-
Notifications
You must be signed in to change notification settings - Fork 35
/
models.py
237 lines (206 loc) · 8.44 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
"""Model definitions.
Reference:
Y. Koizumi, D. Takeuchi, Y. Ohishi, N. Harada, and K. Kashino, “The NTT DCASE2020 challenge task 6 system:
Automated audio captioning with keywords and sentence length estimation,” DCASE2020 Challenge, Tech. Rep., 2020.
https://arxiv.org/abs/2007.00225
"""
import re
import logging
from pathlib import Path
import torch
from torch import nn
import torch.nn.functional as F
class NetworkCommonMixIn():
"""Common mixin for network definition."""
def load_weight(self, weight_file, device, state_dict=None, key_check=True):
"""Utility to load a weight file to a device."""
state_dict = state_dict or torch.load(weight_file, map_location=device)
if 'state_dict' in state_dict:
state_dict = state_dict['state_dict']
# Remove unneeded prefixes from the keys of parameters.
if key_check:
weights = {}
for k in state_dict:
m = re.search(r'(^fc\.|\.fc\.|^features\.|\.features\.)', k)
if m is None: continue
new_k = k[m.start():]
new_k = new_k[1:] if new_k[0] == '.' else new_k
weights[new_k] = state_dict[k]
else:
weights = state_dict
# Load weights and set model to eval().
self.load_state_dict(weights)
self.eval()
logging.info(f'Using audio embbeding network pretrained weight: {Path(weight_file).name}')
return self
def set_trainable(self, trainable=False):
for p in self.parameters():
p.requires_grad = trainable
class AudioNTT2020Task6(nn.Module, NetworkCommonMixIn):
"""DCASE2020 Task6 NTT Solution Audio Embedding Network."""
def __init__(self, n_mels, d):
super().__init__()
self.features = nn.Sequential(
nn.Conv2d(1, 64, 3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2, stride=2),
nn.Conv2d(64, 64, 3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2, stride=2),
nn.Conv2d(64, 64, 3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2, stride=2),
)
self.fc = nn.Sequential(
nn.Linear(64 * (n_mels // (2**3)), d),
nn.ReLU(),
nn.Dropout(p=0.3),
nn.Linear(d, d),
nn.ReLU(),
)
self.d = d
def forward(self, x):
x = self.features(x) # (batch, ch, mel, time)
x = x.permute(0, 3, 2, 1) # (batch, time, mel, ch)
B, T, D, C = x.shape
x = x.reshape((B, T, C*D)) # (batch, time, mel*ch)
x = self.fc(x)
return x
class AudioNTT2020(AudioNTT2020Task6):
"""BYOL-A General Purpose Representation Network.
This is an extension of the DCASE 2020 Task 6 NTT Solution Audio Embedding Network.
"""
def __init__(self, n_mels=64, d=512):
super().__init__(n_mels=n_mels, d=d)
def forward(self, x):
x = super().forward(x)
(x1, _) = torch.max(x, dim=1)
x2 = torch.mean(x, dim=1)
x = x1 + x2
assert x.shape[1] == self.d and x.ndim == 2
return x
class AudioNTT2020Task6X(nn.Module, NetworkCommonMixIn):
"""A variant of DCASE2020 Task6 NTT Solution Audio Embedding Network.
Enabeld to return features by layers.
Examples:
model(x) -> returns sample-level features of [B, T, D].
model(x, layered=True) -> returns sample-level layered features of [B, T, 5*D]
model.by_layers(model.(x, layered=True)) -> returns sample-level features by layers as a list of [B, T, D] * 5
"""
def __init__(self, n_mels, d):
super().__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(1, 64, 3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2, stride=2),
)
self.conv2 = nn.Sequential(
nn.Conv2d(64, 64, 3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2, stride=2),
)
self.conv3 = nn.Sequential(
nn.Conv2d(64, 64, 3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2, stride=2),
)
self.fc1 = nn.Sequential(
nn.Linear(64 * (n_mels // (2**3)), d),
nn.ReLU(),
)
self.fc2 = nn.Sequential(
nn.Dropout(p=0.3),
nn.Linear(d, d),
nn.ReLU(),
)
self.d = d
self.n_feature_layer = 5
def forward(self, x, layered=False):
def reshape_conv_feature(v):
B, CH, F, T = v.shape
v = v.permute(0, 3, 1, 2).reshape(B, T, CH*F)
# pad 0 at the end to make the feature dimension -> self.d
if v.shape[-1] < self.d:
v = torch.nn.functional.pad(v, (0, self.d - v.shape[-1]), 'constant', 0.0)
# average to the target length
while v.shape[1] > target_t:
## when odd time frames -> average last two frames into one frame
if v.shape[1] % 2 == 1:
v = torch.cat([v[:, :-2], v[:, -2:].mean(1, keepdim=True)], axis=1)
# [B, T, D] -> [B, T/2, D]
T = v.shape[1]
v = v.reshape(B, T//2, 2, v.shape[-1])
v = v.mean(2) # average adjoining two time frame features.
return v
target_t = x.shape[-1] // 8
features = []
x = self.conv1(x) # (batch, ch, mel, time)
features.append(reshape_conv_feature(x))
x = self.conv2(x)
features.append(reshape_conv_feature(x))
x = self.conv3(x)
features.append(reshape_conv_feature(x))
x = x.permute(0, 3, 2, 1) # (batch, time, mel, ch)
B, T, D, C = x.shape
x = x.reshape((B, T, C*D)) # (batch, time, mel*ch)
x = self.fc1(x)
features.append(x)
x = self.fc2(x)
features.append(x)
if layered:
return torch.cat(features, dim=-1) # [B, T, 5*D]
return x # [B, T, D]
def by_layers(self, layered_features):
"""Decompose layered features into the list of features for each layer."""
*B, LD = layered_features.shape
assert LD == self.n_feature_layer * self.d
layered_features = layered_features.reshape(*B, self.n_feature_layer, self.d)
layered_features = layered_features.permute(2, 0, 1, 3) if len(layered_features.shape) > 3 else layered_features.permute(1, 0, 2)
return [layered_features[l] for l in range(self.n_feature_layer)]
def load_weight(self, weight_file, device):
"""Whapper function for loading BYOL-A pre-trained weights."""
namemap = {
'features.0': 'conv1.0', 'features.1': 'conv1.1',
'features.4': 'conv2.0', 'features.5': 'conv2.1',
'features.8': 'conv3.0', 'features.9': 'conv3.1',
'fc.0': 'fc1.0',
'fc.3': 'fc2.1',
}
state_dict = torch.load(weight_file, map_location=device)
new_dict = {}
# replace keys and remove 'num_batches_tracked'
for key in state_dict:
if 'num_batches_tracked' in key:
continue
new_key = key
for map_key in namemap:
if map_key in key:
new_key = key.replace(map_key, namemap[map_key])
break
new_dict[new_key] = state_dict[key]
return super().load_weight(weight_file, device, state_dict=new_dict, key_check=False)
class AudioNTT2020X(AudioNTT2020Task6X):
"""BYOL-A General Purpose Representation Network.
This is an extension of the DCASE 2020 Task 6 NTT Solution Audio Embedding Network.
Enabeld to return features by layers.
Examples:
model(x) -> returns sample-level features of [B, D].
model(x, layered=True) -> returns sample-level layered features of [B, 5*D]
model(x, layered=True, by_layers=True) -> returns sample-level features by layers as a list of [B, D] * 5
"""
def __init__(self, n_mels=64, d=2048):
super().__init__(n_mels=n_mels, d=d)
def forward(self, x, layered=False, by_layers=False):
x = super().forward(x, layered=layered)
(x1, _) = torch.max(x, dim=1)
x2 = torch.mean(x, dim=1)
x = x1 + x2
if by_layers:
return self.by_layers(x)
return x