-
Notifications
You must be signed in to change notification settings - Fork 0
/
rnn_trump.py
92 lines (82 loc) · 3.33 KB
/
rnn_trump.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import warnings
import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import LSTM
from keras.callbacks import ModelCheckpoint
from keras.utils import np_utils
import code
import sys
from create_word2vec import *
# load word2vec dictionaries
preprocessing = Word2Vec()
s_lists_sentences_clinton, s_lists_sentences_trump, w2v_dict_clinton, \
w2v_dict_trump, c_model, t_model = preprocessing()
c_train_data, c_train_labels = preprocessing.generateInputData(
s_lists_sentences_clinton, c_model)
trump_train_data, trump_train_labels = preprocessing.generateInputData(
s_lists_sentences_trump, t_model)
# print ("Total unique vocab in Clinton: " + str(len(w2v_dict_clinton)))
print ("Total unique vocab in Trump: " + str(len(w2v_dict_trump)))
# prepare input data to the two models
seq_length = 3
tn_seq = len(trump_train_data)
tX = numpy.reshape(trump_train_data, (tn_seq, seq_length, 300))
ty = numpy.array(trump_train_labels)
# define the LSTM model
model = Sequential()
model.add(LSTM(1200, input_shape=(tX.shape[1:])))
model.add(Dropout(0.3))
model.add(Dense(ty.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
# define the checkpoint
filepath = "weights-improvement-{epoch:02d}-{loss:.4f}-bigger.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1,
save_best_only=True, mode='min')
callbacks_list = [checkpoint]
# uncomment "model.fit..." line to train the model
# comment out if running "application"
# model.fit(tX, ty, nb_epoch=100, batch_size=32, callbacks=callbacks_list)
# comment out everything below this line when training model
# uncomment when running "application"
# load the network weights returned from model
filename = "weights-improvement-99--0.4310-bigger.hdf5"
model.load_weights(filename)
model.compile(loss='categorical_crossentropy', optimizer='adam')
# a while loop that continuously prompt for user input
while True:
userInput = input("Enter three words: ").lower().strip().split(" ")
flag = True
if len(userInput) != 3:
print("Incorrect user input.")
flag = False
pattern = []
for w in userInput:
try:
w2v = w2v_dict_trump[w]
pattern.append(w2v)
except:
print("User input not in dictionary. Please try again.")
flag = False
# generator with yield keyword
# output the next three words given input
def lstm(pattern):
for i in range(3):
x = numpy.reshape(pattern, (-1, 3, 300))
# prediction is a matrix returned from model
prediction = model.predict(x, verbose=0)
prediction = numpy.reshape(prediction, (300,))
# find the most similar word given the prediction matrix
result = t_model.most_similar(positive=[prediction], topn=1)
word, prob = result[0]
# convert returned word back to a vector
# set this vector as the next vector in pattern
wordVect = w2v_dict_trump[word]
pattern.append(wordVect)
pattern = pattern[1:len(pattern)]
yield word
if flag is True:
print ("Trump says:")
for word in lstm(pattern):
print(word)