-
Notifications
You must be signed in to change notification settings - Fork 92
/
hidden.py
156 lines (121 loc) · 5.6 KB
/
hidden.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import tensorflow.python.platform
import numpy as np
import tensorflow as tf
import plot_boundary_on_data
# Global variables.
NUM_LABELS = 2 # The number of labels.
BATCH_SIZE = 100 # The number of training examples to use per training step.
tf.app.flags.DEFINE_string('train', None,
'File containing the training data (labels & features).')
tf.app.flags.DEFINE_string('test', None,
'File containing the test data (labels & features).')
tf.app.flags.DEFINE_integer('num_epochs', 1,
'Number of passes over the training data.')
tf.app.flags.DEFINE_integer('num_hidden', 1,
'Number of nodes in the hidden layer.')
tf.app.flags.DEFINE_boolean('verbose', False, 'Produce verbose output.')
tf.app.flags.DEFINE_boolean('plot', True, 'Plot the final decision boundary on the data.')
FLAGS = tf.app.flags.FLAGS
# Extract numpy representations of the labels and features given rows consisting of:
# label, feat_0, feat_1, ..., feat_n
def extract_data(filename):
# Arrays to hold the labels and feature vectors.
labels = []
fvecs = []
# Iterate over the rows, splitting the label from the features. Convert labels
# to integers and features to floats.
for line in file(filename):
row = line.split(",")
labels.append(int(row[0]))
fvecs.append([float(x) for x in row[1:]])
# Convert the array of float arrays into a numpy float matrix.
fvecs_np = np.matrix(fvecs).astype(np.float32)
# Convert the array of int labels into a numpy array.
labels_np = np.array(labels).astype(dtype=np.uint8)
# Convert the int numpy array into a one-hot matrix.
labels_onehot = (np.arange(NUM_LABELS) == labels_np[:, None]).astype(np.float32)
# Return a pair of the feature matrix and the one-hot label matrix.
return fvecs_np,labels_onehot
# Init weights method. (Lifted from Delip Rao: http://deliprao.com/archives/100)
def init_weights(shape, init_method='xavier', xavier_params = (None, None)):
if init_method == 'zeros':
return tf.Variable(tf.zeros(shape, dtype=tf.float32))
elif init_method == 'uniform':
return tf.Variable(tf.random_normal(shape, stddev=0.01, dtype=tf.float32))
else: #xavier
(fan_in, fan_out) = xavier_params
low = -4*np.sqrt(6.0/(fan_in + fan_out)) # {sigmoid:4, tanh:1}
high = 4*np.sqrt(6.0/(fan_in + fan_out))
return tf.Variable(tf.random_uniform(shape, minval=low, maxval=high, dtype=tf.float32))
def main(argv=None):
# Be verbose?
verbose = FLAGS.verbose
# Plot?
plot = FLAGS.plot
# Get the data.
train_data_filename = FLAGS.train
test_data_filename = FLAGS.test
# Extract it into numpy arrays.
train_data,train_labels = extract_data(train_data_filename)
test_data, test_labels = extract_data(test_data_filename)
# Get the shape of the training data.
train_size,num_features = train_data.shape
# Get the number of epochs for training.
num_epochs = FLAGS.num_epochs
# Get the size of layer one.
num_hidden = FLAGS.num_hidden
# This is where training samples and labels are fed to the graph.
# These placeholder nodes will be fed a batch of training data at each
# training step using the {feed_dict} argument to the Run() call below.
x = tf.placeholder("float", shape=[None, num_features])
y_ = tf.placeholder("float", shape=[None, NUM_LABELS])
# For the test data, hold the entire dataset in one constant node.
test_data_node = tf.constant(test_data)
# Define and initialize the network.
# Initialize the hidden weights and biases.
w_hidden = init_weights(
[num_features, num_hidden],
'xavier',
xavier_params=(num_features, num_hidden))
b_hidden = init_weights([1,num_hidden],'zeros')
# The hidden layer.
hidden = tf.nn.tanh(tf.matmul(x,w_hidden) + b_hidden)
# Initialize the output weights and biases.
w_out = init_weights(
[num_hidden, NUM_LABELS],
'xavier',
xavier_params=(num_hidden, NUM_LABELS))
b_out = init_weights([1,NUM_LABELS],'zeros')
# The output layer.
y = tf.nn.softmax(tf.matmul(hidden, w_out) + b_out)
# Optimization.
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
# Evaluation.
predicted_class = tf.argmax(y,1);
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
# Create a local session to run this computation.
with tf.Session() as s:
# Run all the initializers to prepare the trainable parameters.
tf.initialize_all_variables().run()
if verbose:
print 'Initialized!'
print
print 'Training.'
# Iterate and train.
for step in xrange(num_epochs * train_size // BATCH_SIZE):
if verbose:
print step,
offset = (step * BATCH_SIZE) % train_size
batch_data = train_data[offset:(offset + BATCH_SIZE), :]
batch_labels = train_labels[offset:(offset + BATCH_SIZE)]
train_step.run(feed_dict={x: batch_data, y_: batch_labels})
if verbose and offset >= train_size-BATCH_SIZE:
print
print "Accuracy:", accuracy.eval(feed_dict={x: test_data, y_: test_labels})
if plot:
eval_fun = lambda X: predicted_class.eval(feed_dict={x:X});
plot_boundary_on_data.plot(test_data, test_labels, eval_fun)
if __name__ == '__main__':
tf.app.run()