-
Notifications
You must be signed in to change notification settings - Fork 0
/
type.h
1056 lines (840 loc) · 38 KB
/
type.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Copyright (c) 2010-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @file type.h
@brief File with declarations for classes related to type representation
*/
#ifndef ISPC_TYPE_H
#define ISPC_TYPE_H 1
#include "ispc.h"
#include "util.h"
#if defined(LLVM_3_1) || defined(LLVM_3_2)
#include <llvm/Type.h>
#include <llvm/DerivedTypes.h>
#else
#include <llvm/IR/Type.h>
#include <llvm/IR/DerivedTypes.h>
#endif
#include <llvm/ADT/SmallVector.h>
class ConstExpr;
class StructType;
/** Types may have uniform, varying, SOA, or unbound variability; this
struct is used by Type implementations to record their variability.
*/
struct Variability {
enum VarType { Unbound, Uniform, Varying, SOA };
Variability(VarType t = Unbound, int w = 0) : type(t), soaWidth(w) { }
bool operator==(const Variability &v) const {
return v.type == type && v.soaWidth == soaWidth;
}
bool operator!=(const Variability &v) const {
return v.type != type || v.soaWidth != soaWidth;
}
bool operator==(const VarType &t) const { return type == t; }
bool operator!=(const VarType &t) const { return type != t; }
std::string GetString() const;
std::string MangleString() const;
VarType type;
int soaWidth;
};
/** Enumerant that records each of the types that inherit from the Type
baseclass. */
enum TypeId {
ATOMIC_TYPE, // 0
ENUM_TYPE, // 1
POINTER_TYPE, // 2
ARRAY_TYPE, // 3
VECTOR_TYPE, // 4
STRUCT_TYPE, // 5
UNDEFINED_STRUCT_TYPE, // 6
REFERENCE_TYPE, // 7
FUNCTION_TYPE // 8
};
/** @brief Interface class that defines the type abstraction.
Abstract base class that defines the interface that must be implemented
for all types in the language.
*/
class Type {
public:
/** Returns true if the underlying type is boolean. In other words,
this is true for individual bools and for short-vectors with
underlying bool type, but not for arrays of bools. */
virtual bool IsBoolType() const = 0;
/** Returns true if the underlying type is float or double. In other
words, this is true for individual floats/doubles and for
short-vectors of them, but not for arrays of them. */
virtual bool IsFloatType() const = 0;
/** Returns true if the underlying type is an integer type. In other
words, this is true for individual integers and for short-vectors
of integer types, but not for arrays of integer types. */
virtual bool IsIntType() const = 0;
/** Returns true if the underlying type is unsigned. In other words,
this is true for unsigned integers and short vectors of unsigned
integer types. */
virtual bool IsUnsignedType() const = 0;
/** Returns true if the underlying type is either a pointer type */
bool IsPointerType() const;
/** Returns true if the underlying type is a array type */
bool IsArrayType() const;
/** Returns true if the underlying type is a array type */
bool IsReferenceType() const;
/** Returns true if the underlying type is either a pointer or an array */
bool IsVoidType() const;
/** Returns true if this type is 'const'-qualified. */
virtual bool IsConstType() const = 0;
/** Returns true if the underlying type is a float or integer type. */
bool IsNumericType() const { return IsFloatType() || IsIntType(); }
/** Returns the variability of the type. */
virtual Variability GetVariability() const = 0;
/** Returns true if the underlying type is uniform */
bool IsUniformType() const {
return GetVariability() == Variability::Uniform;
}
/** Returns true if the underlying type is varying */
bool IsVaryingType() const {
return GetVariability() == Variability::Varying;
}
/** Returns true if the type is laid out in "structure of arrays"
layout. */
bool IsSOAType() const { return GetVariability() == Variability::SOA; }
/** Returns the structure of arrays width for SOA types. This method
returns zero for types with non-SOA variability. */
int GetSOAWidth() const { return GetVariability().soaWidth; }
/** Returns true if the underlying type's uniform/varying-ness is
unbound. */
bool HasUnboundVariability() const {
return GetVariability() == Variability::Unbound;
}
/* Returns a type wherein any elements of the original type and
contained types that have unbound variability have their variability
set to the given variability. */
virtual const Type *ResolveUnboundVariability(Variability v) const = 0;
/** Return a "uniform" instance of this type. If the type is already
uniform, its "this" pointer will be returned. */
virtual const Type *GetAsUniformType() const = 0;
/** Return a "varying" instance of this type. If the type is already
varying, its "this" pointer will be returned. */
virtual const Type *GetAsVaryingType() const = 0;
/** Get an instance of the type with unbound variability. */
virtual const Type *GetAsUnboundVariabilityType() const = 0;
virtual const Type *GetAsSOAType(int width) const = 0;
/** If this is a signed integer type, return the unsigned version of
the type. Otherwise, return the original type. */
virtual const Type *GetAsUnsignedType() const;
/** Returns the basic root type of the given type. For example, for an
array or short-vector, this returns the element type. For a struct
or atomic type, it returns itself. */
virtual const Type *GetBaseType() const = 0;
/** If this is a reference type, returns the type it is referring to.
For all other types, just returns its own type. */
virtual const Type *GetReferenceTarget() const;
/** Get a const version of this type. If it's already const, then the old
Type pointer is returned. */
virtual const Type *GetAsConstType() const = 0;
/** Get a non-const version of this type. If it's already not const,
then the old Type pointer is returned. */
virtual const Type *GetAsNonConstType() const = 0;
/** Returns a text representation of the type (for example, for use in
warning and error messages). */
virtual std::string GetString() const = 0;
/** Returns a string that represents the mangled type (for use in
mangling function symbol names for function overloading). The
various Types implementations of this method should collectively
ensure that all of them use mangling schemes that are guaranteed
not to clash. */
virtual std::string Mangle() const = 0;
/** Returns a string that is the declaration of the same type in C
syntax. */
virtual std::string GetCDeclaration(const std::string &name) const = 0;
/** Returns the LLVM type corresponding to this ispc type */
virtual llvm::Type *LLVMType(llvm::LLVMContext *ctx) const = 0;
/** Returns the DIType (LLVM's debugging information structure),
corresponding to this type. */
virtual llvm::DIType GetDIType(llvm::DIDescriptor scope) const = 0;
/** Checks two types for equality. Returns true if they are exactly
the same, false otherwise. */
static bool Equal(const Type *a, const Type *b);
/** Checks two types for equality. Returns true if they are exactly
the same (ignoring const-ness of the type), false otherwise. */
static bool EqualIgnoringConst(const Type *a, const Type *b);
/** Given two types, returns the least general Type that is more general
than both of them. (i.e. that can represent their values without
any loss of data.) If there is no such Type, return NULL.
@param type0 First of the two types
@param type1 Second of the two types
@param pos Source file position where the general type is
needed.
@param reason String describing the context of why the general
type is needed (e.g. "+ operator").
@param forceVarying If \c true, then make sure that the returned
type is "varying".
@param vecSize The vector size of the returned type. If non-zero,
the returned type will be a VectorType of the
more general type with given length. If zero,
this parameter has no effect.
@return The more general type, based on the provided parameters.
@todo the vecSize and forceVarying parts of this should probably be
factored out and done separately in the cases when needed.
*/
static const Type *MoreGeneralType(const Type *type0, const Type *type1,
SourcePos pos, const char *reason,
bool forceVarying = false, int vecSize = 0);
/** Returns true if the given type is an atomic, enum, or pointer type
(i.e. not an aggregation of multiple instances of a type or
types.) */
static bool IsBasicType(const Type *type);
/** Indicates which Type implementation this type is. This value can
be used to determine the actual type much more efficiently than
using dynamic_cast. */
const TypeId typeId;
protected:
Type(TypeId id) : typeId(id) { }
};
/** @brief AtomicType represents basic types like floats, ints, etc.
AtomicTypes can be either uniform or varying. Unique instances of all
of the possible <tt>AtomicType</tt>s are available in the static members
like AtomicType::UniformInt32. It is thus possible to compare
AtomicTypes for equality with simple pointer equality tests; this is
not true for the other Type implementations.
*/
class AtomicType : public Type {
public:
Variability GetVariability() const;
bool IsBoolType() const;
bool IsFloatType() const;
bool IsIntType() const;
bool IsUnsignedType() const;
bool IsConstType() const;
/** For AtomicTypes, the base type is just the same as the AtomicType
itself. */
const AtomicType *GetBaseType() const;
const AtomicType *GetAsUniformType() const;
const AtomicType *GetAsVaryingType() const;
const AtomicType *GetAsUnboundVariabilityType() const;
const AtomicType *GetAsSOAType(int width) const;
const AtomicType *ResolveUnboundVariability(Variability v) const;
const AtomicType *GetAsUnsignedType() const;
const AtomicType *GetAsConstType() const;
const AtomicType *GetAsNonConstType() const;
std::string GetString() const;
std::string Mangle() const;
std::string GetCDeclaration(const std::string &name) const;
llvm::Type *LLVMType(llvm::LLVMContext *ctx) const;
llvm::DIType GetDIType(llvm::DIDescriptor scope) const;
/** This enumerator records the basic types that AtomicTypes can be
built from. */
enum BasicType {
TYPE_VOID,
TYPE_BOOL,
TYPE_INT8,
TYPE_UINT8,
TYPE_INT16,
TYPE_UINT16,
TYPE_INT32,
TYPE_UINT32,
TYPE_FLOAT,
TYPE_INT64,
TYPE_UINT64,
TYPE_DOUBLE,
NUM_BASIC_TYPES
};
const BasicType basicType;
static const AtomicType *UniformBool, *VaryingBool;
static const AtomicType *UniformInt8, *VaryingInt8;
static const AtomicType *UniformInt16, *VaryingInt16;
static const AtomicType *UniformInt32, *VaryingInt32;
static const AtomicType *UniformUInt8, *VaryingUInt8;
static const AtomicType *UniformUInt16, *VaryingUInt16;
static const AtomicType *UniformUInt32, *VaryingUInt32;
static const AtomicType *UniformFloat, *VaryingFloat;
static const AtomicType *UniformInt64, *VaryingInt64;
static const AtomicType *UniformUInt64, *VaryingUInt64;
static const AtomicType *UniformDouble, *VaryingDouble;
static const AtomicType *Void;
private:
const Variability variability;
const bool isConst;
AtomicType(BasicType basicType, Variability v, bool isConst);
mutable const AtomicType *asOtherConstType, *asUniformType, *asVaryingType;
};
/** @brief Type implementation for enumerated types
*/
class EnumType : public Type {
public:
/** Constructor for anonymous enumerated types */
EnumType(SourcePos pos);
/** Constructor for named enumerated types */
EnumType(const char *name, SourcePos pos);
Variability GetVariability() const;
bool IsBoolType() const;
bool IsFloatType() const;
bool IsIntType() const;
bool IsUnsignedType() const;
bool IsConstType() const;
const EnumType *GetBaseType() const;
const EnumType *GetAsVaryingType() const;
const EnumType *GetAsUniformType() const;
const EnumType *GetAsUnboundVariabilityType() const;
const EnumType *GetAsSOAType(int width) const;
const EnumType *ResolveUnboundVariability(Variability v) const;
const EnumType *GetAsConstType() const;
const EnumType *GetAsNonConstType() const;
std::string GetString() const;
std::string Mangle() const;
std::string GetCDeclaration(const std::string &name) const;
/** Returns the name of the enum type. (e.g. struct Foo -> "Foo".) */
const std::string &GetEnumName() const { return name; }
llvm::Type *LLVMType(llvm::LLVMContext *ctx) const;
llvm::DIType GetDIType(llvm::DIDescriptor scope) const;
/** Provides the enumerators defined in the enum definition. */
void SetEnumerators(const std::vector<Symbol *> &enumerators);
/** Returns the total number of enuemrators in this enum type. */
int GetEnumeratorCount() const;
/** Returns the symbol for the given enumerator number. */
const Symbol *GetEnumerator(int i) const;
const SourcePos pos;
private:
const std::string name;
Variability variability;
bool isConst;
std::vector<Symbol *> enumerators;
};
/** @brief Type implementation for pointers to other types
Pointers can have two additional properties beyond their variability
and the type of object that they are pointing to. Both of these
properties are used for internal bookkeeping and aren't directly
accessible from the language.
- Slice: pointers that point to data with SOA layout have this
property--it indicates that the pointer has two components, where the
first (major) component is a regular pointer that points to an
instance of the soa<> type being indexed, and where the second
(minor) component is an integer that indicates which of the soa
slices in that instance the pointer points to.
- Frozen: only slice pointers may have this property--it indicates that
any further indexing calculations should only be applied to the major
pointer, and the value of the minor offset should be left unchanged.
Pointers to lvalues from structure member access have the frozen
property; see discussion in comments in the StructMemberExpr class.
*/
class PointerType : public Type {
public:
PointerType(const Type *t, Variability v, bool isConst,
bool isSlice = false, bool frozen = false);
/** Helper method to return a uniform pointer to the given type. */
static PointerType *GetUniform(const Type *t, bool isSlice = false);
/** Helper method to return a varying pointer to the given type. */
static PointerType *GetVarying(const Type *t);
/** Returns true if the given type is a void * type. */
static bool IsVoidPointer(const Type *t);
Variability GetVariability() const;
bool IsBoolType() const;
bool IsFloatType() const;
bool IsIntType() const;
bool IsUnsignedType() const;
bool IsConstType() const;
bool IsSlice() const { return isSlice; }
bool IsFrozenSlice() const { return isFrozen; }
const PointerType *GetAsSlice() const;
const PointerType *GetAsNonSlice() const;
const PointerType *GetAsFrozenSlice() const;
const Type *GetBaseType() const;
const PointerType *GetAsVaryingType() const;
const PointerType *GetAsUniformType() const;
const PointerType *GetAsUnboundVariabilityType() const;
const PointerType *GetAsSOAType(int width) const;
const PointerType *ResolveUnboundVariability(Variability v) const;
const PointerType *GetAsConstType() const;
const PointerType *GetAsNonConstType() const;
std::string GetString() const;
std::string Mangle() const;
std::string GetCDeclaration(const std::string &name) const;
llvm::Type *LLVMType(llvm::LLVMContext *ctx) const;
llvm::DIType GetDIType(llvm::DIDescriptor scope) const;
static PointerType *Void;
private:
const Variability variability;
const bool isConst;
const bool isSlice, isFrozen;
const Type *baseType;
};
/** @brief Abstract base class for types that represent collections of
other types.
This is a common base class that StructTypes, ArrayTypes, and
VectorTypes all inherit from.
*/
class CollectionType : public Type {
public:
/** Returns the total number of elements in the collection. */
virtual int GetElementCount() const = 0;
/** Returns the type of the element given by index. (The value of
index must be between 0 and GetElementCount()-1.
*/
virtual const Type *GetElementType(int index) const = 0;
protected:
CollectionType(TypeId id) : Type(id) { }
};
/** @brief Abstract base class for types that represent sequences
SequentialType is an abstract base class that adds interface routines
for types that represent linear sequences of other types (i.e., arrays
and vectors).
*/
class SequentialType : public CollectionType {
public:
/** Returns the Type of the elements that the sequence stores; for
SequentialTypes, all elements have the same type . */
virtual const Type *GetElementType() const = 0;
/** SequentialType provides an implementation of this CollectionType
method, just passing the query on to the GetElementType(void)
implementation, since all of the elements of a SequentialType have
the same type.
*/
const Type *GetElementType(int index) const;
protected:
SequentialType(TypeId id) : CollectionType(id) { }
};
/** @brief One-dimensional array type.
ArrayType represents a one-dimensional array of instances of some other
type. (Multi-dimensional arrays are represented by ArrayTypes that in
turn hold ArrayTypes as their child types.)
*/
class ArrayType : public SequentialType {
public:
/** An ArrayType is created by providing the type of the elements that
it stores, and the SOA width to use in laying out the array in
memory.
@param elementType Type of the array elements
@param numElements Total number of elements in the array. This
parameter may be zero, in which case this is an
"unsized" array type. (Arrays of specific size
can be converted to unsized arrays to be passed
to functions that take array parameters, for
example).
*/
ArrayType(const Type *elementType, int numElements);
Variability GetVariability() const;
bool IsBoolType() const;
bool IsFloatType() const;
bool IsIntType() const;
bool IsUnsignedType() const;
bool IsConstType() const;
const Type *GetBaseType() const;
const ArrayType *GetAsVaryingType() const;
const ArrayType *GetAsUniformType() const;
const ArrayType *GetAsUnboundVariabilityType() const;
const ArrayType *GetAsSOAType(int width) const;
const ArrayType *ResolveUnboundVariability(Variability v) const;
const ArrayType *GetAsUnsignedType() const;
const ArrayType *GetAsConstType() const;
const ArrayType *GetAsNonConstType() const;
std::string GetString() const;
std::string Mangle() const;
std::string GetCDeclaration(const std::string &name) const;
llvm::DIType GetDIType(llvm::DIDescriptor scope) const;
llvm::ArrayType *LLVMType(llvm::LLVMContext *ctx) const;
/** This method returns the total number of elements in the array,
including all dimensions if this is a multidimensional array. */
int TotalElementCount() const;
int GetElementCount() const;
const Type *GetElementType() const;
/** Returns a new array of the same child type, but with the given
length. */
virtual ArrayType *GetSizedArray(int length) const;
/** If the given type is a (possibly multi-dimensional) array type and
the initializer expression is an expression list, set the size of
any array dimensions that are unsized according to the number of
elements in the corresponding sectoin of the initializer
expression.
*/
static const Type *SizeUnsizedArrays(const Type *type, Expr *initExpr);
private:
/** Type of the elements of the array. */
const Type * const child;
/** Number of elements in the array. */
const int numElements;
};
/** @brief A (short) vector of atomic types.
VectorType is used to represent a fixed-size array of elements of an
AtomicType. Vectors are similar to arrays in that they support
indexing of the elements, but have two key differences. First, all
arithmetic and logical operations that are value for the element type
can be performed on corresponding VectorTypes (as long as the two
VectorTypes have the same size). Second, VectorTypes of uniform
elements are laid out in memory aligned to the target's vector size;
this allows them to be packed 'horizontally' into vector registers.
*/
class VectorType : public SequentialType {
public:
VectorType(const AtomicType *base, int size);
Variability GetVariability() const;
bool IsBoolType() const;
bool IsFloatType() const;
bool IsIntType() const;
bool IsUnsignedType() const;
bool IsConstType() const;
const Type *GetBaseType() const;
const VectorType *GetAsVaryingType() const;
const VectorType *GetAsUniformType() const;
const VectorType *GetAsUnboundVariabilityType() const;
const VectorType *GetAsSOAType(int width) const;
const VectorType *ResolveUnboundVariability(Variability v) const;
const VectorType *GetAsConstType() const;
const VectorType *GetAsNonConstType() const;
std::string GetString() const;
std::string Mangle() const;
std::string GetCDeclaration(const std::string &name) const;
llvm::Type *LLVMType(llvm::LLVMContext *ctx) const;
llvm::DIType GetDIType(llvm::DIDescriptor scope) const;
int GetElementCount() const;
const AtomicType *GetElementType() const;
private:
/** Base type that the vector holds elements of */
const AtomicType * const base;
/** Number of elements in the vector */
const int numElements;
/** Returns the number of elements stored in memory for the vector.
For uniform vectors, this is rounded up so that the number of
elements evenly divides the target's native vector width. */
int getVectorMemoryCount() const;
};
/** @brief Representation of a structure holding a number of members.
*/
class StructType : public CollectionType {
public:
StructType(const std::string &name, const llvm::SmallVector<const Type *, 8> &elts,
const llvm::SmallVector<std::string, 8> &eltNames,
const llvm::SmallVector<SourcePos, 8> &eltPositions, bool isConst,
Variability variability, SourcePos pos);
Variability GetVariability() const;
bool IsBoolType() const;
bool IsFloatType() const;
bool IsIntType() const;
bool IsUnsignedType() const;
bool IsConstType() const;
bool IsDefined() const;
const Type *GetBaseType() const;
const StructType *GetAsVaryingType() const;
const StructType *GetAsUniformType() const;
const StructType *GetAsUnboundVariabilityType() const;
const StructType *GetAsSOAType(int width) const;
const StructType *ResolveUnboundVariability(Variability v) const;
const StructType *GetAsConstType() const;
const StructType *GetAsNonConstType() const;
std::string GetString() const;
std::string Mangle() const;
std::string GetCDeclaration(const std::string &name) const;
llvm::Type *LLVMType(llvm::LLVMContext *ctx) const;
llvm::DIType GetDIType(llvm::DIDescriptor scope) const;
/** Returns the type of the structure element with the given name (if any).
Returns NULL if there is no such named element. */
const Type *GetElementType(const std::string &name) const;
/** Returns the type of the i'th structure element. The value of \c i must
be between 0 and NumElements()-1. */
const Type *GetElementType(int i) const;
/** Returns which structure element number (starting from zero) that
has the given name. If there is no such element, return -1. */
int GetElementNumber(const std::string &name) const;
/** Returns the name of the i'th element of the structure. */
const std::string &GetElementName(int i) const { return elementNames[i]; }
/** Returns the total number of elements in the structure. */
int GetElementCount() const { return int(elementTypes.size()); }
const SourcePos &GetElementPosition(int i) const { return elementPositions[i]; }
/** Returns the name of the structure type. (e.g. struct Foo -> "Foo".) */
const std::string &GetStructName() const { return name; }
const std::string GetCStructName() const;
private:
static bool checkIfCanBeSOA(const StructType *st);
/*const*/ std::string name;
/** The types of the struct elements. Note that we store these with
uniform/varying exactly as they were declared in the source file.
(In other words, even if this struct has a varying qualifier and
thus all of its members are going to be widened out to be varying,
we still store any members that were declared as uniform as uniform
types in the elementTypes array, converting them to varying as
needed in the implementation.) This is so that if we later need to
make a uniform version of the struct, we've maintained the original
information about the member types.
*/
const llvm::SmallVector<const Type *, 8> elementTypes;
const llvm::SmallVector<std::string, 8> elementNames;
/** Source file position at which each structure element declaration
appeared. */
const llvm::SmallVector<SourcePos, 8> elementPositions;
const Variability variability;
const bool isConst;
const SourcePos pos;
mutable llvm::SmallVector<const Type *, 8> finalElementTypes;
mutable const StructType *oppositeConstStructType;
};
/** Type implementation representing a struct name that has been declared
but where the struct members haven't been defined (i.e. "struct Foo;").
This class doesn't do much besides serve as a placeholder that other
code can use to detect the presence of such as truct.
*/
class UndefinedStructType : public Type {
public:
UndefinedStructType(const std::string &name, const Variability variability,
bool isConst, SourcePos pos);
Variability GetVariability() const;
bool IsBoolType() const;
bool IsFloatType() const;
bool IsIntType() const;
bool IsUnsignedType() const;
bool IsConstType() const;
const Type *GetBaseType() const;
const UndefinedStructType *GetAsVaryingType() const;
const UndefinedStructType *GetAsUniformType() const;
const UndefinedStructType *GetAsUnboundVariabilityType() const;
const UndefinedStructType *GetAsSOAType(int width) const;
const UndefinedStructType *ResolveUnboundVariability(Variability v) const;
const UndefinedStructType *GetAsConstType() const;
const UndefinedStructType *GetAsNonConstType() const;
std::string GetString() const;
std::string Mangle() const;
std::string GetCDeclaration(const std::string &name) const;
llvm::Type *LLVMType(llvm::LLVMContext *ctx) const;
llvm::DIType GetDIType(llvm::DIDescriptor scope) const;
/** Returns the name of the structure type. (e.g. struct Foo -> "Foo".) */
const std::string &GetStructName() const { return name; }
private:
const std::string name;
const Variability variability;
const bool isConst;
const SourcePos pos;
};
/** @brief Type representing a reference to another (non-reference) type.
*/
class ReferenceType : public Type {
public:
ReferenceType(const Type *targetType);
Variability GetVariability() const;
bool IsBoolType() const;
bool IsFloatType() const;
bool IsIntType() const;
bool IsUnsignedType() const;
bool IsConstType() const;
const Type *GetBaseType() const;
const Type *GetReferenceTarget() const;
const ReferenceType *GetAsVaryingType() const;
const ReferenceType *GetAsUniformType() const;
const ReferenceType *GetAsUnboundVariabilityType() const;
const Type *GetAsSOAType(int width) const;
const ReferenceType *ResolveUnboundVariability(Variability v) const;
const ReferenceType *GetAsConstType() const;
const ReferenceType *GetAsNonConstType() const;
std::string GetString() const;
std::string Mangle() const;
std::string GetCDeclaration(const std::string &name) const;
llvm::Type *LLVMType(llvm::LLVMContext *ctx) const;
llvm::DIType GetDIType(llvm::DIDescriptor scope) const;
private:
const Type * const targetType;
mutable const ReferenceType *asOtherConstType;
};
/** @brief Type representing a function (return type + argument types)
FunctionType encapsulates the information related to a function's type,
including the return type and the types of the arguments.
@todo This class has a fair number of methods inherited from Type that
don't make sense here (e.g. IsUniformType(), GetBaseType(), LLVMType(), etc.
Would be nice to refactor the inheritance hierarchy to move most of
those interface methods to a sub-class of Type, which in turn all of
the other Type implementations inherit from.
*/
class FunctionType : public Type {
public:
FunctionType(const Type *returnType,
const llvm::SmallVector<const Type *, 8> &argTypes, SourcePos pos);
FunctionType(const Type *returnType,
const llvm::SmallVector<const Type *, 8> &argTypes,
const llvm::SmallVector<std::string, 8> &argNames,
const llvm::SmallVector<Expr *, 8> &argDefaults,
const llvm::SmallVector<SourcePos, 8> &argPos,
bool isTask, bool isExported, bool isExternC, bool isUnmasked);
Variability GetVariability() const;
bool IsBoolType() const;
bool IsFloatType() const;
bool IsIntType() const;
bool IsUnsignedType() const;
bool IsConstType() const;
const Type *GetBaseType() const;
const Type *GetAsVaryingType() const;
const Type *GetAsUniformType() const;
const Type *GetAsUnboundVariabilityType() const;
const Type *GetAsSOAType(int width) const;
const FunctionType *ResolveUnboundVariability(Variability v) const;
const Type *GetAsConstType() const;
const Type *GetAsNonConstType() const;
std::string GetString() const;
std::string Mangle() const;
std::string GetCDeclaration(const std::string &fname) const;
std::string GetCDeclarationForDispatch(const std::string &fname) const;
llvm::Type *LLVMType(llvm::LLVMContext *ctx) const;
llvm::DIType GetDIType(llvm::DIDescriptor scope) const;
const Type *GetReturnType() const { return returnType; }
const std::string GetReturnTypeString() const;
/** This method returns the LLVM FunctionType that corresponds to this
function type. The \c disableMask parameter indicates whether the
llvm::FunctionType should have the trailing mask parameter, if
present, removed from the return function signature. */
llvm::FunctionType *LLVMFunctionType(llvm::LLVMContext *ctx,
bool disableMask = false) const;
int GetNumParameters() const { return (int)paramTypes.size(); }
const Type *GetParameterType(int i) const;
Expr * GetParameterDefault(int i) const;
const SourcePos &GetParameterSourcePos(int i) const;
const std::string &GetParameterName(int i) const;
/** This value is true if the function had a 'task' qualifier in the
source program. */
const bool isTask;
/** This value is true if the function had a 'export' qualifier in the
source program. */
const bool isExported;
/** This value is true if the function was declared as an 'extern "C"'
function in the source program. */
const bool isExternC;
/** Indicates whether the function doesn't take an implicit mask
parameter (and thus should start execution with an "all on"
mask). */
const bool isUnmasked;
/** Indicates whether this function has been declared to be safe to run
with an all-off mask. */
bool isSafe;
/** If non-negative, this provides a user-supplied override to the cost
function estimate for the function. */
int costOverride;
private:
const Type * const returnType;
// The following four vectors should all have the same length (which is
// in turn the length returned by GetNumParameters()).
const llvm::SmallVector<const Type *, 8> paramTypes;
const llvm::SmallVector<std::string, 8> paramNames;
/** Default values of the function's arguments. For arguments without
default values provided, NULL is stored. */
mutable llvm::SmallVector<Expr *, 8> paramDefaults;
/** The names provided (if any) with the function arguments in the
function's signature. These should only be used for error messages
and the like and so not affect testing function types for equality,
etc. */
const llvm::SmallVector<SourcePos, 8> paramPositions;
};
/* Efficient dynamic casting of Types. First, we specify a default
template function that returns NULL, indicating a failed cast, for
arbitrary types. */
template <typename T> inline const T *
CastType(const Type *type) {
return NULL;
}
/* Now we have template specializaitons for the Types implemented in this
file. Each one checks the Type::typeId member and then performs the
corresponding static cast if it's safe as per the typeId.
*/
template <> inline const AtomicType *
CastType(const Type *type) {
if (type != NULL && type->typeId == ATOMIC_TYPE)
return (const AtomicType *)type;
else
return NULL;
}
template <> inline const EnumType *
CastType(const Type *type) {
if (type != NULL && type->typeId == ENUM_TYPE)
return (const EnumType *)type;
else
return NULL;
}
template <> inline const PointerType *
CastType(const Type *type) {
if (type != NULL && type->typeId == POINTER_TYPE)
return (const PointerType *)type;
else
return NULL;
}
template <> inline const ArrayType *
CastType(const Type *type) {
if (type != NULL && type->typeId == ARRAY_TYPE)
return (const ArrayType *)type;
else
return NULL;
}
template <> inline const VectorType *
CastType(const Type *type) {
if (type != NULL && type->typeId == VECTOR_TYPE)
return (const VectorType *)type;
else
return NULL;
}
template <> inline const SequentialType *
CastType(const Type *type) {
// Note that this function must be updated if other sequential type
// implementations are added.
if (type != NULL &&
(type->typeId == ARRAY_TYPE || type->typeId == VECTOR_TYPE))