forked from modelscope/facechain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_inference.py
86 lines (75 loc) · 3.03 KB
/
run_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import json
from facechain.inference import GenPortrait
import cv2
from facechain.utils import snapshot_download
from facechain.constants import neg_prompt, pos_prompt_with_cloth, pos_prompt_with_style, base_models
def generate_pos_prompt(style_model, prompt_cloth):
if style_model is not None:
matched = list(filter(lambda style: style_model == style['name'], styles))
if len(matched) == 0:
raise ValueError(f'styles not found: {style_model}')
matched = matched[0]
if matched['model_id'] is None:
pos_prompt = pos_prompt_with_cloth.format(prompt_cloth)
else:
pos_prompt = pos_prompt_with_style.format(matched['add_prompt_style'])
else:
pos_prompt = pos_prompt_with_cloth.format(prompt_cloth)
return pos_prompt
styles = []
for base_model in base_models:
style_in_base = []
folder_path = f"/mnt/workspace/new_facechain/facechain/styles/{base_model['name']}"
files = os.listdir(folder_path)
files.sort()
for file in files:
file_path = os.path.join(folder_path, file)
with open(file_path, "r") as f:
data = json.load(f)
style_in_base.append(data['name'])
styles.append(data)
base_model['style_list'] = style_in_base
use_main_model = True
use_face_swap = True
use_post_process = True
use_stylization = False
use_depth_control = False
use_pose_model = False
pose_image = 'poses/man/pose1.png'
processed_dir = './processed'
num_generate = 5
multiplier_style = 0.25
multiplier_human = 0.85
train_output_dir = './output'
output_dir = './generated'
base_model = base_models[0]
style = styles[0]
model_id = style['model_id']
if model_id == None:
style_model_path = None
pos_prompt = generate_pos_prompt(style['name'], style['add_prompt_style'])
else:
if os.path.exists(model_id):
model_dir = model_id
else:
model_dir = snapshot_download(model_id, revision=style['revision'])
style_model_path = os.path.join(model_dir, style['bin_file'])
pos_prompt = generate_pos_prompt(style['name'], style['add_prompt_style']) # style has its own prompt
if not use_pose_model:
pose_model_path = None
use_depth_control = False
pose_image = None
else:
model_dir = snapshot_download('damo/face_chain_control_model', revision='v1.0.1')
pose_model_path = os.path.join(model_dir, 'model_controlnet/control_v11p_sd15_openpose')
gen_portrait = GenPortrait(pose_model_path, pose_image, use_depth_control, pos_prompt, neg_prompt, style_model_path,
multiplier_style, multiplier_human, use_main_model,
use_face_swap, use_post_process,
use_stylization)
outputs = gen_portrait(processed_dir, num_generate, base_model['model_id'],
train_output_dir, base_model['sub_path'], base_model['revision'])
os.makedirs(output_dir, exist_ok=True)
for i, out_tmp in enumerate(outputs):
cv2.imwrite(os.path.join(output_dir, f'{i}.png'), out_tmp)