-
Notifications
You must be signed in to change notification settings - Fork 6
/
DESCRIPTION
47 lines (47 loc) · 1.54 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Package: oem
Type: Package
Title: Orthogonalizing EM: Penalized Regression for Big Tall Data
Version: 2.0.12
Authors@R: c(
person("Bin", "Dai", , "[email protected]", role = c("aut")),
person("Jared", "Huling", , "[email protected]", c("aut", "cre"),
comment = c(ORCID = "0000-0003-0670-4845")),
person("Yixuan", "Qiu", , , c("ctb")),
person("Gael", "Guennebaud", , , c("cph")),
person("Jitse", "Niesen", , , c("cph"))
)
Maintainer: Jared Huling <[email protected]>
Description: Solves penalized least squares problems for big tall data
using the orthogonalizing EM algorithm of Xiong et al. (2016)
<doi:10.1080/00401706.2015.1054436>. The main fitting function is oem() and the
functions cv.oem() and xval.oem() are for cross validation, the latter being an
accelerated cross validation function for linear models. The big.oem() function
allows for out of memory fitting. A description of the underlying methods and
code interface is described in Huling and Chien (2022) <doi:10.18637/jss.v104.i06>.
URL:
https://arxiv.org/abs/1801.09661,
https://github.com/jaredhuling/oem,
https://jaredhuling.org/oem/
BugReports: https://github.com/jaredhuling/oem/issues
License: GPL (>= 2)
Encoding: UTF-8
LazyData: TRUE
Depends:
R (>= 3.2.0),
bigmemory
Imports:
Rcpp (>= 0.11.0),
Matrix,
foreach,
methods
LinkingTo: Rcpp,
RcppEigen,
BH,
RSpectra (>= 0.16-2),
bigmemory,
RcppArmadillo
RoxygenNote: 7.3.1
Suggests:
knitr,
rmarkdown
VignetteBuilder: knitr