forked from nubot-nudt/MDGAT-matcher
-
Notifications
You must be signed in to change notification settings - Fork 0
/
load_data.py
executable file
·317 lines (270 loc) · 12.2 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import numpy as np
import torch
import os
from scipy.spatial.distance import cdist
from torch.utils.data import Dataset
import open3d as o3d
from sklearn.neighbors import KDTree
import time
def load_kitti_gt_txt(txt_root, seq):
'''
:param txt_root:
:param seq
:return: [{anc_idx: *, pos_idx: *, seq: *}]
'''
dataset = []
with open(os.path.join(txt_root, '%02d'%seq, 'groundtruths.txt'), 'r') as f:
lines_list = f.readlines()
for i, line_str in enumerate(lines_list):
if i == 0:
# skip the header line
continue
line_splitted = line_str.split()
anc_idx = int(line_splitted[0])
pos_idx = int(line_splitted[1])
data = {'seq': seq, 'anc_idx': anc_idx, 'pos_idx': pos_idx}
dataset.append(data)
# dataset.pop(0)
return dataset
def make_dataset_kitti_distance(txt_path, mode):
if mode == 'train':
seq_list = list([0,2,3,4,5,6,7])
elif mode == 'val':
seq_list = [9]
elif mode == 'test':
seq_list = [10]
else:
raise Exception('Invalid mode.')
dataset = []
for seq in seq_list:
dataset += (load_kitti_gt_txt(txt_path, seq))
return dataset, seq_list
class SparseDataset(Dataset):
"""Sparse correspondences dataset.
Reads images from files and creates pairs. It generates keypoints,
descriptors and ground truth matches which will be used in training."""
def __init__(self, opt, mode):
self.train_path = opt.train_path
self.keypoints = opt.keypoints
self.keypoints_path = opt.keypoints_path
self.descriptor = opt.descriptor
self.nfeatures = opt.max_keypoints
self.threshold = opt.threshold
self.ensure_kpts_num = opt.ensure_kpts_num
self.mutual_check = opt.mutual_check
self.memory_is_enough = opt.memory_is_enough
self.txt_path = opt.txt_path
self.dataset, self.seq_list = make_dataset_kitti_distance(self.txt_path, mode)
self.calib={}
self.pose={}
self.pc = {}
for seq in self.seq_list:
sequence = '%02d'%seq
calibpath = os.path.join(self.train_path, 'calib/sequences', sequence, 'calib.txt')
posepath = os.path.join(self.train_path, 'poses', '%02d.txt'%seq)
with open(calibpath, 'r') as f:
for line in f.readlines():
_, value = line.split(':', 1)
try:
calib = np.array([float(x) for x in value.split()])
except ValueError:
pass
calib = np.reshape(calib, (3, 4))
self.calib[sequence] = np.vstack([calib, [0, 0, 0, 1]])
poses = []
with open(posepath, 'r') as f:
for line in f.readlines():
T_w_cam0 = np.fromstring(line, dtype=float, sep=' ')
T_w_cam0 = T_w_cam0.reshape(3, 4)
T_w_cam0 = np.vstack((T_w_cam0, [0, 0, 0, 1]))
poses.append(T_w_cam0)
self.pose[sequence] = poses
'''If memory is enough, load all the data'''
if self.memory_is_enough:
pcs = []
folder = os.path.join(self.keypoints_path, sequence)
folder = os.listdir(folder)
folder.sort(key=lambda x:int(x[:-4]))
for idx in range(len(folder)):
file = os.path.join(self.keypoints_path, sequence, folder[idx])
if os.path.isfile(file):
pc = np.fromfile(file, dtype=np.float32)
pcs.append(pc)
else:
pcs.append([0])
self.pc[sequence] = pcs
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
index_in_seq = self.dataset[idx]['anc_idx']
index_in_seq2 = self.dataset[idx]['pos_idx']
seq = self.dataset[idx]['seq']
# trans = self.dataset[idx]['trans']
# rot = self.dataset[idx]['rot']
# relative_pos = self.dataset[idx]['anc_idx']
if self.memory_is_enough:
sequence = sequence = '%02d'%seq
pc_np1 = self.pc[sequence][index_in_seq]
pc_np1 = pc_np1.reshape((-1, 37))
kp1 = pc_np1[:, :3]
score1 = pc_np1[:, 3]
descs1 = pc_np1[:, 4:]
pose1 = self.pose[sequence][index_in_seq]
pc_np2 = self.pc[sequence][index_in_seq2]
pc_np2 = pc_np2.reshape((-1, 37))
kp2 = pc_np2[:, :3]
score2 = pc_np2[:, 3]
descs2 = pc_np2[:, 4:]
pose2 = self.pose[sequence][index_in_seq2]
T_cam0_velo = self.calib[sequence]
# q = np.asarray([rot[3], rot[0], rot[1], rot[2]])
# t = np.asarray(trans)
# relative_pose = RigidTransform(q, t)
else:
sequence = '%02d'%seq
pc_np_file1 = os.path.join(self.keypoints_path, sequence, '%06d.bin' % (index_in_seq))
pc_np1 = np.fromfile(pc_np_file1, dtype=np.float32)
pc_np_file2 = os.path.join(self.keypoints_path, sequence, '%06d.bin' % (index_in_seq2))
pc_np2 = np.fromfile(pc_np_file2, dtype=np.float32)
pc_np1 = pc_np1.reshape((-1, 37))
kp1 = pc_np1[:, :3]
pc_np2 = pc_np2.reshape((-1, 37))
kp2 = pc_np2[:, :3]
score1 = pc_np1[:, 3]
descs1 = pc_np1[:, 4:]
# pose1 = dataset.poses[index_in_seq]
pose1 = self.pose[sequence][index_in_seq]
# pc1 = dataset.get_velo(index_in_seq)
score2 = pc_np2[:, 3]
descs2 = pc_np2[:, 4:]
# pose2 = dataset.poses[index_in_seq2]
pose2 = self.pose[sequence][index_in_seq2]
T_cam0_velo = self.calib[sequence]
if self.descriptor == 'pointnet' or self.descriptor == 'pointnetmsg':
pc_file1 = os.path.join(self.train_path, 'kitti_randomsample_16384_n8', sequence, '%06d.bin' % index_in_seq)
pc_file2 = os.path.join(self.train_path, 'kitti_randomsample_16384_n8', sequence, '%06d.bin' % index_in_seq2)
pc1 = np.fromfile(pc_file1, dtype=np.float32)
pc2 = np.fromfile(pc_file2, dtype=np.float32)
pc1 = pc1.reshape((-1, 8))
pc2 = pc2.reshape((-1, 8))
pc1, pc2 = torch.tensor(pc1, dtype=torch.double), torch.tensor(pc2, dtype=torch.double)
if self.ensure_kpts_num:
# kp1_num = min(self.nfeatures, len(kp1))
# kp2_num = min(self.nfeatures, len(kp2))
valid1 = score1>10
valid2 = score2>10
kp1=kp1[valid1]
kp2=kp2[valid2]
score1=score1[valid1]
score2=score2[valid2]
descs1=descs1[valid1]
descs2=descs2[valid2]
kp1_num = self.nfeatures
kp2_num = self.nfeatures
if kp1_num < len(kp1):
kp1 = kp1[:kp1_num]
score1 = score1[:kp1_num]
descs1 = descs1[:kp1_num]
else:
while kp1_num > len(kp1):
kp1 = np.vstack((kp1[:(kp1_num-len(kp1))], kp1))
score1 = np.hstack((score1[:(kp1_num-len(score1))], score1))
descs1 = np.vstack((descs1[:(kp1_num-len(descs1))], descs1))
if kp2_num < len(kp2):
kp2 = kp2[:kp2_num]
score2 = score2[:kp2_num]
descs2 = descs2[:kp2_num]
else:
while kp2_num > len(kp2):
kp2 = np.vstack((kp2[:(kp2_num-len(kp2))], kp2))
score2 = np.hstack((score2[:(kp2_num-len(score2))], score2))
descs2 = np.vstack((descs2[:(kp2_num-len(descs2))], descs2))
else:
kp1_num = len(kp1)
kp2_num = len(kp2)
kp1_np = np.array([(kp[0], kp[1], kp[2], 1) for kp in kp1])
kp2_np = np.array([(kp[0], kp[1], kp[2], 1) for kp in kp2])
vis_registered_pointcloud = False
if vis_registered_pointcloud:
pc_file1 = os.path.join(self.train_path, 'kitti_randomsample_16384_n8', sequence, '%06d.bin' % index_in_seq)
pc_file2 = os.path.join(self.train_path, 'kitti_randomsample_16384_n8', sequence, '%06d.bin' % index_in_seq2)
pc1 = np.fromfile(pc_file1, dtype=np.float32)
pc2 = np.fromfile(pc_file2, dtype=np.float32)
pc1 = pc1.reshape((-1, 8))
pc2 = pc2.reshape((-1, 8))
kp1_np = np.array([(kp[0], kp[1], kp[2], 1) for kp in pc1])
kp2_np = np.array([(kp[0], kp[1], kp[2], 1) for kp in pc2])
scores1_np = np.array(score1)
scores2_np = np.array(score2)
kp1_np = torch.tensor(kp1_np, dtype=torch.double)
pose1 = torch.tensor(pose1, dtype=torch.double)
kp2_np = torch.tensor(kp2_np, dtype=torch.double)
pose2 = torch.tensor(pose2, dtype=torch.double)
T_cam0_velo = torch.tensor(T_cam0_velo, dtype=torch.double)
'''transform pose from cam0 to LiDAR'''
kp1w_np = torch.einsum('ki,ij,jm->mk', pose1, T_cam0_velo, kp1_np.T)
kp2w_np = torch.einsum('ki,ij,jm->mk', pose2, T_cam0_velo, kp2_np.T)
kp1w_np = kp1w_np[:, :3]
kp2w_np = kp2w_np[:, :3]
vis_registered_keypoints = False
if vis_registered_keypoints:
point_cloud_o3d = o3d.geometry.PointCloud()
point_cloud_o3d.points = o3d.utility.Vector3dVector(kp1w_np.numpy())
point_cloud_o3d.paint_uniform_color([0, 1, 0])
point_cloud_o3d2 = o3d.geometry.PointCloud()
point_cloud_o3d2.points = o3d.utility.Vector3dVector(kp2w_np.numpy())
point_cloud_o3d2.paint_uniform_color([1, 0, 0])
o3d.visualization.draw_geometries([point_cloud_o3d, point_cloud_o3d2])
dists = cdist(kp1w_np, kp2w_np)
'''Find ground true keypoint matching'''
min1 = np.argmin(dists, axis=0)
min2 = np.argmin(dists, axis=1)
min1v = np.min(dists, axis=1)
min1f = min2[min1v < self.threshold]
'''For calculating repeatibility'''
rep = len(min1f)
'''
If you got high-quality keypoints, you can set the
mutual_check to True, otherwise, it is better to
set to False
'''
match1, match2 = -1 * np.ones((len(kp1)), dtype=np.int16), -1 * np.ones((len(kp2)), dtype=np.int16)
if self.mutual_check:
xx = np.where(min2[min1] == np.arange(min1.shape[0]))[0]
matches = np.intersect1d(min1f, xx)
match1[min1[matches]] = matches
match2[matches] = min1[matches]
else:
match1[min1v < self.threshold] = min1f
min2v = np.min(dists, axis=0)
min2f = min1[min2v < self.threshold]
match2[min2v < self.threshold] = min2f
kp1_np = kp1_np[:, :3]
kp2_np = kp2_np[:, :3]
norm1, norm2 = np.linalg.norm(descs1, axis=1), np.linalg.norm(descs2, axis=1)
norm1, norm2 = norm1.reshape(kp1_num, 1), norm2.reshape(kp2_num, 1)
descs1, descs2 = np.multiply(descs1, 1/norm1), np.multiply(descs2, 1/norm2)
descs1, descs2 = torch.tensor(descs1, dtype=torch.double), torch.tensor(descs2, dtype=torch.double)
scores1_np, scores2_np = torch.tensor(scores1_np, dtype=torch.double), torch.tensor(scores2_np, dtype=torch.double)
return{
# 'skip': False,
'keypoints0': kp1_np,
'keypoints1': kp2_np,
'descriptors0': descs1,
'descriptors1': descs2,
'scores0': scores1_np,
'scores1': scores2_np,
'match0': match1,
'match1': match2,
'sequence': sequence,
'idx0': index_in_seq,
'idx1': index_in_seq2,
'pose1': pose1,
'pose2': pose2,
'T_cam0_velo': T_cam0_velo,
# 'cloud0': pc1,
# 'cloud1': pc2,
# 'all_matches': list(all_matches),
# 'file_name': file_name
'rep': rep
}