forked from kshehata/SealPIR
-
Notifications
You must be signed in to change notification settings - Fork 1
/
pir_client.cpp
250 lines (204 loc) · 8.56 KB
/
pir_client.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#include "pir_client.hpp"
using namespace std;
using namespace seal;
using namespace seal::util;
PIRClient::PIRClient(const EncryptionParameters ¶ms,
const PirParams &pir_parms) :
params_(params){
newcontext_ = SEALContext::Create(params_);
pir_params_ = pir_parms;
keygen_ = make_unique<KeyGenerator>(newcontext_);
encryptor_ = make_unique<Encryptor>(newcontext_, keygen_->public_key());
SecretKey secret_key = keygen_->secret_key();
decryptor_ = make_unique<Decryptor>(newcontext_, secret_key);
evaluator_ = make_unique<Evaluator>(newcontext_);
}
PirQuery PIRClient::generate_query(uint64_t desiredIndex) {
indices_ = compute_indices(desiredIndex, pir_params_.nvec);
compute_inverse_scales();
vector<vector<Ciphertext> > result(pir_params_.d);
int N = params_.poly_modulus_degree();
Plaintext pt(params_.poly_modulus_degree());
for (uint32_t i = 0; i < indices_.size(); i++) {
uint32_t num_ptxts = ceil( (pir_params_.nvec[i] + 0.0) / N);
// initialize result.
cout << "Client: index " << i + 1 << "/ " << indices_.size() << " = " << indices_[i] << endl;
cout << "Client: number of ctxts needed for query = " << num_ptxts << endl;
for (uint32_t j =0; j < num_ptxts; j++){
pt.set_zero();
if (indices_[i] > N*(j+1) || indices_[i] < N*j){
#ifdef DEBUG
cout << "Client: coming here: so just encrypt zero." << endl;
#endif
// just encrypt zero
} else{
#ifdef DEBUG
cout << "Client: encrypting a real thing " << endl;
#endif
uint64_t real_index = indices_[i] - N*j;
pt[real_index] = 1;
}
Ciphertext dest;
encryptor_->encrypt(pt, dest);
dest.parms_id() = newcontext_->first_parms_id();
result[i].push_back(dest);
}
}
return result;
}
uint64_t PIRClient::get_fv_index(uint64_t element_idx, uint64_t ele_size) {
auto N = params_.poly_modulus_degree();
auto logt = floor(log2(params_.plain_modulus().value()));
auto ele_per_ptxt = elements_per_ptxt(logt, N, ele_size);
return static_cast<uint64_t>(element_idx / ele_per_ptxt);
}
uint64_t PIRClient::get_fv_offset(uint64_t element_idx, uint64_t ele_size) {
uint32_t N = params_.poly_modulus_degree();
uint32_t logt = floor(log2(params_.plain_modulus().value()));
uint64_t ele_per_ptxt = elements_per_ptxt(logt, N, ele_size);
return element_idx % ele_per_ptxt;
}
Plaintext PIRClient::decode_reply(PirReply reply) {
uint32_t exp_ratio = pir_params_.expansion_ratio;
uint32_t recursion_level = pir_params_.d;
vector<Ciphertext> temp = reply;
uint64_t t = params_.plain_modulus().value();
for (uint32_t i = 0; i < recursion_level; i++) {
cout << "Client: " << i + 1 << "/ " << recursion_level << "-th decryption layer started." << endl;
vector<Ciphertext> newtemp;
vector<Plaintext> tempplain;
for (uint32_t j = 0; j < temp.size(); j++) {
Plaintext ptxt;
decryptor_->decrypt(temp[j], ptxt);
#ifdef DEBUG
cout << "Client: reply noise budget = " << decryptor_->invariant_noise_budget(temp[j]) << endl;
#endif
// multiply by inverse_scale for every coefficient of ptxt
for(int h = 0; h < ptxt.coeff_count(); h++){
ptxt[h] *= inverse_scales_[recursion_level - 1 - i];
ptxt[h] %= t;
}
//cout << "decoded (and scaled) plaintext = " << ptxt.to_string() << endl;
tempplain.push_back(ptxt);
#ifdef DEBUG
cout << "recursion level : " << i << " noise budget : ";
cout << decryptor_->invariant_noise_budget(temp[j]) << endl;
#endif
if ((j + 1) % exp_ratio == 0 && j > 0) {
// Combine into one ciphertext.
Ciphertext combined = compose_to_ciphertext(tempplain);
newtemp.push_back(combined);
tempplain.clear();
// cout << "Client: const term of ciphertext = " << combined[0] << endl;
}
}
cout << "Client: done." << endl;
cout << endl;
if (i == recursion_level - 1) {
assert(temp.size() == 1);
return tempplain[0];
} else {
tempplain.clear();
temp = newtemp;
}
}
// This should never be called
assert(0);
Plaintext fail;
return fail;
}
GaloisKeys PIRClient::generate_galois_keys() {
// Generate the Galois keys needed for coeff_select.
vector<uint32_t> galois_elts;
int N = params_.poly_modulus_degree();
int logN = get_power_of_two(N);
//cout << "printing galois elements...";
for (int i = 0; i < logN; i++) {
galois_elts.push_back((N + exponentiate_uint64(2, i)) / exponentiate_uint64(2, i));
//#ifdef DEBUG
// cout << galois_elts.back() << ", ";
//#endif
}
// TODO check that it's ok to drop this param?
// return keygen_->galois_keys(pir_params_.dbc, galois_elts);
return keygen_->galois_keys_local(galois_elts);
}
Ciphertext PIRClient::compose_to_ciphertext(vector<Plaintext> plains) {
size_t encrypted_count = 2;
auto coeff_count = params_.poly_modulus_degree();
auto coeff_mod_count = params_.coeff_modulus().size();
uint64_t plainMod = params_.plain_modulus().value();
int logt = floor(log2(plainMod));
Ciphertext result(newcontext_);
result.resize(encrypted_count);
// A triple for loop. Going over polys, moduli, and decomposed index.
for (int i = 0; i < encrypted_count; i++) {
uint64_t *encrypted_pointer = result.data(i);
for (int j = 0; j < coeff_mod_count; j++) {
// populate one poly at a time.
// create a polynomial to store the current decomposition value
// which will be copied into the array to populate it at the current
// index.
double logqj = log2(params_.coeff_modulus()[j].value());
int expansion_ratio = ceil(logqj / logt);
uint64_t cur = 1;
// cout << "Client: expansion_ratio = " << expansion_ratio << endl;
for (int k = 0; k < expansion_ratio; k++) {
// Compose here
const uint64_t *plain_coeff =
plains[k + j * (expansion_ratio) + i * (coeff_mod_count * expansion_ratio)]
.data();
for (int m = 0; m < coeff_count; m++) {
if (k == 0) {
*(encrypted_pointer + m + j * coeff_count) = *(plain_coeff + m) * cur;
} else {
*(encrypted_pointer + m + j * coeff_count) += *(plain_coeff + m) * cur;
}
}
// *(encrypted_pointer + coeff_count - 1 + j * coeff_count) = 0;
cur <<= logt;
}
// XXX: Reduction modulo qj. This is needed?
/*
for (int m = 0; m < coeff_count; m++) {
*(encrypted_pointer + m + j * coeff_count) %=
params_.coeff_modulus()[j].value();
}
*/
}
}
result.parms_id() = newcontext_->first_parms_id();
return result;
}
void PIRClient::compute_inverse_scales(){
if (indices_.size() != pir_params_.nvec.size()){
throw invalid_argument("size mismatch");
}
int logt = floor(log2(params_.plain_modulus().value()));
uint64_t N = params_.poly_modulus_degree();
uint64_t t = params_.plain_modulus().value();
int logN = log2(N);
int logm = logN;
inverse_scales_.clear();
for(int i = 0; i < pir_params_.nvec.size(); i++){
uint64_t index_modN = indices_[i] % N;
uint64_t numCtxt = ceil ( (pir_params_.nvec[i] + 0.0) / N); // number of query ciphertexts.
uint64_t batchId = indices_[i] / N;
if (batchId == numCtxt - 1) {
cout << "Client: adjusting the logm value..." << endl;
logm = ceil(log2((pir_params_.nvec[i] % N)));
}
uint64_t inverse_scale;
int quo = logm / logt;
int mod = logm % logt;
inverse_scale = pow(2, logt - mod);
if ((quo +1) %2 != 0){
inverse_scale = params_.plain_modulus().value() - pow(2, logt - mod);
}
inverse_scales_.push_back(inverse_scale);
if ( (inverse_scale << logm) % t != 1){
throw logic_error("something wrong");
}
cout << "Client: logm, inverse scale, t = " << logm << ", " << inverse_scale << ", " << t << endl;
}
}