-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
184 lines (147 loc) · 5.54 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import datetime
import matplotlib.pyplot as plt
import numpy as np
import os
import time
import torch
from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
from tqdm import tqdm
import yaml
from utils.loaddataset import SoundfieldDatasetLoader
from utils.modelhandler import createmodel
from utils.util import load_config_yaml
import argparse
# set gpu
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def train(config_train, train_loader, val_loader, timestamp):
# initialize model
numepochs = config_train["epoch"]
model_name = config_train["model"]
weight = config_train["weight"]
net, lossfun, optimizer, scheduler = createmodel(model_name, float(config_train["lr"]))
net.to(device)
# checkpoint directory
if config_train["cpt_dir"]:
cpt_dir = os.path.join(config_train["cpt_dir"], timestamp)
if not os.path.exists(cpt_dir):
os.makedirs(cpt_dir)
with open(os.path.join(cpt_dir, "config.yml"), "w") as f:
yaml.dump(config_train, f)
else:
cpt_dir = None
# initialize losses
train_losses = torch.zeros(numepochs)
val_losses = torch.zeros(numepochs)
print("--- training starts ---")
for epoch in tqdm(range(numepochs)):
# training
net.train()
batch_loss = []
for X, y, label in train_loader:
# push data to GPU
X = X.to(device)
y = y.to(device)
label = label.to(device)
# forward pass and loss
yHat_denoise, yHat_seg = net(X)
loss = lossfun['denoise'](yHat_denoise, y) + weight*lossfun['seg'](yHat_seg, label)
# backprop
optimizer.zero_grad()
loss.backward()
optimizer.step()
# loss from this batch
batch_loss.append(loss.item())
train_losses[epoch] = np.mean(batch_loss)
del X, y, yHat_denoise, yHat_seg, label
torch.cuda.empty_cache()
scheduler.step()
# validation
net.eval()
batch_val_loss = []
for X, y, label in val_loader:
X = X.to(device)
y = y.to(device)
label = label.to(device)
with torch.no_grad():
yHat_denoise, yHat_seg = net(X)
loss_tmp = lossfun['denoise'](yHat_denoise, y).item() + weight*lossfun['seg'](yHat_seg, label).item()
batch_val_loss.append(loss_tmp)
val_losses[epoch] = np.mean(batch_val_loss)
del X, y, yHat_denoise, yHat_seg, label
torch.cuda.empty_cache()
if cpt_dir:
save_checkpoint(cpt_dir, epoch, net, train_losses, val_losses)
print("--- training ends ---")
# function output
return net, train_losses, val_losses
def save_checkpoint(cpt_dir, epoch, net, tloss, vloss):
torch.save(net.state_dict(), os.path.join(cpt_dir, f"checkpoint_{epoch}.pth"))
np.save(os.path.join(cpt_dir, f"checkpoint_{epoch}_trainloss"), tloss)
np.save(os.path.join(cpt_dir, f"checkpoint_{epoch}_validloss"), vloss)
def save_results(save_dir, config, net, tloss, vloss, training_time):
if not os.path.exists(save_dir):
os.makedirs(save_dir)
with open(os.path.join(save_dir, "config.yml"), "w") as f:
yaml.dump(config, f)
# Save weights and losses
save_name = f'{config["model"]}_white'
torch.save(net.state_dict(), os.path.join(save_dir, f"{save_name}.pth"))
np.save(os.path.join(save_dir, f"{save_name}_trainloss"), tloss)
np.save(os.path.join(save_dir, f"{save_name}_validloss"), vloss)
# Save training time
with open(os.path.join(save_dir, f"{save_name}_trainingtime.txt"), "w") as f:
f.write(str(training_time))
# Plot loss curves
fig_loss, ax = plt.subplots(1, 1)
ax.plot(tloss, "s-", label="train")
ax.plot(vloss, "o-", label="validation")
ax.set_xlabel("Epochs")
ax.set_ylabel("Loss")
ax.set_title(config["model"] + " loss")
ax.legend()
fig_loss.savefig(os.path.join(save_dir, f"{save_name}_loss.png"))
def main(args):
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
# Load config file
config_file_path = args.config
yaml_contents = load_config_yaml(config_file_path)
config_train = yaml_contents["train"]
config_valid = yaml_contents["validation"]
# Load train dataset
datasetloader = SoundfieldDatasetLoader(config_train["dataset"])
train_dataset = datasetloader.load()
train_loader = DataLoader(
train_dataset,
batch_size=config_train["batch_size"],
shuffle=True,
drop_last=True,
)
# Load valid dataset
datasetloader = SoundfieldDatasetLoader(config_valid["dataset"])
valid_dataset = datasetloader.load()
valid_loader = DataLoader(
valid_dataset,
batch_size=config_valid["batch_size"],
)
# Training
time_start = time.perf_counter()
net, tloss, vloss = train(
config_train,
train_loader=train_loader,
val_loader=valid_loader,
timestamp=timestamp,
)
time_end = time.perf_counter()
training_time = time_end - time_start
# Save results
if config_train["save_dir"]:
save_dir = os.path.join(config_train["save_dir"], timestamp)
save_results(save_dir, config_train, net, tloss, vloss, training_time)
del net, tloss, vloss
torch.cuda.empty_cache()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='config.yml')
args = parser.parse_args()
main(args)