-
Notifications
You must be signed in to change notification settings - Fork 0
/
expr.h
754 lines (611 loc) · 24.9 KB
/
expr.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
/*
Copyright (c) 2010-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @file expr.h
@brief Expr abstract base class and expression implementations
*/
#ifndef ISPC_EXPR_H
#define ISPC_EXPR_H 1
#include "ispc.h"
#include "ast.h"
#include "type.h"
/** @brief Expr is the abstract base class that defines the interface that
all expression types must implement.
*/
class Expr : public ASTNode {
public:
Expr(SourcePos p) : ASTNode(p) { }
/** This is the main method for Expr implementations to implement. It
should call methods in the FunctionEmitContext to emit LLVM IR
instructions to the current basic block in order to generate an
llvm::Value that represents the expression's value. */
virtual llvm::Value *GetValue(FunctionEmitContext *ctx) const = 0;
/** For expressions that can provide an lvalue (e.g. array indexing),
this function should emit IR that computes the expression's lvalue
and returns the corresponding llvm::Value. Expressions that can't
provide an lvalue should leave this unimplemented; the default
implementation returns NULL. */
virtual llvm::Value *GetLValue(FunctionEmitContext *ctx) const;
/** Returns the Type of the expression. */
virtual const Type *GetType() const = 0;
/** Returns the type of the value returned by GetLValueType(); this
should be a pointer type of some sort (uniform or varying). */
virtual const Type *GetLValueType() const;
/** For expressions that have values based on a symbol (e.g. regular
symbol references, array indexing, etc.), this returns a pointer to
that symbol. */
virtual Symbol *GetBaseSymbol() const;
/** If this is a constant expression that can be converted to a
constant of the given type, this method should return the
corresponding llvm::Constant value. Otherwise it should return
NULL. */
virtual llvm::Constant *GetConstant(const Type *type) const;
/** This method should perform early optimizations of the expression
(constant folding, etc.) and return a pointer to the resulting
expression. If an error is encountered during optimization, NULL
should be returned. */
virtual Expr *Optimize() = 0;
/** This method should perform type checking of the expression and
return a pointer to the resulting expression. If an error is
encountered, NULL should be returned. */
virtual Expr *TypeCheck() = 0;
/** Prints the expression to standard output (used for debugging). */
virtual void Print() const = 0;
};
/** @brief Unary expression */
class UnaryExpr : public Expr {
public:
enum Op {
PreInc, ///< Pre-increment
PreDec, ///< Pre-decrement
PostInc, ///< Post-increment
PostDec, ///< Post-decrement
Negate, ///< Negation
LogicalNot, ///< Logical not
BitNot, ///< Bit not
};
UnaryExpr(Op op, Expr *expr, SourcePos pos);
llvm::Value *GetValue(FunctionEmitContext *ctx) const;
const Type *GetType() const;
void Print() const;
Expr *Optimize();
Expr *TypeCheck();
int EstimateCost() const;
const Op op;
Expr *expr;
};
/** @brief Binary expression */
class BinaryExpr : public Expr {
public:
enum Op {
Add, ///< Addition
Sub, ///< Subtraction
Mul, ///< Multiplication
Div, ///< Division
Mod, ///< Modulus
Shl, ///< Shift left
Shr, ///< Shift right
Lt, ///< Less than
Gt, ///< Greater than
Le, ///< Less than or equal
Ge, ///< Greater than or equal
Equal, ///< Equal
NotEqual, ///< Not equal
BitAnd, ///< Bitwise AND
BitXor, ///< Bitwise XOR
BitOr, ///< Bitwise OR
LogicalAnd, ///< Logical AND
LogicalOr, ///< Logical OR
Comma, ///< Comma operator
};
BinaryExpr(Op o, Expr *a, Expr *b, SourcePos p);
llvm::Value *GetValue(FunctionEmitContext *ctx) const;
const Type *GetType() const;
const Type *GetLValueType() const;
void Print() const;
Expr *Optimize();
Expr *TypeCheck();
int EstimateCost() const;
const Op op;
Expr *arg0, *arg1;
};
/** @brief Assignment expression */
class AssignExpr : public Expr {
public:
enum Op {
Assign, ///< Regular assignment
MulAssign, ///< *= assignment
DivAssign, ///< /= assignment
ModAssign, ///< %= assignment
AddAssign, ///< += assignment
SubAssign, ///< -= assignment
ShlAssign, ///< <<= assignment
ShrAssign, ///< >>= assignment
AndAssign, ///< &= assignment
XorAssign, ///< ^= assignment
OrAssign, ///< |= assignment
};
AssignExpr(Op o, Expr *a, Expr *b, SourcePos p);
llvm::Value *GetValue(FunctionEmitContext *ctx) const;
const Type *GetType() const;
void Print() const;
Expr *Optimize();
Expr *TypeCheck();
int EstimateCost() const;
const Op op;
Expr *lvalue, *rvalue;
};
/** @brief Selection expression, corresponding to "test ? a : b".
Returns the value of "a" or "b", depending on the value of "test".
*/
class SelectExpr : public Expr {
public:
SelectExpr(Expr *test, Expr *a, Expr *b, SourcePos p);
llvm::Value *GetValue(FunctionEmitContext *ctx) const;
const Type *GetType() const;
void Print() const;
Expr *Optimize();
Expr *TypeCheck();
int EstimateCost() const;
Expr *test, *expr1, *expr2;
};
/** @brief A list of expressions.
These are mostly used for representing curly-brace delimited
initializers for initializers for complex types and for representing
the arguments passed to a function call.
*/
class ExprList : public Expr {
public:
ExprList(SourcePos p) : Expr(p) { }
ExprList(Expr *e, SourcePos p) : Expr(p) { exprs.push_back(e); }
llvm::Value *GetValue(FunctionEmitContext *ctx) const;
const Type *GetType() const;
void Print() const;
llvm::Constant *GetConstant(const Type *type) const;
ExprList *Optimize();
ExprList *TypeCheck();
int EstimateCost() const;
std::vector<Expr *> exprs;
};
/** @brief Expression representing a function call.
*/
class FunctionCallExpr : public Expr {
public:
FunctionCallExpr(Expr *func, ExprList *args, SourcePos p,
bool isLaunch = false,
Expr *launchCountExpr[3] = NULL);
llvm::Value *GetValue(FunctionEmitContext *ctx) const;
llvm::Value *GetLValue(FunctionEmitContext *ctx) const;
const Type *GetType() const;
const Type *GetLValueType() const;
void Print() const;
Expr *Optimize();
Expr *TypeCheck();
int EstimateCost() const;
Expr *func;
ExprList *args;
bool isLaunch;
Expr *launchCountExpr[3];
};
/** @brief Expression representing indexing into something with an integer
offset.
This is used for both array indexing and indexing into VectorTypes.
*/
class IndexExpr : public Expr {
public:
IndexExpr(Expr *baseExpr, Expr *index, SourcePos p);
llvm::Value *GetValue(FunctionEmitContext *ctx) const;
llvm::Value *GetLValue(FunctionEmitContext *ctx) const;
const Type *GetType() const;
const Type *GetLValueType() const;
Symbol *GetBaseSymbol() const;
void Print() const;
Expr *Optimize();
Expr *TypeCheck();
int EstimateCost() const;
Expr *baseExpr, *index;
private:
mutable const Type *type;
mutable const PointerType *lvalueType;
};
/** @brief Expression representing member selection ("foo.bar").
*
* This will also be overloaded to deal with swizzles.
*/
class MemberExpr : public Expr {
public:
static MemberExpr *create(Expr *expr, const char *identifier,
SourcePos pos, SourcePos identifierPos,
bool derefLvalue);
llvm::Value *GetValue(FunctionEmitContext *ctx) const;
llvm::Value *GetLValue(FunctionEmitContext *ctx) const;
const Type *GetType() const;
Symbol *GetBaseSymbol() const;
void Print() const;
Expr *Optimize();
Expr *TypeCheck();
int EstimateCost() const;
virtual int getElementNumber() const = 0;
virtual const Type *getElementType() const = 0;
std::string getCandidateNearMatches() const;
Expr *expr;
std::string identifier;
const SourcePos identifierPos;
MemberExpr(Expr *expr, const char *identifier, SourcePos pos,
SourcePos identifierPos, bool derefLValue);
/** Indicates whether the expression should be dereferenced before the
member is found. (i.e. this is true if the MemberExpr was a '->'
operator, and is false if it was a '.' operator. */
bool dereferenceExpr;
protected:
mutable const Type *type, *lvalueType;
};
/** @brief Expression representing a compile-time constant value.
This class can currently represent compile-time constants of anything
that is an AtomicType or an EnumType; for anything more complex, we
don't currently have a representation of a compile-time constant that
can be further reasoned about.
*/
class ConstExpr : public Expr {
public:
/** Create a ConstExpr from a uniform int8 value */
ConstExpr(const Type *t, int8_t i, SourcePos p);
/** Create a ConstExpr from a varying int8 value */
ConstExpr(const Type *t, int8_t *i, SourcePos p);
/** Create a ConstExpr from a uniform uint8 value */
ConstExpr(const Type *t, uint8_t u, SourcePos p);
/** Create a ConstExpr from a varying uint8 value */
ConstExpr(const Type *t, uint8_t *u, SourcePos p);
/** Create a ConstExpr from a uniform int16 value */
ConstExpr(const Type *t, int16_t i, SourcePos p);
/** Create a ConstExpr from a varying int16 value */
ConstExpr(const Type *t, int16_t *i, SourcePos p);
/** Create a ConstExpr from a uniform uint16 value */
ConstExpr(const Type *t, uint16_t u, SourcePos p);
/** Create a ConstExpr from a varying uint16 value */
ConstExpr(const Type *t, uint16_t *u, SourcePos p);
/** Create a ConstExpr from a uniform int32 value */
ConstExpr(const Type *t, int32_t i, SourcePos p);
/** Create a ConstExpr from a varying int32 value */
ConstExpr(const Type *t, int32_t *i, SourcePos p);
/** Create a ConstExpr from a uniform uint32 value */
ConstExpr(const Type *t, uint32_t u, SourcePos p);
/** Create a ConstExpr from a varying uint32 value */
ConstExpr(const Type *t, uint32_t *u, SourcePos p);
/** Create a ConstExpr from a uniform float value */
ConstExpr(const Type *t, float f, SourcePos p);
/** Create a ConstExpr from a varying float value */
ConstExpr(const Type *t, float *f, SourcePos p);
/** Create a ConstExpr from a uniform double value */
ConstExpr(const Type *t, double d, SourcePos p);
/** Create a ConstExpr from a varying double value */
ConstExpr(const Type *t, double *d, SourcePos p);
/** Create a ConstExpr from a uniform int64 value */
ConstExpr(const Type *t, int64_t i, SourcePos p);
/** Create a ConstExpr from a varying int64 value */
ConstExpr(const Type *t, int64_t *i, SourcePos p);
/** Create a ConstExpr from a uniform uint64 value */
ConstExpr(const Type *t, uint64_t i, SourcePos p);
/** Create a ConstExpr from a varying uint64 value */
ConstExpr(const Type *t, uint64_t *i, SourcePos p);
/** Create a ConstExpr from a uniform bool value */
ConstExpr(const Type *t, bool b, SourcePos p);
/** Create a ConstExpr from a varying bool value */
ConstExpr(const Type *t, bool *b, SourcePos p);
/** Create a ConstExpr of the same type as the given old ConstExpr,
with values given by the "vales" parameter. */
ConstExpr(ConstExpr *old, double *values);
/** Create ConstExpr with the same type and values as the given one,
but at the given position. */
ConstExpr(ConstExpr *old, SourcePos pos);
llvm::Value *GetValue(FunctionEmitContext *ctx) const;
const Type *GetType() const;
void Print() const;
llvm::Constant *GetConstant(const Type *type) const;
Expr *TypeCheck();
Expr *Optimize();
int EstimateCost() const;
/** Return the ConstExpr's values as the given pointer type, doing type
conversion from the actual type if needed. If forceVarying is
true, then type convert to 'varying' so as to always return a
number of values equal to the target vector width into the given
pointer. */
int GetValues(bool *, bool forceVarying = false) const;
int GetValues(int8_t *, bool forceVarying = false) const;
int GetValues(uint8_t *, bool forceVarying = false) const;
int GetValues(int16_t *, bool forceVarying = false) const;
int GetValues(uint16_t *, bool forceVarying = false) const;
int GetValues(int32_t *, bool forceVarying = false) const;
int GetValues(uint32_t *, bool forceVarying = false) const;
int GetValues(float *, bool forceVarying = false) const;
int GetValues(int64_t *, bool forceVarying = false) const;
int GetValues(uint64_t *, bool forceVarying = false) const;
int GetValues(double *, bool forceVarying = false) const;
/** Return the number of values in the ConstExpr; should be either 1,
if it has uniform type, or the target's vector width if it's
varying. */
int Count() const;
private:
AtomicType::BasicType getBasicType() const;
const Type *type;
union {
int8_t int8Val[ISPC_MAX_NVEC];
uint8_t uint8Val[ISPC_MAX_NVEC];
int16_t int16Val[ISPC_MAX_NVEC];
uint16_t uint16Val[ISPC_MAX_NVEC];
int32_t int32Val[ISPC_MAX_NVEC];
uint32_t uint32Val[ISPC_MAX_NVEC];
bool boolVal[ISPC_MAX_NVEC];
float floatVal[ISPC_MAX_NVEC];
double doubleVal[ISPC_MAX_NVEC];
int64_t int64Val[ISPC_MAX_NVEC];
uint64_t uint64Val[ISPC_MAX_NVEC];
};
};
/** @brief Expression representing a type cast of the given expression to a
probably-different type. */
class TypeCastExpr : public Expr {
public:
TypeCastExpr(const Type *t, Expr *e, SourcePos p);
llvm::Value *GetValue(FunctionEmitContext *ctx) const;
llvm::Value *GetLValue(FunctionEmitContext *ctx) const;
const Type *GetType() const;
const Type *GetLValueType() const;
void Print() const;
Expr *TypeCheck();
Expr *Optimize();
int EstimateCost() const;
Symbol *GetBaseSymbol() const;
llvm::Constant *GetConstant(const Type *type) const;
const Type *type;
Expr *expr;
};
/** @brief Expression that represents taking a reference of a (non-reference)
variable. */
class ReferenceExpr : public Expr {
public:
ReferenceExpr(Expr *e, SourcePos p);
llvm::Value *GetValue(FunctionEmitContext *ctx) const;
const Type *GetType() const;
const Type *GetLValueType() const;
Symbol *GetBaseSymbol() const;
void Print() const;
Expr *TypeCheck();
Expr *Optimize();
int EstimateCost() const;
Expr *expr;
};
/** @brief Common base class that provides shared functionality for
PtrDerefExpr and RefDerefExpr. */
class DerefExpr : public Expr {
public:
DerefExpr(Expr *e, SourcePos p);
llvm::Value *GetValue(FunctionEmitContext *ctx) const;
llvm::Value *GetLValue(FunctionEmitContext *ctx) const;
const Type *GetLValueType() const;
Symbol *GetBaseSymbol() const;
Expr *Optimize();
Expr *expr;
};
/** @brief Expression that represents dereferencing a pointer to get its
value. */
class PtrDerefExpr : public DerefExpr {
public:
PtrDerefExpr(Expr *e, SourcePos p);
const Type *GetType() const;
void Print() const;
Expr *TypeCheck();
int EstimateCost() const;
};
/** @brief Expression that represents dereferencing a reference to get its
value. */
class RefDerefExpr : public DerefExpr {
public:
RefDerefExpr(Expr *e, SourcePos p);
const Type *GetType() const;
void Print() const;
Expr *TypeCheck();
int EstimateCost() const;
};
/** Expression that represents taking the address of an expression. */
class AddressOfExpr : public Expr {
public:
AddressOfExpr(Expr *e, SourcePos p);
llvm::Value *GetValue(FunctionEmitContext *ctx) const;
const Type *GetType() const;
Symbol *GetBaseSymbol() const;
void Print() const;
Expr *TypeCheck();
Expr *Optimize();
int EstimateCost() const;
llvm::Constant *GetConstant(const Type *type) const;
Expr *expr;
};
/** Expression that returns the size of the given expression or type in
bytes. */
class SizeOfExpr : public Expr {
public:
SizeOfExpr(Expr *e, SourcePos p);
SizeOfExpr(const Type *t, SourcePos p);
llvm::Value *GetValue(FunctionEmitContext *ctx) const;
const Type *GetType() const;
void Print() const;
Expr *TypeCheck();
Expr *Optimize();
int EstimateCost() const;
/* One of expr or type should be non-NULL (but not both of them). The
SizeOfExpr returns the size of whichever one of them isn't NULL. */
Expr *expr;
const Type *type;
};
/** @brief Expression representing a symbol reference in the program */
class SymbolExpr : public Expr {
public:
SymbolExpr(Symbol *s, SourcePos p);
llvm::Value *GetValue(FunctionEmitContext *ctx) const;
llvm::Value *GetLValue(FunctionEmitContext *ctx) const;
const Type *GetType() const;
const Type *GetLValueType() const;
Symbol *GetBaseSymbol() const;
Expr *TypeCheck();
Expr *Optimize();
void Print() const;
int EstimateCost() const;
private:
Symbol *symbol;
};
/** @brief Expression representing a function symbol in the program (generally
used for a function call).
*/
class FunctionSymbolExpr : public Expr {
public:
FunctionSymbolExpr(const char *name, const std::vector<Symbol *> &candFuncs,
SourcePos pos);
llvm::Value *GetValue(FunctionEmitContext *ctx) const;
const Type *GetType() const;
Symbol *GetBaseSymbol() const;
Expr *TypeCheck();
Expr *Optimize();
void Print() const;
int EstimateCost() const;
llvm::Constant *GetConstant(const Type *type) const;
/** Given the types of the function arguments, in the presence of
function overloading, this method resolves which actual function
the arguments match best. If the argCouldBeNULL parameter is
non-NULL, each element indicates whether the corresponding argument
is the number zero, indicating that it could be a NULL pointer, and
if argIsConstant is non-NULL, each element indicates whether the
corresponding argument is a compile-time constant value. Both of
these parameters may be NULL (for cases where overload resolution
is being done just given type information without the parameter
argument expressions being available. This function returns true
on success.
*/
bool ResolveOverloads(SourcePos argPos,
const std::vector<const Type *> &argTypes,
const std::vector<bool> *argCouldBeNULL = NULL,
const std::vector<bool> *argIsConstant = NULL);
Symbol *GetMatchingFunction();
private:
std::vector<Symbol *> getCandidateFunctions(int argCount) const;
static int computeOverloadCost(const FunctionType *ftype,
const std::vector<const Type *> &argTypes,
const std::vector<bool> *argCouldBeNULL,
const std::vector<bool> *argIsConstant,
int * cost);
/** Name of the function that is being called. */
std::string name;
/** All of the functions with the name given in the function call;
there may be more then one, in which case we need to resolve which
overload is the best match. */
std::vector<Symbol *> candidateFunctions;
/** The actual matching function found after overload resolution. */
Symbol *matchingFunc;
bool triedToResolve;
};
/** @brief A sync statement in the program (waits for all launched tasks before
proceeding). */
class SyncExpr : public Expr {
public:
SyncExpr(SourcePos p) : Expr(p) { }
llvm::Value *GetValue(FunctionEmitContext *ctx) const;
const Type *GetType() const;
Expr *TypeCheck();
Expr *Optimize();
void Print() const;
int EstimateCost() const;
};
/** @brief An expression that represents a NULL pointer. */
class NullPointerExpr : public Expr {
public:
NullPointerExpr(SourcePos p) : Expr(p) { }
llvm::Value *GetValue(FunctionEmitContext *ctx) const;
const Type *GetType() const;
Expr *TypeCheck();
Expr *Optimize();
llvm::Constant *GetConstant(const Type *type) const;
void Print() const;
int EstimateCost() const;
};
/** An expression representing a "new" expression, used for dynamically
allocating memory.
*/
class NewExpr : public Expr {
public:
NewExpr(int typeQual, const Type *type, Expr *initializer, Expr *count,
SourcePos tqPos, SourcePos p);
llvm::Value *GetValue(FunctionEmitContext *ctx) const;
const Type *GetType() const;
Expr *TypeCheck();
Expr *Optimize();
void Print() const;
int EstimateCost() const;
/** Type of object to allocate storage for. */
const Type *allocType;
/** Expression giving the number of elements to allocate, when the
"new Foo[expr]" form is used. This may be NULL, in which case a
single element of the given type will be allocated. */
Expr *countExpr;
/** Optional initializer expression used to initialize the allocated
memory. */
Expr *initExpr;
/** Indicates whether this is a "varying new" or "uniform new"
(i.e. whether a separate allocation is performed per program
instance, or whether a single allocation is performed for the
entire gang of program instances.) */
bool isVarying;
};
/** This function indicates whether it's legal to convert from fromType to
toType. If the optional errorMsgBase and source position parameters
are provided, then an error message is issued if the type conversion
isn't possible.
*/
bool CanConvertTypes(const Type *fromType, const Type *toType,
const char *errorMsgBase = NULL,
SourcePos pos = SourcePos());
/** This function attempts to convert the given expression to the given
type, returning a pointer to a new expression that is the result. If
the required type conversion is illegal, it returns NULL and prints an
error message using the provided string to indicate the context for
which type conversion was being applied (e.g. "function call
parameter").
*/
Expr *TypeConvertExpr(Expr *expr, const Type *toType, const char *errorMsgBase);
Expr * MakeBinaryExpr(BinaryExpr::Op o, Expr *a, Expr *b, SourcePos p);
/** Utility routine that emits code to initialize a symbol given an
initializer expression.
@param lvalue Memory location of storage for the symbol's data
@param symName Name of symbol (used in error messages)
@param symType Type of variable being initialized
@param initExpr Expression for the initializer
@param ctx FunctionEmitContext to use for generating instructions
@param pos Source file position of the variable being initialized
*/
void
InitSymbol(llvm::Value *lvalue, const Type *symType, Expr *initExpr,
FunctionEmitContext *ctx, SourcePos pos);
bool PossiblyResolveFunctionOverloads(Expr *expr, const Type *type);
#endif // ISPC_EXPR_H