-
Notifications
You must be signed in to change notification settings - Fork 13
/
multipack_sampler_linear.py
195 lines (149 loc) · 5.61 KB
/
multipack_sampler_linear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from typing import Optional, List
import math
import torch.distributed as dist
from torch.utils.data import Sampler
import numpy as np
import numba
@numba.njit
def ffd_check(work: np.ndarray, a: np.ndarray, c: int, n: int, nbits: int):
# First-fit-decreasing bin packing
# Check if a[] could fit in n bins with capacity c
# https://en.wikipedia.org/wiki/First-fit-decreasing_bin_packing
a = np.sort(a)[::-1]
valid_size = (1 << nbits) + n
work[:valid_size] = c
for size in a:
# Find the branch
u = 1
for i in range(nbits):
lch = u << 1
rch = (u << 1) | 1
if work[lch] >= size:
u = lch
else:
u = rch
if u >= valid_size or work[u] < size:
return False
# Update
work[u] -= size
for i in range(nbits - 1): # Root not needed
u = u >> 1
work[u] = max(work[u << 1], work[(u << 1) | 1])
return True
@numba.njit
def ffd_with_result(work: np.ndarray, a: np.ndarray, c: int, n: int, nbits: int, start_index: int):
# First-fit-decreasing bin packing (with result return)
indices = np.argsort(a)[::-1]
a = a[indices]
bins_result = []
base = 1 << nbits
valid_size = (1 << nbits) + n
work[:valid_size] = c
for idx, size in enumerate(a):
# Find the branch
u = 1
for i in range(nbits):
lch = u << 1
rch = (u << 1) | 1
if work[lch] >= size:
u = lch
else:
u = rch
bin_id = u - base
if bin_id >= len(bins_result):
bins_result.append([start_index + indices[idx]])
else:
bins_result[bin_id].append(start_index + indices[idx])
# Update
work[u] -= size
for i in range(nbits - 1): # Root not needed
u = u >> 1
work[u] = max(work[u << 1], work[(u << 1) | 1])
return bins_result
@numba.njit
def allocate(lengths: np.ndarray, lengths_cumsum: np.ndarray, rank: int, c: int, n: int):
# Dynamic batch allocator, similar to Multifit
# https://en.wikipedia.org/wiki/Multifit_algorithm
# ~99.5% efficiency on OpenChat training set (12 * 2048 ctx len)
nbits = int(math.ceil(math.log2(n)))
work = np.zeros((1 << (nbits + 1), ), dtype=lengths.dtype)
s = 0
start_index = 0
result = []
while True:
# binary search [l, r)
l = 1
r = 1 + np.searchsorted(lengths_cumsum[start_index:], s + c * n, "right")
while r - l > 1:
m = (l + r) // 2
if ffd_check(work, lengths[start_index: start_index + m], c, n, nbits):
l = m
else:
r = m
# use length l
batch = ffd_with_result(work, lengths[start_index: start_index + l], c, n, nbits, start_index)
assert len(batch) <= n
if len(batch) < n:
break
start_index += l
s = lengths_cumsum[start_index - 1]
# add local rank
result.append(batch[rank])
return result, s, len(result) * c * n
class MultipackDistributedBatchSampler_LinearAttention(Sampler):
"""Unpadded length sampling using Multipack for models with linear attention complexity.
WARNING: This algorithm might put most long sequences into one node, causing significant lag if attention complexity is quadratic.
Approximate (at most 1.22x ?) the optimal solution of the identical-machines scheduling problem, which is NP-hard.
"""
def __init__(
self,
batch_max_length: int,
lengths: List[int],
num_replicas: Optional[int] = None,
rank: Optional[int] = None,
seed: int = 0,
):
# Get rank
if num_replicas is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = dist.get_rank()
self.num_replicas = num_replicas
self.rank = rank
self.seed = seed
self.batch_max_length = batch_max_length
self.lengths = lengths
assert isinstance(self.lengths, np.ndarray)
self.epoch = 0
# statistics
self.eff_total_used = 0
self.eff_total_slots = 0
def set_epoch(self, epoch: int):
self.epoch = epoch
def generate_batches(self, set_stats=False):
indices = np.random.default_rng(seed=self.seed + self.epoch).permutation(len(self.lengths))
lengths = self.lengths[indices]
lengths_cumsum = np.cumsum(lengths)
batches, total_used, total_slots = allocate(lengths=lengths,
lengths_cumsum=lengths_cumsum,
rank=self.rank,
c=self.batch_max_length,
n=self.num_replicas)
batches = [indices[batch] for batch in batches]
# statistics
if set_stats:
self.eff_total_used += total_used
self.eff_total_slots += total_slots
return batches
def __iter__(self):
batches = self.generate_batches(set_stats=True)
return iter(batches)
def num_batches(self):
batches = self.generate_batches()
return len(batches)
def efficiency(self):
return self.eff_total_used / self.eff_total_slots