Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Failed to load image Python extension: '[WinError 127] 找不到指定的程序 #302

Open
Liuwuyang1026 opened this issue Apr 5, 2024 · 2 comments

Comments

@Liuwuyang1026
Copy link

warnings.warn(
0%| | 0/700000 [00:00<?, ?it/s]C:\Users\29125\anaconda3\envs\pytorch\lib\site-packages\torchvision\io\image.py:13: UserWarning: Failed to load image Python extension: '[WinError 127] 找不到指定的程序。'If you don't plan on using image functionality from torchvision.io, you can ignore this warning. Otherwise, there might be something wrong with your environment. Did you have libjpeg or libpng installed before building torchvision from source?
warn(
C:\Users\29125\anaconda3\envs\pytorch\lib\site-packages\accelerate\accelerator.py:432: FutureWarning: Passing the following arguments to Accelerator is deprecated and will be removed in version 1.0 of Accelerate: dict_keys(['split_batches']). Please pass an accelerate.DataLoaderConfiguration instead:
dataloader_config = DataLoaderConfiguration(split_batches=True)
warnings.warn(
0%| | 0/700000 [00:00<?, ?it/s]
Traceback (most recent call last):
File "", line 1, in
File "C:\Users\29125\anaconda3\envs\pytorch\lib\multiprocessing\spawn.py", line 116, in spawn_main
exitcode = _main(fd, parent_sentinel)
File "C:\Users\29125\anaconda3\envs\pytorch\lib\multiprocessing\spawn.py", line 125, in _main
prepare(preparation_data)
File "C:\Users\29125\anaconda3\envs\pytorch\lib\multiprocessing\spawn.py", line 236, in prepare
_fixup_main_from_path(data['init_main_from_path'])
File "C:\Users\29125\anaconda3\envs\pytorch\lib\multiprocessing\spawn.py", line 287, in _fixup_main_from_path
main_content = runpy.run_path(main_path,
File "C:\Users\29125\anaconda3\envs\pytorch\lib\runpy.py", line 288, in run_path
return _run_module_code(code, init_globals, run_name,
File "C:\Users\29125\anaconda3\envs\pytorch\lib\runpy.py", line 97, in _run_module_code
_run_code(code, mod_globals, init_globals,
File "C:\Users\29125\anaconda3\envs\pytorch\lib\runpy.py", line 87, in _run_code
exec(code, run_globals)
File "D:\29125\PYcharm\keyanmodule\denoising-diffusion\denoising-diffusion-pytorch-main\train.py", line 28, in
trainer.train()
File "D:\29125\PYcharm\keyanmodule\denoising-diffusion\denoising-diffusion-pytorch-main\denoising_diffusion_pytorch\denoising_diffusion_pytorch.py", line 1028, in train
data = next(self.dl).to(device)
File "D:\29125\PYcharm\keyanmodule\denoising-diffusion\denoising-diffusion-pytorch-main\denoising_diffusion_pytorch\denoising_diffusion_pytorch.py", line 60, in cycle
for data in dl:
File "C:\Users\29125\anaconda3\envs\pytorch\lib\site-packages\accelerate\data_loader.py", line 449, in iter
dataloader_iter = super().iter()
File "C:\Users\29125\anaconda3\envs\pytorch\lib\site-packages\torch\utils\data\dataloader.py", line 439, in iter
return self._get_iterator()
File "C:\Users\29125\anaconda3\envs\pytorch\lib\site-packages\torch\utils\data\dataloader.py", line 387, in _get_iterator
return _MultiProcessingDataLoaderIter(self)
File "C:\Users\29125\anaconda3\envs\pytorch\lib\site-packages\torch\utils\data\dataloader.py", line 1040, in init
w.start()
File "C:\Users\29125\anaconda3\envs\pytorch\lib\multiprocessing\process.py", line 121, in start
self._popen = self._Popen(self)
File "C:\Users\29125\anaconda3\envs\pytorch\lib\multiprocessing\context.py", line 224, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "C:\Users\29125\anaconda3\envs\pytorch\lib\multiprocessing\context.py", line 327, in _Popen
return Popen(process_obj)
File "C:\Users\29125\anaconda3\envs\pytorch\lib\multiprocessing\popen_spawn_win32.py", line 45, in init
prep_data = spawn.get_preparation_data(process_obj._name)
File "C:\Users\29125\anaconda3\envs\pytorch\lib\multiprocessing\spawn.py", line 154, in get_preparation_data
_check_not_importing_main()
File "C:\Users\29125\anaconda3\envs\pytorch\lib\multiprocessing\spawn.py", line 134, in _check_not_importing_main
raise RuntimeError('''
RuntimeError:
An attempt has been made to start a new process before the
current process has finished its bootstrapping phase.

    This probably means that you are not using fork to start your
    child processes and you have forgotten to use the proper idiom
    in the main module:

        if __name__ == '__main__':
            freeze_support()
            ...

    The "freeze_support()" line can be omitted if the program
    is not going to be frozen to produce an executable.

windows 11
pytorch 2.2.1

@Liuwuyang1026
Copy link
Author

Help me please,I REALLY need your help!

@juny-park-95
Copy link

juny-park-95 commented Oct 9, 2024

hey bro you should include your code with main function like this:

from denoising_diffusion_pytorch import Unet, GaussianDiffusion, Trainer

if __name__ == '__main__': # <------- THIS IS IMPORTANT STUFF
    model = Unet(
        dim = 64,
        dim_mults = (1, 2, 4, 8),
        flash_attn = True
    )

    diffusion = GaussianDiffusion(
        model,
        image_size = 128,
        timesteps = 1000,           # number of steps
        sampling_timesteps = 250    # number of sampling timesteps (using ddim for faster inference [see citation for ddim paper])
    )

    trainer = Trainer(
        diffusion,
        r"F:\project\medical\dataset\128\OTE",
        train_batch_size = 32,
        train_lr = 8e-5,
        train_num_steps = 700000,         # total training steps
        gradient_accumulate_every = 2,    # gradient accumulation steps
        ema_decay = 0.995,                # exponential moving average decay
        amp = True,                       # turn on mixed precision
        calculate_fid = True              # whether to calculate fid during training
    )

    trainer.train()

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants