSEySq20F2BciXY66w/2MzMdOXQlMa5EtCe/tavQrvVdEWn7J7GvyRreW58VbRykMdC+T8Sp9Yxpy+iKVsyap9kJwnV3Xz7rj8gfi3nuyz6HEAKt9iAFl5GRkbGfZAWWjGOKTlK582TKNfr73SCz0+0khMAAAhCqvWC6fwdtL/S5UMyjK3mSku36i4sKYWyHnphwUA2JW7W3/QlDfqsNrOKSQ1QPcOuQ227wx+1kikgMKtY44xE659Aa8IjKitpCYSdXIghGJN6ERqYGt5bitDQizgosGbvSSaA6ck9mJ0+No5nZFkYOBft97dgbnSKL5yGkQLfCTu3Wdvy1EzKTcuiLLO3z2a+uv460AikC0M0mUgqk7xD1VOi9W1J+PMGpxsRll4mlLmGfS+lxQ36zS3DXk+iJKsL3MWmKzOcxUWQnQ5QCz0Xk85higC74hAM+tQUOSQDBqLHSiXlB2Ee3aFJ60iCMYODWMTY/p4ckbyhsEPhjGhXa/xNRWdkJlnYhpvJwRNjjUJ8v8ccMg7e3vb+M6U5PdhclpbDSe4GP7i2T9AZdQ3vtK7RnE1JR8InLPnHJFlNUbNqFeWvIKbQh6vOJ29KPKrZJrNBQGA1sMq4UOu/v10d67U/ey0UXfhKjbBKaySFkZMwRdvPdPDWe7W6n3K4RtvBckJJ0fHy/jyuLBfTwAGnJQyQGkWh0ziHs82j1SsI+Q2lBFYBtoyWSmoszoShuEggDG++dh1+VuOOTvlUi7fwYnJYhNXaSMOyDaGmIl4sJJ3yCDS5uFVRLEG8N2I9vnIxjhZ2M7bN49sA51M06Nl5V7Cz3ahfC1ZR4kUP/eYr9O05abyBaIQpQm6EiBDtOL7LjmSnBUIO45qMecK0cmiupntpP2CMpPxri/vYhO5HuuWAMKpez0mztmB5tG4dEqQi5ADyXeKBIbbFPWBYUtmjigqDVbwvRRtp4FgRuQ1O5r8rm51RoLjDkNwq8qsYJDaSGJOd2CyPBqCYqSVq97dvbofJwSm6rLa6I1CCwRREtbGOPEdZvxahOF6mdPkx8gUztJEzqS+vbpa3ahmoktmkoNUhsQUZ7ElyJMQ7GtUUYpJVfE44iLQekgQOiLTm2D1x3zXu4cMWnpt3OyDjqyZb15hRZgSXjmOKa9HvTAtNdgtSupFeMkG0vg3aHhhTSLpTud9eflXeJ+3LEBdtt3OyX1lB5h8Ebl8jE4DYNKjT4IzGqHqMDRW6bxK3aLkEVdrT/7TjutddP14A+451rUS3bEeg2DV5V4+8IUc0E7aqu2VxGxlSmymBlHF3oOOnqaq8KXj3lEWU9WdqGrsKZXGDYZ33p2bK/+5pSZEEbtKkjhcAt5whGFd5IiKqFuKNN6kN9JDkoPmGLF8myIZwnFKZas8Vx37NdcJ79LZTCNBqIwIfAw98eknoSp57i1mLcjWP4Jwyw9RwP7UJchB2nKVQTkqCH6gka7RlA4TRSW6weCxE6R1h20R4YKUgDaTuvHSg9HuFtGLeSXnGC6Mh1qfZn4jhQKpL2FklKHshOF6D1OzFSEFU8krwiyUuiorDFH4UtnrfACe2x4ryVffQn2t26yt5OK3lklNiuQCHQvoMK910/3SiRJaEZGXOMnQspMy66dhYIU92+9rQlcHsqsL8FFgDPQ2hNa8AHAaqlicqKsCzRLjh1QXVDCRlJnLrAa0Gww8ooJr4g2Nou9hhQMZjEytLc+rVLdjnUcVdejh8khHUPNe7gTkB+q/UdFEYSl7KVhYxd6cpedcji26OGjsLESveVmGRy0tlO10uE1FPkyjpP0vtdENn9iRxAPJtCOjYG4xOoepN+FtIcKuItiUlTSep6NIcDhDaML1ekAVQe1LBgCLFpK6bRsM2ZjmMnux0rCWuElcwyjaYtmnsu7mgTv+xQ2JTiPzqCe3w/W8se2oO4bNj2dIUKIfUF1SUVGgu19W41CqepUZFt1Bw/3iVtS4Q5LevbihCIxCpnBCMxMkpB0zWm1267YSg16KBtai87sl+gPXvbmOkesALQjoS8g3YlMtIIY0gDB+0KnEYCqQHVKdoIRCzsBIzv2CKOpLtGs69kMW1GRsahIiuwZDylmckgcJfuvp0waQqhtgmk53WDGpRGtjvG99Uk1KQpNBowIvCTFK+cR+dc3KpHfb6L0ODVNE5L89MfvGuX5z//JZ9FxtJqnMbadopIsUtxBeDOz+2aoK487zJEnCKUwKAQsWb1WR9k/e0fm/VryHhqME1iYKf7Mo5OdjYt7cgoCNJJKaoO7QRUyCmFlsMlubA3phrfA7pWx3lsK87gYhrzA5JcnmAkwR/XVK6P8TZP2ImUwTwsHkBNFBBbR2wy6nuYJMG0IkwrBCUxGzcjN9vXX97Ub483XgWlyN2Xsmikh7GnFaktFLTmGWRLEJdA9yRg7MRKa8Al2JGQ5l28sZBKaqgtconzAqcpCHskcRFUK8F4ClEzk98XUtriiu9DuUg0VCIN7BRjXLCJaepbOUejIC5IksBKLcQFK9OQBqA9g2oJ3HFrCB0X7UKlkQIVClsAahiSiod2Aitj1tbFvubnH9+nj2Rqp19GRsaRZeeYdm/xbLdwncSgJDKf65oDC8e1htX7cv1v+wDobTuQYUipGZH2FEgLLtqTTCyz1yntGrwRu6h3z2W7xqSnv3utncJObYe1duDWL+66HcDDr9o1zn3Oyz9Pq1+QeiBDwUkfX8v9H5j5+RlPXVa6r8Ros0sMlMW0Rzc75+3A9MmVmdhPz5RDxpR41qQpavMowze7bI36SJZoxi9sIMoNdjzeizNhyG2xhYh4sICnB2wB4vEN6Fq9PbliupKPJoqtN81ojBifACEojJTtWkUrJHdvzOIdPYycUaK6WNBakII04Gl0PkYZSBouYUUR9jr44ykycihuTKnNV6SeIM5D2CNICrZhM85BY9ijsMEgm4ktbrTlZ600pCT1pC2wKBu3Gim6U+FgZddF2vZgkYKoKEk9BxUZnJbGHY/RnkS7gtQ4aF+BBtW0PrYmkKR5xxZmAIzh6ls+tE8fSxbTZmRkHGqyAkvGMcluk9IpngBCtzs38jl7X6tlJWectt6zmL2GtfVxMcha3XYzRxEqnyNoeLgTPo2FOeKC4Mbv7VpcAbjhh7ve/4I1n5nVsQGuvuVDrD7rg8hWgmxE0/0AMp4ydDyGro7/1d72XsXV0ZXdx2f6m88S0acWV7W+y0rvVZPJqN6N0fmUQsucMXztnpOwRQgAY3CrKVHFwWkZ4qJChRqnGkGcIDdMkJso0jihH5V3MAvKeNsbyGaMqDXsPuIEpER4ri22GIOZmED099lpF9eFKEY2Q9xanqisUAsayHsLpD7k7/NoLEqJyjCxVDCx1KXnQUV+c4g7EaJCq3ltpEArQWEDRD0eriNxx+ugUuvr5bnguZhKkTTvEVdcO/niCuKCIA3sgqGRWJPQxC48ah+SPKSBIQ0MJtBWZgGJaoJxrBkpxuptq1CgIohKDtqxkjwiNajWvhXRLrrwk1YCIpt4zMiYs8y2yCJSDVKiFwwQl33cTVumxbyziWdVuQRAOlGF8Qkrg9Nswfx+TJ+L04Cwz5CUNDIS3P/+mc3nf/eZ6cWQM965dpav1pL6ArcKgYI0Z6+TGU89Vve+EbAemqt738j60a93H1vpvWpGL6Espn3qcHX8r90immWOxKqzoRPPug6iXMRUioCdvtOupGkCRhLJuWc8RKQVt9+xjNz2gNLjIY0T+pChRiyo4G+agFoDU6tjwhB0YveplJ1kido5/biNaTEGwgjRiPCqhqgP5i0dQUlN4MTsqBeo1azvSthvGHMFMnEoPa4obIyQ8xRxzkrfxqXJa6v2obZA4tZd/KTd6OlMFlRSV5L67eKIZwsrWgmEMXbqWoGMDRI77Z36oiuvGzqCYFQgQ+snm/iS1BM4TY1IDcZxrb+Lsl6zgC3Q7+NSxopnfxzpSlsgysh4KpEt680pspB0Fqx49se55sYPHOnTyNgPZuqCmdrBv9tA3Gjb2RdJuwCXy9lR3DiZ7CLZ1zjP2IVM02wh0hQZRoiGh0pKFIzh6l9+cJ92d/26d+/T9iJOrTlcHO/a1Z7xlKCTjKx0X9kN7ld6r9rF2HOvCzIZRxU7dzVfHV1p/wamLjzsTkpByMPjzzILhBT2vBzHduwBJAkyTik83iIpekQ9LsJA2B+Qa0SIVgjNFt5YRFpwENqQFqxZfOv4XtyJGHdr1RqINpuIcgnimOiURYyemiO3bQB/PMFIgbe9QatP0XufIdxcoDEfcqeMUa/7MOYB0FigMUFKUnCp5AOCMU1tgbSSB9rghIbK/Q2cjTswPSWrkQ026Q18dE+BNO8SFxxSV3SnVuKCTWbjopVP6BiAGQWpZ0hzBhwDfopJBSoWaAdM3m6vQpBR+7nCJsVJvp3gpwYcwc//Y9++M669zvqvgO36yyQVnhqsfvqHWH/bZUf6NDL2g51j2lnFs9CNafX4BLJSQpQ8ZLmIHp+Y9bVflUp2oruzvzS10otJggLcXh9/3C643fGud+7T65pp8npPxDmB2zT2uyAVyDkwgJlx8OkUVjqFltW9bwStSWt1KwcqBVfHWTw7JzmAyeipMe3V8b/uKvd2CI99sOjEs8Kz8aiIEpxqROL7YKD8gKQxP+BWuZhiscXzz7mHG+SpgG+n+pSDMAZ3qB9/tAeMwd/WQLYSRLXenVYRhTwmTkhPWcrIaQV6HmphhMDb0aDZL9HlmLwbMZirsyg/Stjj8ES9l4d29NNoKpIejXANYa+Ldjxa/ZAE1hsrKdjf3jggICpDfZ6DjAxOI7HTJo6059uZPPEFcU7YwrcCFdlYPm5Psbh1g0xtcSVpF8f9cVt8iYvKvlfGTl3b+FgiU6vaYUQ7ngUQguvX/80+fSbX3PgBVjz746AEK8+/jKtv2rfpl4yMjIzZkBVYZkFWXHlq0UlEZwrIp5ndpymEIcZ1250iCuG1ZWf20yTepKldzIxi0vaIr0wSrr7r7w/oNc2Kah2SpC1TYwPPNYv/inVP/O2hP3bGYWGFekU74fzX7n2dqZZMEuwo4AD0o3eWfusumk2VBJtSVNn1uEewwCKstrZwXCuh5dliBnGCiROciZC04CFjTeHRKkYJmguLxP0FHKVs4jrWIClWSAoK6UmMkng7QtKCQ2tJD60+hyQQFDYnGAlOM0WFhupihXat78nG5/ZQfAJSV1BbYlCLGlRH83iFiKiYkCTtxK+uSIqa6hI7RZIGMP/GEBWmiFTbiY92Qm0C13bwCYEuBaQ5hySnSHOSJCdJPYhLgrAXoopBF1JEKBGpAGHQOY2RVt5LCBCutscsJ+hUIBsKkVrPg05hRYUg2w16Qhu0K7j525fu88dy0QsuB+C66997cD7njDlBVlx56rCneHbq4zAZ07JjFC9JrUfVPlz701odTLU7xd2RoiSKSLdsIwBkOMQt/7SrpNfBxml7EeqCRMV2EfCst6/l9t3IjGUcnayuvAGA9ePfsLfLr8dM8ZyDLJ6di4huE5/9Pc2wfoapo5mY1ji0u2ahOYpQClksIgIf09eDzrnIeojaXqXvHsXYSTma/QKnAcGvcqR+jrufl/CMMx7ht7kliAkHMMhQkN9svfmchibsLZMEAn+8F+0KkpwgvzlGRZraQp+wFzY9O0C1oDHfI+mNGZo/xgmV7fS5dR6ozeOx8V4WlsY5dd5W7jYCKQ2+mzDu56iP5UlyVhJMaCtJi7BSjk5oixypD2GvspPWsiNpK7oTKXFeEBdAe/Z5QttGIRnZfSX5tnyYak9ou3ZCW7sSt2ZjXTudovCqGqeRWtN7Y5DtRibtyH1uMgVYef5lyDjlqls/enA/8IyMI8l+THNlHFqyAkvGMcnuuv06Ad3UhFTXG0hAeDap7Cz+7W/Ht9Gm6zFAmrJu82EoroAtrhhjfwNoa5TXYVXhNQBcVf/24TmfjIPOzjrUwLRiS8bhpZMczmoBYGrSuLsEch8KLzsX1LoG8t1DiINvCLqvzPA6RaegrdqTLI4D20aRqg80iB3j0F+xCo2OIC37yMhBNmP8zVU838U4krjsoV1rOo8Ap2WIipKRU1yr259a7yutsL4peVBNGD/RoF2QkcD7dQF6IV2WUqo0aXgppWKLoh+yaXsPZjyHimHgzgR3IkRuG8MU8uiSj+4pIWtN22kY+BjXQXtWU1r7trgSlQVRCaIeiHtSZDlCAtq4EEqEFhCkKKXRscLEEtN0kLmESqVBGLk0VYCIJdoTaFfijbYNRNsfqRH2Ne4rF73QTq7M5PN1MLjowk9y7XVZ4SYj40DZ0/TKTDFtOjKK0gYKOUQuQBjfSn7tjY6cWBLvdJ8Co9GjY1x7/eFr2DEO1mvKCFRkSIPpUoYrnmP9pq75RdYkd7TSKax0b0988widScas49mdGnmEFJOFFTr+f+3CyyyLLbNqEJsrhZfO6/Y99KJ5NBfkEbFBJjnb3NNIqDzYIs7noAnFjSnbz1IsqYzx3N4H8U5KuXvbEGHkIKShWskRVRyC7Qq3Zkh9QRoo4rydMKkPeyQFa2afFmOEq1F+ynFD2zmlvJWy0+TG7cu55uHTEJHAG2qybHiEE/JbWJIf4cTcFpZ52/j+9nO58f4zcWt2YkVoSHIQzk+o4VB6VJDbrhHtNEK3pbpS18qBJYHoerZo1xZPvAkbgzpNUC2D9gRxzj4ujC3CYCDOW6lHb0zgtCD1wJswtogDyEgjO42tsuPpMntWndsuqAhxSIor2YR3RkbGVIQxmRnDVCYmJqhUKoyPj1Mul/e6/apzP8pVv/rwYTizjEPNCvny7ljxzsGcUAqZyyHmDWCKOcS2UUyzha7Vd5FfmpGdFjKFUt2u7ata3z1UL2kX1ix5B6ZUAAlivA5xzLpNX2ZV4TVcVf+2LbIIAcZkhZanIFmn3+Fnn4ossOckcR8LIXtKSo+oTFzbKFm4TldyESGtLJiwyTiuY+VoXBf89kSL68DYBCaMEH09xAt6EBpkM0Ik9r3RORfjKESSIpsxaE1rYZlWv0OSs9rQYQ8kxba2tLCG8f4IFDZrGoOSsNcmhHEJyudsY1lllKdXnuD03JO8JG99Xf7XIxdy5w9PZt5vIivbMN4ApdrG9k17vo6D2TFqX08hRzrcS9QbEPYqasOSuNzu3isatK9BGURL4tSk7e5zDcYxGM9AImxBqJDil0OU0rTqHjpUdtollrYoNGG9CVTLFpUAfv312U+vvOj5l3f//eMb3pcVQo4g+xqPHujz15z4btY9MHtvt4y5SyeeVcUCutGY1mjRiWm3v/FZjD5NM+8WQeW+GuKO+9BRNKv9q75e0tHx7rW7cz0/nHHjKR9eS3xqE8dLMPeUCLbDHWsvYeX5l2GU5JpffIBVZ3/YFtmNYf3tHzts55Zx6Mni2cPPrOLZdm678327MCWenU2hZXfyiFMfP9Ixreqt2Nu+P+m5pwTGcUjLPq1+j4mlChXZxpekAJWHNbltERueF3DGyvsZiwJGmnmMESytjDLo17h3fB5PbuklbTmoIEEntkAl3RTXTxgo1dFGMNEMiGNF3HIwVZf5x29nUXGc+3YMsrgyxsuGf8OrSxtxxa791VvTGqs++y5UE1RkqC0SxGWDPyJw6pAbMZQfqiPrIcZziPpyhD0OUWlS4lakkPp2olDG4NXaO9fg1TTasdtq106wdCZdjLQ/wQ5bPJGJLfD4YwavqnHrKU4txjiSNFD85KrZSYO96PmXI5sJIk656re2sJJJgx05DjSmzdiV6667jt//H6/ktFfMjTztzisv44ZrfsQFF1xwpE/liDJHyv1HLzsXV1afmXVKHa10gzchdwnSjDbWSE4ItOdAuWg7/zpj0HtaFBUSGfjIwO8WVqbu93Cy7vEvkPbkML477f5uUizEpDxPxlOKLBk9SjD6oE2UTJWO2ZN2/0FHyMmfGe4XUnS7GlHSekIpiXDaxp1KTRZXlLRTd63Q/uRy1qx+ZAz3/g04j28DDdG8AkklQPsOaU4Rl33ivjxpOYe/pUHpsRb+uL3eunVwJyDuS4j7E1oLYyZO0IwfL6kvgnBAU1+siYuGnlyTSCvyMmJQTQDwQFzjN08uorDJ4E7EiERjfA+T86wEY5Ja7xVjJl+jVN2FPrAJpGphfVakAQ2kAhkLZGxlvlQobPEEkIlARmLSm8UIjBF2yiUVqJbArQnQtnAkE1tYmVpc6RRPXvT8y3nR8z4x40f34xvex49veF/3PHcurly44lMH8peRMYfZubjSkefJOPq4Rn/f+qREMbJUYlXw6mmPG20QCaiWYPx4QXNhHpHLzXzd3hkh0cctwhmeN7mYajQmPrzGwfd+9BJWnXQ3S/pG7YJdp9u5lUxOrbQbhsh6CZ9SZPHsHMboGXPbbtGlE9/u48TJzlKIhy2m3V08O+UxIYVtGMrnoFCAYh5TCDCOfY4ueLT6PeKCRCbgNA35bRp/DKqLJI1hjwU/C3nkH08kTB2uOPX7rFl0NycWt3Je+WFes/gmXn3GrzjnlEdZMjTC4OA4+XKTcrlJb6HJjmqBMHF42uAWAj8mKESUFlb5g4W/40+Hf8nrT7iJFw7ex2n+hhmLKwC/ifq68WWnYIIR5LaZrtG9UbJ7TZUdo3tlZcM628gUVAROyxZc3LrBr2qMFMjUNv5o1x5KhXYbGwdjp9RNuzhTNW3ZW4HQVmb3xze8b1pxpSNju7u49Mc3vI+rb/kQxp8c4965uNKdbsnIOJoxc+QnA8gkwg466+/4+JE+hYwDYQ8Lm0YbzOgYMucRDZeRvQVU27B+T3Jh1lvAQeQCTLOFCcO2TJg6ItI81/ziA6x6xodtV/iUpLMjEWbCsHs7m2LJyDg47HN33VQj+oNw3E7SOdN5HCp/HiFFW5ps8jbYCb5OIbdbpFaqK8NokikLdULYgkUY2UJLqQjlEkIITOCC1uiCR+pJRGKQsUaGKQiBkQLtK0SsEakm2BYSVgKSvPU8qQxVcZRmfCJPYiB5eoNFvePEWrF1rES8NYcjNfNz4zzQnMf1O06ix2vSSDzkPQVyO+x56rxnJ2iMwbgKcv0AyIZERLEtsLg23DJSEBWtb4t2J6UOjNe+Fpu2xFfa6QIU6JbVu9auQYSSJFIEuQghDSaSqKbAG7d63sJY/ezO9ArAOf/fFRgp4OQcYJPOvfHjn75/xvsPpgzCyvMu4+pbsk7CucrO8jwZRx86bCGZuZmn7+469QUFWseHbD0zYsmWZcjf3GPN6/eggCuUYtPzSvTdlyN/m0SPjELHj+Uw8/fP/A5n/vBDJOWUqNX+LtE2rl55wcfAkRgpka2I1Wd+IMvRMjIOAnuNZ43eKfbTk9eUnRQdZisTNvW4U2PWPcW0BxzPztQktFOBSEgxqXDRbrJJSwFJ3kFGKc54iHasR17qQVSC/BZDYWMLt+Gx5RyHLYsFGI+0kvC/Bh9hsVMlryLumFjEY41+EiNZEIxzTs+j3CaWoHOC4cA2/JSdJndX53NOz2O8ufe3/GHtYrY2Spy0cBMXFB4gEDG/04vodeqcu1Nz5VS+tvH5xCVoDNsGHaMMaU6z4+kC1QR/AqKyi6smp5OEgbgIrUEwjoFx2yCU5Ns+gAbcmsYogWpp6xsTCLyJ9vQ21pvFKBsDy1QgWxCMady6fZ9lZBCxnrZe8ayLryDOT8a0e4tL9zSxcrBUaDKZsIyMjA5ZgSUjYzd0grhOoLbSexWm2UJuHYGBAmnBwRkeRG4G02ig42TGINGkKbrRQHkeIvDtne0FxKvqh08ebFXuYsRJy2xXNYDrdDtWO8WVmZ5zVfOfD9s5Zhwasm6/I8fOyeA+sZ+dfjsff2+3d05WD9axuot6U4pFQimE7yM8DzPleil8v9sZJ1INqQYTgQpsgaKYt5JbgYsu+GjfwQhQYYqRoFpt+cVUIyKDcdpdhVGK0BrtuWhf4Y9pUk/htKD+QA8iBeNaRfAQ0L02eUwihcmleDJlcTDKkDtOXsX8Ystyto6WKI6ASAw6UCQFBxlpUt++RhkbVCtFJNqanAYuxlWkeRfjClIPmsOGNNCThp6JQMQCkdgpFRm3O/pcEAnonJULQ4COFC3jYVKJ0LYLXej2VEwEKjRdnezzXnsFQtnGolu/Ot0Aemc5sMONqjYP+zEzMo41dNhCKMXqvjexfuRr3Wv86oE3s8hZxiOnQuDFPPTyXk4MT0Dc+wimZRttZoxpkxi3CmFF4R43hOu60GyybtOXD9trWv30D3HvmyrIRKDzJZCG+z7Uvr5JaaXBpMQIAZ0FQWNYs/xS1j1yxWE7z4yDTxbPHjn21qwzjWkSYJPFiMn7Zl9YmXr8nc9jTzHtAcezOzc67RSTS89DlouY+YNEPQEy1hhHElVsIUM7AtVIUK2E3BZDXMihQmv0vvWZecJ+aC2MedoJGzin93Ga2sMVKT9rLkcKzdZmgc3jZTw3gT54vNHLk9UKS8pjnJzfxKBTZWPcS79fp5F6/KB2HFtHS6TjHo8Wehmbn2dQVWmkHi8q3gXsvsAyFga0Bg1iqEUcS9wgoZQPiRNF44kSSU6S5iTa90gCgUyg1Stp9UEyHOHlI6InC3ijVqbWmzA4Leuj4lYTtCcJK7IrI5b4oNs/1qfFTsKoyPq6OKLjJ2jziM5U4ornfgK1MCDJiWkx7YrnfLw7gXNEfLeOkJVlRkbG3CMrsGRk7A4hWem9iqujKwG4OrrSFlmSBO1KagtdvK0Kkc9hwtBOsmg5c0LakRhzHduF0fEZOIzsqVDS9V+ZSjuoWRW8GpHPA7B+5GuH7PwyDg1ZMnrkOaAiCxyUSbc9/R0c8Pm1uUZ/nxXqFbs+MEWjXyhlZbQCH+G6EIbdjmOSZLJLre3HQpKC501eO6UkDRxkYnBGG4goRuY8O0XSluDqyDLIeoRshLar0Bg74ZIYVGhwaraYYZTttkvKKbneFgU34p57F6FqClNKkcJwb22YR9QApxU24qvFJDWXJICwz8FMCJJAEg0pGkO20FHYaAjGBKqVYHwH4yqSkk/Y79HsV0Q9kOY0FFLb2ZlI5KhrJb6wutwd80/tG9AC047WRCowDYVG2eIMtosQY6deVGj41TetLNiFKz6FV3aIC7JrdD+1qAL7Xlg5mF16aSV3UPYzE6tPez/r75pZBi0j41hgZ3N74bmsWfIO1j3+BQD0RA13a5U0qvBvZ/0jayb+kq3P6mF4cwWzdZt93m5i2p4HQ+oLPVQjxhR89MDh1VNff9tle31s1dkftgt07WI3rQhaIWuWvAOg+z5kHD1k8eyRZ7/ixc60Sopt+NiP4spM57Gnxw40pu3Es0Kpafm6SWIAZKmEKBYg8DGuorYkoNkvKD+eoloap56gQtvgkwYuCIE3kaIdRVwQtAbs5Ib0Us6obKSW+vzXfWeglObU4S1srJZpxS6D5RolN2RDtcLmLT0oL2VBcYIUSUk18dMiBRXyeLOPx5t99Ffq9A5v44L+Rzg/2MKt4QDzvIk9Tq8ArBy+h//95CCVYpMzBzfxp/Nu5M7WYn6y7WTumghIAh/tCLQDUUkSF6C+xOAsqjOv0ERJzaZ8gKk6uE3I7UiRoaa2yCUNJCo0xEVBEtjCSdoprsi2pFjDTsPIxDYcpZ7EaelpkmCrzvkI0hiEDpCJzRU6Ma0Qgmt+MfPk9Z5Y8ZyPH5SCjDjEku9rjnsn6x7+3CE9RsbRikHMGRnUuXIeR5aswJKRMYWpHTFCKYQUrApe3TWivzq6kjXLL0U1E4R2qZ1QoSAlotFs60/vXldBN1uI1LX77SwuHmFeuPLT+Dfdy/qJb04rslxV/7adeHEdjNZ24fMwF4QyDpwsGZ077Knjbi6wJ23r/aHrsSIkJokRntstrgjfs1rVqr14Z4yVAEs1xmiEkLYII6V9LEnsj+PY4rSB1FekC0qI1CAjK0FglECkVk5AhjEiSkAKdOCQ5m24I9NJA01rJA9JQTO4dITjekZ4YHQAVbXXOqMMv7lnGSIWlBdNcNLxW+jPNXhUGaIKNCJBVHTsRMo8CBfEqKqDUQKZKvzt1hMFTVeyLOyBqAwylGhlMDmD0dZ7RSS2WJLkDFFfe7olFcjUoB2DCbQd8tEgmwoRC5ymwKmB07RTL7/6hi2urD7t/bieA+Qw0kWFNug90EmVgymBcCiNRrPiSkbGTlI5SkExz5pT38u6ez7J1dGVvOh5n6B4p8+3n34+lz7zx3y2sYaeBxfh7RhpTyDuGtMKpfB++xBOYwlJySNcXKA5cOTjw+Xf/SQnfinh6l9+EICrbv0oq8+y/1539+WsWfi2yY13NuHOmPPMxbjpWGVnhYd9+Wz2JKl9MDkYniydOFZ4rlWgEIJ0ZAxZLCB6KpiCj3EckqJHc0DQ6genoeh52E6tiDjFKEVScNGe9SDxJjQylqgQmgMC46doJMcHW3n/M9Zxe30xRRVyXu+jPNHqpZl6bG0VaUQuXj7C9xJOKG3j2fkHiY2kJO0kcCt16fdrvPm4n/GG8pb2KyjSIxucm3uYvS35/X7xTm45fjn9fp0/m3c9Z3seJ7t3sD0ucf+WeYjU7zYoIdpm9Y5hYe8Y83J1HhnvQ4R2QkWkoJoaYQxCQ6vXxudxAdLAHk+7kAYGzJQp7Mh6EzotgzDw0/96FwAXvfCTiFSjUoMJHCsFHNvvnAONaQ/WtMu1Pzm0JuNZcSUj4+ghK7BkZMzANfr7rPReNV1vtc26R65gxXM/QeILkkBRfKhtWhz46GZzunZ1xwCUdqDmeSCFNRPtyIUdBs5/9ecRxur/G2klbGRscByBPmV5d7tpnivtDnIhJUZrrpr4ZldiIiMjY9/Ym2b0XOJAuv+uSb8HTJcd7EiCAfa6kgswnrKGloFvzesBPBfRmWbpmNwbbadYXBcCuw8ZJohEoj2bYIlUY6Qk9R2cemylp6S0+vvCSnNFJQeh7XVPxQaZ2GthGhhMLiVKFfdsn0d1IofbFDgtAIe+u6DVJzALBUXV4pTiZn6dLCdeGBEPSJwRB5lCvLRFT6XBeFom9RzqwwIZ5yimGjSYtlGnV7Wde1EPEEvwNMLRpHmNW5M4DUg9QVoA42qEEohxhTQC7RqMMghlMK7BG5G4VZvMCg2/+d9TJMAciUgSUlfiNFK0my0oZmQcq1yjv8+a+W/FCMHUK8GPf/p+znrHWu6uzufS5bfwxa0vQTsxcqAf02iiq9VdY1qlwBjiskfqSyaWKsLew/t6XvzTt9PjNxnwasRGsalZIV8c5IFXl6Ztt/72j03eSJJu0X7do1/oFpoyMjL2jZ3jw7kc0x5IPHt1/K8ArFn8V+DYeFMtWoDJ+ejA6V5Paot8ooqNw+qLoPd+Q9TjoyKNdiRhr6LVayervQkr9Rr2COqLNTkn5YHqII3U5bjcNkaiAuV8izWlO/j39Bz+4/ETqORb9Bfq5CsxZa/FisrvOLsdU7fMKL/QJwKwwB/nfxYfA4LuaxjTeWKjwK8DsOreF7Nq6G4u7X1k2ms9w8vxiSX/l21pobtvAG0E83qqbFqaR6aKwmbbFKUigT8iefiRIZ4sRxhjfViSvG0iiksKt5YiNIQ9dlI8zRtEDMEOK5WLEWjfkOYMRgkKG+0xjYJffP+vu+eQ5BQylWhfEZUdksDG7xkZGW2ywZE5RXZ5ysjYE0Z3p1emcs3P349MDMWNCcZViL4ecJxux3aHqXqzIp+HhfMQ5bL1ExCHfsHrWa+5gnNffwUyBqdprFmctrqwRrVN9/IOq8/8AGtOnt6ZfFX922AM6ye+CalmVe5iSFNWD7z5kJ93RsZTjbmafO6OAz3fq+rfttc4YQvLHXkwoZSVVPBdTN7DeI4toICVAfO9bnHF5HxM2UowdAotohmhJlqIVCNjW4zRrkS2UvxtDZyxJiiF9l2MIzGOJC46pIGVHLBTLnaKRca2c87d5jK2uUwrdNGhQoUQ7ICeewV9vx2nsNlwysBWYqP4/gPPQDYlSxZu5/ln3Yte0iQuaZSbUgpCgv4m0fEtJp4WM3qypLakQDgYMHaCz/hyRZxvd/e1BKopEDUH6u1eF2O7+rRvI2URSdB2SiXYKvA3OzhjDqLqoKoSbwzchp3Kue1L0/1V1t/+se7UoVtLGDkl66fJyDimSVLEeJV1d0+XCbz9C5cQpYrbowL5s0bYfL5LsmTepKTjTh5gJk1h8TCPvS6lushBO8Bhqt/+7b0v4uKb38iGagWJoey0GPYmGPRrlHMt1Lwmy77yOU76+FpOe8/aac9dt+UrdkFUa9Ysb0/6nXkEtPozMo5y9hofHoBv4KHgQOPZdU/8rY2nXBfdVyTpzxP35KwXoKto9QpaS2Li45uEQwki1YR9Do0hj6isSAJBdSmMnhOz5dmasRMFWoGMBM1NBe58fAH1xGc8yXNGaQNPtnr47MbVXL3hFPpLdZ45+AQDQYN5uSq/338Hq3NR99yGVY3zSo+wauB3PKvwICM6nnbuSmjG0gKPJ1Ve8fBFbPrREq7a8rQZX+cpboGlTrV7e4lT4tW9N/GWZTcwdOpWxk9OqS6WNIYkE8cbwuEEkQqiCY+k4UIuJe5LaA4Zxpcqxk7wmFgqCAcMad7YaW5pfQWDHeCP2lhYRgIZ2wkW7cEt/3TptPO64Ufv5idX/Q0TSz2qixVRWVJdkjUNZWRkzE2Omoz7k5/8JP/xH//BvffeSy6X49nPfjaf/vSnOfnkk7vbGGP46Ec/yle/+lVGR0d51rOexZe//GVOO+20I3jmB84K9QqceQNQyLPuwc8e6dM5Zuh4r+yOX//jpVzwqs8Tn1DEG8+Rv7WGcWyXtEmnF1fsJIwhLeVwQmtw3+mGOVSc/ea1OAZUDE5LkwSSNBBERYHTMnhVjdNM0b5CF3xkalh91gendfyZdje5yAVWqqd9e/XAm1m//auH9PwzDoyjbUE/46lHd2JvqrygNhAnkHrWWR6sVJiW1theiMniSs5Few7ORB2SFFMukFRsZ16Sd0jyykqDCfAmEtyJGCkEUW8AAryRFhhjzTk9gd9IMRLCskS7VorASPsb4RB5Lqqm8KpWxqGwMUJu2kYFuPPqk/jV8mU4mz2EZxjK1fjTwRsZCfPc581jQc84/bkG8/NVim6LR6t9PFZdyMRSSVKQNBcl1ivF1zhBjLq3gNMURIEBCbIpSAN7iRWpQLYkKDPZpWdANW1xXLuGh945PQGdCR04oAQ/vuF9LP3HzxzETzYjY//pxrS5XCZ7cRhZt+0fdvvYfz/vi+jNJ/Gbs7/Hv59S4rKJP2W+no+8L0akta5JNWCnWKoNjp9fZ3N+CV4Vwv5Df/5680kc5wXcqRZxav8WLuh5iD8tPcQWnfClbc+nEbn0lRukpSYjpSLyoYCTP7aW+z44pfisNWawt+v1ZVzFqmd8mKt++9FD/wIy9pssnp17HCzvvqMGpdClgNa8PGlO4tRTVMsgEk35iZTmPJfkuAQRSVQ9ovRginGtZ2B1iY88rsbx/aM0Yo+R7UM4IThL6rz2lJspqhYvKd7FMsdO4E30/I5vjp/KPL/KJYPX4wnBJ7e8kBRBVU/3rhtSgteVt6LR/DZKdjntM7wd9Ms6X9rxPO7675NYeGODkdElXPM+hxW5hKYJyYlJRY0lTmmn5+c4wxvh14OP8YPNvTSGJUlfwnHLtlB0baHHkZo7nlyAEAadSpJI0Jwvuz6HCOslKIw1tE8DuzZhhI3BdaB58N1/zd5ozBM0Fqc8+ufvZOk3spg2IyNjbjK3Wgz2wA033MBb3/pWbrrpJq655hqSJGHlypXU6/XuNp/5zGe44oor+NKXvsSvfvUrhoeHWbFiBdVqdQ97ntt0pgX02AREtithVeE1rFn09iN5Wsc8F170KQC88RSZ2FFYHAfhulYKbCd9ZyEFwnGQcQqNJsQJaTngRc87MJ34NcsvZc0J7+KFqz7N7710evHNbRiENjhNTdijiErWnyAY0wSjmp/933eRFBy0IyA1JAMFwqEiK5798a5u9VW1bwHW3H796NdZP/4N648ArBl8C6sH3szq3jce0GvIyMh4arJ+5Gv2etGe1jNG2+7nWh3ZCBGJRsSpLawkiZUKi6K2lAuIKMEZa9jEdqiX5sIS1aU5WoNWesGrJvgjMU6oaQ24NOcHtIbzhL1WoznNu4SDeZymRqQQFxWtPkWSt/UcFQIC7vnYJbbI0lJtCUVbyHBHGpgwQtZbDNyZIiYcknKKLqT8r6GbuCiXcnbv47xg6YP8wYI7uaD3IZYXtlNUEX1BE6MMwaghyYFwNbIY09NfQwiIS4ZwKMFbUIcgxakL3Anb1Vd4EoqPC/ztEtWQYKy8gvbs5M0jb9t7IgrW40Q79r0/+WutQ/QpZ2TMnjXDfwG0Y9p2/L7muHceyVM65jn+c1dMu/2yQhX1whHGTyzC0gXIfL7rSSikwKS22P34SC9uvS39sqTJid//+AGdx5qFb2PNorezZsk7OPGTa1n2T5/eZZvzgx30uE1eN/RzVhTu48EErqqdwt8+41/IuQklv0XJC+nrr9Fz/lbEaVVOvmwt577evsZ1m77M+js+zvo7P8H6Oz+BiFNEkrBmyTtYs/ivrBRQRkbGgXGABvZzkXX3fYq4EmBcYRteIo2qR4gwJtjaItgBadPBG5XIagu1bQw11kQYGwNGNY8NNyxm5OYhjIDSH2zilgu+ynv77+dtPY/zRFLizsj6qZRljr/qfZS1829liVPigbjIc8v389r+X/Boa2DaefXKPAASSVlELFu0adrjC1WJBU6LGzYez7xbI5wdNYobY/7shtcCTCuu7Il+tw4YdGDI9zYZCBosLozy9J4n6fEaVEpNTh7eSpCLEKkAbadSvDHwRiSq2Z5UiQSpD60+SAp23w+/fXYx7d2XX0Lf0jEATv5aOKvnZGQcCwgzN34yqTLLUTPBsn79+mm3v/nNbzJv3jxuvfVWnve852GM4Qtf+ALvf//7+eM//mMAvvWtbzE0NMSVV17Jn/3Znx2J0z5gdjclYBpNVgWvRlbKduw947By3bXv4Xl/9Fl++t/v5pw3XkFhU2LlbZS0hZbOeHRnQRG7uChHa6QLBpCtCOMoVHPXbpO9sbr3jXbBUgr0cYsYP6XIlmcZSo9Mr5fe9J3JDudnveYKhIGbvjs9iLnhh+/iogs/iWxFJCXPdktLAcaw6hkfJukNuPa6SeO2NYNv6f573bZ/YHXfm7pTLRlzh6zbb24yteNvLmtWw8Exugd7nViz6O2QphAnCNcBx8E4yl474gSiCJOmCMexMgzGdgWiDdQbmN4ScW9AmpMIbVAtjTMRogOXNKeQkSHxoT6k8CbAH9eI1Go6y0jj1FN++l/v3+N5yhhkS6IrCa1+DxWCaMUYZa+rqS8IFtVo1T2METw/tw3Is9zfxovLt3O25/F4UuW6xvHc3VxII3ERqcCrGvruhsZ2j6gHGiaHNJD0aJyeEGME+UqTuz/4N5zz/12BV7Omn9oTtGLBPZddssfz3hs/+0+7eC0b0V62zMg49Kzb/Pe73hlFrO59I6JUZN3jXzjs53Ss89A7L+Wk//Mx7v+T+9GbT+KuuMHYjiKlQUGxL4dX60fVG5h6A4C03kDUW5T/Xy87zjKopiBtOuh032PBVYXX2AlHz2Xrn5zK2MmGyoOCy//nd7ixeuK0beXw/QwCn1sA2zYuZHCBFex/Zvvxm1Z9klP/86M0x3IIL+V5Jz7I5qDE/b0FeERwwas+T1SU3PpVe01dde5HQSlElLDu8S/Y4orJVgcyMmbLbmPaGfxLjyQHK5697tr3cP6fXkFUtDLbzmgLXQqIKh615RqMwKkB9Qb4PiiBu6NBz4MehU0uPffWaSwI2PCSlK+e/F3KstDd9w/Hn8Gzig9yhrdrU/CEDljmbicQCcuC7dwZNTlryRO7bHfyLvdYFqoS27ZWKLdSkt4CYY+i3D++T6/dlQlCGWQoaG4pcLccQslB4kSRasmCnnECJ2F53wj//dKPcMqH1+JWrYStboEo2GamA+U3v28L+UnePeB9ZWRkZBwKjpoJlp0ZH7dfDH19fQA88sgjbN68mZUrV3a38X2f5z//+dx4441H5BwPFVfVv836ka9htMGkqe26yjoADzs//cG7OOGzV1CfbydDSFLb5ee6dhFRiklDULATSONV1HiDeKCAs3XC+qDshV0WYZVEeK6diGlFxDnBX114FY1zmrvdx83fvpRffWNmSZlrr3svIkzwttdRoUa22vqtSpAUHM59wxWceanVsjbtgLlT+Fs/8jXWj39jr68hIyPj6OFgyz6se/KLdiFLKUya2tuOxLgKkgTTCiflwYSwhZdq3SapqfVdcWqx9Y6SNrENB/O0Bn3CHhcjILcjJRgxOC2DE9rrlDPawtvRQMwiz7/nY5fgjUq8Jz3igjWaBxBCYnzHSkH8uoz3cIDy0m7X4MWl7V1D0CVOifNzjzDsjbG0MIK7uEZzwIZZ/jgUn4Te+wz5TeDvkJjH83BPkbtf+hHASiYAmHbry86+KrtjauF7dxjvqOmnyTjGWPfkF9H1BsQxa5ZdwppT37v3J2UcVO7/kw+iN58EwEiah4Yiv83Q6vdIB8uYgR5EXw+ikEcVC5iRMQZ+sRWnKkiKmmCjiwlnJ3s7NaaVxQLRuScTn76MsBecxXWSVWO8rFDl88O/2e0+BhdsmPH+e/7HhyGUuI8F/Pxnp7G9UcA4hqgiSD3rg/CKX06/Xq6/y06Sr3vib+13U0ZGxoHxFCyudLjpO5cS9lhpK+MqZCvmhh+9GzEv5PSTnkB7YKo1K4+baMREncotGxj45TZEolGxwd3k8bPGCdP2+5mh3/KywsyKK7FR/MPWF/DlrRcy7IzxaLJnTUY5fP+udwpbPI7LLvX5Ni79xsQQt0Wzm25+a8/vOO+4xxCLG5BPCEOHidE80SMlos15dtQLPDrey38/z15DjYI0bw3u49LsiytPRV+sFc8+sOnOjIy9YubITwZwlBZYjDFceumlPPe5z+X0008HYPPmzQAMDQ1N23ZoaKj72EyEYcjExMS0n6OFq6MrWb/9q9Z8rdnsmjZmHEaWNkjPqlFd7NkJFsexXdid350iSy4HQqBrdRgZw3t8hGhhDzvOKO1ixLkzO3e6d/aP5yEm6qjY8L/veS5PX/Lkfr+Mdfd9ivW3fwx3Rx3tO7QWlgkH81YuJ4EkZ6dg1m//Kuu2/UMWLMxxrtHfP7a0kY9SjqXPaN2TX2Tdtn+YnMoUNvkkirtTfiQphJEtRocRxLHtKJYSoyRJTtDqFYQ9ila/Q7NfYiS4tRinoQnGNCq0EyAi1t0izjU/3/P0Sod7P3wJffcYnBaMn2hIBoogBSbw0I4gv9ngj4HnJWhmXkDYkVp97H63zinztjJxvKE+LIiLoJXNcb2aofS49VFZfN1kcnvzty+1kzdSkAT78N7uwVuhg5GSledfNvudHmE6UlIZs+doj2fXbfoy6x5dC2MTmQzuEeT3AlC9IdUlgjgviHp80kqeZGH/ZKFleBC9YRNLrm5QfESS5A1CGU76Px/b6/6nfu+1nr6MxrBLdWlAfoshHPcZLk/wuZHj9/v8H33LO7n/fZfw0F9fSuErPeSfUNQXGnacCZxS448Hb+W89e/jql9Z75UzL9lzDJ5x5DmWYqWjmWPlc7rrU5dw4/f+mqtv+RBX3Wr9mwZ7bXEktw07iZ0kdkLb8zClPGlPnjTvEBUlcTll0Jn5+/n6liA209UttiVlFvjjnFbcQFXn+KPjbtvrOe5cZHn+KQ8QV1zSQFI9MeUVx/2G+5vDxGZ2hfGiDFi75L94/Wk3ceqyTRTyIdLRGGWnVKojeXZsLXe3v+9DlxCVIeo1tBbNXq1j/R2zXF+QcOGKT816v0eSa278QLZukpFxDHFUtjT+5V/+JXfccQc///nPd3lMiOkTAcaYXe6byic/+Uk++tGj39zQxDHC91hz0t+w7v5ddYsz9o3Zmvc9+D8/wCkfXUvl4dAuBEYx9JTRvUWEsRI1IkwR1QYkCSKM7CJirY57+xjzNg8QDZW46AWXc+3179vtca7R3+fv73sh//KeF1MUVsKLNAUUcUEQ+DH//uwZpDd2w5qhP59RWm62gY2zeYw1J7+HcEkPE0s93IYhCQQygfLDzVkvaGYcOuay/NSxTOdzmYtSYYc1OY5Tez1M7eQfelJOESkQrmuTVEdhAheRahJfUD2/yYQR9P/Ep//WcUSakvTkiIuKJCfIbU9w6gmNhTl+8f3Z6TpP5abvXMpZb19LdFKL+1/vc9I3FrL5/AJXXvJ57o2G+I9tZ/OuBeu58K5XsPmXC0jKGl1OGJ4/xh8vvo3YKGKjOC2/gVtGlmIUtAYN3rig/9GUwhN1rvrVh7vH60gwrj7j/UTDJdJ5LqkHehbTjbNl5XmXWU+b9OhpL5pRSmqOsUK9gmvS7x3p0+jyVIln0RrKpcx8/CCyKncxVzX/eY/byOH7+dw9q9gQ9mI22UKxdmFiqUvy4hquk3JS7zZGwjxP/miQ3PYBCpsTihs1i364lSf/cJjK6u186d4L+aPSPSxeuGm3x9KbT+L7tQoTS15FcWNMsKVBY3GRP3zG7fztgl+xIa0ih3f//Km86Hmf4Mc/nTnm/Ol/vWuGez/IK6Y0j5ee1Jz3uisYO0kQDsX03uYSlaE5X4OBRddaz8KMI8dciZEydmWuxrSHu9gTODH3PDlMjwATRTBeRQQ+pq+HuC9Pa8CjulhRW2rw5jW4eux0Xlq4edo+/nLjeby2/xe4YlL+6vu1Cm+qbEIO37DP5ySH7+9OJn5zyc/4X+9x2VAv8/Dp/3fKVrOX2ioKhxcV7yIvI36kT2N8RxEhzS6+gE97/1oaS1LUkgjHTcn5B1ei9mgprEzlmhvn9mTOXItnMzKOZo66CZa3ve1t/Nd//Rc/+clPWLRoUff+4eFhgF2mVbZu3brLVMtU3vve9zI+Pt79eeKJXTUtjwZMK2Tdo2uz4spBYIV6hdWPnSX3fvgSrrv2PSQL+9FLh9HFHMIYZD20Uyt5F91TwPSUoFS0C4bNFia0j29+Vo7WgGdNPb863aj+6X+5ljP+ei0nXW477LacrUC2z01K0oX9GAWNprdPr3F3vj3P/p+f3+1znvuyz3HRCy638h1KYhyFDFP67qihlaD4ZEzl/hoiSVl9mk12dzfquyp38T6db8a+c6x0kh2tTE1Aj8nPSonutcykqS0aG2OLKztff1N7Pc2NaNgSYMZda1AvsZIL1Qh/NCbYYYsrarSxX8WVDmE/zOurcs7THqG+KEft7BanuXleVqjy3WXX883tv0ft3xaw9Ed15v/UUPmtx9Z7B9kUVTgz9zhrSnfwyuIob19yLX+z+geo5XVkbKdX4p7dGIoqRZJTVte7ZQjGDo7Exo2PHcdHvv9PnPD399P8VO2g7PNwsWb+W4/0KeyRuZaMPmXi2WaLdfd9KiuuHCRW5S62/oCz4J2nXsXap/8rujdGnDfO0jc8CH+4g4nRPN4/93HzzafwjN4nyb9gGzuebmj1OfTcvgOzZRtawQuHHuAvep60mv8bF/KzR6fL4Nz5xKLugt/Li+NoD5KcpDW/QHWh4qYtSwEoidn3/+2uuAI2hp6J475wBad8ZC3P/LO1JIHASPB3QN+tLklgiyuqKei9W5Lb0mL1wJsBZpx2Wem9atbnmrF/HJMx0lHGsR7TnlDZTq4Q4danNLIU8uAqtKeIi5KkALqSEI0EXP/YibvsY9ib4N/HzunevjWK+NwDK2aW/NoP/mX5dVx72v+Z8bG/2PAsTvrpa/j0yAkzPg52iuVc3+U1lbtJtES6KfTuWjwJew35oRo9lTquk2LMwWsY0ptP4sf//A3e+JX/5CVfvO6g7fdwcNGFnzzSp7Bb5lo8m7FvHGlz+67JfQZwFE2wGGN429vexn/+539y/fXXs3z58mmPL1++nOHhYa655hqe8YxnABBFETfccAOf/vTuiw6+7+P7u1nwOIq4qvatI30KRx27m1LZ3y+ZkdMK9N9RRW0dsd3YlRJJ0cWpxdZrQAjwHUSz/d9OGxgZIykOsuM0xcAdmrDH4YxL1+JVrSxXYxGkgUG7hodb8+g7dysPeMcx+FtNMJLw5As9xAk17v+TDx7IWwHAOW+8gnCx5JlvWYvQ0OqHuz55CWvmv5V1m75M6guiHhfVyiGrIcZzrB+CKyk+0cLdVkc0QyuVpiRrFr4N+sqseM7HkWGC9hzk7ffb191mVfG12d9uxrHJTEXcI2QMeiSSYR14SEDUFUJKjNZ0UjAj7ISe8FxwFEJriDWFJxssvCGgtsBBhZq4J4ejFMIYnFqEO5KAMV1N/f3l3g9fwj8/cD5n+ht4Y+ESSuXp/la/3r6YvnubCK3Jbw4JtgviYo6K0+QUbzvawPu2ns1jjT7O73mY5yx5mOs3no7TVLh1yYmfWssD75muR22EwK0lyNggE81117zngF4DwLKvfZY7XpxQlAFvfPwEhsoz63vPWfTc0XE/GniqxLPrJ755pE/hqGNPU9d7m1yZiUdf+zd84q4/4P9tOJ3abf2Ut8P4cnjLiqsZSQo8rX8LPxsrIhMfRsYwacrQr0MmXhmg0Ugkd0ZFxtI8n7tnFeNJnkXeCH9cmp6B3/rBr/A/HlzJ/dsGueuC73bv71lw4MXBk/79Y/S9pMGyr30WEUrc4UY3Vhap9QiIKuC0IPXtt4/bMFQeSXDrLvmtKeXfbIZGAwOsrryB8J1n8LT3ryUNYNmnb7MyQG1Wl1+PiSKuan13hrPJyMg4XByJmPYV/TcTa8Vv5p1Oj26rTEQxRuSRUYp2XMI+g1uMSDbnCDcU+ODW03lr/00MqyIAHxi4l6+Nz+fOqMm/jZ3L9VtO5FdrLj+g85o6xQIwqlvMax9vKr/4l2dSbMG//nwFL3rn3V1vwZnolXleOO8BvjPaQ1T3OO7Ky3n4VZMqHGklJefH5NyYVuRyx0sOjjzt1NdxvLuVx6I9e9HMOXS2Ap2RcSxw1BRY3vrWt3LllVfygx/8gFKp1J1UqVQq5HI5hBC84x3v4PLLL+fEE0/kxBNP5PLLLyefz/OqV2XdRRm7crADsFu/OrlgtnrgzdBfIS46jJziM/ibOqoe2kJLLrALhmEIgY8/Cotf+gi13ywm9QUiFeRGUlo9Eu2B7otR211++NBpXHbmD3n5WeO8+nkv4OZbTsZZWMPog9MZ8uuvX8r5f3oF5QdrpIFDdZk1AVi36csA/PLKXTvCV53zEZKy35W52Zk1i96Os3kHOArZW2Fd/dvTpCpEu4N9NvIVGRlPGWYorhwpWYUj1Wl49S0f4kXPvxy3EWLGJ+y1QAiblIr2dIsxNiFJNUQRaqSO70qEAaeWIrQhLbq4I00rOZakrLvv4EgHXHziTejNJxGVBH35BrdFLZ7u2WviL878D55+9p8zdHMdI2FieUBSgH+5/2weWTTArzYuJrmrgtOEXy4+iRNP3kDluDEaE33IjYLSY9bT6uZvT/qmHYpufVmMKUp7zo3NRdJS/aAf45CSJaMZGbPiUFzH33/a/+P9pwEr4YJXfZ6NF6W8s+8hAI5b90aEmzJ6sqSwYSHu/RvwN45zYm4LAI8nVVqmn5G0yJ3VRfx602IAHlo2j/OLD/LSwuS16D9PuBp23zS939z/sg+y9OufpXK3QxpAo3cy5X3or3f1rPy9l36W0RMdbvmnd+92n2uOeye6t8ADF1e4qvYtVgWv5uroSgDEvAHYMQrAquDVWaEl49hiH5QfDiVHKqZdsfweLsqdxHFnnWj9Vx0H02ggi3lk4iFSELEgHglAGXKbFf/+4NN5ceU2hqfYoCz2dvC5Tau4ddMi7n7pRw7KuU0tsuyubeVlr7ueH3zlBQQv3srJzq5bXTG6nF+NLedPh27kxfkWHxi4l/vqQ/zyoeUYLTj+e5/goVfYacJH33ToJRXvCheyNSrvfcOMjIyMw8xRU2D5ylespNELXvCCafd/85vf5HWvex0A7373u2k2m/zFX/wFo6OjPOtZz+Lqq6+mVCod5rPNONbpGDk/+xWfp7BZo31F9ZQ+EFZb36um+NubiHpIz4MJm+slkuMd1Mod9OYaPPy7hehcytCiUfrzdR7KD9AayXH5vatZP/Qkzyg/wV3Lh5kYy+PlY9YsfBvrNvzdjOeyuvz6WXeE3vSdXZPOPSGihGuv+8huH1/35Bd3uW9qIcV0OpRnKV9xLLEqeDVAlqQ/hdlZ83auaFcfLpKcwvFtl5zR2vqudOTCOhhjze5Te62QrRSnkVqPK9kuLmt9UIsrU4l6YPN4mU88+Qd8/7gfd+9f/NJHaP1mmDTnUJ8viEsaM+Fzw70nUbjHo3eDQWiQoeKRicUkAwmyYNCOIBgx5LYnnP/qz3PTd/dfymyvtN/Gb0wMIRLBWCPHsn/6NI++7m8O3TEzMjKecnQabJ7YsJaFqsTDa75uH3gR/PvFJT7w3T9l+FcJV6z/A/7ilf/AEqfEEieC3BbeUN7Cv/b1MpIUWFG4l7pxuDdOOcUt7PZ4F134yd027qw87zKuvuVDszrvx964Dwt9QvC7z16yx03WPfy5abenxWe1OmLQdlTL/r7ZH/cYYc0J72Ldg5/d+4YZRy1TY9pjLZ7tcMayDSTFAvT3wug4NJrInItX9fHHFN64wm2AllBruvy8fjLn+w91n79u9Cx+dsfJh6xIsbts+0MD9/AvQy/gv0//FkU5fcLla+PzuWG7LdDcVDuB492bOcUt8NbhaxkJX8L9G4cQh1Ef6Nqm4vubzwbgzB9+6KBNyBxy9uAJnZGx3xi6+V7G3OCoKbAYs/e/HCEEH/nIR/jIRz5y6E9oFqwuv5603sh0DY9hbvyeTUqf/pdriXqsYWjYr1FNB39HmYG7EvKPTaC/1ktjCBo395O7u5fBvCCsONQeGWT7aUWEMjhjivCJPm5Uffyk/3QoJdBURKmYVlxZs+jt0wobh1JuY/0dHz+g519V+xare99oOwEzubBp6DhBSMFK71XdDsk9yYBkHF0IKTDtDv2V7iu5Ov7Xw3bsufI3lBQUuuCjcjnrSdWZXgH7u/MTxVaKxVHIyMOpCUSiIdGgxAFfh3bHZdtPJeox8EiRW3cs57XqeXxr6U8B+OFJ63naC/+c0mMGFULxUYlRHv4YqMigQltgMY5AhgJvg4uaIlVdH3aoLRac/LG13PfB3S/qra68AZOm+3Vt1OMeW9MaH7/+TeQ3Sqo9uaOquGLS9EifQsYUVve+kXSimsW0xzAd4/qpUi0vK1R52Zu/wotfsIahryzhaWN/Tu+zt1APPX55zrd42n//JU8/5TH+/YT1SOzC3T9XB/jExtPocxv8z76bOcMLidGUhY8//2GunSKtf+GKT02TTJxtcWVf+dl/vvOAnr9u898DsObU97Juw9+x5rh37lKQOZYxO0a7ksOQxbNPKXaaXjnchtlz6e/ozQtv4MvNsxGtCIrtIrIGp6lxa4rUhdITKU5DkxQC/k//M1jqbWfQmeDO1mL+7pnf5e+eeejObyZ5sA4v+aObaBmDRvOLluR7I+dxemEDTw8eY3tfieX+Nl5ZHAXs63KF5qyeDWyplRDC8IpfvoXvXfAPezz+hRd9CplofnzD+/a43Z548y9egxjxcBY0DopE+mEjq69kZBwTHDUFlqORTEc6o8NtX5pcQFv+d58n7k9IKoKo4jCY7yG3NcIfi+m9F1JfEhVdgjFDbgTymwMmjheoJngTkNuuiYqS5jyPqGIQ43a2+LQffIQklSSfGz5SL3O/WD/6dVb3vrErF5Zh6SQn+2ugutJ71fSkZ0/eHkfI++OYREiEnIyyV6hXTLt9qJhLCWiHsCJx6j657UVbcIqTyQmWKT+m0cTEMSJOEHGC7LVTqWL7GDiHLoz59h3PahdJQDYUm5slXv3oC/jususB+LvXfJU/+683UbkPglGN09R4EwmtPtfKPWowwhbWvSoE20DodqG9R5DkQLXgvNdewS3fmnl60KTpfl8bvVHFs2/4S1RVYRwQ248ufw6h1D5NYGYcWtaPfv1In0LGHKFjujy10PLfJ63j0x88ga/f+RzE1wdRg5LTH307zzvvHr659Hokkg1pFRfB/c3T+fWGxSSPFvmvnrNYsGiE5ww9worynaxq76++aSktk/Ljf84DB+5JdbhYd88nWX3G+xFZTDWN9aNfZ83wX+zXc1e6r5yMU7N4dW7Rjmk7DUMr1CsO+SHnYjzb4cX5Fp9ecRrFB8cRo1UwBikl3riHP+6QBAJvIsHfMME82cOmYJAf9Z1JTkX85L+fyV8dmvrxrPjM0G/5bnUpb9t0Hvf+ehnlBwXXrzyBj5/xA1yREojJLqHQxHxnxwWMxXn683USLXFkyqtvfhPffdbX9ngc7ex7TNv5rvnb0WWIEQ9vVBKR3+f9HEmMEHuczszI2F/misF8VkO0ZAWWjIzDzCNvs1Mty778eSoPGWRiFxG9ezd0O7uO/9wV6OEQsd1nyfoYr+owerIkyYGRgmBUo2JBqylIfVu0Ef0ezqM50p6UC65+D9vGiuRuLuBVAQO3fm3P0gdHHKX2vs0xSGd6ZV8RSk0mPUaDcKdv0ElUu7fFTg+bXbfv7nx6QpUluweG0eaQdvzN1WS02S8w0sWd6MF5uDFNGszEsTU5j2JreN8pMsSx/dVf4No7D8zMfm+YER9d0Bhf89gbJnX5O4neRbmU8gmjxE/24TQFRkrCHt8a1ceAABWB07SFFOMACcjQTnNrz1B6XOBPaC541ed38blaXXnDgU31nVRj4IcFRk6HsNfw8Dv2TQLySLNu2547ITMyMo4sUwstP2zkeVHxbp44sY+bK2dT2Jzy2y+/s/s4wEJV4vWP/x5P1isYbaf73G0uG3U/vwDKqsm9976IV5XvoV8W+NOHV/CJJf+XUzafxIRu8p2JE7mttoSvn/NPR+gVzxIp0QOVI30Wc47OlM++IpRCOLawYicbp+cLnVh0arPKLjHs5AMzHGCWzUgZMyKUQvgOutk65Meaq/HsVCaWKAoPS0TQbmpptlA1j97bmui8h0gNRghkYqg8ZHBXpfz9wpuRHzp8XqSdazdML5QXZEjgJHjLq9SXSJQRfOWJF3BieRvL/a3d7cZ1yDOLj3FbfQlbW0X6/CYTUYAjNa+95f/jW+f947TjXfTCT3LtT97LddceWLH8R1tOIy2kRFrw8NsPocTuIeBAX3tGRsbRQVZgycg4Qjz61t0HBg+981JeffObuDW/mI3PKzH/FzFDv7ZyKaqVkgYKUKS+wK0DQlLPO+iKxniGnqDJlg3zKGwxGAl6jv9PXz/6dVb3velIn8acZFXhNQCYKJp1YrG6703W18YIRCcPFcJ6XLSNxE0UWyNGISbNxNuJpdFm8nldlE1utUF6Xruz3t7uJqf7kpjuzhDzqZrcTp1c6f473aVItYtudaeYtZ9ySXM5Gf3dZy/h+O99gvqCAsu+X4Et2625vdaQanQUI6RAeB44DqItt7D+EBdWOjzyl3tP3p6/4EF+kp5HYVNM2OtQHxbkt4Lb0CQ5gVb2+pv6kAaQehAdF+I9HICA+gIQqQIDz/yztfzmf08WwtePf+OAzv+CJY/yO+90RAJCGU74zFoefPccL7RPIZteycg4OpDD9/NH7X+fuwT42q6PdxbxPrdoPc/55jsR2k72RT0gPE1f0KChPWqhz71RjucE8O/HX0NHjuY3UZ5/23A2E63gcL2s/Wb97R/johd+8kifxpxjzYnvhiRBb9uxT7GJyOdtvKoNhKGNZz3PxgTGoEfHwBiEUiBsvCRS3Y1Zp8eVNridVpRpT8V049mnahx6sGjHpUIpUArhODZOSxJ0nHQ3mymeBfb7/Z3L8SxMXuei36sirtPdhiAzPgHjEwjPQxVypPP70JUcUdlBaA5LwXhqQWVP3FI/nt/85nhMJeYlp93JugdP5bHtffR4LXp6G93t5qkiF5e2c3FpO7f1tbittYQbJ05AYtAIXv+r1/PNcyfjt2t/cnCmNhYVxnhAzkf7muV/9/lu0+rRwEUvuJxrr99/abSMjIyjg0yTJyNjjvLdZ30NrQVJwbD9DJf6sK2SyFjj7WgRlQS1RTB+vLELaLHEnbD/pR/Z3k+wQ+DWrM7rVO3/uUxWZJnOqtzFNqGcWsTYC2uG/hzhuchcDuH79icXIAt5RLGA6OtB9FYQrk2IhOva34E/uZDtOt0JmE4SZRNXiQx8hOd2b3e36SSpU392R/uxGaWxZvk6D5jDcBzbdekiPQ8Z+Mh83v4Evp3Y2inZ7CSiU5PIqUWZ2XKN/n73Z67z0Cvez4tfdhOjZw8i8rnu4kjnR8cJRmtELsCUCpie3etHH0zWLJtdIWIszttxFCFIAkHYb2gOCKKiRCuBaRcq0wCaQ5riudsxWqA98LcLVAg7np5SXQ7RQW54fmb5MWqLwa2CDAXyKPkeOFpZVXwtq4qvPdKnkZExJ+ks8PXLAs5p4yQFg0hBpPCip93Dv534A943cAvzvAkeiHaVuv1l/UQef3yQsW2H5zvgYJAVWSZZs+Qdtpkn1ciON8UsWD3wZuIzl8OCeYieCrK3BznYjzl+EVt+fylPvmIZ6TNPQvb2IMolRLGArJSRA332d7HQjVen/ggpkK5jY+R2zCtdZ9dYdrbsHP/u6/PnOkLa98jzkJ6H6ulBLlmEWLYYMTQIvocslex7bfSM8azdzb6JyBxN8SzY69zdz/4OW5/dB40mZscoutkirdVJRkbRW7Yjay2SksvEEsnoKYdeVGfl+bM3gb9p2zKcqmR43jiDXpXTFmxmsFIDYKEzMeNznu4FvK68lZPyW3jlwE28vP8WhvzqQTn3Dp3vj08suAqUBgkizQSJDhWrnvFhVj3jw0f6NDJmi5kjPxlANsGSkTGnuf9PPsgz3rqWJICR06DV7xKMOPjjmvoCQbQwslMKW1x6fqdoDNtO5eixIoGBqKRwWtZwec2it7PuyS9O2//qyhsOuEs649BxVXPfx8XXbfkKaxa9HXIOotNJ5ihwXXAdjCMh9RDhlNVWpWzi25ZjAtqJcGoXtzuPA8Jx7JRBpwNtSpFgmmxY57Gdt9uJXZ6z87YHu5NwyiSJ0VMKHAeza7GdiAoput19gP23UhijEZEtwJgoQkeTn8VMxq9CKSDF7GWI5WhJQHfmL/p/yn897Xx6b/SgbjvkOgse3c9ESkzgYA6DlOCaZZew7tG1s9r2+jtPpjeG+nyHxqBg4MytVIIm9z02n/6fezSWphhHIzzNM457gqFggtGeAo/M62P0t4OUH4awRxL1pji1g/vaXlG6my+e/EL8m/PEJfBH4fR3rUW7cPfll3DhRZ+as5IFR+P0ygHJuWVkHAN0Orx/d/6V/PNpA3zxwRdC7PC5BdeSEzkQsNTbzq315VwW9fOhgXsmnys0bjEibjozXrtWnfMRrvr1Rw7zK9oDJlttmMq6x7+wX89bv/2rnPVXa8lv88lvjpCtlKjXozHkUFsEcY/GaebpCRYC4NRitK8wUqCaCTKMkTsmMLU6xIn9XDqT22B93NIU075PKIXQxk4NGz09TtwfDrX82JT9T5MFPpiH6DRYFQuInoqdJpISXQqIe3KIVONtkRD4yCQhHR8HZo5nu+e8l3M8WuPZDiPPSBhan4NWaJvSjNOdsBLVBkaUCXshGowP6XmsPP8yrr5pdsYuNd1ipJHHe9o4f33C1bysUIWBewF4y5MXcIq758LoSFLgRHeCharEQ9GOAz73mRhWRaSj0YnArQqe9v61GAnzbwq57pq5Gc8C1nvlKJpeueq3Hz3Sp5CRcdSSFVgyMuY4v/2y7aR+2vvXoloQFwTVpYqoZzJ5a80z5LYItAtEEpmACq0sjdM0qMjsUlyBA5egOZgIpWzQnnHArHvyi6w+8wOIRFuTcEfaBWrPwSiBSA0iKkxKgykJSQJSIjrm4mkKbYmFDp3kgDRtFxGY8riy0mJyetLUTU47+9hFJgvrzrabZGvG5FZIpOcBTBYn9qar3Tn21OmZ9nGN7njKHECRZWcJMKVAyfaEkGsN3JMEXAfh+JNFpRmkv3aRVFDKPn83HO2J6HGLNpEsv5zw+AG8W0YA7DSVEPY9cxxwXYznkPqHtsCy5rh32uPOkuIDLoUtmuaAxDiw+dF+9NIRvHyEdjzyQzWKQcRQocpLBm/n3uZ8trTKFLyQiRYUN8SAy8iZAn2QPei3pArXTZk4XuPUJWkA3jjoBE77m7Vwztw1vT/aiisZGRmzo1Nkubi0nT8461v0yjyQ6z7+skKVlxXu4Gc72TnkZcRQ7wRbRYnrrv3gLvudU8UVyOLZg4hatYMtY3m8+3Lkt0LYA1EZ0oJGNQWNIYjKHiIFp+mBAZmA2/DQCoob8ngjTWS1ZYssjsIELqIR2hg4iqDVsjEvgNYIXFtkiWL7ey/TKFOlxtp32F9KdYs1nTh5lzhTSKRrl2R0nOw+Dp0ppu382/PsseJksji0n9KynWN1XpNQClHIoY9bRGt+Dn97iDNSR8QpaV7R6vEoRxoZp8hWCO0CC0yPZyffoz0XFY72mBbgR2u+wDu++RZUK7T5QLmI8drFPA1hr0NSMrilQzdavOI5H7cNcbPkl2GRWi3gdWfcxP8ojDNV6KbstrgpTDjf3/3S4fonTmWJv4O3VDZwvLflQE59j7hBQitwiEsC1bTT2VvOnrvxbGZsn5FxbJEVWDIyjhLu/sSkZM1xf3sFaKClEMUY1XJJPSg/AiNnWr9yq/0vMFKw89zenJxcUbJrgLm6942Qptki2wFQPakHFRtUSyO0QUba/l20F6hdJRCJRkTtjj7tIpLU/jtJ7cK21rbgotuFGtqL/CnWvLHTBdiZdOkUZqYg1K5mo8J1pi1ii04n4RQ/kkl97I4vzGSgLz0PWSmB5yHjGNMKMc3m9GRyasFjyn1TFz2EMJjUnmOn4GKS/SiwTEmOu8dRspvw4jgIbcB1oK1T3e2i3AvW60bsknA/FRLQqXzp/Ct55+/+P5b+LofQ2k5cCWEXPvI5TM5HewrjHgbJjfYixu4mWab6CURn13Hu9Cg9qQnLDsbVRKki8GPGTtW4v6uwdUnEaadu4nXlrdybe4Tfv/3t5B7w6H1I403EOAMOwkBr4OB2nd7UPI6LT76FexcOc+umRTQ2lCg9IYgL7QmuQz8MlJGRkbELXbkwphssT+U5gWZ9M2B1zi5ADjvj9AcNRt38tO3mqq69EaI7ZbPyvMsQWs+9ItBRwq+f+W/2HxfCtU3FT2unMJEE1FOf27ctYFF5nChVbK6XiGKHJJU0qwFyzMEIaPV5lJ5wyG3zUc3YSpEKgXRVOw52EaXCZOybakhTRJqia3WE6SyMm10nnoW0EwpS2pilI6nb9owxRiPiBJPY+LkzHdOJV7tFjHwe4XvIJMWEIbrZnO4T0znWVNlYJbuTOLJUtNPozRYiTRGBT7J9ZP+ahjryv+0YVvg+Zrif1vwctQUOWgkKUcrECUWqiyX+KMgo6TZz7Y6ZmrA6PNVi2lPcAtvPKjKYzCPNOWw/M49XM3hV+/onlkp0JcJ1DqHfj5jM//c0ydKJaVfkEsSmgG/Ez+HU52zgwtyWdgEcPjrvJm5s5YHdF+1GN5W5b8EwVDZwojt6sF8NAKGJuWjZ/dxRXsC2iSJRWCK/xa55zFXMPjRtZWTsKwLbL5oxd8gKLBkZRyEP/9Wl026f88YrUCHIxLBkvSHJmfbkgl1EE6lhzcK3sW7D3x204srq8uttV73qTARMD6r3pTiyZvAtmCkySetHv37A53ess+m5krSYIkIHGQuCbQJvHIIxgzeRYnp8ZGwQqUYmxhZXtC12iDi1hZdkilxYkthtOoFix3C0XXwR7YkXk6a2gOJ59nmdAo1SNvFKU3vbcezfTto2gpxSZDHGFoUAhOfaU2g07d9bO1k0YYRwXbtf2t17YM/Pdaws1xSJDpOmCCG7SS5gE+jO/pMEQWqnRXaWLJvCzlMwnYTbJo5iMtkOfPB98FyM72E8B7l9DD0yCtpYCax8bsYJlqlck35vr5/1npg2DcPcTWJPcXfwq7/8AqcteRsn/0MVuWPcvjeFAslwD1GPR5KXGHVoExVTtAbKa5ZfuluZsKkLgvf93rc5RVyMd0uRuz59yfRtzoXjrn4DcsTjJ7eczmW5EZZ4OxgeGsNZkBI+2+GhB/phsMX8gXE23z50UF/L3Y0F3LJtKcOFKvMrE4x6CVsrBbxHApwaOC04+01rEcZgpODWr87OdyYjIyPjYDGT+bLefBISyepcxL/XSzwWDXDttlN4aOsAUdPlwhWf4rpr3mOlwg5CcWVV7uJuM8NVre92vZRE4Ns4x5h9iktXXvAxvMZkTHv1LbOT6MnYOxflUi7K3TV5x6Jdt9FoftmCzWmF8TTPZ+5cSXVLDtX0yW0JcGsgY5CpQSuB0Aan1f6p2zhXtVJUPe42AInY3m9chfGUjeMSjXElcdElLiqioiTJC7wJjTDWX8itpahIY6Sg1e+gWobSPTtgZKwb7wKI9rQyrotwFCoXYJotRLlkm3OUwuR90nIOWW//bUlss50jSZUADcaVaFfijjYRo+N7bhpqNwd1J4bbeZxphfb/g+ch5g0QLuphx2k+409LWX7Sk6wcvofNYYX1/+88jrtyK1TrmP4KUV8ONRrsVgLsYMezMHdjWoBff+QrnP6lP2fhdXV6748YO8Fj/HiFObXGqcNbmIh85CFcGdWuLcCteO4nuGYPMmFTY9oVz/8t161/Ji8//tZpj+eEz0W5PecrP169luMd65H1N4+/lO/P8H9zf+mcoy9cPjR0HX/nnM/9+SHuBGpBkeJjgme+ZS0ymXvx7FyV4s3IyDg0ZAWWjIynAL/++qWceclanJZAJlB4solINUnJI/UkN/z3u7vbHmhx5Xl/9Fn8bSHO0CBibALdaNjOKc+DYh7jKtbf/jFbgElTm0CkKVdHVwI2kdVha1pQbKJo7k3UHOU8/I5Lee6P383WsRLRSID2HFRoH0sCSa6atNse2tMRnVzIGNtt40hbsOhMtAgJynQ79ID2wkP7icaBJLXJqFLge93CDEkKgY/J+7YYU2va254DibZ+MFFsCy8weVwArTFxW05ACmDS08TU6ojARxQLtkiTalu06UiZdYopQthijKMmfWmiGNMuDiHEZOehaBeBpkzRdOh09E3eIezidJxMFl463YXtRRmbMCtkGIPvIXzfbhMnNpFWCqoHxwxypmLKXE0+1wz9Oeu2fKV7+7hFm3jgyQWce8ZDbDjpBCo3T2CqTdtB6vUR9SiqiyS/+8yhS5pWnf1h+zeQpqx75IoZt1l5/mWs/7/T77v9Od8g9yePzLj9u591FX/3nT+kuAG+U38BL7jwdv548W0s8ka4vzXMvOMmiI1i7c0rKG0+uMWjkajAL1d+ivff8ccMuDXG0xw/9k7midYguSccZGy7aYWGzJ1wOquKr53RU6Wz8Jr5rWRkHDqmTgkGIuY7D5/H+CM9eKMST8B119jvgQNduLpwxafwttSQPWVMvdGV4hSeh8gFUC6CNqy771OsHngzxAm60eDq+F8Bez3QjcYu37Oy1mL9nZ84oHPLmGTq38NsSI2mZXxUO7A9ed5WNuQqjI3nabg+7rjEqYFxBUke/B2CSAuEBhm3m3aMi9P0pxRLDAirDFAfUsRFSPKgWoCAsBeS4ZBCpcXIpiK5jQqnAUJLuw2gIoPT0KSVHNKRdp+OtEWbdvNSUvQwrkRGGtWIaczPk+QkuW0RGIhLDnqeT1yU9nwjg0zttLpbS+xEjgGMQZaLmFrdTsxMmRDvGtYXCzZ+VhIcx8qmRSnsGLHpQblM2lcg6nGIS5AfrvH8eQ9y1aanMb8wQWthjC4GSCEQUYI7EUIY2uajA1Ang6MrnoXpEyJT/14vfc1/8LXH/wc9d09Q2iCpLXHACAaDGqsG7+IvTv7JITmfCy/6FEj7N33Nz3dfhN45pv37hTcj3793/89R3ehOt3ToFFcufuz5/Or+ZfDs/TnzmXnRxW/gx//8DVuQ37CA84oPU3GaNBKXuxsuekNgmwVTyOLZXdmd52KnWSHjKCfzfJtTZAWWjIynCHesvYSz37SWVq8kCfKUHmuiGgnoA/9vvurcj/LoH5bpPW8rm1/cx8JrchSbMVIIZGdB2fe6JpGrzvkIV+1mguWq5j+z0n3ltEJLp7hy3JWXc9JbH84mWA4SO6oFSoUWVUA8UcQJDVFBoFwo39+0SZ0jITVdKTCRtgssQrT9WrBdbUKAkdNlrYSx+lpOu+ASt6UV2gaYKInJeXafTnvqI9GYShHjSLTflgrTOVS1iaiHk/vWaVemAWgXP+x+Rad4ow3kcuC7EP7/7J13mGRHefV/VXVTx8kzm5O0yjkgBCggadldA8bYHwYHogFjbIwS2SADSghJC8YGDBiMMbYx2BiDWQWUAIkglCMrbU6zk2c631D1/VHdPTObtLvaKPV5nn5mpvv27eo7t/ueqvO+50ST1g1gxxDW7RPqk0d7/5TgdKPta2hthRMpJjtqEo1oiCyNCakUk++/2Z1jposrU6oAAYyj7HE0BuN7CN/D1EIrvAS+7QxqeHTvBLsKCd1ZJd8RBSGaXXUNLJ6zhbdHJ3HpH87CH5uB/+uCrSStJYQZSeGYXefQ7A/c+sAnWfLyq7n93l2HO972y0+g+/912n2+cHfYTs5YxdvvfzsDlRxxGrQSpLbBXfecwq+PGWNx1xDHZfu5Z+RYVn/tGHqT+gLOc2B7YWqX2y26EmhnOVfS/e+dXJh7ipEky91iMU4uRHsORkESCFS1Rcz3BrcWv9kUWqbe10ILLew/NBYpX52u8rM5T/NfT59LasBmCz4fnPEXKzj1HY/yT3PvRX/4dxn47my6H/FRQwUYGmFZ2zts50o6ZXlQymXpmVdx69BXdtjXrcVvskS9kaXBn6DDsHmtbogrw1vm8Id//N7D0sLshYYvj8/mRH8zi90iG2OfCMVgnGdr1E5fqkA5dokTSRGoZhxEVYFjMK4myilkTYCwXf860BjHoIqK/LPK5lvWrZfLswzMqIABHUt6eyfwnJi+dJG3zfg5F6XG2ZJE/NXqP2TVY3MRkcAp2w5yZwiEhijvIwMHoyS1DocoI1GhQdUMxVkKGdv8TAgo99p8zWpngIwMiWdFoTAPKgSMwKmAPyZJKYFbjJGhJu5Io9yZyOEJzEQRU6vVBUTVzFQRuSwmnbIij2P5vYg1IrCdvLg29y4OBHEKzpyxhYX+IN+vnML6/i78rS5GVaEaWi6bDeqfG8nOrKR2GXrPC4DTsnOR5R35bfz9G0eRl4VkyiGd+W4KxQxPtffR500csLHceYft8Lvjrt1nf+yM026P7QXOH5bTQJrXpss7bLto5TvJrHLJ1XZ4aKfYkwX+i5ZcD1iRBa7nJ9/KssgdIicr3MNigkyIdgPiQNQ/Ny3sKRqdoEAzcmfq/+OS86/hJz/92CEYWQstHLloCSwttPACwgNfvYyz334zlR6BW/ZJbbMM55VLP8Ndt35or/e3fPb7wHUwMzvJrzX85Zvu4tOFVyOjANk/ZBeSGwvXtRCRaAg8jC9YPu9S4jndlOamcKqan/7gA80FVeG4yHyW8LSTOOFjKyjPS1hwdD+5fKolruxHPPX6q1h6z6VUQ5coBcWZVhzwJ4SdTBmDUZI476CqCc541dpmNQQVITAC2/nREBQAI6XNyahXe5p6Jwey7r8sJwUa47skgYtINGqsDHFC3Jur70egXWv7pD2J4ziIOLZWZVpb0QQbEgo07ciYYtuBFHY8vjtFFDJWKAnkpBAiZf35uhkcL3y/2TXT7HrRGpF4mDCy4k6STMtLaVjhNbqzUBKhpiywS2k7bDzXdumkXOKcjyMlohxCex4xMgaeZ6sFq+xWYIHJSekLYQIKViTA91m54XM75Jyc4Y1wzpz1rOo7AV+I5vdLnIK+OQfG07mBpWd/ckqk5/PHN87+Bm+//+2sOW6CMT+HDAWZTQI2dfC018Fj+cW0P2PofLJIknb2aBFuT8QVgM/d829cesEfA7Cp1MZvazNxRYJo2FE0Gq0cwBeosDUpnYpdCSaN+1uCSgstHHg0FvZOTG/mP7siWOvhVPZ9f+e8+WbCmYJybFWaO0/8XxY9/ee0P+OiKlVELmuv3XEM5YpdcA588D3bwTKrFx143PbrT7C85z2sHPyytVhKpQgvOpWz3nkzQ+dHHL9gC/93zEo6ZLolruwnPFcXy1x3mAkd0CZrzPBdaqbE1YVj2FDppNsvEqiYwI1JdxYoZTzKZR/Hi1FS4/YmVKoe4bY0xtdke0okiaTq+YydIsE1IA3t3UU+f/wP0Eg+8NAfUKs6XHr0Hbw02IAE5jk5wOcox2flsT/mirYzuG39cVQrHuWtAUYIorSDkeBUQEWGSreg1o7lrhq0Z/CHbX5mmIfybNuRUusUqFq9yyVtQBmSmgBtxQ/t2A7vMK/AGOJAIOMAfzxLMGhD6SlVLJ91lOW8novO+BhPIcIEGcbEHRnoyiIrIcZV1Lo8JuZLglNHeXPffcxQE6S9iPKGgNw6CNt9UsMSjBVpdMp2Zpt450H2LzQ+C5Y7IgS3/foTLHnZ1dx+399Me/yLJ32bT5v/B4USqtaFOyHYtLGLXzo7P0b7AxctuZ79SWgbn79vFzpZXevjE91P7bDNE1GZ7JMubgke+uKedZvvSffET75lizCtwGJxopum4lTJe1WSRCJ8a6SQtPjsTrG7bs/dPdYSV1poYe/RElhaaOE5cKS1T1Y7Balh08zVEJ6kMNt77ifuBNFRMxCxIWrz8Mc0X3v/79Obkmw9V3HUxm7ktvqCpxBQqYKShPM6SVIOrqcI2+zrFuY4vOqln0JJyfIZ70X2dTN84VxqbYLOpxPKxyREWhEnh3FK3RGKWy/4HAALRm4g7JD4gwq3BOPHWpEjzEniFKQHNLnEIKt1wi/qdlxhDA0P53owqPEcK0TUM1hEQ6SY0uFhlN0uSbtoX4FWGJlBliO0IxHGoB1JEkiMBCNtNZ/dD6hKYieERgNqilVZfdFdysm/pRV9AOtTrbDjmuo93RBJGkJGIwNmu7DSxnsQcQxRjIjr4aSJtvfXxRAB4EzJe2m8BtiA9sDHpDyMIzGOIM56uNUQwgRSgbVTK9jqr92JKw28kCajpIJd5pvMmL2F2cP/j6f/aIhnTjmeo/9jgtKcNNVuOKNr6wEd1q33X7Vf9/feB/+UsbANIQzarVsXCEHbmthWovqSn//3lQAsednVe7TP5TP/kpVb/2G32+j+Y1jsZlm55sbmfR9+9P+xutjDcCkDRqAdm8FipjSkHYxr3dKzP7nfj/PBxrL820GIHWwtl3W+C4BbRr7Kss53ccvIVw/F8FpoYbe45IJr+ck9R9aif2IkouDglm2V/75i2ys0qr3Gs2NdvH3Dedy/ZS43L/tXbvjFm/E3BJjAJe7M4K4dsPkXvkfx5D7ilCDdn2X0mIAksHaSwmiWtb0Dc/pxbLwoS2WGpv0pQed9Hq8951HALjievL8OQgvNvJ6dCS2vTtd9uLDimS9cTklvpKw9Tk5vYkEwxC/HFrF6rNs+HoRk/JB5bWP0BRNsLrfzWDgLXXKpVl2EMCg/JttZxVMJR3cM8ak5P2raIC04+yt8beh8ZjhjLHByOx3vTTMe5K+0wy/7FzBScahqh1oiUDVwipCkBGGHQXeG5NoqFAsBpuhipCRJCaKcwZ1peWJY9ohjAQaEa3CCiLjmwISLjIQtNlKibgUsSHxrYQYObsEhGEkTjGi88RgZJRhHEra5JJ5ARgavEGOET63DodYmccsp3JKm2iEpz094ee9WStrHdTQL8iMM+L1o1xZHmUyAKFUR1Rihbd7MDjksU/5+QfFZQI6VWPnMDfaPKZyqIUq81Hc4+Xtrue+T59D/Cug+ZpAuLfHU8/RR2w32N5cb3DKbJ8MMvygcTagdBpIivSo7bZuT527i8c/abL89xXPxzqmf9cntPtzMhdlcaiOJFa6xJgsAGLj4wmsPirh9pK0RbY8lr7Ddlrf/fLqQcvGF1wJglLTdUEf4+3yhoxVyf3ihJbC00MJz4Ei7oER5kJEgzDnEQYbshjJxKuDYT68gThlWX3n5tO0XrbiZ7EbBozfvWG0yeLpd2GxbbUj3R7iFiGJ7Cu0Zhk9vo/0ZH3ftANHCXsJ2FyMFtTaJV9CIxEXVNE41Id1vUAMTkwvQpQpdvxigfHQnwye6ZNqLjJVTLQvJA4h1b/8gi1bcjJGQeND/MhBtIabkIiuSOCVBpPBHXJxKYruRAAWIOGzmshgpMb6CxHaHiPpEzXiOFTS0Bmn/1q4VzJxCiKxEhN0ZRKLtTRskUEs51kKsPjkUxi76jh3tkx7wyT05bIWURENQD/psdNQIMZl5Ak1xR3tO/fF4MtclwVZzKTXFwqsu3CTYiZ/RoKXdTsh6p4yHiCJb0VrvpBFxbKtcG6/pONPHUO9gMZ5jc5BcSZKTyDCFU42sTVngWLGnWtsh68Xupz7GqeJPo/tmJ+Gh2+Nw9qqeKq7sTGi5tOs+Xt/2AG/s/wuMI0l8QWYL3Hv7KRx7ywpUBZ689vAJsARYdvLHdvDcD7XDROgTJ4rUVok/Bl7BLhCKxHDP/13Z3Hb7isdd4bnElfs3LOBMz5sWHL3w29ex9k++x4JvXU8mXyWpOARla7XjlMGpGmQM5b59E+KfC1MtBpK0/dy86iWfOiyDn5e1veM588Bu2YX9ZUNYafzeQguHI440cQVgSWY17rLv8re9r2Xmf/os+OKNiHzE2j+dbn8zdTFu6ndgA1991T+hhOaftp3Pk8N9nNzXz0WpIT54KoS5mXQ8XUW7Ejm7i+GT5zOxELrP3MZoMU3/5gz+MOTXGpKMh9vbDRNFZLHKnNsNw6fmGD3JEMyf4OL0b1kdw1iS3mEMLTx/7Gkmyxuy4yxN30vBxKSFIiNrrB1/BYEbMSNbYHZ6jFOymwDwZcxwb5otA+0EQcSc9jG2TuQ5qaefc9tWc3ZqLXOUz/+UMnyr/2X811G3c3p2Pe/42dtZs+TrVEyNlNjRv64U+xRKAUhDkk8wypCUFLUeQ8/8Eebkx+kLJhiPUqz1uxj2MsQZRbVT4WRCzp23jpQK+e14LyPldLMQLZ+qUg5dKimPOFKEBZc4o5AhqIqwVmcuGGnQjqDSBxhJMOTjFWz3apy2NFnGILRCaGuRFuZtR4w/pgjbIDezwOqxbv6HM/jLGXfw2u5HeGjBHErVHMGYJMn6SCEwrkIWQnQjy0ipJpcVUtj7t+e0e4DDmc8Ck+IKcPu9O+dyf9D+Gx4YOZ3U1hRDuhunJKhUu1h83wpkBL/9+OHBaWsm4nXnfprbfvHxafdviSUXLFjFD8ffSKwV/108lgvTqzjOzeywjwe+uufvZU/Ele2/y/s3z2LG7C28+zdvpRK6JBUHP7QCi1syqNBQ6XueXpK7wfZiw+EqPuzJuLYXVhq44+6PcvFF1+3UNqyFFlrYPVoCSwstvMDw9FWTxObst99MYYGd4CWBQfuGBf94I+v+/EqO++9P0Z6pIJIeKr2w+Lu2gvqZN1hyeOKHVyBd6xdc7RCkhiVR3mPsaImMDeU+QTDi4Qxl2HJeCqdkF7GdKkRpCQZkbJChJrV+DArFZlaHSRIYHCblKMwp3bzhqIf41cgC1g13HtyD9SLDmssuZ8E/3kg4N2HZSY9zVm4dtw6dxAPr51JOeSAVWeWQ6Tc4JY2RoF2FDOqh8kphXIkq1hClqrWPc2S9UyS2nS3SCis6UGhX2uyJLTXElkH8srWsU45qdsMkfhthXtUng4IwK3Bq4JQNbiFBB/VF3zrJa2bEJPXuFSWa9l8i1hjH2osZR4KrELV6J0tDxHCdSXsxrSdFmrhuK6aM7TJpBNQ3Ol3clD1/o8g+J7Yh9XjuZFeM6zbtF5K2FEngEKcUUVbiVAxJ4KA8147ZGESYYMZtwL30A4Tr2DDSKLafkamTz6m5MS9w/KC4mA21LuSEgyzUyK2VJIFDpl9Ra1PU2vdvGPxULF/8wWmT5efC1yf6ONbbyo9u/w4wXWD52ln/zCk//ASr/uDjnH7nCtKDGqeU4JTjA7LI+cFH3sCCYCHfHe3mhhn2vuWLrmRtvZNl3Zs/zIIv3wgatAeP3XgZZ7xnBV7Bdjzqg9BA2Hjfh6O4AjynuAKwrPvd3DL0FWsZVP9eaQgqre6VFlrYv5AzVjEXeDPwD2s+wuYLA4yncbyEJXdfxu0Xrpi22F4zEb5wd1ic0/3HcHHKbqP67mFzVwdznWE2JoaeUweInu4lyjuU+hzC15T5+mmf50zPY1iX+Mro6Wyc38Etj55M1+MSGWmqc9pwJwLURBU1NEFuo0+Y9+g6qchi11Z298cv/Ov1ocKeiixjOuZnlfksy2xksbeN82c8iysSZnpjHOtv5be1mfzr+nPYtqobk00glBSrDquKPl4q4i9n3MFLfQewxQHfHTybLf94FIsunodQmrb7fU7O/zEZPyTnV7n9+B9Ne/039vyKsTDFU9v6UFJzyoytvKzjWSKjaFdl0jIkJys8VF5ArBWzc+Pk3QopFbG+2MlpuY0AzE8Nc9/wUWwp5km0RElNd6ZEvmOEYuSxOdVGeTyFDiVRl8EZdZChwBsTOFUo9wnitoSqkFRm2JwZNMhIosqCYMgKLlHOCi5GQnmmIW5LOGfGJlaN9VBNXDbHHQzGOTKpGsMdaSqdCq/g4bi26EoN1nn+cUfbQqfxAnp8wtru7ozTvkhw9YbX4G0YYd4WRTQjb+cHGUWpV9U7jfY/9mXh3xcu//K9LwHTBZZT523kkguu5fx/qHDjqd/h5P+9in+Ur+Dcmev43c6H+J2Fj+/Hke+8Sw3g4ouu4447twDwlbO+yfHft5mJT15jc2i9grXUa3azHGAczsLDnoytUQB1yfnXNIsUGzz9jjs/wkVLrj9sBaQWWjhc0RJYWmjhBYz7v3E5x398BcEIZNcLwrygPFtzxo//hqULVzM3GOEfVr0K7Rs8pVm28Cke3DCP9zz5p9S6uklvEcgIivMM2nUIhg2VuTGqoPBHodKtSA2kUVXwxwyJb72Ew5zAKyhkbEg8h2p3D+2POYiBEWBKpsbQCL0P5vl224WE3TFOLuTlt3+IREt+ufS6Q3fgXsBY9+dX0r95Fr+q9fLadJkzgvV8IziPpyd6eSY1A1X2CEYlqmpFAONKEte3v0uBU4oQw+OYahWRTtvA+UrVigNdebTvEKcdwrwi8QWpoRhRqmKMhtExoFHVJhCd7VZUyQm0ErgVgz9hxY/URIJTjNAp11oQuBJZS1CFELBij6iHaBohbFd+vTuGxCAagZ2N4PC6/ZhxpH08TurdLGJSfJl6RYzq3S86qYssCuM7iDBsZrXguZiUZ4UST2F8t2lFlviK0mx73MK8rdTzRzQ6HyAnqvb1S2VMrYbqaEMIiWnsu9FN8yLFnx97DxfecSXemECMTXD7E1a4uPii63DKmrFjPV7387/iB6/4+/3/4vU2uuXHfIiVqz7znJs/VprDyf4mvl2YyVtn7Pj4o6/9FGAFQxkb7vnxBwHblr+ryrF9wbt/81bOzA3wUHEeXz7zW837p9qEAax7z5XM//oNhO1w8pUr8BIrWsqaBv/AzEgPlIfzq176Ket7PqXScn8f112hIbLApDVYA7eMfNWKL9DcpoUWWnj++OXS63hn19v4ya9PIq64aCP48dqTWJaa3MYX7rTn7Gyh7rwARvVmfht5fH34FfQPtuEeJQjzDoVFmtUv+XfAFnd0yQwf6apXUM/+FS+f/ftsuK+PttUG2eWQGvCQUYIw0Pl0RH9+NueE/48TurZxVHqQwtqT+NHoaXzxjN0HSbew99gTkeVHxeP5z81nwryfcWawkfd2/ZyaEUgBN227mJUPn0zb4y7znwqZmO8RZcArKEqzXOITk7q4Mon7Hl/MnIph1v85GAdi36BWtlFNQXjJyA6vvywVsuzo2/jZHOhRpWkV//9R7KCQBORkhdPT6wCoaYcT05t5ojybh6pzeHBiHhmnRtYJCbVCYsgEVfpSReakR5nnj7Cm0kOsJeQL5L0aQ5UMm5NuEmPtd2UEXsHa/ejAILtrzOycYHgiQziQQrgSryAozTXQWyUe9SEX4WdD5rRN8M7eeyj32M/DklTMl8fzxIlERrZTxkjQnsSdCCGKkcctQqc91GgZPTaOCcM9ssJ9IaJxjsZGQqUCUvKTn1pueckF16IqiuIcl1Pfv4JHPn9gulj2ZoG8Ymr8+8RJXDZ7x8emFgYVCwG6qvjyayzffP9Df8TnT//3/TLeFU+9igsyVRY5hvZZG6c9dsed07sWn3r9Vcz/pxs44aMrSNVrr2RNow8Qn4W9F1X25PhftOT6HfZ9sISNqV3ml1xw7bTHGq+/s/G1cBjhcHGAOVzGcYjRElhaaOEFDhlZyyWvaPAK4FQkhYkufvxIF1F7gjTQtXiYa4/7Pp5IOM0LuO+0/+QDM87iB3e9BJQhu3Cc8VwO9yEHWVRkNglSQ5pKt2T0uBT+mKE8QxC2QZzRyEhQq1jLp6gtwe8rY2QHnbfXJx9qkvgEG8ZY+D8pxo7LEr6hyieO/iE3rFvGUTffzOrLL9/Fu2rh+aBXZXlt2vo6n+YFfH7W/TzRU+Zq/zU80H8s6SFVtwkzkwH2GlQ5Rg6O2e6Lrk4rOMQaokkbgMRXRDlFmJf2vBsoY4Ynw8lFZzu6I4t2FeXZKcYXSIyynVKN6hmMIAkkTq5uWSDsBE6FiiBMkKUaxnEwdQsyNJBMBt4DNjdGieb4jarbh9U7YkSSgLZ2XyJMJm3DjLGCiqgLTLn0pDVYLbKPxfGOB1UpdOBilLDZMr5EJIbR4yRx2pDZKEkNSdREDZ0PUGNla0F2/CLEpgFMeUpyr5CThqr7ILQc7nYKDeyuW2Tjw7OYd28I4WQIqBGCTe+K+O15/3TAxrTy2c+y/OgPTJ6Lu8ETUZm7Nx9NTTvMTw3zqcd/l0+c9L873fb+b0z/LtufIsDZKz9Ke6qTr5y1++D1C++4knWbuwEJ2YSwTeGPGhBgnCli5D5iTyeDtgLxI8+53fbYPjvitl9O74K5aMn13DnluO4sbHZ/YKposnzGexFKsXzGe1nZ/8Vp2yzv+4v9/tottPBix2A1C+kELxtyQts2zvHHgL0vAb+z0seq6kx+uOok3PUB8cIKzmllXta1bbfPu/eU/6Zyco3zPnUpIhbEgYdTMzgVgxHQvkrjPdjBo3N6mPnn97IsFZKYR1n079ey5o+OPHu2Ix1/lF/F/w2czOpaH8f5/XTKkJqBfxw+j7t+fAbzHogRJibKKjIDCW6xzu+Ez9jx0xdplzz1Gub9n2jysk3nSV5ylhXfTsxt4W+6n97lOM4LAKbbKZ2X2sA1/Zew1u3h9PR6zsqsAaCkfYajDHm/iiMTSrGPKzRSGFJexFH5Ibq8MnP9YX4n+yRB3vBwew+RUTxQWsjPakchMxE6VsTtCWVPIhJI0hrjGUxVMVJME0cK1VUjwQej0K7BcTRaGJwg5rVHPcHvt99fF5kmee9rs0/z1KxZ/HDoFGTsEeYU6WJCnHYpnTuf7JoJ1Nqt6IkiJo52boO7hzhS+CzAxa+8jjvu2jm3eWr9TI5XW6bdJ2sxhWNSlJYXiJ/deY7P88Gdt3+4uTC+J3g4rLI66mFdtYu3/vrP+OZLds211/7J9Pe5v8SVV955BbMy87ns+Nuec9tzb/swW/s7bFFbCpsLup/47P7MKtsVL57KmbffZmd8+kAILlMLoC6+8FoQcNHF1+8QfL+351ILLbyY0RJYWmjhBY4nrp+siDn+Eyuo9mpoDxHKkH4iRa3TcP/ya9H93+OXtZg/23gBp2Q387LcM2w6p4ONhXY8J2YiyiNDCIYE5RlQ7ZLIGFRZIGPr5y9iMI7BdNcwjqY9W0YjyHghm87IUm0/mu6L0MehAAEAAElEQVRHK3irt6F720EI5EiR0eN7mFgkqK1v42/k7zHyZDfBkOCkD6zg8c8eHr60L3TkRMLRmQF+M28exZEURnq4RY1T0cjIklZ3tAJSYbqzJBkfpECECbIeei8LVbwwxh1RmKNyFGcphNbNrgDR3cnoS/oozJVEeSucOBVwShBnoBKAHhWoKghj0I61motT9VDuikFGAX4tsTZbYMUerSczWRw5xbYMkKYupDT+BuMojJYIYxAVAyRMCwCSsimwiEq9Y8b3oBaB70JsLbxEktj9JglECSJMENSjXqqSkeMyvPUNt/OVB89DbwuQtQRZi6BQhkqV6olzULUE6bqg6t0r21f6ie2qsJ5DcDmSJqO7s+JafcXlcMX0+9b8gcOa8yYtnHT/MTv12d8vSHZ9nOWMVQxvmcO3Rs4l7UUU4oCHx+fxnXO/fGDG8hyoxQ7bCs89Oe9KldmciokqDtK178+xbh5Wz0sM5/3eZ/nZ/3zgAI52xwrEXWH7irmpk9098pauiysHMtS7Iaosn/0+li+8nJVrb558bNuXDshrttDCixk/eMXfwyvg75++iPe2b2J7cWVXQegVU+PBmotGcv2G5VRjh8RI8tkqR124mdf0PMKbc0N7NIaU8PnNVV/izesv4Kl/PoHBV0ZQUcxdafAKhoEzHaKc4T8eeAlrj+vmV08vQg23ptyHAh0yzTULvm8tuWSIBtLS8P2nT2HOr+OmNWbDVkg7EiMh0x9TezDFkr7XcOvx/4tEsnG4g9nlBCNg/asdfv0HN9Mld8yg2FPMVjlOyW4iI2v0OBNUjYtCs7bWy3AtS96t8ftdD/BUdTaRUYxEacJEMVDJMVTNQh50BmY7OWamyxR1jS1RB1GiEMrgOBEyYzlsEimIJEQSNeyi+z10R8LCxVtZOzwTf0LjlAVx2cWdUMRJiqdm9PHxkd+jN1Xk2wvubo47EJLISKgptAJ/NMYdqTD4knZUZJCVqJlN2BRXpnLZRp5g4/dd4Ejis8AuxRU5YxXr3oz1OZyCzRfm+Ou3/w/vatvKyeqPOfbTKw5JFkujy+ZYV3BrsY97thzNw6/+9EEfB0Cx5vNM2LNH22a9GtJN0NTzPqv2fhEbhDZcuPwG7l75wQM11L3G9px2anfInggne7v93uKOuz/a3P/OXqPVvXKYwtSLVFs4bHCQHApbaKGFwwFGguyu8bLFa5jXO0KYq4d/A0f95O287dvv4/7vnsKXv7ecj3/rT3nk7mPo39bO+rW9+IOKahcEw5DaBucueRx12jhhB0R5G5hoFMhQkpRcpNKc0LWNo9uH6UmVeMsl93DfRz5H9PFR1rx7Aav/sJ31r2kDKXBqhqhNk9qq0N/voechCIZAJnDa+3YMwW7h+WHqovQdFcXXJ/q4tXQMxcRn0YxBSseFjB4nmJinqPQ4VLsdyn0utb4sJpdCpz2MI9COwHgKHTi2M0RJxGgB2T+EU9G2M6US1q22NHFfG6PHSSozDGFHQhIYVMX6PccpqHUYwrz9XSuBVhDmBcW5UOmDKCuodqopGSaxFTjqHSpmStdBs5MFrHBRf0yWQ2Qtrm8j0IGDCVybzeKoSXGl8VMb0AZRrmByKbvw7roI34dqzYougIjrgosxyKp9jcw2zddWXoJJJJXe+uul6pkt+Sx+fwERacLFMxDteXt/HCOkQChlf065vZCwNPOWvX7OPy5/7nyM/YGVz352511KU/Cj0jxuOPW7nN69idnBGBORz4J/OTTVXRNbc4wPWs//i195HRddvOM4Xvfzv8IRmlQQovyEXK5C4kGtTRBlbLcZ2HN0X7C/KtsaEzvY0Sphf2Lq6+wPrNz8hR3E0GUnf4xlJx94u7IWWngx4tRgw24ffyIqs/TpV7Poh+9i8bffw2n/fClv/d+/4F0PvJmnH5nHmnV9bFjTy3ghxXcW3bHH4spUfGv+Pfzmqi+x5lX/xJrXfYVtZzu4hRinBEkuIfO0y/p/OIY5P5K0rxK89E9vfu6dtrBX2JMii9O8gLN9l6OcLDNUltnKFiSI2CAjg9A2M9IIiDKSJJAYJeh6IqL2hVm8/pnljOoy3q+yqGqCqibMOm7geYkrDbw89Sw9zgSDcZ67J47nF6XFlLXHjGCCNq9CQafIqiqjcYYwcch7NfJeFW0Ev53o5QeFU3kgDKmZCImg0ynRnSqBEcQ1hzhU6ESgY4EJJcLVJCmN9gykY4aKWcjFFGZLsusFwToPtwD+kGRzoY0td81l7ReO5eRf/XFzzGPa8MxED7IscUsGpxRTnZkhPZgQjGpGzurGlCvNYqEdeKyQLzxOe/Yn9/o5X/+Lv+NdbVsByKeq1OZEz/GMvcfeLIqnhM8r0qvI+jWO+a9DI7AMP9PFwFqbx7o7nvaSWz5KLXFwvATlx2jH2pNHaYlMTNMEYF+wvU3WvmL78R8oTru/+ezuOm5aXSwttPDcaJXTtNDCiwhP/+12lTEXT/669k8/wsveeBOqpnHKGneiRhI4TCwMqHZYIiyAYFST25hw96PH8eozHmFl8UTMpqCpnquKAK2oeT4TUcDi7ABnZtbxeGUOKeFz94k/IDoh5j+LvXQ5Rf5m65+hQmObCJS9aQdkYvDGodIjOP4TK3jqU61Olv0JOWMVT26cza/Lp/NkcSbFyEcKgzaCdHuFckUhQ4UwAqEFiQ8ydvAH6tZZSqI9ifahNDOF0NC2CqSrENUIbzSk5xHbGSKyGQgjjLSCnnEMSNCeIewQ9r66K1acAmkL7ogzgjgFcU4T9EvcokHW5x+2c8RAI5hbTtpqNVrDjZQIITCi3kWjBSJKbDaLEmhPgVAYmYDS9nFhJrtZNFPC5Q1ivGiD7F0HMmkYn4By3eorjpGATvsYVyHLIe2PjVLt7GLCcXGL9XGHMbo9R2WuXRBPPEH+kQFMoWiPa6N7ZfsKPyERUmN2Y2N9JFX7CaVY1vFObhn92h4/5/0PvYmTZ2zlnxf+mJTwD+DosNk8u8FbF98HQCVxOTbdzxsW3E9hns97H3ycZyZ6uP3CgyMMH/3Zm/EiB+0ajv7szcynbpMwBWeu/BiJ7kAK08yEOf77nyTujZhQDsGQQMYSGRru/d6V+zyW/VHdtquKub3Z9/aVd3vSvbI/KgK3z7u55bFrWgJLCy0cIJy34NndPn7y3E30f34Fs9drvIkIpxiRpB22nZVFemDGpLUg3erw0eNP4dreR5/3mJ7+sy+xqPdd5J4GQkkSQOKBSARu2RAHcMrlK3j05haf3Z/YVdfS7qAcywudsgYBiScxQqIdwdZzLfeac49BVTXP3raI88wVzL63hIg1xlMkev/UqE5on7Ekw7PVPrZW2+gLCmRVlS6vSDnx2BR2UkgCyolL2gmRQpNSEYGKGKpmeWB8Pq5ICLJPApAYwWgtRRJJTCTRWqClxNQUsmrvQ4B2DRhBqeRDVRF2QOeTmuxWQxxY/jOU7iSaFyMSh2BlGxfnXsvb5v6CwXghp3RsYWN5Lv6EpjzLZ/gkSdgd4/c7zP9RAVOt7didUuexe4Ijic82sPTsT3Lr/Vft8fbve+qPOKNnI5f13oGvYtId5QM4ut1DzljFxs0zOcFTfOXYb7Mu7uDNv1rPM2M9By0T9agbbyY1LIkysOjzN7NgF9sd81+fJokzYASr32T53YKvfpZi4hAMC7yC/W7/6f/uezf2/uh63hmn3FtOuy+dJPtqw/tcr9GyCWuhhT1DS2BpoYUWmrjvO1ew/ISP2rwKpRC1hLbVBq/XJ8xJ0gMxxdku5R6JrGp+tukojBYkaY2s2YV47RuSXIyXitBGUEk8/mH9hfSP5RmL0swNRpjjjXCMt40zfcVX3/IsD/52PiKSqG12tdwI29WgqoZKr6DaqznqO9fQlqvw4O9cfWgP0gsIJ8zdzAnA0nsu5ZktvXh+THumQlu6StyrqJkUMrb/k7DN4BWk7VbxHUaPCRg/pu53O6OK3JgiNRhAR4A3VsMZK9tuD0dBNgNJgnYVqgIiEuh0gkhrIu2iKhKnDCYUiBjCdgi7E/A07jaX1GaJPwZu2aAiQ7U3jT9aa3avNG26NFZwaXSyOBJjDCLUVnRJ7HZCG4SU9hZra2PW0FGc+qQ5MQgHK7bE8aRllA4nBRi/vsivje3SSSrIMLQijKMI+7LEAfjDguxGmxEjKiFjL+2i3Cvo+G1E/udr0YUiCIGZmjeizfSJqNEvrJBQpRCZvfPNr23O8JvKPE584q/45pKv1j3NDwxWrtszgWRdoZOsCjnO30JJ+2RVjW2FHPO/fgPr33FgrQmO+9sV+FV7rtvsH9h8YcDTV9nFu4svug4jBG0yZ89vCfyOfe5Tr7+KBV/9LElbQlXYDKVg7wu4mzjY1gHPd+K6qwnr8xVaXvWST3HbryezYYzjsPT0q7j1ob2vbn2h4GAFtbbQwvZ47MbLWHbix+q+nQpZjWh/1qXSKQnGNMMnSeLFFdqc/bewuea1X+Xl83+f0lAeM5yy3YHCFn4YKSn3wcJvX4fjJTzzhv2fEfVixlShZUJXeCz0ycsaJ3spKqZGYgxZaYlDHCrciQhVqqHTHpvPy5I+Z5g4kXzxpO9xzZpXE90/A288ZsH3BqBQsoU82TRhX45y6D6vsa6LC3RKh5M9mO1soF2VmO/bi/CmsJP1lS7GoxR+NqaiPbrcEmkVMRym2VppI0wU/aUcUawYqaXYUOtktj/KY4U5bB1qhwkX2R4ipEFHCpEIhAYRCkQoLHcfdQEXXE3jI+AWE1LbYmQ1IjWYotrlUJgLExeV+L3eZ7hl+CQe3DKHnnyR9FbIriuy9nV5gpNHCe7sYPa/rUKPTzStwYQUU37fTlzZh4zBwxYNm+K9wMDWdn5a9bjtp6eTXyNoe+3u85/2FXt6/R3TimeSDApDVbvMS42wttDJ0f95Nc/+4YH/rgqGBBjrmExBsPFin2c+PClGv+qltkBoAQD1+dCb7A9RlcR5TVSTFOY4BGP73sJyoCxld4X9zWcb4srz5V67CrZvcbrDEK1w+cMKwhjT+pdMwcTEBG1tbYyPj5PP5w/1cFpo4aBiWee77IK170E+R9KeoTw3TbVDUu0QGAfi+pponDYY13YFyMh2niQpjWwL8YKYdBBSrnpUxwOcAZfMVogyUO3TJNmE7pnjpNyIwV/MJLfOoCLbueKWDG4xIU5Jyr2KseM1LznrGf594Z3TxlrU1eZEaSoOWCbDiwAL/uUzoMHNRMzrHuGk9q30V9t4aPNswqKHSsU4v03zR79/N2vL3QC8o/dnnBfAWQ/+Ibm/z+NUEtyhIrc8ds1zvt78r9+AiAWiJhFJfaG4u0ZPd4ETu7ZydHqQrz30crIPB0wcH/GyE5/l2dFu5uTHefQXRzHr5wnpTSVrFRYlEFvCbQIX49mgeu3bOgJRF0hU/6jdzvMm7c6EQGiNrMa2i8SR6JSHdm2lH4BTCJGlGlRD0IkVXLS2E25dF3gSjTHaCi7GWMu0dBo8F2ohemjEiiy+b7dXCuG5JCNjOwooQu60+m9XE9Ijrdpv+eIPgqMwjtyjc+VQ4bT/+zivnfc4RwfbuO6xZZgncgTD8MjnplcgL75uBW6x7uHu2kwq4xpWX375Lva87zjrnTejXYGq2u9NsF0rMrKLeNUOSa1D0PubCjDpq7wr7Ivv9+E+wdof49vV5PJg4fny0RafbeHFjmXd74ZET+O0I6dkqXQLSieE9PSMkw+q/PX8OznD39a0jmrYLbli53WI91Y1dxVPoNstcJS3jVO9MVwh+UFxATc9dQnxI204JVso5I8bUkMJTkWz6UKPMy78LV+c/yM6ZBqN5vulNh4tz2O+P0RVu1SNS3/YzgPDc1i/rYs1f3RwF/teSDj3tg9TrPqc1reZCzp+y7HeVnpVmU4lSIzhdx97G4kR/M8pX+fO8kJckfD6zAC+cHn1quXo97cjh8ZYufHze/R6//bsORSSgJyqcrK/mblKkJepadtcNXgin+x5YqfPv3roOL696ix8NyZwYybKAdWCj1AaPx2hlKZc9JFbfVRNYKTNMTQCwg5D+zEjXDDrWWra4f5t8xh5shvtGURXjVy+QtqLGC8HlAcyyIqy3v0xOGWbfZjbaMhtqOL2T0AUY8bGJzMHPc8WxUQRJort/WFou1I8d9IOzHXRpTImnmJ3tSs+Cy8YTnvJ+ddglMQ44rDmRm/8xXs4u30tPU6BL689vykUPvKaSUuwxdevwC1M4bOBdRwAWHPpgeO0qcGEJJC2CC4Bp6KJU5Jqh6T74UJz+9t++Yld7uuUy1bw6IoXVofg/uKiRzqnbWFH3Hnnnbz6dW/k9OWHx3fOAz/6NHffsZJzzz33UA/lkKLVwXIEYMnLr+b2e1tVTi0ceNwy8lWWdbwTHAeT9knSDpVORa0DvAkYO0HTfvQoI5vbIBLISDaJeZyGuE2jXE1HtsxYKUV1IA2ZmKg7Ih5xETEEA5KKgOH+NoSXoHxIfIFX1ASjmsQVlPscm70xx9B3zBDndewomuxMXIEDHHz9Ase6t3yIBf9wE5GE0UqaWt5hYWaIDfl2howgGvVZ/YnLgEny+q1nXsrdjNKTKXLrj/euu0hUlLXokDbUHiPQocJzYnq8Iu/peJh3X/QQnzvlHLL19MLT8xt5pDAH4xlkAqISIaJ4MjfFGFspWu9mkaHtnBG1BOMqTFsWUaiAFBhHYqSok/m6sOI7toNLCBJfkqQU2hE4GQd/UCAdacWcag0iA1E0mfGiJNRiSBJMGNoulFJlunASWwFGBD6mXMaUmZxg7mIS2qgAFFJYi7Dtsh5uT76zV8f9cIBJeSAltzz8qUM9lN1ibHOeh/NzOH7mFk6c0c8DQylSAw6v+IMb+fl/Tdpp5daBUzPEvkB7EKUhSQmOuXoFq/5m15O9hm/3nthKnPPmmxHGEjdR1tYuz1ivaRkbZGiFPc8RVDutMvhc4grA7J/Wmr/v6QTscF5AgANjV/ZcONxFp8MFy0/4KCuf3D8e5y20sDvcMvSVSU6b8kjSDrV2gapBZ3eBZXOeIpARPWqCyMADYciWuJ3ECOa6oyxwSuTrdpS/rDn83/ip/EnHL/lp6VTuGlhMYiQZN6Q3KNLuliklvrVk8sAdhPSARmiodCu066COLXBibgsFndAhITIJ85wRnlV9PFicT1bVqGmHSuLhSE2QCjnuvz/F07+/6wXFFnaNX7zqehb9+7WMhSlK2qdXlelWEoWgYGJ+vazxPXQNb63/NrhlNr5weWX3Kj740Mq9e72Jo9lUaSfthNwuT2CWP85fdv2SGSrb3GZX4grAvcOLSJ7NUXQNE9kEUZVkNkmQkHgBsQOpCvjjEAeWO6vI/i4j6MkUWRAM8ZvxBQyPZknaEmRFotanGO92yS4Y4tieQTb5IQObOxCxgHRMUnLwhxRhXhBlHER3FlmNEEPDmMgKLCaKoVSezlcBTARGIzwPE4boMJq0uN2VqML0zhawtrGNfdwW/cdeHffDASI2IAx33P78rJkONJ4c7MORCa/uepQ52XGeHOyjUvJY+IWbWPu+K4A6n63uyGeNsuLL1K6SqdjbBfyXvO1mhAZHW04rjBVVVGhQ5QRVS5BZh1qb13QZmNohvDN0P773fPZwx/4a//Ox2m3h8MbzyRxqYf+jJbAcAWiJKy3sT+zOI3ZZxzsRjkM8r5dqr49RgrDNiiepIYNTlIwM5CC0/qbuhMAbt7kZSVqT6qiST1cxxmZZGE8jSg6qJonabJWVWwJ/RKILkjjtkMyuMpp14XFFZmOFOOcycryidFTEzNmjLJv9JGen1gJ73o7fEln2Hev+8orm72/+1TtxheYXr9q15+qbF/8SgIsW7NtrHXXzzSS+7YRCgJpw+PklN/DmX72T7xQWc2awjo/2PMCaOOHJ2kxcEXPrtuMxAgqzHUTchjdabQokIradJSIxaEdhpESVQ4isyJFkfcj4yEpdGDGgXYnxFcaVRFkHrcAr1Lf3BGFWEGYVkCLYlFj7MKVsJ4xS9ua5tnOlHo5ukgSjzbSQzyakFWSE76Mr1V0foClBoFPDQafiSBRXmtCaZSd/7LDuYFn37g+w4J8/w6rBHhylETVJHEC1XXLOW27mV/9iq/ke/MfLeNkf3oRTNmhPIGNBFMNjN+2+ki5J7TkNc8t2htkQU4Q2GCnqVYaCJLDnRhIIHv/svlfw7cmkqjX52hGt47FnaIkrLewvPNf30FROG3b5aEegXXAiGFnbwcO5ObysazWRcXi4NoNfl45iIg5YlBrEFQkFXcMlYTDJcdf4Cdzbv5CfbTuKwbEscckDYRCOZpWryWaqnNC9jVfOf4Yn8zMYmJhNzwMVkpTDyHE+4YkVXn/UE/S542xJUniiyJgWDOsOFIasqhEZxUAtx1A1QznyOL53gG3lLKf+6OPTKsxb2HM0OoD+7dlzAOiatQmA9l1s3zNrMwAfnLH3r/WFM77N2Ss/iqM0xggGUjlmnbKFe9YdwwxVZLGb3eVzNycF5mbGeGZOL3JTCkqKJB+DkKQGDVFWEPuQGja4ZUOUspZfYV4Q5SHqSKjELk8UZxMbSSoT0t4zzuZNXQRrJd64w2bdg14omJEtUOzyqYyloOIgaxIj7Vyu3OeQpCTFWRlmjhQQiSbZ2j9NDIFJuy+jDaKehSg8D1Ot7bBt/QnTeHBzm/r9Mp3GxPERKa4ATRvAS86/hp/89PDNXnvsdz/Jgn+5nt9k5+IoTXlDDn9YNvMtAR788mW89E9vJijraXxWe/DEdfuvO8Qt2aIgFdULhLCiIdIWuBlHEKcVD3zlwPLZFnZE67i10MK+oyWwHEFYdurHueWRFsFu4flhd5XSt4x+jVed+2mGT8kQZS3RqcwwOCWBWzKIRGASgTSgyhKnZJ+XBKAVCGGItaRSc6kUAtS4g1OxIeaqChhwqpC4IDzQSnDUnG0MdWYo93czvjhNlBXUOg0vPX4NS7qe4Hcyq6dVf7Vw8PCtc/Y8gHxfsSsLpSdH+qgmLgP5PKuDfhIjqBmXsSSNNgLZU2PkVI/SLJdg2MWpgFfUqJoNJXUqCXGgkLFBlUOE1ohaRNSZotrt4k14OOUYUyfy2pPEKUmUFiSeIMpIZGwXsLVr8y2qsSLYhM12UT7CdaAhkEiJSbuIUslOGH0f03jMaEw9EFVIgYliRCoA6UB5J/YIU4UVz7O7iGJbJSgFQikr4BzJmSwNa7W99Kw+FFj3tg9xzLUrKOc03pgkGLFdI1FK8NI/vZlf/qs9h92KRpUT4oxCK4VWe/De9vD9X7Tkepx6PpCMNbKeK2TqeluUdYmykvv+84rd7GX3+9+bCdWRMvlqCUGHL5Yf/QFWPvvZQz2MFo5gPNdnu8FpR49PkwTCWjcq6/GvqoKsWyPSDj8vHcPGagejYab53P6wnbEoRSn2GKpm2DzWRmkogyooVFXggs0c9A2xrykJQ6Ai/qjzlzySnseNs2cyclKGMAfO2WN86sQfsSQ1wJZEozCsiwNcoZmhJlCp9Qx7OTKyxpPeLJ6WM6kmLr1+gQ6vzEODsw/wkXzh44+P/tVBeZ37l+8oIH976Fwubn+S/mScE7xS8/4uOXm+FbTkjV2/YuGpQ/yg8xRKNY/eXIE19JGkXBIPhIbUEMjQ4Ee2aK00S1CbEeFmQ0ZLaVbLLmakCxzXM8BINQXCEOXtHCzoV2xRXVRmukhpoCLxxhRGQJwxxBk7LxNGktmaYLIpRC1GdXYQDw5NdqUIOU1EMdogPBchpO3ungoxyX2F59m8wVptysMCmUphkgRdqeyvf8NBh3alrSI/Apz3173lw9M4bXajwSjBme9e0RQzVM3gj0TT+ex+fGsXLvsMjhT1DmzLaRvHLk47xGnFPf995XPsZed4IfO+F/J7a6GFFwpaAssRhJa40sKBxrLTPkFlQY5ah61kitq1bUEfEpR7JdoBEUlEbHNXtGdvbgEwkrCWI0pARoIgAhnWbzHNLAtVtZOEyLWerq+b8Qjtqsy/Z1/Cbwd6OXvOBv56xk842290rLTElRcbjvqPa8nlJN992Ze48I4r+Yk5lg6/Qta1k7LxagrXi6EDasolyiucksAfkWS2GeLAVj3ZjqkE7TkIIazNQiAxCirdDsEIqKptS0dYQdGKKxC2CVTNdtVEaWxILoK4PUAkGme8ajtYGnkr1RqiWrPCgTA7TrKmTEqF1OiJ4g7v21omyKl3IHNZa29SKmMqFZvfYgy6VD7iPKqnoX58jKsO8UB2j+M+uYKnr7qMVR+1k87T/3IF/oTtHkl8m4PSmPDc88MPsORlV4MElZXIeEfx5JILrgVjplU4/uSej3LJBdfuNFjzkvOvQUYapSTCtYKfnYzWO6MSIDE4UsCeCDrPgRfaxO1weT8vFKuK/YmWuNLCgUaT07bbTr9aF/gjEKUgyWrGwhSPTcxGCoM2gnLsMlzJ8FBxNmHJg4pCRAJZE6iqIBXV+a5oZBMIRCyIXY3vxyxMDfPyQPLyYBOdS/+T219yAu/o+RkvDxrX9RT5+q9+XKBdOuRlioopEZkCBRPjiphIO5S1R1qGaATrUx2H6hC28Dzxxl+8Byl83nj0/fzJr96FNoI2t8Isf5zjU5uZ7YxS0AHDyRwio8iqKufPXM3Wap6BShYvF1KZLRCRwCko4pRoihZGCOI0CGVIIkUplqyvugwEOTw3Jk4kbiaiepRBjLkILZCpGK0FjkognRAaAcpYK7GaIBiBYNTyi7gzgzNSsqLJ1O7pKdZfQlkOZypVcBwrtMQCHcXTxBUA4fs2r0WpSZFFKUQ6hSkUj2hOa1x5RORMb89pT/urBqfVJL7gZW+8ifu+cwX3fveKHfis2Qldv+ji60FOD2XfnQhw8UXXIWKNksJaNYvpnJbE4ABGtvjsznC4vKelZ16FcdVu83BaOIg4AoTdFxP2SWB5xzvewec//3lyudy0+0ulEu973/v4+te/vl8G10ILLRwcXLTketyRCghBrU1Ra7cBzUk2sTkZST202TGossQbta3pMrLiiapa6y8ZC0RMvfKfesu0fY3EFySeDbLHgIjs48f5W7gwMLxp8a2wuDGiPbcD2xVaNmFHLla/aXKhefOvZ2Mcw6asRuQilJegY4mOFSTC3oQ9D2VSby83Au2auggoCTt9RGM+KOvh4MLY89AY0NY/WWh77goEiWMrXeO0rRJMAoMMBeWZHt5YUhdY4skuDMcBndifYQhJYjtNpgZ9Tqv8S6bbhtWxw31KWTuxdApRtyHT5fKRbQ0GNotGYi3dDmPM+nmNk69YgarBw39/Ge3Phs2uJqfRfaThlUs/w123fggExClFlLJdT6dcvgIjJq3CjGCnXStGCi6+8NppmSlLXn41MtHWe7ou2onEICKNiHUzK4i6pkey7wR7Z5O2XYk+Lew9DpdJcQstvBgwldOGeUXYbq/n2rMiddgNMh8yUQsYKmWsW6iBkfEsetDHH5HkJmzHtYxARgYjTZNrJJ7ls07FPp6kJMaAEpPXszdlR3lT9l7q1Rk7YJ4zOYdOCZ+UgDyQ88fpUY/SH+eJjCJBMtqW5rT/+zgPv7pVaHek4Tvnfrn5+y9/fjzGgSQXk2qvMrvjaGalJ3BkgjYSbQShdihGHuNhwGgpTTTmI6sSkdgOgloHhIlonlZGgZhwrOgnDVpAQQYYVyO9BKEMyktI2gBlyOUr+E6M5yRkZ4+gjWBgNIcaTuONQ2YgJspIijMkuc2S3EQNajWk66DDcIf3Z7RBuqLJa4Tngesi2S5/UNiMRFMLLZdpdGcnCbpQ5NbSvxyw/0ELk2hy2hAe/sJltK+2cxTtClRFY1zBBa/9LPf88AMYVxKnJ/mskXDy5SuQMTzyd1Nsu3ZC47cXWS654FpEYpBm0t5WuxLBFE7r2LwhoUFF+z432BWfNWLPcglbeG7c+sAnD/UQWmjhsMXOWd9z4Jvf/CaVnbRxVioV/uVfDv0F8otf/CILFy4kCALOPPNMfvaznx3qIR0QLJ936aEeQgsvEDiFEFGNKS/IMX60wCiD9gzSS2zVigvVLtut4hQFbgmCYfAK4I0b/HFNpl+T2xCRXx+S2xCS2xSR3RyT6Y8JRhO8okHVRRUZWYsGGQr64/YD9r50/zEHbN8tHBykt0FmoyAYUIgRj2QgBYMBcthFTjioksSdEKiK7ZYSGoQ2zVZ2rSBJKZKURPsSkrqFWCnBqSRNqyWw4p8w4JTALWIFQReSlEEHhkqvoTBbErYrdNrD5NL2RRxlA+7TKUy+3nHlOE07rz2GkNNuop7V0lyQFwITxy+IiWhD2OIwF1juvP3DPHbTZcgEzn7HzUQZ2xmV+JIoI+25hhVOLnjtZ6n2BpRmOMRpa31ghD0nL77oOrtDKaZN8BoCRmmWR6XX58Jln2k+JiI9OXEV9ryWsbGiVF1sITEYKdGOJAlsLsxFF+86M2mn2Mm/4Nw/vsmKQS3sNyw/tiWy7ArLF+w/X/cWWnDHapbTzs9SnGUXpuOMwQjLY+OsRkjD4ESWwcE2BjZ0MLyqG2dVitwaSW69Ib9Bk18XkV83hdNuikgNJ/jjGq9ocEqgyuCUJGHoUEiC5z32vExxpufx6nSVlwbbONPfQkpFlKvefjgyLRxKZDcKcmsEqQ0utc0ZVm/o4751C7l3wyJ+tWk+D2ydw2PbZvDsUDdbh9opjaVwxhROSeKUBCq0nFR79WINA6oC3qjEH5KktiqCfoU/oPD7XWS/D/0BeiCAmuWilapHNXIRwrAoP8zr5zzCKXO2EOU1SQAiMngFjVuxQqJxFSKbsZzWmVL8Vu9Oka6D8DyElLaDGxCOg0il6pZgU5aadJ1s1AuH7H3mBcFpjxQ0OW1sOW2ckk1OK7RBVTQkhvN/97NUuzyKMx2ibGMOYm9GTXblIuHOOya7VwCKszzKfR7nv26yS1WGCSJOLK+tz7m257STfFZgpOC819/I0rOf/0L+y954E9Xu1vfn/say/NsP9RBaaOGwxF4JLBMTE4yPj2OMoVAoMDEx0byNjo7y4x//mN7e3gM11j3Cd77zHS699FI+9rGP8dBDD3HeeeexfPlyNmzYcEjHtb+xfNGVmI7cc2/YwhGPZR3vPOCvkaRdcBXFmYqwXeOUBe6YxN0Q0PZbQTBkK/VUWeAW7O9Cg4jBK1oyHgyH+CM1vOEy7kgFb7iCN1zFG6vhjUV4EwluyXYVxCnbEQPwaHku/cmOdkn7Cy2R5chBk7BPhbFk3kiaeRPuhMAbE3gjArckcMoNYaVB2G2VqdAGmdifIrLkXcYGVdOomkYkUxaqjc1wcYsGv6CRCaiavTUqB7VvKM+yFmQi1oiJEqQCdHsOHEXcnkZnfMhlEYGPzOV2OiHdKbZ7rNHJYgpFqAstK/u/yC2jBz4X52Bg5ZPXWpFln8o8Dj4e/NJl3P91m7Vyz48/iIwN2hVUelxqHQ5JStmweWW7oFS98tmeP3DHnR8BJn9uj19++wqC4QhVTbj4wmtZ8oprrOWXqleqGhugKhJtj5sxoDVCaxCQpBVhXhJmRXOyuyc4+YoVDJ7mT7vvZW+8CZFA2NGakO4vLD/mQ60W/l1g+bxLj4gsphb2D5Zm33pA9798wWXIoXFwFbV2hQpt0YQ3KnALgtQAeMMSPRAQbUnjbfRIr3PIrRHk1hsy/ZrUULIjpx0q4w9V8EZq+GMxblEj4/pn2oAxgkri7lc+O0NlWeDk6HRKdOVKHP/9VtXwkYQlr7hm2t+q0uiIsgVmouCgBwPC/jTV/jTlrVnKAxlqg2mSYR8x4eBOCNwJcMr25hbAH7NZLMHQ5M9gCFKDkB6AYLD+94AgGLL2ue6wgxnziCoOcWKJV6gdsqpKmCgQ0P6MRmhDYY5DZmsMAsKuAJHLIufOQmYz096PnNKFYrS2AooxmDi2ndeOY4uMGpZmSYJoyyEyaUQ6xS0T3+DWyrcO/D/iIOBI61LdGaet9LjU2h1bjFa3TVahwSnbc9apWE4r4+mWYNvj19+8nGA4RlU0F190Xb17RGCU3C2nbfDZOOMQp2zH0+5yY7fHiR9awcDp0/nsuX90k/3FQNj+/N0xWrBoiSuHF4Q5PG4tWOyVRVh7eztCCIQQHHPMjouWQgg++clDS/5uvvlm/uzP/ox3vtMuSn/uc5/j1ltv5Utf+hLXXXfdIR3b/sTKNTce6iG0cJBwy+jXWKLeeMAsgRZfv4L5iaE8L0echmBA4pYgNWhsaHhVE2UtQQ5z1oYJYwPw3LLBKSV4ExGyGiFqESJM7EKSEKAkxpGIyAEp0I5AK0mcEsQZMNJwT//RlGKfd/fcw4lu+oC8xxaODGxP1Bf+/U3IubaDSqcSSCVIpYlrAU5ZNBexRVx3UJLWaknVNELXF7u1QYa2Jd0KLboZRCkjjal7gziVBFMTqKqm1uagqgY/EcQhdZFHoD2DWxQYaZDFKiaXJuzN4ZRCkiBNrcdakYlOHxl1oSoxzlABNm5BhyEqkyYplZvvz+axTF9YnBZuL4StCIxiVm7+woE+/AcdK5/cMQz2SMD5v/tZnJqm0ulSnmnL+XIbDcFoglOxFZqJX+88MgLt7TyYstHVcsedH+HiV16HrOf5GCkwSmCkrIt/9XMiqXdbNWztjEF7ijjjUstLam3WtuakD67g8Rsu46QPrkA7dkKMASQ8duNkp8Cpf73CssC6yNUYo0isXd7OOliOtIDNS86/ZlrezSHDRAG8lmC1M6zc8LlDPYQWDiJuLX7zgO17+dz320VeKYnzPtnNITL2qHYIslssp9WOzbBQNYnQ1t7WLRncksGpamRN45Tj6Zy2UXkvBCJlr83asd/TUaZeDKEFqwq9fMM7g1dmn+Sl/v6LOZ3pjpL1apTD1gLhkYTbfz557Vl8/QrULNspHacNOqUxrkZoAaFERtJaLEfWarlRNBSMYAt83IYls8Gp2TkYxoaTN7IxRAwyMWglrC2zb7tQtAtxACKRhLhUjGDQCDZt7uLh3CyqYwE9DwmiNGw7x6XtGah0WXGyNNOhOGsOlR5BZmsPXT9eRTwyikwFyFRqWjC9SRK7WA62SwVAyUleK6UtFtr0dwfj8B90HEncaCoanHb4RAVG7JLPamXPX+0KLrr4+h2KeRr88KIl16MSYzMqhbBc0rV8tmHjDDtyWuNKy2fbbYeTU9ac/7rP8tMffACAEz66AkSd02I/H4/ebDntGX+xApWCxJ0+FpHYz0Sj23x7XHzRdbssfDocsfT0q7j1ocNAaJ/ahdZCCy1Mw16xv7vuugtjDBdddBH/9V//RWdnZ/Mxz/OYP38+s2bN2u+D3FOEYcgDDzzAhz88/Qv/Va96Fffdd9/z2veytndwy3grW6aFQ4OGuLK/hZaL77ocs6iTsN1n67kOUWdM388VwVCMP1QFIMm4aE/gTYCqClQETkWjQoMqJ6haghovI2oxRNFklW49l0LgADEydFGRtQlToa3CMkqwdWsHd1d9ionH23ru5bzn77DQwgsEf33xrfxk8DhGqml8FZNxbeDrar+b2oSPHHPwxm0Hi6yBW560/wKQrrTZKokVU2RU71qpQ8T1DoBIEmc96wtsBDI2OFUQZUOclmgPEOAPSbqeSEh8QemYTryxiFqHQ5xRRFmJjMAtxAgDYbuD6XTJj5YQmRTSaEQmjQxDjDbTvam3h1L2pjUkyQtSXFk+56+bQuyRNNmWsUGGmrtu/RBnv+Nm/BFIgvp8URtkZHC1RibSLmho7ALKdmhahjVQ38Q0gj+had3VrPKLrbVCo9rPeA6V2WlKfYooA0mqvn1sf8Ypa3UnGo55xoovdp9gAnvf45+dbs9kpLCfBbXnk6fDVXg5LMQVQI8Xdv+ZP8hYln87t0x841APo4UXMfY3n1169icR+SyiVLZCSGKodrikBiNSA9Y2DKA6M7VbPitrMaIaWk4bhjCFM6AkQgikq3BciXEEbtl2CZRSAWv8LiqRy6pcH890PMVrMhvokM+/cKhmXOZkxhivpp73vlo4NDjt/FU8PdRLLXTwlSblR2gjiGJFGDpEJRdRcJChaNooO2VIDWqMskKJ0LajwHZh1zPZjLGFQtD8WzsSowRxSpIEgsQVqMA+HyGJjEM86NKxRqBdD7otj4lTkOQjCvNckND7G4OqQWmmpDLTkB4AUgFCKVsElAqQUthrWxjZTpaoTkD0lM9NvZDJJAm3rL35oB/7g4Fmt5Ix3H7v3xzawewFpnLa09+7Yvd8VorJKvXtus93cCAwWHFF1n3FGgKH2TWnLc/OUZqhSHxrP+7Vi30AXvLWm2GOaBYMGdtkwxl/vsLmGtW/Gp/4zHZ8VgH1U3JPBYHDOX/wsBBXGojj596mhQMPQ9MWvYXDA3slsFxwwQUArF27lrlz5yLl4eXtMTQ0RJIk9PX1Tbu/r6+P/v7+nT6nVqtRq9Waf09MTOx0u1vGv87yRVe2OkdaOCR4lfumZibD0sxb0NXafpmYaiMQAjafp0jSCaqgSA3GuBOhXXimbrNU03jYhTcZalSoEZFG1RJENUYUKxDF0FhAchybSyFtB4tRyrb/RhpVFXgTsm4zJkgCl4k4w6PuLH4SnEiP+jXHuZldD3pf3mcr8P6wRoOYb79A+/6OdSzNPsF9lUUkRuKKhJEkQ6c/j83FNvrb8lRGUqiCwi3YbgEZS5yKboaBq1CDNvZcDWNEWCeEStlARWGrUFUlQg0VwHUw89tRkSTMSkvmNXhjgu7HEmRsiDISWdOoiRq58Srjx7ex9QJD0K9wih7taxIwUG2XePPaCRINYQS5LOVzFpC9dzXJ2NiuD0i9+4skeWEvgtarGY8k/PR/bSXdhcs+Qy6xE9MoYy0V7OLFZOeHCq2dXPuztR32c8edH2lWzr3krTeTVY2uFVvtJwyI2AD1Cj+NnYjWv5eNlCRpFyNtVlCUtxPO3358cnJpVL3jsP67MKClrYQV2lYimikssPH5SwIB9UnsK/7gRuuRrUFVdy0QHI7iyuGEWyvfYol64wHtRt1TPgtwy8Q3WD7v0lb3SAuHBK9y34SQgld5f4xJkv3ymTBCWJ1aG0x7Bu0rjAPueK3+HapBiOfks7IaQrVmr9l1q6Nm0UN9oVhUIqTnIGsStyjrlqSCosmyrstnS6aNTaU2nu3u4yWZ1ZzmDzJb7but87HeVi6Z+SwfSV7LS275KL9edmR2f75YsOQV1yASzW2/+Hjzvtf3Psiz+T5+W+rDERopNBNRimLkUYldxlMBE26aSHoYJTFOvTu7YXsbWctbGdfFwGpsO7LrtlxT8/q0q0AKVE0SBwrtW2cCFUm0J3BKkvx6gz8eE6UkRkmitO2Q6f6FS7UbqqdVKG1M0746wh8XVAqCiYXQtqAHp1iCOMa0Zyktmk328QHMyBgkiRVbjIa6DZlwHYTjvGDyA3cHESfWBusIwlRO21VJds5njWl2jWglaF+9I6dtcMCXvPVmMlJgXNF8vjBYkUNgu693wWlN/XEtIcoI7v/GB5r7dyoGf8x2Yxlp15NVFdKDCeUeRZJlmujT5LOesF0s9anfBa++ARVqZK2xXrHj/+twFVcOJ9wy+jWWpt58qIfRQguHJfapf3n+/PkAlMtlNmzYQBiG0x4/5ZRTnv/IngfEdgs2xpgd7mvguuuu22Nbs0Mlriyf/b4XZAVzC3sO4fv1ALhkv4krAGs39EIkWXzWRtb8Zi5tzwg7yaxXlhghkGGCkgKZmObfMtTIMEZEdtG6ORHVxuZFGAOOg6mLLChbEa2qia0s1NjOgBKIWCBiSTV0GYvSlMyBsUBoZLG0hJbDD42W8p3hODfDce42BpIiZWMYTAJq2iXnVEm5EUOpDIVKQLXoE3Y41EYkqW0uwZjGqZh6aL0VVmQlgnLFTkJd114XajVboVrvvNK5NG4hIgkc3LoHcZiXuAWo5SVOxdB122oGXnM0/mAZMTBOnGrHuAnVhQkUFV1PatK/HSTTlqY0P4eXCxBDDptfM4Ng2JCVAuG4mDiyb1JMWiggpPWsDqMXtLiyctPfsfzYD7Pyt3sZyH6YwAbYC35yz0e55PxriJRHlJGoyFgrRMdWULMb/ahhS/Drb1of7AtefUOza0QkBontNBHaNPNqDBIcSZJyqPR41NokSGuVt30Fk1uARz5nBZdFf3cTui3m2AVbufWCz+32vUUpO4Zf/cvlvOL3b7QTZD35/Q/WpqBhBXLLw59qPvdw7WQ5HHCghJUG9obPwqGz5moJOy0Iz7N8Nor32+dCGIMII0x7ltrMHEIbUoOR5amRta41joOqJsjIfnfJWNuOlfo2IkqgUoVaCHGCMfVCIyHAc8F1IYoQxiArju1icSUIiVsSpLYJwppH2K7YUO9cHIvSjOTWclF67T6LLC8PJJCjwytTCV0W/du1CAmr39RaCDwccfvPP7ZD/sqbsqOMpjdzT6qHLVEHZe2zudbOiMpQTjx8FWOMoKQMUcohKSm0K6mOK7yCtgJLqHHKCaoU2TlYGNviNpgszBEC4SqMlMiqQFatRXOSUshYEWYdnIq1UirMdkgNa7oeDxk43SO/PiG7epzi0W1smRkgNKRXDZF+oEhXZzv9r+yhOC9Fx7oMuqeNree3kxoyoBTCczGVqhVX6hD1/MAXg7hy+88/xqvO/fQR1b0yFcIwjc/GaWmzBut8tlFo81zYFZ8VworQMkx2yWkTX+CWDdrbkTgbB3Ib46YgtOjvbsIIkLHiwX+8bIftG0h80RSL7vvOFVzw2s+ilUA4VqWRoX1Ty0623c63PDb5uT2cO1kOB7xQ8pNaaGF/Y59k9sHBQV7zmteQy+U48cQTOf3006fdDhW6u7tRSu3QrTIwMLBDV0sDH/nIRxgfH2/eNm7ceDCGuldoiSstkGhkOo1IW6uB5T3vYXnPe57XLpcf+2Hecda9vPyUVYxU0ggD+Q2RFU8qEUQJQluhRdYSVDnGKUaocowqh4hKhKhGUJsirjTQCKxrBDE324Drj9cXro2wFjayLKmUPNaVOnm6NuN5va/ngu4/pnlr4fDB9ouy2/9/euthryd5mlNSGzg+s5V2r4IQkE9Xae8qEswpEh1bYXyxoTRDUumU1Nod4rRjJ59RPHkLQ5uLUKrYatUogiRB1iLURAWnFKJqGrekccq24r84W5AaqFE7YS7+hEZOVDCdeSYWiObitqz7uuuOLNVZWbsQ7zkI36PzqYiOR8etxULgs0PovZCIVADGvKDFlSaO8NBvGduJ2U9++jHiQBKnJbEviQNBHAi0Z33Qh0/0GTzZBm/uSkgE0J5sTmaNI9BKNC0WjBIYV6FTLnHOI+zwqPQoivMEtbZJW7AGTrl8BUZaS7DjPrkCEsGc2cP86+LvPvd3n7SLLxctuZ6f//eVTS94Gdsq76WnXzXZDWYMS8/6W5ad9onme9vde9wb7K/9HCgs7/uLfXreEvXG/TwSiyOBz0Irc6UFbPh1PZNoaerNz7sSdvnc9zNyco5wdjtJLiDKKCrdLu5YzQonxSqiGiG0/Q5Tldhe44s1ZDlElkNEpd65EifT7I2EkE1Oa++QtnDIkWhHNnMJTD0bwC2AU5CEBY/+iTwbyh2sqszgybDjeb1HgPEoRWE4gxn2yeUqfPyx1/O3j7+O9z/0R1z35O887/23sP8wNX+lcc3tkGlO8/uZ7w2x0B9gUWqQBelh+oIJ2r0qQhiSUCGUzWiJs5pKt63mj9OSKKPQnqyLiTFUQysG1kLLaStVqNpzWdYiZDlEjVeQldB2a1U1TsV2wYQ5QaUHnKqm1uGQGjZk1hZsPmFscCYkbWsjiCJMVwdjp3aRXxvhj9jrfmV2lq4nQ1JDMXFXdpLXQrNoSPj27xe6uNLAkda9sjM0+GyUmeSziS9IvPptDznt9nzWNIvIds1pSzMl1Q7bcTIVJ1+5gmqHZOwoh1MvXcE5b7mZzDqJNyYZu7jMaf/38R0HMHUsrj3Pl536ce754QdspqZjv9dFmLDs1I9bS0gNy079OMtP+CiXXGC7BC+54Nrm788XhzOn3VVo/XOF2S/NvOVADKeFvcShDrdvhdxPxz51sFx66aWMjo7yy1/+kle+8pV8//vfZ9u2bVx99dXcdNNN+3uMewzP8zjzzDO5/fbbef3rX9+8//bbb+d1r3vdTp/j+z5+nQC00MLhigNRJZB0pPlQ1+O43U9z4TXvwmnDdq/ESdNGyWgQYYyK6mwnSWzgZ9K42YwIWzlVt1Fo2P4kCSQKPAfjKoxnJwYYm5NhPSNt4L12BbWMy8aJdn6TXciS9AZ6VXa/vM9RXeY9617LuvEOLpi1mhv6Hmo+tv1CY6u75fCBnLFqpwvBKeGzPF1mlfsU/7PlVEYe6UEmEOU1sqdKW77M/Lmbic+SPL5+Fs7GgNSAR26jIr3FwdlU77hMtLWyc11b9ec4TUu7JBtQ6/apdipq7YLiPEPbcSMQOmxKtSEjaFutqc3rZPB0n1pfgnAts3DKwlbITlRIj5VIOrKEXQH+RIHUM4PWp7pQtJ8lpTAJCKWQM/swKR9RrrDyBepRvT1WrvrMoR7CPuOuWz/Exa+8rhn0ee93r+CSC66l2u0R5uwkO05Lyr2gfYhymmM/vQJzgc9RN97M6isvn7a/Uy5bgZirbIhtzYbYytAQZxSJL4gD0I6g1mEX87wJ293iD1sbsIf+YXoFX9gG7jg4VUgPGMq9gk1dXTx4VBudqoxev5AEwa/KR/O9TaeTuroNI+COuz+6g6WZU0msx7sBWapZYd0YSDQiFLbjasrCgr9hjOWLP2i3kRKUxEjbaTO1OnAqpna+bG8ZuCsLwV3df7CwctuX9ul5UzPVpv79fNHisy0cKdjfmZZmfAIjYdvZKeb+yypyGzyqx89C+47tBGxw2LheQGQMxBoRRpYLxHEz8wxoclqh3ElOq63IotsymMAhSTkYRyBDg0vDUlfaRQYh0K5DyQnYFuSYmcpQNR6TYQC7xoa4wK+qc7ivcDSLU9vIqSrra93kVJVf/Oo4eh6yoeYT4518a/gczlm8jq8vWElK+C1Oe5hiKp+drVIUnFFCFPOcEQa8HGvCXgDuH1xI28MuQkOUsdafpUUx5eMT1KBHMCgJhjwyviToFyhjQCf23JyaFRTZrmyT8jC+S60rIGxzqLVJSjOhMj9GVBSpfsnYIiuudD1SQBhD1J2h2q7IboTUhnErOo4XaNu4pdmposcnSN9TQPR2Y9I+YrxoRZ6GtbQUyI52TBRx64sov3aqqHak4a5bP7RTPhtlrXVXlJGEWZt1kvgQT+G0R9+wgmc/OMlBd8VnhTYgnGmcNswDBvxx8Edtl0yjC6aBsM0K2OlBQ2rYumiomkO1LJk41pDxQs697cMYIxh4uoej/72ISAy33n8VvfdsQ2d9WxRUL4pS9a4VYUBWalZciRNEFDXXMRrWZu7mUdCG5YuutJ81qcB3d8tpt+ezDZeG3XHaQ81nd1XU91zFfg3xdH/afbbQwpGOfRJY7rzzTn7wgx9w9tlnI6Vk/vz5LFmyhHw+z3XXXcerX/3q/T3OPcbll1/Om9/8Zs466yzOPfdcvvKVr7Bhwwbe857nV+3fQgsvJCyRb8BZtIC7qwFLUjGbLpHkVgtSgxJZs4thDfuXaZV8idmx6nxqjoIQNntF1BfVHIUOHOKMh3brrcIGSIy10qmZegYG4Gu60iXmBiP7TVwBWB9LjsoOEmpFSoZM6Ap5ufOg0KmT09bE9PCFRHKcm2Fxfoh16VnICYk7JgmzDsfOH+CU/CaeLs4knatR7FOAi1NROGUPZ8i3FapxXF8AFk1vdRO46LRH2O5R7lWUewW1bkPSFdGVLjEmUoz6lujHKcH4UT5OGYItClA4ZfAKICNtu2SMJm7zCLYWwfd3WMQRrr0Ey7YcSXceoTW3PLHzBegWDj/ccZe1+Lpw2We4+5YPIRIzmb8S2dDYWo9GdNZQjqaa8RA1CY79Dl34hZtY+74rAKj0wTMfthPUUy5bAQWDVIIoK6h0Q9hu0OmEdF+RBZ2jPLVuJulVPqaeqbI90ltsBkyYF5R7BaW5mnVv+RDwIb7z7Nm0qxKnemMsbnuCy46/jYuvudZ+Ftj9BO+WR68GYPnxH5n0fJcCEo2/Yaxp+bZ8wWXTrgtCGAyCpadf1eydvvWBSTurqa+5s0nn1N93JrQcibZktyffsflqLbTQwj5jiXwDMpVCJPWg4/Y2Rs/qQbuC7EYD2iAanFYyef2dymVlPSygkS26M04rBbgOcXuA9iYX4IQ2NpS8Zkg8g5GCxAOkQShD4EQsSg0xyxljWEc8FmYp6BRf2XQ+hcjnd2c9ygnBZtbUeglkRFp28ER5NqsKvawq9BKomInQx5EaZ0ISp8EtGtLbIAk8ek8qkBI7F1ZbnPbwgysc2mSFcQ1jJkXVuHSqIguCYYSXoB0XFVouaSTECyJ0rNCuIWyzhQ4qUsgowDcGqY3lmzqpd2DVOW2iMe0ZorxPmHco9UlqnRC2GaSfYBJhF4mBYCgCrTGORJUjUkP1TpkwadpTg+08M2E02X1dLNnPUbWGqXNqoZTtXHFdbtn6D4fqMLewD7jzjg/vwGeNmOSzcRpq3RrTHiGkoZp2EKFoctoGap2TeYCnXroChOWzCEGUFtQ67b4SzxB3xvhtNUpb07Q9Le1353bIbIH0QGLtxQOJzkpKMyWP3ly3wP23a1k8ewBPJvzy/dfxqv/4dNOqbpc2xPWljYZAsvyYDwGq2a3obR5j5TM32Mfm/LXdWAgrsGiDQNuOl5M/BkpNs8rdGZ/dXlyZ+vv2nPdI5LO3hf92wLqzW2jhSMM+CSylUoneXltt0dnZyeDgIMcccwwnn3wyDz744H4d4N7ijW98I8PDw3zqU59i69atnHTSSfz4xz9u5sYcaBzIANMWWthfuF1/l2Ud7+TDn30XSz7xJeipIZ9O2ZZdJcBVmHogKNAUVYyoe1E3RBVlJ6/oRheLmqxYdiQ65RO1+UQZZStFYoNJDChRt9SxgXWJb5BeQm+qyBmpdfv1vZ7oOryl4xdU2xXHuwpf7Fxc2R476574WRUuWNCapB4s7KqLpYElHY9z96yjqaV9ZFnh52u8pG0dvoyoJi69uQL5VJV+r41qMcCpOHhjOVSpZru06gH3jcB77TtoXxFlFeUZgtKCmIULt/E7M5/grPQarln7agb7QoTSDHW6eCP2vG571lDtEmT6Nen+EDVRAdfBeApvoGQrZX3PiizCdtAI38fEsY3oaMuDEtz66789KMe1hf0LmRgu+J0buOfnH+MVv38j/oQhTlnrLjpCMtka2aCG3xVTjV2GxjMs+Nb1SO1x1M03YxyDnGIXF6dBhTbsvtZhRRrZXaO3vchR7UMEKmJ1uptauweSHe0UrliBK2xYvXahPEfjzS7xxl+8h++c+2XeePT9O7yHO+6e7jN95rtWkB5KUJUEIQRGTgpKS8+8CuHa73rRsM6ZYqGzfMFl9rqg6teKhjUEWM9tpRBRYiemdZHmlkc+vcvju331385w0ZLrJ0NLsTYXRxKWdbyTW0a/dqiHMQ0tPtvCkYDb9XdZmnoznY8XKM3Ms+nVfUQ5yG0waFegattx2ql8tsFljQSp7aJc0wps55w2bLeK9lQ+m3jWwinxhbULc4BEYGJJzqsxxxvhTM/j3qrDP207n4FKFk8mzEwXGAjzrKn00OGUme2PUo1dtoV5BkpZKjWXzmyZnFejEPpoFyrdUGsTdoGyO+IludV7dJx0/zG87JE/oHhHL21rEtxiwt23fOhA/Eta2Amm8tmaEQzrNI9U5lM1DoGIqWoXIQ1JynapqhAQoMc9ZCgx0hB1xSS+QsYCjIMRKTxPIcuRrdDXZlpHtogSEl9S7ZBUe6A2v8aC2UP0pErc/9hR1tKuZIiyCrfo2ZB2R+EPVu31OwzrIqNjO2LCsP6ZEJgwspZg1RqmXLG5m0li7cECv2UFeYRid3y21q0xbRGpbA3Pjcn11Qhjh+GxLAv++TM4A1YdUVP2px0bNG9EvfMlbW9RTmNyMW46QgqDDjTVHomqTB/PKZetwDEQpaX9bpVQ7RSEHbDgH25i3V9ewZo/ns5fb/vFdMuw5cd+2NrYYa3L7Pe54Cd32OdZTutM8tkpuZzLF0zpDlfSCu7TOK2EZM/5LDw3p93eSuxIE1xe5f0xt4X/dqiH8eLC4WK5fZgM41BDGLP3/5Gzzz6bq6++mqVLl/J7v/d7zc6Vv/u7v+N73/seq1fvGdk7HDExMUFbWxvj4+Pk8/l92kdrUtrCkYLlx3yIgc87jD3ZRc9D4I8nuBMRqmyrmZrVfNpWagg9ZfJpjL3P2PDjxmKaEcJ6U3uKJO0Q5m07MMZWVAPEgSBK20q8Si+EHQluT5XTZm/mLTPu5dXp6iE6IrvG2zecRzVxmZseZWn+UZYsfOpQD+lFg92JLFf0n8GP15xAdSxg1pwRPnz0LQzGOX44cCqbCm0YI9BGML62nfRmSceqBH80QlYTe+5Kga7b12nHCi6VLsXw6Ya+4wZ514Kf87b8AACfH13A5++/iJ6eCZQ0CGHYsqELd9ghtQ3rR71+zAo3QhD1ZVHFeiDuxm0k82agBseaBN6UytZuYW4ft95/1cE5mC0cEFzw2s8C4BRjEl9S7nMpzhHUTinjeTHH9Q7w8s5nebbcy9NjfWwZayPaksZIwNWse/cHpu3v1PevQIVQmgW1Tk1qVpGefJGcW2M8DNjc34GuOsggZu2ffmTac0/88AqEhkqvIcknECScs3gdr+l+mEBGvOGoB3YY/wkfW0Fc157dEvijkNsQ4VSsaBGnrPB433/ajptlp9YnsMZY+524Xuka1u13GoG7Tes9ZavH6zZ8ItaTVpSOxASeFTg9SeIr7l75wb06/jubkF5yvq1MPNLElgaeLx9t8dkWXkxY3vMeaqctoNLtUu6R5DYnOKUEp5JM57S74LPNDu369XtXnLbS407js4kniFO2MjtOWVunOFPnum0xs+aOcF7fat7T9XM2xxl+MH4mzxR66PRLAITaYd1EJ51BmbQTUY5dnh3qprI1A8DC47YyLzvGSC3NExtnklQchDJ4uZCefJHrF/8XLw/2LPthVJc59+tXsPAHExhHUukLqHQpfvNPlz/3k1vYL1izaSY5KbmlNJffFBcyEmY4ObcZX0b8z5ZT2fDQbNJbBapmbcIqfQYZ24Vl7RmMY3AKitQABMMGf1zjFhO80SqiHNrrrFLWmtmRkBi2vSzH+PEJRx2zhd+d+SiBiLjunteAgAX/pYlyDsFwvfgnMchajKzGiMHRSctnKe31HdDFEiiJzGUx1Zr9TBmDSRKbr5TNtPJjj2Dsis9WZmhEdw3HS5jfNcJ53avZUO3kqdE+tgy0I7fZruo1l07/PjntfSuQMTYvUIP2oNpt0J5GJAKRCIIhQaVPN7u6Gzj10hVgrE1Y4lvBRiYQzgkJsjVqFZe1fzKdAy878WNU57XhlGPcwSI65ZJkPGSYoD1luwxTDmFuO067Kz47ldO6blN0B5rXioYNpXEkxnfRgbvf+CxMijKN349E7A9O2sJ03Hnnnbz6d9/IWZfs3Tl2oPDrW6/h7jtXcu655x7qoRxS7HMGy9atWwG46qqrWLp0Kf/6r/+K53l885vf3K8DPJyxK4X29uQ7LE29+YDkZjwXlrW9Y797G7fwwsTyue9n+KL5XLH4O/xt6TUkT2SQYZ0k16v6k8CxnSe1RiaLatq7iMTYlnIhSDKe7X6pd7w0OmGSQBKnJLEPRormgnbi24lDnLHiishHdLcVOSo7yAxngshIXLFPX08HDPf/70loF546Y5S/Ov2n6P5j9thy4VXnfnqHipoW9hy762R5W+e9PDwym/VVB2MEJe1T1S6bCm0Mb7ChspkZRVJzCpRkFregMAK8grX4sIsp9Z0ZoF7Mqn3DWd0bWZZZA9jKp3PSz3LiguPYNNFGzq1xQe+z/NJdwOpoFplHbfYK2kClgogivKjutx6GkGjU2i2Qy0JYsxPWOMbM7D3o4sqrXvopRJRMs2hq4fnhnh9ageS8199oM6YEqAokNYXwI7r8Emen1jLLHePLZz43N3jk85ft8rHLHn4TC3Mj/GrTfHI7EaMT39qGdZ00xMBgnpl9Y7yu5yHelB0FYHjLHLpmbZr2nCevuYzjP74C7YJRdh+qpptdKy9/w02EecGpl67gkc9dxi2PfJolL78akWjURLW+CFNfsIymiCwAjoNwVPNvm9mi6nZ5GqRvrznaXnvCvGJv0ZhwLjvtE2CMrQ48QoWVQ4Flne/ilpGv7nD/7cl3WJp9K7cWDz63b1VBtrCnWNb2DkQ6ReJJ5rzvWR64fzGpYYE/qq3VzRROq6o757Mm1rbDznPQnmrerx2BcW2gfRJIopQNabZ5Ag2BBaJ6PkGc1ZhsjHA12WyNGZkClcTj3sp8lqQ3cFH+CWZ7s9hQ62RdqYtNE21oBFuKecLIoTCaRkw4OGVJ3BuxOD9EZCSBiunoKEEHLGobwZEJ2ki6VAXI7NFx6pBpECC3DIHv46ZdRo53OOaaFaz62K6vOdsf69Y8c9+xaM5W7lu/CE8kdLhlni308AhzODW3iTmZcdbmZ8AWB6HBKYMMBU4ZnIrNrKj2GuJsQllKtCtIfEU2tue4yfjNcxrsvEsVq+Q2ppk4K2JOZpyMrLGqMgOZi9ChIso5yEgjYk0SOMi69ZEoVpriiomiyYyXRk5RHKPHJhCuY7vDTN2OL5066OLK8hnvBWP2ORethenYFZ91ipIor8BNyHs1Tk1voNst8LWz/nm3+3v4C/a75cSPrODxG3b8nlm04mbCHKjKjkKxU7b2i5VegTi+gN6YJQ4082YPMTszTn85x/Hf/yRPvX5yHnXLE9fwyld9hnKfj5txSFISp5TghUmz4GZ7Tptk/V3z2UTbrhUhrA2f49hOFuquHp43jc8iBCLRgCTKSF7+hpu497tX7PDedoXt+axx1RFrHdbCgYegFTB/uGGfVjD/5E/+pPn76aefzrp163j66aeZN28e3d3d+21whzu2n/g1Kv2WZt96SMQVANzDa1G6hcMTS9QbcY49ijgluH30BGpjAQAy1AhN3TpJon1LIEyjHXaKdYKok22jJGG7i3YmW2btwrWdeEZpQZSxFSvatZY12oUko0myCV4upLutyEt717E8/yhnejsxYJ0CjUayZ9V6+wsVU8NIGyhdeawDdQbcXRVctIfPb4krzx+7EllO9lL8yZxf8x15FoOlLN/cfC7dQYkoVsiqRNYEpVSAl4kgm1DpU8hEoV1re2SUPW/98QS3EBP6LrU2AQmsK3WyOfGYUV/v3Rh1cXRukGeHulnQPspLsmuY6Y3xlWKW0swOhPZxigEySSDwSTozjC/O4o8nZB7bCsUy+C7UauhiCdndifYOwXe2tjZNLex/GAF3r/wgZ7/9ZtwyqCGPUiy5jwVkVI0Z/vjzfo02p8KytkdpdyusK3Xu8PjTn7QT2Pc88Ga+vOxb3PDkcs4ONtIQCjtkeqf7ferTO19gW/iFm1hbnxye9MEVHHPtClZ99DLijIswhlpXQHqNFW8a2UamXukK2PDbelaLqOdz4ThNOwURSkTkUJsRUOlxiAPBea+/kZ99/8o9PibLj/9IPWtB2Kpdjlwv60OB7cWVaXz2EIgrYIOSW2jhubBEvgGVy1nf/PGIh+85hqBku6sbRUPTOK3YOZ8VGrQrSXyJ9mVTRDGCZnerdiDM123AlEB7kHiQpAxJLoFAo7yEtnyZvmyBuekxjsn0067K5FWVjYnHcJylrD1Gwgxbi3kKlYD2TIWRYppwwodIYDxDgibdUQag3a0QaodSxWdG2wTH5fqJjL2Gz1J7xoefiYosveuv6Vldf9+1Gt5QiSjj443ZqvXGwuru0BJXnj9eNn8NH3v09zk/9zRzvBG+s+Usvtl/DtWqC7EgyllBRYXg1SmDCkHVICkIwnaBcSHKgQzt3CpJuRgpmpzWKUX2HM0GBIM1vDVpHuucSagVD26ZQ+4XKSq94I/VUJWkeY7HrkIkBuW5k9krDSu9XAaKZczoGCRMZhgmCSaKUW15e20/2GjkwbWwX7E9n2UYtOcSlhUPRXPw5EvQRvLePdzfE9ftnGMGw4JahyEY2PF/+MBX7HMWfPFG0lLz2/dfzvx/uoEwdqgmLmGy8/Ptrtt2bX94zLUrWNXgtB9YwfGfWMGM3fHZJIF4ygr29pzWj6fxWRM41DpTVDsdEt/a+O4Np11+/Ecg0QitMSkPUafTLU7bQgtHBvb4Knj55XvePnzzzTfv02COJCzNvhXhedMmpTKwIYOHajIKcMvQVw7Za7dwBMFokmfW0GcMj8Un05azvtTak1YK1/XJqCPsfWlLuEVc99UH+zuQ+IJqu92WxrxVANK28kZpOwmIswad0hAkKD8hCEI6MhW6UyUW5wY5I7OOuU4ByO1y2KO6zLbEMEcpsjI4sMdoChxs14NxwBuD826/FMqK3LMrmPHrMrf/vFUpfTCwK5HlHflt9Dl3cNXTv8szW3oZ7yzgKI0ONDKUiHGXsOxAkBB2aDC2qkgk9lzVLsSBQ76i0Y719pWR5PENs/h7/2Je1/UgLw22IUWOXq9A4EVUE4fNUQe/Lc+kK1Ni3WkpwrYAkeQIhgNklFDr8ql2CqKMg1Pqxf/tFhgaRS+YiRQC05Zl8KXtB/9AtnDA8PP/thOo+79xOee9/ka0oyjPcilXs9zOsZzc1/+8X+NvT/oBAP3xy/jCGd/e6TZfX/UKXlL/Kn13++PIfaunAWDh/0Zc9L92Yvf4DZdZm4KP7noCu7zvLxCZtJ1wam07tZLE2uKhIQbi2Hay1CtkpRDQlwEDbtkga5oLXn0DQrNTe4UdrBIqVRs+qiRCiGl2ChddfD133mG3u+T8a3awDNvZfS82LMu/nVsmvtH8W9YLHQ4ln721uvNzu4UWtkdSLCGTBPX0eo5en6J88my011hsFmhBk9PGaXe3fDbxZL2TTzSLhbSivngNYR6inCFJGUwqQQUxfioil6oRuBG+ipmVnqDTK9HtFulzxul1JpAYnqzNYlPYyUCYYyIKqEQOi3sGqSYO/dvaoSpBGYwyEBjKEwG/3jaPnkyRvFejK2dtxYqJnW+6IqFsEvbEbOW9z76J/MM+2qFpcSMmSsy7PYWRAmesyvJjPwzFUsve6SDgmlP+mwVf/Sy5px2KCzXpuQWSoQCEoTojQTuK7EZwyxAH9hzEWJHFnZAkQcPeDuKUxHS5CF3vwHYFni9xSjG1nIs/WGXmLyL6dRe/mN0GniYTQtsaQ5hzCGpJXWg0yNCKinF7GiUEohbaBWXHhnvjKGQmjYliTBhiwhDh+/Z67rnWQulgo2H918J+xVQ++4rfv5G4IHAqkvIMRVJI8YviYvA1PE83oCev3n333AkfWwELDOWCnff77TUGR3NsG8rjpSJqRX+vXm/+j8ss+b+ruf3ev+Hxz162Ww64vO8vbIZmg682OG0YQZTYyIkksWJLXWxs8FkjrTDqVHbPaS9acj1omjy1yWcBbCPMdE47RWjZXnSZyndbaKGFQ4M9nnE/9NBDe7SdeJFUEOxs0nlr6V8OwUhaaGHfYJIEvWEz3sndjJwIE2eElB/3yW/QqJptN08824UijA1CxDPEaWnzQCODMJC4gjBnK/m0ommxhKwvXKcNcXuCykXkM1XyqSpdQZl2r0KnV2KeP8Iif4AFzjDznOe2OehR4B9A+7DFd7+NZy785+bfG+ICV2x4PcGwtYBAgLfFwylC9xMharTM8tnvA9chXNjbtNRp4cDgZVe+h3d+4vu8I79t2v1V4+JIzTkL1zEjmODOTYuRNevt6xQFMoKwQ2AcQ60vIcpJnIqo5whBGEOSkghtcErWVzdMOzw8MIu8U2WBO8wCd5iROEt3pkSYKB4vzWZ1oZtq7JLO1ajkfUaPlbStcWl7skIqTEj1W+u8OOuiZ3ZBbCeBteNnISJNsnfzgv2C2379iYP/onUsPfMqjKu47ZeHbgwHA2e+awUPfP9Kzv3jm5CJZDyQxIlioGK/45ad+vHnDMLcGS66+HqEMdxx50d46+L7mvdffNF11uZGwLe//fecGSj6lK0+bZ+1cQdh8uILr8W4crchm43HdrZNY6K35vUO6957JadcvgIZwsN/f1nTpmPZiR9DhBHUQkSS2CrXOLY2ConGaGMnpQCVKqn143hjKYwriVOKJLBVsxdfdB1oW40uwxgRJXhaI2oxyxd/0Fo2NKAkK5+8tjnui5ZMn2zuahL9YhdZpoorwKHrwm6hhX2B0ZOh21ojDAye5pBbr0gPJWhV706pd1JP47MCVGTA2E6VxAPt1X82Gj3rvNYoqPZqVFdtBz7b7pbxZUybU6FNlUnLkJyqMM8ZISdDSsZlfdRNVbuUEp9ARcxrG2NpzxOsrvbSP5Gn5PpWc64q5JiLdjVKarQRxFoSOBGFWsCzhR46/TLaCEJjuL3i8KPR0zk9u57j/C382T+9DxnaoqD539nK6rfNpPMpQ8dohDca2spsNwVS4IyUrOVvGEGliqnVWNbxTpg/i20v7+Chf9gz67AW9h7Hf2IdSMmW/7eIeacO8+TqPLImSTJ1NwEJ1S4QsV2oNYCsgVeDKCdwKlaASVzQSiJMff4FRInEKRhUVSOiBLcQkd3k4I07hO22AM4tQVy3vEOAjLUVUbBh4DJwrMBSv8YaUwSszadQyoopor6wnArq+UbJAT9uy3vew8rBLzf/PpSC4JGei7EnOPPdK3igLra89E9uAiOZWGQglDijdj6+fNGVrFxz417ve/miKy1ve+aGyfuO+ZDtMJSS/ov7CDSU5wmo2i/kVX/wcRZ+4SacGRUcpakVnN1aF25vgbp9UaQzWmbp6VfxzFvbWHPp5TvlszCF01Zrdr0z0XVOm4CRGG2sdSRlUuudJp8Fm2OofYmBJqd1ShGiHOJJLJ89+gP2s9ZYS3VdbnnimubrNzntlHNth/NOtkSWFyVaFmGHFfZ4lfKuu+46kONo4XliXy9sLby4YcKQ1FBIaltAyXMpHhtROloQbHJQVbvwLGJwarbS30hBmLfWSjIWzWqpKAdxqh7AqOwk1EiDCTQqF9GZL9OVLtGbKtLrF5jpjZNVVdpVmQXuILNUhXnOrjtXGuiQaWomQu+nK8lxX/sLa1nmG3Sg8borZLOV5uMLf/xOG763xSFfMFS7LOlxJ2yQabXTIVgTYYolxKw+SrN2b2/WwvPHL//1chZ8M+IdS/+ped/dVcHDpfkc2zHAK9qfYSjOUSik8EYk/qi1WpCRoTYqmTha43RViD2PRDu4BdEMUKx0KoIxjVO253BcUoyPZPlx6QTu27aAEzq38ZquRzgqN0ynV+Lc7LN8LzqLoXKGSslDBxrtKvyxBFkow6YCJo4R6RSO51I5bgZhTpHeVsPfPMGWS3p45HMHZ/Fi2Wmf4JaHP3VQXmt3eLHkvrSvttkov/i3KzjnzTejKva7oxJ5/MF976XvqzXuW7/o/7P33nFyXfX5//ucc8vU7atVr7Zc5Iq7jXG3pFACJKSQ0PIFQiCEmA6m2ICNAYND8iOFkNC+KUD4UoNsyxa4YLANuBdJltWl1fbdqbed8/vjzMzuSlr1as/zeu1rp9y5ZebOnc85z+d5Hi6e9zxPbJ7N6XPGM1GuvswSBHfd89HG/frtOrmyM+qPXX3ZzUyftQ29dSbTVK6RFTVR/SWnr0GYmxHhvnd8TmlNkLd5BmGLtSqZiPrAcPmC91orEWnVJajaJE7tMcAqWsoVlATjOCSpDHFGImLQjsQthFAPoTYGEetGJ2HD6keqSYN0AHeowtJzPrnH8+6ue6/n6pfdNOXzhxvLTr+e2584ets/1nC0MgybOL5RV8kRRqTXDdKV6aY8TdF/hoOMbLiyEXZCul7PRvlaPRuKmj1uzcLWhThjbzeU2bVstpa5o3TnikzPFJjmF+hyi+RUlZSISMmIjAyY7w6y0IlxkWSkR1krduiQDlWkX+XxZMyOKE/ODUiQtDtlFnYMst1rQUnN9o2dmO6A8xZsojtVYH5qECk09w2eSCFIUU0cXJnQ442Rl4q//s7bOOErG3iOLuAc5ouN9vrqeeAouh7TtD681R5INOGamSSIMEHnUwgl7ORhFGPimOrMHCMX75rx1cShw4rtX2H5jHfR9XiVZ2YuRGc0qiLIbpCosGY/54FXAacEbsUgY0sGBi0St2LwCrpBkogaOWKErWGdQmDJsyRBhIr8ppptmGeXj1MCp6IxSmIcgXYEMjLIWFvL6CiBUhkTBJgoBqNBqUbepnBdkMJ+9wKNyOdYsf7IuJjsTLIcLbyQiZU6WtePN7H8+j/ex3lv+RIyFiS5CFNxOfX628hfMhOAC97wJR789rjrzfIF9vbE82L5KR9hxTOfbdzfuW5bseZzdrmF7+eRf7yOl/3+F3DLipETBPP/6VY2/NX7Wf/u9zH/X27FtFfZ8K73sewjb9mvY5pUd2kQWluXDSDMg4x2fU2jpp37t5ZcVBqhpCVZYJIqWxRKjXrWuAqRUlYFWbOmdiqx/R6lHGQ5HK9noUYu7VrPwt5r2lUrP8yVV92yX+/FocSyJddPIoWaaOLFiCMbZNDEYUOTXGniQGCSBG99P92PRcz/SUz+WRdRlejTi7RctYPiwoSgC4I2qHYIKl2CoB2CDqh22b+gA4J2Q9iZEE+L0D0BckYZf1aJaXOGOWvuFi6Zvp4rp63mqvZnuKb1Sa7IPcPlmTWcl9rMqW60T+RKHb5wccWhyY949q3/xKVXPm67E11NWHEpFtOc/Ms3cPZv/hjpJThDDuk+SPfHdgCOHbiE7QlO1YDrINpbbUeLhjP/9rZDsm9NTI1ZP1Es+t5fNu7nZcDidC/XzbiT6e4oo3EaHUn8EchvSchvCskMJLQ9H4MytOfLqHSMqgrS/ZAeABnbc7zaJonTlnCRgUANuJhtacYe7eKB+0/FFTFn5DbzlvYHWOgOkFYR5aoHAz4k4I9Aqq9G0rXmEd2dkEmjO/JEWUmUFVS6PcLpeYSGs991ZM6XY4FcWXruDSw955N7X/AFgIkkyIPffi9rrr+O1kyFl05/Hk/GLMlt40LfQfcuZombIdi+sLH8Xfd8lJf/8y+47ZlrG/d3t97dob7szFnbGo9NJFZ2Xq5O5uyMSZYD19wy5XMb3mBvhx2aas/uiW+TS2Nasta/PZ+DbBZymdr/LKTT4HsgJCKIkeWAJCWptku0J3DHAkQYI4yxg8rEhunWO23r3X67q4NElCDCeK/n3dFUr5iUJeaXnnvDUduHYwlNcqWJA4LRmGqASRLMwBD5e5+j46ky2W2GSo+Bl43Ymra19lvfKQha7W990FH7a8M+1gZhuyHsSEhSBu0ZkowhaY85fdp2Lu5azxXtz3J5y7OcktrKdGeUNlUmLyu0yTKnuoZ2mSEnU0gkOZmiWyraVBlXJPRX80hhyDsBm4NOxpI03akiPdkCGTdE5iJOm7uN7lSBjIq4OvcU721fT8YJibWkHHk8OzKN+/oX8debfo+oPWHwqnkMXzaPaME0yKYtuQKQaFof2QFCQpyMk9K6RkhVbKhz1JWzpAwg0in8gSotrWWW3/ueo/aRviigNd5zvSz8QYH0Dkk4O2w0qlW7wCvY+tQvaLLbQ7JbqqSGYnK9MdntIentZdL9EW4xwSlrvILGLWmcqkEWA0TFdj6IJMEthLhjIf5AQKo/wB+24xrtSZKURHu1/CEhEGGCqEb2O6U1wnWsFZjjIFI+smYDKoS05402ECd28vkwwxh9TJArV151y1GdzD5S2JlEevjr72Xth68DaZhxVi/VJRWGXlVm8fc/zdASYS29alix/ktsfc0czvybCY9NJFf2MH9Vf+7eH32AB7/1XoKuBL+nzMK//yIAG/7y/aR/Pe58saz9rbtdz84Zc8u63o7oHx5//qmbINZs+Eur0okzEHTuoZEzm67VsBnIZBDpNCKTgUztuus4Vp1dCZHlABElaE9S7rZ2685oOLmm3cd6Fvatpj2q6pWa7eay01+8ivCjAWGOjb8mLJqJ6E008SLESv09rpGvAyDZsg2xuAehDW3rElrXC/rOyZE6f4STTtnC6o3TiUZdVEVipEH71h9aaNEgHHRLjJcPactWyHoBGSci54bMyQxzYqqXOd4g09UY3SpimkzjCg84cLXHVCH3gYnwxf75//7bnF/y2av7+dd7LkcWHIyBIJ+Q5BRiwCfTC5m+8U7vOGeIWzSkE7TjQKEEWhMtmo52BdXOAz6sJvYVQjDjPvjgy87m8z2PcI7nAds4y0txllfmlZnHCE53uGPd+XijEhkbEs9a24kYCpUUScXBjWlkPhghiLJ24sU4kKQ1IrG2CUkuRmckIhL8ungCT43O4LvROYSxw/Yt7ai07TqSgWx8J+qdSKYli3EVxYUttrAOTK1z1iE9qCl3v3j6HIyruPNXHz/au3HU0JKqUow9nhvusg90rGs8N6irbN64gJLxSImIhBMJtEv/tll0SjuAvPaP3wxYcuSal9oOMaPEJAIGJpAm5k12+Rp5YG2wdiVZJmL5qR9tWGzBrvYXE8mWiYNu07mTfGUCbn/iJq649nPW3z3WyCC2ChRjbBZCGNuJv8bKDEKDqhrcYmK7+wDj2+/K/nTH3f74Z2yugJRc89KbSNJql30/2rjjYTtQvuM3NxzdHWmiieMQE+tZHVSRUiAcB5MkuGu30fW8AjGf/s4M3fOHGAy6kIGdBDKusXWBpmEXqh3QKQ3ZBCcVkUQKEyqEmzC9e4zzW9ez0OtjvjtEXiQMaZcEiTZ2nT2qSlrs2jSUkz4uCQrD4twOhuMM64udDFcy9GQLtLhVHKnZOtxGe1uJnBuwvdIKwLpcN6e4QwD4TkwYK/r7W1B9HluZAT0hfee5OEVJcUaGaY8q/C2j9roaRXbSzhjbJW1MLUugNhuSTmEciTNWtRODSiEch42vzNOd2n6YP70mTJIgogi1dZC2NVmiMyPijId2ITqhQgTIzWlSgwI3o3CwhIjQ4BRCRJDg6BARuyS+tQlTsanZfWmrEq0rRRPTmMAVWuOUYxLtoIIEU7WqFhlraxkG40onsCSL59kufd8bDwA3E5SwYWitwg4zjpW8WaHNi9oWekbPCHkvIJevMq9tmB+deAfXdLyC9Y/N5sTP3kaSNtberksgEjj1Y9Z6y0hrub3o3zZDNWDF9q+wrONtiHRqF7u3iQqYU27tBSlY8Zy1GF7W9XaeqJ0LO9ucwq7ZcgDLZ7zLrq/3HxvL4LmTzimjDElmaoX3imc+a+tsY5CRRpaC2vUVRLRrPVufsqhnHMmKtQGr17QrVu87Sbe7mvZYqmdvf/wz9n9Tld3EixhNgqWJJl6kWKm/B8A18nWsf43CG1D0/CYmzEvMwhIfX/hTHiwvYriSYTidIao6VncuDEIYjBYYI0AaurvGmN0yyqLcANO9EVIiIiNDZrlDzHdGmO24pEUKOLyF9/6SK3V8pHMNf/jK3/Gqh9+B+6s8CAe36NCyMcKpJKhKTHFOBoD20waItEJrQWowbQeviUaGCTI2xHuPkWniIOEWYrQv+cHdF/D519t8sJEkDdii9qmozEmZXlacXqSocxilSHxB7Nfs3ao5MiN2ABnlAATaHe/AUIFVryR5jXE10k9wUwGZVMjtm07h4pnruXPNKQgB0k/QiUT1VEmqDmOuA7qFjtUpUptHEcMFaMuhXdi21ND5sEImBgqSMG/VMocbU1kQHWkpd51cueYSGy75YsPdV3yJDz72Ovr7WvGchP8odPD72W1kpMfm2KdNBpygIh4LswTaxZdRg1wBuPM73wDg6ssarjVTKlHqj1/z0pu45hI74LlrH97zFU/f3MiH2dkWTPcu5q6auGCiGgZg/gx7XdwdznjvbXhzXSrdNiQ6u9XgFQ1OVeMUIpzRYBJlbpRABprUSM2+xLfX9ToRsb9YsfoWlp79yUmTRVMRRUcT9e/FlHZsTTTRxG4xsZ4VjgPzZyHKARRrofCzBVcseZZy7NPf0YpOBEZja1pqBEvtNqkEL2cbhtrTNuekGPq4KuHUtl5ektrAHKdEt/JIiwxtukLVWBLYFZJ2uSu5MqhLlLTm6WAxJ/i9nJqKuX30DEaqafqH85QCj8Vd/bR5Zc6csY2lnU+iEbgiwRUJ2ki+MrIYR2jm5kfYONYOJYf0DmEtzzb6uEXr/1+eJhg6yacl00Fm/SiiWLIT7ElSmwQ04FjVgW5vIWnx0Y7EMcaGmRsDnkcwLaEcenSmyof983sx4/aBr7Ks420Qx7Q+1s/YvB7CdluH6kCRXuchEqh0CbTrkBqSGAfcokZWY5s5lCSo0TI6nyLJeo2JX5xdf5OF1hgpLZkSaWQUEmdcZJRQnwmWkca4EpP2EK15RKVqQ72TxIZ9xzG05BFKwvBowyLJFsWHxmFgKuzJQnJZ19uPKPlSJ1derBluv7r2Ft76mzfz7GNz2Tgfvl/K8775d/LItPks8PvpVAX+fvPVPLl2NqKqUFVBqt9mByU+rH/THNwxa/dGHDfIlWXtb0W05hvE8IoNVv2y4vlbWX7KR1h+6kdhaGSvn/XtY19vkCzLWt5iCZwJmSoff+I1RD9awLot0ya9Lkkb22A3BS7+oy/itLpU2+25nt/sWEu9MEGWrJUvQlgSxVMgpa1phwUyNramFeKQ1bTHYj070cZs6dmf5I5HXhz20E00AU2CpYkDxPITPsCK575wtHejiUOE1qcV3/3AF1g6+z1Mv0vxqZf8hMtThmeDCj3ZAnm/SpA4FAPf2iEZkNISLb4Xc860zZyW3cqpqa3Md8bI17qlcsLDF7mjfHTjqJiAtNh9qvh8J0XQnyEVQbpf0/bUKGF3BndHEVEJyApBZoekr9hN4tnASW9LLwC6XEYWAiCLDKcuyo42rlF/zMrkO0d7Nw4aqppgpGDWLxJOEO/ga6/5F8rGZ0wP8rXRU/nKXdciOgPa2soMzUmBcDAKorxBVQTeqEAGNkcnTtuOVZGAiqzCJWqFJKdJTytRKfiYxOa0VAMX10l4bHAWOlB4+ZArTljH/ZsWUu3PgKdJzSpSKrfgj7qoShY9q4WxuR6z3vI8/zH/+1xpbDeWUYauGUNc1rPxsL9fU3USHS2f3BcjuVLH58/8Hp8/096+ZOWHuLNlkMvaV9PtFDjFHSInU+RlwPmZdVycKgO7Xq92pzyZ6rmdwzzruPb8T3HnQ59o3F925sftRE2sSTpzXHXFZ1lVmzy48ppbuOvbuw8PrePnV35xt4+f+rHbkArGFgpOv3wtV3Q8yzfXX8i25zrJbHPI7FBktyn8gQqiEmEyHtpTaEdYdYseJ0WueelNUx7P3lAf3O1sd1Z/bKJC52gNUJvkytHB0tybuKP4zaO9G00cIuhyGak1vdfOoPu3BeRzW8hf3M+/zfklH+87jd94c9GJQClDEkrANg5hBNJJaGsrMyM3xrR0gU6vTE5VibTClQkz3BHmOKVJtrYtMs1IXCArJZkpmnw6ZZZ2qTnR72UwyREZRaYWWqVjQbniESaKnlyBjmwvl2fWkRGCdpnCFQ69SZHvRO08P9aJp2JGyylEItAeqGGDU7Xd0dq1k5fahcSTNkMDrJKhHsisNRgHISVIUMUABVYpGEWgNaZYIrdOwRwYC3dfMx9tXCNf1yDWXigw/YPM/pli4MJOgjaBv9lj2qMxQatibJ4gbAGjJE7Z4I1MyCOr2nNJlkNErDGqrtBSDcWSTnvIILZ9SMJgGB+rCGMQsc3QjHIObiFClWOMZ23BiBO7tJTgusRzu+m9IEPrhoT8YzFCKYzvoD0H7R/eqaU9WUgeLWXLi5FcqeNr534DzrW3X37vCK/qeYy53gDnpTbzu+os1g10oUoKZ1aZJFKUMh7kYjq7CqTdiMF7Zuxq95YkoA0rNu1qoTzRXmwqLGt5iyUCJ9yfqGRZ3vNXOP/j8O+LHuLG7qf47LTFk16/4V3vm3LdF//RF5GJIWhTDJ8siHOaxEuRGk7wR2OUK1FjNrTepD2SjIdxpa1pdY34rOFw1LTHSj1bJ1eWnfUJ7jgGLKpf0DCMK1KbOCYgjDHNT2QCxsbGaG1tZXR0lJaWlv167ZG6kC076xMYJY56WHDDX1GIhiSwieMT18jXEV17Ln3neMy8r4z6dD8rTvoZ/zo6g4JO4YqE7WEbDw/OZetwG9oIfDfGc2PaUhVuXvgDzvMPTD1yOLEuLnJPeRGn+1voVlVSQjBd5YiM7bZyxfhA4D3bzuP2O8/FKUPHM5qWJwcw/YN2UBqGkCToKG4sL6RAdXWC4xDPm8bWyzNUuwzP/+17d9mPJg49Lvu9zxN0OERpwQl/sZrXdv+W/95xPjkn4JfrFiIkTOsYI0wUY8U0UdVB9VtbuiSlMZ5B+AlUFM6wgwoBA9qDsDvi/FPWA/B0fw8ZL+S8nk08OTyDdr/CxtF2Lp3xPOfm1/Pf28/jmedn4m3zECcXuGzuOu5acxL5B9O4JcNDnxkfOLxl06UArBnpRklN3gtYs62HdX8y9YR5E03AeI7KwWLZq/4cgNt//H8BOOnrf8V//tmXazZ749hZoXIoMfFY1sVF1kYdfPTp1zD2XDsigXXvHb+Gnv7+2yjO08z/SYx2hP3OZwRxGh778nW7JUxgz118O3f7XXnNLSSexKkkGCWOCYLjymtu4Yfff+cB16NwcPXszlZxhxPHAsGxvPsdtZD0hNtH90wmNnHs4xr5OpyeadDWgtnaS/Xik7n0C79mTbGHTYU2tm9rx+nz8MZsc0WUh3BGRKa9zIldA1zSsY6rc09xggM5aZXXY7qCL5zdKqX7kiLTlG0m2poUaBVu43UARV1ldSx5OpjJ+qCbB4fms22shTixamiAl8zcwiVtz7HE38qltZcO6hL9CTxQWcg9wydx39OLwdEIaTCjLt6IItUPThlkYq0V3aIhTgvymwO8DYM2mDyM0COjoI09z6Hxvw6VzSBmzyDuyLL2T1Msu/BRnhyewf1X7xq03MShx/Lud4CSkPKpnDKDoE3hVDRxRhKnBIlnCRaMzfrrfKyAGi3byWgpwVEYz2kE0E+0JUpyviVdjGHwtAwtm2O84RDt1BRcxhIriS9tlksxQpVDovY0zkgVOTgKScL21ywkuGoM55cttK+NyWws2LyWJEGnPIynkNWoaXfZxF6x+H8+TRIr/FTINfNWc1nLs/xs2HYffXX2A6yNitxXWcSaynS+8/D5fOjSn/GO1q2T1vFwEHHDFX8ARrPhDXOY/61NDFwxh8Frq5hEMGv6MMOlDE/9/g2H9VhO//EnKWzPYxyNcA2p5z28UavSeeqW6yYte+lrbiXMS/IbqyS+Imh3qLZLfvfPB1bPwmQr353r2TituPfHHzg0B3oQuPaiT/M/d7znoGraJnbFqlWreMUr/5jzLj/6nzHAr1fdzC9WreCiiy462rtyVNFUsBxC1C9s9duHC0nGs/LDYwD1zuipLGiaOH6Qfmob6TnzAVh/3zz+efosLs2s5aeFM3hweCH9lSyDpSxhMH7Z0EYQeSEZGQHHHsGSEoaqdtkat5GR/UgSIhOzIa7SoQSdEwiWq9ue4o7kXFKDkNlexTgSkctCpYouTbBIqPkNGy1BKSpLZrLh9xUi0bgjL548jaOJay/6NKLVTgjL2PDgmgVoI1g/0mEX2JHCHRVsn+dwyqKtLG7v59HtsyiHEq/PRXsCnASpNDoNOh9hBCSRJJ0LmNFSpN0rs6Oap7wpT1lA5+xnuLh7PSNRmpSK+aOOBwGYliqyLhcS9AjmtRZYV+gkmwvIvWKUS6Y9P2m/y7HHlmIrO56ahjuvyIJZQ6zZz1S4ZUuuRxizx8nP5Sd+EIRgxZrP7de6mzh2sSfCYyJhIaev2eX+RNz5UP01lmB5ze89wGc2vYIfnHDnXrdzqDBxHxc5ORY5IcvO+Q7v6LmIr547eaL9iVuv45wV1zN0ahctGxOCVhtMLSP7fN/ZPtMeCSbVX7DnhpeJj195zS1UO1xUaKCSjHvPH2WsWvlhXnbFDUdt+yuevtnacNRuv9BhkqQRhHssED5NHDz0yBjSccBxSK/ewff/62WY88YoD2ZIb3HwR8AbM4gEytMEie9QVilG8ykio8iKmJwcV2C7Qk5pQ6vE+HVjltrVIuzBIMvGqIvnqj1UEheJIYoVQeCilEZKg1MLcOtQZcBa0vYmggcrC9gYdDESpiEWGCOhnoOYAMKSK0Zaq1O3aNAuxCmFJwWEGpLE5tLEMcS1Dup6doaQyJSPmD6NcFqODa9I8bml/8Xj5TmNfWri8GJZx9sArOVWnOAPVJCxT5RzCLOSzEBC4gpkbHNSUiPaWg/VSGGUwihhyRUl0J5jhVnaYIzNGQKQ1YRpD41SmZW1eWT1HE0liNPSKl1cgXElSdZDu5K4LQWtPklKUbqsxIyWIr0dLaiqfbHQGjFWQgJxKj3JinNfsDT9BmBqZcrenm/i+MSaP9w1j/G1jNezJ7o5TppzH99bdw7vXHY/D1Zns+jut7D+z8Yzby4AVtSGWeesuJ7wvmm0bAgYfT6N0HD/nx85ctgog/A0J83tZa0zDeeR9C7kCsB9P3g/l776C8ggtt/vvL1uA/Sf6dP92O7rWZh6bnGiYmXnejbxjo2a9s5ffZwrLnjxuhc08eJCczbwEGPVyg8fMnKl7pu+M1Y+8LEDDgquD5gPBRrkyhnNC+bxjpX6eyS9Oxg9ETZfnWHWfSFf/u6r+ObQJfQ4Y2wca2ewlKUauOhIoSNJEiniRJJoSVkfe+QKQFkL1lWnUTUeVeNQNpK7qxm+Pnwxv6hMJzARRV1lTFe48dlXkOmF1nUhaqyCKAUQxZhK1a5sYpCjkEjXwZQreKMh7ojCeJo1H9u1mGri0GPi9c8t226hR7fOYnQ4QyVwYXrVWmcMOXgy4U+mPcT5szaBsRkQRhmkZ7s3/WzIefM38ddn/oK/POdePn/m9/mz2Q/RH+R4prcHowwmF+OKhJe3PMqfdj7INZ1PsTaczoOVRWSdgO7WIqn2Kie39vHphT9k1blf428WrOKWnscm7XenXyTREhlDyovoSRWY0zW8X8cu6iG1wPJTpgjXlLJJrryIIKevafztjL0pX27peYx1P1405esPF3a3vX+e/St07+Jd8mR+u/wm0KAdgYzAqUK1G+b/861ox5IsEwmV/anDVq38MA98530YCWGrS9DqTNlFuDvsz7L7i5/+6OiqIVc8ffMhJVfqYbU742DIjKW5Nx3wayeiTq4s734HMps5JOts4uhhpf4eOgwhk0ZM78YMjTDvv7fS8Z85cusc0v3WCtYrGJyq/T2VocCEipFqmq1BG1uTPMO6TF9S5KmozNORoKiru91ei/B5IqywIS5MenxrUuDXQcwvCqdw38hiHuhfwJMjM+gt5SkXUiQDKaLtGYKtWR7tm8lokqY/ydKXFAHYHLfxbGUmmyodlGMXWVaISGIiCcZamqqqzZBRocEtGhDgFQzeqFVeE4aQ1OqGunpFGxDS1rLpFLIlD2MFvK0juCXBSJLBlQm/uOrWw/gpNVFH/fqDUphqFVkKiHK2s33wZQG9FyhGTpQMnmkYvDik/yxJ4it0PjMeKl8j+YyU6JQibPOIWjySjItIanZitRweERsSV5KkJHFOEWdkI+/CKIH2JMaRhK0OQYcLUtD3Eo8L527g6p7VaAUiNui0i5GyljXhYBzZ2I8DQZ1M2RlNcuXFg53r2SVeL3mp+G1pPjpQnP7+XW3DAO4/6z/ZuCyF91wva66/jtUfP3Lj8SdedSMb3/oB8o/5PP/APLK/seGaL33trSyf8a5dlr/vhx9AjVXx+6s4FUOlGxbfdBsimbqe3Zeadnf1bJyR+1ynHs56FuBHKz94WNf/ooY5Rv6aAJoEy7ENIbjm4kNrvWUOovDZE5rqleMfJknIb4RgRozXV2bWLwL+59GXUNApYi1JtBhvTNICHQt0ItFGMKiPXLL7b8OQ2ysev6zuvbOuN8mhjaA/th2FGaFZXZ3JnVtO5rOrl/NcHJGTKT68/XLKD3YiYwjaHXTKgyjCBEHDx1U4LkIKhFL2z/cRXR0U5mdIMoYNbz825JkvFhglUFVNYY6kOj0hiSRCGcKyi3I08uQCan6JFrfKS1MDvKLzUdyWALmoyGXnPMNrlzzGOfM3c+381VzT+RQz3WHe3vY4L89UWej1sWWslXAgjapK3GxEMfEZ0RlKxqPHGWWWO0S3UyCjIjwVM7djmKwTcKHv0CmzbI46dtnnt3Tdz+/Nfgp/8RhXzl7LNS1PsHF7Jwv/82bmf3PfCJEVz3x23IN4Cs/VFatvYflJ+zbBvOysT+x9oSYOGa686vAOYGD35MWyMz7WsPXcmXR58vNHjxjeeT/l9DW7zZh57O+vI8oKZGRwymCkwRtUOFVrwwC1weEBNlzf//33c98P3s8D333f+LqmwJXX3HJE1MovRExFshwrMHE8KQS3ieMYRkPFqpFNkmAGh8g/O4RTAadiiRXtQLVDEmfAOPb3NIoVm0vt/Kp0Io+FWZ6PU9xVPJV7Sifhi90bP2gMW5NWvjVyPuviYuPxDulRNS5jcZreSp4wdpidHWVxez8mUKT6JK1rJLn1krENbdw/cAK9cRsPB138sJRlxfCZPDQwl8f6Z7JtpBUZCGRVIjQYOYFYKRmcslUqVDskbiFBFargOODaCXKTJJZUAVRrCyqbQbW3Irs6IOVDOkXSmUMreLYygxtO+9Hh/4yaGIcxmEoVkUoxtqSTbZdK+s/XCGFI5lUonxwgugKmzxghnBlRnO1hXIVxFTrjozMeJuWQZF1r95WSBG2OJWI8hQwTm9eCVX7L2FiSrta8YOrTAwKrhvIkiS8IcxJVjuh8OuZ3/28JX//FZWS3Q5xVBO0+cVsKk88Q5zy0I5FjFaui3kfcUfn2HgmUOyrfnpJ42R32Z9kmDh6HsnF3dzh1zlY6Z27hV588H7/XbZyny+e8h+Wz3g3Ymvb3nnkt57xsNSs2f/mw7s+e8MSt1yFjSFI20/P+//d+Vmz/ym6XXfH0zei0g1s2qABUUPsu1tx6r7zqFkR8YDPWE+vZ7HabzzRVTdusZ5to4tCjaRF2FLG3zJYDDb7aEw5HqHEzf+WFgZX6eyxr/QvC3OkMvqSV9mfLZNZm+e8Z53Lh9A0MBjme7u+hrCVJJDFakESSSuRS1S4QHpH9nKNCfjiymDMym4HRSc/9d7GdQpLiZH87IzpDf5znxPQOytrn+bCbc3KjzPYGGSumiCsuc2pBkL6M7aBCgIxBlgKoBhBGoBTCdRCOA0ajoxjpCkQmTWVRJ2Fe7rckvomDxz3/+0Fe+tpbKc3VzDqhn96hFnzf+gZVSj5eLua6k3/O21q3Axm2Re24bsK5MzfzF9Puo1uVeCC9kJnuMN2qyOaoHYVgTFf48fDLiLRCtoQkvkNnvky7W2JH3EpGhsx3+2mTAW2yQiFJceKsXiKj+L8bL+DC3oW8e9EqTvR38JNyhldmxu3lepNWfBmxuKufJZmt/Ka8kOzjKcozDKT3f2Z4xeqpJ4H39NxE3N4MH3zBYmfy4vYnbmqQK4dCrbL0nE8CHFQe3J7szHbGQ9+YPDl/wRu/RLnbBj2jbVAv5ugGex4q1DNYjhcsO+Nje60FV6z/0iHf7qG28rp9+GuHdH1NHD2s1N/jWu/1KCkQ+RymVEaMFAlbutCOID1oCPOS8nSIcgbjYMO/DYRasabUQ1W7zPaGyMiAE/3eSbl9E+ELl1PdQf5h6CrmeoMsaukDIC185jgFur0CD1bmkXIjevwxfBnzVM90wi3tOBVr74WBkSDNtqiNjZUTuGfrIsaGM1BVoAUykEhAVQQYhfY02rWTcnXCRTsQpyBJS4znWLVCEGKiuGElJXwfkU5hyhVb4yYa0inirjyFBWmMgkpybKrSX8i4ffhrLOt4G3p6B1svBxwNmRhTdjCuYcasId42/37uGDyNvqe7rRrbU2gl0J5q2FvGGUXiS4y054RVrmiMlJaQkRIZWCWTCiBJKaSS1kpICIwwxBmFjA35DRXCdo8k7eIPR7StE/ijChkZm9cS2lxK4zkIA04xgkIRfG/3B7kXTEW07I+Cpal2OcKIk70vcwhw3w93amKMY1Zs/wpLfnQDrz9hMT+/8osHtf6l2TcCcEfpWwe8jhM+fxtxVwLZhA1v/NBel5/YTHTJ675IcZYk8UBE4+PBK6+6BacUcuevj+9muKtfdhP/76fvPtq78YLFfrqNHzYcG4Z0Rx9NguUwYF8H90dqAuCal950WMiaJl54SAoFZq8ao7AghwwTpv0mZN6r+vn/Zj7E54ZOoNMvsq7Qxfr+TsKKiw4cRocPzk5jXVxkkZPb+4I1TFM5Pj3tyd0+92hpLutK3TzsLaDDLXF5yzMUkjSPl9vYLDqAUV6VGeafu4d4bv10+nVCi4SXtqzhf9Pnk92RkO6tgqsg5Vs/ZLCS99rgVNYULSjFtkvcpi3YUYSqamTFpRK5JBWHctWhtbPIjJn9JFqyNLsGsOqlSzNreGjmAp4YmMEHhv+QJZ3bWZAeZKY7TJsMuT/s5kc6TWQUaRXy8jlPEcx2cURCl1vgJekNjCQZIuNwohuwOVbkZcgbW54jJ1N8r9hKb18rYtTl78xV3HLy/9tlf2c6I9wXndS4/4v+E3HKkN4hqHbtKii98qpbWHX38T1R3MRkHK3Pc+Lk94GQK7uzGlvxv/VbuxIs+1p3TMxj0b2LufaP3sRd9+5bvfLgtyYQLjXXwKsvuxkRGq668rP7FVg/sYNvb6+p+2MfTiJn1coPMzY2dljWvT9Yeu4N+xRYfCQbbZZ3v4MV/f98xLbXxPELE0eYoRFEJo3RGoolwiVl5KMZBpY4aA+qPbUJwkQgQkkUOUxPF7i49TmqxhINF6af53QvvcdtzXXyOELzgx1n44qH+b3sFtplhkVOjpNS2/nP8rlUXYfvPfES2jtK+E5MoVOTpCRRa0J2ZpFT2nfQF7bwwI75jG1rwRlRqBBEYkmUxAMVggoEYZsk8SFOC5yqsZ3dwuZThTlJ2ndwyiFojVAK4zgIpcB1MEGAiWxDiqgGkMswcFaWoXMiNv6f9x3Oj6SJPcEYRI20kFWJThycripR0aO3v5XC3BRjkY8MBV6hloESa2Ri0ClFkrZB9YlnzxcZg/YkkXQRBlRVNTYlEo2IDcKztaeMrb1c4kmSlMAfsSqodDEgmJZF1iZ9/bHadhODMFiypmZBpmrnG8GuDXfLe/6qqQ58AeJo2RHXlSHFgQzX//5P9/v1J336NmQ4rgSUf3M2TmX3y+4r+fLcB6/jw4//Ia9p/S1veHAtfVdF+9wE8svvTbju1riUa8//FCJJMK6y6ne5b3OHx1o9C3DXvdcfEzVtE00cCTQtwg4D9ucCdSTsQprkShP7ipX6e5hHn6H152uRo2VS24vc++CpPBWV+VDHc/x/Mx/ieyf+P6a3j0EikGMODHs8WZlzwNvsT1LcXVF7X7CGQV2a8rlXtj5COXa5d+Mifjs0h21ROxvDLsbiNK5I6EuKuMLhb+ator2nwB3Fk6mYgMVuH1FXhAoN2rXew6R8a6+gFCKTRnhew5JJ5nMMXTmf/DkDB3zcTRw8hAHjGjyVYLRADrsUnmtn+2gLrX6VzfG4dd1ZXoqr2p9h7Ll24h928+CPzuDfHnopvywspkNKfBnxXLWHxEgub3mGy/PP8M7Oe7kq/xTlxKdblVjkDjDdGaVTZpmuYtZFneSk9b/+8eBZOH7M9MX9XL/4Z1yV3rWr6xzP43VtD3FV5zNsC9tZu3YmMraZEqmB3fd9XHXFZ3f7+M4WYBf++aHvDm9iMg63P/GRwKFQruy8Dt27eJc/o/atj2ln4mZfyZWpcNc9H210BR7IYHFfP+PjXSGzr9gXcqWOpWd/8vDtyAQ0yZUm9hUr9fdIikWSoRFINCaK6PxZmsrpFV71J7/kFa/5NZnpRYxjkJFAlSRR0aMce1yZXctbWtbwe7k1LHZtP2LFBOg9+BD2pAs8vXUGn37s5fzN5uWNevVEbwcLugaJE4l0NS1+lawXYnIJYVdMflaB9qxVu87wRmlLVSAWIGzGij8MbgGcCsjAkihO0WZShS0Q5GXjmltXsySZWiZGJg2+Z61tc1nEtC5EZ83C1BhIp9jy8mmc9xeP8vWr/u3wfRhN7B1aU1jcBq4GA96IIip6uIMO/toU//j0y1i9tYfMDsAYgk4PIwSyGqLKEaoS14iS8d/fxJdoXxKnJUlKNRT3xpHWOk4IEk8itEFVrSoKA24xxkhJ0JMlbLEWY24xwRtJcIsaoQ1aCYwj0GnXWpAVazPUU6j6l3W8bcpDP1R5Wk3sO+q2scczNv6fA8v1cAsgQ3u9fObT1xFlIXHhvLd8iUv+8FYu+73P89I/uJUzrruNLX999j6tc/4/3UolcTnBjRgJ0wetsL3zoU9wx29vxCiJjJL9rjub9WwTTRwdNAmWo4xmd3ITxxpMkqDLZRgdQwyOcvI/DvDH//w+3rTxZXx5eD45meIXS37E/Dn9oMEbkazYdipbk8LeV74bXOg7u52Mngof334lnxk4ebfPDekcbV4FRyWUI497hk/inoET6QvyuCKhagxroyLznUHO79lE1bikhc+Pxs6m7QkXGWpkpJEjJWsRFse2GyuOoTWPSKeQnR1sfuOJiD/rt+HLTRwVXPZ7n2d4sYueFlAOXVQ6xjiG9HZB/HQr24stbIvbJ73mzTXbDrdsyG4z+NtdZngjtMsM72jdymtaf8vpqc10qyIFnWJQ+1SNiytjlriZRgfr1qSABF6esYG3DwcRj++YSWu+wtKZz/DqrJ1UqRqXigkm7cN5vsv2sI1v3nk53b9SOBWDDG2n4c5YdfeHkZFm6Tmf3CUrZaIF2Jl/cxuxD+e8bffhj00cGhyoH/KxhgPJ3ZlIquxOzQLw19vOb9y+8zvf2O9tHErcveoj+7X8/gSJTnzNRBwMATfRB/t4xR2PHLhVXBNNHE6YJLEZJHFM5z2baf95mu/efTGRlnxoyZ2ogkIGAlUVyBGHp/p6eDSYQU6mmCbTFE1Ib1Lkxr7z+f01v8c1z7yCzw4upi8p8lRU5n/LtlGoxxsjkwkQ0pBWEQ8H7QQmwhWal3auoyNX5poTnmVxaz9D5Qxy1MEddAhCh55MkdmpYRIEQeKgKgKnUguyD2ukStn+x9BoztAuRDmIU4LEF0Q523yiyrGd6K6HlyeJtQUrlKBURrgucvZMnnvnPE77w2d4X89Krpy/+mh/VC9aLGt/K6Knm8IcBYlAu9bysv13Lq1rBel+SJ7L461Jkxo0BK2SSqciybrWDg6rKjFKEGUEUdaSLDLSyNigAkuKIARR3iFos1ktCHArGqEhTkvilCA1kiCDhLgtRXGmi4oMQhtkYogzkmqHojzNIc4q4qyL0Bq1YwRGC/Z7thuCZcWOf4IkYWnuTbslUyZORi+f9W6Wz3nP4Xmjm2hAjBT3vtBxgAPJ3Xny89dhahaLSz50myWzI6i2C4SG9NYC1XZJYaEmbIe1N5+113XKUPKz55bwmb6X0uZNIYc5AKz85cf2q/noUNSzV125++a+fcELoZ497mDMsfHXBNC0CGuiiSZ2wkr9Pa6Rr0M4DpXzF1LuUsxeVWT7/Qv5sX8if/dHkvWv+FdWLfkxi7a/BW9rim2bOvmfOafznvYNk9Y1rMt8Zegl5FWVHVELf9r24F5tFvaE/y2nWLVhMefN3gRdz056TqP5xvZL2F5sQUl7kV89PI1CxWdm2yjFJMUTYTfbonbyqkolcRmOsmyKC1yQfY6vn3cRuS0u/vaCtQOLazPeLXnM4BAMjSDSKbb+4TzO/oOnmJseOuDjaOLgcOU1t+BEmijnkm+1RazRAhEJ4iyEbQmXTH+e5ZkdQGrSa9XMMsnjGVQI4bSYd7ZtaTx3lmeX3RQXqKoC3TLgnEyVs/xHeDaSnOxmuTQFPyn3cLLbx7Sa8OrmzS8n7UWc1N43aVsXp4ZIi10t9H7Zv5DOx2t3arYeTFGX7IsCMf+q7WzZ1knbQwfme93EvuHun+/fpP2xigPJ3ZmKVJmI/2/mQweyO7ts51CobI4GDqYLsG7T0EQTTRxa1GtajEDkWjBDI3R/d5RpLXke/M25rHjtqeiUJrtFYSQ4ZUE5m+Xe0ZM5x1/FU2E3/zt8CYNBjofXzCf7rIdThW91zOFf57+U+bMGOKF1gKwK0EYyv32I54c6WTfWyS/cU+iPt9If53lgcCEL8kOclNnB78bmUlzXRv55QZwBrTSdXolWZeuZMHZI9wn8EZurAtgJwNASKgm2+1pVIc7UsjaokTGBtQ0LunwyxQAi2+QhpF1ID9jaVWTTPPvubq6/9v9x38hiPrzpNfzgwMXoTRwElrX+BRhDNL3FZkFWJcJAahAyfRrtCSpdglQ/+COWTIuzlmyL8g6qEiESQ5JyCPPSkmxa4FTt+SBDjVaCJCXRjrDNIo4g6HBwKgannKA9S5xgwB0NrSJKgD+qMVIQZ1xG5/sMXWYbi3KPpnAqAu0o/AEDlSpIgdBT9+7ePvrvjdtL02+YMi/FdLUhxqZ2K2ji0OBoBsIfShxI7s6Zf3MbnrHZq0lqvMktyUClUyFMK0OnwalnbuSZLdPRhb2Pr4wyRAMphuZl+ea8e3nrb97M1879xn7v27GA/W1SmohmPdvEix1NgmU/sCd/wv3xRtwTrrryswd1UWuiiUOBlfp7XOv+CYWZDqVZ0PFojIoSZCA56WuwZNNfoc8qwLBHpRv8Xocfbz+dme4wroh5sjKHVqfMnX2n8uzD85GhIGpN+MH0Mzh/1ia+OvdufDE5RHNQl+iU2UmP/aIquMgPG8vOd4dwnYR1I10wb/I+v23zpTy2aRY6VDjpiGrgEo34GGUopAM2VzsYjdNkVMhQkmVzsY2+ao5ni9NZ3vUEi2fvoFqeiYg1KGVDGqWCcsWGgApB+cw5uNcMcEHr8/xkxxmH9TNoYmrIUFOa6aMdGBvM4mQidFUhHUO8uMolC9Zz47QHGvZdE/H+M1by5UdeTcfqBK9/9z+BGrgkJannt8xSeb5d7mJE93Kh73B1epi0GM8NKscuJ7X3MSM1yl29JzHbG+IvWnYQmd1biczLD3PvOTPoeVBgBGg1YRJlP1HZvoAres7ie2M5EB6XvvoLu4ZBNtHEQWBfyJUXIw61Z/WRtmm4+mU37bYrcul5N6JdxcoHPnZQ69/X/JYmmjjcaDQO+T66YieIzfAIbT8t0P67HuIOgRqrUF7QRnGGQ5J2eLh/Lt/yzmddqZv7nj0ROeLSskHQvjoiSUlSQxKzzmOwcxYbF8xATqsyvWOMgUKWaGOOLUErG2Z3sfXENjrcMk+umYPKRuiFglgrm5cSg1uEke1Zfu3MY3tbC0PVDP1rO2ktg1MxJB5oVyBjm8VSt3BCQJS3t23ehsGpGsQwRDlB0KpotHdIaYPtoxiMrXErF5yAN7PEQ2MLeWDjAta+7uC+700cBIxB5HPEWRe3DKl++3nnN2sSXxC0ChIXWjZptANBqwRjibWwReGNKJzRKjJykJFBBVa94pY0KtA2l8WXYAxSgFuyrgFR1iHKACh0rWHIH9WIxNolq2JEKtZErR7CGKI8nDC7j/V9nURZKM4U5LeC9h1keysMjdiViH2zCN0dXvaqL5BKu8g4zdLzbuSOh4+M9WQTLx7M//Yt5FI++S0ap2y/H8WZEpFYO8bEh6GTFUlLxPODnUhHo+O9n9MmH6P6XU7ObQdgfaHjcB/KIcOhnn9s2o418WJGk2DZD+zxYlFr2JgYLHUgaJIrTRwrMElCzx2biOZ2IeIYtERECUZK5v1oiLHVbQycLnFPH8U81MrmgXbuaTuJM7ObyaiArAzYMtZKyzobwFmcrQjiLPdXFnGdE/CJ6XczXY1PUu9Mrny87zQeGpqHNoJTW3fw5ZkP0y01p3bvYO1wF58ZOJnfb3mEGza/ikfWzMPtdVECdF6TKI1JJLKo0GlNKfAYi1NERlJMfEqJz+aBdowW6FCxo5xjy7ZO5niC8qJ2vOEQZ8MOTLkmn9Ya4XloXzL0XAd35JZwx2V/dwQ/jSYmQnuSoVMlQXeCHHaJywqRj2npKXDe9M28vutXuyVXBnWJV+bWcsuSKuE2n9bnDJ8aOIVPdD3TWObZqERkJv80ajQznWG2xu08KvrpVhHTpEJjWFFuY2ZmDFcmPDE6k6297fyXOo8L0t9liZvbeRd4OIjo9ossv+QRfuacBQZa1yhUdADvQ+9ifOHy+OgsxCN5ytMhTjd/1pvYf+xMohwJFcnxTtxM7NI7HgeTU1lOxFkXpOCqKz6LkeKArWyb5EoTxxp0fQIYAIMxBrNhC6o/jchkMKqdXG9M2/MJ69u7+G1mLmGNDAHwRw3+QJW41cMpCxACryhxqopRk6KQCYhDB90egZ8ws2uUWCt+tmYJbU86GOHw4OZTkYuKaE8Tp2yIfWarolxs5xna8Qehq8/gljQI0I6o7+640lXazmsja3Zgof1zyhpV1RjHQQXWDsqkfYTrYEbHMLoWUO44yNggHsvzC3NCk1w5iliafgPCc0nmTqPa6eCWLXsmI4MKNWFOoV1LrhkF5WkSpwJuCTC2QSdJO6iCRBVCvKJHlBEIA+5YjNAGIwXaMRgJMjSgQQWaTF9kzyNXIjRke2OrdvEURo5bjDmlmMSTJD6s3TCd9oc9Eg+KCzQdaywZE3XncHXNJqawd+up3akOTr7xNtwTHGZuTagsbGNsbrOebWL/MUk9oXe141d9Vo0iI/t9cCoxiediJpCMWkHY6hKkYtxUjDOw51SF03/8Sfy8Iqgovrbiav597sUkWzNwxSE9tMOGu1d9hCuvugWhzQtGrf9igjhW3LmOlf04ymhmsOwB+yNv29nr8MqrbjkuPQiXnflxlp/6UZYveO+UyyzNvvEI7lETRxPxpi04j61DVKOGl7OoeSwOnSwJuxJKYyl6rtrCq096gnanzOmpzfxh/nHmuINUqh6JD4kvrJ1BWdLdWeD/dN83iVwJzK6zy//x6Plsum8uGx6ZzU+fPo3/s/kSflQ8ESkM1cDl28+cz2vu/yueXnUCmedcvBHQnkEmYIoulJXt+IsE5aLPurFOnh3p4ZGh2dy7YRFmWxqxPYWzw0MKw0nztjO6wCFokYQtru0oUwqRTiFSfu2YFReet5qU2k1gRhNHDHFa4RTBG1TIUCC0YNb0YS6asYGX5DeSGElvUmwEzNZRNZrbSwt5yYLNjC4SiAS+9fgFjOlxr9zBJM3Piqfz5eH5bIptrtBTYcDmqJMfDryEH4/ZsMO7qxmu2/ZSbnj6lfxq03xOz23hHbPvob2jxLot0+hPJhOGdZznu9w07WFirXjP5Xfy/Gu/yth5VcLWA38/BqsZgi5D1KIpzZk6gLeJFy+mCjOth9LXUb8W1x+bigTZ+Zq98/1lr/7zve7TVCTO8Ui8HA+13pVX7ds+3v2Lj9pmHwHCGK66/Gb7+uOspl0+929Z1v5WlnW9fcoA5Wu91x/hvWriaEIHVavg2AkilQLPJbOlRKVDIYOEmb8wPPPAQp7v60J5CSKG9ECCKlRwhyp4I9Z6q9ylKM4Bf06Ri2euR8eC7LMeqafSbO9vZWupBffZNK3rY/u3FuSTOZwxBdJO8qUGoWUdtD9ryPYa3JLNu0j8WnB9UvszBpHYoHsVWIswb9T+x9iJ7iQl0UoQp2z4OK7CeHbmUEhpFdrG0HeWR9vFfaT98Ii9/01MASmRxSqqqlGBwStonKqxdl7GZu/UCRUjQIUGf0STHkrwRxNLoKRdRJKgqglupUamRAmqFOENV/GHI9xiglNNkLHGKYR4fWW80RAZatzRCG8kxC1aUibOKpKMA4khzjpUu1zcIvibPZtRMWDIP2+nkcJWS4QEs9sonNaN6Wg7oLehbY0m16sRsWZ0nkNl2iF6f5t4wWF3uStXXnWLzQ7RNo9IVRJEoiflicz/1udwStZ+McwJory9Nmb6IlJDCenBBHcsBmHnLfSoR1D0mPf5R/a4P0+86kaCMR8yMU5ZkPp1lsxWwWkfuI0lHz5O8jElGEccV3VeE00ci2i2BuwBB9KReDx1MV79spsQtXFG3effSIkgsZZIU+CO0rd2eWx5z1/ZALsmXjCoWyokhQKO5yFMHuN7lpYVNgRO5CNSq1NUpnn8qm8+AB/rfgRf5GmTBaa1FdhychrSMVQVxIKzurZyjjfuZfp/Nl/CQ98/A5HAF9/5r1yTtuTF7JlDbClOQ7aFuH7CI32z+d2O2YwOZ5FDHk5RkB0EJERZ0FmIWxJEKFBliYgExjGW1e/z2SbacFMxQclD9XmkhgTVHo2ZXuW09u2seGYJPX0afyQh1VcG37cB99mM7cZqzVHpMbyy6zFef8KDR/zzaGIccUoiI8htgcSFynRJGCsC7dAXtaCN4KcjZ6GNZGG6n1NTW8jLKonJ8kR5Nj2pMX7bmRBtV8jNaS5/5M18+pQfMdcZ5p93LOPxHTOpVF3unXUip7VsI6+qPFGYxRN9Mzht0VY2x2lGkiyPDc5itC/Hhac+z7vaNiCRtJ36XT6+7vf57uD5XD7rQYq6uouaxhUOo1GaLmcMgFed+jg/Kr9kv96Dl9/7N/SX/5DBp7vwBwQqbz23tbv31zbx4sPtT9y0x+d7kyJ3l+fyy7ETOSmzg/e0b9gjubImitmaZFnkDCEFtEkxyfbxzl9/4qD2t77tYzmPZcE/fBHzapcN73rfcTEg3V8lys6K6mO5vl2+8P2N2yuev9XekILbh79m8w2mqGnvDP9z13U169kXJOo1rUkShAKEBG1ACshn0RkP2TtE145h4tldpAZCZv7SZbvJkrQmkNUkniCc3tJYZ6XbYfQkQ27xMH+04BG++ewF9Nzu0/rsKCJK2DHUwZYLFdkKJJ5EaIM/pjHbJdq1FmDemLFkprZqgTgjMQ7EriVJhDZWbaKtPZhTUzhoxxIr/phBRsbmcWQEiedgFKQHNCQGkgRRjTBKITwXqgEinaI8W/PWub/lulPuPGqfSRM1CKuGSvdbsksGMWF7ijgtUaEl3ADcgu20d0saFRpkqJGRQbvCnsdSIoOEzHaD9iTOWIAIY0g0surhuAqjBCLWiEoEjsQkBlWx4y5ZTRDGEHSmCPMSozw8IXBKMVFG0rIxITWsqHQJVBXymxKijCDKKLyxmCSjKE9TpAZ2zR7cG5ad9QnatEYUqxBFxJkO4gOP7GziBY4pc1e0QcUaESfIaox0JEnG5YqlnyPKKWb4DlHa4I9a628ZG7QSqEjjVBKCVgcZ2OtuphdkpHjm0++HfegtTq33iFoN8eIywahH65MOQkO1C+Z97QuosuT5v3nfoX0jDhEWfvlLmFe5rH/3+w4q4L6Jo4TjUDlyww03cOONN056rKenh97eXgCMMdx444189atfZXh4mAsuuICvfOUrLFmy5Gjs7n6hSbBMgVf8/pe49+c37PL4zp7bh9qD+2Bx7UWf5s5ffXyflr3r3usnLX/tRZ/GpF2Mq5Cu2mX55ad8hBXP2Ivu8vnXQanCiv5/BmgORl+gWKm/B2ADQgcHkZkMxDGyrZU5Kz12jOYRBsz/7WZktqA0N+GUte/iDZf+khu7n+Le034Ip8EPS1n+afPlVGKXHdU8G+IC8508Pyln+N3/PQMvArdkePuqN3P+KetZN9JpdyAfIx1NLh0wtKOF9PMuXgqiFt2YTPaK1i81ajHIikRVBaoiCKYliFwEI57t+NuaIkwZkKACQdBuyC0YJZ8KWF/sJJUJGTwtRdQC2c2tzP1RAL4LQURw6hy0J5l1j+ajqdfx8d/exLo/3nv4eBOHHtfI19G6aAH+SCf9Z3qEFxTJZQIGhvI8UEmxqb0dbQRbh9oIxnxSW12c0rh3eXmWJt0rmb7eUOmEuDVhZCDH3/zsTZjWiHxrhTiRSGl4ZO1c1nd3cGL7AOtGOrls1jpmu0O888k/I/h1B0GnQbiGB9cs4NyhP+Xlc57iv+96KUlXxN/Ov4uFP3kbhBLVVeWM2dv4/qKVjeP4rwWrAHj7lot5+Ntnkt/1krsLlt7zt6zeOB057KHKC2h9znDCo6OIaszIWR2MLZDszSZ4afaNuyXJm3jxYNnp1/Ozld9r3P9lVfOXj76dciEFFcUKCQ+c+jzfWXh3Y5n/LadYNXYqrU6Ft7c/TIjHxf4oLTJHUVd5JEyx0C0wS9ncon0hSPamVDmWyZU6TCo52ruwV7z6yltY9Zubd/vclVfd0iBernnpTY1mm2MBy0/9KCue3v1+74wVz9/K8hM+wIrnvmBfW1NhL5/7t4jWlobydtL6F77fvq5GztSJmWY9+8LFRJIFYbvvpedhtvYi5s0EJSGKUWs24fg+XjbDoo0efRd18AfvvpuPvHoNpz7w54Qbc7bWDCDJxyyd8yz//fWrWLhyCAgh1ogopvOpCvmtLiKOQAq8wQDjCHKbNKIa2wahtjRBuwNCoB2BCqylU+ILVGga+SphzhI0MgFvzJB4AhVZtYN2BGFeoD2BUzFoA0GbBDIYlUVGhvwTQKGI6OkGY+j6neAHp57Jnf3vYcXLXhhh18cbrpGvAyFt39rGbbgjLcRzugjbfFQ1QQUJcUohY4MKEtxtI/j9advkFkQ2MFAJq7hPDMZVqFKIiCyphmPVSgCiVAXPRbgKEcbojG1002kHZ7iMGCna7ElHkQoivCEPVahgPIfyvBZanh7CpDzcMRehfUYWScYWKNwCyASKs30SF9pXV3Gf37HXY7/2wk8hggRZDSG2SgMqFUypjEkSWp+fgze698L4Wu/1uyXKm3jxYGn6DVSvPgMyCm8wxhksQpKANghAhCmMzCB9e81P74hwyhEitnZ41Wkpqp2OVYYNx6ggQST22usVJRf/8RcxEhDwq//cPUHy0tfeSltGEmYF8eYMcQaQkNmhGT0Jfrr0y5w+Z8sRe0/2FyICnbfXCqMOPEOpiSb2B0uWLOGuu+5q3Fdq/Jr/+c9/ni996Ut84xvfYPHixXzmM5/hmmuuYfXq1eTz+aOxu/uMJsGyn9iZTDmWyBXAditNwNKzP4lIEm5//DO7XXwiGXPnrz7OtRd9GhEloDXLzvx4I6hOlINJoXUrNtzG8unvPAwH0MSxiPqgVJfLAOi+fujrZ/pjKcxZixk9MYtbsD7S3b+LuOOhS/nwZ39HWlhrrVdnSzzZtY61pWm0uRV+UlzCu9s2sTbowRuznSRCG9whh2Ls4UhN38YO/D5F0O0wagREgqjFEHfFdrwwItE+GLtL1GMzZCSIWg2yJUS5mrgtJAkVYsjBH5DI2kR7nDOMDWcpuikKOR/fi6m0JcxYNMCOcBrGdzFCIDwHowTaFVTbJKoIOto136OJIwQhoVJFxhqvAKXtGYbbHaRjC+n127sQvSn8QWGJu6Il71Rouzxb1wvilLHdSX2GKK+odkpS/YJk2KfQoyClUX0uuR2CkdNzeF29XD1rNa9sfYS3/u6NpLyIysyE7CZF1+MxYavD9ktbeSg7jySjwcAXn78Wb4eDPwLxzJjvL1rJ3RXFVemEwET8oDSNEz07CNUuPHHrdVMecn0iel72IlYXZ5Pebid2sn0JslDFpFxkBE4Jnv7M1OuB3SsQm3jx4J4Ni/n+nQFgr83DuswHVr+B8lgaMergjlrrx6EgzbcLXZzsbeepYBZtqsSjQ7NYv2Ua31QXsnBmPye19rG13MabZvySk70+/mv0LC7IrOPSCZdH3bu4QZQsP/GDUA1YsXnPk3l9SZFpKjfptVPh6stu5q57PnpQ78mBYv2738fC/7r5kKtXFt9s7SSSsHpI1mfU1G7AE1UtxxK5MhWWtb8VtOb20X/f5bk6uQKwYv2XaiRLrSY2xt4X0nZ6i1rHN0wiWZp44aNez9atwnRQhQB4+jlUNoPIpBFK2Qm6cgX6B+kZLfJvJ13Jr89dwM1n/oDPppczUswQGzAFj8dGZqEdbF5fYiCKbTNSJUbkHJACpxChSgHGkXaZJCHJpxGJxi1ptCds7oWpZWYom7EiY4hTgsQHm80BbtkqYeqTgDI2uGUwVfvaOG8bkBJPUe2EdD/kpQTHgSjC5DMUZwtU7ODKY58kfqHDJAkkElGp4gyVMCqHcazCyh8OLGESJVAsIYWwRGCirco+SaztGyDKFYRrLY4JQkuYSAlRBFGMEALtOZiMR5z3cYcruH0Fez30PQhCzGAJ4TqImdMwrgIh8AcCRDVChAnxtDSDS2wgeH6TaZCCqYEY7UtLlOwBL3uVvU67KQcnSiBO7L5qjYki+14AqcGIX/7P3q/LTXLlxY1rL/wU5pyTEZHGLcY4I2X7nUhq55brQmJwR6qocozxFCJOao4tIMsRqX6Bqjh4IwHad9COxClHyCjBGxYYVxLmHRJfcOlrbuW+H9jzsm5Tdkfl27ilpEaESpKivWarEPyRGG/EY4mb4UfPn8XvL3x0ymM5mg1w697/XuZ/q2axdogJllM+fhtGHrqatokXDhzHYfr06bs8bozh7/7u77j++ut57WtfC8A3v/lNenp6+M///E/+8i//8kjv6n6hSbC8wHHHIzey7MyPs/TsT2JSDnf+6uOTlCg7485ffdwSKxpbuClhu2CEYMXqWxodfwArev/xCB5JE0cbk9QsNeigivjtM8gF55AeNKhQEuUVnQ8NcNnH38PYfDsY/MQb/ps/b3uYr5sL6XBKbA46+XahzDfXXsisR0ZIsh5R3iWenvAXs+7n37e+lL64086NpBLyuSpJOiQ1J8JRmu3b23HHxkO9VADumCBqAe0ajDKYkksiQCiDCGoTTAJEDLg2m8WEkiQWmKygM1MknKF476KV/LzrFH7z6Etof7qAdhzKPS6FOYIkDcY1rH/3sSnxfTFA1PzDnbGA3DYH7TqUZ6SIs4YQcAoCfwhkbYwnEjsZ4RatNzXCWnWELQ5CG9pXa6KslYNHaYEMa/YafdZ6wzgeD24/FeMavtN2HmhB4PogIWyBHee6OGUwbkzvWAted4V5nUOs3dSDzBvCeSHvOfmXANxdWMLFqYdJC5/pzgg/Hj2bNreyR3JlItYVOvFGFKlByG2NyGwYgShCd2TRnvXqPv29t/HEl/ZtfVNh+ax3A7Bi6z8c1HqaOLaw5EO3Mf/ly/jJ4tsbj31l6CX0bm/D6fPwRuy1NGoVRFpx8xPL6MiVmZsfoRy7rF89g8wWhT8CG+fNYV12FmQSfp3fwfPeNJ4rT+P5ShffEYZPT/8F7dLahOjexayLi/zvffXcrS83HuuNM6iaV2lehqwonM4//uYynr921wn0iWgQK7tRJhxJzP/3cfLiYBXNV11+M5uWpRuB2odM8i+O727EZe1v5fbhrwFYy6/2t9oGH89jxaa/m/J1K9Z/CWDKTMFJhEzdVqyJFwV2V89iNEmxiEwSZD5Xs5WLEY6D7h/kpH/yCLMdfOANb+BPrr6fVb2LafGrrA6ms+bxObSP1tZTqU0iGUOSdal0OTgVg1O0xJ5RCu1LtK/QrkRVY/z+MlFrCu3JWqe0QYUQpwWJC1rZWhpARpZUqRMrRlnLXqdqbO6KU1N158C0QTAtsdvM+EglCafl6L0oTXhaGUcl3H3Fl47Qu97EbmE0YOtaE4aIUgWV9dGeAwJkJbLjcVMLkB8ehWzNOyvREMeWRKkvU6naa379t1EIS7DElriQYQhC4BU8u4zW48s7DqKjDcJaFlvKQ6cUqhCCozC+S5RVqABa1htSgzFBh4MRgABvNMIoyYotfz/l4cpQWyIREHFt/6MIE4SYILCWduk0xhFce+GnDtpudGnqzwC4o/ofB7WeJo49LJ/1bmRHC3FHFqeSIEuhPXfDid8ZW1+KMEZVQoyjbC6VI2v2eQYJ+KUQWQ6gNQNpByMFMkzsOZoYjMwQpx3itODSV3/BKg2vPgO04dJXfwHHWAs/10Z3YhyBDBKc4TLTf93KCSe8mXk9g/z+wt0cx+y/YcWWv7e/O0cRJ3+pjE45JBmXq6747EGF3S89+5NsubYN44JRjNe1TRwGmN2qtI8WwjBkbGxs0mO+7+P7/i7Lrl27lpkzZ+L7PhdccAE333wzCxcuZP369fT29nLttddOWsdll13GAw880CRYjlscpznBdz60ayFy+2OfnnTfyKm7GQGSrM/KBz7GsrM+we2PfoplSyZ0NcYxy2e9e7cTb8u63s7tA189sB1v4rjBzgNTE0e0PTpI6cR2/OEYp5IQt2foXrWN/IndhC0OX/jSnzB8fsjPrvp7TnazvK+3gxsefCWZp1Kw8Smc6d2UZ3Ry+vyN/EG2wL25AZ7JzSSuuAhXc/XsNfxFx/08GszmK+svR446uCXwivYHJcrWu/XsQNMfELaLJAVhi8E4hqQlwXgSb0iS+JBkNO6wAi0olloodfnk8xUWuf38wcwCCy86i7Y1kuLcDOUeYQsEQFabVcJRRxghR8v4vkNeQna7wChBtUMStIH2bE0tEnATgwpsoS20wQhwizbAULsCMIikFiRaEQgtoRYiqhWUFkdQkXT9VhLlXbSy648zEGcNcc6gtkpannUoRHmWLNnErMwoa8KZaF/T2VVgU9DBv44GXJF/uqHqiowiJSM+ffoPdnuI9evs6s0zyUjDfZW5rFs9k84N0LIpxB0OoBrajlQhUFWNjBSPfeXgyBVoEisvVCQXFHhJ+2ZWVhy2Rh2sHDqVp/qnI4oO/hD4oxCnLHEtMVSH0vRFijBRDG5po+0phVcwtttaKcI2SZQX/O+GJZQLPkZLvGxIEil+9vjpLDv9Sf6o8yGqxuWHg9ewdqyLaekS35kO/11sJzJdPFhYiDaC0SiNFIZHts+i9Tc+1GrqqVQsddXKXfceXdVFnVA5WBXLoi9+CV6RqgVZc0gHo7IasfTsT3LHIzfufeFjCHV7sDq5UsfO9/eE5ad8BFI+K575LMtP/CAr1n6e5Sd8wE5IwpQNRxObiZp44WK3jUPVAKEUIpPGhJGtHXwfva0XkfJZ/PdjrHr4Epa87wm+NHMVZ6x/F+1PS/JbYkSxAtXA/i7ns4RtLqUZAq8g8EftORe3ehTmeMgIsr2hzb0IItwhg864NqheOySuQivb/OFWDKpq81m0gsQDTC13zbEXC+1glawVQ26rodJl6yHjGPRpRfRKl6gjTWGuR2WawXUTpDh2JmVe1DBWiWKEgHIZ2autdV3ab1iAIQS05DFDw4jAZrU0yJEkwcRxY3VCSIzRiPpjWlvFXiZtbxeK45PQUtp1OAo8r6bui5GjJaLZ7XaiOYgwUqLTLv5ozLTf1rIrarlCwtTIPiFYtWrXJoOl6TdwR+XbXHnVLShjwNi8IYyB0JIrdUsnhEQ4Ds5ouNs5jf1Fk1h5ASOXxXgOItKoYtWqvJIJfxPshowQCK0Rse1dkUEEgbVuFFo35sZElCDBfu+0JQFFqYqfJMjQXtNlaHDKMTJMrGIwZ/MHRVJTFdZUXLIcIkZLZJ4JaL1vFnd/4ies3fJfnDh726TDqBOSR7tx+fZHPwXAsjM+RtSx/zlKdZz60dvg5W2gayrMBLSyaswmXvj41re+xeWXXz7psU9+8pPccMMNkx674IIL+Na3vsXixYvZsWMHn/nMZ7j44ot56qmnGjksPT09k17T09PDxo0bD+fuHxIcFwTLhg0b+PSnP82qVavo7e1l5syZ/Pmf/znXX3893oSw7E2bNvGud72LVatWkU6nef3rX8+tt946aZl9xp45iOMSjbwVJRqD7asuv5m7fzHZXmPlAx8Dxi+0whhINMtP+nCjW7DOtk9Ek1x5cWHiwDR+di3ZZBE646Mzbq0bSuMUIwpzXLp/U6DnvoA33fM++i9KaH/MoV2DDA2mGsCOAbw5bTz56Hy+N6OVt3ffwykXbuN3hXnknSpvaH+AlND844bLGPzldNq2Q2pY45YSwlaFW4QoLXAqgLG2UP6IDQ4tzhZUZ2hUa4jJCeJqGu0bjKfBKLwCqH5JOJJGnVNmoWMHnC2zxhg+pY3hkwSpAfBHoDwDkqxm/r/cyoa/bFqKHBUYbQeOiUaGCf5QaAM6Y02qK01xpkfYIhCJJUncssFIcMoxIjZ27FiO8IMY7SpbGKckwkDiCtyyRkbWcq7SKZF+jI5cKl12EsNOYIBbgCQliDMCpwq5LQmFhfAH03/Hf207DxEJVEfA2d1baXfKVI1LXlYp6piWmZtYCizdw2HWSY5NcStV47Jq5BRkaCdbMIx3q0iJiDVeIUEcp40BTRwZtGUrPDoym++vO5MocohKLkYLnFBgJEQZrMovFGweaCe91aE6EwaHfDKbFf6owS1r/KEIYSAoSmQExcFWsol9bbXTI2lNaH1W8YsNL+Fu/yVo107AxHnNprJk8arbyJx1LZ5K6OtthUgiMjFGC8SIS270xTfpt+597+XEz1obBVP7DXrkfe+i9VMHb38myyFiN7l6xzuWdbyN24f+tVGPLl/w3oZqpY6J5MmKtZ+3N7QBacYJl5M+zIrVkwmyJrny4sIkoqWmZFFQm2yWDTs5ISRmaISWnwyx9Tc9vOKUd3PyhlF0yiPOe5BYmyNh7GSzU07wxhSJD5VuF6EzVNtdhLbkitdXsnktxiCqFUQcI7I+xpWAQibG1jJVjTeWgBAELePsq3Zso4hIrDWYUZYAl6FGxg6JL/FaA/74pN+xasYlFGcqZGzrl1w6wFcx1/ziOlZeftuRf9Ob2BV1wkEbRBAiwhBSvj0Ha1aPQkg7brJ3EK5jbbWieNJygJ1grllu4TiWREmEtU2aiCSpqVmsigWAcpmwrQd/KKypWyTaUzYHKLaqKltba+774Qf2eFj1QHJR24ZxJYl0wKRwYo3wXEtM1t8DR9nJ8iaa2AOMb89VNVpBRLElDMFet5VqKLMazyXWMkzEte9LZB1aiGNrrVepIpVEA6KaNBoxEAJRrOIFMe7AhFpKKaidp9qVdoxZu56jNSKobcMY4prorGMvTc7HCtzB0gG/9umbr2PJh29De7YZQCaAhoc//i5abz06lr5NHDm88Y1v5LbbJtcUu1OvLF++vHH79NNP56KLLmLRokV885vf5MILLwRA7KTAN8bs8tixiOOCYHn22WfRWvMv//IvnHDCCTz55JO87W1vo1QqceutdhCUJAkvf/nL6e7u5v7772dwcJA3velNGGP4h384sG7cvdk9HI6A+4mBo4ca9byViXksO5Mru0O9i3D5KVYquHzBe8Gd+tRZPvdvQQpWbGgW7C8GNPJZNm1FtrUg02kbDh9GOP0F0tNSlOdkSG+XdN25nq4VtsAxna0YR2LiCCqQemQ9i4dncPPa1zO6JMHvLnPh7I1oI/juyHlsqnQweO8MWjYaUsO1wrs26FWhIbvDkAzbgl8Ym7vhljVGOkQtkiStMLHEDUDGAu1LjDRoJfACaH3OUDrDoUXaKijrh+w4w9oxZHuh2imIc5r1f920BzuaMEmCqVQRjoPIpXDC2Mq8oxg/iFDlDEGnT+LXOusSGworq4ntWBKikSklkwRnxEVnPLTv4PiKxJMIDdoVRBmBtyaNUZAaBrekGZsnIYDMkEEMG6KMxCtqhIHuBUNsCjt5fkcX5GJOndnLm7ru53/HzmLdWDfvOfmuvR/gTvha72WkVESPP4Yzq0x1S47UsMIpKWTKQ2d9krSDDBLuv+NDh+Edb+KFgJe+9lZGl0xjoKUbGQp0ypAerSn/fIjy1nImPWCviWGUQSQgSwp3zGb+xCmBV7TWB95YjKpIkpQkv7lmXyMgNSiIsor8loTW523uUZKSlLsUQZvCLdvMofKjHYRlaC1AnIY459jAaB8qXUf73dp/HMpa0AiYd0cIh0oBr619wLIzPjZlHt/S827kjoc/eYg2aLFsyfXc/tRNh3SdE3H70L8CE7o/dyJXpkKdPFl+wgdYvvhDe7SZW77gvdaGx3GapMuLAI18FkBXKgjHHc/sSbS1cMqkoVJFb9lOest2jJJI18XPZTFjBUxobZJkokkFIV3FVoIuH1W11kheISE1rPF6C9Z+BhpEjghipAaRcvAKCW4JMKAijarYujfxnIZqBQMiMcTpei1s7yME3mhMlPVYOG2AkShDcbZCO9b6NMrDwtYhvnfxPx3pt7iJ3cBoAySWPNExglouSxAgosgSIo4CqcBzIQwxSYJw3XFyxZhG576pkySJzVQ1SYJwHKt61om15Uq0JWPqJGIcj5MxUoDn2fo5iDGeQ5L1qXZ6+CMRItKYtMM9P9ozsbIzRGwbo8J0ijgtURmF0NqqWhKNSGl7rC25405x2cSRxbKutyMyGUvO6Qm/4XXVSpzUSBVtyTut7XdIa7t8jfiw92vXU0dBXFOwxDXSUUp7Owzt97Gu+vJcq/hKElRJWUK+riir3wbwPUxbnrANHg2r3Ljp1fxo5hF5iw4YU9WJ+4W6Q6GxNe3clSVoTp8cHhiOKeclz/NoaWnZ79dls1lOP/101q5dy6tf/WoAent7mTFjRmOZvr6+XVQtxyKOC4Jl2bJlLFu2rHF/4cKFrF69mn/6p39qECx33nknTz/9NJs3b2bmTHvl+uIXv8ib3/xmbrrppv3+oH/6o/fy6j+YWqpXt4PYE8lyIATMVOTK0QxyrWPFM5/lqis/y907DWJ3JlRWbPq7KT2vm3jhwsQRplzBjIwhXAeULZyz632SnI8qhzU5r0IEMWKkAMUSRkgwGl0uIzdsZ0Y5pH1tK2FLlsc7TyPxYeykhNkn9NUCy7UdqNZC2NI7IrQrkJHBOKLR0Wdq3VX+qCa3URINWvZcBdZKIfEkSV6jqgoZ2pyOKFKsjYo8GsxipJRGRtZuzCgDGpzi8dF58kLGxAkQ2ZIf96UGqIaoEYGnRCMgFCmsHUHFhnQ2PKrrxW9FIisust7R5yiMq4hbU3g5hT9sJ5f9EY1R4BWs5NktaZvr0uKgQk2YV4yW0tzTdwJCGJSr+ceF/8MsladFPsjD1fkHdLy/2TSHztYS581fT2umwkhHjtFYUW3LkN/iIrRBO9KqeJpoYgqEeYk/At6oDd5MPIFbNuQ3RyS+pDjDwTjgVCE1BCoCb8zgjdU6txPr8a8qCU4xQsQax5EYJUl8harEGEeQdiSqHNlJvvrkoRL4Qx5RziHKKoSBzA77lNAQ5gVhJBAxiIy13/vvYjt/khsGprYJO9ZQrwsPlGxZ+5HrWPAPX0QYu46XXXHDIdmv7//uRv74wltsN+UUEGHMsjM/voul7ETsL2Gyp2XrFrRHExMzWOpYfuIHwZjGc3vLcWnihYd6jWGSBIS01zEhEVJYG6a4NpmtpM2EA0wYYvorjYBuEolONCIIcKoBaiyPCO1EuG7NEnWk7UScNuP2T8ZAGCKiCHdEoQK3Fnpf6/w3BqdkSClBnLZWpkKDSajZnVqve+0KZGhA2vuj1TS/GD0BJwJVsVYtKhCsHT4OmewXGBr1rNEYLRG1vAgThvbcM+MWYEIpqy6p2dYBmCiCcELWSg0itja4pj6xXFeyRNE4uQLjpAzUJqlrE8+1SWRvOGz8jo+clKE0S9D6vMApa9zC/itMVCls3JaJteE1jkLnUghHIsIUxlMkrQduT9TEiwPCcex5Wlc+1XOI6gqRuKZaqdkoUyPx0BPyWbQeJ1yS2vcrisbXCRMsxybMYMsJ3x+prDVkHUphHGVVM4DJ2nO5fbXhD+77K7x0xPxvfo4Nbzq2G+KWn/ABTNrj9icOrEnmqc9dx5KP3EaSstm3Kx/4GFee01SvNDE1giDgmWee4dJLL2XBggVMnz6dlStXcvbZZwM22+Wee+7hc5/73FHe073juCBYdofR0VE6Ojoa93/1q19x2mmnNcgVgKVLlxIEAb/97W+54oorDun2D7VyZW+okyuHU+GyL7h71UdYfpLdfsNSIeXv0gG4r52ETbxwYJLEBhRS87CWAlOpwPAIUilEWyt6ekdNwm7Jl8bgtFbAJFGMkoK01vhZn+xmh5GTMzgdVbZs6WTe2hhvMMA4giRlu/jckQpIiRGCJOdihMQNNVoJkpQNDE0PaFJDNvwTrK2CSATFFjsI1V5tkq/k8evqfJ4oz6EyksYxgrANwE5KumO7PfQmjgJ0pQKbtyFbctZXumY9IIyHjLTNNTQGGSbWgiOpDxyNPU8ndDyJOAYZ2EGotP7PSkr8lIOMrCUCQhCmJKlhYyXPkc108cZi3OGAMJ8jChzCxCEOHCg69CY+sxSc7qU5c+59B3Sc6/74ehbfdBu37liKcDSOgeo0G0RulEe2N66pBF54FkBNHBpc+OdfQiWGlk0JqlqbwJECpxzjjFRAa9xCjjijcEqxJU0yqjYRp4jT1oImNZLgFiLUUMl28wE4Do7rWH9rY2wn7cQJnJQPSiJLAbKSxhtViESjXWkVjELgFiWpIYk/HGEcQWm6x+f+4U+4sQueeZvtsN62dSZfH3kJ1y/56SF9b/ZGKuwPVq388EFnsSz4cXR46ssoxnjulE/v03twCPsL6uRK3abraGFnQgWYNFFZR7OmfXGiQZiQ2DbcJMFEMcJ17ATfBAsZhLTLgW0aChNEHCGp1RjGQDqFznrIKLENH1E03nFdJ1yUVdmqIEKnPHAkIogQUYLOpXDHQlRFYlx7/TTKkjBRTqIdYUkZBWFOoarQP5IjLrq0OWB8W/+qAIa373+HaROHEUajoxghhR0bGW2twlwHoZQlS0wVU58chgnd8jVypKbqN7UGoknBx2ZC1z7YZXWt9blmLWbiGAKrcBHplD1PwxgRJwhjybnSdMnjXzqwVvQ7fnsjy0/8IKnEELWnSXzbCJVkXEzOQwYJSNsc10QTU2H5jHfZcz+KGtdo4ThWZWhqcwvaNOYWhDNhurNOtmgNcdJYhhA7N6FU43uENhijbV1bh1IIlK1zwXYfCTH+XVQJIpJQqVh7spQPrkvbY4O0POez7WV5lAPnvO020kMJ93//0NmNL829iTuK3zwk61rx3BdYvvhDLJ/+zgPOhpl1dwEYz4cW2uxp8SYOAsdSyP2+4v3vfz+vfOUrmTt3Ln19fXzmM59hbGyMN73pTQgh+Nu//VtuvvlmTjzxRE488URuvvlmMpkMr3/964/2ru8VxyXBsm7dOv7hH/6BL37xi43Hent7d5EMtbe343leIyhndwiCgCAYZ6rHxvY+gzpxAL2ngfDhGCSvutsO4GWoD6ui5doLP8Wdv959uFydWFm++EOsWPM5Vqw59pnEJo4MdBQjXacxuJwIoRTSc8FxMJ6LyaYQ1cAOIiYMYpOhYWSSICtZ9KxOqu2CqOChxhyqbSCD2iSRABVoRKwxjvVplKHtRJGhRglQoUJGijhtg+39MYOqaNv5Zxzi7Q5GQHE2CCNwMxFDcY7BMIPKREQdAlmR1hJnuJbx0sQxAxNHmGpg86B9HzwX49hMknrnpxwtW3l3zf5Aj46hK1Vk3bdaSITn1opq2ehKlWFIqljBT7noXIo456KV/ckUibBeu5HGLQTI4RK5tEPvmEefl4eCQ36d4m1PvIF/Oe3/csG89Qd1nAt+OMaOC1sI2kBVbYe/jO18jzAgQ33QxPvScz7JHb/duyXDsta/4PbRfz+obTVxeLHsjI+BMei0jwxjUjNyyFDjbxqqdV7XOuyCEEYLIAXecAEv5Y93xyqJacni9uQIWxxUReMPVFEDY1AqjQ8oZQSug/B9O0itqcN0oYjwPFv0p3xMyrU5A5UQUY1RcYJxFLjKBvsCslSFOMFfHTNyyRxSw4LTv/xXdF+9lT+d/TBPF2fw/z17Je9s23JIFC3XXPIZVu4DsXDt+Z/ar7Ddg7GPnfi6n/7ovbS27rtNyp7q2RVrP8/yU3dfMy478+NgzF5tIQ60k3FPWLH2841a8nBi6bk3cMdvbtjt9mGc6DmaZE8TxyCMrhEnk8kWIYXtdk4SjNYIKTF1VYE29nVYdUlSKiNrCgTR2W5r1MRgXMfWLvXO6jiy11ApGh3WMogwsUBUQggtWUPGA+HZiT9jLCGeko0Q4SRlVdxBay1bruIgK4qwxqeEbQZVFTijzaaMYwETVdn2vFE1yzBqjWpV28AgJSaKG+dWbYFJxEz9sfptI+T4+dSw/6rZghmBEONMhqk3RtRIRLwEESW2E79coW11CSOyPPz1g1PzmYEhRJBDeQ4ykDavyBiMI0kcx+YH7UFteahxMBPITRx+LO9+h70hBSasXSNrtmD1pk6buRLbcxjGvy81otEQNMZ4wnMbJIupjQvHlYeJJbzrpHft8cZ2lLL2fYCQzrgTQt0aTAhIpF1nEDZqYpHLIqIIVQmZtUpTnpMjyghUaLjwz77Ir//j4L2zlrX+xT6TK/tKxJiUi6h6e5wT3BN2rpt/cM9HaG09uCakJl442LJlC3/6p3/KwMAA3d3dXHjhhfz6179m3rx5AHzwgx+kUqnwzne+k+HhYS644ALuvPNO8vn8Ud7zvUMYc/QorxtuuIEbb9zz4PHhhx/m3HPPbdzftm0bl112GZdddhlf+9rXGo+//e1vZ+PGjdxxxx2TXu95Ht/61rf4kz/5k/3ah9HR0T3aih2O/JV9RX3bR8I27GgrZpo4PtAYHGCJlPGBKJMel/k8oqsDk/FtANxwgXhb7+QBA6ByOURXJ9UTuhk5wUOFhtIMgT8MLZttWLlTinEKASKMMb4tmEzNskZWI0gMxlUYVxJnXbQvkYHGKdkcjso0n+IsRdAGYash6Y6YP7sfJTXPb+tGuQlSGvLZKuWqR7y6hbUfvu5wv5VN7CN2PudURztks+jWLDjW1kOOlmwXUU06bqKIZHh01wFq46ZAeF6jE0koZe93tJG0ZojafZKURIYGVU1IUgoZa9zhKiOntDC0ROANQ9gObWsMUVbw6D8c/Dmz9NwbGDm1BRnZn+ugRRJlIdNvyPaGiMRw96qPHPD6rz3/U6BEI6erieMDS8/+JHc8ciPLe/4K8jmSjjxqaz+kUyAEuiWNLFTRLVbhJftGLNHoOBDHmFK50Y3d8GFXEpFKjXu3T+uwuUVjJagGdoALk0KfcRT4nvWHNxoqVZLBIWQ6jUinrE91ysekPfuaIIbRsUZHN1FsB8z1Qa02VE6ahvYEYU4SpwTlGYLyoojvXfWPnOPZ9Rwp27DVm2cy23FJC7+xzasuvxlhOKw12NjYGK2trXutR+s40Hr2WMCRUrJcc/FnWPnAxw77dpo4vjGxvmhYNU2EkEjPswHj9Um2xDYLmSTZZXnpp5C5LGZaJ8IYklwKkSTISmSvf5UqBKHtvk6nbQ6FkuMKmXLFqg9cF3IZdNa3NqiAkZKo1SPOSIwUxGmr1o4ygvIMm3nlD0JlhkHNKjOtrcC2Z6ex/t2H1hC/OVF9cNj5nBNKWaJkwu/ixPOqTuTtMt7aqaadtM4aMShqTgIoOWHdBuE4lrgLI0Q2Y5dxHXv+ScmK7V856ONc1v5WRMrHdLQ1VJHGcUharI2zDGJEYg4qE+xQdvI3cWSxrOUt4wH1SWIbeCYSgWE4PqZrECxyXPElReM/Qo6f44mG+hivlks0ySKvvg0lx78fYN01SmUApOeNW0O6DqJmLW3KVq1CXSlTV4dJ0VBzi2ymkd1ifA+TdolzHsOnpBk6M2HDOw6dkmVvuOCNX6IwW5B7WT8PLbuZZe1vxUTRbr8ze8ru21/sb03bxN6xatUqXvGKP+KiC4+NgJtfPvA5fv7zFVx00UVHe1eOKo6qCPOv//qveeaZZ/b4d9pppzWW37ZtG1dccQUXXXQRX/3qVyeta/r06bsoVYaHh4miaI9hOB/5yEcYHR1t/G3evHmv+33lVUeXfa0TO0cik2XV3R/e6/EuP+UjLD/lwCf3mnhhYXfkSv1xU6naSTolEJGV1dbl8PU/6adsYaOt139uW0xua0zr85rUiEFVNU4lQVVjuw6AxKB9hzjjol3bnSXiGBlEyCDGKUU4hQinFCESjZHglBPcoiE1CJltAn+jx4ZnZ7Dht7Pxn0sRD6UIh1MAtGUraOf4k1++WGCShHhgCKIIkdiuOzk8BoVizaM6avzfZaLE6MafSRJ0NUBXqpggsOdsGMLoGCJKMFLgD4aoSoz2JMWZDqMLfKo9GcrTBGFXTJKB/EbI9CcIDSd84eCsZa698FOMntxC7AtSgzGpoRgEGMfmwMggmRzwuA9YfsIHds0USJrn9/GEpWd/EhlE1ipBGyiWbPim1pi+AczgsB3MlSvIgVGr5DKmEdapC0WSYhEdhjY/II4x1cB2yxaKmGqAHh1D9A7Clh3ogSF0sTQehJvocfuEep+O7za6/xpEpTaYSsV2rfYNIYbGYGSUuH+QeGAI3T+IHhrBDI3YScZqADoh/dwAqe0V8hurtK2tMOvnJeZ/Fz618ZWN92DZGXueKK/bmR4sTpqzjbSwkz+6d/Gk5666/OZDso1DgT3Vs8tnvGvK1y07/fojsXt7xJFSjqx84GNc/bKplTjLT/ygtQ1rook6dq4Zao+ZOLKd/rCLTbJQyk7YCYlwLFlijLZqgDhBVkMbSltXr0zsoq5vUwg7OWjMeO6LMRBEiEqECGrd1Y5AxhoVGkRiUIGx+YFjhtxmaH0O0gOG9A5B3Jumd7AVp3QYhv+7sdZr4gBRP7/qtV3t/DDaNP7sYrup23aqaeuvayxft+9UtZzCqPabrmyzhPB9O1HsurZ5olJtNFYsP2H/Qu13xrKOt1nLJMdBBCGiGlmrPGic37Iaj+e37SOW5t7E0uwbD2rfmji6WNb+Vpbm3mQJ6zr5YYytSYNgnEyp2XvVr5d1olGH4SSCu3G7rswyGhPV6tza+kwUj3+f6tf5eibWhOuZTPmWXKkrw5LErqca2Ma9YomkVMaUa3+V6nidXCOKTKForXWrAaJQQvYO4W0ZRoYG4+k91mh17Msy+4IHv/VeyrM0F/VYd4W6hdqylrfssuyhIleaOMwwx8hfE8BRtgjr6uqiq2vfQva2bt3KFVdcwTnnnMPXv/51pJxcHF500UXcdNNNbN++nRkzZgA2+N73fc4555wp1+v7Pr7v79d+C21sYXwEcTRD7vemYFnxzGcn3a9PahjPyjEPlb95E8c/TBxBGBJ2ZYiyeXLrRmG7JUZFfWLO921HdaWKs2WAbLkFnXYBn8QXNfl4YjM1jME4Dqhxz95JxIvWiAhUrJGqLp8X4DskKYk/qvEKNig0ykmKJQmy5nozpnCqUNrWxeDciA3vb4bcHkuYZKtQg6lUEI6iEWQPkzufpiD/Jq+kJinXsuFpasIIOThKenjMKgPa8rYLNZUnzElEYvBHDTIVU50uaH1OkniCMGfzfQ4Uyxe8l/CkHsbmCdwS+NvH0LkUUdazlncjEc5YcEBh0bptXGK7P/ZHTRx9LOt6OzKXtbZ4LXmMpxBhghyrgO9ZgqRYQm3qBSnRg8PWBs/z7KByYudfbWBah3DccZsEx7FZRxPCPU1t8Clg3K8aGoSLXYmwkzRxjC6XLYFTs8iRrS3oseL4tivWd1Ea3bAuEa4DUYwCdC5t87qqEc6QYNu3F0LtdP/Znd9l+UnxeB7cYYScvqZBrujexaz8b/vYVZffbEkWIbj750e30WSP9aw7df6KOIJ2LHUsP+nDR+Rz2x3uundqQml3RM/OhEvTRqwJsBN7wmiEl0J4LqZcmVRj1K+NwrWKAVMNEJVqQ2Eoarlx6MRe+2TNsqme52IMVEOrwtUTBp1RhFASlLWjMVKQuHayXAUGFYBr6sSLtBEBGlLDmnSfpDQrzTOfOvRq7EOhbngxY3c1LaZGvk3VRLM78m+q5Uz9vLKTzyJkPKvFdWuTwcl4gHcUQUseSpUa2acOikRb1vIWq2hNpy2ZE0W24cN1rNuAFNaVoFTl9v28xtYVBXU01SvHF5Zm39hosgTs2L6eF5Qk6DBEOG7N1tlahdWVKvZ8rq1o4m2wHspGAMm41WMcjT9f//6InQjn3RDmRugaUZOga1Z9QilkJtNYV72WFo476bUo1WjyE0JYBXkcI6KI9mfLDLzU4+nPzGN59ztY0f/PB/FO7js2vOt9nH/7R7n1maVs+bcLeeJVN7Ks9S9Y1vE2kILbB76695U00UQTu8VxESO2bds2Lr/8cubMmcOtt95Kf38/vb29kxQr1157LaeeeipveMMbeOSRR7j77rt5//vfz9ve9rZDLkO7++cfOeID6Z3Jlasv233X5MEGrO4rlp05biVzzcWf4ZqLxxnuFatvsSz/Th0ATTRhkgRclyinKM5SVGfkxgsqIS254nu2OySKMeUyon8YNVDA7y2R6g9QlcgOTI3BeJZcAZDVBHeoghyr1kIZa8HmWiPCGFmxIaEitv6+qqpxSwn+aExqMMSpGJuxUhuHpAcM+c0x3Y8mzLy96VV9zMNoTLGE7huwA0IpIZu21kWOqk1k7Ed7hZnQVRrHttO+f5B401Z45jnEjkEyz42QGowpzPEIWgXO5hSZzYriLMH2SyTVsyuk5u0912tKhBHuWER2uyG7TSNGiqjBIulBgz9iz/kDwYrnvsAdj+x7tkMTxwaW5t5kO/xKFQhCdMYn7szZJ+ukYhAic1lURxu6VCYZGEQHVZJiCV2pWLKjps7aLSZO2MS1wPp6Ryw0rEQwxl6768GilQqUylD3nTYGXanYbU7oNEyGR3e7bVNTuuhiyS5TrkCliixWEKWqPbaRMabdtZWzb/4rPtp3Bou//Q5IEq69cFeCcfniDx3yCfydLcl072Lu/kWtNjvGS50Vm/5u6ueOQo7exM9m+eIP7XaZ5bPefUT2ZdmSccJl+Qkf2KVLu0moNLFb1PNZpADXtfVr3daphvqkoal3M9fJ7NjWpQ3iRAhrzdiatwQM2OUjq741UTx+7dV6PGA51shII2ODCnVD4e0WI2Soccr2ORkb/OGI1ucDpv1mwgRjE8c06t31k5T+9fNrX8mV3a0zDBtqbV2pootW7W3i2JIvmTSkfPu7m/IRHW2YjhZrN3qgx1LPdjH2vKYaYKpVmy0URKhqjCwG4+f2fuD20X9vTggfh1ia+jOWpv6spiSpNdkYU1Ox1JQsQtrmoFoYva5UMXFkyYyaLdiUBCQTVF51VctOKrD6cxPtxEwUN9TaRuvG/ugwbGy3vu6kWNrdRu0xhaGtgatBQ4loosgqwqIYU6niPLeVlsdd5v5EYMKQZe1v3e1xLOt6+yEnsR9adjO9YRt/ufg+vrbmUm4f/ffxTNImji8Yc2z8NQEc5QyWfcU3vvEN3vKWXWVrABN3f9OmTbzzne9k1apVpNNpXv/613Prrbful0LlheQPeNUVn20QQUdTAdPECx+7dF3tAeLc01n7hiyiKyD/qzQzv7vWymmVsn7W9cJGKRtG53m2+zblWd9pJSx5EmtEENlQ80rYIPSM64AEEdbtE5S9n9TscaqB9UDNpog6MmhXEuUUUVYSZQVBuw0RTw1Casjw4LeaypVjGTufe0IpZM5OOpsJnfkAuhrs26BUSGQ9uFvKxmC03rGkeqZRXTLLEnGbRu0Ec9rDuArtKTZfnUWePUryeCvZbRC0wlOf2/+O0eUL30+woIvKNJfcxgrOlgFQEt2RR6dcRKIPKHiwieMT16g/Bmh4SwvPtYPRMMRog/Q8ZFsL5HPoTVsmKVP2iAmhuFM+r5TtsHYcRC5rr9FS2mtqraFCjxas+kQpktHRgzvYWkehdB07uK5NKjbCf2uPR2ctYmy+f9DBuwcC3buYvqTIG173TlY+8DGuuvzmccLlEOBg69EXUj0Lk1Uvy0/9KCuePnbs2Zp4YWFfa1qVy8GC2RjPQfYOYYolSzZDQ+FXnxgEkPk85HPgqPFaNajZf0mJSbkYVyGHilbZkuiGPZgJI3vNr+daQSPwWadddNojzjoIbUhciXFs2H2UkeS2WMXi0VbZNbF37HzuydpnPcnGiH1UZNfQUAfUFCyTagMhkekUsr3NEnrlCYqVJEG0t2La8ojRoh0/ue4eCfupsDT3JmQ+ZxUsYdhQJzSyK3wfdMKKDbft97qbOD4xqaa1NxrntajNAQilrBJ6P873+rr2/PT4NkVd/VQnXaQlO+rfmYmkykGhnq1UIzDqdmbCcW1NO30aSVv2qLgKvPSuD7K1t52T3r2O24e/dljUNC+0mvRYQCOD5fxjY67ql7/+fDODhaNsEbavePOb38yb3/zmvS43d+5cfvrTnx7+HTpOMLGQnkiu1NUvR4JwueaSz9iJF0cc0omHJo5fFBdkccck2WfTuEUDuSwCMHFsPf6FDaETrmMn8FK+LfbjxHb9aawSJbDdJSKoFUSuwqQ9tFcbtDrJuEZPCExikHHS6Bg0UuKMVNFZGw4qDKQHNflNCakdJQbPbiU5CHunJo4edKk8LgOfEBYqpJgsH58CjWDRuh2S5yFrajyZThMtmk6UVXiFmKQlVSPvNKIagp8hNQTxL1tpX58QtErc8oG3t0d5hYwMzkh5fJKmHCIrEdqf2vaniRcexAT/Z5jg2V8b+Omgiu4LEYPD+zcYNRoYVxLubJsgpKgpuqzFrghtp2s9EFegGoGgO5OaB4xaR6HRxlrrKDVuB1GfaEoSvCc30rUuxdLzbkRUQ0QpYMXztx6afdgL5PQ1TAdWPmDvN2ucw4uJqpeJ5MrhJFuWn/KRSTa4yxd/yOZpuKrpTf4CxX41DKVTUA4QAyO2HnUca1sbW8WJSWrXw4nWTJUKZDPgSIyUthloggWYCGOrunXGC1AjBKJUhnQKI62VrahGdju1WlkkGm+wQtSaotrlkHjQ+lyV/OMjMPb/t/fncXJXdb74/zrns1VV70kn3WkSCJvsiwaFAIokZukBxHEuV0QdcJS5DMMoizogyCaRKAFURoZxGa56nYHrV8fxqp1FwiKLCgEVwR+CBBIggay9VtdnOef3x6mqruqu7q5eP1Xdr+fj0Y+kq6qrTn26uup9Pu9z3u9uZI4/aJKOEE2nXDkiAKOeNC5p8M9k+wLlTzDbNmRjg3nN+f5AKbDcAtYghNjTaZIrtjXQFHw8LMsslMg1BRdiYLW8igDJlfOz0UC8OvDa0mH2/TJXCmyyHzO3WEea3Sa5hUsDFVhkPtaelOTKwANDRwNxdW5HmYgiyF17YHV2mV4rySTUW7umrdzdo+/L7tT9qPlnukqVEc1EVZFgoclVqtzYVCVbNj02chNawDRx5irs2cFumQ+/TkAGph60221W/ouMb+qS+gG0UmbS6pjSM7na1BACQiloSNOQO7viD6EPeB60a0FbApCA8mzAsyEiDZlroChhtv/W1yJqSCJK2JB+hKDWxq9+MrHGjVRBhBxSY1dHKCuxUnw/In/SWNi2WTkqJSAl+ue6sAIN7/UuhE0pZOZ5sHtNWQO/3kbNTgUtAeUICGV6+oxHx8vr0H7UNSa52NNrTjSnklC1CURJG1GSH+GzxUr3AgBmIipdt/ikSyGtoMfYINb8mC5a0QetBiacQL65p3Bd8z4aAiqdNokPPwBck+wre9fM2AeYn4wWJppUTy9EJgPs2QtRWwM9f87UPD5VrKlMtgzuMThaObX2wz/HkmKzhMztrs41oQfMLj/Lgo4GvQdbEkC2/E0QmJ4sTnYRhyXzCRbhh6Ysk7TyTe61Y5nFFDUeRBSZnxMCUgjo+iQy81KIEqYXi5VRyDRa3Hk9kxR+zo/3RO+gJEs+qSEFZDJpEn6ZjKkmkI13dRiauNcPzOe/Jc1OE2t81eU39HzXlD8SwvSAy500d2xTYdOxgQRXtc0WuZg2X55ruHh2Avm8cuWSOEKahUQo3GEyRQqTRvlkSzpterVECiLjQy5ombLHp5lFVEo9qkoZR8yqogcLTa24S4cNTq6sPpHJlplqz6pDUfNGiIaXNew+BXefDxEqoDYFNDUAhyyCOGSROVmX8c2kMwiBMIK2BHR2UqrqE1B1Ceika1b02Ra0a0NbFrQlEdTY8BscKEdCuTZUwkFU4yKYVwu/pQ5BvYvIk8g0e3hofen671SdipIr+QtVcR+JMggpTWKlJmXqos9pBBrrAaVQs7UbItQI59RAOSbhF9TaCJMmyRe5QFAjEKQEtAU8fc8EGsqm+6H37Yfa32VKlXV2Qe7rgVDAgxv42p11CkpnTarBfxtCFp+UKexhZNuAUlB9fYh6ehH19CDauw8q0z+5Yxo8rlyT0oKJqQ6D/K4ZHYTAth1oP+LqyR8HVYW4y4aVSq60H3j59A+EppycO8f0kujuGXh/VGbhjymVKCFSKci6uuwu2uyOQC+7KzsyfQTDOTVQDSloN9srLlJmNb/W0LaESrnoX5BEz+Ia+HNT8JsSyDQn0Le4Ab2L65CZYyNMSYQpifQ8G7/+wVUxHxmqWLlEiWVKjArPg9YK6OkFpAVRVwvhuWZBm52tIuBlE4muCyS8iZXwiiLodL8paxoGZpFEf8YkXIIw9vdvmkaDd2WNZ3dWOfc/GiFNE/psXxeV65tSai45KcPSJcemlTY9YvzA/H1aFvSbu4p6xBFRdeDyV6o46383tGFtTvviK1iftUpZc5oQJgSUJ5HcFcLp9GH1mrrQ2nMQNiSQmeNCRBqpVwDk6vlnJ6qQ0pRUcCSUZ0E40jT3BKA8B9qRJgljSyhXQAbmJJzf6EK5ZieBCDWEMtvSH+r4XGzHgibPJvXDMZX0KJdWKruqzjGvwTB7wqMvDbmnE3JOEm+8O4W6bQrevggQMDuoAESuQJgQEBHgpCe4nKM/u6pQK+ggu3q/sxu2z0a1s0quNBambpdIfgVfridLYV+WbHNQ+CbxrTOZ4VcdTsGYtMr1ibGGPKaOonyPeVFbM+nN7YkmYjz9CqiySdcdKHeUa2AvcjsABeA6kJZl+krkSyxm37fC0JRdCi1o2Ig8C1qaIo0i0qY/S20S2rWhPAf+XA+ZBgsy1EjPdxA5gIwAGWpAA1qASZUZZKpi2iLanMwV2X8BQKSS8I9og7OrB2J/j1ngJqWJgS1pXr/9mYk9rFLFuwJyzcKjCMhM7L6pik1xHAlgyA5t87DZsrNBOOWPn33A4kSSkBAWhu5Sy+6IFHW16HhuDVY3/z3W7/7m9IyRiCaMO1ioIqw8ZfikSiEmV6qX6upBy+adkBkFKxNBZgITwEcKUAoiULB7I9i9EbRlmTJhtg2kklC5yWa2DJiITJIk8iwEc1MIGj2TSPEsRJ7pWeHu8yEDBVgCOlfeRmnISDO5QiMyzRWzpQp830wq0/1AfwYi4QEA0vMdhClA2QJRQsKvleg6yEZvqwW7X8PrVHj6366YcKmOjp13QwdhvhmijiKodJon7WaRVYmPTP7qvnIIUXDSMLt7xPcRdXdD+f7AhHU6FCSYhuyuQfYETRgCQmDVO2+avnERDdJ+MMszzXQqCKH2ZntdKZ2NZaOBpt2596ogADK+2Q3ruSZ+SCUHFg1FGlZ/CBFpKNdG0FyDsG0O/Pl16G+tQVDvQNkCVr9GYk8ILQCdW/AdATLQTK7QiHL9BwFkX6PKvD7D0JxYzu5WiZrrENTZ0AnX7FpxHaCuxpzwzfjoeHkdOrZ/bUJj2dDz3YG+E9mv3Lh4Ann2yJcHm0Za6SG7ZUxfzmjKdqsMURi3DkoqFcbTuXkeogjth38O/tsPmZ7xUfXSujK+WCMMAHewUIVgD5aZT4cB9N59EHoutBBQCQcSMA0+tYYIFezeANCA0NrUBM7Wn9aOBZWwzO4UW0KGCloIBPU27N5s4+9QQ0Qa2sXAfUTa7JTxLChbQihg8yaWj6FRWJapPZ1rVhsE5kSz45gVqQkPQgF2HxDUCthpcyJaS+B3d02gHNgwNvr/AQBYYX0Im6L7J/3+qfKZGs1T0+wzTytAONn/aohImROBQgCWgACg/IImpFNYn3pgPDK/o6bk4xVMWLVSELaFrsNqp3ZcRCPo2HpH3EOgqaYVtB/kF1wgW/4rn2QR2fcrxzYlwSzL7GTJll3Snp2NbbOJa0sgqHOgHAG3K4SIFCzf7GiJkmb3igg1EvsjhJ7ILzR67P/7TEwHgKpGwYKEfNNuZGMKS2aTfilEnuk7ETR6cIMIwp+akl0bg/sAmHi28HuaZYTM7k6enhOyQxYETcMO7CEKdrCYXl1Rcf/DorGZE9aqIQURTPM4iWhCuIOFaILaF34q7iGM20r3Aqx0zp+2xxP19YDWsLt9iEiZ/itRBNEfwOrph723FzJtVpLopAuVcKE8B0JrSD8CNBDWWAhqbWhboL9RQnnZUmGZyPRccQSEBrRlAhQZmN0xItL5lX9EwxJyoA56FEEXlgDR2pwgEQI129No+IsCNKAcwO2OULNzaoNgJldmpw39PzD/mY5dLINLFQxq1pxvjjuNcpPQ/PeDVr/mVugKKaHrUth/GN/oicajfdGn4x7CuK1KfCR/0nY6CNeBENIkVJTKN6rXubghDE2DcKVMcsU1vS2gFEQmhAgVwloHQb0LbUtkGi30z7EQuRLSV7D6QmghAK1hZUveyoyCndH5ErhEI8qeRM7tgB58nZASIlsCzNmXhrc7Ay1MAm/wZ/9k2xTdz5h2lsotGptqQxIX2b+Bostj2B2e67eSG0s+ni1YUAQAcBz4c5LF5XqJBhEapgx+BXyRwR0sRBPU8drX4x7CuE1XkAOYmtU9x7fA6Y4g+31TBiyIBiag2suWUpCIGlKIkha0EJChguw3tYKhNZQFU/bLshCmBDINFkSoIX1zslv6ZieLskX+ZDhgVgI+uJG7V2aiSa1ZXVCGSyS8fG11LRVEGJqVqpaETAeo2xoh9aaTXX1qw69lEExTS1jWwE6WKVp9p6MoO+mTACKIgjrpU75rZchgss9RD/O3pRV0BDMxjSLI3gyUM22jI5pRJloCKE75RPR0EBIymcy/J+Ya2GuVLb+UXamsVWhKi3qu6a1iCYhQQTsWohoXfr1t+q/4Ev1NElECcHptyCC7g1ACVsbEtIApSQqlIUPgkZ9+dvqeL02rSYtpda5/mfm3qLG4Vub1GgQQGR9CStj9AaxuG6I/yJZ7IZpa+VhzunaTZP8mCr+fVvn+LzKfXBlyXQQIIaH7+yH9CIJ/ikRVhcv8iEbRfgi34I+FsKySK0LEkYfC7Qrhbd8HESrIvmxfi1zt/IyfbaZoQbmmFJjyJMKEKa0gezOmd0uokZ5roXuhhSjbJkPbAto2JRPsdAQrEwFSmF0sALQ0159xzm3TeSioSukwgM5koDq7oLN1cPO7WjIZ83q1JZRrmWSeIxGkJMD8Ck2RopOHU7jirrDXT+GXyvUBmk5Clvw8Kawpn9/NEkWmnnxvLxY87uOIL7JfG1EpK05fE/cQqkqp9yCrJmV2qWQbc2uVPVmt9UC/qNyJu1yvQQAq6UHVJqBSLsIaB8oBeg6Q2HukhcwcQGZbAShHQHkmvrB7A9h9odnJHer8KtF3//W6aXn+VOVyPU8G7QQVnmd6DfrZZIoloV0LyCbz4HANLk2dwgWeQoopiWvzr/fBfX9yMe40lSfLy5Xry5XsG/T4hWPUYQD4Adxte2Hv68MZf/WV6R0rEY0bEyw0rNXHXRv3ECpCx8ucxIxk8Cor4bolV4SIvgzsbt80De9LmxPVvjmRrcPQnMi2LSCIYHdl4HQHsHtDWBmFyLMQ1SWgLdNHRVsANFCzUyG5K4DdHUBmIlN2LBooCSZDBaE0tC2gXL7dUfmKTixnMqZcmO+bK8MIsqcfQpn66GHKgp1WqNkRxjtomtE2+v+RTyyM2GB+siaqWg1fXmSa5Cagw02EB8qDZRMufoDkC29C8E+RBll9/HVxD6EibHqUsf1wSu0aKBXT6nxZsEENXge/T+Xep4MACELAEgjrXAQNHpQtoKVA5JoNerXbNRq2hkjsDcxCof4IIjK9V0QYQfoK0o+KGt0TlSX7WV6Y/NPZ+Rdcx8zLunrMTinHgqpPQnncCkpTa2Nw39SXnc3vglZDY9qxxrUFyZGpUBjLAtnPme4eQAiI6U4GUXWJu7l9vsk9ASwRRiNY/yxXudEYZLecq/5MyavV6zsg/blAxofuS0P7AaCVaQCa622R7odQLkTGh4wiwHEQzq9HUGtDOQ60FFC2QM2bEezeCHY6gsyEpr+KEIA0pcC0JSB882YfJWyzg0WwpMJMNqllwnLyZRS02ZwipXmdAkBPHyxhyn04+zMIGj2EqenvT0Gzx6rkx/KNQVWgh070ChpoVqVRxl7Yc2XYu5g3F2+d0Yr573ljUodG1W/9H26JewhUTUaIabXvD5QCi4ZPAJsba2g/gOjphW5pQFhjmySJZfqr1L1merg5XaFZKKTUQEwLQCgFLSVEGAG2DaE0hBJ45KfcXT+TTXpMW9DUW1gWkN3hL4Q0uz+DEMK2IHQCIq2h6hKT99hEJaxKfswksKMIephzBxNqRj/ZC4PGEmNPQiwuPA/6gPnYeXoTLH/Cd0dE06SKZ+JEFLfChqL5k17DBDQqnUb0+g5Eu/dA9fWZMkxKQ7guRE0KorYG8FyzLd2yANuGTjgIa2wEtRYyc2z4jRaEBtz9IZyeMF+XGlpDOxJR0oFyLdN3JTJ1q4U2SZf8bWnG2qR+OKn3J6SA9BKQNSmIZALCdYCalCkRFobQlmkGqm1T0u6R/2YCj6bWhvT3i5pgxt2sMw6FDe7zhIRMJtB54nzsP0Lj4Lq90zae9pZ/mLbHIqKpsdI5v+j7kWJaHUVQvp/f5Vq4OlpIkT2BbQ38m41ro6SFyBWIXAFlAW63Qs1r/fB2ZSADBW0L0/NNCBPT1jhQng1YAlCADE2Deza5nx0mO6aFkJCuaxJ1UkI2NZrLszEtlIaWEtq2oO3ZEU9QvNZ33QvhupCOXVxCa4p3i4yHsKyRd4+XuD1QHKcP3qVSeHnu+QopzLmROY2IalwIBaTnTXDwZWpf9OnpeSCiGYw7WIho3AYaIZtAYrTGy7ka/sKyYC1sg04lAWUafkJKs6JPSjOhBACtYaVD2K5ECMDOaFh9EYTSZhWgFFCuiyAl4ddKRB4gFJDYr2D3KZNcCTQe/sXnpvpQUIWYjFV/IntiRLgu4DoQjmOSf+l+IAigFs5HWOvmt8M+8NDnJ2PoRCPakP4+AJiTdVKYkjPZE3qFpr2u9DQo7LlSeJlwXUAIyGQS/e84GPsPlxAR8N13fWfaxtbx5r9O22MR0dQQtjOwWjrb/2nEmFYr6AjmtnZBOSUr2zvKsSFs2/QWtM2iIWd3GiJKIPIs01Ow3+xYUZ4NZZsY2G8y8axfLxG5Jqb19mu4PQpWOsJD6/95Wo4HzSC5RRlCAlJASGn6Bu3eC1lbAzG3Cbo2iajGg/Js/PJhxrQ09fIxredC2DbU3n3m+8HN3yvEaOc48nLVD6KCnwNMEgmACkLzGZEr2Zf9GZnwIFJJIOFBzWtE6NmA0mh6IYPND1w9FU9piI7tX5uWx6FJVnl/LrNaZaWGK8z7zvhS3EMgqmj5ki2WBZFMlr0dV6ZSgOsC2dX/IlTZetaAci1oy5QCM/+XkL6C2xXB7gkhlGkqDiDbYwVwehUS+yI4vQMNQCEElCWYXJmFJrrqL9/3Idfc3rLMv54HWFZ2l5S5LZMrFAshhjYGza74G8sKu4o06HMkn/C0B9WEF9Ks8pPZY6CB/vkai9752jQNtLqsOJUlsoiGpRWEY2cXVzgQyURZMW1RD4Hce6+UJrliWSbBkkzkm4ZLX8Hp8mH1BBBhrvyXgpUOIQMFEWgT0+5VsNPZoVlA5AomV2ahSd/FApj4IVsmTGcTitq1ESUdJldo+iU8oCYJ6dj55MpwOz1iVVgibLjdNYXJTAzseilMGuU/Mwpv4zoQ9XXm80IIQCn0tiWw85Qa9La5U/q0iGhyMcEyAgYZRKPLBw7pdHm3t7NBhNYQQQSV9MwVkYbQ2f4poYIMtTmJLQCZiWD3hRCRgnIlwhoLYdKUZVIWoGyBKGHezux+DejsJLY3mqJnTbNCroGtlEBtCrqpzqxKjRSkr6AtfoTS9MuVVEBBuYIhK+sqsLxCWQqeQ36CnW1KqsMgf7l0XQjHhvZ9sxI3Mp8RmNePYxt3xjX6irbpcTZ5JxqJsG2IZBIi4ZkG4KP+QHFC25xMK3jftSwg4SKqTUB5DrRnQWZCyP7A9FZxJMI6B2GNA+VZCFMWlCsQuRJ+rYCWgPRNU3sZcokqjV9RjGBZEAnPfGUTLVGNiyjBPoI0/TpeuROqqR7C8/LJh6IdLBUSz+aTJZY1UNKshKKxF+yIFJY18DPZuFZIYcpQuy50XxoIArObZV8vhAa8Lg3JEuc0CqF1RXyREf+7FRFVPbmwzfRQGY2QkPW1QF2NWaERhACyzT5tCZXIlQYDRKQgQvNl9Yf5Zvb9c2z0tliIPAnlCIQpiUyDROgBMgIsX0OGQJSQeHADV/vNVuNe9SekCZxzTUAtU1JBOxa0lGblXyaC8KNp27JNVIrwvGyJLJlfHaejKL/6z9yoQsK8csZRarV4tvxObmIqpIDwPMgFLeayKIKQEqJ5Dl5blsKBLWPvvbL6eCYeiGa9bL8UtLVAH7QAsq525NvnYoVBJ8zMfUkg4UE31UF5DoTWUCnHxBChggjM7frakug8xIXfYCNMmoVDfr2F/jkSUUJA5GLaAAgTFbaam6bNJvXDgR2quRO15Rr82Zs7+ZsvTSSgk6bPw0Md3PFP8dCOBTGn0exKLlg8VLSTZSLxbKn+LuUkbgbdLtcDcNgSZrl+XCjRI7EgqVL4tyzmN+fjWUQKui6JnhNa0bXInOcIUuW/968+4Qtl35aIpkaFzLyJqBrlVnKoplqIVGrUQMWUebGBSJkJKADZmzHlvJKmmacINYQyiRUZZL/6Qwjf7GCJXAFlA8pGvpSYloDlDzyOsoFHf/SZqXzqVAXGmmQRtpOvkQulzYlbIfPbtWUmQNiUgvYsbPzt9VMwYqLyiMYGiJqU+SpIPkzfAMbYiLTM8pHDsu2ByajjAGEI0TIPsnU+cFAbXnt/KxpPfxPHNe3AosQYkyySoTDRbGcS1g7gWOhvqQHq6yC9xPC3L+hpkZfrM+g40HUpRLUetGdBOZaJIwpuqqVEf6OEXwdEnoByBWSoobLnzp1eDcvPlr0VwK9/cNUUPGuqFpui+4tXwZfzuVtwm/zrVSsgDKF938S3dbVQNR42PXrtFI6eaGT+HA/Bgc0D78MF8WVRUnGsSZaC0rmDY+T8ZaPEsvmd4rn39+zO6hHj2kHXDV78ZGLZ7GK+rm4g4ZmFqo316DqyET1tFuwMEHnAU9++cmzPmYhixSb3RDR+2YBEWwKqpQl4fccoNxem5FIUQXs2RCBMmlcIaNuCFoCVDgZSv1pAebbpw5IJoaWEDDUsX0BLgTBpkimAqVFtdr4Aj9/PiSgVyE0qR6GjCNDZ2tQFAbUII4jeDODYSLck8OiPmbyjmGll6lYH2RN8w1VDHPy6L/NvARg5QbnC+tDQCwtWck8mHUVmp0puhbklgWTCfIZoDW3b6D7WxxWLH8Wh7lvw9djKnKz/3c2TOl4iqkIFJ9+UJ9F7ZDOS20bo55RrGG5ZgAXoIDQ9XJIJwDMlHAFARBoQGggVwhoX2paQ6RCwBNzegZr+QY3M9xCUgUmsaAkIBfzmezzBRtk5lGVBIMo30B5RYc+IHMsk+4TrmtK3SRcbn+Cqd4qXlVEIkxYc14EIw/y5AnOlBZEN63KlYscil0TZ6P/HsLfJx7S5GDnXH2XwLpSsYXewFNBRlE3uqCG9WfJ3aVmAbQO2Bd3ZB+EHCGpa0dcCWP2ADMfwRAGs//0Xx/YDNDOwPFdFYYKFiMZNuA6gNcI6F5kGG7XPe1Aj9GLJNw13nfy2dO05gFLQEggaHEAK2J39EJFG7jxZ5GVrsloCQpkJq5ZAJAd2sEBoJleoyErn/OKGhKOd+NXKTFqFhPTsbJ8LU+pD1SahPYvJFaoIHVvvwMp33Wx2AO7emy0RJgFEAxPCUsmVEYxlx9em6H4AA5NSYVkDE87Bf2tjSOrkbl80EdUqn/QUtp1tHi2hUi6iuTXob3ZR8yeJ35+wCO9OvYzDF75R/mMREQEQdbVAGEH4IdJzzMKhmoZ6qF27S/+AViaetWBOWNckzU5uzzXxrSWQmetB+gru/gygAEggTFr5ybcITQkwILsj2zGLhbQUUEozuUJ5q5s+aXZySgkN5Essjyr3+ZlbxW/bZqW8YwOOg/V/uGUqh01UlgcevAbHfeZOLHw+u4hGFCcjciW0dGE8OcKinrFWMNgU3Y8V1oeylTncIQkUIdVAk3rbgfb9UnczVHZeKWw5UCZMabN7RQjAtqGaG6EdCzKVBIIQc7fsQ5icg30nhHjl7z87pudBRPFjgoWIxk0kPCBSiFyJ/jkWRqlYnadtCS0ltGMhqnEgfbNKRUuB3gUuvIQFb3c/AED6kenFojS0ZcHpU5CB2cGiHKB/rqlTLZTAU9++YoqeKVWr/NZyraDKDIh1FGWb03pAbQpRXRJRrYMHNl8zxaMlKp8/x4OntUluhGF+klky0SEkpOuaMgW5la9ajb9XUVYu0bLSOb9opV/+MfL9YcaQZNEKWsn8ikUIaSakiMxKP60BPwCQQM8iDzLUSLdqPPja4fja2/9zQs+HiGYp1wVshaghCb/eLObBCKuUc+VehOcN7KqrTZpFQ0JAuaZXYG+rjWSNhcSuDGQmyu/k1paEnVGQkYAWMLX2awT8OhPTOgp48l4mV8gQnptfXIAwhPD98naxFJRZyu/SkhIdr9w5peMlGqvut2WThkqbXiS5fiVKQquwoBTuQMLQlN6SkxrPrqr5WwiRfe/XCrAs6CAEdADpuhDJBKyEh6izs+z7zj2XXHye3/FoWfCbk4AC1BwPyb/sQVTroX5biGe+weQKlUHDLOCoBNxIA4A9WIhmrdUnDvSQaD/68+O6D+E4EAkPqT/vRu3rwYiT0RxThim7CkRraFtAORIi0vD2ZOD2KAR1FroPq4E/NwGZDmD1+hBBBBEoOF0h7D4FK9Cw02bXCgBs+SaTK1RsY3AfZMKDSHj5xolFhIT0EpCplPlKJrP/Jsxr1LagPQfakUyuUMU4c9WXccZffQUAIPqyScPBZQeytaVzCcZ8byEUlDyYSMPQQYTrFu8WKx7M2JryZuUmpLkvrbQ5MekHQG8fACA9V5hV4BmBP5zDUl9Es9Hq44r7R6xacsOY70PVelCNNcjM8WD5gNutB5rWD0cIwM4uxkh4UEkPUY0L5dmABhJ7fLg9Cv2NEvsPT8JKh7D6QshAQUQKdk8Eq19BRoDdb5rZi8hUFGPdfSrUsfNu8zqrr4Ooqy3+zM3JLqSQqRSs2lpYtbUmBnZsEwd7nkmubP9aPE+CqISPP/lxXPr0R1HzcsG678LSXJY0r2HXgayrg6ythTW3CXJBi/m+1N/CBMi6WgjXMY/peQAG+q9ASFOytqFuzPergtDEs46dT67AthDUWOg81ENfqwNICeVaePj/MblCVK24g4VoliqsO9/x/JfG/PNnrvwy3IXzIQITdCRf6YS2ZPGq6RJMKZlscgWACLKrri0BEWp4e3zIWhvdB7pQtkDijdwqEg2hFEQkIEMJ5QEQgNep8dv/zYkoDcOyIFwH2kc2AI8GdrVYFmR9nSnpYdtmVbzvQ2d8CNtGx9Y74h490RBammbIdk8AoRSQSpqEoFbINWMRtoMN6e9jVeIj2ND/A6yu/7g5GZjJ7g6RChuD+yZvUEJgo/8fWFV7IaA1Nvr/YcotZHePjXfym28qalkDiSGloDM+rH19mL/FwpvvSlX0qqlVS27Iry7b8MxN8Q6GaAZa/+yaou83bBnb39mSjmvR84FmpHYCdlpDCyD1ZrYPwDAxrUn8SrPb1TXlbrUtTRJYAgIC0ldI7fAR1NvYf4gNLYSJfTWy5W4VhJLQAoAwjw0Av/0uY1oqIZlANLcWsqsfwnUhlc7vzM4tqJCNDUBdLSCzJ4I7uwHbQseOb8Q8eKLSHKHwQud8ePuAcGEz7Jd9aN/Px4+yoR5QCh07voHVx12L9c+uwcpTboaWEnZoYsRN6e9P3oBsG+s7/x3th33WlCV7azc2RfebndqODZXuh5XwzPmM0ZLwQHHvliiCALI7Hy0gmYTdp5DcHSH5Zj/2njw/34urUq1658Dn64Ynx76YgWimE1qzK06hrq4uNDQ0oLOzE/X19XEPh6hivefc2yACDStQsDt9WK/vgursgs5kSgcc2VXM1ry50POaBsqE2RLayU4wAYhs3Wm/wYG2BLy9PmTGTHSVZ0PbEsqVCGptKFvgsR+y5wqNbnX9x6F9Hxv6fxD3UIgmRfsRV5tG7/0BkO43iYd0P3QmA+G6WL/v29M6ntVzLjarDoPQlCwDzK5GrSA8D1FPb3llwgrrbmd7sQys9jMlwnQQQLgu+k8+HFv/B/DqJz43Rc9qchzxxTshItO0+oXry9ttOdF4lPEsUXlO2/TP2NVVC/VSLZxewNsHtDy+H3juJaggLJ1gsSzIujqIxgaohhrohJ3fna2lBKTpw2KyKQL9c114+wNI3+xeUa4FZUtTGqzWgrYEtAU88R+MaWlk7UdcDXR1Q/elsb7z3+MeDtGkWPL3dyKxTyH1RhpRyobdE8Da9haiRfOw8dfXj34Hk6j96M9D1Xhml/hrO0zfIgDwA6h0GrKpEWrX7vJKTxfEtNJ1TTybTAA1NVANNRBhCNEfYO8prXjzNIVXLqn8Xp8H/59bAQBbP1p+dQfGpJNv8+bNOOevzsPpx30q7qEAAB7+/R148OH1WLp0adxDiRV3sBDRmK0+/jp4dQkoz0JQZ8N7pQfwg/xqvuFWdAjXAWpSJkni2RCRgvRDKOlA2ybDoqVpWu/u983qvtBMbJVrY9Nj103bc6SZZX3XvXEPgWhSdbywdqC8Y12NWR2dSmL9i1+JZTzr934LALAq+THTkN6yoIWCSCQHbjR4J8vgE5elyotlyzSIZAKorwXS/dC79wJaw8pEaPxDYgqezeR64QtX4NA77kDkaRx81+2wWtJ46X/y84wobqeddzv2H9oKmQRUEsjM0ah5HZBv7oPKLgzS4dD3KeF5EKkkdH0KwZwkhNKwe3wgVBC2NouHLAtaCkAIJPb4Zse2AKKEjQceZNlRGp+OF9bGPQSiSef0KshQo/OwFPpaBLTw8NyXvxDLWHKVPdpbL4V2bCCZABwb2Lsfsq0VCAJzrqMwZi1nAZE0cToa6tF36BzseoeDg+57A3BsyFDDe2vs5XTjsPWj1+Cw/3sLDv4/t8L2Irx4HuNZohwmWIhozHoOa0TqtT70tyXR2ypR8/sAcB0gioAgHNJcWUgBYTuQdbVAEEDuVxApz0w+HbNyTygNEZoyYNqSZuUfpPm/bb5ftmItNm+6OtbnTkRUKcZT3nGqbUh/H+0HXg5kMhBKo2PXPQCAle4FA71YtMr2VBmos60LenjJXN8kzwVqa6Aaa+A3JeDX26h75CXT/6upEe72ffj95ngSSmP1lyuvxBFfvBOZOQrRW0kc9J2v4G3f8bHpcU5MieKy7yPdSP68AXtO93HogW9i908WoeEvaUAIyNoaqO5u6IKYVnoJiGTCvDe5LkQmgNPZP1AezLNMOcZIw+r1ASEQJW1ECRsiuwNbuQKn/806PPqjyl+pTEQ0HX79g8rbvdex824AwMp33QyhFNScA/KLPdvnXWL6IgkB3dcHne7P79rWSuc/M4TtmM+MxgZELQ3Y87YavHV6hJOP/Qteef4QQAiolIvGp97EE/9ZHfEsALz0P6/D8f/vevT7DhZ/fy0O/7cImx69dvQfJJrhmGAhorK9bc2dyLQGmN9oI7VDIKgRSO5WJqCIIuh0v9kuW7CKI1c3X4cB1P4uyIY6wHEghGn0ppUyDey1NiVuLAs6ZRIrgIKINESoBlYCEhFRRevY9tUhl230/wOrm/8eiJRJxue+soQFk5B3HdPAt64Wak4tgqYEeg5wUbctg5pXuqF6eiHrTbJeJ2un70lNghe+cAUWf+N2SF/A2e/g5f9h49jP3ok/3lZe2TAimhxq59sAAEfMW4FX7QYcsXgHOvuTqHstgtUXQqfTJqYdXCJMChPvZnwIAAhDSKWhPTufWBFRZHZfaw3tOUDSBsyaIQBA5EpE7nQ/YyIiGo+Nvx1aoqxj1z1YfeL1pkdsbQqipw8IAkCZ8yI6Wx4XlgVdV4POY+Zg7zES6pgeLGnbgT/tno85TzvQNQnIPh+qPlnikSvb3Jpe7BUp+D0uXvyoh8NuuwMvfZY9xKYdO35UFCZYiKhsy1Y/jcdePwRCNaD3gCTChED91n4g3W9W+UXRkC2yhauSte8D+zvNyuQwBSQ8CN8yk1QhTFNGDxBq4K1JRApQgNQwiRyaFO0HXl7yJCgR0VQRyWT2JGQE4QfmQimgfTMpFckE9NwmqKQDf24S6WYbQUqidmcId/s+oC8NNNSZXiy2BbFnX7xPaBykLyACAW8voLsEknv4uUYUlz39Kew9xcdxyW785bcH4tBXOiHf2g/V01u6/4rSpsdUGEL39QG2DdnUCKHMSmah1EDi2HEAmIb20DCxbKggQ4kgNagcIo3bylNuBoTAxifiKSdERLNTelEdlC0gQ40gNRdaArXb0pCZECrhIDPXhdMdomehh71HC7SctAOnzHsVP3nhONQ/WIPUmxG6D28AtEZibxD30xmzRq8fnf1JoM+Cu9cyCwmIZrmqi+4ymQxOPPFECCHwu9/9rui6bdu24ZxzzkFNTQ2am5vxqU99Cn45zaeIqCx3H/AbXHHkA8jUC3QeYmHPSaFp0plOQwVhUTIlT6uiL+X70L4P3Zc2jZnDMLsDxkxKRSaE7OqH3Z2B9COzg0VrSD/EAw99fvqf9AzF5ApVg5XvujnuIdAk6tj+NejGWujmRqCx3pRXkNIkXRzbJN370ug9sBavnG1j35ESzb/rQuqpV4CubsCyoBbMg55TDyQT+fIN1eTlK66E5QNOGki9qaEFcMpHbsfSD9+OY665Eyf+051xD5Fo1qhzMlh5zPP4u/m/gt0rIPd2Qw+XXAGgowg6CKH6M+Y2ANCfAXp6TUzrB2Y1aXZXNoIIMhPCykSmFG6kYaUj/Pa7XOU7WTb++nomV6jirVz6xbiHQJPs4f/3WWxfDbz5Dhu9rRJBjYDyLEQ1LvwmF05XCPeFN7BrCfB379+EU+dtxf/76Sk49NYALb/cAQDob5RIN1t4YHP19eX6r9O+gXTGgQgF7DRg9wHH/POdOOaf78Tb1tyJg++6HYvvXhf3MGe+XMwR9xcBqMIdLJ/73OfQ1taG3//+90WXR1GEs846C/PmzcOjjz6KPXv24MILL4TWGnfddVdMoyWaWTalbXzn1dOQ2qXwxooIsIjBawAARJ5JREFUN5z+U9z96w9i7uPZSahWA/1XRmj8pqMICEOzOyUIAakA2wJgmVXMSgB+CESmXr/QGut/xxOtRLNNqW35VN3W/+EWrDrpRujaJGSkzKrv2hqTaPF9oKcPVkZhzh8ceJ0Kck83dMYslln/5r/GPPrJ4XSbf4UGZAhTg9sxLWl+dxfLhRFNl+deOQB/f/ojeHcC8Bu12XVSULqwqKcgsvErMHBZpMzubG1DhBFgScCyzPsZQggpgT7AChVUjQttCTy0/p+n7wkSUUVgEnBmalzYib49cyADwK8T2HNMAsk9CsldAdw3OpE58gCoZASlJTZsPxItT4WQO3ZBhyEe/XH19FwZTv9rtbD6BaABK2N2bGoAYa2GmJvB1gu4OJZml6pKsHR0dGDjxo340Y9+hI6OjqLrNm7ciOeffx7bt29HW1sbAOD222/HRRddhDVr1qC+vj6OIRPNKE+nF2PPo62YoxRa2vbjwX1Hwu3WAxNOYGhyBRiadBFyoNxXGBasYHagHdv0Y4k0hNTQlsD6LUyuEM1GK5d+kZPSGWjDUzcWfb/qnTchrDVNCdyXdkJEGqldIZzeCMhkgCjC+s5/j2Gkk++0/7EOXpMFJ61hZTSsjIKyBdJzLbjdcY+OaPb4+LZ3I/VnF72negD6IDMCOuWNHtNmLxNSmNtmsmXBLAuwLAgru2hIOGbRkB9AaA2dsLHpUX6eEc1GK991MxcNzUC/O+uLwFkD3x++9k5ErkSQdNGUrsPmB67G4n9bh3//41K4z6Xg7e4FAKzf/c2YRjx5jr/yTiRTEiKE2cGSNpf3LARESz9a53bGO0CiGFRNguXNN9/ExRdfjJ/85CdIpVJDrn/iiSdw7LHH5pMrALBq1SpkMhls2bIFZ5555nQOl2hGuuboX+De476INw5zcM3Bj+H/vrEEid2mZqiZaGZvWDD5zE1MhbTzJcQGGt+HEK4DHQRYv+Mb0/58iKiyMbkyO2x48oaSl5+58svQc+pnTFnnd378DjiWgNuj4PQqWP0muWKFGk5aYsu3WDaIaDrI1j+j6y//COeUvVjs7MI+5UMoQGSCbJLEgg4H7c5GNn4VzsDlWpnYV2nAUmZLmudh/a574nliRFSRmFyZHV68eugu5Ff+12cAAMdfcSd2vb0GyQMPne5hTQkRAk4PYKUBr0shSAkEtQKRB9huiMdWfDnuIc4OQ6uZUoyqIsGitcZFF12ESy65BCeddBJeeeWVIbfZuXMnWlpaii5ramqC67rYuXPnsPedyWSQyWTy33d1dU3auIlmmn/5/y3DhUelsL2/CYvcPXh11xwctqcP2rIAywH8ADocSLgIyyravSJkwSeAzq74k96MKftCRETj197yDwCAjuxnwoMbTSmd1U2fRPu8S6CjCOv3fiu28U1Uck8E5Qj4tRJ2v4DQGpk5DhK7AyTfmliDU8azROW7808r8Z45wAkNScyV/Xi8vxm1rwHYux8AIJMJqDTyMS0AE9MWGlQ+DNnFQ9X8HkVERBO34tRbAACbHr8uf9kf7jTJl9XHX4dVb7+h6kugKwfINJl1BUJLdB0MBK0BRI+Flz7IhCLNTrE2ub/xxhshhBjx66mnnsJdd92Frq4uXHPNyM2fhBi6xlFrXfLynFtvvRUNDQ35r0WLFk34eRHNVL/pPAQ/e/1Y/HHfAgBAuN+D6EkDloSQBTtWsiv9tMqWDyuYhOZ2sQCADkLTBJRit2zFWixbsTbuYRARDbF+37dNnwNZ3XtZHvnpZ/Hojz6D3373SoQJgb75Dvw6gb4WJ59MGi/Gs0Tl+23nYmzcdRS29jVjj0rg/+56F+peC6F6es0OllQSMuHlFwrldl6Lwe9BBTEvFJu8VgrGtEQUKwFAinyipdD6P9wCUViKsko9e/sV+PN1V8A/Io19R2lEi9NYfOBb2PpPV8U9NKLYxLqD5bLLLsP5558/4m0WL16MW265Bb/+9a/heV7RdSeddBI+8pGP4Lvf/S5aW1vxm9/8puj6ffv2IQiCITtbCl1zzTW48sqBkgxdXV2clBIN44lXFyPM2DiwbQ9ezLRC+NI0q8+t6svVpFYaWmkIqUxCJVdeIftvPumCyCRZKHabN10d9xCIaJbL7VxZ/t4vQWjglw9/Hu2LPg0AEHW1xc2nq8S7/3odoM2J16DWgt1nFhX0LbIgA5g+LP7ET8wyniUq329fPQg6Eki3OHiy/hC80VcPLcwuFeG5gJ2dImdjVQAD5cAK+wrmdrDkL6uK4hAzHmNaIorTpsfMzpWD/8+tOPS+L0FIhZf+53U4+ro7YfUD1nvmQlThGtNTPnoHwgQQeQJ9raaxvVroQrb2I5H0se3NOXEPcXbRML2LK0B1L4GbPLFGgc3NzWhubh71dl//+tdxyy0D2d833ngDq1atwv3334+TTz4ZALB06VKsWbMGO3bswIIFZnX9xo0b4XkelixZMux9e543JHFDRKVFbyahkwp+aOP1TBOgATgOhOtCRxGEk2tcH+STLPkJaXaCukndhxXyPEBoCClYSoGIiIq82p6E2wm85/23oaY2BQQhonn1sPb0xD20MVl+5q0QdSbUVraAiDTClITbFcHp1YhcASsAnvjPia/2YzxLVD71VgI6odDte3ilvxndmQQcR0I01AOpJJDuNztZHLsomaKjCEXxrPUhADALiiJgY/8PYnxWRERUSZrndsOSGoGSOHPzVehbuAB1L1qIPMDy4x7d2Ly3/SuwUxKRKxG5gAwApxsQoUDbvP1I2gE2feDOuIdJFKuqWGZz4IEHFn1fW1sLADj00EOxcOFCAMDKlStx9NFH42Mf+xhuu+027N27F5/5zGdw8cUXo76+ftrHTDTTHPHFO+FCwhdAn+/gzUw9ZCCgXceUTPAjM/HUaqAMmB66NGOFPA+b1A+nefRERFQtlKeRbtN4y7Fx4M4krK1vwAKAnt64h1a2971nDSAFnJ4QkSsBSDg9Edx9/djw5A04/oo7oS3gmbvZ2J5oOuXj2Uag33fwRroRWgOZegHUpoAwApQyO1miCLCsbGKlGONZIiIaSaAs7HqrFuizsLcugLPPgrdfw68XSO6pni0sy9/7JVjZEplhQsBOCzg9wJZvXYElHdfizJYX8cXj/ivmUc5SFbKDxay8pqpIsJTDsiz8/Oc/x6WXXorTTjsNyWQSF1xwAdatWxf30IhmBLfTNDPTQqJ/gYPf72pDw4sCIgihowjaD/IJliKDm4DCTEoBcGJKRERDzP09oKWA261g7dpvPlv27DN9WKqECDUENITWsLsVwhoHUcICQvN5mGt2SkTTy+0ElA1AS6SbXbywdx72v16PA3dHpo9KfwZqzz7T86mwj6eQgNBFMS3jWSIiGs7vzvoi3v6Pd8LKaGiZgNuj4PQqJPcAqe3Vsytb+goQgAgVkpEGhOkhCABb2tfEPDqiylGVCZbFixdDl8jUHXjggfjZz34Ww4iIZr7a1xW0JRCkBPz9teivAebuioC+NHS6H2rQiS/TCNT0ZtFKDlyRnZhyMkpERKU8ee+VOO1/rEN/k4X9Sw9A4+OvAWEE0VAX99BGtfrE6wEAth9CpVwo14b0Q0jHwgMPfT7m0RFR3XYFZZtVuMHeJPxUEnN3A8nXO4F0P3Q6bXZjB2auKaSAcN2Ce7AKyoUxniUiouE9840rcNp5tyPdLNB9gETNmwJOj0LX2yq7ys7qY64FHHMuR1oCmfk16GuxIQON0AOe/lcuFCIarCoTLHFoP+oaaCkRNSbzTauIZoulF9wOp9esXLAyEjIQcHqFuSwIhjSqF1IM+T5XNowTUSIiGs1j/99ncNIn7oAWgK5LYf2zlb1Crv2IqwGtIZSCrklA1XgQmQB2Vxo65VVU98f3vWcNtBTQjmQzaJpVln74drh9CloAdlrAzkg4HpDcqyC70oDvA36Q7yEoLCvb6N7IxbdaSWxS98X1NIiIqIo89sOrcMLld0I5QJAS+M33PhP3kIaVj2cBIIwQtNTBb3Rh9SvUb+1HZo4L5VRQUDvbVUyJMAKYYClbbqJMNBsl9oTQ2c9RoQBAIgwBqz8qWZdaKz0kyUJERDQWT32n8vuTtL/tnwFLAkoB/RnAcaBdGyITQGRCdPz5y3EPcQjlWJBBxGrJNOskdwfQ2fhUBgP/uvt88/erNbQaKAFm4lkFwDLlwkqUvSUiIhrN779a2Ts+iuLZjG/+n0wgM9eD3RvB3dOHDVtuinuYRBWNCZYybXjqxriHQBSLZSvWQoYaMjATSm0JILIhQwmZydarHjzZ1NnJaP5bnsYhIqKZpf3wzwGR2cmJIITuS0O0zoPs7AN6+9Dx+l1xD7GkzQ9w1wrNTtJXENl4FlJARDaUIyCUBlwHuqfX/E0D+WSKjgAhJGCJgV6DBbtaiIiIqllRPBspIN0PJBMImmvgdgZwX34LHa/cGfcwiSoeEyxENKLNm642NeW1BoSAFgIi0gjqHAilTBPQEphUISKimar9kM+YE61am4UGAITrDExQFVe5E1Uae396oJyGEBCRiyhpDzSz14MWDeV2rGgFhIq7V4iIaEYZEs9qs+AAACCEaXAfDq1YQhWiUkqEVcgw4sYECxGNaNXbb4BQCiJUJrniWIDS0AIQocqfWAIwsKqvYGXfpuj+GEZNNDstW7GWPRWIplj7wVeayaYlAbsglFYutGcDtoX1W++Ib4BEVFo2ngUA7VhApKEtAWVL2EkXUCrffyVPyPyioY0B+64QTQfGs0RTLx/P2haQTJgLswtqo6YUgnoHUBqbXvt6vAMlqhJMsBDRiGQmu1VUCvOBawkoz4LQgOzsg8pkivuwsHQCUUVYtmItAHCCSjTZghCQEnAcMykFoKVE1JiE1d2P9c+tiXmARFSKyIRmt0p297VKWOhd4CKxO4To7EWU7i+KaYv6CXL3ClEsGM8STZEgNHGs60LVJgCloBIOMs0eRKghQo2HOj4X9yhpJAxNKgrPghLRsPKlwYIQAKATtlnxB8DuC4HuHmjfH/E+VlgfmvJxElWL5e/90pTef+Hkc/OmqzkZJZoCHa99HXpOPTpe/ArCOTXQngNIIErYWP+HW+IeHhGVsPrE6/NlTlTKhXZtCAWEnoDTG0J3dg30WCmVTOHiIaIiucTHVGA8SzT1Ol77OtS8RnS8sBb+nASiGhciUvBrJfYd4TC5QjRG3MFCRMNa/7ubAZjGZ1pKqKQLKA2rN4C1uwuqu6e410pu8qlV0fe5JAvLhdFs98BDn497CEQ0Cdb/7mYsX3Yr4FoQysHGJ26Oe0hENIL1v7vZxLO2BZVwIDMhZNpH44sCzks7EKX7i+JXYVlD7mOlewGEFNjQ/4NpHj1R5WHSg6j6bXjyBrx39ZcBAYQpGw89cm3cQyKqWkywENGI2g//HKA1RBhBhBGipIOw0UVqdxd0dmfLEIWr/FgyjIiIZqAHNl8T9xCIaCyy8azsCwBbon9+Cm6nDz2oNFghIcVAs3tzwTQOmIiIaGo9tP6f4x4CjYuGqJQm9wSACRYiGkH7gZfne69ACIggQjgviSAlzeWFZRSGm3ByIkpERDMI68ETVZ/2Ay8HLGni2ShCWOeif64NGWrITGbghtndK0IKs0tbSPNzkEA4zMIiIiKiKrP8zFsBwQVDRJOFCRYiGl4UAREAxwYcG0FjEn6thNujgNykU+iBREuJZIqQAhuD+6Z/7EQUq/bDPgtkfOh0Gut3fzPu4RBNGiZWiKpQFJnFQbaFoLkG/XMcQABaAiKZgPB9aDVQ6lYraXavSGH6EQqWBiOajVYffx1EqIB0Pzq23hH3cIgmzQMPMrFS1TRMfEIVg0vLiWh4Upov24ZKOki3OAgTAk5XAPT1DdxOyKLkipACgOm5wuQK0SyVTa7AD7C66ZNxj4aIiGazXDybcJGe5yKolXB6FNxOP79oSEhhvizL9GCxLLOLG8CGnu/G/ASIKA6iLwOk+4EwQvuBl5sFRERERINwBwsRDS+VBADohIP+lhr0zZeQPmDv64Pq7AaAgRIKg+SSLEQ0O3Vs/1rcQyCaEstWrOUuFqJqk0qaeHZBDXoXSFgZoOHFfliv74EGTEJFF8S0WgHINroXjGmJZquOl26LewhEU4LxLNHkYoKFiIalXQsi0oBSsALTayU9H4jqErAcGzoMhvzMpuj+6R4mERHRtMj1XyGi6qJdayCe1UDvAqDhLw7sXOkwSwIRICxkS4RpbOz/XtzDJiIimnSMZ2eIEgudKT5MsBDRsNY/uwYr33UzhFIQgYLVD0AAQb0Ly7ZNWTCtinaxrLA+NK4ky+r6j5tSDMokcmBZgBQQiQRgW+h45c5JfGZERERjx5V+RNVp/bNrsOqkG008mwFkAGQabSTqayH2hoDrQvu+qWeuJIQFrEp8ZFx9V1bPudj8R5tFStAacB0I20bHzrsn+ZkRERGNDeNZosnHBAsRjUg7Eiqb7PA6FYKURFBrITm3CTIMofoz+STLRIhkwpRg0BpQGlorCCHzjUWJiIiIiMYrSjn5eDZyJcKkQFSXhLV3v1nUY1nQYTjwA5Y1/gcrSK5opSAU41kiIiKimYpN7oloRNoS0FIAGnB7FBL7NboWSexcsQDR8YdB1tcWNbgHgJXO+WN/IMcZ+JICQkhorYAwRMfWOybp2RAREU0NllsgqmyF8azbrRHUCuw9vhZ97zoEYu4cCNeFcF1TLkwKQAisqr1wfA+WTaboXJLF99Gx4xuT+GyIiIgmH+PZKqJ1ZXwRAO5gIaJR/PKRa7H8zFsBADKj4O0XiDwLPQuBMJHCwl1zINL95sZKm6agYuy5247Xvl70ffuBl2P9tq9OdPhEVKFywTu3qBMR0bTIJj1kRsHrFIhcCz0HCPTNt3HAvjrYXd0QwEC5Wsc2u6nHaP3ebxV9v7r577F+9zcnOHgiqlSMaYmIiAkWIiqPAGSo4PQC3n6BMCnR1wLsWNGC1kdsiF37oDM+EEWTksXuYHKFaMZatnyt2UOr4h4J0eThiRWiKlAYz3oCUUKivxnYe1QKzelmqIQDa38aorPbxLNy4gUfmFwhmrm42p9mGsazVYS7RyoKEyxENKoHHrwGALD8vV+CCDXcrghaAsqS8OuBN943FzU7m9Dw7F6IvV1AGKK95R8AIaq6meeyFWuHDTC4Uolo/DY/wL8bIiKaXsPGs45EphHYc2IDtBSwMynUvVoDq9c0vV99whegbYkNW26K9wmMUznxLMCYlmg8+HdDREQAe7AQ0Rg88NDnIbSGDDUSeyM0bI1Q+4aG9IG+Zol9b5+L9HELodrmA3MaoVubsfJdN2PFqbfEPfRxKSdgXrZiLVcujQGPFRFVCr4fEc1Og+PZ+lcipHZpQABaAkFKYP9hCew9rh49h9QjfUAdgsYkVr7r5riHPi7lngBmTFs+HiciqhTLl90a9xCICNzBQkRj9MDm7Oq/ZbdCRBp2n4KdtuDXCvh1AkHKhTPPgdCA3adg9StYGWVWCyoNbQ3kdXMrCavR5k1XF02uRlodSAN4jIiIiChupeJZ5QpEnkRQIxAmBLQEooSArBdI7FOwMhFWvfMmQCloy8ovVdz46+tjfCYTk4vLGNOODY8PEVUKbYm4h0BxqZQSYRUyjLgxwUJE45KbmL7vjC/B7guR3CUQJi2km2349QLSB6QvIG0BpQQeeuDzMY948pWaXHFSSkRUHfheTUSF8Sx6AS2ApBSIPBPThkkBoQAZaWgJbHjyhphHPDUY0xIRVSe+TxNVBiZYiGhCfvmwSZysPu5aWLUJaFsAwoJQgLYBZQs88tN/jnmU04cBDhEREVF1ycWzQDamTXrQMoFMkw2hNEJP4pFHro1xhNOPMS0RERFReZhgIaJJsf7ZNXEPoWpxhSARERFRZWBMO36MaYmIiKaBBqAqpTZXpYwjXmxyT0QUs1L1r4mIiIiIqgljWiIiIpqNmGAhIqognJASERERUbVjTEtERDRVNKBVZXwRgCpLsPz85z/HySefjGQyiebmZnzwgx8sun7btm0455xzUFNTg+bmZnzqU5+C7/sxjZaIaGxYUoGIiIiIqh1jWiIiIppNqqYHy49+9CNcfPHF+NKXvoRly5ZBa41nn302f30URTjrrLMwb948PProo9izZw8uvPBCaK1x1113xThyIqLycUJKRERERNWOMS0RERHNFlWRYAnDEJ/+9Kdx22234ROf+ET+8iOOOCL//40bN+L555/H9u3b0dbWBgC4/fbbcdFFF2HNmjWor6+f9nETEZUrV0aBk1EiIiIiqlaMaYmIiKaBZnP5SlIVCZann34ar7/+OqSUePvb346dO3fixBNPxLp163DMMccAAJ544gkce+yx+eQKAKxatQqZTAZbtmzBmWeeWfK+M5kMMplM/vuurq6pfTJERCVwEkpEROPFeJaIKgVjWiIiIpptqqIHy8svvwwAuPHGG3HdddfhZz/7GZqamnDGGWdg7969AICdO3eipaWl6Oeamprgui527tw57H3feuutaGhoyH8tWrRo6p4IEREREdEkYzxLRERERDSLKF0ZXwQg5h0sN954I2666aYRb/Pkk09CKQUAuPbaa/E3f/M3AIB7770XCxcuxA9/+EP8r//1vwAAQoghP6+1Lnl5zjXXXIMrr7wy/31XVxcnpUSzRK6EQQ5X3BERUTViPEs0ew2OZwHGtERERETTKdYEy2WXXYbzzz9/xNssXrwY3d3dAICjjz46f7nneTjkkEOwbds2AEBrayt+85vfFP3svn37EATBkJ0thTzPg+d5430KRBSTyajvzMknERHNBIxniapTYXJkvHEp41kiIiKieMWaYGlubkZzc/Oot1uyZAk8z8MLL7yA008/HQAQBAFeeeUVHHTQQQCApUuXYs2aNdixYwcWLFgAwDS+9zwPS5YsmbonQURTZqRJJyeTRERERFQNhlsYxHiWiIiIxoVN7itKVTS5r6+vxyWXXIIbbrgBixYtwkEHHYTbbrsNAHDeeecBAFauXImjjz4aH/vYx3Dbbbdh7969+MxnPoOLL74Y9fX1cQ6fiMpUqsQBEREREVE1YUxLRERENHtURYIFAG677TbYto2PfexjSKfTOPnkk7F582Y0NTUBACzLws9//nNceumlOO2005BMJnHBBRdg3bp1MY+ciEYy3AR0uBV9y1as5Wo/IiIiIqoYIyVUSsWtjGeJiIiIZo6qSbA4joN169aNmDA58MAD8bOf/WwaR0VEk2XzpquHTDaHm6xORv8VIiIiIqLJVm5My3iWiIiIxkWDJcIqTNUkWIhoZhk80cx9P1pJBU5CiYiIiKgSjJQ4GeuuFiIiIiKqTkywENG0G0td6twElKUUiIiIiKhSjBbPikhDWwIA41kiIiKaTLpydrBUyDDiJuMeABHNDstWrC1rd4oINaAGvi+8joioEuXe3wrf49jgmIho5iknngVM3Grv64eI9JDLiYgq0XDx7LLljGmJiEbDHSxENOXKPem4bMVabH7wmukYEtGsMNzfG0/wDDUZtfClr/C+96yB8iyISE9opXKp3x1/b0RE8Sknns3tWlm2Yi02P3PTdA2NaEZjub3yTUY8a6UjrDjtFkQpGyLU0LYYd0zLuQgRzRZMsBDRlOEKbqLpVe7f3ODbzbRJzsp33QwA2Pjb68v+mVLHIDeZzB0vEWk8sPma/PfeH15F5viD4L7Vi2BuCsod2BicKwsz1pMCy5fdmv/ZUuMZ6WfHY9nytUX7mQff72S8j1fb64uNp4losHLfC/Pv32oKB0M0w40l9pjJMW37ok8DWqPjta+X/TPDxbO56/IxbajxwIMmpnUefQ7B6cfA27YfflsDoqSV/1ltiyH3U85jrjrpRgQNiWFr5kx2TDs4fh5rjF2uant9Maad4VSlBBusEQYAQutKKdpWGbq6utDQ0IDOzk7U19fHPRyiqjPW/iqsRU00foMnJ2M+Ga6Qn/jMpL/D3HGw+kJEKbOWpLAW/kwx0nvouBMjCtj8gLm/FaevgXLl9B23gseO01QkssZqovEo41miicu/FxR8VpZS+Pk7kz5LiaZTqSTAeMykv8HccbA7fYQNbv7ySoxpS45plPfO3M89sPkatB9xNTpeGPp7bz/8c4AYuN/MQU3lDWhQTLly6RcRJeyihNFUyT2nSjATYloaavPmzThn5QfxnnkfiXsoAICH3vouNj+6CUuXLo17KLFigmUQ/vETjV+5wfBMCnyJplNZCZUyJjMjkZkIyrOKLqv0v9mpOA4VrcwJa6VNvstVia+36V4MwAQLUbyKPleGec+txPcqomox4UVCo7DSUdFOjNzjVLJSx6Ca47lySF9B2bLoPTZXlgwwz19EumiXeDWpxNdctcW0NBQTLJWJJcKIaOoMnpDO5BOeRFNgxJ5Fg0o75U3wb2xwcmW0cZRj0spZjWUcM/m9poznVs2T8dHKlhERTStZfMLPSkeISnxWElFpo8VvU1FWenByZUKPk53DTmY8MuaygzNUqcRJ4S4TbYmqPgbllC4jGjful6goTLAQ0aQZUrt/+aDAsSB+WrZibUVtnyWK25gnfTM5gVCAvZxmoUGv7XJeA4WfP1NRDoETYqLZZfDf/PIzb83/v/DE7bIVa+G+0Q2xey863vzXaRsfUaWakXFbNi5ZcfoabHr02nHdxYw8LjSqouSQKlhEVObOSMa0RNWDCRYiGpeyGgqO0tSuMOBg7WqqZitPuRlhnVt0WTmv5WF3oRAATkapfMO9VvjZQkQjKfXeUer9olTd/uXLbgUsAb+tDt7uvUPuk+87VI1WnL6mKIlY7ut4NsRsstcf18/NhmNDZZDD/L/AiNUL+NlCg3EHS0VhgoWIxqzUB3+ulufyM28FRPnbmRkoUDVafeL10EJAJ2xsfOIL5sJBK5HKem0zuVKEE1CaKiO9tvj5QzQ7jZSY3bzparzvPWugLTlsU+TCWNc/5kDGtFSVVi79IrQQgBTY9Oi10MPsIuXrGtjwzE1l3Y7xLE2l4V5f/Bsliheb3A/CBkxEA/If3goQkcIDD32++PJJkKtpzXJhNFFTsYU6p731UsB1oRtqsP7ZNaM+/khEZD52q7mecNkUsPmBob+L1cddC7+1bmjjTvZpohhV0sSUTe6JJteyFWsBBVj9ITY9dl3RZUJPThNpxrQ0WaYqqdF+9OehbQnt2oAQ2PDkDSM+PmUNE88CQPthn0Xm4LlFfZoYz1KcKimeBRiTToV8k/u5H457KACAh3Z/n03uwR0sRDQOuQ/tyQi+tRTFASlVpOXv/RK0I0v+7r0/vIrM8QeVrhlbMCEp9Xqx0lHJJpTSV0VND+1uH9aeHoR/2Ypo+ZJRx5t7LBEoaMfcT258q2r+FtFJR0K5Q5/PkOeXHX/Hzrvzl0/0dT8rEis5gyaXy5fdCruzH+G8WgAljgUnoxSjZSvWwuoNEdVkw+OCEySVNlklorETWgMFSwtLfeZP5HOIMW3lGxzPAoNi2q17kDl47tDrS8SzmzddXfSzMhNBecUx7VTGs8DwMe2w8ezzXyq6byZSylTifWH5slvh7O5FsGgOgEFlBBnPUoxKvW8UYkw7Q2gAivslKgl3sAzC7CpRGYmT0Sag45ig5gIAfuBPj9F+x4MnjeX+TnM7EniCgYDhG48TzWST8TnGHSxEk2Okz54huygnCWPa6TVaCcjxxLM5U/UaoeoyUuNxopko995ZCTEtDbV582acs+KDeM+c8+MeCgDgob3/hztYwB0sRFNiPEFXJU3C4jgpqi0JEahpeSwqMMxEc8jvvczJaG4SyuTK7FZ4QmP5slt5coJmlcmakBJVgrHGgZX22h8pptWijM+mcSwaYkw7fUZLnow3ns1h/DK7Fcazy5av5c4UmjXyr3vGtERl40cEUYXIbdOuihUxg985Bs0hhdZj/yDO3mdVPP8qMdyxbD/gn+Du7AYAyCCaziHRLFA0GV2xlicniIhmkcJ4tuJjulIzYca0FWe447iq5m8BAN5rnQBMfx2iyTI4nuWZMyKqLBpaq4r4IoM7WIgmaLg6vIXG2rNkOlYLltM8cfA4cs+xsPxTrgyC9BWcF15Dx867xz+pliL/uFwpMT7ti69Axyt3ljz++cuOPiB/2eBa0UQTxRNKNNvx84uq0bC9yAYZKd4d6X7LMZ6/neVn3goIjNpUvnAcpeLZfK8MaXppOH/ajo5d9zCmjdGqmr9FcOrRQy7P/z6y12UWNgAAohRPbdDkYTxLxJiWaCwYhVDFKnVyv1pNdYBW6v5HOl7Ll90KWAMTv9ztc/8f3JARAKAKtkYLU5NY+graEqa/liuROe7AcT3XXH1jLcSEG4zOdh2v3Fn0PScHRERTR0QaUBraMidmqzlWoanDmHZi9z3c8Vq+7FZoWRzP5m6fj2kHNx4fHM+GGtKPoO2B4FN5FjInLmZMG7MNvd8r3kFARERTQkQaItJQtsx/blVzrDJrVEqT+woZRtyYYKGqMZG+JoMnXcNdNh6FPzvWVX1TadhxKAAlak4X3n7Ykj6y+PooOTm7H/KPx5NTZVu2fC2cx5/DhvT3S15v9YWIEjYn9kREU0QECg889Pn895Xy+U+VbzJi2qmMZ3PfV8pruuQ4cvHsKH3kChMng+XjWXvypsSMacdm2Yq1gAKcx57Fhv4fDLme8SwR0dSSvsIvH2Y8SzRRTLDQtBttt8VoyZCJPtZwl5WaSI5lYlROqbCKUMYEpWSCZYonNrkVfzSy9gP+CZkjTYmv8JQRyiawTAIR0eRSwOYHho8LeDJ1dsmdGC6Mjwa/BqYyph0pni11/YyLacuMS4fEltNwop4x7ehW1V6I8F1H5nfUh0uPHXKbZSvWMp4lIpoCI8UEjGeJxocRC43bcDWFxzMRG+5npnNSN9HHquSVf5UuV5KMH+aj63j9rmGv4+uNiGhyFZ0o5QrqGWnVkhuwYctNJa8b9XN10GtipNtP12f0ZDwOY9rxY0xbng093x3xer7eiIgmF5P/M5Bmba5KwgQLjWq4msaDr5uJJvL8ZvqxmZDcis9RVgPT8KpidSkRURXjCdKZZ+UpNyNK2NBOQWZkTnJWfI4ypp0CjGcnBWNaIqKpxZiWaOoxwUIAyp84MeilCSsop8HJ6FBj/Rvj3yQREZHRftQ1AIDMwgZzweAm43XutI+JZijGs6NiTEtERDSFlIp7BFncSQMwwTIrMXilSacAKxNBORLaFhCBAqQo2oLKVRPF+HdIREQ0MUM+S3OJlRyWdaOxGiWmZTxbjPEsERERERMss0qpAFhEGloU1BYfvNKPqAxWOgR+8ywkgE3R/XEPpyJxAkpERDQ58p+p2bhVZiJACCjbBLFCaWibdcZp7BjTjozxLBEREdFQTLBUofe9Zw2UY42cCFGA0CWaWBXUCoaEuX7QZUQ5pRqhceXe6Dj5JCKqfoV9AUpdXgo/I8dm2fK1w8ee2bhURBrQGEiYFF6uNKAFdDaxkotnmVyhwQbHtPxbLQ9jWiKi6lcqpmU8W+U02OS+wlRNguXPf/4zPvvZz+Kxxx6D7/s47rjjcMstt+DMM8/M32bbtm34x3/8R2zevBnJZBIXXHAB1q1bB9edWfWWlWdBBApaDsxIRaghIgURaSjPgrYENEpMLuWgf4e7jGaWMSbPck0mtSUgQg0tBYTSsPpDLFuxdtQP3GUr1kJmIjgvvIZw125sUj+c2PjHaayTQhFpPLD5mil/HCIiqh5F7/EK8J7bBlgWMkcfAICT0IkQ0dB4VgYKUNl4dlC5UQD5eEZbAhh8XcH1NENNIKaFwpjiWaA4pu1481/HP+4JYkxLREQTVbgD2Ht+u4lnj2oDwHiWaKKqJsFy1lln4W1ve1s+efLVr34VZ599Nv7yl7+gtbUVURThrLPOwrx58/Doo49iz549uPDCC6G1xl133RX38Ee1uumTAADROg9RXRJRyoZ2ZMk3ucLL2lv+AZASumUutC0R1bhDJ6JEBRPRUrtS8rITT8C8zlYlPgIA2ND/g2HveriJmLYlokPasCmmyegKeR7k6SdCedboNy6YrK9acgM2bLlpSsdGRERVItc7smAxSua4A/NXczJabHXD3wEARFsLVG0CyrOhbDFsTPvAQ58HALTPuwSwreJ4lrtQqJTc3+JoiZZBMe1K9wJs9P9j2JuPlFjQtkR46AFjH+skWSHPA5YvKe/GjGmJiKiUwphWApljF+WvYjxLNHFVkWDZvXs3XnrpJfz7v/87jj/+eADA2rVrcffdd+O5555Da2srNm7ciOeffx7bt29HW5vJwN5+++246KKLsGbNGtTX18f5FEYlbBvB0QdCucUzhcHB/uA3vsKVVO0HXg6pNfScevjNNYAErL4QyrU4SaU8bQlYfSGiVIk/fwloKbBsxVpYfSEkyk+uSF9B2RJWJgIe/515LJhJYRw7WKzaWvhOGckVoGg1bFjnof3wz6Hjxa+U9aOrEh+BAwAiW/c9mYBoaUY4p4Z/e0REVYoTzfERyQSCIxYOiWeBkWPajl335P/fvvBT+Xg2bErly+LanX5+ARIRJGClI0TJYWK9QTGt0Kr07TD0tVkqpo2TVVuLqNwbTyCmXeleUHRyQCYTEC3z4B/QyHiWiKhKMaadqTS0Gj62mU4sVGZURYJl7ty5OOqoo/C9730P73jHO+B5Hv7t3/4NLS0tWLLErOZ54okncOyxx+aTKwCwatUqZDIZbNmypaiUWKFMJoNMJpP/vqura2qfzDByE8vVx1wLVZ9AWOuUvN1w29nb511i/iMFxBu74O3pBLRGx+t3Ff0sAPZaodLJlUGUI/Mr/0Zj9YWwnv0L1nfdm79shTyv5P9LJVtWyPOgs7tNZCaCs30POrbeUdZjD5Z/nZ98xLh+XlsSsMtMzGDkBBQArK7/OCAGJqWitgZIJqAaaxA0JcY1RiIimnx2t4+Nv74+7mGMS8XEszvvBgCsevsNUClnxHijVEyb29ENAOhLw94xELCu3/3Nop8FwJh2lhs2uTKIciTKjexGimlHi2dzt6nWmHakHT65Xe05sq4OqElCNdUjaE6Oa3xERDT57G4fYZ3LxArRNKuKBIsQAps2bcK5556Luro6SCnR0tKC9evXo7GxEQCwc+dOtLS0FP1cU1MTXNfFzp07h73vW2+9FTfdVDlbp9c/t2ZcP1e08m/eJeh47etF17cf8E/wamuQWdjIiSiVRVsS6pRj0L7wU0NeTzkjfWjnJp7LVqyFsz8DhApBc7JkCQb3uCPzu02UZwHJRNk7X5atWGtWMHoWRKSACa5s9bbtLXulXzn8EpNiEWquBCQiqjBhXfX27Ku0eHbDM+Mby/p9387/f3XTJ4FIFV2Wu9xrrEfmkPmMaaks2pJQS48b9vrRTkLl4tFV77xpxHgWGH9Mm7u/So1pg3cPPX6MZ4mIKk81x7M0RmxyX1FiTbDceOONo04Gn3zySSxZsgSXXnop5s+fj1/96ldIJpP49re/jbPPPhtPPvkkFixYAMAkYgbTWpe8POeaa67BlVdemf++q6sLixYtGvb21aAw2ZK/LLuTZcWptyCqqYq8GsVNAsqxELU1Y/myW4v6tnivdUJt3Qbl+5BeArKlGZnDW7B509X51X25iWSuuWihwX1g/Pk1A5cLAb1z15jKiuVWMBY2ys0bZXVruSs7VlgfQrTs7WacoYaIFOSvn0N4xvFljzOHk1EiIppMMzGeHZxYGXz5ylNu5kkEKk82pl1+5q1FMdjgeFYkExD1tcPGtEGjV3S3pfoajjemzd3XsDFtGbu1yolpVzrnI3zvieYxs/Gs8izYD/9hzDEt41kiosrk7uyOewhEs47QOr6U1+7du7F79+4Rb7N48WI89thjWLlyJfbt21fUS+Xwww/HJz7xCVx99dW4/vrr8d///d/4/e9/n79+3759mDNnDjZv3jxsibDBurq60NDQgM7Ozmnv2zLcSijvd69AD64brDTC4w4uWeN6WIMbtRJNVKnJngKs/hI9XrK3raatqoUlSESkWPediGgWqITPqYnGo5UYzwKA+9RLQGG9aK0RnniYWek/FoxpaTINl7woFdMyniUioipRCZ9VccakM9XmzZtxzvs+gNOTH4h7KACAh9M/woOP/RJLly6NeyixinUrQ3NzM5qbm0e9XV9fHwBADlrJI6WEyk7Sli5dijVr1mDHjh35HS0bN26E53n5Pi2VrtRKfwDInLgYmzddjdUNf2cu0BoQAvbvXsL6zn8vuu2y5Wvh7E8jqvWGJl8YS9NkK/WaksP0eJGA3ROgvfVShG/tKrpqLLtVyjHSyZ1CpQKOkj8rh9kdQ0REM07h50AlTEyrzXDxLAD4Jx2GzZuuxqraC80FWsN6+s/4Zc93i26Xi2dFECFsTA5NwPAjmSbTcK+nUjHtCPEsUOExLeNZIqJZhTHtDFdmz+QpVyHDiFusO1jKtXv3bhx55JE444wzcP311yOZTOJb3/oWvva1r+HJJ5/ECSecgCiKcOKJJ6KlpQW33XYb9u7di4suuggf+MAHcNddd43+IFnVkF1dXf9xAChqvlio3ECcaDpJX0FbYkgphUIi1JAPP112neqJcp96Cf5JhwEAnN1pNukkIqJRTccEtZp3sIzFqpq/xYbe75W8jvEsVaJy4lmgvJh20l7jCnCfZkxLRETlm66ES7XEpNUkv4PFOzfuoQAAHu7/MR58nDtYqqIZR3NzM9avX49rr70Wy5YtQxAEOOaYY/Df//3fOOGEEwAAlmXh5z//OS699FKcdtppSCaTuOCCC7Bu3bopG1epoNju9AFpGkuN9Q1rdcPfFTUpGi6BwsQKVaNyytlpW5SciE7Vazt4+6ED/+dElIiIyjB4NeCyFWurelXgsPGsJRDWOgDGNgkvjGd1dqf5hkE7VHJKJVcYz1IlK7c8c6mYdspe25IxLRERjc1Mi2eJ4lYVO1im03iyq0MaeAemtq2zNw0oQO7aB93bBzFvLlRdAiJUEG/sgg7D4jrUhbTOJ1JWvf0GBspEREREFUgECtqSJcsMjXeiGscOluHiWQAjxrR45fWBHyoxrdBK5RMsq0+8Hv681JifDxERERFNnZHiWSC+mJaGyu9gcc+JeygAgIczP+EOFlTJDpZKN9wbzbIVayF9BeHXAc2N0K/thNhlEir56efCBQjnpobUlhaBwvL3fsl805SYopETERER0USM1DB6Iv0TpttIY8jHtGE2pt22A+LNaOAGw8WzoQa0Hohp53DBEBEREVGlGSmeBcqLaSshniWKCxMswzj73Dtg20MTGyM17sxdX+r/g+Xuw+4J4GzbDQBQTfWI6lxoW4765kZEREREM8OyFWshIg0thCk1G/ZPyv0OF88CI8e0g2PY0WLafDwrBNScOkQ1LpRjQdsCwMi9KoiIiIio+uXiyqmIaWkQDehKaXJPAJhgGbPRsrZjra0b1joID2+ZyJCIiIiIqMqN1jR7so0UszKeJSIiIqLxmO6YlqgScJsEERERERERERERERHRGHEHCxERERERERERERFRxdOAVnEPIoulygDuYCEiIiIiIiIiIiIiIhoz7mAhIiIiIiIiIiIiIqoCbHJfWbiDhYiIiIiIiIiIiIiIptTdd9+Ngw8+GIlEAkuWLMGvfvWruIc0YUywEBERERERERERERHRlLn//vtx+eWX49prr8UzzzyDd7/73Whvb8e2bdviHtqEMMFCRERERERERERERFQNtKqMrzG644478IlPfAKf/OQncdRRR+GrX/0qFi1ahH/913+dgoM0fZhgISIiIiIiIiIiIiKiKeH7PrZs2YKVK1cWXb5y5Uo8/vjjMY1qcrDJ/SBamyZBYZiJeSRERERENBvl4tBcXDpWjGeJiIiIKG4TjWlpqGQyiTR68YTeGPdQAAA++mFZFrq6uoou9zwPnucVXbZ7925EUYSWlpaiy1taWrBz584pH+tUYoJlkO7ubgDAE4+ujXkkRERERDSbdXd3o6GhYVw/BzCeJSIiIqL4jTempaGWLl2KR371CHp7e+MeCgCgrq4Ov/jFL3DyyScXXX7DDTfgxhtvLPkzQoii77XWQy6rNkywDNLW1obt27ejrq6u6n+5pXR1dWHRokXYvn076uvr4x7OrMHjHg8e93jwuMeDxz0ePO7xmOnHXWuN7u5utLW1jevnZ3o8C8z810Al4jGPB497PHjc48HjHg8e93jMhuM+0ZiWSjv99NPjHkKRJUuW4Morryy6bPDuFQBobm6GZVlDdqu89dZbQ3a1VBsmWAaRUmLhwoVxD2PK1dfXz9g38ErG4x4PHvd48LjHg8c9Hjzu8ZjJx30iq/xmSzwLzOzXQKXiMY8Hj3s8eNzjweMeDx73eMz0486dKzNfqXJgpbiuiyVLlmDTpk3467/+6/zlmzZtwrnnnjuVQ5xyTLAQEREREREREREREdGUufLKK/Gxj30MJ510EpYuXYpvfvOb2LZtGy655JK4hzYhTLAQEREREREREREREdGU+dCHPoQ9e/bg5ptvxo4dO3DsscfiF7/4BQ466KC4hzYhTLDMMp7n4YYbbihr6xZNHh73ePC4x4PHPR487vHgcY8HjzvxNTD9eMzjweMeDx73ePC4x4PHPR487jRbXXrppbj00kvjHsakElprHfcgiIiIiIiIiIiIiIiIqomMewBERERERERERERERETVhgkWIiIiIiIiIiIiIiKiMWKChYiIiIiIiIiIiIiIaIyYYJmh1qxZg1NPPRWpVAqNjY0lbyOEGPJ1zz33FN3m2WefxRlnnIFkMokDDjgAN998M9i2Z3jlHPdt27bhnHPOQU1NDZqbm/GpT30Kvu8X3YbHfeIWL1485PV99dVXF92mnN8Fjc3dd9+Ngw8+GIlEAkuWLMGvfvWruIc0o9x4441DXtetra3567XWuPHGG9HW1oZkMon3vve9eO6552IccXV65JFHcM4556CtrQ1CCPzkJz8pur6c45zJZPBP//RPaG5uRk1NDd7//vfjtddem8ZnUX1GO+4XXXTRkNf/KaecUnQbHveZhzFtPBjTVgbGs/FhTDu1GNNOD8a08WBMSzT7MMEyQ/m+j/POOw//8A//MOLt7r33XuzYsSP/deGFF+av6+rqwooVK9DW1oYnn3wSd911F9atW4c77rhjqodftUY77lEU4ayzzkJvby8effRR3HffffjRj36Eq666Kn8bHvfJc/PNNxe9vq+77rr8deX8Lmhs7r//flx++eW49tpr8cwzz+Dd73432tvbsW3btriHNqMcc8wxRa/rZ599Nn/dV77yFdxxxx34l3/5Fzz55JNobW3FihUr0N3dHeOIq09vby9OOOEE/Mu//EvJ68s5zpdffjn+67/+C/fddx8effRR9PT04Oyzz0YURdP1NKrOaMcdAFavXl30+v/FL35RdD2P+8zDmDYejGkrB+PZ6ceYdnowpp16jGnjwZiWaBbSNKPde++9uqGhoeR1APR//dd/Dfuzd999t25oaND9/f35y2699Vbd1tamlVKTPNKZZbjj/otf/EJLKfXrr7+ev+w///M/ted5urOzU2vN4z5ZDjroIH3nnXcOe305vwsam3e96136kksuKbrsyCOP1FdffXVMI5p5brjhBn3CCSeUvE4ppVtbW/XatWvzl/X39+uGhgZ9zz33TNMIZ57Bn5XlHOf9+/drx3H0fffdl7/N66+/rqWUev369dM29mpWKka58MIL9bnnnjvsz/C4z2yMaePBmDZejGfjwZh26jGmnX6MaePBmJZoduAOllnusssuQ3NzM975znfinnvugVIqf90TTzyBM844A57n5S9btWoV3njjDbzyyisxjLb6PfHEEzj22GPR1taWv2zVqlXIZDLYsmVL/jY87pPjy1/+MubOnYsTTzwRa9asKSqXUM7vgsrn+z62bNmClStXFl2+cuVKPP744zGNamZ68cUX0dbWhoMPPhjnn38+Xn75ZQDA1q1bsXPnzqLfged5OOOMM/g7mETlHOctW7YgCIKi27S1teHYY4/l72KCHnroIcyfPx9ve9vbcPHFF+Ott97KX8fjPrsxpp1ejGmnD+PZ6cWYdvowpo0XY9p4MaYlmlnsuAdA8fniF7+I5cuXI5lM4oEHHsBVV12F3bt357ed79y5E4sXLy76mZaWlvx1Bx988HQPuert3Lkzfwxzmpqa4Loudu7cmb8Nj/vEffrTn8Y73vEONDU14be//S2uueYabN26Fd/+9rcBlPe7oPLt3r0bURQNOaYtLS08npPo5JNPxve+9z287W1vw5tvvolbbrkFp556Kp577rn8cS71O3j11VfjGO6MVM5x3rlzJ1zXRVNT05Db8O9h/Nrb23HeeefhoIMOwtatW/GFL3wBy5Ytw5YtW+B5Ho/7LMaYdvoxpp0ejGenH2Pa6cGYNn6MaePDmJZo5uEOlipSqhHc4K+nnnqq7Pu77rrrsHTpUpx44om46qqrcPPNN+O2224ruo0Qouh7nW1KOfjymWyyj3upY6e1Lrqcx720sfwurrjiCpxxxhk4/vjj8clPfhL33HMPvvOd72DPnj35+yvnd0FjU+q1y+M5edrb2/E3f/M3OO644/C+970PP//5zwEA3/3ud/O34e9geoznOPN3MTEf+tCHcNZZZ+HYY4/FOeecg46ODvz5z3/O/x0Mh8e98jCmjQdj2srAeLY6MJ6aWoxpKwdj2unHmJZo5uEOlipy2WWX4fzzzx/xNoNXiY3FKaecgq6uLrz55ptoaWlBa2vrkOx4btvi4FUOM9lkHvfW1lb85je/Kbps3759CIIgf0x53Ic3kd/FKaecAgB46aWXMHfu3LJ+F1S+5uZmWJZV8rXL4zl1ampqcNxxx+HFF1/EBz7wAQBmpdmCBQvyt+HvYHK1trYCGPk4t7a2wvd97Nu3r2jl2VtvvYVTTz11egc8gy1YsAAHHXQQXnzxRQA87tWEMW08GNNWBsazlY0xbTwY004/xrSVgzEtUfXjDpYq0tzcjCOPPHLEr0QiMe77f+aZZ5BIJNDY2AgAWLp0KR555JGiOr8bN25EW1vbhCa91WYyj/vSpUvxxz/+ETt27MhftnHjRniehyVLluRvw+Ne2kR+F8888wwA5IPHcn4XVD7XdbFkyRJs2rSp6PJNmzYxCJxCmUwGf/rTn7BgwQIcfPDBaG1tLfod+L6Phx9+mL+DSVTOcV6yZAkcxym6zY4dO/DHP/6Rv4tJtGfPHmzfvj3/vs7jXj0Y08aDMW1lYDxb2RjTxoMx7fRjTFs5GNMSzQAlGt/TDPDqq6/qZ555Rt900026trZWP/PMM/qZZ57R3d3dWmutf/rTn+pvfvOb+tlnn9UvvfSS/ta3vqXr6+v1pz71qfx97N+/X7e0tOgPf/jD+tlnn9U//vGPdX19vV63bl1cT6vijXbcwzDUxx57rF6+fLl++umn9S9/+Uu9cOFCfdlll+Xvg8d94h5//HF9xx136GeeeUa//PLL+v7779dtbW36/e9/f/425fwuaGzuu+8+7TiO/s53vqOff/55ffnll+uamhr9yiuvxD20GeOqq67SDz30kH755Zf1r3/9a3322Wfrurq6/DFeu3atbmho0D/+8Y/1s88+qz/84Q/rBQsW6K6urphHXl26u7vz798A8u8nr776qta6vON8ySWX6IULF+pf/vKX+umnn9bLli3TJ5xwgg7DMK6nVfFGOu7d3d36qquu0o8//rjeunWrfvDBB/XSpUv1AQccwOM+wzGmjQdj2vgxno0PY9qpx5h2ejCmjQdjWqLZhwmWGerCCy/UAIZ8Pfjgg1prrTs6OvSJJ56oa2trdSqV0scee6z+6le/qoMgKLqfP/zhD/rd73639jxPt7a26htvvFErpWJ4RtVhtOOutZmwnnXWWTqZTOo5c+boyy67TPf39xfdD4/7xGzZskWffPLJuqGhQScSCX3EEUfoG264Qff29hbdrpzfBY3NN77xDX3QQQdp13X1O97xDv3www/HPaQZ5UMf+pBesGCBdhxHt7W16Q9+8IP6ueeey1+vlNI33HCDbm1t1Z7n6fe85z362WefjXHE1enBBx8s+V5+4YUXaq3LO87pdFpfdtlles6cOTqZTOqzzz5bb9u2LYZnUz1GOu59fX165cqVet68edpxHH3ggQfqCy+8cMgx5XGfeRjTxoMxbfwYz8aLMe3UYkw7PRjTxoMxLdHsI7TOdhokIiIiIiIiIiIiIiKisrAHCxERERERERERERER0RgxwUJERERERERERERERDRGTLAQERERERERERERERGNERMsREREREREREREREREY8QECxERERERERERERER0RgxwUJERERERERERERERDRGTLAQERERERERERERERGNERMsREREREREREREREREY8QECxERjcl73/teXH755XEPg4iIiIhoXBjPEhER0WRhgoWIiIiIiIiIiIiIiGiMmGAhIiIiIiIiIiIiIiIaIyZYiIho3Pbt24e//du/RVNTE1KpFNrb2/Hiiy/mr//f//t/o7GxERs2bMBRRx2F2tparF69Gjt27Ihx1EREREREBuNZIiIimggmWIiIaNwuuugiPPXUU/jpT3+KJ554Alpr/NVf/RWCIMjfpq+vD+vWrcP3v/99PPLII9i2bRs+85nPxDhqIiIiIiKD8SwRERFNhB33AIiIqDq9+OKL+OlPf4rHHnsMp556KgDgBz/4ARYtWoSf/OQnOO+88wAAQRDgnnvuwaGHHgoAuOyyy3DzzTfHNm4iIiIiIoDxLBEREU0cd7AQEdG4/OlPf4Jt2zj55JPzl82dOxdHHHEE/vSnP+UvS6VS+ckoACxYsABvvfXWtI6ViIiIiGgwxrNEREQ0UUywEBHRuGith71cCJH/3nGcouuFEMP+LBERERHRdGE8S0RERBPFBAsREY3L0UcfjTAM8Zvf/CZ/2Z49e/DnP/8ZRx11VIwjIyIiIiIaHeNZIiIimigmWIiIaFwOP/xwnHvuubj44ovx6KOP4ve//z0++tGP4oADDsC5554b9/CIiIiIiEbEeJaIiIgmigkWIiIat3vvvRdLlizB2WefjaVLl0JrjV/84hdDyigQEREREVUixrNEREQ0EUKzcCgREREREREREREREdGYcAcLERERERERERERERHRGDHBQkRERERERERERERENEZMsBAREREREREREREREY0REyxERERERERERERERERjxAQLERERERERERERERHRGDHBQkRERERERERERERENEZMsBAREREREREREREREY0REyxERERERERERERERERjxAQLERERERERERERERHRGDHBQkRERERERERERERENEZMsBAREREREREREREREY0REyxERERERERERERERERj9P8Hj1A3P4VyqWkAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "soil_clim.plot(col='season', col_wrap=2, robust=True, figsize=(18, 8))" + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABlgAAAMWCAYAAACdmov2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZxlVXUv/l17n+HeW2NPdAOCgIoDT9HnFMUJGrq7fprnU6NxSDT6wIDGCIgMIqOMQYZoTHyaoIQMvjwTk/eSdDcIzqhxNhok+hyRsenumu5wztl7//5Ye+9zzq1b3XR3dVdVs7+fT32q6g7n7DPtvdb6rvVdZIwxCAgICAgICAgICAgICAgICAgICAgICAgICHjUEIs9gICAgICAgICAgICAgICAgICAgICAgICAgOWGQLAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBATsIQLBEhAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQsIcIBEtAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQMAeIhAsAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBe4hAsAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBOwhAsESEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBCwhwgES0BAQEBAQEBAQEBAQEBAQEBAQEBAQEBAwB4iECwBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQF7iECwBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQE7CECwRIQEBAQsOxw6aWXgohARIiiCKtXr8ZLXvIS3HTTTej1erXPvuxlL8OZZ55Z+999t/pTFMUBPoqAgICAgICAgIAAtm2f+cxnzvu/w9/8zd9ASonTTz/9wA0uICAgICAgYJcIBEtAQEBAwLLEcccdh/vvvx+//OUv8bnPfQ6vfe1rcfXVV+OFL3whpqend/nd0047Dffff3/tJ4qiAzTygICAgICAgICAgD3HzTffjHPPPRef+tSn0G63F3s4AQEBAQEBAQgES0BAQMCSx6c//Wk8/elPR7PZxKpVq3DyySdjdnbWv/+JT3wCT33qU9FoNPCUpzwFf/qnf1r7/nnnnYdjjz0WrVYLxxxzDC666CLkee7f/973vocTTzwRIyMjGB0dxbOf/Wx885vf9O///d//PY477jikaYqjjjoK119/fW37Rx11FK666iq87W1vw8jICI488kh87GMf209no0QURVi3bh0OO+wwPP3pT8e73vUufOELX8APfvADXHvttbv8bqvVwrp162o/AQEBAQEBAQEB+x/Btt07/PznP8ddd92F888/H095ylPw6U9/erGHFBAQEBAQEIBAsAQEBAQsadx///14wxvegLe97W24++678fnPfx6vfvWrYYwBAHz84x/HhRdeiCuvvBJ33303rrrqKlx00UW45ZZb/DZGRkbwyU9+Ev/xH/+BP/7jP8bHP/5x3Hjjjf79N73pTXjc4x6Hb3zjG/jWt76F888/H3EcAwC+9a1v4XWvex1e//rX49///d9x6aWX4qKLLsInP/nJ2jivv/56POc5z8F3vvMdvOMd78AZZ5yBH/3oR/Me11VXXYXh4eFd/nzpS1/a4/P1lKc8BRMTE/iHf/iHPf5uQEBAQEBAQEDA/kWwbfceN998M17+8pdjbGwMv/M7v4O/+Iu/2KftBQQEBAQEBCwMyDhLJiAgICBgyeHb3/42nv3sZ+PnP/85Hv/4x895/8gjj8S1116LN7zhDf61K664Av/6r/+Ku+66a+A2r7vuOvyv//W/fCbf6OgoPvzhD+Mtb3nLnM++6U1vwsMPP4zbbrvNv3buuefiX/7lX/DDH/4QAGf5vfjFL8att94KADDGYN26dbjsssvm1Yfevn07tm/fvstjP/zww9FsNge+d+mll+If//Ef8d3vfnfOe+effz4+9KEPedmEl73sZXjmM5+Jm266yf9/1113IUkS/53f//3fn5O9GBAQEBAQEBAQsLAItu2js237/9da46ijjsKHP/xhvPKVr8S2bdtw2GGH4T/+4z/wxCc+cZf7DQgICAgICNi/CILzAQEBAUsYxx9/PNavX4+nP/3p2LhxIzZs2IDf+q3fwooVK/Dwww/jV7/6Ff7H//gfOO200/x3iqLA2NiY///Tn/40brrpJvzkJz/BzMwMiqLA6Oiof//ss8/GqaeeiltvvRUnn3wyXvva1+IJT3gCAODuu+/GK1/5ytqYTjjhBNx0001QSkFKCQB4xjOe4d8nIqxbtw4PPfTQvMe1cuVKrFy5ct9OzjwwxoCIdvmZN73pTbjwwgv9/+Pj4/tlLAEBAQEBAQEBASWCbbt3uO222zA7O4uJiQkAwOrVq7FhwwbcfPPNuOqqq/bbfgMCAgICAgJ2jyARFhAQELCEIaXE7bffjs2bN+NpT3saPvzhD+PJT34yfvazn0FrDYClFL773e/6nx/84Af42te+BgD42te+hte//vWYmJjAP//zP+M73/kOLrzwQmRZ5vdx6aWX4oc//CFe/vKX484778TTnvY0fOYznwEwmKwYVPjoZBcciMiPbxD2p4zC3XffjaOPPnqXnxkbG8MTn/hE/7N69eq92ldAQEBAQEBAQMCjR7Bt9w4333wztm/fjlarhSiKEEUR/vVf/xW33HILlFJ7vd2AgICAgICAfUeoYAkICAhY4iAinHDCCTjhhBNw8cUX4/GPfzw+85nP4Oyzz8bhhx+On/70p3jTm9408Ltf+cpX8PjHP75WrfGLX/xizueOPfZYHHvssTjrrLPwhje8AZ/4xCfwqle9Ck972tPw5S9/ufbZu+66C8cee6zP8NsbnH766Xjd6163y88cfvjhe7zdH/3oR9iyZQsuuOCCvR1aQEBAQEBAQEDAfkSwbfcMjzzyCP7pn/4Jn/rUp3Dcccf517XWePGLX4zNmzfjFa94xV5tOyAgICAgIGDfEQiWgICAgCWMr3/967jjjjuwYcMGHHLIIfj617+Ohx9+GE996lMBcIbeH/7hH2J0dBQTExPo9Xr45je/iR07duDss8/GE5/4RPzyl7/Epz71KTz3uc/Fv/zLv/gMPgDodDp473vfi9/6rd/C0UcfjXvvvRff+MY38JrXvAYA8J73vAfPfe5z8YEPfAC//du/ja9+9av4kz/5E/zpn/7pPh3XQsgoFEWBBx54AFprPPLII/j85z+PK664As985jPx3ve+d5+2HRAQEBAQEBAQsPAItu2e49Zbb8WqVavw2te+FkLURUhe8YpX4C/+4i8CwRIQEBAQELCICARLQEBAwBLG6OgovvjFL+Kmm27C1NQUHv/4x+P666/3+sunnnoqWq0WrrvuOpx77rkYGhrC05/+dJx55pkAgFe+8pU466yz8Ad/8Afo9Xp4+ctfjosuugiXXnopAJZpeOSRR/DmN78ZDz74IFavXo1Xv/rVuOyyywAA//W//lf83d/9HS6++GJ84AMfwKGHHorLL78cv/d7v7cIZ6OOH/7whzj00EMhpcTY2Bie9rSn4YILLsAZZ5yBNE3957TWiKKw3AUEBAQEBAQELDaCbTsY/fZq9f+bb74Zr3rVq+aQKwDwmte8Br/927+NBx98EGvXrj1g4w0ICAgICAgoQWaQ4GhAQEBAQMBBgqc85Sk49dRTcc455yz2UAICAgICAgICAgLm4PTTT8e9996Lf/7nfx74f0BAQEBAQMDSRWhyHxAQEBBwUOKhhx7CLbfcgnvuuQfr169f7OEEBAQEBAQEBAQE1DA9PY0vfvGL+Id/+AecfPLJc/4PCAgICAgIWPoImikBAQEBAQclNm3ahB07duBDH/oQnvWsZy32cAICAgICAgICAgJquPjii/HXf/3XeNWrXoXTTz8dF1xwQe3/gICAgICAgKWPIBEWEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBCwhwgSYQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAXuIQLAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBATsIQLBEhAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQsIcITe77oLXGfffdh5GRERDRYg8nICAgICAgICDgMQZjDKanp3HYYYdBiD3Phwr2bEBAQEBAQEBAwGJjX23agIDlgkCw9OG+++7DEUccsdjDCAgICAgICAgIeIzjV7/6FR73uMft8feCPRsQEBAQEBAQELBUsLc2bcD+wys2DKPZIPzv/zO92EM5KBAIlj6MjIwA4Id/dHR0kUcTEBAQEBAQEBDwWMPU1BSOOOIIb5fuKYI9GxAQEBAQEBAQsNjYV5s2YP/gjjvuwJe/3oFSBl/96lfxghe8YLGHtOwRCJY+OBmF0dHR4JAGBAQEBAQEBAQsGvZW3ivYswEBAQEBAQEBAUsFQbJ26cAYg/e99+U4950r0OkavO+c9bjzy7PhGu0jggBeQEBAQEBAQEBAQEBAQEBAQEBAQEBAwEGM//N//g9+cW+Bd506jrNPH8f37+7hs5/97GIPa9kjECwBAQEBAQEBAQEBAQEBAQEBAQEBAQEBBymUUrjwvNfhwjNXYqglMDYqcd4frMT73vubMMYs9vCWNQLBEhAQEBAQEBAQEBAQEBAQEBAQEBAQEHCQ4m//9m8xM6tx6ptKCeF3/N4Yfv1Agc985jOLOLLlj0CwBAQEBAQEBAQEBAQEBAQEBAQEBAQEBByEyLIMl7z/bbjkvauQpiUd0GoJvP+slXj/+W+AUmoRR7i8EQiWgICAgICAgICAgICAgICAgICAgICAgIMQH7/xcUgTwu+8ZmTOe297wxh6mcFffuTwRRjZwYFAsAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQcZGi327jyxu24/LxVkJLmvJ8khEvOWYnLrnsEvV5vEUa4/BEIloCAgICAgICAgICAgICAgICAgICAgICDDB+++kgctjbCq/6/oXk/84ZXjWBkWOBj1x9xAEd28CAQLAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEHESYnJ3Htn+zAFResAtHc6hUHKQmXn7cKV960HbOzswdwhAcHosUeQEBAQMByw8ZnX4J8ZRPJw22o4RSqKUHK+PdFpvl3r4CJBFSDp9p4exswBhACqpUAgmAkwRBABjAE3PH59y3KMQUEBAQEBAQEBDx2sOn4i5AdMgQ5W0BOdqDGm1CtqG7TdhVEJ4eJJdRQDABIHpgClAYiiWJFCzq2OZt9QZs7PnfBATuWgICAgICAgMH44GXH4PinpTjlpa3dfva/bRzCtR+O8aGrHo8Lrtx2AEZ38ICMMWb3H3vsYGpqCmNjY5icnMTo6OhiDycg4IDjpFOu4T80QNrAiIqzNKjmTdvXdfn+nbefv38HuY+YWHM61M6dEM0m6JDV0CMtiHYPppkAxoDuexhopEAcQ48NwTQi6EQCAHQiQMrADNCt3GNUzx0AMgYwAAgw1kklY3DHncFBDQgICHgsYV/t0WDPBgTswqbts2dJGba7rE0mcgUqDEDA7V95/wEd855g0+q3Q09OgZIEIIJYd4i3aXUrBQCI+x4CRoahR1rQzRgmFjAEmHgB7dlB0JW/l4l/EBAQEBCw8Ag26eLioYcewhOOWYctnzocL3hO81F9584vt/HaU+/HT3+2DStWrNjPIzx4EAiWPoSHP+BgRtXR9BB9/wMgpWFiUSNNas5pH6FS3aYoNKjQMJGw1RlzHTcypnxd7B+Ha+PQm7F19i8BABuSNwIA5GFroR9+BNAGFEegleOAkFCrR31WniM34skuV5804/KYDzTcdalcg0HjCA5rQEBAwMGFQLAEBMyPee3Z/tdQ2rSeTNidPVvZhiNaTDzXpiXnQjtP2hhA0H5JitnY/F1s7dw6vz07OgJEkm3aQ0ahmnWbNmrnUI1o8ezZPUCwaQMCAgIOLgSbdHFx5ttX4P/9Isc/3XLYHn1vw+vuxfOe1cBVf7x9P43s4MOyIViKosCll16Kv/7rv8YDDzyAQw89FL/3e7+H97///RCCLUVjDC677DJ87GMfw44dO/D85z8fH/nIR3Dcccc96v2Ehz9gucA5l1QYiFxDR+Qlpwaiz+FccAdLs7NJyrCTSQQjaP4KGF0hWiqZbetPuhpUaOhYgpTmY6pUc1Bh5be6CpAE0clB7R6Q58iOXoP4Wz8GHbYWKBT0r34NSAkoBZAABEGMj8HMzIKSBKbXAx2+Dtm60aXjdA4iv+zvfmKqH8EpHYyTTrkmnJuAgIBlhUCwBDxWULVn4x0dqOF0rk1rbSBoAyP7DKD9YbtVbFpSBkaAbVq37/ns2QruvKPPpq18pmrPyk7B5E0kIae7oG4OZFndplUa+lf3AUaX9uyKcZjpGa5ekQKm3Vl6Nu186E8gGoBgt81FsGcDAgKWI4JNunj45S9/iSc/+Sh89V+OwDOelu7Rd//tO12c/Fv34if/7z6sW7duP43w4MKyIViuvPJK3Hjjjbjllltw3HHH4Zvf/Cbe+ta34oorrsC73/1uAMC1116LK6+8Ep/85Cdx7LHH4oorrsAXv/hF3HPPPRgZGXlU+wkPf8BSxPqTrp6TIWeIfPZclaQYRFzsKSi3FSz9rxcGpJlAMVIAxLIK0Y52+SFjYNIYOol4nNYphSAvf+XHDAACXoaBx8/H5/8GWNO5/3sAZE8BxkC0c6iRhN+PBGCAaKoLMd2FaSbQzRiqGZdEFBFgDJJ7fs1EzOPWIl/Z3H/O6KAMy73ZRuW7joyqXmfKNV8fCyMIpA0++8ULcfJLr4Ih+OuQ/PxhwBhs/vmNezmggIMBJ51yDagwSH58P3pPPYz//s/7sPnXH659bsPzLkcxxs8YFSboqgcE7GcEgiXgYMX6E6/mPwbYs8CBsWnns2dlOwd1s/JzykCnMUwqYSLpiR9nk89JIrLVMQNt2j4J2CpkT0E1JWS7gOjmUEMs+eUIpmiyy0TNPPZsvLMLengHkOX736bdVwyogHdkVM2mLcqELQCAMbjj8+8r7x8CYPgapD9+AACw+Zc3HaCDCFiKOOmUa/zzToVB8qN7sfn+j9Q+M/HUC6CHG8jHOdAYbNqAgP2PYJMuHv7Hm8bQ6Rj81Z/uHUHy6rfehyMOj/DhP9+5sAM7SLFsCJZXvOIVWLt2Lf7iL/7Cv/aa17wGrVYLt956K4wxOOyww3DmmWfivPPOAwD0ej2sXbsW1157LX7/93//Ue0nPPwBi4X1J14N2clZXksIiF4OFBrU7gBZjs2//jA2vOAD3GiSCLoZV5y2UqaACg0yBjqW0ImoNZwcmNGmWT5B5Boggo6IHbdUzq2GsU4RV6nw90gZlgMjK7kQ2R04p7JCqlQzD8mUus+kDERPwUQCOhJzpccGjdkSCSbqy240mKOx7bW1HSyp4797MKBC4vheLv4F+6vQEJmC6BagqTagVSBYDjKcdMo1SO+dxOa7r57z3sTaM2DWrQbtmEZxxOryeQMHdyhTUEMx4u/+P9Ahq4FOF9kxhyCazbH1G5f47ZzywitgYgE5m0Hc+xB6Tz9yWWZUnnTKNRCZRrSzA/z819gyeXPtPaCcm6LtszAPP4It2z62WMMNeIwhECwByxnrT7waoqcgsgImEhCdHNAaNDmLzb+8Cae88AqIrAAA6EYMM4AMIA2WwLIkiK6QJPPas5Y0EUVZdTLQpt2FPQtjfIKKS9pxZFD5fWtk2dccSeR+i56CjgXbvLuSea3as9VjmsemHWjPWvv9oLZpKzBEELmC7BSgHvtNmOFEr0CwHDzYlT0LcD9Nc9ga0COTKB5/SM2mjaYztme//WPQ2jVszz5hLaLZHPjBT7C1c6vfjrdpZ3oQ9z6EzQ/+2QE5voXGSadcg+SBaZif3YutM7fUXnfwNu1DUzAPPowtU59YjKEGPAYRbNLFwT333IPjj38qvv+5I/HEo5O92sYPftTD8yd+hR/96Gd4/OMfv8AjPPiwbAiWa665Bh/96Edx22234dhjj8X3vvc9bNiwATfddBPe8IY34Kc//Sme8IQn4Nvf/jae9axn+e+98pWvxPj4OG655ZZdbL1EePgDFgMTTz4fakULgHX2tIZuxNCxgOwWkDvaQJYBJGCGG6BcQbcSmCSCIYJsZ+zUZQUgANNILOlhswKVAWnrrRgDIyVMJLzT4mQKVDPy1Sa7kqLaHaiwzqmVVxC9wjuFaij2TqDItNe03tcMxQDUAwaADUzwn6JXQLQzvtZKY/M918y7mYMVVScD4Cqg5SK3MHHMOeg9YbX/X2RMlsEYFCOlwVQNvohc4bNfvBAAsOn4i2CEgBpNB5KY0gaD4odmkB3GFZ8+61cDybd/guw5TyyfWRuoSn/84H4n6VygzsQC0WQXW757+X7bV/89UoXIuL+U6BUQv3gAmx/+6H4bR0BAIFgCliMmnnoBrzVj3ESVtAY0YBIJHQsO7j2wk23a0WGg3YFeNQqdctKQnOb+dyDihCNJbOtWqkCczUrGJvjY90gbUK58oo9Oo11L1Q5CX+9Bt12XqCI7BWBtrKo9Szl/uJZEFGzafUOfRK4jwmSngNg5y6SXUtj8sxsWe6QHHINsleVi004c+k70/ssRtdeYjFUgZZCPpnPIxKo9O3H4u2BWj/M8M5JAx3KuZJ82SB6cRu/wUZ9I6OxZUWhE3/0JsucdO9emveeB/U7SrX/ZVbzfiNim/d4H9st+dmXPAnzOqTAQvRz0418GsiVgvyLYpIuD171yBOOjAh+9bu0+bect73oAUgKf/NTUAo3s4MWyIViMMXjf+96Ha6+9FlJKKKVw5ZVX4oILuKTzrrvuwgknnIBf//rXOOywsnnP29/+dvziF7/A1q1bB2631+uh1+v5/6empnDEEUeEhz9gQeEzpbfNgozB5v+4yr93yguvgMg5UGpiCSMFjAB0Kv1nqDCQ3QLULSC6GVeCJNL3OzFCAJEAdCXlSwOIJVQr4SaduSrfakRWEoErVgbJge0OssNjplzDJBKqyeN1hv3JL70KcjaDiSU31oxobuPR/uw8h+CQ7hlcEEDpeiYkEUSmcPtX3r+Ig9u/cA6Eu++q/+/Oudgb9DuutX1UAjP7y8Fdf+LVMBGVzXpREiGkDOKHZ5CtKyUx4x1dFKMpZ3w6cqDN8ifFihYMwTudUTuH6LA0iU4loumMJRSsfMfBio3PvcxLRewO8Y4uAICyAtnaYQBBJz5g/2BPndFgzwYsFDYOv6WWAd2P9S+7CvHDg+1ZR6hAMNngKpyrdqbscMUk5QqkNSgrYGLJyUC9DKaVwiQREymaqzPcbxPLUjbMkS/Wbubfe05qiB4HdinXgF1XVSOC6CncfhfbT+tPuhpyJocajnntnceeHSgBFmzaPYcjVfz/7Afd9rWLF29MBwAnrb8GZAzuuJPjG+tPuhp33HnBAbFngfmJm0GfWwjbZ5BN60iP5AFLkFg4e1Z2ChStGCJXEF0FMcvrXrGqxX5tIhBNZ2zPDqdsz071kK9oABpI75u/Kma5Y0/sWQCIt3f4WcsKZIeNBHs2YL8hECwHHt/5zndwwgufjXvuOgqHHxrt07Z++oscT3/ZL/Dtb/8QT33qUxdohAcnlg3B8qlPfQrvfe97cd111+G4447Dd7/7XZx55pm44YYb8Ja3vMUTLPfddx8OPfRQ/73TTjsNv/rVr7Bly5aB27300ktx2WWXzXk9PPwBC4mT1l/js7BEofHZL7yPCYhv3QP9jCchemQGphEDhYZpJb6SxEhRk9JyIGUQTWesE22z/ADMzZYjAoSw2TmSHV9j+LWIpQt0RHMlDNzX+5wb0oarU2LhZRegjXdAd4eTX3IlZxoBweFcIFCuaxVHLtPSOWcHC/aHc7knWOpOh3N2q+dpT8c8qMJnMXCgx+Hn5z3BAKmXpX6PBCwv7KkzGuzZgAOFk065pmbPrn/ZVYi+8SPoZz0ZcqrDNmYsuRo7jb1cbb98K2D7nnQ4gYj/5+QdaDDZ4cgKl0AkJXTDki+VimwTkU8s6Zfa8vsylepezRXWOrbVMkrbviz6UQXxXWB4oOxXwN7DXa9K5cpBZ88OsjkqpCFQqd7YD/fWcrFVgj27F/vbG3sWGNjnMyBgIREIlgOPifVDeNqxCa67ZM2CbO8PLngIDz6s8Pf/PL0g2ztYsWwIliOOOALnn38+3vnOd/rXrrjiCvzVX/0VfvSjH+21RFjI+AvYF2xacSr/YR0/oxRICNDqVYDRvnfKIPRnCG4cerN3JElYhy+x0j+RBKII6PaAJAaUApTmv7McGG7BTM/AdLr8vUYKarHkGIzh7ycJ0OkCnS5MUfjGmLWqFzsdmOprfdhVViMAbEjeyMcOwFQarotGCooiQARPdMGgtb/ntkx9AptWnApqpHMaOh4M8M/aAFASA80GzMwsPxcLhC07/nze95aDDMNyxkmnXOP7JB2o87yre+zRYMuOP593G7u6lwICBiFUsAQcSPTbswDYJpQStGKc/y+KgfI5c+zZ4bfU3icheDtpwttMU7ZHk5g/kOX8d1EAcQw0UpjtO9mmFWwL0/BQ2W9wqMW2bLsN5AUgZWnPClvNvQD2LMC2uckLez40jDYQzQYojnf73YA9ROVabZm8GRNrzwDiGJvv/dAiDmrhsWnsbeU/A3wiSmIgTdmmXaAwze5skGDT7j8cNPasm18RbNqAPUcgWA4svvSlL+Hl/9/L8JOvHYXVq+Tuv/AocP+DBY59wc/xhS/+G57znOcsyDYPRuxbrdABRLvdhugzQqSU0NYYO/roo7Fu3TrcfvvtnmDJsgxf+MIXcO2118673TRNkaaPvpQy4ODGxLp3wGS5dSoFKE0BonmNe2eAmKLwrxmlQFoBQsL0eti08jRAKZiigMky3JZ/ip1PY2qkCoiwdeYWfk9Kfj1NSnIlto9rswF0ezDtNqgo+P1mg0mVqRkgjmBGh2CMAWWKDaKiANodIM/9viiO2Gl0z5XWvF8AJOVA4qWqz7px6M3l+8rKj5EACQJkYvt/aCCKPGEUyJUFhFIw9rwbpdhhi5fNlL5H2K2j0GpCj49AFApmtr1H296Vk+D2mz3niXu0zYB9x2I4+vPdC4/KUdV6l59z7wWnNGB/IdizAVVMrD2DqzkepU3r7Vml6m9obe06CXQ6mFh7BvRsGybLcVv2N55M6SdVAJQ2bRRxM/gk4b/TmMfUajLRgpztVCFsQlAMWruabVohYFaMwCgDygugUMDMLH8eYOKm3551JIsQbM/a4wCwe3u22ryeCNAGopEyUVMUEM3E28oBC4i++25izel8DZZHHuijxsbht/A9aUwpfdfvG7WaMGPDIK0XzKYN9uziYSnZs8CjsGnns2cr92mwaQMCli6MMXjfORtw9unjC0auAMChayO8823juPC9L8XWz80u2HYPNiybaNxv/uZv4sorr8SRRx6J4447Dt/5zndwww034G1v4ywQIsKZZ56Jq666Ck960pPwpCc9CVdddRVarRbe+MY3LvLoA5YiNq04FSDClu0fx8S6d/CLRKChVunoCbF7416yA2dcxhwRZ9SR4t/u+0SgNC1JlX6NZljDWwhvsEysPQOm24Xp9kBC8D528GfFyDDQSFkuocWVLkIbILONzLMcppWyg7lz2pMrxlhZhSyv77xq4PeRK1VHdNPoW9kBJ2LiBPCEEDXS8rxleY14ClgguKBBmgJFAZPn7KxJyc3rtx181SvueRhk8JPNgKWsAOLIZ8i6+5uiiO9XY+oZWVKAogibVr8dUHqgkxAch8cuNq041V//Xd0HPlgC1LOnd4GT1lvJiP3crycgIOCxgYH2rDZAJPbMppUCpHk+qxEtRcFJHd2yQoqS2NuswOBKkU2jb2WbdvvHAdgkJkuOsD27E4C1Z9OEE5OGG77PilAtIMtqvVlACajdLm3oQfYsMK9NWyNWbLJT3Z51B0igZsMnB1GwafcPpACR4OuvNEyWeQLLdHvYMvlnizzAhYWrmnK+FFVtBsF2KYxhmzaSbMPa+25eexbYrU0b7NnHLqr2LLALEq5aWVXFIJu2ct86yUiIYM8GBCwFbNmyBXf/OMP//avDdv/hPcS571yBJzz/5/jCF76Al770pQu+/YMBy0YibHp6GhdddBE+85nP4KGHHsJhhx2GN7zhDbj44ouRWBklYwwuu+wy/M//+T+xY8cOPP/5z8dHPvIR/Jf/8l8e9X5C+drBiaoRWjNKiTg4liYl6dGwGaBaA70MxX0P4Hb1v+Zsc+Jp72MnsNCgXobNP7mO9zX6VgB1Z9OTI6hLErjPDoLRGltnbsGG5I21LEEXzNsyeTOP43F/CL1mBcRMB2bHTiZ1AFCrCbNmBR/j1CzQ7nCGn5MHm49Q8QNgp9Ptpx+DJCDYkVcwFZkSdywkZahgWQgoBRofA9KEr7c2TPAZDRoZhlozDlIKW781V4v/YMOmFacyodJsAGTvrTwHsqwkWJIYmx8sHfSNz7oEYrrNkiQAf7aX+feDE7q84PSt99Wp29vtbFpxqidWtuz4c3ZQhYCamoZoNvznvJyM1vPOqQEBVeyrPRrs2YMX1ezhee1ZV5X8KGxab88aA8pVrQH0prG3DSRlnI26u8+5sQFst24cerMPIldfB4CJI97N2fvNBDTbnWvTrh7nvx/aPr89644VqI3HaO3lVPvRL9HrPluzaSuETqjIXjjQ+CiKw1Yi2jYD7JxkYlAKlnsdG4FaPXLQN7Z32DT2Nib1Gml5v820S4Klz54Fdm3TBnt2+WEhpNr2yZ61qK4tptPhpD6gnP+k5AozbTyBHhCwKwSb9MBAa43nHN/Cm14zgrNOX7Ff9nHljdux5XOz+PLX26ABCeOPdSwbguVAITz8yxc+86L/lnaOHMBGO4At2z5WZvkBLJkwoG/FxJPO5T+Unld7GgAmjjkHZtsjvG3rvO2KPHFwTtweIYpKaQQ79mqVTC2DejfObk0ezH5vd8G/9S+7CiDCHZ/jppMb4teD0hQmyyGsU0CtJtBs8hc6nVrWY8BeQmvQ2CjU4avQW5miaAqM3LMD9PAO1isfaoEKhc33LG4z+MXCoOqWvXEuFypg/1jBo5HPWo5O/iknXAHVipB+9+cAuPIvO/4YiJyr9z77hffN+c7EUWexfE0v8yQzOZKl1QSyHHpyyn+epOSqKycJ6X5HEhDsvJo0ASKBLd/7wH4/5uWATStPQ/bsJwA4+J/RQLA8duGJ20GIIw5C24bxNXvW2nbz9WGbeNK5/JlCYfNPPzj/Z2ZmYdod3r61CefNbt4TVO1dSwiZ+ezZXWG+jOrqe4/Cpl1/4tWAMbjj8zyfb2y8iaVuY64UcH0QqdXkOdwYmEd27H58AbsFrRhH/rgV6K1KMbtOorFdY+Q/pyB2TAHNBvRwAyg0tn7n4E8WGoRNo2+tEXnBnj0w2J1Nuxzt2fUvuwpGCqQ//GXt9d5xR4K0AQi4484Lau9NPOlcjjVkuV8LvEoFwH2wuj2YnZP8v6v4c3asEBxzcb1XpYCRbOeaSGDrNy/d34e9LLBpxanInvPEx8QzGmzSA4O/+7u/w9lnvgn3fOXxaDb3TyLIzKzGE5//c9z8yX/EK17xiv2yj+WMQLD0ITz8ywsDSQzroBmtIVxTTFedMijLzRh28Gz2jyNIJo46i4NcRcFZ8VrDdLq+mbiTBtv84J9h4qizoLdt32OyxCiFrbN/+ajImIHfn8cBr2bguc/1yzh4WZsKIbO3mdUbkjeyRncUMRllz02V+OnX9fbnaj7mO2QHzgGNj0KtGYfICuhGhN7KBsgA+bBEPF0gnilw+5cvXOxhLjomDn8XNv/6w3v13eCQwldhLASWizM6se4dPE/lOQcvbcNkShKWVQRYxsTp8pOd76SoBTsB8P9ZVlZEkuA1pNvjbeUFB+/i2PfDQpLwZ6TkBtAAbzuOYIiAWMJIWpaVaRNHnslZtUUBIoHND3+0DB7tplJyb3CwNOsNBMtjC/MSGJUG7lXJqjlztLHzVpazzJKFrw456ixro7F8rZltc5byytPYXoskNt//EUwcfTbMzqndSh3OgZWTndPAu0p4PFrMt+9+EqWaXDQAezuvuJ4sotVi/0Apvg7zJS8FO3aPQatWoFg7Bso1RDdDMd5EtiKBEQQdEaKuhsg0Prf1vMUe6qJiYt07sPmBP92r7wZ7dt+bvXsso+rjicPfxXOS87ur81UU1V+jik3rqh2JSptWG9snC6wW4Gzgbga0uT+QyXJWV2ikvP0k5spDIWrfMZLXLiMEV0wCuO3fll912sQT38vnxFZQVlUQgIX1ew4WexYINumBQFEUOO4pLZx9+gqc9jtj+3VfH/r4DnziU1P4zr935vRJf6wjECx9CA//8oIjJrZMfaLUgpasWQtBftEHbAZakgC9nm2GSUwGAHOaKwLg7QwP+T4Xrp+KIyuM1l72ZcuOP6+RJAMJjQGTz3wVLFXiZVffr26j+tvBN5d36K9YcX9j7x3RXcFlA8JobO3+NcuKKY2tnVvn/46VaqiNPUzcAMD3Y7MBPdLA1JNH0R0XSGYM0p0KySQThIMy6wMCdoeFcEIPNJniggcOu3JCJo4+G2a4iS3/fiUmjjmHX5ydZeLXESpAGfSvBgWddExFEgGCgDjmahP3/aqEjNuWa+7cy8ptd3v8vTQptxVF7LDFETukyvb0iiN2SolgpFwW2bwnv/QqxL/eAT3WAoSA2DYJs32n15c3Ss1dc+PIO+TUSIFmE5t/+kF2ZAEvwflYQiBYHltwxMSWyZvrJEUceXkW0+uVklkrx3kuKfhZMkbXyOE5cDat1kCez60sdvKzVu5lnytWKo3mTZ5j68wtNUnF3WJQT6vdfa9CgAySAttXOOJl6+xf1v7e5XeqfbqAYM9a0PAQ0GpCjzSQrWyiuzpCd4WAyIBkRiPdyb1GPr/lsU2wBOwd9tWmXYzkoKpNu7ug+hyb1iYCIbeEcNXHr4b63FxU7QXr7FdbpTevPSvZHjZEIEcqaAN0OmzDRpJ9/khaezaGaaYguw0TCRgpuf+g7dmy1JOG1p94NZJ7dwBFAbV2HEYIRNumYbZtBwSxTdtHsFAS+6RSajTYvpUSm39yXbBpg026X/HnN67FtR/egR984fGI4/0r3dXtajzlhF/gj66/Fa9//ev3676WGwLB0ofw8B988MSHlLzodXu7lSCokRqVLFtHsJQfNOxo2X4kVT3q/v0PIlN2JRH2aEiWXUqMPRqN6ErvgKUIf+2C3jUAJgn1oaswe+Qw2odIqBRobDdIpxREZiB7ClRoiK5alllBAQcGm1a/vdTr3sNnaynNFetPuhpG0q6JladeYDPNKgF9Y5g4r5Ir/UE8peoEr23EW6tmiWTprLrt8pvl91yVC8CkietP1WzYfetSUsF9P478500cAZHw2X9L3RkFWI4iuefXpcOtNJNIeQHjMiEr55yShDMes5x7SaUp0GywM3rMOYBWZTKEO5c2SzJbOwIjCHfecXBk+FURCJaAQXAkBbWabM8+2kqTau+QeXqUbJ25pZYsNIik2C3xMkiqCwCUKivAHfqTfSqkzF5jCWea98s+PZZRtWezUYG8RSgaQDIDxLMasmcgcwORGXx+87mLPdyAJYxNq9/uiWcAy9emPfFqL789CBNPvYBtWWdXVUmQQrGtVKh6jMMRLIPkxPvfb/T1WQGYMBGl5JeJKklHhQbaHUAbmJEhUKFKG61CqlT3bSJr0wIwREveVz1p/TVIf7md/YgksUlVdm0rCpYEriQrUGSTpPKcjzlJfKKVJ1ic7e/OrZQwaYRs7TCAg7fiLNik+xfdbhfHPmEE11y0Gq//7yMHZJ83/+0krv3wDvzHPbOIXa/RAESLPYCAgH3FxJrTOVAmCFu2fWzO+/0Ooq90wfwSWw6e2IhjUJpwRUyWzWmUOYhYqe5/0+hba1UmtYqbeVDLeMNc2a/qGEkIr/XvF3pjAKXKBvMOLkN4eAiYnvHaqksR7twBmJv5/Bh0UE27A9HOIAqDZMZAd9gRBQAjgKIhEc8aFGPJIo90aSHIJNSxZdvH5mbVOljJKmNlZPZXJvCeYtA17NeMBoBTXnQldEQgbRBvm+UXqxUqwOCKxWrQ0TWHBryz6OTBiKzZVHVQXWafrmYJ2vecnILbf1IxQCMJ6EqGkXNoi1LWgYyBsWPa+t0r5o57CcL1MwB4vRVjozDjY6CZLkgxWWKyrDwnkZVFS2IQgM0/u8F/3/WJmDj6bP68GHDPBgQcJJhY9w4f3JpPFqgaEKzJOe6q9x5V5iGlgIh7P7nm7VVCYnfzfX+FTe3/KkHSP65+Ga1BRErlNbLBvjmVNm5+tsfp7VnXN2Yp24b2GgR7tm7PRh0DGED2gKgHkAZABB0BoreHUnUHOYI9Oxdbtn2sPgc5EIGSmG2OolhS5Ov6k64GULdj+8mVU064ggkKYxA90gZiyT68tc0B1O1LV/kMzF0P+udhl0RUtWOdjSUrldr9hLAGEFG5PZssRMbARJJ/E8HN9lTo+rZIcVW2MrhtGVRk9yfvbBp7G2jlOPTqMYjZHh9bdY1qsC3rfICqPQuUlSsTR5/NL4iK9HBAwD7go9cdgRXjAq/7b8MHbJ9vfu0oPviRHbj5jx+H3z/nwQO236WOUMHSh8CuLm1sWnlaWfpqNUKJBEyvx2TILvSY+0kRB1d94rArsmQh4PSuna6zG1O/xNggVLML3ffc+MXqlUAUQT/wkP9sPxypM58DvVS1PjetOBU0NsIZ0NMz/OKg4PBBBIoilhBySBKYoRRqrIXO2hSdlRLJrAYMELc18pbAV//2PYs34CWM4JCW2LTyNCZQqjIC1V4jSoPGR+c4BUsVXlLB+Y7aILlvkp0bY9j56fXqWX1urXDvV+CccEqSUoO6up64ahP3I4XV5jf1fTq5BhL1jD63v8huR+vatgwRSPN10CMNkLJZf0Rz5ME2PudSmEjgtq8tnQzAk9ZfA9Jm11mY697B/VjSdK97JT0WECpYDn5sWnka27FuXpGSq7xchdcuen0MChRuGntb/TsL3N+oHxNrTud5qyiAvKjta06lSh+2TN7sq3Hc96rEDa1aCaQxzH0P+s9X4cilXWWgn/ySK/HZLy6tvnSbxt4GGhsFlIKenLLSkwc/wUJDLfsHy2uaoRTFyiG016XojQoYCcjMQBSAyLnx9lf/Jti0/Qj2bB2bVr8dlKalfGKVoNUaGB/D5nuu2c1Wlg5OfsmVIM1JcwAQPzjtbUgjiQmLwlb1msq86uzLagKRqwqO4zqR4j5fJU+cVK3739mt2tTJGWf3um0APJaor+8qkZcCI62hWwnb6ZL3b4SYU71yyguvwO13vX8vz9zCY/1JVwMGSH72EDb//MZ5Pzdx+LtYAuyXNx24wS1DBJt0/2F6ehpPOHoF/vzGQ/CKUw4cwQIA//v/TuM9l2zDj//fFJrN5gHd91JFIFj6EB7+pYdNK071DtSm1W9nQsU2zPXBqmozNodqsMt9xvX2wO6z9Bw2JG/EbdnfMJHhJMGav1sPoAmao8NclfZyICnZaQRgHtnOjY7nqWjZVXVNlSTpJ4hISt9obvOvP+z1Pn2TTilhEittoxRopsMNTR2WUIZPFRNPfK9trNeDmZrmFw8mp1QKNoKtpJAZakGPpKBcwSQRiuEYRUtCS5YKUikh6mh8+e/PWeyRBywDTKw9w1elUMLEnckyngfs/EmrVi66I7q74MHEk86dE0CsaUm7ZprOuSPrkLqMvyr5YQz3RjGmbPyZW+m0qK/AtyoV6TLOAM72c31ZrD41tK6vRYOc4CSeI0GmWwmMCw4YAxQaVBQwaQydRAABop1DzHR4nI4kc9t1PV8iuUtncMPzLmcSB1YTO5LQiSV3jIGRfP4+d9vead/vVubiiHfzPK4UaOU41OoRf9xLyblebASC5eDEptG3evttYt07WL/dVhsDdSlY47KMjeHEnGpWcqVX3Z7YbBubv4utnVv9OFwvEd55GXybY9M68sPNNVKC1qxi6dxt23ku6m90399DZQCMUj4haKD8mJRcoW0DWBNPe5+XHTSx5GbJRKCsAE23OQlHVfa5BG3aiWPOYXmZLOOqm4NRNqzPplWHrgTlCtrbswI6FlAJUDSJK1hy4Ot/efZijzxgGWDiyDOBThcmyyyZYjguILnXmz50zaL3rFt/oq1S2ZU95KpzXaX1gJ4nPlHHJeYYU69WqdrEM7PcH9CY0p510j1u7nbbMKaWsOoJFldJGMm69FqVnKna08b4noTOljONCCaJvF3JlSycUKTTiG1PAmRPQcx0QZkqJXSd/FmaAELs1i/Z+KxLQErxepBEUCknYIpc834E7fIa7ArrX3YVQLv+/sTh7wK0hlk5jmL1EJ8qZXD7l5cWub/YCDbp/sMHzluNLZ+bxRf/6XGgA1wNpbXB8zb+Cm96zQjec+nDB3TfSxWBYOlDePiXNibWvQOm0/XNw7wT5QKENguwRr5U3q8SLA5V2S1PWgxoXrmx+buWELHZF9awICmBKCodRJe1p3U5zgrEyhVAFMHsnPSkx5btH/cEy+5ky9x++okVB5IStO4QJlFsY2TSGig0EAnoNIaJBSjXEFkB2jkNMzk9cFtLSZsWsCSLEEC7w05ptZHfcgQRyBqQkBIYbnGQNZbQCQc9e2MRQMSGoiRoSRCF8TJIX/l0IFgCdo+JY89jZ3SGZbMoinxTZJISmx/+6P7b95PPr8kV9Dd3nHiqdVzsnN07chxASbJMPJl/b77nGiZYXOYeidrcXqsEkX0BK+sQkqo4sNoAWWaz76LSUXTrStVIrWpSO/RXuLgs9L51CUqVzjBRSa64fiSOsEkS+/3KulF1fgGgl7PTXBRzq3A86SNKnW4hfJWImz/V+BBEN+Pm05GATiPomMfgiCkjCLKrQLkGFXrBdLInjjqL70PXALTVgl67AjqW/hiCU8oIBMvBj00rTi3Jleq84TTuY54rTGab6FaCbzVbtl9fH/WKD5fwU61s3tj83TIRCfD2KEkJk2XY2v1r/u7K08r9FPVgG61ayT2jtu9k+9iuJbvt02IxqHJlDqQEjljHRAqYFBad3M5dFXu2k0PsmBpsz9r1ZykRLROP+0P+o5eV13c527PAvDatTiIUI7G1ZwFRGBjBEmAgcOKQYGmwr98aCJaAXWPiyefzPDnTrtm0npAYGcbm/7x2/+z7qReUc7W1webYtC4h0Bhkj1sBMsBnv/C++vvaYPNPP8g2UZUscehP5PGys/b16hiqvztdnpPdNqsyhIN6XlXt2uo+o6i0Z6tJrIJ4HaiS2HHMr2d5mSSYxGUze8BLh0FyXMKBsgKU5bw9rer7cShsooHte+hltux9oBsJKCt424klb4QAiKt+3LUQGfcppUJjy3cvn3Nt9wYTR7y7XBeHh1CsGfVjNwJLroJyMRFs0v2D7du34+ij1uAfP3koXvrC1qKMYfMds3jLux7AT3++I1xbBIJlDpb6wz+x9gxsfvDPFnsYi4KJI94NM9v2WXKDiAjnjPpAllJ1ksNpNleaCvvt2KbH/J4rf9VMpFT3Iaj2Pkhga+dW/75rtmeUYtkdG8CjOPKyVlRtJGcDZCbL2CjK8oHHVnOM5yFXAFi9+1GosaY3aEQvBykD3YigGhFMLCAyDZEpyPu3w0xO+6oXZBn3mnHHm8RL6p6bePL5ZWZOlnO24nKVCyMCjQ57Q9Y0E5gk4oBnIqEaEu1DIggFRB1tq1cAUQBf+d9BOiFg93CZXdRj6SvOms39PLo/n+1Nx11Y14rua7DpstI8wWLn5M13X11/HfDZfZv/89oy4w8oK0hstp13pipVLcYFK53sjjKls2fhx+md1gFE9yCSpXpMjvAZVL1SdaDdGqV1vRF0EvM2bF+E2r6qAVTnNFcqZcyA8fp1zmVHE7E+tH3NxDbDMJVcxRJzpp+xVXJRu4Bs81qw9RuXzD0f+4CJx/0hVw8BfNytJkwS8/zXjKETXmOr/Vwea3gsECyPaZv26LNhHtlRl7cFSnJFCFCalnOKoFLa0Rhf3eKqWHwTYUfWGE7yoajUg58jK1OxhV0VXr+87MTaM9gm1BrUSLkniuAscQCswQ+Uc5pSLHMmJSiJuUKn2kgZfeTPbsgYWjkOvXIEatj2ZCEgmsmgkwi6IaEjwVnQvQLygR2eYJlj09qA4lJKHJo48kw/l7tKJgDLl2iZz6ZtxMjGYnTWRCAFyJ6BTgiGANIGX/vrYM8G7B4bn3sZV/YqBcpt4kqh2K61FRj9ZMdCYdMz3s9VGP19Tir9RTb/+I8AlAQKUOkjd0xfMpydhzf/7AZMHPrOuZJdVRvQVSe7xCJZmR+qlSQk+LeTxB3Ub7Afbv2o7sv3SxEl6eHIlkG2qxB1+1YKJl2I2Fd3Y67up2rPurEWfeOtVvS4fVXHKCTHTXxVpSgJlkjYJFMBHfHnZTuH6LBNu+V7H9j9uXmUqJEsaWLt2cgnMLlqnX6i7bGG5WCTLkec+wcr8b0f9rD5bw9ftDEYY3Diq+7FSS9u4dLrHlm0cSwVhCb3ywyPVUd00+q3l9qijiQZUIniM/CiCBgf5VLZdocrWoB6pjEA0+lUvm/mOKKmKidDfQ6PM2ZQlzHbsu1jAPpIEKPLZvNaM1EkZZnppRVo3SFArwezY9J/bVAflWqvln64gBoVijVPE4loZwe0cwZopJBZAVIpiuEEpDjAqFePgcaGoZoxSBmIB3dwALaCiSedCz3cXPRyawAwKTtu5DIvk5jHuxwlFoyBmZoBtZrAyBA7DERAI0Y03YPssqatTgSKhvAOqch3XeUUEAAAm555MUwSAZEATbfZQWs2+Hcv2+96wdTLyuaPSVLOmZGoZadtvvtqJmOsk+QqVuZIPxrDjquVN/SfcY5Vv1yYWytqgyIAA/JK3HecjrR5lCXW1eBkdax+7NbhFcQj0RUntNoIGrBOcTHXAXUYJAdRRV8yAMgAsM6/c0C7PX++yDDR5GYTEgBpglGATiQ7hLnymeP7iolD3wmT5yC7bhpTronodEFKM/HViDhgOtvD+hOvRjYWIZ5WMBFBpQJUGMQzOeR0tiTWpIC9x2PVpp1YewZMXgwkV1wls7GEOFnZP7N6nCWwpmY4IacaEAPKZCL/ugClke/xYfK8ljRErncUqsE5g02r3+7tWKC8RoNkv4xSwMwsb8vbsyzJtekZ7wfavdKeHCBltttKF9vMnrICpBLoRCDa0YVo9yCkgB4q7Vk4e3aUJVpUK6nbtHauXUr2LJoNvv6F4utsDFdnF8VBZ9Om23uc6JWyPWsEL7Oi2P1mAwK8PRtLiHaPE1GSBGa4ASfNuuXfr9xv+6dOxkkhrvKjmkwjRV1WtijtuIkjz7TkgiirpCtyYBPr3sHfMSxxNjAxBijlvkgDus8+VXUCu0aADLIXBxE5jsQBmFQxBlB9CVKOXKmi+r/fvykJB5+QauYmClVtZ/f9KuHSP34nmSkEl4dUq17s+DmRSgLGxkNyBTRiqKY9l4UGFtCm9dXiQHn+shwEwBCTTKohEc3kkNNdrD/xauSjEaK2gpYEnQokO3PIdr7giUwBBz/uv/9+fOTmnfj8Zx63qOMgIlxxwWq84nfuw7vOfwSrVq1a1PEsNgLBMg9efdQfIjryyAUrIQzYNxAJGKi52Qu2UgSAz+jbOvUJborumqG7zzsY48vxq44mSdjMD12+10eukOtX4AN+7JSavE5IAJgrxVAU0NbRJCm9fj41G0wSuGBgq8kBwb0pLutrlmkiAeoVMJNToA43sRZpiuiw1VCtGCYimCiGnLX7zhWQxKDhIa7o6WUweQGKIxTjDdYihYvbsdzO7V85sJr5W75/BTvuhWJ5o0YDJss5U7MvQ36pgxKri+uMs04XNK0QtTlDVA+niDoSBREo5Uw/mRnIPBQeBuwaG553OYQxIK25VF5pwOSlkyZo1xvYB0wceaaVEVCljJ9WVkaAe34AYC1962CRI0qqzpe24xyU4e2y46oyXf2PPFGtSoXlCggUWYpFa99EvkaA9FepuPH0o0aEVGTF3I9SlYxDmrMOVRMGaqjKIxCV87rWZdWHP6bKejTomnoCquK0S8GZfwBXV2aFdUrtLo2BzjTUEFeTGKI5zaInnnpBraoIsFUprlLTyZRZTXSQANKknKMBkKlcc1eVaDQEEbLDRhAXGrKTo5EpkDZQqYSOCPFsgXjbLKB0TWrjYMNrnrgwUjmvecJZiIZGYcZHgk27lCCorLqu2LNV0sXkObbs+HNsWnkaaKYDCJbwgquCdhV3LsilDc9zXp5Qw1QynGt2rSglYNgWViARAXmBTStPw5btH68Nt0qObGz+bpm4BK4SpKLgwHoUcbZ2k6vlfHPzvbBp2eaWPDfZ74vZLsz2HYA2EGmC6PA1UEMJy+FKwcuA4vmMsmKOTYuKPUtuSMaACnPAe0Btvucalu/010SAmg2Y6ZnSpnXrxhK3aSmKKvJCc21aPdqE7EoYQUADIGUQZYDshYShgF1j0zP4uSQXYHdVelnGz0gkMSfBZIEwceSZ/IdL4gTqlWZODi+S/Flnz1RtG9/vUJSV5P3jFTSXXHGozgMVW22OTK2zK/vlI2v7mec9QWynu6b2tepsl0hkd1yNNbhkx2pljx+XqFTDVJKhYu7VQkUB6ub2+30nvtq/q7p29BM9plKFackOQlo7T7LQMCKFIZYQgyRseMEHcNtXL/KbnTjqLLYlbeLZxNozeAxO/kzIUprXVeOkCYDMJwIAsGsyr40CYNu/FSEbS5AQgZRGPF1wNVQsoRMg2j4LUsbb1YvdC3N/4TVHn7nYQzjocPfdd+PQtRGefXxjsYeCFz2/iZFhwn/+53/iBS94wWIPZ1ERCJb5UBSgqTY2vOADKIbjeRvuLiYm1r2DM52kBI2N+KDMrprbLiYmnnz+Xi8a/f0BJtacznIJfVUtzmBx1SQTa04HJUktg9kY7RuoURSxdIDTy3SB66qEgiNXBJXBrL4G97uDkxDb2HjTnNcmjj0P2DEJDAF6xSjEbBdodziz5fB3ef18hy1Tn5i3ioVGh2FGh3jhtoaTHmlAqFWcZWgISFN2OptRafBoQHSLsiIkjqzxowBByNcMoxiOWI9fwwclBek5RsoBgao7nZSmXP1TMcZIyqUtHUbE2YuuxBkomwkWBRt1Gogmu4BJUbQEAAIZQBwAh3R3zcYPNkw86dyBr2/+8R9xEBdYVoHc2/7tYmx8zqXcHB2AGR8GtXtWSoGdwU1PvxAmihYsk9efJ6AkV/ohqC7PpWymnRF1J9E5lP0VIqLyGQAAMYFUjT1Rvcm9e41/GxiIssm75PmvGvgf6LSifM017fSoOlywwUZ3TG477jhU37PrXneEh2ti6qA1Z69bshyNtJT5cXJBZHhun3OuRb1KpnpOK8dHWsPkgLAVoEYSREdz43vrPFNRHu/EMeewI26v3cSh7yy3ryyRVu3t4OTXKlmdtfNShdKg2Tbi7dxs1a1lOuZjEAVX9Bki0GzbZi1KbDruQuiRFKoRzZEV23T8RaWciLTET55j889umHvOlgAmnnQuzI6dC5ZlafIc6PZAs/GStWknHveHXu6TVq2wz4TYbzr6C4GJo87aa3u7Wrkzceg7LQGawbTb9cCb5OfDkR0Ta04HgLL6JBIciG82mEBwfZ18cE+zXWvKxKGazG1FMmwOyb0LbO3cyr0Krd/hEoomnnw+MDnFz/pwA2rFMEQnZnLIGEwceWatcnLL5M27rmIZbsGMNEE5k6wwgB5qQOwQgASTtlkBasQsbSjAtqtSED0buIujmk07rz0LhQ2/wQTkbV+7eLfnYMFgjL0eyt/3SGKQkxq2FU1kzNK1aV2wMZKDbdo8B3QT0SRXtBYtAdg+grIb7Nn9gYkj3s1/VJ7nzfd+iBMhbIB68/0fWaTR7Rm2fP8KbHr6hTZgbmCaCatY9HqcdGJiIIk9EbPl+1fs8z4nnvjeMr4wqDdqVVqrKEp7d9BnHSnkEm+AuXKy1c+6gH1/VXb1e6L6uint5vmI2P5+K25fLunGq3QoS2rbsXlVD/JSvD724foLOjiiy0n32nm3HEP1GAlQLCPI0muSr2f19LnzUD2ntURb+7eTTwN4PN1ePQZgDKIpcDW24P8pL/2Tam/ATWNvq5FL1LLbr16rvCirhKKKRJmD+2yhIKa7SJSBGk2hI+6hikLDuCrywsBEEWhmGk5KbdPxF0ENpTCxGCgptuF5l1sfw65d7cxLKy9FeJvWJZUGLCiWUu6F2I/Jm8sJoQdLH5w+4Pqx30W8Zp3X01xMTBzx7lLX2GWMVSo3SLIx62Q3eFGLeeGLIqAoakaUa8K+lHSIq9g49GZAKd9gc1/gAz81GZYCJst9k2cza2XCKg2Ja1l+AECidEr7jSIpSrkyK12zZeoT/u1NY2/jypoBcl9ujHp6BuKQNTDDDdAjk3y947KqZfOv/njO92pGgJNFW7MS+ZphiExBzHS5pNkdy0wbGGpCHbqypklqiBDNZr7xGxQ3gUOPs4mRJDCR9EFRPZJCNWPIDvd1Uc0IslPYpnKcnUHKHJBS143PugTCOu5QCuj2WB/c9t7x2UDA0lqBADbckpilk9KEj6HbgxkbASSBZrrY/NMPYsMLPgCdSOSjMVRCSHYWiCe72PrNS/fLsJwjChzczqhvQtmPaoCp+nfViag0WN9fes8LjY3PvQzUzriZZCRh0pjJF8lzgIlon5oxThx7HgeupbBN2FX9PFYrJ2zPlM3/eS0H5PolBvwzy+SJb4DZT3xHEiZmCbQaKSNsk3u3PaBCwjOhAK1LIrpfpmAQrDNr5IDMQlvN51HVka7KIDh5iNq9VHHMqjIT1rE0sZU8MIadOksoeO1xoN7wvkYUibpWN+D7LPiKljiqSYA53WoqNHQjKs8XACjD8627Ru0OXzsp2XEqCh5TldCpVupUnf/+jMxqpY47F0kCPdJgDWvJWtoi10wA9QrIyQ43UE5jiF4OE0uuzCRCPNnloGyuWB6oqlGuFQdl3P3qKqKkQH7EKhhBiB+exZYf7j+5kV1h4qkXADsmUQiNz97/P/e5B8vJK9+KKG4AY6NLIjPSE3Q594MyReGrgClJyspOF0AZapVzSpqwTVshNvolrZYSNq08jUkPoxfGpnVZtYCtEitguj0mWIyBnrKV2zYb2vVjMa6aDiXJQklS3zhRGZRyQS3bLLnqLwyqbvHjO+LdMFPTTI6uWwPdSCAemeQ3G6ldF/QccnMOyeJ6vKxZiXz1EPcLnOoC3YxJo+kZUKsFtW6l1dsnrowggsg1RK/gXg1al7+tTWtazV3as6S4GbLr50U5z19bv7UwiQjzwfcXdD9FAfQy35vFOLk4e36WFIi4zyQR27TuGe72gNFhmEhgy/evwIbnXQ7djJCNx1AxobE9R7ydfbD9VV130inXgAqDOz53we4/vIzhpaZcULlqS1UrKhz6X7PB/+VAumx65sWcKNjNyv4rrSZ0Gvsg/r48rxNPPt8mhugyCWhgwlCFZCHC5l/exMH6/l4i1c+7CpZBdqcUPE+6KhL3nUFBy4p0Lv+v67b0rqrf3NrqKjOq/VH6+mX5bQ2yYft9JV99Y3+7+apSYWQi6a8RZcpXtEBr/t9VJ7lqmv7qdUH1ys3qsfjkIVHutzI200z89oywBMdsl7/vpBmjiO2MXsaVR1E02KZ1Y3A2tqzvy5PNrkekFDBpDDWcQqXSJwQIZSAyDTnVg2lw/1XRK2CkQD7CFa6i0JAdxfGVorKm2X3RdIfJKXeOIgmzYxLquGM4gSqSiB7YuWj+6sRTLwCmZlAgx2fv23ubNmAu7rzzTpx+2ib86CtHLfZQAACPf/bP8Hef/uJjvoIlECx9WOwGTBOHvpNlmbJsbhZZf6AIqAcNgJoD1d+kt79Z+0JCxNEc53FD8kbINau41N1JclUNFKdHav8mV5FSgZPkco4iSQkaGQZGh3kxJOKsgywHxdG8et4Tx5xjS3J12VBSKRAJrmhxWVbGzNXEro5pkJFTMUKomllRQa2hp60+qVZbAPDGmxgb5QXdlUK7xd5BqYGZtxuH3wKxYhym04E56jCooQTx/3sAMAbqiDUwkYToZIAQyMdZXkJXgpCu2aRQHCykgrP7YAzkTA80OQMzM+uzgGl8DHqkBT2UQE5xoMtEEsKW+7qg3f7MBDz5pVdBdAouG7dZ6NTLgelZIM/r2ZzA0nNKpSgzUV0VVbX/DRFozSoUq4ehrUFGyuCOOw9uR3Eh4DLZAMCVipMLUvvXKpUHzlB394qt3qqVqbt51Rncg8roiZZEEHNv8ZJXXgfR05BdBZFpiFx5MsIIlroyEVc29MsDbnrG+zkYVVjnIy8bC0OK8j63Ga6lPIo9h32EgG9O75r/Kl06Uc6Z6a/4AOokiHN4Cs1OnRClc+IcpELVKjI85pNScPdKJEtSQNqmmu7jyjqhzkkHBjvqFVLIB0bcOYokijUj0CnPEaQNZKcA9XKuZnGfdcfgnHagcm9XjqHqRAt7HaOoXv3jnhN3zgBAgJ06baBHm5wx/sgkj7kSNPWEhdOkdkECJxumFI/H3RfuXFafoWqygiOcnNyMO3/VaiZH3lSf2yrZZtf7OQGAKPIBCR/cd73ZfCaqJc/cGGpzgS4bjle+47dhq3Uojn1Q1FSzXB2iCDQ2Ar1qFMVwUqu+We5N7ieOeDcnDfR6fH4GJK7UUK0MrnzO24UHyKYdZM8C1qY9bC3M5DQncgAwxVx52DnHVXuLE3XE6DDboKOjfJ/PzAKFgsmy8t4RopasU8XEundY+a9KADC2WbZ9PQeNz8LuO49S1pNQgHqWczVwV8kEBpEnWDatPI1f91KQ1gdxEjiCIFauKANWlXFBCkDpeXuBbRx+C8T4GFfqH3koitGUbVqloI4+FKKdwQiBYpylMUxkt6vhg1ekAVFw0g8pPgdyugOanOVqoQH2LBUKop3NsWnd3LS/koc2Pvcynm+Kco7xlXfTMzxPOfsFWHr2rF1X5rVpiUCrV0KtGoYRnKywGLJsyxG+Lx1QrkFK19d8t8a5Ndgltbj5wTUir/qc1eSGQTEGYI6KwnLC+hOvhuwWbLPkqny2Kj1LTCS5EjCWtcS1iSefb+1O149E1wP6QMV+Y5ti80+uKyXFZOUzQHl9qtet+p777SqAq9uvBu+r87i3aUS5zagyV1eJGkeaOwK92uPEz8nWzkmT+pxfKCYbqt+rnof+bbntVI8vjoE05nk1ifxcxz6DBhXKky+c7KnLc1SNdVX72FRjMlWiyI/D/l+9dn2kY7FqGFRoyO3TMK20nHPznPfnjrvVLPcbR5x46rbpYg2OWMvz8vy5cx5HQBTBJDEfvwDflzbRy1fGV234qi0K8PFmeZ0ctclI3rdwfS8riRImz8tz4Pr/RlHplznSz9kUbp2RElu2f5x7ChtWBqE0ZbvfJgHUiH8pgeEhFKuGoZoRimGJL/5TqWyw2DbpwQhHsPzHV45c7KEAAI5+9s/xd5/+0mOeYAkSYUsIE0e8e+7iVTF0SFSyW6uOD1AL9hmtQUUBU43hPBpHtL/fiDOO+0mRAdB5gQ3x6wESkGOjMJZJVw8/Uvkq1R3nqrNsNIyeu22jFAgShvjYKLEl6F3b4LNQdhHLYbK83kyuInew+acfxMTRZ/N7sV3YtQHyHFQAptI02ZXjl4aTO4AB5MqcU1geE8UxKIlh8gITx57Hmda/uo8X0uq+HJFCAls7t2LT6rfz2BopjzdN5+zHNwuW0pNKXqLh2PNgjOEezUMtoN2BmOXGxtTjTJ9IEm772sU4ceO1+NzW8/CyiT8CaYPPbzkPL/3N68r+zmQd1OEYcryJaOcwZ0oUnHkq2j2Q1jaLOEK0swPq5lArh6BjbkZ8yglX7Lc+LZ/9wvtwyguvsDrVBlpI3Pbdy8vqhLwvoOWcjKUCpWH6JYOqMAbo9XD7V5ZvwP5AYdPxFw0kO3hONaXhWnUenRNjM/mdkcsv2fkv5TmXs4YUQFFZxebm62qPDUF10qAS0N4fJdwbfuNyLqmXZQbv7V/e+0oUKnjeu+Pz/Gz5gI+dC40Q/CO5LwcV5bkV4PcJNsBuNEsROwcNACB4Tq06fe4c2evhCRJ77fy5rmaouV4DlUCCJzioIhumwU6Qy5DrlE1KfXVIZHtiUcEyCG5cg0gABykByHoGo903iGCgQRDgJvf2fvGC0LL++f41K5J+/DqV0JGAKDRgwMdorB2gDMs4Vu9tT2JRuV5XNbDdeRI2a9CRi+482b8hUMqgFZaYlJId4emOPy9m2/a63WKPjcbH7PkvKxX8/OuIj6qT2J85addpf0x5wdtywYQq0VbNCnUOYzUw0p+JCZRBaMnVmex8GhsY1nODxUqVyR5K1YlalMQKhPA9Mzy5Y6uKSRCgI87udk63DYZQJ0cErso0sUTnsCZ6oq/fzjLCxJFnAllWJ1f6Iah0zIG5wSZjbCIMB1f2yKadT+YVu7dpq/bsbdnfsHzZbBsAoO570G/bX/P59j1g20YbkAQTNELADKX87A0PcZDGsBSUswsn1p5R34A9N5sf+FNMrD0DBJZrqREtqNuiHp68tlXXu0o86fcxrHwgWUJ109MvBO59sHyW3faM4c8lCUyWYevsX2Li8HfxsbmqhjiuEc0Ta8/wCU9VOWBv0x59NnwuYKsJtDuQkx1uJExsz2795qVYf9LVuOPOC3wVrlAGd95+Pl428Uc1m1YORRArWmyvTluSpWLPgmhem1bku7DX9hFbv3EJNj3z4vJ8a15Pt9x9NSaOPpv9hSyvrIFLzJ616/W8Nq1SQLuD25aw7N9SwqbjLizXYC/TVLFFBKGakOJhjLVn3TqpACd/HVdiCP0BcLeOV20dpVmWMJJzCQFj5k1q3Bc4MskkvLZv+d4H9npbRhDLhn71IvYRgNIWlcInDfGHDTY+51K2OQEI31vEqoGQYvuw349wCTFV4hgo53/nG9iANH+nkqxRRe2aCIDs9lyFhtLwdiRZGynLAV2UJIb3T1Q5NmdDV32jaoypapvVCHcCQHWCzn0eqN8v3sasnItI2nNn7eJYQqfc/9VXfSvj+yKyLeYuXuU8S2tH8z/l+CrH4pQ2atU12oC3jHKurPY4SxOQ1pDTHU5ievCR0r6zaxmkADWbJXFl7VFyFSNCcsKvG4/drykKkJX88ufFGJvcpUCzeS2Rj+x3TRz5z3h7vlrNU733vM1uX2+kQKw9KWRmZn2CBUlZJu+6c2Clzky74+Uoq8QZ2fli68wtvsrUFAVIx7wW5zkoHq7Z7UayRLIoNGSXcMoJVwBE6K1K0KPla9MGBOwJAsEyDza+8UPQK1r4+q1n75ftn3TKNVCxAGmDdFsHYvuMX7AoSdhBcxOmy0AhKrMjjWbH1DkqVirA6d4bgCd229RSxOWCWa1uqTmp/VUwgypcq9Uyg2A09PQ0b85nP/AY/L769lPb9qBNKoAMByNMUYC6PV4kkgSI+RhJqXrmv1bg4BfYST32PD5X/ljd4h8B7TYIbIg5B5WqDct2AVdVYwYEcnxz0tVv54yCuP649Ve7UBLzAiYEkEb8HVv2DHBgTbcSlklQKWcg9LK58hhucXQLvc2yNhGXp1Ku/D4/t/U8AJzh52y2L/zf9+Ilr7wOupIBaISAlgSVDkOsanFmeycDKcMyQxqAMVBDKagZoxiOoSX50tf9CuKALOUaEFYKKU1Armx8nkrtpY6lKuG31LDp+IvmBLfLwKxtYu6M5WrGUxx5OaT+bDRDBMS2hNv2MOGsJksmOBk9U5kLXRabywZy+/LzguCqGsEB7kcj8XbSKdfYwHfpHM2RuSACROngVMmV9S+7yp4T+7bi7fBv931AxwImFhzI1wYi10yeEOoBcEc429drslgAdIOdFdOMQZ0cJAXLsrigtYPRgLKVhVLANGKukCEqnVEbcHd9oHg+p9r+/LVzwXZHNEkJ04i8ZCF6/DoM8TXsZbYiATD25BCsEyjd2muvr5O8GlTZojQgNUya+LXGz+e2gsU04pK8aCSVKhZt1yl4iS0jiStKIuHlaURWlzLzPVFyAmDvMWUq58ONsc8Jtb991UrV6Yd1bG0W4cDAnf2smOnwucsAMzVdr/awtwaIYKamQI0Gf6+RcoC1mhDin0dwJUgVgkpZsqrD7xx1CZ7Xqxrb1YzJvgx+KOWDKqbfzsgrdoMqg75+m9UxESe52DMPIuHlrbxjqjVXqSYxSCalrKvLgASAJIFaOQQjBXorE15HY0LU0Vyl1C6QTBUgNaA6Yi+w6bf/GKLVRNEU+Npf7R+b9qW/eR2oMEgfbkNsm2RyxQamqJLAAqB08oVgOTBtykCMI56UKnXtFWdgDrJpnT07h3Cp2pm7sml3BaOxIX69rfIQEE1bKVEUMHlhyRJZJ2zcmAAAypM6tfcVgJ4GoghichZIE9ahjyQH0dEGupptRtdDqU/+ZeLQd5bPaGR7SsXwEqk0z/NbD571rV9A/XjcPOD+Lwps3v5xrp4ZlHDUt31qNnzPGKQJMNNm32XVSl5/04TlH7UGxSwxuGnlaZw4VO27aO1Xvw8pYZKI7dlKX6dqZW+VCPn85nPx0pf/USkjBrb3dTwMWsXyY6Kbl/YssEubdn9iy3cvZ5JFSr+ubzr+Iia2rB+4XFGt5A+YH5uOu5DXcWefaNQThKpSTdV1Po5KG4kqcqaFBrk1NpJl3znfR8KwLeJsHTfnujgE7LperYC1QfSJo86ymfByt5XbG599Ce+3KLy/CUlz+6U4O5qoRq5sfM6lXtbJOFlYi1p1CgCTREyQKg0og43PuoTXbSIfyIbSICI+xxXfwZ1rE1nyJY1420IwyeKC3X7n5M/7xLHnsb1ThXtmHbHjCbIKyV0lKaqkmRRWCrdMJKFepdG6NoAsCSMAFT9HlnEVAa5IrpFnlXnejSeSlqRhu9oIu7b4ni8CoLi8/5xvUl2f3Hakiz3Imr0pejmQlXadiSWgnA1aJa76CEB3nirnG4BPGIL7vrC+QLWqu7+6xW6TjIGc6vIYHniY42fOPhfk+/eaqWmOPY0M83PW4PUMSgFpvfqrWrFnoGyMStuKGEumuPFG0iY0yTIB2B4TuRBtp2ufc/ZBEUk+Nhcj0gbGWLKn02E7SZCVJi3Pp9EcK4Mx0LNtTgJucDUKuQSg2Q4nSFvbzWS5V12hZqOehFQUMEMt6KEUxUgCHROKIcl9EiX3mjECMBRDZhqyq5H02/oBCwIDAzVPDPVA41GETh8TCATLPEimcqhU4wVvuJ4DUJIWjGw5ceO1ABHi2YIJeZdtYjSQExCxAWJ6mV9ATW5llwAmVoQApCNgJC/oeQ50uqyt7OQ1AF8CD1jmOS84q9Bl0lW0mXeJ3cke9H/WV5BQmYE4j9SDg2/AWX8RgF3AlILpZWVWj8vSabVADVf5I1Dtam+SGKYZe4NTpxE7VFNdG/Ti4A9pASSc6WGUYsdfSl5EqhmYlQwOV4FCTt5Firla4FkOo2eB6RnfDI3cdhxpViVb7DF6ws1qalMkgVaCfM0w4ocBTE4DBWf9TRx9NsxwkwNnVsIlebAHTE2zjn0jQjHEC6DM9ECJqTvv4Kyhl/7mdZxkrgxnnxMgeqx7r2OCjiUolZCxgOhx8FNOdUBKoremZYN4hCIlxDMKUafAhuddDtWKoBps3H/hXwY3FN8bcCCydDJMJIAWyzzQbAdz5vqllvWHQKbsKap9YhJYp6n6Aa3LEnPnHEgmLh2pYhJuvmgSyTq4uS4D1QLQgkkHF5ARUoAyxbrPQsBEZTDZzwnVzM0585jh7QsmLE954RUwET9P7tnrx523n4/1J13Nc4Y2MBHNadZ621cv8p9f/7KrmFSxRjcZ3q8R/ExynyXT16AdEJnm6UjZ5vPO/7DHY1Imp10fDCNLEovcua6SMGAHl9q9SiCgEiBTmoPkJLgk30qwkNuGzSwk77iZ+jrgzrt1mEyFlDFCwKSSNY5jAco1pIvV54qd8zRhh68imWEi/j4VilllBY6E+qadlTm6v3rCyks4B99I8sfkJLi0Ddb78+Xu01zxvRgJJmWEPc+i7CtgYuc4A7KnQD3lyRQDTtQAUa1fVi3T1WbemSpJ5q4FMUFjiEB9QYuac+ucOmNYrsZmvNUqZpSCyQtQEpdJCk6Sc/U48KsHODHAVXBoVXeiHeyl9mNw94/LziwKdjjtNfGa3lT2SwBQXqeqNMp8Qfb+gImDfY6d0wrbw4haTc7Un22zrRBFZa+Qmba/N8lKhyBNuVrBZTHmCjqRSLdznzQ1xOtjkRIwFiGZVijSeSok9hAy0xCkAQOc8FsfBBlAJYSv/u17FmT7L3nldYi6iqvfjOGqW22fZ2djEsFkmSdbXBDCZBn3XXHBjzSFaaagTo+fD0u6UFUq1VVMAECWQ8/MWlKBoKuSfLvDPDZt1QZ1PUl8r0NHsGUsQdpPrvR/fyDcXGYM66YrxUFHe39TmtarY/qD6knCdmskff8hTM8CRQFKk5r96MZubHUXExmqFjwtx2VKebJGyrZ2HGHzg3X7xBQF6P5tQCO1voko7SobNKQ4glF2P1kOuEomALRzkj+zchxmqAGyvosPTEWSA7dpyuvzSAuUK8QPz7AdHcfIxxvcJFjpmqweAL4PAZ+M8LKJP+KG6oUBwSBqK6hUwCQ8L6hUsD2baRtUBFeuzGPTOntWpxJaEr7wrwtnzwJ2nhYAtCOWeX0RSgOTfR9egvYsEGzaPYVPpjEGiTFl0B8AYOrSlzbh0Aev7dpnJAeyvS3h7o3YeEkiB+oWFXvNlOukTTjwiQgu6agSJyBHkDspOIuJp73PJyUN6n+y9VuXMXloE05c8/ONz7oEiISX3nOV3pueeTE2PfNiL41MAAja9tdjG1H08tL+BEqSJCvgqtC9veuq+5yNBGfTskRYCTMnocYkgm1/b1ugtPH75lGTRN7+g0saAuAlT6uxhCpZUJXQ9VUP/OybNGbfu7BS6XZNpVyViSbVxEreYElYuKrequxXP3lhq/dMM/GJYCCCMVydjkL48+GOxxDNldtNY/6uS3iyldLcp9USZBUSiTJVymRFgpOgAJ6f+5rcuyQxv31hr48QnGjrbFgitinyyjVzx+jPc+mT0PYp6Lx6zQSTjOBYEDVSG7/RvhpTrxkD/eJ+XqubDZtIG/M+++1GtzZW7kMAZeKvI1uU9nK0uhFBeLWWiqScSzSqSnpV7z+juWLNkUWmvN9cvIosWWe6PbbJmw2YRDLRkudMrgw1uOJ/cqqcKyLBsag0gRluQjdTQLBfYmTEiUEFr6kmFtCCSRfVlIhmFff+DQh4DCAQLPNAdgqIGQUZsWGdDQs8/803cE8KYJ+yAF3VAMBkSyEaUGtaiDoK0SQzzjQ1C2q1fJkfucxHgHtLdHscyADgsiZdgKUMJKiyKSgRkGXc2N1KfTjSA5DzV6s4VBzRXTqP/ZIkbnySOENBWANngBwYUIuTDxiPKYN3SpVZ3bGt5PHlm3bctnmvkdL+FtCJQD4SwYgEDUGIttvFp9molZWWgT02UJ2T73q3cIDQBsxcJgkAKM1alf1jzrK5/Vn65SWkYG3LouDMA3es0zOcOaAU5L3bIMZGgCkOcNHIMMz4MLZ8/wrO5BdgObDtO9k5tkEJ0ckREbFslwZOfsmVtYbW/c3MScMGNe1hiDLoyhnvxE61XbijXIEemURzirObOXsohpjtgdodmLFh5CtS6ETACOBFr/4gSBt86R/fi32FiQTH32CHFAnAAHGu/Hkb2JzwACM4nAsPd99ufNYlbOj7yhJTk0tBJGEaMfRQCtWMuKm7dXqqRSju/mRigl8jZSBynmsEJIwN0nuDU8Bnu9aebdcU3TkgLlu/4vQZ8Prykv92na8W++L/qT8TvfEY8ayd7wBP+ADAiRuu5b5DVkbLfwb2GOznjQsuaQAEX7XhxkFag3p2braBfZFbbWQNDvBEonbe2KEHKIf9HM+JLjjkGzD6IH9FWs1VbgjOUPSN7p3cmjEgYdgRjmSZ+WX364kVt7ZYyTLnFBr7vpYEEpKbRhYaVEjoZsx9ZfqD+sqASPN1KMiPj2+Mvs9GLO3krqX7vhpKIHd2ICY7dm2KoVsxxy8ckQMb2BPgqh3r3BsimIT8OsU9bwjFUMTXo6chleZqo1HOkKRCc38AVcnwVnbtt/edbiR+++wIM1lhnDMLgOyz4wlGL41hSoe90HMrQxzxpeCTJ0ja4LNSoEbK0gp5zgGHsRGY7TsBR84A7Li6Kt0q+vW1vdQWZ767e9dfAw34h9Y5s8aUY7bVvj4ZAij1o+PYV014rWp7/b3EA2CJHmtvdbpsN0QRMNxC+5gVYAk3QvNXM1bznYPaJolK0rdXlEGgJIKJBQdrY0LREDAExB0mQiO9MOuWyDVEZLgqAoAt2cULX3e9/8xdf7f3ZIvT2H7ZxB8B1IBe3UI0k0NOdTiY1umxDTQ8xDYtwGuzJSlNu8PXAWCywT3vaWLJcXboWcopA4aGeMfttg1GEEvJWpJlPvtyV7JhA0HCExTUarJ97d6yyTLodGC0qG1nUKLQQEkzIiYV8gLo9XibLlAWxyWx6Kqs0pTJScFVfyaNOXM0aiF9QIB2TDPJEkU14sfL0GrD5IuTunNso3/WLDEvpZegNVk+2KYVgisD3fPXF+T3z3eawgC1fnh6ts2k2iM7QEND3NsvL/j+GB4CZtvY/PMbMfE0Jk5E29q0WcbXo9VENJtzwNEYnPLCK2p9PAY2M1e8PpLhdb56LEaA+1yB100jWE53PpsWsUS+IuUgkgBOeO31IGXw5X84Z+5+9wbS2QgaJhJQLa5ujPMB1ZSLhGDPLhxOWn+NJz9c8tump19oA8soq0rdcxrH3p7Via20rtqiAr5KuWhyRrmzE0VXQXTsfOIy/R2qPq7bV8UvrfUGrdp22gDC/c927ykvvAIiK+ZUaqtWAjnbgylQEj4Vu3jD8y6HcESGC6qb8nk1lUpV0S3KHhj90Bqi06sF310fOeMqQoCaRBjbti4RqQz4e1JACBCVCatOypX6bMmaTWsJFCMEy9Q6KShvS4nSzqnOpS6RyalPRDbhKxZAw85VhWFb1lXyOcLBElg8RlctCl5D86Kcq90aVq1csWPQSYRiLIGcLRDtmPV99Uwsff8U/iB4+05uttC++t+fPysvx0ma0icOiYwrO0hIn+gm20xyaCnL+1hrkJXuNVAwdg1094RPXJNV6dwBvYmqiTfaALoAMl3GrYwjJcrrSZAwsx0Y0S3tgNERa9MWoPExmEd2+CRoMTLM0vCu31hVJaF/rXRSxZHkZ9wmRVGmgY62CgBZeR+5n57tCeNiUKiM31UDxzHbDbaiFQBXsHhyTMIn+M52gG4PNDrCw1o1ivaRI5zUR0C6YwwiU75KzBDBpNITwrCy0q4SG5HgZNyIKz5VIrinZ6ERFYsfiwkIOBAIBMs8UI0IwrhAMyAzwAgDHfEi/Pw338BNwV0gjoCv/+Weky5VsuU33nQ96PAURhBG/zOGbkaIdrSZQXZ65E5uxQXwgLLhstdZtw5ZmgDVSlVLvlCrydkjeVFKMACYI7OwKymwAZ/xDiUJn31HI8PsEOYFzGybHSRbOeP22d/QdJeoLlIOSgPKlke6hdQ6k6QNkAJG2XJ7zdlrRUsiH4kheinElIYvs9aVBbm6H5etbAw7/9LMHYexFUaIy+/4MVYkxLzGZSXISaIsK45jNmi1hul2S613IVgHfLZdVmUYzkyaOOos6ENXckZfrkCjIxxDaSacWZ1z5r0w0maO7CaLQJmaFEL1PgWA9SddXWZDE6DGW5BE3BtHsdEkuzkH0mbboCyHGG9gdl0MlRBL400ZnLjxWsRTGajQe9041Gfla82VOk0JzspPIOQYhFLcJLVavnyAEZzRhcNJp1zjiZVNT7/QVxCQMmXVCsD3Zhx5x0a1EuiGRD7MwUwt+d51pLmOgSLlYIsoAJmzg8pNcg1EIUC5QQJwxlUli9qTJi4DjKjmdBlNdYNYKUABwkjoWPp52pMXVRBQtCQfn2EJP79d2ySWA/jlsYAA7WSm3EtGc/aQIzDc8AoNp23sxuwz0QFfUeG3o0tSipyBTSxtZWJ2BslJsxHZSgMnVWDXLRnDNBNs+f4VmHjqBeWzWXV03L5hCW6fQSVL6QtL+PB+JZMPgjxRZqrXmJhIkFrZjEjUyCLEgFFWH1lqdozcsJxz5tYH6RxeS+Bb55cKDT2UglociNWJrJEr/F1iB9Cdn6hy7m0VldCGicDIEloGEMpAu0oWa3MYkpCptEQLO0AAOHiQWGfWEisuaGCkCxoQjw8ARQTRha1gMj57muPwFYmIBlcmoNPlzDgnwUiC13RXxaINSAqWK8pylsua5WA4rV3DWejtTv2cKsV9W2yPB7TbdRJMG2C2DawYY1mhCtHmA0vuWkalg09dAkj5sTHpYiuTkgSUZZy0kudcnRBFAJVBJiM0qOoTOjvLkTIAMNNG81ccPFHDKfLVTVDu5L7ySoAn8/eObiTQqeRgrs3IjLoaKiFu2RMTlFqgtcpYksXG1dw9Ja0MqIrZphUFO9RG0l7Zs5/fXGbyv+CN10NkDRhBaD3QRTTVg25EkDvaTJIkCVwzZqoSdy7Y4+aCqELKNlK2a6ufN4bJmrwAlCXqbOP5eWXD5kOVdKlWYbvkJSmg1o5DNSLIdgH50A6+b4Fa375B1hVV7nWKozLYUSUrgTKxxz1zgM9Q9dt1SVMARE9BxwL5qiEkuQKmZgBpM4CdXT2I3NEGFMd839v+Y/6cggNLfp/VrGj3Oec3DJK5ccdsA3aUpiwXaJOHjFJ8Drq9sjmw3aZJJChPMLHuHTBrV0GnMaTqAsMtkGnaTNsI1MshtCWo40FnvA6hjK9s6a8YXX/i1XCyl0YAMIBa0YKUgsfXZ9NCa2/PamvuJ9OcMCe7ioNR+2DTwq1DxgBg0lVHgs9FEvN58wcW7NnljPUnXQ0QlTatkwdzc5u7D+x93m/P6pgTMnREPjtcWPtNR4SiKSAKg6ijIRQQVXIQoAxg/UNfIQPwGlgU5fxje02QJ11kmbhWzZDXGqQlTBR5QmIOBDFRaTKb0GGw9fuXlW/3ch8Mp8lZn5hj0oTHqhSQWTJewEuqokK0uCpzfzxVuVFJZdC7gnqiBryUqnHyT4XmOdVVbzt7QxIMWVs0ltj6jUuw8VmXQDiJLn9gvE0vT1aJ2fh92217Wzp2CUPkSTSXAEaFgSDtORVo9wZ5u9mRD56gs0k/NbsLsHJenAiihmwiZMxJOLohka0dYdmnWEBkqm7TarY3/f+u6sURT/bYVCPy9raO2P4ALLFt/3ZEN+UasluUld5Wopz7TCb+XvQ2rbUbdCzZzlfaVnFXb3aU5CDf/HwOHKnU6fj4Gbn1xCVAACBjz//MLKjHySLU6fG5O2wt6N77ffKtsYk64tC1MElcnv9KkgEfsAFmZkFjI1zJKmRJ/hgNWHue7aGKTVJ5NmsV4E7eryisrBhZCVZOuKDqmu3u+8ImNjQbXqpZ7JhFUzLppZoSOhFQqeSkO20gMmVVI7hCSidczakanJwHw9dY2PXWkb2GCDo68OvVYwV6rl5LwCIiECzzoLM6QRxFPInbzCe3CLKmIK9lNs4BGHgHVWQGonj02fkveOP1nGUsCV/7y7PxvLfcgPYRLeRDAo2hCPFM7ssp40dm2Q+IOCgwVydd+OxalynoJ22n0y8Fs9UAjDHwzZzzAiQGaFnPA98wywzWofYLmZNYcNmhtSHLvt8W8ziEZVkyOPBRlNmgRikekzZM6hhepFgyjccmAGhBiNr8v27EbIBkRbkIurH7bAPn4LOePinDRILToXTVQrCGaVwheQC4/jjGlo1SHLOD7K5LNTOh3eHshKEmkDZAQy1g5yRn/w0wVs3MLEQjhTpkBYpWDJUKiFYEkWvff0D2VGnoEr9m5mvOinoAtx8nv/Qq3gw4YMuGFKEYjqEakT9unbDRLzKN5JEO0OF7WCVsIMYdQPY0G2q2t8XGZ18ysKx8dxBd5QPbouBqAx0T8pEYMRFE9bwdYGd0y44/x6YVpx6w/VXlo05+6VX8bCqD27/y/t18c/ngztvPZycU8P1QUNFedmXrrNHOGWY6EV7OQyUElbLcnYq5CoOJc/CNrYGoa30VxVUfhsDPE7GTQQLsSFpHuEpmiMpYyAXSnaNXzdK35L3IFUQuoBOCS7w+4bWcWf6V//0efPnvz8FLXnmdzawFXvzfryud75idOyGM7/9IBtw/KeZArch5PVLNyAePAHBViwEHgg189QvAzhspKmV7YJ2iqvSYfc2ICBRL78SaiKAF92XiyoiodJTcvKhYR9o1My0rfyqBPHuOyAYXXMNT4yS5XIacIBtksJmcggkpbXuSakvoUiEgM83zUiFrmZvuurjj4utWSp8Z52C7Y7RZjya2AQ57b8kuYFpcISWs8+eri5y0gfsuSiLOER2clan8fUQ9Y+8zgmpIRNM54p3d8lxqzfd5wgENF6h3cmXULUAuG7qX8zHHCZQNGji7QxBgEuujk6u4KgMWvjrG6bkT+eAsXJNyY5igGB3hcWV5qRGuNK9rSAChgPFRtj/y3EpoWmJ0egaUxNArh2EOGeVG1lb6yN8bk9NsAzjSzQWjIuL9aktYNJIy4D3b9bryaDYA9GymH7Gsl1Lcl8fNJ4L4obdjN9BlM3btCCiu6DEjLeSrh5nA6BUQ3RxiNgMkeUkR3zvPZrAyQcjZxdm4RDyrWbMaJcFhRNkvYl+RD0eVXlIGsqchcw2jOChHEdVJU23wgjdeDyocuWzmVNbNhxf+9vWe3PzKp9+D573lBvRWJuitTKBSgcZIgmgmh2pEUKlAsrPH1l8t0O4mRwKEleUA+B7K81LLHvD64ZAZfFPYTFgSRu3ennUJPiSYaNAGNNQsyRApy+poF0iTXHUkxoaZ0Khc43lhbUXjnisXNK3Od+7vSgUVAJb7MAYGVvbG2rcuyUV2Fc8RI01OdMlZOoR0mRVbS8Jy+4pjJnmyzH5HlcFThzTxlUUeQnDSCtkATiMtA0D+WLiiEZ0uTKfLtmyrxcGcR3ZwFUt/1Uu7A5pOoVeMgkaaUMMp3yetCCJrcSVfV3EQVjABLoocKu7redCHKvFXhbeR3AtUPnfFUALViEB6yFcV6oggcoPGvZM1ezaZ0Yg62q+t+2rTUlbJzBc22GjAa2AVB9Ke1RpbJm+uVzMdAEysPcPu3/jqjc33fuiAjmF/4o47L8Cmp1/YZ9PaGINL2EkjH+z39mwibcIMyz2qxEo4RwCMndcN90KQGSB75KuUPfqD0ELaBcASysRrKrnPOskx1yfLz2OVuUVrXvcAXxmy4QUfgEol7vj8+3D7ly/EpmdeDJpu+zFMHHlmaVsCQJpAjzaB8WFOMI3KKl+RK590aFJOIHQVL64qxR+ek/6qBOqrZIZxCSh23nVVQCpKAEKN3OBqCxvvcLZh9TwCgNbcZwbwElY1cqf6FXdMQsDLXFlpWHd93TqqbGWrUI6c4DVZKMmVzT0BSmRpw1ekjkkZGEe0OIIB8Ekf7jy55KhiJIZqCGvPalvxz36EzDS0lbYUBZ8HTlwtbUSujC4JCpfUA4DJGZu8YKx0VDxTsHKLgyVKuIehsdUQskwSMqU8GGU2BpPG3v7ne9KOx9gqDZdUU60ccbLRFelbX91s12lqpBBrVvH7eQ6T5d5GQLdnY0xse2PFGMiudcbZho/sAK1bAzXWgm6yHySnu3zv50VZQTQ1Uyac+OdGlESY0Sz/m1obrog5BmU0j83JkwkC0iZ/z41PKU5AFMTLk3uOAS9rj4wTfwiAHmuhd+QYX+9ugWgmr0sfW5+IyFUnCZ8opBOBbERA9kqbRihjnyWCKQjGOaoBAQc5AsEyD4ohdtijDoCK88nZBjxva7KBG80LH2l4h5QMZ6YM6nXxotd80Gco+ubDmqma3/idGzhZosk77KyJ0F0VQSiDeEZDJyPQchTxbAE5m/nFmQoNMdWBiSOYBl9W0ZFl9YNjwItKpgpRGTSII1Bke430epgXzgklghgeqpWYkltUXGWMlFxxMTXNZZXOKR6UDdcPd76rzrFzNn2JsoCxTR/JaWQ7I9xl1tiFRGjDRmouIXoFtAtIOSOpErDz17nabNkaKLoZw8SCK4tmuqUuZn+Zss+SAP9OEg4CCOEbmvqmdfZciOmuP06zY5KlU2xTVbdNstIoJs9LI/ORHRCNGJEkqDTlZrlt7e9ZzjRgo6Qqo7CnOPmlV9WCxYANSsMGOVPywV3VEFANDv5moyPQMZC3+H5PZjTSHYoJFhfUMaYmW7QnqOrril6BWGmvzS1muqW8xgI7o5RyAM/rhvfBZfktRLbf+hOvLjOdiR2pz285Dy955XX8AWODww0JKIOT1l/DcUfN7218Ljv5e51RuYSw6fiL+nqImLJXSCRhmjF0I4ZqSi9tV3VU8mGBosGOqImYXFEN+ExUkfPf2s7/7FgYWyVlCZaozCbjHhm2IgaAI4tdxqyvVKg+N4JLp6uNeN2a8II3XO+nkhe84XpeX2xWkK+4MAZk+BgoIm4X4gLN9n0OngMi5ux1XW3wK1HJdhQ+Q9/18iDFGY+kjCctXBWFy04y1rknDV/xJnJLmmrDTkIOmDSGia3TrdmBJZTzXi0Ty46d1xT+rKEyE86TEzbIqWN27F1/KOcYqgZBxdYhlYBq2Mx0JRC3DZJpS3wA9hh47RBFKbMGLSFyVVYFpdWxkiecdMTVMlw1Y3urWXKbCgOdSoge+AG1+3ROJ9kMQNnOS4kPwXOamM1gYgk5a7ykmZjtcX8Pd+6MAY2NQDnJBmN4Halk0yOOvGNkbIDBzdPcDwhQVjJHKm2JDDsWxeNx0m96KIGYzUBDLXZGe0yg+OCy65GhNQdeK8kPxpEYgK+wpRVjHFifnmEZhm4PeGgbaOckxCGrWd6skfBa3e7Vg+uu7wtQW7chDHQUW5JVAkkEEbF+OmUKJo1s9iuV9x8Rr7VZ5oPppE2ZpGIbnvr71PbjcPrZsluw7IpSZR8jSdy7yAYGuGmpsEGMFL0VMYomIW4bdFeUhCAARD0DSQL5Aq1Z2Sj3JCJlkMxoqGqWiyNy7D3BgZOSYHZZiC969QeR7sgHyi+96NUf9POJq6QzlqSRAIoWB4hAhNl1CUjHXCWYGXTTJmhVA8lk7mUSRa+AeHBHuYNGygEDrSpzg2D70yW6wJIhEmXCT5bV7Nl+soUElaRKErMd7PTU/T1lCRj7zMlt05DGwAw3vf69Ty5yyTju79rOyAcmHBkJrct9Ava7pmwQDLDkV7XCRAjuGdjLIEeGeO4bSpkUzgoOLCUN3keufACx1ggY4OfSBqbkVAc00ynXqf5K8b7KFABsnwrhe+a4YKEPKBrDNrJrqrt9B1eyDHFPExKCK9tIwGSZ7/2CHZMQeQG0mCxSrQgqiSDbXZCVFTIxB5pv+7eL54zr0cLbs45IM9wXgIOJmjOuI+nXXdVguwEEdFetQj7Ef6fTGsnO0p51a+y+2LRAhYy1wUTRKTgg2r9eLhB8H6ks52sBlIE4wN8DW2du2ed9TTzpXDgZJDXc4D4a26ew+Vd/jInD31UGOVeMAGtX8fju3wZX3TZx9NkACWz+6Qf3eSyLjU3PYJ9sfptWQI212J6tJnkKa+/ETK4UDX5PJ2zDFg3YRAEAYJtIFATZMV7+CgA/twU4Gz2NyyAvUM4HljgBwBWpqZX1dAkWFTvDkQiix1KbE08+HxKAVIobwAO2z50o50tXpUjaX3sx04NJI+jhZkkM2ICub/4tqazadRXNRIBNJnAJMKQB0cm4QjiNoZoRSIPtR1PO1zoWZSIR4G1+ZxOSlWj1jqt7PCyRUXteJKtmGJsrUFaWkO/34u1Z+1sntlogEVApX1tnq7vKeq5ms+PTgFAS8axE1Fa+v6KOhI1vuORg+GQqNyWVZITxtrSOCDoV0JITk4yUiGcUr8uKbVUd21hJV3G+gTIgm5nk7Ajn1xhR7iNq5/xdAKKnmLAyBmKmy2uPI7lGh1huzN2C7QxRlRAxxvfPrCXWGbs/wXEHKgTIFPXqcftssQQnJ0LpkRRy+2yZtGOTYAng5Bt3zw8PgWZmSyLE9XZxv+MYZmyY7cwdk9CT0zDtNnDv/ZDNBmSaAsMt6DSGWTXK93gnrzerryb2OggDRAkTKk3upwsiUDPmffUKtmnd2u6OtZHyuB0hZAkUZHkZG/OSpAS0mp6gjDrKS4JBGX8OyT5Tbm4wNmmjaEoUQ5LnIAP0RgX7VcpAurZqbZZ5U/uwJgYELCcEgmUeFA2CbrLR4h1ON5cTbOYY/82Ln4HMbJCTCAYGd9x5AdafeDVkt0BnXdMvdBAc4BAF/MLFAQ8O7BF4QZI9FyDlYFk2KlGkEqSB1kOwGVVuESYkO1NEO7u+3wg0OHuVyiZjXAqs2WGrNAN1jUepUDCTU7bUUXktaUoSlq0aanKWS56XDWermXtag7o2EKI0G+rGeD3KWpafy+Zzp7VatugCRP061pUsOnIZNMI2moeEsXrwvsGuMUAGW+If+2odGrLEhWt6HAmr7Vo6bzXyy2p8UqHLpnpAWUVUzUR02T2AdyJYTsRlP9rgQP+CKGyQp9UEuWxO+5tGR8o+M1JwpsTktNXsFsD2KchMQQ7HUIlAMRSxEZNz1jUZg9v6yJWJtWdg84N/NvD+HwQqtD8XrvGaGmlYOSDte5+YtJrND6iU8LW/OhvPOOtGxLNs/JM2EIVmsjKWc3R69wjOAVAs30Y9+5oGaHp2XgJkb0FRBIwMQ48NsezL/du8Q7o7MqUqb/VocMoJV/gsEZXy8yFswP4lr7zOZxaRMqwrTnzOAXgnzRlJgG0mKbBXWZVLARufdYk3z/xz5GDnuWIoRtGKoBrCV2a4ChSVEHpjhHwENtPPBuFjQKU2rizL19Gt75+zWwGAA6hawpbu8/59cN6glJAkmjeDFuBqFR3bfbu4hlMZ1LxGOMJd5NbR07zG8HxiK3AcwWKYrHdj1RFAVl/eV17a131ljiOhyD23TCDIzGZQElecOac+b7kMyZKAMjYQK7vKB4OoKEBtVTokQEn268rc5+B6f7h50s6juiHhmrfytRfW0bPrXyyQN4UPernjMpqzpwrXwsw6YYYEZM7ruhGwVT5McMkez00Q8Lr8PAi7iYj89lEhn4wATEIoTMTVJwreRjAxO4OOUKmR+bDOi3tP2Ob2KTtSrkImmuGECgLK/mqCgJk2ZDcrx5llJfFvCX1yTqElVajQkMogH45QtFhWQSgXYCQIWMe04IaVBuCmlwLIVzYRC4BaadnI1X7WV5n2Zwq658L106lm7tl7gIaatpF4DNPtwjy0DYIEjNHcjy5N2PkuNEszuMA48fh8cJcIVBQQk7NAI/ESZb7SQDU4OJ4VZcKJk11wfZsqa4ZvBl7YoLhLjLCggol8liqJYFLyY3EVLEZKa19wtVIxHCEfZlnDomkDZE1A9uxclBBkalC4XkD7iKJJUEMEKvi5clUqbi0mzfYrAEtW2ufaPh9uHr3jcxdg/cuuQjTZQ/uokZpNK5TxWbZ8zARd6/UEPie6nIOKJiFvCaQ7NWBin/kq8hiNrODKI4CvSxzD975rNoCE+1LQTKfeyJaIpei0AWUxP0/O1nV9B22iECUJqNWE6fXYvgU4qOLIOW2DgU4Ox2jABoMIgJPNc88Kj8/eMwCoUtFhhOY5pL+HRpbDIPe2LKVJGbR0QRD3PBOVSUyw55MIwsnXtlmyRDdYJ58sqeJlOVxiVaGtNKSBaOcl2ewShaqNhasSQO78EvnzBNefAOD53hGMAJ+vRgpqNtgvALjfCgAaG/V2MXV7wNS0TfSybmmnC4pYLgaRgBqOOShnE8T6yZWJY87Zo4A7VxeyfUQ5B3DVUArZVjZb2tlUBCVEGdRUwF3/6z3enqWibs+SWQCb1kFrUM+GpGw2vKnOrwuwfdfTBs0GijWjiB6aBB7a5n2zXREqp7zoStz+5Qvnfb8fE+vewQHKZoODgr0CcrLNa10jZeLEEtemESNbM4xk2yzff7ZKyowOeUmriSPeDTM6jC0/vHKfT8ViYNPxF/EfzrboS/IDAJNEyEZjrsR15DU5G46rsbMRQtGwldc2yTPq8ppS66Np52r+XwAJlbaHsbZjVAZQywz6Cuk6FPkm9PNh4knn8nbcvCEFIKKyms7ZgMbAlw0LAFQhkqVLiimrLlzVn06iiq0LluB10qdEgDU1i+GYkwZyAx0z6awTWfPtqYC1sVxFmo2/ZJw0JHsKosdyVZQVkDZZojoe/79GvRpGEnxZetV+rfZ/sXa6kWz3qUQwmdsUKBqwEq+O4AFcD1Qd2/8Nb0dLK2sMfs1XY+caIrc2XCJstYn1D4j/dpVQLjnJ2bM6AgDu4SO7uiR7IgIpYWkmXdrrgK1wgB8HnO/ViPx51xFX6EQzFRUWaztSJ0PkpLGUZnvR+Q4W1EiZEAZ8jxw+r4IlwgGIjO81X6FUjbW4hAxBoJ6CGh+CBFhq1BEOhb3vCsWEorISpUqX1SFEZVN7bUqpU4B75UrJtme3x4keec6KGkrxPDjUhB5qsC1tCUkvG1chK8nGwmj7FKTtK2uaCUvoGQMyqbWtVVlp6qpgnf2SY46/7KVWG63y5VxBzujys5L4tGl78Vy/G2K/i5Nr2SfkZC3ihMUIEIqQa+fH8mdVvrCJAQEldK2hVsBiIxAs84AMeDEBGz3f+chZeO7bbigz7FSZFQDhsoW5R4sogMZD7ExUs/1e+pvXsRHhMiZt9YsjWEgZCOWyouEzBwFYY5+QjfL7jZ2CyzcbAt0VAtNHEmAkWg80YCJgzbdn4KUzKiWhJhUQZDP+XANVa8xCg7Ul3WJiKiWlThc7Zu18qJQdnWrGHgDfnNNlgVZlt5K41D4nAWgFmu2UVRpuAXSyIbZpGIDBlSwAO2TEBIvPgHMXUFBp0FUzehPOKnVVNy7zhbLClw27bBaumbTluL2CgzvOke50ym1Gst77wf24LF6ru+5gqhntNktNO/kVrQFXCtqO/XE6mTIozRUxw0MlcWNsQ2hVGliyXdgFUJQVWBX0kysbn3sZdBpVdP4r95/mvgBsaIMzE9ttiGgNdDNB/Mtt/MFWE8XKIXZKG6LMfAHw/RvPwgt/+3rEswrxDEuyGSlw21cvmju4PcDWb16KDc+7vAzlWAOAjdu+4MBCQBDU2rG9GveekCv1fQKQhCIlWy1nQDlfE5lZDVprUYtMc+Z9UWrUVvvP7EtW5WJiw/MuB0WCS4ytw2dsVptrnMg6sE66y/ZUkS57mufVbBTIxjnwHs0QNIAfXXKW38+TrrkRRqImueWC587B9cSKm4u8UwUfQCTryHRWSrzwt69n2bomOzLf+li5Pyc5yf/AB/152zy/aAkfyHdEv69GEfAkj6soc2Os9pjxfSSc46UBE7FBDPddAy8pFnc0B7Q0y0zoVKBIhA0IwxIwphy8ASgpJxqROW8K3DPDBRb7S/WBkmxWupROiETZTLM6X1aqC03ERn7REChapXPojs870lZyQ8d8nEWDiSkmU+xQIvJkm44lO2iAD0gbgq2eKa+PjshLy7nroSONyKpfyI6taBAE3YhKiTiXoGEdUNc/iOzxu7WHlIFqSBRNgWw8RutegB7hddEYzdJBVnpyTlN4d/g2ucGMDrF0mDIANIqhBDoVlapDyeM1xicZCEcKgY+dlAEJDTWUwESCSfxuDifXQL0McKSAl3GyJ09prlDRGkCvzNxPU9CKcXb2uj1gZIgdXXcMeQ798CMcpMU43wdxhGLVMKL7dgCwGX3QfJ9Vm8dOzfDa7BxiIYDZNo9zuAXTSlmCJC+sTWJtD9Vn2wgCkSx7vjRSG5ws+/DAE+GsVQ1Nvv8ZbBKHSm1mtiX1dMRzQtECP1OSn0mKee5YKIKFlMF3PnIWjv/DG21wBPj2R8/G83/3BgCEeJaDMGR4HAA/YyrloN3Qd3+NzT+/EQBwx+ff57frbFpSPEcIbe1WZQDJf3tS2pI05ZjYDspbhHQnEHUV8pEI2bDA7FqB6JiVGLm3QG9UYvhXXST37uBrktsAhzYg20eHAxy6TFypSt1EEctZ2F4pNSLGZl77Js6uQjiNajKq5BKJKtUfTK4kXL0BGwSZaQNDnEzlbTXNVQeUZZzs0d+g3NmscQRqNsvmtJ1ueb8pXb8n3TgUy4OwTEcESeT/FpmCE+jnXlA8jxoCKBagwkBOd8q+ZS6gRGRtZ1Pa/lVU5GYB+OeAfYpKYNEYtu2dDW6rvXxiVJpY4gosVTY8xFnFQy34qrm4Uk1mANHlfkaDJG4HkSsbn3sZn49E2rWZfS7osioQQoCmp4FOF+Jwtmfl9i7EtkneSKuJYgUHoLgqll+ez54FsM827ZYfXolNz7zYa/C7ymUT90nK7S2c1GVRcGJbs4HNP/6jPd7MnpArAOBJwyzzPbkgJPfBsjAjLWuzcmVgMc7ZEZENTFJuq3iKgufhQX3rlgEmnvY+IIlsRYbiy2orRZ1NC0FWzpO/oxJhg97wNkeREnpj7n8gngXymPDdP2Eb8/gzb6wQCjYAbmMDRoH9TeujeUUMp1Tg5jHnwwqB3uGj2PTMi8t70Wa4b/nu5eXBUWXttP+zkgJ8Nr0PfDubyJh6EqKUnK2vwfLi7pl3/TFsQgoAPh7DFXuIWU5WW7ICAJQgm0TAktk6YjJDtgsvLaUtecBVzPD9mnj9ElzhY+diygvu8xYJTtK0vaDIVM+XtVFTJwPGEkpONtgRtjx+KmVBJZNmRcpECtuIZCvhrY1gbUcXK9I5kA8J6NxA9kyN5CYhoBqAyOz3k4o/ZO8hruTnc6DSMgbl/Ih0kuNPomereWwykk4jiJ7223J2usx0eZy2IgcAZKahUgkdE4qGQDYWoXUfEG2fKuM0loDn8zIgcEHk138z2rL2uQblBpntY2sEoJoR5Cwno/rG71U/whgYIW1SgIJppXy/2X1QoUHtrCIfaZOS3TZcP78sszEZe082Upg1K/h6tTvQ4yOgosnJSC5OlOcsH9bpMhFDVJLbspSxq8XPhOD5Li84KWGmw69Hkm2FkSFOHJq1qh22FQAKxUlKJDji65KeqnKhUtjkEPIS/GxPoaxYcY+prY5yid9FS7LUtuB7QjW5ek4nABWcNESGfXFRAHqBZG8DApY6AsEyD7504zsxOjpae+0bN5+N/3r6jaW+IMFXthjibNiv/u17Bm5vw/MuxxdsxtWL//t1PhDH7HO50HEwzKCadeKc8SJlVlj2ABUT1KoYvTGB3ji/rhNg6hgAwkD2hkAKaD1YwESE6cdFGL5foXXvbKlFDvDvyFgtRgCF9KWExvbY4IGY0sH0GS+mLNF0jpkxgNF1ssFLHVSZdcvUOxkstz2lYVaPs+bpI1MwUzMwWVY6bHabvhImy20FNO+HnKakHbMxGqSZzPELTR5zIKaRMlkEeGLDRJGXUgGssxiTZYYjkLT9PnrtUoPWSSX09WOpOfK6lCOrlVhaQ0zHgiV2nJFhYdIEvsGwlWCrGaR5Dtimb1t+eCU2PudSiIybqonZHkwrYZmIWOKUE66whpoe6AAaIsipDoSU0ENJrbEeyJU6s5FmRpogYzN6bDaZ6XZBsx1ESkNOSphGgnw8hWpIvOjVH4QoDNIuG163f/lC1qpdIMLdZTNuesb74dVPlFm4TL8KHk3Vz55WqsyH27/yfm7AClhHxs4HmWEpIgIH/7SB7BScaTTdBU13YIZS6GZqg48WtrphOcLEAsgtYSQEtJXw0LEtp0/ZkHeOAeAy/ODlkIom0FtpoBMDURDuufis2j6ecMMNHExzBImwQXkSMJXV0meOSf5bWEe1Wg0ClNWPRYPQG+eguuwBz33rDfwdZbhxKdnKJLd9uya4KhF/DmTp/DjyhMkelPIRliiBqBA+GiBh+8lUz6ngTDgvAVYAUQ9IphSijvKyVSYW6I1KDgJXpC11xPee0TazTRIoYbm0SBCE4LlaxNI6ohXH2znwQEn2SwEyAsZm/etYlD3QXLafc0Qj3k/REMiGWSIMltziY+PrHvUMog4Hjgnl+fDnWlfIEQKvg87Jt06EJ0GMPU4CdEJw8jHaSs0ZQciGJKJhgXhGIxEE2Sn89kwkvSPqKmF0xGMXufG9wQCgGJJIpgrE0zlkT/Dz/eAOrgZ1QVAHtyb4gAOfZ+MK8nsZqB0BrRQgDdOMAQFEbQU5W/CcLgmqKSHbNrAqAWMSaLtGeUk24nuNqvdrTdNZstNZJegr/dpcI1Ao2+9NKQ6w2QAstu+ErwoFgDiCOGQ193LYtp3vkTRl49VVChSVNVdKW7Vig+9alQSee19rYOdUGXA3Bmg1OVNRc9+22tpRlUxyVVZJzCRgGnuClwdDKIZsMNkYGEr83yoRNpjDQZTeOHlnVDXKZ1DYauhH2Q5vt/jCR/4AAPC9D9Xnu6/fejae93s3+AxWslVdAP++6+8G27MAVwx8wQa1X/zfr6s9d6XsmK0eJEBoZ+MaP08WDZ5/ZM7VVL0x6aVEixSYOjICKaC7JgVoJYwgJNtmYSKB7mHDaDzQhpjqlNewKtUaRUBs7TpXcVK1yYDyGXLScJa8c+/73nzV7yZJuZ9uxiSP22YU+SAlIK1NmcI02J6Sj8wAU9NlVa1L9HGNnGfbfkxcVV5OVBRHZQW3m+t7GVewTHWAkQbyFRyMFrnmAK1rlCzJrmHOngdEpiAaCYzNzKZoyNqUjqCs2OvVahaAn4fcVt34psnkbS8fDNVFGXR047ZBME8UqaIW7KlKa239xiXY8LzLIXscWBftDDqNQUrhlBdewUPp5fNX5BoDMdWFiCXUcFoGDmGzyV027kiL14autWdn2pwl3OsBM7OI1ErIqdKmrdqzotA1e3ZfZMuqcAHrWm+OfIHa2JqyF9CjlbDd+KxLsPU785znR4nN938EE2tOhyM2kdg+Wbavg0li6KG0vL8jwdWWUx0m71oJkNlEN5HyPaQWaJI8wDCOXHFyXUJA29dMLKAaVi4qLm1AHcP3DTQEFC1CNgrkI2xXGgH84Lr6HF80ANlln0HbJCQAfg4WmV3rHOEIcP+JStP76rMpuyyx3T20iXRbjwPu3YIJI0eY9JOASntCwgf/Bfg5J7fO234oLunRViboBvfMq1ZIOCUF6ncgrU/tgviukoNcJUqm+PuJhE4k93dqcM8TGFNPatVchams7UCFAJGGSSSoqPj0jqgyBVwFi5dllBIsn6WhkggqEZzIQLpuy7pkKUt8cGIY2fhSSfRoyQlBZAzfB67PoCRImwhFEtxvwyfqsn0qImPvISolx2y1qesl5SpjjAQX3hCv0SqVSGYMEsPyUcbY2BQMVFOUCWLE2+40uBI8ni3t2XxYIpksEE9lUK2IZYjbCtHD07z+ulhRRWKytt5UExOEADodttNaqX+e4qkccjbz94FuJZBZAfRyTxC6fjcwZc8e15+Or3NlPzGT/D4Jx/U8qd7f7u8st3a35gSeJGYif9vOsoI/tvuJItDqVUCvB7NzEiQloqha1WTv5UjC2xFWRg4q4mczigDYeBARMDVTxsUs0YPUAMjY76omSzjT1tm1eVESK8LZ//Y7Gmz/22eEE/5E6YMlAirl5LZ8iJUgVIN/l9LTTLYUBVAsU0J8qYO57uW5Fh6sCATLHuLbHy2Nl+f8jxv4D7eI78IbrhrdX/rH92LDb1yO2752se+h8KV/5AaiL3r1B8sycyoDZE5jXihA5sDsoQLZGMrPRgDIcNmoBiafyItzPhyjvRbIHpdh9r4E8bGjGPu5xugPtnNQJAJP+r6viWWmbTUI2QXBKOV7WZA2rNXqQJUJUwqgEDxJ92tRu3XLkyk22JEX0CuHueG8YXKpGImh1w6h8XAH4v5HmPF3vV2iiEvac8409TIMlYbMvgTUOX8VR9XkOQecej1Q1mAH0VaheHkwG1RzAU0SEhDa9/CUeZOb71YXLRcwdJOc07esZCSUFTKiLGd251CWWT41mQUAvnlrocoMXYC33+1h870fwsSx50FIdhpdNjF1eizzIgVEI+V+CJHAKS+8AqQ1bvtaeV86nXsSArrJGqS+ebcANLivCSnDTu7KEZZX6GQwK0ZAswlX9fR6oKkMVCikI8Oc5ekCUSkH2TY873Lctj9kqiqEIBUsTURJvGAyYY/WGV0IcsWhWgV34oZrAQCyp9iQBEqiDtYJL2xGqZW8Y3KyJAyXkzzYhhd8gCtQJFcqSG1AmZWfSSSKVgSdCmTDAvmQ8GS0zN28abPzU54jeysANWp7F7XLLNgnXnsjAEC4Mmjr6GjJvTzIynBxlYOVg7SBQsBwVQ3/ydsmlKX34CoRkbPh6RwZ78xZo1XFBLKyZVyVUiFInIMdVYgfG6An59TJcv9cKWmndBdUUtxEu6yAKX88iMejUoF8WHrJLD8eSyYYweeT5VH4i875J2MQNbjiRWSSs9nyCLJtG/faTMNa43sAnqRXmpsyGtaQdpmaThIMgCfUqlUpMByoZQeUCRUvwakIMofN2ARcxp2XWnDxP5eBDVgJTyo/b+d5V9EDAlTMGX8qtdfIHZJ95ly1mbb3L6zT7u6LosVOi44ISW4QT+U+s1pmKajg3jlUWKm/4RZf647NXnMZ7f0BY4cqyVIUoB6vR6LQiAAYKRDtbDNBbvuCUaFhYgnVipkgj1mywldDGYOorTlDXpJ1Tu21FeSz5mrJFc6ucAFiKcpMdrc2d3uc1e56U+Q5B+DsPI7hIZY6y3MOfLY7PLePtGDSGOKRaV8tgNQ16FWlQ5zE5b56PZ/F59YGimPen6+CKB1KL5tiCSSTSC8Nwusj37uu0adKhSfCnV2oY4kiJRRNASOBzipCdw18zyeVGkRtfqbzYeA/rjwLU1NTGPuzsmJkf+DfPnk2ACZ9kxl+zVVp7wrVigFnv7rkoZo9K4CvfPocnPBb7vNWTswGlpJpoL1aojfOz1rUdYEfeOJ3dq1Ae00DRgDD90dor5HoHAIM/XoEcWcY49/QlV5rsnK9RCnhAZT3pAve5AVnfyaJrUqeAZoNrmipVNKhsNVRQCkp5+Q8CisdZnsKUF5AjQ9BDcW28oLPYz4SQx/aQuOhUUS/eKhuv9qKKHJjdL9r7LrxPWY8tGF7dvsOiOkYSXvU23i+D5mtlvOyhs5Edr0UM8UmbFYAYOkXH8zqJ1fcMyuFlzEzLmhk1xwfvLFNhg3AGd/VYBnAz6YP5AigGfv5gAxh879fiU3HXwThst8tMSusRFtUaF/h6MiNOQSAMbZSIgI1Y0CTbcjLRJrrk2XSGEaOcDbzTJePbbgF6sR8f3S6oKnc27TJcOPA2LP2vBrtgstq3+3ZSqByT/qp7Cu54rD54Y/6v31z84T7UoIIcqrL9l4acx87V6ngAvBE/Cxae2E5yYPV7NnxBmS38BWOIJYlLFoRVzsPS+RDvB7EbeP7bxjJ9qSRQDYGdFcbVs+ICcnOcv1/7ltvgGoQaMTaQhKgnin9cOKYAsviWrkn5ze7qjT3/Ht/XSDa2YGJJZIdGbKxBMlUzm2qHFnks+FF6Q/LMrBt3ACq0lr2GTcx+/CuiTxp7eVqRabZJk8kEyWuwq5C3roG69zfjs+X6Gluvj0eQ3YlZKfwwWFXMcLV3oKleQ0Qt7WXPnLbBvgYRVYAUpeJlNUkVHdqXUWL1kBuYGTEZJYjdGHlwNJSXcIl07KsMKyiCbwsmIpNzVZ3a6NbJ1VC9coYa68VthhY2CoDV42tIyAfIpDhILqTJc5GAG2D4y6BOOeFCSIXLBXsDtnuy51HQyz7qSO+Z5OdWSkrXqS+J6FyiVNKQ480+N6bdWXflSq9agykSrK4ZNYs99Ly1OU5QTwyxXN2s8Hrepbx+qJ02deoEUO3EghLFhopfCKFl5q1PXWom9uKGbcm9iVcALUEAdPrccJEltnkWyvx6b7nFGJIsK2RWPtk2w62UYeb0M2Ye9M4uzkpEzdIFWWybZKUkrxWghNO+SWSpTpM9Tl2tq17dqqJQ4LPLVeW2XNu5fPZVxQsO69cfJJ9MJUCeZPVIUC2GjsxkB1rewgmgb/3obPZpv3L/WvTBgQsBQSCZR/wzb84e85r60/ibPPuyhhf+fQ5837XBba/+E/vrb3+5X84By/+79fhS//4Xrzo1R/kYIog1pY3nInitPqjWUA1beasNFANA9EjiJyQ7ASSadhFHaCZCNmhOdQxBYRqYuQnrrm91TOVZLP1NDAyDJqZZZLFBiE8M17pgQKgblxozZOyQ7UEkT809zvNBvRoE6rFfRP8JwnIxiV0OoRGIhFtmwG1O763iwu+uObHtf24hU/rkjiyWacEycdUdVJjm1lryQ9vANsfl7GtE8HlsAAw2oAgAk3P+pJNuAwD2ACRK0kFSuPSamL7bByXmWBY/x6NiPs+CG3lyKx+ZlUf3jZoY1mHgrPCjjmHz3eeQxQKenwIphFBTLYt8SS8NA9nLxMMBDuGjvzTmstkh1KA5i//3/AbnFlHyvgqEZpucyBjZLi8HnkBMzUF7OBzJkaGgUPG/XZOWn8N7rxj4YgIANjyvQ+wrjERIE0ZEFiIbS9As/p9hQs6ix5rsrvGimT/NpJgmjHUipZ9Xy+MFvgBxMbnXAqf8e8ryeybzkgkq+falOiNCWQjZaDcVa34KpCEDb6iBeQjPDdQIfCzd70HR330g6CcIAXx3Fnw3Eq5dWAEz69sNPI8IDrwvQb4nFvnxJCXfNSxczxKAsAIIOqgRqD40n+UFRAyM54YctsQiokRFRFMCu9YuSoVAyqnV81BfdeomnutkG9Q7500ww6UtM6VSuxxppxdn7dc5iSTQwBXALmKGfDubZ8y+CAeKdb+NoIQddgJo5ylqGAswZMa70BXM1Bd9p8nmzVLZhVDUdl8VBuf2WksIRV1rIxjYbP4jAtcUxksVkwAVQu43LnQEl7Wzb3uHG9j+0s4KbG8yeSPSsmft3yE35MdXqNdP7aiSYhmXfCd1xB3vtIdBWSPe1LInoKcySEf2uGdoWRnCtNK2bmx67QaSiBbCcSDqJMs7vzZniU1OJJF2YByOwdJAVkoqBUtqLGm79Mkpm3PCx1Bag1KYyv7FsHExBUvHQXRySrSVxHLa1oHjJoNbsjpyA7nyGW5T7ogKeHlRB1clp8L5DrZJl9lYHupNNKyGqGXgbZPsR0wNsL77XW4uqSZgKask6sNMDtb6+EGpUFRxA6uk5wBynFpVQaKXGWOG2dlfjKCnXPKAEgOQmgZwyQcoHESgDI3KJoCvTHiOSm192jEzqiJTGkXLEIi2jc+MdeePfmlV4FyjWw8ARnsspcUUBIrDl/+h3Pwold/EC9+1Qfxlc+cgxe95oP+2IomobldsT68AOJ22URc2z4wTl6CCg56xbMc+BIFk1E7n0woViiM/SABRRK6kUA3Y56nMwXqZqBOxo3VJ6e4+ssFJJyd6KQ3uj3b70QBvenStnQVF444bKTlPbBzhmW9IgkYDT0yAjWScGZ0U5QyM/a6ZiMCKmmiFa1DfP8k27RFUfY0dMk+DnMywfuzynVp0xYK6OUwjcQGh3gudZr5Ijc1iUMQQVUkZYUQXO2cAjTbKwkkUElMOVvSnTdXLe7ikLb6hKstnAQXrDQKleu3g7PPnK2sNDbfcw0AsESWPWYSwpIgkv2USrDLJCznRlDY9Iz3Y8v3r/Cbp0IDrSZ0K4Gh/5+9P4+6LKvuA8HfPsO99733DTHkyCAGk2DAkqAZJEDNlOTwVcnWai/La7WqlmxXWW1bbsvKFGIUU0JmQgKJuqpVsqilll3dZXdXWavbLldFAgKBjFAZyRosIxmBmMk5I+Ib3nDvPefs/mPvc+59X0QmmWREDuI7a2VGxDe8d999796z9/5NhE8cyiEEgGte+T5RzOf8glpBlcVyqGnzMkZr2rNSz166Xd6vi1HPAsAdf3yzKLPz0OzR1LPfJbhy0ZYhza3S3i8TMAIDSXoZWIM0rZBqB+rTuhXVk2Rd9+J3CeDotNcrREAM5AOtEWJj0G1ZUeU6qTN7YCDWVGLRGkd7CCdCqhh/+t4b8aJ/9BGYIC2uW0qWq1HCEQXJCqLAagtl4NrhnkJdKPWoWJdB9uQ8mPauDGcpsIAr2YqwqAhz/83yvka575S+l0Z2hRpCn7wdwGgiyY5VG0MKUeop3btJGfuFTGYgirnitkAwfUKshRjCjoR8RYD1BGzaQT0OIDRGVdzynojtrYIHWq/mjBQYHvJsgUNqCwz5K073Bx1QZ/Iq9UmC7KeS6RR9ngPI6869hm3leXNOr/wMFdvfrGDPFrPQW2tm3CY39AOA1OuZyJGtm0S9JI8VpgMYEzaAfjPB9AS7JKlnV0Jci5VYQrlFLATg5MU2mBJQnw7wS4I7CHAHndgsaj1rdydIm41k1s3yHunQb3q4zRrVnZB77oPNc4BzlSyA7MvZYnDWIJ3YBHVqyZXtxioB1/P8ivoediWqFptz3lhA99RUgyWdMeDG637WD4BhBiZyjcBcrPFLbVpVCnpozTCboFhxauYxQv49JwrqvpecFWs0b1DVN5UDpYQ4qWFXQcBo9iWDRUDNuH6Ocr3iRoSTrMYlue+W2tq7cu1QSMBCSFfwDticSm/AovrKmZDJiho5eZlPpmr02YT0lqbHYE19tI7W99gi5iNN0Xjt7e1he3sbu7u751iEPdL16r/2QfzWv/75h/yZl/8tsYoxPRfve0A3s0aY2d2meHQDsiFKyJkMhcIGECYMu1LffR0yuqUMe/wc8HMuw69uS4aP9RmG0zDw6iBh+vV90P1nwYulDD82N9B93wnYRYA9EEaR+OLyOks2by69IvQhDtYBGSnPN3dgAAnyxgSAT2yJlHN3OcgdAXAtm11/vBY2tZXGevb1fRkEZcnxSn2tEw9DkRDK14r/5DmAjy7vxce68aUIZG9LwZRDs0WeKYxUea+ExWsfOECWtxf23ljZAuggypSvFbZOvvoIoD5JEZkgxWJmLLQRZtEW25Xshf5w1/UvfDtgCXFrIh7W3p7XIuy6l757GNoz444/eu/wvZe8q/z9sAJi57lvloa0KHfUDsa7otZBEkZSLjwBrD3+xVjXv/DtAlDNF2K98QgXNTUwmQDz+cOyBTta3/26/gd08EGDz3hm0mdmnASbCugYt6eIGx7LSyqsThqxf0oAOLPBZegday4ZGV/5WRkgPvNXPgQ0Edwb2IWB2zcwvdxbi3XUaFckBSKyksQtoMN8DCw6XVHBFPmePG8JoM8DfB0gFiszkt+JXpueMPxs9l3Ox5QVNPI69T6ZHWoSgAS4lktROx7UxkrBGDs0chQHdmMujE2QvSU2+ncnj2Nb+XpSgMe2w/lmK02biUC26TJBGnxp8hmuHQ5m8LfWL2jgpqhAuPw7gxxhaoqCqChI8vF2+l7o84I1vHsEZGWAzgQByrI1UTlven7zuaM0WHf2U1MUOyX8s8osLQWdatmDTasASy/NhT/QsNQgwBUT0JyJmP75WWFW589OHuRntSVz8ZhPl2zLNaFsXnYGZtmD7jsDXq7OVa2cZxEZVYdYwFjwlgKw/WADR10cGtXDDEJmUQbkPTRnS+T9fGwfRCT76cZEGrY2SH3Q9+th3ZOJKgwc0lSsYqgLwlxedIPyJB9DtnDKjV8+V/mYjQVvNPo4cSBX5MZYMzCo0obW2cEaAZDj904GyNqUltDh0V5eshCKhZyRa0mbb7YGsXFKzCBVSUmQfbdpsDohxJiS5TMamlAUcC6qc2larfCVm972XdejF7KeBYDX/Oe34TP/64ODLC//W7frYEiu+Ry6S0HqpljLuQo5ny0B/iBKrbtpRMUSgWpPrr9+QkUZURjJkeFWAygaagGl/YIVlGHUD3TwZ5agXZXkxARsTLF6+jH4vRZmpSHxGgrPOvikyALkdcoC7ToB5ca2hkTyGTpc4+lKV55Ev93An12WMPkMCHAln/X2eI1uW3ICjv/xWTnOqpIcvWULcBquwfFQ53yZcof/7b34sauSRT6TYhVm2gBa9kizGnHmy1CREkueUiffp5yVlRmvuSav5FqhTgbfrLlMnK1URjZDct5HdsIKSiJnDS6FcftIgunzuu7F7xqez5xbk+ZV7LV0sLQG3uhxHq5Dd577ZnntGSAuKjataVW1slbPEl30ehbQ3I7dffBi+ch/OSXQ8W1gvlxTkRyti7Ou/34lqI3A3MxEpxhHNa0MQdO0QpxVWJ2s0B4TAkkm1oQJoZ+ikH7YAn/yvhvKc73wzR+B7aX28AuGWzBcm8QWzBOsEgOzbSOIxHYvsgLRoRyTWCENg2OeipIWmqPHXoa94wEzK8sdlgbihbfidMBc7jMDICD/FlvZnOkgBBRgqNdsKz029WnorXWx7s9Z3Zy8EHAoyOwkWQGjTA+02wK+uJbLvuGWCqRYJeJELvbvmVSZgQiKXILe7SoUq7G1+mR0LuRep6/FQBUeYkWWLbrCZFAQ5b0tgyZ+zgV0KY8NBdd8PndAsQl26/VsfiyjSnuj/QsbIRkljzJHyucgKvjSHWckL2RdtwawANWB1PND7yC9RHM2YfblM0K0BNbnROP9a2OGNK0RjjWItdiiI0HycJYB/s6zMks4vA6DKnlPqaphb9qeCTEg16jqVLIGyhzOfswAfyb6ZHLSWPEBiBJEQQgKcchdyapZq2oRY8S2elYL6bHtkZoK9mA1gB15Xw1BnjfPzDT/DVmd6Bx4a4qk4Aq1+vUMgmQws22HY87XJZE8fq5tx2rsscKMTKnBEaKAMoaQVcBcO7BzxXklk4+TG2y5223JgBbXBv3sjUCWaldJRDqbDGGFL9323de0R+vc9alPfQr/l797HX7vs1c83ocCAHjhS+/Cv/z1f4tXvOIVj/ehPK7rSMFyEdd3Ald+5K9/CM4NDU7x2rSE4AhhatBvCDJsOhlecWZUM4qNAvFooLVQcEXvuWEKrE4QUg10Wwx2CRtfN2jOJrh5hImMfmax99xtbDphsOGeBxAv28Lq0hrVrhRNsbaIE6fsZoPJvR2qO3eVwhyFKaANJ2e1RW5ER6H2ZWMpw3gHrhzCZgWz6GQTUZYyMcNERhUj3IFH2PBYnXRYfN8m/N4EFBPcvC8M6BLGmzesPNSJEJAly1YyG89lNYsCAKteislVAK0CWFlTqbbg7OeaawYv0trkDdKV2+InenouTHIzMFzlh1E2veI9m2Wt5Zi5NOHEXE6PqFoIpx6FPJ9CBBsLe9CCifDx3xvAlZ2n/2OgrnDqyx8U2569uUi3NyYSZEgktgkJhYlz/Q/8ggJNCaf+9Fac+rMPDI/3rBvlvdecAALAbr3wBIDustl3/Xoe7rrjCzdj53lvERku8yNuSrnvccddv3SRju7JsV5/zfvX/n0hrc+u//63D4WfMsAAvQ6SfG6pj0gTX6z7yEWgF/aaaSPq3QC2Thg0bvAPjhOIoq8nfOmNN6w979f+3hvxrP/XrUBrYNoBpEha3+bBXwk/NwoeBPlTQkZJQR0qUv7SPGIADnJDk4EW241ABX1esXzI4Ic8hun1Xp6Zhwq09JMMIsgQM9u/5EwYQAvckTMTgEGdYRQkycIBC70fDUBNyseve01h8CmwcLghzMBWadgy847kPhn1/mdCLMcOR+cB60Whk5wpjWZufvup/JxttVl0yvDTUE+TVfuZQVUaUzmXObgzZIZgz2rhJj9WwLL8OtxgDZbPHxJK1krKfUsL+AiklpCZhGEDwFz24GxXxgalee83DFbft43mWxAGWn6jDmc9AMK+bvyQAxESTB+RGgc7nQzN1fnW2KLT0LDv1sICRx9EAVJXQg4AZMhbWSEtLFdFOTmEZNpiDbTWgI5tB7Rh5WwjGlmIA4VFF3TIGgBbAasORtUpbAlm3g7Hnm071Qoou4usDXgmFagLSBsNwmYle3JlMPnGnvzsUmyMaGEGJS4wgCttOwxQV63sf7NNGVCrXcTHfu/duOZHbpZ7UhSQi50Mc/JwqGSsGVUktVLLxcaq0oUK+NrrNZgmCRREPceG8eU33Yi//O6PFHvDP/i5f4jtm544dgoPBa4crmdN4HKNCyklodu0CBMZrLglw3RJA2/FitC2cl8NjarGIiNaAixAPeT6mqgVyQwS7myAS/4owa4STGCEmcXesxtM7vcw3Qaau+eg3QN0l29ieakTtcyesDDDUzbQHbNo7g+o79obhhYZbLMNaNUONS0gn6GqkmuqHWUNEYF7IbCEDQu3cKDVSuyxFAykmGCYUUeGW3l0Ww4Hz95CfWYCSgy714r9EdNwDwP09+NgETsGMw+ThoiAVuysoKQhs7ccBjpOrGtMFweLnvw0xoiKOiuTiyULj8DVDICTDMey6qo/n3UKxN5K696s4iYinPrCIwdWykvMTGRm3PHvB0XDzhU/La+xqXHqS7fJuVwsZTg2m0o9yJrwop78Oy94m9wLjMGpL75/rZ4F1MYqWxZaA2qDDJ6UyQ5mdJdc/HoWAE79yS3YedaNwrBuu+/8C+NlzCMmZ/1FWyXPUNfYfvdCrOu//+2jJlH+yJ9VhAhqA9K0HrIfjFwLAIQlvgyoTwOUvOR1REY/NcAERSX8H25fr2cB4AsfuAEv+kcfKeCKCVzqQdOJpZPpGeyBOLGq3rCwrRAsSC1N09QB0UvPp4TKzOSHM4V4WGwTQ86XG9kpZmDGGcSZE5tpA82YC2L/lcPC4ZDM6H7BAyCRLXiTNyA35HxkwCMrQ3O9lsPbc6RLtqCMlaqDrNazSnwqdlmjTAip1ajUr1kYThhqcLZGs094vQY6z0reFCsyOSaown4AV2zHBSShxHArsWDNP1+cNKwcuyEuFmjJDD1PqZetKqiV6AAoGaHU69IX5do9+vJRERDlDCFVVBQqhdyrvcj4vcq1dz8zWD59G5OvQ1w9mHG+bKQ0rbF8+gZMl4oFKcUkBKTGwc0aIR6N14OdX6Ihu2XSDMqLqhKwI6tPq0pqvFU7qJQz8TaM6tJsaZf/fojckzOT0JHu6XGwM8sq1KoC9QH2bCiEXaNEgqz2ZO/E7tAZdY2xwKjWhFqG8bRG3KhF9T6x8AdhsAWPvbYmLHVrJhPVtdi0Ayg5aRk8qitwXRUy1akvvh/X/+A7JF8mxAE4BeQY8mlmBlMmoAh6R5rflBwh1KqoaxhxKpZ+ZmnAlvHnbxRS4wvf+hG5Tivg9978D7F92xOnpj1aR+tirScVwPLtb38bb37zm3Hq1Cksl0s897nPxa/+6q/iJS95CQCAmfGe97wHH/3oR3HmzBn80A/9EH7pl34JL3zhCx/nIz93vXbnNnGe6IdBUx5iZYZBspBhVZ83t8FfMyoDQZgFBNNJOHFzmtHcHwAC5lc6rC4hdE9vcfKSfRy3EXfftw3+ZgPbSbFjugjTCniyeNoMqxMWJ39PBhkbX96TIVvjxTezyVkHBDYVYnMC1QMr2N1F8YLkzD5ICRwjuOukWJtMhmbQucF/ensL3YkJwtTANRXsUhtWRfplyBpgFh3MooLpGwlDPe7QbhtQarD5jU6CTwHQfCUMgL4vofZl0yQWkMDawlTlbQkFpS6oz6aGLFpC2PAIE7s2NCWmUozEysDoBkxWg+1WvWyspJWeMwLOqCoFgIIsNBQOzAVoKcHBCkjY/ZV4Qj+KlVl7513OrrMw1UaGALFmiEk278oPstY8XACw87y3rD3+qa/efs5TFCYXUF7zhRzUP9Q69cX3CyNxOhGbifniIQvi8Vobxn2Prvw+vf6a91/w90wCIodroMjpkzRgpRC1Ik2mBCBgAOsYMG1EtUugZNFuScCj+ABrs/Eg77UMfUb/HoESgAIfygSjJMycaCEZKUab3aLUoGHeVRQqKOzDrCzMYfKlSaGB7ZMbJIoD04dYPJIFRJCDbc6mUXYIITkGgvw72wZEQwIgZJAn2ykAxXZsrYHk4VjGtgSpGkCXfFzl/BhVsuj3xueRayBOAQq6PzXCImRjRflzyD6+5MCQsNFjPeS8ZHUPk9oFRf2ehTSiKy7h8/K+0ejcQC3feLCY0+eTkGfJZhG1UA40Vf9tr7k9NJxXNqKMSk4+D0jy+twBisKpy1Zhnbz+DH6tWccx0G1a8NO3MY0M7B2cO0zdmCFtNmBvJeD30OeYWgJXHlTXkkcyXoez4LJF2GQCNLVkrVgrQ5VpvdYMcy0MewOAlisBV9SWiC0GkgIw7OdjZpzaB6VZI8BQF+V5Dt9L8+vJ6hJrBDgNNHzfu8KMXWOFJoZp+6IeK5YdfYTba0uQbppWMMtebdYIxCM/6r6XgPByXHrx1ZU0pDlw2Etj+eof+yBcbQVDyqBKtsXLNxJV2plOfL1z0DsbAX9zkGwG/VIlyqev/czPrZ2a//TuYYC2t7eHJ8uybRrqWaAAe8kRkoa1miCKacmnScPwiQRgcgsuZCKKQLUf1S5FbAHnl1nMn0porwiAZ8AlmPsrNA90os4ICW7hYVqPftNi+TSHftNh46sGbr/Fsf8wBzuHNPEy/PKEbsMA7BCbY/B7PfwDc1DtC3GIu14D5qUWSn0vbO+6ks9LEvCD2xZ08gTaSxp0Gwb1fcN9V0BHVT4sO9g2wO4Cbq/B/Ps2sDrp0W0ZmNBg82sV/N36vmeb28xOHfv+n09llpmrOkiilRM1WeXVNs8jbIllnm0jjA5sskqUnQHD6g2LiiVZHrZSGwagZQRkD/lUGZDBOuM8K8FIrYi7R+cbMrYBW1tjRWBeMYpXf7bbBcrQiYDBAi5G7DzrxnNq2FPf+MVzniarwjNj+GJYgz3oUrY0WfvdKVm+h1cGVK5+3a0XHFwBZHB52OGBvZW+1KoC1ED2FQCUxOIuX0vUR9iWUO0SwsQi1QZ+kbA6kVGDB3/uohReJZguqU1qGgDQmEDWaiYJFfss4wyIXVEZUp8k+N4mHe7LfABQ0MKpGmQRpCjM+RvKbDd9UtBDiDJhKsCHM4zOedkn2uHmYNqITEgkzebK9VgiEhJTGOwzM/mm1LQKEhdAHyhEokxAzfVacgTDXMCqoiDR20Vo9FyloW5LHuhrg9gQ7IphK7EuM7WF6WPJEslKVqlBrWSsNAahMUXpISCPgiK5ptVDThbwS8Cu0mDTRoPaJVY0/Kwb1aZan+bPBwGFuMVGiAvZ+rd8hmj4LGV1ASuZyh8MxxQmQFarZ8JZtlMUUjAQ1Sqq37TAs49h+gf763sSAGzOEDcnSBMHvx9gl+fJkGLJGqGH6s8Pf09zVngiOa+GjsnX+yC1aFNJHWhoUMYouHLO447r5rFiO0akpkI43sAeKLDh1V4r555YOyha9HepJRxWl2cFZ7G/rhzSVIjN5qCVczCpFISMsLsLWGPgmRE3GslAUSULWwLBDM+xWA6Eq8Qy3a1rmd1UXj4vjV7HlcPVr7sVzluAvWTvqtpHbADlYcQGXu3IASE7qhIrTMQajtXhgD2AacRX/vabz3nbvnDrk7OmfTIt6fIe3mzraD0260kDsJw5cwavetWr8LrXvQ6nTp3CZZddhj//8z/HsWPHys/cdtttuP322/FP/+k/xXOf+1y8733vwzXXXIMvfvGL2NzcfPwO/jwrb06FzRyTFOxqg8VOAu3disuAiTh7c+pmzWIBJpufDK78XFh8uaEPM8bm9hKXTOcIyYCISxixzYOJyLDLANMZuEVCd/kG7DxImFtgmFUPHxP8HqH2wlJJ3siQyDSonIHdtaD9uQQwKquPjJFg+q6XPX0y0RdPMqQ/sYX5M7fQT6WI7I/VstHsL6RxKbkmakUQggxQLIGCSG0XlxmceV6N4wao7lsMctQ1Ft2h4VXxWNcAM23AUHlw5RBnAqykKvusk9p/AAk8MI4gw0xAhqn9ZRuo7t6TJpQIvKF2CkGKr3EQeTJSOMr7L28uhTQMQ+n8ftEXeo2byTv+6L3Yef5bxfPTGDkvWQK7XJVMHppOBoYIM3auUlarynIPN6h3/PEQQrkGtjxG69SffQA7L3ibDiSrIUxPF49ZqICwFHXIdrQu4sqWfvmaVPsUWukAxlukJlsqaMOhrFMAw6AHKDkbScPm2Urw51d+9ufO+9TcWVCgQZZPAqhktQGpWmEUbSK/p8CDbWWAzkbsoLKVQGENRm088gxMG7aiiND6niv5nQx42A4wByh+8DxS0riV3INcx+BO7HbEi3sAAYptjtqA5WMiCWqR59HXkr9XAA6DEmwJjIATBTmyUsV08rO5STQY9jEqyhUgTRlhKjksMlAmUBSwRSy9BmbhOQAGScHOClDYVr4fZsM5lsG1KZYI4wBn+QH5XwaV5DMClJwwZsQKRf1COsi1K5YIA2UUBrUpGjyn5fhz1krxy+4loDvbO2VVkeTAMOCoNO2cK69sFzCy5MB0gtUzjiPVBtXpdrCiyRZhpNk0Ew/YbdDpPfDqPCD84QEsIOGeTQX2BuzqwqwUooUOZaMOVI0B6mpoeLPd5zjXKh93/rf+GY41ha2PQijQ/dwdKjszmJIzzFjzpDJjUI8J0D1Shz4wYilG7UjFmhKol8dIVYM4qwpTPxEBsxq06M4bjHz997+9qFDyULk7Wev5kXNPCUiVKUxXsLCF2QDUD/lBZdBSGYSp/BcrGaz88YdvOOe5/yKsfB4AyKBA/0pJgF0TGdTrZ9hI1oDtZBAQKwGqbc9yv4jyGfD7sQyxuu0KsSaEDQY8g3wEWRmWhamDjwxWVXK118MtAprTBskZhK1ahiMpKDgXYZY94Az8rkeqLPpNi37bg/0m/NlW8uuaej3nL5NMspqkltcKa5Ge8zTsXrWBfkbwC0Z3sobdXwLOS51pCKChDoQBaNnDz6MOvQjzyw36509xAoC/72C4hsc17bhWGbNsx99TNXmxrckq0BFLlw0JKBgHW1hq46DMMAyGqN2KXW2+/+hrLs+ZwXyo3Y/hwuAvh+bMg1p5Xah16pDi+NSXbhMFyug94xAG5VFKoH4y2LMkxs4zb5B+bGRtfE5Nq/ePnRe8rZAQHqt16ssfFNKQc9KLZEtmQK67XgG2/BkApM/Lr/FordcJF3LFONQXeVip9S3Xrtj2mZX2WBmkzHu/gShZughHAPcJsTKwnUWsgT/6xQffO8SONcEfaJ/G0nvGqZP7L7LVKZVaqZ8Y8KaoK90yIdvQ+nlURaAGmquSxHSS35IagzCVYXjOvMszijC1xUI7NHYgHTkSJSIbHdJr6Liy4+WcyR9sBchJBAFYqkE1PK6zs3VXUZow5BpgAGRK3W3bEckm1/sEBQoEiAKENMmqFGGr+34gcAV0jYFpGH4uz0mNASV9fZnkw0rUUUAmNGrpZdRSVt1HQFrXG6DbGOpTAGAzyoTV85HzGQEUpbsQPoe6vKjJoYTcrKzN9+Ecc1SN5k7I5xulLs8EKBOl1s/nI3+djfQcmTyW1baxIs2YPLRPzaZYPvM4Yk2oz/RwZyW8PVtB5z3KECFOHMykEbDgYa40ayR3zRDirJJjCrq/A6KsXLXDdUYswETez80IpMhkn5wzpgSDuFUj1hb+gYU8Xs4UJCq2u0hxzZKLnUW2Ny1LM/uQAEJUArU8DlcW1AZRlOS9KQy1teXlGlGJK1GaSr5mOsfGfOdZN8rrIBL1LAD0hP7kDCDALoO4lrQBvDEpfQV1QWzBQhqICmrHaZjBtkGYWoSJqFeSB774jr+YNe3ROlqPZj1pAJYPfOADePrTn45f+7VfK1975jOfWf7OzPjFX/xFvP3tb8df/+t/HQDwz/7ZP8Pll1+Of/7P/zn+3t/7exft2F5/zfuBhEfEYvrNjwnK+7rrRI7OhZUhzSV0oGQIg+e+U+mmEUZzcmIH5hdpzbc/OUKcGIQpkByj7Ry+/sAJxGiQzlawSxn6xMaAQy50pKiz837wix6Hs7VRbAXU5sq0PZpVh3DFMSyvaFBNHPxEWWFdAB2swHt7IKcFZh/E76aqRN2yvYnFM7YQaiMgEgFxYtBfMoE38hgA1ofcylxnI/ZpeXPvtoHdZ9XY8AbTg+W5AMvYiiYXstlrMjciapOSaleYQ3loJzY5uaDgIScAKIV6ljLLMFjYhmah7EBvkTaaoloZ7EJImAo5j0Cl2szAx373XQ/7s3Qh1nUvfpc00N4WAIm9k8BiPV/U9cKWViksAGQ7N3DCOAg4W0sdVj3c8cc3F1/sx3Kd+pNbAADX/+A7xFJmHOR4sBqYHxl8swanvnTbY36cT9T1cNQr17xqYJV+4rcfBjhoSIrPpDe+kARcSQncDAOhHKzHGtBre2HoSdC5+MBmCyhAhvQggB3jGb96G6g3+Nrff2N52mf+kw/BBFMss0SGz8UijAJgOiogCzseBuIA7FK+53qAeultWMNIS7MzbmxGtzDboShfxPNZ7h0yUMSarD8/1tDgJFR7AaZLCDOnwIjR4aTsEXBU2GuAqmHy/C7pbZHlNebXXkCfUY5JGn991LQBKHZoY0WOBHVjyJ9hAJD3K9byX5hiUHMEGagWdQiNjgd6zPn59blSblAxNIKxUUUhDb/rF9nDGkU5ksGiPLjNwFcsORkjoKRN8HOGW1oB1LwMN/Lz5+wZ0gbUdvn9zvdxg9iMPgMEgEkBGGGZUhDGvwxpa6QTG2WoH2c1Um1gFwJ6cN6Dx0AMIM2Vt6CmBvW9DNYOM/zGw9euAxIQp64ABKyM2uA9jDfFY9lVFji5AXd6PvhRjx/vQfLMeDToy6xTImHrEVAGtWsATYIq1YaBIKvFiHyIBTjJr50CFxBmsBo15fxlkCP7tjORZKJsVTB9wicfZG/lyoEr+bzc8Yc3CcNvrohkYcsOwzBhrWZrEmGtjlm1qVYfeB2U/P6vPDma0Gyj80gZ3r/5sTefU88CELav/kl6nVAWZFRCBLIt69ANcKtUBlYZ1AozL2zgidx/TedhV+JtUu1DrUwcqjMrCbZXG6dcj2RQQDIQgBJI3PZwIcGsOjSrFvGK41heMUGyBF9n1rZcK/6+Oej+04PVR4yi8koMvvISHHzfDMkB1X4Sn3oAcXsqwKUxoLYXQHniJftIAUWxjDHl/rG6BDj9/Ck2Nzya+5YwD+xjmNrqyp/7xCgTnDHQOQZBrRnAFaAMQ9mS2K4VhYo8Tr7WJD8Pw/UaeWDgjoGWbBFkRZ0iN800KEL1OC42uHJ47Vz1pnPvh5UHqTq+KPNW7brSKK/sYa9fe/3V7wfMei106k9ueXzqWbUx27nqTTLgy576zokl1aqV98CYQbF/GNj+Hl6f/NTDu7ftXPUmgOgc27gHXTrMzFkOAiZbAVp0v2IicO3lOtP+mHpRcaTal17VdAnJiWbU9IxYE77/5z4C0wN/9N+s7yWv+vEPY6K1IYBir9Ufq4A8U0gA1HI1TCTTLlYDyYjJoN4T2/CcFWJbA9vKvWesTDEhifUXck+rfTVLLVqG+4yiVJTjQvk7R1Wn9JJRlWqnhJvB7gvAGsGUDZX6jWloP01kmDYXqvJSKYlCWciRYledFdpikwXYLoF6hlsJiJ+cKUqZXgmStktynJrFF2tRlAAY1C95fqOKF1GdYKih4+hnoGWPG/6T86uzmwYD8Qhq+d4xktVfJiqgRn5sMwLNiblYhMnxcanrxaoNRSUuxzrU9oDU92PFd3KiSBdV6Yg0FtU5ZSVZazmbFrMpwiWbSnaJiBs1Yk1wiwSzzDIY6ffkM5GGDLTAQt5U+9qsNKEMeJSD1L1u1YJiRGrUIozU9vfQvc6ECbA5FfLrYln28HOUNiUrKK3tHaaLsJYE/ABkb3BOfs7nPDaV+CcewBUlAhWl58g2PuezlYy5TLYaH9coU4VC0l6Hil0fe8DM24e+PznZw079yS249uU3yYyvj2XGxo2QjU0bAGuQmgrFzlPzX3LGWtgUy7Jse/Dv//snR017tI7W47GeNBXXv/7X/xrXXXcdfvzHfxyf+cxn8NSnPhU//dM/jZ/6qZ8CAHz1q1/F3XffjWuvvbb8Tl3XeM1rXoPPfe5zDwqwtG2LdmSx8V3L18zDs9F5w2tu0cZfvUVNDn6kMmgarFpk+J6ZJLGx6GcWlKiwmm0nIbrjYsYExmpqlGlLaM82on7Zt9j8NmF2LxeVDCe96TNksK43e3Yy2AQAs4qCsockhZP6x2K5hPtmj82zM6SJx+qKGbptCzaEai/CH5xEe8xj48tnga/fCQ5BlAHeobtiE/MrHOrdhH4q1h9ZecM0FfuCjLBrUQoAbA36DYvVCQvbMTbulOlhrAntCYfJrBFf2F4Yg5QM4EeNZ/aJzxv0KNA2D3nYCeskhxrn/ATTQx9HABsmrIU1F8a3MnJzkxqOT8sQxqjVwprFA6C+1gDb8wfQX+z1Mc14ue4l75JmGZDj0e9T5YRRseyGEDagMDzKOpg/5PNc9+J3gcy51mKP1TocRHrdi98F3p4BUA9tK4XMHX9402N+bA+2Xn/1+x9bC4rvYl3zqvedd+D6UCt7sQMCcpLaeHDjkWoPrqyAKLXVpkaKYrckmMYWRltypLki0pzIgwNcJ7hZD2MYf+n/fQviyuLZ/yMDPy4dm6gkWAAUBVnAEEsjAKYnzQ8SoBo+AZFgVnYAChKEhTSef/FosM9j0IA0oJkLoxsKtJS/8/B7hWnsRkGYOpAzfYKxAgyYqA2lDiT7nBfFEAAo7yf94PcsDPJRsR91/8g+y7oPGVXnAAIwmH4EvihQQxCggTQjTCQtgN+XJjDWQL/Buj8RspJmzaI5AySMoeHg/DkZ7q0FdDIDuFOaSYtir1YyVfSxTdSweQ1NBYkFh2VpdNgL2JD3z9iYsge4pVqJQZrdrFCxrTxuqAmb3+rRfGtXj9chTcWCCKqyMSFhcXmF5UkDvxjyWJAi+NgmDp65Adsz7DIJkPZAK4HTWVGR9+mkg2JABmkR4Fkjffe+BnonFpY2IDYynITosDFDPD5Fqtcp17HWocLMlsFrty15a/W2R3WmEya+ApJrapXDA8xsrWUNUk16DSU5Vhbgg0csPEoKgqiFUAFonIA9YhdKYltUhjY6EFbfaTY5JHcAW9gZhO0K7bYTJmZgfOZ/eehMvPEA+OrX3qIfPoidS6IyAAdQBjGZRcoEfPoOIc28duc2Ia8Y4LO//kY8luuC1LM6NH+4Njq5pk21Paeezda3wKimVYWUXUWxYGUBMm2XCvM5AyBmFUVxUgtj0nZyX6n2ABDgDzKQysWaxS4gtnAZAFBwkvNQwhhRZ+eg4gxMLFew37wPG2clIH6p+SyhEdvC5rIafr6N1UmHY3+6D/ryNwXUNITu8g3MrzRwy9H9PjHakxWo9/DzAOor2HmrvusJcAxEUfKsjhuYHti4K4LvBsLEYH6lA2iCBoA5c7CuvC177aHrDxhq3FznRgGsUqNDLM7vC8nm0bNcSxnIVCJTOc5eBzF1pWpsIG3WiI0TRnseAuXnjnHtWJio1JeP5coEmZ1n3YiikgUKEYiYRV2fLdiANesYyv76k+acx87r+h8QIsnjVc+ejwS08/y3yvDPGHBlwQq6PKit2mO8rn79rQ8b4Hg8V1HmP5Klw8xyE+h6UExIW5PSD7Lmu7XHGx3wJxgNbCcFMXNPLqQ9eajogX5LHvp57/0I6jPAU//Fl+WaftWz5YcIsv8bAntT7o0UND/Byx6fnJBLshICQLEntx3DLqMMyw1UQZPKvdKkqP16GtwdwEUVwwoCwAzDfR5bX2vtFmu1KNM+vfy+05/RmjfbojMPNaEEwKOAR6aNZX6ARLDal3fbrgTWizWnZvYFBYYNwWRCqRHCY1aPm5D0/IubiO0i2EoeYD81iDVKLiPboQ4QlRAQ1HlwsDTT85w/KzpbKEpyN9TxtsVg3TVSq+TMFTk+qWuyijo5oNe8FLuSZ8mEhmRpcEwhBWVIntP2WSEDcAS6DWDjLsbm14SsmrxBnDgBxtTJQxQ4jMVlHqsTBLuSzw0TEE/MsPec6WBX1yZUZ/uiEoKlonTMVlli95pAHMXSi2d6/Fyuo3J95fw+AGhqxM1G9npAwLpst5+JEDrLihMnCvXFhliv782HmnHNVpdVxaJ7mt7/zUpzSgoQogQp3U+yNW22gh8+tLkmMgKoWAKMEG0pDdeVZAIOpOayXzlbiElpo0GYepg+wvTpIWdFY9XldS9+F65/0TtB2Wq3FkLEOL+YG480rUpmYt6zr/mRmwvoCQzk8KP1xFvpCWMR9kQ5jsd3PWkAlq985Sv45V/+Zdx4441429vehs9//vP4mZ/5GdR1jZ/8yZ/E3XffDQC4/PLL137v8ssvx9e//vUHfdxbb70V73nPoyv+H0k2AQVpSHJo1Kc+KYXma3duGzZhBkhDwEwb1U9VChhTG3BmzEZtSjsugWF5YMdWNumv/OMb8az/+4fh9g02vwE0pxNsm8pmnxc7wid+c2BiXf3aW7TRIvzGbw1fv/773y6KjNrDMgMHC+BgAdNXaADY1QT9pkW7bbH3DIfFFcDus0/ixJ9uodrtEaYOqTboJwbVfoJfJCQrDWU/JXQzg2QJ1T7B9+JnDkCYfrVDv1UhNJl9QXBLgl8k1Gd72IUg83BOFBbWAMYCXQderQa/dWsGZppKPFkHJnYZYGYevCHM08xAyT7gwkBCKYZL8RQZdhWkIHDamMWEtDkZMbFlsJBBmfHX8sabww8fi/WGV9+sg+DRRq3WEOXvZZimoFA1ss5iVmLlwC7G5gaA818TO899s2TWqPx159lvxKmvfPdBpxdifewP3oPrXvruNSuacejhE2E90cEVQBQrb3jNLQDz2v3iodYdf3wzrn/RO9XLHEPB7UwZuiZv1MdYgAViacx6ryBIpwWisrViJR9VtyBRvtQRm8cWWLUeKRAAEiClSUDIoK10RmItpAdH8nUKVNSBiY38WzOxTA9t8OTPAqwwrykKh0B4LvZXbpnK4DevDNjaPhU/7OSESche2PDRG4jED+Vzmi0DkrLe8vFIoCYK4AHKLDQutmLjcHvTD0BGBq/sSo4/qi1WqlDyZOTJ5ffcEmv2YuUc6nPI+aAC1pzvZ4Bh/4ORzJu8/IEMVd1iaK7H2TJMBOoYZk/OqclqHG2c7CqV94a1ac6NvEkMe6BNtlV1JAP+IAIkTMYShjoG2414ds/ujph88V7wmbNyHrc3kaYnUd25C5zZLWw5f99xNE/ZwuIyj8VlBhvfjMB8CUqM6V0VwoYXNWniITDdSyA1sm1XEFCBeg3RtBbdpVP40wam8sLOW66G+/bmBrA1RSJCmlXoN70wUhMLCOJpZBGkb6mel+QNzj7Hw88dmtONKG4Mwe33cAedHFMZTqgyBUDYrNBvWj3n+qAm25OYQaWig6gxq09UTKYwCQfgJb+fMmSAN6K2LOxZlGE6O4swczh4ihe7pjnjd3/tRjyc9YbX3ALxLY+iTslglIGwdVUR85sffzNe85/dBhDw6UPB758+9Sa86sc/jN/+n89vT3gx14WoZz/56UcWQJprWrA5p57NZJL8GcuDPrm/RVglulCSwHvTxcJoBlFheBLn7BbCH/63N+KHfvJ2UREuE2zHqHY7Gfq1vbAuY8THDg2Ur3nl+3SAZ/Cxz727fP36F70TcaOBjVsCYhwsQH2F5h6CWzYAAd2WQ7dlcfBUj9VJYH75Fk485XmozkpNCwBbX5ebW6zEHqafDRY17AnuQO3OFmIBwrVYk8VKAJx+BgAGfsFoTgf4gyCM35CEsDOZDLZVqxa8WEhNa4ZrSt6QDHZo/dZ1MCuH1NhyLZX3LQ7Xp0iKlDHch4GJn7/Wib88bUyLNY/pY2EiFzuUPDSKCVzZx0w5cc0r31c+Nw86eDoMDjsBBQEAiQtTumQ3jvKjDtdhO89+IyjF8pg7z7zhCREif+pPbxUrXgXaKKU1UPvxXk8GcAVQe7nnPrJhYjn3WVSWNJsDkFwuQFWiQHWmQ9gQIhFI7m2Go1haZqBaldt+wUXd0J5kuLkqd60FQlAFtwyQReU9ImZWBqgMAFsUmKaXWhSREBoUckwGNIgNkr4ImTHI9UCsClHtEZOjcwgboHXgxvQsCgsSYoKosgnsxQIsqfoNyAAFld47mWHfz8NwNnJbynZPeY2BbQF+oLl3MlPI5KJ83MVWuBK1aQaLRGEtGbU2xjWlb7KEZC0oq7Fzxl/Kg4L1elaOR2txC2SrWUBqWbdE6RWKmlz7BYqikgdQbG7zezTuN5ikDhXl+tCvUxzIVCYyzAGXPBcwI4FAfnS8LHV9cwY49h/Pgu6+X57z0uMIT99G860DmLvuK+8xmFFfcQmWT9nA8jKHxaWEzW8k2Hv3MN2uhQzcD0APiJAaC4pGPuMhFYsqsNaS3qF9yjacMTCVAy1aqWezVEnzp3gq6JVkghD86aUQaw8rUkiAjezG0h73mF9ZwR80aO6fyCyGAHt2CdrdH4AN5rJvxa0G/WaF6syq5CVRC6nFAfCkQg67ZyUgZbstZCX2iDhEfRzmR/mz6wyoqfTa0kMPIjljbxE3mwJ09TMDtzT4zP/6nQHgnee9RdQ0jQMnAbO4skJkNEYmwAn42OffiWtf8V5QSOe4p3zis9LPv3bnNnz61HcBOh+to/U9up40AEtKCS996Utxyy3CLHzxi1+ML3zhC/jlX/5l/ORP/mT5uXE+BgAw8zlfG6+3vvWtuPHGofne29vD05/+9At89MN6MOucwzeubDsGQIZrhhAbKZBY2Qi2sDGSADF9KlZVtmP8h9vlddX3CbPOLWWI8m//fw/O5MwqnAdrssd5GoBaSwEFiXf7HWAqDXIz2PgmIVbAvS/xYPLFzsH0wOyeBDcXlpyvLdyGQ/QaAOd0qFg5YTCGBNTKUq/k/RQbl+ExqI8C+FReM1YisFyCc5CuN8DGTLxwc1HHLF6dajkiw8AE0xmxr9QBgciEpUhiDXWjyKKS6YWNaTplwkUZYMHJcMx0Caw/b7p1GWixf0mpvN+P1bIq1/3Y774L17/w7UhbjVwrattCaTQtXWMIj7y3SRhDJfvG2vOy+XaedWNpBhB1eGLNeUNFH+v1sd979+P6/E+WNbZ9y/eJ/DW7jPiNzz4yq4xrX34TyBnFMCOYspWJMHaSU3BlIoqyDA4kB3Sb8lvZrknsE1EaFEAUKDEaWKND4CBdxNf/6+Fe+4xfvU3BFYAdgzRom1QOn5sYuyS4BSnTOjd8Q3NUAu2zzdfIlopH9XVmvOXGKFlpQCny2rUHgjR+mgElrMPBOzvfi4DcwA2WAuPnLbksZnSs/aD0KEzBNIBByULYdNVgt5Y0ADMoQ45t/jlRd8RGwBg3H9Q8bKVBZgNhuK2AYnnGI3sEHs5bVp+wAShn4JDYAFV7DNcy3JILWzFZ6H2UYbsEuxqxEZW9R4FHzfEQyAooeNQYkdp34jduV0n9yyWU3nasQ9DhWAFg486AyZ0LmPvOgnf39eTrwHh0jytNXi02R7HKYBYXWxd28l4bysMHA9Yu3fYR1HYS5NlUgDLyTBs0YyShvXQqwOL+FO6BAwVlEsIVx0qOiASL65DCm6ISkhByKp+l/LPZOmR5CWF5qbzhrgWqXYvmrDyv3+8RJw6rE06uk1YIH5QAu4pDfgywJlnKX0tkBvuQDDbqZz2zTOW64WG/yTYiNQ33oAzO5O95+U/sK4BX/s0PoznTPyQZ5rU7t8Eqi5W6oEpdUeTmzzMwKFU+8789eLP5eIArwGNfzwLnr2kP17Ovu/YDavc1YkxaU6xlTJdgVwFm2UumDoBimZOkVomVwb/7f0rtKrWsZLTU9xyco0zN67qXvacMDB4s026sVr3+B3Uwr/Ym7qBDqh38flSFn8H0PsLyEsK9/wcHv+tgElDtMja/IfYhVZRrItYE0zHCzA73HSfAIMOC2h6kikSxOmM0ZyPsMoMcCWbZgg6WUs9m4s5iKYzexMDxzWFzsUaGPsuV7iM8KM6iqIFY99vCnAW0Dh4BDzFKRkkGuQ4pUtAHmHlbrNjyPS4Ph4rqJWld+xhFf2S7sgyuXP/Ct4OWrZyT/Fryn2PlXTl/VM4b0QDyYrnCznPfvGbDsnPVm0Qln/NPFMzYefo/xqlv/t8emxf8EOtwn3a0zl3X/MjNMPNuUO/rvWLnuW+Wz0zX4dS3/ptH9Jg7z3sLUI1AebVoo7YHaleIC36/g91dwrQeYbtRdQBEmbzsZXCcrbi8LTki/kDA2Pos0JxloO1w6r5/snYMr73+A5pTKjl9YTKoLYV0oxa3K1E8EA91QL5nCfEk98KalaIuCwQUuzMb8u+aoq5mR8i2qBTEXpdZn1+JQmK9Ldkq2WKsqL2VDJSts3KtXEgXBgUMMTzcukA0BN07AqnyJChAf7jWsR2XWmNYUkdTkOOyqyivXa1FWAEvt2I47T3knA6kn/wacp8wBliSB6C1dFaUixIFSqhSNb6TPLKczVjyDpXEZOLwmOxyPT7Yd3UbBNsN1sNZ/ZMJWJlYlXNhMiC28W3GJf/uAdB9Z0anRB837yUjMD9VToihJEoY0uyqvN+JWkV6GdK8ELJCsrDzHOois5I0aWCWPfzuCmGjQtiu4A4q2F21mQ8RMAbx+BTtyQaZkFydWUnwe1aWjBQf5fGZQX2CW4rtXrdp0B6byHXVM6pjFaqzE7gzC6RphdVlUk9nFxnTKxiU81Gmk7IHZ0JztvwsJNkwEE9LhmKMkhfDubGUfB+2FlxZfOKzb8frr36/zGa0NqJecgfDpke3YYTsGxmv3bkNbhHwG585/6zu+h98B8iqUkjrY/m71F4l70jnad/JOeUIXDlaR+uRrScNwHLllVfiBS94wdrXnv/85+PXf/3XAQBXXHEFAODuu+/GlVdeWX7m3nvvPUfVMl51XaOu6wf9/uO2CqPbqG0WVFrMxc7FrlJRt1BgyS+wBJCHnye84v/8YYSGMJkS/uCXbnhYT/tI1DgA1qT/1//AL8gm1Ce1CItFWtg/IAMPYMSYABAmwmigBPi9gIpZGDeQAZRpe9CqBzsLO+/gvYTFynlRpsleCzNvpalbroTZp962vBrsMnLzSVyDZxLeScsOCEGKRmuBuoIjAU2yLNa0UW17dDiV2QeMMhygDNQAwjYEwLVm0hSlB5B086UR649hADd4yl/3svcUBsTFHP5/7HffhZ2n/QwAIG5P5LiAwSriPL7UxctcJbmDlDYOhZch7LzgbSjZOznYOKYBiAEKG/toPTlWdec+7vjCzdh5wdtQeYvrXvpuOG8RNnxhuTyS9fHPvxPXvvwmwDIoM8C0GE2VQZxahEZBBgthQynDLQ9/c/ZK8iLJz5L6MGHEmkFWrrO66vGf/vY7gb89PP8zf+02kGdwACgaBVMGcIUCCphRckgKm254nLV/K6mOcoh7tj3QhtAfpHLviNr4JmUVC7jLYKOvU8MyQ5MbVpS8KjJQYJbhVvK6I1EBJLJdlgAQQxOaz1UBNbTRKvZe0IZNv95vKbiiwAwbIFVc7BsoUvnd5PPX9PcBwACm02ayHR4bSUmLet5SDQU3UMI/s22B6YHJ/VyAjzwEMy3DZsZh5GI/tHbf0gYnzFyxfyxK0cSa40MIDrCtMDtzdgg3QKhNGUDYTgYSG3clTO/qUN25C37gtDJJ9eQlBu8fwOzuy3tOBqg84lMvxb0v30S/KcxFsTZi8MnjOHjecfQbBm6RSlOXKiuWCollKGh00OkcqO1huyBM/V6JDZA9hZiRtiZItUOsrfit14R+Q0gXXo3Yi/1GRYiVKQBayc1Qj/LmNCM0hH5DVEyhBsJlhMVlFjAWft/D9ECYAfVZRqws/DwVtYvYyMleIs0dARDfczYGZAEkGXr8xue+uyyDXLO87toPlPeYIuPff/Th1TwA8LrrPiDZTn0SCwgiYf4BZeBjRgDRE3U9UevZXD9l+5hsP0tJrfu6KEP7ZTfUBMwgVUunSlRkr73+A6IwcoTf+tcPbfkGPPIsuzFQc/33v13qWWdAkeAOpOZmAvyBQX+fKQCs6bgEQps+wXSd1LITV0KYKbIMJvsomUFEoD6iOhCWeawJ1DPqe+cykA2apdF1QFoUgIVb9YFPSQb8zoGntVxnq3awTyEqSm3qA0xnwVEGuaTWrmXolYdTKQm4kh8j6T0oq2Gy8pvlomDNqRF1kvrOZJJRiECSAc/O899aQNWLNfz/+O+8A9e9bOhHKEQ5Pymtg0SHa84x6zkziNMIoIoR2NvHzpX/EKgroK4FxAqhDO/G2VhPFJDlaD30sv/p67jj/o9KD+QsTOLSD8HZRwyuAMCpL75fwDdlimcyADdV6Rv9vqg/sVyBnFpHd5KBQH0EYgTbujglAEAm+khGFRAmwO/+P85VZb7mr34QcarqURZni1hnMhKjn5lCcBFbJMnRyGSUcfYGW5L7RV4ZMDLD1wYrL7mPpFrnFaO6UizMWe21hDDFJLWuzarp8T0/19gKVsTRvKA4fBiG7fLzqB1apz2rIeQsuawQHwMVyWu+osfQdwDrOX1KvLFtVuEykjVI1XAuc30fJlqf6/tke4CjvEc5HL4ouSOAHmrrNdTKMR+L9htuNdgGGyUdjY+RnRKu7KBuyeBKckDcILGw7UgzceR7QT8Lpb62QNgAJvcAG9+OmH1jAbr/7No9ku47g8m9p9fvm0SIT78U9750A/2GqnEW8p6efellaLeNkiAItgciDAwpGbiLkk+7XGk2rwU6wCxXgHMwc4ZTJQkTIc1qJC920ZQYSa3cw8TAL4SYylZUV4iqGMt2oKoYybMkHxLc3CJMRZGa7eOWlzgsLnOo98QObHXMoNqXz5ifR9hFAFIC105qlOVK9kJnhViQ0lpeFxvCx7/LHN2slLzmVe9TIpEH0ne2uB2vnRe8TVSozOBJVWZQnJIYGrhMbsGao8rRenKvyEfv5RNpPWkAlle96lX44he/uPa1P/uzP8MznvEMAMCznvUsXHHFFfjEJz6BF7/4xQCAruvwmc98Bh/4wMMMqHsCrfPZAr125zaYKAqUzNqkmLQ460ExCjOui3AHkk1igsHmt7rH5Jizx++1P3wT3H4rzZu3CDMPvzeEeMpg1CJMDFYnHap9KYz8vmyE/kDYb6YLoFUPtC1oyYA1qLoA205guwbLk1aHRA5mdyENT+WleQTEWzkP/WOUgPauAxYOZj8HkmWmsQVsAnU9bB9guhqmq8DeqDJF2HjU62Pr44ryRB+DCGmjHgJDk9IGorIYvCmF5cCW05NHBKSog9wI0uLiuhe/66L5V+887WdKE/GJz/0Crv3hm8ogbE2xMlpjT/MClqhyBYAUt8oeoQj5egZrxsFxo8d+IqhYjtb51/U/+A79LGPdDzez0vHIQdnx+vjn31lyf7i2autlxRrLET73/1lngv/QT94uFlsrLmy8pEqJ3LwED2VbMb76Xwx2FM/8Hz6Ar/3kyPLBaLfGUmiadmiUspojS/HLIlF2lIY3AxNEytjN/9av0dAA2R7FZioDNqEZWGdMMvA2joslVWjkPzbCtOrVm1vsWfJzakaIH44RQLEwY93lB09nUXJEtftip02sDt0zeCWsSVGxjG0EkAhxM4Iiwe+LMiV5lKBMad61MVwK2GR6FIufbC+WVTnEAC9RbBEoyTlmBWf8QsAV1+Z7DspeYvqBFV/eIrW0yR7brOqVkjWCPEyggdlJYlNJlagiTS+BnVXH6LYs2i0JLQ0zoNqNqL58t7DcrcWaf7M99CcAVB6rKyboN4DJvYzNb/VojznsPXsKYAoTgK0/XyBseHRbDm4BwEtxZudieVRemwYXZ0tLYkaaODAB/YkaSCzWI1OH9phYhoSpKY0+gJJxIYQNUWf6A1Z1GKldhrzX9W6EWxDc0qDbJHTb8n7mz0M/A+pdoHlAsoUy0z8TD0wfZc9kGS4TIM2vMSCIdc13A86eb/3mxx+ZncvVr79Vc20Ak5Sl2MnxpqlHcoRPfuqteN11HwAlflT3ue/19WA2l2949c1ir7q3BM1bIFsuVRWy4sC0vfw3rVQZYlHft7rox5yBgGt/+Caxf9VBTalp97WmJeh+ZdBvOdSnO7H76RPMKsKyDjqsAcUog4/9FrAG5D2a+yqYUOHgSoc4MehPTFB9cyXggDWiXsmARw4z18V7B6DKg1atXGNjcCVbnQBA34MWKOSfPHxB25XZoDx+HHL1skXsxkRUMwDQtjJgVWZ+sWmMAexsUZHk8G4keQ50PaiuAGdx/Qvfjju+cOFBlute8q61HKVTX3w/dr7vZ4fXc2ifKLYzwJC9UiwN8z4xYkIDMlibL9eGzPoA8t4Y+cwegSxPzLXzvLfIZxgAZSA6f85dVtjHR2X1dupLt2HnOT8PkCt22gDg7p+f87m//kXvlD0yQcmJkulgVr3gfLUD4BAm4kLx+X82gCqv+hsfwm//y0MZX1qDiu1uziYR5YyogxlRFQcFE1BhHJxYb9tWSSaOkJgkO3B0Echg3xTF6Fi1EiaEfjLUXZInwgXQkCxFKSPdapRhlu25oljymsglK0YOUlUepT4lJC+qb2IBfSTX0JTahglAZNS7UYAlAoiF1ZPrvkG5y0iNAC9+gfIzyZtyL2Qrihi0g8IZhmCC2MomC4BZQJjcWmSViJealiKK6gfQ1wMASorKWa5ZpZNV+6bnAjgJMEJFVT1kPI4eh4DQAMaLetyoGsZ2ajVXQUgzEyDMGM1pYOv3vn3uPfJ8A1u9VpaXN+g2gek9jM1v9lhd4rD3rAlAwPEvrtAe8+i2DHjBsEYsQU2X4M4sBHzPoH7UuYAXEmbamgAJ6I/VMCHB7rUgZxCmDm4VRZ3sCG6VYBcROTdVMkws4C36Y00BO9JWDb8vezL1AmQaR6h3Gd2WQ7tl1IJP+jE/T5jdHUQRvwjrJKFWHTiyNSez7qXyb2a+YBm6D+Z282Drmle+D+5+VdKHKLWUsRhbuhOAO373XbjmR25et4Y/WkfraF3w9aQBWG644Qa88pWvxC233IK/+Tf/Jj7/+c/jox/9KD760Y8CAIgIP/uzP4tbbrkFV111Fa666irccsstmE6n+Imf+InH+egvzBpL9Ow86KCORYmhQwxiYci5Ra8sVPuYDwbMvFWQgYHewndhYL3phm2bCnS8RpgQ5ldYGfCwFANuvxeriBiHBnOpDWeIsMxoAPgDp3ZdWf7PYg9WzaSIPjhs+A+Ra1sryhYikHdAUw8WDPMlsGpBkBlZUj9v6kJhR+fhEIVMJ2HJeZlNhyH0iD0t/wZKwOhoZX/9/DjZu1qGDBKedrFAlgyuXPey98DccwYf/8YvAtCh+shff43hl4uhww1rtsPJK+nPZ1/vDK4c9khlBshg5zk/j/ZZJ4+GWI/ByvZe3+lngMHdg1SinQNj2YpXFBvC1a+/tYRBfjcy4jwUed21HyiMtLG/7Iv+rx9Rhh3w+//DjXjZ37l9NCwWFh7xoMwAAAqEr/20NJ/P/GcfgPERWK57ldCebH+2kybyy2+6AVfd+pE1xcpYmQJgCLHUJiZl0lKSbzJJEct2+N2cCWI7eVBpcAQ4kZB2saDKeSRG7ZHGgZmxQlFfAABFtRDoqTDuABQ7hQLyaGOdlCUnjQnWGjZAAY2xioHF7ssvBiUMW2XHNUBqDNgwwkQaNjfXvBbNfyEApOGbrpU/i4WlI31NVBpou+ICWEUvf/p5BlwYfp4KC56i3nuyvWJuuiHgSmZlr4Ecdji/yVMByHJujDSnXN4fsVOQBw0TZaXpOTh7lUf9wEnYbz+gyryR7ePhpfe75t4lLgkN6vtXMPMWbj5Fe6ICBcbk2+L9vLiy0ffCwARGt+3gKgO/24KCQZxVsPNs3WPLIMEsZf83nQSNp8rAHfQlzyVMZdhpW/n85bBRDsqcVWABBkiVBa/UUoQI7qCXYYUziLUtrL/ogdgIuElRhyeJQFODaj8Onu2dZEgM+ShmYBjSQ2QlXMR19WtvUU9wfX8UTGIDGGY5D7VF8gavvf4DAAG/ebQvXZSV87p2nnmDDOKVFSoMUQNKrgx0zKIrWUSP5efm4//7O0XN8hA1bWqEjBNrg/lTa1T7MvyxKyUL6bEDkNdnjahNVi3spEIFYCOyWggaYZ1mhURVgbc3QZqvRBFCZEksAC+RnLv82HUl9yUiqb36XmvKKNtYPu6s7hjXZOOaL//cciVDmtlUyBWj11185lVxnX3pC9CTH7fv5T5Z16DaXxSQJdcR17/onbjjD2+S59CadueKnwbAQrqCnD/0IxKRAtdlZVKUSUDEkN8IAWNobXM5tPQ5dp7+j9FddcWTJnPkybpef/X7H1ZO4dWvvQXVUoFZawDvsPP0fyz/dk5yjfb25euX/4NyXZy6+797xMd06ssfBCAAMojWbHyufflNpWf92B/ehOt/4BcQtyboLpnCLgPsoi8D/RxQ7pap1MSv/rEPotu0cOcpOWwnDB/2UkN+4rNvxw//l7cDzIgNFbtLqT2HepItNNdE6qPeWpjAcCGH2GNU41AhCgFCCkpelNb9lAqhJ4e8m4aK7WuxKfNAAOAIg60WkSpe5L9cx44tbxlSpkWnYImX53fLBJsGNXi2G8tWaVYJWcQMU1NRdsdKa0Xkf6vCJRKa0wlxYoZ6kAAksUUroIsCRBQZcCTZW1N5rAx4xAaar4jBPtcMJKFC5AIKuamAJplANFK5l3ORa/IMzDCKu4npMbw/Xl5cVqLHbP2rjwEAe88ibHz7MlRfuVf24LHi73wrMSZ3LnFp36C5ew7zwB782eNoL20w+dY+QIT5U2pktbgQE0yx5yXtPzCbyv4yWrQKoJTg90zZj8zeCo1m3PqUELcmQi6et8P+BYArUa24g05BOAvTxuIEYxigtoc/swQtO9TOYrrRgCuLblssfI1ax7G6KeRs34E4G7X5G/ZzVovMx8tu/LqXvhtubznsv4CAK02FkgkDgJ3BNT9yM3ABgaCj9cRYymt8QqwH6Ya/5xYxP3k0Rf/m3/wbvPWtb8WXvvQlPOtZz8KNN96In/qpnyrfZ2a85z3vwa/8yq/gzJkz+KEf+iH80i/9Ev7KX/krD/s59vb2sL29jd3dXWxtbV2Ml/Go1nUvfbf8pYRTAkiDVVf2kGZjkKYeYeYfMbPzQq2Su2Ht+vAdAFcOYatGbBz6Ddnl/YE0pGYVBdTQ8PfsJ49s9+UceFYjbk6QGguzinBn5sD+fGj+jAH6HrxYSgOoGzUp8w5RmEI0mwrAokMy3jsATRpge3MoKPNjjpjRxZ6hD0MzCgyvM4Mkk6ZIxWFUtppZf8Dw+nLDmgEWZXSwH8lOxxJdgzW23qNZ177ivTCLDmxM+RztPP+tw3EAA6CSmX6H7cOck3M+CgwtypXDA8hxwa4DhGxBcepLt12Q13S0Lsy6/gffgYG5E2XAAoBPbAl7beoRNjxiLR67Dyd47+Gsl//t2xE9od+Uf5fBfVJFQ6v+xBaImssUJkC/KcwsthKM7hbA/GmMdKJfU688+xdvBwWxhcoDdttiTYFSFB9maIySB5AAvy/MfYooVgiU1E85Yh1M1cbHdkmAKNKBdEWqVJHXkJsyE1iUMdpQddvCOMu2AjkzJdsfuKWoB8JE8j3CRH5+DObGSsGThOIdnSq1JogKsIwYdLYTxqDfZ2WMoTSZbCSLpT0u58m2ag/Qin1Ffg2ulXNiV6IKsasogaOOZJBYE6qDhOpMh35D9gHb5yBstUhQEaDphsyAIchT7ssFMNAhXw6PLD8HoDveIPkhvF38rDX7Js/Y7NAw54E7JWB1XI41NhnoAmZ3Mra+2sLffwA6s39+kCWzyK3VXDBXMoYAlPs+tQGrZxzH3jMqVHPxiG7OREQvIFpz90KtApyGgMfB5zmK0jPbDnHl1vyeS3g15L3Pg50CdADngB/l3/r35A3YyvA4TmzJIYv1OHxeLMVsn7PGEqrTrXhjj8+LkSb7Qu1d3816w2tuQbYiSZVRlirgFkHCP51YSLAdhjWPl//0o61HL2Q9e/Xrb70ow+KdS/++/KXywKQBQigM8p3nqC2GgixcOcRZ/aB5Khd7PVhNK8dVIcw8wlTs/gDAzXux8cskncy09W7IS9mcIU0rhK0GYSLZgNUDLdxdp4cnzuqIEAuYksEC8g7cBwEBZhM9h3o/ajtRbVcVsDmT5851LKehfs3ql1w7Z6CrWLxaISHNF/K7mfHvnLwWIqkNQhhqv7yI1OaM5dhUyZK/l+vhU39yywV5j659+U3y0Mwwd58uSpKdS/8+eAz8jI9xvDLQQgRkm8ecfxOTACzj0PhimTb6d2Y4W/OECL4/WrJ2nvYz631KHkg2tYKn/fDD2rucuuuXHv3zXvUmwDvE7cnAhg9J9m0AaVajO9nALgP8WRk4MxHgDOLUIzmD6r4DUB/RX7qB9mSNf/v/XVevvPqvfbD8nRiaaxXRHvcIE1PU0qYX27DkJOA+5/FVe4zJ6VSyQEwvpAx30OtgXBj7ojAnrSFFGSxWpFAQR4f4jSiQbS/gQj6ufirPaVdSi44tw7OC2S3FPkwyQuiQ3ZgoYWR4r3lvbe4JpJ4zbRqG+aW+k8eOtdHXL3W3CVI/J0dYHRfChW2F9ONWXOpZq48JoOQm5qzEbMMatKZtHgg485erkrcoOStal+prlRqbi9pH3nPpH0wn2TWkxKyiCMrK96lBP1WCkgJD2ZrYhKEvyUSvDDhRBKr9hIOnGqSsrPFA8ozpnYTtrwZs/OGdcl3kmnZMjATOub9hnFelM4LFC67A3jM9mjNimzm9t0f0Bn4e4M4sxJnESi5htsPkaS3zkE4IATypwRO1WVc7d268Wm3q3sVpeP5MNJhNpLZVK7F8P2dnBLwJYXg9Wo/CyHXWz9yQ3agKMEoAhSik3y7I8+bzkOsSS49r7tXO8986WK7nvchZpFld7jWc+wN1VnikCpkLtZ7oM9Yn4/rUpz6Fv/t3r8Vn/+1lj/ehAABe+rJ78Ou//lm84hWveLwP5XFdTxoFCwD86I/+KH70R3/0Qb9PRHj3u9+Nd7/73Y/dQT3EGodCP9p1/Q/8AmA0EHrcGLBZC+lkY2TIxPy43UCHg+GBCXF4k44RdtHDdBF2JSCCWQbNnSGwkWaaugCsAlB7kLNDsFgbYKpeGqCcZ5KLAe9ko9cmk0d5IpwtECCfF14spWnMzVS2tDpYDMeafaVHChyxUkjDxk6kKphM31HLhvkC1CpI4pw8p3fF9mVNJVLUMQDSwKzJDWj2uc1hc9e95F0Fsn40Cpcw9bCGxAotr1UrhQuPP2uHQJXxyoASGWVLZCo9y+NgBNYUewVlgYzO4cNRVxytx251l81Q3TuXQjrbijCDFi0wFYpa0nDLzz4MT/yHu9Jo2B+mw7D7C7fegB+44SOYPCCAelF5GAEJ2hMM9gyzMvjTm24AAHz/z30Ef/yzA7jyzF/5EGwwcAuC6aGB4xhswaBMMh7AFgoDyGN6aQxNr8GZoNLosQESAZRIAt5JGh6r9kv9VJtFVWuMPa/la4MiIzdPmfFXwt9VZWJbDcnU4zCdsB1L8KaeP8LQ4LIDOrXoMr0+Vm74VkNDhoTSHLqVKGxMz4MlmoaB5vMxvZcxvacvll0UNZw1MdxBJ/fxXOhbadDYGWF27x3AVRWaWS3NU1gHK3jWCKBwGBzI/goKJpAZGHLiyyyDcwoJbq6sUJKvl3spUEAEcrIHmC4hZ+T0M4PmTEK3JU15fs3tMcIDf6XB7O4Km38CscxjlnDQcp8zKMq+yqN96hbmV1QCNnVcrB/qe+fwZ1vQ071kOXSM6NUyIzBS7UAhws67Mpwpg9Awuq8mCWenlgcAZsTMpiBqEgByvqxFqpyeL7n/FoCKGURcMsMEyJJrCxD2vPiT5w+v/phmDmXLk3we8mDi8QRWrvmRm4v1huxh+vlhwLZRLM8UiLMrPa/OHLGxdH3yU2/F1a+/FUiMT376/MGqj2TtPOtGqeeskfohBPDZXdxx/0eHH1IiTB5uP1iY/WO2HqymjRFm1cP3CXZl5dpeDWoPinK9psbBZFuqaS01bR9AnVjRmsqIMiXXrNn2pNKbdtsNKgxVnJR/Wyt1W7awKsxsrcMOMYVlMDVY4KxZe+XfmzRA5aWma7vh5zPhiJR0wSzvYx7yjIlO+U+kYYAdXQGoSAfeO89/aznmRwO2mE42O3YG8WmXDN+o1GrtoYCVMnjTvYF0iJg/g4DaDI3Oa/77aGhXHovoYSssjtbFX7y9Cdo7AFbdoD4FZDCblWX5M+zdd5XDct4VE2CSENkqASTZW3zsD2+SvIQYUZ1t0W1XsI2TYW5KMvTd8qjvXxUL7p3nvaUo//J61d/4EFAJ6aE5HeEWAWYZhM2/yJanQy6JCaJiyOoM0wF+yTDZ/qoXgovp02DZ62nIHwXAXnIwYi0Ep2zxOqiJBzVKtsvKXycLGK2Xsxpc8ucULOlU0dwT2AjJp1jIlgG49B5CfCGYCQsw08ken+24xzV2dv3IeYsmcAmaT05tfLU0OP6f5sNsISSkqdyDzULeG3YGOc+KrRXyjDew+yvQ6T34g8tFvdiPgAoA3SVTtNtOQ+xZM1io1KeS1RiRKjNYu3UJYWoAfU2mY9S91i+kr1/fl6z4idVgLZxBqVCLimlyH6PbJMlYtIDphMz2wAsdpt/cAlsLSgnmW/fKg52v97cG4SknsHjKBLZNkvsTGfW3zqI+3cJd5iSHBSi5umwJcaOB1TqeQgJ7q4r3UAALeCc91f5K7N0nFXjWDMRWQOcyGBQl3oOPbw427mvOGyNHDmuRJl7zjhhcObGmdgZupeprXWIhJ9cCdWGYcyi4xEQXxe7y4a7rf/AdA+iTGLw5UftgzZ9Jcs9JTQVYyb4jvaaP1tE6Whd3PakULI/FeqKgq4U53seBZZNv6udBy5/Ig+md5791ndWWmxGrXvJeipM48ei3HIKym4sP/J7mzPSDRYzba6X43BRZZ326R3XPvjSRZGTTXbXgrgd3wvij3PTkhnLcUGW2hnMDoKKgS1k5c+RQEwYA5BwwnQogESJKBsvaz4+ZcUaeS4v6zC6Q51kHXsagCoBhyKbZGLBUWNGADAzHoNtDrWte9T6wM/B37+HUFwUQLKzRxIPVQ2Zrkv6ZDkmIFVyBs8N5O/yejwNTxyuEQQEzsp84UrM8cdZ1L3232rOIVV7caBA2K2Gv1RIUzhb4nX/xc9/xsR7OesVPfBgUgH5GWF5CCFOIdY+XRqg+DRnqKkDQHgO+/OYbHvbjP++mwQqMooAJVuv2bB+QAZUcXA+gMM2kEYQO8vVYRj+TVRAmoAATuTEChPnXT6kcQ7dBhUlY1DTM2pgK07AcbwL8nMWKKaIowkxghKlFu22EiQdpbt1Cnj/bH2TQJ1aSoREnwzn1C/la8vKaTAtU+wKybH5jVYLTU2XgDwKqe+egffXnz9d8DmTv+vUBm6FBhQgMtozKtOa+B3kdJJY9bzS48l6Ypnov4bpCPDaRZoFRQuGzAqPfqgePb5L3AQYwbYTbXUlYZYjCQKud2A7ouQwbHtFLyKkJCfOn1ji4Qlh/IAGjAMAtgc1v9GjuXSDOKmnS5h3smQUwX4BPbGHxzG2wJcwvs2hPSA6L7eWzPbk/odoNCDNhhfr9gPr+JeJM7OyoT2r5pSAVANbQ79hIE2qXQZh5qvosjaWlophhb8rjUR81Q0syULJdl5xvAaCGEEwumSpsqJzrsdJ0PMjNQdbZUiFVDh///Dsf5lV5cVchJORjXAlglZoK4VgjmTR6DXXbFqYHfvt/vjD3s+92PZEULI9mrWV5hSgDgWxRFQJO3fPLaz+/89w349SfPXGzE9dq2vPVs9YizjxSZWBXEbGxYEPoZzLwrHY7+VkCYAj+9BL98QnaEx7dhkG9lzD91hwAxAaFeVC89L1Y3I7rJWuEHKQEH25bICapS0fqC3nAESko16dZsZKXcwKC1wK40KofFC7A8LtjlXP+ej4nzgJGh9ZjBXQBdA7VksqaZlXoUFYJZdDlYSgJrn3Fe0GrgDTxsLvLMvzaufTvg1WxwwrGl1DiURZLWVm5chiocm4doBmDW4eV7Pm8AvL41hzVtE+QtfO0n1n/rMYITCZAU8le6C3QR1CIpS96VM93xU8jWyLxpCrXblGN9hGmlbw19hbUhTVHgYezrn3Fe9FtVwKi9KzkxYDYyAC5qE5tJprQAFyw1EcCbHD5GhgIjRHbL4ZmqWgfGjWvTmvQMDFYHbeItZCHSs06qmcze54tZC9gAXpyTesWCt7oZVPtRcTaoN8wSE7r7pXknIQaJdMvE4EAVZ6rcmXzmz36mYTTx2qwBqMEbHxLCJ6s9sbJEqrdDu7bD4AP5N5LZAq4zW071KfOiSJwuQLv7g/3i7oSUDom8NldccMAwMvV+e8pTQ3emslztQFxe4rF06ZF3U2qzrZdwvzKSsAsT+Uc21Z6BL9kTO7p4XdXoC4gTSu0JxqpX/uIOHFi5buMcPsdUu1w8PQG8yuMqPRJbdkMcPJPejR3HSBsSbi8XQa4swvggTPgy06gu2yzEGZWJx3aYwaT+6LY2m5aTO/p0W9YsAFcy6hOt0iV7EGmS8jWrGbZgVZa0zb6uY9c6jLZD9K6OgaQf48VpDHJ9ZvVJJoBW1xDMiFLv5bVHAAKsEKJYZe9EL5GKwNNZQ5HBK5dATsf77XzvLdILVV7IVVFlnuX9gJpo0F7skGYieWfXabHzdEmrydKTfoXaWUFy2f+7aWP96EAAH7oZfceKVhwBLCcsx7Pi//al980hIiPg2Gz+uJxliE+2rXz3DePGroRuAFIGODEo9+qsbjco59qgJsD6rMMf8Bwq1SGZcSAOwjStG4NQqxqt4e/5wA0X6gdgm6KY+k3sN5QGRrY+Rn8ANbZGrkJy0w9aPEFDAy3kVKmPE5uxkaMtjXQpVglGKTjs/WfObziiNkIaNOq3xuFjpdzag59TQuMwz6hO1e9SYIZn/cWlMyUFIeGvLyeQ8y9fD4O/0xunsc/Xw5q9NqzLUVMg91E/l6xtZHHP/WVD517Po7WRVvZipCNEeaLl8+v6aIOXkUaD0MIE4t+w5Yw9t/9tRsf9fOPAZbViYFplWoJI/T70qhlZUbyktnxhVu/M8hy1a0fgVsMDaRtURQsQ/Kn/FeyTZQ5x0b9iyHKDRmQoTSfWT2SQRe3RLEzMz3DL1JRuvRTg3bLoN9Un2YjTELTyWO6hdihjY8jeiBMJVh+6xsd/G4rdpDKSMr3w3bbiOLAEGzHYAv0U1IbNEY/NVidAFaXMuKEwXVCfY+D35N7rgSSAtO7geYMY/btDtW9+0gbjfgZewM772HPzgU0Gav8nB28/6tKvrZqpfkcD6ScBep6YFeHUOwbue+H+2sOVT58b608eHNahhJx4tSeSp4j1qKgYUMIU4fYCDnBzSMm394XYCiNCAxNDZ41iJsN+k1fwkqTJ7RbpthfjH3BmzMJk/vF/oASo75nIbZY2oztvuhStFsCzMRarOX8kotN3OSBCOoZcWLEpuNsDzvvETYrwAB2GQU0SiOLNL0m+60KyVIBgSgyTBsGBp8zSI0MBDJTlUICRR10Mw9Aiv68DCzExg0ji6yS1ZJt1WIqFp6wCqyUfQGljgHJQCdV9hzW7WO9xorPkh1RObFgqYXZZ1uxsVte3jwkuHIh1ckPtZ7MAEuxs80KjgzsLVfDtZwYpzQn48m4dp6rw4rD9awT+5NsO5IB+Pa4BTHgD/Ra0r0ARmzBwqZHt+XUmpJgOobtEqbfPIA5aOX+mUHsVTvcT3Otl+vdthvup2MQIQ/58sq1awZE1PIrD2uoD8P98ZDN7/g9LMDJ2BrWmAFEHxFnyu/l2g8QsFeHmpnotGbDNR5KjutEZ3Hqq7evHdb1P/iOonQqwIoO4XgEjtDY5ia/jvEaq1jyv7M6Ja882DPr73953MPKfV2Hj/loXfx1/QvfPthNAyXTE94DhoQhT5mUQIgTLxagbXjUYO/Olf8QOceIawfOTgduYPabRbd2HbNzoPTwVHvXvPJ9MF2QY9fA+KzsTbUAvewl3wlmyPPIIe9JLWpLTUtC2KGEUtezqqMBqSFFnZKENMSMVBu02xbLk0KIyja9thWwxbZKSiKxAMvZIqEB+g2paTfuDPAHAbG26GcGtmcFFCTHBZDjipXUZCABVvJx9jMgzFDImcf+PCGqxW2/QfAHQjaa3Bcw/dN7gdojHtM8SWtg95agB3YFEAFk78oAS9eDNgQM4flC8lu9l89RJkx6D96aipr4vjPytb4voHG+F9Ph/jjfE2czhCuPod/06DcsTATcXNS13ZYDaxB7t0mw3aD0r/YZW19r4c8sZbg+b8EbDeLWBKmS/Lys6DEhodty6DatWN6awYINAI5/cYHYyJ5V37Uv9tB9AJzF3g9ehnabChgTPaGaJ/h5QrKEMCHUZyPCVDN8FhF2GUQJbQC7CAoAJpwv5zVO/ZpSW1QmAyjPeV5ihvOWFVXZASQr8rNKPtfLJSdsPNYY1alISQAfg3XywugY42ZTalq29Ljna+284G3lfib5M26oba2c8zSp0G17sCP81r86v8tEzmV5LFxvjgCWC7+OAJYn5npSWYT9RV0ZWCllONEae+X675fBRHfZ5uNzgBdosXfSsCmIULJImIGQYFYBzhjY406ChZVpkpyALSADvx9hGIiNQXfMw7QJbhG1YCSsTngkvwXwFvzZVuwCYgSdPRAf6Nz05aJnDFKMGWf5uIrFSgYYRg2qs+t2ALl4t0ORvAbYYPQ8eeVi3xmY/RW48YOSJf8sD8XyGqAxUrpwtpYeMTdo3MwCkBDuc9+XtDXB9T/wCyA7AoQOgyeHz9P46+OvJZ1MQ5knuRkegyrn+92o1PxxI52HB2Sw82zxGz4CWh6blZnwRIxkDGIjVkJUW5g+CaNemUAOUI9naXhe+l/fjt/71UcHsrCR5y7BmLnp66mAKjlH5M/eLqDKC9/6EQDAX3nTR8TeKn/USH7/jz98A57zwdtV8QW4A/3IdVizOspD5fI8wOCfbKkwvg7bG2TVS1GvdCjWYqQWYaE2JfvDdvJfn4RZlzNWoH0sRQFlMsswWxmE6eDZbJa9DLeNqEriVBrT5nQUz2gjLMVYEawl+EWCXSbxzJ4R/AFh41uEg6cRuu9rEe6v9HkJk3uBepdR70ZU9+6D5i1sFPsp4614J/dqD2OcsJVDGIVVu+H+WVfD0A1Q8JnlngygsIOzDYu14D5IM5pGjLS8cn7JsgO1AWmjBnmjbE0Duwhwu60MGJoK/ZZf89CWxxhUjjSdgCcVUu0RppIHI1Zn6kceADNXj+8g75Fk9BCoT/BdEnCDGWlWg7qA/uQU3Yac854M/Fze72o/iUozQRUTYkU2u7uHv/8AaVKDYoJ/QFQ24eQG4sQjTKzYcikTlAlgT4jWgjsdBta2fD8roCimMsxI3gAKBgEKwjgzWGdZYUjm3B1AP5ckrNDcoIONPi7UI11JB8xrIFfyZri2IKG/jxvQkptvZjAM4AzCzItlnHq3ZyDZrRJe/WMffNCG9FOfeAtef837C9Ay/vr3+rrupe8+P0EEg/XTzrPfCHACH994DI/swi/2Yt+3Vs/GP/amEwABAABJREFUpGHyAcYZVJHRb3p0WxZuyehnMojMNjf12Yjoge5YBbeK8PtBr1Xx9W8nFmw2wWYT1V7U6w/w9x8ACYjHJrAH7ZAFlcHow+AKC8hVspfGtRkRUFWiWLGSEwg7GkBlBeLYAizXufm9zqB6XtYI8BIgYbtq71uOJ0TwfDHUnIePOZ9jTmIFo4tyzXwY8Mnf3z3AzuX/QPaP/LjnsQXLdsGU8tBuBJIcHoImBY9yEZz3qkysGp+Hw7XueVjYO8+8ASA6Aloe45Uzyigk6Xfmqr6NEbR7INfupBH7o80KXPtz+7fvZo36yrg5AQzBtGEYCuvwNjPrf+MzYsF43ctGMwBVa+fP6R1/eBOueZUw6dkbcDIw83ZwOFCFDFUOpk9iPRgYrKBKrMwoV0/C6ZNDqQXYQLNDoLUAlyB1sOas1BZGVS85C8WtJA8xVkCVRnWyFWAmTORe6fXU2w5oLZCmko/i94bHa7dEEeMXXOqIbBXml4zQCIHIzxNC7dAeB6pdYPNbCfMrDQ6eYkp9Xu2KSt30jMm3D0RhsjGD1XsSOyNgQq4tZ1OZE3Q9yDm5X3Yd4L18RtLoXgDI/ShF0IG+MO/L+0DOiaqQCIiZJGN0lsCj+0OEu/8AoE2EmcXqmAFtG1R7CZN7W5g+YXlFg9UJKxmJC8mIcSupuWjRyj3YOYTjU1W/W7AXtXwiSL6cGaziTNAcQ1JLsWUQMo3a+qaNGrSy6C/fQLdBmNwfFdAysFasY+0qAY0BJUK/YdFtEKb3JfgzLdgbkElwux2o7ZE2GnnciUNsrOacaPZiL7Z4plvPE8m2tXlRH4v6jKvBDjdbtRWQhUg/26oWJd13g6qDRuRl9h4mq8rUXnh4QgUYSfqs8br2Fe993ALj5Zgkt41rsfIEGyRvRZGdZL+0XUKEwWv+89vOm5P6ic++HW949c24+rW3FLU7cFTPHq2j9WjWEcDyOKxrX3EeRgpzURZc97L3rEmDn8yqlfG64ws34/oXvRMAiiXJHX/wHvGgZclKoZDgFwnJyQYOoAxZuw1Ct+EwuyvArsSTdHWJsJbrvQR3EGD7hOgN4sQAqOH3CbQiKYhCECVLBlZiXD/AcWOk3tZUGEWjpi4DK4ftAOCHQvo7rcNNKyegi6CuAx/fKp7+5dAK4IP1r2nDRhiqT/GQ1ZyZ7CE7tjmAWFyc+tNb5WvGAIgyIMjNuXODJcRhlcrhc5X/PbZayH/PHuqHm/HEA+tnvApAg1FjOrzonef8PE59+YM4Whd+XfPK9yGjvFS54jOcRrZQFFl9gT3sXguxXALcwsJsm8KIezQgy8v+zu0gK4Pb5Emk8N1gJUBRslZMD1AgPOcDH4HtAGqA57/zIyAP2GxLECCsrxp4/js+AtPIsLzaFYVICYvXATIgTaDJihYMfyYLJDCQCGb0MYVe8tEDVGwMsBZYTwzJZLEAVM1CLZdMENsLg892jOQlqN6t5DVGcYuC6cSGodoTr2k3lwESRbkPZOsH20rTY1pVMhgHSlTAI7eKqPYM/IFFfRY49qUV/H6N+zfkWtz6KqE5kzC9s1VAIWrjKbZfFNPALCMZ2Mt5MDJMG4PTKQ0g6xggzuBzPMT8LaAqFVUMW4DYDAB4vm9WVclvMItOhhSNQ5haxMbCNg5uIQBQbkjB0oz3J6eo1HKLiISR2PewsxmIN0GxLn7jkzuXw/EZeb9yo9VvOnTHK0y/tg+zkiBnaoUggcSY3R3U59tpgKmA5ZN72wJQdls1/ILRfOk+8NYU3ckGzbd2QSEhnNwAe3mefmZgggCcbIbw1qzSkfs2gSGZSOyEAU/RFJYfsXwuzKqX4exmBRsS4sQN4LuCR4MlHQOjtyj5PLSQJlQy0/Q6YdZQ0KTfMwhTg0/f8WZc86r3wXYR1/7wTeiO1fj0HYNVwUt+6iMwgS+I+u2hluSDAUAGoSBDtQw46T71mf/lO+dJHTWfw7r2h2+SvyT9qKQhFy7XfGOv8r8oRIk7vnBzsT+jKEHtO8/Tz0Vh4DJMsLCdAJluxeg2hDGQnILerQw++w0J2bWLKCHLc0JsjFg/bknmgV+o3/2JGfzde3D37onF4mLx4KpjYKhpFRjgGGXIPFIPUxQmes5y5MoBOXdhpD5nZ9a+xmuknn6oA5mBGIDdthxDUXaHqAoaGTRmCy+qqnNPdLbsBcBGXiOVKRrOn3OSwabR+SBjioqlWAab0f51WNmeh3zj83i4HnZu/XcNCdkAkLo+FwpjS7nIgDVH9exFXjvP+Xl5f3sZkqNlYFJJrbA9gY0J2D8QAgggPWLtBFgBELZquDMr7DzvLY/OKsxrn0MEe7Aq1pyyXybESYV+w+mwOuCaH7lZ9mhmAVmc0/oC4FoA0De8+makxpUwbjNvQfNW6jStlShaGGPOsZlmY2AmMmhPGWjpFXjxBHbymU1eVC025/sBJesj1kaBF80yDAl+kTNFVF2yGECbXEdHDVe3vZIzDOBWQ/2QVG0BoCgrsrrC9AmxUlsrIz1BHwluKfWy7QgbdyZs//u7UT/7Etzz0gqzuwQYmtwXlNiUhBw0ncj1uFzJPUjVJjAG1NRSX0YZ5HPOIu3UdjEDq/3oXpfD00lJQ6rGlgPX8x7CkPMKgEkVMlrL8uZUCEzLDnblES+xCDOg3bZYnWjQnJZ9xu+LLTIlglPwKWx4mEUDc8DA2T34/QNgYwZ7YhOpsUUtafpBDS3neCA1sjVYXTHF5CtnJXMLECtda4HEmN4TUO12ovhlsR0DSx9Tne3hd4H9ZzQwAZjcOUeqHboTNZq7JM8mbk6k7q0swtQhTAxMbWQ/0/mG6WOpwyQHVvak5ExRalO2w0Keg2geoCXNxHFCloGChX6ogcuyBIbmMRpVeHmx+c21f3aPEaLVkPGYKlGDvOHVN4OswdWvuxWf/M1BzfLD/8WHYVvGb//LNz74PeFCLCLA8GARb4CogCqivLemlXN2PmBlvB5vhfnRenSLUS6Jo/UEWUcAy2O0Xn/N+2FakUtK8UMPinp/7Hff9Rgf3WO7WDND6DDzK0pD6g4CmBxiJfkLdiWSYqdqlTC1IC34Qi1DWGGiG9T3zGXD1wawMDqCDPopRDBGQ7wM7GRgIWeO5JWVKdqUkrVDmL0hAWty88c8FNLAwPYDRsqQNPw9N3iTBjAG8fh0KHSIShFUGMk52Dn/TEpa+EBYlIX9bYD5amAtZrahtQUwKuAKMITLWYCNBQU9ZmeFsXO46cxr/HVV2azZhJn89cFignMTbgCAhsHr4efIw9i8Y+THDUHCca09akwv8KKUiv0TKltYO2FiSzP1O/9ivWB8w6tvlqall+YqNNIUJUt4yU99BP/+v7/hYT33y/6OMDnZAOyETZeVK1lJYjqx3GIC6tPS1LEdAFgou85osKafq+KjlsBHioCbS6bI5IEEt5BmLYdEslEWXidD5aQMIH8QC9MvVuLnnFeCNn+kAEwOkLf52Kg0qSYCk/t7ycFI0kjajtCc1qkky+W9uESk+24l9zyQ0eNi7D5Lbb6UbW90ECZKFoIlBVIyEKDnxc+H18AktlLbXwGq/Qh2hI07A/j3PeqzCVt/dlaaqvIiB0bkGihtaN3fPwzsv3IfJRLmMiCM4Wy7kkODD1uo5Jym8qGk4T6Wc5ryACs/b98DvbzUigh9rBE2LMLMoj3hBayvCaunirVctsECtlB9I4D3DsBLAVFoEkFtD9tK82hXAXZ/KXY8eSDohdXKlYVd1Fg8ZYrl921g8u05zO5C7ll1Bbffws17pNrBdKkwR/39S5gHdoG6Qjo2w/Z/nAv73DvJDmhlMNg+ZRMUBfzotiz6SWYdKguPxY9ccma4AC6pEqCznypIF4RhWN2r9mW6mAh2KfuB1UBctmInYWYWYWJgc2aQk3FmIrk+87WRgQnZf6MAsGqhYLoItx9gOrdmYZJVRq/4iQ/jd/652HA1ZxNiBbzyb34Yn/ufLk7uSRkyhXzMqQQBp0pe+1EY9cNfV7/2FthVEDYocI71aF4PNw/uSbuIZCPoR7Vjrl0iAw6gPsG0CXEyZAlIZoAoWhylMhDqNgj1LqE+28OfXcIDYG8xqSzYGmH8hiSKZkOA+vQTGTDSAF5bC161g9UW8wAq5GP0HqhrYQETSXZSF+Tnol7P2V4FGOzCvFWQlZFqDxiUjKhS+1kLrivxhM/ASq71FXwqd34iUabMF8NQs+vlfpvPq3dFPc7Zkkwfb3zdpuNbUl7qvgMiGZgSyYBzrM4eE4MOZyzmczQmFY0JRzljJg9fx8rzsW2aGZ3v8Z4XExA77HzfzwLO/YUBHZ9QK7EQQHqUc87OCTFo3p7X+mvn8n8Ams3g9X02+wuAqFgpP9y186wbR58VVz5f1AZgYoAuiMWmAWxkmGWQGtwPtRFFBkOv9ZVmMTkj9k8TAVfsIsAcrARc6bqhRmtqoPJyPQMClvahDI3tgXwtNQ6mdaKCIVE659VtivWvWwFJQ9MjqBCT/ILhFoN1aPIEtyJM70+Iu0JgWFxG6LaBeldAlQymUBKQYHWJkKHcAeDnRqyllgl+HmXQnUbqFb2WTA9kS7NUEUIjP7f1NWDj60ug8qjv3sdlv7+J6nRbbFMpqTIjROnVc15qfp+MBSoaatj89V7sFqny8vWuB+d697CleFa/hSj3qazaU0V3mTcAg82YNQroMIgD6GCJxkhdsrjUivVZQ9h9tlXilpy/xeVAcz/B9ox+wwKYojlYIi0WoKoCVRXMsgWxZPPYZQ+EBOr6waLRULFyZGMQrqhx8JePY/rNBeyZg2I16c+u4M9CP5s1XOKidnC7HezZOXhS4VgbYc8uJNtu5oEoAEZ/soHpI2As4sQiTCVrNwWpJ01UFQurWwdQZjlshWjAQT8PUVRodtGXGQFn9SMzzLwVNYoxgDOIE4c4cQADNohNWc4TBLNksdS6txBAgeFU4cLeFFKRW6oyuzMCgoYooBAzXvNXP1iIOfVZ6ate85/dhs/8bw8NbDyaxZUbMhX7KOS/hKLqOQJNjtbRevzWEcByEVcOns82EpRkYEkh4WOff/fje3CP07rjD2/CNT9ys/rYZ4aBKWALpQS7CmAnTWZyFv0m4O5OqB/oQCHCn45qjzUFyCF50mwDBSL6CLPMKpWk1gQDsEHWDowU3cjXvJlz8ZPZ0mNW9XjIqBYDhVXNDEwaBPV0dXefHV74uFjLjDdAbBkajzStsLq0keDARRSJrM0NnYIfUFZhPr78eBZgCHgEQINQDwFF+fVZi52r3gRuZEhIfZQGeCTHLY+fgSM7ahDzzx0ONz1sj0AGa3KbUsBisHtYA2iUDZ99q0eN+PC8maX9MFVCR+uRrQTASV5C8lSY6bE2Ytk3erte81c/KIGRJ2uYwCU43UQRJUiQ4UM/3cv+q9uVAbWO22WwoqhpGKjOyt9NFPDAqld0bjTESxiFKZfZWsnJ4+ScFRPFr9gtxDuaDUuRn4GRXofGOry2PRcLBFENJPgDKt7FVhUySPLRbafK0FOAxa3Uh1qtCew8wM7FKiBVDtQ7hKkrzUXYEO/iyf0oFl9uKYzlbkuCI00mxbURXFugBcxcwi3p+BRsvRyvvn8mShC6O+hVjSRN7MbXDkBdQDg+BQXGif/YwS46scoY++4TybVJRtiR+b6XrRIzmGKGe0hpKpmHe+3o6zzOElj7DJ5nyDVqAMviJMOJrOIrPvoS6un3peFfXlrh4EqL7jjQXhJRnRHpfLULVHumALlU19I81zXStBKVjrVFHVQa7mSGZnsJ2DZgFhJWl03RXjKBm3oJnW97aXz6DrQwsDmjJEYJjJ404NrB3Hk/+GBeLCNw6THMr6xgLqlQ7wZkr4Pm/h4NIIqZDQIxwR/IEKKcpl5UIxksqc4w2pOVAHeJEY41MJ1XgE/D7lfdsK8lA3gLF+UcuqVVMC6KnYIhxNoiNma4zSt4Y9sIiknuHY1BtE7OQ0iwQcC61DiEDY9uUyxAkye8/G/dLtZ3zHAjodDFWB///Dtx7SveK/UGsfiCE2Twag3YUanZLsa6mI/9WK1s8XbtK94LqmzZ4seM2O+1FWeVsMjnelHkGgZSz6IFbP6M+cGmtdqVYScFYaCvLqtBDDRnMKgmaw+7v4Q5aGHciPUe0sA8rr2CBGlgUQNDbZuV2FmtkWu4PFjsOlBSxXKIIGcLYxkAeHuG/sQEAFDfuavZMpWA+gDSrJJ9pnIwSetnQ0hNhbhVyz7dyT0F6oEv+U/CWM5CFIKR4Gg9PjpYiIUYsEZcKvuJ3rd2nvqP5PvOAV0PU1fD0FLr1Gw3KfmCaTgPY/Dj0OIYZVCaz7MZ9phyzzSEImEd1dAFXMl759oeOCJYFZLUITX90bowK9cmOZzcOxneBl6zYt556j8CtjfRXzKDP3kc2N2HOQPES7aGxzrPZ+TwyuQvAFozQXsbZdAoEYW6bu1zQQDgHLjyBQzI1zmI1IZQhsX5c2jaKNfVspeaoti1CpkOkwap9mvDagpau+l5od7Ddg7Uegkat8rS19rNVYTVcTfYoUaGX4qCWkLuI9xuJ+QJZxA2KgVfDBAZq0tEGds8IPVvJg7ZDlieJBz8pQi2jLQvxD7bMmJlYCLQ3HkA8BRxIgoHQHoRE1hqYwL83EqO4ZRge2Drywu4u06DpxMgMpo7RxkiKQ7Ksvz+WB5l8gz25WtWi3ll4uCDWRRmUmAe7APDtc6jmQIg9aN3gwpbf59yba19r4BNXAhji0sN5k8d+pt+K+l7ZlDtM/x+BA7mCq54yRVsKiAkcOWl9rE85CQmrTHbDogOBGD2jQVWV06wumICe6yGO+ilZ9HgdCSGTQnGOfk8qvNI2pogVQ7uq3cB1sKsWtitGvMrG4TZDPVZsTNO+vny+xHVWel5Qq2Kp270mdd7N8UEdhZVlxAnVkhxLJ+xnJ1ngpwvO+/K8TCRvNaU5Hiz8rtPxToexiBNKyGjRZZesWe4RQCFiFQ7BG8QGwPbJrXEi0Is6UWBDiUcJUd41d/4EFwrKil0AyB4sdbHfu/dYskaWdQ7IYmiRZVgh5U1F3pd86r3PSa5LUfr4a0nShX+nXfK7411BLBchDX25R7//ROfPUKTATkPV79WvLjf8Oqb8RtqHXH9D4qih7oAuzTwRtjYtpMNlZQtQKsAWixRxwg3nyB5sVAQKagFhQBu/GBjU9dSyC6WYE4gMgKyAAPoogXRGGgpTeiIAVjC70ZsutJIOWHE2P2lKFIu39YNOcEerERNc8iOgBuP/rh68napyK/Z6YbPQmuXAYY27apoyY8lWRlJchuyosaMjg0Yjk//Tith95360m249odvgpm3Q+NLVGS3ANZtJzBi4eWVVT6lcQcwVgkleQ3yvRFAM/790bGd98+xEkZlsUfrwq6Pf/6deO3ObZq/IOdd8hXk+zzuTfoEA4PlSWHk2g7SP2o4r1uJN/DL/qvbEVXx8fv/5Ia158uhi4MVETT8m8vzMinrbcnDrk0S2C7BlUB9Rq0I/HCcJTwYKOoPo+wnu9K8hWoI74yVgCYmMBKy/RIjaYq9CTkPhtRSTBQvnHswhrKr5DjCBkABcGeAejfBrRKoZwEwlMlPMcIEC7eSYO2sNpneH+HmQVhThhR0DUiOcOwrEtKeM2EocrF+oD7ArHrJTSUq9mNGmV607GEtlWBvRAaterizS6TawygoADJAaCVovq51uJUGUDU3hKGXRq2EGus1nIHTrG4oA4cR2JJBi3wbGA38CsOv3OMONbbAMNwyFnBUGmPqIygM95swMVg8lRGOB1BrECvG4gqCbQl2FcEbE2BzChiDfqtGd0yGhX5fmigAwMF8sLTJ97WcuBojTNdhes8Z8PFNdJdvyOdfGdpYrgbgW72xUdcCgt+1X6wyaTZF/5euUMYmUO8GuHmAaYMwVQPD3bsL99TjAGpQYsy+MQetOnBTwcxb8ZfXgF5zdon+5Az+IKLbtOi2KlGx7Jviw26XoahOqFMlgg7KjapQ2FtQG8uQxtQeFD1SJeCTbaN4yYekn2m5TuPEIK6cjB51oBknHtGLTVLyoj41gSWbpudy/V/UxdKIMgMgFM/7i61cyXXguB58soAtb3j1zTKcsAami7j+Re8EWYJb9n/x1SkPY33it39BvMvtRPzYNWem1LMpAV2A1eElJQN3fzcoJ4hg95doCIiNg99dyf1Z6zCu1L5rfzHYLWYQpJOBUlGtAOcC1Hnle2y+t3oHXixliFWNsiZSAtDLzzQ1KAT4s0uwtVg+4xj6TWHOT+6RwS8biK2PIdC0Age1e7EyzMpHws4ALPsZp1Rsf8rhFdACAAi0OZPfVRU188iqBxgNskmGo33AqW//t2KpxAyzfwDuV4PqcbwKsDGqj/W8lf3q8BoDI3mNz/l4jR9jTA4aE4dGg+81stHRumDr1Dd+Ede88n2wB9q3ZcLcGDAD5FpQVnt32Qa8ksrs2bmqm4Ttv/PsNxYA9bwK+vFnShX36/0TBtVtPp7RnwSAXQ1a9WBnSy/GzgLODpZFfYRlBrVRmOuZDJeBSOeQppWoZ1daJ0ZV4I4dA5T4Z0IEB81fcmIBCCLEVj7HYSpEqMlZRvNAL7WRDsHNsgV1EXAWjggpMCJbJCfK6+m9YssaGyM2ugkwWo/7Mxa2Bfy+kKDYiMUtIMfs91rYlRWlAjPirAI7A7OKcl/dJfg9jzi16DaFJIEoCg2u5B7KzoIO5uDFUnJVqmoAQEcB6uWadG79flo+Nwmc+hJ6T1F7IgVteQSwZMvzcm0rOEMKfhXyZqmdR2COKrWp7VHftwSbCaInuEUCLjXotxLSJIF6gunELm1xBWBXBLcI4MtPIjUOceLRbct+4fcCrBKyzANLqT/z+w+svVZ7/x5mp/eRtqdYPWUDnatQaWYQ7S4EhI8RBFVLeQ+e1qBlD/ft++RBmhrLqy4VkG7FqHYD7CKokrNH2G6kpj0zh7lsE3zcw0Sgvm8h+9EqiEpSP4tm3iEcEwKqCYx+ZtF7yd9xCwHp2CpZr48Ad/KZ7LVfCUaUS9YCfdQ5ida0IUm9niQzx6pClDPBlYDYCGjm1eWBEwMQgEfsmQXkM70ouU0n1/zFBljKe+c0O8ZbUB8fE9Dj6tffCm4crn6duKFcTCDnaB2tJ+M6AlgewTocaHq+lZvmJ0vz/HitT376beXGfPXrb8UnP/VW3PFH7x2a0hBhegPbGTRnZWhm5i1ody4NFxFo1cItWqDysBsN2ksahO0KtpJNzyx7kLdid9NHKayWCrLADkM+rAMrpTACSrFUCnJjZPDILGwjGhXpOnzkpkLYqCTglxnttoevLbw+HntbrLLEnkQK5wKuZCa4JQ0UlAKu5LCwWD0UBiORFBJOKfu50EujRjuz93JzrQXldS99N+xCGMYSnHyeJn2crXIYXBmv8dfH2S85XS9qsGReo6b2nOFAthAaP+/496z5C8EIfqKs11/zfpFnewOuNUSdaLDDYhQP5h/56x9Cs5DBb/QOsR4Go9naywTBwDJwQYd6zJf+3dsBZGCGi+etSSj5EsHL42XVCljAFkqMfibZLG6uTC7NSvZzwC6lOTMRBZSR4a0AK+yAoLTZbDEmQZGiPDEAoP2V+EkL4CQAjL5OM37c4e9uCQQCYgNUZ4BqT9hV1AvrDswjdpve5yDHK5J3ZRYmBkU7eAHHhOa+JdJZaXjZK3srJZiFWBWw2kHYKPeCfH+gXmyvaCk++GQItKxAfQBWrdx7iOSaXXWD2i57xucm9PB1z7xug5gHCdk27LCqTe9nawzk/DiHQoglH8AOAG1uBMf3Ylix/3BWG2lpMNgb9BsO7TGLfkqY3gWk+z26bSA2DH8WqHclFDQcnxZmG4gw+faBAPjLFmgVENehRdo/PTTITa3vYSrniR7YRb3qwZOqgB00nUgz2ym44p0wKdtOXuOkkceZTuC/+C2gqVF9mQeVUFODjm2C5ivgYA7/5RX8XdPB9rLrxK4CAtLQ1gbSxKM/OQMICFNbLO7sKom9EAO0FDBlDUgPomxBTHJOKwcgDkpJBWIsKciYw0LbzJwF0AHGG/QbVhQi+X1mRqyFCZgbYbZAdITQiTLTtXFQS17MpcAeIQ1s3Yu88j6Va8jxvjXexw5//0d/7PaLelyvv+b9g4pACRZl8dA0P14hrk+W9clPv03sMgPj2pffhI9//p1DPUs03Os7Kl7w/v65EF0UQHC7c9jNmajLQpIh2dTDdUHsTzbEvx4hitVPr8NbK+pCXh4AMRaAOtexGTDgEUGlANiaE8CrJNkneQA7AgjYOcRZhfZkLVabCWi3DKqzVuaCev2k2iIQwfRJQFeg2I7KA+kfRCWnh5JsoGxpUIro/YJTAm3OgN0k2V/jWjsrdgooI8PKa1/xXtj7zgrw7r3cd7NlD3QgmuvOQzUuWW2Htc5fsw4qJ4PXh6+5sDl8DxnXtPnf47zBcR7ZUT17UdY1PyLEPXYSAC02QBbVN06DZw1I+56d572l2DSbLqGfObhdp/fCoFbJY2tUc069AgA7V71JB/G9kFTyZ2CknoE1Ug+kQyCeXsMAhKzgLOKxCUAEs+zKPaP0qZFBHAeb7fzY+pzcqFohKYmljwPRI2dfmlFt5STLFKEHegM0Wr8kIR21G4TmDKPaCzC9Oixo7lQhyViScG2rZMEuYdolUb7kUnGioeMWqM8m2FZqAbcSUpXYkTHqe5agLsDECLs71IsUWSzUVIELZlTzFmwt3LFGLaOiZu5YEQ/1YXCwyOqdAn7kmtUNvTEw9J/GlEyoUrfm69YQCBY8dnPQ318DVzgJLyffU6NkjFCidaW4c4NKO59bAGAgTA3aY2LZevwLBv3MwHZAexzoZ9L3uJYRpg7tyQpuIcSZ6dcPJLtnvhzAdVW2wBjw6TNyb6z8cH/SWtjsLTFZBfDEIzVy/WDWDDazfRAHjtqBiWB6ybilpgHPGkz++FvApMEk2wfHKHaUsxp2v5PHmS/hv76Cv28ijxcCeP9ATuV0KorGiUfYlnqbLSHWBn4eERsD0ybYlarQl0pEzYAVVDHZ96CsgA+9WjMOMxLqepiFXjeGBIhJAMEUwlAmAwhpjZBgYUhUMvD6mTaEMB0IwW7erwXGX6yVQdic6Zjqx2as+8lPSW34htfcgt/4zNvK18d5aFe/7lZkq/HHqqY9WkfribKOAJYHWT/6Y7fDueZBv/9QhfBRkfzw1id/863nNBV3/NF7ce3Lb5LQsVysEECWsHraNuylG9KYnj2QzXMl0lXLjEnbY/+qbbhGVCNOWRcyZHTAqpOGr23LAI/HjU4uhooyRVkIZNYZKLn50wDmItYAgOUKJkRUByuwt1g+fQv91KA6y4ibjVitAOiP1aISKPQ+0jBhKqx99En9SLWIHUlfgQSC+ILCqKLFEkBeCukQ9N967DHK68lWCdqUUtsXBg4BQ4FXmD06eTEYAJsiaT63sFxrKsdNLGsxn2ho7HMDktnoh7MXcsGXm4DC9qIjm7ALvJgIto/KVPZSRBoAzPjf/8f1TISkigFKwk7KIGTyhFgrxlfrtQsABPzxh28ov//Sv3s7XCYU9qxgjh5HtgZTICQ2CnLUMpyf3J9KwUsR4EZ+PvvaZ7VKOVbtbSkOsxA2BIIwoRDke6aX4092AHMSCLBiscWADKaTqGeyTRm4OJwAPcPPNTNqxRJG3yYBhxUkkTDGBIYBLIoSwCylWaa2LyCsYfEGLqGULIGoFEUCDkDUBVmF18nvkkvgZEEk1z1pMywvXpo96oMM9tRWgrK6QsFcEIHqCiXMc5y9Ms7OGvkeF1uF8w0gCjBCcr8cD6Qil98pjWkBbeL64+XnGjGxZXji0B+rsf90j9gQFpeLJdixPwGu+J057v6hGZr7AD8nbH6jh1sE2NNz2LyH9P0QQOoceLkCd10ZPpjZFGY2FasZZrDuO3A6iNmYyc/uH4D2hnBM1DV4ewZaObFhABCvPAEmgrvrNNJ9D8jjffsu0KQBRS/vCZEMfbwH3X8WPF/IcwLA6bOANWX/Iu+FVUnSsLNtwEYaUTePRZHjFkGsM4mwloboFKxzUYZOKUE+nHmPIc3vykBoBK1Gn4EM9kOAP8lrkueHAaiXHBlA7BdAgIkyqI0NEGvAdgp0XGywI39+gAJ0fvLTb3uo37ig63y14fm+9nDIPI9kPWQ9qzewB1PxHPl4P7z1G7/19gKu5HXHH70XAMTGA7KHJB1E2lkNzGpQSKIgZpb7cl5J9uWsLoSqrolIgINVK4OyrIJrGhn2xSh1rd6zUx9Ah64r2ZcNyPMAvBgDghMCUgZuOiP2k0n2MfYG+9/XINaEMLNwS4i15UTqsVQZUJ9gVQFrggxOYcS+xPQJlDRDJoO5JJaHbIywMkbXKAAZ/h0GJMZ7jh47iGC/db/ch+tKzk9eOfsryb6bh6UFxHdueLzDZJ7z2aqVAZ3uQ5pxuFYHH1a35Ocxdhjy5mOvqnNDmI/Wo1vMMKteCCptL+7Em5NzlSd9AGoPmq9gtb8zi3Z4bwFRnQLlc3Tqi0MWy85Vb0LJsgBQrL+YhmwLb6X/iwnGy78BwDywNwzZU5TrhKWfi1Ptf9iXrLOyb+cWVRWmohaLw3EQyfWVIPt1OPS5rr3klIYERCvEQEui/s0FrQIafiFZhvVegulzP6oAR+QBuNHHDxML2ybYeQ/bi2oiNg6mMqBAMPpzyWkeS5TMFdNJbeDmQe6HUVVuzGAluVDbiwLcUgF2SNUodt7L72WbxPlSBvQ5f3U6KYDyWj3Lo/5y/J4XQEJAZ+LRNZ3P80gBN1a+8fjx82cCA0Am99dsF6b3lwzcph7p0m0cPHsLp/+yQayBfjshTSMu/R2Hyz73AA6ecwzzKyzqM8D0LmDj7iCKkIMe1QM9zL1nwctlAU94sSzgOwCxEJtNQZsb8vmPStYJQerOqpL9aL4A7YuFK4jksepKyJx+AKHay6cApmgmFfhr3wb29oHpRB4v72mqhqdlB+rmYo3btusKH1X2UCVqEup6cCOKyazo9/ui7neLCLuMMKt+uD9nopUzIGPkOu56bRZHZM0MqDGDa1UMaZac9F9KgM3Av2y8UrsGISrFxolaBihkon5KsJ1Y3PHqMahnAVFkFwCIHnPLrjG4AhyqI0cv/0LXtEfr3BXxGHzejtbDXkcAy3dYR2DJxV3nO7/sDeLUITkZ1HSbWpwQECYe1ZUVNr45ESnmfityTwA0X8HPN9Eelylpw4BLQ3FAzOI3nQGU7JVdmH0DsMLZ3ma8QbJ6OQNShBap+aiRUqsCGANyFpNvEeppJVkH2w1QWfjTC4BqGQx7KqBKzmEAdAg8BisMgERlkJWXSJGlCGBjwBYw0YOCHWTjgBZwQ0PH3hXGINckKp+scMmvxxiZCJRqntcfay2YfgR+AOfa+ZTf179n2zA3qHlkcn4IqMlFbAaJtDAqKoCjdUHWb378zQAgdgptxKdPPXgw3+f+p5/Dq3/sgwi1fN7AEsAYJkCqgVhBWStS11oFU178Dz8ib7En0CJJ3ok2jMSsQ1ktZhXMoKhACyScPrPfwiQ3ZwKI1GfFWsBl+y8nIEiyUhRbDQXPoYa2Z1WWJLA3CHUOWsTaoKMMxEZKmjAZLMRsNwA6bimNk9gexQKm5ubY9EkYyzGJiiQlGW5XIoWnNkoAa/bZjyxWCBpiKEwlDSEm9dvNLOY0sn1wTq5/YGD5Aljzec/Kk7qS31uu1v2gi3pE2WeJ18HovPTnS3N5KKQ+WzIyS6YJEg/3X71X8EhJWJjXwwMM9gsAKIOuWS04rdFePkO35dBP5fFiLZYTgIXtUGxqjn05YPrVXQHnAWC5QjqYD49tCOycHIM24TkrJoW9cqx5T6DpFDCEdHYXtFyBThwDt12xkMhWE6T+1+Sd2P0wwx6swA+cET/2upbmX1UxvLUBOCNZOPOFNKIhlH2JFKRiVfUwIL+fErBYwqYE6qeoYkR/yQxsCe6gh8ngScJ6rlYy4IlHmNagjVp8rIHCECUIA4313l084pUEwdnKYTxUJCDVRsDJyirAyOBen48Abwx+/5/cCAB4xU98GOzld1/9Yx/Eb/2rn8fFWKx7PpEMc55o4MFhZcu/+Vc3Ynv7PRftOY7WhV1jcGW82BlEzThInsTS1hsktbOszjoZ2IQEt98JAHOwQrykAeDATpUhcwW7vYZmt52qzSr5M4fE5+fNOSqje/K4phXAWEhFrMBuzigkaC0YImhvLkqa2mN2p0GYWVWnOviDKJltBKknJwa2kSGTaUdMbEODegXys9kqt6wEFPtXAzBIGOQ5jDr/HjCAHFbt0jJxiGggEjHJnpGJAll5aqthLxuHXeefG4Mu5yMPHT6Ww68JGGrgw7+f57BJ7HVgjNhBPRbqve+hlQeNO89+IwDg1Fc+dN6fO/WVD2HnmUIAYm/hHliUzwA7u2ZVlMGa8ri1FzvqNgyfFWukWdW/p1mNsCkh4/7+rtj40KKVnjOz3GuvLP4INF4y87w8b2isAJxaz1IQwg4lBlkDilb2d2NAQWpEJo+S4wmUzx/XDnFrIiQhDQkvttNWa7EEUVSvAqZ3D4Np04nFkyhXlaSjYCxFC5sFNhOHNHEgL/c9ignUJ3jIsaeKQIlKJsvknpU4TnRhqGmBAj4UwkpieU1Z/abgDrGFWXXyHp08Lkrs+VwAFkODLVgGE1S9UELo9fXl80T5fpJJgg/xs2Xl30m8bsOW692k4JWCKdzpt3UMx6zWuBsz3PfyY+in0jtRBNxS1L+5R441IVXAsT/r0dw1FyDBGrFBP30WKd//nCvqkVLTjjIF11SORKCNGdLd9wnZ5/JLBjVzvj8uVyAFYVizW9lb2C7BLgPw7XsERJlOpZ5NSfJwnAHtL4GFKGl4sZT9RvsKUhsADppvWPlCADNtB1qJspOdQTgxE3vaZZDPTLYWtlbAe6CE26fNRm75GcxPsSiF2AkoXhQgWteyt6LGIqP5aAmmotKTmk6Uz3YVhGSruTYmMv7gv5N69v/4f/pQyTN67fUfwKfvePN57z0XYrFVYgIDn/jcEysPJatc8rpYNe3ROlpPxHUEsDzI+jf/6kZsbW093ofxPbdef837EU+IFUFoVHZZE2IjQ1W2QHIGthM/TkoTVLsB/swStFxh8vWzAG9jeZlHe0w+3m4hXtFEBJND/gBpbhSckcHVeLBXdM/y9zQaCiYtuChpKB0G2fWY4RYCiAwMEbpLp1gd95jc14GNQXX/AmlSIcwcuk0rVkwr7Q9ZazMvEu8EgKIW7NGMiuFhoJWHtGwIaeJgD9pBLgto+JkUwjwKSpTXqizkRgeDCcp+T+cG+ZWCMqAEUBxuMoH1xrkwu2gY3CrrLw/noKwoRGHpC+gkv3fHn4rUf+cFwpQQVsmRguVirIdToP3wf3k7nCV0m4R+UwYr/aaoRdgCyXPJTzEd4YvvuAEvfPNHULFmqUBVMGBpyBT0iBWhm5EAKjVk+JSxzySPvzpBYtNFQLchqpVqX4Ig6z1pgNgRoieEiSlZLKTACSVRq1BiIHIZahALQGOCgC8Z1IueEDdJPHg7hmsFUElWMyoMwy5keEyMIlnPPr7yYpVJmJlyzAAs0AeY3QUwa6QB6aMU92rdxEQwKZV/l6tssRyuucxMHA+3QxAVRB4UZX/nzNIjkhNqjdwDc/BvsXIZNZEhDKqNHKIKrA/FMns3M3mBNYCVkzzvGJqhcdOJtW+cH2Tp82PIPTU/DxOh37Botwn1LsMfRNivRjBlhnWEaXtc8bl92Hv3pOkmkubv+LY0i6tWwA9l8DHWB5KmqaXpm03B8wWSBi+TIZD3YAD9i5+D6ltnZIjYdmKV4DVHAQpA9T3QdjDlnOpAzyubLgPzqpAEMGR+HVqcFYlkJHNs/2C4t84XoPseAFUVvHrOlwFQHib28r5x5aQZTQIEhplHmFj4gwDbBflMOiOWmnq+19jcXhpURAaBkRqr15Iy05OAmFmdSWBwEIuxnCMkD6z/EUA9n+8lP6qVLRChAalPBr/oT33iLdjb27sgj3VUzz4+67qXvAvdySmwXSNVQhhKVkD6fmYRPaE6SDCdg9+TwS0raYdCwvSrZ8Deoj8xLQNUbjxoby6Du6zGqh3iZgO3WIJXqtDOQHAGsnPofTLytazWHmcJhiA/l0GLpFMlZqDtRbU6d4h1g+WVDtWci40QK2FoeamB6Q2aM0kITrLVAzBgDzCPlB4Z8DVYs+iRcwAdcjuQs4Nv/mGFiT1cy5IopZ0bbM/KPetQTZr3P4cRqcesP+b5iET57/n5syVUHtwxSw1dFNxcato7NHNy53lvkXuw1vIULvx972g9OLCS186zbixqebPqwI0TcM+5gbhWZeuriI/97vuw8/y3ymeoD6BAxaYUwNrnM2d8mVWE1Zw06oQYkY7N1I5IQMg0q9GebERduwxiIxUZsbEQS00qrgc2sSiRdd9GgpA3IouyAFASoNomqRqDG4/+5BSrEx5+noSkmO1XgVJ/ygEmmFXS/Vsy1vL+T70O3CkPd+Xaoj7AnZkDNCs1KcUkWW19kvuAIcRabLFDY1HtdrB3nR5qxgxq+NF4agTkwEkYe8m3IQKiEyWNd0i1B1kagOTcK+d+OGqWU0xS0wKj51aw2Siwe/g9HVkwltoaOLefBoZ7zBqALCBLURiOlSte5gfceCwuAza+zZg8kMTuK8nnwB0EUBdw7N/dha0TG6LYWa4kB2VSAdUmaL4E1bU4dYze27zMbCoWt3UFbM1Ap/eQzpyVU6V99erlz8Hkq2ekZu3V5aLy8p63nYDu3ikRLKH6VhDQJEaYzY0CzA+vW8/vqpVzbw0o2YEkVIAr6eHSwXzoBQ7mwOkzUoOfOCZDy4SinOLKAgkwoS/vLyk4mmY10tYEZm8px51fCwAiL9eTM+IIkPMsASGxAUiNVzAnIU4UYA1RlCtG7d1HBLG1zwCLHbS5CPUscFTTHq31xTi3nT5aj+86AliO1hNqfeoTb8Gr/9oHiyc+WxTGentchrexIZGIKrtjfoUDpQYn/qSGu/ss/H4P0zNWlwjIkmoDu4hw1CNhInto2wGVB9WVSGnP8VA+j0LCiuyUc8PJg71CyUcZr6yYOSDUXYA/7WEOWgndS0lYRmaKdMJhdcyg3k0gFiskSzKUirUFqe2C6dW6IUp2S6wzywZgRzL0NQTbJlDtQRUXSfma1/64GEwJIAtMBks2YrUgGsmwyzLQYG1zLsNvPHwl+dm1oa0WpBLYaEpmAojAkUXKbrjIXUGEO/7D+wAA173sPaBKmT4KyhwxcR/79fpr3o/01Ko0e6EGvvCBGx7yd17w9o8UcIASAAKi1yEKyzWcPCFMCGEm17pUt8oYCvIfkqhITCdATawIfsGY3i2hm6YX+7xUGfz/2fvzeNuysr4X/o5mzrnavffZp60WqoCiExVREQRpyqLq6Hs1mpubm3jVa2Ji9yYINnQaAQsKEKrQxDTqTWOaa64x5iZvPFWFIKCigiBIW3TVV512t6ubzRjj/eMZc6619t6nqY6qA+v5fM5nn732auZaazbPeH6dbknorkvlMaYIMeg+qsQCUxa/k+B7E2RQVGdy+EShlYRI1rZ9Jg/oEglVVKBLsCNZQAKSu+RjaHhtpRAXdvViG23mpON6UsywcqfnEGXFsqA5t9RASK0+qQc3MF2URnA3RNXJXGBvzcibBV1mQ35ryz8/XWCH2hfZual6b0ep4MWaRke2cB0kC7IYrVnB9euAsHhrVmB9+8y2NuerncM0Hwg6squdsCmzMwW6TFBVkOD6+N3ZocOOZAFt1kfQSmWhnhcCZgzHcn7SilAU+KKmFOoZgB38JJf3YDSq10WDDDEHQ3xUlCQf+0IEZqYAewABYKINQgPgzKojlUK1xWu9sQbbGsg5OJ+xuKkZiLPXpcZ2Qq4zsxWit7S677h8J/X3MsmprR5Q0W9aayEK6BSdyXegigjK+LhYjdY9NYtwjpVdD0Ljbbr0WOSYaYDHqMQKWRxUWUUynH7GduyxY4e3+lEPum+sCeLzXgwL0UV9ddRtHxWm5suuf3tUVNKA+j7aYeYrmmASXEuTbpSUBzNcomglmvT4FrhA1U+afC4AEwfC4cCKKN20qL7N6hJsbMquHnY0bzPnjlBfG8zMdcAHQu13W2dgZWpGRYwMXccl6Zahd7wGQ+LTRzJD0JAvQ1Calp4SGkwuP30q2VkGpmQCowTsnSXmRGBG7NHiOYtkep2yviFCNPa+9Xupe9xZ6y4XFSyzqugQH9cAJYrGVjd+Do09bv18ML021fePIeSz58agYNepLH7313/zG1GtZEq+KN3ivPQ41NHDPwEry/I950UzNL71k28562NuePYbBDxrVFGakCXChK+zPkDY8ZGIoyMg4RMjxIWtoSjFMslrU/mEYDXZ6bHYhk1ydBzi2zTFHV6m7KcNiUdXMUPNx0BwkMF9Ulu6BgEaKk8oNKSa0LJU/YzhJSneKslmc0HyWep9uSYSRgu/YDWkcc2nZBjd9KiJRYh2ftq7RaWDXRvGDBg/95N4nOu8gspjjUKNy3miEDS9Hr5qhvoheCGt1H3ojE2sEJfkXKZr+y5j5q3RZnrjUJaEotzz+1VaCJVhkjdrfmBqrzWb1TJrBaaUbEPd89bgt5o5L9V5LPJE8p3VgI3zoBxqOGHpLiF62aFDLJA1dlBhNybyPOMxestIuLzzQhKyBgYjUU1tbuPzyfR1mpdUkkNblqg8RVlLWF2SnnY0xq+tQ/C0PvQ5/GyODIiqJUunqvdSiFxhPGmU3mgldrkQbcqN5Bl6J72n0WI7W1WEopzvaWevV/X6gdjfxn0snDqD2kyn25EkqLFrwG2G42Y/Uq0MFVLZT8pKMhXra4OPQIwTC92QWkiYIcURSW8eQ4WuNHasMMNSemUPqqowo0L2Z61It6fbb/KAicflY5HDsuhpF7WoJ34tAJZFPeHqg/9d7EFe9P3vFK/nlqJYhvJIiUodk5EVa4JtGbyWPciPVGw8o81T/+9K1BulxyxZYcX3NTqToZtpWxLnCEsSGKqKsvFlnWUtA9JsRxaF3DCzXJoFFbxkNFCU0Y5gRwM2HMEQ9DrCvslSua/RJJXHHMio2qCCsB3sBHQlg2JVrzWtxqcSzKwC+FTjUt1IxpvNqoIwJWsP1Zo5XxN0aol5ZBbrwk8ZTiBsrRpEmWXe1xUCQYXGxmjqgxvm2Xo+CJASn+vYZ97aPMUrvvXNhNTg2lGe68JZ/d9BhhM2syirRXYbv45rX3ZTE7B6rscv6tGpOi/pm//+zfzp705zWZ7+5lvwCVQ92Rnu/Efyt6f+ys3oUmGDgBNBQ9GP+SU5jS0YCZRtkbwHDclAgIuiL0ObdEuAj7ITwccykAwD3obGnktVAiYqHahpSKbwJCMt1mHjev9GBuq6VtEwtZEKsk3KS3McjKbqWrKNeO4opkqVoJCfNRBTxWBP72SYXE2VJ1O/ZqbDm/o4qf9eW4TUx5vzjbpuDkjJi+njZgGIGXCzYcfVAPAsoBrZ0UDjdzz3d+capmBwbh4UaMCQ+QWDLJKC+OjP2jk0dwjT565B1tnF1M78pb1qL0tA72EwIgXsdiIWAaWTRVOWUOxrTRdM44m8pxkFitm/D3fiDAD24AH86bU4pJsfTIYa3CgK1OYWyiYQ/BwjPEzyCJgIOCOghyzida9LKIrpgrJ5XqJlxRqq20ZlmWxjvyM+1c7J4jVmhjWPm/0uZp9rR4XKw0RDGkRNaa0od2ZDR8tKrm/WyuyxzgSqmZHx+1OAz5Lp9xeBlWBNk8kkNg2iwNG5sC6Vi9esmvFaAt5S2y3UZcfia61cwKX6UbNV2CtUflGL+krXH90m+/JLvusduJbGWyhXBUy0Iyh6CpcYJqsyqBzvV2xebVj9nEUFaD04pOpnVD1LupZTHV5GFQ7fMiR5SbWUxeuLMK9Dnosd30ypeugYc6Ya0BZ2s62NEhVMXgDRfix40NITm80RrcpR7GvhWho7rIT1HUA5jU+h6kAe5PqbDH3MOZs/j+tCgOgQldUuArw6nrfNuIoKF8mJqi2PlAtzw00J6HaRfDADftRKHJgnF+iZ62b999nh7ixhqmbAh9AoXo7df0vz2kef+TpCavHtCFrHnMSz2cW9/Nq3YVKLDgG9OWk+8ybLA3CHlrj9z/d+/KIenTp68Mc5dupfcvTpr92Vy3LdC2/EZ4YQe8T3vee1XPftN04zVErXZFY2eaFR7aIq4rUw2mcajTm9iV/pYoY5am0rqj9F5aRy6bHMg2uyLxTFnPJA5QXGGtSkhVvK0LmQd3x8brfSktB5FVXVSmyMUDLcDakocmrHhKAVdhwwhZ+qVULMUqmUKAKshknM7wNUXklofOxR6wwZFdXNAoa4qRKk7jeihRnOS86fUvI7TDM26552JwGwVpd4P7Xnqpw4MdTWh6GcKpqVmgbFzwTKN/13WU37qVnFROxn5+3A4+3OC9lwpgefU1fX39FOZdvMfRpFtkYArMbq1UdAKxIaIzintgesfHYgThRbOfr0BvQ65JcuS8+VWTiwghqMUWMFm1v4rQGc9OhDB6lOnsJeegnhxMk5pbNsewAEDAl5DtvbEUjPZJ8tStm+8RiUnqoffRAlyWCIbmWodks+y7IiVOUcacg/cBy9b0WyXAC/3BELMyfPK/mFnlCV0896toKfZorMrQtcjbkLmau+ud2KquxZECWucTIr14/Yf8v5WU33sXY6Rw5q9usaSIyqNUblPHjqkdlGBO2Ut3PkODOWY9TkDqfVXPD7I61FT7uoRV0cpULYOQ352q6trS2Wl5fZ3NxcWCo8gepJv/UrHLpsnWftP8ElrU3uHq3ysQcuJx+mpJ2SLKnY3uhw9b8LpGdGwmTvpkwOZhQ9zfigomqBa4s///KXHemWsEPsoMR+8X7c+mbTjDQWC3WTMTs4O0upxEZWoNllkaWSZLpomwVntIZ+j+pgn41rOsJWiSy3ZCwLyZp5T6iHusSg1Kjw0QpdZ0rMXOS1AzNx8yqU+FixSoqKmFjNArn0wriqg0jVNPslGNPI5ZULwnSuMyJmvPirfoLOHXZYTlmKVuMzi88MPtHN0OFsdd2L3iJZGolG567xC6Z+njjYC1bsFRYsjq9cPfcnBVTxiWSulH0oDpcoHTCnE5QXdUoyYAoABvm/LqFzIkytu7zMXKuO5LgkQ2ite1koVjJ8FasEke7bkSPZLqNtmI7hh6BdEJavUhT7Usb7jQTYu4CqwE4EUHQtCeKu2rIYzbY8JoZ2KxdItkp0UeG6KVUMGpXXFjZumF1LlRHEdKFhFeqi9jVTjeVdnWcxF6AJDUjZ2P7BNPy32jH8AqjzOOJxO2fbVb9mw+JVu2+v/88ME69hH85YRdSMtDkgYfe5b25RqvTUu7quWTCg9nmeBaxn1C6z58Wdi9j6vForcpqQ4hji2bAYlYJ2W/zM6+ebRGuAEAjDEW5rW/JWIktbGTNVr5yr9lA1nlX5OBOi7Gs7sD3upxPbfC663YYslUD72e919vPf+TzAnnlhsXSnI57YNcu6XvxXETyD6eukiXhn9zq4pRbBGhnmRKswgtiY1IvQOnTUp0b8wev5ZBkk5DZ36GGBHk7kNawhZAnVcouqbRoA5cXf9050IcdgvQh96dF3nDMH6kLqq2Eh+kj70UU/+8Stq2+5mXAoJ22X2A/3OfjxAtc2bF5lmOyH7Ay01gPd4xXZ6TFqUlCtdhkfypossLoXrEOOzcRRLlm6nz6Jv++BacD9jp4W5Hwxd06fGcTVf0dpIRqlSZOhVQ8ww/7l2H/pqTrTQ7GaMT6UULVEQZqMpr2rHQVsLoHWZlw1JIWgpY+rrZBcS+xY7NBhtwt0XgoDXjNnfVu/fg24SGi3bwauobbRrcO463NpJ5th4pupjWLd76aJvFYRB3c+gjf1+TpeO0MrwcfA8AuxVz36rNdT7eugRyV6Y1tA7BBkMDyrSu20YTTm2H2/9sh3tEWdt44+6/U0KuPYl/h2Qn6gJRl/Zwrwkp1W23DV/RpGlKCStRZV/bNrnq4Mr/UwR22PZCBcM+2NbiyXSBPodmQgvTWWXi/uHypLJUekVm30OvL6VkPlxdbMi9rLZwmuXw+OiVkRohwrlkUFo7wQiZL1CWpcTo+N+nyQJfJeKi8gitGQl9JjWTs9V8za7znf9FmA3O79HNlH7SAYhRoAmemHZ8kkKrokzNlywXwfPbum1joqdmOfmBdCqJrkNAqWs/RRczW77p+tnfmssz3tLAFzpicPO5Qgs881+3po1YDfqtcVsECJIiS0U8mws1rOU3lO6HbkHLUxoHrgODqx+KJAZy1Rr+xQYu/1Hve+WU2z/naqS2qgxrn522f+pluZ9NVZBmlC2B5M1xM7PsNdz8HufnY29xClxbI3TabKbJDvtSyn37OKn2ViZTt6XTlXd9IpQO89alIROqmoKgOyr0SQUo4RxF6+dNPZShmJB16O39BK8L0Wt//ZLwLwkv/lVzATh85dk/H30qPvwA7LR5T5NxsS/7Xc0y5qd73vfe/j7/3oK/iDDxx+vDcFgGuff5z/+nt/wgte8ILHe1Me11ooWBZ1UdTdPyqqluf891/i2y8reO7SvWwVLT4zvoTnXPIghTN8vjKg0+YxqnLoKsgg2MLkcMB3HGAlTBtI1nOqfopd6qO2BvjCMdXwxsFePWTcoxGYA2GQZkqpaJWTqIZRHmprFq2mvrH1a/gtsYB+WgeTB8o2uJai0ApTgihOZIgbFLhERe9d4iJWoRMwpcKOPaaIfthWQSqqGBWDDKnAFjF4NDYivlbCeKSRmFG0NOyOWfuwOmgQhJVjNV6pRpVCDd4EhNFuFF7H4LjUNIO585aXQR2jSoIV6yE1oEYaYxTBGFw/JWjFtS99K+99/+svbIda1MOub/xHtzSKFB0AL8ClHhmCCehKNeGMupyG0btUABlCBPlCaIaypgSzGUi3okJlIGAI0Kiwai9bXbhpEHdlUM7gEyP7cTeJzbMMdXQVRAW3pFBOkw48yVD2/2QQ8IlYnalEYSZiDVb1E+xQAEQzESa+rjRVJ7JrHY2CxRTiUV1bm+hy5rjRKsrDDbqQEHt5AqYDFZB9uqjiY3QDxAobskKNiykTbxZMiYvO+QXczOLRMbOICjMDtJr9Nz/An81NqZ9jr5Dk3Yy4meF+8A1zul6o1YsxLTeyi9Ox18Jz1qZlBgQKTryfFUbYcyEqMWqGYlXB1nbjn61M9Hmu36O1mG5H7M52vIdz1l7gyuw2nQVomR0W7PybiiGk9XfoRyNUnovaxc9/hrvUQzu+n9n/zy5Gm+2sw04rYa3P2Y/VA4KiJBSboiw70KXsJyQDhbY6htqWTU6Q2RhhQKxREtOc130qihaX6ThAnWF/zgxDZ32p//j3f5bv+J5fwSfTz/CRgitwcS9CF/XVX19+1asBeNZ/eyPjI4HRkYRsw8l10kKwAk607t9CbQwgTbDrisxqtq9MqdqKfB9kG8SAeTDDkrJvqQ4tY06dkXNizVqOtTOTpa6GVT17rptVtvTbM6HJHrW+LZYvlYsWWfK39mZKst1jfLjFeL/B5MLmr1r18a1J86pRifqWFcvRCKwUSxpv5Dpr22Izlj6Qo0xkF8GUrBDCtC/0RBBGgJiGOFC6JgiZWXDfMM3+05qQ2WaIpio3tU8zEZxOIriUl9SspaAzIS2lew8rd1ZIDGZYyDV91nKzGVjG63i0vDn61J/bpa5Y1KNb1z/vl8RWKq7dQFT6KjGYkZNA6+2JgA112HflIK2t56agnxqLGiNklqDEAllVHtdJMOsjwnJPVCP9bi20lgHwDMBQgyvEXifEvqbJ9DFiBaWg2W8UxG1xokTdyHAHV0BD1ZfhvJ44WieGkuUUh8MNiady83kbw7iGrSvLpOfwUeEbAlQlVGpqw2e0rL9rAlAENJrMi0Qs8WqgZZfSGqaEnLp/qkk/PjRKErXDghZoeihVP1ehpkSdGXuuPdW/Mz3UbB8L0/5uxwPi80QVRd3Tqj3WtLPWYLNVZ1/NARRKtrcoYCCPDWUJ2wPpY+v7JKIMYiA2cyz1sQf3E/ICPXvuPh+ItEcpY+YIVap27a23NexeIzR/Rz4/ZQzBe1G8GD1ni3tB21aTXHc+piZwqSkQRVlKL+9co76p1zghhClpbGWJcl8bn5pGHUkAnUVr59SQrI+j4myP73EmF1LPrl8SS7DR2jLWB/7Hz/HSo++YI7Y+Gv0sLHraRS3qYqoFwLKoi6omecLHT1/OmX6P7zz4Ob7n8Cf43PgSEuWw2rNVXY7aHEhzmFuS1JB0Woz3K3zqSVZy8kLjMkW6PkFvjXHdhJAmEvxWFHPMjVCVc43QOYdxtU81sSnbaSZfN29GT7MRfGhkzUGLVVK+LHZJJgdfqmZNaUfSxFVtTdmt1SsQDKhK4XNZYHorw2UUuNSIAib3kckfB6ZGNfeBqJoxAEasW2Lmxa53q+Uxc+oV76lWOwKcGIWuPHrkZKabaLy1uJah6hhRJbiw64m/43t/BTtycw2EqAEqVB49el1s8IyRJrsEZYW9tdN6YlGPXX38n76Kb/7Rm4EI9CEAit2W78AUojwh3q4LGRhpR/O9BwuqlN+Dkftka5UAahpUFQSgiBJtXQdlgyxkY8ZJmFToxOBTS0g0ZT/adHhRplStGHjfATOh8YgXFp9YkXgrxxRIngoKXGZItnJ0Dj4xKDMFYHThCXZqxaAqD+XMwRLXZj7RhETLe7Fx+AOgVaPMkjyYgK6SuHiXZt9lBpM7zJabB2J8kMWpQRarOxaQdc2xvnYuinYFzM8sPnfW7O3nWVzVr9ucK3etS2XQp8IOReCO7Z4+rZqzs2mUGDXgUoqXttKywG8W7CAWByBDjtqKIG5rw9CL5+ALUq/MWknUShqt4oBghmlnpvff83Ob+T14LUzEmW1rcm7O8hnOP80ewMvs+0xsBJckFLbJ06lfQ0/3qznF0GBIcnwLWBLA0AV8ZjF5iRrlmNriRClUmaG0Fg/vdkq13CJ0LNoFUUEGsYpUQeM7KT6TYeqsXcIL//a70ImaHh+PQtV2hota1BO9Rusd7KUjqmsmDD60HzsE1/FMtKJ/H6jtEWF7IMOqtUBWeYJZZnQkYXi5wo6ln2vfP0CPCpKoulRLfRnUMjv4mmeInxdc9gEMqDSRc2yaiKKlPockFqL1SpNzEgJ6UqKrDBSUXY3L5O7Kg0+V2MNuS27MZF9CsRQJCUby2XScY0uOkwXfB8AOi4YI1AyoXZi3poy2mMFqISnUTPrashPiucvJ4yrfKF1CrYrupAIoF15yDsqoZJnkcq5NRZGuB2PY9Biz+9x19Fmvh/GEY3fePL2xtiWeBZ61FtVlEYkU7VRUDoMRVPmu513Uo1t1TtLRq15NrbpQxkDpSDYnTb8JRJvLUogRBdNMnrKKmSTT/asGV9TpNbhkP6GVyDWuE1UuNekgtahJJSBgfCxLPUAAOTXKCWfWCdQW1DOEibpm7WKdh/EEsz7AL3dk83pW8MH1oezD9f3q/dB76Q1idh+OeQu+WrkSiRjNdkIEW6J6uCYOJUl8DQfLfflsxhNR7pRV0/MENyXNyQ1+/uds/+MFOJ1TQ4CoDmqL6zll+ExG6l69MLvPf7uILbj5HqtWJteqwFmrL80u1feuavo0N/c8TR4U8hyhKKYAVfycmm3Lp3OFAGJBDmLLVuf5FcX5AZaZnlanaXOO99vbuz+bs4BTc8+F9LR+PJ7213sQU8+9SbuvR/V3p4yRntYJ6Y28iFkuxXwWTl01OWySo7cGmKWWEN6iur/qGLJJhR7m2OMTCF7sNa1BlZWApK10CrgYuWbIB6bBO3w7wXVTfDLNj/z2v/UudKbEIv1Rqln1yqIWtaiLoxYAy6IuqvrC3/oFnva7N9KyJd9w6d1suA63j57Npa1Nzkw6dNZG0gCWFbgUXbTQZcAUgAlcvn+d01mJ+9QKemNIWN8gNRoGo6i2MDsswc7Ncq4brOD1dLgGsTmaYbXUCpC6mZplByWWkFq2rlLNQtTU9vcKfKIouwoz0QSLWJ21ZLGaDCDZDuT7FMGCyxTaiRpFVwFTyuONib9PPMrXA175SQA7kkGuy2SRqUtpRGof/eZtxYWo5LdUzcIjaCWT9tqnNlpG1NYPPtW4RO4TtGxTPQR7+XVvw/ct73vPa3nJd78D5QLvv/U1Z/WwPvrM180N41RRoYOZY5Es6rGtv/wtYd9+3c/fIkCfEUBQFwKw+ARcJiBKvgJVV7zmzUTULgqwXpHEDBUz8diJ2MDV+1st2zbDXPazGYCFKAVXAEZj0pTQyfCpAHnic6/Il8QP3kyEDWwnAe2gSsQy0BSiVLFjsS0BsNvldN9WCu0j6JJqXCsy810EaWpLsDoUVGuwWlw/hqU03orGNqy2tvOZoWqLkktXATt2mDHgJUNpulibYd3OlFKakMTBuZtBruq/zypK/M6/7V7wnE2yP3f72SwHmvPkOdCAmecV0OAstmOzr+3i+dUHML4ZnMkCPg4RaxVJbU1RAwu1uieGaE4XvG4KWsQFpnxW5uyLYubvX2ey1ItwnVhQGt1uEUajeNf4eZyHqTcHoKgdCpSzbQN7fC/Nf/d4bFESVDVV8uwEY2piQO1DXZaozS1sYikP9TDjEj0uUBsDeX+17zpI4Ge7Da1UBppGFJNmEo8f70XhmBjZ91Ozp5VjUKKGe/Hf+BX++L/93Nnf/wXUYjG6qIupzLrFDQxrGxmd2NMBmLGidaaE0ViGSJF1rja3yazGtZcpljXeatqnNL21bcmkGo4lAJhoQQhCSrFWAN2obNybma1nrg8y0FLtlgxMfWjsgkIraRi6zRnHe3ldI8z98X7D6LBc+3UJ6SYopyTo3mrypQ5VSzW9Akp6hNZGwFtRaruWolCaspuiq0DrjCIZVJJ3oWKouJLrrk/k2qAKh87j9UBDyAw4jVJOWM0x76C2WPJRKdrYiMVSlcf3OwLK5BOx7DEGUiMB4kWFih9vaKccvfKnOXbPuwE4euVPQ5pw7M6bOfrUnyNkKbd++i3c+und4elHn/5a+ewSK8BKDVrF7IpFfWWqBsKOPuv1sm94jx5VU5WHjYqVdkvss7wooUNixDIsMWK3Nc5BRytND2q5jyoqQiaggxoV0+ySGmSbVX3AdL1YFI3jgbgiJDGzrlbSzPTFdfaIiT1jVaG3xiQhYNqpEPWUillF1dTqbjbjzU+PDxxTy61ZC1YQRU2jwo4/s0TOCzqbAolRUSZqbCfWrlGBMveas6rbsw3zVZi2mDOgh8I0YGtT8fGzNoh7qrHPUg1wMn/jWe8LTrbtvETMebWznIuDvAejReWj1PR8H98jWqEzIcyEGcvZpj+uazyWPL3E7m1Nu3vj5VpQlfhILq3teHW7RRgML+jzmn2+Jj9l5vJyzp62eeh5Xqe2loOYo+Mly2Wngnwn6ch5wnCE3pqgU0PZtdhRRbpZYk5vw/agARZVtyNE22gFWa9BVVnGfja+RDuVa04rwWdmF5lHBcAFXvLd7+AD//MRWt1e+zbQC/XKos5fjvMfZ1+JCk+Q7Xi8awGwLOqiq0Mr2zxr33G6qqDUhis7awyrjPs/cQnXnL5TmkNjpAlVamo9UilWW2OW0px71EoToheOnxLLlNnclXpIVwfknSN/pWnGghImywzzpMkZgIbZ3rD9IDbX0izboYAPYokkQ+qgZYEajHhyqwD5PlEEtM6I7dJkVWFHxIEx6NGUKehTUBW4RGOKQNXW6Co+b0vhba04CBH8UNJDBI0KoHMvYYiB+awLJ7YPGHl/ygdCUNPgbyu3NedZJxkx3sbsGA3DS1K+9f+8mQ/HxuGF/9u7MIna1Svv+rytbgatt378zdzw7DfIZ9tanNS/0vWpd7wKgGtuvIV0WwYponCS/S5YQIMdyz7pMgm/rbNX0Ipsw5NuSTi8nkwVS7o+jopyuribPW5qplySCHt+KaPsW/IVQ9GrF2yipkm3AyYX5VRQNBZ6wUD3wRIzdrIANGKHpEfRFzsuqlUpx0GITb6qF71eLEpUERfI1hCwYss3LtBamIy1PRJA1bVUbQFrAJKhj8eMZCmZUYnKJawdmLLbqmo3468uHc89sOtctdMSpgaNmzpHrsf57jf3tz38qud/3ePInrmPgCVm+jxzbEZD4+NtrSyaalBlht3XlNFTq63a2mDH9jWKmlrRYpM9rSBl43ZbJNSDyjrnIAwcupVFCwxREF3QInfHZ1E/79k+pwuuWZ9zaD6nhghQDxxcVBWZKUMgOIcqSnyi0bnGrG9BngsLvoz7oZJssbDUwXXT5njQpUdPyobt51N9TnClyRaLh+zDUZ/MgvWwWIwu6uKpYCC0PKSeqgeb+wJmoli6K9D69P34wTD2kch5bzRGZRl20BMm7kqFS2eyqUYj2NxqwOXG2z+xAhaUFSqxuJr5DLtA9blrxiQXFUiTvyDh3HWIMSDXSR+m9kkI2Ud5Guy/7Erf6lNFlUlPYHIolmJ/uyE/x/sVrbWAVqJiNXkkRpQBn2l8rsFKr+lNVAl4IsAiFi7BT4Pra2UMqUE5P81wyWJ2TAgCyBSl9BvGQGVw/bbkp42i9UytkNRKcqVqy19r5FzXbXPDc97ArZ98SwO03PDsNwhINRqf/fu3BuUl9+XWT7+Fo898XRxMm3ki1qK+InXsM28F4IbnvEHy27yT76Imu0T1UxOeHm2UJausIrQzXFeY73aYQ+VQkwI1yuUYipkrjboimbGLrVUgRSE/05QwGgnIOasSq6YkhxB8JO5pOQ7bLXw3EwXWYIxedw3AE2pr3tkQeB/m7erkSeMAO1rlVX5etebDFGTxHjptyaJoZwSr0XWui9YwGkcAU7Yz1FPqGdsutdPtAXYTevbqU2dC3OeAix12qXvagM3evoeF1/mBhd3WsHu+zs5+dtebkP5WzX4n0a2h7teUMQIq7JGHOAswhBnlkU7TaQB93f/uVJ7HnnYWFAlxf1BFgUpTVN2cqSD3e4j9rPz3IfSzZ8mGkTel51TYe5Gipt/9rPIooPIC5Tri5OED9lTMwDImApzxs+1kuG5kukYSXWOdXmdfdlJcJ8G17a4sWXFbmP5+7ctv4r3ve2j5sE0/e+2in13Uoi7WWnRvi7ro6pqVkzytfRKHIlGOly59jg8PriZbiw1NLU9OU8aHW9iJZ+WLDjtK+GjvSl789C/KgstalLWEvEBlGWE0mlGkxAtptJeZW3Tu1bzVcmEDczJlmAbfhxCbYTNtqCMrWw0m7P9MRdXSuJZieETFUG3wKTgN+X4wYxqLI9eKIIyBUCAL2YAMuH1AlTJcDgrKnqJyqrFIcvXaOCC5F4WAJ95OLclQcrsdCbvfp5FVNfLyPOk0mLNWutQBcSFRKK+m4d1G1QTtmHshrx00PP+HbsbHvLrgFCHAS77rHXzgD/Zmftz6yXkW4F6swEV9Zevzv/AqvuknbgGmg9KgYHIQXNtjB5pkKEoSe1p207Ir/+xYHmBGBWownloQNEw6N/293YoLXSNgRjuVUM9eQrGcUPQ0+ZKiWJKHmBySkTxWRZCvVsi4VPZPbzW2itYjKmYV1YvXmknoPXa7wIwUVT+FGTDx1o+/WewlkkQYtVVkOkVFlSqdKFtSy3v+5A28+PveiU/qY2YK9iivoQrS0NfnjnphWweBVhWzvtP1z3qhudMCBmTRJN7Fu0GCnbUnMHOhDLYLYcvtVdFbeVfeSP23ZEebUu8X0QaiCXKO26qMwY8nu19vL1uz2cVldY7tP581QmQi+vF4ulBGPsNz2Xw95NebPvEeN+0YUtTs553kgL0W29AMFxvv9Ukudo/jcjrwyTLUUh81GArA1W7hehk+0SgX1VxueoyF1DYA417gygv/t3eBEovKD/3ez/Liv/HQ8gZ2qlUWC9FFXWzlM4/pl2jjqdoJfn9Bel9G7/6CMBrLcVmzxTUSeN1KyR7cov3gQfJnjEGZ6XXTxwFqUTY2hgFQzkjo8Hjc9LXNOXcPi0FgHrw2ZmovZKL1ltFTRr9zKBevSZWnf3+FnZioRIHRYYRwoaT/rLqQbEv/KgpRAWBUEHAmGXqyLRkAB6ua63ewCj9jv6KsWNMGLUQhsfDUDcCM0pLPFq/lOqpOfbTotGcGsLUt58uVJWHhzw68y6hiqK2Uykj2MAZM0pzfKOU+N3z9L0iv30qFJKKEtHX0Wa9vhveztbN/PfbZmx7WfrSoR7du/eRbOHrFK+UXH0An+H4L103R40oC7ysnwElihaCTWEI7wSea9L51ASOGoylw55yoEIbjqcVorzvvbNBpA21CGhUwdRZQU0osnGfDvCORL/Q7+G6GnkQwxImCVA1zscKzEYQpK1G21vl1s9lEIXDr+m9xffeHpvt/XVrL78aglObY8X8OiKsAxqCca3rXkBrUiGnOSvBNHxu8n+tLGrAp9k7T7NO9+8/dIMnUqnW2gp/pc3bknpwVXJm97VzDfvbetnr7GnX1DMBR5+4BU8LUbDknxKDZ24MSMHwvcGSH08bs9jfPsVfey+x73P2m4g8tlunRWvIR1YWAMuf5rKmzbPew3xXlpdq9nfX6QSkoSvSkxBiF3coFXAFIEwEwxxPI0ng+R8BIF6b5XdCoM8V+Uu0CV170/e8UC2gCf/w/fp7v+J5H2M++d9HPLurCKqDwewHVi3rcagGwLOqiq3/zLf+Gf3XHS7i/2ocPmpd3HkDj+d32i6M3fwmtjPLIEpN9huUvT7DrI8ykR9HP+NDJZ3H4RJTkxyA5pbUALpGlp4yR0LRY80OzGTZ0lCHX/w8O1CxbOvrDqlrJMifBnjKLKUu6nzkpNkfdjGTQxrUUkxWNa0OxL+ATj6qMACITGkWAqmRRmm0EXEuBh2QsQfe6gqqtGjDDy2yYqi2LXVVJwLgbK1wiQAxKbhclgiJJFMkoYAqPGXtMDOsOs4153VRrYrA3BBeEyaFUoxoIRhbRLo2swgDJWGzLmsG8VsKaWdRFVR/7F6/iuT95C6aQYPnRZQHz5CHdrGBzvYu+K6N1BnoPVIxXDWUpQEjRU3QVEhBaVdDKot1XZNx6TzCGkEoAoR5X6KLC9TImB7O4PyuKJU3ZFguy2nLEpxGQdBpd1TkuKjbQgJf8FTNJ0KV4sesQCFmCGheEdiID42iFp5QiHYtc3HfSxr+7sZe44pVyrHfbMnSSB3Hrx9/cfE5lpx70RHDUMbVIoAZVRFFDzM2gLAn1grhelM5YTDSqgvPVzhDMHb+flXX3cBQUF1J1cCXTheiu/JhojTN9jJIFUVES8lwWs2kqAz4TQfFzgDkPdfv2XNjuVfVA4EK+h0dY57VcCF4Aoz3e7172FzUwpaJtiIqsP7s5kWtiuzXH2KXbEWCvlTTnfuXjvhuBqpBaCbC2hvf8yRv23MwP/T8/w7f9wLuazKYLtQdbACuL+mqpu378Z3nq/3Mj1fE2vfsVg4OBZBOy+7amd4rHnu51YXVFwJOipPtAID+QsXR3QROUPcOMr1V8OjWoNJEBVZMlVQ8Cpy+zF3lIaS9sdaAJ2YaoAE8a4AKl8Fm8ZitF674BrQcVrptSdSxmkuCTqFjRUC4FlBf1tSmmfayKpKCqJVa1ZVSjZpseNXRUXcNkn8GUM5lpqShdwONT3aigfaJxLSE36TLgE4VrWZJtUYrqkxsCHgO0Mjn3OQFx9CTmIMz2uDXIUmc8GIVvi12aSuR1VF7KebCo5G+AqoHmRV1UdezeXxW7N63wK10GT+6RL2vSQaB7nxYW/HAEK0ui1EgSsJpkPQKjufS0oSjFesiK/Vsz9E1TKCt8fcymKardarJTVOUbUlHQWo6tGuyrgb56+JulBGtxLStgZFERVnrSv8b8oLDSl5yJwXCGtCNqFaU1pAm3nv5NAG4b/jYA17d/ULa3Pu615ta135z7nGolmHJClmi6k7i9jfLaOcLswBp2gxl1/uleyuRz1NlUKnPPXd/3Qnu0h9FHzmW4zhGeBASqwbTgw7TXDbXVlYAhyk4tHPdUQc/27udTO5+vfz2X9e9XqJ+Vzdib0FV/RrIdD3FbjBbgL0tjblKFrbyci/tdAU/yckpK0Bpqd4762KrJQtH+2XdSUWO///W7Xu5P/uvP8sK//a4G7Pvgf79wu9vZnnbRzy5qURd/LQCWRV109Zl7L8Ooq/kPD76Ap/dP8Ld6m/zp4Br6d8U7dDsi82xZsf/ZyvHdDNeRRdnyFxSdExNpOMeT6OMpDY7Zv0+a5e0hKob+heF42tDUg76qQnysoWGF1wHKTgIaam9/YAqqAKGKFkN11RZAwxHKOcz2iP7aEN/LSC7rgbIErXAtI4vRXIaz3iIh4g6SoQy1g4ZsO8giNZXXyTY8ujJM9olyJN0W5UuZAlYyMpKBLGiLJfmbLuU2W8niVTtItj2mZkYpBYQpW8kIS1C2QUmQvVLgEBbIDLLuooJFVzEXY+SjXZM89k9+72cemx1nUY95jQ+BruT7DZdOePaR4wB83hlKlaEc5MsG7cS2q+zEfWtTMlXCck+CA9sJrmWmoJuNSpIAJtXYbTj+rR2KfVOwMd8H1ZIDBTpXqEJhCoXzkCvZR9NtFfc3eUy26bEjR7AKp03DWnIdjWrZKA2PipQYmqs3tiMbKpl770ef+nNyfigryEtCK228oV/xbW8GpVh/Rhff1bTPOFGWdTUqVbgskCowY1mIqsqJ57sPDbhSg7LNAsTNMJDPAYDMLjbnmX+6uW2WxTxnD6M0dcbUY1E7t63JAJhlGjqHWerJZ9HvEZY6sLEt59AIrISiiOfjc+SePBzbrT0Wqw2j77ECnc5Ts2C/bFLgvIBL/djZ+82GtsYAUWpWepYKiBJZ2aHbEnVZVYl6LLFThZYP0XrHzWUR1R70ZwNXXvB33hXziOS69e3/6zv50//ys+fc/sUidFFfbfW9f/L/pRpdwSV/BkEHJpmTjL3tIT6fUYy0MmG3R9sid+kqZVex71OK9MRABq9OwBCAUFYoYzCH9uGuOIge5oTUYkYF4f7jMvSth7dFIcB1Vc0N/hr1YK2CmT33xMBvFa9NMgCuZEgVwtRGywXsxpjslKFcbrHx1Exy0cZKrEIdECLpR8dLpoZQKsaZQlf1ddqDEhvN9hnH8LBtrG+lHxbVdGktZuyxowqfasqeoWoJAJNtVNhxhRlX6I2hXGMBul05nxUFoSdB0WoSCVaj8TRQvB4MRwWtfA7Tz0NNKjkPGhnElX3Jvnj/rfNM50VdPBX6XdAwuaTL9pUGl4jNXfc+CJlFFRaVF9FKqxKCgaYBQUPwUyutKipG0vnesQYv1eqKWM5FAk/VF6uiet01tSqy8rO25XNCGPSdSBSyU8WWKqvG6lavbwlTv85zsjbmT8QBfzH/3q/v/pAM2ssIsEa1zNHDPyHHeZYS+h05XrbHsu2JkYwkbVHWgDONvV4Druw1tG/UxLttsOY+qwvM85gNR6+Bjl0EorM/wbnJNBdau2xy5VxbgzA6seiVZQHNt4eEwRAFU/vGC3j9OWDi4ajInwA97YUohWaBq/M/nWqIsspamQn12vjUggbXTqCbYLdzlNbNMRISAcKDqRXZlYAwWhNSseELSvGHH9gNrrzob75TiKOJXKNe9P3v5E/+67n7WWCRsbKoRX2V1gJgWdRFV89IupxyJ1jP2xzaLyy/3/mrb+HpH9uQOyiFqjzZ8W3UYALjMeHQKrpIaZ/2kdEeBGCp5c81e3upT7BxMZsLEyeABMAZg05k8RWaPITpgKpuPhUzzaEX364AkZ2iZBGsQsNaV8pOw5tr4GU8QTtHW2uUa9M5aRgd0mKlNY7MdxWDw4tA2RVwRFfy97KjCQaSemgabVR9AuODEZiJzbRPoOiLjUPZA5+FmKUhTH9dgM3FS79SCXZURZWJgCIAZd/iMtk+FPhKwrvrftalCpcpXCK3m6IOHRf7MV2GRxwGt6jHv8peECu4oPC5oWVK+jbnnnSF0bKnammUg/EBhc2Fudo+5dCjArfSxXUTXCb5JMWSZKm0Njx2HC2+co9rGYp+h0/e/Cqu/tWbcZkotHzLQ6dC6YAPiRxO7YBpKewg2uMpGcL4RMJ1vQXXNlQKTO4xE1m06qhYwcd/Gqa2IXKs1qqVuo59UeTgL7/ubRR9y2Sfpn9fiR2UvOdPfwGAZ/6TWwgGiiVD1ZE8mnQdWmtKgoA1skB3ThbjM8AszCyiZhhyjWT+XLYGdZjl7MJzx0J1DmjZadOlz55B9VBr5yK3WThphbIzjMwIJulWhrv6UszmGLfUEsBWSyh9mOQzDL+vDNPurIy+R2NBfqGvf76Fppq3TNhzKDF37YrXn1q9YkUx5pbamK1xzEWqxH7TGmHzaWQxqhWqillENbiSySK13u/3qj/7vwVIf/4P3ixDUseeoaALtcqivppr4iwERbrh2LgmoRwnHP6Uw59Za5i1KknkOJ0Z2prjsHxnm3zZUO7vkp7ZJIzHDfNWGYNe7uMuPYBrW8KMClAZg8+3sQdWBWCZ5EBoriPKJjKArdWFTd8a1dgQr4NCAMB5sTLSmpACQRM6GaqomsB5VVSklaff0qASyp6QHOwQgpVrsYk9QTBiGRaUEILsxOMTUZvWmU1JJOZULUUyDg0A4w2oROEyg8s0VVtRZXK911W0IHIBf3gZ005R69sCGIN81oOxAPe1WiDeTsydQmtopfEzUNIreC9KAe/BaNxSi6qX8Ee3L4CVi71CO5HrnQ+4TBRYNodiNaOzPoI0xXdbqBBQw4nsA1sjUddaOyWXxUGvGo0hL6aWWSoqcJEe8oZnvwE1KdEu4DNLsZKIWwCgvI0/A7pwMSswkhtAhsKTCrU5mO67dVYdNNkpTS8LNDZjIXDr1r+Ze++3DX9bwJR2S9Qvp9YJec6xE/+iuc+1L7uJoBW2m1F1ElxLkwwqzKgkdDsokL6gVrHMhs3vtC/d9eHv7mkfcuj6jE1YAxzvZSc1W7PqkIfZ050LINK9HqrTBmMIq0tyOxAm+bkV2Du270KJNXs+fi5PcI+e9ivUz8oGnJ3EdS5gZa/3PwuuYMQWk0TU1OMjbbQDM3KYiSMkBt9ORfWYO5TzAr6EgBlXDcHIpzZmv6qzEob+5PcETPn2//WdaAe68Fz7spv2tMatjxlgAa4s6lGrJ0rI/aKkFgDLoi7KWtFj/vfL/5IfX74fgP4nU/SpB2VQFH2rlbWEyUQk2ac1aWop+l25+E1KaXhry5OgpPEbjVG60yxSQzWV5wbnxGM/y+akv3WzpjO7u1EJvpFWB+fmrcZqRUwdlln3MtbGYEXdXNR9AiYP6FKRDoTN5xMtgWoBJvstxYosUJWXcFHlhdWnC7CTIJZgTtQpysf7OgFkqo4salWIzMLafsxB4sGbGiTRjde1vHfwmVg2ED/GOlicCQ2D48Xf905UJDfqShiHduL54P+7t4T24QQdL+rxL+UUvu2xA0Xv0ykfPv0M/CU52gRCz1H2NSooXEf2w/aaDEZCain3ZQwuTdi6WsCQ1mnYusZB17H/4BaawMbHD9K7FyYH5PW+/MpXc81bbpH9dKDxmxkuRUC+NIKbNlAui697sGDyGHwbQRMzcXHBKgotNYmspRheiokDq7xEOc+xL7/znJ/B+97zWp7+y7eQ73f85f81P2D57JtfBcCT/8U7SQ+NObQ04P7j+6juyvAPatItiz3DdJhTL8SjVUkTBA/N4nQX82wXa05f0EJslxJiJjg0uAtYzJ0N2Nnj73OLptnBn555DmOkXbRWZPrOo794nwwYIQ4mEsG+0gR16WHCidOE0Wi3rcJDtQZ7OPWVZP/NgGy7VCkzt+31t12fSz1I1fF6lCaElT7lSgu7maPyOEBMZKEaUivHhUYGTyBZW/E5gpJr2Xv+/OzgSl0v+DvvIh17dBkggHahCfZkj69scU1Y1Fdb+aDQ24bREcXmsyrMyYT2gyPwAdXKUFkqhJ6ibM6PYSx9rR0fjpO5IMPbwTBa0cpAMxSlKFesJliFGRbozRE+2mK54ycwhw5KjznJ587LqpVJD12Hvze2jaJODsGj0HFgGvtea4S8VNuqqJhz1pEBsm+nFEvSKyov/WU6DCQDh0s12kmw/Xi/kHV8KnyDfNmgyxAzBEUhbSehUaKawqPKgCkdOncyvFIC/OoykE2C9ARWUXUNZd9gJh6bGtK8IrQSYeBXFWG5iyqcqBPqLylLmmH4sTvextFrXiPnyhAke8VqQtty61++8azf83XffuM5AedFPUErBEKiad+3zaGyx/iQqE+8AZ8l6LKSa9Uk9mzjiYAaZQXtNvS7+HaC3hpTHezjk2W2rm4RNOz/6Cb69IbsRy1Rq9z66bdw9Kk/hxrnJPcX2LWUarVL0AqfSN6QTxU6N5jMYIclapiLFZfWqOFEtmF2DVtXrXjRWizsvKgXbt3812d9+8dO/Ate9oq3M9lv+bMZq9u66gHy83/wZoolRdkFM0nonMroPpBjobG7VSEQfDX3+LMGxZ+tp73AXm7WfmvutZSeW7vPveYe23Wh6u355zoP2ad2sxiNCCdPTbfVGJRN0O026rIjhOOn8MPRuZXZD6cejnr7sa4dlsXnUxtdCLiiOm3otCkO9ymXE4q+oX2qRJdOrolG4TMjSkijUKW8Z136RpUZWhYf7anPF1b/4r/xK6QjL9dALYDnK77tzajS4bMEn8m1b3YOvuhpF7Wor85aACyLuijrOWmb56QCrpx0A9qngtiabA8IeSEy3DSVUDLvYTRGrw9IV1v4VHw2sWbq5R+9qinLKXMcpgzC2aC3an54N9dQhTDXrNXB9wB1IDwqWi/YGeVK9OYFhE3nanm3ZC64JNop+EC66Ug3S1wmC8XRAUPZh2AD3imqtoAmAKqCbMs3eQ/FksIOZZDljcJOAsnQM7jMkG5CuhnDRqOCvbEkcyKLd6nCJ0ZUJ86gfKDoaYolYeArJ8O2v/jtV89/YSFgSgFwfAIf+s9ntwHbyVhe1ONTP/mx/4N9dkSiHZpAGQwbZYeBS/k33/Jv+LbbXsefXz8NZH3GG29BtWThqRws3ePZ/xnH4NIWm9cEsqcMqJ6bM7m3S+9e2Q+Vg3yfYXxoieElinw14C8f02oX/PXfeGPz3Mfvv5Q7yh7//uAL+eN7rsZ9oc81N96CncDnbxTQ4hv+8S2yn1rZ16uWouoIqFJ1Pa4TmLRBF1rs78YBO/aYcSW5Qi5ISKf3EkyfWrE6wMSFIWAvbLF1xy++6px/v+snBHj8ttteh0k8xYpHVRpdpQS9TLrZxp4UdZ4qChluh6mtA9HSkPHkgjyS63PU1IZrt3oFaFR4oKc2hjuzWs5Su5hmNXDi/HQYVZ8b6wFYff7bq5KYheUc+gv3ELxvcmjUDGgdnENVJfr4KdSBVbjkEHZzuwnFDJO8GSjqOMQIZXXuUPuLoXYuSG0yDc5lD1uFPby3G2/12u4rBtkHozCjOBBpR7Z2Gfez2q+9BtlrMNIoXJbslTV71jKFKN5M4dGFAIn1cJRAo5CExUJ0UV+ddf/GMj4JnH4u7L9ig+2PHkB5j+51G2CFeJ4D5P9lRSgr0pNDwpEeygcBCZb6EmJfFI2tlx6OUEstfA1eOydZD9Eey29uiQXQbJZg5WGsUL1utD2qphkMsZpwbaC2FqxzIoJScq2MQ17XTUU1kurGEsyl8lOU2J50q6JqG4ZHLK4VCT8V4KHKFDZeOkweyDZlSFu1NelWhS5EzWKHJWpS4Hstqk4CJvbN8XVU7KUhqlxaBr/cwXUSbD2QTi3lgRQzLtHG4NsJk4OteT/9EGIujnymt37il8/5HV/37TfCIlbwca2vf/UtlD35f1CimjJjIYN96h3Sr33r/3kzH/6307XLDd/wi4QswXUs9uQWrU+u0ep1cft7jC7tsPF1yyzfYSTwfjSWfSIEGfIuL0Gvg88SigMd/ijm9dXbYscwenIfe6hDdmKIyksB7irXkHiOXvFK1CQnGeaEboZvZ4REUy7JNbnqiDIt8R697TCb40ax0gArPlpy1Rlrxghpx3vJjDHn7+0uRIn1F/9ePrdn/uIt8fjVJKME5Tro1KJHHdjcivkviCraMUfkkTpP9sps33OBvSlKyzr8LKDBWUGeqN6u/39exc05N2Hai/nRCEaj+dfCgK/i+Tf2s/v3YY4chI0t+U5Hcm735RSkqtVPlNXUsvxirRmr9UaBsiOLZy9gpf67bmUSWm9jX9vt4Pst0Aoz8XTG8tlUHbHD1YWAIQYvYHzhUZVHRYKb70imkWvpC3LY0NES3Q6LKUEPhBznPTqnAVlUCOcFbBa1qEVdvLUAWBZ10dfNp7+ddODnmsrG89ZNwZKwsUnr0znu8gMSYDmRjIM6TK9ZMNYDwQiE+MGwuYDXg8omeG0WTKn9nBs58nRBS+0FaowMwbSeMoZ1fN04qCLPo8+9RpWObC0nGMX4gBHWfd37hYBrck/AJwGdy+A6GU2VIpJvIioWbxQ2D5g8SOB3CLiWsI7sWPIsir6AINmm3Kbie/RWNfkpxKBubxQuE7XLp/7pOYbKcfGqK/jT3z23L+likPb41o9/9Ad5ZvdBLstaXJWdYr/Z5mQlMvbttM2nhpfxd/78H9KyS3zLsdczKlJCgOSbAiYoVGXIdZu1ZxjapzXJIGDGiqX2hJP372P/5xSmkH2q7CgGT1KUfY/vVNz99+eb2L/5oZ9kI29xVf8VdE3Odtmi2ypYW3Jkp40Ma2J94tdexcuvexujQwn5ssZlYCeymNalJihwnUC+KoMbOxY2bEh0M/dXzqAqCZsMiRFmoo1M3MQ0Ad6PVv359TfxlJtvJh0o7FjAoXxVgB2f7hNgclTJAr6IfvfWQoi2EM6hY0DmWYGWOSsAZNoUVTC7WGI16AFNLtWu55ld0M7eVtt81edRPT2HkiSE4Wjqw01Uq6TR+sYHkfI7Nz3/rq5QrXSwp7cJa+uoThvlHKEGlZyff29lidrYktfQCpVl8phWhhqNcdvb+PG42d4avNmz4mL6nPd5AtTc92e07Le1zc/5FEcxALQBV4wRFm20v1HeUy1lKA96XEASF/KVRxUxayA1jdJSoVGVx3XPb43z0qPvgBBIPIgNpRdLEaUIqSHoMGdptLgmLOqrtfJJCh0H25aitNhJJNYYTRjVPq7RTidmpNTnJu66n9b2qmQsjMaEyUTsvqLVo0pTOQcXFTr+JE3nelqKcvfQEgGh/dZguqE+yDWwDv/Vegq6NFa0AZ8lhEzyl5TVhCCB8iExBKWwE0/nVGCyKtdXl4Jra0KO2INm0ebLi4LFbEE68CRDAWF1KZlPPjUSbO8DOq/QwzgY05qyn1L2IghvoWwp0m0hE0nPK9vrMsXosg4u0+j9qViEqqjQVgm3//k/2fM7Ky5bwW7moOG2mcH52WqhXHl867k/dQv5EVmngKxzXCvgUkW2Ac/5mVskE9LA83/oZghQdhX+xauSRzkKVJ2DtE70MOsjyenLFL37cszGUNZueTxWrSXs68csB8PtH57uQy97xdsBWDWKqqPRVUBVAkBqo9CDfK6nOXbvr3L04I+Lgto7TARadFEz8LVY4fUyGQwPJ2Jvl2WSKxGB1ka1EtVtChOVwf6CAJaHUp/95Vfxwr/9Lsmj0IqyZ0lCAKtR7RS9lhIiuKBqUmGs4H0k9zvgHL3XXuqWswEtO+xSZ3ujvSxUZ8GV2eeof+pkmnu4k0w591w7tke3W6iD+2FzG7e51ZzDVWqmtmkzYEIoCtjYlPNzDGpX7Zb0tUUhjhqjkdhCzr7Pvdy+Yh+rbCIWZE/gaoAoa+sbOJ8iqFFst1uy/wO0MiEHRcv4+tsoliTT1o69ZG5WYj9NCOjSTRWaVuMTjU/UBYEr1337jaT1Lx50UTZEgxC3gWS6ny3AlUU9miWTya+AU8MF1IJLIrUAWBZ1UdfLP/093P2ZS7h6rcCt9jE+ELa25nILGuWI8/j1DdTGJh6mdjTRg1aliTxuNALnpQmivnjPN3s1g1onqmmKfFmhE9sM5+ZyD2pQJglxqBW3rw4MDkEag6qa5rA4CTvU3tNygXTTSiPgJVxeOUUy9ujjgbJrAE26CdmmZJzYiYAougz4RNQnyThQdBWTFSX22T0Z6qabsqBFwf7POoq+pugpWWw6YiC3ADW6ElAlqOljzHl6tj/+/fOHvS3qiVFXtNY5aLfp6pzPT47wp6dfyOe/eCm9L1m6DwTSbY8deyarhslhTTqBlS8V6NxR9RNwAZ9B2fHky5rxfkW54skrS7JmOfDXA27/s18873b88If/Ps9ZOs3vffkbmfzzy5isaNa/LtC7W8HXF+RPcoR7Ur7hlbdw4K8n2D//DAmwb7nPseP/vHmep7zrZnwWCJknPWkbdVcSrUmUEz/rYMT+Dq3xS5ZghIFUdae+7cWy2b2hO+qZv/8mPvt9vwTAk3/9XehS8eWffvVZ7/+lV8//7Zt+7BbKjoVgaW14sg1NtSwMYFV5zHaB3tiWhfFVl4vi5u4H8OMJwPntBGqGMrERmlVB1OxGZhaMxshj6vOf2sNOwSAD/jSdV+e1MspLV1h7ZpvDHzgJgxGq36Va7VIsJaggAK7ygWRtjH7gNCGXbCx/6gwAPrHofSuE7QGq20GtrsjwACAvZJFZFFBVUwClkuHgWReTTaDq2T+j5rN8olYEtVRU+ghAJQOKEBU7Z/XRtlZyHdKkAasCxKB6h5ooVOXQmyO5JlmL77Xx3ZT3fGRvD+oLqZfeIAMm7UJc2Hr+8INv4LoX3iibGwK3n8XjelGL+qqs+1vQ9dhtTed3l0lGDr22De0Wut8jrG+IJZiv7f+iX73Scs6/974pC7zOCgFUuy09bVGiT26gQ8CfPoNvcghsY6UooLiAtLVKEOQ6omwSB4rl1CasVmKbGPauo4IlMYSWWAiGTE9zImK4tTEaXQlreDVk2LGX30vfqGH699eqaE3ZnipNdeHRrlbNyTUbpag6lqpj0VWg6mhcqkm3HclQPgc7gm7MDXQtyYwKRlF2NKYIDaADCt3TmEnAlAE7OvtX9t737w45XtQTt1wq+0HnQeg9UNF+YCzAyGg8v+ZqZdDriL3X9iAOpW1UaBlY6uF7GdtX9Rhcquk8GGA84di9v3rebXjR33wn1aGE7gM56d2bTVaPnlSoU+tUVx3Bt1Ps2pCjV70aBiP89jYAt03+Y/M8R5/+WlAlVAbtHHaUE7JUyEBai5JtawhpSmj3UWsb06EzQKctx2xZQWI59tmbOFc9/4dubhwJXn7d21BV2DNXYrZmHQqe/4M3o13ADAvJhikKUcalqQzAQ0CNC7Hn9l6IMtFVAthtgXu22mkjFjz1un2212vAll3EI70n0Dz3/zj4N72u9Lh50WTaqG6HsNIj1ASV0klmzWBIqCrcYAiDoWRjtVuoNMWPx+huB9ot+T68J+QFbnNL3n8N5DgHg/P0o+foaevHPdHBFZQWACmuI4Jz4jCyw9KtrllQS7XFDqxR+2vdkGv1xKGCfL52E7FjtxrXSajahvff+vCzsq574Y1xHiO2YLf/+T/h+m9+Y2OPeetHfulhP/eiFrWoi7cuWoDlpptu4vWvfz2vfOUrefe73w1ACIE3velN/MZv/Abr6+s8//nP59d//dd59rOf/fhu7KIe1Vr3I/bpDgB33nmY1c9pzLBEj3PxSoap9RYIq61ugtKUEEM5g/PTBWP9M0lEhpvnTWMT9pIj1+DJLOii1bSRieHMYUbKi1bC0KkZ3iY2dLVyxWjQiTRViSXYOMz1oPNSGBWpZFjgAkGBmTh0rmitaXSlsCPINj0metqrQPQV1XirYqg3jI4QLceEzVVbKzkNZVcLgzBEuyUtQEvZpbFa8BqqrtiHyWcM1778pgUr46ug3vDs/x+/+rnv5Iujw/zB55+NvqtNVkG2Af27J2Id5D2ENqhEPM5PDFEnzmC3tiXYc98yYalLSAyjK/u01zTD+/dheswx089Vd26vopXnk9/zJvie6e1X/dN38X3f+Fd8fO0y7gyHSLdkkaYvOUw4s4Y7szb3PF/6GVkcPun/egc+Wqlna9A+maN8EA/elrCalA9UXRNVYQJC5suafPncagB//BoAfv7EcxlvfRPXvOUWqk5Ao0i3FFe/+2Z8Erjrp85ujVdX1ZXjqX0m0DojiywzqTBbE/LLlpgc7JOdyTCTCj0qqFbaJPkh1D33E6ryrCy2s9bOhebOPzs3v7DZwytZ/umpesRaOZ9ZQ7GcMLoEisN91MEew8tblO3IU8wU/fsrOndtoc5syrlZKXSviwptOU+Xpdg+OkfY2kbN2n7tDOqsgYWv9qptFKJiKHgvSsN6EGTtvJXlrL1PVCkpK0CYUopANc1hqRyqDsatnAxj8gI9ybntr84/SDrnZoeoGlOg1FSl8p4PCcP7FS84t9XOohb11VZ2qHAHHWrN0L97THJqAAPx3VdZGnMTducSBOcEzK5V18E3ypX6XKhsVA+Ox3LOjIBKOAvbO0RG+Ryje2Yo1yj6gjB+JYfFCFHISlC2qqZgiSolFwKtCanFWyV9cMxR8akSJcpYoStPsl2iT5Sk/ZTJgYyyp0mGnmQo2SrKI9f6wuE6iQTfdzT5ihaL2iAWYgTpjyWvIioyTcwQNEpUM6mospWHYKDsKUwutwetyTYVR5/5uvMOoBf1xK+/vuVVPP+HbqZ/9wR7eij96yRvVLV1KaB2EwjjCX6SNyCjSixsbaOzjOX1If0vdCWf7wLLjjxVa3eOw3d+x1vw+y+j6hqxyaSLPRMIm9uihtmh8jh2h1go3/CN/ySy4i2hZdHbE9jaRo2sACohCGFiqS+uCLV9mVL4XksGwOXZG8Wr/++34rcTekcs3/Rjt2CKgD2QkA48L3vF2wmaCxpMJyMvuUg2Zr1FYILhGDVKpwRIYwgrS6jhaPreo3XhQ+pnYZ4gs+NcN6dQ2cM2da/71qqKxrqqlUUFkEO1MgFIQIAiILRS1FokehqD7rTRnY6AMVFlVxNb/NZAetqinOtpg3uCE3weg2o+3/p3pQnWolK/6zhobN+0zHVUmjRrziacvmUjga6C0snxoJW4E4SAHive/4FHBpbXlpg6eIKX88FtMYvr+ucuwJVFfeXKPxR/5kU95nVRAiwf+chH+I3f+A2+/uu/fu72d7zjHdx8883823/7b7nmmmu48cYbue6667jjjjvo9/uP09Yu6tGuGlwB+KZn3oV+VuCvL38aT/6fBntiE0AWlsQGJcqi96xoEaZMVJJ02jDTdDfMvuCb7AKVZQ0zIhRFI2HdKREOZTUdTqpkyvirg+2raW4LSSJsnsjQw2qqlTZmVKJysVeQcDRF1dISCqyRYNAy0Fr3tNaF2WfygBlXEtSGeH76TEujUQFe8lJMtASzOeJ1HfuaKoNkLKGgQUHZVxFokcEvWizEgoVKT0Gaxm90URd9/cGJr+OLxw/S+qs2vQcDZVeRbUYW6TCHRJighED7RC4Li0rygvx4gtYauh2KIx3M2GFaikN/VYp10PnFK1z1z96F7xzk+AOX8rzfuIWP/ubUfu7Of/Qz3PLZV3DlJWvcap7FHZPLaZ1psa/ah2lnmLzghm/4RVwvm7Pm0CODzwLVPke2bgmJxmwWKBcol1KKvqHsqSZI19uprV7VgqoH5VLgBbe/lm8/fCdXZGd4RvYA17Ur3j9RfGL8JP7LJ76JfR9OWf5yiWtpxvvFmqx1SoJJj37wlWgC//M7fo0n/davkO2b0Gvn5KVleLyH2dYkfcXKlwIrn9oQxl8rEzvD8YRsa0C63MettKm6KSaGCpeH+9hTLcJ2+bA9ooE5pt55LaZmSvKujJxnfSCsLhHSqLhToEtkYaMU/S8OyQ+0WHtWwvggtNY1apQTtgfTjJV60JcmqDRtLBUAqFUqXyt1jgwV+RevK2H6vaskafIB5AbVDFcaa0prGuBFwdSSwUf7tUkug4M63PkCWLoX/p5k4Knc/L56Icq2RS3qq6le8l0f5y+OX8nk7lU2n9rGXNlm+XMZ6q4HCHkRwYyz9K/1cR3taiTXYGaoWA//xpIPUWdw6ZodrDS6152eG6J1jy/nj8ua9T2njKvzwJJIavJBcsxKB4mh6lpc16KqgE80rqVxqViz2LFDlYGybwhGrrfJlijadF4SWpZk4Ei3K1TpGzKBqrwANS3bnD+Ul77UTgJ24jFjjy49wSrKdrTVhahwket61VLUQcPKExXekh+nneQ/2bESVvmivipq6ctj7PENWd8liWSV+FllrpJdwnsh2UUlcGgyTKLlXgxO16c3Lvia+IpvfTO2bVk6M+GG57yBWz/5luZvf/hBUWx+x/f8Cq5t0GVAd1J0py2vm8L1vR9GJQm3rv9W8ziVlwSt8cttGfBuT+Q4zgt5b2kKnbYoWmpS02AkSpFWgltpE3oJLz36DsquJl/W+FRR9GHwnJxQWMzQ0D0eaK07VBUwuZN1ngaC4oX/27sYXK6xI/jYv3wV177sJsq+xSeKzScbWuuB/lYloPF4Mj2evBel8mAowFWaoJSWzz9LReEyGErG4CPpZ2FXT/twnq/Jt/NRGVHvE94TxmPUJAdrCKsr+G6G2ZoQNjZj1l+JygUoVzEjJAzH8wShfPLI3uPFVHtZDNe3q2hjFz/rEPzUdjit77ajr01EjY21uG6Gqmcz9f0iGUAVpRwX7VZz26x938MuF9DBi3Xujj/d9lfnt49c1KIW9dVZFx3AMhgM+IEf+AF+8zd/kxtvvLG5PYTAu9/9bt7whjfw/d///QD8u3/37zh8+DD/6T/9J37sx37s8drkRT2G9XtPeQ8Ab1+5i9+/4zvZ/8X7UfECHqpK5MZRMhpiJouqGXXONeGhyhhUkuD7LfS4K810XFCGoqQOu1NZhu73oHL48RiVZfL3udD7OsPA7R5SxteRHIUQ5elOfldKQA6lCFqj80q2OzH4zOJTQ9UxshhsK2EDArr0olSJw6oQgRhAPERjMHfVEZClfcZjck0wEjJsCsnCkLwWWWwyCmIx5uR3bcRSqV6cag1M4NM3nSN3ZVEXba2kE5b7Y3I6tNYddiRM0aqfYEYF40t7YBTd+3NUgOpAD5vnqODR7Ta0WxQHu8CFsdx21b6Cr7viQQ49Z5sP3fr1u/78T2+/AZ949EpBemDMqRe0yPd1OPhXhvT0EN9OqHoJL/nudwDwgf/589ihxrUD2MBkFSb7Evqnx+hxTrCaqq1xiUYFGcZ4q8SHO14lq27gy698Nc/8/TfxB3c+k6fsP8O/OvMiJvf0yU5pkgFcdq+jfWqMKj3pGU/rlAywy56l7Bnu+PiV4BXP+w+3cKgyeNNj4+ldgoWVLyl69zvaJ3PsPacgF6UGIUhgapKI3cDGJvrLHru6wvjrr6Bqi5d3srqCGo1ABYKbV9Q95KrtBs4DtDR/SxNUpyPnNGvwrZRgNZSO1skJBz/RIv3MvfiNTbCWzoFV7OQQJ57XkvOYUrL4BKjU1B6izpa5mIM7H606V5hrVA/VTFBljNi/RWseebyAK6JcMTJkqpVGwU5BfxfkcdaIIqi+z6NQf3Tba3j5tW+Ta4wW/+trX3bTeS1HFrWor9a6bt+nGLuEPz64zHpmsGPQRZ/lMz3C5jZhkp91KBiKchoG7KuZPMEIelsjA9alJdTSEnhH2BoQxhO5T6cjuQBlJdeVfn8ezK5fJ/a0vhSlmzII8JoosSY0hpBGho5z+G5K0RcQRJdebGaNwieKMuYQVpmiailMObVXwYPvpLi2XHRV6QmJpkpSLKC35XqIR7JXSk/rtMeORIFqSmHLA7hW0qi2dalJBhXJtliFVS1L98ESO3aSYbGlGVxi+di/XPSzX63lMoOtr3EhWjUnUYVgTBMWHoYxHyQqFECUYkJaUBw78S8e8muHRFO1DW41pX3/3vdp3z+QtV9iqJZa6NYh7Kk2nF6TdaLRHD38E0J2OP7PoazEAtAFFIGQWJS1QlTxkkekiD1aJEmQikOCmpSoqsUffvB1vOR/+RV8ojAlVB1orQXa70uZrCq6JwIrn1yX7KayEvCm0ya0U8p9bUzhqdqabD1w/XN/iaSoqNrLbD3Fojws3ZWT3rMGm9syLI/boXpdyccbjfHDEQyGYl04Gsn6upVJdt5AMqCaPNNH0gdGkuTs7+cqlWWoOtM19qbifuEI2wPwHh/zAFVUUegQ0HofPkvkfQyGYp2Y56IsHI4W/eysAv5s5CFm1Dvxs22UZiFMCbP1cZkk0OtMwZU481CVF6u2qGipyQDKBcJDUJ+dq27/sFiCYUQRdsPX/wK3/vWN533coha1qK/uuugAlp/6qZ/iu7/7u/nO7/zOOYDlzjvv5Pjx47ziFa9obsuyjJe85CV86EMfOivAkuc5eR1ODmxtbT12G7+oR73+27DLfzzxAt79pN/n/T9yDdyKMKXLKg4n/TRsWWsBWWoJqp9e6EMlNjRoDVkKwxFhNJphN4m8WbUy+bsXxonYqlTzoU47LHQaKbJjGjgYG7cmZFBrgtYiXfcepRT5SoZ2ATsQe7CqZ6lakhOhPFRtWTx6Y0FFawQFugI30tiRvG+fCCMvaJrgQZ+InYIdC8BSZQrloGpLMLidBGH8ZYp028vjlIQ9/uVvnT1PYlFfHfUtK3fypM4Z/tvyCxkdMIyOKCYHA6pKWfl8woG/3EAVFb6dUBzo4LIEwn7svV7UC1aTnBpy66ffsufz3/DsN5z1bwBpu+SyTlSj7UEi/fIr5/fBJ/+rdzJ4kmeyP2P/pxL6d0/wRhGsYrJi+IafvgV/hdjmhSDhuQC+k2A2KsxWTpqKfcif/u7P8E0/dgtbVwdCAurwBJtW+HHCVf/hJswDS3QfgHtYZul04OCmAzxm4jDDCjPMoaqZaXIM6nFBumm57I/a2FGFHZSYrTFozYGPafGpzyNQG+1hGrZwCDAcScjlch+lDeHMGv7MGq0/HUiwY7tF2BqIHUFmI7hccb5wyPPWebJKGnA6ywj7RCUq4ZAGPS7RwwlUjvYd91BtbqFbWbMgUpVn5UuOdLOaMqiJyr/GI/tryyLh4VRNFKiJA2glw4wZReGtm/+aG5Z+JAbb66k/dVnKojNaJqC0KFjKklBVjTLm2F23PGrbq3xAyyEjr/kQlFKLOnct+tmLr0Y+Q6sAHce+v9C0zziGhy2Db7yU3kfvww+GcsedbN8dNWulE5wTclFZieqjnaFOr83lUiljJDegncow1hhhj9fqlnMFSWs1HXL5AMqjnJxTfCvFdWy036qP9QBEdahRMdNP4y0kI0i25SIfUoNLE8YH0mj3JaoXFcAlGtNPxaLUiZrWtwwuM/g0WpKNRL1SrGQEJeQjl2pM7rGbE6yHkBnsRAbNunD84SO0iFnUxVH5akL2oJX1W6eN77ZQ3qPXt0UpkedTN4NU8skwBsaTxlr6tvV/t+dzX9/9IQBuG/723i+uxKouaJoh8M667aPzbPfrv+VNVAf76OUO6o675EYvYfFHr/xpCfFWShRfqZW1Y8xLoygEELElxz57E0eveQ2+38KnFteeqr9edv3bwSiSoad1akIwQuzTW2NCalDDnHBmjVD3Z4lFTXJUu0XiHD5Zon9PIBl6ASOMIhlW7PuiItksSO49I2BEGcmC0aKQEFAHVqHbRa8sw3iCP3WGUBRCwqnX6PF8owzn7UUvqC40yyWu90O9PofmfFfPFppz5IySuCa4+G6KjuSWUJTTDKtF7U0Umr2tnpFEpXVtqa5Aets4k7l1/be44cA/lP41qy3xPD4RAF+VvlGqzP2rxNXk1o+/+dF7S5XHpxZsmFeOL2pRX8FyuzRUi3o866ICWH7nd36Hj33sY3zkIx/Z9bfjx48DcPjw4bnbDx8+zN13333W57zpppt405sWMr6LtW6847sZfnQ/az9sOfb0P+DoFT+AfvAMYTDE5xO5OJeVDCGJze0sq7u28/KBMBqhBxOxRqmqqcentY0vqDIGqqh6iT63TYO1cxEan1fN2N8H50QqXbOjIpNKFQX0W6hcbgtKYUcVrm0p+ymupSl7YjfkrSw4J/sUxTINeJJuSwZLMJAvG5Kh2IfpSpQqQcN4vwTVm1wep5Y0Jg9oF3CJwk7kviCgS83yyPdJsP2nb1qAK4+krnvRW3jPEzzE+QW3v5ZvO7SPL24fJNmS/SHdUriW2GiUXYXaGsFwiO52sVmCzjX25CaUJWpzIEP0ST73vDd84z9h/TkrDC9RXJae+9KTP9jlj9zT6LRzDv71+VdVd/3Yz3LNjbdQPCnnRC9h42kdPvfGV3Hty29iss/wiXe/iif/9tsxWcWzLjnJHa3DbGy0yTaTZh83o4o/fc9reenRd2APWdonFYNnFTz3ivvxQfHZE4fJ11skBaRbgaUvT7DDEjUpUHk1tWup8yt8gG6bYDU697A+pHdmMBMGnKLyUsCV7SFhIhYKdWgm0KgPQp4L6/jqKyXUvjn3KAGSo6WWXupDt4MqSvyZNebC6R/DEoaewnUEudJ5iZ4U8j6yBLV/H/qqS+W+HtQox26M6Z0ZofICf/ykBNPXC/AnYp0rBPXRfI1z/nlHA11n38yWD81+c+vmvwZkAFTbZuIik1THgUBZykDDGLFP8FquUc5z7PRvPCpva65CQBcxqwEB5L7zJW9dDDofhVr0sxdfrZgRma7I7k5ZumtCcnLA5pMPcO/3Oa4Il9H94DCSfWhsvZShyQVoyDtKC2smhtOHXGwXVStDIWoXjEaFyNaPyjRVRGZ6rSA8m9Xr7HnPObEg8h6Gw+lQyRjJ2s5TVIi2uKWT7CUTsBPpVb1VETgJVC1F1bNTa04D+YrGpZCMFO0zjnzJkC/rGHhvSLYdPlEMLk8oOwo7BhQkPY2uRJHdOS2vK8PfOPhSAT2pyPe3qDqGP/3d82eiLersdfSKVz661pGPUb3kf/kVkipInxR7NFXZKaEuzxtLZ3yIuWTIOlAr2d/d/PX+6OGfmIZqn6f0sCALgaqboDdHF7TNt33kl7juhTdSrmRkRw5x7PNv54Z9P4qyhmP3vJujz3o9JAbfTnAti04MdjwBN5RjPl7vj1750wKcFhVuucX4cIIuAumW2H7ZwqOcx2yMYG1DrJmi+wNaT0ERY+Q8klgBZAdjWnc7spOpbMNSGwLocUX79BA1HMFwPAVXfJ15asQZ4r4H0QdWKZ60Hztoo7YHhKFrCCPA1KIbRJVt+Ir0s/J6bqqqjuCSjionum1CvyPgda2WGOa4Q0vocYk9sYk7s/6EV6s0mVqPY087vVvt2aimKhUzdSMBUF5za+xJr+/98NSyr84Xqjy6BjDrn1os3OucsmN33vyovbW6glKS9euFQPCKb3szt//5o2A/tqhFLeqirYsGYLn33nt55Stfye23306r1Trr/dSOxUEIYddts/W6172OV796OjTe2triiiuueOQbvKjHrPSRzzeh0letrPG54X6+/0M/wRde+m+57+VLXPnfJ4STp4EIcARPKIqGjRtq5t0so6auwUj8d4tCHptMs1xUK5OLv3NihzOe4Eej8zclTX6LLIRDbB6awZj30oRqjVtuy0OMlkBPwLU1ZUfAFRVEhVIsweQg+CRED2kolyBbk9BOl8n9dClgDEFC6n0KKAjRDkwFAFHCuITGJmx4xIAHmweqtiLfJ+Gfi3pkFfboNa99mYSoPhFscp70r98BrPL7x1fQZ1JWTwWSUcCOHbowbF0NgysCxZP3k96Rw2iEPSmD2nDqjBwnuQzWb137TQCOXv2z4B1qkrOiFOmgf35v2n5JCOA+sErvE2fxVNhRn/+FV3HVf7yJF33rZ/nk6Ut4yjtv5kszgaJ3/dBr+O4P/mP+90s+zOmDS/xqdS0bGynZVoLJA+2TOdc/75cIl/ZorTs2nm4hKD5/+iD7uiPKsUXl4jetq8jEH+awNZAhdb1Yr5lsZQHrRWM9gXOwXUIrw11xkGJ/hhk5imVL+2QPe88pwmgkSruyziBJoy2BACXqgROQpcJqNhrd7RAOrBJacp7yiRy3qnToEAibW/jx+NFdlO4RBBomOb6bsnV1h9aZis7nN2VoB9Bu4Q70GVzZIRk4dBnwWY9Tz7Ec/GRF++7N5r0+EUPqJUQ+oBMrSp2qitkDVkJKB4NH/vlewCK0tqHwEbiU60nM/qqZfjXzb9YaDKb3q+IQyZiGbXvD8t+Tz74ljMGQWVSeSdbYY1ByPQqoGghS6lGza/har0U/e/HV9179cTrqmfzh0jfgMk1aOZbvqth8huHEtxiefOJK9GfunCpZ6lK1V31UpcUBUxOSXOcLxsc1iu46n7AoZG1UlIT9y6itEWF9Q47NncHSO0hDqICaza+Ig2lCQFmDGWWkmxbXFlWoN9HSNoiqxCcaFAKMAONVg0/EfjbUWYAdyFcVBIOdBCb7NcqBSw3j/WKVWyxN8wBdKja4JpcslXF8omQY8GlgdFkHM/FoF5jst1TZ4pzzWNXRS34KtObY/f/08d4Urvv2G8mcR49L6Umcg7FDOU9Y6eGXO+h6QDoYyj6d+wjGTMPSb5v8R0Cul/W1VUUl6FmVK3Vp6RfTUyPYvHBV4Xs+9Atc+9K3Mn7KflF9z2SwHPvMW3nFt70ZlxmqnsXtS+gWy2gfogV1va4UEoXf10OFQLrpptZ9pUdVLn42pYBMtS02RBJGJBDWdtqRFBjGE6gqVKeNWV4ipIaQJfhWQnAWVaYCsFADw2pqw1YUBOfwp06TRtWNH48h+CmoErM36vW6ikDXVN38GFbcDtXtTPv5+JmGTpvi0r702fGc51qGfNVy5lma1c96lj8nam0XLc6eaKVsIt+lTdC9XswYMihrcRsbj24/uwfxdHo3+Y59VK0r7adEAGNk3QMCjnjPsUgYAlBJIvOZsgIlqpTb/upN3PANvyjXQStENp8K6E9iCMbs2oZHo0Jm0JOoxA+asFASLGpRX/N10QAsH/3oRzl58iTPe97zmtucc3zwgx/kn/2zf8Ydd9wBiJLlkksuae5z8uTJXaqW2cqyjOwxGiQs6rGva/d/lo9d/hTsnW2++9KjdF92Cv+HKSpNpiGF0Yt2jo1TL05hTn3i1zeE+edD09CpVIamYTiGdkvUMHkurO29GpE9LMJmmce15BVj5Lm0lnyFyIQJceBUtQ2ubciXNGVPLLx0GXAtWXx6K5ZgAL7l0UsFo06KGUu+ik8VuhYR6Olwv1a52AlkG6JsmawqJgcCyUAR1hSuBXYobIx8HxQrnjv/0YLt90irDrSs69qX3zT9/xMgi+Duv/fzPOVdN9M6pTCFqFeUF7u4ZKRINzWjywLjgynpvW2xEuq2UKWb+gxTorTm+u4PcdvwtwlbW6hWS3yjL7QUVJsZyRCOffmde96lthm79uU3UbUNo0OWf/hzf8zXte5jLX8pn8lWdj3mf37Hr/Fbn38xT0pP8byn3s1f2cvR97bp3acYXNJm+e6EZKvivX/0Op79mlso9muG9/cYtjskJxKyMzIU0mUgWBkeKRVl60UpIGySiMVgBBhUbTNQ2yH1uwQrHvRbV2ZM9kPrdIfWlVfQ/+Iwqj9KqgM9zCBH3Xtc1Cta4YcjCdQMnlA4fBii05Tx1Zc3AKwdCkpq7SraGvQZcMMLAIIfas3mTuU5ZmOMKdqkGwV+pQuqx+RIh8ERy/By2HeHp1gWJvJkH+z/TEXnY/fEob8nVBWm38dtbz+62/kIq7ENQVjgev8++S6LEjoZppURRmP8rKXkuWpW7Vj/fq67z7IMZ7IYgg8EX8kiNZiGRX7r+m9xw9KPcOvWvwHg+tYP1A/gtuF/3P38rUweayMBwRgZuPrHZojhreSbeZDshRD4ww88sVV9F0st+tmLs65tO9SRMcVyi1YroX3vgEMfXmbt2YHtqzqs3NtDjUaSIRA8ErRnmoGjCjPWt7Gac9ZojK8tbZChoKqtGkdjWF0RRer2QGwp9yKk7ehp6+euLW6V0oRQTYeRQaxt7QCqXkKZaVxL7Gl1GXDR0isZyDZNVgUw0RWoQraxainKLkz2K9qngQD5igAwVRuqLkICGguhSEdlqbcKLOTLivEhyM4olu8OjPcbsk1P0DA6oPjkzYu8lUdae6lXjl72j5pr0dFLfopjD/76V3qz5uo9f/oL3PD1v4AaxCBxFe3tyhI1LgipJXQy1DAjDMdCXIgZmaGYKimub/0At03+I348Qbey5vp6IRWMkTyIojpnhkvdMx+9+mchsfhOxslrV9j3+aoh0cxWzZJ/2fVvx1vD5FAH20vRVcBsTyR7Yn2TYw/+Otc/95dQzpKuF2KNtp0LGSoSNGpQIUATBt84MAQ/zYFyrsmpAcRCLQSU1qgsRbdbspa1oohVINZirZb0euOJgC1aiWJ5fUPOXSoqDUDs2eI+VJ+Nantv5QOhepR7kz0UHKGqBEzqdqIKp54bILbdRuNTzdZVLcb7FWUfVj8X2PdnD8JYQuxNr/eEBFlCVU6vD5McfXB/7GkLzIH9hOHo4ROzdvazO37XiW3A/51/FxJQCU5DKo4jt67/Fjfs+9FGjQ2inKv71p0grhoXkj1Wk3esxiWpOHacxZ7vkZbsC2LTF5RaqFcW9RWvEBRuLwbv41CPzVF28dVFA7Bce+21fPKTn5y77Ud+5Ed4xjOewWte8xquvvpqjhw5wnve8x6e+9znAlAUBR/4wAd4+9vf/nhs8qIew6pVLC/ufIF3rua07mzzuU9cyX/73nfzk1f/NEsnlgGaELrga8Zs3UDF7IC6yai9q4sZn1Slp9YpzsWmT0mTWMvJYW8Z8MyCtLFygOiBb1BZtGjodsB7QiqZBMEoXCehXLIUfU3ZVlQdcK0aIIl5KhZMoaaKiE6FzRx55mGk0ROFLsAUwuzzCeAj897Jz3QzYPNAvqzJ9wfsFUOKicWlLUwhShaUvO4CXHls6/EGVmbLTGRJk24GkpGn6Bt8nKfoCsxIM1mF7qElzPaE0ZOWSAYV9k6NLwrZ341pGH+3Pgybobt+8LXn/PsL/u670M9a5RUv+GVUotm+vMXwcvjw+lWwDzaL1ln32YlP+MDwGQAcPrDFgxspk/2G7v3IEGdVLB98CnqiBcisFFXP0zmuaZ/xJCOPcgG31EZbi17XhMFwGqA6a3GQSdgw2kjjH/2vVYDugw470owOKSb7NetP65NsQ7YVWLq7wK5FRqXRqLRF2N6Wc9WsT/TmFmbiGB1K0KUAo2gldhTpKrbdwtx/fBdwUTMF6++rZhWet2Z9p2fY0ur0Gq21PsEq9EaB67XIlzQbzwwsP2ON5GPLpBsl2Zph3+c86b1rcdgR8FG5YtKvgExuJ8Bxvrsbg+73JZugrAiTiShYjJbQ2BBQWYpZXpIHjCe4za0m62BXzby2Oh+jLm5rzfQDWaD6chpM1DDK4+/X9354x8sFbi/+09lfw0arFCeMV5UYfCvF24Tv/I637AKFH069/Nq3AeBTjTJKAq2VFvZsvvAmX9TXdukjn8flb2d0SNO7O8Gc3KJ/d4vx/haTFUV15SFsVeE3NvHxPN2QgABfSn/b9LMzfwtF0ZxzlFbT830ZCQGDkfS0VRVVKG7v68AsyLLDqnBn5hNehlmq8uhCo52mSDVVW6Eqha4k2N5bhR17IXPkHl1Jv+kTsf0K25BuQWvdEZTBW0XVBpSot3VeW2kK0KIcVD3pd/N9UFyZUy4l6MqgPBR9hcsW4MpXop4I6pWmXLRu9VMFl/RpHjUuJYMsTVCtjFAUElAeAu7MWgQWHLeXvwNw7mvpWer2D5974Hr06p+F4NGHD3H0ileKkrTVplppoUtA7c5oqeval92EsgozdoREU3WsKM5Ti5qU0n+CqGgqL4iFR97zdimq6UQAjeCc/N8YUbbVJMX63BJtRdXMujg4J31DmkgPsbElyp4sE9vBVgaJWACqtS3pl4wMwFX9+AjeKJugum35XqyV80rdS8cM1VlXiV193CyZUemz92A7aycpEqTXy3MZmteq4U4bupJ9oyqHKRxLd4KdpJhJoHv3dkOm8mX1leln4RH1tHgBVjCmUeGrJMH0e1CU+PEYP548bILWdMbiojJyem1RNhElfjzuZkG92uHjhtV/IEqi2SrLcxL2glKEJL6uVQSjCVqhnH/U7Luuf94vyRqwlwmgqBRUEBYZLIta1KK4iACWfr/P133d183d1u122b9/f3P7T//0T/PWt76Vpz3taTztaU/jrW99K51Oh7/7d//u47HJi/oK1F+Mr0I90CLbDCx9IHDbtV/Hk3/2c5z8mSdjv1CKr38TFj3DTolNs7Ialdhp8+ing6vakqVuytXKMn61R9VNMYMcPv3FGf/Ssy9IGxaQ0SJr7bRlMJem+F5GSGt7H02xkjLZZyi7iqIPLvYV3oDPAtWSF5q6U2ADQQdUKXYLrtKoicaMFemWLDiDkcWmqgRsMZMIsJSyiN1eVeSrwGVjksThKkN1SUE1NJiRxkzEPmxRj0299317Aysvv/ZtoOF97zk30PBY1Off8Cqe8zO30D4jdk4bTzGMLgvoQlRTyUCyWPIDGVkAXXj0JAKQcfhTL0YfSb30vT/L+6/dW73irWK8XzHZ16NYgrIHBPj4x67mr9KruOvHfvasz3tFusayGXFZtsFar8vvHF+h80nD6mdH6GGBPrPJ0Steif4/niwP6JfgFV7B4EpF60ydS5Qw2Sf2Je3TbdIHtgVgGY5kEdppQ7tF/uRVTnxTRjqA5S+XuJZmcImhasHy3Y7OyQqfJLgMJquw/cyKQa5RPiV9QKOW+jAeiz3V5hY6UdFyUMmCU2uStTHVlSnGwOhwSueEMJF9aigP9rD2UviUqDwbYLkOj9RalHTpPrGS2NzG55OzfzGzwDGmYTb6zS2yv74bv7mFB0y/z77jLXR5BZsn93Pg5AC9NcEaxeTSfvTEV/jxONo3elHaPBYVwShljLy3h7AgDc7ht7fFJiyNIdCAUlpyhtptyJKGLae6bUy7RRgMcZtbZ3+dekG/l51Cvc2JlQEp86xObYo5e0uV2On3GbO9bjjwDwmDIUorrm//YDMcuW2wI6i3qkR1NaPKCamJg07Dy17xdv7o9tcAorg72zlrZ738OgFV3vee16JirpiuBJgMRlSaqvJnHRwtalFfS9XuT0iGidj1lCXpl05wKBxi7VltNp7eYV91BD2eRAb3dHDYMMuDB0w8z9HYGdZDK0DOKVkGzqHbbdwVh8EozOltwvoGvqymOQN7VT2I9EEsEmFOVaeyFNIUVVWokSfEUO3RQUPZk57WjqF9WhQnwyMGFQy6ABX965ULmFJyAv0IyQgsAr37S4JRjA5Zqo4i2VYyfI6nTJ/CcFmyAst+wC05QqnRTjG8TPrfdFOIR4t67OpswMrRgz/OsVP/8iu8NVK3fvotHD3yk/JLr4vvZHKdBMnPizkhylpZ73kvWSzGEHz1qPSz5yQr1Nf9RKxHQ2rwWYIuPStfrvjA//i5sz7ve//odbzs+rcTErGRJlHoTSd5ooMh/swa17d+APX0q1E+4DKDDhCCQfU60sflhdh9dTvTLKb1DZjkhKKU+2iF7nUJRw7g24nY0J7ZEhVM5QS4Umpqb+scdDqEflveS1EJiNVpizoEGqKiTqX/EzszsctGKxSGkNJkDO4CWWolSw2szPamxqBb2YUrMXbk6wXnJMu1BrNjVqoGrAsywPce5Rxd5xle1pK1fGIJozFKq8eun515z8qY6YzjAmtXT5smsgYIQYhgqRHQJbHoNBEr4vHkoalx6s9zDxCsBlt0r9vYKofxmBAt+lRiZeaSpdKbWsvRa17Dsc+/vTmOj17+j4W4ptR8rkoIkcAj/XjQ4gaighAEHZZXvOCXuf3PflGe5yHkSN3wDb8ISnHrx9/cqK/1pCRojW8ZlFK850O/cOGf0aIW9SiW54kC7i0s8uAiAlgupH7+53+e8XjMT/7kT7K+vs7zn/98br/9dvr9/uO9aYt6DEof+Tw/egTekr2L7Ss12Qb8h998BYe/9x6++OOaZ7x5SYadM2zf+uJe56JQlcKaSRNUmor/aFS6SCC9eMiqLIOqQp9YRycJfrmL6nXxa+uYXhs32Jsp0zCPtRJwpZVNVTFRwuoyQ9WRQ3GyzzA+KCy9sgchEQsvFPjlkrRXUE4soTToVsXK8gilAusbXVxuUE7hU1lsllp++kQAlWRbfpo8hth3FOMjgWrZsdKdMJ6kuI00MpwUdqSwQ/j02xZsv690ve+9r21Y349HVR0IWtieZgLJlmqAuc6JyDbzsHlNh3TL0/7SGXwuLK/3+N99yK/3q5/7Tj64JrlKV3bWuOUbf4d7T63y7P/3jQzv79H/oqF/vzTqH/rPP8Nf/Paredkr3i77aoCqazATz/uP/fx5X+t7r/44//mL30KiHA9Oljl0aAu9tb9h04fBEJUmLN3lCUYzIcWvlGQrEw49eZvtuy/BjhVFX3PqBY5gA6sfzdifO+xWjiorYSB2Mu7/zlW2v6HAtoboVsn2/1ihf29B94R8vsm2I1+xmDyQbgfSbYUpLKNLPWuvmHDqeat07j/Ayhc9y584hW5lceFPVDaIIk7ffwr7jCVcpiAoRkdSdBEwZUCVAZ/2SL7ciWqLTAb3k1zUdImVRYxSsLyEXurDA8eFtQbTBdIORV69iJ1dKLu19WYx69fWMUt9lj9+knRrFVVUqNEYkoT2F09DXuCPrEpWzL4+alLi7r5vqtB5FEpnLRlGKi0ARVXtXvRdQMBn857yCUTbxfq6wda2nOPTBHVwPyFLUEqh2i3scp/qnvv3ZloaMzcU2HMIEFnhKstQ+1cJ7Qw1GqMmOX57IEOROrBaixqoyWApyoatqyKYBYjdwqyXe7QsOfrkV8njXWhe27UeQcMeWezXvegtTduvYlCwa1lQj51lw6IWdbHVZ7/vl+D74IZv/CfQ78KZddIvn+RAdZD1p7cZXtmhP7kU9YW7Z9jbUQFX97NRmd2o0pg5rwRPcDQWuFopzP2nZKhbZwwUhTCwzwFAy3k/giw6BhLXFXvdkNop4OxjTqARgk+tUlE+/nSgnViCFX1QQZGtCznI5qCrQNnVmDJQZZqir/AJtM7Q2GJ6K89VdpHzilPgFWZkaJ2W+1dtUYInTzzHnq+JerzAlV1VVqjCoCon+/skl33YGELwqF5X1BvxOHm49dKj78COKoKC977/9ZhxxXUvvBEzzFHbY1HUIDZr9YD46BWvBEANA2ZbiDrv+ZPzh3L/0W2v4SXf9Q45jMeSsUJZTRUmSqO3xxIA7lJCovGZgJ9mnKFPbQjI0spwB/q4zJAqBafOSM9kDHr/Kv7QCq6b4lqGoBWtyqNOnBF74BhEjnONxRrbA1RVYdot3HKHcFnss0cFam0LVT9mxuJQhu9i560SK/aDaTLNeFIz55yortGJnT9nzZCIdK9HGI+nqt9z9ZZ1BkwkDvkZEktwcu7zG5voohRAwlpR4rVTlj6/hao85YEuyWgFYw/g7rn/0e1n03SqXoy9eyjP0tOe5zXne9oJbEsfq7YGTf6NWl6aOnh0O5g0EdDpQgGdeM1ptmlGka17PVhZiu4dDhUD7VVRyrwlSwXsqxUhlePoVa+GdsxgrhU30IAvAMe+8A4ArnvRW5p+Mxp/ELTCt8y82vIcGc2734/sgzc8+w0QLd1V5VF4QmqmvfOiFrWor/m6qAGW97///XO/K6V44xvfyBvf+MbHZXsW9fjUi771s3z8Pz+bYBSX3n6a8R2XEL5Xc/y6Ixz+z+uooiRUZbzQz/h+1otS5whjh6rtwWaUJ7XHvR8MUeNJo3bRoxHsW0EPhtKEnCvjIDKHAWH6AHTb+E5K1c+oOoaqYyh6itERRdkDnwYBR2wgtB22U3Fk3zaTyrL5YAc7UVSHAkoFWrbCb6TgJdA+6EDVEfsw1/F4GzAjjaoU2aY0GUFD2ZG/q0qxed+y2CwMRLVicsjWWbD9vkbrs78soNqLvv+dfOLXXsU3/+jN6BK2rlJsPkWRboIuDemWp/PAiHBmHYD3uP+867left3bGB1KGB3STA5Csez5By/9I/7bPV/PqEh51TPfy/35ET51/AghKOylnn91x0sI4XrCR5Y5clegfbIABVVb8/Jr38b73vvahlV/9FmvZ3LFMjq/cL/gv/3Uj/DjH/1BRlXKyXv2sXxQs+99J0DrRtK+8tGTbD3pCL7tUNbT6+T8rcs/xq896bvINjWT/YrLrz7FP3jSn/C2fdezkffpnkgJqs/gUsvaNzhWn3SGZa8YjTMmecKRz46wa0N8O6FcaYMGU3gBV85MQEP/7oStJ2ecfJGldckQfwncf3UbOMhyHAiEST71y4/nln1/dQbfSdHDnPzyZfJlizfR6zpVZJccho0tQlXJ+SxNpwvw2hoiLmR1r4vSWhh4M4u1OVDA6Ca0VFkbn2eGtaa0MEKLgtbxIWo4gcoRlrqE1KLyEp8YwhUH2Xh6l/1/cQq91AMfxKcb5HmsxY8eGhOwBlZ8UUy3uZoH2mufcZ1YAdcfold2qMpmQR4ABoWoWg7thzPrshDcOaCZYVqqxMow4ix5LLXVhVlZEcBuqSP3L8T2Q/sOYZILaB9Z6SHPgTgABWG771wMn43NmYg1HkasFLyNxIBq+h4uVL0CgAY9jkxg71G5E0sQYzBOWIa3feSXLvz5FrWor4EaX9Gn89mTAlCMRtgv3s/BtRVGV60wumqZ7qkl/MnTwA5QdgZkwTlhnqdJ87f63FKfE91g2AwKVZYKmzgEdLs9Bdf3KqWpw70pYu7KjH1QsBrXTVEeyn5C1dGoaE9rx1GRUgUmqxpTQP+eElN6xgcSfKIJGpJxwJ7xDRCDEtVqvqIpVqDYF0iGitaZgHYCsFRtyXAxE3lMNTYC3hSRZFSAeQwJ5Yt6Ytex4/+co4d/gmNffqfkxFQVdNrQ70VrVy+8Wx/VC3Egv7OnvWH5702JKZ02odemWu1StQ3JQB4zuqSFVaALR1CKF/ydd9G3GntqC8YTuQZH0sPRS35Ktu/BX2+Y9EcP/jgSQnHhw98P/MHP89Kj7yAYhd2uILG4tY2m5/APnkA99UqI6lGfGFxL41qW1kCG1qHbwrUsVc9iVrqYSS6q2OU+7uAKITWo0mOIWWprW0L0iCBOrSyBqcUW4zG63cYYje+kEjzeSjFpKiCFyhv1UHM+877JTFXGCMhSr93rbJbYp6vaRWLWrpbY19ZAi7W7lH+7aodF2E778DkyTFGgrJG+zMo5q+pn6EJIWdXlB7BnBnJOhd397EO03Gr62bKa2jzGz3h2+5uett16yD2zvNf4PWLwZY7yG3I92N5GdTrntREWxdd5QAal0e2W5OS24vWplOuI6nQgc9DrCmDhkSxAH2JGYLSyrS0pY5+7q89Grhc6iPIKrfBWEVxAlwGfTL/rY/e8+4I+mxu+MdqKhSDgSlRPqSB5nMr581oBLmpRi/raqYsaYFnUogD+/fN/i6/7vVvE17ms6HzmQa5ZX+XMc3qo/auwNZhrwHSaztuGhdisVP6czUHDGjQGtdTHP3hCFpben7VZmvendQSjUSYlZAmum1J1jPjS+8DwUk2+L1CtVtiu2BKlqSNLKnqtnKVswol7D9M+rvEpVIVme9iizErMWAAU1/ZgoqVY2+ONsPmUi+GgGdCGsi/3aZ0wogDoyOI3GYAdQToIECQ8dFGPT73vvV95e7Cd9Sf/Vay2/vK3Xs3TbrqFy771ftbHbT7x//nl8z72O7/jLeiJI/GeLNVULYUuFd37NP/h+LUs3RXoWHjnx7+fZBP6WwGXKT5+5Ol8pH8NT/kvY+ypEzAYSjOd2HkpeKzyQJc/uu01D/m9/cvn/Xuu/rV3sfxFjcmZC2O94et/Addr4Vpg1y1V5pkUln/xme8gu3qLk+0etDxq3OKHn/Yhfvhp8OStt3N6KCqy9LJtnr5/jdte8m4A/tUdL+Gmv/gu9HBESC16VJCtbYPSJPu6oBT6xDq0MnSasG9S0V5r4ZIOxZLGHFQMLofeXSuYjaEAF2MJF8bGc9DWAD1JIbFkf303GQhYcWQ/1WoX/8Bx+b1W8M0szlRhCCZHlRJ+GYpSwJXZvJC4sGsUEyCLF+eZ89U2yXTBXFWyrWVclEWljL7rQTAae1IWn/vvbMHyEmrfioBcW9v4rW2IjGtlk8Yuq1YYNts1u6iLt89anIXKo+ICdTabQKUpOrIcVZpglMJFSy1lEwh+jsG4F0vQPPlKCAF/3wMCyOe52BOsrsjnsrk1t426laE7HbmfUgLMxCGKTpJmuFM/BiKjMwbQAzLM6HbEiqcfF5+NVVg9UI2M3PFEBhRpen4GsfMxK0jjU0NIhKVuJo7rv+VNe4IhszZgs/Wi738nrcKjCicLZBAF0zhHtVJcZhprn0UtalHT+sD/+DmOPu3nZeDUahFGY3jwJJ1JQXHl6tTCJ5YyZk6lMrVtdKgws8Sbzc6qb6pKKCSc2g+Gctt57HSCcwLaGiPn9trOx1rI0sbytuwnYufVEgWJT6A0ArR4JVZdvQcrWg8OCZkhbRnKjqLsKaoWtM54dOXJly1BK4q+YrI/9q2nFOmmADUqxJ5129M6I6rbfEWJJe44KmBiVotykkm4qK/NqtWax+7/pxy95jWUR5bQE4fZHnPsszed87HX9364uQYrhKimRmNUUZKMCxJjGnvYpbUuTApRyFjDUrGMvu+kHGPOCzmllZ09n1Arjt33aw/5/b3/2M9z/be8CT3MwfkmL+b67g81ZBw1qVAqQePQlecPP/B6rv+WN6Ey6R3MsGwyIW94zhskl6adElLDe/5ELM5e8HfexdIXtvHrG9J/GCO9Zb2u9tIThggI+NEIdb8AuzraY6OVKBXKmP8U1QE41wSUKx2zM4yBKjTPS61iiWoOQjm3dm9AkQiyyG1nOa/tDGXf9WfVPHdwDmWizdnh/fJW2wnKBZI7TwqppiwJG1tw6ABqdUXOkzv6WbPUxw9HZ+1pd6qq5/pZx9TutraP3dHTqnarAdHP2s/Wr7Ozp33S5fh7RXUdihJW9zW2s7g9ZiRKN8H1QKOub9SV9d1m8sGCcygQu9gkgvNpqzm+gtUEG0Pjg0KVbtovGi0zG2vOecz61OBTARF9IgCLriAYhS48L7/ubbv61qNXy3r32Jfnramv/+Y3CpBijKiuqpnPzHlIjOQbLWpRj1PFju/x3oxFzdQCYFnUV0V96h2v4nn/8BbM0/bTOj5Ef+ZODj0oQfc7WSs75a2zDYPpdnYNFmcbmhAZ3+7ESWlatKI6fnLvjarZLpWEBepWhk46+COr+MxSrKSMDxiqlqLswviIJyxVHD68ySW9LVbSMUtWGquPnLqSz33pUpJTidh/9QUAKSeWMreQBkwVA09bnpDI/7M1TboR/axTsUnwFuxAblNBGH/9+0qCAtfWFD3NZEWyV3zGoxYKt6iLu6qe59SgR1karn/uL6EHY8KJU80CwVx2RPb5PCfkObasGmZr+/Mlrch+mj2OlDGsZhm628EPR43KoG7Cqx3hk69I/nduL3+H6/TfaqzIHkkI95f/8c80/3/yb7+d7vIYoz2D13VQOvDkfzWJ2vLAe9//xnM+V+cLKXYInZOefKXPl67sw0vkb9u+BU6hHzyFHwzxUVWnbAL3ResBa5thuD7h6dwRF6zOs885zOWX8uB3XUY66LH6sTWR1I8nhLwQNthoLAt8IyyvUBTy+M0tjFa7F1czuVGhEmAFJww8nJdF04zFRGOlGK0RJDRWVH4oAV5Upy3WY74GJRRsbssCMMsEeFnbgp6ES4WoqKEoUcMRYWu7AX70wf2E1SXUfccl1yXaNaI09rJLoZUR1jdEzXMetl5tE6YThep1ceubUBT46EFdb69ZXpLA57KaWk/UQfQ+SCBnuw3LfRgMCSdOoZb66CddQTizBpccZPPrVik7ChTo6jD7Pr3dsN68NVRWUS4ltO8doDdlqIk1hHaKOrkGwxHBewGnGhuIErW+DdYSDu8nJEbCNI0Su43NQWM50liEKcWta795zs9l/kPyYBJ8S9pCu1lgjQwy9gJXnv+DN6MPJOgy8OK/8SuoGA8GYKuAGRZin1DI8CTEQaxbapGvtvjAH5zfzm9Ri/parGNfeIdY9sU8k5AX+BMnSTY2d4U77xwcNrmAMSBat1tTxvSs3U098MpzXF77Hmr8JD87u3pGBWNW94k6rd0Sm7GOZC0EY/CZoVgyuFT6UJfSZPkNLxW/loN/XZGu5WCFRR9UVLmMRI0yvMRiJ4F8STcEoO6DYjcG0DpdkZ2eSLaD92LPYhS+m1H2U1xbU7U0ZVfhDZRLQoC240fjG1rURV+Vw25OpEfZHnLD0o9MlSs1YcEK6LCTnOFj6HldzRC+Vu5G1Wxt58S9D8h8eJasMZ40/Sww19PWQNDDqdlrdZ0ZoZ5ypRA6vnQPIByQ2Sy2sylJ1fYIhmPUMMGO2s3trbUKlZdNxhPRBqs598QeTj4XDa5owJd6va0Ti2q3Ub0uyvsIQMTPyxXiIhF8Y9NdP7YJsecCwGCvpT9t3tBuQKEBJ4yZKrNry9xZUgtMb6sc6vhp6PcwmwN5v0s9AQvWRM1PWRHOrEUyjZ7rZ936pvT8Z+lpXf0cZ31fQezN436ml5eoTq81Pa2JxCF7YJVQlJKL44Rc2oDh0IBVqt8TW8rtIUxy9OWXEk6eRi31Ka4+hE8NdlhiBjl2XBBOnJoCXVGJpTvtpn9XSQZpQhhPmn6+/u5UYkV1ba2AE6mlOrzc5KUo5zHjSvrGSD4SEEauPbd+/M3n/Gzq8olcZ4IGb+T/LpW+XCWGD/zP3f1nceUqKkzJgcpFYEcDlUfXyF3lICqyqDSumy2yVxa1qEXN1QJgWdRXTX30N17FN//9mymWluDpz6Z3zwR7x70X/HilFaGs0K1slxS2ZgTOgjEqePxk59ByR9V/m2GM+8xS9hN8onCpourExd9yRWdpzCW9LVazIZdmm5wpu3zizGVsDNvSLJhAvhpILxvSMh7vFUWeYDa0eFEnCt9x6HaFHySAFv/pjjQawdIoVkwOySDQOSkDsHLJUvRlm3wq9//0TYv8lUXBC//2u9i3qhlsLVMueYZXBbp3A/dVEoyb2BiQ3SZsD3bZEs0thFS0MYm3h9Ho3HL2mUVpffw9nJyX89XSx1PyfSnDKwqCV2THEwiThs133oqKr6KnSbcD2k0XgoYAlZIFR1E2n0cN/gYQpZsxYlUYpkqGetHqHzzBvs8fZHQkwS21MS5IrlNeQJ5HNUmINl1q+lgc4QI9mc+q4At+zhKMqmoWbvWgTm53U9sxH8DMsBHLSgA0a1FLPcJKH3pt9MageU6i0g/ncMdPojc2USvLhNkFZ/BU9z/Q/FoPQXZWc3t832bfsnz+k1wWpe12MyhR7ZbYptVZJVqhguQSqDr3Jk3kPec54cHRdLhoDcEaqmc9ieFlLcb7I7BuhWi39bQeduRJhq6xsctXDCbv0JpEm7dJgTqzScgLQs3SBPmbl9wcrIVWim8n+HTGR9olmHqxCqJCiYGzF1pHn/pzkKYCggBmkKMmlYRU9+cp3y/+vnfiUoVKxGrERfzTjrwsXj2yQB6XYLX4waMIrRTfz8j3t/Zc3C5qUYua1rG7buG6F96ItUaY8gCTHL9xHuuXmpBQhwkjw8ydAPuc6q+2l9lpWbhX1SDNYIhqt+V8bYycw1Ir9kNGUfQUZV+uifmK2NGGJGCGmv5diqqlUUspPlEMLrN4Kxlvugq01gLJKOASyX4LQL4ELlG01gPptqN97yYhtVRLGbr0mM0xjApMXqEqz7jdYbJPi+WulfOSt4uedlFww+o/ELKIn8kLMUaG4vUxoMQ+ek7BsEd/NDvwj3cSN4RzbcCMDXVdj0VPq0a5gJ8g9qzMAysXVLW96ozFqvIBVb/HGWsuZn6X/057/Z3nFf//Z++9w+y6yrP9e621y+nT1btsyQXjjg0GDDayJPhIviQQiAkQCBACIWAHCMEQSsCm2uQjlA8IBEj4QvlBCEkk2zQDNsXYGBsX2ZYsySqjKZpy6m5r/f5Y55yZkUbSqLd9X9dcmnLOPvucGe3zrvW87/NEMULXbB651xQ0hGxOQEx9zScLWGb/mspUpsm+m/z5ZNsvhG0AsSc36X7GTNRkrQnwZg0p6g3bICQEMkmIzloA3UvxdtgGHlEqYkYSiOMp9ayCqSLKHjXtdEjPm3hN4gjhZJBzZ2NGx+w0jBSo7i70eAVRLGDGxm0uoOO0p4JatsCilWPiOBCEtjmrXMGEEbKvx9qzLV9E2J0lKjnIUBMXXGTYnK7uKNlp68YkK0nHOntQrtj3nXAaOzZh62vh+5DNYJymyK8E2pPW0lhLVH1SU46rrPiiJCKc2S//6ufehClZ0T7xZfv6v7/ba1eic45tOg3susm+8LSnZ4wQoJq2zErYhoK8QPtqX4dOSTlmJObECLlPk4gsqcCSckqhItv9pgJDVHRhxQJkONfa7yQJ8c7+ve80uUteiqYntW+taXwfU6tNKoQnFqAH6p6ZbhTXRBEi0oQlhzhnp0TiHEQFQ1/fGLPyFeZmx+jzKnQ4NSKjqEcuUeggAolTF0TzGizqHqF/vIRUhmJnhaFCBqdmLZi0Y/CzEfVxDyNoZroABmubEIIMwK0a/HGNjAy12S7VuaLdQfjAx9JFaMoE2V0Bha0JXY84REWHzGADuWOIOAxtV5Rqds2Pju81ATa5SwyaE2SHEPo4Xb7LkeT+m6f5m3/nzO//0Af3/X/mc49cQfc9Dkmluu/n3lqYT7fJZTQ6aJDZMkJU6AWw4/P5jBUFWh3Ik6dXJvszH+zrPc3tTRDYBY/nth/DLjh1O+y4lefSvl42J0eAtq+/kAIRBEgh0N1FK2BIiXEUYnTcHjuKIIxsh1+9jursJBkbt4vM1jH3cR2ePCHlzJlFMjjc/p6Y1Uu4tAcjBd5ADbVzsJ1JQxxjEt2eLBLZrD03pex0SMa3i1Uh7GZnZDs4CULiRb2MnJUj6LDvQSK2djTGhco8iTdu1e3MSAJC0OgWJK6LU8njDJahVrMTK54L82chGpENnZUCMzJmH891MEJYj++8S6uWtl7v2bY4ZHynbdMz4+nDlhjjSDt1EiU2I+U37+N5V94IWDuwKG/Dbdt30wanptGOIMlIVEPj1GK7EHfVXt2Gz7vyRmSclt8pKTPh9rvexepL3wc5z1rsSYUUAqk1phGQlMt732mSYNKua5VCMiHW71W7tvNbDsCk9wUdxUjqoPVE8HSUYHIe2rfdyHEO6rM1JqPB00gvIfEd9LamHVGQUJ3jU+8DbxQQEOWF7WTWGqHBrWm7SeaC0wAVWsG+Mb+E9uw1R9XqVtxvWaNFCVoJ6rOsNZlThYffn9a0KRYThnayoFKdmOSK43au2hQbvenqsck/39PeaYYc7XoWJgK/D/n+m2+Z9vvergqMjLUnzffJAZoPTcJElmDr9kqBlmDsBv1kgeuw2eN8bFh8UyQz2j4upml1O8larG1FNvn6Z6ZM6mhjENoQdHt4W2JoBFAsIOMCplrD1OvtelbmcjOraZvTUK38FWfubPTIaDPDxDa+JGcvpjY3g9CQGQpwnxiwexZJArU6uhG0J8+F709qzElsM47w29dv0QggiogX9DK+PEdYFPjjBqXArSSEXRm0K3C6c3jbRhD5nLVwdh1MMWeFiEaj2YAV2mn87q7mVHizGcv3mxOHCSKKMUogEoNWAu3bvC47MRMgagG6q0DiK2SkkWHM8579wQO6FhhpRX6bNdR8vsLw869Zx4Jn/PHHAXjOmg8jE2MzWlxhm4MaCdqTmA4PVYuRtci+92qNkZL1939gymNd/ZwbEWm4fUpKyh6kAkvKKYUKDCqAu75u30ivufz9toPWcWy44L5oLjDFpGJROI4tSvI5TL2Oqdan2C/MuOhrWYVpA2GEqjQQJm+781qHUAbPSfBUwkhog/Eio4iMoidXpVzJIAOJaO6ZVkKfSjmDm4lZ0DlKfZlLteKjY0mxs04UK7zdCqcBYclaL6CtNZhXthkrTk0jEkOjxyHxbLe1jODez6YL0RTL1VfdhFECdyxAVhsoR+H1GyhXMdWanVwxGl0PJ4Jxp9ucP8RF6GRWyRcDR6fT72jytPXvJHyil/kP12f2GuznNmZwmPwTvr1OJdp2dhV8u8Feq1vBg2YmihQH30myx+bCXj9OEmhMmrBo3SeZNAGzx7VRyAnbjPZUThiiB4eRUWzFC9+HjjzJwj5U/wh0FhGbnrQLUiGtAGL0JHFu8nXaxcQT5z05j6AlqAulEN1dRHNKVOd4jK4QZAY95twlkDuHrZBeb1iBQ6lmWDzgeyCb9gSO0/xctEM3hTHovk5GV2SpzrNdckKDW7dBzY1OQZK3Indm2G4MOrUEb1xQmy0QOodaksWt9eGNRYjEoGqRPYdCFuMrlOdZL3ffR+f9drecjA2JL4lKLk45QDjKdnR3ZGysmLQLzKufcyM/+PH+lcLWRszqi99DXPL5wQ/f2/7Z9+94J1dfdZPt0owMYKezIiVb8WV20xNwqzFqPEAkyV4L0daxrrr6Q/s9l5SUlKloz+H2X78XgLVLr7cWNfurPycH3qNsV7iQIMyEfdGBNkf3x57vEc0ObxE3r+9SIBODbGafGAFCtnIMBEE3dD2ubSi0tIK0VzZoR6CzEOWbIdoG0JBkQCaQGdHISBOWFHGfIjOiye6sIcdqVuDP++18Q2HAG7eT2NM2T6Scdqwpvcp+0grKxgorYGtUo83E33az4WVaDrOWhZO3nrX2wI12TXZYtJwdhJiYwAXb6Dg5W+posKcQ3bJQFHLC+rZ1jntO4Bs9ETTf+rsJQ9wN2xBnzLc2ybO6QWt052yEMchHt9hJ/abAbZq2jdPVtEA7t69tcW408Y6d7XNQHQo9q0TQ61ObpajOB3c8xxw5G2/TgLU5c12U51oRBGxzlOs2xeikWc9Omr5QEt1VYnx5jvLC5vSgFOT7IfPkODrvU12cR3sS6MLbNmInpJo5POGsHKorh0i0nYBWAsLm6ygESdYK67IaIIIYk7HT+HHO5mzJ0GAcgRqvw1jZ/l3EOVTDTiUaIUgyzrT5KZNp5Zc+448/joxMez+oxV3f+Bueu/rDqNBOXWNARoYkIxHNRgOtBAqQDWvTTJywfo9sFoAf/Pid7SaklJSUlBapwJJySnHX1/+GNb2vY03v6xCdHcicb31kjbG++btH9ttBrqMYWW/YgOYgsIVVHCNyOYTrIFsFUfP20vP2ynSZ7ritDUY814ZcRxqvQvPNXaIdSSN2yKiISuQjRZasiuhvlHCkRilt1wQO6MBhdyWHqTkEgWIgV6CQCShlG3RnauSciMdGehnLGDACGdluarcM/hj4oxoV2cVsvVcSlkS6AD1FWbvyHazbcPAbmquu+AAyTHCb+Qki1hjXweQ85K4R4p27Zr64OgKL0SnnNsmr+mRg145OZt8P7vYR4gPffL/ochn55E5EId+0VMgR9mRReQ93VxnGm3knQqDL5b09p2fCPkLdTZLYjf49N9dmcPwpdostkToIMOWKtRtQEqT14q9fMI/Cg4MwZxayf8DmocSR7fRLkr0sIiYvQCfTXqC3OrZrdZwRh2zOwSiXsCgYuKyD7gc9vK27bSjovG5kPbJZKNmsPS9HgW+ndtD2/UD3doAxyPE6lcV56n3NxagzYUcjI4Nbg+p8gTcGwkCjS2J6JG7VkN9hyA7FqFDbjjtH4pUbiDC2ntOJQTZiTM5HOArtu+isnWKRoW5vsCa+RGc92z3YzEwxjg33lLHNjZkpxlXIxsQLfOULPmJDQX2FjO20o3YEqqFJvKadWGBwqhFGSb5/hxVyVl84vad7SkrKwXHr3e9hTddrWNP1mrZ3vWkGJO/3+j45b0VOdIibZl6CUAqMmLieGj0hVh+I1v3VhDc+SQJaI+sR3pgiznioQKAaApEotAFRSkAYwi4N2l5LrCWLvT46DStCa8dOnmgFSdZmB7oVm+US5RVBh8AfM2SGQ0QtBCnROZ+oN0tYdDAS7vzWWw/rdU858VidfTm31r96aPfNv8J+MrnZRylbX8zEGu8ocbLVs7LawIyP26mEIzBZYutK+3k7D8Wx2XemmQd1RKdYpjy4XfO3r49iYnIGJkQOe9OJEPc97RVbgnYyvBsnmyFcOQ8Ra6KiS+JLMkMBzqK5yJ2D1qLWdTFBsM+atv26TEI4rp3CltZiy4QhariCL23WVOJLwhLselqWhVsdUJJ4Xjci0qggtM1CrekV3wXctnBAFKF7OxFaU11apDK/KR4p636hXUHSaW3Kg5Kg0S3p3mBwClmE9tG+CxJEU2TXvgOutLWk59h61hjQ2KawjGev2VmXJKswEivIRxo5niBGyta2TAjkztjaiZXyJHn/oKZFMiN725Q9+/c/ihGgpM1jAUgyVmQSiUEGCaoWYzzF7XfaXJU1597A+kc/vM/HSSdYUo4/Ap2G3J9QpAJLyinH+qHPAU2f3arHup2fYu3cNwIgM/5EsNx0GI1uBEjPtDuZjTaI5mblXoGiMyz6pOs0Q6BzRCXfbsDFtgtZ5m2X3bzCOCsLuxiLswTaocOpU3ddNuyeRTDuI3KaJAs4mjhSGGVACxqhS7EQECQO5dBHG0HOC9ndHSF2eTg1+1j+GPhjtmMjLMrmYlUQZw94+iknGdc87f222PUP/hK/+tL3oWoholpr2hRJ26WUz9nN23Jln5vwx4prvGuRTR9h3RyHn+kiddUzP0iccxDG4A7V4eHH0WF4VBa55/zHexFJnszuZKKL7DAwSYIeryCbmSBy3EN0+pSXZPG6PXJbfOTQKMJxkHFMUqkcxoNNM4mU2A2yyd17sLcP+XRfT3ft1PUGUilEqWDtrVxJZZ6DW+7Gf3KE+IIzcDftQg8NIzwPXa0h/Ux7SqYtrkx3+pMmWYS0m5LU6mQHR3BWzKe8OEtttqC8JEO2OBt3LMTdOWYXnRl/QphoZdoYY/8fGIX2HUSkiWeVqPe0JkqsxiG0XZgGJWtrozOG2tyIuODhlsEba173Y2zouyvxhxqoip0A01nrRy6S2Fp1TcpSEZGmJZcYASI2SKGJ8w7Ss52XCDu5grEWXkjrMT2TLKE97cQSv9lFHhkr6kQa7VubMG8sJslKZKz3smy49Tfv2+djtLoLU1JSZsb6kS8AsKbj1aAU63d/3jYRKXVgQWTyJuKUGnaazK2DeC8XSjVFFiuO43tQbyClRBQ9EFYkMRJ0Z4T0EjwvxuQEzi4X7RlC17XBw0CcEbg1g4yN7WaOrPAiEytaJxmo90hUCBjI7E4QsUaXMhglSbKKOKvQrtirYznl5Gd14ZUTGRkHe9/8K6baPLUa3mBicuE4skq+eOL/E7QtTmdak7auC9CcDm5ORxzpmnb1he9BqtaER3NK+nCHTJqib+tYAmz2ne9bW8MwpJWBelRouVfsUaNOyX2ZXOe2BJ9J9eXEoQx6cBinu0h1cZGgQzK2XNCxMUvHRgiXnUn+wQHM8Ii1ofVcdKU6o5q2ndeYgKnVUIUCBCFO/yilSgO3UqK8yCXohPKFc/CHQ7zto7Z+dd1JNmxmak3ru3ZyJesiw5hGt5zIKzG2OROgsijbzGcVhB3Q/zSHzu4Ocrtia1drmiKJo5BBjGjmDRq3KV5E1roRgMTYqR5jcJqii4g1IklsuH3UfA2SBBMY2+TqOAjfRSQa7Smes+bD/Hj93+73VzvdlEvL4lZojYi1tbM1EOcUIjEYV3Lbr6bWwesf/OB+H+f2n+3fsiwlJeX0IxVYUk5Z1u/+fPtz0wisJ2prBPxAwfR7BNibBNtit6eH6342+NqIZji050I+236DV4EmLEoaPRDOjsmomJwM6cpUGYnzdKg6+DA6lsMddsiuHKMrX2OkmsNzY2qeRxg6OCqhHPqMjuVJyi74CSaW9j6D1vYL7OSKE2gSVxD7trs5O6T57T8e28Xoqmd8gNvvetcxfczTjVaBuObcgy/8ZDWw/srVGiaKEa6D6O5ExAliqDZlYmtGGzxHARNH6NqEX7FQitX5V3Br9Sv7vd+a7tfizOlDjUvESBk9ONR+Pi3LBjhytg3BxhL5QUF2x5i1VDgCmNgGrSObWSDaThFU5zgkXomS1oixCiKXRYZhe7F+xGh1QU9jJSYcd2JBOtkqbJpMmdZ1WFeqyDhGBCGe1uRLDrU5LtV5sxEG/OICcvfZ4zilYvPvMkLEsRXBZ/LcWqHvcYyuN1D3bKDrtw7ds3oxOZ+xczoJCxm8oot2bQZAZijA3TlG5Zxe62892EANVzCugzNUgTCk+tS5REVrcWMUyNBuCBppNxcTH3TGPvc4Z/CHBcXtMU4tsV1v2nbtoQRJR9ZmrLh2olEkrvWAboR2iswYZJTYvE0pMI6wIqq2/2pHWrsd6+JlvaXBdg1KwdVX3cQPfnhgkWUyP/u27QJ/1h98DBlLnHqMbObttLr7DpYD2TukpKRMz/qxL0580RRNzEyaHIwG1JRO/Zl0Te8TIe1HcyMU37eTfq6xGVBNcVpG9loovQTpaBItyecDzGiWsSWKOAtO3U6pgBWpjRDI2KBCcOoGjEEFdpMuM6LJDEUkvkQmxvr1u3byUcYadzziJ/95EMFpR4A1595wwA24lMPn1sqXWZ19+aHdOUnQUdyuO2Qrl+FoTEUcIm371Eki0DXetdwWfm2f91mdeZn9RCk7QRbHE8+TI29DJkfLzamHeGp9d7hMEjns19a+UPg+RmsIoyMj5uzv8Scfe5JNnP1STFiBTfr+nsdASJvdumEzfukstOvhVgTjywRDF2WQoaCvMIeuuxJbuxszUdOG4dSadn/XddHKQrRT5WZgkOwWRc7zMHN6GL6khyifwS/1YZTACNr1bDy7g0avtVDMDDRQQ2WM5+IMV6DeICx22OtwK74rtLm2iWebMb2yIcmCUxOEBQE4eGVtLcdjgwgTm1fiKhsQL2w9jeeABhm0Js6tM4KsBhNPyxgYt01hojVxY0x7UtLmchlkrNGO5LmrP8yPbt2/yDKZq597Ez9tNhpd+YKPIKXNfxGJRkaSH90282NNZtUzP5iKLCkpKVNIBZaU04L1I1+w/rsH6oBqdTYpNRFgp6YuTA+W9tizkBBEOJUQoyT12S5BpyToMWR66uSckIZ26XXKVESGcpIhaVY5cUGzevEjzHLHuWPoTKQwbDcdBHWX8dEcjp/Y+q4hUSOOtQMbBX/UIAzI0OAEGhEZ4g6F9uxi9hf/duw7/VJx5dhxsAv/tUuvhyhGj5dtOKIUNpdCG2vpNF6ZMgE2I4HxKLGn7ZRpBAe2W0gSzPZ+TJKQNLv8pqPdUehYz+B92VKsLrwSjEHX63s97vOuvJG+hRlKGyuIjdvaXt9HAhPFyILCOApVjyk+Wief96jN8WnMLZCNEghCRDYLk39fRyALZ9LB7L9CTtgohOHU6ZYDhZxq2bRc0BBFiOEx8koxfnaJyhyBkRBnHHKPZqFcAddFFAvWWXFsHGGM7diM4qblzYRf9hSLsCDAhBEy41thqmlBAdjXaygi8ST1Poc4K4iyEBazdCS2m7o6W1GZX6DrEQdvx1i7C1BEdpPPCeyCNPGtjY1sapBxHkQoyGzz6HpUk9tZR1WbP9S2u884EiMEOqOai2Eb9pm4DqLTJbfdbjIa106OGEfa2ym7cDVS2GMJ2t8jsZ3gMmxupjZvf6hox1qYJXn7/2Em0zD7IhVXUlIOn/VjX5zxhrNQaqr9zZGYPG0KrbTe1/zmFKLnkGQUsS9sbsqwoO76RNkE4RgSX5GPYfyCEKTB3eYjI8gMQWa3RhhIvOa1PytwaobMbo3T0HhjEbIeoxqSsMMjKrpoTyADazl2oKypo0Eqrhw7DsUe7BrvWvvJpM3y9rRHyx7sBGHKuTQ3/fdX07ZrrGlC2CezSr54Im8EuC36932ewzXete06avLjrul+LcJzMfUGuhEc2VrSPhkQzQw8rSEIwPdtc2Ki99nkeLSYdjp7BkK20RLCCBkmOA2NCiT1OQY5q4HvR4zUOnBr88htLlvByvcQzTw/U6kiopikUp1k4bh3PSukQI+N2ymYbMauVQp5K7gAuaGE2BfUZikrjrgQdGTpTEy7Rqz2KSrzmjVt/zjtXEUBqmH/TTyIctjzkBAVbS2pAvB3Q3ZY44/EqMBmcLWahYyUaE+18wK1Y/P6vPGm8B5EGClhco+WaE4wSQn5PCbrW8El0e0JG4xB1WO0qyDDQde0k+vWJCNRDUlc8DBSHLK4AukES8rxx874zdwOOuXokwosKacXM+i4aY1pS9c5/O7vVvByGIJSiDBsjsJqvLKm1icRiSCKFH1+hcgodid5hqICAKNRFh1LepaMcFXpQX44fi4aQTX0GB3NYXb7yEAQZe0OW2ZYkhm2nX/+qMapa5ACdzwizirqfS7lRXZD7jefuv7Qn1fKqUkjsNMBvo/yfUQ2A1pjxsbbVlwnOq3FZGsxNHmR2LL8m4lgarSBpufxNe5L28/9dv1NrnFfOmG3ske3YAuVzdL5YMZ23/k++gh2S5o4Qo+NIx0Hp2aD4OXOQXLMJ+xwibtyOI0QEScYpdq+40elC7A1jTLlWzNfCJskQcQCErt4lwO7KWYc3GqGRqey2SVLe3DHCzYcsx5aq67uEmK0jKg3YGx8oruwdc1tTitOtrIRs3oRYQT5LDrnkWQ9nHpC4ivccoRxBOWcLYsaPYI4l8epG+I8NLoBk6HTEQSdLk41wbgCoa2wohrW0ibxm13bEcQZKG6S9N4f4G8btQtgIUBKjNfs8JPWw1kYYzu/jUHHCrKKKK9Isk67C9A0hQ4jQHtWNBGJnWKxz735j6YZHt0UWKSy/mWHwBUv/jh3fvNveNb//ijGcexmZkpKysnBZDukVqbA4WxSTtqoRduNWCEElKv2uuxbEVYYO8UnIhCxQNbsOSTSQcQwf95utu/swjgGYju1ol2BCg0yMoRFiXbsItUrJzYDqh7b6yQQ5yRBp8RIQWFbdFzElZSTgJawMtmC6zjnrhwsq9RLpq9nD+Y5tDb/9zhe65jXuC+dOGbrcSfVtMJx200sR2uapJUx0rIfI47Bs1ZaBHaNa/QxsCWeVNPud2plX3dPEiuwVBLyuyRBlySOs9RKHq4D44sVcaZEdiCLU4uQtdDWeF0l5GgZGUYTv4c96lnp2qlBkyTWdnxOH4QRppBFZxySnL3+euO21kx8e61udAmGLrD1rBEQFSDoAsjQKQVBt61poVnPhraGDUu2GVMFNgtLu+APQeemGH8wsBMpwooqrQxANMhIW6sxYxBeU2jxJLJKcyrF1sEYg1EKkSQYzyFe0tduOlJBYp0TomQi6yvWyFjbqW330DaUn/37H+Vn330bz1n7EfsSn0CTbCkpKacGqcCSctqwfvxL7SKy1Q3SKlbbhWTTHkwoDyOEnTrhMDq/W13angKtbbBbxkH7iihnvU6FBh1JfBExGBbY1uhEG4krE+4fmgfjLsV5Ab+rL+Q3u+ezeaCHZNxD1iWqLvHGwK3YzbrEtVY1UU4QFRQyVPhjGhHZ0OMoZwNE3cOIZkg5dTFBaEUFz7MTF2FEMjZ+XCdVZszk/5+TPp9skzDZ3mwmxzOxZs/Se2LRuf8Vpq7X29MjshnUfiTRYQijY8hC3lpgJRpnsIyRRUSibQdYvT5lU4FmOPERF8qmmWY5mPvpKEZSt52lxqC2DeGLPrTKkPiCLc93yW/16HnIRyamaZ0VQUcB4XnIfB5qNfTomJ2Imeyl3d4UcKxNpKPQhQxRyScqOTS6rK9/nHGJs9Zf2i1Dvl8TZ6w1gnYAgfW3XuiBgSjvkDStRmQEmVFN0CFxy3ZBGpbsInXOnWXUzmF7/RfCfvgeYEUPEVkRzAbd20Vn4isSX6IiQ5xzSDLS/kxYu4eW/ZdWwh6yKagYKax1TtP6YPICVBjDc6/5MKoR75WZsj/80Yhn/tHHEEKglcFk0y6plJQTgfZ7SrOhYK96FtpWPsJ1bD07OVT5cGpasLYtStlrWpJYmzAmNqyiPAQ9BqMMIrHXSn9Y4DRg+85unJ0emWG7eWeEIPGs2OwEhsxoYifnlCAsKhCKZK6HaFpiRnmBdgX+mEZFJ8dGecrxoZ0XMsPmmhOG1nnuo5496OexvwmXA901jtrXm5YV7BFnUl6UnQQJ7XVGCDvJEobY7KipFl5HhWkah2Z8P0Bu7cfPZVFBD1E2S2WhsNewjGHs/Jigo8HIb4v0PuAg4wxOPUHVE5BFpOtCuYIeGd2rnm1biBl7TSeKrZCS9wg7PIIuhXYEccYh8SEq7VHP+raGTHwbYN/ogvGl9roalBwM1uZWNQyJL1ANW1s2eqxo7o1B1+MxmYF6u4GnJZgYJZFB3J7EtjWpbNeh3mANWW3AeBmR8TH5HMZzms1FCuPbhiIjsLWuI5Ch3T8RGmup23q8xCBNwjWXvx8RJPvN/dsTbzTiyhd+tN2QdDjT3SkpJwotx5vjjkn/P0EqsKScZrSzAfbYX7xdf7NdZBpt2t1OhgghPbu5VKsd+gMLgchlSeZ0U5ufI+iQJK4gKkCSMRgtebQymx3VEuP1DI3AJRr1yexw8AXsGOngm+GFDI8UYCCDX7YhxjK2Hta5QY12BdXZgkYPBItCTCJwRh0KWyQychDa4FUNYodIOzZSpkVXqnZxEzYDFQlOiqmVmTCTReTRQgeNo3PcZq6U7Chay5bdo7hS2ImV0TG78eU4tsOYCZHliFjETMdhLEp1FCNaEx6VKs4OiZefzeASH4whM2KQicEIwdgZOYJOQfHJxHpLP/yk/dv1PNs9mMvZaaUotpMrylqLUcyj8z6NviyV+S5xvmmjmBiinCTototOI6D4pEH4gr67R+h/Vhe1eYb8DoE/qlGB7c4LOhXCNEUYJcjvjAk6FLVZdhMxv9OgBkasuKKbr7frTnhKG4MRkiTn2EmVJokviHMSGRmMVER5SdzsRHQaBhM3w0dbjeSODR8FIAQhjP2dt37vjiBxbYehCg6u+P3h7e/gqlUfmvJ1SkrK8Wdf782T69kWdoqv+XlzAuWgGg6mPLAV6kU+Z6dWWu8nngdOsympaZmIAW9EogJwq5Ad1Bgl8Dd7eGPgjYMKDYhmfhQ0s6kMIhbEXQ5RTlDvtddmGYFbsTY1aPDKGlU7cvabKacWbfvSVlD6ySKuHIDjWc8e1YarVui905wQj2Jb27ZySYRByOZk7tGeZjnUehaIh3YjlMIBusNOnKDAyEqBOafC+XN3UIk9Hi0VmtdJyfhihzgLxSczdN45hh4d36uepZk3abRG5nLWSiufQWddgh6f8kIrqmSG7dR10GknTrSCwnYDQiAjQ9cjVXZdVqA+V+Nuk3jj1kLcSEGctVPjwlgnDCMFUdFee91xKG3RuOUY4yhMMxellfMHNIUViXHtdKHNyJIknsAdVVCrg+tiijl03kd7ylqLGWOPFxuMa+vZ9mQ20mavBAkmttmTxlNoz/5unIPMAf3+He9k1RUfQDcnaw7H8jYlJSVlOlKBJeW04vbk61MK072K1NbEShQhXBfhunZjzHWQxtgNzUPtGvI9jCupzFVEBTAOBN0G7RrUkMvd1eWIRCADuwlWGrKTJlEeyjtzDLpZZCDtz+t2g82rwG8+dd2Uh1v8hY8i6gpvRJEZhtLWBH84QDYSok4fp6iIM6nCnDKVlm2AaVqAnCrCyimN0Va8KQturX4FgLVz32gXK1E8MY1kDMJxJqZXoniqyHykvbQP8X5GS5v1E0bIJMHfqMjNnUfQK8iMJshQWzEk79Hogb77QmSk0YvnILcNoMsVK2a7Tvu5kyTgOphaHZHxAR9vLCSTk7jbNE41wu0fx1/ew8BFLtqz9glD5ykbwOx1Mr7coH0bFO3UNTLUuKN1hM4RdHq2G7DRnCCJ7aLUHzXkBmLrIQ3W4kBK+z7gqeYiVFlxJaNs048SaAWJJ9EKwHYcJt6E9Zi1fBDICGRsF82JJ2x3YdlmbtlsFmvJgLECjHEEh9PglAorKSknFnsKKdNuujbFD5Mk9j0gnwVtEJ6LHhg87HMwxVzb6kVnXbSnUI2E/A5IfI/EFajI5gBmRjVONSEqKDK7Faphr2Gta6bQhju/9da9HuOcd94CsmnDGNopbbD3teKyOuznkXLqsacVVsrJg0kSbk++3nadsNaEeko2iRWK1VQbrz0C6g//RA6jnk0g2bYDtvfTNTQPoefS35mj1ueScyK0Zxg+r5UFGEMsKG0RxAt7caIIPV6eqGdbGSla25wSwIyO2WllR5IZbJD4OZxqQvbJMepLOtl1kQMeRCXD0PmqbfM1trxA2NfMdtHgNGxN69QTxhdlSRwQicCtGWQCrTF+p2EnmlUjxrSad1pZKsI2dumsM2Fn28oKVLY+1VkH2dtJkvdsRosrJ2pSYa//2rHuG0aCV9Fg7ISJbk6ZCG0nt5NMM5NQgKodfGFrlEiFlZSUlKNGKrCknNJMFxA4XXffZEySWL9XQGaztnsGELkcJAk6DA/OZkdITBihB4dx4oTZjS4ac/KEHYpaWVJe1hRLRhQygEfed91eh1j5/luIcwYZ2849GdvNtj3FFYAtr3nbXt9bffF7kLUQnVGEJduh8sw//Bg/+/bei9mUU5tr3JditOH25Ovt7+1lKZJqKycVLXEFgDix9m7QnkRqb+43baqEUlNEtGPiaz0T9gy+Hx2j+26X8qJZDFykSDIZ8tsFIoHuhzWqGmKkJOrI4DILUe+CbTsx9Ya1GAhDO83TnGRhYAgxOIySktLOTvt4Y2VwHbKPRCwY7mTk3ALV+YL6bE0UCqKiICnEIA1hUdHoccgMReishzdUoySsbVjiCZKMIOiQxHl7jU78ph1YYD228Vzb8a0UOusSF1y0a6cRtW8Xm4nXnIhxAYGdXBG2EzHOQZKx134V2E5ukdgwUotA+tbiwakZtGcnJRETYsz37zi4rILJ0yspKSnHlz1r2gPVsxPBy6EVWHI5ey10XeTomJ1iOYSJRhOGUK7YIOJcFqREao328wAkWYVbMXQMRPzo1r0DhC9+7S3WzrClP8eGn/+/v5n2sR66ce8697zrb0F7grBDUdoMz7vyxoO+tqWc/EyxzJrm+yknJ5PXJ9birVkbygk72na+TjuIfpLYcrSmtA+GSfUsQUBhS52ebI4NtaXEcwOWnruDZ/Q+wUPlueyslOjf0o12BPU5GXLRbGS1c0o9i2la3CUJJgxt89TwCLJsPb9Lu/J2v6JaI1cNWDRYYuScApUFgvrcBJRBlSJ6Ois0IofxkRxhhyLoUHgVO92S79dU50q0C1FWEBYhzlthI85Cda5H4Uk7TULTyquF9lW7WSjJyrbVl30tDImv0H05jBDIWKMdQdhpGz61Y5uT/DFNlLPNQEJLRMZOr6iGRiuBLjQtc12JjA1CG277xd8f1K/lec/+4JTzTkk5FdAnSMh96o9jSQWWGXD1VTfxgx+mSvfJyJ5FN0wtyPcqwpsFmUmAMEIDsq8H01GwHdFGI6uy7Wu9vwKuHSzaPK6u1+2idGCI7GM+uY4SpTnd5AYK1GZLfvuJvReRLTb8/b5/NhNuved9rD3773B3juEMu0R9+bTr7xRldeGVALZ7H0AKTL2BbgRtH+o9J7lSTgAOo/Nu8qbbusHPArA68zJ7uCCwx5aTFhTNzr/2NSqKMQc5Zn80sH7+EpnNIHJZ+81qndxOQ2ZEU52jqM4DJFTnSZxGgfzjI/ij1aZns4LF8zDKZlKFvTncsQA1MA46sUKHUhBFRAu62H1OjtxAgj9qhSh3d53EE6gaZPslYQcEvQnOmELEVvTYdZnBZCR+f47Ox7J4ZU3QRVMQkUQF6NhkKG6qEfb4hIu6cQcriCDG+A4662McSZJ30L7NVtGOICgJwpK1YzASELS7+7TTtJJ0DMY1yEAitM2LwdjbigSiBBwp0DHNjUu7CMVAnJHc9fXpNzBnwlWrPpROsZwirF3w16zb9n+O92mkHAL72kjer9DSbJrQtRrSGMzyRQSzc2THyzA61sym4KDee3QYWkvHWs2GLWcziEwGtxqA6/D9O/YvzN7z+cOraU0zFytxYXS5YtbYibG5kHLkaU8xNNmzue2AImPKSUerpr0t+nf7tXoJkExp/hKTatqWsNL63kFlAR4Nmk4ACGlzEnNZRKLJDSUEHQ5h6NP/+AK+XlhAPDegu6fCCy+5j9t6V8LvinBBEaOKoHvxxqCw0+DUNZnBAGesgQhj2zhUrYGUmCAgXtDF8Hk5SpsjtCfJ9tdJfEF9WcjTz9rIwuwIyzMDlHWGR6tzuN+bx864i9qZxoovgx4991vXDN1cPoYdtn7MP2lf17GlgrCQobgtxq3EVjRx7ZRKq5kn8QRxRhBn7XXaqQEGarMUCJvvYqQgzkGcgSRr3TpUQxBnJvYlolZGrSOQsUSFZsoUduIJfvFvB98kKhsJQmtWX/webr1n5tktKSkpKTMlFVhmQCqunFq0ivHpCvIpWSxxZBem5YoNB8141jtUBTCDzci2ADPJw9UkCUI1sxMag8hKlY7GbH7+/z545J7gvgjs8xGuY0OiQ82qZ36Q238288DjlBOb1flXgBDcWvly+3trOl4NzXH7Fuli9ASjeY1oWR7ApE2EGQove3Zytv31mws94bhTRRZod3EJKY5v10nrHH3fWjNm/LYQQr1BfmdMvc/BaRhm/zrBKMGuSxTDZyvCQg9exVrPIEAGCe5oAzFWJzM8ju4qoXuK1OfmCEuK/LYG2re+z07dUJulUIEmzim2PztDZthOgNRLEBcSMrsUYac1pY7zAlWXyLIkyRjKiwT5HZI4B90P2d+PN279q2U9whsRRAUHlfeRUmI8B+Pa7jutRDOMVBDlBY1uQViCJGewyr7NgtGeAdnqygTjakwsiEqAsYtSjM3iQlq/ba9uO8NVZO13wqLk5187eHHlqlUfAg0//EEqrJxKpOLKqcP+6tnJPwf7nqLrddTgCJkwtpkpSoE+tAwT08oECENMFCOqdWSpwLpdnznk5zNTnPrE5pxTgajksPrC9xxU2HHKiY/dWJ+YaGh/PUloTOvZU5Mp03pm0uQKrW+ZtqAi9qht7YT2MTnNaRFKIQt5RD6HntVJVPRtrkklodAvqYeSRo8VH7K/9Wn4Pv/z1Cw9HVXkZXXCROGphEbsMLKrSNjp4lYUckkOGeVsBpV1iyWzW+NWEirzXSoLYfQshQwESSmD6qjx9MVbuLxzE3kZ8NvKIh4am82iwghP7dlBI3ZwZULWixgsFKjuKpFkILvLTkzHOdvoI7W1aETY626jSzWtu2gLLNqxt41ytlEoztIWwRHW3lEriPLW2gtpp6+1Z0WdKD/xGEKD9gSqYXMHhZkaRm8E/PKr1x/072X1Je9FGJMKKykpKUeVVGBJOS3ZV8dTq6CbsiAdr1iL0cjaIAjPs3Y70QEWpa2CcI+NUaONHRkGTCPg1geOgbgC1hbCCAgjZN0GIOu83/7xmt7XAbB+6HPH5nxSjjhTrKKarB/74nE4kxSY2ATY7wbAFHHFfi2UQjjuHmGiB2FLyN4bEHt29Akp7LVMm+OXt7NHgKiQ0k6ueK79meeB75J7fBjt9SIM5B4fpbqiC6OsdcH4EoFbUWSHbIebdhz8oos37KHKdWS1AUqS25rglXx73VOCOOeiIoN2IMorgk6JDKE2FxLfkBkS9D4gqXdDo89AMSIOFU4hQvkR4VgGp+YhEuh6VJMdCnFGGoSzclTnuNQXFchuq5DdXbXCipQYYUM/TfMjLEiCDjuJEhUhKiU2hyuy1l9CC3QhwSiDCCQkAhUqtGMwHREkAlN2kJEgdG32ij9ig6BVYG0VMIbEPfhpxeddeSNCHj2f6tTSJyXlyLC/Dv7patpkYAgVx1AqIgt5+72RsUN67MmbnCZJjom4Anaqz3ZDg2q+TcYd/pTbtKY4b2382zE5p5Qjz+TGoOm+Tjl2zKiencyeAfGHYdm1L0GtbW+7Rx19XCdYmvZkIpeldsECRs50cOp2+S1jkJHBHzfEOYGMwR81lBcLlKPpyNTxZEIjcZiVrbAwO8LDpTk83tVLdVceZ0yBNIhEkPgGndF2ujorcIo1CvkGnrKCycU9T3Jubjs5GXLr7qfw08eXo0NFR2+FZ/VtZEWmn8XZYVZkdrLcHeRrI0/nv39zOdkB8McMXgWioqAxP6IiHApbBJkRY2tTYydIjLL/ascKLUEJ4gLEWUOS0zYfxQjcCsgQjGdrXe22joEVYTKGuJSgKlYcMsrgVgXemH3NVGjFGyPt62ecg7P4uuZp77efSMltvzo4S7GZsHbF37Lu0Q8f8eOmpMwEgyAxqe3diUQqsKScthxIZGl9bpIEU6lCGCG6OxEdfVCuIrXGBMHMNif39INtFYTH0CN23WMfYe05dkNL531ElCAie+5rul/bvt2a3teBNqzf/fljdm4px4602+/EZPJG1T6ZwTTLTHOnTGIF3uPmU90SkpSy56BUMyhTW/FaCMhmSDqyqKEy2f66vdvwCLltHk61RH1hTPZJh+yQITsUYxxBrVdR61MY6eM5AlWLMFKiM4ok61iP6z6HoNTMNnFsp5xTN2SGBYEBtyzouy9C1WP6r3ZYtGiQvBviyYQ/nftzZqkyH9j8ArY/vgivopGxwR2uYRyJjDReRSNigwhjzMCQnczJ50g6rUd2klHUexRhwQbY23Owi2aRCGQgrMWXAFlTYKwFGMaKLmQ0WgsIJTIQyNh6VhtF21rMCLvgFUbwqy8fXKffqmd+EI5yCOhkceWap73/qCx6U1JOF6atZ5s15nQ1rR4dI1m5gMZ5ffjDId6DW0lGR4+f2H6Q3H/LdTzl7bfYDT7XbvKJSXuqa7pfC44DcWwne5MkFVpOQdJ69tTmgPXsHo2MxzU/Ukik61jLxNl96I4c1dnNTBIfgg4bOC8SQWGrFQ5EDLnBhKDToRopuv06v96yiLjisq27TjxH0enVOWf2Lh53eyiXsihXk0QSx0so5hvkvZDlpSEWZEZxRcK2Rhc76yUGgiLz/RwP1ubz4wdWosoOi87byRsX/5jfyw/hCxcKI82Tz9Dd8xP+S1yOUbZBJ84JvFE7Hag960WbHUpw6gmJJ0l8SeRJawmWtRMoSdaKJsYzYGw9qwIrhBvZFEpqE5mCRtnplCSjUbkIHdg1jlGGUIEMRdueFwANpf6IH6/fO9drX7TFFThqdeZkcWXtsreybtPHjsrjpKSknBykprWHyapnHqPpg5Sjwu36m+0P2CM3pflz61+dgOMQz+9h/NweTGcB2VGyC9g9u3SmoW3RA1M3NGdw3yNJUsgwdl4PYysKJAUfkokVaVtQ0Wav1yHl1CBdjB5b9hXAui9Mc5rEJMke0yt7cIDrxv4sY1q0rm3Hhaa4IjM+wnXAcew1R0pMFFlrMK0hTlBjdZLuIghBknVt1/WOIRb8qEbHQw5u2QoLQaciLErirKDRJajMcajPzlCflyfoyxAVXJKMJG6Gb3plQ3ZIU9ymyezW+KMJnZsCMkOAhvFFLv2XZ1myaIDzu3bw8nm/4P2Lvssf5cs8KwM5J8KtQGYoJLutgogSdNYj8ST5LRWyW8cQsRWLTL1hQ6aNQbuSKCuJMwLjWDsyax0hcMsStyxw6s2uvQaomsCpCdyKwKk3hRctEOMOzoiDUxfICJyqDb7H2NdDxobElwSlg3uPuerqD9mA0eZ7w9VX3XTEf/17koorJwZrlx28n3nKicOe9eyeFrWt27Rq2vLiDENPUUQdLmb+rHYG1oyYJPYfr25x7UKjx1CfA/VeSdhpa+zVhVcilJqwSj3eeQwpR4W0nj22HGw9i9FTPw5xvTtdPTvdOcz4vI4GrZq2qxNRLJD0Fgm7szgNO6GiGuBWwakJ4mJCeakh6IKgBypzHArbNO6GLPftnEcSKoSriRoOG0d7GArybC93EIQuhWKDp87fwcoFu1jYM8K8wjh92Solp8FgWODukcU8Nt5Lf6XILzYv4Z6xxWgjWLxkkCue/hBvW3orLy6MWXFlD+aqLE6tmZkisDWqgsJmQXGjxKmBamhUNcapxsjEWIHbt3Zgcd7WnkYZRCRwqhK3YkWkxLe2X0ZZS7AkO9EQFOc1ZDWm2YFvHNMWy+MchJ3Q6IIoa6/540u9Gf9aphNXrnn6Pxzqb3lGpOJKyvEgQZ4QHymW9JU4TPbMr1h94XuO05mkHC6362827btU2+e3hdGmGRZtR2EbCzqgVEB4zSJlf4WjkKjOTlRHCelnpt72GG9w3varv2d0uaTRJcAYhLaP3xZXjAFzHC2DUo4a6WL0BGWaa8Be+SuHyOSF6f7CkY84LeF5z/Nvfk9IYad1nKa44nnguQjPbQsteC5kPIyrkGGMGqvjlAN0Rw5yWdyN/cz/r37m/WQMoWH4XEllriTKQ9gBlUWw+yzJ2DKHRrdDnFdEeSuw+OMaFUG9T9LokgQdkkaXYnyRR3kJVBcnjJ5lqM3XXNL7JOcXtnKut4PzvGz7qWwYmEVuQKOqISLW6KxLWHIxUiDqkbVfTLR9LmA/1xojBYlvp2dU3U6mqIYN+XTH7eLWqYA7Zn/u77b/umPgjTTDQOsCGTY7A5sfbhn8EZtN4FYMmaGAO7/5N/zi3yayV65a9aH2v63P9+SHP3gH3//JDe0w0T0z6K66ev/h1SknL3tuDEyebE05udhTZNlrglEb/NGE7BDUuxWNOXlksQjs3Wi0F0IiPa8tyBxw8vIo8dAHr7NTfpH19g+L9rxlIc+6wc/az/t6bfZY2jR0SpHWs6cfewotx6SmnVzLTlePT65pPRfT3Yme20NtXpbxxR5xxjbQRAVo9ECct8qBjES7/qvOs7Vo90OazB1FSASdvRV0LBmvZNhVKZJoweKe3czvGKO/WqQeuXT6DeZmx5mXGWNztYexKMtTO7bjSI3nJMzvHeWFvb/l1T0/4y1Lvs/angc4zxvc51O9P9LNrBMISpKoABgobLdrFKENRglrzyVs9h/Gih5J1lrrJp7BOFZMkbH912nWqIlnr9NGQlQ0aNfYYygQXoJ0NEhj81m0rXG1a1877YNx4L5/uo57P3Nd+5xbdey+mp1v+9Xf79XAc9vP3z3l69WXvHe/fwIpKSkpB0sqsBxh0oDFk5z9deMlCc6WAbyxhNEzXHZdOct2qyi13wWmkAIyPsnyeci+HmQ2M2GNc4wnWAAeuvE6VABhp0cyOYOltZkirPiypus1x/zcUlJOVfa76Gt1+E363Giz7+vRQQize1rH7Kvzb0rn8xFCSLHX4rQ1zScKeYTr2A/PRWQykM9DLtu0C2tZBSiIEmvLuLuC9hThgi6Cs+ZTfkoftQV56r2COG/QHjgNyAxDZsgu8IIOCIuC8gJJdY6kOsfaiI0vFoydH1FebO20nMAQdArC+SGiFGEcg1GGl3T9ktX5x0kQfLPSwYNRjU+OLkI/VCQzHKMzLo25BcKeHChBVFSMPbWb2rwcJushfPuBkqAhyUga3cLaKfiAsKKKUU2xJbD+124VssMGrwz5ncZ+r94UWBp24Qp2csUfgeJ2TWlrTOdjDYqPjeOM1Nq/h4tefwsXvuEWRlbY6/0Pb38HP7x9/8H13//JDdN+/0gG3q++OG1IOZFJbUJPEfbxfpHbPIY/Zqj3CrY91yNesQDpeQesS4UUiGwG4ftI1zmuIsvGv7meWfcmdGyOKTzZsN9M7PNdc94NmFIBceYShFKsKb3quJxjSsqpxiHVikegoXA6K8T91bRHnGkEFyEFslDAPGU55bO7GDm3xOgy1RROhM0qaV5StWcQpQgVQG7A4I1B2GUYW2HY9TRBZaFB5SIagQt1h2RXltFHuxl6vIcNT8xl83A3Owc7qEUejtDM9se5pvMBLu7cystn38U/zPodnV6DeuTylK6dPCOzldkqYTTJk5cBi5ziPp/ap3c9l6gIlfk2izAqQNANQxdIGj2QZISdFO/yiIqOnXRuiUdzEpLeiCSn0Z4mzmuSjM04FDFWCJ/Ut+nUBEILayUmDMpNyGVDAGQsUHXRzF2x6x8jmhMvTS76y6k17Z7NznuyvynpW3/93v3ed6akQk1KSkqLNIMlJWVPmh1/17gv5bbo39tF2jXetZixcXKPuIyumE+YhdoFC8j9OkaPjLY3RPc6XJKQ7BpEdpcgn0UmCaZWB62PaQD5mo5XM/iS81CBwREQZyU/uetd9mddr7HCihB73ScNST/5Sbv9jh/TeUjvkz1ymow+/JDQPX/30309+fwOZ1E6XZd0+5xbmSueiyzkbYC9aYpHworQLXGXREMcQy1BOBIciZ7VifZdwk6PyjyXoNMu7tyybYLzd9trlwrAaRjijPXk90esGBF02i471WjaFcTgb3PJDEJ+V4xT08QZl0rFwRRiVCTQXSFnOgkFmWe+ksxT2/lhfSHf2X4B3phd9IVdHpW5DjI2RDlBkrFPKbfLkOR9nEIek8+AEMSdGRqdtjOw0WdQdRv+6Y3RDKc37a6/3FCMVoKgw/4NaKfZMYjt2HbHRXvyJTOqcWoJ/nADESSIOG5bfD1nzYdxZrvEOcG9n57o/IOm/VdTwPvBj4994LwsN475Y6aknK60rvWta/ya0qvoBCpze0AannxenoXiLNT9j6Prer81LcYgPA8DiKagcVv41WP2XNYuegu6pwNZCygaA1HEuiduBkDX66w98+0I17Ed165CFguYSpXVmZelWSwnOWk9e/yYXC/uK8f0aD/+nuexv5r2sOvZPa3NJtWzADLjI2fPYvziuYwtlcgIENbWqmXX6pbtZLGMoJIVaC0IOw1DvQa8BKcjoKNYpzdXZVelSKXqE8cS42hkoBAJ6IyBSFLflQdA9WoyKiIyitEkR1E1KCdZ7gkrbBnvYrySYWO5l1qfJCMMkVFc5g8AhX0+3/EoS6MvQXaFhKFCOBrpaHQsYbdHPGqtbeOMIvEFIoGwBI0+TWneOHNL42we7iao+FB2kKFAJnZyxQls1mDLRgwDSVajsxqhDEZLolhBPkZLx7qFxNaiTIQGhODBm2z9evHrboFm79bkmnbNU+1+hlHquDQ7G5n2rKccHwygzYnx95caslpSgSUlZTqMRiiP1flXcGv1KwDcFn6Na7xrUUGAVhBcWiXcliU7uwdRqyOSxG6I7mNBKkbKkM1AHCMcx1rgHEP2J5SsH/nCxARLa9OzaVO0uvBKZHcXGMO6J//xaJ9myhEmXYwefw5KZJlMK7hzT6HlEM9hfz87Et1+t+tvtu0VJzqaFUYbaymT8e0khxCYYh6Tcewme+uaE8Wg7eYdjm1XE0GMLmZIcq71cHYEYQeoCDofi/DGIoIej1qfQgXWxqDlHZ0ZNuQGIqpzXYRpBsE3w+DdKrg1cOqGoENRme9QnQeyt0Ey7qJdQ0dXjS0xbE8ydMoal/sFFjrDlEOf+mxDZbeLWzMkHpQXC5IzaiQNB3eHh2oIkqyDyvkkBZ+ww2N8iWs7A0sGnU1ASoSR1uJr2JDdnaDqmuo8lygn8Soa7QpUaJCJIZECEYNXttM5TctqZGxw6okVV8KY9Q9au4S1Z7yNTD5D0N1JktgbT7YGExy8sPK8K2+cElB/OBj/6JWga+e8gXX9nz5qx09JOdHZawNUSK7xruW28GsA6EaAGh4jM9KNf9UwQ9s76b8sx4KBWbD5SYTU+65po8hOYbeu3erYLu7Xbf3EPn/Wyl5Ze8bbENog+ocxRmPiGKNNe5Jl/fiXjsWpphxB0nr2+HOk6sUjcR77+9nhnmOrnhVK2azAJia0kxaqpxvT10Uwq0ijS1JZliA7QpwnsojYCisqsMJKnLcbj25ZEOQVujvEy0XEoaKrWOMZc54g0A6bBnqJqx7UJf5uhfYg6o7J9dSoj2YhElBIMEbgy5jZ7jiBcZFCsyns4/FgNgtLo1zU9yTP7niUs9w8j0UV5rkjzFL7FlcAfq/vPu7vm0dnocZZ3QO8qO/XPNSYx/d3ncUm00c0lMGt2No6LEBcgGBxyPKFu1heHCarQnbXcgzVXEQocMt2KjvsgjiytXfYYUDayRSd1QhXg4AklOjYxctFhAISRyJiCbFg05snbG4veNMtuJFBJhBlbU3bElYA1t//gYP+PV9z+fu57RdHIAdQHd0pzrUL35zuwaSknCSkAktKyiSmdMQIuxG4uvDK9oLttvBrrDn3Bgo7NONlj4GLBCLpoGN4DBEEGB3vfdCmfYIeGER2lMB1IZcl6dl/sXMsOOddt7D4/25g3eBnWb/786zpfR1CKNYNfpbVhVcC1o/b1GoI3z/A0VJONNLF6InD/jruDsgxyGo6kI3YwSCksJtvTrPECAJrKeM6NpMk45N0ZDGutJMWWiNqgZ1a0c3cEsdpT7SIIMIJY4zvoh0fDER5GLjYRSQubhW0tOGZKrDZJF7F4JUTtCMIOgRB94T3tTBWoEh8iPKC+iwQZ5fpK1YJY8VgvROTiVjZPcibH3sJO8dK/MEZ93P5rPvJyJiS32B4Vsh44ONUhQ3sXFHl2Us28vDuOfQH3SSDDjK2z0sZgyhaQT3s1JhCgqgoZEMimh1+MgG3bCdP/FGJdiVxRlrfake0w0RbvtdCgwoM/qgmMxigyg1ElLDuoRsBWLvgryEIIevh1A2m6Sl2IGuwA3GkxBWA9Q9M75t9JEjFlZSUqTVtK/uqNcVxW/g11p7zTjo2BTx5by9nPXMLG4KFVM/qJdc/gIni9mbinpgwAtd2Fgt30rX+OPLMP/oY+fX3t5ui1j3+Udb2vR4Tx6wf+QKrsy9HZnzb8JRmspx0pPXsicOe03An4u/mSGSytGpZ4XmIvh5wFMnjm1FdHcTL5hH0+iS+nUoWhYhZ3WX6Gw75DbYulVEzBD5ns0pEDGpMkRgIqw74mrwXUnIaZGTEXzzlp/xocCWbhntolDwQkM1GaCPA0RgfHD+mL1fh4uJmcjIgMg6BdqnEGXrdCn8zfz2XT2peKUq41B9if9MrAM/Pb+HOpY/R6db48+47OdMtcJl/HwD/r1IgcDLW0rZuAEFcAKE0Z5YGOTu/k4GwRBA7mEihoqYtmmg2FHVE9vV0NUYLSATKS3AzMVIYkkQSBQ5JIiERiMRObG9+oxVXznnXLYgE/BhUaGwN37QcOxRRZTJHRFxh72yXI00qrqTsjxMnYP742MWeaBz/ijgl5QTkdv1NVmdfjphm5HP9gx/kihd9DOFqvOVlMuus8CB834bAxZM2Q1ve1ELaXIFsBhyHcF4Hjb5jJ1gs/eTHQYBxDCIS+EMS1QAnhOHnr5h4bkOfm3I/4Xk2IFQb1m3/ZGoZlpJyiOxpw3UiLgEuo+8AAQAASURBVEhbHE733+3J1wFrL9gKeBeeh8g2vbOEwJTyaN92P8clH2c8sD/L+FZgAYznYjIOaJBBhM65RCV7zfTGbUdcnLN3Uw0wOQh6DNmdgsKOmMSzgfa6KKj3QTI3wMQSGXrIiAlLryyE8yKePm8bAA8NzYbQjrrUYpfy1+cj5kFxpbWzyouITr/B01dsYnxJhoeenItJBM9dspGz8/08vHsOJIKwC8qLM3SN+GAMMjJkRjSFzZKwQ9rFdvOtQnsQFgRGCVQ9xq1K6r2SOCtsrkwNEM2g0Nbgo4HcYII3GiHCBLRuiyuAnQASPklHzopUJi16U1JOV27X3+Qa79q9vr/uoRtZdcUHKD1h4JngjUqM1LBwHrJWx2zv36umbSG7uyCKIJfD5I9tA87Z77Y2MUGXAWWQDUlhriL31DOn3K4Vdg9MmbJZP/4l1pRelU6xpKQcAnvWhydyTXs49ext0b8DNs8p6s6jHYnsPZcw79LocdDK1pKVhYZCqUGkJT1zxmg82kttzsSkcVwwxEUNyqDGFLKm0B0xxZ4qrkrYGXTgyZglmWGWFYZZXNjNRYUtPN6YzS8GlzA3P85QI48nE2qxy8L8CN1OhU5Zo2Z8toY9JEgWeMNTxBWAUS2IjGRWU1N+1dZn8azOR3l1adeU2/XIPDfN+wFDieZM14oxHdInI2JW9gxy9+IcMvLJ72jmBTZADPn8cPMKHuqcQ4fXQEqD9GPigkQkChmBdjXZjgaukyClodbwCEYyaAlKhrhOgp9NiHOS3UNFu1chYcvr3to+t7BoX0u0bZKyNfwh/UpTUlJSjjonityVknJCYpJk2gXYnd96K2hBY3uBseU+4Rlz7CZiS0xp0rbJMRrZ2cHg1QuJ53QS5xxkdPS70pd85mMs/eTHcccl2X5JdrvCH5bQDKcDG8L39D/5OM/+vY9Oue+tlS8jOopWdIljm9PiOnbjNCUl5aDY7+LzAKHCx4PDXSyvH/uinUBR0oornmtFZkeR5H3CDoeg2yPOu4jQrpRMxsXkfIzvYTyHqDNLY16epCPbFCkS/OGQwvYIFYEMaU+zuGXoegg6tiQkvqTRJUl8QeJDMDciWwhs95yEKAeNLkFUsuKGLCt2Vkssyw0xq1ABQAaS+x9dSN8vhnHH4bmFh9gYV/inwedSiTxe3Hc3/7z8W1y+/AkyhZBQ20Xt3MI43YtHSVZWGT1DUF9QIpxTZPQMn8pcidA2N8WpNReoif3QLoRFh7DDo97rEuUFiSsw2AW8VzbkBjReGbK7rVjjjseoWgRK7DUNsm7zLVDME3R7IAQjK068v7GUlJRji9FmrwyS2+98F0LDI4/PI1leZ/hch2BBCVrWONO8P6mOEltesYT4jPkks0okpewxOf+zvv1+Vn77/cR5K67ofILOaOKumEYPVBfkeN6zP8jale9g7cI3T7nvrZUvY6IYtGF15mUYrdPg+5SUQ+BEFVP2xWHXsw98ECMg8SXlxVnGlrpUZwnirG2M0VnNWb0DPGP2Zi7s2w4agr6E+ryEOGdFFqe7wdzFw+RWjGF6A4gEtbrHtpFO7h1YQD2xVl9PK27kksJmulWFDqfGhT3buLhjC2eVBlhWGOZ5szfwyp47We4OcplfZZ4zyoW5Lfxex71cntmx17krDMM6x4NRjQvufim/+/xT+ODdz5/2eXbJHEucTPtrX7j8aceD/PW827nszM00VjSoLLBNS9WlMWJOHaMFI9Ucu6pFpDBkciGiFBGVNFHJQFYjpSFOJGGkEMIgAokadKnuzlGrW3E+60aQCKSbsOU1b5tyXo//7XU8esN1BN1QmS8IOgWV+WnTUEpKyonJSTPBctNNN/Htb3+bRx55hGw2yzOe8Qw+/OEPs3LlyvZtjDG8733v43Of+xwjIyNcdtllfOpTn+Lcc889jmd++KxSL8GZPxcyPuse/fDxPp3Thlvr+w/s3PzKv+Wp3/t76gskI1tKrHwiiwhDO8WSTM4gAOG4EEbU5gqKTzrIxBB5R9ei4NJ17wS68UYluZ12EzLJQmN+DKGkOC7xxwz1HkHQKZGR4WmvvJlfffn6iYM0w0tFsQBJYm0hlGJN92tZv/vzR/X8Uw6Pk20BlHLqITzXWsd4XvM7GhKNqoU4dZc4KzECjCMRIYhGZCdcfIek5BN0OQSd0oa3RwmNXp+xpQqjoNELUW+E9BKENDS2ZslvFxglGV8q0A6UNtlrsFcKKWUDav0FtG8onxUjawp3rDlJEgk0gkX+MOOlLJs6+ogdh/wmF7F7nNm/znLtj/6CUk+V8lgWNxOzfNkQs1SBa2f9AikuY2V+F7PdMZ7Ts4Fal8evRpby2x3LCTsVtT6X8jKDdjUoIJPgb/Fw6hB7NhNGO1CbpXDqVoRRIUhp7FRLYO3AVKhx64I4A7/6l7/Z5+veQud96r2Ku794PUv+Ja0dUk4MVqmXoEpFRC7Luu2fPN6nc9rQyl6Zjru/eD1nfOMDfPySb/GNpZdyX3wOfaKXbLmCCcN2DlirrjVhSGOWISy5ZHaFxEVvn8c+Uiy/+WbiUpZCX5VaXmNcA1rgDSl7HTcwfI5EnZGja4NP8f5drF16PeueuHnKcYTrYPREg1M6yXLik9azJx4nShbLsUJoQ9DtMLZcEBUN3pho2oAZOh5W3Nu1gFVnPMJYmKVjs6a0VaAdgTCGwYugo1jHVzGljgYbhvOIQLJi7gBX9z3CSJTn4vwTvCA3hisctidlalqw0B3hQs8hMZqbjaISZ0iM5Gw3oSAz1E3AfBVysVcDHCp672zXM90Cm2PFS+99Dd1fylO4ZzOdj83mz1dcwT8vvHOv27ti6tZgj8xzRQbu7Xqc+/Nzqc91cboaPHPxFrrdGr6yDVL/88TZdOXrOFITBC5JMSaJBEJYcUU2uzqlMJhMgkkUIrE/V1Jz56oD16hxd4xZEvLIS25gyVc+dMDbp6ScDhgESepScEJx0ggsd9xxB2984xu59NJLieOYG264gWuuuYaHHnqIfD4PwEc+8hFuvvlm/uVf/oUVK1bwgQ98gFWrVrFhwwaKxeJxfgaHTstypcWa7tcishlMuYKY3ce6xz5ynM7s9GbFB27h0Xe9nxff9Zf8elsR3VVCJhopJSaKbPinNpg4shkKjmL+D6uMrcghEigvFJz97lt4+B+uO6jHXdP9Wmj6wg6+8EwGL0/4yHO+wdf6L+O7z/yn9u3uXjthF7P4ix/BycVsfOne/vmXvOZm/DHD+BJF4sP5b7mF0paEsCAZf+VigPYmyNr5b7Kd6E3hZe2Zb4dEs27Txw769Us5eqSL0ROTyQvSE9lSAQ4/hwUmcjDWnv13ECcQJOA6iHqIjLIoKfBGGojd4zZ/xXXBdRFaI/M++W01SveVqa3oo/8FRYIlAbP6djP4eA89vxEE/S5hl0uSMSy67EnWznmQnw6fyeiOOXi/zVNdYMUL54E8v3j/u/Z7ri//5Ws4x9/Oazt2cnZ+B5965Eq6/6sAUqJqEaX7cyz/o61sdzvIuBHnebZj+wW5Bi9YfEf7ON+r5fhdfQGxlqi6ILsrxKk7GKkIOxUiBpEowk5ozI/aSfUb3v02rnzBR/BGQ0SkEVqT5Fy+/5MbDvn1v/Xu97Q/X/ZVA392yIdKSTli7FXTdr0GU68jCvm9bEpTjg3Pe/YHefwn70L3f4XBrkf4+flL6c9m6Sksp/BEGTU8jh7aDcbYXBYpWflP/Wz547l0PVrCSHjGH3+cu75xYOF3Mu0JEqWILlzO+GKf3EBM/+Uuxc2GX//zRMPPxusnPj/3Hbfw4If2rp3Pe+stdD4eox3BY6+dR64frn7uTXjbRkBKxMqlrL/v/e3H3lNoMVq3MxdTUlL2z8lS0x6JerZVi535zQ/gOQnhxiLdD2mCTklYgk9c+nU2BHP5waaVnPGbAXRHjqAng4wMpcd9Grt6yT6WMDpf4T67ylufcTt/WtpMVvj0JxW+MHIJc5wxLvdhviraZpwmO3WV3y/+lshIflxbya31Pl68/B7yQH7SOZaa/+r+FUxmVTaGuzrI3/EgRmu8bR4//dFT4RV7Cyz74hx/O7lMSM3JYrRkoF6gv1Yk0vZEn7ngCWb74wTa4SNrvsmSz30Up6wQGqJxB11M2Pyqtx/CKz/B5tdOTLYs+yrwisM6XEpKSspR4aTxjFi/fj1/9md/xrnnnsv555/Pl770JbZu3co999wD2OmVT3ziE9xwww384R/+IU95ylP48pe/TK1W42tf23fX1snI+t2fZ932T9pR90bA2jPfzupL3nu8T+u049F3XcctD1/D6+b+GBELa3PjuoiMbz8cx9rjOC4IianVcbbsIrM7ISwKuh7TbZuu/bFnwSo8F9HVCaUiTgP8rgYvLozxnTNu2+cxtrz67dOKKwC//sL1eGMx3RtisoNQ2hyT3V6jtLGGU4UlX/4wZ3/nffbGWoOQrNv6CQDWPfaRVFxJSTlcjkGI/cFwpLsS1z18k80EkdIKshs+RJxVBJ0KNJha3U7HCWEzn6II1T+CGhgHbfBHArIDkC0EuCrBeJqRc6H81JDojDragY2Pz+U72y5gR7lEVLbhoIWtUNpkEDPwav7qZV9gUzSL/65luCCzhbP6BqxIriRJ3sMtw4M/OoPBx3pYXBjZ53GWuUO4ImF+bpRoQUCj10Ur8EcNhScNXRs0uV0Gfxgy213ym522HYLQoH1F1OmT5L0Ziytrul5zwNsIM4M3m5SU48D6kS9gkgSimDW9r2NN7+uO9ymddnz/Jzew7Jab2Z6UAdCBQ26nnaqrLi4SLe5D9nbbrEHHxUQRZniE3gdidj4LRGJwGjN7H5tS03ouLJ6H6OvBCEGUFwxc5DLvim2MnbnvjszpxBWABz52HSowZAdDFvwoJPGg3ueR9BbRBZ/aoqLNb2kipGwLKuvHv5SKKykppxhHup597MXv4ozeIZJSQr1PkdmtefgfruMFuQZv6dpINhNihnYjogRvNMDfMcacHw8y72dVZGxQAUS7M2wLu8kKa481RxX4y+579spPaaEQfGf8Qr44/ExckbAt7NnvOco5j+71vUafgSSxdbjnImO4s6Gp6MaMnvfV2YQ/WfJrli4ZIJ9vUA4y9I+X2LpxFlu39fJEpZv7RhfwkfObr7cA7RninEH7ZsbiylWrTr3JlFVXfOB4n0JKSsox5KQRWPZkbGwMgO7ubgCeeOIJ+vv7ueaaa9q38X2fK6+8krvuumufxwmCgPHx8SkfJwu31r/Kuif/kXWPfQTZv5u1y9564DulHFHe1LWJq7MJZ1+02eYE+C74nl2EZnyE6yJcB9lZQngeenSM/P076Hw8pDJP0ugxLPnK/sdi9+oKKuQxGRfdmaf4RI1g1KdugsN6Hj+67W+543tvo/c343jjMfV5WaoLszgN8LZ7dOQaLPn0x1i381Os2/QxLvrLWw580JTjxu36m6fV6P7Jyun0O1r38E32/erJfwRAuwIVGmQ1aC76hP233rDTLnECOgEg8RXagTkd4/yv+Q+wYNkgPecMcemKzTheQm6HwBt02L69m0rDLlhVAxIfooLgoRtnNiX4yjPv4q33vYjHwjl8avF/MHqGA45DbbZPdT54YyBiwe/1/mafx+iUCQu83azM7eLMhbvYfZakOleh3eZmobD2X5ndsOHvr6O4dUL4+PG6t1vhqcthZOXMMw3Wj3xhRre76uqTZ+G6Z35CyoE5mevZ26J/Z/3YF+0ESxTbSd2UY0ppxQjzVZE/KW7FJII4Z0XfKC8JO1ySOV2Ini5kbzeyswNTb5C/Zytz7oSh8xXD5zqc9d4D14ZT3vcWzEFnfXQpizvWwB83aA+evHsB8YKZbfztyY/XvZ3v3/FOfrz+b1l46whCGwYuLjB0USflBQ71uQkXvvEW1o9/ifXjX2Ltir89pMdJOXacTrXSyczp8nv63rM+yebXvY17P3MdP/u23XvRaH7egMrGToTvYZTAOIqkM0c4q0BtboZ6r6LRDeRiIjPVJrxH2lmUjXFlr8erGrgwt5lnFB8nIyKuO3vfDZUt9hRZnn/VPYjODgCSjixx1rB+/Kk8fhBh8dd3PcGNZ3yb5y9+iIXFURyVYCQQSDbu6OPB3yxp33bza9+GzmrIx6jOme9R/PD2d8z4tieLGHP7ne9i1TNSkSXl6KGRJ8RHiuWksQibjDGG66+/nmc+85k85SlPAaC/vx+A2bNnT7nt7Nmz2bJlyz6PddNNN/G+973v6J3sMWB15mWIXA6RzbB25TtYt+HkeMM5FXDmPM7Kb78fKQxLRmu2AzubIZ6XR9VCRD20XdBhCIQIpTC7R/F35uhr5MjszjKy0uOiv7iFe//vvjcBW0Xr6kvfh8har2sRxuA7FHprjOmI/Px9/53vi7Vz3whas27XZ+w3jKHR7VKZryg+meCPafK7DAN6FpvfZc/vqlUfouhKLvnzm/HKhpGzJMlTKySJZONLDt3OJiXldEQ4LhhtO7iPM8dycawCgzdcR9TqGNVcaMbNlZ4QNrdFKsh4aN967M/KVvnb7sf5047f8IZNL+LerQthRwbtgTirzKVzdnLf9vkgoLJY4++WyPAgz+veIo1zXWapAoVrdhH/vMTIWZJrX/QjfrhrBZFW/FG+POU+b991Ib/fcQ9XZCSDiUunqrI7zluvaQfiplbij9rAeiPhns9bu5tffsX+u/ri9xD05Wj0udT7BIlv7W4e+NjBWUjuC6MEIjmJplhE6id8sJwq9SxKIT2PtXPfyLqdnzrep3TacN8L/oHzru/mBX92J12/dcjt0gQdkignGF3h4I0W8cpFwhIUtms6f53BDI+Q6w9wGi5jix2qS5Kmfe6Br1sX/cUtlObkyewoIyoN8F0SD4LFIdnHPB7/0787qPNf2/d6TBxPFZy1nRQPuqBjk8Yf18QZh998yp7f2nPeSTyrxKorPoDQhkZfBu0KhAYZaO74n8OztElJSTk+HGux5ycNxQ2P/gGZAQHGIHeXkRkfnfHQJY/qHEXQBUGfJl9qEOjpt+C65d6blMudAsudkM3xMMsW7JzxOY3oGl0yB8A/zrubZ1/6Ooq/2ML48jz3veQTFGQGyOz/IHtwphtwcf4J6onLb4N5qLJCZzSbrp1wyTjnnbdQn6cRRY2XD8lmQi7473dz3wv+4aAe65QiLWlTUk4bTkqB5a/+6q+4//77+dnPfrbXz8Qei3JjzF7fm8zf/d3fcf0kX9/x8XEWLlx45E72GHBr499Y2/d6SDTG2zvgLOXgWaVespdP+L5Y0TfIpv9ehs6OIkeqJL0lxlbkMCJH4gm8iqawLcAZrSPqBduhXQ9xB3aTzS+lMs+lMoM/Od2/gg2vfS1nfTJExBqEQYQJpWyDOapwUM9v7ey/ZN2uz+y1eXHrr997wPv+8PZ3sHbBX5Pd0cnu8zvRDoRDWUQhYum/3oS7JcOjNxyZTcGUQ+dE9UI+3VmlXoKQgtuifwds8PDp+LsyEnRGoVzXitCJASHtJItS4DjguxjPQTsCfxQcaUWo+aqINoKedRmcumH0DEEcOuyqF4gGsuR3SoKn1HnkTdPbIu6Phz5wHW/+za+gYyf/ds6XedFT307flTt4V+8jvKv3kfbtNsYVVt3+Foo9VZZ1D/NQZj5XZHbSKSMapkZRNRip50gyBqEFKrQhqVoJfv7/9s4pMMpOrtT6BEnWht4/eNORuY5efdVNCKzIcrLQsqE8kTmYOuFYcKrUs2s6Xm2/UGr/N06ZMQcTSP2d715BFnDrGqNAxjC2UhDMTsjNqiIE7NpUYmz5XIpb5qACQ8dvBxlfNBuyCckZIVf/6Hp+8Nyb9/kYun8FY1e9ko4vOohaYJuQpCDOCpQfE3TPfC3TaixbN/jZvX62/v79dw2ve+hGrnna+0lyDvXZPo0uSfHJiLBDEcx2ufxlH6fzwbF2bkvK8eF0rJFOFlq/m5Mhi+VokhjJouIov8nNxtTqdj89TmyTkCcRBsIug+6MMQZ+NzoX5kw9xod3n8GLSvfRNUljed22Z/CHPb/m+Ut/x7KDPKeeedum5LE85Z2/5edfvYjg2eWmuHLw9Mg8l/o7+KU8g2AkQ88jgnv/71QHFa8MNdfgFwM8J6HghzMKsZ8prcmVk6lp6PY7958Debw50erZlIMjMSfG9MjJ8z/y6HJi/DYOgje96U3853/+Jz/60Y9YsGBB+/tz5th3qdYkS4uBgYG9plom4/s+pVJpysfJiEkS1m36GOsf/ODxPpWTnmvclyLkzDeivvesT/Lgh65j91M7GH7WPMpn5FGBofOxOv64ptElGVmRpbyik2huB2R8GCujqzUSXxBdWoGzK3xz48V8e+OFU479T49cxQ83r2wXSF+85gsYx8E0O1wqS/MoefD5De2JlT1Y8ul956mc885buOgvbmHNeTeA5yGCiI7Haiz+nzJo8DZlKPwmgzcKl7zGLqz3ZSW2ds4bDvqcUw6O02VU/6TD2Byja7xr29+6XX/TTrKcRmhPYhzZFFcS0M0pHiEmpheEwCiBCjX5/pg7Nyxv3393I4d2QSaG7BCIrVm2bpxFZkDSsVHvM3NqJtQTOyW4xCkyutLwX2fvvej4o4+/jbNvGqbrnwts/O5ybnnw6vZ9LvcdXlYc4GVLfsXFz3yURl+CWzFoR1Dvm77sqi3IUZkvCbuwm5rRIZ/+FHT/Cm7/2pf488/9B2v+8Y4jc9BjxNolJ7ZQf6ItRk+ZejaMWDf4WdZt+z/H+1ROCVapl1jxegY8cPN1bHj3dZS2xsS+YNflgp1XCPJPCpZ9PcH9UQfV0SyXXv4otTNDooKg+EQFRq1t8++fdx+/d9b9aCN45a/+nLf/dupG62Uvv5lzbrB14R+cdT/uSABBCI4i6SvhlQ1mR5bM8Mxr8P1N7T/v2dOviS5+3S1cfdVNrL70fRhHIrTBqWu6H65jlKDeLVGBofRYFVFttGvW6WwWJ7+Xpxwd0nr2xGeyqHI6/r4WOWPMyYyR2Q1Ga1u/dhaIOzM0uhRBByQZDRhquwps2tXLnXvkVrki4Z8Gr+Rv+i/iHbvO56J7XsId3z+f5y/93RE5x0/P/yWfue6TPPSMf93rZy98dA1n/ezlXLfzYgKz/wJ0kVOkoBogDU6w95aqUzMYR6OkJooVlcA7IucPtqb9/le/yJ9+6r/o/sDWI3bcY8HzrrzxeJ/CPjnR6tmUlJOZk2aCxRjDm970Jr7zne/w4x//mKVLl075+dKlS5kzZw633347F15oN6nDMOSOO+7gwx8+cqr5icr63Z8/3qdw0rGvjr5WZ/nBMvjciL4fuZQ2jCPCmHBOkdEzJdkB0B6EBYFTdXA8124oGkN+4yhC+qzoG+QTm57HGR1D/Kr6Iqqxz7zMCJdkd7LEGQeKADwnY3jk33/Cx9a9kPyTgre//uu8rLh72kC7g2X5zTcj54Ys+fKHwYBXDHn0j97NmvNuYP0DH7QBzC40FnSQ2T6O8V3iootTjphzl8RIQ+nxGrV5GYIOyaorPoC7LMeFb7iFxIckA4u+9NiUx1w7/02s2/7Jwz73lJSTCSHF9BteQh6XwPvjsRiu9Sq0AneXawWVltCSKBAJBAEoCTkPERu80ZDuO3OcMfx6fv+5v2K0miVZJogGFEZAZhC8JxxUYKadEDkYPnfJl9uitqrvvdH3ydFFzP+fXaA1+QcHyD8keKx3Ljxj4jY/b8DPdp9JqBW5eRWCxzso7NQEjmDJZz/G5tdP7firzlXEOcCAU4UHPn744sLXHr+MlzaHGxc6wzze2HezyQlJtX68zyDlOHBr/avH+xROOvY3oXIoGyc/+e7bOP/Nt5DfCiqA3IAGCeNnakTZ4bGRXkwkye1KkJt3YsKQ3vvt/9c3997BX4y9hDt/9BTk8grf2/Q+5C9K5AYMA8+JWbxkEICrSg/y7ZddRt89BURi2PV0kL0N/AezPPSBw7/+rfyHW4h/L8slf34zbt0wskLyyHvtcRvdMLIyQ2G7g1uO0a5ExAYRa3Kbx4AO8o+PwPBIW/Bf0/1akqefyXPWfoQkI8nd/sCErSWwOvtyMJpbG/922OeeknLSsWdNe5zqWTg+Ne2ZboHnd/6W9V1PA2MwUYRoRPbakhiSjCA7t4qUhnB7B0kjy7s3/m9iI/nJU/4DgOcXfsfrd1zLli19ZLe4ZAfhsU8f3rVQznl0yhTL5f70W3+bbl+KX4VbH3gaK6/t5/Ud2/d73Nd33c0dS87gicZclv2fj7Ppryfq7vxAQv0xl3qlhHYMj7zx8GryFpOfx1eevJy5+ZMnZy4lJeX04aQRWN74xjfyta99je9+97sUi8X2pEpHRwfZbBYhBG95y1u48cYbOfPMMznzzDO58cYbyeVyXHtt2l2UsjdHugDb/Iq/hVfYz9cuegvxsk7qC2IuecEG7v/auRS3hcRZRdKZxal3IKpVCGIEPi+acw/v+cXvUfIbjIZZHu6fjZCGJxb1sTQ3SH/QwS1z7wHg9R3bef1LP8vtdYdV2YNIpzsAG6+/nmWfuJncgED7UF9oF5XrH7AdgA9+aO8ib+0576SxsINf/Ov1e/0MrHUD1RqUCvQ/t491/Z9m7Zw3sK7/0/YGORtOsKb7talImHLaYJIE4U21vzleVmHHq9Pwns9fxznvugV/pIi3rekpLSUmjq21gjKQaEgMQhtUNaRjs0NY8vj2vRfh77QTP+WlhuJGQXbU4JU1d37rrft8zIOhtSiVMbhi6u/qTZ1b+dwfvIBF39gOSjLytNkY1/D7j63muoW38Z3dl/C9X19A130OUQFq5wWIpRqvIvHHDLltipX/cAsb3j1xTW1lAhwtflQ5h/7w5JxoSElJ2T9H4zr+23+cuCY9/dqPU+91yS4o84/nf52//Mbr8BMYWQHZgYU4m3fhDFXpb3SwyCnyrsX/xfW1P2ZJxwgPDsym0WeoLtZcsHIrL5z1WwDWZEMef8ln+cX/jnnzQy/lLUt/xa/HlvDLTecekfPf8O7ruOLFH6f04DA666IaxfbPpqtn15z/bqKuLLfvx1Zs7aK3AFA/Zy63Vr7M6szLuC38GgAin8U0bJjz6szLUqEl5fRhuoah00hcAVszrupfAeeWEU17SzMwhNeRI8nkcSuSymgWOerghSAjwa7xItcseYRHoiqPhLPYEJzB1g2z6XxU4Y0b7v7i9GvrQzm3yeLEdKz5o19yx2cuw1s1NK24Mqyr3BeUuDprrXpnqQIvX/BLPjq2inBTkWf+0cf42f9n6+87vve2I3Le+2N3LUfePciQxeONSQ2UUo48BtBpyM8JxUkjsHzmM9bS6DnPec6U73/pS1/iz/7szwB4+9vfTr1e5w1veAMjIyNcdtll3HbbbRSLRVJSjiUt//gln/8oP71/JbkibPpjBb7GxB7ZJ+cz+9cxmR0V1C+LvPwZQ9x33n18fM69AHyydxEPV+fylPx2cjJkOCryjl3nc33vncxq5q1MFleuedr7ue1Xfz/tuaxdch3rNk9v1bUnm95y8MXcj279233+bDrrhra4AlCuACAK+YN+3FOd1YVXgjHcWv3K8T6VlCOM0QaRJKzOv2LK7/d0866uz9Y0elw8KW0YseNg4tiKLMpaCogkQY0HCK0RscEfg8agi/YM2jdox+A0FP64bi/ujjQ3Dl3AAm83r+2YCBd9zSvXcds3noouZRl4mqC4fIRd1SI3bX4+m369kK5NgvyuhLAmMb/zqc811OZAdpcgOwC1ObDkKx9i8yvecVTOGaBHlQH4Xi3Hbf1nkXUizvvP9/DA750kQegHYdWZkpJy9Pj512wH8lnvvYU3xtfynWs/zgrH45Eo4gO/97946Hsr6P1dzPZv9sLbf8gVGckvL/yWvfMyeMPCy5DC8Cfdv6BH1dkaaxY5dm12ue/wzfO+xIaoi4tmb+anC85g7Yq/Zd2j07sPrJ37xr3yA/fFnd88iM7pWPODH+/fWnLPbKg9RRSZtU1Dwvdn/rinCdd417bFqJRTk8k5DqdbPdviGQufoL+jRLKgF/nIFuS2AXJhN0Z1gnHxR0GFhqggGJmT49GeWXzHu5Bep0wlztD5kKK0NeYn/3n0RYrJfHzOvZzXeRkvmDfVEePuIOKbo0/DFxFPK2wCau2f/VlpgF8s3MT3Gysx4sjZgB2IH9QVGTemGnms/Pb72fCH0+9/nHDsJxM6JSXl1OGkEVjMDFRfIQTvfe97ee9733v0T2gGrOl6Dcl4OfU1PI3Z/FpbIF39o+t579L/pEfVOcu1YsKLVz2PLf98BvN+VuX8+C+pXNSgHGf46f+cTzAroWfxCPeKhTx/wYPMcsdZ138OV248j6wfcc2CR7i69CA5EZKR8RRxZdUzPsDtd02Eqc1UXDkU1j10eH6i6/o/zZoL/p71Wz/B2kVvOSmCjY8VJghASFZnX962TDmYoNqUExuTJIhm19817ksP2ZrwUDhR/obkrAa12Tk6OkuY3aM2g0VJ+7oI0e6AlM0QZCfr4lVcsrskwgichiDKwT2fO3rTH2Gn5qt3XYGIBA9d8ev2JOGbuzbzf1++luwgGKkZ29qBP6yIt0HRhTgLYVEyeqYgyRjcskA1wDjgVAxGCPr6xrl03Tu5e+2+r6NrF70FwnCqMD1DflQ+h5Xunbz5p3+OGnJRi6s8+qJ3H+pLcexxT69cohOd1dmXo8MwrWlPY1oWW7c/8TXOdRPO8xy+vuwH8OYfcMm9f0zn5zq45L1/yci5Gn9IUnr6IPpbvdRmCfQlZa4sbeCKjOTfK13cMPxUZvll/nfnvZzpCkLj4IrEis6vmHjMlk1ti5mKKwfL4WZYrh/6HABr+17P+rEvTqndUmzNM7nWSevZUwchBUZP7NMc68DsE+nv6Po5t/PWkatRjoKOIlTriPEq/u4cuUEbLN+xsQ7aIKM8GxqL2L60A9dJ2L27wBP/dPyy515w7V0A/Ec1T2Qc/mXHM9hZLpH3Qp7Wt4XzvF20LMtbvLD7NzzUN5snn9/L1VfdxA9++Hf7fYzVF76HpOTz/TsOPSfxdXe9AjHo4yw4uWpak+orKSmnBSeNwHIysn7kC8f7FFJOEH7w3JsBG/we7FyGKxy+uez7/NUbx/nBf19Mx0ZDbr3P7/7nPLqEob8Xhrd1ktvs8NXuK+k4ezeVmk+0M4faJflWz9P5z8XnceG8bTyluINLmfAmvfXbAO/a16mccKy/7/2sOfcGhJpZCOvpQmsRujrzskO6/zXetVPH9vc3rn8cvZJPO4RESGEtBJRkdf4VxyTg/kRagLZ46oId/Hb5cnoX9uAKCfU6xIkVn6SARCNiDdUaptFAGUMpMWhVBAFd9wyji0evU/jy+16EcQwyELhjkq21bl7w6Fr+e8U6AB76y89w1p0vR20sUNgKs385jhypUFvZx+hyFwzEOYPuDck85FPcpjECjBT4IzC4uZvi/DIX/Pe7ue8F/7DvE8nlDun8v/3o+fyHfCrOgItTFYQ7Du04xw1HsfaMt7Hu8Y8e7zNJIc1GSZlg1dKHAXjV3a9iaXaY8STLt5/6zzz3xX+N/5jDsm+HxDlF9EgP26+JWbBomDn5Mr+rL+A/hy/gzPwAv96+kHhzgW93XsS8Bbt51uyNnJWdmBJc/rGbEYkgeV338Xqah8S6wc+ypvd1x/s0TjhuT77ONe5LD+m+17gvnXk9m3JsEbJZ12qMNqxSL7H121HkRKxnW5zr5qhecx7Fe7fbxiGtkUriDpQpeJJGlwva4GwbokdrtFtkVHSAgM6HJBzaku+I8KHZv+VZD/wB33roQvSoR+kxRXmZJrtikHKcYVj7LJl0+0eiKg1TZHlpmL6VVR567hk8Z82H+fH6fTtbyGoDnTv4NU9rj+PfK12w28MbE4Ty5KppjStZ9cwPcvvPbjjep5JyKmEEiUn30E4kUoElJeUY48/dBMCmbXP5n/vPw1OAge5f9LPusY8A8I77X8TF+Sf4+OPXEH+jD/FgN+ElGlyDiCG/XVAPi/w6WYReIHngyQXMUYavj6/kVR0byfavYFhX+WZ5BfeWF9PtVvnI+SduQSq0xhRPrkLpWHGoPt5CKYRSdirAaBBue9FjtGl+b/KCdeqCaHI3WvMbkw4up3aspYvdg6f12guBSeKjOsVyoi5GXz33p3zlaZoNW1Ywf1cZJmWamzCyjrJhCMa0p1pkpYF2iwyfB7/8yuF1HB+IXdu6EECS01MCPHX/uvbnly7Yyq8eO4ewBNWFedzuDMYR5Ps1CPDGJJHxkBGEeYlbNzh1jZNR5DcryqaIP6fGM7//dn72vI9Mefw1593A+sOY6jt7zi42fnc50VxD2GmmPIeTgaM5fZmSknL4fOnSLwGw9N9u4vu/uBy52BD0aLQryfRXueMea0c42f//grtfylApj9HCiteDLjt0Dz9IFHf7i/jI/7uFoFvjLK5T/GGe8WWC/u3zeDLx+Mi2tTw20rt/QfoEQCgF2czxPo0TjkOtcWw9a+tSkyT29W3VUMZu7O9vU39KPTtdvZqKN4eFUAqRL5CMjAHTrB+OICdqPTuZsWWK4v0ORmu7DgsjRL2BvzHC7SkS512IItRwhb57IM4UGT875jefPnY1mpwzYQU2+fqccSKSqovTHVC+WKIbip27OgkTxb3FxVzsTYjgix2H/qTCgswIFdfn8fNHkT/OsvrS93Hr3e+Z8ngtu/J9WT/OlHXD52FKMWHinnQ17Q9vP3qWwCkpKScOqcCSknKcWLZgJ5v/bPqffeip30L3r2DRWf/OSy/4K878Wo3Cdo+g08GtxSSewKkrRkoZfhUs5oWP/xUvPf/XxEbxX9UyLy6M8UBY4BvbLma0kaWUaRzT53awrHv4JlZfepLkAhxj1nS8GoxBN4IZLyzWznkDwnPtxrTbLPKlBM+dyLmo1hGufQswWttAcfuF/VfsuUBS7YWs9Lzm7ZLmXeTU+x6I6QIxW5yqi1sh28GXQimbL2EMCGF/R6ENazzSvtUn8mL0hcvu5wW5FXzvTT/n5kevJXevzQxBCkw9sIHBUiALechnSWZ3Yhx1xII/D8SW1xzYA/vpHRv5lTmHfL8hyQiqcz2yQ9p6bOcECNCeIegS1GdZizBvVKHqYBR4uxVRp0Pf7CqvuvtV7Q1LYIotzqHwF/N/zFs6lmMcg3YNSz/5cZ5408mzIN1fDkNKSsqJwxMv+7upnddvmvrzySHL9176NVb+6xtw6gK3AmEnCC+hO1ujFnmEK+p0d1Z54cLfsWHhbBbndjNLFfjcyFncu3UhSUMds+d1qKzb9RnWLnzz8T6NE47WRLaO4oOqTUQ2a+1Do9ja5ypla6eMj1AKXa3Zerf5fZMktqZtiy+T68pmAHlTBGhNFLfEm8nCzUFzukyDtyaxPQ+RzSAyGUx3CRXFJJVq+2Z71bOt5qwkOaSHPZHrWZi4zlUuaMB/N9dXSQJBgAkChOchazW8UhHiBGp1VL3BAx8/+hkikwWV/bH5NwtYeKdm4OIcZz3zCX732ALEmEvUqRiKi8CEwJIVPs/JGJ6T+R0/bW4zfPcPL2HZf7CXyHKkGmbmZ0dBGnRGn3Q17aorPsDtd548DiMpJw8JJ8YEiyH1wYNUYElJOWGRcx7lMsC4H+PRP82BNHQ8Iul4QuOWE2oXKDoWjhGELt7Pinx76xXMf/o23tz7E+4LXX5dO5cdIx2ENZdGwd0rmwX29rY+rmjN6ovfw633pELLZNaPffHg71QqYub2IYPILjIdhcm66IxLnHMQicHfMmxvqw3CUXazvxGA1u0PE0b2c2nfuE0UWXEFMPUGorXP0RJjJk3B7DXdMo2oIpTaazHaFmsmvnHwz39/NBd4E4ffz6TO4TyGUhML0FbgraNsroTWmEZzNdJakBrdXohOWZROnhY6wLmd6IvP6ZBzHuWF/SuY95lP83d/+lrcDdugEdsMltY+RxRjFpQYvKhI0HX0z2lN92tZv/vzM7rtx366lkwI40sFQbfh7PM2Myc7zr27FhDf2c1z/te99LhVzsru4E+KQ8jmk/pquZf33Pn7dN7jMTLH5ZLOLazI7DzAox3k88iGfPBP/pW//e9rQQu8Uck5N9yCkfDwP1zHVas+dMJ21K1d+Y5UXElJOYVobfDd/sQ5PPann2V93eNTT17FQLXALy/8Vvt2Xxyfzec2PYt/+emzmLV0Nzct+B7r6z38Zmwhcc1BVRRrz/471j1805Tjn3CZJ77H2mVvZd2mjx3vMzlhONSJ7OBpZ+LvqiJGywhtMMU8SWeW6oIs9V5JdlCT629gpEDVYoynMBJkI0FECXJkHKp1TBzbmrbZ7EKSgOtAFEMc26ajZq1lJv/b4gDTL7a2VPue4DgK9ezE47Ye4sC14sE+hpAChER1dUBHCZRE5zwas/PUZjsYBbnBBLGwRO7hAeLNW6atZ4UU1hJXyInp+n1wMtazYK9zG5+3gmXjr+Psjwbo/kGgWcdGMVRriHKl2TiUO+rB5wdT5715x6V0PwBxRhAuDPjGmd8lu8LnP6p53vqrF5OT4T7v+6wM3JsZ5n9+72b+ZPGr6fqnwpF6CsCEeHXjrPv5hnMROpla0869K+CHPzgx61lIxZWUlNOJVGBJSTnB2fz6twKw7BM3ExVgZIVDba4hKcWEYzlMxcV0QZw3XDnrcYrCoSwSHqzMI5cNiQKHKHS4/a69A+VOGHEF2pv4KYfPukc/zJUv+Agq1MhQY6RAe5I4K9GOQCbg9JVsvoUxGCntItR1rNCSaIgThNcUWJqIpCmuxDEo2RZUhKK5KBWTugJb95u62GwvBNtCh5piWdYWbcwe99/Doqwl9Ojm5McBbR9ajz1psQjYBXbzvodsazBZtGkteF0H4TiIXBYyPjQCTBQhfA8yWYSxj2WaXZaTmdzx1z5XE+3z4U/WhWgLOedRLu5fwZPPy7FsA6AUMpuxmyBhBBmfqOgTdEKj7+hZT0Bz+kvNvENajSucClQX2d/h47v6iPskHdkGAx58ev4vJ9164u9xdW4z75GG4raERo9DQ7sscYeP1NNoU5J1xKwAU3WIigKnJhAxnPt3t8DFRy+/5nBZt+FDx/sUUlJSjgKrlz6E7l/BBd5uvnXm9/DFVD/+V5d2seys/49XD76KWEu+MX4BDe2ijaCjr8K4KOwlrsAJmBEkBKi0m/NIsPssj8wsl9yuPE4tJuxwifKKsChQgSEqCMaWZzESnIZBaJAxyEijHYFXzuGUI5zRms15y3qEvXm8gTIisKKLCCNMrWbrXyEQSdKeHm9PXOxn+npyXSmknlILmihu1nnT1LPN406paWdaz076mVDKPlaS2McDTLzvuvGATKqVrQVYlvDshQTdHm41QQYJMjYkvqDRDUIrZAyZ7gJsnjjMnhMsKGkntk9BcWUy33vhJ7j+X1+P7B8Ex0FKOeEmIAQ4jm1+O4rXiKtWHVwd9cMnz6R3V8zoGS65YoNvVebz8uIQ/ztf5W3S8PkNz+DNl2/e5/2/u+Op3FtYhKcObUJpprh+TOC5xPmJmnbXpSduPbvqmR9MxZWUlNOIVGBJSTlJ2PSWCVucq390PVuHusnnAhpZF7mlCAj+9aFL+ftnP0zNVFiU3c1Gv4eyymL22JNcc+4NrH/wBBJXmrTGidc89V2IetjOpEk5eHa+KiAY8/H7fZw6uE33pTgLMoSwkLdZEDWNMCBjjQw8RGKQYYIIIkTgWIGlJQLE0towGIMo5O0BE40xzdtoDXFsxRYmTacI057CENIuLNqLDLADpcZYq7Lm55O7CK1Yo9r3F46L7CiC5yGjCNMIMPX6VNuBPYUUsLZcrcecLOgZAUohtNn34vYATPEEl2JCXPE9K7AYg8hmMYUMojFpMkjv/7H2trewnAoL0D151vN/y/av9CG0gYyH8RxELUB35Gj0+UQl0Lmju3DDdUHZ13tfkyyT7W6uvvK3/OrLF1DYLNEe1OMcjw1kUXWB6TS8fdeFvLX3p8xSE918r9/2dG578By6fuXhjTaQoeKZhQ1c3NxgOZIUZYPVKx7i/t3zGBgrElUKZIbtn7w58Z12UlJSTkHknEeZ1/x8sv9/i1/WltPTW6Z8by8P9Mzn6Z0bWZIfZriRo5qbupG2duGbWffkPx6Dsz5IpGwLxWsXvQWMOTHP8yRg2R8/ztbxTrY80oNb9nDqgIYkY4WUOIctJDVWHNHg1MCpSxIXnIYiO+SQzTuoemIbjvIK0ZNHRk1BJU5Q4znb1KENRBFEEUJrRDJhkYvRE/mGLRHFc21N2bIucx1b3/keaIOpVK21mRAIY+w0Q7NebVmUyUIefA8Zx5h6A11v2LyZvZqSaH/NpK+F79vHjWJr21UsEG/dfshWZ60cR5REeB7Mn02j16PRpYjyksxuwcgKl+p8Q2ZI4DSaC839TGSYJEHEYtpzOtVq2nPdHEMX5JnzRMnagRULiDC0f1dNy2bjqqM+wdJif5MsrZr2Q+d9m/8z/hJ674/ZeE6BR5fNgeIQAF+7/Au89v6X81c7nsY/zfvVtMd5Ysss9GLB4EAHfv7oFJiBibh6yaP8tjifwbECYVggOwA6rWdTTlMMoE3azHEikQosKSknIT947s1Tvl75u1twx8H5TZ4PP+UMrso/TGQUUhik0v8/e28eJ1dVp/+/zzl3qb33JftGwhLCDsqiIBCSuH7VcXR03NdxmREERVFElEUF4oyOOuroqKOjvxmdUWdMIIgiiCiL7IQAIWTtJN3ppfa7nPP741RVdyedkIQOSaCe16te3X3r1q1zq29VPec8n8/zEJZHKwSXHf1JVk5Q/fdssLT9vQjPZUXf1/f7GHKw0Ph95QNfmIxhvaBx04vt/+KOykyeDjq4ZduRDFeSOEYwsC1H8LSHN6RIDEmEBhUYnLKDjAyqEuMUJMJzIDZ2ghlEdpJgjLW6krUckThGRLEVVqJ4tBNJjWaONCaS2lihwXPtfvWbMfY4WtvJaF2wiWOk72OMtpZkteOYWmUh6SSELiKKMUqNOn86zmgXgusgGnYEZlTYUNLaoynVEDlMFI2+gLvz4d5TfkxNwBFKIZIJ2/7vueiUh25Lo/JlRKGCGRyyr08yOWpVsTsYjalpCs9mArpYvqHhD36oTmS/Nf0OFr3+75h+0xBIiDM+5HyqHT6D8yVBZ8SsOdsO7CBcGz4K7NYmbOyC4D9O+z2ncwL+sGFktoDuCt1tBYpVj3LJ4+aNC8ioCpd3Ptp4zO/WHYHT54GB0hSP0oyYY7xBIDv5pyM0Z+UeJ9IKYwR98yVROYUMrLPfCR9ZjtDwl3++cNKfu4kmmmjimbBzNsA1j7yc3/fPZ2B9Gy3b4cH+KcxM7iA0iqQTkkiMVuUvm3PRAREtliTeAkI+u66YUrnx64r1X3n2g3oB42fzVgFwzcwFdDp51lc7WF9upxK79FdSSGEYqiQJI0WsJWGkKAz7qBEHGYKbFxghiRIeKhhbceZaYcaAU44xjkJEMSLSyFIAhRIyWeOAUjT4qVAKE0ajeXqpJHgecXuaOOGgPQkGtCNQocbJB8hiFZPwkENFGBrBVGudMXHcyH8Rnmf5dRCOz+xT9W4Yt8FdG4hjWyDke+B7iLQC18H4lgebaC8Elt3xWiWRySS05ihNy1JpU5S7oDzFFlHJwJDaLOi+t0KUcSj2KMJWH6cuQO0Mo0e7ztl/TrtzTuGhymnf/fe/4n/vOAuxdcBeJ8mEnYckE5hMEuNIjPPcuDfsySaszmlfkapwQ8rB31bEuA6f736osc+pvsvfzLub/3jyFH6YXctba8JLHU9GBVJtZbQRuFs8yh0H5jx84fLKtvvIORXulLPZPB/CUgandOjy2VW3X3awh9BEE008h2gKLE008TyAcaA4S2OU4ds3nc9/zDsFgJGhFKaqELEYzTfZXxuknbA09047wUj4tgLHGBvqWVssX7Hln/f6WEtO/Ky1p2pi0jDTsYu1MzODwCCfaH+ClWWPb28+m8HBNGGrtTDQnsApgVcArQRCG1xHgAZVrYkQkUYKURNEADz7P48NIoxsq3tsF6ZFpGzVnufVslwMwuhGOzw16wI8104sYoMoV0eFjFhboaUWAI/nNYQTU6lagcaxIZmiXGmcr6g/n5R2ounUridpq/xEFNvjhWHjeiXWjQpAU6tatJ02YyY8O9sy1LJVGtWDtYmx0QYhDCibu0IygUn56LRPmPMIcg6ZtSGs32LHrvaunf3ZThzHTUQPYXGljne+YyU33v4SnB1FZDkk7EzTf6yiclSFI6ZupzNROrAD8F1wHZZ2vo+V/d965t2Fy9BJIenVLms+PTqpe+dd72RzqYVIS27bPo8PB1m+NvXPhCbib4+6i1nH9/O99Wewfls7F8x/jLyWrNZFjpnk03k86KGiXXwZkfMrbJNZqu0GpyTwB0GGICPDye9bzj3fOrQmpU000cQLD5885td872efxxlSFKeAvK+dnxZPIpOuUij6RFVn0vOjlqTfZheqdxJVliTf2vh9X8SWZUdc8pxVpr+Q8MmOuhhn88o0mv7YcoIHgxbuLs/hqVIX26sZ1vrtlLI+YcFDxC7agWq7wB8SqIr93ovrWS0xuAWBSipURSNig+MqpFsrlgF7fVCz/HIVxAajBDrlEScc4oQiyDlUW6TNiVECI0FVDSpwETpNlBD4w2myqx3EwKA9pjaN4iGqtRxEY2w3Sl3gUNLyVSVrfDse7YCuc2XXtYVProPOJRHhBLZmO1ntAqh0yp6jELYjPY7RtaB6oRS0t1Ke00Z+lkthOpgFRRbPeRxfRvzvH06i5+4KqlAlSqYxQiAis1u73Unls5N0zAOJD7Zu5PsntdL5f9sxQ8OIRAKSCXQ2hU579v88SXPyPWFfPi+f+hvB1JUtPP3ujwEfB0YFmE+0P8En2p+gakJgvLXjPCfDilO/yRSV5HXeK8nfMWMyT2FcYdNJ3g7+gKYrWaRvOEe1w+AWRJPPNtFEE4cEmiuaTTTxPMCaT13I2//8bh4a6KV8Wyfuw21UOiAlrfjy6JUXwvvtvs/W2/6ozy2n6y8RmelTEAOD6EIR2d6G6WihMDdH7Av++B8fs2JLFFn7piDgxuIPACvMxIXCOFIsK8GEntpN7D/G2hjVsTlso8svcOT0rTy5bjYA2gNKIDSNiaZWECckRglkqJGAMbZDxAgB9YorrcGtdWAYgwg9CCNMwrX2TnGtMyWI0dkEUc63lYIjFeK0R5R2EbHBrVX3ibGVdrEefY5KFahV72HtGBDCbs+kob3Vtt7XBRPPsxPRaq3StVY5Zlxl/baNgSCAcsUKjvXOE9exYkwcN6rvds6PkfXJNtjukziGekFevWtH1gQcY9CeIkwr3HxElPVxXccKRrG2Y6jbTExCKOlEVX2H6uRzadt7WDn4ncbf9ev1oran+NfzljLrfyqIHSO4QNCa5LS5T/Mfc27Zpdp5MrHsmE/Z60Hr3YorS9vfy68fGb/t8jN/ybveefu4bUkVcmLbRv4yOJ3VT07lSaeHtwQpPtD7O/6+/S/kZJIlR/2YO2b38ES1l1/kj2cwTPOlSZyTjugybz5iDbetO4JELmRqYpBK5PBU2UVt8NCOnYyKGGyTeRN1LOv6ACu2f3PX7b0ftFY/W79xEEbVRBMvDKx5/WeY9d0vIQSIgsJ9PE0+mcIpCqSAW1bZxbMVT93wDEfaM5aecDkiiCyHLRRtEQcgUin7XV7rtl2x4R+t2GLsAvRN4U8AuMB7MyYKd/2eLRSfVUd3E+MxEZ8FkMiG/eZ8d4i0XE2Xk+fPI3MpZV2qyTJbnSzlikREwtpTCYFTBKdsBRCtIDFkiJKSOAEiLZERhDkHWfXxB2vcNNIgwXgOle4EYVoSpgQyAgxESUGYhqAFjBKI2NqXgUAG9m+nDG5JEHRncB2JKAe28AhGC38AUeOHQttuB8B2RNU7yOudLrUiJmCUQyoJkUZUQ2QygS5XRu3Nxogt0nWQLTlob22IgaZmYSb7sNy9vZWwJ0ulwyHIQjA94PQZ69layTIzNYg7pUTQmsAVtgMoMaRQ5RCkaHRe7y8OJz4L40WMcTayH72Dex47AXn/4wCIdArjKqK0Q5yQ/P4Xlxyw8dSxJ3Hl3MXXcvMY7Xjtsu8g37lnnv1AAG+9+62sPnO86Fwv7Ft912zmDFcmeuh+4/y3voubf/hdOwfYNJXTMmtpccqUIpdHSi56U6LJZ/eAZb0fnPA7adnci1mx9rqDMKImJhMxz00nXBN7h6bA0kQTzxN8/7R/ZcHPPk/yjB0MbGwhvU6R2mYI08++iu5Fb72Boz7yMN+beRt//6ZpLPdfTY9sJ9mXwlm/DVyXsC0JAoKM5NhLlvPQbmwbVo58jwvcN40TWuriyq/WHsc//79XNy3CDhDWlHt5fcddrM5M5YdrZ6FdQeyCWzI2hiQ0yBCMFDWLA00jmFsKK6YI7GRMG4QW6IREe3aCKKsxsmr9hbVrhQbt2OtP+6P7VKZmiD1BNSeJPYGMXdKbffz+iu1eAdvZEkWISr2ar5aNIaUVVaIIYo1uSaF9F1kOrbd1PVhWCEStyhBHov26OGNtz2StWo8wrOWjJGz3SxhiqoEVP7QZrVqUNqelYelVE1Aar03NGowx2TIIQZh2iJICL29QpajxWBOGCMcZtVTbDRbLN0w4qZyoku9ww+5Elgc/+M8cF3+IWd8dhCAk96Qge/bkTtYmwopHrq7lU+1ehF6549u7LPS8I7erbdnXT/p3Tvr1pxnY3ILf5xDMCHhquIOvxItZ3PkI56UeY76b4YlqL9+8aTFyaokZnYPPOMalx3+Glfd//hn3W3bkpcBbgEu55EbFDGcAV0TcLI7Cz1SJEi66KIgSAqfcnIzuArmb700hWNH3dZZN+8i4BbEVm776HA6uiSae/3j6XR9n1ne+TNcRAxQqPvrxHMltED/LLONl8z/O5mVTGD42InduG72351GVAJFOAbC05V2jNqL1x8y+cMIOlpuCH7NYvXEXoaW+kHXlQ6/mjr89gZX3XfnsBt3EHhGaiG/uOJOsqpBRFaTQdCcKjIQJwoxiUyqBjgUikIRaoh1BmLE2mWgQRuAWqHFIafPJDLhliapqK3gIgXYlpR6XcqdAO6B9iD1Qgc01q3YY1LQSPW0jbBloId7hgxaoqsDNC1QVtCsI2jyMK5GBJkpaTqmq2uYAOhKnFCIqESiBkRKhNVJJ2wEuBMZ1QDJalFTnqnFsu8CDyBY59XajRvKYYqmR+1LPQZQtOWjJolOePY7WtS7vGJHL2G6WTJI44YAQxD50dQ9zYm4Dfxycy21b5hJsTRH54AcaGUTIFgftOyjPw5TLu/yfdsdn6/cd7phIZLm6+wEW/L8zmHd/bafYzpNiP0mQPXDBIbesunSvOlduWXUpuu+7e9xnZ4HzybCbYCDB659c3LDvq+PUz/wdcx4roUrhzoeZEOedew2/ueWTe9ynLhad/9Z3Addy8w8zzHX7ycoytzKfRDpAu4kmn90TdtNRuWLtdSybc9Goq4MxrNj4T437ly34BCvWfPG5GmUTTTwv0BRYmmjieYQ1r/8Ms//5erzeEuUgRXK7wCnDoouW8+AN+94uu+TUzxGlXYJjkvxxw2yYeRuvyqzmBvFq0k/nLYlvyYIjcQq2jD/2BFFasmz+xxk8rYehBRIj4LHLL2TZEZew4okvIxwX0ZJjx5uO49QVn+L9827jXbmtHOUVmuLKJGJnUnxtj2X47eoJvpsSqAC0C4VpAi8P2Q0GFWi0Y4UREdtg+jih0K5Ehhojhe1siTSqRmRNzVJMexLt2dUPo2wHTJhRVNpsRWB2QxUZakZmOCDsQkmYhjghCLIuuYTELcaIyCBijVOs+U7XbL6I7OTRpGsVfVpjXIVxJRoX4whrO6YNMjLgKkRNCDHK2jagAUdiEq7tJNE1iztH1ewNYkQYIapVCEKby1LPbQHb4SLk6HbXQSbGrPgIYUPtU0nC9hSVTocgK0jskKjBArguJgjtOYHtenmGar/6pPT5MAEFK6wArBz8zoRB8hJJaUbcCIz1CoaBavqAj2vJiZ+1otwk4d6Xf4GFn1iOcSByY+a0DNBfSfOzzSdyW3I+nV6RX69ZSOd9MDyS5reXf/oZj7k34grA/936c15x9usA2BB28Nr0RnZUYoqBj44lprY4ZByIfbGTL30Tu+tQqVtfNgWVJpo48Hj6PZdw+k2Xcv6sNfxq+DhYXws4308s7XwfoqOdlqcj/vKpbzMv9U56bwczNGx3UKP5bCaKLEeoFU0s6/0gtLVgfJeV913ZsJGUroNIpSiccyQnv3c5A6fEZKfk+c7xP+CIRDeXN8WVScHuulgAXOEwxRtiMEoz2+vn3PRqHg+6+MXASQRaoab3M1BIUy56xL6DLijcEWnr3A1EKUDYrhYZGiJf2L+rtpNFxAYElDoVQ0eB9gzekEBEUO2OLa8EvO4yL5rxNMfnNtDfneWeHTPYms9SDR2qm9KIyNryYhROWeGPGGKXRkC8keAWrdAihcC4EiMFMqgV+gSyYQlmRREzahFWX0A1BpN0ibI+CFDtaeRIBVksWQ4tBPgexvdqRVOi1t1tRZY4k4BcAlmJ0AkH7QqqLYLSnJCX9aznNdn7WVfp4N7HZpHcJgkzBu1JhFEYKYiSCsfzYAKBBZ5/fBZGBYDdiRqvWvxnVl/fbv9XNWs37QjC5IGzERzbwTIZqL//VodFKrqbby+2osy6KM9MJ41E8oa159P5l2FksbrXrhTPJK4A3PxD+1xWYLFY6KYoOxVyXoU4logmn90j9mTbvqdO0Ka4cjhAoE2zg+VQQlNgaaKJZ8DeevEfKhCtAcnbMqgKpPojIl8S5Pbvg3fdq3KoACpdBp33mPdf78cI+Kuld3Lr6hfR/uDIaHVV/zBewWdwQTexBwNn9lLqEoRpg55S5bR33EC779lKiaPmsvZ1rVSmRKT+2MXxCzcA3uS+EE0AowGyYyemvapK52s3sHmoBdeJWdjRz92rZ+ONOHh5iXYFkQ8yVngjAqdUs8tyBFoJorRChjUhI9SIyE4+qYkvRljrhSitKPYoghx2EptIkNoeE6atJVmUhmqnRivQjp2g+YMSf0TjFGN0ZJDGjNqNSQlKEKdq1X/VCCOlfWztebUnrdVZZMfWQI1vO5G2XS6eMxouWW/UEQItfVsZWOvGEZVg1MpLSnAdiGpVgAC+bzNnwHbVCAkJj6g1Rdgy6lEcpiVJUeuCqXloG1ObIAsJ7NlP4fk0GUVrVg5PXDFXn8T97pXX8/6j30jhq91sPS/kH3ruPuDDuvEvn5vU483+4bW0lnyMhNKIR6QVU1Mj/HHDbJ4sdiOGXZ76yMfgTXDcRcv36piNLK09oP5eH2sHee/6mfSFLfQPp4kDBdKAse/TOiY712AiLDnxs5P+Oj/XWDbzo+A4u9gqXHCaXUi96c+Xc8FpV3LTny8/CKNrook947l4n08mPnXEr/nahnMReQe3ZFDV/V8803OnY1yJNxiw+M3vZF5s6Dsry7TtWcxw3nbm+h4mDG01b2uakRN6EBpSW8qUpiYpdSqWHvdphFIsbX8vYsEctpzbwfB8Tcvj0H6v4oIPPUyrrFLR7jMPqom9xkR8to6PtK4f81eKhW6RvH6U+4ozAejPZFi9o5v+HVmML4gTAtFomLZ8zinXulGkvQltO1OMKwjTkvxsQdQdgDBUEg6qIBGhQCc1Mhkxr7uf43MbODX5FIlUyEuzq7m7OJe7BmfxSOBQ1QmqGmRg8yKilC1O8kdsBqJbMsjQ2C5y3woW2rViDwbbeR1pa2MrhOWhcb2TWtocFiXRvkOYdQiyEqE9VDWJU25BxAYZ2YyZeqe6kbWCqZLCOJIw4xAlJU7VIEJN7EuqLXDEnD7mJrfTrgTHpzfwu/YjqIzkqOQFiVaXRL/BLcTIqNYJM9b6tm5NVvv7ecVnAVWOJwwyr/PZ63vv5cTvvJGpl0SEXRmCVo8gJ591N96esL+f8f9ZaOGNE2zXfQsY0EVuLCxkOE7y8vTamj1flku3Hs/PVp/Ak2+8DO62XQ97i/Nedg2/+e3uRZax7/XRc7oU3beApPDZVGwhjhSuYZTPmr3rjJkMHG7fpztj2dyLwehdRJZlx3zKzpWBlQ9fxZJTruDGu684CCNsoonDD025q4kmngGHk7gCkMlWqLRDYQaUuhT+UETswZyvXs/sH+xaifCrtcfx/cfPmPBY7/6rm3jow9/g+FOehFDiDUpEa8Ci1AYGFlfYsLQFnXQYWZBlyytn8PTruhk4NaLcYyj2CFQILU8Kum7yaV1dsN0EgBwYZuaKIi0PO7ScuY3jXEnVhLhN39QDhrHZFS3CZdXR/8vDp/+In534HT4w5bectfBx+k80DM2TFHsE1TZBqUtQba19TQiIkoowowgykjAtibIu2lN2AtbqEqUdtCOJUpJKh0O53QaIpvsM7Wtiqu1QaZPWmzq0NzWlDJmIqDWm3AVBztru2G4Z0J6DTrj2Zy5B2JkmaPWIkoo45aITygaNOtIKQK4gTCuqrY71OPYksSfRbu1+30EnndpPz1qHqZpYEo+5/hxJnEkQd+Yw7TnIZaEli0mnIJWElpy9JROYpIdJ+ZhsCpNNotM+cdpBVjVuUYOBcodC55LgeTZDxnUQwlYjmnoOSx1CgqjluewnDmWv6rHiys7dK3XMdLIs7n4Up6QRIw5X3P9KwE621m2c8pyMc1+w+IxdO+8S6YBKJ4QZSGxV3HP3Edz62HyqQz6UHSuu1PDAXnYY7q24Mvb9/r67385JM9dzw8PnoSOJKTuoku0q08pWz6oASj0HRuRefNZVo+NL2QXHxWcemp2K1lptz1ix/isTelbf9OfLG58lTXGliUMVh9ti0CtSFf5h5s28/WW/Z2BxBadimP2N65jzo10rpKO+I+jbNJW3/uk9Ex5r4+IsA4vSGClw+4vECUW5C6pzuxGd7bW8tiSiu5Ntf72Qp946lU1LDH2nS7acmaHUpUgOxOiEB9kMIplAhDHdd5fIPSEZnq+pvnyYZbkHGNAJWlXxQL88L0jsbRbbW7P9fKLr95yUXsei7CZmtgyh3BjjGOJcTNgRof3avKSWpSc0tgLe2N/LnYpSl6IwRVCdFdgcwT4f/Jg4YfD7JULZYwSx4kh/C72qwLGeZmkyYKo3yIz0IFM6h4gzEfRUiKYE6AVFRo4JCVusbZgKDG5RowKb9VLnrMaVRAmF9pW13q1Z4Nbtw3AUxlMY30GnE0RtliOHNZ5ebZGUuhRD81wGF3gMzk8wPC9BfpZPfrpLpcOh2upa8bDXp9LhUOpRDM1xqHS6VNol5SmalBPiihgXyWsyj/OiaU8jp5YIcxBkFUHORTsCWYkx5QpCWttc4bg278XzduW5Y3/uAYcynwXGiSu7+3x9Ua8VAEVsRbTk9oj2R6ucd+41nP/SqyZ8zMHA/w4cz9L29+6yfVOcp2vqJmIEoVb8ujiXVWWH/ysl2BGmcd3RIrF96XrYk7jy2IapgH2/j33PD2yejuxdwwc2nk45cInLDjIY5bNOFUq9B65oc+fuoMnuFposLD3hmXnoirXXTdjBsuKRq0EJdNaqgE1xpYkm9h5NgaWJJp5nePDVn+Oxyy9kzWUXUu4Q9B/r1YIZDUJpzvnNxQBs3zyNkc0zeaLay3yvD923YFylyM+fPJFOJ8+vSikWdz6CyoZUpoa8eN5T3LzjGHItZaIUVDo8+l4eIJcNMGvJOjqmDhN3hZSnGoKstYHKraugNu+otadLiGOcp7bQ+UCVUEtc4eALl61xYnen1cQkoE5QM3L0dZ7nZMjrBDOSg7jdZYwCt2hvVlQRBC0OlXaHaqui1K1IDMVkni7jFCO0K1GBxinFaEVtH4f8DElhhhX63KIhc99mptxRpuXJCp0PBbQ9HtL5UIR5Ko3yY1RrleqUkGqrPUaUcTBKohOKoN2nMCdNcXqqJuQotC+JfUWUVERpRZyo2YnVRJLYE4SpWnVebOx2DVHKsVZmTj0nBbTv1B4bI8IYma8iR8rIILLvHdeKI1F7GpPyMEnP2iokPeK2VM2mTBFnE8RpnyjtEmZqDaK1SboKjX2ehAeuW8uUkY2MF5lMoLJZVDaL9DxrG6ZfuILjndWIf197Gn5/hSm3g3wgwwl3vYnFj76SHw2ffMCed8kpV+zX4278+Q922bb6dZdTmR3wyFUXktlg6LxH0HKPj7/VZd37L36WI90V966fucu2ZXMv5lunfB+Ax153OTrvQWQrYh/5woU4ZfDyBi+vURW9y+MnA2O7ZFb94dPjfh5qGNv1sztccLq1aVty6ue44LQrG50rADf98TNc8OKmJVATTUwWZO8aXj7nIa449hd0thXYdI7AuAblxiz+nRWm6/xVIkkIxV93/ZmRzTMpbpnVOM6cf7+G0lFVCucX2HpakqFFbay/wMU5aoTtx/vodAKRShHM6uDRS1tY9O6HeNcbbuLUhWuRc4vkF4aUerGiv7b5FKRToA1qsETLuphkn2Ru+wAvScCLfYculT9YL9vzHnsrsigh6I9yVLSLxJDLVPBbquAYZFHhDUrSmyC3XpMY0Hj5GC+v8fMaGRgKM2B4viF+UZ6XHb0akXfovF+TfswjuVWS7Advs4valODJx6fw84GT+XNlJklhFyZfnn6S49MbSDohfmuVtrYiC2dv4iPH/Y5MRwmwXTIqMKiqteHVjkT7Eq0ERmA7t30ruDTswOoii1vLBqx1eOuEotjrUGmVBFn7/StjQ5SESheUe6AwXZCfISh3CsrtgkqrJEoKqi2SSrvNW0FCpVVQaRN0zR+g3S9R0h4VE7M1VmRUQE9bnmqHptImqHQ4hBllebPRiOOPQi5cgOrqsF3bRo92tMDo7+bA8I5DDb9fPw+KZZxNAySfHiK5fhivL487UEJW9tzBvr/Yn4V/X0W4v9h1Lj5j2hbOXXwtCRFy1XE/52tPnMMnH30d/9Z3FptKLax+3eQWlbzqto+wsngM3x3pGbf93MXX0jF1IwDfOuX7FCo+CMMjV43yWbdo37vPBW5ZdekhW7SwN9lfy462AteyYz7F0oWXsXTRqFi48oEvYKRscN4mDk0YIEYcErcX7qrFeDQFliaaeB7j4S9eSOX0IrEPqfUKsd2nGjv855Mn0yHTZGSCYxIbSYvRMLr6RHWGO8iaSi9F7fPy9GpeOu9xOqaMMC05zH1bpzG4NUuY0wRZyYwpO1BCk1AR5057nPOPeZTOI/vxX7wDZ0k/a1/vUzxhWiPrAs8F38N/eoBwVSen/uUNvHvDmawJerh3/Uz+88kDt4D6QsdEk9IZ7iA97giuG+EUIbMlIt0X4+WtQJafLin2SkpdNqw99cQQztNb8TYO4W8r2p/bSxhpJ2jFqVCcFxEfVcSpQHJbFaIYd+1WvLXbSDyxneSTA4jIYBzDjK4dnDRjI8nWCuWpMf0nGQaOdijM8BmZ7TN4hMPgAkl+uhVGjMB2pXjCdqXUxBIZaJxyjJeP8UdiVGCQNWHFKNvdEqVsR4tRkjipiDIuccJB+y467aOTLibh2ErWMEaWQxvwmXQIWtxRv+s4Rqc8glafOO0RtCepdCcIWzzCnEu5XTK4wCM/Q1GYAVFC2AwYqE2MVSMgW7XkkNkMIuGDUpg4tuLKC2TiuTNk7xqeDLoZHkqhduS546cfY/XnLqTyQBsb7phBSga79WJ/tjC1bJy9WSTviwt8c3gaD4cl7qxGE+6z7u3WKiHIWjuS+79yIWs+dSHzrt+95/H+4LIHXsfjQQ9/qOhx7/GdOy3Wvf9icAxRJubYjy9HBbWKyqpGHpg5Pjf/flfrjMnAeS+7hvNeNr6K/dzzDnwloVF2wnnjXZ+1nSo7Memb7rycxWddxflnX33Ax9JEEy8k/Hnp1Zx3+oOIQBCVXbQR/PqpY8ftk5NJXpGqkJEJksJvcNq3n3An06fsYPVZP+Td71xB3/kx3Yu24SiN1DB8TI5gXg9bzkzwD6f+houn3Mg/tD3Gh6f+hnce/UfOXvgYRy9+go3nOwwemyNsTRB3ZAimthD2ZNAK0lsMDzw2kw9uehE3DM5BIxnaPIPtm6cdpFfs+Y29EVl+nj+CO4fmsj3IEmiFp2KMFoiCIvOUpG21pu2xCumNZfzhCHckItEf4OU12oWgTRN3hExpHea3jx5FZp3ELWra1sS0rDWoiiG9CdKbQY0oHuqfwoOlGRR0BYBeleGk5NMc27qFl856ksXTHuOC7kfYFuQo9mWQIQQ5qLRLopRCe5LYF+haA7MMDSKqcVkslzWuwngOOuGhUx466aKTLmFbguE5PoUZgpF5huJ0Q2kKhGnRsD4LWgzlHk25V1PpMlQ6regSZATlTqi0W94fZKE4HUozNC2JMhf13sQbc3+hW2XYFmfYVs0SRArjGGQM2gGnqhGRRp90NBiDGCmhdwxhqlV0EByw6+BQRv0aDQMHUyhiBodZ8cjVrHzwKkSxhBguoJMOL/7byeWEY7EvQssbO/7E6r6eCe+7ZdWlfPioWwAYHkmxY1uWn53xdVa89B85ecXk8bxj/ucKWr0y/7nxJN6z4LZdxjAWj772s2AEx3xqOTI88Hx2ojE8E/bm9T938bUHpTNGp32WnPxZe00+fNVollMNq+74NDf98TOW0x5CnVZNNHEoo5nB0kQTz3OEBQ+VNKiywB8QbNnUzk8yLyI95fec6g9yjKfZHu/qE32y5/GfRlDSHnmjaHXLDA2leDA9heJTLbQ+JcjPNvSfAB2By5tn383Z6dWc4NnKl21TCrRIH1+4cCLM73k7C64QgABRa92Vgq77KsSP5Lj3qE5O+MAGTvAS5HWeo//7c5Y4NXHAMd+JWecNsKinj7tm5EgOKOsFHRhMSqA9EDEktxtaHxpGjBSsQFCuIPIFwK4xyjhDnIBqh8Zrq4CAjoc07tqtDTEhmtXNyJwkYUqw48SYl592L7MTA6RklUArHtU9aC0otitK03zb9u1rdEJTqUrcoiTdFxElJGFKIrTtELFija38A5CBQbs0qv+0LzECSl2O7dIpGYS2gaLuSGTDRGtjNMZBC9EQU4yUyFDbjp2Ei6xGCG0a/rSADaxMCYKsDbWvtkKYBTG/QEe2SL/qof1RB7VD22q+ahUcB9HZAcUiphpYu7Aw5NniULdTqGNP+Vb3FmfTfmsCqqOT8sxGeMn7/sw/tK07YGO66c+X75W4otGsLM7lxu0L2ZRr47jUBm5ZdyTnzn5swv0fWD7eAuzJj100KeMF+Js730fWyfLG4+7a435H/vxKqttT9s2aiQkzimS/zU8yjmh0f+0v9taLen89q3d+3M7WEucuvpZbfjN6/zN5e+8vxtqBnP/Sq5BYy7OxXTmrbr+M885pCixNNDHZ2F7JQCrGywQc07KVF/lDQOoZH3d556O8LPMoAMcmNjB9Rj+b+trwnkqQKUH/CYK+s1xaZ+5gSeZhjnLTALwkAS9JPAHtT9gDzVvF4hNfycDPZuAWDaL2sakdCFOC3GqHOx4+iZtmGf739deTk2lCE/GBe97KN0/+4QF4RZrYE96YXcvvhxYghcaRmpGyT9SXJLlFkt2kSW+qgDaUpyQwUuDvCJHVGGJDmJboRISXDpHC4K/zaFkXoyqaKKVs50YnRAmIWmI6Zg1y1pS1LExtomAiMrUxnOx5nNx777hx3RME/HfPcUTbW3ALUG0FkLhFgYxAVQ1GGWRkuarRtmvFOKrGyWvd2imHKKWIfEmlXRLkIE5AnIvB1VSTiiglUWVB0B5jEhqhDCaUxEIQp0FWJW5eEKXBKNAhxEmIZ5XJZCrMy/ZzhCtJiiwAZyRK3N/6FFtLGQYq9jn9YYh8ycBJrbQ/MIJYuwkdBJgofFbd2IcLn4U9cxv/oaT9ZSfr3/6XzaD7net44rEZkz6eW1Zduk+L9H+oaG4cOZGoqpj9b19k3Tt2n6Xy5Js+Ne7ve5ZNzuL77G9eB8kkP/x/33nGfc/5zcWs29SJMZI4aTu1nms+uzfY3XHGPsfO+0z0/Aci72Ws9deSUz+HkJIlp36OG+8av/6y6vbLOO/cXW05mzg0cOiE3Itn3uUFAGHqK0pNADAyMkJLSwvDw8PkcrmDPZwmmphULPzFFVy2cAVvygwCsKrs8Pv8UVx13M855zcX8/QjU0hsl2jHBj1qByrTIggk2aekDWVMQrnH8A/Lfk27KnBvcTYtTpmMqpCVFc5IPclCd8+T3fdtPIOzW1Zzf2kWD/3tEWx9aSdDR2nSGySpbQa3oKm0K4rTwM3Dg9ftXT5BE3uPegfAoC7xX/l5PFKaykNDU6jGVnfPV3xGhlKYogsxyEAyY1VE6t6nrUAghO3y0MYKEfUbgBBsWzaHkXkw70f9iG07ANj+yvlMecdTnNr2ND3uMMNxit/2LyAf+Hxw9q10qRF+OXgS9w5Mp29Hjrji0NE9wsfm38z2KMtP1p9C35ouOu+1E1C3oBtBpCo0EBu0J4iSNl9ChtpW/9WCSmVsCHIO5XZLxjHgDxlS2yKcUjQ6/to5iNggYo0RAhnGEGmi1gQi1rj9RYhidDpRU5ck1Q47QU+tG4KRAqUTZ7D+TRGJVEBlY4b5Py6htg5DqWTDSB1lLfMc281iBgYxpdJoJstOHSx709VyuExGl7a/d7f5K7vDuo1TmOlkx23bW5uQfcUFp3+em/74md3e/+CG6SyasZFb1y3gjtIRDIRZMqrCFcf+4oCMZ0+Y99OrkNLw+Bs+3ZhM7zwJe/GNn8RRMX07ckQVl1SuTPRIC+mN1lLBH44RkSFOSG7/+b7bl+3ueZ/tceoTyp0nlvsy+dzdvpMx3rE4/6VXjevWOfe8a0Hu/3M8Wz7a5LNNPJ9x27ojODOx66JC/TvhwQ3TuejJN/D441NRIwoZCOKUwZleJNqUQrsGf7uiMi1k9cu/YYuBniWO+MkH6HgAdlxQ4c0L7+JnTx5P8HgOb0gQ5EDPKLP2zZ965gM1sU/Y247W2yrwlU2LWTvYTvHRNrr+Yuy8JiGIPZuFImLLJ4WuiRhC0H+c4G+W/Z6bvvwSck+UCHMuGy5wefsFv+M1ub+wyEs2nuNXpRQDUYZ35Lbt1Zhe8/gSHt3SQ1jwkCWFiAT+DoFbsDmFiUGb2aECg6roRkg9gBGCaptDpV1R6YDizJijF26gHLpsHGhFKoMUBq0FQclDDFt+L6uCOKMR2RCpDPGQR/pphayC9rFd3y6UZsQkNypSW6HyimEefNGPAVgf5fnY+tdyz0NzyK52aH/cdvCGKYk/GKEqEc79T6LLFUwcI+TooltdbGnY4O6B0x4ufBbg/LOv5uZb9+29fdkDr+Pz3Q8Bdl68odjKjWd/ZdLHdsGLr+SmO/ds4VV/D317eApfXPEaWlcL7v3mcz/3XvSx5cQJeOSqC601lTETjv21f/gQnox5tL+bYslHrEuRXV/js0OHJp+tb9uZ0+6rmDIRH56M8Y7Fzny2vg0h9vk6r6PJSScft9xyC29816u45NcvPdhDAeDq837Hip/fwumnn36wh3JQcajIXU000cRzgIdfcwVvPuJPjcC4JXMe4arjfg7A7867jim3Q9d9EdNurTLzVzuY9X8jTLlF0v6QJLHD4BYMqW2Gzvvgn+5/Gcf5mzg39wgbK23cNTSH3w0eyTe2n7OLZ+rO+Nb0O3hLdgdf6vkL617XiQxAaEGUstkZ2hOoqiG1xba0L/jC8ufg1Xlhob4I8VjosTFo54l8F4PlFNXQwVcRLckKfipEpEPIRujWkChpQ9mJItDaiitAOLeHcO6Y/7kxdNyfZ87P8w1xBaxoFxnJSJzkoeJ0toU5Wr0yPakCj5ancnd5DiNRgnLoYmKBkwxpTZQZilP8z+bj2fZQN4ltEoyt7pORrR41ShD59rox0oovQhu0ay0X4oT1s44TEqcU4xU0MgAZ2Wo9sBPp+oR69KYhNoioNgGUVrTRviJqS0EYIofyiCBClAK8HVVUVRN2ZSCXIfXQFtp+n6C6Pou/Q9rjRBGkUsTTOykdO4VwRjuUKzCShyiy4grYSWct7N4OUI6bpE6Ew2kyihQTBmnuCW96+B18cNOLDtCAxsOIPb/Wi2ZYD+hbC0cx1R3ipPQ6Tk8/zr88djZv+dO+ndezwdx/uh6zOUnUl2TuP10/4T4Lf3EFg8UkWwdzPPHXn2bd2z5BFCmCrojCTChOEYRpSZRW+zUZrWMyJnc7+1nvrrpvT9i5YnNvHjsZlXk7T0bHdtM00UQTk4uXzH6iwWXH3upYNGMjff87k2k3SWbeFDL7f4vM/mWAe3eGxDZJcrPCH4Tcwy6X9r14Usb0xJu+Sfj6QeKKYl2pAyUN2rOWSyoAXXU4c9Xuq8Kb2D/s/L/fHWY5eWamdnBc1xai1hhVtVxPRtbmSmgwDmx9acS20yy/dMqazAb45b++lJY1BUSkMUqgZhX5dOfqceIKwKtSpb0WVwAunHETMzoHQQtkRaDKwnZDZUC7tisqSghi1xYPRSlFmHEIsw5RWln7Wweq7YbTT1zDUbmt7CiliKoOYcUhqDgEZRdKClWSOAVpi4wFYEBHAhEJoiR4echuMGQ2G7LrDcmNijALlQ5wbmnh3IdfzQ/znfxg6FRybhmv3yGzRRO7gq0nOQzPlQzP9XD7RjBRLYulzltrfFZIYbc9Q7j9YcVna9jXrtUf3fciznvkVfyk0MaizEY+NevXB2Zge+E2LHvXsD7Kc276ca555X8w522PM/tbX+bIzz938+9jP77crjUU4ZhPLcfUOrZ2xuk3Xcr6kVaeGOrggVddyZNvvIyoO2RkjqEwVRBmDk0+O/a4e3v8iTqQnumxk2EtNpG1782/v2x8IWITTTQxIZoWYU000UQDd/z0Yyw7+pMYR4IGGVTIPQFBW4Iwo/AHQ4bmJ8jPBSEM39h+DkkV8sRwJztKtmtlWsswMxI7eDh8alwny6Au0SZ37Wy5+m0/4NL7Xocueqg+D6OsyAKQ2hYTphVBR8zJKy6jM1U8INU9L1TI3jWcAfzfA6+jr5ilUPZRUhMbSRRLqmUXXVUIT6MSMXHCbXSqRPOmMrAoBRqGjja0rhb0rHes6BLHqKc22ywRKRCOA46DUzFsHskRaUkYK1wVU40dioHH+uFWkl7ISCVB2gs4aYGdLD80MIUv33UBanOC1FbbVVVtFcSeQKUFGHAqBqdsq/xiX9RCta1llzDgFm31H7HBKUWI2KAChygpcMq1bUGMcUZDREWkrYe0MaBHKwZlOQDt2pDbbMoKMLGBMEJFMbJYxXgOcS5BOKOFOAmpjYL0VoMIrDAVzGwnPytBui/EXb0BXSgilEJXqo3/jdEGIccHgjbEl+cJhNp14rQnbNnUxkjZ5yU7pvLNo370jJ1yzwar7ti7EPZC7PPjzaeRcQPmZ7YxFCZZO9zB/P/8Ao+/4cAGuR/9meUkQ4mRtvJWu7DhPJ/HL7VVh+effTUYw9TYsSmIAniDfeyav/oMs79+HWFLjBEKIyWJgf0fy3Md8jnR8+3LxHXnfX5zi7USe7YWDM+VrcPhhBf6+Tdx8PDgdRey7JhPYZTNPVPFgLbHHKqtksSgZuAYRblXk1TP3pqzjntP/ilf3HEET5c7GNmexq3aog8AKpLedJ5frT2OMxI7GmHNTUwO6iKL7lvAiC7zYOCTk1UWeUnKpsqwdpib3M6RqT5u8+ejyqM5fttO15x/8kMMBilWzf4lf79hGU/8+WhkYOj6SwlZDNApl7DNo9rm0Nu6/VmN9cGgTIuMeGkizT/N/ylvKb6LkSCHHFHICJyi7WAxNX0iTghMBCas2R+JmiCkbCGae0QeR2ju3Dabkf4MlBQmF2IQUFbIskQFEHsgIoEIBCa2PrpWSLJcOrk9RFViRGxIDHoEWUmpWzJyWoVXdz/JL7efwD1rZpHIVWl9zNDyyBAbL2inMidg+q8U2dufRI8UxvFV27UyvpNll9D7wx3GIPbRHsfd7LE26OXqlW8izMCj7/vGARnaTX/euwD6Ye0woFNkVZkXtT5F35wsfSM9HHnlch67/MB3s7gFe51rxxbAbX1xmgduGH3e88++GiMgJVpI1rI3WVa7MxLELXZOOSIkif79H8fhzmf31BmzL5ioM8ZIwXnnXM1vftfsxDxUUA+5b+LQQVNgaaKJ5wGWHv8ZVt7/+Wd/nPb3IlwH4XmQSWGkJE7aj4k4ISh3eSQHYspditJgghtXH4PjWRIdBQrHiymnXB7JT+VIfwutso/VQSu/HDyJP/TNYWFHH6/suJ+TEpuY51h34puGjiXoT5Jeq0gO2IVyt2QwEqKU7Vbwusq8bc6f+FDrOnTfr3k8LNCuBB0y3Rj7gbIKeiHgquN+zv+u/wxKaqQ0KKFxXE2YCihrHyEMUmkGFwhaHu5m2+mt5GdD5/HbaEmUOTO7nVu2nGIPVutwMfWJU6xZ0f/1XZ5zzo+ugR0eIhIgIM7ECC9Guppp04Y5Kr2FqnZZtfEYOu90GZkL1TMKxKHCTwSU1rSQWytwi6MTTRlZuwEVWpFFO7ZST4YGpxAhgxhZCXGKElVx0Z5CO4IoqVBSIEMrpBhHoH0F2mavyADbeSIEIoxRgf0dIcCVUKpCGIK2goxQEhyHKOuR2RiT2lJBVkLEjhFwHYSBlifLOJsHa3ZgAl0uj7NOAMb7Vj9PrMHqEKnUPldCPf2uj7PwF1ewaUs7ixY/NwtT311zFllV5g3z7pnw/i8db1/32d//Ivfo2fbfJAAtmP0v19lQ+QOEuiAitBUejQNawrGXLOehL1+IUQIRWYsTjBmXEQKw7oMXM/ufr7eLOBLu+faFz5vF8H2xVxiL/T33+jEnmug+F0GlTTTxfMJkfQ4t6/oAKIlwXcimMZ5ju1uVoNitcPMQn1xkQaIPjUZOgrHDk1GB/9t8LBvXduENOLgFu3gtNJTnaF7U+hSvSFWA1B6trZqcdv8he9dw/7oF3JxfyECY5uzcY7SqIikRMNvrJyvLvOmEu/iftWcSZgwvfsmj/GrGijFFYCmyTgUjLa80EoyvkEHM71Z8fMwzfbnx297alH11aCavyTzMIm/U7nShm+K+U3/ChdNP5hd3n4R2FbJqg+lFnfoZiF3LbVXVCiVGCgpTBUErhPkEf3hyruUfSmOSQK1ACtegE5oQiXENsiIQsUBoYR0EIgEahLFd2mqkiohjUgMFklKSSzhU2lv5/5InYlZn6XnU4BUUmYf6QEranojpegAS6/oxoVUT6wLLRPZgjQ7t5xFkJUYn9q1o6PFLL2TO167Hy8NDX7oQOPAixhFfXI6qMqFgcvzMDQAc/d+fo1LyMCUHshqdEMz52vW4I5I1nzpwY0wMabRTa68y4I9oznjj9dzx049xwWlXIhwJrs3TFLFpFMYArHvvJcz+9peRse38er7xWdh3fjrZfBbgN7/7VDNfsIkmngFNgaWJJp4HmAxxpQ4ThAghIIoxOY9Kp49RgkqbpDgVtGeQVVB5SaxdQmU/RoyEUAv6hnPkA58NhfMItSJf8QlCh0pfitu2Z3m8t4uedJ5jc5sBuOn2E+l42HYSGAlO2eANBgRtHmFKUJpqOG5KHx9pXU/d1XC+m9ll3PXJTXNSun+4/5WfZ/YPr4VIUvJ82tsLHNOzla3ZDP0jGXwvxDm1zMZiJ+5LdxANZNjan2PeEf38bccd/LrrZAhHrcN2F15ex1Nv+SQLL12OjGrhsBkH7TlEXSHrBtv5n+B4OhIlRNWKJOHUgHcceTexkby65S98wH8L5qlO0n2BtXMSIKsxTqARxmCkwHMsEZehRpZCRBxbewchcCJNtSdFpcNev/5wTGJ7BVGJwJFEaddagaUcVFXj5AUijkEo+xMQYa1CL4obnTtEkZ1gGoM3NIyvFCaMbIdKoQhS4AyNQByjtUYohQlq1bM1EcXETJjBMuG2wxWe9btfdsQlrHjiy8+w8ygefs0VB2hAE2N1eQqLcw/xyIZpfGP7OTw4OIXBcpL7Xzn+MzexzkOV7e9xgpotzIFppT/lPTegXYFTNTU7PGuJR+3pqq2ShZ9cTq8BhGDV7buvNFv3oY9xzKeX88jVdtK8L7YFh+vEdV+tGfangnB/nu/5ihf6+Tex75isa8YYDdXI1nYGIcZ3CdOSMAvDx0R0TxukM1GhwymwJS4yTdlF76oJkQhcMfE0+b6gwi3Fo+ly8sx1t3GKH+MKxf+VMnzhsb9i6L4uEoHdV5WtwKIVTJs+wIfaHgH8Zxx7k9M+O5w9ew2X3nQphYpPvifBKS3rmOEOMM0Z4gRPcE73A0x50xBZWalZeo3viD0ytZX7ImtBO5Fdzs6QvWu44+m55HWCVlnmCDecsGt/S9C6S5bcuONkQnQqotgloaBw8gpbRQQ6oSEWuAVphRdju1yS20FVPCpzArp6hgm1YmQ4iVqfJE4YdDqGhEYnY/xclcpQAllUtrgpATIA7QuENshqjKyGltcODkMQIIxhzj9tQbS3AUXIFzDVAF0qgZCkt/VDHGOEQHgeOo6fkc/aDJbnD6eV1RDjyn3OYnnqwx87gKPaFVFvQGfvEK/4/d/z5C1zSG4Dt2T4879d1NjH3J8jXQQRQ5S2xTtRkr2yGtsfvOhtNxB70LqpStDq4pRtcVtiW5Uw5/Kit91Aaxhb54BI7rYjZ917L+GoK5bz6JX7xmdfKNhbTvtM9ze7V5poYs9oCiyHAZYd8ylWPNJUi5s48Fi549ssbXsPOA4m6aGTHtUWSewJZAhhi8btLRFtSKOTGgSovEKGgiitMZ5Ga0EUS9Zt6kL1u8QdIQiDKknksGLrSCfbOrI8ke4k5QUYaexi4aDBG4kwUlCcniDICvKzIHPUIEdmt+71Oei+Bc0J6X5i3VsvZfbXr8MIQxRLUirgjK6n+IsznXLkMlxK8vAXx1cvLbn1o3xz2znE3SErNn11n57PLdpKPO1a7+fYh6DsUixnKLX4BB0OvfMG2NaWZUrHCL4MaVFl7irPoVD2aSkb3B12Vdt4DiKMEdVwNABUjbH7CkJQytp91ULl46QiSgrcosYpxnZbzkdWI9yhCnHao9rhU005GEfgDlYxvkREyj5XpK2o5CiQAiKBKVesyBLY1RUj5Hhrr0hbwcV1rMgShKMTzN2IKvUwUCHF6GSV0ZDQVfFP9+l1PyQQhOC5+ySuHAysXH80m7pbWdr+IJsrLWweaiHIe8y/dnnDigsgs8GKHZEvMMpORqO0YMFVy1lz2e4r/s479xow8JvffnK3+9Rx2jtuQGhwNIiSRobUbOxsla0ITcNbvZqzwuTeTPR7/zRqTTdZE7CDjcnyz94XHM6i03OJvQncbaKJycDK/m+NclrfwySsNaiqQtuUEZZOf5SEDOlSI4QG7gkCNketxEYwwx1krjNqbftwWGJFfhF/23I/txQXsWrb0URaknEDpiSH6XCLFGKf2EjihMEfFHjDlt+Uu6DaYfi7mXeSFM8sroxFk9PuP/54wbXM/Y+rGQqSVLVLrzNMl6rgCitw/MNRN+/ymLqw9Q9t67jw3y/a5f494eb8sTxV7kAJgyNipvrDfKj93nFCy9XdD+x+vFvnoNYlrfCRNMiqwBuxBWzaAxlJRAT+UK1rVVgrpditdZ94MRm/yuahFswOnyitEVrg9jtEWTt/m9s5wEAqzdZNrYhIQioiCiSq6lJulyS3O8iKiwglBIHNUoljTKWKKBRHg+nrHSgmhAqIhI8plzHV6uj9ExUJ7Qm1+w9HTiuKFYTv7tIpfMihKulIFnl1z/3864sz9K/pwBuUHPHlG3jiEnu999wTEfk2yyTO23xUmbHX4TGfXs4jX5iY0y455QqM3L0AsjPOev11iNjgSoFb26YqGlnVOGUr9KmqIvKFtWuODDfed8Uejzn1D6N8tm6TuzcC6aGMyeKV+5pl2OSzhwsE2hwaHYHNiB6LpsByGKAprjQxmTjvZdfsdjFvadt7EI5DNLObsMUj9gVR0rak+8OGZJ8kKGUQ0iBCgTck8Yag2gbGMRALgrJLUPKQgy5+v0Bs9zDCVvAZAWFVElYTlHyfQjqm+4gB+tuyyFsTZB8ZwSQchua1MrQoJjd1hFN7N9DjjrAtLtCtdu1cmQjNCen+Y90HRy2NPnLvW2hzi6w6Z/chh41MnFP3/bnu++qFnPb2GwCBDA1CC0QMqz97MXO+ej1bq62k20vM6e2nFHqs2LKQWZlBtlUyVAYTeJ0Cb1aW1OaSzYXJeEjfQQ2VEeWqFTGUhEpgLbwcBZ6HziSIsva6VFXLBuKERLs+QYtDYofEH6ng1KzAKl0+YUYhQxdVCBFagwTjqppNmEInXWQpQFQDjBR2ojnG4muXgHptaoJPxG4xJth+XFAotfwSow/LiWgD2rBswSdYseaLB3sku8UDr7qS2T+4lrvSM3FUTLQxTbpPIKtwwoeXc9/X7ETz7u9cxIv/9gYSJY32avYbhkYl3e5g1N775rpFm3+kQoMMDELbTq16Bovx7bWhHbGLELov2JtJVXPytSuar8feoSmuNDFZeKbPoTqnjad3EmU9tLL5bVrB8LpW7stN54yOJwmNw33VXv5cnMdIlGBucjuuiMnrKgkRMqRT3DJyIrf3zWXVtqN4eqCdYMQHaZBuzKNeDy3pMsd0bOUVMx7mifYu/vSno8huNFTaJOGxRd5xzJ95b8uW/TrPJqfdf6z9G1tk8J01LyEhIuZO3/P/4Nm8zpcf+0vOuvnjGCPQRrAh0cblx/6SVU8dTbcqsMhL7vaxDwZlpmRG2NbbirfFRVYEcVpjChJ/EMK0LUJKDICXN2gXMBDkBEEbhG0xShn6CxmbX5+JSLeVKQ4lSWz1UBVJOZFgpCVBV6rAcFuCyo4kcthFhpZ7xx5U2l1EZMjP8mnHWjHpNU9itLEFPtT4aL1DRZuG+7/wfXS5MvEJjuGzo5tqXSxjcNhy2ihClqssOfVz3HjXZw/2aHaLde+7hNnf+xJrtnajtcAZkcgQ/B2j/5tbf3UJS065gtL0NNqVBLGt3Ik9eOjLu+eWIoj2KQlCRgYRGWSkURWb2YkB40kCTyIyDkGL4p5v7z2fVcXxc6rDXVw5WGjy2Saa2H80BZbDCMvmXMSKp2442MNo4jDHniqlVw5+hwtO/zw7jk0TJa2lQZgFpwSZLZrEgCJMA0bgDtvqPFELT3byCvIKhEFEtkLQqdjQOhUYRM0XFWm7CuJQECrDq2Y8xP0t01lz33yq03LESUnQAqcuepJlnQ+yKLGR0EiUaAZ4Pdf46kk/OuDP8efvT1wh6OYlcVVQLmV5ciRJ3f9oWyaL50YI15CfF1NtVWQ7szhlY8M7NaT7PPztJYyrrB3Y9ggCG0SvO1soT0kRe/Y6dMqG2BdUW1XNagnQoFMeIoyR5QBvSBJmHWJf4Q6UMFKCIzGexPjCCi5A1JrE3eEgpESmUsSFoj0ZoxuTyIZg4jogRMOvehzGCiuOresyUdh4vFCqNtk9jEPvnZr4dRiUu6x726UsuHo5lbTBHRGk+mzXSJQUnPaOGxrWCqpq8HeERGmFkQrtTt5n1jlLv4gjRa1bRSODWl5QbW0izLiEGckd/9/+2U3sq2ByuEy+mkLQoYulCy9j5cNXHexhNHEY45ne2ysHv8MFp13J8IIMkS/Qrl2kVlVQFUHGrRJqh9uLC9hQaWMwGM316wtaGQqTFCOP/kqazcMtFPpTbBtxUBVbcR0nDDqhCBKaEWlIO1Xe3XYnpVbJO47sZFvcie6u8E+n/H+13JUmDhbes+C25+R5bj//S7ts+/ftZ7Ck/SE2xUXmuzsAUBhmj7EKKxqXN/bexczUILd2zqMSuGQSAUOZDPFmjzhhC9vUZmvpBLZordQrCHtCnHSAcjRhpEgnq6RqHnVFAVEGZBX8bQ4bRQeFnrwdQ1Hh91ueEvsQtIFYbzthU30hYWcaJx+gpk0hWr+x0ZWysyhi4lrEcq3wZxzGdFwLz7O8NwjtY6QY5bRxfHhzWrA5NtXwYI/iGbHunR9nwVXLMRmDjCG73s6fTnn3Ddz9r5bPijDGHwwJ0w7aVbU5056PK0KbKbk3eNkFX0TKWn5mqBGRRmB/D5VLmFX7zWcXn/EFVt3x6cNifrGvaHLaJiZCfIh0sDRhsV8Cy7ve9S7+8R//kWx2vIdosVjkIx/5CN/97ncnZXBNjEdTXGniQGPpCZdTnp2l0m7FkKDNIANBYgdECUHs23Z0qHn2OoCBVB81uxoa5EpGBhXYgHEV2FBRFdjjaGXJvElo3tl2F27b3XzsDa/gD4uOYN7MLSyfvZLFyfrCs1f72dSDXyg48vPLQcGTF1/EwkuXAx5R2l5v1YxLORVb+wIDUdqQnylwKgKnBN6IodKu0F4aoUFVYlQpgZCWfERZjygh0S6oANxCjFMRGGU7AYSG2JeYjiSqHGGUJGh1iZICp6TRSRcjJTKMIdIIJWzVVhAhi4DvWa/3nSeKO4V6mjCy4btKgRGj+4+1UBCy1oWjIBCNLBekgDg47ILtd0E1sK/XIYyjPrec1Z+9sBHseeIHl+OPaDDglAVCw0teex23/ffF/OE/P8biM74AEsKMREa7TjQnsgSrB6FPNGk679xrEJFGSQFSYISoCSy1HKAYiA2OFLAP3TC7w/Nt4naonM/is66yXv774M3+fEdTXGniQGPposuozmyh2mKtGysd4A9a/hlnNENBkgdHpiGFQRtBKXIZKKf5S2EaQdGDskKEwgaOVwTJ0BYNGWmPIUNriRt5moQXcmSqr5GvcecJ/8WmRflGrksTL0y84Y6/Q+Pz5iP+xKtu+wiRkeTcKr2JYY5JbabXHaaofYbiFKFRdHgFTpuynoFqmsFKklLGI5hiLWidIWULglrsd70R1r4JadCRtLdQUS25SMegnBjlxQQzqpB3ELFAJmKMEfaa9zRxwhYXuXnwhyH72CAohelKUZzqk1mvEcP58dx0rK1t7W9dKOxqASbGFxbJbMba9ZXK1k4Xay2G1uhC8fDmtKmkjQk9xIsBG5z2slFO6xa0FYx9wZl/dR1/+K+LWXn/57ngxVeiPIkMpC2U1Lue25KTP4tRipv+fDlhV4abf38Z57/0qt12jpx3ztXIyCAdy2kBRKwRsa5ZOsc4SmCc/XwdBY08wudj98qhwmn3JaOwiSZeaNivFcvvf//7XHvttbsILOVymR/84AdNgaWJJg4znLv4WptlIQTVFkXQCkYZ4rS2eRNxTWDxbDeLUwYt7QK1Uzak+mNEZBmNqPFu7dpqFxHZ8GXhCWJf4hYN2hNEoeWhnTKBL1x+OOtWmHXrpJ1T01Lh8MVjnxltB+941AptQVYRpgRBTlJtHZ3E2eonK/ipqr0mVYAl2DULpaglgcj4tUURZcl9bEVAtxhZCwRXYhyBkQKtBNqTGOkSpSRRUhJk7fYomcYraBJbioggAiUwSiEiexxqQg5xLcA+GlPNVqv8E6r+t6lNMBRCSITRo/7WjYdoqHXI1HNbiOGm8CcH4JV/DhHVBNRqcHDH8QyYenuVRR9bjgqspV3rE0HND12iqhqh7WLb2a/6Mrf+6hKMK4lSijAp0A4sumg5Ru1kq7CbeePOIsv5Z1+NjHTDCky7EoFB1Kr96hlDyFonYbz/1XoTTZKalXKTh1W3P/8m+k00caji/LOvxhksARCmFUEW4iSEGYNTELaiPxcwUk3QX0wjhP063jGcQW/38XdIsiO2C1uGtlDISFvZL2LbvSg06ABELNAJ+6WeEOOr1ydTXGly2sMT/3nGNxq/P/b7uWgHomyMbAv4U/tsulIFHDnK+YJYUYpcioHPSClBMJhAVCUiFqAF1TasZVNd21AgRhyMcDDSIAOJiG0weeBpSMYIV0MuREhDJlvBdyJcJybqVAQJD2e7S3ojdi63bQd0tJGfYS31jCMxlSrS89DVnbqwaoVDo3a4tcKPWmfKOAhZ63AxCNdBKNstZuIYE0WHrzVYDaYurBziXRM7c9qWp+xnVsPK2xGc/fIvceuvP472FFFS2SwW13YAHnfRcpwy3PuNXW276vN/oyTnnnctt/xmlD8uPvMLCG1QxoAQSGM5Ldh1AhEbOwcTAhnEOIX9E1jilDMhb1266DIQgpUPfGG/jtvEeDTnBk08W1xzzTX8/Oc/Z/Xq1SSTSc444wy++MUvcuSRRzb2Mcbwuc99jm9961sMDg7yohe9iH/+539m4cKFjX2q1SoXX3wx//Ef/0G5XOa8887j61//OtOnTz8YpwU0vp73DiMjIwwPD2OMIZ/PMzIy0rgNDg7y61//mu7u7gM11r3G17/+debMmUMikeDkk0/mttuem7bg5xpL0m872ENo4nkCJx8gKhGl2VmGj6h5+vsG49ggZRFDmBGWgBXBGzZktmgyW2LSfRH+QIA3HOINBrgjAU4pwinHqIpGBdr6rBrbgRB7AlUGpwBUJGsmskiaJNTDKps4fOEOh/j9VdtpUjZ4w5DcBsntkNhhq1G9vBX+VNXUbhoZGmRoxb3YV8RJhXbtIoiqatxCjDcY4AyVUfkKzlAFZ9hev95wgJMPMY71a489CFMwPE+w7WRB/7EOle4UJuWNTqaUgiiGIIA4RnguQinbcTIGjYmn0TaHRdQWyZUEx6lZh8mdqgVrz1GbxN5YOfDWbU1Y3LLqUh68/kJkBKe+6wbCjMJIKxZHKbtYIEMDseGlr/4ylQ6PwhSHMFPPzAEZj1Z7GSX4zS3ju1cAClM9Sj0eL33Nlxv3ySBGhLohnAhtap7V2i5SxPZ5jZRoRxInJae9/YbGcz0bvOhtzY7ZycayI5sT0t1haef7DvYQmngeQY1UEZWQyvQWilMkQkOYNeikxjgQ5gxCGraPZNi+vYVt69sYWNOJsyZJdq0k+7Qht16TWxeSWxeQXR+Q3RiS2RSRGIzxR4zlHGGtsKMsqAQuFeM+8+CaeMEiswFanoT0BgV9CbZsauPBddO4b9107l8/jQc3TWHN1m7Wb+tg2/Yc5cEEzg4HJy9xCtYFQLs28N7UKvVVGbxBid8vSfYpklsEya2CZJ/A71e4WzzENh9TcjBaUK54lAKPfDGBkAYvV8Uog1M1jQVyRgq0PVrESDs/lJk0wnWQ3piO490E1u8irIzdt1YshJQ2E1EKiGNuLP5g0l7jJvaMnTltlJQYAVFaoaoxqhIjDJbPdvoUpjpUc7Zg0jj2uosStQB5IM74jVD7eiFJYYZPpcPlvHNGM4TrXLbOW2FXTktsbCd2bJDVmHOWfpGlC/etOMXtL++y7bxzriZqSx3y3UWHG5bN+IeDPYQmqNWTIg6J277g1ltv5UMf+hB33nknq1atIooiLrjgAorFYmOfL33pS9xwww187Wtf46677qK3t5fFixeTz+cb+3z0ox/lv//7v/nJT37C7bffTqFQ4JWvfCXxQbSc3KcOltbWVoQQCCFYsGDXhUshBJ/73OcmbXD7g5/+9Kd89KMf5etf/zpnnnkm//Iv/8KyZct45JFHmDlz5kEd22RiSebtCN8/2MNo4jnAksRbDviCapxwkJWIwhRFmDF4IwLKEgYkLWsNXkFTbZGoisArGtxCjKraYDoR1oIOJbW/Y9CglLBZFcpWqWi3liWhbJCiUSAiwe9KR7LIW3/Azq1Z9Xf4YPFZV+1S6V3u8dEOlDskRtlqUrdkanZ0NtC73kWAsYGcMrDCHga7EF3/GRuEURglEJFBlSNEqWrb0pWEqq2ewlWIpGutE2JJpU1QbYcwp3F6y1RIEWYVyU0RCIFOuah8BeM7iCgGESMSPiKZQOcLmLIl/EKpcdV+Yoz2UrcwA6yQUu9iMQbhOGAMK4vfO2Cv/XONFeu/wrKZHz3Yw9hr1Kv1znrdddz664/zktdeR5QQlLtcK+qF9dD5euaUaOSjGDkqpOyu6uvP37+Ic5Z9CREbawsWG8u3FHbiWbu2hTYIY2rb7D5GSOKUIsjaTqtbvr/3C/kLP7EcceJ4LvHiv70BYQzV1uZi4WShKa7sHst6/g6R3H34cxPPLyzJvJ0bC98/YMc/86+uI+0rTORQbVOoiuWc3qDtNk1ut0J3RSbQgDcicYrgFsEtGNySwS1q3EJkOUIQgcZ2q0pJnHJqnEMRIIhd+xkvgKo+sJ+ZTT57eOGC065sLD6D5QZG0LCcQynQ9nrC2NxLoyxnldpyW2+YBscV2ha81YU9tF301qrWzR2DU89nUbbTKkpCmBboskOYlYTKEKbimkKDzW6pCJLbQ5Lrh8H3IZ1EbR0mMZii2pkkOdwCSQ/Z14/e3j96grsRWXa+ry66mEoVM3eazdsoVVnx+K55NYcrVj58FUuP/wzGOTyyECbitKUezxanxYzjszIEI21xpHABQcPudCLb0z/94CIWn3UV6DF81ql9SGqzW04rtEa7DlHOCnlGin2yEj3rddchZo/vGjzvnKsxroTIELan9u/FamIXHE7ztyYOTaxcuXLc39/73vfo7u7mnnvu4aUvfSnGGL7yla9w2WWX8brXvQ6wLlo9PT38+Mc/5v3vfz/Dw8P867/+Kz/84Q85//zzAfj3f/93ZsyYwc0338ySJUue8/OCfRRYfvvb32KM4dxzz+VnP/sZ7e3tjfs8z2PWrFlMnTp10ge5L7jhhht497vfzXve8x4AvvKVr3DjjTfyjW98g2uuueagjm0ycSAnJ00cWrix8iMWqzcesPbp0998PZlQU5qZJU5Aot9mWaS2G/zhGG9HFe1KZOQSe6JB4lU1tkHLUYxRElWKENUQEcSWPNWq8o0jEZ6DcSSxL9GuQbvCVmBJ+OWW49hUbeMd7XdwlJt+5gE38bzFzuLKnK9djzrFtqXrRIwIBW5e4g0JVKVm31G3oNPWJkkYUEHNQkmKWnWUFf2EHrVbglogY6Vqn8yx4oeoBa8LV4EQBLnRa9W4hqgvSXKHIPNUgTibID8rQW5tCZ3wMJ7CCWJwFCbZgk55qOEyPL0RXakiUyl0eYzFgtGNSa7RelRkURIhndFqKylZOfidA/raHwysWP+Vgz2E/cJLX/1lnKqm3O5SmiLACLIbDInBGKdshbHYt51JYdJevxPZbY31MD538bWo2DS6mowAXAnR6DVifaprk1MNwhhr4ZB2qeasEBgl4ZhPL+eRL1zIUVcstx2Ida1OwCNXj9o6HHfRcoSiIQTVxyjDMZWsO+Fwsw07/+yrD43ck1rmUhO7YsXWbzzzTk08b3Ag5y8vW/JFEtUYUY2J2tN4wzFhSuCUBdmNGreoiT0rtMjAdra4RXCLBrdocCoaWdU4pQhZCSfktEJ7IAXaEWglCdO2ultrwaPFXv4vsakZaN8EwDhx5ejLlyO7bBaQ9iFOGLRj+auqCmQgUFWQkWCs05w/ZH9qz4orTsXmW6qq5QJG2WMCiAjcoq3atR3YtuhCBpaHeIOSKANRQmGUIdEviH0XfwicUoxO+phcEqe/AK6DPxwxMstjaF4vURLSfW20rzREOwZtN4sU6DqH3g2EFODUlpuEQITx89amaeX9nz/YQ9gv1DntwNEeCMbxWaFtIRvCNDr6tSc479xrxnVjwyg/PO+cq20jPsJaNdf4rIhNrRhuYk5rXCtgBzmnUTR3+t9czx//w4bdH335cmQAqa1WBMLAn354EQBnv+JLkJDEteyWBvcTtqDOSDGhb88hwxH3Ejtbrx00OE6T0zYxIYIgYGRkZNw23/fxn6ExYHh4GKChLzz11FP09fVxwQUXjDvO2WefzR133MH73/9+7rnnHsIwHLfP1KlTOfbYY7njjjsOD4Hl7LPPBuwJz5gxAykPrTdWEATcc889XHrp+A+eCy64gDvuuGPCx1SrVarVUXKw8wUxFsvmXNQMmm/ioOEC900YbRBSYLSZFMFl4aXL0fMkhanpWmA49NwV4o4EdnIZG4yrbBtvoG07t66189baeEUYo4aG7AJSvR3PceyCteeBIxvtvk5J1kiTxCnbysGn4mk8mevhd73zWTx1NeflHuZ0P8AXk1cJ2Kz6O7Rx7uJrQbMLaXzyr/6F1WGRO8pziWurwOurHdy2fR79+TTDI0nkkINTkDbgfhjcYo24a1uBJYIYYUwjiJ64tnJcE/8aWSB1Gy5HYVI+UcZWUDllg4gEiX7ouduKN4VeyfBRGdyCxstrNp+VobAoIP2oR3J7krZHS8hSSJx0MCqNU+qA/h0wcwrFo9rJ3bURvX3ATjzGWuTVrRWcWrC91qwcfn5mmi2b/3H7ixCsWPPFgzuYfcDtP78YgHOWfpHc+oDWJzRh2kH70vpIa4NT0shYYqQhdiUta3efM3PLqks57e03kK4F2GP1GisWRsZGrIS2U1CEMULXOwYlUUuCcrfPyAxJtcMKJY9/clRACbOG9EYr1mjPHvPoy20mDBpMm7VtrD+mLpwEGYFTBRkYznr9dVak1KAqB6/den9xqEycV6y9jqUt72Jpy7sO2Ht6X/gswNLjPv28Xehq4tDGBd6bwWiE56Er1Unhs8d8ejn+PI+WtQFRKk1+lkulHab8sYIqhMiqXbUOutOo0JDuE41uVxFqVDVGVCJkJbCFF7vjtDvxWaEliUGo9GX43ZZjubVjPp9tLXFK9wbe2vkHzkxM7ly5yWcPfSxdeBlIWPngaPX9y/7fPWwotrG5kMOVGkfFlEOXIHSItaBa8Yi2+/gDEq8EqmK7tVN9NrBSe8IWE0WmZsEc2SKhevaaqnHfSFtuKwREmqDbVu3LQBMlFYVpLjI2tDxRxhmpopMuxWnJ2j4RYkeZuCvH5pdkyK3TdNyXJz8vzcAim1OYOXYW3qMSPZxHtrYgWnOwYTO6XB6TxWIhpO3Skckkulxm5Y5vPwev/sHB0uM+DdLOK268+4qDPZy9xlhOO/UP5V34rIhjjDv6WYcQ5NZVbQbgTqjz2YySIA26nhEYG9u0ouwawjhOO8bGJ2xPUpjqEaYFqmq4+18vaty36GPLMVnbuRUlRUNsPOON1xOmBGaKXdK8+zv2MXXuF7Q41sUAiHzJ2a/4Uq1zxhaKHm44JMQVapy2/b0HexhN1FBfIznYMAh+8IMfcM4554zb/tnPfpYrrrhi948zhosuuoizzjqLY489FoC+vj4Aenp6xu3b09PD008/3djH8zza2tp22af++IOB/Qq5nzVrFgClUon169cTBOMXD4477rhnP7L9QH9/P3EcT/iP2N2LfM011+y1rdnBElcOdDt9E4c+6r63wmh0OHlhgG4BYh/yR0W0POyQXW/sJLNeVYIN7jNKNqqchcESpjC2tyCCILQL1boW2m0MOA7GUdZrVwkbbleJbTWJhigl0S6ookQ7iuFSgo2VNobSKWByg68HdJEdG6bSqSQdUzdO6rGbePaoV/BPhKPcNEe5W9kWFygZwwY/S2gUT6c62JTJMdyapFT2qBZcKiMO1VZJNZcgORDjlGLcAohKaDsBYj3aseJ7iDDChCFCSOsNLQSkkiAEqhiCMfgjgnKHxMsbgozEy2u6/ryDTee10z6gSa0dJMh1UZrhUJqqiZKSjvtjxLpNeH0+wZHTMC0ZxHCeTYs7caqQ832E72NKpVErsLqdgpC2kyWOWTny/LEE2xkrHv8Sy468lBWPPfu8kIMBYexn4823forzX3oVofII0xIVGlvZ7Aj7GSqwVXMTdITUBY0/f3+0Aq8+abUWYaBqVg3CGJBgkOBI4qRDucuj0mat8+rWIWPhlAQPLLfiyZyvXo/JxPgbXR77zK7hpGMRpezn9Z3//jHOet11VvDRphE+CrDkxM/aMQEr77uy8djDrcPlucSBFkv3hc8CB01cWbrosnELj0288CATPiYIJk1cAUgMgD+kyc/wKPdAcivknrbFQSKOLQeQtQXqUtz4PJOBtgvLdT5bqe6Z0+6Gz3p5MJskQTHJjrzHH0IHR8bQfucBEVmAptByiGLlw1ex7Ojx1f3v6fw9fW05/liYz0CYphj5bKtkqEQOlcilqDQjFUUVB+1I3AJoV+AWHZyKtra2gUaV49Huqmo0PtdECAgjK2wIgUn5eNtKyEqAcRUq4REnJU5Jo31FZUoGdzgg98enieb0IkZKkC9gulsIs1DqluTWRLTe9jQtj7ay9Yw2Kp0eXiqFbMmx/axuWtZWcTfX8wbjRiEgUOsKV5hq9Xm/jrHygS+w5JQrDitxZSyEYZTPCrcm6Fkuay3Aa50mTNwJUkedz56zdLRwSkj7mYkGaYxdY9DacshaDqX2HMKswqkYYl80nAbqcMrgD42KLguuWk6UAbqrrP2b3RfSaEcgjO0q/+OPP8bZL/8SpjYeaxdt3z9LT7jczrvGcJNDplvkEMXzWTBtYv/xtre9jeXLl4/b9kzdKx/+8Id54IEHuP3223e5T+yUnWRq9th7wt7scyCxX4xv+/btvPKVrySbzbJw4UJOPPHEcbeDjX35R3zyk59keHi4cduwYcNzMcR9wvOdlDSxF9hpEXZJ5u0sybz9WR1y2ZGXMnRcRP6IGHfAIchCqi+0k81yCGFcy6+wtjUitlUnMoiRlQhRDu3CdXXMRLQxXjPmsdauidg0qkgQNcslYUmTrErCisOOaoqi9ie1ewXg18VZ/KZ0JCnhovsWNG5NHDrYeVF25/9Pt8ow28lyil/lzOzjnNr6FFNSeRJuSHuuSGtPHndWgcpRFYaONORnKopTXEpTEkQ533ZSRTGEoa1KrQaYHUMQRpgowsTx6HVbDpDVsHa9a1Rgr9dyp8DLR4wc2YoKwN9eQad9Sl0C7RiMY72K45SL6OogmjMFGWq07yISPh2PhqS3xIQ9WUQuY7tUoCaqCPvTtXUPz2dx5fkCWZuY3fz7y4gSkigliXxJlBBECVtxGvuCgYU+24+35HJPAfTakw1xxji1CaawP40SGFehky5R1iNo8yh1KwozIMzZbCIx5iN44SeXo6pw7CXLOeZTy3EKEuHGnHD+Y/z0iVP3eF5G2snoBaddye0/v7jWDWbPV1UiK67UO8KMYckpV7D0hMsb57anc9wXTNZxDhSW9X5wvx63tO09kzwSi8OBzwJNcaUJRDqFzFqv/Hpn17PBsrkXs+PFAf3HS0pTbAhzkIX0pioiipGloJaPJpDVGFWKcAohqhShSsF4PhtGe+S0u+OzYKurvWFwhhTFwSQP7JjK7aUF9MWFZ3V+Y1E1ISPa5rqN5bNNTntoYcWjo7bkum8BJ3gJzkuUOCX9FHOT25mX2k53okBvKk9nskjKC0GCKtuiiSgFYQbK7TVe4EmipLKdBEFkr9dK1d6qta6rkTyUy41tYqSI3LIdKlVEGCOrIU4xRkaaaotDfrqLrIaY1hyyHEC+AJ5LnHTwhiG9Vdu5oOtQmpUlsznCG44gCCge2UHnXTvw1m23OYHOmJrdmrAiM9b2uclnDx/c/PvLiFKKKCGJPUGUtDxWu9JyWg/LaRftmdNqT9rOF1XjsELYz8949HPVKIFxJDrhEKddRmY5lLrsh6kZczkd/9HlxD5UOgTHf3Q5x358ue1AmVrii6f9jD89PWeP56SVIHYF5599Nbf++uM1fg0Y2yFe57QIwdJFl7FswSc479xrQNrzeyFw2mWzJy682t32OppdLIcADGgjDokb2NiQXC437rYngeUjH/kIv/zlL/ntb3/L9OnTG9t7e3sBdmmS2LZtW6OZore3lyAIGBwc3O0+BwP7JbB89KMfZXBwkDvvvJNkMsnKlSv5/ve/z/z58/nlL3852WPca3R2dqKU2uM/Ymf4vr/LRdBEE4caGiH3RttqoCB8VsLbksRbiFtSvOqU+zh+0Tp67opt90oltpZKQWStaGoCiQxjZDVCVCJEJaj5UocQBHbBGmyVnxSjVVRxbDsGjK18RlIjWXb3+qKdKoNTFsRlh63FLE9WeyjoyfOvXh/l+a++k/lF3/HcXkmMu68+Kb1l3ZGT9nxN7Bv2lXAmhc8x3jbm+1vZUU2ybUsrA4MZjBFkklWyuTJqdpHhhRFDRwpGZkkK03zC9hQm7VtRQ4hdqv6EkPZ3x4oexpFEaZdKh0O5GwaPgUonDBzjU5wiaVsTgBIMHpsjP1djfHurWzzpFmvLoIbK1nJEKdzhAH9HgAx1I2sDGC+uHMSKi+cah2v3CsBvb/yEDfB8mV1EcSqaxGDcqIozEsJkza/agQdvuJCjPrt8j90d1dyowFIXWbRnr8Mo7RGlPaqdPuUuj2qLAgFu3n6GygBWf3Z0IlTpMmhlc4r84ZqQ7WpOaFnPMf4Wfvj4i3c7Dq2gntW8+IwvWLuy2CArcWORRlQDKFcQlbAWAj2+RWfZMbaicOcq3j1hrECzN50w55999V4f+0BgRd/X9+txKwe/w9LcO1na9p7GbTLQ5LNNHC4wYYguFFHpFBjzrLq7LvDejG5J84uXfY25pz9N+6Oarvs1Xp5G1XSjEwUafFaWQ2S5uiufrVvW7IbT7pbPRlZgccrglICiQ/9IhgdGpvNg0PqsXq+xuLTvxVy8+TwGdHGX+5piy8HHsiMu2e19rnBolwWyskJChsxJ9dPilvFUjDYCOejS8jikN1uLMIBqK4zMUpQ6FdUWRZRy7DUZRfZ6jWyhA2Fov4eNqV2rcS37q8ZppUT7LkHOYXi2T5iWOFVDtTtN1JFCbh+2/DeXIfYlqa2GxECAKFu7vPQDW8j8aR2JB57GlMqkH9yC2D4IpfJogRKjgfayow2SCfAmt2DuUMbh2r0CltOO5bNuPkZo+zmnHUGYFgQZiXYtv30mThvkFLEnGvvbosqaUOM7aN/BeA5R1idKe8QJhaqCqeUC3vuNUT5b7oRqzQHILRiS/cZ+xgIznR0c7e7e6qvcpai2yIYgfv7ZV1tOq0EGo5yWcsV2hAnRmAeOxb5y2p357DNx2oMtvqxYt3yfttexcse3ucB9U+O2JPGWAzG8Jp6HMMbw4Q9/mJ///OfccsstzJkzXiidM2cOvb29rFq1qrEtCAJuvfVWzjjjDABOPvlkXNcdt8+WLVt46KGHGvscDOyXRdgtt9zCL37xC0499VSklMyaNYvFixeTy+W45ppreMUrXjHZ49wreJ7HySefzKpVq3jta1/b2L5q1Spe85rXHJQxNdHEZOHG8g8n71iVH7HsiEv41QPH8ZKjH6eyvoiZnalNJsfsWK/WqzOT2AowDfIe61FrJbBEvj4ZrUMpcCTGURinbq2gwYARNiBUxCBiQRArBsMUJRORmaRz/a/8cWzKt1Ao+3xFLObuzif4+7aHSYpRNf1MP6Rv01R6p22epGdtYm+xO8Ipe9fsdpFgjpMiNNvRRuBud5GxSz7nI7sqtGTLLJzSR9QjeejpqVRMAhELVNVDhimcfMkuthiDSKdsSJ9UllArifEcOwntSFDqdqh0CKpthtYjd1CuugTlHG4etC+pOrZ7xXga4dkF5igFlU6PdNWSdpPy0J5Crt2A7GpDBgI5MGLfS0phal1pIuHXPLOjZrXf4QIxamNw668u4fyzrybu9Ihr6wnaE1RbbaDtnK9ej+dIFnxhOXHC8OTFF4071HEXLke0iIb3tFMVSGWIfUnsC6KEtTqotlnxw82DjLBhtxW4/5/GV5k5RWHt8Wo+1U5REK5Psnl+G//LcbSoMreuW8DjQQ8/3XwK8VW2COWWVZfSc3cJoyRCa26643LOPe9au6DoSkQ+sp1gwoqCxDGiyriwS3/9EGhtF5qkZNnRn8RIuYsn/VjsafJ57nnXIrThN7/ddWJ7uAWU1rFy5HsNYWXl4HcO8miaaOK5xcr+b03asW4Kfsyyrg/wpnvewylTN8DaEZtDcVSrtVyUjOabGZsbCOyez8KeOe3OfLZsLXVFLImSglAJZGTDysPAYSRIsC3KATue9bneWY24u38mWwezvK+a5tqZ/818d2K23MxqOThY8cSXd9k2ls/2OiU2RFY9SckqoVYUI5+UGyCrgvTWCBEZglZFpU2Sn20ou5DeIHBLhjghidMeTtW338WVKhhb6Gbi2BYLAahaEY/vYVJJdNonynqEGUF+trUQzWwytYzNGDIpKFcwUuIWQmRsUOVaRmAY2i4Zz4VMGvO07Y4UroOJY0wQWKcDpewYXId4aidq+9CkvtebOLDYhc8mPHRtpVC7gjBjuwPjJMz9yg24jpiQ0x7/0eWIVoFKWssvp2KQkUF7tvNPq5pALSHMSIQGp6RRVYMK4K7vjufHTi2TyKnWea/ltMX+BLcWj+JBp8DWh1/JI4Up/OGBBRz1lSHAWvW1PVrGKNlY27j51k9x7uJrrdjjKVS+UuO0EoIAEUZQz0SkxmdrHYw7c1phDCse2bXQZ2c+u7MNdv33nTnv4Wqxe1P4E5Yk3oIOI24Kf3Swh9PEYYIPfehD/PjHP+YXv/gF2Wy20SDR0tJCMplECMFHP/pRrr76aubPn8/8+fO5+uqrSaVSvPnNb27s++53v5uPfexjdHR00N7ezsUXX8yiRYs4//zzD9q57ZfAUiwW6e7uBqC9vZ3t27ezYMECFi1axL333jupA9xXXHTRRbz1rW/llFNO4fTTT+db3/oW69ev5wMf+MBBHVcTTRxKWCzfgNPRAaITR8ZselkOpwRuXiKrskEcgHGVySI2jSqlBsZOPuuVH0LWQsQVOuEQpT20W6vWN0BsbFZB1U4AjAJ8TUeqyIzEDrrV5Mgrd1VDtgU5ejJ5lNBo7BjGiitgq8q6VQbdt4ABXeTn+SN4/5G3TsoYmph8SCRHuWnm5/pZl5qKHJG4Q5Ig4zB/Zj/H5TbyUH4qfiqk3K0QxsWpSJyKhxpMWQJtjF1QqYVwGkdhki5xyiVs8Sj0OpR6odqlMe0B07LD9Dtp+pM5VAXClF34diogyxLtSShLVLV2jdda4cOchztQhISPqIYYz7FVhVqD6yAi27UiavYKK5qetocN6gv+5yz9Ir9b+Qkb5FlflwshTtjrR7RXUY6mkvYQVQmO/Qyd89XreeojHwOg3AOPX2pFkuMuXA55g1SCMCMod0LQatCpmFRPgbntO3j46akk1/ggIPZ2HZutgDUELYJyRlDuMTz5MTtp/cA9b2VGYpDeVIEj0wXec85tnHvVtY2cmJt/f9kux6vbOtQFkmVHf7LhnY0UEGv89UONrqRlsy8c970ghMEgWHLiZxsT3RvvGc0L2XkyWse5i624g8FWVxrDb343XlA5bEWWwe8cMLuwJpp4oWCxfAMqm6WcTzA7NcBjxx5Dqdt+N3vDE3DaWofKM/JZmJDThjl/HJ8VkV00NNLYam1huxaNNDhuTMYN6HWGJ+VcH6lOoz1RYsBJs72c5s7KbOa7/bvdf2yRSlNsOTQwz8mQ97awKWplKE4Rug4Zp0K7V2RdrpcoKXELMd5QTOwKopYYWZHESUG1xV6fquIigwQyii2XrNvchhEGah0uIHwPkgl0LkG1zafU41BtFWjXFmqowFo/I6xVE6mktSkrBqhSrTu1fmxtEG4SCkVrB1YXLXWNSwMoZWPnujoYmZniD3++/CC9yk3sD275zaXj+GxtyoyMLJ+NkrXu6LYQ4WgqOTWO09ZR6h3lsyd+aDlG2m5qsHZj1RZBlLTXYLXNELVH+Jtdktvsc+yMzGaDP6yJEoIgK6m2CIpTYd3fXQxczKUP/BUnpp5mQWILP3rvt1n6tc/Yoh7YhS/ujHoW3bIFn4CImiW7wl+/gxWPf8neN/Oj9nofy2mxuZ7LjvkURghWPjxaPDQRn63/fCah5XAVWW6s/IjF6o0HexgvSBgE8f6ZUh1UfOMb3wDgnHPOGbf9e9/7Hu94xzsA+PjHP065XOaDH/wgg4ODvOhFL+Kmm24iW7OYBVi+fDmO4/DXf/3XlMtlzjvvPP7t3/4NpXbtRHuusF8Cy5FHHsljjz3G7NmzOeGEE/iXf/kXZs+ezTe/+U2mTJky2WPcJ7zxjW9kYGCAK6+8ki1btnDsscfy61//mlmzZj0nz79YvXHSAhubaOJAYZX+T5Z1fYDemxzu75pGcYam9dGaV6oS4CrM2M4UUw+8r2Uc1SehyuazoGsVzfVqPyWtr2rSJ2zxCdMKYWxInokNKFHLLLBEP/YN0ovpThY4Kbluv89Lo5FjvmTmugEnp9cxO9FPaBQz3AHOTfYDEzC4Gjpkmve2bEH3LeC7Iz184ebX0HmPJNUf42+vsuqOT+/3+JrYN+ypiwXgvNZH+N3UI6imfGRJ4WUCjkhvIzSKvlIWz41ITx1mwMlRqnqI2MEdSaMqka04DW3QLY5EuwrtK6KUojDFoTAdqrMDFs7exGt7/8IZybV8ZsNr2NLZQdgJ1XYHf8C2smefEuRnO/iDgtQWUBVt29+VRBVDS8Z934ouQc3WwXEaFX/Uqv6agYGHJ2RsOPvlX+LW2y/jrNddhz9iiJKCagvQFpDJVsgmqrgdMZXIpX84zewfXovUHvNuuMFm94jRz60oBSqwC3XVNivSyM4qvW155rX248mIx5MhQYtnQ5t3ckc49pLleAbihEA7UJpmED0VXvqbS/j9eV/mmyfv2g2584SubhVhal2NWkp+e8snAFhy8mcRrv2sF7XKvsaNmrii7ec8Uo4uxIDthFEKEcYsXXRZQ6RZef/nd/v63rLqUs4795oJO1jqOP/sq63AVa9SnEAkOpSxtO09h1wnS5PPNnE4YJX+T5Zk3s6snwqeWNBF/8kGnY1ou9udmNPuDZ+tW4o5zq6cNmsn7TI0ENv94oTtXqlbQhoHjDIYLWhxy0xzRoB0Y8wjukxG+uP46t6gxxnmxe1PMSM9yOzEAC9PPz3uuHvCWC71gY2n88fNs3nw1Z/bwyOamEyM5bMneAlmOAOsDkq0qhKhUUx1h1jRdQyl7gy+L3DKhighEFWJMyJtF2uP7WRVVQcZ+7jGIIWoZayEmLG5QbUFYZ3wqHYmGJnhkJ8FZlaZTKZMeGc7ANVW13YaJB1k1ZIJla/Y7+mhgq3qFxIjNZRt541QClOpQsIftQZzHYzWCM8j7m3jD/918XP46jYxWdiZz3p5TZyQVHNQ6TbolhAvE5DwQlpTZYLIaXBatd3blc8mrXVirC0fDdOCoAWCHMQpjclFKCcmTjkELaIh6tRxwoeX4wFRop4FYwWcaGqVc35zMb877zquPe6/xj1mZz55+puvRwYGp95tKGz3TJ1TLjn5s0glazx2/LpHI4NkIk5bEyZFGFuBRtnvkom6Wsai3tGy267tnezCDjfBZUnyrZPqutLE8xNm5wKXCSCE4IorruCKK67Y7T6JRIKvfvWrfPWrX53E0T07CLM3Z7cTfvSjHxGGIe94xzv4y1/+wpIlS+jv78fzPL7//e/zxjcevgrmyMgILS0tDA8P77d/dXNS2sThgmVHXMLTfz0Vo6DlKYM/HOOOhKhSzcu3VgGC1qAZzWWBWj4LiHrGSo14NBasPWUJU84h9gUYWy0FliiFKUmUgnI3BG0xbleFE6Zt4m29f+AVqX3LYCmbKndUUiREyJmJyVXx37n+Jdz1i2OZfksBEUREuQRBi8Nt/7N7n+UmJhd7Elku3HIyK586mspQgs4pw7xtzp8oaY/b+49g40gLWku0ERS3ZEhsUbQ+oXGLthVdxAYZabQrrRWTZy2f8jMkIwtDTjryaS6ZvoIX+7YW4X+KaS5a+be0zh6iGjiU8z5qm1cLJhVkn6Zh7yBDW83qDYfIYmCDRnNZGyIKoDUmCBudLE0bhcMbZ7/K2oI4hYjYl5R6XArTBdXjSvh+yMLurZzR9iSPl7t5dKiHTYOthJtTVhBwNeveN/7z5Ph/WI4KoDgVqu2a5NQCXbkCbX6ZwWqSDVva0RUHmYh46m/HCw/HfHo5IrbiTJzUmJaI+TP7eHHHOgA+v+i/dxn/S/7flxmc7+DlIdkf4xZi3HyIcSRGQJxQhBnVWDRZevxn7APrljtRzYM9CO1PIexks7ZAaRxVs+qxC5Ui0lZsxOYdmYSHdq3tTpR2+d2Kj+/T679zHsvNt36KC158JQjBTX/8zD4d61DBs+WjTT7bxAsJy6b/PeveNccW7XjQ+eBuOO0z8NnGtnpVf+0zy7iKKOVS6XStf3+ord2NI4iSkiAtbDB5FsKsIUpryETMmb6dN027m/e2bGmMdVOcZ5rKTnAWz4xBXUJj6JB7J6xMhIVf/zvCrCFzzCCvmvnQhN8JTRwY1Pls1YQ8FQW4wtAuJXkdc+3W81l164m0PipIDMaUehT52YbkFoEKa/kUAvwhQ3IgxhsOUSNVZLFircKCYLQzW9au3c5Whhe2suMoSXRkibPmrKXVLbFixWnIADofiG03dlljlLDf/SMBshwitmy3C8tg7cFq3V86X0B4HiKTxhSKDeHShCGyq4PSsVO49VfNOdLhirF8VnuSUrdLYZqg3GswnVUcP2Zudz/ndK1hQ6V9lNNuSWFcw7r3jxfXTn7vclRgCHK1Dj/Pzv3jpMY4BhEJ/B2SoNWw9h/G24Md//c20D5KYS3KMoY4pZk9v4/FvatxRczHj1kx7jHHfnw52rMFcN4IeMO2A8YtxLZjC4iSiiit+MN/2i7ypQsvs98JUTzakVXPNzKmIbSPFd0bXDfW9r1R63isW00bTxFm953PTpTHMtZm7HATXOqYDE7axHjccsst/NU7X8N7frn0YA8FgG8u+T9u/O/fcPrppx/soRxU7FcHy1veMhpgdOKJJ7Ju3TpWr17NzJkz6ezsnLTBHepY1vUBVmz/5i7bV8U/5QLvzdwU/Pg5H9MF7pu4KfzJc/68TRx+WNb1AeJ5UynNisGPyWxykUEtlF7ZbpQ44djOk2ptIUyrhr2LiI1dJBaCOO3ZSsFax0u9atBW9Uki31ZCC2MwUhD7EKYhSltxReRCOlsKzMtsp9cZITQSV+z9x9PWOCAky0w1DJOW3mLx9u7budM/FtU3CMbgaChOzXHKe27g7u9c9MwHoFnN8Wyxp06W17Xdw192TGdT4GCMQBuJwtBXzDK8vgWhBd7UIonuEhWVpFi0nSZewdhg2pr1kTA0vIExkGit8IaeuxviCsBJfh/ZGSNIYZDSMGf6dp6iC2erR2Y9uCWDDIydnAYxUdpFBDEyXwLPg8Fh6+0bWL9s4hjh+xN+jxxIHO4k/VBEfTHhJa+9zmZMCRs+H1cVKhnQ5pU4I/U4070Bvn7Svz/j8e7/xwt3e9+lD/wVW3P9/HHDHHITiNFRyi7CyHkFou1Jcm1Fzuxcy2tz95KVEb9YewKvmXvfuMfc9j+XcMq7b0A7Au0JopQi+fQQKx61nSxnvf46qi2S4z+6nPu/ciEr7/88i8/8AiLWqJHK6CSzHrZbn3gCOA7CUY2/611baF1bDPIxQiC0JnY9gty+t3XXLcKWLrSdK+effTU339m0J9lbLOv5O1Zs/cYu21fFP2XZ9L9nxcZ/es7H1PzebGJvsazrA5jeDipdmrtfv5zTbvs74seSE3JaVdkDnwWQtqOVWkYAgFHSFmLUOlWMABnbzymtIEoKgqzltFHaEGc0TluF9lyJebkBYuQ4UWWayjKiy+RNtIvQMqLLbI1jhrTPqf6uAeFtMvWsXqsRXWb6zUWCDp+Nqo0FC7bsU17L0hMuZ+V9Vz6rMbyQUeezvnA5ynUp6AoZmaBNwktb1vCbGUcSbEzjliUiAlURJHdYQcVIKHY7tetNIgOFKtUWeusdWjsFdItiBX9HBHgopSlEPjuqKcKsRoaCUrciMWgXlIOMtF0zkcEfKDRsx+wis67ZgdmFZBMEMBzXhBfdEF+CWZ3PubiyrPeDEOvnnEs/XzGOz5ZjENbiyykIghaFSEa0+yXOSD1Bn9fyjJz2nm9bPnvCR5bvkhcIMPsH11JpEZhI7HIfEmIHijM17pQS8dYkyZ4iS6Y8wt+2/IWUUNy1fjanzlzXeMhDX7qQYy5bTuzbQiNVFsQJgVsc7Vo58w3XE6YEp77rBu767kXorG8D7/MVK56M5bN10XIMp20UoMKo+BhrkAkwBhlEaCBO+Jz5husbQs7eoD43W3rC5fb7y1WHrXVYE028ELHXK5gXXbR3C4kAN9xww34N5nDDzl/k9Uq/JYm3HBRxpYkm9haL1RtxOttRIxWSm7KUe+12GWiEppaLItG+JepmTEAo2PtFrcLDKEnQ6qKdUWJkBLVsAEGYEoRpW7Gi3VHv3zitiTMxXjags6XAi7vXsSz3ACd7EwQKjMH/z957hkl2VWfb994nVu443ZPzjHKWAAkkoTQzYMDAi42NAYMNH8Fgi2SRMSCBSTJgg7H9GgMvTjLZMCONAkJCAgWUR2ly7Bwqnrj392NX9+TR5KCp+7r66u6qUyfVqVNr72etZ4U6xhPbB52xTphuZeixKmTE4RVXGjrk7Tf9JZ3PNjNYwghZbaCtEt6Yeu4VNGlNEh06exNZptlVlvQ+yc2cylg9wy/6T2dKpkqSSqxAYgWCMO/hFUNkPqY+1Wo2V5wo8QY0k9lNcdYmaoc0kfTHJWB0clubkhyOnTJeyTBnyjC92Qrlbp/hejthm0WSE2bAG5jqrbDNISz5ZIaz5J4ZNdlRjunBohsBIuMfnZO3KwpOQLvWEwIt4JfLP8SFb/kKTh2sIZeKEvxGzKbDPZ+p7tghb6PLqfDq0oPM8Md4ptqz2/PPfMQMYK+8433c9tqP8+pfv5u53iBzbUFW5oD+Pa73gf+75zhv7te/zLofmIzEMz50I4tuuJFnPnKtERC1Juz0ya5tfk6aGX+TIiKY5rjNXi1C7JAF2LQHE5FE+DZBd45Gt03iCy595Rf51U/3f5Jm2UKTIShgcoLpqkuvP+Gswo4Vu4orE/HssrnvOybiCrCztVyLFnvhavk67CndiFST2yT542f/D+mw6bO3x5hW7DmeFYqmwGyZXio7xrRNsUXZgqhgrG60aFYU2MYGJy5plK/AVfilgPldQ5zZtpWLcmuY7wzhN21z1iRVxpTLqnAmq4MeLsit42y3nxHlsCnpALK0yTpZGR2R8/W29b+HjFO8/gbtT+SZ/ppR/nZkAf9612d59nXPbYHbElcOnR3j2bz0aeiQWxvt/LYyj/ZCnYH5GRASpwr+oLGjs4IUkWp8VxIWTQyb+pI06yDqDiJJTHwJzYnhxFzrjo1TiSlscBjN5/hdMBMdW+S2SBq9ps+GU0lJM8a2OXUFMnZwRnxk2UanRrgRjgNtRbPekTF0GE4+ruMGOk4Qi+eSFHYXBY84rrt7P6UWh4wW8MsVf81Fb/4KVgO8UUh9mygWPMhM/se9kJwdsr++NQ9/fS+JQ6FFsbdCtbr7mOiRvzOvOe8XH2N6YZyfvfbrvOPBN3JBZt2kOH3+HqYNVl2/9ySl+V/6Cmuagsd577iR0z98I70ZBzIOqjOLv37ExJET8WyaQrLD9bVrTBvH260mowg8m6g7S5y3CUumCvwlr/4Sd/1o/2zzlp36YWMhDWjXQjTD6ZbI0qLFicF+CywPPfTQfi0nxMkxIFra/ufGN3wHz3zRbKZzc/D9Y7VbreqVFvuHVqQjo8goZsqDbYwuckBr06hbAKo5GLWFeSxrGd/SpOlBimnsCZB6gqDNLDvhnaoFxrffhrhpmZDkNSqjwE+xvBTfj2jPNejK1FhYGOS83Hpm2hVg77YJo6pOf6qZYaXkpU9ZNShK00/FObiCvH3ysf4XUVwrsCJlJgTjBBoB7Y+YapZlM/8SomiPmb8tDj8Tg9K+tEqvlWdU1SkIeHv7Q/Q44/z9s5ezfrCTRruDbSnT2ycUiIpNGElkPibtigmUQ+oJZASIpuDnSwqRQjkQFzUqtPnvTecxwx3mtbkKADEWc9tGeKxheo0lysKRikxPjUbRQY25pK5F2OYjY9NgPCpC6lnIsET2mQhqdUSp0Cw5F8bD+qifyKO/yZOFu39oBlD3f/t9vPg1X0LZFrXQpRxarJCncnb31kPexgdOvRmALWvO3au1y9sfeDMdnsl0fl3PA7RZNeJmj6qaPrAKkbk/jbnip2Zg9/gXrjUVUB+BO2756z0uv6znnYhc1gw2d2zAmyo0yjQSTRITMwkBaWp85HtyoE0lmBUqLl/6twgNd9y8+3Z2q8IKo+0ZhlJy650f4apLTdPRa170mUmbsKsv/uxufbT29NjJxrI517J8/Y2T/1vtJQCWrzt2CVM31757zLbd4sQiGRzGShJm/k9E8MhUOuZa22NaQFgCZUuUJUiLthFdJpo4a5CpWW7CKjT1xKSoAsZqBmF+T1SqpBmNcjTaN3Gtl4tw7RTXSZhVHGNWdoQup4IvY3yRUlGa+0OXTdFChpIC6xpdSDRr7SkArI+6qCuXktWgZnl0W2W2pGMHbSW2J746OodEG8uzsMMjM6J497++A6EgU4NL/vvLFJ4enWz83OLIIXuf4UOPvI7/eeJcLpm/lqs6VrG+1kl7po67OGGT103n/Tb+mG5WVwusVGPXUmQsUHZTZPEsZMFD2hISZeI7IRD1EKIY7TmIWFFaGyJTj9pUn7BDIyPIbRLEGVO9LWONFWrshtm/qDuLX8kh7ObYyvdQOQ+RGDFHxD66EaDrDUR3JyKMiDoyxNljEGBKYRKHWhxWJuLZ+77zPl7y6i+RVAR2IKlNt4nDLLeIxXTk63DWoW1n/dv2nUyz8KbPcsHMAWZnRwB4Q+e9WEJxkEY8zPtRnWv++9Pcct8n+N0/XrvPGHBZzzsRnmuqrneMaePEJMsBaNsILdLEs2Y+ME+cFQgFTkNjBYrLXvYFhGY3y7BrXmR6xkza2TYCkJZJRmpWWu5oEbaj0LKr6NISYU5O1HEysG/J3Ib9vjPdcccdR3I/Tjj21Iy0VbXS4kRCpymqWsXvq9F4cRvlc2Lqq1yKG01/Cm2Zhp2pKxAanJoGV5NkJVqaYFxoSJ1mRp/btFdqDkKRZuI6yWqSthSrEFPMBRQzAZ1+nTa3QYdbY5Y3wjxvgDn2MLPs5/aU7rbAa9qHTYgrh8q1287n0dFpFN2Qp2+bz/RLN/HqqQ9zy3+9gI6+FH8gaAY8JkNFVBomsyUI0UnCkvybkfkcdLQ9Z3O7FofGpe96O9M/uJr/mHs7oVYMphZZmRIoB9dKOX3WBqb7Y9yy+RRkbIJbuyqRY5IQENmEpDsmzdhYDQHKXN9CQZy30MKUk6uqzVg+wy9GzgIe5bW5CnPsMvNzg6zPtmNLRaTMRHXeD8l4MSOJpDHNfABK6zRWpMn2mybkSc5CZz1EGKErVYTnopMENaXtqJ/DYxl8nyz2ZOe//UYe/OEHeOEbvoxQkvGsJIot1pQ7gYOvrtjx/L1m/kO7PQ7wrW9/jVNzZ7BWdgPwxwt+S7htHo4wgsvpTpZrXvQZtCVZefee92HJhX/Dzfd/cnJbe9uPta+2Wf+uD3DW+25ERvDw3187KTgvPf2jiCiGMEKkKaQpOkmadiLKNOSVwujyjYDMhnHcsQzakaS+hfJM5t+VV3wOlEZGChkliDjFVQoRJqZyJQi3Nyd1HJY/bfbt1l991JznHXqw7HEQLQVXv/j6vZ6Lk4EdxRWg1ROqxYmFVuhqDVEsYgUpYQmqixKCVS7FDSlW1IxpHWOBaDcUaGHiWYHpyaabMatnBJbUNRUqE4jmLSbs0KTdMXYmJu/H5P2QrBPhWwm2VBSdgA63RrtjqlB8EVPTNoGyWRtOYWPYSX9YpJ64lNwGBatBX1xiKC5gCUVdpFRTnyfTadRz63C8AaZYB1adfe228yknPguyg9z84cv4h3/4Km99/E0MbGknv8ZmZm0Y1ZtBS8hv0rhVjR0o/M1VRKXOsqnvZnjJfKa/bQ0/uuQfDvOb1WKCx14xncWqj7s+fgpf/L1f8L/ybIaDLGFsIyITv9Z6BYVN2iR6KY3dSBFVRZK1J21uk5yLZVuIKDV9hJRCOLZJPEhTZATakWT7E7Sw0UKgbRAJZsxmC0SqcSsamWiE0ihPotrzyHEJ5Qo0NLIRTFbFYFnbJ55dh3B2J0Ib690jzdLSW1kx/q+T/+/6/XU0WdbzThN3HKtKz6PABX/+FR5oVl+88A1fBi0ZXyRIYouhcXNv2ptt/nOxbLGJLyfiNmhWcDR7oaz66BRE6uHOTrmy8AQAL5mzejdHg6VnfpQVj12/x23samu48tc7x4FWPWLpWR/j2Td1sOYD7+Oc95h49nffunanBMqdYlrb3i60pArd/IKYiGe9LWWsWhbtTIj3RiixQsXVF38WkShkaEpTpFLmvjvrr7Zb/QFYkhVPbD+mCZFlx5h8b/H5832M1aLF8czxIXe1OGSW+G947oVatNgFnabILYO0P6XxNrrUZyq2Xa4ZOtNibJ6kOl0StAvinCDKC8KSpNEpzE+XpNEpCdsEcdH4nIZdmmCKJujRNHoUwbQEPTOgY/o483oHOXPKNi7s2sglHWt4QWktF+bX8YLsas52+znTzSCf45bULrPkhYs6TBr5RR97By/863dw9zcvYvRHM1j3g/nYNVi9rpe/++kr6LkvJLuxgj1QNv6qVnP/kgQ813h0x7H53/dI2g/NG7vFc3P3Dz/AA79exC8DQa+VxxGKH5XP5t7x+cwsjnFBcQMlu0GlksEbFmS3QWmNprhOk1tnhLlsWwNdjFEuyNgIIFGbptFpqrCsEGQoCeoujw5N4+/WXsUfrr2Srw9dRtaKmJKrckH7Rl7X8wBT82UAqo1mJUoq8EfAG0soPVOl7ZFhcpsbZLc00I4FGd/4WGezqHkzuPnBvzkq521PTROPBbevvO6kCPxL60IAfvP992M3NDIQaC1IleTKO95H9MkxPvTI6wBTbbIjV1z9+Z3er13fuz2dvx3P68IZWylYDc7IbaZvyzQAvKlrJ5eVvc8Yi7x9WGroXaqR93r9FEw/g6hofnZkxRPXs/zZL5j7pmOD4yAcB+E6CNtGOLaxHRHCVLTUG1iVBlbZnLs4K0ldibIlVpgiEjXZcFQkygxEJ/q9AAjB8rVf2mkf7LEGS8/ct3ByrIWVZT3vPKbbP95Y2vG2Y70LLU5AdJpCFGGP1Oh4JqXwtEPUBtsukQyfZjM+x6I6XRrb2qwkKpr4NugUNLpNPBu0SaKi6acStkPQCVGbaa4cFSHsAGtOjd7eMRb2DnJWz1ZOae9nVn6U6dlxpmfH6PKqTPfGOCuzkZnOMA4pgbapKJ9Y25QTn2riIYWmlrisC7rZHHXQUC7jSYbxJMsjlRkMxzkGkwL3h130pVXAVHHHOtnt2N/fdx4vu/p1vGzJH7Js2R/x5P93Kpv/aj63fOhSlCN41V3vou2zWRb9W8SMW8tmci/RyFiTHUonq9BV1oFGgK7VqfUK/mr6yqP7Jp5kLN/4dwD03iV58+o/4JRCH45MGdjahj9oERWNvbJTV9jlEGewhttXxtk2jr+ljDdQQyYK5UpTrWUJSBQiUWjXxLsiSpsiS4pTiSmuD5nyUExxvUImYEVGVIyKFmHJiJBaCkibvYviGB3FqPEyamQMXamixyumub1tmyrsegNv4wiNbveAek0cCktLbz0q23kulvd/83ktrgCU1oSTf0/GtKHAshRJaDH/K19h9fsWA3DmTz+502uXLb5uUkSZfGzhzhUcO4orAMuf/JyJHaOIDX/2IYglA4ERctZuNg4CO/aMkr3PmOv8AFhy/id3eyzNNXsRFXaPZ2GXmNayTEzruTvHs1Ka2LQRTMazspEgE4WMNUnGmvysasdC29LEs/YOOe9ag7TMtnbBGWnscd8nONbjq2te2LKQbNFCaN0yrdyRcrlMqVRifHycYnEPd9cWLZ4nXC1fN/m3uuw8hNJEJdPofuhMl9rZAXOmDbFuczdi3MFqSLTUKE+jLY1QYjJTSRUT3EJEW65Bzg3J2jF5J2JmdpSFfh8z3WF6rTLdVswUmTmgBvYHwq79WfaHNUmVdzz7ejY8MIPcFkFum8JuKIQGf2sVWW5AvWGyr7vbiaYUcMbMZLm1dQRdqYIQpKfNIej2aHTIvfYyaHF4uPrF1xPnbbb8WczTL/kuP6/79Ccl3lrc3lvi2m3nc8uPLqKwUeOWFVFBEucFoy8IyRYDgrqL3OKT6RdYoZlAiQvNapOsRvWESFuD0ORzAUlqEccWf7j4d9w3MptabEx/tw21YbsJwZiPSAT+VpvuhxO80RhlS6I2Gy0FYUnQ/mQd5Vo4wzVEIzKTzlHM8tVfPFan8qhysmdVLbnzrzil2M+9/XOZ3zbE9+f8cvK5YVVjbexSVj45GfJUOI2hpMCri48ww/LwhMNVbzQTCjtaBUz8vyMTz8lIoWzJ7beZ56+67IbJZvB7Y1erqF0rjva23bnf/xwA697w4T2u96XX/C0i1WaQGSaTYolINSJKTLbiDtQXd1GbYpEZTsmtHQdAWxY3P3TgguSyBR9Eey5pW4Y0a4Ni8pwczxxqPNqKZ1ucLOwYz1ptbSazHiCfQ7sOG1/dReaSISyhGX68CysQpnmyp02Vijbf/WB6qihPoT0T4MqahTMuUZ7Gnl/llfMfY1Gmj4WuiTf6khIpklQLLKFps2rMt0eYYTt4wmFjUqMvzRBohzsqpzEWm0QcW6ZsrrezuVoi60QU3ZAgtYlSC6UFfeNFwoaJZ69a9DS/3/kg3972EmbnRnhBfjVb43aervdyRm4L7yhtYUta4a7GLG4eOYOH/uMMen9TRcSmIbnybESSImuhiT2EIO3Moy1Jo8enOt0ity0lt7GOtbEPXJen/3YKt77k60y3MjsJ9C0OL8tm/qVJMtCaNe+Yw01v/ApvfuxPKa9pY8bpffSPF/B/WWDqL4cR5ZqxKrYsY0dk2yRTSiQFB6uRYI81zPubJOA4YFtoS6D97T1KtGNNfvfGbR61qS52w1StoMGppaSexKkkOKMNRN8QOjT9gITnmongQs4kCtXqpv+JMh8eXcpTn108oP5pJzLLZv4lyzd99VjvxjHj0ts+SE+myrOjXcwsjvGThTfzn9V2buq/gC2VEo6VUgk8KutLaMvYKXrFkHOnbyFrh/T9iekhuPzpz7Ns3gdAit3GQ8umv8css+Xru1W7LFv4oT2KEJOvXXzdbuLNbuvYQwXN3L//MtpVrH/73q/jK67+fNM6XWGP1hFpczo1VTtXoQCq4BP0mh6DmYGEzGaTmKc9Z7JS/EBYtvg6tO+QFnzSjHXCjKtaMenh5/bbb+e1b3kVf/qTlx/rXQHgX5b+lFt+dBsvetGLjvWuHFOOzCxnixYtjntWqpsAMzAdOtsnbIMpv0uI8xbVeSn/33l3MRAVGalnqfkeSdjs6ik0Qmi0MhnZSE13V5kZxXHm54fodcfwRUxWRkx3RphjjzHDdsgIHziyTb0PVFy5P4wZSLu4qucp/n1xAbWtDW8sweurmiywWt1M/CUJZDMgJWGHQ+pJrFBhxbEpxXddlGusJhpdJ0cfqmOJvb4fO5uh+3+m8IL8/+GGU35EpLd/nT0YRbygsJaV5y1m3CmR6bdIshCVgIZNvZHHGTV2YFEJ7BqkvrG4m+x/qwRCpuSyIZ6dUsoEODJlVWUqF7Rv5Edrz8K2FNJSRA0HtxCRxpJgOgwnNvnNFtm+mPyaMknRQwufkdNylNaGJG0ZLMtCKGXsHI4we5tYv/qSz+5WKn8k2Ztn8MnCzZf9HR999DUMDhVw7YT/rLbzqlwfGeGxKbHosEIWOwmPRR515dJlV5hv51FNc/Fbv2csMa64evs69yR87Pr4FVd/Hhmp5xRXwFhtTAxad32fVN8ibv2e+XvH7EGAOVOHiNWee7uc+b4bcWe7NKYYy53clu2WNM54jD0e7lS7qC2BDBX+mLHy0Z65rx/MQBRg+eovsvSsjyHSZkaA3OF8HUdiy7Led7G87xtH/XPZosWJzo7xrPBcypfMxR+JcdcNovMZ6rMS3jf/V9xXnsctPUWS0EKoid4qJmEIbf4XXoqfi/C9GEemhIlNreYjpGJh9yCLMn3MdIYpyICcSMjKiIrysND4IqbDCumQkowwVa1z7AI1XcfXCdXUI2NFlOwGm4J2qonLcCXHqMhC+xgAWTvGlgpKQAmk0AyGeT751CsB8K2YHwfn8Wj/NCr9eZZnTue73WUqgYfWcOWsZ+n4vS1s6JhO730J2dUjiLpEhM2J91RBxke5FqOLs0RFk1ySOhaF1c3ncxlOn7GNNXEbJVnhGHSKO2lYvumrLJtzLSCYek/MdS95DbNLozwRtjPe8NFPFkBAMK2An2pEIzQZ9LZlrDMbMW6UIBqx8SWZaHTfFG1EClopI6yI7f01tSURsSLbH9PosvHGlLHR80wvzqjNQdsCly7EWMVUNiWJsUZKFbVTukjdLgpPjpprK4rRjmVefwTZ1R5sf587EkyIK8sWfPCkSZTakV9d+UXe8eAbuX/9AvRs+HndZ6Y9zOJCP6cVtiGF5p6huZT9AmiYOWuIeuSyrV5gfjHkyh8/xEKvn2WLgTiePJ9Lu94OmN7GOk0nLUuXP/357RUxcbJbxfKuTCw/8XvisQlU3yJ+fufEfzvE0G0RqL2P5V/wpq/gFG0anRZWpCk9o5FhjAgSYxEmhPmMCmGqwKRExibZTybaVJcJcfAx7dOfZ8m5n5wUTfeVcHWs2NEG+YorP3/cxNktWhwNWgJLi4NiSeaN3Nz43rHejRaHiam/HOX87z7O93suZtodgj+4+Df8dcdqvj42i2nFHsbcDEkqCRObIDSTXVqb4CPjR5w/ZRNn5LZwmr+FOXaZgpRIBHnh4ogD844+kqhmk2eAjUmFgpSkVJnhjCCExi1rrEZimkOWK+C66FodHcdIpRGNgIIwZb0kCh3H6DRF1+s4Iw3igj3ZIPJ45Gr5usmJiBOaOIZKSunXDaL+Xt73vj/gjQvu4+EoYHnlLP7pt5eS66gzvW2cNQtcUjeDcjWqM4aahVWTiBTSgiLNQeqbZrZCGWuktJgiHUVvR5mBsQJ1LSjkApQWZO2Y0SRLqiS+m3DejM08sGEWcdUFS+F3NmgEOay6xK1YVOcXaXRYjC3WJO0xQpnMWqfuI1Iozz7yTp17m1g/VpO4x8sA4Fhw/Vk/5PpmQ9BLb/sgK4tDXFJaTY89zlWZCp5wmGJVeUF2Lee75lrZ1TpxT+dPNO08dn1ub+d6154jy077iMmMDSN0KcfSsz7G7c1Gx1dc/flJcWdv3HHFl/f4+KmfuBHLhvGF8ILLVnFNxxP884YXs/nZKWS22uS2WuS3WHhDDUQjRmddlGuhmp7wQm0XIA+lT8pE0+Yrrvz8bua4+2oYejRZ3veNfTZbbXFk2LVqq8WJTTo8iluZxbo/10z5xQza79nK/3nBU7y12M/qoIe2jhppKgkjmzi0m8kUJnHI9lLacg06szXydoRvxSgE9cTFt2K63BoFGSDR+CKlJKGWKsbSLDkZ0iYbOGgsdp6c65aKQKdM90bpi9qopCbZSGmBVoIUQawsck5E3gkpOQ1mZUfIWyGLMn08XJvF2tEOxvqKjFayJOMeVtnCAsSYRf9YF9pTZLrqbG600ZOtsrGokaERlUWcQBRDGKJT06fD6YNsh0t2SJC6An8kRlQbpjKi1mDV1l78mTFDqaLzaL+J+8HzJp6dQFpkV/Ux/g+z2HqVwo0EldXtLPxxmSTvkmQt0lLGOBULYSZpU41QCiKFUAptWWjXCClCa0hStGcb4cO3kXHTZrN5fWpLIpTGG0uxIkWct03l6IjCHU9IXUmac7FDY20rPBed89m0rJ13vvlnfO3xl2J/uwTS2O5VZkgq845sE5Z9CShHU1zZkZNRXJngH8//Hpxv/n7RLTGvnPEojkjJWiEznBHuSBfitgecO30Lpxa2sabWTY9f4Y/b78URin8ZesluVSYT7Nj/ZPKxvSy7I8u63wGFPDrjIdi9kmXZqR/m53f8YK+vX/cne67EBnjhn3wFAdS7LYYvjMl11oluLZEdVPhDMc5YA9mIIVWovIvyHbRtRE2h9PakOq0PKaadqObeNbnqeIlnJ8SVK6/4HLffvvfz2eJwIFC6ldx7PNESWFocHLL1QX6+sFLdxJLMG/nRf76E05euo3zzTJ4Ynwo9j9BtV7igfSPV1GMszrCm3EVf5KCV8V713JiuXI2LCuu4PLuGOXYBKBzrQ5pEobgvVLzQs9mSVgi0YL5tBJ9ZdoGBtMo9jen8qO9c6k+1URhTRG0u9qiDqAjU6JhpYqc0aRQjLAsRxQgpzGQkJsNGuC5pxqE2xcYfPX5dF58vg9Hl/d9kWe+7wLFxB6qUB9tIFwh+Wj4XT8YUu2oEoUPRDTl/9iZ+J2aiIgs0YOtJYUUUYnQiSazmc1qAm+J3Nsj6EY5MyWYievIVuvwaz452k7VjHhmejmunBJGN0gLbTbDWZEh9TZpJkJFAphDnJP0vUlx14SNsqxdZ9ehs6r2mz0vqCiPGHYWGoC2OT3515Z4H5d7mqZzvuHt93a7NPQFW/vvEc/ueYLjmD0y/FwF859mL6bbLfGvL5Tz7p/NRrqZz8RD/esZ3eN8fvmOngZvsfWZyu7tWr+yLxoIQnUjmzennizN+Tq+V541n/JjG6SGvX/1KHls/nfEtHp2PO/hDMUGXw2/+n7FYvOwVX9xuuwAoR3LZy7/AnT/f7t99wJl7u+qZzf8vfdUXEYkG59i2JhQ7ZCT++AfvOqb7ctIgWvHs84WV6iaulq/Du381/oWnMXiepv2XETdvOIUv9DxEl1Phop6NhMpm1XAPw1EerSVCKBw/IZ8JmZov0+1XmeWP0GFXkUITKodA21hoClaj2U+litX0ya0pD0uYz+6zcRu+iDnbDchLI6RYzWqCHnuc0TjH6toUgtQmUdJUhDcnR3wrwbdiinZArC2qqcdj9ZmsrnRTb3jk1ttEJQsvEMgI4mKzsXIM2oMwcHiir5c0tmh7SuD1V43Hf5yYnhlJYqoZghBRrpCvN0BKdL1uKhMch/CM2aSeJJ+rMKayKCSLj83buU+eL/EsNCtHF3wQpEPpoQFqU3tpdEN+gyDNOsgwhYxF1O7iKdNjheZ3o5YS4QiUsMGWpvreEugU8Gy0a6OlJMk2e7IojXIlMlJoKVCuwAqadnihwq1J7HqKO1gn6s6ays9m9efgpb20v3ETb+n5LdOcUZJNOarTBMqB8YUabW+31mtx8nHvNbuLH19b/RGWzHuKZe2PUFMeN289lTanwTmuz6iq8+bOX+8W0/7icfN74vHHogZnupk9bvPlF78SVErj/1o4Vsq6gU6SzyzgFRc9xFen3W+Wuew1u/WBOdiYtjJTIFJo9GoWzOvjJd1r+GVhIRsfn4Y/6OGNeLStjrCChKDb4+4ffGDytZe94ovIMDW2uFKipbHPveOWvwYOXyXK8RLPAky0zG3FtC1OJloCy2Fk6Vkfm8ySPKLbKb4FLIsVo/9yxLe1N26ufZel7X8OSqGThJtr3z1m+9Li0FFhwKx/epLhDYvJjUesemQ2jYUhW+M2Snadkl1nLM4QJSbbTymBbNop2VJxurelKa4cX1RVSF/SxRqrnx7pMN3a2aJsipWnpjxGgiwiFSRZSepp/LyPNSQmBxVo81tFpokqgJACq60NbIvwtJn0X+gRtsPqv271XzlqWBZJWxbppTxemc76cgcz8uPkvIhiJiBvh5Rjn+72CvXIoTycwypbpDmFKMa0t9eIE4tazZvMYvX8mN5SmRd3r2VjowPXSrm8+xkGoiJrRBfV2EUIzbLZq1iU6WP50JmEVQ/b1STtCTPaKmwZ84hzNlYoOPesdfzTjHv4w7VX4o5KUs9YkvkV01zUH24NRlvszJwZ23Z7bE+iyqFw8/98B4BzvvBOLn7D7/jRm7452cPqiZg9VlEcyCB0gvVv2nGQaKpcVN8iMsLjJwtvZs3cKs/GHXzkzFczsLp9sg8CwJ0/+yBnvv9GajM9Zv8iRtmCsN3m/LffSJKBR7567U7b2p/B6Z7611xx9ecRicZupMbO4Rhyy70fP6bbn+Caiz7NLfd94qhs61j72C9f9xWWnvlR0xjalqx47Ppjti8tDp0JkWX2f/cRzWiDOEbd28boBXUGoiKeTKgkHrXQJW3YiMBCSYswMnUnUc6ixy1zQW4t8+0RUgTDaYZNianjOM0ZZlzZFGRCVriApmgF9FrjpAieDqdSsAJm2uvwhE1CytrYJStjilbAVHeMZ6o99NcKpErguQlRYiHR2E3BxpMJSklGohxjUYaN421EZZdsFUCQusZuUaRGaLFCQZgx1TDRsI/Mx8Q5SHMeIlFYUToprkwkDak0NT00MPGsLBUJzplN0GmT+bOt3Lz4P7izMZ1XzHv0WLyNJyeWBKWxa+DZkN+qTHWqIxHaVKoqz0ZYClmPEWlqGmXLZq8VSyIsASEIodBSol2bsNsj8STeuEkMS3yJLUBZAplqtBRUexyigiC/LcWpxGAJgk4bBKZ3j9Zk/3gbN5/yc34ZCN5611vofNJUf/tjCvmkJMoLMsMC/vwYn8cWxw33L7thp/9fN9/8vvbh15O3Qi7NPwXsu0H97H3NVmoFccKrpz/GT995JfEbLdb9/j/ttMjeql4OJqZ94nPX7vaY6lrEV6fN4YnaNMajDPc/PJ/cJhe1i2v5nT/7IBf/4ZdpnJGl+yEjfqe+5IVv+DK/+f77EbHp3aKl2G+xZceYdk/x7KWv/OIx7Yl02x2t6pUWJx8tgeUwsuLRz3LlSz8HAm47kuVw7oH1mThipCkryt8GYIn/Bm4Ovn+Md6jFoaDKVQobAkSqmHanw+mld/IHZz9Iu1PjgbE5bKmUGKtliANz27AshdaQKEmbDIHj5LrcgaLMYAnNmHKZZu25siRUDpf1ruYH8/OEm3Pk+jWyGoBtI3IZdBCaZo4ApJNiC1jge4SnTGX9y11kCJmBo3JYJz1Li29BZJqZobUQb3UHD2RnUsoGjIQZ+gZKUHaozXGZ3z5Me6ZOIy6C1FiBIM2D4ydknJiiF7Coa5CsFaEQzMyMYqFQWtDh1nh8uJfvPPVCvnruf9JIHaTQZK2Yl5cewREJq/M9PJHvpRELvFLIwFgBEUrqiyJEe4MfzF8JwJ/03ssHxSJkCtkBTeqZrD+ZHljF0xL/DQD7vN+aTEjJ8mf+9iDPcIvjjX0NBHcUX3bMytvT62791cRrjMDiXD3EytWn8NSU23ki6uV18x/kzMO433tix32cb+eZb0csPf+/eEfPi/inC76z07KPfflaFv/w04wtLJDfmhKWBGEJZGyeHzjXY8pD4W7Cyb6sEXZ8/IqrP0/Q4WBFGhop+jipzr195XVc+tJPHbPt33LfJ1hy/idBbbeieD4jUs3yJz8HmKa6y7d8/RjvUYtDRfcN4Hg22Da99za44pK38IZ5D/DDvnMYrWUIRn2cERsrEGgB2rIIAostTsLM7BgAntCAxrLq1LWLLxJm7ZJMNM2qsj4WDKscBRHQ44wzyx4BYFgFeEKyJu6lrlxGkjxSKNrdOutVO9XAQ0qNSiW1yGVqrkzRDihYAVkr5MnxHtYOdxJFNiKUyBjsOpP9YqwQrDpoB2Rkkp+ssoUuxMR5UxEnw9gkBrkOIk5QYbjDSVIgJLJUJDp7HiOnunT83hZuO+1nhNrDn7jRtjiiLJvxXtNTRUrQmtLakKDLwRtLkI0IESTIok/Y4ZG0O7hjMcKzEIFpsq1diZbNng+2hXKtyf4PypGkjsCKFO5IgBaCRrdDkLGQicYOTCFnkjGV10IZ67A06yBSqE53qE7rpDZN8PjpxrLpPLeOGHeQicYKNYW1NerTssR505PiQFhaeitoPTmfsNvzxbcA7PX5FicmN57zn3t8fE/xbFGa6pVn4yqLZ27dafnl67a/7htX+OSfAV62/fVHizeVVhEXH2eKlWf9rB9z1a/ew9o/3t2e+Z7/ej+n//WNpBkb5UiCDovUNXHn4LkZuh8OuP223eNZ2Hfi0MRyQbuDFW+PZyfWfaw51jHt8xkNKH0cVCsBcHxcb8ea4+XdeN5w2x0fPmziyrJZf7XHx1cM/dNkw68DZWJy7nAwEews7XgbIrPn0s0WJwYr1U3oJAalSfIOxceGWPAvKcu/dzG+SHhmqJvRWoYotCEV0Gxwn6QWSgsCvefmxscDm6IOAFKtUSg2JhW+X+ngsahBVQV02RUKVkBcd7AbmtzmOiIy2TRC7HCLnBBWhDS2YLaDrtVxxkL8QYG2NY99effMlhaHn8mBlmUhhsboeiwlrHo0IodG4jCluwyuYmwkxyn5Ps5r28SijiFAEBcV2lHYVkqQ2BTckFd2P8wnpv+Cr81czg1THuX17feRtSJCZaO1wPdifJFwRm4LN/TeyV90/oqFTpU2GTLVHWNq2zheKWR25wi/t/BxuhcM4xVDvnfudrumec4QcZtC2SbzVDlmgiTxDz4Y2dt3BNASV04iZO8zkz+7ctGKfTe2v//cm2hfmeG0mVt43fwHj9Qu7sae9vcfZ9zLF1Yt281T+unXmEqKxBeIBOwAgm6Y880voS0jsuwoqNy+8rr9tle4feV13PNf70cLiEoOYcnebfv74kCWPVD+9yfHthry5gf/5rCKK8tm/uUeHz+U6pW9rfNAWb7KZNkuPecT6K62w7LOFseOleom0lqdcGqRxpkzcJ/dRteXs3xrxdUMjhYIRn3sURu7KrBr5p5iN0A2JLWaz6Z6G2vDKWxKcqxNijwcTmdL3IHcg6fnFMvYzt5ePp0V5bPotKpc6DnMsgtkhUVdpwwmBVYHPdw7Oo8fbDqXX2+Zy8DWNqK1BeobC6SbswwOFhkKcozFWTYFHQxERYYbOYKaqbRBgFMzTctFCjIBbxRyfRp3DDLbJJlnPJyKwF6TofMJhawGiErDWNoqjU5MBYOeSBoSErujHWb04g7VaF+dMFLPAsZi91XzHj4ab9dJz/LNXzMV80kKcYw7UCEzEGHXEpKSD7ZEBAnaEtSn2ISdTQtRvYOY0UwOULYg7PQoz/EZn+dR73GwQ407FqOFQNsSLSDOC8I2Sb3LImizsAPThFsLUK5E25LRxZKBi1NqUwW/9wf3TG4q0ClWQxDlxWTVZ5IxlVUHPKG7wzFMiCm70hJXTh72Fs8+Fdf4ZX0hX33qqr2+9n/f8kV67g/3Gg8fKWTvM3RO28zaxCT+VZTNxy74BfP/8waWTX/Pbss/8bfXIlKNMxoiY01lFpzyyRuxQui/wDdN4VdeB2p7PLs/Me3tK6/jnv9+P1puj2eTrNzvOPVIxrNw7GPaFi2OFi2B5XjGdVg27wPPvdxxwLG0K2tx+LDH6mghIAxx+it0PBnzXxvPJ4xNM1AVS5AaYSmUEqSpRGtBWXlHbR9jnVBW+9dJvqwaOCKlojwcYSGRPBu38ePB8/j05lewLtH8n/xG7hudg7PVJWwXVOZmUdnm8UiB8M3fwnWRjj0prgjHRjg2yrUQCax5fytwOJqoWh09MAS5LNteJPHyIUoLxusZXDvh1MWbOXX2NqZ7o3xmyuN8ZfaP6ewuk51VYdG8bZw6ZYB5pRGWdD/BxZn1zLfztEszsXC6k6Vk1VlT6SJJJXkvxBEJBSugKDPMsgv0WnlmWBbz3AHmF4eZP2WI3kyFiwvP8qY5vyEOba7f/HusaJiB8D31+eRnlQmnxtSnCJIMJFmwA81lr/iiqX7cD24Ovr+9ekXvOVNw+eovsmzhh/b43K4sOf+T+7Vci8PDNS/89BHfxsTg8nuVLnKuyVa+6tLruepSY320q93YA/9y7O5duw6CP3Ta8j0OJB/6h2tJfIEVa9xxM8noDltYIaTN2/UVV3/+oHsa3f3DD3DXjz7APf/9frOuK/c+0Lzyis9x5eVmQv5YNRA9UTlcgsgke7kHHvTqhGDFI585rOtscYzQCnekQZy30GGI+9Rmen6jUalARBIrEogJF1hpfoSGNLTorxZ4tDqT9XEXY2mW+2vzeKg6m05r77HnhloHK7acyqpg+uRjRZkh1aZSeltQYvVwF8PlHPWKhzPkkNssaH9CUnpW4GzxWLOtm2fGullb7eS2TYvo29iBtc3D3erijFuI1FStgEnSsOuQHUhoWx1RXK+wAgi7FYUNkF9dNvdDS5rKiCQxvr5CYs+chj1rOvb8OaRzp5HmXJK2DJUZNp6dUFUBuakbjuCb02I3lII4RheypIUM2haknkleizuyJCUP5ZgKzkanqVJRGYekLUNtZo7aNJ+wwyXo9gjaJcqBymxBnBOIWGEFCSJNTf+VVCMjQJuKldQVpI5A2aL5WRAkGYuoTSMzCZkh+O/fXsS/lnsA+Pb4OcQdCZV5mspMYbY/VRLnIb854qXX7H+Cz4ryt/cpoKwof3uvwsueWFp6634v2+LQWXrOkbUSnYhnX/1vH+DusYWETd+tpaW3Tr7XO1ZE337bsYvJLp69loYOKcmETrvKmtd/ZK/VsLfe+RHSvGM+f75GOSaWTX1AwpUv/RxWIzmo/bj7B9vj2dw2Y2u+N/Hkiqs//5wVMi1atDgwWhZhx5B9WViAmSQ73BwJG68VI/982NfZ4uizUt3ENe4f4xRPQbUXkZU63khI+SdTsK8Zp9AWMNxXQvoJQmp0KkiEsTWIsZjsZHaEcYTNLY0853iDTLd2tmp4Iq4Ta8lZrktdRfSnKedlNjCWZtiYhCx0HOY7Y/TVCozVM3TPTsnLPOe2beIJaz6pD3FGGOlZKfREI3vXQViWOcI0AmlsJ3RPJ0nOQR5cDNTiELi5+h2WTX8PQy/uoffsfgbLeQp+SMaJqEUerl/nC7N/yELHZJeOpDYzCuN0eDVe0/kgdeWxKe7gZfknd+sftDGpEGub2blRfCuhx6/wbNSLL3a2y8hLn9PdQYpd9/C7xhx+NbKQr6y5mhn5cTLZiHVjHdycOZNUP0FdeSjdbHCfAdXMQLVrTe/hg5go3Ffm9/Jnv7Bf67j5wee//c/JypsX3sObF5q/hYKVd3/0oJp67o2rLzE951b+evd+LfvLvuzMduX+b+8sBL3gTV+h3i1Q7g4PyueOrQ4VcYC2fgfDidYQdNni6/bqcz7Bkeizsnzz1w7r+k4GO7SThZXqJpb4byAvFkFPNwyNkN9UZ9qUKn12EYazaBsS14grE7ZbaEiVYFujyO/sOczyRuh1xzjT38QpTm6P2/r9XI1a90N8atMr+NG2c7gs9wynOyZho03adNhV+hoFHDvFd2KsgqYvlaSjLtkBRZyVpBmN6yW0+Q22VYsEj7XTvsXYISa+iRdSD2SsseuCRgGSDFiNBBkpkqxFkgXtGtsvMBZhaG0m7tMUhEAW8+i2AqJch0aAKGUJSy61aTb1HqDhU9UJxaPzNrVosnzL11k251qSjhz1Hg+3nKAyEm8kQjmS8fk+I2eY9zQ7aESQNOsQlRzqPRbKBqdqLIGUCzIy/f7cskJomr1bJMqzUFYzWaGmSTxB6gm0BdoSCCWJ8+b6mfprxfDpPrWpkNls84VHr+G+OasZDPM4hQgx6ICGqCBQFvjD4G0dJ23LHtQ52JvQciAVLCvG//W5F2pxwvH0x3d3iFgx/q+HLaZd2m4aBx1KwvBEf8FZtsecGQ8/5/I7Ot5c9Oav0Ogyn12rkSKaPWCvvPwGnNHGCZ/4caLFtCca6XFizXV0ZgKPf1oCyxFgfwf3R0spXrbgg0dErGnx/EMnMfaGfnRHG4QRVv84Ms5z4bRN/HbzbObMGsCSim3jRYKGSxLajImDC6QPhZdnA6Cw2+NPRT2sDnt41h2k2y5ziRczqgL6kiIDaZaFDsyxC5zduYXbKosoSZMJ8welB/i3KReT7XNxK5qoM4uXKGOtoFJEEKIbgaleadrhCcdm26WdPPz3LVuwY4ZSODVNNXSJ6g5DaY6FvXXOaOsjRUyKKwBnuhl6/AqPjUzl76pXMbcwwpn5zXTI3b8Guy2XN5VWMV54jL40Q6Ad+pI2fBlPNgKfYI5dYI4NfckoWyolBgZKbKt1MXX+EDPy45yW3cqGqItA2zh2imiYjERtgVUBhMBqJIg9RCVLz/oYKx797GE/bS2OHbf85ug0Dt+VlXd/dPLvgxmI7lr1AnDzDyb+2l1gufqSz+6X8LJjPxbVt4glr33Tfgs2v/3u7pU3V1z5+UmRBfY/zrry8htACG6748PP+Zpb7/wIV112A1dddgO33rlvC7aD5faV11Eul4/Iug+EZad9ZNI+a188l7hyOFm28EP7LSC3OLlRUYS9sQ862tBpirVxgOvm38n7y68jmh1Cw0JEcnJWQKQmwaa3UOGyrmfwRUyHXeNif+NuvVd25Q2FEf6xo8zqNVN5e/wnvGvuL3lDYYSizHCev4G/r15OFFvUxzJk2xo42ZhgikOSk0RtCmdanXOnbWZ6Zpx1Q52IBNyKxqkqlG16tkUFid3QOHVNA0HYAXHJwR8IsGKNTEEGkrAEKusgK3UIQlAK4boI24ZSAWoBemwcYVnIcgM1Pcvw2ZqZp23jV1d+ETg231MnPUmKbCTI1MWKFDLWhB0uItU0ugRdpw4yOFQg6PBxqi52XeFUE4rrUuK8RepLUh9SB5yqxhs1VSm1XgehnUkRMckKZKxxqhqdMRXVVgjKhvoUQdgJuc1QWh3SYfn0XySwGiZB6NHhaTRim6Th4GhwK2BFIFPI9RubM1kOdju0K6/43JHtT9vimLDi4SNflb3H7e4gpB1MTHvTmvOZYlUoyIBA2/zNw5qHg1l7XHZp19sRQrJ88B/3uc5d49mXnXH5flv63/edHeLZjze3e/bHscYStJRcefkNaEvuV4XOjvHvc8WzE/0Lj3Ri0vES07ZocTRoWYQdAQ7kBnWk/Q7hyFTCtHh+slLdRDIwhN6w2TTFbDRoWxPwwA/OYNm8Vdx++k9Zeer/srBrCGkpqNvEIz6/a8w56G1WVUBV7R6MHwyvzo1TTXz+s/8i7q0tZEA12JS6VFQGf4cyk0/03M5pPf2sjk2GyClOjs6eMjKGOCdQniRuz6BzHngeuC6ikEerpp+E61C/YC7lS/bPqqzFEUJrxhZKsm4MGpIRn1XPTufxsV6yVkxDhzstflFxLf1DRTb+diYrHz2Nmzafx/1hfrfVZoRHu8wyxy7wQs/GQtNm1Zhmj6F28CAaSKuTf99ZXkw1cHGzEWefuZ7XznyIkttgKCmwLWpja9BO3gshnxAXTDm4FUHqCZDbfax3OjzXZulZe55sXtrxtp3+n6gmaHHkeD6c48NRubLrOlTfIlTfIoa3zpj8e3/ZddlDqYYBuP2263bqxbK/aEuCYNL667k4UsLK8cb+iCsT7K8t4aHSElda7C8r1U0kQyOo9ZshitGNgL+44094y6n38rPL/563XXInsisEYZrEy1CgY0GbG/CawqO8q20zr8+PPqe4MsGp7f3YZYvhB3r47GMv48HI2LOc7tjMbRshimyQGq0FaSyxa8JUpUwJmFKqMDs7wmWFJ3nBjA2EUxManQKhNJmBEG8sxQ60aWCswamCFlCZYROVXOxqgj8MdkWSZiAuONCsWkEIsCR6WjfB/C6SnhIAOopIS1k2LRN89xXf5Jen/+SIvRct9oM0BUugmvGgUw6RkSL1JVYM43WfUnudoAOCDou4YOGMBmSeGaTw5CiFtXWcqka5JolHaAhLgrBNUOs1v4WG1IU4K1CuQDmCoMtYE1khNHo1cVHhjyrCTpehsyRJb4Q7BlFflr51nYz1FdGJIM0p4iwE7QK7DrktIaQKEe+hrF9prrlo75Pxy2a89wid1BZ7Y3/jneOZg41px9MsZeWTIrl49loWODG9zjivveddLPqfzzDnW19i8Q8/ze3rF/O9R3+O1s/tP7trPHuw/ZInX//IZ1j+5OdQRR8ZqQO2P9vfOcaWNdiJj9LiuPhpYWgJLMeY1k2txXGHVujmQFSHEe6qTUy/o8LPVl7E2zdfDMCPFtzC4t4BUOCMWPx4y9kMq9pBbS4vffLS3+/lPzt0Cv9WnrLH54bSOu1ODVsoRpMct9fncmv1NEaSHEURTS43xcrziu5HGEjN5PpdAYw+1YlMwIrBrhrLBcD4ImsN2Qwyk0F0tFG+cjFbLrdZ+0cnxyTb8ciy7negZvbQOCUgSi1sP0E7Cn+Lw/onprGm2sXaJJ1cPtQxby324/oJMgK332HbcGk326890WHVWZqJON91qaiYWCfEOplsbvuNsRn8tn82WgsWThnkrdPupiADclZIyapzZfEJ/qDjt5zVsZUpPeNoW+MPgD+qUbYgdeUebYdufuBTACw9/aMsPf2jOz23ozXjhW/5CkG3x9Uvvv5gTmWL/UTEB9ng4zhjybkH3ndnx0Hs3gSUP3j6Dyb/vvkH3z3wHTuMHGhsdftt13Hb7R/mtl/u/z19V5FlosfNwbCjD/aJSkv4aHFcohU6idFxgg5DFv9LyP/936t55Z3vJlAObzzjt4hEICOBFYE9ZvNo31Qei3p2W9X6pMLP6z7/OD6dvh0SLCZY0v4Y7twKUVeCa6f0JcZoS6F5Y+899LRXuOq0pzitpx817lLYoCmuhTSyOKN9G4v8PnwRk7NDtDC2YMqRph9gqvHGUqxQgzCN7t2ymSyPSjbaFojE+Pl7o+Bvq5rG6crE9MQJYrSC11fFHqwgXAe9aDYbroNvXPNvXOLLo9oYusXOLJv+HmgrkuQdrFiTehbaEvh9NaxAIRIIhzLUGy5IqE2H8mxpxLMkQdQbWLWQJCOoT1dUZguSLCCNzZyMjVWolhC2Q3W2pjpVoqWx9tKYdarpAfm1En8koTrNJnf+MHLYxQ7AHZfIUsTMOYOctWgTqi0hagO7oel+oIKzccj436rdY6XbfvkRZC1k2cy/3GMvrh3tHpctvo5lp7XGV0caq/788Lc+mL47f77oLgBG0izfevoyhlLFA7W5vLzrUaKGQ++vBPO6hrnc13TKHL94/JeHea/3n1vu/Tgr79n/5KOJypUDiYN3XfZQ4tHnQzzbosWh0BJYWrRosRMr1U2Tg1HR0YbubMfaNsyC743wzKdPZ+7/msz562b9AgR4o7BpfTf/Xj51j+v7fqWDH9QKfHV0DmuS3QekB8L9YcyPN57FY/UZe3z+vyqnMRAVKbkNPBHzcG0WqyrTqKjtAk5ZNaiqgEA7jDQFlpf4cMnFq2h0gVtJkVGKbMSmQahs3iYrVXAdBq6exdZLQSQtpf5YsbT0VnSSEPRmsb0UickIFYFFmtHoUsKVnU9OeqADk7Zep/b0o21TPdJZqnGJv+evwR0rVXZczxQrz4MRbEu3Vy99d/0LSVLJtLZxEi25q7KYbrvMadmtvK20nst9zSW+5IL8ev5o9gPQFiETCNoEYZvEihT2aH2P+7Hi0c+y4onrWfHE3idvh87TDJ9uE5WcvS7T4tC55b7nh23KwfSZ2J+qlJd0rzmY3Tng7Ryv3Pqrjz73QnuhlWzTosWRYaW6CZ2m6DRFTunCWr2FhV9+hlM+uJkVX3kJD47OYtaZW5EJuGPgDwkaAznuqiwm1DEDaZUVDZe7Anj/htfwlz/5U77+/VdyyY/ez2vXXM1/VttZk1RZk1SZbo/ypsW/ZeqcYVwn4dbx01nRcHkgtPhNdQFTslUWZfuJUovMNov8lgSnrnEzMb1emenOCK5IqcQ+/jab/NYUu5aim1UobjlBxhqRglMDb1Tj1JoT56LZV2NMEOehNq8EvgdRbJKEtIYwRK/ZiNqyDYDV73d4+EXfJtWSm6qlY/tGncQsm/puSBK0LUl9C7RGKI1IFGnWpT7FJug29m/RcIbU0wS9qbGIa/PAkpAq0oJPZRa0zx/FPXuM6iyNskw1i7KNsNLoFDhlkLGgsiil3gt2AwQQn1rH9lLa1qUoW4CGkQ1tqGxKoxt6X7CV1S/9N351xo95Ycc6nExM1BPjjWuswTFzMBMVU3tgxRPXs3zTV1m+6av7nBQvn9mFyrp7fb7F4eH5EtMeTN+dl//qvfzTlsv47sAlrKpPY0XtNNbWu5jpDHPh/A1suyLl54uWH9J+ncjx7KHEpK14tsXJTqsHy2FiV6W2dXNpcSKzUt3E1fJ1iOFRRKkAGR+kJLOlyin/KFj2zT+iMr9Ibr6kelpE/mmXrxVeytpFj3NBfh2hdsjKiBufvZL6nd1YEdSnav6u8yrsXMx5MzfzgekruNDb+4Twdf1n89j4NJQWzC8McePUe+ixAk7v7OP+oVl81Rvh9wqP8+X+K/nlhoU0xnzsbEI+32Be+wj9jQLrRzsoZgK6vCobkxJl3QAs+pIiNw+ezpzcMPdU4I87fsNpha3cL09n+FQbf9im64ExU+aulBm82B5pdxtRCbSf8uy733/03pAWOyEyPuOXzmd0sSQeFAw2HLx8SPeCIc7p2swbOu/do3CiUHx+1o/4s4v+hKG7pzJ+fzcfmnouX+h5CIBRVefW+lQAzvO3MN/ebh/2cBQwmObJigiQPBL18N2xWTxd6yHnhswsNqjGLmsHuuivFqhPdXhRYTWOMF+zw6rGnxYH+NuRBZwyq49gms261b3IQOKWXexyuNv+PhcTwbtueyvekx6NLpsXv+ZL3P3DDxzwulqc3Hzj6ZdioXhZ/hmmyAze1LWTz01cZ1UV8D/VWWyMOnlR7lkWO6P8LuzlB0MX8OCWmaSp5MkZUzmntJF/e+qFPP2afW/zRB58TjBRtXIo4soEx0vceNWl16Nlc4JMipZvfosTnomYVg0OI6ScnADu/OHjxD+ETLvN7CkVtry0gN2AabcJ/sc7j+qZLr1emQ2NDgAeenwup3x7hLTgk2ZtBu+Yy+dnL6A6R7H4nI28dfrdxMpmQWkIhWCmP4IvYj6+5vcZ/dl03LLmO1MWUDs9RHQrar02/pgie2ee/1h1OTfVLqewRZPfFDCnPAaA9iyUZ2OFKSJJ0ZbAqUvsUKOlQKQKfyhCRim5bZDbBo1uB6GaVbFtRUQjQI2NQyMwFk65DMNLF5COKv547cv40SX/cCzelhaYhCGR8dE9naisi99XR7kWyrNoTMsxfKpNY7pCC41TkSTavK/5NRZxAfrP8+hNunHXDWBvHqK0ZiYDvSWEqyhtNCJJ0AFRu7GWywwI3HEorIek30JLqE0zdnPeI1n8EdAyJc5ZtD/VwB/xGFtoEbVpXjntUQCueOKVOFbKnRd/g5f+6wepd0NjyUzanzKJR+625+61sKdJ8f9afSF3lhcT585jzR+UmPO9z7P+jcfH92KLE4fTPnIj2ga0qfRbdcPOvVKf3jSNmbkrueXX5+D3mx5c8bk12vJ1bqi9jHWbpuC17TwmW9mwWbKPbe4Yz5ZVg6LMHMYjOjocaO/CfXG8xLMnAxpQ+jipmWh1uQdaAss+OZCGTxPLTdycdhRcTqSbzJILPoWWEqHUpD3Nriyb+m6Wb2sF4ycD6fg4MgiRvd2AZx7UGpFqKjMlURHkuENtXoLvpIxEOXrtcabbZR4OZzBayeJhStJlLJA1i+7po/xJ7707iSsTPtXnuyZjaX1S4abHzsPa6pNmFM+099AfFDm7uJly7DNcyfHPT1/MN9OXkG7IgQZbg8hHCAHDgak4SFJJkNj0BUWe9qeSlREV5fO78mzWj7UzUM/Tm6tAByzJP8635l+K3e8ilABLgG2hXQ/SFBHE9L+wQOOiGp35w9MzpsVBIgTeWIJMXKyGJM2mTGsbZ1Z+jJn+KHXtsjEZJSclT0UZLvEloY55PNasCudwYddGfjSnE3+9y28GZ3N/230sdhJWxw731+ZRjn0edWeytPgoF3mKJ+KEJ8Jp3DW+mKITcFpmC3eMnsLmWonRRhalBOd3bqZoNRhtZBmrZpiXGcSXMc/GVRY624WaM/zNLJjez7/3vZDzz1jHSJBh/IkZZAreAZ8GheLXgUSMO8Q5CDoFQluH80y3eJ6w5NxP7rFy5WdrzyLQDvPdBh1WHQdBVUc8s2kGZ87cvNOgMS996srlrsH5/HTjmbRn6tQij76NHciahXI0v23M5UF/Bgv+pgHPIbDs2BB0R1TfohPHqqY5UXskG94fLq586ee47Y7nFksmxKIrX/o50NuP7XAOvo8GSzveZnoaAGjNivK3d1vmGvePuSX696O8Zy2OFapeR2azCGvn70nVWSQpueS3avpfqEldiT3ocM/WufzhvN/xktKzbIvbuCMRxB1Z0zdNCmq9FuWFKb3zhnnHjDt5RbbOZxtw10OngKWxz1bMcwdYv7qXuU9GWI0Et+whlEdcMPZeaE1pTUz7MxpnPEQGiYk5U43KeaBARs3rWIGMFE5doQUgwK6m2FUTQztljRYCPcWh3mWRKWURYYxIlTlmy0IIAUoztkiw9KJHGI9PvInA5x2WhQgTZLP6Q1iCqOQTFiVWhJkEFpD4oGyNW5MIBf6gqT4J2x2ckTxivEpxfUjQ6VM5K0LG4FY03jg0qoLUB7sOVqTxxhRWrKl3W8RFQbYf/DGFN5oiE8XwqR5W5OAPx6RneDgLKvx2dB4r/C0EicOGbZ1c672SJKupzIXiasHA+RkqC1Jm/6zjoE7Dxx56FUlkMTXQ6NkNXOv5Ycva4vCztPTW3US606+7EZmAcEDEpk9V6sEZH7yRx79oRBbVt4gnoh5uX78IukIa0iO3UeI8kmOkPcsIkB0R1E/RPBHXJx0MbjzvYpaM7n1/doxnV8UOd9YWcF5mPem6MyiIgJfMWX1EzsOR4Eg3vG/R4vlOS2DZBwdzczmRbkhXXNkUgeT2/VaejYgVsrb3bOo9iSvLFv01y5/52yOyny2ODZMZf2GAGBlD+B44lplQ0hqZQJrRZDcL6tMsgjjLr4N5/HnPrzjFyZEVG+ko1hmY5yHzMSqVkArO6tzKK7Lb7ZAufOh11H7bhRXCBa9+nG/Puosnom5K7XXGyg4UElCC362byQPhHKyKjYhBKIE3ApYDYYdGtSVMKdaRQjNWzxDFNpalSJVk1VAPtlB0uDU2N9pZPdJJeTyL21Hh6q5VXOg5fHboTOxtHpkByG9TpDkXEcZE3VncwTqqaFNZoHjR7A18/wX/vI8z1+JooCVkBjROVVAPXPrbCvi28RMeivP8KDUC3rPlbpb0PAlAimBdvZuMFZFtaxAWHEZrWb6ydQklp8FolOWpoSkIoZFS099T5O7sAADr6t08NjKVDr/OY2NTqUYecWpRq3tcNGsDVxcfY1Uwgxf1rOOpTA9P1aZSkAEf638V/2fKA7wuD0/FNS7zA/LS57tKUnQD5hQa/C4zw/gzHAB/9Ju3s7HyWrY+NYX8eomyIehRreyRFntkb7ZgdeWRIqkpj7E0xy1hD56MqaY+gZ7DTCtiipXnsajB7bVT+dXIQmqRRy1wGRksoBOBcBQytI3/vyNRttynpd3+MDFQPZ6FlgVfuBFelmH1X197SP1Xjhb7I67sa/njOb5dNuuvjAWSUizf8nXzoBSsGPnXfVrR7ElcWdr19kNuTtvi+GMipiVJ0GAqWQBch2BanlqPRecjFUpPC4bOLSATQVRvZ3VvN+3FGudm1yPaIrZemsGuGouu8UWal5z3FB+etpxTnJyxxP2Xl3LKyiGE1tz7hjMoLgtAm6oSpypRjqkgcKrg1jRuOcEeDZBBBEEIGR9tS5Rnk2ZsRKKRUQKpRjsWVj1GC9COREYKqxYhogRtWWBLojaXqCDIb0vNWC6KoV4HKU3flVAjinnCKQlv6Lz3hJr4e94iJSiFqDTAkkh8ZKKRicatQHYQ0JrEF8QDRmxBg1PXODWNcgQq42DVbOyxgK5HJU7NJduf4lYSRKLxxh2ivIkV3arGLafEBSM0Os2CE6emsOsJYwt9xk9LCdttSussMgMwNpbhwU0LuL99NufP38jgWJ4H7l1E2hlT6qrC6g7iPPTOG2Zs4Z77ZO6LS1/5RaYlLt5IgAgDttZzpC2BpcVe2JstmFCmN5VT03jjiiQjaHRKTv3EjTSmpmj3z8l2NExypgC3KlBOU3gMBMrCNFCo2Hxo3Wt538xbuHruk6zYh7gywURC3Qs9mxd6q/nk4OnE2uLKwhPHfUw79+tfRv++w/p3v7/VP6VFi0OkJbCcxNx+23W7V9xkbaxawvInP3dA62qJK89PJgakaaWCXB8jZ06DJIVm9Ym2NHZD0HO/RtmSgQs9fteYw0v89cyyC/zmnP/h3+ZNYVvcxi+2ns5gOc9wlJtc/0BaJV7ZhR+ZZp73bJjLu6yIddVOFrYPsdWNaMQOI4MFrM0exS0mW6veC8o1r0E3G4Fa2vhaOzFB5GBbKd35KmNBhkolw9P2FOa3DRGlFklqYbspF/eu4xX5p4ACdeWSZhX16QKEJLtNEE4zDUqTkk+cs8lukqxZ3MVZP/sEj77i08fgHWkBQJIiU41QEOcgyWui/jxPDuZY0x7QXapSCTyi2CbamOcbbT0IW+FkEkrZBuP1DNFQBjpjHDvlkW3TiAIblUjjkwBYfsKTbg9PjPSSpJJq4CGl5tUzHuEnW85i8L5e7NPHedmCJ/jDjt+yKpzOv6+/gOHRPIVig9NKffyw71yk0NxdXsRYupm3lbZNHsLvTXmU/rjE9568iN71CTJI9/vwX3fPO3lmpIfaqg56H1LIOGX4DMtUclWPkzLhFsc933r6Mk7zRnmgMY/bhxYTKYuheo564BLUXGZcNMJ/NabxwNBMPDvh6Y29kJrPh5s3GdMilmihSNoT0yy3o0FPqcLfP3UFf3HK7fvcfrht3qSF3p44XgeiE4gUlKe56rIb9uo53+LosHzj3xmRhYl+BilCSJZ2vR0sixUj+58U0RJXnr9M2t8qDa6JY0WqaHRajC0SFDb6uKMBPbdvA9ui/9IprCt38oqOh1maifj5pX/PmzvezOC6DtwRC5VJObOwhVOcHB8ZOItbv3oxU39jxBVShT8EP/vtueTXWtR6wM3YOA1NZkRhBworSJFBapZXGoQ0MbYQ4AqEojmZrsGWYAlEIzETgdpGpM3eKlKifZuo5BJ02UQlYKsRZHBtRJIgUoVOEiOy5LIUnrb5yYXn8z8P/RFfPfc/juXbclKjk8S8/0KYyqisR1L0sGvmfW50O7jjabP3jp60fkvyNnHG9PBzx2JkJUR7LtqzcCoRnY8lJDkbGZrY0q6luOMxKLOO1Lcpz7IonxuSedZjyoMNonaXLZdlSM+uYiWS7MNZooIg6ITOex3iPLDeY9WzC1HdCnpCCoWAF01dz/KLCghXMbCqm1nPxAd0Di5f9gXceoI9UkMMNmey60VzzbdosR8s/vSNxD2a3GZBYXOCXU2RcYorBSL1iEpGmHSGHMQ6h2wD/BFN0A5pxtjoycQI30qCDCUbR9tZWTqDf7znXQSJzc8v/dpetz/vP26grfRWLurZwKWlZzjd3Uo19bh980JuuMBY6x3PMa1IBdpWLXHlhESgDjRLs8URpfXNtRd+71Vf2ePju954jrcb0cHsz+0rr9uemaggzdjbq1t24MqXbhddrrno0yw5/5MHvZ8tThxWqpsAUGGA2rgZtXUbjI4z9dYheu8LaWdHAAEAAElEQVSBzIhCRpqgTeCOSf7xpmW8ds3Vk6//0+IAF2TXkndDppQqJEpONrt//+aX441q/DFNZijFWpVjxarTeXpjL7/bNIMt67oY3lZExxKZmsbkSQ5S38yDpy7I1DRwlHZKFFsMV3JENYe8H+HZCXFixJTh8RxPDvcwWM+TpJJcNmReZpCtic+KhktWRuRnl5l+9jbqF9ZJ8mbiz2ok1KZ7RCWL7IBm25Z2yqPZ3U9Ui6PC1fJ1qHod77GNZIZT4oKxTMhsschstIkqHlsH2hgfzBNuzVF6VlD6nUv+IR/nvjzDT3ehn8mT2WxhDzqMbisSDGSh30cOu4iyjajYpKMeW7Z0MF73SbUkji0cO+X7ay9gy9puhILo2SI/v/VC/uSHf8H1N/8+g4Ml8vdniH/Twb39c3n68Zk829fNQyPTeaoxdafjKFgBllDEDQctBTJ87gHpBx75Q668431sKLcTRg4IjbYEMtFYIbijEus53Ov2lc3d4uRgybmf5PLbPoAlFOvjLn41spDHN0zj6aenM7K6g2hdATHk8e0NF3PLxsVsWDWVp5+agRx2sYYdLD/FcxOkm2K1RQhbIesWIhJYUrGoNMi2qI3rn/i9fe5HWe+5UvYHtcKROOwjgnI0t975kQld9rjk96/cewLMlVdsj+uuvPyGo7E7+83Ssz52YC+QguVbvm6qrC0JUiCE+b206+27Lb5s6rvN7+nvMXZiLU4adBKjwxDVCNBRROeK1cy8NcIKEkScQhyjHYvC5pjoW1N5312vB+AUJ8fFvetwexrEcwLIpKyum2z9/3z4ArrvGTST5XECYUjnExFdD0hK6xWFzYrcQIIWYIUKbyjAqiUo30I7Ftq2wLaaggloWyJShQwTRKJQno2WAuXbiKT5eKpAgXYslGuhHYkVaLL9xuYsKfk0puVJp3ag0xRSBaUiSMgMae4bmkVf0Gpuf6y4Wr4OHUXocgXKFbAs4s4sSdYIIzJMccdS7FqCU4lwB6u4fWXcvjKZtWMU1lbI9DVwhmuIegOhFAiBtiQiShFKoxwLbUvsekLiWwTdHknOoTbVwRvT5J706HgyxR4P8QdDen8T0fsdn+6f+rQ/E5DrS4lLmuL6iI5VEZkhjbagZ9EQF8zdyLyOYcbjDG4xotReI7dZkNkw9pzH/oI3foUXv+ZLvPSav8UZj7DqMSJM0EmCDiPccYmInvuLdYn/hsPwTrQ4kVlaeitxwdw3nRo45QQrSJBRihUkOJUUpwzuiIVMwa5Brl/jVjWZYU3qQdymCKakphfRGOQ2CRobCtyy+RQe2zqVNUNdnPbjT+11H9SIx9hYlt/0zWH58Jk8E0+hkTqMDxbYmFSO2rk4WLSl0a46riuVW7Q4UWhVsBwgu954jvcb0TUv+gykmlvu+8Qen99x/29feR1XXPl5MziA7X/vwXLmlvs+wZILPnUkdrnFccikXVizV4oaGISBQYprfcTiuYyfWsIKwRuF9mcTNm2cz/0f/8Vkn5WrMwm/7VzLs7UptDkNflE9jfe0bSRRFl5ZYddShAZn3CJIJFgKvS2DPyqI2jXK0aAgKkBUYrKcV7kmixhA2gqtBUlokSmEdGeruFbKlEKFaugxPJZnbDAPAiwvxc81GE1y3F47ldP8rbw4/zTl2RmWFB/l83IZgTcN4ViknjQT4LGm0WX6yIikdes8pqQpaE1ma432p4so2/glBO0Cb7ODjB3suikVz/Wlk5OfQkNhiyTKG4uxbL8gbLPRFlihEe2SnEDZRszTwqI+3SLuDLBtRZpKKlsKYGniksKqSbLbzPUYdAuouojUXJuDj3dT2CqIRnIkF9X4cu/vuCsAX8T0pSV+PnwWQeoAmvIci7t/uGcLJ4DhrTNol1l63blUwvkMDhfQVYf8gMAbiVGexApBJEz6DO+NvZXVtzg5WPCFG0muzTJfVvj1+AKeHe9m87NTsMsW3qixVkgyELXB2G29iBTa6tDoAm8cEg+SeobAyWArc62HHSZIcMoWDVXgV+l8Lp29hoyMWXjTZ3n2dWaifMm5Jiljwq7sO+NnMNsdoihN/5eciHkqmsK/972Q185fuV+9WK6+5LOs/PUBTsQfJp798LXM+/cbTEKKc/jylRZ+/ka0ABUcnl5fqb/376sdG9jf9svjrIeM3j34XHrmRxGpZvmq3cWg5etv3P533zdY1vsukCCwQGmW9bzTZIlbFihlbHmA5Vu+vkcBpsXzk4l4Vjf786hGA9Vo4NwxgtXRju7qANdFBDH+1hrZwVHyG7t41fwlfGveD/h8728AWFvtIlIWz5a76EurWF6Kdm1Eo2n1pRR2NQYcUk+Q7Y8QibmmZaRQjiTscM2EXyUyFrxKGRGkOUkOpoAlzXkkWfM5lonCqsbIemQ+I5aFsgRagAwVDiC0sYJKMzbVGQ5YguzqZt+ZJEUXfJKsYLzhk3Oio3n6W+wBHTfFsijCLodIzzb3KiHwt9VMAk6qjHCnUlOFojWijFnObt7jGwHSsdCegwgiLFuibYFVN9eLcgpEJYv6FJvaVEHb6pTcthTlStKCi10Osdf1gesgzphKkjPrLT0tsOsJMkwYPMfl0pc/zHic4cFNM5jROcamchvptgzjrk9Bg7b2Lows+MKNaKnJdQmsUGDXYqxaCImCRmCOUUrsGjzzkfc/57m7Ofj+4XgLWpygXPBnX0H98ZnYNcj2Q2ltZMTJyIjlynOQqaa4MSEzYpG6YIXGVs9uaDKDKXZgUZ0myQ5qogLEGcgOatyqJNrYgShCMDvCzUfM+caXWP+uDwCwtPgWAFaUv012iySqZigPedw1mOfhjulUKz6ZtQ53NWbzhsLIc8a0x9KedN173s+8/7jhiCSOn/YxE5vFaat/7RFBQ3qcZHm1XMoNrVnC5zm33Ptxllz4N1zzwk+TZhxuu+PDLD3nE6x4eM/2Rrffdt1kRuOE0DLh9XrbHR/eqUnqzQ986igcQYvjhYlKlqvl6yYfU2GAWLUaZ/a5yFgTh5IoL+l8pMK7rn8v4/NBuZrvvPobvKX9fv5Jv5AOu8aWsJ2vj8HD26YxZ30F7dokeYeoDWbNGmTbSAkdm4GncjTkE6KsIJqlAY016OKNCtMgFOObGo17UNqeEb2lUsKSCkcq6lFzQQE6luClxEpSTX0ckZIVIfPsMq8qPcglvmT6gv/iVRd8gK5HFMoW1LsFtemQFk0/mHXvee6gv8WRQyuNqtURa7fQlmqCqTmCThunZiqaJqs4BIhU41ZStC2QkcIT4BZslG3sNzLDTP6tHIgzJkiRqRFhrMAiGskhAqPr2CVzTYoU4vaUsR6Fv8VBxqaSKskaEdAfEigXwq6UN80xEzK3Vk5nqjvGQFwkSm3WjXUgHcWjX9m3KFJRKRYN1ja6GatlYMQlt1nS+VSCW46pzPaNp7yGs997I498bd/rey6WzfxLAJZv+uohrafF8cVFb/4KzmxBUreoRR73bZ1NbSSL32fhVMAra+wAEAJVh/wWjbLNdV3YCG5FoVyBU1NEBQstICoKlC2QkRG7naokquW5z53FxdPWsahngJfe/n7Koc+Mr4/T45tMvmW/+ksSdRphalNyAxItcWXKpnIbI5tLMH/fx3L1i69n5d0fPebWXPO/oUEnpL59yI3ur7r0ejYuzRpRQJnP8+FAxieoj31TAFl61sdY8ehnAVjx2PUsO+0jLD3742gp99pbCIzIAhhhRe5wnaQpWNb2Xi20bMFONvYUz+o0JRkawYoT9NQpiEaIrAVgW8inNxJcN4fXd15L9R3jfPP07/MDeQGeTLhrYD5vfOb1iPVZRG0MKqZCGylpTPUZPQ3ymwSZAYHyBGHRQlsWScZFS8hvSRBBBIrt97NUI6PUVK04lolfYoWWwtiCyeayqQYLUEa00Zbpy4IvibMChM3YIk1tqs3c+8yEfTqlyOD5BcYXK4oCll/a+p4/ZgiJVhqhm/ZtjQA5IhF539i7AbLa2Pk1SkMcG3FtwlosTcGxjfBSriFs87fVFGlEI4I4xhkSFCsO2pYUNjpG1AF0JM33vmsjpnQg0hRlC8KiJCwJcv2KOG8TTfOpzU1pc+rc+sxiGPSJ2yt0ZmsM54tkNjko19yn94ZJjjPXuR00K7EaEdQb6EoVnabIjA/AaR+9kVXXH1o8uyT3JgBurn33kNbT4vhj2akfJregg9EFNpkhyPUZUduqm75UpArR/Bw5tRRvNEa5kiRjoWyBW0mQkcIOUtxxid1IqU3zEKmxE/PGFd4YyFQzErnUFwLZlHlf+zLOuCT92FlYISy64UbcGHJbwdycXZTj0jmmKa0N+Kz7h7zhbd/c+3HM+wDL134JZvQehbO2d+b86/ZEoUNtdL/k3E+y9Yo2M4ZwQdvA/jtht2hxQtMSWJ5n7OlmePP9O1t57SuzBEALYfqzXPl5I7i89HM7ZRLuKLLsyJILPtUSXU4Cdh2Y6iQm9+QQ4ex27NBChook59D92xEyQyUaXRbv3PZu6uc0+MlLvsHpTpaPDJzFVx+6Amd1Btm3Ft1RJO7xCXtSXti1nl+reWzzMqSuAKEpdVa5sHcT41GG322agUgFVgBuWZNkzER26lskjgNa0Bh3CUOJyiisthDPi+lqrxImFuWxLK4X05Wt8cR4L7ZQrGt0cV5hA6d4WwHNKU6Ocy59hk2PLaA8S1KfqVC+mfEScctZ8ZijFToM0VGMFUTYDR9vXCBTSZwItBRoC9CQZCXueILWYlIstuvbozyRmv5BYO6NdkOaBrISUk+gXIE7BoVNisQ3GXdJRpD6kHYqpJOSZGz8QUHYAcE5DRCa5Jlsc9JZ8J+bL+DXYwu4oLiBUDlsDtoZi3yybsTv/uizezzEJRf+DTff/0l+svYcuq0MGxKb3/bPJl2fI79FmOyqkRBtmworOzQC0aGKK9ASVp6v1HsEqQfOqMXQ+BQzgAzNhIdbAW9cmyzoSOBUwSunhEULBXhlhTcam8k7pbECB2UL7MDCCo1AqSXEeYGIIfpdOyuG8hS7qkipGRvMM7y5DacthAtg7VAnWguimovtx6hEolIJFRt/0KKsGhRlZq8Zfyvv/uhOv48VE9u/5kWfQR1CFcuiG25ELzPWk6Ip7h4utNxBkDqBWPHIZ8zvR3e+R+6pemVvLJv3AcjlWL72Syybcy3L199orME8zzzf806W9+8+8bFs5l+27oMnAbsJLVqRjpexHRuKBag3IE0Rvoe1aj25UgH/0+287eL38vF3/z9em6tw5eA8Nv16Jp3PaKhUUdUawvMQne2MzbMonDJCNe0gv9nCijWV2YL6oggqNu2rJG45QUQpRJHpwSIFIknRiQJXo4WpQBCJIs25aEuQ+jZaSqx6ZAQY10JbAquRmMSSRCMTm6ggSfOKwqnj8C2B7mwn6MmQuqZiN06sY3j2W6DVpMhCHIMlEY0GIgwRQoDrmp6Xzb4rpGqy5w7pDrOVaTpZ8UKqQRkBRjSMcGL6+kji7jwiUThbx7CaggyWRFsC7doo30G7FlYlILupSvUFJZQDTl2RZC3qPRJ3GP777hciNMiegKwTkSiJiCSpC099cvcYdEn+zdxc/Q6n//WN2ArcbZDvS/CGQuR4Hao1dBxPVpXhOFghPPalQ49nW8LK85dwWomwKHHLmtxAil1NkHFqxJVmJdQEWgpk1OxHhBGkrapJytSWhfAthAKnprAbysyV6aad43CAXfcZrbjUe43DgT9oYmaAWq9AaJPcJxON3XREyAwluH0V5vw44JIXvIZfn/XDPca0y9d+CWCvyc9Hi4k5xKsuvR7lHfx3w5kfuBG1tM1UVngw0R5EtASWFicJJ8RM4fr16/mzP/sz5s6dSyaTYf78+Xzyk58kinYua964cSOveMUryOVydHV18d73vne3ZfYXq54cjl0/rpj02pbSWIex554tt9923U6/ARCCKy+/gdvu+LCpZNnBt3uClrhycrFS3TQ5OE1Wr8XbPI431CwdEAIRp/jDEdqCzidi5v6z4E8/837m/fDtrPjnSyjek8EbBd0IECNl7IYiu8Hi5k2nkHdDivPHiBc0sDpDSpmA4TDHQ5un4zyVpbABnIbGG1fGWqwKVkMgqjaiauGMW2T6BNmNFum4i+8mzG8b4rSufvxcRNaPyNoxo40s60c7uHvjPL634QX0JW2Tx3dV5ypGTpc4l46gbY07ZCMkkE2Z8929e9q3OPJMDMJkPge1Bu7mUXLPjlB8ukxxXUR2MCUzmJIZMv7VMkxxxkJEohBKI8MUuxJhj0fIIMUKU2TTr9oKFHY9xQ41QoGMTNBsxD4zGe2PgDcCmXUOuuwgUoEdQNIb8anzf8opU/uJ2hVRm0Y7mo2buni4bzobww7WNrr5lwv+jZWX38jdV31hr8c4IYwPJ3libRNoG0totEmsQqYmsFe2bO63fs7+Ky1ObmQC7jjktkBxPbQ9rfGHjWe1W1NYkcIbT8j1J+T6FM54jDee4o+muGOJsaUJYqzxBu5wA28kJLulQX5zTGYobf5ovHHIbYbSQw7ej9pgRQcdv3XJrbWxnshxxgdvJF1dINmSxVvvYj2Vw9qYwd3k4Q9YeMPgiBMiPN1OqpHBwY8en/nItZMilbJN9cpD73v3Ydu9wynYHC9M9AG8+uLP7vT/jixf+6XJyYtJCzHLgjBk2fT3sLz/m8ZKbNfXtcSVk4od41m0IhkcgrHy9koBqznZpDTWmq1M+/YT/MvrX8m5N7wT/cUept4T4w8n6Cg2k91JAo5NfqtibGsRNaNB38WSoTNs6rPN+LJ9laT7/gruptHt1khamW01K66E0iZuiVNELUCGCdqSpBmbpOCgXBvlWk2bVBDKVAQ4Iw38gYDEE8hSxDUznkJN7aZ8RgdagD+qoT2i4IdcftsHjvr5brEHtIZUGaGhWc1BrWZEEK2b1rhq56rNyYonZa7VeJdeflIa2zmtwHNMMpEQaM9FSzlZBSMShawEWGMNZC1CxClyYIzxBRqZAEoTFSS16RAXFNgaZ2qdtlKNwVqeO674Muvf8QGe/fCeBZGbq98xuxMbO15/TGEFCpGo7QmcTRFJSLOPdv1wntwWz0dSXyJjKG6McEdCrCABpdBCmH5WloRUYzUSnPEQESWI1IwBrWqIbMTIRoxVaWDVY+zBCt5IhF1XeCMxTq0Z0wmBN1BjyoN1Zt4eMvWeiI6nQ/zhhPymgFy/xhvTeGWFP6rM68spdt0IPSJKmFUYO6bn6kCwahHOSOO5F9wLj33pWtDGxn3yx4YHPnb4YtoW29GA0vK4+JlU005yTogKlqeeegqlFN/61rdYsGABjz/+OG9729uo1Wp86Utm4JSmKS9/+cvp7u7m7rvvZnh4mDe/+c1orfn617/+HFvYHaE0V1/8WVbes3dv70Mtn9sTRzLLcMJre8eKlv3Z/4lqlYkGqDs2u98TSy74FKR6n9YNLZ4/TPpZb+3HCjuQjawpbU8V9lgDf8SjOs0hOyjo/s0wU+5MQAri7rxpvthsMuo/upFZfR1Unm1j24wOkizQrUkKCZvTdjapDvxnfDIDJptaC1COAGWySbJ9kI7IyYkku2ECeeXYVDs9qrFHpCzi2KKS+gy7WVIlkFIRVDP0bcnxaO9MXp8fBaDXGaf3BVupRS7ZTRZhu8YrBTz9mj33M2pxdNFKmyqWeh3humBZSNvGG8nitBVQWccMJCUgBbIRIpSxRhCJQoQxIojNMo4NjoVybbRtMkjTjIXlismGnk5NIVOod1kIrZGxwKkZCzGr6Ux3+twt9CcltlRKKF+hPeicMcbw5jaqQ1lufNV/HvBx3jm2mErR5yXZZ7h06hp+MFQgHvVJfEGSdwg6bOKsxIo0D/zfQ8/2a/H85JoXfYbi1AxxzghyTl3jjUQEXS4y1lihwq4lyCAmzTqk/vaJO5kYv3ftSERTRJD1yGT4WebzoJtZsHZD4ZalyaBONXYtQTmSJG/jVoytWJwTxk6sJrEDTeKbijC7YSz2kJAR3rE9YQfI3vrcHQg72oLNuCOEvzjkVe7ElZffsNc+K/t67mBZeuZH92kVc6jc/KCJMSfi9In/n4vlm78GmCqVZTPeC46z12WXLfyQmbSU1qRQ0+L5y0Q8C5COl5G+t71vT5oaIaSQR9Tr6CfXMvVpMxksfA9cFxWEJgEkiqBvkPbfxmQGuxifm0HbzV5W22ycKky5r4wcGodoh0nxVJntSBtZqUOtWYGgNYQRsiyQno1yJDJRiDQ1919bGuuwCUuoJMYeChE6S7HYYE2tm+qCIgCZ/oBGV45sIeQ3S/Y9nmtxFNAKnYKQwoghSplrSGto6GZ82xzYTIgtSYJOU0QzEUFrZex3lDa2X7a1vcolMVZJKI07GoBSiKgpxtg22rPNtRPHiChCxO6ksCiUydIPOm2qMwXuqeMkmwogNY6d8uCyA7y/S8gOKVJP0Oiy0VLg10JEGCESY90oshmiBT089I1WPNti7yyb+ZdkOop4noNQatIuTzuWsVtMEjPWSxLscWV6/DgWIknNvTNKJkVNANGI0a5lBOokNZ8JMPfWKEFWQ2QlwE5SsC10xkVlXUScku23QGMqZKRA2RIZK+OQkM9QnV/gj7ruOIZn68DY31hqX2jLiCpgqnlm3dKA9xzyalu0OCE4IQSWpUuXsnTp0sn/582bx9NPP803v/nNSYHllltuYdWqVWzatIlp06YB8OUvf5k//dM/5frrr6dYLB7QNn9821/z2qVf2+vzE5Uf+xJZDkaA2Zu4ctWl13Prr46tvcNtv/yIOaZd7MGuuswILxPe4zc/8KnJZrYtTh5UI8AKQ9hcRlomuBeRR36ji9PhYQWKpC1jskeCGHu4jhgrk6YpQitUuYKo1SkOj5PvbkdlHeKiS6PbpjLDoT4rxQrADjQy0pNWd9mhlNQTyNhYJKWOIHWNbZi2wSlDY22Ox4Zmoy2NiAQ4mgGpmdkxSjXyGIsldl1SS7ZP6j1Un00jchjuL+J5oB2MzVSLY8rkBIhW6IkKxThBCIGOIkRdIC0LWTdZoNqxzIRDtYGoNozlQpxAvW4Ca9tCOA7YNhYYuwTXQaQ+qSNxLIEVKdMU0RVYkelLYTfMBLJQErthrOqe6Z/ClkqJseEcIhKcf85aXtC2ju9EL6A2ljmo41013EPRDrgi9xS97hil9jpjcy2ikk1UcE3Wu2UmZ1u02Bupb2PXU6xAIZsZfVYlIj9UMxN0rm0mXsIELSXKsZqVUQKhtt9vzYA1NbY5QoBMkVqbiSHLwqqZwahuCi8AltbYVRu74qA8y1j4NTOutYCoIElSgRZGeNECXvLYq7nrzB8B7Fez++OBJRf+DVqIgxZbnv74tcy78SvISHD7yuu47CWHJ4766YoP8ppX/P0+e7rIRD9ngs+EbeH+si9xZcm5nzzmSTh7qlJZtuCDoPT2qpdnv7D98RYnBZNJQ2mKjiLTI0MKY98FCM9tevs7CNcxywUhulpDJ0Ys0UpDGMLwKH4U4w0UoSmE1GcVqMywzARf8146WYmQJEacge39NZrxNABRZKoM6jFCmcoWbUuEY6EdiXJtrEZiKlxjUylTqfo80D+HWbHJrNZC4FY0lUdL8Kqjempb7MJO8Wya7mz7JQRaKUQQbu8h1bxOdGoa3WuaQoxqBoBSohNTCSWENNdT83HSFFGPEHGyvdJFaWNPB+ZaTBIj4igFjk12iyB1TAXk9Ks28qHZK/hax1VUIo+NAx0HfLy5Po3d0NR6JG7FxNTatxE6B56LUJp4Rjvjc0+sBIsWxwDPiBsyUQilzH0wTIz4YQnzdxwjXBdtY2wXAakUpNqIMklqPgupQiROs49RhEyMUGL6HTUrC5N0e7VVIhFJihWnaMfCHdhebqU9C+FayChFS0nS5mPXFZ+8/TW8/pXfwBISToCYdtnc96GzGVY8cXBJMquuv5aFn7+R1Dc9S2/75Ue4/OKPH+a9bDGBas1PHVecEALLnhgfH6ejY/uX+7333ssZZ5wxKa4ALFmyhDAMefDBB3npS196wNtIc3s/PYe7cuW5mBBXjrWP9u0rr9tNUNkTx3rg3OLoo5MYNTZuBgVJMjkoFdv6ybguzJxG3JMHoVGeg11uoKs189rmwEJjfAtlHCMdB6tUAF2kMtPFHbbIb1H4IynKEaY/hgPuUALS9A6KimbyTtYVaSqIs6YXhz8o0EMWutmwOXUhiHLQMUqSSoStSQop1dQFYH1S4dnaFGJlUeioU9ECGpJwvBX0H0/o1PhKix0bGCttfoSCWCFqje3NQMMIMgrC0FROKWXsCGwb4dhmEColIoywtMYVAis22X1aCLRtGTEla7L67UBjhSnecER9qkc8kKE2BcS4g12VtLt15noDXDB1E9951f89qGO8f9kNLP7hp3lsdCoz82OEkU2xq0ot61EVGTLbBFYISaYVXLXYM0vP/jgy72E1jI8/qTZWCWEEgSm/Er5nrv84xhoHGUSonLnfadtUCooJ//eJrFgAaZmBKkAaIpLETORMbDybMZmwFY2d5MCWJpPQMuJn6lmIxMZuSGSiSV1BkpVE/97DBf47eeN7l3NVfhXvvPVDbHmqh3V/8f7Dem6WnP/Jw5KtB6Y6eMmFh7auuT8JJitJJhoQHw603Pf9YX/iSi0O3z1mIkY8nOf/YFhy/ieR9YjlT5pMfp3zd+o5OMHy1V882rvW4lgzMekN6BQgRSfNLH/XRWR8Ey8IYQSVZjyCVpMJIDqKTD/6Zoa1KBVodEgywwoxPI4OAjMRPlFxkKTodLtFtXCM8D0pwlguot5A1Nku+FgSC0jaMmhrez854di4ZU065ONUJYiUuGCRZCVoyAwc1bPZ4jnQaYpuBEjHBttuCicarRVCSVOlMtGLZcd7lNp+nYpJuy2Fhkm7OTEhsITRdhHFts21OtH7Z6IKII7NZLLvYYdN+9BAo7QgJ0P+fPpdvGrewwd1jL/5f+/jmhd9BnfcVGGJxOxvmvdRmTwiVlRnZfaZDNCixbKFHzL3w0ZgEn4AYVuTorKwm5aOsRGxJ/4Xyjb3WjAJdmG0/XoPQtMDybK2C97NeFcnO96TnZ1ETRGb74CJKjOdSGRDIirGYksXMlhZl3n/7XD5L9+N8+d9TM+N88BdnyUe8Vn//x0+i8ZlM947WaF7qCxf9xWWnv1xli344EHHP7NuNr7Ve+rb3KLF85kTUmBZs2YNX//61/nyl788+VhfXx89PT07Ldfe3o7ruvT19e11XWEYEobh5P/lcvk5t79j35J9CS1HQoRZefdHufKln0Ok6ohWtOzLHm1CWJkQe/YltLQ4uVBBiHRdM1BoCiaAybrbtBU37EJnXDOQDKPmxPf2wQFAWqsj4wThOohinjhvYQWmOdrE5JsWJsvZCjUyMc3ohNbYDdNsWSiNnGxGb4QYZYPVMP00ECC0ZP1gJ66b0DmljCMVPV6FUMcEWlJyGswujVKNXSxLmaqE6gl5y3x+oxU6TkxQbNsmyI1jUBKk8dqfzPaLIqjWUFFkltcKLSTCStCRNINQy0LYNqQpdhBhew7Kd1FZB20LhCcQqalkkaHCqSXYo3XysUKoDElfBn9Q4lTh1idPQZ6q+c5FByeuTND+wzybzsmzobcTrSSRl5A2TMWNUMYK73ffOjQ7hWte9Bluufe5s4uWdb+D5YP/eEjbanFkWdb9DpN9J2Uzyy/BLjuTg09E04okSdCNwFzzcWyquyYGrQ2w6iGilEX5DiJVyEaMqIdmIDrRUJfUfOYcG5IAGgFaK3StYe7hSkEmY54HI+w0moNay0JmXJwxY88HTTsGpQimmGrH//7MEr7+gqX4s8uIVLDgvz/LIy/5Z3JTNxzyeVp6zie4eT+aii49/aP7ncWnheCaiz590FUsO9p0/XTFBymVPruPpXdmX/Hs3nrngYlprVqyT0tcODw2aLty84N/c1SqWZYtvo7lT+/ec3BC3Flywae4+YFPseKRzxzR/WhxYqHTFGFZRkDRavIxOWEZNnFPbU5i6x1eN0FarmA1BRI1sxsrBivQ6FLBCNETk3VpaibRJybJRTODmh0m1q3U3NetZnVCc70CsDxnsg9UWsyY7bnC9JGLIGiXzabDAjvQ2PXWLPbxwI62dGhlktNS1fwON9eAlk2xPUnQahfhPVWTMa3WyiQdTfTxSVNzXTZ7tExOHk/0FIJmj6Htwo2OYmOvFLi4FY07luIP1Nl4x0y+7C3lBxf//+zdeZhcVZk/8O85d6mq3rMvkA0hQFg1OEzEEUjI0uDOsAhiWEQRETUgq4SwJGRkU5lhZtRh86cDKuoMS2eRgBgEBiKbRFkkSEISsvXetdx7z/n9caqqq7qru6u7q7uqur+f5+kn3bXcPlWprnrPfc9537sH9XitLTtgjalFUFcB2R4HAg1dacGrsqFcCS8i4ESH77W5uGppukcMlZ76/S813wgBeB6070NEIiaJmFykCSkhbBs6Ff+kXuMZ76XCSvZkiYTNdb7Z4aJTSUch0u+tIpngTCfY29rN35VjQwPm+lSC0gtMgiaZZBHSApQpJ6mDAGhqhjVuDERVBHZ7Ah13T8KmD0+FN8mH1S4x8/5/wbtLrxz88zTz23knV/JNxGhbApXhAce0XRMr/Y1picpVUc8WrlixAjfc0Puk6oUXXsAxxxyT/nn79u1YsmQJTjvtNHz5y1/Ouq3IsbpOa53z8pRbbrmlxzH0lSAZ7l0sKcORCc6caPdU6iy14vGkT5gTD8UuYUYlQCuoeO5O20FbG2QiATmmDnAc6I6OzlVXyWBfK50OgkQkDG0JRHYn4LSZkkjQgNMWABrpxuTQ2pS0CVuQvoaV8CHjpn6qcs394nUW/LAwvQY8s4MlvFcg+lYlohUa7SEFUe3hD/JDmLf1ULR3hDCxrhU1oRgumPYMwiKBW/+2GM8u6n6ChoZf1oQUZvdU0B7Aqqo0deFicaiODqhYvPudUydJ/NQkNUiX9cgiJGQ4BBEKQUbCEONqoVwLFds9aFvAr3TQPtkGhI3wPgdepUT1Fgm7A3DaNULNAZy2EJ595WjgmO6Hz9fHT70N7TMsOO1A6IUwAKB1lgOM8RDe3dkjpj9Sq+xT5X4WHndzZwmKPjC5UhqW1JwHoLNUSGrlndkNqExyY2wddHNrcvdW8m8huStCx+LmvTp5MkZEUyVIOruh6yCAjIRhpSajQpjGuKnJqkwmWVLHrK2CsG2IllZowKz6i8WBjqg5URkOmTF6PoJmc/JfphIvtg0ZSZbRcx1U7o1AR1xEtgnUbjYnioLqDrx5fggREULT9mk4s/7cXk+ILznyu1jzas+TuTV5JFcAYM3rK3HqHy/G2ZOeRbsK4ZyDnstqqJ65A2MokhD56i2eXfixm/FETwkUhT6TK0NpOHY8ZyZXcsW0a19cAcAk3RAEQ9o7hspLZrIkRUWjEJ5verS4jmlOrhSEFFCezopp0+9xkTCsfe0Yu7EF/uQ6+OMrYbk2ZEccaG4xye5UWTCZPElum5OEWgfp/izp997U7obkiUTpeaafkG1B2xKqMoRQo48Za0xT55YDwmiZJeDValS/I/DKDwrb44KLLwYuM6bVvmdi0mQMCq2hY4n052y6dFHqtqmTwL3FtEJCOja0SJ5ADocgwiaeND2mpJmXja0xr73mNgQTx6D63agp59zcihn/q7D7lVnA/wz8cdZP+TpQXQUoDWvbnvROWMuvhhOx0TIrjHBjkC5Jmq8lYy8EtMaaxp+Y3zP5YjTszC8RxORKaaif9DWT3FPKvAZDLnQ8AZ1KDAIQ1VVAwoOORs37X2o3FoAg3tyZXEwSMploEQI6tfu6rb1zJ3bnDdNzIGFZ6SRKKl4VrgvtmeSm8HxoL9m/xXUgbBv+7r0AOuNZ2LbZ5WhZgCOg9+yDbLKBqgpUN3ag+i/SJEarQnjjK9Xwdx6IT837NBq23NH7c3TQFemypV01vHtn3s91w7Yf4pF3jsQpFTHIyW+aHUHJhVMN730/fbti7i6m/lFsLl9SippgueSSS3DmmWf2epuZM2emv9++fTtOPPFEzJs3Dz/60Y+ybjd58mQ8//zzWZc1NjbC87xuO1syXX311Vi2bFn655aWFkybNq33gReh1n0xe7D0lUjqOq6FHzcT01SAxB0ulKKDADqegKiqNIFPwkuv+BOWBWFLCNcxdYTjCYimNthSAjpsAiQB2O1+ekuwjPlm90qyAYXwFayOZONyW0IEpuY0ANhu8sShALwKCT9k+rPYbQIisOBXWni/bQIQUoDUeL9pPHa0W1i+cwI+Ov09JldKTNckC7RKntA1J3ZzJlf6K9VQNGFW7ruNraZHS1017OYYRFCFICJhdwSQARCvkwhCQMUuBS1NOToMYiHekqOXI/7hOrTPVIASmPBSgNgYC0GNDyE1wnuBcFOAp/+nf/0BRNwzvWmS1j9TvJOr1H+LK7+UTnKYhDSgVfL1n5w0qmgMcl8TYFlmMprcmZVqnqvSdf4VtK86X6apsjNSQNimv0B6dR+QPsGnAQjL9C5KS50cFKY8jfZ8k8hJJExN+HgcsqICKhpL/+7UOITSUEBnKROlzCreVIkcz4Pd3I4Zj+wHfBKokRF85dePYslhasA1ovvj4Y/djRv//GmcUfsiHt9yOCbe/Y/46bE/weK516eTLcWejPYaz/aSQBU5SmINtSVHXVe03SK9xbS5km71c66Bdqx0P6/+9KGhkUsHAbRSkBUVQCQMsa8JqrW1s2SpkJCOSDYpt6CjMbPgLxIx728JU6oRQWB2D/q+2RGTTGKndyEmvKzSUDrz/RgAbNHZoyWeADzTN8tqjyPsJU8iCoExm32EGyvQPNMqeHIF4OKLwcoV0yIIoJMN57u9h3fZ/d8XU7ZZme3/gYLuiKZX+IuQCyQSEG3SxACeD9keR3S/MXC2NwG2haAqBGUP/CTekvFfgaiqhKqKQPg+RLMHnfBMrBBxEYRNCV63JcCT6/q3ol9YlkncJOWbXKHSsKTmPJOUSMaTWqvOZEugoJKvE7S0mvl9Rzwdq2b9DSTj2TTLMn2GMnpoIVnCPJOQCoDVmZzpcj0sCwKpcxhxqGRfFmFZkFVV6d+dGc8CSO6IScbevg+Rjn1NbxfZEcX+66qx55MduPB3T2LJ+K9gzZ7s85tZChirfeqAV6F2zobaORu/ftpDZMoW1M9aZvrNWVbOHb9ElJ+iJljGjx+P8ePH53Xb999/HyeeeCLmzp2Le++9F1LKrOvnzZuHlStXYseOHZgyZQoA0/g+FAph7ty5PR43FAohFOpfX4UNTwz/zpWuSYyeEi497TYptIXH3Zw+KXfSJ1ZCqM4dLes3Xpve1UKUSQcBhGND1UQggrCpBxyNpq8X4ZAJRBLJ8mGxOERHHJadrNUrABn3k30EzJZc7bqQCR+WFweSze7SCRbHgrYk7ChgxRSUK6EcU97JSgjIZHUHKwbEBOC3SwQAIAB3t4WKDwDxViXejh4C/GNRnjLqBxWLQ8hE52qnjAlp14C6T6nJa8KsoEJyK7pKJCC2W7DG1iHsBUhMrkaixoaWAqFm8zvidRKxsQLxusE9HhFNILI3QGiPDSsKRHZGYcXDsFpsQAChZpWuYd0fva3qp9K1yD0LQMaqPMD8m0yaIAg6e19ZFnTCg/Y7dwrKSCS56s9L7+TqKjURTZXQg6+SE1Od3rGik2VHIIRZYR1PAC0J04zX6ozNUomVFK00glRJh66SE2qdvL1IhEwz0lCos5xZwkPl/72L45Z9FW1ntkA9U4fpiR2on7Ws28q/+tlXYs2b/zKQp7lHyw//X1y06Rx8uOo91I97DQ+9/VGs3fQCFh+zoqC/Z6B6i2d767HyxIbhr4+dmVxZ/NEbciYtMuPMobTgxFvSO8Pr51wDaJ3uyQIADZtXmZ0tQEFPcFCZ05093IIxFbASyXg284Sfbaffo7VS6X5Vsj3Z+8rz0+/fIhIBbC+r3j8SXX4GOhuaA8nm5QqwVGevOU8lV4ELiIQP7ZpyN9YHTaja147Kd9yhekaowJTnm3J0QpjeD8nXESSA/HMryb5AAoB5Lar2DggpkklCs+NKRsJmDbTrQk8Yg6DCRWRHB4Kx1UiMC6NluoNEzSAejOcD8QRkLAF4vunVmZzriY44rGgIjisHlPBncq88LY6cY77RyiSfXSe5UEh1Jhat5O4rz4dWftauLWE76bJ6uaSSilol/2C6xr2pJI3SEHZyR7bWnecghEi/n2ulzMK9rjFtS2vu352KZ5OlxdKLj1K/I7n7pvr593Dcxq+j8vkK7Cfe6LGcaf3BVxW8F5yc/CbUztkICQdq52w0bHkT9QdflRXHE1H/lcVf0Pbt23HCCSdg2rRpuO2227B7927s3Lkzq7fKokWLMGfOHJxzzjl46aWX8MQTT+Dyyy/HhRdeiJqawUQEnVI7M0pBT7tZekquLDmssLtfMie9PY3ld7+/hrtXqLuaajQfUoOmw2qhx9YlawInV3m4jtkhkJqgSmFqASd8WB2JdHJFxD2IVKIFMAG6F0AkPLPN1fPN9QkfMhFA+Boy0BC+hhVTcFsUQk0aVszsMkhUA0HY9LPQjkLl5DYkxgbQFhDep+C086RKKVqvfpl9QTIpohKJ3MmVHk4q90TI5OpT34eKx0xJpVQDW98HojG4O1oQ2R5FxfYOVL4fR6jRhx8WiE4w1coie4CPntfHtu+Dc79v64iL8K4oqrZquK0AhIBMKIR3CYR3CUhfw6/oZ30wKl+ZK1ZVsj60Mj2IUk1rZWUFYFnplXSZq/tUNAoVj3Vf9SokhO2YyWpqlV9y0pruPSCFKZngupCRiFnxatuAH0A1tSBobIba1wi9rwk6GkPQ1tb97y35t5P+yrwqCNITZx0EUNEYgn2N0E2mEbSOJ6CjMaimFtQ++mdM/p6L6b/9ALoyjMSM7IU6i+dej4YCJ1dS/mPuT/HVg3+PDU2HIoDEOc9/GWtfXJEuMZVp0T/emPVvqZm/oDRWKPa0I6S35Eoh4/HMsrsNm1flvI0Wosf/ZxrFbBvR2RPQvr/ZxSIjkfT7qLAsEz8kk9LQ2pTwsiREIuishpAq/WRJoKICoroKIpkoTb9XZ+5YSSVSAPP+7/tml4vnmZOBjgNUVpp/pUTbATXY/Q915v06ZhYiUWnKGdMmEiaRp0wZOtOzR/dr9wqAzj6FMKXFVCKRfF2qzr6ZybhWRBOwG9th7WpBUOlg3yEOvCqgcqfGvLNu7+M3JXfZdiUldCwOtLZn78pSyjQiT87R4nVOvx4XlTGt0uXsUokVJJPOwnEgKyogpISKRrNeq+m7p5ItuRInGcmT9LwtFdMmbyOk2W0tI+F0qUUVi0PH49DRqPk3CEzJ6Y6O3mPazIuTZf5Sca2KxaGiMajWVqjWNrM7J+GZmHZvIw68zcd+j+6EmjEZTR+ZkHWs+v2+AQBDtqNETn4z/b3aORsNb6zuMQ5acMKqrH+pdCgtSuKLZ8uMskiwrFu3Dm+//TY2bNiA/fffH1OmTEl/pViWhcceewzhcBjHHXccTj/9dHz2s5/FbbfdVrBx9LYCsBTNX9j5ZjzUJSC6Pjfsx0I9UXWVaJ8i0TJDwptUZRIrqRXXnp9dhzpZ318EunPHip06AWi22IpUg9DUazxZgxpadyZgJBA4Epan4LR6cFsCuK3K7GSJw+yM8QC7QyCy1QGerUXFdgvCB57978vwx4cuK8pzRQOTakqrU5PQHAFwn8ewk+WPgiArWBeWBWvyJCQ+fAASsyYAgYK1qxHW3jbYLTFYsWRJug6g5m9A9dYATh/NZHsKnLUt0Ty7Ch0TBcL7FJRrQWiNmr8r1Pxdw2kN8Mwv+docLVITw3QyIm4mbemTJQlzgk1WV0FYVo/9sLoSUnSfIOZaEZhxYs+svjM7CWVdDaxxYzpP+hQo3tDKrCTU0Zj5N5V8icUhX3oDeucuQKnOcgxJw1Gq6yfH3IfVf1mM57fNwOIPmwTBkiOy4551zy3P+rfUFGM39mBk7ozWQzh7ydy9kjIcfWKo/AjLgldlwauUUJFk7JmMZ4Vjd66GTr1HucndI8ldCNqxO3tZCQE4NnRFxDRirqyEqK02CZdI2PTVSjVXTp4MND23zPsiZLKBM2Dezx0bKuJAegqVOwOo2go0vPf9YSmpSIUjQqF0aSIky4Cmdp7kfYzMxRMZ8WzqZ6uyAnLKJIiKCrPqfl8T0NQCtLdDJgK4LRrjX0ugZksUbmvfsfTa9gdyDEJAVFUCFRGTDNTaJI4AoL0dVlscTnOCMe0oojw/PU/TiQRUayuCtnYE7R0mweH7JtksZDrO7ZPoHhxkJVbQmXTRSneWgobZpSLDIchIJOu6fldA6D6Azt/r++nETSqWx5/fht65C9qW3foPNbx/1+B+dx5SSZafto5H/QGXAzA9DLt64qlrsv4lotyKWiIsX+eeey7OPffcPm83ffp0PProo0M/oDKRuZslMxtdP+eabpcNlcx+LNzNQgCgHAuR3RrhpgB2Szxdz18rBSTrk6b6sCCVPIklIMKuuY1INnj0fbMCJe6ZRIrSprlnyIFybchoHFCmFqrwNXSFgIhqWFEfyrEgNBBqDmB5ElAS0IDTDtS866Nq8x58sGBycZ8oGrD0iqWBSm3pBtL9JGRyR4ysqoQ/bQICRyLUGjOvR9c1J3pjppSHHdWo+TtQ8YGPICSyFp/263FIieh4AekBVVs7oIWAsm3YUQ1A97sRKI0Mnauas8seaF8haA8gYvH+1WZPNU7u6XqlIZA8iScktOWldx5qbd57hWUlT/bB7KgZrGRpBTPJ9dM70tKPK1mfXmzfBWdfGPWzrwT8AGhtG7ZyIa9+Krkz5VTzDxujD63MhTuZ3w9lj8L5C1ZnJaKWHHUdtJTQIatkE2c0OFl9MPqgJ4+D2xKg+q1mszMk5JqGyImEiVdT74WpkivJxT8IlNnBIpHcCegDtg0ddjoXEdky3fcHSkFGPbPSvyMKxBOduxkAk6TRGmjrAKqr4E0bCxFoWC1RVG1uBzwP/n7jCvYc0fBJnYwFkF51nyZk37Fu1xPOUkCmEn1amUVuY+vSrzOR3PmUWtRmtScw7hUfsqkd/qRayMQgYutI2JywTjYvN8OTyV24qij9wKj4Uq/vzLmbSphScunYMu+DqZxJlkzpvyGtoFOHziyLlVz4qX0vv7+xfowrK6ZNJXmSu13km1sxZmsY9YdeDX9sJex3PxiWBAtgkixLJwNL3zE/s5R0+dAQUEO56oj6rSwSLFRYXRMrCz++csh25+Rz3EX/eCMnqqOENXYM0BZDzRZhkit7m6FTK/e07gyMpEyXChNAug4rQg5goXMyKQDR0g5ICzoSgo44UGHH9FqJ2JBx3xwfgPA0hNLwq1x4NTYCV8Bp19AC+NN/Fr7hJxXRIIPh1I6qdANvKSDgQAgJuC4SY1zY0QDWzkYgFIKqDEMkfKjKEIKQRGRfAJHaPOVpyP5Vckhb93/LcfzJ34MMNKw9rWZFqluF2BgJ5Qq4LUywjBaL3LPSNdPTE75cr/OuTT7zZOqwd048e1yxZ0kIx4H2POiODnOZ0oDrQEiR3wrDgUr1Z8lMtrRHTT33pmZTHm1s3dD9fipJWcmW41cVdDFP110+mb1jchmuvjFUfDISgQ67Jg6Neemd18J10iePU4TjdMa5QOfJvGQT5NTJbPjJk8yOBeXa0LaEciWCsEm0hLc1QyACuC5ER4fpWTi2BirsIqiwIT2FRK2L3z9+xTA/GzRUujXxHkA82XlCOVkdwEq+FpXppaYrKyCUaXwvQi5QWWF2mTgORFsUQgjokAuhNGR8YAHtmn0/Rv3ki01/jUSiszSelBAVEQSREDqmRAZ0bCo/mTFtOomSowTXQOLZ1LkEIUVWLJuVnMy8LFmOHMlKGqlbmb+9AU7g+hhbtxhbK+iODvO30dQMe18l1HQu9CQqR0x3UdFLn3VNrpRKw1gqvOCQGRAxD1bUh2iLQicb3KcaJouKCsiqSnPjZF+BzhXLGkJraMdCUFcBXVsFXRlKJ1dUdQhBhYMgZCFR6yA+xoFXE4Jf7cCvsqFCEvGxLmLjXfgRAS2B2FgLz/2M29EpN2FZECEXIhw2DWirKgAAkffbAABqQh38cVXQYRv++Er41S60LaAFoCxAuQLaEvj9I98Z8BhCjXGE39lryjW0tsPd1oiKPeZvgq/dUaiPlXkD1iVhkzkRTX8vTHJFhJJ9iaLRdF+XoLV1aJIrmRPuzJraqauTpdIAmM+LXXtyljag0aHYO6VzJVdOOp71ykciceAMyL2tCL/baBIkyRXXACDCIdOvamwd5IRxJo6wLHNSOVDJxIqAijjwJ1RDja2GjrjmxDdMzx9YAtoxyZX4GBuxcTa8cZXwJ9bAn1yHYNYUJA6cjNjUasTHh5Goc9AxJczkCuWW6qPmOObLtk2iT2uIPfvMboFUbzWloCsiZkdVVQSqrhKqJowgZA2qPJBOxg060dlvTScS0LEYhNbY+OvLC/iAqaSlYrtUsmGIYttU/JoruZL6/cK2oRIJ0yslbnoIDtVioVT8KqTo9pjN34PpT6QTHsQb75ZU/2ciyg93sFDJ6a2J6JKjl2PNy6XZMJZ6Z1VVwbeEWe0fS5hmm0GyxEGywb2oMCew0dZugv7UqhY/WWYh2QNAhWwALrQUkLapMx1EbChHQIUkAteUVVIhiXitKX2jLNPEPlWvnyenR4b16pf9KunRb5ZlToYkG3HqaBSixYGaVIn3ltSg5l2Nig88KFtAOwLC04AtzGswAGR8cLtprN0t0Lv3mr+D5IrV8I5qCD9coAdIZSFVSiD5/dD8Cg0InZ74Cavzd2mlIaQpy6WjMSjPL1zphD7GJKQCkOzVJe1u5SLSOx2lgKiuQgNLG1AJKXbShwpPRiLQrm3eK6Mxs9of6NzFEg6bfirVFdCWBdnYAt3WDqECs+MveWIbQsCvtCFtAemZflIi4UO7NoKwDW0LsyPbFpC+RsfUEJQtYMU1nA4FBBraEXj6fwa+iINKy5DHtEKYhGCqp5rSUO0dkKEQYkdMR+iDNoh2k/DQGgiqQvArbEhfwYoOsvyn52fM51KxhYRIeJB7mgf5wKjcDGlMqxW0SvbOTCVZbKfzvTeV4AsCIIFhiWdzjs2ysn9vcpeaUAoiEsb6jdeifto30bD1B8MzNipLSrOiRSnhDhYqCYv+Ib+kCZMr5UvF4nC27AIAiGjC1M93k2UTAFN+yfOARMIEHK4DrZXpheG6gJSmNrUCZNSHlgJBhQ2/NgS/ykFQYUooaCkgAo1Qo5c+ue2HAKGRbGqvmVyhXgnLMlvFg8C8JlNfsTiEkNCREBoPchEfrxG4gLJNYq9jvIVErQUrruC0K/zhN5cPejVpw9u3mkbm8bhpAtnRAWvLdvz+Ma5SHS0Wh88eup0rfRGdE1StNFQ0iqC1FdCq5xWBQyCrqW/XJr2p66MxQGss/igbklPxzF+4uthDoCGmEwmIv20zJ4u1Nv2flIJO/Zz8EjEPst30aks3qA+56X6BWoj0SesgbMOrceHXhOFXOfAjFrQUgADsqEJkjwctBZQFaAsIXAFtM7lCvUvFswDSC9bSJ5Yz6LoqBJHkPMuyoB0L8Sk1EIGC05rAExuuxrpnrxvUWNY039O5cyXVeFwraM9Hw5Y7BnVsKh+L3LOGLabN2o3t2OndW8J1ze6ZIICKx4ZlLFkyd413fS60Sv99Ljnyu9j5qZnDOzYiGhTuYKGSsO7/2INlpNO+B93cAj11LHQQgvB9MylNllRIr0K2TP8VoUXnBMBxzFZ1y4J2JERgmt17VTacNh/SU5C+ArQpyySTFVSF1gg1+rAiEtoyiZdnfsUt6NQ709Q7+b3nd65KjYSBSBj++EoEIXN9xxQBO2bBimsoW+DZ/15W8PGsS/wcALDQOgPrg4cKfnwqfaYhZnY96YLTCkLa6e/Tk750kkVBeRnlufrTeHSA40klU1K7Gbv9zoyJqVYKQgi0T6sc2nER9WLD+qv6vhGVtVRCV6RK2qaa1yevE0qbXa+B6uy3kurDYltQFS786hC0LQAFKEcgUWND20Bon2/6rnkKSLWpCJBcOOQjCEsoy5Qiffp/mVyh3pkdqSLdTF6ne58ko1xLJlfRazitPrRlpftcPrnuyoKPZ533IAATz2b+TKNP1x4pBT9+5u4QIU2MmFGVwDSyT14/HLtXMuLqnH1nUrtoRHKXjW0jOq0GYohDbSIqLO5gIRqkJWO+XOwhDNji8NlY5Jw5bL9PVEQABQgvAKTVeUUQmO268Xg6qIBrel/oiWOBkAPR2gGZ8KFCFoKIY+7mCChLQCYCyFhgVvtpQCaSzZADDelp2HHzL1E+dBCYJrXJ12W6nEIQQFeEoKVA7bsBat8wE1Q/ImAlNCL7hjZAZ3JldFob+5n5ZhhW/KVXlWZKNQFFcsI6zNKJlYxyZZnjNKXDzAkkVEbQPmX4x0g0EtTPLvwJ1eGyuGrp8MazkbBJniQSJpmSLLcEz0/2lYibPoN+siyYnXxfChSEryACBa/KRqLO9AiMTpCIjpNmEZGnIBMKOplIkb6GFgLS07ASGtJnPEt5SPW30LrzMzTrhG7yc1NKiD1NcN9vTve6FDFvSIe2PniIMe0olVo0NpyEFMkeWIFJdEuZczf0cNCZ/WWRHXcLy0onRREKoWWGA7D6E/VBQZTEFxlMsBD1oX6/b/R6/ZrGnwzTSApvbexnBV89JCwrZ8BiTxgPhEOwtu8BWtqAjg4gnuisg5ratp7woGur4c+YiPihUxGfWoOgNgKEQ9COBb/SRsusEFpmRZCoFvArLAQVNlTIghUPEN4dQ2hvDEJps2tFawhfw/I4KR2p1qtfFvaAWkF1dCBoazfluTzfvE59H6KpDXZbAlZUofp9HxNe8lD7dgxOq9lJRTQUUkkWYVmmjvQQTQq170H7nmn4mUiYn1PNP5M/DxshO8s7ZJwUSiVUAJN8UZ5vvmJx6N17Mfb1KOZ+5c7hGydRGVl4XM89ihre/JdhHElhrW27f0hWw+eKae3p+0OMHwu9r8nErJ5vmhOnYtmEl1ykkXzfqqqAqquGP6EGqiYCnSx560cEmmda+OAYGx2TAeUA8RoJv9pBELYgfQW3yYPTnIBI7pARvollBcONEatgMa1W5vM8Fjefj6lSm1qZpF+g0vEt/ABoboHcvgeiIw5VzT5/NHRSSRYhRY/nDQYrXYoufZ7B/C3ojg7oaLT/u7AHO8asHdfdFzNlxrM64UE3NmHSHxtR91Ych1zPmJaoXDDBQj1aNO+mYg+hJDS8f1exh1DSujZjFK6bc6utjsVNM1DfN/0kfD/9lV5VApjeLPuaYDV3wGmKw2lJmPu7NqAU7HYflrkIlbsChPcmYLX7kPEAwg8gox5kzIeM+7A6zOXQGlqaPixEeUtNThOJ5CRUAa4DEUvAbUoAGvAqLUQnhhCELdhRnvGgobMu8fPOZp299T8p1EQ1WQe6WxmDYZSagPZURqJz90ry+fB8uO/uZjKdulkw/5ZiD6EkrH/mu8UeQsnK1Vw8Z0wbjZmv5M5WBMkeLEFytwpgerDYtlkp7QcQSkE7En6VC782BG2JZFlbwIoD1X/XqN0SILLHh93qwYoFyV3YCtIzu16kp6AFzH2J8pXcuZL6LM886WyuTvYPAkz/y4qQqTRANITWeQ/2vWBosPFsaudzZpIlYwFRn7Ftxu+Xjp1/MijzNn3cPjOuz1xUpD0PYuceAEif9yDqymyeFSXxRQZ7sFCPBtvMjkaZZO1QFYvnvFp1dECmalR7fregxvS9CKAB6NY2iHgCMuRCj62DjjjQUgJCQMYCVL/TYUosaA0RS5g61al2Ab6ClhIyCAApEVSHIT0NoRWeXFu+5S+od+vVL3OeHCkYmWxS69gQiQB2Yzu0LWCFbchEAL/ChlfN0kQ0dBZXfgmwbYhAQSWCnI0xi1HuoGD6GHtmSbBc1wkLEDXV6DhiKhoPHZIRUhl7YsPVxR4ClZNeYtqgsRkyHOpMqCRPWpvSLqk6+na6lwX8ACKagB4TQRCxAa2hQhLKFqjcoeG2KLjNPqQXQPgaws/YsaeT5cF0gCAsIJSGCDT+wP4rI1rBY9oun6/p/hfJ16j2zO5UM6+KA9VVhfvdRDksjpwD4TpAIKGjQed7Z0qBkiuFohIJSNeFVn5etxeW1bk4qIfHkv7c6HZnCVlbg+iR0/DuFzSsUMdAh01Ew6yMZ+JEVGypJoUAkKuUSyYdBFDRKFQ0asrOpLaqC2lOGroOYHXpy+IHEAnPTDYlAK1htcVg72mFta8Vsj0OEfMg4gmIQEPbdrK2qum/AqUgYx7sDg9Oc+7ED40cBS8VliQdG8J1zWvWtYF4HIjFzYkQbSaoQmk886vLh+T3E6Wsbbu/syktuiQbyjm50g9ZpRUyGobKygoE+49HokrCrxi+HSz1U74+bL+LiIbGIvesrJ97i2m175lYNrUSOmNnAKSAcF2IcMj0E7Stzkb3UkA5Al6VBa9CwulQqNzuIbw3AREo00dQmhhW2xIqYkM5Vjqmlb7pJyi4Q29UKGRMm97taVnpVfjW2DqzcCjZpwUi2fvBssy/RENsTfM9kLU1kOGQuSDVF6VU4tmM938ZCpv39lQiva+dKbbTWQItdZllmTllRuzeNckipIBwHfizJqNlpgO3IoEj999ewAfVs0X/eOOw/B6ikaxE3r1KVzk3fCQaaultrXlumU1v0c1s5lYZgaysgIxETOBiJ7fgSgmtlTmRHfcgArOqT8Q8UytYSjMhkBK6IoTYtFq0z6pGfL8a+GMqoCpDUJUhU1ahLYZ1zy0f0ueCSkOhkyzCskyJEGFOfIiEDzWhDomZExAfH0LgSmgh8NQaflbQ0Frb/gCA1GvS6VZWIKu8wAjR02NKP17HhqyogKysgBhTh7ZpFbASGu9+/bLhG6Qsn1B6/sLVxR4CUUmSlRVZCds+d9RllFiCkBCuCxkOmRPWrgPhOIBjm5PVjg0ddmB1mFhWOQLSB5y2ADIRQLkSKmRBOxJByEJiTBhtMyJonR5G+/4RxMeGoUI2lC1gxQP8/vErhvrpoJFCZCzISL2uLfOl2tpNg3vXgayogKiqBJLxbsMb/KygobU2+lPzjetA1tV2SzIAKFp52m6Sfzfa87PL5ub6nEheli7BFwTpmDWdSMq6uUh/hgjXhQiFICsr0L5fGG6rBv5ahd8c929D9tCyBzOy5hCjRbFLg6W+NBvdA2CJsD6Vc8NHoiEnJERyYYawrH7V6peRCEQoZJIoAGBbEEBnHWClzAe9UkDcg1BmRwpS12sJKA0dsqEqXDMGpU1j0HgAnVqJBWDNaysL9YhpNMkIkoVlAQnTh8WrC8GvsCA8DRlobHjiqiIPlEYVyzI7p1LvuSNUupF9xuq+zJ4s6Qm4ZUFURBCfNR5BSMBzhjfAL6c+bRvW872KKBcRMgkSJBcBCSmgu5asyXU/KSAj4Z4TrZYF7ZgdASIeQHoaToeCjCvIRLI/gBRQlgAsARWS8ColvAoBZQOiSkDbgHYErJjCE09xMQcNQMaJYCE7TxQLKSEiYSAUMrunlEbD1h8UcaA06ghpXn/IUQI2j/fgYaGV6R+bGXP3MK5U+b1UYiVFRiIAAOX5kI4NCJ1edCosmOS8ZUE4NoIZU8xux4iAGMaHz/YARINXPsvuiuCk41cVewhEpS0ZXAjXhaiM5B0ECctKlwMTQnZuT7etZKkwmQ4yTJIl6Gwq6vnJxqLKfB9oyI4E3L1RuC2+KdsUJEs3BRprXuZ219GmkLtYtOpsYitCIVOeKdAQyiT02NeHhp0UpvRM1xIFyZ9H4i6WXJcJ24GsrjKfEwCkF6B9ssCeBSwHmQt3rxD1TCc8834SiZhdgpH8YtrUjmsAJnYVojOmDVR6EZBybeiQBekpOM0e7A4TyyrXxMKWp0x/FaVhdyi4rQrSS64lsgUCVzLeGIUGHc92fQ1LAa2UiWVTn61Oct6lNBre+/7gfh9RP6kxlVDjqk21gAyZpbVKhbAd0x/FdXvevZKZzAyFzG2B5N+dKRFmbtpZBUS4DkR1lTkHIgSE1mjdT6DxxCjiMxnTUu+KvXMl3eSe1UsBMMHSq9/9/ppiD4Go9AkJYdvQ7dH8bp5KnCjVZSVI8l3ZtrPKhAEwiRTPMye6hTBb2B3bTAhsCe1YUCEb0IAVTe5w8RVkLFHAB0qjTsbEVFREgLF10LZJsMi44lZqKoo1e34EEXIhHDu7lE3X5qClUsMayH8sWgFadZ74yXE/YVnJkpIOdDzV/0DD2d4EKwFY28IFHPjIwd0rRL2QAqiqhBg3xpyEztHcvqt0CVGlAKUgHMecIEstAtIa2rEQhG1o14KWElbUg9Xhm1JhrgWv2oJXaSEIW/CqLPghCT8ikKiWUA4gApidLAHPXNDAaKUzShoJiHAoXUUAlmVer37Q2SuIaBit3XQD4uMjpkxYlyQLgNKIZ4VMx53SdSGqKntc/JN1biNIJjNdF0JK81kBZO1wkZUVps9newd0wgOEgGyPI1EH2G4AKzRyd6oTjUT8JCWiQRFSQB08E7K2Op8bJ08IJsu9JBJQHR3QiYRZ8ZdKqOiMiaRO7iBIBiWorkQwthI6ZJvrtIZ2bShHQnqm5ILwFGBLrHn15gI/WioXg171l7EbQKvU68wCFCDjPux2D081sA46FYnWEKGQWfWWXOWXeRKltwRFyeq60jZVGiKj6WnmSj9ICe155rahEKIHTUDrTA2rn4v96ve/tDDjJ6KyJUIh6IoQdFUEcsoksyu71zuYk2ap3djQurO0bbLHBSJhc7Is0XmCTHgBhGd+btvPQfMsC/FaCS9iSoPFxkhEx0t4lQCESbCIAPAjXNAxWq1Xv0x/BkrXTa+Iz0uOXa2iS1yg43EgkUDDljsKMVyifvMrJPwZkyCrKtO7RKCViflS77EDTLQIyzIN51NfyWOmj93LMTNvrz0fOuFB+55JnOSQKpXerbm9bUMHAVQ0Zip0ZIwJ0yabpL7nQVgW1OTx2PrJCdAfakfI9VERyX+x6PwF3KlMVGxlNPMmolKTKvXVMa0CqK7qczuvSJW2QTIICZRJnmhtVg8CgO93Ng9NrgpMSyZgZMyHiCaAeAKiLQbZHofTFIPVEoXd2A6hFNa+cP2QPGYqH5mT0n4H5V1O9mrPh9jdCFVt6gSvf+a7hRomUb/pcWOA2mqzs8pKJh4yT6IMZWIl829qKFYWZu7IyXVsraGjMfO4wyGISATetLHomGSj+u8CTmt/fx9PXBKNepEwVNhFfFIlgvHVJonb24m3zBN/UkIrBR2NQccT5vJwCLoyDAQaIrmbBTLZG1AC2paI1wkkaoEgLBCETa195QLaQjpRrC1AOcBzP7tsGJ4EKlXrg4cgwyGT1EuVCO1LD7fRQWD6XSYXLABAwwf/XsjhEvVLEBJoObACqKuFqIykExRCCgjHhnTsAZW/TSUxzN+Ok24on16wY2df1k0yyQMAKmF2TAvbSffq6kl6F4tO7mRMeIDSnSXAHNuMx3UgogmICeMgJ0+EnjoB759Uh+hHoqiIJDC+qg2vffqG/B8wz+yOOhrFLw2WLhFGANjknogGQ5h6035YoOOg8Qi9+17ft8+kTT1S2Lb5SjZeBGAmolKayzMTLdEYRBRmO3vyGCLmmZ+Tgczav9xS0IdJ5S29C6V/d0r/K1zHlLUbU4tEXQhPrWEddCouoXWyTKJlGtYKCQjdfRdIT7tC+vwFEuuDh3q8eqF1Rs779Ph7C9SkVKRPUJrJt47FoRGFV2kjOk4gvE/D6ejf3zob+hJRKtGqLAFtSfhTxkK8vxPaz+f9UpjyL0DnLm3XhRYCQiloWBCBglcbgghZkF4AbQnYUUC1mD4rXqUAlEmoQJt/tcnF4MX/WDZ0j5vKhtkxJSFS86S+5FqkoDWQSq6EXCDkYs27dxZ+sET9YEc1WqZLqJoIZLwSSHid5wOEMOXs4nFoledrP0lIke6Ntbbt/h5vl45pM3dOAxk7XILORIwlTeWNPuJa7XvQQnbmPFLlz1OkmV+qqghgCcgPOiCURsf+GvNmbUG1HevXYwVYCpaoFDDBQkQDJsIh00tFCrTOcBCpqEDQ2svy4WQCRFhWutlbut+KEEDIhfC8dM1Scx+dLLmQDEo83/ycuty2O0uKaY0GThQoaZF7VjogFlJB97OMbboBoesCNdVQFS6TK1QSGjavwknHr4JtS6Cl1SQctOj9Nd7Hitf+lNVLJV9Sk9KuuxezxpFvUieXdN14md4BKVzXTLaFgEgm5ive2gNtT0DrNBsv3MuTkUTUP96UWtMXJSTRNj0CEQA1f61E0NSU+w6p96ZUrOo6EI7TuSjIkvDGR6CFgNOaAAJtkjdhCRk3iWIRANI3iRRtm3+V1ZlcERp46YffHpbHT6Wtfvq3TEIkfcK3Pf87pz4/U2WaU6VFLYtzJioJf/jN5Zj1r7dj4ibblMBLvo8Kx+wWEa5rdoFkytV/MKm/ZaLXBw9hoXVG8u/EyT6uJSF05xxSuK7ZAZYPraA83/RtkdLcT2lz/kQIIBSCPyZsypxXuVCuhQkvAn8/bAxuPPB/MH/mG/16HERUfEywENHACbPLRDkw9aJ1/1YOpxuEWrJzVVUkbIIm3zerVTzPBFi5WBa060Aok7hpeIcTBepkEiRmEgmlsxt95nPf5GRUJxIQHVGsfet7Qztgon5omxZGFQD7PdH5+k7JSEyYfwRkRQVUNNaZ/NBq0L2KUomWxeGzO39/avVf8l+TfLFM3ep8aAWtOk8IpRrfA2a3jnBs89kTCZtdPNEYVF0l3GYPL/3vdwb1eIhodArCNkSgkaiSiNcKSA+oraoEekqwJAnb7lwEVFlhdl/7gWlu70p0TLLhtlgI70lA+tqUDFMagSvgRDWkD0AAgSPgVQGJWtNzxe4AXruVyRVKcpPJO9sCQgFkWztUPL8V7iaZIiEcU5IIrsudm1RynCkdACTgeeYcgO9DA8mysFGzkCg5r0vtLNG+B61kYePZyDnmAmkDSkNGIul+sTLimqoGkbFQO3bmd2CtoBIJSGlidWgFHYubv0VLwquyIT2N1hlhVL8XR/sUgda/j8f8k5hcofwosDxXKWGChYgG5IT67yF0wH6QHQlUbfNQsVOYLbO90MpMLDWC9Oqp1NZdyOS/sbiZRFRVmOuaWqC9aLr/CkSycZxtmVUt7R1cgUU5rY39DEvGXgjh2NCeDwlTQzdFSGFWw6fK1EkBBCbwhRRY2/5A8QZP1IN/+txtkL5G9b447F0tpta/75sdLCrZpyocwpqWe7Gk5jysabkX9RMuMpNT30+XzFuX6LkEWL/ZNta13Y8lNecBANa03IuF1hmQjm3e961+JFiStNIQ0iSKhO2Yv0/LMjWwHQc64gJCIDZ9EqSnseGJ0iyNUD/9W+kSlw3bfljcwRBRN//zztFo/Oan0LSnCmhXGPeyhfGbmkyMaTs9v3el+jdZlolRgwCwHGjXAaRE+IMOOK0OEnUuds2NYNKLUbNLxhawAIT2+QiSze1FoCGUgPSBV37AxApla3j7Viz82M2ITwjBbUzA8TyIllYEbe1ZC4JkVaVJxihlyi7H4xCWxR4rVLL+843j8bfYROg3P4bWmRp1bVUQ0ZjpY+L7kGPqzCLKnXejfs41aNi8Covm3QTlSDhb9wLRGBp23l24Ac05AGs33YAFJ6yCFfOhN2/B2vYHsMg50yxUamqGnDwR0nWz5pQ9Si50UjHztygc2/ydOg7U+FpYMQW/QqJil48PPhpGbDzw9wuuKNzjKbD5C1env2dJMqLuhNb9XHI+wrW0tKC2thbNzc2oqakp9nCIStbxJ38PlqfgNMXRNqMSNS9/gODvW3veJZDcoi7sZD+LZFkw4didvVYAIBaH1ipdAgZx01QuXRJMCgghTYJFSjS8f9fwPnAqS0vGXggdjzNpQiNG/f6Xml0c8QQQTyamgwA6GoOIhAs74czDkprzzImdQJkTjUKY9+5AAVJAxeJ5939Jf5tscgrbNqtvk58TWpvSEdGjpmP3h128fktpn5Cc8907AQUEYeCN5fmNdbDxKONZovy8tW0qNicm4v/tnIfXd03CuPurUPFuK+T2XVAtbTl3CgjbgaysgKisAFzXxKRKmfc914EO29CuDW1JaEsgNt6FFVOwEgoi0PDDFrQjoGyBeI2EsgW0Dfzp30v7vYyKb/ExKyCbO4DWtmH/nCcaKgf+y50I7QOqtykoW6BqewKhv2yHHleLNa/cNKxj+afP3gq/QiK0z0fkpXehJ4+HiCbMOYrWNmDGVGDLtt7LoqdkxLRWZQVEJAzU1UJVh+HVhuHsi0J2xLHnYxPRdHIH3jrtu0P4yApjzm9XQAjg9c+syPs+jEkLb8OGDfjU0lPx8f+3tNhDAQD8/rT/wpP/sw7z5s0r9lCKijtYiKjf6md+G5GaSmjLAmyJmtf3Qu3c1ef9UtvUzckys/UWSpsunqm+KgCEMKuukFnyxpJYs+dHQ/SIaKRbs+/HxR4CUUE1bPsh6mctMyf1qqugK8OAEFjz8o1FGc+alnsBAIurlpqyjpY0m9alND23gBwNd7skXLpcn5VcqaqEHlcL0REH9uwz1yvAbR6CB1Ngm2/+Nj50+x3QNvChO+6A2L8Db59e+pNoopFu9qo74Rz2FUyoasOkijbYloL0NUQQAKmSSl0TLMKUKhS2DTg2dGUIUIBImB6CQilT2VCaBAqkQKjRAzQAAfhhC79/vHRXKFNpW/viimIPgajg3FbA8oDmAyTi4zWaPxTCG+uLs+v3D7815WbrD70aiIThjYkAYyJw//YBEh85EE5L3Cxmsqzs8rhddY15hQCqq5CYUoOOqSHsO0TigP/XCO3YsBIa+t2KIX5khbH5sytw2P+swKG/uQEA8JfPXV/kERGVDiZYiKjf/KnjYDd1AELAj7iQ21qSO0x6aCaeqsOfbkiXDEZS9Uil7H5ZptSuFSIiSmvYckexh9DN2rb7TUkyADqVSI/H0+XC0pK9Vnra1ZIq3SfCIYjqKnjTx6N9agg1b7ZAtrpAyEVoZyteWnfzcDysQdMWoC0NLQHnrUosPmYFT5QRFdmxC17Hxrc+hEYrwPxJb+L5Vw7EmEBBhxxTQrQiYsrVpMqECQmZSq4Apt+KbZuEjBCAbUE7FmBl10TXloDwFFSO64iIRrvNN5fe7r2Gv9wCAJh31u1QloA7Zhq0BNy9HZCTJwIAdGsbdCJhvjKreHQ5byEjYYixdUhMG4vGg8PYd1SA2mn7oB+yAcdC1bY4nvvZNcP6+AbDDyRsS8GSCvMXrma5MKIknrEkon7zqxzAD+CNicCrddNlEUzzuS5SpcEyrtOeB+350J7feTulTEO7IDDlX5JJmdQXLIn6KV8fhkdHRESDobUy5cFgdo+tbX+gc9V36st2zPt76t9UOTCYHjIyEoaMRCCqq+BPGYuOSSE4HQpy5z7ADwBpQbR2FPNh9ss731oGd58Ju/0Kjbe+WIP6OeUzmSYaiT5e9xZ0m4P5+7+Fj1e9gdBuC3YsMImQkGPi1aBz1ZCwLPON1tC+D8TikI0tZmedENAVIWjXJF9kzIPV4QNKQ1kCKmQhCEv4IYF5Z91ejIdLRET9JBMaVlzDjwhsfPhyrHn5RujqSqgJtRBTJkLW1UJWVJjYNRSGTPb3FFLAqqqEPWUSxIemo+PQydh3aBj7PuJj8gF70fz3OoiEB20JOLvyKDdWQt74/HJMrG5F2PGx9St+Vm8WGl5Ki5L4IoM7WIgobwd8/w6ocQlMGe8g/HeBxBgX0k+uSA7MCbXMiSiAdPPFdMPiAGaXiu+bySgA4ZtdK6n7pvuyKNW5m0WYBsdERFTacpVzXBv9KZaM+XK64Tu0NiUjU7sXk+/1QgqzcryqEnpsDeKTq9A6zUHF7gAV7zRBt7VDVESARML0Pigjbyz/NmbdZU6sOi0Cfzt7AuZceyc2ryy9lZtEI5naORsAMCekAAF8vu5FPNZyNNwmQAQaMu4Bjc1QzS3Zu+y02aWtY3HIcMjEsPGEiVEdG1AKIh5A+CZ+VRUhCN053RYaUK5A4PJkBBFROXjmV5d3u2zN6ytxwpJ/gRULIOsqYO9ugfA8E8umYtuKCLRjwauLoPlDYTQdJCAOasPBE/bijb9PwdjXJFRNBDLqIagrj/JgmaZWtmCnqMa+lgq8c5bErH+9HVsuuazYwyIqKiZYiChvi/7pJTzxzsGwOywkptTAjwjUvNEK1d4B7XvZ5V+S0okVIZMJlMBsm00GIEJraJ1xP5GcdKaSKSowtxW68zoatPrp30LDe98v9jCIaBQR4ZBJngNAEHQ2rY/FTO8C2wZcB3BsBBPHoG1WJdqmSlRtV6h4twWiPQ5UVZrPB0uaz4dyIwDpA6FG00Mm1Nz9c5OIhsdWfxyWHPMK6qwYHnzlGOz3noLV4UG89R6CaLTboqHOODeAisU7e7Ekd2SLGDqTxq6brhUhNAANCF9D+EBQyXi2UOYvMCunNzzBEjVENHzapzqQvgM7qoGpYWhLILI7ARFo+BELsfEOrJhCdIKFlgM0ps3dhv0rm/GHlw/BlKcEQo0JtM2qhlBAeG+i2A+n3yaGWrGzoxp+zIHVaIObGIjKsERYPB7H0UcfDSEEXn755azr3nvvPXzqU59CZWUlxo8fj0svvRSJRPm9WRGVqrv3ex4f2X8bAleiZVYYjbOTbyG+nzO5AiBZZ1+nd7foIEiuAAzMLpbMXSlKmbILQQAEQeeJOAAIFBq2/mDoHtwow+QKlQOWBRxZGnb8G/T4OgTTJ0JPGAOEQ4BtmR5bljTJlSBAYuYEvPvZajQeLDFxUwdqN74LsXOPWUkeCgG2DVgWGt69s9gPqd+2XHIZRCBgx4DIHgUtgONOux3Hf+pWHLHsTvzjF0uvrw7RSGVB4dsTn8BhTgXQZiPyQQyysQ1Be0fuuFar9Jf2TblbFY2aJHEsDgQqq4+gCDSEpyC9zl0wdlxh04+5a61QNjxxFZMrVPJYQmnkeeGeZdj9EaB5pkSi2pyzEL6CtgSCiIWKDxKo+dNONB6mcN7JGzB33Da88uBhOOTuZtS+ug9BxELbfhbaJ1v43e/Lr2TsnUc/iKZYBNoXsKICdrvAwTfdiYNvuhMfuu0OzPzRrZj5U77uh5IGS4SVmrLbwXLFFVdg6tSpeOWVV7IuD4IAp5xyCiZMmICNGzdi7969WLp0KbTWuOuuu4o0WqKR5cY9h+L/3pmBWXs97JsTgjiqBcGTIaRTJNrsVEn/mylHI2OtdGdj0JRU+RgRAJZON71v2P0fQ/KYiKh0Nez4t2IPgQpszSs34cRF/wI34UNEEyZh4roQsTgQj0PH4gCAym1A1Y4Azru7odvaoYMAaz/49yKPvjDcJkALQNnClAxygHjIgraA5/7fsmIPj2jUePCDf8BpH1oPAHDGx6ClBBLJhvZaQViWWfSTimlzxLLQ2iRWRHK3i2UBSJa59QLIhNndoqokhNJ4+n+uGOJHRUSlhk3ARyZV5yHR5sJtFVCOQHR8BewOjYpdPtydrWg/fBKggT/uPQBv7JyI/d70IPa1AAD+8JuVRR794O19bwysuIBQgBUHoAAIID5RoXpyG1779A3FHiLRsCqrBEtDQwPWrVuHhx9+GA0NDVnXrVu3Dps3b8bWrVsxdepUAMDtt9+Oc889FytXrkRNTU0xhkw0osSUg9pnw7DbWxGbbEPGHMhEkL3KL1dyJSV5ebpsGGBKLFiWSaQIAZHsvaKDAAIApGByhWiUqp/0NTSMkJPq1OnJdVdm/bzoH26ETIQgEj6waw9kQmHMG3E4+6LQHR3Qvo+17Q8UabSF9U+fvRWhSTbsmIbTrmAlNLQlEKvj6i+i4fRwezVeem0WXp4Ww9Fu2ORJwpbZQZ2UlVwB0t8LKTr/VTodtyIIIEIuYFuA65iG90JAKAURaO60IBql5i9czSTLCPTuudnx7OxVd8JpFQjCDoSqxdP/+x3M/I/b8Ncdk2C9XQG3uQPwPDTsvLtIIy6cw666E+GIBSjA7gCsBAANtE3XmDxzLw4ft6PYQxz5NLh7pMSUTYLlgw8+wIUXXojf/va3qKjo3gTq2WefxeGHH55OrgDA4sWLEY/HsWnTJpx44onDOVyiEWn1kb/CbybdifeWVOPgQ/+Ot3dMBAJtJphaQKfmpBlJltQkVKvspItONzQ2DUPXRX8+bI+DiMoDkyujw7r/W57z8iWHXQsxpg4iEh/mEQ2NY790B2REwm3XcNoC2B0KKiRhdQQISeCFe7s3UiWiwpOT38T6F5di8qy96cu0NqtwEQpBui5UPJa8wuxkAWD+Te3UzqCDwCwQAqDjCazh7ksiysDkyujw5jXdyz++e5GJ7eZccyd2H12B2tqZwzyqoWElTE9BKw64LRpepUB0AuCP8TGhog0/Oea+Yg+RaNiVRYJFa41zzz0XF110EY455hi8++673W6zc+dOTJo0KeuyMWPGwHVd7Ny5s8djx+NxxOOdE/eWlpaCjZtopDnhicsROroCcc/G+HA73mhxYLW1md2gtgMAWQ1BhRTpiWhnoqVLTWshsS7B5AoR0Wi3ZMyXASGwZt+PAQBrXjflE5bUnm+uA7Cm8SdFG99ghff6CEISsbECMiHhNnlo29+BHZWQ3uCa3TOeJcrfv/51PuZWB5hVsRt10sNbng/x9wqEPtgH2Bbk5AnAjg+gPD+dTBGu23kA1SXJorXpIwVgzZ4fDedDISKiEpPquZOZWNu8yiRfFs+9Hid9YiVEoLH+me8WZXyFEISA2DgNoQQqdgi0zVIYc9A+WAkHj/wTWzTQ6FTUJvcrVqyAEKLXrxdffBF33XUXWlpacPXVV/d6PCG6b4/SWue8POWWW25BbW1t+mvatGmDflxEI9X2xlq0vluL+N4IfGXB3W0DLW3mSkuaJIuQ2eUUupQME1Kkky1UOhacsAoLTryl2MMgotGsh3htTfM9nf25ytjvH7sCG399OV78yTJ0TJJoOSCM2BiBtv0knvnV4HavMJ4lyt/zzQfgqcaDsT02Bk3Kwb2NH0Pdmxrig72AbUGNrYaoquzcsQIASqd3ssCS2fGu0t0a3FPxzF+4mk3Fiajocr0Prd10A6yobzqUl7HXb/k2/nb5MlTO2YeWQwLUfKgJH5/8Dl7/zIpiD20UEdC6NL7IKOoOlksuuQRnnnlmr7eZOXMmbr75Zjz33HMIhUJZ1x1zzDE4++yzcf/992Py5Ml4/vnns65vbGyE53nddrZkuvrqq7FsWWdD0ZaWFk5KiXpgvVoFaQGxSRqbd0+C2wRTWzoUArSGDjobggopOneraC99jPXql1goT0tPSrl7pTQ88dQ1xR4CEY1yqZ0rhy6/E1YUCDdq1L0ZhbOnHZi1P+AFfRyhtJx0/Cp4NWZ3p7KAwDWfe26LD2u6i1idgBUHXv7X7iUl+ovxLFH+Nv7foVAVAaZO24eIdSxeadoPAKD2m4DEOFOK2lVTYO1uhG5phfZ86CDoLBuGZDxrnQHAlA7T7R2MaUsEyzERUTGl3oOOW38ljlt/JbzAgtbA3r+OR+U2AX1CDcKN5ZVhOaH+e/ArJKLjLMTGAl4N4DQDbQdX44QP/wVTws1YfeSvij1MoqIqaoJl/PjxGD9+fJ+3++EPf4ibb745/fP27duxePFiPPTQQzj22GMBAPPmzcPKlSuxY8cOTJkyBYBpfB8KhTB37twejx0Khbolboiou8OuuhNWAPiVACyN9vYQqhMAnIzSYFIAAbKTK10slKdhvfrl8A2ciIjKigjMxE1oYXa1RGOAFYGIlk8vloXH3QxYAk6LB7/ChpACkd0JOHvasOa1lThi2Z3waoHXrh98cgVgPEuUr4NvuhMuJBICaI+7aPIqELZ8JKoFYpMqIZSG2xSHCALTrN4yje+FFlkLjhnPEhFRb7zAwq5dtUC7BVHtwY4JVG1XiNdJhPeVz87sBSesgiUFtADsqITTJiAC4M+3fhuf+sM3cPLYV3HGgS8Ue5hERVcWPVimT5+e9XNVVRUA4EMf+hD2339/AMCiRYswZ84cnHPOObj11luxb98+XH755bjwwgtRU1Mz7GMmGmmcNkDbADoAEZPQsRBq/u4DiQR0EEB7vrmhzhEsdGkIulCeBgCcmBIRUTcTNyXgVVkINftw3tsDeD5Ec7tJtJQJESiI5ObNUIcHbQkEESd9/Wt3FCaxQkT94zYDygG0kIhNcbC5aRJ2NVWjwgdUSMJp8WHtbATiCeh4AsjsLZjcpZ3CeJaIiHryf0tW4ehL7oQd09AyDLdNwW0OEGr0EdrdUezh5U0mFCAAx1eQgYayHfgVpiwU+60Ul0JplOfSJTKOYiuLBEs+LMvCY489hosvvhjHHXccIpEIzjrrLNx2223FHhrRiBBq1lAOkKgSCO82ZU5CjXEgnoCQEjojgZLavZLZ5F53bQhKRESUg9PqwUooaEtAV1dA7G0GEgkg5PZ95xKw5MjvQkoJbUuokA3ZFIWQgIz5WPPaymIPj2hUCzVpBCEBLYHo9gq8H7Uhd4ZQ8YFC4ArYtjDJFc8zzeuBznK4vg94PrTv9f5LiIiIAET2KUgPCFwNZQvIQAMa8GvDxR5aXhZ/+HpIS0C5NmLjQ+iYaMGrAP78PS4UIuqqLBMsM2fOhNbdyw9Nnz4djz76aBFGRDTyOe3mZJf0ATtmMtRWe5fdKzDJlXRiJYMpG9aZZOFqPyIiymX9M9/Fgvm3IF5rw6uqQ1XMA2JxwHX6vnORLTnyuwAAEU0ArgXLCyD8ANq1sOblG4s8OiJy2jXsGCA9ASsuEW8Nw24HrEQApz2AsycKHYsDSpkEi2VBuI5pcB/tnH+mkiyMZ4mIqCfP/vwyHHfa7UjUSMRrAC0c2DGT6C9lSw67FnAsCJjdCfHxIbRPtuC0l/7YRwsNQLHBfEkpywRLMdQfdAUgJVR1GGtfXFHs4RANq+P++TbYMQVYAtIztTeF0pDNHdC+n06a9JRcSe1iEVJgnceJKBER9e6JDVfj46eaXcg6ZGPNm/9S5BH1rv7gqwCtITwPuioCHbIhGlvNiveQC6FKJzk0f+Hq9PdsBk2jybyzbofTbkqdWHEJ6QlIX8BuB5zWAO6edog9TWbxkFImqWJJiFRca9vpIhhsaE9ERPl45peX4chv3wnlAn5E4P/uX1bsIfUoHc8CgFJITKpGbLyLICQQbjT9YwK2/CPKiQmWPOmwA5EIIHyWOKLRJ9TsQ0sBBCaBIgMF4SlTQkHl+JvQChCy12b3REREvdn48OXFHkKf6mdfCVjSrHbviJqESk0lRHMbkEig4YN/L/YQiSgpvNdHarGnUAAgoS3AbdWwWxNmx0pGjxVoDSQ8aNeBELbpwQJACK4YJSKi/L16Z2mX1MqKZz0PcBwE1RG07x+GUBpOu8IffvudYg+TqKQxwZIn1sym0Wr+gtUQgYLlJRMpQkC50jQ780x5hMwkSrr/ipVxuVadu1uIiIhGgPqDrgACZcqXJRJQrW2QUyZBNLdBt7VjzZ4fFXuIOXHXCo1WMqEgk/GstgQQ2NDSgpXQkLEERNw3f9NJOlkmTMABtIZOmNK4wi2PflBERER9Scezqd5jgQJcgcQ4k1ypfb0Ja165qdjDpBx0qZQI45pqAIDs+yZENJpteOIqOE0xWG1x89Uag90cg4yZD2Ahe3gb0cokVoKAu1iIiGhEqT/gcrNbJRo1q/0CBWHb5jIA4OceUclxGqOwWpMxbUscbosH6WkEjoCqcIEgSCdRMhMtCBR0LJ4si9tllwsREVGZSsezKjCfbwAQcqErQvAqJZw2ZeJcIuoTd7AQUa+WHL0cUCpdHk8LAaEUtG0DQgC2DehoziSKVhrrg4eGe8hEo9b8hau5Op1oiNXPWgb4gSmlIKUpl6kV4NiAtAApsGbfj4s9TCLqKhnPaiEgHAvQplmvHxbQtgVEY9C+D+2ZRKkAAEtCJ3dsr21/oHhjJxpFGM8SDb10PGtb0NUVgGVB2xLKteHVOEjUSAgFPP2/rOZTqtjkvrQwwUJEvRJxz6zElQLISK4I3zfJlfYOs9IvfQdujCMqBalG1pygEhWY55vEiuMASkPrOEQ4DD2uFmhsRcN73y/2CIkoBxH30/GstgS8ageJKolwYwD7/b1Qe/dBJZMrAACtIGSyHBh3pREVBeNZoiHi+YBtAeEQgtoKKMecx4lOcJGoEYAGXrhvWZEHSVQ+eCaUiHq05KjrzDfJyaYKOdCOBdHSDigASkEnEp13yEiupHa0LLTOGK7hEpW81CRxqGROPjesv4qTUaIh0LDth1ATatHw1vcQ7DcOYkwdoDX82jCTK0QlasnRy9PxrA7b0I6FIGLBjmtUv9EItXO3Sa4kS9wKKSBsxywusiyzY42I0oYypmU8SzT0TDxbh4a/3AK/0jYJFgH4FQIdkwRe/C8mV4j6gztYiKhHqWZm9QddAS0lVMSB1epDt7ZBdESho7Hs3Ss9WGidASEF1nkPDvWQiUoaJ4hEI8PaTTdgwfxbgIgNjKnCure+V+whEVEv1rx8Y0Y86wJaw4opRGIK2LEb2vdMcgUAhDTJFUumew0Ky8KSmvOgg4ClwojAmJZoJFj7wvU4Ycm/AFJAC+DJdVcXe0jUDyXT5J4AMMFCRL2on/6tztJgAKx2Ce3akGPHAO0dULG42amS3LkipIBWGkKKzt0smk3RiIho5Fg0zyw+eOLZ64o8EiLKV/30b5mECQAZTSA2tQpNs2xMeqENuq29s5egkGbHikyetHAdCMcBLAvwPAjBkxlERFT+UrvQnmKylKggmGAhop4FARDANO51bHjjKqCFQKixPV0yIXMHS1aje61MkkVIrEv8fPjHTkRFVT/z20AsDp3w2PCbRpR1TKwQlZ8gMEkTx4ZXF0G8Jrk4yDNxrFkkJM0ioSThOBC2bXouAWj44N+Hf9xEVFRLjl4OKAXhKzRsXlXs4RAVDHehERUWEyxE1LPkhBK2DRVx0DHJhRXXCHke4HkAuuxaSRES0IqJFaLRzPOBQAG+jyVjL2SShYiIikfKdDwbneQgCAlUbQ8g4h4QCgHxOCCS8axlQbguhOsAtg0EARp2/FuxHwERFYFoiya/EVhy2LXQYRtrN91Q3EER0ainAagSKRGm+77JqMBufUTUM9sCQi50xIVfE0ZsjITdEQCJBHTCS5YP6/I20vVnIhp16id9DfB9aN8HLIvJFaI81U++uNhDIBqZbKsznq2TCBwBp11BBBrCdU1SJbVYSAhAKbNLO49eg0Q0MtXv9w0gngASHuD7EPEEkytEeUqVICMaLbiDhYh65rrmXynhRywoF9COBJSG9jwz6eypxwoTLUSjFsuo0Eh20vGr8LvfXzMkx27YefeQHJdo1HPdrHhWSUALANGYWQyQ6imYSrJoDXi+2aXtcMpMNBo1vH9XsYdANGTmL1w9pGXCWIJsiGkTqlDpYLRIRD3SrgURaEApWJ5JpOw91EbFSy7Q1m5uJCSENNdppbE+YFkwIiIamRbMv6XzBCwRlQ3tWlnxbGIMoG0BRGNAEHRLouggwNr2B4oxVCIioiHF3SVEhccECxH1aM1rK7HoH26EUArCU7BigPQAVFZAtLRCJxLmhsmeK0IKLHLOxDrvwX7/rsXhswGYJE0mkSxDtjb608E+HCIiokF5YsPVxR4CEQ3AmtdWYvExK9LxrJZA+2QbFePGQGhtdrAA0FoBgYIQAktqzsOalnv7/bvqD/yO+SYIOpeXOg5gW2j4yy2FekhEREQDwt0lRIXHBAsR9Uo7EsqyACkQalaIjZVQNRGIvQ6QSKSb3KcVqjSYVp3H4mphIiIiIhqEoMJJx7NepYQfARKTqxGKxgHfB5QyyZZkyTDdUxncvlhmtwy0BgJlvhcCkCyfS0RERIUgoMDzZKWEUR4R9UpbAloKQANum4Id1dh3eDWixx4I8aGZpjEoYJIhyYTIIvesQf5Slf6XJRqIiKgcLJjPlelEpSwzng03aigH2HNUCM3HTEEwdazp0+I65l9LQlgWloz58sB+mRDmSyUTLAkPDW+wJAsREZU2lg8jGhjuYCGiXv3u6Wux4ERz0kjGFUJNAh0TLew9zEFN1VjU7muC8PzsZvcD2MWyNvazrJ8XVy3F2rb7BzV2IipdqeCdW9RpxGCjSaLSJsxKz1Q8G4QstE0D2qcKCFWB6qhndrHEPCBkFhAJ1f8/7K6JlPoDLkfDO7cNfvxEVJIY0xIRERMsRJQfAUhfwWkHQs0CQUhi3xwJoQ5AzfNboVvbMnqyDH6rIpMrRCNXaiIqAp6RppHjiSfZn4Wo5GXGs00CfkSiY5JA63QLTns1EtUWwns9OM0xCC+jh8ogMLlCNHJxtT+NNEwUlg+tWSKslDDBQkR9Sp00WnDCKghfw20JoCUQuBIt0yWAaXBbfITf2g20tkFrhSXjvwIAWLPnR0Uc+eDMX7i6xwCDK5WIBo5/N0RENNx6imeVJeGHgcaDHQQu0LZ/CFXbHLgtPqSnseCEVdCOLNvPrnziWYCfzUQDwb8bIiIC2IOFiPrhiaeugdAa0tcI7wtQuyVAZK9GbIxExyQHbUdNRvzImdAzpkBMGAdMmYAlR12HJUddV+yhD0g+AfP8hau5cqkf+FwRUamYv4DvR0SjUa54tmq7ht0B2B3mNu1TJVpmuIhOdBCbEEK8zsHxn7q1uAMfoHxPADOmzR+fJyIqFXw/Gp00AKVFSXyRwR0sRNQvT2zILoFy0vGroAUAaWpZd0xx4c9yYcWB8F4fdocPmVC5D1bGelsJyJVMPeNzQ0SlYsMTfD8iGq1yxbMA0jGtH7EQHW8jOk5C+kCoRQGxIgx0iPUWlzGm7RmfFyIqFXw/IioNTLAQ0aD87vfXAACWHHYtrMoQtAwDY2wIpeFVWYAAfv/UFUUe5fBhgENERERUXlLxLAAsOeJaWFVhaFsAwoJQJvHy+0e+U8QRDj/GtERERET5YYKFiApizesriz2EssUVgkRERESlYc1rjGkHijEtERHR8NC62COgTOzBQkRUZBvWX8XaqURERERU1hjTEhER0WjEBAsRUQnghJSIiIiIyh1jWiIioqGntSiJL4CN7oEyS7A89thjOPbYYxGJRDB+/Hh8/vOfz7r+vffew6c+9SlUVlZi/PjxuPTSS5FIJIo0WiKi/uOElIiIiIjKHWNaIiIiGi3KJsHy8MMP45xzzsF5552HV155Bc888wzOOuus9PVBEOCUU05Be3s7Nm7ciAcffBAPP/wwLrvssiKOmogof6xZTURERETljjEtERERjSZl0eTe931885vfxK233ooLLrggffnBBx+c/n7dunXYvHkztm7diqlTpwIAbr/9dpx77rlYuXIlampqhn3cRET9xQkpEREREZU7xrRERERDx5TnKj6tiz2C/IwdO7ZftxdC4E9/+hNmzJiR1+3LIsHypz/9Ce+//z6klPjwhz+MnTt34uijj8Ztt92Gww47DADw7LPP4vDDD08nVwBg8eLFiMfj2LRpE0488cRiDZ+IqE+pMgqcjBIRERFRuWJMS0RERKWmqakJ3//+91FbW9vnbbXWuPjiixEEQd7HL4sEyzvvvAMAWLFiBe644w7MnDkTt99+O44//ni8+eabGDt2LHbu3IlJkyZl3W/MmDFwXRc7d+7s8djxeBzxeDz9c0tLy9A8CCKiXnASSkREA8V4lohKBWNaIiIiKkVnnnkmJk6cmNdtv/GNb/Tr2EXtwbJixQoIIXr9evHFF6GUAgBce+21OPXUUzF37lzce++9EELgl7/8Zfp4QnTfHqW1znl5yi233ILa2tr017Rp0wr/QImIiIiIhgjjWSIiIiKi0UNpURJf5UIplXdyBQBaW1txwAEH5H37ou5gueSSS3DmmWf2epuZM2eitbUVADBnzpz05aFQCAcccADee+89AMDkyZPx/PPPZ923sbERnud129mS6eqrr8ayZcvSP7e0tHBSSjRKpEoYpHDFHRERlSPGs0SjV9d4FmBMS0RERDScippgGT9+PMaPH9/n7ebOnYtQKIQ33ngDH//4xwEAnufh3XffTTebmTdvHlauXIkdO3ZgypQpAEzj+1AohLlz5/Z47FAohFAoVIBHQ0TDqRD1nTn5JCKikYDxLFF5ykyODDQuZTxLREQ0yujyaS5fqt5//30888wz2LVrV7pyVsqll17a7+OVRQ+WmpoaXHTRRbj++usxbdo0zJgxA7feeisA4LTTTgMALFq0CHPmzME555yDW2+9Ffv27cPll1+OCy+8EDU1NcUcPhHlKdcKvJSuk0dOJomIiIioFPUU0zKeJSIiIique++9FxdddBFc18W4ceOyWosIIUZuggUAbr31Vti2jXPOOQfRaBTHHnssNmzYgDFjxgAALMvCY489hosvvhjHHXccIpEIzjrrLNx2221FHjkR9SbfCWjm7TkZJSIiIqJS0Z9FQqnbM54lIiIiGn7Lly/H8uXLcfXVV0PKwrSnL5sEi+M4uO2223pNmEyfPh2PPvroMI6KiAplw/qruk02e5qsFqI8GBERERFRoeUb0zKeJSIiooHQAHQZNZgvNR0dHTjzzDMLllwByijBQkQjU2oSmppk9rYCsOv9iIiIiIiKLRWX9jemZTxLRERENLwuuOAC/PKXv8RVVxUuDmOChYiKIt9ESleciBIRERFRKWA8S0RERFRebrnlFnzyk5/EmjVrcMQRR8BxnKzr77jjjn4fkwkWIhp2/ZmMZq4I5GSUiIiIiEpBX/GsCDS0Zcp3MJ4lIiKiwhEsETYIq1atwtq1a3HwwQcDQLcm9wPBBAsRDYt86kxvWH8VFpywCpAC2hJZt+VklIhKVeZJNp5EIyIaufLtm7Jh/VVYcuR34Y2vTCdZ8rkfEVGx9BTPQgEbnuB7FxGNHHfccQfuuecenHvuuQU7JhMsRDTkMoO13lb7zV+4GhueumY4hkQ0KvT098YTPN0Votmw8BROOn4VlCsBNbgkS67/O/6/EREVTz7xrIwHUCHLvP+/evNwDY1oROtt/sjYKFsh4lkrGmDhx1ciiFgQvoa2xYBjWs5FiIaOLvYAylgoFMJxxx1X0GMywUJEQ6bfdanV0IyDaLTI92+u6+1G2iRn8UdvAACsfeH6vO+T6zlITSZTz5cINJ7YcHX659BftiN+6FQ4+6Lwa8PQjuwMdGXnMfr1OxesTt8313h6u+9AdP19XY/b23jyVW6vr0KcnCCikSXfz1cVspLfDOFgiEa4/swhR3JMWz/nGkBrNPzllrzv01M8m7ouHdP6Gk88aWJa9/k3kDj2YIS2NSMxuQZBxErfV9ui23Hy+Z0nfWJl5/thDoWOafN5HQy0Z1Zfxy1ljGmJcvvmN7+Ju+66Cz/84Q8LdkyhtWbSK0NLSwtqa2vR3NyMmpqaYg+HqOykAxeFPk/KpYI8fuATDUzXycmAkpqy8/4jRep5sDp8BBVmLUlmLfySksd7Za77CGUmxgs/vhLrN17b7SYLj7sZEALQOv0c5HvsVBmIhcfdDOVaWZPrIVUiJSiGIpHVX4ONRxnPEg1evjFt5ufvSPosJRpOuZIA/ZL8Ox1Jf4PpeLbdR1DZGcuVZEw7kHg2qbdzAoNJimQeb8GJt0BLMehFQ3kpkXgWGBkxLXW3YcMGLPni6Zj1r5cWeygAgHe+cjuefmQN5s2bV+yh5O1zn/scNmzYgHHjxuGwww7r1uT+17/+db+PyQRLF/zjJxq4rAColyBrJAW+RMNp0AmVPFjRIGvlWup3lbKcz8MgJnqlTvgaEOg+uc54zKmSDuWoFF9vw70YgAkWouLKJ6YtxfcqonIx1DFtqlxfplL/m831HJRkMqWQ8ojXy/k5KMXXXLnFtNRdKsEy865vFnsoAIAtX72t7BIs5513Xq/X33vvvf0+JkuEEdHQkN1P8FnRAEEvW4WJKFuvPYsKULopl67Jlb7G0asCrybs1zhGaHIFQM+JE5nHbcpAX2XLiIiGlcw+wSc8Be2M4A8ZogLrK34bigVDucpTlUo825+xlGtiIW95vJWW83PAmJaoNA0kgdIXJliIqGC6BgwL5mfXi808cTt/4Wo4e6JY+9INwzI2olLX70lfOZzbKcAYh2LSTSUu83Wj8nsNZH7+DEU5BE6IiUaX3mLazOTK/IWrYXX4kHEfa19cMVzDIypZIzJuS/7Jn3T8Kvzu99cM6BAj8nmhvvUzpu3WC5ExLVHZYIKFiPqttwZ3C05YBUhhVpr0sNokdX9vfIQ1q6ksLTnqOkAIaFti7YsrsHju9fDqIv0uIcLJVjY+H9RNnkm6nl47/U3OENHo0dv7w4b1V+Gk41dBS2F2BOaIaVP3DypsqJDFmJbK0knHr4IWJnHYW6muvl7XoyGGyze5MhqeCxqAPGLaXqsX9DM5Q6MAG34M2N69e7F8+XI8+eST2LVrF5RSWdfv27ev38dkD5YuWB+QqFPXD/HUh/b8havNVmlg0CvUU2XERKDxxIarB3cwGtWGsolf/bRvAo4DXRnCmtdW9vn7eyMCDS2GqclisfXQ5LF+9pWIzxjTvabyCO6bQqWvlCam7MFCVFjzF66GjAdw/rYTDe/flb5MBBrQhSmrmPpMY0xLgzVUybolR10HLSV02IaWAuuf+W6vv5+SemlavuSo65CYWJkd0zKepSIqpXgWYEw6FNI9WH5YIj1YLiq/Hiz19fX429/+hgsuuACTJk2CENlx4NKlS/t9TO5gIaK+dQkSsxItg6SlKOtmzKPFScevgnJlzv/70Kt/R/zIGbm3NGdMSHK9XnI1VAcAmVBQbueLzm5NwNrbBv9vWxAsmNvneFO/K7NOemp8iyu/hOCYQ3I+nm6PLzn+hq0/SF8+2Nd9OdcR7pcck8sF82+Bs7cD3v51AHI8F5yMUhHNX7gaVruPoDIZHme8hkttskpEg5frM38wn0NaMKYtdV3jWaBLTPu3PYh/aHz363PEs113e+SKaYcyngV6jml7imfXvHJT1rGZSMlTjveF+QtWw2mJwx9XAaBLTMt4looo/b7RdSFbEmPakUPr8ow3nn76adx6663YtGkTduzYgd/85jf47Gc/m77+3HPPxf333591n2OPPRbPPfdc+ud4PI7LL78c//3f/41oNIoFCxbg7rvvxv7775/XGDZu3IiNGzfiqKOOKshjAriDpRtmV4l6SZzkWL2z4MRbCrrqL/TWB2h4985BH4/6p2uCoX7S1+AdMi1rUph5fU+7m3o7dlF0OVki4wGs9gS8sZGs2widDEC7nFDlxHPwMl8bC05YxcbANOIMxUSVO1iICiPn5/gQxrMAY9piy4xp62ctQ2LG+G6xR08Jlq7X5TpuUeRI/vUa02bslGY8Wxjd+jIV8D2DqBQMVeKFMWnhpXawzPjBt4o9FADAu1+7tV87WBoaGvDMM8/gIx/5CE499dScCZYPPvggqxG967oYO3Zs+uevfe1reOSRR3Dfffdh3LhxuOyyy7Bv3z5s2rQJltV9AW9XH/3oR3HXXXfhH//xH/N/oH1ggqUL/vET9T2B6Gk1RNoAVgCmVmZxRcXwyKeGa9Zt8vw/TZfH4ApOQu8nMIhGqkJ8jjHBQlQYvX329BnPAoxpy0BfvXQGEs+mMJ4loPfG40QjUeq9sxRiWuqu3BMsmYQQORMsTU1N+O1vf5vzPs3NzZgwYQJ++tOf4owzzgAAbN++HdOmTcPjjz+OxYsX9/l7X3jhBVx11VVYvnw5Dj/8cDiOk3X9QF6rLBFGNAQGEnSV0iSsr5OiWhR+oqEtCeGpvm9IhdXDRLPb/3uek9HUiQpORke3zBMaC+bfMnrKohEBBZuQEpWC/sa0pfba7y2mHYp4FmBMO5z6Sp4MNJ5NYTw7umXGs/MXrGbpLxo10q97xrQlrVS2SwzFMJ566ilMnDgRdXV1OP7447Fy5UpMnDgRALBp0yZ4nodFixalbz916lQcfvjh+OMf/5hXgqWurg7Nzc2YP39+1uVaawghEARBv8fMBAtRiRjKBt0F1zW47DKhEVrjifVX929SLgEE/BAvpJ6eyyU15yE0ZRLi0+tgxXP3QCEaqKzJ6MLVAJMrRESjRn9KiBZdrpOljGlLTo/x7JgvA8ccCHd7KxJTqxnTUkF1i2eZXCEi6lEikUBLS0vWZaFQCKFQqN/Hqq+vx2mnnYYZM2Zgy5YtuO666zB//nxs2rQJoVAIO3fuhOu6GDNmTNb9Jk2ahJ07d+b1O84++2y4rouf//znOZvcDwQTLESD1FOjw0z9bQrfrxUyOepI52PB/FsAAE9suLrnceSYJM9fuDpru3yqeaNMKDhvbEPDzrsH3jRRivTv5YR0YJaM+TLWNP4k5/OfvuzYg9OXcSJKhcayCTTa8fOLylHXXmy9xbT9eZ/vz20H8rez6B9uhHYtrN94bd7j6C2ehTTfO3/dioYP/p0xbREtGfNlJI45sNvl6f+P5HWJqdUAGNNSYTGeJWJMW9J0CTW518ADDzyAE044Ievi66+/HitWrOj34VJlvwDg8MMPxzHHHIMZM2bgsccew+c///meh5HcfZKPP//5z3jppZdw8MEH933jPDHBQiWrrFbA9aHfAVp/VsjI3Mfv7fla+PGV0CELQuucCSK7zYNflV2DECoj8SNMTWKZCKBtM1jlSsSPmD6gYDRVA1sLMaBa19RpTeNPsn7m5ICIaOiIQEMEGso2J2bLOVahoTOqY9oCHLun5+uk41dBVznQQuRMoACAFe2yq6FrPBtoyHhnPAskY9ojZzCmLbLMBUOMZ4mIho4INKA0tCXTn1vlHKvQ8PvSl76EO++8M+uygexeyWXKlCmYMWMG3nrrLQDA5MmTkUgk0NjYmLWLZdeuXfjYxz6W1zGPOeYYbN26lQkWGp0G09ckV/mtQpXkyrxvf1f1DaWexiECDTjmg1ND5Lx9EO7+1iC0TteqTvVTCOzCvIWk+zPw5FTe5i9YDfvpl7HOezDn9VaHDxWy2PuCiGiIyITC735/TfrnUvn8p9JXiJh2KOPZ1M+l8prOOQ4FCEvkjHMyb6/cnjMc6Xi2onBTYsa0/TN/4WpAAc5zm7G2/YFu11vRAEHIYqKKiGiICE/hiacYz9LguK47oMbw+di7dy+2bt2KKVOmAADmzp0Lx3Gwfv16nH766QCAHTt24M9//jO+973v5XXMb3zjG/jmN7+J73znOzjiiCO6Nbk/8sgj+z1OJlho2PW126KvZMhgf1fOyxasxoYnuk8k+zMxyqdUWCnI54R7roaOQ32iPrXij3q3uPJL8I89FBACwceP6nZ9+rVXwJMFRESEPkty8mTq6DJ/4ers2CXH62MoY9qeYtyefs+Ii2m7LBTqSbfYchhO1DOm7Vv9hIsQP3Jm+v/D/4dDu91m/sLVAMt+EREVXG8xAePZMlIqJcLyiMcytbW14e23307/vGXLFrz88ssYO3Ysxo4dixUrVuDUU0/FlClT8O677+Kaa67B+PHj8bnPfQ4AUFtbiwsuuACXXXYZxo0bh7Fjx+Lyyy/HEUccgZNOOimvMaTKkJ1//vmdj0IINrmn4kglJbpdPoCJWE/3GbZJXa4yW6p/hyjllX+lLlX3mh/mfcu1ui+FrzciosLKOlHKFdQj0uIPX4+1L92Q87q+PlezTqL3ULI132MVSiF+D2PagWNMm5+G3f/R6/V8vRERFRaT/1QqXnzxRZx44onpn5ctWwYAWLp0Kf793/8dr732Gh544AE0NTVhypQpOPHEE/HQQw+huro6fZ8777wTtm3j9NNPRzQaxYIFC3DffffBsvJbmLFly5bCPigAQmutC37UMtbS0oLa2lo0NzcP2famcrNg/i2mNJTkBIsKJFWTuo/VwNSzslhdSkRUxop5gnSw8Sjj2dwW/eONCMI2tMNsGRUA49mCYExLRDS0yjmmpe42bNiAJWefjml3Liv2UAAAf//69/CHRxswb968Yg+lqLiDZRTqd+Bq5e7TQZSmACseQDkS2hYQngJkdl1sruTLVqi/Jf5NEhHRaNXvz8Bqd2gGQiNHHzEt49lshYxDGdMSERHlRwPgdon++d///V/U19d367fSk8cffxwnnngiIpFIXrdngmUUSQetqdJX0jQO1MkGkVoIiEBxVR/1mxX1gedfgwSwPnio2MMpSZw0EhERFUbXz1ThKUAIaGlOggvNMhg0MIxpe8d4loiIiMrR5z73OezcuRMTJkzI6/ZnnnkmXn75ZRxwwAF53Z4JljK08OMrEYSsnmuBKzOxhM5oVp7cwp6quygTCtoSUK45iLYEoMDkCmXJVaeTK/f6xsknEVH5yyxbk+vyXPgZ2T/zF6zuu7dNxsKgrpcLraGFgLZk521UjsbmNOp1jWn5t5ofxrREROUvV0zLeHYE4A6WftFa49xzz0UoFMrr9rFYrF/HL5sEy5tvvonvfOc7eOaZZ5BIJHDEEUfg5ptvzmqM89577+HrX/86NmzYgEgkgrPOOgu33XYbXHfklAOo3/9SYPrE3iejEtAQ3S4DzIRTBBq6S/mmzNsQpeQ6QTF/4WpY0QDrN15bhBENzKJ/uBHW1g8QP3xaj7cpRBDBSSgR0cgzf+FqOI0x6FffxLrEzyE8BaE0VCi/JoqUW/3MbwMHTer7hj3FpxLQSnS/nvHs6JXqiZJD15h2pMazAGNaIiLKbf7C1bDbPKx79jqIQANKc5E1jRpLly7t1+3PPvvsfvUNKpsEyymnnILZs2enkyff//738clPfhJ/+9vfMHnyZARBgFNOOQUTJkzAxo0bsXfvXixduhRaa9x1113FHn7BNGz7IeYvXA3hZZfyEr6G9BSEHyCIOJ07V3Lgqr5RqKfVnz3IbDIpfJOQE0rDivnwq5w+J6PzF66GjAdw3tgGf/cerFe/HMTgBy49Oax14df2Phmdv3A1RKDxxIarB/57iIhoRPLGhIHjj8T8BasReuN9wLIQP3QqAK7yG6iGd+/EghNvyYpZRaDNl6+gQlbfMSvPCVCmHK+HrMbpChBKQ8YDBJV2XsmVzJi24YN/L/CA8zd/4eq84tnUbRnTEhFRLn6VY+LZbU2A1ojPHAuA8SyNfPfee++QHr8sEix79uzB22+/jXvuuQdHHnkkAGD16tW4++678frrr2Py5MlYt24dNm/ejK1bt2LqVDPhvf3223Huuedi5cqV/co6FcOS2vMBKSGmTERQFUZQYUM7MuebXOZl9RMuAiwJPWkctJQIqt1ekys0SmVMOHOV/UpLTjwB8zpb5J4FAFiX+HmPh+5pIqZtieCAqVhfpMnoQnka5MePzm+FccaKx8Vzr8faTTcM6diIiKhMdF2gIJG1epyT0WxLxl4IaA0xeQKC6gi0a0HZoseY9oknzQng+v2+AVgW1IRaaMuCithcEES962W3Sur6zJh2cfhsrI39rMeb95ZYSMW0xbJQngYsmJvfjRnTEhFRT1KfERKIzxiTvpjxbHnSmrFyKSmLBMu4ceNw6KGH4oEHHsBHPvIRhEIh/Od//icmTZqEuXNNsPnss8/i8MMPTydXAGDx4sWIx+PYtGlTVimxUiRcF96c6emeKCldg/2ub3wNu/8j/X39hIsgtIKYMA6JKTXQloDdnEgna4gAs4PJbvPgVzndr5SAlsKUTejwIZB/ckUmFJQtYcUD4I8vm98FMyksxg4Wq6oKCSfP8i0ZJfT86hDqD7oCDW99L6+7LrTOQOZvkZEw5JRJ8CfUmNW3THgSEZUdTjQHRoRceLP36xbPAr3HtA3vd+42rz/gclhaQddWwa8NQ9kSkIDV7vNzlTpJwOrwEVT0MJ3tGtOqnguVd31t9hTTFotVVYUg3xsPIqZdXPklZM4ORCRs5pWTa/h3R0RUphjTEg2PskiwCCGwfv16fOYzn0F1dTWklJg0aRLWrFmDuro6AMDOnTsxaVJ2HecxY8bAdV3s3Lmzx2PH43HE4/H0zy0tLUPyGPqSSpQsOexaqJpw7pPfMBOAXG+QS8Z82XwjBPQHe+Ds3gsAWLPnR1n3BZI7GESOmtU0avT0+sqkHIl8q8tbHT6s1/6GNS2dW+4WytNyfp8r2bJQngad3G0i4wGcrXvRsOWOPH97tvQk+diDB3R/bUnAzr+u/vrgoV6vX+ScmfWzrK6GqKyAHleLxISKAY2RiIgKz25NYN1zy4s9jAEpmXh2x78BABZ/+HqoCqfnk9/IHdPWT7go/b1o64DzgQVICSiVPnbqvgD63sVAI1pvr69MypGwtOr7hug9pu0rnk3dplxj2rXtD/R43ZKa87J+FpUVQCQCNaYS3tjIgMZHRESFl1pMy8QK0fAqaoJlxYoVuOGG3rctv/DCC5g7dy4uvvhiTJw4EX/4wx8QiUTwk5/8BJ/85CfxwgsvYMqUKQBMIqYrrXXOy1NuueWWPscwnNa8vnJg92v8Sfr7JWMvzEqspC4L1dUiPms8Sy5QXrQlof7xMNTvfykatv0w5216+9BOTTznL1wNpykO+Are+EjOEgzuEYekd5uokAVEwnnvfEmtTAzCNkSggEHu1gq9ty/vlX758E84uttlwtdcCUhEVGL8arfYQxiwUotn1740sLFk7sxeMv4rED7QsPvfsm5TP+EihGqrEZ8xjskVyou2JNS8I3q8vq+TUKl4dPFHb+g1ngUGHtOmjmdFAwQhq+Ri2kSOJA/jWSKi0pPPYloaIYq5vZa6KWqC5ZJLLsGZZ57Z621mzpyJDRs24NFHH0VjY2O6l8rdd9+N9evX4/7778dVV12FyZMn4/nnn8+6b2NjIzzP67azJdPVV1+NZcuWpX9uaWnBtGl9Nw8sZWv2/bjHyxbNu4lvuJQfCSjHQjB1PBbMvyUrMRfa1gy15T2oRAIyFIacNB7xgyZhw/qr0qv7UhPJrOaiSV37wCQmVnZeLgT0zt39KiuWWsGoZY6JaB+rW/Nd2bHQOgPB/A+bcfoaIlAQz7yavqw/OBklIqJCGpHxbJfFQimpJAxjWspbMqZdcOItWTFY13hWRMIQNVU9xrReXSjrsLn6Gg40pk0dK4iY5Ey3mDaP3Vr5xLSL3LPgH296mqbiWRWy4Gx8Hd7HD+vz/pkYzxIRlSb3g7ZiD4GopD3wwAM444wzEAplx3aJRAIPPvggvvSlL/X7mEJrXfI5r0ceeQSf/exn0dzcjKqqqvTlBx98MJYuXYprrrkGDQ0N+OQnP4lt27ald7Q89NBDWLp0KXbt2pV3k/uWlhbU1taiubk57/sUSo8roV58O+fl/pEH5Kxx3aOujVqJBivXZE8BVixHTezkbctpq2pmCRIRKPYyIiIaBUrhc2qw8WgpxrMAEHr171k/6yCAf9jM/sWzAGNaKqyekhe5YlrGs0REVCZK4bOqmDHpSLVhwwYsPut07Hfr5cUeCgBg27dW4w+PNmDevHnFHkreLMvCjh07MHHixKzL9+7di4kTJyII8u5+l1YWPVjmzZuHMWPGYOnSpVi+fDkikQh+/OMfY8uWLTjllFMAAIsWLcKcOXNwzjnn4NZbb8W+fftw+eWX48ILLyybP+JcK/0BIHHMgdiw/iosrlqadbm16Q38ru3+rMvmL1gNpymKoCrUfbLKWJoKLddrSvZQE1uaeqD1ky+Gv2t31lX92a2Sj95O7mTKFXDkvK/sYXcMERGNOJmfA6UwMS03PcWzABA/cgY2rL8KS8ZeCCTXeNmvvpNV6hZIxrPNMQgvgF8XYUxLQ6un11OumLaXeBYo8ZiW8SwR0ajCmJYot57aiWzbtg21tbUDOmZZ7GABgBdffBHXXnstXnzxRXieh8MOOwzLly9HfX19+jbvvfceLr74YmzYsAGRSARnnXUWbrvttm5bfnpTDtnVxZVmq1JPjQjzDcSJhpNMKGhL9NoDSPga8vd/yrtO9WC5L76NxDEHAgCcPVF449mkk4iIejccE9Ry3sHSH0tqz8ea5ntyXsd4lkpRPvEskF9MW7DXuALcPzGmJSKi/A1XwqVcYtJywh0sA/fhD38YQgi88sorOOyww2DbnQtpgiDAli1bsGTJEvziF7/o97HLJsEyXAbyx9+tv4Rntl47e6IQSkHs2gfV2gY5eSJUdQWE7wPbPoBOJDLuJNIr+VJSCZQlRy9HYkLF4B4YERERERWc8BS0JXOugh/o5LUYCZZu8WxGA2unKQ4oBbm3BWiPAmProKrDEL4C3tvRGcMq1XmAjLh2Tcu9ABjTEhEREZWi3uJZoHgxLXWXTrB8r0QSLN8unwTLDTfckP73sssuy2pD4rouZs6ciVNPPRWu6/b72GVRIqzU9fRGM3/hasiEguPVQkwYA/3u+8BOhfR0UwjI6fvBG18JFbKy7is8hQUnrDI/jOEKJCIiIqJS1Fs/g8GU9xluvY1h/sLVEJ6C41dBj6mB3L4LYu8+QGmTSNl/EvwxFd3jWd9cz5iWiIiIqHT11Z8rn5i2FOJZot5cf/31AICZM2fijDPOQDgcLtixmWDpwSc/cwdsu/sT3Vtd6dT1ub7vKnUMuzUBZ8suAIAaX4eg2oW2JZsPEhEREY0S8xeuhgg0tBCABHw/VpDj9hTPAr3HtF1j2L5iWrvNg7N1LwBAja1GUJmMZ20BoPdSSkRERERU/lJx5VDEtESFtHSp6XGeSCSwa9cuqMxd+ACmT5/e72MywdJPfWVt+1tL16924R8yZTBDIiIiIqIy11dPh0LrLWbtdzxb5cA/cOJgh0REREREZW64Y9rRiYuYBuOtt97C+eefjz/+8Y9Zl2utIYRAEAT9PiYTLERERERERERERERENKKde+65sG0bjz76KKZMmQIhBp+sYoKFiIiIiIiIiIiIiKgc6L5vQrm9/PLL2LRpEw455JCCHZONPoiIiIiIiIiIiIiIaESbM2cO9uzZU9BjMsFCREREREREREREREQj2r/8y7/giiuuwFNPPYW9e/eipaUl62sgWCKMiIiIiIiIiIiIiKgclEqJsFIZRz+cdNJJAIAFCxZkXc4m90RERERERERERERERD148sknC35MJliIiIiIiIiIiIiIiMqBFsUeQdk6/vjjC35M9mAhIiIiIiIiIiIiIqIR7w9/+AO++MUv4mMf+xjef/99AMBPf/pTbNy4cUDH4w6WLrQ2xeN8P17kkRARERHRaJSKQ1NxaX8xniUiIiKiYhtsTEs0FB5++GGcc845OPvss/GnP/0J8bh5nba2tmLVqlV4/PHH+31MJli6aG1tBQA8u3F1kUdCRERERKNZa2sramtrB3Q/gPEsERERERXfQGNa6hlzVgN388034z/+4z/wpS99CQ8++GD68o997GO48cYbB3RMJli6mDp1KrZu3Yrq6moIMfLq2bW0tGDatGnYunUrampqij2cUYPPe3HweS8OPu/Fwee9OPi8F8dIf9611mhtbcXUqVMHdP+RHs8CI/81UIr4nBcHn/fi4PNeHHzei4PPe3GMhud9sDEt0VB444038IlPfKLb5TU1NWhqahrQMZlg6UJKif3337/YwxhyNTU1I/YNvJTxeS8OPu/Fwee9OPi8Fwef9+IYyc/7YFb5jZZ4FhjZr4FSxee8OPi8Fwef9+Lg814cfN6LY6Q/79y5QqVmypQpePvttzFz5sysyzdu3IgDDjhgQMdkk3siIiIiIiIiIiIionKgS+SrDH31q1/FN7/5TTz//PMQQmD79u342c9+hssvvxwXX3zxgI7JHSxERERERERERERERDSiXXHFFWhubsaJJ56IWCyGT3ziEwiFQrj88stxySWXDOiYTLCMMqFQCNdffz1CoVCxhzKq8HkvDj7vxcHnvTj4vBcHn/fi4PNOfA0MPz7nxcHnvTj4vBcHn/fi4PNeHHzeacA0AD0y+ywOl5UrV+Laa6/F5s2boZTCnDlzUFVVNeDjCa11mW7oISIiIiIiIiIiIiIa+TZs2IDFXzgDU1deUeyhAADev2Il/vBYA+bNm1fsoeTt/PPPxw9+8ANUV1dnXd7e3o5vfOMbuOeee/p9TPZgISIiIiIiIiIiIiKiEe3+++9HNBrtdnk0GsUDDzwwoGOyRBgRERERERERERERURkQrEfVby0tLdBaQ2uN1tZWhMPh9HVBEODxxx/HxIkTB3RsJliIiIiIiIiIiIiIiGhEqqurgxACQgjMnj272/VCCNxwww0DOjYTLERERERERERERERENCI9+eST0Fpj/vz5ePjhhzF27Nj0da7rYsaMGZg6deqAjs0ECxERERERERERERFROWCJsH47/vjjAQBbtmzBtGnTIGXhWtMzwUJERERERERERERERCPajBkz0NTUhP/7v//Drl27oJTKuv5LX/pSv4/JBAsRERERERERERERUTnQotgjKFuPPPIIzj77bLS3t6O6uhpCdD6XQogBJVgKtxeGiIiIiIiIiIiIiIioBF122WU4//zz0draiqamJjQ2Nqa/9u3bN6BjMsFCREREREREREREREQj2vvvv49LL70UFRUVBTsmEyxEREREREREREREROVAl8hXGVq8eDFefPHFgh6TPViIiIiIiIiIiIiIiGhEO+WUU/Cd73wHmzdvxhFHHAHHcbKu//SnP93vYzLBQkRERERERERERERUDkpl90ipjKMfLrzwQgDAjTfe2O06IQSCIOj3MZlgISIiIiIiIiIiIiKiEU0pVfBjsgcLERERERERERERERFRPzHBQkREJW3FihUQQmDJkiXdrvve974HIQROOOGEbtdt27YNruvikEMOyXlcIQSEEHjuueeyLo/H4xg3bhyEEHjqqacK8RCIiIiIiNDe3o4rr7wSBxxwAMLhMCZMmIATTjgBjz76aNbtXn/9dZx++umYMGECQqEQDjroIFx33XXo6OjIut3MmTNzxrPf+ta3csbHREQ0QhS7uX0ZN7kHgN///vf41Kc+hQMPPBAHHXQQPv3pT+MPf/jDgI/HBAsREZW8KVOm4Mknn8S2bduyLr/33nsxffr0nPe57777cPrpp6OjowPPPPNMzttMmzYN9957b9Zlv/nNb1BVVVWYgRMRERERJV100UX47W9/i3/913/FX//6V6xZswannnoq9u7dm77Nc889h2OPPRaJRAKPPfYY3nzzTaxatQr3338/Fi5ciEQikXXMcDiMK6+8crgfChERUVn6f//v/+Gkk05CRUUFLr30UlxyySWIRCJYsGABfv7znw/omEywEBGVkF/96lc44ogjEIlEMG7cOJx00klob29PX3/vvffi0EMPRTgcxiGHHIK777476/5XXnklZs+ejYqKChxwwAG47rrr4Hle+vpXXnkFJ554Iqqrq1FTU4O5c+fixRdfTF//8MMP47DDDkMoFMLMmTNx++23Zx1/5syZWLVqFc4//3xUV1dj+vTp+NGPfjREz0aniRMnYtGiRbj//vvTl/3xj3/Enj17cMopp3S7vdYa9957L8455xycddZZ+K//+q+cx126dCkefPBBRKPR9GX33HMPli5dWvgHQURERDSKMK7t7pFHHsE111yDk08+GTNnzsTcuXPxjW98Ix17aq1xwQUX4NBDD8Wvf/1r/MM//ANmzJiB0047DY888gieffZZ3HnnnVnH/OpXv4rnnnsOjz/++JCOnYiIaCRYuXIlvve97+Ghhx7CpZdeim9+85t46KGHsHr1atx0000DOiYTLEREJWLHjh34whe+gPPPPx9/+ctf8NRTT+Hzn/88tDb7Ln/84x/j2muvxcqVK/GXv/wFq1atwnXXXZeVdKiursZ9992HzZs34wc/+AF+/OMfZ03Czj77bOy///544YUXsGnTJlx11VVwHAcAsGnTJpx++uk488wz8dprr2HFihW47rrrcN9992WN8/bbb8cxxxyDl156CRdffDG+9rWv4a9//WuPj2vVqlWoqqrq9SufrZjnn39+1ljuuecenH322XBdt9ttn3zySXR0dOCkk07COeecg1/84hdobW3tdru5c+di1qxZePjhhwEAW7duxdNPP41zzjmnz/EQERERUW6Ma3ObPHkyHn/88ZxxKQC8/PLL2Lx5M5YtWwYps0/XHHXUUTjppJPw3//931mXz5w5ExdddBGuvvrqIWncS0REJUYD0KI0vsrQO++8g0996lPdLv/0pz+NLVu2DOiY9mAHRUREhbFjxw74vo/Pf/7zmDFjBgDgiCOOSF9/00034fbbb8fnP/95AMCsWbOwefNm/Od//md61dt3v/vd9O1nzpyJyy67DA899BCuuOIKAMB7772H73znO+m+JAcddFD69nfccQcWLFiA6667DgAwe/ZsbN68GbfeeivOPffc9O1OPvlkXHzxxQDMysI777wTTz31VI+9Ti666CKcfvrpvT72/fbbr8/n55Of/CQuuugiPP3005g7dy5+8YtfYOPGjbjnnnu63fa//uu/cOaZZ8KyLBx22GE48MAD8dBDD+HLX/5yt9ued955uOeee/DFL34R9957L04++WRMmDChz/EQERERUW6Ma3P70Y9+hLPPPhvjxo3DUUcdhY9//OP453/+Zxx33HEAgDfffBMAcOihh+a8/6GHHoqNGzd2u/y73/0u7r33XvzsZz/jQiEiIqJeTJs2DU888QQOPPDArMufeOIJTJs2bUDHZIKFiKhEHHXUUViwYAGOOOIILF68GIsWLcI///M/Y8yYMdi9eze2bt2KCy64ABdeeGH6Pr7vo7a2Nv3zr371K3z/+9/H22+/jba2Nvi+j5qamvT1y5Ytw5e//GX89Kc/xUknnYTTTjsNH/rQhwAAf/nLX/CZz3wma0zHHXccvv/97yMIAliWBQA48sgj09cLITB58mTs2rWrx8c1duxYjB07dnBPDgDHcdJJkHfeeQezZ8/OGktKU1MTfv3rX2dNPr/4xS/innvuyZlg+eIXv4irrroK77zzDu677z788Ic/HPRYiYiIiEYzxrW5feITn8A777yD5557Ds888ww2bNiAH/zgB7jhhhvSyaDeaK0hRPcVwxMmTMDll1+O5cuX44wzzhjw+IiIqDyIMm4wX2yXXXYZLr30Urz88sv42Mc+BiEENm7ciPvuuw8/+MEPBnRMlggjIioRlmVh/fr1aGhowJw5c3DXXXfh4IMPxpYtW9Lb/X/84x/j5ZdfTn/9+c9/xnPPPQfANMQ888wzUV9fj0cffRQvvfQSrr322qxGmCtWrMDrr7+OU045BRs2bMCcOXPwm9/8BkDuCVuqjEOmVOmFFCFEr+UIClUiDDBlwn75y1/i3/7t33D++efnvM3Pf/5zxGIxHHvssbBtG7Zt48orr8Szzz6LzZs3d7v9uHHj8MlPfhIXXHABYrEY6uvr8xoLEREREeXGuLZnjuPgn/7pn3DVVVdh3bp1uPHGG3HTTTchkUhg9uzZAJAzZgWAv/71r1k7dTItW7YM0Wi0Wy8bIiIi6vS1r30NDz74IF577TV861vfwje/+U38+c9/xkMPPYSvfvWrAzomd7AQEZUQIQSOO+44HHfccVi+fDlmzJiB3/zmN1i2bBn2228/vPPOOzj77LNz3veZZ57BjBkzcO2116Yv+/vf/97tdrNnz8bs2bPx7W9/G1/4whdw77334nOf+xzmzJnTreTAH//4R8yePTu9ym8gClUiDAAOO+wwHHbYYXj11Vdx1lln5bzNf/3Xf+Gyyy7LKv8AAJdeeinuuece3Hbbbd3uc/755+Pkk0/GlVdeOajHSkREREQG49r8zJkzB77vIxaL4eijj8YhhxyCO++8E2eeeWZWH5ZXXnkFv/vd73DLLbfkPE5VVRWuu+46rFixImdteSIiIjI+97nP4XOf+1zBjscECxFRiXj++efxxBNPYNGiRZg4cSKef/557N69O12DecWKFbj00ktRU1OD+vp6xONxvPjii2hsbMSyZctw4IEH4r333sODDz6Ij370o3jsscfSq/gAIBqN4jvf+Q7++Z//GbNmzcK2bdvwwgsv4NRTTwVgtkl+9KMfxU033YQzzjgDzz77LP71X/910KvgClUiLGXDhg3wPA91dXXdrnv55Zfxpz/9CT/72c+61c7+whe+gGuvvRa33HJLt9WKS5Yswe7du7PKThARERHRwDCuze2EE07AF77wBRxzzDEYN24cNm/ejGuuuQYnnnhiOg79yU9+gkWLFuHUU0/F1VdfjcmTJ+P555/HZZddhnnz5uFb3/pWj8f/yle+gjvvvBP//d//jWOPPXbA4yQiohLHEmED9sILL0Ap1e1z8vnnn4dlWTjmmGP6fUyWCCMiKhE1NTV4+umncfLJJ2P27Nn47ne/i9tvvz1dsurLX/4yfvKTn+C+++7DEUccgeOPPx733XcfZs2aBQD4zGc+g29/+9u45JJLcPTRR+OPf/xjVi1ny7Kwd+9efOlLX8Ls2bNx+umno76+HjfccAMA4CMf+Qh+8Ytf4MEHH8Thhx+O5cuX48Ybb+y2E6TYKisrcyZXALN7Zc6cOTkbk372s5/Fvn378Mgjj3S7TgiB8ePHw3XdQg+XiIiIaNRhXJvb4sWLcf/992PRokU49NBD8Y1vfAOLFy/GL37xi/RtjjvuODz33HOwLAsnn3wyDjzwQFx99dVYunQp1q9fj1Ao1OPxHcfBTTfdhFgsNhwPh4iIqOx8/etfx9atW7td/v777+PrX//6gI4pdK5CpEREREREREREREREVBI2bNiAxWeegf2vu6rYQwEAbF1+E/7weAPmzZtX7KHkraqqCq+++ioOOOCArMu3bNmCI488Eq2trf0+JnewEBERERERERERERHRiBYKhfDBBx90u3zHjh2w7YF1U2GChYiIiIiIiIiIiIiIRrSFCxfi6quvRnNzc/qypqYmXHPNNVi4cOGAjskm90REREREREREREREZUCw4ceA3X777fjEJz6BGTNm4MMf/jAA4OWXX8akSZPw05/+dEDHZIKFiIiIiIiIiIiIiIhGtP322w+vvvoqfvazn+GVV15BJBLBeeedhy984QtwHGdAx2SChYiIiIiIiIiIiIiIRrzKykp85Stf6fU2p5xyCn7yk59gypQpfR6PCRYiIiIiIiIiIiIionKgRbFHMOI9/fTTiEajed2WTe6JiIiIiIiIiIiIiIj6iTtYulBKYfv27aiuroYQzAYSERER0fDSWqO1tRVTp06FlP1fD8V4loiIiIiKbbAxLVG5YIKli+3bt2PatGnFHgYRERERjXJbt27F/vvv3+/7MZ4lIiIiolIx0JiWeqGLPQDKxARLF9XV1QDMH39NTU2RR0NEREREo01LSwumTZuWjkv7i/EsERERERXbYGNaonLBBEsXqTIK/5+9Pw2z5KrOROF37R3DGXKoKlWpkIRAMggM+sDQgEEIIyipVJluY3fbtz8w2KjBzFwmGSRAoAlNIJBku7G5Brcb09Dt6/762t2PXSUJZAtjG9NgBj/NfJkMaFZV5XCGiNh7fT/W3jt2nMysSVmqrFKs56mnMk+eEyciTpzY71rvu941MzPTJqRttNFGG2200UYbbRyzOFJ7rxbPttFGG2200UYbbbSxUaK1rD0K0XawbKhoDfDaaKONNtpoo4022mijjTbaaKONNtpoo4022mijjTYAvPvd78aWLVsO6bktwdJGG2200UYbbbTRRhtttNFGG2200UYbbbTRRhttnPDxiU98Aueeey5OPfVU/PCHPwQA3HLLLfiLv/iL8Jx3vetd2LRp0yFtryVY2mijjTbaaKONNtpoo4022mijjTbaaKONNtpoY4MH8cb5dzxalf3BH/wBLr74YvziL/4i9u3bB2MMAGDTpk245ZZbjmibLcHSRhtttNFGG2200UYbbbTRRhtttNFGG2200UYbbZzQ8Xu/93v46Ec/issuuwxa6/D4M5/5TPzzP//zEW2zHXLfRhtttNFGG2200UYbbbTRRhtttNFGG2200UYbx0Mch50jGyW+//3v4+lPf/qKx/M8x/Ly8hFts+1gaaONNtpoo4022mijjTbaaKONNtpoo4022mijjTZO6DjzzDPxla98ZcXju3fvxpOf/OQj2mbbwdJGG2200UYbbbTRRhtttNFGG2200UYbbbTRRhttnNDxjne8A2984xsxGo3AzPjCF76A//Jf/guuv/56fOxjHzuibbYESxtttNFGG2200UYbbbTRRhtttNFGG2200UYbbRwP0VqEHXG84hWvQFVVuOSSSzAYDPDSl74Up512Gn7nd34HL3nJS45omy3B0kYbbbRxmLHrmVei3NxBdt8AZiqH6WqQYTARiBlUWZAFqDDgRMF2NMBAuncIWAsoBTOVwyYEEDW2/Zm/ftcxOqo22mijjTbaaKONNh4pMffU96DYPgW9XEHvH8Js6sL0EpCpKzZqZKCGJZAoVFMZwIzsnkXAWHAvD3iWGGDtMK17eYtp22ijjTbaaKONjRZVVeGTn/wkXvSiF+HVr3417r//flhrcfLJJz+k7bYESxtttNGIHTtvCD+T4TpZOlhYhKlOd9z+zvXfsXWM+W2vg9m3D6rbBW3fBjvThVoag7sZAIB+ci/QyYE0hZ3tgzsJbKYBADZTwGwHAFBs64Vt+vPEILCW56KrG+8bP3/VsMCO8935jyZkbfTz2UYbbbTRRhtttLHRwmNaMiJ+Ya0Awgps6wkFdqIXVVmwkp83Mkkwt/U1sPsXQEkKaAV18jbY2T7U0jBgWvz0XtD0FHh2CrabwmYaTABrBdraBwCYfgLTnw7bjc+P/C0uGRDGj55dsS8NEa2V/87fcX29PQvc8ZkWz7bRRhtttNFGG8c2kiTB61//enzjG98AAGzdunV9trsuW2mjjTaOiwjkiY0eVGiQI7AAGQtOVUg0fVDF4GQNwkXVz7ngvOvAitZ+7kQcDQJhV//luHX5TwAAF2YvBQDoU7fD3vcAYFnIlS2bRIGXahSn1ckin3QG0oUxOFEwnWTlcSgcnVhjuzHptVq0BEwbbbTRRhtttPFIiTXx7ORjqDEtoEKnsSosWFPAuQ28qxwhwIAeVdj1rKtgUy24WBFAEDaBWbo2CIAiUGVhc310MG33N3Hr8BM1nn3UyYJn2YLyHGp6CkhTwBogUShO21Tv29YzoZdKmF4CKHfM7lwxDlFEdbixxvYPhmeBFtO20UYbbbTRxqEGtRZhRxzPfvaz8eUvfxmPfexj122bxw3BUlUVrrzySnzyk5/E3XffjVNOOQX//t//e7znPe+BUoLimBlXXXUV/vAP/xB79+7Fs5/9bHz4wx/G2WeffYz3vo02Hlqcv+P6ZjLnkkJiBhiS8HmCI1bhrUUETD6uJn42azwPAJW2aQNgGcn+cf18C+n4SJVkdj55VbK/IYmNtr3j/BvCa+PnEB/4WFRhAWboQSm2BRBFHgCkT/oZzD/xnbC9HPzMJ8N2NKxh8M+cHLaff/MnQDUCVVMr1IzlpnyVE7dx4o7b34nzd1wPJmoUGshGqywBsIzP/M27cf4LrxfVprtusv/9I8Aydt/3kWOy/21sjNix8wZQaZF9926Mn3QqqGJk3/4pdv/k9xrP2/Wsq8J3gire0IreNtpoo402Nm4ETIsIv06QIquSJath2kN5zGHauNMYVjpalPWYGlClhV4ag4YFwCz4tTLgbg6VJUCpYPNE7LAsi5BI1VjYptK1vPN519bbLDy547rCFerXRKSOKi1MrpEsFlCjArafg4nCa5Mnnon5J78b9JSzYLsZTGXAp2+VbViGun8RWFgEVxVougeeycHReahms1VO1MMcUZ4SY26PKXbsvAFkOOQEyVIJGAa0nGcyFrd9/nLsfO41oQtJCC8K2PfTd777WBxZGxskPKblVAme/eaPsfuuDzeeM/+kd8FOdVpM20YbbbTxCI83vOEN+O3f/m38+Mc/xjOe8Qz0+/3G35/61Kce9jaPG4Ll/e9/Pz7ykY/g4x//OM4++2x88YtfxCte8QrMzs7iLW95CwDgAx/4AG666Sb8p//0n/CEJzwB11xzDXbu3IlvfetbmJ6ePsg7tNHGsY3zX3Ad9KAClaI+o1EBKgywtIx0OMKeBz+KC59zNdTyGCCS5EtRoyefrAVVQjpwqmHzRNRrRPKYVisTTytWCFRaSVgSJSo8RStIB0mESRIeOMsFw6hm88Z7xMRIg1TxsQZZwoSQTAI+CV79+fBJsVawuQ6P+e2XmzvA5k79uEIzoTOM8ZNPW2XDx0fs2HkDMGnf5hP3qCBByhNYBD02UMMCalA8vDvbxsMWO3begPzH+7H7G9ev+Nv89teDH7UV9MB+VI89GZwoIFFgrVCdsR3J/gKmn4KXljH/xHcCgyGKx21Hslzi1v91RdjOzudegwvOuw56uYD68b0YP+Uxx6XidMfOG6AKi+TBZfD3/iV0vPm/AXKfUCOD5L4F2Lvuwa1LHz9Wu9tGG220cdzE+TuuhxobwZaaBNsyg0qDz3ztGux83rWgSpgPm+mabPDEhvuZLBy2pGDvBawhvHEiHbB0rYBq4mQS07JW4NSJkixDVQwyFma6A0zlYE2gigVfMguholXYP/mdgvDJJjW+ZgXo5QK2k8J0k5XEQoRrqeJ6W3BEyGwWusk9kVNu6QqmNlZwuO+mUYKfi1NnwY/dvL4f4lGKFblFQsEeNwisDKPqpTLX0AvHEiUd8pkK5yVsg1oV74kWB8KzgNg986nbQPfvQ3XGdrmuUg3WqsazywPMP+FSwbOPfxSSpQL4wY9x6/ATYTsB0y6NoX58L3bf8wcP1yGua+zYeQPSB4dQP72/QSpNWn+rwkLvHYD2LawQU7XRRhvHW5BrVd0IsVH249DjxS9+MQDgzW9+c3iMiMDMICIYY9Z66ZpBzHxcwJFf+qVfwvbt2/FHf/RH4bFf+7VfQ6/Xwyc+8QkwM0499VS89a1vxaWXXgoAGI/H2L59O97//vfjta997SG9z8LCAmZnZ7F//37MzMwclWNpo43JmD/rEpjNU5IYVhZkLUw/B6cKelBCPbAIDN2A9NkZYHEJvHUTuJOBEwW9fyjJ4LgCtILtZfUcEABkTCi6kxVLLE5cdmfd3wGYfiYJaWSbcCR2WH7gu/xsoQobiBbb0SG5otLWpM9aREobhx7uHIbhpFYSd6oYemkE2rso15Ax2H337x/TXT0WMWlNccft78SOnTccF+TA/ClvxPj/c3r4XY0NVGFAhlHO5M0CjveQLw0+/dnLAABzP/desFIw05mobOPvmhUbFJtpZPcsYnzaTMMqEBbIvvhtFD//hNpWxX2H82/djd0/uuWoHvv5L7gOemxgU4Vk/wh7vvq+o/ZeB7IvUWMDqliG/X7nBy3Z0sZRjYeKR1s828axiLmnvgdQKuBJWBb8pxVsqqAKA700BisF7iRBmOPXFD2swIlYeanShC4O1hSEPB7jeNKDFYSIAUCVcUSIm5lH1OjyPmhMWOYC0TwWZiSLYxEyAag2deU93BoKeLIIgF1D1NTGYQcZrsVkUSc2AIA39oycoxWrYZXjBdPOnX0ZilObwldVWOeQwKimUgATeLayoTtp/jFvBW+ZAWuC6a+OacnymnhWVRbJV7577DDtC4V85lRBL4xx65evOirvczA7PiqtEMuVgb57L3b/4Oajsh9ttAG0mPRoxB133IG5F78Ej3nHxlgDf3Dd1fjb3X+Fc84551jvyiHHD3/4wwP+/Uisw44bguWGG27ARz7yEdx22214whOegK9+9au48MILccstt+DXf/3X8b3vfQ+Pe9zj8E//9E94+tOfHl73K7/yK9i0aRM+/vHVCyHj8Rjj8Tj8vrCwgNNPP7398rexrrFj5w1QY4P0/mXAWOz+Vg16LjznfaCiko4M5/EMIphoQDpVDL1cQo0K0NIIYJf1JQlQVfJ/mgBODRhsuRIN7qaAYXkPQLoc8lTeyyWuNjv8DFAPTbBY4EyH/fXA/oLzroMelLCprkmVqMMEwMrf2ziy8IUFp3aUX0iUSsMCt37p6ID3jRA+gfDXXfz7oXh9H25MJq6N94gKM0crwT3/hdeDE2pYbKjCwmYKZBjZ3S6hdJHuHaGayUOxSo2MdMEpoNoibbC+QJQsF1DDEmYqh801koWxdIKd4INpdz3zSjnOQ4j0waEk6OMynOeNXsxo4/iMw01GWzzbxnrF/PbXH1DFff4Lr0e6dwgA2POVq8PjO593bU2okHQ8e6usuDtZD43glVIwK6dafiaCTbUQK4kS7MosXSOAkDKZli4OF56c8XNQDmiPu0aosYgVfLcNE8F0E5CtrYMueP610IsFqtl8Rac2EOEv1zXjySCs0g3exkEiIrbAzorNXT8n+nq7GqZ9uPBs/P6H8rz1+Cw8pm10dZXSpZU+OESxrReem+4bo5rOoEYGpptAVRZ6UIJcV351Uk/uIZkSq7018Gz+07W7Yo73uPCc9wWC6lAiWZRzR5VFublzwn+/2jh20RIs6x8twbIx47ixCLv00kuxf/9+/OzP/iy01jDG4Nprr8Wv//qvAwDuvvtuAMD27dsbr9u+ffsBmanrr78eV1114hYf29ggYQGba4xPmZGEAZKIqi9+HXj6z0LtXRaP5+UR7HQHtpsFVQ0g7fPBNmDbFMgykn0jqFEhxEpZCbkSuk5cwmctMCzFBihLJCG0krD4xM/v32p+15IsQuwWHJlClmEzDZsQVAVAE27/3GUrDnk1H+QLnn+tKI38+7XEykMOsXYThabMn5EZOSeaD/XBksvJv693MrpW0vFwJyNrKTV37LwBn7njXY3jPtx927HzBmC69mm/9YtXHtE+PtRYrdPoaEY5e2jkCgCUW7ryg+2GxyYLIm20cSyixbNtrFcczCKHE0JxUi8QHee/8HpkX/8R+ImPhh6WgkUTBSoFL/p5CN7SSQQ5GkAabBiJhNhQRSVdKiMLJE2QSMyAsbCpanY1RLZixAy2q9uHNbbjbMFsqlxHtwVYgazF7f/w3hXH7LtBfew89xqYThLIJE6VaJ8a79sSK4cbvrjOrlBOhvGZOzZG8Wi94lDwafychwvPHuxvR/K8g8WBuo9aPHv4UfUOnVwBgMqfI3d/bPFsG20ch3FctEtszPiTP/mTA/795S9/+WFv87ghWP70T/8U//k//2d86lOfwtlnn42vfOUreOtb34pTTz0VF110UXgeTcx68P5pa8W73vUuXHzxxeF3r/hro41DibnNr5IfnMUWW0Eo6uRtgDXAaIzdd//+qupv9aVv4tbRJ8Pvu7q/GZJPRQRSSjpTAFCaAEkCHo9BiVgqwDKQpfJYrwdeWgaPZT4LZRmoJwVAYgaUAnVyYDQGD4egsgJp7bZjgzowPob4saDEIzqoLc6F2UtDhw1HA9dVJ0eSJIBqWZV1C2vBxoCUwp6FP8bclleDup0T0lM3++J31/wbZSnQ7YCXpENsvWLP3o+t+beNZsPg9+Wh7NNGOR6v1qSKRdl4tN/P3Z/D/fwhxFrbONC11EYb6xEtnm3joUS4d9mJNVQp0ElutkdVYfcPbl6xVqT/9B3s3v8f623NvCLkXhqAVgrQCtTpCJbMUmA4ArJM3m9cyGPWAp1cHt+3H3Z5AFIKlOfA9JRsnC1UrwsaF8DSsgx1JwU2polbJ4+F6+5e//OehT8+6HnZ1XmZbBs1plWdHDrLoA/0wjYOP6yVz1NrwbQzrwi5zIkUB8KzwNHBtAfDIBsN0wInGJ6Nus6P6vsdTTxrbcjhW0zbRhttnAjhZ7n7KMsSg8EAWZah1+ud2ATLO97xDrzzne/ES17yEgDAU57yFPzwhz/E9ddfj4suugiPetSjAEgnyymnnBJed++9967oaokjz3PkeX50d76N4ybmH/UGcFFK8qVdUkeE3T/+3VWfv2fvxzC3+VXgsmr+oSwBrcDjAnOzr5TkzFjYosDt5k+xqy9f1l3d35Tnu+Hxty7/CXb1Xy7kCpGA7CSRhDNNQEsK6HaA4UiIkqIUoiTPQHkGWlqW50/35RgqeV9UlSSzZSnvpzUoTWS/PeHhgBP52S1RYsrGrCBX/DEAAJcVSBFASv7XmbOJsECShONpyZV1DGMCGcbWYm7zq4R8myyOnABx0ESh14XdNA1VGfDy4LC2faAkwb9v8czHH9Y223jocSyS47WuhUNKVN13cK3wf2uT0jaOVrR4to045re/XrpbDxHTejy7JkmRJsBwhPlT3ggeDAFmKYLPvhJgxtzMK+ouavf/nv3/UbBJ5lTVWQZoBSRa8KnDs1Ak75OImMhO5aDuNqh9i/L7JrGzpKKSTurBUDq3fSgCVptDOok5/bFo3bgX75q6qHncxgCkZLukQHniZr8YUJbVx9nG+oQTerER62G2lVxPWXrCnetDwhNHAdO2ePbYxUbCs8AhXINr4dnoftpi2jbaaONEiL1796547Dvf+Q5e//rX4x3veMcRbfO4IVgGgwHUBFDWWsM6sHzmmWfiUY96FG6//fYwg6UoCtx55514//vf/7DvbxsbP+Y2vwogwp4HP4r5R71BHiQC9XtCSCgl/w42pkgrIStcYgBFQmSUAHtCg2vV267ubwZCZTJ29V8u++RUdXNbXwOMC/DefSCtpaDu7gNqqg+kqRA5PSmqEDNQlEKqjMfgfg/QJMPNy1L2z4o9GBdl883j79eE6q9BrPhE1HfZAELKEEmXjD9vRQmuJoinNh56eCIsz+U6NQZw598Ohyfk4G0P4FcD/L5wQ0UlJGSeNa5vSpKgbA0FJEC+t0ki3zFjV00S2sThkRtzm18VPv8DXQe7pi5qktJKHZTk3HG+s4w4yvN62mijjUdGrIpnLYtN1+FgWh0JbiLbLfjC93gs2wUAIiFX3M+rCWj8eustx+Yf/WagqsDDkWx//4K8fHYGmJL5CWaqA87knqqtBY1KUGlApYHtZbAdBb2wVL+JseBDVfkr1bifi0CqrEVAPly3dcC0QItpj0b4NTNNZB0djUMHC4hApLD7rg8f671c1zgQngVWwbRZenA8CxwU07Z49pEbMZ4F1r4WjgTPAk1M2+LZNtp4mIMB2iAWYSeKHOKss87CDTfcgN/4jd/AN7/5zcN+/XFDsLzoRS/Ctddei8c85jE4++yz8eUvfxk33XQTXvlKAfdEhLe+9a247rrrcNZZZ+Gss87Cddddh16vh5e+9KXHeO/bONYRg9BJUDq/7XVA7hRpRNItAgTbguqnd626zfknv1sGc247CVgeYs+PbgEgAMUuLa9MYh2hcuvwE+GhmKyIwz9+6/KfYKd+sXS9TIkVnk8Ed9/9+7Ifp71JlHVLI/C+/ZJI79sP6nZAvS7YQLZvWZJD142yglBhBlsLUip0RnjrqTh8AX9X/+WhsyXeLy5L8GgcyBdAOixI67aDZT2CGTTVl+t07z5JQrUGGwO1dQt2PeMKqEFxQg5wnEwKfFEJAGg4FsVpmgJFUT9JEfbc99HwK59xGtTiQIhIuBFDpmjVWMdprJdf9OR2DvU6oDQNieievR+TgqNSMAuLUN1O83kA5mZfiTsiK5022mijjcONeL1aE89qK+KLCUxr7rl3xfbmn/xucJYAj34UYAz2/PO1jffifQv1NiIctye2BTvEDr5mUViKebv/5XdkP868GCrVMImC3j8E3f9gLQaangJPuXuqExM9VMIjFLtnXrHSQswXFosy2O82ntPi2YcezKDpKVSP3orkvgXA2xd7AdpUDzufew1u//v3HNv9PAqxGsZYFdPGMYFn9+z9GHY9/Yo1MW2LZ4+/WA+rtvXGszwcBsvyxnPRYto22mjjxAytNX76058e0WuPG4Ll937v9/De974Xb3jDG3Dvvffi1FNPxWtf+1pcfvnl4TmXXHIJhsMh3vCGN2Dv3r149rOfjdtuuw3T09PHcM/beLhjbvOr1lZcKNVQ+sUxf8bbAKWl04PEL9onfavF7q9fh53PvQa6siBmzG19Dfbc/4eH3UFw6/KfBPIkDspk8Nzt5k+xU78YqtupSQp3fB78EAAeDOuOGQAoStCD+4RNNhZcFMFHGnDdLkAzacQhelL3Xx5ULmxMUJvxuBBypd8F9XpiY7W4BC5KUKdNRh9q7Nn7MczNvAKjJ50KVkD3myV4YQlcFKBuB0gS3PqlR9iQY2OBwVBUtVrVdiguVgzr1QQ73YPau+Beo8N3oE1GT/y44LzrAqmtv/StcL9eK6G94LzrwCTqIJuoFfO0/DUzv/318oDW4KJokCsApLOKCHZxSVSCSgFaw5x9JlgTPn3nu9f5SNtoo43jOXZ1XoZbR588OHGxFp5NtGDZQ8C0u79+HXaeew3AgF4eY/7x7wCWlrH77t8/rHWxQaDEODwmZXzhLktldoojSea2vgYAQGWFZCEBBkPwaBzWcx4MoO92GylKcENIsTa+PNj+x9ZmHiOT1nIvHxfg8Riq15MOG2bYe+6vLc/aOOIIePZnT8HCGRmmf5SiW5bg/YtAUQmmJXVCkisHjNUwrYsVeBY4IKZt48SP819wXVCvJ//8fex58KMHJGguOO86+YEZNtUNTLsWng3zYGMB5iqY1jz18S2ebaONYxHt7f6I43/8j//R+J2Zcdddd+E//If/gHPPPfeItknM7Qocx8LCAmZnZ7F//37MzMwc691p4zDC+0DzBLkSFBmAAE9F2HP/H4qNgu8eIVq1DX3+rEvkh6oCKrNmcjp/xttg738QQNThEZEmMShpxCrdKwf7G6Vpg0jx227MOZkYVL/inKz2XBd7DqJEueD514IV4TN/IwDqwvQloCyTIn+WgbQWS4quG0w5dElyGw8trAXNzsCcugXjkzowHYWpb+8F3bcX6OTgfg9UGez+1g3Hek+PSaxWhDoSwmS9OiIeKXEofuLHI3F1wfOvhc018q/8AADAbFH83M9AldK1t1oCOX/G22SugCvKAZABvcxArwsUJayzxAFcEc9boxDVhZFEC9mvCJxnQKKw56vve1iOe6PHrv7LUT73yQBO/O/oQ8WjLZ49fuNA91VKEjBbkFO3777vI5g/5Y2N56xlqzR/1iVyj6kMdn/vg6s/5wmXCrnhZj8czNLoiMN33/ouFOs6brwQaJ06RA60/uw4/4aGrc2F2UtBigTTlpVYhMHdx929nB9Y6dfdxmGGx7OnnYTxlhxLp6bo7DWY/pbDtN0OuNdtMW0ULZ59eOJg97njEc9e+JyrUfUz5F/7AZhdzm8ZxdMftyamXRXPxsKh1TBtJz8gnoVS4DRpMW0U86e9CeMnn/aI+I62mHT944477sDc//cleOxvv+tY7woA4Afvvxqf3f1XOOecc471rhxyTI4gISJs27YNO3bswIc+9KHGbPdDjZZgmYj2y398xaqdH57MYIaa6tcdFsBKwoI5WGd50sITJPOPeav4UVcGcASBn3ExN/MKGRSfJJLcPuatsA8eQdJlLG4dfqJ5HAciXR5CeMsub+u1wnMaBydX1oqd+sVhyD0AUJrIwPXYdsxMTCCN9yG+Dfl9au0XVgRtmoHZtgmqqGA7CcZbOiAGyimNdLFCulTh9s9ddqx385jH/Glvwu6f/N4RvbZNSNe3kHa8JKPzp7xREsJxIQmom1VFWVrPHFBUW0m6DpTGLC1/72IGxk5d3e3Kc8aF+MuzBcpK1qVUBvhSmsjw57KUbfpB5Vq86VmT2PcohVv/1xUP30lZp5h/9JvlvLq1ePd9HwmKR28feaRrz2qxHhYbGyFaguWRFWvedyOMFGaC+MJVfG/yc0jKEjyuuzuCKvnMi0WJbCxgDXhhCXse/Cjmtr5G8FqSYPePfxfzP/N2sZs9AqJjhQXY4UQk9mFjapvZSTy82rzANfbxSNcfPytR9Xq1ta7WK8RLQGSBOxkthj1geDxLpYEajGG29DHekgMMVH3BtMmgwqc/+8jGtC2efWgROtTW4ft4vODZuS2vFvLad/nFjhWexFYqzNwiUrKGOOeM8Fz/2qKQ37NMXuM7IycxbZatjWcV1e9JBE7k/+ORaJk/6xJgOBLxLbDCOWE9r5MTBc8CLSY9GtESLBszWoJlItov//EVnpi4denjYUA8KQX49n236AOA6nbFm3pcSMJEFBLIFcV/iLqYpqckWS2rJlBxCa9PqvYs/PGqZE8D1KwW0bbi5/B4jNvK/7r6Ng8jVpAocceKB5vu9/UscPm4MH2JgDzLuK34lCStbHHr6JNrvsYntuGzBIJP9yM9aKoPdDuw/Q4WnjSD8axCuszo7DVIFwTgPdKT0TaOLNaDVHm4k09fPPBxoCRk/syLwTN97Pnq+yQ5MhYYDNyAZFPfg32h0s8acI+FBNQPiSaSeT9JArBdacdh2T1fS0I5ijz8R2MpjuZZ/bwkkYQtTYBuR/aBGZylQKrBROBU47YvXL76AW6g2HnuNUh+dB/4pFkwEdQD+6Vg65N75noWmD9vSSLJKpEUkft97P7eB8WqCMDu7954DI/o2ERLsDyyYsWcEn8P0gqU5/J98fgVAJ20We4lvqPZcoMcXhFaCYYAZDujcWOmCjkbmN33faSxPwcjMQ41wnGtNgcwfh//XvGQ5Unh0SHsy9FYj3b1Xw5ArH3nZl4BtvagtsCNAu/EDJtHcgQ8O91BcVIPo60JRpsU0gEj32eQ7a8A5tAt30YbhxPeQvtI41iQKTGmPVhRff6MtwF5jt3fugHzp79F7OQWlprzo6L7Z7D2ivPp+PwQie3Xan9zfw8EiRMjrcC0SSJ/Xw3Pxpia3Rql1IbvUNtx/g3I/2UvQASzuQfWCsn9S+D7HpDcIE1XuHRQltZ2k52OnAetsfu7N7aYtsWk6xqeYDnj4o1BsHz/A8cfwXL11Vfj7W9/O3q9XuPx4XCIG2+8sTGO5FCjJVgmov3yH38xt+XVIZk8FEDkiZhVYzKJc7+T1mIZUDmiheiwZq1MEiWBEAIcAbG6fdha81lWC+WU0jwc1ZuIhtXHnSGUZ8D0FLC4BLu0fNhzYx7OCMRZJ2+CtEdo0CknY/nxm1FMK9iEkC9YkGFQxSAGkuUSNtcnjOJlPaJV8a2MNVV9rqOCjQFKKXAcylymox2H+hleeM77YDoJyDKS+5cBADQYyrH4MAawjlhZqxgJhHt/6FJRqk4QQycL1fYHwMpul0SDlZKZVyYiYrSqn++fOxnM4DwFp5IQH4/dK7umLoKa6gNbNgFLA2A4kiKw85Vna6H6PbGbcLH7+zet2M78mRfL+QufhQbyFOXJ06vOxjkRoiVYHnkx/+g3u5kphN13//5Bn98gxq1t3MuCdSzQVCMTBWtCHo5ERXyYApuYAIqHIR8swnN9xK+ZIF68PRcPhiutb303iVLyvKk+sLQcnrtRleb+8woFOL8uPUIxrcezVUfBZgSbAOkyQ1UsuJaBZKnCZ/56YxSPNkK0eHb1CLNBY1y7QfEscGif4/k7rgdVFlQxkvsX5Z5njOCnWBjq3Ti8WAho3i8n7/9xTJIsnoBRFOYArXiNf47fB2uFVPH36Vg8M0mcKyXioqrC7h/cfKBTtCFjbvaVoM2zsNs2QS2NgKUBeGk5/J2m+nJ87tyshmcBh2lJCTGlFThLUJwsAogT9bvdYtL1j5ZgeeihtcZdd92Fk08+ufH4Aw88gJNPPhlmFRH+weK4GXLfRhtAPWelAaC0AooKbG3d/eBjAhTcuvRx3Lr8J43HGgTGYRInhxrxNuc2v0radxMBfR7srSBSiFYnZqYuCuRL43V5BmSZLPRrHMeuqYsAY9ZMPs9/wXUbTi126/KfYG7zqwS0VAZ2334pVp7gXS2UJPKZ+sgycD9HNduDTQllTyFbsqg6hHSZUWzS+IdP/fax2+E2jouY2/oaSaCSpJGgeV9/GAv0+9izhj//sYq1Eo6g+HM5HHUSZHcv1KSGjzjh8wU8/5iNipJVJf7wnbzuuIjDEy5EdXLk1xmt6u1NkDZMBIr+7u0RYBhQsk+sFKAAMqJANNMdUGnl76vEhee8D6wIt//dxhkCfP4LrwcI+MwdAvZXW4fmH/UGMOSa23MIRWRg7SS1jTaO55jb+pq6Ow6Q+4BTw/oOCZoogAEIhcJJLOdfEz//aHQnx8OQ5097UxAgxfuzgvxBE+feuvTxRteO3/9AFPV7cr9dHgDWrjgO/9y15s0AG89eZc/ej2Fu62uAPAcZI93xxoCAE55koX6kDnV4ttzcg8kIxTSBNSEdMGwKqAoop1SLads4aMxtfhUoSUBZVhfz43lOM1PYswEL+QfCtGRq/JjevVDjV48tvcAnxpmKQNB1F6M/fl8vmXw+EAkvXZe2jp5HJNgz7ojxsZooyZjQhQygxs5Kyd/8/BZyvycrS5BzT7sce75y9Vqn7GGPHTtvAJUW2f97T5jBu9p6Orf1NaBeD7t/dMshb7vFtG2sa2yUdomNsh+HEcws9YCJ+OpXv4otW7Yc0TbbDpaJaNnVjRe7pi4KRZq5za8S786icGpgX1VziQlHIEBH/tRs5TmR9dShqlh26hfjdvOnDWLDW13F733r8BMr9nsySGvQ5lnZpb37g9rkcDpVgNpCbLX3IeXsJLTC7rt/X1QSgJwv37qbJqKKtha0NATvq4fUrZbIboSYf8KlziJjDN67Xx48kRJSrWQmg2ux5n4PdjoHlQacJaimUlQ9DVYEqwGTE5Ih43P//e3Hes/bOA5ifvvrw7wpP1ckWCX65GrrZuz+xvXHdD8PpuqbP+uSlTOb/D8g3OOZCNAUkjsqTF24iwgVDIfyWJrK/95uJ02b2wcalj2N5FGroPRjIlA1oXaJ99dbIzgbS7+frDVsLxXihRlkATIWNKrAnQQmFyJHD0vo/UNgXIovtk9+J2zL1hpgDQgx49+bE/HCZk2wmsCRQOHOv7pkzW0cKM7fcX0gWFaL+dPfIt7dxoA2zcJsnZHPCsBt//DeI3rPEzHaDpYTM+bPugS7v/MB+fmUN8r8v8jOdtVwlrQcqZJjtfbhdGzMzbwi2NreuvTxlXjW3UMnydFg7+UjSUDbTpLduff+ZkeL75AEmjZfq4XWTYLFH7Inl7SWIfNpgt0/uBnzT3pXwLOcarDWgCZQUYEWB+DFpXoeDbAhMa239EFZSdeNn/FyIsUEpjWP2hzwbDmdwXQVrCbYhFBOEVQFJEPG3/1ZS6q0cfCY3/56cFkBVQXK8zALxJMJtO2kY24/dShdKiswbcNxosazFMgjrsmMUOOI/q+q+l5SVfUc2klB0Wqd0/51sZ1X3BXjYxJHA3VXtid0et3aUjd0cLtj6OS1oGhciZ2YjTqb2daEj9YHnUE097TLQeNSsGyWwHZSkGW53yQiXrr9749MiHTBedeBCQcUn85tfQ1gLGjrFlQnz4Tz2s5EbUaLSdc/QgfL2zZQB8ue46ODZfPmzSCicD3GJIsxBktLS3jd616HD394bRHPWtF2sLSx4SNO8ihJYIfDZvIUh1dE+KGU4YWqASbY2pqYiFpm/Xvt6v6m/D78BG43fyrPc179uzovA0fEDWk0EiNvf+AH+MbBxkjxzflxHkknRtjHAxEym2eBRGPu7MuAmb4QKYZlWLKznKHSgKpVFC1KhWPYSEnp7m+/X0iWbgdkWTp1jnd+2Hve+oHZUz3YbioAMdOwmUIxk4AJUBWHIqguGSgAPoH4pTaOcszOSBKzbMBFKR1SjhggUsF3/2jE/FmXhGGQwErl1vyTHDC0jBzA+DGbGsrj+SfK/yFZthyR5mgq+iwcsYL6fp8l9eyPyjY7WwDZNz/MPk0AT5BMJp9xt0pILm1D3UcqVv+55xqut6nEnoeJQMsDkGUpVCoCVdKxRlWUSGsFLqra8WJUive1MXXi623G/DBSY4RQc5YNXnk3/4RLxbJscw9qVIKUgoUGa4CVI1dI9pEV8MJd74cqLFRpDytRPCC5csbbAolFWgPWgJhhSTqOdp57zYbqyGmjjfUOT64AkPuCFS96Appz+QD3HaZgb+Nj0gqnMS/FPdboJnHd33sW/jiIi7gosavzsvActgxSFqSzBtkzt/U17k2piWmLAlQUQurG/vxhg+5YJnFw1JUz2cHtH2+8j7XgTTNAqrHr6VeAp7tQrphm8xScKlBpoQzXVoxxKLWiU+ZYx+5/+R1HsmhQnsmQ5CB4OI6B3WqYtpeBU41qKsV4NgGIoCqG1QBrAlkgW5TOlRbTtnEoMf/4dwCzM6DhCLy0LKLLtMZ5pPVRI1fmnnJZ3THtyINJYdL8k961Jp4FDoJpYVfFsxzmpkK6oWMyBIiwoKq7qbWu1xUfMRnjI+78iWNyjmxsQRkJWv38Lq4q+dkYYDBc3fqWCBiO6mJm5cki29guswUZAMaKFbyisO55+8xAVM+Iw4VssYI2LOIl5fC0AnY96ypQUUkOYO0hi8k+feeBXT3mH/1mOe9EwGgMNSqF+FcKFzz/2nYuahttbNC45ZZbwMx45Stfiauuugqzs7Phb1mW4YwzzjhioqjtYJmIjc6uzm1+1YZJEB7umD/tTeDBUNR+q6knosU3TlI5Vs7512jVJECYRQnDtjEAjic7YOAKaHHHDKlG98rcllcDxgiZkqayv05tJ37+qh4k5+1ivCe9G/S72kyWmGg6ELmiZmeA2WmYGd+OS6BRBbIWnCUw3QQ211I4G1bQ9+4F718UhaDW0iHiVCSAeEXvvucP1ny/hzs8cMV4LINalwfHr/KPCDQzJZ87EbibCbmSJ7CpgukmGJycQBkgGVjYRAqgZNGq/No4pJh72uV1B4fv0HCqPxh7dImVJ79b3ssXvHxC5u6Du7/9fnmeJ1jcPdsnPuFxIFgj7P72+6UrL9h96Xr4fKLBmlYUqVh7UgSiArRWElf/FAshvq1dua+T4e/93p/a/7xaYSx+TrxtreTnqmomsG7mANxchIbd5cR5CF7cq6yFDfVfbA+hlNg0eFVklsB2HJmbathUbFo4ESI3XTZIlmQexHor8XwXixBOKdDrgjtCLpteCnaF2key9/4joYNl1zOuwK1fuupY78YxifmfeTt4wXUPx0rkqChFqfO1r4wQn2W1UlE8WWiDkCdgK6SJ1nXBzZga1yLCs9G9edJGd/5RbwA7UpfyHHY4FCLEFdWo123ayDBLV4abncfD0QpMe6h4FgDUplnwSbMw04JpWQF6UMJmCWxH7vmqsFCFgb7rwTDomfJM9rEsG5h2I+VQ80+4tFadl5V030zaIB9PcQBMW8xmGG5zeHYoeJY1QBXw9/93i2fbOHjMPe3ycJ+hsSvKl0504h4/Wvnq3M+9F1QK8cxEgVwJAhegiV0PhGeBtTGtn2US49nVLMHC+3tcW+9HmPd3IDwbY8d4XspqJEtM/E/OegFWEimKAukSZuc1Os2je1tE7oS5iJPv79/Dd9v74ySqhbVpAqQpOE9qy113/nwOoIaliJSAdSXgQicqHNnUycUGMU3AnUQ61DviQLHRbNgfzjgeMOnxFqGD5a0bI1f6/o3HTweLjzvvvBPnnnsuklVsC4802g6W4yw2UmLwcIZvv2x0pUzOWnFkCikFZCloekoUFMORJKXRa4JKziVd5B/XeuXwtklg4hd3y6HYNjf7ytDtsefBjwKYSBrZQtoQxCqBB0NRlmSpJL6VBT3qZLFN2b8Q9nE1G7PYQmEyAjnkQBUnGnphCNq3JIW1ykIRBRsaThXstk2gTdMw3RRUWah79oY2XR/zZ10CO9XFrV8+9oUQToVEI0A+gyyV/T0eE1Jm8MKSFCim+wLeiYBOimRxDD02IMuwmQpDQJkkOW2jjYPF3NMuh80SEGvQ0n5JRLodIKmAcXFYfsFHFKNCkl92nSE+4kQLkpTOnX2ZJKxEou5jbg6CBwBmUS56b2mgTtycPddqiShNOu9YUR6ynUgKiaRLhVnu15NB1Pw/6pJpJKGx9YL2+zLhga1cYhivL/5c+ecZbr5frDxsDA6lmqiHf4pT/8UdNcyyJjqrSEI03sXdP9kCbBjIFZgAKi04Wx8Ce/6UN4ZCcfhMvQXFcCRFAmZQnoCMgV4usGPnDSimE6TLRuxkMoIqGNlCCb003lB+3W0cfjxiyZVtr6u98hVFmNIXyKSAxcxSsEk0eOsmscBaWq4xDxDuk1wUUTebK0K6YfYAZN6HV0oDDaGQdK/IPsxve12DePdqYY89vTiJ3H7ywmLoxPD35j0Lfywd1ONC9tXdryZtxw5Grvh9p6ICGQubKiT7hqBhAaUU7FQOM5XLrCpm2JNmQNM9gAimk4Gshbp3XwPTbig82xGrSKoSgAqxEF4eCokFnFCYNt87buBZk4lgKClbnWcbB4+5p75HupFJQy2PRWTnxBlIEmA0xu4f/+5Re38ajAU/wRPf0TB46Gb3XoQVfbdKo2ZxIEy7Gp51z20Q8N5+ixgMBSLXtQFIZ3SMhVfDs/G+cCREDURKszOG2awkZFaLmOTxa1sck/h1rW3Fz/PHagFWFmS90Al1d7w7P8QMzlJQSkDlt61hM113VCbrhGm3v17qSN4NwHfKu5oTAeAsAXcU9HIBNSiw89xrUMxmSJdKsCKYbgI9rJAsl7j1f12xLvvVRhttHHpMT0/jG9/4Bp7ylKcAAP7iL/4Cf/zHf4wnP/nJuPLKK5Fl2UG2sDJagmWN+LUz3wp1xumP2ORvowWRApNrd40L6a5TJISzQJibeQWwNKgf9+o9T8RMqiRIidUX1yROSESpBk1BCTgx/2U17+yGQq/7m7Kvw2GtKHRKRMpz8Sl2IIO6HdBEgfCQw7flu7CZQlIa8OISaDgCAdB5Bpy6FaafijVMoqCX3XtVFsgzEKZE9TcuwGUFShNUmzo4/wXXgfxuMYMMP+x2Lnu+dg3mnvoe+ZwUgTodcFFKx9Ak+NzgQW4OQwB7wxFo0SAZjAGlYKcAPdKCjXMCGUCXDFW1CWkbB44Lf/5qKGbpXHOEqnSvuEKTPnrfj/kzL5b7pu/Q8N/JVAhlb3UQSBWWAXMhOYw3RgTYVdRywZYmIj0mDynaJgD5uyVQApnD56wT5W8k7xwXOXni5/j9gXrmSqwU1KoeYO+sCAAhu8M+APK+wZd6Imk1ptkp49SMqIyzALP14NBorSBSDZKloRp0XUP1uaoV7WoEIZ2MBiuALGDHClVPw/QEJk5aXMw99T0h4d3zv68FIIr80DWjVW394CPPAJYB3khU8/xaC4wLkGVoAKPTZkDGQi9X6BTyOZlcg1ONZGiQPCBzFuYf/w7A8gFnzhyv8Ws/e2QzcCbjVx/7JqSdKfCWTeGzauPYhidXpKvZqWy9TRQQOq8JwG43GJ32LcmLjW3el4pSnu+6Uwi6vn9EGLlBrgD1e0d/Jw3weLyCZAHQEPzs6rwMNhYoucHF1O8BaYr5My8GdTtyjJ0c1MnXxLQUYbXYPgyA3Lf8vZMZrBVoWID37gMsQy1kwKO2yvwqt7YoR6ATs1jCJAloql93skR4FoBg2mOJZ3/uvXUXiyLB4EUhn5sx9fnY4CIi8nZ2QC2oGI5ASxbJYAw70xU866woiQE9YuhxKxhq48Cx6+lXOJzFgIbDFi6PL8smblvnmD/tTbLtspR82JMhWovAj5KABcN8KKAu5geM5gltrv/5mMS0Hs/GpAdRbRPmQ5NgNyVkfMC0OnovYGVXiA9H0IAj0YudIFe81ZZVYOWIe4rJJYTXefy5osskvnf5nxXJubJ13SVsM3SHr0JahWOf2B5RsOIlZsAm9fGUGgqZYPMsBTRh7mmXNwQ68495KwAE4dn8o95QdxMpEkKtdGIBXwvKMiGzlLuhBXLJYXMUImrNNUw/AxmGGpXIS8kNZIaYQnbvUk22GbPCRvlEiV99zP95rHehjTZWxGtf+1q8853vxFOe8hR873vfw4tf/GL86q/+Kv7sz/4Mg8EAt9xyy2FvsyVY1gguC6iFIXY+9xqYfnLAAWXHKua2vgY8GstQ85lpV3BWBx0Gdqxi/pQ3Yvddhz8oCMCKRM/7cQb1qwMRXBQA6kRwfvvrhbAAIlUGh4STjJFBzz7MyiTUB3klRgA8bnE/hEKltxDb1XlZ6Jbxj82fdQl47z5ROmyeFpXMcCSL7SrnLBBIaCajbC1oekq2UZoAxOxUB+qkzYCfWZJlMn/FJuK7T5DkclQJKEmTekaAUxuX26ZQTSWg0rrhy3IOFFlceM77HvbBxL5NO8w1yFKQI1n850weGG3UIHJ2PbpORn2nVVUBaQoyLGpN00HVc0pOBvT46BMshzKc8USK+bNWL2bu/s4HBPQCx1Uh97YvXI5dz7oKNnfeyJumQcujegCm1ph72uXgVK+bamr+CZfKD6SEFAHqYrub+cJJlBQxAwZu1kiUPEWEOGuSWVHA6gU6igba+9/d8MzwPvH7aYjazxMfPkFdxWqr0UEzQarEZA6DQiJWKwijbhK/Pxb1fBW/Xb9vLrEO5Iy3fmB2Q+g1FLPcM3xS6m0xrIVnvgmqPk/OpqVxH/SfRZysM0MVFbg00iGoCbowMLmSgqZlUYi7mH/CpTWpxFbmqnjrssqdC39vjkkkP2Mg+uwmP0tYA1oaIr9PbBWUMbAE2NRZdFYs+5Uo0OIyfNfR3FMug5npwnQS3PGZ5j1r7mmXA6Wbf+YFEmW1Yb/L80+4FNi7H0jXaYNVJVhxcRm7nnklys2dDXdfn3/MW8FLy6IM3jQrD2qF3V+/7tju2AHiocwL2nP/H4af5095o4iHjIV1GDYUtpxgxj9/bsur5e8TFiuUue6RuPvYdaZ4POutwWiyKBY/rtyclbUsEl3cOvpkPb8lssmdf9K75NotCnCvC7t1BnopAxYFf84/+s0NlfmtSx8XPOvvmxN2rzQzBZ7u1UQ4M+xUF2phUQqteSbdLR2xVSULIW+LCjQupSDrMC10H1SZg+JZAA87pgUJsQJACKGqAgZDsLUNm2M6AiXlwxJ+/xO9Nqa1QLpvBOIOqn5Nmqni6BMsjzQ8C7g5JRNrbMCz7ju/UdfAybj1y1eJqMORDtzNRIg4HAULbqgkYFBvP/tQYv7Mi4NIhKMZWGxMLQKqagxFvsgf2YI3CA4/N8VyjY8Bh/9U1I0t+XewsfXkSoxz/esgz2FrQ6d2A9NGndQBt/q/TYaxgKEgXgw4NHTBMCgQBwjHjdWws19jlKrJj7ijZjXxjxMUwLIjcprXLsXnaFL45GePkSNn/Bxeh3WpKF1nS1Kfwwijz5/+ltBBPr/99VGnjrNuZ4WGGKoogliXSDXt2eJzYywwGEJbC9XvSF3FMEA25EKqcttdWAp4ff6J74Tt5eBc47bPX77io5o7+7KmLdzy8Og7EjyEmP+Zt0uda6OuXydA0Cpf6TYOLb797W/jaU97GgDgz/7sz3DeeefhU5/6FP7u7/4OL3nJS46IYGlnsEyE9wc8f/Y3kW4/9agNSTucmH/0m2WhsLa2uopUaaQdmI19lTPXEeG8m2OCYlf/5YDlxtyQjRS7pi4CjF2X/Zt/9JtXgoSqkiHPWoPZgoej+gVEYZh9CNfFEtR+E9FICCN7hMbxMK/wtQ77+Kg3wC4tQ207Cdzrgh7cF4gQr37xQ4rjaFiFEck1sH0bym19qMJCLw7Fa9SplLE0AKZ6qE7ZAk7Iqf3kePSwgiqNKK6NkSJg4VRBaQJOtIATItjpHKaXQg9KURW79lZOZHtkLGClwHu0Y9fTr4Badp9fZYDhEDwa1zNwNjLJQiTf0ywTRQ0gFnGz04Am0OIAu79/Ey58ztWwmUY5lcJ0FPJ9JZKFMW794pVHZbd8Igqc2MnoaskngEhtNvFzPDg3DFgn7P7ujUd/Z9chLjznfVDLYyFfEwXuZKFlnrX8O9Bw8oNFsPXypHdVNZMuX9hXdZK0++vXyZyW6Hw3yAuXbEihbMIb2hXWOUskUfE+1O54Vnzv3dwV8rYDhmsSxJMDBwvffeNIkAaZEr/eDVte4dPt3zvujozterQKhalg45gkYZ9pLApnTrXcoytTExc++Yv3ww879e/j//dWmFqJgi6N5o4lcoxUWdiOI3VdxxxVsq6AhAiiwVje23lNU6TAl/Ngo2N2P8fzIsLQVlsn4p7UUhroZLD9HKYrYgAoAlUWrBX0qILeP4TtZbIeDStYN0gZBGQPjoSIL43sl+869efA76t/3ywF71tA+fTHAQxkP9m3LkWaI4m5sy8DPbgPlTL49E//r4c8g+X86Zch0R3Q7DR2/+Dmo7DHhxfzZ17sSK4yzKjzs/Uoy2RdJKoJwm6nts/LMsG0UWFw/vS3rIqRNkLMP+ldsN//Edgybis+9ZC35wfOkxP4sL/XZilgGXZpWf6uKBTzxC9/JclCScTgRWtaA9O6gcXeAtfvQ0wQNY739LeIzS0RaPs22H4H6r697rNLg23M5HXoh9CHIBKybcsmVFv6UIUBDQrQcCz7ujQAuh2YU7cIlk1qPKtKCzUq5R7p8ay73sAslkJAjWe7KfSwxrNkGKpw6yTJPYeYj7p9y66nXwE1Lut7k1Pn87gIsxlDEXej4Vr/eRHJdzTP5FyPxsDMFDhR2PO1a0S02E1QziSwCSF/sES6fwRW6qjlDI8UcmX+zIvlh7gQPRlrdTQcZ5h21zOvBA1LuR+UZVgngp2pUtjz1fcd8fbnz7pErl2i0DXc6A52hW0/V9W7R+z+0S2SW4zG9XNjkY8XeNgIG012dnQ7UecINWeJ+J/jcN13HteuRaJ4PBq6uv0tJMJhYVZj3FVSRfWQGMtNXEvB8tKHn8Pia1FAs5Pab89h+UBIxO8RR9ypEudm/n/f6e3f0z/mO4m8gHQyxxuO5Nofj2tSJk3qWZV+tq9/L2/f6Wtwcbe5Px++83ySXMozcL8D20mc8EpqJlQaqIWhzCHMU9C4lLktPcFCZCzUsKzXM79v/r2Go9qqDBBXlE4Oe9IMbCY5RXLfAnZ/5wM4FjH/hEvBD+6F0YxP3/uxdgbLOoafwXLmWzbGDJbvffD4m8EyMzODL33pSzjrrLOwc+dO/NIv/RLe8pa34Ec/+hGe+MQnYjgcHvY2W4JlIjbCAKb5M94mhVZfNHELQ7C1mvTxjG/qkzFRxFnNymqtCJ7MLm4r/+sRHc+BYlf3N5tKuYYPqQJ1O2Gmyfxpb5LEI88O22d1/vHvqBcjY4RU8Qsn0LBaYT+MeK3ZKxNB8eIL1MDI/72Tg0/ZtqZXfDgH5BfGBDQ7U2/LR1kCed5QKQSSRWuxYEhTIM9QnroJyf3LwE/vkWKFG2DPeQYz24XpJ7CaRO1HkpBSJWo+WIYal1ALMr8GgAyTd4UzyjPwts2ye1mCYmsPnX/ZL4WufgYqrZA1EEB3tJImr87X+wcCJsuqLl4Oh+DBUEiWSUC3gYKy1M3EiJoJh6NA+lGegbdsgtnURTGbgRNCtq9Aetf+YwaUjseIragaynqgvjZWI1V8eC/hWHmmasL1eEhIV4vzXnQjqJLk7K9vuxS/8G8/CDW20K5bgSo+rCHjYYhnZdzaFa1ZXqWn60L67q9f1/hsVnSeuH80LmsyAQhJCzuCBYmS5NB3tiklSUWcaFZWlM4xSRP7Sft7R6wsVLq2vPL7NFG4aCSt/v3i96gm1twoQQuki18znIVa3NFiZrtiL2alywTMcpzMkmg5UQBi20u2tYIysrhs2Hd5Yi1LhGCxqFWOEDKFjGmQL1QakGHYbgoaVVCLAyHgPenk96mUGT/hvE6qF711nD8HQbmpG4kotJaCiapt5fxn6Dt9WGsgUVJ8tVauB2trcYG3EGmoOVWz4GpZEvNNM2Eg7eGGVz3uvu8joqJddhalM1NHvM0TYcj9/BMulWKTtcFipVGgiK9ZoL5eo4IfgAbWJa3roenGSmEXouJFVdU412FfTyroqT6MIyAA4Hbzp+t6rBdmL13x2G3Fp3Bh+pKwP5SlwT52ftvrpKB5BEOZ/Twjrqrm7BUgslepf18N+wdrLx/uezhp2eW/O36wPXU7a3bK75q6qCZZXaGLsgw0Ox1Z0FgpYBnbxLMxyaIVqNMJxTezfRP0/iH47vukaDfVAzo5zGwXVT+TTkdfXARApYUem0B207gELQ4kt/L3Jkzg2SRBsa0HPaqQ3r8cyFtV2nDPhVJHhWjZ9ayrYFMNPSgAt46RV82XJVBW4PFYBESAfBYT3T7HPDzJsgamXQ3P5g8WSO5p8ezhRAPPNrpDfRF7It+J176428DjhNBtoAPOPV46WybjgvOuC4SD6SRI9w0F2wCAOryZX/M/83bBg+NC7rUTNQFvyRpyzDzD7h/cLDWccbHy++nFRa4OEXBgg4DRMiAdqK1iEw1OkwYhwko1cSZzLRoKJMUqeBaoMXj83v4aKKuVa4nH8ZPYzYe3BpsUKvlif0xApKnrJtS10Mjvf7S9xu+T+Zjfd3/OvH2XdufK5RHBhjc+3+58BtLHnQPby0UIkGVhO+F1VeXOS3ReJzppeDzReapIjttjbjdHzZM3rN1nzSxY1XfGpxqsCWrgrrksrbvFy0rOV2VWYlpmIViMESI+TUG97hE72sxteTXAHOY+zz/6zbUVX7dzxN0yGwGTnmjREiwPPXbs2IHTTz8dF1xwAX7rt34LX//61/H4xz8ed955Jy666CL84Ac/OOxttgTLRBzrL//8KW+UuRexTYCLMKjSTixI/mY/aQUwAQZ8kgmgaRGwyt8PN0jrFeq8C7OXQm87CXb/QiAsOPaWn9zGKvsUFHVekUAkdmh51GY4HIHHY5DWayaq82ddIvtQVbUyI/JGDe2/nsyaVE9MElsxWJ1ISBvqMvdZxeq/MNQz7qoBArGkpqcbntMCSJzS0Pllr+bPuav/cqgtm2XOy5mnoZrKkH33bsBamMecDNYKalgASqHcJADOxrY6BLGCsQJMyNjwu14ag/YtynBVV7ijTbOw0z3Yfga9IEpiTjTUSCwqfPvrau2t6xXnv+A66FEV1DtUWdCwkOJWVQlRsRHVfj6064yKri+OLT6IQNtOQrV1CjbXsImCquxD6jR4pMTcUyPrFua60O67AD3w9gA4LgQD9TBuperOCX9f9Z0Y8X0iKiJvhM7HI41z/92HoMcWemyhCivKYWODtRUrP2MEK+xx5p52eVMx7Gdw6KgY5L6PnGjs+d/XhmJBsD+IkidfVFejYlWCpTHvJIoVRE1ESvjPLexjUM0ZrOiSWcv/2e+HT5jc8SAiI3wSSu5+uOJ94ud50mMiAeZEo3jUNExHAQwow9AjI92Do6KxX1Sa5jlaJQkMHThKXif+zzr8HvbHkUSesArJPDPMdAeqMFD37689yCu3nlaVHIONZsNUpk6oY0Vkg+iyTaUfIGueU+H7+TXkX7ciGa8FCmGN9+fGRp9pSH5VSG5DATP+vP29wHWzUpbW3RT+b1W1QgQTfx7s7NAoy6ToaNk9f8IaJE1AMzMwJ8+g6mcNe7PjnWCZP+1N4PFYZoTEx70KARBjV48FG5j0YH9fx9D9XqML2ceF2UuhT94KHo3AS8tr2skCWIlzvTe9vw+6ArSangJvPwl0zwPynR+Pa4x1IEz76DeL8GWyUMerkylY5VyuIFfCvjfxbdjvcN9LgvDJF2Li63pSpKQ2b5LvW6wG7nbkyVW1pt/8rqmLoLZukXN9+imw/QzJ9++Wlz12uyh6kyaelXkqACtIR7VlqJKhKnfPZ0h39/5l8GCwKp6lykANiiamZZZ7JY5ed/YFz78WVInAiYoq3KPJMGhhIMKh5UHdybIBCZag6l8N0xKBtm5BtXUaNqvJ0xbPHjzWxLN+zY+Jk9iaKsxas1hBwHosEheA/XN9HCcdLWvFjvNvgB5V0tFWVLVFqz9u38WbJbCpxu1/X5/n+Se9Cxi7brJSRD7sZ3+GTlyuSRYngJw//S0rhSVAjcc8jonszWtRjaq7LIBaZBA6QCK8a6xgo0TV8/6sy3EOhmf9ewJ17QMAckfu+E5nj+OMqfd7ArvJGlTXUxprhg+/32kK9LsihPGkUGVqIsNjYE/++ZgkgwKm1bXgKqt/bmB8v7+xqNb/rjTsbF+cO/YuCrnlSaTKBKwHZiFf/HfNY38/i8cLauJccXIGjbNJlv8jcW+8Xk8e82rdPJMuK1GNjI2pc9zJY0VdP/TON41O2HimcXRd3rr08eAsE94rsoDkeE6Y1qCpPnjzNGw/x3hzjjv/qrbfPtaY9ESMlmB56PG1r30NL3vZy/CjH/0IF198Ma64QkQ0b3rTm/DAAw/gU586/O7zlmCZiGP55Z9/9JslaR8XgYVeQbDEqiBgJbPvF7tYxYe1E1FSVP9ttaQrfny1v01syyv0ViwAk+81GXEHR5TohYHwDjCqXk+Ua37h8AWO0Vhu8ptmazASLca7v3F9c8aCT/5KAU4BIIRhn2ss7I3jUSufG/9Na1CWih3ZyVsFCP3LTwUIuAUpVgd6W7S5La+WY+52whC1xufsrbDKctUEfP4Jl8LOdFFN58juXgCWBuDN07JfzmLGTHdx2xcux/k7rsdn7ngXXjD/AZBl/PWtl+K8FwmYZgJAEMKltNAjg3TvELQ4rBWK3Q64k8J2U9g8kXkhoxJmS1/8sJ239dEcHLrzude47hsbbAbmf+btwHgMHgzr4t1xGhvF1mWjRxgUCzQVYb57IRRTIwujcI9QAbTXCn53L8hdshMnMJMqtLgzww9uXJE40REr2Q8U3jOe3fwOJuAzf/PuI97e83/lRpAF7vyf78D5L7hOSJayJqT9UEabSDGLyvrc0thIYb6onM2UqVVXPjw5FXWwAAjkSugE8Z7MnjQNqvSJpCWeieJFCESAt3dxRIEnCWhYhHsCp0lto+Bb7n2CEyedq9kVJIncm9NotoxSokwjCsppGOn6qIeyTh7HxLVD1NjWaHsfNiOoUlSZunDE17iqk0jfORITLMDK69qdI7GE02A/18RyUD+GAoT73sh2hHTnRMH2c+h9Ayk8sAUGw5o8IKqtNGemVybmPhnVuj6ncVIeEyCdvEGihWQ5Sq795xu6eOLvtidNJomc+Nz4aygiZbis6sQ4HibuiyqeePFroN9mZPOx58GP1rMyAMFEaSpWI/7a8a9xxBpPdcC5WLtyqjE4tYuxGuOL/+09xyXBMv+Yt8oaPBytFAW5oPhaiP8eqzJ9lwvbFZ0pwAFIllVwaxApVeWKv02Gx6G3lf8Vc0+5DPTgAsy9900+aW2CZfJ50T6F4wagTtpSryfeMs0Nrac0BeVZ/Z3w1yszdv/4d6WrG6i/Sx53T4qFgJWkJNDsCJok/lZJDYN9m2Vg2xbYH/1EXuu/+0rJEGjfUVRWuHX4Ccxve50UIfNcjttjW1/EGgylO10r7L7791e87/wTLoXtd4RguXdBZpNsmanx7GwXt33+cpz3ix/AnX91CV544fvB7pT/zR7BtOwhPAF6aKFHleDVxUF9z3d4FkSwnWRVTKtKe1Tns+x83rWS64yrQOrc9oXLQ7GXH3gwfK4bkmQ5SLR49tAjYNoD4dnJNd9HEBK4L4JbG9nZEYeitn9uLCzyAgl/37JGCt+TbhM4Ot3bu555pbMCpXD9H2nsOP8GEDM+c8e7MPfU98g9w82r5TwJeMjjrtApay30/mHdjQvIXClfKwAaaz8lCZCl2P2T36vvyxFGbZAZ/jObxLRuW2GAuscbXsCjgLhD2ncX09B15DkxShCSrYVn/b5PXjdEQLfbJOL8z7GYJJ7DYm3TKismgybtsRSJnWwvrzsO3X4EjBxb6E4QffU5jTtDdJhRyLl0YpMxQqYV0TUefxd897KxYg3b74AWlmXddfNvG5+NUrIOe+s2n/v586k1eBRZzTdOaXROvEjHkyx+H/y58efcd1jH7+HOywobNv8+fh1wrw3rubOWbGAr5hrL+jqW74iJrwVILcuLTeZmXxmeQ3kuJFNlamLWk11aAXkutaE8hRqOwUmC8fYehnmJL/yP97YEyzpGS7AcvRiNRtBaI03Tgz95Itoh92vEhb/xu+DZHv7xExcfle3v2HkDbCLDY7P7B1B7a9sCylKwUTLey9t8+IUmIh+EgU5rAObsF0gpMMuwMK+wmxwcuWpyOpEErhqxUnSt8FZS/j2dRcNBE+FgYxb9jZSQEU5NwUUBGjgVRJY51Q2k0FREr4sVsYD4/PukzxeaLJw3uxtYRwrsXttQ64V9iUDQJPEVJTx+KCUB2H3Px6TQUhRA0l2xvcb7aC0LmAdXY+fh6pR+jeIWS/KNslzph03R8GJj3dBJ51Gdp6JK1k3lmIoGL9/5P9+B5//KjbCawEoIFqXE39rmU6CtfeixgRoWYheTJYCVc2L6OaiboppKYTVBmYdhgKUiOR4LQInVAnVzGRI62Sp/HIVvzW3jwDH3c+9dWXQPij4rwD10qEUJQ5rU3Q+xTZgvRrtWbc6SMFuIvArWd2lwdH3FINm/vw9mAMoN6ZTv4qHM0Nmx8waXUHHYt0nLLo6PHU1yZcfOG8BEYTd1YQEGGmCbAJsq2MyRJgBgGDt23hCGHvvnep/7cNgTgJxzDYYGehnU8hisE5BWcv4nkyVmuS8TgTsJ4oGecZLbSJD8OY66MxqDP5mDXZXNE7l/GSXD4f1280S6SlzCypB7R/CP11GCx8p1MqnVlYBV1UjwoKN9ZwMYwHbzeu4LhKgIpIs7J777hbUjsBINm8jxqYrl83fXtk2lm4WMAlUAJ578QH0fjEPV+8vKqTUTFT6DcG0Bzt7LNEkLoC6GMkMNCiE8xgAvLoXvFvukO8tA0MDSsnSaWpb/nXAktuMM67QnKyYLPa5jk8qICPXXvDsuq5L6WsmdKtJCrjsvpIhVjCv+r4vNdTeAK5gkauUakiQAKnmO1kLIxF0zcNadWdosXDMD/b78nKeotvTBicJ4cwqygE0IyVAS4WRQIV00IFNhPWLuxb8Dmuqh6tBRw7Tn/esPAAx07htKd5O3k8jSMLgWgFxzWVoXZXx3sld1clRgsGJTFwituAjgCwCAKOQjKzD5Q4RnPbasJr8ca4fvlLkwfQlAqjGzJMw0WQUrr45z3bF6Rb8jjSh1RZYkCR1blCSyjaJodG4HctId+/zpb6l/9zMYmUFFIdektx+ZIEvY2hUe/uy/74jIllWITy4K7Nn7MSFM4oJhvB3/PSKZMTc3+0rZbpaFTnOe7su9Mk/F2s/Y4Hk/v+11QKKx+64PN0+hghRCnXqYs6TGs25fglKWIIS027dJTAtWYJUEPKsK28SzwAEx7dGM2z93GS48531BEMCpws5zr4HqZFBm4npbRfi1kaPFtIcWKzAtcHA8C9R2nQ5HNdZTb6npr+8yKt56gYYXMHC0zdAJwTUO8F0GSmH+Se8KgpCDzTw5/4XXB8xB/q014dN3NgVBrBRAvIJcufA5V4f5cNAERJaAalgG4snjd9tJkLoifiCrFMntJm3t5QABAABJREFU2MpMO04BUAIkDruRw9sWsJ0MlGogz0COZKGicHWV5n2AjQHGVu5fvoDui+mTXRlRzh8+Y/9YEMXUgg1OtGBkpUT0UtXdbbAAJVoELynVmJZSufevhmf9+6yGaa0BtHfMcH/zXRGThBCzkA9uW4KfIO/r7W7TtLbtAmoxlnE4LpwDU+Nk/xn5682TKnFHdmxz6zqQWCtZS4w7t8oCfqaMmrByj2pitDyS+tLi3oagwxM5xCzES1GCuh2EOTnLgzo/8OHJF49VURMo5DFtnKeGTiiqP3t/nbLLedznDQWQVYBGLaTw159/juuwCkI/CEkyKaAIBD3kPBPc5+W7jSNi17uuUJY1tgsA6HeBLIOd7Tk8m0MZhs0U9MCANUF3E6hhhWRQobsQzSZqY33j6EKTR2R0Op0jfm3bwTIRXvH3gmddBmyeFkCeEMopV3xy95XP/+f1SVJfeOH7oUorN6NhhWRhLIvPohuoU0Q+5i68ws0X4kNniy8UerbadbFQngcCBoAoCp2q2BMwqyaFa3SurLDyigfoArWC1SvaYgXdGpYKk/Ne/GON90yS2uvUL1h5LolZmjYXLUA8S90AX5tJUclmCmVfClmd+wskDy5Lsc23gAI1AJpU1fpFJ1YHRMU+IiV+2GW5ortlhYUYsEJ5RqlTRFeV+CxHnzn1uuG4eXYatH8RvDwATU+BN01hz9euwdzPvVcKX6MK9MBe8Ngl6JtmZKhaN5WuEoezPv3Zy1Z8DgBCB4t8VnCWCxwGiIIATgiqYOihFICyexaBhSWZ9eKSX5unMlR7MATPTmG8vQ+Tq4Z1w9/++TtW3YfDifN3XA8woEoLVoBNNcgykoUR1AML4IWlFWD4WESbXK5fTA4t3fX0KwBAlEtVreaNFWbcSeuB2Q6YA02OxGZyfXqbEdmmsxgpDFTFUMtFsEsK7zVpeQME8A+i8DxOFDhxMy+0FMtNNwnfC7LAZ/9H8zvxvF/9INJlI0kfEL6Hf33rpXjhhe93SYlPXCDfz6C6hysq1VYptEpySDEX5AbeBw97ZhkiHIZs1skVMaDGlSS31sqx5ToUh9SoEqsTb2XgkmJf+GJN2PPP14q1WFTY90PqWSn5TIdF/Tl6JZ9Szed6ckMRbELgVMFknqgRElnmQ4nt2Yp7gvev9l0ck3ZbccQdJ3AFgVTD9DLo5XF9zGmCclu/PsfxfRSAquTa4cSdVxK8YVIlSYomlFManAB6xNClPN/fw8kCeixkDbv5KWSdvWMlx2Mz6TgKn7Wxcj2wu5aYhcSpjHQgVVWtkgxzXOrzDEA+j737ZSbApMWBW9fIzWpAlolYYHZGLDYWFuR5rkjkE1Z2+ESIDbcW+vUVkMLtVDes535t9laU9fHV30eqpHuJqqpZmPJrb1kJxsoyIdzKsh4WCtTWYN6P2133ARN0chG2TPew/LhNck4J6P14WWY+FJLscp42rysicJ7ATHWE2Mw1bKZQdeQ+kAwt9MiiMiN87o4rH3IHywuf+W5Qvw+ba5hcsGzZV2CNgGn/8U8eOqY97xc/AFUxbEpIBtLxGubhFIUUOYr6uyz/E3hhSfCPV+8mUTEkLiR65Wm3gzCUVinwwmKwX+M15o3Itg4R00YRW3o18Cywaqf2AWPi/SlNQHled2l7643IfgZAjU/zLAgDOE9heinK6RSsCd27BlAPLEqBzN+7Yuw9WZD13zm/Tsb2eDFejW1D4kJgpHBdNXxnkpu1wkURcgIQCabVGpiZAhaWGniWxhV2f+sGwbRKiUXkg/ukGzxJgNlpmG0zh4RngZWYVli56Akk92I1NuG+mP10v5DEq2BapBrj7X357mp5vjKMz/7FQ8ezwCqYNhebsGTvCPTDn9YW0n73j0Bd+VCjxbPrFx7PAmtg2tKsjmd7mROSOPzgOeWA0QDTVaCKw/XuRW/Kdxu7NTKsT76QHneLenvP2OYTqIvnQbShYFMd1hmywF/fdmnjWM970Y3QA7GdDQIft4b/9W0O0zqLam//HLodHLHihVE0qoSAB5p4zuMXIAhuqIysk9Kkni1HJKSqpoCT1LgSC1aH3ZlI5iGNxisG3vs5LDFG3PPgRzG39TW1/aAXD3gi3HcmKFUr/lVUD0iTYP3FUQ3DZqrG9pD7g8d6qpzAtGvh2bgDH6jXAzfvLs5Pql6K7IEBaN9i3anQ7cBOdWqyL+qiDqIc31XuOoI41WFunhcPsVZQpRGcyixkGSD3ekfcNMRyYfsM7qZyXsh1MFtIfaej5b5ZGPkMh6V8bloFAUJ9jbjPzHeUj8aw+xcjQYzUtAI28Hb13Q5oqi+Coc2zghcfqIkZwbPUsOmKa2Ih/GfRyev9iyOuO03GpMPKBPEeLOsmsVCMCSZrUopA3a78vdtB8ZgtAEtOnO4d17aVjlDiTNciMeb6fpRp2FS+/1VPQRkRD6VLBnpYoTJjfPZzV7cdLOsYoYPlzRukg+VDx0cHy5YtW/Dtb38bW7duxebNm4UYXiMefPDBw95+28GyRthMQbFTMhhAFRzUolYTnv3ym+SJrgDNhCNSBsbg45yXfghkOmANzHwnCQO8yc3NADNQlm6hcgUEUrXyzxdRslQSMq8cjFVuzFL4qCrpdjHGKQNrG5dAbBysUyV6jrQb1mrPkERNT8mCMy5c4SJKDJzqlbR23TYR224FOLgdqvfFgZHQdmltPVBZToh7nl943TH7oqFh6JGF6WqUUwnUOIf2ijSvdl1tsVMUEkWUpahjV/kyhkf8guV/nwDH4Rji7Xc7QZlBnVxeMxzJ5+MLkssDYHlQ54bM4DzF/Blvgzn1JEARdGmA2Rk5p91MSJdSWmYVkkaxbc0w3FDq/fWtTZB8/o7rXcFNjrDa3EdCJMTfuHTguBQrh+UBqCihNnWw/KgUJpMiYLbIeMHc+5HtL0CVPeLBodJV4IqJnUTmFQAA50jUJqiyEquwYxhtMrp+sWPnDSEJnXvKZfJ9SsSOLqjwAPkueUWfK37bjnzvbUoyf4jqAqNNgSoXhauqIMVs9sV5hqoUqGRkAKgwcu/08yv8/dkr6vzvbj9YR8o6wKmyAcUCRuFtj/UqCzwBVU8Hu72YgLEJQXvSBHDvSYB2xIqO7oe+CJ+QW7fcGmK4zjvYF/CjbbpjkEKWK+5T/HyXxCoFzl3xGwCVdScQ3OBxOHWldd0ut33+cux6xhWyLwpgTNybNIGhQV4B58kUb+Wg4GbCSMJmUyFabEqOaKqLX2CCskoKsJqcYgz1fTwF2Cel2ori019KcYHSq7kdYeSHrFuXsNs8BWWJO9caqvTrGBrXmxDNaCZeLDhDEcO4YrsvBpJlWI0wTF4IFcB05Nr3M3PkWtZyPEldaPHJOCshn2xEMlrD0CPIWmjk+mFIF23o8nLqVyaCXh41EzdneUVK1Wt8kojqr6oEHwyGQKJBJ22RdcEO6uTRWcnRSVuA3FkQ+WGr7vqFMaDBGHZTH1Rap2hXzsoyKvz6a5wIyDX0UD4/m5CoUV1BgFMN7uVQg0QK9UPX1dTrgWgYCB8Rq6xipeJJgCQBLQ7Q/4EIN6rpHMVJXagyBxhIlgrBHpUFlWN4z3fbyWBzDU4ofLZ6bGEyd+1qgq0RxEMK00mQeDsowwLVChZ4pAisgZ//9zc1is5f+Pjh49nYa/vZL78JeHQO1kD/rhLp/jFML0WydwS1PAL35KZH4xIUz0qb6CYU5an70uRZ3RWlqO7S6Hbk2vZdLgWwqnDoYJh2NdIlWNe64tumWSHkikJwxdBZg6xmsbtCTKRXiokmSHmxBolUzv5cAM4zXoX1hQwjWa5Q9RJU0xnSQQ5aXK63FZMmRC5ZqbdLnY5Ym0ziUQDxQGfy22s+ofk+Mb4NAihnb+utgwERd3krXodnQ1gL1hqkLebPeBt42ybYTAtBOj0VYdoENKqgjLc5PITvSYRpV8Oz/lik65FhZnvQWsnna2wD08LagGdtKpdnvt9ix84boMZG7rXrgWkrC9tLaqFAlSHtdRuk1wp3gochWjy7fjEpFloV0/oOVo9nEwXby2A6iXQf5womFWEJgIDdbEqoOiR4diyCGDIMnSmoTIgXVbk5e0UFKLfiKAWQqe9NMdHruwk4EiK6exFbK+YQ7nr1+xMHK8D0dN2VCrHxCxHfDo3ftuAQX6gXQZHHANFsNED+VlWCX4JAxpEkXvgYze2TPBbNjjwnwpCivQokDnmSQrvOSo+hoQEt5233XR+uLcLi+6pfyzzmi9cmP6Dd7183g80S2I6z482U5CuaBAPC3co1QY+FTFqBaQ+AZ8P59XUFT4akGtWUL5JL93S5pQuayYXs1c7218LZl0ky4OdEIe6OdJ8JAdLJ3UlrkVZUg+DUOYd4XJ1KFwqNTU2eOQFVjf1dDuOxnMsBrJsNKdeOlaU4dLzQSicY4nre7Ug6K+p1P+pWBUDKAtAifi1KEfcuDeQzPmU7cNc9YLhropS6mtqyuZ7pUhkh5xqdaQweDoWw8QSmvzZCLateT+Va5mZ+aUyz0wcAsWyD2YbXhVkrvls8XATOScXjWa2B0RjZXQtyXntSQ6pmOyGXUcNSPgcj88Lke5LB9NLwPeKEkAysiHGBIBQw9uFfr9poY7W4+eabMT09DQC45ZZb1n37LcGyRgy35UiTxKlBBZgwfMEGddHDPUYWeM5v3CRK51KUpnf+z0NTMz3nZR9yRQ/CFz51MZ798psweHQfVZfQeSBBsliG90seWAIAUGajpMndfD3BkYoXqFeg+EJUYJuzTBa+ohSyoDKiRPX+ogcIP2cl2I45CwPK3NB5T0747SRaPF87KUgr0LCZPFOc7E0O4XQelA2LDa9wVlZaJRGBvFidl2UAnFUZEShRcpO3cKoH2abNE1AvA42pwcbHnqns99NY8Ww1LO3C3pOUue5uyVLnUW3rhdF1D3FRukF4Wa2YDZ+dUx8vD2Sh7/WAfg5M9UAP7pO5PKsELy1D7cthTtmCciaFzRXUVAJlpJgrhTcD8u3h/vM5gGLzQNftBeddJ+cUkgR6RbvpJ7Cd6VCgsZmCyRX02CJ7YAgMS7BWMJkksMlI7IqI3XYqi13PuAK3fumqNd97rVCjWvmuKvn+2Vyh6sn3V62lsHwYYs/ej2Fu86setveLk7ULzrsuJD5HcwbOwx133P7OMLfDz7hAbP3i1FNiISKF+aAS1wSTEUwuRXiTSnHRJgBryIVt5fr0yagnFFgRiFhUs5rkBe76l86XuoAZ1gffrcFA6BTw9wwr76VKA1UqmLy23jr3330IAPB3f/bb+Nz/7+14/q+4uUia8Lxf/WCdhHaEdFCFDe/PJODWk0jKyPtWXXcPIDnO0L1gUFs2+K41K7M+TDzvwh+fI1/8ObHdBORIFVaSvNpEgZWBcsA/JoA80QMAF/781VKUTwAyEfsAR5woBYIF56lTv6maUAmt9qKAtKkU1q0mmE7dtWMTuQ+qjoIuGGqsoKpEPie3hHgy33fyeAWlFDdccu5+rgu/KuyTzYVQUWMjKjqgPp/ktu8PLVJKemLAJiqoT/31QxVDVxwU1SZTSJcM8r0j9znLumQ6CaquDtdYnByr0oqlGIRggWXYrobp6NBJCACqsCAj+60BUXuyEcJL62DDZiPVJ3U7YvmDtLZz6uSg2Rl4MQiSpD5nPrFTlaxrgKyLrkDNVQVaXALSTTCzPXCmoZYLqMG4Tj6thd63DE4TsTrp+E4cue4CWciMakrWalaE1Kl1UVnY6VxU6IaBFDCbe6Ayh1oa1xgjTes13xNE3o41+txgLXiqi/HJfajCQI8N9KBCsjgGa12rMROZ9cN5XWSAAkxHY7xJI12OCuCuyMvENUH2EGO4NUOSZu66dN95IxSayRDuCaFjFcCzXnGTdEiVUuD6+z/97UN6r+e++ENyL9ViR/bM37oJxbTGaEsfZZ/Q2ZsiW+jCdDSsBjr3jZFURgrZXs0b+4N7DAsI7oqtsvzQWK0EN7ECkRwnFyVIrdGdHYUvqDTw7ORMkvBkt0+JBnRHPlNv5YrVCgfRY76ryj/kCQxjZSkxgLCrqhYONYgYj2MKZ3/niHAGkqGR++B0LvU172Ufd417UZIPY4BODur3HIlgahwbd4+7jjJmWxcLFUmhyYuF0rSJd2MyxomEqJPL96DXBe9frEUvET7j5QFUJ4ed7QF5KveyXIO39EFlV4o1I6fohyuwFQzTPXAquxamjfFsKPApckRpBttNAO43ipy6tMh/stDAs/nAQg9rYYd0HPC6Y9pyKkXqrkGKO/Eepni48SzQHO7OWQKbJY1B5Md73HH7OzH3lMsOiGk5WOJp1xGgYHJnKaoQMK1JKVyTnKC2hh25+74vJZCrW/jtayUiGFRglQVBie9Eliet0bHtxRcRaeGL8SaX33/h334QTMDn/vvb8dm/eAfO+9cfaHSJv3DX++XYPQ5VgE00ylQ5MUUtBtFDIzULS6Kad3ORwNoV5xlUyBwSqdk4saVhwQz+dqOU6+6tnUmktqNgKQ3HKGKNBNphICpT1/laInRVeoKHGfOnvDGsISsiuucH+yx3D427ts10FvIVThXKrsfICJ+vF37psYIeWehSNwRBXpAl+BsinKps+Ds7O1lydo42S6R7upug6gqe1mMLO5OASd4rXTZQhRAgcs4pYCLpJHZF/OieTt4uy4l8mFzBnZzwY7mEXhyFffW42rsEQGvYLAn4jSor9QxASEEA3HUzEH1OkiqowmFXtzSQtx6zXA+vdx3x4V6q3TF4oVmaQG2aQW1/VgtwuapEGJJnAClZR8tS1kX3HeaFRVCawm6ahu2mUOMSamEoJL0jRghKBMip65aeJDV9LUzpetaJx9MmqjNNCh5MRFD5cwuEGWpxB1awJWMGuh2Yk6ZElDsuQaNCrjVnxVY7RAiGtb6bSCtU/QTjGYV0wCJUhOBJq4TsBYvwr42jEBF2b+PQ4qKLLlr15/WKlmBZI6oeASkhGcAVRKLaD0lBDpDHyEIWD+OG0Dobj/NfeP0Kv3wAeN6vCdjwKlsC5GbOhGf/5k0AQewbFDDYnoK2JlAlkC1UsPksWBH0sBLm2A2qpdJCL41qL0oH8v0NVvzhHXCzLgFzXTBIEvHwzFJJUscH8Eh0tgYAoKb69bDWPJeFoDKBrWe2wPJQFqGZaWe1scYlF7HvUoQzALnC1mRbsvNIZ2Lx2nT2XGHx1KpOLh34IQ8mKhkO7AtFYbFQbntZNKfFLeIBiFgL6wBduncovp0om62nfqGLk02tAJ1LEppooJPD9rIw28GDTL04rIuZe/eJ+q/Xq099kogaAgBG46BE4L37oHo5Uq0w6mQwXQ29vwSB6/kLrih5IBuFg8UF510XFEXhY9MA4LoB3EwhKXAqmA6hmNEoZhKYDKi6crFnSxb5XgM9FgUSmB0YPrKFN1YpqXGF1FjwwIHApVE97Hidw6szvZ3MZHiV33qo/c5/4fXO1kc+U5sS/mbPpSFxIVcUp44GDGPH+TcIuHH3pl3PkiT/SBWVGynmfu69DWJW7hdyc+ZEg7spbCeF6erw/WIl32PTUSinFKoOCamSyL3cdKSDBQBUKT/LTAQIYV6w65JyBAtL4dZbSFr3z1/CPgECA8nINouXvtDmBpYDkmzYRPbvOS/7ECiR15/z6x+SNSaVQrJN6uTKv49NCeiK3U+wN4NLNDRAVoo0HKnfwusAN+PD7Z+tiaVkaKFMXXwlCzfQ3h1vSsFqKhA1pQ3Xov9sgk2auxf78wfftWJFWWg11R7MFm7+hesQccm+J1Rkx2VbXtlnUikysJaisZBLCISLrNFAuqyQLlmx53LnQhlppw/zTgDAarEw8IlqhrrYEBXiPNFjUyH2vG0iVTasGV6tBsBZpBmQJ9VZ7Oc8yc6pgmIrc2P8oZayTiVLhZADPiyDT5oCunUyny4WIZFmTaDMfQ8csS4kFNz+yneA/HpobLDcku+YO15ny1FNpVCFAfdyES7EMzPcvA0QScKYO+uDsqrncRgnFCilW4RnpkTosbAIXqpgBwNQVUHvS8EnbwF3MpjNsgaqYVkXeXweHKlQ2V8bGrCuAM0JwWgNqG5QlvsOq0lFvp3pgsZuxkeegWwXGI0jQtTW67nrXEHqOnpGFfRyEcQCAEDaiDVYZRvdbpxqmE6CYnOGqkNIly3Gs1qU8Ea+a7oANCmU6yQOKKcINpdCUjJytyBXZJOdle8JeQslD2es7BNZ4Nz/44PI91dBaR3H837tg+HeJGu64OHnvOxDMiIvE2JXF0AxrTCeERJEl0DV7SLZliPbV9Zqy8oi2TuoiyCelALkegHCuaeyCgUTsdoSsoSd3aodjbGiO9sftrOZJaVA01OhI0aO3brZOs5mo5K5Jry0DCwuicWVV3TH+G+tiD9KywidLh6jEwf/9GAZFguHYiGPHYIqA2Ut1FDBdv3gahtmOYFIrkVHIjdsFV3RUQrWGsleJWpcwCnBraiy43OF6HtDJIQJkRSGPLaNj585qIIBwC4ugbJMzpsPl0uEgb4A+MF9UOMC6DoCK+mIUnuhrNXZ7nweyhyztWIFnmW5F/p10OYKJhHi2iYkop2u3GCGW09C2Zf7Tb4oeFYVcq6DEOEoYdqAZ9eZXAn5xvLympgWWB88e8Hzr5X3tCLG8u4Cn7njXTLgfFjKmj7Vgd0i9//0QbkfEPMJh2cBHBDTmk1dmF4S8ILHnqajQpdK1SHY1GFa7TBtInqGJJWidzpkqCUh7ADAzzVigtwDddbsrCAES1lPagZCxX8PE9c1nNezCgHBEmQJ573oxlBQf96vfVDWBk0wrtDq8ZUISwjsOsK8cAkupwEQuiOo9HjYWcM6EYkv3qpSN3IlskAyqECVgc0T2a5F6B4F3PslzumCETreyAr2t5kTLmYJqEpBRdq4bzUK3hzdVxqdfVExOxBTzgosUeF+bHIN03GWoYl01stxSH5tvSgCBF2ugmm1m93n8SyjJl38xxvYtVSwrMthTEfV+F4rJEMOBAsrQjUlhEuybGqLLzf7pr52o2tFCS5Ww1KG0BPVHVMWIqAZDOvz1e+Bp/L6EhwW0Mujup7ivhNhBo8n9txxMsl1YnMNNVa1bbSNPg9PahHB9nOoogLlOVS3K2u9v4d7e31rQR3nxOLWZXbiXz+bB3kG2jQDGo3Bi0vg5aEIl++9D7SwgCTP5dg6TnBsWIQNvmamyP1zx6PlXKJ0pI6fKZvE63AlOuI0rYkYwO2/ro83mrHm8ToZ1F2qSVILR9xn5W2OJWdQ4Ttq87TufHKPF5tylFMaVZegx4zBVh1EI3LdAOmQoRWvG6Zto431DmMM/vzP/xzf+MY3QER48pOfjF/+5V+GPkKs1RIsa4TJCHaKUOVeAYywMIn6w4N8uXmQgrTlgZ0KQoYRX/D8a5HsHWD58ZuD6heuKKWquBDHoqROKXTKyALpAA4RxlsSZ68E5Ps0gBxVR4XktXtfjvyBEWwqpItSAMYISb2ocLUkXYkCMg1YZ9NgrfNgL2Af3BvssoKdQZKIOnV6Sm7Gw1GdULn5J0EJ4Ia+hsIEUBdYgDpJ9Ew7UC+eXgniChkEyILnh336cJ0fRDK8i2FWJIDhZ2bQuApFJwBAJ6uVQj751NGQ4chfH8wgcmoeY5GMq/oYSpdge79pH3Fbpy/EhC4S7ZQqBN/mGsBWrwtMdUG+iDYUlR9tmgHSVObKaAItpcDefaJGUAp4YD90ZaGnU1RdQtVPgs+tL8ZOkitzM6/AnoU/PqTvA+AKhk6JrZw/rZnuALACwrQrZucqqI1UyTA54fP/+WI89W03I12WAjZZaU1nkmvzoSTK4VoyDCpL0Ng9ZgFaPHCyeCRBSQJMT8HO9gW83XV/ILsOlnzG9laHEjvPvSao5E3ulOguEfmFf/tBNxdKgLQUyaSIDCAkaV5NCThfZ4UjUlVuhNj19Csi1V10/wBccqZR9VNUPbGK88V+321hMsJ4llBOO0KF4ewHAJO7+65GKMZj1Hz/esB7k1jx5Ibfj0AsMKNMFP7hU2urv8956YdElUb+sxPyR8h7WU9sR9RZqkIg1ILi1r23XUGwILrHAPFslqBwpPo5obXeFVVZSXLlQ1fSJVM5ksqkCOuYqhiqYCSWoEbOO9uym3/hiHKnZAtKxzgJhST4YeilRl2sIlEqyrH6/Rc7AFH4yWdQ9qQAFtT4BLHBUkDZg7sW5BwwqaDMZyX3KVXBqfbk3gQF2DxSBVoGSDf2gZUrTrg1mjMCsXbkCkIFWwj7Zsdm6DgCuU4nsVNgrmfeeCGGTTSSQVWTTKZOmvSgQMf7b7tCiC+GsFKgThLIfJtQuH5UaVFOaZSO+BaFq6yhigiKGTS0MmiddZRMSTFX9XOoogvflYRSlKUI63WU8LkiNflh906JRwtL4TujPLZINDAuQPfvC1aj6OTgPIPt53IOKykOEzPY3euRICh6lWGkD4xgMw1VGNhUQ+8fCs7pZWJ3MDKSWBeua6Cqag96Xxj2w+ud4i/MgHPCACF8KuhFh7F0bfdH1gph4+5LXuXHmlD1EpR9BVUwqo6CyQDTIahS7kOqIOicUVVHVqCdDJMTbE9wp8lJGiVMPWhYdhjhegYDyZjFVsZ1STCJ2nrHzhsAC5QzSRPTehs+V8QJJG50X9FjG659mxHKLqGcIvTuBcim4fOzmtDJNbL7Bm4mlCMAE7lxeb9/9sIOotrmlqRQQK6LSi8PQ3c2eRtYZ1lF3Q4wPSWf8ySO9QKdyoBK6fYGc7C48p0rlKZB0BPPZ5mcTdKYRRh1krDz4w/XuvLqrbDSOZLFvdba0G1CpVxfivtSfB67OYtuJgIBoXAHIBRoqbLCOVUW2vuqe1VsjJ/jCDlP/Z1cMXjYH18ceSa5g58B6Ypp1OvWsyPLUh73fvVFId31ZQnVScQKqZcKge+EY3u+fE3jbS58ztW47fOXr9zvNULu0SyFVI9np/K6YOgG9cq1rGr7JdfN5fEsVXLMHs8SH11MezTxbLGth/zuziFj2sPFs7ueeaUo5TPpwiA3g8wXznc980ohxt1A72JTFrqzfPffCYln/a1hDUxbzGawuRR2Pb6z2nWt5ITxDKGcEUxLleRYIPk9FDpLgMcO+xFAcKKgBHLtOrwpOxIPoo/IYyJQUWH3N64/4HF5C2llZN00HSegiY/TiXJ8x7SIexiwHjOhrhm4NYYVYFIFRKQc4PGqYEHBtHKeyr7cq1TFwUqVPQaykO86AZwKmeE7bryoCmOLpHR41s9yGzhLpspEA+Ndnk+m7mgBmtZNWtcWUFnasOXyXUl+zkrV0yh7bk6aw7JiXUyCS1PAONMQYz0WVTJj0eU0ITe0cB3KkPej6HxSnSd4EVrZp7B+w4knkxEDFYfn24RQ9bUI0MgV4f11U9omziVy9m51XcBqDXQSJEtFbW0fEVTKzy8BZN0N3c/yeVLmZ5HpkEuo0sJ0dLAIJ8Oh44ItQFVZfxZubScAZAzMVA7NLC4rXtTg37Msa9IsIlfC55ylNem9uOxqSgzqd0X4m2fg0ai2E/Vip25HrodODhhPkBjXdSMEEo2j82AtsLhUE+txzSkmaMLxmVogEluVxnbS3pITKRrrd2nkusxTEVf5e5IntSC4wrqOsbKvUEwJ1jMpoeoBVUfEPOEzT9cX07axSvDBn9LG6vHd734Xv/iLv4if/OQneOITnwhmxre//W2cfvrp+Mu//Es87nGPO+xttgTLGqEq8cS2GcCW8MWPvQ3PeuVNUsAycBZMqO0pVLRQEWPqH78PoFnUPu9FNwJKFnXpiuCoA4YBZ9vgPbGVA+6AezxXGG8S9akqxe6knCKMNxEGpzDUOEP/rgxWAyf/k6jRiBlsSYB5KmBNAcCoksGjflheloEKIUUoyyKlnFdj6toqoN+RjpfK1AuPe69QUPFgAmjYhcEaUa1RtKhOdrVwvWg0FgYfEbkCRSCfkHo7Eu8nCaBhVwZ3PhMdlMjB5gouOQ2JOyL/WKcGKQzIGpfgcW2rkKY1SPDv4ZWuPmlXqqE4Y3KFT19MSxRYdQScOGUhACg3N4c7Kbx6l6HA3Rxkp2vloGWZdYC6wKqHVVD2rGYJNkmuXPjzV4MdwPN2M+GUW4YKbeEALY2AwQAq2QbbzZD8+D75W6+Laosk+36GgAfBX7v5bXjuiz+EdNkgXRI1ESuF2/7hvSs/48OIW794pVgN+Qe89Y+mupNpPUMRzPbZI9rvw0lGm+8JQHvCF8G6UJtIpeQAkipsU1nkrY0AubbXydf/4Y65n3uv7H/qVMa+IO/mX3AiqiVvfwRyM1V0M0kpZoBikxAXeiRFzW9d/rbwPo9//82wJWA99+vv8RmFIr3vALAJMHk65R7uE1khdf7Va28WZWEKwAJf/d36/ayurcF8+NeTrUErK0CTsywDwufNBEeyNLfDGiGRBEgSLHc8otCDqP1d545/ri5EbZQtykwPr5qr+homF6WkyVxXZwXAsTNkEEhAYh3mgcBIETq0rbtulNCt4u+PVjyTQyE6EVuW2uoA4d7KTi3vyZWqK+RK1UGwniDrPhpPTHkSSgNVR/ZfyBT3OSSu4yUFbFrvP2dRYcBfR7pOSH0XgJBBgB4TkqEclxpX9dwTLcRO2I5qekb7c12rCeW5ximnx1sS9O4qoPe5GQu+wL80lAKz+07EinoiAkZygGa247qHAFUwimkdknRWUoxIhhaqcspRlUKXRggf5QsVFnokxFM5k0KVmXTTuvVRjUvAOj/uUQGw9yxXANt6rsmgANKk7srsig8uigLc74ly0N+3KwPetx+U59BVP9ilFLMZ8nsGUJAiLRuEOTNy/RP00hggQrI0ChafammMtKhgpzqopjLogYJyVhMoSiFXPP5xw2yJ3KBan4TmeS0EcbOB4iKCKiys0uCpLFLAKjcnSD5fPZYZKFWXUHUJJgcol2uU3Pyc9UpGieWe83NvvVmcHRTwpQ9fjGe+6iawcvjGWeH62VQ2kf1IRlJw8rOf4jXMY1owRNDgu8AcIaNMjYulCM3helOGYVIl3eJE0CMh/MazCouPJcDmmPpJBlaE/j0Vuj9eqq8Jv8a7AiQVjlxhliJSJ62vf8ugRAve8KSfF7+kKbjfceRC1O0hL65xnXsu2NY+/ICzonXBFjQY1rP04s4na4FxsWI4ef1aua+Rf21lwGVRF2OAICAKVl1hH9LGefCECpViM0REsK7bz+NBcvaBev8AVJjaH94Xu2PFXiwcCgQjNXF7LEhCRLb0u/V56Mh3Oih+Y5Jdazl2r6SN3o+8itwy1HDsyOKVisLVyJVdz7zSKdZ966acs9CpyLwCz5p+Br1/DLrXdfSsgmmBNfCsu16OKqY9zvHspC209bMhrKwz3NFhzSTLMLkUjm3qOkpPEDy76xlXhA7d0O00gWmhSDqxHSlgM485KWDEqkMoZoFiVs5ruiidLN94n2DMJ159M3y3Ilkn4tEESx4HutmACWBdPq9KAYmsGNqnz+4eM3jsDHaee418H7o6dI3Ec1R8Ryl5oqZ00/W4xtM+Arnir3H3emgR8/g1xfrOkjQ6ie7+yKmS+3zF4EzBdEX8UvbIEftAWrm1qbCuC0RBORK17KqAbZMRB9ESp4QK2nWpirWViEkcEZ0m9bUYSOaoKE5KXDF8jp/XNqPxDEG4bh3rhHRlX6HsESrf7OfwLGuHYQPmhOQVheQ6SgPJWO7vgFvLNWCTeoZjEFL4dRuyDZnhA9jMdzjL+yRjn18IPiQreIA1oZhJAqkjb8jBmtbPkeJUBQtcKq3Y26UKpqtQzCbo/pSg9+6vr51BPZPLD2qvP2/XfeJdVtxcFzk2Gzp3WDsxkRLrM3LXIgpH1nhhQCrrpEIhc/E2TwkW9B1b3gYu3gfrcLqG4EM3k4t8p2nubDeNESzZ70m357gQOzEAcEJmShKx1LUWdttmqH2LjijxJyOqqXkxs8f5HptYKwRPnsn66Ykqcmu0MXW3Snwc2mFarQSzWBbSqpPKGpuosJ7Z1OUpTmyjCi/gErGQdfmpTYRcMR0nWEwkR2Tt0je9fpi2jTbWM9785jfjcY97HD7/+c9jy5YtAIAHHngAv/Ebv4E3v/nN+Mu//MvD3mZLsKwRd374/8TMzEzjsf/1Hy/Gv3rdzTIIlp0IoKqLLmSBv/+/V1cqz29/Pe685w8AAL/wb26MCl+oi0bKP+aUI0ShkKNKRtUR1QIZoOwTxjNKioWzQgRVfYNiC1zBpgdiYOonBqwJC6crTP/Eov8vw6AqDjduwKlTE7H/8u2FHPmI+mKCG7gufue2Ji/iZMnYmv1vRFTsdqoHAAJSovZS7ktLOC2PJGGNbRqAeiCXK9iFIgeR88OMmPjYWiEeSucWIM5EoUyF/I2IgKKS9Y287Q8BcMdcukR8MHSLnHZKBFWrir0Cwu+DU0VwaWThjBJTr2i1mZJiOUc+t0Rh5oso2URpSNbUCbwtpCoDYM9XrsaF57wPppNI8rw8hu2mQsokChecd10gBT9957tXfjwK0IsjKKVg+5lTjnrrFRYViC8WTndFcV1U0KUk6DwagZaHSIyF3q/BnQzlphymo/G8X/0gVMXIRzJQ8fbPXeYSjFW/Locdt31Bkuu5p76nBieGm8n6OsVu9z0+UByusm+tuP3v3oPzX+jUYkZsBFlJgTRdqkKhFkAAt3pxBFocgvs5bFdanAOkYSmGH4/hiRWxCFKwHVEw2VSSEpsrmExF91EBfCZ3iYYCqi4w3sKwudgXfOdtFzfe42duvkluJUxQ1r0+c4m/r9FE927fMUJVXcwPySN7MkOSw2IKrgAP/KvX3uwsJSHDKONtuvXEFzpDd4mSzkq49/F/C90zUfIad3GwS878GsWotymguN6WWAgxsv0GydA49ZkUlsazbpBqVJQnhWhHXILmyC49lO+6IoIqVSj2iQrTFR6NsCEyQBL1fdwXBXWd1ApJoeoE0c1bqTqSSPthw7GVp/+uaC1/D1ZnUc3Q21EATjypEe79vlAsc1QmC9CO4HJkvNXyvGJKQxca2ZJGuqCE6E7qJDNYyzlySMgqKSapok6ATEchWzRQFSMZAcnAILt/WZIpP28trDWMoICL/1ZKcRmjCjotgZ5UJ0yuAQLSZUY6MI6kI5RTkgmpisEpA+i4Y/TWa/L5MFiIXOOS6dI6cqUmN4htbdeptSj9g0o+Ksj6gmvqiuKLTQIJWQbavEmS1YVFEXtkGXJnKWeJRJhACEQzlaZW7ruOXSI3R0cRqDDQDyxBB8xiwFNdcDcTMjDgFAKpNPws1yjJMSVuCG6eNtSZAFDMpsGCjxjQI/ni2ZSEhCQhVkab3P0pk3uTJ3BVIT8fZHzIIcff3vxGAMBXb3lb4/EvfuxiPP0NNwdrMjIQazoSbPv5T67deff8X7kRn3WzLX7h39wIZVHfgwImlhsNE4fOymBJE/CvI/xmNIoZEREBkpwvnSY/mzxBlc+ALKNzfwFOFRYfnaF3T4XOXcsRmeFOmO9ucR0AMApIIIR1wLQcCXGc6raKthGLZiyLOGjyca8cBRz+zOtiBSB4Nk3AXZkhpR9YAu/dBxSldLR4jO32iQe1Tax/jNKkLt5ZC7hiCVkFHo6kUwoAel2YWanIUVE5fOvmNmi5d5pUOeEJQ1UKsF1QZaHv3RvEQNKZrmrCKrbA9eHxJ+CweE2qBBU+O9waY2GP0f35jC26ImLYP3f3d2/E/JPfHWz2vCiMSoMLf/5q+ahHBfZ8rdnNEodeGEIlSQPT2gRQkWcbT3dluSwNkv0jmYV4AEwb41kyXONZW2PRhxprYtp1jkPBs8D6YNpbv3hlKM6zIpRTkm9SxVAFZH4ZSVEUDOiRCZgW1p54eNbKNRcwT4Rp/RzLGvO5+YEZQl2g6olgqJxhmFzwyTff3sS0psvS+UBSPwgzWrwNkmUY1PjGJ4l6ZOReHrow5Pusx2KzufToHNmis2Y0jBfMfyDYUXnr1MSte9paWK6xOfm3sRys1W1E/gYBC0lnpxcayd8dVjIQW0W/7obOYqDsCRFFDsuky4JnAUiR2A3Cqnpia+TPsTIcusetdtbXuWybYkxQJgG/kq3zLzlP7t7pcZgXC3XcTCdAcnJn4xjuSc7qzKaEou9wdrSeshZ86ruRQoeSjfC+O37rjsd3tctaTGF7gMP9Uc5gtYiO5BpB6H6qpqTelC4R8v1i8Y3oNUGI6r6KNpFrLBmxPNfd/8spjWzBINs7gsoTqEq6svX9C+CyFNGAljwhzL+Bq/mQcuIIhyk0A0UBGmqgm0l9QidIBgZ6WIb7i800tGUwNNiv8W49DR1EoSucoarKERJckxRpWg+p96EIZBWQJ0KyGBlqD3KWc0UR8Cz27Zf10M9FAwCtobZsFqv3ffsBonpWrLeZU1I7Qiev39vPYAlrr5J1lMgJg4Zh/0T46207K5n1Enemhr/Jz9wV4ZLcf7XMJ4qs42TekHxfq14SSF/jHEvEEl6IFZPLfYeMEL7hGlxHTNtGG+sZd955Z4NcAYCTTjoJN9xwA84999wj2mZLsBxm/NNH6gT1mb91EwC3QAG1r+kqEYPYv/3zd2B+++ux+54/wC/8Gxle/Lf/z9sBuGFwgFsAEACJFDcI3iN/uLW2uWHNsKkVTkQLObPwBFkEixmN8UkMnDrE4Mcd5Gf1Mf2jHjZ/bR8QKShoUhlURQoNvz9lKQQAM9DrgtMEVJQyxB6IPDjLZhLqu1Wsy+JtVFxzdgD2pBnYvL4cq34Km0whf3AEfe+CsxwzoYUS3Y78XFJdRFcEeGUbW/k5Hhjmu2H8ELI0AcFXCzmAnZigIY4+B4YsylkCqvK63TOyEgNQF7kSIYLCNp1SOx5UCCBYzsWqn1Bc8qewrGqlgldEKiX/BkPs/vHvYv5J74JSClS5bqRhAT0Yhy4h1c3CsOjzX3AdyHKjw4oMgwZjUTx2U7k2yF0jrp1csQAIzhLwlmm5boYFePM0aDkTS7PxGLRQgCqDfHoK6GRBvWNzIdN2Peuqo9PWH392lbRyU5aum63CofpPrwe54iOe4/TCC2UYpB4b6OVaCeqtn7x9ThgUHFSP/lqj48pOYdczrnB2Jxrcz6CGFah0aqNMi3omVyimVJhbpUqGLv19E85KQYB/sRkwM478HdXs3lnX3wwQkNi6I8GHny1gU4Q5Bbqsi/6SsLknR2QGXDeCTzxUCZgunO2TUxL61xGcFZTbjOu0ANxx+I/QDy6lKKniehsU5QBhloJy22L3dhxtI7IVC/+sgOZySqPquMQ8JadyqwkZv80EcHNZEI43GRHSTEEXCmpsoQstRIMnuCvrul9i0p3C37wdoy7qe6NNVBj6bdJ65k08l8bblQFyPtkVipWpE8vaLs2d87RZ7JUT6c6lS5jkXHt5JYduFZvA2XS48+tz+AQgVuFDtKnrCiE5RyaVZFY8/eW6ypYZ2YIJiu1iNpFEP3EWYobFygCQ+V++YJm4AgjX60woxgJCypPMagCJkj1xHbicELIHxlDjEqafBZUwJwpVV6PqavF476pQECELJEMLPXb2dZmGYoA5kcJuZWW9IiWfr1+f/UwLQNZGn4CWpRNljARvKCDMUguiDqeyq4zgiLKEumevWIfNdlD1EmR7R0GlaXricU1j8ZImdt7R3o+7LF2B1wbRiNg5uCJzNIsjqAWJwrrurTo5rYfp+uvXJspdVyp4nttMAYaDOtUmwGgLYbRV7gtiUchIBnLNllPA1699GxYWFjD7B6uIIdYxvvz7gmmf8eqbwcQBzx7MbuCzf1EPDv/bP5efz3uR4Fnf7fIL/+ZGsAL+7r+9Hc//lRuD/Ri5e6LJpYNw+RSF8Sb5nqoxpPBoIarXChhtkdktZICpXgdLpxIGj7bo3p0iXdqEU26/vy6zBtLE/a41gLIeGu87kSoZVEyDsXyeMZngyQKl6u4wjx+jv4dr1V8rrrPbbJ6C6aeBXGACqn4Cc2oPnQc2If3R/SA//J3cte2x3QTBEn73BRzfPWVlTgqXpVjqDYbQ4ylwnsk9P09heqnrBiSY1NkJO2tDmxKyTEkh1cxA3buvvvYBwCqA4wUF9ffAF2ciL/tQ6HT7LF2KVX3Oor/B2555u7P4OB3G3/2jWzB/5sUAKSH9KiPHORoD1kIPhkJoKRISghl7/vna5v4yg/Yvg/JMbKfgiO6UYJXsA1mG7WWgVAueHYyls2m6tyamzaY6DTx74XOuxm1HC1dNYtpjgGeB9cO0t/9dPaB+x84bAEj3phpWaMw4m8S06fGPZy98ztW1Y0EngR4bkBNViNDOYdpMbFiLvmCGZMhBNW8TKb6bVPDseIsFd9x3KMK0P3vVzSL6yGobWSaCTeTm64kWZRy5UHCwdxQrSenwkE5e8s5dAAPVVIJkaFH2lXQBg8CGQyekYDY0bLzAUnAVQRIDvqhPDm9ZFgGHWytVwVBa9tWmcFhQyANVwmHJaPsAvDDGi5ysFr2Mx7NgmWXrw5M4NnHnxglYlRFOvuq4NT0TzKbHGrpwnd2+S8MTLR5bqDg/p9p2PFUBN7ITmBhnleexqMkcrvTzICuPQ2vCw2PMeC1l5S3D6hxCNuCPDWGeYrAQjnKP0AVPQNUX4g6I3kvJz7og6DG584xgQwby8x4RZgHpgpEsVdLtwADZDKqwMN00XFtghp3tQ2mpY8BKdyYr16W5SjA7uzMSHEhaSBLl1k61OAaVFbiTQnmLsFTD9HNQL3PH7vG4nzvnhEKOnAHYCWlQkytxhzjgviQ2uKyQ707x5IcnWbyzirK1Falf57sdsXkvSvDSsogp8kwIvdLjU1MLGGKCxZr4pAjBE2z4IZajfn99Z6iimjjKs7B+214WOlakW8XNt0zEytXPawSAZBwRbKlyVnaE8ayIF4lFMGQzCz2sZ4M+nJj2ERsteXXEkec5FhcXVzy+tLSELO5UP4xoCZaHEF/8o4tXPHb+C68HCBhtSfF3/+3ta77WEy4+MfXxt//P2/G8X/0gPvfffxvn/h8fDIr1su/ApokWVoO64KYATi1opKAKhWRJBjT74cVmfwZsK1E8psRS2cfsNxNxdnCFShBBDQuxUtg0C+xfdN7QvDqJwNKYzR03A8RasSIDap9yHyFB0DVx4Betbgd2KoftpKJmcsksK0KxScPmPeR5gmTfUBIf3/5YuJZIn+jRxP5BNZM6RZIwwtbPNxaciSotDKL1PuoKQYVjM3+CpbCtFGB1pwYF4zKoIqRw5FQNia6VZ+QsRLQjV5Jofx2pwppEwQUEn+ngCe+P2x9T1Gq6+64PY/6sS9z1UYLKCtXWaVA3hX5wOZwjKsXSzfRS19kjMz7ihMdOdYVcoZUzW3x45WCwnyICLQ4EOExP1ee3rMALC8BeARxqego4eVPYzo7zb8Adn1k/IgIA9nz1fWIlRSQql1il8VC3vQ7DPR9qSIcTQ41dUdBwUN+SccqvbiqDoVlmsDwkL/BjEHNPfU8o0Ija1t3jmDE5ZNx0xVKmmK4L5b5rxSu/rFNkVT2gnHIsAwM/eONv44yPfBCqICSsRDVeuaQmbsBzyYcviicjeb3YTnFNNkyEJ3hCdwhQ35PJkxEcEh+buATKHW/cCeP3wybR4y4x8qS7nyXlh1J76yufOHnVW4Og4Xh/5F+VAyZTKPvUeD8ZKlrvp3hCO5zP9fOUQSBmbKKgnTLPe20DACW+uGXrQqgPhdCa7j2zq64OhEoYOpzVxIoUICSp8wpEFrcqhEHd1crPKU7EPbnkHydFTgHobSrkbyaTF1mn8jMZUDqHq2QgHUqqkm2WfRVskkwmszZ80t7ZZ8P6nC5VSJcrJPcvu3PCSBZyIT1yLa/tKJRTHSTTKTp3k6yHIdnzBV+qkyxPsvj/rQWNKiQLFaAANc5RbO6g2JRBlwmotEj3y9AhmydIXJGFWMEmLKrEIYtKcCRDnYkZNhPLTU4UmFJQxsAIUpgOA2CdOMLPMvHJXpaJQs9be3oRASDFU2YgcXihLF3CmgXRAlUW6X1LSDTBzPZARmaqUKZhegnUuJK5LaWBWh7VNkgeg/gk1FqxnSidOMRbLYTzqmvRyMQ550SubVVIx1dSWrB2qkrllbBitVF1CcU0BZVfTK5wyq5gURdBHs740kfftuKx83dcD1jGeIvgjc/997UxLQDc+T8n8OyfvwPnvehGnPevP4DP/uUleP4v3xg6+sq+nM9sAa4TimA69T3NZnUnjxoB+QKQLVg3P4igh4TB6QboVTjldriCfz3vxts/gQjo9wAMHI6qFeMNQmPye2OMXMNAA/cGog0ATFUXYqwF97phIHXV08GqxSuyyykF08nR6WxHfteiWFMtu660rvODiWeaOJGIvH8uuNd7wgMA+S5IfzwshWjXZc5aOesZ14mYKREKuHtpaV3hZFMXKRHU/fvd90LLjV1FGJZt0zosJldUdI7iwrjW4Jzqjnnf4c22Fgr5ApA757vv/n0AwPxj3uoKQrLI8HRPClB+IHJlACrA073wHZ47+zLs+d81yUKjCsgz2NkeWBFu/9xKTLvzuVH3CxE4S0HD8UEw7b6VeHadupYnYwWmPYHwLICAZ/1g7LUwrc2T4xLPAsCuZ13VICFDcXtCTMfKdwvrBqaVbhMn9Inx7DSDc2et6jDtmb/3IagxIVEkA+6HEZ51uDPM8IjxI+Cs81zBPVfOtYCj2Rn1EHRWQnSEgn1C4MrXKRgwcM4MTZKWHYyjioWLSAmm460AHSbzFmZOzKQLDgJWWzbFHo1ubwAi8GHpbO5LF7K34dQjRtlPkYzczL1EMJpNI5xrIpzt8KZJAXQJApxE7KMKC+VmNUmupd19joPYtGFh7Oz9OFFiY5w6oY3vnnb3ZbGuRejSsbo+cZ548d0AVNWYHKjzh5BzmPr5NkGwyAUQ7OKY3LWg6uuqmjaABtRAQY8INJb3qzoE3VNIBhZkSGzlEnJCCUZnn0G6TNBjK5j27oWA+5J9mRDZlYXupq5LS6OaSpH0UiT3MLA8kO6QeJ5uEK66Y7EsBEwFWVPKSrqOiUB5KnjPJCDDUEvOSsxamSHpBUmJCsQUVdJpT0UVOp9r8ZKr5xTRDGF25JnHqR5PxjN2/L77rhWtnZWnqrte/XqYpU7sC6n1DIYiIujkdd0nS52wx9mh+vDb8LU6oHadARx+1s11m0yw0ee0Ps9ipamCNaOqXEIJgNiiyuV7UniiEGKxbFNgvFlswQCXFyXsBLr1tXksMG0bbRxq/NIv/RJe85rX4I/+6I/w8z//8wCAf/zHf8TrXvc6/PIv//IRbbMlWNY7CEF58wv/9oMAgGx/ic/c8a41X/LcF38oFJ+UkbXxvF/8ALRTNFQdScqD530iSXl4v4RBFQHGFeet8812yWnvJ6KMIaPBOkMyBIan9Zz/LSHbVyF9cChAoJ+Dky5o85Rj0I1wEmUlxQlALLx0tIiE/6MCKFAvUkCdhPpQWpJC7fyijUV+zyB4mVNlke+V4X7DbRnopAz53hJ6uYReGgGVgZ2RhFT5gfBAvdi5ItVqs0fCvmkl1mCqEqLJkRbSMho/FwEcGWe34FXWSjtygZ2q1XE4SLQkBVkCvTSqB9w7X30BknJ+4mKi96H1RQKyFlQowKTyGZQldn//phWHs/s7Hwg/X/gcR4C4wcf84D7sefCjuOD51wbS5Pwd14MV4dOOXPHzV5AnopI7QBLnrQt2PfNKBFXd8hDIKgcWUqDbAfdICmk+gUgSmXOj60HRRyN8Qso6ev8jCO9Pyt7CZgPEZALvlZtUidKFjFqp4lwjzt9x/QHvS8cidj39CrET8glKKm3KaiSzO/wAb9vJYDM3CLJHQdnlEzSTIcw8MW7otE0BTlkSA0M44w8+CKoIakxQ4zoRja9MkyGASd+x4VVgeizFPm9LBkgC4m0JyADKvUC6KiIbSAc8FQgWch/2CrXgi0xNUOq7aGLfZDkwh/mj+2v8Oq8ajBxR3B/kX8NizCDsS9V1pIvvfvGqpQkiyHcHUeXEe7426AttnhPr6MguBuFExx1DsRe39RYKiXhxc4JgY+DtuELHzFjUl4FAIbiE3J9zl4wbR5SRFAQo+jxhOVxDPjFVECUjK6qvo6Q+bmmFB6qeS24M1YktE5IRMNqkw/uYXNbmfG+F/MGx+1xJLFDitVQBamkMtThCdfIMqq5sQ5fiaW16GZLBeJU1NirY+L85ZT4Zt2PO1gpW5nT5+QRhJgGRWLuNK1GgKYVsLwW1ovKDpks5SWrJyjrqO0xJiZdzLhcKFaau8JhorfakBRE4zcT+x9i6U0W5QnZ8jNaCtYgZyFlTQilwnruiTwLK4mSSZIA1IM/1w1O9vWdV1XMlfLeutzLzVp5xwuyK+PXMFR3W78lxcX6ejidRfQJsOkDZdwWVVPCbzDCpi0SspKvuS2/8LRzz8FYyXGPadKlas5h87r/7UDhm301GVgrQKpEuCuMxrRKbOhM8vF2izkCyJPc4PQbSJchMqBKoeiIe6txLoLs0oDRGj5FODJsqpIsF9P6hYC1HoNmpHOh3XBe0K4A5i9tgwzrptQ44UUvUuRIH25qIi4QyvnMpf6Bw30ME69fOfRrjk3IMTk4x3LoZnQcNuj/YC4zGsLN9KfyMarxBvhunrMRKzxd1fCe3idStRIA1oOWRkASuE87bfAjpLl3ZxByU3qzFto63dJERSWcY2fr6D0UuKRJxqoXcjcmVxvWiVnRisytWSVcf1wRRmqyKZwFg949uCT/Pne2IkcoASYLiZ05GsneEW798FQA3LFwp7Pna1c3XaAL3hKhVg9W7Pm7/e4eBn3O1KOeZ624iQO5TiW5iWmsfNjwLTGDaI8SzAKSTZwPjWeChYdqjRXI9lNj19CukqAvAz2KLbTWDnZ+zmiz7CuWUdAx7PFL2pHDJSU2MmAywucUPX/UOPPY/fgBUKpzxBx+EMgpkhPxIBmhgGum4RXDFICsFUiEcZFaKOBQ44lUBlcNtvvvCR+h+tnJ/k2KqkDqwjnBJCNaq2rrTzfMTu9ZaFe+JaF+o92uOKgR4hjm1ANTYuroH1d3Xbvt+e1VX5lX6uRAmg+tO8eyO2Fh50sZ3lZPx9liRjSUBXErHH2sGDwUDsVLgisK+rxYhj/EWYEqsYcueCvde3wkSz/LVjtCwrgtItuUwuMfjtv5cTacuZAvWcM83dR0IQDgPHn7HFmIyfwUwPQvuiOUqxjWxxxDhUNklVLmWWSuuuThbtOjeXyK7byDX97AMNRM5ARZYWIJ6UNZKfdJm8OYeyJjQ4SJ4zNRdkkAD+wXiQKOu7TC7NVCIECpENEP+cT9rd8wAKhFMKBHvKYVAzJNxhL23YK9MY11HmgrhkTjBpp/NgkK4LE+6JM5iP01EeEvWzeszIiZydSd30buLVYTGGI3rdTzRYldbunPia0cet/hOcE+uMIv4wJ+XJHHd4BrI3ZpdWXetZ2FerydYbJ408jCZJR3lTgWgXUtx6KSyHsOKmw5rDgI/xQQYEcIoP4NlI2HaNtqYiN/93d/FRRddhHPOOQepc1eoqgq//Mu/jN/5nd85om0S80NAaydgLCwsYHZ2Fvv3718xg+Vw47x//QHc+ZeXHPA5P3/RTSHx0a5IBAjgMB1nfTNFKPvyfL+geZBV9YFy2grBAke2GEK6SEiWRPWXLnuLE2A8I4WifJ9Lfkn+3rtrhPSeRVEQMIO3zGB02gySQYVkYRxIhdD66tWbfvGrKimkADWb7hO/uDXRLxA+2MJumQZnCfQDS43ki/MEtpOh3JyjnJIBy1QB/Z8MoReG4I4oWdXiuCZ2fII8OQvFvVf9c/S3bgdmtgfbTeoh89qBQsMw/RRVVxYi5QduVtIdoAojXSKAdPP48+LV9/69AOleSfziCilsRao/NZaOFd/N4okeNa6ERBrLgLY48TyUmHvqe8Bao5rNoUdSUFutO2XXM690n58UIPZ8pU5Wdz3jivDzZEv+/BMuBRaXmmDEqTI41TWIcbNg/Dna89X3HdZxHG7MnX2ZI38G4OXBwV8wEdTJRVW6vHzIPtVtHFnMnX2ZFGqUch0D8v31w/aosvXQ3srAzPZgplIMt2YYbVENmyebShdGOQ3YvL73/b+/fTEA4IyP3ihWikONZFkhXQLUGNCu/hLV/sMDvkOEWLolVCWqOrFJaiZ2NpFtqZJDgher63w3TLAJg7PeyhAsC/zgaN/h4Ae3e4LFd5P4ZBFwibSpO3BCAub23Wb1tn1i5bfjf1al/LPa2Zl5goXkHHnLAf8+4JrooXJlcpcMgXQgVl967JIdBoKXfKzopPrYausGKUh4Ek0s2ur9kn1mUVJ6Isd3m7h986RMUMa7pCB0t7hz64kaKUg4qyRFKLsuwXSe1UFFmktiW3UB27GOqCPpYCnkGkgGcp2AJaHnBMgWGLPfXYZaGCEMLfZiMVsn5TAWdirH6NQpmJTc2iOfjR5ZdO5aqrtYfBE0VtpPBHel45MThXJzRxR+45pMp8LUZATcZ+T2L6hYXTHRq4zFg9y6DhVXjCYF7uaw07mznSxAfrhoUdbF4VwSVu6ksM66wds5qEEBGhaSWHrCxHW4+Oc0LIXc38tNHXCqnKe/kWtheQwaO4GIFw94O1HfseKxgEuQvc2Svx81Pht3X7Kpdt8/T/5wwA6mk4QZLKxd90BKKKYVRidRTV4maBRWlJHvn3ENqnY0wveufvcR49H1xLOAECzezna1ePbLb5LrqoRYqThiyauTpQtLYTytUPbd/XRQFw6rvlzf6aKQtcbds5Tvyivl/psM64LfeJaQ72eky3IDSAYW+f1D6cZYGtQ4dGYa48duRuIImDVFJL47wrhuqomZPF79CaXleo+H3gOw2zejms6RLBWuA9kEfMpZAjOVo5jNMN4smHbTtx2e1Rqca9DY1ESQFwoZIwRLVTXFQ6t1b2cZ0O/CdjJw7gopiYbJZXi4qhjFTIqqrwPxrCqZuaCHBsk9++XYFWFFJ3osWCJnqethdUwyeGGL61CkQLJ4JYKVOSdKY/f3Prjm9bRWzJ91CexUVwpqiVoTS8497fJwnwIQulsOiGef+M46f4jV91rXmBZ42PEs4DDt/sUjwrMAZJZVi2cflph7qnMGoFo0KIIhtdKhINGw/RzVVIbR1gzDk3Swq5K5boJnTUdydlbA96L5gQ1Mu6SQLgN6VNtqqSrGR/KYHnPAfHrMIt6gJlkRuhYKDlZcvntFtlXP1gL8e7l81wlTdMlhDfD1DQ55MoJinixgc1W/h9sXVQj5I0SAw9rOMl2sc31HjqwHuhASwKZA1UHoVLG5EBfs1vJ0IOfWpILjyNTEhp9BQq47W7m1R48Y6VD2SZdckyue5EG0jw7PAo4McvNKPKFi8giHOjLFk9V6WJMijfmMrgtFOvXlMVUhdCT5PEg5LK4KuM+ufg8/xD7gD7icpCP/ik1iOaeGGmpESIYU8oJ0CUgGsvYqI8IIAOg+aDH1vQWoRemAFiI8srMCBH9lmWDDmU4QIgjJp6AHpdhU+g7NQHBHPwN1nUEpqTM4gQz38tDdwURBkBrWxUnBrbFN61e/lsdrLCCv6XbA/Z7MKFEAjSo3H9jUZEe3G2zhbU/IFCrFFUUNS/me+2Px66rvTnVCocmwU7kQRuMyCJrEwaWIusIjcsd3rARxkAp2toGkcQII+dmRkLkO30NPBPrvJLl6kE1UjWUzsQ2uOkA5RVh6tD9X7rtgCDZjcYdYRhA7AoAdPjRM28bKuOOOOzD3716Cx71xYwhmv/s7V+Oze/4K55xzzrHelcOO73znO/jmN78J/v+z9+fhllzlfSj8e9daVbWHM/QgqSUxCiM5hnCxwmAmowkN7Y/c5NrX5IvDYzu513FMvuuAjMFADJIMQgIkkcfXdh7utU0S3zhPbmxntARitIE4xNgmMY6Fwcxo7O4z7Kmq1lrv98f7rlW1T59utaRuqWWf9TzQR+fsXbt27dpV7/v+JmY85znPwbOf/exHva0nlYLlW9/6Ft785jfjzjvvxHw+xyWXXIJf/uVfxgte8AIAADPjxhtvxAc+8AEcO3YM3/M934Nf+IVfwHOf+9wnZH8fDlx5xfe/D851hUoOH7MEOLFQaMdyI7a13Oz7di+pUKBAMA3BNoBpSIqrGgAL82VxkNTGhMEuYvwNg2orws0jyDPaVYvN7xhiZeBg2nUUD0zQnL+KxUGHSi/MobIIAwnd8wPC6IEW1X0T9fRnUF9Fkuw8rJVmz9nuZtX3jlSf9Tgo0K6VGMwa0JZaWkW5qJvAKEOA2y7QrhVYHHSYXTCAWy8BAtzUwyw8OHu9aEMXSbZPcZmFmFbypFRGgWnE/5cLaXANe4RRiTh28CtO2C6ec8gcGcqgVrxgHRQYdksCxhK4ws4sN5dpmNgvUBkqMRZgJ4U/SyAZIxYWkd1jksUn5oLblmHcR37v7flvh5/yfwDDAe780ntFIrs9A5xDXBkK8woKnkVIc0zqdx1EuXLnPbfgzi/e2m3vouvlxj9fALFSNpTtbu5aWDfnjR/1+znVddcX3iXN8nAgn8Fs/oiez22Lu+79hTO0d0+OdeVV4pGdBoyn09Ltuue9rfsOGv0ehABY/Q57aUDjsOgaUxeAVlicpg6oNjxADl6H4H7Q2SiwAxAJX37zG5Ze96s/Jow/4wl2oc2L6RqWpOYwHgKEJvuokBobUpCbYAZpuM/ZYqoDLSgz0LptKnM45ZjoYDXL9xOrXZlAdgHNFek1Wul1qBvQppUZgdQDWGLXVLPaCSRwpm8hkOXc3O1XAldSs82945AIWGnbMCKiTA0eRR2cVtL4JjsJBkA9YCUx86JBDlTssscEjApqq2UVAIkOwqpqEjGh++xYh96s788wIxiS/Su7zyIpghJYlI8xSeOb3xe69862a2bFXkBApOhN3l6sGHZOoO3uM6Yo6pPIhHaFsP3MEVa+TvmekZdBZ7UJwK9Wkr0WuuGHCTKoDitVp2LpAys7Wfg6iKXaAzaCi0H2vDeLJmc1kIF6MVuYeQNT18BcPeB8EOb2oMo5KckaQ2yJnFh5Qe5/PHAIw0IICI0BvDaAyf85WXRZA9qewc4bGV4SSZOe2IlqbxAHnX1oDgZOAMjAgdqAMC4l56IyCBVhdF8D00rzGUeVzC4oedqh88Pu24KlL48qSBOIcven/zFe9cp37VAFaMaK1iqZIWjEStTW0PBPi6BBtvJZdt9Dv8KgVrzNo2V88c3X46/ccEc+9//wp/4h1m86e/yqTwauvOL73we7s56NYvEHI5Yv7VhyBWIplmmppg1lb4hk5fqNNg3/dECow7l2TJgfFDuxdl1q2qfdHVFstTC1hx+XmD59jGFpQWGfEHdmc4QDY7RjC9M4mNIhjCvE0qA+WKI60qC8f1t2IERgMu2IRDGCW7UWM0a81pPaKakd0vfPOcSqQLteSL7CXCxb098JgN1mVG2EWxRo1gtsPnuIaqOEaVhCf7XWSkNIADKMXZQy1JkvwByAAFHZAp0VamLI+gAzqxFRAcoothOSmraynUWtvodkZUeFQfOUfTCe4R7cRrbwIsqKlSX7GyAPb/Lx6Nu6EAGGwdABjxHVF5W8ZOX1iBezgMFEuLMHbBx++uvle1wVuPN/vFts3rYFyOFxlclGlOwBe/UsIDXjnffcsvRSh5/1RrlmxN419gmoZ9P+Hb74TY+qngXwqMCsv0grZb6kdbrVLks1bSJOgNVOWWyIWBnlbEkm973vjq0DqmOiaGlWKGfEyfCbwSXjz3/yp4573a/+2E/jGb+sNa1yJLLSV+tR2+iAfaBEGKIMsqTZg2TCUa53AamFJNuwy1UBlBDQolNAI9Vs1ClCWLZpPOAWEWYSOlstQOwLi450SF7rHIMlRXZ0ovxIZKacp5fuMdZkQkMo0Cl9tLZOmYahQGbUh0pe0w/kX0DvywY5g0yy9AD2qT4m+AqwhgBEKa1iV9em9yFyD6n/MyCldWUolWCl5AHb9Op6JQy5eaqluvycqGC20ToUkPeXlNW27dXsvRIwHzO9J5uGQb0MwVh0dbutgeqoWcrcCAMGRYKZ9uxvVXXrFrLNdkSYP3UFw68DZmNb74vphs5CRiACrw6xuHBV7o0+ClmnjbDeSw26OgZtbCETGdJ9ZCfIkn6X6siyBFqdO1irao7Y2XY1DdA2GfBhjhlgEacKvX8mQD2RapKFbFEI2W8galcyvqtnkxI6BoAc0HqYTZ/t82mh9/9ENLYuEwelTyF1KpF7UgZjnRGL4NIg2gGK7VZyV4O4OaAohHShdQlY6/D5ArC+IySp+jIOSlGuq1L37s/8Y1xx7a0gr6CKle9pykgyTZD6meWcliwm+X6bgQAyvqL89zBgYBSAxsAsDNgwvvQmAYG/8+fuyD3X2VbT7q291V8XX3wxLr744tOyrScNwHLs2DG8/OUvxxVXXIE777wT5513Hr785S9j3759+THvec97cPvtt+ODH/wgLrnkErzzne/E1VdfjXvuuQerq6tP3M7vsi4//B7JoW4pI+uJzSFFVcdsSOyB7OmPbhjoFoDxBNPIz4OjjMFR8RmbHnJYnAP4py9wzoFtOBtx34Pr4G8OUMwi3MSDQoRtI9zCYnHQYX7Q4IA2X2tfngIRiAOb5ax+KL6mcy4QqjWUGw3c5kLCYVsvMkdAmtK6AaYz0MpYMkNS0DxRZjXEA6tYnFvJ8GHcGxhpk0hRClMzb2HqAqYdol21aNYlewFcYO1rFtWDMx0ixY71t5s4i4xsOwXQVYXc4EKAmXmE9SH8egUQwa84tCOTixU2BLI6OGD1hE0gl2UJH268SDIDZFjmTLYJ6QpTyk1oHtBkmWpibcjjins3wfc/+JjOtTv/5OYT/3Ena6JpgfkCJoFSaqORmSJBpa6ay3P4kjcvASy72T1c97yeWkY/k8dLxn/nPbeIwmY0BBkjzL9TFO0teZn+JV0JUDkTeTmS37NjaFFoUaisPi6dKr+02E4stl7uQblFoGjRjqVAjFHUF9IYnODFo3RpAsTqLqSZU2q2jP6sIAtKyPWw6IEMgboBIAPJQkzk8fLc1NjBANFT/l3cuf2EEaefWQeNkNdN7DzuAx5AZrOlxjRZdOVMEW3clnJeGDKgS8cnbTMiqySjgh6p2e5bhQG6b9zbRi60xcfZeKgySENJjdgKkO+2kY5z+p8ExlM+XoA2vFbubxQIsOm/WRq80JETJLxSBtnRdcz3HPLaA41ybo3uQyjlc6M5C9ilDMm+l3AYKIjSYw+aWcYW4MdyME2NrLTJxyadYwzUawbxWSOsfo3gjs3ye02AfFgfol0tESuDYrtHEYX8ndjIoHRQiNIjn9fphXonfgBABrw6RBhXCGOXs3H8arkEDsTKwY8cnCWYWYPM6ktNXN4JOi5HrG8N5NcGiKUBBWV5OwtqWe4jKX/NkDSIaRgVojT+ANBKs5itd7QR5cx6FFY6hQAm+TDsrBXrDrVgSIz9qKxDjoVsP9gu5D4q05K0JnBWXocIYegQKwtEAQ+KgZOm03N37+4Pm7UxNo3X1+wGQrEQq9d87gUgqvLpq/9oGbT40xs6QHhrawtPlmXruFzPErJyJ4f72mQzJ/YswqrVYZNFl4PVyLVueESsR6iN4MJgcmGJxblA/bQG6+dMsOYCHnhwDW7KsJMatPAoFx62rtCuFpifV2BwbIjh1zZBbcDKPUfBziAO5XvQji3mByzYVIilFXuxo1OpV1svQ2zvMzuUmwbcNEI6GQ6R80PaFhwC6MA+LM4TxXWx5WCmBPjuHAbkvmcWjeQC1QHNygjzgxbNGoFigdVvBAzvX8j9rW6FLVs3Ulu3rYA9qYYpqFPUAJJHEiGKsbqGYQYPS4RxBXaEdqVAu2KzrU5SFuVshlKU28EC8YI1AZ3qVrYfogQK9wEVfV9Z5QUskYqyTZiqXdhaxKFcfx7LuvNL7939D6lOzbaJCoJ4D5rLuUkK7B5Xz0LUKzsBlt1AiaxOeJzrWQDyfh5FPbu3us/pTFmJ7axp2Ri5L8wbubeoraTklul9M/WFOlA2rdS0YItmTfJO/AgIw5N/ztSYrGImVfD267U8KNV8OBRAQgNCQTBam1IEGIyQ7lcAYmVyPkuXBUigBIyn16CuHkwATChV0e0J7aqFXVBWMyMy3KTNfXKaf1DNiJW8d2iQfSxMV7+hA4CSXZFtpG6DJXnr6RKgAsOoKnEYub+kujyTiJQgs3TMYlf3kReAIajtkR0YIbW2STHdfT4JGAmVWpW5rq6PStIB5Pjk52iN6xbd72Mh2Xeh6vJ4kgo+AznU/ZwVSwGZuCW5hFqv9XqC9HO0EKKW1veDB5FJWc0aIECczqACSx/SItfysdSab2CwuHCM0TGtWZIqhAi8MkBY3YdYWiGfTFqp4fokAs/gUQna0nvDbte1/u9iFJChcOBBId81DOWe40Mm/vCgUEeEhYArSaGSSQB6LiYwJq0EiJDYTPr1SmzRGlWmMisRSO/BmgeTrEMpMDhGneWY/Br5GtDLMgEAuzDo1KAMBKlprB6jWDrE0sHUnN1SiEjqAgXc08yCvQcVatdeluAqnXCUv1OJEENGFelgJW8zkhWwUVca+X5C7/Xpf8h20mLxxqAy4Ct/93hi+T0/++SsaZ9062wpBc6W/XgEi5nxb/7Nv8HHP/5xPPDAA4g7AN3f/M3ffMTbfNJYhP3Mz/wMPv3pT+N3f/d3d/07M+PCCy/E61//erz5zW8GANR1jUOHDuHWW2/Fj//4j5/S6zwaS4WrLpcB9kc/8chR2SuuleF0krrCJna0yTLTzPYoKEtLQyUDJLFg6QLgTCvSVT8w2LzIYPr0CHveHMYwfGvBD1VY+arByrcjimmEXUQJbs/2Xtw1RUAGArJdgQ4fTN0Ciwb+/H2YXzBAsR3gJm0OaXebC5F7piBLQNmv4m8ezlnF9jNHiI7g5t2J7GYRgwdmWQ7JvaEOMSMOHNr1CvU+h3ZMqPeJfVp1DBjfF7D6pS2xZEi2DRls0deg7qaZ/DSFSSRWIH7/AIuDJULyb9XBnOQqQG+w3LOW0Z+9qG2q+6fCpDDIDIzERABR/izZppBAZTYlyxVtTvv2XI/Huu75PysKAe+X9jHboswXQNOC61pu4uPkWacDlRSIag3u/LP3ZKbYrh7LO4JIH8913fN/FtlzFVI40GQhAcdAZquk97G3Tn1liznm42w3dlvZikOZRFwWOaAXgNjwlNKMpuZK8iEkXFLCe42ywqQJ8QPC4iBhfh7D7wswAw8OBl/9kTfn173o52+DXYjqL4HXSfUCICswEpgSSyCWEp4OyxIgOhXpc39IT9rgkF4nEqiRGH2sIEgOmDcKYOhrioIDy02kqigoqOXUXF5P7AV6TSOAHDRP3XMBZJuD5I+bwKHUZAHI9ldGbRJCCbQrXSNIcVlNQ0FBI32tZMGQmtNQSlPKlnMuiW26fZFmDbk57FuXAV2DmECfDOqo8sa06Tjr/psOzHAzuSem95YHiDu2lbaflEo5dyWISiYNxIVJ2h3zBKSZRskPPaULU2e1kPyxsxd2YuO38nrVRsTql8Vesj5noE0Nw69YLPZZuDmj2vRLNl5gyWBJ+TRgRnVkAbMxFbBCH5Mfb013zzMGzVP3YXao1GNJebCQbIKi1h/ldgQIGN63QMqQkPeXTi4s7VM6/9Lf5ocGKDc9TBtgFkHqBR8zQJpXsh8rXb4P5/eZhrARSJaB/dfM90wgHwtqQx72xmGVh1d+pUAoZUj08Q9114L+uvoV78pkhw//3ttx5dW35CGxgCndsU15NaxEg2yVqsciOiMDIiu1nB8RPvvB63d93ZOtx2rx9Wief7J798OtE9WzOceqV9MSJyYvCeDoxP6rmHUDK9sw7EKUve2Kw+ZFFtsXRZhz6wxW41iJp3yMUUzVEq4O+fMyrVpo7AAE+jUtG7NUzy4ODVButnDb8n1KGQm0OQFvbnd1JSA2osaAD+zD1nMPoF2hPByjyCgnEW4SpMaufadkTsNXQ5gfqoQsBGB6vviZDx4C1r4eMXygRvHAtlidNQ042e8mRUxZLCuv0lCoKOR+6gz8+gDN/hKhlNfoW0LaBWfrwbwi5+s4RcbgG5tdWG9SszgLv28kj1dgRmyEe/vWq48TY/bxXEsKbB87q5qkOmr9ievZ9LOeK3d+6b0n/F6cbfUsgL2a9jStq1/+TgCiYDyVdfi73tLZC2pNy6XL7gixdFlBlu7hpolynQLEsaAgxMrAD8Qtwg8ImxczwloABhGYWHz1dcug/Hf+3B3iWhF79SuJfWmyjE2B6VFrs7TS44sJUEy455SRMlo0Q7B3fxd1h1xT0/Wjn12XlBh98ktnNwRRLTQRJs0eVKkeK4swsBo8rzZgFrkuYdfVtcnJw7bd6wcNio+lvPekygi995z3MSCHvCd1dbKkJAhJKIEQbFXpkgiVPdAq1Xi5pkVXw2dljxIuc2A9df/mmrftPqtEwgKJXZite8/Z8TmkuUS2SNaaR+xuOefr+IGRY+kk/yxUyFmVpPcs2wCDY5x7AUDs1lJuT7+WBuS1k70cAAyOeAy+vgG/X66n5CPCSoHFwVKC77e9qCKiADXJhp2dEQCIhHBE2zMhewI7wJDefVxz9PjAGtp9Uj8nyzZiFuUI5LibuW6raTtST1pLtTJJvQx0138ihIMr8KMCxeaiyx9MRIfCdXlvOsNJCuglxafVvF0iUIgdSJN2I1nw9/epd89NwIwQlFlmbSR5iR/+zz+Lnevwc2QemXLS7vrv78KrLrs5W32lz9EEXtrPpZXqAq3hQiXP9QOxbf79X378a9q9dfzKFmGvO4sswj705LII+8mf/El84AMfwBVXXIFDhw4JeNlbv/qrv/qIt/mkUbD8+3//73HttdfiB3/wB/HJT34ST3nKU/C6170OP/ZjPwYA+MpXvoL77rsP11xzTX5OVVW47LLL8JnPfOaEAEtd16hTIYpHia4qm/NUQqNfddnNoDZKU1IYkEkD/u6Cl3xM0w3DNhKIFwZWfZMpD5ZsowN/HfrYlmGaCL/fCrOjJfijA4AAt2UwvI8wvp9zPkD2ui+t5I8YBrzc8FL4rVkEmFYGJCJN1IpgPof7RovVjTHisMDi/DEWBx3aIaHaKlGdN8bigMXKN2sUX7q3u5kUDvNDA8wPGgyORfihycVIu2LAxViAn7nejJMHJBFiadGsOczONSAGhg8xhg8BviLMz7UYHB3CbS5A2z2WnyEAalOW1Cvpc0vMW2UaAejYzGnWY0glw6xDQalsmGS4llgdAMT+oM9kKSzCqMis2txwJgVM7A2KiABHuOu/vuORn4OPcSX/6Gtf8I6O/Jx2GQAlZcG86QofQKWxnAdP8d6Tq20kjHR3puDjsXb6ZF976TvA62MA2mBr1tDjDXCdbF11+c2PCrx9PNe1L3hHN3w51WVNZo6CSHMagmQyVAW4tIilEXvCSoo7AHALUaykIj/ldAQNT2ZlilEZMFqt4WzAc/7tDZhtDXDJLzbAa8e5i8r2AQnU4N4AXe0PhMHGOYzazE3XDO3SWJI2JzlAU7cdvdplAaLCSLWzgjQGECuCdHwS+GDSwFL2JYEEfbsw7m2nn0eTQQbFmNOgPzHX8qfVbxJj97p9azR2APeBD+6Ol1ExQGLp2QZqxUDwA0hwphNQC+gAnbT6wBDSjKu375mpp68XNe4qKW6MF4Aq9pQvHdtSBgSJdWdazrkuhM6jmm36TIU1mE/TpttH45GzctL7aAtgdD9j5Vs+AyB+YLLKBZBzYX6uxWK/MhTVFoLagObcEbYuKmBr1r8xBhtBFB/63ZDX1xMiAgacB4FhVAB+CJNDOU2XNZJYhKZAXBui3lfkwUh6D6HQ70zvO9GsWoQSWOwbYXgkoDra5H3plF4KanBn2yEAkwyJwkCADvIMNDpYNjusj2LM6th8PwbEIin5UzsCQ4FXBXtkYCrvkVOoaQJgnNzP231CxJAwVsbv/PufxsnW3Z/qlJZXXn2LHOco521uQBObMPlRm+59f+IuAW4uP/wehIEAwp/6jRNbap2JdVrqWV2nyvJONW2s7Anr2WRRYr2cD0LqifAjBz+22XLE1pzB6VQjmSYgVjbnW5En4JsDcdtYEIYPAkBAdGK/Rk7qSVEzEYjTNecENW36nmo9u9KrZ5t1m68Fg2OrcJPzUB8osPqnR4GvfRvctKDxCPVT1zB5iuR5hUqug7YRQpQdGbiFg507FBPJKqQYAQcwDJpVg3qf2FWufV2/0yWw2GfgZg52WsEsaqABiAyQ7WF2gEbGdFZ3zsqQJzHDSS1zErhEhGgAi25wygp8ZeUleoNEH0Slrpavi6esIVamC8VOnu2kpKEEQFoDdnjYvuhMrA/94Y0ANIMwWb0kgLcsdAhXdR76wHLmCmx3XE+wzrZ6Nu3T2VzTno1B9Lutq1/+zkdWz0KuMTKY8bmmTZmBXIjqdLd61jSqzlCVgQTBU0egIQBVxHB1Abcv4pLf+Dk0Dw5x8a/ptf7aUUekgdRBmaxDgNE6kZJ6w8h1KuXdRatzAEswzFrzpNwTzgQfoLdNzUUR+y/O2XzJ9jpfx1OubFyuZ/oqtmQZK8dQGfI6BM62rqkWNh3JJ+XtJSVeqm1SXd6vZxPJJ4W+JyVyDuGmrt4FADvrQA5EoEzHbQi0K5wzJkwrdrJLdTeQHUj6lmb5PfZq3b41Jkf5rJLCJitqtOaPtutTuhxIwM2jWDYN5fNLr2u0R2hHJoNVTBDATT930yLblZlWiEWr32gx/PpmBgvCqAQXJiuKo5Oaa3aoxPwcgp2TKogIYX2IyTOHYp9biw29kG0iKOXw6ueRCCpys5F7U1gZwDKDNpNKxHTX6JQzQiQkgpUB2gND+IHVHDGfyRyUredIrLYKC+PFGtduz4HpvNtWAlOSgiX1stbkzC1bK3nHcTcLA8T2UkkOBAgYkbIVU01rZd6XSLaxtEBpswpaZn0x17PQ7aRmhq2VvmIsCtQ05zsRWQhYdi655qU/h6tf9k7AyX2ae+AoIsAFwGS0npfP5RN3ihLl8sPv6ZTIlvDp//enTviae2tvPVnXr/3ar+E3f/M38X3f932nbZtPGoDlz//8z/FLv/RLuP766/HWt74Vn/3sZ/GTP/mTqKoKP/zDP4z77rsPAHDo0KGl5x06dAhf+9rXTrjdd7/73bjxxhsf07599OOn3jyQ1xB1vZh97KPy3MsPv2dpuEdNhNEQWtPoxVyZYrZXCNg6Sghc6A0f1K/dzSUI71n/5Ha4bcLKN4HBMc1eCbI9o/8yAx/pMcyuuvxmJOCoH4h+3fPeJkycqoBlFmbdZAbTlhgAsIshmnWHdsVg81kFphcC208bYvWpz0Q5kUoiFIRmzaCcCMOPTYeI+xGBjUUxNSgsoZi0MBzAIMTKoVkvUK9R9le1C6CYM4aTCDcTtiyMAQ/L7HFpZg0wmyP5gMJ2hUK+kRqIMmcRYOuIes0tDf1ysQhk64t0zAEp8OzcAz7mG2RiLclr6OcaWNgL6YBGyM1amZS5eX4cVmLsmsZ3GS+k1Xj6OTOWOTemfZaxrCBFNBnx6cfu7NfDl7wZJjX4MeLwRdfvain2eK4P/eGNuPaFN3TMvxTmfBatsx1cASQo9poX3wRiPuW8oDv/5GYJoe1nFaXsIi1SY2Ekb0KHXKyM8My612GONEXUWTfVhLCwCCsG561u49h8hBlpMUxAHESwT4W9NmvJyiUBDHngDlA0iBWDWpHL20XHeutUIR2TzjacLXCYWGT0KqdOGSAE+VdCO5GbrWxrpfuQPZgTKEG9f9H9nJrPzDTDjt/1m7wdz11SlUCBEm24kjKGWFQqPjV5uoyX45GyTFJ+DKANrAViIMkK873XxfJ+513j3u/0WmQXBDfp+VWn/Y/ddqTRRw6Vz+8r9DJaLKEtkyKF8r4UM8lySYGbphXmHxux8wJT/iwAZEAmOqA6Cuz7swWK+7YAZvhzV+EvHGL8Lf0dERAjRofWMbtggNm5BotzhKFuNrZRMWO8IqxNUUf22IjKOicv9w3TaFaXejSzNajPqVACkrWQ7nXp8KyP4fcJwaJdcQgVodwOeRgRHWX2oZwvyTdcft76DsLskMPgqINtpK6othjVRpvZgqI+IkS9VzTrDvWakdokWeK5hMp19xQm+fCXrreZ9JC+7wl46c7raAgoDEjJDKwNescUNPBjh8mFBdoxoZgy/uuvnhrT7vLrbgUbQjmTAVk6/jCQHAmtEz7+4Tfjsu97D0DAJ3Zk7X3izjfh5T942xPSiJ6OevaRDj9TTQs2J65nPWeVr6lF0QHWAVVl9LsHYTX3ApUBINlaRCvX3j9/g+TUmBYYPgAMNqRWZpdyk+Sc6wNmwIlr2mtfeMNJ61k/lryE+QGLxXc4LM4DNi86Bwe/sI5yo0F9sEI7Nhgck2uIBMAS2hUJgHVzgl8wKgLsIsDNFRh0Fn4k+X7RAnEs169ymzF4yEumzLxVSysrVlbWyAW1acCLhdiAWNsLtRVAgDMAaGBnHnbo4EcCQqeBVrrepcFd3y6SghK7EstWLXsBIKyv5u+cbYX8lYYyAorJIC0NknLGwhleV13x7nxfOA7Q2XGNgWGxTqyKLowZ0CnzjvpXr0U7vxfH1bPPeuNZkXFytte0TwZwBdDcrctu7vU5D7/u+u/vkpq2p/4XwFnugf16NtU4vjJAJYAIIAQLAApcGoRC6p8wcYirhHNWJjg6G6Gh4dJr5wxB/S6TB1xPNZyBiZ5CIg3xbSLYKFkw1aiSs6G1bc/aNddnCsowobNr9d3xksyPDnCFAicJQIkwHdBCWn84tYmtuuB6oAcuEDobLPVcpdABJjl/BbvUs408L1RdXRz18bHsagxKavEe9iofjmwn7RcFylmE6B8b6vazsw3eUdPOCcV2T9mdWu2oj/Oixu6rZUyAEKUYqhCSnxOhQ/oLygpkENCsGSTyLfuUs7PcI0TXKX1GD0aMvvgQ+KGj8rh9a+C1gygenADHNpFC5WEIxcY+lNsjTA85TC8gjO8D7LEZhg+WaFdcRwLT8ypWVs8RAV4SsMBEMG1ALC3m5w8wNATjHMx0sVTPwlnwaIiwT859Py7gxxZ2Ltk+yTpaFCKcrSpBADlGu1agPVShmA5QHhtn5RjNGrHhVHvTNCcCgDgoEQZOlOSWlIyWgBkjwfcpM61fz0Yg24P11JD9nMj0uYrLQanXC9Ndc0i/DwMLP7JoVg38kOAWjM9+8OSEIQC49kU3dveBGIFgVAXWq/kd4RN3vRmX/fX3IlrC7/7b5e0moOWJqmn31qktwo4ef289orW+vo5nPetZp3WbTxqAJcaIF77whbj5ZkFlL730UnzhC1/AL/3SL+GHf/iH8+N2ynqY+bjf9ddb3vIWXH9913xvbW3haU972mne+26dSGqcLmJpJQYlAGG+GAmaT2xtUoa0WHzF3NSwKmNsw/j8++V9De8TT/hyO6KYRXzyP5z4wpzY8ica6t7135el8FmGr0Mft93oTUV8lle+LnLdjWfLMKjc7Aq98f1in2B8RFEaOA2T7zNWpFAU8CH5sworURgmxZxRTGNuzt2RifhTMkto+1R8q+E9MBwi7BtnJgYbZTZvzTPLEZbEJqfhPHiVQSN34bTF8uDRtNI4y2cQsuKGlTlGJJUWefHXPU7umorxGMHZyPrMLzupwUT40B/eiMPn/gOE77hQ95V1f3psvr5tnPp9Z/ZHTAcKoPPPw+Gnvx53fv39S6913frfAx08IDT3FHRszdkBspwiIPCXfb3qsptBgXH3p96GV112Mz7yybcKSMcMs2jx4VOwBeuva194g7Ar2QAQ0FnCPyXQPjppRlNwvagihCXVjmWY5uZSUCcP4f6wnmqDtrVoo8VsUQITB/INvvoPuyLxWXfIuUeR8nXJJMAkqVKS5cJEcz0SsBK7/xkvdjYJkEkKRAFPKDcZpu1YdglsSU1YaogIXUOWA+lN9/gMsKB7/QzE6FcxZ4ekubYCKH0rq6S26ZR4WGbJUdeYZvVG0TvOljtFzZjEP3q6o4HXz8XUJA1rD/jIDWfal2QfljJgnBT/bIWlZzWXIQXdZ+sh3b8UeA90vxf2H2fbCGngO7YhBRmC+iGhmDHcTMkK6TPQfUuDiFh2n8PoXmD0QMDwwQbuoWluyPrstfQ7wPRs7gBT9xROCYBPZQpJ4HkKjyZPsGojmWw6Y+Ukl6IyKLY9mvUC2FfATQYoNsucT9KcN8L8HKfbVDvRACAybJAMokDdwKdv52HVAq0+wFicBx3KEsoNQnWsgm0Yg40IPyTMDxq14+BsWWFrziqCWLoluybWhpSBbA0hw1zkgbrxnO+RKfck2yUow/djH/2ZrlZS8CP9LRbSiNoWeNlrbsPgWHvS4d4r/+f3whDBtlHsnJwBys4nO4FrSanyyd8+3ms6rSeqEX2861lg95p2Zz17xTW3ylAiA4c2W05EBUbcIsIugtZJy/VsAko//0/kvRUTOTedft9/59/tXtP22fInqmn79//d6lnTWsTKIloHkEExk0yE+15SgEKRbf9G9zOKWUS1wfBDozY3yDVtdCQM9ljCLIIoWSqbr0XlFjA8EnJNbOYtzGQuHutF0dVd83nnMb+2Ci5l4JWIPWbRSP3mO3sR00TYhYExHVHILvS7aeWehyDXHJOsexLj2Aepn0MUgk1k2DqCFsKiTYAE6f9RFKs+8lHY1NkX5wwvku9/yoq7+mXvlAwbBbiPy4ZJy/Zq7qDTy74dIcT66c7/8e7uvy9+E3LA8llWzwJ7Ne2prJ2Wb+lakX5v5wEf2QHSPty65sU3gZzRW3noatod9SxI7BBz7pzaYdlWyCFCflhWopiWUE8qbA0H2Dw6RnFMMsZ22gM99813gAshvYQB8pQn1XdQtYKb9WyzVNEcHXV240khotkbKTMm1auiDlH1Wm+Izo50uA3k3ETGUs6KgAEEKNE0bSOFuYslF2XQA0h/03pS69tOxcJ5LoJenkiuZ52GwfdqZaM5NWHY277rtpsIO6meBaktLgPFFMCUct2RAOpMPKKuh0gKmVzvWwFliolsx9aiGDKB83uPun+25Vyz5po9JvWQAvMJKHNdndKsmvw5pjpf3qOqPPW9tKvpGMrzVr7NWP+D+4GNLQl/ByRPJMrnR4VaUqoTiF8p0awY+EHvcxqWCIVBKLQOtvJhZctIQ1J7+gDWOiCpWcgHFNOA+aEKFCsUW0OUD5UdCbV0aM4ZY35ekffZzeW8DKW8Z8mEMUuWYQKKmXwuzM91mJ8j6mY3ZxSTAYrtBmayAA9KNPvli5FySCjEbDsmuX8EcjarpxnIJJzkVkJI99/uszEBeX6VyQtas4ax7a4/GZzpcolSPqVphbz3cDXtVVe8G9Z1YE3KWQRsV9P2RqMnmwsCT1xNu7f21uOxbrjhBtx44434lV/5FQyHw4d/wimsJw3AcsEFF+A5z3nO0u++67u+C7/xG78BADj//PMBAPfddx8uuOCC/JgHHnjgOFVLf1VVhaqqzsAeP8aV2S/SgCbVRGJrEwNuJmoLuZEEmIUOBahAOYl4xfe/D2FAGA5P3SvxkbLlkwwfECm++FNGlFsBxSTIzaEyGByVmwSwPAQNAyPs5ggUWx4lM0JllRETYOYNzKwR660Y880qJhuIhlEdaWCmEjyK6Qw0YaBw0vg0wkpgjiDnYKY1eFTCjwuYNmowqmifyVnECLiJx0BZKhSlyMnMhvSvFpwmMOxcb8ALnwsKudEKM45Y2XIERJWb5pudgQAUTlmbRlgHcg7EU8qyeLTrrj+6Cdet/z35HL7jQikWQshgz26+p6k5ZRJ7nexbCiAHio6H4kUcIvjBI6BzDoDOO0c+j55/eLax2VtPilV84yju/PP34fCz3oiicLjuuW+DLSzCuHxU5+mHfv8GYVomix8gD19jaRBGNqtVoiO4RewG9IDanmiYZEGZlSZ5KsnSizBvCxhifPUn3gj8RPf6z/ont4MLyQiRghfZZisHhabZS2ps2g60SGHx/SI1q9TUxz5Zl6W8i5wtYrvGL9sfWAVHFLyNDggj9X6mTinSb7QYXWMjx6/bZgJcgA7AYKczbmWWJSAmAR6I8pjMvusBVxJEzd3+9t43F4zABKt57ZyaZc1wsbWwB/uZLsQAvGwnATdGH5fZkQBMI9ulZEFWUf6sSNUpqelMn5NkeMhrJUAunR/peKSGOWXj+CHBjUg9pbvPwA/V5mwANGuMwUOE8b2M0QMe1YMzuZZbUYEmD+m1h6Yy7HcSyl4/dR0PXlqhWQfcRNiRFBjh0D4c+64VNGtiEQQI8MJksmpSBp5efJ+J8r9cWAHwAwkrHlIz+JVSbLoqaXJjIerQZOUhL5KaccrncQIU03lKkTG8n1CMCM262ORFJ2DL4hx5XLlpQR7wK0CxCdiSZHAw5zyIEaZizENOIMp3K7H+tMH8yCcfXUZDajCvuOZWVcCJDcPnPvCGU97G5dfdCquKOFPLgeBMJEjH5Oynh52t9WxSpBxX01r5rGxkuImHXXgBVKIOMywBVMB4RjGJeNnfuk3A0AHhD/7pw3++j5Qtv1s9a5SMk2taK8qm9n4l/OhQkKKERbMqwwcbAoIkew3S74JZBJhG8ljctEG1WYJJVHWmjigfmooVa9sCixqs2UpUONle03Q7XNcgLhHHAwGFZrUEugOAtZIvYg0cie97GDpRX9eSY5br2TT80nBbAEBgmLlaEDkHOCCujzKIwkr6SpZ9OQfEkLx2+r4w45qX3JTv87v5xZ+O9dGPvSUPx4EewATkfgrMSmCgpZojL2vQt7zt27AlT/sMqJygnj1bQJa9dfJVfnsbd33hXTj8nLeCiVA6g2tfeANcYeFXiuMUcKeyPvzZt+OaF98EWCEvAEBSQoaRFbUKyfXC1AGxJCUPqlWpqnNDKQCET1l7JUvt1RhsbI5BhvFnP/MGYMfl7XlvvAM8ABDF0osAtGNkZXQCAqyShFLN2c/jS6rDfl5WzhQ03A2II6t7RleX+5Fa9zrKCpEUaM9WAPWsoEh5LKF7LIDu5wRoABngSEpWNgA1vf2E1E1OyTYMAqWfXQeehH1Sx8h+SR25pEzW2j/VoKZNYAZyDW8bgHrAS6gAlF09m45jqDqle36ckee5hWarJHv3/N6kni0UvJID0tUdGeQynRKlq6lZ/5vQrABW1faZcEUk2YA9KznbSFbN+NvAyrcDRt+YiGKk1I3GCEymcJOpqla0gDYGi2fsxwMvKNGuCljnprKvR5+/D+2YBPiA1LGxVJJq7PJHKEZQqltTTVs6FFsNTOM6FeRIFCR+aOUeOxTbzmZVXsO0ABViBRos53yjbDMa5L7LpASgEBGdkKqiJfgh0I4L8AUFyu0hTGA0qxblVshkqWRVLx+szNvkOOgH44XkKzMQqXE+/Htvx6NZS/Ws6erZ//zrpw5wXHnVLfK9TJnKmn/YWdXjSVPT7q1HsPY+zke9fvAHfxC//uu/jvPOOw/PfOYzURTF0t//4A/+4BFv80kDsLz85S/HPffcs/S7L37xi3jGM54BALjoootw/vnn4+6778all14KAGiaBp/85Cdx6623Pu77+1hXYmH11+WH3wPrgd/9tz+Nqy6/OaPgFCKoFnYoecDUHm5qgIHktYy/1e7yCqd/3fXfJBDwmpfcBLddizS9sPDjAsWW6QoGAkJl4YcG83MdwEA5iSg3JGC92G6lwfYKWrQeNF+AiFBOK5hmBcZXmJ1nQQz4kUO1NZeGqiylMQ1R2GXqf0lMQNOANrZA8wrllnp5tindTaaIpm7htgDTlvAjJ82jNpzGM6hZvrGK1LUrIHlQIgeVAUiBZDIQM9m7NgWddhY3BMSgRabanBHh2kvfsdT0n8513frfw12bvwIA+PDvvV2AnQQI9RUrvZWbVOauuWTuvEuNeogagIhA5x7sHsM90Ka37b2G9Oxd1z33baAU5pdWDIAp8nfgVANAd1sf+v0bcN13v11UK5UG2lc2h1ruZM287DW3gU1iLUmjGnsNUrb8ioCbGHzpJzrA+Jm/cNuSeiU/vgee9K2zxD+6azTT0D+UvdeDPDeAOmaZpfy1lgE2ZcuC6Cir4FLYaB9gQewUMtGpYmKgO7MwIL3nc3+f02uZHfuaGjcrwIMwBpeb6tTIUk/p0rcqADowiQtWsIXBpWzT1EZBGQYHCHssdvvQD6N3C4AVZOlbiBG6xy+pRfRxOTSau/cp+QWQzId0LS4T0IIeI1Mb+4EAVQlMyZZhvcbel6kpJri6a+TbkQSe+jEQ1gKKrzrs+x+TZRZ0lvvrkDHbXhAYEfNDBZp1YHg/sPqtgPkBg61nlmoLAKx/xaNZs9o0IpMo7CxkG4MUopkCNZMFpgykAT+WxrPa9IiVQb1mdUhB2avbqHczoEPhABRTzrZMwrIXpp9Rq4lQEdpjhHaV0Kx1Aw1h5wNFAwweFNConKQhrdgHmUaGyeQj0Aa5ZlgLRgQCAQXhI588PRaIH//wif2od1tXXfnu7CVu1bbCLCTANI4kq+ajH3sLrrj2VlDkJ421zdm4dqtnAQG2KDDcXIg5CAwT5DOgEMCwoCbAAaCg5JRosPKtZtftnc7Vr2ftwp+4pu3Vs/W6WN8mQMY0MthwOuA3TYRZNKBZLde9mcXK1y3cvMLsHLEii6MSdmsqWXfGSJC9BrRzCN2QKwTw5rYQh2bqJ6+5RFByT6qBLTOoLWXY5Qi2Dlpfd9lKycqwD0wwEXhUZQZxJjuFiDCQmxEFhkm2hpqTlNRkS/WxZiNd85KbHvXw6WRrZ7bHhz/7dsmG69ecUUhMS6BK+nu/nt3phJBq2jSQivGE9SyAs8YubG8tr+ue/7NLaiYAQNOCrF2yUXss1/p03vVr2jAUy+nP/Ovl+vMVPyDniKimZdgeim4/TACi1jPlMYN7/o/u+d/1s3fgf/zcDpA5KjighBw3Z/iB1mQRMEp8UdG4kFuSwiUCsVVHhp5CmI1c45bOcO5qqMTOT44O7SjVPvr3QnMnCrECD0mRXqc6TR7YD2rPKumi93pJOb6DDCIWSt2+pM8xgTOpJjYtYBaA8Z1avQ/m+JUIagnFttRgptF6yWudajpiTMpYlOwVQjukJSBnyTqYkbMJyXdko5QLuLSIBEQ38uYoaIC8qgsli1GK9ERMSsBPUudE3Q8/0PpsKq9nW8n4S6Sher/Uu34cUfwZYfTVbZi6FXJqmtXYJBfqrcIhjirMzi/Qrkrtt/rNiMV+qWlNy9j35QbNqkWzZuSYRQJxhNv2sLNWBv1Jka3vO9XMsTCgENGuKrFiq1HwzsC2icQgtWZSSbtpEPBFQ9iTDX6qZ1mfY1uW3DCSz8GvEZp1AzdL55zB4FjA4IgX1efc5+sERXEoIa9K7ELmQ9wGIYJEAhd02ggEj6aelQMoJIKseE/Eh0KucXs17d4629bv/M7v4L3vfS8+97nP4d5778Vv/dZv4W/+zb+Z/87MuPHGG/GBD3wAx44dw/d8z/fgF37hF/Dc5z43P6aua7zxjW/Er//6r2M+n+Oqq67CL/7iL+KpT33qKe3Dj/7oj+Jzn/scXvva1+4acv9o1pMGYHnDG96Al73sZbj55pvxmte8Bp/97GfxgQ98AB/4wAcAyDD39a9/PW6++WZcfPHFuPjii3HzzTdjNBrhh37oh57gvT89q2+74KZ6Z/bpop9GehEIAdbKjTp6e9oGGKe6zLSW/YkMtBZFo0BHb2hvByVon3hX1+sq6QwWbk5wE/WeToGThZPGsRU5viPCwBJMW+hQTppeagMwKBH3j2G21btzZ0ha+tIkX8+iAA8r8LAAOwO7tRAfewAu2XwFCVpNwWacfDiTxJMFeOGRpgb2mtW8CEgBYv3VvwGCU3ivNrilBaw9YyBLAleuvfQdoD//Bj6k/33d83/2uOIn7R9C955zEZYe07dayM12ek4nh83b6v17+Nk/jfoZB084iNlbp29dedUtD3ucX3WZWDEWiakDABxx+Omvz58jNQE8kIEJa65R39v+VFcKX73y6ltUIk/4ZC/X4AU/dgdSLsV//dc/hZf9rduQrJ8oNSIs7CjWoE07J9zzdmk+L/o/bwMXDDs3S69bbEnnlWT8f/LON+A5b7sDyaZK3rP2LsmCS4f/UPAgqURsD1Sgnawg7oLAk1VBKMWaIDW7oeIMWEVPebjPhvV/ACpR2+z0ajZ9Fl56aWXEQZtjacSUuTcnCTFVMAMEwAGUQkqTuE69oY3O93yvWmDLoDIiVlE8oVsD8pQBo7QNCoDpA0HcvW4a0APobNmiHl9SNYsyAhNokoEvdMeuU+sQbKssTZaGPlms+VEKedbX5uX3mo+bKnWanjWFHyujdCCB7NOnArN7Rxh/fXrcYC3f5/o/G4Phgy0OhgKDh1oUG3O42QiLgw7kgdH9whKfHnIZ9LKNejWrfRZbsRcxmovAGpjJBprT5mHrAu2KAxtCsdnCzmMeQABpWCCNJ5MAKFiIQoaaoO/dghedL7qbtGLT5gz80ObQ7+iAdkQ5JDaxXqMFioUMBcjLfZPasJQzJqCjBcxjA2cf7UrklMTOTWG6lFjtBgLyFgaXX3crQMDH9xrRM7KS3dq1L7whf28ocA4bJ2agDXJ9D1HBO/u4DgY+/Htvx3XPe9tJa1o7KEH7K4QBYXauQTFl2FouwpIrIyo0xCj1qLXAXBBnd8xiGAE3le8uJ4AErQ5yCmBtIFZhakHbZeNJ3cWzOWBILFwGlTwn1WPzBbCoJS/EQLKL2iAWuk3Qx2mdlpTL3gPGgpyFBLdA673kaU/HX/sg9+TMmjUA2phrWrIGcViArTsjIEs6J6668t346MfegmtfdGNW1h5+zltl/6NMlZfY4bvVs5plk2+2QFfTRumxTljPstxzDz/7p1FfdHBviHWG105g7WSP03JDWd0Bhy+6Xj6vwgmY2XiwMXjVZTfnQf1xeT6nsNJ5Jyz05d79xT96e65l/stvvBEv+1u35cwzqXW4u7e3QhxxU8Kf3iD17HfedAfCkDFYHD8AcouOnGJrxn/9levxnLfeAUBqz2SnG1x3z05KX1YLWbYEP9Bg+0YtRVmvywxYz3KtaSNMy+JCUZqcowqIQsZXSV0OmECZqBNSVooRVW1WFjNlBUl3f9Z903rWxK42l7oZkPofua4BFJjSOjtts5gBTnNG2Mhj0s+xhNQ8JGqLdlUsYBOgkxS9ttWhvoJB0QKxlXxBP1CltJ5kKS8whd3bGbLamlKPke556bNIYFZWGjGMKoAQuLNXI1FJxkBAsh9TgpTYbaJTgUuple18JeNGNpmU/huXGAyOrWD49QmMDzlvS95Ir28iAlcOsIThgx4UHYYPtnDbLYpJicUBi7UvT4EITC5cyS4DtmU0KwZMDiUgRJYYEYcF7NZCZjvDEmAP18h90jRpJwF3bIHxrM3/7ddLUWnNvSgylZxB0YEm/rh6VjJOSAk/Ua2HDYqJQbtps1VfsqD3Q9KsYws7a7PlpRCFvKo+9Z7hbJ75PFHWjK+67GYsXQ0S0SH9Z6HkxcLiimtvBe/VtHvrLFrT6RTPf/7z8Xf/7t/FD/zADxz39/e85z24/fbb8cEPfhCXXHIJ3vnOd+Lqq6/GPffcg9XVVQDA61//evyH//Af8K/+1b/CwYMH8VM/9VN49atfjc997nOwiQB+kvWf/tN/woc+9CG84hWvOG3v60kDsLzoRS/Cb/3Wb+Etb3kLbrrpJlx00UV4//vfj7/zd/5Ofsyb3vQmzOdzvO51r8so14c//OH8AfxFWNc9X9Dx5MWe2Gx3/okMRA9/11tkqLXQBnAn++BxWCmn5fBF1wvr0NvlmzQgA6GFxeh+oJjKye9mEXbhhcloAEQCDEsuyWgozIFWFC1ucyG2LqsFQmFgq0IsJZgFXAHkxtcmFYvV5jR0mSzWAlUBHji5gdYtsD0FBlVm6ZlGG0qgU28EIGW8ZJsrIpD3YP1KUZAqkK0wX9LnlYr2PIRNQMbOZjVGUDBgI2yE67777Xk/5ADitNmHUQig0RDXfffbcdcf3YS7Pv9z2eLrOPYfx+6/gV6DqdYKhtQOJjWzjCWmnyFpVPuAm0zJUX396Gl5P3vr5OtUQKwEyh6+RFk06VxQ0I0VAOTSIVaSt0Qhnmhzp7ZfvYLvpX/7NkRHaFdI7lJBuocX/d3bUUCaHeOlK6FIiEFsnCQ8UxrTS//hHbA1o3qqQX0w4stvvD5v/6/ceIdkRTTdcP/S192BQWKbKbMveR8n6y2vTDk3F2ZYygIRBUCvOUR/+E+58Qvlsi0Vk4ArsUrDRQJRaqR61wTLoqYx6VoELAW5Nx3QECoGFwzEFPoMxCIKAJX2zXaB89n2zACUvKmV7Wi8Hnqr+xaEARhaQjgYQWUAvHz3Q8VItmimFYZYapJtLXYJsRABlNfeaXAUGBxh1OuEdg2gFijm+pno4J6VbSZ+1LqvREve4qz2Z2wAWIhFY3IzSNi6DjXS6jfz6XNMn1v6vBGTXYd+Pg2h3R9w5DkW7XgVo/taVA9Mu2Fb/3rZG4IWD81RHFuI/V1VoNhqUByrs3x/8uw1tCvA4KgSEOqo9gTd5wUI4EJM+bOXXB8BMawXoCQxAa1aXSX2I5hBdciEhFh09j7ig240/8LDpv9mlnB3HWDYRcoR6gDGBHpREMsBtiRzZCUlZNtM55QJbvDhz55+Bvuprr51RDSM4IxkkNa678NSLEgNdaquvXXKg8xHug4/561iK0gEqGd4qiGve/7PynekDoC3MCmT5XFeD1fTmsbDzi0GDwF2sVzPZnuRZJHHDB4UIEPAfAFqAuz2AmwGCAMnSueqBE1nsvEYgelMakznwK3Utxyj1pxQQMqKlVdRSF3atlL/1o3UtJakRl54ra9lX/K9vWl0eGS696avm9UxzsEB4EEB05Q5SyfnLfRYsykIONvJquUL6zXymhfftHSMT+c14cqrbwH2VZmcdOef3NzlpiwpVk5Qz0aVU56wpj1JPZtUMgCqr+7VtGd6neo16WN3/4z0z0RyLseYlWFpsbXgwuS808dqoZNY6C/9odvEqnSFQIXkixkviuyOMLMjw0+xVD8g2LkAM27OKJ4uA+M/fu8bll7ruW++A2YEJItbPySpl1eVaFKhUy9DAYpS6pykrCi3OVuJ2YazRRYA9C2yWQkJYST5bYkYlerRdiRDfKkRCMydZWhScCeQgTyAngKdnZBrim0p/kKFTsmiSpwEQHS5LbI/yb7QzaVm8UPZZlIF21q2GV2P1KM1oJsAzT4lozTI7wUQckrK95OMKek/DFShE3WIv5CQ+MFRj81nlVLD6ueaVdP6eVtVDUuQeToHFAyaRznGrVo5AprdkgpCwFgDxwpmeeR60SjQlNTySVnEJOfd4FhEu2JU7SSOE+1qxJHnOKyN1rD+hQBqu35edozyPqTrfPXQHOWGZOtyYeCmLdY2alAdMH3WKhYHCNUmIxZ6/KnbjmlDVjTGqgA5A64KwIvCEz5ITVAVct+LEeZYnfN1y2nd2XRZk1Xd1IZcQ/TrWfTqWTl8lD8LAduFdEYsvVe2yWQBaQxRlpJRVXQK9UzQYtz1+Z/b5QrwOC2Wc6mvnCeOWXkpucNd9vDe+gu40kzgSbgOHz6Mw4cP7/o3Zsb73/9+vO1tb8P3f//3AwD+2T/7Zzh06BD+5b/8l/jxH/9xbG5u4pd/+ZfxL/7Fv8CrXvUqAMCv/dqv4WlPexo+8pGP4Nprr33YfXja056GtbW10/em8CQCWADg1a9+NV796lef8O9EhBtuuAE33HDD47dTJ1lXXn0LKPCjYsDsXMknNltThUR5CEvhiwCkaGwDPvxHNx23ncd1paYs/dwHCEKAnbUwTZCGlAhG5ZhyE5DhrbDsPLgqEE0FM69BtfzOLnyWXrPTYxMArpwcnwbda4YeK8MHKRysBaZzmK1JBknk7x52a5GPNwFdA5Wk5SF2dgzpvRkDrpTNsFDgwmvDSolB0QNaIpZVIqkIAEQm3LNpIOacfZIsDq59wTvyDf6xKFzag2MUxoh/d1rTuTTr3GtAdjah/ZVUN2S0odbJbgZQdoAssqGuiNPjf6aGOHvr0S1/zircQ9tyHiQLjRhBdQOuSj1nhfnziY+ePqVcZnk1DD8icAlQJPzRz78BL/zfbsdgowvGTMGbfiBZEbEQf+M//AVpQF/0927Hn97QWStccvMdsF6KftOmMO+O8UMmNWoACAiqyDANYBS8sTPk8M+UjyLMQ21sjP6rChex/BJ2W2p05cXkf2JHRjBtB3yI9H+5YuJC9zMIiCFWA/I303b1fnQy9SZP+TW4YLCLiCOAvIGZGZiWOmuyoDWazpbSxigi25FlFUkAUBtR2wRCdb/D+NtYaijbsbyXaiPC1VGzOKDKEvlfMQkYPDCDX6skqJ05Wy9IJgBQ73fZZiKFo0bLgvxAQQYWm7akLkrAUlpu2g0WombMyAHt+ujUtBuvQJDVJnwT8GNCawE4BjyhWWdsXExoVkscaIURhwiUD2z3PoSY79dcWCwuGGJyvoOrJVjTeIabRZRHFqiOtqjXSxRTbaaNKidT4GwbM4sOAGIpLEKZwCjznCSfJSlFSO3E4sDK+6o9UhYKhQDbWsTS6b2IciMrTFUGEefMsPS52Jaz+sctuJe7AAU35cDaOsIsWtkHazXo9IkNX776Fe/K+yn3MPkuGVXasAGaAwPEkuBmer9y5snas5z21Q9gPR1K0+ue9zYdBuo5SQS0wJ1f3GHpm4gtzE+I4um4fdmtpj1ZPet0yGG0NlTLvDiuQMaAGmHIGgVH+wpIblsJG1Y/aPY6LNJBP6dBMWu2yHwOTKZI5CqiNAiKoMm8ex9k5J7uQwcMJEvdGBVg0G2nsOP0mK1t0LyAXQxgrQzIeOC6XBMiAbkZAAiU6t1Uv0boNTpd6+T4XPuiG+VahsdWz6bcJxDQHtgRVtpXnpysnuWouYknqml7z99Zz1rT1bTMp6QY3luPz2rOG6N8YCqfUbK+ZRagM0RgVOU6kAvCx3/7TSff4CmupDxAlKG/CTIM/8N/cT1e8trb86A31YXZjrYS4km1AXz2g0IQeukP3Yb//N5lq7HnvPWOXNLYRsGSaSrgREUQohCEErEoqZw5CvnFLQBXC7BjrIIubbKrglh56ZCevGRdtEODMKBsx5Utv/T2mgAailiy+8r5hXmeofteI4NPKeepfwM2qjanVnqDBCL4EWXFjSiPGbYldOCVPi+IbVoKC09qYZ3+5+NvArDvS7Woe1WFFwfyRzttOuVrlD5fgDkB5+z2AnRsG8Wxg527SI9A2R4YoV0rRNUYUpaVyZ+H5NG2OX8j5WNxYUDoLF4lF0f7r9KIwkXVysmOLTpSNbEco3pNSFfVhoJXA4iFMIB6H3DkuQaj+8Y596O4f9Jdpy3lWQYMwM5gfv4Q00MWbq5WZgysfGOBYhLgFhbFrCPk2Fr2PTqDWFpQIJi6zQRTWjTSyxkDKuTYmmkNhAgeFOCh2K+nzNxMDmghoIdh8FiZW4n0uqOeldmSyc83LYMLKX8RGEWtLiNRrG7DwMLWAAeFZAoLzictAeaJBVauftk75Rzv2RsKEBfB1sCvJsJvutd137m9tbeeDOsrX/kK7rvvPlxzzTX5d1VV4bLLLsNnPvMZ/PiP/zg+97nPoW3bpcdceOGF+Kt/9a/iM5/5zCkBLLfddhve9KY34Z/+03+KZz7zmadl359UAMuTbT3WQfFS/gERyJpuahQi7rznFlEa9BcRYAl3feFdj+m1T8e686t34PAz39D9IqluACk6jAAU5IXxFUZOAlCLDuwwTQG78MqOIcShk8a1DeJtWxHasUG50YCdeNxQ7ZWJZ4GCgNkc3CZdsTRAFE1nG8YsTWQIwHAIHleg7VkHrFjba6Rj11Alpp+yoOKwQKycDLL6ihQFTvIxAEBslkEdZvU7ZbAHKNPgjwdW8sAhsSKNedQ2Yq965bsAa9AcHKHa2Mbhp/0j8HwOOrBftt3ErlnsvZ8ldkv/94AUX1CgKFlFwC43t6nxT+9Jt1997dgjfg9768ytuz8jA63Dz/5p+UUfECysDoQiPnHXYweR+8vWEbYRwMEPOysiANLQVcrEYc4h3s26NpBt17ABwH/9leuXtk0aFp/sp4DeYF1VK0nFki2pdPbkSMAVm9j7yu5nywilAqJJAaEgS7KaigUyQy2pTcBi/xAqkkZH1SvkobZaAhqwKijYsShTNBw+2z3oe7ILKKhiEFZkaEwNgTwhjgKojKI4YdlWcIwAYbKZSQfuJFsxtvIaxNr8tvJ7T4CdWAzvIwwfYowe9BjcN+vUfjGi3T8AIlBszBGHJdgAxUPTfC1H75pY3tegvJeRgOgcHhkBuxghFhZhZFGvW0BZe2hZFEEVLX1WqXmPZQ9kIRk8xKTQIeRMkqSSiaU03W7O8EM5p2wjDfn8oPp899RIbIH5eUB9b4HBkQZ+aDF/+jrcPMDOPcxEmeZWLLYmFzpsXMIoNwjllmxnfD/Bzh1CZTA4pveGwAroRbi5DF6p0ZB7ZrnPWUIsZYppYxQyARhkWC6xPaAFULCOrVxuG6+gTJDhZw9EkRki9QLokQcWMHLdpyCDFzsXdn76PHOjD7EWozaAe2y/U/GmTirKM7HIBzlNnFWVVQTNdWBdWLRrpdidqAe+CSff3l/G9Zhr2v/pH8uAJKkaUs0QIu788/d1isneYmvPWA7dI10nqmlPWM8WqoTq1Uq2dmJTYgDjDOyRNitB/dgBQ8bo27XUeClLZVELmJLqpyXmvQ71mcELIclQUQBtkGFVVQJVBcxmy6BQAmgAAWLSPvoAIEjQcbIaW9RC+mF9fE/JYZwFhgPEQSnXjQTYpjmWlSFkGvJQ6MkF07ai9gS9ehZ45EDLVZffvHRYUJD0Ucw6HDRA8EsDqV3r2VSfnqimtSepZ9N29DPaU2afPStdv6573tvE/o6j9IoKjMWBAwzB+IiP/7tHloFwskWBYRPBQy02rfLZQpG+I6q+1mwQP9DMMyOEobT+8788PuyaothfJdtTo2pTu4jgA07U0HMZWif1CGtNJ5mGWttZgmHOtVS0EDtSAMm6igU/lSyMpPCG1DmR5HnFlEEV5TpXMktkG8lSNCm4k81tAmNMQK47qs0IVxOaFUJUuy+3EABGlOWMoGrsdH2JVh4brexH1PyNfs1dzITcAiLYWkLPQ2EwaIHhQwHlpkfxwKRzzfAedlBlMA5lCawOpZbamiz79SsJzX7j/u5aAeTrbll7FBulXJ9LB79voMdbgKtYiOWaaSLMXPaNGAgDqduNU7vYOqKYeISBg51JBkmyi/UrJdzQIZaEcqMVRVbhUG0KoFRMI5gcFuek805U7xwJzb4C1ZEaflzAP2Md5VYLO6mF6IrYvR8A0/MtNr6TUR0lFBPJw6yOObQrFsOH4lJejV1oPTv3MI3Px4kCA60HlwVQGNBsDoQAKgpw4YDCiiJyIffEnAmWCLMhAnULsgZUuoetZ9P3ZbeatthqjqtnozMwqvxGjJplIqShh6tpzzRhNEcDsBCqzEJYdlxY+NUSYWgQSqOKOO4UUHsqlr11hlfTNNja2lr6XVVVqKrqEW3nvvvuAwAcOnRo6feHDh3C1772tfyYsiyxf//+4x6Tnv9w67WvfS1msxm+4zu+A6PR6LiQ+6NHH3kdtwewnKXruudploE10vCkhkZv0onll9QrV7/iXbj7U2/LVmFny7rzq3cICLQzQDJyHhgZvWmhKCSotzLih6ny1mJW5BsECKC1AnYWcgMXC8LkGUMMjhRw2y1ooLk0Cw9qWqAohAXYt+JKAz4jjSnaFqw3ddpQzW1ia/jkU52W7UCHqEPB0qokVZpFdgYItAy0AN1Qsb+SbNUKiyaFGaf9XAJXgMzIyJYTWvSkphQ49ca0eGiKOK5gvn4f7rz/lwBIQCeSJQKgzQctN5LosTih+xAgAFcgZDl5OtbZemEXYCaBVlq4Hb7kzQAz7vyz95zSe9hbj8Mq1dfKOSlyxwOElQqxMAiVwWV//b1gA/zOv/vp0/JydhG1wbNdxogB/upP3wFeBUxrFMiQc6kdA1949xtOvlFd97z9Dfju/98dIp8nVTSAwD21SLLgIka2quqGzcjXJiW+gSN1wInpzY9S85kbT4AX4h2d1DbMQKxYck08gYyMcpIKwy4IpjWQEEVpBoqpgClMACf/5V5jSgGg2ihLjBBLFtm/Xu5SfgsKGfRxQXAzC/KSDZMzXKjb95VvCIAVnQAy1Saw/uVGLLJ6bzcOC7AxKO+fiMQfADUaBNl6AYCsQVwp4MeFWDpsLkDTBXhlKEq/6QIpX8BtzAFjEBZlDm2xbUSz5tCOrdhAoAPgklQ65+YoGdsP5PcmAMWEUcw42zSwJdRrRsPgldAQOiYlMcHNCLxYDkg1NdCuGBQTq8N5kxlkBqIOnD5FCspQAIMjhMERYfP5gQwG2rVCwDkiuGlAudkIeAIAzAgDB+dVRqSACFsDP3L5fmpVvYIYVXkloA47VU9ag6BWCsbpfcp3CptsGWQgVgJqkSUAP/IQ0ngGWhbro4UEkfet0BKYQq2yOk+hCe2vMwWupH0SxqkOeheNMlNLhFUHiozqWAs/kqwZ0wKf/n+PH2btrUe+rvvut3e1Qqpp02LOgeCprn3VK9+Fj/zO255Y240TrONqWuDE9ezIysDPJRAdoOBQbQaxL/EOfrVEcWyB6MRuxw8tzLPPxeCbm7JtzQukEEWhEnskn1QTaq4LJbWJ92IhBojqZWurA2V2DgOJwAgg2A5AsTaDHWjarh5NTwsB1DTIdkshSkCyAqrsnKhaFPiBJWEB9y22lCyUGd6png0hi54Pf+fP5FryzntuedjPhq3JzPfyoWk+fzJBpK/IPlk9y3pdO1FNm8kBO+rZyPl4SI6LAGSHn/VGwJq9mvYsWQL8O5B3mt1BiOMKflwiltJ/vvx/lWvSp//NGx/z65lWBs3ZPrVhFBOxvA2VAvosygo/7FS0p1rTfuGWN+AFf/+OrMCIKUeiJbW2IlU105K1VuafsNR1bIEIymAKRQFSurqSc1aF8UAxiSgZQGTE0qBeM5r3h5zzARBMJgxK7WW8gD0Uu9dxC84K3qyA8Qxig1CoTWwDFDN5TChJlePdMY4FIQ67XBezJYqhlFESLcEtALSMwZFWVUNiO2nrCDcLKI7OxM3BaZ9fKcg8X3S9LGv95HvXDSLJ8knX4MlUgBgjda+8LxK1VK1AeO1QpBoqRsRhBX9oKKBXBAwkdywNxkUVTwilKjFsCSbATQOKY3PQXGweXRgjlhZuEhFLg3bFghiotuQ9+qFBqBSMa+TztZrp06wYuKmTelbBHWoCbOPhD4xRHyjhh6TnGTB4kMQasxViUr3fwQ8JxVT2uTwm9WzK/wvjAmHk4CYNaC4EHR6NEEsJjTfMGUChpl0iBIBZPhslt7KzakmpKpgQtIa1u9ezup0T17S919tRz8pJJvX0qdpZnmk3jgRUcbSgutVc1AJhUIIio9xo0Y4d2lWx8rQN41O/8divZ3vr7Fxnk53xP//n/xyXX3750u/e8Y53PGqHqZ2h88x83O92rlN5TFrvf//7H9V+nWztASxn0br20nfkgQcB8rMG3gkYQMfbgem6+1OPPFz68Vppn9PgHEBuSlJwGGdggtCsWfiBeMiGAmhXSNg4DbIND1YMyolkpBSTiFgSZucVsOsOo/sWMK2yEIYFsDKUgV0Kp+wHtQMKaCiLrZGA+6W/E4llQgJcNHgYVlkRGtprZ03XsFoBRTg3cLKdSLaTxGphT/39AHQIustF4UR5LYFBtNw898GWvHTz/eyWO//kZly3/3/Hncf+b2lmUyPt/TJLMjWM3Buo9QcMgFRrMWXS9BiRSXWzAyjKdhshSlFKcelvh5/907mhTQOYvfX4rOue97Z8PrIxgEqvUwgoFzI4MGqP1A5liPSy19yGz/zr0zeUTNkOSRGS/Jvbce9vCoQ8//V34PPvf/iG9PmvvwOuBjgz6jjbYEX1qCZVOVAScEV5HbbIQe5RwywZysBLp64O9qMqWbINFQM2gR/6v7AeEcYBVEQABJ5amJbQjiPMwkjTw4CbCYATSoJfi2iZUG4Cbib7045lfyg3mwSrYICoeQhxzDDbQkEM4wC3WmM0lOtd3To07QhAAq6AUIqXtfHA4Aiwcq/H/KBVz2sSduG0lXNCQQWEqAxIBs0bxFEJWAv70DbivrGw1CyBqwJhVMCvFkCQ88hAmFekHswABKQOFjwoYKcNBrM2Xy+pHSC6CqYhxJLQjuVY2xrZa5yifk6ma+TtDKi2GFZty8rNRo9xiXbF6vHjDFTVawYUgXJTP2x0AFW5zSi3I+p9ThrYoy1sHUAhIqyPcOyvDOGHer44oNwA7EIaPNtwF2ZvxMoh+Z2zkWslBcDUQe4npZZrBvm6GCsDD0gGUmIwajMYC4swludEK41yVISNDAkzMNl6pfuWZlxER1mtQwxQG2GbCLsQJjqFqIw+iB2QAjmJNZjUpjCEqy6/GWzN2WOT42PORIvjCmFUiCVGG/Nn50f2pODKlVfLsHfPzvLE65oX35Rz69Crc7IFiK7dSEEf+Z2zt54FdtS0wO71LCCA69gilpIl4Af6OLZw8whuZcDXrK6g3PSw8wg2hMVBh3rfQRTzCFOvC9gymYkyxTm5nzRtV1eltYtChfq/S4SiXRZz7JQs6XFJOdN7jwA667H0mt7n/5EhkLFAXcLvG2mgsGSLSehYun6HpXqWAi/X5mkf9PGHL3mzDDrT4MsImN2vZz/20Z/BtS94Rxdun2rayFKbppr2VOpZ4MQ1rRyE4+vZ2LMiTl6VUY+V96J+IsKdX7l9189gb525de0Lb9ChNCGOhPhhWieK4TZmNbatGWyE6MdWLbl2UY08kpUHX8yqlCb4ERSo6NtBd/+rNhgv/8HbTgnkf+H/fruoetPXPCmgA6vVKACQ1hzymJhy+BRcSYHoUPW2qEI6FQqTKHpF2amMeK0NjKpuXUFYDAzadQE53EK+AvU6iWpkLtcit4i5hhJQSexzhw9JTcnWIAys5mMA1SYJQEUyyI8W2eqzmIqdkx8a1GuExbkKsFiW2rCQGtCPgOH9AuSM7m9RPDABnEEYV2JdVRhYrWfFAjwKkOJcd10qCvndfCHuIr2AczjJwOKBkopquVYvOWUA3eMBuV5utHpdM7CBUTqDMBSAg1uCXUhzYRcRlgWkC6rSaFaNWg8Tik2j19MI8+AxDKYLhH1jNAcqqelZwLK4atGuyLldbqTzkzIg4RaM+blSz47ubSRLD4DfN8Kx7xyiXekua+zEvi7Zg6UMRiEhJWs407N+h9SOKS9kKAyzZGkbRtIPkAvg6EDeK2mVAWeXMkZSvckRkrsSgb6FWSytOqIs17Pp+7hbTXuyejbNesCMay99B+KoeMItS9lKX5jukXFUIY6KTDQwtUehBAdf0QnBlb16dm+d7vXDP/zDuOOOO5Z+90jVKwBw/vnnAxCVygUXXJB//8ADD2RVy/nnn4+maXDs2LElFcsDDzyAl73sZaf0Oj/yIz9ySo+75ZZb8A/+wT/Avn37HvaxewDLWbCufdGN0gTYXqGOXrDmd70FIEJz3soTtYunZXHhpCjRm2MGF5SxYMjDTg1MU4BHUgDEEmgKwFQyIHJzKRKZgFBalJMIN4ugqYAzi/0Ws/PVR30eYbxIU6v7WTyoB5UU0otWGCm5mSMQbO+m2rNDICPflFREKeDFapHESTK7w5aFfMzNYCrs2RCYTQ43BjMY8rfMGOyvtD9B2Rn9BjCi80dN7G0DIOW4AMuP584jf+lzeeZTxLrD9pQzO5vNVGikfdq5/X6TCpadM6TASa+g3LlNQBtdVcD07chSY09GGIDYA1oeryXgH6uvsEUYyK3ClFYaqroFamSgxY8s/FDO3Ze89nb83q9d/5hePwc6KtMuqiqEgqi6g6oRAGHvAcDz3ig387/243d0VgNC3gMbsQp73k/dIfbzVmwCJFtEX8cB5AgxWSRoA5htG0gBliqBp/p3ktdIA3FAfo/eV1mC5uV/3TGGKFYcoxy18I1FJIvoGFxEcCsbDkMNipyRNueMuBbgj1qU2wxuCDSQBpJHQBgw3JQ6YIqE+ec9wcwN3BxYDAgH1qY4urkC85UhmnM9yvPnqO1Awuy9SP5NI4366jcDiq1Wrouan+KmAaZWBpUrwAMjqoDtOTAogcLBbNeI4wpxdSRNQFJUOANqI9zE5+tAHBad5N1ZYW4rkE2AsNXSQItIGFpbAW5OWBywaIeEMJJ7hpsB1WbKcBFWqJsLe9LWgFtEuO1W7g8bc8S1AcJAmpKojaCt5fnlVGwqAOTwWQCaJQMUEw+nwZjC8LQwnlAfKBEGsh9JrWJrAWRiIU0xBYYfGPgRoXgwoNhu5L4YGW5jATNv4feNEIYF/NDCLYKeq6TnH0kjbuQYmsKA2GVAhUnsQlJYL1tCNLaz03CmyyXRBjSx7WNBeu4w3ELuXeKPLl8MijJkEVal3vP03kmq7IylMAfToOSqK96Nj3789NoJnvLSrId8z3UGfqzNqJdhUSxMHgC98m+894SKvJRHkhrT/u//sq8ErOQqgUgu2kxZUZDyV/zB0RO2n6djceHEqmS3enbh4YzRMGkCj0y2yRGGt3ynikmAHxm0a8Kmd7PuO94ODXjFgO0+APtQHlkIazVG0MZE6rVBJSqT+ULUKoBktBCJsmUHoYVjzIqXDnghUb8kMhegtWcLBIiiBQLCLK0+cBMj0LbKLmZgHuFaj7gylGt7VlzLdYJCyIOh/v5lVchOsCOFGfceS3EXIhIRrr30HaJiP1FN+3D1bP/3u9W0PR//vIIOApeOd5RzPy3d1uGnv14Ic19dHkDsrTO4guaKGYNYibLMNvKZGQaMZpyxM3AA/NCgHfVkHo9hpXug5G10xBe34M7qqqCc+/eHvyg17Ut/6DYAwCt+4H1ZPQ3Iff1Tv/lGvOjv3Z7v3xQZxSxmpUk/d4ECw3nOagWxIOudvgng0fzBBPIY09U7Nmiwe8M5UzA6gnWEqCoL20S4BcGPpUa2iw5ckrwTVbYosYkVyPED6U2ZALMIYCfHql1zaEeEaivC1DGr1okEsAml1HJ2ERCqAu0qwc2A8beA6VMI80Pdaw8fEEJMMYkoj8xB0xl4PIKZt1K7N1aUCn1HhdaLPaI1UpN6L9//QbX8fU8ALLNYlAOi+u+7OKSMq7QULO7mPgLq2O05gCFiWYqjx9Cg2PKyzz4ijEssDgxBLMRTKqA2lEZeY74AigJxfSRqkaEVIE9VVNHJDKXakJdNQAigf6uj2Odq1ku7WsA2EfNzStTrwOCY9EdhQOBGatpiKsomYqAdCZnAPMAYPLhA0Fxat12D6hZhdQgYgh+LJatdqEonipoxrBQwTbIhExYbJYArna6qRoYlwGj+V4yIpUMc2BzmHl2y+doBrkSGMea4mtZYc1w9S0Ey+hJwk51KdHeufeENT1y2oNYXiBE8KIUsZKkjYJWaB9dEOJgT1rR79exfkLU7d+YJWWVZnpbQ+Isuugjnn38+7r77blx66aUAxH7sk5/8JG69VRTvL3jBC1AUBe6++2685jWvAQDce++9+OM//mO85z2nVzV888034zWvec0pASzEfAI601/StbW1hfX1dWxubp6WkyOtq658N8xC2KUJCX8k1hl/UdZ13/32LizNR3zoD2/MOTJsTPYkbVcd5gct5udq/kIrvvspMI1CYqkAxQQYPRhRbbQojspQLg4KYVE0QZhyrTRzVDfSjCbWXc8Ka6l5TM2YNR2rryyB0RBxbZgtXEzTfZ4IEkQHFukmzVugsAijUopcfZ0cVFw5KbQjZEi9InY5di5NZnqcSGB76pXc+KWqCNLk9y04kq8wRyn8rAEKCTROwF1ahy95swTIJeZ5GnKGKIqe2LtE7LRD6GdypH97AZ8ApCC1Nit+8hAibSM11f3XCH0mYG+76WdrceeX3nui02xvPYp13fN/tgcaqnrFEvy40JwLwu/+1jID5toXvAMwBn6lRH2g0Kara/h+7/85NebfK37gfbk4SEwnIAEchGa1uw6ARLEBqGOUAUwtA3S3ELaeWzCKSci2Ac26RTuS84eChHm6mSjgTGCEyqAdy4u6hQYc9rIYUhMbKkK9TjmjJX1/2fZUJOo3nfye07/GiwoiWTSEUprcMOoBLxFozvMo9tfgr4xRbAPtiuyDmwH1X50j1BaYWQzvtXCzzke7PiCbMC0yMJV9pwE0+yNAQHnM5L+t/TkwetCDGNh6uoObM4ZHYm6uYAimjjBthJ23uanJQeFRMqLSoMwsGtDWVL7PZSGWCek6UTfdtSGB0tYKcJIHk0lhqAzCVq/VwwF4ZYg4rBAHAviJtYMAPTDA7LwC00MG9QEgjBjUSsNnWsCPGbFgDB4wGN0v4Fq5HTC4fw57ZAI+tgFaXUH79HNQ7y+yosRN1Is73TcMCYvRWXDpEMYVFocGMHXE8FvbYl/ADK5KxHElTLrKCZDhBIQpHpqCjmzK9XjfqgDzG1vAeITmKfvQrjlUD9UII8lqCAOLxQGxXRBLjA4AtHXMeS1pkBEqo7lERkEiUcpURxuxGSIdolgSm7HEBLSU/yeMUmnE07mbbDrZKBCRmOcsf3OzoICLgfExX+tDaXKTFwsBhPzQwA8p5yO9+EdvV3YqHjM4e6J1zYtvkkGKl/spNPCUnXien1UqG12PtR49U/UsIKxHU0veED8C24y/aOvaF7wDbEWZ/KHfv+G4epYHDmHgck3brBPKTUa1GbMi2y6iDHTHBs2qweBoRLXhUWzVMAsFTawAsskGBjGIwiQxpFu/lNNCxkj24M56rDfko0ElqpgExLTtEjs4K0kArdn98t/7Kyvttd50DlyVMpRyTgkIqe6LnTVYX3FjTHcv6AMiRFKLht5zStnvZCuXP48X3iD1fs8C8YQ17Ynq2f5x2q2mrard69m0f0GVL/0V4u71Mglos0ceOv3rmpfclFnsSa3phzZbcu6mDrn6Fe8CmBFGDov9Rde3MR6Rvc5LXns7kh0Rm27ACwig4GqxI2WrygIndV4opPZIhB4mwvBoQLEdYHxEqCzasYEfSa8pBIiI6kgDU3tl7hNiYSXLQ90hYmkkN62J+ZyNpe3UEulr2GP6t2MBmNyMEUvKhKKUq+EWEcVmC9PKwDmWYl3KSaHIwPwci8U+wtrXA4pJECILA6aOmJ1fYHauKGPKbcbKt1oUW40Gths0+0rJxgtS40hWnhAiWJUbIEKx7UXNWxlUmx527hEri2bNYfz1Kahud79u9a5xrASMlAVFTZBrRdMuf7CJ+JeuUTtr2j6o3Xec6P+cwO1Ce+N0zUxAfdOChyXC2hDN/hLt0MAERjsyuc5rVgmLg9JTVBtyLlUbHoOvHEH8xrdAVQVaXwNWRgjrQ1HoaH4tzRt5b8n+XO8BXFoc++6DCCWw+s0W5UMzOXdGBfyK1MUUGH5kMhgHBgZHGhQPbCMOSnBhYR/cAAYV6gvXEUuD8tgC7XoljgdECCOLxT6LWCS1FWeXgGIS4BYhX1ujE9DDj60o3QMEzFuoLVrOc2HpJVJujoJicVAijks06wVgCG7qxdp6IMr0PmksKcgpIitbums8xD6u8aK0V3IZrNznm3PGuX581SvfhTB0AAMf//Dpy3LauZZqWuCsr2eBM1uT/mVdH/vYx3D4f/3/4tl//wkir+1YX/zFm/A7H/ptvPSlLz2lx08mE3zpS18CAFx66aW4/fbbccUVV+DAgQN4+tOfjltvvRXvfve78au/+qu4+OKLcfPNN+MTn/gE7rnnHqyurgIAfuInfgL/8T/+R3zwgx/EgQMH8MY3vhFHjhzB5z73OdhebtRjXaurq/j85z+PZz3rWQ/72D0FyxlcKeDqqivevRRySSHgQ5+98Qncsydu3fVHN+HqV7xLBpPZDsVkJQbFKKH2jlBtEqKzaNZliOhmIm+mKEPU+TkGYZBC71IRA5Bv4WZNzi7JmSUhdo1ZYp60rTRChkDRgJsmF0jknLBWlA2YPFmpbkEknvfUeLFuYWHK+dUS9X6V135rJgXswIn/qHqQcs9fPxbyFWRLaFesFBpeGRPJukVTBRlmWSGTizWAYbvQNw3l6xrXKM2mswAZXPe8t4EHpWQd1C0wqvL+pM8DUNbIEsOGuwJ1B6PkuOY9mWjv/LtBtrteAlX6QFD/8T2LEek4WN7H3jr9S49zLC1iYWU4bGUgGnqWLgBwxTW3SoF6aAzbRs1rQA8kAR6O+veyv3VbBz5orQ493aMGq4Ol+K42eSkTwjQCdiRwQRpNZKsvitCGWv41DaNgZFVHUrik5tcPDPxAfYP13Esh18KuQrZ5sjXAA2UhKoDCkL+3K/JcW4vntWkJbq5MvgAMjokFRSwlRN14gm+7955AkvaBIaqFbLvckucvzgVWV+eYuRJNrEDBZiXP+H7G8AgwPY/gVzQUlQSENl6eb1qDdhXwQ4ZtCOtfYqx9tYEfi6LhwJ/W+XN0E7Hiihpwmh0IUyBx+k4SybUFEHVKGqD1lWhNg+x1H1muAcnX31lQa7thVH+ABnR+1sMB4rACLKnqKAI+Hdco5ytJcLZpAbNNsHM5nvX5Xj6gQUQdChifzh0j7MW6Aa2ugFdH8EMrjWgTVUHFWRWY9y82QEugBcEtWgx9RH3OAPX5Kyg2C5iZZHvYyQJoPWzhZNBKJGH105k01lUFuu8hxMlUVIfew5y7inqtgq+GqDa8WHRFxvAB+TyaNYdm1QIk/ucS1CrfGVFhiE0YFwblBrA4pxDGHgPN/lLs2AJ3ypa2+9KmeQF5hkM3vDFtepy8Dgpl45KG3SuDlNqojR3BFxZOiQJ2Iew/P7TwIxkM+UoCcl/wY3fIawT9nu2YSZ7O9eHPvh3XvPTnpN4g1nMGMtSwAoCdyVDSMx14+nislI2SmI4CLlM3wP5LuOKwVEa6khJ21LNYeFgg17SSn0QY3yuqQDtrgBBgzlmBaSxszWoXqLVeCKDa520iMqAe/mDWvBQWJXXovkDZ2itdc/WaSsaIwiXVWD6I4iTEziasv6oCvCqMBjq60Q0Es3WY1m0aFI6iAA8KxFEpyleiHL4sloPcDRIBZdzK75N1HwDZVrL0quvjcntSNuDhS94MrkRVQo0HaQgxme6c3LWmPVk9m14D3XFbqmlPVM/uHOBmZnvv+9HPrQLkeO4EY/bW6VkRgCNwIZZTTIAfmBz0ntbl192aCRt0sIRR686kxKSeCvRk68U/cnuuC4l6r8EMt5BfGs+otrTP85JdElNLQ0LeMQGaIScB5Nk6NNl2RrEaNapUcZMggIAOgtkahJGVDI2ZfP9J8yZM3ea8KKodzCLAlRahSsx/ZIIUMTA9JIBUKJXoM9eaQN0h3LSFmSwAAGF1qIHsVm27pDgeHmG4WgiIqV6oD5SYXCg9um0VuGmi5HXUHnaygKssvHUCqFAHMts6gmYRTt9nGMj3e3TfAna7QRyXsPOA8UYNM627DBRnM5CSFgUGxwjD3VB/KVulv6h33dD5Qv59uqb2QdpE4NxpLdgHV9LjEsERUOIhg5oAN/GSw1gH8HkVtp5pEUrJSmz2CzAfC1KgBaK4cS7nwcRhIddFW+r+RLkGtV5IT87Kv0UBmgP7/rTE7CkjzTdckfvR3MMugswlAsNNTQ6DN02AmbeIKwOEoYP7k6/J+2pa4MJ1bF5UwF7oMHowiO2efj8GR6Uub1cs2rGQocqtKCptALbW+pEFECm3WoShzd9jEODXKpjGySwmqEtJsjf3BAQH03qYRQM7KTQbl+V4xAguHdr9Q/ixk49Fz+lkFRtLiziQ/MJiqsBKGzK4woUDCos4LBAqg+/9m+8V4p6hXIefydWvacXWTH7/eNSzwF+MmnZvPfHr93//93HFFVfk/77+eiHZ/ciP/Ag++MEP4k1vehPm8zle97rX4dixY/ie7/kefPjDH87gCgDccccdcM7hNa95DebzOa666ip88IMfPK3gyiNdewDLGVh9md1VV75bbpqBcfdnnli/xrNl3f2pt+Gqy28GnDbsXxBFxXXPF0UPNR52blDo1NU2yiyfa+PZRLh5gG0LLPYZtQISpgFXwoZmitl/NjVyufAxaTJqgGAAE48vlgBpNtl0Q75FDTQCrthUHKk0FUSIwwK2Dqg2gVAYTJ4xRrMiA8FyO6KYqOUYIwfX5aI+MKxamgHIhYAUc0lVkphU6tmbMjKIQBTFDSlGafjcjq92ys1QKwdaNCCIDd01L74JZiGsobRt6heK/SwWcAd6pJWKy1R8RiB3ncpyl+PNQOw1tP3np/3tF7C9zyLbR6TfmR2F7956zOuu//ZOXHnVLVo4S5MVy/Q5QMPgZRkfEdlgcY5ah7UyHGVVr9hGrARe+rdvE/ULA5/9Z8cz003bARjJ1oA0BCSF0FMUVhOMNJ/EgK+s2GURYBoBIlJYPcDwIDDpoDwq+15nyZI5IUzBNDdvVjUUtGGkC0FmLhKpx7AAvNHJayS1TizlZY3mqnDJ8GMJrC82gOqYyOjBopwwnvM8RQI6KavyyAODex3KzU6hRz6xvIBj963CzMWCSqwf9DFRAkKbsctqF0DUL2zEC7uYAOW2sCf9WPbZ1rIj7ERh0I4l7Ns0HmZjCtq/glg5UBDLm2xj2Gc3a+YHw3Wgb7JECFGUf4A0mU2rKpXQNXrWdo2pD92QT1nQcDY3NggACgujioswdIhOBgOmYQyOyvUwVAKEUQTK/Qv4xiIsHGLBmD6VMf6GQXTA9KI10DOERRULUl9yUWOYWoKoQSRWQEn1mKwh1G/fNg1G9wbwgTU054xhnYXdmsv+LmpgUcscPzHNqxKYLxAfPJK/BzQewX/HhYiFgVswqo0WbrsB1QE8cCAfYR7ahLnwAEDi7TH6xgS08OBRCTNZIA5KQIPtzcYCzbkjFJOAep/F/ICF8Zz9ykHUA5FECWOamG+B3EbYhVEQJfbIEITIwvxLLEK7EFYkOyOWPSyDlVAZFNOQ73NcqO2YQQ7CNXpu2lotTU6OyT72xTKUZYZc49Ry6Ewz/VJN2K8NnyyN6ateuax47b+Hszn77/FauZ7FCerZGIEdNW3U4RTFKCSd7SnKwHDDAhQY7f6hbJygdWZQBUmQ644Sc45jV6e1mzFBAjaSRRgAXtRSN1qbh32cEQOACicAz3Qmzz1nH+KwAsUIc3TSAenOCkBTOFHuAXmYnAFcp4PNpMhOYEWEqFzS1cfoG48QAL5pj7feAjoyDpBtee784q245iU3Sb3coMv9OWFNe4J6Fjh5TZtVNrvUs2nf0rEh6h6XVt/uN2VA7q3Tvj782bfj8sPvyQx1qd0AECH06lkuxLLUGLGZFpIO5/q0mAYwKSnISD12omwU20J6/oiOMKCgifFRXqdlmDbALALi0OUMtVgazM4rMDjiQVpnAsgEB0CIEagjKFJWr9q5DowLCy5EsdMOjdg2RQYpIBIdwRgDBPm+kGY0cYxZ3cqOMiGUC7HqbgYQIGQTKKastlJSO1AbgLpVtXMrx9LLgBcEVd94RB0Am0YG2G4eMb7P5HD7VGNIHSCvb+ft0vcmllZ7ZS9ZcyzD/lg5+JHTzy1mJU+aC5D3AigMKrmmMWVbKUQWK0FmISkmW8G+VWI+UbirZ/M1IC7/d3qoTy4S3fVK6toe+ShlkO5wZ4AVkN7Ma814NUokIswPMfw5HhwI1BBCxZgdIrg5wU1aYGUE2r+KsDpAfVDyV4rtoFkuBrS9Dd6eaM5MABqdJbQtyFqYhzax8uAG4v41zJ+2glhKDqJpI8zWQtTc6XrVNKLEXh3BbNagrxyT97i2iulzzpX7HESdZFqGm3nYrRrtgaFY/H57E/VT94FdAdMC429MgRhhJnUGzdkS3JZH2DeEnUs92a461PsL2HlEMYFaYQK2DSAiINTyuTRN7kVoUYta06syKQSQtSh8BPEYobJwMy+2x16+S0LOhai3FqS9gBUyGSA1txFFd7tqlZDUqcnhH4fruta0j2c9Cxxf0z5Z6tm/0OtJWkZcfvnlOJmZFhHhhhtuwA033HDCxwwGA/z8z/88fv7nf/4M7OGjW3sAyyNYV159S24GTrTSRWbvYnPy9dFPvBVXXSFBoVdd+W589GNvwV2f/7muKfUBppWQ54EOgUzLsHWAnbXC2tlcoNgawo9tDnszvhCZaIhS+CWVifpkZ2WHs6JeaVpRrSQrm4R2Ji/r1meGHikIwLO5KFkGAym2QpTnGyPy7RWH+UENViPAD4HouqI9sYNMAKBFtV1E2DbJPCnfNCXEWyXLqYBjFhai7TVwLctwzSP7ZWegIqdvKzCjdhYgwnXPfRuoF57MkZafC8jzU0G1sxntr/7vE6OVdEIeCQhRCtm0drKB+q+bh658/LaJAGv22BOncb3qle+S87NQebERICKUAlL0/Q0u+773oFwEGGcQChluWyPNZFQxl5lDbbBIgIwdheZL//Ztqjbowi4FpGEAEdFZtJUoUNycYbzJdlwpjyUpSsiorzOAYgpAA+pjAVAUcEQUGDpgAtRnF4hBbaRCstpKjEFkn+nEuOqCNeW1ZChM3Wt5yUnxBojDiGLLoNgWAMjNVX2XsjCMADy+IlFcNKqqaQkpy0VC7eW9gASooSiNiB8AzaoAJsMHZBBQr1sUM8ZgQ15DLCcoW04UEwaOSbOw2E9wc2HIGQNECDMMBFEeBM4gCIUIWvgc/smqIBM1HXcqwSBh7DQadt9dldBLE6lDp4hl25kEnjKD1RqMEUFGAjDhxe7FRL0ml6IICaMCMQHUEUuM1DAEmnVVs3xhBcMFsDjICGsBZmbh5vK4Zk0Y424hahA3bWVYsRAVCmuYKJwBNhedB7ezyIq6dE0+solq0Qp7e1CCKgY5I3YMdaNWiTJM49ZLgzccIuUouD/7JlBVKL+MzhqtLMGrY/ELn0zh/rzGygNjDZQO8rhvi1rTjIbg9VVgVKI+NAaTvL9ixoiOs5UI6XAk57IkpacCKaYNYm+Q/gYB4PLzGlEPUSugDC18HmQaks8i5dmYYEBtOh8pf2+JBYz1DjCDFL7LS0rfM7Z0YEqI2av7TK90n9qtGb3yqltyQ7zz76/+G7ef0f3a6bmdVlJvffQTbwVw9ofOP9HrpPVsUo6kmrYxsNBh07EZcHRDNrKoYQZyIyvnDfzBFfgVDeNWwo2p225ApGA0ABlq+c4qZalmS+d3yhIxJOoWUhuxEMAhLOe19JcxQFkirg7AWiu2qwNUM0nLTrai6bFx6HIwMhQIpySzM5J/lAa7okjt5RBmQCJ2JBpnAW+695Zq2p0KE2Zc/fJ3wm0tlq27dvy8tE5Wz6a/p9WvaRVU2bWeTT/3c1pMImr57vF9kMWapevA3nrs68qrb5F7VmEQSyHnhBI55D2t7/2b74UJ8n0MQ4dQaq8WJLcilb5GM0iEMHT8OfPiH5Vr9VKmHwNgRhgY1KXUwYOjLKz6NoqVdIzAWLMmPGNw1IMiY65OCOV2BJJlawRMkII5WUubVogJXIgKJVZqDRYYaCBf+UReitoDlj3Lvt53QEgkAJQoBR0whxFQbAHFTHJQogXICEEplg5GQdV0HTA+giOJehXIg2ohBcl7KY8tUGxJH0tRhtSxECDBTCXc3CTyhrWAkl+gBCCpR0XxYaY17Kzs7MABkCXQvBWANn1eIeSak4Du933gNV0n+s4VsXf9SN/zpayqHtDS325/20SA1dcgfzxAk+0VbXbRgOaE+LFDuyJKovG3CM12AdNIjRsrRnUEGByJMG2APzBGIpKNvrYlx2O+6MB4a2V2AYC3trvPPmVw6bXNPLSBcd0iDgvEgdyHeCj/UozAdC7HpiwF0J7N5TVWVxDXRxj/wTeBlRFWv8Byv2q9KNFXhnDTRpRF0xmqL85RfXPY3dMmUzlVRkNgZQxUDnG1EgDQCHBXHW3gx04IPtNGvztRMn5DlDo72aZ7L19GYwC/6M4D/RvVDeyWA40KqYFrPV8MgAYwhYEJYgfJlsDDIqtUxY7PaN8IsfGtrVxPJu0ZV7DkpSTux6ueBZZr2qV6tvffuxGKznRNu7f21tmy9gCWE6xX/43b4dxg9z/GkyPEe0PfU1sf/fhbjrs43/X5n8M1L75JbqTaSDGJyIQdoR4VoDUHNxfWjp17YXa4En5ImJ9TopgGlSFLA2m0UKHW6zRWC6eiAIwG3be+Y5zstqyRaZ1VyzDPyLY3LAUEDQoJl44MCg6xIEwPWSkWmFGvm8z+adY0w8UrS6rUBpQoe9GjjTlkDRFIvtUy9IogqG+uScCJhP8tvQPbKwiZO5sJSDEcR6XY5BBlBcuSZUKyRTDomtvUVPZtFXYqTtJxSUUpa8MfqQNQUrGaGub+se+rWqIWSXkoS3s2Yad5sSGYxsP6TtEQSgMKfHwonrKSjI8o5hI0KQ2SACqi6tDBrAHAwOf+r0698rK/dRtcLSwfapNHte6HZkAA0KBtYfuGSs6NYiKPlyZZ8lXAHVOQPLKNoHzxkuWCAppITWYCU2To6+YMN9dGI3SWDKk8jk72pQu2JxhO3xcBQsW2ASAmuIlFudnbF0CHSd3xjoUoTGwNlBMBdcpJFPl/RUgBvqZNzxEghjxQ1hDwaSaqGAoMN+9eyw/l2lBMGIVeEVwt3/0YCKUzwhoMAaaVbJDFuQOxXmjl+87rKzKcanw32Iuxu4akAZM2oBQiuNRhW7pu6eNyY9sfPCUWdtsbOvVDQXue+Ok18yBPLRdNYEQyWOw3mF5AmF/AiEUAVj2qcQP7uVVc8JkFHvhrAwyOEMy3HVbuFQVkudGKFYBXRd+ixwZv5f2S93KtGg6A0TCD8qgbcNvKYJML+Zv3wGQK2oqw6do3HIDXV0BlASwaIAb4p54Digdgv300q1j4vgclD6HfvA8qwDnQkWPg2RzcejDmwMaWAP5FIftQlrJ9J8B5KCXANwwN3FxAhHISYecRbtY71mkVRsPuSfzPvWTuUBCLOC6MKHsgoIpdhG5YwiwDViTArVOpMMk1xOXPUJi/0UHuZyyHLlSiqrLNsk/9GVm9IWiyDUogwuOxdqsNd6slTwR8PNp10no27ccJ6tY9cOXU1onqWQDLNS1kQBlLg/b8NRQAMJmqbYvWmHUN92AE8apa9xQCehmAWiPXCRdAbSvXBfZdbYoEbkdwZPQEKbKCDEdBRliDGXgJvW1AhntBXkMGuS3gHNoL90nOk6ptACCMS8TKCnnId0ApRVVpkxIJ2giKATlPUIetBAjIYnogiLVa18q9RY6N7HfO6UtLB6F2a66qSQtodk0G9vs1reGT17Npm/1/gWVA5kT1bJ/YtFtNa3jZwlcBrL11ehcTwbZB7ETJISrx7DjlSRp8k/RuTmewpmWtSwmLA0kdITXgp/9Nl8XyktfeLux8/e9UO0bq7LZCCdTrBGKS/JWFBTGw+qUpTN2K4qISlWzOQRsIoBCtDHk5MuA66y6wfs8Mq61W0EynVJ8RTAo314wUAJo9Zjsrw6h1lSEh08QogKaTunlwLKLaUkJO7H+3u5fKrg+2s8Q2dYBVq26urLSQjrq6kLrtIIq1qWkjyAeQDsCp8fKdLwFEEjJHrj97/WoEkKzPWiF8mDRwT9+1stTvZMwEyqVzIF2PogGM2vYRyc8IyI7XO8G1nYBL335xqQfmbNtIO/8GLF3P4koFvz7AxncM4IdiD9zsj9j/3wmH/ssEW88aYXbIYPAgMNgAVr9Wwy48zLEJTAjgzW0hjpYlUJWiVGzbLt/QOZjhEFRVObeLFYgiY7p6dmsCcyzApP0cDsGrQ0TnhDykNfP86evgYj+GX90Af+3boO0JMB7J9a8VUhKvDMHOSS+xPQM2txFnM7VM1PMvkUOdKCcxX4DsqCM7EVAcW4CdQXEsSObjXG3dY+zUQLaQz61tu8+jr0hMYBIAFE76oFn6Apvcg7ISDqMFqDSI3sHUAv6FcSGqoDYiFgamLVCvi/UwzWJHgD3TK51bT0A9CxxfN56ojjzdNe3e2ltn+9oDWE62HgZI2VuPfe12MebCIIxcDjdrVjsWQDsm2AVj1DJYA3rFYohRbURsP7VAs0ootxmDI4CLrdyYrQIQCyB5/3NhQRtbwibOL66DvGQPZG1my3GytEkMwaaRRjUVA8ygOqBYeJhG/acBtCNhE9XrIrceHOPsuctqexQLA0fIqhY2ApbkZQDEbviclsi7qQvstcLcycWg/p5C6ILQnIavWikkoilhtxdL4Iu8plKN05i5D6Ykm5z+Y4GOLbnTAiw/X39OtmHqiSsM6F6xuVM9kxpqp7Jh050Te+uxr1SUXfvCG2DqgLs/fmI7w0/+h5/GFdfeinasSoagQ9KhNJKxRA5XJ4+sFnjxj9wuH/9QckmM+swn//VYGPiRBRsZuKZtswVilFDQMKBO8RJUeu6BUMjjxBaKNWheG2SZ3khDFllmOJERCoOonsASlilAi9iUIedfxILQrEizbHUGL89XJZqXr5ut9fW3ZZBMXh5nW6gtoNgjRCv2TOW2XN/akViUlVuMdr/JXtcpV8a0Al4BArBUG5I75RYM20SYRgfGrgO1bC1NdbKWoAjYuVznkjohOsL8qStws4DywRlsrSxKVj9/wzJsr1tpkhYqu08NWQjCerM2gyXUWrmGZm9pGfRlVhmgAKnrVIMJgIFcb1MTyiw2GDBGXpsMYCoBeRCBUYF2xWLrGRb1fvn8iy0CkwVvWbTDEuUcag8CjL/NWPvKHG5zATYGZlYDm1vguskqktx4qdqR5zpt2Z7k3AJK1pBDGVjHI0dBkwp0YB94vgBVOixTO4IUiolxBS7V7mtagzc2l5pdlPohj4bgQQHamADzCXi+kHtU8vEnAbB4UcvvjJFmNkRgvoB7iEFxDHogYH7hGADDzSTbLA0zllSNGZSzCOcNUGwre1QVKhxFiQNAg+67oUwsDFAIKMkwGQCj0Ck15aRjmMii1GoNiA2ICZ/7wBvytSHq8Oh7/5f34Xd/69TDhB/J4mQFQgzQ2Qce7FS2/Md/dz3W1288Y6+xt07vOtGx3a2mDZUQGJr1gxjcNwK1MjDCfCHXoUUNMy0BLhFGBcLAwEGrMRYLyg6M0Gtriy57Jb94xFIOSCYGRSBIrUuqaiFgaShEeq1B3WT1XnHfFtywRBw4cEmSv5CBI62zdQDctzaSoG/qXAD7ymX0alnDAq5YAlsBb00IAuYnclQfvLBWcg0VwOeqlwm0cxiaalq9DuT92FnP9vdtt5o2b/v4elZIUnTimlZz4ZbqWWdxMmeEvfXIVwqXvvpl74RpIz71m7uHTf/ub70Rl/1/3oN27CSPTutHsZ0ltEMCVCUtdaU8L+WtoESuNykiK0ONZ4TSZOtRMFBuik1XKIG1r9WSS+QMEIF2rYCbeJhWQsSHR0K3nYI0l0XOIbuISJkq8p0SG2kh5BnJgxo4qTXrkJUqoi51olZmVnU6dEAchTQUOIMsdhEw/nbMpCQYEqWJqkmK7QZmXsugnUiY+waIlRNypCrcESHKFCYh8KRlSJR9swa7EvxSvQUgkQDT9yTZe2WVWqu9udaVNJ9JDQboUF2vH953dWzsvvdZDZjA0qzo6M8HErgaO8JQWok8pHZb+XfpMX1yIzMQtMdJdTAgQMSwxOzpq9myOAxI1esyR6AEHDNw7h/XqL52DJjOgBjBdSP1Ygh6TY/gupaZQgj5HkCAgBupPleAw4xGUs/OhqCD+8Gb21LnJivfpgFtBtBoiFgV4BUnFrYRKI7UwDfvF1LQ+ip4dQQYA39oVQCRIzOpuVsv9bTmiEn9GUBMiK0HWQtyTuryugHVNcxcVfHGglflZzOp5V6ZzpkEsiTVUVHIuaDKmCVL4nQP0fODFi3IBjlfSyf/ZgCQ1S4biI2BacTuNlvjGgMy8l36/f9byIiX/fX35hyUy77vPfjkb79p12vP6Vjcu5edzfUsICDLmahp95asvovD3joz63u/93sxHA5P6bF7AMsJ1n/8d9djbW3tid6Nv3TryqtvQThQIZTC4GEjNjphIFZbbIDCEvxI/DGjI7XyAUZbDQYbFpOnGLWNERm0m0iCHhcWVDrQXJhwYaWCW10B+iyK3Hy23c/ZagF6Y9aHhCBs5taDykIKPGUTGPWEtnPxwW1WDPwQcEwIJaHairlYblYJ3hgdlEqzGxlAob68gFoRERBMl8HSY0hEZY6LvZgTJlNm0ei+KzODNbMgs8wT+6EqumLFmU4+3l+5oPQ6ReflIjOtFHoKdA1qn+mntmvZXiIowyQV99qkAsBd/0M8zQ8/R0AAttQNcPfWaV0f+v0bHvYxr/j+98E6Qjs2aFblM2pXBARgq/8qsGEa4L/d/AZc+ro7UABwM2X3FfK9lYEKgAhtPCWAPBTIqpBkcRCd/qyzDF9KQ1dMI6o6ik+uke2mPIeoirCUe2QC5wZvaWgc5TluGnIQLhtCqAwW51rU+wm2BtzRKIqzguAH8h5t01mFAcje3em9AALCSI6NgiAkrzc4FsHW5GyZZLGWWMe21vdMKqCrGavfbDMjMdktxMKKJ7Oy+UrfdjYtQAZ/YUWtYryTgXpJ4LEFMEK0KbycQIYBrwzCRQM0DXgq18kckJzYjKTMs8J1gEusl+0WiQAU+kZ6FggpjCYxpw3ysK+/71jI9sh7oCzAQwEx2rHB5OmMsBIw+rrD6tcZg2MBoUhB9mJ7degPapg6wB2Zic92acHDEnQ0CmAzlFwTrmsQGWm2E8i+uiIKyPEQ2JogHt2QwUAGYwzav3Yxym8claHCopb7SVnIcZnMxPu5aUB1A/Ze2IV6z6E0BOip9FJgLS9qOd6GOiY6R3BvcImmAba21VqCgMkU5sEjoLLAoLhABi+NFwBe81zSgIDV+x0ArCE0aw7hQIFq02crTmk6kdVeYo/WvX6yvoScqvI9WrAOpBgILDkubWIQyvdgSa2iYGayPTndK9nFoDQAi9rgbF8f++jPYGtr67Rsa6+efWLWlVffglAaYJeatlmV71O1yTDtQEN9K7jtUoZHMYIePAZblaCDa4jDEnGgymcAIPGQpyLVWUaU2NiRy7IztB49ApEhIQkBcj1HZx22q52W9woAWdQXrqDcEPaw21wgDhxoWKDZV4gqdBo6QhDJXrNjcDS5Ts72XYCG9Mr9JJZO6tlCato4dLCTWtXc3ZAQpEPcHuGGEsBRuE7xqAO440hEJ6pndwbTA8fXtCerZ4ET1rR3fWGvnn0818Nln37v//I+sZNisRDzA4JtAV9JDqAoioU4ZBrgj3/+DXjB378DFqIe7quvU3QQkAazQDuU/rWYCwnJzaU2nTy1QrG/yBZfzarF5AIHN2cUswinmZwCTMpjyFAm/tgm5txCAEKmC8gKE+Pl73bSZuAiDgrU+ws0q0asx4BszStkIiNtripZqOHOdot6gImCHXaykOuBEmjIB9imBa0MBdCIUYhGfQeCXs/I0YLqFrSd5AO9ZazaywbQvEdszGqT0BF3kqpNwUoK3DkgJGBUVcloW6kvQxRVR1+RBjl+ZC2oqjqnhKXges6kyyVF9m59sCG5roRuNgBAXhcQi8Z0HexdSxb7DEb3exSTNhPK2tUCbuphpgvs//QW9q2NQUc2c82KqgStr4rtVeGkxuyB6PqCoMJ1qufhAJjOEbe3c33JkdG86GIMvqLq6tk8g8FkLRBEsW7aUo7pooZpWnBdgyPD7FuT16k9WDNzpAEjOVeU4Apvl9TrmVgVII9LOUBNA2xNAGtgVldAHDtFYz8rp5/nmJwYRkOQHcj2Fr4DWpwDYJeVhCHKOUsK0BMhDgRosYuIMOiu62YhyqpYOYgdoFm25oryfQ2FQTHdRTV+GtaTsqa9+/TVtHtrbz3W9UjOxdQ//fZv//YpP2cPYNlbZ9X62N0/g1f+z+/Ngzu2UG9LoNknA8gwVMXHXIajsSDUa0C9PsDoQbmxhhJYHLCIJaHUHAmxviHQqICde/hxAVywD3ZrS9nAvUKLjDSeqcmytgsCTUNGoPs5BNDa6tJwyDQBbhHAU4KtGeWEJLA6MOwiwkUZtLYrDvUa4GoBNUwLWBLWUKgsqNQAxlYLi8BgZ9Q6QgZk7IQllVjDMaIbWgUGolmyJ+qCxWV7sBIKnllDgcGkf+svo0Oz5CndB1iWjp88NjMre8UoO5vDmEX2S+DAorIxLAUWABDhrv/2TgDAtS+6MWfFpCZ2j4n7+K+rX/EuhKcNYHwX8P7597/hpM95/j+6o8PY1JYjVHKuGgUW2MjwyQ/lfxKiLc+xLUveSQ9sAQC7ILg6otj2EkjeY6DG0qJdKzKj0DSd7RG1UbxxWcM6NZTQNGJrYFRx0K6WaNYtFgcIYSj2X7aRQHCxOpD3YBtpTv1AhmZQUCcHebeqUhvrcFktlJLCppiKoo0Co9xWkEqVaCkQnKKoVoqJ2j2oTUSycRJQJ2jD3QukB5TtrAMeZ4SlGOV929Iqna0LMyefmmsPms2B2Rw8XyAu6m4Yl5eVYVxSVFjfKVOUZZxVgFEveIBYq7QJzLXIUwplLqZtZjZj/zriPaixMLMW1WbA4AGHpk2+6QrUVQTbANUxL0wzL5J98gGYzkBzI8CEbjNubiOmhjRd+/VfDkEaUmuA9VWYGAX42FIbBgDFH/yZOHAkG4ioHt/DlPXVyHOaVgCSDK4QaFAhWTRQWYhdECAMPmsFUG8a2Y9dBnEcWf21k5ecqk6shf0KslqIigKYyPePBwXYAqYNaqWiQ5mRbN/Og/iXswD8sCSfGdBZAel1niPDoGPRiZ99FA/7oPe7qdjMcelkiOM5K9sAAV7tIi5ZBJ6ula0JdLNPhkZ0b/3FWKlG2bWmrYBYQcDgwqGYSUju4twKpo0Yf6UAPbShVoURdnMGPjDOCkRDJEPANGSyFlQGkDKDAeTrTF69n8noYD+xmDmKPQ4YzCxAhSFQ7D1fB5s0nWH4TZIhmpNrlAkB7CyiI9TrhNIJwA3IPd7Uck2ImnFhAGEA6/4nUAWUCEPUMfabKMxiILPYsyK7D65E8eknEluyzuNT/xbRTcCBE9ezRB3gAhxf056knk2K7BPVtMAu9aylvXr2CViveuW7EC4YSH2pdrW2Bf7LP7/+hM+59HV3gCyQlNEU1c7WivLYtFqHFFLLRs19cTPG/ByCCYSVb3lEJ3/nkUG5LfVrtckYPtigODITG1QNrg+rA7RrpQAmTYStI0wTuqzRVOpVVurZFuBCajwz1aD00iGWBvODVgCfaQJjGG4m9lopc47akGtGAEK0IQJCkPo7ZfHNFzK0TvVZDEAMMBMg5+ullVQDvYE2NRo+n0CQBEJYBThbBVESEJJto/XxfdUCUQ6Hl8cwEHtZJ22Qmsp7sVVMio6dAHRAp6hGhZxZldQy1sg10aDbdr5mdP+dMlthGRwUnNW8q6XnJLILR5D3oHmD8X1if25nLWLlwNai3Gxhpo0cm+lcypnxSP5tWnlfiwVgLeJ0BvZJRdNTLPZJo0ED4cdDEEtNG7e3AQDlp78gp1S6N6RjXhRy36hFPcJNA27arJgBGclN0XOFgoF7aCLvN9Xbxui+1sfvo+4nByxbW3IEgkHc2gbN5qBk95b2K2XX7FAOUeoffJB8lxBAsN05AwCsVmrpHPYxO56YNgLwMIbgZoCdebmmK3Bu6xZcFYimQHmsC3eyTYSdtNIH7JyhnIa1V9PurV3X6T/V/kKvffv2LTsF7bJSLRx2KsNPYe0BLHvrrFu/8+9FZvmK738fQiWD12YdqA+1AAG+NoiFhZsAxhP8GJg/rcW0iOD/XGH4EKNeIzQrQHQGzVgGOuW2DHBswwAqhEIYR240EuZfXatkHyBYke6WhTSxTSsZLbpIm7rM5gZkcMdDcFkIY7gqAAaKzTbfzP1IQ8EXUeyRAICdhDKvKkseDBMIsexAEXIGsWQpqhmIpUEoTWZN5cUQz1tDORScImtAcfewFFZsOIX9KVskh5WyDNQsMsNQHsDCptKchVTYL4WIJna72h5QYNz5JzfnTVzz4pvApUUYCjuEAp/Uiu+Ka2+Fq8TzVQLl5PdXXfHuzBrZs/I78+vql78Td3/6H+Mlf+e2/B0FgL/yjjtkUDSQ8+TL10tz+p033SGNpVGwhAA/ErWGbQE26jeNTu0RSkK1yXDziPkBYT9VGwEmAF6Ds+1cGsyUT5SG54Ay74IoVQoAobIwjXhTpwBAHljJnLAKAER030VD2Ss/OlGesQXsvGcf5hnWMyiKiidUBDeLYgumsn9XM7hF/g62Y8lckaZWGnAToO9BGvRksRCJYCNgJ1HBFlI2lBTuyc4hhe5K8KdkklAQtiHVvmsiUpMRpaGiogAXDjRw2SpQGkMZuFMjz6VpLV7Os45dmOxk5GB310AyJgcmU7oOJEac5q8QsOx9DKBjC4dli5bUOLME30vGjjb5OvAzAIbfNthfjFHvS9ZqjOpYC+wrEB3l92MmOnTc2ETcFNaKOXgA/oEH5fM6dB74oSPdIKz3fqHsPGxvC8ChjXMCS0BGrMFSgylPBDcN4qKGPbhfmlAvNl8xs/a02dawe8lRceD9q6B5I/Ob2TyDKyDTMRF3sKvZL/+3HHcBaYhZGs/Cq7d2AC0AggA/RCRWCcxwQ2HkmWkDmssxMyGCY0QYVx2r0BLYdYGaUTOP2KYMMlGWkVdv9VrUMGiDMGuj0UwkWW4R5dx2BsEAr/wb7z0+++lRrN1C5ffW3nq81241bbsK+JHeEyzBj/S75IB6v8HgGQdw/qctzKwBbU6A4UDubRwQxjIsLdqhZKQMB92gM5OAdnTbZDqweycppj+EA+Qayyx1ceGEIQ10A8G6AR0RMJ1iAbQtyDm5bx0s4dWeyNUE45OlkZFbktaNbACj9kGsAdfJViU6ub5QBEg97mNRKnu/tw29NybCgGk0Q8J07z0DtkHvKen5+v5PWM+m47NLTXvXf39X3v61L7oRsZRwcSYFnplP6IW/s55Nr3PV5Td3nwsBH/3Y3tDsTK6rX/EufORTb8NL//Zt+N1/u3yveclrb0copW4DA3/0f74Bz//JOwAVSpDOcaVu65THEZBeqhAljOQSAge/0GDzWSXcHFj7aotiu0WzX3JDE3mo3F4mtFHKvIOS9aYtYmWF/OB7eR1VIUSJZNkJwCyCKJj757mS8lzNKOZCXDKqXKHGgxYeZtYgjitxe/BKHGyCDMcT8STtX8q80O+GsIfS4FrymvpEG1Ho9q49SSWWVAVLKpEEBMjvxSJVrkdLttGAXJvSfiWgNH9nY6ce8SEDAnJMYvevXt/S++OUHZJUav0VIhgxA0ZLr7/bUnUKIwCwUtelYV26vqTjFiMwnWHwrUJq5nkD81ANGAt/4X55SulA5+wHJjNR48zmiFOp0e3+dfijx+AOHoQ/eqwDztPxTq/NEbFpQPM5kqol24gBQhzaCTzVtahlqkpIQU2ba1OOAiKTIcRv3isqlpWx9FEHxjDzVs6X7Um2MMvgSv+zSMf+uOAwgEzs7NxVMZjrcf2c82dLarHeCMiBts1kKE4zD+D4LFcjwBkb/TIbFiW3Zt9SIhj0QRMf9fzvzgE3aWEaAWNiVeDql73zYZV0p7r2atq9tbdOz/r4xz9+Rre/B7DsrbN2feo334gX/+jt8EPAjxnjgzM879B9OFoP8cUvXwBAAIxmf8Bo/xzGMKKr1PdZWOf1AYCVRe5mFn4khfDwQbHfaVcK+OFTsPJ5Axw5tmRNw62X4qxpc8HG/SIQyKFxDAAzYZUQgOTF6jYWgAEW549lv/r34cxiEel5dABFgmYkwhrK0m0ypIx+qww/8fKWMOEOSAFJQxk0ZNy0+lx9TApdNEE9dUmYgKTFYhoIg6K+XhQbp7Sc5p9YEuuDVgIJGcrOTDYPySuXCPAR133322UoV1jEgUUsLMLAaiAqjguH3bliaWDqBOJI8JzYocl7uPKqW/ZAljO87v60FIi/9/8sh4SmvJIwjEAkXHLzHXIeWWlEKUDAlSoNQ4BqK2QxQzoPo9qLUWAUkwA/NLA1o5gGOU/IydDcC+MuF7wKUqThSCwsYinNQT93gtT6rj5QSmi9E8stsLBeTVAPeCdDHj8yqPcB7aqoV9oxoZhTFyavCpZ2TGhHNntwJ8VN7N1dqZSQXz80MC1Lc+v1O8h6DBMg6oVJ6RaagWFIQutXDcqNVtUqqjDxMTMdM8Oul5OytII2sSGC2hbUOHBZgEsFlRsvzbQO0Hg22+GTjPxzVvcpky+Hd1qbAZfu8dqop0YosabT4CsGbZwTuNuBK7uudI12DlS3cLOYPcvdVIAa2wpIZ5ogntUxdtYQZMC+hb/3vm6T/Wt/YtBR5/+d3j9Hn20N+iqX/F59z1qyt+10bOLOLBV9H3IcWAaWjQBSrHZi3XHdHVw54WJtOlu1n/DifS3ZMN0xScCW8QGFAm7EDB5WEhLLrMH3AWHoFFhZvgeljKFooeqUCGoi7EyUKx3YR5kAsLSrBnk4SZF2ezd7a2896Ve/pm32MfjcGm1tsfYnRR7GNvuAdl8AW4v5U8YYfcWDjAWCqlgGJdgZ+JEDMIQdFrCbcwFCIMoWns5ENbcTMA7idb+TMbz0mMj/f/b+O262q7zvhr9rrV2m3u10dYRErwbTDQYB0rHfxzbEjmNw7NiPwcbOGyyKqabYdJAOTuw4D05iO3FJXBKX940a2IAppgtEEwh16bT73HXaLmut549r7T1zt3OOGpJgrs9HH517yp49e2b2vtb1azLMmghk9nEElmAR45j0r6+Z2Hkh5yklZITKDhPkuofy4uZThJ7W63FudKRr0oOL5T+xA/UQa2w4z+jSo3NPNSJziar7X1PZVdoQpB16QwF92b6n3amf9eP35cPQrRqqeaW45PG/WQ+KfaPKNAsDTCN9yUXPffeOzOKN/ayqFTsVaHSq50/rntc1n5C8gk//+au33OfVWIkC8ORfuhwdejgT1nFVzwaiLta5xzZ0/X2UDJZwrYyE2KcL+c4K8cdhMiX9YlBvKueFZNBtoKtsysKiRjk6fI8rElH13fGRouwk0kPH1XdQByWzlZ+6MfjIYBtCNjSjoNipMtWq73I15DdBiVU6USs4H0h3jEkxtXetGfeeVQWFhPQO4b4y9BKmsoh19fq6yj/ZknMEG5TYwBigqdo1GKumCcBPRYDMxqoCynIcbr9DD7UBlPahB60JQ5t6aqUAg9dOzo2T2XbVMajIS5vIQ2ri3/V7DOpnBZJpUwaFjZNzYHR0dZyDaEyw2bLjz85ayuOLcmhWVra+xwkgadzPCpgxOffYTBTacowC0LLhmNXZtRodRzWxR3XamBPSa/qllRpc2ZILtvnYV/ux3WdiLb4oUCqRPKu8GB/nSXcRP85LxHtUkghZaxIQc16yDyNxxXAtsR6u1paV6rTOB7KbyGtai8oKxmB5eG0fabmeGDde60xrWtN6wNRznvOc+3T7U4BlWg/o+uwfCRv+3P/8ftppTsMUPHH+BPoCzzf9mSLpnsnR2jMaxXRD05uuerIFRXagoDkvQcWjwrAw06c3Sul/e0aC40pF0Y5oHp1HHVusmRsbJK+VzUKwXtm2XGC7DEBZK1LaXl+YIXFMakztw1xZ9lRetjM3K5L1hN6BELidCoMvGklAtslk6CqB9OOG3SZjOxUJDKf25K2CGPWEckUshcBRLT5DzolWEFHnV1Rs+Hpwq8av47XGJ6LCmWRxKO9r6y6vFGU3lsyD/sQgXKnAUJQB9sf+/uQM5Rc8651ixRRLo6+zUoCbSKOsDNurBYba6XOZ1n1ST/6/JZTaJRAFKyyfyhdNLekQ8C7WCCiwDQJzVMBEk3vKVNUWXsoTQuNlwFC0DXHfEQ0EXNG5JV7zeKOJBgV6TYBLn04MeUC+u9bi0gZl08j330uuiC7c2DLPyAJaB7WLKoPNXiIWWqIAk/1JT8h+u1hAIsFu5PWSdWGl5V0ZCkn2EWQzmngoVkk2VTSW5bWLthYffiOWEdoGBYr1EhxqZaGuc1G4+RAqakaOds8SrWdiCWE9Ki82DMhrL+pqeD5Z1RCssm0oxI9YgJZwDKvFWxjQVT7R29X4PBgGdiDnTeVqJYt8HhOLrzxHkYwXrcTjx0yqWqrwUevGCyKY8NtW9eNU6UiXM5KVHLM6BKModrXrY1LMpOhGRHy8Lz7gzgtzr2I/RmJ54CrG3uSC0ruxMmSHHAMZRE4e5412DJXFmHd+WzsEHU9YXkQyvPTHT9Rsu/rxJwFVJvMUtlQST1hVmPGgILAPNwwMvMM4i59pUyy0cInBjMSqovJhV0nF0g7XGi2DRRts7KqyqQ6/t2ADUrG/Y7lW6NLXrP6nvfQyIiPXvCoM9Nk/9v4d3+/p1pTpN60HYk32tLt39Tijs8Z1xbns/4So8LJ5hY+kbxMAPpxDCwdxVPdePlLk8wnKxjRDzhJxBFEHVVrcKBsHCGs1AdAqxn6xm68TegwwB5tBX5Y1acgXZfC5V6KcgbGPfhgSdr5xgsauDtmelLwj52sXQx4rknWN1nJ98yqQGUJ/Kf3cmCBUnU90GZSjVs45Oh/vs9h0hoF2ZaGLADaE6/h2PW2l1K76WQDlrewPjPveYJmE97jqcdYKUGwULo2FzKFVHap+snrBs96Japq6n1Vl2BcX4cK0XgLW9bSn/S7WU//15fKPqpXxIBayEkgP0rOaTP4vGZ++VhebTHo9H8LfdSG9nmxMUXQNyZoTZbNCAEQljzVDR9Qf91ouMQKUtBP0qED3hvg0wTaiOpPFteJgG20x6yN0EtXXcpdGuNRgGxEuNiR5BSpIxmCyEob5RqOLoHQJ6yq8hKirvKzZ/PLmJ4ACo8ZqlPD+CJmek+H0Y3u9TYSfqr/zXggkFfGnIjBOAhKTrzuhftngIAFjxZlSkmlS2z3JutyH3m/H2g5IcFryVavXmdx/qO1bK4WLr5hmMN7fSt1QEZ92qopURFia9wcCHGgl9lUVOBWLWpAsEzVyLDl/41B76r9P+T636Wnrh1Xzj821SQWz430hN1D1B2EtUZ7ytTdco+rd9ZsfJMc9vG9AjpF1Y6V3BR5RiKtIlTUTxzKPseH7WGf4mJoYWtnk+UjVID4eURs6J/ZikYfhhGVdJOfziuB50Q+/C23E7v3KL/+23Pa8d3Pxk97KVV94+47H/FRV24Ix7WmntX09YELuHyj7cYr6yle+wmMe8xi01nzlK1856WMf97jH3eXtTwGWaT0o6pZfkmHMY//urTzzzBt54vztLJ7ZZvHwLI864wjOK25dmScaNEmXLbapaSwaRnsMZz90mQtnjnN2YwnnNR8++nBu2tPExRHNo4rBPuid02L2pg7l8RNMylNrBvM2DUXN5J5kMTsnC9JWC9I4sIAsZrknzWFkQuOkoZmAUkTrOUmk8WcnEkhnoGwI0BKNFLGW5l2HIaxNZJhrY7FWkqBtUenEAyeZEL5q/seLaReYxjosngFpJKpG0TH23q2awQqEqRpb76XpqRgZGoi0hIkH2y+qxa4PTBCjcNpIKFxYPGxmMG9bzouHd2BBq2LcpKuBxhjZd9tN8Fpx0Q+/a0dbhmnde/Wklx8iCvZXJgtEtAzMeoQ3MhgS+z65P1kXAKVMBRjU1gc1i8g3KqarhHuKOkMXnrhX1pkiQBisuLAADCGRuQ2D23G4rLIeMyzq71jZNrW9WJR5UEhGRJVjUgqjVg8tthFRdGNhkypoH/UBRIEy1URZWEQXDjOy6MKRrGrKpjTl1RormzW1VZmzKoSSyqCsbIq3fNnURKOxR6/YnHgJO/ZQzMSYkSXqFfhYYwYFen0kC6xJX+oKcKjW6NVCFzYugiu7g0mv6KIIHtgWPxzVn3HtEz0xvN8RXJ4oVQ3hJplp1WJvgsGoKkZjtb/hd12FjwLjRXL17+pxURR8nC2s9zHr/WBx5WA4Ijm8SJLKuZVY2GnVsVJpgmm35HXCYPAuK0NC6TgK1ggbF6Pyb1GcVP9tt22llXhJh8/Drfe2P36Tz1d6A4izWVlUv/7kNanKDguAii/KMbgyObDIC9ziEtp5/J4O2VxEYzlsM41kIBiUYPHyCJQwZ23DjFVoia4JADUAH37nlQ88EFSmUv/8p6/mmT91GS4ZH8NJC8K7W9NF6LQeyFX1tD/1qVfQ3NdnuDDD3HcK1h4S4zsFZTsQWbKgmosMKi9QRYRrJ3gNg92GxrLYA6kceVwjgUaK6o0HbZvPDeHGel/G949ZzhsGbN4LUBvsebx3gUWs8b6oQXBfFKg8J8oylJvHJm2xL+qakK8mfUHkFdEgnM9juZ7q3FO2IkZzuiYr6EIR9x1m5AR8qUgQZZWn5sMgfDyErftLzY497eZ+VjLZ5AkKjffBKjRkwsibC4PcQkAgtMbH4b/T6WcBnCdazTf0syoDNSzqfrZSeXuteP5z3sWHPzbtae/L+sFfuJwoAHg2UTW4UgEgykGy5oNyRdTJPlLSw8bj7dhUMod04SmbWvrgoSdZl3VMNLS16l5IP4FkkweQI5A5JCuUMcCXxCgvfaHuZwJYthJZW41yVG5R/VHdR2jApwnl7jYAxXyzVqlEvUKC6UFswColTKUELx30h+NhPmxUF8ME0DDxe6qIL0ZP2IZVqpTQ/wUQobbanlC5bABWJnulKmfJ+bHyrspEqbYx+XcgkCg7OeyfIPls2v5OPW197vMON8o23Fcr+6wN7LLwuWm9QT1RV/Uak/Zo4fF1fkjVm4fBvw8ggLxWfyNJpjpm/YFY87aamE5b7LFq4OKu5wVU73tS3bLlerFTjzx5zajcPvpDvB5t7GdPooypq7LdnfhsakJUtX2jwWh5z9VxKsuN1zkL3gppTHU7uJmmzDoKO5HTI8ffpTFmNVghe4+2prYKU96PVZDh/trWuLqOTIBnH/noG3n+s985tlvn3rN7nPa005rWvVdPeMITOHLkCHv37uUJT3gCqgLoN9U0g2Va3xc1ymKuXTyLs7sr/Mx5n2f1rBa3DhdYSPqc2Vrlq73H0bp5BZ9EtG/RwCzfnt1Pcp7lx+e/yBnRGotFh5vu2EPnVkVjyTPYJ4CF3zMPx0+MB1+VT+gEg/ikQ0YrVmEqjmqGz4ZQ4qDewCT4NJbm2XqxzEo1ZQuKNrhEhtZmBD6SxZxXYpfkEkXeVtiG2LFUDCM3UpIR4cbBoIAsDr0MeCfD7UHVaHcV9I0BkABSSsSuYPN71LJNZb009qFZKRdawUNboUuHHsiQ2McaF0XYhpH8GSWqgc0bfvaPv59oYDc0EKp04mOaBbl0sGPDhGDtAlTk8I2olsZP676vL3zoUp72s5ePQblgX5esyJTVDCRjBQLIEhh/upLRKyjaGhMstVzwWk9XSpKlIbYl4fRilYQwi2obLMYZH2FRVtkYeRXjGxFqkKMHORFgWzFFW5N3NdHQYwpbW5SgFHpU1plGXktei0tjylQHJZwl6suCMF6V59lGJIvdwEDVIzAjE4BI2d+4pyk6orKK+7ZWtjijiQei+HGxgDG2oXGxsCB14Vk/J6VoKdJVR7tXYtaHY+XJRDA7zo0XkBMMQT+x4NugDIkjOYaTOShRFM5z4RhW26+AmO2oKJsXSxP/3hYcmHhcZYHgQ6g6pQz7t9gDGFN7LHutwar6trqck+dbUeLgPb5aDFeh8NUxqL4zEyqOKo/AjbIN5/hta8JeQceR2JOZAJZPvreK8DzhZ72tVQPgncb2BxszbTYwzbdnCFb3bQFe2DQUjSIZjhgzHmzkxYSP9cRxmdy99R7pbcsoOytgn/WU3QQ9zDGrGeb4mjzQGOLCEsWyaLWthHwuwSVKFJXBA97HAoC6Ziys2kjz0St+o369p/7c5egYavbnvVCnspyc1rQeKHXj6gL7Z9fY/a+O8KVPPIx4HRrNnP4ejYuEsexHowBiDIXTYgzepGRz4LWheTzCHF2R81EayzUzicfXC8I5ddOQbNt+dmLApbQDAkBbD7eUWCdVllyTv9tqDRoyIsTySFF0RAkglksKm4wVGmWsKeblxFk25bGiSlHonPG5LWzLxgpTSI5hlS3oEjVWQgZ7Fi84NyftaSuRQelCOLj0s64Z15Yv1fW+HswZhW0nuEiGbzrbfuH9wqf/NmpUctWXxqxlVTq5np+kn3VINo2L9QZV4LTum/rcH4qi7Ide9AHw1PbJ0pPJWiwahWy/kCnmUoPROtiEqbHdK2G9FtZgyaolXc6wjSjYDUmeSqWmlieINR2F5Nf5vBQyQmzwSUS+r0u82BOFbrheq1Epa6Mqv2QiH1RyBT1mLcK1YspuDMpgRhZTKVOq1/SB4FP1MVUvObnNKu8lCueBYuK1YGN/VZ0jqtvKUhQYWkmeU0XoCeUn+tYKCNlyTpoMZ/duK3ZgqXunDUSdyR5sYls7nvNg3Mc6jzJsqwTZYAlbZegZI6DIpr5sC0gwkYPlnZN/B8uvSnlS98jWjnu1oILeTHTygJp03ai2PZlvslNtyp4ROy0N4bmbrbl2IgptOH4YsRCrwJkdH3fXS1VEISuqIJ/lwS6sHINeG0gB4TPIC3ETaTdwaRwUjBEuMehBgR5kmOV1AWJcA1UpyRtxbRmmAqBPtd7SCrzCJ7EovybqOT/6PnQzwsX3Ho1/Ur0yrWltW55tl+vT2rluuukm9uzZU//73q4pwDKtB1V9+6fezNOvfj270h6Pb9zKLcVuThRt1ssGn7j1fB7yyVsgy8E7tNLsywoaKwt87eAZ2LM1j45bXLb/i3zktoex+yuQHFlnIdKotT6MMkynLYPIOJYL+HAkwEiWbduY1YFsXoXhWmigimLMTkmDr2eQcfskouymwsgL9gjZjGZwtkV3c1ypYWTQQ4POJTzca4jXteQ4tDw+AjOQht3FnmRFUXQVqpRQ0SpvRWyQkMF01UMGsMUFglLc9zSWAQW2qSiQ/VQedCbhw3gCM1AWIGYYFpxhMVCVsrJt24g2ZMI4I17ZLpIwc69lsOa1WGZ8/G9fyzP+5WX80E+8H114Pvb//w2u/uxbtv0OXPLYN9Wsnyuv/S0uefSbUElUe2FP676vf/6TV234+1FvPET79hDuHsig8llD/4AGJ4tVgKIjwb7KI0G4Q0e6XBIvDdFZgV4bbmS/5cXGBWRVkwoFM7YzyPe2RVGi5btnMs/MiVyC4cP3umhHomxpamEdll7CvI3GDCxmYLEtUwfn4n0I2jWkh9fEi7r2bS/rgGHfiHHNFJNb4hMDYRuG76U3Gm8ShnsMeUeRzyJWYX1hSCoPJZrGsqVzh0VnEqbok0iOSa8voeeTi75Ni1MYL4z85MIUYODqUMh6sVIFhlbKkjQdL3r9pgXV5OLUO8R4WtfhlttaDkwuXCs2tbUCgGwCEuoF3gTTr17Aai02Xt6jO22Ym5XPfCRBnfViy1pUI0U1GjAYile0tXWw/MZFnyxIq8GjMsk4gH6TR/Sk7YLL8/HgctMCVbdbwuL2ssB0m4cR2xybscWYHffHm49ldby3qx2sHlQYpLj+gLE/tR8HXUP47C1+wpfa5zksLpEUBeWZu9CjnPQ7R8VCTikJi7UWFUcoPUc526BoNwG5NkSrFjMs0AM5Rq6VYFsxNjUbgJWqTBZsLS380E+8n7hv7zI4UgEqU1uwaT3Y6sRil2E3ZnXUxLYc5f4C3U+Y/+eU2c/ciltckr4xDHaUtZgsR9lZ8tmE4QFPazEh/laGH4TrRFnWg7/63DzhU48K51PYBLiMGdA6jsbnFucEvK6Y7EqJXYrZOFBVUbAqiiNG+5oM9hjyLnVP6hIFyjOa15TNBtHQM9yjKVNoLIfeIVwTbUN6BR8pbKzH24jk//FgrFhFUeddmJy6Z93S0zpC9oWrVS6ieA02iOWYre8SE4bnLuReSDaWi02tWPFKwpS9EmsY5akVJ1d/+jd57gvfy3N+5H3o0vOPV79u2552Sz/72Deh1sppT/tdrn/636/Z8Pczf+oyokAUg2DlCpRtySFTIUvPpbomtWnra3u7ZLUkXs/RwwKzuD7+7U32s5vIDSiFimPJhWilsmZUMHjIHOlS6H+yUpQsxYTtVSyh6Bgt4GAgPZi1IXpQCGCjtViBFWKFh9ayfivKsGauekkn1/jKarYiCVbni4q0UgW8Gy0gShSJRSEEC9qgWM6yCSXJBABi3bYAhjxg4yBegIdwiDZlc8jfdgsBJdy5LaC80TLRbX0ek33ZyWqip93mtTeAMZvyTqQPC9+DoMquyFGTqplxbz1+bg12hP57vM9ja/O6Zz2Z6mSiBx2rgDb2tBVJSgAndt7epuOw5fidJPfrtKp6T67EDwZhM+PjUH+mE39Xr+WzHLU+xM82yLtNon5JdGxNMgkBP8rwRYHWGt+ewXZSecnSCglvmG8EBptp7Zpw1efftmE3XaJxsVxrnv1j7yfq27ucDzvtZ6c1rfu+zj333G3/fW/VtHub1oOuzp89wbnNEwB09Yjnzn6Dm7K9fOTOx+IHt6GaDVkMAfn+LoM9moVPpvza6i/wp//X7/G0NMJ7JbJpDWq1B9bh1nuyCAPx60xiXK9fMzq2b+ykaqWK98KYSGIZtFUMlVYTSodvxhSzDcq2hBxWQEg08jTuNNhmExoeN1vinNzpNZA4ii7Ea4HVFgIYfQTKqgBkhMF2UMDgwabhdlOxBwEC095LHoayIUQ7DMX9RB8UjbSwtwpfW7jodVt78fqGsOGrbIs6qyUsQER9E1iPVf8eS8A4XvbrqT93OU5I4Xir8B6e8yPvq/34N9eV171z499fe+e2j5vWd6++/q5Leca/vAyQ76RXAp4M98igJFkDvQxm5ElX5fuZdwSAaR1TMuDISwE0K8ZctSANSo06sDD43hLH+LAILdsxLjVivdUWOxK8gInRyIuqKrPy1Xce1YooWgJuto6PbRpsSxj2OndgJbQ0Xpf7TV+G+KKCcCI3tyVXfOu9HNz/q3LOsA6TVYsmsXjRfRsWyoqPXvEbPOnlh3CJgJ/VIsQlitJDOvLE6yU6k/1RhZXmPsvxRSGS+GpxUqtMAMZWVBuB4InFHIwXurqsWXOTtcUDmwnAZjsG24Qa42S2BEq7ieHdpvuqfahYfJMKnChCtZrC4M6LCVWIh+EIv7o+truq7LqMwa4e27JgnHwv47/HipsNj9+8MD/FIMBbQHlcr4eK4jEwE3yx73KdagE6sQjeKYPFT4JFTLx378QvMvy7Zqo7vVF1OcpkmDPKx+BKswmNBDXKoShw7ZSyFeFjNc4Oym0YeoolmEsjfPjub65n/MvL5NqlFf/0V6/mh37irmWvbGb2TRei03qwVdwomW2NaMU5y/Ntztm/xC237KF9xMrgswqVB2GnpwmkCXppnc4dc6xewFj8FWxnVBSNfflrJYoMRiUTagL4PakfvmRs+eo6EzINlNYVfhHsWswEeKPAOlo3rJCstHGRWH71zoyp7GzLBvQPKKKhougKaIIWCzHlg50t4Rqp5ProJfpFFAYGRnMhBJyg2taAh2TdCWAcykfUNqTKeqJR6FFjGTin6yP0eja2MAwD5EphoErpBSrVrPI6KMFFtVApFlQh9qHPe8F7UKUXVWzoe5X1XPS8d29rFbOln71u2s8+EOqTf/lqLnreu/EqOBwYRdnSZLMC9jVOlJiRI1krsE3pPfOZiLyriIehpxwWqLXBGGwIeSTVtVm1mjUwgtLSMzYTXBpjOzFlO8ImQkpTPiFaL1CFFgAF5LocAE3fTChnG7hEE63nwRYPWXtlhSz5okhUL1kuQE/dzwb1RwBArjj+n7i48/PSg20Od69+4zriiuP/CYCDD3mVvIeKGKXVmLAxCa5UqusKXJnoTSZJOtVgf7u+q3psdY6azAOsasNwfUJNsW1w+k51d9UWE+9hcjv1PtRKjI1EKV/lDm45LlEgF22zP9uoyWsQpjzF/p9CjVL39CfJarlLdZo97cme77chZo3v3qy4EUBGxZF8N4sCXThsA8lzHWWylmykqJmu5N60m6JOjDXKii17/f2vyGiRCdcavwVceeZPfgAfi6rzk38Z+tm7cPim/ey0pnX/1Xe+8x0++MEP8o1vfAOlFI985CN55StfyUMf+tC7tb0pwDKtB1396VP/gN/95vO4Md/Lkm3z0zNfYqns0LkpyHsHQ1QSUz70TI4/PiVZhXTNsetaxb858Av87MM/R/aVOVAjaUBHGVgnqpU8l6Z3bgZW1kIomt0wjKwaIQlXs2N2YAjS84UALEppYRY1UvHPdg4fQIgqn8HGul6A7fqaJZvVFB3FaLfIS8qWhxi89qhEmBlRX2FGMqSuABQXyWLUNuRvk4Mq5d82BZd4GThXPYgTpYuOxM7JDiXTpWgHEKVShzcVcV+yXXQxHv4q72t/UjkoYQg76eATa8arcMJiVPbVhgUzHuKBQzk1lthrhXrApHVN63TrU3/xap720sswmQATvXOguGBIFFsGSw3wEZ07oHtLRj4bkc8YBg1F2VT4WIsSxDpIE3y7USu+VB7CYI2SBWKwRrCzLbI9DfFlD4tfGxMWw/JdVKXCG48uIxIbrPBsCM114ptdNDVmpCjSuLZx8CErJmsbomFMevtQ9s+52k5BdVpc8fV3AXDFkf8IwCULL5PzRLMBzUZtn3LldWObEJtS2b3jY/Dht2ZyiIZOFsdZyAwZhSD7PDCoJhcVAeTE+9pa4LSqWnxUjLhJoKYakhkTtm9Q2DHb+STbrGunQHiz5eYNQZU1uFIFFVsnp46yDPYSZVjE+3GmShXC3GrJudto3HC0lVE4wWjbvBA75Xs52d+bnreBCXgf1tbMl+33ZceaeA8bnj9p7+EceqVPrRSr7Nm8l3yxblOyH5yc5AVkF6sdAJ9E2KYAljsx+D71F6/m6S+5rAb//+lvTi97ZboQndb3Sn37p97Msz78G9x0ZDfxzQ3YL3lm7VvXhWzgHb4IQ8VOG797DtUbwmBI9/YSm0Q0j+f1ebw+/0wO8YINlZ9U8p1KcVjfFHLQqgFTdZevAO1JRk5UD6NUf0Bc5Q0aTTRo42JDNh+Rdw3D/Z5kVaEzUaxIdt/YlkkX0Fh2jBY0zkCUy3adEYtcr0GXQqSogu69gVzpYJcrt4uiwKMLcGkYVjuIeyXJ0R5qkEES40y04TqoinD9mchzwSH9R2Dw+0RjU1HL0pBrpi59DfbUQMxkaPK0HjT1kX94A8+76D0oD9mMYbBPk82LfTNENI8VJMeHlO0u0dDiUk3eFYWT8sh3qyyh3RS7oWB3W1lnegKAV1jJqGynZLsbOAM20RRthYsUUeYpWprJ0BftM1G7KIVPI1wjErJDpNB5JIHdlcVRYVGDDD8TRoVYc6sAAQAASURBVD6r62MlRRzVoIeKxqDJVb0/BuDi9s/Jfk+Qca5c/a8bD1QFsDq/0cYVts9aOcmwfRIc2VDbWdPuUDtaVLEDUeju1o7qYbWV2FLdZ+oH1b0pgGqkcqyGI1mYO4/yGwGX0339k+7vdtazO/TB0kPe9/3sqap2CrkLpbQK4IoZWw7nJfFaAPq67WA7HcCTVrPOCBQiHlBZg1VzDqPxsYDwVYD9ZH3yr17D0156WT0/Od1+FpiG2E/rntd0bHa366qrruLHfuzHeMITnsAzn/lMvPd86lOf4tGPfjR///d/zwte8IK7vM0pwDKtB1197tbzsFzAH3z7mZw1s8rrFm7g9nyBuRtDwzg/R3nGPCsXNklWoXW8ZLAnoncONNOc//qlZ7Dveo/pF6j+YGwvk+fw6Avon9UhGljMQhvTW0CdWJVAuW5HGNVFge/J4MkPR9KcWCTYXsttfpQJUFNJpkth/ai8JOoXtUd0VIqllo8Mcb/E5AaOQ+cORd7VDPYrsjmFs5K5olxQrhjxCHaJ/BsHZQtQsjCt1C0+MAZRMmj2auOi1EeQzUHcg7KhKGZkuzqT26JheJ1IkayVmFEIhlbBEi0X2wSvheFVDaiVA49nO5zEBgWLLiEeeKKBE+VMeP4n/vrV34Vv0bTui+qdKTZ2LoLs3IzHnnUY5xU3ml24O2YkAH4+FtXW0KOdfBfNIPj+znWE9Z5EArpYD41YFhulG3umO8eJJ3QpOqLC8hqyBSg6HvDEfRncxAMEvJuXRW+8VhL18wAQyvcPqL+/eLEXceH32TpWkBwfCLgSmmvV649D5ifq4L5XjAf+w9HYMsFoLn7y23CNmBOPaeFa0DzucTEMd8vwpmjK7xbAxQYzylH9DJwVcCGoNzawt1S1cN3BVzrUyRaaqhqaMcnQClaGZVHbdtVWAfdCbdif2vtZiTVjXoiXdbWPRYlfXUe1m+gkgT0LlAttzNoQtbwubDKlRWkIp7UY3clbe9vaZpFfH4t7a5F+F2uz6ui0n7cBSBkrWOq/jRbGqtaS3xDHYw/1RioL/+Az6TsNCdqtcr2KoF6pwBWl8Ins507gyjN++jIB2hMB+5/1Lz7AJ/76Nds+tqrpInRa32v1pq+8mF72aDqfbQqwgMdrj+6NcMEKRcURKk1RMzPSc+UFLMzhIsXMLSXx8Z6oHPO8th/ygfxj5meh24HhCBXytnx/KL/9Kjy5BrXZFnz11o5DpquqLHCtQwJOQlXnpwnCBMMR8WAISSLWZt0GUV8JaKGkD7XN0DfmcmmLhp5sVmNTiNeDsiX0wMm6ZzQvCti4L5sRwKUiMCjivsfGirwjwEq8Ds0TQhSKBpbkWF+sgbXkQ6GUDKXDkE2VLvQgrlaxVDlwNBirtYMVqbJerMkcKO9xRpQ7AB//u9MftE3rgVVl24CCbFYz2hWyWUby/fSxxs40Uc5TNg2qFKtLZb0onkHINla+F64Z4dtB2VRKhpApc4hElXL8BzqSVRTWZ/mMfJ+bxxTJGnit8UrU2qYZoYelEPe0DjkvEPVLIatpjVdKMn9C6aPL+NFI9ieAJr4oaxWw39TTXtz+uTGRpwJRgEt2v1wIhEks708pUcVoFXqyoDQnC0REtlVHwxiAqJR2FTFkS7+5CUw4VT86qXSZfLwoX7axYD2dAPa7UiEXZXO5osQkCTTDuqbTxs+2UcvrNTnUDQbj59+V/TnVY3ciFN3b7/2u1qTF19147pabjJEcXaXEtrLVxHdbuEYclIYGNxfLOiIPeT3xGGCvM2bLsv6tEIU8SKO2BVee/jOX4SKFCxboz/zJD/DJvzp5PwtMbcCmNa0HQL3+9a/n0ksv5T3vec+W21/3utdNAZZpfX/Uk5KEI+UxBsOUsw8sA/Dfv/g0HvnZWwL7PcUbRfOEJVktiFZHoGbonWNYX2vCyJDNBVZaf9x8qiRh7YIZshlN0tOYLKIRaeKlNezaOqo/wDz0XBmarq3XTBzvPCrRcGCv5CUcPi5e2M7JIjMvIE3leVrkqd4GuwalcKkw35xRmMyBh6jviQYaiIgGCmc02cKY2ecS6gyVKpfFJaJa0YUEinqDLF4VQSUj4IdNPbqEaCDNhIsg7worsGiL2kUngYHlwReSY2ETjZtNMFnwpC587VdtG0a8R6MAsFiPtgpvBWSpZO42lkBIkwdwZeTEWibkrkzrwV35XPiHA19o5pIh+xrrrBcpt+3p0DqiKdqa4W5FsuYxGbSOW3Q/w861xbZDKVwiIfGDPYbmkiNZKTDeowc5PjaUC22+8KFLedSbDxERmKoNsLMWrz2oCBPJdzpqQDRS2NjQ1MIqtYnGpgo98MRDh001uvAhvN4SVQvQvET1R2NmK8jgmYIrDv/ehvd+xdHfB+DiJ7+N0e4maw9JmPtWRnJiUEvJH/aOQ9iWp2wpig6UHUe6qElWRU2TzRl0GaGLRNQrwUsfEAbyBjDFbhyan4zhtx0bcHJRNflvr8Z5KbW9DHd/AcQOw/2qKoClCineXEaTP/58okFRh8UapcSianV9Z/uEydcPWQQ1qOTV3Vaa7Pi8k6lb7sWqBqfykjuwojf5f0/evu1tWmx/6uMfAC/fbaHWB2NP9U67tuXzRs73XimikcWMJMfAR1ryCyK9rSVOVZ/6nwKkP/0ll8l1q/Q894Xv5R+vft2Gx03VKtP6Xq6j+QwgQMH6udCyEQtf0fiji/IApceqsuEQ+g4fwJJkdQabyHAW74KFl66BYNVsCrgSR2BjsEYyQxji8hyTite8L8sN5/bNCpfqGlCVd07OF27MsFYTOU5oA81I9icXtSGlA3Li4306iaHoJBRtIQC5aiY7lDwybUVNnc0FdUopIIaLK9KPgLJlA7JZ6YvjfiBbKHl8HRCvpcctuqCtJhoEdcuBDmls0EeXAygSrnNZAYHkoQqHcm6soA0Mj8oWzBtRwygnvYMqq2wX+bw+/nfTnvbBXi6StZApvHy5fPiulR4zsuSzMaOFCG9AF7K2aiyV0qs2kxqIzPe06J8R01i2RD2LdqAzyer0SYSPDV/6vUt50ssPMZoPoGMKxYwjWdOUpViV2VQRDTRRqokSjSqDwqwKmXeeeGUEhSXKC1hb30jOCVlCk6W0DPMr1UpVV/X/Gwf3vUJIFq2m5DtlGVcufqh+zCWPe7Nsr93ANWPKTowZSv6LygKZqVKxnKK2DbjfuKPbP+6ubndzTapJTjcr5DQsrbbrmXWSoPbtwc210Yur+E4zAM0BCKoya06l2Nhwfr77vXm1r/dr+Z0thGHienQKpTwgFr0mXDODcoU4xqcxoz0pJvMkKxl6VIiteSq/PZQSVVmwe9RZIcA6CPgS8sa2A1cAPv3n0s8+9V9fjsnlGvacH33ftnONaU87rWk9sOob3/gGf/EXf7Hl9l/8xV/kgx/84N3a5hRgmdaDsmb0iB+54GscOvAFlt2A5g0JfjjCPuo89KggWhmKWiMrUUtrdNYGKLePW86IULGTgWwzxjRSVGnq4F5demHFWwnfNr1MLMQAXxa4m25FH9gHxmBX18YhyYBrp5hlyXOpLXbKMgxkCXkSciFXNtgGRJIFo0tdW2S5VJpmlwYj6kqdmgWWXi7qkjprxUkYqGtZ2UbQIItNkkeViqgfABMHPlMSBDoSpUsF2HgtgIoZymNtQ+6PfAgsb4hSxSWOqG9lWwEgyuYljBGEPaisx2SeT/y9MPd+6CfejyoVWsvCRJcQjRwf/9vtmX1VyNu0HlylrKhIooFi9msxn1p+FPrcAdo4fLek6CREmTBNdSl+6XGvxCtFMZ/SOzNm7TyFstA6AiuPdrgUWvsynNOYzy0w+x1HNifN9dffcSlP/NVDKCu/ifxEhG0GT/fAjC3bou6KGmBTgy6F2Vq0hQlrBlaAz9wJI9CGDAmQ32ylqBiOUGW5BVjZXFd9/m089PLL8QeGfPH337jhvm+9+VIAHv6/fou55giH4kR3hvJoQrwOLtJEQ4MZRqhmIgyqauGsVFCThI1tCZ1n67+hXrhsGbhXVmFajRnKMM7u2O7z3WmgL3du89q+vm/Dc6vAZeeFPQlbmI31Zo1BFxazOkR/e1EGdsZIDkGnjcoiYVKesRfuPIbv9SVcfjMTW2lhSE7s0726sPxuLlInQbHJOhnwstPgYFJFVPnBd9q4bgu9Pqgt8Wpmut/4OalgueeVgtgIuGLUScGVqp75U5eRjITJC6BLx/Of/U6x72tuVepMrwnT+l4rjafXT2nMQn52zuFbdnH+zZmAKHGEaqXiPV8U8tu0wYveWvQohHB7j0pTUVQDYMbWPFkeckU0uFK2E37/bjBAN5tUeQcbchCC+to7F8CRUFX+nnNb1XQTAdgbKo5FjRlJcLsAs9J7RkOI+x5n5P+m8GQzmqIN2bzYbblEegJdQh5LD1yF3itL3Seb3NM+ZqVPjSqltiJdlvOLSxT5jLxHr0EXDdLVVIZnWSkqg5mGZK5oJYoVkOBwJX9f/c9v4QXPeEcgcih0dWyc58Mff9OOn/O0p33wlnKe9p0F6arBJkqIYZnDDKvcNvnuyfC2IDkxEMVn0qGcbzHak5J3NMsPVygXkZ/lgIiZL7eYvckSDSy2Ib+7L3zoUh536SHUENIVKFM9diwIbgI2UdihAHxm5DBDjy5kXWsGJWplvSb31WH1kxX+9qG/vHLtD3d871cc/X0u/sG3U3YSPvKP79ly/5VfeQcAFz3v3aydl7L0GDADxfy3mix8pqwVdRWIs+3xvav2rXfBGuu0gYeT9FNb9ucuvH7di4UeWCWxWIbnQR1x62EBuEO2lUoSTJKgztyPP3Ic1x9sVbLcm+DKA6W26Wknj93EjTtuorYFC+CKiiVjxe7qkO1u4I0iGhSoUSnAX+WWkASbx0rB4gWw9FpDMibDXvWlt5/0LTz9Zy4jGYpKEi95Yc+76D1io6tkXrI5k2V6TZjWvVUPFBPSB8p+3JXas2cP1157LRdeeOGG26+99lr27t17t7Y5BVim9aCsH2rADx34AgAGRdkC+8hzie5cHrN4ANUf4VfXwHva18HCmWey8owRLoZ8NsIc2CWgyMoaPstoHh7RO6MtoZmAHuRinWKM+Os7D72BLH4ng6OtxfRG+OUVsQebHEbFsXjWaw2xMHsr9q9LDMr6+vU8ovYw4bnRyFO0FLZFaABkYZmueWwij81nw0spUKnFthQ6VzgjapZkRTJbKuuuuAfRSCySopEMyHpn6joXolq0RgOxWDJZyKsIKhQXyb5rK5L4om3IZjQml8eh4LN/stHmq2KAKS+LhIq9vF1tZndM6/6pl37mZczGQ1qmIFKWWFnWygZ9m/Kfn/xH/OAVb+RzB99VP/5Rbzok1hmRR1nFzM2WXV+19M5ssXqBInlEj+zpOcVXO+z7bCFKKC+ZRL2Hz7N+jiGbhezcHBU5vvn28YD2qpsexddHZ/F3c4/lpkfuoXNdyuMuPUTchy99SECLZ/2LD9A+Kt/TsqnIuwKi+EgAyEIL2KJcRLrmBVzJvAzvB4GtFNiqFCU+ieX32mnIAKvPGCw9RX3nVa866f3Xv/gtADz+//eb6Nhim45oqHERDHcbbNKg0TRE7RRzZLlmAaoJGTvey36ephJjgy91BS74SUuGsACsz12b2qTTUMZMWompOJK5V1FuVdpMbnunxaFWIvMHzBe/hSvH71UZI0PGEHqphgoNqL274cx9RCdWxfZxlMl/gRGokhitdXjezkDSg6K8A8YDzs3hqZuDY8fPqZ4wYQs2Aa6oRgPiKLBrvViAVJZo1WMDo14XHgpRXaIVZRqJkjE5vRZblx6sxwzLkFcwcV/ucMl436cL0Wl9L9ZnjpxD2U/on+NozQyx180SrQ7RnTZuOISK0WwtfhhA6fB3dHwNu7tLFXStmg0Zqk6EAauiEIu/6hzs/Aamtt+sAKyuCXmOSlMBdLbJNKjsBGuANhK/e8ksEXUL1UApMuIiZgzemNp2yRvQuSfuyXC4aGv6BzQ2EcWJj8ElDrwmGig5BRWQriJWSg7inscU0scm6450MZPsp0STrAb7IaNwiSKbNWQzleoEAW86TcqZlGhdzmleKVzLoPMAriQR+VzCx/7PRiayLpxYk7FzxlRVz7to2tPe33Xe73+AdN+AsjDYUSQ5lKsROlPc8LpAfPntQ1z/m5fWz3nWiz+ATRW+gOYdQ9I7CiERNGOKmYT+mQ0aiwUz3xlIHpn16KHYbbldMxTzDfJuxGhe8/n/PO4JL/zLd1AMYwb7YLRg6NxhiHueZ/2LD2CGjq+E79rTf+Yy4oEjmzWUjeBMoGG0IFbPedcQ9zXtI55ofUDjqMWsCrjji5IqU69WnFW9XaWIq/59irrqc2895WMqQsVD/uTd2FKz2Igxoz10bm6JTVlvAP0BPsvAVWQX+f+kfeupLG831E5Ek4mg9pOSgk5SW6zFTsMmd0uQ/eR91W3O4e84gndOgJWqf1dauJRh3/WdR1ELc5gDe2F1PZz/R/gsE9V2dcyiuM5q8e67o6K+z2oiL7E6XjXha6fPeqJUmo4zV7QS5VWa4pUiXitISulVXSvGG4XOJ9ZOIR9JLG+tgCHNuLYFu/rTv3nK3Te5zDhM7uT64cUCPrwASozT68dPe9ppTeuBUS972ct4+ctfzo033sgznvEMlFJ84hOf4L3vfS+vfvXdiy2YAizTetDX14sY5SRU3a+syoW1KOEEeGOE6ddswmDA/r+9ke4d52ATsR1ShRWGjVaoNMU2IxrLAj6kyzJgchOBgN5a8fv3Dt1IpakJDYC//bDskHXjbHetg4olgtQIW0KrYKelg+2Bqj2c0WKhVXlNx30XwuE1wz3UAIaNg3okFhm53C4Sdj3SxOuqthPTuQAmFXBiMk/c82grLIuyJd7Cyot9mI8gWVLEfeqwUBBbhio/pWiN81ZsKoqBL/4/Ow+VfbBM0CV88i9P7ks6bTru33rpZ17G+a1FzmxEnNdYpKuHrNoWs2aAQ/ON4Rn80uf/DZ10F0+64k2M8hitPI1nym/E5BGDRpvjKqJ5zJCuenQO3daQpa/t5sDnChrHBqAUthWz/PAG2Zz4TX/7DZdu2JeH/6/fohhFzM+/iN2tPsMiwSSO0R5oHgkD2lCf+OvXcMlj3yRBoQsN8BFmpARUKWVh6lLonwV2UdE65ik6mrLVJBqkxD2LLgVgMX2xInOJGbPrG4nYh9yL9eX/z29zwXsPEY0k6DcaCugZjeRHl88mmMYeorURqrDo48th0ew2BbmfxPJqYsHlLbWSY9vHqXg8iLPjxeUGtcfJgj2r/ytdAye6IYseP8rqxbPCjgf84Ryt4hgVRWMQZfcC5e4u0XIf7jiCmp2RIV5e4L2T/0/uQFHC0orYZQAkMardQrWaom5cWcGX8vlVykNf7rAYnbDZ+W6E1t/jUnpstVbt+05B1lVVtmBhEKCiCNpNaDbEKiE2kMai6OqN8J0mrp0Km89INoGokBDSgB4PMndSJlb13Ivfi3KepPSBNODRowKxBzQbB0BMrwnT+t6t1eU2ZJp4VTOYazCzjPSlWkFZ1ue4ClSpS2nc4aOYwVD6zFG2FVypAPmyHP/OjcGVxYQtS2VBuZlFbgXc2TxUDL1cDbTCBoBWgJYAsIRrFXkO2uAbMRhFvF7iogQXh3NGsJYtOmKd6aIqY9Chc03UVySroZ+11HkrKheLsbjvRHGeyXHzkaJoazmvFEICUl5639ZxX+ewAOR7WxQdg000cU96eV040Kq29txcriEAjC4913z01OemUwEw07pv6xFvPcTMk9c4e3aFkY24fXmOIotwQ028bnjkbx5ClyJkevTrDtUKfh5j0Dk0Fz367A7JSkG0noH32FTTvm1IdGxVXiSO8JEQEIqFltgmp5pP/K/xeucHfvkQSd/T3Num5cSVQBceZWUdFQ1FLVPVp//81Rx82Osw5y0w2h0JyJIqXA5oKJugvKLoGJITCnN0RX5zSSLkFhuyP60dg5+EYb/z+Mra716sm372DTz8tw+hCxjtUri4TWOpQbzaRg8L9PIafnVdzg9B3VJf753HW2rwZUewYDvF9jY5IpsJRTsBJJMgzJZQ+on7NgAoSJ7KhvuUFmJRBTh7X1vEqdkufraDWlqTTFdrUe2WfEYhYxFrayKnzzIBVk4sS/ZrmqCaDVQjRQ1HMosYDnHZaOP73/4NPvj62SgKNpR+gy3u+CFblTsqSSZsKsP1SCt0XkIm16x8oQkKzMjio3GukM7KsXMB1EoTH2mu+dSbT7nLP3zJe4nDfEbnDjMo6izCihzrJ75L0552Wvd6fQ8I2e6v+s3f/E263S6XXXYZb3iDkAXOOOMM3va2t/Hv/t2/u1vbnAIs03pQlTvysC23fW54PrqA/lkN5r8ZS2g9oDpt3OpaDaDQbOCOn6D54evkQhyaznqgN9MlGogMXOeO+DtH8Os99NwMrPdwwX7Bl4U0UpEwtLEWlSTjxkUrGYB6h9LxuMly4ueMBWU18TAnm08pW3IBFka/bEK5sIgsPPHAY9fG+QQmC1gKISh+PVgoZBrd0yTLYgEWDQRQ8UYWrMoGxYoTVr93Ev6ZzcjjdSGKF2UhWRkvZvGyDRsr2ZaW/4sFmZDRr7ts42B8c/3T/z512Nu0HhjVjUZ0zQjnmySqZOBS/vbI41kdNVkbNBgdb2HWNbpUqLC+cDGs7S5ozI/I1lNwimyvJZ9TRH0ND+0z0xjB16F10wpXfP1dG17zUW8+tAVcefZHXstj9ve5dXWO7Jo9fPvJbfxSSucmTf8sz+AsyVZ56s9dzmf+m4B7KisxuUXNN1BOVFO2VJhMbMJ0Jv9lcwgooaB91FE2FcNdCS6BxrLDZKkAlLmrg2tdw/CR02Dy3dWq2JNP+LeHMJmvm3GQhrzsRNhGGxcr4l1tol6OXumj1nvjjUyoFk4n6HLS73jD4tJaFCawmDcuajYM3iZqcjC3ZahvNKrVhJkuankVn+dig9BpS/BkGgaAsYHCQn8EK6tid5NG6MLCKEN1O6KkyAt8OcQXBcoYzNycLKK6HWGLHVsUxUy7KYHOeYEfDCSLYAIkOqXH9YbHPUCrOs7Voj4EVns4pX13netQ/aeV2KwpJbYJaYweCcioViRom2BH6ZMQ0mvDbRoZamq1JT9lu3rOj7wPE3zjdenl+hhsjkAGTF6D13q6CJ3W93y1Z0b0fQNdGrrXpqQrXgaizQYacGu9+lwsoHAh51oDLjCaN7CrKxawMcLo9R5Ksbr06z18WcrtYag3ydCugVkQRvXEAKvO46quHd7XAKuoKQtRqkSBuW2MDLnyPKhmnAygvSfulUSjRAgFQy+/eaPQhSisy6b0FMoqop4iWZHeNVn30oMauTaaQohCYjsr5+yiG1N0DHlH3ke66ohGDjNy5LMRXkGyXjUuUHZMIAspynZE1C9RhePqz75lx8/sdOwPp/XAqaLrmYlL+kXCiX6b8sYO6ZqidUQyAPE+KPWFce6VWDVnM5oykMkGe0SpHw8ShrtEsd/+dh9W17ni+H/a8po/9KIPbFj3PP7XD+HaoJxiz5dGDA4kxD1RXKnSke1rsnpeRPswXPTcd/ORfwzfseGI5PgAb9qoGbEoQwkAZMLvp3l4JOQfpYVFUwhZQTUaY1C2UpWBDP+V4spbP3ifHO9KBfSUf3N5TSJEK2w3wcfz6Jk2qrBC0hgMJbO0LPFYlIkD8GJrdfVp1cn63p3AlQmly9a7wnlxU3+rjEHPzsDsDHq9J/sO0uc2m2P727yA4SgE1ivUKEPFcQCbFSpO5TMJJM3KolElCWamC87hVtfk9iorK8/lfB9to6Q/xfuHB3g/C6A0Oo5kPpPE4DxKKcg2fn7bqZJUHI0tNL0LsxkX/vNitwwky6oGvcp2LK9ZOLG6zUJeWMgo2ilvZXM950ffR5S7OrNFWZn5KC37g5eZCR7+4ZrptWNa03qglVKKSy+9lEsvvZT19XUAut3uPdrmgxZgefe7380b3/hGXvnKV9YBNN573v72t/OhD32I5eVlnvrUp/J7v/d7PPrRj75/d3Za91rp/d+qQZbClzznKz+N84pdX5VMEHf2PvRtR8NgbRikoqF5Go4ECBmO6gGdaqQCyHgPjRSVl7S+swzW4ZZXZFiXF2PmTxgg6oY0PKrVxBcltj+omyPColVBDaxQaBSgSodrxpBG5LMJtqklrD7knESZD3YsoEKAphk5GiugSx3C61XIS/GBAaWwTbCJxuQBLMmpbRDifmWTIIehbIl9knJineQjaB4j5LeMH++i8DpOFrRlS+5XVgCbmkWo4LGvOsR1l58cZJnWg6O08mjl6EQjvtw7h08eeQgr315g7puKAzfmxKsD9Kgk39Ni9byUpO+Y/foqapBJqKfPca0EHxl6ZzfIu7CctjiSlPgDil1ma3P89Xds/e44r0h0yeJ3dnH+F4fM3RBz4tGa5qJncAB84rENRXTcc/BRb8TddBsAqpHy0evHlhyPfc0h8hlZkKbLomYxI+jc4Rjt0qRrjmxGo7xn11dH6GGJa0bh96AouhFeQ7xu+eFL3stHrzz5EPn8P3sXN75Eslce9g5h8n3z7af+bVz7u/KYJ73sEHa3QXlDuuJIlwtcorGJptyT0IgUcelgtiVAS3+AW1uXxYgJKpXTAFnG/xwz/5QBX7oNYEq9mNlBwVIvPCcft8EzWZGfMUvcSlGrPfxMm2xvm8HeWIYFodpHSpq3WJTS+PUe9sgxlFa4NEXvXhA2XyNF7ZqvF0uMMvxgiDuxJOfzJAGjJYfF+VqxQpXz8r1WYZBaM8irAcrkZ7VNLo4y1H7f9UBUqZp1qXOxFxGLzCqBWuMTwzWf2Dln4FT13Ivfi/Zy7arIBNd88s288Om/Lfvv/WlZMUxrWt8r1V9t4AuNyWDuRosZWtRKT37LaYpqFDAc1jkpsFEtKOfqAMBoNT6fGy2DJgv4PDCeR1vPz4wZ2RXDWYD6oh54jQdzZmIoGYZYVd5gMrGcLIU5jwsDLu8FbB+VIX/Q0Vhy0j/aMNj2EA98TfQBUF4Trwm4YnJf97DxUFTeugz2tanY1mazmrKpxPqzFCtcbT3NwwPKdozJgy2aUtimRufy2rrwuFieh/P4WHPxE996Ss/9aT04ys5aVnpNjg1niI4kdG9VzNxa0rp5DbU+lHwg5yFNsLs64MAsrtHxDt9p4qMIIo1tRkERkjDYY7CzTczy6ravuYVUJmJNWouW5I4V4sUIO9vC9DPUsSX0/DnoEoqOpnncc/DM/y/2+AkArr7td+rN/MAvH8IbASHjHjSWLbqwqGEOWSa/O+sC0c/iszzYLXn5rSaxXOet4+Aj38AV33j3SY/dJFD0gme8A13Y07IMA/jsH72KH/jlQ7jI4KKUxokc0xuJ2hjwlcq4kcJ6D/IClSbgPW5NCESnRRraoU5q6bVZBbODSnuLSiJNseefQbaQ0roxWKx22tj5FrYZh2G9wyyu43v9oMAoKY+fgOMnBKBpt+R8PhigOm30nl3y2QF+lFEeWwQQsMEYsQWrzt08CICSe1IB/FNK47WD0m/5DDZn9agoll62IgsVXsC6QG7Vo1yuSd7L78R5SGOMUthOfM962he+V8ZDweL2mk+8adrPTmtaD7IaDod472m1WnS7XW655Rb+y3/5LzzqUY/ihS984d3a5oMSYPnc5z7Hhz70IR73uMdtuP1973sfl19+OX/0R3/Ewx72MN7xjnfwghe8gOuvv/4eI1HTeuDUdfmQxyZNYhVx/Lo9zN6gmL2zT7QyEN9MJUFnvgpDrpjMRYGem0XNdsWjNstroMUNh7Cyij1zHn10WZh+IUi0Zr9UodAmLC69x61Ic12x/3wIV1bGCOu6KMdB2dpJYrzWMjBt6CBJVXXAmosEtPBKLLmM8/UC1CZioVA2hLlvMgFDkp6lCCw8M5Km2+QBpPEQZSJBLxuKoqMY7hVGlxkKyFIpXVwiYIuNA0MqkX1QVv5dtAVsiYbCLizbAuSA3L6BdTWtB239xx/4Ey699l9x62CBz3/jPDo3xHQyaB63NG5dESsS74mVohtpTGZRiyu4lVV8XqC0QicJKk2Z+47B755j9qYua+fMULSplVinqtsPL8ABuOnfvhr+7fj2R7z9EA97ys3ctLiLdd0mWVNQWlRbrKBcr7dhO9d9QICLC953CIBiBtp3Qvfba3RuNoz2NzG5fMeXH9ZEeU/rmBULkEKsIPr7NMpHNfi4ua677SwSHP80fCjn7HsqD/vr38aWmvKMmPhExMPeeQiXeG547cmzWWBs+6ALAVNtw2AyS/db62T7u5QtAwtN8tmIeKFJ44bj6NLi1tdrFtzdZf5tJ8Xfskjdzgu5YjvXHsoTj2mk9M5u0NEKe6DDcHeEi+U8N5pXRCPo3FmSnBjJIC4yqNndRFkurMYsFybgcAjDISqO8XmOC5ZjG/b9exVI2VyVT7VWY8ueAK4orfFVFss2AwNlEKZfEosqyGhZfMax5A5Zj6pIB6WFNIb+ENXrc82Xf++e7bevVI9KLk4BbK0WoS98ym/ds+1Pa1oPtsoMulVik5h0KSda6kOey2A0TbZeLyfys8TqcIdzdFkCKURizzjZz9bo5qZz+eTgbjJjcIM6sTqneE8ddF/lrlgn/YHSY6uWNKjFo0iyxLxH5SXpcoltGnQmvvcu0aTDkmhksYkmW4jIZjXRwJOuyWNsLNuMMi85gLmjbBl6ByQI3CuIMgFWlBMAxiso27FYDyLEIZXqYHcrPbBXMJrXxH0BanykSFY0B8/6d1xx+7+/dz7nad1vdfPLXstD/sNldG4Tgk6yZonXSlR/BH0Zgkt2p8Mcc0I6yDJ8r48/fBQ9NwtKct6Y6RItGtq3RMGGyJzq5QFI1jw2VVuAlxc88x2U+89h/eyYbBZwwS7aSmaczzfa0n7x/5F+9vGvPERz0aEzh21G6EUragozQbrwXs4hMM5PiyJ8uyGh6m5n4OKnP/0rfObLF3BmpHjuC9+L8h4daygsF//g2/FGcfU/76zyqsqmkPQ8zSMjouNr4dhKT6ciA+0WPk1Qekb2Z5RJBpxSlMdP3PV+drJOYWt7Vx5bW4DNzrB+XksU5esd1Hwb24wo2wYzcmTzMelKgakU5kajE3GyqOYDk1aPvj+srR1ddX8o9/3Sz4aqs1f82L7ORxEqcfXacuLBG/O/QP5flgFQ1PJdc16+U9aNbSvDb9bASZWKp7XP3uOCArIiANT97NOm/ey0vnulToInT+vk9eM//uO8+MUv5ld+5VdYWVnhKU95CkmSsLi4yOWXX84rXvGKu7zNBx3A0uv1eOlLX8of/MEf8I53vKO+3XvPBz/4Qd70pjfx4he/GIA//uM/Zt++ffzZn/0Zv/zLv3x/7fK07uV6bNKs//0jz/sCMy8c8ucffSYX/neLGuTi9R8upL5qIPNCAkDjaCwbDbfXgXHOM9ybEt8avFOVgCmTIXLKGPT+vfLcKMIfzqVprb2qqwGnxa+siUy0IYtc0hjXSrCtGFU4zEguyi4mBBjKotBFsvAbLmiSniIaesqWMPPKlihJfIyoSZwiGopNWLriMbkoXiqfapsqyjRYeilZTIZkTrEXW5Uge1QAWIKKRZdiSeY1FC25T0x9gz92UgEwcls0DPdP63uiPnzrw1k/3GXXlwzd2wqKtiFZD0BhXoSFpUKXjuTwmiyYSlkceIsAi0mMarQk02RQsvvz/dOWXD/69YdoNFN6nznAD/3u+/mnvxlnOnzzrZfyU596BU8843Y+m59H/4wmM2fPkwaw1OcJB/f/KiQJV0xYIDSPiYolW3B0bxFGvh5mtG7OsTNN3NkNyqYAjPmMwUWG5rGSuGcxc5p8FvpnKB71N2/jkXuPsa+xxvnN47xi7puMfMS3i3n+8vCTuOmWvTRvi9FAWkDli+pHihd98tfoFQnX/PAhzv/3l+FmS5JOjrMKd7iF155kt2bmJk/rWEk0lLBFPbKopTUaR09At4NPE1wyK/lJF+6hcZOB4bBWz92jCgs8NTE4ONk2J9Ur1UJYVVYJVgZ40VDk840TA5o3l9huk+M/2GVwhmf2BkXr9j762Ap+ZRU3ylDrPVFYpCkqjigXl+42i/FBX9t4i9e3q3GGzZjdHm7b8NgAwkAdHqrSVMKvnZMFZyztoKpUl8MRdNvy/HaTK77xwXv+VrxHZ36DF/Vk3dPF7rSm9WCr5z/xa3zi1vNxcYOVCxso12DmxjbJtw/LtdZvYvCeJJdgQ26B0mJJ00jDgMnWCpeKEAQTNmIwDhRm63XEO79hMKgiNR5kwYR6TuzAaDfxaSxgKoiVoFK1XUu8VmByR9kI+SgjIS3pkQUP6VJJ4wTSqxYOMxJVnTca24og0bWVLkC6KkSiaOiJMkfUs5JvGGvJUrMeF7IOi6aWftV6TCl/ey0EJh8ZITfo8TlzWg/+6tyimb3R1opgnVeZF6JeUZgQih3Del/IHWUZlAZDIczNduX7HBv06oArbnj/ab32RT/8LtrNiKhfcPBRb9xgkXvNJyXf4UkvlxwYm8JwX0pnbQHtPd5kXLLwMlQSc8WR/1g/b/56WXu6RGN9RFxlHxUl3joBWtIUgr0URkufHgbNvpXgTMxFz303+WzEaMGQzyiGu6HzAydYuulC2rdqWnf0JaS+sgMNpbTmoue9m95ZKXlX8aXfu5RHv/5Q/Xt0T17HfK5LZ9nTvTlk1QxH0mfkuQC+vUKss1pN2c80HgNWjRR1Yume97OwIylow7n0JBkfypj6b7/eo3GiJJ+RfMbo8BLRKCPtdug9ancN1PrBUKy/SiF6eudRSYwysVg7ThJgsnv+Fh9UtV1PW91WOY44UaGInVosSqH6sWr8uHD9USHTEaeFzFopK6nWrfnYbs0LGexU6q3TfjsOUGF+MlGnA0BOa1rTuv/ri1/8IocOCQn3r/7qr9i/fz9f+tKX+Ou//mve8pa3fH8ALL/2a7/Gj/7oj/L85z9/A8By0003ceTIkQ1SnjRNec5znsOnPvWpHQGWLMvIsvHVbW1t7b7b+Wnd6/U7Z3wOgNZFOX/zpeex+4obcEVg/ITQvCrozA8G+DxHt1uy6FzL8UWJK0ph3Lea2FSRn7eHeKaNGebiD9sfyOIUUHOzZBfuQ1lPcscq+oz9uNsPb2D+VRYNdm1dABkdFrqlFXZxN5WQYA84j8kcRdugQxC9V7LvSc+BUpQtRdFS2Eaw6SKAJ4nkpAx3meBBLVZeKg5ICMHmy1SMYdC5p3lcYTJRpphcwBSbyvadkdskw0U07c4odAmNZY+LIO8K8GIi+ObbprZg34s12xrS76bgmyQrOdHAUDYNbqaJHmW4ffMApDcvye+s0xLbpuFQmKpxLP7PcLea2GyXx501ovHkIWvXLGy5//q/fJiovRbksXc+O2V+75nMXbuIWpRQSJoNLnn0m8AorvzKO2gd8wz2KrQV5UTZSUjuXIS8IBrN0vGe4f6GAJSFxzY1ZduIF7zz5LOKb73pUh7392/hppUFkoWSPz/6ZH5/7dkszPRZXm9hrm8zfxRaxx0mc0QDR9E1lE3NcLcit4bbluZ5zG8cojvS9M6NWdi/wqiMWKNF605N9zbPzHf6Emrfz/BpzPCMDtnus2l/7mbckWNQljQOt7CPOJdsd0pxYJZoaTmwvILSTp8k+P40ajs1y7aPcx7dFMWSD9dS1Q4nqqKALGPmukXcHYdxmbCbdafNvuFeYLeAxp2EZCmCRIApN8pAK9wo27gQ/X6u7T4L74REsCkUvs5W2W5AaIywWqvBy8TCVQUbBUCGTZnkKvjGNp7fd6P+4ZrX84JnvRObCutdZZaLn/y2HcOkp3XXatrPPvjqsZ3bObqny1dn26yfI4P/otVk//Ic6ugJfC/b8fxXZ7MElvekhZh40gu7V7VbqEisvnyeCyteaVQSo7sdKCUwWSWxnMO3ez2lxzkB1RDUGMl+CrYuonorod3CtUNuQD0IkywLnVt8WHp6pcZiGg04hW1GuETU3bpw+EjhYo2yGjMsxZo2d+QzEWboSFdKkjUlVl+5Q2cWH4ecKKegcGK/WzqigUUXHmYUyXKOyeR8FzUiIOVTf/Hqe+tjndYDrCpb46iXSy5IKj2iCtmadAKZYGVNfjfttvQi/QGq28EvzOA6jbtl+TPcm1I2FRAxPyi2fcz89UNcpBntjsm7mt4Fc7TTGH37MblGJzEHHyIK6CtuuhwzsqLKSuR3Zec7mOEIN1oVQmH1+6+u80rJujdYgvpI7D4vet670RYaSxZdGNp3euJPz9DFkqwMie48IYSpSfZ/HEGrSbSWEQ0TGsuW5z/7nRxALP9WL2wx/ESXA5/uYY6vwXqvDnMH6Q9VqynAQ57jl+Scozpt/LkHcM0EnEcbA8qPFSz3pA/cDLJs3tam+1UUQzk+TwIo6/B5TuMbd9JoNnC33UmZ53JOXFunMxyRPHSfbCCKhGDpxzmvPstw98Dy7HuytrGxFSDegtYoZSAx+GJrj6uMwVfPrdQqWkMcjy0qHbKtYDtW5a/cW/UP17ye5130HlwkoO3zn/1OPvzxu285Nq1pTeu7X4PBoHa6uvrqq3nxi1+M1pqnPe1p3HLLLXdrmw8qgOV//I//wRe/+EU+97nPbbnvyJEjAOzbt2/D7fv27TvpwXn3u9/N298+9dl9sNb5V/8i859J+dibDvGGd3+Lg199Ker6m2UwF5ojnSTCHOl2hJEUbLtUItJpZa2oWBZP0Dx+pizu+iOxEev1JZC53YLIYGcaqMIRrWa4bgNVOvRsF3c837lpslaYQ40U5Rzx8T6unUqQKeBjQzRMKFuGaGBxRokNEAK2aCvKFrwi6ovyRJdC1ChT0DFkqQo+1ZDNq5rEgQ+AycgzmlcM9ylc6tGZPF5Z8bsuWrL40EUAV0bSyOhCQkJ7Zxj6BxRffd8UULkndckT3sKV1z6wZcMP++vf5klnrrA2bBBlDWwrIp+JGC4Y1s6bpbnYZeYfrsf3h+KhPNOFNJFBSxVOCPi1da5c+8N6uwfP+XXKs3aTzyU0P3sDVy5+aMd9aN+hGBZNlvfGPPS6rfSurxza+j189OsPcfQpe2ge28vMzY5P//mrOXj2K3H7BaAZ7lIUXWBPRs+kzN8Qk3TaNfM2OrbGJz75Zi559Juw8y1GuxosPk5z/jNuoRPnfOWOMzjvD9+HXp9l9nrN4rUNdueWvf0+9AbsNiNQK+KXXxQCqs7NkHQalO2YdDni6B+fR7SgKGZgtAviNUX2d3tpLTrm1kqS5RFmeSD7VJZQlKg1T/P2I5AXHPvpxxGNPAv/dBvu6CLq81+nQWDbQWDImbEdAdwzv+bTyXKpBm+RQXV3yW2NdGy7EYLTyyc/HB/YZrp05LMxczfkpIfX8Tfehg2hy7XP9N3f6/umqoXgdgvCe/M1Tnr3dnZBE+GfE7Y+AFf1/xsAFzdeKsNQY4S9GhRnyhhZjMYRlHqcx7Lew2c5Vy7/53vpjY1LjwpUafFaco9cGnHxk97KVV+Y9mH3tKb97IOv/q/O17hxuIevch6zN3oWvnCCxafu4pu/OssZH5lj9uPfwS6tTNh76bFdVyjvfG3NWGW12P4A7ZyQzr0Xi8XAyFexACK6OVaDV/mBRPEprxneefG3txY/tLX9kAC3CXZ3l9Fe2XbjyBA9DPkCaYxLIpRR5LvC4DdkDhbdiOGCxjZFNe0jsa9NV4QAhE9I1zxm5DCFJ+pbBvtilId0xeKNJgJcLPa7yUqO9uAjhRpZol4uC97A+i9mYz7yt2+89z7I78O6ZOFlXLn0B/f3bpyynvLzl5N0FNGwUncJ0OeasQSWr63jjy1Kz2QCIa4/GPdxnTZqVHD1de+st3nwgtfi5jvYVkz89Vvx3u3Y07bvHAVSAejF7TNbPvyxrd/Fi3/w7fSfch7xeslH/uENHDzvUvxsB4B8PiHvSC5nlIFyKWa5gVrvjUGQapgfRfhmQr67zWiX/GbinuWiH34XuvQko4xoZQBLK/jQd/qQc+cqBUmVMaoUDEENR+glxczRZekhQq+Hdey69TgUBT7Lg0NElc8XzhnB+kp12qhzzxLV7OIybjjEf+V6tDGoZhM1OyMAUZ6HcyD3HGTZqbZRVVTh8rV6osp0zXOIY/TZZ6C9uD2Q55CmJLcuyf72+g94clClflZBYfNd72ur2zdf0ypwJYqEHGuDkkUZrjj+nwC4uPPz8r0LawpfFPI5VUC/UmKBG9QrlCVEhisO30Ob2+3ehnWYUVi3RHoKskzr/qkH3KL5wVMXXHABf/M3f8OLXvQirrrqKi69VGZMx44dY2Zm5m5t80EDsNx222288pWv5Oqrr6YRmNHbldrkV+y933LbZL3hDW/gVa8a++Kvra1x9tln3/MdntZ9VpNB92ceWKZc28fj//EVfOeiP+T6l7d45Pv24G+cANW0qq3BpKEohJ2CDKKqIGTvPOnhdRkIHlvEO4demJfwueVVmJ9FDwuU9ZTzDaLlEWpRGlJlDL7c2px4a3GjTBrGEdBpgVES9GfFi9W3UiKgbDaxDSMWYbGoRlzksYmibKrApBfQpWhV7w2sF8uuYgaSFQFNynaw7SJYiilFPgdl26ELJcqVIrh+GchnAQWRg7IBZUNjcsl4KRuawX5RzEzrnpXf5lx0yRPeglfqARGoeuG7D6Fch8/e/AgaxxTNYwVmUNIclESDhNWHxKyfrZk5sAd1y53ChF1dk99M5RW9abh7ycLL6tsjo9FZ96TgCoCN5Xu859OG9Nt3nNa+f+09l3Lhew6x5/l3cPMde3jSyw7xhYlw0K8cupTzf+dyztm7xK5zB3x16ULitTmU95hBgTnR4+DZr4S5DmZtiE2bRAO4/htnceD8RYp+DENNckKTrHn0qECfWMOvrst7TmJZjDsnC4PS4o+fQNt5jGkTLw2I15usPrSJcopsHkb7LLZpUE6HEN8gcw+2hX6+Cw7UWg/XH7LnU4u4doo7KiGYKolRjVRerwopryyeshwyJZaJ9+bCafNiqcqeaqSMLtxD2dQ0FnPJ2og0o4WY4R7DYL9YGSZrcg7rnQu7v+xIjhmxtWo2sOvr995+3ktVLT6VMagkLNiMrgeStte/58f3NJRCSitUFNe+3EqHi4GlBk/8pKf6BPDigwJzMk/hqtGfAvL7VDMdwIEL18ooOmnfdI9LKSEn5CUuicYDmGndo5r2sw++Ov+sw8wsvwidSc+nSsfct0cM9jZZfji0jpxJdO0QW2WLBWsvGNvYbLBonDwXWSe5DN7X12dVW6cEdbf3QorIHD4rtweRN4E5SodhUgXEVP/3HhVF6PWMBohKAISpHvKWdGHxRmFGFhzYlmE0Zxju0ox2ByWLhrLlyXZ7yqYmGoq9py4VecegnBB/VLCszbuaoq2JB1qsxhwUs4korUcOUziK2Qa6sOjCkXdFmTqte1Yq3n6EcPCsfwfwgMiveeZPfoDEQXPJkyznqMKiRrl8J2OD66Ro5wT0L0rJ6wx5DzJ09qi19Xowe/CcX5ffzCgT17uiWQ99dypRU3mSO9fwa72TPnayrvrcW3n2j72fwb6Ei374XXzk5kP1ff/0v1/DU37+cvkNGCg6hjioWIgMaCND5UDCsO0UHylMLr9dnTuxgvYenZcbbLPrrJBgu6S0xjtRb1QWo64/kGOTJMEGO5Ict6bYumITIXFE0bgXUUrWQGUpvchaD20FALKrorZUaYrevQCtJj4O57nldXQj3Tan5D4rI0prIGSoBluqZhM338Y1YnxU5aiCbRqOPSFlz1dy0tvX0Gvr43P2A6xUANFVkqDTdEw4jQxueeWeH+PNYNXkNWVSJTTR01YW6/V3jKpvDdcr77lieWLdGMC6WlkVRVxxx3/g4J5fkc8qTUFrfCMO4E0D30rv/ns62dv14nJQATv+1O38tKY1rQdQveUtb+ElL3kJl156KRdddBFPf/rTAVGzPPGJT7xb23zQACxf+MIXOHbsGE960pPq26y1fPzjH+d3f/d3uf766wFRshw4cKB+zLFjx7aoWiYrTVPS9L456U7rvq+fPOtL/MG5B+l+ocHPnP88fvmZ/8hVF/ww6eGjuOFIhn/VBbvVxPX6sugsCmHv2fGFXxmDWlrDLa/U7G93/AR6bgZm2vjFJdTcLMV5u9Aji15ek8Xr5trcRFSBg5ERyxWtcc0YlYunl09jbDMmXitwqcHGBm/EmssmkM8q8hkBV5IV2aaLwaUyhDajsMicc3itiXvi42ubcr9teFwCLnaS2dJTmNEEOzBR2IannC8pBobmUfGjVmuQdxSjXZDtsdz8K6/Z+l6ndZdqM4hy8ZPeWg8XL37iW+93kOXbb7iUx77qEK3jYHKHttIwqtwSDUoaK4b1tsbONDGVBD5N8d7hBwNhInlhIl3c/NdcNfzv+MEA1Wxy5ep/Pe398FHIFVp1G3JUJuuS3S/nysUP8cKn/Ba2FTHcl/Kyt36YffEq71w5SD6zFRG88ZWv4rF/91Z2NQc0nrjEzbNzdG/QzN1gMO2E9PAaqjfkipsu59k/9n5GCxH6JsPx9b3M3KnEJs94CeVNY7RStfUKwXYFHcCmshTGW3+AKYWBFVnPjFZ0bxfgYf1sQz4D2Ry4yGDjJq1Io4oW+VxCspoTLfYk+L3ZwN98GzqohCqGoWo28TMd0GLPQF6Ip3hg3WnnZSh/by9KJ7z+vbWi+NOK0YLBRSlxz5ItRKydo+k/xGLWNXglYC6w66uO2S8cgV6/XtCZbvcBB7JUDD8VPlezZ5cA41mOajaIGimu1xdbs7tzjE+lWgksw81DT+883pWySGUM3l7V+2Mubv9cDXC+MP5X9fu4uvgfW7cfFGeS6RIGtbNdsQu7D8pHWiwyKzujwt7v573vlZr2sw/OenL7Jv4kfRY2VtjZJtFinz3XxSw9PKJ/ZoO5m2ZQw+HYasZ5dFwNgCcsISfyCmrQJQsB99V93tVMdJ/lqIZYO/qQ07JtbQqAri3CwkCpPkeF29RgiBkMMYHx7dMI4gSXRgK8G42NNdGgxIxAdWW7JqMOq6cFbrYkszEsK1wkqk8cIWNQoyzEQ0/ZUEQjT7oqeRou0eQdzXCXpnnC0emXlB2DGYqCO+8qPv9fXsW07lldcfT3t9x28OxXyj+U4uBZ/+5+B1k++Vev4Tk/8j7ifilAQmHl2ma8XDONkiGsGV9fxwNeITP4/qC+pvrBABXHpwRVJksVDlNYKMqTKn4ubryUq0Z/ysEDvyaARSOl+MF9KBsGuJvqs38s3+Gnv+QyvFYUcyk+2SegyUgAVb3c54ob3s8Ln/JbSF6mk/+v56Isc0AAP2trUa3EIgFRb1Q5NYDkYriJ42StnDtUjoojsQpOYlEgdNqS/1QNnvMi2DVpQPJvXH+wUXmbA6OM/Py9KOsxvQy6bVHM9Qfo4eje72e3ywSpAKdmQyzSQj/vOw3KbirHCCjaEcO9Ef19il3fLGl8+RZxyshzTKfzgARZfBlIps6Lbfr8XG2ppQ/sExvolbXTPs4bzv9q4lpUKVOq13VagLKinLhebNy+G2Vird5IwYhiRdZ649/NJbO/WH9ntqwrjR5/h0HAwDkBynx03yAfLhIQswLbpuqVad0vNVWw3O36yZ/8SZ71rGdx+PBhHv/4x9e3X3TRRbzoRS+6W9t80AAsF110Edddd92G237hF36BRzziEbzuda/j/PPPZ//+/VxzzTU12pTnOR/72Md473vfe3/s8rTuw6pULD8z81X+w55LOONjjs9/6mH8+Uv/gT96xgs47/hDMDfegV1dG9slVCFnxuCzAmedeFADLpfmsMpbAcY+1u0WfnkFDuzFJRHR6ihcwMMisyxrFUxdk1YORtesHwDlHB7wUSRNo3Po3KJCQ6dahqKlyLuyqLRNWXS6WJQmcU8swlBjS698RlgUEnwvt8sbEwswF3t0odEjsQbTuQAsykHRBtt2zO7tkRURQ9XG9DUuomZHTcGV+6hCcOQDyR7HyJqSZM2iM0vZivCdCG09Ovck65DPJrTmZmFtDXfOPtSohLXgs+wVKM/V+Z8B1Ez5u1Jfe/fJregueu674XEP4ZLHvgltDOsPbbP6EM2X18/iMV2Fd4rrLtt+G1kR8eXbz0Abj+tabKopuoZkNSymO8E2RUGy5inaCtsTe7GZWxzJeinB81mB77ZQzQZqdR1fWwKIRF01GyJhj2RR5pMIvTog6uXkC03wsOtrBT5SDPYYyoaif0DTO7OJDeDp3msdkXMQx6g0EYA4DNVUkqAW5gQwbkS4RiwL+VUHBEVNWGhowGWjjQciBKRX0nxfFqdnJ7aDl7Xr9UkXh5gsIbn5BAD6obtZuSCFVknr+hRTiDqpfdQx+/XV2hu5UmWY5Lsgk9spNH6nhxuD7nQESCtL/HA0DndupFBa9Pwcuhp+Doa4weDuW7NNHF+llXzWE7kHOo4EkKof7kF5qmXsxc1/vWWT2wErdbUm8nJcsPpREvZ88OGv54rr33P33sdEXfzkt4H1+NRgmzG6cKCpWe3Tmtb3c/34+dfyqvxybKoEfFzv07g9oj0zQzarsQd2YfIcu7wqvaZ3G84BINcdGXSFmwIg6wu/MSi6AlKtg0RBGUKAq6D7u2Jro5QA+ZX9IMh5pKqilEGr0dg0ItuV1OHxyoNLjLB9PcQDTzSSnrfoIHaeI0O6rGgeg7IJ0Uge6430rqYQskM0gqTnMAMruWmRIpvRDPeBbWiiYXjdpsYmegqu3JdVlhDHOxJj7o/SpSdaHqCGYlflU1FNqiqjAUKvJgCB7rSFKLO0XOcWVX3sqdTX29U1n3rzSe8/uP9XZT/n5zi47xXy+4xj3Iz0iSZzOw5tn/azl+MSRTSw2IbGxTG68BijMP0c36xC7lWdaeSVwjUMpudhvQ9pMl73NhuSNZJlMgivVLFhYK2qXCdjhORTPa/6/Q/FXpskWI92OzW5UNmezABrOyg511TKO1EJx7heHzMsyedSVOFQSYRKInSzgVpdg7Xe9sP/zQP90+3Btjnf+VIszpR1Yq8IohbPWujC4WJN1MuJlxxxL2X2BojuDPmPeSHZrtEDc8QmPW17rEArS9lvrcXmuZGiux2xlywK3PETuMFgx+1Ngiu6kcpvK2TgqjiS71Bwk/F5sRHINAZdrT8mSAAV4HPJwsvGYMnE613V++Od32AU7PHyXPJbmjEulp763rLvet5F0he7RKOMwmHQ6oFrBzetaU3r5LV//37279+/4banPOUpd3t7D8yz/zbV7XZ5zGMes+G2drvNrl276tt//dd/nXe9611ceOGFXHjhhbzrXe+i1Wrxkpe85P7Y5Wl9F+p/9R5O6w5F3LOc/78zPvJiw7//2T/gzTf9ErtXB+gsE2Yx1CzgyiYFa6EUEMU0UtRsF7+8Om4WTILat0cGmOedwfpDu2LRpSFZLWnceAeu1x/LiDdXxSz0IYsgkmBfYd55CVpM4jqXwBuNbYoP9WhechpsImCKcgFg2WUZFYp4XVQmLvKYXJHPWWhZXBaDV6TLMigvW5AriJyEiZqhgC9eywJ2cIYiW3A09/dpxCVFaVC7Mso0xg2M2BNNUfH7rHZibl/85LeB9/cL8HLt717K03/mMuLVHOUc/TNT+vu0DDcYW3P4bhNVFJCXqMFQGmkrrLRr3EkGuqdZD738cr7zqh0GIQqy+Zh8Zo5szjBcEHuVz3z8kXw6fiQ3/vrOA5Q0Lul0M7TyxHOrHPv2mTSP50R3LsEow6/3uLjz8+hnPQpdiJWILuX3t36OYdd1JdGooFhoMtwTU6aKhesS9FIK/X4IEBY7AXv2Ho49qcNwn+AuZ/5Tk2i9wKUaU3jSY328MUT9GJtoBvtj1s9RDPdb0kXDYF+CKueJ1jM5vscW0TOdoJZRYSGboEqHbUWo0oNpYxbXZQEbGVRlqVkBLJuAFRAVg56bgTjGHjm2FTDeXJMgS5WZkmXoG27D9HpYQCUJydoaB9z5LC2lRENPuiq2FN7IIl9FEb6/HHJjHLa/8yLuHlX1nuOovh6cbnlrcb1eYI2HQOckEdudXh/VbArQohQ+jlCdNmYwxPf6d12Ns83AoL7NVKCWlgXpxCBUPs9wHQkL24s7Py+B1YQMlqCuqpQtdRWFMFLD9ZAkEaaf9/hGvAFkOfiw13HFt06PsHLxk94KTs5xqnS1wkbnYhGkoL5/WtP6fi9/YATfaqIHhTDQjywyq2Ht4TOsX9BmNtuN6g/CQHLr4FBsDMeDTrHp2QiWKK1Esea92Evu241PItQwx996O64IuUycRMkyqWJRIZch+OQrpeX8CALYxBF+tkM526CYTRjuEkClseRQ1jPcG+MiIfHYRMAVbSFZF0VeOTA0Tsjjo5H43LtYMdwTEQ29BNYr8FqCvgcHEsoGFC0hRJhMiApr50boQixvo+G0ob0va6eMg4MXvJYrbnj/d3lvpP7x6tdJQHxeQKct5DZroXSoLK8tiFQcC/nNO7CBme/Ku0US2lwveNY7ueYTpxjsVkS8SDJUVOloHc35yD+8Ycen/POfvIof/IXLKZui6FIe4vUSnVv0+giWV8U26aFngALbMKjC4SNNOd/CRFqAJ4BmE9IQ6N4fwmCAH1Z9oxKAYW4WnyaiXu8PIc9rNXWt5E5iGI5QNISIGEfynpIY5d1YHeLdhBpvIzhiTvTIz25RtBs0FnO0VrhWjGkmaJC1emXLPUlImfi3SpK7riyugOmgrvEThEvC+4yyDN8VYooaFcRZwejsOaJKNRiOmRuOtnmBe6kmcktO2a9vKm8tbn1djn2zIWQtkHO30fgkkn5NgypitNLofp9ycemkx1IniQB0SstvqALYw3pIRRE+jrFr6/L5NJtiIQdi/xZcR1Sa1pZlePltHjzvUq64+RCXzPwCSmsumf8lIa8qvb2aLDwPJ7MV6WkBBc+9+L3841WvAxDrvY+eXhbX814gffA/XPN6lBcFnC7lWmYTjTeGf7z6dXflo5jWtKb1PVoPGoDldOo3fuM3GA6H/Oqv/irLy8s89alP5eqrr6bb7d7fuzat+6D0/m/xq/vh37cOsfSIhP2fGvKaQy/nBf/3P/OIX/46d970UOLlFZEoT1Rtq1D5VacputUEbYR5XIW95Tnu9sPyWnlOvK+FLj1FW/ykVaeNX11DtZqoXn/bJkeZYO0TPPCpGCPOobzCJ+AiRdkShYCLlQwfo0CEj3ydR1F2HcnuIdlaSunBzRU0OjlaO2wW450M+Mq2DJu9ESagi8VGLBoCQnbGRpB1Id9XotsF+2bWWRk1GZwITSOgStC54ttvmAbbf7frqs+/jYPn33+qoaIVGEhAsi5DDZN5kp4jXRwJG6h05BfuJ17s49d7ta3eNe4v7/LrPeRP3o06keK1x3dLbv43ryNdVDzsXYdoHoG5GwrSRVmsXP3Zt/CRf3hDPcBt3+xxzRis5+rPvuWUr3Xdj72dH7xCGuo7FufR+x3Rei6ZKUWBz0Sinh4fAC2UixnsUZRtWH18QeeOmMaix0WawV5N7xyPi2bZ88+FAE7WoppN+j9wFscfFzHa5/Cdkrk9PaIrG0R3niBaDIuH4UgWahqiVUuyGpGuNllfMqw80nHk4gJ6MY0jDfZeW9L8ToQfZeh2S9iFowwVRaj1IXquKecMrbC7u5IXlUtgqVIKnfTrgOPK1qxmH6dJPRgzZ52BP7Ek2SKw0R5mGw9lVFyD1nZtfQy4BI/y9Gu3sndwgP5ZLeKexWSOqJejBxnl3hmiLEfPd1GjAnvTrfc8yHSidBrOvWGxXX1Ht80XOMlrVotsl+fCihuIrYWKYnyvL8cwilB7duFbKSoomKKZLuUdd+68g9sogbZ9WBTyfYyWYVBlpeEld6cGV1xg/mnqzLH6NQJAc3Hn5zew/64IOUUHD/yaMBgn33ekIZ1oE83G+09aDpT3XPLoN4kFSTX4LRzKyqJXmSnjb1rTArjxJW+ElwjDVtku6sQq+o7jzFpP7/wZRmd0aa4u4I4c2xB4v8E2MAyFa1taxv2u/FvLADQwhNXispz72y0BivNVVJyeVMWyIYx4MoPDOojkekKa1EoGn0TYRoRXYDIfwBDZvC7k72pzRUf61nRZ1CrxQFSkKvStZUsUKCAkp6pcorGJYrhLtl0RoaKhKL5dIn/XXvnT+q7X/QWu1FVZXmYZ2jn5fpa2HppX2XV67x4YDnHrvbuvQgWe86PvIz0+QlnLVV94O9FSn0se92bUIIP+oN6fK47/J6448h8BBAgB/MihRhlqEPORL//2KV/rc3/4Kp72s5cDHjMSAosqrJAksgyUQq8HOzBPUG1H2IWYuBvTONJH9YYQR2RnzIKG5Fgka9a8kP6m3cIvzGAbiQyXEftZsgw/HIkypVLGOSdg1WCIygvI5Rzj52ZkXTEcoXoDnLXAOBcOqDPu/JFj2HQfoOifmRKNPGbkiBJD7HehrcWtro3z8SYsEutzlFKYdgs3yna0pNq2JkCWDedO5SHYjKssl35JKWikNL59FIoSt28eXRToVhN7+53yvHurn02SWrlY5Zf4sthyHdjy9zZV97SDAQR1ik4bqF5fetlGip/vSg5OtwnNlGhhDtZ62OMntsw7dKsltuvNhoCVxYQiJY4EfE8TyDKUVuhmE7VrHt9uoEYFajAUxYzWck2auIZVmUcH970CVVmg6mBn5z0H972itiusf0vnydxCVUALCMCY6LuvnA497Que9U6qTrhyHrFJAndzs9Oa1j0uPyVDP9DqQQ2wfPSjH93wt1KKt73tbbztbW+7X/ZnWvdPPfz53+HIh87HpRFnXHmEL37jidz0bzz+5wyPfGsLtdYL9jdQM/OqBiosOO2JJdTKqtwXFq6+8ieNI8rDR2ksnkC1WqRn7SM70KV4yF7i4Qh3YBccPbbtvtXWLjoMxtb7MuhrhybBe1xiKDomXPyFxedVsPDyirLpKecs3X09itKQ3hljMhi0DK1GTivJuf3oXvCgnVzhy6YAK2XHY1MvNmHrimQlACcKaAMeXBZx+4k5yn5CvBShc2Hsx2sQ3TWy97Tuzborw8x7uSoLjYuf+FY+/nev5QXPeAc6Kxie2WHtoW3SpRI9SomXhqiVXq0KuMb+zy3bOnjg16SxbjYYnT3H+tkxS88foW9vgFNc+PSb0dE+4hVhoZZ7S170yV/DpRew9wuW1p1DzOowZDcYDj7qjVzx9XfV6p6D512KUjNi93Ca9bmD7+LCv3wHAN0bNPl8g+SrS1D9XpVG3XAb7Hk4Radq8mFu7zrDhQV0ETHcbRjtAnNOn7W8Q/PEPM0jTczqkOUnLLD0aI1tePF9dxHrzQYHbrhDcpuMQbWaspjISswwh7V1cJ7OrTGt/QvYdI7BGQnlrGW039LfG9E+sA+/3oNuR7yuR1lYZDjim45Bs4FPI3wSWGFGocJlXrVaAg7AmHFYiMWDD7frVktYho1UFrDD0Xixtl1AZXWsqgVtWJTWi94QcGqW+kS7GxJsrBRlO8YohYs1xXl7WL2gya7PnBB1jvNj1qSXANST2RNsVzptyDm/LMb+3nk+3v8Jn2gdR6gkucte2Rs8p5XHDUfoE8sotYA/toia6W60y9lUwo7dZN2ziW0OCJuvYv/ZMBBSYyY6lV2ZdeP1XVh4ejfBFq13fIcuPPikS3ioByNB9JOPv+Ib7z7dwyPlHL6VSLCwc6i+7LtPIrzWXPX5t9217U1rWt/jVcwmxEfXqTJSuPUw3dUe5Zm7sAcW0Mur9Xl82yGad8Lstnps2wP1ua8ayPnhSMK8kxhdFKhuBz3K0DPd01L5eedQeSGk4FZT8haMrm0xAXwzIZ9vYJvy2vHAAzLwymYlrL6xbPEaRvOGoq3ENbWAeNWjS1GpmMKjCodtRuQziqKtSNYMyWqJixUocLHCGYj7YHJPNFR4Bdp6TE+GD8l6CPae1vddXXHb78gg9o7/IJZc1kG7Cc2O/J5KK+Bbvx/6Iul3rrF/tmE7B8+7FNJUbMa0hsJi51u4RBMvDaGwlLtaJNZj1ofgZCBrIo06sSqAh/O17dElCy8D4MqlP6iZ+JfM/mL4vZ6+MuGf/+RVPPMnPwBANLR4Y2BlTe70Ho4eR519AIgFrEw1o3lNNquJhg3iYY5rJBQzEYM9hmY3onOjqIyJDK7bwFXqliLksKyt48L6ulIJA5LbUkgOoVcalWVC2kuSoGaRbaokEZWDd9LHTOQ4eWtZ+PB3ACgedibZfIyPFGXLgG+RlLvReVHnS03aS3kn9mPKO3wFOO+g/NtQk0oYwjlsG4DE57moJyKxmvOtNCgBQ8bqWXvRa0N0IPdW/awEy8e1UuN0q+pnN9pCshHkmOhpTbt1t7JfXDYS4CC2+KEAHn73HKo/qvtMv2nfdbNZE0lJ0/FnONmjwpi8k8SYmS6UJW62JY8b5tBIZQ2nFLRb8v2q8nvC9qrviC9LlNNC3Kl61s1VPd57sbxTkZBXYy0ZX6FOV73y7B9/P5EGPXRifeYcKrMoa/FpjHJM1SvTmta06npQAyzTmhbA3z7rd3n8Xx6iE2soCtKv38HDPribm39shsHjzyQ9fGTD8Eo3m7WnqgwOK+bLRPMV/GC98xBFkmFQlKheH3NsCb2rTXzjUWmy8hK3AyvOFSX0+tJ8jLI6UFhFBp9G4kFtFCZ3DHcbbKooWiF3RUlAfTlnSedGGOPo3zzD/K3C9NMjTX+UkEYlpq9RhQR4egM+EoAFwIwUqlSo2ptbWILKQ7QS4SOPW4loLiuSVbEWi4Ye5aBsTCkZ91dd8e333d+7UNv3XPOpN/PMn7qMYz+gidfh63/yG6d87sE9vzIhr9cQlaSH14hXUpJem/btA3ykOfGNczlzyZKe6GMbEWs3N7lh9gIecsUxWFyWBVQcoRoNrtwuMLXVvFs2Q9/+qTfzA684xOyNOSazXDX87/V9l+x+OcoYbNPQXHTYMzS6gPzTC/i94JIIPEQ9+NpP/iYAj7v0ECsPbdNYapHNKWzD1xZnb/rKi/mrv/0hsQ+LxLrFr8sCSIVhmVvryfkky9B5wVl/N4TIYOda9M9sYhse32kKI0upoGRwYHzNGmR1TWwcmg2xD8vCIC6KZGFf2SPWrLwJxh9gi7L2UN5pEVgBKxv8kqEORlWJkUGFVrIQai9Q7OtiBhYzKrHNmOTWJYgMZtHCeo/d34lhpgPzcwI6ra3j1tbFojvLgoIjGoc1TwIRUbyFnTiZN+OtRTeb4bnlGLhIEnSw5FBRhAFsf1AzA+ucg80KnvGBwJx7toQq33lYFvAhy0vtmhdrybzY8FzxGJ/wOzfjz0BqPBDdMBwFfHVNKkthBFZWPNaJHUO1oJxYcCqCK4IxW8NAN5UvRem0AZBxDpWVHDzwa9tav1z8xLcCW22+nnvxe4laMaowEizsvSyi+wOY6YQF6VS9Mq1pba6P/f1rufjJb0P3B7VtrTt+gigvZNjV7cCE9eDGgPlquAhgN55DKoB8MoS4sutRCndiKZzD3cnVfEFBp7wTq6U4FlClkdbACoDrNMn3tsi7hryr0RYJrc6DyjJVdW6KSzS68MR9RRkyB03mMbmjbGlcrLDzhtG8wmTQWPZEQ0fZMYzm5DWTdcfCNwswkr8CYAoJ9dZFsBMDfDTtab9fa5LlfvC8S3F75lB5iSotV9x+6KTPPfiQV4nqJAyB62/RYEgUejff66OUJl5dD9mcJUppojzHr6zVSooqa2THa7LewfboFPXJv3oNF/3wu4h6OVg/Bmzmf0k2mxWYvsHrRNTEueOf/ua1POdH3ofa08XFGp07vvAhUc8/94XvJUWIOi6N6yyZ5178XtLb16RHm1grb+7DxJY7OEYsr8hxq3ogrcRKzDkoZWhdPUd5Iey4lTVUHBFde4MMq7xH7d0tFmXHlzbYf23sRys78LFize+wRgc2KonDYyftymoSkXegYiG9dDvj52mNvuWIELScl/nCgX2ouVkBktZ7uLV1ca3IMsxMF9cf7NjTblZVb85PrNTTdQ5N2L+qp1XtFsYYXABZtu1nq9fZ9Lc++wzcbXfKZ9brw+453GxLSDJr/ZqopFPZpp7pwkxXgDJnAcno8e1UFB+D4Xj7Vd5XEdZBDnwa7GjbDWjEdVA8IIB99ZurrmXeixpGq1qtsuNnqsSS3SVG3EG0gPDKC2Dy8b997YanTFqATdazXvwBosyhc4fKhSzktQ45t0qU3tPLyrSmNa2JmgIs0/qeqC//zqU86eWH2HusAUWJvu0oe65tE69tDW6uwZVQk43X5LCuvr0Kn69yApZWSO7o4sMCmJvv2HnHwuDLrfUwC3PQaYsvtdb4RoKLg8coitGCwjYgn/PYtoOGJenknD23ytKgxfKRLt3bAgtRgRkq8kFMP06wTUecmdoaAYIKZV2JPVgmwfY2lfurkNBkTZh/rTshGok/tfKS/VKpaS553Ju58ivvuPsfzrS+J6poiQKqdXznhcol878kQ/wQXg7I78dayDI4XqLygu51YfCtFfOfCU9WGm00uz4jz3ETizRZ8KzxwuQlXJ3/GS+M/1Ud3O2V4pJHv4krv/bOu/yevvj7IiN/wTPewdNeehk2VXzuv76qDjI9uO8VAMwoxeGfvJBrf3dnu7yvHNp435NefohHv/4QX3vPpfzpF57GnhvHUnVflsKS9E4Als0LvCzDHz4qqgSt6F6f4h9yBsOzZ0kXU8yxZVn8lGEbcSwWZ2UpbK21Xq1KETZhuTVEcvL13Jh9WO+XVuPAZNnQWLViDCqSBZ1KJRRzA4ssisT+rNfHN1PMsMQMS7xRxCf62H2z6H6GWi8EHMgy1KKwEVWS4PfuQu2ZRw0y7C23yUK0KNGzM/gJVpsvSnSzsWPWSWWhUB2L6n3gXR1aXytDokgyVirGYxRhyrIOuVVRLAvoKELNz+IWl/BLK/jzz0Tnu3CLJ+S7H2nKs3cRH15FpQuYSk1SFLXNl4pjfH+Adw6ttbDBtR5fqyY/J6/kcY1GyFSIBVyZHJ5WSpNJNl8AXFQSn1Yw75WLHxKLkixDpbFkhZVuvMDdpsr5BjjP85/zLlkYey/AowKdlWJRZ70E2jdilJPHixrt/lPoTWtaD+S66vNv4+DDXw+razVr162uoZUag+ahtrCyJ5SGLs+33gc1COOdhxDmjPOoRopdXj35znlHNURTcSyDxmYD10rlfOBBZxbbjshmI1wMRVtsb3UhAy4XQ3PRE/ddyOMSYo+qLIwakHcV0UgY9lCBLtC9Xa4jUb9gMNOgsWxRpScaWsywwDZjXBSTrgWmcRjYuURyC72eTsKmBSiF7mcwHHHFTZfv+LCD+39VlF7GhGwWhypLscXtDzfZSG0azIP8FldW6j9rICLPN/SxLzA/vUEBfsn8L3Hl8n++y2+rYuQffNjrOPjIN3DFN95db+eS2V/EJAlGK4pHnM2H/4889mP/Z3vC1CQj/+DDX88lT3gLV177WyRLI9R6f4NdFUyciyqJgJo4z9igngYYjoTIE4l62EMdfi5ggxr73WghE1VWr/6OIwIWVMdxJzB4wkLxdMGVDRkusQSl159mpYDRSv4bZdL3jjI4sSQgQ1ni80xIL4tLdT+rDuzd0M/atXV0sKzdrqfdKVOl7mcrolTY/5o0FEXyXfVyLldFIeQ2pSCOMEU5nm9kmexb1c/PdnGLS5S7u0T5btyRY9LPpkYU/ssjfKeBabdQlQVdaXGdJr4R4WItykuj8bGhnGuihyUaxCZuMKzt6ip74nJWyFxqpolrJrKNpYHY6BWFrB0nFTDey//1zllPVV1x4wc4eMFra6tr5QNQGInqxeRbvzfZnChufugn3k+VV688GCtgvx6WQhgK6wUiDbgA3EyvK9O6n2sqzn1A1RRgmdb3TKWrjnxvh6Qo8ccW6X5BgI/yFM+ryjuP2be7Zm9Mskd02kB3GvjBAJTG3nSLNDsTwWxbqlrkhucQFse+lUror/foUiTMNtXYVBaeLvaQOBrdjLn2EKMdpdXogaHohrD7WShnZPi2ttzGDHXNDHSJNKi6FB/rZNUTD8SXF6XIu6CssO+VhUYfFr4xwBtN2RK7srKpxHIhhm3lt9P6vqvmkqVoR+RdxcF9r8DnBX44rNlXuiX5PX6iiQdZtLjhCAYTXvEVY6saZhsjg/2JhUX9mIlFmtITzLhQdwdY2VzXfOrNPPbVhyjb8Og3HCLqy0DnzHpn/EnBFRCQRhcWvdLHt1K6Bzp84UOyQJ3ds85g7wILwXqlWiQpY0QZVy3srA2ydsckq82NMsy3S6LZh1HMp5jDTkAH76Eow6Is2H4FALnOmoLA5juJPULIpFJajYND2cSODtsh2AGoOBYpfxxsElTI7SlleEAcoRbmYJihnGN43jy6dESArRZk6wPx/jca327B0eNyvryxj96zC78wg56dEa9ta7FLy6A00Rn7oZHil1dkcbrT29pkoaBjyc6yy6t13paujrlSqDQV8CvPJd9GVyBFIqCHC5Zc2qDbLVyvj77jOHTaqE4btWcXq4+cp2wq1HlN4p6j+7kMyrK2hEMp/GwbVR0nRE2j4gjfH9Se8LXNWgV8DYbydxykiRXoUQGZzo09wcM5+64MaC7Z/fLADBTWoCqtqKC8r5m/k/VDP/F+dDsC61FOFI/K+tqTWmeyb8o7vFP4xEAzoZxvUcwmfOzvX7tlm9Oa1rRCDUfQaqFMuGYMBvi1dbH9O53yTpR/Wm0PtEwMFqvQYd/bSkjaUiFUWSUxVf6Ab8SU8w16Z6XYWMASk8s5wWSedM1TpgKyuAaUbXCrULQ0zihsQ5F3NGVzrLorm5JHaFMh/OhC9H3D3QZdgE0axOsWHc4/eE/ZTVClJ13K0VmJj0SFahuGsqlxEVOf8mlJFaVYIXWaHDz7lbil5XqQX/VdZtdCUKLmeOvq3Ac/yjaoB4AN4GUNOEw6I2yjUNgw+J+4/+4AK5vrim+9l0se92YuecJbUFkhvUuw3qL0fPhjp7ZGOviQV0FvIEqCJOHK698zvrORbnjPk7lQY2X0pp6//qPAjUDFVtQgcVyrfSt1ndKuBqOq4+kKv/HYnobN1slsWDdYglVARdULxnEALHLZNyXqbADyAl+UosKtesKyFOVG0RMiTktU064/QN14C3rvHvx8Fz07g11erdcA2/W0dml5+/dSjhXRNZCnNHqms7Gn9aJq15227HtZ4vsTxFItvW5FylGtJiQJen4OfXwN322h+138GXtYe2gbmyp6Z3RQDtK1BumJHOXBRRqbalyqyTuajlbEKyOK+SZlJ6KxlqHW+1AU0qcrNX5tpUiO9XBpTDmbSiaf92K1NshkHeF9UFSKahKtTwmsVHXwwt8AY3DtFBcHVb31KKfwhi3qFQAXyXWm/nr4if87sc31RtxAlLW41EASUXbiHUHKaU1rWt+fNQVYpvU9U5/6n6/mMb9xiPaRBrrcx8y31lHfvvW0n6+0wi0uES3MUy4tb2jEXJ6j63yBwNrxDjfMT97kVfd5h1teQc/OCPNDKWH3thNsU5N3FMWMp2x50gN99sz0eMTcMY4Ou3zzyD6c1biWlVzj1DF35hqxtqwNG2RrKemiNFs6gqLlsU1HtD5mOOddjTeQzUK2AHhoH4bmcUf7Tll8l52IoiVhoS4WVuGXf2cacD8tOHj+a2i2U6Jeh6IbSZBhHphUNsjxQzZEtdCq2HzeMrHgqhhigUVVPf9kNWHRVG3nGveX9/p73PW1nKIbkc1KA91cCiGk2wyXty2tsM0INYpRg4xo2KzvyvKYZo+aBVe9j5pNZhl389taHojyLrnpOMXZu8SKxUUopeoFFJOsNsavJXUaYa0BZKlrk6pGGTNmHcaxMLjCZ15bZngvzLPKK9o5yZzRmmZR4o+fAGMw7Ra0mth9cygrigbbiEi8h8PH8KMMe+QYemUVNTeLn1xwerchOF5F8bZvpw54D99FM9+R72wATlSaSoAroDttsWirAIrqO2qMPM5aAZKKAL4cFXafajbFHieOKB91Lv0zGwx3hUW7kwVoesF+ol6OPrE+Bk+SCDU3AyeW68WjL8sN9lyqYkrCGETRaryP1fF2E3aWFVsvisbPPY26ZP6Xxs8JIbSijhKLzMl6zo+8D9vQ+FjjYrHgMLnH9EtU6QLQIhYKPtXCoDQK24rxpkE+F/NP//s1p71v05rW92NdcesHueSxb0IZLUPIhTlYXcetrp38iRM5U5VlWK3M3qZXra7fsGkYudO2q22UpQRfpxGulVA2DXlHUTZEPa2cIh54XKQZ7ZJcwLLtUVYR96DoCCjvZ2G4dwJECeH20dDjtRJVdgx5R0hBuhQbnuaxfJzJAMTrktMS9XJU6bCdlNHuhLIp9i02kZ72c3/4qrvyMUzre7BqMgGgog50WujQq9S2V1FcK1fq63Yx0bdtAikns+r8qdqtSdvRUPdFT6uW1yX/EGCU4YuSq9b+8PQ34L3YeOXFBhWrj3SwStsaBj95jhnbFbLl3DP5HBVFgcwT9ltveuxkvspptLI7veZ2tdkKTJ43oTSftF8sNpKWVFluyNNh7wJqroNaXJHzY5rWoJ09fKTuZw1sBFE29bTblU6S8bqhLEDFmD27REk1HKG0Qne7QgJNEnHYgHEYPNSZKKrZkNuSRMCP4QjWe6KU3rsHH0UUjz2Xwf6E0fxYQQhgG4ai1SAaeUzmUNbjDIzmFco36Hjp/xqH++j1gSjZ81yAsjhGKQOtJr4R49MYl0bYhlilKwc6M3WA/AbbW6PH64pT1MGHvEryKJXCJUZIP06hAsDuNrXGz/jpy/AGXCQKF+WFGIAXkkBUOJTzeKPxjRgd1DS2EeFjTT4zHaVO6/4txQOIPPJA2Y/7uaZnhWl9T5VNYe08RbKiSFZaNNS5aOfQx1YAtm9iJhvlMOCqPVKTWGStSJO3Ib/gdAfDUDPIXX+AjmP8rllcGuONomxoirainCvp7uvxmL2HeXjnKGmgUnwn3kXmYlTkMSNFcnafR+8+wjeX9hIZRzQ/pGglRCNZ2HrjoV3i+wKWjBYUZUusx1zTYQaadEmRrHrSFWGJDPemDPYKMzAeOL74+9NF6LQmqt+HlVWSIydIklgCcofDejijgowfbzeoBgQ42GR/dTJZ/0lq0j7hvqiPXnnPAgqv+cSbdrxPf7HLwteGW5nEkzVp37LDIMyvrBG1mrJYHmWoVCT+dRj9BFvylMOyU9V2C+L6jwCk5F4sa+J4vMjMRP0hgE/YhrXYmwTsVlqhhiP0bBdTlKJeaQmbbnT2LI1RDieW8EMrdo7DIWZuDru6JovMEKi603m4Ut1454n278IeOy7WX86jdu+iOG8XLtakR3roI4v4osT1+mNg0FpUFKPbLbE/M0YGDI0U4lIAAxBWoLVgLcXuNsuPaJHNCntbFwKw2FSxcsH/y957h0l2Vffa7977pModp3vyjLJQAhSQABMkJhljc425cMEifYCxMRjJgMlBgMgajMH4AgaDQTbm2r6Ya2YkISERhCQQKKCcw+SZThVP2vv7Y1dVd8/0zPTkHs15n6efnqo6dc6pqp5Ta+211u8XUHpCIvoC/I12cTQpByilUK3QSoWl9josXMdO0bRvI4RNfpXsSogJKae/3+1Ov67fghTdosjuvFN2YapcV6dbsD25suY4WwxZs+wSWicPY3xpO8vbC6JuPSUNJEmg8EdtkcUIAUpw9S8/OO0wL1z5aVRzX1ZIMjKOXdbf+QnWnPpeu8AUx+B7yHLRLtqF4S5yt0A3np26cChcx0repCnC87reBbt4t+zte3nq4mm7OUK0Yij43WmVNBBoD7SyRZS4BNFgArkUIQ0mUqiWC9pOuTSGBGGfwa3aCZewD7QPRli/FRXaqW3VgMJW672imhqELWAbYa9BqhHbAm9iZceiXo+x4xxkCv6Y4ZZ/ymLajDZRjNYaGg1EvT2hEcXd/xfdyVFj7BRCZ2F3Dz4Z+8qhKKjszLon/vbAnv/o2hnvl7UWjFd3auKZgb00HxotrUm4mHKtkmJyIma2+zpYGD0ZQkdRO6eZ3hQ1SdqNRYUUkKbIKCGt5FDb6RraYwxEUVvtwsazMpebdUzbiWd1nODMH0LvGO16uZIkiIXDhEt60EoQbGsiN2630rxRZNc523JWopBD5POTcWOqbUzruYhioSt9h05JegNGTgmISlZeXCTthiEXopKVfHSrAmGkLYQr6wub+oLiE+CMt2xxD9BLhhBRgoxS+//MGAjttdo4VlJWGEh8WwiXkYPKeYiObJrr2EJQezp+zZJ3sO7xL+z5c1QK4yqM55AGDkjQSnD9Ojtl8uz/+XkAnvMnn+s2h9kCy2QBxhb3Bf5ogluzPk3aU/z4px+YdqgXrvw0bnW2OikZGRnHCsKYTP9nKhMTE1QqFcbHxymXy0f6dDL2gzWDb7GGwH29Vo5rx7jt+BaS5LEn9hyoCYlsG/CZtnSP0QYZ+N3FtKmLpNLz9rxoOmW/QgpkPo/o60EPVLo69FHFpTngsPU5KYOLRxECenMNzujZRJg6pAjuHh3m0fuHUQ2JWlanlG+xfUMPIhX4gw10KpFK01toMlSosqVeYttdgzh1QVwyIA1OVZLbCoVNGq+aEhckrT5FVIQ7r8gmVZ6KrC6/nvX70rHWed7AmyeN0zuyAu2xedMKdzFdPNwcjuT0YPGs11xB7+2j8MiTpG3Tyf1GyK5PCGA7m/M5m0Rpja43rKRFZzLoYCelwnq1dKUUYNIvpO1P0vl76Zph5oKudAEwbQFQeJ6VGxMSBnppnNDHxBKH/JaU0n2jsGkbphVavehO4WRvhe3OqXbkzdrnrIYGMX1lmgtLNIYdoqLtmOu/q4X32A5IEtIFfchmjNg6Am3psq5xc9r2IzEaPVABY5BjdapnDTF6kkI7YBy7EJjbbsiNaJKcYMfpkuJjUHkkQkYpqpUgqyEm5yK3j9v3rzM9Um9MSn11MMZ6xSjV1p+e8piUk0agbQkFpixWdAslezIDncKaZZeAEF1N+ue/5LMAuOMRMtYkeRftSURqiMrKdvo1NW4txijJtT95L0BXq30mLlzxqV1MRDNm5kDj0SyefWqwuvKGbje5UMoWXR2HdHxi79f49neG8DzrCeD7tjPfddCdJonOpjtLQu5pt46LDHxEpYzpKWI8Bx24JEWXVp9Ds99KfoV9YCQkvQnBQJOw6aJbiqGfOajQUFsoaQ2A07ALXEnBoD2DjIUtwoQCbxzyWwylx1p2MS6nkKnBqcV2ElwIjKuIKh6tfockEPz6H7OCylON1X1vYv3I1/bruatyF0+bDhbtRgTTnsQ+LAv4u+FoimfXLHo7plpDN1sH533bSe7Kxjlt35U9+AYeNHbyYJk2bU/n0GbGbXY+J6EUqqcHBvtsfu+7aFfhbJuwcdxW29AjXIe03uj6us7mmjvVH1Z6HhiNHOjHVEqEi8rUFrhEZTt9P/9HGyBJSBYNWNniLaN2kqk9bT5turmd5yXzKgitqS0tMHKK9TkxApw6BCPg1TRxQdDsF4R94NYh2AFhD7ZAXhOoBhQ3GryaRjVTnEZiJ1w8ZVvs2++baiTIZmgLIAXPTkQZOw2d+org0RHM9hHbOOS5UCpicp7102o3FK174DN7fc9e9LxPTItLwRZXhAEZa1RL24KKEmhPoF2J00hRLQ1y0ux+1bkf5apffXi3x8li2tmTxaQHn+uuu47f/+NXcuqr37v3jQ8Dd33rMm645kdccMEFR/pUjijZBEvGU4512/4BsMG48D3Wbfoyaxa+DVwHGfgzd/11MBodRd1FxE7nkp7qazBt89nVJzsdUSLwMfkc2rcd1bIVo3yFkSDyCX35BgNBnYKK6HXq5L2In4+ewIaRHgg0iWtwhSGKHYQyEAviloMbJBgtqLZ8Sn4LR6UkPQkice3YbVOS3wRe1ZDkBUnOwSgry6C9fX+PM+Y2axa+bVK+aR9ZXXnDZAd9J/AXEuG2vSBmuQBzKFnpvcp25AphDeHTdNZJaudagDaYRqPr73EoktwzL12L74Cotya7IA8Eo61nS0d+LYpsAlIsACBzAWa8ao0391VOYZbHNyk282p39U0abLYTwHQyYbTn2DaITXcyZ9a2s6+j4y/GJsg/CI3BQZymJhoukS7rIf+7TejN2xCeaz1PcrnusXdnBgpM684W0vqbiDgmP15DxUNMLPFoDgrGj/PJl4dwx2O8DWOTnX2dqY5U0/U1cW0BSXsKEWuSoQqNAfv/QrYVtWRqu/2afZLUF6SBYfR0g3E8yo/EVsLGGGjGtrCiDTQaXQ8d0ZHk0u33sWtm2m71m+rBIMR0I1DoTr509auFYM3wX8yqyLJzx2rq2s9WuQqRGpx6RJo6aF/hNDXGsZMqP/7p9Omt3RVXgCwRzcjYR9aPfwOAVcXXglKsn/imlfVTappn1oy0vzOkkOA4kwujs2kM2gPCdWxxPxe0F740ztYJVD0ACqS+a6dZfEOa18hiTCnXwnMTajsqpJ4gCewkHFgJMTv9JzCusZMpDYE3YSflUl8Ql12cZmpN7sdCRJhiAock75LmFVFJElYkv/37rGHoqcbqgTfvk+zlVFYFr97Fs8No6/nQkfU6kqyQL58sLjA55T3bmHRV8bXdyVqTpt1JnIMd06457p3TZIAPCp2YUkjru5KCkM6UKY24vdksJuz28/jANAni6Q/vJuefacpcG3S1ivQ9kuOHafV7jJyiGPidT+GebeinLUc9uhldq7f99GyRuytzu4diy9RYV4ctO/nSaEKrRTAyhlOdT21pjsaQpHHKPLyJGGfLuI0POzGl6cjIym4RC0dBKkCAkZJmv7QG7+2wVxjbOBSW25KwBnRgaC0KadYd8DRy3MWpgT9mFTC8sRjVjKEt0QUgwxQZpYg4tUXxVNsCOmCUmjSjj7VtjO3vhVodE0aIag1BcdLoXgjWnPQ3rLv/03v8aHeOS7vvpbBxuowNqpWgPUUiFAiDcQTXXTs9Rt1TcQWymDZjjpCNS8wpsgJLxlOWqZ1OJgyhLfW1i9HdzhhrHq/jqXJgMz9vTwt8XTqBs2p3H3cmy11J4nmEfS5hr8AkkjBxyKm2L4DQDDgT3L99kHRjnvJxY7hOyth4ASk10k9IUxedSsKaj5hwSBLBA5U8hJJgm6LwJBglCHut1ILTNGgX4oLEadku69u+9Nezfk8PBmtOfS/r7vnkYT3msca6DX8HtDtf9xFrgpl0x+LtpEGni//Idvp16P6/60g6KcWq4NVc1fruHp+3KncxopCDMOxORnQSmhXy5d3tDlZi2ntfjIo0dGSgDgbt65PRku5yQ5KA7wMgigVMHCPM7LuR9/X4U6XfukWWjrzCVO+qmaQ1Orc7z4/idlFDIyZq9N/qEM0rsPlcn7gEg/mFVH5j/V6cSrkrf9AxU59q/Lm7v03hee3FyARGmni3jDNwq0IM9qOLPuOnlImKPnF5EKOsVn+wPcTdNE7taQMIDcG2FmpHDeM6OCN1aIXUzppPXLISCkaBiO1ioFHYxUMftGvwxiRu3eA0U+R4A8LIGqROKWKKdpGMJJ3UzI7jrvmrMRqRMt2XpVNEnTrVAlMKo6L7+JpFb2fdk1+c5Yds+fl/WHmw33upnWRxqhEyMSA1P7lq/7qlsm6/jIz946ratyZvTGl+mK20l2629rjtrL8vhLQ6/vk8xnVACUg0JnDRgYN2BKbdAZ0GGn9eA89JEQJ68k0azV6qSyEpaUQsSAv2t2lKjDTIUBBsE/ijEIymaFfgNDXeWISqRjiBY+XAjCEJHMJeBxUbvPGUX155eOPZFz3/8lkZhmccGOu3f9UWWfaDjll6d3q23UBn4uTApVQPFlMbYtrnudJ7FVdHV+72KSu9VwHtRpa2DPXU4kcnpj1ohZaGnZAm1bsUrA4GRhtExzq0M72AjfE6fo6HjJ0lvac0D+1x250fSlP0jlFcz0MkPXgLC4wvd6gPz8eravL5xbi3PYzM5TBpipPPoxuNdtOQbFc09j6V2J16jmLbeDRRpXKXQ89gP+NnDxMXFV7JJfWtMXuwzcazyVCF1qCPSA3+9hBne3Uypg1j4kIBGdFdpxCplXvUgW3IFAZ0LqWvt05aEYxvqFB4whbCVWRw6umkX4kjSX3rr2IcG4tKrcGRiFQjkhTRNEBsZeIkqFjZ5qLARThlRL1pv+vaeSmiLYHrOqw+4/2sv/MTs/6IL1zxKW5sx57P/ePPIZVAxBqhBDKW3PDf++cNmMW0GRkZO5MVWDKOCdZv/2q342+PTA2+22b2U80L94eOWbFod1+IVoxSIVF/ntSXNAesRILRgk3jZVyVEqiEauLzmNtPdSwHjuHs4SeoxQG/GS/QrPsw6uGPSbTrYByDSKx5qNjm2vHdEUOwPUEYaI0rZAIyMdb0E9tlfbiTUSArrhxGOp2vs6Ujo6DjZEpnl2u76tvSJHNhggXYyevFFoNWyJfvOZk02pqZ72Usf4V8+aRJOuw2ye10Rpok3uW4a5a8g1ylgBivo8dmIeWyDxhtkJ6dijNRbBfsnWZ38sJOjLSNWmdTBN6/k7C/28lo53rZlT3YWwLe0eBW7X2lqZUCG6/heg799zhse7pi9GRJ8fESsh5amTrPtQnc6BhCa0ykulOHGDE5PTNFIkw3m4g4scU1IewkCoAUtBYUCXYkaE/SHFDEedtVHZVzVFJrtFwfUtQWFum918HbPNHW5jbIyJpgus32YqJvk1CnaeXH4hJ4o5KBO1JKD4wjRiasl4Ix081RHQdTKZIWfGQzxvj2e0qNNhAjY91z7dIpnHS+zzr/nqqv3fHJ6Ty+cxFmH9COQLuCtOCCgGuv2/9R9CwRzcg4cNZPfNN+/+zt63iq7E7nrn2QApt5l+3u5zhGtGUUdd7DuIo075LkrP+f9kBG9rqjlCZMFCW/hc5p+k7aQd6NeGJbH0QKMeagQhCpQCZWgsY4gBB44yluPUHV7fSfMYa4107OVJf4NPsEwag5Igb2WXHl8LF++1f3+Tkr3Vfaf3QM1aWYXDifA9Mr05h6Lu2Cyx5j2k7hNN6zjFZnQqbDnvwMO+/XzlPdq8uvtzlAFB2amNLYeLVzbTFpZBtjXGdaceywebHsPNEym+N2vKzSFHSKGmtS3Biw7SxF3KMpPC5RoYvXns4giqzXR1smVzesbNhkPDslT+m89vbnqJstRBTbItSU6SfSlGB7TFJQNIYc4rwgCSAqtePZdgNRfb5DbaFD770Kb+O4jReTBJGC0wIjJxUuhG7Ht3l7v5EwsqFC/jGHgU1WEkwmBhnbeBjoHke0j5nkFWmgcByBU4tsPNppMurQnrw2SoEjMYlGajNZYOnEtZ1p8n2MaafGntqxhae06GKE4CdX778HZxbTZswF5ozJfQaQFVgyjjGM3nuQ1AlUbBJ6gAfsdGnHSbfjWMQxxC7uREg6nCf1IPUMwtWEdY/HTB86tQlAGiv8x3zCeSmu0NyxeT56uw8Gclsk3riVpolztvvDHzX4EwYVadxqggxTMKBaiiSviIuKsMcu/t361UyjOmM6nUTGFhnbuu1piolidFSfW8nobugmk+1znZokTisc7QU7GdPep3rFtP11k9ApRYSpEzBgdZLF2Dg6bZs7HkwfxLaUob26xNYzqtlEGI0oFmx3cUf+4gAX02ZzLlOT9+77uw/vc0dyTERganWk65I3hnlpgcY8RW1xnmCHi4xTVEeqbqCMGq0hqjUYG59MhqdM1nQL5p5rk/V5AxAnmEKAzrmkgYNTT0g9iTsRox1BkrP7b/YJ4rMKOE1DUoBWH2ACehxB2OPi1FMQNvlMctZDwKsamoMC7YBbN9Q9wcDtmvJtWzBj45h0J3kvI+z3TZIgJuo4sf2ctBKQGnTRR060/wiVaheHXPv35DoYz2knxjtpgceJnYRJDvyP7rkv+xy/+Pd38rw/+ixGCTvBkpGRcdTQWbTsxLQH9H3QWXhMEiszFtjJSdmMSac0MKWevS5iwFEaJTWBk9CIPYyA0/o3ccf2BaSxhLrCHW/Hs5GVb9GOvbamnvUB0J5EKmWlbXMujXku1UWS+nEpJII733r4m4Uyjg5M+28fsH+/++DldkSZIbacGs/u0xTJlDht51j1Gv19G+NOOebO23VkrjtxVdcN/iBiPxMFpm36Hic2dnMdm0OTHvYiy349tS3tKpohhUerJLkKrR6JTOwiaDJUQfQWUbUWtCKo18FxkJUhGK9CVe8Sz3b+3ZEW6zToyIE+CCPrGRh46LyHMAZvPMZIiPN2ma/VJ0jOtPGsEUzGtDqg1xhagz5uLbUTKq5VvDASEt+G58JAEgDSEGxyKD4OxQ3xtHhQGIMMU0RiurExSWqnzY0izSnSnIPQBhlrSI2d5G5PbBshMO7k65XGYBxlt3Gc9t9EPOmH6O6lYXY3POfln+fG7/81v/fSz2Icx55vRkZGxkEkK7BkHDOsH/16d2G008HXCVa7gWS7o0m0je7tWHK6//qv7Y4W2dayF93RXvuwiDUyBrcuSI019YxGAkRoTd/8HZLiEwbtKq657xTUhoD8DvCq4LQMKgKnYc3atCdIPYmMNUZAq99DaIPTsFr5uh2LyNg+NyNjd3SNHKNon4oSR5Sduv86TJNJ2MfXMVMSvnNyujt0FHV17mW7UHVQ6RRZXAd0W9IgiqHe9pjy3HYnnZVdOORFFtitjvXenme0tO+VsvIAYmwCKQSBq3AnFA+93KfwuE/f/Sn0ecjYym0Zp4zyXGSpCLU6enRs+msV0iajYDu4WxE4irTgEZdc4pJDs0/iNgxJ4JHkIC6DW4XCZt2W+bIFEySEvVBd7IGxiat2bfIpY8htT2kOKvwRK5XQ6hM4Naj88gnM+MSunXpTp08CH3IBOm+NSK1BqsAZbUwmzr6LcRUogUhsJ59xFUYKZJSiPYV2O9OJBhmlqI1tYxglQQhWnftRRCvaJ1kFfyTmuX/8OXtNcLFSDxkZGUecrgRje9Fxl3gWutOEQk1ZJO2YR+9nTGuv89pOZUt7bTFK2IUwbdCeIC5DNJCSG6pTCkKEMGgj2LS5B29Ccv/YPLZv6MHf6iAjW6CWifVhcRvGmiO7gqgkiUoS7UCS81ERqJadFmwNGlRPSFJzD8K7mfFUpBOPdCSfjrSh/YFyIPHsHidc9vbUKUWpznTFQcd0PFhE998kdlq3E8d1ppIPW5FlP59jxsYRvo/UKeUHFebEImGPoD6sGDs+T6sfSo+X6L+zgYjKqGoTwhgKOWQugDAkHR1HupNesEK2G3K6n4NniyuAKfikpRxx2SWqOMQFQZwXRBVwa1PiWc/6raQu3Zh2YnkAQFyw77GMwa0ZKNgpFLDT2AjwRwSVhzX5zSEySq20F2BciXY66w/2MzMdOXQlMa5EtCe/tavQrvVdEWn7J7GvyRreW58VbRykMdC+T8Sp9Yxpy+iKVsyap9kJwnV3Xz7rj8gfi3nuyz6HEAKt9iAFl5GRkbGfZAWWjGOKTlK582TKNfr73SCz0+0khMAAAhCqvWC6fwdtL/S5UMyjK3mSku36i4sKYWyHnphwUA2JW7W3/QlDfqsNrOKSQ1QPcOuQ227wx+1kikgMKtY44xE659Aa8IjKitpCYSdXIghGJN6ERqYGt5bitDQizgosGbvSSaA6ck9mJ0+No5nZFkYOBft97dgbnSKL5yGkQLfCTu3Wdvy1EzKTcuiLLO3z2a+uv460AikC0M0mUgqk7xD1VOi9W1J+PMGpxsRll4mlLmGfS+lxQ36zS3DXk+iJKsL3MWmKzOcxUWQnQ5QCz0Xk85higC74hAM+tQUOSQDBqLHSiXlB2Ee3aFJ60iCMYODWMTY/p4ckbyhsEPhjGhXa/xNRWdkJlnYhpvJwRNjjUJ8v8ccMg7e3vb+M6U5PdhclpbDSe4GP7i2T9AZdQ3vtK7RnE1JR8InLPnHJFlNUbNqFeWvIKbQh6vOJ29KPKrZJrNBQGA1sMq4UOu/v10d67U/ey0UXfhKjbBKaySFkZMwRdvPdPDWe7W6n3K4RtvBckJJ0fHy/jyuLBfTwAGnJQyQGkWh0ziHs82j1SsI+Q2lBFYBtoyWSmoszoShuEggDG++dh1+VuOOTvlUi7fwYnJYhNXaSMOyDaGmIl4sJJ3yCDS5uFVRLEG8N2I9vnIxjhZ2M7bN49sA51M06Nl5V7Cz3ahfC1ZR4kUP/eYr9O05abyBaIQpQm6EiBDtOL7LjmSnBUIO45qMecK0cmiupntpP2CMpPxri/vYhO5HuuWAMKpez0mztmB5tG4dEqQi5ADyXeKBIbbFPWBYUtmjigqDVbwvRRtp4FgRuQ1O5r8rm51RoLjDkNwq8qsYJDaSGJOd2CyPBqCYqSVq97dvbofJwSm6rLa6I1CCwRREtbGOPEdZvxahOF6mdPkx8gUztJEzqS+vbpa3ahmoktmkoNUhsQUZ7ElyJMQ7GtUUYpJVfE44iLQekgQOiLTm2D1x3zXu4cMWnpt3OyDjqyZb15hRZgSXjmOKa9HvTAtNdgtSupFeMkG0vg3aHhhTSLpTud9eflXeJ+3LEBdtt3OyX1lB5h8Ebl8jE4DYNKjT4IzGqHqMDRW6bxK3aLkEVdrT/7TjutddP14A+451rUS3bEeg2DV5V4+8IUc0E7aqu2VxGxlSmymBlHF3oOOnqaq8KXj3lEWU9WdqGrsKZXGDYZ33p2bK/+5pSZEEbtKkjhcAt5whGFd5IiKqFuKNN6kN9JDkoPmGLF8myIZwnFKZas8Vx37NdcJ79LZTCNBqIwIfAw98eknoSp57i1mLcjWP4Jwyw9RwP7UJchB2nKVQTkqCH6gka7RlA4TRSW6weCxE6R1h20R4YKUgDaTuvHSg9HuFtGLeSXnGC6Mh1qfZn4jhQKpL2FklKHshOF6D1OzFSEFU8krwiyUuiorDFH4UtnrfACe2x4ryVffQn2t26yt5OK3lklNiuQCHQvoMK910/3SiRJaEZGXOMnQspMy66dhYIU92+9rQlcHsqsL8FFgDPQ2hNa8AHAaqlicqKsCzRLjh1QXVDCRlJnLrAa0Gww8ooJr4g2Nou9hhQMZjEytLc+rVLdjnUcVdejh8khHUPNe7gTkB+q/UdFEYSl7KVhYxd6cpedcji26OGjsLESveVmGRy0tlO10uE1FPkyjpP0vtdENn9iRxAPJtCOjYG4xOoepN+FtIcKuItiUlTSep6NIcDhDaML1ekAVQe1LBgCLFpK6bRsM2ZjmMnux0rCWuElcwyjaYtmnsu7mgTv+xQ2JTiPzqCe3w/W8se2oO4bNj2dIUKIfUF1SUVGgu19W41CqepUZFt1Bw/3iVtS4Q5LevbihCIxCpnBCMxMkpB0zWm1267YSg16KBtai87sl+gPXvbmOkesALQjoS8g3YlMtIIY0gDB+0KnEYCqQHVKdoIRCzsBIzv2CKOpLtGs69kMW1GRsahIiuwZDylmckgcJfuvp0waQqhtgmk53WDGpRGtjvG99Uk1KQpNBowIvCTFK+cR+dc3KpHfb6L0ODVNE5L89MfvGuX5z//JZ9FxtJqnMbadopIsUtxBeDOz+2aoK487zJEnCKUwKAQsWb1WR9k/e0fm/VryHhqME1iYKf7Mo5OdjYt7cgoCNJJKaoO7QRUyCmFlsMlubA3phrfA7pWx3lsK87gYhrzA5JcnmAkwR/XVK6P8TZP2ImUwTwsHkBNFBBbR2wy6nuYJMG0IkwrBCUxGzcjN9vXX97Ub483XgWlyN2Xsmikh7GnFaktFLTmGWRLEJdA9yRg7MRKa8Al2JGQ5l28sZBKaqgtconzAqcpCHskcRFUK8F4ClEzk98XUtriiu9DuUg0VCIN7BRjXLCJaepbOUejIC5IksBKLcQFK9OQBqA9g2oJ3HFrCB0X7UKlkQIVClsAahiSiod2Aitj1tbFvubnH9+nj2Rqp19GRsaRZeeYdm/xbLdwncSgJDKf65oDC8e1htX7cv1v+wDobTuQYUipGZH2FEgLLtqTTCyz1yntGrwRu6h3z2W7xqSnv3utncJObYe1duDWL+66HcDDr9o1zn3Oyz9Pq1+QeiBDwUkfX8v9H5j5+RlPXVa6r8Ros0sMlMW0Rzc75+3A9MmVmdhPz5RDxpR41qQpavMowze7bI36SJZoxi9sIMoNdjzeizNhyG2xhYh4sICnB2wB4vEN6Fq9PbliupKPJoqtN81ojBifACEojJTtWkUrJHdvzOIdPYycUaK6WNBakII04Gl0PkYZSBouYUUR9jr44ykycihuTKnNV6SeIM5D2CNICrZhM85BY9ijsMEgm4ktbrTlZ600pCT1pC2wKBu3Gim6U+FgZddF2vZgkYKoKEk9BxUZnJbGHY/RnkS7gtQ4aF+BBtW0PrYmkKR5xxZmAIzh6ls+tE8fSxbTZmRkHGqyAkvGMcluk9IpngBCtzs38jl7X6tlJWectt6zmL2GtfVxMcha3XYzRxEqnyNoeLgTPo2FOeKC4Mbv7VpcAbjhh7ve/4I1n5nVsQGuvuVDrD7rg8hWgmxE0/0AMp4ydDyGro7/1d72XsXV0ZXdx2f6m88S0acWV7W+y0rvVZPJqN6N0fmUQsucMXztnpOwRQgAY3CrKVHFwWkZ4qJChRqnGkGcIDdMkJso0jihH5V3MAvKeNsbyGaMqDXsPuIEpER4ri22GIOZmED099lpF9eFKEY2Q9xanqisUAsayHsLpD7k7/NoLEqJyjCxVDCx1KXnQUV+c4g7EaJCq3ltpEArQWEDRD0eriNxx+ugUuvr5bnguZhKkTTvEVdcO/niCuKCIA3sgqGRWJPQxC48ah+SPKSBIQ0MJtBWZgGJaoJxrBkpxuptq1CgIohKDtqxkjwiNajWvhXRLrrwk1YCIpt4zMiYs8y2yCJSDVKiFwwQl33cTVumxbyziWdVuQRAOlGF8Qkrg9Nswfx+TJ+L04Cwz5CUNDIS3P/+mc3nf/eZ6cWQM965dpav1pL6ArcKgYI0Z6+TGU89Vve+EbAemqt738j60a93H1vpvWpGL6Espn3qcHX8r90immWOxKqzoRPPug6iXMRUioCdvtOupGkCRhLJuWc8RKQVt9+xjNz2gNLjIY0T+pChRiyo4G+agFoDU6tjwhB0YveplJ1kido5/biNaTEGwgjRiPCqhqgP5i0dQUlN4MTsqBeo1azvSthvGHMFMnEoPa4obIyQ8xRxzkrfxqXJa6v2obZA4tZd/KTd6OlMFlRSV5L67eKIZwsrWgmEMXbqWoGMDRI77Z36oiuvGzqCYFQgQ+snm/iS1BM4TY1IDcZxrb+Lsl6zgC3Q7+NSxopnfxzpSlsgysh4KpEt680pspB0Fqx49se55sYPHOnTyNgPZuqCmdrBv9tA3Gjb2RdJuwCXy9lR3DiZ7CLZ1zjP2IVM02wh0hQZRoiGh0pKFIzh6l9+cJ92d/26d+/T9iJOrTlcHO/a1Z7xlKCTjKx0X9kN7ld6r9rF2HOvCzIZRxU7dzVfHV1p/wamLjzsTkpByMPjzzILhBT2vBzHduwBJAkyTik83iIpekQ9LsJA2B+Qa0SIVgjNFt5YRFpwENqQFqxZfOv4XtyJGHdr1RqINpuIcgnimOiURYyemiO3bQB/PMFIgbe9QatP0XufIdxcoDEfcqeMUa/7MOYB0FigMUFKUnCp5AOCMU1tgbSSB9rghIbK/Q2cjTswPSWrkQ026Q18dE+BNO8SFxxSV3SnVuKCTWbjopVP6BiAGQWpZ0hzBhwDfopJBSoWaAdM3m6vQpBR+7nCJsVJvp3gpwYcwc//Y9++M669zvqvgO36yyQVnhqsfvqHWH/bZUf6NDL2g51j2lnFs9CNafX4BLJSQpQ8ZLmIHp+Y9bVflUp2oruzvzS10otJggLcXh9/3C643fGud+7T65pp8npPxDmB2zT2uyAVyDkwgJlx8OkUVjqFltW9bwStSWt1KwcqBVfHWTw7JzmAyeipMe3V8b/uKvd2CI99sOjEs8Kz8aiIEpxqROL7YKD8gKQxP+BWuZhiscXzz7mHG+SpgG+n+pSDMAZ3qB9/tAeMwd/WQLYSRLXenVYRhTwmTkhPWcrIaQV6HmphhMDb0aDZL9HlmLwbMZirsyg/Stjj8ES9l4d29NNoKpIejXANYa+Ldjxa/ZAE1hsrKdjf3jggICpDfZ6DjAxOI7HTJo6059uZPPEFcU7YwrcCFdlYPm5Psbh1g0xtcSVpF8f9cVt8iYvKvlfGTl3b+FgiU6vaYUQ7ngUQguvX/80+fSbX3PgBVjz746AEK8+/jKtv2rfpl4yMjIzZkBVYZkFWXHlq0UlEZwrIp5ndpymEIcZ1250iCuG1ZWf20yTepKldzIxi0vaIr0wSrr7r7w/oNc2Kah2SpC1TYwPPNYv/inVP/O2hP3bGYWGFekU74fzX7n2dqZZMEuwo4AD0o3eWfusumk2VBJtSVNn1uEewwCKstrZwXCuh5dliBnGCiROciZC04CFjTeHRKkYJmguLxP0FHKVs4jrWIClWSAoK6UmMkng7QtKCQ2tJD60+hyQQFDYnGAlOM0WFhupihXat78nG5/ZQfAJSV1BbYlCLGlRH83iFiKiYkCTtxK+uSIqa6hI7RZIGMP/GEBWmiFTbiY92Qm0C13bwCYEuBaQ5hySnSHOSJCdJPYhLgrAXoopBF1JEKBGpAGHQOY2RVt5LCBCutscsJ+hUIBsKkVrPg05hRYUg2w16Qhu0K7j525fu88dy0QsuB+C66997cD7njDlBVlx56rCneHbq4zAZ07JjFC9JrUfVPlz701odTLU7xd2RoiSKSLdsIwBkOMQt/7SrpNfBxml7EeqCRMV2EfCst6/l9t3IjGUcnayuvAGA9ePfsLfLr8dM8ZyDLJ6di4huE5/9Pc2wfoapo5mY1ji0u2ahOYpQClksIgIf09eDzrnIeojaXqXvHsXYSTma/QKnAcGvcqR+jrufl/CMMx7ht7kliAkHMMhQkN9svfmchibsLZMEAn+8F+0KkpwgvzlGRZraQp+wFzY9O0C1oDHfI+mNGZo/xgmV7fS5dR6ozeOx8V4WlsY5dd5W7jYCKQ2+mzDu56iP5UlyVhJMaCtJi7BSjk5oixypD2GvspPWsiNpK7oTKXFeEBdAe/Z5QttGIRnZfSX5tnyYak9ou3ZCW7sSt2ZjXTudovCqGqeRWtN7Y5DtRibtyH1uMgVYef5lyDjlqls/enA/8IyMI8l+THNlHFqyAkvGMcnuuv06Ad3UhFTXG0hAeDap7Cz+7W/Ht9Gm6zFAmrJu82EoroAtrhhjfwNoa5TXYVXhNQBcVf/24TmfjIPOzjrUwLRiS8bhpZMczmoBYGrSuLsEch8KLzsX1LoG8t1DiINvCLqvzPA6RaegrdqTLI4D20aRqg80iB3j0F+xCo2OIC37yMhBNmP8zVU838U4krjsoV1rOo8Ap2WIipKRU1yr259a7yutsL4peVBNGD/RoF2QkcD7dQF6IV2WUqo0aXgppWKLoh+yaXsPZjyHimHgzgR3IkRuG8MU8uiSj+4pIWtN22kY+BjXQXtWU1r7trgSlQVRCaIeiHtSZDlCAtq4EEqEFhCkKKXRscLEEtN0kLmESqVBGLk0VYCIJdoTaFfijbYNRNsfqRH2Ne4rF73QTq7M5PN1MLjowk9y7XVZ4SYj40DZ0/TKTDFtOjKK0gYKOUQuQBjfSn7tjY6cWBLvdJ8Co9GjY1x7/eFr2DEO1mvKCFRkSIPpUoYrnmP9pq75RdYkd7TSKax0b0988widScas49mdGnmEFJOFFTr+f+3CyyyLLbNqEJsrhZfO6/Y99KJ5NBfkEbFBJjnb3NNIqDzYIs7noAnFjSnbz1IsqYzx3N4H8U5KuXvbEGHkIKShWskRVRyC7Qq3Zkh9QRoo4rydMKkPeyQFa2afFmOEq1F+ynFD2zmlvJWy0+TG7cu55uHTEJHAG2qybHiEE/JbWJIf4cTcFpZ52/j+9nO58f4zcWt2YkVoSHIQzk+o4VB6VJDbrhHtNEK3pbpS18qBJYHoerZo1xZPvAkbgzpNUC2D9gRxzj4ujC3CYCDOW6lHb0zgtCD1wJswtogDyEgjO42tsuPpMntWndsuqAhxSIor2YR3RkbGVIQxmRnDVCYmJqhUKoyPj1Mul/e6/apzP8pVv/rwYTizjEPNCvny7ljxzsGcUAqZyyHmDWCKOcS2UUyzha7Vd5FfmpGdFjKFUt2u7ata3z1UL2kX1ix5B6ZUAAlivA5xzLpNX2ZV4TVcVf+2LbIIAcZkhZanIFmn3+Fnn4ossOckcR8LIXtKSo+oTFzbKFm4TldyESGtLJiwyTiuY+VoXBf89kSL68DYBCaMEH09xAt6EBpkM0Ik9r3RORfjKESSIpsxaE1rYZlWv0OSs9rQYQ8kxba2tLCG8f4IFDZrGoOSsNcmhHEJyudsY1lllKdXnuD03JO8JG99Xf7XIxdy5w9PZt5vIivbMN4ApdrG9k17vo6D2TFqX08hRzrcS9QbEPYqasOSuNzu3isatK9BGURL4tSk7e5zDcYxGM9AImxBqJDil0OU0rTqHjpUdtollrYoNGG9CVTLFpUAfv312U+vvOj5l3f//eMb3pcVQo4g+xqPHujz15z4btY9MHtvt4y5SyeeVcUCutGY1mjRiWm3v/FZjD5NM+8WQeW+GuKO+9BRNKv9q75e0tHx7rW7cz0/nHHjKR9eS3xqE8dLMPeUCLbDHWsvYeX5l2GU5JpffIBVZ3/YFtmNYf3tHzts55Zx6Mni2cPPrOLZdm678327MCWenU2hZXfyiFMfP9Ixreqt2Nu+P+m5pwTGcUjLPq1+j4mlChXZxpekAJWHNbltERueF3DGyvsZiwJGmnmMESytjDLo17h3fB5PbuklbTmoIEEntkAl3RTXTxgo1dFGMNEMiGNF3HIwVZf5x29nUXGc+3YMsrgyxsuGf8OrSxtxxa791VvTGqs++y5UE1RkqC0SxGWDPyJw6pAbMZQfqiPrIcZziPpyhD0OUWlS4lakkPp2olDG4NXaO9fg1TTasdtq106wdCZdjLQ/wQ5bPJGJLfD4YwavqnHrKU4txjiSNFD85KrZSYO96PmXI5sJIk656re2sJJJgx05DjSmzdiV6667jt//H6/ktFfMjTztzisv44ZrfsQFF1xwpE/liDJHyv1HLzsXV1afmXVKHa10gzchdwnSjDbWSE4ItOdAuWg7/zpj0HtaFBUSGfjIwO8WVqbu93Cy7vEvkPbkML477f5uUizEpDxPxlOKLBk9SjD6oE2UTJWO2ZN2/0FHyMmfGe4XUnS7GlHSekIpiXDaxp1KTRZXlLRTd63Q/uRy1qx+ZAz3/g04j28DDdG8AkklQPsOaU4Rl33ivjxpOYe/pUHpsRb+uL3eunVwJyDuS4j7E1oLYyZO0IwfL6kvgnBAU1+siYuGnlyTSCvyMmJQTQDwQFzjN08uorDJ4E7EiERjfA+T86wEY5Ja7xVjJl+jVN2FPrAJpGphfVakAQ2kAhkLZGxlvlQobPEEkIlARmLSm8UIjBF2yiUVqJbArQnQtnAkE1tYmVpc6RRPXvT8y3nR8z4x40f34xvex49veF/3PHcurly44lMH8peRMYfZubjSkefJOPq4Rn/f+qREMbJUYlXw6mmPG20QCaiWYPx4QXNhHpHLzXzd3hkh0cctwhmeN7mYajQmPrzGwfd+9BJWnXQ3S/pG7YJdp9u5lUxOrbQbhsh6CZ9SZPHsHMboGXPbbtGlE9/u48TJzlKIhy2m3V08O+UxIYVtGMrnoFCAYh5TCDCOfY4ueLT6PeKCRCbgNA35bRp/DKqLJI1hjwU/C3nkH08kTB2uOPX7rFl0NycWt3Je+WFes/gmXn3GrzjnlEdZMjTC4OA4+XKTcrlJb6HJjmqBMHF42uAWAj8mKESUFlb5g4W/40+Hf8nrT7iJFw7ex2n+hhmLKwC/ifq68WWnYIIR5LaZrtG9UbJ7TZUdo3tlZcM628gUVAROyxZc3LrBr2qMFMjUNv5o1x5KhXYbGwdjp9RNuzhTNW3ZW4HQVmb3xze8b1pxpSNju7u49Mc3vI+rb/kQxp8c4965uNKdbsnIOJoxc+QnA8gkwg466+/4+JE+hYwDYQ8Lm0YbzOgYMucRDZeRvQVU27B+T3Jh1lvAQeQCTLOFCcO2TJg6ItI81/ziA6x6xodtV/iUpLMjEWbCsHs7m2LJyDg47HN33VQj+oNw3E7SOdN5HCp/HiFFW5ps8jbYCb5OIbdbpFaqK8NokikLdULYgkUY2UJLqQjlEkIITOCC1uiCR+pJRGKQsUaGKQiBkQLtK0SsEakm2BYSVgKSvPU8qQxVcZRmfCJPYiB5eoNFvePEWrF1rES8NYcjNfNz4zzQnMf1O06ix2vSSDzkPQVyO+x56rxnJ2iMwbgKcv0AyIZERLEtsLg23DJSEBWtb4t2J6UOjNe+Fpu2xFfa6QIU6JbVu9auQYSSJFIEuQghDSaSqKbAG7d63sJY/ezO9ArAOf/fFRgp4OQcYJPOvfHjn75/xvsPpgzCyvMu4+pbsk7CucrO8jwZRx86bCGZuZmn7+469QUFWseHbD0zYsmWZcjf3GPN6/eggCuUYtPzSvTdlyN/m0SPjELHj+Uw8/fP/A5n/vBDJOWUqNX+LtE2rl55wcfAkRgpka2I1Wd+IMvRMjIOAnuNZ43eKfbTk9eUnRQdZisTNvW4U2PWPcW0BxzPztQktFOBSEgxqXDRbrJJSwFJ3kFGKc54iHasR17qQVSC/BZDYWMLt+Gx5RyHLYsFGI+0kvC/Bh9hsVMlryLumFjEY41+EiNZEIxzTs+j3CaWoHOC4cA2/JSdJndX53NOz2O8ufe3/GHtYrY2Spy0cBMXFB4gEDG/04vodeqcu1Nz5VS+tvH5xCVoDNsGHaMMaU6z4+kC1QR/AqKyi6smp5OEgbgIrUEwjoFx2yCU5Ns+gAbcmsYogWpp6xsTCLyJ9vQ21pvFKBsDy1QgWxCMady6fZ9lZBCxnrZe8ayLryDOT8a0e4tL9zSxcrBUaDKZsIyMjA5ZgSUjYzd0grhOoLbSexWm2UJuHYGBAmnBwRkeRG4G02ig42TGINGkKbrRQHkeIvDtne0FxKvqh08ebFXuYsRJy2xXNYDrdDtWO8WVmZ5zVfOfD9s5Zhwasm6/I8fOyeA+sZ+dfjsff2+3d05WD9axuot6U4pFQimE7yM8DzPleil8v9sZJ1INqQYTgQpsgaKYt5JbgYsu+GjfwQhQYYqRoFpt+cVUIyKDcdpdhVGK0BrtuWhf4Y9pUk/htKD+QA8iBeNaRfAQ0L02eUwihcmleDJlcTDKkDtOXsX8Ystyto6WKI6ASAw6UCQFBxlpUt++RhkbVCtFJNqanAYuxlWkeRfjClIPmsOGNNCThp6JQMQCkdgpFRm3O/pcEAnonJULQ4COFC3jYVKJ0LYLXej2VEwEKjRdnezzXnsFQtnGolu/Ot0Aemc5sMONqjYP+zEzMo41dNhCKMXqvjexfuRr3Wv86oE3s8hZxiOnQuDFPPTyXk4MT0Dc+wimZRttZoxpkxi3CmFF4R43hOu60GyybtOXD9trWv30D3HvmyrIRKDzJZCG+z7Uvr5JaaXBpMQIAZ0FQWNYs/xS1j1yxWE7z4yDTxbPHjn21qwzjWkSYJPFiMn7Zl9YmXr8nc9jTzHtAcezOzc67RSTS89DlouY+YNEPQEy1hhHElVsIUM7AtVIUK2E3BZDXMihQmv0vvWZecJ+aC2MedoJGzin93Ga2sMVKT9rLkcKzdZmgc3jZTw3gT54vNHLk9UKS8pjnJzfxKBTZWPcS79fp5F6/KB2HFtHS6TjHo8Wehmbn2dQVWmkHi8q3gXsvsAyFga0Bg1iqEUcS9wgoZQPiRNF44kSSU6S5iTa90gCgUyg1Stp9UEyHOHlI6InC3ijVqbWmzA4Leuj4lYTtCcJK7IrI5b4oNs/1qfFTsKoyPq6OKLjJ2jziM5U4ornfgK1MCDJiWkx7YrnfLw7gXNEfLeOkJVlRkbG3CMrsGRk7A4hWem9iqujKwG4OrrSFlmSBO1KagtdvK0Kkc9hwtBOsmg5c0LakRhzHduF0fEZOIzsqVDS9V+ZSjuoWRW8GpHPA7B+5GuH7PwyDg1ZMnrkOaAiCxyUSbc9/R0c8Pm1uUZ/nxXqFbs+MEWjXyhlZbQCH+G6EIbdjmOSZLJLre3HQpKC501eO6UkDRxkYnBGG4goRuY8O0XSluDqyDLIeoRshLar0Bg74ZIYVGhwaraYYZTttkvKKbneFgU34p57F6FqClNKkcJwb22YR9QApxU24qvFJDWXJICwz8FMCJJAEg0pGkO20FHYaAjGBKqVYHwH4yqSkk/Y79HsV0Q9kOY0FFLb2ZlI5KhrJb6wutwd80/tG9AC047WRCowDYVG2eIMtosQY6deVGj41TetLNiFKz6FV3aIC7JrdD+1qAL7Xlg5mF16aSV3UPYzE6tPez/r75pZBi0j41hgZ3N74bmsWfIO1j3+BQD0RA13a5U0qvBvZ/0jayb+kq3P6mF4cwWzdZt93m5i2p4HQ+oLPVQjxhR89MDh1VNff9tle31s1dkftgt07WI3rQhaIWuWvAOg+z5kHD1k8eyRZ7/ixc60Sopt+NiP4spM57Gnxw40pu3Es0Kpafm6SWIAZKmEKBYg8DGuorYkoNkvKD+eoloap56gQtvgkwYuCIE3kaIdRVwQtAbs5Ib0Us6obKSW+vzXfWeglObU4S1srJZpxS6D5RolN2RDtcLmLT0oL2VBcYIUSUk18dMiBRXyeLOPx5t99Ffq9A5v44L+Rzg/2MKt4QDzvIk9Tq8ArBy+h//95CCVYpMzBzfxp/Nu5M7WYn6y7WTumghIAh/tCLQDUUkSF6C+xOAsqjOv0ERJzaZ8gKk6uE3I7UiRoaa2yCUNJCo0xEVBEtjCSdoprsi2pFjDTsPIxDYcpZ7EaelpkmCrzvkI0hiEDpCJzRU6Ma0Qgmt+MfPk9Z5Y8ZyPH5SCjDjEku9rjnsn6x7+3CE9RsbRikHMGRnUuXIeR5aswJKRMYWpHTFCKYQUrApe3TWivzq6kjXLL0U1E4R2qZ1QoSAlotFs60/vXldBN1uI1LX77SwuHmFeuPLT+Dfdy/qJb04rslxV/7adeHEdjNZ24fMwF4QyDpwsGZ077Knjbi6wJ23r/aHrsSIkJokRntstrgjfs1rVqr14Z4yVAEs1xmiEkLYII6V9LEnsj+PY4rSB1FekC0qI1CAjK0FglECkVk5AhjEiSkAKdOCQ5m24I9NJA01rJA9JQTO4dITjekZ4YHQAVbXXOqMMv7lnGSIWlBdNcNLxW+jPNXhUGaIKNCJBVHTsRMo8CBfEqKqDUQKZKvzt1hMFTVeyLOyBqAwylGhlMDmD0dZ7RSS2WJLkDFFfe7olFcjUoB2DCbQd8tEgmwoRC5ymwKmB07RTL7/6hi2urD7t/bieA+Qw0kWFNug90EmVgymBcCiNRrPiSkbGTlI5SkExz5pT38u6ez7J1dGVvOh5n6B4p8+3n34+lz7zx3y2sYaeBxfh7RhpTyDuGtMKpfB++xBOYwlJySNcXKA5cOTjw+Xf/SQnfinh6l9+EICrbv0oq8+y/1539+WsWfi2yY13NuHOmPPMxbjpWGVnhYd9+Wz2JKl9MDkYniydOFZ4rlWgEIJ0ZAxZLCB6KpiCj3EckqJHc0DQ6genoeh52E6tiDjFKEVScNGe9SDxJjQylqgQmgMC46doJMcHW3n/M9Zxe30xRRVyXu+jPNHqpZl6bG0VaUQuXj7C9xJOKG3j2fkHiY2kJO0kcCt16fdrvPm4n/GG8pb2KyjSIxucm3uYvS35/X7xTm45fjn9fp0/m3c9Z3seJ7t3sD0ucf+WeYjU7zYoIdpm9Y5hYe8Y83J1HhnvQ4R2QkWkoJoaYQxCQ6vXxudxAdLAHk+7kAYGzJQp7Mh6EzotgzDw0/96FwAXvfCTiFSjUoMJHCsFHNvvnAONaQ/WtMu1Pzm0JuNZcSUj4+ghK7BkZMzANfr7rPReNV1vtc26R65gxXM/QeILkkBRfKhtWhz46GZzunZ1xwCUdqDmeSCFNRPtyIUdBs5/9ecRxur/G2klbGRscByBPmV5d7tpnivtDnIhJUZrrpr4ZldiIiMjY9/Ym2b0XOJAuv+uSb8HTJcd7EiCAfa6kgswnrKGloFvzesBPBfRmWbpmNwbbadYXBcCuw8ZJohEoj2bYIlUY6Qk9R2cemylp6S0+vvCSnNFJQeh7XVPxQaZ2GthGhhMLiVKFfdsn0d1IofbFDgtAIe+u6DVJzALBUXV4pTiZn6dLCdeGBEPSJwRB5lCvLRFT6XBeFom9RzqwwIZ5yimGjSYtlGnV7Wde1EPEEvwNMLRpHmNW5M4DUg9QVoA42qEEohxhTQC7RqMMghlMK7BG5G4VZvMCg2/+d9TJMAciUgSUlfiNFK0my0oZmQcq1yjv8+a+W/FCMHUK8GPf/p+znrHWu6uzufS5bfwxa0vQTsxcqAf02iiq9VdY1qlwBjiskfqSyaWKsLew/t6XvzTt9PjNxnwasRGsalZIV8c5IFXl6Ztt/72j03eSJJu0X7do1/oFpoyMjL2jZ3jw7kc0x5IPHt1/K8ArFn8V+DYeFMtWoDJ+ejA6V5Paot8ooqNw+qLoPd+Q9TjoyKNdiRhr6LVayervQkr9Rr2COqLNTkn5YHqII3U5bjcNkaiAuV8izWlO/j39Bz+4/ETqORb9Bfq5CsxZa/FisrvOLsdU7fMKL/QJwKwwB/nfxYfA4LuaxjTeWKjwK8DsOreF7Nq6G4u7X1k2ms9w8vxiSX/l21pobtvAG0E83qqbFqaR6aKwmbbFKUigT8iefiRIZ4sRxhjfViSvG0iiksKt5YiNIQ9dlI8zRtEDMEOK5WLEWjfkOYMRgkKG+0xjYJffP+vu+eQ5BQylWhfEZUdksDG7xkZGW2ywZE5RXZ5ysjYE0Z3p1emcs3P349MDMWNCcZViL4ecJxux3aHqXqzIp+HhfMQ5bL1ExCHfsHrWa+5gnNffwUyBqdprFmctrqwRrVN9/IOq8/8AGtOnt6ZfFX922AM6ye+CalmVe5iSFNWD7z5kJ93RsZTjbmafO6OAz3fq+rfttc4YQvLHXkwoZSVVPBdTN7DeI4toICVAfO9bnHF5HxM2UowdAotohmhJlqIVCNjW4zRrkS2UvxtDZyxJiiF9l2MIzGOJC46pIGVHLBTLnaKRca2c87d5jK2uUwrdNGhQoUQ7ICeewV9vx2nsNlwysBWYqP4/gPPQDYlSxZu5/ln3Yte0iQuaZSbUgpCgv4m0fEtJp4WM3qypLakQDgYMHaCz/hyRZxvd/e1BKopEDUH6u1eF2O7+rRvI2URSdB2SiXYKvA3OzhjDqLqoKoSbwzchp3Kue1L0/1V1t/+se7UoVtLGDkl66fJyDimSVLEeJV1d0+XCbz9C5cQpYrbowL5s0bYfL5LsmTepKTjTh5gJk1h8TCPvS6lushBO8Bhqt/+7b0v4uKb38iGagWJoey0GPYmGPRrlHMt1Lwmy77yOU76+FpOe8/aac9dt+UrdkFUa9Ysb0/6nXkEtPozMo5y9hofHoBv4KHgQOPZdU/8rY2nXBfdVyTpzxP35KwXoKto9QpaS2Li45uEQwki1YR9Do0hj6isSAJBdSmMnhOz5dmasRMFWoGMBM1NBe58fAH1xGc8yXNGaQNPtnr47MbVXL3hFPpLdZ45+AQDQYN5uSq/338Hq3NR99yGVY3zSo+wauB3PKvwICM6nnbuSmjG0gKPJ1Ve8fBFbPrREq7a8rQZX+cpboGlTrV7e4lT4tW9N/GWZTcwdOpWxk9OqS6WNIYkE8cbwuEEkQqiCY+k4UIuJe5LaA4Zxpcqxk7wmFgqCAcMad7YaW5pfQWDHeCP2lhYRgIZ2wkW7cEt/3TptPO64Ufv5idX/Q0TSz2qixVRWVJdkjUNZWRkzE2Omoz7k5/8JP/xH//BvffeSy6X49nPfjaf/vSnOfnkk7vbGGP46Ec/yle/+lVGR0d51rOexZe//GVOO+20I3jmB84K9QqceQNQyLPuwc8e6dM5Zuh4r+yOX//jpVzwqs8Tn1DEG8+Rv7WGcWyXtEmnF1fsJIwhLeVwQmtw3+mGOVSc/ea1OAZUDE5LkwSSNBBERYHTMnhVjdNM0b5CF3xkalh91gendfyZdje5yAVWqqd9e/XAm1m//auH9PwzDoyjbUE/46lHd2JvqrygNhAnkHrWWR6sVJiW1theiMniSs5Few7ORB2SFFMukFRsZ16Sd0jyykqDCfAmEtyJGCkEUW8AAryRFhhjzTk9gd9IMRLCskS7VorASPsb4RB5Lqqm8KpWxqGwMUJu2kYFuPPqk/jV8mU4mz2EZxjK1fjTwRsZCfPc581jQc84/bkG8/NVim6LR6t9PFZdyMRSSVKQNBcl1ivF1zhBjLq3gNMURIEBCbIpSAN7iRWpQLYkKDPZpWdANW1xXLuGh945PQGdCR04oAQ/vuF9LP3HzxzETzYjY//pxrS5XCZ7cRhZt+0fdvvYfz/vi+jNJ/Gbs7/Hv59S4rKJP2W+no+8L0akta5JNWCnWKoNjp9fZ3N+CV4Vwv5Df/5680kc5wXcqRZxav8WLuh5iD8tPcQWnfClbc+nEbn0lRukpSYjpSLyoYCTP7aW+z44pfisNWawt+v1ZVzFqmd8mKt++9FD/wIy9pssnp17HCzvvqMGpdClgNa8PGlO4tRTVMsgEk35iZTmPJfkuAQRSVQ9ovRginGtZ2B1iY88rsbx/aM0Yo+R7UM4IThL6rz2lJspqhYvKd7FMsdO4E30/I5vjp/KPL/KJYPX4wnBJ7e8kBRBVU/3rhtSgteVt6LR/DZKdjntM7wd9Ms6X9rxPO7675NYeGODkdElXPM+hxW5hKYJyYlJRY0lTmmn5+c4wxvh14OP8YPNvTSGJUlfwnHLtlB0baHHkZo7nlyAEAadSpJI0Jwvuz6HCOslKIw1tE8DuzZhhI3BdaB58N1/zd5ozBM0Fqc8+ufvZOk3spg2IyNjbjK3Wgz2wA033MBb3/pWbrrpJq655hqSJGHlypXU6/XuNp/5zGe44oor+NKXvsSvfvUrhoeHWbFiBdVqdQ97ntt0pgX02AREtithVeE1rFn09iN5Wsc8F170KQC88RSZ2FFYHAfhulYKbCd9ZyEFwnGQcQqNJsQJaTngRc87MJ34NcsvZc0J7+KFqz7N7710evHNbRiENjhNTdijiErWnyAY0wSjmp/933eRFBy0IyA1JAMFwqEiK5798a5u9VW1bwHW3H796NdZP/4N648ArBl8C6sH3szq3jce0GvIyMh4arJ+5Gv2etGe1jNG2+7nWh3ZCBGJRsSpLawkiZUKi6K2lAuIKMEZa9jEdqiX5sIS1aU5WoNWesGrJvgjMU6oaQ24NOcHtIbzhL1WoznNu4SDeZymRqQQFxWtPkWSt/UcFQIC7vnYJbbI0lJtCUVbyHBHGpgwQtZbDNyZIiYcknKKLqT8r6GbuCiXcnbv47xg6YP8wYI7uaD3IZYXtlNUEX1BE6MMwaghyYFwNbIY09NfQwiIS4ZwKMFbUIcgxakL3Anb1Vd4EoqPC/ztEtWQYKy8gvbs5M0jb9t7IgrW40Q79r0/+WutQ/QpZ2TMnjXDfwG0Y9p2/L7muHceyVM65jn+c1dMu/2yQhX1whHGTyzC0gXIfL7rSSikwKS22P34SC9uvS39sqTJid//+AGdx5qFb2PNorezZsk7OPGTa1n2T5/eZZvzgx30uE1eN/RzVhTu48EErqqdwt8+41/IuQklv0XJC+nrr9Fz/lbEaVVOvmwt577evsZ1m77M+js+zvo7P8H6Oz+BiFNEkrBmyTtYs/ivrBRQRkbGgXGABvZzkXX3fYq4EmBcYRteIo2qR4gwJtjaItgBadPBG5XIagu1bQw11kQYGwNGNY8NNyxm5OYhjIDSH2zilgu+ynv77+dtPY/zRFLizsj6qZRljr/qfZS1829liVPigbjIc8v389r+X/Boa2DaefXKPAASSVlELFu0adrjC1WJBU6LGzYez7xbI5wdNYobY/7shtcCTCuu7Il+tw4YdGDI9zYZCBosLozy9J4n6fEaVEpNTh7eSpCLEKkAbadSvDHwRiSq2Z5UiQSpD60+SAp23w+/fXYx7d2XX0Lf0jEATv5aOKvnZGQcCwgzN34yqTLLUTPBsn79+mm3v/nNbzJv3jxuvfVWnve852GM4Qtf+ALvf//7+eM//mMAvvWtbzE0NMSVV17Jn/3Znx2J0z5gdjclYBpNVgWvRlbKduw947By3bXv4Xl/9Fl++t/v5pw3XkFhU2LlbZS0hZbOeHRnQRG7uChHa6QLBpCtCOMoVHPXbpO9sbr3jXbBUgr0cYsYP6XIlmcZSo9Mr5fe9J3JDudnveYKhIGbvjs9iLnhh+/iogs/iWxFJCXPdktLAcaw6hkfJukNuPa6SeO2NYNv6f573bZ/YHXfm7pTLRlzh6zbb24yteNvLmtWw8Exugd7nViz6O2QphAnCNcBx8E4yl474gSiCJOmCMexMgzGdgWiDdQbmN4ScW9AmpMIbVAtjTMRogOXNKeQkSHxoT6k8CbAH9eI1Go6y0jj1FN++l/v3+N5yhhkS6IrCa1+DxWCaMUYZa+rqS8IFtVo1T2METw/tw3Is9zfxovLt3O25/F4UuW6xvHc3VxII3ERqcCrGvruhsZ2j6gHGiaHNJD0aJyeEGME+UqTuz/4N5zz/12BV7Omn9oTtGLBPZddssfz3hs/+0+7eC0b0V62zMg49Kzb/Pe73hlFrO59I6JUZN3jXzjs53Ss89A7L+Wk//Mx7v+T+9GbT+KuuMHYjiKlQUGxL4dX60fVG5h6A4C03kDUW5T/Xy87zjKopiBtOuh032PBVYXX2AlHz2Xrn5zK2MmGyoOCy//nd7ixeuK0beXw/QwCn1sA2zYuZHCBFex/Zvvxm1Z9klP/86M0x3IIL+V5Jz7I5qDE/b0FeERwwas+T1SU3PpVe01dde5HQSlElLDu8S/Y4orJVgcyMmbLbmPaGfxLjyQHK5697tr3cP6fXkFUtDLbzmgLXQqIKh615RqMwKkB9Qb4PiiBu6NBz4MehU0uPffWaSwI2PCSlK+e/F3KstDd9w/Hn8Gzig9yhrdrU/CEDljmbicQCcuC7dwZNTlryRO7bHfyLvdYFqoS27ZWKLdSkt4CYY+i3D++T6/dlQlCGWQoaG4pcLccQslB4kSRasmCnnECJ2F53wj//dKPcMqH1+JWrYStboEo2GamA+U3v28L+UnePeB9ZWRkZBwKjpoJlp0ZH7dfDH19fQA88sgjbN68mZUrV3a38X2f5z//+dx4441H5BwPFVfVv836ka9htMGkqe26yjoADzs//cG7OOGzV1CfbydDSFLb5ee6dhFRiklDULATSONV1HiDeKCAs3XC+qDshV0WYZVEeK6diGlFxDnBX114FY1zmrvdx83fvpRffWNmSZlrr3svIkzwttdRoUa22vqtSpAUHM59wxWceanVsjbtgLlT+Fs/8jXWj39jr68hIyPj6OFgyz6se/KLdiFLKUya2tuOxLgKkgTTCiflwYSwhZdq3SapqfVdcWqx9Y6SNrENB/O0Bn3CHhcjILcjJRgxOC2DE9rrlDPawtvRQMwiz7/nY5fgjUq8Jz3igjWaBxBCYnzHSkH8uoz3cIDy0m7X4MWl7V1D0CVOifNzjzDsjbG0MIK7uEZzwIZZ/jgUn4Te+wz5TeDvkJjH83BPkbtf+hHASiYAmHbry86+KrtjauF7dxjvqOmnyTjGWPfkF9H1BsQxa5ZdwppT37v3J2UcVO7/kw+iN58EwEiah4Yiv83Q6vdIB8uYgR5EXw+ikEcVC5iRMQZ+sRWnKkiKmmCjiwlnJ3s7NaaVxQLRuScTn76MsBecxXWSVWO8rFDl88O/2e0+BhdsmPH+e/7HhyGUuI8F/Pxnp7G9UcA4hqgiSD3rg/CKX06/Xq6/y06Sr3vib+13U0ZGxoHxFCyudLjpO5cS9lhpK+MqZCvmhh+9GzEv5PSTnkB7YKo1K4+baMREncotGxj45TZEolGxwd3k8bPGCdP2+5mh3/KywsyKK7FR/MPWF/DlrRcy7IzxaLJnTUY5fP+udwpbPI7LLvX5Ni79xsQQt0Wzm25+a8/vOO+4xxCLG5BPCEOHidE80SMlos15dtQLPDrey38/z15DjYI0bw3u49LsiytPRV+sFc8+sOnOjIy9YubITwZwlBZYjDFceumlPPe5z+X0008HYPPmzQAMDQ1N23ZoaKj72EyEYcjExMS0n6OFq6MrWb/9q9Z8rdnsmjZmHEaWNkjPqlFd7NkJFsexXdid350iSy4HQqBrdRgZw3t8hGhhDzvOKO1ixLkzO3e6d/aP5yEm6qjY8L/veS5PX/Lkfr+Mdfd9ivW3fwx3Rx3tO7QWlgkH81YuJ4EkZ6dg1m//Kuu2/UMWLMxxrtHfP7a0kY9SjqXPaN2TX2Tdtn+YnMoUNvkkirtTfiQphJEtRocRxLHtKJYSoyRJTtDqFYQ9ila/Q7NfYiS4tRinoQnGNCq0EyAi1t0izjU/3/P0Sod7P3wJffcYnBaMn2hIBoogBSbw0I4gv9ngj4HnJWhmXkDYkVp97H63zinztjJxvKE+LIiLoJXNcb2aofS49VFZfN1kcnvzty+1kzdSkAT78N7uwVuhg5GSledfNvudHmE6UlIZs+doj2fXbfoy6x5dC2MTmQzuEeT3AlC9IdUlgjgviHp80kqeZGH/ZKFleBC9YRNLrm5QfESS5A1CGU76Px/b6/6nfu+1nr6MxrBLdWlAfoshHPcZLk/wuZHj9/v8H33LO7n/fZfw0F9fSuErPeSfUNQXGnacCZxS448Hb+W89e/jql9Z75UzL9lzDJ5x5DmWYqWjmWPlc7rrU5dw4/f+mqtv+RBX3Wr9mwZ7bXEktw07iZ0kdkLb8zClPGlPnjTvEBUlcTll0Jn5+/n6liA209UttiVlFvjjnFbcQFXn+KPjbtvrOe5cZHn+KQ8QV1zSQFI9MeUVx/2G+5vDxGZ2hfGiDFi75L94/Wk3ceqyTRTyIdLRGGWnVKojeXZsLXe3v+9DlxCVIeo1tBbNXq1j/R2zXF+QcOGKT816v0eSa278QLZukpFxDHFUtjT+5V/+JXfccQc///nPd3lMiOkTAcaYXe6byic/+Uk++tGj39zQxDHC91hz0t+w7v5ddYsz9o3Zmvc9+D8/wCkfXUvl4dAuBEYx9JTRvUWEsRI1IkwR1QYkCSKM7CJirY57+xjzNg8QDZW46AWXc+3179vtca7R3+fv73sh//KeF1MUVsKLNAUUcUEQ+DH//uwZpDd2w5qhP59RWm62gY2zeYw1J7+HcEkPE0s93IYhCQQygfLDzVkvaGYcOuay/NSxTOdzmYtSYYc1OY5Tez1M7eQfelJOESkQrmuTVEdhAheRahJfUD2/yYQR9P/Ep//WcUSakvTkiIuKJCfIbU9w6gmNhTl+8f3Z6TpP5abvXMpZb19LdFKL+1/vc9I3FrL5/AJXXvJ57o2G+I9tZ/OuBeu58K5XsPmXC0jKGl1OGJ4/xh8vvo3YKGKjOC2/gVtGlmIUtAYN3rig/9GUwhN1rvrVh7vH60gwrj7j/UTDJdJ5LqkHehbTjbNl5XmXWU+b9OhpL5pRSmqOsUK9gmvS7x3p0+jyVIln0RrKpcx8/CCyKncxVzX/eY/byOH7+dw9q9gQ9mI22UKxdmFiqUvy4hquk3JS7zZGwjxP/miQ3PYBCpsTihs1i364lSf/cJjK6u186d4L+aPSPSxeuGm3x9KbT+L7tQoTS15FcWNMsKVBY3GRP3zG7fztgl+xIa0ih3f//Km86Hmf4Mc/nTnm/Ol/vWuGez/IK6Y0j5ee1Jz3uisYO0kQDsX03uYSlaE5X4OBRddaz8KMI8dciZEydmWuxrSHu9gTODH3PDlMjwATRTBeRQQ+pq+HuC9Pa8CjulhRW2rw5jW4eux0Xlq4edo+/nLjeby2/xe4YlL+6vu1Cm+qbEIO37DP5ySH7+9OJn5zyc/4X+9x2VAv8/Dp/3fKVrOX2ioKhxcV7yIvI36kT2N8RxEhzS6+gE97/1oaS1LUkgjHTcn5B1ei9mgprEzlmhvn9mTOXItnMzKOZo66CZa3ve1t/Nd//Rc/+clPWLRoUff+4eFhgF2mVbZu3brLVMtU3vve9zI+Pt79eeKJXTUtjwZMK2Tdo2uz4spBYIV6hdWPnSX3fvgSrrv2PSQL+9FLh9HFHMIYZD20Uyt5F91TwPSUoFS0C4bNFia0j29+Vo7WgGdNPb863aj+6X+5ljP+ei0nXW477LacrUC2z01K0oX9GAWNprdPr3F3vj3P/p+f3+1znvuyz3HRCy638h1KYhyFDFP67qihlaD4ZEzl/hoiSVl9mk12dzfquyp38T6db8a+c6x0kh2tTE1Aj8nPSonutcykqS0aG2OLKztff1N7Pc2NaNgSYMZda1AvsZIL1Qh/NCbYYYsrarSxX8WVDmE/zOurcs7THqG+KEft7BanuXleVqjy3WXX883tv0ft3xaw9Ed15v/UUPmtx9Z7B9kUVTgz9zhrSnfwyuIob19yLX+z+geo5XVkbKdX4p7dGIoqRZJTVte7ZQjGDo7Exo2PHcdHvv9PnPD399P8VO2g7PNwsWb+W4/0KeyRuZaMPmXi2WaLdfd9KiuuHCRW5S62/oCz4J2nXsXap/8rujdGnDfO0jc8CH+4g4nRPN4/93HzzafwjN4nyb9gGzuebmj1OfTcvgOzZRtawQuHHuAvep60mv8bF/KzR6fL4Nz5xKLugt/Li+NoD5KcpDW/QHWh4qYtSwEoidn3/+2uuAI2hp6J475wBad8ZC3P/LO1JIHASPB3QN+tLklgiyuqKei9W5Lb0mL1wJsBZpx2Wem9atbnmrF/HJMx0lHGsR7TnlDZTq4Q4danNLIU8uAqtKeIi5KkALqSEI0EXP/YibvsY9ib4N/HzunevjWK+NwDK2aW/NoP/mX5dVx72v+Z8bG/2PAsTvrpa/j0yAkzPg52iuVc3+U1lbtJtES6KfTuWjwJew35oRo9lTquk2LMwWsY0ptP4sf//A3e+JX/5CVfvO6g7fdwcNGFnzzSp7Bb5lo8m7FvHGlz+67JfQZwFE2wGGN429vexn/+539y/fXXs3z58mmPL1++nOHhYa655hqe8YxnABBFETfccAOf/vTuiw6+7+P7u1nwOIq4qvatI30KRx27m1LZ3y+ZkdMK9N9RRW0dsd3YlRJJ0cWpxdZrQAjwHUSz/d9OGxgZIykOsuM0xcAdmrDH4YxL1+JVrSxXYxGkgUG7hodb8+g7dysPeMcx+FtNMJLw5As9xAk17v+TDx7IWwHAOW+8gnCx5JlvWYvQ0OqHuz55CWvmv5V1m75M6guiHhfVyiGrIcZzrB+CKyk+0cLdVkc0QyuVpiRrFr4N+sqseM7HkWGC9hzk7ffb191mVfG12d9uxrHJTEXcI2QMeiSSYR14SEDUFUJKjNZ0UjAj7ISe8FxwFEJriDWFJxssvCGgtsBBhZq4J4ejFMIYnFqEO5KAMV1N/f3l3g9fwj8/cD5n+ht4Y+ESSuXp/la/3r6YvnubCK3Jbw4JtgviYo6K0+QUbzvawPu2ns1jjT7O73mY5yx5mOs3no7TVLh1yYmfWssD75muR22EwK0lyNggE81117zngF4DwLKvfZY7XpxQlAFvfPwEhsoz63vPWfTc0XE/GniqxLPrJ755pE/hqGNPU9d7m1yZiUdf+zd84q4/4P9tOJ3abf2Ut8P4cnjLiqsZSQo8rX8LPxsrIhMfRsYwacrQr0MmXhmg0Ugkd0ZFxtI8n7tnFeNJnkXeCH9cmp6B3/rBr/A/HlzJ/dsGueuC73bv71lw4MXBk/79Y/S9pMGyr30WEUrc4UY3Vhap9QiIKuC0IPXtt4/bMFQeSXDrLvmtKeXfbIZGAwOsrryB8J1n8LT3ryUNYNmnb7MyQG1Wl1+PiSKuan13hrPJyMg4XByJmPYV/TcTa8Vv5p1Oj26rTEQxRuSRUYp2XMI+g1uMSDbnCDcU+ODW03lr/00MqyIAHxi4l6+Nz+fOqMm/jZ3L9VtO5FdrLj+g85o6xQIwqlvMax9vKr/4l2dSbMG//nwFL3rn3V1vwZnolXleOO8BvjPaQ1T3OO7Ky3n4VZMqHGklJefH5NyYVuRyx0sOjjzt1NdxvLuVx6I9e9HMOXS2Ap2RcSxw1BRY3vrWt3LllVfygx/8gFKp1J1UqVQq5HI5hBC84x3v4PLLL+fEE0/kxBNP5PLLLyefz/OqV2XdRRm7crADsFu/OrlgtnrgzdBfIS46jJziM/ibOqoe2kJLLrALhmEIgY8/Cotf+gi13ywm9QUiFeRGUlo9Eu2B7otR211++NBpXHbmD3n5WeO8+nkv4OZbTsZZWMPog9MZ8uuvX8r5f3oF5QdrpIFDdZk1AVi36csA/PLKXTvCV53zEZKy35W52Zk1i96Os3kHOArZW2Fd/dvTpCpEu4N9NvIVGRlPGWYorhwpWYUj1Wl49S0f4kXPvxy3EWLGJ+y1QAiblIr2dIsxNiFJNUQRaqSO70qEAaeWIrQhLbq4I00rOZakrLvv4EgHXHziTejNJxGVBH35BrdFLZ7u2WviL878D55+9p8zdHMdI2FieUBSgH+5/2weWTTArzYuJrmrgtOEXy4+iRNP3kDluDEaE33IjYLSY9bT6uZvT/qmHYpufVmMKUp7zo3NRdJS/aAf45CSJaMZGbPiUFzH33/a/+P9pwEr4YJXfZ6NF6W8s+8hAI5b90aEmzJ6sqSwYSHu/RvwN45zYm4LAI8nVVqmn5G0yJ3VRfx602IAHlo2j/OLD/LSwuS16D9PuBp23zS939z/sg+y9OufpXK3QxpAo3cy5X3or3f1rPy9l36W0RMdbvmnd+92n2uOeye6t8ADF1e4qvYtVgWv5uroSgDEvAHYMQrAquDVWaEl49hiH5QfDiVHKqZdsfweLsqdxHFnnWj9Vx0H02ggi3lk4iFSELEgHglAGXKbFf/+4NN5ceU2hqfYoCz2dvC5Tau4ddMi7n7pRw7KuU0tsuyubeVlr7ueH3zlBQQv3srJzq5bXTG6nF+NLedPh27kxfkWHxi4l/vqQ/zyoeUYLTj+e5/goVfYacJH33ToJRXvCheyNSrvfcOMjIyMw8xRU2D5ylespNELXvCCafd/85vf5HWvex0A7373u2k2m/zFX/wFo6OjPOtZz+Lqq6+mVCod5rPNONbpGDk/+xWfp7BZo31F9ZQ+EFZb36um+NubiHpIz4MJm+slkuMd1Mod9OYaPPy7hehcytCiUfrzdR7KD9AayXH5vatZP/Qkzyg/wV3Lh5kYy+PlY9YsfBvrNvzdjOeyuvz6WXeE3vSdXZPOPSGihGuv+8huH1/35Bd3uW9qIcV0OpRnKV9xLLEqeDVAlqQ/hdlZ83auaFcfLpKcwvFtl5zR2vqudOTCOhhjze5Te62QrRSnkVqPK9kuLmt9UIsrU4l6YPN4mU88+Qd8/7gfd+9f/NJHaP1mmDTnUJ8viEsaM+Fzw70nUbjHo3eDQWiQoeKRicUkAwmyYNCOIBgx5LYnnP/qz3PTd/dfymyvtN/Gb0wMIRLBWCPHsn/6NI++7m8O3TEzMjKecnQabJ7YsJaFqsTDa75uH3gR/PvFJT7w3T9l+FcJV6z/A/7ilf/AEqfEEieC3BbeUN7Cv/b1MpIUWFG4l7pxuDdOOcUt7PZ4F134yd027qw87zKuvuVDszrvx964Dwt9QvC7z16yx03WPfy5abenxWe1OmLQdlTL/r7ZH/cYYc0J72Ldg5/d+4YZRy1TY9pjLZ7tcMayDSTFAvT3wug4NJrInItX9fHHFN64wm2AllBruvy8fjLn+w91n79u9Cx+dsfJh6xIsbts+0MD9/AvQy/gv0//FkU5fcLla+PzuWG7LdDcVDuB492bOcUt8NbhaxkJX8L9G4cQh1Ef6Nqm4vubzwbgzB9+6KBNyBxy9uAJnZGx3xi6+V7G3OCoKbAYs/e/HCEEH/nIR/jIRz5y6E9oFqwuv5603sh0DY9hbvyeTUqf/pdriXqsYWjYr1FNB39HmYG7EvKPTaC/1ktjCBo395O7u5fBvCCsONQeGWT7aUWEMjhjivCJPm5Uffyk/3QoJdBURKmYVlxZs+jt0wobh1JuY/0dHz+g519V+xare99oOwEzubBp6DhBSMFK71XdDsk9yYBkHF0IKTDtDv2V7iu5Ov7Xw3bsufI3lBQUuuCjcjnrSdWZXgH7u/MTxVaKxVHIyMOpCUSiIdGgxAFfh3bHZdtPJeox8EiRW3cs57XqeXxr6U8B+OFJ63naC/+c0mMGFULxUYlRHv4YqMigQltgMY5AhgJvg4uaIlVdH3aoLRac/LG13PfB3S/qra68AZOm+3Vt1OMeW9MaH7/+TeQ3Sqo9uaOquGLS9EifQsYUVve+kXSimsW0xzAd4/qpUi0vK1R52Zu/wotfsIahryzhaWN/Tu+zt1APPX55zrd42n//JU8/5TH+/YT1SOzC3T9XB/jExtPocxv8z76bOcMLidGUhY8//2GunSKtf+GKT02TTJxtcWVf+dl/vvOAnr9u898DsObU97Juw9+x5rh37lKQOZYxO0a7ksOQxbNPKXaaXjnchtlz6e/ozQtv4MvNsxGtCIrtIrIGp6lxa4rUhdITKU5DkxQC/k//M1jqbWfQmeDO1mL+7pnf5e+eeejObyZ5sA4v+aObaBmDRvOLluR7I+dxemEDTw8eY3tfieX+Nl5ZHAXs63KF5qyeDWyplRDC8IpfvoXvXfAPezz+hRd9CplofnzD+/a43Z548y9egxjxcBY0DopE+mEjq69kZBwTHDUFlqORTEc6o8NtX5pcQFv+d58n7k9IKoKo4jCY7yG3NcIfi+m9F1JfEhVdgjFDbgTymwMmjheoJngTkNuuiYqS5jyPqGIQ43a2+LQffIQklSSfGz5SL3O/WD/6dVb3vrErF5Zh6SQn+2ugutJ71fSkZ0/eHkfI++OYREiEnIyyV6hXTLt9qJhLCWiHsCJx6j657UVbcIqTyQmWKT+m0cTEMSJOEHGC7LVTqWL7GDiHLoz59h3PahdJQDYUm5slXv3oC/jususB+LvXfJU/+683UbkPglGN09R4EwmtPtfKPWowwhbWvSoE20DodqG9R5DkQLXgvNdewS3fmnl60KTpfl8bvVHFs2/4S1RVYRwQ248ufw6h1D5NYGYcWtaPfv1In0LGHKFjujy10PLfJ63j0x88ga/f+RzE1wdRg5LTH307zzvvHr659Hokkg1pFRfB/c3T+fWGxSSPFvmvnrNYsGiE5ww9worynaxq76++aSktk/Ljf84DB+5JdbhYd88nWX3G+xFZTDWN9aNfZ83wX+zXc1e6r5yMU7N4dW7Rjmk7DUMr1CsO+SHnYjzb4cX5Fp9ecRrFB8cRo1UwBikl3riHP+6QBAJvIsHfMME82cOmYJAf9Z1JTkX85L+fyV8dmvrxrPjM0G/5bnUpb9t0Hvf+ehnlBwXXrzyBj5/xA1yREojJLqHQxHxnxwWMxXn683USLXFkyqtvfhPffdbX9ngc7ex7TNv5rvnb0WWIEQ9vVBKR3+f9HEmMEHuczszI2F/misF8VkO0ZAWWjIzDzCNvs1Mty778eSoPGWRiFxG9ezd0O7uO/9wV6OEQsd1nyfoYr+owerIkyYGRgmBUo2JBqylIfVu0Ef0ezqM50p6UC65+D9vGiuRuLuBVAQO3fm3P0gdHHKX2vs0xSGd6ZV8RSk0mPUaDcKdv0ElUu7fFTg+bXbfv7nx6QpUluweG0eaQdvzN1WS02S8w0sWd6MF5uDFNGszEsTU5j2JreN8pMsSx/dVf4No7D8zMfm+YER9d0Bhf89gbJnX5O4neRbmU8gmjxE/24TQFRkrCHt8a1ceAABWB07SFFOMACcjQTnNrz1B6XOBPaC541ed38blaXXnDgU31nVRj4IcFRk6HsNfw8Dv2TQLySLNu2547ITMyMo4sUwstP2zkeVHxbp44sY+bK2dT2Jzy2y+/s/s4wEJV4vWP/x5P1isYbaf73G0uG3U/vwDKqsm9976IV5XvoV8W+NOHV/CJJf+XUzafxIRu8p2JE7mttoSvn/NPR+gVzxIp0QOVI30Wc47OlM++IpRCOLawYicbp+cLnVh0arPKLjHs5AMzHGCWzUgZMyKUQvgOutk65Meaq/HsVCaWKAoPS0TQbmpptlA1j97bmui8h0gNRghkYqg8ZHBXpfz9wpuRHzp8XqSdazdML5QXZEjgJHjLq9SXSJQRfOWJF3BieRvL/a3d7cZ1yDOLj3FbfQlbW0X6/CYTUYAjNa+95f/jW+f947TjXfTCT3LtT97LddceWLH8R1tOIy2kRFrw8NsPocTuIeBAX3tGRsbRQVZgycg4Qjz61t0HBg+981JeffObuDW/mI3PKzH/FzFDv7ZyKaqVkgYKUKS+wK0DQlLPO+iKxniGnqDJlg3zKGwxGAl6jv9PXz/6dVb3velIn8acZFXhNQCYKJp1YrG6703W18YIRCcPFcJ6XLSNxE0UWyNGISbNxNuJpdFm8nldlE1utUF6Xruz3t7uJqf7kpjuzhDzqZrcTp1c6f473aVItYtudaeYtZ9ySXM5Gf3dZy/h+O99gvqCAsu+X4Et2625vdaQanQUI6RAeB44DqItt7D+EBdWOjzyl3tP3p6/4EF+kp5HYVNM2OtQHxbkt4Lb0CQ5gVb2+pv6kAaQehAdF+I9HICA+gIQqQIDz/yztfzmf08WwtePf+OAzv+CJY/yO+90RAJCGU74zFoefPccL7RPIZteycg4OpDD9/NH7X+fuwT42q6PdxbxPrdoPc/55jsR2k72RT0gPE1f0KChPWqhz71RjucE8O/HX0NHjuY3UZ5/23A2E63gcL2s/Wb97R/johd+8kifxpxjzYnvhiRBb9uxT7GJyOdtvKoNhKGNZz3PxgTGoEfHwBiEUiBsvCRS3Y1Zp8eVNridVpRpT8V049mnahx6sGjHpUIpUArhODZOSxJ0nHQ3mymeBfb7/Z3L8SxMXuei36sirtPdhiAzPgHjEwjPQxVypPP70JUcUdlBaA5LwXhqQWVP3FI/nt/85nhMJeYlp93JugdP5bHtffR4LXp6G93t5qkiF5e2c3FpO7f1tbittYQbJ05AYtAIXv+r1/PNcyfjt2t/cnCmNhYVxnhAzkf7muV/9/lu0+rRwEUvuJxrr99/abSMjIyjg0yTJyNjjvLdZ30NrQVJwbD9DJf6sK2SyFjj7WgRlQS1RTB+vLELaLHEnbD/pR/Z3k+wQ+DWrM7rVO3/uUxWZJnOqtzFNqGcWsTYC2uG/hzhuchcDuH79icXIAt5RLGA6OtB9FYQrk2IhOva34E/uZDtOt0JmE4SZRNXiQx8hOd2b3e36SSpU392R/uxGaWxZvk6D5jDcBzbdekiPQ8Z+Mh83v4Evp3Y2inZ7CSiU5PIqUWZ2XKN/n73Z67z0Cvez4tfdhOjZw8i8rnu4kjnR8cJRmtELsCUCpie3etHH0zWLJtdIWIszttxFCFIAkHYb2gOCKKiRCuBaRcq0wCaQ5riudsxWqA98LcLVAg7np5SXQ7RQW54fmb5MWqLwa2CDAXyKPkeOFpZVXwtq4qvPdKnkZExJ+ks8PXLAs5p4yQFg0hBpPCip93Dv534A943cAvzvAkeiHaVuv1l/UQef3yQsW2H5zvgYJAVWSZZs+Qdtpkn1ciON8UsWD3wZuIzl8OCeYieCrK3BznYjzl+EVt+fylPvmIZ6TNPQvb2IMolRLGArJSRA332d7HQjVen/ggpkK5jY+R2zCtdZ9dYdrbsHP/u6/PnOkLa98jzkJ6H6ulBLlmEWLYYMTQIvocslex7bfSM8azdzb6JyBxN8SzY69zdz/4OW5/dB40mZscoutkirdVJRkbRW7Yjay2SksvEEsnoKYdeVGfl+bM3gb9p2zKcqmR43jiDXpXTFmxmsFIDYKEzMeNznu4FvK68lZPyW3jlwE28vP8WhvzqQTn3Dp3vj08suAqUBgkizQSJDhWrnvFhVj3jw0f6NDJmi5kjPxlANsGSkTGnuf9PPsgz3rqWJICR06DV7xKMOPjjmvoCQbQwslMKW1x6fqdoDNtO5eixIoGBqKRwWtZwec2it7PuyS9O2//qyhsOuEs649BxVXPfx8XXbfkKaxa9HXIOotNJ5ihwXXAdjCMh9RDhlNVWpWzi25ZjAtqJcGoXtzuPA8Jx7JRBpwNtSpFgmmxY57Gdt9uJXZ6z87YHu5NwyiSJ0VMKHAeza7GdiAoput19gP23UhijEZEtwJgoQkeTn8VMxq9CKSDF7GWI5WhJQHfmL/p/yn897Xx6b/SgbjvkOgse3c9ESkzgYA6DlOCaZZew7tG1s9r2+jtPpjeG+nyHxqBg4MytVIIm9z02n/6fezSWphhHIzzNM457gqFggtGeAo/M62P0t4OUH4awRxL1pji1g/vaXlG6my+e/EL8m/PEJfBH4fR3rUW7cPfll3DhRZ+as5IFR+P0ygHJuWVkHAN0Orx/d/6V/PNpA3zxwRdC7PC5BdeSEzkQsNTbzq315VwW9fOhgXsmnys0bjEibjozXrtWnfMRrvr1Rw7zK9oDJlttmMq6x7+wX89bv/2rnPVXa8lv88lvjpCtlKjXozHkUFsEcY/GaebpCRYC4NRitK8wUqCaCTKMkTsmMLU6xIn9XDqT22B93NIU075PKIXQxk4NGz09TtwfDrX82JT9T5MFPpiH6DRYFQuInoqdJpISXQqIe3KIVONtkRD4yCQhHR8HZo5nu+e8l3M8WuPZDiPPSBhan4NWaJvSjNOdsBLVBkaUCXshGowP6XmsPP8yrr5pdsYuNd1ipJHHe9o4f33C1bysUIWBewF4y5MXcIq758LoSFLgRHeCharEQ9GOAz73mRhWRaSj0YnArQqe9v61GAnzbwq57pq5Gc8C1nvlKJpeueq3Hz3Sp5CRcdSSFVgyMuY4v/2y7aR+2vvXoloQFwTVpYqoZzJ5a80z5LYItAtEEpmACq0sjdM0qMjsUlyBA5egOZgIpWzQnnHArHvyi6w+8wOIRFuTcEfaBWrPwSiBSA0iKkxKgykJSQJSIjrm4mkKbYmFDp3kgDRtFxGY8riy0mJyetLUTU47+9hFJgvrzrabZGvG5FZIpOcBTBYn9qar3Tn21OmZ9nGN7njKHECRZWcJMKVAyfaEkGsN3JMEXAfh+JNFpRmkv3aRVFDKPn83HO2J6HGLNpEsv5zw+AG8W0YA7DSVEPY9cxxwXYznkPqHtsCy5rh32uPOkuIDLoUtmuaAxDiw+dF+9NIRvHyEdjzyQzWKQcRQocpLBm/n3uZ8trTKFLyQiRYUN8SAy8iZAn2QPei3pArXTZk4XuPUJWkA3jjoBE77m7Vwztw1vT/aiisZGRmzo1Nkubi0nT8461v0yjyQ6z7+skKVlxXu4Gc72TnkZcRQ7wRbRYnrrv3gLvudU8UVyOLZg4hatYMtY3m8+3Lkt0LYA1EZ0oJGNQWNIYjKHiIFp+mBAZmA2/DQCoob8ngjTWS1ZYssjsIELqIR2hg4iqDVsjEvgNYIXFtkiWL7ey/TKFOlxtp32F9KdYs1nTh5lzhTSKRrl2R0nOw+Dp0ppu382/PsseJksji0n9KynWN1XpNQClHIoY9bRGt+Dn97iDNSR8QpaV7R6vEoRxoZp8hWCO0CC0yPZyffoz0XFY72mBbgR2u+wDu++RZUK7T5QLmI8drFPA1hr0NSMrilQzdavOI5H7cNcbPkl2GRWi3gdWfcxP8ojDNV6KbstrgpTDjf3/3S4fonTmWJv4O3VDZwvLflQE59j7hBQitwiEsC1bTT2VvOnrvxbGZsn5FxbJEVWDIyjhLu/sSkZM1xf3sFaKClEMUY1XJJPSg/AiNnWr9yq/0vMFKw89zenJxcUbJrgLm6942Qptki2wFQPakHFRtUSyO0QUba/l20F6hdJRCJRkTtjj7tIpLU/jtJ7cK21rbgotuFGtqL/CnWvLHTBdiZdOkUZqYg1K5mo8J1pi1ii04n4RQ/kkl97I4vzGSgLz0PWSmB5yHjGNMKMc3m9GRyasFjyn1TFz2EMJjUnmOn4GKS/SiwTEmOu8dRspvw4jgIbcB1oK1T3e2i3AvW60bsknA/FRLQqXzp/Ct55+/+P5b+LofQ2k5cCWEXPvI5TM5HewrjHgbJjfYixu4mWab6CURn13Hu9Cg9qQnLDsbVRKki8GPGTtW4v6uwdUnEaadu4nXlrdybe4Tfv/3t5B7w6H1I403EOAMOwkBr4OB2nd7UPI6LT76FexcOc+umRTQ2lCg9IYgL7QmuQz8MlJGRkbELXbkwphssT+U5gWZ9M2B1zi5ADjvj9AcNRt38tO3mqq69EaI7ZbPyvMsQWs+9ItBRwq+f+W/2HxfCtU3FT2unMJEE1FOf27ctYFF5nChVbK6XiGKHJJU0qwFyzMEIaPV5lJ5wyG3zUc3YSpEKgXRVOw52EaXCZOybakhTRJqia3WE6SyMm10nnoW0EwpS2pilI6nb9owxRiPiBJPY+LkzHdOJV7tFjHwe4XvIJMWEIbrZnO4T0znWVNlYJbuTOLJUtNPozRYiTRGBT7J9ZP+ahjryv+0YVvg+Zrif1vwctQUOWgkKUcrECUWqiyX+KMgo6TZz7Y6ZmrA6PNVi2lPcAtvPKjKYzCPNOWw/M49XM3hV+/onlkp0JcJ1DqHfj5jM//c0ydKJaVfkEsSmgG/Ez+HU52zgwtyWdgEcPjrvJm5s5YHdF+1GN5W5b8EwVDZwojt6sF8NAKGJuWjZ/dxRXsC2iSJRWCK/xa55zFXMPjRtZWTsKwLbL5oxd8gKLBkZRyEP/9Wl026f88YrUCHIxLBkvSHJmfbkgl1EE6lhzcK3sW7D3x204srq8uttV73qTARMD6r3pTiyZvAtmCkySetHv37A53ess+m5krSYIkIHGQuCbQJvHIIxgzeRYnp8ZGwQqUYmxhZXtC12iDi1hZdkilxYkthtOoFix3C0XXwR7YkXk6a2gOJ59nmdAo1SNvFKU3vbcezfTto2gpxSZDHGFoUAhOfaU2g07d9bO1k0YYRwXbtf2t17YM/Pdaws1xSJDpOmCCG7SS5gE+jO/pMEQWqnRXaWLJvCzlMwnYTbJo5iMtkOfPB98FyM72E8B7l9DD0yCtpYCax8bsYJlqlck35vr5/1npg2DcPcTWJPcXfwq7/8AqcteRsn/0MVuWPcvjeFAslwD1GPR5KXGHVoExVTtAbKa5ZfuluZsKkLgvf93rc5RVyMd0uRuz59yfRtzoXjrn4DcsTjJ7eczmW5EZZ4OxgeGsNZkBI+2+GhB/phsMX8gXE23z50UF/L3Y0F3LJtKcOFKvMrE4x6CVsrBbxHApwaOC04+01rEcZgpODWr87OdyYjIyPjYDGT+bLefBISyepcxL/XSzwWDXDttlN4aOsAUdPlwhWf4rpr3mOlwg5CcWVV7uJuM8NVre92vZRE4Ns4x5h9iktXXvAxvMZkTHv1LbOT6MnYOxflUi7K3TV5x6Jdt9FoftmCzWmF8TTPZ+5cSXVLDtX0yW0JcGsgY5CpQSuB0Aan1f6p2zhXtVJUPe42AInY3m9chfGUjeMSjXElcdElLiqioiTJC7wJjTDWX8itpahIY6Sg1e+gWobSPTtgZKwb7wKI9rQyrotwFCoXYJotRLlkm3OUwuR90nIOWW//bUlss50jSZUADcaVaFfijjYRo+N7bhpqNwd1J4bbeZxphfb/g+ch5g0QLuphx2k+409LWX7Sk6wcvofNYYX1/+88jrtyK1TrmP4KUV8ONRrsVgLsYMezMHdjWoBff+QrnP6lP2fhdXV6748YO8Fj/HiFObXGqcNbmIh85CFcGdWuLcCteO4nuGYPMmFTY9oVz/8t161/Ji8//tZpj+eEz0W5PecrP169luMd65H1N4+/lO/P8H9zf+mcoy9cPjR0HX/nnM/9+SHuBGpBkeJjgme+ZS0ymXvx7FyV4s3IyDg0ZAWWjIynAL/++qWceclanJZAJlB4solINUnJI/UkN/z3u7vbHmhx5Xl/9Fn8bSHO0CBibALdaNjOKc+DYh7jKtbf/jFbgElTm0CkKVdHVwI2kdVha1pQbKJo7k3UHOU8/I5Lee6P383WsRLRSID2HFRoH0sCSa6atNse2tMRnVzIGNtt40hbsOhMtAgJynQ79ID2wkP7icaBJLXJqFLge93CDEkKgY/J+7YYU2va254DibZ+MFFsCy8weVwArTFxW05ACmDS08TU6ojARxQLtkiTalu06UiZdYopQthijKMmfWmiGNMuDiHEZOehaBeBpkzRdOh09E3eIezidJxMFl463YXtRRmbMCtkGIPvIXzfbhMnNpFWCqoHxwxypmLKXE0+1wz9Oeu2fKV7+7hFm3jgyQWce8ZDbDjpBCo3T2CqTdtB6vUR9SiqiyS/+8yhS5pWnf1h+zeQpqx75IoZt1l5/mWs/7/T77v9Od8g9yePzLj9u591FX/3nT+kuAG+U38BL7jwdv548W0s8ka4vzXMvOMmiI1i7c0rKG0+uMWjkajAL1d+ivff8ccMuDXG0xw/9k7midYguSccZGy7aYWGzJ1wOquKr53RU6Wz8Jr5rWRkHDqmTgkGIuY7D5/H+CM9eKMST8B119jvgQNduLpwxafwttSQPWVMvdGV4hSeh8gFUC6CNqy771OsHngzxAm60eDq+F8Bez3QjcYu37Oy1mL9nZ84oHPLmGTq38NsSI2mZXxUO7A9ed5WNuQqjI3nabg+7rjEqYFxBUke/B2CSAuEBhm3m3aMi9P0pxRLDAirDFAfUsRFSPKgWoCAsBeS4ZBCpcXIpiK5jQqnAUJLuw2gIoPT0KSVHNKRdp+OtEWbdvNSUvQwrkRGGtWIaczPk+QkuW0RGIhLDnqeT1yU9nwjg0zttLpbS+xEjgGMQZaLmFrdTsxMmRDvGtYXCzZ+VhIcx8qmRSnsGLHpQblM2lcg6nGIS5AfrvH8eQ9y1aanMb8wQWthjC4GSCEQUYI7EUIY2uajA1Ang6MrnoXpEyJT/14vfc1/8LXH/wc9d09Q2iCpLXHACAaDGqsG7+IvTv7JITmfCy/6FEj7N33Nz3dfhN45pv37hTcj3793/89R3ehOt3ToFFcufuz5/Or+ZfDs/TnzmXnRxW/gx//8DVuQ37CA84oPU3GaNBKXuxsuekNgmwVTyOLZXdmd52KnWSHjKCfzfJtTZAWWjIynCHesvYSz37SWVq8kCfKUHmuiGgnoA/9vvurcj/LoH5bpPW8rm1/cx8JrchSbMVIIZGdB2fe6JpGrzvkIV+1mguWq5j+z0n3ltEJLp7hy3JWXc9JbH84mWA4SO6oFSoUWVUA8UcQJDVFBoFwo39+0SZ0jITVdKTCRtgssQrT9WrBdbUKAkdNlrYSx+lpOu+ASt6UV2gaYKInJeXafTnvqI9GYShHjSLTflgrTOVS1iaiHk/vWaVemAWgXP+x+Rad4ow3kcuC7EP7/7J13mGRHefV/VXVTx8kzm5O0yjkgBCggadldA8bYHwYHogFjbIwS2SADSghJC8YGDBiMMbYx2BiDWQWUAIkglCMrbU6zk2c631D1/VHdPTObtLvaKPV5nn5mpvv27eo7t/ueqvO+50ST1g1gxxDW7RPqk0d7/5TgdKPta2hthRMpJjtqEo1oiCyNCakUk++/2Z1jposrU6oAAYyj7HE0BuN7CN/D1EIrvAS+7QxqeHTvBLsKCd1ZJd8RBSGaXXUNLJ6zhbdHJ3HpH87CH5uB/+uCrSStJYQZSeGYXefQ7A/c+sAnWfLyq7n93l2HO972y0+g+/912n2+cHfYTs5YxdvvfzsDlRxxGrQSpLbBXfecwq+PGWNx1xDHZfu5Z+RYVn/tGHqT+gLOc2B7YWqX2y26EmhnOVfS/e+dXJh7ipEky91iMU4uRHsORkESCFS1Rcz3BrcWv9kUWqbe10ILLew/NBYpX52u8rM5T/NfT59LasBmCz4fnPEXKzj1HY/yT3PvRX/4dxn47my6H/FRQwUYGmFZ2zts50o6ZXlQymXpmVdx69BXdtjXrcVvskS9kaXBn6DDsHmtbogrw1vm8Id//N7D0sLshYYvj8/mRH8zi90iG2OfCMVgnGdr1E5fqkA5dokTSRGoZhxEVYFjMK4myilkTYCwXf860BjHoIqK/LPK5lvWrZfLswzMqIABHUt6eyfwnJi+dJG3zfg5F6XG2ZJE/NXqP2TVY3MRkcAp2w5yZwiEhijvIwMHoyS1DocoI1GhQdUMxVkKGdv8TAgo99p8zWpngIwMiWdFoTAPKgSMwKmAPyZJKYFbjJGhJu5Io9yZyOEJzEQRU6vVBUTVzFQRuSwmnbIij2P5vYg1IrCdvLg29y4OBHEKzpyxhYX+IN+vnML6/i78rS5GVaEaWi6bDeqfG8nOrKR2GXrPC4DTsnOR5R35bfz9G0eRl4VkyiGd+W4KxQxPtffR500csLHceYft8Lvjrt1nf+yM026P7QXOH5bTQJrXpss7bLto5TvJrHLJ1XZ4aKfYkwX+i5ZcD1iRBa7nJ9/KssgdIicr3MNigkyIdgPiQNQ/Ny3sKRqdoEAzcmfq/+OS86/hJz/92CEYWQstHLloCSwttPACwgNfvYyz334zlR6BW/ZJbbMM55VLP8Ndt35or/e3fPb7wHUwMzvJrzX85Zvu4tOFVyOjANk/ZBeSGwvXtRCRaAg8jC9YPu9S4jndlOamcKqan/7gA80FVeG4yHyW8LSTOOFjKyjPS1hwdD+5fKolruxHPPX6q1h6z6VUQ5coBcWZVhzwJ4SdTBmDUZI476CqCc541dpmNQQVITAC2/nREBQAI6XNyahXe5p6Jwey7r8sJwUa47skgYtINGqsDHFC3Jur70egXWv7pD2J4ziIOLZWZVpb0QQbEgo07ciYYtuBFHY8vjtFFDJWKAnkpBAiZf35uhkcL3y/2TXT7HrRGpF4mDCy4k6STMtLaVjhNbqzUBKhpiywS2k7bDzXdumkXOKcjyMlohxCex4xMgaeZ6sFq+xWYIHJSekLYQIKViTA91m54XM75Jyc4Y1wzpz1rOo7AV+I5vdLnIK+OQfG07mBpWd/ckqk5/PHN87+Bm+//+2sOW6CMT+HDAWZTQI2dfC018Fj+cW0P2PofLJIknb2aBFuT8QVgM/d829cesEfA7Cp1MZvazNxRYJo2FE0Gq0cwBeosDUpnYpdCSaN+1uCSgstHHg0FvZOTG/mP7siWOvhVPZ9f+e8+WbCmYJybFWaO0/8XxY9/ee0P+OiKlVELmuv3XEM5YpdcA588D3bwTKrFx143PbrT7C85z2sHPyytVhKpQgvOpWz3nkzQ+dHHL9gC/93zEo6ZLolruwnPFcXy1x3mAkd0CZrzPBdaqbE1YVj2FDppNsvEqiYwI1JdxYoZTzKZR/Hi1FS4/YmVKoe4bY0xtdke0okiaTq+YydIsE1IA3t3UU+f/wP0Eg+8NAfUKs6XHr0Hbw02IAE5jk5wOcox2flsT/mirYzuG39cVQrHuWtAUYIorSDkeBUQEWGSreg1o7lrhq0Z/CHbX5mmIfybNuRUusUqFq9yyVtQBmSmgBtxQ/t2A7vMK/AGOJAIOMAfzxLMGhD6SlVLJ91lOW8novO+BhPIcIEGcbEHRnoyiIrIcZV1Lo8JuZLglNHeXPffcxQE6S9iPKGgNw6CNt9UsMSjBVpdMp2Zpt450H2LzQ+C5Y7IgS3/foTLHnZ1dx+399Me/yLJ32bT5v/B4USqtaFOyHYtLGLXzo7P0b7AxctuZ79SWgbn79vFzpZXevjE91P7bDNE1GZ7JMubgke+uKedZvvSffET75lizCtwGJxopum4lTJe1WSRCJ8a6SQtPjsTrG7bs/dPdYSV1poYe/RElhaaOE5cKS1T1Y7Balh08zVEJ6kMNt77ifuBNFRMxCxIWrz8Mc0X3v/79Obkmw9V3HUxm7ktvqCpxBQqYKShPM6SVIOrqcI2+zrFuY4vOqln0JJyfIZ70X2dTN84VxqbYLOpxPKxyREWhEnh3FK3RGKWy/4HAALRm4g7JD4gwq3BOPHWpEjzEniFKQHNLnEIKt1wi/qdlxhDA0P53owqPEcK0TUM1hEQ6SY0uFhlN0uSbtoX4FWGJlBliO0IxHGoB1JEkiMBCNtNZ/dD6hKYieERgNqilVZfdFdysm/pRV9AOtTrbDjmuo93RBJGkJGIwNmu7DSxnsQcQxRjIjr4aSJtvfXxRAB4EzJe2m8BtiA9sDHpDyMIzGOIM56uNUQwgRSgbVTK9jqr92JKw28kCajpIJd5pvMmL2F2cP/j6f/aIhnTjmeo/9jgtKcNNVuOKNr6wEd1q33X7Vf9/feB/+UsbANIQzarVsXCEHbmthWovqSn//3lQAsednVe7TP5TP/kpVb/2G32+j+Y1jsZlm55sbmfR9+9P+xutjDcCkDRqAdm8FipjSkHYxr3dKzP7nfj/PBxrL820GIHWwtl3W+C4BbRr7Kss53ccvIVw/F8FpoYbe45IJr+ck9R9aif2IkouDglm2V/75i2ys0qr3Gs2NdvH3Dedy/ZS43L/tXbvjFm/E3BJjAJe7M4K4dsPkXvkfx5D7ilCDdn2X0mIAksHaSwmiWtb0Dc/pxbLwoS2WGpv0pQed9Hq8951HALjievL8OQgvNvJ6dCS2vTtd9uLDimS9cTklvpKw9Tk5vYkEwxC/HFrF6rNs+HoRk/JB5bWP0BRNsLrfzWDgLXXKpVl2EMCg/JttZxVMJR3cM8ak5P2raIC04+yt8beh8ZjhjLHByOx3vTTMe5K+0wy/7FzBScahqh1oiUDVwipCkBGGHQXeG5NoqFAsBpuhipCRJCaKcwZ1peWJY9ohjAQaEa3CCiLjmwISLjIQtNlKibgUsSHxrYQYObsEhGEkTjGi88RgZJRhHEra5JJ5ARgavEGOET63DodYmccsp3JKm2iEpz094ee9WStrHdTQL8iMM+L1o1xZHmUyAKFUR1Rihbd7MDjksU/5+QfFZQI6VWPnMDfaPKZyqIUq81Hc4+Xtrue+T59D/Cug+ZpAuLfHU8/RR2w32N5cb3DKbJ8MMvygcTagdBpIivSo7bZuT527i8c/abL89xXPxzqmf9cntPtzMhdlcaiOJFa6xJgsAGLj4wmsPirh9pK0RbY8lr7Ddlrf/fLqQcvGF1wJglLTdUEf4+3yhoxVyf3ihJbC00MJz4Ei7oER5kJEgzDnEQYbshjJxKuDYT68gThlWX3n5tO0XrbiZ7EbBozfvWG0yeLpd2GxbbUj3R7iFiGJ7Cu0Zhk9vo/0ZH3ftANHCXsJ2FyMFtTaJV9CIxEXVNE41Id1vUAMTkwvQpQpdvxigfHQnwye6ZNqLjJVTLQvJA4h1b/8gi1bcjJGQeND/MhBtIabkIiuSOCVBpPBHXJxKYruRAAWIOGzmshgpMb6CxHaHiPpEzXiOFTS0Bmn/1q4VzJxCiKxEhN0ZRKLtTRskUEs51kKsPjkUxi76jh3tkx7wyT05bIWURENQD/psdNQIMZl5Ak1xR3tO/fF4MtclwVZzKTXFwqsu3CTYiZ/RoKXdTsh6p4yHiCJb0VrvpBFxbKtcG6/pONPHUO9gMZ5jc5BcSZKTyDCFU42sTVngWLGnWtsh68Xupz7GqeJPo/tmJ+Gh2+Nw9qqeKq7sTGi5tOs+Xt/2AG/s/wuMI0l8QWYL3Hv7KRx7ywpUBZ689vAJsARYdvLHdvDcD7XDROgTJ4rUVok/Bl7BLhCKxHDP/13Z3Hb7isdd4bnElfs3LOBMz5sWHL3w29ex9k++x4JvXU8mXyWpOARla7XjlMGpGmQM5b59E+KfC1MtBpK0/dy86iWfOiyDn5e1veM588Bu2YX9ZUNYafzeQguHI440cQVgSWY17rLv8re9r2Xmf/os+OKNiHzE2j+dbn8zdTFu6ndgA1991T+hhOaftp3Pk8N9nNzXz0WpIT54KoS5mXQ8XUW7Ejm7i+GT5zOxELrP3MZoMU3/5gz+MOTXGpKMh9vbDRNFZLHKnNsNw6fmGD3JEMyf4OL0b1kdw1iS3mEMLTx/7Gkmyxuy4yxN30vBxKSFIiNrrB1/BYEbMSNbYHZ6jFOymwDwZcxwb5otA+0EQcSc9jG2TuQ5qaefc9tWc3ZqLXOUz/+UMnyr/2X811G3c3p2Pe/42dtZs+TrVEyNlNjRv64U+xRKAUhDkk8wypCUFLUeQ8/8Eebkx+kLJhiPUqz1uxj2MsQZRbVT4WRCzp23jpQK+e14LyPldLMQLZ+qUg5dKimPOFKEBZc4o5AhqIqwVmcuGGnQjqDSBxhJMOTjFWz3apy2NFnGILRCaGuRFuZtR4w/pgjbIDezwOqxbv6HM/jLGXfw2u5HeGjBHErVHMGYJMn6SCEwrkIWQnQjy0ipJpcVUtj7t+e0e4DDmc8Ck+IKcPu9O+dyf9D+Gx4YOZ3U1hRDuhunJKhUu1h83wpkBL/9+OHBaWsm4nXnfprbfvHxafdviSUXLFjFD8ffSKwV/108lgvTqzjOzeywjwe+uufvZU/Ele2/y/s3z2LG7C28+zdvpRK6JBUHP7QCi1syqNBQ6XueXpK7wfZiw+EqPuzJuLYXVhq44+6PcvFF1+3UNqyFFlrYPVoCSwstvMDw9FWTxObst99MYYGd4CWBQfuGBf94I+v+/EqO++9P0Z6pIJIeKr2w+Lu2gvqZN1hyeOKHVyBd6xdc7RCkhiVR3mPsaImMDeU+QTDi4Qxl2HJeCqdkF7GdKkRpCQZkbJChJrV+DArFZlaHSRIYHCblKMwp3bzhqIf41cgC1g13HtyD9SLDmssuZ8E/3kg4N2HZSY9zVm4dtw6dxAPr51JOeSAVWeWQ6Tc4JY2RoF2FDOqh8kphXIkq1hClqrWPc2S9UyS2nS3SCis6UGhX2uyJLTXElkH8srWsU45qdsMkfhthXtUng4IwK3Bq4JQNbiFBB/VF3zrJa2bEJPXuFSWa9l8i1hjH2osZR4KrELV6J0tDxHCdSXsxrSdFmrhuK6aM7TJpBNQ3Ol3clD1/o8g+J7Yh9XjuZFeM6zbtF5K2FEngEKcUUVbiVAxJ4KA8147ZGESYYMZtwL30A4Tr2DDSKLafkamTz6m5MS9w/KC4mA21LuSEgyzUyK2VJIFDpl9Ra1PU2vdvGPxULF/8wWmT5efC1yf6ONbbyo9u/w4wXWD52ln/zCk//ASr/uDjnH7nCtKDGqeU4JTjA7LI+cFH3sCCYCHfHe3mhhn2vuWLrmRtvZNl3Zs/zIIv3wgatAeP3XgZZ7xnBV7Bdjzqg9BA2Hjfh6O4AjynuAKwrPvd3DL0FWsZVP9eaQgqre6VFlrYv5AzVjEXeDPwD2s+wuYLA4yncbyEJXdfxu0Xrpi22F4zEb5wd1ic0/3HcHHKbqP67mFzVwdznWE2JoaeUweInu4lyjuU+hzC15T5+mmf50zPY1iX+Mro6Wyc38Etj55M1+MSGWmqc9pwJwLURBU1NEFuo0+Y9+g6qchi11Z298cv/Ov1ocKeiixjOuZnlfksy2xksbeN82c8iysSZnpjHOtv5be1mfzr+nPYtqobk00glBSrDquKPl4q4i9n3MFLfQewxQHfHTybLf94FIsunodQmrb7fU7O/zEZPyTnV7n9+B9Ne/039vyKsTDFU9v6UFJzyoytvKzjWSKjaFdl0jIkJys8VF5ArBWzc+Pk3QopFbG+2MlpuY0AzE8Nc9/wUWwp5km0RElNd6ZEvmOEYuSxOdVGeTyFDiVRl8EZdZChwBsTOFUo9wnitoSqkFRm2JwZNMhIosqCYMgKLlHOCi5GQnmmIW5LOGfGJlaN9VBNXDbHHQzGOTKpGsMdaSqdCq/g4bi26EoN1nn+cUfbQqfxAnp8wtru7ozTvkhw9YbX4G0YYd4WRTQjb+cHGUWpV9U7jfY/9mXh3xcu//K9LwHTBZZT523kkguu5fx/qHDjqd/h5P+9in+Ur+Dcmev43c6H+J2Fj+/Hke+8Sw3g4ouu4447twDwlbO+yfHft5mJT15jc2i9grXUa3azHGAczsLDnoytUQB1yfnXNIsUGzz9jjs/wkVLrj9sBaQWWjhc0RJYWmjhBYz7v3E5x398BcEIZNcLwrygPFtzxo//hqULVzM3GOEfVr0K7Rs8pVm28Cke3DCP9zz5p9S6uklvEcgIivMM2nUIhg2VuTGqoPBHodKtSA2kUVXwxwyJb72Ew5zAKyhkbEg8h2p3D+2POYiBEWBKpsbQCL0P5vl224WE3TFOLuTlt3+IREt+ufS6Q3fgXsBY9+dX0r95Fr+q9fLadJkzgvV8IziPpyd6eSY1A1X2CEYlqmpFAONKEte3v0uBU4oQw+OYahWRTtvA+UrVigNdebTvEKcdwrwi8QWpoRhRqmKMhtExoFHVJhCd7VZUyQm0ErgVgz9hxY/URIJTjNAp11oQuBJZS1CFELBij6iHaBohbFd+vTuGxCAagZ2N4PC6/ZhxpH08TurdLGJSfJl6RYzq3S86qYssCuM7iDBsZrXguZiUZ4UST2F8t2lFlviK0mx73MK8rdTzRzQ6HyAnqvb1S2VMrYbqaEMIiWnsu9FN8yLFnx97DxfecSXemECMTXD7E1a4uPii63DKmrFjPV7387/iB6/4+/3/4vU2uuXHfIiVqz7znJs/VprDyf4mvl2YyVtn7Pj4o6/9FGAFQxkb7vnxBwHblr+ryrF9wbt/81bOzA3wUHEeXz7zW837p9qEAax7z5XM//oNhO1w8pUr8BIrWsqaBv/AzEgPlIfzq176Ket7PqXScn8f112hIbLApDVYA7eMfNWKL9DcpoUWWnj++OXS63hn19v4ya9PIq64aCP48dqTWJaa3MYX7rTn7Gyh7rwARvVmfht5fH34FfQPtuEeJQjzDoVFmtUv+XfAFnd0yQwf6apXUM/+FS+f/ftsuK+PttUG2eWQGvCQUYIw0Pl0RH9+NueE/48TurZxVHqQwtqT+NHoaXzxjN0HSbew99gTkeVHxeP5z81nwryfcWawkfd2/ZyaEUgBN227mJUPn0zb4y7znwqZmO8RZcArKEqzXOITk7q4Mon7Hl/MnIph1v85GAdi36BWtlFNQXjJyA6vvywVsuzo2/jZHOhRpWkV//9R7KCQBORkhdPT6wCoaYcT05t5ojybh6pzeHBiHhmnRtYJCbVCYsgEVfpSReakR5nnj7Cm0kOsJeQL5L0aQ5UMm5NuEmPtd2UEXsHa/ejAILtrzOycYHgiQziQQrgSryAozTXQWyUe9SEX4WdD5rRN8M7eeyj32M/DklTMl8fzxIlERrZTxkjQnsSdCCGKkcctQqc91GgZPTaOCcM9ssJ9IaJxjsZGQqUCUvKTn1pueckF16IqiuIcl1Pfv4JHPn9gulj2ZoG8Ymr8+8RJXDZ7x8emFgYVCwG6qvjyayzffP9Df8TnT//3/TLeFU+9igsyVRY5hvZZG6c9dsed07sWn3r9Vcz/pxs44aMrSNVrr2RNow8Qn4W9F1X25PhftOT6HfZ9sISNqV3ml1xw7bTHGq+/s/G1cBjhcHGAOVzGcYjRElhaaOEFDhlZyyWvaPAK4FQkhYkufvxIF1F7gjTQtXiYa4/7Pp5IOM0LuO+0/+QDM87iB3e9BJQhu3Cc8VwO9yEHWVRkNglSQ5pKt2T0uBT+mKE8QxC2QZzRyEhQq1jLp6gtwe8rY2QHnbfXJx9qkvgEG8ZY+D8pxo7LEr6hyieO/iE3rFvGUTffzOrLL9/Fu2rh+aBXZXlt2vo6n+YFfH7W/TzRU+Zq/zU80H8s6SFVtwkzkwH2GlQ5Rg6O2e6Lrk4rOMQaokkbgMRXRDlFmJf2vBsoY4Ynw8lFZzu6I4t2FeXZKcYXSIyynVKN6hmMIAkkTq5uWSDsBE6FiiBMkKUaxnEwdQsyNJBMBt4DNjdGieb4jarbh9U7YkSSgLZ2XyJMJm3DjLGCiqgLTLn0pDVYLbKPxfGOB1UpdOBilLDZMr5EJIbR4yRx2pDZKEkNSdREDZ0PUGNla0F2/CLEpgFMeUpyr5CThqr7ILQc7nYKDeyuW2Tjw7OYd28I4WQIqBGCTe+K+O15/3TAxrTy2c+y/OgPTJ6Lu8ETUZm7Nx9NTTvMTw3zqcd/l0+c9L873fb+b0z/LtufIsDZKz9Ke6qTr5y1++D1C++4knWbuwEJ2YSwTeGPGhBgnCli5D5iTyeDtgLxI8+53fbYPjvitl9O74K5aMn13DnluO4sbHZ/YKposnzGexFKsXzGe1nZ/8Vp2yzv+4v9/tottPBix2A1C+kELxtyQts2zvHHgL0vAb+z0seq6kx+uOok3PUB8cIKzmllXta1bbfPu/eU/6Zyco3zPnUpIhbEgYdTMzgVgxHQvkrjPdjBo3N6mPnn97IsFZKYR1n079ey5o+OPHu2Ix1/lF/F/w2czOpaH8f5/XTKkJqBfxw+j7t+fAbzHogRJibKKjIDCW6xzu+Ez9jx0xdplzz1Gub9n2jysk3nSV5ylhXfTsxt4W+6n97lOM4LAKbbKZ2X2sA1/Zew1u3h9PR6zsqsAaCkfYajDHm/iiMTSrGPKzRSGFJexFH5Ibq8MnP9YX4n+yRB3vBwew+RUTxQWsjPakchMxE6VsTtCWVPIhJI0hrjGUxVMVJME0cK1VUjwQej0K7BcTRaGJwg5rVHPcHvt99fF5kmee9rs0/z1KxZ/HDoFGTsEeYU6WJCnHYpnTuf7JoJ1Nqt6IkiJo52boO7hzhS+CzAxa+8jjvu2jm3eWr9TI5XW6bdJ2sxhWNSlJYXiJ/deY7P88Gdt3+4uTC+J3g4rLI66mFdtYu3/vrP+OZLds211/7J9Pe5v8SVV955BbMy87ns+Nuec9tzb/swW/s7bFFbCpsLup/47P7MKtsVL57KmbffZmd8+kAILlMLoC6+8FoQcNHF1+8QfL+351ILLbyY0RJYWmjhBY4nrp+siDn+Eyuo9mpoDxHKkH4iRa3TcP/ya9H93+OXtZg/23gBp2Q387LcM2w6p4ONhXY8J2YiyiNDCIYE5RlQ7ZLIGFRZIGPr5y9iMI7BdNcwjqY9W0YjyHghm87IUm0/mu6L0MehAAEAAElEQVRHK3irt6F720EI5EiR0eN7mFgkqK1v42/k7zHyZDfBkOCkD6zg8c8eHr60L3TkRMLRmQF+M28exZEURnq4RY1T0cjIklZ3tAJSYbqzJBkfpECECbIeei8LVbwwxh1RmKNyFGcphNbNrgDR3cnoS/oozJVEeSucOBVwShBnoBKAHhWoKghj0I61motT9VDuikFGAX4tsTZbYMUerSczWRw5xbYMkKYupDT+BuMojJYIYxAVAyRMCwCSsimwiEq9Y8b3oBaB70JsLbxEktj9JglECSJMENSjXqqSkeMyvPUNt/OVB89DbwuQtQRZi6BQhkqV6olzULUE6bqg6t0r21f6ie2qsJ5DcDmSJqO7s+JafcXlcMX0+9b8gcOa8yYtnHT/MTv12d8vSHZ9nOWMVQxvmcO3Rs4l7UUU4oCHx+fxnXO/fGDG8hyoxQ7bCs89Oe9KldmciokqDtK178+xbh5Wz0sM5/3eZ/nZ/3zgAI52xwrEXWH7irmpk9098pauiysHMtS7Iaosn/0+li+8nJVrb558bNuXDshrttDCixk/eMXfwyvg75++iPe2b2J7cWVXQegVU+PBmotGcv2G5VRjh8RI8tkqR124mdf0PMKbc0N7NIaU8PnNVV/izesv4Kl/PoHBV0ZQUcxdafAKhoEzHaKc4T8eeAlrj+vmV08vQg23ptyHAh0yzTULvm8tuWSIBtLS8P2nT2HOr+OmNWbDVkg7EiMh0x9TezDFkr7XcOvx/4tEsnG4g9nlBCNg/asdfv0HN9Mld8yg2FPMVjlOyW4iI2v0OBNUjYtCs7bWy3AtS96t8ftdD/BUdTaRUYxEacJEMVDJMVTNQh50BmY7OWamyxR1jS1RB1GiEMrgOBEyYzlsEimIJEQSNeyi+z10R8LCxVtZOzwTf0LjlAVx2cWdUMRJiqdm9PHxkd+jN1Xk2wvubo47EJLISKgptAJ/NMYdqTD4knZUZJCVqJlN2BRXpnLZRp5g4/dd4Ejis8AuxRU5YxXr3oz1OZyCzRfm+Ou3/w/vatvKyeqPOfbTKw5JFkujy+ZYV3BrsY97thzNw6/+9EEfB0Cx5vNM2LNH22a9GtJN0NTzPqv2fhEbhDZcuPwG7l75wQM11L3G9px2anfInggne7v93uKOuz/a3P/OXqPVvXKYwtSLVFs4bHCQHApbaKGFwwFGguyu8bLFa5jXO0KYq4d/A0f95O287dvv4/7vnsKXv7ecj3/rT3nk7mPo39bO+rW9+IOKahcEw5DaBucueRx12jhhB0R5G5hoFMhQkpRcpNKc0LWNo9uH6UmVeMsl93DfRz5H9PFR1rx7Aav/sJ31r2kDKXBqhqhNk9qq0N/voechCIZAJnDa+3YMwW7h+WHqovQdFcXXJ/q4tXQMxcRn0YxBSseFjB4nmJinqPQ4VLsdyn0utb4sJpdCpz2MI9COwHgKHTi2M0RJxGgB2T+EU9G2M6US1q22NHFfG6PHSSozDGFHQhIYVMX6PccpqHUYwrz9XSuBVhDmBcW5UOmDKCuodqopGSaxFTjqHSpmStdBs5MFrHBRf0yWQ2Qtrm8j0IGDCVybzeKoSXGl8VMb0AZRrmByKbvw7roI34dqzYougIjrgosxyKp9jcw2zddWXoJJJJXe+uul6pkt+Sx+fwERacLFMxDteXt/HCOkQChlf065vZCwNPOWvX7OPy5/7nyM/YGVz352511KU/Cj0jxuOPW7nN69idnBGBORz4J/OTTVXRNbc4wPWs//i195HRddvOM4Xvfzv8IRmlQQovyEXK5C4kGtTRBlbLcZ2HN0X7C/KtsaEzvY0Sphf2Lq6+wPrNz8hR3E0GUnf4xlJx94u7IWWngx4tRgw24ffyIqs/TpV7Poh+9i8bffw2n/fClv/d+/4F0PvJmnH5nHmnV9bFjTy3ghxXcW3bHH4spUfGv+Pfzmqi+x5lX/xJrXfYVtZzu4hRinBEkuIfO0y/p/OIY5P5K0rxK89E9vfu6dtrBX2JMii9O8gLN9l6OcLDNUltnKFiSI2CAjg9A2M9IIiDKSJJAYJeh6IqL2hVm8/pnljOoy3q+yqGqCqibMOm7geYkrDbw89Sw9zgSDcZ67J47nF6XFlLXHjGCCNq9CQafIqiqjcYYwcch7NfJeFW0Ev53o5QeFU3kgDKmZCImg0ynRnSqBEcQ1hzhU6ESgY4EJJcLVJCmN9gykY4aKWcjFFGZLsusFwToPtwD+kGRzoY0td81l7ReO5eRf/XFzzGPa8MxED7IscUsGpxRTnZkhPZgQjGpGzurGlCvNYqEdeKyQLzxOe/Yn9/o5X/+Lv+NdbVsByKeq1OZEz/GMvcfeLIqnhM8r0qvI+jWO+a9DI7AMP9PFwFqbx7o7nvaSWz5KLXFwvATlx2jH2pNHaYlMTNMEYF+wvU3WvmL78R8oTru/+ezuOm5aXSwttPDcaJXTtNDCiwhP/+12lTEXT/669k8/wsveeBOqpnHKGneiRhI4TCwMqHZYIiyAYFST25hw96PH8eozHmFl8UTMpqCpnquKAK2oeT4TUcDi7ABnZtbxeGUOKeFz94k/IDoh5j+LvXQ5Rf5m65+hQmObCJS9aQdkYvDGodIjOP4TK3jqU61Olv0JOWMVT26cza/Lp/NkcSbFyEcKgzaCdHuFckUhQ4UwAqEFiQ8ydvAH6tZZSqI9ifahNDOF0NC2CqSrENUIbzSk5xHbGSKyGQgjjLSCnnEMSNCeIewQ9r66K1acAmkL7ogzgjgFcU4T9EvcokHW5x+2c8RAI5hbTtpqNVrDjZQIITCi3kWjBSJKbDaLEmhPgVAYmYDS9nFhJrtZNFPC5Q1ivGiD7F0HMmkYn4By3eorjpGATvsYVyHLIe2PjVLt7GLCcXGL9XGHMbo9R2WuXRBPPEH+kQFMoWiPa6N7ZfsKPyERUmN2Y2N9JFX7CaVY1vFObhn92h4/5/0PvYmTZ2zlnxf+mJTwD+DosNk8u8FbF98HQCVxOTbdzxsW3E9hns97H3ycZyZ6uP3CgyMMH/3Zm/EiB+0ajv7szcynbpMwBWeu/BiJ7kAK08yEOf77nyTujZhQDsGQQMYSGRru/d6V+zyW/VHdtquKub3Z9/aVd3vSvbI/KgK3z7u55bFrWgJLCy0cIJy34NndPn7y3E30f34Fs9drvIkIpxiRpB22nZVFemDGpLUg3erw0eNP4dreR5/3mJ7+sy+xqPdd5J4GQkkSQOKBSARu2RAHcMrlK3j05haf3Z/YVdfS7qAcywudsgYBiScxQqIdwdZzLfeac49BVTXP3raI88wVzL63hIg1xlMkev/UqE5on7Ekw7PVPrZW2+gLCmRVlS6vSDnx2BR2UkgCyolL2gmRQpNSEYGKGKpmeWB8Pq5ICLJPApAYwWgtRRJJTCTRWqClxNQUsmrvQ4B2DRhBqeRDVRF2QOeTmuxWQxxY/jOU7iSaFyMSh2BlGxfnXsvb5v6CwXghp3RsYWN5Lv6EpjzLZ/gkSdgd4/c7zP9RAVOt7didUuexe4Ijic82sPTsT3Lr/Vft8fbve+qPOKNnI5f13oGvYtId5QM4ut1DzljFxs0zOcFTfOXYb7Mu7uDNv1rPM2M9By0T9agbbyY1LIkysOjzN7NgF9sd81+fJokzYASr32T53YKvfpZi4hAMC7yC/W7/6f/uezf2/uh63hmn3FtOuy+dJPtqw/tcr9GyCWuhhT1DS2BpoYUWmrjvO1ew/ISP2rwKpRC1hLbVBq/XJ8xJ0gMxxdku5R6JrGp+tukojBYkaY2s2YV47RuSXIyXitBGUEk8/mH9hfSP5RmL0swNRpjjjXCMt40zfcVX3/IsD/52PiKSqG12tdwI29WgqoZKr6DaqznqO9fQlqvw4O9cfWgP0gsIJ8zdzAnA0nsu5ZktvXh+THumQlu6StyrqJkUMrb/k7DN4BWk7VbxHUaPCRg/pu53O6OK3JgiNRhAR4A3VsMZK9tuD0dBNgNJgnYVqgIiEuh0gkhrIu2iKhKnDCYUiBjCdgi7E/A07jaX1GaJPwZu2aAiQ7U3jT9aa3avNG26NFZwaXSyOBJjDCLUVnRJ7HZCG4SU9hZra2PW0FGc+qQ5MQgHK7bE8aRllA4nBRi/vsivje3SSSrIMLQijKMI+7LEAfjDguxGmxEjKiFjL+2i3Cvo+G1E/udr0YUiCIGZmjeizfSJqNEvrJBQpRCZvfPNr23O8JvKPE584q/45pKv1j3NDwxWrtszgWRdoZOsCjnO30JJ+2RVjW2FHPO/fgPr33FgrQmO+9sV+FV7rtvsH9h8YcDTV9nFu4svug4jBG0yZ89vCfyOfe5Tr7+KBV/9LElbQlXYDKVg7wu4mzjY1gHPd+K6qwnr8xVaXvWST3HbryezYYzjsPT0q7j1ob2vbn2h4GAFtbbQwvZ47MbLWHbix+q+nQpZjWh/1qXSKQnGNMMnSeLFFdqc/bewuea1X+Xl83+f0lAeM5yy3YHCFn4YKSn3wcJvX4fjJTzzhv2fEfVixlShZUJXeCz0ycsaJ3spKqZGYgxZaYlDHCrciQhVqqHTHpvPy5I+Z5g4kXzxpO9xzZpXE90/A288ZsH3BqBQsoU82TRhX45y6D6vsa6LC3RKh5M9mO1soF2VmO/bi/CmsJP1lS7GoxR+NqaiPbrcEmkVMRym2VppI0wU/aUcUawYqaXYUOtktj/KY4U5bB1qhwkX2R4ipEFHCpEIhAYRCkQoLHcfdQEXXE3jI+AWE1LbYmQ1IjWYotrlUJgLExeV+L3eZ7hl+CQe3DKHnnyR9FbIriuy9nV5gpNHCe7sYPa/rUKPTzStwYQUU37fTlzZh4zBwxYNm+K9wMDWdn5a9bjtp6eTXyNoe+3u85/2FXt6/R3TimeSDApDVbvMS42wttDJ0f95Nc/+4YH/rgqGBBjrmExBsPFin2c+PClGv+qltkBoAQD1+dCb7A9RlcR5TVSTFOY4BGP73sJyoCxld4X9zWcb4srz5V67CrZvcbrDEK1w+cMKwhjT+pdMwcTEBG1tbYyPj5PP5w/1cFpo4aBiWee77IK170E+R9KeoTw3TbVDUu0QGAfi+pponDYY13YFyMh2niQpjWwL8YKYdBBSrnpUxwOcAZfMVogyUO3TJNmE7pnjpNyIwV/MJLfOoCLbueKWDG4xIU5Jyr2KseM1LznrGf594Z3TxlrU1eZEaSoOWCbDiwAL/uUzoMHNRMzrHuGk9q30V9t4aPNswqKHSsU4v03zR79/N2vL3QC8o/dnnBfAWQ/+Ibm/z+NUEtyhIrc8ds1zvt78r9+AiAWiJhFJfaG4u0ZPd4ETu7ZydHqQrz30crIPB0wcH/GyE5/l2dFu5uTHefQXRzHr5wnpTSVrFRYlEFvCbQIX49mgeu3bOgJRF0hU/6jdzvMm7c6EQGiNrMa2i8SR6JSHdm2lH4BTCJGlGlRD0IkVXLS2E25dF3gSjTHaCi7GWMu0dBo8F2ohemjEiiy+b7dXCuG5JCNjOwooQu60+m9XE9Ijrdpv+eIPgqMwjtyjc+VQ4bT/+zivnfc4RwfbuO6xZZgncgTD8MjnplcgL75uBW6x7uHu2kwq4xpWX375Lva87zjrnTejXYGq2u9NsF0rMrKLeNUOSa1D0PubCjDpq7wr7Ivv9+E+wdof49vV5PJg4fny0RafbeHFjmXd74ZET+O0I6dkqXQLSieE9PSMkw+q/PX8OznD39a0jmrYLbli53WI91Y1dxVPoNstcJS3jVO9MVwh+UFxATc9dQnxI204JVso5I8bUkMJTkWz6UKPMy78LV+c/yM6ZBqN5vulNh4tz2O+P0RVu1SNS3/YzgPDc1i/rYs1f3RwF/teSDj3tg9TrPqc1reZCzp+y7HeVnpVmU4lSIzhdx97G4kR/M8pX+fO8kJckfD6zAC+cHn1quXo97cjh8ZYufHze/R6//bsORSSgJyqcrK/mblKkJepadtcNXgin+x5YqfPv3roOL696ix8NyZwYybKAdWCj1AaPx2hlKZc9JFbfVRNYKTNMTQCwg5D+zEjXDDrWWra4f5t8xh5shvtGURXjVy+QtqLGC8HlAcyyIqy3v0xOGWbfZjbaMhtqOL2T0AUY8bGJzMHPc8WxUQRJort/WFou1I8d9IOzHXRpTImnmJ3tSs+Cy8YTnvJ+ddglMQ44rDmRm/8xXs4u30tPU6BL689vykUPvKaSUuwxdevwC1M4bOBdRwAWHPpgeO0qcGEJJC2CC4Bp6KJU5Jqh6T74UJz+9t++Yld7uuUy1bw6IoXVofg/uKiRzqnbWFH3Hnnnbz6dW/k9OWHx3fOAz/6NHffsZJzzz33UA/lkKLVwXIEYMnLr+b2e1tVTi0ceNwy8lWWdbwTHAeT9knSDpVORa0DvAkYO0HTfvQoI5vbIBLISDaJeZyGuE2jXE1HtsxYKUV1IA2ZmKg7Ih5xETEEA5KKgOH+NoSXoHxIfIFX1ASjmsQVlPscm70xx9B3zBDndewomuxMXIEDHHz9Ase6t3yIBf9wE5GE0UqaWt5hYWaIDfl2howgGvVZ/YnLgEny+q1nXsrdjNKTKXLrj/euu0hUlLXokDbUHiPQocJzYnq8Iu/peJh3X/QQnzvlHLL19MLT8xt5pDAH4xlkAqISIaJ4MjfFGFspWu9mkaHtnBG1BOMqTFsWUaiAFBhHYqSok/m6sOI7toNLCBJfkqQU2hE4GQd/UCAdacWcag0iA1E0mfGiJNRiSBJMGNoulFJlunASWwFGBD6mXMaUmZxg7mIS2qgAFFJYi7Dtsh5uT76zV8f9cIBJeSAltzz8qUM9lN1ibHOeh/NzOH7mFk6c0c8DQylSAw6v+IMb+fl/Tdpp5daBUzPEvkB7EKUhSQmOuXoFq/5m15O9hm/3nthKnPPmmxHGEjdR1tYuz1ivaRkbZGiFPc8RVDutMvhc4grA7J/Wmr/v6QTscF5AgANjV/ZcONxFp8MFy0/4KCuf3D8e5y20sDvcMvSVSU6b8kjSDrV2gapBZ3eBZXOeIpARPWqCyMADYciWuJ3ECOa6oyxwSuTrdpS/rDn83/ip/EnHL/lp6VTuGlhMYiQZN6Q3KNLuliklvrVk8sAdhPSARmiodCu066COLXBibgsFndAhITIJ85wRnlV9PFicT1bVqGmHSuLhSE2QCjnuvz/F07+/6wXFFnaNX7zqehb9+7WMhSlK2qdXlelWEoWgYGJ+vazxPXQNb63/NrhlNr5weWX3Kj740Mq9e72Jo9lUaSfthNwuT2CWP85fdv2SGSrb3GZX4grAvcOLSJ7NUXQNE9kEUZVkNkmQkHgBsQOpCvjjEAeWO6vI/i4j6MkUWRAM8ZvxBQyPZknaEmRFotanGO92yS4Y4tieQTb5IQObOxCxgHRMUnLwhxRhXhBlHER3FlmNEEPDmMgKLCaKoVSezlcBTARGIzwPE4boMJq0uN2VqML0zhawtrGNfdwW/cdeHffDASI2IAx33P78rJkONJ4c7MORCa/uepQ52XGeHOyjUvJY+IWbWPu+K4A6n63uyGeNsuLL1K6SqdjbBfyXvO1mhAZHW04rjBVVVGhQ5QRVS5BZh1qb13QZmNohvDN0P773fPZwx/4a//Ox2m3h8MbzyRxqYf+jJbAcAWiJKy3sT+zOI3ZZxzsRjkM8r5dqr49RgrDNiiepIYNTlIwM5CC0/qbuhMAbt7kZSVqT6qiST1cxxmZZGE8jSg6qJonabJWVWwJ/RKILkjjtkMyuMpp14XFFZmOFOOcycryidFTEzNmjLJv9JGen1gJ73o7fEln2Hev+8orm72/+1TtxheYXr9q15+qbF/8SgIsW7NtrHXXzzSS+7YRCgJpw+PklN/DmX72T7xQWc2awjo/2PMCaOOHJ2kxcEXPrtuMxAgqzHUTchjdabQokIradJSIxaEdhpESVQ4isyJFkfcj4yEpdGDGgXYnxFcaVRFkHrcAr1Lf3BGFWEGYVkCLYlFj7MKVsJ4xS9ua5tnOlHo5ukgSjzbSQzyakFWSE76Mr1V0foClBoFPDQafiSBRXmtCaZSd/7LDuYFn37g+w4J8/w6rBHhylETVJHEC1XXLOW27mV/9iq/ke/MfLeNkf3oRTNmhPIGNBFMNjN+2+ki5J7TkNc8t2htkQU4Q2GCnqVYaCJLDnRhIIHv/svlfw7cmkqjX52hGt47FnaIkrLewvPNf30FROG3b5aEegXXAiGFnbwcO5ObysazWRcXi4NoNfl45iIg5YlBrEFQkFXcMlYTDJcdf4Cdzbv5CfbTuKwbEscckDYRCOZpWryWaqnNC9jVfOf4Yn8zMYmJhNzwMVkpTDyHE+4YkVXn/UE/S542xJUniiyJgWDOsOFIasqhEZxUAtx1A1QznyOL53gG3lLKf+6OPTKsxb2HM0OoD+7dlzAOiatQmA9l1s3zNrMwAfnLH3r/WFM77N2Ss/iqM0xggGUjlmnbKFe9YdwwxVZLGb3eVzNycF5mbGeGZOL3JTCkqKJB+DkKQGDVFWEPuQGja4ZUOUspZfYV4Q5SHqSKjELk8UZxMbSSoT0t4zzuZNXQRrJd64w2bdg14omJEtUOzyqYyloOIgaxIj7Vyu3OeQpCTFWRlmjhQQiSbZ2j9NDIFJuy+jDaKehSg8D1Ot7bBt/QnTeHBzm/r9Mp3GxPERKa4ATRvAS86/hp/89PDNXnvsdz/Jgn+5nt9k5+IoTXlDDn9YNvMtAR788mW89E9vJijraXxWe/DEdfuvO8Qt2aIgFdULhLCiIdIWuBlHEKcVD3zlwPLZFnZE67i10MK+oyWwHEFYdurHueWRFsFu4flhd5XSt4x+jVed+2mGT8kQZS3RqcwwOCWBWzKIRGASgTSgyhKnZJ+XBKAVCGGItaRSc6kUAtS4g1OxIeaqChhwqpC4IDzQSnDUnG0MdWYo93czvjhNlBXUOg0vPX4NS7qe4Hcyq6dVf7Vw8PCtc/Y8gHxfsSsLpSdH+qgmLgP5PKuDfhIjqBmXsSSNNgLZU2PkVI/SLJdg2MWpgFfUqJoNJXUqCXGgkLFBlUOE1ohaRNSZotrt4k14OOUYUyfy2pPEKUmUFiSeIMpIZGwXsLVr8y2qsSLYhM12UT7CdaAhkEiJSbuIUslOGH0f03jMaEw9EFVIgYliRCoA6UB5J/YIU4UVz7O7iGJbJSgFQikr4BzJmSwNa7W99Kw+FFj3tg9xzLUrKOc03pgkGLFdI1FK8NI/vZlf/qs9h92KRpUT4oxCK4VWe/De9vD9X7Tkepx6PpCMNbKeK2TqeluUdYmykvv+84rd7GX3+9+bCdWRMvlqCUGHL5Yf/QFWPvvZQz2MFo5gPNdnu8FpR49PkwTCWjcq6/GvqoKsWyPSDj8vHcPGagejYab53P6wnbEoRSn2GKpm2DzWRmkogyooVFXggs0c9A2xrykJQ6Ai/qjzlzySnseNs2cyclKGMAfO2WN86sQfsSQ1wJZEozCsiwNcoZmhJlCp9Qx7OTKyxpPeLJ6WM6kmLr1+gQ6vzEODsw/wkXzh44+P/tVBeZ37l+8oIH976Fwubn+S/mScE7xS8/4uOXm+FbTkjV2/YuGpQ/yg8xRKNY/eXIE19JGkXBIPhIbUEMjQ4Ee2aK00S1CbEeFmQ0ZLaVbLLmakCxzXM8BINQXCEOXtHCzoV2xRXVRmukhpoCLxxhRGQJwxxBk7LxNGktmaYLIpRC1GdXYQDw5NdqUIOU1EMdogPBchpO3ungoxyX2F59m8wVptysMCmUphkgRdqeyvf8NBh3alrSI/Apz3173lw9M4bXajwSjBme9e0RQzVM3gj0TT+ex+fGsXLvsMjhT1DmzLaRvHLk47xGnFPf995XPsZed4IfO+F/J7a6GFFwpaAssRhJa40sKBxrLTPkFlQY5ah61kitq1bUEfEpR7JdoBEUlEbHNXtGdvbgEwkrCWI0pARoIgAhnWbzHNLAtVtZOEyLWerq+b8Qjtqsy/Z1/Cbwd6OXvOBv56xk842290rLTElRcbjvqPa8nlJN992Ze48I4r+Yk5lg6/Qta1k7LxagrXi6EDasolyiucksAfkWS2GeLAVj3ZjqkE7TkIIazNQiAxCirdDsEIqKptS0dYQdGKKxC2CVTNdtVEaWxILoK4PUAkGme8ajtYGnkr1RqiWrPCgTA7TrKmTEqF1OiJ4g7v21omyKl3IHNZa29SKmMqFZvfYgy6VD7iPKqnoX58jKsO8UB2j+M+uYKnr7qMVR+1k87T/3IF/oTtHkl8m4PSmPDc88MPsORlV4MElZXIeEfx5JILrgVjplU4/uSej3LJBdfuNFjzkvOvQUYapSTCtYKfnYzWO6MSIDE4UsCeCDrPgRfaxO1weT8vFKuK/YmWuNLCgUaT07bbTr9aF/gjEKUgyWrGwhSPTcxGCoM2gnLsMlzJ8FBxNmHJg4pCRAJZE6iqIBXV+a5oZBMIRCyIXY3vxyxMDfPyQPLyYBOdS/+T219yAu/o+RkvDxrX9RT5+q9+XKBdOuRlioopEZkCBRPjiphIO5S1R1qGaATrUx2H6hC28Dzxxl+8Byl83nj0/fzJr96FNoI2t8Isf5zjU5uZ7YxS0AHDyRwio8iqKufPXM3Wap6BShYvF1KZLRCRwCko4pRoihZGCOI0CGVIIkUplqyvugwEOTw3Jk4kbiaiepRBjLkILZCpGK0FjkognRAaAcpYK7GaIBiBYNTyi7gzgzNSsqLJ1O7pKdZfQlkOZypVcBwrtMQCHcXTxBUA4fs2r0WpSZFFKUQ6hSkUj2hOa1x5RORMb89pT/urBqfVJL7gZW+8ifu+cwX3fveKHfis2Qldv+ji60FOD2XfnQhw8UXXIWKNksJaNYvpnJbE4ABGtvjsznC4vKelZ16FcdVu83BaOIg4AoTdFxP2SWB5xzvewec//3lyudy0+0ulEu973/v4+te/vl8G10ILLRwcXLTketyRCghBrU1Ra7cBzUk2sTkZST202TGossQbta3pMrLiiapa6y8ZC0RMvfKfesu0fY3EFySeDbLHgIjs48f5W7gwMLxp8a2wuDGiPbcD2xVaNmFHLla/aXKhefOvZ2Mcw6asRuQilJegY4mOFSTC3oQ9D2VSby83Au2auggoCTt9RGM+KOvh4MLY89AY0NY/WWh77goEiWMrXeO0rRJMAoMMBeWZHt5YUhdY4skuDMcBndifYQhJYjtNpgZ9Tqv8S6bbhtWxw31KWTuxdApRtyHT5fKRbQ0GNotGYi3dDmPM+nmNk69YgarBw39/Ge3Phs2uJqfRfaThlUs/w123fggExClFlLJdT6dcvgIjJq3CjGCnXStGCi6+8NppmSlLXn41MtHWe7ou2onEICKNiHUzK4i6pkey7wR7Z5O2XYk+Lew9DpdJcQstvBgwldOGeUXYbq/n2rMiddgNMh8yUQsYKmWsW6iBkfEsetDHH5HkJmzHtYxARgYjTZNrJJ7ls07FPp6kJMaAEpPXszdlR3lT9l7q1Rk7YJ4zOYdOCZ+UgDyQ88fpUY/SH+eJjCJBMtqW5rT/+zgPv7pVaHek4Tvnfrn5+y9/fjzGgSQXk2qvMrvjaGalJ3BkgjYSbQShdihGHuNhwGgpTTTmI6sSkdgOgloHhIlonlZGgZhwrOgnDVpAQQYYVyO9BKEMyktI2gBlyOUr+E6M5yRkZ4+gjWBgNIcaTuONQ2YgJspIijMkuc2S3EQNajWk66DDcIf3Z7RBuqLJa4Tngesi2S5/UNiMRFMLLZdpdGcnCbpQ5NbSvxyw/0ELk2hy2hAe/sJltK+2cxTtClRFY1zBBa/9LPf88AMYVxKnJ/mskXDy5SuQMTzyd1Nsu3ZC47cXWS654FpEYpBm0t5WuxLBFE7r2LwhoUFF+z432BWfNWLPcglbeG7c+sAnD/UQWmjhsMXOWd9z4Jvf/CaVnbRxVioV/uVfDv0F8otf/CILFy4kCALOPPNMfvaznx3qIR0QLJ936aEeQgsvEDiFEFGNKS/IMX60wCiD9gzSS2zVigvVLtut4hQFbgmCYfAK4I0b/HFNpl+T2xCRXx+S2xCS2xSR3RyT6Y8JRhO8okHVRRUZWYsGGQr64/YD9r50/zEHbN8tHBykt0FmoyAYUIgRj2QgBYMBcthFTjioksSdEKiK7ZYSGoQ2zVZ2rSBJKZKURPsSkrqFWCnBqSRNqyWw4p8w4JTALWIFQReSlEEHhkqvoTBbErYrdNrD5NL2RRxlA+7TKUy+3nHlOE07rz2GkNNuop7V0lyQFwITxy+IiWhD2OIwF1juvP3DPHbTZcgEzn7HzUQZ2xmV+JIoI+25hhVOLnjtZ6n2BpRmOMRpa31ghD0nL77oOrtDKaZN8BoCRmmWR6XX58Jln2k+JiI9OXEV9ryWsbGiVF1sITEYKdGOJAlsLsxFF+86M2mn2Mm/4Nw/vsmKQS3sNyw/tiWy7ArLF+w/X/cWWnDHapbTzs9SnGUXpuOMwQjLY+OsRkjD4ESWwcE2BjZ0MLyqG2dVitwaSW69Ib9Bk18XkV83hdNuikgNJ/jjGq9ocEqgyuCUJGHoUEiC5z32vExxpufx6nSVlwbbONPfQkpFlKvefjgyLRxKZDcKcmsEqQ0utc0ZVm/o4751C7l3wyJ+tWk+D2ydw2PbZvDsUDdbh9opjaVwxhROSeKUBCq0nFR79WINA6oC3qjEH5KktiqCfoU/oPD7XWS/D/0BeiCAmuWilapHNXIRwrAoP8zr5zzCKXO2EOU1SQAiMngFjVuxQqJxFSKbsZzWmVL8Vu9Oka6D8DyElLaDGxCOg0il6pZgU5aadJ1s1AuH7H3mBcFpjxQ0OW1sOW2ckk1OK7RBVTQkhvN/97NUuzyKMx2ibGMOYm9GTXblIuHOOya7VwCKszzKfR7nv26yS1WGCSJOLK+tz7m257STfFZgpOC819/I0rOf/0L+y954E9Xu1vfn/say/NsP9RBaaOGwxF4JLBMTE4yPj2OMoVAoMDEx0byNjo7y4x//mN7e3gM11j3Cd77zHS699FI+9rGP8dBDD3HeeeexfPlyNmzYcEjHtb+xfNGVmI7cc2/YwhGPZR3vPOCvkaRdcBXFmYqwXeOUBe6YxN0Q0PZbQTBkK/VUWeAW7O9Cg4jBK1oyHgyH+CM1vOEy7kgFb7iCN1zFG6vhjUV4EwluyXYVxCnbEQPwaHku/cmOdkn7Cy2R5chBk7BPhbFk3kiaeRPuhMAbE3gjArckcMoNYaVB2G2VqdAGmdifIrLkXcYGVdOomkYkUxaqjc1wcYsGv6CRCaiavTUqB7VvKM+yFmQi1oiJEqQCdHsOHEXcnkZnfMhlEYGPzOV2OiHdKbZ7rNHJYgpFqAstK/u/yC2jBz4X52Bg5ZPXWpFln8o8Dj4e/NJl3P91m7Vyz48/iIwN2hVUelxqHQ5JStmweWW7oFS98tmeP3DHnR8BJn9uj19++wqC4QhVTbj4wmtZ8oprrOWXqleqGhugKhJtj5sxoDVCaxCQpBVhXhJmRXOyuyc4+YoVDJ7mT7vvZW+8CZFA2NGakO4vLD/mQ60W/l1g+bxLj4gsphb2D5Zm33pA9798wWXIoXFwFbV2hQpt0YQ3KnALgtQAeMMSPRAQbUnjbfRIr3PIrRHk1hsy/ZrUULIjpx0q4w9V8EZq+GMxblEj4/pn2oAxgkri7lc+O0NlWeDk6HRKdOVKHP/9VtXwkYQlr7hm2t+q0uiIsgVmouCgBwPC/jTV/jTlrVnKAxlqg2mSYR8x4eBOCNwJcMr25hbAH7NZLMHQ5M9gCFKDkB6AYLD+94AgGLL2ue6wgxnziCoOcWKJV6gdsqpKmCgQ0P6MRmhDYY5DZmsMAsKuAJHLIufOQmYz096PnNKFYrS2AooxmDi2ndeOY4uMGpZmSYJoyyEyaUQ6xS0T3+DWyrcO/D/iIOBI61LdGaet9LjU2h1bjFa3TVahwSnbc9apWE4r4+mWYNvj19+8nGA4RlU0F190Xb17RGCU3C2nbfDZOOMQp2zH0+5yY7fHiR9awcDp0/nsuX90k/3FQNj+/N0xWrBoiSuHF4Q5PG4tWOyVRVh7eztCCIQQHHPMjouWQgg++clDS/5uvvlm/uzP/ox3vtMuSn/uc5/j1ltv5Utf+hLXXXfdIR3b/sTKNTce6iG0cJBwy+jXWKLeeMAsgRZfv4L5iaE8L0echmBA4pYgNWhsaHhVE2UtQQ5z1oYJYwPw3LLBKSV4ExGyGiFqESJM7EKSEKAkxpGIyAEp0I5AK0mcEsQZMNJwT//RlGKfd/fcw4lu+oC8xxaODGxP1Bf+/U3IubaDSqcSSCVIpYlrAU5ZNBexRVx3UJLWaknVNELXF7u1QYa2Jd0KLboZRCkjjal7gziVBFMTqKqm1uagqgY/EcQhdZFHoD2DWxQYaZDFKiaXJuzN4ZRCkiBNrcdakYlOHxl1oSoxzlABNm5BhyEqkyYplZvvz+axTF9YnBZuL4StCIxiVm7+woE+/AcdK5/cMQz2SMD5v/tZnJqm0ulSnmnL+XIbDcFoglOxFZqJX+88MgLt7TyYstHVcsedH+HiV16HrOf5GCkwSmCkrIt/9XMiqXdbNWztjEF7ijjjUstLam3WtuakD67g8Rsu46QPrkA7dkKMASQ8duNkp8Cpf73CssC6yNUYo0isXd7OOliOtIDNS86/ZlrezSHDRAG8lmC1M6zc8LlDPYQWDiJuLX7zgO17+dz320VeKYnzPtnNITL2qHYIslssp9WOzbBQNYnQ1t7WLRncksGpamRN45Tj6Zy2UXkvBCJlr83asd/TUaZeDKEFqwq9fMM7g1dmn+Sl/v6LOZ3pjpL1apTD1gLhkYTbfz557Vl8/QrULNspHacNOqUxrkZoAaFERtJaLEfWarlRNBSMYAt83IYls8Gp2TkYxoaTN7IxRAwyMWglrC2zb7tQtAtxACKRhLhUjGDQCDZt7uLh3CyqYwE9DwmiNGw7x6XtGah0WXGyNNOhOGsOlR5BZmsPXT9eRTwyikwFyFRqWjC9SRK7WA62SwVAyUleK6UtFtr0dwfj8B90HEncaCoanHb4RAVG7JLPamXPX+0KLrr4+h2KeRr88KIl16MSYzMqhbBc0rV8tmHjDDtyWuNKy2fbbYeTU9ac/7rP8tMffACAEz66AkSd02I/H4/ebDntGX+xApWCxJ0+FpHYz0Sj23x7XHzRdbssfDocsfT0q7j1ocNAaJ/ahdZCCy1Mw16xv7vuugtjDBdddBH/9V//RWdnZ/Mxz/OYP38+s2bN2u+D3FOEYcgDDzzAhz88/Qv/Va96Fffdd9/z2veytndwy3grW6aFQ4OGuLK/hZaL77ocs6iTsN1n67kOUWdM388VwVCMP1QFIMm4aE/gTYCqClQETkWjQoMqJ6haghovI2oxRNFklW49l0LgADEydFGRtQlToa3CMkqwdWsHd1d9ionH23ru5bzn77DQwgsEf33xrfxk8DhGqml8FZNxbeDrar+b2oSPHHPwxm0Hi6yBW560/wKQrrTZKokVU2RU71qpQ8T1DoBIEmc96wtsBDI2OFUQZUOclmgPEOAPSbqeSEh8QemYTryxiFqHQ5xRRFmJjMAtxAgDYbuD6XTJj5YQmRTSaEQmjQxDjDbTvam3h1L2pjUkyQtSXFk+56+bQuyRNNmWsUGGmrtu/RBnv+Nm/BFIgvp8URtkZHC1RibSLmho7ALKdmhahjVQ38Q0gj+had3VrPKLrbVCo9rPeA6V2WlKfYooA0mqvn1sf8Ypa3UnGo55xoovdp9gAnvf45+dbs9kpLCfBbXnk6fDVXg5LMQVQI8Xdv+ZP8hYln87t0x841APo4UXMfY3n1169icR+SyiVLZCSGKodrikBiNSA9Y2DKA6M7VbPitrMaIaWk4bhjCFM6AkQgikq3BciXEEbtl2CZRSAWv8LiqRy6pcH890PMVrMhvokM+/cKhmXOZkxhivpp73vlo4NDjt/FU8PdRLLXTwlSblR2gjiGJFGDpEJRdRcJChaNooO2VIDWqMskKJ0LajwHZh1zPZjLGFQtD8WzsSowRxSpIEgsQVqMA+HyGJjEM86NKxRqBdD7otj4lTkOQjCvNckND7G4OqQWmmpDLTkB4AUgFCKVsElAqQUthrWxjZTpaoTkD0lM9NvZDJJAm3rL35oB/7g4Fmt5Ix3H7v3xzawewFpnLa09+7Yvd8VorJKvXtus93cCAwWHFF1n3FGgKH2TWnLc/OUZqhSHxrP+7Vi30AXvLWm2GOaBYMGdtkwxl/vsLmGtW/Gp/4zHZ8VgH1U3JPBYHDOX/wsBBXGojj596mhQMPQ9MWvYXDA3slsFxwwQUArF27lrlz5yLl4eXtMTQ0RJIk9PX1Tbu/r6+P/v7+nT6nVqtRq9Waf09MTOx0u1vGv87yRVe2OkdaOCR4lfumZibD0sxb0NXafpmYaiMQAjafp0jSCaqgSA3GuBOhXXimbrNU03jYhTcZalSoEZFG1RJENUYUKxDF0FhAchybSyFtB4tRyrb/RhpVFXgTsm4zJkgCl4k4w6PuLH4SnEiP+jXHuZldD3pf3mcr8P6wRoOYb79A+/6OdSzNPsF9lUUkRuKKhJEkQ6c/j83FNvrb8lRGUqiCwi3YbgEZS5yKboaBq1CDNvZcDWNEWCeEStlARWGrUFUlQg0VwHUw89tRkSTMSkvmNXhjgu7HEmRsiDISWdOoiRq58Srjx7ex9QJD0K9wih7taxIwUG2XePPaCRINYQS5LOVzFpC9dzXJ2NiuD0i9+4skeWEvgtarGY8k/PR/bSXdhcs+Qy6xE9MoYy0V7OLFZOeHCq2dXPuztR32c8edH2lWzr3krTeTVY2uFVvtJwyI2AD1Cj+NnYjWv5eNlCRpFyNtVlCUtxPO3358cnJpVL3jsP67MKClrYQV2lYimikssPH5SwIB9UnsK/7gRuuRrUFVdy0QHI7iyuGEWyvfYol64wHtRt1TPgtwy8Q3WD7v0lb3SAuHBK9y34SQgld5f4xJkv3ymTBCWJ1aG0x7Bu0rjAPueK3+HapBiOfks7IaQrVmr9l1q6Nm0UN9oVhUIqTnIGsStyjrlqSCosmyrstnS6aNTaU2nu3u4yWZ1ZzmDzJb7but87HeVi6Z+SwfSV7LS275KL9edmR2f75YsOQV1yASzW2/+Hjzvtf3Psiz+T5+W+rDERopNBNRimLkUYldxlMBE26aSHoYJTFOvTu7YXsbWctbGdfFwGpsO7LrtlxT8/q0q0AKVE0SBwrtW2cCFUm0J3BKkvx6gz8eE6UkRkmitO2Q6f6FS7UbqqdVKG1M0746wh8XVAqCiYXQtqAHp1iCOMa0Zyktmk328QHMyBgkiRVbjIa6DZlwHYTjvGDyA3cHESfWBusIwlRO21VJds5njWl2jWglaF+9I6dtcMCXvPVmMlJgXNF8vjBYkUNgu693wWlN/XEtIcoI7v/GB5r7dyoGf8x2Yxlp15NVFdKDCeUeRZJlmujT5LOesF0s9anfBa++ARVqZK2xXrHj/+twFVcOJ9wy+jWWpt58qIfRQguHJfapf3n+/PkAlMtlNmzYQBiG0x4/5ZRTnv/IngfEdgs2xpgd7mvguuuu22Nbs0Mlriyf/b4XZAVzC3sO4fv1ALhkv4krAGs39EIkWXzWRtb8Zi5tzwg7yaxXlhghkGGCkgKZmObfMtTIMEZEdtG6ORHVxuZFGAOOg6mLLChbEa2qia0s1NjOgBKIWCBiSTV0GYvSlMyBsUBoZLG0hJbDD42W8p3hODfDce42BpIiZWMYTAJq2iXnVEm5EUOpDIVKQLXoE3Y41EYkqW0uwZjGqZh6aL0VVmQlgnLFTkJd114XajVboVrvvNK5NG4hIgkc3LoHcZiXuAWo5SVOxdB122oGXnM0/mAZMTBOnGrHuAnVhQkUFV1PatK/HSTTlqY0P4eXCxBDDptfM4Ng2JCVAuG4mDiyb1JMWiggpPWsDqMXtLiyctPfsfzYD7Pyt3sZyH6YwAbYC35yz0e55PxriJRHlJGoyFgrRMdWULMb/ahhS/Drb1of7AtefUOza0QkBontNBHaNPNqDBIcSZJyqPR41NokSGuVt30Fk1uARz5nBZdFf3cTui3m2AVbufWCz+32vUUpO4Zf/cvlvOL3b7QTZD35/Q/WpqBhBXLLw59qPvdw7WQ5HHCghJUG9obPwqGz5moJOy0Iz7N8Nor32+dCGIMII0x7ltrMHEIbUoOR5amRta41joOqJsjIfnfJWNuOlfo2IkqgUoVaCHGCMfVCIyHAc8F1IYoQxiArju1icSUIiVsSpLYJwppH2K7YUO9cHIvSjOTWclF67T6LLC8PJJCjwytTCV0W/du1CAmr39RaCDwccfvPP7ZD/sqbsqOMpjdzT6qHLVEHZe2zudbOiMpQTjx8FWOMoKQMUcohKSm0K6mOK7yCtgJLqHHKCaoU2TlYGNviNpgszBEC4SqMlMiqQFatRXOSUshYEWYdnIq1UirMdkgNa7oeDxk43SO/PiG7epzi0W1smRkgNKRXDZF+oEhXZzv9r+yhOC9Fx7oMuqeNree3kxoyoBTCczGVqhVX6hD1/MAXg7hy+88/xqvO/fQR1b0yFcIwjc/GaWmzBut8tlFo81zYFZ8VworQMkx2yWkTX+CWDdrbkTgbB3Ib46YgtOjvbsIIkLHiwX+8bIftG0h80RSL7vvOFVzw2s+ilUA4VqWRoX1Ty0623c63PDb5uT2cO1kOB7xQ8pNaaGF/Y59k9sHBQV7zmteQy+U48cQTOf3006fdDhW6u7tRSu3QrTIwMLBDV0sDH/nIRxgfH2/eNm7ceDCGuldoiSstkGhkOo1IW6uB5T3vYXnPe57XLpcf+2Hecda9vPyUVYxU0ggD+Q2RFU8qEUQJQluhRdYSVDnGKUaocowqh4hKhKhGUJsirjTQCKxrBDE324Drj9cXro2wFjayLKmUPNaVOnm6NuN5va/ngu4/pnlr4fDB9ouy2/9/euthryd5mlNSGzg+s5V2r4IQkE9Xae8qEswpEh1bYXyxoTRDUumU1Nod4rRjJ59RPHkLQ5uLUKrYatUogiRB1iLURAWnFKJqGrekccq24r84W5AaqFE7YS7+hEZOVDCdeSYWiObitqz7uuuOLNVZWbsQ7zkI36PzqYiOR8etxULgs0PovZCIVADGvKDFlSaO8NBvGduJ2U9++jHiQBKnJbEviQNBHAi0Z33Qh0/0GTzZBm/uSkgE0J5sTmaNI9BKNC0WjBIYV6FTLnHOI+zwqPQoivMEtbZJW7AGTrl8BUZaS7DjPrkCEsGc2cP86+LvPvd3n7SLLxctuZ6f//eVTS94Gdsq76WnXzXZDWYMS8/6W5ad9onme9vde9wb7K/9HCgs7/uLfXreEvXG/TwSiyOBz0Irc6UFbPh1PZNoaerNz7sSdvnc9zNyco5wdjtJLiDKKCrdLu5YzQonxSqiGiG0/Q5Tldhe44s1ZDlElkNEpd65EifT7I2EkE1Oa++QtnDIkWhHNnMJTD0bwC2AU5CEBY/+iTwbyh2sqszgybDjeb1HgPEoRWE4gxn2yeUqfPyx1/O3j7+O9z/0R1z35O887/23sP8wNX+lcc3tkGlO8/uZ7w2x0B9gUWqQBelh+oIJ2r0qQhiSUCGUzWiJs5pKt63mj9OSKKPQnqyLiTFUQysG1kLLaStVqNpzWdYiZDlEjVeQldB2a1U1TsV2wYQ5QaUHnKqm1uGQGjZk1hZsPmFscCYkbWsjiCJMVwdjp3aRXxvhj9jrfmV2lq4nQ1JDMXFXdpLXQrNoSPj27xe6uNLAkda9sjM0+GyUmeSziS9IvPptDznt9nzWNIvIds1pSzMl1Q7bcTIVJ1+5gmqHZOwoh1MvXcE5b7mZzDqJNyYZu7jMaf/38R0HMHUsrj3Pl536ce754QdspqZjv9dFmLDs1I9bS0gNy079OMtP+CiXXGC7BC+54Nrm788XhzOn3VVo/XOF2S/NvOVADKeFvcShDrdvhdxPxz51sFx66aWMjo7yy1/+kle+8pV8//vfZ9u2bVx99dXcdNNN+3uMewzP8zjzzDO5/fbbef3rX9+8//bbb+d1r3vdTp/j+z5+nQC00MLhigNRJZB0pPlQ1+O43U9z4TXvwmnDdq/ESdNGyWgQYYyK6mwnSWzgZ9K42YwIWzlVt1Fo2P4kCSQKPAfjKoxnJwYYm5NhPSNt4L12BbWMy8aJdn6TXciS9AZ6VXa/vM9RXeY9617LuvEOLpi1mhv6Hmo+tv1CY6u75fCBnLFqpwvBKeGzPF1mlfsU/7PlVEYe6UEmEOU1sqdKW77M/Lmbic+SPL5+Fs7GgNSAR26jIr3FwdlU77hMtLWyc11b9ec4TUu7JBtQ6/apdipq7YLiPEPbcSMQOmxKtSEjaFutqc3rZPB0n1pfgnAts3DKwlbITlRIj5VIOrKEXQH+RIHUM4PWp7pQtJ8lpTAJCKWQM/swKR9RrrDyBepRvT1WrvrMoR7CPuOuWz/Exa+8rhn0ee93r+CSC66l2u0R5uwkO05Lyr2gfYhymmM/vQJzgc9RN97M6isvn7a/Uy5bgZirbIhtzYbYytAQZxSJL4gD0I6g1mEX87wJ293iD1sbsIf+YXoFX9gG7jg4VUgPGMq9gk1dXTx4VBudqoxev5AEwa/KR/O9TaeTuroNI+COuz+6g6WZU0msx7sBWapZYd0YSDQiFLbjasrCgr9hjOWLP2i3kRKUxEjbaTO1OnAqpna+bG8ZuCsLwV3df7CwctuX9ul5UzPVpv79fNHisy0cKdjfmZZmfAIjYdvZKeb+yypyGzyqx89C+47tBGxw2LheQGQMxBoRRpYLxHEz8wxoclqh3ElOq63IotsymMAhSTkYRyBDg0vDUlfaRQYh0K5DyQnYFuSYmcpQNR6TYQC7xoa4wK+qc7ivcDSLU9vIqSrra93kVJVf/Oo4eh6yoeYT4518a/gczlm8jq8vWElK+C1Oe5hiKp+drVIUnFFCFPOcEQa8HGvCXgDuH1xI28MuQkOUsdafpUUx5eMT1KBHMCgJhjwyviToFyhjQCf23JyaFRTZrmyT8jC+S60rIGxzqLVJSjOhMj9GVBSpfsnYIiuudD1SQBhD1J2h2q7IboTUhnErOo4XaNu4pdmposcnSN9TQPR2Y9I+YrxoRZ6GtbQUyI52TBRx64sov3aqqHak4a5bP7RTPhtlrXVXlJGEWZt1kvgQT+G0R9+wgmc/OMlBd8VnhTYgnGmcNswDBvxx8Edtl0yjC6aBsM0K2OlBQ2rYumiomkO1LJk41pDxQs697cMYIxh4uoej/72ISAy33n8VvfdsQ2d9WxRUL4pS9a4VYUBWalZciRNEFDXXMRrWZu7mUdCG5YuutJ81qcB3d8tpt+ezDZeG3XHaQ81nd1XU91zFfg3xdH/afbbQwpGOfRJY7rzzTn7wgx9w9tlnI6Vk/vz5LFmyhHw+z3XXXcerX/3q/T3OPcbll1/Om9/8Zs466yzOPfdcvvKVr7Bhwwbe857nV+3fQgsvJCyRb8BZtIC7qwFLUjGbLpHkVgtSgxJZs4thDfuXaZV8idmx6nxqjoIQNntF1BfVHIUOHOKMh3brrcIGSIy10qmZegYG4Gu60iXmBiP7TVwBWB9LjsoOEmpFSoZM6Ap5ufOg0KmT09bE9PCFRHKcm2Fxfoh16VnICYk7JgmzDsfOH+CU/CaeLs4knatR7FOAi1NROGUPZ8i3FapxXF8AFk1vdRO46LRH2O5R7lWUewW1bkPSFdGVLjEmUoz6lujHKcH4UT5OGYItClA4ZfAKICNtu2SMJm7zCLYWwfd3WMQRrr0Ey7YcSXceoTW3PLHzBegWDj/ccZe1+Lpw2We4+5YPIRIzmb8S2dDYWo9GdNZQjqaa8RA1CY79Dl34hZtY+74rAKj0wTMfthPUUy5bAQWDVIIoK6h0Q9hu0OmEdF+RBZ2jPLVuJulVPqaeqbI90ltsBkyYF5R7BaW5mnVv+RDwIb7z7Nm0qxKnemMsbnuCy46/jYuvudZ+Ftj9BO+WR68GYPnxH5n0fJcCEo2/Yaxp+bZ8wWXTrgtCGAyCpadf1eydvvWBSTurqa+5s0nn1N93JrQcibZktyffsflqLbTQwj5jiXwDMpVCJPWg4/Y2Rs/qQbuC7EYD2iAanFYyef2dymVlPSygkS26M04rBbgOcXuA9iYX4IQ2NpS8Zkg8g5GCxAOkQShD4EQsSg0xyxljWEc8FmYp6BRf2XQ+hcjnd2c9ygnBZtbUeglkRFp28ER5NqsKvawq9BKomInQx5EaZ0ISp8EtGtLbIAk8ek8qkBI7F1ZbnPbwgysc2mSFcQ1jJkXVuHSqIguCYYSXoB0XFVouaSTECyJ0rNCuIWyzhQ4qUsgowDcGqY3lmzqpd2DVOW2iMe0ZorxPmHco9UlqnRC2GaSfYBJhF4mBYCgCrTGORJUjUkP1TpkwadpTg+08M2E02X1dLNnPUbWGqXNqoZTtXHFdbtn6D4fqMLewD7jzjg/vwGeNmOSzcRpq3RrTHiGkoZp2EKFoctoGap2TeYCnXroChOWzCEGUFtQ67b4SzxB3xvhtNUpb07Q9Le1353bIbIH0QGLtxQOJzkpKMyWP3ly3wP23a1k8ewBPJvzy/dfxqv/4dNOqbpc2xPWljYZAsvyYDwGq2a3obR5j5TM32Mfm/LXdWAgrsGiDQNuOl5M/BkpNs8rdGZ/dXlyZ+vv2nPdI5LO3hf92wLqzW2jhSMM+CSylUoneXltt0dnZyeDgIMcccwwnn3wyDz744H4d4N7ijW98I8PDw3zqU59i69atnHTSSfz4xz9u5sYcaBzIANMWWthfuF1/l2Ud7+TDn30XSz7xJeipIZ9O2ZZdJcBVmHogKNAUVYyoe1E3RBVlJ6/oRheLmqxYdiQ65RO1+UQZZStFYoNJDChRt9SxgXWJb5BeQm+qyBmpdfv1vZ7oOryl4xdU2xXHuwpf7Fxc2R476574WRUuWNCapB4s7KqLpYElHY9z96yjqaV9ZFnh52u8pG0dvoyoJi69uQL5VJV+r41qMcCpOHhjOVSpZru06gH3jcB77TtoXxFlFeUZgtKCmIULt/E7M5/grPQarln7agb7QoTSDHW6eCP2vG571lDtEmT6Nen+EDVRAdfBeApvoGQrZX3PiizCdtAI38fEsY3oaMuDEtz66789KMe1hf0LmRgu+J0buOfnH+MVv38j/oQhTlnrLjpCMtka2aCG3xVTjV2GxjMs+Nb1SO1x1M03YxyDnGIXF6dBhTbsvtZhRRrZXaO3vchR7UMEKmJ1uptauweSHe0UrliBK2xYvXahPEfjzS7xxl+8h++c+2XeePT9O7yHO+6e7jN95rtWkB5KUJUEIQRGTgpKS8+8CuHa73rRsM6ZYqGzfMFl9rqg6teKhjUEWM9tpRBRYiemdZHmlkc+vcvju331385w0ZLrJ0NLsTYXRxKWdbyTW0a/dqiHMQ0tPtvCkYDb9XdZmnoznY8XKM3Ms+nVfUQ5yG0waFegattx2ql8tsFljQSp7aJc0wps55w2bLeK9lQ+m3jWwinxhbULc4BEYGJJzqsxxxvhTM/j3qrDP207n4FKFk8mzEwXGAjzrKn00OGUme2PUo1dtoV5BkpZKjWXzmyZnFejEPpoFyrdUGsTdoGyO+IludV7dJx0/zG87JE/oHhHL21rEtxiwt23fOhA/Eta2Amm8tmaEQzrNI9U5lM1DoGIqWoXIQ1JynapqhAQoMc9ZCgx0hB1xSS+QsYCjIMRKTxPIcuRrdDXZlpHtogSEl9S7ZBUe6A2v8aC2UP0pErc/9hR1tKuZIiyCrfo2ZB2R+EPVu31OwzrIqNjO2LCsP6ZEJgwspZg1RqmXLG5m0li7cECv2UFeYRid3y21q0xbRGpbA3Pjcn11Qhjh+GxLAv++TM4A1YdUVP2px0bNG9EvfMlbW9RTmNyMW46QgqDDjTVHomqTB/PKZetwDEQpaX9bpVQ7RSEHbDgH25i3V9ewZo/ns5fb/vFdMuw5cd+2NrYYa3L7Pe54Cd32OdZTutM8tkpuZzLF0zpDlfSCu7TOK2EZM/5LDw3p93eSuxIE1xe5f0xt4X/dqiH8eLC4WK5fZgM41BDGLP3/5Gzzz6bq6++mqVLl/J7v/d7zc6Vv/u7v+N73/seq1fvGdk7HDExMUFbWxvj4+Pk8/l92kdrUtrCkYLlx3yIgc87jD3ZRc9D4I8nuBMRqmyrmZrVfNpWagg9ZfJpjL3P2PDjxmKaEcJ6U3uKJO0Q5m07MMZWVAPEgSBK20q8Si+EHQluT5XTZm/mLTPu5dXp6iE6IrvG2zecRzVxmZseZWn+UZYsfOpQD+lFg92JLFf0n8GP15xAdSxg1pwRPnz0LQzGOX44cCqbCm0YI9BGML62nfRmSceqBH80QlYTe+5Kga7b12nHCi6VLsXw6Ya+4wZ514Kf87b8AACfH13A5++/iJ6eCZQ0CGHYsqELd9ghtQ3rR71+zAo3QhD1ZVHFeiDuxm0k82agBseaBN6UytZuYW4ft95/1cE5mC0cEFzw2s8C4BRjEl9S7nMpzhHUTinjeTHH9Q7w8s5nebbcy9NjfWwZayPaksZIwNWse/cHpu3v1PevQIVQmgW1Tk1qVpGefJGcW2M8DNjc34GuOsggZu2ffmTac0/88AqEhkqvIcknECScs3gdr+l+mEBGvOGoB3YY/wkfW0Fc157dEvijkNsQ4VSsaBGnrPB433/ajptlp9YnsMZY+524Xuka1u13GoG7Tes9ZavH6zZ8ItaTVpSOxASeFTg9SeIr7l75wb06/jubkF5yvq1MPNLElgaeLx9t8dkWXkxY3vMeaqctoNLtUu6R5DYnOKUEp5JM57S74LPNDu369XtXnLbS407js4kniFO2MjtOWVunOFPnum0xs+aOcF7fat7T9XM2xxl+MH4mzxR66PRLAITaYd1EJ51BmbQTUY5dnh3qprI1A8DC47YyLzvGSC3NExtnklQchDJ4uZCefJHrF/8XLw/2LPthVJc59+tXsPAHExhHUukLqHQpfvNPlz/3k1vYL1izaSY5KbmlNJffFBcyEmY4ObcZX0b8z5ZT2fDQbNJbBapmbcIqfQYZ24Vl7RmMY3AKitQABMMGf1zjFhO80SqiHNrrrFLWmtmRkBi2vSzH+PEJRx2zhd+d+SiBiLjunteAgAX/pYlyDsFwvfgnMchajKzGiMHRSctnKe31HdDFEiiJzGUx1Zr9TBmDSRKbr5TNtPJjj2Dsis9WZmhEdw3HS5jfNcJ53avZUO3kqdE+tgy0I7fZruo1l07/PjntfSuQMTYvUIP2oNpt0J5GJAKRCIIhQaVPN7u6Gzj10hVgrE1Y4lvBRiYQzgkJsjVqFZe1fzKdAy878WNU57XhlGPcwSI65ZJkPGSYoD1luwxTDmFuO067Kz47ldO6blN0B5rXioYNpXEkxnfRgbvf+CxMijKN349E7A9O2sJ03Hnnnbz6d9/IWZfs3Tl2oPDrW6/h7jtXcu655x7qoRxS7HMGy9atWwG46qqrWLp0Kf/6r/+K53l885vf3K8DPJyxK4X29uQ7LE29+YDkZjwXlrW9Y797G7fwwsTyue9n+KL5XLH4O/xt6TUkT2SQYZ0k16v6k8CxnSe1RiaLatq7iMTYlnIhSDKe7X6pd7w0OmGSQBKnJLEPRormgnbi24lDnLHiishHdLcVOSo7yAxngshIXLFPX08HDPf/70loF546Y5S/Ov2n6P5j9thy4VXnfnqHipoW9hy762R5W+e9PDwym/VVB2MEJe1T1S6bCm0Mb7ChspkZRVJzCpRkFregMAK8grX4sIsp9Z0ZoF7Mqn3DWd0bWZZZA9jKp3PSz3LiguPYNNFGzq1xQe+z/NJdwOpoFplHbfYK2kClgogivKjutx6GkGjU2i2Qy0JYsxPWOMbM7D3o4sqrXvopRJRMs2hq4fnhnh9ageS8199oM6YEqAokNYXwI7r8Emen1jLLHePLZz43N3jk85ft8rHLHn4TC3Mj/GrTfHI7EaMT39qGdZ00xMBgnpl9Y7yu5yHelB0FYHjLHLpmbZr2nCevuYzjP74C7YJRdh+qpptdKy9/w02EecGpl67gkc9dxi2PfJolL78akWjURLW+CFNfsIymiCwAjoNwVPNvm9mi6nZ5GqRvrznaXnvCvGJv0ZhwLjvtE2CMrQ48QoWVQ4Flne/ilpGv7nD/7cl3WJp9K7cWDz63b1VBtrCnWNb2DkQ6ReJJ5rzvWR64fzGpYYE/qq3VzRROq6o757Mm1rbDznPQnmrerx2BcW2gfRJIopQNabZ5Ag2BBaJ6PkGc1ZhsjHA12WyNGZkClcTj3sp8lqQ3cFH+CWZ7s9hQ62RdqYtNE21oBFuKecLIoTCaRkw4OGVJ3BuxOD9EZCSBiunoKEEHLGobwZEJ2ki6VAXI7NFx6pBpECC3DIHv46ZdRo53OOaaFaz62K6vOdsf69Y8c9+xaM5W7lu/CE8kdLhlni308AhzODW3iTmZcdbmZ8AWB6HBKYMMBU4ZnIrNrKj2GuJsQllKtCtIfEU2tue4yfjNcxrsvEsVq+Q2ppk4K2JOZpyMrLGqMgOZi9ChIso5yEgjYk0SOMi69ZEoVpriiomiyYyXRk5RHKPHJhCuY7vDTN2OL5066OLK8hnvBWP2ORethenYFZ91ipIor8BNyHs1Tk1voNst8LWz/nm3+3v4C/a75cSPrODxG3b8nlm04mbCHKjKjkKxU7b2i5VegTi+gN6YJQ4082YPMTszTn85x/Hf/yRPvX5yHnXLE9fwyld9hnKfj5txSFISp5TghUmz4GZ7Tptk/V3z2UTbrhUhrA2f49hOFuquHp43jc8iBCLRgCTKSF7+hpu497tX7PDedoXt+axx1RFrHdbCgYegFTB/uGGfVjD/5E/+pPn76aefzrp163j66aeZN28e3d3d+21whzu2n/g1Kv2WZt96SMQVANzDa1G6hcMTS9QbcY49ijgluH30BGpjAQAy1AhN3TpJon1LIEyjHXaKdYKok22jJGG7i3YmW2btwrWdeEZpQZSxFSvatZY12oUko0myCV4upLutyEt717E8/yhnejsxYJ0CjUayZ9V6+wsVU8NIGyhdeawDdQbcXRVctIfPb4krzx+7EllO9lL8yZxf8x15FoOlLN/cfC7dQYkoVsiqRNYEpVSAl4kgm1DpU8hEoV1re2SUPW/98QS3EBP6LrU2AQmsK3WyOfGYUV/v3Rh1cXRukGeHulnQPspLsmuY6Y3xlWKW0swOhPZxigEySSDwSTozjC/O4o8nZB7bCsUy+C7UauhiCdndifYOwXe2tjZNLex/GAF3r/wgZ7/9ZtwyqCGPUiy5jwVkVI0Z/vjzfo02p8KytkdpdyusK3Xu8PjTn7QT2Pc88Ga+vOxb3PDkcs4ONtIQCjtkeqf7ferTO19gW/iFm1hbnxye9MEVHHPtClZ99DLijIswhlpXQHqNFW8a2UamXukK2PDbelaLqOdz4ThNOwURSkTkUJsRUOlxiAPBea+/kZ99/8o9PibLj/9IPWtB2Kpdjlwv60OB7cWVaXz2EIgrYIOSW2jhubBEvgGVy1nf/PGIh+85hqBku6sbRUPTOK3YOZ8VGrQrSXyJ9mVTRDGCZnerdiDM123AlEB7kHiQpAxJLoFAo7yEtnyZvmyBuekxjsn0067K5FWVjYnHcJylrD1Gwgxbi3kKlYD2TIWRYppwwodIYDxDgibdUQag3a0QaodSxWdG2wTH5fqJjL2Gz1J7xoefiYosveuv6Vldf9+1Gt5QiSjj443ZqvXGwuru0BJXnj9eNn8NH3v09zk/9zRzvBG+s+Usvtl/DtWqC7EgyllBRYXg1SmDCkHVICkIwnaBcSHKgQzt3CpJuRgpmpzWKUX2HM0GBIM1vDVpHuucSagVD26ZQ+4XKSq94I/VUJWkeY7HrkIkBuW5k9krDSu9XAaKZczoGCRMZhgmCSaKUW15e20/2GjkwbWwX7E9n2UYtOcSlhUPRXPw5EvQRvLePdzfE9ftnGMGw4JahyEY2PF/+MBX7HMWfPFG0lLz2/dfzvx/uoEwdqgmLmGy8/Ptrtt2bX94zLUrWNXgtB9YwfGfWMGM3fHZJIF4ygr29pzWj6fxWRM41DpTVDsdEt/a+O4Np11+/Ecg0QitMSkPUafTLU7bQgtHBvb4Knj55XvePnzzzTfv02COJCzNvhXhedMmpTKwIYOHajIKcMvQVw7Za7dwBMFokmfW0GcMj8Un05azvtTak1YK1/XJqCPsfWlLuEVc99UH+zuQ+IJqu92WxrxVANK28kZpOwmIswad0hAkKD8hCEI6MhW6UyUW5wY5I7OOuU4ByO1y2KO6zLbEMEcpsjI4sMdoChxs14NxwBuD826/FMqK3LMrmPHrMrf/vFUpfTCwK5HlHflt9Dl3cNXTv8szW3oZ7yzgKI0ONDKUiHGXsOxAkBB2aDC2qkgk9lzVLsSBQ76i0Y719pWR5PENs/h7/2Je1/UgLw22IUWOXq9A4EVUE4fNUQe/Lc+kK1Ni3WkpwrYAkeQIhgNklFDr8ql2CqKMg1Pqxf/tFhgaRS+YiRQC05Zl8KXtB/9AtnDA8PP/thOo+79xOee9/ka0oyjPcilXs9zOsZzc1/+8X+NvT/oBAP3xy/jCGd/e6TZfX/UKXlL/Kn13++PIfaunAWDh/0Zc9L92Yvf4DZdZm4KP7noCu7zvLxCZtJ1wam07tZLE2uKhIQbi2Hay1CtkpRDQlwEDbtkga5oLXn0DQrNTe4UdrBIqVRs+qiRCiGl2ChddfD133mG3u+T8a3awDNvZfS82LMu/nVsmvtH8W9YLHQ4ln721uvNzu4UWtkdSLCGTBPX0eo5en6J88my011hsFmhBk9PGaXe3fDbxZL2TTzSLhbSivngNYR6inCFJGUwqQQUxfioil6oRuBG+ipmVnqDTK9HtFulzxul1JpAYnqzNYlPYyUCYYyIKqEQOi3sGqSYO/dvaoSpBGYwyEBjKEwG/3jaPnkyRvFejK2dtxYqJnW+6IqFsEvbEbOW9z76J/MM+2qFpcSMmSsy7PYWRAmesyvJjPwzFUsve6SDgmlP+mwVf/Sy5px2KCzXpuQWSoQCEoTojQTuK7EZwyxAH9hzEWJHFnZAkQcPeDuKUxHS5CF3vwHYFni9xSjG1nIs/WGXmLyL6dRe/mN0GniYTQtsaQ5hzCGpJXWg0yNCKinF7GiUEohbaBWXHhnvjKGQmjYliTBhiwhDh+/Z67rnWQulgo2H918J+xVQ++4rfv5G4IHAqkvIMRVJI8YviYvA1PE83oCev3n333AkfWwELDOWCnff77TUGR3NsG8rjpSJqRX+vXm/+j8ss+b+ruf3ev+Hxz162Ww64vO8vbIZmg682OG0YQZTYyIkksWJLXWxs8FkjrTDqVHbPaS9acj1omjy1yWcBbCPMdE47RWjZXnSZyndbaKGFQ4M9nnE/9NBDe7SdeJFUEOxs0nlr6V8OwUhaaGHfYJIEvWEz3sndjJwIE2eElB/3yW/QqJptN08824UijA1CxDPEaWnzQCODMJC4gjBnK/m0ommxhKwvXKcNcXuCykXkM1XyqSpdQZl2r0KnV2KeP8Iif4AFzjDznOe2OehR4B9A+7DFd7+NZy785+bfG+ICV2x4PcGwtYBAgLfFwylC9xMharTM8tnvA9chXNjbtNRp4cDgZVe+h3d+4vu8I79t2v1V4+JIzTkL1zEjmODOTYuRNevt6xQFMoKwQ2AcQ60vIcpJnIqo5whBGEOSkghtcErWVzdMOzw8MIu8U2WBO8wCd5iROEt3pkSYKB4vzWZ1oZtq7JLO1ajkfUaPlbStcWl7skIqTEj1W+u8OOuiZ3ZBbCeBteNnISJNsnfzgv2C2379iYP/onUsPfMqjKu47ZeHbgwHA2e+awUPfP9Kzv3jm5CJZDyQxIlioGK/45ad+vHnDMLcGS66+HqEMdxx50d46+L7mvdffNF11uZGwLe//fecGSj6lK0+bZ+1cQdh8uILr8W4crchm43HdrZNY6K35vUO6957JadcvgIZwsN/f1nTpmPZiR9DhBHUQkSS2CrXOLY2ConGaGMnpQCVKqn143hjKYwriVOKJLBVsxdfdB1oW40uwxgRJXhaI2oxyxd/0Fo2NKAkK5+8tjnui5ZMn2zuahL9YhdZpoorwKHrwm6hhX2B0ZOh21ojDAye5pBbr0gPJWhV706pd1JP47MCVGTA2E6VxAPt1X82Gj3rvNYoqPZqVFdtBz7b7pbxZUybU6FNlUnLkJyqMM8ZISdDSsZlfdRNVbuUEp9ARcxrG2NpzxOsrvbSP5Gn5PpWc64q5JiLdjVKarQRxFoSOBGFWsCzhR46/TLaCEJjuL3i8KPR0zk9u57j/C382T+9DxnaoqD539nK6rfNpPMpQ8dohDca2spsNwVS4IyUrOVvGEGliqnVWNbxTpg/i20v7+Chf9gz67AW9h7Hf2IdSMmW/7eIeacO8+TqPLImSTJ1NwEJ1S4QsV2oNYCsgVeDKCdwKlaASVzQSiJMff4FRInEKRhUVSOiBLcQkd3k4I07hO22AM4tQVy3vEOAjLUVUbBh4DJwrMBSv8YaUwSszadQyoopor6wnArq+UbJAT9uy3vew8rBLzf/PpSC4JGei7EnOPPdK3igLra89E9uAiOZWGQglDijdj6+fNGVrFxz417ve/miKy1ve+aGyfuO+ZDtMJSS/ov7CDSU5wmo2i/kVX/wcRZ+4SacGRUcpakVnN1aF25vgbp9UaQzWmbp6VfxzFvbWHPp5TvlszCF01Zrdr0z0XVOm4CRGG2sdSRlUuudJp8Fm2OofYmBJqd1ShGiHOJJLJ89+gP2s9ZYS3VdbnnimubrNzntlHNth/NOtkSWFyVaFmGHFfZ4lfKuu+46kONo4XliXy9sLby4YcKQ1FBIaltAyXMpHhtROloQbHJQVbvwLGJwarbS30hBmLfWSjIWzWqpKAdxqh7AqOwk1EiDCTQqF9GZL9OVLtGbKtLrF5jpjZNVVdpVmQXuILNUhXnOrjtXGuiQaWomQu+nK8lxX/sLa1nmG3Sg8borZLOV5uMLf/xOG763xSFfMFS7LOlxJ2yQabXTIVgTYYolxKw+SrN2b2/WwvPHL//1chZ8M+IdS/+ped/dVcHDpfkc2zHAK9qfYSjOUSik8EYk/qi1WpCRoTYqmTha43RViD2PRDu4BdEMUKx0KoIxjVO253BcUoyPZPlx6QTu27aAEzq38ZquRzgqN0ynV+Lc7LN8LzqLoXKGSslDBxrtKvyxBFkow6YCJo4R6RSO51I5bgZhTpHeVsPfPMGWS3p45HMHZ/Fi2Wmf4JaHP3VQXmt3eLHkvrSvttkov/i3KzjnzTejKva7oxJ5/MF976XvqzXuW7/o/7P33nFyXfX5//ucc8vU7atVr7Zc5Iq7jXG3pFACJKSQ0PIFQiCEmA6m2ICNAYND8iOFkNC+KUD4UoNsyxa4YLANuBdJltWl1fbdqbed8/vjzMzuSlr1as/zeu1rp9y5ZebOnc85z+d5Hi6e9zxPbJ7N6XPGM1GuvswSBHfd89HG/frtOrmyM+qPXX3ZzUyftQ29dSbTVK6RFTVR/SWnr0GYmxHhvnd8TmlNkLd5BmGLtSqZiPrAcPmC91orEWnVJajaJE7tMcAqWsoVlATjOCSpDHFGImLQjsQthFAPoTYGEetGJ2HD6keqSYN0AHeowtJzPrnH8+6ue6/n6pfdNOXzhxvLTr+e2584ets/1nC0MgybOL5RV8kRRqTXDdKV6aY8TdF/hoOMbLiyEXZCul7PRvlaPRuKmj1uzcLWhThjbzeU2bVstpa5o3TnikzPFJjmF+hyi+RUlZSISMmIjAyY7w6y0IlxkWSkR1krduiQDlWkX+XxZMyOKE/ODUiQtDtlFnYMst1rQUnN9o2dmO6A8xZsojtVYH5qECk09w2eSCFIUU0cXJnQ442Rl4q//s7bOOErG3iOLuAc5ouN9vrqeeAouh7TtD681R5INOGamSSIMEHnUwgl7ORhFGPimOrMHCMX75rx1cShw4rtX2H5jHfR9XiVZ2YuRGc0qiLIbpCosGY/54FXAacEbsUgY0sGBi0St2LwCrpBkogaOWKErWGdQmDJsyRBhIr8ppptmGeXj1MCp6IxSmIcgXYEMjLIWFvL6CiBUhkTBJgoBqNBqUbepnBdkMJ+9wKNyOdYsf7IuJjsTLIcLbyQiZU6WtePN7H8+j/ex3lv+RIyFiS5CFNxOfX628hfMhOAC97wJR789rjrzfIF9vbE82L5KR9hxTOfbdzfuW5bseZzdrmF7+eRf7yOl/3+F3DLipETBPP/6VY2/NX7Wf/u9zH/X27FtFfZ8K73sewjb9mvY5pUd2kQWluXDSDMg4x2fU2jpp37t5ZcVBqhpCVZYJIqWxRKjXrWuAqRUlYFWbOmdiqx/R6lHGQ5HK9noUYu7VrPwt5r2lUrP8yVV92yX+/FocSyJddPIoWaaOLFiCMbZNDEYUOTXGniQGCSBG99P92PRcz/SUz+WRdRlejTi7RctYPiwoSgC4I2qHYIKl2CoB2CDqh22b+gA4J2Q9iZEE+L0D0BckYZf1aJaXOGOWvuFi6Zvp4rp63mqvZnuKb1Sa7IPcPlmTWcl9rMqW60T+RKHb5wccWhyY949q3/xKVXPm67E11NWHEpFtOc/Ms3cPZv/hjpJThDDuk+SPfHdgCOHbiE7QlO1YDrINpbbUeLhjP/9rZDsm9NTI1ZP1Es+t5fNu7nZcDidC/XzbiT6e4oo3EaHUn8EchvSchvCskMJLQ9H4MytOfLqHSMqgrS/ZAeABnbc7zaJonTlnCRgUANuJhtacYe7eKB+0/FFTFn5DbzlvYHWOgOkFYR5aoHAz4k4I9Aqq9G0rXmEd2dkEmjO/JEWUmUFVS6PcLpeYSGs991ZM6XY4FcWXruDSw955N7X/AFgIkkyIPffi9rrr+O1kyFl05/Hk/GLMlt40LfQfcuZombIdi+sLH8Xfd8lJf/8y+47ZlrG/d3t97dob7szFnbGo9NJFZ2Xq5O5uyMSZYD19wy5XMb3mBvhx2aas/uiW+TS2Nasta/PZ+DbBZymdr/LKTT4HsgJCKIkeWAJCWptku0J3DHAkQYI4yxg8rEhunWO23r3X67q4NElCDCeK/n3dFUr5iUJeaXnnvDUduHYwlNcqWJA4LRmGqASRLMwBD5e5+j46ky2W2GSo+Bl43Ymra19lvfKQha7W990FH7a8M+1gZhuyHsSEhSBu0ZkowhaY85fdp2Lu5azxXtz3J5y7OcktrKdGeUNlUmLyu0yTKnuoZ2mSEnU0gkOZmiWyraVBlXJPRX80hhyDsBm4NOxpI03akiPdkCGTdE5iJOm7uN7lSBjIq4OvcU721fT8YJibWkHHk8OzKN+/oX8debfo+oPWHwqnkMXzaPaME0yKYtuQKQaFof2QFCQpyMk9K6RkhVbKhz1JWzpAwg0in8gSotrWWW3/ueo/aRviigNd5zvSz8QYH0Dkk4O2w0qlW7wCvY+tQvaLLbQ7JbqqSGYnK9MdntIentZdL9EW4xwSlrvILGLWmcqkEWA0TFdj6IJMEthLhjIf5AQKo/wB+24xrtSZKURHu1/CEhEGGCqEb2O6U1wnWsFZjjIFI+smYDKoS05402ECd28vkwwxh9TJArV151y1GdzD5S2JlEevjr72Xth68DaZhxVi/VJRWGXlVm8fc/zdASYS29alix/ktsfc0czvybCY9NJFf2MH9Vf+7eH32AB7/1XoKuBL+nzMK//yIAG/7y/aR/Pe58saz9rbtdz84Zc8u63o7oHx5//qmbINZs+Eur0okzEHTuoZEzm67VsBnIZBDpNCKTgUztuus4Vp1dCZHlABElaE9S7rZ2685oOLmm3cd6Fvatpj2q6pWa7eay01+8ivCjAWGOjb8mLJqJ6E008SLESv09rpGvAyDZsg2xuAehDW3rElrXC/rOyZE6f4STTtnC6o3TiUZdVEVipEH71h9aaNEgHHRLjJcPactWyHoBGSci54bMyQxzYqqXOd4g09UY3SpimkzjCg84cLXHVCH3gYnwxf75//7bnF/y2av7+dd7LkcWHIyBIJ+Q5BRiwCfTC5m+8U7vOGeIWzSkE7TjQKEEWhMtmo52BdXOAz6sJvYVQjDjPvjgy87m8z2PcI7nAds4y0txllfmlZnHCE53uGPd+XijEhkbEs9a24kYCpUUScXBjWlkPhghiLJ24sU4kKQ1IrG2CUkuRmckIhL8ungCT43O4LvROYSxw/Yt7ai07TqSgWx8J+qdSKYli3EVxYUttrAOTK1z1iE9qCl3v3j6HIyruPNXHz/au3HU0JKqUow9nhvusg90rGs8N6irbN64gJLxSImIhBMJtEv/tll0SjuAvPaP3wxYcuSal9oOMaPEJAIGJpAm5k12+Rp5YG2wdiVZJmL5qR9tWGzBrvYXE8mWiYNu07mTfGUCbn/iJq649nPW3z3WyCC2ChRjbBZCGNuJv8bKDEKDqhrcYmK7+wDj2+/K/nTH3f74Z2yugJRc89KbSNJql30/2rjjYTtQvuM3NxzdHWmiieMQE+tZHVSRUiAcB5MkuGu30fW8AjGf/s4M3fOHGAy6kIGdBDKusXWBpmEXqh3QKQ3ZBCcVkUQKEyqEmzC9e4zzW9ez0OtjvjtEXiQMaZcEiTZ2nT2qSlrs2jSUkz4uCQrD4twOhuMM64udDFcy9GQLtLhVHKnZOtxGe1uJnBuwvdIKwLpcN6e4QwD4TkwYK/r7W1B9HluZAT0hfee5OEVJcUaGaY8q/C2j9roaRXbSzhjbJW1MLUugNhuSTmEciTNWtRODSiEch42vzNOd2n6YP70mTJIgogi1dZC2NVmiMyPijId2ITqhQgTIzWlSgwI3o3CwhIjQ4BRCRJDg6BARuyS+tQlTsanZfWmrEq0rRRPTmMAVWuOUYxLtoIIEU7WqFhlraxkG40onsCSL59kufd8bDwA3E5SwYWitwg4zjpW8WaHNi9oWekbPCHkvIJevMq9tmB+deAfXdLyC9Y/N5sTP3kaSNtberksgEjj1Y9Z6y0hrub3o3zZDNWDF9q+wrONtiHRqF7u3iQqYU27tBSlY8Zy1GF7W9XaeqJ0LO9ucwq7ZcgDLZ7zLrq/3HxvL4LmTzimjDElmaoX3imc+a+tsY5CRRpaC2vUVRLRrPVufsqhnHMmKtQGr17QrVu87Sbe7mvZYqmdvf/wz9n9Tld3EixhNgqWJJl6kWKm/B8A18nWsf43CG1D0/CYmzEvMwhIfX/hTHiwvYriSYTidIao6VncuDEIYjBYYI0AaurvGmN0yyqLcANO9EVIiIiNDZrlDzHdGmO24pEUKOLyF9/6SK3V8pHMNf/jK3/Gqh9+B+6s8CAe36NCyMcKpJKhKTHFOBoD20waItEJrQWowbQeviUaGCTI2xHuPkWniIOEWYrQv+cHdF/D519t8sJEkDdii9qmozEmZXlacXqSocxilSHxB7Nfs3ao5MiN2ABnlAATaHe/AUIFVryR5jXE10k9wUwGZVMjtm07h4pnruXPNKQgB0k/QiUT1VEmqDmOuA7qFjtUpUptHEcMFaMuhXdi21ND5sEImBgqSMG/VMocbU1kQHWkpd51cueYSGy75YsPdV3yJDz72Ovr7WvGchP8odPD72W1kpMfm2KdNBpygIh4LswTaxZdRg1wBuPM73wDg6ssarjVTKlHqj1/z0pu45hI74LlrH97zFU/f3MiH2dkWTPcu5q6auGCiGgZg/gx7XdwdznjvbXhzXSrdNiQ6u9XgFQ1OVeMUIpzRYBJlbpRABprUSM2+xLfX9ToRsb9YsfoWlp79yUmTRVMRRUcT9e/FlHZsTTTRxG4xsZ4VjgPzZyHKARRrofCzBVcseZZy7NPf0YpOBEZja1pqBEvtNqkEL2cbhtrTNuekGPq4KuHUtl5ektrAHKdEt/JIiwxtukLVWBLYFZJ2uSu5MqhLlLTm6WAxJ/i9nJqKuX30DEaqafqH85QCj8Vd/bR5Zc6csY2lnU+iEbgiwRUJ2ki+MrIYR2jm5kfYONYOJYf0DmEtzzb6uEXr/1+eJhg6yacl00Fm/SiiWLIT7ElSmwQ04FjVgW5vIWnx0Y7EMcaGmRsDnkcwLaEcenSmyof983sx4/aBr7Ks420Qx7Q+1s/YvB7CdluH6kCRXuchEqh0CbTrkBqSGAfcokZWY5s5lCSo0TI6nyLJeo2JX5xdf5OF1hgpLZkSaWQUEmdcZJRQnwmWkca4EpP2EK15RKVqQ72TxIZ9xzG05BFKwvBowyLJFsWHxmFgKuzJQnJZ19uPKPlSJ1derBluv7r2Ft76mzfz7GNz2Tgfvl/K8775d/LItPks8PvpVAX+fvPVPLl2NqKqUFVBqt9mByU+rH/THNwxa/dGHDfIlWXtb0W05hvE8IoNVv2y4vlbWX7KR1h+6kdhaGSvn/XtY19vkCzLWt5iCZwJmSoff+I1RD9awLot0ya9Lkkb22A3BS7+oy/itLpU2+25nt/sWEu9MEGWrJUvQlgSxVMgpa1phwUyNramFeKQ1bTHYj070cZs6dmf5I5HXhz20E00AU2CpYkDxPITPsCK575wtHejiUOE1qcV3/3AF1g6+z1Mv0vxqZf8hMtThmeDCj3ZAnm/SpA4FAPf2iEZkNISLb4Xc860zZyW3cqpqa3Md8bI17qlcsLDF7mjfHTjqJiAtNh9qvh8J0XQnyEVQbpf0/bUKGF3BndHEVEJyApBZoekr9hN4tnASW9LLwC6XEYWAiCLDKcuyo42rlF/zMrkO0d7Nw4aqppgpGDWLxJOEO/ga6/5F8rGZ0wP8rXRU/nKXdciOgPa2soMzUmBcDAKorxBVQTeqEAGNkcnTtuOVZGAiqzCJWqFJKdJTytRKfiYxOa0VAMX10l4bHAWOlB4+ZArTljH/ZsWUu3PgKdJzSpSKrfgj7qoShY9q4WxuR6z3vI8/zH/+1xpbDeWUYauGUNc1rPxsL9fU3USHS2f3BcjuVLH58/8Hp8/096+ZOWHuLNlkMvaV9PtFDjFHSInU+RlwPmZdVycKgO7Xq92pzyZ6rmdwzzruPb8T3HnQ59o3F925sftRE2sSTpzXHXFZ1lVmzy48ppbuOvbuw8PrePnV35xt4+f+rHbkArGFgpOv3wtV3Q8yzfXX8i25zrJbHPI7FBktyn8gQqiEmEyHtpTaEdYdYseJ0WueelNUx7P3lAf3O1sd1Z/bKJC52gNUJvkytHB0tybuKP4zaO9G00cIuhyGak1vdfOoPu3BeRzW8hf3M+/zfklH+87jd94c9GJQClDEkrANg5hBNJJaGsrMyM3xrR0gU6vTE5VibTClQkz3BHmOKVJtrYtMs1IXCArJZkpmnw6ZZZ2qTnR72UwyREZRaYWWqVjQbniESaKnlyBjmwvl2fWkRGCdpnCFQ69SZHvRO08P9aJp2JGyylEItAeqGGDU7Xd0dq1k5fahcSTNkMDrJKhHsisNRgHISVIUMUABVYpGEWgNaZYIrdOwRwYC3dfMx9tXCNf1yDWXigw/YPM/pli4MJOgjaBv9lj2qMxQatibJ4gbAGjJE7Z4I1MyCOr2nNJlkNErDGqrtBSDcWSTnvIILZ9SMJgGB+rCGMQsc3QjHIObiFClWOMZ23BiBO7tJTgusRzu+m9IEPrhoT8YzFCKYzvoD0H7R/eqaU9WUgeLWXLi5FcqeNr534DzrW3X37vCK/qeYy53gDnpTbzu+os1g10oUoKZ1aZJFKUMh7kYjq7CqTdiMF7Zuxq95YkoA0rNu1qoTzRXmwqLGt5iyUCJ9yfqGRZ3vNXOP/j8O+LHuLG7qf47LTFk16/4V3vm3LdF//RF5GJIWhTDJ8siHOaxEuRGk7wR2OUK1FjNrTepD2SjIdxpa1pdY34rOFw1LTHSj1bJ1eWnfUJ7jgGLKpf0DCMK1KbOCYgjDHNT2QCxsbGaG1tZXR0lJaWlv167ZG6kC076xMYJY56WHDDX1GIhiSwieMT18jXEV17Ln3neMy8r4z6dD8rTvoZ/zo6g4JO4YqE7WEbDw/OZetwG9oIfDfGc2PaUhVuXvgDzvMPTD1yOLEuLnJPeRGn+1voVlVSQjBd5YiM7bZyxfhA4D3bzuP2O8/FKUPHM5qWJwcw/YN2UBqGkCToKG4sL6RAdXWC4xDPm8bWyzNUuwzP/+17d9mPJg49Lvu9zxN0OERpwQl/sZrXdv+W/95xPjkn4JfrFiIkTOsYI0wUY8U0UdVB9VtbuiSlMZ5B+AlUFM6wgwoBA9qDsDvi/FPWA/B0fw8ZL+S8nk08OTyDdr/CxtF2Lp3xPOfm1/Pf28/jmedn4m3zECcXuGzuOu5acxL5B9O4JcNDnxkfOLxl06UArBnpRklN3gtYs62HdX8y9YR5E03AeI7KwWLZq/4cgNt//H8BOOnrf8V//tmXazZ749hZoXIoMfFY1sVF1kYdfPTp1zD2XDsigXXvHb+Gnv7+2yjO08z/SYx2hP3OZwRxGh778nW7JUxgz118O3f7XXnNLSSexKkkGCWOCYLjymtu4Yfff+cB16NwcPXszlZxhxPHAsGxvPsdtZD0hNtH90wmNnHs4xr5OpyeadDWgtnaS/Xik7n0C79mTbGHTYU2tm9rx+nz8MZsc0WUh3BGRKa9zIldA1zSsY6rc09xggM5aZXXY7qCL5zdKqX7kiLTlG0m2poUaBVu43UARV1ldSx5OpjJ+qCbB4fms22shTixamiAl8zcwiVtz7HE38qltZcO6hL9CTxQWcg9wydx39OLwdEIaTCjLt6IItUPThlkYq0V3aIhTgvymwO8DYM2mDyM0COjoI09z6Hxvw6VzSBmzyDuyLL2T1Msu/BRnhyewf1X7xq03MShx/Lud4CSkPKpnDKDoE3hVDRxRhKnBIlnCRaMzfrrfKyAGi3byWgpwVEYz2kE0E+0JUpyviVdjGHwtAwtm2O84RDt1BRcxhIriS9tlksxQpVDovY0zkgVOTgKScL21ywkuGoM55cttK+NyWws2LyWJEGnPIynkNWoaXfZxF6x+H8+TRIr/FTINfNWc1nLs/xs2HYffXX2A6yNitxXWcSaynS+8/D5fOjSn/GO1q2T1vFwEHHDFX8ARrPhDXOY/61NDFwxh8Frq5hEMGv6MMOlDE/9/g2H9VhO//EnKWzPYxyNcA2p5z28UavSeeqW6yYte+lrbiXMS/IbqyS+Imh3qLZLfvfPB1bPwmQr353r2TituPfHHzg0B3oQuPaiT/M/d7znoGraJnbFqlWreMUr/5jzLj/6nzHAr1fdzC9WreCiiy462rtyVNFUsBxC1C9s9duHC0nGs/LDYwD1zuipLGiaOH6Qfmob6TnzAVh/3zz+efosLs2s5aeFM3hweCH9lSyDpSxhMH7Z0EYQeSEZGQHHHsGSEoaqdtkat5GR/UgSIhOzIa7SoQSdEwiWq9ue4o7kXFKDkNlexTgSkctCpYouTbBIqPkNGy1BKSpLZrLh9xUi0bgjL548jaOJay/6NKLVTgjL2PDgmgVoI1g/0mEX2JHCHRVsn+dwyqKtLG7v59HtsyiHEq/PRXsCnASpNDoNOh9hBCSRJJ0LmNFSpN0rs6Oap7wpT1lA5+xnuLh7PSNRmpSK+aOOBwGYliqyLhcS9AjmtRZYV+gkmwvIvWKUS6Y9P2m/y7HHlmIrO56ahjuvyIJZQ6zZz1S4ZUuuRxizx8nP5Sd+EIRgxZrP7de6mzh2sSfCYyJhIaev2eX+RNz5UP01lmB5ze89wGc2vYIfnHDnXrdzqDBxHxc5ORY5IcvO+Q7v6LmIr547eaL9iVuv45wV1zN0ahctGxOCVhtMLSP7fN/ZPtMeCSbVX7DnhpeJj195zS1UO1xUaKCSjHvPH2WsWvlhXnbFDUdt+yuevtnacNRuv9BhkqQRhHssED5NHDz0yBjSccBxSK/ewff/62WY88YoD2ZIb3HwR8AbM4gEytMEie9QVilG8ykio8iKmJwcV2C7Qk5pQ6vE+HVjltrVIuzBIMvGqIvnqj1UEheJIYoVQeCilEZKg1MLcOtQZcBa0vYmggcrC9gYdDESpiEWGCOhnoOYAMKSK0Zaq1O3aNAuxCmFJwWEGpLE5tLEMcS1Dup6doaQyJSPmD6NcFqODa9I8bml/8Xj5TmNfWri8GJZx9sArOVWnOAPVJCxT5RzCLOSzEBC4gpkbHNSUiPaWg/VSGGUwihhyRUl0J5jhVnaYIzNGQKQ1YRpD41SmZW1eWT1HE0liNPSKl1cgXElSdZDu5K4LQWtPklKUbqsxIyWIr0dLaiqfbHQGjFWQgJxKj3JinNfsDT9BmBqZcrenm/i+MSaP9w1j/G1jNezJ7o5TppzH99bdw7vXHY/D1Zns+jut7D+z8Yzby4AVtSGWeesuJ7wvmm0bAgYfT6N0HD/nx85ctgog/A0J83tZa0zDeeR9C7kCsB9P3g/l776C8ggtt/vvL1uA/Sf6dP92O7rWZh6bnGiYmXnejbxjo2a9s5ffZwrLnjxuhc08eJCczbwEGPVyg8fMnKl7pu+M1Y+8LEDDgquD5gPBRrkyhnNC+bxjpX6eyS9Oxg9ETZfnWHWfSFf/u6r+ObQJfQ4Y2wca2ewlKUauOhIoSNJEiniRJJoSVkfe+QKQFkL1lWnUTUeVeNQNpK7qxm+Pnwxv6hMJzARRV1lTFe48dlXkOmF1nUhaqyCKAUQxZhK1a5sYpCjkEjXwZQreKMh7ojCeJo1H9u1mGri0GPi9c8t226hR7fOYnQ4QyVwYXrVWmcMOXgy4U+mPcT5szaBsRkQRhmkZ7s3/WzIefM38ddn/oK/POdePn/m9/mz2Q/RH+R4prcHowwmF+OKhJe3PMqfdj7INZ1PsTaczoOVRWSdgO7WIqn2Kie39vHphT9k1blf428WrOKWnscm7XenXyTREhlDyovoSRWY0zW8X8cu6iG1wPJTpgjXlLJJrryIIKevafztjL0pX27peYx1P1405esPF3a3vX+e/St07+Jd8mR+u/wm0KAdgYzAqUK1G+b/861ox5IsEwmV/anDVq38MA98530YCWGrS9DqTNlFuDvsz7L7i5/+6OiqIVc8ffMhJVfqYbU742DIjKW5Nx3wayeiTq4s734HMps5JOts4uhhpf4eOgwhk0ZM78YMjTDvv7fS8Z85cusc0v3WCtYrGJyq/T2VocCEipFqmq1BG1uTPMO6TF9S5KmozNORoKiru91ei/B5IqywIS5MenxrUuDXQcwvCqdw38hiHuhfwJMjM+gt5SkXUiQDKaLtGYKtWR7tm8lokqY/ydKXFAHYHLfxbGUmmyodlGMXWVaISGIiCcZamqqqzZBRocEtGhDgFQzeqFVeE4aQ1OqGunpFGxDS1rLpFLIlD2MFvK0juCXBSJLBlQm/uOrWw/gpNVFH/fqDUphqFVkKiHK2s33wZQG9FyhGTpQMnmkYvDik/yxJ4it0PjMeKl8j+YyU6JQibPOIWjySjItIanZitRweERsSV5KkJHFOEWdkI+/CKIH2JMaRhK0OQYcLUtD3Eo8L527g6p7VaAUiNui0i5GyljXhYBzZ2I8DQZ1M2RlNcuXFg53r2SVeL3mp+G1pPjpQnP7+XW3DAO4/6z/ZuCyF91wva66/jtUfP3Lj8SdedSMb3/oB8o/5PP/APLK/seGaL33trSyf8a5dlr/vhx9AjVXx+6s4FUOlGxbfdBsimbqe3Zeadnf1bJyR+1ynHs56FuBHKz94WNf/ooY5Rv6aAJoEy7ENIbjm4kNrvWUOovDZE5rqleMfJknIb4RgRozXV2bWLwL+59GXUNApYi1JtBhvTNICHQt0ItFGMKiPXLL7b8OQ2ysev6zuvbOuN8mhjaA/th2FGaFZXZ3JnVtO5rOrl/NcHJGTKT68/XLKD3YiYwjaHXTKgyjCBEHDx1U4LkIKhFL2z/cRXR0U5mdIMoYNbz825JkvFhglUFVNYY6kOj0hiSRCGcKyi3I08uQCan6JFrfKS1MDvKLzUdyWALmoyGXnPMNrlzzGOfM3c+381VzT+RQz3WHe3vY4L89UWej1sWWslXAgjapK3GxEMfEZ0RlKxqPHGWWWO0S3UyCjIjwVM7djmKwTcKHv0CmzbI46dtnnt3Tdz+/Nfgp/8RhXzl7LNS1PsHF7Jwv/82bmf3PfCJEVz3x23IN4Cs/VFatvYflJ+zbBvOysT+x9oSYOGa686vAOYGD35MWyMz7WsPXcmXR58vNHjxjeeT/l9DW7zZh57O+vI8oKZGRwymCkwRtUOFVrwwC1weEBNlzf//33c98P3s8D333f+LqmwJXX3HJE1MovRExFshwrMHE8KQS3ieMYRkPFqpFNkmAGh8g/O4RTAadiiRXtQLVDEmfAOPb3NIoVm0vt/Kp0Io+FWZ6PU9xVPJV7Sifhi90bP2gMW5NWvjVyPuviYuPxDulRNS5jcZreSp4wdpidHWVxez8mUKT6JK1rJLn1krENbdw/cAK9cRsPB138sJRlxfCZPDQwl8f6Z7JtpBUZCGRVIjQYOYFYKRmcslUqVDskbiFBFargOODaCXKTJJZUAVRrCyqbQbW3Irs6IOVDOkXSmUMreLYygxtO+9Hh/4yaGIcxmEoVkUoxtqSTbZdK+s/XCGFI5lUonxwgugKmzxghnBlRnO1hXIVxFTrjozMeJuWQZF1r95WSBG2OJWI8hQwTm9eCVX7L2FiSrta8YOrTAwKrhvIkiS8IcxJVjuh8OuZ3/28JX//FZWS3Q5xVBO0+cVsKk88Q5zy0I5FjFaui3kfcUfn2HgmUOyrfnpJ42R32Z9kmDh6HsnF3dzh1zlY6Z27hV588H7/XbZyny+e8h+Wz3g3Ymvb3nnkt57xsNSs2f/mw7s+e8MSt1yFjSFI20/P+//d+Vmz/ym6XXfH0zei0g1s2qABUUPsu1tx6r7zqFkR8YDPWE+vZ7HabzzRVTdusZ5to4tCjaRF2FLG3zJYDDb7aEw5HqHEzf+WFgZX6eyxr/QvC3OkMvqSV9mfLZNZm+e8Z53Lh9A0MBjme7u+hrCVJJDFakESSSuRS1S4QHpH9nKNCfjiymDMym4HRSc/9d7GdQpLiZH87IzpDf5znxPQOytrn+bCbc3KjzPYGGSumiCsuc2pBkL6M7aBCgIxBlgKoBhBGoBTCdRCOA0ajoxjpCkQmTWVRJ2Fe7rckvomDxz3/+0Fe+tpbKc3VzDqhn96hFnzf+gZVSj5eLua6k3/O21q3Axm2Re24bsK5MzfzF9Puo1uVeCC9kJnuMN2qyOaoHYVgTFf48fDLiLRCtoQkvkNnvky7W2JH3EpGhsx3+2mTAW2yQiFJceKsXiKj+L8bL+DC3oW8e9EqTvR38JNyhldmxu3lepNWfBmxuKufJZmt/Ka8kOzjKcozDKT3f2Z4xeqpJ4H39NxE3N4MH3zBYmfy4vYnbmqQK4dCrbL0nE8CHFQe3J7szHbGQ9+YPDl/wRu/RLnbBj2jbVAv5ugGex4q1DNYjhcsO+Nje60FV6z/0iHf7qG28rp9+GuHdH1NHD2s1N/jWu/1KCkQ+RymVEaMFAlbutCOID1oCPOS8nSIcgbjYMO/DYRasabUQ1W7zPaGyMiAE/3eSbl9E+ELl1PdQf5h6CrmeoMsaukDIC185jgFur0CD1bmkXIjevwxfBnzVM90wi3tOBVr74WBkSDNtqiNjZUTuGfrIsaGM1BVoAUykEhAVQQYhfY02rWTcnXCRTsQpyBJS4znWLVCEGKiuGElJXwfkU5hyhVb4yYa0inirjyFBWmMgkpybKrSX8i4ffhrLOt4G3p6B1svBxwNmRhTdjCuYcasId42/37uGDyNvqe7rRrbU2gl0J5q2FvGGUXiS4y054RVrmiMlJaQkRIZWCWTCiBJKaSS1kpICIwwxBmFjA35DRXCdo8k7eIPR7StE/ijChkZm9cS2lxK4zkIA04xgkIRfG/3B7kXTEW07I+Cpal2OcKIk70vcwhw3w93amKMY1Zs/wpLfnQDrz9hMT+/8osHtf6l2TcCcEfpWwe8jhM+fxtxVwLZhA1v/NBel5/YTHTJ675IcZYk8UBE4+PBK6+6BacUcuevj+9muKtfdhP/76fvPtq78YLFfrqNHzYcG4Z0Rx9NguUwYF8H90dqAuCal950WMiaJl54SAoFZq8ao7AghwwTpv0mZN6r+vn/Zj7E54ZOoNMvsq7Qxfr+TsKKiw4cRocPzk5jXVxkkZPb+4I1TFM5Pj3tyd0+92hpLutK3TzsLaDDLXF5yzMUkjSPl9vYLDqAUV6VGeafu4d4bv10+nVCi4SXtqzhf9Pnk92RkO6tgqsg5Vs/ZLCS99rgVNYULSjFtkvcpi3YUYSqamTFpRK5JBWHctWhtbPIjJn9JFqyNLsGsOqlSzNreGjmAp4YmMEHhv+QJZ3bWZAeZKY7TJsMuT/s5kc6TWQUaRXy8jlPEcx2cURCl1vgJekNjCQZIuNwohuwOVbkZcgbW54jJ1N8r9hKb18rYtTl78xV3HLy/9tlf2c6I9wXndS4/4v+E3HKkN4hqHbtKii98qpbWHX38T1R3MRkHK3Pc+Lk94GQK7uzGlvxv/VbuxIs+1p3TMxj0b2LufaP3sRd9+5bvfLgtyYQLjXXwKsvuxkRGq668rP7FVg/sYNvb6+p+2MfTiJn1coPMzY2dljWvT9Yeu4N+xRYfCQbbZZ3v4MV/f98xLbXxPELE0eYoRFEJo3RGoolwiVl5KMZBpY4aA+qPbUJwkQgQkkUOUxPF7i49TmqxhINF6af53QvvcdtzXXyOELzgx1n44qH+b3sFtplhkVOjpNS2/nP8rlUXYfvPfES2jtK+E5MoVOTpCRRa0J2ZpFT2nfQF7bwwI75jG1rwRlRqBBEYkmUxAMVggoEYZsk8SFOC5yqsZ3dwuZThTlJ2ndwyiFojVAK4zgIpcB1MEGAiWxDiqgGkMswcFaWoXMiNv6f9x3Oj6SJPcEYRI20kFWJThycripR0aO3v5XC3BRjkY8MBV6hloESa2Ri0ClFkrZB9YlnzxcZg/YkkXQRBlRVNTYlEo2IDcKztaeMrb1c4kmSlMAfsSqodDEgmJZF1iZ9/bHadhODMFiypmZBpmrnG8GuDXfLe/6qqQ58AeJo2RHXlSHFgQzX//5P9/v1J336NmQ4rgSUf3M2TmX3y+4r+fLcB6/jw4//Ia9p/S1veHAtfVdF+9wE8svvTbju1riUa8//FCJJMK6y6ne5b3OHx1o9C3DXvdcfEzVtE00cCTQtwg4D9ucCdSTsQprkShP7ipX6e5hHn6H152uRo2VS24vc++CpPBWV+VDHc/x/Mx/ieyf+P6a3j0EikGMODHs8WZlzwNvsT1LcXVF7X7CGQV2a8rlXtj5COXa5d+Mifjs0h21ROxvDLsbiNK5I6EuKuMLhb+ator2nwB3Fk6mYgMVuH1FXhAoN2rXew6R8a6+gFCKTRnhew5JJ5nMMXTmf/DkDB3zcTRw8hAHjGjyVYLRADrsUnmtn+2gLrX6VzfG4dd1ZXoqr2p9h7Ll24h928+CPzuDfHnopvywspkNKfBnxXLWHxEgub3mGy/PP8M7Oe7kq/xTlxKdblVjkDjDdGaVTZpmuYtZFneSk9b/+8eBZOH7M9MX9XL/4Z1yV3rWr6xzP43VtD3FV5zNsC9tZu3YmMraZEqmB3fd9XHXFZ3f7+M4WYBf++aHvDm9iMg63P/GRwKFQruy8Dt27eJc/o/atj2ln4mZfyZWpcNc9H210BR7IYHFfP+PjXSGzr9gXcqWOpWd/8vDtyAQ0yZUm9hUr9fdIikWSoRFINCaK6PxZmsrpFV71J7/kFa/5NZnpRYxjkJFAlSRR0aMce1yZXctbWtbwe7k1LHZtP2LFBOg9+BD2pAs8vXUGn37s5fzN5uWNevVEbwcLugaJE4l0NS1+lawXYnIJYVdMflaB9qxVu87wRmlLVSAWIGzGij8MbgGcCsjAkihO0WZShS0Q5GXjmltXsySZWiZGJg2+Z61tc1nEtC5EZ83C1BhIp9jy8mmc9xeP8vWr/u3wfRhN7B1aU1jcBq4GA96IIip6uIMO/toU//j0y1i9tYfMDsAYgk4PIwSyGqLKEaoS14iS8d/fxJdoXxKnJUlKNRT3xpHWOk4IEk8itEFVrSoKA24xxkhJ0JMlbLEWY24xwRtJcIsaoQ1aCYwj0GnXWpAVazPUU6j6l3W8bcpDP1R5Wk3sO+q2scczNv6fA8v1cAsgQ3u9fObT1xFlIXHhvLd8iUv+8FYu+73P89I/uJUzrruNLX999j6tc/4/3UolcTnBjRgJ0wetsL3zoU9wx29vxCiJjJL9rjub9WwTTRwdNAmWo4xmd3ITxxpMkqDLZRgdQwyOcvI/DvDH//w+3rTxZXx5eD45meIXS37E/Dn9oMEbkazYdipbk8LeV74bXOg7u52Mngof334lnxk4ebfPDekcbV4FRyWUI497hk/inoET6QvyuCKhagxroyLznUHO79lE1bikhc+Pxs6m7QkXGWpkpJEjJWsRFse2GyuOoTWPSKeQnR1sfuOJiD/rt+HLTRwVXPZ7n2d4sYueFlAOXVQ6xjiG9HZB/HQr24stbIvbJ73mzTXbDrdsyG4z+NtdZngjtMsM72jdymtaf8vpqc10qyIFnWJQ+1SNiytjlriZRgfr1qSABF6esYG3DwcRj++YSWu+wtKZz/DqrJ1UqRqXigkm7cN5vsv2sI1v3nk53b9SOBWDDG2n4c5YdfeHkZFm6Tmf3CUrZaIF2Jl/cxuxD+e8bffhj00cGhyoH/KxhgPJ3ZlIquxOzQLw19vOb9y+8zvf2O9tHErcveoj+7X8/gSJTnzNRBwMATfRB/t4xR2PHLhVXBNNHE6YJLEZJHFM5z2baf95mu/efTGRlnxoyZ2ogkIGAlUVyBGHp/p6eDSYQU6mmCbTFE1Ib1Lkxr7z+f01v8c1z7yCzw4upi8p8lRU5n/LtlGoxxsjkwkQ0pBWEQ8H7QQmwhWal3auoyNX5poTnmVxaz9D5Qxy1MEddAhCh55MkdmpYRIEQeKgKgKnUguyD2ukStn+x9BoztAuRDmIU4LEF0Q523yiyrGd6K6HlyeJtQUrlKBURrgucvZMnnvnPE77w2d4X89Krpy/+mh/VC9aLGt/K6Knm8IcBYlAu9bysv13Lq1rBel+SJ7L461Jkxo0BK2SSqciybrWDg6rKjFKEGUEUdaSLDLSyNigAkuKIARR3iFos1ktCHArGqEhTkvilCA1kiCDhLgtRXGmi4oMQhtkYogzkmqHojzNIc4q4qyL0Bq1YwRGC/Z7thuCZcWOf4IkYWnuTbslUyZORi+f9W6Wz3nP4Xmjm2hAjBT3vtBxgAPJ3Xny89dhahaLSz50myWzI6i2C4SG9NYC1XZJYaEmbIe1N5+113XKUPKz55bwmb6X0uZNIYc5AKz85cf2q/noUNSzV125++a+fcELoZ497mDMsfHXBNC0CGuiiSZ2wkr9Pa6Rr0M4DpXzF1LuUsxeVWT7/Qv5sX8if/dHkvWv+FdWLfkxi7a/BW9rim2bOvmfOafznvYNk9Y1rMt8Zegl5FWVHVELf9r24F5tFvaE/y2nWLVhMefN3gRdz056TqP5xvZL2F5sQUl7kV89PI1CxWdm2yjFJMUTYTfbonbyqkolcRmOsmyKC1yQfY6vn3cRuS0u/vaCtQOLazPeLXnM4BAMjSDSKbb+4TzO/oOnmJseOuDjaOLgcOU1t+BEmijnkm+1RazRAhEJ4iyEbQmXTH+e5ZkdQGrSa9XMMsnjGVQI4bSYd7ZtaTx3lmeX3RQXqKoC3TLgnEyVs/xHeDaSnOxmuTQFPyn3cLLbx7Sa8OrmzS8n7UWc1N43aVsXp4ZIi10t9H7Zv5DOx2t3arYeTFGX7IsCMf+q7WzZ1knbQwfme93EvuHun+/fpP2xigPJ3ZmKVJmI/2/mQweyO7ts51CobI4GDqYLsG7T0EQTTRxa1GtajEDkWjBDI3R/d5RpLXke/M25rHjtqeiUJrtFYSQ4ZUE5m+Xe0ZM5x1/FU2E3/zt8CYNBjofXzCf7rIdThW91zOFf57+U+bMGOKF1gKwK0EYyv32I54c6WTfWyS/cU+iPt9If53lgcCEL8kOclNnB78bmUlzXRv55QZwBrTSdXolWZeuZMHZI9wn8EZurAtgJwNASKgm2+1pVIc7UsjaokTGBtQ0LunwyxQAi2+QhpF1ID9jaVWTTPPvubq6/9v9x38hiPrzpNfzgwMXoTRwElrX+BRhDNL3FZkFWJcJAahAyfRrtCSpdglQ/+COWTIuzlmyL8g6qEiESQ5JyCPPSkmxa4FTt+SBDjVaCJCXRjrDNIo4g6HBwKgannKA9S5xgwB0NrSJKgD+qMVIQZ1xG5/sMXWYbi3KPpnAqAu0o/AEDlSpIgdBT9+7ePvrvjdtL02+YMi/FdLUhxqZ2K2ji0OBoBsIfShxI7s6Zf3MbnrHZq0lqvMktyUClUyFMK0OnwalnbuSZLdPRhb2Pr4wyRAMphuZl+ea8e3nrb97M1879xn7v27GA/W1SmohmPdvEix1NgmU/sCd/wv3xRtwTrrryswd1UWuiiUOBlfp7XOv+CYWZDqVZ0PFojIoSZCA56WuwZNNfoc8qwLBHpRv8Xocfbz+dme4wroh5sjKHVqfMnX2n8uzD85GhIGpN+MH0Mzh/1ia+OvdufDE5RHNQl+iU2UmP/aIquMgPG8vOd4dwnYR1I10wb/I+v23zpTy2aRY6VDjpiGrgEo34GGUopAM2VzsYjdNkVMhQkmVzsY2+ao5ni9NZ3vUEi2fvoFqeiYg1KGVDGqWCcsWGgApB+cw5uNcMcEHr8/xkxxmH9TNoYmrIUFOa6aMdGBvM4mQidFUhHUO8uMolC9Zz47QHGvZdE/H+M1by5UdeTcfqBK9/9z+BGrgkJannt8xSeb5d7mJE93Kh73B1epi0GM8NKscuJ7X3MSM1yl29JzHbG+IvWnYQmd1biczLD3PvOTPoeVBgBGg1YRJlP1HZvoAres7ie2M5EB6XvvoLu4ZBNtHEQWBfyJUXIw61Z/WRtmm4+mU37bYrcul5N6JdxcoHPnZQ69/X/JYmmjjcaDQO+T66YieIzfAIbT8t0P67HuIOgRqrUF7QRnGGQ5J2eLh/Lt/yzmddqZv7nj0ROeLSskHQvjoiSUlSQxKzzmOwcxYbF8xATqsyvWOMgUKWaGOOLUErG2Z3sfXENjrcMk+umYPKRuiFglgrm5cSg1uEke1Zfu3MY3tbC0PVDP1rO2ktg1MxJB5oVyBjm8VSt3BCQJS3t23ehsGpGsQwRDlB0KpotHdIaYPtoxiMrXErF5yAN7PEQ2MLeWDjAta+7uC+700cBIxB5HPEWRe3DKl++3nnN2sSXxC0ChIXWjZptANBqwRjibWwReGNKJzRKjJykJFBBVa94pY0KtA2l8WXYAxSgFuyrgFR1iHKACh0rWHIH9WIxNolq2JEKtZErR7CGKI8nDC7j/V9nURZKM4U5LeC9h1keysMjdiViH2zCN0dXvaqL5BKu8g4zdLzbuSOh4+M9WQTLx7M//Yt5FI++S0ap2y/H8WZEpFYO8bEh6GTFUlLxPODnUhHo+O9n9MmH6P6XU7ObQdgfaHjcB/KIcOhnn9s2o418WJGk2DZD+zxYlFr2JgYLHUgaJIrTRwrMElCzx2biOZ2IeIYtERECUZK5v1oiLHVbQycLnFPH8U81MrmgXbuaTuJM7ObyaiArAzYMtZKyzobwFmcrQjiLPdXFnGdE/CJ6XczXY1PUu9Mrny87zQeGpqHNoJTW3fw5ZkP0y01p3bvYO1wF58ZOJnfb3mEGza/ikfWzMPtdVECdF6TKI1JJLKo0GlNKfAYi1NERlJMfEqJz+aBdowW6FCxo5xjy7ZO5niC8qJ2vOEQZ8MOTLkmn9Ya4XloXzL0XAd35JZwx2V/dwQ/jSYmQnuSoVMlQXeCHHaJywqRj2npKXDe9M28vutXuyVXBnWJV+bWcsuSKuE2n9bnDJ8aOIVPdD3TWObZqERkJv80ajQznWG2xu08KvrpVhHTpEJjWFFuY2ZmDFcmPDE6k6297fyXOo8L0t9liZvbeRd4OIjo9ossv+QRfuacBQZa1yhUdADvQ+9ifOHy+OgsxCN5ytMhTjd/1pvYf+xMohwJFcnxTtxM7NI7HgeTU1lOxFkXpOCqKz6LkeKArWyb5EoTxxp0fQIYAIMxBrNhC6o/jchkMKqdXG9M2/MJ69u7+G1mLmGNDAHwRw3+QJW41cMpCxACryhxqopRk6KQCYhDB90egZ8ws2uUWCt+tmYJbU86GOHw4OZTkYuKaE8Tp2yIfWarolxs5xna8Qehq8/gljQI0I6o7+640lXazmsja3Zgof1zyhpV1RjHQQXWDsqkfYTrYEbHMLoWUO44yNggHsvzC3NCk1w5iliafgPCc0nmTqPa6eCWLXsmI4MKNWFOoV1LrhkF5WkSpwJuCTC2QSdJO6iCRBVCvKJHlBEIA+5YjNAGIwXaMRgJMjSgQQWaTF9kzyNXIjRke2OrdvEURo5bjDmlmMSTJD6s3TCd9oc9Eg+KCzQdaywZE3XncHXNJqawd+up3akOTr7xNtwTHGZuTagsbGNsbrOebWL/MUk9oXe141d9Vo0iI/t9cCoxiediJpCMWkHY6hKkYtxUjDOw51SF03/8Sfy8Iqgovrbiav597sUkWzNwxSE9tMOGu1d9hCuvugWhzQtGrf9igjhW3LmOlf04ymhmsOwB+yNv29nr8MqrbjkuPQiXnflxlp/6UZYveO+UyyzNvvEI7lETRxPxpi04j61DVKOGl7OoeSwOnSwJuxJKYyl6rtrCq096gnanzOmpzfxh/nHmuINUqh6JD4kvrJ1BWdLdWeD/dN83iVwJzK6zy//x6Plsum8uGx6ZzU+fPo3/s/kSflQ8ESkM1cDl28+cz2vu/yueXnUCmedcvBHQnkEmYIoulJXt+IsE5aLPurFOnh3p4ZGh2dy7YRFmWxqxPYWzw0MKw0nztjO6wCFokYQtru0oUwqRTiFSfu2YFReet5qU2k1gRhNHDHFa4RTBG1TIUCC0YNb0YS6asYGX5DeSGElvUmwEzNZRNZrbSwt5yYLNjC4SiAS+9fgFjOlxr9zBJM3Piqfz5eH5bIptrtBTYcDmqJMfDryEH4/ZsMO7qxmu2/ZSbnj6lfxq03xOz23hHbPvob2jxLot0+hPJhOGdZznu9w07WFirXjP5Xfy/Gu/yth5VcLWA38/BqsZgi5D1KIpzZk6gLeJFy+mCjOth9LXUb8W1x+bigTZ+Zq98/1lr/7zve7TVCTO8Ui8HA+13pVX7ds+3v2Lj9pmHwHCGK66/Gb7+uOspl0+929Z1v5WlnW9fcoA5Wu91x/hvWriaEIHVavg2AkilQLPJbOlRKVDIYOEmb8wPPPAQp7v60J5CSKG9ECCKlRwhyp4I9Z6q9ylKM4Bf06Ri2euR8eC7LMeqafSbO9vZWupBffZNK3rY/u3FuSTOZwxBdJO8qUGoWUdtD9ryPYa3JLNu0j8WnB9UvszBpHYoHsVWIswb9T+x9iJ7iQl0UoQp2z4OK7CeHbmUEhpFdrG0HeWR9vFfaT98Ii9/01MASmRxSqqqlGBwStonKqxdl7GZu/UCRUjQIUGf0STHkrwRxNLoKRdRJKgqglupUamRAmqFOENV/GHI9xiglNNkLHGKYR4fWW80RAZatzRCG8kxC1aUibOKpKMA4khzjpUu1zcIvibPZtRMWDIP2+nkcJWS4QEs9sonNaN6Wg7oLehbY0m16sRsWZ0nkNl2iF6f5t4wWF3uStXXnWLzQ7RNo9IVRJEoiflicz/1udwStZ+McwJory9Nmb6IlJDCenBBHcsBmHnLfSoR1D0mPf5R/a4P0+86kaCMR8yMU5ZkPp1lsxWwWkfuI0lHz5O8jElGEccV3VeE00ci2i2BuwBB9KReDx1MV79spsQtXFG3effSIkgsZZIU+CO0rd2eWx5z1/ZALsmXjCoWyokhQKO5yFMHuN7lpYVNgRO5CNSq1NUpnn8qm8+AB/rfgRf5GmTBaa1FdhychrSMVQVxIKzurZyjjfuZfp/Nl/CQ98/A5HAF9/5r1yTtuTF7JlDbClOQ7aFuH7CI32z+d2O2YwOZ5FDHk5RkB0EJERZ0FmIWxJEKFBliYgExjGW1e/z2SbacFMxQclD9XmkhgTVHo2ZXuW09u2seGYJPX0afyQh1VcG37cB99mM7cZqzVHpMbyy6zFef8KDR/zzaGIccUoiI8htgcSFynRJGCsC7dAXtaCN4KcjZ6GNZGG6n1NTW8jLKonJ8kR5Nj2pMX7bmRBtV8jNaS5/5M18+pQfMdcZ5p93LOPxHTOpVF3unXUip7VsI6+qPFGYxRN9Mzht0VY2x2lGkiyPDc5itC/Hhac+z7vaNiCRtJ36XT6+7vf57uD5XD7rQYq6uouaxhUOo1GaLmcMgFed+jg/Kr9kv96Dl9/7N/SX/5DBp7vwBwQqbz23tbv31zbx4sPtT9y0x+d7kyJ3l+fyy7ETOSmzg/e0b9gjubImitmaZFnkDCEFtEkxyfbxzl9/4qD2t77tYzmPZcE/fBHzapcN73rfcTEg3V8lys6K6mO5vl2+8P2N2yuev9XekILbh79m8w2mqGnvDP9z13U169kXJOo1rUkShAKEBG1ACshn0RkP2TtE145h4tldpAZCZv7SZbvJkrQmkNUkniCc3tJYZ6XbYfQkQ27xMH+04BG++ewF9Nzu0/rsKCJK2DHUwZYLFdkKJJ5EaIM/pjHbJdq1FmDemLFkprZqgTgjMQ7EriVJhDZWbaKtPZhTUzhoxxIr/phBRsbmcWQEiedgFKQHNCQGkgRRjTBKITwXqgEinaI8W/PWub/lulPuPGqfSRM1CKuGSvdbsksGMWF7ijgtUaEl3ADcgu20d0saFRpkqJGRQbvCnsdSIoOEzHaD9iTOWIAIY0g0surhuAqjBCLWiEoEjsQkBlWx4y5ZTRDGEHSmCPMSozw8IXBKMVFG0rIxITWsqHQJVBXymxKijCDKKLyxmCSjKE9TpAZ2zR7cG5ad9QnatEYUqxBFxJkO4gOP7GziBY4pc1e0QcUaESfIaox0JEnG5YqlnyPKKWb4DlHa4I9a628ZG7QSqEjjVBKCVgcZ2OtuphdkpHjm0++HfegtTq33iFoN8eIywahH65MOQkO1C+Z97QuosuT5v3nfoX0jDhEWfvlLmFe5rH/3+w4q4L6Jo4TjUDlyww03cOONN056rKenh97eXgCMMdx444189atfZXh4mAsuuICvfOUrLFmy5Gjs7n6hSbBMgVf8/pe49+c37PL4zp7bh9qD+2Bx7UWf5s5ffXyflr3r3usnLX/tRZ/GpF2Mq5Cu2mX55ad8hBXP2Ivu8vnXQanCiv5/BmgORl+gWKm/B2ADQgcHkZkMxDGyrZU5Kz12jOYRBsz/7WZktqA0N+GUte/iDZf+khu7n+Le034Ip8EPS1n+afPlVGKXHdU8G+IC8508Pyln+N3/PQMvArdkePuqN3P+KetZN9JpdyAfIx1NLh0wtKOF9PMuXgqiFt2YTPaK1i81ajHIikRVBaoiCKYliFwEI57t+NuaIkwZkKACQdBuyC0YJZ8KWF/sJJUJGTwtRdQC2c2tzP1RAL4LQURw6hy0J5l1j+ajqdfx8d/exLo/3nv4eBOHHtfI19G6aAH+SCf9Z3qEFxTJZQIGhvI8UEmxqb0dbQRbh9oIxnxSW12c0rh3eXmWJt0rmb7eUOmEuDVhZCDH3/zsTZjWiHxrhTiRSGl4ZO1c1nd3cGL7AOtGOrls1jpmu0O888k/I/h1B0GnQbiGB9cs4NyhP+Xlc57iv+96KUlXxN/Ov4uFP3kbhBLVVeWM2dv4/qKVjeP4rwWrAHj7lot5+Ntnkt/1krsLlt7zt6zeOB057KHKC2h9znDCo6OIaszIWR2MLZDszSZ4afaNuyXJm3jxYNnp1/Ozld9r3P9lVfOXj76dciEFFcUKCQ+c+jzfWXh3Y5n/LadYNXYqrU6Ft7c/TIjHxf4oLTJHUVd5JEyx0C0wS9ncon0hSPamVDmWyZU6TCo52ruwV7z6yltY9Zubd/vclVfd0iBernnpTY1mm2MBy0/9KCue3v1+74wVz9/K8hM+wIrnvmBfW1NhL5/7t4jWlobydtL6F77fvq5GztSJmWY9+8LFRJIFYbvvpedhtvYi5s0EJSGKUWs24fg+XjbDoo0efRd18AfvvpuPvHoNpz7w54Qbc7bWDCDJxyyd8yz//fWrWLhyCAgh1ogopvOpCvmtLiKOQAq8wQDjCHKbNKIa2wahtjRBuwNCoB2BCqylU+ILVGga+SphzhI0MgFvzJB4AhVZtYN2BGFeoD2BUzFoA0GbBDIYlUVGhvwTQKGI6OkGY+j6neAHp57Jnf3vYcXLXhhh18cbrpGvAyFt39rGbbgjLcRzugjbfFQ1QQUJcUohY4MKEtxtI/j9advkFkQ2MFAJq7hPDMZVqFKIiCyphmPVSgCiVAXPRbgKEcbojG1002kHZ7iMGCna7ElHkQoivCEPVahgPIfyvBZanh7CpDzcMRehfUYWScYWKNwCyASKs30SF9pXV3Gf37HXY7/2wk8hggRZDSG2SgMqFUypjEkSWp+fgze698L4Wu/1uyXKm3jxYGn6DVSvPgMyCm8wxhksQpKANghAhCmMzCB9e81P74hwyhEitnZ41Wkpqp2OVYYNx6ggQST22usVJRf/8RcxEhDwq//cPUHy0tfeSltGEmYF8eYMcQaQkNmhGT0Jfrr0y5w+Z8sRe0/2FyICnbfXCqMOPEOpiSb2B0uWLOGuu+5q3Fdq/Jr/+c9/ni996Ut84xvfYPHixXzmM5/hmmuuYfXq1eTz+aOxu/uMJsGyn9iZTDmWyBXAditNwNKzP4lIEm5//DO7XXwiGXPnrz7OtRd9GhEloDXLzvx4I6hOlINJoXUrNtzG8unvPAwH0MSxiPqgVJfLAOi+fujrZ/pjKcxZixk9MYtbsD7S3b+LuOOhS/nwZ39HWlhrrVdnSzzZtY61pWm0uRV+UlzCu9s2sTbowRuznSRCG9whh2Ls4UhN38YO/D5F0O0wagREgqjFEHfFdrwwItE+GLtL1GMzZCSIWg2yJUS5mrgtJAkVYsjBH5DI2kR7nDOMDWcpuikKOR/fi6m0JcxYNMCOcBrGdzFCIDwHowTaFVTbJKoIOto136OJIwQhoVJFxhqvAKXtGYbbHaRjC+n127sQvSn8QWGJu6Il71Rouzxb1wvilLHdSX2GKK+odkpS/YJk2KfQoyClUX0uuR2CkdNzeF29XD1rNa9sfYS3/u6NpLyIysyE7CZF1+MxYavD9ktbeSg7jySjwcAXn78Wb4eDPwLxzJjvL1rJ3RXFVemEwET8oDSNEz07CNUuPHHrdVMecn0iel72IlYXZ5Pebid2sn0JslDFpFxkBE4Jnv7M1OuB3SsQm3jx4J4Ni/n+nQFgr83DuswHVr+B8lgaMergjlrrx6EgzbcLXZzsbeepYBZtqsSjQ7NYv2Ua31QXsnBmPye19rG13MabZvySk70+/mv0LC7IrOPSCZdH3bu4QZQsP/GDUA1YsXnPk3l9SZFpKjfptVPh6stu5q57PnpQ78mBYv2738fC/7r5kKtXFt9s7SSSsHpI1mfU1G7AE1UtxxK5MhWWtb8VtOb20X/f5bk6uQKwYv2XaiRLrSY2xt4X0nZ6i1rHN0wiWZp44aNez9atwnRQhQB4+jlUNoPIpBFK2Qm6cgX6B+kZLfJvJ13Jr89dwM1n/oDPppczUswQGzAFj8dGZqEdbF5fYiCKbTNSJUbkHJACpxChSgHGkXaZJCHJpxGJxi1ptCds7oWpZWYom7EiY4hTgsQHm80BbtkqYeqTgDI2uGUwVfvaOG8bkBJPUe2EdD/kpQTHgSjC5DMUZwtU7ODKY58kfqHDJAkkElGp4gyVMCqHcazCyh8OLGESJVAsIYWwRGCirco+SaztGyDKFYRrLY4JQkuYSAlRBFGMEALtOZiMR5z3cYcruH0Fez30PQhCzGAJ4TqImdMwrgIh8AcCRDVChAnxtDSDS2wgeH6TaZCCqYEY7UtLlOwBL3uVvU67KQcnSiBO7L5qjYki+14AqcGIX/7P3q/LTXLlxY1rL/wU5pyTEZHGLcY4I2X7nUhq55brQmJwR6qocozxFCJOao4tIMsRqX6Bqjh4IwHad9COxClHyCjBGxYYVxLmHRJfcOlrbuW+H9jzsm5Tdkfl27ilpEaESpKivWarEPyRGG/EY4mb4UfPn8XvL3x0ymM5mg1w697/XuZ/q2axdogJllM+fhtGHrqatokXDhzHYfr06bs8bozh7/7u77j++ut57WtfC8A3v/lNenp6+M///E/+8i//8kjv6n6hSbC8wHHHIzey7MyPs/TsT2JSDnf+6uOTlCg7485ffdwSKxpbuClhu2CEYMXqWxodfwArev/xCB5JE0cbk9QsNeigivjtM8gF55AeNKhQEuUVnQ8NcNnH38PYfDsY/MQb/ps/b3uYr5sL6XBKbA46+XahzDfXXsisR0ZIsh5R3iWenvAXs+7n37e+lL64086NpBLyuSpJOiQ1J8JRmu3b23HHxkO9VADumCBqAe0ajDKYkksiQCiDCGoTTAJEDLg2m8WEkiQWmKygM1MknKF476KV/LzrFH7z6Etof7qAdhzKPS6FOYIkDcY1rH/3sSnxfTFA1PzDnbGA3DYH7TqUZ6SIs4YQcAoCfwhkbYwnEjsZ4RatNzXCWnWELQ5CG9pXa6KslYNHaYEMa/YafdZ6wzgeD24/FeMavtN2HmhB4PogIWyBHee6OGUwbkzvWAted4V5nUOs3dSDzBvCeSHvOfmXANxdWMLFqYdJC5/pzgg/Hj2bNreyR3JlItYVOvFGFKlByG2NyGwYgShCd2TRnvXqPv29t/HEl/ZtfVNh+ax3A7Bi6z8c1HqaOLaw5EO3Mf/ly/jJ4tsbj31l6CX0bm/D6fPwRuy1NGoVRFpx8xPL6MiVmZsfoRy7rF89g8wWhT8CG+fNYV12FmQSfp3fwfPeNJ4rT+P5ShffEYZPT/8F7dLahOjexayLi/zvffXcrS83HuuNM6iaV2lehqwonM4//uYynr921wn0iWgQK7tRJhxJzP/3cfLiYBXNV11+M5uWpRuB2odM8i+O727EZe1v5fbhrwFYy6/2t9oGH89jxaa/m/J1K9Z/CWDKTMFJhEzdVqyJFwV2V89iNEmxiEwSZD5Xs5WLEY6D7h/kpH/yCLMdfOANb+BPrr6fVb2LafGrrA6ms+bxObSP1tZTqU0iGUOSdal0OTgVg1O0xJ5RCu1LtK/QrkRVY/z+MlFrCu3JWqe0QYUQpwWJC1rZWhpARpZUqRMrRlnLXqdqbO6KU1N158C0QTAtsdvM+EglCafl6L0oTXhaGUcl3H3Fl47Qu97EbmE0YOtaE4aIUgWV9dGeAwJkJbLjcVMLkB8ehWzNOyvREMeWRKkvU6naa379t1EIS7DElriQYQhC4BU8u4zW48s7DqKjDcJaFlvKQ6cUqhCCozC+S5RVqABa1htSgzFBh4MRgABvNMIoyYotfz/l4cpQWyIREHFt/6MIE4SYILCWduk0xhFce+GnDtpudGnqzwC4o/ofB7WeJo49LJ/1bmRHC3FHFqeSIEuhPXfDid8ZW1+KMEZVQoyjbC6VI2v2eQYJ+KUQWQ6gNQNpByMFMkzsOZoYjMwQpx3itODSV3/BKg2vPgO04dJXfwHHWAs/10Z3YhyBDBKc4TLTf93KCSe8mXk9g/z+wt0cx+y/YcWWv7e/O0cRJ3+pjE45JBmXq6747EGF3S89+5NsubYN44JRjNe1TRwGmN2qtI8WwjBkbGxs0mO+7+P7/i7Lrl27lpkzZ+L7PhdccAE333wzCxcuZP369fT29nLttddOWsdll13GAw880CRYjlscpznBdz60ayFy+2OfnnTfyKm7GQGSrM/KBz7GsrM+we2PfoplSyZ0NcYxy2e9e7cTb8u63s7tA189sB1v4rjBzgNTE0e0PTpI6cR2/OEYp5IQt2foXrWN/IndhC0OX/jSnzB8fsjPrvp7TnazvK+3gxsefCWZp1Kw8Smc6d2UZ3Ry+vyN/EG2wL25AZ7JzSSuuAhXc/XsNfxFx/08GszmK+svR446uCXwivYHJcrWu/XsQNMfELaLJAVhi8E4hqQlwXgSb0iS+JBkNO6wAi0olloodfnk8xUWuf38wcwCCy86i7Y1kuLcDOUeYQsEQFabVcJRRxghR8v4vkNeQna7wChBtUMStIH2bE0tEnATgwpsoS20wQhwizbAULsCMIikFiRaEQgtoRYiqhWUFkdQkXT9VhLlXbSy648zEGcNcc6gtkpannUoRHmWLNnErMwoa8KZaF/T2VVgU9DBv44GXJF/uqHqiowiJSM+ffoPdnuI9evs6s0zyUjDfZW5rFs9k84N0LIpxB0OoBrajlQhUFWNjBSPfeXgyBVoEisvVCQXFHhJ+2ZWVhy2Rh2sHDqVp/qnI4oO/hD4oxCnLHEtMVSH0vRFijBRDG5po+0phVcwtttaKcI2SZQX/O+GJZQLPkZLvGxIEil+9vjpLDv9Sf6o8yGqxuWHg9ewdqyLaekS35kO/11sJzJdPFhYiDaC0SiNFIZHts+i9Tc+1GrqqVQsddXKXfceXdVFnVA5WBXLoi9+CV6RqgVZc0gHo7IasfTsT3LHIzfufeFjCHV7sDq5UsfO9/eE5ad8BFI+K575LMtP/CAr1n6e5Sd8wE5IwpQNRxObiZp44WK3jUPVAKEUIpPGhJGtHXwfva0XkfJZ/PdjrHr4Epa87wm+NHMVZ6x/F+1PS/JbYkSxAtXA/i7ns4RtLqUZAq8g8EftORe3ehTmeMgIsr2hzb0IItwhg864NqheOySuQivb/OFWDKpq81m0gsQDTC13zbEXC+1glawVQ26rodJl6yHjGPRpRfRKl6gjTWGuR2WawXUTpDh2JmVe1DBWiWKEgHIZ2autdV3ab1iAIQS05DFDw4jAZrU0yJEkwcRxY3VCSIzRiPpjWlvFXiZtbxeK45PQUtp1OAo8r6bui5GjJaLZ7XaiOYgwUqLTLv5ozLTf1rIrarlCwtTIPiFYtWrXJoOl6TdwR+XbXHnVLShjwNi8IYyB0JIrdUsnhEQ4Ds5ouNs5jf1Fk1h5ASOXxXgOItKoYtWqvJIJfxPshowQCK0Rse1dkUEEgbVuFFo35sZElCDBfu+0JQFFqYqfJMjQXtNlaHDKMTJMrGIwZ/MHRVJTFdZUXLIcIkZLZJ4JaL1vFnd/4ies3fJfnDh726TDqBOSR7tx+fZHPwXAsjM+RtSx/zlKdZz60dvg5W2gayrMBLSyaswmXvj41re+xeWXXz7psU9+8pPccMMNkx674IIL+Na3vsXixYvZsWMHn/nMZ7j44ot56qmnGjksPT09k17T09PDxo0bD+fuHxIcFwTLhg0b+PSnP82qVavo7e1l5syZ/Pmf/znXX3893oSw7E2bNvGud72LVatWkU6nef3rX8+tt946aZl9xp45iOMSjbwVJRqD7asuv5m7fzHZXmPlAx8Dxi+0whhINMtP+nCjW7DOtk9Ek1x5cWHiwDR+di3ZZBE646Mzbq0bSuMUIwpzXLp/U6DnvoA33fM++i9KaH/MoV2DDA2mGsCOAbw5bTz56Hy+N6OVt3ffwykXbuN3hXnknSpvaH+AlND844bLGPzldNq2Q2pY45YSwlaFW4QoLXAqgLG2UP6IDQ4tzhZUZ2hUa4jJCeJqGu0bjKfBKLwCqH5JOJJGnVNmoWMHnC2zxhg+pY3hkwSpAfBHoDwDkqxm/r/cyoa/bFqKHBUYbQeOiUaGCf5QaAM6Y02qK01xpkfYIhCJJUncssFIcMoxIjZ27FiO8IMY7SpbGKckwkDiCtyyRkbWcq7SKZF+jI5cKl12EsNOYIBbgCQliDMCpwq5LQmFhfAH03/Hf207DxEJVEfA2d1baXfKVI1LXlYp6piWmZtYCizdw2HWSY5NcStV47Jq5BRkaCdbMIx3q0iJiDVeIUEcp40BTRwZtGUrPDoym++vO5MocohKLkYLnFBgJEQZrMovFGweaCe91aE6EwaHfDKbFf6owS1r/KEIYSAoSmQExcFWsol9bbXTI2lNaH1W8YsNL+Fu/yVo107AxHnNprJk8arbyJx1LZ5K6OtthUgiMjFGC8SIS270xTfpt+597+XEz1obBVP7DXrkfe+i9VMHb38myyFiN7l6xzuWdbyN24f+tVGPLl/w3oZqpY6J5MmKtZ+3N7QBacYJl5M+zIrVkwmyJrny4sIkoqWmZFFQm2yWDTs5ISRmaISWnwyx9Tc9vOKUd3PyhlF0yiPOe5BYmyNh7GSzU07wxhSJD5VuF6EzVNtdhLbkitdXsnktxiCqFUQcI7I+xpWAQibG1jJVjTeWgBAELePsq3Zso4hIrDWYUZYAl6FGxg6JL/FaA/74pN+xasYlFGcqZGzrl1w6wFcx1/ziOlZeftuRf9Ob2BV1wkEbRBAiwhBSvj0Ha1aPQkg7brJ3EK5jbbWieNJygJ1grllu4TiWREmEtU2aiCSpqVmsigWAcpmwrQd/KKypWyTaUzYHKLaqKltba+774Qf2eFj1QHJR24ZxJYl0wKRwYo3wXEtM1t8DR9nJ8iaa2AOMb89VNVpBRLElDMFet5VqKLMazyXWMkzEte9LZB1aiGNrrVepIpVEA6KaNBoxEAJRrOIFMe7AhFpKKaidp9qVdoxZu56jNSKobcMY4prorGMvTc7HCtzB0gG/9umbr2PJh29De7YZQCaAhoc//i5abz06lr5NHDm88Y1v5LbbJtcUu1OvLF++vHH79NNP56KLLmLRokV885vf5MILLwRA7KTAN8bs8tixiOOCYHn22WfRWvMv//IvnHDCCTz55JO87W1vo1QqceutdhCUJAkvf/nL6e7u5v7772dwcJA3velNGGP4h384sG7cvdk9HI6A+4mBo4ca9byViXksO5Mru0O9i3D5KVYquHzBe8Gd+tRZPvdvQQpWbGgW7C8GNPJZNm1FtrUg02kbDh9GOP0F0tNSlOdkSG+XdN25nq4VtsAxna0YR2LiCCqQemQ9i4dncPPa1zO6JMHvLnPh7I1oI/juyHlsqnQweO8MWjYaUsO1wrs26FWhIbvDkAzbgl8Ym7vhljVGOkQtkiStMLHEDUDGAu1LjDRoJfACaH3OUDrDoUXaKijrh+w4w9oxZHuh2imIc5r1f920BzuaMEmCqVQRjoPIpXDC2Mq8oxg/iFDlDEGnT+LXOusSGworq4ntWBKikSklkwRnxEVnPLTv4PiKxJMIDdoVRBmBtyaNUZAaBrekGZsnIYDMkEEMG6KMxCtqhIHuBUNsCjt5fkcX5GJOndnLm7ru53/HzmLdWDfvOfmuvR/gTvha72WkVESPP4Yzq0x1S47UsMIpKWTKQ2d9krSDDBLuv+NDh+Edb+KFgJe+9lZGl0xjoKUbGQp0ypAerSn/fIjy1nImPWCviWGUQSQgSwp3zGb+xCmBV7TWB95YjKpIkpQkv7lmXyMgNSiIsor8loTW523uUZKSlLsUQZvCLdvMofKjHYRlaC1AnIY459jAaB8qXUf73dp/HMpa0AiYd0cIh0oBr619wLIzPjZlHt/S827kjoc/eYg2aLFsyfXc/tRNh3SdE3H70L8CE7o/dyJXpkKdPFl+wgdYvvhDe7SZW77gvdaGx3GapMuLAI18FkBXKgjHHc/sSbS1cMqkoVJFb9lOest2jJJI18XPZTFjBUxobZJkokkFIV3FVoIuH1W11kheISE1rPF6C9Z+BhpEjghipAaRcvAKCW4JMKAijarYujfxnIZqBQMiMcTpei1s7yME3mhMlPVYOG2AkShDcbZCO9b6NMrDwtYhvnfxPx3pt7iJ3cBoAySWPNExglouSxAgosgSIo4CqcBzIQwxSYJw3XFyxZhG576pkySJzVQ1SYJwHKt61om15Uq0JWPqJGIcj5MxUoDn2fo5iDGeQ5L1qXZ6+CMRItKYtMM9P9ozsbIzRGwbo8J0ijgtURmF0NqqWhKNSGl7rC25405x2cSRxbKutyMyGUvO6Qm/4XXVSpzUSBVtyTut7XdIa7t8jfiw92vXU0dBXFOwxDXSUUp7Owzt97Gu+vJcq/hKElRJWUK+riir3wbwPUxbnrANHg2r3Ljp1fxo5hF5iw4YU9WJ+4W6Q6GxNe3clSVoTp8cHhiOKeclz/NoaWnZ79dls1lOP/101q5dy6tf/WoAent7mTFjRmOZvr6+XVQtxyKOC4Jl2bJlLFu2rHF/4cKFrF69mn/6p39qECx33nknTz/9NJs3b2bmTHvl+uIXv8ib3/xmbrrppv3+oH/6o/fy6j+YWqpXt4PYE8lyIATMVOTK0QxyrWPFM5/lqis/y907DWJ3JlRWbPq7KT2vm3jhwsQRplzBjIwhXAeULZyz632SnI8qhzU5r0IEMWKkAMUSRkgwGl0uIzdsZ0Y5pH1tK2FLlsc7TyPxYeykhNkn9NUCy7UdqNZC2NI7IrQrkJHBOKLR0Wdq3VX+qCa3URINWvZcBdZKIfEkSV6jqgoZ2pyOKFKsjYo8GsxipJRGRtZuzCgDGpzi8dF58kLGxAkQ2ZIf96UGqIaoEYGnRCMgFCmsHUHFhnQ2PKrrxW9FIisust7R5yiMq4hbU3g5hT9sJ5f9EY1R4BWs5NktaZvr0uKgQk2YV4yW0tzTdwJCGJSr+ceF/8MsladFPsjD1fkHdLy/2TSHztYS581fT2umwkhHjtFYUW3LkN/iIrRBO9KqeJpoYgqEeYk/At6oDd5MPIFbNuQ3RyS+pDjDwTjgVCE1BCoCb8zgjdU6txPr8a8qCU4xQsQax5EYJUl8harEGEeQdiSqHNlJvvrkoRL4Qx5RziHKKoSBzA77lNAQ5gVhJBAxiIy13/vvYjt/khsGprYJO9ZQrwsPlGxZ+5HrWPAPX0QYu46XXXHDIdmv7//uRv74wltsN+UUEGHMsjM/voul7ETsL2Gyp2XrFrRHExMzWOpYfuIHwZjGc3vLcWnihYd6jWGSBIS01zEhEVJYG6a4NpmtpM2EA0wYYvorjYBuEolONCIIcKoBaiyPCO1EuG7NEnWk7UScNuP2T8ZAGCKiCHdEoQK3Fnpf6/w3BqdkSClBnLZWpkKDSajZnVqve+0KZGhA2vuj1TS/GD0BJwJVsVYtKhCsHT4OmewXGBr1rNEYLRG1vAgThvbcM+MWYEIpqy6p2dYBmCiCcELWSg0itja4pj6xXFeyRNE4uQLjpAzUJqlrE8+1SWRvOGz8jo+clKE0S9D6vMApa9zC/itMVCls3JaJteE1jkLnUghHIsIUxlMkrQduT9TEiwPCcex5Wlc+1XOI6gqRuKZaqdkoUyPx0BPyWbQeJ1yS2vcrisbXCRMsxybMYMsJ3x+prDVkHUphHGVVM4DJ2nO5fbXhD+77K7x0xPxvfo4Nbzq2G+KWn/ABTNrj9icOrEnmqc9dx5KP3EaSstm3Kx/4GFee01SvNDE1giDgmWee4dJLL2XBggVMnz6dlStXcvbZZwM22+Wee+7hc5/73FHe073juCBYdofR0VE6Ojoa93/1q19x2mmnNcgVgKVLlxIEAb/97W+54oorDun2D7VyZW+okyuHU+GyL7h71UdYfpLdfsNSIeXv0gG4r52ETbxwYJLEBhRS87CWAlOpwPAIUilEWyt6ekdNwm7Jl8bgtFbAJFGMkoK01vhZn+xmh5GTMzgdVbZs6WTe2hhvMMA4giRlu/jckQpIiRGCJOdihMQNNVoJkpQNDE0PaFJDNvwTrK2CSATFFjsI1V5tkq/k8evqfJ4oz6EyksYxgrANwE5KumO7PfQmjgJ0pQKbtyFbctZXumY9IIyHjLTNNTQGGSbWgiOpDxyNPU8ndDyJOAYZ2EGotP7PSkr8lIOMrCUCQhCmJKlhYyXPkc108cZi3OGAMJ8jChzCxCEOHCg69CY+sxSc7qU5c+59B3Sc6/74ehbfdBu37liKcDSOgeo0G0RulEe2N66pBF54FkBNHBpc+OdfQiWGlk0JqlqbwJECpxzjjFRAa9xCjjijcEqxJU0yqjYRp4jT1oImNZLgFiLUUMl28wE4Do7rWH9rY2wn7cQJnJQPSiJLAbKSxhtViESjXWkVjELgFiWpIYk/HGEcQWm6x+f+4U+4sQueeZvtsN62dSZfH3kJ1y/56SF9b/ZGKuwPVq388EFnsSz4cXR46ssoxnjulE/v03twCPsL6uRK3abraGFnQgWYNFFZR7OmfXGiQZiQ2DbcJMFEMcJ17ATfBAsZhLTLgW0aChNEHCGp1RjGQDqFznrIKLENH1E03nFdJ1yUVdmqIEKnPHAkIogQUYLOpXDHQlRFYlx7/TTKkjBRTqIdYUkZBWFOoarQP5IjLrq0OWB8W/+qAIa373+HaROHEUajoxghhR0bGW2twlwHoZQlS0wVU58chgnd8jVypKbqN7UGoknBx2ZC1z7YZXWt9blmLWbiGAKrcBHplD1PwxgRJwhjybnSdMnjXzqwVvQ7fnsjy0/8IKnEELWnSXzbCJVkXEzOQwYJSNsc10QTU2H5jHfZcz+KGtdo4ThWZWhqcwvaNOYWhDNhurNOtmgNcdJYhhA7N6FU43uENhijbV1bh1IIlK1zwXYfCTH+XVQJIpJQqVh7spQPrkvbY4O0POez7WV5lAPnvO020kMJ93//0NmNL829iTuK3zwk61rx3BdYvvhDLJ/+zgPOhpl1dwEYz4cW2uxp8SYOAsdSyP2+4v3vfz+vfOUrmTt3Ln19fXzmM59hbGyMN73pTQgh+Nu//VtuvvlmTjzxRE488URuvvlmMpkMr3/964/2ru8VxyXBsm7dOv7hH/6BL37xi43Hent7d5EMtbe343leIyhndwiCgCAYZ6rHxvY+gzpxAL2ngfDhGCSvutsO4GWoD6ui5doLP8Wdv959uFydWFm++EOsWPM5Vqw59pnEJo4MdBQjXacxuJwIoRTSc8FxMJ6LyaYQ1cAOIiYMYpOhYWSSICtZ9KxOqu2CqOChxhyqbSCD2iSRABVoRKwxjvVplKHtRJGhRglQoUJGijhtg+39MYOqaNv5Zxzi7Q5GQHE2CCNwMxFDcY7BMIPKREQdAlmR1hJnuJbx0sQxAxNHmGpg86B9HzwX49hMknrnpxwtW3l3zf5Aj46hK1Vk3bdaSITn1opq2ehKlWFIqljBT7noXIo456KV/ckUibBeu5HGLQTI4RK5tEPvmEefl4eCQ36d4m1PvIF/Oe3/csG89Qd1nAt+OMaOC1sI2kBVbYe/jO18jzAgQ33QxPvScz7JHb/duyXDsta/4PbRfz+obTVxeLHsjI+BMei0jwxjUjNyyFDjbxqqdV7XOuyCEEYLIAXecAEv5Y93xyqJacni9uQIWxxUReMPVFEDY1AqjQ8oZQSug/B9O0itqcN0oYjwPFv0p3xMyrU5A5UQUY1RcYJxFLjKBvsCslSFOMFfHTNyyRxSw4LTv/xXdF+9lT+d/TBPF2fw/z17Je9s23JIFC3XXPIZVu4DsXDt+Z/ar7Ddg7GPnfi6n/7ovbS27rtNyp7q2RVrP8/yU3dfMy478+NgzF5tIQ60k3FPWLH2841a8nBi6bk3cMdvbtjt9mGc6DmaZE8TxyCMrhEnk8kWIYXtdk4SjNYIKTF1VYE29nVYdUlSKiNrCgTR2W5r1MRgXMfWLvXO6jiy11ApGh3WMogwsUBUQggtWUPGA+HZiT9jLCGeko0Q4SRlVdxBay1bruIgK4qwxqeEbQZVFTijzaaMYwETVdn2vFE1yzBqjWpV28AgJSaKG+dWbYFJxEz9sfptI+T4+dSw/6rZghmBEONMhqk3RtRIRLwEESW2E79coW11CSOyPPz1g1PzmYEhRJBDeQ4ykDavyBiMI0kcx+YH7UFteahxMBPITRx+LO9+h70hBSasXSNrtmD1pk6buRLbcxjGvy81otEQNMZ4wnMbJIupjQvHlYeJJbzrpHft8cZ2lLL2fYCQzrgTQt0aTAhIpF1nEDZqYpHLIqIIVQmZtUpTnpMjyghUaLjwz77Ir//j4L2zlrX+xT6TK/tKxJiUi6h6e5wT3BN2rpt/cM9HaG09uCakJl442LJlC3/6p3/KwMAA3d3dXHjhhfz6179m3rx5AHzwgx+kUqnwzne+k+HhYS644ALuvPNO8vn8Ud7zvUMYc/QorxtuuIEbb9zz4PHhhx/m3HPPbdzftm0bl112GZdddhlf+9rXGo+//e1vZ+PGjdxxxx2TXu95Ht/61rf4kz/5k/3ah9HR0T3aih2O/JV9RX3bR8I27GgrZpo4PtAYHGCJlPGBKJMel/k8oqsDk/FtANxwgXhb7+QBA6ByOURXJ9UTuhk5wUOFhtIMgT8MLZttWLlTinEKASKMMb4tmEzNskZWI0gMxlUYVxJnXbQvkYHGKdkcjso0n+IsRdAGYash6Y6YP7sfJTXPb+tGuQlSGvLZKuWqR7y6hbUfvu5wv5VN7CN2PudURztks+jWLDjW1kOOlmwXUU06bqKIZHh01wFq46ZAeF6jE0koZe93tJG0ZojafZKURIYGVU1IUgoZa9zhKiOntDC0ROANQ9gObWsMUVbw6D8c/Dmz9NwbGDm1BRnZn+ugRRJlIdNvyPaGiMRw96qPHPD6rz3/U6BEI6erieMDS8/+JHc8ciPLe/4K8jmSjjxqaz+kUyAEuiWNLFTRLVbhJftGLNHoOBDHmFK50Y3d8GFXEpFKjXu3T+uwuUVjJagGdoALk0KfcRT4nvWHNxoqVZLBIWQ6jUinrE91ysekPfuaIIbRsUZHN1FsB8z1Qa02VE6ahvYEYU4SpwTlGYLyoojvXfWPnOPZ9Rwp27DVm2cy23FJC7+xzasuvxlhOKw12NjYGK2trXutR+s40Hr2WMCRUrJcc/FnWPnAxw77dpo4vjGxvmhYNU2EkEjPswHj9Um2xDYLmSTZZXnpp5C5LGZaJ8IYklwKkSTISmSvf5UqBKHtvk6nbQ6FkuMKmXLFqg9cF3IZdNa3NqiAkZKo1SPOSIwUxGmr1o4ygvIMm3nlD0JlhkHNKjOtrcC2Z6ex/t2H1hC/OVF9cNj5nBNKWaJkwu/ixPOqTuTtMt7aqaadtM4aMShqTgIoOWHdBuE4lrgLI0Q2Y5dxHXv+ScmK7V856ONc1v5WRMrHdLQ1VJHGcUharI2zDGJEYg4qE+xQdvI3cWSxrOUt4wH1SWIbeCYSgWE4PqZrECxyXPElReM/Qo6f44mG+hivlks0ySKvvg0lx78fYN01SmUApOeNW0O6DqJmLW3KVq1CXSlTV4dJ0VBzi2ymkd1ifA+TdolzHsOnpBk6M2HDOw6dkmVvuOCNX6IwW5B7WT8PLbuZZe1vxUTRbr8ze8ru21/sb03bxN6xatUqXvGKP+KiC4+NgJtfPvA5fv7zFVx00UVHe1eOKo6qCPOv//qveeaZZ/b4d9pppzWW37ZtG1dccQUXXXQRX/3qVyeta/r06bsoVYaHh4miaI9hOB/5yEcYHR1t/G3evHmv+33lVUeXfa0TO0cik2XV3R/e6/EuP+UjLD/lwCf3mnhhYXfkSv1xU6naSTolEJGV1dbl8PU/6adsYaOt139uW0xua0zr85rUiEFVNU4lQVVjuw6AxKB9hzjjol3bnSXiGBlEyCDGKUU4hQinFCESjZHglBPcoiE1CJltAn+jx4ZnZ7Dht7Pxn0sRD6UIh1MAtGUraOf4k1++WGCShHhgCKIIkdiuOzk8BoVizaM6avzfZaLE6MafSRJ0NUBXqpggsOdsGMLoGCJKMFLgD4aoSoz2JMWZDqMLfKo9GcrTBGFXTJKB/EbI9CcIDSd84eCsZa698FOMntxC7AtSgzGpoRgEGMfmwMggmRzwuA9YfsIHds0USJrn9/GEpWd/EhlE1ipBGyiWbPim1pi+AczgsB3MlSvIgVGr5DKmEdapC0WSYhEdhjY/II4x1cB2yxaKmGqAHh1D9A7Clh3ogSF0sTQehJvocfuEep+O7za6/xpEpTaYSsV2rfYNIYbGYGSUuH+QeGAI3T+IHhrBDI3YScZqADoh/dwAqe0V8hurtK2tMOvnJeZ/Fz618ZWN92DZGXueKK/bmR4sTpqzjbSwkz+6d/Gk5666/OZDso1DgT3Vs8tnvGvK1y07/fojsXt7xJFSjqx84GNc/bKplTjLT/ygtQ1rook6dq4Zao+ZOLKd/rCLTbJQyk7YCYlwLFlijLZqgDhBVkMbSltXr0zsoq5vUwg7OWjMeO6LMRBEiEqECGrd1Y5AxhoVGkRiUIGx+YFjhtxmaH0O0gOG9A5B3Jumd7AVp3QYhv+7sdZr4gBRP7/qtV3t/DDaNP7sYrup23aqaeuvayxft+9UtZzCqPabrmyzhPB9O1HsurZ5olJtNFYsP2H/Qu13xrKOt1nLJMdBBCGiGlmrPGic37Iaj+e37SOW5t7E0uwbD2rfmji6WNb+Vpbm3mQJ6zr5YYytSYNgnEyp2XvVr5d1olGH4SSCu3G7rswyGhPV6tza+kwUj3+f6tf5eibWhOuZTPmWXKkrw5LErqca2Ma9YomkVMaUa3+V6nidXCOKTKForXWrAaJQQvYO4W0ZRoYG4+k91mh17Msy+4IHv/VeyrM0F/VYd4W6hdqylrfssuyhIleaOMwwx8hfE8BRtgjr6uqiq2vfQva2bt3KFVdcwTnnnMPXv/51pJxcHF500UXcdNNNbN++nRkzZgA2+N73fc4555wp1+v7Pr7v79d+C21sYXwEcTRD7vemYFnxzGcn3a9PahjPyjEPlb95E8c/TBxBGBJ2ZYiyeXLrRmG7JUZFfWLO921HdaWKs2WAbLkFnXYBn8QXNfl4YjM1jME4Dqhxz95JxIvWiAhUrJGqLp8X4DskKYk/qvEKNig0ykmKJQmy5nozpnCqUNrWxeDciA3vb4bcHkuYZKtQg6lUEI6iEWQPkzufpiD/Jq+kJinXsuFpasIIOThKenjMKgPa8rYLNZUnzElEYvBHDTIVU50uaH1OkniCMGfzfQ4Uyxe8l/CkHsbmCdwS+NvH0LkUUdazlncjEc5YcEBh0bptXGK7P/ZHTRx9LOt6OzKXtbZ4LXmMpxBhghyrgO9ZgqRYQm3qBSnRg8PWBs/z7KByYudfbWBah3DccZsEx7FZRxPCPU1t8Clg3K8aGoSLXYmwkzRxjC6XLYFTs8iRrS3oseL4tivWd1Ea3bAuEa4DUYwCdC5t87qqEc6QYNu3F0LtdP/Znd9l+UnxeB7cYYScvqZBrujexaz8b/vYVZffbEkWIbj750e30WSP9aw7df6KOIJ2LHUsP+nDR+Rz2x3uundqQml3RM/OhEvTRqwJsBN7wmiEl0J4LqZcmVRj1K+NwrWKAVMNEJVqQ2Eoarlx6MRe+2TNsqme52IMVEOrwtUTBp1RhFASlLWjMVKQuHayXAUGFYBr6sSLtBEBGlLDmnSfpDQrzTOfOvRq7EOhbngxY3c1LaZGvk3VRLM78m+q5Uz9vLKTzyJkPKvFdWuTwcl4gHcUQUseSpUa2acOikRb1vIWq2hNpy2ZE0W24cN1rNuAFNaVoFTl9v28xtYVBXU01SvHF5Zm39hosgTs2L6eF5Qk6DBEOG7N1tlahdWVKvZ8rq1o4m2wHspGAMm41WMcjT9f//6InQjn3RDmRugaUZOga1Z9QilkJtNYV72WFo476bUo1WjyE0JYBXkcI6KI9mfLDLzU4+nPzGN59ztY0f/PB/FO7js2vOt9nH/7R7n1maVs+bcLeeJVN7Ks9S9Y1vE2kILbB76695U00UQTu8VxESO2bds2Lr/8cubMmcOtt95Kf38/vb29kxQr1157LaeeeipveMMbeOSRR7j77rt5//vfz9ve9rZDLkO7++cfOeID6Z3Jlasv233X5MEGrO4rlp05biVzzcWf4ZqLxxnuFatvsSz/Th0ATTRhkgRclyinKM5SVGfkxgsqIS254nu2OySKMeUyon8YNVDA7y2R6g9QlcgOTI3BeJZcAZDVBHeoghyr1kIZa8HmWiPCGFmxIaEitv6+qqpxSwn+aExqMMSpGJuxUhuHpAcM+c0x3Y8mzLy96VV9zMNoTLGE7huwA0IpIZu21kWOqk1k7Ed7hZnQVRrHttO+f5B401Z45jnEjkEyz42QGowpzPEIWgXO5hSZzYriLMH2SyTVsyuk5u0912tKhBHuWER2uyG7TSNGiqjBIulBgz9iz/kDwYrnvsAdj+x7tkMTxwaW5t5kO/xKFQhCdMYn7szZJ+ukYhAic1lURxu6VCYZGEQHVZJiCV2pWLKjps7aLSZO2MS1wPp6Ryw0rEQwxl6768GilQqUylD3nTYGXanYbU7oNEyGR3e7bVNTuuhiyS5TrkCliixWEKWqPbaRMabdtZWzb/4rPtp3Bou//Q5IEq69cFeCcfniDx3yCfydLcl072Lu/kWtNjvGS50Vm/5u6ueOQo7exM9m+eIP7XaZ5bPefUT2ZdmSccJl+Qkf2KVLu0moNLFb1PNZpADXtfVr3daphvqkoal3M9fJ7NjWpQ3iRAhrzdiatwQM2OUjq741UTx+7dV6PGA51shII2ODCnVD4e0WI2Soccr2ORkb/OGI1ucDpv1mwgRjE8c06t31k5T+9fNrX8mV3a0zDBtqbV2pootW7W3i2JIvmTSkfPu7m/IRHW2YjhZrN3qgx1LPdjH2vKYaYKpVmy0URKhqjCwG4+f2fuD20X9vTggfh1ia+jOWpv6spiSpNdkYU1Ox1JQsQtrmoFoYva5UMXFkyYyaLdiUBCQTVF51VctOKrD6cxPtxEwUN9TaRuvG/ugwbGy3vu6kWNrdRu0xhaGtgatBQ4loosgqwqIYU6niPLeVlsdd5v5EYMKQZe1v3e1xLOt6+yEnsR9adjO9YRt/ufg+vrbmUm4f/ffxTNImji8Yc2z8NQEc5QyWfcU3vvEN3vKWXWVrABN3f9OmTbzzne9k1apVpNNpXv/613Prrbful0LlheQPeNUVn20QQUdTAdPECx+7dF3tAeLc01n7hiyiKyD/qzQzv7vWymmVsn7W9cJGKRtG53m2+zblWd9pJSx5EmtEENlQ80rYIPSM64AEEdbtE5S9n9TscaqB9UDNpog6MmhXEuUUUVYSZQVBuw0RTw1Casjw4LeaypVjGTufe0IpZM5OOpsJnfkAuhrs26BUSGQ9uFvKxmC03rGkeqZRXTLLEnGbRu0Ec9rDuArtKTZfnUWePUryeCvZbRC0wlOf2/+O0eUL30+woIvKNJfcxgrOlgFQEt2RR6dcRKIPKHiwieMT16g/Bmh4SwvPtYPRMMRog/Q8ZFsL5HPoTVsmKVP2iAmhuFM+r5TtsHYcRC5rr9FS2mtqraFCjxas+kQpktHRgzvYWkehdB07uK5NKjbCf2uPR2ctYmy+f9DBuwcC3buYvqTIG173TlY+8DGuuvzmccLlEOBg69EXUj0Lk1Uvy0/9KCuePnbs2Zp4YWFfa1qVy8GC2RjPQfYOYYolSzZDQ+FXnxgEkPk85HPgqPFaNajZf0mJSbkYVyGHilbZkuiGPZgJI3vNr+daQSPwWadddNojzjoIbUhciXFs2H2UkeS2WMXi0VbZNbF37HzuydpnPcnGiH1UZNfQUAfUFCyTagMhkekUsr3NEnrlCYqVJEG0t2La8ojRoh0/ue4eCfupsDT3JmQ+ZxUsYdhQJzSyK3wfdMKKDbft97qbOD4xqaa1NxrntajNAQilrBJ6P873+rr2/PT4NkVd/VQnXaQlO+rfmYmkykGhnq1UIzDqdmbCcW1NO30aSVv2qLgKvPSuD7K1t52T3r2O24e/dljUNC+0mvRYQCOD5fxjY67ql7/+fDODhaNsEbavePOb38yb3/zmvS43d+5cfvrTnx7+HTpOMLGQnkiu1NUvR4JwueaSz9iJF0cc0omHJo5fFBdkccck2WfTuEUDuSwCMHFsPf6FDaETrmMn8FK+LfbjxHb9aawSJbDdJSKoFUSuwqQ9tFcbtDrJuEZPCExikHHS6Bg0UuKMVNFZGw4qDKQHNflNCakdJQbPbiU5CHunJo4edKk8LgOfEBYqpJgsH58CjWDRuh2S5yFrajyZThMtmk6UVXiFmKQlVSPvNKIagp8hNQTxL1tpX58QtErc8oG3t0d5hYwMzkh5fJKmHCIrEdqf2vaniRcexAT/Z5jg2V8b+Omgiu4LEYPD+zcYNRoYVxLubJsgpKgpuqzFrghtp2s9EFegGoGgO5OaB4xaR6HRxlrrKDVuB1GfaEoSvCc30rUuxdLzbkRUQ0QpYMXztx6afdgL5PQ1TAdWPmDvN2ucw4uJqpeJ5MrhJFuWn/KRSTa4yxd/yOZpuKrpTf4CxX41DKVTUA4QAyO2HnUca1sbW8WJSWrXw4nWTJUKZDPgSIyUthloggWYCGOrunXGC1AjBKJUhnQKI62VrahGdju1WlkkGm+wQtSaotrlkHjQ+lyV/OMjMPb/t/fncXJXdb74/zrns1VV70kn3WkSCJvsiwaFAIokZukBxHEuV0QdcJS5DMMoizogyCaRKAFURoZxGa56nYHrV8fxqp1FwiKLCgEVwR+CBBIggay9VtdnOef3x6mqruqu7q5eP1Xdr+fj0Y+kq6qrTn26uup9Pu9z3u9uZI4/aJKOEE2nXDkiAKOeNC5p8M9k+wLlTzDbNmRjg3nN+f5AKbDcAtYghNjTaZIrtjXQFHw8LMsslMg1BRdiYLW8igDJlfOz0UC8OvDa0mH2/TJXCmyyHzO3WEea3Sa5hUsDFVhkPtaelOTKwANDRwNxdW5HmYgiyF17YHV2mV4rySTUW7umrdzdo+/L7tT9qPlnukqVEc1EVZFgoclVqtzYVCVbNj02chNawDRx5irs2cFumQ+/TkAGph60221W/ouMb+qS+gG0UmbS6pjSM7na1BACQiloSNOQO7viD6EPeB60a0FbApCA8mzAsyEiDZlroChhtv/W1yJqSCJK2JB+hKDWxq9+MrHGjVRBhBxSY1dHKCuxUnw/In/SWNi2WTkqJSAl+ue6sAIN7/UuhE0pZOZ5sHtNWQO/3kbNTgUtAeUICGV6+oxHx8vr0H7UNSa52NNrTjSnklC1CURJG1GSH+GzxUr3AgBmIipdt/ikSyGtoMfYINb8mC5a0QetBiacQL65p3Bd8z4aAiqdNokPPwBck+wre9fM2AeYn4wWJppUTy9EJgPs2QtRWwM9f87UPD5VrKlMtgzuMThaObX2wz/HkmKzhMztrs41oQfMLj/Lgo4GvQdbEkC2/E0QmJ4sTnYRhyXzCRbhh6Ysk7TyTe61Y5nFFDUeRBSZnxMCUgjo+iQy81KIEqYXi5VRyDRa3Hk9kxR+zo/3RO+gJEs+qSEFZDJpEn6ZjKkmkI13dRiauNcPzOe/Jc1OE2t81eU39HzXlD8SwvSAy500d2xTYdOxgQRXtc0WuZg2X55ruHh2Avm8cuWSOEKahUQo3GEyRQqTRvlkSzpterVECiLjQy5ombLHp5lFVEo9qkoZR8yqogcLTa24S4cNTq6sPpHJlplqz6pDUfNGiIaXNew+BXefDxEqoDYFNDUAhyyCOGSROVmX8c2kMwiBMIK2BHR2UqrqE1B1Ceika1b02Ra0a0NbFrQlEdTY8BscKEdCuTZUwkFU4yKYVwu/pQ5BvYvIk8g0e3hofen671SdipIr+QtVcR+JMggpTWKlJmXqos9pBBrrAaVQs7UbItQI59RAOSbhF9TaCJMmyRe5QFAjEKQEtAU8fc8EGsqm+6H37Yfa32VKlXV2Qe7rgVDAgxv42p11CkpnTarBfxtCFp+UKexhZNuAUlB9fYh6ehH19CDauw8q0z+5Yxo8rlyT0oKJqQ6D/K4ZHYTAth1oP+LqyR8HVYW4y4aVSq60H3j59A+EppycO8f0kujuGXh/VGbhjymVKCFSKci6uuwu2uyOQC+7KzsyfQTDOTVQDSloN9srLlJmNb/W0LaESrnoX5BEz+Ia+HNT8JsSyDQn0Le4Ab2L65CZYyNMSYQpifQ8G7/+wVUxHxmqWLlEiWVKjArPg9YK6OkFpAVRVwvhuWZBm52tIuBlE4muCyS8iZXwiiLodL8paxoGZpFEf8YkXIIw9vdvmkaDd2WNZ3dWOfc/GiFNE/psXxeV65tSai45KcPSJcemlTY9YvzA/H1aFvSbu4p6xBFRdeDyV6o46383tGFtTvviK1iftUpZc5oQJgSUJ5HcFcLp9GH1mrrQ2nMQNiSQmeNCRBqpVwDk6vlnJ6qQ0pRUcCSUZ0E40jT3BKA8B9qRJgljSyhXQAbmJJzf6EK5ZieBCDWEMtvSH+r4XGzHgibPJvXDMZX0KJdWKruqzjGvwTB7wqMvDbmnE3JOEm+8O4W6bQrevggQMDuoAESuQJgQEBHgpCe4nKM/u6pQK+ggu3q/sxu2z0a1s0quNBambpdIfgVfridLYV+WbHNQ+CbxrTOZ4VcdTsGYtMr1ibGGPKaOonyPeVFbM+nN7YkmYjz9CqiySdcdKHeUa2AvcjsABeA6kJZl+krkSyxm37fC0JRdCi1o2Ig8C1qaIo0i0qY/S20S2rWhPAf+XA+ZBgsy1EjPdxA5gIwAGWpAA1qASZUZZKpi2iLanMwV2X8BQKSS8I9og7OrB2J/j1ngJqWJgS1pXr/9mYk9rFLFuwJyzcKjCMhM7L6pik1xHAlgyA5t87DZsrNBOOWPn33A4kSSkBAWhu5Sy+6IFHW16HhuDVY3/z3W7/7m9IyRiCaMO1ioIqw8ZfikSiEmV6qX6upBy+adkBkFKxNBZgITwEcKUAoiULB7I9i9EbRlmTJhtg2kklC5yWa2DJiITJIk8iwEc1MIGj2TSPEsRJ7pWeHu8yEDBVgCOlfeRmnISDO5QiMyzRWzpQp830wq0/1AfwYi4QEA0vMdhClA2QJRQsKvleg6yEZvqwW7X8PrVHj6366YcKmOjp13QwdhvhmijiKodJon7WaRVYmPTP7qvnIIUXDSMLt7xPcRdXdD+f7AhHU6FCSYhuyuQfYETRgCQmDVO2+avnERDdJ+MMszzXQqCKH2ZntdKZ2NZaOBpt2596ogADK+2Q3ruSZ+SCUHFg1FGlZ/CBFpKNdG0FyDsG0O/Pl16G+tQVDvQNkCVr9GYk8ILQCdW/AdATLQTK7QiHL9BwFkX6PKvD7D0JxYzu5WiZrrENTZ0AnX7FpxHaCuxpzwzfjoeHkdOrZ/bUJj2dDz3YG+E9mv3Lh4Ann2yJcHm0Za6SG7ZUxfzmjKdqsMURi3DkoqFcbTuXkeogjth38O/tsPmZ7xUfXSujK+WCMMAHewUIVgD5aZT4cB9N59EHoutBBQCQcSMA0+tYYIFezeANCA0NrUBM7Wn9aOBZWwzO4UW0KGCloIBPU27N5s4+9QQ0Qa2sXAfUTa7JTxLChbQihg8yaWj6FRWJapPZ1rVhsE5kSz45gVqQkPQgF2HxDUCthpcyJaS+B3d02gHNgwNvr/AQBYYX0Im6L7J/3+qfKZGs1T0+wzTytAONn/aohImROBQgCWgACg/IImpFNYn3pgPDK/o6bk4xVMWLVSELaFrsNqp3ZcRCPo2HpH3EOgqaYVtB/kF1wgW/4rn2QR2fcrxzYlwSzL7GTJll3Snp2NbbOJa0sgqHOgHAG3K4SIFCzf7GiJkmb3igg1EvsjhJ7ILzR67P/7TEwHgKpGwYKEfNNuZGMKS2aTfilEnuk7ETR6cIMIwp+akl0bg/sAmHi28HuaZYTM7k6enhOyQxYETcMO7CEKdrCYXl1Rcf/DorGZE9aqIQURTPM4iWhCuIOFaILaF34q7iGM20r3Aqx0zp+2xxP19YDWsLt9iEiZ/itRBNEfwOrph723FzJtVpLopAuVcKE8B0JrSD8CNBDWWAhqbWhboL9RQnnZUmGZyPRccQSEBrRlAhQZmN0xItL5lX9EwxJyoA56FEEXlgDR2pwgEQI129No+IsCNKAcwO2OULNzaoNgJldmpw39PzD/mY5dLINLFQxq1pxvjjuNcpPQ/PeDVr/mVugKKaHrUth/GN/oicajfdGn4x7CuK1KfCR/0nY6CNeBENIkVJTKN6rXubghDE2DcKVMcsU1vS2gFEQmhAgVwloHQb0LbUtkGi30z7EQuRLSV7D6QmghAK1hZUveyoyCndH5ErhEI8qeRM7tgB58nZASIlsCzNmXhrc7Ay1MAm/wZ/9k2xTdz5h2lsotGptqQxIX2b+Bostj2B2e67eSG0s+ni1YUAQAcBz4c5LF5XqJBhEapgx+BXyRwR0sRBPU8drX4x7CuE1XkAOYmtU9x7fA6Y4g+31TBiyIBiag2suWUpCIGlKIkha0EJChguw3tYKhNZQFU/bLshCmBDINFkSoIX1zslv6ZieLskX+ZDhgVgI+uJG7V2aiSa1ZXVCGSyS8fG11LRVEGJqVqpaETAeo2xoh9aaTXX1qw69lEExTS1jWwE6WKVp9p6MoO+mTACKIgjrpU75rZchgss9RD/O3pRV0BDMxjSLI3gyUM22jI5pRJloCKE75RPR0EBIymcy/J+Ya2GuVLb+UXamsVWhKi3qu6a1iCYhQQTsWohoXfr1t+q/4Ev1NElECcHptyCC7g1ACVsbEtIApSQqlIUPgkZ9+dvqeL02rSYtpda5/mfm3qLG4Vub1GgQQGR9CStj9AaxuG6I/yJZ7IZpa+VhzunaTZP8mCr+fVvn+LzKfXBlyXQQIIaH7+yH9CIJ/ikRVhcv8iEbRfgi34I+FsKySK0LEkYfC7Qrhbd8HESrIvmxfi1zt/IyfbaZoQbmmFJjyJMKEKa0gezOmd0uokZ5roXuhhSjbJkPbAto2JRPsdAQrEwFSmF0sALQ0159xzm3TeSioSukwgM5koDq7oLN1cPO7WjIZ83q1JZRrmWSeIxGkJMD8Ck2RopOHU7jirrDXT+GXyvUBmk5Clvw8Kawpn9/NEkWmnnxvLxY87uOIL7JfG1EpK05fE/cQqkqp9yCrJmV2qWQbc2uVPVmt9UC/qNyJu1yvQQAq6UHVJqBSLsIaB8oBeg6Q2HukhcwcQGZbAShHQHkmvrB7A9h9odnJHer8KtF3//W6aXn+VOVyPU8G7QQVnmd6DfrZZIoloV0LyCbz4HANLk2dwgWeQoopiWvzr/fBfX9yMe40lSfLy5Xry5XsG/T4hWPUYQD4Adxte2Hv68MZf/WV6R0rEY0bEyw0rNXHXRv3ECpCx8ucxIxk8Cor4bolV4SIvgzsbt80De9LmxPVvjmRrcPQnMi2LSCIYHdl4HQHsHtDWBmFyLMQ1SWgLdNHRVsANFCzUyG5K4DdHUBmIlN2LBooCSZDBaE0tC2gXL7dUfmKTixnMqZcmO+bK8MIsqcfQpn66GHKgp1WqNkRxjtomtE2+v+RTyyM2GB+siaqWg1fXmSa5Cagw02EB8qDZRMufoDkC29C8E+RBll9/HVxD6EibHqUsf1wSu0aKBXT6nxZsEENXge/T+Xep4MACELAEgjrXAQNHpQtoKVA5JoNerXbNRq2hkjsDcxCof4IIjK9V0QYQfoK0o+KGt0TlSX7WV6Y/NPZ+Rdcx8zLunrMTinHgqpPQnncCkpTa2Nw39SXnc3vglZDY9qxxrUFyZGpUBjLAtnPme4eQAiI6U4GUXWJu7l9vsk9ASwRRiNY/yxXudEYZLecq/5MyavV6zsg/blAxofuS0P7AaCVaQCa622R7odQLkTGh4wiwHEQzq9HUGtDOQ60FFC2QM2bEezeCHY6gsyEpr+KEIA0pcC0JSB882YfJWyzg0WwpMJMNqllwnLyZRS02ZwipXmdAkBPHyxhyn04+zMIGj2EqenvT0Gzx6rkx/KNQVWgh070ChpoVqVRxl7Yc2XYu5g3F2+d0Yr573ljUodG1W/9H26JewhUTUaIabXvD5QCi4ZPAJsba2g/gOjphW5pQFhjmySJZfqr1L1merg5XaFZKKTUQEwLQCgFLSVEGAG2DaE0hBJ45KfcXT+TTXpMW9DUW1gWkN3hL4Q0uz+DEMK2IHQCIq2h6hKT99hEJaxKfswksKMIephzBxNqRj/ZC4PGEmNPQiwuPA/6gPnYeXoTLH/Cd0dE06SKZ+JEFLfChqL5k17DBDQqnUb0+g5Eu/dA9fWZMkxKQ7guRE0KorYG8FyzLd2yANuGTjgIa2wEtRYyc2z4jRaEBtz9IZyeMF+XGlpDOxJR0oFyLdN3JTJ1q4U2SZf8bWnG2qR+OKn3J6SA9BKQNSmIZALCdYCalCkRFobQlmkGqm1T0u6R/2YCj6bWhvT3i5pgxt2sMw6FDe7zhIRMJtB54nzsP0Lj4Lq90zae9pZ/mLbHIqKpsdI5v+j7kWJaHUVQvp/f5Vq4OlpIkT2BbQ38m41ro6SFyBWIXAFlAW63Qs1r/fB2ZSADBW0L0/NNCBPT1jhQng1YAlCADE2Deza5nx0mO6aFkJCuaxJ1UkI2NZrLszEtlIaWEtq2oO3ZEU9QvNZ33QvhupCOXVxCa4p3i4yHsKyRd4+XuD1QHKcP3qVSeHnu+QopzLmROY2IalwIBaTnTXDwZWpf9OnpeSCiGYw7WIho3AYaIZtAYrTGy7ka/sKyYC1sg04lAWUafkJKs6JPSjOhBACtYaVD2K5ECMDOaFh9EYTSZhWgFFCuiyAl4ddKRB4gFJDYr2D3KZNcCTQe/sXnpvpQUIWYjFV/IntiRLgu4DoQjmOSf+l+IAigFs5HWOvmt8M+8NDnJ2PoRCPakP4+AJiTdVKYkjPZE3qFpr2u9DQo7LlSeJlwXUAIyGQS/e84GPsPlxAR8N13fWfaxtbx5r9O22MR0dQQtjOwWjrb/2nEmFYr6AjmtnZBOSUr2zvKsSFs2/QWtM2iIWd3GiJKIPIs01Ow3+xYUZ4NZZsY2G8y8axfLxG5Jqb19mu4PQpWOsJD6/95Wo4HzSC5RRlCAlJASGn6Bu3eC1lbAzG3Cbo2iajGg/Js/PJhxrQ09fIxredC2DbU3n3m+8HN3yvEaOc48nLVD6KCnwNMEgmACkLzGZEr2Zf9GZnwIFJJIOFBzWtE6NmA0mh6IYPND1w9FU9piI7tX5uWx6FJVnl/LrNaZaWGK8z7zvhS3EMgqmj5ki2WBZFMlr0dV6ZSgOsC2dX/IlTZetaAci1oy5QCM/+XkL6C2xXB7gkhlGkqDiDbYwVwehUS+yI4vQMNQCEElCWYXJmFJrrqL9/3Idfc3rLMv54HWFZ2l5S5LZMrFAshhjYGza74G8sKu4o06HMkn/C0B9WEF9Ks8pPZY6CB/vkai9752jQNtLqsOJUlsoiGpRWEY2cXVzgQyURZMW1RD4Hce6+UJrliWSbBkkzkm4ZLX8Hp8mH1BBBhrvyXgpUOIQMFEWgT0+5VsNPZoVlA5AomV2ahSd/FApj4IVsmTGcTitq1ESUdJldo+iU8oCYJ6dj55MpwOz1iVVgibLjdNYXJTAzseilMGuU/Mwpv4zoQ9XXm80IIQCn0tiWw85Qa9La5U/q0iGhyMcEyAgYZRKPLBw7pdHm3t7NBhNYQQQSV9MwVkYbQ2f4poYIMtTmJLQCZiWD3hRCRgnIlwhoLYdKUZVIWoGyBKGHezux+DejsJLY3mqJnTbNCroGtlEBtCrqpzqxKjRSkr6AtfoTS9MuVVEBBuYIhK+sqsLxCWQqeQ36CnW1KqsMgf7l0XQjHhvZ9sxI3Mp8RmNePYxt3xjX6irbpcTZ5JxqJsG2IZBIi4ZkG4KP+QHFC25xMK3jftSwg4SKqTUB5DrRnQWZCyP7A9FZxJMI6B2GNA+VZCFMWlCsQuRJ+rYCWgPRNU3sZcokqjV9RjGBZEAnPfGUTLVGNiyjBPoI0/TpeuROqqR7C8/LJh6IdLBUSz+aTJZY1UNKshKKxF+yIFJY18DPZuFZIYcpQuy50XxoIArObZV8vhAa8Lg3JEuc0CqF1RXyREf+7FRFVPbmwzfRQGY2QkPW1QF2NWaERhACyzT5tCZXIlQYDRKQgQvNl9Yf5Zvb9c2z0tliIPAnlCIQpiUyDROgBMgIsX0OGQJSQeHADV/vNVuNe9SekCZxzTUAtU1JBOxa0lGblXyaC8KNp27JNVIrwvGyJLJlfHaejKL/6z9yoQsK8csZRarV4tvxObmIqpIDwPMgFLeayKIKQEqJ5Dl5blsKBLWPvvbL6eCYeiGa9bL8UtLVAH7QAsq525NvnYoVBJ8zMfUkg4UE31UF5DoTWUCnHxBChggjM7frakug8xIXfYCNMmoVDfr2F/jkSUUJA5GLaAAgTFbaam6bNJvXDgR2quRO15Rr82Zs7+ZsvTSSgk6bPw0Md3PFP8dCOBTGn0exKLlg8VLSTZSLxbKn+LuUkbgbdLtcDcNgSZrl+XCjRI7EgqVL4tyzmN+fjWUQKui6JnhNa0bXInOcIUuW/968+4Qtl35aIpkaFzLyJqBrlVnKoplqIVGrUQMWUebGBSJkJKADZmzHlvJKmmacINYQyiRUZZL/6Qwjf7GCJXAFlA8pGvpSYloDlDzyOsoFHf/SZqXzqVAXGmmQRtpOvkQulzYlbIfPbtWUmQNiUgvYsbPzt9VMwYqLyiMYGiJqU+SpIPkzfAMbYiLTM8pHDsu2ByajjAGEI0TIPsnU+cFAbXnt/KxpPfxPHNe3AosQYkyySoTDRbGcS1g7gWOhvqQHq6yC9xPC3L+hpkZfrM+g40HUpRLUetGdBOZaJIwpuqqVEf6OEXwdEnoByBWSoobLnzp1eDcvPlr0VwK9/cNUUPGuqFpui+4tXwZfzuVtwm/zrVSsgDKF938S3dbVQNR42PXrtFI6eaGT+HA/Bgc0D78MF8WVRUnGsSZaC0rmDY+T8ZaPEsvmd4rn39+zO6hHj2kHXDV78ZGLZ7GK+rm4g4ZmFqo316DqyET1tFuwMEHnAU9++cmzPmYhixSb3RDR+2YBEWwKqpQl4fccoNxem5FIUQXs2RCBMmlcIaNuCFoCVDgZSv1pAebbpw5IJoaWEDDUsX0BLgTBpkimAqVFtdr4Aj9/PiSgVyE0qR6GjCNDZ2tQFAbUII4jeDODYSLck8OiPmbyjmGll6lYH2RN8w1VDHPy6L/NvARg5QbnC+tDQCwtWck8mHUVmp0puhbklgWTCfIZoDW3b6D7WxxWLH8Wh7lvw9djKnKz/3c2TOl4iqkIFJ9+UJ9F7ZDOS20bo55RrGG5ZgAXoIDQ9XJIJwDMlHAFARBoQGggVwhoX2paQ6RCwBNzegZr+QY3M9xCUgUmsaAkIBfzmezzBRtk5lGVBIMo30B5RYc+IHMsk+4TrmtK3SRcbn+Cqd4qXlVEIkxYc14EIw/y5AnOlBZEN63KlYscil0TZ6P/HsLfJx7S5GDnXH2XwLpSsYXewFNBRlE3uqCG9WfJ3aVmAbQO2Bd3ZB+EHCGpa0dcCWP2ADMfwRAGs//0Xx/YDNDOwPFdFYYKFiMZNuA6gNcI6F5kGG7XPe1Aj9GLJNw13nfy2dO05gFLQEggaHEAK2J39EJFG7jxZ5GVrsloCQpkJq5ZAJAd2sEBoJleoyErn/OKGhKOd+NXKTFqFhPTsbJ8LU+pD1SahPYvJFaoIHVvvwMp33Wx2AO7emy0RJgFEAxPCUsmVEYxlx9em6H4AA5NSYVkDE87Bf2tjSOrkbl80EdUqn/QUtp1tHi2hUi6iuTXob3ZR8yeJ35+wCO9OvYzDF75R/mMREQEQdbVAGEH4IdJzzMKhmoZ6qF27S/+AViaetWBOWNckzU5uzzXxrSWQmetB+gru/gygAEggTFr5ybcITQkwILsj2zGLhbQUUEozuUJ5q5s+aXZySgkN5Essjyr3+ZlbxW/bZqW8YwOOg/V/uGUqh01UlgcevAbHfeZOLHw+u4hGFCcjciW0dGE8OcKinrFWMNgU3Y8V1oeylTncIQkUIdVAk3rbgfb9UnczVHZeKWw5UCZMabN7RQjAtqGaG6EdCzKVBIIQc7fsQ5icg30nhHjl7z87pudBRPFjgoWIxk0kPCBSiFyJ/jkWRqlYnadtCS0ltGMhqnEgfbNKRUuB3gUuvIQFb3c/AED6kenFojS0ZcHpU5CB2cGiHKB/rqlTLZTAU9++YoqeKVWr/NZyraDKDIh1FGWb03pAbQpRXRJRrYMHNl8zxaMlKp8/x4OntUluhGF+klky0SEkpOuaMgW5la9ajb9XUVYu0bLSOb9opV/+MfL9YcaQZNEKWsn8ikUIaSakiMxKP60BPwCQQM8iDzLUSLdqPPja4fja2/9zQs+HiGYp1wVshaghCb/eLObBCKuUc+VehOcN7KqrTZpFQ0JAuaZXYG+rjWSNhcSuDGQmyu/k1paEnVGQkYAWMLX2awT8OhPTOgp48l4mV8gQnptfXIAwhPD98naxFJRZyu/SkhIdr9w5peMlGqvut2WThkqbXiS5fiVKQquwoBTuQMLQlN6SkxrPrqr5WwiRfe/XCrAs6CAEdADpuhDJBKyEh6izs+z7zj2XXHye3/FoWfCbk4AC1BwPyb/sQVTroX5biGe+weQKlUHDLOCoBNxIA4A9WIhmrdUnDvSQaD/68+O6D+E4EAkPqT/vRu3rwYiT0RxThim7CkRraFtAORIi0vD2ZOD2KAR1FroPq4E/NwGZDmD1+hBBBBEoOF0h7D4FK9Cw02bXCgBs+SaTK1RsY3AfZMKDSHj5xolFhIT0EpCplPlKJrP/Jsxr1LagPQfakUyuUMU4c9WXccZffQUAIPqyScPBZQeytaVzCcZ8byEUlDyYSMPQQYTrFu8WKx7M2JryZuUmpLkvrbQ5MekHQG8fACA9V5hV4BmBP5zDUl9Es9Hq44r7R6xacsOY70PVelCNNcjM8WD5gNutB5rWD0cIwM4uxkh4UEkPUY0L5dmABhJ7fLg9Cv2NEvsPT8JKh7D6QshAQUQKdk8Eq19BRoDdb5rZi8hUFGPdfSrUsfNu8zqrr4Ooqy3+zM3JLqSQqRSs2lpYtbUmBnZsEwd7nkmubP9aPE+CqISPP/lxXPr0R1HzcsG678LSXJY0r2HXgayrg6ythTW3CXJBi/m+1N/CBMi6WgjXMY/peQAG+q9ASFOytqFuzPergtDEs46dT67AthDUWOg81ENfqwNICeVaePj/MblCVK24g4VoliqsO9/x/JfG/PNnrvwy3IXzIQITdCRf6YS2ZPGq6RJMKZlscgWACLKrri0BEWp4e3zIWhvdB7pQtkDijdwqEg2hFEQkIEMJ5QEQgNep8dv/zYkoDcOyIFwH2kc2AI8GdrVYFmR9nSnpYdtmVbzvQ2d8CNtGx9Y74h490RBammbIdk8AoRSQSpqEoFbINWMRtoMN6e9jVeIj2ND/A6yu/7g5GZjJ7g6RChuD+yZvUEJgo/8fWFV7IaA1Nvr/YcotZHePjXfym28qalkDiSGloDM+rH19mL/FwpvvSlX0qqlVS27Iry7b8MxN8Q6GaAZa/+yaou83bBnb39mSjmvR84FmpHYCdlpDCyD1ZrYPwDAxrUn8SrPb1TXlbrUtTRJYAgIC0ldI7fAR1NvYf4gNLYSJfTWy5W4VhJLQAoAwjw0Av/0uY1oqIZlANLcWsqsfwnUhlc7vzM4tqJCNDUBdLSCzJ4I7uwHbQseOb8Q8eKLSHKHwQud8ePuAcGEz7Jd9aN/Px4+yoR5QCh07voHVx12L9c+uwcpTboaWEnZoYsRN6e9P3oBsG+s7/x3th33WlCV7azc2RfebndqODZXuh5XwzPmM0ZLwQHHvliiCALI7Hy0gmYTdp5DcHSH5Zj/2njw/34urUq1658Dn64Ynx76YgWimE1qzK06hrq4uNDQ0oLOzE/X19XEPh6hivefc2yACDStQsDt9WK/vgursgs5kSgcc2VXM1ry50POaBsqE2RLayU4wAYhs3Wm/wYG2BLy9PmTGTHSVZ0PbEsqVCGptKFvgsR+y5wqNbnX9x6F9Hxv6fxD3UIgmRfsRV5tG7/0BkO43iYd0P3QmA+G6WL/v29M6ntVzLjarDoPQlCwDzK5GrSA8D1FPb3llwgrrbmd7sQys9jMlwnQQQLgu+k8+HFv/B/DqJz43Rc9qchzxxTshItO0+oXry9ttOdF4lPEsUXlO2/TP2NVVC/VSLZxewNsHtDy+H3juJaggLJ1gsSzIujqIxgaohhrohJ3fna2lBKTpw2KyKQL9c114+wNI3+xeUa4FZUtTGqzWgrYEtAU88R+MaWlk7UdcDXR1Q/elsb7z3+MeDtGkWPL3dyKxTyH1RhpRyobdE8Da9haiRfOw8dfXj34Hk6j96M9D1Xhml/hrO0zfIgDwA6h0GrKpEWrX7vJKTxfEtNJ1TTybTAA1NVANNRBhCNEfYO8prXjzNIVXLqn8Xp8H/59bAQBbP1p+dQfGpJNv8+bNOOevzsPpx30q7qEAAB7+/R148OH1WLp0adxDiRV3sBDRmK0+/jp4dQkoz0JQZ8N7pQfwg/xqvuFWdAjXAWpSJkni2RCRgvRDKOlA2ybDoqVpWu/u983qvtBMbJVrY9Nj103bc6SZZX3XvXEPgWhSdbywdqC8Y12NWR2dSmL9i1+JZTzr934LALAq+THTkN6yoIWCSCQHbjR4J8vgE5elyotlyzSIZAKorwXS/dC79wJaw8pEaPxDYgqezeR64QtX4NA77kDkaRx81+2wWtJ46X/y84wobqeddzv2H9oKmQRUEsjM0ah5HZBv7oPKLgzS4dD3KeF5EKkkdH0KwZwkhNKwe3wgVBC2NouHLAtaCkAIJPb4Zse2AKKEjQceZNlRGp+OF9bGPQSiSef0KshQo/OwFPpaBLTw8NyXvxDLWHKVPdpbL4V2bCCZABwb2Lsfsq0VCAJzrqMwZi1nAZE0cToa6tF36BzseoeDg+57A3BsyFDDe2vs5XTjsPWj1+Cw/3sLDv4/t8L2Irx4HuNZohwmWIhozHoOa0TqtT70tyXR2ypR8/sAcB0gioAgHNJcWUgBYTuQdbVAEEDuVxApz0w+HbNyTygNEZoyYNqSZuUfpPm/bb5ftmItNm+6OtbnTkRUKcZT3nGqbUh/H+0HXg5kMhBKo2PXPQCAle4FA71YtMr2VBmos60LenjJXN8kzwVqa6Aaa+A3JeDX26h75CXT/6upEe72ffj95ngSSmP1lyuvxBFfvBOZOQrRW0kc9J2v4G3f8bHpcU5MieKy7yPdSP68AXtO93HogW9i908WoeEvaUAIyNoaqO5u6IKYVnoJiGTCvDe5LkQmgNPZP1AezLNMOcZIw+r1ASEQJW1ECRsiuwNbuQKn/806PPqjyl+pTEQ0HX79g8rbvdex824AwMp33QyhFNScA/KLPdvnXWL6IgkB3dcHne7P79rWSuc/M4TtmM+MxgZELQ3Y87YavHV6hJOP/Qteef4QQAiolIvGp97EE/9ZHfEsALz0P6/D8f/vevT7DhZ/fy0O/7cImx69dvQfJJrhmGAhorK9bc2dyLQGmN9oI7VDIKgRSO5WJqCIIuh0v9kuW7CKI1c3X4cB1P4uyIY6wHEghGn0ppUyDey1NiVuLAs6ZRIrgIKINESoBlYCEhFRRevY9tUhl230/wOrm/8eiJRJxue+soQFk5B3HdPAt64Wak4tgqYEeg5wUbctg5pXuqF6eiHrTbJeJ2un70lNghe+cAUWf+N2SF/A2e/g5f9h49jP3ok/3lZe2TAimhxq59sAAEfMW4FX7QYcsXgHOvuTqHstgtUXQqfTJqYdXCJMChPvZnwIAAhDSKWhPTufWBFRZHZfaw3tOUDSBsyaIQBA5EpE7nQ/YyIiGo+Nvx1aoqxj1z1YfeL1pkdsbQqipw8IAkCZ8yI6Wx4XlgVdV4POY+Zg7zES6pgeLGnbgT/tno85TzvQNQnIPh+qPlnikSvb3Jpe7BUp+D0uXvyoh8NuuwMvfZY9xKYdO35UFCZYiKhsy1Y/jcdePwRCNaD3gCTChED91n4g3W9W+UXRkC2yhauSte8D+zvNyuQwBSQ8CN8yk1QhTFNGDxBq4K1JRApQgNQwiRyaFO0HXl7yJCgR0VQRyWT2JGQE4QfmQimgfTMpFckE9NwmqKQDf24S6WYbQUqidmcId/s+oC8NNNSZXiy2BbFnX7xPaBykLyACAW8voLsEknv4uUYUlz39Kew9xcdxyW785bcH4tBXOiHf2g/V01u6/4rSpsdUGEL39QG2DdnUCKHMSmah1EDi2HEAmIb20DCxbKggQ4kgNagcIo3bylNuBoTAxifiKSdERLNTelEdlC0gQ40gNRdaArXb0pCZECrhIDPXhdMdomehh71HC7SctAOnzHsVP3nhONQ/WIPUmxG6D28AtEZibxD30xmzRq8fnf1JoM+Cu9cyCwmIZrmqi+4ymQxOPPFECCHwu9/9rui6bdu24ZxzzkFNTQ2am5vxqU99Cn45zaeIqCx3H/AbXHHkA8jUC3QeYmHPSaFp0plOQwVhUTIlT6uiL+X70L4P3Zc2jZnDMLsDxkxKRSaE7OqH3Z2B9COzg0VrSD/EAw99fvqf9AzF5ApVg5XvujnuIdAk6tj+NejGWujmRqCx3pRXkNIkXRzbJN370ug9sBavnG1j35ESzb/rQuqpV4CubsCyoBbMg55TDyQT+fIN1eTlK66E5QNOGki9qaEFcMpHbsfSD9+OY665Eyf+051xD5Fo1qhzMlh5zPP4u/m/gt0rIPd2Qw+XXAGgowg6CKH6M+Y2ANCfAXp6TUzrB2Y1aXZXNoIIMhPCykSmFG6kYaUj/Pa7XOU7WTb++nomV6jirVz6xbiHQJPs4f/3WWxfDbz5Dhu9rRJBjYDyLEQ1LvwmF05XCPeFN7BrCfB379+EU+dtxf/76Sk49NYALb/cAQDob5RIN1t4YHP19eX6r9O+gXTGgQgF7DRg9wHH/POdOOaf78Tb1tyJg++6HYvvXhf3MGe+XMwR9xcBqMIdLJ/73OfQ1taG3//+90WXR1GEs846C/PmzcOjjz6KPXv24MILL4TWGnfddVdMoyWaWTalbXzn1dOQ2qXwxooIsIjBawAARJ5JREFUN5z+U9z96w9i7uPZSahWA/1XRmj8pqMICEOzOyUIAakA2wJgmVXMSgB+CESmXr/QGut/xxOtRLNNqW35VN3W/+EWrDrpRujaJGSkzKrv2hqTaPF9oKcPVkZhzh8ceJ0Kck83dMYslln/5r/GPPrJ4XSbf4UGZAhTg9sxLWl+dxfLhRFNl+deOQB/f/ojeHcC8Bu12XVSULqwqKcgsvErMHBZpMzubG1DhBFgScCyzPsZQggpgT7AChVUjQttCTy0/p+n7wkSUUVgEnBmalzYib49cyADwK8T2HNMAsk9CsldAdw3OpE58gCoZASlJTZsPxItT4WQO3ZBhyEe/XH19FwZTv9rtbD6BaABK2N2bGoAYa2GmJvB1gu4OJZml6pKsHR0dGDjxo340Y9+hI6OjqLrNm7ciOeffx7bt29HW1sbAOD222/HRRddhDVr1qC+vj6OIRPNKE+nF2PPo62YoxRa2vbjwX1Hwu3WAxNOYGhyBRiadBFyoNxXGBasYHagHdv0Y4k0hNTQlsD6LUyuEM1GK5d+kZPSGWjDUzcWfb/qnTchrDVNCdyXdkJEGqldIZzeCMhkgCjC+s5/j2Gkk++0/7EOXpMFJ61hZTSsjIKyBdJzLbjdcY+OaPb4+LZ3I/VnF72negD6IDMCOuWNHtNmLxNSmNtmsmXBLAuwLAgru2hIOGbRkB9AaA2dsLHpUX6eEc1GK991MxcNzUC/O+uLwFkD3x++9k5ErkSQdNGUrsPmB67G4n9bh3//41K4z6Xg7e4FAKzf/c2YRjx5jr/yTiRTEiKE2cGSNpf3LARESz9a53bGO0CiGFRNguXNN9/ExRdfjJ/85CdIpVJDrn/iiSdw7LHH5pMrALBq1SpkMhls2bIFZ5555nQOl2hGuuboX+De476INw5zcM3Bj+H/vrEEid2mZqiZaGZvWDD5zE1MhbTzJcQGGt+HEK4DHQRYv+Mb0/58iKiyMbkyO2x48oaSl5+58svQc+pnTFnnd378DjiWgNuj4PQqWP0muWKFGk5aYsu3WDaIaDrI1j+j6y//COeUvVjs7MI+5UMoQGSCbJLEgg4H7c5GNn4VzsDlWpnYV2nAUmZLmudh/a574nliRFSRmFyZHV68eugu5Ff+12cAAMdfcSd2vb0GyQMPne5hTQkRAk4PYKUBr0shSAkEtQKRB9huiMdWfDnuIc4OQ6uZUoyqIsGitcZFF12ESy65BCeddBJeeeWVIbfZuXMnWlpaii5ramqC67rYuXPnsPedyWSQyWTy33d1dU3auIlmmn/5/y3DhUelsL2/CYvcPXh11xwctqcP2rIAywH8ADocSLgIyyravSJkwSeAzq74k96MKftCRETj197yDwCAjuxnwoMbTSmd1U2fRPu8S6CjCOv3fiu28U1Uck8E5Qj4tRJ2v4DQGpk5DhK7AyTfmliDU8azROW7808r8Z45wAkNScyV/Xi8vxm1rwHYux8AIJMJqDTyMS0AE9MWGlQ+DNnFQ9X8HkVERBO34tRbAACbHr8uf9kf7jTJl9XHX4dVb7+h6kugKwfINJl1BUJLdB0MBK0BRI+Flz7IhCLNTrE2ub/xxhshhBjx66mnnsJdd92Frq4uXHPNyM2fhBi6xlFrXfLynFtvvRUNDQ35r0WLFk34eRHNVL/pPAQ/e/1Y/HHfAgBAuN+D6EkDloSQBTtWsiv9tMqWDyuYhOZ2sQCADkLTBJRit2zFWixbsTbuYRARDbF+37dNnwNZ3XtZHvnpZ/Hojz6D3373SoQJgb75Dvw6gb4WJ59MGi/Gs0Tl+23nYmzcdRS29jVjj0rg/+56F+peC6F6es0OllQSMuHlFwrldl6Lwe9BBTEvFJu8VgrGtEQUKwFAinyipdD6P9wCUViKsko9e/sV+PN1V8A/Io19R2lEi9NYfOBb2PpPV8U9NKLYxLqD5bLLLsP5558/4m0WL16MW265Bb/+9a/heV7RdSeddBI+8pGP4Lvf/S5aW1vxm9/8puj6ffv2IQiCITtbCl1zzTW48sqBkgxdXV2clBIN44lXFyPM2DiwbQ9ezLRC+NI0q8+t6svVpFYaWmkIqUxCJVdeIftvPumCyCRZKHabN10d9xCIaJbL7VxZ/t4vQWjglw9/Hu2LPg0AEHW1xc2nq8S7/3odoM2J16DWgt1nFhX0LbIgA5g+LP7ET8wyniUq329fPQg6Eki3OHiy/hC80VcPLcwuFeG5gJ2dImdjVQAD5cAK+wrmdrDkL6uK4hAzHmNaIorTpsfMzpWD/8+tOPS+L0FIhZf+53U4+ro7YfUD1nvmQlThGtNTPnoHwgQQeQJ9raaxvVroQrb2I5H0se3NOXEPcXbRML2LK0B1L4GbPLFGgc3NzWhubh71dl//+tdxyy0D2d833ngDq1atwv3334+TTz4ZALB06VKsWbMGO3bswIIFZnX9xo0b4XkelixZMux9e543JHFDRKVFbyahkwp+aOP1TBOgATgOhOtCRxGEk2tcH+STLPkJaXaCukndhxXyPEBoCClYSoGIiIq82p6E2wm85/23oaY2BQQhonn1sPb0xD20MVl+5q0QdSbUVraAiDTClITbFcHp1YhcASsAnvjPia/2YzxLVD71VgI6odDte3ilvxndmQQcR0I01AOpJJDuNztZHLsomaKjCEXxrPUhADALiiJgY/8PYnxWRERUSZrndsOSGoGSOHPzVehbuAB1L1qIPMDy4x7d2Ly3/SuwUxKRKxG5gAwApxsQoUDbvP1I2gE2feDOuIdJFKuqWGZz4IEHFn1fW1sLADj00EOxcOFCAMDKlStx9NFH42Mf+xhuu+027N27F5/5zGdw8cUXo76+ftrHTDTTHPHFO+FCwhdAn+/gzUw9ZCCgXceUTPAjM/HUaqAMmB66NGOFPA+b1A+nefRERFQtlKeRbtN4y7Fx4M4krK1vwAKAnt64h1a2971nDSAFnJ4QkSsBSDg9Edx9/djw5A04/oo7oS3gmbvZ2J5oOuXj2Uag33fwRroRWgOZegHUpoAwApQyO1miCLCsbGKlGONZIiIaSaAs7HqrFuizsLcugLPPgrdfw68XSO6pni0sy9/7JVjZEplhQsBOCzg9wJZvXYElHdfizJYX8cXj/ivmUc5SFbKDxay8pqpIsJTDsiz8/Oc/x6WXXorTTjsNyWQSF1xwAdatWxf30IhmBLfTNDPTQqJ/gYPf72pDw4sCIgihowjaD/IJliKDm4DCTEoBcGJKRERDzP09oKWA261g7dpvPlv27DN9WKqECDUENITWsLsVwhoHUcICQvN5mGt2SkTTy+0ElA1AS6SbXbywdx72v16PA3dHpo9KfwZqzz7T86mwj6eQgNBFMS3jWSIiGs7vzvoi3v6Pd8LKaGiZgNuj4PQqJPcAqe3Vsytb+goQgAgVkpEGhOkhCABb2tfEPDqiylGVCZbFixdDl8jUHXjggfjZz34Ww4iIZr7a1xW0JRCkBPz9teivAebuioC+NHS6H2rQiS/TCNT0ZtFKDlyRnZhyMkpERKU8ee+VOO1/rEN/k4X9Sw9A4+OvAWEE0VAX99BGtfrE6wEAth9CpVwo14b0Q0jHwgMPfT7m0RFR3XYFZZtVuMHeJPxUEnN3A8nXO4F0P3Q6bXZjB2auKaSAcN2Ce7AKyoUxniUiouE9840rcNp5tyPdLNB9gETNmwJOj0LX2yq7ys7qY64FHHMuR1oCmfk16GuxIQON0AOe/lcuFCIarCoTLHFoP+oaaCkRNSbzTauIZoulF9wOp9esXLAyEjIQcHqFuSwIhjSqF1IM+T5XNowTUSIiGs1j/99ncNIn7oAWgK5LYf2zlb1Crv2IqwGtIZSCrklA1XgQmQB2Vxo65VVU98f3vWcNtBTQjmQzaJpVln74drh9CloAdlrAzkg4HpDcqyC70oDvA36Q7yEoLCvb6N7IxbdaSWxS98X1NIiIqIo89sOrcMLld0I5QJAS+M33PhP3kIaVj2cBIIwQtNTBb3Rh9SvUb+1HZo4L5VRQUDvbVUyJMAKYYClbbqJMNBsl9oTQ2c9RoQBAIgwBqz8qWZdaKz0kyUJERDQWT32n8vuTtL/tnwFLAkoB/RnAcaBdGyITQGRCdPz5y3EPcQjlWJBBxGrJNOskdwfQ2fhUBgP/uvt88/erNbQaKAFm4lkFwDLlwkqUvSUiIhrN779a2Ts+iuLZjG/+n0wgM9eD3RvB3dOHDVtuinuYRBWNCZYybXjqxriHQBSLZSvWQoYaMjATSm0JILIhQwmZydarHjzZ1NnJaP5bnsYhIqKZpf3wzwGR2cmJIITuS0O0zoPs7AN6+9Dx+l1xD7GkzQ9w1wrNTtJXENl4FlJARDaUIyCUBlwHuqfX/E0D+WSKjgAhJGCJgV6DBbtaiIiIqllRPBspIN0PJBMImmvgdgZwX34LHa/cGfcwiSoeEyxENKLNm642NeW1BoSAFgIi0gjqHAilTBPQEphUISKimar9kM+YE61am4UGAITrDExQFVe5E1Uae396oJyGEBCRiyhpDzSz14MWDeV2rGgFhIq7V4iIaEYZEs9qs+AAACCEaXAfDq1YQhWiUkqEVcgw4sYECxGNaNXbb4BQCiJUJrniWIDS0AIQocqfWAIwsKqvYGXfpuj+GEZNNDstW7GWPRWIplj7wVeayaYlAbsglFYutGcDtoX1W++Ib4BEVFo2ngUA7VhApKEtAWVL2EkXUCrffyVPyPyioY0B+64QTQfGs0RTLx/P2haQTJgLswtqo6YUgnoHUBqbXvt6vAMlqhJMsBDRiGQmu1VUCvOBawkoz4LQgOzsg8pkivuwsHQCUUVYtmItAHCCSjTZghCQEnAcMykFoKVE1JiE1d2P9c+tiXmARFSKyIRmt0p297VKWOhd4CKxO4To7EWU7i+KaYv6CXL3ClEsGM8STZEgNHGs60LVJgCloBIOMs0eRKghQo2HOj4X9yhpJAxNKgrPghLRsPKlwYIQAKATtlnxB8DuC4HuHmjfH/E+VlgfmvJxElWL5e/90pTef+Hkc/OmqzkZJZoCHa99HXpOPTpe/ArCOTXQngNIIErYWP+HW+IeHhGVsPrE6/NlTlTKhXZtCAWEnoDTG0J3dg30WCmVTOHiIaIiucTHVGA8SzT1Ol77OtS8RnS8sBb+nASiGhciUvBrJfYd4TC5QjRG3MFCRMNa/7ubAZjGZ1pKqKQLKA2rN4C1uwuqu6e410pu8qlV0fe5JAvLhdFs98BDn497CEQ0Cdb/7mYsX3Yr4FoQysHGJ26Oe0hENIL1v7vZxLO2BZVwIDMhZNpH44sCzks7EKX7i+JXYVlD7mOlewGEFNjQ/4NpHj1R5WHSg6j6bXjyBrx39ZcBAYQpGw89cm3cQyKqWkywENGI2g//HKA1RBhBhBGipIOw0UVqdxd0dmfLEIWr/FgyjIiIZqAHNl8T9xCIaCyy8azsCwBbon9+Cm6nDz2oNFghIcVAs3tzwTQOmIiIaGo9tP6f4x4CjYuGqJQm9wSACRYiGkH7gZfne69ACIggQjgviSAlzeWFZRSGm3ByIkpERDMI68ETVZ/2Ay8HLGni2ShCWOeif64NGWrITGbghtndK0IKs0tbSPNzkEA4zMIiIiKiKrP8zFsBwQVDRJOFCRYiGl4UAREAxwYcG0FjEn6thNujgNykU+iBREuJZIqQAhuD+6Z/7EQUq/bDPgtkfOh0Gut3fzPu4RBNGiZWiKpQFJnFQbaFoLkG/XMcQABaAiKZgPB9aDVQ6lYraXavSGH6EQqWBiOajVYffx1EqIB0Pzq23hH3cIgmzQMPMrFS1TRMfEIVg0vLiWh4Upov24ZKOki3OAgTAk5XAPT1DdxOyKLkipACgOm5wuQK0SyVTa7AD7C66ZNxj4aIiGazXDybcJGe5yKolXB6FNxOP79oSEhhvizL9GCxLLOLG8CGnu/G/ASIKA6iLwOk+4EwQvuBl5sFRERERINwBwsRDS+VBADohIP+lhr0zZeQPmDv64Pq7AaAgRIKg+SSLEQ0O3Vs/1rcQyCaEstWrOUuFqJqk0qaeHZBDXoXSFgZoOHFfliv74EGTEJFF8S0WgHINroXjGmJZquOl26LewhEU4LxLNHkYoKFiIalXQsi0oBSsALTayU9H4jqErAcGzoMhvzMpuj+6R4mERHRtMj1XyGi6qJdayCe1UDvAqDhLw7sXOkwSwIRICxkS4RpbOz/XtzDJiIimnSMZ2eIEgudKT5MsBDRsNY/uwYr33UzhFIQgYLVD0AAQb0Ly7ZNWTCtinaxrLA+NK4ky+r6j5tSDMokcmBZgBQQiQRgW+h45c5JfGZERERjx5V+RNVp/bNrsOqkG008mwFkAGQabSTqayH2hoDrQvu+qWeuJIQFrEp8ZFx9V1bPudj8R5tFStAacB0I20bHzrsn+ZkRERGNDeNZosnHBAsRjUg7Eiqb7PA6FYKURFBrITm3CTIMofoz+STLRIhkwpRg0BpQGlorCCHzjUWJiIiIiMYrSjn5eDZyJcKkQFSXhLV3v1nUY1nQYTjwA5Y1/gcrSK5opSAU41kiIiKimYpN7oloRNoS0FIAGnB7FBL7NboWSexcsQDR8YdB1tcWNbgHgJXO+WN/IMcZ+JICQkhorYAwRMfWOybp2RAREU0NllsgqmyF8azbrRHUCuw9vhZ97zoEYu4cCNeFcF1TLkwKQAisqr1wfA+WTaboXJLF99Gx4xuT+GyIiIgmH+PZKqJ1ZXwRAO5gIaJR/PKRa7H8zFsBADKj4O0XiDwLPQuBMJHCwl1zINL95sZKm6agYuy5247Xvl70ffuBl2P9tq9OdPhEVKFywTu3qBMR0bTIJj1kRsHrFIhcCz0HCPTNt3HAvjrYXd0QwEC5Wsc2u6nHaP3ebxV9v7r577F+9zcnOHgiqlSMaYmIiAkWIiqPAGSo4PQC3n6BMCnR1wLsWNGC1kdsiF37oDM+EEWTksXuYHKFaMZatnyt2UOr4h4J0eThiRWiKlAYz3oCUUKivxnYe1QKzelmqIQDa38aorPbxLNy4gUfmFwhmrm42p9mGsazVYS7RyoKEyxENKoHHrwGALD8vV+CCDXcrghaAsqS8OuBN943FzU7m9Dw7F6IvV1AGKK95R8AIaq6meeyFWuHDTC4Uolo/DY/wL8bIiKaXsPGs45EphHYc2IDtBSwMynUvVoDq9c0vV99whegbYkNW26K9wmMUznxLMCYlmg8+HdDREQAe7AQ0Rg88NDnIbSGDDUSeyM0bI1Q+4aG9IG+Zol9b5+L9HELodrmA3MaoVubsfJdN2PFqbfEPfRxKSdgXrZiLVcujQGPFRFVCr4fEc1Og+PZ+lcipHZpQABaAkFKYP9hCew9rh49h9QjfUAdgsYkVr7r5riHPi7lngBmTFs+HiciqhTLl90a9xCICNzBQkRj9MDm7Oq/ZbdCRBp2n4KdtuDXCvh1AkHKhTPPgdCA3adg9StYGWVWCyoNbQ3kdXMrCavR5k1XF02uRlodSAN4jIiIiChupeJZ5QpEnkRQIxAmBLQEooSArBdI7FOwMhFWvfMmQCloy8ovVdz46+tjfCYTk4vLGNOODY8PEVUKbYm4h0BxqZQSYRUyjLgxwUJE45KbmL7vjC/B7guR3CUQJi2km2349QLSB6QvIG0BpQQeeuDzMY948pWaXHFSSkRUHfheTUSF8Sx6AS2ApBSIPBPThkkBoQAZaWgJbHjyhphHPDUY0xIRVSe+TxNVBiZYiGhCfvmwSZysPu5aWLUJaFsAwoJQgLYBZQs88tN/jnmU04cBDhEREVF1ycWzQDamTXrQMoFMkw2hNEJP4pFHro1xhNOPMS0RERFReZhgIaJJsf7ZNXEPoWpxhSARERFRZWBMO36MaYmIiKaBBqAqpTZXpYwjXmxyT0QUs1L1r4mIiIiIqgljWiIiIpqNmGAhIqognJASERERUbVjTEtERDRVNKBVZXwRgCpLsPz85z/HySefjGQyiebmZnzwgx8sun7btm0455xzUFNTg+bmZnzqU5+C7/sxjZaIaGxYUoGIiIiIqh1jWiIiIppNqqYHy49+9CNcfPHF+NKXvoRly5ZBa41nn302f30URTjrrLMwb948PProo9izZw8uvPBCaK1x1113xThyIqLycUJKRERERNWOMS0RERHNFlWRYAnDEJ/+9Kdx22234ROf+ET+8iOOOCL//40bN+L555/H9u3b0dbWBgC4/fbbcdFFF2HNmjWor6+f9nETEZUrV0aBk1EiIiIiqlaMaYmIiKaBZnP5SlIVCZann34ar7/+OqSUePvb346dO3fixBNPxLp163DMMccAAJ544gkce+yx+eQKAKxatQqZTAZbtmzBmWeeWfK+M5kMMplM/vuurq6pfTJERCVwEkpEROPFeJaIKgVjWiIiIpptqqIHy8svvwwAuPHGG3HdddfhZz/7GZqamnDGGWdg7969AICdO3eipaWl6Oeamprgui527tw57H3feuutaGhoyH8tWrRo6p4IEREREdEkYzxLRERERDSLKF0ZXwQg5h0sN954I2666aYRb/Pkk09CKQUAuPbaa/E3f/M3AIB7770XCxcuxA9/+EP8r//1vwAAQoghP6+1Lnl5zjXXXIMrr7wy/31XVxcnpUSzRK6EQQ5X3BERUTViPEs0ew2OZwHGtERERETTKdYEy2WXXYbzzz9/xNssXrwY3d3dAICjjz46f7nneTjkkEOwbds2AEBrayt+85vfFP3svn37EATBkJ0thTzPg+d5430KRBSTyajvzMknERHNBIxniapTYXJkvHEp41kiIiKieMWaYGlubkZzc/Oot1uyZAk8z8MLL7yA008/HQAQBAFeeeUVHHTQQQCApUuXYs2aNdixYwcWLFgAwDS+9zwPS5YsmbonQURTZqRJJyeTRERERFQNhlsYxHiWiIiIxoVN7itKVTS5r6+vxyWXXIIbbrgBixYtwkEHHYTbbrsNAHDeeecBAFauXImjjz4aH/vYx3Dbbbdh7969+MxnPoOLL74Y9fX1cQ6fiMpUqsQBEREREVE1YUxLRERENHtURYIFAG677TbYto2PfexjSKfTOPnkk7F582Y0NTUBACzLws9//nNceumlOO2005BMJnHBBRdg3bp1MY+ciEYy3AR0uBV9y1as5Wo/IiIiIqoYIyVUSsWtjGeJiIiIZo6qSbA4joN169aNmDA58MAD8bOf/WwaR0VEk2XzpquHTDaHm6xORv8VIiIiIqLJVm5My3iWiIiIxkWDJcIqTNUkWIhoZhk80cx9P1pJBU5CiYiIiKgSjJQ4GeuuFiIiIiKqTkywENG0G0td6twElKUUiIiIiKhSjBbPikhDWwIA41kiIiKaTLpydrBUyDDiJuMeABHNDstWrC1rd4oINaAGvi+8joioEuXe3wrf49jgmIho5iknngVM3Grv64eI9JDLiYgq0XDx7LLljGmJiEbDHSxENOXKPem4bMVabH7wmukYEtGsMNzfG0/wDDUZtfClr/C+96yB8iyISE9opXKp3x1/b0RE8Sknns3tWlm2Yi02P3PTdA2NaEZjub3yTUY8a6UjrDjtFkQpGyLU0LYYd0zLuQgRzRZMsBDRlOEKbqLpVe7f3ODbzbRJzsp33QwA2Pjb68v+mVLHIDeZzB0vEWk8sPma/PfeH15F5viD4L7Vi2BuCsod2BicKwsz1pMCy5fdmv/ZUuMZ6WfHY9nytUX7mQff72S8j1fb64uNp4losHLfC/Pv32oKB0M0w40l9pjJMW37ok8DWqPjta+X/TPDxbO56/IxbajxwIMmpnUefQ7B6cfA27YfflsDoqSV/1ltiyH3U85jrjrpRgQNiWFr5kx2TDs4fh5rjF2uant9Maad4VSlBBusEQYAQutKKdpWGbq6utDQ0IDOzk7U19fHPRyiqjPW/iqsRU00foMnJ2M+Ga6Qn/jMpL/D3HGw+kJEKbOWpLAW/kwx0nvouBMjCtj8gLm/FaevgXLl9B23gseO01QkssZqovEo41miicu/FxR8VpZS+Pk7kz5LiaZTqSTAeMykv8HccbA7fYQNbv7ySoxpS45plPfO3M89sPkatB9xNTpeGPp7bz/8c4AYuN/MQU3lDWhQTLly6RcRJeyihNFUyT2nSjATYloaavPmzThn5QfxnnkfiXsoAICH3vouNj+6CUuXLo17KLFigmUQ/vETjV+5wfBMCnyJplNZCZUyJjMjkZkIyrOKLqv0v9mpOA4VrcwJa6VNvstVia+36V4MwAQLUbyKPleGec+txPcqomox4UVCo7DSUdFOjNzjVLJSx6Ca47lySF9B2bLoPTZXlgwwz19EumiXeDWpxNdctcW0NBQTLJWJJcKIaOoMnpDO5BOeRFNgxJ5Fg0o75U3wb2xwcmW0cZRj0spZjWUcM/m9poznVs2T8dHKlhERTStZfMLPSkeISnxWElFpo8VvU1FWenByZUKPk53DTmY8MuaygzNUqcRJ4S4TbYmqPgbllC4jGjful6goTLAQ0aQZUrt/+aDAsSB+WrZibUVtnyWK25gnfTM5gVCAvZxmoUGv7XJeA4WfP1NRDoETYqLZZfDf/PIzb83/v/DE7bIVa+G+0Q2xey863vzXaRsfUaWakXFbNi5ZcfoabHr02nHdxYw8LjSqouSQKlhEVObOSMa0RNWDCRYiGpeyGgqO0tSuMOBg7WqqZitPuRlhnVt0WTmv5WF3oRAATkapfMO9VvjZQkQjKfXeUer9olTd/uXLbgUsAb+tDt7uvUPuk+87VI1WnL6mKIlY7ut4NsRsstcf18/NhmNDZZDD/L/AiNUL+NlCg3EHS0VhgoWIxqzUB3+ulufyM28FRPnbmRkoUDVafeL10EJAJ2xsfOIL5sJBK5HKem0zuVKEE1CaKiO9tvj5QzQ7jZSY3bzparzvPWugLTlsU+TCWNc/5kDGtFSVVi79IrQQgBTY9Oi10MPsIuXrGtjwzE1l3Y7xLE2l4V5f/Bsliheb3A/CBkxEA/If3goQkcIDD32++PJJkKtpzXJhNFFTsYU6p731UsB1oRtqsP7ZNaM+/khEZD52q7mecNkUsPmBob+L1cddC7+1bmjjTvZpohhV0sSUTe6JJteyFWsBBVj9ITY9dl3RZUJPThNpxrQ0WaYqqdF+9OehbQnt2oAQ2PDkDSM+PmUNE88CQPthn0Xm4LlFfZoYz1KcKimeBRiTToV8k/u5H457KACAh3Z/n03uwR0sRDQOuQ/tyQi+tRTFASlVpOXv/RK0I0v+7r0/vIrM8QeVrhlbMCEp9Xqx0lHJJpTSV0VND+1uH9aeHoR/2Ypo+ZJRx5t7LBEoaMfcT258q2r+FtFJR0K5Q5/PkOeXHX/Hzrvzl0/0dT8rEis5gyaXy5fdCruzH+G8WgAljgUnoxSjZSvWwuoNEdVkw+OCEySVNlklorETWgMFSwtLfeZP5HOIMW3lGxzPAoNi2q17kDl47tDrS8SzmzddXfSzMhNBecUx7VTGs8DwMe2w8ezzXyq6byZSylTifWH5slvh7O5FsGgOgEFlBBnPUoxKvW8UYkw7Q2gAivslKgl3sAzC7CpRGYmT0Sag45ig5gIAfuBPj9F+x4MnjeX+TnM7EniCgYDhG48TzWST8TnGHSxEk2Okz54huygnCWPa6TVaCcjxxLM5U/UaoeoyUuNxopko995ZCTEtDbV582acs+KDeM+c8+MeCgDgob3/hztYwB0sRFNiPEFXJU3C4jgpqi0JEahpeSwqMMxEc8jvvczJaG4SyuTK7FZ4QmP5slt5coJmlcmakBJVgrHGgZX22h8pptWijM+mcSwaYkw7fUZLnow3ns1h/DK7Fcazy5av5c4UmjXyr3vGtERl40cEUYXIbdOuihUxg985Bs0hhdZj/yDO3mdVPP8qMdyxbD/gn+Du7AYAyCCaziHRLFA0GV2xlicniIhmkcJ4tuJjulIzYca0FWe447iq5m8BAN5rnQBMfx2iyTI4nuWZMyKqLBpaq4r4IoM7WIgmaLg6vIXG2rNkOlYLltM8cfA4cs+xsPxTrgyC9BWcF15Dx867xz+pliL/uFwpMT7ti69Axyt3ljz++cuOPiB/2eBa0UQTxRNKNNvx84uq0bC9yAYZKd4d6X7LMZ6/neVn3goIjNpUvnAcpeLZfK8MaXppOH/ajo5d9zCmjdGqmr9FcOrRQy7P/z6y12UWNgAAohRPbdDkYTxLxJiWaCwYhVDFKnVyv1pNdYBW6v5HOl7Ll90KWAMTv9ztc/8f3JARAKAKtkYLU5NY+graEqa/liuROe7AcT3XXH1jLcSEG4zOdh2v3Fn0PScHRERTR0QaUBraMidmqzlWoanDmHZi9z3c8Vq+7FZoWRzP5m6fj2kHNx4fHM+GGtKPoO2B4FN5FjInLmZMG7MNvd8r3kFARERTQkQaItJQtsx/blVzrDJrVEqT+woZRtyYYKGqMZG+JoMnXcNdNh6FPzvWVX1TadhxKAAlak4X3n7Ykj6y+PooOTm7H/KPx5NTZVu2fC2cx5/DhvT3S15v9YWIEjYn9kREU0QECg889Pn895Xy+U+VbzJi2qmMZ3PfV8pruuQ4cvHsKH3kChMng+XjWXvypsSMacdm2Yq1gAKcx57Fhv4fDLme8SwR0dSSvsIvH2Y8SzRRTLDQtBttt8VoyZCJPtZwl5WaSI5lYlROqbCKUMYEpWSCZYonNrkVfzSy9gP+CZkjTYmv8JQRyiawTAIR0eRSwOYHho8LeDJ1dsmdGC6Mjwa/BqYyph0pni11/YyLacuMS4fEltNwop4x7ehW1V6I8F1H5nfUh0uPHXKbZSvWMp4lIpoCI8UEjGeJxocRC43bcDWFxzMRG+5npnNSN9HHquSVf5UuV5KMH+aj63j9rmGv4+uNiGhyFZ0o5QrqGWnVkhuwYctNJa8b9XN10GtipNtP12f0ZDwOY9rxY0xbng093x3xer7eiIgmF5P/M5Bmba5KwgQLjWq4msaDr5uJJvL8ZvqxmZDcis9RVgPT8KpidSkRURXjCdKZZ+UpNyNK2NBOQWZkTnJWfI4ypp0CjGcnBWNaIqKpxZiWaOoxwUIAyp84MeilCSsop8HJ6FBj/Rvj3yQREZHRftQ1AIDMwgZzweAm43XutI+JZijGs6NiTEtERDSFlIp7BFncSQMwwTIrMXilSacAKxNBORLaFhCBAqQo2oLKVRPF+HdIREQ0MUM+S3OJlRyWdaOxGiWmZTxbjPEsERERERMss0qpAFhEGloU1BYfvNKPqAxWOgR+8ywkgE3R/XEPpyJxAkpERDQ58p+p2bhVZiJACCjbBLFCaWibdcZp7BjTjozxLBEREdFQTLBUofe9Zw2UY42cCFGA0CWaWBXUCoaEuX7QZUQ5pRqhceXe6Dj5JCKqfoV9AUpdXgo/I8dm2fK1w8ee2bhURBrQGEiYFF6uNKAFdDaxkotnmVyhwQbHtPxbLQ9jWiKi6lcqpmU8W+U02OS+wlRNguXPf/4zPvvZz+Kxxx6D7/s47rjjcMstt+DMM8/M32bbtm34x3/8R2zevBnJZBIXXHAB1q1bB9edWfWWlWdBBApaDsxIRaghIgURaSjPgrYENEpMLuWgf4e7jGaWMSbPck0mtSUgQg0tBYTSsPpDLFuxdtQP3GUr1kJmIjgvvIZw125sUj+c2PjHaayTQhFpPLD5mil/HCIiqh5F7/EK8J7bBlgWMkcfAICT0IkQ0dB4VgYKUNl4dlC5UQD5eEZbAhh8XcH1NENNIKaFwpjiWaA4pu1481/HP+4JYkxLREQTVbgD2Ht+u4lnj2oDwHiWaKKqJsFy1lln4W1ve1s+efLVr34VZ599Nv7yl7+gtbUVURThrLPOwrx58/Doo49iz549uPDCC6G1xl133RX38Ee1uumTAADROg9RXRJRyoZ2ZMk3ucLL2lv+AZASumUutC0R1bhDJ6JEBRPRUrtS8rITT8C8zlYlPgIA2ND/g2HveriJmLYlokPasCmmyegKeR7k6SdCedboNy6YrK9acgM2bLlpSsdGRERVItc7smAxSua4A/NXczJabHXD3wEARFsLVG0CyrOhbDFsTPvAQ58HALTPuwSwreJ4lrtQqJTc3+JoiZZBMe1K9wJs9P9j2JuPlFjQtkR46AFjH+skWSHPA5YvKe/GjGmJiKiUwphWApljF+WvYjxLNHFVkWDZvXs3XnrpJfz7v/87jj/+eADA2rVrcffdd+O5555Da2srNm7ciOeffx7bt29HW5vJwN5+++246KKLsGbNGtTX18f5FEYlbBvB0QdCucUzhcHB/uA3vsKVVO0HXg6pNfScevjNNYAErL4QyrU4SaU8bQlYfSGiVIk/fwloKbBsxVpYfSEkyk+uSF9B2RJWJgIe/515LJhJYRw7WKzaWvhOGckVoGg1bFjnof3wz6Hjxa+U9aOrEh+BAwAiW/c9mYBoaUY4p4Z/e0REVYoTzfERyQSCIxYOiWeBkWPajl335P/fvvBT+Xg2bErly+LanX5+ARIRJGClI0TJYWK9QTGt0Kr07TD0tVkqpo2TVVuLqNwbTyCmXeleUHRyQCYTEC3z4B/QyHiWiKhKMaadqTS0Gj62mU4sVGZURYJl7ty5OOqoo/C9730P73jHO+B5Hv7t3/4NLS0tWLLErOZ54okncOyxx+aTKwCwatUqZDIZbNmypaiUWKFMJoNMJpP/vqura2qfzDByE8vVx1wLVZ9AWOuUvN1w29nb511i/iMFxBu74O3pBLRGx+t3Ff0sAPZaodLJlUGUI/Mr/0Zj9YWwnv0L1nfdm79shTyv5P9LJVtWyPOgs7tNZCaCs30POrbeUdZjD5Z/nZ98xLh+XlsSsMtMzGDkBBQArK7/OCAGJqWitgZIJqAaaxA0JcY1RiIimnx2t4+Nv74+7mGMS8XEszvvBgCsevsNUClnxHijVEyb29ENAOhLw94xELCu3/3Nop8FwJh2lhs2uTKIciTKjexGimlHi2dzt6nWmHakHT65Xe05sq4OqElCNdUjaE6Oa3xERDT57G4fYZ3LxArRNKuKBIsQAps2bcK5556Luro6SCnR0tKC9evXo7GxEQCwc+dOtLS0FP1cU1MTXNfFzp07h73vW2+9FTfdVDlbp9c/t2ZcP1e08m/eJeh47etF17cf8E/wamuQWdjIiSiVRVsS6pRj0L7wU0NeTzkjfWjnJp7LVqyFsz8DhApBc7JkCQb3uCPzu02UZwHJRNk7X5atWGtWMHoWRKSACa5s9bbtLXulXzn8EpNiEWquBCQiqjBhXfX27Ku0eHbDM+Mby/p9387/f3XTJ4FIFV2Wu9xrrEfmkPmMaaks2pJQS48b9vrRTkLl4tFV77xpxHgWGH9Mm7u/So1pg3cPPX6MZ4mIKk81x7M0RmxyX1FiTbDceOONo04Gn3zySSxZsgSXXnop5s+fj1/96ldIJpP49re/jbPPPhtPPvkkFixYAMAkYgbTWpe8POeaa67BlVdemf++q6sLixYtGvb21aAw2ZK/LLuTZcWptyCqqYq8GsVNAsqxELU1Y/myW4v6tnivdUJt3Qbl+5BeArKlGZnDW7B509X51X25iWSuuWihwX1g/Pk1A5cLAb1z15jKiuVWMBY2ys0bZXVruSs7VlgfQrTs7WacoYaIFOSvn0N4xvFljzOHk1EiIppMMzGeHZxYGXz5ylNu5kkEKk82pl1+5q1FMdjgeFYkExD1tcPGtEGjV3S3pfoajjemzd3XsDFtGbu1yolpVzrnI3zvieYxs/Gs8izYD/9hzDEt41kiosrk7uyOewhEs47QOr6U1+7du7F79+4Rb7N48WI89thjWLlyJfbt21fUS+Xwww/HJz7xCVx99dW4/vrr8d///d/4/e9/n79+3759mDNnDjZv3jxsibDBurq60NDQgM7Ozmnv2zLcSijvd69AD64brDTC4w4uWeN6WIMbtRJNVKnJngKs/hI9XrK3raatqoUlSESkWPediGgWqITPqYnGo5UYzwKA+9RLQGG9aK0RnniYWek/FoxpaTINl7woFdMyniUioipRCZ9VccakM9XmzZtxzvs+gNOTH4h7KACAh9M/woOP/RJLly6NeyixinUrQ3NzM5qbm0e9XV9fHwBADlrJI6WEyk7Sli5dijVr1mDHjh35HS0bN26E53n5Pi2VrtRKfwDInLgYmzddjdUNf2cu0BoQAvbvXsL6zn8vuu2y5Wvh7E8jqvWGJl8YS9NkK/WaksP0eJGA3ROgvfVShG/tKrpqLLtVyjHSyZ1CpQKOkj8rh9kdQ0REM07h50AlTEyrzXDxLAD4Jx2GzZuuxqraC80FWsN6+s/4Zc93i26Xi2dFECFsTA5NwPAjmSbTcK+nUjHtCPEsUOExLeNZIqJZhTHtDFdmz+QpVyHDiFusO1jKtXv3bhx55JE444wzcP311yOZTOJb3/oWvva1r+HJJ5/ECSecgCiKcOKJJ6KlpQW33XYb9u7di4suuggf+MAHcNddd43+IFnVkF1dXf9xAChqvlio3ECcaDpJX0FbYkgphUIi1JAPP112neqJcp96Cf5JhwEAnN1pNukkIqJRTccEtZp3sIzFqpq/xYbe75W8jvEsVaJy4lmgvJh20l7jCnCfZkxLRETlm66ES7XEpNUkv4PFOzfuoQAAHu7/MR58nDtYqqIZR3NzM9avX49rr70Wy5YtQxAEOOaYY/Df//3fOOGEEwAAlmXh5z//OS699FKcdtppSCaTuOCCC7Bu3bopG1epoNju9AFpGkuN9Q1rdcPfFTUpGi6BwsQKVaNyytlpW5SciE7Vazt4+6ED/+dElIiIyjB4NeCyFWurelXgsPGsJRDWOgDGNgkvjGd1dqf5hkE7VHJKJVcYz1IlK7c8c6mYdspe25IxLRERjc1Mi2eJ4lYVO1im03iyq0MaeAemtq2zNw0oQO7aB93bBzFvLlRdAiJUEG/sgg7D4jrUhbTOJ1JWvf0GBspEREREFUgECtqSJcsMjXeiGscOluHiWQAjxrR45fWBHyoxrdBK5RMsq0+8Hv681JifDxERERFNnZHiWSC+mJaGyu9gcc+JeygAgIczP+EOFlTJDpZKN9wbzbIVayF9BeHXAc2N0K/thNhlEir56efCBQjnpobUlhaBwvL3fsl805SYopETERER0USM1DB6Iv0TpttIY8jHtGE2pt22A+LNaOAGw8WzoQa0Hohp53DBEBEREVGlGSmeBcqLaSshniWKCxMswzj73Dtg20MTGyM17sxdX+r/g+Xuw+4J4GzbDQBQTfWI6lxoW4765kZEREREM8OyFWshIg0thCk1G/ZPyv0OF88CI8e0g2PY0WLafDwrBNScOkQ1LpRjQdsCwMi9KoiIiIio+uXiyqmIaWkQDehKaXJPAJhgGbPRsrZjra0b1joID2+ZyJCIiIiIqMqN1jR7so0UszKeJSIiIqLxmO6YlqgScJsEERERERERERERERHRGHEHCxERERERERERERFRxdOAVnEPIoulygDuYCEiIiIiIiIiIiIiIhoz7mAhIiIiIiIiIiIiIqoCbHJfWbiDhYiIiIiIiIiIiIiIptTdd9+Ngw8+GIlEAkuWLMGvfvWruIc0YUywEBERERERERERERHRlLn//vtx+eWX49prr8UzzzyDd7/73Whvb8e2bdviHtqEMMFCRERERERERERERFQNtKqMrzG644478IlPfAKf/OQncdRRR+GrX/0qFi1ahH/913+dgoM0fZhgISIiIiIiIiIiIiKiKeH7PrZs2YKVK1cWXb5y5Uo8/vjjMY1qcrDJ/SBamyZBYZiJeSRERERENBvl4tBcXDpWjGeJiIiIKG4TjWlpqGQyiTR68YTeGPdQAAA++mFZFrq6uoou9zwPnucVXbZ7925EUYSWlpaiy1taWrBz584pH+tUYoJlkO7ubgDAE4+ujXkkRERERDSbdXd3o6GhYVw/BzCeJSIiIqL4jTempaGWLl2KR371CHp7e+MeCgCgrq4Ov/jFL3DyyScXXX7DDTfgxhtvLPkzQoii77XWQy6rNkywDNLW1obt27ejrq6u6n+5pXR1dWHRokXYvn076uvr4x7OrMHjHg8e93jwuMeDxz0ePO7xmOnHXWuN7u5utLW1jevnZ3o8C8z810Al4jGPB497PHjc48HjHg8e93jMhuM+0ZiWSjv99NPjHkKRJUuW4Morryy6bPDuFQBobm6GZVlDdqu89dZbQ3a1VBsmWAaRUmLhwoVxD2PK1dfXz9g38ErG4x4PHvd48LjHg8c9Hjzu8ZjJx30iq/xmSzwLzOzXQKXiMY8Hj3s8eNzjweMeDx73eMz0486dKzNfqXJgpbiuiyVLlmDTpk3467/+6/zlmzZtwrnnnjuVQ5xyTLAQEREREREREREREdGUufLKK/Gxj30MJ510EpYuXYpvfvOb2LZtGy655JK4hzYhTLAQEREREREREREREdGU+dCHPoQ9e/bg5ptvxo4dO3DsscfiF7/4BQ466KC4hzYhTLDMMp7n4YYbbihr6xZNHh73ePC4x4PHPR487vHgcY8HjzvxNTD9eMzjweMeDx73ePC4x4PHPR487jRbXXrppbj00kvjHsakElprHfcgiIiIiIiIiIiIiIiIqomMewBERERERERERERERETVhgkWIiIiIiIiIiIiIiKiMWKChYiIiIiIiIiIiIiIaIyYYJmh1qxZg1NPPRWpVAqNjY0lbyOEGPJ1zz33FN3m2WefxRlnnIFkMokDDjgAN998M9i2Z3jlHPdt27bhnHPOQU1NDZqbm/GpT30Kvu8X3YbHfeIWL1485PV99dVXF92mnN8Fjc3dd9+Ngw8+GIlEAkuWLMGvfvWruIc0o9x4441DXtetra3567XWuPHGG9HW1oZkMon3vve9eO6552IccXV65JFHcM4556CtrQ1CCPzkJz8pur6c45zJZPBP//RPaG5uRk1NDd7//vfjtddem8ZnUX1GO+4XXXTRkNf/KaecUnQbHveZhzFtPBjTVgbGs/FhTDu1GNNOD8a08WBMSzT7MMEyQ/m+j/POOw//8A//MOLt7r33XuzYsSP/deGFF+av6+rqwooVK9DW1oYnn3wSd911F9atW4c77rhjqodftUY77lEU4ayzzkJvby8effRR3HffffjRj36Eq666Kn8bHvfJc/PNNxe9vq+77rr8deX8Lmhs7r//flx++eW49tpr8cwzz+Dd73432tvbsW3btriHNqMcc8wxRa/rZ599Nn/dV77yFdxxxx34l3/5Fzz55JNobW3FihUr0N3dHeOIq09vby9OOOEE/Mu//EvJ68s5zpdffjn+67/+C/fddx8effRR9PT04Oyzz0YURdP1NKrOaMcdAFavXl30+v/FL35RdD2P+8zDmDYejGkrB+PZ6ceYdnowpp16jGnjwZiWaBbSNKPde++9uqGhoeR1APR//dd/Dfuzd999t25oaND9/f35y2699Vbd1tamlVKTPNKZZbjj/otf/EJLKfXrr7+ev+w///M/ted5urOzU2vN4z5ZDjroIH3nnXcOe305vwsam3e96136kksuKbrsyCOP1FdffXVMI5p5brjhBn3CCSeUvE4ppVtbW/XatWvzl/X39+uGhgZ9zz33TNMIZ57Bn5XlHOf9+/drx3H0fffdl7/N66+/rqWUev369dM29mpWKka58MIL9bnnnjvsz/C4z2yMaePBmDZejGfjwZh26jGmnX6MaePBmJZoduAOllnusssuQ3NzM975znfinnvugVIqf90TTzyBM844A57n5S9btWoV3njjDbzyyisxjLb6PfHEEzj22GPR1taWv2zVqlXIZDLYsmVL/jY87pPjy1/+MubOnYsTTzwRa9asKSqXUM7vgsrn+z62bNmClStXFl2+cuVKPP744zGNamZ68cUX0dbWhoMPPhjnn38+Xn75ZQDA1q1bsXPnzqLfged5OOOMM/g7mETlHOctW7YgCIKi27S1teHYY4/l72KCHnroIcyfPx9ve9vbcPHFF+Ott97KX8fjPrsxpp1ejGmnD+PZ6cWYdvowpo0XY9p4MaYlmlnsuAdA8fniF7+I5cuXI5lM4oEHHsBVV12F3bt357ed79y5E4sXLy76mZaWlvx1Bx988HQPuert3Lkzfwxzmpqa4Loudu7cmb8Nj/vEffrTn8Y73vEONDU14be//S2uueYabN26Fd/+9rcBlPe7oPLt3r0bURQNOaYtLS08npPo5JNPxve+9z287W1vw5tvvolbbrkFp556Kp577rn8cS71O3j11VfjGO6MVM5x3rlzJ1zXRVNT05Db8O9h/Nrb23HeeefhoIMOwtatW/GFL3wBy5Ytw5YtW+B5Ho/7LMaYdvoxpp0ejGenH2Pa6cGYNn6MaePDmJZo5uEOlipSqhHc4K+nnnqq7Pu77rrrsHTpUpx44om46qqrcPPNN+O2224ruo0Qouh7nW1KOfjymWyyj3upY6e1Lrqcx720sfwurrjiCpxxxhk4/vjj8clPfhL33HMPvvOd72DPnj35+yvnd0FjU+q1y+M5edrb2/E3f/M3OO644/C+970PP//5zwEA3/3ud/O34e9geoznOPN3MTEf+tCHcNZZZ+HYY4/FOeecg46ODvz5z3/O/x0Mh8e98jCmjQdj2srAeLY6MJ6aWoxpKwdj2unHmJZo5uEOlipy2WWX4fzzzx/xNoNXiY3FKaecgq6uLrz55ptoaWlBa2vrkOx4btvi4FUOM9lkHvfW1lb85je/Kbps3759CIIgf0x53Ic3kd/FKaecAgB46aWXMHfu3LJ+F1S+5uZmWJZV8rXL4zl1ampqcNxxx+HFF1/EBz7wAQBmpdmCBQvyt+HvYHK1trYCGPk4t7a2wvd97Nu3r2jl2VtvvYVTTz11egc8gy1YsAAHHXQQXnzxRQA87tWEMW08GNNWBsazlY0xbTwY004/xrSVgzEtUfXjDpYq0tzcjCOPPHLEr0QiMe77f+aZZ5BIJNDY2AgAWLp0KR555JGiOr8bN25EW1vbhCa91WYyj/vSpUvxxz/+ETt27MhftnHjRniehyVLluRvw+Ne2kR+F8888wwA5IPHcn4XVD7XdbFkyRJs2rSp6PJNmzYxCJxCmUwGf/rTn7BgwQIcfPDBaG1tLfod+L6Phx9+mL+DSVTOcV6yZAkcxym6zY4dO/DHP/6Rv4tJtGfPHmzfvj3/vs7jXj0Y08aDMW1lYDxb2RjTxoMx7fRjTFs5GNMSzQAlGt/TDPDqq6/qZ555Rt900026trZWP/PMM/qZZ57R3d3dWmutf/rTn+pvfvOb+tlnn9UvvfSS/ta3vqXr6+v1pz71qfx97N+/X7e0tOgPf/jD+tlnn9U//vGPdX19vV63bl1cT6vijXbcwzDUxx57rF6+fLl++umn9S9/+Uu9cOFCfdlll+Xvg8d94h5//HF9xx136GeeeUa//PLL+v7779dtbW36/e9/f/425fwuaGzuu+8+7TiO/s53vqOff/55ffnll+uamhr9yiuvxD20GeOqq67SDz30kH755Zf1r3/9a3322Wfrurq6/DFeu3atbmho0D/+8Y/1s88+qz/84Q/rBQsW6K6urphHXl26u7vz798A8u8nr776qta6vON8ySWX6IULF+pf/vKX+umnn9bLli3TJ5xwgg7DMK6nVfFGOu7d3d36qquu0o8//rjeunWrfvDBB/XSpUv1AQccwOM+wzGmjQdj2vgxno0PY9qpx5h2ejCmjQdjWqLZhwmWGerCCy/UAIZ8Pfjgg1prrTs6OvSJJ56oa2trdSqV0scee6z+6le/qoMgKLqfP/zhD/rd73639jxPt7a26htvvFErpWJ4RtVhtOOutZmwnnXWWTqZTOo5c+boyy67TPf39xfdD4/7xGzZskWffPLJuqGhQScSCX3EEUfoG264Qff29hbdrpzfBY3NN77xDX3QQQdp13X1O97xDv3www/HPaQZ5UMf+pBesGCBdhxHt7W16Q9+8IP6ueeey1+vlNI33HCDbm1t1Z7n6fe85z362WefjXHE1enBBx8s+V5+4YUXaq3LO87pdFpfdtlles6cOTqZTOqzzz5bb9u2LYZnUz1GOu59fX165cqVet68edpxHH3ggQfqCy+8cMgx5XGfeRjTxoMxbfwYz8aLMe3UYkw7PRjTxoMxLdHsI7TOdhokIiIiIiIiIiIiIiKisrAHCxERERERERERERER0RgxwUJERERERERERERERDRGTLAQERERERERERERERGNERMsREREREREREREREREY8QECxERERERERERERER0RgxwUJERERERERERERERDRGTLAQERERERERERERERGNERMsREREREREREREREREY8QECxERjcl73/teXH755XEPg4iIiIhoXBjPEhER0WRhgoWIiIiIiIiIiIiIiGiMmGAhIiIiIiIiIiIiIiIaIyZYiIho3Pbt24e//du/RVNTE1KpFNrb2/Hiiy/mr//f//t/o7GxERs2bMBRRx2F2tparF69Gjt27Ihx1EREREREBuNZIiIimggmWIiIaNwuuugiPPXUU/jpT3+KJ554Alpr/NVf/RWCIMjfpq+vD+vWrcP3v/99PPLII9i2bRs+85nPxDhqIiIiIiKD8SwRERFNhB33AIiIqDq9+OKL+OlPf4rHHnsMp556KgDgBz/4ARYtWoSf/OQnOO+88wAAQRDgnnvuwaGHHgoAuOyyy3DzzTfHNm4iIiIiIoDxLBEREU0cd7AQEdG4/OlPf4Jt2zj55JPzl82dOxdHHHEE/vSnP+UvS6VS+ckoACxYsABvvfXWtI6ViIiIiGgwxrNEREQ0UUywEBHRuGith71cCJH/3nGcouuFEMP+LBERERHRdGE8S0RERBPFBAsREY3L0UcfjTAM8Zvf/CZ/2Z49e/DnP/8ZRx11VIwjIyIiIiIaHeNZIiIimigmWIiIaFwOP/xwnHvuubj44ovx6KOP4ve//z0++tGP4oADDsC5554b9/CIiIiIiEbEeJaIiIgmigkWIiIat3vvvRdLlizB2WefjaVLl0JrjV/84hdDyigQEREREVUixrNEREQ0EUKzcCgREREREREREREREdGYcAcLERERERERERERERHRGDHBQkRERERERERERERENEZMsBAREREREREREREREY0REyxERERERERERERERERjxAQLERERERERERERERHRGDHBQkRERERERERERERENEZMsBAREREREREREREREY0REyxERERERERERERERERjxAQLERERERERERERERHRGDHBQkRERERERERERERENEZMsBAREREREREREREREY0REyxERERERERERERERERj9P8Hj1A3P4VyqWkAAAAASUVORK5CYII=", + "text/plain": [ + "
" ] + }, + "metadata": {}, + "output_type": "display_data" } - ], - "metadata": { - "execution": { - "allow_errors": false, - "timeout": 3000 - }, - "kernelspec": { - "display_name": "pangeo-forge-recipes", - "language": "python", - "name": "pangeo-forge-recipes" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.15" - }, - "vscode": { - "interpreter": { - "hash": "8472a85c0cbfd90fc84f178c7f47d34e20396f42fa331cce9968659ce876ac9d" - } - } + ], + "source": [ + "soil_clim.plot(col='season', col_wrap=2, robust=True, figsize=(18, 8))" + ] + } + ], + "metadata": { + "execution": { + "allow_errors": false, + "timeout": 3000 + }, + "kernelspec": { + "display_name": "pangeo-forge-recipes", + "language": "python", + "name": "pangeo-forge-recipes" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.15" }, - "nbformat": 4, - "nbformat_minor": 4 + "vscode": { + "interpreter": { + "hash": "8472a85c0cbfd90fc84f178c7f47d34e20396f42fa331cce9968659ce876ac9d" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 } From e6f8c0317ce3b8561239c65ba2aad42ef02a4dc9 Mon Sep 17 00:00:00 2001 From: Raphael Hagen Date: Wed, 23 Aug 2023 10:17:40 -0700 Subject: [PATCH 07/15] removed duplicated target_store in store_dataset_fragment --- pangeo_forge_recipes/writers.py | 2 -- 1 file changed, 2 deletions(-) diff --git a/pangeo_forge_recipes/writers.py b/pangeo_forge_recipes/writers.py index 608119f2..d2b5da66 100644 --- a/pangeo_forge_recipes/writers.py +++ b/pangeo_forge_recipes/writers.py @@ -91,8 +91,6 @@ def store_dataset_fragment( _store_data(vname, da.variable, index, zgroup) return target_store - return target_store - def write_combined_reference( reference: MultiZarrToZarr, From 9b2d9034abb40dbc2c80c7bb76ef27e9c635f640 Mon Sep 17 00:00:00 2001 From: Raphael Hagen Date: Thu, 24 Aug 2023 15:47:21 -0700 Subject: [PATCH 08/15] Now pipes SampleSingleton to ConsolidateDimensionCoordinates --- pangeo_forge_recipes/rechunking.py | 11 +++++------ pangeo_forge_recipes/transforms.py | 26 ++++++++++++++++++-------- tests/test_end_to_end.py | 3 ++- 3 files changed, 25 insertions(+), 15 deletions(-) diff --git a/pangeo_forge_recipes/rechunking.py b/pangeo_forge_recipes/rechunking.py index 41c4e748..25912c04 100644 --- a/pangeo_forge_recipes/rechunking.py +++ b/pangeo_forge_recipes/rechunking.py @@ -247,12 +247,10 @@ def _gather_coordinate_dimensions(group: zarr.Group) -> List[str]: ) -def consolidate_dimension_coordinates(singleton_target_store: zarr.storage.FSStore) -> None: - """Consolidate dimension coordinates chunking - - :param target_store: Input target store - :type target_store: zarr.storage.FSStore - """ +def consolidate_dimension_coordinates( + singleton_target_store: zarr.storage.FSStore, +) -> zarr.storage.FSStore: + """Consolidate dimension coordinates chunking""" group = zarr.open_group(singleton_target_store) dims = (dim for dim in _gather_coordinate_dimensions(group) if dim in group) @@ -273,3 +271,4 @@ def consolidate_dimension_coordinates(singleton_target_store: zarr.storage.FSSto ) new.attrs.update(attrs) + return singleton_target_store diff --git a/pangeo_forge_recipes/transforms.py b/pangeo_forge_recipes/transforms.py index 6e2ae950..ce9476ed 100644 --- a/pangeo_forge_recipes/transforms.py +++ b/pangeo_forge_recipes/transforms.py @@ -411,7 +411,7 @@ def expand(self, pcoll: beam.PCollection) -> beam.PCollection: @dataclass class ConsolidateDimensionCoordinates(beam.PTransform): - def expand(self, pcoll: beam.PCollection) -> beam.PCollection: + def expand(self, pcoll: beam.PCollection[zarr.storage.FSStore]) -> beam.PCollection: return pcoll | beam.Map(consolidate_dimension_coordinates) @@ -466,6 +466,19 @@ def expand(self, reference: beam.PCollection) -> beam.PCollection: ) +class SampleSingleton(beam.PTransform): + """Receive an input PCollection of any size, sample a single value from it, + and emit a singleton PCollection containing the single sampled value. + """ + + def expand(self, pcoll: beam.PCollection) -> beam.PCollection: + return ( + pcoll + | beam.combiners.Sample.FixedSizeGlobally(1) + | beam.FlatMap(lambda x: x) # https://stackoverflow.com/a/47146582 + ) + + @dataclass class StoreToZarr(beam.PTransform, ZarrWriterMixin): """Store a PCollection of Xarray datasets to Zarr. @@ -497,14 +510,11 @@ def expand( target=self.get_full_target(), target_chunks=self.target_chunks ) n_target_stores = rechunked_datasets | StoreDatasetFragments(target_store=target_store) + singleton_target_store = ( - n_target_stores - | beam.combiners.Sample.FixedSizeGlobally(1) - | beam.FlatMap(lambda x: x) # https://stackoverflow.com/a/47146582 + n_target_stores | SampleSingleton() + if not self.consolidate_coords + else n_target_stores | SampleSingleton() | ConsolidateDimensionCoordinates() ) - # TODO: optionally use `singleton_target_store` to - # consolidate metadata and/or coordinate dims here - if self.consolidate_coords: - singleton_target_store | ConsolidateDimensionCoordinates() return singleton_target_store diff --git a/tests/test_end_to_end.py b/tests/test_end_to_end.py index 45d99015..6e37cae3 100644 --- a/tests/test_end_to_end.py +++ b/tests/test_end_to_end.py @@ -79,7 +79,8 @@ def test_xarray_zarr_consolidate_coords( ) ) # TODO: This test needs to check if the consolidate_coords transform - # within StoreToZarr is considating the chunks of the coordinates + # within StoreToZarr is consolidating the chunks of the coordinates + ds = xr.open_dataset(os.path.join(tmp_target_url, "subpath"), engine="zarr") xr.testing.assert_equal(ds.load(), daily_xarray_dataset) From bcf23f51f867d6b0132b2432d004e032b24eb9bd Mon Sep 17 00:00:00 2001 From: Raphael Hagen Date: Tue, 29 Aug 2023 14:44:06 -0700 Subject: [PATCH 09/15] wip / removing dim with fsspec --- pangeo_forge_recipes/rechunking.py | 6 ++++++ pangeo_forge_recipes/transforms.py | 1 + tests/test_end_to_end.py | 10 +++++++--- 3 files changed, 14 insertions(+), 3 deletions(-) diff --git a/pangeo_forge_recipes/rechunking.py b/pangeo_forge_recipes/rechunking.py index 25912c04..02a5e760 100644 --- a/pangeo_forge_recipes/rechunking.py +++ b/pangeo_forge_recipes/rechunking.py @@ -258,6 +258,12 @@ def consolidate_dimension_coordinates( arr = group[dim] attrs = dict(arr.attrs) data = arr[:] + + # This will generally use bulk-delete API calls + # config.storage_config.target.rm(dim, recursive=True) + + singleton_target_store.fs.rm(singleton_target_store.path + '/' + dim, recursive=True) + new = group.array( dim, data, diff --git a/pangeo_forge_recipes/transforms.py b/pangeo_forge_recipes/transforms.py index ce9476ed..efae68cf 100644 --- a/pangeo_forge_recipes/transforms.py +++ b/pangeo_forge_recipes/transforms.py @@ -17,6 +17,7 @@ import xarray as xr import zarr + from .aggregation import XarraySchema, dataset_to_schema, schema_to_zarr from .combiners import CombineMultiZarrToZarr, CombineXarraySchemas from .openers import open_url, open_with_kerchunk, open_with_xarray diff --git a/tests/test_end_to_end.py b/tests/test_end_to_end.py index 6e37cae3..227f49da 100644 --- a/tests/test_end_to_end.py +++ b/tests/test_end_to_end.py @@ -7,6 +7,7 @@ import numpy as np import pytest import xarray as xr +import zarr from apache_beam.options.pipeline_options import PipelineOptions from apache_beam.testing.test_pipeline import TestPipeline @@ -57,7 +58,7 @@ def test_xarray_zarr( xr.testing.assert_equal(ds.load(), daily_xarray_dataset) -@pytest.mark.parametrize("consolidate_coords", [True, False]) +@pytest.mark.parametrize("consolidate_coords", [True]) def test_xarray_zarr_consolidate_coords( daily_xarray_dataset, netcdf_local_file_pattern_sequential, @@ -80,9 +81,12 @@ def test_xarray_zarr_consolidate_coords( ) # TODO: This test needs to check if the consolidate_coords transform # within StoreToZarr is consolidating the chunks of the coordinates + # If true, assert a coord is consolidated. + import pdb; pdb.set_trace() + store = zarr.open_consolidated(os.path.join(tmp_target_url, "subpath")) + ds = xr.open_zarr(os.path.join(tmp_target_url, "subpath"),consolidated=False) + # assert store["time"].chunks == (file_pattern.nitems_per_input["time"],) - ds = xr.open_dataset(os.path.join(tmp_target_url, "subpath"), engine="zarr") - xr.testing.assert_equal(ds.load(), daily_xarray_dataset) def test_reference_netcdf( From e014aaef9f550e1e78fcdfdcbcfca7a581115bab Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Tue, 29 Aug 2023 21:46:26 +0000 Subject: [PATCH 10/15] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- pangeo_forge_recipes/rechunking.py | 2 +- pangeo_forge_recipes/transforms.py | 1 - tests/test_end_to_end.py | 7 ++++--- 3 files changed, 5 insertions(+), 5 deletions(-) diff --git a/pangeo_forge_recipes/rechunking.py b/pangeo_forge_recipes/rechunking.py index 02a5e760..dfd2a96c 100644 --- a/pangeo_forge_recipes/rechunking.py +++ b/pangeo_forge_recipes/rechunking.py @@ -262,7 +262,7 @@ def consolidate_dimension_coordinates( # This will generally use bulk-delete API calls # config.storage_config.target.rm(dim, recursive=True) - singleton_target_store.fs.rm(singleton_target_store.path + '/' + dim, recursive=True) + singleton_target_store.fs.rm(singleton_target_store.path + "/" + dim, recursive=True) new = group.array( dim, diff --git a/pangeo_forge_recipes/transforms.py b/pangeo_forge_recipes/transforms.py index efae68cf..ce9476ed 100644 --- a/pangeo_forge_recipes/transforms.py +++ b/pangeo_forge_recipes/transforms.py @@ -17,7 +17,6 @@ import xarray as xr import zarr - from .aggregation import XarraySchema, dataset_to_schema, schema_to_zarr from .combiners import CombineMultiZarrToZarr, CombineXarraySchemas from .openers import open_url, open_with_kerchunk, open_with_xarray diff --git a/tests/test_end_to_end.py b/tests/test_end_to_end.py index 227f49da..8b62acea 100644 --- a/tests/test_end_to_end.py +++ b/tests/test_end_to_end.py @@ -82,13 +82,14 @@ def test_xarray_zarr_consolidate_coords( # TODO: This test needs to check if the consolidate_coords transform # within StoreToZarr is consolidating the chunks of the coordinates # If true, assert a coord is consolidated. - import pdb; pdb.set_trace() + import pdb + + pdb.set_trace() store = zarr.open_consolidated(os.path.join(tmp_target_url, "subpath")) - ds = xr.open_zarr(os.path.join(tmp_target_url, "subpath"),consolidated=False) + ds = xr.open_zarr(os.path.join(tmp_target_url, "subpath"), consolidated=False) # assert store["time"].chunks == (file_pattern.nitems_per_input["time"],) - def test_reference_netcdf( daily_xarray_dataset, netcdf_local_file_pattern_sequential, From 1a0b147a7b340959f3b88221cb1e688912497186 Mon Sep 17 00:00:00 2001 From: Raphael Hagen Date: Tue, 29 Aug 2023 14:50:28 -0700 Subject: [PATCH 11/15] lint --- pangeo_forge_recipes/rechunking.py | 2 +- pangeo_forge_recipes/transforms.py | 1 - tests/test_end_to_end.py | 5 ++--- 3 files changed, 3 insertions(+), 5 deletions(-) diff --git a/pangeo_forge_recipes/rechunking.py b/pangeo_forge_recipes/rechunking.py index 02a5e760..dfd2a96c 100644 --- a/pangeo_forge_recipes/rechunking.py +++ b/pangeo_forge_recipes/rechunking.py @@ -262,7 +262,7 @@ def consolidate_dimension_coordinates( # This will generally use bulk-delete API calls # config.storage_config.target.rm(dim, recursive=True) - singleton_target_store.fs.rm(singleton_target_store.path + '/' + dim, recursive=True) + singleton_target_store.fs.rm(singleton_target_store.path + "/" + dim, recursive=True) new = group.array( dim, diff --git a/pangeo_forge_recipes/transforms.py b/pangeo_forge_recipes/transforms.py index efae68cf..ce9476ed 100644 --- a/pangeo_forge_recipes/transforms.py +++ b/pangeo_forge_recipes/transforms.py @@ -17,7 +17,6 @@ import xarray as xr import zarr - from .aggregation import XarraySchema, dataset_to_schema, schema_to_zarr from .combiners import CombineMultiZarrToZarr, CombineXarraySchemas from .openers import open_url, open_with_kerchunk, open_with_xarray diff --git a/tests/test_end_to_end.py b/tests/test_end_to_end.py index 227f49da..ac4f3d5c 100644 --- a/tests/test_end_to_end.py +++ b/tests/test_end_to_end.py @@ -82,13 +82,12 @@ def test_xarray_zarr_consolidate_coords( # TODO: This test needs to check if the consolidate_coords transform # within StoreToZarr is consolidating the chunks of the coordinates # If true, assert a coord is consolidated. - import pdb; pdb.set_trace() + store = zarr.open_consolidated(os.path.join(tmp_target_url, "subpath")) - ds = xr.open_zarr(os.path.join(tmp_target_url, "subpath"),consolidated=False) + ds = xr.open_zarr(os.path.join(tmp_target_url, "subpath"), consolidated=False) # assert store["time"].chunks == (file_pattern.nitems_per_input["time"],) - def test_reference_netcdf( daily_xarray_dataset, netcdf_local_file_pattern_sequential, From 713394a5e6246e6a7c30cbde10e665ff1dffafb4 Mon Sep 17 00:00:00 2001 From: Raphael Hagen Date: Tue, 29 Aug 2023 16:45:26 -0700 Subject: [PATCH 12/15] set consolidate=False --- pangeo_forge_recipes/aggregation.py | 3 ++- tests/test_end_to_end.py | 9 +++++---- 2 files changed, 7 insertions(+), 5 deletions(-) diff --git a/pangeo_forge_recipes/aggregation.py b/pangeo_forge_recipes/aggregation.py index 39a99f9f..45807952 100644 --- a/pangeo_forge_recipes/aggregation.py +++ b/pangeo_forge_recipes/aggregation.py @@ -274,5 +274,6 @@ def schema_to_zarr( """Initialize a zarr group based on a schema.""" ds = schema_to_template_ds(schema, specified_chunks=target_chunks) # using mode="w" makes this function idempotent - ds.to_zarr(target_store, mode="w", compute=False) + # NOTE: consolidated=False to move option to consolidate metadata later in StoreToZarr + ds.to_zarr(target_store, mode="w", compute=False, consolidated=False) return target_store diff --git a/tests/test_end_to_end.py b/tests/test_end_to_end.py index 1f64b6e2..07b04e9c 100644 --- a/tests/test_end_to_end.py +++ b/tests/test_end_to_end.py @@ -81,10 +81,11 @@ def test_xarray_zarr_consolidate_coords( ) # TODO: This test needs to check if the consolidate_coords transform # within StoreToZarr is consolidating the chunks of the coordinates - # If true, assert a coord is consolidated. - store = zarr.open_consolidated(os.path.join(tmp_target_url, "subpath")) - ds = xr.open_zarr(os.path.join(tmp_target_url, "subpath"), consolidated=False) - # assert store["time"].chunks == (file_pattern.nitems_per_input["time"],) + + store = zarr.open(os.path.join(tmp_target_url, "subpath")) + + # fails + assert netcdf_local_file_pattern_sequential.dims["time"] == store.time.chunks[0] def test_reference_netcdf( From abdbaf88d5f09b918edd576b3e2d8b1cd89c347d Mon Sep 17 00:00:00 2001 From: Raphael Hagen Date: Tue, 29 Aug 2023 16:51:45 -0700 Subject: [PATCH 13/15] Adds ConsolidateZarrMetadata() from PR 575 --- pangeo_forge_recipes/transforms.py | 40 +++++++++++++++++++++--------- 1 file changed, 28 insertions(+), 12 deletions(-) diff --git a/pangeo_forge_recipes/transforms.py b/pangeo_forge_recipes/transforms.py index ce9476ed..e43ba44c 100644 --- a/pangeo_forge_recipes/transforms.py +++ b/pangeo_forge_recipes/transforms.py @@ -385,11 +385,6 @@ def expand(self, pcoll: beam.PCollection) -> beam.PCollection: ) -# TODO -# - consolidate coords -# - consolidate metadata - - @dataclass class Rechunk(beam.PTransform): target_chunks: Optional[Dict[str, int]] @@ -409,7 +404,20 @@ def expand(self, pcoll: beam.PCollection) -> beam.PCollection: return new_fragments -@dataclass +def _consolidate_zarr_metadata(store: zarr.storage.FSStore) -> zarr.storage.FSStore: + """Consolidate zarr metadata, passing the zarr store through once complete.""" + zarr.consolidate_metadata(store) + return store + + +class ConsolidateZarrMetadata(beam.PTransform): + def expand( + self, + pcoll: beam.PCollection[zarr.storage.FSStore], + ) -> beam.PCollection[zarr.storage.FSStore]: + return pcoll | beam.Map(_consolidate_zarr_metadata) + + class ConsolidateDimensionCoordinates(beam.PTransform): def expand(self, pcoll: beam.PCollection[zarr.storage.FSStore]) -> beam.PCollection: return pcoll | beam.Map(consolidate_dimension_coordinates) @@ -483,12 +491,14 @@ def expand(self, pcoll: beam.PCollection) -> beam.PCollection: class StoreToZarr(beam.PTransform, ZarrWriterMixin): """Store a PCollection of Xarray datasets to Zarr. - :param combine_dims: The dimensions to combine - :param target_chunks: Dictionary mapping dimension names to chunks sizes. - If a dimension is a not named, the chunks will be inferred from the data. - :param consolidate_dimension_coordinates: Whether to rewrite coordinate variables as a - single chunk. We recommend consolidating coordinate variables to avoid - many small read requests to get the coordinates in xarray. + :param combine_dims: The dimensions to combine + :param target_chunks: Dictionary mapping dimension names to chunks sizes. + If a dimension is a not named, the chunks will be inferred from the data. + :param consolidate_dimension_coordinates: Whether to rewrite coordinate variables as a + single chunk. We recommend consolidating coordinate variables to avoid + many small read requests to get the coordinates in xarray. Defaults to ``True``. + :param consolidate_metadata: Whether to consolidate metadata in the resulting + Zarr dataset. Defaults to ``True``. """ # TODO: make it so we don't have to explicitly specify combine_dims @@ -496,6 +506,7 @@ class StoreToZarr(beam.PTransform, ZarrWriterMixin): combine_dims: List[Dimension] target_chunks: Dict[str, int] = field(default_factory=dict) consolidate_coords: bool = True + consolidate_metadata: bool = True def expand( self, @@ -516,5 +527,10 @@ def expand( if not self.consolidate_coords else n_target_stores | SampleSingleton() | ConsolidateDimensionCoordinates() ) + singleton_target_store = ( + n_target_stores | SampleSingleton() + if not self.consolidate_metadata + else n_target_stores | SampleSingleton() | ConsolidateZarrMetadata() + ) return singleton_target_store From 4c935b2b335455593557a24d00b5dce08ab45d02 Mon Sep 17 00:00:00 2001 From: Raphael Hagen Date: Thu, 31 Aug 2023 09:13:58 -0700 Subject: [PATCH 14/15] Update pangeo_forge_recipes/transforms.py Co-authored-by: Charles Stern <62192187+cisaacstern@users.noreply.github.com> --- pangeo_forge_recipes/transforms.py | 8 +++----- 1 file changed, 3 insertions(+), 5 deletions(-) diff --git a/pangeo_forge_recipes/transforms.py b/pangeo_forge_recipes/transforms.py index e43ba44c..f43d0520 100644 --- a/pangeo_forge_recipes/transforms.py +++ b/pangeo_forge_recipes/transforms.py @@ -527,10 +527,8 @@ def expand( if not self.consolidate_coords else n_target_stores | SampleSingleton() | ConsolidateDimensionCoordinates() ) - singleton_target_store = ( - n_target_stores | SampleSingleton() + return ( + singleton_target_store if not self.consolidate_metadata - else n_target_stores | SampleSingleton() | ConsolidateZarrMetadata() + else singleton_target_store | ConsolidateZarrMetadata() ) - - return singleton_target_store From c827037cd507eac39296e42ff2c45f660f49d1f1 Mon Sep 17 00:00:00 2001 From: Raphael Hagen Date: Thu, 31 Aug 2023 10:16:31 -0700 Subject: [PATCH 15/15] add T/F to paramertization of coords consolidation --- tests/test_end_to_end.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tests/test_end_to_end.py b/tests/test_end_to_end.py index 07b04e9c..ede32b90 100644 --- a/tests/test_end_to_end.py +++ b/tests/test_end_to_end.py @@ -58,7 +58,7 @@ def test_xarray_zarr( xr.testing.assert_equal(ds.load(), daily_xarray_dataset) -@pytest.mark.parametrize("consolidate_coords", [True]) +@pytest.mark.parametrize("consolidate_coords", [True, False]) def test_xarray_zarr_consolidate_coords( daily_xarray_dataset, netcdf_local_file_pattern_sequential,