diff --git a/Project.toml b/Project.toml index 01f4198..e180329 100644 --- a/Project.toml +++ b/Project.toml @@ -1,10 +1,9 @@ name = "Groups" uuid = "5d8bd718-bd84-11e8-3b40-ad14f4a32557" authors = ["Marek Kaluba "] -version = "0.6.0" +version = "0.7.0" [deps] -AbstractAlgebra = "c3fe647b-3220-5bb0-a1ea-a7954cac585d" GroupsCore = "d5909c97-4eac-4ecc-a3dc-fdd0858a4120" KnuthBendix = "c2604015-7b3d-4a30-8a26-9074551ec60a" OrderedCollections = "bac558e1-5e72-5ebc-8fee-abe8a469f55d" @@ -12,17 +11,19 @@ Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" ThreadsX = "ac1d9e8a-700a-412c-b207-f0111f4b6c0d" [compat] -AbstractAlgebra = "0.15, 0.16" -GroupsCore = "^0.3" -KnuthBendix = "^0.2.1" +AbstractAlgebra = "0.22" +GroupsCore = "0.4" +KnuthBendix = "0.3" OrderedCollections = "1" -ThreadsX = "^0.1.0" -julia = "1.3, 1.4, 1.5, 1.6" +PermutationGroups = "0.3" +ThreadsX = "0.1" +julia = "1.3" [extras] AbstractAlgebra = "c3fe647b-3220-5bb0-a1ea-a7954cac585d" BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" +PermutationGroups = "8bc5a954-2dfc-11e9-10e6-cd969bffa420" Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [targets] -test = ["Test", "BenchmarkTools", "AbstractAlgebra"] +test = ["Test", "BenchmarkTools", "AbstractAlgebra", "PermutationGroups"] diff --git a/src/Groups.jl b/src/Groups.jl index 93924cf..a2275e8 100644 --- a/src/Groups.jl +++ b/src/Groups.jl @@ -10,7 +10,7 @@ import Random import OrderedCollections: OrderedSet export Alphabet, AutomorphismGroup, FreeGroup, FreeGroup, FPGroup, FPGroupElement, SpecialAutomorphismGroup -export alphabet, evaluate, word +export alphabet, evaluate, word, gens include("types.jl") include("hashing.jl") @@ -18,6 +18,7 @@ include("normalform.jl") include("autgroups.jl") include("groups/sautFn.jl") +include("groups/mcg.jl") include("wl_ball.jl") end # of module Groups diff --git a/src/autgroups.jl b/src/autgroups.jl index d214005..6ac0165 100644 --- a/src/autgroups.jl +++ b/src/autgroups.jl @@ -14,7 +14,7 @@ end object(G::AutomorphismGroup) = G.group rewriting(G::AutomorphismGroup) = G.rws -function equality_data(f::FPGroupElement{<:AutomorphismGroup}) +function equality_data(f::AbstractFPGroupElement{<:AutomorphismGroup}) imf = evaluate(f) # return normalform!.(imf) @@ -26,7 +26,7 @@ function equality_data(f::FPGroupElement{<:AutomorphismGroup}) return imf end -function Base.:(==)(g::A, h::A) where {A<:FPGroupElement{<:AutomorphismGroup}} +function Base.:(==)(g::A, h::A) where {A<:AbstractFPGroupElement{<:AutomorphismGroup}} @assert parent(g) === parent(h) if _isvalidhash(g) && _isvalidhash(h) @@ -70,7 +70,7 @@ function Base.:(==)(g::A, h::A) where {A<:FPGroupElement{<:AutomorphismGroup}} return equal end -function Base.isone(g::FPGroupElement{<:AutomorphismGroup}) +function Base.isone(g::AbstractFPGroupElement{<:AutomorphismGroup}) if length(word(g)) > 8 normalform!(g) end @@ -79,29 +79,157 @@ end # eye-candy -Base.show(io::IO, ::Type{<:FPGroupElement{<:AutomorphismGroup{T}}}) where {T} = +Base.show(io::IO, ::Type{<:AbstractFPGroupElement{<:AutomorphismGroup{T}}}) where {T} = print(io, "Automorphism{$T,…}") Base.show(io::IO, A::AutomorphismGroup) = print(io, "automorphism group of ", object(A)) +function Base.show(io::IO, ::MIME"text/plain", a::AbstractFPGroupElement{<:AutomorphismGroup}) + println(io, " ┌ $(a):") + d = domain(a) + im = evaluate(a) + for (x, imx) in zip(d, im[1:end-1]) + println(io, " │ $x ↦ $imx") + end + println(io, " └ $(last(d)) ↦ $(last(im))") +end + ## Automorphism Evaluation -domain(f::FPGroupElement{<:AutomorphismGroup}) = deepcopy(parent(f).domain) +domain(f::AbstractFPGroupElement{<:AutomorphismGroup}) = deepcopy(parent(f).domain) # tuple(gens(object(parent(f)))...) -evaluate(f::FPGroupElement{<:AutomorphismGroup}) = evaluate!(domain(f), f) +evaluate(f::AbstractFPGroupElement{<:AutomorphismGroup}) = evaluate!(domain(f), f) function evaluate!( t::NTuple{N,T}, - f::FPGroupElement{<:AutomorphismGroup{<:Group}}, + f::AbstractFPGroupElement{<:AutomorphismGroup{<:Group}}, tmp = one(first(t)), -) where {N, T} +) where {N, T<:FPGroupElement} A = alphabet(f) - AF = alphabet(object(parent(f))) for idx in word(f) - t = @inbounds evaluate!(t, A[idx], AF, tmp)::NTuple{N,T} + t = @inbounds evaluate!(t, A[idx], tmp)::NTuple{N,T} end return t end -evaluate!(t::NTuple{N, T}, s::GSymbol, A, tmp=one(first(t))) where {N, T} = throw("you need to implement `evaluate!(::$(typeof(t)), ::$(typeof(s)), ::Alphabet, tmp=one(first(t)))`") +evaluate!(t::NTuple{N, T}, s::GSymbol, tmp=nothing) where {N, T} = throw("you need to implement `evaluate!(::$(typeof(t)), ::$(typeof(s)), ::Alphabet, tmp=one(first(t)))`") + +# forward evaluate by substitution + +struct LettersMap{T, A} + indices_map::Dict{Int, T} + A::A +end + +function LettersMap(a::FPGroupElement{<:AutomorphismGroup}) + dom = domain(a) + @assert all(isone ∘ length ∘ word, dom) + A = alphabet(first(dom)) + first_letters = first.(word.(dom)) + img = evaluate!(dom, a) + + # (dom[i] → img[i] is a map from domain to images) + # we need a map from alphabet indices → (gens, gens⁻¹) → images + # here we do it for elements of the domain + # (trusting it's a set of generators that define a) + @assert length(dom) == length(img) + + indices_map = Dict(A[A[fl]] => word(im) for (fl, im) in zip(first_letters, img)) + # inverses of generators are dealt lazily in getindex + + return LettersMap(indices_map, A) +end + + +function Base.getindex(lm::LettersMap, i::Integer) + # here i is an index of an alphabet + @boundscheck 1 ≤ i ≤ length(KnuthBendix.letters(lm.A)) + + if !haskey(lm.indices_map, i) + img = if haskey(lm.indices_map, inv(lm.A, i)) + inv(lm.A, lm.indices_map[inv(lm.A, i)]) + else + @warn "LetterMap: neither $i nor its inverse has assigned value" + one(valtype(lm.indices_map)) + end + lm.indices_map[i] = img + end + return lm.indices_map[i] +end + +function (a::FPGroupElement{<:AutomorphismGroup})(g::FPGroupElement) + @assert object(parent(a)) === parent(g) + img_w = evaluate(word(g), LettersMap(a)) + return parent(g)(img_w) +end + +evaluate(w::AbstractWord, lm::LettersMap) = evaluate!(one(w), w, lm) + +function evaluate!(res::AbstractWord, w::AbstractWord, lm::LettersMap) + for i in w + append!(res, lm[i]) + end + return res +end + +# compile automorphisms + +compiled(a) = eval(generated_evaluate(a)) + +function generated_evaluate(a::FPGroupElement{<:AutomorphismGroup}) + lm = Groups.LettersMap(a) + d = Groups.domain(a) + @assert all(length.(word.(d)) .== 1) + A = alphabet(first(d)) + first_ltrs = first.(word.(d)) + + args = [Expr(:call, :*) for _ in first_ltrs] + + for (idx, letter) in enumerate(first_ltrs) + for l in lm[letter] + k = findfirst(==(l), first_ltrs) + if k !== nothing + push!(args[idx].args, :(d[$k])) + continue + end + k = findfirst(==(inv(A, l)), first_ltrs) + if k !== nothing + push!(args[idx].args, :(inv(d[$k]))) + continue + end + throw("Letter $l doesn't seem to be mapped anywhere!") + end + end + locals = Dict{Expr, Symbol}() + locals_counter = 0 + for (i,v) in enumerate(args) + @assert length(v.args) >= 2 + if length(v.args) > 2 + for (j, a) in pairs(v.args) + if a isa Expr && a.head == :call "$a" + @assert a.args[1] == :inv + if !(a in keys(locals)) + locals[a] = Symbol("var_#$locals_counter") + locals_counter += 1 + end + v.args[j] = locals[a] + end + end + else + args[i] = v.args[2] + end + end + + q = quote + $([:(local $v = $k) for (k,v) in locals]...) + end + + # return args, locals + + return :(d -> begin + @boundscheck @assert length(d) == $(length(d)) + $q + @inbounds tuple($(args...)) + end) +end diff --git a/src/groups/mcg.jl b/src/groups/mcg.jl new file mode 100644 index 0000000..5d9041f --- /dev/null +++ b/src/groups/mcg.jl @@ -0,0 +1,103 @@ +struct SurfaceGroup{T, S, R} <: AbstractFPGroup + genus::Int + boundaries::Int + gens::Vector{T} + relations::Vector{<:Pair{S,S}} + rws::R +end + +include("symplectic_twists.jl") + +genus(S::SurfaceGroup) = S.genus + +function Base.show(io::IO, S::SurfaceGroup) + print(io, "π₁ of the orientable surface of genus $(genus(S))") + if S.boundaries > 0 + print(io, " with $(S.boundaries) boundary components") + end +end + +function SurfaceGroup(genus::Integer, boundaries::Integer) + @assert genus > 1 + + # The (confluent) rewriting systems comes from + # S. Hermiller, Rewriting systems for Coxeter groups + # Journal of Pure and Applied Algebra + # Volume 92, Issue 2, 7 March 1994, Pages 137-148 + # https://doi.org/10.1016/0022-4049(94)90019-1 + # Note: the notation is "inverted": + # a_g of the article becomes A_g here. + + ltrs = String[] + for i in 1:genus + subscript = join('₀'+d for d in reverse(digits(i))) + append!(ltrs, ["A" * subscript, "a" * subscript, "B" * subscript, "b" * subscript]) + end + Al = Alphabet(reverse!(ltrs)) + + for i in 1:genus + subscript = join('₀'+d for d in reverse(digits(i))) + KnuthBendix.set_inversion!(Al, "a" * subscript, "A" * subscript) + KnuthBendix.set_inversion!(Al, "b" * subscript, "B" * subscript) + end + + if boundaries == 0 + word = Int[] + + for i in reverse(1:genus) + x = 4 * i + append!(word, [x, x-2, x-1, x-3]) + end + comms = Word(word) + word_rels = [ comms => one(comms) ] + + rws = KnuthBendix.RewritingSystem(word_rels, KnuthBendix.RecursivePathOrder(Al)) + KnuthBendix.knuthbendix!(rws) + elseif boundaries == 1 + S = typeof(one(Word(Int[]))) + word_rels = Pair{S, S}[] + rws = RewritingSystem(word_rels, KnuthBendix.LenLex(Al)) + else + throw("Not Implemented") + end + + F = FreeGroup(alphabet(rws)) + rels = [F(lhs)=>F(rhs) for (lhs,rhs) in word_rels] + + return SurfaceGroup(genus, boundaries, KnuthBendix.letters(Al)[2:2:end], rels, rws) +end + +rewriting(S::SurfaceGroup) = S.rws +KnuthBendix.alphabet(S::SurfaceGroup) = alphabet(rewriting(S)) +relations(S::SurfaceGroup) = S.relations + +function symplectic_twists(π₁Σ::SurfaceGroup) + g = genus(π₁Σ) + + saut = SpecialAutomorphismGroup(FreeGroup(2g), maxrules=100) + + Aij = [SymplecticMappingClass(saut, :A, i, j) for i in 1:g for j in 1:g if i≠j] + + Bij = [SymplecticMappingClass(saut, :B, i, j) for i in 1:g for j in 1:g if i≠j] + + mBij = [SymplecticMappingClass(saut, :B, i, j, minus=true) for i in 1:g for j in 1:g if i≠j] + + Bii = [SymplecticMappingClass(saut, :B, i, i) for i in 1:g] + + mBii = [SymplecticMappingClass(saut, :B, i, i, minus=true) for i in 1:g] + + return [Aij; Bij; mBij; Bii; mBii] +end + +KnuthBendix.alphabet(G::AutomorphismGroup{<:SurfaceGroup}) = rewriting(G) + +function AutomorphismGroup(π₁Σ::SurfaceGroup; kwargs...) + S = vcat(symplectic_twists(π₁Σ)...) + A = Alphabet(S) + + # this is to fix the definitions of symplectic twists: + # with i->gens(π₁Σ, i) the corresponding automorphisms return + # reversed words + domain = ntuple(i->inv(gens(π₁Σ, i)), 2genus(π₁Σ)) + return AutomorphismGroup(π₁Σ, S, A, domain) +end diff --git a/src/groups/sautFn.jl b/src/groups/sautFn.jl index c47612f..d7b0bd1 100644 --- a/src/groups/sautFn.jl +++ b/src/groups/sautFn.jl @@ -7,8 +7,10 @@ function SpecialAutomorphismGroup(F::FreeGroup; ordering = KnuthBendix.LenLex, k A, rels = gersten_relations(n, commutative = false) S = KnuthBendix.letters(A)[1:2(n^2-n)] + maxrules = 1000*n + rws = KnuthBendix.RewritingSystem(rels, ordering(A)) - KnuthBendix.knuthbendix!(rws; kwargs...) + KnuthBendix.knuthbendix!(rws; maxrules=maxrules, kwargs...) return AutomorphismGroup(F, S, rws, ntuple(i -> gens(F, i), n)) end diff --git a/src/groups/symplectic_twists.jl b/src/groups/symplectic_twists.jl new file mode 100644 index 0000000..f9f36dd --- /dev/null +++ b/src/groups/symplectic_twists.jl @@ -0,0 +1,269 @@ +struct ΡΛ + id::Symbol + A::Alphabet + N::Int +end + +function Base.getindex(rl::ΡΛ, i::Integer, j::Integer) + @assert 1 ≤ i ≤ rl.N "Got $i > $(rl.N)" + @assert 1 ≤ j ≤ rl.N "Got $j > $(rl.N)" + @assert i ≠ j + @assert rl.id ∈ (:λ, :ϱ) + rl.id == :λ && return Word([rl.A[λ(i, j)]]) + rl.id == :ϱ && return Word([rl.A[ϱ(i, j)]]) +end + +function Te_diagonal(λ::Groups.ΡΛ, ϱ::Groups.ΡΛ, i::Integer) + @assert λ.N == ϱ.N + @assert λ.id == :λ && ϱ.id == :ϱ + + N = λ.N + @assert iseven(N) + A = λ.A + n = N ÷ 2 + j = i + 1 + + if i == n + τ = rotation_element(λ, ϱ) + return inv(A, τ) * Te_diagonal(λ, ϱ, 1) * τ + end + + @assert 1 <= i < n + + NI = (2n - 2i) + 1 + NJ = (2n - 2j) + 1 + I = (2n - 2i) + 2 + J = (2n - 2j) + 2 + + g = one(Word(Int[])) + g *= λ[NJ, NI] # β ↦ α*β + g *= λ[NI, I] * inv(A, ϱ[NI, J]) # α ↦ a*α*b^-1 + g *= inv(A, λ[NJ, NI]) # β ↦ b*α^-1*a^-1*α*β + g *= λ[J, NI] * inv(A, λ[J, I]) # b ↦ α + g *= inv(A, λ[J, NI]) # b ↦ b*α^-1*a^-1*α + g *= inv(A, ϱ[J, NI]) * ϱ[J, I] # b ↦ b*α^-1*a^-1*α*b*α^-1 + g *= ϱ[J, NI] # b ↦ b*α^-1*a^-1*α*b*α^-1*a*α*b^-1 + + return g +end + +function Te_lantern(A::Alphabet, b₀::T, a₁::T, a₂::T, a₃::T, a₄::T, a₅::T) where {T} + a₀ = (a₁ * a₂ * a₃)^4 * inv(A, b₀) + X = a₄ * a₅ * a₃ * a₄ # from Primer + b₁ = inv(A, X) * a₀ * X # from Primer + Y = a₂ * a₃ * a₁ * a₂ + return inv(A, Y) * b₁ * Y # b₂ from Primer +end + +function Ta(λ::Groups.ΡΛ, i::Integer) + @assert λ.id == :λ; + return λ[mod1(λ.N-2i+1, λ.N), mod1(λ.N-2i+2, λ.N)] +end + +function Tα(λ::Groups.ΡΛ, i::Integer) + @assert λ.id == :λ; + return inv(λ.A, λ[mod1(λ.N-2i+2, λ.N), mod1(λ.N-2i+1, λ.N)]) +end + +function Te(λ::ΡΛ, ϱ::ΡΛ, i, j) + @assert i ≠ j + + @assert λ.N == ϱ.N + @assert λ.A == ϱ.A + @assert λ.id == :λ && ϱ.id == :ϱ + + @assert iseven(λ.N) + genus = λ.N÷2 + i = mod1(i, genus) + j = mod1(j, genus) + + @assert 1 ≤ i ≤ λ.N + @assert 1 ≤ j ≤ λ.N + + A = λ.A + + if mod(j - (i + 1), genus) == 0 + return Te_diagonal(λ, ϱ, i) + else + return inv(A, Te_lantern( + A, + # Our notation: # Primer notation: + inv(A, Ta(λ, i + 1)), # b₀ + inv(A, Ta(λ, i)), # a₁ + inv(A, Tα(λ, i)), # a₂ + inv(A, Te_diagonal(λ, ϱ, i)), # a₃ + inv(A, Tα(λ, i + 1)), # a₄ + inv(A, Te(λ, ϱ, i + 1, j)), # a₅ + )) + end +end + +""" + rotation_element(G::AutomorphismGroup{<:FreeGroup}) +Return the element of `G` which corresponds to shifting generators of the free group. + +In the corresponding mapping class group this element acts by rotation of the surface anti-clockwise. +""" +function rotation_element(G::AutomorphismGroup{<:FreeGroup}) + + A = alphabet(G) + @assert iseven(ngens(object(G))) + genus = ngens(object(G)) ÷ 2 + + λ = ΡΛ(:λ, A, 2genus) + ϱ = ΡΛ(:ϱ, A, 2genus) + + return G(rotation_element(λ, ϱ)) +end + +function rotation_element(λ::ΡΛ, ϱ::ΡΛ) + @assert iseven(λ.N) + genus = λ.N÷2 + A = λ.A + + halftwists = map(1:genus-1) do i + j = i + 1 + x = Ta(λ, j) * inv(A, Ta(λ, i)) * Tα(λ, j) * Te_diagonal(λ, ϱ, i) + δ = x * Tα(λ, i) * inv(A, x) + c = + inv(A, Ta(λ, j)) * + Te(λ, ϱ, i, j) * + Tα(λ, i)^2 * + inv(A, δ) * + inv(A, Ta(λ, j)) * + Ta(λ, i) * + δ + z = + Te_diagonal(λ, ϱ, i) * + inv(A, Ta(λ, i)) * + Tα(λ, i) * + Ta(λ, i) * + inv(A, Te_diagonal(λ, ϱ, i)) + + Ta(λ, i) * inv(A, Ta(λ, j) * Tα(λ, j))^6 * (Ta(λ, j) * Tα(λ, j) * z)^4 * c + end + + τ = (Ta(λ, 1) * Tα(λ, 1))^6 * prod(halftwists) + return τ +end + +function mcg_twists(G::AutomorphismGroup{<:FreeGroup}) + + @assert iseven(ngens(object(G))) + genus = ngens(object(G)) ÷ 2 + + genus < 3 && throw("Not Implemented: genus = $genus < 3") + + A = KnuthBendix.alphabet(G) + + λ = ΡΛ(:λ, A, 2genus) + ϱ = ΡΛ(:ϱ, A, 2genus) + + Tas = [Ta(λ, i) for i in 1:genus] + Tαs = [Tα(λ, i) for i in 1:genus] + + idcs = ((i, j) for i in 1:genus for j in i+1:genus) + Tes = [Te(λ, ϱ, i, j) for (i, j) in idcs] + + return Tas, Tαs, Tes +end + +struct SymplecticMappingClass{T, F} <: GSymbol + id::Symbol # :A, :B + i::UInt + j::UInt + minus::Bool + inv::Bool + autFn_word::T + f::F +end + +Base.:(==)(a::SymplecticMappingClass, b::SymplecticMappingClass) = a.autFn_word == b.autFn_word + +Base.hash(a::SymplecticMappingClass, h::UInt) = hash(a.autFn_word, h) + +function SymplecticMappingClass( + sautFn::AutomorphismGroup{<:FreeGroup}, + id::Symbol, + i::Integer, + j::Integer; + minus = false, + inverse = false, +) + @assert i > 0 && j > 0 + id === :A && @assert i ≠ j + @assert iseven(ngens(object(sautFn))) + genus = ngens(object(sautFn))÷2 + + A = alphabet(sautFn) + λ = ΡΛ(:λ, A, 2genus) + ϱ = ΡΛ(:ϱ, A, 2genus) + + w = if id === :A + Te(λ, ϱ, i, j) * + inv(A, Ta(λ, i)) * + Tα(λ, i) * + Ta(λ, i) * + inv(A, Te(λ, ϱ, i, j)) * + inv(A, Tα(λ, i)) * + inv(A, Ta(λ, j)) + elseif id === :B + if !minus + if i ≠ j + x = Ta(λ, j) * inv(A, Ta(λ, i)) * Tα(λ, j) * Te(λ, ϱ, i, j) + δ = x * Tα(λ, i) * inv(A, x) + Tα(λ, i) * Tα(λ, j) * inv(A, δ) + else + inv(A, Tα(λ, i)) + end + else + if i ≠ j + Ta(λ, i) * Ta(λ, j) * inv(A, Te(λ, ϱ, i, j)) + else + Ta(λ, i) + end + end + else + throw("Type not recognized: $id") + end + + # w is a word defined in the context of A (= alphabet(sautFn)) + # so this "coercion" is correct + a = sautFn(w) + + f = compiled(a) + # f = t -> evaluate!(t, a) + + res = SymplecticMappingClass(id, UInt(i), UInt(j), minus, inverse, a, f) + + return res +end + +function Base.show(io::IO, smc::SymplecticMappingClass) + smc.minus && print(io, 'm') + if smc.i < 10 && smc.j < 10 + print(io, smc.id, subscriptify(smc.i), subscriptify(smc.j)) + else + print(io, smc.id, subscriptify(smc.i), ".", subscriptify(smc.j)) + end + smc.inv && print(io, "^-1") +end + +function Base.inv(m::SymplecticMappingClass) + inv_w = inv(m.autFn_word) + # f(t) = evaluate!(t, inv_w) + f = compiled(inv_w) + return SymplecticMappingClass(m.id, m.i, m.j, m.minus, !m.inv, inv_w, f) +end + +function evaluate!( + t::NTuple{N,T}, + smc::SymplecticMappingClass, + tmp=nothing, +) where {N,T} + t = smc.f(t) + for i in 1:N + normalform!(t[i]) + end + return t +end diff --git a/src/groups/transvections.jl b/src/groups/transvections.jl index 917896f..ce6238b 100644 --- a/src/groups/transvections.jl +++ b/src/groups/transvections.jl @@ -1,28 +1,18 @@ struct Transvection <: GSymbol id::Symbol - ij::UInt8 + i::UInt16 + j::UInt16 inv::Bool function Transvection(id::Symbol, i::Integer, j::Integer, inv = false) @assert id in (:ϱ, :λ) - @boundscheck @assert 0 < i <= (typemax(UInt8) >> 4) - @boundscheck @assert 0 < j <= (typemax(UInt8) >> 4) - return new(id, (convert(UInt8, i) << 4) + convert(UInt8, j), inv) + return new(id, i, j, inv) end end ϱ(i, j) = Transvection(:ϱ, i, j) λ(i, j) = Transvection(:λ, i, j) -_tophalf(ij::UInt8) = (ij & 0xf0) >> 4 -_bothalf(ij::UInt8) = (ij & 0x0f) - -function Base.getproperty(t::Transvection, s::Symbol) - s === :i && return _tophalf(t.ij) - s === :j && return _bothalf(t.ij) - return Core.getfield(t, s) -end - function Base.show(io::IO, t::Transvection) id = if t.id === :ϱ 'ϱ' @@ -33,16 +23,22 @@ function Base.show(io::IO, t::Transvection) t.inv && print(io, "^-1") end -Base.inv(t::Transvection) = - Transvection(t.id, _tophalf(t.ij), _bothalf(t.ij), !t.inv) +Base.inv(t::Transvection) = Transvection(t.id, t.i, t.j, !t.inv) Base.:(==)(t::Transvection, s::Transvection) = - t.id === s.id && t.ij == s.ij && t.inv == s.inv -Base.hash(t::Transvection, h::UInt) = hash(t.id, hash(t.ij, hash(t.inv, h))) + t.id === s.id && t.i == s.i && t.j == s.j && t.inv == s.inv + +Base.hash(t::Transvection, h::UInt) = hash(hash(t.id, hash(t.i)), hash(t.j, hash(t.inv, h))) -Base.@propagate_inbounds function evaluate!(v::NTuple{T, N}, t::Transvection, A::Alphabet, tmp=one(first(v))) where {T, N} +Base.@propagate_inbounds @inline function evaluate!( + v::NTuple{T,N}, + t::Transvection, + tmp = one(first(v)), +) where {T,N} i, j = t.i, t.j - @assert i ≤ length(v) && j ≤ length(v) + @assert 1 ≤ i ≤ length(v) && 1 ≤ j ≤ length(v) + + A = alphabet(parent(first(v))) @inbounds begin if t.id === :ϱ @@ -76,3 +72,24 @@ Base.@propagate_inbounds function evaluate!(v::NTuple{T, N}, t::Transvection, A: return v end + +struct PermRightAut <: GSymbol + perm::Vector{UInt8} + + function PermRightAut(p::AbstractVector{<:Integer}) + @assert sort(p) == 1:length(p) + return new(p) + end +end + +function Base.show(io::IO, p::PermRightAut) + print(io, 'σ') + join(io, (subscriptify(Int(i)) for i in p.perm)) +end + +Base.inv(p::PermRightAut) = PermRightAut(invperm(p.perm)) + +Base.:(==)(p::PermRightAut, q::PermRightAut) = p.perm == q.perm +Base.hash(p::PermRightAut, h::UInt) = hash(p.perm, hash(PermRightAut, h)) + +evaluate!(v::NTuple{T,N}, p::PermRightAut, tmp = nothing) where {T,N} = v[p.perm] diff --git a/src/hashing.jl b/src/hashing.jl index b8d7e4b..ed729b1 100644 --- a/src/hashing.jl +++ b/src/hashing.jl @@ -1,6 +1,6 @@ ## Hashing -equality_data(g::FPGroupElement) = (normalform!(g); word(g)) +equality_data(g::AbstractFPGroupElement) = (normalform!(g); word(g)) bitget(h::UInt, n::Int) = Bool((h & (1 << n)) >> n) bitclear(h::UInt, n::Int) = h & ~(1 << n) @@ -14,30 +14,30 @@ bitset(h::UInt, v::Bool, n::Int) = v ? bitset(h, n) : bitclear(h, n) # * `savedhash & 2` (the second bit): is the hash valid? const __BITFLAGS_MASK = ~(~(UInt(0)) << 2) -isnormalform(g::FPGroupElement) = bitget(g.savedhash, 0) -_isvalidhash(g::FPGroupElement) = bitget(g.savedhash, 1) +isnormalform(g::AbstractFPGroupElement) = bitget(g.savedhash, 0) +_isvalidhash(g::AbstractFPGroupElement) = bitget(g.savedhash, 1) _setnormalform(h::UInt, v::Bool) = bitset(h, v, 0) _setvalidhash(h::UInt, v::Bool) = bitset(h, v, 1) -_setnormalform!(g::FPGroupElement, v::Bool) = g.savedhash = _setnormalform(g.savedhash, v) -_setvalidhash!(g::FPGroupElement, v::Bool) = g.savedhash = _setvalidhash(g.savedhash, v) +_setnormalform!(g::AbstractFPGroupElement, v::Bool) = g.savedhash = _setnormalform(g.savedhash, v) +_setvalidhash!(g::AbstractFPGroupElement, v::Bool) = g.savedhash = _setvalidhash(g.savedhash, v) # To update hash use this internal method, possibly only after computing the # normal form of `g`: -function _update_savedhash!(g::FPGroupElement, data) +function _update_savedhash!(g::AbstractFPGroupElement, data) h = hash(data, hash(parent(g))) h = (h << count_ones(__BITFLAGS_MASK)) | (__BITFLAGS_MASK & g.savedhash) g.savedhash = _setvalidhash(h, true) return g end -function Base.hash(g::FPGroupElement, h::UInt) +function Base.hash(g::AbstractFPGroupElement, h::UInt) _isvalidhash(g) || _update_savedhash!(g, equality_data(g)) return hash(g.savedhash >> count_ones(__BITFLAGS_MASK), h) end -function Base.copyto!(res::FPGroupElement, g::FPGroupElement) +function Base.copyto!(res::AbstractFPGroupElement, g::AbstractFPGroupElement) @assert parent(res) === parent(g) resize!(word(res), length(word(g))) copyto!(word(res), word(g)) diff --git a/src/normalform.jl b/src/normalform.jl index f1d67ff..0b799e3 100644 --- a/src/normalform.jl +++ b/src/normalform.jl @@ -2,7 +2,7 @@ normalform!(g::FPGroupElement) Compute the normal form of `g`, possibly modifying `g` in-place. """ -@inline function normalform!(g::FPGroupElement) +@inline function normalform!(g::AbstractFPGroupElement) isnormalform(g) && return g let w = one(word(g)) @@ -21,7 +21,7 @@ end normalform!(res::GEl, g::GEl) where GEl<:FPGroupElement Compute the normal fom of `g`, storing it in `res`. """ -function normalform!(res::GEl, g::GEl) where {GEl<:FPGroupElement} +function normalform!(res::GEl, g::GEl) where {GEl<:AbstractFPGroupElement} @boundscheck @assert parent(res) === parent(g) if isnormalform(g) copyto!(res, g) @@ -40,7 +40,7 @@ Append the normal form of `g` to word `res`, modifying `res` in place. Defaults to the rewriting in the free group. """ -@inline function normalform!(res::AbstractWord, g::FPGroupElement) +@inline function normalform!(res::AbstractWord, g::AbstractFPGroupElement) isone(res) && isnormalform(g) && return append!(res, word(g)) return KnuthBendix.rewrite_from_left!(res, word(g), rewriting(parent(g))) end diff --git a/src/types.jl b/src/types.jl index bed9221..4dcec05 100644 --- a/src/types.jl +++ b/src/types.jl @@ -57,34 +57,35 @@ Base.isfinite(::AbstractFPGroup) = (@warn "using generic isfinite(::AbstractFPGr ## FPGroupElement -mutable struct FPGroupElement{G<:AbstractFPGroup,W<:AbstractWord} <: GroupElement +abstract type AbstractFPGroupElement{Gr} <: GroupElement end + +mutable struct FPGroupElement{Gr<:AbstractFPGroup,W<:AbstractWord} <: AbstractFPGroupElement{Gr} word::W savedhash::UInt - parent::G - - FPGroupElement(word::W, G::AbstractFPGroup) where {W<:AbstractWord} = - new{typeof(G),W}(word, UInt(0), G) + parent::Gr - FPGroupElement(word::W, hash::UInt, G::AbstractFPGroup) where {W<:AbstractWord} = + FPGroupElement(word::W, G::AbstractFPGroup, hash::UInt=UInt(0)) where {W<:AbstractWord} = new{typeof(G),W}(word, hash, G) + + FPGroupElement{Gr, W}(word::AbstractWord, G::Gr) where {Gr, W} = + new{Gr, W}(word, UInt(0), G) end -word(f::FPGroupElement) = f.word +word(f::AbstractFPGroupElement) = f.word #convenience -KnuthBendix.alphabet(g::FPGroupElement) = alphabet(parent(g)) +KnuthBendix.alphabet(g::AbstractFPGroupElement) = alphabet(parent(g)) -function Base.show(io::IO, f::FPGroupElement) +function Base.show(io::IO, f::AbstractFPGroupElement) f = normalform!(f) KnuthBendix.print_repr(io, word(f), alphabet(f)) end ## GroupElement Interface for FPGroupElement -Base.parent(f::FPGroupElement) = f.parent -GroupsCore.parent_type(::Type{<:FPGroupElement{G}}) where {G} = G +Base.parent(f::AbstractFPGroupElement) = f.parent -function Base.:(==)(g::FPGroupElement, h::FPGroupElement) +function Base.:(==)(g::AbstractFPGroupElement, h::AbstractFPGroupElement) @boundscheck @assert parent(g) === parent(h) normalform!(g) normalform!(h) @@ -93,20 +94,23 @@ function Base.:(==)(g::FPGroupElement, h::FPGroupElement) end function Base.deepcopy_internal(g::FPGroupElement, stackdict::IdDict) - return FPGroupElement(copy(word(g)), g.savedhash, parent(g)) + return FPGroupElement(copy(word(g)), parent(g), g.savedhash) end -Base.inv(g::FPGroupElement) = (G = parent(g); FPGroupElement(inv(alphabet(G), word(g)), G)) +function Base.inv(g::GEl) where GEl <: AbstractFPGroupElement + G = parent(g) + return GEl(inv(alphabet(G), word(g)), G) +end -function Base.:(*)(g::FPGroupElement, h::FPGroupElement) +function Base.:(*)(g::GEl, h::GEl) where GEl<:AbstractFPGroupElement @boundscheck @assert parent(g) === parent(h) - return FPGroupElement(word(g) * word(h), parent(g)) + return GEl(word(g) * word(h), parent(g)) end -GroupsCore.isfiniteorder(g::FPGroupElement) = isone(g) ? true : (@warn "using generic isfiniteorder(::FPGroupElement): the returned `false` might be wrong"; false) +GroupsCore.isfiniteorder(g::AbstractFPGroupElement) = isone(g) ? true : (@warn "using generic isfiniteorder(::AbstractFPGroupElement): the returned `false` might be wrong"; false) # additional methods: -Base.isone(g::FPGroupElement) = (normalform!(g); isempty(word(g))) +Base.isone(g::AbstractFPGroupElement) = (normalform!(g); isempty(word(g))) ## Free Groups @@ -157,7 +161,7 @@ relations(F::FreeGroup) = Pair{eltype(F)}[] # these are mathematically correct Base.isfinite(::FreeGroup) = false -GroupsCore.isfiniteorder(g::FPGroupElement{<:FreeGroup}) = isone(g) ? true : false +GroupsCore.isfiniteorder(g::AbstractFPGroupElement{<:FreeGroup}) = isone(g) ? true : false ## FP Groups diff --git a/src/wl_ball.jl b/src/wl_ball.jl index f7f4e12..ebb370c 100644 --- a/src/wl_ball.jl +++ b/src/wl_ball.jl @@ -6,50 +6,34 @@ word-length metric on the group generated by `S`. The ball is centered at `cente (by default: the identity element). `radius` and `op` keywords specify the radius and multiplication operation to be used. """ -function wlmetric_ball_serial(S::AbstractVector{T}; radius = 2, op = *) where {T} - @assert radius > 0 - old = unique!([one(first(S)), S...]) - sizes = [1, length(old)] - for i in 2:radius - new = collect(op(o, s) for o in @view(old[sizes[end-1]:end]) for s in S) - append!(old, new) - resize!(new, 0) - old = unique!(old) - push!(sizes, length(old)) - end - return old, sizes[2:end] +function wlmetric_ball_serial(S::AbstractVector{T}, center::T=one(first(S)); radius = 2, op = *) where {T} + @assert radius >= 1 + old = unique!([center, [center*s for s in S]...]) + return _wlmetric_ball(S, old, radius, op, collect, unique!) +end + +function wlmetric_ball_thr(S::AbstractVector{T}, center::T=one(first(S)); radius = 2, op = *) where {T} + @assert radius >= 1 + old = unique!([center, [center*s for s in S]...]) + return _wlmetric_ball(S, old, radius, op, ThreadsX.collect, ThreadsX.unique) end -function wlmetric_ball_thr(S::AbstractVector{T}; radius = 2, op = *) where {T} - @assert radius > 0 - old = unique!([one(first(S)), S...]) +function _wlmetric_ball(S, old, radius, op, collect, unique) sizes = [1, length(old)] for r in 2:radius - begin - new = - ThreadsX.collect(op(o, s) for o in @view(old[sizes[end-1]:end]) for s in S) - ThreadsX.foreach(hash, new) + old = let old = old, S = S, + new = collect( + (g = op(o, s); hash(g); g) + for o in @view(old[sizes[end-1]:end]) for s in S + ) + append!(old, new) + unique(old) end - append!(old, new) - resize!(new, 0) - old = ThreadsX.unique(old) push!(sizes, length(old)) end return old, sizes[2:end] end -function wlmetric_ball_serial(S::AbstractVector{T}, center::T; radius = 2, op = *) where {T} - E, sizes = wlmetric_ball_serial(S, radius = radius, op = op) - isone(center) && return E, sizes - return c .* E, sizes -end - -function wlmetric_ball_thr(S::AbstractVector{T}, center::T; radius = 2, op = *) where {T} - E, sizes = wlmetric_ball_thr(S, radius = radius, op = op) - isone(center) && return E, sizes - return c .* E, sizes -end - function wlmetric_ball( S::AbstractVector{T}, center::T = one(first(S)); diff --git a/test/AutFn.jl b/test/AutFn.jl index a33dc65..b8a3f1d 100644 --- a/test/AutFn.jl +++ b/test/AutFn.jl @@ -47,7 +47,7 @@ r = Groups.Transvection(:ϱ,i,j) l = Groups.Transvection(:λ,i,j) - (t::Groups.Transvection)(v::Tuple) = Groups.evaluate!(v, t, A4) + (t::Groups.Transvection)(v::Tuple) = Groups.evaluate!(v, t) @test r(deepcopy(D)) == (a*b, b, c, d) @test inv(r)(deepcopy(D)) == (a*b^-1,b, c, d) @@ -144,6 +144,36 @@ @test all(g->isone(g*inv(g)), B_2) end + @testset "Forward evaluate" begin + N = 3 + F = FreeGroup(N) + G = SpecialAutomorphismGroup(F) + + a = gens(G, 1) # ϱ₁₂ + + f = gens(F) + + @test a(f[1]) == f[1]*f[2] + @test all(a(f[i]) == f[i] for i in 2:length(f)) + + S = let s = gens(G) + [s; inv.(s)] + end + + @test all( + map(first(Groups.wlmetric_ball(S, radius=2))) do g + lm = Groups.LettersMap(g) + img = evaluate(g) + + fimg = [F(lm[first(word(s))]) for s in gens(F)] + + succeeded = all(img .== fimg) + @assert succeeded "forward evaluation of $(word(g)) failed: \n img=$img\n fimg=$(tuple(fimg...))" + succeeded + end + ) + end + @testset "GroupsCore conformance" begin test_Group_interface(A) g = A(rand(1:length(alphabet(A)), 10)) @@ -153,37 +183,3 @@ end end - -# using Random -# using GroupsCore -# -# A = New.SpecialAutomorphismGroup(FreeGroup(4), maxrules=2000, ordering=KnuthBendix.RecursivePathOrder) -# -# # for seed in 1:1000 -# let seed = 68 -# N = 14 -# Random.seed!(seed) -# g = A(rand(1:length(KnuthBendix.alphabet(A)), N)) -# h = A(rand(1:length(KnuthBendix.alphabet(A)), N)) -# @info "seed=$seed" g h -# @time isone(g*inv(g)) -# @time isone(inv(g)*g) -# @info "" length(word(New.normalform!(g*inv(g)))) length(word(New.normalform!(inv(g)*g))) -# a = commutator(g, h, g) -# b = conj(inv(g), h) * conj(conj(g, h), g) -# -# @info length(word(a)) -# @info length(word(b)) -# -# w = a*inv(b) -# @info length(word(w)) -# New.normalform!(w) -# @info length(word(w)) -# -# -# # -# # @time ima = evaluate(a) -# # @time imb = evaluate(b) -# # @info "" a b ima imb -# # @time a == b -# end diff --git a/test/AutSigma3.jl b/test/AutSigma3.jl new file mode 100644 index 0000000..475fb57 --- /dev/null +++ b/test/AutSigma3.jl @@ -0,0 +1,75 @@ +@testset "Aut(Σ₃.₀)" begin + genus = 3 + + π₁Σ = Groups.SurfaceGroup(genus, 0) + + Groups.PermRightAut(p::Perm) = Groups.PermRightAut(p.d) + # Groups.PermLeftAut(p::Perm) = Groups.PermLeftAut(p.d) + autπ₁Σ = let autπ₁Σ = AutomorphismGroup(π₁Σ) + pauts = let p = perm"(1,3,5)(2,4,6)" + [Groups.PermRightAut(p^i) for i in 0:2] + end + T = eltype(KnuthBendix.letters(alphabet(autπ₁Σ))) + S = eltype(pauts) + + A = Alphabet(Union{T,S}[KnuthBendix.letters(alphabet(autπ₁Σ)); pauts]) + + autG = AutomorphismGroup( + π₁Σ, + autπ₁Σ.gens, + A, + ntuple(i->inv(gens(π₁Σ, i)), 2Groups.genus(π₁Σ)) + ) + + autG + end + + Al = alphabet(autπ₁Σ) + S = [gens(autπ₁Σ); inv.(gens(autπ₁Σ))] + + sautFn = let ltrs = KnuthBendix.letters(Al) + parent(first(ltrs).autFn_word) + end + + τ = Groups.rotation_element(sautFn) + + @testset "Twists" begin + A = KnuthBendix.alphabet(sautFn) + λ = Groups.ΡΛ(:λ, A, 2genus) + ϱ = Groups.ΡΛ(:ϱ, A, 2genus) + @test sautFn(Groups.Te_diagonal(λ, ϱ, 1)) == + conj(sautFn(Groups.Te_diagonal(λ, ϱ, 2)), τ) + + @test sautFn(Groups.Te_diagonal(λ, ϱ, 3)) == sautFn(Groups.Te(λ, ϱ, 3, 1)) + end + + z = let d = Groups.domain(τ) + Groups.evaluate(τ^genus) + end + + @test π₁Σ.(word.(z)) == Groups.domain(first(S)) + d = Groups.domain(first(S)) + p = perm"(1,3,5)(2,4,6)" + @test Groups.evaluate!(deepcopy(d), τ) == d^inv(p) + @test Groups.evaluate!(deepcopy(d), τ^2) == d^p + + E, sizes = Groups.wlmetric_ball(S, radius=3) + @test sizes == [49, 1813, 62971] + B2 = @view E[1:sizes[2]] + + σ = autπ₁Σ(Word([Al[Groups.PermRightAut(p)]])) + + @test conj(S[7], σ) == S[10] + @test conj(S[7], σ^2) == S[11] + @test conj(S[9], σ) == S[12] + @test conj(S[9], σ^2) == S[8] + + @test conj(S[1], σ) == S[4] + @test conj(S[1], σ^2) == S[5] + @test conj(S[3], σ) == S[6] + @test conj(S[3], σ^2) == S[2] + + B2ᶜ = [conj(b, σ) for b in B2] + @test B2ᶜ != B2 + @test Set(B2ᶜ) == Set(B2) +end diff --git a/test/AutSigma_41.jl b/test/AutSigma_41.jl new file mode 100644 index 0000000..7a9e0d1 --- /dev/null +++ b/test/AutSigma_41.jl @@ -0,0 +1,189 @@ +using PermutationGroups +using Groups.KnuthBendix + +@testset "Wajnryb presentation for Σ₄₁" begin + + genus = 4 + + Fn = FreeGroup(2genus) + G = SpecialAutomorphismGroup(Fn) + + T = Groups.mcg_twists(G) + + # symplectic pairing in the free Group goes like this: + # f1 ↔ f5 + # f2 ↔ f6 + # f3 ↔ f7 + # f4 ↔ f8 + + T = let G = G + (Tas, Tαs, Tes) = Groups.mcg_twists(G) + Ta = G.(Tas) + Tα = G.(Tαs) + Tes = G.(Tes) + + [Ta; Tα; Tes] + end + + a1 = T[1]^-1 # Ta₁ + a2 = T[5]^-1 # Tα₁ + a3 = T[9]^-1 # Te₁₂ + a4 = T[6]^-1 # Tα₂ + a5 = T[12]^-1 # Te₂₃ + a6 = T[7]^-1 # Tα₃ + a7 = T[14]^-1 # Te₃₄ + a8 = T[8]^-1 # Tα₄ + + b0 = T[2]^-1 # Ta₂ + a0 = (a1 * a2 * a3)^4 * b0^-1 # from the 3-chain relation + X = a4 * a5 * a3 * a4 # auxillary, not present in the Primer + b1 = X^-1 * a0 * X + b2 = T[10]^-1 # Te₁₃ + + As = T[[1, 5, 9, 6, 12, 7, 14, 8]] # the inverses of the elements a + + @testset "preserving relator" begin + F = Groups.object(G) + + R = prod(commutator(gens(F,2i+1), gens(F,2i+2)) for i in 0:genus-1) + + for g in T + @test g(R) == R + end + end + + @testset "commutation relations" begin + for (i, ai) in enumerate(As) #the element ai here is actually the inverse of ai before. It does not matter for commutativity. Also, a0 is as defined before. + for (j, aj) in enumerate(As) + if abs(i - j) > 1 + @test ai * aj == aj * ai + elseif i ≠ j + @test ai * aj != aj * ai + end + end + if i != 4 + @test a0 * ai == ai * a0 + end + end + end + + @testset "braid relations" begin + for (i, ai) in enumerate(As) #the element ai here is actually the inverse of ai before. It does not matter for braid relations. + for (j, aj) in enumerate(As) + if abs(i - j) == 1 + @test ai * aj * ai == aj * ai * aj + end + end + end + @test a0 * a4 * a0 == a4 * a0 * a4 # here, a0 and a4 are as before + end + + @testset "3-chain relation" begin + x = a4*a3*a2*a1*a1*a2*a3*a4 # auxillary; does not have a name in the Primer + @test b0 == x*a0*x^-1 + end + + @testset "Lantern relation" begin + + @testset "b2 definition" begin + @test b2 == (a2 * a3 * a1 * a2)^-1 * b1 * (a2 * a3 * a1 * a2) + + # some additional tests, checking what explicitly happens to the generators of the π₁ under b2 + d = Groups.domain(b2) + img = evaluate(b2) + z = img[3] * d[3]^-1 + + @test img[1] == d[1] + @test img[2] == d[2] + @test img[3] == z * d[3] + @test img[4] == z * d[4] * z^-1 + @test img[5] == z * d[5] * z^-1 + @test img[6] == z * d[6] * z^-1 + @test img[7] == d[7] * z^-1 + @test img[8] == d[8] + end + + @testset "b2: commutation relations" begin + @test b2 * a1 == a1 * b2 + @test b2 * a2 != a2 * b2 + @test b2 * a3 == a3 * b2 + @test b2 * a4 == a4 * b2 + @test b2 * a5 == a5 * b2 + @test b2 * a6 != a6 * b2 + end + + @testset "b2: braid relations" begin + @test a2 * b2 * a2 == b2 * a2 * b2 + @test a6 * b2 * a6 == b2 * a6 * b2 + end + + @testset "lantern" begin + u = (a6 * a5)^-1 * b1 * (a6 * a5) + x = (a6 * a5 * a4 * a3 * a2 * u * a1^-1 * a2^-1 * a3^-1 * a4^-1) # yet another auxillary + # x = (a4^-1*a3^-1*a2^-1*a1^-1*u*a2*a3*a4*a5*a6) + @time evaluate(x) + b3 = x * a0 * x^-1 + b3im = @time evaluate(b3) + b3cim = @time let g = b3 + f = Groups.compiled(g) + f(Groups.domain(g)) + end + @test b3im == b3cim + @test a0 * b2 * b1 == a1 * a3 * a5 * b3 + end + end + + Base.conj(t::Groups.Transvection, p::Perm) = + Groups.Transvection(t.id, t.i^p, t.j^p, t.inv) + + function Base.conj(elt::FPGroupElement, p::Perm) + G = parent(elt) + A = alphabet(elt) + return G([A[conj(A[idx], p)] for idx in word(elt)]) + end + + @testset "Te₂₃ definition" begin + Te₁₂, Te₂₃ = T[9], T[12] + G = parent(Te₁₂) + F₈ = Groups.object(G) + (δ, d, γ, c, β, b, α, a) = Groups.gens(F₈) + + Groups.domain(Te₁₂) + + img_Te₂₃ = evaluate(Te₂₃) + y = c * β^-1 * b^-1 * β + @test img_Te₂₃ == (δ, d, y * γ, y * c * y^-1, β * y^-1, b, α, a) + + σ = perm"(7,5,3)(8,6,4)" + Te₂₃_σ = conj(Te₁₂, σ) + # @test word(Te₂₃_σ) == word(Te₂₃) + + @test evaluate(Te₂₃_σ) == evaluate(Te₂₃) + @test Te₂₃ == Te₂₃_σ + end + + @testset "Te₃₄ definition" begin + Te₁₂, Te₃₄ = T[9], T[14] + G = parent(Te₁₂) + F₈ = Groups.object(G) + (δ, d, γ, c, β, b, α, a) = Groups.gens(F₈) + + σ = perm"(7,3)(8,4)(5,1)(6,2)" + Te₃₄_σ = conj(Te₁₂, σ) + @test Te₃₄ == Te₃₄_σ + end + + @testset "hyperelliptic τ is central" begin + + τ = Groups.rotation_element(G) + τᵍ = τ^genus + + symplectic_gens = let genus = genus, G = G + π₁Σ = Groups.SurfaceGroup(genus, 0) + s_twists = Groups.symplectic_twists(π₁Σ) + G.(word(t.autFn_word) for t in s_twists) + end + + @test all(sg * τᵍ == τᵍ * sg for sg in symplectic_gens) + end +end diff --git a/test/fp_groups.jl b/test/fp_groups.jl index 89d83b5..4e4f624 100644 --- a/test/fp_groups.jl +++ b/test/fp_groups.jl @@ -46,7 +46,10 @@ @test h isa FPGroupElement @test_throws AssertionError h == g - @test_throws AssertionError h*g + @test_throws MethodError h*g + + H′ = FPGroup(G, [aG^2=>cG, bG*cG=>aG], maxrules=200) + @test_throws AssertionError one(H) == one(H′) Groups.normalform!(h) @test h == H([5]) diff --git a/test/runtests.jl b/test/runtests.jl index e69bce8..c0334c4 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -26,6 +26,8 @@ include(joinpath(pathof(GroupsCore), "..", "..", "test", "conformance_test.jl")) include("fp_groups.jl") include("AutFn.jl") + include("AutSigma_41.jl") + include("AutSigma3.jl") # if !haskey(ENV, "CI") # include("benchmarks.jl")