-
Notifications
You must be signed in to change notification settings - Fork 1
/
2.58.tex
162 lines (144 loc) · 4.64 KB
/
2.58.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
\documentclass[a4paper,12pt]{article}
\usepackage{listings}
\lstset{language=Lisp}
\begin{document}
a. If we assume that $+$ and $*$ always take two arguments and
that expressions are fully parenthesized:
\begin{lstlisting}
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product (multiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(multiplicand exp))))
(else
(error "unknown expression type -- DERIV"
exp))))
(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (make-sum a1 a2)
(cond ((=number? a1 0) a2)
((=number? a2 0) a1)
((and (number? a1) (number? a2)) (+ a1 a2))
(else (list a1 '+ a2))))
(define (=number? exp num)
(and (number? exp) (= exp num)))
(define (sum? x)
(and (pair? x) (eq? (cadr x) '+)))
(define (addend s) (car s))
(define (augend s) (caddr s))
(define (make-product m1 m2)
(cond ((or (=number? m1 0) (=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2)) (* m1 m2))
(else (list m1 '* m2))))
(define (product? x)
(and (pair? x) (eq? (cadr x) '*)))
(define (multiplier p) (car p))
(define (multiplicand p) (caddr p))
\end{lstlisting}
\medskip
b. Here we drops unnecessary parentheses and assumes that
multiplication is done before addition.
\begin{lstlisting}
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product (multiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(multiplicand exp))))
(else
(error "unknown expression type -- DERIV"
exp))))
(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (simplify sym-proc acc vars args)
(let ((proc (eval sym-proc)))
(cond ((null? args)
(cons acc (reverse vars)))
((number? (car args))
(simplify sym-proc
(proc (car args) acc)
vars
(cdr args)))
((and (eq? sym-proc '+)
(pair? (car args)))
(simplify sym-proc
acc
(append (car args)
(cons sym-proc vars))
(cdr args)))
(else
(simplify sym-proc
acc
(cons (car args)
(cons sym-proc vars))
(cdr args))))))
(define (make-sum a1 a2 . rest)
(let ((lst (simplify '+ 0 '()
(cons a1 (cons a2 rest)))))
(cond ((null? (cdr lst)) (car lst))
((zero? (car lst))
(if (null? (cdddr lst))
(caddr lst)
(cddr lst)))
(else lst))))
(define (=number? exp num)
(and (number? exp) (= exp num)))
(define (sum? x)
(and (pair? x) (memq '+ x)))
(define (first-op e sym)
(define (iter res lst)
(cond ((null? lst)
(error "expression doesn't contain -- "
sym))
((eq? (car lst) sym)
(if (null? (cdr res))
(car res)
(reverse res)))
(else
(iter (cons (car lst) res)
(cdr lst)))))
(iter '() e))
(define (second-op e sym)
(let ((l (memq sym e)))
(cond ((null? l)
(error "expression doesn't contain -- "
sym))
((null? (cddr l)) (cadr l))
(else (cdr l)))))
(define (addend s) (first-op s '+))
(define (augend s) (second-op s '+))
(define (make-product m1 m2 . rest)
(let ((lst (simplify '* 1 '()
(cons m1 (cons m2 rest)))))
(cond ((null? (cdr lst)) (car lst))
((zero? (car lst)) 0)
((= (car lst) 1)
(if (null? (cdddr lst))
(caddr lst)
(cddr lst)))
(else lst))))
(define (product? x)
(and (pair? x) (not (sum? x)) (memq '* x)))
(define (multiplier p) (first-op p '*))
(define (multiplicand p) (second-op p '*))
\end{lstlisting}
\end{document}