forked from nubot-nudt/MDGAT-matcher
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
executable file
·353 lines (297 loc) · 16.4 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
#encoding: utf-8
import argparse
import numpy as np
import torch
from torch.autograd import Variable
from load_data import SparseDataset
import os
import torch.multiprocessing
import time
from utils.utils_test import (calculate_error, plot_match)
from models.superglue import SuperGlue
from models.mdgat import MDGAT
from scipy.spatial.distance import cdist
torch.set_grad_enabled(True)
torch.multiprocessing.set_sharing_strategy('file_system')
parser = argparse.ArgumentParser(
description='Point cloud matching and pose evaluation',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--visualize', type=bool, default=False,
help='Visualize the matches')
parser.add_argument(
'--vis_line_width', type=float, default=0.2,
help='the width of the match line open3d visualization')
parser.add_argument(
'--calculate_pose', type=bool, default=True,
help='Registrate the point cloud using the matched point pairs and calculate the pose')
parser.add_argument(
'--learning_rate', type=int, default=0.0001,
help='Learning rate')
parser.add_argument(
'--batch_size', type=int, default=1,
help='batch_size')
parser.add_argument(
'--train_path', type=str, default='./KITTI/',
help='Path to the directory of training scans.')
parser.add_argument(
'--model_out_path', type=str, default='./models/checkpoint',
help='Path to the directory of output model')
parser.add_argument(
'--memory_is_enough', type=bool, default=False,
help='If true load all the scans')
parser.add_argument(
'--local_rank', type=int, default=0,
help='Gpu rank.')
parser.add_argument(
'--txt_path', type=str, default='./KITTI/preprocess-random[0,9]',
help='Path to the directory of kepoints.')
parser.add_argument(
'--keypoints_path', type=str, default='./KITTI/keypoints/tsf_256_FPFH_16384-512-k1k16-2d-nonoise',
help='Path to the directory of kepoints.')
parser.add_argument(
'--resume_model', type=str, default='./pre-trained/best_model.pth',
help='Number of skip frames for training')
parser.add_argument(
'--loss_method', type=str, default='triplet_loss',
help='triplet_loss superglue gap_loss')
parser.add_argument(
'--net', type=str, default='mdgat',
help='mdgat; superglue')
parser.add_argument(
'--mutual_check', type=bool, default=False,
help='perform')
parser.add_argument(
'--k', type=int, default=[128, None, 128, None, 64, None, 64, None],
help='Mdgat structure. None means connect all the nodes.')
parser.add_argument(
'--l', type=int, default=9,
help='Layers number in GNN')
parser.add_argument(
'--descriptor', type=str, default='FPFH',
help='FPFH pointnet FPFH_only msg')
parser.add_argument(
'--keypoints', type=str, default='USIP',
help='USIP')
parser.add_argument(
'--ensure_kpts_num', type=bool, default=False,
help='make kepoints number')
parser.add_argument(
'--max_keypoints', type=int, default=256,
help='Maximum number of keypoints'
' (\'-1\' keeps all keypoints)')
parser.add_argument(
'--match_threshold', type=float, default=0.2,
help='SuperGlue match threshold')
parser.add_argument(
'--threshold', type=float, default=0.5,
help='Ground truth distance threshold')
parser.add_argument(
'--triplet_loss_gamma', type=float, default=0.5,
help='Threshold for triplet loss and gap loss')
parser.add_argument(
'--sinkhorn_iterations', type=int, default=20,
help='Number of Sinkhorn iterations performed by SuperGlue')
parser.add_argument(
'--train_step', type=int, default=3,
help='Training step when using pointnet: 1,2,3')
if __name__ == '__main__':
opt = parser.parse_args()
test_set = SparseDataset(opt, 'test')
test_loader = torch.utils.data.DataLoader(dataset=test_set, shuffle=False, batch_size=opt.batch_size, num_workers=1, drop_last=True, pin_memory = True)
path_checkpoint = opt.resume_model
checkpoint = torch.load(path_checkpoint, map_location={'cuda:2':'cuda:0'})
lr = checkpoint['lr_schedule']
config = {
'net': {
'sinkhorn_iterations': opt.sinkhorn_iterations,
'match_threshold': opt.match_threshold,
# 'lr': lr,
'lr': opt.learning_rate,
'loss_method': opt.loss_method,
'k': opt.k,
'descriptor': opt.descriptor,
'mutual_check': opt.mutual_check,
'triplet_loss_gamma': opt.triplet_loss_gamma,
'train_step':opt.train_step,
'L':opt.l
}
}
if opt.net == 'superglue':
net = SuperGlue(config.get('net', {}))
print(opt.net)
else:
net = MDGAT(config.get('net', {}))
optimizer = torch.optim.Adam(net.parameters(), lr=config.get('net', {}).get('lr'))
net = torch.nn.DataParallel(net)
net.load_state_dict(checkpoint['net'])
start_epoch = checkpoint['epoch'] + 1
best_loss = checkpoint['loss']
print('Resume from ', opt.resume_model)
if torch.cuda.is_available():
# torch.cuda.set_device(opt.local_rank)
device=torch.device('cuda:{}'.format(opt.local_rank))
else:
device = torch.device("cpu")
print("### CUDA not available ###")
net.to(device)
'''
model.eval(): will notify all your layers that you are in eval mode,
that way, batchnorm or dropout layers will work in eval
mode instead of training mode.
torch.no_grad():impacts the autograd engine and deactivate it. It will
reduce memory usage and speed up computations but you
won’t be able to backprop (which you don’t want in an eval script).
'''
with torch.no_grad():
mean_test_loss = []; precision_array = []; accuracy_array = []; recall_array = []
trans_error_array = []; rot_error_array = []; relative_trans_error_array = []; relative_rot_error_array = []
repeatibilty_array = []; valid_num_array = []; all_num_array = []; inlier_array = []
kpnum_array = []; fp_rate_array = []; tp_rate_array = []; tp_rate2_array = []; inlier_ratio_array= []
fail = 0
baned_data = 0
for i, pred in enumerate(test_loader):
### eval ###
begin = time.time()
net.double().eval()
for k in pred:
if k!='idx0' and k!='idx1' and k!='sequence':
if type(pred[k]) == torch.Tensor:
pred[k] = Variable(pred[k].cuda().detach())
else:
pred[k] = Variable(torch.stack(pred[k]).cuda().detach())
data = net(pred)
pred = {**pred, **data}
for b in range(len(pred['idx0'])):
'''If you got KITTI dataset, load the point cloud for better visualization'''
# pc0_path = os.path.join(opt.preprocessed_path, pred['sequence'][b], '%06d.bin'%pred['idx0'][b])
# pc1_path = os.path.join(opt.preprocessed_path, pred['sequence'][b], '%06d.bin'%pred['idx1'][b])
# pc0, pc1 = np.fromfile(pc0_path, dtype=np.float32), np.fromfile(pc1_path, dtype=np.float32)
# pc0, pc1 = pc0.reshape(-1, 8), pc1.reshape(-1, 8)
pc0, pc1 = [],[]
kpts0, kpts1 = pred['keypoints0'][b].cpu().numpy(), pred['keypoints1'][b].cpu().numpy()
idx = pred['idx0'][b]
matches, matches1, conf = pred['matches0'][b].cpu().detach().numpy(), pred['matches1'][b].cpu().detach().numpy(), pred['matching_scores0'][b].cpu().detach().numpy()
valid = matches > -1
mkpts0 = kpts0[valid]
mkpts1 = kpts1[matches[valid]]
mconf = conf[valid]
mutual0 = np.arange(len(matches))[valid] == matches1[matches[valid]]
mutual0 = np.arange(len(matches))[valid][mutual0]
mutual1 = matches[mutual0]
x = np.ones(len(matches1)) == 1
x[mutual1] = False
valid1 = matches1 > -1
# extrakpt1 = kpts1[valid1 & x]
# extrakpt0 = kpts0[matches1[valid1 & x]]
# mkpts0 = np.vstack((mkpts0, extrakpt0))
# mkpts1 = np.vstack((mkpts1, extrakpt1))
mconf = conf[valid]
# mscores
## ground truth ##
matches_gt, matches_gt1 = pred['match0'][b].cpu().detach().numpy(), pred['match1'][b].cpu().detach().numpy()
matches_gt[matches_gt == len(matches_gt1)] = -1
matches_gt1[matches_gt1 == len(matches_gt)] = -1
valid_gt = matches_gt > -1
if valid_gt.sum() < len(matches_gt)*0.1:
print('not enough ground truth match, ban the pair')
baned_data+=1
continue
mkpts0_gt = kpts0[valid_gt]
mkpts1_gt = kpts1[matches_gt[valid_gt]]
mutual0 = np.arange(len(matches_gt))[valid_gt] == matches_gt1[matches_gt[valid_gt]]
# mutual0_inv = 1-mutual0
mutual0 = np.arange(len(matches_gt))[valid_gt][mutual0]
mutual1 = matches_gt[mutual0]
x = np.ones(len(matches_gt1)) == 1
x[mutual1] = False
valid_gt1 = matches_gt1 > -1
# extrakpt1 = kpts1[valid_gt1 & x]
# extrakpt0 = kpts0[matches_gt1[valid_gt1 & x]]
# mkpts0_gt = np.vstack((mkpts0_gt, extrakpt0))
# mkpts1_gt = np.vstack((mkpts1_gt, extrakpt1))
mscores_gt = pred['scores0'][b].cpu().numpy()[valid_gt]
gt_idx = np.arange(len(kpts0))[valid_gt]
valid_num = np.sum(valid_gt)
# valid_num = pred['rep'][b].cpu().detach().numpy()
all_num = len(valid_gt)
repeatibilty = valid_num/all_num
# print(repeatibilty)
if len(mkpts0) < 4:
fail+=1
print('fail')
else:
''' calculate false positive ,true positive ,true nagetive, precision, accuracy, recall '''
true_positive = [(matches[i] == matches_gt[i]) and (valid[i]) for i in range(len(kpts0))]
true_negativate = [(matches[i] == matches_gt[i]) and not (valid[i]) for i in range(len(kpts0))]
false_positive = [valid[i] and (matches_gt[i]==-1) for i in range(len(kpts0))]
ckpts0 = kpts0[true_positive]
ckpts1 = [matches[true_positive]]
precision = np.sum(true_positive) / np.sum(valid) if np.sum(valid) > 0 else 0
recall = np.sum(true_positive) / np.sum(valid_gt) if np.sum(valid) > 0 else 0
matching_score = np.sum(true_positive) / len(kpts0) if len(kpts0) > 0 else 0
# loss = pred['loss']
accuracy = (np.sum(true_positive) + np.sum(true_negativate))/len(matches_gt)
fp_rate = np.sum(false_positive)/np.sum(matches_gt==-1)
tp_rate = np.sum([valid[i] and (matches_gt[i]>-1) for i in range(len(kpts0))])/np.sum(matches_gt > -1)
tp_rate2 = np.sum(true_positive)/np.sum(matches_gt > -1)
'''calculate pose error, inlier and failure rate'''
if opt.calculate_pose:
T, T_gt, inlier, kpnum, inlier_ratio, trans_error, rot_error, trans_error_percent, rot_error_percent = calculate_error(mkpts0, mkpts1, pred, opt.train_path, b) #keypoints1, keypoints1, 预处理数据, 数据路径, 循环标记
T_CacualtefromGtCorres, T_gt, inlier_vm, kpnum_vm, inlier_ratio_vm, trans_error_vm, rot_error_vm, trans_error_percent_vm, rot_error_percent_vm = calculate_error(mkpts0_gt, mkpts1_gt, pred, opt.train_path, b)
relative_rot_error = rot_error_percent - rot_error_percent_vm
relative_trans_error = trans_error_percent - trans_error_percent_vm
if trans_error>2 or rot_error>5 or np.isnan(trans_error) or np.isnan(rot_error):
fail+=1
print('fail')
# if not np.isinf(rot_error_percent_vm) and not np.isinf(trans_error_percent_vm) and not np.isnan(trans_error_percent_vm) and not np.isnan(rot_error_percent_vm):
if not np.isinf(rot_error_percent_vm) and not np.isinf(trans_error_percent_vm) and not np.isnan(trans_error_percent_vm) and not np.isnan(rot_error_percent_vm):
precision_array.append(precision)
accuracy_array.append(accuracy)
recall_array.append(recall)
trans_error_array.append(trans_error_percent)
rot_error_array.append(rot_error_percent)
relative_trans_error_array.append(relative_trans_error)
relative_rot_error_array.append(relative_rot_error)
repeatibilty_array.append(repeatibilty)
# # valid_num_array.append(valid_num)
# # all_num_array.append(all_num)
valid_num_array.append(trans_error_percent_vm)
all_num_array.append(rot_error_percent_vm)
inlier_array.append(inlier)
inlier_ratio_array.append(inlier_ratio)
kpnum_array.append(kpnum_vm)
fp_rate_array.append(fp_rate)
tp_rate_array.append(tp_rate)
tp_rate2_array.append(tp_rate2)
else:
baned_data+=1
print('idx{}, inlier {}, inlier_ratio {:.3f}, precision {:.3f}, accuracy {:.3f}, recall {:.3f}, fp_rate {:.3f}, tp_rate {:.3f}, trans_error {:.3f}, rot_error {:.3f}, relative_trans_error {:.3f}, relative_rot_error {:.3f} '.format(
idx, inlier, inlier_ratio, precision, accuracy, recall, fp_rate, tp_rate, trans_error_percent, rot_error_percent, relative_trans_error, relative_rot_error))
else:
T=[]
print('idx{}, precision {:.3f}, accuracy {:.3f}, recall {:.3f}, fp_rate {:.3f}, tp_rate {:.3f}'.format(
idx, precision, accuracy, recall, fp_rate, tp_rate))
if opt.visualize:
plot_match(pc0, pc1, kpts0, kpts1, mkpts0, mkpts1, mkpts0_gt, mkpts1_gt, matches, mconf, true_positive, false_positive, T, opt.vis_line_width)
# mean_test_loss = torch.mean(torch.stack(mean_test_loss)).item()
precision_mean = np.mean(precision_array)
accuracy_mean = np.mean(accuracy_array)
recall_mean = np.mean(recall_array)
trans_error_mean = np.mean(trans_error_array)
rot_error_mean = np.mean(rot_error_array)
relative_trans_error_mean = np.mean(relative_trans_error_array)
relative_rot_error_mean = np.mean(relative_rot_error_array)
repeatibilty_array_mean = np.mean(repeatibilty_array)
valid_num_mean = np.mean(valid_num_array)
all_num_mean = np.mean(all_num_array)
inlier_mean = np.mean(inlier_array)
inlier_ratio_mean = np.mean(inlier_ratio_array)
kpnum_mean = np.mean(kpnum_array)
fp_rate_mean = np.mean(fp_rate_array)
tp_rate_mean = np.mean(tp_rate_array)
tp_rate_mean2 = np.mean(tp_rate2_array)
print('average repeatibility: {:.3f}, inlier_mean {:.3f}, kpnum_inlier_vm{:.3f}, inlier_ratio_mean {:.3f}, fail {:.6f}, precision_mean {:.3f}, accuracy_mean {:.3f}, recall_mean {:.3f}, fp_rate_mean {:.3f}, tp_rate_mean {:.3f}, tp_rate_mean2 {:.3f}, trans_error_mean {:.3f}%, rot_error_mean {:.3f}%, relative_trans_error_mean {:.3f}%, relative_rot_error_mean {:.3f}%'.format(
repeatibilty_array_mean, inlier_mean, kpnum_mean, inlier_ratio_mean, fail/i, precision_mean, accuracy_mean, recall_mean, fp_rate_mean, tp_rate_mean, tp_rate_mean2, trans_error_mean, rot_error_mean, relative_trans_error_mean, relative_rot_error_mean ))
print('valid num {}, all_num {}'.format(valid_num_mean, all_num_mean))
print('baned_data {}'.format(baned_data/i))