-
Notifications
You must be signed in to change notification settings - Fork 0
/
naiveBayes.py
81 lines (61 loc) · 1.81 KB
/
naiveBayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
'''
TEMPLATE FOR MACHINE LEARNING HOMEWORK
AUTHOR Eric Eaton
'''
import numpy as np
class NaiveBayes:
def __init__(self, useLaplaceSmoothing=True):
'''
Constructor
'''
def fit(self, X, y):
'''
Trains the model
Arguments:
X is a n-by-d numpy array
y is an n-dimensional numpy array
'''
def predict(self, X):
'''
Used the model to predict values for each instance in X
Arguments:
X is a n-by-d numpy array
Returns:
an n-dimensional numpy array of the predictions
'''
def predictProbs(self, X):
'''
Used the model to predict a vector of class probabilities for each instance in X
Arguments:
X is a n-by-d numpy array
Returns:
an n-by-K numpy array of the predicted class probabilities (for K classes)
'''
class OnlineNaiveBayes:
def __init__(self, useLaplaceSmoothing=True):
'''
Constructor
'''
def fit(self, X, y):
'''
Trains the model
Arguments:
X is a n-by-d numpy array
y is an n-dimensional numpy array
'''
def predict(self, X):
'''
Used the model to predict values for each instance in X
Arguments:
X is a n-by-d numpy array
Returns:
an n-dimensional numpy array of the predictions
'''
def predictProbs(self, X):
'''
Used the model to predict a vector of class probabilities for each instance in X
Arguments:
X is a n-by-d numpy array
Returns:
an n-by-K numpy array of the predicted class probabilities (for K classes)
'''