-
Notifications
You must be signed in to change notification settings - Fork 25
/
PhotoWakeUpDepthMaps.py
180 lines (138 loc) · 5.09 KB
/
PhotoWakeUpDepthMaps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
"""
Demo of HMR.
Note that HMR requires the bounding box of the person in the image. The best performance is obtained when max length of the person in the image is roughly 150px.
When only the image path is supplied, it assumes that the image is centered on a person whose length is roughly 150px.
Alternatively, you can supply output of the openpose to figure out the bbox and the right scale factor.
Sample usage:
# On images on a tightly cropped image around the person
python -m demo --img_path data/im1963.jpg
python -m demo --img_path data/coco1.png
# On images, with openpose output
python -m demo --img_path data/random.jpg --json_path data/random_keypoints.json
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
from absl import flags
import numpy as np
import json
import cv2
import skimage.io as io
import tensorflow as tf
from src.util import depthRenderer as vis_util
from src.util import image as img_util
from src.util import openpose as op_util
import src.config
from src.RunModel import RunModel
def visualize(img, proc_param, joints, verts, cam, img_path):
"""
Renders the result in original image coordinate frame.
"""
cam_for_render, vert_shifted, joints_orig = vis_util.get_original(
proc_param, verts, cam, joints, img_size=img.shape[:2])
folder = '/'.join(img_path.split('/')[0:-1])
print("FOLDER!!!!!!!!!!!")
print(folder)
# Render results
config = flags.FLAGS
config(sys.argv)
# Using pre-trained model, change this to use your own.
config.load_path = src.config.PRETRAINED_MODEL
config.batch_size = 1
renderer = vis_util.SMPLRenderer(face_path=config.smpl_face_path)
# skel_img = vis_util.draw_skeleton(img, joints_orig)
# rend_img_overlay = renderer(
# vert_shifted, cam=cam_for_render, img=img, do_alpha=True)
rend_img = renderer(
vert_shifted, cam=cam_for_render, img_size=img.shape[:2])
# rend_img_vp1 = renderer.rotated(
# vert_shifted, 60, cam=cam_for_render, img_size=img.shape[:2])
rend_img_vp2 = renderer.rotated(
vert_shifted, 180, cam=cam_for_render, img_size=img.shape[:2])
depthMapPath = folder + '/depthMap.png'
print("Saving Depth Map to:")
print(depthMapPath)
cv2.imwrite(depthMapPath, rend_img)
# cv2.imshow('Depth Map',rend_img)
# cv2.waitKey(0)
depthMapPath = folder + '/depthMapBack.png'
print("Saving Depth Map to:")
print(depthMapPath)
cv2.imwrite(depthMapPath, rend_img_vp2)
# cv2.imshow('Depth Map',rend_img_vp2)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
# import matplotlib.pyplot as plt
# plt.ion()
# plt.figure(1)
# plt.clf()
# plt.subplot(231)
# plt.imshow(img)
# plt.title('input')
# plt.axis('off')
# plt.subplot(232)
# plt.imshow(skel_img)
# plt.title('joint projection')
# plt.axis('off')
# plt.subplot(233)
# plt.imshow(rend_img_overlay)
# plt.title('3D Mesh overlay')
# plt.axis('off')
# plt.subplot(234)
# plt.imshow(rend_img)
# plt.title('3D mesh')
# plt.axis('off')
# plt.subplot(235)
# plt.imshow(rend_img_vp1)
# plt.title('diff vp')
# plt.axis('off')
# plt.subplot(236)
# plt.imshow(rend_img_vp2)
# plt.title('diff vp')
# plt.axis('off')
# plt.draw()
# plt.show()
# import ipdb
# ipdb.set_trace()
def preprocess_image(img_path, json_path=None):
img = io.imread(img_path)
if img.shape[2] == 4:
img = img[:, :, :3]
if json_path is None:
if np.max(img.shape[:2]) != config.img_size:
print('Resizing so the max image size is %d..' % config.img_size)
scale = (float(config.img_size) / np.max(img.shape[:2]))
else:
scale = 1.
center = np.round(np.array(img.shape[:2]) / 2).astype(int)
# image center in (x,y)
center = center[::-1]
else:
scale, center = op_util.get_bbox(json_path)
crop, proc_param = img_util.scale_and_crop(img, scale, center,
config.img_size)
# Normalize image to [-1, 1]
crop = 2 * ((crop / 255.) - 0.5)
return crop, proc_param, img
def main(img_path, json_path=None):
sess = tf.Session()
model = RunModel(config, sess=sess)
input_img, proc_param, img = preprocess_image(img_path, json_path)
# Add batch dimension: 1 x D x D x 3
input_img = np.expand_dims(input_img, 0)
joints, verts, cams, joints3d, theta = model.predict(
input_img, get_theta=True)
visualize(img, proc_param, joints[0], verts[0], cams[0], img_path)
#print(theta)
theta_out = theta.tolist()
with open('results/HMR_value_out.json', 'w') as outfile:
json.dump([theta_out], outfile)
if __name__ == '__main__':
config = flags.FLAGS
config(sys.argv)
# Using pre-trained model, change this to use your own.
config.load_path = src.config.PRETRAINED_MODEL
config.batch_size = 1
renderer = vis_util.SMPLRenderer(face_path=config.smpl_face_path)
main(config.img_path, config.json_path)